licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.3.8 | d6f73792bf7f162a095503f47427c66235c0c772 | code | 1967 | function branching_sim(pomdp::POMDP, policy::Policy, b::ScenarioBelief, steps::Integer, fval)
S = statetype(pomdp)
O = obstype(pomdp)
odict = Dict{O, Vector{Pair{Int, S}}}()
olist = O[]
if steps <= 0
return length(b.scenarios)*fval(pomdp, b)
end
a = action(policy, b)
r_sum = 0.0
for (k, s) in b.scenarios
if !isterminal(pomdp, s)
rng = get_rng(b.random_source, k, b.depth)
sp, o, r = @gen(:sp, :o, :r)(pomdp, s, a, rng)
if haskey(odict, o)
push!(odict[o], k=>sp)
else
odict[o] = [k=>sp]
push!(olist,o)
end
r_sum += r
end
end
next_r = 0.0
for o in olist
scenarios = odict[o]
bp = ScenarioBelief(scenarios, b.random_source, b.depth+1, o)
if length(scenarios) == 1
next_r += rollout(pomdp, policy, bp, steps-1, fval)
else
next_r += branching_sim(pomdp, policy, bp, steps-1, fval)
end
end
return r_sum + discount(pomdp)*next_r
end
# once there is only one scenario left, just run a rollout
function rollout(pomdp::POMDP, policy::Policy, b0::ScenarioBelief, steps::Integer, fval)
@assert length(b0.scenarios) == 1
disc = 1.0
r_total = 0.0
scenario_mem = copy(b0.scenarios)
(k, s) = first(b0.scenarios)
b = ScenarioBelief(scenario_mem, b0.random_source, b0.depth, b0._obs)
while !isterminal(pomdp, s) && steps > 0
a = action(policy, b)
rng = get_rng(b.random_source, k, b.depth)
sp, o, r = @gen(:sp, :o, :r)(pomdp, s, a, rng)
r_total += disc*r
s = sp
scenario_mem[1] = k=>s
b = ScenarioBelief(scenario_mem, b.random_source, b.depth+1, o)
disc *= discount(pomdp)
steps -= 1
end
if steps == 0 && !isterminal(pomdp, s)
r_total += disc*fval(pomdp, b)
end
return r_total
end
| ARDESPOT | https://github.com/JuliaPOMDP/ARDESPOT.jl.git |
|
[
"MIT"
] | 0.3.8 | d6f73792bf7f162a095503f47427c66235c0c772 | code | 283 | struct NoGap <: NoDecision
value::Float64
end
Base.show(io::IO, ng::NoGap) = print(io, """
The lower and upper bounds for the root belief were both $(ng.value), so no tree was created.
Use the default_action solver parameter to specify behavior for this case.
""")
| ARDESPOT | https://github.com/JuliaPOMDP/ARDESPOT.jl.git |
|
[
"MIT"
] | 0.3.8 | d6f73792bf7f162a095503f47427c66235c0c772 | code | 2268 | using Random: CloseOpen12, CloseOpen01_64, CloseOpen12_64, FloatInterval, MT_CACHE_F, SamplerUnion, UInt52Raw, SamplerTrivial, BitInteger, SamplerType
mutable struct MemorizingRNG{S} <: AbstractRNG
memory::Vector{Float64}
start::Int
finish::Int
idx::Int
source::S
end
MemorizingRNG(source) = MemorizingRNG(Float64[], 1, 0, 0, source)
# Low level API (copied from MersenneTwister)
mr_avail(r::MemorizingRNG) = r.finish - r.idx
mr_empty(r::MemorizingRNG) = r.idx == r.finish
mr_pop!(r::MemorizingRNG) = @inbounds return r.memory[r.idx+=1]
reserve_1(r::MemorizingRNG) = mr_empty(r) && gen_rand!(r, 1)
reserve(r::MemorizingRNG, n::Integer) = mr_avail(r) < n && gen_rand!(r, n)
# precondition: !mr_empty(r)
rand_inbounds(r::MemorizingRNG, ::CloseOpen12_64) = mr_pop!(r)
rand_inbounds(r::MemorizingRNG, ::CloseOpen01_64) = rand_inbounds(r, CloseOpen12_64()) - 1.0
rand_inbounds(r::MemorizingRNG, ::UInt52Raw{T}) where {T<:BitInteger} = reinterpret(UInt64, rand_inbounds(r, CloseOpen12())) % T
rand_inbounds(r::MemorizingRNG) = rand_inbounds(r, CloseOpen01_64())
Random.rng_native_52(rng::MemorizingRNG) = Random.rng_native_52(rng.source)
function rand(r::MemorizingRNG, ::Union{I, Type{I}}) where I <: FloatInterval
reserve_1(r)
rand_inbounds(r, I())
end
function rand(r::MemorizingRNG, x::SamplerTrivial{UInt52Raw{UInt64}})
reserve_1(r)
rand_inbounds(r, x[])
end
rand(r::MemorizingRNG, T::SamplerUnion(Bool, Int8, UInt8, Int16, UInt16, Int32, UInt32)) =
rand(r, UInt52Raw()) % T[]
# zsunberg made the two below up - efficiency could probably be improved
rand(r::MemorizingRNG, T::SamplerType{UInt64}) = rand(r, UInt32)*(convert(UInt64, typemax(UInt32)) + one(UInt64)) + rand(r, UInt32)
rand(r::MemorizingRNG, T::SamplerType{Int64}) = reinterpret(Int64, rand(r, UInt64))
# rand(r::MemorizingRNG, ::Type{Float64}) = rand(r, CloseOpen01)
function gen_rand!(r::MemorizingRNG{MersenneTwister}, n::Integer)
len = length(r.memory)
if len < r.idx + n
resize!(r.memory, len+MT_CACHE_F)
Random.gen_rand(r.source) # could be faster to use dsfmt_fill_array_close1_open2
r.memory[len+1:end] = r.source.vals
Random.mt_setempty!(r.source)
end
r.finish = length(r.memory)
return r
end
| ARDESPOT | https://github.com/JuliaPOMDP/ARDESPOT.jl.git |
|
[
"MIT"
] | 0.3.8 | d6f73792bf7f162a095503f47427c66235c0c772 | code | 4113 | function build_despot(p::DESPOTPlanner, b_0)
D = DESPOT(p, b_0)
b = 1
trial = 1
start = time()
while D.mu[1]-D.l[1] > p.sol.epsilon_0 &&
time()-start < p.sol.T_max &&
trial <= p.sol.max_trials
b = explore!(D, 1, p)
backup!(D, b, p)
trial += 1
end
return D
end
function explore!(D::DESPOT, b::Int, p::DESPOTPlanner)
while D.Delta[b] <= p.sol.D &&
excess_uncertainty(D, b, p) > 0.0 &&
!prune!(D, b, p)
if isempty(D.children[b]) # a leaf
expand!(D, b, p)
end
b = next_best(D, b, p)
end
if D.Delta[b] > p.sol.D
make_default!(D, b)
end
return b
end
function prune!(D::DESPOT, b::Int, p::DESPOTPlanner)
x = b
blocked = false
while x != 1
n = find_blocker(D, x, p)
if n > 0
make_default!(D, x)
backup!(D, x, p)
blocked = true
else
break
end
x = D.parent_b[x]
end
return blocked
end
function find_blocker(D::DESPOT, b::Int, p::DESPOTPlanner)
len = 1
bp = D.parent_b[b] # Note: unlike the normal use of bp, here bp is a parent following equation (12)
while bp != 1
left_side_eq_12 = length(D.scenarios[bp])/p.sol.K*discount(p.pomdp)^D.Delta[bp]*D.U[bp] - D.l_0[bp]
if left_side_eq_12 <= p.sol.lambda * len
return bp
else
bp = D.parent_b[bp]
len += 1
end
end
return 0 # no blocker
end
function make_default!(D::DESPOT, b::Int)
l_0 = D.l_0[b]
D.mu[b] = l_0
D.l[b] = l_0
end
function backup!(D::DESPOT, b::Int, p::DESPOTPlanner)
# Note: maybe this could be sped up by just calculating the change in the one mu and l corresponding to bp, rather than summing up over all bp
while b != 1
ba = D.parent[b]
b = D.parent_b[b]
# https://github.com/JuliaLang/julia/issues/19398
#=
D.ba_mu[ba] = D.ba_rho[ba] + sum(D.mu[bp] for bp in D.ba_children[ba])
=#
sum_mu = 0.0
for bp in D.ba_children[ba]
sum_mu += D.mu[bp]
end
D.ba_mu[ba] = D.ba_rho[ba] + sum_mu
#=
max_mu = maximum(D.ba_rho[ba] + sum(D.mu[bp] for bp in D.ba_children[ba]) for ba in D.children[b])
max_l = maximum(D.ba_rho[ba] + sum(D.l[bp] for bp in D.ba_children[ba]) for ba in D.children[b])
=#
max_U = -Inf
max_mu = -Inf
max_l = -Inf
for ba in D.children[b]
weighted_sum_U = 0.0
sum_mu = 0.0
sum_l = 0.0
for bp in D.ba_children[ba]
weighted_sum_U += length(D.scenarios[bp]) * D.U[bp]
sum_mu += D.mu[bp]
sum_l += D.l[bp]
end
new_U = (D.ba_Rsum[ba] + discount(p.pomdp) * weighted_sum_U)/length(D.scenarios[b])
new_mu = D.ba_rho[ba] + sum_mu
new_l = D.ba_rho[ba] + sum_l
max_U = max(max_U, new_U)
max_mu = max(max_mu, new_mu)
max_l = max(max_l, new_l)
end
l_0 = D.l_0[b]
D.U[b] = max_U
D.mu[b] = max(l_0, max_mu)
D.l[b] = max(l_0, max_l)
end
end
function next_best(D::DESPOT, b::Int, p::DESPOTPlanner)
max_mu = -Inf
best_ba = first(D.children[b])
for ba in D.children[b]
mu = D.ba_mu[ba]
if mu > max_mu
max_mu = mu
best_ba = ba
end
end
max_eu = -Inf
best_bp = first(D.ba_children[best_ba])
for bp in D.ba_children[best_ba]
eu = excess_uncertainty(D, bp, p)
if eu > max_eu
max_eu = eu
best_bp = bp
end
end
return best_bp
# ai = indmax(D.ba_mu[ba] for ba in D.children[b])
# ba = D.children[b][ai]
# zi = indmax(excess_uncertainty(D, bp, p) for bp in D.ba_children[ba])
# return D.ba_children[ba][zi]
end
function excess_uncertainty(D::DESPOT, b::Int, p::DESPOTPlanner)
return D.mu[b]-D.l[b] - length(D.scenarios[b])/p.sol.K * p.sol.xi * (D.mu[1]-D.l[1])
end
| ARDESPOT | https://github.com/JuliaPOMDP/ARDESPOT.jl.git |
|
[
"MIT"
] | 0.3.8 | d6f73792bf7f162a095503f47427c66235c0c772 | code | 1404 | POMDPs.solve(sol::DESPOTSolver, p::POMDP) = DESPOTPlanner(sol, p)
function POMDPTools.action_info(p::DESPOTPlanner, b)
info = Dict{Symbol, Any}()
try
Random.seed!(p.rs, rand(p.rng, UInt32))
D = build_despot(p, b)
if p.sol.tree_in_info
info[:tree] = D
end
check_consistency(p.rs)
if isempty(D.children[1]) && D.U[1] <= D.l_0[1]
throw(NoGap(D.l_0[1]))
end
best_l = -Inf
best_as = actiontype(p.pomdp)[]
for ba in D.children[1]
l = ba_l(D, ba)
if l > best_l
best_l = l
best_as = actiontype(p.pomdp)[D.ba_action[ba]]
elseif l == best_l
push!(best_as, D.ba_action[ba])
end
end
return rand(p.rng, best_as)::actiontype(p.pomdp), info # best_as will usually only have one entry, but we want to break the tie randomly
catch ex
return default_action(p.sol.default_action, p.pomdp, b, ex)::actiontype(p.pomdp), info
end
end
POMDPs.action(p::DESPOTPlanner, b) = first(action_info(p, b))::actiontype(p.pomdp)
ba_l(D::DESPOT, ba::Int) = D.ba_rho[ba] + sum(D.l[bnode] for bnode in D.ba_children[ba])
POMDPs.updater(p::DESPOTPlanner) = BootstrapFilter(p.pomdp, p.sol.K, p.rng)
function Random.seed!(p::DESPOTPlanner, seed)
Random.seed!(p.rng, seed)
return p
end
| ARDESPOT | https://github.com/JuliaPOMDP/ARDESPOT.jl.git |
|
[
"MIT"
] | 0.3.8 | d6f73792bf7f162a095503f47427c66235c0c772 | code | 3391 | abstract type DESPOTRandomSource end
check_consistency(rs::DESPOTRandomSource) = nothing
include("memorizing_rng.jl")
import Random.MT_CACHE_F
mutable struct MemorizingSource{RNG<:AbstractRNG} <: DESPOTRandomSource
rng::RNG
memory::Vector{Float64}
rngs::Matrix{MemorizingRNG{MemorizingSource{RNG}}}
furthest::Int
min_reserve::Int
grow_reserve::Bool
move_count::Int
move_warning::Bool
end
function MemorizingSource(K::Int, depth::Int, rng::AbstractRNG; min_reserve=0, grow_reserve=true, move_warning=true)
RNG = typeof(rng)
memory = Float64[]
rngs = Matrix{MemorizingRNG{MemorizingSource{RNG}}}(undef, depth+1, K)
src = MemorizingSource{RNG}(rng, memory, rngs, 0, min_reserve, grow_reserve, 0, move_warning)
for i in 1:K
for j in 1:depth+1
rngs[j, i] = MemorizingRNG(src.memory, 1, 0, 0, src)
end
end
return src
end
function get_rng(s::MemorizingSource, scenario::Int, depth::Int)
rng = s.rngs[depth+1, scenario]
if rng.finish == 0
rng.start = s.furthest+1
rng.idx = rng.start - 1
rng.finish = s.furthest
reserve(rng, s.min_reserve)
end
rng.idx = rng.start - 1
return rng
end
function Random.seed!(s::MemorizingSource, seed)
Random.seed!(s.rng, seed)
resize!(s.memory, 0)
for i in 1:size(s.rngs, 2)
for j in 1:size(s.rngs, 1)
s.rngs[j, i] = MemorizingRNG(s.memory, 1, 0, 0, s)
end
end
s.furthest = 0
s.move_count = 0
return s
end
function gen_rand!(r::MemorizingRNG{MemorizingSource{MersenneTwister}}, n::Integer)
s = r.source
# make sure that we're on the very end of the source's memory
if r.finish != s.furthest # we need to move the memory to the end
len = r.finish - r.start + 1
if length(s.memory) < s.furthest + len
resize!(s.memory, s.furthest + len)
end
s.memory[s.furthest+1:s.furthest+len] = s.memory[r.start:r.finish]
r.idx = r.idx - r.start + s.furthest + 1
r.start = s.furthest + 1
r.finish = s.furthest + len
s.furthest += len
s.move_count += 1
if s.grow_reserve
s.min_reserve = max(s.min_reserve, len + n)
end
end
@assert r.finish == s.furthest
orig = length(s.memory)
if orig < s.furthest + n
@assert n <= MT_CACHE_F
resize!(s.memory, orig+MT_CACHE_F)
Random.gen_rand(s.rng) # could be faster to use dsfmt_fill_array_close1_open2
s.memory[orig+1:end] = s.rng.vals
Random.mt_setempty!(s.rng)
end
s.furthest += n
r.finish += n
return nothing
end
Random.rng_native_52(s::MemorizingSource) = Random.rng_native_52(s.rng)
function check_consistency(s::MemorizingSource)
if s.move_count > 0.01*length(s.rngs) && s.move_warning
@warn("""
DESPOT's MemorizingSource random number generator had to move the memory locations of the rngs $(s.move_count) times. If this number was large, it may be affecting performance (profiling is the best way to tell).
To suppress this warning, use MemorizingSource(..., move_warning=false).
To reduce the number of moves, try using MemorizingSource(..., min_reserve=n) and increase n until the number of moves is low (the final min_reserve was $(s.min_reserve)).
""")
end
end
| ARDESPOT | https://github.com/JuliaPOMDP/ARDESPOT.jl.git |
|
[
"MIT"
] | 0.3.8 | d6f73792bf7f162a095503f47427c66235c0c772 | code | 1213 | struct ScenarioBelief{S, O, RS<:DESPOTRandomSource} <: AbstractParticleBelief{S}
scenarios::Vector{Pair{Int,S}}
random_source::RS
depth::Int
_obs::O
end
rand(rng::AbstractRNG, b::ScenarioBelief) = last(b.scenarios[rand(rng, 1:length(b.scenarios))])
ParticleFilters.particles(b::ScenarioBelief) = (last(p) for p in b.scenarios)
ParticleFilters.n_particles(b::ScenarioBelief) = length(b.scenarios)
ParticleFilters.weight(b::ScenarioBelief, s) = 1/length(b.scenarios)
ParticleFilters.particle(b::ScenarioBelief, i) = last(b.scenarios[i])
ParticleFilters.weight_sum(b::ScenarioBelief) = 1.0
ParticleFilters.weights(b::ScenarioBelief) = (1/length(b.scenarios) for p in b.scenarios)
ParticleFilters.weighted_particles(b::ScenarioBelief) = (last(p)=>1/length(b.scenarios) for p in b.scenarios)
POMDPs.pdf(b::ScenarioBelief{S}, s::S) where S = sum(p==s for p in particles(b))/length(b.scenarios) # this is slow
POMDPs.mean(b::ScenarioBelief) = mean(last, b.scenarios)
POMDPs.currentobs(b::ScenarioBelief) = b._obs
@deprecate previous_obs POMDPs.currentobs
POMDPs.history(b::ScenarioBelief) = tuple((o=currentobs(b),))
initialize_belief(::PreviousObservationUpdater, b::ScenarioBelief) = previous_obs(b)
| ARDESPOT | https://github.com/JuliaPOMDP/ARDESPOT.jl.git |
|
[
"MIT"
] | 0.3.8 | d6f73792bf7f162a095503f47427c66235c0c772 | code | 4499 | struct DESPOT{S,A,O}
scenarios::Vector{Vector{Pair{Int,S}}}
children::Vector{Vector{Int}} # to children *ba nodes*
parent_b::Vector{Int} # maps to parent *belief node*
parent::Vector{Int} # maps to the parent *ba node*
Delta::Vector{Int}
mu::Vector{Float64} # needed for ba_mu, excess_uncertainty
l::Vector{Float64} # needed to select action, excess_uncertainty
U::Vector{Float64} # needed for blocking
l_0::Vector{Float64} # needed for find_blocker, backup of l and mu
obs::Vector{O}
ba_children::Vector{Vector{Int}}
ba_mu::Vector{Float64} # needed for next_best
ba_rho::Vector{Float64} # needed for backup
ba_Rsum::Vector{Float64} # needed for backup
ba_action::Vector{A}
_discount::Float64 # for inferring L in visualization
end
function DESPOT(p::DESPOTPlanner, b_0)
S = statetype(p.pomdp)
A = actiontype(p.pomdp)
O = obstype(p.pomdp)
root_scenarios = [i=>rand(p.rng, b_0) for i in 1:p.sol.K]
scenario_belief = ScenarioBelief(root_scenarios, p.rs, 0, b_0)
L_0, U_0 = bounds(p.bounds, p.pomdp, scenario_belief)
if p.sol.bounds_warnings
bounds_sanity_check(p.pomdp, scenario_belief, L_0, U_0)
end
return DESPOT{S,A,O}([root_scenarios],
[Int[]],
[0],
[0],
[0],
[max(L_0, U_0 - p.sol.lambda)],
[L_0],
[U_0],
[L_0],
Vector{O}(undef, 1),
Vector{Int}[],
Float64[],
Float64[],
Float64[],
A[],
discount(p.pomdp)
)
end
function expand!(D::DESPOT, b::Int, p::DESPOTPlanner)
S = statetype(p.pomdp)
A = actiontype(p.pomdp)
O = obstype(p.pomdp)
odict = Dict{O, Int}()
olist = O[]
belief = get_belief(D, b, p.rs)
for a in actions(p.pomdp, belief)
empty!(odict)
empty!(olist)
rsum = 0.0
for scen in D.scenarios[b]
rng = get_rng(p.rs, first(scen), D.Delta[b])
s = last(scen)
if !isterminal(p.pomdp, s)
sp, o, r = @gen(:sp, :o, :r)(p.pomdp, s, a, rng)
rsum += r
bp = get(odict, o, 0)
if bp == 0
push!(D.scenarios, Vector{Pair{Int, S}}())
bp = length(D.scenarios)
odict[o] = bp
push!(olist,o)
end
push!(D.scenarios[bp], first(scen)=>sp)
end
end
push!(D.ba_children, [odict[o] for o in olist])
ba = length(D.ba_children)
push!(D.ba_action, a)
push!(D.children[b], ba)
rho = rsum*discount(p.pomdp)^D.Delta[b]/p.sol.K - p.sol.lambda
push!(D.ba_rho, rho)
push!(D.ba_Rsum, rsum)
nbps = length(odict)
resize!(D, length(D.children) + nbps)
for o in olist
bp = odict[o]
D.obs[bp] = o
D.children[bp] = Int[]
D.parent_b[bp] = b
D.parent[bp] = ba
D.Delta[bp] = D.Delta[b]+1
scenario_belief = get_belief(D, bp, p.rs)
L_0, U_0 = bounds(p.bounds, p.pomdp, scenario_belief)
if p.sol.bounds_warnings
bounds_sanity_check(p.pomdp, scenario_belief, L_0, U_0)
end
l_0 = length(D.scenarios[bp])/p.sol.K * discount(p.pomdp)^D.Delta[bp] * L_0
mu_0 = max(l_0, length(D.scenarios[bp])/p.sol.K * discount(p.pomdp)^D.Delta[bp] * U_0 - p.sol.lambda)
D.mu[bp] = mu_0
D.U[bp] = U_0
D.l[bp] = l_0 # = max(l_0, l_0 - p.sol.lambda)
D.l_0[bp] = l_0
end
push!(D.ba_mu, D.ba_rho[ba] + sum(D.mu[bp] for bp in D.ba_children[ba]))
end
end
function get_belief(D::DESPOT, b::Int, rs::DESPOTRandomSource)
if isassigned(D.obs, b)
ScenarioBelief(D.scenarios[b], rs, D.Delta[b], D.obs[b])
else
ScenarioBelief(D.scenarios[b], rs, D.Delta[b], missing)
end
end
function Base.resize!(D::DESPOT, n::Int)
resize!(D.children, n)
resize!(D.parent_b, n)
resize!(D.parent, n)
resize!(D.Delta, n)
resize!(D.mu, n)
resize!(D.l, n)
resize!(D.U, n)
resize!(D.l_0, n)
resize!(D.obs, n)
end
| ARDESPOT | https://github.com/JuliaPOMDP/ARDESPOT.jl.git |
|
[
"MIT"
] | 0.3.8 | d6f73792bf7f162a095503f47427c66235c0c772 | code | 1716 | struct TextTree
children::Vector{Vector{Int}}
text::Vector{String}
end
function TextTree(D::DESPOT)
lenb = length(D.children)
lenba = length(D.ba_children)
len = lenb + lenba
children = Vector{Vector{Int}}(len)
text = Vector{String}(len)
for b in 1:lenb
children[b] = D.children[b] .+ lenb
text[b] = @sprintf("o:%-5s U:%6.2f, l:%6.2f, μ:%6.2f, l₀:%6.2f, |Φ|:%3d",
b==1 ? "<root>" : string(D.obs[b]),
D.U[b],
D.l[b],
D.mu[b],
D.l_0[b],
length(D.scenarios[b]))
end
for ba in 1:lenba
children[ba+lenb] = D.ba_children[ba]
text[ba+lenb] = @sprintf("a:%-5s l:%6.2f μ:%6.2f, ρ:%6.2f", D.ba_action[ba], ba_l(D, ba), D.ba_mu[ba], D.ba_rho[ba])
end
return TextTree(children, text)
end
struct TreeView
t::TextTree
root::Int
depth::Int
end
TreeView(D::DESPOT, b::Int, depth::Int) = TreeView(TextTree(D), b, depth)
Base.show(io::IO, tv::TreeView) = shownode(io, tv.t, tv.root, tv.depth, "", "")
function shownode(io::IO, t::TextTree, n::Int, depth::Int, item_prefix::String, prefix::String)
print(io, item_prefix)
print(io, @sprintf("[%-4d]", n))
print(io, " $(t.text[n])")
if depth <= 0
println(io, " ($(length(t.children[n])) children)")
else
println(io)
if !isempty(t.children[n])
for c in t.children[n][1:end-1]
shownode(io, t, c, depth-1, prefix*"├──", prefix*"│ ")
end
shownode(io, t, t.children[n][end], depth-1, prefix*"└──", prefix*" ")
end
end
end
| ARDESPOT | https://github.com/JuliaPOMDP/ARDESPOT.jl.git |
|
[
"MIT"
] | 0.3.8 | d6f73792bf7f162a095503f47427c66235c0c772 | code | 4416 | function D3Trees.D3Tree(D::DESPOT; title="DESPOT Tree", kwargs...)
lenb = length(D.children)
lenba = length(D.ba_children)
len = lenb + lenba
K = length(D.scenarios[1])
children = Vector{Vector{Int}}(undef, len)
text = Vector{String}(undef, len)
tt = fill("", len)
link_style = fill("", len)
L = calc_L(D)
for b in 1:lenb
children[b] = D.children[b] .+ lenb
text[b] = @sprintf("""
o:%s (|Φ|:%3d)
L:%6.2f, U:%6.2f
l:%6.2f, μ:%6.2f, l₀:%6.2f""",
b==1 ? "<root>" : string(D.obs[b]),
length(D.scenarios[b]),
L[b],
D.U[b],
D.l[b],
D.mu[b],
D.l_0[b]
)
tt[b] = """
o: $(b==1 ? "<root>" : string(D.obs[b]))
|Φ|: $(length(D.scenarios[b]))
L: $(L[b])
U: $(D.U[b])
l: $(D.l[b])
μ: $(D.mu[b])
l₀: $(D.l_0[b])
$(length(D.children[b])) children
"""
link_width = 20.0*sqrt(length(D.scenarios[b])/K)
link_style[b] = "stroke-width:$link_width"
for ba in D.children[b]
link_style[ba+lenb] = "stroke-width:$link_width"
end
for ba in D.children[b]
weighted_sum_U = 0.0
for bp in D.ba_children[ba]
weighted_sum_U += length(D.scenarios[bp]) * D.U[bp]
end
U = (D.ba_Rsum[ba] + infer_discount(D) * weighted_sum_U) / length(D.scenarios[b])
children[ba+lenb] = D.ba_children[ba]
text[ba+lenb] = @sprintf("""
a:%s (ρ:%6.2f)
L:%6.2f, U:%6.2f,
l:%6.2f, μ:%6.2f""",
D.ba_action[ba], D.ba_rho[ba],
L[ba+lenb], U,
ba_l(D, ba), D.ba_mu[ba])
tt[ba+lenb] = """
a: $(D.ba_action[ba])
ρ: $(D.ba_rho[ba])
L: $(L[ba+lenb])
U: $U
l: $(ba_l(D, ba))
μ: $(D.ba_mu[ba])
$(length(D.ba_children[ba])) children
"""
end
end
return D3Tree(children;
text=text,
tooltip=tt,
link_style=link_style,
title=title,
kwargs...
)
end
Base.show(io::IO, mime::MIME"text/html", D::DESPOT) = show(io, mime, D3Tree(D))
Base.show(io::IO, mime::MIME"text/plain", D::DESPOT) = show(io, mime, D3Tree(D))
"""
Return a vector of lower bounds L of length lenb+lenba, with b nodes first followed by ba nodes.
"""
function calc_L(D::DESPOT)
lenb = length(D.children)
lenba = length(D.ba_children)
if lenb == 1
@assert lenba == 0
return [D.l_0[1]]
end
len = lenb + lenba
cache = fill(NaN, len)
disc = infer_discount(D)
fill_L!(cache, D, 1, disc)
return cache
end
function infer_discount(D::DESPOT)
# @assert !isempty(D.children[1])
# K = length(D.scenarios[0])
# firstba = first(D.children[1])
# lambda = D.ba_rsum[firstba]/K - D.ba_rho[firstba]
disc = D._discount
return disc
end
"""
Fill all the elements of the cache for b and children of b and return L[b]
"""
function fill_L!(cache::Vector{Float64}, D::DESPOT, b::Int, disc::Float64)
K = length(D.scenarios[1])
lenb = length(D.children)
if isempty(D.children[b])
L = D.l_0[b]*K/(length(D.scenarios[b])*disc^D.Delta[b])
cache[b] = L
return L
else
max_L = -Inf
for ba in D.children[b]
weighted_sum_L = 0.0
for bp in D.ba_children[ba]
weighted_sum_L += length(D.scenarios[bp]) * fill_L!(cache, D, bp, disc)
end
new_L = (D.ba_Rsum[ba] + disc * weighted_sum_L) / length(D.scenarios[b])
cache[lenb+ba] = new_L
max_L = max(max_L, new_L)
end
cache[b] = max_L
return max_L
end
end
| ARDESPOT | https://github.com/JuliaPOMDP/ARDESPOT.jl.git |
|
[
"MIT"
] | 0.3.8 | d6f73792bf7f162a095503f47427c66235c0c772 | code | 1125 | using POMDPs
using ARDESPOT
using POMDPTools
using POMDPModels
using ProgressMeter
T = 50
N = 50
pomdp = BabyPOMDP()
bounds = IndependentBounds(DefaultPolicyLB(FeedWhenCrying()), 0.0)
# bounds = IndependentBounds(reward(pomdp, false, true)/(1-discount(pomdp)), 0.0)
solver = DESPOTSolver(epsilon_0=0.1,
K=100,
D=50,
lambda=0.01,
bounds=bounds,
T_max=Inf,
max_trials=500,
rng=MersenneTwister(4),
# random_source=SimpleMersenneSource(50),
random_source=FastMersenneSource(100, 10),
# random_source=MersenneSource(50, 10, MersenneTwister(10))
)
@show solver.lambda
rsum = 0.0
fwc_rsum = 0.0
@showprogress for i in 1:N
planner = solve(solver, pomdp)
sim = RolloutSimulator(max_steps=T, rng=MersenneTwister(i))
fwc_sim = deepcopy(sim)
rsum += simulate(sim, pomdp, planner)
fwc_rsum += simulate(fwc_sim, pomdp, FeedWhenCrying())
end
@show rsum/N
@show fwc_rsum/N
| ARDESPOT | https://github.com/JuliaPOMDP/ARDESPOT.jl.git |
|
[
"MIT"
] | 0.3.8 | d6f73792bf7f162a095503f47427c66235c0c772 | code | 459 | @testset "Independent Bounds" begin
m = BabyPOMDP()
rs = MemorizingSource(1,1,MersenneTwister(37))
sb = ScenarioBelief([1=>true], rs, 0, false)
b = IndependentBounds(0.0, -1e-5)
@test bounds(b, m, sb) == (0.0, -1e-5)
b = IndependentBounds(0.0, -1e-5, consistency_fix_thresh=1e-5)
@test bounds(b, m, sb) == (0.0, 0.0)
b = IndependentBounds(0.0, -1e-4, consistency_fix_thresh=1e-5)
@test bounds(b, m, sb) == (0.0, -1e-4)
end
| ARDESPOT | https://github.com/JuliaPOMDP/ARDESPOT.jl.git |
|
[
"MIT"
] | 0.3.8 | d6f73792bf7f162a095503f47427c66235c0c772 | code | 387 | using ARDESPOT
using Random
mt = MersenneTwister(1)
rng = MemorizingRNG(mt)
rand(rng)
rand(rng, Float64)
rand(rng, Int32)
rand(rng, [:a, :b, :c])
rand(rng, Int)
randn(rng)
rand(rng, 1:1_000_000)
randn(rng, (3,3))
@test isapprox(sum(rand(rng, Bool, 1_000_000))/1_000_000, 0.5, atol=0.001)
@test isapprox(sum(rand(rng, [1, 1, 1, 1, 0, 0, 0, 0], 1_000_000))/1_000_000, 0.5, atol=0.001)
| ARDESPOT | https://github.com/JuliaPOMDP/ARDESPOT.jl.git |
|
[
"MIT"
] | 0.3.8 | d6f73792bf7f162a095503f47427c66235c0c772 | code | 1503 | rng = MemorizingRNG(MersenneTwister(12))
a = rand(rng)
rand(rng)
rand(rng)
rand(rng)
rand(rng, Float64)
rng.idx=0
@test rand(rng) == a
randn(rng)
rng.idx=0
b = randn(rng, 2)
randn(rng, 2)
randn(rng, 2)
randn(rng, 2)
rng.idx=0
@test b == randn(rng, 2)
src = MemorizingSource(1, 2, MersenneTwister(12), grow_reserve=false)
rng = ARDESPOT.get_rng(src, 1, 1)
r1 = rand(rng)
rng2 = ARDESPOT.get_rng(src, 1, 2)
r2 = rand(rng2)
rng = ARDESPOT.get_rng(src, 1, 1)
@test r1 == rand(rng)
r3 = rand(rng)
@test src.move_count == 1
rng2 = ARDESPOT.get_rng(src, 1, 2)
@test r2 == rand(rng2)
rng = ARDESPOT.get_rng(src, 1, 1)
@test r1 == rand(rng)
@test r3 == rand(rng)
@test src.move_count == 1
@test_logs (:warn,) ARDESPOT.check_consistency(src)
# grow reserve
src = MemorizingSource(1, 4, MersenneTwister(12))
rng = ARDESPOT.get_rng(src, 1, 1)
r1 = rand(rng)
rng2 = ARDESPOT.get_rng(src, 1, 2)
r2 = rand(rng2)
rng = ARDESPOT.get_rng(src, 1, 1)
@test r1 == rand(rng)
r3 = rand(rng)
@test src.move_count == 1
@test src.min_reserve == 2
rng2 = ARDESPOT.get_rng(src, 1, 2)
@test r2 == rand(rng2)
rng = ARDESPOT.get_rng(src, 1, 1)
@test r1 == rand(rng)
@test r3 == rand(rng)
# create a new one, but don't get any numbers until creating the next - should have automatically reserved enough
rng3 = ARDESPOT.get_rng(src, 1, 3)
rng4 = ARDESPOT.get_rng(src, 1, 4)
r4 = rand(rng4)
rng3 = ARDESPOT.get_rng(src, 1, 3)
r5 = rand(rng3)
r6 = rand(rng3)
# check that this didn't trigger a move
@test src.move_count == 1
| ARDESPOT | https://github.com/JuliaPOMDP/ARDESPOT.jl.git |
|
[
"MIT"
] | 0.3.8 | d6f73792bf7f162a095503f47427c66235c0c772 | code | 3932 | using ARDESPOT
using Test
using POMDPs
using POMDPModels
using Random
using POMDPTools
using ParticleFilters
include("memorizing_rng.jl")
include("independent_bounds.jl")
pomdp = BabyPOMDP()
pomdp.discount = 1.0
K = 10
rng = MersenneTwister(14)
rs = MemorizingSource(K, 50, rng)
Random.seed!(rs, 10)
b_0 = initialstate(pomdp)
scenarios = [i=>rand(rng, b_0) for i in 1:K]
o = false
b = ScenarioBelief(scenarios, rs, 0, o)
pol = FeedWhenCrying()
r1 = ARDESPOT.branching_sim(pomdp, pol, b, 10, (m,x)->0.0)
r2 = ARDESPOT.branching_sim(pomdp, pol, b, 10, (m,x)->0.0)
@test r1 == r2
tval = 7.0
r3 = ARDESPOT.branching_sim(pomdp, pol, b, 10, (m,x)->tval)
@test r3 == r2 + tval*length(b.scenarios)
scenarios = [1=>rand(rng, b_0)]
b = ScenarioBelief(scenarios, rs, 0, false)
pol = FeedWhenCrying()
r1 = ARDESPOT.rollout(pomdp, pol, b, 10, (m,x)->0.0)
r2 = ARDESPOT.rollout(pomdp, pol, b, 10, (m,x)->0.0)
@test r1 == r2
tval = 7.0
r3 = ARDESPOT.rollout(pomdp, pol, b, 10, (m,x)->tval)
@test r3 == r2 + tval
# AbstractParticleBelief interface
@test n_particles(b) == 1
s = particle(b,1)
@test rand(rng, b) == s
@test pdf(b, rand(rng, b_0)) == 1
sup = support(b)
@test length(sup) == 1
@test first(sup) == s
@test mode(b) == s
@test mean(b) == s
@test first(particles(b)) == s
@test first(weights(b)) == 1.0
@test first(weighted_particles(b)) == (s => 1.0)
@test weight_sum(b) == 1.0
@test weight(b, 1) == 1.0
@test currentobs(b) == o
@test_deprecated previous_obs(b)
@test history(b)[end].o == o
pomdp = BabyPOMDP()
# constant bounds
bds = (reward(pomdp, true, false)/(1-discount(pomdp)), 0.0)
solver = DESPOTSolver(bounds=bds)
planner = solve(solver, pomdp)
hr = HistoryRecorder(max_steps=2)
@time hist = simulate(hr, pomdp, planner)
# policy lower bound
bds = IndependentBounds(DefaultPolicyLB(FeedWhenCrying()), 0.0)
solver = DESPOTSolver(bounds=bds)
planner = solve(solver, pomdp)
hr = HistoryRecorder(max_steps=2)
@time hist = simulate(hr, pomdp, planner)
# policy lower bound with final value
fv(m::BabyPOMDP, x) = reward(m, true, false)/(1-discount(m))
bds = IndependentBounds(DefaultPolicyLB(FeedWhenCrying(), final_value=fv), 0.0)
solver = DESPOTSolver(bounds=bds)
planner = solve(solver, pomdp)
hr = HistoryRecorder(max_steps=2)
@time hist = simulate(hr, pomdp, planner)
# Type stability
pomdp = BabyPOMDP()
bds = IndependentBounds(reward(pomdp, true, false)/(1-discount(pomdp)), 0.0)
solver = DESPOTSolver(epsilon_0=0.1,
bounds=bds,
rng=MersenneTwister(4)
)
p = solve(solver, pomdp)
b0 = initialstate(pomdp)
D = @inferred ARDESPOT.build_despot(p, b0)
@inferred ARDESPOT.explore!(D, 1, p)
@inferred ARDESPOT.expand!(D, length(D.children), p)
@inferred ARDESPOT.prune!(D, 1, p)
@inferred ARDESPOT.find_blocker(D, length(D.children), p)
@inferred ARDESPOT.make_default!(D, length(D.children))
@inferred ARDESPOT.backup!(D, 1, p)
@inferred ARDESPOT.next_best(D, 1, p)
@inferred ARDESPOT.excess_uncertainty(D, 1, p)
@inferred action(p, b0)
bds = IndependentBounds(reward(pomdp, true, false)/(1-discount(pomdp)), 0.0)
rng = MersenneTwister(4)
solver = DESPOTSolver(epsilon_0=0.1,
bounds=bds,
rng=rng,
random_source=MemorizingSource(500, 90, rng),
tree_in_info=true
)
p = solve(solver, pomdp)
a = action(p, initialstate(pomdp))
include("random_2.jl")
# visualization
show(stdout, MIME("text/plain"), D)
a, info = action_info(p, initialstate(pomdp))
show(stdout, MIME("text/plain"), info[:tree])
# from README:
using POMDPs, POMDPModels, ARDESPOT
using POMDPTools
pomdp = TigerPOMDP()
solver = DESPOTSolver(bounds=(-20.0, 0.0))
planner = solve(solver, pomdp)
for (s, a, o) in stepthrough(pomdp, planner, "s,a,o", max_steps=10)
println("State was $s,")
println("action $a was taken,")
println("and observation $o was received.\n")
end
| ARDESPOT | https://github.com/JuliaPOMDP/ARDESPOT.jl.git |
|
[
"MIT"
] | 0.3.8 | d6f73792bf7f162a095503f47427c66235c0c772 | docs | 4976 | # ARDESPOT
[](https://github.com/JuliaPOMDP/ARDESPOT.jl/actions/workflows/CI.yml)
[](http://codecov.io/github/JuliaPOMDP/ARDESPOT.jl?branch=master)
An implementation of the AR-DESPOT (Anytime Regularized DEterminized Sparse Partially Observable Tree) online POMDP Solver.
Tried to match the pseudocode from this paper: http://bigbird.comp.nus.edu.sg/m2ap/wordpress/wp-content/uploads/2017/08/jair14.pdf as closely as possible. Look there for definitions of all symbols.
Problems use the [POMDPs.jl generative interface](https://github.com/JuliaPOMDP/POMDPs.jl).
If you are trying to use this package and require more documentation, please file an issue!
## Installation
On Julia v1.0 or later, ARDESPOT is in the Julia General registry
```julia
Pkg.add("POMDPs")
Pkg.add("ARDESPOT")
```
## Usage
```julia
using POMDPs, POMDPModels, ARDESPOT
using POMDPTools
pomdp = TigerPOMDP()
solver = DESPOTSolver(bounds=(-20.0, 0.0))
planner = solve(solver, pomdp)
for (s, a, o) in stepthrough(pomdp, planner, "s,a,o", max_steps=10)
println("State was $s,")
println("action $a was taken,")
println("and observation $o was received.\n")
end
```
For minimal examples of problem implementations, see [this notebook](https://github.com/JuliaPOMDP/BasicPOMCP.jl/blob/master/notebooks/Minimal_Example.ipynb) and [the POMDPs.jl generative docs](http://juliapomdp.github.io/POMDPs.jl/latest/generative/).
## Solver Options
Solver options can be found in the `DESPOTSolver` docstring and accessed using [Julia's built in documentation system](https://docs.julialang.org/en/v1/manual/documentation/#Accessing-Documentation-1) (or directly in the [Solver source code](/src/ARDESPOT.jl)). Each option has its own docstring and can be set with a keyword argument in the `DESPOTSolver` constructor. The definitions of the parameters match as closely as possible to the corresponding definition in the pseudocode of [this paper](http://bigbird.comp.nus.edu.sg/m2ap/wordpress/wp-content/uploads/2017/08/jair14.pdf).
### Bounds
#### Independent bounds
In most cases, the recommended way to specify bounds is with an `IndependentBounds` object, i.e.
```julia
DESPOTSolver(bounds=IndependentBounds(lower, upper))
```
where `lower` and `upper` are either a number or a function (see below).
Often, the lower bound is calculated with a default policy, this can be accomplished using a `DefaultPolicyLB` with any `Solver` or `Policy`.
If `lower` or `upper` is a function, it should handle two arguments. The first is the `POMDP` object and the second is the `ScenarioBelief`. To access the state particles in a `ScenairoBelief` `b`, use `particles(b)` (or `collect(particles(b))` to get a vector).
In most cases, the `check_terminal` and `consistency_fix_thresh` keyword arguments of `IndependentBounds` should be used to add robustness (see the `IndependentBounds` docstring for more info).
##### Example
For the `BabyPOMDP` from `POMDPModels`, bounds setup might look like this:
```julia
using POMDPModels
using POMDPTools
always_feed = FunctionPolicy(b->true)
lower = DefaultPolicyLB(always_feed)
function upper(pomdp::BabyPOMDP, b::ScenarioBelief)
if all(s==true for s in particles(b)) # all particles are hungry
return pomdp.r_hungry # the baby is hungry this time, but then becomes full magically and stays that way forever
else
return 0.0 # the baby magically stays full forever
end
end
solver = DESPOTSolver(bounds=IndependentBounds(lower, upper))
```
#### Non-Independent bounds
Bounds need not be calculated independently; a single function that takes in the `POMDP` and `ScenarioBelief` and returns a tuple containing the lower and upper bounds can be passed to the `bounds` argument.
## Visualization
[D3Trees.jl](https://github.com/sisl/D3Trees.jl) can be used to visualize the search tree, for example
```julia
using POMDPs, POMDPModels, D3Trees, ARDESPOT
using POMDPTools
pomdp = TigerPOMDP()
solver = DESPOTSolver(bounds=(-20.0, 0.0), tree_in_info=true)
planner = solve(solver, pomdp)
b0 = initialstate_distribution(pomdp)
a, info = action_info(planner, b0)
inchrome(D3Tree(info[:tree], init_expand=5))
```
will create an interactive tree that looks like this:

## Relationship to DESPOT.jl
[DESPOT.jl](https://github.com/JuliaPOMDP/DESPOT.jl) was designed to exactly emulate the [C++ code](https://github.com/AdaCompNUS/despot) released by the original DESPOT developers. This implementation was designed to be as close to the pseudocode from the journal paper as possible for the sake of readability. ARDESPOT has a few more features (for example DESPOT.jl does not implement regularization and pruning), and has more compatibility with a wider range of POMDPs.jl problems because it does not emulate the C++ code.
| ARDESPOT | https://github.com/JuliaPOMDP/ARDESPOT.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 253 | include("../src/NLEVP/perturbation.jl")
println("Building WavesAndEigenvalues.jl...")
if "JULIA_WAE_PERT_ORDER" in keys(ENV)
N=ENV["JULIA_WAE_PERT_ORDER"]
N=parse(Int,N)
else
N=16
end
println(" for order $N...")
disk_MN(N)
println("Done!")
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 644 | using Revise #src
Pkg.activate(".") #src
##
import Literate
##
path=pwd()
outputdir=path*"/docs/src"
exmpls=[("00_NLEVP",false),
("01_rijke_tube",false),
("02_global_eigenvalue_solver",false),
("03_local_eigenvalue_solver",false),
("04_perturbation_theory",true),
("05_mesh_refinement",false),
("06_second_order_elements",false)]
cd("./examples/tutorials")
for (exmp,exec) in exmpls
Literate.markdown("./tutorial_$exmp.jl",outputdir,execute=true)
#Literate.notebook("./tutorial_$exmp.jl",outputdir)
#Literate.script("./tutorial_$exmp.jl",outputdir,keep_comments=true)
end
cd(path)
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 1212 | path=pwd()
##
import Pkg; Pkg.add("Documenter")
using Documenter
Pkg.activate(".")
using WavesAndEigenvalues
##
cd("./docs")
makedocs(format = Documenter.HTML(
prettyurls = false,
),
sitename="WavesAndEigenvalues.jl",
authors = "Georg A. Mensah, Alessandro Orchini, and contributors.",
modules =[WavesAndEigenvalues],
pages = [
"Home" => "index.md",
"Install" => "installation.md",
"Examples" => Any["tutorial_00_NLEVP.md",
"tutorial_01_rijke_tube.md",
"tutorial_02_global_eigenvalue_solver.md",
"tutorial_03_local_eigenvalue_solver.md",
"tutorial_04_perturbation_theory.md",
"tutorial_05_mesh_refinement.md",
"tutorial_06_second_order_elements.md",
"tutorial_07_Bloch_periodicity.md",
"tutorial_08_custom_FTF.md",
],
"API" => Any["NLEVP.md","Meshutils.md", "Helmholtz.md"]
]
)
cd(path)
deploydocs(
repo = "github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git",
push_preview=true
)
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 13974 | # # Exercise 1: Nonlinear Eigenvalue Solver
#
# This exercise aims at introdcing the package *WavesAndEigenvalues* applied to the
# identification of thermoacoustic instabilities. You will learn how to import and use a mesh,
# build a parametric dependent thermoacoustic operator, and use adjoint methods to solve
# the resulting nonlinear eigenvalue problems.
#
# ## Introduction
#
# The Helmholtz equation is the Fourier transform of the acoustic wave equation.
# With the presence of an unsteady heat release source, it reads:
#
# $$∇⋅(c² ∇ p̂) + ω² p̂ = -iω(γ-1)q̂$$
#
# The conventioned used to map frequency and time domains is $f'(t) --> f̂(ω)exp(+iωt)$.
# http://www.youtube.com/watch?v=g0NXlnsfqt0&t=43m6s
#
# Here $c$ is the speed-of-sound field, $p̂$ the (complex) pressure fluctuation modeshape,
# $ω$ the (complex) frequency of the problem, $i$ the imaginary unit, $γ$ the ratio of
# specifc heats, and $q̂$ the (frequency dependent) heat release fluctuation response.
#
# Together with some boundary conditions the Helmholtz equation models
# thermoacoustic instability in a cavity. The minimum required inputs to specify
# the problem are
#
# For the acoustics:
# 1. the 3D shape of the domain;
# 2. the speed-of-sound field in the domain
# 3. the boundary conditions
#
# For an (active) flame, q̂≠0:
# 4. some gas porperties;
# 5. and a flame response model that links q̂ to p̂
#
## #jl
#
# ## Finite Element discretization of the Helmholtz equation
#
# To start, we shall consider a straight duct of length $L = 0.5$~m and radius $r=0.025$~m,
# filled with air. The gas properties upstream of the flame are $\gamma=1.4$, $\rho=1.17$,
# and $p_0=101325$, and $T_u=300$. We will set the boundary conditions to be closed (upstream)
# and opened (downstream). For this simple system, you may know and/or be able to calculate the
# acoustic eigenvalues analytically. This fundamental frequency is $f_1 = c/4L$. We will benchmark
# the FE solver results with these known values.
#
# To solve this problem with WavesAndEigenvalues you need a mesh, the equations, a discretization scheme, and an eigenvalue solver. The mesh, called "Rijke{\textunderscore}mm.msh" is is given to you. All the rest is pre-coded for you in WavesAndEigenvalues, you only need to define the problem.
#
# To learn how to load a mesh, define the equations to be solved, and build a discretization matrix, use the documentation of the package.
#
#
# ### The Helmholtz equation
using WavesAndEigenvalues.Helmholtz
#
# To define the problem, we need to specify what equations are to be solved in each
# part of the domain. In a finite element formulation, these are expressed in terms of
# a discretized version of the equations that govern the linear thermoacoustic dynamics
# expressed in *weak form*.
#
# WavesAndEigenvalues contains pre-defined standard finite element discretization matrices.
# These include e.g., mass and stiffness matrices, boundary terms, etc.
# You can find these matrices in the src/FEM.jl file.
#
# We shall start by considering a Rijke tube, and then move to more complex geometries.
# Open the pdf file "Exercise1".
#
# First you will need to load the Helmholtz solver. The following line brings all
# necessary tools into scope:
#
#
#
# A Rijke tube is the most simple thermo-acoustic configuration. It comprises a
# tube with an unsteady heat source inside the tube. This excercise will
# walk you through the basic steps of setting up a Rijke tube in a
# Helmholtz-solver stability analysis.
## #jl
# ## Mesh
# Now we can load the mesh file. It is the essential piece of information
# defining the domain shape . This tutorial's mesh has been specified in mm
# which is why we scale it by `0.001` to load the coordinates as m:
mesh=Mesh("Rijke_mm.msh",scale=0.001)
# You can have a look at some basic mesh data by printing it
print(mesh)
# In an interactive session, is suffices to just type the mesh's variable name
# without the enclosing `print` command.
#
#
# This info tells us that the mesh features `1006` points as vertices
# `1562` (addressable) triangles on its surface and `3380`tetrahedra forming
# the tube. Note, that there are currently no lines stored. This is because
# line information is only needed when using second-order finite elements. To
# save memory this information is only assembled and stored when explicitly
# requested. We will come back to this aspect in a later tutorial.
#
# You can also see that the mesh features several named domains such as
# `"Interior"`,`"Flame"`, `"Inlet"` and `"Outlet"`. These domains are used to
# specify certain conditions for our model.
#
# A model descriptor is always given as a dictionairy featureing domain names
# as keys and tuples as values. The first tuple entry is a Julia symbol
# specifying the operator to be build on the associated domain, while the second
# entry is again a tuple holding information that is specific to the chosen
# operator.
## #src
# ## Model set-up
# For instance, we certainly want to build the wave operator on the entire mesh.
# So first, we initialize an empty dictionairy
dscrp=Dict()
# And then specify that the wave operator should be build everywhere. For the
# given mesh the domain-specifier to address the entire resononant cavity is
# `"Interior"` and in general the symbol to create the wave operator is
# `:interior`. It requires no options so the options tuple remains empty.
dscrp["Interior"]=(:interior, ())
## src
# ## Boundary Conditions
# The tube should have a pressure node at its outlet, in order to model an
# open-end boundary condition. Boundary conditions are specified in terms of
# admittance values. A pressure note corresponds to an infinite admittance.
# To represent this on a computer we just give it a crazily high value like
# `1E15`. We will also need to specify a variable name for our admmittance value.
# This will allow to quickly change the value after discretization of the
# model by addressing by this very name. This feature is one of the core
# concepts of the solver. As will be demonstrated later.
#
# The complete description of our boundary condition reads
dscrp["Outlet"]=(:admittance, (:Y,1E15))
# You may wonder why we do not specify conditions for the other boundaries of
# the model. This is because the discretization is based on Bubnov-Galerkin
# finite elements. All unspecified, boundaries will therefore *naturally* be
# discretized as solid walls.
## #src
# ## Flame
# The Rijke tube's main feauture is a domain of heat release. In the current
# mesh there is a designated domain `"Flame"` addressing a thin volume at the
# center of the tube. We can use this key to specify a flame with simple
# n-tau-dynamics. Therefore, we first need to define some basic gas properties.
γ=1.4 #ratio of specific heats
ρ=1.17 #density at the reference location upstream to the flame in kg/m^3
Tu=300.0 #K unburnt gas temperature
Tb=1200.0 #K burnt gas temperature
P0=101325.0 # ambient pressure in Pa
A=pi*0.025^2 # cross sectional area of the tube
Q02U0=P0*(Tb/Tu-1)*A*γ/(γ-1) #the ratio of mean heat release to mean velocity Q02U0
# We will also need to provide the position where the reference velocity has
# been taken and the direction of that velocity
x_ref=[0.0; 0.0; -0.00101]
n_ref=[0.0; 0.0; 1.00] #must be a unit vector
# And of course, we need some values for n and tau
n=0.0 #interaction index
τ=0.001 #time delay
# With these values the specification of the flame reads
dscrp["Flame"]=(:flame,(γ,ρ,Q02U0,x_ref,n_ref,:n,:τ,n,τ))
# Note that the order of the values in the options tuple is important. Also note
# that we assign the symbols `:n`and `:τ` for later analysis.
## #jl
# ## Speed of Sound
# The description of the Rijke tube model is nearly complete. We just need to
# specify the speed of sound field. For this example, the field is fairly
# simple and can be specified analytically, using the `generate_field` function
# and a custom three-parameter function.
R=287.05 # J/(kg*K) specific gas constant (air)
function speedofsound(x,y,z)
if z<0.
return sqrt(γ*R*Tu)#m/s
else
return sqrt(γ*R*Tb)#m/s
end
end
c=generate_field(mesh,speedofsound)
# Note that in more elaborate models, you may read the field `c` from a file
# containing simulation or experimental data, rather than specifying it
# analytically.
## #src
# ## Model Discretization
# Now we have all ingredients together and we can discretize the model.
L=discretize(mesh,dscrp,c)
# The return value `L` here is a family of linear operators. You can display
# an algebraic representation of the family plus a list of associated parameters
# by just printing it
print(L)
# (In an interactive session the enclosing print function is not necessary.)
#
# You might notice that the list contains all parameters that have been
# specified during the model description (`n`,`τ`,`Y`). However, there are also
# two parameters that were added by default: `ω` and `λ`. `ω` is the complex
# frequency of the model and `λ` an auxiliary value that is important for the
# eigenfrequency computation.
## #src
# ## Solving the Model
# ### Global Solver
# We can solve the model for some eigenvalues using one of the eigenvalue
# solvers. The package provides you with two types of eigenvalue solvers. A global
# contour-integration-based solver. That finds you all eigenvalues inside of a
# specified contour Γ in the complex plane.
Γ=[150.0+5.0im, 150.0-5.0im, 1000.0-5.0im, 1000.0+5.0im].*2*pi #corner points for the contour (in this case a rectangle)
Ω, P = beyn(L,Γ,l=10,N=64, output=true)
# The found eigenvalues are stored in the array `Ω`. The corresponding
# eigenvectors are the columns of `P`.
# The huge advantage of the global eigenvalue solver is that it finds you
# multiple eigenvalues. However, its accuracy may be low and sometimes it
# provides you with outright wrong solutions.
# However, for the current case the method works as we can varify that in our
# search window there are two eigenmodes oscilating at 272 and 695 Hz
# respectively:
for ω in Ω
println("Frequency: $(ω/2/pi)")
end
## #src
# ### Local Solver
# To get high accuracy eigenvalues , there is also local iterative eigenvalue
# solver. Based on an initial guess, it only finds you one eigenvalue at a time
# but with machine-precise accuracy.
sol,nn,flag=householder(L,250*2*pi,output=true);
# The return values of this solver are a solution object `sol`, the number of
# iterations `nn` performed by the solver and an error flag `flag` providing
# information on the quality of the solution. If `flag>0` the solution has
# converged. If `flag<0`something went wrong. And if `flag==0`... well, probably
# the solution is fine but you should check it.
#
# In the current case the flag is -1 indicating that the maximum number of
# iterations has been reached. This is because we haven't specified a stopping
# criterion and the iteration just ran for the maximum number of iterations.
# Nevertheless, the 272 Hz mode is correct. Indeed, as you can see from the
# printed output it already converged to machine-precision after 5 iterations.
## #src
# ## Changing a specified parameter.
#
# Remember that we have specified the parameters `Y`,`n`, and `τ`?. We can change
# these easily without rediscretizing our model. For instance currently `n==0.0`
# so the solution is purely accoustic. The effect of the flame just enters the
# problem via the speed of sound field (this is known as passive flame). By
# setting the interaction index to `1.0` we activate the flame.
L.params[:n]=1
# Now we can just solve the model again to get the active solutions
sol_actv,nn,flag=householder(L,245*2*pi-82im*2*pi,output=true,order=1);
# The eigenfrequency is now complex:
sol_actv.params[:ω]/2/pi
# with a growth rate `-imag(sol_actv.params[:ω]/2/pi)≈ 59.22`
# Instead of recomputing the eigenvalue sol_acby one of the solvers. We can also
# approximate the eigenvalue as a function of one of the model parameters
# utilizing high-order perturbation theory. For instance this gives you
# the 30th order diagonal Padé estimate expanded from the passive solution.
perturb_fast!(sol,L,:n,16) #compute the coefficients
freq(n)=sol(:n,n,8,8)/2/pi #create some function for convenience
freq(1) #evaluate the function at any value for `n` you are interested in.
# The method is slow when only computing one eigenvalue. But its computational
# costs are almost constant when computing multiple eigenvalues. Therefore,
# for larger parametric studies this is clearly the method of choice.
## #src
# ## VTK Output for Paraview
#
# To visualizte your solutions you can store them as `"*.vtu"` files to open
# them with paraview. Just, create a dictionairy, where your modes are stored as
# fields.
data=Dict()
data["speed_of_sound"]=c
data["abs"]=abs.(sol_actv.v)/maximum(abs.(sol_actv.v)) #normalize so that max=1
data["phase"]=angle.(sol_actv.v)
vtk_write("tutorial_01", mesh, data) # Write the solution to paraview
# The `vtk_write` function automatically sorts your data by its interpolation
# scheme. Data that is constant on a tetrahedron will be written to a file
# `*_const.vtu`, data that is linearly interpolated on a tetrahedron will go
# to `*_lin.vtu`, and data that is quadratically interpolated to `*_quad.vtu`.
# The current example uses constant speed of sound on a tetrahedron and linear
# finite elements for the discretization of p. Therefore, two files are
# generated, namely `tutorial_01_const.vtu` containing the speed-of-sound field
# and `tutorial_01_lin.vtu` containing the mode shape. Open them with paraview
# and have a look!.
## src
# ## Summary
#
# You learnt how to set-up a simple Rijke-tube study. This already introduced
# all basic steps that are needed to work with the Helmholtz solver. However,
# there are a lot of details you can fine tune and even features that weren't
# mentioned in this tutorial. The next tutorials will introduce these aspects in
# more detail.
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 13970 | #This file will be turned in more flexible algebra routines
##header
import SpecialFunctions
## Polynomial type
"""
Polynomial type
"""
struct Polynomial #TODO: make type parametric use eltype(f)
coeffs
end
#make Polynomial callable with Horner-scheme evaluation
function (p::Polynomial)(z,k::Int=0)
p=derive(p,k)
f=0.0+0.0im #typing
for i = length(p.coeffs):-1:1
f*=z
f+=p.coeffs[i]
end
return f
end
import Base.show
import Base.string
function string(p::Polynomial)
N=length(p.coeffs)
if N==0
txt="0"
else
txt="$(p.coeffs[1])"
for n=2:N
coeff=string(p.coeffs[n])
if occursin("+",coeff) || occursin("-",coeff)
txt*="+($coeff)*z^$(n-1)"
else
txt*="+$coeff*z^$(n-1)"
end
end
end
return txt
end
function show(io::IO,p::Polynomial)
print(io,string(p))
end
import Base.+
import Base.-
import Base.*
import Base.^
function +(a::Polynomial,b::Polynomial)
if length(a.coeffs)>length(b.coeffs)
a,b=b,a
end
c=copy(b.coeffs)
for (idx,val) in enumerate(a.coeffs)
c[idx]+=val
end
return Polynomial(c)
end
function -(a::Polynomial,b::Polynomial)
return +(a,-b)
end
function *(a::Polynomial,b::Polynomial)
I=length(a.coeffs)
J=length(b.coeffs)
K=I+J-1
c=zeros(ComplexF64,K) #TODO: sanity check for type of b
idx=1
for k =1:K
for i =1:k
#TODO: figure out when to break the loop
j=k-i+1
if i>I ||j>J
continue
end
c[k]+=a.coeffs[i]*b.coeffs[j]
end
end
return Polynomial(c)
end
#scalar multiplication
function *(a::Polynomial,b::Number)
return a*Polynomial([b])
end
function *(a::Number,b::Polynomial)
return Polynomial([a])*b
end
function ^(p::Polynomial, k::Int)
b=Polynomial(copy(p.coeffs))
for i=1:k-1
b*=p
end
return b
end
function prodrange(start,stop)
return SpecialFunctions.factorial(stop)/SpecialFunctions.factorial(start)
end
"""
b=derive(a::Polynomial,k::Int=1)
Compute `k`th derivative of Polynomial `a`.
"""
function derive(a::Polynomial,k::Int=1)
N=length(a.coeffs)
if k>=N
return Polynomial([]) #TODO: type
end
d=zeros(typeof(a.coeffs[1]),N-k)
for i=1:N-k
d[i]=a.coeffs[i+k]*prodrange(i-1,i+k-1)
end
return Polynomial(d)
end
"""
g=shift(f,Δz)
Shift Polynomial with respect to its argument. (Taylor shift)
"""
function shift(f::Polynomial,Δz)
g=Array{eltype(f)}(undef,length(f.coeffs))
for n=0:length(f.coeffs)-1
g[n+1]=f(Δz)/SpecialFunctions.factorial(n*1.0)
f=Polynomial(f.coeffs[2:end])
f.coeffs.*=1:length(f.coeffs)
end
return Polynomial(g)
end
function scale(p::Polynomial,a::Number)
p=p.coeffs
s=1
for idx =1: length(p)
p[idx]*=s
s*=a
end
return Polynomial(p)
end
#TODO: write macro nto create !-versions
## tests
a=Polynomial([0.0,1.0])
b=a*a
c=derive(a)
d=a+b+c
e=d^3
f=shift(e,2)
e(2)-f(0)
## rational Polynomial
struct rational_Polynomial
num::Polynomial
den::Polynomial
end
function derive(a::rational_Polynomial)
return rational_Polynomial(derive(a.num)*a.den-a.num*derive(a.den),a.den^2)
end
"""
derive(a::Any, k:Int)
Take the `k`th derivative of `a` by calling the derive function multiple times.
# Notes
This is a fallback implementation.
"""
function derive(a::Any,k::Int)
for i=1:k
a=derive(a)
end
return a
end
##
function ndd(vararg...)
#parse input TODO: sanity check that z is unique
#get number of points
#(confluent points are counted multiple times)
N=0
for i = 1:length(vararg)÷2
N+=length(vararg[2*i])
end
#initialize lists
z=Array{ComplexF64}(undef,N) #TODO: proper type rules
coeffs=Array{ComplexF64}(undef,N)
cnfl=Array{Int64}(undef,N) # confluence counter array
n=0 #total counter
for i = 1:length(vararg)÷2
z[1+n:n+length(vararg[2*i])] .= vararg[2*i-1]
coeffs[1+n:n+length(vararg[2*i])] = vararg[2*i]
cnfl[1+n:n+length(vararg[2*i])] = 0:length(vararg[2*i])-1
n+=length(vararg[2*i])
end
#pyramid scheme for computation of divided-difference scheme
println("###########")
println(cnfl)
Z=copy(z)
for i=1:N-1
println(coeffs)
for j=N:-1:(i+1)
Δz=z[j]-z[j-i]
if Δz!=0 # this is a non-confluent point
coeffs[j]=(coeffs[j]-coeffs[j-1-cnfl[j-1]])/Δz
end
if cnfl[j-1]!=0
cnfl[j-1]-=1
end
end
end
println(coeffs)
# construct newton polynomial from divided difference coefficients
basis=Polynomial([1])
p=Polynomial([0])
for i=1:N
p+=basis*coeffs[i]
basis*=Polynomial([-z[i],1])
end
return p
end
##
m0=Polynomial([1])
m1=Polynomial([-1,1])
m2=Polynomial([-2,1])
m3=Polynomial([-3,1])
p=3*m0+(-1)*m1+2.5*m1*m2
##
p=ndd(1,[3,],2,[2,],3,[6,])
p.([1,2,3])
##
p=ndd(2,[6,3,5])
p(2,3)
##
p=ndd(1,[1,2],2,[4])
p.([1,2],0)
##
vals=(1,[1,2,3],2,[4,5,0,7,8,9],3,[60,1])
p=ndd(vals...)
##
println("#########Here##########")
for i=1:length(vals)÷2
z=vals[2*i-1]
for (k,coeff) in enumerate(vals[2*i])
k=k-1
test=p(z,k)/factorial(k)-coeff==0
if !test
println("z:$z k:$k coeff:$coeff")
end
end
end
## TODO next: Find reference for this algorithm.
function newton_divided_difffunction(vararg...)
#hässliches steigungsschema...
coeffs=Dict()
z=Array{ComplexF64}(undef,length(vararg)÷2)
comb=[]
#initialize divided difference scheme
#use taylor coefficient at confluent points
for (idx,n) in enumerate(1:2:length(vararg))
z[idx]=vararg[n]
taylor_coeffs=vararg[n+1]
loc_tab=repeat([idx],length(taylor_coeffs))
push!(comb,loc_tab...)
for (i,j) in enumerate(1:length(loc_tab)) #TODO: enumeration and i are not required
coeffs[loc_tab[1:j]]=taylor_coeffs[j]
end
end
#fill missing values in the newton divided difference table
for n =1:length(comb)
for j =1:length(comb)-n
idx=comb[j:j+n]
if idx ∉ keys(coeffs)
a=coeffs[idx[1:end-1]]
b=coeffs[idx[2:end]]
z_a=z[idx[1]]
z_b=z[idx[end]]
coeffs[idx]=(b-a)/(z_b-z_a)
end
end
end
#construct newton_Polynomial
basis_function=Polynomial([1])
idx=comb[1:1]
c=Polynomial(coeffs[idx])
p=basis_function*c
for n=2:length(comb)
idx=comb[1:n]
c=Polynomial(coeffs[idx])
basis_function=basis_function*Polynomial(-z[idx[end-1]],1]
p=p+ᴾc*ᴾbasis_function
end
basis_function=basis_function*ᴾ[-z[comb[end]],1]
#Kronecker's Algorithm to find the interpolating Pade approximant
#initialize Kronecker's algorithm
# (see Chapter 7.1 (page 341) in G. A. Baker and P. Graves-Morris.
# Padé Approximants, 2nd Edition)
p0=basis_function
q0=[]
q=[1]
pade_table=[]
pade_table=push!(pade_table,(p,q))
while length(p)>1
K=2 #system size
A=zeros(ComplexF64,K,K)
y=zeros(ComplexF64,K)
for k=1:K
y[k]=p0[end-k+1]
for i=1:k
A[k,i]=p[end-k+i]
end
end
x=A\y
#TODO: sanity check!
reverse!(x)
p,p0=x*ᴾp-ᴾp0,p
q,q0=x*ᴾq-ᴾq0,q
p=p[1:end-K]
push!(pade_table,(p,q))
end
return pade_table
end
## helper functions to directly use arrays
function *ᴾ(a,b)
I=length(a)
J=length(b)
K=I+J-1
c=zeros(ComplexF64,K)
idx=1
for k =1:K
for i =1:k
#TODO: figure out when to break the loop
j=k-i+1
if i>I ||j>J
continue
end
c[k]+=a[i]*b[j]
end
end
return c
end
function +ᴾ(a,b)
if length(a)>length(b)
a,b=b,a
end
for (idx,val) in enumerate(a)
b[idx]+=val
end
return b
end
function -ᴾ(a,b)
return +ᴾ(a,-b)
end
function derive(a)
N=length(a)
d=zeros(ComplexF64,N-1)
for i=1:N-1
d[i]=a[i+1]*i
end
return d
end
##
function compute_newton_polynomial(vararg...)
#hässliches steigungsschema...
coeffs=Dict()
z=Array{ComplexF64}(undef,length(vararg)÷2)
comb=[]
#initialize divided difference scheme
#use taylor coefficient at confluent points
for (idx,n) in enumerate(1:2:length(vararg))
z[idx]=vararg[n]
taylor_coeffs=vararg[n+1]
loc_tab=repeat([idx],length(taylor_coeffs))
push!(comb,loc_tab...)
for (i,j) in enumerate(1:length(loc_tab))
coeffs[loc_tab[1:j]]=taylor_coeffs[j]
end
end
#fill missing values in the newton divided difference table
for n =1:length(comb)
for j =1:length(comb)-n
idx=comb[j:j+n]
if idx ∉ keys(coeffs)
a=coeffs[idx[1:end-1]]
b=coeffs[idx[2:end]]
z_a=z[idx[1]]
z_b=z[idx[end]]
coeffs[idx]=(b-a)/(z_b-z_a)
end
end
end
#construct newton_polynomial
basis_function=[1]
idx=comb[1:1]
c=[coeffs[idx]]
p=basis_function*ᴾc
for n=2:length(comb)
idx=comb[1:n]
c=[coeffs[idx]]
basis_function=basis_function*ᴾ[-z[idx[end-1]],1]
p=p+ᴾc*ᴾbasis_function
end
basis_function=basis_function*ᴾ[-z[comb[end]],1]
#Kronecker's Algorithm to find the interpolating pade approximant
#initialize Kronecker's algorithm
p0=basis_function
q0=[]
q=[1]
pade_table=[]
pade_table=push!(pade_table,(p,q))
while length(p)>1
K=2 #system size
A=zeros(ComplexF64,K,K)
y=zeros(ComplexF64,K)
for k=1:K
y[k]=p0[end-k+1]
for i=1:k
A[k,i]=p[end-k+i]
end
end
x=A\y
#TODO: sanity check!
reverse!(x)
p,p0=x*ᴾp-ᴾp0,p
q,q0=x*ᴾq-ᴾq0,q
println("#####")
println(p[end-K+1:end])
p=p[1:end-K]
push!(pade_table,(p,q))
end
return pade_table
end
##
polyval(p,z)= sum(p.*(z.^(0:length(p)-1)))
function taylor_shift(f,Δz)
g=Array{eltype(f)}(undef,length(f))
for n=0:length(f)-1
g[n+1]=polyval(f,Δz)/SpecialFunctions.factorial(n*1.0)
f=f[2:end]
f.*=1:length(f)
end
return g
end
#Test
f=[-42.168, 2im, π, 1, 0.05]
z= π*1im-5.923779
g=taylor_shift(f,z)
polyval(f,z)-polyval(g,0)
#TODO implement Kronecker's algorithm
function multi_point_pade(L,M,vararg...;Z0=0)
#TODO sanity checks length vararg should be divisibl #and the sum of the entries should amound to L+M
#Build linear system
end
function newton_polynomial(vararg...)
N=0
for idx =1:2:length(vararg)
N+=length(vararg[idx+1])
end
A=zeros(ComplexF64,N,N)
y=zeros(ComplexF64,N)
eqidx=1
for idx =1:2:length(vararg)
coeffs=ones(ComplexF64,N)
z0=vararg[idx]
z=[z0^i for i in 0:N-1]
k=1
fac=1
for val in vararg[idx+1]
y[eqidx]=val*fac
A[eqidx,:]=coeffs.*z
coeffs[k]=0
z[k]=0
for (i,j) in enumerate(k+1:N)
coeffs[j]*=i
z[j]=z0^(i-1)
end
fac*=k
k+=1
eqidx+=1
end
end
x=A\y
return x
end
function newton_divided_difffunction(vararg...)
#hässliches steigungsschema...
coeffs=Dict()
z=Array{ComplexF64}(undef,length(vararg)÷2)
comb=[]
#initialize divided difference scheme
#use taylor coefficient at confluent points
for (idx,n) in enumerate(1:2:length(vararg))
z[idx]=vararg[n]
taylor_coeffs=vararg[n+1]
loc_tab=repeat([idx],length(taylor_coeffs))
push!(comb,loc_tab...)
for (i,j) in enumerate(1:length(loc_tab))
coeffs[loc_tab[1:j]]=taylor_coeffs[j]
end
end
#fill missing values in the newton divided diffrence table
for n =1:length(comb)
for j =1:length(comb)-n
idx=comb[j:j+n]
if idx ∉ keys(coeffs)
a=coeffs[idx[1:end-1]]
b=coeffs[idx[2:end]]
z_a=z[idx[1]]
z_b=z[idx[end]]
coeffs[idx]=(b-a)/(z_b-z_a)
end
end
end
#construct newton_polynomial
basis_function=[1]
idx=comb[1:1]
c=[coeffs[idx]]
p=basis_function*ᴾc
for n=2:length(comb)
idx=comb[1:n]
c=[coeffs[idx]]
basis_function=basis_function*ᴾ[-z[idx[end-1]],1]
p=p+ᴾc*ᴾbasis_function
end
basis_function=basis_function*ᴾ[-z[comb[end]],1]
#Kronecker's Algorithm to find the interpolating pade approximant
#initialize Kronecker's algorithm
p0=basis_function
q0=[]
q=[1]
pade_table=[]
pade_table=push!(pade_table,(p,q))
while length(p)>1
K=2 #system size
A=zeros(ComplexF64,K,K)
y=zeros(ComplexF64,K)
for k=1:K
y[k]=p0[end-k+1]
for i=1:k
A[k,i]=p[end-k+i]
end
end
x=A\y
#TODO: sanity check!
reverse!(x)
p,p0=x*ᴾp-ᴾp0,p
q,q0=x*ᴾq-ᴾq0,q
println("#####")
println(p[end-K+1:end])
p=p[1:end-K]
push!(pade_table,(p,q))
end
return pade_table
end
pade_tab=newton_divided_difffunction(1,[1],2,[pi,3,-1],0,[1,2,5,1])
p,q=pade_tab[3]
test=polyval(p,2)/polyval(q,2)
##
q=newton_polynomial(1,[1],2,[0,3,-1],0,[1,2,5,1])
#TODO: write testing scheme
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 5228 | #import WavesAndEigenvalues.Meshutils: create_rotation_matrix_around_axis, get_rotated_index, get_reflected_index
using WavesAndEigenvalues.Helmholtz
## load mesh from file
case="NTNU_new"
mesh=Mesh("../NTNU/NTNU.msh",scale=1.0)
mesh=octosplit(mesh)
#create unit and full mesh from half-cell
#doms=[("Interior",:full),("Inlet",:full), ("Outlet_high",:full), ("Outlet_low",:full), ("Walls",:full),("Flame",:unit),("Bloch",:unit)]#
doms=[("Interior",:full),("Inlet",:full), ("Outlet_high",:full), ("Outlet_low",:full), ("Flame",:unit),]#
collect_lines!(mesh)
unit_mesh=extend_mesh(mesh,doms,unit=true)
full_mesh=extend_mesh(mesh,doms,unit=false)
D=Dict()
D["mesh"]=zeros(Float64,6044)
vtk_write(case*"_mesh",unit_mesh,D)
## meshing
#naxis=unit_mesh.dos.naxis
#nxbloch=unit_mesh.dos.nxbloch
## Helmholtz solver
#define speed of sound field
function speedofsound(x,y,z)
if z<0.415
return 347.0#m/s
else
return 850.0#m/s
end
end
c=generate_field(unit_mesh,speedofsound,0)
C=generate_field(full_mesh,speedofsound,0)
#D=Dict()
#vtk_write("NTNU_c",full_mesh,D)
##describe model
dscrp=Dict()
dscrp["Interior"]=(:interior,())
dscrp["Outlet_high"]=(:admittance, (:Y_in,1E15))
dscrp["Outlet_low"]=(:admittance, (:Y_out,1E15))
##discretize models
#L=discretize(full_mesh, dscrp, C, order=:1)
l=discretize(unit_mesh, dscrp, c, order=:1,b=:b)
## solve model using beyn
#(type Γ by typing \Gamma and Enter)
Γ=[150.0+5.0im, 150.0-5.0im, 1000.0-5.0im, 1000.0+5.0im].*2*pi #corner points for the contour (in this case a rectangle)
#Ω, P = beyn(L,Γ,l=10,N=64, output=true)
l.params[:b]=1
#ω, p = beyn(l,Γ,l=10,N=4*128, output=true)
##
sol, n, flag = householder(l,914*2*pi,maxiter=16, tol=0*1E-10,output = true, n_eig_val=3)
##
# identify surface points
surface_points, tri_mask, tet_mask =get_surface_points(unit_mesh)
# compute normal vectors on surface triangles
normal_vectors=get_normal_vectors(unit_mesh)
## DA approach
blochify_surface_points!(unit_mesh, surface_points, tri_mask, tet_mask)
sens=discrete_adjoint_shape_sensitivity(unit_mesh,dscrp,c,surface_points,tri_mask,tet_mask,l,sol)
## correct sens for bloch formalism
#sens[:,unit_mesh.dos.naxis+1:unit_mesh.dos.naxis+unit_mesh.dos.nxbloch].+=sens[:,end-unit_mesh.dos.nxbloch+1:end]
sens[:,end-unit_mesh.dos.nxbloch+1:end]=sens[:,unit_mesh.dos.naxis+1:unit_mesh.dos.naxis+unit_mesh.dos.nxbloch]
##
# normalize point sensitivity with directed surface triangle area
normed_sens=normalize_sensitivity(surface_points,normal_vectors,tri_mask,sens)
# boundary-mass-based-normalizations
nsens = bound_mass_normalize(surface_points,normal_vectors,tri_mask,unit_mesh,sens)
# compute sensitivity in unit normal direction
normal_sens = normal_sensitivity(normal_vectors, normed_sens)
## save data
DD=Dict()
DD["real normed_sens1"]=real.(normed_sens[1,:])
DD["real normed_sens2"]=real.(normed_sens[2,:])
DD["real normed_sens3"]=real.(normed_sens[3,:])
DD["real normal_sens"]=real.(normal_sens)
DD["imag normed_sens1"]=imag.(normed_sens[1,:])
DD["imag normed_sens2"]=imag.(normed_sens[2,:])
DD["imag normed_sens3"]=imag.(normed_sens[3,:])
DD["imag normal_sens"]=imag.(normal_sens)
vtk_write_tri(case*"_tri",unit_mesh,DD)
##
mode="[$(string(round((sol.params[:ω]/2/pi),digits=2)))]Hz"
data=Dict()
data["real DA x"*mode]=real.(sens[1,:])
data["real DA y"*mode]=real.(sens[2,:])
data["real DA z"*mode]=real.(sens[3,:])
data["imag DA x"*mode]=imag.(sens[1,:])
data["imag DA y"*mode]=imag.(sens[2,:])
data["imag DA z"*mode]=imag.(sens[3,:])
data["real nDA x"*mode]=real.(nsens[1,:])
data["real nDA y"*mode]=real.(nsens[2,:])
data["real nDA z"*mode]=real.(nsens[3,:])
data["imag nDA x"*mode]=imag.(nsens[1,:])
data["imag nDA y"*mode]=imag.(nsens[2,:])
data["imag nDA z"*mode]=imag.(nsens[3,:])
#data["finite difference"*mode]=real.(sens_FD)
#data["central finite difference"]=real.(sens_CFD)
#data["diff DA -- FD"*mode]=abs.((sens.-sens_FD))
vtk_write(case, unit_mesh, data)
data=Dict()
v=bloch_expand(unit_mesh,sol,:b)
data["abs_p"*mode]=abs.(v)./maximum(abs.(v))
data["phase_p"*mode]=angle.(v)
#data["abs_p_adj"*mode]=abs.(sol.v_adj)./maximum(abs.(sol.v_adj))
#data["phase_p_adj"*mode]=angle.(sol.v_adj)
vtk_write(case*"_modes", full_mesh, data)
## FD approach
fd_sens=forward_finite_differences_shape_sensitivity(unit_mesh,dscrp,c,surface_points,tri_mask,tet_mask,l,sol)
fd_sens[:,end-unit_mesh.dos.nxbloch+1:end]=fd_sens[:,unit_mesh.dos.naxis+1:unit_mesh.dos.naxis+unit_mesh.dos.nxbloch]
## write output
mode="[$(string(round((sol.params[:ω]/2/pi),digits=2)))]Hz"
data=Dict()
data["abs_p"*mode]=abs.(sol.v)./maximum(abs.(sol.v))
data["phase_p"*mode]=angle.(sol.v)
data["abs_p_adj"*mode]=abs.(sol.v_adj)./maximum(abs.(sol.v_adj))
data["phase_p_adj"*mode]=angle.(sol.v_adj)
data["real DA x"*mode]=real.(fd_sens[1,:])
data["real DA y"*mode]=real.(fd_sens[2,:])
data["real DA z"*mode]=real.(fd_sens[3,:])
data["imag DA x"*mode]=imag.(fd_sens[1,:])
data["imag DA y"*mode]=imag.(fd_sens[2,:])
data["imag DA z"*mode]=imag.(fd_sens[3,:])
#data["finite difference"*mode]=real.(fd_sens_FD)
#data["central finite difference"]=real.(sens_CFD)
#data["diff DA -- FD"*mode]=abs.((sens.-sens_FD))
vtk_write(case*"_fd", unit_mesh, data)
##
findmax(abs.(sens-fd_sens))
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 2823 |
function readvtu(filename)
points = []
tetrahedra = Array{Int64,1}[]
open(filename) do fid
while !eof(fid)
line = readline(fid)
#println(idx,"::",line)
line=split(line)
if line[1]=="<Points>"
line=readline(fid)
line=split(readline(fid))
while line[1][1]!='<'
numbers=parse.(Float64,line)
append!(points,[numbers[1:3]])
if length(numbers)==6
append!(points,[numbers[4:6]])
end
line=split(readline(fid))
end
end
if line[1]=="<Cells>"
line=readline(fid)
line=split(readline(fid))
tet=[]
while line[1][1]!='<'
numbers=parse.(Int,line)
while length(numbers)!=0 && length(tet)!=4
append!(tet,popfirst!(numbers))
end
append!(tetrahedra,[tet.+1])
tet=numbers[1:end]
if length(tet)==4
append!(tetrahedra,[tet.+1])
tet=[]
end
line=split(readline(fid))
end
end
end
end
return points, tetrahedra
end
points, tetrahedra = readvtu("mesh.vtu")
import ProgressMeter
p = ProgressMeter.Progress(length(tetrahedra),desc="Assemble all triangles ", dt=1,
barglyphs=ProgressMeter.BarGlyphs('|','█', ['▁' ,'▂' ,'▃' ,'▄' ,'▅' ,'▆', '▇'],' ','|',),
barlen=20)
triangles=[]
simplices=[]
for (idx,tet) in enumerate(tetrahedra)
append!(simplices,idx)
for tri in (tet[[1,2,3]],tet[[1,2,4]],tet[[1,3,4]],tet[[2,3,4]])
idx,ins=sort_smplx(triangles,tri)
if ins
insert!(triangles,idx,tri)
else
deleteat!(triangles,idx)
end
end
ProgressMeter.next!(p)
end
# convert points
Points=zeros(Float64,3,length(points))
for (idx,pnt) in enumerate(points)
Points[:,idx]=pnt
end
#
x_min=minimum(Points[1,:])
x_max=maximum(Points[1,:])
#
domains=Dict()
domain=Dict()
domain["simplices"]=simplices
domain["dimension"]=0x00000003
domains["Interior"]=domain
#
x_min=minimum(Points[1,:])
x_max=maximum(Points[1,:])
simplices=[]
for (tri_idx,tri) in enumerate(triangles)
if all(abs.(Points[1,tri].-x_max).<=0.0001)
insert_smplx!(simplices,tri_idx)
end
end
domain=Dict()
domain["simplices"]=simplices
domain["dimension"]=0x00000002
domains["Outlet"]=domain
#
tri2tet=zeros(UInt32,length(triangles))
tri2tet[1]=0xffffffff
mesh=Mesh("mesh.vtu",Points,[],triangles,tetrahedra,domains,"mesh.vtu",tri2tet,1)
vtk_write("eth_diff", mesh, data_diff)
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 4958 | #shape example.
import Pkg
Pkg.activate(".")
using WavesAndEigenvalues.Helmholtz
## configure set-up
mesh=Mesh("./examples/tutorials/Rijke_mm.msh",scale=0.001)
case="Rijke_test"
h=1E-9
mesh=octosplit(mesh);case*="_fine" #activate this line to refine the mesh
dscrp=Dict()
dscrp["Interior"]=(:interior,())
dscrp["Outlet"]=(:admittance, (:Y,1E15))
hot=false
hot=true#activate this line for the active solution
if !hot
c=ones(length(mesh.tetrahedra))*347.0
case*="_cold"
init=510.0
else
dscrp["Outlet"]=(:admittance, (:Y,1E15)) #specify outlet BC
γ=1.4 #ratio of specific heats
ρ=1.225 #density at the reference location upstream to the flame in kg/m^3
Tu=300.0 #K unburnt gas temperature
Tb=1200.0 #K burnt gas temperature
P0=101325.0 # ambient pressure in Pa
A=pi*0.025^2 # cross sectional area of the tube
Q02U0=P0*(Tb/Tu-1)*A*γ/(γ-1) #the ratio of mean heat release to mean velocity Q02U0
x_ref=[0.0; 0.0; -0.00101] #reference point
n_ref=[0.0; 0.0; 1.00] #directional unit vector of reference velocity
n=1 #interaction index
τ=0.001 #time delay
ref_idx = find_tetrahedron_containing_point(mesh,x_ref)
dscrp["Flame"]=(:flame,(γ,ρ,Q02U0,ref_idx,x_ref,n_ref,:n,:τ,n,τ)) #flame dynamics
#dscrp["Flame"]=(:fancyflame,(γ,ρ,Q02U0,x_ref,n_ref,[:n1,:n2],[:τ1,:τ2],[:a1,:a2],[1.0,.5],[.001,0.0005],[.01,.01]))
#unify!(mesh,"Flame2","Flame")
#D["Flame"]=(:fancyflame,(γ,ρ,Q02U0,x_ref,n_ref,:n1,:τ1,:a1,1.0,.001,.01,),)
#D["Flame2"]=(:fancyflame,(γ,ρ,Q02U0,x_ref,n_ref,:n1,:τ1,:a1,.5,.0005,.01,),)
R=287.05 # J/(kg*K) specific gas constant (air)
speedofsound(x,y,z) = z<0. ? sqrt(γ*R*Tu) : sqrt(γ*R*Tb)
c=generate_field(mesh,speedofsound)
case*="_hot"
init=700.0
end
##
L=discretize(mesh, dscrp, c)
##
sol, n, flag = householder(L,init*2*pi,maxiter=14, tol=1E-11,output = true, n_eig_val=3)
## prepare shape
# identify surface points
surface_points, tri_mask, tet_mask =get_surface_points(mesh)
# compute normal vectors on surface triangles
normal_vectors=get_normal_vectors(mesh)
## DA approach
sens=discrete_adjoint_shape_sensitivity(mesh,dscrp,c,surface_points,tri_mask,tet_mask,L,sol,h=h)
fd_sens=forward_finite_differences_shape_sensitivity(mesh,dscrp,c,surface_points,tri_mask,tet_mask,L,sol,h=h)
## Postprocessing
#normalize point sensitivity with directed surface triangle area
normed_sens=normalize_sensitivity(surface_points,normal_vectors,tri_mask,sens)
# boundary-mass-based-normalizations
nsens = bound_mass_normalize(surface_points,normal_vectors,tri_mask,mesh,sens)
# compute sensitivity in unit normal direction
normal_sens = normal_sensitivity(normal_vectors, normed_sens)
## save data
DD=Dict()
DD["real normed_sens1"]=real.(normed_sens[1,:])
DD["real normed_sens2"]=real.(normed_sens[2,:])
DD["real normed_sens3"]=real.(normed_sens[3,:])
DD["real normal_sens"]=real.(normal_sens)
DD["imag normed_sens1"]=imag.(normed_sens[1,:])
DD["imag normed_sens2"]=imag.(normed_sens[2,:])
DD["imag normed_sens3"]=imag.(normed_sens[3,:])
DD["imag normal_sens"]=imag.(normal_sens)
vtk_write_tri(case*"_tri",mesh,DD)
##
mode="[$(string(round((sol.params[:ω]/2/pi),digits=2)))]Hz"
data=Dict()
data["abs_p"*mode]=abs.(sol.v)./maximum(abs.(sol.v))
data["phase_p"*mode]=angle.(sol.v)
data["abs_p_adj"*mode]=abs.(sol.v_adj)./maximum(abs.(sol.v_adj))
data["phase_p_adj"*mode]=angle.(sol.v_adj)
data["real DA x"*mode]=real.(sens[1,:])
data["real DA y"*mode]=real.(sens[2,:])
data["real DA z"*mode]=real.(sens[3,:])
data["imag DA x"*mode]=imag.(sens[1,:])
data["imag DA y"*mode]=imag.(sens[2,:])
data["imag DA z"*mode]=imag.(sens[3,:])
data["real nDA x"*mode]=real.(nsens[1,:])
data["real nDA y"*mode]=real.(nsens[2,:])
data["real nDA z"*mode]=real.(nsens[3,:])
data["imag nDA x"*mode]=imag.(nsens[1,:])
data["imag nDA y"*mode]=imag.(nsens[2,:])
data["imag nDA z"*mode]=imag.(nsens[3,:])
#data["finite difference"*mode]=real.(sens_FD)
#data["central finite difference"]=real.(sens_CFD)
#data["diff DA -- FD"*mode]=abs.((sens.-sens_FD))
vtk_write(case, mesh, data)
## FD approach
#fd_sens=forward_finite_differences_shape_sensitivity(mesh,dscrp,c,surface_points,tri_mask,tet_mask,L,sol,h=h)
## write output
mode="[$(string(round((sol.params[:ω]/2/pi),digits=2)))]Hz"
data=Dict()
data["abs_p"*mode]=abs.(sol.v)./maximum(abs.(sol.v))
data["phase_p"*mode]=angle.(sol.v)
data["abs_p_adj"*mode]=abs.(sol.v_adj)./maximum(abs.(sol.v_adj))
data["phase_p_adj"*mode]=angle.(sol.v_adj)
data["real DA x"*mode]=real.(fd_sens[1,:])
data["real DA y"*mode]=real.(fd_sens[2,:])
data["real DA z"*mode]=real.(fd_sens[3,:])
data["imag DA x"*mode]=imag.(fd_sens[1,:])
data["imag DA y"*mode]=imag.(fd_sens[2,:])
data["imag DA z"*mode]=imag.(fd_sens[3,:])
#data["finite difference"*mode]=real.(fd_sens_FD)
#data["central finite difference"]=real.(sens_CFD)
#data["diff DA -- FD"*mode]=abs.((sens.-sens_FD))
vtk_write(case*"_fd", mesh, data)
println("Done writing!")
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 12053 | # # Tutorial 01 Rijke Tube
# ## Introduction
#
# A Rijke tube is the most simple thermo-acoustic configuration. It comprises a
# tube with an unsteady heat source somewhere inside the tube. This example will
# walk you through the basic steps of setting up a Rijke tube in a
# Helmholtz-solver stability analysis.
# ### The Helmholtz equation
# The Helmholtz equation is the Fourier transform of the acoustic wave equation.
# Given that there is a heat source, it reads:
#
# ∇⋅(c² ∇ p̂) + ω² p̂ = -iω(γ-1)q̂
#
# Here c is speed-of-sound-field, p̂ the (complex) pressure fluctuation amplitude
# ω the (complex) frequency of the problem, i the imaginary unit, γ the ratio of
# specifc heats, and q̂ the amplitude of the heat release fluctuation.
#
# (Note that the Fourier transform here follows a f'(t) --> f̂(ω)exp(+iωt) convention.)
#
# Together with some boundary conditions the Helmholtz equation models
# thermo-acoustic resonance in a cavity. The minimum required inputs to specify
# a problem are
#
# 1. the shape of the domain
# 2. the speed-of-sound field
# 3. the boundary conditions
#
# In case of an active flame (q̂≠0). We will also need
#
# 4. some additional gas porperties and
# 5. a flame response model linking the heat release fluctuations q̂ to the pressure fluctuations p̂
#
# Once you completed this tutorial you will know the basic steps of how to
# conduct a thermo-acoustic stability analysis
## #jl
# ## Header
# First you will need to load the Helmholtz solver. The following line brings all
# necessary tools into scope:
using WavesAndEigenvalues.Helmholtz
## #jl
# ## Mesh
# Now we can load the mesh file. It is the essential piece of information
# defining the domain shape . This tutorial's mesh has been specified in mm
# which is why we scale it by `0.001` to load the coordinates as m:
mesh=Mesh("Rijke_mm.msh",scale=0.001)
# You can have a look at some basic mesh data by printing it
print(mesh)
# In an interactive session, is suffices to just type the mesh's variable name
# without the enclosing `print` command.
#
#
# This info tells us that the mesh features `1006` points as vertices
# `1562` (addressable) triangles on its surface and `3380`tetrahedra forming
# the tube. Note, that there are currently no lines stored. This is because
# line information is only needed when using second-order finite elements. To
# save memory this information is only assembled and stored when explicitly
# requested. We will come back to this aspect in a later tutorial.
#
# You can also see that the mesh features several named domains such as
# `"Interior"`,`"Flame"`, `"Inlet"` and `"Outlet"`. These domains are used to
# specify certain conditions for our model.
#
# A model descriptor is always given as a dictionairy featureing domain names
# as keys and tuples as values. The first tuple entry is a Julia symbol
# specifying the operator to be build on the associated domain, while the second
# entry is again a tuple holding information that is specific to the chosen
# operator.
## #src
# ## Model set-up
# For instance, we certainly want to build the wave operator on the entire mesh.
# So first, we initialize an empty dictionairy
dscrp=Dict()
# And then specify that the wave operator should be build everywhere. For the
# given mesh the domain-specifier to address the entire resononant cavity is
# `"Interior"` and in general the symbol to create the wave operator is
# `:interior`. It requires no options so the options tuple remains empty.
dscrp["Interior"]=(:interior, ())
## src
# ## Boundary Conditions
# The tube should have a pressure node at its outlet, in order to model an
# open-end boundary condition. Boundary conditions are specified in terms of
# admittance values. A pressure note corresponds to an infinite admittance.
# To represent this on a computer we just give it a crazily high value like
# `1E15`. We will also need to specify a variable name for our admmittance value.
# This will allow to quickly change the value after discretization of the
# model by addressing it by this very name. This feature is one of the core
# concepts of the solver. As will be demonstrated later.
#
# The complete description of our boundary condition reads
dscrp["Outlet"]=(:admittance, (:Y,1E15))
# You may wonder why we do not specify conditions for the other boundaries of
# the model. This is because the discretization is based on Bubnov-Galerkin
# finite elements. All unspecified, boundaries will therefore *naturally* be
# discretized as solid walls.
## #src
# ## Flame
# The Rijke tube's main feauture is a domain of heat release. In the current
# mesh there is a designated domain `"Flame"` addressing a thin volume at the
# center of the tube. We can use this key to specify a flame with simple
# n-tau-dynamics. Therefore, we first need to define some basic gas properties.
γ=1.4 #ratio of specific heats
ρ=1.225 #density at the reference location upstream to the flame in kg/m^3
Tu=300.0 #K unburnt gas temperature
Tb=1200.0 #K burnt gas temperature
P0=101325.0 # ambient pressure in Pa
A=pi*0.025^2 # cross sectional area of the tube
Q02U0=P0*(Tb/Tu-1)*A*γ/(γ-1) #the ratio of mean heat release to mean velocity Q02U0
# We will also need to provide the position where the reference velocity has
# been taken and the direction of that velocity
x_ref=[0.0; 0.0; -0.00101]
n_ref=[0.0; 0.0; 1.00] #must be a unit vector
# And of course, we need some values for n and tau
n=0.0 #interaction index
τ=0.001 #time delay
# With these values the specification of the flame reads
dscrp["Flame"]=(:flame,(γ,ρ,Q02U0,x_ref,n_ref,:n,:τ,n,τ))
# Note that the order of the values in the options tuple is important. Also note
# that we assign the symbols `:n`and `:τ` for later analysis.
## #jl
# ## Speed of Sound
# The description of the Rijke tube model is nearly complete. We just need to
# specify the speed of sound field. For this example, the field is fairly
# simple and can be specified analytically, using the `generate_field` function
# and a custom three-parameter function.
R=287.05 # J/(kg*K) specific gas constant (air)
function speedofsound(x,y,z)
if z<0.
return sqrt(γ*R*Tu)#m/s
else
return sqrt(γ*R*Tb)#m/s
end
end
c=generate_field(mesh,speedofsound)
# Note that in more elaborate models, you may read the field `c` from a file
# containing simulation or experimental data, rather than specifying it
# analytically.
## #src
# ## Model Discretization
# Now we have all ingredients together and we can discretize the model.
L=discretize(mesh,dscrp,c)
# The return value `L` here is a family of linear operators. You can display
# an algebraic representation of the family plus a list of associated parameters
# by just printing it
print(L)
# (In an interactive session the enclosing print function is not necessary.)
#
# You might notice that the list contains all parameters that have been
# specified during the model description (`n`,`τ`,`Y`). However, there are also
# two parameters that were added by default: `ω` and `λ`. `ω` is the complex
# frequency of the model and `λ` an auxiliary value that is important for the
# eigenfrequency computation.
## #src
# ## Solving the Model
# ### Global Solver
# We can solve the model for some eigenvalues using one of the eigenvalue
# solvers. The package provides you with two types of eigenvalue solvers. A global
# contour-integration-based solver. That finds you all eigenvalues inside of a
# specified contour Γ in the complex plane.
Γ=[150.0+5.0im, 150.0-5.0im, 1000.0-5.0im, 1000.0+5.0im].*2*pi #corner points for the contour (in this case a rectangle)
Ω, P = beyn(L,Γ,l=10,N=64, output=true)
# The found eigenvalues are stored in the array `Ω`. The corresponding
# eigenvectors are the columns of `P`.
# The huge advantage of the global eigenvalue solver is that it finds you
# multiple eigenvalues. Nonetheless, its accuracy may be low and sometimes it
# provides you with outright wrong solutions.
# However, for the current case the method works as we can varify that in our
# search window there are two eigenmodes oscilating at 272 and 695 Hz
# respectively:
for ω in Ω
println("Frequency: $(ω/2/pi)")
end
## #src
# ### Local Solver
# To get high accuracy eigenvalues , there is also local iterative eigenvalue
# solver. Based on an initial guess, it only finds you one eigenvalue at a time
# but with machine-precise accuracy.
sol,nn,flag=householder(L,250*2*pi,output=true);
# The return values of this solver are a solution object `sol`, the number of
# iterations `nn` performed by the solver and an error flag `flag` providing
# information on the quality of the solution. If `flag>0` the solution has
# converged. If `flag<0`something went wrong. And if `flag==0`... well, probably
# the solution is fine but you should check it.
#
# In the current case the flag is -1 indicating that the maximum number of
# iterations has been reached. This is because we haven't specified a stopping
# criterion and the iteration just ran for the maximum number of iterations.
# Nevertheless, the 272 Hz mode is correct. Indeed, as you can see from the
# printed output it already converged to machine-precision after 5 iterations.
## #src
# ## Changing a specified parameter.
#
# Remember that we have specified the parameters `Y`,`n`, and `τ`?. We can change
# these easily without rediscretizing our model. For instance currently `n==0.0`
# so the solution is purely accoustic. The effect of the flame just enters the
# problem via the speed of sound field (this is known as passive flame). By
# setting the interaction index to `1.0` we activate the flame.
L.params[:n]=1
# Now we can just solve the model again to get the active solutions
sol_actv,nn,flag=householder(L,245*2*pi-82im*2*pi,output=true,order=3);
# The eigenfrequency is now complex:
sol_actv.params[:ω]/2/pi
# with a growth rate `-imag(sol_actv.params[:ω]/2/pi)≈ 59.22`
# Instead of recomputing the eigenvalue by one of the solvers. We can also
# approximate the eigenvalue as a function of one of the model parameters
# utilizing high-order perturbation theory. For instance this gives you
# the 30th order diagonal Padé estimate expanded from the passive solution.
perturb_fast!(sol,L,:n,16) #compute the coefficients
freq(n)=sol(:n,n,8,8)/2/pi #create some function for convenience
freq(1) #evaluate the function at any value for `n` you are interested in.
# The method is slow when only computing one eigenvalue. But its computational
# costs are almost constant when computing multiple eigenvalues. Therefore,
# for larger parametric studies this is clearly the method of choice.
## #src
# ## VTK Output for Paraview
#
# To visualizte your solutions you can store them as `"*.vtu"` files to open
# them with paraview. Just, create a dictionairy, where your modes are stored as
# fields.
data=Dict()
data["speed_of_sound"]=c
data["abs"]=abs.(sol_actv.v)/maximum(abs.(sol_actv.v)) #normalize so that max=1
data["phase"]=angle.(sol_actv.v)
vtk_write("tutorial_01", mesh, data) # Write the solution to paraview
# The `vtk_write` function automatically sorts your data by its interpolation
# scheme. Data that is constant on a tetrahedron will be written to a file
# `*_const.vtu`, data that is linearly interpolated on a tetrahedron will go
# to `*_lin.vtu`, and data that is quadratically interpolated to `*_quad.vtu`.
# The current example uses constant speed of sound on a tetrahedron and linear
# finite elements for the discretization of p. Therefore, two files are
# generated, namely `tutorial_01_const.vtu` containing the speed-of-sound field
# and `tutorial_01_lin.vtu` containing the mode shape. Open them with paraview
# and have a look!.
## src
# ## Summary
#
# You learnt how to set-up a simple Rijke-tube study. This already introduced
# all basic steps that are needed to work with the Helmholtz solver. However,
# there are a lot of details you can fine tune and even features that weren't
# mentioned in this tutorial. The next tutorials will introduce these aspects in
# more detail.
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 5742 | # # Tutorial 03 Lancaster's local eigenvalue solver
#
# ## Introduction
# This tutorial will teach you the details of the local eigenvalue solver.
# The solver is a generalization of Lancasters *Generalised Rayleigh Quotient
# iteration* [1], in the sense that it enables not only Newton's method for root
# finding, but also up to fith-order Householder iterations. The implementation
# closely follows the considerations in [2].
#
# [1] P. Lancaster, A Generalised Rayleigh Quotient Iteration for Lambda-Matrices,Arch. Rational Mech Anal., 1961, 8, p.
# 309-322, https://doi.org/10.1007/BF00277446
#
# [2] G.A. Mensah, Efficient Computation of Thermoacoustic Modes, Ph.D. Thesis, TU Berlin, 2019
## #jl
# ## Model set up.
# The model is the same Rijke tube configuration as in Tutorial 01:
using WavesAndEigenvalues.Helmholtz
mesh=Mesh("Rijke_mm.msh",scale=0.001) #load mesh
dscrp=Dict() #initialize model descriptor
dscrp["Interior"]=(:interior, ()) #define resonant cavity
dscrp["Outlet"]=(:admittance, (:Y,1E15)) #specify outlet BC
γ=1.4 #ratio of specific heats
ρ=1.225 #density at the reference location upstream to the flame in kg/m^3
Tu=300.0 #K unburnt gas temperature
Tb=1200.0 #K burnt gas temperature
P0=101325.0 #ambient pressure in Pa
A=pi*0.025^2 #cross sectional area of the tube
Q02U0=P0*(Tb/Tu-1)*A*γ/(γ-1) #the ratio of mean heat release to mean velocity Q02U0
x_ref=[0.0; 0.0; -0.00101] #reference point
n_ref=[0.0; 0.0; 1.00] #directional unit vector of reference velocity
n=0.01 #interaction index
τ=0.001 #time delay
dscrp["Flame"]=(:flame,(γ,ρ,Q02U0,x_ref,n_ref,:n,:τ,n,τ)) #flame dynamics
R=287.05 # J/(kg*K) specific gas constant (air)
speedofsound(x,y,z) = z<0. ? sqrt(γ*R*Tu) : sqrt(γ*R*Tb)
c=generate_field(mesh,speedofsound)
L=discretize(mesh,dscrp,c)
## #jl
# ## The local solver
#
# The key idea behind the local solver is simple: The eigenvalue problem
# `L(ω)p==0` is reinterpreted as `L(ω)p == λ*Y*p`. This means, the nonlinear
# eigenvalue `ω` becomes a parameter in a linear eigenvalue problem with
# (auxiliary) eigenvalue `λ`. If an `ω` is found such that `λ==0`, this very
# `ω` solves the original non-linear eigenvalue problem. Because the auxiliary
# eigenvalue problem is linear the implicit relation `λ=λ(ω)` can be examined
# with established perturbation theory of linear eigenvalue problems. This
# theory can be used to compute the derivative `dλ/dω` and iteratively find the
# root of `λ=λ(ω)`. Each of these iterations requires solving a linear eigenvalue
# problem and higher order derivatives improve the iteration. The options of
# the local-solver `householder` allow the user to control the solution process.
#
# ## Mandatory inputs
#
# Mandatory input arguments are only the linear operator family `L` and an
# initial guess `z` for the eigenvalue `ω`` iteration.
z=300.0*2*pi
sol,nn,flag = householder(L, z)
## #jl
# ## Maximum iterations
#
# As per default five iterations are performed. This iteration number can be
# customized using the keyword `maxiter` For instance the following command
# runs 30 iterations
sol,nn,flag = householder(L, z, maxiter=30)
## #jl
# Terminating converged solutions
#
# Usually, the procedure converges after a few iteration steps and further
# iterations do not significantly improve the solution. For this reason the
# keyword `tol` allows for setting a threshold, such that two consecutive
# iterates for the eigenvalue fulfill `abs(ω_0-ω_1)`, the iteration is
# terminated. This keyword defaults to `tol=0.0` and, thus, `maxiter`iterations
# will be performed. However, it is highly recommended to set the parameter to
# some positive value whenever possible.
sol,nn,flag = householder(L, z, maxiter=30, tol=1E-10)
# Note that the toloerance is also a bound for the error associated with the
# computed eigenvalue. Tip: The 64-bit floating numbers have an accuracy of
# `eps≈1E-16`. Hence, the threshold `tol` should not be chosen less than 16
# orders of magnitude smaller than the expected eigenvalue. Indeed, `tol=1E-10`
# is already close to the machine-precision we can expect for the Rijke-tube
# model.
## #jl
# ## Determining convergence
#
# Technically, the iteration may stop because of slow progress in the iteration
# rather than actual convergence. A simple indicator for actual convergence is
# the auxiliary eigenvalue `λ`. The closer it is to `0` the better is the
# quality of the computed solution. To help the identification of falsely
# terminated iterations you can specify another tolerance `lam_tol`. If
# `abs(λ)>lam_tol` the computed eigenvalue is deemed to be spurious. This
# feature only makes sense when a termination threshold has been specified.
# As in the following example:
sol,nn,flag = householder(L, z, maxiter=30, tol=1E-10, lam_tol=1E-8)
## #jl
# ## Faster convergence
# In order to improve the convergence rate, higher-order derivatives may be
# computed. You can use up to fifth order perturbation theory to improve the
# iteration via the `order` keyword. For instance, third-order theory is used
# in this example
sol,nn,flag = householder(L, z, maxiter=30, tol=1E-10, lam_tol=1E-8, order=3)
#
#
# Under the hood the routine calls ARPACK to utilize Arnoldi's method to solve
# the linear (auxiliary) eigenvalue problem. This method can compute more than
# one eigenvalue close to some initial guess. Per default, only one is sought
# but via the `n_eig_val` keyword the number can be increased. This results
# in an increased computation time but provides more canditates for the next
# iteration, potentialy improving the convergence.
sol,nn,flag = householder(L, z, maxiter=30, tol=1E-10, lam_tol=1E-8, n_eig_val=3)
#
#TODO: explain solution-object and error flags, degeneracy, relaxation, v0
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 10362 | # # Tutorial 04 Perturbation Theory
#
# ## Introduction
#
# This tutorial demonstrates how perturbation theory is utilized using the
# WavesAndEigenvalues package. You may ask: 'What is perturbation theory?'
# Well, perturbation theory deals with the approximation of a solution of a
# mathematical problem based on a *known* solution of a problem similar to the
# problem of interest. (Puhh, that was a long sentence...) The problem is said
# to be perturbed from a baseline solution.
# You can find a comprehensive presentation of the internal algorithms in
# [1,2,3].
## #jl
# ## Model set-up and baseline-solution
# The model is the same Rijke tube configuration as in Tutorial 01:
using WavesAndEigenvalues.Helmholtz
mesh=Mesh("Rijke_mm.msh",scale=0.001) #load mesh
dscrp=Dict() #initialize model descriptor
dscrp["Interior"]=(:interior, ()) #define resonant cavity
dscrp["Outlet"]=(:admittance, (:Y,1E15)) #specify outlet BC
γ=1.4 #ratio of specific heats
ρ=1.225 #density at the reference location upstream to the flame in kg/m^3
Tu=300.0 #K unburnt gas temperature
Tb=1200.0 #K burnt gas temperature
P0=101325.0 # ambient pressure in Pa
A=pi*0.025^2 # cross sectional area of the tube
Q02U0=P0*(Tb/Tu-1)*A*γ/(γ-1) #the ratio of mean heat release to mean velocity Q02U0
x_ref=[0.0; 0.0; -0.00101] #reference point
n_ref=[0.0; 0.0; 1.00] #directional unit vector of reference velocity
n=0.01 #interaction index
τ=0.001 #time delay
dscrp["Flame"]=(:flame,(γ,ρ,Q02U0,x_ref,n_ref,:n,:τ,n,τ)) #flame dynamics
R=287.05 # J/(kg*K) specific gas constant (air)
speedofsound(x,y,z) = z<0. ? sqrt(γ*R*Tu) : sqrt(γ*R*Tb)
c=generate_field(mesh,speedofsound)
L=discretize(mesh,dscrp,c)
# To obtain a baseline solution we solve it using the housholder iteration with
# a very small stopping tollerance of `tol=1E-11`.
sol,nn,flag=householder(L,340*2*pi,maxiter=20,tol=1E-11)
# this small tolerance is necessary because as the name suggests the base-line
# solution is the basis to our subsequent steps. If it is inaccurate we will
# definetly also encounter inaccurate approximations to other configurations
# than the base-line set-up.
## #jl
# ## Taylor series
#
# Probably, you are somewhat familiar with the concept of Taylor series
# which is a basic example of perturbation theory. There is some function
# f from which the value f(x0) is known together with some derivatives at the
# same point, the first N say. Then, we can approximate f(x0+Δ) as:
#
# f(x0+Δ)≈∑_n=0^N f_n(x0)Δ^n
# Let's consider the time delay `τ`. Our problem depends exponentially on this
# value. We can utilize a fast perturbation algorithm to compute the first
# 20 Taylor-series coefficients of the eigenfrequency `ω` w.r.t. `τ` by just
# typing
perturb_fast!(sol,L,:τ,20)
# The output shows you how long it takes to compute the coefficients.
# Obviously, it takes longer and longer for higher order coefficients.
# Note, that there is also an algorithm `perturb!(sol,L,:τ,20)` which does
# exactly the same as the fast algorithm but is slower, when it comes to high
# orders (N>5).
# Both algorithms populate a field in the solution object holding the Taylor
# coefficients.
sol.eigval_pert
# We can use these values to form the Taylor-series approximation and for
# convenience we can just do so by calling to the solution object itself.
# For instance let's assume we would like to approximate the value of the
# eigenfrequency when "τ==0.00125" based on the 20th order series expansion.
Δ=0.00001
ω_approx=sol(:τ,τ+Δ,20)
# Let's compare this value to the true solution:
L.params[:τ]=τ+Δ #change parameter
sol_exact,nn,flag=householder(L,340*2*pi,maxiter=20,tol=1E-11) #solve again
ω_exact=sol_exact.params[:ω]
println(" exact=$(ω_exact/2/pi) vs approx=$(ω_approx/2/pi))")
# Clearly, the approximation matches the first 4 digits after the point!
# We can also compute the approximation at any lower order than 20.
# For instance, the first-order approximation is:
ω_approx=sol(:τ,τ+Δ,1)
println(" first-order approx=$(ω_approx/2/pi)")
# Note that the accuracy is less than at twentieth order.
#
# Also note that we cannot compute the perturbation at higher order than 20
# because we have only computed the Taylor series coefficients up to 20th order.
# Of course we could, prepare higher order coefficients, let's say up to 30th
# order by
perturb_fast!(sol,L,:τ,30)
# and then
ω_approx=sol(:τ,τ+Δ,30)
println(" 30th-order approx=$(ω_approx/2/pi)")
# Indeed, `30` is a special limit because per default the WavesAndEigenvalues
# package installs the perturbation algorithm on your machine up to 30th order.
# This is because higher orders would consume significantly more memory in
# the installation directory and also the computation of higher orders may take
# some time. However, if you really want to use higher orders. You can rebuild
# your package by first setting a special environment variable to your desired
# order -- say 40 -- by `ENV["JULIA_WAE_PERT_ORDER"]=40` and then run
# `Pkg.build("WavesAndEigenvalues")`
# Note, that if you don't make the environment variable permanent,
# these steps will be necessary once every time you got any update to the
# package from julias package manager.
#TODO:speed
## #jl
# Ok, we've seen how we can compute Taylor-series coefficients and how to
# evaluate them as a Taylor series. But how do we choose parameters like
# the baseline set-up or the eprturbation order to get a reasonable estimate?
# Well there is a lot you can do but, unfornately, there are a lot of
# misunderstandings when it comes to the quality perturbative approximations.
#
# Take a second and try to answer the following questions:
# 1. What is the range of Δ in which you can expect reliable results from
# the approximation, i.e., the difference from the true solution is small?
# 2. How does the quality of your approximation improve if you increase the
# number of known derivatives?
# 3. What else can you do to improve your solution?
#
# Regarding the first question, many people misbelieve that the approximation is
# good as long as Δ (the shift from the expansion point) is small. This is right
# and wrong at the same time. Indeed, to classify Δ as small, you need to
# compare it agains some value. For Taylor series this is the radius of
# convergence. Convergence radii can be quite huge and sometimes super small.
# Also keep in mind that the nuemrical value of Δ in most engineering
# applications is meaningless if it is not linked to some unit of measure.
# (You know the joke: What is larger, 1 km or a million mm?)
# So how do we get the radius of convergence? It's as simple like
r=conv_radius(sol,:τ)
#The return value here is an array that holds N-1 values, where N is the order
# of Taylor-series coefficients that have been computed for `:τ`. This is
# because the convergenvce radius is estimated based on the ratio of two
# consecutive Taylor-series coefficients. Usually, the last entry of r should
# give you the best approximate.
println("Best estimate available: r=$(r[end])")
# However, there are cases where the estimation procedure for the convergence
# radius is not appropriate. That is why you can have a look on the other entries
# in r to judge whether there is smooth convergence.
## #jl
# Let's see what's happening if we evaluate the Taylor series beyond it's radius
# of convergence.
ω_approx=sol(:τ,τ+r[end]+0.001,20)
L.params[:τ]=τ+r[end]+0.001
sol_exact,nn,flag=householder(L,340*2*pi,maxiter=20,tol=1E-11) #solve again
ω_exact=sol_exact.params[:ω]
println(" exact=$(ω_exact/2/pi) vs approx=$(ω_approx/2/pi))")
# Outch, the approximation is completely off.
# Remember question 2? Maybe the estimate gets better if we increase the
# perturbation order ? At least the last time we've seen an improvement.
# But this time...
ω_approx=sol(:τ,τ+r[end]+0.001,30)
println(" exact=$(ω_exact/2/pi) vs approx=$(ω_approx/2/pi))")
# things get *way* worse! This is exaclty the reason why some clever person
# named r the radius of *convergence*. Beyond that radius we cannot make the
# Taylor-series converge without shifting the expansion point. You might think:
# 'Well, then let's shift the expansion point!' While this is definitely a valid
# approach, there is something better you can do...
# ## Series accelartion by Padé approximation
#
# The Taylor-series cannot converge beyond its radius of convergence. So why
# not trying someting else than a Taylor-series?. The truncated Taylor series is
# a polynomial approximation to our unknown relation ω=ω(τ). An alternative
# (if not to say a generalazation) of this approach is to consider rational
# polynomial approximations. So isntead of
# f(x0+Δ)≈∑_n=0^N f_n(x0)Δ^n
# we try something like
# f(x0+Δ)≈[ ∑_l=0^L a_l(x0)Δ^l ] / [ 1 + ∑_m=0^M b_m(x0)Δ^m ]
# In order to get the same asymptotic behaviour close to our expansion point, we
# demand that the truncated Taylor series expansion of our Padé approximant is
# identical to the approximation of our unknown function. Here comes the clou:
# we already know these values because we computed the Taylor-series
# coefficients. Only little algebra is needed to convert the Taylor coefficients
# to Padé coefficients and all of this is build in to the solution type. All you
# need to know is that the number of Padé coefficients is related to the number
# of Taylor coefficients by the simple formula L+M=N. Let's give it a try and
# compute the Padé approximant for L=M=10 (a so-called diagonal Padé
# approximant). This is just achieve by an extra argument for the call to our
# solution object.
ω_approx=sol(:τ,τ+r[end]+0.001,10,10)
println(" exact=$(ω_exact/2/pi) vs approx=$(ω_approx/2/pi))")
# Wow! There is now only a diffrence of about 1hz between the true solution and
# it's estimate. I'would say that's fine for many egineering applications.
# What's your opinion?
## #jl
# ## Conclusion
# You learned how to use perturbation theory. The main computational costs for
# this approach is the computation of Taylor-series coefficients. Once you have
# them everything comes down to ta few evaluations of scalar polynomials.
# Especially, when you like to rapidly evalaute your model for a bunch of values
# in a given parameter range. This approach should speed up your computations.
#
# The next tutorial will familiarize you with the use of higher order
# finite elements.
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 3284 | ## import Helmholtz-solver library
using WavesAndEigenvalues.Helmholtz
## load mesh from file
mesh=Mesh("../NTNU/NTNU.msh",scale=1.0)
#create unit and full mesh from half-cell
# Important: full merges all the domains that are copied from the unit cell
# unit: keeps the domains separate and appends numbers!
doms=[("Interior",:full),("Inlet",:full), ("Outlet_high",:full), ("Outlet_low",:full), ("Flame",:unit),]#
collect_lines!(mesh)
unit_mesh=extend_mesh(mesh,doms,unit=true)
full_mesh=extend_mesh(mesh,doms,unit=false)
## Helmholtz solver
#define speed of sound field
function speedofsound(x,y,z)
if z<0.415
return 347.0#m/s
else
return 850.0#m/s
end
end
c=generate_field(unit_mesh,speedofsound,0)
C=generate_field(full_mesh,speedofsound,0)
#D=Dict()
#vtk_write("NTNU_c",full_mesh,D)
##describe model
D=Dict()
D["Interior"]=(:interior,())
D["Outlet_high"]=(:admittance, (:Y_in,1E15))
D["Outlet_low"]=(:admittance, (:Y_out,1E15))
##discretize models
L=discretize(full_mesh, D, C, order=:1,)
l=discretize(unit_mesh, D, c, order=:1, b=:b)
## solve model using beyn
#(type Γ by typing \Gamma and Enter)
Γ=[150.0+5.0im, 150.0-5.0im, 1000.0-5.0im, 1000.0+5.0im].*2*pi #corner points for the contour (in this case a rectangle)
Ω, P = beyn(L,Γ,l=10,N=64, output=true)
ω, p = beyn(l,Γ,l=10,N=128, output=true)
##verify beyn's solution by local householder iteration
tol=1E-10
D=Dict()
for idx=1:length(Ω)
sol,nn,flag=householder(L,Ω[idx],maxiter=6,order=5,tol=tol,n_eig_val=3,output=false);
mode="[$(string(round((Ω[idx]/2/pi),digits=2)))]Hz"
if abs(sol.params[:ω]-Ω[idx])<5*tol
println("Kept:$mode")
D["abs:"*mode]=abs.(sol.v)./maximum(abs.(sol.v)) #note that in Julia any function can be performed elementwise by putting a . before the paranthesis
D["phase:"*mode]=angle.(sol.v)
else
convmode="[$(string(round((sol.params[:ω]/2/pi),digits=2)))]Hz"
println("Excluded:$mode because converged to $convmode")
end
end
##
D=Dict()
D["speedofsound"]=C
vtk_write("NTNU",full_mesh,D)
##
sol,nn,flag=householder(l,1000*2*pi,maxiter=6,order=1,tol=1E-9,n_eig_val=1,output=true);
mode="[$(string(round((sol.params[:ω]/2/pi),digits=2)))]Hz"
v=bloch_expand(unit_mesh,sol)
D["abs Bloch:"*mode]=abs.(v)./maximum(abs.(v)) #note that in Julia any function can be performed elementwise by putting a . before the paranthesis
D["phase Bloch:"*mode]=angle.(v)
#ol,nn,flag=householder(L,sol.params[:ω],maxiter=6,order=5,tol=1E-9,n_eig_val=3,output=true);
Sol,nn,flag=householder(L,sol.params[:ω],maxiter=6,order=5,tol=1E-5,n_eig_val=3,output=true);
mode="[$(string(round((Sol.params[:ω]/2/pi),digits=2)))]Hz"
D["abs:"*mode]=abs.(Sol.v)./maximum(abs.(Sol.v)) #note that in Julia any function can be performed elementwise by putting a . before the paranthesis
D["phase:"*mode]=angle.(Sol.v)
vtk_write("NTNU",full_mesh,D)
##
##
D=Dict()
D["speedofsound"]=C
Sol,nn,flag=householder(L,500*2*pi,maxiter=6,order=5,tol=1E-5,n_eig_val=3,output=true);
mode="[$(string(round((Sol.params[:ω]/2/pi),digits=2)))]Hz"
D["abs:"*mode]=abs.(Sol.v)./maximum(abs.(Sol.v)) #note that in Julia any function can be performed elementwise by putting a . before the paranthesis
D["phase:"*mode]=angle.(Sol.v)
vtk_write("NTNU",full_mesh,D)
##
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 4208 | # The model is the same Rijke tube configuration as in Tutorial 01. However,
# this time the FTF is customly defined. Let's start with the definition of the
# flame transfer function. The custom function must return the FTF and all its
# derivatives w.r.t. the complex freqeuncy. Therefore, the interface **must** be
# a function with two inputs: a complex number and an integer. For an n-τ-model
# it reads.
function FTF(ω::ComplexF64, k::Int=0)
return n*(-1.0im*τ)^k*exp(-1.0im*ω*τ)
end
# Note, that I haven't defined `n` and `τ` here, but Julia is a quite generous
# programming language; it won't complain if we define them before making our
# first call to the function.
# Of course, it is sometimes hard to find a closed form expression for an FTF
# and all its derivatives. You need to specify at least these derivative orders
# that will be used by the methods applied to analyse the model. This is at
# least the first order derivative for beyn and the standard householder method.
# You might return derivative orders up to the order you need it using an if
# clause for each order. Anyway, the function may get complicated. The implicit
# method explained below is then a viable alternative.
# Now let's set-up the Rijke tube model. The data is the same as in tutorial 1
using WavesAndEigenvalues.Helmholtz
mesh=Mesh("Rijke_mm.msh",scale=0.001) #load mesh
dscrp=Dict() #initialize model descriptor
dscrp["Interior"]=(:interior, ()) #define resonant cavity
dscrp["Outlet"]=(:admittance, (:Y,1E15)) #specify outlet BC
γ=1.4 #ratio of specific heats
ρ=1.225 #density at the reference location upstream to the flame in kg/m^3
Tu=300.0 #K unburnt gas temperature
Tb=1200.0 #K burnt gas temperature
P0=101325.0 # ambient pressure in Pa
A=pi*0.025^2 # cross sectional area of the tube
Q02U0=P0*(Tb/Tu-1)*A*γ/(γ-1) #the ratio of mean heat release to mean velocity Q02U0
x_ref=[0.0; 0.0; -0.00101] #reference point
n_ref=[0.0; 0.0; 1.00] #directional unit vector of reference velocity
R=287.05 # J/(kg*K) specific gas constant (air)
speedofsound(x,y,z) = z<0. ? sqrt(γ*R*Tu) : sqrt(γ*R*Tb)
c=generate_field(mesh,speedofsound)
# btw this is the moment where we specify the values of n and τ
n=1 #interaction index
τ=0.001 #time delay
##
# but instead of passing n and τ and its values to the flame description we
# just pass the FTF
dscrp["Flame"]=(:flame,(γ,ρ,Q02U0,x_ref,n_ref,FTF)) #flame dynamics
#... discretize ...
L=discretize(mesh,dscrp,c)
# and done!
## Check the model
print(L)
# Independently of how you name it, your FTF will be displayed as `FTF`
# in the signature of the operator.
##
# Solving the problem shows that we get the same result as with the built-in
# n-τ-model in tutorial 1
sol,nn,flag=householder(L,340*2*pi,maxiter=20,tol=1E-11)
## changing the parameters
# Because the system parameters n and τ are defined in this outer scope,
# changing them will change the FTF and thus the model without rediscretization.
# For instance, you can completely deactivate the FTF by setting n to 0.
n=0
# Indeed the model now converges to purely acoustic mode
sol,nn,flag=householder(L,340*2*pi,maxiter=20,tol=1E-11)
# However, be aware that there is currently no mechanism keeping track of these
# parameters. It is the programmer's (that's you) responsibility to know the
# specification of the FTF when `sol` was computed.
# Also, note the parameters are defined in this scope. You cannot change it by
# iterating it in a for-loop or from within a function, due to julia's scoping
# rules.
## Something else than n-τ...
# Of course this is an academic example. In practice you will specify
# something very custom as FTF. Maybe a superposition of σ-τ-models or even
# a statespace model fitted to experimental data.
##TODO: , vectorfit
#implicit FTF modelling as in Silva et al ASME2020
dscrp["Flame"]=(:flame,(γ,ρ,Q02U0,x_ref,n_ref)) #no flame dynamics specified at all
H=discretize(mesh,dscrp,c)
sol_base,nn,flag=householder(H,340*2*pi,maxiter=20,tol=1E-11)
perturb_fast!(sol_base,H,:FTF,30)
## Newton-Raphson for finding flame response
ω0=sol_base.params[:ω]
ω(f,k=0)=sol(:FTF,f,15,15)
n=1.0
η0=0
for i=1:40
Δη=η0-(FTF(ω(η0))-η0)/FTF(ω(η0,1))
println(Δη)
end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 9503 | module APE
#header
import SparseArrays, LinearAlgebra, ProgressMeter
using ..Meshutils, ..NLEVP
include("Meshutils_exports.jl")
include("NLEVP_exports.jl")
include("./FEM/FEM.jl")
export compute_potflow_field, discretize
function discretize(mesh::Mesh,dscrp,U;output=true)
L=LinearOperatorFamily(["s","λ"],complex([0.,Inf]))
N_points=size(mesh.points)[2]
N_lines=length(mesh.lines)
dim=N_points+3*(N_points+N_lines)
#gas properties (air)
P=101325 #ambient pressure (one atmosphere)
ρ=1.225 #density
γ=1.4 #ratio of specific heats
triangles,tetrahedra=aggregate_elements(mesh,:quad)
#initialize progress bar
if output
n_task=4*length(mesh.tetrahedra)
for dom in keys(dscrp)
n_task+=length(mesh.domains[dom]["simplices"])
end
prog = ProgressMeter.Progress(n_task,desc="Discretize... ", dt=.5,
barglyphs=ProgressMeter.BarGlyphs('|','█', ['▁' ,'▂' ,'▃' ,'▄' ,'▅' ,'▆', '▇'],' ','|',),
barlen=20)
end
#interior (term I + III)
MM=ComplexF64[]
II=Int64[]
JJ=Int64[]
#for tet in mesh.tetrahedra
for tet in tetrahedra
J=CooTrafo(mesh.points[:,tet[1:4]])
#velocity components term I
mm=ρ*s43v2u2(J) #TODO: space-dependent ρ
ii, jj =create_indices(tet)
iip, jjp =create_indices(tet[1:4],tet[1:4])
#u
for dd=1:3
append!(MM,mm[:])
append!(II,ii[:].+N_points.+(dd-1)*(N_points+N_lines))
append!(JJ,jj[:].+N_points.+(dd-1)*(N_points+N_lines))
end
#pressure component Term III
mm=s43v1u1(J)
append!(MM,mm[:])
append!(II,iip[:])
append!(JJ,jjp[:])
if output
ProgressMeter.next!(prog)
end
end
M=SparseArrays.sparse(II,JJ,MM,dim,dim)
push!(L,Term(M,(pow1,),((:s,),),"s","M"))
#Boundary matrix
for (dom,val) in dscrp
if dom=="Inlet"
Ysym=:Y_in
elseif dom =="Outlet"
Ysym=:Y_out
end
L.params[Ysym]=-sqrt(γ*P/ρ)/(val/mesh.domains[dom]["size"])
MM=ComplexF64[]
II=Int64[]
JJ=Int64[]
smplx_list=mesh.domains[dom]["simplices"]
for tri in mesh.triangles[smplx_list]
J=CooTrafo(mesh.points[:,tri])
ii, jj =create_indices(tri)
mm=sqrt(γ*P/ρ)*s33v1u1(J)
append!(MM,mm[:])
append!(II,ii[:])
append!(JJ,jj[:])
if output
ProgressMeter.next!(prog)
end
end
M=SparseArrays.sparse(II,JJ,MM,dim,dim)
push!(L,Term(M,(pow1,),((Ysym,),),string(Ysym),"B"))
end
#Term II and IV
MM=ComplexF64[]
II=Int64[]
JJ=Int64[]
for tet in tetrahedra
J=CooTrafo(mesh.points[:,tet[1:4]])
ii, jj = create_indices(tet[1:end],tet[1:4])
iip,jjp= create_indices(tet[1:4],tet[1:end])
for dd=1:3
#TERM II
#u†p
mm=s43v2du1(J,dd)
append!(MM,mm[:])
append!(II,ii[:].+N_points.+(dd-1)*(N_points+N_lines))
append!(JJ,jj[:])
#termIV
mm=-γ*P*s43dv1u2(J,dd) #TODO: space-dependent P
append!(MM,mm[:])
append!(II,iip[:])
append!(JJ,jjp[:].+N_points.+(dd-1)*(N_points+N_lines))
end
if output
ProgressMeter.next!(prog)
end
end
M=SparseArrays.sparse(II,JJ,MM,dim,dim)
push!(L,Term(M,(),(),"","K"))
#term V and VI (mean flow)
MM=ComplexF64[]
II=Int64[]
JJ=Int64[]
for tet in tetrahedra
J=CooTrafo(mesh.points[:,tet[1:4]])
ii, jj =create_indices(tet)
iip, jjp =create_indices(tet[1:4])
#term V
for dd=1:3
for ee=1:3
u=U[ee,tet[1:4]]
#mtx= #TODO: speed up by correct ordering
mm=ρ*(s43diffc1(J,u,dd)*s43v2u2(J)+s43v2du2c1(J,u,dd))
append!(MM,mm[:])
append!(II,ii[:].+N_points.+(dd-1)*(N_points+N_lines))
append!(JJ,jj[:].+N_points.+(ee-1)*(N_points+N_lines))
end
#term VI
u=U[dd,tet[1:4]]
mm=s43v1du1c1(J,u,dd)
append!(MM,mm[:])
append!(II,iip[:])
append!(JJ,jjp[:])
end
if output
ProgressMeter.next!(prog)
end
end
L.params[:v]=1.0
M=SparseArrays.sparse(II,JJ,MM,dim,dim)
push!(L,Term(M,(pow1,),((:v,),),"v","U"))
#grid mass matrix
MM=ComplexF64[]
II=Int64[]
JJ=Int64[]
for tet in tetrahedra
J=CooTrafo(mesh.points[:,tet[1:4]])
mm=ρ*s43v2u2(J)
ii, jj =create_indices(tet)
iip, jjp =create_indices(tet[1:4])
for dd=1:3
#u
append!(MM,mm[:])
append!(II,ii[:].+N_points.+(dd-1)*(N_points+N_lines))
append!(JJ,jj[:].+N_points.+(dd-1)*(N_points+N_lines))
end
#pressure component Term III
mm=s43v1u1(J)
append!(MM,mm[:])
append!(II,iip[:])
append!(JJ,jjp[:])
if output
ProgressMeter.next!(prog)
end
end
M=SparseArrays.sparse(II,JJ,MM,dim,dim)
push!(L,Term(-M,(pow1,),((:λ,),),"-λ","__aux__"))
return L#II,JJ,MM,M
end
"""
U=compute_potflow_field(mesh::Mesh,dscrp;order=:lin,output=true)
Compute potential flow field `U` on mesh `mesh` using the boundary conditions
specified in `dscrp`.
# Arguments
- `mesh::Mesh`: discretization of the computational domain
- `dscrp::Dict`: Dictionairy mapping domain names to volume flow values. Positive and negative volume flow correspond to inflow and outflow, respectively.
- `order::Symbol=:lin`: (optional) toggle whether computed velocity field is constant on a tetrahedron (`:const`) or linear interpolated from the vertices (`:lin`).
- `output::Bool=false`: (optional) toggle showing progress bar.
# Returns
- `U::Array`: 3×`N`-Array. Each column corresponds to a velocity vector. Depending on whether "order==:const" or "order==:lin" the number of columns will be `N==size(mesh.points,2)` or `N==length(mesh.tetrahedra)`, respectively.
# Notes
The flow is computed by solving the Poisson equation. The specified volume flows
must sum up to 0, otherwise the continuum equation is violated.
"""
function compute_potflow_field(mesh::Mesh,dscrp;order=:lin,output=false)
#the potential is a stem function of the velocity
#the element order for the potential must therefore be one order higher
if order==:const
triangles, tetrahedra, dim = aggregate_elements(mesh,:lin)
elseif order==:lin
triangles, tetrahedra, dim = aggregate_elements(mesh,:herm)
else
println("Error: order $order not supported for potential flow!")
return nothing #force crash
end
function s43nvnu(J)
if order==:const
return s43nv1nu1(J)
#elseif order==:quad
# return s43nv2nu2(J)
elseif order==:lin
return s43nvhnuh(J)
else
return nothing #force crash
end
end
function s33v(J)
if order==:const
return s33v1(J)
#elseif order==:quad
# return s33v2(J)
elseif order==:lin
return s33vh(J)
else
return nothing #force crash
end
end
MM=Float64[]
II=Int64[]
JJ=Int64[]
if output
n_task=length(mesh.tetrahedra)
for dom in keys(dscrp)
n_task+=length(mesh.domains[dom]["simplices"])
end
p = ProgressMeter.Progress(n_task,desc="Discretize... ", dt=.5,
barglyphs=ProgressMeter.BarGlyphs('|','█', ['▁' ,'▂' ,'▃' ,'▄' ,'▅' ,'▆', '▇'],' ','|',),
barlen=20)
end
#discretize stiffness matrix (Laplacian)
for smplx in tetrahedra
J=CooTrafo(mesh.points[:,smplx[1:4]])
ii, jj =create_indices(smplx)
mm=s43nvnu(J)
append!(MM,mm[:])
append!(II,ii[:])
append!(JJ,jj[:])
if output
ProgressMeter.next!(p)
end
end
M=SparseArrays.sparse(II,JJ,MM,dim,dim)
#discretize source terms from B.C.
v=zeros(dim)
for (dom,val) in dscrp
compute_size!(mesh,dom)
a=val/mesh.domains[dom]["size"]
simplices=mesh.domains[dom]["simplices"]
MM=Float64[]
II=Int64[]
for smplx in triangles[simplices]
J=CooTrafo(mesh.points[:,smplx[1:3]])
mm=-s33v(J)*a
v[smplx[:]]+=mm[:]
if output
ProgressMeter.next!(p)
end
end
end
#solve for potential
phi=M\v
#compute velocity from grad phi
if order==:const
U=Array{Float64}(undef,3,length(mesh.tetrahedra))
D=[1 0 0;
0 1 0;
0 0 1;
-1 -1 -1]
for (idx,tet) in enumerate(mesh.tetrahedra)
J=CooTrafo(mesh.points[:,tet])
U[:,idx]=transpose(phi[tet])*D*J.inv
end
elseif order==:lin
#potential field was calculated with hermitian elements
#both the potential and its derivative are part of the solution vector
N_points=size(mesh.points,2)
U=Array{Float64}(undef,3,N_points)
U[1,:]=phi[1*N_points+1:2*N_points]
U[2,:]=phi[2*N_points+1:3*N_points]
U[3,:]=phi[3*N_points+1:4*N_points]
end
return U
end
end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 4373 | export bloch_expand
function blochify(ii,jj,mm, naxis,nxbloch,nsector,naxis_ln,nsector_ln,N_points; axis = true)
#nsector=naxis+nxbloch+nbody+nxsymmetry+nbody
blochshift=nsector-naxis
blochshift_ln=nsector_ln-naxis_ln# blochshift is necessary because point dofs are reduced by blochshift
MM=ComplexF64[]
MM_plus=ComplexF64[]
MM_minus=ComplexF64[]
MM_plus_axis=ComplexF64[]
MM_minus_axis=ComplexF64[]
MM_axis=ComplexF64[]
II=UInt32[]
JJ=UInt32[]
II_plus=UInt32[]#TODO: consider preallocation
JJ_plus=UInt32[]
II_minus=UInt32[]
JJ_minus=UInt32[]
II_axis=UInt32[]
JJ_axis=UInt32[]
II_plus_axis=UInt32[]
JJ_plus_axis=UInt32[]
II_minus_axis=UInt32[]
JJ_minus_axis=UInt32[]
#println("$(length(ii)) $(length(jj)) $(length(mm))")
for (i,j,m) in zip(ii,jj,mm)
if i<=N_points #deal with point dof
i_check = i>nsector
# map Bloch_ref to Bloch_img
if i_check
i-=blochshift
end
else #deal with line dof
i_check = i> nsector_ln
if i_check
i-=blochshift_ln
end
end
if j<=N_points #deal with point dof
j_check = j>nsector
# map Bloch_ref to Bloch_img
if j_check
j-=blochshift
end
else #deal with line dof
j_check = j> nsector_ln
if j_check
j-=blochshift_ln
end
end
if axis && ( i<=naxis || j<=naxis || N_points<i<=naxis_ln || N_points<j<=naxis_ln) #&& !(i<=naxis && j<=naxis) && !(N_points>i<=naxis_ln && N_points>j<=naxis_ln) &&!(i<=naxis && N_points>j<=naxis_ln) && !(N_points>i<=naxis_ln && j<=naxis)
axis_check=true
else
axis_check=false
end
#account for reduced number of point dofs
if i>N_points
i-=nxbloch
end
if j>N_points
j-=nxbloch
end
#sort into operators matrices
if (!i_check && !j_check) || (i_check && j_check) #no manipulation of matrix entries
if axis_check
append!(II_axis,i)
append!(JJ_axis,j)
append!(MM_axis,m)
else
append!(II,i)
append!(JJ,j)
append!(MM,m)
end
elseif !i_check && j_check
if axis_check
append!(II_plus_axis,i)
append!(JJ_plus_axis,j)
append!(MM_plus_axis,m)
else
append!(II_plus,i)
append!(JJ_plus,j)
append!(MM_plus,m)
end
elseif i_check && !j_check
if axis_check
append!(II_minus_axis,i)
append!(JJ_minus_axis,j)
append!(MM_minus_axis,m)
else
append!(II_minus,i)
append!(JJ_minus,j)
append!(MM_minus,m)
end
else
println("ERROR: in blochification")
return nothing
end
end
if naxis==0
return (II,II_plus,II_minus), (JJ,JJ_plus,JJ_minus), (MM, MM_plus, MM_minus)
else
return (II, II_plus, II_minus, II_axis, II_plus_axis, II_minus_axis), (JJ, JJ_plus, JJ_minus, JJ_axis, JJ_plus_axis, JJ_minus_axis), (MM, MM_plus, MM_minus, MM_axis, MM_plus_axis, MM_minus_axis)
end
end
"""
v=bloch_expand(mesh::Mesh,sol::Solution,b=:b)
Expand solution vector `sol.v` on mesh `mesh`with Bloch wave number
`sol.params[b]` and return it as `v`.
"""
function bloch_expand(mesh::Mesh,sol::Solution,b=:b)
naxis=mesh.dos.naxis
nxsector=mesh.dos.nxsector
DOS=mesh.dos.DOS
v=zeros(ComplexF64,naxis+nxsector*DOS)
v[1:naxis]=sol.v[1:naxis]
B=sol.params[b]
for s=0:DOS-1
v[naxis+1+s*nxsector:naxis+(s+1)*nxsector]=sol.v[naxis+1:naxis+nxsector].*exp(+2.0im*pi/DOS*B*s)
end
return v
end
function bloch_expand(mesh::Mesh,vec::Array,b::Real=0)
naxis=mesh.dos.naxis
nxsector=mesh.dos.nxsector
DOS=mesh.dos.DOS
v=zeros(ComplexF64,naxis+nxsector*DOS)
v[1:naxis]=vec[1:naxis]
for s=0:DOS-1
v[naxis+1+s*nxsector:naxis+(s+1)*nxsector]=vec[naxis+1:naxis+nxsector].*exp(+2.0im*pi/DOS*b*s)
end
return v
end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 34130 | """
Module providing functionality to numerically discretize the (thermoacoustic) Helmholtz equation by first, second, and hermitian-order finite elements.
"""
module Helmholtz
import SparseArrays, LinearAlgebra, ProgressMeter
import FFTW: fft
using ..Meshutils, ..NLEVP #TODO:check where find_smplx is introduced to scope
import ..Meshutils: get_line_idx
import ..NLEVP: generate_1_gz
include("Meshutils_exports.jl")
include("NLEVP_exports.jl")
include("./FEM/FEM.jl")
include("shape_sensitivity.jl")
include("Bloch.jl")
export discretize
##
function outer(ii,aa,jj,bb)
#TODO: preallocation
mm=ComplexF64[]
II=UInt32[]
JJ=UInt32[]
for (a,i) in zip(aa,ii)
for (b,j) in zip(bb,jj)
push!(mm,a*b)
push!(II,i)
push!(JJ,j)
end
end
#TODO: conversion to array
return II,JJ,mm
end
"""
L=discretize(mesh, dscrp, C; order=:lin, b=:__none__, mass_weighting=true,source=false, output=true)
Discretize the Helmholtz equation using the mesh `mesh`.
# Arguments
- `mesh::Mesh`: tetrahedral mesh
- `dscrp::Dict `: dictionary containing information on where to apply physical constraints. Such as standard wave propagation, boundary conditions, flame responses, etc.
- `C:Array`: array defining the speed of sound. If `length(C)==length(mesh.tetrahedra)` the speed of sound is constant along one tetrahedron. If `length(C)==size(mesh.points,2)` the speed of sound is linearly interpolated between the vertices of the mesh.
- `order::Symbol = :lin`: optional paramater to select between first (`order==:lin` the default), second (`order==:quad`),or hermitian-order (`order==:herm`) finite elements.
- `b::Symbol=:__none__`: optional parameter defining the Bloch wave number. If `b=:__none__` (the default) no Blochwave formalism is applied.
- `mass_weighting=true`: optional parameter if true mass matrix is used as weighting matrix for householder, otherwise this matrix is not set.
- `source::Bool=false`: optional parameter to toggle the return of a source vector (experimental)
- `output::Bool=false': optional parameter to toggle live progress report.
# Returns
- `L::LinearOperatorFamily`: parametereized discretization of the specified Helmholtz equation.
- `rhs::LinearOperatorFamily`: parameterized discretization of the source vector. Only returned if `source==true`. (experimental)
"""
function discretize(mesh::Mesh, dscrp, C; order=:lin, b=:__none__, mass_weighting=true, source=false, output=true)
triangles,tetrahedra,dim=aggregate_elements(mesh,order)
N_points=size(mesh.points,2)
if length(C)==length(mesh.tetrahedra)
C_tet=C
if length(mesh.tri2tet)!=0 && mesh.tri2tet[1]==0xffffffff #TODO: Initialize as empty instead with sentinel value
link_triangles_to_tetrahedra!(mesh)
end
C_tri=C[mesh.tri2tet]
elseif length(C)==size(mesh.points,2)
C_tet=Array{Float64,1}[] #TODO: Preallocation
C_tri=Array{Float64,1}[]
for tet in tetrahedra
push!(C_tet,C[tet[1:4]])
end
for tri in triangles
push!(C_tri,C[tri[1:3]])
end
end
#initialize linear operator family...
L=LinearOperatorFamily(["ω","λ"],complex([0.,Inf]))
#...and source vector
rhs=LinearOperatorFamily(["ω"],complex([0.,]))
if b!=:__none__
bloch=true
naxis=mesh.dos.naxis
nxbloch=mesh.dos.nxbloch
nsector=naxis+mesh.dos.nxsector
naxis_ln=mesh.dos.naxis_ln+N_points
nsector_ln=mesh.dos.naxis_ln+mesh.dos.nxsector_ln+N_points
Δϕ=2*pi/mesh.dos.DOS
exp_plus(z,k)=exp_az(z,Δϕ*1.0im,k) #check whether this is a closure
exp_minus(z,k)=exp_az(z,-Δϕ*1.0im,k)
bloch_filt=zeros(ComplexF64,mesh.dos.DOS)
bloch_filt[1]=(1.0+0.0im)/mesh.dos.DOS
bloch_filt=fft(bloch_filt)
bloch_filt=generate_Σy_exp_ikx(bloch_filt)
anti_bloch_filt=generate_1_gz(bloch_filt)
bloch_exp_plus=generate_gz_hz(bloch_filt,exp_plus)
bloch_exp_minus=generate_gz_hz(bloch_filt,exp_minus)
txt_plus="*exp(i$(b)2π/$(mesh.dos.DOS))"
txt_minus="*exp(-i$(b)2π/$(mesh.dos.DOS))"
txt_filt="*δ($b)"
txt_filt_plus=txt_filt*txt_plus
txt_filt_minus=txt_filt*txt_minus
#txt_filt="*1($b)"
#bloch_filt=pow0
L.params[b]=0.0+0.0im
if order==:lin
dim-=mesh.dos.nxbloch
elseif order==:quad
dim-=mesh.dos.nxbloch+mesh.dos.nxbloch_ln
elseif order==:herm
dim-=4*mesh.dos.nxbloch #TODO: check blochify for hermitian elements
end
#N_points_dof=N_points-mesh.dos.nxbloch
else
bloch=false
naxis=nsector=0
end
#wrapper for FEM constructors TODO: use multipledispatch and move to FEM.jl
function stiff(J,c)
if order==:lin
if length(c)==1
return -c^2*s43nv1nu1(J)
elseif length(c)==4
return -s43nv1nu1cc1(J,c)
end
elseif order==:quad
if length(c)==1
return -c^2*s43nv2nu2(J)
elseif length(c)==4
return -s43nv2nu2cc1(J,c)
end
elseif order==:herm
if length(c)==1
return -c^2*s43nvhnuh(J)
elseif length(c)==4
return -s43nvhnuhcc1(J,c)
end
end
end
function mass(J)
if order==:lin
return s43v1u1(J)
elseif order==:quad
return s43v2u2(J)
elseif order==:herm
return s43vhuh(J)#massh(J)
end
end
function bound(J,c)
if order==:lin
if length(c)==1
return c*s33v1u1(J)
elseif length(c)==3
return s33v1u1c1(J,c)
end
elseif order==:quad
if length(c)==1
return c*s33v2u2(J)
elseif length(c)==3
return s33v2u2c1(J,c)
end
elseif order==:herm
if length(c)==1
return c*s33vhuh(J)
elseif length(c)==3
return s33vhuhc1(J,c)
end
end
end
function volsrc(J)
if order==:lin
return s43v1(J)
elseif order==:quad
return s43v2(J)
elseif order==:herm
return s43vh(J)
end
end
function gradsrc(J,n,x)
if order==:lin
return s43nv1rx(J,n,x)
elseif order==:quad
return s43nv2rx(J,n,x)
elseif order==:herm
return s43nvhrx(J,n,x)
end
end
function wallsrc(J,c)
if length(c)==1
if order==:lin
return c*s33v1(J)
elseif order==:quad
return c*s33v2(J)
elseif order==:herm
return c*s33vh(J)
end
else
if order==:lin
return s33v1c1(J,c)
elseif order==:quad
return s33v2c1(J,c)
elseif order==:herm
return s33vhc1(J,c)
end
end
end
#prepare progressbar
if output
n_task=0
for (domain,(type,data)) in dscrp
if type==:interior
task_factor=2
else
task_factor=1
end
n_task+=task_factor*length(mesh.domains[domain]["simplices"])
end
p = ProgressMeter.Progress(n_task,desc="Discretize... ", dt=.5,
barglyphs=ProgressMeter.BarGlyphs('|','█', ['▁' ,'▂' ,'▃' ,'▄' ,'▅' ,'▆', '▇'],' ','|',),
barlen=20)
end
## build discretization matrices and vectors from domain definitions
for (domain,(type,data)) in dscrp
if type==:interior
make=[:M,:K]
stiff_func=()
stiff_arg=()
stiff_txt=""
elseif type==:mass
make=[:M]
elseif type==:stiff
make=[:K]
stiff_func,stiff_arg,stiff_txt=data
for args in stiff_arg
for arg in args
L.params[arg]=0.0
end
end
elseif type in (:admittance,:speaker)
make=[]
if type==:speaker
append!(make,[:m])
speak_sym,speak_val = data[1:2]
rhs.params[speak_sym]=speak_val
data = data[3:end]
end
if length(data)>0
append!(make,[:C])
if length(data)==2
adm_sym,adm_val=data
adm_txt="ω*"*string(adm_sym)
if adm_sym ∉ keys(L.params)
L.params[adm_sym]=adm_val
if type==:speaker
rhs.params[adm_sym]=adm_val
end
end
boundary_func=(pow1,pow1,)
boundary_arg=((:ω,),(adm_sym,),)
boundary_txt=adm_txt
elseif length(data)==1
boundary_func=(generate_z_g_z(data[1]),)
boundary_arg=((:ω,),)
boundary_txt="ω*Y(ω)"
elseif length(data)==4
Ass,Bss,Css,Dss = data
adm_txt="ω*C_s(iωI-A)^{-1}B"
func_z_stsp = generate_z_g_z(generate_stsp_z(Ass,Bss,Css,Dss))
boundary_func=(func_z_stsp,)
boundary_arg=((:ω,),)
boundary_txt=adm_txt
end
end
elseif type==:flame #TODO: unified interface with flameresponse and normalize n_ref
make=[:Q]
isntau=false
if length(data)==9 ## ref_idx is not specified by the user
gamma,rho,nglobal,x_ref,n_ref,n_sym,tau_sym,n_val,tau_val=data
ref_idx=0
isntau=true
elseif length(data)==10## ref_idx is specified by the user
gamma,rho,nglobal,ref_idx,x_ref,n_ref,n_sym,tau_sym,n_val,tau_val=data
isntau=true
elseif length(data)==6 #custom FTF
gamma,rho,nglobal,x_ref,n_ref,FTF=data
ref_idx=0
flame_func = (FTF,)
flame_arg = ((:ω,),)
if applicable(FTF,:ω)
flame_txt=FTF(:ω)
else
flame_txt = "FTF(ω)"
end
elseif length(data)==5 #plain FTF
gamma,rho,nglobal,x_ref,n_ref=data
ref_idx=0
L.params[:FTF]=0.0
flame_func = (pow1,)
flame_arg = ((:FTF,),)
flame_txt = "FTF"
gamma,rho,nglobal,x_ref,n_ref=data
else
println("Error: Data length does not match :flame option!")
end
nlocal=(gamma-1)/rho*nglobal/compute_size!(mesh,domain)
if isntau
if n_sym ∉ keys(L.params)
L.params[n_sym]=n_val
end
if tau_sym ∉ keys(L.params)
L.params[tau_sym]=tau_val
end
flame_func=(pow1,exp_delay,)
flame_arg=((n_sym,),(:ω,tau_sym))
flame_txt="$(string(n_sym))*exp(-iω$(string(tau_sym)))"
end
if ref_idx==0
ref_idx=find_tetrahedron_containing_point(mesh,x_ref)
end
if ref_idx ∈ mesh.domains[domain]["simplices"]
println("Warning: your reference point is inside the domain of heat release. (short-circuited FTF!)")
end
elseif type==:flameresponse
make=[:Q]
gamma,rho,nglobal,x_ref,n_ref,eps_sym,eps_val=data
ref_idx=0
nlocal=(gamma-1)/rho*nglobal/compute_size!(mesh,domain)
if eps_sym ∉ keys(L.params)
L.params[eps_sym]=eps_val
end
flame_func=(pow1,)
flame_arg=((eps_sym,),)
flame_txt="$(string(eps_sym))"
if ref_idx==0
ref_idx=find_tetrahedron_containing_point(mesh,x_ref)
end
elseif type==:fancyflame
make=[:Q]
gamma,rho,nglobal,x_ref,n_ref,n_sym,tau_sym, a_sym, n_val, tau_val, a_val=data
ref_idx=0
nlocal=(gamma-1)/rho*nglobal/compute_size!(mesh,domain)
if typeof(n_val)<:Number #TODO: sanity check that other lists are same length
if n_sym ∉ keys(L.params)
L.params[n_sym]=n_val
end
if tau_sym ∉ keys(L.params)
L.params[tau_sym]=tau_val
end
if a_sym ∉ keys(L.params)
L.params[a_sym]=a_val
end
flame_func=(pow1,exp_az2mzit,)
flame_arg=((n_sym,),(:ω,tau_sym,a_sym,))
flame_txt="$(string(n_sym))* exp($(string(a_sym))ω^2-iω$(string(tau_sym)))"
else
flame_arg=(:ω,)
flame_txt=""
for (ns, ts, as, nv, tv, av) in zip(n_sym, tau_sym, a_sym, n_val, tau_val,a_val)
L.params[ns]=nv
L.params[ts]=tv
L.params[as]=av
flame_arg=(flame_arg...,ns,ts,as,)
flame_txt*="[$(string(ns))* exp($(string(as))ω^2-iω$(string(ts)))+"
end
flame_txt=flame_txt[1:end-1]*"]"
flame_arg=(flame_arg,)
flame_func=(Σnexp_az2mzit,)
end
if ref_idx==0
ref_idx=find_tetrahedron_containing_point(mesh,x_ref)
end
else
make=[]
end
for opr in make
V=ComplexF64[]
I=UInt32[] #TODO: consider preallocation
J=UInt32[]
if opr==:M
matrix=true #sentinel value to toggle assembley of matrix (true) or vector (false)
for smplx in tetrahedra[mesh.domains[domain]["simplices"]]
CT=CooTrafo(mesh.points[:,smplx[1:4]])
ii,jj=create_indices(smplx)
vv=mass(CT)
append!(V,vv[:])
append!(I,ii[:])
append!(J,jj[:])
if output
ProgressMeter.next!(p)
end
end
func=(pow2,)
arg=((:ω,),)
txt="ω^2"
mat="M"
elseif opr==:K
matrix=true
for (smplx,c) in zip(tetrahedra[mesh.domains[domain]["simplices"]],C_tet[mesh.domains[domain]["simplices"]])
CT=CooTrafo(mesh.points[:,smplx[1:4]])
ii,jj=create_indices(smplx)
#println("#############")
#println("$CT")
vv=stiff(CT,c)
append!(V,vv[:])
append!(I,ii[:])
append!(J,jj[:])
if output
ProgressMeter.next!(p)
end
end
func=stiff_func
arg=stiff_arg
txt=stiff_txt
#V=-V
mat="K"
elseif opr==:C
matrix=true
for (smplx,c) in zip(triangles[mesh.domains[domain]["simplices"]],C_tri[mesh.domains[domain]["simplices"]])
CT=CooTrafo(mesh.points[:,smplx[1:3]])
ii,jj=create_indices(smplx)
vv=bound(CT,c)
append!(V,vv[:])
append!(I,ii[:])
append!(J,jj[:])
if output
ProgressMeter.next!(p)
end
end
V.*=-1im
func=boundary_func # func=(pow1,pow1,)
arg=boundary_arg # arg=((:ω,),(adm_sym,),)
txt=boundary_txt # txt=adm_txt
mat="C"
elseif opr==:Q
matrix=true
S=ComplexF64[]
G=ComplexF64[]
for smplx in tetrahedra[mesh.domains[domain]["simplices"]]
CT=CooTrafo(mesh.points[:,smplx[1:4]])
mm=volsrc(CT)
append!(S,mm[:])
append!(I,smplx[:])
if output
ProgressMeter.next!(p)
end
end
smplx=tetrahedra[ref_idx]
CT=CooTrafo(mesh.points[:,smplx[1:4]])
mm=gradsrc(CT,n_ref,x_ref)
append!(G,mm[:])
append!(J,smplx[:])
G=-nlocal.*G
I,J,V=outer(I,S,J,G)
func =flame_func
arg=flame_arg
txt=flame_txt
mat="Q"
elseif opr==:m
matrix=false
for (smplx,c) in zip(triangles[mesh.domains[domain]["simplices"]],C_tri[mesh.domains[domain]["simplices"]])
CT=CooTrafo(mesh.points[:,smplx[1:3]])
ii=smplx[:]
vv=wallsrc(CT,c)
append!(V,vv[:])
append!(I,ii[:])
if output
ProgressMeter.next!(p)
end
end
V./=1im
func=(boundary_func...,pow1,)
arg=(boundary_arg...,(speak_sym,),)
txt="speaker"
mat="m"
end
if matrix
#assemble discretization matrices in sparse format
if bloch
for (i,j,v,f,a,t) in zip(blochify(I,J,V,naxis,nxbloch,nsector,naxis_ln,nsector_ln,N_points)...,[(),(exp_plus,),(exp_minus,),(bloch_filt,),(bloch_exp_plus,),(bloch_exp_minus,),],[(), ((b,),), ((b,),),((b,),),((b,),),((b,),),], ["", txt_plus, txt_minus, txt_filt, txt_filt_plus, txt_filt_minus,])
M =SparseArrays.sparse(i,j,v,dim,dim)
push!(L,Term(M,(func...,f...),(arg...,a...),txt*t,mat))
end
else
M =SparseArrays.sparse(I,J,V,dim,dim)
push!(L,Term(M,func,arg,txt,mat))
end
else
#assemble discretization vectors in sparse format
M=SparseArrays.sparsevec(I,V,dim)
push!(rhs,Term(M,func,arg,txt,mat))
end
end
end
if mass_weighting||bloch
V=ComplexF64[]
I=UInt32[] #IDEA: consider preallocation
J=UInt32[]
for smplx in tetrahedra
CT=CooTrafo(mesh.points[:,smplx[1:4]])
ii,jj=create_indices(smplx)
vv=mass(CT)
append!(V,vv[:])
append!(I,ii[:])
append!(J,jj[:])
end
end
if bloch
#IDEA: implement switch to select weighting matrix
IJV=blochify(I,J,V,naxis,nxbloch,nsector,naxis_ln,nsector_ln,N_points,axis=false)#TODO check whether this matrix needs more blochfication... especially because tetrahedra is not periodic
I=[IJV[1][1]..., IJV[1][2]..., IJV[1][3]...]
J=[IJV[2][1]..., IJV[2][2]..., IJV[2][3]...]
V=[IJV[3][1]..., IJV[3][2]..., IJV[3][3]...]
M=SparseArrays.sparse(I,J,-V,dim,dim)
if 0<naxis #modify axis dof for essential boundary condition when blochwave number !=0
DI=1:naxis
DV=ones(ComplexF64,naxis) #NOTE: make this more compact
if order==:quad
DI=vcat(DI,(N_points+1:naxis_ln).-nxbloch)
DV=vcat(DV,ones(ComplexF64,naxis_ln-N_points))
end
for idx=1:naxis
DV[idx]=1/M[idx,idx]
end
if order==:quad
for (idx,ii) in enumerate((N_points+1:naxis_ln).-nxbloch)
DV[idx+naxis]=1/M[ii,ii]
end
end
DM=SparseArrays.sparse(DI,DI,DV,dim,dim)
push!(L,Term(DM,(anti_bloch_filt,),((:b,),),"(1-δ(b))","D"))
end
end
if mass_weighting&&!bloch
M=SparseArrays.sparse(I,J,-V,dim,dim)
end
push!(L,Term(M,(pow1,),((:λ,),),"-λ","__aux__"))
if source #experimental return mode returning the source term
return L,rhs
else #classic return mode
return L
end
end
end #module Helmholtz
##
# module lin
# export assemble_volume_source, assemble_gradient_source, assemble_mass_operator, assemble_stiffness_operator, assemble_boundary_mass_operator
# include("FEMlin.jl")
# end
# module quad20
# export assemble_volume_source, assemble_gradient_source, assemble_mass_operator, assemble_stiffness_operator, assemble_boundary_mass_operator
# include("FEMquadlin.jl")
# end
#
# module quad
# export assemble_volume_source, assemble_gradient_source, assemble_mass_operator, assemble_stiffness_operator, assemble_boundary_mass_operator
# include("FEMquad.jl")
# end
#
# import .lin
# import .quad
# import .quad20
#
# """
# L=discretize(mesh, dscrp, C; el_type=1, c_type=0, b=:__none__, mass_weighting=true)
#
# Discretize the Helmholtz equation using the mesh `mesh`.
#
# # Arguments
# - `mesh::Mesh`: tetrahedral mesh
# - `dscrp::Dict `: dictionary containing information on where to apply physical constraints. Such as standard wave propagation, boundary conditions, flame responses, etc.
# - `C:Array`: array defining the speed of sound. If `c_type==0` the speed of sound is constant along one tetrahedron and `length(C)==length(mesh.tetrahedra)`. If `c_type==1` the speed of sound is linearly interpolated between the vertices of the mesh and `length(C)==size(mesh.points,2)`.
# - `el_type = 1`: optional paramater to select between first (`el_type==1` the default) and second order (`el_type==2`) finite elements.
# - `c_type = 1`: optional parameter controlling whether speed of sound is constant on a tetrahedron or linearly interpolated between vertices.
# - `b::Symbol=:__none__`: optional parameter defining the Bloch wave number. If `b=:__none__` (the default) no Blochwave formalism is applied.
# - `mass_weighting=true`: optional parameter if true mass matrix is used as weighting matrix for householder, otherwise this matrix is not set.
#
# # Returns
# - `L::LinearOperatorFamily`: parametereized discretization of the specified Helmholtz equation.
# """
# function discretize(mesh::Mesh, dscrp, C; el_type=1, c_type=0, b=:__none__, mass_weighting=true)
# if el_type==1 && c_type==0
# #println("using linear finite elements and locally constant speed of sound")
# assemble_volume_source, assemble_gradient_source, assemble_mass_operator, assemble_stiffness_operator, assemble_boundary_mass_operator =lin.assemble_volume_source, lin.assemble_gradient_source, lin.assemble_mass_operator, lin.assemble_stiffness_operator, lin.assemble_boundary_mass_operator
# elseif el_type==2 && c_type==0
# #println("using linear finite elements and locally constant speed of sound")
# assemble_volume_source, assemble_gradient_source, assemble_mass_operator, assemble_stiffness_operator, assemble_boundary_mass_operator =quad20.assemble_volume_source, quad20.assemble_gradient_source, quad20.assemble_mass_operator, quad20.assemble_stiffness_operator, quad20.assemble_boundary_mass_operator
# elseif el_type==2 && c_type==1
# #println("using quadratic finite elements and locally linear speed of sound")
# assemble_volume_source, assemble_gradient_source, assemble_mass_operator, assemble_stiffness_operator, assemble_boundary_mass_operator =quad.assemble_volume_source, quad.assemble_gradient_source, quad.assemble_mass_operator, quad.assemble_stiffness_operator, quad.assemble_boundary_mass_operator
# else
# println("ERROR: Elements not supported!")
# return
# end
#
# L=LinearOperatorFamily(["ω","λ"],complex([0.,Inf]))
# N_points=size(mesh.points)[2]
# dim=deepcopy(N_points)
# #Prepare Bloch wave analysis
# if b!=:__none__
# bloch=true
# naxis=mesh.dos.naxis
# nxbloch=mesh.dos.nxbloch
# nsector=naxis+mesh.dos.nxsector
# naxis_ln=mesh.dos.naxis_ln+N_points
# nsector_ln=mesh.dos.naxis_ln+mesh.dos.nxsector_ln+N_points
# Δϕ=2*pi/mesh.dos.DOS
# exp_plus(z,k)=exp_az(z,Δϕ*1.0im,k) #check whether this is a closure
# exp_minus(z,k)=exp_az(z,-Δϕ*1.0im,k)
# bloch_filt=zeros(ComplexF64,mesh.dos.DOS)
# bloch_filt[1]=(1.0+0.0im)/mesh.dos.DOS
# bloch_filt=fft(bloch_filt)
# bloch_filt=generate_Σy_exp_ikx(bloch_filt)
# anti_bloch_filt=generate_1_gz(bloch_filt)
# bloch_exp_plus=generate_gz_hz(bloch_filt,exp_plus)
# bloch_exp_minus=generate_gz_hz(bloch_filt,exp_minus)
# txt_plus="*exp(i$(b)2π/$(mesh.dos.DOS))"
# txt_minus="*exp(-i$(b)2π/$(mesh.dos.DOS))"
# txt_filt="*δ($b)"
# txt_filt_plus=txt_filt*txt_plus
# txt_filt_minus=txt_filt*txt_minus
# #txt_filt="*1($b)"
# #bloch_filt=pow0
# L.params[b]=0.0+0.0im
# dim-=mesh.dos.nxbloch
# #N_points_dof=N_points-mesh.dos.nxbloch
# else
# bloch=false
# naxis=nsector=0
# end
#
#
# #aggregator to create local elements ( tetrahedra, triangles)
# if el_type==2
# triangles=Array{UInt32,1}[] #TODO: preallocation?
# tetrahedra=Array{UInt32,1}[]
# tet=Array{UInt32}(undef,10)
# tri=Array{UInt32}(undef,6)
# for (idx,smplx) in enumerate(mesh.tetrahedra) #TODO: no enumeration
# tet[1:4]=smplx[:]
# tet[5]=get_line_idx(mesh,smplx[[1,2]])+N_points#find_smplx(mesh.lines,smplx[[1,2]])+N_points #TODO: type stability
# tet[6]=get_line_idx(mesh,smplx[[1,3]])+N_points
# tet[7]=get_line_idx(mesh,smplx[[1,4]])+N_points
# tet[8]=get_line_idx(mesh,smplx[[2,3]])+N_points
# tet[9]=get_line_idx(mesh,smplx[[2,4]])+N_points
# tet[10]=get_line_idx(mesh,smplx[[3,4]])+N_points
# push!(tetrahedra,copy(tet))
# end
# for (idx,smplx) in enumerate(mesh.triangles)
# tri[1:3]=smplx[:]
# tri[4]=get_line_idx(mesh,smplx[[1,2]])+N_points
# tri[5]=get_line_idx(mesh,smplx[[1,3]])+N_points
# tri[6]=get_line_idx(mesh,smplx[[2,3]])+N_points
# push!(triangles,copy(tri))
# end
# dim+=size(mesh.lines)[1]
# if bloch
# dim-=mesh.dos.nxbloch_ln
# end
#
# elseif el_type==1
# tetrahedra=mesh.tetrahedra
# triangles=mesh.triangles
# end
#
# if c_type==0
# C_tet=C
# if mesh.tri2tet[1]==0xffffffff
# link_triangles_to_tetrahedra!(mesh)
# end
# C_tri=C[mesh.tri2tet]
# elseif c_type==1
# C_tet=Array{UInt32,1}[] #TODO: Preallocation
# C_tri=Array{UInt32,1}[]
# for tet in tetrahedra
# push!(C_tet,C[tet[1:4]])
# end
# for tri in triangles
# push!(C_tri,C[tri[1:3]])
# end
# end
#
# ## build matrices from domain definitions
# for (domain,(type,data)) in dscrp
# if type==:interior
# make=[:M,:K]
#
# elseif type==:admittance
# make=[:C]
# if length(data)==2
# adm_sym,adm_val=data
#
# adm_txt="ω*"*string(adm_sym)
# if adm_sym ∉ keys(L.params)
# L.params[adm_sym]=adm_val
# end
# boundary_func=(pow1,pow1,)
# boundary_arg=((:ω,),(adm_sym,),)
# boundary_txt=adm_txt
# elseif length(data)==1
# boundary_func=(generate_z_g_z(data[1]),)
# boundary_arg=((:ω,),)
# boundary_txt="ω*Y(ω)"
# elseif length(data)==4
# Ass,Bss,Css,Dss = data
# adm_txt="ω*C_s(iωI-A)^{-1}B"
# func_z_stsp = generate_z_g_z(generate_stsp_z(Ass,Bss,Css,Dss))
# boundary_func=(func_z_stsp,)
# boundary_arg=((:ω,),)
# boundary_txt=adm_txt
# end
#
# elseif type==:flame #TODO: unified interface with flameresponse and normalize n_ref
# make=[:Q]
# gamma,rho,nglobal,x_ref,n_ref,n_sym,tau_sym,n_val,tau_val=data
# nlocal=(gamma-1)/rho*nglobal/compute_size!(mesh,domain)
# if n_sym ∉ keys(L.params)
# L.params[n_sym]=n_val
# end
# if tau_sym ∉ keys(L.params)
# L.params[tau_sym]=tau_val
# end
# flame_func=(pow1,exp_delay,)
# flame_arg=((n_sym,),(:ω,tau_sym))
# flame_txt="$(string(n_sym))*exp(-iω$(string(tau_sym)))"
#
# elseif type==:flameresponse
# make=[:Q]
# gamma,rho,nglobal,x_ref,n_ref,eps_sym,eps_val=data
# nlocal=(gamma-1)/rho*nglobal/compute_size!(mesh,domain)
# if eps_sym ∉ keys(L.params)
# L.params[eps_sym]=eps_val
# end
# flame_func=(pow1,)
# flame_arg=((eps_sym,),)
# flame_txt="$(string(eps_sym))"
# elseif type==:fancyflame
# make=[:Q]
# gamma,rho,nglobal,x_ref,n_ref,n_sym,tau_sym, a_sym, n_val, tau_val, a_val=data
# nlocal=(gamma-1)/rho*nglobal/compute_size!(mesh,domain)
# if n_sym ∉ keys(L.params)
# L.params[n_sym]=n_val
# end
# if tau_sym ∉ keys(L.params)
# L.params[tau_sym]=tau_val
# end
# if a_sym ∉ keys(L.params)
# L.params[a_sym]=a_val
# end
#
# flame_func=(pow1,exp_ax2mxit,)
# flame_arg=((n_sym,),(:ω,tau_sym,a_sym,))
# flame_txt="$(string(n_sym))* exp($(string(a_sym))ω^2-iω$(string(tau_sym)))"
# else
# make=[]
# end
#
# for opr in make
# if opr==:M
# I,J,V=assemble_mass_operator(mesh.points,tetrahedra[mesh.domains[domain]["simplices"]])
# func=(pow2,)
# arg=((:ω,),)
# txt="ω^2"
# mat="M"
# elseif opr==:K
# I,J,V=assemble_stiffness_operator(mesh.points,tetrahedra[mesh.domains[domain]["simplices"]],C_tet[mesh.domains[domain]["simplices"]])
# func=()
# arg=()
# txt=""
# #V=-V
# mat="K"
# elseif opr==:C
# I,J,V=assemble_boundary_mass_operator(mesh.points,triangles[mesh.domains[domain]["simplices"]],C_tri[mesh.domains[domain]["simplices"]])
# V*=-1im
# func=boundary_func # func=(pow1,pow1,)
# arg=boundary_arg # arg=((:ω,),(adm_sym,),)
# txt=boundary_txt # txt=adm_txt
# mat="C"
# elseif opr==:Q
# I,S=assemble_volume_source(mesh.points,tetrahedra[mesh.domains[domain]["simplices"]])
# ref_idx=find_tetrahedron_containing_point(mesh,x_ref)
# J,G=assemble_gradient_source(mesh.points,tetrahedra[ref_idx],x_ref,n_ref)
# G=-nlocal*G
# #G=-G
# I,J,V=outer(I,S,J,G)
# func =flame_func
# arg=flame_arg
# txt=flame_txt
# mat="Q"
# end
#
# if bloch
# for (i,j,v,f,a,t) in zip(blochify(I,J,V,naxis,nxbloch,nsector,naxis_ln,nsector_ln,N_points)...,[(),(exp_plus,),(exp_minus,),(bloch_filt,),(bloch_exp_plus,),(bloch_exp_minus,),],[(), ((b,),), ((b,),),((b,),),((b,),),((b,),),], ["", txt_plus, txt_minus, txt_filt, txt_filt_plus, txt_filt_minus,])
# M =SparseArrays.sparse(i,j,v,dim,dim)
# push!(L,Term(M,(func...,f...),(arg...,a...),txt*t,mat))
# end
#
# else
# M =SparseArrays.sparse(I,J,V,dim,dim)
# push!(L,Term(M,func,arg,txt,mat))
# end
#
# end
# end
#
#
# if mass_weighting||bloch
# I,J,V=assemble_mass_operator(mesh.points,tetrahedra)
# end
# if bloch
#
# #TODO: implement switch to select weighting matrix
#
# IJV=blochify(I,J,V,naxis,nxbloch,nsector,naxis_ln,nsector_ln,N_points,axis=false)#TODO check whether this matrix needs more blochfication... especially because tetrahedra is not periodic
# I=[IJV[1][1]..., IJV[1][2]..., IJV[1][3]...]
# J=[IJV[2][1]..., IJV[2][2]..., IJV[2][3]...]
# V=[IJV[3][1]..., IJV[3][2]..., IJV[3][3]...]
# M=SparseArrays.sparse(I,J,-V,dim,dim)
#
# if 0<naxis #modify axis dof for essential boundary condition when blochwave number !=0
# DI=1:naxis
# DV=ones(ComplexF64,naxis) #TODO: make this more compact
# if el_type==2
# DI=vcat(DI,(N_points+1:naxis_ln).-nxbloch)
# DV=vcat(DV,ones(ComplexF64,naxis_ln-N_points))
# end
# for idx=1:naxis
# DV[idx]=1/M[idx,idx]
# end
# if el_type==2
# for (idx,ii) in enumerate((N_points+1:naxis_ln).-nxbloch)
# DV[idx+naxis]=1/M[ii,ii]
# end
# end
# DM=SparseArrays.sparse(DI,DI,DV,dim,dim)
# push!(L,Term(DM,(anti_bloch_filt,),((:b,),),"(1-δ(b))","D"))
# end
# end
#
# if mass_weighting&&!bloch
# M=SparseArrays.sparse(I,J,-V,dim,dim)
# end
# push!(L,Term(M,(pow1,),((:λ,),),"-λ","__aux__"))
#
# return L
# end
#end#module
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 49865 | """
Module containing functionality to read and process tetrahedral meshes in gmsh or nastran format.
"""
module Meshutils
import LinearAlgebra, ProgressMeter
include("Meshutils_exports.jl")
"""
Simple struct element to store additional information on symmetry for rotational symmetric meshes.
#Fields
- `DOS::Int64`: degree of symmetry
- `naxis::Int64`: number of grid points lying on the center axis
- `nxbloch::Int64`: number of grid points lying on the Bloch plane but not on the center axis
- `nbody::Int64`: number of interior points in half cell
- `shiftbody::Int64`: difference from body point to reflected body point
- `nxsymmetry::Int64`: number of grid points on symmetry plane (without center axis)
- `nxsector::Int64`: number of grid points belonging to a unit cell (without cenetraxis, Bloch and Bloch image plane)
- `naxis_ln::Int64`: number of line segments lying on the center axis
- `nxbloch_ln::Int64`: number of line segments belonging to a unit cell (without cenetraxis, Bloch and Bloch image plane)
- `nxsector_ln::Int64`: number of line segments belonging to a unit cell (without cenetraxis, Bloch and Bloch image plane)
- `nxsector_tri::Int64`: number of surface triangles belonging to a unit cell (without Bloch and Bloch image plane)
- `nxsector_tet::Int64`: number of tetrahedra of a unit cell
- `n`: unit axis vector of the center axis
- `pnt: foot point of the center axis
- `unit::Bool`: true if mesh represents only a unit cell
"""
struct SymInfo
DOS::Int64 #degree of symmetry
naxis::Int64 #number of gridpoints lying on the centeraxis
nxbloch::Int64
nbody::Int64
shiftbody::Int64
nxsymmetry::Int64
nxsector::Int64
naxis_ln::Int64
nxbloch_ln::Int64
nxsector_ln::Int64
nxsector_tri::Int64
nxsector_tet::Int64
n
pnt
unit::Bool
end
"""
Definition of the mesh type
# Fields
- `name::String`: the name of the mesh.
- `points::Array`: 3×N array containing the coordinates of the N points defining the mesh.
- `lines::List`: List of simplices defining the edges of the mesh
- `triangles::List`: List of simplices defining the surface triangles of the mesh
- `int_triangles::List`: List of simplices defining the interior triangles of the mesh
- `tetrahedra::List`: List of simplices defining the tetrahedra of the mesh
- `domains::Dict`: Dictionary defining the domains of the mesh. See comments below.
- `file::String`: path to the file containing the mesh.
- `tri2tet::Array`: Array of length `length(tetrahedra)` containing the indices of the connected tetrahedra.
- `dos`: special field meant to contain symmetry information of highly symmetric meshes.
# Notes
The meshes are supposed to be tetrahedral. All simplices (lines, triangles, and tetrahedra) are stored as lists of simplices.
Simplices are lists of integers containing the indices of the points (i.e. the column number in the `points` array) forming the simplex.
This means a line is a two-entry list, a triangle a three-entry list, and a tetrahedron a four-entry list.
For convenience certain entities of the mesh can be further defined in the `domains` dictionary. Each key defines a domain and maps to another dictionary.
This second-level dictionary contains at least two keys: `"dimension"` mapping to the dimension of the specified domain (1,2, or 3) and
`"simplices"` containing a list of integers mapping into the respective simplex lists. More keys may be added to the dictionary to
define additional and/or custom information on the domain. For instance the `compute_size!` function adds an entry with the domain size.
"""
struct Mesh
name
points
lines
triangles
int_triangles
tetrahedra
domains
file
tri2tet
dos
end
## constructor
"""
mesh=Mesh(file_name::String; scale=1, inttris=false)
read a tetrahedral mesh from gmsh or nastran file into `mesh`.
The optional scaling factor `scale` may be used to scale the units of the mesh.
The optional parameter `inttris` toggles whether triangles are sortet into two
seperate lists for surface and internal triangles.
"""
function Mesh(file_name::String;scale=1,inttris=false)
#mesh constructor
ext=split(file_name,".")
if ext[end]=="msh"
#gmsh mesh file
#check file format
local line
open(file_name,"r") do fid
line=readline(fid)
line=readline(fid)
end
if line[1]=='4'
points, lines, triangles, tetrahedra, domains =read_msh4(file_name)
else
println("Please, convert msh-file to gmsh's .msh-format version 4!")
#points, lines, triangles, tetrahedra, domains =read_msh2(file_name)
end
elseif ext[end]=="nas" || ext[end]=="bdf"
points, lines, triangles, tetrahedra, domains =read_nastran(file_name)
# if isfile(ext[1]*"_surfaces.txt")
# relabel_nas_domains!(domains,ext[1]*"_surfaces.txt")
# end
else
println("mesh type not supported")
return nothing
end
#sometimes elements are multiply defined, make them unique
#TODO: This can be done more memory efficient by reading the msh-file twice
ulines=Array{UInt32,1}[]
utriangles=Array{UInt32,1}[]
utetrahedra=Array{UInt32,1}[]
uinttriangles=Array{UInt32,1}[]
for ln in lines
insert_smplx!(ulines,ln)
end
for tet in tetrahedra
insert_smplx!(utetrahedra,tet)
end
if inttris
utriangles,uinttriangles=assemble_triangles(utetrahedra)
else
for tri in triangles
insert_smplx!(utriangles,tri)
end
end
for dom in keys(domains)
for (idx,smplx_idx) in enumerate(domains[dom]["simplices"])
if domains[dom]["dimension"]==1
new_idx=find_smplx(ulines,lines[smplx_idx])
elseif domains[dom]["dimension"]==2
new_idx=find_smplx(utriangles,triangles[smplx_idx])
elseif domains[dom]["dimension"]==3
new_idx=find_smplx(utetrahedra,tetrahedra[smplx_idx])
end
domains[dom]["simplices"][idx]=new_idx
end
unique!(domains[dom]["simplices"])
end
if inttris
tri2tet=[zeros(UInt32,length(utriangles)),zeros(UInt32,length(uinttriangles),2)]
else
tri2tet=zeros(UInt32,length(utriangles))
if length(tri2tet)!=0
tri2tet[1]=0xffffffff #magic sentinel value to check whether list is linked
end
end
Mesh(file_name, points*scale, ulines, utriangles, uinttriangles, utetrahedra, domains, file_name,tri2tet,1)
end
#deprecated constructor
function Mesh(file, points, lines, triangles, tetrahedra, domains, file_name, tri2tet, dos)
return Mesh(file, points, lines, triangles, [], tetrahedra, domains, file_name, tri2tet, dos)
end
#show mesh
import Base.string
function string(mesh::Mesh)
if isempty(mesh.int_triangles)
txt="""mesh: $(mesh.file)
#################
points: $(size(mesh.points)[2])
lines: $(length(mesh.lines))
triangles: $(length(mesh.triangles))
tetrahedra: $(length(mesh.tetrahedra))
#################
domains: """
else
txt="""mesh: $(mesh.file)
#################
points: $(size(mesh.points)[2])
lines: $(length(mesh.lines))
triangles (surf): $(length(mesh.triangles))
triangles (int): $(length(mesh.int_triangles))
tetrahedra: $(length(mesh.tetrahedra))
#################
domains: """
end
for key in sort([key for key in keys(mesh.domains)])
txt*=string(key)*", "
end
return txt[1:end-2]
end
import Base.show
function show(io::IO,mesh::Mesh)
print(io,string(mesh))
end
##
# import Base.getindex(mesh::Mesh, i::String)
# #parse for sectors
# splt=split(i,"_#")
# sctr,hlf=-1,-1
# dom=splt[1] #domain name
# #TODO: error message of split has more than 3 entries
# if length(splt)>1
# splt=split(splt[2],".")
# sctr=splt[1]
# if length(splt)>1 #TODO: length check, see above
# hlf=splt[2] #TODO: check that this value should be 0 or 1 (assert macro?)
# end
# end
#
# #just call domain
# domain = Dict()
# domain["dimension"]=mesh.domains[dom]["dimension"]
# smplx_list=[]
# #TODO: compute volume if existent
# if hlf>-1 #build half-cell
# for smplx in mesh.domains[dom]["simplices"]
# if hlf==1
# smplx=get_reflected_index.(smplx)
# end
# insert_smplx!(smplx_list, get_rotated_index.(smplx, sctr))
# end
#
# elseif sctr>-1 #build sector
# for smplx in mesh.domains[dom]["simplices"]
# rsmplx=get_reflected_index.(smplx)
# insert_smplx!(smplx_list, get_rotated_index.(smplx, sctr))
# insert_smplx!(smplx_list, get_rotated_index.(rsmplx, sctr))
# end
#
# else #build full annulus or just call domain
# for smplx in mesh.domains[dom]["simplices"]
# rsmplx=get_reflected_index.(smplx)
# for sector=0:DOS-1
# insert_smplx!(smplx_list, get_rotated_index.(smplx, sector))
# insert_smplx!(smplx_list, get_rotated_index.(rsmplx, sector))
# end
# end
# end
#
#
# domain["simplices"] = smplx_idx
# return domain
# end
#
#
# import Base.getindex(mesh::Mesh, i::Int)
#
# end
include("./Mesh/sorter.jl")
include("./Mesh/annular_meshes.jl")
include("./Mesh/vtk_write.jl")
##
"""
points, lines, triangles, tetrahedra, domains=read_msh4(file_name)
Read gmsh's .msh-format version 4.
http://gmsh.info/doc/texinfo/gmsh.html#MSH-file-format
"""
function read_msh4(file_name)
lines=Array{UInt32,1}[]
triangles=Array{UInt32,1}[]
tetrahedra=Array{UInt32,1}[]
tag2dom=Dict()
ent2dom=Array{Dict}(undef,4)
local points
domains=Dict()
open(file_name) do fid
while !eof(fid)
line=readline(fid)
fldname=line[2:end]
if fldname=="MeshFormat"
line=readline(fid)
#if split(line)[1] != "4.1"
# break
#end
elseif fldname=="PhysicalNames"
line=readline(fid)
numPhysicalNames=parse(UInt32,line)
#Array{String}(undef,numPhysicalNames)
for idx =1:numPhysicalNames
line=readline(fid)
dim, tag, dom=split(line)
dim=parse(UInt32,dim)
dom=String(dom[2:end-1])
tag2dom[tag]=dom
domains[dom]=Dict()
domains[dom]["dimension"]=dim
domains[dom]["simplices"]=[]
end
elseif fldname=="Entities"
line=readline(fid)
numPoints, numCurves, numSurfaces, numVolumes=parse.(UInt32,split(line))
for idx=1:4 #inititlaize entity dictionary
ent2dom[idx]=Dict()
end
for idx=1:numPoints
line=readline(fid)
splitted=split(line)
entTag=splitted[1]
numPhysicalTags=parse(UInt32,splitted[5])
physicalTags=splitted[6:5+numPhysicalTags]
ent2dom[1][entTag]=[tag2dom[tag] for tag in physicalTags]
end
for idx=1:numCurves
line=readline(fid)
splitted=split(line)
entTag=splitted[1]
numPhysicalTags=parse(UInt32,splitted[8])
physicalTags=splitted[9:8+numPhysicalTags]
ent2dom[2][entTag]=[tag2dom[tag] for tag in physicalTags]
end
for idx=1:numSurfaces
line=readline(fid)
splitted=split(line)
entTag=splitted[1]
numPhysicalTags=parse(UInt32,splitted[8])
physicalTags=splitted[9:8+numPhysicalTags]
ent2dom[3][entTag]=[tag2dom[tag] for tag in physicalTags]
end
for idx=1:numVolumes
line=readline(fid)
splitted=split(line)
entTag=splitted[1]
numPhysicalTags=parse(UInt32,splitted[8])
physicalTags=splitted[9:8+numPhysicalTags]
ent2dom[4][entTag]=[tag2dom[tag] for tag in physicalTags]
end
elseif fldname=="Nodes"
line=readline(fid)
numEntityBlocks, numNodes,minNodeTag, maxNodeTag =parse.(UInt32,split(line))
points=Array{Float64}(undef,3,numNodes)
for idx =1:numEntityBlocks
line=readline(fid)
entityDim, entityTag, parametric, numNodesInBlock=parse.(UInt32,split(line))
#TODO: support parametric
nodeTags=Array{UInt32}(undef,numNodesInBlock)
for jdx =1:numNodesInBlock
line=readline(fid)
nodeTags[jdx]=parse(UInt32,line)
end
for jdx=1:numNodesInBlock
line=readline(fid)
xyz=parse.(Float64,split(line))
points[:,nodeTags[jdx]]=xyz[1:3]
#TODO: xyz[4:6] if parametric
end
end
elseif fldname=="Elements"
line=readline(fid)
numEntityBlocks, numElements, minElementTag, maxElementTag = parse.(UInt32,split(line))
for idx=1:numEntityBlocks
line=readline(fid)
splitted=split(line)
entityDim=parse(UInt32,splitted[1])
entityTag=splitted[2]
elementType, numElementsInBlock = parse.(UInt32,splitted[3:4])
for jdx =1:numElementsInBlock
line=readline(fid)
nodeTags=parse.(UInt32,split(line))[2:end]
if elementType==1
append!(lines,[nodeTags]) #TODO: use simplexSorter!!!
for dom in ent2dom[entityDim+1][entityTag]
append!(domains[dom]["simplices"],length(lines))
end
elseif elementType==2
append!(triangles,[nodeTags]) #TODO: Use simplexSorter!!!
for dom in ent2dom[entityDim+1][entityTag]
append!(domains[dom]["simplices"],length(triangles))
end
elseif elementType==4
append!(tetrahedra,[nodeTags])
for dom in ent2dom[entityDim+1][entityTag]
append!(domains[dom]["simplices"],length(tetrahedra))
end
end
end
end
end
#find closing tag and read it
#while line[2:end]!="End"*fldname
# line=readline(fid)
#end
end#while
end#do
return points, lines, triangles, tetrahedra, domains
end#function
"""
points, lines, triangles, tetrahedra, domains=read_msh2(file_name)
Read gmsh's .msh-format version 2. This is an old format and wherever possible version 4 should be used.
http://gmsh.info/doc/texinfo/gmsh.html#MSH-file-format
"""
function read_msh2(file_name)
lines=Array{UInt32,1}[]
triangles=Array{UInt32,1}[]
tetrahedra=Array{UInt32,1}[]
points=[]
domains=Dict()
open(file_name) do f
field=[]
field_open=false
i=1
#global points, triangles, lines, tetrahedra, domains
local field_name, domain_map
while !eof(f)
line=readline(f)
if (line[1]=='$')
if field_open==false
field_name=line[2:end]
field_open=true
elseif field_open && (line[2:end]=="End"*field_name)
field_open=false
else
println("Error:Field is invalid")
break
end
end
if field_open
if field_name=="MeshFormat"
MeshFormat=readline(f)
elseif field_name=="PhysicalNames"
#get number of field entries
number_of_entries=parse(Int,readline(f))
domain_map=Dict()
for i=1:number_of_entries
line=split(readline(f))
line[3]=strip(line[3],['\"'])
domains[line[3]]=Dict("dimension"=>parse(UInt32,line[1])
,"points"=>UInt32[])
domain_map[parse(UInt32,line[2])]=line[3]
end
elseif field_name=="Nodes"
#get number of field entries
number_of_entries=parse(Int,readline(f))
points=Array{Float64}(undef,3,number_of_entries)
for i=1:number_of_entries
line=split(readline(f))
points[:,i]=[parse(Float64,line[2]) parse(Float64,line[3]) parse(Float64,line[4])]
end
elseif field_name=="Elements"
#get number of field entries
number_of_entries=parse(Int,readline(f))
for i=1:number_of_entries
line=split(readline(f))
element_type=parse(Int16,line[2])
number_of_tags=parse(Int16,line[3])
tags=line[4:4+number_of_tags-1]
node_number_list=UInt32[]
for node in line[4+number_of_tags:end]
append!(node_number_list,parse(UInt32,node))
end
dom=domain_map[parse(UInt32,tags[1])]
for node in node_number_list
insert_smplx!(domains[dom]["points"],node)
end
if element_type==4 #4-node tetrahedron
insert_smplx!(tetrahedra,node_number_list)
elseif element_type==2 #3-node triangle
insert_smplx!(triangles,node_number_list)
elseif element_type==1 #2-node line
insert_smplx!(lines,node_number_list)
#elseif element type==15 #1-node point
# insert_smplx!( ,node_number_list)
else
println("error, element type is not defined")
return
end
end
end
end
i+=1
end
end
#triangles=Array{UInt32,1}[]#hot fix for triangle bug
return points, lines, triangles, tetrahedra, domains
end
include("./Mesh/read_nastran.jl")
##
##
##
"""
link_triangles_to_tetrahedra!(mesh::Mesh)
Find the tetrahedra that are connected to the triangles in mesh.triangles (and mesh.inttriangles) and store this information in mesh.tri2tet.
"""
function link_triangles_to_tetrahedra!(mesh::Mesh)
if !isempty(mesh.int_triangles)
#IDEA: move this to constructor
for (idt,tet) in enumerate(mesh.tetrahedra)
for tri in (tet[[1,2,3]],tet[[1,2,4]],tet[[1,3,4]],tet[[2,3,4]])
idx,ins=sort_smplx(mesh.triangles,tri)
if !ins
mesh.tri2tet[1][idx]=idt
else
idx,ins=sort_smplx(mesh.int_triangles,tri)
if !ins
if mesh.tri2tet[2][idx,1]==0
mesh.tri2tet[2][idx,1]=idt
else
mesh.tri2tet[2][idx,2]=idt
end
end
end
end
end
else
for (idt,tet) in enumerate(mesh.tetrahedra)
for tri in (tet[[1,2,3]],tet[[1,2,4]],tet[[1,3,4]],tet[[2,3,4]])
idx,ins=sort_smplx(mesh.triangles,tri)
if !ins
mesh.tri2tet[idx]=idt
end
end
end
end
return nothing
end
##
function assemble_triangles(tetrahedra)
int_triangles=Array{UInt32,1}[]
ext_triangles=Array{UInt32,1}[]
for tet in tetrahedra#loop over all tetrahedra
for tri_idcs in [[1,2,3],[1,2,4],[1,3,4],[2,3,4]] #loop over all 4 triangles of the tetrahedron
tri=tet[tri_idcs]
idx,notinside=sort_smplx(ext_triangles, tri)
if notinside #triangle occurs for the first time
#IDEA: there is no sanity check. If tetrahedra are ill defined a
#triangle might show up three times. That would be fatal.
#may implement some low-level-sanity checks ensuring data
#integrity
insert!(ext_triangles,idx,tri)
else #triangle occurs for the second time, it must be an interior triangle.
deleteat!(ext_triangles,idx)
insert_smplx!(int_triangles,tri)
end
end
end
return ext_triangles,int_triangles
end
##
"""
new_mesh=octosplit(mesh::Mesh)
Subdivide each tetrahedron in the mesh `mesh` into 8 tetrahedra by splitting
each edge at its center.
# Notes
The algorithm introduces `length(mesh.lines)` new vertices. This yields a finer
mesh featuring `8*size(mesh,2)` tetrahedra, `4*length(mesh.triangles)`
triangles, and `2*length(mesh.lines)` lines. From the 3 possible subdivision of
a tetrahedron the algorithm automatically chooses the one that minimizes the
edge lengths of the new tetrahedra. The point labeling of `new_mesh` is
consistent with the point labeling in `mesh`, i.e., the first
`size(mesh.points,2)` points in `new_mesh.points` are identical to the points
in `mesh.points`. Hence, `mesh` and `new_mesh` form a hierachy of meshes.
"""
function octosplit(mesh::Mesh)
collect_lines!(mesh)
N_points=size(mesh.points,2)
N_lines=length(mesh.lines)
N_tet=length(mesh.tetrahedra)
N_tri=length(mesh.triangles)
##
points=Array{Float64,2}(undef,3,N_points+N_lines)
## extend point list
points[:,1:N_points]=mesh.points
for (idx,ln) in enumerate(mesh.lines)
points[:,N_points+idx]= sum(mesh.points[:,ln],dims=2)./2
end
#create new tetrahedra by splitting the old ones
tetrahedra=Array{UInt32}[]
for tet in mesh.tetrahedra
A,B,C,D=tet #old vertices
#indices of the center points of the lines also become vertices
AB=N_points+find_smplx(mesh.lines,[A,B])
AC=N_points+find_smplx(mesh.lines,[A,C])
AD=N_points+find_smplx(mesh.lines,[A,D])
BC=N_points+find_smplx(mesh.lines,[B,C])
BD=N_points+find_smplx(mesh.lines,[B,D])
CD=N_points+find_smplx(mesh.lines,[C,D])
#outer tetrahedra always present...
insert_smplx!(tetrahedra,[A, AB, AC, AD])
insert_smplx!(tetrahedra,[B, AB, BC, BD])
insert_smplx!(tetrahedra,[C, AC, BC, CD])
insert_smplx!(tetrahedra,[D, AD, BD, CD])
# split remaining octet based on minimum distance
AB_CD=LinearAlgebra.norm(points[:,AB].-points[:,CD])
AC_BD=LinearAlgebra.norm(points[:,AC].-points[:,BD])
AD_BC=LinearAlgebra.norm(points[:,AD].-points[:,BC])
if AB_CD<=AC_BD && AB_CD<=AD_BC
insert_smplx!(tetrahedra,[AB,CD,AC,AD])
insert_smplx!(tetrahedra,[AB,CD,AD,BD])
insert_smplx!(tetrahedra,[AB,CD,BD,BC])
insert_smplx!(tetrahedra,[AB,CD,BC,AC])
elseif AC_BD<=AB_CD && AC_BD<=AD_BC
insert_smplx!(tetrahedra,[AC,BD,AB,AD])
insert_smplx!(tetrahedra,[AC,BD,AD,CD])
insert_smplx!(tetrahedra,[AC,BD,CD,BC])
insert_smplx!(tetrahedra,[AC,BD,BC,AB])
elseif AD_BC<=AC_BD && AD_BC<=AB_CD
insert_smplx!(tetrahedra,[AD,BC,AC,CD])
insert_smplx!(tetrahedra,[AD,BC,CD,BD])
insert_smplx!(tetrahedra,[AD,BC,BD,AB])
insert_smplx!(tetrahedra,[AD,BC,AB,AC])
end
end
#split the old surface triangles
triangles=Array{UInt32}[]
for tri in mesh.triangles
A,B,C=tri
AB=N_points+find_smplx(mesh.lines,[A,B])
AC=N_points+find_smplx(mesh.lines,[A,C])
BC=N_points+find_smplx(mesh.lines,[B,C])
insert_smplx!(triangles,[A,AB,AC])
insert_smplx!(triangles,[B,AB,BC])
insert_smplx!(triangles,[C,AC,BC])
insert_smplx!(triangles,[AB,AC,BC])
end
#split the old interior triangles
#TODO:Testing
inttriangles=Array{UInt32}[]
# for tri in mesh.int_triangles
# A,B,C=tri
# AB=N_points+find_smplx(mesh.lines,[A,B])
# AC=N_points+find_smplx(mesh.lines,[A,C])
# BC=N_points+find_smplx(mesh.lines,[B,C])
# insert_smplx!(inttriangles,[A,AB,AC])
# insert_smplx!(inttriangles,[B,AB,BC])
# insert_smplx!(inttriangles,[C,AC,BC])
# insert_smplx!(inttriangles,[AB,AC,BC])
# end
## relabel tetrahedra
tet_labels=Array{UInt32}(undef,N_tet,8)
for (idx,tet) in enumerate(mesh.tetrahedra)
A,B,C,D=tet #old vertices
#indices of the center points of the lines also become vertices
AB=N_points+find_smplx(mesh.lines,[A,B])
AC=N_points+find_smplx(mesh.lines,[A,C])
AD=N_points+find_smplx(mesh.lines,[A,D])
BC=N_points+find_smplx(mesh.lines,[B,C])
BD=N_points+find_smplx(mesh.lines,[B,D])
CD=N_points+find_smplx(mesh.lines,[C,D])
#outer tetrahedra always present...
tet_labels[idx,1]=find_smplx(tetrahedra,[A, AB, AC, AD])
tet_labels[idx,2]=find_smplx(tetrahedra,[B, AB, BC, BD])
tet_labels[idx,3]=find_smplx(tetrahedra,[C, AC, BC, CD])
tet_labels[idx,4]=find_smplx(tetrahedra,[D, AD, BD, CD])
# split remaining octet based on minimum distance
AB_CD=LinearAlgebra.norm(points[:,AB].-points[:,CD])
AC_BD=LinearAlgebra.norm(points[:,AC].-points[:,BD])
AD_BC=LinearAlgebra.norm(points[:,AD].-points[:,BC])
if AB_CD<=AC_BD && AB_CD<=AD_BC
tet_labels[idx,5]=find_smplx(tetrahedra,[AB,CD,AC,AD])
tet_labels[idx,6]=find_smplx(tetrahedra,[AB,CD,AD,BD])
tet_labels[idx,7]=find_smplx(tetrahedra,[AB,CD,BD,BC])
tet_labels[idx,8]=find_smplx(tetrahedra,[AB,CD,BC,AC])
elseif AC_BD<=AB_CD && AC_BD<=AD_BC
tet_labels[idx,5]=find_smplx(tetrahedra,[AC,BD,AB,AD])
tet_labels[idx,6]=find_smplx(tetrahedra,[AC,BD,AD,CD])
tet_labels[idx,7]=find_smplx(tetrahedra,[AC,BD,CD,BC])
tet_labels[idx,8]=find_smplx(tetrahedra,[AC,BD,BC,AB])
elseif AD_BC<=AC_BD && AD_BC<=AB_CD
tet_labels[idx,5]=find_smplx(tetrahedra,[AD,BC,AC,CD])
tet_labels[idx,6]=find_smplx(tetrahedra,[AD,BC,CD,BD])
tet_labels[idx,7]=find_smplx(tetrahedra,[AD,BC,BD,AB])
tet_labels[idx,8]=find_smplx(tetrahedra,[AD,BC,AB,AC])
end
end
#relabel triangles
tri_labels=Array{UInt32}(undef,N_tri,4)
for (idx,tri) in enumerate(mesh.triangles)
A,B,C=tri
AB=N_points+find_smplx(mesh.lines,[A,B])
AC=N_points+find_smplx(mesh.lines,[A,C])
BC=N_points+find_smplx(mesh.lines,[B,C])
tri_labels[idx,1]=find_smplx(triangles,[A,AB,AC])
tri_labels[idx,2]=find_smplx(triangles,[B,AB,BC])
tri_labels[idx,3]=find_smplx(triangles,[C,AC,BC])
tri_labels[idx,4]=find_smplx(triangles,[AB,AC,BC])
end
#reassemble domains
domains=Dict()
for (dom,domain) in mesh.domains
domains[dom]=Dict()
dim=domain["dimension"]
domains[dom]["dimension"]=dim
#TODO: detect whether there optional field like "size"
simplices=[]
for smplx_idx in domain["simplices"]
if dim==3
append!(simplices,tet_labels[smplx_idx,:])
elseif dim==2
append!(simplices,tri_labels[smplx_idx,:])
end
end
domains[dom]["simplices"]=sort(simplices)
end
tri2tet=zeros(UInt32,length(triangles))
if length(tri2tet)>0
tri2tet[1]=0xffffffff
end #magic sentinel value to check whether list is linked
return Mesh(mesh.file, points, [], triangles, inttriangles, tetrahedra, domains, mesh.file,tri2tet,1)
end
##
"""
compute_size!(mesh::Mesh,dom::String)
Compute the size of the domain `dom` and store it in the field `"size"` of the domain definition.
The size will be a length, area, or volume depending on the dimension of the domain.
"""
function compute_size!(mesh::Mesh,dom::String)
dim=mesh.domains[dom]["dimension"]
V=0 #TODO: check whether domains are properly defined
if dim ==3
for tet in mesh.tetrahedra[mesh.domains[dom]["simplices"]]
tet=mesh.points[:,tet]
V+=abs(LinearAlgebra.det(tet[:,1:3]-tet[:,[4,4,4]]))/6
end
#mesh.domains[dom]["volume"]=V
elseif dim == 2
for tri in mesh.triangles[mesh.domains[dom]["simplices"]]
tri=mesh.points[:,tri]
V+=LinearAlgebra.norm(LinearAlgebra.cross(tri[:,1]-tri[:,3],tri[:,2]-tri[:,3]))/2
end
#mesh.domains[dom]["area"]=V
elseif dim == 1
for ln in in mesh.lines[mesh.domains[dom]["simplices"]]
ln=mesh.points[:,ln]
V+=LinearAlgebra.norm(ln[:,2]-ln[:,1])
end
end
mesh.domains[dom]["size"]=V
end
##
# function get_simplices(mesh::Mesh, dom::String)
# dim=mesh.domains[dom]["dimension"]
# if dim==3
# return mesh.tetrahedra[mesh.domains[dom]["simplices"]]
# elseif dim==2
# return mesh.triangles[mesh.domains[dom]["simplices"]]
# end
# end
##
"""
tet_idx=find_tetrahedron_containing_point(mesh::Mesh,point)
Find the tetrahedron containing the point `point` and return the index
of the tetrahedron as `tet_idx`. If the point lies on the interface of two or more tetrahedra, the returned `tet_idx` will be the lowest index of these tetrahedra,
i.e. the index depends on the ordering of the tetrahedra in the `mesh.tetrahedra`.
If no tetrahedron in the mesh encloses the point `tet_idx==0`.
"""
function find_tetrahedron_containing_point(mesh::Mesh,point)
tet_idx=0
for (idx::UInt32,tet) in enumerate(mesh.tetrahedra)
tet=mesh.points[:,tet]
J=tet[:,1:3]-tet[:,[4,4,4]]
#convert to local barycentric coordinates
ξ=J\(point-tet[:,4])
ξ=vcat(ξ,1-sum(ξ))
if all(0 .<= ξ .<= 1)
tet_idx=idx
break
end
#TODO impleemnt points on surfaces
end
return tet_idx
end
##
function keep!(mesh::Mesh,keys_to_be_kept)
for key in keys(mesh.domains)
if !(key in keys_to_be_kept)
delete!(mesh.domains,key)
end
end
end
"""
collect_lines!(mesh::Mesh)
Populate the list of lines in `mesh.lines`.
"""
function collect_lines!(mesh::Mesh)
for tet in mesh.tetrahedra
insert_smplx!(mesh.lines,[tet[1],tet[2]])
insert_smplx!(mesh.lines,[tet[1],tet[3]])
insert_smplx!(mesh.lines,[tet[1],tet[4]])
insert_smplx!(mesh.lines,[tet[2],tet[3]])
insert_smplx!(mesh.lines,[tet[2],tet[4]])
insert_smplx!(mesh.lines,[tet[3],tet[4]])
end
end
"""
unify!(mesh::Mesh ,new_domain::String,domains...)
Create union of `domains` and name it `new_domain`.
`domains` must share the same dimension and `new_domain`
must be a new name otherwise errors will occur.
"""
function unify!(mesh::Mesh ,new_domain::String,domains...)
#check new domain is non-existent
if new_domain in keys(mesh.domains)
println("ERROR: Domain '"*new_domain*"' already exists!\n Use a different name.")
return
end
#check dimension
dim=mesh.domains[domains[1]]["dimension"]
for dom in domains
if dim != mesh.domains[dom]["dimension"]
println("Error: Domains are of different dimension!")
return
end
end
mesh.domains[new_domain]=Dict{String,Any}()
mesh.domains[new_domain]["dimension"]=dim
mesh.domains[new_domain]["simplices"]=UInt32[]
for dom in domains
#mesh.domains[new_domain]["simplices"]=
union!(mesh.domains[new_domain]["simplices"],mesh.domains[dom]["simplices"])
end
sort!(mesh.domains[new_domain]["simplices"])
end
"""
surface_points, tri_mask, tet_mask = get_surface_points(mesh::Mesh,output=true)
Get a list `surface_points` of all point indices that are on the surface of the
mesh `mesh`. The corresponding lists `tri_mask and `tet_mask` contain lists of
indices of all triangles and tetrahedra that are connected to the surface
point. The optional parameter `output` toggles whether a progressbar should be
shown or not.
"""
function get_surface_points(mesh::Mesh,output::Bool=true)
#TODO put return values as fields into Mesh
#step #1 find all points on the surface
surface_points=[]
#intialize progressbar
if output
p = ProgressMeter.Progress(length(mesh.triangles),desc="Find points #1... ", dt=1,
barglyphs=ProgressMeter.BarGlyphs('|','█', ['▁' ,'▂' ,'▃' ,'▄' ,'▅' ,'▆', '▇'],' ','|',),
barlen=20)
end
for tri in mesh.triangles
for pnt in tri
insert_smplx!(surface_points,pnt)
end
#update progressbar
if output
ProgressMeter.next!(p)
end
end
#step 2 link points to simplices
#tri_mask=Array{Int64,1}[]
#tet_mask=Array{Int64,1}[]
tri_mask=[[] for idx = 1:length(surface_points)]
tet_mask=[[] for idx = 1:length(surface_points)]
#intialize progressbar
if output
p = ProgressMeter.Progress(length(mesh.triangles),desc="Link to triangles... ", dt=1,
barglyphs=ProgressMeter.BarGlyphs('|','█', ['▁' ,'▂' ,'▃' ,'▄' ,'▅' ,'▆', '▇'],' ','|',),
barlen=20)
end
for (tri_idx,tri) in enumerate(mesh.triangles)
for pnt_idx in tri
idx=find_smplx(surface_points,pnt_idx)
if idx>0
append!(tri_mask[idx],tri_idx)
end
end
#update progressbar
if output
ProgressMeter.next!(p)
end
end
if output
p = ProgressMeter.Progress(length(mesh.tetrahedra),desc="Link to tetrahedra... ", dt=1,
barglyphs=ProgressMeter.BarGlyphs('|','█', ['▁' ,'▂' ,'▃' ,'▄' ,'▅' ,'▆', '▇'],' ','|',),
barlen=20)
end
for (tet_idx,tet) in enumerate(mesh.tetrahedra)
for pnt_idx in tet
idx=find_smplx(surface_points,pnt_idx)
if idx>0
append!(tet_mask[idx],tet_idx)
end
end
#update progressbar
if output
ProgressMeter.next!(p)
end
end
if mesh.dos!=1 && mesh.dos.unit
#blochify surface points
for idx in surface_points
bidx=idx -mesh.dos.naxis
#reference surface
if 0 < bidx <= mesh.dos.nxbloch
append!(tri_mask[idx],tri_mask[end-mesh.dos.nxbloch+bidx])
append!(tet_mask[idx],tet_mask[end-mesh.dos.nxbloch+bidx])
#unique!(tri_mask)
#unique!(tet_mask)
unique!(tri_mask[idx])
unique!(tet_mask[idx])
#symmetrize
append!(tri_mask[end-mesh.dos.nxbloch+bidx],tri_mask[idx])
append!(tet_mask[end-mesh.dos.nxbloch+bidx],tet_mask[idx])
unique!(tri_mask[end-mesh.dos.nxbloch+bidx])
unique!(tet_mask[end-mesh.dos.nxbloch+bidx])
end
end
end
return surface_points, tri_mask, tet_mask
end
# function get_surface_points(mesh::Mesh,output::Bool=true)
# #TODO put return values as fields into Mesh
# #step #1 find all points on the surface
# surface_points=[]
# #intialize progressbar
# if output
# p = ProgressMeter.Progress(length(mesh.triangles),desc="Find points #1... ", dt=1,
# barglyphs=ProgressMeter.BarGlyphs('|','█', ['▁' ,'▂' ,'▃' ,'▄' ,'▅' ,'▆', '▇'],' ','|',),
# barlen=20)
# end
# for tri in mesh.triangles
# for pnt in tri
# insert_smplx!(surface_points,pnt)
# end
# #update progressbar
# if output
# ProgressMeter.next!(p)
# end
# end
#
# #step 2 link points to simplices
# tri_mask=Array{Int64,1}[]
# tet_mask=Array{Int64,1}[]
# #intialize progressbar
# if output
# p = ProgressMeter.Progress(length(surface_points),desc="Link to simplices... ", dt=1,
# barglyphs=ProgressMeter.BarGlyphs('|','█', ['▁' ,'▂' ,'▃' ,'▄' ,'▅' ,'▆', '▇'],' ','|',),
# barlen=20)
# end
# for (idx,pnt_idx) in enumerate(surface_points)
# mask=Int64[]
# for (tri_idx,tri) in enumerate(mesh.triangles)
# if pnt_idx in tri
# append!(mask,tri_idx)
# end
# end
# append!(tri_mask,[mask])
# mask=Int64[]
# for (tet_idx,tet) in enumerate(mesh.tetrahedra)
# if pnt_idx in tet
# append!(mask,tet_idx)
# end
# end
# append!(tet_mask, [mask])
# #update progressbar
# if output
# ProgressMeter.next!(p)
# end
# end
# return surface_points, tri_mask, tet_mask
# end
"""
normal_vectors=get_normal_vectors(mesh::Mesh,output::Bool=true)
Compute a 3×`length(mesh.triangles)` Array containing the outward pointing
normal vectors of each of the surface triangles of the mesh `mesh`. The vectors
are not normalised but their norm is twice the area of the corresponding
triangle. The optional parameter `output` toggles whether a progressbar should be
shown or not.
"""
function get_normal_vectors(mesh::Mesh,output::Bool=true)
#TODO put return values as fields into Mesh
#initialize progressbar
if output
p = ProgressMeter.Progress(length(mesh.triangles),desc="Find points #1... ", dt=1,
barglyphs=ProgressMeter.BarGlyphs('|','█', ['▁' ,'▂' ,'▃' ,'▄' ,'▅' ,'▆', '▇'],' ','|',),
barlen=20)
end
normal_vectors=Array{Float64}(undef,3,length(mesh.triangles))
#Identify points A,B,C, and D that form the tetrahedron connected to the
#surface triangle. D is not part of the surface but is inside the body
#therefore its positio can be used to find determine the outward direction.
for (idx,tri) in enumerate(mesh.triangles)
A,B,C=tri
tet=mesh.tri2tet[idx]
tet=mesh.tetrahedra[tet]
D=0
for idx in tet
if !(idx in tri)
D=idx
break
end
end
A=mesh.points[:,A]
B=mesh.points[:,B]
C=mesh.points[:,C]
D=mesh.points[:,D]
N=LinearAlgebra.cross(A.-C,B.-C) #compute normal vector (length is twice the area of teh surface triangle)
N*=sign(LinearAlgebra.dot(N,C.-D))# make normal outward
normal_vectors[:,idx]=N
end
#update progressbar
if output
ProgressMeter.next!(p)
end
return normal_vectors
end
"""
generate_field(mesh::Mesh,func;el_type=0)
Generate field from function `func`for mesh `mesh`. The element type is either
`el_type=0` for field values associated with the mesh tetrahedra or `el_type=1`
for field values associated with the mesh vertices. The function must accept
three input arguments corresponding to the three space dimensions.
"""
function generate_field(mesh::Mesh,func;order::Symbol=:const)
#TODO: implement el_type=2
if order==:const
field=zeros(Float64,length(mesh.tetrahedra))#*347.0
for idx=1:length(mesh.tetrahedra)
cntr=sum(mesh.points[:,mesh.tetrahedra[idx]],dims=2)/4 #centerpoint of a tetrahedron is arithmetic mean of the vertices
field[idx]=func(cntr...)
end
elseif order==:lin
field=zeros(Float64,size(mesh.points,2))
for idx in 1:size(mesh.points,2)
pnt=mesh.points[:,idx]
field[idx]=func(pnt...)
end
else
println("Error: Can't generate field order $order not supported!")
return nothing
end
return field
end
##legacycode
# function generate_field(mesh::Mesh,func;el_type=0)
# #TODO: implement el_type=2
# if el_type==0
# field=zeros(Float64,length(mesh.tetrahedra))#*347.0
# for idx=1:length(mesh.tetrahedra)
# cntr=sum(mesh.points[:,mesh.tetrahedra[idx]],dims=2)/4 #centerpoint of a tetrahedron is arithmetic mean of the vertices
# field[idx]=func(cntr...)
# end
# else
# field=zeros(Float64,size(mesh.points,2))
# for idx in 1:size(mesh.points,2)
# pnt=mesh.points[:,idx]
# field[idx]=func(pnt...)
# end
# end
# return field
# end
"""
data,surf_keys,vol_keys=color_domains(mesh::Mesh,domains=[])
Create data fields containing an integer number corresponding to the local
domain.
# Arguments
- `mesh::Mesh`: mesh to be colored
- `domains::List`: (optional) list of domains that are to be colored. If empty all domains will be colored.
# Returns
- `data::Dict`: Dictionary containing a key for each colored domain plus magic keys `"__all_surfaces__"` and `"__all_volumes__"` holding all colors in one field. These magic fields may not work correctly if the domains are not disjoint.
- `surf_keys::Dict`: Dictionary mapping the surface domain names to their indeces.
- `vol_keys::Dict`: Dictionary mapping the volume domain names to their indeces.
# Notes
The `data`variable is designed to flawlessly work with `vtk_write` for
visualization with paraview. Check the "Interpret Values as Categories" box in
paraview's color map editor for optimal visualization.
See also: [`vtk_write`](@ref)
"""
function color_domains(mesh::Mesh,domains=[])
number_of_triangles=length(mesh.triangles)
number_of_tetrahedra=length(mesh.tetrahedra)
#IDEA: check number of domains and choose datatype accordingly (UInt8 might be possible)
tri_color=zeros(UInt16,number_of_triangles)
tet_color=zeros(UInt16,number_of_tetrahedra)
data=Dict()
surf_keys=Dict()
vol_keys=Dict()
if length(domains)==0
domains=sort([key for key in keys(mesh.domains)])
end
surf_idx=0
vol_idx=0
for key in domains
if key in keys(mesh.domains)
dom=mesh.domains[key]
else
println("Warning: No domain named '$key' in mesh.")
continue
end
smplcs=dom["simplices"]
dim=dom["dimension"]
if dim==2
surf_idx+=1
if any(tri_color[smplcs].!=0)
println("domain $key is overlapping")
end
tri_color[smplcs].=surf_idx
data[key]=zeros(Int64,number_of_triangles)
data[key][smplcs].=surf_idx
surf_keys[key]=surf_idx
println("surface:$key-->$surf_idx")
elseif dim==3
vol_idx+=1
if any(tet_color[smplcs].!=0)
println("domain $key is overlapping")
end
tet_color[smplcs].=vol_idx
data[key]=zeros(Int64,number_of_tetrahedra)
data[key][smplcs].=vol_idx
vol_keys[key]=vol_idx
println("volume:$key-->$vol_idx")
end
end
data["__all_surfaces__"]=tri_color
data["__all_volumes__"]=tet_color
return data,surf_keys,vol_keys
end
#################################################
#! legacy functions will be removed in the future
#!################################################
function build_domains!(mesh::Mesh)
for dom in keys(mesh.domains)
dim=mesh.domains[dom]["dimension"]
mesh.domains[dom]["simplices"]=UInt32[]
if dim == 3
for (idx::UInt32,tet) in enumerate(mesh.tetrahedra)
count=0
for node in tet
count+=node in mesh.domains[dom]["points"]
end
if count==4
append!(mesh.domains[dom]["simplices"],idx)
end
end
elseif dim ==2
for (idx::UInt32,tri) in enumerate(mesh.triangles)
count=0
for node in tri
count+=node in mesh.domains[dom]["points"]
end
if count==3
append!(mesh.domains[dom]["simplices"],idx)
end
end
end
end
end
function find_tetrahedron_containing_triangle!(mesh::Mesh,dom::String)
tetmap=Array{UInt32,1}(undef,length(mesh.domains[dom]["simplices"]))
for (idx,tri) in enumerate(mesh.domains[dom]["simplices"])
tri=mesh.triangles[tri]
for (idt::UInt32,tet) in enumerate(mesh.tetrahedra)
if all([i in tet for i=tri])
tetmap[idx]=idt
break
end
end
end
mesh.domains[dom]["tetmap"]=tetmap
return nothing
end
""" read a mesh from ansys cfx file"""
function read_ansys(filename)
lines=Array{UInt32,1}[]
triangles=Array{UInt32,1}[]
names=Dict()
local points,domains,tetrahedra
#points=[]
open(filename) do f
domains=Dict()
while !eof(f)
line=readline(f)
splitted=split(line)
if line==""
continue
end
if splitted[1]=="(10" && splitted[2]=="(0"
#point declaration
number_of_points=parse(Int,splitted[4],base=16)
points=zeros(3,number_of_points)
pnt_idx=1
elseif splitted[1]=="(10" && splitted[2]!="(0"
#point field header
pnt_field=true
zone_id=splitted[2][2:end]
first_index=parse(Int,splitted[3],base=16)
last_index=parse(Int,splitted[4],base=16)
type=splitted[5]
#read point field
if length(splitted)==6
ND=parse(UInt32,splitted[6][1:end-2],base=16)
else
ND=-1
end
domains[zone_id]=Dict("dimension"=>ND,"points"=>UInt32[])
for idx=first_index:last_index
line=readline(f)
splitted=split(line)
points[:,idx]=parse.(Float64,splitted)
append!(domains[zone_id]["points"],idx)
end
elseif splitted[1]=="(12" && splitted[2]=="(0"
#cell declaration
number_of_tetrahedra=parse(Int,splitted[4],base=16)
tetrahedra=Array{Array{UInt32,1}}(undef,number_of_tetrahedra)
for idx in 1:number_of_tetrahedra
tetrahedra[idx]=[]
end
elseif splitted[1]=="(13" && splitted[2]=="(0"
#face declaration
number_of_faces=parse(Int,splitted[4],base=16)
elseif splitted[1]=="(13" && splitted[2]!="(0"
#face field header
zone_id=splitted[2][2:end]
first_index=parse(Int,splitted[3],base=16)
last_index=parse(Int,splitted[4],base=16)
type=splitted[5]
element_type=parse(Int,splitted[6][1:end-2],base=16)
if type=="2"
ND=3
else
ND=2
end
domains[zone_id]=Dict("dimension"=>ND,"points"=>UInt32[])
#read face field
for idx =first_index:last_index
line=readline(f)
splitted=split(line)
left=parse(UInt32,splitted[end-1],base=16)
right=parse(UInt32,splitted[end],base=16)
tri=parse.(UInt32,splitted[1:3],base=16)
for pnt in tri
#Hier können die Domain simplices abgefragt werden
if left!=0
insert_smplx!(tetrahedra[left],pnt)
end
if right!=0
insert_smplx!(tetrahedra[right],pnt)
end
insert_smplx!(domains[zone_id]["points"],pnt)
end
if left==0 || right==0
insert_smplx!(triangles,tri)
#Das muss Rückverfolgt werden um die Dreiecke zu identifizieren
end
end
elseif splitted[1]=="(45"
names[splitted[2][2:end]]=splitted[end][1:end-4]
end
end
end
for (key,value) in names
if key in keys(domains)
domains[value]=pop!(domains,key)
else
#TODO: warning message
end
end
#points, lines, triangles, tetrahedra, domains, names
return Mesh(filename, points, lines, triangles, tetrahedra, domains, filename,1)
end
end#module
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 257 | export Mesh, link_triangles_to_tetrahedra!, compute_size!, find_tetrahedron_containing_point, keep!, collect_lines!, unify!, extend_mesh, vtk_write
export vtk_write_tri, get_surface_points, get_normal_vectors, generate_field
export octosplit, color_domains
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 606 | """
Module containing routines to solve and perturb nonlinear eigenvalue problems.
"""
module NLEVP
include("NLEVP_exports.jl")
#header
using SparseArrays
include("./NLEVP/algebra.jl")
include("./NLEVP/polys_pade.jl")
include("./NLEVP/LinOpFam.jl")
include("./NLEVP/perturbation.jl")
include("./NLEVP/Householder.jl")
include("./NLEVP/nicoud.jl")
include("./NLEVP/picard.jl")
include("./NLEVP/iterative_solvers.jl")
#include("./NLEVP/mehrmann.jl")
include("./NLEVP/beyn.jl")
include("./NLEVP/solver.jl")
include("./NLEVP/toml.jl")
include("./NLEVP/save.jl")
include("./NLEVP/gallery.jl")
#using .TOML
end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 724 | #types
export Term, LinearOperatorFamily, Solution, save
#solvers
export householder, beyn, solve, count_poles_and_zeros
export mslp, inveriter, lancaster, traceiter, rf2s, decode_error_flag
export nicoud, picard
#export mehrmann, juniper, lancaster, count_eigvals
#helper functions for beyn
export pos_test, moments2eigs, compute_moment_matrices, wn, inpoly
#perturbation stuff
export pade!, perturb!, perturb_fast!, perturb_norm!, estimate_pol, conv_radius
#export algebra
export pow0,pow1,pow2,pow_a,pow,exp_delay,z_exp_iaz,z_exp__iaz,exp_pm,exp_az2mzit
export Σnexp_az2mzit, exp_az, generate_stsp_z, generate_z_g_z
export generate_Σy_exp_ikx,generate_gz_hz, generate_exp_az
# export fitting staff
#export fit_ss_wrapper
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 202 | module WavesAndEigenvalues
include("Meshutils.jl")
include("NLEVP.jl")
include("Helmholtz.jl")
include("APE.jl")
include("network.jl")
#using .Meshutils
#include("meshutils_export.jl")
end # module
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 10387 | """
Network
Tools for creating axial (i.e., 1d) thermoacoustic network models.
The formulation is Riemann-based:
p=F exp(+iω*l/c)+G exp(-iω*l/c)
Au=A/ρc[ F exp(+iω*l/c)-G exp(-iω*l/c)]
"""
module Network
using WavesAndEigenvalues.NLEVP
export discretize
include("NLEVP_exports.jl")
"""
out=duct(l,c,A,ρ=1.4*101325/c^2)
Create local matrix coefficients for duct element.
# Arguments
- `l`: length of the duct
- `c`: speed of sound
- `A` cross-sectional area of the duct
- `ρ` density
"""
function duct(l,c,A,ρ=1.4*101325/c^2)
M=[-1 -1; #p_previous-p_current=0
-A/(ρ*c) A/(ρ*c); #A u_previous-A u_current=0
0 0; #p_current-p_next=0
0 0] #A u_current-A u_next=0
M31=[0 0;
0 0;
1 0;
0 0]
M32= [0 0;
0 0;
0 1;
0 0]
M41= [0 0;
0 0;
0 0;
1 0]
M42= [0 0;
0 0;
0 0;
0 -1]
out=[[M,(),()],
[M31, (generate_exp_az(1im*l/c),), ((:ω,),),],
[M32, (generate_exp_az(-1im*l/c),), ((:ω,),),],
[M41*A/(ρ*c), (generate_exp_az(1im*l/c),), ((:ω,),),],
[M42*A/(ρ*c), (generate_exp_az(-1im*l/c),), ((:ω,),),],
]
return out
end
"""
out=terminal(R,c,A,ρ=1.4*101325/c^2;init=true)
Create local matrix coefficients for terminal element.
# Arguments
- `R`: reflection coefficient
- `c`: speed of sound
- `A`: cross-sectional area of the terminal
- `ρ`: density
- `init`: (optional) if true its the left end else it is the right one.
"""
function terminal(R,c,A,ρ=1.4*101325/c^2;init=true)
#if hasmethod(R,(ComplexF64,Int))
if typeof(R)<:Number
else
println("Error, unknown impedance type $(typeof(Z))")
end
if init
M=[+R -1;
+1 +1;
1*A/(ρ*c) -1*A/(ρ*c)]
else
M=[ -1 -1;
-1*A/(ρ*c) +1*A/(ρ*c);
-1 +R]
end
return [[M,(),()],]
end
"""
out=flame(c1,c2,A,ρ=1.4*101325/c1^2)
Create local matrix coefficients for flame element with n-tau dynamics.
# Arguments
- `c1`: speed of sound on the unburnt side
- `c2`: speed of sound on the burnt side
- `A`: cross-sectional area of the terminal
- `ρ`: density
"""
function flame(c1,c2,A,ρ=1.4*101325/c1^2)
M= [0 0;
0 0;
0 0;
1 -1]
out=duct(0,c1,A,ρ)
push!(out,[M*(c2^2/c1^2-1)*A/(ρ*c1), (pow1,exp_delay), ((:n,),(:ω,:τ),),])
return out
end
"""
out=helmholtz(V,l_n,d_n,c,A,ρ=1.4*101325/c1^2)
Create local matrix coefficients for a sidewall Helmholtz damper element.
# Arguments
- `V`: Volume of the damper
- `l_n`: length of the damper neck
- `d_n`: diameter of the damper neck
- `c`: speed of sound
- `A`: cross-sectional area of the terminal
- `ρ`: density
# Notes:
The model is build on the transfer matrix from [1]
# References
[1] F. P. Mechel, Formulas of Acoustic, Springer, 2004, p. 728
"""
function helmholtz(V,l_n,d_n,c,A,ρ=1.4*101325/c^2)
#=====
p_u=p_d
u_u=1/Z p_d+u_d <==> A u_u=A/Z p_d+A u_d>
TODO:
<==> Z*A*u_u=A*p_d+Z*Au_d (roe easier representation)
where
Z(ω)=ρ[ω^2/(π*c)*[2-r_n/r_u]+0.425*M*c*/S_n+1im[ω*l/S_n-c^2/(ω*V)]]
where
ρ: density
c: speed of sound
r_n: neck radius of the Helmholtz damper
r_u: radius of the main duct
M: Mach number
S_n = π*r_n2 : crossectional area of the neck
V = : volume of the helmholtz damper
and
l=l_n+t_w+0.85 r_n*(2-r_n/r_u)
with tw: wall thickness?
## adaption to Riemann invariants
p_u-A_+*exp(im*ω*l/c)+A_-*exp(-im*ω*l/c)=0
u_u-A_+/ρc*exp(im*ω*l/c)+A_+/ρc*exp(-im*ω*l/c)=0
The last equation is to be multiplied by A.
## notes
this element does not resolve what is between the usptream and the downstream
site. It directly describes the jump!
=====#
r_n=d_n/2
r_u=sqrt(A/pi)
S_n=pi*r_n^2
t_w=0
l=l_n+t_w+0.85*r_n*(2-r_n/r_u)
M=0
M21= [0 0;
-1 -1;
0 0;
0 0]
#M22= [0 0;
# 0 -1;
# 0 0;
# 0 0]
function impedance(ω::ComplexF64,k::Int)::ComplexF64
let ρ=ρ, r_n=r_n, r_u=r_u, M=M, c=c, l=l, V=V ,S_n=S_n
return ρ*(pow2(ω,k)/(π*c)*(2-r_n/r_u)+pow0(ω,k)*0.425*M*c/S_n
+1.0im*pow1(ω,k)*l/S_n-1.0im*c^2/V*pow(ω,k,-1))
end
end
function admittance(ω::ComplexF64,k::Int)::ComplexF64
let Z=impedance
if k==0
return 1/Z(ω,0)
elseif k==1
return -Z(ω,1)/Z(ω,0)^2 #TODO: implement arbitray order chain rule
else
return NaN+NaN*im
end
end
end
function admittance(ω::Symbol)::String
return "1/Z($ω)"
end
out=duct(0,c,A,ρ)
#push!(out,[M21, (admittance,), ((:ω,),),])
push!(out,[-M21/ρ, (admittance,), ((:ω,),),])
return out
end
"""
sidewallimp(imp,c,A,ρ=1.4*101325/c^2)
Use function predefined function `imp` to prescripe a frequency-dependent
side wall impedance.
"""
function sidewallimp(imp,c,A,ρ=1.4*101325/c1^2)
M21= [0 0;
-1 -1;
0 0;
0 0]
function admittance(ω::ComplexF64,k::Int)::ComplexF64
let Z=imp
if k==0
return 1/Z(ω,0)
elseif k==1
return -Z(ω,1)/Z(ω,0)^2 #TODO: implement arbitray order chain rule
else
return NaN+NaN*im
end
end
end
function admittance(ω::Symbol)::String
return "1/Z($ω)"
end
out=duct(0,c,A,ρ)
#push!(out,[M21*A*(ρ*c), (admittance,), ((:ω,),),])
push!(out,[M21, (admittance,), ((:ω,),),])
end
"""
out=lhr(V,l_n,d_n,c,A,ρ=1.4*101325/c^2)
Create linear Helmholtz model according to [1].
#Reference
[1] Nonlinear effects in acoustic metamaterial based on a cylindrical pipe with
ordered Helmholtz resonators,J. Lan, Y. Li, H. Yu, B. Li, and X. Liu, Phys.
Rev. Lett. A., 2017, [doi:10.1016/j.physleta.2017.01.036](https://doi.org/10.1016/j.physleta.2017.01.036)
"""
function lhr(V,l_n,d_n,c,A,ρ=1.4*101325/c^2)
r_n=d_n/2
S_n=pi*r_n^2
B0=ρ*c^2
η=1.5E-5 #dynamic viscosity or air in m^2/s
R_vis=ρ*l_n/r_n*sqrt(η/2)*S_n# *ω^(1/2) #!!!! wrong in Lan it must be divided not miultiplied by r_n
R_rad=1/4*ρ*r_n^2/c*S_n#*ω^2
l=l_n+1.7*r_n #length correction
Cm=V/(ρ*c^2*S_n^2)
Mm=ρ*l*S_n
#δ=Rm/Mm
ω0=1/(sqrt(Cm*Mm))
println("M: $Mm, C: $Cm, freq: $ω0")
C=B0*S_n/(1im*ω0^2*V)/(S_n) #last division to convert between impedance and flow impedance
function impedance(ω::ComplexF64,k::Int)::ComplexF64
let C=C, R_vis=R_vis, R_rad=R_rad, ω0=ω0
return C*pow1(ω,k)-C*ω0^2*pow(ω,k,-1)-C*1im*R_vis/Mm*pow(ω,k,1/2)-C*1im*R_rad/Mm*pow2(ω,k)
end
end
return sidewallimp(impedance,c,A,ρ)
end
"""
L=discretize(network)
Discretize network model.
# Arguments
- `network`
# Returns
- `L::LinearOperatorFamily`
# The network is specified of a list of network elements.
elements together with there options. Available elements are.
- `:duct`: duct element with options `(l,c,A,ρ)`
- `:flame`: n-tau-flame element with options `(c1,c2,A,ρ)`
- `:helmholtz`:Helmholtz damper element with options `(V,l_n,d_n,c,A,ρ)`
- `:unode`: sound hard boundary, i.e. a velocity node with options `(c,A,ρ)`
- `:pnode`: sound soft boundary, i.e., a pressure node with options `(c,A,ρ)`
- `:anechoic`: anechoic boundary condition with option `(c,A,ρ)`
For all elements the density `ρ` is an optional parameter which is computed
as `ρ=1.4*101325/c^2` if unspecified (air at atmospheric pressure).
# Example
This is an example for the discretization of a Rijke tube, with a Helmholtz
damper, a velocity node at the inlet and a pressure node at the outlet:
network=[(:unode,(347.0, 0.01), ),
(:duct,(0.25, 347.0, 0.01)),
(:flame,(347,347*2,0.01)),
(:duct,(0.25, 347.0*2, 0.01)),
(:helmholtz,(0.02^3,0.01,.005,347*2,0.01)),
(:duct,(0.25, 347.0*2, 0.01)),
(:pnode,(347.0*2, 0.01), )
]
L=discretize(network)
L.params[n]=1
L.params[τ]=0.001
"""
function discretize(network)
i,j=1,1
L=LinearOperatorFamily((:ω,))
N=length(network)
A=zeros(2*N,2*N)
for (idx,(elmt, data)) in enumerate(network)
if elmt==:duct
terms=duct(data...)
elseif elmt==:unode
R=1
if idx==1
init=true
elseif idx==length(network)
init=false
else
println("Error, terminal element at intermediate position $idx!")
end
#terms=velocity_node(data...)
terms=terminal(R,data...,init=init)
elseif elmt==:pnode
R=-1
if idx==1
init=true
elseif idx==length(network)
init=false
else
println("Error, terminal element at intermediate position $idx!")
end
terms=terminal(R,data...,init=init)
elseif elmt==:anechoic
R=0
if idx==1
init=true
elseif idx==length(network)
init=false
else
println("Error, terminal element at intermediate position $idx!")
end
terms=terminal(R,data...,init=init)
elseif elmt==:pnodeend
terms=pressure_node_end(data...)
elseif elmt==:vnodestart
terms=velocity_node_start(data...)
elseif elmt==:flame
terms=flame(data...)
elseif elmt==:helmholtz
terms=helmholtz(data...)
elseif elmt==:helmholtz2
terms=lhr(data...)
else
println("Warning: unknown element $elmt")
continue
end
I,J=size(terms[1][1])
for (coeff,func,arg) in terms
M=deepcopy(A)
M[i:i+I-1,j:j+J-1]=coeff
push!(L,Term(M,func,arg,"M"))
end
i+=I-2
j+=2
end
return L
end
end #module network
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 13314 | export discrete_adjoint_shape_sensitivity, normalize_sensitivity, normal_sensitivity, forward_finite_differences_shape_sensitivity, bound_mass_normalize, blochify_surface_points!
"""
sens=discrete_adjoint_shape_sensitivity(mesh::Mesh,dscrp,C,surface_points,tri_mask,tet_mask,L,sol;h=1E-9,output=true)
Compute shape sensitivity of mesh `mesh`
#Arguments
- `mesh::Mesh`: Mesh
- ...
#Notes
The method is based on a discrete adjoint approach. The derivative of the
operator with respect to a point displacement is, however, computed by central
finite differences.
"""
function discrete_adjoint_shape_sensitivity(mesh::Mesh,dscrp,C,surface_points,tri_mask,tet_mask,L,sol;h=1E-9,output=true)
ω0=sol.params[sol.eigval]
## normalize base
#TODO: make this normalization standard to avoid passing L
v0=sol.v
v0Adj=sol.v_adj
v0/=sqrt(v0'*v0)
v0Adj/=conj(v0Adj'*L(sol.params[sol.eigval],1)*v0)
#detect unit mesh
unit=false
bloch=false
if mesh.dos!=1
unit= mesh.dos.unit
end
if unit
b=:b
else
b=:__none__
end
sens=zeros(ComplexF64,3,size(mesh.points,2))
if output
p = ProgressMeter.Progress(length(surface_points),desc="DA Sensitivity... ", dt=1,
barglyphs=ProgressMeter.BarGlyphs('|','█', ['▁' ,'▂' ,'▃' ,'▄' ,'▅' ,'▆', '▇'],' ','|',),
barlen=20)
end
for idx=1:length(surface_points)
#global D, D_left, D_right, domains
pnt_idx=surface_points[idx]
domains=Dict()
#shorten domain simplex-list s.t. only simplices that are connected to current
#surface point occur.
for dom in keys(dscrp)
domain=deepcopy(mesh.domains[dom])
dim=domain["dimension"]
simplices=[]
if dim==2
smplx_list=tri_mask[idx]
elseif dim==3
smplx_list=tet_mask[idx]
else
smplx_list=[]
end
for smplx_idx in domain["simplices"]
if smplx_idx in smplx_list
append!(simplices,smplx_idx)
end
end
domain["simplices"]=simplices
domains[dom]=domain
end
#construct mesh with reduced domains
mesh_h=Mesh("mesh_h",deepcopy(mesh.points),mesh.lines,mesh.triangles,mesh.tetrahedra,domains,"constructed from mesh", mesh.tri2tet,mesh.dos)
#get cooridnates of current surface point
pnt=mesh_h.points[:,pnt_idx]
if unit
bloch=false
if 0 < pnt_idx-mesh.dos.naxis <= mesh.dos.nxbloch
#identify bloch image point
pnt_bloch_idx=size(mesh.points,2)-mesh.dos.nxbloch+(pnt_idx-mesh.dos.naxis)
pnt_bloch=mesh.points[:,pnt_bloch_idx]#[:,end-mesh.dos.nxbloch+pnt_idx]
bloch=true
#elseif size(mesh.points,2)-mesh.dos.nxbloch<pnt_idx
# #skip analysis if pnt is bloch image point
# continue
elseif pnt_idx<=mesh.dos.naxis
#skip analysis if pnt is axis pnt
if output
ProgressMeter.next!(p)
end
continue
end
end
#perturb coordinates for all three directions and compute operator derivative by central FD
#then use operator derivative to compute eigval sensitivity by adjoint approach
for crdnt=1:3
mesh_h.points[:,pnt_idx]=pnt
if unit
X=get_cylindrics(pnt)
mesh_h.points[:,pnt_idx].+=h.*X[:,crdnt]
if bloch
mesh_h.points[:,pnt_bloch_idx]=pnt_bloch
X_bloch=get_cylindrics(pnt_bloch)
#println("####X: $pnt_idx")
mesh_h.points[:,pnt_bloch_idx].+=h.*X_bloch[:,crdnt]
end
else
mesh_h.points[crdnt,pnt_idx]+=h
end
D_right=discretize(mesh_h, dscrp, C, mass_weighting=false,b=b)
if unit
mesh_h.points[:,pnt_idx].-=2*h.*X[:,crdnt]
if bloch
mesh_h.points[:,pnt_bloch_idx].-=2*h.*X_bloch[:,crdnt]
end
else
mesh_h.points[crdnt,pnt_idx]-=2h
end
D_left=discretize(mesh_h, dscrp, C, mass_weighting=false,b=b)
if unit
D_right.params[b]=1
D_left.params[b]=1
end
D=(D_right(ω0)-D_left(ω0))/(2*h)
#println("#######")
#println("size::$(size(D))")
#println("###D:$(-v0Adj'*D*v0) idx:$pnt_idx")
sens[crdnt,pnt_idx]=-v0Adj'*D*v0
end
if output
ProgressMeter.next!(p)
end
end
return sens
end
"""
normed_sens=normalize_sensitivity(surface_points,normal_vectors,tri_mask,sens)
Normalize shape sensitivity with directed area of adjacent triangles.
"""
function normalize_sensitivity(surface_points,normal_vectors,tri_mask,sens)
#preallocate arrays
A=Array{Float64}(undef,length(normal_vectors))#
V=Array{Float64}(undef,length(normal_vectors))
normed_sens=zeros(ComplexF64,size(normal_vectors))
for (crdnt,v) in enumerate(([1.0; 0.0; 0.0],[0.0; 1.0; 0.0],[0.0; 0.0; 1.0]))
#compute triangle area and volume flow
for idx =1:size(normal_vectors,2)
A[idx]=LinearAlgebra.norm(normal_vectors[:,idx])/2
#V[idx]=LinearAlgebra.norm(LinearAlgebra.cross(normal_vectors[:,idx],v))/6
V[idx]=abs(LinearAlgebra.dot(normal_vectors[:,idx],v))/6
end
for idx=1:length(surface_points)
pnt=surface_points[idx]
tris=tri_mask[idx]
vol=sum(abs.(V[tris]))#common volume flow of all adjacent triangles
if vol==0 #TODO: compare against some reference value to check for numerical zero
#println("$idx")
continue
end
for tri in tris
weight=abs(V[tri])/vol
if A[tri]>0
normed_sens[crdnt,tri]+=sens[crdnt,pnt]/A[tri]*weight
end
if isnan(normed_sens[crdnt,idx])
println("$idx: $(vol==0)")
println("idx:$idx weight:$weight A:$(A[tri]) vol:$(vol==0)")
end
end
end
end
return normed_sens
end
"""
nsens=bound_mass_normalize(surface_points,normal_vectors,tri_mask,sens)
Normalize shape sensitivity with boundary mass matrix.
"""
function bound_mass_normalize(surface_points,normal_vectors,tri_mask,mesh,sens)
M=[1/12 1/24 1/24;
1/24 1/12 1/24;
1/24 1/24 1/12]
II=[]
JJ=[]
MM=[]
for (idx,tri) in enumerate(mesh.triangles)
ii=[tri[1] tri[2] tri[3];
tri[1] tri[2] tri[3];
tri[1] tri[2] tri[3]]
jj=ii'
mm=M.*LinearAlgebra.norm(normal_vectors[:,idx])
append!(II,ii[:])
append!(JJ,jj[:])
append!(MM,mm[:])
end
#relabel points
D=Dict()
for (idx,pnt) in enumerate(surface_points)
D[pnt]=idx
end
for jdx in 1:length(II)
II[jdx]=D[II[jdx]]
JJ[jdx]=D[JJ[jdx]]
end
B=SparseArrays.sparse(II,JJ,MM)
B=SparseArrays.lu(B)
nsens=zeros(ComplexF64,size(sens))
for i=1:3
nsens[i,surface_points]=B\sens[i,surface_points]
end
return nsens
end
"""
normal_sensitivity(normal_vectors, normed_sens)
Convert surface normalized shape_gradient `normed_sens` to surface_normal shape
sensitivity.
"""
function normal_sensitivity(normal_vectors, normed_sens)
normal_sens=Array{ComplexF64}(undef,size(normal_vectors,2))
for idx =1:size(normal_vectors,2)
n=normal_vectors[:,idx]
s=normed_sens[:,idx]
v=n./LinearAlgebra.norm(n)
normal_sens[idx]=LinearAlgebra.dot(v,s)
end
return normal_sens
end
## FD approach
function forward_finite_differences_shape_sensitivity(mesh::Mesh,dscrp,C,surface_points,tri_mask,tet_mask,L,sol;h=1E-9,output=true)
#check whether is unit mesh
unit=0
if mesh.dos!=1
unit=mesh.dos.unit
end
sens=zeros(ComplexF64,size(mesh.points))
if unit!=0
n_iterations=length(surface_points)-mesh.dos.nxbloch
else
n_iterations=length(surface_points)
end
if output
p = ProgressMeter.Progress(n_iterations,desc="FD Sensitivity... ", dt=1,
barglyphs=ProgressMeter.BarGlyphs('|','█', ['▁' ,'▂' ,'▃' ,'▄' ,'▅' ,'▆', '▇'],' ','|',),
barlen=20)
end
for idx=1:n_iterations
#global G
pnt_idx=surface_points[idx]
domains=assemble_connected_domain(idx,mesh::Mesh,dscrp,tri_mask,tet_mask)
#get coordinates of current surface point
pnt=mesh.points[:,pnt_idx]
for crdnt=1:3
#construct mesh with reduced domains
mesh_h=Mesh("mesh_h",deepcopy(mesh.points),mesh.lines,mesh.triangles,mesh.tetrahedra,domains,"constructed from mesh", mesh.tri2tet,mesh.dos)
mesh_hl=deepcopy(mesh_h)
#forward finite difference
#mesh_h.points[crdnt,pnt_idx]+=h
#G=discretize(mesh_h, dscrp, C)
#D_center=discretize(mesh_h, dscrp, C, mass_weighting=true)
if unit>0
X=get_cylindrics(pnt)
mesh_h.points[:,pnt_idx].+=h.*X[:,crdnt]
mesh_hl.points[:,pnt_idx].-=h.*X[:,crdnt]
#bidx=pnt_idx-mesh.dos.naxis #(potential) bloch point index
#if 0 < bidx <= mesh.dos.nxbloch
if 0 < pnt_idx-mesh.dos.naxis <= mesh.dos.nxbloch
#identify bloch image point
bidx=size(mesh.points,2)-mesh.dos.nxbloch+(pnt_idx-mesh.dos.naxis)
bpnt=mesh.points[:,bidx]
bX=get_cylindrics(bpnt)
mesh_h.points[:,bidx].+=h.*bX[:,crdnt]
mesh_hl.points[:,bidx].-=h.*bX[:,crdnt]
# wrong
# mesh_h.points[:,bidx]=mesh_h.points[:,pnt_idx]
# mesh_h.points[2,bidx]*=-1 #wrong
else
bidx=0 #sentinel value
end
else
mesh_h.points[crdnt,pnt_idx]+=h
mesh_hl.points[crdnt,pnt_idx]-=h
end
if unit>0
D_right=discretize(mesh_h, dscrp, C, mass_weighting=true,b=:b)
D_left=discretize(mesh_hl, dscrp, C, mass_weighting=true,b=:b)
else
D_right=discretize(mesh_h, dscrp, C, mass_weighting=true)
D_left=discretize(mesh_hl, dscrp, C, mass_weighting=true)
end
#G=deepcopy(L)
G=LinearOperatorFamily(["ω","λ"],complex([0.,Inf]))
for (key,val) in L.params
G.params[key]=val
end
for idx in 1:length(D_left.terms)
symbol=L.terms[idx].symbol
if symbol!="__aux__"
coeff=L.terms[idx].coeff+D_right.terms[idx].coeff-D_left.terms[idx].coeff
else
coeff=L.terms[idx].coeff
end
func=L.terms[idx].func
operator=L.terms[idx].operator
params=L.terms[idx].params
push!(G,Term(coeff,func,params,symbol,operator))
end
new_sol, n, flag = householder(G,sol.params[sol.eigval],maxiter=5, output = false, nev=3,order=3)
sens[crdnt,pnt_idx]=(new_sol.params[new_sol.eigval]-sol.params[sol.eigval])/(2h)
end
if output
#update progressMeter
ProgressMeter.next!(p)
end
end
return sens
end
##
function assemble_connected_domain(idx,mesh::Mesh,dscrp,tri_mask,tet_mask)
domains=Dict()
for dom in keys(dscrp)
domain=deepcopy(mesh.domains[dom])
dim=domain["dimension"]
simplices=[]
if dim==2
smplx_list=tri_mask[idx]
elseif dim==3
smplx_list=tet_mask[idx]
else
smplx_list=[]
end
for smplx_idx in domain["simplices"]
if smplx_idx in smplx_list
append!(simplices,smplx_idx)
end
end
domain["simplices"]=simplices
domains[dom]=domain
end
return domains
end
##
function blochify_surface_points!(mesh::Mesh, surface_points, tri_mask, tet_mask)
for idx in surface_points
bidx=idx -mesh.dos.naxis
if 0 < bidx <= mesh.dos.nxbloch
append!(tri_mask[idx],tri_mask[end-mesh.dos.nxbloch+bidx])
append!(tet_mask[idx],tet_mask[end-mesh.dos.nxbloch+bidx])
unique!(tri_mask)
unique!(tet_mask)
end
end
return nothing
end
##
"helper function to get local cylindric basis vectors"
function get_cylindrics(pnt)
#r,phi,z=X
X=zeros(3,3)
X[:,3]=[0;0;1]
X[:,1]=copy(pnt)
X[3,1]=0.0
X[:,1]./=LinearAlgebra.norm(X[:,1])
X[:,2]=LinearAlgebra.cross(X[:,3],X[:,1])
return X
end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 152825 | #local coordinate transformation type
struct CooTrafo
trafo
inv
det
orig
end
#constructor
function CooTrafo(X)
dim=size(X)
J=Array{Float64}(undef,dim[1],dim[1])
orig=X[:,end]
J[:,1:dim[2]-1]=X[:,1:end-1].-X[:,end]
if dim[2]==3 #surface triangle #TODO:implement lines and all dimensions
n=LinearAlgebra.cross(J[:,1],J[:,2])
J[:,end]=n./LinearAlgebra.norm(n)
end
Jinv=LinearAlgebra.inv(J)
det=LinearAlgebra.det(J)
CooTrafo(J,Jinv,det,orig)
end
function create_indices(smplx)
ii=Array{Int64}(undef,length(smplx),length(smplx))
for i=1:length(smplx)
for j=1:length(smplx)
ii[i,j]=smplx[i]
end
end
jj=ii'
return ii, jj
end
function create_indices(elmnt1,elmnt2)
ii=Array{Int64}(undef,length(elmnt1),length(elmnt2))
jj=Array{Int64}(undef,length(elmnt1),length(elmnt2))
for i=1:length(elmnt1)
for j=1:length(elmnt2)
ii[i,j]=elmnt1[i]
jj[i,j]=elmnt2[j]
end
end
return ii, jj
end
## the following two functions should be eventually moved to meshutils once the revision of FEM is done.
import ..Meshutils: get_line_idx, find_smplx, insert_smplx!
function collect_triangles(mesh::Mesh)
inner_triangles=[]
for tet in mesh.tetrahedra
for tri in [tet[[1,2,3]],tet[[1,2,4]],tet[[1,3,4]],tet[[2,3,4]] ]
idx=find_smplx(mesh.triangles,tri) #returns 0 if triangle is not in mesh.triangles
#this mmay be misleading. Better strategy is to count the occurence of all triangles
# if they occure once its an inner, if they occure twice its outer.
#This can be done quite easily. By populating a list of innertriangles and moving
# an inner triangle to a list of outer triangles when its detected to be already in the list
#of inner triangles. Avoiding three (or higher multiples) of occurence
# in a sanity check can be done by first checking the list on inner triangles
# for no occurence.
# Best moment to do this is after reading the raw lists from file.
if idx==0
insert_smplx!(inner_triangles,tri)
end
end
end
return inner_triangles
end
##
#TODO: write function aggregate_elements(mesh, idx el_type=:lin) for a single element
# and integrate this as method to the Mesh type
##
"""
triangles, tetrahedra, dim = aggregate_elements(mesh,el_type)
Agregate lists (`triangles` and `tetrahedra`) of lists of indexed degrees of freedom
for unstructured tetrahedral meshes. `dim` is the total number of DoF in the
mesh featured by the requested element-type (`el_type`). Available element types
are `:lin` for first order elements (the default), `:quad` for second order elements,
and `:herm` for Hermitian elements.
"""
function aggregate_elements(mesh::Mesh, el_type=:lin)
N_points=size(mesh.points)[2]
if (el_type in (:quad,:herm) ) && length(mesh.lines)==0
collect_lines!(mesh)
end
if el_type==:lin
tetrahedra=mesh.tetrahedra
triangles=mesh.triangles
dim=N_points
elseif el_type==:quad
triangles=Array{Array{UInt32,1}}(undef,length(mesh.triangles))
tetrahedra=Array{Array{UInt32,1}}(undef,length(mesh.tetrahedra))
tet=Array{UInt32}(undef,10)
tri=Array{UInt32}(undef,6)
for (idx,smplx) in enumerate(mesh.tetrahedra)
tet[1:4]=smplx[:]
tet[5]=get_line_idx(mesh,smplx[[1,2]])+N_points#find_smplx(mesh.lines,smplx[[1,2]])+N_points #TODO: type stability
tet[6]=get_line_idx(mesh,smplx[[1,3]])+N_points
tet[7]=get_line_idx(mesh,smplx[[1,4]])+N_points
tet[8]=get_line_idx(mesh,smplx[[2,3]])+N_points
tet[9]=get_line_idx(mesh,smplx[[2,4]])+N_points
tet[10]=get_line_idx(mesh,smplx[[3,4]])+N_points
tetrahedra[idx]=copy(tet)
end
for (idx,smplx) in enumerate(mesh.triangles)
tri[1:3]=smplx[:]
tri[4]=get_line_idx(mesh,smplx[[1,2]])+N_points
tri[5]=get_line_idx(mesh,smplx[[1,3]])+N_points
tri[6]=get_line_idx(mesh,smplx[[2,3]])+N_points
triangles[idx]=copy(tri)
end
dim=N_points+length(mesh.lines)
elseif el_type==:herm
#if mesh.tri2tet[1]==0xffffffff
# link_triangles_to_tetrahedra!(mesh)
#end
inner_triangles=collect_triangles(mesh) #TODO integrate into mesh structure
triangles=Array{Array{UInt32,1}}(undef,length(mesh.triangles))
tetrahedra=Array{Array{UInt32,1}}(undef,length(mesh.tetrahedra))
tet=Array{UInt32}(undef,20)
tri=Array{UInt32}(undef,13)
for (idx,smplx) in enumerate(mesh.triangles)
tri[1:3] = smplx[:]
tri[4:6] = smplx[:].+N_points
tri[7:9] = smplx[:].+2*N_points
tri[10:12] = smplx[:].+3*N_points
fcidx = find_smplx(mesh.triangles,smplx)
if fcidx !=0
tri[13] = fcidx+4*N_points
else
tri[13] = find_smplx(inner_triangles,smplx)+4*N_points+length(mesh.triangles)
end
triangles[idx]=copy(tri)
end
for (idx, smplx) in enumerate(mesh.tetrahedra)
tet[1:4] = smplx[:]
tet[5:8] = smplx[:].+N_points
tet[9:12] = smplx[:].+2*N_points
tet[13:16]= smplx[:].+3*N_points
for (jdx,tria) in enumerate([smplx[[2,3,4]],smplx[[1,3,4]],smplx[[1,2,4]],smplx[[1,2,3]]])
fcidx = find_smplx(mesh.triangles,tria)
if fcidx !=0
tet[16+jdx] = fcidx+4*N_points
else
fcidx=find_smplx(inner_triangles,tria)
if fcidx==0
println("Error, face not found!!!")
return nothing
end
tet[16+jdx] = fcidx+4*N_points+length(mesh.triangles)
end
end
tetrahedra[idx]=copy(tet)
end
dim=4*N_points+length(mesh.triangles)+length(inner_triangles)
else
println("Error: element order $(:el_type) not defined!")
return nothing
end
return triangles, tetrahedra, dim
end
##
function recombine_hermite(J::CooTrafo,M)
A=zeros(ComplexF64,size(M))
J=J.trafo
if size(M)==(20,20)
valpoints=[1,2,3,4,17,18,19,20] #point indices where value is 1 NOT the derivative!
# entires that are based on these points only need no recombination
for i =valpoints
for j=valpoints
A[i,j]=copy(M[i,j]) #TODO: Chek whetehr copy is needed or even deepcopy
end
end
#now recombine entries that are based on derivativ points with value points
for k=0:3
A[5+k,valpoints]+=M[5+k,valpoints].*J[1,1]+M[9+k,valpoints].*J[1,2]+M[13+k,valpoints].*J[1,3]
A[9+k,valpoints]+=M[5+k,valpoints].*J[2,1]+M[9+k,valpoints].*J[2,2]+M[13+k,valpoints].*J[2,3]
A[13+k,valpoints]+=M[5+k,valpoints].*J[3,1]+M[9+k,valpoints].*J[3,2]+M[13+k,valpoints].*J[3,3]
A[valpoints,5+k]+=M[valpoints,5+k].*J[1,1]+M[valpoints,9+k].*J[1,2]+M[valpoints,13+k].*J[1,3]
A[valpoints,9+k]+=M[valpoints,5+k].*J[2,1]+M[valpoints,9+k].*J[2,2]+M[valpoints,13+k].*J[2,3]
A[valpoints,13+k]+=M[valpoints,5+k].*J[3,1]+M[valpoints,9+k].*J[3,2]+M[valpoints,13+k].*J[3,3]
end
#finally recombine entries based on derivative points with derivative points
for i = 5:16
if i in (5,6,7,8) #dx
Ji=J[1,:]
elseif i in (9,10,11,12) #dy
Ji=J[2,:]
elseif i in (13,14,15,16) #dz
Ji=J[3,:]
end
if i in (5,9,13)
idcs=[5,9,13]
elseif i in (6,10,14)
idcs=[6,10,14]
elseif i in (7,11,15)
idcs=[7,11,15]
elseif i in (8,12,16)
idcs=[8,12,16]
end
for j = 5:16
if j in (5,6,7,8) #dx
Jj=J[1,:]
elseif j in (9,10,11,12) #dy
Jj=J[2,:]
elseif j in (13,14,15,16) #dz
Jj=J[3,:]
end
if j in (5,9,13)
jdcs=[5,9,13]
elseif j in (6,10,14)
jdcs=[6,10,14]
elseif j in (7,11,15)
jdcs=[7,11,15]
elseif j in (8,12,16)
jdcs=[8,12,16]
end
#actual recombination
for (idk,k) in enumerate(idcs)
for (idl,l) in enumerate(jdcs)
A[i,j]+=Ji[idk]*Jj[idl]*M[k,l]
end
end
end
end
return A
elseif length(M)==20
valpoints=[1,2,3,4,17,18,19,20] #point indices where value is 1 NOT the derivative!
# entires that are based on these points only need no recombination
for i =valpoints
A[i]=copy(M[i]) #TODO: Chek whetehr copy is needed or even deepcopy
end
#now recombine entries that are based on derivativ points with value points
for k=0:3
A[5+k]+=M[5+k].*J[1,1]+M[9+k].*J[1,2]+M[13+k].*J[1,3]
A[9+k]+=M[5+k].*J[2,1]+M[9+k].*J[2,2]+M[13+k].*J[2,3]
A[13+k]+=M[5+k].*J[3,1]+M[9+k].*J[3,2]+M[13+k].*J[3,3]
end
return A
elseif size(M)==(13,13)
valpoints=[1,2,3,13]#point indices where value is 1 NOT the derivative!
# entires that are based on these points only need no recombination
for i =valpoints
for j=valpoints
A[i,j]=copy(M[i,j]) #TODO: Chek whetehr copy is needed or even deepcopy
end
end
#now recombine entries that are based on derivative points with value points
for k=0:2
A[4+k,valpoints]+=M[4+k,valpoints].*J[1,1]+M[7+k,valpoints].*J[1,2]
A[7+k,valpoints]+=M[4+k,valpoints].*J[2,1]+M[7+k,valpoints].*J[2,2]
A[10+k,valpoints]+=M[4+k,valpoints].*J[3,1]+M[7+k,valpoints].*J[3,2]
A[valpoints,4+k]+=M[valpoints,4+k].*J[1,1]+M[valpoints,7+k].*J[1,2]
A[valpoints,7+k]+=M[valpoints,4+k].*J[2,1]+M[valpoints,7+k].*J[2,2]
A[valpoints,10+k]+=M[valpoints,4+k].*J[3,1]+M[valpoints,7+k].*J[3,2]
end
#finally recombine entries based on derivative points with derivative points
for i = 4:12
if i in (4,5,6) #dx
Ji=J[1,:]
elseif i in (7,8,9) #dy
Ji=J[2,:]
elseif i in (10,11,12) #dz
Ji=J[3,:]
end
if i in (4,7,10)
idcs=[4,7]
elseif i in (5,8,11)
idcs=[5,8]
elseif i in (6,9,12)
idcs=[6,9]
#elseif i in (8,12,16)
# idcs=[8,12,16]
end
for j = 4:12
if j in (4,5,6) #dx
Jj=J[1,:]
elseif j in (7,8,9) #dy
Jj=J[2,:]
elseif j in (10,11,12) #dz
Jj=J[3,:]
end
if j in (4,7,10)
jdcs=[4,7]
elseif j in (5,8,11)
jdcs=[5,8]
elseif j in (6,9,12)
jdcs=[6,9]
#elseif j in (8,12,16)
# jdcs=[8,12,16]
end
#actual recombination
for (idk,k) in enumerate(idcs)
for (idl,l) in enumerate(jdcs)
A[i,j]+=Ji[idk]*Jj[idl]*M[k,l]
end
end
end
end
return A
elseif length(M)==13
valpoints=(1,2,3,13)
for i in valpoints
A[i]=copy(M[i])
end
#diffpoints=(4,5,6,7,8,9)
for k in 0:2
A[4+k]=J[1,1]*M[4+k]+J[1,2]*M[7+k]
A[7+k]=J[2,1]*M[4+k]+J[2,2]*M[7+k]
A[10+k]=J[3,1]*M[4+k]+J[3,2]*M[7+k]
end
return A
end
return nothing #force crash if input format is not supported
end
function s43diffc1(J::CooTrafo,c,d)
c1,c2,c3,c4=c
return (c1-c4)*J.inv[d,1]+(c2-c4)*J.inv[d,2]+(c3-c4)*J.inv[d,3]
end
function s43diffc2(J::CooTrafo,c,d)
dx = [3.0 0.0 0.0 1.0 0.0 0.0 -4.0 0.0 0.0 0.0 ;
-1.0 0.0 0.0 1.0 4.0 0.0 0.0 0.0 -4.0 0.0 ;
-1.0 0.0 0.0 1.0 0.0 4.0 0.0 0.0 0.0 -4.0 ;
-1.0 0.0 0.0 -3.0 0.0 0.0 4.0 0.0 0.0 0.0 ;
]
dy = [0.0 -1.0 0.0 1.0 4.0 0.0 -4.0 0.0 0.0 0.0 ;
0.0 3.0 0.0 1.0 0.0 0.0 0.0 0.0 -4.0 0.0 ;
0.0 -1.0 0.0 1.0 0.0 0.0 0.0 4.0 0.0 -4.0 ;
0.0 -1.0 0.0 -3.0 0.0 0.0 0.0 0.0 4.0 0.0 ;
]
dz = [0.0 0.0 -1.0 1.0 0.0 4.0 -4.0 0.0 0.0 0.0 ;
0.0 0.0 -1.0 1.0 0.0 0.0 0.0 4.0 -4.0 0.0 ;
0.0 0.0 3.0 1.0 0.0 0.0 0.0 0.0 0.0 -4.0 ;
0.0 0.0 -1.0 -3.0 0.0 0.0 0.0 0.0 0.0 4.0 ;
]
return dx*c*J.inv[d,1]+dy*c*J.inv[d,2]+dz*c*J.inv[d,3]
end
function s43diffch(J::CooTrafo,c,d)
dx= [0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ;
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ;
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ;
3.25 1.75 0.0 1.75 -0.75 0.5 0.0 0.25 0.75 -0.5 0.0 0.25 0.0 0.0 0.0 0.0 0.0 0.0 -6.75 0.0 ;
3.25 0.0 1.75 1.75 -0.75 0.0 0.5 0.25 0.0 0.0 0.0 0.0 0.75 0.0 -0.5 0.25 0.0 -6.75 0.0 0.0 ;
1.5 0.0 0.0 -1.5 -0.25 0.0 0.0 -0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ;
-1.75 0.0 0.0 1.75 0.5 0.0 0.0 0.0 -0.25 0.0 0.0 0.25 -0.25 0.0 0.0 0.25 -6.75 0.0 0.0 6.75 ;
-1.75 -1.75 0.0 -3.25 0.5 0.0 0.0 0.0 -0.25 0.5 0.0 -0.75 0.0 0.0 0.0 0.0 0.0 0.0 6.75 0.0 ;
-1.75 0.0 -1.75 -3.25 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.25 0.0 0.5 -0.75 0.0 6.75 0.0 0.0 ;
]
dy=[0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ;
1.75 3.25 0.0 1.75 -0.5 0.75 0.0 0.25 0.5 -0.75 0.0 0.25 0.0 0.0 0.0 0.0 0.0 0.0 -6.75 0.0 ;
0.0 -1.75 0.0 1.75 0.0 -0.25 0.0 0.25 0.0 0.5 0.0 0.0 0.0 -0.25 0.0 0.25 0.0 -6.75 0.0 6.75 ;
-1.75 -1.75 0.0 -3.25 0.5 -0.25 0.0 -0.75 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.75 0.0 ;
0.0 3.25 1.75 1.75 0.0 0.0 0.0 0.0 0.0 -0.75 0.5 0.25 0.0 0.75 -0.5 0.25 -6.75 0.0 0.0 0.0 ;
0.0 1.5 0.0 -1.5 0.0 0.0 0.0 0.0 0.0 -0.25 0.0 -0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ;
0.0 -1.75 -1.75 -3.25 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 -0.25 0.5 -0.75 6.75 0.0 0.0 0.0 ;
]
dz=[0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 ;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 ;
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 ;
0.0 0.0 -1.75 1.75 0.0 0.0 -0.25 0.25 0.0 0.0 -0.25 0.25 0.0 0.0 0.5 0.0 0.0 0.0 -6.75 6.75 ;
1.75 0.0 3.25 1.75 -0.5 0.0 0.75 0.25 0.0 0.0 0.0 0.0 0.5 0.0 -0.75 0.25 0.0 -6.75 0.0 0.0 ;
-1.75 0.0 -1.75 -3.25 0.5 0.0 -0.25 -0.75 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 6.75 0.0 0.0 ;
0.0 1.75 3.25 1.75 0.0 0.0 0.0 0.0 0.0 -0.5 0.75 0.25 0.0 0.5 -0.75 0.25 -6.75 0.0 0.0 0.0 ;
0.0 -1.75 -1.75 -3.25 0.0 0.0 0.0 0.0 0.0 0.5 -0.25 -0.75 0.0 0.0 0.5 0.0 6.75 0.0 0.0 0.0 ;
0.0 0.0 1.5 -1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.25 -0.25 0.0 0.0 0.0 0.0 ;
]
for i=1:10
dx[i,:]=recombine_hermite(J,dx)
dy[i,:]=recombine_hermite(J,dy)
dz[i,:]=recombine_hermite(J,dz)
end
return dx*c*J.inv[d,1]+dy*c*J.inv[d,2]+dz*c*J.inv[d,3]
end
# Functions to compute local finite element matrices on simplices. The function
# names follow the pattern `sAB[D]vC[D]uC[[D]cE]`. Where
# - `A`: is the number of vertices of the simplex, e.g. 4 for a tetrahedron
# - `B`: is the number of space dimension
# - `C`: the order of the ansatz functions
# - `D`: optional classificator its `d` for a partial derivative
# (coordinate is specified in the function call), `n` for a nabla operator,
# `x` for a dirac-delta at some point x to get the function value there, and
# `r` for scalar multiplication with a direction vector.
# - `E`: the interpolation order of the (optional) coefficient function
#
# optional `d` indicate a partial derivative.
#
# Example: Lets assume you want to discretize the term ∂u(x,y,z)/∂x*c(x,y,z)
# Then the local weak form gives rise to the integral
# ∫∫∫_(Tet) v*∂u(x,y,z)/∂x*c(x,y,z) dxdydz where `Tet` is the tetrahedron.
# Furthermore, trial and test functions u and v should be of second order
# while the coefficient function should be interpolated linearly.
# Then, the function that returns the local discretization matrix of this weak
# form is s43v2du2c1. (The direction of the partial derivative is specified in
# the function call.)
#TODO: multiple dispatch instead of/additionally to function names
## mass matrices
#triangles
function s33v1u1(J::CooTrafo)
M=[1/12 1/24 1/24;
1/24 1/12 1/24;
1/24 1/24 1/12]
return M*abs(J.det)
end
function s33v2u2(J::CooTrafo)
M=[1/60 -1/360 -1/360 0 0 -1/90;
-1/360 1/60 -1/360 0 -1/90 0;
-1/360 -1/360 1/60 -1/90 0 0;
0 0 -1/90 4/45 2/45 2/45;
0 -1/90 0 2/45 4/45 2/45;
-1/90 0 0 2/45 2/45 4/45]
return M*abs(J.det)
end
function s33vhuh(J::CooTrafo)
M=[313/5040 1/720 1/720 -53/5040 17/10080 17/10080 53/10080 -1/2520 -13/10080 0 0 0 3/112;
1/720 313/5040 1/720 -1/2520 53/10080 -13/10080 17/10080 -53/5040 17/10080 0 0 0 3/112;
1/720 1/720 313/5040 -1/2520 -13/10080 53/10080 -13/10080 -1/2520 53/10080 0 0 0 3/112;
-53/5040 -1/2520 -1/2520 1/504 -1/2520 -1/2520 -1/1008 1/10080 1/3360 0 0 0 -3/560;
17/10080 53/10080 -13/10080 -1/2520 1/1260 -1/5040 1/2016 -1/1008 -1/10080 0 0 0 3/1120;
17/10080 -13/10080 53/10080 -1/2520 -1/5040 1/1260 -1/10080 1/3360 1/5040 0 0 0 3/1120;
53/10080 17/10080 -13/10080 -1/1008 1/2016 -1/10080 1/1260 -1/2520 -1/5040 0 0 0 3/1120;
-1/2520 -53/5040 -1/2520 1/10080 -1/1008 1/3360 -1/2520 1/504 -1/2520 0 0 0 -3/560;
-13/10080 17/10080 53/10080 1/3360 -1/10080 1/5040 -1/5040 -1/2520 1/1260 0 0 0 3/1120;
0 0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0;
3/112 3/112 3/112 -3/560 3/1120 3/1120 3/1120 -3/560 3/1120 0 0 0 81/560]
return recombine_hermite(J,M)*abs(J.det)
end
function s33v1u1c1(J::CooTrafo,c)
c1,c2,c4=c
M=Array{ComplexF64}(undef,3,3)
M[1,1]=c1/20 + c2/60 + c4/60
M[1,2]=c1/60 + c2/60 + c4/120
M[1,3]=c1/60 + c2/120 + c4/60
M[2,2]=c1/60 + c2/20 + c4/60
M[2,3]=c1/120 + c2/60 + c4/60
M[3,3]=c1/60 + c2/60 + c4/20
M[2,1]=M[1,2]
M[3,1]=M[1,3]
M[3,2]=M[2,3]
return M*abs(J.det)
end
function s33v2u2c1(J::CooTrafo,c)
c1,c2,c4=c
M=Array{ComplexF64}(undef,6,6)
M[1,1]=c1/84 + c2/420 + c4/420
M[1,2]=-c1/630 - c2/630 + c4/2520
M[1,3]=-c1/630 + c2/2520 - c4/630
M[1,4]=c1/210 - c2/315 - c4/630
M[1,5]=c1/210 - c2/630 - c4/315
M[1,6]=-c1/630 - c2/210 - c4/210
M[2,2]=c1/420 + c2/84 + c4/420
M[2,3]=c1/2520 - c2/630 - c4/630
M[2,4]=-c1/315 + c2/210 - c4/630
M[2,5]=-c1/210 - c2/630 - c4/210
M[2,6]=-c1/630 + c2/210 - c4/315
M[3,3]=c1/420 + c2/420 + c4/84
M[3,4]=-c1/210 - c2/210 - c4/630
M[3,5]=-c1/315 - c2/630 + c4/210
M[3,6]=-c1/630 - c2/315 + c4/210
M[4,4]=4*c1/105 + 4*c2/105 + 4*c4/315
M[4,5]=2*c1/105 + 4*c2/315 + 4*c4/315
M[4,6]=4*c1/315 + 2*c2/105 + 4*c4/315
M[5,5]=4*c1/105 + 4*c2/315 + 4*c4/105
M[5,6]=4*c1/315 + 4*c2/315 + 2*c4/105
M[6,6]=4*c1/315 + 4*c2/105 + 4*c4/105
M[2,1]=M[1,2]
M[3,1]=M[1,3]
M[4,1]=M[1,4]
M[5,1]=M[1,5]
M[6,1]=M[1,6]
M[3,2]=M[2,3]
M[4,2]=M[2,4]
M[5,2]=M[2,5]
M[6,2]=M[2,6]
M[4,3]=M[3,4]
M[5,3]=M[3,5]
M[6,3]=M[3,6]
M[5,4]=M[4,5]
M[6,4]=M[4,6]
M[6,5]=M[5,6]
return M*abs(J.det)
end
function s33vhuhc1(J::CooTrafo,c)
c1,c2,c4=c
M=Array{ComplexF64}(undef,13,13)
M[1,1]=31*c1/720 + c2/105 + c4/105
M[1,2]=c1/672 + c2/672 - c4/630
M[1,3]=c1/672 - c2/630 + c4/672
M[1,4]=-17*c1/2520 - 19*c2/10080 - 19*c4/10080
M[1,5]=c1/1120 + c2/1260
M[1,6]=c1/1120 + c4/1260
M[1,7]=17*c1/5040 + c2/720 + c4/2016
M[1,8]=-c1/2520 - c2/2520 + c4/2520
M[1,9]=-c1/2016 - c2/2520 - c4/2520
M[1,10]=0
M[1,11]=0
M[1,12]=0
M[1,13]=c1/56 + c2/224 + c4/224
M[2,2]=c1/105 + 31*c2/720 + c4/105
M[2,3]=-c1/630 + c2/672 + c4/672
M[2,4]=-c1/2520 - c2/2520 + c4/2520
M[2,5]=c1/720 + 17*c2/5040 + c4/2016
M[2,6]=-c1/2520 - c2/2016 - c4/2520
M[2,7]=c1/1260 + c2/1120
M[2,8]=-19*c1/10080 - 17*c2/2520 - 19*c4/10080
M[2,9]=c2/1120 + c4/1260
M[2,10]=0
M[2,11]=0
M[2,12]=0
M[2,13]=c1/224 + c2/56 + c4/224
M[3,3]=c1/105 + c2/105 + 31*c4/720
M[3,4]=-c1/2520 + c2/2520 - c4/2520
M[3,5]=-c1/2520 - c2/2520 - c4/2016
M[3,6]=c1/720 + c2/2016 + 17*c4/5040
M[3,7]=-c1/2520 - c2/2520 - c4/2016
M[3,8]=c1/2520 - c2/2520 - c4/2520
M[3,9]=c1/2016 + c2/720 + 17*c4/5040
M[3,10]=0
M[3,11]=0
M[3,12]=0
M[3,13]=c1/224 + c2/224 + c4/56
M[4,4]=c1/840 + c2/2520 + c4/2520
M[4,5]=-c1/5040 - c2/5040
M[4,6]=-c1/5040 - c4/5040
M[4,7]=-c1/1680 - c2/3360 - c4/10080
M[4,8]=c1/10080 + c2/10080 - c4/10080
M[4,9]=c1/10080 + c2/10080 + c4/10080
M[4,10]=0
M[4,11]=0
M[4,12]=0
M[4,13]=-c1/280 - c2/1120 - c4/1120
M[5,5]=c1/3780 + c2/2160 + c4/15120
M[5,6]=-c1/15120 - c2/15120 - c4/15120
M[5,7]=c1/4320 + c2/4320 + c4/30240
M[5,8]=-c1/3360 - c2/1680 - c4/10080
M[5,9]=-c1/30240 - c2/30240 - c4/30240
M[5,10]=0
M[5,11]=0
M[5,12]=0
M[5,13]=c1/1120 + c2/560
M[6,6]=c1/3780 + c2/15120 + c4/2160
M[6,7]=-c1/30240 - c2/30240 - c4/30240
M[6,8]=c1/10080 + c2/10080 + c4/10080
M[6,9]=c1/30240 + c2/30240 + c4/7560
M[6,10]=0
M[6,11]=0
M[6,12]=0
M[6,13]=c1/1120 + c4/560
M[7,7]=c1/2160 + c2/3780 + c4/15120
M[7,8]=-c1/5040 - c2/5040
M[7,9]=-c1/15120 - c2/15120 - c4/15120
M[7,10]=0
M[7,11]=0
M[7,12]=0
M[7,13]=c1/560 + c2/1120
M[8,8]=c1/2520 + c2/840 + c4/2520
M[8,9]=-c2/5040 - c4/5040
M[8,10]=0
M[8,11]=0
M[8,12]=0
M[8,13]=-c1/1120 - c2/280 - c4/1120
M[9,9]=c1/15120 + c2/3780 + c4/2160
M[9,10]=0
M[9,11]=0
M[9,12]=0
M[9,13]=c2/1120 + c4/560
M[10,10]=0
M[10,11]=0
M[10,12]=0
M[10,13]=0
M[11,11]=0
M[11,12]=0
M[11,13]=0
M[12,12]=0
M[12,13]=0
M[13,13]=27*c1/560 + 27*c2/560 + 27*c4/560
M[2,1]=M[1,2]
M[3,1]=M[1,3]
M[4,1]=M[1,4]
M[5,1]=M[1,5]
M[6,1]=M[1,6]
M[7,1]=M[1,7]
M[8,1]=M[1,8]
M[9,1]=M[1,9]
M[10,1]=M[1,10]
M[11,1]=M[1,11]
M[12,1]=M[1,12]
M[13,1]=M[1,13]
M[3,2]=M[2,3]
M[4,2]=M[2,4]
M[5,2]=M[2,5]
M[6,2]=M[2,6]
M[7,2]=M[2,7]
M[8,2]=M[2,8]
M[9,2]=M[2,9]
M[10,2]=M[2,10]
M[11,2]=M[2,11]
M[12,2]=M[2,12]
M[13,2]=M[2,13]
M[4,3]=M[3,4]
M[5,3]=M[3,5]
M[6,3]=M[3,6]
M[7,3]=M[3,7]
M[8,3]=M[3,8]
M[9,3]=M[3,9]
M[10,3]=M[3,10]
M[11,3]=M[3,11]
M[12,3]=M[3,12]
M[13,3]=M[3,13]
M[5,4]=M[4,5]
M[6,4]=M[4,6]
M[7,4]=M[4,7]
M[8,4]=M[4,8]
M[9,4]=M[4,9]
M[10,4]=M[4,10]
M[11,4]=M[4,11]
M[12,4]=M[4,12]
M[13,4]=M[4,13]
M[6,5]=M[5,6]
M[7,5]=M[5,7]
M[8,5]=M[5,8]
M[9,5]=M[5,9]
M[10,5]=M[5,10]
M[11,5]=M[5,11]
M[12,5]=M[5,12]
M[13,5]=M[5,13]
M[7,6]=M[6,7]
M[8,6]=M[6,8]
M[9,6]=M[6,9]
M[10,6]=M[6,10]
M[11,6]=M[6,11]
M[12,6]=M[6,12]
M[13,6]=M[6,13]
M[8,7]=M[7,8]
M[9,7]=M[7,9]
M[10,7]=M[7,10]
M[11,7]=M[7,11]
M[12,7]=M[7,12]
M[13,7]=M[7,13]
M[9,8]=M[8,9]
M[10,8]=M[8,10]
M[11,8]=M[8,11]
M[12,8]=M[8,12]
M[13,8]=M[8,13]
M[10,9]=M[9,10]
M[11,9]=M[9,11]
M[12,9]=M[9,12]
M[13,9]=M[9,13]
M[11,10]=M[10,11]
M[12,10]=M[10,12]
M[13,10]=M[10,13]
M[12,11]=M[11,12]
M[13,11]=M[11,13]
M[13,12]=M[12,13]
return recombine_hermite(J,M)*abs(J.det)
end
#tetrahedra
function s43v1u1(J::CooTrafo)
M = [1/60 1/120 1/120 1/120;
1/120 1/60 1/120 1/120;
1/120 1/120 1/60 1/120;
1/120 1/120 1/120 1/60]
return M*abs(J.det)
end
function s43v2u1(J::CooTrafo)
M = [0 -1/360 -1/360 -1/360;
-1/360 0 -1/360 -1/360;
-1/360 -1/360 0 -1/360;
-1/360 -1/360 -1/360 0;
1/90 1/90 1/180 1/180;
1/90 1/180 1/90 1/180;
1/90 1/180 1/180 1/90;
1/180 1/90 1/90 1/180;
1/180 1/90 1/180 1/90;
1/180 1/180 1/90 1/90]
return M*abs(J.det)
end
function s43v2u2(J::CooTrafo)
M = [1/420 1/2520 1/2520 1/2520 -1/630 -1/630 -1/630 -1/420 -1/420 -1/420;
1/2520 1/420 1/2520 1/2520 -1/630 -1/420 -1/420 -1/630 -1/630 -1/420;
1/2520 1/2520 1/420 1/2520 -1/420 -1/630 -1/420 -1/630 -1/420 -1/630;
1/2520 1/2520 1/2520 1/420 -1/420 -1/420 -1/630 -1/420 -1/630 -1/630;
-1/630 -1/630 -1/420 -1/420 4/315 2/315 2/315 2/315 2/315 1/315;
-1/630 -1/420 -1/630 -1/420 2/315 4/315 2/315 2/315 1/315 2/315;
-1/630 -1/420 -1/420 -1/630 2/315 2/315 4/315 1/315 2/315 2/315;
-1/420 -1/630 -1/630 -1/420 2/315 2/315 1/315 4/315 2/315 2/315;
-1/420 -1/630 -1/420 -1/630 2/315 1/315 2/315 2/315 4/315 2/315;
-1/420 -1/420 -1/630 -1/630 1/315 2/315 2/315 2/315 2/315 4/315]
return M*abs(J.det)
end
function s43vhuh(J::CooTrafo)
M=[253/30240 -23/45360 -23/45360 -23/45360 -97/60480 1/12960 1/12960 1/12960 97/181440 1/11340 -1/12096 -1/12096 97/181440 -1/12096 1/11340 -1/12096 -1/320 1/6720 1/6720 1/6720;
-23/45360 253/30240 -23/45360 -23/45360 1/11340 97/181440 -1/12096 -1/12096 1/12960 -97/60480 1/12960 1/12960 -1/12096 97/181440 1/11340 -1/12096 1/6720 -1/320 1/6720 1/6720;
-23/45360 -23/45360 253/30240 -23/45360 1/11340 -1/12096 97/181440 -1/12096 -1/12096 1/11340 97/181440 -1/12096 1/12960 1/12960 -97/60480 1/12960 1/6720 1/6720 -1/320 1/6720;
-23/45360 -23/45360 -23/45360 253/30240 1/11340 -1/12096 -1/12096 97/181440 -1/12096 1/11340 -1/12096 97/181440 -1/12096 -1/12096 1/11340 97/181440 1/6720 1/6720 1/6720 -1/320;
-97/60480 1/11340 1/11340 1/11340 1/3024 -1/45360 -1/45360 -1/45360 -1/9072 -1/90720 1/60480 1/60480 -1/9072 1/60480 -1/90720 1/60480 1/1120 1/6720 1/6720 1/6720;
1/12960 97/181440 -1/12096 -1/12096 -1/45360 1/15120 -1/90720 -1/90720 1/30240 -1/9072 -1/181440 -1/181440 -1/181440 1/45360 1/60480 0 -1/6720 -1/3360 0 0;
1/12960 -1/12096 97/181440 -1/12096 -1/45360 -1/90720 1/15120 -1/90720 -1/181440 1/60480 1/45360 0 1/30240 -1/181440 -1/9072 -1/181440 -1/6720 0 -1/3360 0;
1/12960 -1/12096 -1/12096 97/181440 -1/45360 -1/90720 -1/90720 1/15120 -1/181440 1/60480 0 1/45360 -1/181440 0 1/60480 1/45360 -1/6720 0 0 -1/3360;
97/181440 1/12960 -1/12096 -1/12096 -1/9072 1/30240 -1/181440 -1/181440 1/15120 -1/45360 -1/90720 -1/90720 1/45360 -1/181440 1/60480 0 -1/3360 -1/6720 0 0;
1/11340 -97/60480 1/11340 1/11340 -1/90720 -1/9072 1/60480 1/60480 -1/45360 1/3024 -1/45360 -1/45360 1/60480 -1/9072 -1/90720 1/60480 1/6720 1/1120 1/6720 1/6720;
-1/12096 1/12960 97/181440 -1/12096 1/60480 -1/181440 1/45360 0 -1/90720 -1/45360 1/15120 -1/90720 -1/181440 1/30240 -1/9072 -1/181440 0 -1/6720 -1/3360 0;
-1/12096 1/12960 -1/12096 97/181440 1/60480 -1/181440 0 1/45360 -1/90720 -1/45360 -1/90720 1/15120 0 -1/181440 1/60480 1/45360 0 -1/6720 0 -1/3360;
97/181440 -1/12096 1/12960 -1/12096 -1/9072 -1/181440 1/30240 -1/181440 1/45360 1/60480 -1/181440 0 1/15120 -1/90720 -1/45360 -1/90720 -1/3360 0 -1/6720 0;
-1/12096 97/181440 1/12960 -1/12096 1/60480 1/45360 -1/181440 0 -1/181440 -1/9072 1/30240 -1/181440 -1/90720 1/15120 -1/45360 -1/90720 0 -1/3360 -1/6720 0;
1/11340 1/11340 -97/60480 1/11340 -1/90720 1/60480 -1/9072 1/60480 1/60480 -1/90720 -1/9072 1/60480 -1/45360 -1/45360 1/3024 -1/45360 1/6720 1/6720 1/1120 1/6720;
-1/12096 -1/12096 1/12960 97/181440 1/60480 0 -1/181440 1/45360 0 1/60480 -1/181440 1/45360 -1/90720 -1/90720 -1/45360 1/15120 0 0 -1/6720 -1/3360;
-1/320 1/6720 1/6720 1/6720 1/1120 -1/6720 -1/6720 -1/6720 -1/3360 1/6720 0 0 -1/3360 0 1/6720 0 9/560 9/1120 9/1120 9/1120;
1/6720 -1/320 1/6720 1/6720 1/6720 -1/3360 0 0 -1/6720 1/1120 -1/6720 -1/6720 0 -1/3360 1/6720 0 9/1120 9/560 9/1120 9/1120;
1/6720 1/6720 -1/320 1/6720 1/6720 0 -1/3360 0 0 1/6720 -1/3360 0 -1/6720 -1/6720 1/1120 -1/6720 9/1120 9/1120 9/560 9/1120;
1/6720 1/6720 1/6720 -1/320 1/6720 0 0 -1/3360 0 1/6720 0 -1/3360 0 0 1/6720 -1/3360 9/1120 9/1120 9/1120 9/560]
return recombine_hermite(J,M)*abs(J.det)
end
function s43v1u1c1(J::CooTrafo,c)
c1,c2,c3,c4=c
M=Array{ComplexF64}(undef,4,4)
M[1,1]=c1/120 + c2/360 + c3/360 + c4/360
M[1,2]=c1/360 + c2/360 + c3/720 + c4/720
M[1,3]=c1/360 + c2/720 + c3/360 + c4/720
M[1,4]=c1/360 + c2/720 + c3/720 + c4/360
M[2,2]=c1/360 + c2/120 + c3/360 + c4/360
M[2,3]=c1/720 + c2/360 + c3/360 + c4/720
M[2,4]=c1/720 + c2/360 + c3/720 + c4/360
M[3,3]=c1/360 + c2/360 + c3/120 + c4/360
M[3,4]=c1/720 + c2/720 + c3/360 + c4/360
M[4,4]=c1/360 + c2/360 + c3/360 + c4/120
M[2,1]=M[1,2]
M[3,1]=M[1,3]
M[4,1]=M[1,4]
M[3,2]=M[2,3]
M[4,2]=M[2,4]
M[4,3]=M[3,4]
return M*abs(J.det)
end
function s43v2u2c1(J::CooTrafo,c)
c1,c2,c3,c4=c
M=Array{ComplexF64}(undef,10,10)
M[1,1]=c1/840 + c2/2520 + c3/2520 + c4/2520
M[1,2]=c3/5040 + c4/5040
M[1,3]=c2/5040 + c4/5040
M[1,4]=c2/5040 + c3/5040
M[1,5]=-c2/1260 - c3/2520 - c4/2520
M[1,6]=-c2/2520 - c3/1260 - c4/2520
M[1,7]=-c2/2520 - c3/2520 - c4/1260
M[1,8]=-c1/2520 - c2/1260 - c3/1260 - c4/2520
M[1,9]=-c1/2520 - c2/1260 - c3/2520 - c4/1260
M[1,10]=-c1/2520 - c2/2520 - c3/1260 - c4/1260
M[2,2]=c1/2520 + c2/840 + c3/2520 + c4/2520
M[2,3]=c1/5040 + c4/5040
M[2,4]=c1/5040 + c3/5040
M[2,5]=-c1/1260 - c3/2520 - c4/2520
M[2,6]=-c1/1260 - c2/2520 - c3/1260 - c4/2520
M[2,7]=-c1/1260 - c2/2520 - c3/2520 - c4/1260
M[2,8]=-c1/2520 - c3/1260 - c4/2520
M[2,9]=-c1/2520 - c3/2520 - c4/1260
M[2,10]=-c1/2520 - c2/2520 - c3/1260 - c4/1260
M[3,3]=c1/2520 + c2/2520 + c3/840 + c4/2520
M[3,4]=c1/5040 + c2/5040
M[3,5]=-c1/1260 - c2/1260 - c3/2520 - c4/2520
M[3,6]=-c1/1260 - c2/2520 - c4/2520
M[3,7]=-c1/1260 - c2/2520 - c3/2520 - c4/1260
M[3,8]=-c1/2520 - c2/1260 - c4/2520
M[3,9]=-c1/2520 - c2/1260 - c3/2520 - c4/1260
M[3,10]=-c1/2520 - c2/2520 - c4/1260
M[4,4]=c1/2520 + c2/2520 + c3/2520 + c4/840
M[4,5]=-c1/1260 - c2/1260 - c3/2520 - c4/2520
M[4,6]=-c1/1260 - c2/2520 - c3/1260 - c4/2520
M[4,7]=-c1/1260 - c2/2520 - c3/2520
M[4,8]=-c1/2520 - c2/1260 - c3/1260 - c4/2520
M[4,9]=-c1/2520 - c2/1260 - c3/2520
M[4,10]=-c1/2520 - c2/2520 - c3/1260
M[5,5]=c1/210 + c2/210 + c3/630 + c4/630
M[5,6]=c1/420 + c2/630 + c3/630 + c4/1260
M[5,7]=c1/420 + c2/630 + c3/1260 + c4/630
M[5,8]=c1/630 + c2/420 + c3/630 + c4/1260
M[5,9]=c1/630 + c2/420 + c3/1260 + c4/630
M[5,10]=c1/1260 + c2/1260 + c3/1260 + c4/1260
M[6,6]=c1/210 + c2/630 + c3/210 + c4/630
M[6,7]=c1/420 + c2/1260 + c3/630 + c4/630
M[6,8]=c1/630 + c2/630 + c3/420 + c4/1260
M[6,9]=c1/1260 + c2/1260 + c3/1260 + c4/1260
M[6,10]=c1/630 + c2/1260 + c3/420 + c4/630
M[7,7]=c1/210 + c2/630 + c3/630 + c4/210
M[7,8]=c1/1260 + c2/1260 + c3/1260 + c4/1260
M[7,9]=c1/630 + c2/630 + c3/1260 + c4/420
M[7,10]=c1/630 + c2/1260 + c3/630 + c4/420
M[8,8]=c1/630 + c2/210 + c3/210 + c4/630
M[8,9]=c1/1260 + c2/420 + c3/630 + c4/630
M[8,10]=c1/1260 + c2/630 + c3/420 + c4/630
M[9,9]=c1/630 + c2/210 + c3/630 + c4/210
M[9,10]=c1/1260 + c2/630 + c3/630 + c4/420
M[10,10]=c1/630 + c2/630 + c3/210 + c4/210
M[2,1]=M[1,2]
M[3,1]=M[1,3]
M[4,1]=M[1,4]
M[5,1]=M[1,5]
M[6,1]=M[1,6]
M[7,1]=M[1,7]
M[8,1]=M[1,8]
M[9,1]=M[1,9]
M[10,1]=M[1,10]
M[3,2]=M[2,3]
M[4,2]=M[2,4]
M[5,2]=M[2,5]
M[6,2]=M[2,6]
M[7,2]=M[2,7]
M[8,2]=M[2,8]
M[9,2]=M[2,9]
M[10,2]=M[2,10]
M[4,3]=M[3,4]
M[5,3]=M[3,5]
M[6,3]=M[3,6]
M[7,3]=M[3,7]
M[8,3]=M[3,8]
M[9,3]=M[3,9]
M[10,3]=M[3,10]
M[5,4]=M[4,5]
M[6,4]=M[4,6]
M[7,4]=M[4,7]
M[8,4]=M[4,8]
M[9,4]=M[4,9]
M[10,4]=M[4,10]
M[6,5]=M[5,6]
M[7,5]=M[5,7]
M[8,5]=M[5,8]
M[9,5]=M[5,9]
M[10,5]=M[5,10]
M[7,6]=M[6,7]
M[8,6]=M[6,8]
M[9,6]=M[6,9]
M[10,6]=M[6,10]
M[8,7]=M[7,8]
M[9,7]=M[7,9]
M[10,7]=M[7,10]
M[9,8]=M[8,9]
M[10,8]=M[8,10]
M[10,9]=M[9,10]
return M*abs(J.det)
end
function s43vhuhc1(J::CooTrafo,c)
c1,c2,c3,c4=c
M=Array{ComplexF64}(undef,20,20)
M[1,1]=31*c1/6300 + 521*c2/453600 + 521*c3/453600 + 521*c4/453600
M[1,2]=-73*c1/302400 - 73*c2/302400 - 11*c3/907200 - 11*c4/907200
M[1,3]=-73*c1/302400 - 11*c2/907200 - 73*c3/302400 - 11*c4/907200
M[1,4]=-73*c1/302400 - 11*c2/907200 - 11*c3/907200 - 73*c4/302400
M[1,5]=-43*c1/50400 - 227*c2/907200 - 227*c3/907200 - 227*c4/907200
M[1,6]=c1/43200 + 31*c2/907200 + c3/100800 + c4/100800
M[1,7]=c1/43200 + c2/100800 + 31*c3/907200 + c4/100800
M[1,8]=c1/43200 + c2/100800 + c3/100800 + 31*c4/907200
M[1,9]=43*c1/151200 + 23*c2/181440 + c3/16200 + c4/16200
M[1,10]=11*c1/181440 + 11*c2/302400 - c3/226800 - c4/226800
M[1,11]=-19*c1/453600 - c2/64800 - c3/28350 + c4/100800
M[1,12]=-19*c1/453600 - c2/64800 + c3/100800 - c4/28350
M[1,13]=43*c1/151200 + c2/16200 + 23*c3/181440 + c4/16200
M[1,14]=-19*c1/453600 - c2/28350 - c3/64800 + c4/100800
M[1,15]=11*c1/181440 - c2/226800 + 11*c3/302400 - c4/226800
M[1,16]=-19*c1/453600 + c2/100800 - c3/64800 - c4/28350
M[1,17]=-3*c1/11200 - c2/1050 - c3/1050 - c4/1050
M[1,18]=3*c1/2800 - 3*c2/11200 - 11*c3/33600 - 11*c4/33600
M[1,19]=3*c1/2800 - 11*c2/33600 - 3*c3/11200 - 11*c4/33600
M[1,20]=3*c1/2800 - 11*c2/33600 - 11*c3/33600 - 3*c4/11200
M[2,2]=521*c1/453600 + 31*c2/6300 + 521*c3/453600 + 521*c4/453600
M[2,3]=-11*c1/907200 - 73*c2/302400 - 73*c3/302400 - 11*c4/907200
M[2,4]=-11*c1/907200 - 73*c2/302400 - 11*c3/907200 - 73*c4/302400
M[2,5]=11*c1/302400 + 11*c2/181440 - c3/226800 - c4/226800
M[2,6]=23*c1/181440 + 43*c2/151200 + c3/16200 + c4/16200
M[2,7]=-c1/64800 - 19*c2/453600 - c3/28350 + c4/100800
M[2,8]=-c1/64800 - 19*c2/453600 + c3/100800 - c4/28350
M[2,9]=31*c1/907200 + c2/43200 + c3/100800 + c4/100800
M[2,10]=-227*c1/907200 - 43*c2/50400 - 227*c3/907200 - 227*c4/907200
M[2,11]=c1/100800 + c2/43200 + 31*c3/907200 + c4/100800
M[2,12]=c1/100800 + c2/43200 + c3/100800 + 31*c4/907200
M[2,13]=-c1/28350 - 19*c2/453600 - c3/64800 + c4/100800
M[2,14]=c1/16200 + 43*c2/151200 + 23*c3/181440 + c4/16200
M[2,15]=-c1/226800 + 11*c2/181440 + 11*c3/302400 - c4/226800
M[2,16]=c1/100800 - 19*c2/453600 - c3/64800 - c4/28350
M[2,17]=-3*c1/11200 + 3*c2/2800 - 11*c3/33600 - 11*c4/33600
M[2,18]=-c1/1050 - 3*c2/11200 - c3/1050 - c4/1050
M[2,19]=-11*c1/33600 + 3*c2/2800 - 3*c3/11200 - 11*c4/33600
M[2,20]=-11*c1/33600 + 3*c2/2800 - 11*c3/33600 - 3*c4/11200
M[3,3]=521*c1/453600 + 521*c2/453600 + 31*c3/6300 + 521*c4/453600
M[3,4]=-11*c1/907200 - 11*c2/907200 - 73*c3/302400 - 73*c4/302400
M[3,5]=11*c1/302400 - c2/226800 + 11*c3/181440 - c4/226800
M[3,6]=-c1/64800 - c2/28350 - 19*c3/453600 + c4/100800
M[3,7]=23*c1/181440 + c2/16200 + 43*c3/151200 + c4/16200
M[3,8]=-c1/64800 + c2/100800 - 19*c3/453600 - c4/28350
M[3,9]=-c1/28350 - c2/64800 - 19*c3/453600 + c4/100800
M[3,10]=-c1/226800 + 11*c2/302400 + 11*c3/181440 - c4/226800
M[3,11]=c1/16200 + 23*c2/181440 + 43*c3/151200 + c4/16200
M[3,12]=c1/100800 - c2/64800 - 19*c3/453600 - c4/28350
M[3,13]=31*c1/907200 + c2/100800 + c3/43200 + c4/100800
M[3,14]=c1/100800 + 31*c2/907200 + c3/43200 + c4/100800
M[3,15]=-227*c1/907200 - 227*c2/907200 - 43*c3/50400 - 227*c4/907200
M[3,16]=c1/100800 + c2/100800 + c3/43200 + 31*c4/907200
M[3,17]=-3*c1/11200 - 11*c2/33600 + 3*c3/2800 - 11*c4/33600
M[3,18]=-11*c1/33600 - 3*c2/11200 + 3*c3/2800 - 11*c4/33600
M[3,19]=-c1/1050 - c2/1050 - 3*c3/11200 - c4/1050
M[3,20]=-11*c1/33600 - 11*c2/33600 + 3*c3/2800 - 3*c4/11200
M[4,4]=521*c1/453600 + 521*c2/453600 + 521*c3/453600 + 31*c4/6300
M[4,5]=11*c1/302400 - c2/226800 - c3/226800 + 11*c4/181440
M[4,6]=-c1/64800 - c2/28350 + c3/100800 - 19*c4/453600
M[4,7]=-c1/64800 + c2/100800 - c3/28350 - 19*c4/453600
M[4,8]=23*c1/181440 + c2/16200 + c3/16200 + 43*c4/151200
M[4,9]=-c1/28350 - c2/64800 + c3/100800 - 19*c4/453600
M[4,10]=-c1/226800 + 11*c2/302400 - c3/226800 + 11*c4/181440
M[4,11]=c1/100800 - c2/64800 - c3/28350 - 19*c4/453600
M[4,12]=c1/16200 + 23*c2/181440 + c3/16200 + 43*c4/151200
M[4,13]=-c1/28350 + c2/100800 - c3/64800 - 19*c4/453600
M[4,14]=c1/100800 - c2/28350 - c3/64800 - 19*c4/453600
M[4,15]=-c1/226800 - c2/226800 + 11*c3/302400 + 11*c4/181440
M[4,16]=c1/16200 + c2/16200 + 23*c3/181440 + 43*c4/151200
M[4,17]=-3*c1/11200 - 11*c2/33600 - 11*c3/33600 + 3*c4/2800
M[4,18]=-11*c1/33600 - 3*c2/11200 - 11*c3/33600 + 3*c4/2800
M[4,19]=-11*c1/33600 - 11*c2/33600 - 3*c3/11200 + 3*c4/2800
M[4,20]=-c1/1050 - c2/1050 - c3/1050 - 3*c4/11200
M[5,5]=c1/6300 + 13*c2/226800 + 13*c3/226800 + 13*c4/226800
M[5,6]=-c1/151200 - c2/113400 - c3/302400 - c4/302400
M[5,7]=-c1/151200 - c2/302400 - c3/113400 - c4/302400
M[5,8]=-c1/151200 - c2/302400 - c3/302400 - c4/113400
M[5,9]=-c1/18900 - 13*c2/453600 - 13*c3/907200 - 13*c4/907200
M[5,10]=-c1/113400 - c2/113400 + c3/302400 + c4/302400
M[5,11]=c1/129600 + c2/302400 + c3/113400 - c4/302400
M[5,12]=c1/129600 + c2/302400 - c3/302400 + c4/113400
M[5,13]=-c1/18900 - 13*c2/907200 - 13*c3/453600 - 13*c4/907200
M[5,14]=c1/129600 + c2/113400 + c3/302400 - c4/302400
M[5,15]=-c1/113400 + c2/302400 - c3/113400 + c4/302400
M[5,16]=c1/129600 - c2/302400 + c3/302400 + c4/113400
M[5,17]=c1/11200 + 3*c2/11200 + 3*c3/11200 + 3*c4/11200
M[5,18]=-c1/5600 + c2/11200 + c3/8400 + c4/8400
M[5,19]=-c1/5600 + c2/8400 + c3/11200 + c4/8400
M[5,20]=-c1/5600 + c2/8400 + c3/8400 + c4/11200
M[6,6]=c1/50400 + c2/30240 + c3/151200 + c4/151200
M[6,7]=-c1/302400 - c2/226800 - c3/226800 + c4/907200
M[6,8]=-c1/302400 - c2/226800 + c3/907200 - c4/226800
M[6,9]=c1/75600 + c2/75600 + c3/302400 + c4/302400
M[6,10]=-13*c1/453600 - c2/18900 - 13*c3/907200 - 13*c4/907200
M[6,11]=-c1/907200 - c2/302400 - c3/453600 + c4/907200
M[6,12]=-c1/907200 - c2/302400 + c3/907200 - c4/453600
M[6,13]=-c1/302400 - c2/453600 - c3/907200 + c4/907200
M[6,14]=c1/226800 + c2/100800 + c3/226800 + c4/302400
M[6,15]=c1/302400 + c2/113400 + c3/129600 - c4/302400
M[6,16]=c1/907200 - c2/907200 + c3/907200 - c4/907200
M[6,17]=-c1/33600 - c3/16800 - c4/16800
M[6,18]=-c1/11200 - c2/33600 - c3/11200 - c4/11200
M[6,19]=c2/11200 - c3/33600 - c4/16800
M[6,20]=c2/11200 - c3/16800 - c4/33600
M[7,7]=c1/50400 + c2/151200 + c3/30240 + c4/151200
M[7,8]=-c1/302400 + c2/907200 - c3/226800 - c4/226800
M[7,9]=-c1/302400 - c2/907200 - c3/453600 + c4/907200
M[7,10]=c1/302400 + c2/129600 + c3/113400 - c4/302400
M[7,11]=c1/226800 + c2/226800 + c3/100800 + c4/302400
M[7,12]=c1/907200 + c2/907200 - c3/907200 - c4/907200
M[7,13]=c1/75600 + c2/302400 + c3/75600 + c4/302400
M[7,14]=-c1/907200 - c2/453600 - c3/302400 + c4/907200
M[7,15]=-13*c1/453600 - 13*c2/907200 - c3/18900 - 13*c4/907200
M[7,16]=-c1/907200 + c2/907200 - c3/302400 - c4/453600
M[7,17]=-c1/33600 - c2/16800 - c4/16800
M[7,18]=-c2/33600 + c3/11200 - c4/16800
M[7,19]=-c1/11200 - c2/11200 - c3/33600 - c4/11200
M[7,20]=-c2/16800 + c3/11200 - c4/33600
M[8,8]=c1/50400 + c2/151200 + c3/151200 + c4/30240
M[8,9]=-c1/302400 - c2/907200 + c3/907200 - c4/453600
M[8,10]=c1/302400 + c2/129600 - c3/302400 + c4/113400
M[8,11]=c1/907200 + c2/907200 - c3/907200 - c4/907200
M[8,12]=c1/226800 + c2/226800 + c3/302400 + c4/100800
M[8,13]=-c1/302400 + c2/907200 - c3/907200 - c4/453600
M[8,14]=c1/907200 - c2/907200 + c3/907200 - c4/907200
M[8,15]=c1/302400 - c2/302400 + c3/129600 + c4/113400
M[8,16]=c1/226800 + c2/302400 + c3/226800 + c4/100800
M[8,17]=-c1/33600 - c2/16800 - c3/16800
M[8,18]=-c2/33600 - c3/16800 + c4/11200
M[8,19]=-c2/16800 - c3/33600 + c4/11200
M[8,20]=-c1/11200 - c2/11200 - c3/11200 - c4/33600
M[9,9]=c1/30240 + c2/50400 + c3/151200 + c4/151200
M[9,10]=-c1/113400 - c2/151200 - c3/302400 - c4/302400
M[9,11]=-c1/226800 - c2/302400 - c3/226800 + c4/907200
M[9,12]=-c1/226800 - c2/302400 + c3/907200 - c4/226800
M[9,13]=c1/100800 + c2/226800 + c3/226800 + c4/302400
M[9,14]=-c1/453600 - c2/302400 - c3/907200 + c4/907200
M[9,15]=c1/113400 + c2/302400 + c3/129600 - c4/302400
M[9,16]=-c1/907200 + c2/907200 + c3/907200 - c4/907200
M[9,17]=-c1/33600 - c2/11200 - c3/11200 - c4/11200
M[9,18]=-c2/33600 - c3/16800 - c4/16800
M[9,19]=c1/11200 - c3/33600 - c4/16800
M[9,20]=c1/11200 - c3/16800 - c4/33600
M[10,10]=13*c1/226800 + c2/6300 + 13*c3/226800 + 13*c4/226800
M[10,11]=-c1/302400 - c2/151200 - c3/113400 - c4/302400
M[10,12]=-c1/302400 - c2/151200 - c3/302400 - c4/113400
M[10,13]=c1/113400 + c2/129600 + c3/302400 - c4/302400
M[10,14]=-13*c1/907200 - c2/18900 - 13*c3/453600 - 13*c4/907200
M[10,15]=c1/302400 - c2/113400 - c3/113400 + c4/302400
M[10,16]=-c1/302400 + c2/129600 + c3/302400 + c4/113400
M[10,17]=c1/11200 - c2/5600 + c3/8400 + c4/8400
M[10,18]=3*c1/11200 + c2/11200 + 3*c3/11200 + 3*c4/11200
M[10,19]=c1/8400 - c2/5600 + c3/11200 + c4/8400
M[10,20]=c1/8400 - c2/5600 + c3/8400 + c4/11200
M[11,11]=c1/151200 + c2/50400 + c3/30240 + c4/151200
M[11,12]=c1/907200 - c2/302400 - c3/226800 - c4/226800
M[11,13]=-c1/453600 - c2/907200 - c3/302400 + c4/907200
M[11,14]=c1/302400 + c2/75600 + c3/75600 + c4/302400
M[11,15]=-13*c1/907200 - 13*c2/453600 - c3/18900 - 13*c4/907200
M[11,16]=c1/907200 - c2/907200 - c3/302400 - c4/453600
M[11,17]=-c1/33600 + c3/11200 - c4/16800
M[11,18]=-c1/16800 - c2/33600 - c4/16800
M[11,19]=-c1/11200 - c2/11200 - c3/33600 - c4/11200
M[11,20]=-c1/16800 + c3/11200 - c4/33600
M[12,12]=c1/151200 + c2/50400 + c3/151200 + c4/30240
M[12,13]=-c1/907200 + c2/907200 + c3/907200 - c4/907200
M[12,14]=c1/907200 - c2/302400 - c3/907200 - c4/453600
M[12,15]=-c1/302400 + c2/302400 + c3/129600 + c4/113400
M[12,16]=c1/302400 + c2/226800 + c3/226800 + c4/100800
M[12,17]=-c1/33600 - c3/16800 + c4/11200
M[12,18]=-c1/16800 - c2/33600 - c3/16800
M[12,19]=-c1/16800 - c3/33600 + c4/11200
M[12,20]=-c1/11200 - c2/11200 - c3/11200 - c4/33600
M[13,13]=c1/30240 + c2/151200 + c3/50400 + c4/151200
M[13,14]=-c1/226800 - c2/226800 - c3/302400 + c4/907200
M[13,15]=-c1/113400 - c2/302400 - c3/151200 - c4/302400
M[13,16]=-c1/226800 + c2/907200 - c3/302400 - c4/226800
M[13,17]=-c1/33600 - c2/11200 - c3/11200 - c4/11200
M[13,18]=c1/11200 - c2/33600 - c4/16800
M[13,19]=-c2/16800 - c3/33600 - c4/16800
M[13,20]=c1/11200 - c2/16800 - c4/33600
M[14,14]=c1/151200 + c2/30240 + c3/50400 + c4/151200
M[14,15]=-c1/302400 - c2/113400 - c3/151200 - c4/302400
M[14,16]=c1/907200 - c2/226800 - c3/302400 - c4/226800
M[14,17]=-c1/33600 + c2/11200 - c4/16800
M[14,18]=-c1/11200 - c2/33600 - c3/11200 - c4/11200
M[14,19]=-c1/16800 - c3/33600 - c4/16800
M[14,20]=-c1/16800 + c2/11200 - c4/33600
M[15,15]=13*c1/226800 + 13*c2/226800 + c3/6300 + 13*c4/226800
M[15,16]=-c1/302400 - c2/302400 - c3/151200 - c4/113400
M[15,17]=c1/11200 + c2/8400 - c3/5600 + c4/8400
M[15,18]=c1/8400 + c2/11200 - c3/5600 + c4/8400
M[15,19]=3*c1/11200 + 3*c2/11200 + c3/11200 + 3*c4/11200
M[15,20]=c1/8400 + c2/8400 - c3/5600 + c4/11200
M[16,16]=c1/151200 + c2/151200 + c3/50400 + c4/30240
M[16,17]=-c1/33600 - c2/16800 + c4/11200
M[16,18]=-c1/16800 - c2/33600 + c4/11200
M[16,19]=-c1/16800 - c2/16800 - c3/33600
M[16,20]=-c1/11200 - c2/11200 - c3/11200 - c4/33600
M[17,17]=9*c1/5600 + 27*c2/5600 + 27*c3/5600 + 27*c4/5600
M[17,18]=9*c1/5600 + 9*c2/5600 + 27*c3/11200 + 27*c4/11200
M[17,19]=9*c1/5600 + 27*c2/11200 + 9*c3/5600 + 27*c4/11200
M[17,20]=9*c1/5600 + 27*c2/11200 + 27*c3/11200 + 9*c4/5600
M[18,18]=27*c1/5600 + 9*c2/5600 + 27*c3/5600 + 27*c4/5600
M[18,19]=27*c1/11200 + 9*c2/5600 + 9*c3/5600 + 27*c4/11200
M[18,20]=27*c1/11200 + 9*c2/5600 + 27*c3/11200 + 9*c4/5600
M[19,19]=27*c1/5600 + 27*c2/5600 + 9*c3/5600 + 27*c4/5600
M[19,20]=27*c1/11200 + 27*c2/11200 + 9*c3/5600 + 9*c4/5600
M[20,20]=27*c1/5600 + 27*c2/5600 + 27*c3/5600 + 9*c4/5600
M[2,1]=M[1,2]
M[3,1]=M[1,3]
M[4,1]=M[1,4]
M[5,1]=M[1,5]
M[6,1]=M[1,6]
M[7,1]=M[1,7]
M[8,1]=M[1,8]
M[9,1]=M[1,9]
M[10,1]=M[1,10]
M[11,1]=M[1,11]
M[12,1]=M[1,12]
M[13,1]=M[1,13]
M[14,1]=M[1,14]
M[15,1]=M[1,15]
M[16,1]=M[1,16]
M[17,1]=M[1,17]
M[18,1]=M[1,18]
M[19,1]=M[1,19]
M[20,1]=M[1,20]
M[3,2]=M[2,3]
M[4,2]=M[2,4]
M[5,2]=M[2,5]
M[6,2]=M[2,6]
M[7,2]=M[2,7]
M[8,2]=M[2,8]
M[9,2]=M[2,9]
M[10,2]=M[2,10]
M[11,2]=M[2,11]
M[12,2]=M[2,12]
M[13,2]=M[2,13]
M[14,2]=M[2,14]
M[15,2]=M[2,15]
M[16,2]=M[2,16]
M[17,2]=M[2,17]
M[18,2]=M[2,18]
M[19,2]=M[2,19]
M[20,2]=M[2,20]
M[4,3]=M[3,4]
M[5,3]=M[3,5]
M[6,3]=M[3,6]
M[7,3]=M[3,7]
M[8,3]=M[3,8]
M[9,3]=M[3,9]
M[10,3]=M[3,10]
M[11,3]=M[3,11]
M[12,3]=M[3,12]
M[13,3]=M[3,13]
M[14,3]=M[3,14]
M[15,3]=M[3,15]
M[16,3]=M[3,16]
M[17,3]=M[3,17]
M[18,3]=M[3,18]
M[19,3]=M[3,19]
M[20,3]=M[3,20]
M[5,4]=M[4,5]
M[6,4]=M[4,6]
M[7,4]=M[4,7]
M[8,4]=M[4,8]
M[9,4]=M[4,9]
M[10,4]=M[4,10]
M[11,4]=M[4,11]
M[12,4]=M[4,12]
M[13,4]=M[4,13]
M[14,4]=M[4,14]
M[15,4]=M[4,15]
M[16,4]=M[4,16]
M[17,4]=M[4,17]
M[18,4]=M[4,18]
M[19,4]=M[4,19]
M[20,4]=M[4,20]
M[6,5]=M[5,6]
M[7,5]=M[5,7]
M[8,5]=M[5,8]
M[9,5]=M[5,9]
M[10,5]=M[5,10]
M[11,5]=M[5,11]
M[12,5]=M[5,12]
M[13,5]=M[5,13]
M[14,5]=M[5,14]
M[15,5]=M[5,15]
M[16,5]=M[5,16]
M[17,5]=M[5,17]
M[18,5]=M[5,18]
M[19,5]=M[5,19]
M[20,5]=M[5,20]
M[7,6]=M[6,7]
M[8,6]=M[6,8]
M[9,6]=M[6,9]
M[10,6]=M[6,10]
M[11,6]=M[6,11]
M[12,6]=M[6,12]
M[13,6]=M[6,13]
M[14,6]=M[6,14]
M[15,6]=M[6,15]
M[16,6]=M[6,16]
M[17,6]=M[6,17]
M[18,6]=M[6,18]
M[19,6]=M[6,19]
M[20,6]=M[6,20]
M[8,7]=M[7,8]
M[9,7]=M[7,9]
M[10,7]=M[7,10]
M[11,7]=M[7,11]
M[12,7]=M[7,12]
M[13,7]=M[7,13]
M[14,7]=M[7,14]
M[15,7]=M[7,15]
M[16,7]=M[7,16]
M[17,7]=M[7,17]
M[18,7]=M[7,18]
M[19,7]=M[7,19]
M[20,7]=M[7,20]
M[9,8]=M[8,9]
M[10,8]=M[8,10]
M[11,8]=M[8,11]
M[12,8]=M[8,12]
M[13,8]=M[8,13]
M[14,8]=M[8,14]
M[15,8]=M[8,15]
M[16,8]=M[8,16]
M[17,8]=M[8,17]
M[18,8]=M[8,18]
M[19,8]=M[8,19]
M[20,8]=M[8,20]
M[10,9]=M[9,10]
M[11,9]=M[9,11]
M[12,9]=M[9,12]
M[13,9]=M[9,13]
M[14,9]=M[9,14]
M[15,9]=M[9,15]
M[16,9]=M[9,16]
M[17,9]=M[9,17]
M[18,9]=M[9,18]
M[19,9]=M[9,19]
M[20,9]=M[9,20]
M[11,10]=M[10,11]
M[12,10]=M[10,12]
M[13,10]=M[10,13]
M[14,10]=M[10,14]
M[15,10]=M[10,15]
M[16,10]=M[10,16]
M[17,10]=M[10,17]
M[18,10]=M[10,18]
M[19,10]=M[10,19]
M[20,10]=M[10,20]
M[12,11]=M[11,12]
M[13,11]=M[11,13]
M[14,11]=M[11,14]
M[15,11]=M[11,15]
M[16,11]=M[11,16]
M[17,11]=M[11,17]
M[18,11]=M[11,18]
M[19,11]=M[11,19]
M[20,11]=M[11,20]
M[13,12]=M[12,13]
M[14,12]=M[12,14]
M[15,12]=M[12,15]
M[16,12]=M[12,16]
M[17,12]=M[12,17]
M[18,12]=M[12,18]
M[19,12]=M[12,19]
M[20,12]=M[12,20]
M[14,13]=M[13,14]
M[15,13]=M[13,15]
M[16,13]=M[13,16]
M[17,13]=M[13,17]
M[18,13]=M[13,18]
M[19,13]=M[13,19]
M[20,13]=M[13,20]
M[15,14]=M[14,15]
M[16,14]=M[14,16]
M[17,14]=M[14,17]
M[18,14]=M[14,18]
M[19,14]=M[14,19]
M[20,14]=M[14,20]
M[16,15]=M[15,16]
M[17,15]=M[15,17]
M[18,15]=M[15,18]
M[19,15]=M[15,19]
M[20,15]=M[15,20]
M[17,16]=M[16,17]
M[18,16]=M[16,18]
M[19,16]=M[16,19]
M[20,16]=M[16,20]
M[18,17]=M[17,18]
M[19,17]=M[17,19]
M[20,17]=M[17,20]
M[19,18]=M[18,19]
M[20,18]=M[18,20]
M[20,19]=M[19,20]
return recombine_hermite(J,M)*abs(J.det)
end
## partial derivatives
function s43v1du1(J,d)
M1= [1/24 0 0 -1/24;
1/24 0 0 -1/24;
1/24 0 0 -1/24;
1/24 0 0 -1/24]
M2= [0 1/24 0 -1/24;
0 1/24 0 -1/24;
0 1/24 0 -1/24;
0 1/24 0 -1/24]
M3= [0 0 1/24 -1/24;
0 0 1/24 -1/24;
0 0 1/24 -1/24;
0 0 1/24 -1/24]
return (M1.*J.inv[1,d].+M2.*J.inv[2,d].+M3.*J.inv[3,d])*abs(J.det)
end
s43dv1u1(J,d)=s43v1du1(J,d)'
function s43v1du1c1(J::CooTrafo,c,d)
c1,c2,c3,c4=c
M1=Array{ComplexF64}(undef,4,4)
M2=Array{ComplexF64}(undef,4,4)
M3=Array{ComplexF64}(undef,4,4)
M1[1,1]=c1/60 + c2/120 + c3/120 + c4/120
M1[1,2]=0
M1[1,3]=0
M1[1,4]=-c1/60 - c2/120 - c3/120 - c4/120
M1[2,1]=c1/120 + c2/60 + c3/120 + c4/120
M1[2,2]=0
M1[2,3]=0
M1[2,4]=-c1/120 - c2/60 - c3/120 - c4/120
M1[3,1]=c1/120 + c2/120 + c3/60 + c4/120
M1[3,2]=0
M1[3,3]=0
M1[3,4]=-c1/120 - c2/120 - c3/60 - c4/120
M1[4,1]=c1/120 + c2/120 + c3/120 + c4/60
M1[4,2]=0
M1[4,3]=0
M1[4,4]=-c1/120 - c2/120 - c3/120 - c4/60
M2[1,1]=0
M2[1,2]=c1/60 + c2/120 + c3/120 + c4/120
M2[1,3]=0
M2[1,4]=-c1/60 - c2/120 - c3/120 - c4/120
M2[2,1]=0
M2[2,2]=c1/120 + c2/60 + c3/120 + c4/120
M2[2,3]=0
M2[2,4]=-c1/120 - c2/60 - c3/120 - c4/120
M2[3,1]=0
M2[3,2]=c1/120 + c2/120 + c3/60 + c4/120
M2[3,3]=0
M2[3,4]=-c1/120 - c2/120 - c3/60 - c4/120
M2[4,1]=0
M2[4,2]=c1/120 + c2/120 + c3/120 + c4/60
M2[4,3]=0
M2[4,4]=-c1/120 - c2/120 - c3/120 - c4/60
M3[1,1]=0
M3[1,2]=0
M3[1,3]=c1/60 + c2/120 + c3/120 + c4/120
M3[1,4]=-c1/60 - c2/120 - c3/120 - c4/120
M3[2,1]=0
M3[2,2]=0
M3[2,3]=c1/120 + c2/60 + c3/120 + c4/120
M3[2,4]=-c1/120 - c2/60 - c3/120 - c4/120
M3[3,1]=0
M3[3,2]=0
M3[3,3]=c1/120 + c2/120 + c3/60 + c4/120
M3[3,4]=-c1/120 - c2/120 - c3/60 - c4/120
M3[4,1]=0
M3[4,2]=0
M3[4,3]=c1/120 + c2/120 + c3/120 + c4/60
M3[4,4]=-c1/120 - c2/120 - c3/120 - c4/60
return (M1.*J.inv[1,d].+M2.*J.inv[2,d].+M3.*J.inv[3,d])*abs(J.det)
end
s43dv1u1c1(J::CooTrafo,c,d)=s43v1du1c1(J::CooTrafo,c,d)'
function s43v2du1(J::CooTrafo,d)
M1 = [-1/120 0 0 1/120;
-1/120 0 0 1/120;
-1/120 0 0 1/120;
-1/120 0 0 1/120;
1/30 0 0 -1/30;
1/30 0 0 -1/30;
1/30 0 0 -1/30;
1/30 0 0 -1/30;
1/30 0 0 -1/30;
1/30 0 0 -1/30]
M2 = [0 -1/120 0 1/120;
0 -1/120 0 1/120;
0 -1/120 0 1/120;
0 -1/120 0 1/120;
0 1/30 0 -1/30;
0 1/30 0 -1/30;
0 1/30 0 -1/30;
0 1/30 0 -1/30;
0 1/30 0 -1/30;
0 1/30 0 -1/30]
M3 = [0 0 -1/120 1/120;
0 0 -1/120 1/120;
0 0 -1/120 1/120;
0 0 -1/120 1/120;
0 0 1/30 -1/30;
0 0 1/30 -1/30;
0 0 1/30 -1/30;
0 0 1/30 -1/30;
0 0 1/30 -1/30;
0 0 1/30 -1/30]
return (M1.*J.inv[1,d].+M2.*J.inv[2,d].+M3.*J.inv[3,d])*abs(J.det)
end
s43dv1u2(J::CooTrafo,d)=s43v2du1(J::CooTrafo,d)'
function s43v2du2c1(J::CooTrafo,c,d)
c1,c2,c3,c4 = c
M1=Array{ComplexF64}(undef,10,10)
M2=Array{ComplexF64}(undef,10,10)
M3=Array{ComplexF64}(undef,10,10)
M1[1,1]=c1/210 + c2/840 + c3/840 + c4/840
M1[1,2]=0
M1[1,3]=0
M1[1,4]=c1/630 - c2/2520 - c3/2520 + c4/504
M1[1,5]=-c1/630 - c2/210 - c3/420 - c4/420
M1[1,6]=-c1/630 - c2/420 - c3/210 - c4/420
M1[1,7]=-2*c1/315 - c2/1260 - c3/1260 - c4/315
M1[1,8]=0
M1[1,9]=c1/630 + c2/210 + c3/420 + c4/420
M1[1,10]=c1/630 + c2/420 + c3/210 + c4/420
M1[2,1]=-c1/504 - c2/630 + c3/2520 + c4/2520
M1[2,2]=0
M1[2,3]=0
M1[2,4]=-c1/2520 + c2/630 - c3/2520 + c4/504
M1[2,5]=-c1/630 + c2/210 - c3/630 - c4/630
M1[2,6]=-c1/420 - c2/630 - c3/210 - c4/420
M1[2,7]=c1/420 - c4/420
M1[2,8]=0
M1[2,9]=c1/630 - c2/210 + c3/630 + c4/630
M1[2,10]=c1/420 + c2/630 + c3/210 + c4/420
M1[3,1]=-c1/504 + c2/2520 - c3/630 + c4/2520
M1[3,2]=0
M1[3,3]=0
M1[3,4]=-c1/2520 - c2/2520 + c3/630 + c4/504
M1[3,5]=-c1/420 - c2/210 - c3/630 - c4/420
M1[3,6]=-c1/630 - c2/630 + c3/210 - c4/630
M1[3,7]=c1/420 - c4/420
M1[3,8]=0
M1[3,9]=c1/420 + c2/210 + c3/630 + c4/420
M1[3,10]=c1/630 + c2/630 - c3/210 + c4/630
M1[4,1]=-c1/504 + c2/2520 + c3/2520 - c4/630
M1[4,2]=0
M1[4,3]=0
M1[4,4]=-c1/840 - c2/840 - c3/840 - c4/210
M1[4,5]=-c1/420 - c2/210 - c3/420 - c4/630
M1[4,6]=-c1/420 - c2/420 - c3/210 - c4/630
M1[4,7]=c1/315 + c2/1260 + c3/1260 + 2*c4/315
M1[4,8]=0
M1[4,9]=c1/420 + c2/210 + c3/420 + c4/630
M1[4,10]=c1/420 + c2/420 + c3/210 + c4/630
M1[5,1]=c1/126 + c2/630 + c3/1260 + c4/1260
M1[5,2]=0
M1[5,3]=0
M1[5,4]=c1/210 + c2/210 + c3/420 - c4/1260
M1[5,5]=4*c1/315 + 2*c2/105 + 2*c3/315 + 2*c4/315
M1[5,6]=2*c1/315 + 2*c2/315 + 2*c3/315 + c4/315
M1[5,7]=-4*c1/315 - 2*c2/315 - c3/315
M1[5,8]=0
M1[5,9]=-4*c1/315 - 2*c2/105 - 2*c3/315 - 2*c4/315
M1[5,10]=-2*c1/315 - 2*c2/315 - 2*c3/315 - c4/315
M1[6,1]=c1/126 + c2/1260 + c3/630 + c4/1260
M1[6,2]=0
M1[6,3]=0
M1[6,4]=c1/210 + c2/420 + c3/210 - c4/1260
M1[6,5]=2*c1/315 + 2*c2/315 + 2*c3/315 + c4/315
M1[6,6]=4*c1/315 + 2*c2/315 + 2*c3/105 + 2*c4/315
M1[6,7]=-4*c1/315 - c2/315 - 2*c3/315
M1[6,8]=0
M1[6,9]=-2*c1/315 - 2*c2/315 - 2*c3/315 - c4/315
M1[6,10]=-4*c1/315 - 2*c2/315 - 2*c3/105 - 2*c4/315
M1[7,1]=c1/126 + c2/1260 + c3/1260 + c4/630
M1[7,2]=0
M1[7,3]=0
M1[7,4]=-c1/630 - c2/1260 - c3/1260 - c4/126
M1[7,5]=2*c1/315 + 2*c2/315 + c3/315 + 2*c4/315
M1[7,6]=2*c1/315 + c2/315 + 2*c3/315 + 2*c4/315
M1[7,7]=-2*c1/315 + 2*c4/315
M1[7,8]=0
M1[7,9]=-2*c1/315 - 2*c2/315 - c3/315 - 2*c4/315
M1[7,10]=-2*c1/315 - c2/315 - 2*c3/315 - 2*c4/315
M1[8,1]=c1/1260 - c2/210 - c3/210 - c4/420
M1[8,2]=0
M1[8,3]=0
M1[8,4]=c1/420 + c2/210 + c3/210 - c4/1260
M1[8,5]=2*c1/315 + 2*c2/105 + 4*c3/315 + 2*c4/315
M1[8,6]=2*c1/315 + 4*c2/315 + 2*c3/105 + 2*c4/315
M1[8,7]=-c1/315 + c4/315
M1[8,8]=0
M1[8,9]=-2*c1/315 - 2*c2/105 - 4*c3/315 - 2*c4/315
M1[8,10]=-2*c1/315 - 4*c2/315 - 2*c3/105 - 2*c4/315
M1[9,1]=c1/1260 - c2/210 - c3/420 - c4/210
M1[9,2]=0
M1[9,3]=0
M1[9,4]=-c1/1260 - c2/630 - c3/1260 - c4/126
M1[9,5]=2*c1/315 + 2*c2/105 + 2*c3/315 + 4*c4/315
M1[9,6]=c1/315 + 2*c2/315 + 2*c3/315 + 2*c4/315
M1[9,7]=2*c2/315 + c3/315 + 4*c4/315
M1[9,8]=0
M1[9,9]=-2*c1/315 - 2*c2/105 - 2*c3/315 - 4*c4/315
M1[9,10]=-c1/315 - 2*c2/315 - 2*c3/315 - 2*c4/315
M1[10,1]=c1/1260 - c2/420 - c3/210 - c4/210
M1[10,2]=0
M1[10,3]=0
M1[10,4]=-c1/1260 - c2/1260 - c3/630 - c4/126
M1[10,5]=c1/315 + 2*c2/315 + 2*c3/315 + 2*c4/315
M1[10,6]=2*c1/315 + 2*c2/315 + 2*c3/105 + 4*c4/315
M1[10,7]=c2/315 + 2*c3/315 + 4*c4/315
M1[10,8]=0
M1[10,9]=-c1/315 - 2*c2/315 - 2*c3/315 - 2*c4/315
M1[10,10]=-2*c1/315 - 2*c2/315 - 2*c3/105 - 4*c4/315
M2[1,1]=0
M2[1,2]=-c1/630 - c2/504 + c3/2520 + c4/2520
M2[1,3]=0
M2[1,4]=c1/630 - c2/2520 - c3/2520 + c4/504
M2[1,5]=c1/210 - c2/630 - c3/630 - c4/630
M2[1,6]=0
M2[1,7]=-c1/210 + c2/630 + c3/630 + c4/630
M2[1,8]=-c1/630 - c2/420 - c3/210 - c4/420
M2[1,9]=c2/420 - c4/420
M2[1,10]=c1/630 + c2/420 + c3/210 + c4/420
M2[2,1]=0
M2[2,2]=c1/840 + c2/210 + c3/840 + c4/840
M2[2,3]=0
M2[2,4]=-c1/2520 + c2/630 - c3/2520 + c4/504
M2[2,5]=-c1/210 - c2/630 - c3/420 - c4/420
M2[2,6]=0
M2[2,7]=c1/210 + c2/630 + c3/420 + c4/420
M2[2,8]=-c1/420 - c2/630 - c3/210 - c4/420
M2[2,9]=-c1/1260 - 2*c2/315 - c3/1260 - c4/315
M2[2,10]=c1/420 + c2/630 + c3/210 + c4/420
M2[3,1]=0
M2[3,2]=c1/2520 - c2/504 - c3/630 + c4/2520
M2[3,3]=0
M2[3,4]=-c1/2520 - c2/2520 + c3/630 + c4/504
M2[3,5]=-c1/210 - c2/420 - c3/630 - c4/420
M2[3,6]=0
M2[3,7]=c1/210 + c2/420 + c3/630 + c4/420
M2[3,8]=-c1/630 - c2/630 + c3/210 - c4/630
M2[3,9]=c2/420 - c4/420
M2[3,10]=c1/630 + c2/630 - c3/210 + c4/630
M2[4,1]=0
M2[4,2]=c1/2520 - c2/504 + c3/2520 - c4/630
M2[4,3]=0
M2[4,4]=-c1/840 - c2/840 - c3/840 - c4/210
M2[4,5]=-c1/210 - c2/420 - c3/420 - c4/630
M2[4,6]=0
M2[4,7]=c1/210 + c2/420 + c3/420 + c4/630
M2[4,8]=-c1/420 - c2/420 - c3/210 - c4/630
M2[4,9]=c1/1260 + c2/315 + c3/1260 + 2*c4/315
M2[4,10]=c1/420 + c2/420 + c3/210 + c4/630
M2[5,1]=0
M2[5,2]=c1/630 + c2/126 + c3/1260 + c4/1260
M2[5,3]=0
M2[5,4]=c1/210 + c2/210 + c3/420 - c4/1260
M2[5,5]=2*c1/105 + 4*c2/315 + 2*c3/315 + 2*c4/315
M2[5,6]=0
M2[5,7]=-2*c1/105 - 4*c2/315 - 2*c3/315 - 2*c4/315
M2[5,8]=2*c1/315 + 2*c2/315 + 2*c3/315 + c4/315
M2[5,9]=-2*c1/315 - 4*c2/315 - c3/315
M2[5,10]=-2*c1/315 - 2*c2/315 - 2*c3/315 - c4/315
M2[6,1]=0
M2[6,2]=-c1/210 + c2/1260 - c3/210 - c4/420
M2[6,3]=0
M2[6,4]=c1/210 + c2/420 + c3/210 - c4/1260
M2[6,5]=2*c1/105 + 2*c2/315 + 4*c3/315 + 2*c4/315
M2[6,6]=0
M2[6,7]=-2*c1/105 - 2*c2/315 - 4*c3/315 - 2*c4/315
M2[6,8]=4*c1/315 + 2*c2/315 + 2*c3/105 + 2*c4/315
M2[6,9]=-c2/315 + c4/315
M2[6,10]=-4*c1/315 - 2*c2/315 - 2*c3/105 - 2*c4/315
M2[7,1]=0
M2[7,2]=-c1/210 + c2/1260 - c3/420 - c4/210
M2[7,3]=0
M2[7,4]=-c1/630 - c2/1260 - c3/1260 - c4/126
M2[7,5]=2*c1/105 + 2*c2/315 + 2*c3/315 + 4*c4/315
M2[7,6]=0
M2[7,7]=-2*c1/105 - 2*c2/315 - 2*c3/315 - 4*c4/315
M2[7,8]=2*c1/315 + c2/315 + 2*c3/315 + 2*c4/315
M2[7,9]=2*c1/315 + c3/315 + 4*c4/315
M2[7,10]=-2*c1/315 - c2/315 - 2*c3/315 - 2*c4/315
M2[8,1]=0
M2[8,2]=c1/1260 + c2/126 + c3/630 + c4/1260
M2[8,3]=0
M2[8,4]=c1/420 + c2/210 + c3/210 - c4/1260
M2[8,5]=2*c1/315 + 2*c2/315 + 2*c3/315 + c4/315
M2[8,6]=0
M2[8,7]=-2*c1/315 - 2*c2/315 - 2*c3/315 - c4/315
M2[8,8]=2*c1/315 + 4*c2/315 + 2*c3/105 + 2*c4/315
M2[8,9]=-c1/315 - 4*c2/315 - 2*c3/315
M2[8,10]=-2*c1/315 - 4*c2/315 - 2*c3/105 - 2*c4/315
M2[9,1]=0
M2[9,2]=c1/1260 + c2/126 + c3/1260 + c4/630
M2[9,3]=0
M2[9,4]=-c1/1260 - c2/630 - c3/1260 - c4/126
M2[9,5]=2*c1/315 + 2*c2/315 + c3/315 + 2*c4/315
M2[9,6]=0
M2[9,7]=-2*c1/315 - 2*c2/315 - c3/315 - 2*c4/315
M2[9,8]=c1/315 + 2*c2/315 + 2*c3/315 + 2*c4/315
M2[9,9]=-2*c2/315 + 2*c4/315
M2[9,10]=-c1/315 - 2*c2/315 - 2*c3/315 - 2*c4/315
M2[10,1]=0
M2[10,2]=-c1/420 + c2/1260 - c3/210 - c4/210
M2[10,3]=0
M2[10,4]=-c1/1260 - c2/1260 - c3/630 - c4/126
M2[10,5]=2*c1/315 + c2/315 + 2*c3/315 + 2*c4/315
M2[10,6]=0
M2[10,7]=-2*c1/315 - c2/315 - 2*c3/315 - 2*c4/315
M2[10,8]=2*c1/315 + 2*c2/315 + 2*c3/105 + 4*c4/315
M2[10,9]=c1/315 + 2*c3/315 + 4*c4/315
M2[10,10]=-2*c1/315 - 2*c2/315 - 2*c3/105 - 4*c4/315
M3[1,1]=0
M3[1,2]=0
M3[1,3]=-c1/630 + c2/2520 - c3/504 + c4/2520
M3[1,4]=c1/630 - c2/2520 - c3/2520 + c4/504
M3[1,5]=0
M3[1,6]=c1/210 - c2/630 - c3/630 - c4/630
M3[1,7]=-c1/210 + c2/630 + c3/630 + c4/630
M3[1,8]=-c1/630 - c2/210 - c3/420 - c4/420
M3[1,9]=c1/630 + c2/210 + c3/420 + c4/420
M3[1,10]=c3/420 - c4/420
M3[2,1]=0
M3[2,2]=0
M3[2,3]=c1/2520 - c2/630 - c3/504 + c4/2520
M3[2,4]=-c1/2520 + c2/630 - c3/2520 + c4/504
M3[2,5]=0
M3[2,6]=-c1/210 - c2/630 - c3/420 - c4/420
M3[2,7]=c1/210 + c2/630 + c3/420 + c4/420
M3[2,8]=-c1/630 + c2/210 - c3/630 - c4/630
M3[2,9]=c1/630 - c2/210 + c3/630 + c4/630
M3[2,10]=c3/420 - c4/420
M3[3,1]=0
M3[3,2]=0
M3[3,3]=c1/840 + c2/840 + c3/210 + c4/840
M3[3,4]=-c1/2520 - c2/2520 + c3/630 + c4/504
M3[3,5]=0
M3[3,6]=-c1/210 - c2/420 - c3/630 - c4/420
M3[3,7]=c1/210 + c2/420 + c3/630 + c4/420
M3[3,8]=-c1/420 - c2/210 - c3/630 - c4/420
M3[3,9]=c1/420 + c2/210 + c3/630 + c4/420
M3[3,10]=-c1/1260 - c2/1260 - 2*c3/315 - c4/315
M3[4,1]=0
M3[4,2]=0
M3[4,3]=c1/2520 + c2/2520 - c3/504 - c4/630
M3[4,4]=-c1/840 - c2/840 - c3/840 - c4/210
M3[4,5]=0
M3[4,6]=-c1/210 - c2/420 - c3/420 - c4/630
M3[4,7]=c1/210 + c2/420 + c3/420 + c4/630
M3[4,8]=-c1/420 - c2/210 - c3/420 - c4/630
M3[4,9]=c1/420 + c2/210 + c3/420 + c4/630
M3[4,10]=c1/1260 + c2/1260 + c3/315 + 2*c4/315
M3[5,1]=0
M3[5,2]=0
M3[5,3]=-c1/210 - c2/210 + c3/1260 - c4/420
M3[5,4]=c1/210 + c2/210 + c3/420 - c4/1260
M3[5,5]=0
M3[5,6]=2*c1/105 + 4*c2/315 + 2*c3/315 + 2*c4/315
M3[5,7]=-2*c1/105 - 4*c2/315 - 2*c3/315 - 2*c4/315
M3[5,8]=4*c1/315 + 2*c2/105 + 2*c3/315 + 2*c4/315
M3[5,9]=-4*c1/315 - 2*c2/105 - 2*c3/315 - 2*c4/315
M3[5,10]=-c3/315 + c4/315
M3[6,1]=0
M3[6,2]=0
M3[6,3]=c1/630 + c2/1260 + c3/126 + c4/1260
M3[6,4]=c1/210 + c2/420 + c3/210 - c4/1260
M3[6,5]=0
M3[6,6]=2*c1/105 + 2*c2/315 + 4*c3/315 + 2*c4/315
M3[6,7]=-2*c1/105 - 2*c2/315 - 4*c3/315 - 2*c4/315
M3[6,8]=2*c1/315 + 2*c2/315 + 2*c3/315 + c4/315
M3[6,9]=-2*c1/315 - 2*c2/315 - 2*c3/315 - c4/315
M3[6,10]=-2*c1/315 - c2/315 - 4*c3/315
M3[7,1]=0
M3[7,2]=0
M3[7,3]=-c1/210 - c2/420 + c3/1260 - c4/210
M3[7,4]=-c1/630 - c2/1260 - c3/1260 - c4/126
M3[7,5]=0
M3[7,6]=2*c1/105 + 2*c2/315 + 2*c3/315 + 4*c4/315
M3[7,7]=-2*c1/105 - 2*c2/315 - 2*c3/315 - 4*c4/315
M3[7,8]=2*c1/315 + 2*c2/315 + c3/315 + 2*c4/315
M3[7,9]=-2*c1/315 - 2*c2/315 - c3/315 - 2*c4/315
M3[7,10]=2*c1/315 + c2/315 + 4*c4/315
M3[8,1]=0
M3[8,2]=0
M3[8,3]=c1/1260 + c2/630 + c3/126 + c4/1260
M3[8,4]=c1/420 + c2/210 + c3/210 - c4/1260
M3[8,5]=0
M3[8,6]=2*c1/315 + 2*c2/315 + 2*c3/315 + c4/315
M3[8,7]=-2*c1/315 - 2*c2/315 - 2*c3/315 - c4/315
M3[8,8]=2*c1/315 + 2*c2/105 + 4*c3/315 + 2*c4/315
M3[8,9]=-2*c1/315 - 2*c2/105 - 4*c3/315 - 2*c4/315
M3[8,10]=-c1/315 - 2*c2/315 - 4*c3/315
M3[9,1]=0
M3[9,2]=0
M3[9,3]=-c1/420 - c2/210 + c3/1260 - c4/210
M3[9,4]=-c1/1260 - c2/630 - c3/1260 - c4/126
M3[9,5]=0
M3[9,6]=2*c1/315 + 2*c2/315 + c3/315 + 2*c4/315
M3[9,7]=-2*c1/315 - 2*c2/315 - c3/315 - 2*c4/315
M3[9,8]=2*c1/315 + 2*c2/105 + 2*c3/315 + 4*c4/315
M3[9,9]=-2*c1/315 - 2*c2/105 - 2*c3/315 - 4*c4/315
M3[9,10]=c1/315 + 2*c2/315 + 4*c4/315
M3[10,1]=0
M3[10,2]=0
M3[10,3]=c1/1260 + c2/1260 + c3/126 + c4/630
M3[10,4]=-c1/1260 - c2/1260 - c3/630 - c4/126
M3[10,5]=0
M3[10,6]=2*c1/315 + c2/315 + 2*c3/315 + 2*c4/315
M3[10,7]=-2*c1/315 - c2/315 - 2*c3/315 - 2*c4/315
M3[10,8]=c1/315 + 2*c2/315 + 2*c3/315 + 2*c4/315
M3[10,9]=-c1/315 - 2*c2/315 - 2*c3/315 - 2*c4/315
M3[10,10]=-2*c3/315 + 2*c4/315
return (M1.*J.inv[1,d].+M2.*J.inv[2,d].+M3.*J.inv[3,d])*abs(J.det)
end
#this function is unnescessary
function s43v1u1dc1(J::CooTrafo,c,d)
c1,c2,c3,c4=c
M = [1/60 1/120 1/120 1/120;
1/120 1/60 1/120 1/120;
1/120 1/120 1/60 1/120;
1/120 1/120 1/120 1/60]
return ([c1-c4, c2-c4, c3-c4]*J.inv[:,d]).*M*abs(J.det)
end
# nabla operations aka stiffness matrices
function s43nv1nu1(J::CooTrafo)
A=J.inv*J.inv'
M=Array{Float64}(undef,4,4)
M[1,1]=A[1,1]/6
M[1,2]=A[1,2]/6
M[1,3]=A[1,3]/6
M[1,4]=-A[1,1]/6 - A[1,2]/6 - A[1,3]/6
M[2,2]=A[2,2]/6
M[2,3]=A[2,3]/6
M[2,4]=-A[1,2]/6 - A[2,2]/6 - A[2,3]/6
M[3,3]=A[3,3]/6
M[3,4]=-A[1,3]/6 - A[2,3]/6 - A[3,3]/6
M[4,4]=A[1,1]/6 + A[1,2]/3 + A[1,3]/3 + A[2,2]/6 + A[2,3]/3 + A[3,3]/6
M[2,1]=M[1,2]
M[3,1]=M[1,3]
M[4,1]=M[1,4]
M[3,2]=M[2,3]
M[4,2]=M[2,4]
M[4,3]=M[3,4]
return M*abs(J.det)
end
function s43nv2nu2(J::CooTrafo)
A=J.inv*J.inv'
M=Array{Float64}(undef,10,10)
M[1,1]=A[1,1]/10
M[1,2]=-A[1,2]/30
M[1,3]=-A[1,3]/30
M[1,4]=A[1,1]/30 + A[1,2]/30 + A[1,3]/30
M[1,5]=-A[1,1]/30 + A[1,2]/10
M[1,6]=-A[1,1]/30 + A[1,3]/10
M[1,7]=-2*A[1,1]/15 - A[1,2]/10 - A[1,3]/10
M[1,8]=-A[1,2]/30 - A[1,3]/30
M[1,9]=A[1,1]/30 + A[1,3]/30
M[1,10]=A[1,1]/30 + A[1,2]/30
M[2,2]=A[2,2]/10
M[2,3]=-A[2,3]/30
M[2,4]=A[1,2]/30 + A[2,2]/30 + A[2,3]/30
M[2,5]=A[1,2]/10 - A[2,2]/30
M[2,6]=-A[1,2]/30 - A[2,3]/30
M[2,7]=A[2,2]/30 + A[2,3]/30
M[2,8]=-A[2,2]/30 + A[2,3]/10
M[2,9]=-A[1,2]/10 - 2*A[2,2]/15 - A[2,3]/10
M[2,10]=A[1,2]/30 + A[2,2]/30
M[3,3]=A[3,3]/10
M[3,4]=A[1,3]/30 + A[2,3]/30 + A[3,3]/30
M[3,5]=-A[1,3]/30 - A[2,3]/30
M[3,6]=A[1,3]/10 - A[3,3]/30
M[3,7]=A[2,3]/30 + A[3,3]/30
M[3,8]=A[2,3]/10 - A[3,3]/30
M[3,9]=A[1,3]/30 + A[3,3]/30
M[3,10]=-A[1,3]/10 - A[2,3]/10 - 2*A[3,3]/15
M[4,4]=A[1,1]/10 + A[1,2]/5 + A[1,3]/5 + A[2,2]/10 + A[2,3]/5 + A[3,3]/10
M[4,5]=A[1,1]/30 + A[1,2]/15 + A[1,3]/30 + A[2,2]/30 + A[2,3]/30
M[4,6]=A[1,1]/30 + A[1,2]/30 + A[1,3]/15 + A[2,3]/30 + A[3,3]/30
M[4,7]=-2*A[1,1]/15 - A[1,2]/6 - A[1,3]/6 - A[2,2]/30 - A[2,3]/15 - A[3,3]/30
M[4,8]=A[1,2]/30 + A[1,3]/30 + A[2,2]/30 + A[2,3]/15 + A[3,3]/30
M[4,9]=-A[1,1]/30 - A[1,2]/6 - A[1,3]/15 - 2*A[2,2]/15 - A[2,3]/6 - A[3,3]/30
M[4,10]=-A[1,1]/30 - A[1,2]/15 - A[1,3]/6 - A[2,2]/30 - A[2,3]/6 - 2*A[3,3]/15
M[5,5]=4*A[1,1]/15 + 4*A[1,2]/15 + 4*A[2,2]/15
M[5,6]=2*A[1,1]/15 + 2*A[1,2]/15 + 2*A[1,3]/15 + 4*A[2,3]/15
M[5,7]=-4*A[1,2]/15 - 2*A[1,3]/15 - 4*A[2,2]/15 - 4*A[2,3]/15
M[5,8]=2*A[1,2]/15 + 4*A[1,3]/15 + 2*A[2,2]/15 + 2*A[2,3]/15
M[5,9]=-4*A[1,1]/15 - 4*A[1,2]/15 - 4*A[1,3]/15 - 2*A[2,3]/15
M[5,10]=-2*A[1,1]/15 - 4*A[1,2]/15 - 2*A[2,2]/15
M[6,6]=4*A[1,1]/15 + 4*A[1,3]/15 + 4*A[3,3]/15
M[6,7]=-2*A[1,2]/15 - 4*A[1,3]/15 - 4*A[2,3]/15 - 4*A[3,3]/15
M[6,8]=4*A[1,2]/15 + 2*A[1,3]/15 + 2*A[2,3]/15 + 2*A[3,3]/15
M[6,9]=-2*A[1,1]/15 - 4*A[1,3]/15 - 2*A[3,3]/15
M[6,10]=-4*A[1,1]/15 - 4*A[1,2]/15 - 4*A[1,3]/15 - 2*A[2,3]/15
M[7,7]=4*A[1,1]/15 + 4*A[1,2]/15 + 4*A[1,3]/15 + 4*A[2,2]/15 + 8*A[2,3]/15 + 4*A[3,3]/15
M[7,8]=-2*A[2,2]/15 - 4*A[2,3]/15 - 2*A[3,3]/15
M[7,9]=4*A[1,2]/15 + 2*A[1,3]/15 + 2*A[2,3]/15 + 2*A[3,3]/15
M[7,10]=2*A[1,2]/15 + 4*A[1,3]/15 + 2*A[2,2]/15 + 2*A[2,3]/15
M[8,8]=4*A[2,2]/15 + 4*A[2,3]/15 + 4*A[3,3]/15
M[8,9]=-2*A[1,2]/15 - 4*A[1,3]/15 - 4*A[2,3]/15 - 4*A[3,3]/15
M[8,10]=-4*A[1,2]/15 - 2*A[1,3]/15 - 4*A[2,2]/15 - 4*A[2,3]/15
M[9,9]=4*A[1,1]/15 + 4*A[1,2]/15 + 8*A[1,3]/15 + 4*A[2,2]/15 + 4*A[2,3]/15 + 4*A[3,3]/15
M[9,10]=2*A[1,1]/15 + 2*A[1,2]/15 + 2*A[1,3]/15 + 4*A[2,3]/15
M[10,10]=4*A[1,1]/15 + 8*A[1,2]/15 + 4*A[1,3]/15 + 4*A[2,2]/15 + 4*A[2,3]/15 + 4*A[3,3]/15
M[2,1]=M[1,2]
M[3,1]=M[1,3]
M[4,1]=M[1,4]
M[5,1]=M[1,5]
M[6,1]=M[1,6]
M[7,1]=M[1,7]
M[8,1]=M[1,8]
M[9,1]=M[1,9]
M[10,1]=M[1,10]
M[3,2]=M[2,3]
M[4,2]=M[2,4]
M[5,2]=M[2,5]
M[6,2]=M[2,6]
M[7,2]=M[2,7]
M[8,2]=M[2,8]
M[9,2]=M[2,9]
M[10,2]=M[2,10]
M[4,3]=M[3,4]
M[5,3]=M[3,5]
M[6,3]=M[3,6]
M[7,3]=M[3,7]
M[8,3]=M[3,8]
M[9,3]=M[3,9]
M[10,3]=M[3,10]
M[5,4]=M[4,5]
M[6,4]=M[4,6]
M[7,4]=M[4,7]
M[8,4]=M[4,8]
M[9,4]=M[4,9]
M[10,4]=M[4,10]
M[6,5]=M[5,6]
M[7,5]=M[5,7]
M[8,5]=M[5,8]
M[9,5]=M[5,9]
M[10,5]=M[5,10]
M[7,6]=M[6,7]
M[8,6]=M[6,8]
M[9,6]=M[6,9]
M[10,6]=M[6,10]
M[8,7]=M[7,8]
M[9,7]=M[7,9]
M[10,7]=M[7,10]
M[9,8]=M[8,9]
M[10,8]=M[8,10]
M[10,9]=M[9,10]
return M*abs(J.det)
end
function s43nvhnuh(J::CooTrafo)
A=J.inv*J.inv'
M=Array{Float64}(undef,20,20)
M[1,1]=433*A[1,1]/1260 + 7*A[1,2]/180 + 7*A[1,3]/180 + 7*A[2,2]/180 + 7*A[2,3]/180 + 7*A[3,3]/180
M[1,2]=A[1,1]/12 + 43*A[1,2]/1260 + 7*A[1,3]/360 + A[2,2]/12 + 7*A[2,3]/360 + 7*A[3,3]/360
M[1,3]=A[1,1]/12 + 7*A[1,2]/360 + 43*A[1,3]/1260 + 7*A[2,2]/360 + 7*A[2,3]/360 + A[3,3]/12
M[1,4]=167*A[1,1]/1260 + 167*A[1,2]/1260 + 167*A[1,3]/1260 + A[2,2]/12 + 53*A[2,3]/360 + A[3,3]/12
M[1,5]=-97*A[1,1]/1260 - A[1,2]/90 - A[1,3]/90 - A[2,2]/90 - A[2,3]/90 - A[3,3]/90
M[1,6]=19*A[1,1]/1260 + 13*A[1,2]/630 + A[2,2]/90
M[1,7]=19*A[1,1]/1260 + 13*A[1,3]/630 + A[3,3]/90
M[1,8]=A[1,1]/180 + A[1,2]/630 + A[1,3]/630 + A[2,2]/90 + A[2,3]/45 + A[3,3]/90
M[1,9]=A[1,1]/30 + A[1,2]/35 + A[2,2]/180
M[1,10]=-A[1,1]/42 - 23*A[1,2]/2520 - A[1,3]/180 - 7*A[2,2]/360 - A[2,3]/180 - A[3,3]/180
M[1,11]=-A[1,2]/168 - 11*A[1,3]/1260 + A[2,2]/360 + A[2,3]/180 + A[3,3]/180
M[1,12]=A[1,1]/70 + A[1,2]/120 + 5*A[1,3]/252 + A[2,2]/360 + A[2,3]/180 + A[3,3]/180
M[1,13]=A[1,1]/30 + A[1,3]/35 + A[3,3]/180
M[1,14]=-11*A[1,2]/1260 - A[1,3]/168 + A[2,2]/180 + A[2,3]/180 + A[3,3]/360
M[1,15]=-A[1,1]/42 - A[1,2]/180 - 23*A[1,3]/2520 - A[2,2]/180 - A[2,3]/180 - 7*A[3,3]/360
M[1,16]=A[1,1]/70 + 5*A[1,2]/252 + A[1,3]/120 + A[2,2]/180 + A[2,3]/180 + A[3,3]/360
M[1,17]=-3*A[1,1]/280 - 3*A[1,2]/40 - 3*A[1,3]/40 - 3*A[2,2]/40 - 3*A[2,3]/40 - 3*A[3,3]/40
M[1,18]=-9*A[1,1]/28 - 93*A[1,2]/280 - 3*A[1,3]/20 - 3*A[2,3]/20 - 3*A[3,3]/20
M[1,19]=-9*A[1,1]/28 - 3*A[1,2]/20 - 93*A[1,3]/280 - 3*A[2,2]/20 - 3*A[2,3]/20
M[1,20]=3*A[1,1]/280 + 93*A[1,2]/280 + 93*A[1,3]/280 + 3*A[2,3]/20
M[2,2]=7*A[1,1]/180 + 7*A[1,2]/180 + 7*A[1,3]/180 + 433*A[2,2]/1260 + 7*A[2,3]/180 + 7*A[3,3]/180
M[2,3]=7*A[1,1]/360 + 7*A[1,2]/360 + 7*A[1,3]/360 + A[2,2]/12 + 43*A[2,3]/1260 + A[3,3]/12
M[2,4]=A[1,1]/12 + 167*A[1,2]/1260 + 53*A[1,3]/360 + 167*A[2,2]/1260 + 167*A[2,3]/1260 + A[3,3]/12
M[2,5]=-7*A[1,1]/360 - 23*A[1,2]/2520 - A[1,3]/180 - A[2,2]/42 - A[2,3]/180 - A[3,3]/180
M[2,6]=A[1,1]/180 + A[1,2]/35 + A[2,2]/30
M[2,7]=A[1,1]/360 - A[1,2]/168 + A[1,3]/180 - 11*A[2,3]/1260 + A[3,3]/180
M[2,8]=A[1,1]/360 + A[1,2]/120 + A[1,3]/180 + A[2,2]/70 + 5*A[2,3]/252 + A[3,3]/180
M[2,9]=A[1,1]/90 + 13*A[1,2]/630 + 19*A[2,2]/1260
M[2,10]=-A[1,1]/90 - A[1,2]/90 - A[1,3]/90 - 97*A[2,2]/1260 - A[2,3]/90 - A[3,3]/90
M[2,11]=19*A[2,2]/1260 + 13*A[2,3]/630 + A[3,3]/90
M[2,12]=A[1,1]/90 + A[1,2]/630 + A[1,3]/45 + A[2,2]/180 + A[2,3]/630 + A[3,3]/90
M[2,13]=A[1,1]/180 - 11*A[1,2]/1260 + A[1,3]/180 - A[2,3]/168 + A[3,3]/360
M[2,14]=A[2,2]/30 + A[2,3]/35 + A[3,3]/180
M[2,15]=-A[1,1]/180 - A[1,2]/180 - A[1,3]/180 - A[2,2]/42 - 23*A[2,3]/2520 - 7*A[3,3]/360
M[2,16]=A[1,1]/180 + 5*A[1,2]/252 + A[1,3]/180 + A[2,2]/70 + A[2,3]/120 + A[3,3]/360
M[2,17]=-93*A[1,2]/280 - 3*A[1,3]/20 - 9*A[2,2]/28 - 3*A[2,3]/20 - 3*A[3,3]/20
M[2,18]=-3*A[1,1]/40 - 3*A[1,2]/40 - 3*A[1,3]/40 - 3*A[2,2]/280 - 3*A[2,3]/40 - 3*A[3,3]/40
M[2,19]=-3*A[1,1]/20 - 3*A[1,2]/20 - 3*A[1,3]/20 - 9*A[2,2]/28 - 93*A[2,3]/280
M[2,20]=93*A[1,2]/280 + 3*A[1,3]/20 + 3*A[2,2]/280 + 93*A[2,3]/280
M[3,3]=7*A[1,1]/180 + 7*A[1,2]/180 + 7*A[1,3]/180 + 7*A[2,2]/180 + 7*A[2,3]/180 + 433*A[3,3]/1260
M[3,4]=A[1,1]/12 + 53*A[1,2]/360 + 167*A[1,3]/1260 + A[2,2]/12 + 167*A[2,3]/1260 + 167*A[3,3]/1260
M[3,5]=-7*A[1,1]/360 - A[1,2]/180 - 23*A[1,3]/2520 - A[2,2]/180 - A[2,3]/180 - A[3,3]/42
M[3,6]=A[1,1]/360 + A[1,2]/180 - A[1,3]/168 + A[2,2]/180 - 11*A[2,3]/1260
M[3,7]=A[1,1]/180 + A[1,3]/35 + A[3,3]/30
M[3,8]=A[1,1]/360 + A[1,2]/180 + A[1,3]/120 + A[2,2]/180 + 5*A[2,3]/252 + A[3,3]/70
M[3,9]=A[1,1]/180 + A[1,2]/180 - 11*A[1,3]/1260 + A[2,2]/360 - A[2,3]/168
M[3,10]=-A[1,1]/180 - A[1,2]/180 - A[1,3]/180 - 7*A[2,2]/360 - 23*A[2,3]/2520 - A[3,3]/42
M[3,11]=A[2,2]/180 + A[2,3]/35 + A[3,3]/30
M[3,12]=A[1,1]/180 + A[1,2]/180 + 5*A[1,3]/252 + A[2,2]/360 + A[2,3]/120 + A[3,3]/70
M[3,13]=A[1,1]/90 + 13*A[1,3]/630 + 19*A[3,3]/1260
M[3,14]=A[2,2]/90 + 13*A[2,3]/630 + 19*A[3,3]/1260
M[3,15]=-A[1,1]/90 - A[1,2]/90 - A[1,3]/90 - A[2,2]/90 - A[2,3]/90 - 97*A[3,3]/1260
M[3,16]=A[1,1]/90 + A[1,2]/45 + A[1,3]/630 + A[2,2]/90 + A[2,3]/630 + A[3,3]/180
M[3,17]=-3*A[1,2]/20 - 93*A[1,3]/280 - 3*A[2,2]/20 - 3*A[2,3]/20 - 9*A[3,3]/28
M[3,18]=-3*A[1,1]/20 - 3*A[1,2]/20 - 3*A[1,3]/20 - 93*A[2,3]/280 - 9*A[3,3]/28
M[3,19]=-3*A[1,1]/40 - 3*A[1,2]/40 - 3*A[1,3]/40 - 3*A[2,2]/40 - 3*A[2,3]/40 - 3*A[3,3]/280
M[3,20]=3*A[1,2]/20 + 93*A[1,3]/280 + 93*A[2,3]/280 + 3*A[3,3]/280
M[4,4]=433*A[1,1]/1260 + 817*A[1,2]/1260 + 817*A[1,3]/1260 + 433*A[2,2]/1260 + 817*A[2,3]/1260 + 433*A[3,3]/1260
M[4,5]=-43*A[1,1]/1260 - 97*A[1,2]/2520 - 97*A[1,3]/2520 - A[2,2]/42 - 53*A[2,3]/1260 - A[3,3]/42
M[4,6]=11*A[1,1]/1260 + 17*A[1,2]/840 + A[1,3]/168 + A[2,2]/70 + 11*A[2,3]/1260
M[4,7]=11*A[1,1]/1260 + A[1,2]/168 + 17*A[1,3]/840 + 11*A[2,3]/1260 + A[3,3]/70
M[4,8]=13*A[1,1]/1260 + 4*A[1,2]/105 + 4*A[1,3]/105 + A[2,2]/30 + A[2,3]/15 + A[3,3]/30
M[4,9]=A[1,1]/70 + 17*A[1,2]/840 + 11*A[1,3]/1260 + 11*A[2,2]/1260 + A[2,3]/168
M[4,10]=-A[1,1]/42 - 97*A[1,2]/2520 - 53*A[1,3]/1260 - 43*A[2,2]/1260 - 97*A[2,3]/2520 - A[3,3]/42
M[4,11]=A[1,2]/168 + 11*A[1,3]/1260 + 11*A[2,2]/1260 + 17*A[2,3]/840 + A[3,3]/70
M[4,12]=A[1,1]/30 + 4*A[1,2]/105 + A[1,3]/15 + 13*A[2,2]/1260 + 4*A[2,3]/105 + A[3,3]/30
M[4,13]=A[1,1]/70 + 11*A[1,2]/1260 + 17*A[1,3]/840 + A[2,3]/168 + 11*A[3,3]/1260
M[4,14]=11*A[1,2]/1260 + A[1,3]/168 + A[2,2]/70 + 17*A[2,3]/840 + 11*A[3,3]/1260
M[4,15]=-A[1,1]/42 - 53*A[1,2]/1260 - 97*A[1,3]/2520 - A[2,2]/42 - 97*A[2,3]/2520 - 43*A[3,3]/1260
M[4,16]=A[1,1]/30 + A[1,2]/15 + 4*A[1,3]/105 + A[2,2]/30 + 4*A[2,3]/105 + 13*A[3,3]/1260
M[4,17]=3*A[1,1]/280 - 87*A[1,2]/280 - 87*A[1,3]/280 - 9*A[2,2]/28 - 69*A[2,3]/140 - 9*A[3,3]/28
M[4,18]=-9*A[1,1]/28 - 87*A[1,2]/280 - 69*A[1,3]/140 + 3*A[2,2]/280 - 87*A[2,3]/280 - 9*A[3,3]/28
M[4,19]=-9*A[1,1]/28 - 69*A[1,2]/140 - 87*A[1,3]/280 - 9*A[2,2]/28 - 87*A[2,3]/280 + 3*A[3,3]/280
M[4,20]=-3*A[1,1]/280 + 3*A[1,2]/56 + 3*A[1,3]/56 - 3*A[2,2]/280 + 3*A[2,3]/56 - 3*A[3,3]/280
M[5,5]=2*A[1,1]/105 + A[1,2]/315 + A[1,3]/315 + A[2,2]/315 + A[2,3]/315 + A[3,3]/315
M[5,6]=-A[1,1]/280 - 13*A[1,2]/2520 - A[2,2]/315
M[5,7]=-A[1,1]/280 - 13*A[1,3]/2520 - A[3,3]/315
M[5,8]=-A[1,1]/630 - A[1,2]/840 - A[1,3]/840 - A[2,2]/315 - 2*A[2,3]/315 - A[3,3]/315
M[5,9]=-19*A[1,1]/2520 - 13*A[1,2]/2520 - A[2,2]/630
M[5,10]=A[1,1]/180 + A[1,2]/420 + A[1,3]/630 + A[2,2]/180 + A[2,3]/630 + A[3,3]/630
M[5,11]=A[1,2]/840 + A[1,3]/504 - A[2,2]/1260 - A[2,3]/630 - A[3,3]/630
M[5,12]=-A[1,1]/280 - A[1,2]/420 - 13*A[1,3]/2520 - A[2,2]/1260 - A[2,3]/630 - A[3,3]/630
M[5,13]=-19*A[1,1]/2520 - 13*A[1,3]/2520 - A[3,3]/630
M[5,14]=A[1,2]/504 + A[1,3]/840 - A[2,2]/630 - A[2,3]/630 - A[3,3]/1260
M[5,15]=A[1,1]/180 + A[1,2]/630 + A[1,3]/420 + A[2,2]/630 + A[2,3]/630 + A[3,3]/180
M[5,16]=-A[1,1]/280 - 13*A[1,2]/2520 - A[1,3]/420 - A[2,2]/630 - A[2,3]/630 - A[3,3]/1260
M[5,17]=3*A[1,2]/140 + 3*A[1,3]/140 + 3*A[2,2]/140 + 3*A[2,3]/140 + 3*A[3,3]/140
M[5,18]=3*A[1,1]/40 + 3*A[1,2]/40 + 3*A[1,3]/70 + 3*A[2,3]/70 + 3*A[3,3]/70
M[5,19]=3*A[1,1]/40 + 3*A[1,2]/70 + 3*A[1,3]/40 + 3*A[2,2]/70 + 3*A[2,3]/70
M[5,20]=-3*A[1,2]/40 - 3*A[1,3]/40 - 3*A[2,3]/70
M[6,6]=A[1,1]/252 + 2*A[1,2]/315 + A[2,2]/210
M[6,7]=-A[1,1]/2520 - A[1,2]/1260 - A[1,3]/1260 - A[2,3]/630
M[6,8]=A[1,1]/2520 + A[1,2]/630 + A[1,3]/1260 + A[2,2]/630 + A[2,3]/630
M[6,9]=A[1,1]/360 + A[1,2]/180 + A[2,2]/360
M[6,10]=-A[1,1]/630 - 13*A[1,2]/2520 - 19*A[2,2]/2520
M[6,11]=-A[1,3]/2520 + A[2,2]/2520 - A[2,3]/2520
M[6,12]=A[1,1]/2520 + A[1,2]/1260 + A[1,3]/2520 + A[2,2]/1260 + A[2,3]/2520
M[6,13]=A[1,1]/2520 - A[1,2]/2520 - A[2,3]/2520
M[6,14]=A[1,2]/840 + A[1,3]/420 + A[2,2]/504 + A[2,3]/840
M[6,15]=-A[1,1]/1260 - A[1,2]/630 + A[1,3]/840 - A[2,2]/630 + A[2,3]/504
M[6,16]=A[1,1]/840 + A[1,2]/420 + A[2,2]/840
M[6,17]=-3*A[1,1]/280 - 9*A[1,2]/280 - 3*A[2,2]/140
M[6,18]=-3*A[1,1]/280 - 3*A[1,2]/280
M[6,19]=-3*A[1,1]/140 - 3*A[1,2]/56 - 9*A[1,3]/280 - 3*A[2,2]/70 - 3*A[2,3]/70
M[6,20]=3*A[1,1]/280 + 3*A[1,2]/140 + 9*A[1,3]/280 + 3*A[2,3]/70
M[7,7]=A[1,1]/252 + 2*A[1,3]/315 + A[3,3]/210
M[7,8]=A[1,1]/2520 + A[1,2]/1260 + A[1,3]/630 + A[2,3]/630 + A[3,3]/630
M[7,9]=A[1,1]/2520 - A[1,3]/2520 - A[2,3]/2520
M[7,10]=-A[1,1]/1260 + A[1,2]/840 - A[1,3]/630 + A[2,3]/504 - A[3,3]/630
M[7,11]=A[1,2]/420 + A[1,3]/840 + A[2,3]/840 + A[3,3]/504
M[7,12]=A[1,1]/840 + A[1,3]/420 + A[3,3]/840
M[7,13]=A[1,1]/360 + A[1,3]/180 + A[3,3]/360
M[7,14]=-A[1,2]/2520 - A[2,3]/2520 + A[3,3]/2520
M[7,15]=-A[1,1]/630 - 13*A[1,3]/2520 - 19*A[3,3]/2520
M[7,16]=A[1,1]/2520 + A[1,2]/2520 + A[1,3]/1260 + A[2,3]/2520 + A[3,3]/1260
M[7,17]=-3*A[1,1]/280 - 9*A[1,3]/280 - 3*A[3,3]/140
M[7,18]=-3*A[1,1]/140 - 9*A[1,2]/280 - 3*A[1,3]/56 - 3*A[2,3]/70 - 3*A[3,3]/70
M[7,19]=-3*A[1,1]/280 - 3*A[1,3]/280
M[7,20]=3*A[1,1]/280 + 9*A[1,2]/280 + 3*A[1,3]/140 + 3*A[2,3]/70
M[8,8]=A[1,1]/420 + A[1,2]/315 + A[1,3]/315 + A[2,2]/210 + A[2,3]/105 + A[3,3]/210
M[8,9]=A[1,1]/1260 + A[1,2]/1260 + A[1,3]/2520 + A[2,2]/2520 + A[2,3]/2520
M[8,10]=-A[1,1]/1260 - A[1,2]/420 - A[1,3]/630 - A[2,2]/280 - 13*A[2,3]/2520 - A[3,3]/630
M[8,11]=A[2,2]/840 + A[2,3]/420 + A[3,3]/840
M[8,12]=A[1,1]/1260 + A[1,2]/252 + A[1,3]/360 + A[2,2]/1260 + A[2,3]/360 + A[3,3]/504
M[8,13]=A[1,1]/1260 + A[1,2]/2520 + A[1,3]/1260 + A[2,3]/2520 + A[3,3]/2520
M[8,14]=A[2,2]/840 + A[2,3]/420 + A[3,3]/840
M[8,15]=-A[1,1]/1260 - A[1,2]/630 - A[1,3]/420 - A[2,2]/630 - 13*A[2,3]/2520 - A[3,3]/280
M[8,16]=A[1,1]/1260 + A[1,2]/360 + A[1,3]/252 + A[2,2]/504 + A[2,3]/360 + A[3,3]/1260
M[8,17]=-3*A[1,2]/280 - 3*A[1,3]/280 - 3*A[2,2]/140 - 3*A[2,3]/70 - 3*A[3,3]/140
M[8,18]=-3*A[1,1]/280 - 3*A[1,2]/140 - 9*A[1,3]/280 - 3*A[2,3]/70 - 3*A[3,3]/70
M[8,19]=-3*A[1,1]/280 - 9*A[1,2]/280 - 3*A[1,3]/140 - 3*A[2,2]/70 - 3*A[2,3]/70
M[8,20]=3*A[1,2]/280 + 3*A[1,3]/280
M[9,9]=A[1,1]/210 + 2*A[1,2]/315 + A[2,2]/252
M[9,10]=-A[1,1]/315 - 13*A[1,2]/2520 - A[2,2]/280
M[9,11]=-A[1,2]/1260 - A[1,3]/630 - A[2,2]/2520 - A[2,3]/1260
M[9,12]=A[1,1]/630 + A[1,2]/630 + A[1,3]/630 + A[2,2]/2520 + A[2,3]/1260
M[9,13]=A[1,1]/504 + A[1,2]/840 + A[1,3]/840 + A[2,3]/420
M[9,14]=-A[1,2]/2520 - A[1,3]/2520 + A[2,2]/2520
M[9,15]=-A[1,1]/630 - A[1,2]/630 + A[1,3]/504 - A[2,2]/1260 + A[2,3]/840
M[9,16]=A[1,1]/840 + A[1,2]/420 + A[2,2]/840
M[9,17]=-3*A[1,2]/280 - 3*A[2,2]/280
M[9,18]=-3*A[1,1]/140 - 9*A[1,2]/280 - 3*A[2,2]/280
M[9,19]=-3*A[1,1]/70 - 3*A[1,2]/56 - 3*A[1,3]/70 - 3*A[2,2]/140 - 9*A[2,3]/280
M[9,20]=3*A[1,2]/140 + 3*A[1,3]/70 + 3*A[2,2]/280 + 9*A[2,3]/280
M[10,10]=A[1,1]/315 + A[1,2]/315 + A[1,3]/315 + 2*A[2,2]/105 + A[2,3]/315 + A[3,3]/315
M[10,11]=-A[2,2]/280 - 13*A[2,3]/2520 - A[3,3]/315
M[10,12]=-A[1,1]/315 - A[1,2]/840 - 2*A[1,3]/315 - A[2,2]/630 - A[2,3]/840 - A[3,3]/315
M[10,13]=-A[1,1]/630 + A[1,2]/504 - A[1,3]/630 + A[2,3]/840 - A[3,3]/1260
M[10,14]=-19*A[2,2]/2520 - 13*A[2,3]/2520 - A[3,3]/630
M[10,15]=A[1,1]/630 + A[1,2]/630 + A[1,3]/630 + A[2,2]/180 + A[2,3]/420 + A[3,3]/180
M[10,16]=-A[1,1]/630 - 13*A[1,2]/2520 - A[1,3]/630 - A[2,2]/280 - A[2,3]/420 - A[3,3]/1260
M[10,17]=3*A[1,2]/40 + 3*A[1,3]/70 + 3*A[2,2]/40 + 3*A[2,3]/70 + 3*A[3,3]/70
M[10,18]=3*A[1,1]/140 + 3*A[1,2]/140 + 3*A[1,3]/140 + 3*A[2,3]/140 + 3*A[3,3]/140
M[10,19]=3*A[1,1]/70 + 3*A[1,2]/70 + 3*A[1,3]/70 + 3*A[2,2]/40 + 3*A[2,3]/40
M[10,20]=-3*A[1,2]/40 - 3*A[1,3]/70 - 3*A[2,3]/40
M[11,11]=A[2,2]/252 + 2*A[2,3]/315 + A[3,3]/210
M[11,12]=A[1,2]/1260 + A[1,3]/630 + A[2,2]/2520 + A[2,3]/630 + A[3,3]/630
M[11,13]=-A[1,2]/2520 - A[1,3]/2520 + A[3,3]/2520
M[11,14]=A[2,2]/360 + A[2,3]/180 + A[3,3]/360
M[11,15]=-A[2,2]/630 - 13*A[2,3]/2520 - 19*A[3,3]/2520
M[11,16]=A[1,2]/2520 + A[1,3]/2520 + A[2,2]/2520 + A[2,3]/1260 + A[3,3]/1260
M[11,17]=-9*A[1,2]/280 - 3*A[1,3]/70 - 3*A[2,2]/140 - 3*A[2,3]/56 - 3*A[3,3]/70
M[11,18]=-3*A[2,2]/280 - 9*A[2,3]/280 - 3*A[3,3]/140
M[11,19]=-3*A[2,2]/280 - 3*A[2,3]/280
M[11,20]=9*A[1,2]/280 + 3*A[1,3]/70 + 3*A[2,2]/280 + 3*A[2,3]/140
M[12,12]=A[1,1]/210 + A[1,2]/315 + A[1,3]/105 + A[2,2]/420 + A[2,3]/315 + A[3,3]/210
M[12,13]=A[1,1]/840 + A[1,3]/420 + A[3,3]/840
M[12,14]=A[1,2]/2520 + A[1,3]/2520 + A[2,2]/1260 + A[2,3]/1260 + A[3,3]/2520
M[12,15]=-A[1,1]/630 - A[1,2]/630 - 13*A[1,3]/2520 - A[2,2]/1260 - A[2,3]/420 - A[3,3]/280
M[12,16]=A[1,1]/504 + A[1,2]/360 + A[1,3]/360 + A[2,2]/1260 + A[2,3]/252 + A[3,3]/1260
M[12,17]=-3*A[1,2]/140 - 3*A[1,3]/70 - 3*A[2,2]/280 - 9*A[2,3]/280 - 3*A[3,3]/70
M[12,18]=-3*A[1,1]/140 - 3*A[1,2]/280 - 3*A[1,3]/70 - 3*A[2,3]/280 - 3*A[3,3]/140
M[12,19]=-3*A[1,1]/70 - 9*A[1,2]/280 - 3*A[1,3]/70 - 3*A[2,2]/280 - 3*A[2,3]/140
M[12,20]=3*A[1,2]/280 + 3*A[2,3]/280
M[13,13]=A[1,1]/210 + 2*A[1,3]/315 + A[3,3]/252
M[13,14]=-A[1,2]/630 - A[1,3]/1260 - A[2,3]/1260 - A[3,3]/2520
M[13,15]=-A[1,1]/315 - 13*A[1,3]/2520 - A[3,3]/280
M[13,16]=A[1,1]/630 + A[1,2]/630 + A[1,3]/630 + A[2,3]/1260 + A[3,3]/2520
M[13,17]=-3*A[1,3]/280 - 3*A[3,3]/280
M[13,18]=-3*A[1,1]/70 - 3*A[1,2]/70 - 3*A[1,3]/56 - 9*A[2,3]/280 - 3*A[3,3]/140
M[13,19]=-3*A[1,1]/140 - 9*A[1,3]/280 - 3*A[3,3]/280
M[13,20]=3*A[1,2]/70 + 3*A[1,3]/140 + 9*A[2,3]/280 + 3*A[3,3]/280
M[14,14]=A[2,2]/210 + 2*A[2,3]/315 + A[3,3]/252
M[14,15]=-A[2,2]/315 - 13*A[2,3]/2520 - A[3,3]/280
M[14,16]=A[1,2]/630 + A[1,3]/1260 + A[2,2]/630 + A[2,3]/630 + A[3,3]/2520
M[14,17]=-3*A[1,2]/70 - 9*A[1,3]/280 - 3*A[2,2]/70 - 3*A[2,3]/56 - 3*A[3,3]/140
M[14,18]=-3*A[2,3]/280 - 3*A[3,3]/280
M[14,19]=-3*A[2,2]/140 - 9*A[2,3]/280 - 3*A[3,3]/280
M[14,20]=3*A[1,2]/70 + 9*A[1,3]/280 + 3*A[2,3]/140 + 3*A[3,3]/280
M[15,15]=A[1,1]/315 + A[1,2]/315 + A[1,3]/315 + A[2,2]/315 + A[2,3]/315 + 2*A[3,3]/105
M[15,16]=-A[1,1]/315 - 2*A[1,2]/315 - A[1,3]/840 - A[2,2]/315 - A[2,3]/840 - A[3,3]/630
M[15,17]=3*A[1,2]/70 + 3*A[1,3]/40 + 3*A[2,2]/70 + 3*A[2,3]/70 + 3*A[3,3]/40
M[15,18]=3*A[1,1]/70 + 3*A[1,2]/70 + 3*A[1,3]/70 + 3*A[2,3]/40 + 3*A[3,3]/40
M[15,19]=3*A[1,1]/140 + 3*A[1,2]/140 + 3*A[1,3]/140 + 3*A[2,2]/140 + 3*A[2,3]/140
M[15,20]=-3*A[1,2]/70 - 3*A[1,3]/40 - 3*A[2,3]/40
M[16,16]=A[1,1]/210 + A[1,2]/105 + A[1,3]/315 + A[2,2]/210 + A[2,3]/315 + A[3,3]/420
M[16,17]=-3*A[1,2]/70 - 3*A[1,3]/140 - 3*A[2,2]/70 - 9*A[2,3]/280 - 3*A[3,3]/280
M[16,18]=-3*A[1,1]/70 - 3*A[1,2]/70 - 9*A[1,3]/280 - 3*A[2,3]/140 - 3*A[3,3]/280
M[16,19]=-3*A[1,1]/140 - 3*A[1,2]/70 - 3*A[1,3]/280 - 3*A[2,2]/140 - 3*A[2,3]/280
M[16,20]=3*A[1,3]/280 + 3*A[2,3]/280
M[17,17]=81*A[1,1]/140 + 81*A[1,2]/140 + 81*A[1,3]/140 + 81*A[2,2]/140 + 81*A[2,3]/140 + 81*A[3,3]/140
M[17,18]=81*A[1,2]/140 + 81*A[1,3]/280 + 81*A[2,3]/280 + 81*A[3,3]/280
M[17,19]=81*A[1,2]/280 + 81*A[1,3]/140 + 81*A[2,2]/280 + 81*A[2,3]/280
M[17,20]=-81*A[1,1]/140 - 81*A[1,2]/140 - 81*A[1,3]/140 - 81*A[2,3]/280
M[18,18]=81*A[1,1]/140 + 81*A[1,2]/140 + 81*A[1,3]/140 + 81*A[2,2]/140 + 81*A[2,3]/140 + 81*A[3,3]/140
M[18,19]=81*A[1,1]/280 + 81*A[1,2]/280 + 81*A[1,3]/280 + 81*A[2,3]/140
M[18,20]=-81*A[1,2]/140 - 81*A[1,3]/280 - 81*A[2,2]/140 - 81*A[2,3]/140
M[19,19]=81*A[1,1]/140 + 81*A[1,2]/140 + 81*A[1,3]/140 + 81*A[2,2]/140 + 81*A[2,3]/140 + 81*A[3,3]/140
M[19,20]=-81*A[1,2]/280 - 81*A[1,3]/140 - 81*A[2,3]/140 - 81*A[3,3]/140
M[20,20]=81*A[1,1]/140 + 81*A[1,2]/140 + 81*A[1,3]/140 + 81*A[2,2]/140 + 81*A[2,3]/140 + 81*A[3,3]/140
M[2,1]=M[1,2]
M[3,1]=M[1,3]
M[4,1]=M[1,4]
M[5,1]=M[1,5]
M[6,1]=M[1,6]
M[7,1]=M[1,7]
M[8,1]=M[1,8]
M[9,1]=M[1,9]
M[10,1]=M[1,10]
M[11,1]=M[1,11]
M[12,1]=M[1,12]
M[13,1]=M[1,13]
M[14,1]=M[1,14]
M[15,1]=M[1,15]
M[16,1]=M[1,16]
M[17,1]=M[1,17]
M[18,1]=M[1,18]
M[19,1]=M[1,19]
M[20,1]=M[1,20]
M[3,2]=M[2,3]
M[4,2]=M[2,4]
M[5,2]=M[2,5]
M[6,2]=M[2,6]
M[7,2]=M[2,7]
M[8,2]=M[2,8]
M[9,2]=M[2,9]
M[10,2]=M[2,10]
M[11,2]=M[2,11]
M[12,2]=M[2,12]
M[13,2]=M[2,13]
M[14,2]=M[2,14]
M[15,2]=M[2,15]
M[16,2]=M[2,16]
M[17,2]=M[2,17]
M[18,2]=M[2,18]
M[19,2]=M[2,19]
M[20,2]=M[2,20]
M[4,3]=M[3,4]
M[5,3]=M[3,5]
M[6,3]=M[3,6]
M[7,3]=M[3,7]
M[8,3]=M[3,8]
M[9,3]=M[3,9]
M[10,3]=M[3,10]
M[11,3]=M[3,11]
M[12,3]=M[3,12]
M[13,3]=M[3,13]
M[14,3]=M[3,14]
M[15,3]=M[3,15]
M[16,3]=M[3,16]
M[17,3]=M[3,17]
M[18,3]=M[3,18]
M[19,3]=M[3,19]
M[20,3]=M[3,20]
M[5,4]=M[4,5]
M[6,4]=M[4,6]
M[7,4]=M[4,7]
M[8,4]=M[4,8]
M[9,4]=M[4,9]
M[10,4]=M[4,10]
M[11,4]=M[4,11]
M[12,4]=M[4,12]
M[13,4]=M[4,13]
M[14,4]=M[4,14]
M[15,4]=M[4,15]
M[16,4]=M[4,16]
M[17,4]=M[4,17]
M[18,4]=M[4,18]
M[19,4]=M[4,19]
M[20,4]=M[4,20]
M[6,5]=M[5,6]
M[7,5]=M[5,7]
M[8,5]=M[5,8]
M[9,5]=M[5,9]
M[10,5]=M[5,10]
M[11,5]=M[5,11]
M[12,5]=M[5,12]
M[13,5]=M[5,13]
M[14,5]=M[5,14]
M[15,5]=M[5,15]
M[16,5]=M[5,16]
M[17,5]=M[5,17]
M[18,5]=M[5,18]
M[19,5]=M[5,19]
M[20,5]=M[5,20]
M[7,6]=M[6,7]
M[8,6]=M[6,8]
M[9,6]=M[6,9]
M[10,6]=M[6,10]
M[11,6]=M[6,11]
M[12,6]=M[6,12]
M[13,6]=M[6,13]
M[14,6]=M[6,14]
M[15,6]=M[6,15]
M[16,6]=M[6,16]
M[17,6]=M[6,17]
M[18,6]=M[6,18]
M[19,6]=M[6,19]
M[20,6]=M[6,20]
M[8,7]=M[7,8]
M[9,7]=M[7,9]
M[10,7]=M[7,10]
M[11,7]=M[7,11]
M[12,7]=M[7,12]
M[13,7]=M[7,13]
M[14,7]=M[7,14]
M[15,7]=M[7,15]
M[16,7]=M[7,16]
M[17,7]=M[7,17]
M[18,7]=M[7,18]
M[19,7]=M[7,19]
M[20,7]=M[7,20]
M[9,8]=M[8,9]
M[10,8]=M[8,10]
M[11,8]=M[8,11]
M[12,8]=M[8,12]
M[13,8]=M[8,13]
M[14,8]=M[8,14]
M[15,8]=M[8,15]
M[16,8]=M[8,16]
M[17,8]=M[8,17]
M[18,8]=M[8,18]
M[19,8]=M[8,19]
M[20,8]=M[8,20]
M[10,9]=M[9,10]
M[11,9]=M[9,11]
M[12,9]=M[9,12]
M[13,9]=M[9,13]
M[14,9]=M[9,14]
M[15,9]=M[9,15]
M[16,9]=M[9,16]
M[17,9]=M[9,17]
M[18,9]=M[9,18]
M[19,9]=M[9,19]
M[20,9]=M[9,20]
M[11,10]=M[10,11]
M[12,10]=M[10,12]
M[13,10]=M[10,13]
M[14,10]=M[10,14]
M[15,10]=M[10,15]
M[16,10]=M[10,16]
M[17,10]=M[10,17]
M[18,10]=M[10,18]
M[19,10]=M[10,19]
M[20,10]=M[10,20]
M[12,11]=M[11,12]
M[13,11]=M[11,13]
M[14,11]=M[11,14]
M[15,11]=M[11,15]
M[16,11]=M[11,16]
M[17,11]=M[11,17]
M[18,11]=M[11,18]
M[19,11]=M[11,19]
M[20,11]=M[11,20]
M[13,12]=M[12,13]
M[14,12]=M[12,14]
M[15,12]=M[12,15]
M[16,12]=M[12,16]
M[17,12]=M[12,17]
M[18,12]=M[12,18]
M[19,12]=M[12,19]
M[20,12]=M[12,20]
M[14,13]=M[13,14]
M[15,13]=M[13,15]
M[16,13]=M[13,16]
M[17,13]=M[13,17]
M[18,13]=M[13,18]
M[19,13]=M[13,19]
M[20,13]=M[13,20]
M[15,14]=M[14,15]
M[16,14]=M[14,16]
M[17,14]=M[14,17]
M[18,14]=M[14,18]
M[19,14]=M[14,19]
M[20,14]=M[14,20]
M[16,15]=M[15,16]
M[17,15]=M[15,17]
M[18,15]=M[15,18]
M[19,15]=M[15,19]
M[20,15]=M[15,20]
M[17,16]=M[16,17]
M[18,16]=M[16,18]
M[19,16]=M[16,19]
M[20,16]=M[16,20]
M[18,17]=M[17,18]
M[19,17]=M[17,19]
M[20,17]=M[17,20]
M[19,18]=M[18,19]
M[20,18]=M[18,20]
M[20,19]=M[19,20]
return recombine_hermite(J,M)*abs(J.det)
end
function s43nv1nu1cc1(J::CooTrafo,c)
A=J.inv*J.inv'
M=Array{Float64}(undef,4,4)
cc=Array{ComplexF64}(undef,4,4)
for i=1:4
for j=1:4
cc[i,j]=c[i]*c[j]
end
end
M[1,1]=A[1,1]*cc[1,1]/60 + A[1,1]*cc[1,2]/60 + A[1,1]*cc[1,3]/60 + A[1,1]*cc[1,4]/60 + A[1,1]*cc[2,2]/60 + A[1,1]*cc[2,3]/60 + A[1,1]*cc[2,4]/60 + A[1,1]*cc[3,3]/60 + A[1,
1]*cc[3,4]/60 + A[1,1]*cc[4,4]/60
M[1,2]=A[1,2]*cc[1,1]/60 + A[1,2]*cc[1,2]/60 + A[1,2]*cc[1,3]/60 + A[1,2]*cc[1,4]/60 + A[1,2]*cc[2,2]/60 + A[1,2]*cc[2,3]/60 + A[1,2]*cc[2,4]/60 + A[1,2]*cc[3,3]/60 + A[1,2]*cc[3,4]/60 + A[1,2]*cc[4,4]/60
M[1,3]=A[1,3]*cc[1,1]/60 + A[1,3]*cc[1,2]/60 + A[1,3]*cc[1,3]/60 + A[1,3]*cc[1,4]/60 + A[1,3]*cc[2,2]/60 + A[1,3]*cc[2,3]/60 + A[1,3]*cc[2,4]/60 + A[1,3]*cc[3,3]/60 + A[1,3]*cc[3,4]/60 + A[1,3]*cc[4,4]/60
M[1,4]=-A[1,1]*cc[1,1]/60 - A[1,1]*cc[1,2]/60 - A[1,1]*cc[1,3]/60 - A[1,1]*cc[1,4]/60 - A[1,1]*cc[2,2]/60 - A[1,1]*cc[2,3]/60 - A[1,1]*cc[2,4]/60 - A[1,1]*cc[3,3]/60 - A[1,1]*cc[3,4]/60 - A[1,1]*cc[4,4]/60 - A[1,2]*cc[1,1]/60 - A[1,2]*cc[1,2]/60 - A[1,2]*cc[1,3]/60 - A[1,2]*cc[1,4]/60 - A[1,2]*cc[2,2]/60 - A[1,2]*cc[2,3]/60 - A[1,2]*cc[2,4]/60 - A[1,2]*cc[3,3]/60 - A[1,2]*cc[3,4]/60 - A[1,2]*cc[4,4]/60 - A[1,3]*cc[1,1]/60 - A[1,3]*cc[1,2]/60 - A[1,3]*cc[1,3]/60 - A[1,3]*cc[1,4]/60 - A[1,3]*cc[2,2]/60 - A[1,3]*cc[2,3]/60 - A[1,3]*cc[2,4]/60 - A[1,3]*cc[3,3]/60 - A[1,3]*cc[3,4]/60 - A[1,3]*cc[4,4]/60
M[2,2]=A[2,2]*cc[1,1]/60 + A[2,2]*cc[1,2]/60 + A[2,2]*cc[1,3]/60 + A[2,2]*cc[1,4]/60 + A[2,2]*cc[2,2]/60 + A[2,2]*cc[2,3]/60 + A[2,2]*cc[2,4]/60 + A[2,2]*cc[3,3]/60 + A[2,2]*cc[3,4]/60 + A[2,2]*cc[4,4]/60
M[2,3]=A[2,3]*cc[1,1]/60 + A[2,3]*cc[1,2]/60 + A[2,3]*cc[1,3]/60 + A[2,3]*cc[1,4]/60 + A[2,3]*cc[2,2]/60 + A[2,3]*cc[2,3]/60 + A[2,3]*cc[2,4]/60 + A[2,3]*cc[3,3]/60 + A[2,3]*cc[3,4]/60 + A[2,3]*cc[4,4]/60
M[2,4]=-A[1,2]*cc[1,1]/60 - A[1,2]*cc[1,2]/60 - A[1,2]*cc[1,3]/60 - A[1,2]*cc[1,4]/60 - A[1,2]*cc[2,2]/60 - A[1,2]*cc[2,3]/60 - A[1,2]*cc[2,4]/60 - A[1,2]*cc[3,3]/60 - A[1,2]*cc[3,4]/60 - A[1,2]*cc[4,4]/60 - A[2,2]*cc[1,1]/60 - A[2,2]*cc[1,2]/60 - A[2,2]*cc[1,3]/60 - A[2,2]*cc[1,4]/60 - A[2,2]*cc[2,2]/60 - A[2,2]*cc[2,3]/60 - A[2,2]*cc[2,4]/60 - A[2,2]*cc[3,3]/60 - A[2,2]*cc[3,4]/60 - A[2,2]*cc[4,4]/60 - A[2,3]*cc[1,1]/60 - A[2,3]*cc[1,2]/60 - A[2,3]*cc[1,3]/60 - A[2,3]*cc[1,4]/60 - A[2,3]*cc[2,2]/60 - A[2,3]*cc[2,3]/60 - A[2,3]*cc[2,4]/60 - A[2,3]*cc[3,3]/60 - A[2,3]*cc[3,4]/60 - A[2,3]*cc[4,4]/60
M[3,3]=A[3,3]*cc[1,1]/60 + A[3,3]*cc[1,2]/60 + A[3,3]*cc[1,3]/60 + A[3,3]*cc[1,4]/60 + A[3,3]*cc[2,2]/60 + A[3,3]*cc[2,3]/60 + A[3,3]*cc[2,4]/60 + A[3,3]*cc[3,3]/60 + A[3,3]*cc[3,4]/60 + A[3,3]*cc[4,4]/60
M[3,4]=-A[1,3]*cc[1,1]/60 - A[1,3]*cc[1,2]/60 - A[1,3]*cc[1,3]/60 - A[1,3]*cc[1,4]/60 - A[1,3]*cc[2,2]/60 - A[1,3]*cc[2,3]/60 - A[1,3]*cc[2,4]/60 - A[1,3]*cc[3,3]/60 - A[1,3]*cc[3,4]/60 - A[1,3]*cc[4,4]/60 - A[2,3]*cc[1,1]/60 - A[2,3]*cc[1,2]/60 - A[2,3]*cc[1,3]/60 - A[2,3]*cc[1,4]/60 - A[2,3]*cc[2,2]/60 - A[2,3]*cc[2,3]/60 - A[2,3]*cc[2,4]/60 - A[2,3]*cc[3,3]/60 - A[2,3]*cc[3,4]/60 - A[2,3]*cc[4,4]/60 - A[3,3]*cc[1,1]/60 - A[3,3]*cc[1,2]/60 - A[3,3]*cc[1,3]/60 - A[3,3]*cc[1,4]/60 - A[3,3]*cc[2,2]/60 - A[3,3]*cc[2,3]/60 - A[3,3]*cc[2,4]/60 - A[3,3]*cc[3,3]/60 - A[3,3]*cc[3,4]/60 - A[3,3]*cc[4,4]/60
M[4,4]=A[1,1]*cc[1,1]/60 + A[1,1]*cc[1,2]/60 + A[1,1]*cc[1,3]/60 + A[1,1]*cc[1,4]/60 + A[1,1]*cc[2,2]/60 + A[1,1]*cc[2,3]/60 + A[1,1]*cc[2,4]/60 + A[1,1]*cc[3,3]/60 + A[1,1]*cc[3,4]/60 + A[1,1]*cc[4,4]/60 + A[1,2]*cc[1,1]/30 + A[1,2]*cc[1,2]/30 + A[1,2]*cc[1,3]/30 + A[1,2]*cc[1,4]/30 + A[1,2]*cc[2,2]/30 + A[1,2]*cc[2,3]/30 + A[1,2]*cc[2,4]/30 + A[1,2]*cc[3,3]/30 + A[1,2]*cc[3,4]/30 + A[1,2]*cc[4,4]/30 + A[1,3]*cc[1,1]/30 + A[1,3]*cc[1,2]/30 + A[1,3]*cc[1,3]/30 + A[1,3]*cc[1,4]/30 + A[1,3]*cc[2,2]/30 + A[1,3]*cc[2,3]/30 + A[1,3]*cc[2,4]/30 + A[1,3]*cc[3,3]/30 + A[1,3]*cc[3,4]/30 + A[1,3]*cc[4,4]/30 + A[2,2]*cc[1,1]/60 + A[2,2]*cc[1,2]/60 + A[2,2]*cc[1,3]/60 + A[2,2]*cc[1,4]/60 + A[2,2]*cc[2,2]/60 + A[2,2]*cc[2,3]/60 + A[2,2]*cc[2,4]/60 + A[2,2]*cc[3,3]/60 + A[2,2]*cc[3,4]/60 + A[2,2]*cc[4,4]/60 + A[2,3]*cc[1,1]/30 + A[2,3]*cc[1,2]/30 + A[2,3]*cc[1,3]/30 + A[2,3]*cc[1,4]/30 + A[2,3]*cc[2,2]/30 + A[2,3]*cc[2,3]/30 + A[2,3]*cc[2,4]/30 + A[2,3]*cc[3,3]/30 + A[2,3]*cc[3,4]/30 + A[2,3]*cc[4,4]/30 + A[3,3]*cc[1,1]/60 + A[3,3]*cc[1,2]/60 + A[3,3]*cc[1,3]/60 + A[3,3]*cc[1,4]/60 + A[3,3]*cc[2,2]/60 + A[3,3]*cc[2,3]/60 + A[3,3]*cc[2,4]/60 + A[3,3]*cc[3,3]/60 + A[3,3]*cc[3,4]/60 + A[3,3]*cc[4,4]/60
M[2,1]=M[1,2]
M[3,1]=M[1,3]
M[4,1]=M[1,4]
M[3,2]=M[2,3]
M[4,2]=M[2,4]
M[4,3]=M[3,4]
return M*abs(J.det)
end
function s43nv2nu2cc1(J::CooTrafo,c)
A=J.inv*J.inv'
M=Array{Float64}(undef,10,10)
cc=Array{ComplexF64}(undef,4,4)
for i=1:4
for j=1:4
cc[i,j]=c[i]*c[j]
end
end
M[1,1]=11*A[1,1]*cc[1,1]/420 + 13*A[1,1]*cc[1,2]/1260 + 13*A[1,1]*cc[1,3]/1260 + 13*A[1,1]*cc[1,4]/1260 + A[1,1]*cc[2,2]/140 + A[1,1]*cc[2,3]/140 + A[1,1]*cc[2,4]/140 + A[1,1]*cc[3,3]/140 + A[1,1]*cc[3,4]/140 + A[1,1]*cc[4,4]/140
M[1,2]=-11*A[1,2]*cc[1,1]/1260 - A[1,2]*cc[1,2]/420 - A[1,2]*cc[1,3]/252 - A[1,2]*cc[1,4]/252 - 11*A[1,2]*cc[2,2]/1260 - A[1,2]*cc[2,3]/252 - A[1,2]*cc[2,4]/252 + A[1,2]*cc[3,3]/1260 + A[1,2]*cc[3,4]/1260 + A[1,2]*cc[4,4]/1260
M[1,3]=-11*A[1,3]*cc[1,1]/1260 - A[1,3]*cc[1,2]/252 - A[1,3]*cc[1,3]/420 - A[1,3]*cc[1,4]/252 + A[1,3]*cc[2,2]/1260 - A[1,3]*cc[2,3]/252 + A[1,3]*cc[2,4]/1260 - 11*A[1,3]*cc[3,3]/1260 - A[1,3]*cc[3,4]/252 + A[1,3]*cc[4,4]/1260
M[1,4]=11*A[1,1]*cc[1,1]/1260 + A[1,1]*cc[1,2]/252 + A[1,1]*cc[1,3]/252 + A[1,1]*cc[1,4]/420 - A[1,1]*cc[2,2]/1260 - A[1,1]*cc[2,3]/1260 + A[1,1]*cc[2,4]/252 - A[1,1]*cc[3,3]/1260 + A[1,1]*cc[3,4]/252 + 11*A[1,1]*cc[4,4]/1260 + 11*A[1,2]*cc[1,1]/1260 + A[1,2]*cc[1,2]/252 + A[1,2]*cc[1,3]/252 + A[1,2]*cc[1,4]/420 - A[1,2]*cc[2,2]/1260 - A[1,2]*cc[2,3]/1260 + A[1,2]*cc[2,4]/252 - A[1,2]*cc[3,3]/1260 + A[1,2]*cc[3,4]/252 + 11*A[1,2]*cc[4,4]/1260 + 11*A[1,3]*cc[1,1]/1260 + A[1,3]*cc[1,2]/252 + A[1,3]*cc[1,3]/252 + A[1,3]*cc[1,4]/420 - A[1,3]*cc[2,2]/1260 - A[1,3]*cc[2,3]/1260 + A[1,3]*cc[2,4]/252 - A[1,3]*cc[3,3]/1260 + A[1,3]*cc[3,4]/252 + 11*A[1,3]*cc[4,4]/1260
M[1,5]=A[1,1]*cc[1,1]/126 + A[1,1]*cc[1,2]/315 + A[1,1]*cc[1,3]/630 + A[1,1]*cc[1,4]/630 - A[1,1]*cc[2,2]/70 - A[1,1]*cc[2,3]/105 - A[1,1]*cc[2,4]/105 - A[1,1]*cc[3,3]/210 - A[1,1]*cc[3,4]/210 - A[1,1]*cc[4,4]/210 + 3*A[1,2]*cc[1,1]/70 + A[1,2]*cc[1,2]/63 + A[1,2]*cc[1,3]/63 + A[1,2]*cc[1,4]/63 + A[1,2]*cc[2,2]/630 + A[1,2]*cc[2,3]/630 + A[1,2]*cc[2,4]/630 + A[1,2]*cc[3,3]/630 + A[1,2]*cc[3,4]/630 + A[1,2]*cc[4,4]/630
M[1,6]=A[1,1]*cc[1,1]/126 + A[1,1]*cc[1,2]/630 + A[1,1]*cc[1,3]/315 + A[1,1]*cc[1,4]/630 - A[1,1]*cc[2,2]/210 - A[1,1]*cc[2,3]/105 - A[1,1]*cc[2,4]/210 - A[1,1]*cc[3,3]/70 - A[1,1]*cc[3,4]/105 - A[1,1]*cc[4,4]/210 + 3*A[1,3]*cc[1,1]/70 + A[1,3]*cc[1,2]/63 + A[1,3]*cc[1,3]/63 + A[1,3]*cc[1,4]/63 + A[1,3]*cc[2,2]/630 + A[1,3]*cc[2,3]/630 + A[1,3]*cc[2,4]/630 + A[1,3]*cc[3,3]/630 + A[1,3]*cc[3,4]/630 + A[1,3]*cc[4,4]/630
M[1,7]=-11*A[1,1]*cc[1,1]/315 - A[1,1]*cc[1,2]/70 - A[1,1]*cc[1,3]/70 - 4*A[1,1]*cc[1,4]/315 - 2*A[1,1]*cc[2,2]/315 - 2*A[1,1]*cc[2,3]/315 - A[1,1]*cc[2,4]/90 - 2*A[1,1]*cc[3,3]/315 - A[1,1]*cc[3,4]/90 - A[1,1]*cc[4,4]/63 - 3*A[1,2]*cc[1,1]/70 - A[1,2]*cc[1,2]/63 - A[1,2]*cc[1,3]/63 - A[1,2]*cc[1,4]/63 - A[1,2]*cc[2,2]/630 - A[1,2]*cc[2,3]/630 - A[1,2]*cc[2,4]/630 - A[1,2]*cc[3,3]/630 - A[1,2]*cc[3,4]/630 - A[1,2]*cc[4,4]/630 - 3*A[1,3]*cc[1,1]/70 - A[1,3]*cc[1,2]/63 - A[1,3]*cc[1,3]/63 - A[1,3]*cc[1,4]/63 - A[1,3]*cc[2,2]/630 - A[1,3]*cc[2,3]/630 - A[1,3]*cc[2,4]/630 - A[1,3]*cc[3,3]/630 - A[1,3]*cc[3,4]/630 - A[1,3]*cc[4,4]/630
M[1,8]=A[1,2]*cc[1,1]/126 + A[1,2]*cc[1,2]/630 + A[1,2]*cc[1,3]/315 + A[1,2]*cc[1,4]/630 - A[1,2]*cc[2,2]/210 - A[1,2]*cc[2,3]/105 - A[1,2]*cc[2,4]/210 - A[1,2]*cc[3,3]/70 - A[1,2]*cc[3,4]/105 - A[1,2]*cc[4,4]/210 + A[1,3]*cc[1,1]/126 + A[1,3]*cc[1,2]/315 + A[1,3]*cc[1,3]/630 + A[1,3]*cc[1,4]/630 - A[1,3]*cc[2,2]/70 - A[1,3]*cc[2,3]/105 - A[1,3]*cc[2,4]/105 - A[1,3]*cc[3,3]/210 - A[1,3]*cc[3,4]/210 - A[1,3]*cc[4,4]/210
M[1,9]=-A[1,1]*cc[1,1]/126 - A[1,1]*cc[1,2]/315 - A[1,1]*cc[1,3]/630 - A[1,1]*cc[1,4]/630 + A[1,1]*cc[2,2]/70 + A[1,1]*cc[2,3]/105 + A[1,1]*cc[2,4]/105 + A[1,1]*cc[3,3]/210 + A[1,1]*cc[3,4]/210 + A[1,1]*cc[4,4]/210 - A[1,2]*cc[1,2]/630 + A[1,2]*cc[1,4]/630 + A[1,2]*cc[2,2]/105 + A[1,2]*cc[2,3]/210 - A[1,2]*cc[3,4]/210 - A[1,2]*cc[4,4]/105 - A[1,3]*cc[1,1]/126 - A[1,3]*cc[1,2]/315 - A[1,3]*cc[1,3]/630 - A[1,3]*cc[1,4]/630 + A[1,3]*cc[2,2]/70 + A[1,3]*cc[2,3]/105 + A[1,3]*cc[2,4]/105 + A[1,3]*cc[3,3]/210 + A[1,3]*cc[3,4]/210 + A[1,3]*cc[4,4]/210
M[1,10]=-A[1,1]*cc[1,1]/126 - A[1,1]*cc[1,2]/630 - A[1,1]*cc[1,3]/315 - A[1,1]*cc[1,4]/630 + A[1,1]*cc[2,2]/210 + A[1,1]*cc[2,3]/105 + A[1,1]*cc[2,4]/210 + A[1,1]*cc[3,3]/70 + A[1,1]*cc[3,4]/105 + A[1,1]*cc[4,4]/210 - A[1,2]*cc[1,1]/126 - A[1,2]*cc[1,2]/630 - A[1,2]*cc[1,3]/315 - A[1,2]*cc[1,4]/630 + A[1,2]*cc[2,2]/210 + A[1,2]*cc[2,3]/105 + A[1,2]*cc[2,4]/210 + A[1,2]*cc[3,3]/70 + A[1,2]*cc[3,4]/105 + A[1,2]*cc[4,4]/210 - A[1,3]*cc[1,3]/630 + A[1,3]*cc[1,4]/630 + A[1,3]*cc[2,3]/210 - A[1,3]*cc[2,4]/210 + A[1,3]*cc[3,3]/105 - A[1,3]*cc[4,4]/105
M[2,2]=A[2,2]*cc[1,1]/140 + 13*A[2,2]*cc[1,2]/1260 + A[2,2]*cc[1,3]/140 + A[2,2]*cc[1,4]/140 + 11*A[2,2]*cc[2,2]/420 + 13*A[2,2]*cc[2,3]/1260 + 13*A[2,2]*cc[2,4]/1260 + A[2,2]*cc[3,3]/140 + A[2,2]*cc[3,4]/140 + A[2,2]*cc[4,4]/140
M[2,3]=A[2,3]*cc[1,1]/1260 - A[2,3]*cc[1,2]/252 - A[2,3]*cc[1,3]/252 + A[2,3]*cc[1,4]/1260 - 11*A[2,3]*cc[2,2]/1260 - A[2,3]*cc[2,3]/420 - A[2,3]*cc[2,4]/252 - 11*A[2,3]*cc[3,3]/1260 - A[2,3]*cc[3,4]/252 + A[2,3]*cc[4,4]/1260
M[2,4]=-A[1,2]*cc[1,1]/1260 + A[1,2]*cc[1,2]/252 - A[1,2]*cc[1,3]/1260 + A[1,2]*cc[1,4]/252 + 11*A[1,2]*cc[2,2]/1260 + A[1,2]*cc[2,3]/252 + A[1,2]*cc[2,4]/420 - A[1,2]*cc[3,3]/1260 + A[1,2]*cc[3,4]/252 + 11*A[1,2]*cc[4,4]/1260 - A[2,2]*cc[1,1]/1260 + A[2,2]*cc[1,2]/252 - A[2,2]*cc[1,3]/1260 + A[2,2]*cc[1,4]/252 + 11*A[2,2]*cc[2,2]/1260 + A[2,2]*cc[2,3]/252 + A[2,2]*cc[2,4]/420 - A[2,2]*cc[3,3]/1260 + A[2,2]*cc[3,4]/252 + 11*A[2,2]*cc[4,4]/1260 - A[2,3]*cc[1,1]/1260 + A[2,3]*cc[1,2]/252 - A[2,3]*cc[1,3]/1260 + A[2,3]*cc[1,4]/252 + 11*A[2,3]*cc[2,2]/1260 + A[2,3]*cc[2,3]/252 + A[2,3]*cc[2,4]/420 - A[2,3]*cc[3,3]/1260 + A[2,3]*cc[3,4]/252 + 11*A[2,3]*cc[4,4]/1260
M[2,5]=A[1,2]*cc[1,1]/630 + A[1,2]*cc[1,2]/63 + A[1,2]*cc[1,3]/630 + A[1,2]*cc[1,4]/630 + 3*A[1,2]*cc[2,2]/70 + A[1,2]*cc[2,3]/63 + A[1,2]*cc[2,4]/63 + A[1,2]*cc[3,3]/630 + A[1,2]*cc[3,4]/630 + A[1,2]*cc[4,4]/630 - A[2,2]*cc[1,1]/70 + A[2,2]*cc[1,2]/315 - A[2,2]*cc[1,3]/105 - A[2,2]*cc[1,4]/105 + A[2,2]*cc[2,2]/126 + A[2,2]*cc[2,3]/630 + A[2,2]*cc[2,4]/630 - A[2,2]*cc[3,3]/210 - A[2,2]*cc[3,4]/210 - A[2,2]*cc[4,4]/210
M[2,6]=-A[1,2]*cc[1,1]/210 + A[1,2]*cc[1,2]/630 - A[1,2]*cc[1,3]/105 - A[1,2]*cc[1,4]/210 + A[1,2]*cc[2,2]/126 + A[1,2]*cc[2,3]/315 + A[1,2]*cc[2,4]/630 - A[1,2]*cc[3,3]/70 - A[1,2]*cc[3,4]/105 - A[1,2]*cc[4,4]/210 - A[2,3]*cc[1,1]/70 + A[2,3]*cc[1,2]/315 - A[2,3]*cc[1,3]/105 - A[2,3]*cc[1,4]/105 + A[2,3]*cc[2,2]/126 + A[2,3]*cc[2,3]/630 + A[2,3]*cc[2,4]/630 - A[2,3]*cc[3,3]/210 - A[2,3]*cc[3,4]/210 - A[2,3]*cc[4,4]/210
M[2,7]=A[1,2]*cc[1,1]/105 - A[1,2]*cc[1,2]/630 + A[1,2]*cc[1,3]/210 + A[1,2]*cc[2,4]/630 - A[1,2]*cc[3,4]/210 - A[1,2]*cc[4,4]/105 + A[2,2]*cc[1,1]/70 - A[2,2]*cc[1,2]/315 + A[2,2]*cc[1,3]/105 + A[2,2]*cc[1,4]/105 - A[2,2]*cc[2,2]/126 - A[2,2]*cc[2,3]/630 - A[2,2]*cc[2,4]/630 + A[2,2]*cc[3,3]/210 + A[2,2]*cc[3,4]/210 + A[2,2]*cc[4,4]/210 + A[2,3]*cc[1,1]/70 - A[2,3]*cc[1,2]/315 + A[2,3]*cc[1,3]/105 + A[2,3]*cc[1,4]/105 - A[2,3]*cc[2,2]/126 - A[2,3]*cc[2,3]/630 - A[2,3]*cc[2,4]/630 + A[2,3]*cc[3,3]/210 + A[2,3]*cc[3,4]/210 + A[2,3]*cc[4,4]/210
M[2,8]=-A[2,2]*cc[1,1]/210 + A[2,2]*cc[1,2]/630 - A[2,2]*cc[1,3]/105 - A[2,2]*cc[1,4]/210 + A[2,2]*cc[2,2]/126 + A[2,2]*cc[2,3]/315 + A[2,2]*cc[2,4]/630 - A[2,2]*cc[3,3]/70 - A[2,2]*cc[3,4]/105 - A[2,2]*cc[4,4]/210 + A[2,3]*cc[1,1]/630 + A[2,3]*cc[1,2]/63 + A[2,3]*cc[1,3]/630 + A[2,3]*cc[1,4]/630 + 3*A[2,3]*cc[2,2]/70 + A[2,3]*cc[2,3]/63 + A[2,3]*cc[2,4]/63 + A[2,3]*cc[3,3]/630 + A[2,3]*cc[3,4]/630 + A[2,3]*cc[4,4]/630
M[2,9]=-A[1,2]*cc[1,1]/630 - A[1,2]*cc[1,2]/63 - A[1,2]*cc[1,3]/630 - A[1,2]*cc[1,4]/630 - 3*A[1,2]*cc[2,2]/70 - A[1,2]*cc[2,3]/63 - A[1,2]*cc[2,4]/63 - A[1,2]*cc[3,3]/630 - A[1,2]*cc[3,4]/630 - A[1,2]*cc[4,4]/630 - 2*A[2,2]*cc[1,1]/315 - A[2,2]*cc[1,2]/70 - 2*A[2,2]*cc[1,3]/315 - A[2,2]*cc[1,4]/90 - 11*A[2,2]*cc[2,2]/315 - A[2,2]*cc[2,3]/70 - 4*A[2,2]*cc[2,4]/315 - 2*A[2,2]*cc[3,3]/315 - A[2,2]*cc[3,4]/90 - A[2,2]*cc[4,4]/63 - A[2,3]*cc[1,1]/630 - A[2,3]*cc[1,2]/63 - A[2,3]*cc[1,3]/630 - A[2,3]*cc[1,4]/630 - 3*A[2,3]*cc[2,2]/70 - A[2,3]*cc[2,3]/63 - A[2,3]*cc[2,4]/63 - A[2,3]*cc[3,3]/630 - A[2,3]*cc[3,4]/630 - A[2,3]*cc[4,4]/630
M[2,10]=A[1,2]*cc[1,1]/210 - A[1,2]*cc[1,2]/630 + A[1,2]*cc[1,3]/105 + A[1,2]*cc[1,4]/210 - A[1,2]*cc[2,2]/126 - A[1,2]*cc[2,3]/315 - A[1,2]*cc[2,4]/630 + A[1,2]*cc[3,3]/70 + A[1,2]*cc[3,4]/105 + A[1,2]*cc[4,4]/210 + A[2,2]*cc[1,1]/210 - A[2,2]*cc[1,2]/630 + A[2,2]*cc[1,3]/105 + A[2,2]*cc[1,4]/210 - A[2,2]*cc[2,2]/126 - A[2,2]*cc[2,3]/315 - A[2,2]*cc[2,4]/630 + A[2,2]*cc[3,3]/70 + A[2,2]*cc[3,4]/105 + A[2,2]*cc[4,4]/210 + A[2,3]*cc[1,3]/210 - A[2,3]*cc[1,4]/210 - A[2,3]*cc[2,3]/630 + A[2,3]*cc[2,4]/630 + A[2,3]*cc[3,3]/105 - A[2,3]*cc[4,4]/105
M[3,3]=A[3,3]*cc[1,1]/140 + A[3,3]*cc[1,2]/140 + 13*A[3,3]*cc[1,3]/1260 + A[3,3]*cc[1,4]/140 + A[3,3]*cc[2,2]/140 + 13*A[3,3]*cc[2,3]/1260 + A[3,3]*cc[2,4]/140 + 11*A[3,3]*cc[3,3]/420 + 13*A[3,3]*cc[3,4]/1260 + A[3,3]*cc[4,4]/140
M[3,4]=-A[1,3]*cc[1,1]/1260 - A[1,3]*cc[1,2]/1260 + A[1,3]*cc[1,3]/252 + A[1,3]*cc[1,4]/252 - A[1,3]*cc[2,2]/1260 + A[1,3]*cc[2,3]/252 + A[1,3]*cc[2,4]/252 + 11*A[1,3]*cc[3,3]/1260 + A[1,3]*cc[3,4]/420 + 11*A[1,3]*cc[4,4]/1260 - A[2,3]*cc[1,1]/1260 - A[2,3]*cc[1,2]/1260 + A[2,3]*cc[1,3]/252 + A[2,3]*cc[1,4]/252 - A[2,3]*cc[2,2]/1260 + A[2,3]*cc[2,3]/252 + A[2,3]*cc[2,4]/252 + 11*A[2,3]*cc[3,3]/1260 + A[2,3]*cc[3,4]/420 + 11*A[2,3]*cc[4,4]/1260 - A[3,3]*cc[1,1]/1260 - A[3,3]*cc[1,2]/1260 + A[3,3]*cc[1,3]/252 + A[3,3]*cc[1,4]/252 - A[3,3]*cc[2,2]/1260 + A[3,3]*cc[2,3]/252 + A[3,3]*cc[2,4]/252 + 11*A[3,3]*cc[3,3]/1260 + A[3,3]*cc[3,4]/420 + 11*A[3,3]*cc[4,4]/1260
M[3,5]=-A[1,3]*cc[1,1]/210 - A[1,3]*cc[1,2]/105 + A[1,3]*cc[1,3]/630 - A[1,3]*cc[1,4]/210 - A[1,3]*cc[2,2]/70 + A[1,3]*cc[2,3]/315 - A[1,3]*cc[2,4]/105 + A[1,3]*cc[3,3]/126 + A[1,3]*cc[3,4]/630 - A[1,3]*cc[4,4]/210 - A[2,3]*cc[1,1]/70 - A[2,3]*cc[1,2]/105 + A[2,3]*cc[1,3]/315 - A[2,3]*cc[1,4]/105 - A[2,3]*cc[2,2]/210 + A[2,3]*cc[2,3]/630 - A[2,3]*cc[2,4]/210 + A[2,3]*cc[3,3]/126 + A[2,3]*cc[3,4]/630 - A[2,3]*cc[4,4]/210
M[3,6]=A[1,3]*cc[1,1]/630 + A[1,3]*cc[1,2]/630 + A[1,3]*cc[1,3]/63 + A[1,3]*cc[1,4]/630 + A[1,3]*cc[2,2]/630 + A[1,3]*cc[2,3]/63 + A[1,3]*cc[2,4]/630 + 3*A[1,3]*cc[3,3]/70 + A[1,3]*cc[3,4]/63 + A[1,3]*cc[4,4]/630 - A[3,3]*cc[1,1]/70 - A[3,3]*cc[1,2]/105 + A[3,3]*cc[1,3]/315 - A[3,3]*cc[1,4]/105 - A[3,3]*cc[2,2]/210 + A[3,3]*cc[2,3]/630 - A[3,3]*cc[2,4]/210 + A[3,3]*cc[3,3]/126 + A[3,3]*cc[3,4]/630 - A[3,3]*cc[4,4]/210
M[3,7]=A[1,3]*cc[1,1]/105 + A[1,3]*cc[1,2]/210 - A[1,3]*cc[1,3]/630 - A[1,3]*cc[2,4]/210 + A[1,3]*cc[3,4]/630 - A[1,3]*cc[4,4]/105 + A[2,3]*cc[1,1]/70 + A[2,3]*cc[1,2]/105 - A[2,3]*cc[1,3]/315 + A[2,3]*cc[1,4]/105 + A[2,3]*cc[2,2]/210 - A[2,3]*cc[2,3]/630 + A[2,3]*cc[2,4]/210 - A[2,3]*cc[3,3]/126 - A[2,3]*cc[3,4]/630 + A[2,3]*cc[4,4]/210 + A[3,3]*cc[1,1]/70 + A[3,3]*cc[1,2]/105 - A[3,3]*cc[1,3]/315 + A[3,3]*cc[1,4]/105 + A[3,3]*cc[2,2]/210 - A[3,3]*cc[2,3]/630 + A[3,3]*cc[2,4]/210 - A[3,3]*cc[3,3]/126 - A[3,3]*cc[3,4]/630 + A[3,3]*cc[4,4]/210
M[3,8]=A[2,3]*cc[1,1]/630 + A[2,3]*cc[1,2]/630 + A[2,3]*cc[1,3]/63 + A[2,3]*cc[1,4]/630 + A[2,3]*cc[2,2]/630 + A[2,3]*cc[2,3]/63 + A[2,3]*cc[2,4]/630 + 3*A[2,3]*cc[3,3]/70 + A[2,3]*cc[3,4]/63 + A[2,3]*cc[4,4]/630 - A[3,3]*cc[1,1]/210 - A[3,3]*cc[1,2]/105 + A[3,3]*cc[1,3]/630 - A[3,3]*cc[1,4]/210 - A[3,3]*cc[2,2]/70 + A[3,3]*cc[2,3]/315 - A[3,3]*cc[2,4]/105 + A[3,3]*cc[3,3]/126 + A[3,3]*cc[3,4]/630 - A[3,3]*cc[4,4]/210
M[3,9]=A[1,3]*cc[1,1]/210 + A[1,3]*cc[1,2]/105 - A[1,3]*cc[1,3]/630 + A[1,3]*cc[1,4]/210 + A[1,3]*cc[2,2]/70 - A[1,3]*cc[2,3]/315 + A[1,3]*cc[2,4]/105 - A[1,3]*cc[3,3]/126 - A[1,3]*cc[3,4]/630 + A[1,3]*cc[4,4]/210 + A[2,3]*cc[1,2]/210 - A[2,3]*cc[1,4]/210 + A[2,3]*cc[2,2]/105 - A[2,3]*cc[2,3]/630 + A[2,3]*cc[3,4]/630 - A[2,3]*cc[4,4]/105 + A[3,3]*cc[1,1]/210 + A[3,3]*cc[1,2]/105 - A[3,3]*cc[1,3]/630 + A[3,3]*cc[1,4]/210 + A[3,3]*cc[2,2]/70 - A[3,3]*cc[2,3]/315 + A[3,3]*cc[2,4]/105 - A[3,3]*cc[3,3]/126 - A[3,3]*cc[3,4]/630 + A[3,3]*cc[4,4]/210
M[3,10]=-A[1,3]*cc[1,1]/630 - A[1,3]*cc[1,2]/630 - A[1,3]*cc[1,3]/63 - A[1,3]*cc[1,4]/630 - A[1,3]*cc[2,2]/630 - A[1,3]*cc[2,3]/63 - A[1,3]*cc[2,4]/630 - 3*A[1,3]*cc[3,3]/70 - A[1,3]*cc[3,4]/63 - A[1,3]*cc[4,4]/630 - A[2,3]*cc[1,1]/630 - A[2,3]*cc[1,2]/630 - A[2,3]*cc[1,3]/63 - A[2,3]*cc[1,4]/630 - A[2,3]*cc[2,2]/630 - A[2,3]*cc[2,3]/63 - A[2,3]*cc[2,4]/630 - 3*A[2,3]*cc[3,3]/70 - A[2,3]*cc[3,4]/63 - A[2,3]*cc[4,4]/630 - 2*A[3,3]*cc[1,1]/315 - 2*A[3,3]*cc[1,2]/315 - A[3,3]*cc[1,3]/70 - A[3,3]*cc[1,4]/90 - 2*A[3,3]*cc[2,2]/315 - A[3,3]*cc[2,3]/70 - A[3,3]*cc[2,4]/90 - 11*A[3,3]*cc[3,3]/315 - 4*A[3,3]*cc[3,4]/315 - A[3,3]*cc[4,4]/63
M[4,4]=A[1,1]*cc[1,1]/140 + A[1,1]*cc[1,2]/140 + A[1,1]*cc[1,3]/140 + 13*A[1,1]*cc[1,4]/1260 + A[1,1]*cc[2,2]/140 + A[1,1]*cc[2,3]/140 + 13*A[1,1]*cc[2,4]/1260 + A[1,1]*cc[3,3]/140 + 13*A[1,1]*cc[3,4]/1260 + 11*A[1,1]*cc[4,4]/420 + A[1,2]*cc[1,1]/70 + A[1,2]*cc[1,2]/70 + A[1,2]*cc[1,3]/70 + 13*A[1,2]*cc[1,4]/630 + A[1,2]*cc[2,2]/70 + A[1,2]*cc[2,3]/70 + 13*A[1,2]*cc[2,4]/630 + A[1,2]*cc[3,3]/70 + 13*A[1,2]*cc[3,4]/630 + 11*A[1,2]*cc[4,4]/210 + A[1,3]*cc[1,1]/70 + A[1,3]*cc[1,2]/70 + A[1,3]*cc[1,3]/70 + 13*A[1,3]*cc[1,4]/630 + A[1,3]*cc[2,2]/70 + A[1,3]*cc[2,3]/70 + 13*A[1,3]*cc[2,4]/630 + A[1,3]*cc[3,3]/70 + 13*A[1,3]*cc[3,4]/630 + 11*A[1,3]*cc[4,4]/210 + A[2,2]*cc[1,1]/140 + A[2,2]*cc[1,2]/140 + A[2,2]*cc[1,3]/140 + 13*A[2,2]*cc[1,4]/1260 + A[2,2]*cc[2,2]/140 + A[2,2]*cc[2,3]/140 + 13*A[2,2]*cc[2,4]/1260 + A[2,2]*cc[3,3]/140 + 13*A[2,2]*cc[3,4]/1260 + 11*A[2,2]*cc[4,4]/420 + A[2,3]*cc[1,1]/70 + A[2,3]*cc[1,2]/70 + A[2,3]*cc[1,3]/70 + 13*A[2,3]*cc[1,4]/630 + A[2,3]*cc[2,2]/70 + A[2,3]*cc[2,3]/70 + 13*A[2,3]*cc[2,4]/630 + A[2,3]*cc[3,3]/70 + 13*A[2,3]*cc[3,4]/630 + 11*A[2,3]*cc[4,4]/210 + A[3,3]*cc[1,1]/140 + A[3,3]*cc[1,2]/140 + A[3,3]*cc[1,3]/140 + 13*A[3,3]*cc[1,4]/1260 + A[3,3]*cc[2,2]/140 + A[3,3]*cc[2,3]/140 + 13*A[3,3]*cc[2,4]/1260 + A[3,3]*cc[3,3]/140 + 13*A[3,3]*cc[3,4]/1260 + 11*A[3,3]*cc[4,4]/420
M[4,5]=A[1,1]*cc[1,1]/210 + A[1,1]*cc[1,2]/105 + A[1,1]*cc[1,3]/210 - A[1,1]*cc[1,4]/630 + A[1,1]*cc[2,2]/70 + A[1,1]*cc[2,3]/105 - A[1,1]*cc[2,4]/315 + A[1,1]*cc[3,3]/210 - A[1,1]*cc[3,4]/630 - A[1,1]*cc[4,4]/126 + 2*A[1,2]*cc[1,1]/105 + 2*A[1,2]*cc[1,2]/105 + A[1,2]*cc[1,3]/70 - A[1,2]*cc[1,4]/210 + 2*A[1,2]*cc[2,2]/105 + A[1,2]*cc[2,3]/70 - A[1,2]*cc[2,4]/210 + A[1,2]*cc[3,3]/105 - A[1,2]*cc[3,4]/315 - A[1,2]*cc[4,4]/63 + A[1,3]*cc[1,1]/210 + A[1,3]*cc[1,2]/105 + A[1,3]*cc[1,3]/210 - A[1,3]*cc[1,4]/630 + A[1,3]*cc[2,2]/70 + A[1,3]*cc[2,3]/105 - A[1,3]*cc[2,4]/315 + A[1,3]*cc[3,3]/210 - A[1,3]*cc[3,4]/630 - A[1,3]*cc[4,4]/126 + A[2,2]*cc[1,1]/70 + A[2,2]*cc[1,2]/105 + A[2,2]*cc[1,3]/105 - A[2,2]*cc[1,4]/315 + A[2,2]*cc[2,2]/210 + A[2,2]*cc[2,3]/210 - A[2,2]*cc[2,4]/630 + A[2,2]*cc[3,3]/210 - A[2,2]*cc[3,4]/630 - A[2,2]*cc[4,4]/126 + A[2,3]*cc[1,1]/70 + A[2,3]*cc[1,2]/105 + A[2,3]*cc[1,3]/105 - A[2,3]*cc[1,4]/315 + A[2,3]*cc[2,2]/210 + A[2,3]*cc[2,3]/210 - A[2,3]*cc[2,4]/630 + A[2,3]*cc[3,3]/210 - A[2,3]*cc[3,4]/630 - A[2,3]*cc[4,4]/126
M[4,6]=A[1,1]*cc[1,1]/210 + A[1,1]*cc[1,2]/210 + A[1,1]*cc[1,3]/105 - A[1,1]*cc[1,4]/630 + A[1,1]*cc[2,2]/210 + A[1,1]*cc[2,3]/105 - A[1,1]*cc[2,4]/630 + A[1,1]*cc[3,3]/70 - A[1,1]*cc[3,4]/315 - A[1,1]*cc[4,4]/126 + A[1,2]*cc[1,1]/210 + A[1,2]*cc[1,2]/210 + A[1,2]*cc[1,3]/105 - A[1,2]*cc[1,4]/630 + A[1,2]*cc[2,2]/210 + A[1,2]*cc[2,3]/105 - A[1,2]*cc[2,4]/630 + A[1,2]*cc[3,3]/70 - A[1,2]*cc[3,4]/315 - A[1,2]*cc[4,4]/126 + 2*A[1,3]*cc[1,1]/105 + A[1,3]*cc[1,2]/70 + 2*A[1,3]*cc[1,3]/105 - A[1,3]*cc[1,4]/210 + A[1,3]*cc[2,2]/105 + A[1,3]*cc[2,3]/70 - A[1,3]*cc[2,4]/315 + 2*A[1,3]*cc[3,3]/105 - A[1,3]*cc[3,4]/210 - A[1,3]*cc[4,4]/63 + A[2,3]*cc[1,1]/70 + A[2,3]*cc[1,2]/105 + A[2,3]*cc[1,3]/105 - A[2,3]*cc[1,4]/315 + A[2,3]*cc[2,2]/210 + A[2,3]*cc[2,3]/210 - A[2,3]*cc[2,4]/630 + A[2,3]*cc[3,3]/210 - A[2,3]*cc[3,4]/630 - A[2,3]*cc[4,4]/126 + A[3,3]*cc[1,1]/70 + A[3,3]*cc[1,2]/105 + A[3,3]*cc[1,3]/105 - A[3,3]*cc[1,4]/315 + A[3,3]*cc[2,2]/210 + A[3,3]*cc[2,3]/210 - A[3,3]*cc[2,4]/630 + A[3,3]*cc[3,3]/210 - A[3,3]*cc[3,4]/630 - A[3,3]*cc[4,4]/126
M[4,7]=-A[1,1]*cc[1,1]/63 - A[1,1]*cc[1,2]/90 - A[1,1]*cc[1,3]/90 - 4*A[1,1]*cc[1,4]/315 - 2*A[1,1]*cc[2,2]/315 - 2*A[1,1]*cc[2,3]/315 - A[1,1]*cc[2,4]/70 - 2*A[1,1]*cc[3,3]/315 - A[1,1]*cc[3,4]/70 - 11*A[1,1]*cc[4,4]/315 - 19*A[1,2]*cc[1,1]/630 - 13*A[1,2]*cc[1,2]/630 - 13*A[1,2]*cc[1,3]/630 - A[1,2]*cc[1,4]/105 - A[1,2]*cc[2,2]/90 - A[1,2]*cc[2,3]/90 - 4*A[1,2]*cc[2,4]/315 - A[1,2]*cc[3,3]/90 - 4*A[1,2]*cc[3,4]/315 - 17*A[1,2]*cc[4,4]/630 - 19*A[1,3]*cc[1,1]/630 - 13*A[1,3]*cc[1,2]/630 - 13*A[1,3]*cc[1,3]/630 - A[1,3]*cc[1,4]/105 - A[1,3]*cc[2,2]/90 - A[1,3]*cc[2,3]/90 - 4*A[1,3]*cc[2,4]/315 - A[1,3]*cc[3,3]/90 - 4*A[1,3]*cc[3,4]/315 - 17*A[1,3]*cc[4,4]/630 - A[2,2]*cc[1,1]/70 - A[2,2]*cc[1,2]/105 - A[2,2]*cc[1,3]/105 + A[2,2]*cc[1,4]/315 - A[2,2]*cc[2,2]/210 - A[2,2]*cc[2,3]/210 + A[2,2]*cc[2,4]/630 - A[2,2]*cc[3,3]/210 + A[2,2]*cc[3,4]/630 + A[2,2]*cc[4,4]/126 - A[2,3]*cc[1,1]/35 - 2*A[2,3]*cc[1,2]/105 - 2*A[2,3]*cc[1,3]/105 + 2*A[2,3]*cc[1,4]/315 - A[2,3]*cc[2,2]/105 - A[2,3]*cc[2,3]/105 + A[2,3]*cc[2,4]/315 - A[2,3]*cc[3,3]/105 + A[2,3]*cc[3,4]/315 + A[2,3]*cc[4,4]/63 - A[3,3]*cc[1,1]/70 - A[3,3]*cc[1,2]/105 - A[3,3]*cc[1,3]/105 + A[3,3]*cc[1,4]/315 - A[3,3]*cc[2,2]/210 - A[3,3]*cc[2,3]/210 + A[3,3]*cc[2,4]/630 - A[3,3]*cc[3,3]/210 + A[3,3]*cc[3,4]/630 + A[3,3]*cc[4,4]/126
M[4,8]=A[1,2]*cc[1,1]/210 + A[1,2]*cc[1,2]/210 + A[1,2]*cc[1,3]/105 - A[1,2]*cc[1,4]/630 + A[1,2]*cc[2,2]/210 + A[1,2]*cc[2,3]/105 - A[1,2]*cc[2,4]/630 + A[1,2]*cc[3,3]/70 - A[1,2]*cc[3,4]/315 - A[1,2]*cc[4,4]/126 + A[1,3]*cc[1,1]/210 + A[1,3]*cc[1,2]/105 + A[1,3]*cc[1,3]/210 - A[1,3]*cc[1,4]/630 + A[1,3]*cc[2,2]/70 + A[1,3]*cc[2,3]/105 - A[1,3]*cc[2,4]/315 + A[1,3]*cc[3,3]/210 - A[1,3]*cc[3,4]/630 - A[1,3]*cc[4,4]/126 + A[2,2]*cc[1,1]/210 + A[2,2]*cc[1,2]/210 + A[2,2]*cc[1,3]/105 - A[2,2]*cc[1,4]/630 + A[2,2]*cc[2,2]/210 + A[2,2]*cc[2,3]/105 - A[2,2]*cc[2,4]/630 + A[2,2]*cc[3,3]/70 - A[2,2]*cc[3,4]/315 - A[2,2]*cc[4,4]/126 + A[2,3]*cc[1,1]/105 + A[2,3]*cc[1,2]/70 + A[2,3]*cc[1,3]/70 - A[2,3]*cc[1,4]/315 + 2*A[2,3]*cc[2,2]/105 + 2*A[2,3]*cc[2,3]/105 - A[2,3]*cc[2,4]/210 + 2*A[2,3]*cc[3,3]/105 - A[2,3]*cc[3,4]/210 - A[2,3]*cc[4,4]/63 + A[3,3]*cc[1,1]/210 + A[3,3]*cc[1,2]/105 + A[3,3]*cc[1,3]/210 - A[3,3]*cc[1,4]/630 + A[3,3]*cc[2,2]/70 + A[3,3]*cc[2,3]/105 - A[3,3]*cc[2,4]/315 + A[3,3]*cc[3,3]/210 - A[3,3]*cc[3,4]/630 - A[3,3]*cc[4,4]/126
M[4,9]=-A[1,1]*cc[1,1]/210 - A[1,1]*cc[1,2]/105 - A[1,1]*cc[1,3]/210 + A[1,1]*cc[1,4]/630 - A[1,1]*cc[2,2]/70 - A[1,1]*cc[2,3]/105 + A[1,1]*cc[2,4]/315 - A[1,1]*cc[3,3]/210 + A[1,1]*cc[3,4]/630 + A[1,1]*cc[4,4]/126 - A[1,2]*cc[1,1]/90 - 13*A[1,2]*cc[1,2]/630 - A[1,2]*cc[1,3]/90 - 4*A[1,2]*cc[1,4]/315 - 19*A[1,2]*cc[2,2]/630 - 13*A[1,2]*cc[2,3]/630 - A[1,2]*cc[2,4]/105 - A[1,2]*cc[3,3]/90 - 4*A[1,2]*cc[3,4]/315 - 17*A[1,2]*cc[4,4]/630 - A[1,3]*cc[1,1]/105 - 2*A[1,3]*cc[1,2]/105 - A[1,3]*cc[1,3]/105 + A[1,3]*cc[1,4]/315 - A[1,3]*cc[2,2]/35 - 2*A[1,3]*cc[2,3]/105 + 2*A[1,3]*cc[2,4]/315 - A[1,3]*cc[3,3]/105 + A[1,3]*cc[3,4]/315 + A[1,3]*cc[4,4]/63 - 2*A[2,2]*cc[1,1]/315 - A[2,2]*cc[1,2]/90 - 2*A[2,2]*cc[1,3]/315 - A[2,2]*cc[1,4]/70 - A[2,2]*cc[2,2]/63 - A[2,2]*cc[2,3]/90 - 4*A[2,2]*cc[2,4]/315 - 2*A[2,2]*cc[3,3]/315 - A[2,2]*cc[3,4]/70 - 11*A[2,2]*cc[4,4]/315 - A[2,3]*cc[1,1]/90 - 13*A[2,3]*cc[1,2]/630 - A[2,3]*cc[1,3]/90 - 4*A[2,3]*cc[1,4]/315 - 19*A[2,3]*cc[2,2]/630 - 13*A[2,3]*cc[2,3]/630 - A[2,3]*cc[2,4]/105 - A[2,3]*cc[3,3]/90 - 4*A[2,3]*cc[3,4]/315 - 17*A[2,3]*cc[4,4]/630 - A[3,3]*cc[1,1]/210 - A[3,3]*cc[1,2]/105 - A[3,3]*cc[1,3]/210 + A[3,3]*cc[1,4]/630 - A[3,3]*cc[2,2]/70 - A[3,3]*cc[2,3]/105 + A[3,3]*cc[2,4]/315 - A[3,3]*cc[3,3]/210 + A[3,3]*cc[3,4]/630 + A[3,3]*cc[4,4]/126
M[4,10]=-A[1,1]*cc[1,1]/210 - A[1,1]*cc[1,2]/210 - A[1,1]*cc[1,3]/105 + A[1,1]*cc[1,4]/630 - A[1,1]*cc[2,2]/210 - A[1,1]*cc[2,3]/105 + A[1,1]*cc[2,4]/630 - A[1,1]*cc[3,3]/70 + A[1,1]*cc[3,4]/315 + A[1,1]*cc[4,4]/126 - A[1,2]*cc[1,1]/105 - A[1,2]*cc[1,2]/105 - 2*A[1,2]*cc[1,3]/105 + A[1,2]*cc[1,4]/315 - A[1,2]*cc[2,2]/105 - 2*A[1,2]*cc[2,3]/105 + A[1,2]*cc[2,4]/315 - A[1,2]*cc[3,3]/35 + 2*A[1,2]*cc[3,4]/315 + A[1,2]*cc[4,4]/63 - A[1,3]*cc[1,1]/90 - A[1,3]*cc[1,2]/90 - 13*A[1,3]*cc[1,3]/630 - 4*A[1,3]*cc[1,4]/315 - A[1,3]*cc[2,2]/90 - 13*A[1,3]*cc[2,3]/630 - 4*A[1,3]*cc[2,4]/315 - 19*A[1,3]*cc[3,3]/630 - A[1,3]*cc[3,4]/105 - 17*A[1,3]*cc[4,4]/630 - A[2,2]*cc[1,1]/210 - A[2,2]*cc[1,2]/210 - A[2,2]*cc[1,3]/105 + A[2,2]*cc[1,4]/630 - A[2,2]*cc[2,2]/210 - A[2,2]*cc[2,3]/105 + A[2,2]*cc[2,4]/630 - A[2,2]*cc[3,3]/70 + A[2,2]*cc[3,4]/315 + A[2,2]*cc[4,4]/126 - A[2,3]*cc[1,1]/90 - A[2,3]*cc[1,2]/90 - 13*A[2,3]*cc[1,3]/630 - 4*A[2,3]*cc[1,4]/315 - A[2,3]*cc[2,2]/90 - 13*A[2,3]*cc[2,3]/630 - 4*A[2,3]*cc[2,4]/315 - 19*A[2,3]*cc[3,3]/630 - A[2,3]*cc[3,4]/105 - 17*A[2,3]*cc[4,4]/630 - 2*A[3,3]*cc[1,1]/315 - 2*A[3,3]*cc[1,2]/315 - A[3,3]*cc[1,3]/90 - A[3,3]*cc[1,4]/70 - 2*A[3,3]*cc[2,2]/315 - A[3,3]*cc[2,3]/90 - A[3,3]*cc[2,4]/70 - A[3,3]*cc[3,3]/63 - 4*A[3,3]*cc[3,4]/315 - 11*A[3,3]*cc[4,4]/315
M[5,5]=4*A[1,1]*cc[1,1]/315 + 4*A[1,1]*cc[1,2]/105 + 4*A[1,1]*cc[1,3]/315 + 4*A[1,1]*cc[1,4]/315 + 8*A[1,1]*cc[2,2]/105 + 4*A[1,1]*cc[2,3]/105 + 4*A[1,1]*cc[2,4]/105 + 4*A[1,1]*cc[3,3]/315 + 4*A[1,1]*cc[3,4]/315 + 4*A[1,1]*cc[4,4]/315 + 4*A[1,2]*cc[1,1]/105 + 16*A[1,2]*cc[1,2]/315 + 8*A[1,2]*cc[1,3]/315 + 8*A[1,2]*cc[1,4]/315 + 4*A[1,2]*cc[2,2]/105 + 8*A[1,2]*cc[2,3]/315 + 8*A[1,2]*cc[2,4]/315 + 4*A[1,2]*cc[3,3]/315 + 4*A[1,2]*cc[3,4]/315 + 4*A[1,2]*cc[4,4]/315 + 8*A[2,2]*cc[1,1]/105 + 4*A[2,2]*cc[1,2]/105 + 4*A[2,2]*cc[1,3]/105 + 4*A[2,2]*cc[1,4]/105 + 4*A[2,2]*cc[2,2]/315 + 4*A[2,2]*cc[2,3]/315 + 4*A[2,2]*cc[2,4]/315 + 4*A[2,2]*cc[3,3]/315 + 4*A[2,2]*cc[3,4]/315 + 4*A[2,2]*cc[4,4]/315
M[5,6]=2*A[1,1]*cc[1,1]/315 + 4*A[1,1]*cc[1,2]/315 + 4*A[1,1]*cc[1,3]/315 + 2*A[1,1]*cc[1,4]/315 + 2*A[1,1]*cc[2,2]/105 + 8*A[1,1]*cc[2,3]/315 + 4*A[1,1]*cc[2,4]/315 + 2*A[1,1]*cc[3,3]/105 + 4*A[1,1]*cc[3,4]/315 + 2*A[1,1]*cc[4,4]/315 + 2*A[1,2]*cc[1,1]/105 + 4*A[1,2]*cc[1,2]/315 + 8*A[1,2]*cc[1,3]/315 + 4*A[1,2]*cc[1,4]/315 + 2*A[1,2]*cc[2,2]/315 + 4*A[1,2]*cc[2,3]/315 + 2*A[1,2]*cc[2,4]/315 + 2*A[1,2]*cc[3,3]/105 + 4*A[1,2]*cc[3,4]/315 + 2*A[1,2]*cc[4,4]/315 + 2*A[1,3]*cc[1,1]/105 + 8*A[1,3]*cc[1,2]/315 + 4*A[1,3]*cc[1,3]/315 + 4*A[1,3]*cc[1,4]/315 + 2*A[1,3]*cc[2,2]/105 + 4*A[1,3]*cc[2,3]/315 + 4*A[1,3]*cc[2,4]/315 + 2*A[1,3]*cc[3,3]/315 + 2*A[1,3]*cc[3,4]/315 + 2*A[1,3]*cc[4,4]/315 + 8*A[2,3]*cc[1,1]/105 + 4*A[2,3]*cc[1,2]/105 + 4*A[2,3]*cc[1,3]/105 + 4*A[2,3]*cc[1,4]/105 + 4*A[2,3]*cc[2,2]/315 + 4*A[2,3]*cc[2,3]/315 + 4*A[2,3]*cc[2,4]/315 + 4*A[2,3]*cc[3,3]/315 + 4*A[2,3]*cc[3,4]/315 + 4*A[2,3]*cc[4,4]/315
M[5,7]=-4*A[1,1]*cc[1,1]/315 - 4*A[1,1]*cc[1,2]/315 - 2*A[1,1]*cc[1,3]/315 + 4*A[1,1]*cc[2,4]/315 + 2*A[1,1]*cc[3,4]/315 + 4*A[1,1]*cc[4,4]/315 - 8*A[1,2]*cc[1,1]/105 - 16*A[1,2]*cc[1,2]/315 - 4*A[1,2]*cc[1,3]/105 - 8*A[1,2]*cc[1,4]/315 - 8*A[1,2]*cc[2,2]/315 - 2*A[1,2]*cc[2,3]/105 - 4*A[1,2]*cc[2,4]/315 - 4*A[1,2]*cc[3,3]/315 - 2*A[1,2]*cc[3,4]/315 - 2*A[1,3]*cc[1,1]/105 - 8*A[1,3]*cc[1,2]/315 - 4*A[1,3]*cc[1,3]/315 - 4*A[1,3]*cc[1,4]/315 - 2*A[1,3]*cc[2,2]/105 - 4*A[1,3]*cc[2,3]/315 - 4*A[1,3]*cc[2,4]/315 - 2*A[1,3]*cc[3,3]/315 - 2*A[1,3]*cc[3,4]/315 - 2*A[1,3]*cc[4,4]/315 - 8*A[2,2]*cc[1,1]/105 - 4*A[2,2]*cc[1,2]/105 - 4*A[2,2]*cc[1,3]/105 - 4*A[2,2]*cc[1,4]/105 - 4*A[2,2]*cc[2,2]/315 - 4*A[2,2]*cc[2,3]/315 - 4*A[2,2]*cc[2,4]/315 - 4*A[2,2]*cc[3,3]/315 - 4*A[2,2]*cc[3,4]/315 - 4*A[2,2]*cc[4,4]/315 - 8*A[2,3]*cc[1,1]/105 - 4*A[2,3]*cc[1,2]/105 - 4*A[2,3]*cc[1,3]/105 - 4*A[2,3]*cc[1,4]/105 - 4*A[2,3]*cc[2,2]/315 - 4*A[2,3]*cc[2,3]/315 - 4*A[2,3]*cc[2,4]/315 - 4*A[2,3]*cc[3,3]/315 - 4*A[2,3]*cc[3,4]/315 - 4*A[2,3]*cc[4,4]/315
M[5,8]=2*A[1,2]*cc[1,1]/315 + 4*A[1,2]*cc[1,2]/315 + 4*A[1,2]*cc[1,3]/315 + 2*A[1,2]*cc[1,4]/315 + 2*A[1,2]*cc[2,2]/105 + 8*A[1,2]*cc[2,3]/315 + 4*A[1,2]*cc[2,4]/315 + 2*A[1,2]*cc[3,3]/105 + 4*A[1,2]*cc[3,4]/315 + 2*A[1,2]*cc[4,4]/315 + 4*A[1,3]*cc[1,1]/315 + 4*A[1,3]*cc[1,2]/105 + 4*A[1,3]*cc[1,3]/315 + 4*A[1,3]*cc[1,4]/315 + 8*A[1,3]*cc[2,2]/105 + 4*A[1,3]*cc[2,3]/105 + 4*A[1,3]*cc[2,4]/105 + 4*A[1,3]*cc[3,3]/315 + 4*A[1,3]*cc[3,4]/315 + 4*A[1,3]*cc[4,4]/315 + 2*A[2,2]*cc[1,1]/105 + 4*A[2,2]*cc[1,2]/315 + 8*A[2,2]*cc[1,3]/315 + 4*A[2,2]*cc[1,4]/315 + 2*A[2,2]*cc[2,2]/315 + 4*A[2,2]*cc[2,3]/315 + 2*A[2,2]*cc[2,4]/315 + 2*A[2,2]*cc[3,3]/105 + 4*A[2,2]*cc[3,4]/315 + 2*A[2,2]*cc[4,4]/315 + 2*A[2,3]*cc[1,1]/105 + 8*A[2,3]*cc[1,2]/315 + 4*A[2,3]*cc[1,3]/315 + 4*A[2,3]*cc[1,4]/315 + 2*A[2,3]*cc[2,2]/105 + 4*A[2,3]*cc[2,3]/315 + 4*A[2,3]*cc[2,4]/315 + 2*A[2,3]*cc[3,3]/315 + 2*A[2,3]*cc[3,4]/315 + 2*A[2,3]*cc[4,4]/315
M[5,9]=-4*A[1,1]*cc[1,1]/315 - 4*A[1,1]*cc[1,2]/105 - 4*A[1,1]*cc[1,3]/315 - 4*A[1,1]*cc[1,4]/315 - 8*A[1,1]*cc[2,2]/105 - 4*A[1,1]*cc[2,3]/105 - 4*A[1,1]*cc[2,4]/105 - 4*A[1,1]*cc[3,3]/315 - 4*A[1,1]*cc[3,4]/315 - 4*A[1,1]*cc[4,4]/315 - 8*A[1,2]*cc[1,1]/315 - 16*A[1,2]*cc[1,2]/315 - 2*A[1,2]*cc[1,3]/105 - 4*A[1,2]*cc[1,4]/315 - 8*A[1,2]*cc[2,2]/105 - 4*A[1,2]*cc[2,3]/105 - 8*A[1,2]*cc[2,4]/315 - 4*A[1,2]*cc[3,3]/315 - 2*A[1,2]*cc[3,4]/315 - 4*A[1,3]*cc[1,1]/315 - 4*A[1,3]*cc[1,2]/105 - 4*A[1,3]*cc[1,3]/315 - 4*A[1,3]*cc[1,4]/315 - 8*A[1,3]*cc[2,2]/105 - 4*A[1,3]*cc[2,3]/105 - 4*A[1,3]*cc[2,4]/105 - 4*A[1,3]*cc[3,3]/315 - 4*A[1,3]*cc[3,4]/315 - 4*A[1,3]*cc[4,4]/315 - 4*A[2,2]*cc[1,2]/315 + 4*A[2,2]*cc[1,4]/315 - 4*A[2,2]*cc[2,2]/315 - 2*A[2,2]*cc[2,3]/315 + 2*A[2,2]*cc[3,4]/315 + 4*A[2,2]*cc[4,4]/315 - 2*A[2,3]*cc[1,1]/105 - 8*A[2,3]*cc[1,2]/315 - 4*A[2,3]*cc[1,3]/315 - 4*A[2,3]*cc[1,4]/315 - 2*A[2,3]*cc[2,2]/105 - 4*A[2,3]*cc[2,3]/315 - 4*A[2,3]*cc[2,4]/315 - 2*A[2,3]*cc[3,3]/315 - 2*A[2,3]*cc[3,4]/315 - 2*A[2,3]*cc[4,4]/315
M[5,10]=-2*A[1,1]*cc[1,1]/315 - 4*A[1,1]*cc[1,2]/315 - 4*A[1,1]*cc[1,3]/315 - 2*A[1,1]*cc[1,4]/315 - 2*A[1,1]*cc[2,2]/105 - 8*A[1,1]*cc[2,3]/315 - 4*A[1,1]*cc[2,4]/315 - 2*A[1,1]*cc[3,3]/105 - 4*A[1,1]*cc[3,4]/315 - 2*A[1,1]*cc[4,4]/315 - 8*A[1,2]*cc[1,1]/315 - 8*A[1,2]*cc[1,2]/315 - 4*A[1,2]*cc[1,3]/105 - 2*A[1,2]*cc[1,4]/105 - 8*A[1,2]*cc[2,2]/315 - 4*A[1,2]*cc[2,3]/105 - 2*A[1,2]*cc[2,4]/105 - 4*A[1,2]*cc[3,3]/105 - 8*A[1,2]*cc[3,4]/315 - 4*A[1,2]*cc[4,4]/315 - 2*A[1,3]*cc[1,3]/315 + 2*A[1,3]*cc[1,4]/315 - 4*A[1,3]*cc[2,3]/315 + 4*A[1,3]*cc[2,4]/315 - 4*A[1,3]*cc[3,3]/315 + 4*A[1,3]*cc[4,4]/315 - 2*A[2,2]*cc[1,1]/105 - 4*A[2,2]*cc[1,2]/315 - 8*A[2,2]*cc[1,3]/315 - 4*A[2,2]*cc[1,4]/315 - 2*A[2,2]*cc[2,2]/315 - 4*A[2,2]*cc[2,3]/315 - 2*A[2,2]*cc[2,4]/315 - 2*A[2,2]*cc[3,3]/105 - 4*A[2,2]*cc[3,4]/315 - 2*A[2,2]*cc[4,4]/315 - 4*A[2,3]*cc[1,3]/315 + 4*A[2,3]*cc[1,4]/315 - 2*A[2,3]*cc[2,3]/315 + 2*A[2,3]*cc[2,4]/315 - 4*A[2,3]*cc[3,3]/315 + 4*A[2,3]*cc[4,4]/315
M[6,6]=4*A[1,1]*cc[1,1]/315 + 4*A[1,1]*cc[1,2]/315 + 4*A[1,1]*cc[1,3]/105 + 4*A[1,1]*cc[1,4]/315 + 4*A[1,1]*cc[2,2]/315 + 4*A[1,1]*cc[2,3]/105 + 4*A[1,1]*cc[2,4]/315 + 8*A[1,1]*cc[3,3]/105 + 4*A[1,1]*cc[3,4]/105 + 4*A[1,1]*cc[4,4]/315 + 4*A[1,3]*cc[1,1]/105 + 8*A[1,3]*cc[1,2]/315 + 16*A[1,3]*cc[1,3]/315 + 8*A[1,3]*cc[1,4]/315 + 4*A[1,3]*cc[2,2]/315 + 8*A[1,3]*cc[2,3]/315 + 4*A[1,3]*cc[2,4]/315 + 4*A[1,3]*cc[3,3]/105 + 8*A[1,3]*cc[3,4]/315 + 4*A[1,3]*cc[4,4]/315 + 8*A[3,3]*cc[1,1]/105 + 4*A[3,3]*cc[1,2]/105 + 4*A[3,3]*cc[1,3]/105 + 4*A[3,3]*cc[1,4]/105 + 4*A[3,3]*cc[2,2]/315 + 4*A[3,3]*cc[2,3]/315 + 4*A[3,3]*cc[2,4]/315 + 4*A[3,3]*cc[3,3]/315 + 4*A[3,3]*cc[3,4]/315 + 4*A[3,3]*cc[4,4]/315
M[6,7]=-4*A[1,1]*cc[1,1]/315 - 2*A[1,1]*cc[1,2]/315 - 4*A[1,1]*cc[1,3]/315 + 2*A[1,1]*cc[2,4]/315 + 4*A[1,1]*cc[3,4]/315 + 4*A[1,1]*cc[4,4]/315 - 2*A[1,2]*cc[1,1]/105 - 4*A[1,2]*cc[1,2]/315 - 8*A[1,2]*cc[1,3]/315 - 4*A[1,2]*cc[1,4]/315 - 2*A[1,2]*cc[2,2]/315 - 4*A[1,2]*cc[2,3]/315 - 2*A[1,2]*cc[2,4]/315 - 2*A[1,2]*cc[3,3]/105 - 4*A[1,2]*cc[3,4]/315 - 2*A[1,2]*cc[4,4]/315 - 8*A[1,3]*cc[1,1]/105 - 4*A[1,3]*cc[1,2]/105 - 16*A[1,3]*cc[1,3]/315 - 8*A[1,3]*cc[1,4]/315 - 4*A[1,3]*cc[2,2]/315 - 2*A[1,3]*cc[2,3]/105 - 2*A[1,3]*cc[2,4]/315 - 8*A[1,3]*cc[3,3]/315 - 4*A[1,3]*cc[3,4]/315 - 8*A[2,3]*cc[1,1]/105 - 4*A[2,3]*cc[1,2]/105 - 4*A[2,3]*cc[1,3]/105 - 4*A[2,3]*cc[1,4]/105 - 4*A[2,3]*cc[2,2]/315 - 4*A[2,3]*cc[2,3]/315 - 4*A[2,3]*cc[2,4]/315 - 4*A[2,3]*cc[3,3]/315 - 4*A[2,3]*cc[3,4]/315 - 4*A[2,3]*cc[4,4]/315 - 8*A[3,3]*cc[1,1]/105 - 4*A[3,3]*cc[1,2]/105 - 4*A[3,3]*cc[1,3]/105 - 4*A[3,3]*cc[1,4]/105 - 4*A[3,3]*cc[2,2]/315 - 4*A[3,3]*cc[2,3]/315 - 4*A[3,3]*cc[2,4]/315 - 4*A[3,3]*cc[3,3]/315 - 4*A[3,3]*cc[3,4]/315 - 4*A[3,3]*cc[4,4]/315
M[6,8]=4*A[1,2]*cc[1,1]/315 + 4*A[1,2]*cc[1,2]/315 + 4*A[1,2]*cc[1,3]/105 + 4*A[1,2]*cc[1,4]/315 + 4*A[1,2]*cc[2,2]/315 + 4*A[1,2]*cc[2,3]/105 + 4*A[1,2]*cc[2,4]/315 + 8*A[1,2]*cc[3,3]/105 + 4*A[1,2]*cc[3,4]/105 + 4*A[1,2]*cc[4,4]/315 + 2*A[1,3]*cc[1,1]/315 + 4*A[1,3]*cc[1,2]/315 + 4*A[1,3]*cc[1,3]/315 + 2*A[1,3]*cc[1,4]/315 + 2*A[1,3]*cc[2,2]/105 + 8*A[1,3]*cc[2,3]/315 + 4*A[1,3]*cc[2,4]/315 + 2*A[1,3]*cc[3,3]/105 + 4*A[1,3]*cc[3,4]/315 + 2*A[1,3]*cc[4,4]/315 + 2*A[2,3]*cc[1,1]/105 + 4*A[2,3]*cc[1,2]/315 + 8*A[2,3]*cc[1,3]/315 + 4*A[2,3]*cc[1,4]/315 + 2*A[2,3]*cc[2,2]/315 + 4*A[2,3]*cc[2,3]/315 + 2*A[2,3]*cc[2,4]/315 + 2*A[2,3]*cc[3,3]/105 + 4*A[2,3]*cc[3,4]/315 + 2*A[2,3]*cc[4,4]/315 + 2*A[3,3]*cc[1,1]/105 + 8*A[3,3]*cc[1,2]/315 + 4*A[3,3]*cc[1,3]/315 + 4*A[3,3]*cc[1,4]/315 + 2*A[3,3]*cc[2,2]/105 + 4*A[3,3]*cc[2,3]/315 + 4*A[3,3]*cc[2,4]/315 + 2*A[3,3]*cc[3,3]/315 + 2*A[3,3]*cc[3,4]/315 + 2*A[3,3]*cc[4,4]/315
M[6,9]=-2*A[1,1]*cc[1,1]/315 - 4*A[1,1]*cc[1,2]/315 - 4*A[1,1]*cc[1,3]/315 - 2*A[1,1]*cc[1,4]/315 - 2*A[1,1]*cc[2,2]/105 - 8*A[1,1]*cc[2,3]/315 - 4*A[1,1]*cc[2,4]/315 - 2*A[1,1]*cc[3,3]/105 - 4*A[1,1]*cc[3,4]/315 - 2*A[1,1]*cc[4,4]/315 - 2*A[1,2]*cc[1,2]/315 + 2*A[1,2]*cc[1,4]/315 - 4*A[1,2]*cc[2,2]/315 - 4*A[1,2]*cc[2,3]/315 + 4*A[1,2]*cc[3,4]/315 + 4*A[1,2]*cc[4,4]/315 - 8*A[1,3]*cc[1,1]/315 - 4*A[1,3]*cc[1,2]/105 - 8*A[1,3]*cc[1,3]/315 - 2*A[1,3]*cc[1,4]/105 - 4*A[1,3]*cc[2,2]/105 - 4*A[1,3]*cc[2,3]/105 - 8*A[1,3]*cc[2,4]/315 - 8*A[1,3]*cc[3,3]/315 - 2*A[1,3]*cc[3,4]/105 - 4*A[1,3]*cc[4,4]/315 - 4*A[2,3]*cc[1,2]/315 + 4*A[2,3]*cc[1,4]/315 - 4*A[2,3]*cc[2,2]/315 - 2*A[2,3]*cc[2,3]/315 + 2*A[2,3]*cc[3,4]/315 + 4*A[2,3]*cc[4,4]/315 - 2*A[3,3]*cc[1,1]/105 - 8*A[3,3]*cc[1,2]/315 - 4*A[3,3]*cc[1,3]/315 - 4*A[3,3]*cc[1,4]/315 - 2*A[3,3]*cc[2,2]/105 - 4*A[3,3]*cc[2,3]/315 - 4*A[3,3]*cc[2,4]/315 - 2*A[3,3]*cc[3,3]/315 - 2*A[3,3]*cc[3,4]/315 - 2*A[3,3]*cc[4,4]/315
M[6,10]=-4*A[1,1]*cc[1,1]/315 - 4*A[1,1]*cc[1,2]/315 - 4*A[1,1]*cc[1,3]/105 - 4*A[1,1]*cc[1,4]/315 - 4*A[1,1]*cc[2,2]/315 - 4*A[1,1]*cc[2,3]/105 - 4*A[1,1]*cc[2,4]/315 - 8*A[1,1]*cc[3,3]/105 - 4*A[1,1]*cc[3,4]/105 - 4*A[1,1]*cc[4,4]/315 - 4*A[1,2]*cc[1,1]/315 - 4*A[1,2]*cc[1,2]/315 - 4*A[1,2]*cc[1,3]/105 - 4*A[1,2]*cc[1,4]/315 - 4*A[1,2]*cc[2,2]/315 - 4*A[1,2]*cc[2,3]/105 - 4*A[1,2]*cc[2,4]/315 - 8*A[1,2]*cc[3,3]/105 - 4*A[1,2]*cc[3,4]/105 - 4*A[1,2]*cc[4,4]/315 - 8*A[1,3]*cc[1,1]/315 - 2*A[1,3]*cc[1,2]/105 - 16*A[1,3]*cc[1,3]/315 - 4*A[1,3]*cc[1,4]/315 - 4*A[1,3]*cc[2,2]/315 - 4*A[1,3]*cc[2,3]/105 - 2*A[1,3]*cc[2,4]/315 - 8*A[1,3]*cc[3,3]/105 - 8*A[1,3]*cc[3,4]/315 - 2*A[2,3]*cc[1,1]/105 - 4*A[2,3]*cc[1,2]/315 - 8*A[2,3]*cc[1,3]/315 - 4*A[2,3]*cc[1,4]/315 - 2*A[2,3]*cc[2,2]/315 - 4*A[2,3]*cc[2,3]/315 - 2*A[2,3]*cc[2,4]/315 - 2*A[2,3]*cc[3,3]/105 - 4*A[2,3]*cc[3,4]/315 - 2*A[2,3]*cc[4,4]/315 - 4*A[3,3]*cc[1,3]/315 + 4*A[3,3]*cc[1,4]/315 - 2*A[3,3]*cc[2,3]/315 + 2*A[3,3]*cc[2,4]/315 - 4*A[3,3]*cc[3,3]/315 + 4*A[3,3]*cc[4,4]/315
M[7,7]=16*A[1,1]*cc[1,1]/315 + 8*A[1,1]*cc[1,2]/315 + 8*A[1,1]*cc[1,3]/315 + 8*A[1,1]*cc[1,4]/315 + 4*A[1,1]*cc[2,2]/315 + 4*A[1,1]*cc[2,3]/315 + 8*A[1,1]*cc[2,4]/315 + 4*A[1,1]*cc[3,3]/315 + 8*A[1,1]*cc[3,4]/315 + 16*A[1,1]*cc[4,4]/315 + 4*A[1,2]*cc[1,1]/35 + 16*A[1,2]*cc[1,2]/315 + 16*A[1,2]*cc[1,3]/315 + 8*A[1,2]*cc[1,4]/315 + 4*A[1,2]*cc[2,2]/315 + 4*A[1,2]*cc[2,3]/315 + 4*A[1,2]*cc[3,3]/315 - 4*A[1,2]*cc[4,4]/315 + 4*A[1,3]*cc[1,1]/35 + 16*A[1,3]*cc[1,2]/315 + 16*A[1,3]*cc[1,3]/315 + 8*A[1,3]*cc[1,4]/315 + 4*A[1,3]*cc[2,2]/315 + 4*A[1,3]*cc[2,3]/315 + 4*A[1,3]*cc[3,3]/315 - 4*A[1,3]*cc[4,4]/315 + 8*A[2,2]*cc[1,1]/105 + 4*A[2,2]*cc[1,2]/105 + 4*A[2,2]*cc[1,3]/105 + 4*A[2,2]*cc[1,4]/105 + 4*A[2,2]*cc[2,2]/315 + 4*A[2,2]*cc[2,3]/315 + 4*A[2,2]*cc[2,4]/315 + 4*A[2,2]*cc[3,3]/315 + 4*A[2,2]*cc[3,4]/315 + 4*A[2,2]*cc[4,4]/315 + 16*A[2,3]*cc[1,1]/105 + 8*A[2,3]*cc[1,2]/105 + 8*A[2,3]*cc[1,3]/105 + 8*A[2,3]*cc[1,4]/105 + 8*A[2,3]*cc[2,2]/315 + 8*A[2,3]*cc[2,3]/315 + 8*A[2,3]*cc[2,4]/315 + 8*A[2,3]*cc[3,3]/315 + 8*A[2,3]*cc[3,4]/315 + 8*A[2,3]*cc[4,4]/315 + 8*A[3,3]*cc[1,1]/105 + 4*A[3,3]*cc[1,2]/105 + 4*A[3,3]*cc[1,3]/105 + 4*A[3,3]*cc[1,4]/105 + 4*A[3,3]*cc[2,2]/315 + 4*A[3,3]*cc[2,3]/315 + 4*A[3,3]*cc[2,4]/315 + 4*A[3,3]*cc[3,3]/315 + 4*A[3,3]*cc[3,4]/315 + 4*A[3,3]*cc[4,4]/315
M[7,8]=-4*A[1,2]*cc[1,1]/315 - 2*A[1,2]*cc[1,2]/315 - 4*A[1,2]*cc[1,3]/315 + 2*A[1,2]*cc[2,4]/315 + 4*A[1,2]*cc[3,4]/315 + 4*A[1,2]*cc[4,4]/315 - 4*A[1,3]*cc[1,1]/315 - 4*A[1,3]*cc[1,2]/315 - 2*A[1,3]*cc[1,3]/315 + 4*A[1,3]*cc[2,4]/315 + 2*A[1,3]*cc[3,4]/315 + 4*A[1,3]*cc[4,4]/315 - 2*A[2,2]*cc[1,1]/105 - 4*A[2,2]*cc[1,2]/315 - 8*A[2,2]*cc[1,3]/315 - 4*A[2,2]*cc[1,4]/315 - 2*A[2,2]*cc[2,2]/315 - 4*A[2,2]*cc[2,3]/315 - 2*A[2,2]*cc[2,4]/315 - 2*A[2,2]*cc[3,3]/105 - 4*A[2,2]*cc[3,4]/315 - 2*A[2,2]*cc[4,4]/315 - 4*A[2,3]*cc[1,1]/105 - 4*A[2,3]*cc[1,2]/105 - 4*A[2,3]*cc[1,3]/105 - 8*A[2,3]*cc[1,4]/315 - 8*A[2,3]*cc[2,2]/315 - 8*A[2,3]*cc[2,3]/315 - 2*A[2,3]*cc[2,4]/105 - 8*A[2,3]*cc[3,3]/315 - 2*A[2,3]*cc[3,4]/105 - 4*A[2,3]*cc[4,4]/315 - 2*A[3,3]*cc[1,1]/105 - 8*A[3,3]*cc[1,2]/315 - 4*A[3,3]*cc[1,3]/315 - 4*A[3,3]*cc[1,4]/315 - 2*A[3,3]*cc[2,2]/105 - 4*A[3,3]*cc[2,3]/315 - 4*A[3,3]*cc[2,4]/315 - 2*A[3,3]*cc[3,3]/315 - 2*A[3,3]*cc[3,4]/315 - 2*A[3,3]*cc[4,4]/315
M[7,9]=4*A[1,1]*cc[1,1]/315 + 4*A[1,1]*cc[1,2]/315 + 2*A[1,1]*cc[1,3]/315 - 4*A[1,1]*cc[2,4]/315 - 2*A[1,1]*cc[3,4]/315 - 4*A[1,1]*cc[4,4]/315 + 8*A[1,2]*cc[1,1]/315 + 4*A[1,2]*cc[1,2]/105 + 2*A[1,2]*cc[1,3]/105 + 8*A[1,2]*cc[1,4]/315 + 8*A[1,2]*cc[2,2]/315 + 2*A[1,2]*cc[2,3]/105 + 8*A[1,2]*cc[2,4]/315 + 4*A[1,2]*cc[3,3]/315 + 8*A[1,2]*cc[3,4]/315 + 16*A[1,2]*cc[4,4]/315 + 2*A[1,3]*cc[1,1]/63 + 4*A[1,3]*cc[1,2]/105 + 2*A[1,3]*cc[1,3]/105 + 4*A[1,3]*cc[1,4]/315 + 2*A[1,3]*cc[2,2]/105 + 4*A[1,3]*cc[2,3]/315 + 2*A[1,3]*cc[3,3]/315 - 2*A[1,3]*cc[4,4]/315 + 4*A[2,2]*cc[1,2]/315 - 4*A[2,2]*cc[1,4]/315 + 4*A[2,2]*cc[2,2]/315 + 2*A[2,2]*cc[2,3]/315 - 2*A[2,2]*cc[3,4]/315 - 4*A[2,2]*cc[4,4]/315 + 2*A[2,3]*cc[1,1]/105 + 4*A[2,3]*cc[1,2]/105 + 4*A[2,3]*cc[1,3]/315 + 2*A[2,3]*cc[2,2]/63 + 2*A[2,3]*cc[2,3]/105 + 4*A[2,3]*cc[2,4]/315 + 2*A[2,3]*cc[3,3]/315 - 2*A[2,3]*cc[4,4]/315 + 2*A[3,3]*cc[1,1]/105 + 8*A[3,3]*cc[1,2]/315 + 4*A[3,3]*cc[1,3]/315 + 4*A[3,3]*cc[1,4]/315 + 2*A[3,3]*cc[2,2]/105 + 4*A[3,3]*cc[2,3]/315 + 4*A[3,3]*cc[2,4]/315 + 2*A[3,3]*cc[3,3]/315 + 2*A[3,3]*cc[3,4]/315 + 2*A[3,3]*cc[4,4]/315
M[7,10]=4*A[1,1]*cc[1,1]/315 + 2*A[1,1]*cc[1,2]/315 + 4*A[1,1]*cc[1,3]/315 - 2*A[1,1]*cc[2,4]/315 - 4*A[1,1]*cc[3,4]/315 - 4*A[1,1]*cc[4,4]/315 + 2*A[1,2]*cc[1,1]/63 + 2*A[1,2]*cc[1,2]/105 + 4*A[1,2]*cc[1,3]/105 + 4*A[1,2]*cc[1,4]/315 + 2*A[1,2]*cc[2,2]/315 + 4*A[1,2]*cc[2,3]/315 + 2*A[1,2]*cc[3,3]/105 - 2*A[1,2]*cc[4,4]/315 + 8*A[1,3]*cc[1,1]/315 + 2*A[1,3]*cc[1,2]/105 + 4*A[1,3]*cc[1,3]/105 + 8*A[1,3]*cc[1,4]/315 + 4*A[1,3]*cc[2,2]/315 + 2*A[1,3]*cc[2,3]/105 + 8*A[1,3]*cc[2,4]/315 + 8*A[1,3]*cc[3,3]/315 + 8*A[1,3]*cc[3,4]/315 + 16*A[1,3]*cc[4,4]/315 + 2*A[2,2]*cc[1,1]/105 + 4*A[2,2]*cc[1,2]/315 + 8*A[2,2]*cc[1,3]/315 + 4*A[2,2]*cc[1,4]/315 + 2*A[2,2]*cc[2,2]/315 + 4*A[2,2]*cc[2,3]/315 + 2*A[2,2]*cc[2,4]/315 + 2*A[2,2]*cc[3,3]/105 + 4*A[2,2]*cc[3,4]/315 + 2*A[2,2]*cc[4,4]/315 + 2*A[2,3]*cc[1,1]/105 + 4*A[2,3]*cc[1,2]/315 + 4*A[2,3]*cc[1,3]/105 + 2*A[2,3]*cc[2,2]/315 + 2*A[2,3]*cc[2,3]/105 + 2*A[2,3]*cc[3,3]/63 + 4*A[2,3]*cc[3,4]/315 - 2*A[2,3]*cc[4,4]/315 + 4*A[3,3]*cc[1,3]/315 - 4*A[3,3]*cc[1,4]/315 + 2*A[3,3]*cc[2,3]/315 - 2*A[3,3]*cc[2,4]/315 + 4*A[3,3]*cc[3,3]/315 - 4*A[3,3]*cc[4,4]/315
M[8,8]=4*A[2,2]*cc[1,1]/315 + 4*A[2,2]*cc[1,2]/315 + 4*A[2,2]*cc[1,3]/105 + 4*A[2,2]*cc[1,4]/315 + 4*A[2,2]*cc[2,2]/315 + 4*A[2,2]*cc[2,3]/105 + 4*A[2,2]*cc[2,4]/315 + 8*A[2,2]*cc[3,3]/105 + 4*A[2,2]*cc[3,4]/105 + 4*A[2,2]*cc[4,4]/315 + 4*A[2,3]*cc[1,1]/315 + 8*A[2,3]*cc[1,2]/315 + 8*A[2,3]*cc[1,3]/315 + 4*A[2,3]*cc[1,4]/315 + 4*A[2,3]*cc[2,2]/105 + 16*A[2,3]*cc[2,3]/315 + 8*A[2,3]*cc[2,4]/315 + 4*A[2,3]*cc[3,3]/105 + 8*A[2,3]*cc[3,4]/315 + 4*A[2,3]*cc[4,4]/315 + 4*A[3,3]*cc[1,1]/315 + 4*A[3,3]*cc[1,2]/105 + 4*A[3,3]*cc[1,3]/315 + 4*A[3,3]*cc[1,4]/315 + 8*A[3,3]*cc[2,2]/105 + 4*A[3,3]*cc[2,3]/105 + 4*A[3,3]*cc[2,4]/105 + 4*A[3,3]*cc[3,3]/315 + 4*A[3,3]*cc[3,4]/315 + 4*A[3,3]*cc[4,4]/315
M[8,9]=-2*A[1,2]*cc[1,1]/315 - 4*A[1,2]*cc[1,2]/315 - 4*A[1,2]*cc[1,3]/315 - 2*A[1,2]*cc[1,4]/315 - 2*A[1,2]*cc[2,2]/105 - 8*A[1,2]*cc[2,3]/315 - 4*A[1,2]*cc[2,4]/315 - 2*A[1,2]*cc[3,3]/105 - 4*A[1,2]*cc[3,4]/315 - 2*A[1,2]*cc[4,4]/315 - 4*A[1,3]*cc[1,1]/315 - 4*A[1,3]*cc[1,2]/105 - 4*A[1,3]*cc[1,3]/315 - 4*A[1,3]*cc[1,4]/315 - 8*A[1,3]*cc[2,2]/105 - 4*A[1,3]*cc[2,3]/105 - 4*A[1,3]*cc[2,4]/105 - 4*A[1,3]*cc[3,3]/315 - 4*A[1,3]*cc[3,4]/315 - 4*A[1,3]*cc[4,4]/315 - 2*A[2,2]*cc[1,2]/315 + 2*A[2,2]*cc[1,4]/315 - 4*A[2,2]*cc[2,2]/315 - 4*A[2,2]*cc[2,3]/315 + 4*A[2,2]*cc[3,4]/315 + 4*A[2,2]*cc[4,4]/315 - 4*A[2,3]*cc[1,1]/315 - 4*A[2,3]*cc[1,2]/105 - 2*A[2,3]*cc[1,3]/105 - 2*A[2,3]*cc[1,4]/315 - 8*A[2,3]*cc[2,2]/105 - 16*A[2,3]*cc[2,3]/315 - 8*A[2,3]*cc[2,4]/315 - 8*A[2,3]*cc[3,3]/315 - 4*A[2,3]*cc[3,4]/315 - 4*A[3,3]*cc[1,1]/315 - 4*A[3,3]*cc[1,2]/105 - 4*A[3,3]*cc[1,3]/315 - 4*A[3,3]*cc[1,4]/315 - 8*A[3,3]*cc[2,2]/105 - 4*A[3,3]*cc[2,3]/105 - 4*A[3,3]*cc[2,4]/105 - 4*A[3,3]*cc[3,3]/315 - 4*A[3,3]*cc[3,4]/315 - 4*A[3,3]*cc[4,4]/315
M[8,10]=-4*A[1,2]*cc[1,1]/315 - 4*A[1,2]*cc[1,2]/315 - 4*A[1,2]*cc[1,3]/105 - 4*A[1,2]*cc[1,4]/315 - 4*A[1,2]*cc[2,2]/315 - 4*A[1,2]*cc[2,3]/105 - 4*A[1,2]*cc[2,4]/315 - 8*A[1,2]*cc[3,3]/105 - 4*A[1,2]*cc[3,4]/105 - 4*A[1,2]*cc[4,4]/315 - 2*A[1,3]*cc[1,1]/315 - 4*A[1,3]*cc[1,2]/315 - 4*A[1,3]*cc[1,3]/315 - 2*A[1,3]*cc[1,4]/315 - 2*A[1,3]*cc[2,2]/105 - 8*A[1,3]*cc[2,3]/315 - 4*A[1,3]*cc[2,4]/315 - 2*A[1,3]*cc[3,3]/105 - 4*A[1,3]*cc[3,4]/315 - 2*A[1,3]*cc[4,4]/315 - 4*A[2,2]*cc[1,1]/315 - 4*A[2,2]*cc[1,2]/315 - 4*A[2,2]*cc[1,3]/105 - 4*A[2,2]*cc[1,4]/315 - 4*A[2,2]*cc[2,2]/315 - 4*A[2,2]*cc[2,3]/105 - 4*A[2,2]*cc[2,4]/315 - 8*A[2,2]*cc[3,3]/105 - 4*A[2,2]*cc[3,4]/105 - 4*A[2,2]*cc[4,4]/315 - 4*A[2,3]*cc[1,1]/315 - 2*A[2,3]*cc[1,2]/105 - 4*A[2,3]*cc[1,3]/105 - 2*A[2,3]*cc[1,4]/315 - 8*A[2,3]*cc[2,2]/315 - 16*A[2,3]*cc[2,3]/315 - 4*A[2,3]*cc[2,4]/315 - 8*A[2,3]*cc[3,3]/105 - 8*A[2,3]*cc[3,4]/315 - 2*A[3,3]*cc[1,3]/315 + 2*A[3,3]*cc[1,4]/315 - 4*A[3,3]*cc[2,3]/315 + 4*A[3,3]*cc[2,4]/315 - 4*A[3,3]*cc[3,3]/315 + 4*A[3,3]*cc[4,4]/315
M[9,9]=4*A[1,1]*cc[1,1]/315 + 4*A[1,1]*cc[1,2]/105 + 4*A[1,1]*cc[1,3]/315 + 4*A[1,1]*cc[1,4]/315 + 8*A[1,1]*cc[2,2]/105 + 4*A[1,1]*cc[2,3]/105 + 4*A[1,1]*cc[2,4]/105 + 4*A[1,1]*cc[3,3]/315 + 4*A[1,1]*cc[3,4]/315 + 4*A[1,1]*cc[4,4]/315 + 4*A[1,2]*cc[1,1]/315 + 16*A[1,2]*cc[1,2]/315 + 4*A[1,2]*cc[1,3]/315 + 4*A[1,2]*cc[2,2]/35 + 16*A[1,2]*cc[2,3]/315 + 8*A[1,2]*cc[2,4]/315 + 4*A[1,2]*cc[3,3]/315 - 4*A[1,2]*cc[4,4]/315 + 8*A[1,3]*cc[1,1]/315 + 8*A[1,3]*cc[1,2]/105 + 8*A[1,3]*cc[1,3]/315 + 8*A[1,3]*cc[1,4]/315 + 16*A[1,3]*cc[2,2]/105 + 8*A[1,3]*cc[2,3]/105 + 8*A[1,3]*cc[2,4]/105 + 8*A[1,3]*cc[3,3]/315 + 8*A[1,3]*cc[3,4]/315 + 8*A[1,3]*cc[4,4]/315 + 4*A[2,2]*cc[1,1]/315 + 8*A[2,2]*cc[1,2]/315 + 4*A[2,2]*cc[1,3]/315 + 8*A[2,2]*cc[1,4]/315 + 16*A[2,2]*cc[2,2]/315 + 8*A[2,2]*cc[2,3]/315 + 8*A[2,2]*cc[2,4]/315 + 4*A[2,2]*cc[3,3]/315 + 8*A[2,2]*cc[3,4]/315 + 16*A[2,2]*cc[4,4]/315 + 4*A[2,3]*cc[1,1]/315 + 16*A[2,3]*cc[1,2]/315 + 4*A[2,3]*cc[1,3]/315 + 4*A[2,3]*cc[2,2]/35 + 16*A[2,3]*cc[2,3]/315 + 8*A[2,3]*cc[2,4]/315 + 4*A[2,3]*cc[3,3]/315 - 4*A[2,3]*cc[4,4]/315 + 4*A[3,3]*cc[1,1]/315 + 4*A[3,3]*cc[1,2]/105 + 4*A[3,3]*cc[1,3]/315 + 4*A[3,3]*cc[1,4]/315 + 8*A[3,3]*cc[2,2]/105 + 4*A[3,3]*cc[2,3]/105 + 4*A[3,3]*cc[2,4]/105 + 4*A[3,3]*cc[3,3]/315 + 4*A[3,3]*cc[3,4]/315 + 4*A[3,3]*cc[4,4]/315
M[9,10]=2*A[1,1]*cc[1,1]/315 + 4*A[1,1]*cc[1,2]/315 + 4*A[1,1]*cc[1,3]/315 + 2*A[1,1]*cc[1,4]/315 + 2*A[1,1]*cc[2,2]/105 + 8*A[1,1]*cc[2,3]/315 + 4*A[1,1]*cc[2,4]/315 + 2*A[1,1]*cc[3,3]/105 + 4*A[1,1]*cc[3,4]/315 + 2*A[1,1]*cc[4,4]/315 + 2*A[1,2]*cc[1,1]/315 + 2*A[1,2]*cc[1,2]/105 + 4*A[1,2]*cc[1,3]/315 + 2*A[1,2]*cc[2,2]/63 + 4*A[1,2]*cc[2,3]/105 + 4*A[1,2]*cc[2,4]/315 + 2*A[1,2]*cc[3,3]/105 - 2*A[1,2]*cc[4,4]/315 + 2*A[1,3]*cc[1,1]/315 + 4*A[1,3]*cc[1,2]/315 + 2*A[1,3]*cc[1,3]/105 + 2*A[1,3]*cc[2,2]/105 + 4*A[1,3]*cc[2,3]/105 + 2*A[1,3]*cc[3,3]/63 + 4*A[1,3]*cc[3,4]/315 - 2*A[1,3]*cc[4,4]/315 + 2*A[2,2]*cc[1,2]/315 - 2*A[2,2]*cc[1,4]/315 + 4*A[2,2]*cc[2,2]/315 + 4*A[2,2]*cc[2,3]/315 - 4*A[2,2]*cc[3,4]/315 - 4*A[2,2]*cc[4,4]/315 + 4*A[2,3]*cc[1,1]/315 + 2*A[2,3]*cc[1,2]/105 + 2*A[2,3]*cc[1,3]/105 + 8*A[2,3]*cc[1,4]/315 + 8*A[2,3]*cc[2,2]/315 + 4*A[2,3]*cc[2,3]/105 + 8*A[2,3]*cc[2,4]/315 + 8*A[2,3]*cc[3,3]/315 + 8*A[2,3]*cc[3,4]/315 + 16*A[2,3]*cc[4,4]/315 + 2*A[3,3]*cc[1,3]/315 - 2*A[3,3]*cc[1,4]/315 + 4*A[3,3]*cc[2,3]/315 - 4*A[3,3]*cc[2,4]/315 + 4*A[3,3]*cc[3,3]/315 - 4*A[3,3]*cc[4,4]/315
M[10,10]=4*A[1,1]*cc[1,1]/315 + 4*A[1,1]*cc[1,2]/315 + 4*A[1,1]*cc[1,3]/105 + 4*A[1,1]*cc[1,4]/315 + 4*A[1,1]*cc[2,2]/315 + 4*A[1,1]*cc[2,3]/105 + 4*A[1,1]*cc[2,4]/315 + 8*A[1,1]*cc[3,3]/105 + 4*A[1,1]*cc[3,4]/105 + 4*A[1,1]*cc[4,4]/315 + 8*A[1,2]*cc[1,1]/315 + 8*A[1,2]*cc[1,2]/315 + 8*A[1,2]*cc[1,3]/105 + 8*A[1,2]*cc[1,4]/315 + 8*A[1,2]*cc[2,2]/315 + 8*A[1,2]*cc[2,3]/105 + 8*A[1,2]*cc[2,4]/315 + 16*A[1,2]*cc[3,3]/105 + 8*A[1,2]*cc[3,4]/105 + 8*A[1,2]*cc[4,4]/315 + 4*A[1,3]*cc[1,1]/315 + 4*A[1,3]*cc[1,2]/315 + 16*A[1,3]*cc[1,3]/315 + 4*A[1,3]*cc[2,2]/315 + 16*A[1,3]*cc[2,3]/315 + 4*A[1,3]*cc[3,3]/35 + 8*A[1,3]*cc[3,4]/315 - 4*A[1,3]*cc[4,4]/315 + 4*A[2,2]*cc[1,1]/315 + 4*A[2,2]*cc[1,2]/315 + 4*A[2,2]*cc[1,3]/105 + 4*A[2,2]*cc[1,4]/315 + 4*A[2,2]*cc[2,2]/315 + 4*A[2,2]*cc[2,3]/105 + 4*A[2,2]*cc[2,4]/315 + 8*A[2,2]*cc[3,3]/105 + 4*A[2,2]*cc[3,4]/105 + 4*A[2,2]*cc[4,4]/315 + 4*A[2,3]*cc[1,1]/315 + 4*A[2,3]*cc[1,2]/315 + 16*A[2,3]*cc[1,3]/315 + 4*A[2,3]*cc[2,2]/315 + 16*A[2,3]*cc[2,3]/315 + 4*A[2,3]*cc[3,3]/35 + 8*A[2,3]*cc[3,4]/315 - 4*A[2,3]*cc[4,4]/315 + 4*A[3,3]*cc[1,1]/315 + 4*A[3,3]*cc[1,2]/315 + 8*A[3,3]*cc[1,3]/315 + 8*A[3,3]*cc[1,4]/315 + 4*A[3,3]*cc[2,2]/315 + 8*A[3,3]*cc[2,3]/315 + 8*A[3,3]*cc[2,4]/315 + 16*A[3,3]*cc[3,3]/315 + 8*A[3,3]*cc[3,4]/315 + 16*A[3,3]*cc[4,4]/315
M[2,1]=M[1,2]
M[3,1]=M[1,3]
M[4,1]=M[1,4]
M[5,1]=M[1,5]
M[6,1]=M[1,6]
M[7,1]=M[1,7]
M[8,1]=M[1,8]
M[9,1]=M[1,9]
M[10,1]=M[1,10]
M[3,2]=M[2,3]
M[4,2]=M[2,4]
M[5,2]=M[2,5]
M[6,2]=M[2,6]
M[7,2]=M[2,7]
M[8,2]=M[2,8]
M[9,2]=M[2,9]
M[10,2]=M[2,10]
M[4,3]=M[3,4]
M[5,3]=M[3,5]
M[6,3]=M[3,6]
M[7,3]=M[3,7]
M[8,3]=M[3,8]
M[9,3]=M[3,9]
M[10,3]=M[3,10]
M[5,4]=M[4,5]
M[6,4]=M[4,6]
M[7,4]=M[4,7]
M[8,4]=M[4,8]
M[9,4]=M[4,9]
M[10,4]=M[4,10]
M[6,5]=M[5,6]
M[7,5]=M[5,7]
M[8,5]=M[5,8]
M[9,5]=M[5,9]
M[10,5]=M[5,10]
M[7,6]=M[6,7]
M[8,6]=M[6,8]
M[9,6]=M[6,9]
M[10,6]=M[6,10]
M[8,7]=M[7,8]
M[9,7]=M[7,9]
M[10,7]=M[7,10]
M[9,8]=M[8,9]
M[10,8]=M[8,10]
M[10,9]=M[9,10]
return M*abs(J.det)
end
include("./s43nvhnuhcc1.jl")
## source vectors
function s43v1(J::CooTrafo)
return [1/24 1/24 1/24 1/24].*abs(J.det)
end
function s43v2(J::CooTrafo)
return [-1/120 -1/120 -1/120 -1/120 1/30 1/30 1/30 1/30 1/30 1/30].*abs(J.det)
end
function s43vh(J::CooTrafo)
# no recombine necessary because derivative dof map to 0
return [1/240 1/240 1/240 1/240 0 0 0 0 0 0 0 0 0 0 0 0 3/80 3/80 3/80 3/80].*abs(J.det)
end
function s43nv1rx(J::CooTrafo,n_ref, x_ref)
M=[1 0 0;
0 1 0;
0 0 1;
-1 -1 -1]
return M*J.inv*n_ref
end
function s43nv2rx(J::CooTrafo,n_ref, x_ref)
M=Array{ComplexF64}(undef,10,3)
x,y,z=J.inv*(x_ref.-J.orig)
M[1,1]=4*x - 1
M[1,2]=0
M[1,3]=0
M[2,1]=0
M[2,2]=4*y - 1
M[2,3]=0
M[3,1]=0
M[3,2]=0
M[3,3]=4*z - 1
M[4,1]=4*x + 4*y + 4*z - 3
M[4,2]=4*x + 4*y + 4*z - 3
M[4,3]=4*x + 4*y + 4*z - 3
M[5,1]=4*y
M[5,2]=4*x
M[5,3]=0
M[6,1]=4*z
M[6,2]=0
M[6,3]=4*x
M[7,1]=-8*x - 4*y - 4*z + 4
M[7,2]=-4*x
M[7,3]=-4*x
M[8,1]=0
M[8,2]=4*z
M[8,3]=4*y
M[9,1]=-4*y
M[9,2]=-4*x - 8*y - 4*z + 4
M[9,3]=-4*y
M[10,1]=-4*z
M[10,2]=-4*z
M[10,3]=-4*x - 4*y - 8*z + 4
return M*J.inv*n_ref
end
function s43nvhrx(J::CooTrafo, n_ref, x_ref)
M=Array{ComplexF64}(undef,20,3)
x,y,z=J.inv*(x_ref.-J.orig)
M[1,1]=-6*x - 13*y^2 - 33*y*z + 13*y*(2*x + 2*y + 2*z - 2) + 7*y - 13*z^2 + 13*z*(2*x + 2*y + 2*z - 2) + 7*z - 6*(-x - y - z + 1)^2 + 6
M[1,2]=7*x - 7*y^2 - 7*y*z + 26*y*(-x - y - z + 1) + 13*y*(2*x + 2*y + 2*z - 2) + 14*y + 33*z*(-x - y - z + 1) + 13*z*(2*x + 2*y + 2*z - 2) + 7*z + 7*(-x - y - z + 1)^2 - 7
M[1,3]=7*x - 7*y*z + 33*y*(-x - y - z + 1) + 13*y*(2*x + 2*y + 2*z - 2) + 7*y - 7*z^2 + 26*z*(-x - y - z + 1) + 13*z*(2*x + 2*y + 2*z - 2) + 14*z + 7*(-x - y - z + 1)^2 - 7
M[2,1]=-7*x^2 - 7*x*z + 26*x*(-x - y - z + 1) + 13*x*(2*x + 2*y + 2*z - 2) + 14*x + 7*y + 33*z*(-x - y - z + 1) + 13*z*(2*x + 2*y + 2*z - 2) + 7*z + 7*(-x - y - z + 1)^2 - 7
M[2,2]=-13*x^2 - 33*x*z + 13*x*(2*x + 2*y + 2*z - 2) + 7*x - 6*y - 13*z^2 + 13*z*(2*x + 2*y + 2*z - 2) + 7*z - 6*(-x - y - z + 1)^2 + 6
M[2,3]=-7*x*z + 33*x*(-x - y - z + 1) + 13*x*(2*x + 2*y + 2*z - 2) + 7*x + 7*y - 7*z^2 + 26*z*(-x - y - z + 1) + 13*z*(2*x + 2*y + 2*z - 2) + 14*z + 7*(-x - y - z + 1)^2 - 7
M[3,1]=-7*x^2 - 7*x*y + 26*x*(-x - y - z + 1) + 13*x*(2*x + 2*y + 2*z - 2) + 14*x + 33*y*(-x - y - z + 1) + 13*y*(2*x + 2*y + 2*z - 2) + 7*y + 7*z + 7*(-x - y - z + 1)^2 - 7
M[3,2]=-7*x*y + 33*x*(-x - y - z + 1) + 13*x*(2*x + 2*y + 2*z - 2) + 7*x - 7*y^2 + 26*y*(-x - y - z + 1) + 13*y*(2*x + 2*y + 2*z - 2) + 14*y + 7*z + 7*(-x - y - z + 1)^2 - 7
M[3,3]=-13*x^2 - 33*x*y + 13*x*(2*x + 2*y + 2*z - 2) + 7*x - 13*y^2 + 13*y*(2*x + 2*y + 2*z - 2) + 7*y - 6*z - 6*(-x - y - z + 1)^2 + 6
M[4,1]=6*x^2 + 26*x*y + 26*x*z - 6*x + 13*y^2 + 33*y*z - 13*y + 13*z^2 - 13*z
M[4,2]=13*x^2 + 26*x*y + 33*x*z - 13*x + 6*y^2 + 26*y*z - 6*y + 13*z^2 - 13*z
M[4,3]=13*x^2 + 33*x*y + 26*x*z - 13*x + 13*y^2 + 26*y*z - 13*y + 6*z^2 - 6*z
M[5,1]=3*x^2 - 4*x*y - 4*x*z - 2*x - 2*y^2 - 2*y*z + 2*y - 2*z^2 + 2*z
M[5,2]=-2*x^2 - 4*x*y - 2*x*z + 2*x
M[5,3]=-2*x^2 - 2*x*y - 4*x*z + 2*x
M[6,1]=2*x*y + 2*y^2 - y
M[6,2]=x^2 + 4*x*y - x
M[6,3]=0
M[7,1]=2*x*z + 2*z^2 - z
M[7,2]=0
M[7,3]=x^2 + 4*x*z - x
M[8,1]=3*x^2 + 6*x*y + 6*x*z - 4*x + 2*y^2 + 4*y*z - 3*y + 2*z^2 - 3*z + 1
M[8,2]=3*x^2 + 4*x*y + 4*x*z - 3*x
M[8,3]=3*x^2 + 4*x*y + 4*x*z - 3*x
M[9,1]=4*x*y + y^2 - y
M[9,2]=2*x^2 + 2*x*y - x
M[9,3]=0
M[10,1]=-4*x*y - 2*y^2 - 2*y*z + 2*y
M[10,2]=-2*x^2 - 4*x*y - 2*x*z + 2*x + 3*y^2 - 4*y*z - 2*y - 2*z^2 + 2*z
M[10,3]=-2*x*y - 2*y^2 - 4*y*z + 2*y
M[11,1]=0
M[11,2]=2*y*z + 2*z^2 - z
M[11,3]=y^2 + 4*y*z - y
M[12,1]=4*x*y + 3*y^2 + 4*y*z - 3*y
M[12,2]=2*x^2 + 6*x*y + 4*x*z - 3*x + 3*y^2 + 6*y*z - 4*y + 2*z^2 - 3*z + 1
M[12,3]=4*x*y + 3*y^2 + 4*y*z - 3*y
M[13,1]=4*x*z + z^2 - z
M[13,2]=0
M[13,3]=2*x^2 + 2*x*z - x
M[14,1]=0
M[14,2]=4*y*z + z^2 - z
M[14,3]=2*y^2 + 2*y*z - y
M[15,1]=-4*x*z - 2*y*z - 2*z^2 + 2*z
M[15,2]=-2*x*z - 4*y*z - 2*z^2 + 2*z
M[15,3]=-2*x^2 - 2*x*y - 4*x*z + 2*x - 2*y^2 - 4*y*z + 2*y + 3*z^2 - 2*z
M[16,1]=4*x*z + 4*y*z + 3*z^2 - 3*z
M[16,2]=4*x*z + 4*y*z + 3*z^2 - 3*z
M[16,3]=2*x^2 + 4*x*y + 6*x*z - 3*x + 2*y^2 + 6*y*z - 3*y + 3*z^2 - 4*z + 1
M[17,1]=-27*y*z
M[17,2]=-27*y*z + 27*z*(-x - y - z + 1)
M[17,3]=-27*y*z + 27*y*(-x - y - z + 1)
M[18,1]=-27*x*z + 27*z*(-x - y - z + 1)
M[18,2]=-27*x*z
M[18,3]=-27*x*z + 27*x*(-x - y - z + 1)
M[19,1]=-27*x*y + 27*y*(-x - y - z + 1)
M[19,2]=-27*x*y + 27*x*(-x - y - z + 1)
M[19,3]=-27*x*y
M[20,1]=27*y*z
M[20,2]=27*x*z
M[20,3]=27*x*y
for i=1:3
M[:,i]=recombine_hermite(J,M[:,i])
end
return M*J.inv*n_ref
end
function s33v1(J::CooTrafo)
return [1/6 1/6 1/6]*abs(J.det)
end
function s33v2(J::CooTrafo)
return [0 0 0 1/6 1/6 1/6]*abs(J.det)
end
function s33vh(J::CooTrafo)
return recombine_hermite(J,[11/120 11/120 11/120 -1/60 1/120 1/120 1/120 -1/60 1/120 0 0 0 9/40])*abs(J.det)
end
function s33v1c1(J::CooTrafo,c)
c1,c2,c4=c
M=Array{ComplexF64}(undef,3)
M[1]=c1/12 + c2/24 + c4/24
M[2]=c1/24 + c2/12 + c4/24
M[3]=c1/24 + c2/24 + c4/12
return M*abs(J.det)
end
function s33v2c1(J::CooTrafo,c)
c1,c2,c4=c
M=Array{ComplexF64}(undef,6)
M[1]=c1/60 - c2/120 - c4/120
M[2]=-c1/120 + c2/60 - c4/120
M[3]=-c1/120 - c2/120 + c4/60
M[4]=c1/15 + c2/15 + c4/30
M[5]=c1/15 + c2/30 + c4/15
M[6]=c1/30 + c2/15 + c4/15
return M*abs(J.det)
end
function s33vhc1(J::CooTrafo,c)
c1,c2,c4=c
M=Array{ComplexF64}(undef,13)
M[1]=23*c1/360 + c2/72 + c4/72
M[2]=c1/72 + 23*c2/360 + c4/72
M[3]=c1/72 + c2/72 + 23*c4/360
M[4]=-c1/90 - c2/360 - c4/360
M[5]=c1/360 + c2/180
M[6]=c1/360 + c4/180
M[7]=c1/180 + c2/360
M[8]=-c1/360 - c2/90 - c4/360
M[9]=c2/360 + c4/180
M[10]=0
M[11]=0
M[12]=0
M[13]=3*c1/40 + 3*c2/40 + 3*c4/40
return recombine_hermite(J,M)*abs(J.det)
end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 1062 | c1,c2,c3,c4=c
A11,A12,A13 = A[1,:]
A22,A23= A[2,2:3]
A33=A[3,3]
#A11
C1111=A11*c1*c1
C1112=A11*c1*c2
C1113=A11*c1*c3
C1114=A11*c1*c4
C1122=A11*c2*c2
C1123=A11*c2*c3
C1124=A11*c2*c4
C1133=A11*c3*c3
C1134=A11*c3*c4
C1144=A11*c4*c4
#A12
C1211=A12*c1*c1
C1212=A12*c1*c2
C1213=A12*c1*c3
C1214=A12*c1*c4
C1222=A12*c2*c2
C1223=A12*c2*c3
C1224=A12*c2*c4
C1233=A12*c3*c3
C1234=A12*c3*c4
C1244=A12*c4*c4
#A13
C1311=A13*c1*c1
C1312=A13*c1*c2
C1313=A13*c1*c3
C1314=A13*c1*c4
C1322=A13*c2*c2
C1323=A13*c2*c3
C1324=A13*c2*c4
C1333=A13*c3*c3
C1334=A13*c3*c4
C1344=A13*c4*c4
#A22
C2211=A22*c1*c1
C2212=A22*c1*c2
C2213=A22*c1*c3
C2214=A22*c1*c4
C2222=A22*c2*c2
C2223=A22*c2*c3
C2224=A22*c2*c4
C2233=A22*c3*c3
C2234=A22*c3*c4
C2244=A22*c4*c4
#A23
C2311=A23*c1*c1
C2312=A23*c1*c2
C2313=A23*c1*c3
C2314=A23*c1*c4
C2322=A23*c2*c2
C2323=A23*c2*c3
C2324=A23*c2*c4
C2333=A23*c3*c3
C2334=A23*c3*c4
C2344=A23*c4*c4
#A33
C3311=A33*c1*c1
C3312=A33*c1*c2
C3313=A33*c1*c3
C3314=A33*c1*c4
C3322=A33*c2*c2
C3323=A33*c2*c3
C3324=A33*c2*c4
C3333=A33*c3*c3
C3334=A33*c3*c4
C3344=A33*c4*c4
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 162941 | function s43nvhnuhcc1(J::CooTrafo,c)
A=J.inv*J.inv'
M=Array{Float64}(undef,20,20)
c1,c2,c3,c4=c
A11,A12,A13 = A[1,:]
A22,A23= A[2,2:3]
A33=A[3,3]
#A11
C1111=A11*c1*c1
C1112=A11*c1*c2
C1113=A11*c1*c3
C1114=A11*c1*c4
C1122=A11*c2*c2
C1123=A11*c2*c3
C1124=A11*c2*c4
C1133=A11*c3*c3
C1134=A11*c3*c4
C1144=A11*c4*c4
#A12
C1211=A12*c1*c1
C1212=A12*c1*c2
C1213=A12*c1*c3
C1214=A12*c1*c4
C1222=A12*c2*c2
C1223=A12*c2*c3
C1224=A12*c2*c4
C1233=A12*c3*c3
C1234=A12*c3*c4
C1244=A12*c4*c4
#A13
C1311=A13*c1*c1
C1312=A13*c1*c2
C1313=A13*c1*c3
C1314=A13*c1*c4
C1322=A13*c2*c2
C1323=A13*c2*c3
C1324=A13*c2*c4
C1333=A13*c3*c3
C1334=A13*c3*c4
C1344=A13*c4*c4
#A22
C2211=A22*c1*c1
C2212=A22*c1*c2
C2213=A22*c1*c3
C2214=A22*c1*c4
C2222=A22*c2*c2
C2223=A22*c2*c3
C2224=A22*c2*c4
C2233=A22*c3*c3
C2234=A22*c3*c4
C2244=A22*c4*c4
#A23
C2311=A23*c1*c1
C2312=A23*c1*c2
C2313=A23*c1*c3
C2314=A23*c1*c4
C2322=A23*c2*c2
C2323=A23*c2*c3
C2324=A23*c2*c4
C2333=A23*c3*c3
C2334=A23*c3*c4
C2344=A23*c4*c4
#A33
C3311=A33*c1*c1
C3312=A33*c1*c2
C3313=A33*c1*c3
C3314=A33*c1*c4
C3322=A33*c2*c2
C3323=A33*c2*c3
C3324=A33*c2*c4
C3333=A33*c3*c3
C3334=A33*c3*c4
C3344=A33*c4*c4
M[1,1]=13*C1111/210 + 55*C1112/1134 + 55*C1113/1134 + 1423*C1114/45360 + 1303*C1122/45360 + 1303*C1123/45360 + 55*C1124/2268 + 1303*C1133/45360 + 55*C1134/2268 + 53*C1144/2835 + 7*C1211/1080 + 17*C1212/720 + 7*C1213/2160 - 23*C1214/2160 + 31*C1222/2160 + 43*C1223/6480
M[1,1]+= 7*C1224/3240 + 7*C1233/6480 - C1234/432 - 37*C1244/6480 + 7*C1311/1080 + 7*C1312/2160 + 17*C1313/720 - 23*C1314/2160 + 7*C1322/6480 + 43*C1323/6480 - C1324/432 + 31*C1333/2160 + 7*C1334/3240 - 37*C1344/6480 + 7*C2211/1080 + 7*C2212/1080 + 7*C2213/2160
M[1,1]+= 7*C2214/1080 + 7*C2222/1620 + 7*C2223/3240 + 7*C2224/3240 + 7*C2233/6480 + 7*C2234/3240 + 7*C2244/1620 + 7*C2311/1080 + 7*C2312/2160 + 7*C2313/2160 + 7*C2314/720 + 7*C2322/6480 + 7*C2323/3240 + 7*C2324/3240 + 7*C2333/6480 + 7*C2334/3240 + 49*C2344/6480
M[1,1]+= 7*C3311/1080 + 7*C3312/2160 + 7*C3313/1080 + 7*C3314/1080 + 7*C3322/6480 + 7*C3323/3240 + 7*C3324/3240 + 7*C3333/1620 + 7*C3334/3240 + 7*C3344/1620
M[1,2]=169*C1111/12960 + 199*C1112/12960 + C1113/135 + C1114/216 + 5*C1122/432 + 5*C1123/648 + 121*C1124/12960 + 5*C1133/1296 + 2*C1134/405 + 71*C1144/12960 + 121*C1211/10080 + 101*C1212/2835 - 4*C1213/2835 - 233*C1214/90720 + 121*C1222/10080 - 4*C1223/2835
M[1,2]+=- 233*C1224/90720 - 347*C1233/45360 - 83*C1234/15120 - 5*C1244/1134 + 7*C1311/4320 + 7*C1312/3240 + 2*C1313/405 - C1314/1620 + 7*C1322/4320 + 7*C1323/12960 + 49*C1324/12960 + 7*C1333/12960 + 7*C1334/6480 + 49*C1344/12960 + 5*C2211/432 + 199*C2212/12960
M[1,2]+= 5*C2213/648 + 121*C2214/12960 + 169*C2222/12960 + C2223/135 + C2224/216 + 5*C2233/1296 + 2*C2234/405 + 71*C2244/12960 + 7*C2311/4320 + 7*C2312/3240 + 7*C2313/12960 + 49*C2314/12960 + 7*C2322/4320 + 2*C2323/405 - C2324/1620 + 7*C2333/12960 + 7*C2334/6480
M[1,2]+= 49*C2344/12960 + 7*C3311/4320 + 7*C3312/3240 + 7*C3313/3240 + 7*C3314/3240 + 7*C3322/4320 + 7*C3323/3240 + 7*C3324/3240 + 7*C3333/3240 + 7*C3334/6480 + 7*C3344/3240
M[1,3]=169*C1111/12960 + C1112/135 + 199*C1113/12960 + C1114/216 + 5*C1122/1296 + 5*C1123/648 + 2*C1124/405 + 5*C1133/432 + 121*C1134/12960 + 71*C1144/12960 + 7*C1211/4320 + 2*C1212/405 + 7*C1213/3240 - C1214/1620 + 7*C1222/12960 + 7*C1223/12960 + 7*C1224/6480
M[1,3]+= 7*C1233/4320 + 49*C1234/12960 + 49*C1244/12960 + 121*C1311/10080 - 4*C1312/2835 + 101*C1313/2835 - 233*C1314/90720 - 347*C1322/45360 - 4*C1323/2835 - 83*C1324/15120 + 121*C1333/10080 - 233*C1334/90720 - 5*C1344/1134 + 7*C2211/4320 + 7*C2212/3240 + 7*C2213/3240
M[1,3]+= 7*C2214/3240 + 7*C2222/3240 + 7*C2223/3240 + 7*C2224/6480 + 7*C2233/4320 + 7*C2234/3240 + 7*C2244/3240 + 7*C2311/4320 + 7*C2312/12960 + 7*C2313/3240 + 49*C2314/12960 + 7*C2322/12960 + 2*C2323/405 + 7*C2324/6480 + 7*C2333/4320 - C2334/1620 + 49*C2344/12960
M[1,3]+= 5*C3311/432 + 5*C3312/648 + 199*C3313/12960 + 121*C3314/12960 + 5*C3322/1296 + C3323/135 + 2*C3324/405 + 169*C3333/12960 + C3334/216 + 71*C3344/12960
M[1,4]=143*C1111/11340 + 25*C1112/1512 + 25*C1113/1512 - 223*C1114/45360 + 697*C1122/45360 + 697*C1123/45360 + 25*C1124/1512 + 697*C1133/45360 + 25*C1134/1512 + 143*C1144/11340 + 337*C1211/30240 + 1927*C1212/90720 + 191*C1213/11340 - 223*C1214/45360 + 697*C1222/45360
M[1,4]+= 697*C1223/45360 + 1073*C1224/90720 + 697*C1233/45360 + 46*C1234/2835 + 1277*C1244/90720 + 337*C1311/30240 + 191*C1312/11340 + 1927*C1313/90720 - 223*C1314/45360 + 697*C1322/45360 + 697*C1323/45360 + 46*C1324/2835 + 697*C1333/45360 + 1073*C1334/90720 + 1277*C1344/90720
M[1,4]+= 5*C2211/432 + 121*C2212/12960 + 5*C2213/648 + 199*C2214/12960 + 71*C2222/12960 + 2*C2223/405 + C2224/216 + 5*C2233/1296 + C2234/135 + 169*C2244/12960 + 31*C2311/1440 + 193*C2312/12960 + 193*C2313/12960 + 37*C2314/1296 + 31*C2322/4320 + 19*C2323/2160
M[1,4]+= 4*C2324/405 + 31*C2333/4320 + 4*C2334/405 + 317*C2344/12960 + 5*C3311/432 + 5*C3312/648 + 121*C3313/12960 + 199*C3314/12960 + 5*C3322/1296 + 2*C3323/405 + C3324/135 + 71*C3333/12960 + C3334/216 + 169*C3344/12960
M[1,5]=-C1111/96 - 191*C1112/18144 - 191*C1113/18144 - 113*C1114/18144 - 67*C1122/9072 - 67*C1123/9072 - 563*C1124/90720 - 67*C1133/9072 - 563*C1134/90720 - 107*C1144/22680 - C1211/540 - 31*C1212/5040 - C1213/1080 + 37*C1214/15120 - 59*C1222/15120 - 163*C1223/90720
M[1,5]+=- C1224/1620 - C1233/3240 + 17*C1234/30240 + 13*C1244/9072 - C1311/540 - C1312/1080 - 31*C1313/5040 + 37*C1314/15120 - C1322/3240 - 163*C1323/90720 + 17*C1324/30240 - 59*C1333/15120 - C1334/1620 + 13*C1344/9072 - C2211/540 - C2212/540 - C2213/1080
M[1,5]+=- C2214/540 - C2222/810 - C2223/1620 - C2224/1620 - C2233/3240 - C2234/1620 - C2244/810 - C2311/540 - C2312/1080 - C2313/1080 - C2314/360 - C2322/3240 - C2323/1620 - C2324/1620 - C2333/3240 - C2334/1620 - 7*C2344/3240 - C3311/540 - C3312/1080
M[1,5]+=- C3313/540 - C3314/540 - C3322/3240 - C3323/1620 - C3324/1620 - C3333/810 - C3334/1620 - C3344/810
M[1,6]=47*C1111/18144 + 53*C1112/12960 + C1113/945 + 89*C1114/90720 + 71*C1122/30240 + 5*C1123/4536 + 31*C1124/30240 + 5*C1133/9072 + 2*C1134/2835 + 19*C1144/30240 + 37*C1211/10080 + 703*C1212/90720 + C1213/2160 + C1214/1620 + 17*C1222/3240 + 41*C1223/22680
M[1,6]+= 143*C1224/90720 - C1233/2520 - C1234/11340 - C1244/90720 + C1313/12960 - C1314/12960 + C1323/12960 - C1324/12960 - C1333/12960 + C1344/12960 + C2211/540 + 11*C2212/4320 + C2213/1080 + C2214/864 + C2222/540 + C2223/1296 + C2224/1620 + C2233/3240
M[1,6]+= C2234/2160 + C2244/1620 - C2313/4320 + C2314/4320 + C2323/6480 - C2324/6480 - C2333/3240 + C2344/3240
M[1,7]=47*C1111/18144 + C1112/945 + 53*C1113/12960 + 89*C1114/90720 + 5*C1122/9072 + 5*C1123/4536 + 2*C1124/2835 + 71*C1133/30240 + 31*C1134/30240 + 19*C1144/30240 + C1212/12960 - C1214/12960 - C1222/12960 + C1223/12960 - C1234/12960 + C1244/12960 + 37*C1311/10080
M[1,7]+= C1312/2160 + 703*C1313/90720 + C1314/1620 - C1322/2520 + 41*C1323/22680 - C1324/11340 + 17*C1333/3240 + 143*C1334/90720 - C1344/90720 - C2312/4320 + C2314/4320 - C2322/3240 + C2323/6480 - C2334/6480 + C2344/3240 + C3311/540 + C3312/1080 + 11*C3313/4320
M[1,7]+= C3314/864 + C3322/3240 + C3323/1296 + C3324/2160 + C3333/540 + C3334/1620 + C3344/1620
M[1,8]=C1111/1296 + 23*C1112/15120 + 23*C1113/15120 - 101*C1114/90720 + 19*C1122/15120 + 19*C1123/15120 + C1124/15120 + 19*C1133/15120 + C1134/15120 - 19*C1144/18144 + C1211/30240 + 11*C1212/6480 + C1213/720 - 241*C1214/90720 + 113*C1222/90720 + 23*C1223/22680
M[1,8]+=- 31*C1224/90720 + 23*C1233/22680 - C1234/3780 - C1244/648 + C1311/30240 + C1312/720 + 11*C1313/6480 - 241*C1314/90720 + 23*C1322/22680 + 23*C1323/22680 - C1324/3780 + 113*C1333/90720 - 31*C1334/90720 - C1344/648 + C2211/540 + C2212/864 + C2213/1080
M[1,8]+= 11*C2214/4320 + C2222/1620 + C2223/2160 + C2224/1620 + C2233/3240 + C2234/1296 + C2244/540 + C2311/270 + C2312/480 + C2313/480 + 11*C2314/2160 + C2322/1080 + C2323/1080 + C2324/720 + C2333/1080 + C2334/720 + C2344/270 + C3311/540
M[1,8]+= C3312/1080 + C3313/864 + 11*C3314/4320 + C3322/3240 + C3323/2160 + C3324/1296 + C3333/1620 + C3334/1620 + C3344/540
M[1,9]=109*C1111/18144 + 317*C1112/45360 + 89*C1113/30240 + 29*C1114/11340 + 17*C1122/3780 + 17*C1123/5670 + 43*C1124/15120 + 17*C1133/11340 + 143*C1134/90720 + 43*C1144/30240 + 43*C1211/5040 + 17*C1212/2268 + 17*C1213/6048 + 199*C1214/90720 + 23*C1222/6480 + 29*C1223/18144
M[1,9]+= 31*C1224/22680 + C1233/3780 + 19*C1234/45360 + 31*C1244/90720 + C1313/2592 - C1314/2592 + C1323/6480 - C1324/6480 + C1333/12960 - C1344/12960 + C2211/1080 + 7*C2212/4320 + C2213/2160 + C2214/4320 + C2222/1080 + C2223/2592 + C2224/3240 + C2233/6480
M[1,9]+= C2234/4320 + C2244/3240 + C2313/4320 - C2314/4320 + C2323/12960 - C2324/12960 - C2333/6480 + C2344/6480
M[1,10]=-169*C1111/45360 - 199*C1112/45360 - 2*C1113/945 - C1114/756 - 5*C1122/1512 - 5*C1123/2268 - 121*C1124/45360 - 5*C1133/4536 - 4*C1134/2835 - 71*C1144/45360 - 31*C1211/10080 - 113*C1212/12960 + 43*C1213/90720 + 73*C1214/90720 - C1222/315 - C1223/45360
M[1,10]+= 19*C1224/90720 + 179*C1233/90720 + 41*C1234/30240 + 19*C1244/18144 - C1311/2160 - C1312/1620 - 4*C1313/2835 + C1314/5670 - C1322/2160 - C1323/6480 - 7*C1324/6480 - C1333/6480 - C1334/3240 - 7*C1344/6480 - 13*C2211/4320 - 11*C2212/3240 - 13*C2213/6480
M[1,10]+=- C2214/405 - 29*C2222/12960 - 7*C2223/4320 - C2224/1080 - 13*C2233/12960 - 17*C2234/12960 - 19*C2244/12960 - C2311/2160 - C2312/1620 - C2313/6480 - 7*C2314/6480 - C2322/2160 - 17*C2323/12960 + C2324/12960 - C2333/6480 - C2334/3240 - 7*C2344/6480
M[1,10]+=- C3311/2160 - C3312/1620 - C3313/1620 - C3314/1620 - C3322/2160 - C3323/1620 - C3324/1620 - C3333/1620 - C3334/3240 - C3344/1620
M[1,11]=-41*C1211/45360 - C1212/9072 + C1213/90720 - 61*C1214/90720 - 19*C1222/30240 - 19*C1223/15120 - 5*C1224/9072 - 11*C1233/15120 - 79*C1234/90720 - 11*C1244/45360 - 89*C1311/90720 - 53*C1312/45360 + 11*C1313/18144 - 17*C1314/22680 - 5*C1322/3024 - 13*C1323/7560
M[1,11]+=- 43*C1324/45360 - 13*C1333/15120 - 17*C1334/18144 - 29*C1344/90720 + C2211/4320 + C2212/4320 + C2213/3240 + C2214/2592 + C2222/3240 + C2223/2592 + C2224/6480 + C2233/4320 + C2234/4320 + C2244/3240 + C2312/12960 + 11*C2313/12960 + C2314/2160
M[1,11]+= C2322/3240 + C2323/864 + C2324/4320 + C2333/648 + C2334/2160 + C2344/2160 + C3311/2160 + C3312/1620 + C3313/1440 + 7*C3314/12960 + C3322/2160 + C3323/1296 + C3324/2160 + 11*C3333/12960 + C3334/3240 + C3344/2592
M[1,12]=131*C1111/90720 + C1112/560 + 13*C1113/10080 + C1114/11340 + 2*C1122/945 + 4*C1123/2835 + 113*C1124/45360 + 2*C1133/2835 + 113*C1134/90720 + 31*C1144/18144 + 13*C1211/12960 + 67*C1212/30240 + C1213/1440 - C1214/18144 + 149*C1222/90720 + 11*C1223/10080
M[1,12]+= 11*C1224/12960 + C1233/2592 + C1234/4536 + 13*C1244/45360 + 173*C1311/90720 + 109*C1312/45360 + 83*C1313/45360 + 71*C1314/90720 + 13*C1322/5040 + 17*C1323/9072 + 37*C1324/11340 + 11*C1333/10080 + 47*C1334/30240 + 29*C1344/11340 + C2211/1440 + C2212/1296
M[1,12]+= C2213/2160 + C2214/6480 + C2222/2160 + C2223/2592 + C2233/4320 + C2234/12960 - C2244/2160 + C2311/1080 + C2312/864 + C2313/1620 + 7*C2314/12960 + C2322/1620 + C2323/1440 + C2324/2592 + C2333/3240 + C2334/6480 + C2344/6480 + C3311/2160
M[1,12]+= C3312/1620 + 7*C3313/12960 + C3314/1440 + C3322/2160 + C3323/2160 + C3324/1296 + C3333/2592 + C3334/3240 + 11*C3344/12960
M[1,13]=109*C1111/18144 + 89*C1112/30240 + 317*C1113/45360 + 29*C1114/11340 + 17*C1122/11340 + 17*C1123/5670 + 143*C1124/90720 + 17*C1133/3780 + 43*C1134/15120 + 43*C1144/30240 + C1212/2592 - C1214/2592 + C1222/12960 + C1223/6480 - C1234/6480 - C1244/12960
M[1,13]+= 43*C1311/5040 + 17*C1312/6048 + 17*C1313/2268 + 199*C1314/90720 + C1322/3780 + 29*C1323/18144 + 19*C1324/45360 + 23*C1333/6480 + 31*C1334/22680 + 31*C1344/90720 + C2312/4320 - C2314/4320 - C2322/6480 + C2323/12960 - C2334/12960 + C2344/6480 + C3311/1080
M[1,13]+= C3312/2160 + 7*C3313/4320 + C3314/4320 + C3322/6480 + C3323/2592 + C3324/4320 + C3333/1080 + C3334/3240 + C3344/3240
M[1,14]=-89*C1211/90720 + 11*C1212/18144 - 53*C1213/45360 - 17*C1214/22680 - 13*C1222/15120 - 13*C1223/7560 - 17*C1224/18144 - 5*C1233/3024 - 43*C1234/45360 - 29*C1244/90720 - 41*C1311/45360 + C1312/90720 - C1313/9072 - 61*C1314/90720 - 11*C1322/15120 - 19*C1323/15120
M[1,14]+=- 79*C1324/90720 - 19*C1333/30240 - 5*C1334/9072 - 11*C1344/45360 + C2211/2160 + C2212/1440 + C2213/1620 + 7*C2214/12960 + 11*C2222/12960 + C2223/1296 + C2224/3240 + C2233/2160 + C2234/2160 + C2244/2592 + 11*C2312/12960 + C2313/12960 + C2314/2160
M[1,14]+= C2322/648 + C2323/864 + C2324/2160 + C2333/3240 + C2334/4320 + C2344/2160 + C3311/4320 + C3312/3240 + C3313/4320 + C3314/2592 + C3322/4320 + C3323/2592 + C3324/4320 + C3333/3240 + C3334/6480 + C3344/3240
M[1,15]=-169*C1111/45360 - 2*C1112/945 - 199*C1113/45360 - C1114/756 - 5*C1122/4536 - 5*C1123/2268 - 4*C1124/2835 - 5*C1133/1512 - 121*C1134/45360 - 71*C1144/45360 - C1211/2160 - 4*C1212/2835 - C1213/1620 + C1214/5670 - C1222/6480 - C1223/6480 - C1224/3240
M[1,15]+=- C1233/2160 - 7*C1234/6480 - 7*C1244/6480 - 31*C1311/10080 + 43*C1312/90720 - 113*C1313/12960 + 73*C1314/90720 + 179*C1322/90720 - C1323/45360 + 41*C1324/30240 - C1333/315 + 19*C1334/90720 + 19*C1344/18144 - C2211/2160 - C2212/1620 - C2213/1620 - C2214/1620
M[1,15]+=- C2222/1620 - C2223/1620 - C2224/3240 - C2233/2160 - C2234/1620 - C2244/1620 - C2311/2160 - C2312/6480 - C2313/1620 - 7*C2314/6480 - C2322/6480 - 17*C2323/12960 - C2324/3240 - C2333/2160 + C2334/12960 - 7*C2344/6480 - 13*C3311/4320 - 13*C3312/6480
M[1,15]+=- 11*C3313/3240 - C3314/405 - 13*C3322/12960 - 7*C3323/4320 - 17*C3324/12960 - 29*C3333/12960 - C3334/1080 - 19*C3344/12960
M[1,16]=131*C1111/90720 + 13*C1112/10080 + C1113/560 + C1114/11340 + 2*C1122/2835 + 4*C1123/2835 + 113*C1124/90720 + 2*C1133/945 + 113*C1134/45360 + 31*C1144/18144 + 173*C1211/90720 + 83*C1212/45360 + 109*C1213/45360 + 71*C1214/90720 + 11*C1222/10080 + 17*C1223/9072
M[1,16]+= 47*C1224/30240 + 13*C1233/5040 + 37*C1234/11340 + 29*C1244/11340 + 13*C1311/12960 + C1312/1440 + 67*C1313/30240 - C1314/18144 + C1322/2592 + 11*C1323/10080 + C1324/4536 + 149*C1333/90720 + 11*C1334/12960 + 13*C1344/45360 + C2211/2160 + 7*C2212/12960
M[1,16]+= C2213/1620 + C2214/1440 + C2222/2592 + C2223/2160 + C2224/3240 + C2233/2160 + C2234/1296 + 11*C2244/12960 + C2311/1080 + C2312/1620 + C2313/864 + 7*C2314/12960 + C2322/3240 + C2323/1440 + C2324/6480 + C2333/1620 + C2334/2592 + C2344/6480
M[1,16]+= C3311/1440 + C3312/2160 + C3313/1296 + C3314/6480 + C3322/4320 + C3323/2592 + C3324/12960 + C3333/2160 - C3344/2160
M[1,17]=-59*C1111/3360 - 13*C1112/672 - 13*C1113/672 - 11*C1114/1680 + C1122/160 + C1123/80 + C1124/96 + C1133/160 + C1134/96 + C1144/160 - C1211/160 - 71*C1212/3360 - C1213/120 + C1214/224 - C1222/120 - C1223/160 - C1224/240 - C1233/160 - C1234/96
M[1,17]+=- C1244/120 - C1311/160 - C1312/120 - 71*C1313/3360 + C1314/224 - C1322/160 - C1323/160 - C1324/96 - C1333/120 - C1334/240 - C1344/120 - C2211/160 - C2212/120 - C2213/120 - C2214/120 - C2222/120 - C2223/120 - C2224/240 - C2233/160
M[1,17]+=- C2234/120 - C2244/120 - C2311/160 - C2312/120 - C2313/120 - C2314/120 - C2322/160 - C2323/80 - C2324/240 - C2333/160 - C2334/240 - C2344/96 - C3311/160 - C3312/120 - C3313/120 - C3314/120 - C3322/160 - C3323/120 - C3324/120
M[1,17]+=- C3333/120 - C3334/240 - C3344/120
M[1,18]=-169*C1111/3360 - C1112/35 - 199*C1113/3360 - C1114/56 - 5*C1122/336 - 5*C1123/168 - 2*C1124/105 - 5*C1133/112 - 121*C1134/3360 - 71*C1144/3360 - 19*C1211/280 - 139*C1212/3360 - 11*C1213/140 - 13*C1214/420 - 43*C1222/3360 - 79*C1223/3360 - 29*C1224/3360
M[1,18]+=- 43*C1233/1120 - 13*C1234/672 - 3*C1244/280 - C1311/40 - C1312/80 - 223*C1313/3360 + 11*C1314/672 - C1322/240 - 2*C1323/105 + C1324/420 - 9*C1333/224 - C1334/120 + 23*C1344/3360 - C2212/160 + C2214/160 - C2222/240 - C2223/240 + C2234/240
M[1,18]+= C2244/240 - C2311/40 - C2312/80 - C2313/32 - 3*C2314/160 - C2322/240 - C2323/80 - C2324/240 - C2333/48 - C2334/120 - C2344/80 - C3311/40 - C3312/80 - C3313/40 - C3314/40 - C3322/240 - C3323/120 - C3324/120 - C3333/60 - C3334/120
M[1,18]+=- C3344/60
M[1,19]=-169*C1111/3360 - 199*C1112/3360 - C1113/35 - C1114/56 - 5*C1122/112 - 5*C1123/168 - 121*C1124/3360 - 5*C1133/336 - 2*C1134/105 - 71*C1144/3360 - C1211/40 - 223*C1212/3360 - C1213/80 + 11*C1214/672 - 9*C1222/224 - 2*C1223/105 - C1224/120 - C1233/240
M[1,19]+= C1234/420 + 23*C1244/3360 - 19*C1311/280 - 11*C1312/140 - 139*C1313/3360 - 13*C1314/420 - 43*C1322/1120 - 79*C1323/3360 - 13*C1324/672 - 43*C1333/3360 - 29*C1334/3360 - 3*C1344/280 - C2211/40 - C2212/40 - C2213/80 - C2214/40 - C2222/60 - C2223/120
M[1,19]+=- C2224/120 - C2233/240 - C2234/120 - C2244/60 - C2311/40 - C2312/32 - C2313/80 - 3*C2314/160 - C2322/48 - C2323/80 - C2324/120 - C2333/240 - C2334/240 - C2344/80 - C3313/160 + C3314/160 - C3323/240 + C3324/240 - C3333/240
M[1,19]+= C3344/240
M[1,20]=59*C1111/3360 + 13*C1112/672 + 13*C1113/672 + 11*C1114/1680 - C1122/160 - C1123/80 - C1124/96 - C1133/160 - C1134/96 - C1144/160 + 19*C1211/280 + 73*C1212/1680 + 11*C1213/140 + 97*C1214/3360 + 2*C1222/105 + 31*C1223/1120 + 29*C1224/3360 + 43*C1233/1120
M[1,20]+= 17*C1234/1120 + C1244/224 + 19*C1311/280 + 11*C1312/140 + 73*C1313/1680 + 97*C1314/3360 + 43*C1322/1120 + 31*C1323/1120 + 17*C1324/1120 + 2*C1333/105 + 29*C1334/3360 + C1344/224 + C2212/160 - C2214/160 + C2222/240 + C2223/240 - C2234/240
M[1,20]+=- C2244/240 + C2311/40 + C2312/32 + C2313/32 + C2322/48 + C2323/60 + C2324/240 + C2333/48 + C2334/240 - C2344/240 + C3313/160 - C3314/160 + C3323/240 - C3324/240 + C3333/240 - C3344/240
M[2,2]=7*C1111/1620 + 7*C1112/1080 + 7*C1113/3240 + 7*C1114/3240 + 7*C1122/1080 + 7*C1123/2160 + 7*C1124/1080 + 7*C1133/6480 + 7*C1134/3240 + 7*C1144/1620 + 31*C1211/2160 + 17*C1212/720 + 43*C1213/6480 + 7*C1214/3240 + 7*C1222/1080 + 7*C1223/2160 - 23*C1224/2160
M[2,2]+= 7*C1233/6480 - C1234/432 - 37*C1244/6480 + 7*C1311/6480 + 7*C1312/2160 + 7*C1313/3240 + 7*C1314/3240 + 7*C1322/1080 + 7*C1323/2160 + 7*C1324/720 + 7*C1333/6480 + 7*C1334/3240 + 49*C1344/6480 + 1303*C2211/45360 + 55*C2212/1134 + 1303*C2213/45360 + 55*C2214/2268
M[2,2]+= 13*C2222/210 + 55*C2223/1134 + 1423*C2224/45360 + 1303*C2233/45360 + 55*C2234/2268 + 53*C2244/2835 + 7*C2311/6480 + 7*C2312/2160 + 43*C2313/6480 - C2314/432 + 7*C2322/1080 + 17*C2323/720 - 23*C2324/2160 + 31*C2333/2160 + 7*C2334/3240 - 37*C2344/6480
M[2,2]+= 7*C3311/6480 + 7*C3312/2160 + 7*C3313/3240 + 7*C3314/3240 + 7*C3322/1080 + 7*C3323/1080 + 7*C3324/1080 + 7*C3333/1620 + 7*C3334/3240 + 7*C3344/1620
M[2,3]=7*C1111/3240 + 7*C1112/3240 + 7*C1113/3240 + 7*C1114/6480 + 7*C1122/4320 + 7*C1123/3240 + 7*C1124/3240 + 7*C1133/4320 + 7*C1134/3240 + 7*C1144/3240 + 7*C1211/12960 + 2*C1212/405 + 7*C1213/12960 + 7*C1214/6480 + 7*C1222/4320 + 7*C1223/3240 - C1224/1620
M[2,3]+= 7*C1233/4320 + 49*C1234/12960 + 49*C1244/12960 + 7*C1311/12960 + 7*C1312/12960 + 2*C1313/405 + 7*C1314/6480 + 7*C1322/4320 + 7*C1323/3240 + 49*C1324/12960 + 7*C1333/4320 - C1334/1620 + 49*C1344/12960 + 5*C2211/1296 + C2212/135 + 5*C2213/648 + 2*C2214/405
M[2,3]+= 169*C2222/12960 + 199*C2223/12960 + C2224/216 + 5*C2233/432 + 121*C2234/12960 + 71*C2244/12960 - 347*C2311/45360 - 4*C2312/2835 - 4*C2313/2835 - 83*C2314/15120 + 121*C2322/10080 + 101*C2323/2835 - 233*C2324/90720 + 121*C2333/10080 - 233*C2334/90720 - 5*C2344/1134
M[2,3]+= 5*C3311/1296 + 5*C3312/648 + C3313/135 + 2*C3314/405 + 5*C3322/432 + 199*C3323/12960 + 121*C3324/12960 + 169*C3333/12960 + C3334/216 + 71*C3344/12960
M[2,4]=71*C1111/12960 + 121*C1112/12960 + 2*C1113/405 + C1114/216 + 5*C1122/432 + 5*C1123/648 + 199*C1124/12960 + 5*C1133/1296 + C1134/135 + 169*C1144/12960 + 697*C1211/45360 + 1927*C1212/90720 + 697*C1213/45360 + 1073*C1214/90720 + 337*C1222/30240 + 191*C1223/11340
M[2,4]+=- 223*C1224/45360 + 697*C1233/45360 + 46*C1234/2835 + 1277*C1244/90720 + 31*C1311/4320 + 193*C1312/12960 + 19*C1313/2160 + 4*C1314/405 + 31*C1322/1440 + 193*C1323/12960 + 37*C1324/1296 + 31*C1333/4320 + 4*C1334/405 + 317*C1344/12960 + 697*C2211/45360 + 25*C2212/1512
M[2,4]+= 697*C2213/45360 + 25*C2214/1512 + 143*C2222/11340 + 25*C2223/1512 - 223*C2224/45360 + 697*C2233/45360 + 25*C2234/1512 + 143*C2244/11340 + 697*C2311/45360 + 191*C2312/11340 + 697*C2313/45360 + 46*C2314/2835 + 337*C2322/30240 + 1927*C2323/90720 - 223*C2324/45360
M[2,4]+= 697*C2333/45360 + 1073*C2334/90720 + 1277*C2344/90720 + 5*C3311/1296 + 5*C3312/648 + 2*C3313/405 + C3314/135 + 5*C3322/432 + 121*C3323/12960 + 199*C3324/12960 + 71*C3333/12960 + C3334/216 + 169*C3344/12960
M[2,5]=-29*C1111/12960 - 11*C1112/3240 - 7*C1113/4320 - C1114/1080 - 13*C1122/4320 - 13*C1123/6480 - C1124/405 - 13*C1133/12960 - 17*C1134/12960 - 19*C1144/12960 - C1211/315 - 113*C1212/12960 - C1213/45360 + 19*C1214/90720 - 31*C1222/10080 + 43*C1223/90720
M[2,5]+= 73*C1224/90720 + 179*C1233/90720 + 41*C1234/30240 + 19*C1244/18144 - C1311/2160 - C1312/1620 - 17*C1313/12960 + C1314/12960 - C1322/2160 - C1323/6480 - 7*C1324/6480 - C1333/6480 - C1334/3240 - 7*C1344/6480 - 5*C2211/1512 - 199*C2212/45360 - 5*C2213/2268
M[2,5]+=- 121*C2214/45360 - 169*C2222/45360 - 2*C2223/945 - C2224/756 - 5*C2233/4536 - 4*C2234/2835 - 71*C2244/45360 - C2311/2160 - C2312/1620 - C2313/6480 - 7*C2314/6480 - C2322/2160 - 4*C2323/2835 + C2324/5670 - C2333/6480 - C2334/3240 - 7*C2344/6480
M[2,5]+=- C3311/2160 - C3312/1620 - C3313/1620 - C3314/1620 - C3322/2160 - C3323/1620 - C3324/1620 - C3333/1620 - C3334/3240 - C3344/1620
M[2,6]=C1111/1080 + 7*C1112/4320 + C1113/2592 + C1114/3240 + C1122/1080 + C1123/2160 + C1124/4320 + C1133/6480 + C1134/4320 + C1144/3240 + 23*C1211/6480 + 17*C1212/2268 + 29*C1213/18144 + 31*C1214/22680 + 43*C1222/5040 + 17*C1223/6048 + 199*C1224/90720
M[2,6]+= C1233/3780 + 19*C1234/45360 + 31*C1244/90720 + C1313/12960 - C1314/12960 + C1323/4320 - C1324/4320 - C1333/6480 + C1344/6480 + 17*C2211/3780 + 317*C2212/45360 + 17*C2213/5670 + 43*C2214/15120 + 109*C2222/18144 + 89*C2223/30240 + 29*C2224/11340 + 17*C2233/11340
M[2,6]+= 143*C2234/90720 + 43*C2244/30240 + C2313/6480 - C2314/6480 + C2323/2592 - C2324/2592 + C2333/12960 - C2344/12960
M[2,7]=C1111/3240 + C1112/4320 + C1113/2592 + C1114/6480 + C1122/4320 + C1123/3240 + C1124/2592 + C1133/4320 + C1134/4320 + C1144/3240 - 19*C1211/30240 - C1212/9072 - 19*C1213/15120 - 5*C1214/9072 - 41*C1222/45360 + C1223/90720 - 61*C1224/90720 - 11*C1233/15120
M[2,7]+=- 79*C1234/90720 - 11*C1244/45360 + C1311/3240 + C1312/12960 + C1313/864 + C1314/4320 + 11*C1323/12960 + C1324/2160 + C1333/648 + C1334/2160 + C1344/2160 - 5*C2311/3024 - 53*C2312/45360 - 13*C2313/7560 - 43*C2314/45360 - 89*C2322/90720 + 11*C2323/18144
M[2,7]+=- 17*C2324/22680 - 13*C2333/15120 - 17*C2334/18144 - 29*C2344/90720 + C3311/2160 + C3312/1620 + C3313/1296 + C3314/2160 + C3322/2160 + C3323/1440 + 7*C3324/12960 + 11*C3333/12960 + C3334/3240 + C3344/2592
M[2,8]=C1111/2160 + C1112/1296 + C1113/2592 + C1122/1440 + C1123/2160 + C1124/6480 + C1133/4320 + C1134/12960 - C1144/2160 + 149*C1211/90720 + 67*C1212/30240 + 11*C1213/10080 + 11*C1214/12960 + 13*C1222/12960 + C1223/1440 - C1224/18144 + C1233/2592
M[2,8]+= C1234/4536 + 13*C1244/45360 + C1311/1620 + C1312/864 + C1313/1440 + C1314/2592 + C1322/1080 + C1323/1620 + 7*C1324/12960 + C1333/3240 + C1334/6480 + C1344/6480 + 2*C2211/945 + C2212/560 + 4*C2213/2835 + 113*C2214/45360 + 131*C2222/90720 + 13*C2223/10080
M[2,8]+= C2224/11340 + 2*C2233/2835 + 113*C2234/90720 + 31*C2244/18144 + 13*C2311/5040 + 109*C2312/45360 + 17*C2313/9072 + 37*C2314/11340 + 173*C2322/90720 + 83*C2323/45360 + 71*C2324/90720 + 11*C2333/10080 + 47*C2334/30240 + 29*C2344/11340 + C3311/2160 + C3312/1620
M[2,8]+= C3313/2160 + C3314/1296 + C3322/2160 + 7*C3323/12960 + C3324/1440 + C3333/2592 + C3334/3240 + 11*C3344/12960
M[2,9]=C1111/540 + 11*C1112/4320 + C1113/1296 + C1114/1620 + C1122/540 + C1123/1080 + C1124/864 + C1133/3240 + C1134/2160 + C1144/1620 + 17*C1211/3240 + 703*C1212/90720 + 41*C1213/22680 + 143*C1214/90720 + 37*C1222/10080 + C1223/2160 + C1224/1620 - C1233/2520
M[2,9]+=- C1234/11340 - C1244/90720 + C1313/6480 - C1314/6480 - C1323/4320 + C1324/4320 - C1333/3240 + C1344/3240 + 71*C2211/30240 + 53*C2212/12960 + 5*C2213/4536 + 31*C2214/30240 + 47*C2222/18144 + C2223/945 + 89*C2224/90720 + 5*C2233/9072 + 2*C2234/2835
M[2,9]+= 19*C2244/30240 + C2313/12960 - C2314/12960 + C2323/12960 - C2324/12960 - C2333/12960 + C2344/12960
M[2,10]=-C1111/810 - C1112/540 - C1113/1620 - C1114/1620 - C1122/540 - C1123/1080 - C1124/540 - C1133/3240 - C1134/1620 - C1144/810 - 59*C1211/15120 - 31*C1212/5040 - 163*C1213/90720 - C1214/1620 - C1222/540 - C1223/1080 + 37*C1224/15120 - C1233/3240
M[2,10]+= 17*C1234/30240 + 13*C1244/9072 - C1311/3240 - C1312/1080 - C1313/1620 - C1314/1620 - C1322/540 - C1323/1080 - C1324/360 - C1333/3240 - C1334/1620 - 7*C1344/3240 - 67*C2211/9072 - 191*C2212/18144 - 67*C2213/9072 - 563*C2214/90720 - C2222/96
M[2,10]+=- 191*C2223/18144 - 113*C2224/18144 - 67*C2233/9072 - 563*C2234/90720 - 107*C2244/22680 - C2311/3240 - C2312/1080 - 163*C2313/90720 + 17*C2314/30240 - C2322/540 - 31*C2323/5040 + 37*C2324/15120 - 59*C2333/15120 - C2334/1620 + 13*C2344/9072 - C3311/3240
M[2,10]+=- C3312/1080 - C3313/1620 - C3314/1620 - C3322/540 - C3323/540 - C3324/540 - C3333/810 - C3334/1620 - C3344/810
M[2,11]=-C1211/12960 + C1212/12960 + C1213/12960 - C1224/12960 - C1234/12960 + C1244/12960 - C1311/3240 - C1312/4320 + C1313/6480 + C1324/4320 - C1334/6480 + C1344/3240 + 5*C2211/9072 + C2212/945 + 5*C2213/4536 + 2*C2214/2835 + 47*C2222/18144 + 53*C2223/12960
M[2,11]+= 89*C2224/90720 + 71*C2233/30240 + 31*C2234/30240 + 19*C2244/30240 - C2311/2520 + C2312/2160 + 41*C2313/22680 - C2314/11340 + 37*C2322/10080 + 703*C2323/90720 + C2324/1620 + 17*C2333/3240 + 143*C2334/90720 - C2344/90720 + C3311/3240 + C3312/1080 + C3313/1296
M[2,11]+= C3314/2160 + C3322/540 + 11*C3323/4320 + C3324/864 + C3333/540 + C3334/1620 + C3344/1620
M[2,12]=C1111/1620 + C1112/864 + C1113/2160 + C1114/1620 + C1122/540 + C1123/1080 + 11*C1124/4320 + C1133/3240 + C1134/1296 + C1144/540 + 113*C1211/90720 + 11*C1212/6480 + 23*C1213/22680 - 31*C1214/90720 + C1222/30240 + C1223/720 - 241*C1224/90720
M[2,12]+= 23*C1233/22680 - C1234/3780 - C1244/648 + C1311/1080 + C1312/480 + C1313/1080 + C1314/720 + C1322/270 + C1323/480 + 11*C1324/2160 + C1333/1080 + C1334/720 + C1344/270 + 19*C2211/15120 + 23*C2212/15120 + 19*C2213/15120 + C2214/15120 + C2222/1296
M[2,12]+= 23*C2223/15120 - 101*C2224/90720 + 19*C2233/15120 + C2234/15120 - 19*C2244/18144 + 23*C2311/22680 + C2312/720 + 23*C2313/22680 - C2314/3780 + C2322/30240 + 11*C2323/6480 - 241*C2324/90720 + 113*C2333/90720 - 31*C2334/90720 - C2344/648 + C3311/3240
M[2,12]+= C3312/1080 + C3313/2160 + C3314/1296 + C3322/540 + C3323/864 + 11*C3324/4320 + C3333/1620 + C3334/1620 + C3344/540
M[2,13]=11*C1111/12960 + C1112/1440 + C1113/1296 + C1114/3240 + C1122/2160 + C1123/1620 + 7*C1124/12960 + C1133/2160 + C1134/2160 + C1144/2592 - 13*C1211/15120 + 11*C1212/18144 - 13*C1213/7560 - 17*C1214/18144 - 89*C1222/90720 - 53*C1223/45360 - 17*C1224/22680
M[2,13]+=- 5*C1233/3024 - 43*C1234/45360 - 29*C1244/90720 + C1311/648 + 11*C1312/12960 + C1313/864 + C1314/2160 + C1323/12960 + C1324/2160 + C1333/3240 + C1334/4320 + C1344/2160 - 11*C2311/15120 + C2312/90720 - 19*C2313/15120 - 79*C2314/90720 - 41*C2322/45360
M[2,13]+=- C2323/9072 - 61*C2324/90720 - 19*C2333/30240 - 5*C2334/9072 - 11*C2344/45360 + C3311/4320 + C3312/3240 + C3313/2592 + C3314/4320 + C3322/4320 + C3323/4320 + C3324/2592 + C3333/3240 + C3334/6480 + C3344/3240
M[2,14]=C1211/12960 + C1212/2592 + C1213/6480 - C1224/2592 - C1234/6480 - C1244/12960 - C1311/6480 + C1312/4320 + C1313/12960 - C1324/4320 - C1334/12960 + C1344/6480 + 17*C2211/11340 + 89*C2212/30240 + 17*C2213/5670 + 143*C2214/90720 + 109*C2222/18144
M[2,14]+= 317*C2223/45360 + 29*C2224/11340 + 17*C2233/3780 + 43*C2234/15120 + 43*C2244/30240 + C2311/3780 + 17*C2312/6048 + 29*C2313/18144 + 19*C2314/45360 + 43*C2322/5040 + 17*C2323/2268 + 199*C2324/90720 + 23*C2333/6480 + 31*C2334/22680 + 31*C2344/90720 + C3311/6480
M[2,14]+= C3312/2160 + C3313/2592 + C3314/4320 + C3322/1080 + 7*C3323/4320 + C3324/4320 + C3333/1080 + C3334/3240 + C3344/3240
M[2,15]=-C1111/1620 - C1112/1620 - C1113/1620 - C1114/3240 - C1122/2160 - C1123/1620 - C1124/1620 - C1133/2160 - C1134/1620 - C1144/1620 - C1211/6480 - 4*C1212/2835 - C1213/6480 - C1214/3240 - C1222/2160 - C1223/1620 + C1224/5670 - C1233/2160
M[2,15]+=- 7*C1234/6480 - 7*C1244/6480 - C1311/6480 - C1312/6480 - 17*C1313/12960 - C1314/3240 - C1322/2160 - C1323/1620 - 7*C1324/6480 - C1333/2160 + C1334/12960 - 7*C1344/6480 - 5*C2211/4536 - 2*C2212/945 - 5*C2213/2268 - 4*C2214/2835 - 169*C2222/45360
M[2,15]+=- 199*C2223/45360 - C2224/756 - 5*C2233/1512 - 121*C2234/45360 - 71*C2244/45360 + 179*C2311/90720 + 43*C2312/90720 - C2313/45360 + 41*C2314/30240 - 31*C2322/10080 - 113*C2323/12960 + 73*C2324/90720 - C2333/315 + 19*C2334/90720 + 19*C2344/18144 - 13*C3311/12960
M[2,15]+=- 13*C3312/6480 - 7*C3313/4320 - 17*C3314/12960 - 13*C3322/4320 - 11*C3323/3240 - C3324/405 - 29*C3333/12960 - C3334/1080 - 19*C3344/12960
M[2,16]=C1111/2592 + 7*C1112/12960 + C1113/2160 + C1114/3240 + C1122/2160 + C1123/1620 + C1124/1440 + C1133/2160 + C1134/1296 + 11*C1144/12960 + 11*C1211/10080 + 83*C1212/45360 + 17*C1213/9072 + 47*C1214/30240 + 173*C1222/90720 + 109*C1223/45360 + 71*C1224/90720
M[2,16]+= 13*C1233/5040 + 37*C1234/11340 + 29*C1244/11340 + C1311/3240 + C1312/1620 + C1313/1440 + C1314/6480 + C1322/1080 + C1323/864 + 7*C1324/12960 + C1333/1620 + C1334/2592 + C1344/6480 + 2*C2211/2835 + 13*C2212/10080 + 4*C2213/2835 + 113*C2214/90720
M[2,16]+= 131*C2222/90720 + C2223/560 + C2224/11340 + 2*C2233/945 + 113*C2234/45360 + 31*C2244/18144 + C2311/2592 + C2312/1440 + 11*C2313/10080 + C2314/4536 + 13*C2322/12960 + 67*C2323/30240 - C2324/18144 + 149*C2333/90720 + 11*C2334/12960 + 13*C2344/45360
M[2,16]+= C3311/4320 + C3312/2160 + C3313/2592 + C3314/12960 + C3322/1440 + C3323/1296 + C3324/6480 + C3333/2160 - C3344/2160
M[2,17]=-C1111/240 - C1112/160 - C1113/240 + C1124/160 + C1134/240 + C1144/240 - 43*C1211/3360 - 139*C1212/3360 - 79*C1213/3360 - 29*C1214/3360 - 19*C1222/280 - 11*C1223/140 - 13*C1224/420 - 43*C1233/1120 - 13*C1234/672 - 3*C1244/280 - C1311/240 - C1312/80
M[2,17]+=- C1313/80 - C1314/240 - C1322/40 - C1323/32 - 3*C1324/160 - C1333/48 - C1334/120 - C1344/80 - 5*C2211/336 - C2212/35 - 5*C2213/168 - 2*C2214/105 - 169*C2222/3360 - 199*C2223/3360 - C2224/56 - 5*C2233/112 - 121*C2234/3360 - 71*C2244/3360
M[2,17]+=- C2311/240 - C2312/80 - 2*C2313/105 + C2314/420 - C2322/40 - 223*C2323/3360 + 11*C2324/672 - 9*C2333/224 - C2334/120 + 23*C2344/3360 - C3311/240 - C3312/80 - C3313/120 - C3314/120 - C3322/40 - C3323/40 - C3324/40 - C3333/60 - C3334/120
M[2,17]+=- C3344/60
M[2,18]=-C1111/120 - C1112/120 - C1113/120 - C1114/240 - C1122/160 - C1123/120 - C1124/120 - C1133/160 - C1134/120 - C1144/120 - C1211/120 - 71*C1212/3360 - C1213/160 - C1214/240 - C1222/160 - C1223/120 + C1224/224 - C1233/160 - C1234/96
M[2,18]+=- C1244/120 - C1311/160 - C1312/120 - C1313/80 - C1314/240 - C1322/160 - C1323/120 - C1324/120 - C1333/160 - C1334/240 - C1344/96 + C2211/160 - 13*C2212/672 + C2213/80 + C2214/96 - 59*C2222/3360 - 13*C2223/672 - 11*C2224/1680 + C2233/160
M[2,18]+= C2234/96 + C2244/160 - C2311/160 - C2312/120 - C2313/160 - C2314/96 - C2322/160 - 71*C2323/3360 + C2324/224 - C2333/120 - C2334/240 - C2344/120 - C3311/160 - C3312/120 - C3313/120 - C3314/120 - C3322/160 - C3323/120 - C3324/120
M[2,18]+=- C3333/120 - C3334/240 - C3344/120
M[2,19]=-C1111/60 - C1112/40 - C1113/120 - C1114/120 - C1122/40 - C1123/80 - C1124/40 - C1133/240 - C1134/120 - C1144/60 - 9*C1211/224 - 223*C1212/3360 - 2*C1213/105 - C1214/120 - C1222/40 - C1223/80 + 11*C1224/672 - C1233/240 + C1234/420
M[2,19]+= 23*C1244/3360 - C1311/48 - C1312/32 - C1313/80 - C1314/120 - C1322/40 - C1323/80 - 3*C1324/160 - C1333/240 - C1334/240 - C1344/80 - 5*C2211/112 - 199*C2212/3360 - 5*C2213/168 - 121*C2214/3360 - 169*C2222/3360 - C2223/35 - C2224/56
M[2,19]+=- 5*C2233/336 - 2*C2234/105 - 71*C2244/3360 - 43*C2311/1120 - 11*C2312/140 - 79*C2313/3360 - 13*C2314/672 - 19*C2322/280 - 139*C2323/3360 - 13*C2324/420 - 43*C2333/3360 - 29*C2334/3360 - 3*C2344/280 - C3313/240 + C3314/240 - C3323/160 + C3324/160
M[2,19]+=- C3333/240 + C3344/240
M[2,20]=C1111/240 + C1112/160 + C1113/240 - C1124/160 - C1134/240 - C1144/240 + 2*C1211/105 + 73*C1212/1680 + 31*C1213/1120 + 29*C1214/3360 + 19*C1222/280 + 11*C1223/140 + 97*C1224/3360 + 43*C1233/1120 + 17*C1234/1120 + C1244/224 + C1311/48 + C1312/32
M[2,20]+= C1313/60 + C1314/240 + C1322/40 + C1323/32 + C1333/48 + C1334/240 - C1344/240 - C2211/160 + 13*C2212/672 - C2213/80 - C2214/96 + 59*C2222/3360 + 13*C2223/672 + 11*C2224/1680 - C2233/160 - C2234/96 - C2244/160 + 43*C2311/1120 + 11*C2312/140
M[2,20]+= 31*C2313/1120 + 17*C2314/1120 + 19*C2322/280 + 73*C2323/1680 + 97*C2324/3360 + 2*C2333/105 + 29*C2334/3360 + C2344/224 + C3313/240 - C3314/240 + C3323/160 - C3324/160 + C3333/240 - C3344/240
M[3,3]=7*C1111/1620 + 7*C1112/3240 + 7*C1113/1080 + 7*C1114/3240 + 7*C1122/6480 + 7*C1123/2160 + 7*C1124/3240 + 7*C1133/1080 + 7*C1134/1080 + 7*C1144/1620 + 7*C1211/6480 + 7*C1212/3240 + 7*C1213/2160 + 7*C1214/3240 + 7*C1222/6480 + 7*C1223/2160 + 7*C1224/3240
M[3,3]+= 7*C1233/1080 + 7*C1234/720 + 49*C1244/6480 + 31*C1311/2160 + 43*C1312/6480 + 17*C1313/720 + 7*C1314/3240 + 7*C1322/6480 + 7*C1323/2160 - C1324/432 + 7*C1333/1080 - 23*C1334/2160 - 37*C1344/6480 + 7*C2211/6480 + 7*C2212/3240 + 7*C2213/2160 + 7*C2214/3240
M[3,3]+= 7*C2222/1620 + 7*C2223/1080 + 7*C2224/3240 + 7*C2233/1080 + 7*C2234/1080 + 7*C2244/1620 + 7*C2311/6480 + 43*C2312/6480 + 7*C2313/2160 - C2314/432 + 31*C2322/2160 + 17*C2323/720 + 7*C2324/3240 + 7*C2333/1080 - 23*C2334/2160 - 37*C2344/6480 + 1303*C3311/45360
M[3,3]+= 1303*C3312/45360 + 55*C3313/1134 + 55*C3314/2268 + 1303*C3322/45360 + 55*C3323/1134 + 55*C3324/2268 + 13*C3333/210 + 1423*C3334/45360 + 53*C3344/2835
M[3,4]=71*C1111/12960 + 2*C1112/405 + 121*C1113/12960 + C1114/216 + 5*C1122/1296 + 5*C1123/648 + C1124/135 + 5*C1133/432 + 199*C1134/12960 + 169*C1144/12960 + 31*C1211/4320 + 19*C1212/2160 + 193*C1213/12960 + 4*C1214/405 + 31*C1222/4320 + 193*C1223/12960 + 4*C1224/405
M[3,4]+= 31*C1233/1440 + 37*C1234/1296 + 317*C1244/12960 + 697*C1311/45360 + 697*C1312/45360 + 1927*C1313/90720 + 1073*C1314/90720 + 697*C1322/45360 + 191*C1323/11340 + 46*C1324/2835 + 337*C1333/30240 - 223*C1334/45360 + 1277*C1344/90720 + 5*C2211/1296 + 2*C2212/405
M[3,4]+= 5*C2213/648 + C2214/135 + 71*C2222/12960 + 121*C2223/12960 + C2224/216 + 5*C2233/432 + 199*C2234/12960 + 169*C2244/12960 + 697*C2311/45360 + 697*C2312/45360 + 191*C2313/11340 + 46*C2314/2835 + 697*C2322/45360 + 1927*C2323/90720 + 1073*C2324/90720 + 337*C2333/30240
M[3,4]+=- 223*C2334/45360 + 1277*C2344/90720 + 697*C3311/45360 + 697*C3312/45360 + 25*C3313/1512 + 25*C3314/1512 + 697*C3322/45360 + 25*C3323/1512 + 25*C3324/1512 + 143*C3333/11340 - 223*C3334/45360 + 143*C3344/11340
M[3,5]=-29*C1111/12960 - 7*C1112/4320 - 11*C1113/3240 - C1114/1080 - 13*C1122/12960 - 13*C1123/6480 - 17*C1124/12960 - 13*C1133/4320 - C1134/405 - 19*C1144/12960 - C1211/2160 - 17*C1212/12960 - C1213/1620 + C1214/12960 - C1222/6480 - C1223/6480 - C1224/3240
M[3,5]+=- C1233/2160 - 7*C1234/6480 - 7*C1244/6480 - C1311/315 - C1312/45360 - 113*C1313/12960 + 19*C1314/90720 + 179*C1322/90720 + 43*C1323/90720 + 41*C1324/30240 - 31*C1333/10080 + 73*C1334/90720 + 19*C1344/18144 - C2211/2160 - C2212/1620 - C2213/1620 - C2214/1620
M[3,5]+=- C2222/1620 - C2223/1620 - C2224/3240 - C2233/2160 - C2234/1620 - C2244/1620 - C2311/2160 - C2312/6480 - C2313/1620 - 7*C2314/6480 - C2322/6480 - 4*C2323/2835 - C2324/3240 - C2333/2160 + C2334/5670 - 7*C2344/6480 - 5*C3311/1512 - 5*C3312/2268
M[3,5]+=- 199*C3313/45360 - 121*C3314/45360 - 5*C3322/4536 - 2*C3323/945 - 4*C3324/2835 - 169*C3333/45360 - C3334/756 - 71*C3344/45360
M[3,6]=C1111/3240 + C1112/2592 + C1113/4320 + C1114/6480 + C1122/4320 + C1123/3240 + C1124/4320 + C1133/4320 + C1134/2592 + C1144/3240 + C1211/3240 + C1212/864 + C1213/12960 + C1214/4320 + C1222/648 + 11*C1223/12960 + C1224/2160 + C1234/2160
M[3,6]+= C1244/2160 - 19*C1311/30240 - 19*C1312/15120 - C1313/9072 - 5*C1314/9072 - 11*C1322/15120 + C1323/90720 - 79*C1324/90720 - 41*C1333/45360 - 61*C1334/90720 - 11*C1344/45360 + C2211/2160 + C2212/1296 + C2213/1620 + C2214/2160 + 11*C2222/12960 + C2223/1440
M[3,6]+= C2224/3240 + C2233/2160 + 7*C2234/12960 + C2244/2592 - 5*C2311/3024 - 13*C2312/7560 - 53*C2313/45360 - 43*C2314/45360 - 13*C2322/15120 + 11*C2323/18144 - 17*C2324/18144 - 89*C2333/90720 - 17*C2334/22680 - 29*C2344/90720
M[3,7]=C1111/1080 + C1112/2592 + 7*C1113/4320 + C1114/3240 + C1122/6480 + C1123/2160 + C1124/4320 + C1133/1080 + C1134/4320 + C1144/3240 + C1212/12960 - C1214/12960 - C1222/6480 + C1223/4320 - C1234/4320 + C1244/6480 + 23*C1311/6480 + 29*C1312/18144
M[3,7]+= 17*C1313/2268 + 31*C1314/22680 + C1322/3780 + 17*C1323/6048 + 19*C1324/45360 + 43*C1333/5040 + 199*C1334/90720 + 31*C1344/90720 + C2312/6480 - C2314/6480 + C2322/12960 + C2323/2592 - C2334/2592 - C2344/12960 + 17*C3311/3780 + 17*C3312/5670 + 317*C3313/45360
M[3,7]+= 43*C3314/15120 + 17*C3322/11340 + 89*C3323/30240 + 143*C3324/90720 + 109*C3333/18144 + 29*C3334/11340 + 43*C3344/30240
M[3,8]=C1111/2160 + C1112/2592 + C1113/1296 + C1122/4320 + C1123/2160 + C1124/12960 + C1133/1440 + C1134/6480 - C1144/2160 + C1211/1620 + C1212/1440 + C1213/864 + C1214/2592 + C1222/3240 + C1223/1620 + C1224/6480 + C1233/1080 + 7*C1234/12960
M[3,8]+= C1244/6480 + 149*C1311/90720 + 11*C1312/10080 + 67*C1313/30240 + 11*C1314/12960 + C1322/2592 + C1323/1440 + C1324/4536 + 13*C1333/12960 - C1334/18144 + 13*C1344/45360 + C2211/2160 + C2212/2160 + C2213/1620 + C2214/1296 + C2222/2592 + 7*C2223/12960
M[3,8]+= C2224/3240 + C2233/2160 + C2234/1440 + 11*C2244/12960 + 13*C2311/5040 + 17*C2312/9072 + 109*C2313/45360 + 37*C2314/11340 + 11*C2322/10080 + 83*C2323/45360 + 47*C2324/30240 + 173*C2333/90720 + 71*C2334/90720 + 29*C2344/11340 + 2*C3311/945 + 4*C3312/2835
M[3,8]+= C3313/560 + 113*C3314/45360 + 2*C3322/2835 + 13*C3323/10080 + 113*C3324/90720 + 131*C3333/90720 + C3334/11340 + 31*C3344/18144
M[3,9]=11*C1111/12960 + C1112/1296 + C1113/1440 + C1114/3240 + C1122/2160 + C1123/1620 + C1124/2160 + C1133/2160 + 7*C1134/12960 + C1144/2592 + C1211/648 + C1212/864 + 11*C1213/12960 + C1214/2160 + C1222/3240 + C1223/12960 + C1224/4320 + C1234/2160
M[3,9]+= C1244/2160 - 13*C1311/15120 - 13*C1312/7560 + 11*C1313/18144 - 17*C1314/18144 - 5*C1322/3024 - 53*C1323/45360 - 43*C1324/45360 - 89*C1333/90720 - 17*C1334/22680 - 29*C1344/90720 + C2211/4320 + C2212/2592 + C2213/3240 + C2214/4320 + C2222/3240 + C2223/4320
M[3,9]+= C2224/6480 + C2233/4320 + C2234/2592 + C2244/3240 - 11*C2311/15120 - 19*C2312/15120 + C2313/90720 - 79*C2314/90720 - 19*C2322/30240 - C2323/9072 - 5*C2324/9072 - 41*C2333/45360 - 61*C2334/90720 - 11*C2344/45360
M[3,10]=-C1111/1620 - C1112/1620 - C1113/1620 - C1114/3240 - C1122/2160 - C1123/1620 - C1124/1620 - C1133/2160 - C1134/1620 - C1144/1620 - C1211/6480 - 17*C1212/12960 - C1213/6480 - C1214/3240 - C1222/2160 - C1223/1620 + C1224/12960 - C1233/2160
M[3,10]+=- 7*C1234/6480 - 7*C1244/6480 - C1311/6480 - C1312/6480 - 4*C1313/2835 - C1314/3240 - C1322/2160 - C1323/1620 - 7*C1324/6480 - C1333/2160 + C1334/5670 - 7*C1344/6480 - 13*C2211/12960 - 7*C2212/4320 - 13*C2213/6480 - 17*C2214/12960 - 29*C2222/12960
M[3,10]+=- 11*C2223/3240 - C2224/1080 - 13*C2233/4320 - C2234/405 - 19*C2244/12960 + 179*C2311/90720 - C2312/45360 + 43*C2313/90720 + 41*C2314/30240 - C2322/315 - 113*C2323/12960 + 19*C2324/90720 - 31*C2333/10080 + 73*C2334/90720 + 19*C2344/18144 - 5*C3311/4536
M[3,10]+=- 5*C3312/2268 - 2*C3313/945 - 4*C3314/2835 - 5*C3322/1512 - 199*C3323/45360 - 121*C3324/45360 - 169*C3333/45360 - C3334/756 - 71*C3344/45360
M[3,11]=-C1211/6480 + C1212/12960 + C1213/4320 - C1224/12960 - C1234/4320 + C1244/6480 + C1311/12960 + C1312/6480 + C1313/2592 - C1324/6480 - C1334/2592 - C1344/12960 + C2211/6480 + C2212/2592 + C2213/2160 + C2214/4320 + C2222/1080 + 7*C2223/4320
M[3,11]+= C2224/3240 + C2233/1080 + C2234/4320 + C2244/3240 + C2311/3780 + 29*C2312/18144 + 17*C2313/6048 + 19*C2314/45360 + 23*C2322/6480 + 17*C2323/2268 + 31*C2324/22680 + 43*C2333/5040 + 199*C2334/90720 + 31*C2344/90720 + 17*C3311/11340 + 17*C3312/5670 + 89*C3313/30240
M[3,11]+= 143*C3314/90720 + 17*C3322/3780 + 317*C3323/45360 + 43*C3324/15120 + 109*C3333/18144 + 29*C3334/11340 + 43*C3344/30240
M[3,12]=C1111/2592 + C1112/2160 + 7*C1113/12960 + C1114/3240 + C1122/2160 + C1123/1620 + C1124/1296 + C1133/2160 + C1134/1440 + 11*C1144/12960 + C1211/3240 + C1212/1440 + C1213/1620 + C1214/6480 + C1222/1620 + C1223/864 + C1224/2592 + C1233/1080
M[3,12]+= 7*C1234/12960 + C1244/6480 + 11*C1311/10080 + 17*C1312/9072 + 83*C1313/45360 + 47*C1314/30240 + 13*C1322/5040 + 109*C1323/45360 + 37*C1324/11340 + 173*C1333/90720 + 71*C1334/90720 + 29*C1344/11340 + C2211/4320 + C2212/2592 + C2213/2160 + C2214/12960
M[3,12]+= C2222/2160 + C2223/1296 + C2233/1440 + C2234/6480 - C2244/2160 + C2311/2592 + 11*C2312/10080 + C2313/1440 + C2314/4536 + 149*C2322/90720 + 67*C2323/30240 + 11*C2324/12960 + 13*C2333/12960 - C2334/18144 + 13*C2344/45360 + 2*C3311/2835 + 4*C3312/2835
M[3,12]+= 13*C3313/10080 + 113*C3314/90720 + 2*C3322/945 + C3323/560 + 113*C3324/45360 + 131*C3333/90720 + C3334/11340 + 31*C3344/18144
M[3,13]=C1111/540 + C1112/1296 + 11*C1113/4320 + C1114/1620 + C1122/3240 + C1123/1080 + C1124/2160 + C1133/540 + C1134/864 + C1144/1620 + C1212/6480 - C1214/6480 - C1222/3240 - C1223/4320 + C1234/4320 + C1244/3240 + 17*C1311/3240 + 41*C1312/22680
M[3,13]+= 703*C1313/90720 + 143*C1314/90720 - C1322/2520 + C1323/2160 - C1324/11340 + 37*C1333/10080 + C1334/1620 - C1344/90720 + C2312/12960 - C2314/12960 - C2322/12960 + C2323/12960 - C2334/12960 + C2344/12960 + 71*C3311/30240 + 5*C3312/4536 + 53*C3313/12960
M[3,13]+= 31*C3314/30240 + 5*C3322/9072 + C3323/945 + 2*C3324/2835 + 47*C3333/18144 + 89*C3334/90720 + 19*C3344/30240
M[3,14]=-C1211/3240 + C1212/6480 - C1213/4320 - C1224/6480 + C1234/4320 + C1244/3240 - C1311/12960 + C1312/12960 + C1313/12960 - C1324/12960 - C1334/12960 + C1344/12960 + C2211/3240 + C2212/1296 + C2213/1080 + C2214/2160 + C2222/540 + 11*C2223/4320
M[3,14]+= C2224/1620 + C2233/540 + C2234/864 + C2244/1620 - C2311/2520 + 41*C2312/22680 + C2313/2160 - C2314/11340 + 17*C2322/3240 + 703*C2323/90720 + 143*C2324/90720 + 37*C2333/10080 + C2334/1620 - C2344/90720 + 5*C3311/9072 + 5*C3312/4536 + C3313/945
M[3,14]+= 2*C3314/2835 + 71*C3322/30240 + 53*C3323/12960 + 31*C3324/30240 + 47*C3333/18144 + 89*C3334/90720 + 19*C3344/30240
M[3,15]=-C1111/810 - C1112/1620 - C1113/540 - C1114/1620 - C1122/3240 - C1123/1080 - C1124/1620 - C1133/540 - C1134/540 - C1144/810 - C1211/3240 - C1212/1620 - C1213/1080 - C1214/1620 - C1222/3240 - C1223/1080 - C1224/1620 - C1233/540 - C1234/360
M[3,15]+=- 7*C1244/3240 - 59*C1311/15120 - 163*C1312/90720 - 31*C1313/5040 - C1314/1620 - C1322/3240 - C1323/1080 + 17*C1324/30240 - C1333/540 + 37*C1334/15120 + 13*C1344/9072 - C2211/3240 - C2212/1620 - C2213/1080 - C2214/1620 - C2222/810 - C2223/540
M[3,15]+=- C2224/1620 - C2233/540 - C2234/540 - C2244/810 - C2311/3240 - 163*C2312/90720 - C2313/1080 + 17*C2314/30240 - 59*C2322/15120 - 31*C2323/5040 - C2324/1620 - C2333/540 + 37*C2334/15120 + 13*C2344/9072 - 67*C3311/9072 - 67*C3312/9072 - 191*C3313/18144
M[3,15]+=- 563*C3314/90720 - 67*C3322/9072 - 191*C3323/18144 - 563*C3324/90720 - C3333/96 - 113*C3334/18144 - 107*C3344/22680
M[3,16]=C1111/1620 + C1112/2160 + C1113/864 + C1114/1620 + C1122/3240 + C1123/1080 + C1124/1296 + C1133/540 + 11*C1134/4320 + C1144/540 + C1211/1080 + C1212/1080 + C1213/480 + C1214/720 + C1222/1080 + C1223/480 + C1224/720 + C1233/270 + 11*C1234/2160
M[3,16]+= C1244/270 + 113*C1311/90720 + 23*C1312/22680 + 11*C1313/6480 - 31*C1314/90720 + 23*C1322/22680 + C1323/720 - C1324/3780 + C1333/30240 - 241*C1334/90720 - C1344/648 + C2211/3240 + C2212/2160 + C2213/1080 + C2214/1296 + C2222/1620 + C2223/864
M[3,16]+= C2224/1620 + C2233/540 + 11*C2234/4320 + C2244/540 + 23*C2311/22680 + 23*C2312/22680 + C2313/720 - C2314/3780 + 113*C2322/90720 + 11*C2323/6480 - 31*C2324/90720 + C2333/30240 - 241*C2334/90720 - C2344/648 + 19*C3311/15120 + 19*C3312/15120 + 23*C3313/15120
M[3,16]+= C3314/15120 + 19*C3322/15120 + 23*C3323/15120 + C3324/15120 + C3333/1296 - 101*C3334/90720 - 19*C3344/18144
M[3,17]=-C1111/240 - C1112/240 - C1113/160 + C1124/240 + C1134/160 + C1144/240 - C1211/240 - C1212/80 - C1213/80 - C1214/240 - C1222/48 - C1223/32 - C1224/120 - C1233/40 - 3*C1234/160 - C1244/80 - 43*C1311/3360 - 79*C1312/3360 - 139*C1313/3360
M[3,17]+=- 29*C1314/3360 - 43*C1322/1120 - 11*C1323/140 - 13*C1324/672 - 19*C1333/280 - 13*C1334/420 - 3*C1344/280 - C2211/240 - C2212/120 - C2213/80 - C2214/120 - C2222/60 - C2223/40 - C2224/120 - C2233/40 - C2234/40 - C2244/60 - C2311/240
M[3,17]+=- 2*C2312/105 - C2313/80 + C2314/420 - 9*C2322/224 - 223*C2323/3360 - C2324/120 - C2333/40 + 11*C2334/672 + 23*C2344/3360 - 5*C3311/336 - 5*C3312/168 - C3313/35 - 2*C3314/105 - 5*C3322/112 - 199*C3323/3360 - 121*C3324/3360 - 169*C3333/3360
M[3,17]+=- C3334/56 - 71*C3344/3360
M[3,18]=-C1111/60 - C1112/120 - C1113/40 - C1114/120 - C1122/240 - C1123/80 - C1124/120 - C1133/40 - C1134/40 - C1144/60 - C1211/48 - C1212/80 - C1213/32 - C1214/120 - C1222/240 - C1223/80 - C1224/240 - C1233/40 - 3*C1234/160 - C1244/80
M[3,18]+=- 9*C1311/224 - 2*C1312/105 - 223*C1313/3360 - C1314/120 - C1322/240 - C1323/80 + C1324/420 - C1333/40 + 11*C1334/672 + 23*C1344/3360 - C2212/240 + C2214/240 - C2222/240 - C2223/160 + C2234/160 + C2244/240 - 43*C2311/1120 - 79*C2312/3360
M[3,18]+=- 11*C2313/140 - 13*C2314/672 - 43*C2322/3360 - 139*C2323/3360 - 29*C2324/3360 - 19*C2333/280 - 13*C2334/420 - 3*C2344/280 - 5*C3311/112 - 5*C3312/168 - 199*C3313/3360 - 121*C3314/3360 - 5*C3322/336 - C3323/35 - 2*C3324/105 - 169*C3333/3360 - C3334/56
M[3,18]+=- 71*C3344/3360
M[3,19]=-C1111/120 - C1112/120 - C1113/120 - C1114/240 - C1122/160 - C1123/120 - C1124/120 - C1133/160 - C1134/120 - C1144/120 - C1211/160 - C1212/80 - C1213/120 - C1214/240 - C1222/160 - C1223/120 - C1224/240 - C1233/160 - C1234/120
M[3,19]+=- C1244/96 - C1311/120 - C1312/160 - 71*C1313/3360 - C1314/240 - C1322/160 - C1323/120 - C1324/96 - C1333/160 + C1334/224 - C1344/120 - C2211/160 - C2212/120 - C2213/120 - C2214/120 - C2222/120 - C2223/120 - C2224/240 - C2233/160
M[3,19]+=- C2234/120 - C2244/120 - C2311/160 - C2312/160 - C2313/120 - C2314/96 - C2322/120 - 71*C2323/3360 - C2324/240 - C2333/160 + C2334/224 - C2344/120 + C3311/160 + C3312/80 - 13*C3313/672 + C3314/96 + C3322/160 - 13*C3323/672 + C3324/96
M[3,19]+=- 59*C3333/3360 - 11*C3334/1680 + C3344/160
M[3,20]=C1111/240 + C1112/240 + C1113/160 - C1124/240 - C1134/160 - C1144/240 + C1211/48 + C1212/60 + C1213/32 + C1214/240 + C1222/48 + C1223/32 + C1224/240 + C1233/40 - C1244/240 + 2*C1311/105 + 31*C1312/1120 + 73*C1313/1680 + 29*C1314/3360
M[3,20]+= 43*C1322/1120 + 11*C1323/140 + 17*C1324/1120 + 19*C1333/280 + 97*C1334/3360 + C1344/224 + C2212/240 - C2214/240 + C2222/240 + C2223/160 - C2234/160 - C2244/240 + 43*C2311/1120 + 31*C2312/1120 + 11*C2313/140 + 17*C2314/1120 + 2*C2322/105 + 73*C2323/1680
M[3,20]+= 29*C2324/3360 + 19*C2333/280 + 97*C2334/3360 + C2344/224 - C3311/160 - C3312/80 + 13*C3313/672 - C3314/96 - C3322/160 + 13*C3323/672 - C3324/96 + 59*C3333/3360 + 11*C3334/1680 - C3344/160
M[4,4]=53*C1111/2835 + 55*C1112/2268 + 55*C1113/2268 + 1423*C1114/45360 + 1303*C1122/45360 + 1303*C1123/45360 + 55*C1124/1134 + 1303*C1133/45360 + 55*C1134/1134 + 13*C1144/210 + 391*C1211/9072 + 1051*C1212/22680 + 461*C1213/9072 + 3329*C1214/45360 + 391*C1222/9072 + 461*C1223/9072
M[4,4]+= 3329*C1224/45360 + 2557*C1233/45360 + 4253*C1234/45360 + 887*C1244/7560 + 391*C1311/9072 + 461*C1312/9072 + 1051*C1313/22680 + 3329*C1314/45360 + 2557*C1322/45360 + 461*C1323/9072 + 4253*C1324/45360 + 391*C1333/9072 + 3329*C1334/45360 + 887*C1344/7560 + 1303*C2211/45360
M[4,4]+= 55*C2212/2268 + 1303*C2213/45360 + 55*C2214/1134 + 53*C2222/2835 + 55*C2223/2268 + 1423*C2224/45360 + 1303*C2233/45360 + 55*C2234/1134 + 13*C2244/210 + 2557*C2311/45360 + 461*C2312/9072 + 461*C2313/9072 + 4253*C2314/45360 + 391*C2322/9072 + 1051*C2323/22680
M[4,4]+= 3329*C2324/45360 + 391*C2333/9072 + 3329*C2334/45360 + 887*C2344/7560 + 1303*C3311/45360 + 1303*C3312/45360 + 55*C3313/2268 + 55*C3314/1134 + 1303*C3322/45360 + 55*C3323/2268 + 55*C3324/1134 + 53*C3333/2835 + 1423*C3334/45360 + 13*C3344/210
M[4,5]=-43*C1111/18144 - 23*C1112/6048 - 23*C1113/6048 + 17*C1114/18144 - 37*C1122/9072 - 37*C1123/9072 - 139*C1124/30240 - 37*C1133/9072 - 139*C1134/30240 - 83*C1144/22680 - 13*C1211/3780 - 503*C1212/90720 - 199*C1213/45360 - C1214/18144 - 379*C1222/90720 - 379*C1223/90720
M[4,5]+=- 313*C1224/90720 - 379*C1233/90720 - 61*C1234/12960 - 397*C1244/90720 - 13*C1311/3780 - 199*C1312/45360 - 503*C1313/90720 - C1314/18144 - 379*C1322/90720 - 379*C1323/90720 - 61*C1324/12960 - 379*C1333/90720 - 313*C1334/90720 - 397*C1344/90720 - 5*C2211/1512
M[4,5]+=- 121*C2212/45360 - 5*C2213/2268 - 199*C2214/45360 - 71*C2222/45360 - 4*C2223/2835 - C2224/756 - 5*C2233/4536 - 2*C2234/945 - 169*C2244/45360 - 31*C2311/5040 - 193*C2312/45360 - 193*C2313/45360 - 37*C2314/4536 - 31*C2322/15120 - 19*C2323/7560 - 8*C2324/2835
M[4,5]+=- 31*C2333/15120 - 8*C2334/2835 - 317*C2344/45360 - 5*C3311/1512 - 5*C3312/2268 - 121*C3313/45360 - 199*C3314/45360 - 5*C3322/4536 - 4*C3323/2835 - 2*C3324/945 - 71*C3333/45360 - C3334/756 - 169*C3344/45360
M[4,6]=17*C1111/18144 + 149*C1112/90720 + 2*C1113/2835 + 31*C1114/90720 + 29*C1122/30240 + 5*C1123/4536 + C1124/3360 + 5*C1133/9072 + C1134/945 + 103*C1144/90720 + 47*C1211/18144 + 25*C1212/6048 + 157*C1213/90720 + 41*C1214/30240 + 71*C1222/22680 + 103*C1223/45360
M[4,6]+= C1224/4320 + 31*C1233/30240 + 19*C1234/10080 + 19*C1244/10080 + 19*C1311/30240 + 19*C1312/15120 + 5*C1313/9072 + C1314/9072 + 11*C1322/15120 + 79*C1323/90720 - C1324/90720 + 11*C1333/45360 + 61*C1334/90720 + 41*C1344/45360 + 2*C2211/945 + 113*C2212/45360
M[4,6]+= 4*C2213/2835 + C2214/560 + 31*C2222/18144 + 113*C2223/90720 + C2224/11340 + 2*C2233/2835 + 13*C2234/10080 + 131*C2244/90720 + 5*C2311/3024 + 13*C2312/7560 + 43*C2313/45360 + 53*C2314/45360 + 13*C2322/15120 + 17*C2323/18144 - 11*C2324/18144 + 29*C2333/90720
M[4,6]+= 17*C2334/22680 + 89*C2344/90720
M[4,7]=17*C1111/18144 + 2*C1112/2835 + 149*C1113/90720 + 31*C1114/90720 + 5*C1122/9072 + 5*C1123/4536 + C1124/945 + 29*C1133/30240 + C1134/3360 + 103*C1144/90720 + 19*C1211/30240 + 5*C1212/9072 + 19*C1213/15120 + C1214/9072 + 11*C1222/45360 + 79*C1223/90720
M[4,7]+= 61*C1224/90720 + 11*C1233/15120 - C1234/90720 + 41*C1244/45360 + 47*C1311/18144 + 157*C1312/90720 + 25*C1313/6048 + 41*C1314/30240 + 31*C1322/30240 + 103*C1323/45360 + 19*C1324/10080 + 71*C1333/22680 + C1334/4320 + 19*C1344/10080 + 5*C2311/3024 + 43*C2312/45360
M[4,7]+= 13*C2313/7560 + 53*C2314/45360 + 29*C2322/90720 + 17*C2323/18144 + 17*C2324/22680 + 13*C2333/15120 - 11*C2334/18144 + 89*C2344/90720 + 2*C3311/945 + 4*C3312/2835 + 113*C3313/45360 + C3314/560 + 2*C3322/2835 + 113*C3323/90720 + 13*C3324/10080 + 31*C3333/18144
M[4,7]+= C3334/11340 + 131*C3344/90720
M[4,8]=17*C1111/9072 + C1112/560 + C1113/560 + 101*C1114/90720 + C1122/720 + C1123/720 + C1124/1680 + C1133/720 + C1134/1680 - 29*C1144/18144 + 247*C1211/45360 + 7*C1212/1620 + 19*C1213/4320 + 7*C1214/1080 + 227*C1222/90720 + 31*C1223/11340 + 53*C1224/18144
M[4,8]+= 31*C1233/11340 + 31*C1234/10080 + 79*C1244/22680 + 247*C1311/45360 + 19*C1312/4320 + 7*C1313/1620 + 7*C1314/1080 + 31*C1322/11340 + 31*C1323/11340 + 31*C1324/10080 + 227*C1333/90720 + 53*C1334/18144 + 79*C1344/22680 + 17*C2211/3780 + 43*C2212/15120 + 17*C2213/5670
M[4,8]+= 317*C2214/45360 + 43*C2222/30240 + 143*C2223/90720 + 29*C2224/11340 + 17*C2233/11340 + 89*C2234/30240 + 109*C2244/18144 + 17*C2311/1890 + 53*C2312/9072 + 53*C2313/9072 + 317*C2314/22680 + 53*C2322/18144 + 143*C2323/45360 + 499*C2324/90720 + 53*C2333/18144 + 499*C2334/90720
M[4,8]+= 109*C2344/9072 + 17*C3311/3780 + 17*C3312/5670 + 43*C3313/15120 + 317*C3314/45360 + 17*C3322/11340 + 143*C3323/90720 + 89*C3324/30240 + 43*C3333/30240 + 29*C3334/11340 + 109*C3344/18144
M[4,9]=31*C1111/18144 + 113*C1112/45360 + 113*C1113/90720 + C1114/11340 + 2*C1122/945 + 4*C1123/2835 + C1124/560 + 2*C1133/2835 + 13*C1134/10080 + 131*C1144/90720 + 71*C1211/22680 + 25*C1212/6048 + 103*C1213/45360 + C1214/4320 + 47*C1222/18144 + 157*C1223/90720
M[4,9]+= 41*C1224/30240 + 31*C1233/30240 + 19*C1234/10080 + 19*C1244/10080 + 13*C1311/15120 + 13*C1312/7560 + 17*C1313/18144 - 11*C1314/18144 + 5*C1322/3024 + 43*C1323/45360 + 53*C1324/45360 + 29*C1333/90720 + 17*C1334/22680 + 89*C1344/90720 + 29*C2211/30240 + 149*C2212/90720
M[4,9]+= 5*C2213/4536 + C2214/3360 + 17*C2222/18144 + 2*C2223/2835 + 31*C2224/90720 + 5*C2233/9072 + C2234/945 + 103*C2244/90720 + 11*C2311/15120 + 19*C2312/15120 + 79*C2313/90720 - C2314/90720 + 19*C2322/30240 + 5*C2323/9072 + C2324/9072 + 11*C2333/45360 + 61*C2334/90720
M[4,9]+= 41*C2344/45360
M[4,10]=-71*C1111/45360 - 121*C1112/45360 - 4*C1113/2835 - C1114/756 - 5*C1122/1512 - 5*C1123/2268 - 199*C1124/45360 - 5*C1133/4536 - 2*C1134/945 - 169*C1144/45360 - 379*C1211/90720 - 503*C1212/90720 - 379*C1213/90720 - 313*C1214/90720 - 13*C1222/3780 - 199*C1223/45360
M[4,10]+=- C1224/18144 - 379*C1233/90720 - 61*C1234/12960 - 397*C1244/90720 - 31*C1311/15120 - 193*C1312/45360 - 19*C1313/7560 - 8*C1314/2835 - 31*C1322/5040 - 193*C1323/45360 - 37*C1324/4536 - 31*C1333/15120 - 8*C1334/2835 - 317*C1344/45360 - 37*C2211/9072 - 23*C2212/6048
M[4,10]+=- 37*C2213/9072 - 139*C2214/30240 - 43*C2222/18144 - 23*C2223/6048 + 17*C2224/18144 - 37*C2233/9072 - 139*C2234/30240 - 83*C2244/22680 - 379*C2311/90720 - 199*C2312/45360 - 379*C2313/90720 - 61*C2314/12960 - 13*C2322/3780 - 503*C2323/90720 - C2324/18144 - 379*C2333/90720
M[4,10]+=- 313*C2334/90720 - 397*C2344/90720 - 5*C3311/4536 - 5*C3312/2268 - 4*C3313/2835 - 2*C3314/945 - 5*C3322/1512 - 121*C3323/45360 - 199*C3324/45360 - 71*C3333/45360 - C3334/756 - 169*C3344/45360
M[4,11]=11*C1211/45360 + 5*C1212/9072 + 79*C1213/90720 + 61*C1214/90720 + 19*C1222/30240 + 19*C1223/15120 + C1224/9072 + 11*C1233/15120 - C1234/90720 + 41*C1244/45360 + 29*C1311/90720 + 43*C1312/45360 + 17*C1313/18144 + 17*C1314/22680 + 5*C1322/3024 + 13*C1323/7560
M[4,11]+= 53*C1324/45360 + 13*C1333/15120 - 11*C1334/18144 + 89*C1344/90720 + 5*C2211/9072 + 2*C2212/2835 + 5*C2213/4536 + C2214/945 + 17*C2222/18144 + 149*C2223/90720 + 31*C2224/90720 + 29*C2233/30240 + C2234/3360 + 103*C2244/90720 + 31*C2311/30240 + 157*C2312/90720
M[4,11]+= 103*C2313/45360 + 19*C2314/10080 + 47*C2322/18144 + 25*C2323/6048 + 41*C2324/30240 + 71*C2333/22680 + C2334/4320 + 19*C2344/10080 + 2*C3311/2835 + 4*C3312/2835 + 113*C3313/90720 + 13*C3314/10080 + 2*C3322/945 + 113*C3323/45360 + C3324/560 + 31*C3333/18144
M[4,11]+= C3334/11340 + 131*C3344/90720
M[4,12]=43*C1111/30240 + 43*C1112/15120 + 143*C1113/90720 + 29*C1114/11340 + 17*C1122/3780 + 17*C1123/5670 + 317*C1124/45360 + 17*C1133/11340 + 89*C1134/30240 + 109*C1144/18144 + 227*C1211/90720 + 7*C1212/1620 + 31*C1213/11340 + 53*C1214/18144 + 247*C1222/45360 + 19*C1223/4320
M[4,12]+= 7*C1224/1080 + 31*C1233/11340 + 31*C1234/10080 + 79*C1244/22680 + 53*C1311/18144 + 53*C1312/9072 + 143*C1313/45360 + 499*C1314/90720 + 17*C1322/1890 + 53*C1323/9072 + 317*C1324/22680 + 53*C1333/18144 + 499*C1334/90720 + 109*C1344/9072 + C2211/720 + C2212/560
M[4,12]+= C2213/720 + C2214/1680 + 17*C2222/9072 + C2223/560 + 101*C2224/90720 + C2233/720 + C2234/1680 - 29*C2244/18144 + 31*C2311/11340 + 19*C2312/4320 + 31*C2313/11340 + 31*C2314/10080 + 247*C2322/45360 + 7*C2323/1620 + 7*C2324/1080 + 227*C2333/90720 + 53*C2334/18144
M[4,12]+= 79*C2344/22680 + 17*C3311/11340 + 17*C3312/5670 + 143*C3313/90720 + 89*C3314/30240 + 17*C3322/3780 + 43*C3323/15120 + 317*C3324/45360 + 43*C3333/30240 + 29*C3334/11340 + 109*C3344/18144
M[4,13]=31*C1111/18144 + 113*C1112/90720 + 113*C1113/45360 + C1114/11340 + 2*C1122/2835 + 4*C1123/2835 + 13*C1124/10080 + 2*C1133/945 + C1134/560 + 131*C1144/90720 + 13*C1211/15120 + 17*C1212/18144 + 13*C1213/7560 - 11*C1214/18144 + 29*C1222/90720 + 43*C1223/45360
M[4,13]+= 17*C1224/22680 + 5*C1233/3024 + 53*C1234/45360 + 89*C1244/90720 + 71*C1311/22680 + 103*C1312/45360 + 25*C1313/6048 + C1314/4320 + 31*C1322/30240 + 157*C1323/90720 + 19*C1324/10080 + 47*C1333/18144 + 41*C1334/30240 + 19*C1344/10080 + 11*C2311/15120 + 79*C2312/90720
M[4,13]+= 19*C2313/15120 - C2314/90720 + 11*C2322/45360 + 5*C2323/9072 + 61*C2324/90720 + 19*C2333/30240 + C2334/9072 + 41*C2344/45360 + 29*C3311/30240 + 5*C3312/4536 + 149*C3313/90720 + C3314/3360 + 5*C3322/9072 + 2*C3323/2835 + C3324/945 + 17*C3333/18144
M[4,13]+= 31*C3334/90720 + 103*C3344/90720
M[4,14]=29*C1211/90720 + 17*C1212/18144 + 43*C1213/45360 + 17*C1214/22680 + 13*C1222/15120 + 13*C1223/7560 - 11*C1224/18144 + 5*C1233/3024 + 53*C1234/45360 + 89*C1244/90720 + 11*C1311/45360 + 79*C1312/90720 + 5*C1313/9072 + 61*C1314/90720 + 11*C1322/15120 + 19*C1323/15120
M[4,14]+=- C1324/90720 + 19*C1333/30240 + C1334/9072 + 41*C1344/45360 + 2*C2211/2835 + 113*C2212/90720 + 4*C2213/2835 + 13*C2214/10080 + 31*C2222/18144 + 113*C2223/45360 + C2224/11340 + 2*C2233/945 + C2234/560 + 131*C2244/90720 + 31*C2311/30240 + 103*C2312/45360
M[4,14]+= 157*C2313/90720 + 19*C2314/10080 + 71*C2322/22680 + 25*C2323/6048 + C2324/4320 + 47*C2333/18144 + 41*C2334/30240 + 19*C2344/10080 + 5*C3311/9072 + 5*C3312/4536 + 2*C3313/2835 + C3314/945 + 29*C3322/30240 + 149*C3323/90720 + C3324/3360 + 17*C3333/18144
M[4,14]+= 31*C3334/90720 + 103*C3344/90720
M[4,15]=-71*C1111/45360 - 4*C1112/2835 - 121*C1113/45360 - C1114/756 - 5*C1122/4536 - 5*C1123/2268 - 2*C1124/945 - 5*C1133/1512 - 199*C1134/45360 - 169*C1144/45360 - 31*C1211/15120 - 19*C1212/7560 - 193*C1213/45360 - 8*C1214/2835 - 31*C1222/15120 - 193*C1223/45360
M[4,15]+=- 8*C1224/2835 - 31*C1233/5040 - 37*C1234/4536 - 317*C1244/45360 - 379*C1311/90720 - 379*C1312/90720 - 503*C1313/90720 - 313*C1314/90720 - 379*C1322/90720 - 199*C1323/45360 - 61*C1324/12960 - 13*C1333/3780 - C1334/18144 - 397*C1344/90720 - 5*C2211/4536 - 4*C2212/2835
M[4,15]+=- 5*C2213/2268 - 2*C2214/945 - 71*C2222/45360 - 121*C2223/45360 - C2224/756 - 5*C2233/1512 - 199*C2234/45360 - 169*C2244/45360 - 379*C2311/90720 - 379*C2312/90720 - 199*C2313/45360 - 61*C2314/12960 - 379*C2322/90720 - 503*C2323/90720 - 313*C2324/90720 - 13*C2333/3780
M[4,15]+=- C2334/18144 - 397*C2344/90720 - 37*C3311/9072 - 37*C3312/9072 - 23*C3313/6048 - 139*C3314/30240 - 37*C3322/9072 - 23*C3323/6048 - 139*C3324/30240 - 43*C3333/18144 + 17*C3334/18144 - 83*C3344/22680
M[4,16]=43*C1111/30240 + 143*C1112/90720 + 43*C1113/15120 + 29*C1114/11340 + 17*C1122/11340 + 17*C1123/5670 + 89*C1124/30240 + 17*C1133/3780 + 317*C1134/45360 + 109*C1144/18144 + 53*C1211/18144 + 143*C1212/45360 + 53*C1213/9072 + 499*C1214/90720 + 53*C1222/18144 + 53*C1223/9072
M[4,16]+= 499*C1224/90720 + 17*C1233/1890 + 317*C1234/22680 + 109*C1244/9072 + 227*C1311/90720 + 31*C1312/11340 + 7*C1313/1620 + 53*C1314/18144 + 31*C1322/11340 + 19*C1323/4320 + 31*C1324/10080 + 247*C1333/45360 + 7*C1334/1080 + 79*C1344/22680 + 17*C2211/11340 + 143*C2212/90720
M[4,16]+= 17*C2213/5670 + 89*C2214/30240 + 43*C2222/30240 + 43*C2223/15120 + 29*C2224/11340 + 17*C2233/3780 + 317*C2234/45360 + 109*C2244/18144 + 31*C2311/11340 + 31*C2312/11340 + 19*C2313/4320 + 31*C2314/10080 + 227*C2322/90720 + 7*C2323/1620 + 53*C2324/18144 + 247*C2333/45360
M[4,16]+= 7*C2334/1080 + 79*C2344/22680 + C3311/720 + C3312/720 + C3313/560 + C3314/1680 + C3322/720 + C3323/560 + C3324/1680 + 17*C3333/9072 + 101*C3334/90720 - 29*C3344/18144
M[4,17]=-C1111/160 - C1112/96 - C1113/96 + 11*C1114/1680 - C1122/160 - C1123/80 + 13*C1124/672 - C1133/160 + 13*C1134/672 + 59*C1144/3360 - 19*C1211/1120 - 33*C1212/1120 - 121*C1213/3360 - 53*C1214/3360 - 53*C1222/1680 - 59*C1223/1120 - C1224/210 - 57*C1233/1120
M[4,17]+=- 67*C1234/1680 - 11*C1244/336 - 19*C1311/1120 - 121*C1312/3360 - 33*C1313/1120 - 53*C1314/3360 - 57*C1322/1120 - 59*C1323/1120 - 67*C1324/1680 - 53*C1333/1680 - C1334/210 - 11*C1344/336 - 5*C2211/336 - 2*C2212/105 - 5*C2213/168 - C2214/35 - 71*C2222/3360
M[4,17]+=- 121*C2223/3360 - C2224/56 - 5*C2233/112 - 199*C2234/3360 - 169*C2244/3360 - 43*C2311/1680 - 17*C2312/420 - 17*C2313/420 - 5*C2314/112 - 11*C2322/224 - 107*C2323/1680 - 5*C2324/96 - 11*C2333/224 - 5*C2334/96 - 127*C2344/1680 - 5*C3311/336 - 5*C3312/168
M[4,17]+=- 2*C3313/105 - C3314/35 - 5*C3322/112 - 121*C3323/3360 - 199*C3324/3360 - 71*C3333/3360 - C3334/56 - 169*C3344/3360
M[4,18]=-71*C1111/3360 - 2*C1112/105 - 121*C1113/3360 - C1114/56 - 5*C1122/336 - 5*C1123/168 - C1124/35 - 5*C1133/112 - 199*C1134/3360 - 169*C1144/3360 - 53*C1211/1680 - 33*C1212/1120 - 59*C1213/1120 - C1214/210 - 19*C1222/1120 - 121*C1223/3360 - 53*C1224/3360
M[4,18]+=- 57*C1233/1120 - 67*C1234/1680 - 11*C1244/336 - 11*C1311/224 - 17*C1312/420 - 107*C1313/1680 - 5*C1314/96 - 43*C1322/1680 - 17*C1323/420 - 5*C1324/112 - 11*C1333/224 - 5*C1334/96 - 127*C1344/1680 - C2211/160 - C2212/96 - C2213/80 + 13*C2214/672
M[4,18]+=- C2222/160 - C2223/96 + 11*C2224/1680 - C2233/160 + 13*C2234/672 + 59*C2244/3360 - 57*C2311/1120 - 121*C2312/3360 - 59*C2313/1120 - 67*C2314/1680 - 19*C2322/1120 - 33*C2323/1120 - 53*C2324/3360 - 53*C2333/1680 - C2334/210 - 11*C2344/336 - 5*C3311/112
M[4,18]+=- 5*C3312/168 - 121*C3313/3360 - 199*C3314/3360 - 5*C3322/336 - 2*C3323/105 - C3324/35 - 71*C3333/3360 - C3334/56 - 169*C3344/3360
M[4,19]=-71*C1111/3360 - 121*C1112/3360 - 2*C1113/105 - C1114/56 - 5*C1122/112 - 5*C1123/168 - 199*C1124/3360 - 5*C1133/336 - C1134/35 - 169*C1144/3360 - 11*C1211/224 - 107*C1212/1680 - 17*C1213/420 - 5*C1214/96 - 11*C1222/224 - 17*C1223/420 - 5*C1224/96
M[4,19]+=- 43*C1233/1680 - 5*C1234/112 - 127*C1244/1680 - 53*C1311/1680 - 59*C1312/1120 - 33*C1313/1120 - C1314/210 - 57*C1322/1120 - 121*C1323/3360 - 67*C1324/1680 - 19*C1333/1120 - 53*C1334/3360 - 11*C1344/336 - 5*C2211/112 - 121*C2212/3360 - 5*C2213/168
M[4,19]+=- 199*C2214/3360 - 71*C2222/3360 - 2*C2223/105 - C2224/56 - 5*C2233/336 - C2234/35 - 169*C2244/3360 - 57*C2311/1120 - 59*C2312/1120 - 121*C2313/3360 - 67*C2314/1680 - 53*C2322/1680 - 33*C2323/1120 - C2324/210 - 19*C2333/1120 - 53*C2334/3360 - 11*C2344/336
M[4,19]+=- C3311/160 - C3312/80 - C3313/96 + 13*C3314/672 - C3322/160 - C3323/96 + 13*C3324/672 - C3333/160 + 11*C3334/1680 + 59*C3344/3360
M[4,20]=C1111/160 + C1112/96 + C1113/96 - 11*C1114/1680 + C1122/160 + C1123/80 - 13*C1124/672 + C1133/160 - 13*C1134/672 - 59*C1144/3360 + C1211/48 + C1212/40 + C1213/32 - 59*C1214/3360 + C1222/48 + C1223/32 - 59*C1224/3360 + 3*C1233/160 - 17*C1234/560
M[4,20]+=- 97*C1244/3360 + C1311/48 + C1312/32 + C1313/40 - 59*C1314/3360 + 3*C1322/160 + C1323/32 - 17*C1324/560 + C1333/48 - 59*C1334/3360 - 97*C1344/3360 + C2211/160 + C2212/96 + C2213/80 - 13*C2214/672 + C2222/160 + C2223/96 - 11*C2224/1680
M[4,20]+= C2233/160 - 13*C2234/672 - 59*C2244/3360 + 3*C2311/160 + C2312/32 + C2313/32 - 17*C2314/560 + C2322/48 + C2323/40 - 59*C2324/3360 + C2333/48 - 59*C2334/3360 - 97*C2344/3360 + C3311/160 + C3312/80 + C3313/96 - 13*C3314/672 + C3322/160
M[4,20]+= C3323/96 - 13*C3324/672 + C3333/160 - 11*C3334/1680 - 59*C3344/3360
M[5,5]=C1111/420 + C1112/405 + C1113/405 + 4*C1114/2835 + 11*C1122/5670 + 11*C1123/5670 + 37*C1124/22680 + 11*C1133/5670 + 37*C1134/22680 + C1144/810 + C1211/1890 + C1212/630 + C1213/3780 - C1214/1890 + C1222/945 + 11*C1223/22680 + C1224/5670 + C1233/11340
M[5,5]+=- C1234/7560 - C1244/2835 + C1311/1890 + C1312/3780 + C1313/630 - C1314/1890 + C1322/11340 + 11*C1323/22680 - C1324/7560 + C1333/945 + C1334/5670 - C1344/2835 + C2211/1890 + C2212/1890 + C2213/3780 + C2214/1890 + C2222/2835 + C2223/5670
M[5,5]+= C2224/5670 + C2233/11340 + C2234/5670 + C2244/2835 + C2311/1890 + C2312/3780 + C2313/3780 + C2314/1260 + C2322/11340 + C2323/5670 + C2324/5670 + C2333/11340 + C2334/5670 + C2344/1620 + C3311/1890 + C3312/3780 + C3313/1890 + C3314/1890
M[5,5]+= C3322/11340 + C3323/5670 + C3324/5670 + C3333/2835 + C3334/5670 + C3344/2835
M[5,6]=-11*C1111/22680 - 11*C1112/11340 - C1113/4320 - 19*C1114/90720 - 19*C1122/30240 - 13*C1123/45360 - C1124/3780 - 13*C1133/90720 - 17*C1134/90720 - C1144/6048 - C1211/1260 - 17*C1212/9072 - C1213/7560 - C1214/5670 - 127*C1222/90720 - 43*C1223/90720 - 37*C1224/90720
M[5,6]+= C1233/10080 + C1234/90720 - C1244/90720 - C1313/45360 + C1314/45360 - C1323/45360 + C1324/45360 + C1333/45360 - C1344/45360 - C2211/1890 - 11*C2212/15120 - C2213/3780 - C2214/3024 - C2222/1890 - C2223/4536 - C2224/5670 - C2233/11340 - C2234/7560
M[5,6]+=- C2244/5670 + C2313/15120 - C2314/15120 - C2323/22680 + C2324/22680 + C2333/11340 - C2344/11340
M[5,7]=-11*C1111/22680 - C1112/4320 - 11*C1113/11340 - 19*C1114/90720 - 13*C1122/90720 - 13*C1123/45360 - 17*C1124/90720 - 19*C1133/30240 - C1134/3780 - C1144/6048 - C1212/45360 + C1214/45360 + C1222/45360 - C1223/45360 + C1234/45360 - C1244/45360 - C1311/1260
M[5,7]+=- C1312/7560 - 17*C1313/9072 - C1314/5670 + C1322/10080 - 43*C1323/90720 + C1324/90720 - 127*C1333/90720 - 37*C1334/90720 - C1344/90720 + C2312/15120 - C2314/15120 + C2322/11340 - C2323/22680 + C2334/22680 - C2344/11340 - C3311/1890 - C3312/3780
M[5,7]+=- 11*C3313/15120 - C3314/3024 - C3322/11340 - C3323/4536 - C3324/7560 - C3333/1890 - C3334/5670 - C3344/5670
M[5,8]=-C1111/4536 - 11*C1112/30240 - 11*C1113/30240 + C1114/5670 - C1122/3024 - C1123/3024 - C1124/30240 - C1133/3024 - C1134/30240 + 11*C1144/45360 - C1211/3780 - 11*C1212/22680 - C1213/2520 + 19*C1214/45360 - 31*C1222/90720 - 5*C1223/18144 + C1224/18144
M[5,8]+=- 5*C1233/18144 + C1234/30240 + 31*C1244/90720 - C1311/3780 - C1312/2520 - 11*C1313/22680 + 19*C1314/45360 - 5*C1322/18144 - 5*C1323/18144 + C1324/30240 - 31*C1333/90720 + C1334/18144 + 31*C1344/90720 - C2211/1890 - C2212/3024 - C2213/3780 - 11*C2214/15120
M[5,8]+=- C2222/5670 - C2223/7560 - C2224/5670 - C2233/11340 - C2234/4536 - C2244/1890 - C2311/945 - C2312/1680 - C2313/1680 - 11*C2314/7560 - C2322/3780 - C2323/3780 - C2324/2520 - C2333/3780 - C2334/2520 - C2344/945 - C3311/1890 - C3312/3780
M[5,8]+=- C3313/3024 - 11*C3314/15120 - C3322/11340 - C3323/7560 - C3324/4536 - C3333/5670 - C3334/5670 - C3344/1890
M[5,9]=-47*C1111/45360 - C1112/648 - 19*C1113/30240 - 47*C1114/90720 - C1122/864 - C1123/1296 - 11*C1124/15120 - C1133/2592 - 37*C1134/90720 - 11*C1144/30240 - C1211/1008 - 37*C1212/22680 - C1213/2160 - 13*C1214/45360 - 83*C1222/90720 - C1223/2592 - 29*C1224/90720
M[5,9]+=- C1233/30240 - C1234/12960 - C1244/18144 - C1313/9072 + C1314/9072 - C1323/22680 + C1324/22680 - C1333/45360 + C1344/45360 - C2211/3780 - C2212/2160 - C2213/7560 - C2214/15120 - C2222/3780 - C2223/9072 - C2224/11340 - C2233/22680 - C2234/15120
M[5,9]+=- C2244/11340 - C2313/15120 + C2314/15120 - C2323/45360 + C2324/45360 + C2333/22680 - C2344/22680
M[5,10]=29*C1111/45360 + 11*C1112/11340 + C1113/2160 + C1114/3780 + 13*C1122/15120 + 13*C1123/22680 + 2*C1124/2835 + 13*C1133/45360 + 17*C1134/45360 + 19*C1144/45360 + C1211/1260 + 19*C1212/9072 - C1213/45360 - C1214/11340 + C1222/1260 - C1223/45360 - C1224/11340
M[5,10]+=- 23*C1233/45360 - C1234/3024 - 11*C1244/45360 + C1311/7560 + C1312/5670 + 17*C1313/45360 - C1314/45360 + C1322/7560 + C1323/22680 + C1324/3240 + C1333/22680 + C1334/11340 + C1344/3240 + 13*C2211/15120 + 11*C2212/11340 + 13*C2213/22680 + 2*C2214/2835
M[5,10]+= 29*C2222/45360 + C2223/2160 + C2224/3780 + 13*C2233/45360 + 17*C2234/45360 + 19*C2244/45360 + C2311/7560 + C2312/5670 + C2313/22680 + C2314/3240 + C2322/7560 + 17*C2323/45360 - C2324/45360 + C2333/22680 + C2334/11340 + C2344/3240 + C3311/7560
M[5,10]+= C3312/5670 + C3313/5670 + C3314/5670 + C3322/7560 + C3323/5670 + C3324/5670 + C3333/5670 + C3334/11340 + C3344/5670
M[5,11]=C1211/11340 - C1212/90720 - C1213/11340 + 11*C1214/90720 + C1222/6048 + C1223/3024 + 13*C1224/90720 + C1233/6048 + C1234/4536 + C1244/18144 + C1311/9072 + C1312/4536 - 17*C1313/90720 + 13*C1314/90720 + 13*C1322/30240 + C1323/2160 + 11*C1324/45360
M[5,11]+= C1333/4320 + 23*C1334/90720 + C1344/12960 - C2211/15120 - C2212/15120 - C2213/11340 - C2214/9072 - C2222/11340 - C2223/9072 - C2224/22680 - C2233/15120 - C2234/15120 - C2244/11340 - C2312/45360 - 11*C2313/45360 - C2314/7560 - C2322/11340
M[5,11]+=- C2323/3024 - C2324/15120 - C2333/2268 - C2334/7560 - C2344/7560 - C3311/7560 - C3312/5670 - C3313/5040 - C3314/6480 - C3322/7560 - C3323/4536 - C3324/7560 - 11*C3333/45360 - C3334/11340 - C3344/9072
M[5,12]=-11*C1111/45360 - C1112/2520 - C1113/3360 - C1114/90720 - 17*C1122/30240 - 17*C1123/45360 - 31*C1124/45360 - 17*C1133/90720 - 31*C1134/90720 - 43*C1144/90720 - 13*C1211/45360 - 17*C1212/30240 - C1213/5040 - C1214/18144 - C1222/2268 - C1223/3360 - 11*C1224/45360
M[5,12]+=- C1233/9072 - C1234/12960 - C1244/9072 - 17*C1311/45360 - 13*C1312/22680 - 41*C1313/90720 - 19*C1314/90720 - C1322/1440 - 23*C1323/45360 - 41*C1324/45360 - C1333/3360 - 13*C1334/30240 - 13*C1344/18144 - C2211/5040 - C2212/4536 - C2213/7560 - C2214/22680
M[5,12]+=- C2222/7560 - C2223/9072 - C2233/15120 - C2234/45360 + C2244/7560 - C2311/3780 - C2312/3024 - C2313/5670 - C2314/6480 - C2322/5670 - C2323/5040 - C2324/9072 - C2333/11340 - C2334/22680 - C2344/22680 - C3311/7560 - C3312/5670 - C3313/6480
M[5,12]+=- C3314/5040 - C3322/7560 - C3323/7560 - C3324/4536 - C3333/9072 - C3334/11340 - 11*C3344/45360
M[5,13]=-47*C1111/45360 - 19*C1112/30240 - C1113/648 - 47*C1114/90720 - C1122/2592 - C1123/1296 - 37*C1124/90720 - C1133/864 - 11*C1134/15120 - 11*C1144/30240 - C1212/9072 + C1214/9072 - C1222/45360 - C1223/22680 + C1234/22680 + C1244/45360 - C1311/1008
M[5,13]+=- C1312/2160 - 37*C1313/22680 - 13*C1314/45360 - C1322/30240 - C1323/2592 - C1324/12960 - 83*C1333/90720 - 29*C1334/90720 - C1344/18144 - C2312/15120 + C2314/15120 + C2322/22680 - C2323/45360 + C2334/45360 - C2344/22680 - C3311/3780 - C3312/7560
M[5,13]+=- C3313/2160 - C3314/15120 - C3322/22680 - C3323/9072 - C3324/15120 - C3333/3780 - C3334/11340 - C3344/11340
M[5,14]=C1211/9072 - 17*C1212/90720 + C1213/4536 + 13*C1214/90720 + C1222/4320 + C1223/2160 + 23*C1224/90720 + 13*C1233/30240 + 11*C1234/45360 + C1244/12960 + C1311/11340 - C1312/11340 - C1313/90720 + 11*C1314/90720 + C1322/6048 + C1323/3024 + C1324/4536
M[5,14]+= C1333/6048 + 13*C1334/90720 + C1344/18144 - C2211/7560 - C2212/5040 - C2213/5670 - C2214/6480 - 11*C2222/45360 - C2223/4536 - C2224/11340 - C2233/7560 - C2234/7560 - C2244/9072 - 11*C2312/45360 - C2313/45360 - C2314/7560 - C2322/2268 - C2323/3024
M[5,14]+=- C2324/7560 - C2333/11340 - C2334/15120 - C2344/7560 - C3311/15120 - C3312/11340 - C3313/15120 - C3314/9072 - C3322/15120 - C3323/9072 - C3324/15120 - C3333/11340 - C3334/22680 - C3344/11340
M[5,15]=29*C1111/45360 + C1112/2160 + 11*C1113/11340 + C1114/3780 + 13*C1122/45360 + 13*C1123/22680 + 17*C1124/45360 + 13*C1133/15120 + 2*C1134/2835 + 19*C1144/45360 + C1211/7560 + 17*C1212/45360 + C1213/5670 - C1214/45360 + C1222/22680 + C1223/22680 + C1224/11340
M[5,15]+= C1233/7560 + C1234/3240 + C1244/3240 + C1311/1260 - C1312/45360 + 19*C1313/9072 - C1314/11340 - 23*C1322/45360 - C1323/45360 - C1324/3024 + C1333/1260 - C1334/11340 - 11*C1344/45360 + C2211/7560 + C2212/5670 + C2213/5670 + C2214/5670 + C2222/5670
M[5,15]+= C2223/5670 + C2224/11340 + C2233/7560 + C2234/5670 + C2244/5670 + C2311/7560 + C2312/22680 + C2313/5670 + C2314/3240 + C2322/22680 + 17*C2323/45360 + C2324/11340 + C2333/7560 - C2334/45360 + C2344/3240 + 13*C3311/15120 + 13*C3312/22680 + 11*C3313/11340
M[5,15]+= 2*C3314/2835 + 13*C3322/45360 + C3323/2160 + 17*C3324/45360 + 29*C3333/45360 + C3334/3780 + 19*C3344/45360
M[5,16]=-11*C1111/45360 - C1112/3360 - C1113/2520 - C1114/90720 - 17*C1122/90720 - 17*C1123/45360 - 31*C1124/90720 - 17*C1133/30240 - 31*C1134/45360 - 43*C1144/90720 - 17*C1211/45360 - 41*C1212/90720 - 13*C1213/22680 - 19*C1214/90720 - C1222/3360 - 23*C1223/45360
M[5,16]+=- 13*C1224/30240 - C1233/1440 - 41*C1234/45360 - 13*C1244/18144 - 13*C1311/45360 - C1312/5040 - 17*C1313/30240 - C1314/18144 - C1322/9072 - C1323/3360 - C1324/12960 - C1333/2268 - 11*C1334/45360 - C1344/9072 - C2211/7560 - C2212/6480 - C2213/5670
M[5,16]+=- C2214/5040 - C2222/9072 - C2223/7560 - C2224/11340 - C2233/7560 - C2234/4536 - 11*C2244/45360 - C2311/3780 - C2312/5670 - C2313/3024 - C2314/6480 - C2322/11340 - C2323/5040 - C2324/22680 - C2333/5670 - C2334/9072 - C2344/22680 - C3311/5040
M[5,16]+=- C3312/7560 - C3313/4536 - C3314/22680 - C3322/15120 - C3323/9072 - C3324/45360 - C3333/7560 + C3344/7560
M[5,17]=13*C1111/3360 + C1112/210 + C1113/210 + C1114/672 - C1122/560 - C1123/280 - C1124/336 - C1133/560 - C1134/336 - C1144/560 + C1211/560 + 19*C1212/3360 + C1213/420 - C1214/1120 + C1222/420 + C1223/560 + C1224/840 + C1233/560 + C1234/336
M[5,17]+= C1244/420 + C1311/560 + C1312/420 + 19*C1313/3360 - C1314/1120 + C1322/560 + C1323/560 + C1324/336 + C1333/420 + C1334/840 + C1344/420 + C2211/560 + C2212/420 + C2213/420 + C2214/420 + C2222/420 + C2223/420 + C2224/840 + C2233/560
M[5,17]+= C2234/420 + C2244/420 + C2311/560 + C2312/420 + C2313/420 + C2314/420 + C2322/560 + C2323/280 + C2324/840 + C2333/560 + C2334/840 + C2344/336 + C3311/560 + C3312/420 + C3313/420 + C3314/420 + C3322/560 + C3323/420 + C3324/420
M[5,17]+= C3333/420 + C3334/840 + C3344/420
M[5,18]=29*C1111/3360 + C1112/160 + 11*C1113/840 + C1114/280 + 13*C1122/3360 + 13*C1123/1680 + 17*C1124/3360 + 13*C1133/1120 + C1134/105 + 19*C1144/3360 + C1211/80 + C1212/105 + C1213/56 + 11*C1214/1680 + 11*C1222/3360 + C1223/168 + C1224/480 + 11*C1233/1120
M[5,18]+= C1234/210 + 3*C1244/1120 + C1311/140 + C1312/280 + C1313/60 - C1314/420 + C1322/840 + 17*C1323/3360 - C1324/3360 + 3*C1333/280 + C1334/420 - C1344/840 + C2212/560 - C2214/560 + C2222/840 + C2223/840 - C2234/840 - C2244/840 + C2311/140
M[5,18]+= C2312/280 + C2313/112 + 3*C2314/560 + C2322/840 + C2323/280 + C2324/840 + C2333/168 + C2334/420 + C2344/280 + C3311/140 + C3312/280 + C3313/140 + C3314/140 + C3322/840 + C3323/420 + C3324/420 + C3333/210 + C3334/420 + C3344/210
M[5,19]=29*C1111/3360 + 11*C1112/840 + C1113/160 + C1114/280 + 13*C1122/1120 + 13*C1123/1680 + C1124/105 + 13*C1133/3360 + 17*C1134/3360 + 19*C1144/3360 + C1211/140 + C1212/60 + C1213/280 - C1214/420 + 3*C1222/280 + 17*C1223/3360 + C1224/420 + C1233/840
M[5,19]+=- C1234/3360 - C1244/840 + C1311/80 + C1312/56 + C1313/105 + 11*C1314/1680 + 11*C1322/1120 + C1323/168 + C1324/210 + 11*C1333/3360 + C1334/480 + 3*C1344/1120 + C2211/140 + C2212/140 + C2213/280 + C2214/140 + C2222/210 + C2223/420
M[5,19]+= C2224/420 + C2233/840 + C2234/420 + C2244/210 + C2311/140 + C2312/112 + C2313/280 + 3*C2314/560 + C2322/168 + C2323/280 + C2324/420 + C2333/840 + C2334/840 + C2344/280 + C3313/560 - C3314/560 + C3323/840 - C3324/840 + C3333/840
M[5,19]+=- C3344/840
M[5,20]=-13*C1111/3360 - C1112/210 - C1113/210 - C1114/672 + C1122/560 + C1123/280 + C1124/336 + C1133/560 + C1134/336 + C1144/560 - C1211/80 - 17*C1212/1680 - C1213/56 - C1214/168 - 17*C1222/3360 - C1223/140 - C1224/480 - 11*C1233/1120 - C1234/280
M[5,20]+=- C1244/1120 - C1311/80 - C1312/56 - 17*C1313/1680 - C1314/168 - 11*C1322/1120 - C1323/140 - C1324/280 - 17*C1333/3360 - C1334/480 - C1344/1120 - C2212/560 + C2214/560 - C2222/840 - C2223/840 + C2234/840 + C2244/840 - C2311/140 - C2312/112
M[5,20]+=- C2313/112 - C2322/168 - C2323/210 - C2324/840 - C2333/168 - C2334/840 + C2344/840 - C3313/560 + C3314/560 - C3323/840 + C3324/840 - C3333/840 + C3344/840
M[6,6]=C1111/3780 + C1112/1260 + C1113/7560 + C1114/7560 + C1122/630 + C1123/2520 + C1124/2520 + C1133/11340 + C1134/11340 + C1144/11340 + C1211/1260 + 13*C1212/7560 + C1213/3024 + C1214/3024 + C1222/560 + C1223/1890 + C1224/1890 + C1233/9072
M[6,6]+= C1234/9072 + C1244/9072 + C2211/1260 + C2212/840 + C2213/2520 + C2214/2520 + 13*C2222/15120 + C2223/3024 + C2224/3024 + C2233/6480 + C2234/6480 + C2244/6480
M[6,7]=C1111/45360 - C1112/45360 - C1113/45360 - C1122/7560 - C1123/11340 - C1124/45360 - C1133/7560 - C1134/45360 + C1144/45360 - C1211/15120 - C1212/90720 - C1213/5040 - C1214/18144 - C1222/18144 - C1223/22680 - C1224/30240 - C1233/4320 - C1234/11340
M[6,7]+=- C1244/90720 - C1311/15120 - C1312/5040 - C1313/90720 - C1314/18144 - C1322/4320 - C1323/22680 - C1324/11340 - C1333/18144 - C1334/30240 - C1344/90720 - C2311/3780 - C2312/3780 - C2313/3780 - C2314/7560 - C2322/5040 - C2323/45360 - C2324/9072
M[6,7]+=- C2333/5040 - C2334/9072 - C2344/45360
M[6,8]=C1111/11340 + C1112/5670 + C1113/18144 - C1114/90720 + C1122/10080 + C1123/15120 - C1124/22680 + C1133/30240 + C1134/90720 - C1144/12960 + C1211/3780 + 41*C1212/90720 + C1213/7560 + C1214/12960 + 17*C1222/45360 + C1223/6048 + C1224/45360 + C1233/45360
M[6,8]+= C1234/18144 + C1244/45360 + C1311/15120 + C1312/5040 + C1313/18144 + C1314/90720 + C1322/4320 + C1323/11340 + C1324/22680 + C1333/90720 + C1334/30240 + C1344/18144 + C2211/3780 + C2212/3780 + C2213/7560 + C2214/3780 + C2222/5040 + C2223/9072
M[6,8]+= C2224/45360 + C2233/45360 + C2234/9072 + C2244/5040 + C2311/3780 + C2312/3780 + C2313/7560 + C2314/3780 + C2322/5040 + C2323/9072 + C2324/45360 + C2333/45360 + C2334/9072 + C2344/5040
M[6,9]=13*C1111/30240 + C1112/1260 + C1113/6048 + C1114/6048 + C1122/1680 + C1123/5040 + C1124/5040 + C1133/12960 + C1134/12960 + C1144/12960 + 11*C1211/10080 + 5*C1212/3024 + 11*C1213/30240 + 11*C1214/30240 + 11*C1222/10080 + 11*C1223/30240 + 11*C1224/30240
M[6,9]+= C1233/11340 + C1234/11340 + C1244/11340 + C2211/1680 + C2212/1260 + C2213/5040 + C2214/5040 + 13*C2222/30240 + C2223/6048 + C2224/6048 + C2233/12960 + C2234/12960 + C2244/12960
M[6,10]=-C1111/3780 - C1112/2160 - C1113/9072 - C1114/11340 - C1122/3780 - C1123/7560 - C1124/15120 - C1133/22680 - C1134/15120 - C1144/11340 - 83*C1211/90720 - 37*C1212/22680 - C1213/2592 - 29*C1214/90720 - C1222/1008 - C1223/2160 - 13*C1224/45360
M[6,10]+=- C1233/30240 - C1234/12960 - C1244/18144 - C1313/45360 + C1314/45360 - C1323/15120 + C1324/15120 + C1333/22680 - C1344/22680 - C2211/864 - C2212/648 - C2213/1296 - 11*C2214/15120 - 47*C2222/45360 - 19*C2223/30240 - 47*C2224/90720 - C2233/2592
M[6,10]+=- 37*C2234/90720 - 11*C2244/30240 - C2313/22680 + C2314/22680 - C2323/9072 + C2324/9072 - C2333/45360 + C2344/45360
M[6,11]=-C1211/90720 + C1212/22680 - C1213/45360 + C1222/6048 + C1224/45360 - C1233/6048 - C1234/22680 + C1244/90720 - C1311/10080 - C1312/7560 - C1313/90720 - C1314/18144 + C1322/15120 + C1323/15120 - C1324/15120 - C1333/10080 - C1334/18144 - C1344/90720
M[6,11]+= C2211/30240 + C2212/18144 + C2213/45360 + C2214/18144 + C2222/9072 + C2223/11340 + C2224/30240 - C2233/15120 + C2234/45360 + C2244/22680 - C2311/6048 - C2312/5040 + C2313/90720 - C2314/12960 - C2322/30240 + 13*C2323/90720 - C2324/12960 + C2333/45360
M[6,11]+=- C2344/45360
M[6,12]=C1111/10080 + C1112/7560 + C1113/18144 + C1114/90720 - C1122/15120 + C1123/15120 - C1124/15120 + C1133/90720 + C1134/18144 + C1144/10080 + 23*C1211/90720 + 17*C1212/45360 + C1213/7560 - C1214/45360 + C1222/7560 + C1223/6048 - 19*C1224/90720
M[6,12]+= C1233/22680 + C1234/90720 - C1244/11340 + C1311/10080 + C1312/7560 + C1313/18144 + C1314/90720 - C1322/15120 + C1323/15120 - C1324/15120 + C1333/90720 + C1334/18144 + C1344/10080 + C2211/5040 + 23*C2212/90720 + C2213/7560 + C2214/90720 + 13*C2222/90720
M[6,12]+= C2223/9072 - C2224/18144 + C2233/15120 + C2234/45360 - C2244/11340 + C2311/6048 + C2312/5040 + C2313/12960 - C2314/90720 + C2322/30240 + C2323/12960 - 13*C2324/90720 + C2333/45360 - C2344/45360
M[6,13]=C1111/9072 + C1112/11340 + C1113/18144 + C1114/30240 - C1122/15120 + C1123/45360 + C1124/45360 + C1133/30240 + C1134/18144 + C1144/22680 - C1211/30240 + 13*C1212/90720 - C1213/5040 - C1214/12960 + C1222/45360 + C1223/90720 - C1233/6048 - C1234/12960
M[6,13]+=- C1244/45360 + C1311/6048 + C1313/22680 + C1314/45360 - C1322/6048 - C1323/45360 - C1324/22680 - C1333/90720 + C1344/90720 + C2311/15120 + C2312/15120 - C2313/7560 - C2314/15120 - C2322/10080 - C2323/90720 - C2324/18144 - C2333/10080 - C2334/18144
M[6,13]+=- C2344/90720
M[6,14]=C1211/22680 + C1212/4536 + C1213/18144 + C1214/30240 + C1222/1890 + C1223/5040 + C1224/9072 - C1233/30240 + C1234/90720 + C1244/45360 + C1312/3024 + C1313/22680 + C1314/45360 + C1322/756 + C1323/3024 + C1324/3780 + C1334/45360 + C1344/22680
M[6,14]+= C2211/6048 + 5*C2212/18144 + 11*C2213/45360 + 13*C2214/90720 + C2222/2835 + 5*C2223/18144 + C2224/7560 + C2233/6048 + 13*C2234/90720 + C2244/11340 - C2311/30240 + C2312/5040 + C2313/18144 + C2314/90720 + C2322/1890 + C2323/4536 + C2324/9072
M[6,14]+= C2333/22680 + C2334/30240 + C2344/45360
M[6,15]=-C1111/11340 - C1112/9072 - C1113/15120 - C1114/22680 - C1122/15120 - C1123/11340 - C1124/15120 - C1133/15120 - C1134/9072 - C1144/11340 - C1211/11340 - C1212/3024 - C1213/45360 - C1214/15120 - C1222/2268 - 11*C1223/45360 - C1224/7560 - C1234/7560
M[6,15]+=- C1244/7560 + C1311/6048 + C1312/3024 - C1313/90720 + 13*C1314/90720 + C1322/6048 - C1323/11340 + C1324/4536 + C1333/11340 + 11*C1334/90720 + C1344/18144 - C2211/7560 - C2212/4536 - C2213/5670 - C2214/7560 - 11*C2222/45360 - C2223/5040 - C2224/11340
M[6,15]+=- C2233/7560 - C2234/6480 - C2244/9072 + 13*C2311/30240 + C2312/2160 + C2313/4536 + 11*C2314/45360 + C2322/4320 - 17*C2323/90720 + 23*C2324/90720 + C2333/9072 + 13*C2334/90720 + C2344/12960
M[6,16]=C1111/15120 + C1112/7560 + C1113/12960 + C1114/18144 + C1122/5040 + C1123/6480 + C1124/9072 + C1133/10080 + C1134/6048 + C1144/7560 + C1211/6048 + C1212/3360 + 17*C1213/90720 + C1214/5670 + C1222/3024 + 5*C1223/18144 + C1224/6480 + C1233/5040
M[6,16]+= C1234/3024 + C1244/3780 + C1313/30240 - C1314/30240 + C1323/15120 - C1324/15120 + C1333/30240 + C1334/30240 - C1344/15120 + C2211/10080 + C2212/6048 + C2213/9072 + 11*C2214/90720 + C2222/7560 + 11*C2223/90720 + C2224/22680 + C2233/10080 + C2234/6048
M[6,16]+= C2244/7560 + C2313/30240 - C2314/30240 + C2323/15120 - C2324/15120 + C2333/30240 + C2334/30240 - C2344/15120
M[6,17]=-C1111/1120 - 3*C1112/1120 - C1113/1680 - C1114/3360 - 3*C1122/560 - C1123/560 - C1124/1120 + C1133/1120 + C1134/1680 + C1144/3360 - C1211/480 - C1212/168 - C1213/480 - C1214/840 - C1222/112 - 3*C1223/560 - C1224/336 - C1233/1120 - C1234/672
M[6,17]+=- C1244/840 - C1313/3360 + C1314/3360 - C1323/1120 + C1324/1120 + C1333/1680 - C1344/1680 - C2211/560 - C2212/336 - C2213/420 - C2214/560 - 11*C2222/3360 - 3*C2223/1120 - C2224/840 - C2233/560 - C2234/480 - C2244/672 - C2313/1680
M[6,17]+= C2314/1680 - C2323/672 + C2324/672 - C2333/3360 + C2344/3360
M[6,18]=-C1111/840 - C1112/672 - C1113/1120 - C1114/1680 - C1122/1120 - C1123/840 - C1124/1120 - C1133/1120 - C1134/672 - C1144/840 - C1211/560 - 13*C1212/3360 - C1214/1680 - C1222/420 - C1223/672 - C1224/1680 + C1233/1120 - C1234/3360 - C1244/1680
M[6,18]+=- C1313/3360 + C1314/3360 - C1323/3360 + C1324/3360 + C1333/3360 - C1344/3360 - 3*C2212/1120 + C2213/560 + C2214/1120 - C2222/560 - C2223/840 - C2224/1680 + C2233/560 + C2234/840 + C2244/1680 + C2313/1120 - C2314/1120 - C2323/1680
M[6,18]+= C2324/1680 + C2333/840 - C2344/840
M[6,19]=-C1111/280 - C1112/160 - C1113/672 - C1114/840 - C1122/280 - C1123/560 - C1124/1120 - C1133/1680 - C1134/1120 - C1144/840 - C1211/112 - 9*C1212/560 - C1213/280 - 3*C1214/1120 - C1222/80 - C1223/224 - 3*C1224/1120 - C1233/1120 - C1234/1120
M[6,19]+=- C1244/1120 - C1311/224 - C1312/112 - C1313/560 - C1314/560 - C1322/112 - 3*C1323/1120 - 3*C1324/1120 - C1333/3360 - C1334/3360 - C1344/3360 - C2211/140 - 11*C2212/1120 - C2213/280 - C2214/224 - C2222/140 - C2223/336 - C2224/420
M[6,19]+=- C2233/840 - C2234/560 - C2244/420 - C2311/140 - C2312/80 - 3*C2313/1120 - 3*C2314/1120 - C2322/112 - C2323/280 - C2324/280 - C2333/1680 - C2334/1680 - C2344/1680
M[6,20]=C1111/1120 + 3*C1112/1120 + C1113/1680 + C1114/3360 + 3*C1122/560 + C1123/560 + C1124/1120 - C1133/1120 - C1134/1680 - C1144/3360 + 3*C1211/1120 + 3*C1212/560 + C1213/560 + C1214/1120 + 3*C1222/560 + C1223/280 + C1224/560 + C1311/224
M[6,20]+= C1312/112 + C1313/560 + C1314/560 + C1322/112 + 3*C1323/1120 + 3*C1324/1120 + C1333/3360 + C1334/3360 + C1344/3360 + 3*C2212/1120 - C2213/560 - C2214/1120 + C2222/560 + C2223/840 + C2224/1680 - C2233/560 - C2234/840 - C2244/1680
M[6,20]+= C2311/140 + C2312/80 + 3*C2313/1120 + 3*C2314/1120 + C2322/112 + C2323/280 + C2324/280 + C2333/1680 + C2334/1680 + C2344/1680
M[7,7]=C1111/3780 + C1112/7560 + C1113/1260 + C1114/7560 + C1122/11340 + C1123/2520 + C1124/11340 + C1133/630 + C1134/2520 + C1144/11340 + C1311/1260 + C1312/3024 + 13*C1313/7560 + C1314/3024 + C1322/9072 + C1323/1890 + C1324/9072 + C1333/560
M[7,7]+= C1334/1890 + C1344/9072 + C3311/1260 + C3312/2520 + C3313/840 + C3314/2520 + C3322/6480 + C3323/3024 + C3324/6480 + 13*C3333/15120 + C3334/3024 + C3344/6480
M[7,8]=C1111/11340 + C1112/18144 + C1113/5670 - C1114/90720 + C1122/30240 + C1123/15120 + C1124/90720 + C1133/10080 - C1134/22680 - C1144/12960 + C1211/15120 + C1212/18144 + C1213/5040 + C1214/90720 + C1222/90720 + C1223/11340 + C1224/30240 + C1233/4320
M[7,8]+= C1234/22680 + C1244/18144 + C1311/3780 + C1312/7560 + 41*C1313/90720 + C1314/12960 + C1322/45360 + C1323/6048 + C1324/18144 + 17*C1333/45360 + C1334/45360 + C1344/45360 + C2311/3780 + C2312/7560 + C2313/3780 + C2314/3780 + C2322/45360 + C2323/9072
M[7,8]+= C2324/9072 + C2333/5040 + C2334/45360 + C2344/5040 + C3311/3780 + C3312/7560 + C3313/3780 + C3314/3780 + C3322/45360 + C3323/9072 + C3324/9072 + C3333/5040 + C3334/45360 + C3344/5040
M[7,9]=C1111/9072 + C1112/18144 + C1113/11340 + C1114/30240 + C1122/30240 + C1123/45360 + C1124/18144 - C1133/15120 + C1134/45360 + C1144/22680 + C1211/6048 + C1212/22680 + C1214/45360 - C1222/90720 - C1223/45360 - C1233/6048 - C1234/22680 + C1244/90720
M[7,9]+=- C1311/30240 - C1312/5040 + 13*C1313/90720 - C1314/12960 - C1322/6048 + C1323/90720 - C1324/12960 + C1333/45360 - C1344/45360 + C2311/15120 - C2312/7560 + C2313/15120 - C2314/15120 - C2322/10080 - C2323/90720 - C2324/18144 - C2333/10080 - C2334/18144
M[7,9]+=- C2344/90720
M[7,10]=-C1111/11340 - C1112/15120 - C1113/9072 - C1114/22680 - C1122/15120 - C1123/11340 - C1124/9072 - C1133/15120 - C1134/15120 - C1144/11340 + C1211/6048 - C1212/90720 + C1213/3024 + 13*C1214/90720 + C1222/11340 - C1223/11340 + 11*C1224/90720 + C1233/6048
M[7,10]+= C1234/4536 + C1244/18144 - C1311/11340 - C1312/45360 - C1313/3024 - C1314/15120 - 11*C1323/45360 - C1324/7560 - C1333/2268 - C1334/7560 - C1344/7560 + 13*C2311/30240 + C2312/4536 + C2313/2160 + 11*C2314/45360 + C2322/9072 - 17*C2323/90720
M[7,10]+= 13*C2324/90720 + C2333/4320 + 23*C2334/90720 + C2344/12960 - C3311/7560 - C3312/5670 - C3313/4536 - C3314/7560 - C3322/7560 - C3323/5040 - C3324/6480 - 11*C3333/45360 - C3334/11340 - C3344/9072
M[7,11]=C1212/22680 + C1213/3024 + C1214/45360 + C1223/3024 + C1224/45360 + C1233/756 + C1234/3780 + C1244/22680 + C1311/22680 + C1312/18144 + C1313/4536 + C1314/30240 - C1322/30240 + C1323/5040 + C1324/90720 + C1333/1890 + C1334/9072 + C1344/45360
M[7,11]+=- C2311/30240 + C2312/18144 + C2313/5040 + C2314/90720 + C2322/22680 + C2323/4536 + C2324/30240 + C2333/1890 + C2334/9072 + C2344/45360 + C3311/6048 + 11*C3312/45360 + 5*C3313/18144 + 13*C3314/90720 + C3322/6048 + 5*C3323/18144 + 13*C3324/90720
M[7,11]+= C3333/2835 + C3334/7560 + C3344/11340
M[7,12]=C1111/15120 + C1112/12960 + C1113/7560 + C1114/18144 + C1122/10080 + C1123/6480 + C1124/6048 + C1133/5040 + C1134/9072 + C1144/7560 + C1212/30240 - C1214/30240 + C1222/30240 + C1223/15120 + C1224/30240 - C1234/15120 - C1244/15120 + C1311/6048
M[7,12]+= 17*C1312/90720 + C1313/3360 + C1314/5670 + C1322/5040 + 5*C1323/18144 + C1324/3024 + C1333/3024 + C1334/6480 + C1344/3780 + C2312/30240 - C2314/30240 + C2322/30240 + C2323/15120 + C2324/30240 - C2334/15120 - C2344/15120 + C3311/10080 + C3312/9072
M[7,12]+= C3313/6048 + 11*C3314/90720 + C3322/10080 + 11*C3323/90720 + C3324/6048 + C3333/7560 + C3334/22680 + C3344/7560
M[7,13]=13*C1111/30240 + C1112/6048 + C1113/1260 + C1114/6048 + C1122/12960 + C1123/5040 + C1124/12960 + C1133/1680 + C1134/5040 + C1144/12960 + 11*C1311/10080 + 11*C1312/30240 + 5*C1313/3024 + 11*C1314/30240 + C1322/11340 + 11*C1323/30240 + C1324/11340
M[7,13]+= 11*C1333/10080 + 11*C1334/30240 + C1344/11340 + C3311/1680 + C3312/5040 + C3313/1260 + C3314/5040 + C3322/12960 + C3323/6048 + C3324/12960 + 13*C3333/30240 + C3334/6048 + C3344/12960
M[7,14]=-C1211/10080 - C1212/90720 - C1213/7560 - C1214/18144 - C1222/10080 + C1223/15120 - C1224/18144 + C1233/15120 - C1234/15120 - C1244/90720 - C1311/90720 - C1312/45360 + C1313/22680 - C1322/6048 - C1324/22680 + C1333/6048 + C1334/45360 + C1344/90720
M[7,14]+=- C2311/6048 + C2312/90720 - C2313/5040 - C2314/12960 + C2322/45360 + 13*C2323/90720 - C2333/30240 - C2334/12960 - C2344/45360 + C3311/30240 + C3312/45360 + C3313/18144 + C3314/18144 - C3322/15120 + C3323/11340 + C3324/45360 + C3333/9072 + C3334/30240
M[7,14]+= C3344/22680
M[7,15]=-C1111/3780 - C1112/9072 - C1113/2160 - C1114/11340 - C1122/22680 - C1123/7560 - C1124/15120 - C1133/3780 - C1134/15120 - C1144/11340 - C1212/45360 + C1214/45360 + C1222/22680 - C1223/15120 + C1234/15120 - C1244/22680 - 83*C1311/90720 - C1312/2592
M[7,15]+=- 37*C1313/22680 - 29*C1314/90720 - C1322/30240 - C1323/2160 - C1324/12960 - C1333/1008 - 13*C1334/45360 - C1344/18144 - C2312/22680 + C2314/22680 - C2322/45360 - C2323/9072 + C2334/9072 + C2344/45360 - C3311/864 - C3312/1296 - C3313/648 - 11*C3314/15120
M[7,15]+=- C3322/2592 - 19*C3323/30240 - 37*C3324/90720 - 47*C3333/45360 - 47*C3334/90720 - 11*C3344/30240
M[7,16]=C1111/10080 + C1112/18144 + C1113/7560 + C1114/90720 + C1122/90720 + C1123/15120 + C1124/18144 - C1133/15120 - C1134/15120 + C1144/10080 + C1211/10080 + C1212/18144 + C1213/7560 + C1214/90720 + C1222/90720 + C1223/15120 + C1224/18144 - C1233/15120
M[7,16]+=- C1234/15120 + C1244/10080 + 23*C1311/90720 + C1312/7560 + 17*C1313/45360 - C1314/45360 + C1322/22680 + C1323/6048 + C1324/90720 + C1333/7560 - 19*C1334/90720 - C1344/11340 + C2311/6048 + C2312/12960 + C2313/5040 - C2314/90720 + C2322/45360
M[7,16]+= C2323/12960 + C2333/30240 - 13*C2334/90720 - C2344/45360 + C3311/5040 + C3312/7560 + 23*C3313/90720 + C3314/90720 + C3322/15120 + C3323/9072 + C3324/45360 + 13*C3333/90720 - C3334/18144 - C3344/11340
M[7,17]=-C1111/1120 - C1112/1680 - 3*C1113/1120 - C1114/3360 + C1122/1120 - C1123/560 + C1124/1680 - 3*C1133/560 - C1134/1120 + C1144/3360 - C1212/3360 + C1214/3360 + C1222/1680 - C1223/1120 + C1234/1120 - C1244/1680 - C1311/480 - C1312/480
M[7,17]+=- C1313/168 - C1314/840 - C1322/1120 - 3*C1323/560 - C1324/672 - C1333/112 - C1334/336 - C1344/840 - C2312/1680 + C2314/1680 - C2322/3360 - C2323/672 + C2334/672 + C2344/3360 - C3311/560 - C3312/420 - C3313/336 - C3314/560 - C3322/560
M[7,17]+=- 3*C3323/1120 - C3324/480 - 11*C3333/3360 - C3334/840 - C3344/672
M[7,18]=-C1111/280 - C1112/672 - C1113/160 - C1114/840 - C1122/1680 - C1123/560 - C1124/1120 - C1133/280 - C1134/1120 - C1144/840 - C1211/224 - C1212/560 - C1213/112 - C1214/560 - C1222/3360 - 3*C1223/1120 - C1224/3360 - C1233/112 - 3*C1234/1120
M[7,18]+=- C1244/3360 - C1311/112 - C1312/280 - 9*C1313/560 - 3*C1314/1120 - C1322/1120 - C1323/224 - C1324/1120 - C1333/80 - 3*C1334/1120 - C1344/1120 - C2311/140 - 3*C2312/1120 - C2313/80 - 3*C2314/1120 - C2322/1680 - C2323/280 - C2324/1680
M[7,18]+=- C2333/112 - C2334/280 - C2344/1680 - C3311/140 - C3312/280 - 11*C3313/1120 - C3314/224 - C3322/840 - C3323/336 - C3324/560 - C3333/140 - C3334/420 - C3344/420
M[7,19]=-C1111/840 - C1112/1120 - C1113/672 - C1114/1680 - C1122/1120 - C1123/840 - C1124/672 - C1133/1120 - C1134/1120 - C1144/840 - C1212/3360 + C1214/3360 + C1222/3360 - C1223/3360 + C1234/3360 - C1244/3360 - C1311/560 - 13*C1313/3360 - C1314/1680
M[7,19]+= C1322/1120 - C1323/672 - C1324/3360 - C1333/420 - C1334/1680 - C1344/1680 + C2312/1120 - C2314/1120 + C2322/840 - C2323/1680 + C2334/1680 - C2344/840 + C3312/560 - 3*C3313/1120 + C3314/1120 + C3322/560 - C3323/840 + C3324/840 - C3333/560
M[7,19]+=- C3334/1680 + C3344/1680
M[7,20]=C1111/1120 + C1112/1680 + 3*C1113/1120 + C1114/3360 - C1122/1120 + C1123/560 - C1124/1680 + 3*C1133/560 + C1134/1120 - C1144/3360 + C1211/224 + C1212/560 + C1213/112 + C1214/560 + C1222/3360 + 3*C1223/1120 + C1224/3360 + C1233/112
M[7,20]+= 3*C1234/1120 + C1244/3360 + 3*C1311/1120 + C1312/560 + 3*C1313/560 + C1314/1120 + C1323/280 + 3*C1333/560 + C1334/560 + C2311/140 + 3*C2312/1120 + C2313/80 + 3*C2314/1120 + C2322/1680 + C2323/280 + C2324/1680 + C2333/112 + C2334/280
M[7,20]+= C2344/1680 - C3312/560 + 3*C3313/1120 - C3314/1120 - C3322/560 + C3323/840 - C3324/840 + C3333/560 + C3334/1680 - C3344/1680
M[8,8]=C1111/3780 + C1112/5040 + C1113/5040 + C1114/3780 + C1122/7560 + C1123/7560 + C1124/5040 + C1133/7560 + C1134/5040 + C1144/1512 + C1211/1260 + C1212/2160 + C1213/2160 + C1214/1512 + C1222/5040 + C1223/5040 + C1224/7560 + C1233/5040
M[8,8]+= C1234/7560 - C1244/15120 + C1311/1260 + C1312/2160 + C1313/2160 + C1314/1512 + C1322/5040 + C1323/5040 + C1324/7560 + C1333/5040 + C1334/7560 - C1344/15120 + C2211/1260 + C2212/2520 + C2213/2520 + C2214/840 + C2222/6480 + C2223/6480
M[8,8]+= C2224/3024 + C2233/6480 + C2234/3024 + 13*C2244/15120 + C2311/630 + C2312/1260 + C2313/1260 + C2314/420 + C2322/3240 + C2323/3240 + C2324/1512 + C2333/3240 + C2334/1512 + 13*C2344/7560 + C3311/1260 + C3312/2520 + C3313/2520 + C3314/840
M[8,8]+= C3322/6480 + C3323/6480 + C3324/3024 + C3333/6480 + C3334/3024 + 13*C3344/15120
M[8,9]=13*C1111/90720 + 23*C1112/90720 + C1113/9072 - C1114/18144 + C1122/5040 + C1123/7560 + C1124/90720 + C1133/15120 + C1134/45360 - C1144/11340 + C1211/7560 + 17*C1212/45360 + C1213/6048 - 19*C1214/90720 + 23*C1222/90720 + C1223/7560 - C1224/45360
M[8,9]+= C1233/22680 + C1234/90720 - C1244/11340 + C1311/30240 + C1312/5040 + C1313/12960 - 13*C1314/90720 + C1322/6048 + C1323/12960 - C1324/90720 + C1333/45360 - C1344/45360 - C2211/15120 + C2212/7560 + C2213/15120 - C2214/15120 + C2222/10080 + C2223/18144
M[8,9]+= C2224/90720 + C2233/90720 + C2234/18144 + C2244/10080 - C2311/15120 + C2312/7560 + C2313/15120 - C2314/15120 + C2322/10080 + C2323/18144 + C2324/90720 + C2333/90720 + C2334/18144 + C2344/10080
M[8,10]=-C1111/7560 - C1112/4536 - C1113/9072 - C1122/5040 - C1123/7560 - C1124/22680 - C1133/15120 - C1134/45360 + C1144/7560 - C1211/2268 - 17*C1212/30240 - C1213/3360 - 11*C1214/45360 - 13*C1222/45360 - C1223/5040 - C1224/18144 - C1233/9072 - C1234/12960
M[8,10]+=- C1244/9072 - C1311/5670 - C1312/3024 - C1313/5040 - C1314/9072 - C1322/3780 - C1323/5670 - C1324/6480 - C1333/11340 - C1334/22680 - C1344/22680 - 17*C2211/30240 - C2212/2520 - 17*C2213/45360 - 31*C2214/45360 - 11*C2222/45360 - C2223/3360
M[8,10]+=- C2224/90720 - 17*C2233/90720 - 31*C2234/90720 - 43*C2244/90720 - C2311/1440 - 13*C2312/22680 - 23*C2313/45360 - 41*C2314/45360 - 17*C2322/45360 - 41*C2323/90720 - 19*C2324/90720 - C2333/3360 - 13*C2334/30240 - 13*C2344/18144 - C3311/7560 - C3312/5670
M[8,10]+=- C3313/7560 - C3314/4536 - C3322/7560 - C3323/6480 - C3324/5040 - C3333/9072 - C3334/11340 - 11*C3344/45360
M[8,11]=C1211/30240 + C1212/30240 + C1213/15120 + C1214/30240 - C1224/30240 - C1234/15120 - C1244/15120 + C1311/30240 + C1312/30240 + C1313/15120 + C1314/30240 - C1324/30240 - C1334/15120 - C1344/15120 + C2211/10080 + C2212/12960 + C2213/6480 + C2214/6048
M[8,11]+= C2222/15120 + C2223/7560 + C2224/18144 + C2233/5040 + C2234/9072 + C2244/7560 + C2311/5040 + 17*C2312/90720 + 5*C2313/18144 + C2314/3024 + C2322/6048 + C2323/3360 + C2324/5670 + C2333/3024 + C2334/6480 + C2344/3780 + C3311/10080 + C3312/9072
M[8,11]+= 11*C3313/90720 + C3314/6048 + C3322/10080 + C3323/6048 + 11*C3324/90720 + C3333/7560 + C3334/22680 + C3344/7560
M[8,12]=11*C1111/90720 + 17*C1112/90720 + C1113/9072 + C1114/18144 + C1122/5040 + C1123/7560 + C1124/12960 + C1133/15120 + C1134/45360 - C1144/5670 + 29*C1211/90720 + 19*C1212/45360 + C1213/3780 + C1214/2160 + 29*C1222/90720 + C1223/3780 + C1224/2160
M[8,12]+= C1233/5670 + C1234/3240 + 11*C1244/11340 + 13*C1311/45360 + 13*C1312/30240 + 23*C1313/90720 + C1314/3024 + 11*C1322/30240 + 5*C1323/18144 + C1324/2835 + C1333/6480 + C1334/6480 + C1344/5670 + C2211/5040 + 17*C2212/90720 + C2213/7560 + C2214/12960
M[8,12]+= 11*C2222/90720 + C2223/9072 + C2224/18144 + C2233/15120 + C2234/45360 - C2244/5670 + 11*C2311/30240 + 13*C2312/30240 + 5*C2313/18144 + C2314/2835 + 13*C2322/45360 + 23*C2323/90720 + C2324/3024 + C2333/6480 + C2334/6480 + C2344/5670 + C3311/6048
M[8,12]+= 11*C3312/45360 + 13*C3313/90720 + 5*C3314/18144 + C3322/6048 + 13*C3323/90720 + 5*C3324/18144 + C3333/11340 + C3334/7560 + C3344/2835
M[8,13]=13*C1111/90720 + C1112/9072 + 23*C1113/90720 - C1114/18144 + C1122/15120 + C1123/7560 + C1124/45360 + C1133/5040 + C1134/90720 - C1144/11340 + C1211/30240 + C1212/12960 + C1213/5040 - 13*C1214/90720 + C1222/45360 + C1223/12960 + C1233/6048
M[8,13]+=- C1234/90720 - C1244/45360 + C1311/7560 + C1312/6048 + 17*C1313/45360 - 19*C1314/90720 + C1322/22680 + C1323/7560 + C1324/90720 + 23*C1333/90720 - C1334/45360 - C1344/11340 - C2311/15120 + C2312/15120 + C2313/7560 - C2314/15120 + C2322/90720
M[8,13]+= C2323/18144 + C2324/18144 + C2333/10080 + C2334/90720 + C2344/10080 - C3311/15120 + C3312/15120 + C3313/7560 - C3314/15120 + C3322/90720 + C3323/18144 + C3324/18144 + C3333/10080 + C3334/90720 + C3344/10080
M[8,14]=C1211/30240 + C1212/15120 + C1213/30240 + C1214/30240 - C1224/15120 - C1234/30240 - C1244/15120 + C1311/30240 + C1312/15120 + C1313/30240 + C1314/30240 - C1324/15120 - C1334/30240 - C1344/15120 + C2211/10080 + 11*C2212/90720 + C2213/9072 + C2214/6048
M[8,14]+= C2222/7560 + C2223/6048 + C2224/22680 + C2233/10080 + 11*C2234/90720 + C2244/7560 + C2311/5040 + 5*C2312/18144 + 17*C2313/90720 + C2314/3024 + C2322/3024 + C2323/3360 + C2324/6480 + C2333/6048 + C2334/5670 + C2344/3780 + C3311/10080 + C3312/6480
M[8,14]+= C3313/12960 + C3314/6048 + C3322/5040 + C3323/7560 + C3324/9072 + C3333/15120 + C3334/18144 + C3344/7560
M[8,15]=-C1111/7560 - C1112/9072 - C1113/4536 - C1122/15120 - C1123/7560 - C1124/45360 - C1133/5040 - C1134/22680 + C1144/7560 - C1211/5670 - C1212/5040 - C1213/3024 - C1214/9072 - C1222/11340 - C1223/5670 - C1224/22680 - C1233/3780 - C1234/6480
M[8,15]+=- C1244/22680 - C1311/2268 - C1312/3360 - 17*C1313/30240 - 11*C1314/45360 - C1322/9072 - C1323/5040 - C1324/12960 - 13*C1333/45360 - C1334/18144 - C1344/9072 - C2211/7560 - C2212/7560 - C2213/5670 - C2214/4536 - C2222/9072 - C2223/6480 - C2224/11340
M[8,15]+=- C2233/7560 - C2234/5040 - 11*C2244/45360 - C2311/1440 - 23*C2312/45360 - 13*C2313/22680 - 41*C2314/45360 - C2322/3360 - 41*C2323/90720 - 13*C2324/30240 - 17*C2333/45360 - 19*C2334/90720 - 13*C2344/18144 - 17*C3311/30240 - 17*C3312/45360 - C3313/2520
M[8,15]+=- 31*C3314/45360 - 17*C3322/90720 - C3323/3360 - 31*C3324/90720 - 11*C3333/45360 - C3334/90720 - 43*C3344/90720
M[8,16]=11*C1111/90720 + C1112/9072 + 17*C1113/90720 + C1114/18144 + C1122/15120 + C1123/7560 + C1124/45360 + C1133/5040 + C1134/12960 - C1144/5670 + 13*C1211/45360 + 23*C1212/90720 + 13*C1213/30240 + C1214/3024 + C1222/6480 + 5*C1223/18144 + C1224/6480
M[8,16]+= 11*C1233/30240 + C1234/2835 + C1244/5670 + 29*C1311/90720 + C1312/3780 + 19*C1313/45360 + C1314/2160 + C1322/5670 + C1323/3780 + C1324/3240 + 29*C1333/90720 + C1334/2160 + 11*C1344/11340 + C2211/6048 + 13*C2212/90720 + 11*C2213/45360 + 5*C2214/18144
M[8,16]+= C2222/11340 + 13*C2223/90720 + C2224/7560 + C2233/6048 + 5*C2234/18144 + C2244/2835 + 11*C2311/30240 + 5*C2312/18144 + 13*C2313/30240 + C2314/2835 + C2322/6480 + 23*C2323/90720 + C2324/6480 + 13*C2333/45360 + C2334/3024 + C2344/5670 + C3311/5040
M[8,16]+= C3312/7560 + 17*C3313/90720 + C3314/12960 + C3322/15120 + C3323/9072 + C3324/45360 + 11*C3333/90720 + C3334/18144 - C3344/5670
M[8,17]=-C1111/1680 - C1112/1120 - C1113/1120 + C1114/3360 + C1124/1120 + C1134/1120 + C1144/3360 - C1211/672 - C1212/420 - 3*C1213/1120 - C1222/560 - 3*C1223/1120 + C1224/1680 - 3*C1233/1120 + C1244/420 - C1311/672 - 3*C1312/1120 - C1313/420
M[8,17]+=- 3*C1322/1120 - 3*C1323/1120 - C1333/560 + C1334/1680 + C1344/420 - C2211/560 - C2212/560 - C2213/420 - C2214/336 - C2222/672 - C2223/480 - C2224/840 - C2233/560 - 3*C2234/1120 - 11*C2244/3360 - C2311/280 - C2312/240 - C2313/240
M[8,17]+=- C2314/168 - 11*C2322/3360 - C2323/240 - 13*C2324/3360 - 11*C2333/3360 - 13*C2334/3360 - 11*C2344/1680 - C3311/560 - C3312/420 - C3313/560 - C3314/336 - C3322/560 - C3323/480 - 3*C3324/1120 - C3333/672 - C3334/840 - 11*C3344/3360
M[8,18]=-C1111/560 - C1112/672 - C1113/336 - C1122/1120 - C1123/560 - C1124/3360 - 3*C1133/1120 - C1134/1680 + C1144/560 - 3*C1211/1120 - 3*C1212/1120 - 3*C1213/560 - C1222/840 - C1223/420 - C1224/1680 - C1233/280 - C1234/840 - C1244/560 - 3*C1311/560
M[8,18]+=- C1312/280 - C1313/160 - C1314/280 - C1322/672 - 3*C1323/1120 - C1324/672 - 13*C1333/3360 - C1334/480 - C1344/560 - C2212/1120 - C2213/560 + 3*C2214/1120 - C2222/1680 - C2223/840 + C2224/1680 - C2233/560 + C2234/840 + C2244/560 - C2311/140
M[8,18]+=- C2312/224 - C2313/160 - C2314/140 - C2322/560 - C2323/336 - C2324/420 - C2333/240 - C2334/840 - 3*C2344/560 - C3311/140 - C3312/280 - C3313/224 - 11*C3314/1120 - C3322/840 - C3323/560 - C3324/336 - C3333/420 - C3334/420 - C3344/140
M[8,19]=-C1111/560 - C1112/336 - C1113/672 - 3*C1122/1120 - C1123/560 - C1124/1680 - C1133/1120 - C1134/3360 + C1144/560 - 3*C1211/560 - C1212/160 - C1213/280 - C1214/280 - 13*C1222/3360 - 3*C1223/1120 - C1224/480 - C1233/672 - C1234/672 - C1244/560
M[8,19]+=- 3*C1311/1120 - 3*C1312/560 - 3*C1313/1120 - C1322/280 - C1323/420 - C1324/840 - C1333/840 - C1334/1680 - C1344/560 - C2211/140 - C2212/224 - C2213/280 - 11*C2214/1120 - C2222/420 - C2223/560 - C2224/420 - C2233/840 - C2234/336 - C2244/140
M[8,19]+=- C2311/140 - C2312/160 - C2313/224 - C2314/140 - C2322/240 - C2323/336 - C2324/840 - C2333/560 - C2334/420 - 3*C2344/560 - C3312/560 - C3313/1120 + 3*C3314/1120 - C3322/560 - C3323/840 + C3324/840 - C3333/1680 + C3334/1680 + C3344/560
M[8,20]=C1111/1680 + C1112/1120 + C1113/1120 - C1114/3360 - C1124/1120 - C1134/1120 - C1144/3360 + C1211/560 + C1212/420 + C1213/280 - C1214/672 + C1222/560 + 3*C1223/1120 - C1224/1680 + 3*C1233/1120 - C1234/1120 - C1244/840 + C1311/560 + C1312/280
M[8,20]+= C1313/420 - C1314/672 + 3*C1322/1120 + 3*C1323/1120 - C1324/1120 + C1333/560 - C1334/1680 - C1344/840 + C2212/1120 + C2213/560 - 3*C2214/1120 + C2222/1680 + C2223/840 - C2224/1680 + C2233/560 - C2234/840 - C2244/560 + 3*C2312/1120
M[8,20]+= 3*C2313/1120 - 3*C2314/560 + C2322/420 + C2323/420 - C2324/560 + C2333/420 - C2334/560 - C2344/280 + C3312/560 + C3313/1120 - 3*C3314/1120 + C3322/560 + C3323/840 - C3324/840 + C3333/1680 - C3334/1680 - C3344/560
M[9,9]=13*C1111/15120 + C1112/840 + C1113/3024 + C1114/3024 + C1122/1260 + C1123/2520 + C1124/2520 + C1133/6480 + C1134/6480 + C1144/6480 + C1211/560 + 13*C1212/7560 + C1213/1890 + C1214/1890 + C1222/1260 + C1223/3024 + C1224/3024 + C1233/9072
M[9,9]+= C1234/9072 + C1244/9072 + C2211/630 + C2212/1260 + C2213/2520 + C2214/2520 + C2222/3780 + C2223/7560 + C2224/7560 + C2233/11340 + C2234/11340 + C2244/11340
M[9,10]=-C1111/1890 - 11*C1112/15120 - C1113/4536 - C1114/5670 - C1122/1890 - C1123/3780 - C1124/3024 - C1133/11340 - C1134/7560 - C1144/5670 - 127*C1211/90720 - 17*C1212/9072 - 43*C1213/90720 - 37*C1214/90720 - C1222/1260 - C1223/7560 - C1224/5670
M[9,10]+= C1233/10080 + C1234/90720 - C1244/90720 - C1313/22680 + C1314/22680 + C1323/15120 - C1324/15120 + C1333/11340 - C1344/11340 - 19*C2211/30240 - 11*C2212/11340 - 13*C2213/45360 - C2214/3780 - 11*C2222/22680 - C2223/4320 - 19*C2224/90720 - 13*C2233/90720
M[9,10]+=- 17*C2234/90720 - C2244/6048 - C2313/45360 + C2314/45360 - C2323/45360 + C2324/45360 + C2333/45360 - C2344/45360
M[9,11]=-C1211/18144 - C1212/90720 - C1213/22680 - C1214/30240 - C1222/15120 - C1223/5040 - C1224/18144 - C1233/4320 - C1234/11340 - C1244/90720 - C1311/5040 - C1312/3780 - C1313/45360 - C1314/9072 - C1322/3780 - C1323/3780 - C1324/7560 - C1333/5040
M[9,11]+=- C1334/9072 - C1344/45360 - C2211/7560 - C2212/45360 - C2213/11340 - C2214/45360 + C2222/45360 - C2223/45360 - C2233/7560 - C2234/45360 + C2244/45360 - C2311/4320 - C2312/5040 - C2313/22680 - C2314/11340 - C2322/15120 - C2323/90720 - C2324/18144
M[9,11]+=- C2333/18144 - C2334/30240 - C2344/90720
M[9,12]=C1111/5040 + C1112/3780 + C1113/9072 + C1114/45360 + C1122/3780 + C1123/7560 + C1124/3780 + C1133/45360 + C1134/9072 + C1144/5040 + 17*C1211/45360 + 41*C1212/90720 + C1213/6048 + C1214/45360 + C1222/3780 + C1223/7560 + C1224/12960 + C1233/45360
M[9,12]+= C1234/18144 + C1244/45360 + C1311/5040 + C1312/3780 + C1313/9072 + C1314/45360 + C1322/3780 + C1323/7560 + C1324/3780 + C1333/45360 + C1334/9072 + C1344/5040 + C2211/10080 + C2212/5670 + C2213/15120 - C2214/22680 + C2222/11340 + C2223/18144
M[9,12]+=- C2224/90720 + C2233/30240 + C2234/90720 - C2244/12960 + C2311/4320 + C2312/5040 + C2313/11340 + C2314/22680 + C2322/15120 + C2323/18144 + C2324/90720 + C2333/90720 + C2334/30240 + C2344/18144
M[9,13]=C1111/2835 + 5*C1112/18144 + 5*C1113/18144 + C1114/7560 + C1122/6048 + 11*C1123/45360 + 13*C1124/90720 + C1133/6048 + 13*C1134/90720 + C1144/11340 + C1211/1890 + C1212/4536 + C1213/5040 + C1214/9072 + C1222/22680 + C1223/18144 + C1224/30240
M[9,13]+=- C1233/30240 + C1234/90720 + C1244/45360 + C1311/1890 + C1312/5040 + C1313/4536 + C1314/9072 - C1322/30240 + C1323/18144 + C1324/90720 + C1333/22680 + C1334/30240 + C1344/45360 + C2311/756 + C2312/3024 + C2313/3024 + C2314/3780 + C2323/22680
M[9,13]+= C2324/45360 + C2334/45360 + C2344/22680
M[9,14]=C1211/45360 + 13*C1212/90720 + C1213/90720 - C1222/30240 - C1223/5040 - C1224/12960 - C1233/6048 - C1234/12960 - C1244/45360 - C1311/10080 + C1312/15120 - C1313/90720 - C1314/18144 + C1322/15120 - C1323/7560 - C1324/15120 - C1333/10080 - C1334/18144
M[9,14]+=- C1344/90720 - C2211/15120 + C2212/11340 + C2213/45360 + C2214/45360 + C2222/9072 + C2223/18144 + C2224/30240 + C2233/30240 + C2234/18144 + C2244/22680 - C2311/6048 - C2313/45360 - C2314/22680 + C2322/6048 + C2323/22680 + C2324/45360 - C2333/90720
M[9,14]+= C2344/90720
M[9,15]=-11*C1111/45360 - C1112/4536 - C1113/5040 - C1114/11340 - C1122/7560 - C1123/5670 - C1124/7560 - C1133/7560 - C1134/6480 - C1144/9072 - C1211/2268 - C1212/3024 - 11*C1213/45360 - C1214/7560 - C1222/11340 - C1223/45360 - C1224/15120 - C1234/7560
M[9,15]+=- C1244/7560 + C1311/4320 + C1312/2160 - 17*C1313/90720 + 23*C1314/90720 + 13*C1322/30240 + C1323/4536 + 11*C1324/45360 + C1333/9072 + 13*C1334/90720 + C1344/12960 - C2211/15120 - C2212/9072 - C2213/11340 - C2214/15120 - C2222/11340 - C2223/15120
M[9,15]+=- C2224/22680 - C2233/15120 - C2234/9072 - C2244/11340 + C2311/6048 + C2312/3024 - C2313/11340 + C2314/4536 + C2322/6048 - C2323/90720 + 13*C2324/90720 + C2333/11340 + 11*C2334/90720 + C2344/18144
M[9,16]=C1111/7560 + C1112/6048 + 11*C1113/90720 + C1114/22680 + C1122/10080 + C1123/9072 + 11*C1124/90720 + C1133/10080 + C1134/6048 + C1144/7560 + C1211/3024 + C1212/3360 + 5*C1213/18144 + C1214/6480 + C1222/6048 + 17*C1223/90720 + C1224/5670 + C1233/5040
M[9,16]+= C1234/3024 + C1244/3780 + C1313/15120 - C1314/15120 + C1323/30240 - C1324/30240 + C1333/30240 + C1334/30240 - C1344/15120 + C2211/5040 + C2212/7560 + C2213/6480 + C2214/9072 + C2222/15120 + C2223/12960 + C2224/18144 + C2233/10080 + C2234/6048
M[9,16]+= C2244/7560 + C2313/15120 - C2314/15120 + C2323/30240 - C2324/30240 + C2333/30240 + C2334/30240 - C2344/15120
M[9,17]=-C1111/560 - 3*C1112/1120 - C1113/840 - C1114/1680 + C1123/560 + C1124/1120 + C1133/560 + C1134/840 + C1144/1680 - C1211/420 - 13*C1212/3360 - C1213/672 - C1214/1680 - C1222/560 - C1224/1680 + C1233/1120 - C1234/3360 - C1244/1680 - C1313/1680
M[9,17]+= C1314/1680 + C1323/1120 - C1324/1120 + C1333/840 - C1344/840 - C2211/1120 - C2212/672 - C2213/840 - C2214/1120 - C2222/840 - C2223/1120 - C2224/1680 - C2233/1120 - C2234/672 - C2244/840 - C2313/3360 + C2314/3360 - C2323/3360 + C2324/3360
M[9,17]+= C2333/3360 - C2344/3360
M[9,18]=-11*C1111/3360 - C1112/336 - 3*C1113/1120 - C1114/840 - C1122/560 - C1123/420 - C1124/560 - C1133/560 - C1134/480 - C1144/672 - C1211/112 - C1212/168 - 3*C1213/560 - C1214/336 - C1222/480 - C1223/480 - C1224/840 - C1233/1120 - C1234/672
M[9,18]+=- C1244/840 - C1313/672 + C1314/672 - C1323/1680 + C1324/1680 - C1333/3360 + C1344/3360 - 3*C2211/560 - 3*C2212/1120 - C2213/560 - C2214/1120 - C2222/1120 - C2223/1680 - C2224/3360 + C2233/1120 + C2234/1680 + C2244/3360 - C2313/1120
M[9,18]+= C2314/1120 - C2323/3360 + C2324/3360 + C2333/1680 - C2344/1680
M[9,19]=-C1111/140 - 11*C1112/1120 - C1113/336 - C1114/420 - C1122/140 - C1123/280 - C1124/224 - C1133/840 - C1134/560 - C1144/420 - C1211/80 - 9*C1212/560 - C1213/224 - 3*C1214/1120 - C1222/112 - C1223/280 - 3*C1224/1120 - C1233/1120 - C1234/1120
M[9,19]+=- C1244/1120 - C1311/112 - C1312/80 - C1313/280 - C1314/280 - C1322/140 - 3*C1323/1120 - 3*C1324/1120 - C1333/1680 - C1334/1680 - C1344/1680 - C2211/280 - C2212/160 - C2213/560 - C2214/1120 - C2222/280 - C2223/672 - C2224/840 - C2233/1680
M[9,19]+=- C2234/1120 - C2244/840 - C2311/112 - C2312/112 - 3*C2313/1120 - 3*C2314/1120 - C2322/224 - C2323/560 - C2324/560 - C2333/3360 - C2334/3360 - C2344/3360
M[9,20]=C1111/560 + 3*C1112/1120 + C1113/840 + C1114/1680 - C1123/560 - C1124/1120 - C1133/560 - C1134/840 - C1144/1680 + 3*C1211/560 + 3*C1212/560 + C1213/280 + C1214/560 + 3*C1222/1120 + C1223/560 + C1224/1120 + C1311/112 + C1312/80 + C1313/280
M[9,20]+= C1314/280 + C1322/140 + 3*C1323/1120 + 3*C1324/1120 + C1333/1680 + C1334/1680 + C1344/1680 + 3*C2211/560 + 3*C2212/1120 + C2213/560 + C2214/1120 + C2222/1120 + C2223/1680 + C2224/3360 - C2233/1120 - C2234/1680 - C2244/3360 + C2311/112
M[9,20]+= C2312/112 + 3*C2313/1120 + 3*C2314/1120 + C2322/224 + C2323/560 + C2324/560 + C2333/3360 + C2334/3360 + C2344/3360
M[10,10]=C1111/2835 + C1112/1890 + C1113/5670 + C1114/5670 + C1122/1890 + C1123/3780 + C1124/1890 + C1133/11340 + C1134/5670 + C1144/2835 + C1211/945 + C1212/630 + 11*C1213/22680 + C1214/5670 + C1222/1890 + C1223/3780 - C1224/1890 + C1233/11340
M[10,10]+=- C1234/7560 - C1244/2835 + C1311/11340 + C1312/3780 + C1313/5670 + C1314/5670 + C1322/1890 + C1323/3780 + C1324/1260 + C1333/11340 + C1334/5670 + C1344/1620 + 11*C2211/5670 + C2212/405 + 11*C2213/5670 + 37*C2214/22680 + C2222/420 + C2223/405
M[10,10]+= 4*C2224/2835 + 11*C2233/5670 + 37*C2234/22680 + C2244/810 + C2311/11340 + C2312/3780 + 11*C2313/22680 - C2314/7560 + C2322/1890 + C2323/630 - C2324/1890 + C2333/945 + C2334/5670 - C2344/2835 + C3311/11340 + C3312/3780 + C3313/5670 + C3314/5670
M[10,10]+= C3322/1890 + C3323/1890 + C3324/1890 + C3333/2835 + C3334/5670 + C3344/2835
M[10,11]=C1211/45360 - C1212/45360 - C1213/45360 + C1224/45360 + C1234/45360 - C1244/45360 + C1311/11340 + C1312/15120 - C1313/22680 - C1324/15120 + C1334/22680 - C1344/11340 - 13*C2211/90720 - C2212/4320 - 13*C2213/45360 - 17*C2214/90720 - 11*C2222/22680
M[10,11]+=- 11*C2223/11340 - 19*C2224/90720 - 19*C2233/30240 - C2234/3780 - C2244/6048 + C2311/10080 - C2312/7560 - 43*C2313/90720 + C2314/90720 - C2322/1260 - 17*C2323/9072 - C2324/5670 - 127*C2333/90720 - 37*C2334/90720 - C2344/90720 - C3311/11340 - C3312/3780
M[10,11]+=- C3313/4536 - C3314/7560 - C3322/1890 - 11*C3323/15120 - C3324/3024 - C3333/1890 - C3334/5670 - C3344/5670
M[10,12]=-C1111/5670 - C1112/3024 - C1113/7560 - C1114/5670 - C1122/1890 - C1123/3780 - 11*C1124/15120 - C1133/11340 - C1134/4536 - C1144/1890 - 31*C1211/90720 - 11*C1212/22680 - 5*C1213/18144 + C1214/18144 - C1222/3780 - C1223/2520 + 19*C1224/45360
M[10,12]+=- 5*C1233/18144 + C1234/30240 + 31*C1244/90720 - C1311/3780 - C1312/1680 - C1313/3780 - C1314/2520 - C1322/945 - C1323/1680 - 11*C1324/7560 - C1333/3780 - C1334/2520 - C1344/945 - C2211/3024 - 11*C2212/30240 - C2213/3024 - C2214/30240 - C2222/4536
M[10,12]+=- 11*C2223/30240 + C2224/5670 - C2233/3024 - C2234/30240 + 11*C2244/45360 - 5*C2311/18144 - C2312/2520 - 5*C2313/18144 + C2314/30240 - C2322/3780 - 11*C2323/22680 + 19*C2324/45360 - 31*C2333/90720 + C2334/18144 + 31*C2344/90720 - C3311/11340 - C3312/3780
M[10,12]+=- C3313/7560 - C3314/4536 - C3322/1890 - C3323/3024 - 11*C3324/15120 - C3333/5670 - C3334/5670 - C3344/1890
M[10,13]=-11*C1111/45360 - C1112/5040 - C1113/4536 - C1114/11340 - C1122/7560 - C1123/5670 - C1124/6480 - C1133/7560 - C1134/7560 - C1144/9072 + C1211/4320 - 17*C1212/90720 + C1213/2160 + 23*C1214/90720 + C1222/9072 + C1223/4536 + 13*C1224/90720 + 13*C1233/30240
M[10,13]+= 11*C1234/45360 + C1244/12960 - C1311/2268 - 11*C1312/45360 - C1313/3024 - C1314/7560 - C1323/45360 - C1324/7560 - C1333/11340 - C1334/15120 - C1344/7560 + C2311/6048 - C2312/11340 + C2313/3024 + C2314/4536 + C2322/11340 - C2323/90720 + 11*C2324/90720
M[10,13]+= C2333/6048 + 13*C2334/90720 + C2344/18144 - C3311/15120 - C3312/11340 - C3313/9072 - C3314/15120 - C3322/15120 - C3323/15120 - C3324/9072 - C3333/11340 - C3334/22680 - C3344/11340
M[10,14]=-C1211/45360 - C1212/9072 - C1213/22680 + C1224/9072 + C1234/22680 + C1244/45360 + C1311/22680 - C1312/15120 - C1313/45360 + C1324/15120 + C1334/45360 - C1344/22680 - C2211/2592 - 19*C2212/30240 - C2213/1296 - 37*C2214/90720 - 47*C2222/45360
M[10,14]+=- C2223/648 - 47*C2224/90720 - C2233/864 - 11*C2234/15120 - 11*C2244/30240 - C2311/30240 - C2312/2160 - C2313/2592 - C2314/12960 - C2322/1008 - 37*C2323/22680 - 13*C2324/45360 - 83*C2333/90720 - 29*C2334/90720 - C2344/18144 - C3311/22680 - C3312/7560
M[10,14]+=- C3313/9072 - C3314/15120 - C3322/3780 - C3323/2160 - C3324/15120 - C3333/3780 - C3334/11340 - C3344/11340
M[10,15]=C1111/5670 + C1112/5670 + C1113/5670 + C1114/11340 + C1122/7560 + C1123/5670 + C1124/5670 + C1133/7560 + C1134/5670 + C1144/5670 + C1211/22680 + 17*C1212/45360 + C1213/22680 + C1214/11340 + C1222/7560 + C1223/5670 - C1224/45360 + C1233/7560
M[10,15]+= C1234/3240 + C1244/3240 + C1311/22680 + C1312/22680 + 17*C1313/45360 + C1314/11340 + C1322/7560 + C1323/5670 + C1324/3240 + C1333/7560 - C1334/45360 + C1344/3240 + 13*C2211/45360 + C2212/2160 + 13*C2213/22680 + 17*C2214/45360 + 29*C2222/45360
M[10,15]+= 11*C2223/11340 + C2224/3780 + 13*C2233/15120 + 2*C2234/2835 + 19*C2244/45360 - 23*C2311/45360 - C2312/45360 - C2313/45360 - C2314/3024 + C2322/1260 + 19*C2323/9072 - C2324/11340 + C2333/1260 - C2334/11340 - 11*C2344/45360 + 13*C3311/45360 + 13*C3312/22680
M[10,15]+= C3313/2160 + 17*C3314/45360 + 13*C3322/15120 + 11*C3323/11340 + 2*C3324/2835 + 29*C3333/45360 + C3334/3780 + 19*C3344/45360
M[10,16]=-C1111/9072 - C1112/6480 - C1113/7560 - C1114/11340 - C1122/7560 - C1123/5670 - C1124/5040 - C1133/7560 - C1134/4536 - 11*C1144/45360 - C1211/3360 - 41*C1212/90720 - 23*C1213/45360 - 13*C1214/30240 - 17*C1222/45360 - 13*C1223/22680 - 19*C1224/90720
M[10,16]+=- C1233/1440 - 41*C1234/45360 - 13*C1244/18144 - C1311/11340 - C1312/5670 - C1313/5040 - C1314/22680 - C1322/3780 - C1323/3024 - C1324/6480 - C1333/5670 - C1334/9072 - C1344/22680 - 17*C2211/90720 - C2212/3360 - 17*C2213/45360 - 31*C2214/90720
M[10,16]+=- 11*C2222/45360 - C2223/2520 - C2224/90720 - 17*C2233/30240 - 31*C2234/45360 - 43*C2244/90720 - C2311/9072 - C2312/5040 - C2313/3360 - C2314/12960 - 13*C2322/45360 - 17*C2323/30240 - C2324/18144 - C2333/2268 - 11*C2334/45360 - C2344/9072 - C3311/15120
M[10,16]+=- C3312/7560 - C3313/9072 - C3314/45360 - C3322/5040 - C3323/4536 - C3324/22680 - C3333/7560 + C3344/7560
M[10,17]=C1111/840 + C1112/560 + C1113/840 - C1124/560 - C1134/840 - C1144/840 + 11*C1211/3360 + C1212/105 + C1213/168 + C1214/480 + C1222/80 + C1223/56 + 11*C1224/1680 + 11*C1233/1120 + C1234/210 + 3*C1244/1120 + C1311/840 + C1312/280 + C1313/280
M[10,17]+= C1314/840 + C1322/140 + C1323/112 + 3*C1324/560 + C1333/168 + C1334/420 + C1344/280 + 13*C2211/3360 + C2212/160 + 13*C2213/1680 + 17*C2214/3360 + 29*C2222/3360 + 11*C2223/840 + C2224/280 + 13*C2233/1120 + C2234/105 + 19*C2244/3360 + C2311/840
M[10,17]+= C2312/280 + 17*C2313/3360 - C2314/3360 + C2322/140 + C2323/60 - C2324/420 + 3*C2333/280 + C2334/420 - C2344/840 + C3311/840 + C3312/280 + C3313/420 + C3314/420 + C3322/140 + C3323/140 + C3324/140 + C3333/210 + C3334/420 + C3344/210
M[10,18]=C1111/420 + C1112/420 + C1113/420 + C1114/840 + C1122/560 + C1123/420 + C1124/420 + C1133/560 + C1134/420 + C1144/420 + C1211/420 + 19*C1212/3360 + C1213/560 + C1214/840 + C1222/560 + C1223/420 - C1224/1120 + C1233/560 + C1234/336
M[10,18]+= C1244/420 + C1311/560 + C1312/420 + C1313/280 + C1314/840 + C1322/560 + C1323/420 + C1324/420 + C1333/560 + C1334/840 + C1344/336 - C2211/560 + C2212/210 - C2213/280 - C2214/336 + 13*C2222/3360 + C2223/210 + C2224/672 - C2233/560
M[10,18]+=- C2234/336 - C2244/560 + C2311/560 + C2312/420 + C2313/560 + C2314/336 + C2322/560 + 19*C2323/3360 - C2324/1120 + C2333/420 + C2334/840 + C2344/420 + C3311/560 + C3312/420 + C3313/420 + C3314/420 + C3322/560 + C3323/420 + C3324/420
M[10,18]+= C3333/420 + C3334/840 + C3344/420
M[10,19]=C1111/210 + C1112/140 + C1113/420 + C1114/420 + C1122/140 + C1123/280 + C1124/140 + C1133/840 + C1134/420 + C1144/210 + 3*C1211/280 + C1212/60 + 17*C1213/3360 + C1214/420 + C1222/140 + C1223/280 - C1224/420 + C1233/840 - C1234/3360
M[10,19]+=- C1244/840 + C1311/168 + C1312/112 + C1313/280 + C1314/420 + C1322/140 + C1323/280 + 3*C1324/560 + C1333/840 + C1334/840 + C1344/280 + 13*C2211/1120 + 11*C2212/840 + 13*C2213/1680 + C2214/105 + 29*C2222/3360 + C2223/160 + C2224/280
M[10,19]+= 13*C2233/3360 + 17*C2234/3360 + 19*C2244/3360 + 11*C2311/1120 + C2312/56 + C2313/168 + C2314/210 + C2322/80 + C2323/105 + 11*C2324/1680 + 11*C2333/3360 + C2334/480 + 3*C2344/1120 + C3313/840 - C3314/840 + C3323/560 - C3324/560 + C3333/840
M[10,19]+=- C3344/840
M[10,20]=-C1111/840 - C1112/560 - C1113/840 + C1124/560 + C1134/840 + C1144/840 - 17*C1211/3360 - 17*C1212/1680 - C1213/140 - C1214/480 - C1222/80 - C1223/56 - C1224/168 - 11*C1233/1120 - C1234/280 - C1244/1120 - C1311/168 - C1312/112 - C1313/210
M[10,20]+=- C1314/840 - C1322/140 - C1323/112 - C1333/168 - C1334/840 + C1344/840 + C2211/560 - C2212/210 + C2213/280 + C2214/336 - 13*C2222/3360 - C2223/210 - C2224/672 + C2233/560 + C2234/336 + C2244/560 - 11*C2311/1120 - C2312/56 - C2313/140
M[10,20]+=- C2314/280 - C2322/80 - 17*C2323/1680 - C2324/168 - 17*C2333/3360 - C2334/480 - C2344/1120 - C3313/840 + C3314/840 - C3323/560 + C3324/560 - C3333/840 + C3344/840
M[11,11]=C2211/11340 + C2212/7560 + C2213/2520 + C2214/11340 + C2222/3780 + C2223/1260 + C2224/7560 + C2233/630 + C2234/2520 + C2244/11340 + C2311/9072 + C2312/3024 + C2313/1890 + C2314/9072 + C2322/1260 + 13*C2323/7560 + C2324/3024 + C2333/560
M[11,11]+= C2334/1890 + C2344/9072 + C3311/6480 + C3312/2520 + C3313/3024 + C3314/6480 + C3322/1260 + C3323/840 + C3324/2520 + 13*C3333/15120 + C3334/3024 + C3344/6480
M[11,12]=C1211/90720 + C1212/18144 + C1213/11340 + C1214/30240 + C1222/15120 + C1223/5040 + C1224/90720 + C1233/4320 + C1234/22680 + C1244/18144 + C1311/45360 + C1312/7560 + C1313/9072 + C1314/9072 + C1322/3780 + C1323/3780 + C1324/3780 + C1333/5040
M[11,12]+= C1334/45360 + C1344/5040 + C2211/30240 + C2212/18144 + C2213/15120 + C2214/90720 + C2222/11340 + C2223/5670 - C2224/90720 + C2233/10080 - C2234/22680 - C2244/12960 + C2311/45360 + C2312/7560 + C2313/6048 + C2314/18144 + C2322/3780 + 41*C2323/90720
M[11,12]+= C2324/12960 + 17*C2333/45360 + C2334/45360 + C2344/45360 + C3311/45360 + C3312/7560 + C3313/9072 + C3314/9072 + C3322/3780 + C3323/3780 + C3324/3780 + C3333/5040 + C3334/45360 + C3344/5040
M[11,13]=-C1211/10080 - C1212/90720 + C1213/15120 - C1214/18144 - C1222/10080 - C1223/7560 - C1224/18144 + C1233/15120 - C1234/15120 - C1244/90720 + C1311/45360 + C1312/90720 + 13*C1313/90720 - C1322/6048 - C1323/5040 - C1324/12960 - C1333/30240 - C1334/12960
M[11,13]+=- C1344/45360 - C2311/6048 - C2312/45360 - C2314/22680 - C2322/90720 + C2323/22680 + C2333/6048 + C2334/45360 + C2344/90720 - C3311/15120 + C3312/45360 + C3313/11340 + C3314/45360 + C3322/30240 + C3323/18144 + C3324/18144 + C3333/9072 + C3334/30240
M[11,13]+= C3344/22680
M[11,14]=C2211/12960 + C2212/6048 + C2213/5040 + C2214/12960 + 13*C2222/30240 + C2223/1260 + C2224/6048 + C2233/1680 + C2234/5040 + C2244/12960 + C2311/11340 + 11*C2312/30240 + 11*C2313/30240 + C2314/11340 + 11*C2322/10080 + 5*C2323/3024 + 11*C2324/30240
M[11,14]+= 11*C2333/10080 + 11*C2334/30240 + C2344/11340 + C3311/12960 + C3312/5040 + C3313/6048 + C3314/12960 + C3322/1680 + C3323/1260 + C3324/5040 + 13*C3333/30240 + C3334/6048 + C3344/12960
M[11,15]=C1211/22680 - C1212/45360 - C1213/15120 + C1224/45360 + C1234/15120 - C1244/22680 - C1311/45360 - C1312/22680 - C1313/9072 + C1324/22680 + C1334/9072 + C1344/45360 - C2211/22680 - C2212/9072 - C2213/7560 - C2214/15120 - C2222/3780 - C2223/2160
M[11,15]+=- C2224/11340 - C2233/3780 - C2234/15120 - C2244/11340 - C2311/30240 - C2312/2592 - C2313/2160 - C2314/12960 - 83*C2322/90720 - 37*C2323/22680 - 29*C2324/90720 - C2333/1008 - 13*C2334/45360 - C2344/18144 - C3311/2592 - C3312/1296 - 19*C3313/30240
M[11,15]+=- 37*C3314/90720 - C3322/864 - C3323/648 - 11*C3324/15120 - 47*C3333/45360 - 47*C3334/90720 - 11*C3344/30240
M[11,16]=C1211/90720 + C1212/18144 + C1213/15120 + C1214/18144 + C1222/10080 + C1223/7560 + C1224/90720 - C1233/15120 - C1234/15120 + C1244/10080 + C1311/45360 + C1312/12960 + C1313/12960 + C1322/6048 + C1323/5040 - C1324/90720 + C1333/30240 - 13*C1334/90720
M[11,16]+=- C1344/45360 + C2211/90720 + C2212/18144 + C2213/15120 + C2214/18144 + C2222/10080 + C2223/7560 + C2224/90720 - C2233/15120 - C2234/15120 + C2244/10080 + C2311/22680 + C2312/7560 + C2313/6048 + C2314/90720 + 23*C2322/90720 + 17*C2323/45360
M[11,16]+=- C2324/45360 + C2333/7560 - 19*C2334/90720 - C2344/11340 + C3311/15120 + C3312/7560 + C3313/9072 + C3314/45360 + C3322/5040 + 23*C3323/90720 + C3324/90720 + 13*C3333/90720 - C3334/18144 - C3344/11340
M[11,17]=-C1211/3360 - C1212/560 - 3*C1213/1120 - C1214/3360 - C1222/224 - C1223/112 - C1224/560 - C1233/112 - 3*C1234/1120 - C1244/3360 - C1311/1680 - 3*C1312/1120 - C1313/280 - C1314/1680 - C1322/140 - C1323/80 - 3*C1324/1120 - C1333/112
M[11,17]+=- C1334/280 - C1344/1680 - C2211/1680 - C2212/672 - C2213/560 - C2214/1120 - C2222/280 - C2223/160 - C2224/840 - C2233/280 - C2234/1120 - C2244/840 - C2311/1120 - C2312/280 - C2313/224 - C2314/1120 - C2322/112 - 9*C2323/560 - 3*C2324/1120
M[11,17]+=- C2333/80 - 3*C2334/1120 - C2344/1120 - C3311/840 - C3312/280 - C3313/336 - C3314/560 - C3322/140 - 11*C3323/1120 - C3324/224 - C3333/140 - C3334/420 - C3344/420
M[11,18]=C1211/1680 - C1212/3360 - C1213/1120 + C1224/3360 + C1234/1120 - C1244/1680 - C1311/3360 - C1312/1680 - C1313/672 + C1324/1680 + C1334/672 + C1344/3360 + C2211/1120 - C2212/1680 - C2213/560 + C2214/1680 - C2222/1120 - 3*C2223/1120
M[11,18]+=- C2224/3360 - 3*C2233/560 - C2234/1120 + C2244/3360 - C2311/1120 - C2312/480 - 3*C2313/560 - C2314/672 - C2322/480 - C2323/168 - C2324/840 - C2333/112 - C2334/336 - C2344/840 - C3311/560 - C3312/420 - 3*C3313/1120 - C3314/480 - C3322/560
M[11,18]+=- C3323/336 - C3324/560 - 11*C3333/3360 - C3334/840 - C3344/672
M[11,19]=C1211/3360 - C1212/3360 - C1213/3360 + C1224/3360 + C1234/3360 - C1244/3360 + C1311/840 + C1312/1120 - C1313/1680 - C1324/1120 + C1334/1680 - C1344/840 - C2211/1120 - C2212/1120 - C2213/840 - C2214/672 - C2222/840 - C2223/672 - C2224/1680
M[11,19]+=- C2233/1120 - C2234/1120 - C2244/840 + C2311/1120 - C2313/672 - C2314/3360 - C2322/560 - 13*C2323/3360 - C2324/1680 - C2333/420 - C2334/1680 - C2344/1680 + C3311/560 + C3312/560 - C3313/840 + C3314/840 - 3*C3323/1120 + C3324/1120
M[11,19]+=- C3333/560 - C3334/1680 + C3344/1680
M[11,20]=C1211/3360 + C1212/560 + 3*C1213/1120 + C1214/3360 + C1222/224 + C1223/112 + C1224/560 + C1233/112 + 3*C1234/1120 + C1244/3360 + C1311/1680 + 3*C1312/1120 + C1313/280 + C1314/1680 + C1322/140 + C1323/80 + 3*C1324/1120 + C1333/112
M[11,20]+= C1334/280 + C1344/1680 - C2211/1120 + C2212/1680 + C2213/560 - C2214/1680 + C2222/1120 + 3*C2223/1120 + C2224/3360 + 3*C2233/560 + C2234/1120 - C2244/3360 + C2312/560 + C2313/280 + 3*C2322/1120 + 3*C2323/560 + C2324/1120 + 3*C2333/560
M[11,20]+= C2334/560 - C3311/560 - C3312/560 + C3313/840 - C3314/840 + 3*C3323/1120 - C3324/1120 + C3333/560 + C3334/1680 - C3344/1680
M[12,12]=C1111/6480 + C1112/2520 + C1113/6480 + C1114/3024 + C1122/1260 + C1123/2520 + C1124/840 + C1133/6480 + C1134/3024 + 13*C1144/15120 + C1211/5040 + C1212/2160 + C1213/5040 + C1214/7560 + C1222/1260 + C1223/2160 + C1224/1512 + C1233/5040
M[12,12]+= C1234/7560 - C1244/15120 + C1311/3240 + C1312/1260 + C1313/3240 + C1314/1512 + C1322/630 + C1323/1260 + C1324/420 + C1333/3240 + C1334/1512 + 13*C1344/7560 + C2211/7560 + C2212/5040 + C2213/7560 + C2214/5040 + C2222/3780 + C2223/5040
M[12,12]+= C2224/3780 + C2233/7560 + C2234/5040 + C2244/1512 + C2311/5040 + C2312/2160 + C2313/5040 + C2314/7560 + C2322/1260 + C2323/2160 + C2324/1512 + C2333/5040 + C2334/7560 - C2344/15120 + C3311/6480 + C3312/2520 + C3313/6480 + C3314/3024
M[12,12]+= C3322/1260 + C3323/2520 + C3324/840 + C3333/6480 + C3334/3024 + 13*C3344/15120
M[12,13]=C1111/7560 + 11*C1112/90720 + C1113/6048 + C1114/22680 + C1122/10080 + C1123/9072 + C1124/6048 + C1133/10080 + 11*C1134/90720 + C1144/7560 + C1212/15120 - C1214/15120 + C1222/30240 + C1223/30240 + C1224/30240 - C1234/30240 - C1244/15120 + C1311/3024
M[12,13]+= 5*C1312/18144 + C1313/3360 + C1314/6480 + C1322/5040 + 17*C1323/90720 + C1324/3024 + C1333/6048 + C1334/5670 + C1344/3780 + C2312/15120 - C2314/15120 + C2322/30240 + C2323/30240 + C2324/30240 - C2334/30240 - C2344/15120 + C3311/5040 + C3312/6480
M[12,13]+= C3313/7560 + C3314/9072 + C3322/10080 + C3323/12960 + C3324/6048 + C3333/15120 + C3334/18144 + C3344/7560
M[12,14]=C1211/45360 + C1212/12960 + C1213/12960 + C1222/30240 + C1223/5040 - 13*C1224/90720 + C1233/6048 - C1234/90720 - C1244/45360 + C1311/90720 + C1312/15120 + C1313/18144 + C1314/18144 - C1322/15120 + C1323/7560 - C1324/15120 + C1333/10080 + C1334/90720
M[12,14]+= C1344/10080 + C2211/15120 + C2212/9072 + C2213/7560 + C2214/45360 + 13*C2222/90720 + 23*C2223/90720 - C2224/18144 + C2233/5040 + C2234/90720 - C2244/11340 + C2311/22680 + C2312/6048 + C2313/7560 + C2314/90720 + C2322/7560 + 17*C2323/45360
M[12,14]+=- 19*C2324/90720 + 23*C2333/90720 - C2334/45360 - C2344/11340 + C3311/90720 + C3312/15120 + C3313/18144 + C3314/18144 - C3322/15120 + C3323/7560 - C3324/15120 + C3333/10080 + C3334/90720 + C3344/10080
M[12,15]=-C1111/9072 - C1112/7560 - C1113/6480 - C1114/11340 - C1122/7560 - C1123/5670 - C1124/4536 - C1133/7560 - C1134/5040 - 11*C1144/45360 - C1211/11340 - C1212/5040 - C1213/5670 - C1214/22680 - C1222/5670 - C1223/3024 - C1224/9072 - C1233/3780
M[12,15]+=- C1234/6480 - C1244/22680 - C1311/3360 - 23*C1312/45360 - 41*C1313/90720 - 13*C1314/30240 - C1322/1440 - 13*C1323/22680 - 41*C1324/45360 - 17*C1333/45360 - 19*C1334/90720 - 13*C1344/18144 - C2211/15120 - C2212/9072 - C2213/7560 - C2214/45360 - C2222/7560
M[12,15]+=- C2223/4536 - C2233/5040 - C2234/22680 + C2244/7560 - C2311/9072 - C2312/3360 - C2313/5040 - C2314/12960 - C2322/2268 - 17*C2323/30240 - 11*C2324/45360 - 13*C2333/45360 - C2334/18144 - C2344/9072 - 17*C3311/90720 - 17*C3312/45360 - C3313/3360
M[12,15]+=- 31*C3314/90720 - 17*C3322/30240 - C3323/2520 - 31*C3324/45360 - 11*C3333/45360 - C3334/90720 - 43*C3344/90720
M[12,16]=C1111/11340 + 13*C1112/90720 + 13*C1113/90720 + C1114/7560 + C1122/6048 + 11*C1123/45360 + 5*C1124/18144 + C1133/6048 + 5*C1134/18144 + C1144/2835 + C1211/6480 + 23*C1212/90720 + 5*C1213/18144 + C1214/6480 + 13*C1222/45360 + 13*C1223/30240 + C1224/3024
M[12,16]+= 11*C1233/30240 + C1234/2835 + C1244/5670 + C1311/6480 + 5*C1312/18144 + 23*C1313/90720 + C1314/6480 + 11*C1322/30240 + 13*C1323/30240 + C1324/2835 + 13*C1333/45360 + C1334/3024 + C1344/5670 + C2211/15120 + C2212/9072 + C2213/7560 + C2214/45360
M[12,16]+= 11*C2222/90720 + 17*C2223/90720 + C2224/18144 + C2233/5040 + C2234/12960 - C2244/5670 + C2311/5670 + C2312/3780 + C2313/3780 + C2314/3240 + 29*C2322/90720 + 19*C2323/45360 + C2324/2160 + 29*C2333/90720 + C2334/2160 + 11*C2344/11340 + C3311/15120
M[12,16]+= C3312/7560 + C3313/9072 + C3314/45360 + C3322/5040 + 17*C3323/90720 + C3324/12960 + 11*C3333/90720 + C3334/18144 - C3344/5670
M[12,17]=-C1111/1680 - C1112/1120 - C1113/840 + C1114/1680 - C1123/560 + 3*C1124/1120 - C1133/560 + C1134/840 + C1144/560 - C1211/840 - 3*C1212/1120 - C1213/420 - C1214/1680 - 3*C1222/1120 - 3*C1223/560 - C1233/280 - C1234/840 - C1244/560
M[12,17]+=- C1311/560 - C1312/224 - C1313/336 - C1314/420 - C1322/140 - C1323/160 - C1324/140 - C1333/240 - C1334/840 - 3*C1344/560 - C2211/1120 - C2212/672 - C2213/560 - C2214/3360 - C2222/560 - C2223/336 - 3*C2233/1120 - C2234/1680 + C2244/560
M[12,17]+=- C2311/672 - C2312/280 - 3*C2313/1120 - C2314/672 - 3*C2322/560 - C2323/160 - C2324/280 - 13*C2333/3360 - C2334/480 - C2344/560 - C3311/840 - C3312/280 - C3313/560 - C3314/336 - C3322/140 - C3323/224 - 11*C3324/1120 - C3333/420
M[12,17]+=- C3334/420 - C3344/140
M[12,18]=-C1111/672 - C1112/560 - C1113/480 - C1114/840 - C1122/560 - C1123/420 - C1124/336 - C1133/560 - 3*C1134/1120 - 11*C1144/3360 - C1211/560 - C1212/420 - 3*C1213/1120 + C1214/1680 - C1222/672 - 3*C1223/1120 - 3*C1233/1120 + C1244/420
M[12,18]+=- 11*C1311/3360 - C1312/240 - C1313/240 - 13*C1314/3360 - C1322/280 - C1323/240 - C1324/168 - 11*C1333/3360 - 13*C1334/3360 - 11*C1344/1680 - C2212/1120 + C2214/1120 - C2222/1680 - C2223/1120 + C2224/3360 + C2234/1120 + C2244/3360 - 3*C2311/1120
M[12,18]+=- 3*C2312/1120 - 3*C2313/1120 - C2322/672 - C2323/420 - C2333/560 + C2334/1680 + C2344/420 - C3311/560 - C3312/420 - C3313/480 - 3*C3314/1120 - C3322/560 - C3323/560 - C3324/336 - C3333/672 - C3334/840 - 11*C3344/3360
M[12,19]=-C1111/420 - C1112/224 - C1113/560 - C1114/420 - C1122/140 - C1123/280 - 11*C1124/1120 - C1133/840 - C1134/336 - C1144/140 - 13*C1211/3360 - C1212/160 - 3*C1213/1120 - C1214/480 - 3*C1222/560 - C1223/280 - C1224/280 - C1233/672 - C1234/672
M[12,19]+=- C1244/560 - C1311/240 - C1312/160 - C1313/336 - C1314/840 - C1322/140 - C1323/224 - C1324/140 - C1333/560 - C1334/420 - 3*C1344/560 - 3*C2211/1120 - C2212/336 - C2213/560 - C2214/1680 - C2222/560 - C2223/672 - C2233/1120 - C2234/3360
M[12,19]+= C2244/560 - C2311/280 - 3*C2312/560 - C2313/420 - C2314/840 - 3*C2322/1120 - 3*C2323/1120 - C2333/840 - C2334/1680 - C2344/560 - C3311/560 - C3312/560 - C3313/840 + C3314/840 - C3323/1120 + 3*C3324/1120 - C3333/1680 + C3334/1680
M[12,19]+= C3344/560
M[12,20]=C1111/1680 + C1112/1120 + C1113/840 - C1114/1680 + C1123/560 - 3*C1124/1120 + C1133/560 - C1134/840 - C1144/560 + C1211/560 + C1212/420 + 3*C1213/1120 - C1214/1680 + C1222/560 + C1223/280 - C1224/672 + 3*C1233/1120 - C1234/1120 - C1244/840
M[12,20]+= C1311/420 + 3*C1312/1120 + C1313/420 - C1314/560 + 3*C1323/1120 - 3*C1324/560 + C1333/420 - C1334/560 - C1344/280 + C2212/1120 - C2214/1120 + C2222/1680 + C2223/1120 - C2224/3360 - C2234/1120 - C2244/3360 + 3*C2311/1120 + C2312/280
M[12,20]+= 3*C2313/1120 - C2314/1120 + C2322/560 + C2323/420 - C2324/672 + C2333/560 - C2334/1680 - C2344/840 + C3311/560 + C3312/560 + C3313/840 - C3314/840 + C3323/1120 - 3*C3324/1120 + C3333/1680 - C3334/1680 - C3344/560
M[13,13]=13*C1111/15120 + C1112/3024 + C1113/840 + C1114/3024 + C1122/6480 + C1123/2520 + C1124/6480 + C1133/1260 + C1134/2520 + C1144/6480 + C1311/560 + C1312/1890 + 13*C1313/7560 + C1314/1890 + C1322/9072 + C1323/3024 + C1324/9072 + C1333/1260
M[13,13]+= C1334/3024 + C1344/9072 + C3311/630 + C3312/2520 + C3313/1260 + C3314/2520 + C3322/11340 + C3323/7560 + C3324/11340 + C3333/3780 + C3334/7560 + C3344/11340
M[13,14]=-C1211/5040 - C1212/45360 - C1213/3780 - C1214/9072 - C1222/5040 - C1223/3780 - C1224/9072 - C1233/3780 - C1234/7560 - C1244/45360 - C1311/18144 - C1312/22680 - C1313/90720 - C1314/30240 - C1322/4320 - C1323/5040 - C1324/11340 - C1333/15120
M[13,14]+=- C1334/18144 - C1344/90720 - C2311/4320 - C2312/22680 - C2313/5040 - C2314/11340 - C2322/18144 - C2323/90720 - C2324/30240 - C2333/15120 - C2334/18144 - C2344/90720 - C3311/7560 - C3312/11340 - C3313/45360 - C3314/45360 - C3322/7560 - C3323/45360
M[13,14]+=- C3324/45360 + C3333/45360 + C3344/45360
M[13,15]=-C1111/1890 - C1112/4536 - 11*C1113/15120 - C1114/5670 - C1122/11340 - C1123/3780 - C1124/7560 - C1133/1890 - C1134/3024 - C1144/5670 - C1212/22680 + C1214/22680 + C1222/11340 + C1223/15120 - C1234/15120 - C1244/11340 - 127*C1311/90720 - 43*C1312/90720
M[13,15]+=- 17*C1313/9072 - 37*C1314/90720 + C1322/10080 - C1323/7560 + C1324/90720 - C1333/1260 - C1334/5670 - C1344/90720 - C2312/45360 + C2314/45360 + C2322/45360 - C2323/45360 + C2334/45360 - C2344/45360 - 19*C3311/30240 - 13*C3312/45360 - 11*C3313/11340
M[13,15]+=- C3314/3780 - 13*C3322/90720 - C3323/4320 - 17*C3324/90720 - 11*C3333/22680 - 19*C3334/90720 - C3344/6048
M[13,16]=C1111/5040 + C1112/9072 + C1113/3780 + C1114/45360 + C1122/45360 + C1123/7560 + C1124/9072 + C1133/3780 + C1134/3780 + C1144/5040 + C1211/5040 + C1212/9072 + C1213/3780 + C1214/45360 + C1222/45360 + C1223/7560 + C1224/9072 + C1233/3780
M[13,16]+= C1234/3780 + C1244/5040 + 17*C1311/45360 + C1312/6048 + 41*C1313/90720 + C1314/45360 + C1322/45360 + C1323/7560 + C1324/18144 + C1333/3780 + C1334/12960 + C1344/45360 + C2311/4320 + C2312/11340 + C2313/5040 + C2314/22680 + C2322/90720 + C2323/18144
M[13,16]+= C2324/30240 + C2333/15120 + C2334/90720 + C2344/18144 + C3311/10080 + C3312/15120 + C3313/5670 - C3314/22680 + C3322/30240 + C3323/18144 + C3324/90720 + C3333/11340 - C3334/90720 - C3344/12960
M[13,17]=-C1111/560 - C1112/840 - 3*C1113/1120 - C1114/1680 + C1122/560 + C1123/560 + C1124/840 + C1134/1120 + C1144/1680 - C1212/1680 + C1214/1680 + C1222/840 + C1223/1120 - C1234/1120 - C1244/840 - C1311/420 - C1312/672 - 13*C1313/3360 - C1314/1680
M[13,17]+= C1322/1120 - C1324/3360 - C1333/560 - C1334/1680 - C1344/1680 - C2312/3360 + C2314/3360 + C2322/3360 - C2323/3360 + C2334/3360 - C2344/3360 - C3311/1120 - C3312/840 - C3313/672 - C3314/1120 - C3322/1120 - C3323/1120 - C3324/672
M[13,17]+=- C3333/840 - C3334/1680 - C3344/840
M[13,18]=-C1111/140 - C1112/336 - 11*C1113/1120 - C1114/420 - C1122/840 - C1123/280 - C1124/560 - C1133/140 - C1134/224 - C1144/420 - C1211/112 - C1212/280 - C1213/80 - C1214/280 - C1222/1680 - 3*C1223/1120 - C1224/1680 - C1233/140 - 3*C1234/1120
M[13,18]+=- C1244/1680 - C1311/80 - C1312/224 - 9*C1313/560 - 3*C1314/1120 - C1322/1120 - C1323/280 - C1324/1120 - C1333/112 - 3*C1334/1120 - C1344/1120 - C2311/112 - 3*C2312/1120 - C2313/112 - 3*C2314/1120 - C2322/3360 - C2323/560 - C2324/3360
M[13,18]+=- C2333/224 - C2334/560 - C2344/3360 - C3311/280 - C3312/560 - C3313/160 - C3314/1120 - C3322/1680 - C3323/672 - C3324/1120 - C3333/280 - C3334/840 - C3344/840
M[13,19]=-11*C1111/3360 - 3*C1112/1120 - C1113/336 - C1114/840 - C1122/560 - C1123/420 - C1124/480 - C1133/560 - C1134/560 - C1144/672 - C1212/672 + C1214/672 - C1222/3360 - C1223/1680 + C1234/1680 + C1244/3360 - C1311/112 - 3*C1312/560 - C1313/168
M[13,19]+=- C1314/336 - C1322/1120 - C1323/480 - C1324/672 - C1333/480 - C1334/840 - C1344/840 - C2312/1120 + C2314/1120 + C2322/1680 - C2323/3360 + C2334/3360 - C2344/1680 - 3*C3311/560 - C3312/560 - 3*C3313/1120 - C3314/1120 + C3322/1120
M[13,19]+=- C3323/1680 + C3324/1680 - C3333/1120 - C3334/3360 + C3344/3360
M[13,20]=C1111/560 + C1112/840 + 3*C1113/1120 + C1114/1680 - C1122/560 - C1123/560 - C1124/840 - C1134/1120 - C1144/1680 + C1211/112 + C1212/280 + C1213/80 + C1214/280 + C1222/1680 + 3*C1223/1120 + C1224/1680 + C1233/140 + 3*C1234/1120 + C1244/1680
M[13,20]+= 3*C1311/560 + C1312/280 + 3*C1313/560 + C1314/560 + C1323/560 + 3*C1333/1120 + C1334/1120 + C2311/112 + 3*C2312/1120 + C2313/112 + 3*C2314/1120 + C2322/3360 + C2323/560 + C2324/3360 + C2333/224 + C2334/560 + C2344/3360 + 3*C3311/560
M[13,20]+= C3312/560 + 3*C3313/1120 + C3314/1120 - C3322/1120 + C3323/1680 - C3324/1680 + C3333/1120 + C3334/3360 - C3344/3360
M[14,14]=C2211/6480 + C2212/3024 + C2213/2520 + C2214/6480 + 13*C2222/15120 + C2223/840 + C2224/3024 + C2233/1260 + C2234/2520 + C2244/6480 + C2311/9072 + C2312/1890 + C2313/3024 + C2314/9072 + C2322/560 + 13*C2323/7560 + C2324/1890 + C2333/1260
M[14,14]+= C2334/3024 + C2344/9072 + C3311/11340 + C3312/2520 + C3313/7560 + C3314/11340 + C3322/630 + C3323/1260 + C3324/2520 + C3333/3780 + C3334/7560 + C3344/11340
M[14,15]=C1211/11340 - C1212/22680 + C1213/15120 + C1224/22680 - C1234/15120 - C1244/11340 + C1311/45360 - C1312/45360 - C1313/45360 + C1324/45360 + C1334/45360 - C1344/45360 - C2211/11340 - C2212/4536 - C2213/3780 - C2214/7560 - C2222/1890 - 11*C2223/15120
M[14,15]+=- C2224/5670 - C2233/1890 - C2234/3024 - C2244/5670 + C2311/10080 - 43*C2312/90720 - C2313/7560 + C2314/90720 - 127*C2322/90720 - 17*C2323/9072 - 37*C2324/90720 - C2333/1260 - C2334/5670 - C2344/90720 - 13*C3311/90720 - 13*C3312/45360 - C3313/4320
M[14,15]+=- 17*C3314/90720 - 19*C3322/30240 - 11*C3323/11340 - C3324/3780 - 11*C3333/22680 - 19*C3334/90720 - C3344/6048
M[14,16]=C1211/45360 + C1212/9072 + C1213/7560 + C1214/9072 + C1222/5040 + C1223/3780 + C1224/45360 + C1233/3780 + C1234/3780 + C1244/5040 + C1311/90720 + C1312/11340 + C1313/18144 + C1314/30240 + C1322/4320 + C1323/5040 + C1324/22680 + C1333/15120
M[14,16]+= C1334/90720 + C1344/18144 + C2211/45360 + C2212/9072 + C2213/7560 + C2214/9072 + C2222/5040 + C2223/3780 + C2224/45360 + C2233/3780 + C2234/3780 + C2244/5040 + C2311/45360 + C2312/6048 + C2313/7560 + C2314/18144 + 17*C2322/45360 + 41*C2323/90720
M[14,16]+= C2324/45360 + C2333/3780 + C2334/12960 + C2344/45360 + C3311/30240 + C3312/15120 + C3313/18144 + C3314/90720 + C3322/10080 + C3323/5670 - C3324/22680 + C3333/11340 - C3334/90720 - C3344/12960
M[14,17]=-C1211/1680 - C1212/280 - 3*C1213/1120 - C1214/1680 - C1222/112 - C1223/80 - C1224/280 - C1233/140 - 3*C1234/1120 - C1244/1680 - C1311/3360 - 3*C1312/1120 - C1313/560 - C1314/3360 - C1322/112 - C1323/112 - 3*C1324/1120 - C1333/224
M[14,17]+=- C1334/560 - C1344/3360 - C2211/840 - C2212/336 - C2213/280 - C2214/560 - C2222/140 - 11*C2223/1120 - C2224/420 - C2233/140 - C2234/224 - C2244/420 - C2311/1120 - C2312/224 - C2313/280 - C2314/1120 - C2322/80 - 9*C2323/560 - 3*C2324/1120
M[14,17]+=- C2333/112 - 3*C2334/1120 - C2344/1120 - C3311/1680 - C3312/560 - C3313/672 - C3314/1120 - C3322/280 - C3323/160 - C3324/1120 - C3333/280 - C3334/840 - C3344/840
M[14,18]=C1211/840 - C1212/1680 + C1213/1120 + C1224/1680 - C1234/1120 - C1244/840 + C1311/3360 - C1312/3360 - C1313/3360 + C1324/3360 + C1334/3360 - C1344/3360 + C2211/560 - C2212/840 + C2213/560 + C2214/840 - C2222/560 - 3*C2223/1120 - C2224/1680
M[14,18]+= C2234/1120 + C2244/1680 + C2311/1120 - C2312/672 - C2314/3360 - C2322/420 - 13*C2323/3360 - C2324/1680 - C2333/560 - C2334/1680 - C2344/1680 - C3311/1120 - C3312/840 - C3313/1120 - C3314/672 - C3322/1120 - C3323/672 - C3324/1120
M[14,18]+=- C3333/840 - C3334/1680 - C3344/840
M[14,19]=-C1211/3360 - C1212/672 - C1213/1680 + C1224/672 + C1234/1680 + C1244/3360 + C1311/1680 - C1312/1120 - C1313/3360 + C1324/1120 + C1334/3360 - C1344/1680 - C2211/560 - 3*C2212/1120 - C2213/420 - C2214/480 - 11*C2222/3360 - C2223/336
M[14,19]+=- C2224/840 - C2233/560 - C2234/560 - C2244/672 - C2311/1120 - 3*C2312/560 - C2313/480 - C2314/672 - C2322/112 - C2323/168 - C2324/336 - C2333/480 - C2334/840 - C2344/840 + C3311/1120 - C3312/560 - C3313/1680 + C3314/1680 - 3*C3322/560
M[14,19]+=- 3*C3323/1120 - C3324/1120 - C3333/1120 - C3334/3360 + C3344/3360
M[14,20]=C1211/1680 + C1212/280 + 3*C1213/1120 + C1214/1680 + C1222/112 + C1223/80 + C1224/280 + C1233/140 + 3*C1234/1120 + C1244/1680 + C1311/3360 + 3*C1312/1120 + C1313/560 + C1314/3360 + C1322/112 + C1323/112 + 3*C1324/1120 + C1333/224
M[14,20]+= C1334/560 + C1344/3360 - C2211/560 + C2212/840 - C2213/560 - C2214/840 + C2222/560 + 3*C2223/1120 + C2224/1680 - C2234/1120 - C2244/1680 + C2312/280 + C2313/560 + 3*C2322/560 + 3*C2323/560 + C2324/560 + 3*C2333/1120 + C2334/1120
M[14,20]+=- C3311/1120 + C3312/560 + C3313/1680 - C3314/1680 + 3*C3322/560 + 3*C3323/1120 + C3324/1120 + C3333/1120 + C3334/3360 - C3344/3360
M[15,15]=C1111/2835 + C1112/5670 + C1113/1890 + C1114/5670 + C1122/11340 + C1123/3780 + C1124/5670 + C1133/1890 + C1134/1890 + C1144/2835 + C1211/11340 + C1212/5670 + C1213/3780 + C1214/5670 + C1222/11340 + C1223/3780 + C1224/5670 + C1233/1890
M[15,15]+= C1234/1260 + C1244/1620 + C1311/945 + 11*C1312/22680 + C1313/630 + C1314/5670 + C1322/11340 + C1323/3780 - C1324/7560 + C1333/1890 - C1334/1890 - C1344/2835 + C2211/11340 + C2212/5670 + C2213/3780 + C2214/5670 + C2222/2835 + C2223/1890
M[15,15]+= C2224/5670 + C2233/1890 + C2234/1890 + C2244/2835 + C2311/11340 + 11*C2312/22680 + C2313/3780 - C2314/7560 + C2322/945 + C2323/630 + C2324/5670 + C2333/1890 - C2334/1890 - C2344/2835 + 11*C3311/5670 + 11*C3312/5670 + C3313/405 + 37*C3314/22680
M[15,15]+= 11*C3322/5670 + C3323/405 + 37*C3324/22680 + C3333/420 + 4*C3334/2835 + C3344/810
M[15,16]=-C1111/5670 - C1112/7560 - C1113/3024 - C1114/5670 - C1122/11340 - C1123/3780 - C1124/4536 - C1133/1890 - 11*C1134/15120 - C1144/1890 - C1211/3780 - C1212/3780 - C1213/1680 - C1214/2520 - C1222/3780 - C1223/1680 - C1224/2520 - C1233/945
M[15,16]+=- 11*C1234/7560 - C1244/945 - 31*C1311/90720 - 5*C1312/18144 - 11*C1313/22680 + C1314/18144 - 5*C1322/18144 - C1323/2520 + C1324/30240 - C1333/3780 + 19*C1334/45360 + 31*C1344/90720 - C2211/11340 - C2212/7560 - C2213/3780 - C2214/4536 - C2222/5670
M[15,16]+=- C2223/3024 - C2224/5670 - C2233/1890 - 11*C2234/15120 - C2244/1890 - 5*C2311/18144 - 5*C2312/18144 - C2313/2520 + C2314/30240 - 31*C2322/90720 - 11*C2323/22680 + C2324/18144 - C2333/3780 + 19*C2334/45360 + 31*C2344/90720 - C3311/3024 - C3312/3024
M[15,16]+=- 11*C3313/30240 - C3314/30240 - C3322/3024 - 11*C3323/30240 - C3324/30240 - C3333/4536 + C3334/5670 + 11*C3344/45360
M[15,17]=C1111/840 + C1112/840 + C1113/560 - C1124/840 - C1134/560 - C1144/840 + C1211/840 + C1212/280 + C1213/280 + C1214/840 + C1222/168 + C1223/112 + C1224/420 + C1233/140 + 3*C1234/560 + C1244/280 + 11*C1311/3360 + C1312/168 + C1313/105
M[15,17]+= C1314/480 + 11*C1322/1120 + C1323/56 + C1324/210 + C1333/80 + 11*C1334/1680 + 3*C1344/1120 + C2211/840 + C2212/420 + C2213/280 + C2214/420 + C2222/210 + C2223/140 + C2224/420 + C2233/140 + C2234/140 + C2244/210 + C2311/840 + 17*C2312/3360
M[15,17]+= C2313/280 - C2314/3360 + 3*C2322/280 + C2323/60 + C2324/420 + C2333/140 - C2334/420 - C2344/840 + 13*C3311/3360 + 13*C3312/1680 + C3313/160 + 17*C3314/3360 + 13*C3322/1120 + 11*C3323/840 + C3324/105 + 29*C3333/3360 + C3334/280 + 19*C3344/3360
M[15,18]=C1111/210 + C1112/420 + C1113/140 + C1114/420 + C1122/840 + C1123/280 + C1124/420 + C1133/140 + C1134/140 + C1144/210 + C1211/168 + C1212/280 + C1213/112 + C1214/420 + C1222/840 + C1223/280 + C1224/840 + C1233/140 + 3*C1234/560
M[15,18]+= C1244/280 + 3*C1311/280 + 17*C1312/3360 + C1313/60 + C1314/420 + C1322/840 + C1323/280 - C1324/3360 + C1333/140 - C1334/420 - C1344/840 + C2212/840 - C2214/840 + C2222/840 + C2223/560 - C2234/560 - C2244/840 + 11*C2311/1120 + C2312/168
M[15,18]+= C2313/56 + C2314/210 + 11*C2322/3360 + C2323/105 + C2324/480 + C2333/80 + 11*C2334/1680 + 3*C2344/1120 + 13*C3311/1120 + 13*C3312/1680 + 11*C3313/840 + C3314/105 + 13*C3322/3360 + C3323/160 + 17*C3324/3360 + 29*C3333/3360 + C3334/280 + 19*C3344/3360
M[15,19]=C1111/420 + C1112/420 + C1113/420 + C1114/840 + C1122/560 + C1123/420 + C1124/420 + C1133/560 + C1134/420 + C1144/420 + C1211/560 + C1212/280 + C1213/420 + C1214/840 + C1222/560 + C1223/420 + C1224/840 + C1233/560 + C1234/420
M[15,19]+= C1244/336 + C1311/420 + C1312/560 + 19*C1313/3360 + C1314/840 + C1322/560 + C1323/420 + C1324/336 + C1333/560 - C1334/1120 + C1344/420 + C2211/560 + C2212/420 + C2213/420 + C2214/420 + C2222/420 + C2223/420 + C2224/840 + C2233/560
M[15,19]+= C2234/420 + C2244/420 + C2311/560 + C2312/560 + C2313/420 + C2314/336 + C2322/420 + 19*C2323/3360 + C2324/840 + C2333/560 - C2334/1120 + C2344/420 - C3311/560 - C3312/280 + C3313/210 - C3314/336 - C3322/560 + C3323/210 - C3324/336
M[15,19]+= 13*C3333/3360 + C3334/672 - C3344/560
M[15,20]=-C1111/840 - C1112/840 - C1113/560 + C1124/840 + C1134/560 + C1144/840 - C1211/168 - C1212/210 - C1213/112 - C1214/840 - C1222/168 - C1223/112 - C1224/840 - C1233/140 + C1244/840 - 17*C1311/3360 - C1312/140 - 17*C1313/1680 - C1314/480
M[15,20]+=- 11*C1322/1120 - C1323/56 - C1324/280 - C1333/80 - C1334/168 - C1344/1120 - C2212/840 + C2214/840 - C2222/840 - C2223/560 + C2234/560 + C2244/840 - 11*C2311/1120 - C2312/140 - C2313/56 - C2314/280 - 17*C2322/3360 - 17*C2323/1680
M[15,20]+=- C2324/480 - C2333/80 - C2334/168 - C2344/1120 + C3311/560 + C3312/280 - C3313/210 + C3314/336 + C3322/560 - C3323/210 + C3324/336 - 13*C3333/3360 - C3334/672 + C3344/560
M[16,16]=C1111/6480 + C1112/6480 + C1113/2520 + C1114/3024 + C1122/6480 + C1123/2520 + C1124/3024 + C1133/1260 + C1134/840 + 13*C1144/15120 + C1211/3240 + C1212/3240 + C1213/1260 + C1214/1512 + C1222/3240 + C1223/1260 + C1224/1512 + C1233/630
M[16,16]+= C1234/420 + 13*C1244/7560 + C1311/5040 + C1312/5040 + C1313/2160 + C1314/7560 + C1322/5040 + C1323/2160 + C1324/7560 + C1333/1260 + C1334/1512 - C1344/15120 + C2211/6480 + C2212/6480 + C2213/2520 + C2214/3024 + C2222/6480 + C2223/2520
M[16,16]+= C2224/3024 + C2233/1260 + C2234/840 + 13*C2244/15120 + C2311/5040 + C2312/5040 + C2313/2160 + C2314/7560 + C2322/5040 + C2323/2160 + C2324/7560 + C2333/1260 + C2334/1512 - C2344/15120 + C3311/7560 + C3312/7560 + C3313/5040 + C3314/5040
M[16,16]+= C3322/7560 + C3323/5040 + C3324/5040 + C3333/3780 + C3334/3780 + C3344/1512
M[16,17]=-C1111/1680 - C1112/840 - C1113/1120 + C1114/1680 - C1122/560 - C1123/560 + C1124/840 + 3*C1134/1120 + C1144/560 - C1211/560 - C1212/336 - C1213/224 - C1214/420 - C1222/240 - C1223/160 - C1224/840 - C1233/140 - C1234/140 - 3*C1244/560
M[16,17]+=- C1311/840 - C1312/420 - 3*C1313/1120 - C1314/1680 - C1322/280 - 3*C1323/560 - C1324/840 - 3*C1333/1120 - C1344/560 - C2211/840 - C2212/560 - C2213/280 - C2214/336 - C2222/420 - C2223/224 - C2224/420 - C2233/140 - 11*C2234/1120
M[16,17]+=- C2244/140 - C2311/672 - 3*C2312/1120 - C2313/280 - C2314/672 - 13*C2322/3360 - C2323/160 - C2324/480 - 3*C2333/560 - C2334/280 - C2344/560 - C3311/1120 - C3312/560 - C3313/672 - C3314/3360 - 3*C3322/1120 - C3323/336 - C3324/1680
M[16,17]+=- C3333/560 + C3344/560
M[16,18]=-C1111/420 - C1112/560 - C1113/224 - C1114/420 - C1122/840 - C1123/280 - C1124/336 - C1133/140 - 11*C1134/1120 - C1144/140 - C1211/240 - C1212/336 - C1213/160 - C1214/840 - C1222/560 - C1223/224 - C1224/420 - C1233/140 - C1234/140
M[16,18]+=- 3*C1244/560 - 13*C1311/3360 - 3*C1312/1120 - C1313/160 - C1314/480 - C1322/672 - C1323/280 - C1324/672 - 3*C1333/560 - C1334/280 - C1344/560 - C2211/560 - C2212/840 - C2213/560 + C2214/840 - C2222/1680 - C2223/1120 + C2224/1680
M[16,18]+= 3*C2234/1120 + C2244/560 - C2311/280 - C2312/420 - 3*C2313/560 - C2314/840 - C2322/840 - 3*C2323/1120 - C2324/1680 - 3*C2333/1120 - C2344/560 - 3*C3311/1120 - C3312/560 - C3313/336 - C3314/1680 - C3322/1120 - C3323/672 - C3324/3360
M[16,18]+=- C3333/560 + C3344/560
M[16,19]=-C1111/672 - C1112/480 - C1113/560 - C1114/840 - C1122/560 - C1123/420 - 3*C1124/1120 - C1133/560 - C1134/336 - 11*C1144/3360 - 11*C1211/3360 - C1212/240 - C1213/240 - 13*C1214/3360 - 11*C1222/3360 - C1223/240 - 13*C1224/3360 - C1233/280
M[16,19]+=- C1234/168 - 11*C1244/1680 - C1311/560 - 3*C1312/1120 - C1313/420 + C1314/1680 - 3*C1322/1120 - 3*C1323/1120 - C1333/672 + C1344/420 - C2211/560 - C2212/480 - C2213/420 - 3*C2214/1120 - C2222/672 - C2223/560 - C2224/840 - C2233/560
M[16,19]+=- C2234/336 - 11*C2244/3360 - 3*C2311/1120 - 3*C2312/1120 - 3*C2313/1120 - C2322/560 - C2323/420 + C2324/1680 - C2333/672 + C2344/420 - C3313/1120 + C3314/1120 - C3323/1120 + C3324/1120 - C3333/1680 + C3334/3360 + C3344/3360
M[16,20]=C1111/1680 + C1112/840 + C1113/1120 - C1114/1680 + C1122/560 + C1123/560 - C1124/840 - 3*C1134/1120 - C1144/560 + C1211/420 + C1212/420 + 3*C1213/1120 - C1214/560 + C1222/420 + 3*C1223/1120 - C1224/560 - 3*C1234/560 - C1244/280 + C1311/560
M[16,20]+= 3*C1312/1120 + C1313/420 - C1314/1680 + 3*C1322/1120 + C1323/280 - C1324/1120 + C1333/560 - C1334/672 - C1344/840 + C2211/560 + C2212/840 + C2213/560 - C2214/840 + C2222/1680 + C2223/1120 - C2224/1680 - 3*C2234/1120 - C2244/560
M[16,20]+= 3*C2311/1120 + 3*C2312/1120 + C2313/280 - C2314/1120 + C2322/560 + C2323/420 - C2324/1680 + C2333/560 - C2334/672 - C2344/840 + C3313/1120 - C3314/1120 + C3323/1120 - C3324/1120 + C3333/1680 - C3334/3360 - C3344/3360
M[17,17]=9*C1111/560 + 27*C1112/560 + 27*C1113/560 + 9*C1114/560 + 27*C1122/280 + 81*C1123/560 + 27*C1124/560 + 27*C1133/280 + 27*C1134/560 + 9*C1144/560 + 9*C1211/560 + 9*C1212/140 + 27*C1213/560 + 81*C1222/560 + 27*C1223/140 + 9*C1224/280 + 27*C1233/280
M[17,17]+=- 9*C1244/560 + 9*C1311/560 + 27*C1312/560 + 9*C1313/140 + 27*C1322/280 + 27*C1323/140 + 81*C1333/560 + 9*C1334/280 - 9*C1344/560 + 9*C2211/560 + 9*C2212/280 + 27*C2213/560 + 9*C2214/280 + 9*C2222/140 + 27*C2223/280 + 9*C2224/280 + 27*C2233/280
M[17,17]+= 27*C2234/280 + 9*C2244/140 + 9*C2311/560 + 27*C2312/560 + 27*C2313/560 + 9*C2314/560 + 27*C2322/280 + 9*C2323/56 + 9*C2324/280 + 27*C2333/280 + 9*C2334/280 + 9*C2344/280 + 9*C3311/560 + 27*C3312/560 + 9*C3313/280 + 9*C3314/280 + 27*C3322/280
M[17,17]+= 27*C3323/280 + 27*C3324/280 + 9*C3333/140 + 9*C3334/280 + 9*C3344/140
M[17,18]=9*C1111/560 + 9*C1112/560 + 27*C1113/1120 - 9*C1124/560 - 27*C1134/1120 - 9*C1144/560 + 9*C1211/280 + 27*C1212/560 + 81*C1213/1120 + 9*C1214/280 + 9*C1222/280 + 81*C1223/1120 + 9*C1224/280 + 27*C1233/280 + 27*C1234/280 + 9*C1244/140 + 27*C1311/1120
M[17,18]+= 9*C1312/280 + 9*C1313/160 + 9*C1314/1120 + 27*C1322/1120 + 27*C1323/560 + 9*C1324/560 + 27*C1333/560 + 9*C1334/560 + 9*C1344/560 + 9*C2212/560 - 9*C2214/560 + 9*C2222/560 + 27*C2223/1120 - 27*C2234/1120 - 9*C2244/560 + 27*C2311/1120 + 9*C2312/280
M[17,18]+= 27*C2313/560 + 9*C2314/560 + 27*C2322/1120 + 9*C2323/160 + 9*C2324/1120 + 27*C2333/560 + 9*C2334/560 + 9*C2344/560 + 27*C3311/1120 + 9*C3312/280 + 9*C3313/280 + 9*C3314/280 + 27*C3322/1120 + 9*C3323/280 + 9*C3324/280 + 9*C3333/280 + 9*C3334/560
M[17,18]+= 9*C3344/280
M[17,19]=9*C1111/560 + 27*C1112/1120 + 9*C1113/560 - 27*C1124/1120 - 9*C1134/560 - 9*C1144/560 + 27*C1211/1120 + 9*C1212/160 + 9*C1213/280 + 9*C1214/1120 + 27*C1222/560 + 27*C1223/560 + 9*C1224/560 + 27*C1233/1120 + 9*C1234/560 + 9*C1244/560 + 9*C1311/280
M[17,19]+= 81*C1312/1120 + 27*C1313/560 + 9*C1314/280 + 27*C1322/280 + 81*C1323/1120 + 27*C1324/280 + 9*C1333/280 + 9*C1334/280 + 9*C1344/140 + 27*C2211/1120 + 9*C2212/280 + 9*C2213/280 + 9*C2214/280 + 9*C2222/280 + 9*C2223/280 + 9*C2224/560 + 27*C2233/1120
M[17,19]+= 9*C2234/280 + 9*C2244/280 + 27*C2311/1120 + 27*C2312/560 + 9*C2313/280 + 9*C2314/560 + 27*C2322/560 + 9*C2323/160 + 9*C2324/560 + 27*C2333/1120 + 9*C2334/1120 + 9*C2344/560 + 9*C3313/560 - 9*C3314/560 + 27*C3323/1120 - 27*C3324/1120 + 9*C3333/560
M[17,19]+=- 9*C3344/560
M[17,20]=-9*C1111/560 - 27*C1112/560 - 27*C1113/560 - 9*C1114/560 - 27*C1122/280 - 81*C1123/560 - 27*C1124/560 - 27*C1133/280 - 27*C1134/560 - 9*C1144/560 - 9*C1211/280 - 9*C1212/140 - 81*C1213/1120 - 9*C1214/560 - 27*C1222/280 - 81*C1223/560 - 9*C1224/280
M[17,20]+=- 27*C1233/280 - 27*C1234/1120 - 9*C1311/280 - 81*C1312/1120 - 9*C1313/140 - 9*C1314/560 - 27*C1322/280 - 81*C1323/560 - 27*C1324/1120 - 27*C1333/280 - 9*C1334/280 - 9*C2212/560 + 9*C2214/560 - 9*C2222/560 - 27*C2223/1120 + 27*C2234/1120 + 9*C2244/560
M[17,20]+=- 27*C2311/1120 - 27*C2312/560 - 27*C2313/560 - 27*C2322/560 - 9*C2323/140 - 9*C2324/1120 - 27*C2333/560 - 9*C2334/1120 + 9*C2344/1120 - 9*C3313/560 + 9*C3314/560 - 27*C3323/1120 + 27*C3324/1120 - 9*C3333/560 + 9*C3344/560
M[18,18]=9*C1111/140 + 9*C1112/280 + 27*C1113/280 + 9*C1114/280 + 9*C1122/560 + 27*C1123/560 + 9*C1124/280 + 27*C1133/280 + 27*C1134/280 + 9*C1144/140 + 81*C1211/560 + 9*C1212/140 + 27*C1213/140 + 9*C1214/280 + 9*C1222/560 + 27*C1223/560 + 27*C1233/280
M[18,18]+=- 9*C1244/560 + 27*C1311/280 + 27*C1312/560 + 9*C1313/56 + 9*C1314/280 + 9*C1322/560 + 27*C1323/560 + 9*C1324/560 + 27*C1333/280 + 9*C1334/280 + 9*C1344/280 + 27*C2211/280 + 27*C2212/560 + 81*C2213/560 + 27*C2214/560 + 9*C2222/560 + 27*C2223/560
M[18,18]+= 9*C2224/560 + 27*C2233/280 + 27*C2234/560 + 9*C2244/560 + 27*C2311/280 + 27*C2312/560 + 27*C2313/140 + 9*C2322/560 + 9*C2323/140 + 81*C2333/560 + 9*C2334/280 - 9*C2344/560 + 27*C3311/280 + 27*C3312/560 + 27*C3313/280 + 27*C3314/280 + 9*C3322/560
M[18,18]+= 9*C3323/280 + 9*C3324/280 + 9*C3333/140 + 9*C3334/280 + 9*C3344/140
M[18,19]=9*C1111/280 + 9*C1112/280 + 9*C1113/280 + 9*C1114/560 + 27*C1122/1120 + 9*C1123/280 + 9*C1124/280 + 27*C1133/1120 + 9*C1134/280 + 9*C1144/280 + 27*C1211/560 + 9*C1212/160 + 27*C1213/560 + 9*C1214/560 + 27*C1222/1120 + 9*C1223/280 + 9*C1224/1120
M[18,19]+= 27*C1233/1120 + 9*C1234/560 + 9*C1244/560 + 27*C1311/560 + 27*C1312/560 + 9*C1313/160 + 9*C1314/560 + 27*C1322/1120 + 9*C1323/280 + 9*C1324/560 + 27*C1333/1120 + 9*C1334/1120 + 9*C1344/560 + 27*C2212/1120 - 27*C2214/1120 + 9*C2222/560 + 9*C2223/560
M[18,19]+=- 9*C2234/560 - 9*C2244/560 + 27*C2311/280 + 81*C2312/1120 + 81*C2313/1120 + 27*C2314/280 + 9*C2322/280 + 27*C2323/560 + 9*C2324/280 + 9*C2333/280 + 9*C2334/280 + 9*C2344/140 + 27*C3313/1120 - 27*C3314/1120 + 9*C3323/560 - 9*C3324/560 + 9*C3333/560
M[18,19]+=- 9*C3344/560
M[18,20]=-9*C1111/560 - 9*C1112/560 - 27*C1113/1120 + 9*C1124/560 + 27*C1134/1120 + 9*C1144/560 - 27*C1211/280 - 9*C1212/140 - 81*C1213/560 - 9*C1214/280 - 9*C1222/280 - 81*C1223/1120 - 9*C1224/560 - 27*C1233/280 - 27*C1234/1120 - 27*C1311/560 - 27*C1312/560
M[18,20]+=- 9*C1313/140 - 9*C1314/1120 - 27*C1322/1120 - 27*C1323/560 - 27*C1333/560 - 9*C1334/1120 + 9*C1344/1120 - 27*C2211/280 - 27*C2212/560 - 81*C2213/560 - 27*C2214/560 - 9*C2222/560 - 27*C2223/560 - 9*C2224/560 - 27*C2233/280 - 27*C2234/560 - 9*C2244/560
M[18,20]+=- 27*C2311/280 - 81*C2312/1120 - 81*C2313/560 - 27*C2314/1120 - 9*C2322/280 - 9*C2323/140 - 9*C2324/560 - 27*C2333/280 - 9*C2334/280 - 27*C3313/1120 + 27*C3314/1120 - 9*C3323/560 + 9*C3324/560 - 9*C3333/560 + 9*C3344/560
M[19,19]=9*C1111/140 + 27*C1112/280 + 9*C1113/280 + 9*C1114/280 + 27*C1122/280 + 27*C1123/560 + 27*C1124/280 + 9*C1133/560 + 9*C1134/280 + 9*C1144/140 + 27*C1211/280 + 9*C1212/56 + 27*C1213/560 + 9*C1214/280 + 27*C1222/280 + 27*C1223/560 + 9*C1224/280
M[19,19]+= 9*C1233/560 + 9*C1234/560 + 9*C1244/280 + 81*C1311/560 + 27*C1312/140 + 9*C1313/140 + 9*C1314/280 + 27*C1322/280 + 27*C1323/560 + 9*C1333/560 - 9*C1344/560 + 27*C2211/280 + 27*C2212/280 + 27*C2213/560 + 27*C2214/280 + 9*C2222/140 + 9*C2223/280
M[19,19]+= 9*C2224/280 + 9*C2233/560 + 9*C2234/280 + 9*C2244/140 + 27*C2311/280 + 27*C2312/140 + 27*C2313/560 + 81*C2322/560 + 9*C2323/140 + 9*C2324/280 + 9*C2333/560 - 9*C2344/560 + 27*C3311/280 + 81*C3312/560 + 27*C3313/560 + 27*C3314/560 + 27*C3322/280
M[19,19]+= 27*C3323/560 + 27*C3324/560 + 9*C3333/560 + 9*C3334/560 + 9*C3344/560
M[19,20]=-9*C1111/560 - 27*C1112/1120 - 9*C1113/560 + 27*C1124/1120 + 9*C1134/560 + 9*C1144/560 - 27*C1211/560 - 9*C1212/140 - 27*C1213/560 - 9*C1214/1120 - 27*C1222/560 - 27*C1223/560 - 9*C1224/1120 - 27*C1233/1120 + 9*C1244/1120 - 27*C1311/280 - 81*C1312/560
M[19,20]+=- 9*C1313/140 - 9*C1314/280 - 27*C1322/280 - 81*C1323/1120 - 27*C1324/1120 - 9*C1333/280 - 9*C1334/560 - 27*C2212/1120 + 27*C2214/1120 - 9*C2222/560 - 9*C2223/560 + 9*C2234/560 + 9*C2244/560 - 27*C2311/280 - 81*C2312/560 - 81*C2313/1120 - 27*C2314/1120
M[19,20]+=- 27*C2322/280 - 9*C2323/140 - 9*C2324/280 - 9*C2333/280 - 9*C2334/560 - 27*C3311/280 - 81*C3312/560 - 27*C3313/560 - 27*C3314/560 - 27*C3322/280 - 27*C3323/560 - 27*C3324/560 - 9*C3333/560 - 9*C3334/560 - 9*C3344/560
M[20,20]=9*C1111/560 + 27*C1112/560 + 27*C1113/560 + 9*C1114/560 + 27*C1122/280 + 81*C1123/560 + 27*C1124/560 + 27*C1133/280 + 27*C1134/560 + 9*C1144/560 + 27*C1211/560 + 9*C1212/140 + 27*C1213/280 + 9*C1214/280 + 27*C1222/560 + 27*C1223/280 + 9*C1224/280
M[20,20]+= 27*C1233/280 + 27*C1234/560 + 9*C1244/560 + 27*C1311/560 + 27*C1312/280 + 9*C1313/140 + 9*C1314/280 + 27*C1322/280 + 27*C1323/280 + 27*C1324/560 + 27*C1333/560 + 9*C1334/280 + 9*C1344/560 + 27*C2211/280 + 27*C2212/560 + 81*C2213/560 + 27*C2214/560
M[20,20]+= 9*C2222/560 + 27*C2223/560 + 9*C2224/560 + 27*C2233/280 + 27*C2234/560 + 9*C2244/560 + 27*C2311/280 + 27*C2312/280 + 27*C2313/280 + 27*C2314/560 + 27*C2322/560 + 9*C2323/140 + 9*C2324/280 + 27*C2333/560 + 9*C2334/280 + 9*C2344/560 + 27*C3311/280
M[20,20]+= 81*C3312/560 + 27*C3313/560 + 27*C3314/560 + 27*C3322/280 + 27*C3323/560 + 27*C3324/560 + 9*C3333/560 + 9*C3334/560 + 9*C3344/560
M[2,1]=M[1,2]
M[3,1]=M[1,3]
M[4,1]=M[1,4]
M[5,1]=M[1,5]
M[6,1]=M[1,6]
M[7,1]=M[1,7]
M[8,1]=M[1,8]
M[9,1]=M[1,9]
M[10,1]=M[1,10]
M[11,1]=M[1,11]
M[12,1]=M[1,12]
M[13,1]=M[1,13]
M[14,1]=M[1,14]
M[15,1]=M[1,15]
M[16,1]=M[1,16]
M[17,1]=M[1,17]
M[18,1]=M[1,18]
M[19,1]=M[1,19]
M[20,1]=M[1,20]
M[3,2]=M[2,3]
M[4,2]=M[2,4]
M[5,2]=M[2,5]
M[6,2]=M[2,6]
M[7,2]=M[2,7]
M[8,2]=M[2,8]
M[9,2]=M[2,9]
M[10,2]=M[2,10]
M[11,2]=M[2,11]
M[12,2]=M[2,12]
M[13,2]=M[2,13]
M[14,2]=M[2,14]
M[15,2]=M[2,15]
M[16,2]=M[2,16]
M[17,2]=M[2,17]
M[18,2]=M[2,18]
M[19,2]=M[2,19]
M[20,2]=M[2,20]
M[4,3]=M[3,4]
M[5,3]=M[3,5]
M[6,3]=M[3,6]
M[7,3]=M[3,7]
M[8,3]=M[3,8]
M[9,3]=M[3,9]
M[10,3]=M[3,10]
M[11,3]=M[3,11]
M[12,3]=M[3,12]
M[13,3]=M[3,13]
M[14,3]=M[3,14]
M[15,3]=M[3,15]
M[16,3]=M[3,16]
M[17,3]=M[3,17]
M[18,3]=M[3,18]
M[19,3]=M[3,19]
M[20,3]=M[3,20]
M[5,4]=M[4,5]
M[6,4]=M[4,6]
M[7,4]=M[4,7]
M[8,4]=M[4,8]
M[9,4]=M[4,9]
M[10,4]=M[4,10]
M[11,4]=M[4,11]
M[12,4]=M[4,12]
M[13,4]=M[4,13]
M[14,4]=M[4,14]
M[15,4]=M[4,15]
M[16,4]=M[4,16]
M[17,4]=M[4,17]
M[18,4]=M[4,18]
M[19,4]=M[4,19]
M[20,4]=M[4,20]
M[6,5]=M[5,6]
M[7,5]=M[5,7]
M[8,5]=M[5,8]
M[9,5]=M[5,9]
M[10,5]=M[5,10]
M[11,5]=M[5,11]
M[12,5]=M[5,12]
M[13,5]=M[5,13]
M[14,5]=M[5,14]
M[15,5]=M[5,15]
M[16,5]=M[5,16]
M[17,5]=M[5,17]
M[18,5]=M[5,18]
M[19,5]=M[5,19]
M[20,5]=M[5,20]
M[7,6]=M[6,7]
M[8,6]=M[6,8]
M[9,6]=M[6,9]
M[10,6]=M[6,10]
M[11,6]=M[6,11]
M[12,6]=M[6,12]
M[13,6]=M[6,13]
M[14,6]=M[6,14]
M[15,6]=M[6,15]
M[16,6]=M[6,16]
M[17,6]=M[6,17]
M[18,6]=M[6,18]
M[19,6]=M[6,19]
M[20,6]=M[6,20]
M[8,7]=M[7,8]
M[9,7]=M[7,9]
M[10,7]=M[7,10]
M[11,7]=M[7,11]
M[12,7]=M[7,12]
M[13,7]=M[7,13]
M[14,7]=M[7,14]
M[15,7]=M[7,15]
M[16,7]=M[7,16]
M[17,7]=M[7,17]
M[18,7]=M[7,18]
M[19,7]=M[7,19]
M[20,7]=M[7,20]
M[9,8]=M[8,9]
M[10,8]=M[8,10]
M[11,8]=M[8,11]
M[12,8]=M[8,12]
M[13,8]=M[8,13]
M[14,8]=M[8,14]
M[15,8]=M[8,15]
M[16,8]=M[8,16]
M[17,8]=M[8,17]
M[18,8]=M[8,18]
M[19,8]=M[8,19]
M[20,8]=M[8,20]
M[10,9]=M[9,10]
M[11,9]=M[9,11]
M[12,9]=M[9,12]
M[13,9]=M[9,13]
M[14,9]=M[9,14]
M[15,9]=M[9,15]
M[16,9]=M[9,16]
M[17,9]=M[9,17]
M[18,9]=M[9,18]
M[19,9]=M[9,19]
M[20,9]=M[9,20]
M[11,10]=M[10,11]
M[12,10]=M[10,12]
M[13,10]=M[10,13]
M[14,10]=M[10,14]
M[15,10]=M[10,15]
M[16,10]=M[10,16]
M[17,10]=M[10,17]
M[18,10]=M[10,18]
M[19,10]=M[10,19]
M[20,10]=M[10,20]
M[12,11]=M[11,12]
M[13,11]=M[11,13]
M[14,11]=M[11,14]
M[15,11]=M[11,15]
M[16,11]=M[11,16]
M[17,11]=M[11,17]
M[18,11]=M[11,18]
M[19,11]=M[11,19]
M[20,11]=M[11,20]
M[13,12]=M[12,13]
M[14,12]=M[12,14]
M[15,12]=M[12,15]
M[16,12]=M[12,16]
M[17,12]=M[12,17]
M[18,12]=M[12,18]
M[19,12]=M[12,19]
M[20,12]=M[12,20]
M[14,13]=M[13,14]
M[15,13]=M[13,15]
M[16,13]=M[13,16]
M[17,13]=M[13,17]
M[18,13]=M[13,18]
M[19,13]=M[13,19]
M[20,13]=M[13,20]
M[15,14]=M[14,15]
M[16,14]=M[14,16]
M[17,14]=M[14,17]
M[18,14]=M[14,18]
M[19,14]=M[14,19]
M[20,14]=M[14,20]
M[16,15]=M[15,16]
M[17,15]=M[15,17]
M[18,15]=M[15,18]
M[19,15]=M[15,19]
M[20,15]=M[15,20]
M[17,16]=M[16,17]
M[18,16]=M[16,18]
M[19,16]=M[16,19]
M[20,16]=M[16,20]
M[18,17]=M[17,18]
M[19,17]=M[17,19]
M[20,17]=M[17,20]
M[19,18]=M[18,19]
M[20,18]=M[18,20]
M[20,19]=M[19,20]
return recombine_hermite(J,M)*abs(J.det)
end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 20597 | ## geometry functions
"""
pln=three_points_to_plane(A)
Compute equation for a plane from the three points defined in A. The plane is parameterized
as `a*x+b*y+c*z+d==0` with the coefficients returned as `pln=[a,b,c,d]`.
# Arguments
- A::3×3-Array : Array containing the three points defining the plane as columns.
# Notes
Code adapted from https://www.geeksforgeeks.org/program-to-find-equation-of-a-plane-passing-through-3-points/
"""
function three_points_to_plane(A)
A,B,C=A[:,1],A[:,2],A[:,3]
u=A-C
v=B-C
a=LinearAlgebra.cross(u,v)
a/=LinearAlgebra.norm(a) #normalize
d=-LinearAlgebra.dot(a,C)
if d<1E-7 #TODO: find a better fix for the intersection problem
d=0.0
end
a,b,c=a
return [a,b,c,d]
end
"""
check = is_point_in_plane(pnt, pln)
Check whether point "pnt" is in plane . Note that there is currently no handling of round off errors.
"""
function is_point_in_plane(pnt,pln)
#TODO: implement round off handling
return pln[1]*pnt[1]+pln[2]*pnt[2]+pln[3]*pnt[3]+pln[4]
end
"""
p = reflect_point_at_plane(pnt,pln)
Reflect point `pnt` at plane `pln` and return as `p`.
# Notes
Code adapted from https://www.geeksforgeeks.org/mirror-of-a-point-through-a-3-d-plane/
"""
function reflect_point_at_plane(pnt,pln)
a,d=pln[1:3],pln[4]
k=(-LinearAlgebra.dot(a,pnt)-d)#/(LinearAlgebra.dot(a,a))
p=a.*k.+pnt #foot of the perpendicular
p=2*p-pnt #reflected point
return p
end
"""
foot = find_foot_of_perpendicular(pnt,pln)
Compute the position of the foot of the perpendicular from the point `pnt` to the plane `pln`.
# Notes
Code adapted from https://www.geeksforgeeks.org/mirror-of-a-point-through-a-3-d-plane/
"""
function find_foot_of_perpendicular(pnt,pln)
a,d=pln[1:3],pln[4]
k=(-LinearAlgebra.dot(a,pnt)-d)#/(LinearAlgebra.dot(a,a))
foot=a.*k.+pnt #foot of the perpendicular
return foot
end
"""
make_normal_outwards!(pln,testpoint)
Ensure that the parameterization of the plane "pln" has a normal that is directed twoards `testpoint`.
If necessary reparametrize `pln`.
"""
function make_normal_outwards(pln,testpoint)
foot=find_foot_of_perpendicular(testpoint,pln)
scalar_product=LinearAlgebra.dot(pln[1:3],testpoint-foot)
pln*=-sign(scalar_product)
return pln
end
"""
p,n = find_intersection_of_two_planes(pln1,pln2)
Find a parametrization of the axis defined by the intersection of the planes `pln1`and `pln2`.
The axis is parameterized by a point `p` and direction `n`.
# Notes
The algorithm follows John Krumm's solution for finding a common point on two intersecting planes as it is
explained in https://math.stackexchange.com/questions/475953/how-to-calculate-the-intersection-of-two-planes
To simplify the code, here the point p0 is the origin.
"""
function find_intersection_of_two_planes(pln1,pln2)
n=LinearAlgebra.cross(pln1[1:3],pln2[1:3]) #axis vector
n/=LinearAlgebra.norm(n)
#TODO: check whether vector is nonzero and planes truly intersect!
#generate points on the planes closest to origin.
p1=find_foot_of_perpendicular([0.,0.,0.],pln1)
p2=find_foot_of_perpendicular([0.,0.,0.],pln2)
#Linear system from Lagrange optimization
M=[2.0 0.0 0.0 pln1[1] pln2[1];
2.0 0.0 0.0 pln1[2] pln2[2];
2.0 0.0 0.0 pln1[3] pln2[3];
pln1[1] pln1[2] pln1[3] 0 0;
pln2[1] pln2[2] pln2[3] 0 0]
rhs=[0;0;0; LinearAlgebra.dot(p1,pln1[1:3]); LinearAlgebra.dot(p2,pln2[1:3])]
p=rhs\M
return p[1:3],n
end
"""
R = create_rotation_matrix_around_axis(n,α)
Compute the rotation matrix around the directional vector `n`rotating by an angle `α` (in rad).
"""
function create_rotation_matrix_around_axis(n,α)
R=[n[1]^2*(1-cos(α))+cos(α) n[1]*n[2]*(1-cos(α))-n[3]*sin(α) n[1]*n[3]*(1-cos(α))+n[2]*sin(α);
n[2]*n[1]*(1-cos(α))+n[3]*sin(α) n[2]^2*(1-cos(α))+cos(α) n[2]*n[3]*(1-cos(α))-n[1]*sin(α);
n[3]*n[1]*(1-cos(α))-n[2]*sin(α) n[3]*n[2]*(1-cos(α))+n[1]*sin(α) n[3]^2*(1-cos(α))+cos(α)]
return R
end
## mesh book keeping
function find_testpoint_idx(tri, tet)
testpoint_idx=0
for idx in tet
if !(idx in tri)
testpoint_idx=idx
end
end
return testpoint_idx
end
"""
ridx = get_rotated_index(idx,sector, naxis, nxsector, DOS)
Get index `ridx` of point in sector `sector` created from rotation of the point
with index `idx`. The definig mesh feature `naxis` points on the center axis,
`nxsector` points in a unit cell excluding the center axis, and has a degree of
symmetry `DOS`.
"""
function get_rotated_index(idx,sector, naxis, nxsector, DOS)
if idx <= naxis
idx=idx
else
idx=idx+nxsector*sector #sector counting starts from zero
end
idx=((idx-naxis-1)%(nxsector*DOS))+naxis+1
if idx<0
idx+=DOS*nxsector
end
return idx
end
"""
ridx = get_reflected_index(idx,naxis,nxbloch,nbody,shiftbody,nxsymmetry)
Get index `ridx` of a point in the first unit cell created from reflection of
the point with index `idx`. The definig mesh feature `naxis` points on the
center axis, `nxbloch` points on the bloch plane (excluding the center axis),
`nbody` points in the interiror of the first half-cell, `nxsymmetry`points on
the symmetry plane (excluding the center axis) `nxsector` points in a unit cell
excluding the center axis. The difference of the indeces of a refernce body point
and a reflected body point is `shiftbody`. The number of points per unit cell
(excluding the center axis) is `nxsector`.
"""
function get_reflected_index(idx,naxis,nxbloch,nbody,shiftbody,nxsymmetry,nxsector)
if idx <= naxis
idx=idx
elseif idx <= naxis+nxbloch
idx=idx+nxsector
elseif idx <= naxis+nxbloch+nbody
idx=idx+shiftbody
elseif idx <= naxis+nxbloch+nbody+nxsymmetry
idx=idx
else
idx=0 #error flag
end
return idx
end
"""
sector = get_point_sector(pnt_idx,naxis, nxsector)
Get the sector containing point with index `pnt_idx`, in a mesh that features
`naxis` grid points on the center line and `nxsector` grid points in a unit cell
excluding the center axis.
"""
function get_point_sector(pnt_idx,naxis, nxsector)
if pnt_idx<=naxis
return typemax(0)
else
return (pnt_idx-naxis-1)÷nxsector #-1 is necessary because otherwise last point would count to next sector
end
end
"""
s = get_line_sector(ln)
Get index `s` of sector containing line `ln`, in a mesh that features
`naxis` grid points on the center line and `nxsector` grid points in a unit cell
excluding the center axis..
"""
function get_line_sector(ln,naxis,nxsector)
s=typemax(0)
for (idx,p) in enumerate(ln)
new_s=get_point_sector(p,naxis,nxsector)
if new_s==s #sector has not changed do nothing
elseif s==typemax(0) #some sector is identified that is not axis
s=new_s
elseif abs(new_s-s)==1 #standard sector boundary
s=min(s,new_s)
elseif abs(new_s-s)>1# #periodic sector boundary #TODO: Does not work if DOS==2
if new_s!=typemax(0)
s=max(s,new_s)
end
else
println("Error: Could not identify sector for line.")
return nothing
end
end
return s
end
"""
ln_idx = get_line_idx(ln,naxis_ln,nxsector_ln)
Get index `ln_idx` of line `ln` in a mesh that features `naxis` grid points and
`naxis_ln' lines on the center line, `nxsector` grid points and `nxsector_ln'
lines in a unit cell excluding the center axis.
"""
function get_line_idx(lines,ln,naxis,nxsector, naxis_ln,nxsector_ln,DOS)
s=get_line_sector(ln,naxis, nxsector)
if s==typemax(0)
return find_smplx(lines[1:naxis_ln],ln)
else
return find_smplx(lines[naxis_ln+1:naxis_ln+nxsector_ln],get_rotated_index.(ln,-s,naxis,nxsector, DOS))+s*nxsector_ln+naxis_ln
end
end
##
"""
full_mesh=extend_mesh(mesh::Mesh, doms; sym_name="Symmetry", blch_name="Bloch", unit=false)
Create full mesh or unit cell from half cell represented in `mesh`.
# Arguments
- `mesh::Mesh`: mesh representing the half cell. The mesh must span a sector of `2π/2N`, where `N` is the (integer) degree of symmetry of the full mesh.
- `doms::List`: list of 2-tuples containing the domain names and their `copy_degree` (see notes below).
- `sym_name::String="Symmetry"`: name of the domain of `mesh` that forms the symmetry plane of the half-mesh.
- `blch_name::String="Bloch"`: name of the domain of `mesh` that forms the remaining azimuthal plane of the half-mesh.
- `unit::Bool=false`: toggle whether extend the mesh to unit cell only.
# Returns
- `full_mesh::Mesh`: representation of the full mesh.
# Notes
The routine copies only domains that are specified in `doms`. These domains are extended according to the specified `copy_degree`.
The following are available:
- `:full`: extent the domain and save it under the same name in `full_mesh`.
- `:unit`: extent the domain and save the individual unit cells labeled from `0` to `N-1` in `full_mesh`.
- `:half`: extent the domain and save the individual unit cells as half cells labeled from `0` to `N-1` in `full_mesh` where one half-cell contains `_img` in its name.
Multiple styles can be mixed in one domain specification. An example for `doms` would be
doms=[("Interior", :full), ("Outlet", :unit), ("Flame", :half)]
"""
function extend_mesh(mesh::Mesh, doms; sym_name="Symmetry", blch_name="Bloch", unit=false)
collect_lines!(mesh) #TODO: make it independent of line collection
npoints=size(mesh.points,2)
bloch=[]
for smplx_idx in mesh.domains[blch_name]["simplices"]
for pnt in mesh.triangles[smplx_idx]
insert_smplx!(bloch,pnt)
end
end
symmetry=[]
for smplx_idx in mesh.domains[sym_name]["simplices"]
for pnt in mesh.triangles[smplx_idx]
insert_smplx!(symmetry,pnt)
end
end
axis=intersect(bloch,symmetry)
#check whether two methods yield same result
#caxis==axis
#resort points
new_order=[]
for idx in axis
append!(new_order,idx)
end
for idx in bloch
if !(idx in new_order)
append!(new_order,idx)
end
end
for idx in 1:npoints
if !(idx in new_order) && !(idx in symmetry)
append!(new_order,idx)
end
end
for idx in symmetry
if !(idx in new_order)
append!(new_order,idx)
end
end
trace_order=zeros(Int64,npoints) #TODO: loop is not so nice but does the job...
for idx = 1: length(new_order)
trace_order[idx]=findfirst(x->x==idx,new_order)
end
#next mirror at symmetry
# compute symmetry plane
link_triangles_to_tetrahedra!(mesh)
tetmap=mesh.tri2tet
smplx_idx=mesh.domains[sym_name]["simplices"][1]
smplx=mesh.triangles[smplx_idx]
tri=mesh.points[:,smplx]
pln=three_points_to_plane(tri)
pnt=find_foot_of_perpendicular([0.,0.,0.],pln)
testpoint_idx=find_testpoint_idx(smplx,mesh.tetrahedra[tetmap[smplx_idx]])
pln=make_normal_outwards(pln,mesh.points[:,testpoint_idx])
# compute bloch plane
smplx_idx=mesh.domains[blch_name]["simplices"][1]
smplx=mesh.triangles[smplx_idx]
tri2=mesh.points[:,smplx]
bpln=three_points_to_plane(tri2)
testpoint_idx=find_testpoint_idx(smplx,mesh.tetrahedra[tetmap[smplx_idx]])
bpln=make_normal_outwards(bpln,mesh.points[:,testpoint_idx])
#little tests
#check=is_point_in_plane(tri2[:,2],pln)
#tri_refl=reflect_point_at_plane(tri2[:,2],pln)
# do the reflection
nbloch=length(bloch)
naxis=length(axis)
nsymmetry=length(symmetry)
nxsymmetry=nsymmetry-naxis
nxbloch=nbloch-naxis
nbody=npoints-nbloch-nxsymmetry
shiftbody=npoints-nbloch
nxsector=nxbloch+nbody+nxsymmetry+nbody
nsector=nxsector+naxis
#initialize point array
points=zeros(3,2*npoints-nsymmetry)
points[:,1:npoints]=mesh.points[:,new_order]
# reflect body points
for idx=nbloch+1:npoints-nxsymmetry
pnt=points[:,idx]
points[:,idx+shiftbody]=reflect_point_at_plane(pnt,pln)
end
#reflect exclusive bloch points
for idx=naxis+1:nbloch
pnt=points[:,idx]
points[:,idx+nxsector]=reflect_point_at_plane(pnt,pln)
end
#get degree of symmetry
phi=LinearAlgebra.dot(pln[1:3],-bpln[1:3])#/(LinearAlgebra.norm(pln[1:3])*LinearAlgebra.norm(bpln[1:3]))
phi=acos(phi)##TODO: get direction
DOS=round(Int,pi/phi)
#create/virtualize full mesh
p,n=find_intersection_of_two_planes(pln,bpln)
phi=2pi/DOS
R=create_rotation_matrix_around_axis(n,phi)
#
#rot_points=R*(points.-p).+p #Test
#Full mesh
nfpoints=naxis+(nxbloch+nbody+nxsymmetry+nbody)*DOS
if unit
fpoints=points
DOS_lim=1
file_txt="unit from $(mesh.file)"
else
DOS_lim=DOS
fpoints=zeros(3,nfpoints)
fpoints[:,1:nsector]=points[:,1:nsector]
for idx in 1:DOS-1
R=create_rotation_matrix_around_axis(n,idx*phi)
fpoints[:,naxis+nxsector*idx+1:naxis+nxsector*(idx+1)]=R*(points[:,naxis+1:naxis+nxsector].-p).+p
end
file_txt="extended from $(mesh.file)"
end
#domains=Dict()
#triangles=Array{UInt32,1}[]
reflected_index(idx) = get_reflected_index(idx,naxis,nxbloch,nbody,shiftbody,nxsymmetry,nxsector)
# function get_reflected_index(idx)
# if idx <= naxis
# idx=idx
# elseif idx <= nbloch
# idx=idx+nxsector
# elseif idx <= nbloch+nbody
# idx=idx+shiftbody
# elseif idx <= nsector-nbody #naxis+nxbloch+nbody+nxsymmetry
# idx=idx
# else
# idx=0 #error flag
# end
# return idx
# end
rotated_index(idx,sector)=get_rotated_index(idx,sector, naxis, nxsector, DOS)
# nasector=nxsector*DOS
# function get_rotated_index(idx,sector)
# if idx <= naxis
# idx=idx
# else
# idx=idx+nxsector*sector
# end
# #modulo for periodicity
# idx=((idx-naxis-1)%nasector)+1+naxis
# if idx<0
# idx+=nasector
# end
# return idx
# end
tetrahedra=Array{UInt32,1}[] #TODO: sectorwise arrangement of tetrahedra
for (smplx_idx,tet) in enumerate(mesh.tetrahedra)
#println(idx," ", length(tetrahedra))
tet=trace_order[tet]
rtet=reflected_index.(tet)
for sector=0:DOS_lim-1
insert_smplx!(tetrahedra,rotated_index.(tet, sector))
insert_smplx!(tetrahedra,rotated_index.(rtet, sector))
end
end
triangles=Array{UInt32,1}[] #TODO: sectorwise arrangement of triangles
for (smplx_idx,smplx) in enumerate(mesh.triangles)
if !(smplx_idx in mesh.domains[sym_name]["simplices"]) && (!(smplx_idx in mesh.domains[blch_name]["simplices"]) || unit)
smplx=trace_order[smplx]
rsmplx=reflected_index.(smplx)
for sector=0:DOS_lim-1
insert_smplx!(triangles,rotated_index.(smplx, sector))
insert_smplx!(triangles,rotated_index.(rsmplx, sector))
end
end
end
## sectorwise line handling
lines=Array{UInt32,1}[]
for (smplx_idx, smplx) in enumerate(mesh.lines)
smplx=trace_order[smplx]
insert_smplx!(lines,smplx)
if !all(smplx.<=nbloch)
rsmplx=reflected_index.(smplx)
insert_smplx!(lines,rsmplx)
end
end
#count second order dof on axis and bloch boundary
naxis_ln=0
nbloch_ln=0
for (idx,ln) in enumerate(lines)
if naxis_ln==0 && !all(ln.<=naxis)
naxis_ln=idx-1
end
if nbloch_ln==0 && !all(ln.<=naxis+nxbloch)
nbloch_ln=idx-1
end
end
nxbloch_ln=nbloch_ln-naxis_ln
nsector_ln=length(lines)#-naxis_ln
nxsector_ln=nsector_ln-naxis_ln
# extend to full mesh
if unit #just create bloch image boundary
for ln in lines[naxis_ln+1:nbloch_ln]
append!(lines,[rotated_index.(ln,1)])
end
else #create full domain
for sector=1:DOS-1
for lns in lines[naxis_ln+1:nsector_ln]
append!(lines,[rotated_index.(lns,sector)])
end
end
end
##build domains
domains=Dict()
#build unit cell
#build full circumference #TODO: virtualize domains to save memeory and building time
for (dom, copy_degree) in doms
dim=mesh.domains[dom]["dimension"]
if dim == 3
list_of_simplices=mesh.tetrahedra
full_list_of_simplices=tetrahedra
elseif dim == 2
list_of_simplices=mesh.triangles
full_list_of_simplices=triangles
elseif dim == 1
list_of_simplices=mesh.lines
full_list_of_simplices=nothing#lines
println("Error: Dimension 1 not implemented for extensible domain")
#TODO: Implement
end
if copy_degree==:full
domains[dom]=Dict()
domains[dom]["dimension"]=dim
domains[dom]["simplices"]=UInt64[]
elseif copy_degree==:unit
for sector=0:DOS_lim-1
domains[dom*"#$sector"]=Dict()
domains[dom*"#$sector"]["dimension"]=dim
domains[dom*"#$sector"]["simplices"]=UInt64[]
end
elseif copy_degree==:half
for sector=0:DOS_lim-1
domains[dom*"#$sector.0"]=Dict()
domains[dom*"#$sector.0"]["dimension"]=dim
domains[dom*"#$sector.0"]["simplices"]=UInt64[]
domains[dom*"#$sector.1"]=Dict()
domains[dom*"#$sector.1"]["dimension"]=dim
domains[dom*"#$sector.1"]["simplices"]=UInt64[]
end
else
println("Error: copy_degree '$copy_degree' not supported! Use either
'full', 'unit', or 'half'.")
return
end
for smplx_idx in mesh.domains[dom]["simplices"]
smplx=list_of_simplices[smplx_idx]
smplx=trace_order[smplx]
rsmplx=reflected_index.(smplx)
for sector=0:DOS_lim-1
idx=find_smplx(full_list_of_simplices,rotated_index.(smplx, sector))
ridx=find_smplx(full_list_of_simplices,rotated_index.(rsmplx, sector))
if copy_degree==:full
append!(domains[dom]["simplices"],idx)
append!(domains[dom]["simplices"],ridx)
elseif copy_degree==:unit
append!(domains[dom*"#$sector"]["simplices"],idx)
append!(domains[dom*"#$sector"]["simplices"],ridx)
elseif copy_degree==:half
append!(domains[dom*"#$sector.0"]["simplices"],idx)
append!(domains[dom*"#$sector.1"]["simplices"],ridx)
end
end
end
end
#create new mesh object
#symmetry_info=(DOS,naxis,nxbloch,nbody,nxsymmetry,n,naxis_ln,nxbloch_ln,nxsector_ln)
symmetry_info=SymInfo(DOS,naxis,nxbloch,nbody,shiftbody,nxsymmetry,nxsector,naxis_ln,nxbloch_ln,nxsector_ln,0,0,n,p,unit)
tri2tet=zeros(UInt32,length(triangles))
tri2tet[1]=0xffffffff #magic sentinel value to check whether list is linked
full_mesh=Mesh(mesh.file,fpoints,lines,triangles, tetrahedra, domains, file_txt, tri2tet, symmetry_info)
return full_mesh
end
## wrapper for finder routines to Mesh type
"""
sidx=get_point_sector(mesh::Mesh,pnt_idx)
Get sector idx `sidx`of point with index `pnt_idx`in mesh `mesh`.
"""
function get_point_sector(mesh::Mesh,pnt_idx)
if mesh.dos==1
return 0
else
return get_point_sector(pnt_idx, mesh.dos.naxis, mesh.dos.nxsector)
end
end
"""
sidx = get_line_sector(mesh::Mesh, ln)
Get sector idx `sidx`of line `ln` in mesh `mesh`.
"""
function get_line_sector(mesh::Mesh, ln)
if mesh.dos==1
return 0
else
return get_line_sector(ln,mesh.dos.naxis,mesh.dos.nxsector)
end
end
# line finder for mesh TODO: smplx_finder for mesh
"""
ln_idx = get_line_idx(mesh::Mesh, ln)
Get index `ln_idx` of line `ln` in mesh `mesh`.
"""
function get_line_idx(mesh::Mesh, ln)
if mesh.dos==1
ln_idx=find_smplx(mesh.lines,ln)
else
ln_idx=get_line_idx(mesh.lines,ln,mesh.dos.naxis,mesh.dos.nxsector,mesh.dos.naxis_ln,mesh.dos.nxsector_ln,mesh.dos.DOS)
end
return ln_idx
end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 7854 | """
points, lines, triangles, tetrahedra, domains=read_nastran(filename)
Read simplicial nastran mesh.
# Note
There is currently no sanity check for non-simplicial elements. These elements are just skipped while reading.
"""
function read_nastran(filename)
number_of_points=0
number_of_lines=0
number_of_triangles=0
number_of_tetrahedra=0
name_tags=Dict()
#first read to get number of points
open(filename) do fid
while !eof(fid)
line=readline(fid)
if line[1]=='$' #line is a comment
#comments are freqeuntly used to leave more information
#especially the domain tags
#this is not standardized so it depends on the software used to write the file
#ANSA-style tag comment
#example:
#$ANSA_NAME_COMMENT;2;PSHELL;TA_IN_Inlet;;NO;NO;NO;NO;
if length(line)>=18 && line[2:18]=="ANSA_NAME_COMMENT"
data=split(line[2:end],";")
if data[3]=="PSOLID" || data[3]=="PSHELL"
name_tags[data[2]]=data[4]
end
end
#Centaur-style tag comment
#example:
#$HMNAME COMP 1"Walls"
if length(line)>=12 && line[2:12]=="HMNAME COMP"
data=split(strip(line[13:end]),'"')
name_tags[data[1]]=data[2]
end
continue
end
if length(line)<8 #line is too short probably it is the ENDDATA tag.
continue
end
head=line[1:8]
if head =="GRID " || head == "GRID* " || head[1:5] == "GRID," #TODO allow for whitespace between commas in free format
number_of_points+=1
elseif (head[1:6] == "CTRIA3") || (head[1:6] == "CTRIA6")
number_of_triangles+=1
elseif head[1:6] == "CTETRA"
number_of_tetrahedra+=1
end
end
end
tri_idx=0
tet_idx=0
#TODO: sanity check for non-consecutive indexing
points=Array{Float64}(undef,3,number_of_points)
lines=Array{Array{UInt32,1}}(undef,number_of_lines)
triangles=Array{Array{UInt32,1}}(undef, number_of_triangles)
tetrahedra=Array{Array{UInt32,1}}(undef, number_of_tetrahedra)
domains=Dict()
surface_tags=Dict()
volume_tags=Dict()
#second read to get data
open(filename) do fid
while !eof(fid)
line=readline(fid)
if line[1]=='$' #line is a comment
continue
end
# data = parse_nas_line(line)
# if length(data)==0 #line is to short probaboly it is the ENDDATA tag.
# continue
# end
if length(line)<8 #line is too short probably it is the ENDDATA tag.
continue
end
free=false #sentinel value for checking for free format
if occursin(",",line)
free=true
end
head=line[1:8]
if head =="GRID " #grid point short format
data = parse_nas_line(line)
idx=parse(UInt,data[2])
points[1,idx]=parse_nas_number(data[4])
points[2,idx]=parse_nas_number(data[5])
points[3,idx]=parse_nas_number(data[6])
elseif head =="GRID* " #grid point long format
data = parse_nas_line(line,format=:long)
idx=parse(UInt,data[2])
points[1,idx]=parse_nas_number(data[4])
points[2,idx]=parse_nas_number(data[5])
line=readline(fid) #long format has two lines
data = parse_nas_line(line,format=:long)
points[3,idx]=parse_nas_number(data[2])
elseif head[1:5] =="GRID,"#grid point free format
data = parse_nas_line(line,format=:free)
idx=parse(UInt,data[2])
points[1,idx]=parse_nas_number(data[4])
points[2,idx]=parse_nas_number(data[5])
points[3,idx]=parse_nas_number(data[6])
elseif (head[1:6] == "CTRIA3") || (head[1:6] == "CTRIA6") #Triangle
tri_idx+=1
if free
data = parse_nas_line(line,format=:free)
else
data = parse_nas_line(line)
end
#TODO: find nastran file specification and see whether there is
#something like long format for stuff other than GRID
idx=tri_idx
dom=strip(data[3])
if dom in keys(name_tags)
dom=name_tags[dom]
else
dom="surf"*lpad(dom,4,"0")
end
if dom in keys(domains)
append!(domains[dom]["simplices"],idx)
else
domains[dom]=Dict("dimension"=>2,"simplices"=>UInt32[idx])
end
tri=[parse(UInt32,data[4]),parse(UInt32,data[5]),parse(UInt32,data[6])]
triangles[idx]=tri
elseif head[1:6] == "CTETRA" #Tetrahedron
tet_idx+=1
if free
data = parse_nas_line(line,format=:free)
else
data = parse_nas_line(line)
end
idx=tet_idx#parse(UInt,data[2])-number_of_triangles
dom=strip(data[3])
if dom in keys(name_tags)
dom=name_tags[dom]
else
dom="vol"*lpad(dom,4,"0")
end
if dom in keys(domains)
append!(domains[dom]["simplices"],idx)
else
domains[dom]=Dict("dimension"=>3,"simplices"=>UInt32[idx])
end
tet=[parse(UInt32,data[4]),parse(UInt32,data[5]),parse(UInt32,data[6]),parse(UInt32,data[7])]
tetrahedra[idx]=tet
end
end
end
#sanity check when using higher order simplices (CTRIA6 or CTETRA with ten nodes)
#Comsol uses this stuff -.-
used_idx=sort(unique(vcat(tetrahedra...)))
if used_idx[end]==length(used_idx)
if length(triangles)!=0
tri_max_idx=maximum(vcat(triangles...))
else
tri_max_idx=0
end
if tri_max_idx > used_idx[end]
println("Warning: Nastran mesh needs manual reordering of point indeces. Not all points are actually used to define simplices.")
else
points=points[:,1:used_idx[end]]
end
else
println("Warning: Nastran mesh needs manual reordering of point indeces. Not all points are actually used to define simplices.")
end
return points, lines, triangles, tetrahedra, domains
end
function parse_nas_line(txt;format=:short)
#split line
if format==:short
number_of_entries=length(txt)÷8
data=Array{String}(undef,number_of_entries)
for idx=1:number_of_entries
data[idx]=txt[(1+8*(idx-1)):(idx*8)]
end
elseif format==:long
number_of_entries=(length(txt)-8)÷16+1
data=Array{String}(undef,number_of_entries)
data[1]=txt[1:8]
for idx=2:number_of_entries
data[idx]=txt[(1+16*(idx-1)-8):((idx*16)-8)]
end
elseif format==:free
data=split(replace(txt," "=>""),",")
end
return data
end
function parse_nas_number(txt)
# nastran numbers may or may not have sign symbols
# and leading 0
# also there might be lower or upper Case indicating
# scientific notation or just a directly a sign symbol
# This means, everything that is correctly parsed as
# as a julia Float is a nastran float
# but also something exotic like "-.314+7" is valid
# nastran and would be the same as "-0.314E+7"
# this routine correctly parses nastran numbers
txt=strip(txt)
E=false
ins=0
if !occursin("E",txt) && !occursin("e",txt)
for (idx,c) in enumerate(txt)
if c=="E"
E=true
end
if idx!=1 && ( (!E && c=='-') || (!E && c=='+'))
ins=idx
break
end
end
if ins >1
txt=txt[1:(ins-1)]*"E"*txt[ins:end]
end
end
return parse(Float64,txt)
end
# function relabel_nas_domains!(domains,filename)
# open(filename) do fid
# while !eof(fid)
# line=readline(fid)
# if line[1]=='#' #line is a comment
# continue
# end
# data=split(line,",")
# old_idx=strip(data[1])
# new_idx=strip(data[2])
# if old_idx in keys(domains)
# domains[new_idx]=domains[old_idx]
# delete!(domains,old_idx)
# else
# println("Warning: key `$old_idx` not in domains!")
# end
# end
# end
# return domains
# end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 3495 |
"""
cmpr=compare(A,B)
Compare two simplices following lexicographic rules.
If B has lower rank, then A `cmpr ==-1`. If B has higher rank than A,
`cmpr==1`. If A and B are identical, `cmpr==0`.
"""
function compare(A,B)
A=sort(A,rev=true)
B=sort(B,rev=true)
if length(B)!=length(A)
println("Error: lists do not share same length!")
println(A,B)
return
end
cmpr=0
for (a,b) in zip(A,B)#zip(A[end:-1:1],B[end:-1:1])
if a!=b
if a<b
cmpr=1
break
else
cmpr=-1
break
end
end
end
return cmpr
end
function compare(a::Real,b::Real)
cmpr=0
if a!=b
if a<b
cmpr=1
else
cmpr=-1
end
end
return cmpr
end
"""
sort_smplx(list,smplx)
Helper function for sorting simplices in lexicographic manner.
Utilize divide an conquer strategy to find a simplex in ordered list of simpleces.
"""
function sort_smplx(list,smplx)
idx=0
list_length=length(list)
if list_length>=2
low=1
high=list_length
#check whether smplx is in list range
# lower bound
cmpr=compare(list[low],smplx)
if cmpr<0
idx=low
return idx,true
elseif cmpr==0
idx=low
return idx,false
end
#upper bound
cmpr=compare(smplx,list[high])
if cmpr<0
idx=high+1
return idx,true
elseif cmpr==0
idx=high
return idx,false
end
if idx==0
#divide et impera
while high-low>1
mid=Int(round((high+low)/2))
cmpr=compare(list[mid],smplx)
if cmpr>0
low=mid
elseif cmpr<0
high=mid
else
idx=mid
return idx, false
end
end
end
if idx==0
#find location from last two possibilities
cmpr_low=compare(list[low],smplx)
cmpr_high=compare(smplx,list[high])
if cmpr_low==0
idx=low
return idx,false
elseif cmpr_high==0
idx=high
return idx,false
else
idx=high
return idx,true
end
end
elseif list_length==1
cmpr=compare(list[1],smplx)
if cmpr<0
idx=1
return idx, true
elseif cmpr>0
idx=2
return idx,true
else
idx=1
return idx,false
end
else list_length==0
return 1,true
end
return nothing
end
"""
insert_smplx!(list,smplx)
Insert simplex in ordered list of simplices.
"""
function insert_smplx!(list,smplx)
#if !isa(smplx,Real)
# smplx=sort(smplx)
#end
idx,ins=sort_smplx(list,smplx)
if ins
insert!(list,idx,smplx)
end
return
end
"""
idx = find_smplx(list,smplx)
Find index of simplex in ordered list of simplices.
If the simplex is not contained in the list, the returned index is `nothing`
"""
function find_smplx(list,smplx)
#if !isa(smplx,Real)
# smplx=sort(smplx)
#end
idx,ins=sort_smplx(list,smplx)
ins=!ins
if ins
return idx
else
return 0
end
end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 16346 | #functionality in this file implements writing .vtu files
#complient to https://vtk.org/wp-content/uploads/2015/04/file-formats.pdf
import Base64
#import CodecZlib
##
function vtk_write1(file_name::String,mesh::Mesh,data=[],binary=true,compressed=false)
open(file_name*".vtu","w") do fid
if compressed
compressor=" compressor=\"vtkZLibDataCompressor\""
else
compressor=""
end
write(fid,"<VTKFile type=\"UnstructuredGrid\" version=\"0.1\" byte_order=\"LittleEndian\" header_type=\"UInt64\"$compressor>\n")
write(fid,"\t<UnstructuredGrid>\n")
write(fid,"\t\t<Piece NumberOfPoints=\"$(size(mesh.points,2))\" NumberOfCells=\"$(length(mesh.tetrahedra))\">\n")
write(fid,"\t\t\t<Points>\n")
#write(fid,"\t\t\t\t<DataArray type=\"Float64\" NumberOfComponents=\"3\" format=\"ascii\">")
#for pnt in mesh.points
# write(fid,string(pnt)*" ")
#end
#write(fid,"</DataArray>")
write_data_array(fid,Dict("Coordinates"=>mesh.points),binary,compressed)
write(fid,"\t\t\t</Points>\n")
write(fid,"\t\t\t<Cells>\n")
# write(fid,"\t\t\t\t<DataArray type=\"Int32\" Name=\"connectivity\" format=\"ascii\">")
# for tet in mesh.tetrahedra
# for pnt in tet
# write(fid,string(Int32(pnt-1))*" ")
# end
# end
# write(fid,"</DataArray>\n")
N_points=size(mesh.points,2)
if N_points <2^16
connectivity=Array{UInt16}(undef,length(mesh.tetrahedra)*4)
idx=1
for tet in mesh.tetrahedra
for pnt_idx in tet
connectivity[idx]=UInt16(pnt_idx-1)
idx+=1
end
end
else
connectivity=Array{UInt32}(undef,length(mesh.tetrahedra)*4)
idx=1
for tet in mesh.tetrahedra
for pnt_idx in tet
connectivity[idx]=UInt32(pnt_idx-1)
idx+=1
end
end
end
write_data_array(fid,Dict("connectivity"=>connectivity),binary,compressed)
write(fid,"\t\t\t\t<DataArray type=\"Int32\" Name=\"offsets\" format=\"ascii\">")
off=0
for tet in mesh.tetrahedra
off+=length(tet)
write(fid,string(off)*" ")
end
write(fid,"</DataArray>\n")
write(fid,"\t\t\t\t<DataArray type=\"UInt8\" Name=\"types\" format=\"ascii\">")
for tet in mesh.tetrahedra
for pnt in tet
write(fid,"10 ")
end
end
write(fid,"</DataArray>\n")
write(fid,"\t\t\t</Cells>\n")
write(fid,"\t\t\t<PointData>\n")
write_data_array(fid,data,binary,compressed)
write(fid,"\t\t\t</PointData>\n")
write(fid,"\t\t</Piece>\n")
write(fid,"\t</UnstructuredGrid>\n")
write(fid,"</VTKFile>\n")
end
return nothing
end
##
function vtk_write0(file_name::String,mesh::Mesh,data=[],binary=true,compressed=false)
open(file_name*".vtu","w") do fid
if compressed
compressor=" compressor=\"vtkZLibDataCompressor\""
else
compressor=""
end
write(fid,"<VTKFile type=\"UnstructuredGrid\" version=\"0.1\" byte_order=\"LittleEndian\" header_type=\"UInt64\"$compressor>\n")
write(fid,"\t<UnstructuredGrid>\n")
write(fid,"\t\t<Piece NumberOfPoints=\"$(size(mesh.points,2))\" NumberOfCells=\"$(length(mesh.tetrahedra))\">\n")
write(fid,"\t\t\t<Points>\n")
# write(fid,"\t\t\t\t<DataArray type=\"Float64\" NumberOfComponents=\"3\" format=\"ascii\">")
# for pnt in mesh.points
# write(fid,string(pnt)*" ")
# end
# write(fid,"</DataArray>")
write_data_array(fid,Dict("Coordinates"=>mesh.points),binary,compressed)
write(fid,"\t\t\t</Points>\n")
write(fid,"\t\t\t<Cells>\n")
write(fid,"\t\t\t\t<DataArray type=\"Int32\" Name=\"connectivity\" format=\"ascii\">")
for tet in mesh.tetrahedra
for pnt in tet
write(fid,string(Int32(pnt-1))*" ")
end
end
write(fid,"</DataArray>\n")
write(fid,"\t\t\t\t<DataArray type=\"Int32\" Name=\"offsets\" format=\"ascii\">")
off=0
for tet in mesh.tetrahedra
off+=length(tet)
write(fid,string(off)*" ")
end
write(fid,"</DataArray>\n")
write(fid,"\t\t\t\t<DataArray type=\"UInt8\" Name=\"types\" format=\"ascii\">")
for tet in mesh.tetrahedra
for pnt in tet
write(fid,"10 ")
end
end
write(fid,"</DataArray>\n")
write(fid,"\t\t\t</Cells>\n")
write(fid,"\t\t\t<CellData>\n")
write_data_array(fid,data,binary,compressed)
write(fid,"\t\t\t</CellData>\n")
write(fid,"\t\t</Piece>\n")
write(fid,"\t</UnstructuredGrid>\n")
write(fid,"</VTKFile>\n")
end
return nothing
end
function vtk_write2(file_name::String,mesh::Mesh,data=[],binary=true,compressed=false)
open(file_name*".vtu","w") do fid
if compressed
compressor=" compressor=\"vtkZLibDataCompressor\""
else
compressor=""
end
write(fid,"<VTKFile type=\"UnstructuredGrid\" version=\"0.1\" byte_order=\"LittleEndian\" header_type=\"UInt64\"$compressor>\n")
write(fid,"\t<UnstructuredGrid>\n")
write(fid,"\t\t<Piece NumberOfPoints=\"$(size(mesh.points,2)+length(mesh.lines))\" NumberOfCells=\"$(length(mesh.tetrahedra))\">\n")
write(fid,"\t\t\t<Points>\n")
#write(fid,"\t\t\t\t<DataArray type=\"Float64\" NumberOfComponents=\"3\" format=\"ascii\">")
# for pnt in mesh.points
# write(fid,string(pnt)*" ")
# end
# for line in mesh.lines
# pnts=sum(mesh.points[:,line],dims=2)/2
# for pnt in pnts
# write(fid,string(pnt)*" ")
# end
# end
#write(fid,"</DataArray>")
N_points=size(mesh.points,2)
points=Array{Float64}(undef,3,N_points+length(mesh.lines))
points[:,1:N_points]=mesh.points
for (idx,line) in enumerate(mesh.lines)
points[:,N_points+idx]=sum(mesh.points[:,line],dims=2)/2
end
write_data_array(fid,Dict("coordinates"=>points),binary,compressed)
write(fid,"\t\t\t</Points>\n")
write(fid,"\t\t\t<Cells>\n")
write(fid,"\t\t\t\t<DataArray type=\"Int32\" Name=\"connectivity\" format=\"ascii\">")
Npoints=size(mesh.points,2)
for tet in mesh.tetrahedra
for pnt in tet
write(fid,string(Int32(pnt-1))*" ")
end
pnt=get_line_idx(mesh,[tet[1]; tet[2]])+Npoints
write(fid,string(Int32(pnt-1))*" ")
pnt=get_line_idx(mesh,[tet[2]; tet[3]])+Npoints
write(fid,string(Int32(pnt-1))*" ")
pnt=get_line_idx(mesh,[tet[3]; tet[1]])+Npoints
write(fid,string(Int32(pnt-1))*" ")
pnt=get_line_idx(mesh,[tet[1]; tet[4]])+Npoints
write(fid,string(Int32(pnt-1))*" ")
pnt=get_line_idx(mesh,[tet[2]; tet[4]])+Npoints
write(fid,string(Int32(pnt-1))*" ")
pnt=get_line_idx(mesh,[tet[3]; tet[4]])+Npoints
write(fid,string(Int32(pnt-1))*" ")
end
write(fid,"</DataArray>\n")
write(fid,"\t\t\t\t<DataArray type=\"Int32\" Name=\"offsets\" format=\"ascii\">")
off=0
for tet in mesh.tetrahedra
off+=10#length(tet)
write(fid,string(off)*" ")
end
write(fid,"</DataArray>\n")
write(fid,"\t\t\t\t<DataArray type=\"UInt8\" Name=\"types\" format=\"ascii\">")
for tet in mesh.tetrahedra
#for pnt in tet
write(fid,"24 ")
#end
end
write(fid,"</DataArray>\n")
write(fid,"\t\t\t</Cells>\n")
write(fid,"\t\t\t<PointData>\n")
write_data_array(fid,data,binary,compressed)
write(fid,"\t\t\t</PointData>\n")
write(fid,"\t\t</Piece>\n")
write(fid,"\t</UnstructuredGrid>\n")
write(fid,"</VTKFile>\n")
end
return nothing
end
##
function vtk_write_tri(file_name::String,mesh::Mesh,data=[],binary=true,compressed=false)
open(file_name*".vtu","w") do fid
if compressed
compressor=" compressor=\"vtkZLibDataCompressor\""
else
compressor=""
end
write(fid,"<VTKFile type=\"UnstructuredGrid\" version=\"0.1\" byte_order=\"LittleEndian\" header_type=\"UInt64\"$compressor>\n")
write(fid,"\t<UnstructuredGrid>\n")
write(fid,"\t\t<Piece NumberOfPoints=\"$(size(mesh.points,2))\" NumberOfCells=\"$(length(mesh.triangles))\">\n")
write(fid,"\t\t\t<Points>\n")
# write(fid,"\t\t\t\t<DataArray type=\"Float64\" NumberOfComponents=\"3\" format=\"ascii\">")
# for pnt in mesh.points
# write(fid,string(pnt)*" ")
# end
# write(fid,"</DataArray>")
write_data_array(fid,Dict("Coordinates"=>mesh.points),binary,compressed)
write(fid,"\t\t\t</Points>\n")
write(fid,"\t\t\t<Cells>\n")
write(fid,"\t\t\t\t<DataArray type=\"Int32\" Name=\"connectivity\" format=\"ascii\">")
for tri in mesh.triangles
for pnt in tri
write(fid,string(Int32(pnt-1))*" ")
end
end
write(fid,"</DataArray>\n")
write(fid,"\t\t\t\t<DataArray type=\"Int32\" Name=\"offsets\" format=\"ascii\">")
off=0
for tri in mesh.triangles
off+=length(tri)
write(fid,string(off)*" ")
end
write(fid,"</DataArray>\n")
write(fid,"\t\t\t\t<DataArray type=\"UInt8\" Name=\"types\" format=\"ascii\">")
for tri in mesh.triangles
for pnt in tri
write(fid,"5 ")
end
end
write(fid,"</DataArray>\n")
write(fid,"\t\t\t</Cells>\n")
write(fid,"\t\t\t<CellData>\n")
write_data_array(fid,data,binary,compressed)
write(fid,"\t\t\t</CellData>\n")
write(fid,"\t\t</Piece>\n")
write(fid,"\t</UnstructuredGrid>\n")
write(fid,"</VTKFile>\n")
end
return nothing
end
##
"""
vtk_write(file_name, mesh, data)
Write vtk-file containing the datavalues `data` given on the usntructured grid `mesh`.
# Arguments
- `file_name::String`: name given to the written files. The name will be preceeded by a specifier. See Notes below.
- `mesh::Mesh`: mesh associated with the data.
- `data::Dict`: Dictionary containing the data.
# Notes
The routine automatically sorts the data according to its type and writes it in up to three diffrent files.
Data that is constant on a tetrahedron goes into `"\$(filename)_const.vtu"`,
data that is linearly interpolated on a tetrahedron goes into `"\$(filename)_lin.vtu"`,
and data that is quadratically interpolated on a tetrahedron goes into `"\$(filename)_quad.vtu"`
"""
function vtk_write(file_name::String,mesh::Mesh,data::Dict,binary=false,compressed=false) #TODO: write into one file
data0=Dict()
data1=Dict()
data2=Dict()
data_tri=Dict()
for (key,val) in data
if maximum(size(val))==length(mesh.tetrahedra)
data0[key]=val
elseif maximum(size(val))==size(mesh.points,2) #TODO: check for rare case of same number of points and tets
data1[key]=val
elseif maximum(size(val))==size(mesh.points,2)+length(mesh.lines)
data2[key]=val
elseif maximum(size(val))==length(mesh.triangles)
data_tri[key]=val
else
println("WARNING: data length of '$key' does not fit to any mesh dimension.")
end
end
if length(data0)!=0
vtk_write0(file_name*"_const",mesh,data0,binary,compressed)
end
if length(data1)!=0
vtk_write1(file_name*"_lin",mesh,data1,binary,compressed)
end
if length(data2)!=0
vtk_write2(file_name*"_quad",mesh,data2,binary,compressed)
end
if length(data_tri)!=0
vtk_write_tri(file_name*"_tri",mesh,data_tri,binary,compressed)
end
return
end
## bloch utilities
# function bloch_expand(mesh::Mesh,sol,b=:b)
# naxis=mesh.dos.naxis
# nxsector=mesh.dos.nxsector
# DOS=mesh.dos.DOS
# v=zeros(ComplexF64,naxis+nxsector*DOS)
# v[1:naxis]=sol.v[1:naxis]
# B=sol.params[b]
# for s=0:DOS-1
# v[naxis+1+s*nxsector:naxis+(s+1)*nxsector]=sol.v[naxis+1:naxis+nxsector].*exp(+2.0im*pi/DOS*B*s)
# end
# return v
# end
# function bloch_expand(mesh::Mesh,vec::Array,B::Real=0)
# naxis=mesh.dos.naxis
# nxsector=mesh.dos.nxsector
# DOS=mesh.dos.DOS
# v=zeros(ComplexF64,naxis+nxsector*DOS)
# v[1:naxis]=sol.v[1:naxis]
# for s=0:DOS-1
# v[naxis+1+s*nxsector:naxis+(s+1)*nxsector]=vec[naxis+1:naxis+nxsector].*exp(+2.0im*pi/DOS*B*s)
# end
# return v
# end
## helper functions for writing vtk data
function write_data_array(fid,data,binary=true,compressed=false)
if binary
if compressed
iob = IOBuffer()
#io.append=true
#iob = Base64.Base64EncodePipe(iob);
else
iob = Base64.Base64EncodePipe(fid);
end
format="\"binary\""
else
format="\"ascii\""
end
for dataname in keys(data)
if size(data[dataname],2)>1 #write vector output #TODO: Sanity checks for three components
datatype="$(typeof(data[dataname][1]))"
bytesize=sizeof(data[dataname][1])
write(fid,"\t\t\t\t<DataArray type=\"$datatype\" NumberOfComponents=\"3\" Name=\"$dataname\" format=$format>")
write(fid,"\n\t\t\t\t\t")
if binary
len=length(data[dataname])
if !compressed
num_of_bytes=UInt64(length(data[dataname])*bytesize)
write(iob, num_of_bytes)
end
for vec in data[dataname]
for num in vec
write(iob, num)#write number to base64 coded stream
end
end
else
for vec in data[dataname]
write(fid,string(vec)*" ")
end
end
else
datatype="$(typeof(data[dataname][1]))"
bytesize=sizeof(data[dataname][1])
#datatype="Float64"
write(fid,"\t\t\t\t<DataArray type=\"$datatype\" Name=\"$dataname\" format=$format>")
write(fid,"\n\t\t\t\t\t")
if binary
#num_of_bytes=UInt64(length(data[dataname])*bytesize)
if !compressed
num_of_bytes=UInt64(length(data[dataname])*bytesize)
write(iob, num_of_bytes)
end
for datum in data[dataname]
idxx=0
#println("$idxx : $dataname")
for (idxc,num) in enumerate(datum)
idxx+=1
#println("$idxx : $num")
write(iob, num)#write number to base64 coded stream
end
end
else
for datum in data[dataname]
write(fid,string(datum)*" ")
end
end
end
if binary
#close(iob) #close io stream
#zip compress data
if compressed
block_zcompress!(fid,take!(iob))
end
#write(fid,String(take!(io))) #write encoded data to file
end
write(fid,"\n\t\t\t\t</DataArray>\n")
end
if compressed
close(iob)
end
end
function block_zcompress!(fid,data,block_length=2^10)
iob64_encode = Base64.Base64EncodePipe(fid);
len=length(data)
number_of_blocks=len÷block_length
length_of_last_partial_block=len%block_length
if length_of_last_partial_block!=0
number_of_blocks+=1
end
compressed_block_size = Array{UInt64}(undef,number_of_blocks)
compressed_data=[]
for idx=1:number_of_blocks
if idx==number_of_blocks
block=data[((idx-1)*block_length+1):end]
else
block=data[((idx-1)*block_length+1):(idx*block_length)]
end
compressed_block = CodecZlib.transcode(CodecZlib.GzipCompressor, block)
compressed_block_size[idx]=sizeof(compressed_block)
append!(compressed_data,[compressed_block])
end
#write compressed binary entry
#io = IOBuffer()
#header
write(iob64_encode, UInt64(number_of_blocks))
write(iob64_encode, UInt64(block_length))
write(iob64_encode, UInt64(length_of_last_partial_block))
for idx=1:number_of_blocks
write(iob64_encode, UInt64(compressed_block_size[idx]))
end
#data
for idx=1:number_of_blocks
for num in compressed_data[idx]
write(iob64_encode, num)
end
end
return nothing
end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 14483 | import Arpack,LinearAlgebra#, NLsolve
#TODO: Degeneracy
# function householder_update(f,a=1)
# order=length(f)-1
# a=1.0/a
#
# if order==1 #aka Newton's method
# dz=-f[1]/(a*f[2])
# elseif order==2 #aka Halley's method
# dz=-2*f[1]*f[2]/((a+1)*f[2]^2-f[1]*f[3])
# elseif order==3
# dz=-3*f[1]*((a+1)*f[2]^2-f[1]*f[3]) / ((a^2 + 3*a + 2) *f[2]^3 - 3* (a + 1)* f[1]* f[2] *f[3] + f[1]^2* f[4])
# elseif order==4
# dz=-4*f[1]*((a^2 + 3*a + 2) *f[2]^3 - 3* (a + 1)* f[1]* f[2] *f[3] + f[1]^2* f[4]) / (-6* (a^2 + 3 *a + 2) *f[1]* f[2]^2* f[3] + (a^3 + 6 *a^2 + 11* a + 6)* f[2]^4 + f[1]^2 *(3* (a + 1)*f[3]^2 - f[1]* f[5]) + 4* (a + 1)*f[1]^2* f[4] *f[2])
# else
# dz=-5*f[1]*(-6* (a^2 + 3 *a + 2) *f[1]* f[2]^2* f[3] + (a^3 + 6 *a^2 + 11* a + 6)* f[2]^4 + f[1]^2 *(3* (a + 1)*f[3]^2 - f[1]* f[5]) + 4* (a + 1)*f[1]^2* f[4] *f[2]) / ((a + 1)*(a + 2)*(a + 3)*(a + 4)* f[2]^5 + 10* (a + 1)*(a + 2)*f[1]^2*f[4]*f[2]^2-10*(a + 1)*(a + 2)*(a + 3)*f[1]*f[2]^3*f[3]+f[1]^3*(f[1]*f[6] - 10 *(a + 1) *f[4]* f[3]) + 5 *(a + 1) *f[1]^2*f[2]* (3* (a + 2)* f[3]^2 - f[1]*f[5]))
# end
# return dz
# end
function householder_update(f)
order=length(f)-1
if order==1
dz=-f[1]/f[2]
elseif order==2
dz=-f[1]*f[2]/ (f[2]^2-0.5*f[1]*f[3])
elseif order==3
dz=-(6*f[1]*f[2]^2-3*f[1]^2*f[3]) / (6*f[2]^3-6*f[1]*f[2]*f[3]+f[1]^2*f[4])
elseif order == 4
dz=-(4 *f[1] *(6* f[2]^3 - 6 *f[1] *f[2]* f[3] + f[1]^2* f[4]))/(24 *f[2]^4 - 36* f[1] *f[2]^2 *f[3] + 6*f[1]^2* f[3]^2 + 8*f[1]^2* f[2]* f[4] - f[1]^3* f[5])
else
dz=(5 *f[1] *(24 *f[2]^4 - 36* f[1] *f[2]^2* f[3] + 6 *f[1]^2* f[3]^2 + 8* f[1]^2* f[2]* f[4] - f[1]^3* f[5]))/(-120* f[2]^5 + 240* f[1]* f[2]^3* f[3] - 60* f[1]^2* f[2]^2* f[4] + 10* f[1]^2* f[2]* (-9* f[3]^2 + f[1]* f[5]) + f[1]^3* (20* f[3]* f[4] - f[1]* f[6]))
end
return dz
end
"""
sol::Solution, n, flag = householder(L::LinearOperatorFamily, z; <keyword arguments>)
Use a Householder method to iteratively find an eigenpar of `L`, starting the the iteration from `z`.
# Arguments
- `L::LinearOperatorFamily`: Definition of the nonlinear eigenvalue problem.
- `z`: Initial guess for the eigenvalue.
- `maxiter::Integer=10`: Maximum number of iterations.
- `tol=0`: Absolute tolerance to trigger the stopping of the iteration. If the difference of two consecutive iterates is `abs(z0-z1)<tol` the iteration is aborted.
- `relax=1`: relaxation parameter
- `lam_tol=Inf`: tolerance for the auxiliary eigenvalue to test convergence. The default is infinity, so there is effectively no test.
- `order::Integer=1`: Order of the Householder method, Maximum is 5
- `nev::Integer=1`: Number of Eigenvalues to be searched for in intermediate ARPACK calls.
- `v0::Vector`: Initial vector for Krylov subspace generation in ARPACK calls. If not provided the vector is initialized with ones.
- `v0_adj::Vector`: Initial vector for Krylov subspace generation in ARPACK calls. If not provided the vector is initialized with `v0`.
- `output::Bool`: Toggle printing online information.
# Returns
- `sol::Solution`
- `n::Integer`: Number of perforemed iterations
- `flag::Integer`: flag reporting the success of the method. Most important values are `1`: method converged, `0`: convergence might be slow, `-1`:maximum number of iteration has been reached. For other error codes see the source code.
# Notes
Housholder methods are a generalization of Newton's method. If order=1 the Housholder method is identical to Newton's method. The solver then reduces to the "generalized Rayleigh Quotient iteration" presented in [1]. If no relaxation is used (`relax == 1`), the convergence rate is of `order+1`. With relaxation (`relax != 1`) the convergence rate is 1.
Thus, with a higher order less iterations will be necessary. However, the computational time must not necessarily improve nor do the convergence properties. Anyway, if the method converges, the error in the eigenvalue is bounded above by `tol`. For more details on the solver, see the thesis [2].
# References
[1] P. Lancaster, A Generalised Rayleigh Quotient Iteration for Lambda-Matrices,Arch. Rational Mech Anal., 1961, 8, p. 309-322, https://doi.org/10.1007/BF00277446
[2] G.A. Mensah, Efficient Computation of Thermoacoustic Modes, Ph.D. Thesis, TU Berlin, 2019
See also: [`beyn`](@ref)
"""
function householder(L,z;maxiter=10,tol=0.,relax=1.,lam_tol=Inf,order=1,nev=1,v0=[],v0_adj=[],output=true)
if output
println("Launching Householder...")
println("Iter Res: dz: z:")
println("----------------------------------")
end
z0=complex(Inf)
lam=float(Inf)
n=0
active=L.active #IDEA: better integrate activity into householder
mode=L.mode #IDEA: same for mode
if v0==[]
v0=ones(ComplexF64,size(L(0))[1])
end
if v0_adj==[]
v0_adj=conj.(v0)#ones(ComplexF64,size(L(0))[1])
end
flag=1
M=-L.terms[end].coeff
try
while abs(z-z0)>tol && n<maxiter #&& abs(lam)>lam_tol
if output; println(n,"\t\t",abs(lam),"\t",abs(z-z0),"\t", z );flush(stdout); end
z0=z
L.params[L.eigval]=z
L.params[L.auxval]=0
A=L(z)
lam,v = Arpack.eigs(A,M,nev=nev, sigma = 0,v0=v0)
lam_adj,v_adj = Arpack.eigs(A',M', nev=nev, sigma = 0,v0=v0_adj)
#TODO: consider constdouton
#TODO: multiple eigenvalues
indexing=sortperm(lam, by=abs)
lam=lam[indexing]
v=v[:,indexing]
indexing=sortperm(lam_adj, by=abs)
lam_adj=lam_adj[indexing]
v_adj=v_adj[:,indexing]
delta_z =[]
L.active=[L.auxval,L.eigval]
for i in 1:nev
L.params[L.auxval]=lam[i]
sol=Solution(L.params,v[:,i],v_adj[:,i],L.auxval)
perturb!(sol,L,L.eigval,order,mode=:householder)
f=[factorial(idx-1)*coeff for (idx,coeff) in enumerate(sol.eigval_pert[Symbol("$(string(L.eigval))/Taylor")])]
dz=householder_update(f) #TODO: implement multiplicity
#print(z+dz)
push!(delta_z,dz)
end
L.active=[L.eigval]
indexing=sortperm(delta_z, by=abs)
lam=lam[indexing[1]]
L.params[L.auxval]=lam #TODO remove this from the loop body
z=z+relax*delta_z[indexing[1]]
v0=(1-relax)*v0+relax*v[:,indexing[1]]
v0_adj=(1-relax)*v0_adj+relax*v_adj[:,indexing[1]]
n+=1
end
catch excp
if output
println("Error occured:")
println(excp)
println(typeof(excp))
println("...aborted Householder!")
end
flag=-2
if typeof(excp) <: Arpack.ARPACKException
flag=-4
if excp==Arpack.ARPACKException(-9999)
flag=-9999
end
elseif excp== LinearAlgebra.SingularException(0) #This means that the solution is so good that L(z) cannot be LU factorized...TODO: implement other strategy into perturb
flag=-6
L.params[L.eigval]=z
end
end
if flag==1
L.params[L.eigval]=z
if output; println(n,"\t\t",abs(lam),"\t",abs(z-z0),"\t", z ); end
if n>=maxiter
flag=-1
if output; println("Warning: Maximum number of iterations has been reached!");end
elseif abs(lam)<=lam_tol
flag=1
if output; println("Solution has converged!"); end
elseif abs(z-z0)<=tol
flag=0
if output; println("Warning: Slow convergence!"); end
elseif isnan(z)
flag=-5
if output; println("Warning: computer arithmetics problem. Eigenvalue is NaN"); end
else
if output; println("Warning: This should not be possible....\n If you can read this contact GAM!");end
flag=-3
println(z)
end
if output
println("...finished Householder!")
println("#####################")
println(" Householder results ")
println("#####################")
println("Number of steps: ",n)
println("Last step parameter variation:",abs(z0-z))
println("Auxiliary eigenvalue λ residual (rhs):", abs(lam))
println("Eigenvalue:",z)
println("Eigenvalue/(2*pi):",z/2/pi)
end
end
L.active=active
L.mode=mode
#normalization
v0/=sqrt(v0'*M*v0)
v0_adj/=conj(v0_adj'*L(L.params[L.eigval],1)*v0)
return Solution(L.params,v0,v0_adj,L.eigval), n, flag
end
##PAde solver
function poly_roots(p)
N=length(p)-1
C=zeros(ComplexF64,N,N)
for i=2:N
C[i,i-1]=1
end
C[:,N].=-p[1:N]./p[N+1]
return LinearAlgebra.eigvals(C)
end
function padesolve(L,z;maxiter=10,tol=0.,relax=1.,lam_tol=Inf,order=1,nev=1,v0=[],v0_adj=[],output=true,num_order=1)
if output
println("Launching Pade solver...")
println("Iter Res: dz: z:")
println("----------------------------------")
end
z0=complex(Inf)
lam=float(Inf)
lam0=float(Inf)
n=0
active=L.active #IDEA: better integrate activity into householder
mode=L.mode #IDEA: same for mode
if v0==[]
v0=ones(ComplexF64,size(L(0))[1])
end
if v0_adj==[]
v0_adj=conj.(v0)#ones(ComplexF64,size(L(0))[1])
end
flag=1
M=-L.terms[end].coeff
try
while abs(z-z0)>tol && n<maxiter #&& abs(lam)>lam_tol
if output; println(n,"\t\t",abs(lam),"\t",abs(z-z0),"\t", z );flush(stdout); end
L.params[L.eigval]=z
L.params[L.auxval]=0
A=L(z)
lam,v = Arpack.eigs(A,M,nev=nev, sigma = 0,v0=v0)
lam_adj,v_adj = Arpack.eigs(A',M', nev=nev, sigma = 0,v0=v0_adj)
#TODO: consider constdouton
#TODO: multiple eigenvalues
indexing=sortperm(lam, by=abs)
lam=lam[indexing]
v=v[:,indexing]
indexing=sortperm(lam_adj, by=abs)
lam_adj=lam_adj[indexing]
v_adj=v_adj[:,indexing]
delta_z =[]
back_delta_z=[]
L.active=[L.auxval,L.eigval]
#println("#############")
#println("lam0:$lam0 ")
for i in 1:nev
L.params[L.auxval]=lam[i]
sol=Solution(L.params,v[:,i],v_adj[:,i],L.auxval)
perturb!(sol,L,L.eigval,order,mode=:householder)
coeffs=sol.eigval_pert[Symbol("$(L.eigval)/Taylor")]
num,den=pade(coeffs,num_order,order-num_order)
#forward calculation (has issues with multi-valuedness)
roots=poly_roots(num)
indexing=sortperm(roots, by=abs)
dz=roots[indexing[1]]
push!(delta_z,dz)
#poles=sort(poly_roots(den),by=abs)
#poles=poles[1]
#println(">>>$i<<<")
#println("$coeffs")
#println("residue:$(LinearAlgebra.norm((A-lam[i]*M)*v[:,i])) and $(LinearAlgebra.norm((A'-lam_adj[i]*M')*v_adj[:,i]))")
#println("poles: $(poles+z) r:$(abs(poles))")
#backward check(for solving multi-valuedness problems by continuity)
if z0!=Inf
back_lam=polyval(num,z0-z)/polyval(den,z0-z)
#println("back:$back_lam")
#println("root: $(z+dz)")
#estm_lam=polyval(num,dz)/polyval(den,dz)
#println("estm. lam: $estm_lam")
back_lam=lam0-back_lam
push!(back_delta_z,back_lam)
end
end
L.active=[L.eigval]
if z0!=Inf
indexing=sortperm(back_delta_z, by=abs)
else
indexing=sortperm(delta_z, by=abs)
end
lam=lam[indexing[1]]
L.params[L.auxval]=lam #TODO remove this from the loop body
z0=z
lam0=lam
z=z+relax*delta_z[indexing[1]]
v0=(1-relax)*v0+relax*v[:,indexing[1]]
v0_adj=(1-relax)*v0_adj+relax*v_adj[:,indexing[1]]
n+=1
end
catch excp
if output
println("Error occured:")
println(excp)
println(typeof(excp))
println("...aborted Householder!")
end
flag=-2
if typeof(excp) <: Arpack.ARPACKException
flag=-4
if excp==Arpack.ARPACKException(-9999)
flag=-9999
end
elseif excp== LinearAlgebra.SingularException(0) #This means that the solution is so good that L(z) cannot be LU factorized...TODO: implement other strategy into perturb
flag=-6
L.params[L.eigval]=z
end
end
if flag==1
L.params[L.eigval]=z
if output; println(n,"\t\t",abs(lam),"\t",abs(z-z0),"\t", z ); end
if n>=maxiter
flag=-1
if output; println("Warning: Maximum number of iterations has been reached!");end
elseif abs(lam)<=lam_tol
flag=1
if output; println("Solution has converged!"); end
elseif abs(z-z0)<=tol
flag=0
if output; println("Warning: Slow convergence!"); end
elseif isnan(z)
flag=-5
if output; println("Warning: computer arithmetics problem. Eigenvalue is NaN"); end
else
if output; println("Warning: This should not be possible....\n If you can read this contact GAM!");end
flag=-3
println(z)
end
if output
println("...finished Householder!")
println("#####################")
println(" Householder results ")
println("#####################")
println("Number of steps: ",n)
println("Last step parameter variation:",abs(z0-z))
println("Auxiliary eigenvalue λ residual (rhs):", abs(lam))
println("Eigenvalue:",z)
println("Eigenvalue/(2*pi):",z/2/pi)
end
end
L.active=active
L.mode=mode
#normalization
v0/=sqrt(v0'*M*v0)
v0_adj/=conj(v0_adj'*L(L.params[L.eigval],1)*v0)
return Solution(L.params,v0,v0_adj,L.eigval), n, flag
end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 21178 | ## NLEVP
"""
Term{T}
Single term of a linear operator family.
# Fields
- `coeff::T`: matrix coefficient of the term
- `func::Tuple`: tuple of scalar-valued functions multiplying the matrix coefficient
- `symbol::String`: character string for displaying the function(s)
- `params::Tuple`: tuple of tuples containing function symbols for each function
- `operator:String`: String for displaying the matrix coefficient
- `varlist::Array{Symbol,1}`: Array containing all symbols of fucntion arguments
that are used at least once
"""
struct Term{T}
coeff::T
func::Tuple
symbol::String
params::Tuple
operator::String
varlist::Array{Symbol,1} #TODO: this is redundant information
end
#constructor
function Term(coeff,func::Tuple,params::Tuple,symbol::String,operator::String)
varlist=Symbol[]
for par in params
for var in par
push!(varlist,var)
end
end
unique!(varlist)
return Term(coeff,func,symbol,params,operator, varlist)
end
"""
term=Term(coeff,func::Tuple,params::Tuple,operator::String)
Standard constructor for type `Term`.
# Arguments
- `coeff`: matrix coefficient of the term
- `func::Tuple`: tuple of scalar-valued functions multiplying the matrix coefficient
- `params::Tuple`: tuple of tuples containing function symbols for each function
- `operator:String`: String for displaying the matrix coefficient
# Notes
The rendering of the functions of `term` ist automotized. If the passed functions
implement a method `f(z::Symbol)` then this method is used, otherwise the
functions will be simply displayed with the string `f`. You can overwrite this
behavior by explicitly passing a string for the function display using the syntax
term =Term(coeff,func::Tuple,params::Tuple,symbol::String,operator::String)
where the extra argument `symbol`is the string used to display the function.
See also: [LinearOperatorFamily](@ref)
"""
function Term(coeff,func::Tuple,params::Tuple,operator::String)
symbol=""
for (f,p) in zip(func,params)
if applicable(f,p...)
symbol*=f(p...)
else
symbol*="f("
for idx = 1:length(p)-1
symbol*="$(p[idx]),"
end
symbol*="$(p[end]))"
end
end
return Term(coeff,func,params,symbol,operator)
end
#Solution object
"""
Solution
Type for the solution of an iterative eigensolver.
# Fields
- `params`: Dictionary mapping parameter symbols to their values
- `v`: right (direct) eigenvector
- `v_adj`: left (adjoint) eigenvector
- `eigval`: the symbol of the parameter that is the eigenvalue
- `eigval_pert`: extra data for asymptotic series expansion of the eigenvalue
- `v_pert`: extra data for asymptotic series expansion of the eigenvector
- `auxval`: the symbol of the parameter that is the auxiliary eigenvalue
See also: [LinearOperatorFamily](@ref)
"""
mutable struct Solution #IDEA: make immutable and parametrized type
params
v
v_adj
eigval
eigval_pert
v_pert
auxval
end
#constructor
"""
sol=Solution(params,v,v_adj,eigval,auxval=Symbol())
Standard constructor for a solution object. See [Solution](@ref) for details.
"""
function Solution(params,v,v_adj,eigval,auxval=Symbol())
return Solution(deepcopy(params),v,v_adj,eigval,Dict{Symbol,Any}(),Dict{Symbol,Any}(),auxval) #TODO: copy params?
end
"""
LinearOperatorFamily
Type for a linear operator family. The type is mutable.
# Fields
- `terms`: Array of terms forming the operator family
- `params`: Dictionary mapping parameter symbols to their values
- `eigval`: the symbol of the parameter that is the eigenvalue
- `auxval`: the symbol of the parameter that is the auxiliary eigenvalue
- `active`: list of symbols that can be actively change when using an instance of
the family as a function.
- `mode`: mode that is controlling which terms are evalauted when calling an
instance of the family. This field is not to be modified by the user.
See also: [Solution](@ref), [Term](@ref)
"""
mutable struct LinearOperatorFamily #TODO: add example to the doc
terms::Array{Term,1}
params::Dict{Symbol,ComplexF64}
eigval::Symbol
auxval::Symbol
active::Array{Symbol,1}
mode::Symbol
end
#constructors
"""
L=LinearOperatorFamily(params,values)
Standard constructor for an empty Linear operator family.
# Arguments
- `params`: List of parameter symbols
- `values`: List of corresponding parameter values
# Note
The first parameter appearing in `params` will be assigned as eigenvalue. If
there are more than 1 parameters in the list, the last parameter will be designated
as auxiliary eigenvalue. (These choices can be changed after construction)
If `values`is omitted, then all parameters will be initialized with `NaN+NaN*im`.
If also `params` is omitted the family will be initialized with `:λ` as its
eigenvalue an no auxiliary eigenvalue.
Terms can be added to the family using the `+` operator or the more memory efficient
`push!` function. For instance `L+=term` or `push!(L,term)` both add `term`
to the list of terms.
See also: [Solution](@ref), [Term](@ref)
"""
# standard constructors
function LinearOperatorFamily(params,values)
terms=Term[]
eigval=Symbol(params[1])
if length(params)>1
auxval=Symbol(params[end])
else
auxval=Symbol("")
end
active=[eigval]
pars=Dict{Symbol,ComplexF64}()
for (p,v) in zip(params,values) #Implement alphabetical sorting
pars[Symbol(p)]=v
end
mode=:all
return LinearOperatorFamily(terms,pars,eigval,auxval,active,mode)
end
function LinearOperatorFamily()
return LinearOperatorFamily(["λ",],[NaN+NaN*1im,])
end
function LinearOperatorFamily(params)
return LinearOperatorFamily(params,[NaN+NaN*1im for a in params])
end
#loader
"""
L=LinearOperatorFamily(fname::String)
Load and construct `LinearOperatorFamily` from file `fname`.
See also: [`save`](@ref)
"""
function LinearOperatorFamily(fname::String)
D=read_toml(fname)
eigval=D["eigval"]
auxval=D["auxval"]
params=[]
vals=[]
for (par,val) in D["params"]
push!(params,par)
push!(vals,val)
end
L=LinearOperatorFamily(params,vals)
L.eigval=eigval
L.auxval=auxval
L.active=[eigval]
for idx =1:length(D["/terms"])
term=D["/terms"]["/"*string(idx)]
I=term["/sparse_matrix"]["I"]
J=term["/sparse_matrix"]["J"]
V=term["/sparse_matrix"]["V"]
m, n = term["size"]
M=sparse(I,J,V,m,n)
push!(L,Term(M,term["functions"],term["params"],term["symbol"],term["operator"]))
end
return L
end
import Dates
#saver
"""
save(fname::String,L::LinearOperatorFamily)
Save `L` to file `fname`. The file is utf8 encoded and adheres to a Julia-enriched TOML standard.
See also: [`LinearOperatorFamily`](@ref)
"""
function save(fname,L::LinearOperatorFamily)
date=string(Dates.now(Dates.UTC))
eq=""
for term in L.terms
if term.operator[1]=='_' #TODO: put this into signature?
continue
end
eq*="+"*string(term)
end
open(fname,"w") do f
write(f,"# LinearOperatorFamily version 0\n")
write(f,"#"*date*"\n")
write(f,"#"*eq*"\n")
write(f,"params=[")
for (key,value) in L.params
write(f,"(:$(string(key)),$value),\n")
end
write(f,"]\n")
write(f,"eigval=:$(L.eigval)\n")
write(f,"auxval=:$(L.auxval)\n")
#TODO activitiy and terms
write(f,"[terms]\n")
for (idx,term) in enumerate(L.terms)
write(f,"\t[terms.$idx]\n")
write(f,"\tfunctions=(")
for func in term.func
write(f,"$func,")
end
write(f,")\n")
write(f,"\tsymbol=\"$(term.symbol)\"\n")
write(f,"\tparams=$(term.params)\n")
# for param in term.params
# write(f,"[")
# for par in param
# write(f,":$(String(par)),")
# end
# write(f,"],")
# end
# write(f,"]\n")
write(f,"\toperator=\"$(term.operator)\"\n")
m,n=size(term.coeff)
write(f,"\tsize=[$m,$n]\n")
#write(f,"\tis_sparse=$(SparseArrays.issparse(term.coeff))\n")
write(f,"\t\t[terms.$idx.sparse_matrix]\n")
I,J,V=SparseArrays.findnz(term.coeff)
write(f,"\t\tI=$I\n")
write(f,"\t\tJ=$J\n")
#write(f,"\t\tV=$V\n")
write(f,"\t\tV=Complex{Float64}[")
for v in V
if imag(v)>=0
write(f,"$(real(v))+$(imag(v))im,")
else
write(f,"$(real(v))$(imag(v))im,")
end
end
write(f,"]\n")
write(f,"\n")
end
end
end
#TODO lesen
#eval funktion nutzen
#beginnt ist mit : ????
#beginnt es mit (
#beginnt es mit [ ???
#dann eval
# es gibt nur drei arten: tags, variablen, listen/tuple rest ist eval
import Base.push!
function push!(L::LinearOperatorFamily,T::Term)
d=Dict()
for (idx,term) in enumerate(L.terms)
d[(term.func, term.params)]=idx
end
signature=(T.func,T.params)
if signature in keys(d) #change existing term if signature known
idx=d[signature]
coeff=L.terms[idx].coeff+T.coeff
if LinearAlgebra.norm(coeff)==0
deleteat!(L.terms,idx) #delte if resulting coeff is 0
#check for unbound variables and delete
vars=[]
for term in L.terms
for pars in term.params
for par in pars
if par ∉ vars
push!(vars,par)
end
end
end
end
for par in keys(T.params)
if par ∉ vars
delete!(L.params,par)
end
end
else
L.terms[idx]=Term(coeff,L.terms[idx].func,L.terms[idx].symbol,L.terms[idx].params,L.terms[idx].operator,L.terms[idx].varlist) #overwrite term if coeff is non-zero
end
else #add term if signature is new
for pars in T.params
for par in pars
if par ∉ keys(L.params)
L.params[par]=NaN+NaN*1im #initialize variable if its new
end
end
end
push!(L.terms,T)
end
end
# function push!(a::LinearOperatorFamily,b::LinearOperatorFamily)
# push!(a.terms,b.terms)
# end
#
#
import Base.(+)
function (+)(a::LinearOperatorFamily,b::Term)
L=deepcopy(a)
push!(L,b)
return L
end
function (+)(b::Term,a::LinearOperatorFamily,)
L=deepcopy(a)
push!(L,b)
return L
end
import Base.(-)
function (-)(a::LinearOperatorFamily,b::Term)
L=deepcopy(a)
push!(L,Term(-b.coeff,b.func,b.symbol,b.params,b.operator,b.varlist))
return L
end
function (-)(b::Term,a::LinearOperatorFamily)
L=deepcopy(a)
for i=1:length(L.terms)
L.terms[i].coeff*=-1
end
push!(L,b)
return L
end
#nice display of LinearOperatorFamilies in interactive and other modes
import Base.show
function show(io::IO,L::LinearOperatorFamily)
if !isempty(L.terms)
shape=size(L.terms[1].coeff)
if length(shape)==2
txt="$(shape[1])×$(shape[2])-dimensional operator family: \n\n"
else
txt="$(shape[1])-dimensional vector family: \n\n"
end
else
txt="empty operator family\n\n"
end
eq=""
for term in L.terms
if term.operator[1]=='_'
continue
end
eq*="+"*string(term)
end
parameter_list="\n\nParameters\n----------\n"
for (par,val) in L.params
parameter_list*=string(par)*"\t"*string(val)*"\n"
end
print(io, txt*eq[2:end]*parameter_list)
end
import Base.string
function string(T::Term)
if T.symbol==""
txt=""
else
txt=string(T.symbol)*"*"
end
txt*=T.operator
end
function show(io::IO,T::Term)
print(io,string(T))
end
#make solution showable
function string(sol::Solution)
txt="""####Solution####
eigval:
$(sol.eigval) = $(sol.params[sol.eigval])
Parameters:
"""
for (key,val) in sol.params
if key!=sol.eigval && key!=sol.auxval
txt*="$key = $val\n"
end
end
if sol.auxval in keys(sol.params)
txt*="""
Residual:
abs($(sol.auxval)) = $(abs(sol.params[sol.auxval]))
"""
end
return txt
end
function show(io::IO,sol::Solution)
print(io,string(sol))
end
#make terms callable
function (term::Term)(dict::Dict{Symbol,Tuple{ComplexF64,Int64}})
coeff::ComplexF64=1 #TODO parametrize type
for (func,pars) in zip(term.func, term.params)
args=[]
dargs=[]
for par in pars
push!(args,dict[par][1])
push!(dargs,dict[par][2])
end
coeff*=func(args...,dargs...)
end
return coeff*term.coeff
end
#make LinearOperatorFamily callable
function(L::LinearOperatorFamily)(args...;oplist=[],in_or_ex=false)
if L.mode==:all # if mode is all the first n args correspond to the values of the n active variables
for (var,val) in zip(L.active,args)
L.params[var]=val #change the active variables
end
end
if L.mode==:all && length(args)==length(L.active)
derivs=zeros(Int64,length(L.active))
else
derivs=args[end-length(L.active)+1:end] #TODO implement sanity check on length of args
end
derivDict=Dict{Symbol,Int64}()
for (var, drv) in zip(L.active,derivs)
derivDict[var]=drv #create a dictionairy for the active variables
end
coeff=spzeros(size(L.terms[1].coeff)...) #TODO: improve this to handle more flexible matrices
for term in L.terms
if (!in_or_ex && term.operator in oplist) || (in_or_ex && !(term.operator in oplist)) || (L.mode!=:householder && term.operator=="__aux__") #TODO: consider deprecating this feature together with nicoud and picard
continue
end
#check whether term is constant w.r.t. to some parameter then deriv is 0 thus continue
skip=false
for (var,d) in zip(L.active, derivs)
if d>0 && !(var in term.varlist)
skip=true
break
end
end
if skip
continue
end
dict=Dict{Symbol,Tuple{Complex{Float64},Int64}}()
for var in term.varlist
dict[var]=(L.params[var], var in keys(derivDict) ? derivDict[var] : 0)
end
coeff+=term(dict) #
end
if L.mode in [:compact,:householder]
coeff/=prod(factorial.(float.(args[end-length(L.active)+1:end])))
end
return coeff
end
#wrapper to perturbation theory
#TODO: functional programming renders this obsolete, no?
"""
perturb!(sol::Solution,L::LinearOperatorFamily,param::Symbol,N::Int; <keyword arguments>)
Compute the `N`th order power series perturbation coefficients for the solution `sol` of the nonlineaer eigenvalue problem given by the operator family `L` with respect to the parameter `param`. The coefficients will be stored in the field `sol.eigval_pert` and `sol.v_pert` for the eigenvalue and the eignevector, respectively.
# Keyword Arguments
- `mode = :compact`: parameter controlling internal programm flow. Use the default, unless you know what you are doing.
# Notes
For large perturbation orders `N` the method might be slow.
See also: [`perturb_fast!`](@ref)
"""
function perturb!(sol::Solution,L::LinearOperatorFamily,param::Symbol,N::Int;mode=:compact)
active=L.active #TODO: copy?
params=L.params
L.params=sol.params
current_mode=L.mode
L.active=[sol.eigval, param]
L.mode=mode
pade_symbol=Symbol("$(string(param))/Taylor")
sol.eigval_pert[pade_symbol],sol.v_pert[pade_symbol]=perturb(L,N,sol.v,sol.v_adj)
sol.eigval_pert[pade_symbol][1]=sol.params[sol.eigval]
L.active=active
L.mode=current_mode
L.params=params
return
end
"""
perturb_fast!(sol::Solution,L::LinearOperatorFamily,param::Symbol,N::Int; <keyword arguments>)
Compute the `N`th order power series perturbation coefficients for the solution `sol` of the nonlineaer eigenvalue problem given by the operator family `L` with respect to the parameter `param`. The coefficients will be stored in the field `sol.eigval_pert` and `sol.v_pert` for the eigenvalue and the eignevector, respectively.
# Keyword Arguments
- `mode = :compact`: parameter controlling internal programm flow. Use the default, unless you know what you are doing.
# Notes
This method reads multi-indeces for the computation of the power series coefficients from disk. Make sure that JulHoltz is properly installed to use this fast method.
See also: [`perturb!`](@ref)
"""
function perturb_fast!(sol::Solution,L::LinearOperatorFamily,param::Symbol,N::Int;mode=:compact)
active=L.active #TODO: copy?
params=L.params
L.params=sol.params
current_mode=L.mode
L.active=[sol.eigval, param]
L.mode=mode
pade_symbol=Symbol("$(string(param))/Taylor")
sol.eigval_pert[pade_symbol],sol.v_pert[pade_symbol]=perturb_disk(L,N,sol.v,sol.v_adj)
sol.eigval_pert[pade_symbol][1]=sol.params[sol.eigval]
L.active=active
L.mode=current_mode
L.params=params
return
end
"""
perturb_norm!(sol::Solution,L::LinearOperatorFamily,param::Symbol,N::Int; <keyword arguments>)
Compute the `N`th order power series perturbation coefficients for the solution `sol` of the nonlineaer eigenvalue problem given by the operator family `L` with respect to the parameter `param`. The coefficients will be stored in the field `sol.eigval_pert` and `sol.v_pert` for the eigenvalue and the eignevector, respectively.
# Keyword Arguments
- `mode = :compact`: parameter controlling internal programm flow. Use the default, unless you know what you are doing.
# Notes
This method reads multi-indeces for the computation of the power series coefficients from disk. Make sure that JulHoltz is properly installed to use this fast method.
See also: [`perturb!`](@ref)
"""
function perturb_norm!(sol::Solution,L::LinearOperatorFamily,param::Symbol,N::Int;mode=:compact)
active=L.active #TODO: copy?
params=L.params
L.params=sol.params
current_mode=L.mode
L.active=[sol.eigval, param]
L.mode=mode
pade_symbol=Symbol("$(string(param))/Taylor")
sol.eigval_pert[pade_symbol],sol.v_pert[pade_symbol]=perturb_norm(L,N,sol.v,sol.v_adj)
sol.eigval_pert[pade_symbol][1]=sol.params[sol.eigval]
L.active=active
L.mode=current_mode
L.params=params
return
end
#TODO: Implement solution class
function pade(ω,L,M) #TODO: harmonize symbols for eigenvalues, modes etc
A=zeros(ComplexF64,M,M)
for i=1:M
for j=1:M
if L+i-j>=0
A[i,j]=ω[L+i-j+1] #+1 is for 1-based indexing
end
end
end
b=A\(-ω[L+2:L+M+1])
b=[1;b]
a=zeros(ComplexF64,L+1)
for l=0:L
for m=0:l
if m<=M
a[l+1]+=ω[l-m+1]*b[m+1] #+1 is for zero-based indexing
end
end
end
return a,b
end
function pade!(sol::Solution,param,L::Int64,M::Int64;vector=false)
#TODO: implement sanity check whether L+M+1=length(sol.eigval_pert[:Taylor])
pade_symbol=Symbol("$(string(param))/[$L/$M]")
taylor_symbol=Symbol("$(string(param))/Taylor")
sol.eigval_pert[pade_symbol]=pade(sol.eigval_pert[taylor_symbol],L,M)
#TODO Degeneracy
if vector
D=length(sol.v)
#preallocation
A=Array{Array{ComplexF64}}(undef,L+1)
B=Array{Array{ComplexF64}}(undef,M+1)
for idx in 1:length(A)
A[idx]=Array{ComplexF64}(undef,D)
end
for idx in 1:length(B)
B[idx]=Array{ComplexF64}(undef,D)
end
for idx in 1:D
v=Array{ComplexF64}(undef,L+M+1)
for ord = 1:L+M+1
v[ord]=sol.v_pert[taylor_symbol][ord][idx]
end
a,b=pade(v,L,M)
for ord=1:length(A)
A[ord][idx]=a[ord]
end
for ord=1:length(B)
B[ord][idx]=b[ord]
end
end
sol.v_pert[pade_symbol]=A,B
end
return
end
#make solution object callable
function (sol::Solution)(param::Symbol,ε,L=0,M=0; vector=false) #Todo not really performant, consider syntax that allows for vectorization in eigenvector
pade_symbol=Symbol("$(string(param))/[$L/$M]")
if pade_symbol ∉ keys(sol.eigval_pert) || (vector && pade_symbol ∉ keys(sol.v_pert))
pade!(sol,param,L,M,vector=vector)
end
a,b=sol.eigval_pert[pade_symbol]
Δε=ε-sol.params[param]
eigval=polyval(a,Δε)/polyval(b,Δε)
if !vector
return eigval
else
A, B = sol.v_pert[pade_symbol]
eigvec = polyval(A,Δε) ./ polyval(B,Δε)
return eigval, eigvec
end
end
#TODO: implement parameter activity in solution type
# function polyval(A,z)
# f=zeros(eltype(A[1]),length(A[1]))
# for (idx,a) in enumerate(A)
# f.+=a*(z^(idx-1))
# end
# return f
# end
#polyval(p,z)= sum(p.*(z.^(0:length(p)-1))) #TODO: Although, this is not performance critical. Consider some performance aspects
"""
f=polyval(p,z)
Evaluate polynomial f(z)=∑_i p[i]z^1 at z, using Horner's scheme.
"""
function polyval(p,z)
f=ones(size(z))*p[end]
for i = length(p)-1:-1:1
f.*=z
f.+=p[i]
end
return f
end
function polyval(p,z::Number)
f=p[end]
for i = length(p)-1:-1:1
f*=z
f+=p[i]
end
return f
end
function estimate_pol(ω::Array{Complex{Float64},1})
N=length(ω)
Δε=zeros(ComplexF64,N-2)
k=zeros(ComplexF64,N-2)
for j =2:length(ω)-1
i=j-1 # index shift to account for 1-based indexing
denom=(i+1)*ω[j+1]*ω[j-1]-i*ω[j]^2
Δε[i]=ω[j]*ω[j-1]/denom
k[i]=(i^2-1)*ω[j+1]*ω[j-1]-(i*ω[j])^2
end
return Δε,k
end
function estimate_pol(sol::Solution,param::Symbol)
pade_symbol=Symbol("$(string(param))/Taylor")
return estimate_pol(sol.eigval_pert[pade_symbol])
end
function conv_radius(a::Array{Complex{Float64},1})
N=length(a)
r=zeros(Float64,N-1)
for n=1:N-1
r[n]=abs(a[n]/a[n+1])
end
return r
end
function conv_radius(sol::Solution,param::Symbol)
pade_symbol=Symbol("$(string(param))/Taylor")
return conv_radius(sol.eigval_pert[pade_symbol])
end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 5235 | ## algebra
#include("fit_ss.jl")
function pow0(z::ComplexF64,k::Int=0)::ComplexF64
if k==0
return 1
elseif k>0
return 0
else
return complex(NaN)
end
end
pow0(z::Symbol)=""
function pow1(z::ComplexF64,k::Int=0)::ComplexF64
if k==0
return z
elseif k==1
return 1
elseif k>1
return 0
else
return complex(NaN)#force NaN if a negative derivative is requested
end
end
pow1(z::Symbol)="$z"
function pow2(z::ComplexF64,k::Int=0)::ComplexF64
if k==0
return z^2
elseif k==1
return 2*z
elseif k==2
return 2
elseif k>2
return 0
else
return complex(NaN) #force NaN if a negative derivative is requested
end
end
pow2(z::Symbol)="$z^2"
#TODO turn this into a macro
function pow(z::ComplexF64,k::Int64,a::Int64)::ComplexF64
if k>a>0
f= 0
elseif k>=0
f=1
i=a
for j=0:k-1
f*=i
i-=1
end
f*=z^(a-k)
else
f=complex(NaN)
end
return f
end
function pow_a(a::Int64)
function f(z::ComplexF64,k::Int64=0)::ComplexF64
let a=a
return pow(z,k,a)
end#let
end
#This code fails incremental compilation.
#TODO: check why
# if a==0
# f(z::Symbol)=""
# elseif a==1
# f(z::Symbol)="$z"
# else
# f(z::Symbol)="$z^$a"
# end
function f(z::Symbol)
let a=a
if a==0
return ""
elseif a==1
return "$z"
else
return
"$z^$a"
end
end
end
return f
end
function generate_exp_az(a)
function f(z::ComplexF64,k::Int)::ComplexF64
let a=a
if k>=0
return a^k*exp(a*z)
else
return NaN+NaN*1im
end
end
end
function f(z::Symbol)::String
let a=a
return "exp(a$z)"
end
end
return f
end
function exp_az(z::ComplexF64,a::ComplexF64,k::Int)::ComplexF64
if k>=0
return a^k*exp(a*z)
else
return nothing
end
end
function exp_delay(ω::ComplexF64,τ::ComplexF64,m::Int,n::Int)::ComplexF64
a=-1.0im
u(z,l)=pow(z,l,m)
f=0
for i = 0:n
f+=binomial(n,i)*u(τ,i)*(a*ω)^(n-i)
end
f*=a^m*exp(a*ω*τ)
return f
end
function exp_delay(ω::Symbol,τ::Symbol)::String
return "exp(-i$ω$τ)"
end
###
#TODO: improve closures by using let blocks or fastclosure package
function generate_stsp_z(A,B,C,D)
function stsp_z(z,n)
f = (-im)^n*factorial(n)*C*(im*z*LinearAlgebra.I-A)^(-n-1)*B
if n==0
f = f+D
end
return f[1]
end
return stsp_z
end
function generate_z_g_z(g)
function z_g_z(z,n)
if n == 0
f = z*g(z,0)
else
f = z*g(z,n)+n*g(z,n-1)
end
return f
end
return z_g_z
end
tau_delay=exp_delay
#TODO create a macro for generating functions
# function powa(z::ComplexF64,k::Int,a::Int)
# if
# end
function z_exp_iaz(z::ComplexF64, a::ComplexF64,m=0,n=0)::ComplexF64
if m==n==0
return z*exp(1im*a*z)
elseif m==1
(1im*a*z +1)*exp(1im*a*z)
elseif n==1
return 1im*z^2*exp(1im*a*z)
else
print("Argh!!!!!")
end
end
function z_exp__iaz(z::ComplexF64, a::ComplexF64,m=0,n=0)::ComplexF64
if m==n==0
return z*exp(-1im*a*z)
elseif m==1
(-1im*a*z +1)*exp(-1im*a*z)
elseif n==1
return- 1im*z^2*exp(-1im*a*z)
else
print("Argh!!!!!")
end
end
function exp_pm(s)
a=s*1.0im
function exp_delay(ω,τ,m,n)
u(z,l)=pow(z,l,m)
f=0
for i = 0:n
f+=binomial(n,i)*u(τ,i)*(a*ω)^(n-i)
end
f*=a^m*exp(a*ω*τ)
return f
end
return exp_delay
end
function exp_ax2(z,a,n)
if a==0.0+0im
if n==0
return 1.0+0.0im
else
return 0.0+0.0im
end
end
f=0.0+0.0im
A=a^n
Z=z^n
cnst=2^n*factorial(n)
for k=0:n÷2
coeff=0.0+0.0im
coeff+=cnst*4.0^(-k)/factorial(k)/factorial(n-2*k)
coeff*=A
coeff*=Z
f+=coeff
A/=a
Z/=z^2
end
f*=exp(a*z^2)
return f
end
function exp_az2mzit(z,τ,a,m,n,k)
f=pow_a(n+2*k)
g(z,l)=exp_ax2(z,a,l)
h(z,l)=exp_delay(z,τ,l,0)
coeff=0.0+0.0im
multinomialcoeff=factorial(m)
for ii=0:m
multi_ii=factorial(ii)
coeff_ii=h(z,ii)
for jj=0:m-ii
multi_jj=factorial(jj)
coeff_jj=g(z,jj)
kk=m-jj-ii
multi=multinomialcoeff/multi_ii/multi_jj/factorial(kk)
coeff+=multi*f(z,kk)*coeff_jj*coeff_ii
end
end
coeff*=(-1.0im)^n
return coeff
end
function generate_Σy_exp_ikx(y)
N=length(y)
function Σy_exp_ikx(z::ComplexF64,n::Int)
f=0.0+0.0im
for (k,y) in enumerate(y)
k-=1 #zero-based counting of wave-number
f+=k^n*y*exp(2*pi*1.0im*k/N*z)
end
f*=(2*pi*1.0im/N)^n
return f
end
return Σy_exp_ikx
end
function generate_gz_hz(g,h)
function func(z::ComplexF64,k::Int)
f=0.0+0.0im
for i = 0:k
f+=binomial(k,i)*h(z,k-i)*g(z,i)
end
return f
end
return func
end
function generate_1_gz(g)
function func(z::ComplexF64,k::Int)
if k==0
return 1-g(z,k)
else
return -g(z,k)
end
end
return func
end
function Σnexp_az2mzit(args...)
J=(length(args)-2)÷6
f=0.0+0.0im
z=args[1] #argument is started by eigenfrequency...
m=args[J*3+1+1]
i=2:4
for j=0:J-1
nn,τ,a=args[i.+j*3] #... and continues with repeated sets of n, τ and a
l,n,k=args[i.+3*j.+3*J.+1]
f+=pow1(nn,l)*exp_az2mzit(z,τ,a,m,n,k)
end
return f
end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 22262 | import LinearAlgebra,FastGaussQuadrature
import ProgressMeter
"""
Ω, P = beyn(L::LinearOperatorFamily, Γ; <keyword arguments>)
Compute all eigenvalues of `L` inside the contour `Γ` together with the associated eigenvectors. The contour is given as a list of complex numbers which are interpreted as polygon vertices in the complex plane. The eigenvalues are stored in the list `Ω` and the eigenvectors are stored in the columns of `P`. The eigenvector `P[:,i]` corresponds to the eigenvalue `Ω[i]`, i.e., they satisfy `L(Ω[i])P[:,i]=0`.
# Arguments
- `L::LinearOperatorFamily`: Definition of the non-linear eigenvalue problem
- `Γ::Array`: List of complex points defining the contour.
- `l::Integer = 5`: estimate of the number of eigenvalues inside of `Γ`.
- `K::Integer = 1`: Augmention dimension if `Γ` is assumed to contain more than `size(L)[1]` eigenvalues.
- `N::Integer = 16`: Number of evaluation points used to perform the Gauss-Legendre integration along each edge of `Γ`.
- `tol::Float=0.0`: Threshold value to discard spurious singular values. If set to `0` (the default) no singular values are discarded.
- `pos_test::bool=true`: If set to `true` perform positions test on the computed eigenvalues, i.e., check whether the eigenvalues are enclosed by `Γ` and disregard all eigenvalues which fail the test.
- `output::bool=true`: Show progressbar if `true`.
- `random::bool=false`: Randomly initialize the V matrix if `true`.
# Returns
- `Ω::Array`: List of computed eigenvalues
- `P::Matrix`: Matrix of eigenvectors.
# Notes
The original algorithm was first presented by Beyn in [1]. The implementation closely follows the pseudocode from Buschmann et al. in [2].
# References
[1] W.-J. Beyn, An integral method for solving nonlinear eigenvalue problems, Linear Algebra and its Applications, 2012, 436(10), p.3839-3863, https://doi.org/10.1016/j.laa.2011.03.030
[2] P.E. Buschmann, G.A. Mensah, J.P. Moeck, Solution of Thermoacoustic Eigenvalue Problems with a Non-Iterative Method, J. Eng. Gas Turbines Power, Mar 2020, 142(3): 031022 (11 pages) https://doi.org/10.1115/1.4045076
See also: [`inveriter`](@ref), [`lancaster`](@ref), [`mslp`](@ref), [`rf2s`](@ref), [`traceiter`](@ref)
"""
function beyn(L::LinearOperatorFamily,Γ;l=5,K=1,N=16,tol=0.0,pos_test=true,output=true,random=false)
#This is Beyn's algorithm as implemented in Buschmann et al. 2019
#Beyn's original paper from 2012 also suggests a residue test which might be implemented
#in the future
d=size(L(0))[1]
K=max(K,div(l,d)+Int(mod(l,d)!=0)) #ensure minimum required augmentation
#initialize V
if l<d #TODO consider seeding for reproducibility
if random
V=rand(ComplexF64,d,l)
else
V=zeros(ComplexF64,d,l)
for i=1:l
V[i,i]=1.0+0.0im
end
end
else
#TODO: there might be an easier constructor
#V=LinearAlgebra.Diagonal(ones(ComplexF64,d))
V=zeros(ComplexF64,d,l)
for i=1:d
V[i,i]=1.0+0.0im
end
end
function integrand(z)
z,w=z
A=Array{ComplexF64}(undef,d,l,2*K)
A[:,:,1]=L(z)\V
A[:,:,1]*=w
for p =1:2*K-1
A[:,:,p+1]=z^p*A[:,:,1]
end
return A
end
A=zeros(ComplexF64,d,l,2*K) # initialize A with zeros
A=gauss(A,integrand,Γ,N,output) #integrate over contour
#Assemble B matrices
B=Array{ComplexF64}(undef,d*K,l*K,2)
rows=1:d
cols=1:l
for i=0:K-1,j=0:K-1
B[rows.+d*i,cols.+l*j,1]=A[:,:,i+j+1] #indexshift +1
B[rows.+d*i,cols.+l*j,2]=A[:,:,i+j+2]
end
V,Σ,W=LinearAlgebra.svd(B[:,:,1])
#sigma check
if output
println("############")
println("singular values:")
println(Σ)
end
if tol>0
mask=map(σ->σ>tol,Σ)
V,Σ,W=V[:,mask],Σ[mask],W[:,mask]
end
#TODO: rank test
#invert Σ. It's a diagonal matrix so inversion is just one line
Σ=LinearAlgebra.Diagonal(1 ./Σ) #TODO: check zero division
#compute eigenvalues and eigenvectors
Ω,P = LinearAlgebra.eigen(V'*B[:,:,2]*W*Σ)
P=V[1:d,:]*P
#position test
if pos_test
mask=map(z->inpoly(z,Γ),Ω)
Ω,P=Ω[mask],P[:,mask]
end
return Ω,P
end
function gauss(int,f,Γ,N,output=false)
X,W=FastGaussQuadrature.gausslegendre(N)
lΓ=length(Γ)
if output
prog = ProgressMeter.Progress(lΓ*N,desc="Beyn... ", dt=.5,
barglyphs=ProgressMeter.BarGlyphs('|','█', ['▁' ,'▂' ,'▃' ,'▄' ,'▅' ,'▆', '▇'],' ','|',),
barlen=30)
end
for i = 1:lΓ
if i==lΓ
a,b=Γ[i],Γ[1]
else
a,b=Γ[i],Γ[i+1]
end
X̂=X.*(b-a)/2 .+(a+b)/2 #transform to segment
#int+=mapreduce(f,+,zip(X̂,W)).*(b-a)/2
iint=zero(int)
for z in zip(X̂,W)
iint+=f(z)
if output
ProgressMeter.next!(prog)
end
end
int+=iint.*(b-a)/2
end
return int
end
#This is a Julia implementation of the point-polygon-problem as it is
#discussed on http://geomalgorithms.com/a03-_inclusion.html
#The algorithms are adapted for complex arithmetics to seamlessly
#work with beyn
function isleft(a,b,c)
#c point to be tested
#a, b points defining the line
return (real(b)-real(a)) * (imag(c)-imag(a)) - (real(c)-real(a))*(imag(b)-imag(a))
end
# function inpoly(z,Γ)
# #winding number test
# wn=0
# for i=1:length(Γ)
# if i==length(Γ)
# a,b=Γ[i],Γ[1]
# else
# a,b=Γ[i],Γ[i+1]
# end
# if imag(a) <= imag(z)
# if imag(b)>imag(z)
# if isleft(a,b,z)>0
# wn+=1
# end
# end
# else
# if imag(b) <= imag(z)
# if isleft(a,b,z)<0
# wn-=1
# end
# end
# end
# end
# return wn!=0
# end
inpoly(z,Γ)= wn(z,Γ)!=0
"""
w=wn(z,Γ)
Compute winding number, i.e., how often `Γ` is wrapped around `z`. The sign of the winding number indocates the wrapping direction.
"""
function wn(z,Γ)
#winding number test
wn=0
for i=1:length(Γ)
if i==length(Γ)
a,b=Γ[i],Γ[1]
else
a,b=Γ[i],Γ[i+1]
end
if imag(a) <= imag(z)
if imag(b)>imag(z)
if isleft(a,b,z)>0
wn+=1
end
end
else
if imag(b) <= imag(z)
if isleft(a,b,z)<0
wn-=1
end
end
end
end
return wn
end
## Thats Beyn in pieces...
"""
A=compute_moment_matrices(L,Γ, <kwargs>)
Compute moment matrices of `L` integrating along `Γ`.
# Arguments
- `L::LinearOperatorFamily`
- `Γ`: List of complex points defining the contour.
- `l::Int=5`: (optional) estimate of the number of eigenvalues inside of `Γ`.
- `K::Int=1`: (optional) Augmention dimension if `Γ` is assumed to contain more than `size(L)[1]` eigenvalues.
- `N::Int=16`: (optional) Number of evaluation points used to perform the Gauss-Legendre integration along each edge of `Γ`.
- `output::Bool=false` (optional) toggle waitbar
- `random::Bool=false` (optional) toggle random initialization of V-matrix
# Returns
- `A::Array`: Moment matrices.
# Notes
A is a 3 dimensional array. The last index loops over the various Moments, i.e., `A[:,:,i]=∫_Γ z^i inv(L(z)) V dz`.
If `random`=false V is initialized with ones on its main diagonal. Otherwise it is random.
"""
function compute_moment_matrices(L::LinearOperatorFamily,Γ;l=5,K=1,N=16,output=false,random=false)
d=size(L(0))[1]
#initialize V
if l<d #TODO consider seeding for reproducibility
if random
V=rand(ComplexF64,d,l)
else
V=zeros(ComplexF64,d,l)
for i=1:l
V[i,i]=1.0+0.0im
end
end
else
#TODO: there might be an easier constructor
V=LinearAlgebra.Diagonal(ones(ComplexF64,d))
end
return compute_moment_matrices(L::LinearOperatorFamily,Γ,V;K=L,N=N,output=output)
end
function compute_moment_matrices(L::LinearOperatorFamily,Γ,V;K=1,N=16,output=false)
d,l=size(V)
function integrand(z)
z,w=z
A=Array{ComplexF64}(undef,d,l,2*K)
A[:,:,1]=L(z)\V
A[:,:,1]*=w
for p =1:2*K-1
A[:,:,p+1]=z^p*A[:,:,1]
end
return A
end
A=zeros(ComplexF64,d,l,2*K) # initialize A with zeros
A=gauss(A,integrand,Γ,N,output) #integrate over contour
return A
end
"""
Ω,P = moments2eigs(A; tol_σ=0.0, return_σ=false)
Compute eigenvalues `Ω` and eigenvectors `P from moment matrices `A`.
# Arguments
- `A::Array`: moment matrices
- `tol::Float=0.0`: tolerance for truncating singular values.
- `return_σ::Bool=false`: if true also return the singular values as third return value.
# Returns
- `Ω::Array`: List of computed eigenvalues
- `P::Matrix`: Matrix of eigenvectors.
- `Σ::Array`: List of singular values (only if `return_σ==true`)
# Notes
The the i-th coloumn in P corresponds to the i-th eigenvalue in `Ω`, i.e., `Ω[i]` and `P[:,i]` are an eigenpair.
See also: [`compute_moment_matrices`](@ref)
"""
function moments2eigs(A;tol_σ=0.0,return_σ=false)
#Assemble B matrices
d=size(A[1],1)
Δl=size(A[1],2)
l=length(A)*Δl
K=size(A[1],3)÷2
B=Array{ComplexF64}(undef,d*K,l*K,2)
rows=1:d
cols=1:Δl
for i=0:K-1,j=0:K-1
for ll=1:length(A)
B[rows.+d*i,cols.+(ll-1).*Δl.+l.*j,1].=A[ll][:,:,i+j+1] #indexshift +1
B[rows.+d*i,cols.+(ll-1).*Δl.+l.*j,2].=A[ll][:,:,i+j+2]
end
end
V,Σ,W=LinearAlgebra.svd(B[:,:,1])
#sigma check
if tol_σ>0
mask=map(σ->σ>tol,Σ)
V,Σ,W=V[:,mask],Σ[mask],W[:,mask]
end
#println("######")
#println(Σ)
#invert Σ. It's a diagonal matrix so inversion is just one line
invΣ=LinearAlgebra.Diagonal(1 ./Σ) #TODO: check zero division
#compute eigenvalues and eigenvectors
Ω,P = LinearAlgebra.eigen(V'*B[:,:,2]*W*invΣ)
P=V[1:d,:]*P
if return_σ
return Ω,P,Σ
else
return Ω,P
end
end
"""
Ω,P=pos_test(Ω,P,Γ)
Filter eigenpairs `Ω` and `P`for those whose eigenvalues lie inside `Γ`.
See also: [`moments2eigs`](@ref)
"""
function pos_test(Ω,P,Γ)
mask=map(z->inpoly(z,Γ),Ω)
Ω,P=Ω[mask],P[:,mask]
return Ω,P
end
## count poles and zeros
"""
n=count_poles_and_zeros(L,Γ;N=16,output=false)
Count number "n" of poles and zeros of the determinant of `L` inside the contour `Γ`.
The optional parameters `N` and `output`. respectively determine the order of the
Gauss-Legendre integration and toggle whether output is desplayed.
# Notes
Pole orders count negative while zero order count positive.
The evaluation is based on applying the residue theorem to the determinant.
It utilizes Jacobi's formula to compute the necessary derivatives from a
trace operation. and is therefore only suitable for small problems.
"""
function count_poles_and_zeros(L,Γ;N=16,output=false)
function integrand(z)
z,w=z
LU=SparseArrays.lu(L(z),check=false)
L1=L(z,1)
dz=0.0+0.0im
for idx=1:size(LU)[1]
dz+=(LU\Array(L1[:,idx]))[idx]
end
return dz*w
end
return gauss(0.0+0.0im,integrand,Γ,N,output)/2/pi/1.0im
end
## Projection method stuff
"""
V=initialize_V(d::Int,l::Int,random::Bool=false)
initialioze matrix with `d`rows and `l` colums either as diagonal matrix
featuring ones on the main diagonal and anywhere else or with random entries
(`random`=true).
See also: [`generate_subspace`](@ref)
"""
function initialize_V(d::Int,l::Int;random::Bool=false)
if random
V=rand(ComplexF64,d,l)
for i=1:l
V[:,i].\=LinearAlgebra.norm(V[:,i])
end
else
V=zeros(ComplexF64,d,l)
for i=1:l
V[i,i]=1.0+0.0im
end
end
return V
end
raw"""
Q,resnorm=generate_subspace(L,Y,tol,Z,N;output=true))
Compute orthonormal `Q` basis for a subspace that can be used to reduce the
dimension of `L`. The created subspace gurantees the residual of `L(z)\V` to be less than
`tol` for each `z∈Z`.
# Arguments
- `L::LinearOperatorFamily`: operator family for which the subspace is to be computed
- `Y::matrix`: matrix for residual test
- `tol::Float64`: tolerance for residual test
- `Z::List`: List of sample points
- `N::Int`: (optional) if set the list Z is interpreted as edges of a closed polygonal contour and N Gauss-Legendre sample points are generated for each edge.
- `output::Bool=false`: (optional) toggle progressbar
- `include_Y::Bool=true`: (optional) include Y in subspace
# Returns
- `Q::Matrix`: unitary matrix whose colums form the basis of the subspace
- `resnorm::List`: list of residuals at the sample points computed during subspace generation. (these values are an upper bound)
# Notes
The algorithm is based on the idea in [1]. However, it uses incremental QR
decompositions to built the subspace and is not computing Beyn's integral.
However, the obtained matrix can be used to project `L` on teh subspace and use
Beyn's algorithm or any other eigenvalue solver on the projected problem.
# References
[1] A Study on Matrix Derivatives for the Sensitivity Analysis of Electromagnetic
Eigenvalue Problems, P. Jorkowski and R. Schuhmann, 2020, IEEE Trans. Magn., 56,
[doi:10.1109/TMAG.2019.2950513](https://doi.org/10.1109/TMAG.2019.2950513)
See also: [`beyn`](@ref), [`initialize_V`](@ref), [`project`](@ref)
"""
function generate_subspace(L,Y,tol,Z;output::Bool=true,tol_err::Float64=Inf,include_Y=true)
#TODO: sanity checks for sizes
d,k=size(Y)
dim=k
N=length(Z) #IDEA: consider random permutation
## initialize subspace from first point
A=[] #compressed qr storage for incremental qr
τ=[] #compressed qr storage for incremental qr
for kk = 1: k
if include_Y
qrfactUnblockedIncremental!(τ,A,Y[:,kk:kk])
else
qrfactUnblockedIncremental!(τ,A,L(Z[1])\Y[:,kk:kk])
end
end
#QR=LinearAlgebra.qr(L(Z[1])\Y)
#Q=QR.Q[:,1:dim]# TODO: optimize these QR calls
resnorm=zeros(N*k)
idx=0
Q=get_Q(τ,A) #TODO: incrementally create only the last column, consider preallocation for speed
QY=Q'*Y #project rhs
## Preallacations
#Y=Array{ComplexF64}(undef,d,1)
#Y_exact=Array{ComplexF64}(undef,d,1)
if output
prog = ProgressMeter.Progress(k*N,desc="Subspace.. ", dt=1,
barglyphs=ProgressMeter.BarGlyphs('|','█', ['▁' ,'▂' ,'▃' ,'▄' ,'▅' ,'▆', '▇'],' ','|',),)
end
for z in Z
if dim==d
break
end
idx+=1
Lz=L(z)
#Lnorm=LinearAlgebra.norm(Lz)
Lnorm=1
QLQ=Q'*Lz*Q #projection to subspace
for kk=1:k
x=QLQ\QY[:,kk] #solve projected problem
X=Q*x #backprojection
#residual test
#weights=ones(ComplexF64,d)
#weights[20:end].=0
#weights=get_weights(Lz)
weights=1
res=LinearAlgebra.norm((weights).*(Lz*X-Y[:,kk]))
res/=Lnorm
#println("$(kk+(idx-1)*k): $res vs $tol")
#TODO: check that supdspace does not get linearly dependent
# in order to enable 0 tolerance
if res>tol
# if true# idx<=3
# println("vorher:")
# println(idx," ",kk+(idx-1)*k," ",res," ",resnorm[5])
# println("nacher:")
# flush(stdout)
# end
dim+=1
X_exact=Lz\Y[:,kk:kk]
#err=LinearAlgebra.norm(weights.*(X_exact.-X))
#println("error:$err")
X=X_exact
res=LinearAlgebra.norm((weights).*(Lz*X-Y[:,kk]))
#if err>tol_err
# #tol=max(tol,res/10) #TODO: the minimum operation is not necessary
# tol=res*10
#end
#res=err
res/=Lnorm
#IMPORTANT qrfactUnblockedIncremental! overwrites X!
#Therfore command must come after residual calculation
qrfactUnblockedIncremental!(τ,A,X[:,1:1])
#Q=create_Q(τ,A)
Q_old,Q=Q,Array{ComplexF64}(undef,d,dim)
Q[:,1:end-1]=Q_old[:,:]
#initialize last column with e_dim_vector
#this is unused but allacated space. Therefore its safe to be used
# e_dim will be overwritten later to with the true
# column, but it is used to initialize finding the
#true column.
Q[:,end]=zeros(ComplexF64,d)
Q[dim,end]=1
Q[:,end]=mult_QV(τ,A,Q[:,end]) #build last column
##reinitialize cache
QLQ=Q'*Lz*Q #projection to subspace #TODO: do this incrementally using last column only
QY=Q'*Y# project rhs
#ΔQLQ=Q*L*ΔQ #only build last colum
#QV=[QV; ΔQ'*V]
# if true#idx<=3
# println(idx," ",kk+(idx-1)*k," ",res," ",resnorm[5])
# flush(stdout)
# end
end
resnorm[kk+(idx-1)*k]=res
if output
ProgressMeter.next!(prog)
end
end
end
#Q=create_Q(τ,A)
if output
println("Finished subspace generation!")
if tol_err<Inf
println("adapted residual tolerance is $tol .")
end
end
return Q,resnorm
end
function generate_subspace(L,Y,tol,Γ,N::Int;output::Bool=true,tol_err::Float64=Inf,include_Y=true)
## generate list of Gauss-Legendre points
X,W=FastGaussQuadrature.gausslegendre(N)
lΓ=length(Γ)
Z=zeros(ComplexF64, lΓ*N) #TODO: undef intialization
#TODO: remove doubled edge points!
for i = 1:lΓ
if i==lΓ
a,b=Γ[i],Γ[1]
else
a,b=Γ[i],Γ[i+1]
end
Z[1+(i-1)*N:i*N]=X.*(b-a)/2 .+(a+b)/2 #transform to segment
end
return generate_subspace(L,Y,tol,Z,output=output,tol_err=tol_err,include_Y=include_Y)
end
"""
P::LinearOperatorFamily=project(L::LinearOperatorFamily,Q)
Project `L` on the subspace spanned by the unitary matrix `Q`, i.e.
`P(z)=Q'*L(z)*Q`.
See also: [`generate_subspace`](@ref)
"""
function project(L::LinearOperatorFamily,Q)
P=LinearOperatorFamily()
P.params=deepcopy(L.params)
P.eigval=L.eigval
P.auxval=L.auxval
P.mode=deepcopy(L.mode)
P.active=deepcopy(L.active)
#term=Term(A2,(pow2,),((:λ,),),"A2")
for term in L.terms
M=Q'*term.coeff*Q
push!(P,Term(M,deepcopy(term.func),deepcopy(term.params),
deepcopy(term.symbol),deepcopy(term.operator)))
end
return P
end
## incremental QR
# TODO: merge request for julia base
#===
hack of line 185 in
https://github.com/JuliaLang/julia/blob/69fcb5745bda8a5588c089f7b65831787cffc366/stdlib/LinearAlgebra/src/qr.jl#L301-L378
for obtaining incremental qr
===#
using LinearAlgebra: reflector!, reflectorApply!
##
function qrfactUnblockedIncremental!(τ,A,V::AbstractMatrix{T}) where {T} #AbstarctArray?
#require_one_based_indexing(A)
#require_one_based_indexing(T)
V=deepcopy(V)
m=length(A)
n=length(V)
#apply all previous reflectors
for k=1:m
x = view(A[k], k:n,1)#TODO: consider end
reflectorApply!(x,τ[k],view(V,k:n,1:1))
end
#create new reflector
x = view(V, m+1:n,1)
τk= reflector!(x)
#append latest updates
#if !isapprox(V[m+1],0.0+0.0im,atol=1E-8)
push!(τ,τk)
push!(A,V)
#end
return
end
##
function mult_VQ(τ,A,V)
m=length(A)
n=length(A[1])
#@inbounds begin
for k=1:m
τk=τ[k]
vk=zeros(ComplexF64,n)
vk[k]=1
vk[k+1:end]=A[k][k+1:end]
V=(V-(V*vk)*(vk'*τk))
end
#end
return V
end
function mult_QV(τ,A,V;trans=true)
m=length(A)
n=length(A[1])
M=1:m
if trans
M=reverse(M)
end
#@inbounds begin
for k=M #its transposed so householder transforms are executed in reverse order
τk=τ[k]
vk=zeros(ComplexF64,n)
vk[k]=1
vk[k+1:end]=A[k][k+1:end]
V=(V-(τk*vk)*(vk'*V))
end
#end
return V
end
function get_Q(τ,A)
n=size(A[1],1)
dim=length(τ)
mult_QV(τ,A,initialize_V(n,dim))
end
function get_R(A)
n=length(A)
m=length(A[1])
R=zeros(ComplexF64,m,n)
for i=1:n
R[1:i,i]=A[i][1:i]
end
return R
end
function get_weights(M)
m,n=size(M)
weights=Array{ComplexF64}(undef,m)
for i=1:m
weights[i]=M[i,i]#sum(M[i,:])
end
return 1. /weights
end
## Givens rotation
function givens_rot!(M,i,j)
a=M[i]
b=M[j]
if b!=0
#r=hypot(a,b)
#hack of chypot
r = a/b
r = b*sqrt(1.0+0.0im+r*r)
c=a/r
s=-b/r
else
c = 1.0+0.0im
s = 0.0+0.0im
r = a
end
ϕ=log(c+1.0im*s)/1.0im
#apply givens rotation
M[i]=r
M[j]=ϕ
return nothing
end
function incremental_QR!(A,v)
push!(A,v)
n=length(A)
m=length(A[1])
#apply previous givens rotations
for j=1:n-1
for i=j+1:m
ϕ=A[j][i]
c=cos(ϕ)
s=sin(ϕ)
A[n][j],A[n][i]=c*A[n][j]-s*A[n][i], s*A[n][j]+c*A[n][i]
end
end
#do new givens rotations
for j=n+1:m
givens_rot!(A[n],n,j)
end
return nothing
end
function get_Q(A)
m=length(A[1])
n=length(A)
Q=zeros(ComplexF64,m,n)
for i=1:n
Q[i,i]=1
end
for i=1:m
for j=i+1:n
ϕ=A[i][j]
c=cos(ϕ)
s=sin(ϕ)
Q[:,i],Q[:,j]=c*Q[:,i]-s*Q[:,j], s*Q[:,i]+c*Q[:,j]
end
end
return Q
end
#TODO: hack the imporved julia version
function chypot(a,b)
if a == 0
h=0
else
r = b/a
h = a*sqrt(1+r*r)
end
return h
end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 8324 | module Gallery
import LinearAlgebra
using ..NLEVP
"""
D,x=cheb(N)
Compute differentiation matrix `D` on Chebyshev grid `x`. See Lloyd N.
Trefethen. Spectral methods in MATLAB. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2000.
"""
function cheb(N)
# Compute D = differentiation matrix, x = Chebyshev grid.
# See Lloyd N. Trefethen. Spectral Methods in MATLAB. Society for Industrial
# and Applied Mathematics, Philadelphia, PA, USA, 2000.
if N == 0
D=0
x=1
return D,x
end
x = cos.(pi/N*(0:N))
c = [2.; ones(N-1); 2. ].*((-1.).^(0:N))
X = repeat(x,1,N+1)
dX= X-X'
I=Array{Float64}(LinearAlgebra.I,N+1,N+1)
D =(c*(1. ./c'))./(dX+I) # off-diagonal entries
for i = 1:size(D)[1]
D[i,i]-=sum(D[i,:])
end
#D=D -np.diag(np.array(np.sum(D,1))[:,0]) #diagonal entries
return D,x
end
"""
L,y=orr_sommerfeld(N=64, Re=5772, w=0.26943)
Return a linear operator family `L` representing the Orr-Sommerfeld equation.
A Chebyshev collocation method is used to discretize the problem. The grid
points are returned as `y`. The number of grid points is `N`.
#Note
The OrrSommerfeld equation reads:
[(d²/dy²-λ²)²-Re((λU-ω)(d²/dy²-λ²)-λU'')] v = 0
where y is the spatial coordinate, λ the wavenumber (set as the eigenvalue by
default), Re the Reynolds number, ω the oscillation frequency, U the mean flow
velocity profile and v the velocity fluctuation amplitude in the y-direction
(the mode shape).
#Remarks on implementation
This is a Julia port of (our python port of) the Orr-Sommerfeld example from the
Matlab toolbox "NLEVP: A Collection of Nonlinear Eigenvalue Problems"
by T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur.
The original toolbox is available at :
http://www.maths.manchester.ac.uk/our-research/research-groups/numerical-analysis-and-scientific-computing/numerical-analysis/software/nlevp/
See [1] or [2] for further refrence.
#References
[1] T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur, NLEVP:
A Collection of Nonlinear Eigenvalue Problems, MIMS EPrint 2011.116, December
2011.
[2] T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur, NLEVP:
A Collection of Nonlinear Eigenvalue Problems. Users' Guide, MIMS EPrint
2010.117, December 2011.
"""
function orr_sommerfeld(N=64, Re=5772, ω =0.26943)
# Define the Orr-Sommerfeld operator for spatial stability analysis.
# N: number of Cheb points, R: Reynolds number, w: angular frequency
N=N+1
# 2nd- and 4th-order differentiation matrices:
D,y=cheb(N); D2 =D^2; D2 = D2[2:N,2:N]
S= LinearAlgebra.diagm(0=>[0; 1.0./(1. .-y[2:N].^2.); 0])
D4=(LinearAlgebra.diagm(0=>1. .-y.^2.)*D^4-8*LinearAlgebra.diagm(0=>y)*D^3-12*D^2)*S
D4 = D4[2:N,2:N]
I=Array{ComplexF64}(LinearAlgebra.I,N-1,N-1)
# type conversion
D2=D2.+0.0im
D4=D4.+0.0im
U=LinearAlgebra.diagm(0=>-y[2:N].^2.0.+1)
# Build Orr-Sommerfeld operator
L= LinearOperatorFamily(["λ","ω","Re","a"],complex([1.,ω,Re,Inf]))
push!(L,Term(I,(pow_a(4),),((:λ,),),"λ^4","I"))
push!(L,Term(1.0im*U,(pow_a(3),pow1,),((:λ,),(:Re,),),"iλ^3Re","i*U"))
push!(L,Term(-2*D2,(pow2,),((:λ,),),"λ^2","-2D2"))
push!(L,Term(-1.0im*I,(pow2,pow1,pow1,),((:λ,),(:ω,),(:Re,),),"λ^2*ω*Re","-i*I"))
push!(L,Term(-1.0im*(U*D2+2.0*I),(pow1,pow1,),((:λ,),(:Re,),),"λ*Re","(U*D2+2*I)"))
push!(L,Term(1.0im*D2,(pow1,pow1),((:ω,),(:Re,),),"ω*Re","i*D2"))
push!(L,Term(D4,(),(),"","D4"))
push!(L,Term(-I,(pow1,),((:a,),),"-a","__aux__"))
return L,y
end
"""
L,x,y=biharmonic(N=12;scaleX=2,scaleY=1+sqrt(5))
Discretize the biharmonic equation.
# Arguments
-`N::Int`: Number of collocation points
-`scaleX::Float=2` length of the x-axis
-`scaleY::Float=1+sqrt(5)` length of the y-axis
# Returns
-`L::LinearOperatorFamily`: discretization of the biharmonic operator
- `x:Array`: x-axis
- `y:Array`: y-axis
# Notes
The biharmonic equation models the oscillations of a membrane. It is an an eigenvalue problem that reads:
(∇⁴+εcos(2πx)cos(πy))**v**=λ**v** in Ω
with boundary conditions
**v**=∇²**v**=0
The term εcos(2πx)cos(πy) is included to model some inhomogeneous material properties.
The equation is discretized using Chebyshev collocation.
See also: [`cheb`](@ref)
"""
function biharmonic(N=12;scaleX=2,scaleY=1+sqrt(5))
#N,scaleX,scaleY=12,2,1+sqrt(5)
N=N+1
D, xx = cheb(N)
x = xx/scaleX
y = xx/scaleY
#The Chebychev matrices are space dependent scale the accordingly
Dx = D*scaleX
Dy = D*scaleY
D2x=Dx*Dx
D2y=Dy*Dy
Dx = Dx[2:N,2:N]
Dy = Dy[2:N,2:N]
D2x= D2x[2:N,2:N]
D2y= D2y[2:N,2:N]
#Apply BC
I = Array{ComplexF64}(LinearAlgebra.I,N-1,N-1)
L = kron(I,D2x) +kron(D2y,I)
X=kron(ones(N-1),x[2:N])
Y=kron(y[2:N],ones(N-1))
P=LinearAlgebra.diagm(0=>cos.(π*2*X).*cos.(π*Y))
D4= L*L
I = Array{ComplexF64}(LinearAlgebra.I,(N-1)^2,(N-1)^2)
L= LinearOperatorFamily(["λ","ε","a"],complex([0,0.,Inf]))
push!(L,Term(D4,(),(),"","D4"))
push!(L,Term(P,(pow1,),((:ε,),),"ε","P"))
push!(L,Term(-I,(pow1,),((:λ,),),"-λ","I"))
push!(L,Term(-I,(pow1,),((:a,),),"-a","__aux__"))
return L,x,y
end
## 1DRijkeModel
using SparseArrays
"""
L,grid=rijke_tube(resolution=128; l=1, c_max=2,mid=0)
Discretize a 1-dimensional Rijke tube. The model is based on the thermoacoustic equations.
This eigenvalue problem reads:
∇c²(x)∇p+ω²p-n exp(-iωτ) ∇p(x_ref)=0 for x in ]0,l[
with boundariy conditions
∇p(0)=p(l)=0
"""
function rijke_tube(resolution=127; l=1, c_max=2,mid=0)
n=1.0
tau=2
#l=1
c_min=1
#c_max=2
outlet=resolution
outlet_c=c_max
grid=range(0,stop=l,length=resolution)
e2p=[(i, i+1) for i =1:resolution-1]
number_of_elements=resolution-1
if mid==0
mid=div(resolution,2)+1# this is the element containing the flame
#it is not the center if resolotion is odd but then the refernce is in the center
end
ref=mid-1 #the reference element is the one in the middle
flame=(mid)
#compute element volume
e2v=diff(grid)
V=e2v[mid]
e2c=[i < mid ? c_min : c_max for i = 1:resolution]
#assemble mass matrix
m_unit=[2 1;1 2]*1/6
#preallocation
ii=Array{Int64}(undef,(resolution-1,2^2))
jj=Array{Int64}(undef,(resolution-1,2^2))
mm=Array{ComplexF64}(undef,(resolution-1,2^2))
for (idx,el) in enumerate(e2p)
mm[idx,:] = m_unit[:]*e2v[idx]
ii[idx,:] = [el[1] el[2] el[1] el[2]]
jj[idx,:] = [el[1] el[1] el[2] el[2]]
end
# finally assemble global (sparse) mass matrix
M =sparse(ii[:],jj[:],mm[:])
# assemble stiffness matrix
k_unit = -[1. -1.; -1. 1.]
#preallocation
ii=Array{Int64}(undef,(resolution-1,2^2))
jj=Array{Int64}(undef,(resolution-1,2^2))
kk=Array{ComplexF64}(undef,(resolution-1,2^2))
for (idx,el) in enumerate(e2p)
kk[idx,:]=k_unit[:]/e2v[idx]*e2c[idx]^2
ii[idx,:] = [el[1] el[2] el[1] el[2]]
jj[idx,:] = [el[1] el[1] el[2] el[2]]
end
# finally assemble global (sparse) stiffness matrix
K = sparse(ii[:],jj[:],kk[:])
#assemble boundary mass matrix
bb=[-outlet_c*1im]
ii=[outlet]
jj=[outlet]
B = sparse(ii,jj,bb)
#assemble flame matrix
#preallocation
ii=Array{Int64}(undef,(length(flame),2*2))
jj=Array{Int64}(undef,(length(flame),2*2))
qq=Array{ComplexF64}(undef,(length(flame),2*2))
grad_p_ref=[-1 1]
grad_p_ref=grad_p_ref/e2v[ref]*1
#println("##!!!!!Here!!!!!##'")
#println("flame:",flame)
#println("ref:",ref)
for (idx,el) in enumerate(flame)
jj[idx,:]=[e2p[ref][1] e2p[ref][2] e2p[ref][1] e2p[ref][2]]
ii[idx,:]=[e2p[el][1] e2p[el][1] e2p[el][2] e2p[el][2]]
run=1
for i=1:2
for j =1:2
qq[idx,run]= grad_p_ref[1,j]*e2v[el]/2
run+=1
end
end
end
#finally assemble flame matrix
Q= sparse(ii[:],jj[:],-qq[:],resolution,resolution)
Q=Q/V
L=LinearOperatorFamily(["ω","n","τ","Y","λ"],complex([0.,n,tau,1E15,Inf]))
push!(L,Term(M,(pow2,),((:ω,),),"ω^2","M"))
push!(L,Term(K,(),(),"","K"))
push!(L,Term(B,(pow1,pow1,),((:ω,),(:Y,),),"ω*Y","C"))
push!(L,Term(Q,(pow1,exp_delay,),((:n,),(:ω,:τ,)),"n*exp(-i ω τ)","Q"))
push!(L,Term(-M,(pow1,),((:λ,),),"-λ","__aux__"))
#push!(L,Term(-SparseArrays.I,(pow1,),((:λ,),),"-λ","__aux__"))
return L,grid
end
end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 23518 |
## status flags for iterative solvers
#found a solution = zero
const itsol_converged = 0
# warnings (positive numbers)
const itsol_maxiter = 1
const itsol_slow_convergence = 2
#errors (negative numbers)
const itsol_impossible = -1
const itsol_singular_exception = -2
const itsol_arpack_exception = -3
const itsol_isnan = -4
const itsol_unknown = -5
const itsol_arpack_9999 = -9999
"""
msg=decode_error_flag(flag::Int)
Decode error flag `flag` from an iterative solver into a string `msg`.
See also: [`inveriter`](@ref), [`lancaster`](@ref), [`mslp`](@ref), [`rf2s`](@ref), [`traceiter`](@ref)
"""
function decode_error_flag(flag::Int)
if flag == itsol_converged
msg = "Solution converged, everythink OK!"
elseif flag == itsol_maxiter
msg = "Warning: Maximum number of iterations has been reached!"
elseif flag == itsol_slow_convergence
msg = "Warning: Slow progress!"
elseif flag == itsol_impossible
msg == "Error: This error should be impossible. Please, contact the package developers!"
elseif flag == itsol_singular_exception.
msg == "Error: Singular Exception!"
elseif flag == itsol_arpack_exception
msg == "Error: Arpack exception!"
elseif flag == itsol_arpack_999
msg == "Error: Arpack -9999 error!"
elseif flag itsol_unknown
msg == "Error: Unknown error ocurred!"
else
msg == "Unknown flag code."
end
return msg
end
## method of successive linear problems
"""
sol,n,flag = mslp(L,z;maxiter=10,tol=0.,relax=1.,lam_tol=Inf,order=1,nev=1,v0=[],v0_adj=[],num_order=1,scale=1.0+0.0im,output=false)
Deploy the method of successive linear problems for finding an eigentriple of `L`.
# Arguments
- `L::LinearOperatorFamily`: Definition of the nonlinear eigenvalue problem.
- `z`: Initial guess for the eigenvalue.
- `maxiter::Integer=10`: Maximum number of iterations.
- `tol=0`: Absolute tolerance to trigger the stopping of the iteration. If the difference of two consecutive iterates is `abs(z0-z1)<tol` the iteration is aborted.
- `relax=1`: relaxation parameter
- `lam_tol=Inf`: tolerance for the auxiliary eigenvalue to test convergence. The default is infinity, so there is effectively no test.
- `order::Integer=1`: Order of the Householder method, Maximum is 5
- `nev::Integer=1`: Number of Eigenvalues to be searched for in intermediate ARPACK calls.
- `v0::Vector`: Initial vector for Krylov subspace generation in ARPACK calls. If not provided the vector is initialized with ones.
- `v0_adj::Vector`: Initial vector for Krylov subspace generation in ARPACK calls. If not provided the vector is initialized with `v0`.
- `num_order::Int=1`: order of the numerator polynomial when forming the Padé approximant.
- `scale::Number=1`: scaling factor applied to the tolerance (and the eigenvalue output when `output==true`).
- `output::Bool=false`: Toggle printing online information.
# Returns
- `sol::Solution`
- `n::Integer`: Number of perforemed iterations
- `flag::Integer`: flag reporting the success of the method. Most important values are `1`: method converged, `0`: convergence might be slow, `-1`:maximum number of iteration has been reached. For other error codes see the source code.
# Notes
This is a variation of the method of succesive linear Problems [1] as published in Algorithm 3 in [2].
It treats the eigenvalue `ω` as a parameter in a linear eigenvalue problem `L(ω)p=λYp` and computes the root of the implicit relation `λ(ω)==0`.
The default values "order==1" and "num_order==1" will result in a Newton-iteration for finding the roots. Choosing a higher order will result in
Housholder methods as a generalization of Newton's method. If no relaxation is used (`relax == 1`), the convergence rate is of `order+1`. With relaxation (`relax != 1`) the convergence rate is 1.
Thus, with a higher order less iterations will be necessary. However, the computational time must not necessarily improve nor do the convergence properties. Anyway, if the method converges, the error in the eigenvalue is bounded above by `tol`. For more details on the solver, see the thesis [2].
Householder methods are based on expanding the relation `λ=λ(ω)` into a `[1/order-1]`-Padé approximant. The numerator order may be increased using the keyword "num_order". This feature is experimental.
# References
[1] A.Ruhe, Algorithms for the non-linear eigenvalue problem, SIAM J. Numer. Anal. ,10:674–689, 1973.
[2] V. Mehrmann and H. Voss (2004), Nonlinear eigenvalue problems: A challenge for modern eigenvalue methods, GAMM-Mitt. 27, 121–152.
[3] G.A. Mensah, Efficient Computation of Thermoacoustic Modes, Ph.D. Thesis, TU Berlin, 2019 [doi:10.14279/depositonce-8952 ](http://dx.doi/10.14279/depositonce-8952)
See also: [`beyn`](@ref), [`inveriter`](@ref), [`lancaster`](@ref), [`rf2s`](@ref), [`traceiter`](@ref), [`decode_error_flag`](@ref)
"""
function mslp(L,z;maxiter=10,tol=0.,relax=1.,lam_tol=Inf,order=1,nev=1,v0=[],v0_adj=[],num_order=1, scale=1, output=true)
if output
println("Launching MSLP solver...")
if scale!=1
println("scale: $scale")
end
println("Iter dz: z:")
println("----------------------------------")
end
z0=complex(Inf)
lam=float(Inf)
lam0=float(Inf)
z*=scale
tol*=scale
n=0
active=L.active #IDEA: better integrate activity into householder
mode=L.mode #IDEA: same for mode
if v0==[]
v0=ones(ComplexF64,size(L(0))[1])
end
if v0_adj==[]
v0_adj=conj.(v0)#ones(ComplexF64,size(L(0))[1])
end
flag=itsol_converged
if L.terms[end].operator != "__aux__"
push!(L,Term(-LinearAlgebra.I,(pow1,),((:__aux__,),),"__aux__","__aux__"))
L.auxval=:__aux__
#IDEA: possibly remove term at the end of the function
end
M=-L.terms[end].coeff
try
while abs(z-z0)>tol && n<maxiter #&& abs(lam)>lam_tol
if output; println(n,"\t\t","\t",abs(z-z0)/scale,"\t", z/scale );flush(stdout); end
L.params[L.eigval]=z
L.params[L.auxval]=0
A=L(z)
lam,v = Arpack.eigs(A,M,nev=nev, sigma = 0,v0=v0)
lam_adj,v_adj = Arpack.eigs(A',M', nev=nev, sigma = 0,v0=v0_adj)
#TODO: consider constdouton
#TODO: multiple eigenvalues
indexing=sortperm(lam, by=abs)
lam=lam[indexing]
v=v[:,indexing]
indexing=sortperm(lam_adj, by=abs)
lam_adj=lam_adj[indexing]
v_adj=v_adj[:,indexing]
delta_z =[]
back_delta_z=[]
L.active=[L.auxval,L.eigval]
#println("#############")
#println("lam0:$lam0 ")
for i in 1:nev
L.params[L.auxval]=lam[i]
sol=Solution(L.params,v[:,i],v_adj[:,i],L.auxval)
perturb!(sol,L,L.eigval,order,mode=:householder)
coeffs=sol.eigval_pert[Symbol("$(L.eigval)/Taylor")]
num,den=pade(coeffs,num_order,order-num_order)
#forward calculation (has issues with multi-valuedness)
roots=poly_roots(num)
indexing=sortperm(roots, by=abs)
dz=roots[indexing[1]]
push!(delta_z,dz)
#poles=sort(poly_roots(den),by=abs)
#poles=poles[1]
#println(">>>$i<<<")
#println("$coeffs")
#println("residue:$(LinearAlgebra.norm((A-lam[i]*M)*v[:,i])) and $(LinearAlgebra.norm((A'-lam_adj[i]*M')*v_adj[:,i]))")
#println("poles: $(poles+z) r:$(abs(poles))")
#backward check(for solving multi-valuedness problems by continuity)
if z0!=Inf
back_lam=polyval(num,z0-z)/polyval(den,z0-z)
#println("back:$back_lam")
#println("root: $(z+dz)")
#estm_lam=polyval(num,dz)/polyval(den,dz)
#println("estm. lam: $estm_lam")
back_lam=lam0-back_lam
push!(back_delta_z,back_lam)
end
end
L.active=[L.eigval]
if z0!=Inf
indexing=sortperm(back_delta_z, by=abs)
else
indexing=sortperm(delta_z, by=abs)
end
lam=lam[indexing[1]]
L.params[L.auxval]=lam #TODO remove this from the loop body
z0=z
lam0=lam
z=z+relax*delta_z[indexing[1]]
v0=(1-relax)*v0+relax*v[:,indexing[1]]
v0_adj=(1-relax)*v0_adj+relax*v_adj[:,indexing[1]]
n+=1
end
catch excp
if output
println("Error occured:")
println(excp)
println(typeof(excp))
println("...aborted MSLP!")
end
flag=itsol_unknown
if typeof(excp) <: Arpack.ARPACKException
flag=itsol_arpack_exception
if excp==Arpack.ARPACKException(-9999)
flag=itsol_arpack_9999
end
elseif excp== LinearAlgebra.SingularException(0) #This means that the solution is so good that L(z) cannot be LU factorized...TODO: implement other strategy into perturb
flag=itsol_singular_exception
L.params[L.eigval]=z
end
end
if flag==itsol_converged
L.params[L.eigval]=z
if output; println(n,"\t\t",abs(lam),"\t",abs(z-z0),"\t", z ); end
if n>=maxiter
flag=itsol_maxiter
if output; println("Warning: Maximum number of iterations has been reached!");end
elseif abs(lam)<=lam_tol
flag=itsol_converged
if output; println("Solution has converged!"); end
elseif abs(z-z0)<=tol
flag=itsol_slow_convergence
if output; println("Warning: Slow convergence!"); end
elseif isnan(z)
flag=itsol_isnan
if output; println("Warning: computer arithmetics problem. Eigenvalue is NaN"); end
else
if output; println("Warning: This should not be possible....\n If you can read this contact GAM!");end
flag=itsol_impossible
println(z)
end
if output
println("...finished MSLP!")
println("#####################")
println(" Results ")
println("#####################")
println("Number of steps: ",n)
println("Last step parameter variation:",abs(z0-z))
println("Auxiliary eigenvalue $(L.auxval) residual (rhs):", abs(lam))
println("Eigenvalue:",z/scale)
end
end
L.active=active
L.mode=mode
#normalization
v0/=sqrt(v0'*M*v0)
v0_adj/=conj(v0_adj'*L(L.params[L.eigval],1)*v0)
return Solution(L.params,v0,v0_adj,L.eigval), n, flag
end
## inverse iterations
"""
sol,n,flag = inveriter(L,z;maxiter=10,tol=0., relax=1., x0=[],v=[], output=true)
Deploy inverse iteration for finding an eigenpair of `L`.
# Arguments
- `L::LinearOperatorFamily`: Definition of the nonlinear eigenvalue problem.
- `z`: Initial guess for the eigenvalue.
- `maxiter::Integer=10`: Maximum number of iterations.
- `tol=0`: Absolute tolerance to trigger the stopping of the iteration. If the difference of two consecutive iterates is `abs(z0-z1)<tol` the iteration is aborted.
- `relax=1`: relaxation parameter
- `x0::Vector`: initial guess for eigenvector. If not provided it is all ones.
- `v0::Vector`: normalization vector. If not provided it is all ones.
- `output::Bool`: Toggle printing online information.
# Returns
- `sol::Solution`
- `n::Integer`: Number of perforemed iterations
- `flag::Integer`: flag reporting the success of the method. Most important values are `1`: method converged, `0`: convergence might be slow, `-1`:maximum number of iteration has been reached. For other error codes see the source code.
# Notes
The algorithm uses Newton-Raphson itreations on the vector level for iteratively solving the problem
`L(λ)x == 0 ` and `v'x == 0`.
The implementation is based on Algorithm 1 in [1]
# References
[1] V. Mehrmann and H. Voss (2004), Nonlinear eigenvalue problems: A challenge for modern eigenvalue methods, GAMM-Mitt. 27, 121–152.
See also: [`beyn`](@ref), [`lancaster`](@ref), [`mslp`](@ref), [`rf2s`](@ref), [`traceiter`](@ref), [`decode_error_flag`](@ref)
"""
function inveriter(L,z;maxiter=10,tol=0., relax=1., x0=[],v=[], output=true)
if output
println("Launching inverse iteration...")
end
if x0==[]
x0=ones(ComplexF64,size(L(0))[1])
end
if v==[]
v=ones(ComplexF64,size(L(0))[1])
end
#normalize
x0/=v'*x0
active=L.active #TODO: better integrate activity into householder
z0=complex(Inf)
n=0
flag=itsol_converged
try
while abs(z-z0)>tol && n<maxiter
if output; println(n,"\t\t",abs(z-z0),"\t", z );flush(stdout); end
z0=z
u=L(z,0)\(L(z,1)*x0)
#println(size(v)," ",size(x0)," ",size(u))
z=z0-(v'*x0)/(v'*u)
x0=u/(v'*u)
#println("###",v'x0)
n+=1
end
catch excp
if output
println("Error occured:")
println(excp)
println(typeof(excp))
println("...aborted inverse iteration!")
end
flag=itsol_unknown
end
#convergence checks
if flag==itsol_converged
if output; println(n,"\t\t",abs(z-z0),"\t", z );flush(stdout); end
if n>=maxiter
flag=itsol_maxiter
if output; println("Warning: Maximum number of iterations has been reached!");end
elseif abs(z-z0)<=tol
flag=itsol_converged
if output; println("Solution has converged!"); end
elseif isnan(z)
flag=itsol_isnan
if output; println("Warning: computer arithmetics problem. Eigenvalue is NaN"); end
else
if output; println("Warning: This should not be possible....\n If you can read this contact GAM!");end
flag=itsol_impossible
println(z)
end
end
y=[]
return Solution(L.params,x0,y,L.eigval,L.auxval), n , flag
end
## Lancaster's Rayleigh-quotient iteration
"""
sol,n,flag = lancaster(L,z;maxiter=10,tol=0., relax=1., x0=[],y0=[], output=true)
Deploy Lancaster's Rayleigh-quotient iteration for finding an eigenvalue of `L`.
# Arguments
- `L::LinearOperatorFamily`: Definition of the nonlinear eigenvalue problem.
- `z`: Initial guess for the eigenvalue.
- `maxiter::Integer=10`: Maximum number of iterations.
- `tol=0`: Absolute tolerance to trigger the stopping of the iteration. If the difference of two consecutive iterates is `abs(z0-z1)<tol` the iteration is aborted.
- `relax=1`: relaxation parameter
- `x0::Vector`: initial guess for right iteration vector. If not provided it is all ones.
- `y0::Vector`: initial guess for left iteration vector. If not provided it is all ones.
- `output::Bool`: Toggle printing online information.
# Returns
- `sol::Solution`
- `n::Integer`: Number of perforemed iterations
- `flag::Integer`: flag reporting the success of the method. Most important values are `1`: method converged, `0`: convergence might be slow, `-1`:maximum number of iteration has been reached. For other error codes see the source code.
# Notes
The algorithm is a generalization of Rayleigh-quotient-iteration by Lancaster [1].
# References
[1] P. Lancaster, A Generalised Rayleigh Quotient Iteration for Lambda-Matrices,Arch. Rational Mech Anal., 1961, 8, p. 309-322, https://doi.org/10.1007/BF00277446
See also: [`beyn`](@ref), [`inveriter`](@ref), [`mslp`](@ref), [`rf2s`](@ref), [`traceiter`](@ref), [`decode_error_flag`](@ref)
"""
function lancaster(L,z;maxiter=10,tol=0., relax=1., x0=[],y0=[], output=true)
if output
println("Launching Lancaster's Rayleigh-quotient iteration...")
end
if x0==[]
x0=ones(ComplexF64,size(L(0))[1])
end
if y0==[]
y0=ones(ComplexF64,size(L(0))[1])
end
z0=complex(Inf)
n=0
flag=itsol_converged
try
while abs(z-z0)>tol && n<maxiter
if output; println(n,"\t\t",abs(z-z0),"\t", z );flush(stdout); end
z0=z
#solve
ξ=L(z)\x0
η=L(z)'\y0
z=z0-(η'*L(z,0)*ξ)/(η'*L(z,1)*ξ)
n+=1
end
catch excp
if output
println("Error occured:")
println(excp)
println(typeof(excp))
println("...aborted Lancaster's method!")
end
flag=itsol_unknown
end
#convergence checks
if flag==itsol_converged
if output; println(n,"\t\t",abs(z-z0),"\t", z );flush(stdout); end
if n>=maxiter
flag=itsol_maxiter
if output; println("Warning: Maximum number of iterations has been reached!");end
elseif abs(z-z0)<=tol
flag=itsol_converged
if output; println("Solution has converged!"); end
elseif isnan(z)
flag=itsol_isnan
if output; println("Warning: computer arithmetics problem. Eigenvalue is NaN"); end
else
if output; println("Warning: This should not be possible....\n If you can read this contact GAM!");end
flag=itsol_impossible
println(z)
end
end
return Solution(L.params,zeros(ComplexF64,length(x0)),[],L.eigval), n , flag
end
## trace iteration
"""
sol,n,flag = traceiter(L,z;maxiter=10,tol=0.,relax=1.,output=true)
Deploy trace iteration for finding an eigevalue of `L`.
# Arguments
- `L::LinearOperatorFamily`: Definition of the nonlinear eigenvalue problem.
- `z`: Initial guess for the eigenvalue.
- `maxiter::Integer=10`: Maximum number of iterations.
- `tol=0`: Absolute tolerance to trigger the stopping of the iteration. If the difference of two consecutive iterates is `abs(z0-z1)<tol` the iteration is aborted.
- `relax=1`: relaxation parameter
- `output::Bool`: Toggle printing online information.
# Returns
- `sol::Solution`
- `n::Integer`: Number of perforemed iterations
- `flag::Integer`: flag reporting the success of the method. Most important values are `1`: method converged, `0`: convergence might be slow, `-1`:maximum number of iteration has been reached. For other error codes see the source code.
# Notes
The algorithm applies Newton-Raphson iteration for finding the root of the determinant. The updates for the iterates are computed by using trace operations and Jacobi's formula [1]. The trace operation renders the method slow and inaccurate for medium and large problems.
# References
[1] S. Güttel and F. Tisseur, The Nonlinear Eigenvalue Problem, 2017, http://eprints.ma.man.ac.uk/2531/.
See also: [`beyn`](@ref), [`inveriter`](@ref), [`lancaster`](@ref), [`mslp`](@ref), [`rf2s`](@ref), [`decode_error_flag`](@ref)
"""
function traceiter(L,z;maxiter=10,tol=0.,relax=1.,output=true)
if output
println("Launching trace iteration...")
end
z0=complex(Inf)
n=0
flag=itsol_converged
try
while abs(z-z0)>tol && n<maxiter
if output; println(n,"\t\t",abs(z-z0),"\t", z ); end
z0=z
#dz=-1/LinearAlgebra.tr(Array(L(z))\Array(L(z,1))) #TODO: better implementation for sparse types
#QR=SparseArrays.qr(L(z))
LU=SparseArrays.lu(L(z),check=false)
L1=L(z,1)
dz=0.0+0.0im
for idx=1:size(LU)[1]
dz+=(LU\Array(L1[:,idx]))[idx]
end
dz=-1/dz
z=z0+relax*dz
n+=1
end
catch excp
if output
println("Error occured:")
println(excp)
println(typeof(excp))
println("...aborted trace iteration!")
end
flag=itsol_unknown
end
#convergence checks
if flag==itsol_converged
if output; println(n,"\t\t",abs(z-z0),"\t", z );flush(stdout); end
if n>=maxiter
flag=itsol_maxiter
if output; println("Warning: Maximum number of iterations has been reached!");end
elseif abs(z-z0)<=tol
flag=itsol_converged
if output; println("Solution has converged!"); end
elseif isnan(z)
flag=itsol_isnan
if output; println("Warning: computer arithmetics problem. Eigenvalue is NaN"); end
else
if output; println("Warning: This should not be possible....\n If you can read this contact GAM!");end
flag=itsol_impossible
println(z)
end
end
return Solution(L.params,[],[],L.eigval), n, flag
end
## two-sided Rayleigh-functional iteration
"""
sol,n,flag = rf2s(L,z;maxiter=10,tol=0., relax=1., x0=[],y0=[], output=true)
Deploy two sided Rayleigh-functional iteration for finding an eigentriple of `L`.
# Arguments
- `L::LinearOperatorFamily`: Definition of the nonlinear eigenvalue problem.
- `z`: Initial guess for the eigenvalue.
- `maxiter::Integer=10`: Maximum number of iterations.
- `tol=0`: Absolute tolerance to trigger the stopping of the iteration. If the difference of two consecutive iterates is `abs(z0-z1)<tol` the iteration is aborted.
- `relax=1`: relaxation parameter
- `x0::Vector`: initial guess for right eigenvector. If not provided it is the first basis vector `[1 0 0 0 ...]`.
- `y0::Vector`: initial guess for left eigenvector. If not provided it is the first basis vector `[1 0 0 0 ...].
- `output::Bool`: Toggle printing online information.
# Returns
- `sol::Solution`
- `n::Integer`: Number of perforemed iterations
- `flag::Integer`: flag reporting the success of the method. Most important values are `1`: method converged, `0`: convergence might be slow, `-1`:maximum number of iteration has been reached. For other error codes see the source code.
# Notes
The algorithm is known to have a cubic convergence rate. Its implementation follows Algorithm 4.9 in [1].
# References
[1] S. Güttel and F. Tisseur, The Nonlinear Eigenvalue Problem, 2017, http://eprints.ma.man.ac.uk/2531/.
See also: [`beyn`](@ref), [`inveriter`](@ref), [`lancaster`](@ref), [`mslp`](@ref), [`traceiter`](@ref), [`decode_error_flag`](@ref)
"""
function rf2s(L,z;maxiter=10,tol=0., relax=1., x0=[],y0=[], output=true)
if output
println("Launching two-sided Rayleigh functional iteration...")
end
if x0==[]
x0=zeros(ComplexF64,size(L(0))[1])
x0[1]=1
end
if y0==[]
y0=zeros(ComplexF64,size(L(0))[1])
y0[1]=1
end
#normalize
x0/=sqrt(x0'*x0)
y0/=sqrt(y0'*y0)
z0=complex(Inf)
n=0
flag=itsol_converged
try
while abs(z-z0)>tol && n<maxiter
if output; println(n,"\t\t",abs(z-z0),"\t", z ); end
z0=z
LU=SparseArrays.lu(L(z),check=false)
x0=LU\(L(z,1)*x0)
y0=LU'\(L(z,1)'*y0)
#normalize
x0/=sqrt(x0'*x0)
y0/=sqrt(y0'*y0)
#inner iteration
idx=0
z00=complex(Inf)
while abs(z-z00)>tol && idx<10
z00=z
z=z-(y0'*L(z)*x0)/(y0'*L(z,1)*x0)
idx+=1
end
n+=1
end
catch excp
if output
println("Error occured:")
println(excp)
println(typeof(excp))
println("...aborted two-sided Rayleigh functional iteration!")
end
flag=itsol_unknown
end
#convergence checks
if flag==itsol_converged
if output; println(n,"\t\t",abs(z-z0),"\t", z );flush(stdout); end
if n>=maxiter
flag=itsol_maxiter
if output; println("Warning: Maximum number of iterations has been reached!");end
elseif abs(z-z0)<=tol
flag=itsol_converged
if output; println("Solution has converged!"); end
elseif isnan(z)
flag=itsol_isnan
if output; println("Warning: computer arithmetics problem. Eigenvalue is NaN"); end
else
if output; println("Warning: This should not be possible....\n If you can read this contact GAM!");end
flag=itsol_impossible
println(z)
end
end
return Solution(L.params,x0,y0,L.eigval), n, flag
end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 6313 | function mehrmann(L,z;maxiter=10,tol=0., relax=1., x0=[],v=[], output=true)
if output
println("Launching Mehrmann...")
end
if x0==[]
x0=ones(ComplexF64,size(L(0))[1])
end
if v==[]
v=ones(ComplexF64,size(L(0))[1])
end
#normalize
x0/=v'*x0
active=L.active #TODO: better integrate activity into householder
z0=complex(Inf)
n=0
flag=1
try
while abs(z-z0)>tol && n<maxiter
if output; println(n,"\t\t",abs(z-z0),"\t", z );flush(stdout); end
z0=z
u=L(z,0)\(L(z,1)*x0)
#println(size(v)," ",size(x0)," ",size(u))
z=z0-(v'*x0)/(v'*u)
x0=u/(v'*u)
#println("###",v'x0)
n+=1
end
catch excp
if output
println("Error occured:")
println(excp)
println(typeof(excp))
println("...aborted Mehrmann!")
end
flag=-2
end
#convergence checks
if flag==1
if output; println(n,"\t\t",abs(z-z0),"\t", z );flush(stdout); end
if n>=maxiter
flag=-1
if output; println("Warning: Maximum number of iterations has been reached!");end
elseif abs(z-z0)<=tol
flag=1
if output; println("Solution has converged!"); end
else
if output; println("Warning: This should not be possible....\n If you can read this contact GAM!");end
flag=-3
println(z)
end
end
# if flag==1
# #compute left eigenvector
# #TODO: degeneracy
# lam,y = Arpack.eigs(L(z)',nev=1, sigma = 0,v0=x0)
# #normalize
# println("size:::$size(y)")
# x0./sqrt(x0'*x0)
# y./=conj(y'*L(z,1)*x0)
# else
# y=[]
# end
y=[]
return Solution(L.params,x0,y,L.eigval), n , flag
end
##
function lancaster(L,z;maxiter=10,tol=0., relax=1., x0=[],y0=[], output=true)
if output
println("Launching Lancaster...")
end
if x0==[]
x0=ones(ComplexF64,size(L(0))[1])
end
if y0==[]
y0=ones(ComplexF64,size(L(0))[1])
end
z0=complex(Inf)
n=0
flag=1
try
while abs(z-z0)>tol && n<maxiter
if output; println(n,"\t\t",abs(z-z0),"\t", z );flush(stdout); end
z0=z
#solve
ξ=L(z)\x0
η=L(z)'\y0
z=z0-(η'*L(z,0)*ξ)/(η'*L(z,1)*ξ)
n+=1
end
catch excp
if output
println("Error occured:")
println(excp)
println(typeof(excp))
println("...aborted Lancaster!")
end
flag=-2
end
#convergence checks
if flag==1
if output; println(n,"\t\t",abs(z-z0),"\t", z );flush(stdout); end
if n>=maxiter
flag=-1
if output; println("Warning: Maximum number of iterations has been reached!");end
elseif abs(z-z0)<=tol
flag=1
if output; println("Solution has converged!"); end
else
if output; println("Warning: This should not be possible....\n If you can read this contact GAM!");end
flag=-3
println(z)
end
end
return Solution(L.params,zeros(ComplexF64,length(x0)),[],L.eigval), n , flag
end
#%%
import LinearAlgebra
function juniper(L,z;maxiter=10,tol=0.,relax=1.,output=true)
if output
println("Launching Juniper...")
end
z0=complex(Inf)
n=0
flag=1
try
while abs(z-z0)>tol && n<maxiter
if output; println(n,"\t\t",abs(z-z0),"\t", z ); end
z0=z
#dz=-1/LinearAlgebra.tr(Array(L(z))\Array(L(z,1))) #TODO: better implementation for sparse types
#QR=SparseArrays.qr(L(z))
LU=SparseArrays.lu(L(z),check=false)
L1=L(z,1)
dz=0.0+0.0im
for idx=1:size(LU)[1]
dz+=(LU\Array(L1[:,idx]))[idx]
end
dz=-1/dz
z=z0+relax*dz
n+=1
end
catch excp
if output
println("Error occured:")
println(excp)
println(typeof(excp))
println("...aborted Juniper!")
end
flag=-2
end
#convergence checks
if flag==1
if output; println(n,"\t\t",abs(z-z0),"\t", z );flush(stdout); end
if n>=maxiter
flag=-1
if output; println("Warning: Maximum number of iterations has been reached!");end
elseif abs(z-z0)<=tol
flag=1
if output; println("Solution has converged!"); end
else
if output; println("Warning: This should not be possible....\n If you can read this contact GAM!");end
flag=-3
println(z)
end
end
return Solution(L.params,[],[],L.eigval), n, flag
end
##
function guettel(L,z;maxiter=10,tol=0., relax=1., x0=[],y0=[], output=true)
if output
println("Launching Guettel...")
end
if x0==[]
x0=zeros(ComplexF64,size(L(0))[1])
x0[1]=1
end
if y0==[]
y0=zeros(ComplexF64,size(L(0))[1])
y0[1]=1
end
#normalize
x0/=sqrt(x0'*x0)
y0/=sqrt(y0'*y0)
z0=complex(Inf)
n=0
flag=1
try
while abs(z-z0)>tol && n<maxiter
if output; println(n,"\t\t",abs(z-z0),"\t", z ); end
z0=z
LU=SparseArrays.lu(L(z),check=false)
x0=LU\(L(z,1)*x0)
y0=LU'\(L(z,1)'*y0)
#normalize
x0/=sqrt(x0'*x0)
y0/=sqrt(y0'*y0)
#inner iteration
idx=0
z00=complex(Inf)
while abs(z-z00)>tol && idx<10
z00=z
z=z-(y0'*L(z)*x0)/(y0'*L(z,1)*x0)
idx+=1
end
n+=1
end
catch excp
if output
println("Error occured:")
println(excp)
println(typeof(excp))
println("...aborted Guettel!")
end
flag=-2
end
#convergence checks
if flag==1
if output; println(n,"\t\t",abs(z-z0),"\t", z );flush(stdout); end
if n>=maxiter
flag=-1
if output; println("Warning: Maximum number of iterations has been reached!");end
elseif abs(z-z0)<=tol
flag=1
if output; println("Solution has converged!"); end
elseif isnan(z)
flag=-5
if output; println("Warning: computer arithmetics problem. Eigenvalue is NaN"); end
else
if output; println("Warning: This should not be possible....\n If you can read this contact GAM!");end
flag=-3
println(z)
end
end
return Solution(L.params,x0,y0,L.eigval), n, flag
end
## count poles and zeros
function count_eigvals(L,Γ,N;output=false)
function integrand(z)
z,w=z
LU=SparseArrays.lu(L(z),check=false)
L1=L(z,1)
dz=0.0+0.0im
for idx=1:size(LU)[1]
dz+=(LU\Array(L1[:,idx]))[idx]
end
return dz*w
end
return gauss(0.0+0.0im,integrand,Γ,N,output)/2/pi/1.0im
end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 3009 | function nicoud(L,z;maxiter=10,tol=0.,relax=1.,n_eig_val=3,v0=[],output=true)
if output
println("Launching Nicoud...")
println("Iter Res: dz: z:")
println("----------------------------------")
end
z0=complex(Inf)
n=0
flag=itsol_converged
M=L(1,oplist=["M"],in_or_ex=true) #get mass matrix
K=L(1,oplist=["K"],in_or_ex=true)
C=L(1,oplist=["C"],in_or_ex=true)
d=size(M)[1] #TODO: implement a dimension method for LinearOperatorFamily
I=SparseArrays.sparse(SparseArrays.I,d,d)
O=SparseArrays.spzeros(d,d)
Y=[I O; O M]
if v0==[]
v0=ones(ComplexF64,d)
end
v0=[v0; z*v0]
try
while abs(z-z0)>tol && n< maxiter
if output; println(n,"\t\t",abs(z-z0),"\t", z );flush(stdout); end
z0=z
Q=L(z,oplist=["Q"],in_or_ex=true)
X=[O -I; K+Q C]
z,v0=Arpack.eigs(-X,Y,sigma=z0,v0=v0,nev=n_eig_val)
indexing=sortperm(z.-z0,by=abs)
z,v0=z[indexing[1]],v0[:,indexing[1]]
z=z0+relax*(z-z0)
#TODO consider relaxation in v0
n+=1
end
catch excp
if output
println("Error occured:")
println(excp)
println(typeof(excp))
println("...aborted Nicoud!")
end
flag=itsol_unknown
if typeof(excp) <: Arpack.ARPACKException
flag=itsol_arpack_exception
if excp==Arpack.ARPACKException(-9999)
flag=itsol_arpack_9999
end
elseif excp== LinearAlgebra.SingularException(0) #This means that the solution is so good that L(z) cannot be LU factorized...TODO: implement other strategy into perturb
flag=itsol_singular_exception
L.params[L.eigval]=z
end
end
if flag==itsol_converged
L.params[L.eigval]=z
if output; println(n,"\t\t",abs(z-z0),"\t", z ); end
if n>=maxiter
flag=itsol_maxiter
if output; println("Warning: Maximum number of iterations has been reached!");end
elseif abs(z-z0)<=tol
flag=itsol_converged
if output; println("Solution has converged!"); end
elseif isnan(z)
flag=itsol_isnan
if output; println("Warning: computer arithmetics problem. Eigenvalue is NaN"); end
else
if output; println("Warning: This should not be possible....\n If you can read this contact GAM!");end
flag=itsol_impossible
end
if output
println("...finished Nicoud!")
println("#####################")
println(" Nicoud results ")
println("#####################")
println("Number of steps: ",n)
println("Last step parameter variation:",abs(z0-z))
println("Eigenvalue:",z)
println("Eigenvalue/(2*pi):",z/2/pi)
end
end
return Solution(L.params,v0[1:d],[],L.eigval), n, flag
end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 13865 | ##Ok let's go and write an iterator for Kelleher's algorithm
struct part
n
end
import Base
#import IterativeSolvers
import SpecialFunctions
#initializer
function Base.iterate(iter::part)
a=zeros(Int64,iter.n)
k=2
y=iter.n-1
if k!=1
x=a[k-1]+1
k-=1
while 2*x <=y
a[k]=x
y-=x
k+=1
end
l=k+1
if x<=y
a[k]=x
a[l]=y
#put!(c,a[1:k+1])
x+=1
y-=1
return a[1:k+1],(a,k,l,x,y)
end
a[k]=x+y
y=x+y-1
## header again there is probably an easier way to code this
p= a[1:k]
if k!=1
x=a[k-1]+1
k-=1
while 2*x <=y
a[k]=x
y-=x
k+=1
end
l=k+1
else
k=-1 # sentinel value see below
end
return p,(a,k,l,x,y)
end
end
function Base.iterate(iter::part,state)
a,k,l,x,y=state
if k==-1; return nothing; end #minus 1 is a sentinel value
if x<=y
a[k]=x
a[l]=y
#put!(c,a[1:k+1])
x+=1
y-=1
return a[1:k+1],(a,k,l,x,y)
else
a[k]=x+y
y=x+y-1
p=a[1:k]# copy next output
if k!=1
x=a[k-1]+1
k-=1
while 2*x <=y
a[k]=x
y-=x
k+=1
end
l=k+1
else
k=-1 #set sentinel value for termination
end
return p,(a,k,l,x,y)
end
end
# #small performance test
# #Watch this PyHoltz
# zeit=time()
# for (num,p) in enumerate(part(15))
# println(num,p)
# end
# zeit=time()-zeit
# print("iterator:",zeit)
function part2mult(p)
z=sum(p)
mu=zeros(Int64,z)
if p !=[0]
for i in p
mu[i]+=1
end
end
return mu
end
# #next tiny test
# for (num,p) in enumerate(part(5))
# println(num,p,part2mult(p))
# end
function multinomcoeff(mu)
return SpecialFunctions.factorial(float(sum(mu)))/prod(SpecialFunctions.factorial.(float.(mu)))
end
function weigh(mu)
weight=0
for (g,mu_g) in enumerate(mu)
weight+=g*mu_g #TODO: check type
end
return weight
end
function generate_MN(N)
#MN=[Dict{Tuple{Int64,Int64},Array{Array{Int64,1},1}}()]
MN=[Dict{Array{Int64,1},Array{Array{Int64,1},1}}()]
#MN=[Dict()]
for k=1:N
#MU=Dict{Tuple{Int64,Int64},Array{Array{Int64,1},1}}()
MU=Dict{Array{Int64,1},Array{Array{Int64,1},1}}()
#MU=Dict()
for n=1:k
key=[0,n]
mu=[0]
mu=part2mult(mu)
#mu=Array{Int64,1}[]
if key in keys(MU)
push!(MU[key],mu)
else
MU[key]=[mu]
end
end
for m = 1:k
for mu in part(m)
if mu == [k]
continue
end
mu=part2mult(mu)
for n=0:k-m
key=[sum(mu),n]
if key in keys(MU)
push!(MU[key],mu)
else
MU[key]=[mu]
end
end
end
end
push!(MN,MU)
end
return MN
end
function tuple2idx(tpl,ord)
m,n=tpl
return sum(ord-m+1:ord)+n+m
end
function mult2str(mu)
txt=""
for mu_g in mu
txt*=string(mu_g)*" "
end
if length(txt)!=0
txt=txt[1:end-1]
txt*="\n"
end
return txt
end
function generate_multi_indices_at_order(k;to_disk=false,compressed=false)
if to_disk
pack="../src/NLEVP/compressed_perturbation_data/" #This file location is relative to the deps directory as this is the one where build pkg is run.
dir="$k/"
else
Mu=[ Array{Int16,1}[] for i in 1:tuple2idx((k,0),k) ] #TODO specify type
end
if to_disk && !ispath(pack*dir)
mkpath(pack*dir)
elseif to_disk && ispath(pack*dir)
return nothing
end
for n=1:k
key=(0,n)
p=[0]
mu=part2mult(p)
out=compressed ? p : mu
println("n and k : $n and $k")
println("key: $key")
if to_disk
fname="$(key[1])_$(key[2])"
println("fname: $fname")
open(pack*dir*fname,"w") do file
write(file,mult2str(out))
end
else
idx=tuple2idx(key,k)
push!(Mu[idx],out)
end
end
for m = 1:k
for p in part(m)
if p == [k]
continue
end
mu=part2mult(p)
out=compressed ? p : mu
for n=0:k-m
key=(sum(mu),n)
if to_disk
fname="$(key[1])_$(key[2])"
open(pack*dir*fname,"a") do file
write(file,mult2str(out))
end
else
idx=tuple2idx(key,k)
push!(Mu[idx],out)
end
end
end
end
if !to_disk
return Mu
end
end
function efficient_MN(N)
MN=Array{Array{Array{Array{Int16,1},1},1}}(undef,N)
#MN=[]
for k =1:N
#push!(MN,generate_multi_indices_at_order(k))
MN[k]=generate_multi_indices_at_order(k)
end
return MN
end
function disk_MN(N)
for k=1:N
generate_multi_indices_at_order(k,to_disk=true,compressed=true)
end
end
##
# zeit=time()
# MN=generate_MN(50);
# zeit=time()-zeit
# println("zeit: ", zeit)
##
# function perturb(L,N,v0,v0Adj)
# #normalize
# v0/=sqrt(v0'*v0)
# v0Adj/=v0Adj'*L(1,0)*v0
# λ=Array{ComplexF64}(undef,N+1)
# v=Array{Array{Complex{Float64}},1}(undef,N+1)
# v[1]=v0
# dim=size(v0)[1]
# L00=L(0,0)
# sparse = SparseArrays.issparse(L00)
# L00=SparseArrays.lu(L(0,0),check=false) #L(0,0) is singular but in most of the cases we are lucky and a LU factorization exists
# if sparse && L00.status!=0 #lu failed... TODO: implement LU check for dense arrays
# L00=SparseArrays.qr(L(0,0)) #we try a QR factorization
# end
# #TODO consider using qr for all cases
#
#
# for k=1:N
# r=zeros(ComplexF64,dim)
# for n = 1:k
# r+=L(0,n)*v[k-n+1] #+1 to start indexing with zero
# end
# for m =1:k
# for mu in part(m)
# if mu ==[k]
# continue
# end
# mu=part2mult(mu)
# for n=0:k-m
# coeff=1
# for (g, mu_g) in enumerate(mu)
# coeff*=λ[g+1]^mu_g #+1 because indexing starts with zero
# end
# r+=L(sum(mu),n)*v[k-n-m+1]*multinomcoeff(mu)*coeff
# end
# end
# end
# λ[k+1]=-v0Adj'*r/(v0Adj'*L(1,0)*v0)
# #v[k+1]= IterativeSolvers.gmres(L(0,0),-(r+λ[k+1]*L(1,0)*v0)) This is crap!!!
# #v[k+1]=L(0,0)\-(r+λ[k+1]*L(1,0)*v0) #This works but LU factorization should be done outside of the loop
# v[k+1]=L00\-(r+λ[k+1]*L(1,0)*v0) #yeah !
# v[k+1]-=(v0'*v[k+1])*v0 #if v[k+1] is orthogonal to v0 it features minimum norm
# #
# #println("status: $(L00.status)")
# #res=L(0,0)*v[k+1]+(r+λ[k+1]*L(1,0)*v0)
# #res=LinearAlgebra.norm(res)
# end
# return λ,v
# end
function perturb(L,N,v0,v0Adj)
#normalize
v0/=sqrt(v0'*v0)
v0Adj/=v0Adj'*L(1,0)*v0
λ=Array{ComplexF64}(undef,N+1)
v=Array{Array{Complex{Float64}},1}(undef,N+1)
v[1]=v0
dim=size(v0)[1]
L00=L(0,0)
sparse = SparseArrays.issparse(L00)
L00=SparseArrays.lu(L(0,0),check=false) #L(0,0) is singular but in most of the cases we are lucky and a LU factorization exists
if sparse && L00.status!=0 #lu failed... TODO: implement LU check for dense arrays
L00=SparseArrays.qr(L(0,0)) #we try a QR factorization
end
#TODO consider using qr for all cases
for k=1:N
r=zeros(ComplexF64,dim)
for n = 1:k
r+=L(0,n)*v[k-n+1] #+1 to start indexing with zero
end
for m =1:k
for mu in part(m)
if mu ==[k]
continue
end
mu=part2mult(mu)
for n=0:k-m
coeff=1
for (g, mu_g) in enumerate(mu)
coeff*=λ[g+1]^mu_g #+1 because indexing starts with zero
end
r+=L(sum(mu),n)*v[k-n-m+1]*multinomcoeff(mu)*coeff
end
end
end
λ[k+1]=-v0Adj'*r/(v0Adj'*L(1,0)*v0)
#v[k+1]= IterativeSolvers.gmres(L(0,0),-(r+λ[k+1]*L(1,0)*v0)) This is crap!!!
#v[k+1]=L(0,0)\-(r+λ[k+1]*L(1,0)*v0) #This works but LU factorization should be done outside of the loop
v[k+1]=L00\-(r+λ[k+1]*L(1,0)*v0) #yeah !
v[k+1]-=(v0'*v[k+1])*v0 #if v[k+1] is orthogonal to v0 it features minimum norm
#
#println("status: $(L00.status)")
#res=L(0,0)*v[k+1]+(r+λ[k+1]*L(1,0)*v0)
#res=LinearAlgebra.norm(res)
end
return λ,v
end
#TODO: consider stronger compression
function perturb_disk(L,N,v0,v0Adj)
#normalize
zeit=time()
v0/=sqrt(v0'*v0)
v0Adj/=v0Adj'*L(1,0)*v0
λ=Array{ComplexF64}(undef,N+1)
v=Array{Array{Complex{Float64}},1}(undef,N+1)
v[1]=v0
dim=size(v0)[1]
L00=L(0,0)
sparse = SparseArrays.issparse(L00)
L00=SparseArrays.lu(L(0,0),check=false) #L(0,0) is singular but in most of the cases were are lucky and a LU factorization exists
if sparse && L00.status!=0 #lu failed... TODO: implement LU check for dense arrays
L00=SparseArrays.qr(L(0,0)) #we try a QR factorization
end
#TODO consider using qr for all cases
pack=(@__DIR__)*"/compressed_perturbation_data/"
for k=1:N
dir="$k/"
r=zeros(ComplexF64,dim)
for m=0:k
for n=0:k-m
if m==n==0 || k==m==1
continue
end
fname="$(m)_$(n)"
w=zeros(ComplexF64,dim)
open(pack*dir*fname,"r") do file
for str in eachline(file)
#str=readline(file)
mu=part2mult(parse.(Int64,split(str)))
coeff=1
for (g,mu_g) in enumerate(mu)
coeff*=λ[g+1]^mu_g #+1 because indexing starts with zero
end
w+=v[k-n-weigh(mu)+1]*multinomcoeff(mu)*coeff
end
end
r+=L(m,n)*w
end
end
#println("##########")
#println("r: $r")
#v[k+1]= IterativeSolvers.gmres(L(0,0),-(r+λ[k+1]*L(1,0)*v0)) This is crap!!!
λ[k+1]=-v0Adj'*r/(v0Adj'*L(1,0)*v0)
#println("λ: $(λ[k+1])")
#v[k+1]=L(0,0)\-(r+λ[k+1]*L(1,0)*v0) #This works but LU factorization should be done outside of the loop
#println("rhs: $(r+λ[k+1]*L(1,0)*v0)")
v[k+1]=L00\-(r+λ[k+1]*L(1,0)*v0) #yeah !
v[k+1]-=(v0'*v[k+1])*v0 #if v[k+1] is orthogonal to v0 it features minimum norm
#v[k+1]./=exp(1im*angle(v[k+1][1]))
#res=L(0,0)*v[k+1]+(r+λ[k+1]*L(1,0)*v0)
#res=LinearAlgebra.norm(res)
#normalization
c=0.0+0.0im
#println("order: $k, time: $(time()-zeit)")
for l=1:k-1
c-=.5*v[l+1]'*v[k-l+1]
#c+=v[l+1]'*v[k-l+1]
end
v[k+1]+=c*v[1]
#v[k+1]-=v[1]*(c/2.0+v[1]'*v[k+1])
end
return λ,v
end
# function perturb_fast(L,N,v0,v0Adj)
# #normalize
# v0/=sqrt(v0'*v0)
# v0Adj/=v0Adj'*L(1,0)*v0
# λ=Array{ComplexF64}(undef,N+1)
# v=Array{Array{Complex{Float64}},1}(undef,N+1)
# v[1]=v0
# dim=size(v0)[1]
# L00=L(0,0)
# sparse = SparseArrays.issparse(L00)
# L00=SparseArrays.lu(L(0,0),check=false) #L(0,0) is singular but in most of the cases were are lucky and a LU factorization exists
# if sparse && L00.status!=0 #lu failed... TODO: implement LU check for dense arrays
# L00=SparseArrays.qr(L(0,0)) #we try a QR factorization
# end
# #TODO consider using qr for all cases
#
#
# for k=1:N
# r=zeros(ComplexF64,dim)
#
# for (m,n) in MN[k+1] #MN is ein dictionary mit schlüsseln (m,n)
# w=zeros(ComplexF64,dim)
# for mu in MN[k+1][(m,n)]
# coeff=1
# for (g,mu_g) in enumerate(mu)
# coeff*=λ[g+1]^mu_g #+1 because indexing starts with zero
# w+=v[k-n-weigh(mu)+1]*multinomcoeff(mu)*coeff
# end
# end
# r+=L(m,n)*w
# end
# #v[k+1]= IterativeSolvers.gmres(L(0,0),-(r+λ[k+1]*L(1,0)*v0)) This is crap!!!
#
# λ[k+1]=-v0Adj'*r/(v0Adj'*L(1,0)*v0)
# #v[k+1]=L(0,0)\-(r+λ[k+1]*L(1,0)*v0) #This works but LU factorization should be done outside of the loop
# v[k+1]=L00\-(r+λ[k+1]*L(1,0)*v0) #yeah !
# res=L(0,0)*v[k+1]+(r+λ[k+1]*L(1,0)*v0)
# end
# return λ,v
# end
function perturb_norm(L,N,v0,v0Adj)
#normalize
zeit=time()
Y=-L.terms[end].coeff #TODO: check for __aux__
Y=convert(SparseArrays.SparseMatrixCSC{ComplexF64,Int},Y)
v0/=sqrt(v0'*Y*v0)
v0Adj=SparseArrays.lu(Y)\v0Adj #TODO: this step is highly redundant
v0Adj/=v0Adj'*Y*L(1,0)*v0
λ=Array{ComplexF64}(undef,N+1)
v=Array{Array{Complex{Float64}},1}(undef,N+1)
v[1]=v0
dim=size(v0)[1]
L00=L(0,0)
sparse = SparseArrays.issparse(L00)
L00=SparseArrays.lu(L(0,0),check=false) #L(0,0) is singular but in most of the cases were are lucky and a LU factorization exists
if sparse && L00.status!=0 #lu failed... TODO: implement LU check for dense arrays
L00=SparseArrays.qr(L(0,0)) #we try a QR factorization
end
#TODO consider using qr for all cases
pack=(@__DIR__)*"/compressed_perturbation_data/"
for k=1:N
dir="$k/"
r=zeros(ComplexF64,dim)
for m=0:k
for n=0:k-m
if m==n==0 || k==m==1
continue
end
fname="$(m)_$(n)"
w=zeros(ComplexF64,dim)
open(pack*dir*fname,"r") do file
for str in eachline(file)
#str=readline(file)
mu=part2mult(parse.(Int64,split(str)))
coeff=1
for (g,mu_g) in enumerate(mu)
coeff*=λ[g+1]^mu_g #+1 because indexing starts with zero
end
w+=v[k-n-weigh(mu)+1]*multinomcoeff(mu)*coeff
end
end
r+=L(m,n)*w
end
end
#println("##########")
#println("r: $r")
#v[k+1]= IterativeSolvers.gmres(L(0,0),-(r+λ[k+1]*L(1,0)*v0)) This is crap!!!
λ[k+1]=-v0Adj'*Y*r/(v0Adj'*Y*L(1,0)*v0)
#println("λ: $(λ[k+1])")
#v[k+1]=L(0,0)\-(r+λ[k+1]*L(1,0)*v0) #This works but LU factorization should be done outside of the loop
#println("rhs: $(r+λ[k+1]*L(1,0)*v0)")
v[k+1]=L00\-(r+λ[k+1]*L(1,0)*v0) #yeah !
v[k+1]-=(v0'*Y*v[k+1])*v0 #if v[k+1] is orthogonal to v0 it features minimum norm
#v[k+1]./=exp(1im*angle(v[k+1][1]))
#res=L(0,0)*v[k+1]+(r+λ[k+1]*L(1,0)*v0)
#res=LinearAlgebra.norm(res)
#normalization
c=0.0+0.0im
println("order: $k, time: $(time()-zeit)")
for l=1:k-1
c-=.5*v[l+1]'*Y*v[k-l+1]
#c+=v[l+1]'*v[k-l+1]
end
v[k+1]+=c*v[1]
#v[k+1]-=v[1]*(c/2.0+v[1]'*v[k+1])
end
return λ,v
end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 2811 | function picard(L,z;maxiter=10,tol=0.,relax=1.,n_eig_val=3,v0=[],output=true)
if output
println("Launching Picard...")
println("Iter Res: dz: z:")
println("----------------------------------")
end
z0=complex(Inf)
n=0
flag=itsol_converged
if v0==[]
v0=ones(ComplexF64,size(L(0))[1])
end
M=L(1,oplist=["M"],in_or_ex=true) #get mass matrix
try
while abs(z-z0)>tol && n< maxiter
if output; println(n,"\t\t",abs(z-z0),"\t", z );flush(stdout); end
z0=z
X=L(z0,oplist=["M","__aux__"]) #TODO put aux operator as default to linopfamily call and definition
z,v0=Arpack.eigs(-X,M,sigma=z0,v0=v0,nev=n_eig_val)
z=sqrt.(z)
indexing=sortperm(z.-z0,by=abs)
z,v0=z[indexing[1]],v0[:,indexing[1]]
z=z0+relax*(z-z0)
#TODO consider relaxation in v0
n+=1
end
catch excp
if output
println("Error occured:")
println(excp)
println(typeof(excp))
println("...aborted Picard!")
end
flag=itsol_unknown
if typeof(excp) <: Arpack.ARPACKException
flag=itsol_arpack_exception
if excp==Arpack.ARPACKException(-9999)
flag=itsol_arpack_9999
end
elseif excp== LinearAlgebra.SingularException(0) #This means that the solution is so good that L(z) cannot be LU factorized...TODO: implement other strategy into perturb
flag=itsol_singular_exception
L.params[L.eigval]=z
end
end
if flag==itsol_converged
L.params[L.eigval]=z
if output; println(n,"\t\t",abs(z-z0),"\t", z ); end
if n>=maxiter
flag=itsol_maxiter
if output; println("Warning: Maximum number of iterations has been reached!");end
elseif abs(z-z0)<=tol
flag=itsol_converged
if output; println("Solution has converged!"); end
elseif isnan(z)
flag=itsol_isnan
if output; println("Warning: computer arithmetics problem. Eigenvalue is NaN"); end
else
if output; println("Warning: This should not be possible....\n If you can read this contact GAM!");end
flag=itsol_impossible
end
if output
println("...finished Picard!")
println("#####################")
println(" Picard results ")
println("#####################")
println("Number of steps: ",n)
println("Last step parameter variation:",abs(z0-z))
println("Eigenvalue:",z)
println("Eigenvalue/(2*pi):",z/2/pi)
end
end
return Solution(L.params,v0,[],L.eigval), n, flag
end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 5180 | module Pade
import SpecialFunctions
## Polynomial type
"""
Polynomial type
"""
struct Polynomial #TODO: make type parametric use eltype(f)
coeffs
#constructor
function Polynomial(coeffs)
N=length(coeffs)
n=0
for i=N:-1:1
if coeffs[i]==0
n+=1
else
break
end
end
return new(coeffs[1:(N-n)])
end
end
#make Polynomial callable with Horner-scheme evaluation
function (p::Polynomial)(z,k::Int=0)
p=derive(p,k)
f=0.0+0.0im #typing
for i = length(p.coeffs):-1:1
f*=z
f+=p.coeffs[i]
end
return f
end
import Base.show
import Base.string
function string(p::Polynomial)
N=length(p.coeffs)
if N==0
txt="0"
else
if p.coeffs[1]!=0
txt="$(p.coeffs[1])"
else
txt=""
end
for n=2:N
coeff=string(p.coeffs[n])
if coeff==0
continue
end
if occursin("+",coeff) || occursin("-",coeff)
txt*="+($coeff)*z^$(n-1)"
else
txt*="+$coeff*z^$(n-1)"
end
end
end
return txt
end
function show(io::IO,p::Polynomial)
print(io,string(p))
end
import Base.+
import Base.-
import Base.*
import Base.^
function +(a::Polynomial,b::Polynomial)
if length(a.coeffs)>length(b.coeffs)
a,b=b,a
end
c=copy(b.coeffs)
for (idx,val) in enumerate(a.coeffs)
c[idx]+=val
end
return Polynomial(c)
end
function -(a::Polynomial,b::Polynomial)
return +(a,-1*b)
end
function *(a::Polynomial,b::Polynomial)
I=length(a.coeffs)
J=length(b.coeffs)
K=I+J-1
c=zeros(ComplexF64,K) #TODO: sanity check for type of b
idx=1
for k =1:K
for i =1:k
#TODO: figure out when to break the loop
j=k-i+1
if i>I ||j>J
continue
end
c[k]+=a.coeffs[i]*b.coeffs[j]
end
end
return Polynomial(c)
end
#scalar multiplication
function *(a::Polynomial,b::Number)
return a*Polynomial([b])
end
function *(a::Number,b::Polynomial)
return Polynomial([a])*b
end
function ^(p::Polynomial, k::Int)
b=Polynomial(copy(p.coeffs))
for i=1:k-1
b*=p
end
return b
end
function prodrange(start,stop)
return SpecialFunctions.factorial(stop)/SpecialFunctions.factorial(start)
end
"""
b=derive(a::Polynomial,k::Int=1)
Compute `k`th derivative of Polynomial `a`.
"""
#TODO: Devlop bigfloat prodrange
# function derive(a::Polynomial,k::Int=1)
#
# N=length(a.coeffs)
# if k>=N
# return Polynomial([]) #TODO: type
# end
# d=zeros(typeof(a.coeffs[1]),N-k)
# for i=1:N-k
# d[i]=a.coeffs[i+k]*prodrange(i-1,i+k-1)
# end
# return Polynomial(d)
# end
"""
g=shift(f,Δz)
Shift Polynomial with respect to its argument. (Taylor shift)
"""
function shift(f::Polynomial,Δz)
g=Array{eltype(f)}(undef,length(f.coeffs))
for n=0:length(f.coeffs)-1
g[n+1]=f(Δz)/SpecialFunctions.factorial(n*1.0)
f=Polynomial(f.coeffs[2:end])
f.coeffs.*=1:length(f.coeffs)
end
return Polynomial(g)
end
function scale(p::Polynomial,a::Number)
p=p.coeffs
s=1
for idx =1: length(p)
p[idx]*=s
s*=a
end
return Polynomial(p)
end
#TODO: write macro nto create !-versions
# tests
# a=Polynomial([0.0,1.0])
# b=a*a
# c=derive(a)
# d=a+b+c
# e=d^3
# f=shift(e,2)
# e(2)-f(0)
# rational Polynomial
## Rational Polynomials
struct Rational_Polynomial
num::Polynomial
den::Polynomial
#default constructor
function Rational_Polynomial(num::Polynomial,den::Polynomial)
num=copy(num.coeffs)
den=copy(den.coeffs)
if isempty(num) || num==[0]
den=[1]
elseif den[1]!=0
den./=den[1]
num./=den[1]
end
#TODO: else case
return new(Polynomial(num),Polynomial(den))
end
end
function (r::Rational_Polynomial)(z,k::Int=0)
for i=1:k
r=derive(r)
end
return r.num(z)/r.den(z)
end
function derive(a::Rational_Polynomial)
return Rational_Polynomial(derive(a.num)*a.den-a.num*derive(a.den),a.den^2)
end
##
"""
derive(a::Any, k:Int)
Take the `k`th derivative of `a` by calling the derive function multiple times.
# Notes
This is a fallback implementation.
"""
function derive(a::Any,k::Int)
for i=1:k
a=derive(a)
end
return a
end
function derive(p::Polynomial)
N=length(p.coeffs)
return Polynomial([i*p.coeffs[i+1] for i=1:N-1] )
end
function pade(p::Polynomial,L,M) #TODO: harmonize symbols for eigenvalues, modes etc
p=p.coeffs
A=zeros(ComplexF64,M,M)
for i=1:M
for j=1:M
if L+i-j>=0
A[i,j]=p[L+i-j+1] #+1 is for 1-based indexing
end
end
end
b=A\(-p[L+2:L+M+1])
b=[1;b]
a=zeros(ComplexF64,L+1)
for l=0:L
for m=0:l
if m<=M
a[l+1]+=p[l-m+1]*b[m+1] #+1 is for zero-based indexing
end
end
end
a,b=Polynomial(a),Polynomial(b)
return Rational_Polynomial(a,b)
end
end# module Pade
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 3426 | import Dates
function save(fname,L::Solution)
date=string(Dates.now(Dates.UTC))
open(fname,"w") do f
write(f,"# Solution version 0\n")
write(f,"#"*date*"\n")
write(f,"params=[")
for (key,value) in L.params
write(f,"(:$(string(key)),$value),\n")
end
write(f,"]\n")
write(f,"eigval=:$(L.eigval)\n")
write(f,"v=")
vector_write(f,L.v)
write(f,"]\n")
write(f,"v_adj=")
vector_write(f,L.v_adj)
write(f,"[eigval_pert]\n")
for (key,value) in L.eigval_pert
write(f,"\t[eigval_pert.$key]\n")
if typeof(value)<:Tuple
write(f,"\t\tnum=")
vector_write(f,value[1])
write(f,"\t\tden=")
vector_write(f,value[2])
else
write(f,"\t\tnum=")
vector_write(f,value)
end
end
write(f,"[v_pert]\n")
for (key,value) in L.v_pert
write(f,"\t[v_pert.$key]\n")
if typeof(value)<:Tuple
write(f,"\t\t[v_pert.$key.num]\n")
for (idx,val) in enumerate(value[1])
write(f,"\t\t\t[v_pert.$key.num.$idx]\n")
write(f,"\t\t\tv=")
vector_write(f,val)
end
write(f,"\t\t[v_pert.$key.den]\n")
for (idx,val) in enumerate(value[2])
write(f,"\t\t\t[v_pert.$key.den.$idx]\n")
write(f,"\t\t\tv=")
vector_write(f,val)
end
else
write(f,"\t\t[v_pert.$key.num]\n")
for (idx,val) in enumerate(value)
write(f,"\t\t\t[v_pert.$key.num.$idx]\n")
write(f,"\t\t\tv=")
vector_write(f,val)
end
end
end
# for (idx,val) in enumerate(L.v_pert)
# write(f,"\t[v_pert.$idx]\n")
# write(f,"\t\tv=")
# vector_write(f,val)
# end
end
end
#TODO: save v_pert
function vector_write(f,V)
write(f,"[")
for v in V #TODO: mehr Spalten
if imag(v)>=0
write(f,"$(real(v))+$(imag(v))im,")
else
write(f,"$(real(v))$(imag(v))im,")
end
end
write(f,"]\n")
return
end
#include("toml.jl")
function read_sol(f)
D=read_toml(f)
eigval_pert=Dict{Symbol,Any}()
for (key,value) in D["/eigval_pert"]
if haskey(value,"den")
eigval_pert[Symbol(key[2:end])]=(value["num"],value["den"])
else
eigval_pert[Symbol(key[2:end])]=value["num"]
end
end
params=Dict{Symbol,Complex{Float64}}()
for (sym,val) in D["params"]
params[sym]=val
end
eigval=D["eigval"]
v=D["v"]
v_adj=D["v_adj"]
v_pert=Dict{Symbol,Any}()
for (key,value) in D["/v_pert"]
if haskey(value,"/den")
N = length(value["/den"])
B=Array{Array{Complex{Float64}},1}(undef,N)
for idx=1:N
B[idx] = value["/den"]["/$idx"]["v"]
end
N = length(value["/num"])
A=Array{Array{Complex{Float64}},1}(undef,N)
for idx=1:N
A[idx] = value["/num"]["/$idx"]["v"]
end
v_pert[Symbol(key[2:end])]=A,B
else
N=length(value["/num"])
V=Array{Array{Complex{Float64}},1}(undef,N)
for idx=1:N
V[idx] = value["/num"]["/$idx"]["v"]
end
v_pert[Symbol(key[2:end])]=V
end
end
#TODO: proper type initialization
# N=length(D["/v_pert"])
# v_pert=Array{Array{Complex{Float64}},1}(undef,N)
# for idx=1:N
# v_pert[idx]=D["/v_pert"]["/$idx"]["v"]
# end
return Solution(params,v,v_adj,eigval,eigval_pert,v_pert)
end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 7122 | """
solve(L,Γ;<keywordarguments>)
Find eigenvalues of linear operator family `L` inside contour `Γ`.
# Arguments
- `L::LinearOperatorFamily`: Linear operator family for which eigenvalues are to be found
- `Γ::List`: List of complex points defining the contour.
# Keywordarguments (optional)
- `Δl::Int=1`: Increment to the search space dimension in Beyn's algorithm
- `N::Int=16`: Number of integration points per edge of `Γ`.
- `tol::Float=1E-8`: Tolerance for local eigenvalue solver.
- `eigvals::Dict=Dict()`: Dictionary of known eigenvalues and corresponding eigenvectors.
- `maxcycles::Int=1`: Number of local correction cycles to global eigenvalue estimate.
- `nev::Int=1`: Number of tested eigenvalues for finding the best local match to the global estimates.
- `max_outer_cycles::Int=1`: Number of outer cycles, i.e., incremental increases to the search space dimension by `Δl`.
- `atol_σ::Float=1E-12`: absolute tolerance for terminating the inner cycle if the maximum singular value is `σ<atol_σ``
- `rtol_σ::Float=1E-8`: relative tolerance for terminating the inner cycle if the the ratio of the initial and the current maximum singular value is `σ/σ0<rtol_σ`
- `loglevel::Int=0`: loglevel value between 0 (no output) and 2 (max output) to control the detail of printed output.
# Returns
- `eigvals::Dict`:List of computed eigenvalues and corresponding eigenvectors.
# Notes
The algorithm is experimental. It startes with a low-dimensional Beyn integral.
From which estimates to the eigenvalues are computed. These estimates are used
to analytically correct Beyn's integral. This step requires no additional
numerical integration and is therefore relatively quick. New local estimates are
computed and if the local solver then found new eigenvalues these are used to
further correct Beyn's integral. In an optional outer loop the entire procedure
can be repeated, after increasing the search space dimension.
See also: [`householder`](@ref), [`beyn`](@ref)
"""
function solve(L::LinearOperatorFamily,Γ;Δl=1,N=16, tol=1E-8,eigvals=Dict(),maxcycles=1,nev=1,max_outer_cycles=1,atol_σ=1E-12,rtol_σ=1E-8,loglevel=0)
#header
d=size(L.terms[1].coeff)[1]#system dimension
A=[]
l=Δl
σ0,σ,σmax=0.0,0.0,0.0
#outer loop
while l<=max_outer_cycles*Δl
V=zeros(ComplexF64,d,Δl)
for ll=1:Δl
#TODO: randomization
V[(l-Δl)+ll,ll]=1.0+0.0im
end
A=append!(A,[compute_moment_matrices(L,Γ,V,K=1,N=N,output=true),])
#σmax=max(σmax,maximum(abs.(A[1][:,:,1])))
if l>Δl #reinitialize σmax in new iteration of outer loop
Ω,P,Σ=moments2eigs(A,return_σ=true)
#println(maximum(Σ))
σmax,σ0,σ=max(σmax,maximum(Σ)),maximum(Σ),0.0
end
#update moment matrix with known solutions
for (ω, val) in eigvals
w=wn(ω,Γ)
for ll=1:Δl
moment=-2*pi*1.0im*w*val[1].v*val[1].v_adj[ll]'
A[l÷Δl][:,ll,1]+=moment
A[l÷Δl][:,ll,2]+=ω*moment
end
end
number_of_interior_eigvals=0
for val in values(eigvals)
if val[2]
number_of_interior_eigvals+=1
end
end
neigval=number_of_interior_eigvals
cycle=0
while cycle<maxcycles# inner cycle
cycle+=1
if loglevel>=1
flush(stdout)
println("####cycle$cycle####")
end
Ω,P,Σ=moments2eigs(A,return_σ=true)
#println(maximum(Σ))
σmax,σ0,σ=max(σmax,σ),σ,maximum(Σ)
#compute accurate local solutions
for idx=1:length(Ω)
ω=Ω[idx]
if loglevel>=2
flush(stdout)
println("omega:$ω")
end
#remove known vectors from first Krylov vector
v0=P[:,idx]
v0/=sqrt(v0'v0)
for (key,val) in eigvals
v=val[1].v
v/=sqrt(v'v)
h=v'v0
v0-=h*v
v0/=sqrt(v0'v0)
end
# #TODO: initilaize adjoint vector
#
#
# sol,nn,flag=householder(L,ω,maxiter=10,tol=tol,output=false,order=3,nev=nev,v0=v0)
sol,nn,flag=mehrmann(L,ω,maxiter=10,tol=tol,output=false,x0=v0,v=v0)
ω=sol.params[sol.eigval]
if flag>=0
is_new_value=true
for val in keys(eigvals)
if abs(ω-val)<10*tol
is_new_value=false
#break
end
end
else
is_new_value=false
end
if loglevel>=2
println("conv:$ω flag:$flag new: $is_new_value")
end
#update moment matrix with local solutions
if is_new_value && inpoly(ω,Γ)
#R=5*tol
#dφ=2pi/(3+1)
#φ=0:dφ:2pi-dφ
w=wn(ω,Γ)
#C=ω.+R*exp.(-1im.*φ*w) #this circle is winded opposite to Γ
#A+=compute_moment_matrices(L,C;l=l,N=N,output=true,random=false)
#moment2=compute_moment_matrices(L,C;l=l,N=N,output=true,random=false)
for idx=1:length(A)
for ll=1:Δl
moment=-2*pi*1.0im*w*sol.v*sol.v_adj[(idx-1)*Δl+ll]'
A[idx][:,ll,1]+=moment
A[idx][:,ll,2]+=ω*moment
end
end
eigvals[ω]=[sol,true]
elseif is_new_value
#handle outside values
eigvals[ω]=[sol,false]
end
end
number_of_interior_eigvals=0
for val in values(eigvals)
if val[2]
number_of_interior_eigvals+=1
end
end
if neigval==number_of_interior_eigvals
break
else
neigval=number_of_interior_eigvals
end
end
# σ0,σ=σ,0.0
# for idx =1:length(A)
# σ=max(σ,maximum(abs.(A[idx][:,:,1])))
# end
# σmax=max(σmax,σ)
if loglevel>=1
flush(stdout)
println("maximum σmax:$σmax")
println("final σ:$σ")
println("relative σ/σ0:$(σ/σ0)")
println("relative σ/σmax:$(σ/σmax)")
println("cycles:$cycle,maxcycles:$(maxcycles<=cycle)")
end
#stopping criteria
if σ/σmax<rtol_σ || σ<atol_σ
if loglevel>=1
println("finished after $l integrations")
end
break
else
l+=Δl
println("you should run more outer cycles!")
end
end #of outer loop
return eigvals
end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | code | 2186 | #module TOML
#export read_toml
#TODO: tags cant be identical to variable names
#TODO: optimize parsing of multiline lists
#TODO: nested data
#TODO: preallocation?
#TODO: put this in a module to correctly captur __data_TOML__
#TODO: write a TOPL type to conveniently access the dictionary with TOML-like syntax
"This is a minimal TOML parser. See https://en.wikipedia.org/wiki/TOML"
function read_toml(fname)
tags=""
multi=false #sentinel value for multiline input
data,var="","" #make data and var global in loop
D=Dict()
entry=Dict() # make entry global in loop
for (linenumber,line) in enumerate(eachline(fname))
line=strip(line)#remove enclosing whitespace
if isempty(line) || line[1]=="#"
continue
elseif !multi && line[1]=='['
#tag
#TODO: check whether last chracter is ] otherwise error
#tags=split(strip(line,['[',']']),'.') #parse tag
#TODO: remove enclosing intermediate whitespace?
tags=split(line[2:end-1],'.')
entry=D
for tag in tags
tag="/"*tag
if tag in keys(entry)
entry=entry[tag]
else
#TODO: consider signaling an error if tag is not the last entry in tags
entry[tag]=Dict()
entry=entry[tag]
end
end
elseif !multi && isletter(line[1])
idx=findfirst("=",line)
var=line[1:idx.start-1]
var=strip(var) #remove enclosing whitespace
data=line[idx.stop+1:end]
multi=data[end]==','
elseif multi
data*=line
multi=data[end]==','
else
#TODO:Throw error
end
if !multi && data!=""
#println(data)
eval(Meta.parse("__data_TOML__="*data)) #evaluate data in global scope of module
if tags ==""
D[var]=__data_TOML__
else
entry[var]=__data_TOML__
end
data=""
end
end
eval(Meta.parse("__data_TOML__=nothing"))
return D
end
#end
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | docs | 3544 | # WavesAndEigenvalues.jl
*Julia package for handling various wave-equations and (non-linear) eigenvalue problems.*
| **Documentation** | **Build Status** |
|:-------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------:|
| [![][docs-stable-img]][docs-stable-url] | [![][travis-img]][travis-url] |
## Installation
WavesAndEigenvalues can be installed from Julia's official package repository using the built-in package manager. Just type `]` to enter the package manager and then
```
pkg> add WavesAndEigenvalues
```
or
```julia-repl
julia> import Pkg; Pkg.add("WavesAndEigenvalues")
```
in the REPL and you are good to go.
## What is WavesAndEigenvalues.jl?
The package has evolved from academic research in thermoacoustic-stability analysis. But it is designed fairly general. It currently contains three modules, each of which is targeting at one of the main design goals:
1. Provide an elaborate interface to define, solve, and perturb nonlinear eigenvalues (**NLEVP**)
2. Provide a lightweight interface to read unstructured tetrahedral meshes using nastran (`*.bdf` and `*.nas`) or the latest gmsh format (`*.msh `). (**Meshutils**)
3. Provide a convenient interface for solving the (thermo-acoustic) Helmholtz equation. (**Helmholtz**)
## NLEVP
Assume you are a *literally* a rocket scientist and you want to solve an eigenvalue problem like
```
[K+ω*C+ω^2*M+n*exp(-iωτ) F] p = 0
```
Where `K`, `C`, `M`, and `F` are some matrices, `i` the imaginary unit, `n` and `τ` some parameters, and `ω` and `p` unknown eigenpairs.
Then the **NLEVP** module lets you solve this equation and much more. Actually, any non-linear eigenvalue problem can be solved. Doing science in some other field than rockets or even being a pure mathematician is, thus, no problem at all. Just specify your favourite nonlinear eigenvalue problem and have fun. And *fun* here includes adjoint-based perturbation of your solution up to arbitrary order!
## Meshutils
OK, this was theoretical. But you are a real scientist, so you know that the matrices `K`, `C`, `M`, and `F` are obtained by discretizing some equation using a specific mesh. You do not want to be too limited to simple geometries so unstructured tetrahedral meshing is the method of choice. **Meshutils** is the module that gives you the tools to read and process such meshes.
## Helmholtz
You are a practitioner? Fine, then eigenvalue theory and mesh handling should not bother your every day work too much.
You just want to read in a mesh, specify some properties (boundary conditions, speed of sound field...), and get a report on
the stability of your configuration? **Helmholtz** is your module! It even tells you how to optimize your design.
[docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg
[docs-stable-url]: https://julholtzdevelopers.github.io/WavesAndEigenvalues.jl/dev/
[travis-img]: https://travis-ci.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.svg?branch=master
[travis-url]: https://travis-ci.com/github/JulHoltzDevelopers/WavesAndEigenvalues.jl
[appveyor-img]: https://ci.appveyor.com/api/projects/status/...
[appveyor-url]: https://ci.appveyor.com/project/...
[codecov-img]: https://codecov.io/gh/...
[codecov-url]: https://codecov.io/gh/...
[issues-url]: https://github.com/...
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | docs | 223 | # The Helmholtz module
## Exported functionality:
```@autodocs
Modules = [WavesAndEigenvalues.Helmholtz]
Private=false
```
## Private functionality:
```@autodocs
Modules = [WavesAndEigenvalues.Helmholtz]
Public=false
```
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | docs | 243 | # The Meshutils module
```@meta
CurrentModule = WavesAndEigenvalues.Meshutils
```
## Exported functionality:
```@autodocs
Modules = [Meshutils]
Private=false
```
## Private functionality:
```@autodocs
Modules = [Meshutils]
Public=false
```
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | docs | 211 | # The NLEVP module
## Exported functionality:
```@autodocs
Modules = [WavesAndEigenvalues.NLEVP]
Private=false
```
## Private functionality:
```@autodocs
Modules = [WavesAndEigenvalues.NLEVP]
Public=false
```
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | docs | 2287 | # Home
Welcome to the documentation of WavesAndEigenvalues.jl.
## What is WavesAndEigenvalues.jl?
The package has evolved from academic research in thermoacoustic-stability analysis. But it is designed fairly general. It currently contains three modules, each of which is targeting at one of the main design goals:
1. Provide an elaborate interface to define, solve, and perturb nonlinear eigenvalues (**NLEVP**)
2. Provide a lightweight interface to read unstructured tetrahedral meshes using nastran (`*.bdf` and `*.nas`) or the latest gmsh format (`*.msh `). (**Meshutils**)
3. Provide a convenient interface for solving the (thermo-acoustic) Helmholtz equation. (**Helmholtz**)
### NLEVP
Assume you are a *literally* a rocket scientist and you want to solve an eigenvalue problem like
```math
(\mathbf K+\omega \mathbf C + \omega^2 \mathbf M+ n\exp(-i\omega\tau) \mathbf F]\mathbf p = 0
```
Where $\mathbf K$, $\mathbf C$, $\mathbf M$, and $\mathbf F$ are some matrices, $i$ the imaginary unit, $n$ and $\tau$ some parameters, and $\omega$ and $\mathbf p$ unknown eigenpairs.
Then the **NLEVP** module lets you solve this equation and much more. Actually, any non-linear eigenvalue problem can be solved. Doing science in some other field than rockets or even being a pure mathematician is, thus, no problem at all. Just specify your favourite nonlinear eigenvalue problem and have fun. And *fun* here includes adjoint-based perturbation of your solution up to arbitrary order!
### Meshutils
OK, this was theoretical. But you are a real scientist, so you know that the matrices $\mathbf K$, $\mathbf C$, $\mathbf M$, and $\mathbf F$ are obtained by discretizing some equation using a specific mesh. You do not want to be too limited to simple geometries so unstructured tetrahedral meshing is the method of choice. **Meshutils** is the module that gives you the tools to read and process such meshes.
### Helmholtz
You are a practitioner? Fine, then eigenvalue theory and mesh handling should not bother your every day work too much.
You just want to read in a mesh, specify some properties (boundary conditions, speed of sound field...), and get a report on
the stability of your configuration? **Helmholtz** is your module! It even tells you how to optimize your design.
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | docs | 326 | # Installation
WavesAndEigenvalues can be installed from Julia's official package repository using the built-in package manager. Just type `]` to enter the package manager and then
```
pkg> add WavesAndEigenvalues
```
or
```julia-repl
julia> import Pkg; Pkg.add("WavesAndEigenvalues")
```
in the REPL and you are good to go.
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | docs | 13959 | ```@meta
EditURL = "<unknown>/tutorial_00_NLEVP.jl"
```
# Tutorial 00 Introduction to the NLEVP module
This tutorial briefly introduces you to the NLEVP module.
NLEVP is an abbreviation for nonlinear eigenvalue problem.
This is the problem `T(λ)v=0` where T is some matrix family
the scalar `λ` and the vector `v` form an eigenpair. Often also the left
eigenvector `w` for the corresponding problem `T'(λ)w=0` is also sought.
Clearly, NLEVPs are a generalization of classic (linear) eigenvalue problems
they would read `T(λ)=A-λI` or `T(λ)=A-λB`. For the reminder of the tutorial
it is assumed, that the reader is somewhat familiar with NLEVPs and we refer
to the very nice review [1] for a detailed introduction.
## Setting up a NLEVP
The NLEVP lets you define NLEVPs and provides you with tools for finding
accurate as well as perturbative solutions. The `using` statement brings all
necessary tools into scope:
```@example tutorial_00_NLEVP
using WavesAndEigenvalues.NLEVP
```
Let's consider the quadratic eigenvalue problem 1 from the collection of NLEVPs [2].
It reads `T(λ)= λ^2*A2 + λ*A1 + A0` where
```@example tutorial_00_NLEVP
A2=[0 6 0;
0 6 0;
0 0 1];
A1=[1 -6 0;
2 -7 0;
0 0 0];
A0=[1 0 0;
0 1 0;
0 0 1];
nothing #hide
```
We first need to instantiate an empty operator family.
```@example tutorial_00_NLEVP
T=LinearOperatorFamily()
```
!!! tip
Per default the LinearOperatorFamily uses `:λ` as the symbol for
the eigenvalue. You can customize this behavior by calling the constructor
with additional parameters, e.g. `T=LinearOperatorFamily([:ω])`, would make
the eigenvalue name `:ω`. It is also possible to change the eigenvalue after
construction.
The next step is to create the three terms and add them to the matrix family.
A term is created from the syntax `Term(M,func,args,txt,mat)`, where `M` is the
matrix of the term, `func` is a list of scalar (possibly multi-variate)
functions multiplying, `args`, is a list of lists containing the symbols of the
arguments to the functions, and `mat` is the character string representing the
matrix.
Ok, let's create the first term:
```@example tutorial_00_NLEVP
term=Term(A2,(pow2,),((:λ,),),"A2")
```
Note, that the function `pow2` is provided by the NLEVP module. It computes
the square of its input, i.e. pow2(3)==9. However, it has an optional second
parameter indicating a derivative order. For instance, `pow2(3,1)=6` because
the first derivative of the square function at `3` is `2*3==6`. This feature
is, important because many algorithms in the NLEVP module will need to compute
derivatives. You can write your own coefficient-functions, but make sure
that they provide at least the first derivative correctly. This will be
further explained in the next tutorials.
Now, let's add the term to our family.
```@example tutorial_00_NLEVP
T+=term
```
It worked! The family is not empty anymore.
!!! tip
There is also the syntax `push!(T,term)` to add a term. It is
actually more efficient because unlike the `+`-operator it does not create
a temporary copy of `T`. However, it doesn't really matter for small problems
like this example and we therefore prefer the `+`-operator for readability.
Let's also add the other two terms.
```@example tutorial_00_NLEVP
T+=Term(A1,(pow1,),((:λ,),),"A1")
T+=Term(A0,(),(),"A0")
```
Note that functions and arguments are empty in the last term because there is
no coefficient function.
The family is now a complete representation of our problem
It is quite powerful. For instance, we can evaluate it at some point in the
complex plane, say 3+2im:
```@example tutorial_00_NLEVP
T(3+2im)
```
We can even take its derivatives. For instance, the second derivative at the
same point is
```@example tutorial_00_NLEVP
T(3+2im,2)
```
This syntax comes in handy when writing algorithms for the solution of the
NLEVPs. However, the casual user will appreciate it when computing residuals.
## Iterative eigenvalue solvers
The NLEVP module provides various solvers for computing eigensolution. They
essentially fall into two categories, *iterative* and *integration-based*. We
will start the discussion with iterative solvers.
### method of successive linear problems
The method of successive linear problems is a robust iterative solver.
Like all iterative solvers it tries finding an eigensolution from an
initial guess. We will also set the `output` keyword to true, in order to see
a bit what is going on behind the scenes. The function will return a solution
`sol` of type `Solution`, as well as the number of iterations `n` run and an
error flag `flag`.
```@example tutorial_00_NLEVP
sol,n,flag=mslp(T,0,output=true);
nothing #hide
```
The printed output tells us that the algorithm found 1/3 is an eigenvalue of
the problem. It has run for 10 iterations. However, it issued a warning that
the maximum number of iterations has been reached. That is why the result
comes with a non-zero flag, which says that something might be wrong.
In general negative flag values represent errors, while positive values
indicate warnings. In the current case the flag is `1`, so this is a warning.
Therefore, the result can be true, but there is something we should be aware
of. Let's decode the error flag into something more readable.
```@example tutorial_00_NLEVP
msg = decode_error_flag(flag)
println(msg)
```
As we already knew, the iteration aborted because the maximum number of
iterations (10) has been performed. You can change the maximum number of
iterations from its default value by using the `maxiter` keyword. However,
this won't fix the problem because the iteration will run until a certain
tolerance is met or the maximum number of iteration is reached. Per default
the tolerance is 0, and therefore due to machine-precision very unlikely
to be precisely met. Indeed, we see from the printed output, above that the
eigenvalue is not significantly changing anymore after 6 iterations. Let's
redo the calculations, with a small but non-zero tolerance by setting the
optional `tol` keyword.
```@example tutorial_00_NLEVP
sol,n,flag=mslp(T,0,tol=1E-10,output=true);
nothing #hide
```
Boom! The iteration stops after 6 iterations and indicates that an
eigenvalue has been found.
We may also inspect the corresponding left and right eigenvector. They are
fields in the solution object:
```@example tutorial_00_NLEVP
println(sol.v)
println(sol.v_adj)
```
There are more iterative solvers. Not all of them solve the complete problem.
Some only return the eigenvalue and the right eigenvector others even just the
eigenvalue. (If the authors of this software get more funding this might be
improved in the future...)
Let's briefly test them all...
### inverse iteration
This algorithm finds an eigenvalue and a corresponding right eigenvector
```@example tutorial_00_NLEVP
sol,n,flag=inveriter(T, 0, tol=1E-10, output=true);
nothing #hide
```
### trace iteration
This algorithm only finds an eigenvalue
```@example tutorial_00_NLEVP
sol,n,flag=traceiter(T, 0, tol=1E-10, output=true);
nothing #hide
```
### Lancaster's generalized Rayleigh quotient iteration
This algorithm only finds an eigenvalue
```@example tutorial_00_NLEVP
sol,n,flag=lancaster(T, 0, tol=1E-10, output=true);
nothing #hide
```
### two-sided Rayleigh-functional iteration
This algorithm finds a complete eigentriple.
```@example tutorial_00_NLEVP
sol,n,flag=rf2s(T, 0, tol=1E-10, output=true);
nothing #hide
```
Oops, this last test produced a NaN value. The problem often occurs when
the eigenvalue and one point in the iteration is too precise. (See how in the
last-but-one iteration we've been already damn close to 1/3). Choosing a
slightly different initial guess often leverages the problem:
```@example tutorial_00_NLEVP
sol,n,flag=rf2s(T, 0, tol=1E-10, output=true);
nothing #hide
```
## Beyn's integration-based solver
Iterative solvers are highly accurate and do not need many resources. However,
they only find one eigenvalue at the time and heavily depend on the initial
guess. This is a problem because NLEVPs have many eigenvalues. (Indeed, some
have infinitely many!) This is where integration-based solvers enter the stage.
They can find all eigenvalue enclosed by a contour in the complex plane.
Several such algorithm exist. The NLEVP module implements the one of Beyn [3]
(both of its variants!). Any polygonal shape is supported as a contour
(I am an engineer, so a polygon is any flat shape connecting three or more
vertices with straight lines in a cyclic manner...).
Let's test Beyn's algorithm on our example problem by searching for all
eigenvalues inside the axis-parallel square spanning from `-2-2im` to `2+2im`.
The vertices of this contour are:
```@example tutorial_00_NLEVP
Γ=[2+2im, -2+2im, -2-2im, +2-2im];
nothing #hide
```
It doesn't matter whether the contour is traversed in clockwise or
counter-clockwise direction. However, the vertices should be traversed in a
cyclic manner such that the contour is not criss-crossed (unless this is what
you want to do, the algorithm correctly accounts for the winding number...)
Beyn's algorithm also needs an educated guess on how many eigenvalues you are
expecting to find inside of the contour. If your guess is too high, this won't
be a problem. You will find your eigenvalues but you'll waste computational
resources and face an unnecessarily high run time. Nevertheless, if your
guess is too small, weird things may happen and you probably will get wrong
results. We will further discuss this point later. Now let's focus on the
example problem. It is 3-dimensional and quadratic, we therefore know that it
that it has 6 eigenvalues. Not all of them must lie in our contour, however
this upper bound is a safe guess for our contour. We use the optional keyword
`l=6` to pass this information to the algorithm. The call then is:
```@example tutorial_00_NLEVP
Λ,V=beyn(T,Γ,l=6, output=true);
nothing #hide
```
Note the printed information on singular values. One step in Beyn's algorithm
leads to a singular value decomposition. Here, we got 6 singular values
because we chose to run the algorithm with `l=6` option. In exact arithmetics
There would be as many non-zero singular values as there are eigenvalues
inside the contour, if the guess `l` is equal or greater than the number of
eigenvalues. The output tells us that there are probably 5 eigenvalues inside
the contour as there is only one singular value that can be considered equal
to `0` given the machine precision. Indeed, the example solution is
analytical solvable and it is known that it has 5 eigenvalues inside the
square.
The return values `Λ` and `V` are the list of eigenvalues and corresponding
(right) eigenvectors such that `T(Λ[i])*V[:,i]==0`. At least this is what
it should be. Because the computation is carried out on a computer the
eigenpairs won't evaluate to the zero vector but have some residual. We can
use this as a quality check. The computation of the residual norms yields:
```@example tutorial_00_NLEVP
for (idx,λ) in enumerate(Λ)
v=V[:,idx]
v/=sqrt(v'*v)
res=T(λ)*v
println("λ=$λ residual norm: $(abs(sqrt(res'*res)))")
end
```
We clearly see that out of the 6 eigenvalues 5 have extremely low residuals.
The eigenvalue with the high residual is actually not an eigenvalue. This is
inline with our consideration on the singular value. There is a keyword
`sigma_tol` that you may provide to the call of the algorithm, in order to
ignore singular values that are smaller then a user-specified threshold.# However, an appropriate threshold is problem-dependent and often it is a
better strategy to feed the computed eigenvalues as initial guesses into an
iterative solver.
Please, note that you could also compute the number of poles and zeros inside the contour from
the residual theorem with the following command:
```@example tutorial_00_NLEVP
number=count_poles_and_zeros(T,Γ)
```
The functions sums up the number of poles and zeros of the determinant of `T`
inside your contour. Zeros are positively counted while poles count negatively
when encircling the domain mathematically positive (counter-clockwise). Thus,
the number should not be mistaken as an initial guess for `l`. Yet, often
you have some knowledge about the properties of your problem. For instance
the current example problem is polynomial an therefore is unlikely to have
poles. That `number≈5` is a further indicator that there are, indeed, only 5
eigenvalues inside the square. Note, that `count_poles_and_zeros` uses Jacobi's
formula to compute the necessary derivatives of the determinant by trace
operations. The command is therefore reliable for small-sized problems only.
## Summary
The NLEVP module provides you with essential tools for setting up and solving
non-linear eigenvalue problems. In particular, there is a bunch of solution
algorithms available. There is more the module can do. All of the presented
solvers have various optional keyword arguments for fine-tuning there
behavior. For instance, just type `? mslp` in the REPL or use the
documentation browser of your choice to learn more about the `mslp` command.
Moreover, there is functionality for computing perturbation expansions of
known solutions. These topics will be further discussed in the next tutorials.
# References
[1] S. Güttel and F. Tisseur, The Nonlinear Eigenvalue Problem, 2017, <http://eprints.ma.man.ac.uk/2538/>
[2] T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder and F. Tisseur, NLEVP: A Collection of Nonlinear Eigenvalue Problems, 2013, ACM Trans. Math. Soft., [doi:10.1145/2427023.2427024](https://doi.org/10.1145/2427023.2427024)
[3] W.-J. Beyn, An integral method for solving nonlinear eigenvalue problems, 2012, Lin. Alg. Appl., [doi:10.1016/j.laa.2011.03.030](https://doi.org/10.1016/j.laa.2011.03.030)
---
*This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | docs | 12638 | ```@meta
EditURL = "<unknown>/tutorial_01_rijke_tube.jl"
```
# Tutorial 01 Rijke Tube
A Rijke tube is the most simple thermo-acoustic configuration. It comprises a
tube with an unsteady heat source somewhere inside the tube. This example will
walk you through the basic steps of setting up a Rijke tube in a
Helmholtz-solver stability analysis.
!!! note
To do this tutorial yourself you will need the `"Rijke_mm.msh`" file.
Download it [here](Rijke_mm.msh).
## The Helmholtz equation
The Helmholtz equation is the Fourier transform of the acoustic wave equation.
Given that there is a heat source, it reads:
```math
\nabla\cdot(c^2\nabla \hat p) + \omega^2\hat p = - i \omega (\gamma -1)\hat q
```
Here ``c`` is speed-of-sound-field, ``\hat p`` the (complex) pressure fluctuation
amplitude ``\omega`` the (complex) frequency of the problem, ``i`` the imaginary
unit, ``\gamma`` the ratio of specific heats, and ``\hat q`` the amplitude of the
heat release fluctuation.
(Note that the Fourier transform here follows a ``f'(t) \rightarrow \hat f(\omega)\exp(+i\omega t)`` convention.)
Together with some boundary conditions the Helmholtz equation models
thermo-acoustic resonance in a cavity. The minimum required inputs to specify
a problem are
1. the shape of the domain
2. the speed-of-sound field
3. the boundary conditions
In case of an active flame (``\hat q \neq 0``). We will also need
4. some additional gas properties and
5. a flame response model linking the heat release fluctuations ``\hat q`` to the pressure fluctuations ``\hat p``
Once you completed this tutorial you will know the basic steps of how to
conduct a thermo-acoustic stability analysis
## Header
First you will need to load the Helmholtz solver. The following line brings all
necessary tools into scope:
```@example tutorial_01_rijke_tube
using WavesAndEigenvalues.Helmholtz
```
## Mesh
Now we can load the mesh file. It is the essential piece of information
defining the domain shape . This tutorial's mesh has been specified in mm
which is why we scale it by `0.001` to load the coordinates as m:
```@example tutorial_01_rijke_tube
mesh=Mesh("Rijke_mm.msh",scale=0.001)
```
The displayed info tells us that the mesh features `1006` points as vertices
`1562` (addressable) triangles on its surface and `3380` tetrahedra forming
the tube. Note, that there are currently no lines stored. This is because
line information is only needed when using second-order finite elements. To
save memory this information is only assembled and stored when explicitly
requested. We will come back to this aspect in a later tutorial.
You can also see that the mesh features several named domains such as
`"Interior"`,`"Flame"`, `"Inlet"` and `"Outlet"`. These domains are used to
specify certain conditions for our model.
A model descriptor is always given as a dictionary featureng domain names
as keys and tuples as values. The first tuple entry is a Julia symbol
specifying the operator to be build on the associated domain, while the second
entry is again a tuple holding information that is specific to the chosen
operator.
## Model set-up
For instance, we certainly want to build the wave operator on the entire mesh.
So first, we initialize an empty dictionary
```@example tutorial_01_rijke_tube
dscrp=Dict()
```
And then specify that the wave operator should be build everywhere. For the
given mesh the domain-specifier to address the entire resonant cavity is
`"Interior"` and in general the symbol to create the wave operator is
`:interior`. It requires no options so the options tuple remains empty.
```@example tutorial_01_rijke_tube
dscrp["Interior"]=(:interior, ())
```
## Boundary Conditions
The tube should have a pressure node at its outlet, in order to model an
open-end boundary condition. Boundary conditions are specified in terms of
admittance values. A pressure note corresponds to an infinite admittance.
To represent this on a computer we just give it a crazily high value like
`1E15`. We will also need to specify a variable name for our admittance value.
This will allow to quickly change the value after discretization of the
model by addressing it by this very name. This feature is one of the core
concepts of the solver. As will be demonstrated later.
The complete description of our boundary condition reads
```@example tutorial_01_rijke_tube
dscrp["Outlet"]=(:admittance, (:Y,1E15))
```
You may wonder why we do not specify conditions for the other boundaries of
the model. This is because the discretization is based on Bubnov-Galerkin
finite elements. All unspecified, boundaries will therefore *naturally* be
discretized as solid walls.
## Flame
The Rijke tube's main feature is a domain of heat release. In the current
mesh there is a designated domain `"Flame"` addressing a thin volume at the
center of the tube. We can use this key to specify a flame with simple
n-tau-dynamics. Therefore, we first need to define some basic gas properties.
```@example tutorial_01_rijke_tube
γ=1.4 #ratio of specific heats
ρ=1.225 #density at the reference location upstream to the flame in kg/m^3
Tu=300.0 #K unburnt gas temperature
Tb=1200.0 #K burnt gas temperature
P0=101325.0 # ambient pressure in Pa
A=pi*0.025^2 # cross sectional area of the tube
Q02U0=P0*(Tb/Tu-1)*A*γ/(γ-1) #the ratio of mean heat release to mean velocity Q02U0
```
We will also need to provide the position where the reference velocity has
been taken and the direction of that velocity
```@example tutorial_01_rijke_tube
x_ref=[0.0; 0.0; -0.00101]
n_ref=[0.0; 0.0; 1.00] #must be a unit vector
```
And of course, we need some values for n and tau
```@example tutorial_01_rijke_tube
n=0.0 #interaction index
τ=0.001 #time delay
```
With these values the specification of the flame reads
```@example tutorial_01_rijke_tube
dscrp["Flame"]=(:flame,(γ,ρ,Q02U0,x_ref,n_ref,:n,:τ,n,τ))
```
Note that the order of the values in the options tuple is important. Also note
that we assign the symbols `:n`and `:τ` for later analysis.
## Speed of Sound
The description of the Rijke tube model is nearly complete. We just need to
specify the speed of sound field. For this example, the field is fairly
simple and can be specified analytically, using the `generate_field` function
and a custom three-parameter function.
```@example tutorial_01_rijke_tube
R=287.05 # J/(kg*K) specific gas constant (air)
function speedofsound(x,y,z)
if z<0.
return sqrt(γ*R*Tu)#m/s
else
return sqrt(γ*R*Tb)#m/s
end
end
c=generate_field(mesh,speedofsound)
```
Note that in more elaborate models, you may read the field `c` from a file
containing simulation or experimental data, rather than specifying it
analytically.
## Model Discretization
Now we have all ingredients together and we can discretize the model.
```@example tutorial_01_rijke_tube
L=discretize(mesh,dscrp,c)
```
The return value `L` here is a family of linear operators. The shown info
is an algebraic representation of the family plus a list of associated
parameters. You might have noticed that the list contains all parameters that
have been specified during the model description (`n`,`τ`,`Y`). However,
there are also two parameters that were added by default: `ω` and `λ`. `ω` is
the complex frequency of the model and `λ` an auxiliary value that is
important for the eigenfrequency computation.
## Solving the Model
### Global Solver
We can solve the model for some eigenvalues using one of the eigenvalue
solvers. The package provides you with two types of eigenvalue solvers. A global
contour-integration-based solver. That finds you all eigenvalues inside of a
specified contour Γ in the complex plane.
```@example tutorial_01_rijke_tube
Γ=[150.0+5.0im, 150.0-5.0im, 1000.0-5.0im, 1000.0+5.0im].*2*pi #corner points for the contour (in this case a rectangle)
Ω, P = beyn(L,Γ,l=5,N=256, output=true)
```
The found eigenvalues are stored in the array `Ω`. The corresponding
eigenvectors are the columns of `P`.
The huge advantage of the global eigenvalue solver is that it finds you
multiple eigenvalues. Nonetheless, its accuracy may be low and sometimes it
provides you with outright wrong solutions.
However, for the current case the method works as we can verify that in our
search window there are two eigenmodes oscilating at 272 and 695 Hz
respectively:
```@example tutorial_01_rijke_tube
for ω in Ω
println("Frequency: $(ω/2/pi)")
end
```
### Local Solver
To get high accuracy eigenvalues , there are also local iterative eigenvalue
solvers. Based on an initial guess, they only find you one eigenvalue at a time
but with machine-precise accuracy. One of these solvers is based on the method
of successive linear problems (mslp). You call it as follows:
```@example tutorial_01_rijke_tube
sol,nn,flag=mslp(L,250*2*pi,output=true);
nothing #hide
```
The return values of this solver are a solution object `sol`, the number of
iterations `nn` performed by the solver and an error flag `flag` providing
information on the quality of the solution. If `flag==0` the solution has
converged. If `flag<0` something went wrong. And if `flag>0`... well, probably
the solution is fine but you should check it.
In the current case the flag is 1 indicating that the maximum number of
iterations has been reached. This is because we haven't specified a stopping
criterion and the iteration just ran for the maximum number of iterations.
Nevertheless, the 272 Hz mode is correct. Indeed, as you can see from the
printed output it already converged to machine-precision after 5 iterations.
## Changing a specified parameter.
Remember that we have specified the parameters `Y`,`n`, and `τ`?. We can change
these easily without rediscretizing our model. For instance currently `n==0.0`
so the solution is purely acoustic. The effect of the flame just enters the
problem via the speed of sound field (this is known as passive flame). By
setting the interaction index to `1.0` we activate the flame.
```@example tutorial_01_rijke_tube
L.params[:n]=1
```
Now we can just solve the model again to get the active solutions
```@example tutorial_01_rijke_tube
sol_actv,nn,flag=mslp(L,245*2*pi-82im*2*pi,output=true,order=3);
nothing #hide
```
The eigenfrequency is now complex:
```@example tutorial_01_rijke_tube
sol_actv.params[:ω]/2/pi
```
with a growth rate `-imag(sol_actv.params[:ω]/2/pi)≈ 59.22`
Instead of recomputing the eigenvalue by one of the solvers. We can also
approximate the eigenvalue as a function of one of the model parameters
utilizing high-order perturbation theory. For instance this gives you
the 30th order diagonal Padé estimate expanded from the passive solution.
```@example tutorial_01_rijke_tube
perturb_fast!(sol,L,:n,16) #compute the coefficients
freq(n)=sol(:n,n,8,8)/2/pi #create some function for convenience
freq(1) #evaluate the function at any value for `n` you are interested in.
```
The method is slow when only computing one eigenvalue. But its computational
costs are almost constant when computing multiple eigenvalues. Therefore,
for larger parametric studies this is clearly the method of choice.
## VTK Output for Paraview
To visualize your solutions you can store them as `"*.vtu"` files to open
them with paraview. Just, create a dictionary, where your modes are stored as
fields.
```@example tutorial_01_rijke_tube
data=Dict()
data["speed_of_sound"]=c
data["abs"]=abs.(sol_actv.v)/maximum(abs.(sol_actv.v)) #normalize so that max=1
data["phase"]=angle.(sol_actv.v)
vtk_write("tutorial_01", mesh, data) # Write the solution to paraview
```
The `vtk_write` function automatically sorts your data by its interpolation
scheme. Data that is constant on a tetrahedron will be written to a file
`*_const.vtu`, data that is linearly interpolated on a tetrahedron will go
to `*_lin.vtu`, and data that is quadratically interpolated to `*_quad.vtu`.
The current example uses constant speed of sound on a tetrahedron and linear
finite elements for the discretization of p. Therefore, two files are
generated, namely `tutorial_01_const.vtu` containing the speed-of-sound field
and `tutorial_01_lin.vtu` containing the mode shape. Open them with paraview
and have a look!.
## Summary
You learnt how to set-up a simple Rijke-tube study. This already introduced
all basic steps that are needed to work with the Helmholtz solver. However,
there are a lot of details you can fine tune and even features that weren't
mentioned in this tutorial. The next tutorials will introduce these aspects in
more detail.
---
*This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | docs | 7322 | ```@meta
EditURL = "<unknown>/tutorial_02_global_eigenvalue_solver.jl"
```
```@example tutorial_02_global_eigenvalue_solver
#
```
# Tutorial 02 Beyn's Global Eigenvalue Solver
In Tutorial 01 you learnt the basics of the Helmholtz solver. This tutorial
will make you more familiar with the global eigenvalue solver. The solver
implements an algorithm invented by W.-J. Beyn in [1]. The implementation
closely follows [2].
## Model set-up.
The model is the same Rijke tube configuration as in Tutorial 01:
```@example tutorial_02_global_eigenvalue_solver
using WavesAndEigenvalues.Helmholtz
mesh=Mesh("Rijke_mm.msh",scale=0.001) #load mesh
dscrp=Dict() #initialize model descriptor
dscrp["Interior"]=(:interior, ()) #define resonant cavity
dscrp["Outlet"]=(:admittance, (:Y,1E15)) #specify outlet BC
γ=1.4 #ratio of specific heats
ρ=1.225 #density at the reference location upstream to the flame in kg/m^3
Tu=300.0 #K unburnt gas temperature
Tb=1200.0 #K burnt gas temperature
P0=101325.0 # ambient pressure in Pa
A=pi*0.025^2 # cross sectional area of the tube
Q02U0=P0*(Tb/Tu-1)*A*γ/(γ-1) #the ratio of mean heat release to mean velocity Q02U0
x_ref=[0.0; 0.0; -0.00101] #reference point
n_ref=[0.0; 0.0; 1.00] #directional unit vector of reference velocity
n=0.01 #interaction index
τ=0.001 #time delay
dscrp["Flame"]=(:flame,(γ,ρ,Q02U0,x_ref,n_ref,:n,:τ,n,τ)) #flame dynamics
R=287.05 # J/(kg*K) specific gas constant (air)
speedofsound(x,y,z) = z<0. ? sqrt(γ*R*Tu) : sqrt(γ*R*Tb)
c=generate_field(mesh,speedofsound)
L=discretize(mesh,dscrp,c)
```
The global eigenvalue solver has a range of parameters. Mandatory, are only
the linear operator family `L` you like to solve and the contour `Γ`.
The contour is specified as a list of complex numbers. Each of which defining
a vertex of the polygon you want to scan for eigenvalues.
In Tutorial 01 we specified the contour as rectangle by
```@example tutorial_02_global_eigenvalue_solver
Γ=[150.0+5.0im, 150.0-5.0im, 1000.0-5.0im, 1000.0+5.0im].*2*pi
```
The vertices are traversed in the order you specify them. However, the
direction does not matter, meaning that equivalently you can specify `Γ` as:
```@example tutorial_02_global_eigenvalue_solver
Γ=[1000.0+5.0im, 1000.0-5.0im, 150.0-5.0im, 150.0+5.0im]
```
Note that you should *not* specify the first point as the last point.
This will be automatically done for you by the solver.
Again, Γ is a polygon, so, e.g., specifying only three points will make the
search region a triangle. And to get curved regions you just approximate them
by a lot of vertices. For instance, this polygon is a good approximation of
a circle.
```@example tutorial_02_global_eigenvalue_solver
radius=10
center_point=100
Γ_circle=radius.*[cos(α)+sin(α)*1.0im for α=0:2*pi/1000:(2*pi-2*pi/1000)].+center_point
```
Note that your contour does not need to be convex!
## Number of eigenvalues
Beyn's algorithm needs an initial guess on how many eigenvalues `l` you expect
inside your contour. Per default this is `l=5`. If this guess is less than
the actual eigenvalues. The algorithms will miserably fail to compute any
eigenvalue inside your contour correctly. You may, therefore, choose a large
number for `l` to be on the save site. However, this will dramatically
increase your computation time.
There are several strategies to deal with this problem and each of which might
be well suited in a certain situation:
1. Split your domain in several smaller domains. This reduces the potential
number of eigenvalues in each of the subdomains.
2. Just repeatedly rerun the solver with increasing values of `l` until
the found eigenvalues do not change anymore.
## Quadrature points
As Beyn's algorithm is based on contour integration a numerical quadrature
method is performed under the hood. More precisely, the code performs a
Gauss-Legendre integration on each of the edges of the Polygon `Γ`. The number
of quadrature points for each of these integrations is `N=32` per default. But
you can specify it as an optional parameter when calling the solver.
For instance as the circular contour is already discretized by 1000 points, it
is not necessary to utilize `N=16` quadrature points on each of the edges.
Let's say `N=4` should be fine. Then, you would call the solver like
```@example tutorial_02_global_eigenvalue_solver
Ω,P=beyn(L,Γ_circle,N=4,output=true)
```
## Test singular values
One step in Beyn's algorithm requires a singular value decomposition. Non-zero
singular values and singular vectors associated with these are meant to be
disregarded. Unfortunately, on a computer zero could also mean a very small
number, and *small* here is problem-dependent. The code will disregard any
singular value `σ<tol` where `tol == 0.0` Per default. This means, that per
default only singular values that are exactly 0 will be disregarded. It is
very unlikely that this will be the case for any singular value. You may
specify your own threshold by the optional key-word argument `tol`
```@example tutorial_02_global_eigenvalue_solver
Ω,P=beyn(L,Γ, tol=1E-10)
```
but this is rather an option for experts. Even the authors of the code do not
know a systematic way of well defining this threshold for given configuration.
## Test the position of the eigenvalues
Because there could be a lot of spurious eigenvalues as there is no correct
implementation of the singular value test. A very simple test to check whether
your eigenvalues are correct is to see whether they are inside your contour
`Γ`. This test is performed per default, but you can disable it using the
keyword `pos_test`.
```@example tutorial_02_global_eigenvalue_solver
Ω,P=beyn(L,Γ, pos_test=false)
```
Note, that if you disable the position test and do not specify a threshold for
the singular values, you will always be returned with `l` eigenvalues by
Beyn's algorithm. (And sometimes even eigenvalues that are outside
of your contour are fairly correct... )
## Toggle the progress bar
Especially when searching for many eigenvalues, in large domains the algorithm
may take some time to finish. You can, therefore, optionally display a
progress bar together with an estimate of how long it will take for the
routine to finish. This is done using the optional keyword `output`.
```@example tutorial_02_global_eigenvalue_solver
Ω,P=beyn(L,Γ, output=true)
```
## Summary
Beyn's algorithm is a powerful tool for finding all eigenvalues in a specified
domain. However, its computational costs are quite high and it therefore is best
suited for solving small to medium-sized problems. A good strategy is to combine
it with a local iterative solver such that solutions from Beyn's algorithm are
fed into an iterative solver for further improvement. The next tutorial will
further explain iterative solvers.
## References
[1] W.-J. Beyn, An integral method for solving nonlinear eigenvalue problems, 2012, Lin. Alg. Appl., [doi:10.1016/j.laa.2011.03.030](https://doi.org/10.1016/j.laa.2011.03.030)
[2] P.E. Buschmann, G.A. Mensah, J.P. Moeck, Solution of Thermoacoustic Eigenvalue Problems with a Non-Iterative Method, J. Eng. Gas Turbines Power, Mar 2020, 142(3): 031022 (11 pages) [doi:10.1115/1.4045076](https://doi.org/10.1115/1.4045076)
---
*This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | docs | 6326 | ```@meta
EditURL = "<unknown>/tutorial_03_local_eigenvalue_solver.jl"
```
# Tutorial 03 A Local Eigenvalue Solver
This tutorial will teach you the details of the local eigenvalue solver.
The solver is a generalization of the method of successive linear problems
[1], in the sense that it enables not only Newton's method for root
finding, but also high order Householder iterations. The implementation
closely follows the considerations in [2].
## Model set-up.
The model is the same Rijke tube configuration as in Tutorial 01:
```@example tutorial_03_local_eigenvalue_solver
using WavesAndEigenvalues.Helmholtz
mesh=Mesh("Rijke_mm.msh",scale=0.001) #load mesh
dscrp=Dict() #initialize model descriptor
dscrp["Interior"]=(:interior, ()) #define resonant cavity
dscrp["Outlet"]=(:admittance, (:Y,1E15)) #specify outlet BC
γ=1.4 #ratio of specific heats
ρ=1.225 #density at the reference location upstream to the flame in kg/m^3
Tu=300.0 #K unburnt gas temperature
Tb=1200.0 #K burnt gas temperature
P0=101325.0 #ambient pressure in Pa
A=pi*0.025^2 #cross sectional area of the tube
Q02U0=P0*(Tb/Tu-1)*A*γ/(γ-1) #the ratio of mean heat release to mean velocity Q02U0
x_ref=[0.0; 0.0; -0.00101] #reference point
n_ref=[0.0; 0.0; 1.00] #directional unit vector of reference velocity
n=0.01 #interaction index
τ=0.001 #time delay
dscrp["Flame"]=(:flame,(γ,ρ,Q02U0,x_ref,n_ref,:n,:τ,n,τ)) #flame dynamics
R=287.05 # J/(kg*K) specific gas constant (air)
speedofsound(x,y,z) = z<0. ? sqrt(γ*R*Tu) : sqrt(γ*R*Tb)
c=generate_field(mesh,speedofsound)
L=discretize(mesh,dscrp,c)
```
## The local solver
The key idea behind the local solver is simple: The eigenvalue problem
`L(ω)p==0` is reinterpreted as `L(ω)p == λ*Y*p`. This means, the nonlinear
eigenvalue `ω` becomes a parameter in a linear eigenvalue problem with
(auxiliary) eigenvalue `λ`. If an `ω` is found such that `λ==0`, this very
`ω` solves the original non-linear eigenvalue problem. Because the auxiliary
eigenvalue problem is linear the implicit relation `λ=λ(ω)` can be examined
with established perturbation theory of linear eigenvalue problems. This
theory can be used to compute the derivative `dλ/dω` and iteratively find the
root of `λ=λ(ω)`. Each of these iterations requires solving a linear eigenvalue
problem and higher order derivatives improve the iteration. The options of
the local-solver `mslp` allows the user to control the solution process.
## Mandatory inputs
Mandatory input arguments are only the linear operator family `L` and an
initial guess `z` for the eigenvalue `ω`` iteration.
```@example tutorial_03_local_eigenvalue_solver
z=300.0*2*pi
sol,nn,flag = mslp(L, z)
```
## Maximum iterations
As per default five iterations are performed. This iteration number can be
customized using the keyword `maxiter` For instance the following command
runs 30 iterations
```@example tutorial_03_local_eigenvalue_solver
sol,nn,flag = mslp(L, z, maxiter=30)
```
# A stopping crtierion
Usually, the procedure converges after a few iteration steps and further
iterations do not significantly improve the solution. For this reason the
keyword `tol` allows for setting a threshold, such that two consecutive
iterates for the eigenvalue fulfill `abs(ω_0-ω_1)`, the iteration is
terminated. This keyword defaults to `tol=0.0` and, thus, `maxiter` iterations
will be performed. However, it is highly recommended to set the parameter to
some positive value whenever possible.
```@example tutorial_03_local_eigenvalue_solver
sol,nn,flag = mslp(L, z, maxiter=30, tol=1E-10)
```
Note that the tolerance is also a bound for the error associated with the
computed eigenvalue. Tip: The 64-bit floating numbers have an accuracy of
`eps≈1E-16`. Hence, the threshold `tol` should not be chosen less than 16
orders of magnitude smaller than the expected eigenvalue. Indeed, `tol=1E-10`
is already close to the machine-precision we can expect for the Rijke-tube
model.
## Convergence checks
Technically, the iteration may stop because of slow progress in the iteration
rather than actual convergence. A simple indicator for actual convergence is
the auxiliary eigenvalue `λ`. The closer it is to `0` the better is the
quality of the computed solution. To help the identification of falsely
terminated iterations you can specify another tolerance `lam_tol`. If
`abs(λ)>lam_tol` the computed eigenvalue is deemed to be spurious. This
feature only makes sense when a termination threshold has been specified.
As in the following example:
```@example tutorial_03_local_eigenvalue_solver
sol,nn,flag = mslp(L, z, maxiter=30, tol=1E-10, lam_tol=1E-8)
```
## Faster convergence
In order to improve the convergence rate, higher-order derivatives may be
computed. You high-order perturbation theory to improve the
iteration via the `order` keyword. For instance, third-order theory is used
in this example
```@example tutorial_03_local_eigenvalue_solver
sol,nn,flag = mslp(L, z, maxiter=30, tol=1E-10, lam_tol=1E-8, order=3)
```
Under the hood the routine calls ARPACK to utilize Arnoldi's method to solve
the linear (auxiliary) eigenvalue problem. This method can compute more than
one eigenvalue close to some initial guess. Per default, only one is sought
but via the `nev` keyword the number can be increased. This results
in an increased computation time but provides more candidates for the next
iteration, potentially improving the convergence.
```@example tutorial_03_local_eigenvalue_solver
sol,nn,flag = mslp(L, z, maxiter=30, tol=1E-10, lam_tol=1E-8, nev=3)
```
## Summary
Iterative solver like the `mslp` solver
are a great opportunity to refine solutions found from Beyn's integration-based
method. The tutorial gave you more insight in how to use the keywords for `mslp`.
The next tutorial will explain how to post-process highly accurate solutions
from an iterative solver using perturbation theory.
# References
[1] S. Güttel and F. Tisseur, The Nonlinear Eigenvalue Problem, 2017, <http://eprints.ma.man.ac.uk/2538/>
[2] G.A. Mensah, A. Orchini, J.P. Moeck, Perturbation theory of nonlinear, non-self-adjoint eigenvalue problems: Simple eigenvalues, JSV, 2020, [doi:10.1016/j.jsv.2020.115200](https://doi.org/10.1016/j.jsv.2020.115200)
---
*This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | docs | 16486 | ```@meta
EditURL = "<unknown>/tutorial_04_perturbation_theory.jl"
```
# Tutorial 04 Perturbation Theory
## Introduction
This tutorial demonstrates how high-order perturbation theory is utilized using
the WavesAndEigenvalues package. You may ask: 'What is perturbation theory?'
Well, perturbation theory deals with the approximation of a solution of a
mathematical problem based on a *known* solution of a problem similar to the
problem of interest. (Puhh, that was a long sentence...) The problem is said
to be perturbed from a baseline solution.
You can find a comprehensive presentation of the internal algorithms in
[1,2].
!!! note
The following example uses perturbation theory up to 30th order. Per default
WavesAndEigenvalues.jl is build to run perturbation theory to 16th order. You
can reconfigure your installation for higher orders by setting an environment
variable and then rebuild the package. For instance this tutorial requires
`ENV["JULIA_WAE_PERT_ORDER"]=30` for setting the variable and a subsequent
`] build WavesAndEigenvalues` to rebuild the package. This process may take a
few minutes. If you don't make the environment variable permanent,
these steps will be necessary once every time you got any update to the
package from Julia's package manager. Also note that higher orders take
significantly more memory of your installation directory.
## Model set-up and baseline-solution
The model is the same Rijke tube configuration as in Tutorial 01:
```julia
using WavesAndEigenvalues.Helmholtz
mesh=Mesh("Rijke_mm.msh",scale=0.001) #load mesh
dscrp=Dict() #initialize model descriptor
dscrp["Interior"]=(:interior, ()) #define resonant cavity
dscrp["Outlet"]=(:admittance, (:Y,1E15)) #specify outlet BC
γ=1.4 #ratio of specific heats
ρ=1.225 #density at the reference location upstream to the flame in kg/m^3
Tu=300.0 #K unburnt gas temperature
Tb=1200.0 #K burnt gas temperature
P0=101325.0 # ambient pressure in Pa
A=pi*0.025^2 # cross sectional area of the tube
Q02U0=P0*(Tb/Tu-1)*A*γ/(γ-1) #the ratio of mean heat release to mean velocity Q02U0
x_ref=[0.0; 0.0; -0.00101] #reference point
n_ref=[0.0; 0.0; 1.00] #directional unit vector of reference velocity
n=1 #interaction index
τ=0.001 #time delay
dscrp["Flame"]=(:flame,(γ,ρ,Q02U0,x_ref,n_ref,:n,:τ,n,τ)) #flame dynamics
R=287.05 # J/(kg*K) specific gas constant (air)
speedofsound(x,y,z) = z<0. ? sqrt(γ*R*Tu) : sqrt(γ*R*Tb)
c=generate_field(mesh,speedofsound)
L=discretize(mesh,dscrp,c)
```
```
1006×1006-dimensional operator family:
ω^2*M+K+n*exp(-iωτ)*Q+ω*Y*C
Parameters
----------
n 1.0 + 0.0im
λ Inf + 0.0im
ω 0.0 + 0.0im
τ 0.001 + 0.0im
Y 1.0e15 + 0.0im
```
To obtain a baseline solution we solve it using an iterative solver with
a very small stopping tollerance of `tol=1E-11`.
```julia
sol,nn,flag=mslp(L,340*2*pi,maxiter=20,tol=1E-11)
```
```
(####Solution####
eigval:
ω = 1075.325211506839 + 372.1017670372039im
Parameters:
n = 1.0 + 0.0im
λ = 2.336203477100084e-8 + 6.515535987345233e-10im
τ = 0.001 + 0.0im
Y = 1.0e15 + 0.0im
, 8, 0)
```
this small tolerance is necessary because as the name suggests the base-line
solution is the basis to our subsequent steps. If it is inaccurate we will
definetly also encounter inaccurate approximations to other configurations
than the base-line set-up.
## Taylor series
Probably, you are somewhat familiar with the concept of Taylor series
which is a basic example of perturbation theory. There is some function
``f`` from which the value ``f(x_0)`` is known together with some derivatives at the
same point, the first ``N`` say. Then, we can approximate ``f(x_0+\Delta)`` as:
```math
f(x_0+\Delta)\approx \sum_{n=0}^N f_n(x_0)Δ^n
```
Let's consider the time delay `τ`. Our problem depends exponentially on this
value. We can utilize a fast perturbation algorithm to compute the first
20 Taylor-series coefficients of the eigenfrequency `ω` w.r.t. `τ` by just
typing
```julia
perturb_fast!(sol,L,:τ,20)
```
The output shows you how long it takes to compute the coefficients.
Obviously, it takes longer and longer for higher order coefficients.
Note, that there is also an algorithm `perturb!(sol,L,:τ,20)` which does
exactly the same as the fast algorithm but is slower, when it comes to high
orders (N>5).
Both algorithms populate a field in the solution object holding the Taylor
coefficients.
```julia
sol.eigval_pert
```
```
Dict{Symbol,Any} with 1 entry:
Symbol("τ/Taylor") => Complex{Float64}[1075.33+372.102im, -2.62868e5+3.40796e5im, -1.79944e8-1.475e8im, 9.4741e10-1.57309e11im, 1.66943e14+8.14274e13im, -8.3483e16+1.86246e17im, -2.15622e20-9.17653e19im, 1.05357e23-2.58704e23im, 3.19354e26+1.25588e26im, -1.54315e29+4.02817e29im, -5.16822e32-1.94111e32im, 2.48748e35-6.72431e35im, 8.85193e38+3.23647e38im, -4.26474e41+1.17688e42im, -1.57803e45-5.68031e44im, 7.63541e47-2.13155e48im, 2.89779e51+1.0345e51im, -1.41133e54+3.9619e54im, -5.44414e57-1.93716e57im, 2.67322e60-7.51468e60im, 1.04148e64+3.70668e63im]
```
We can use these values to form the Taylor-series approximation and for
convenience we can just do so by calling to the solution object itself.
For instance let's assume we would like to approximate the value of the
eigenfrequency when `τ==0.0015` based on the 20th order series expansion.
```julia
Δ=0.0005
ω_approx=sol(:τ,τ+Δ,20)
```
```
916.7085040155473 + 494.3258317478708im
```
Let's compare this value to the true solution:
```julia
L.params[:τ]=τ+Δ #change parameter
sol_exact,nn,flag=mslp(L,ω_approx,maxiter=20,tol=1E-11) #solve again
ω_exact=sol_exact.params[:ω]
println(" exact=$(ω_exact/2/pi) vs approx=$(ω_approx/2/pi))")
```
```
Launching MSLP solver...
Iter dz: z:
----------------------------------
0 Inf 916.7085040155473 + 494.3258317478708im
1 0.006009923194378605 916.7036137652204 + 494.32932526022125im
2 2.5654097406043415e-8 916.7036137579167 + 494.3293252848137im
3 1.622588396708824e-11 916.7036137579236 + 494.329325284799im
4 5.804108531973829e-9 2.157056083093525e-12 916.7036137579256 + 494.32932528479967im
Solution has converged!
...finished MSLP!
#####################
Results
#####################
Number of steps: 4
Last step parameter variation:2.157056083093525e-12
Auxiliary eigenvalue λ residual (rhs):5.804108531973829e-9
Eigenvalue:916.7036137579256 + 494.32932528479967im
exact=145.89791147977746 + 78.67495563435732im vs approx=145.89868978845095 + 78.6743996206862im)
```
Clearly, the approximation matches the first 4 digits after the point!
We can also compute the approximation at any lower order than 20.
For instance, the first-order approximation is:
```julia
ω_approx=sol(:τ,τ+Δ,1)
println(" first-order approx=$(ω_approx/2/pi)")
```
```
first-order approx=150.22496667319837 + 86.34150633981955im
```
Note that the accuracy is less than at twentieth order.
Also note that we cannot compute the perturbation at higher order than 20
because we have only computed the Taylor series coefficients up to 20th order.
Of course we could, prepare higher order coefficients, let's say up to 30th
order by
```julia
perturb_fast!(sol,L,:τ,30)
```
and then
```julia
ω_approx=sol(:τ,τ+Δ,30)
println(" 30th-order approx=$(ω_approx/2/pi)")
```
```
30th-order approx=145.8978874014616 + 78.67497208762059im
```
Ok, we've seen how we can compute Taylor-series coefficients and how to
evaluate them as a Taylor series. But how do we choose parameters like
the baseline set-up or the perturbation order to get a reasonable estimate?
Well there is a lot you can do but, unfortunately, there are a lot of
misunderstandings when it comes to the quality perturbative approximations.
Take a second and try to answer the following questions:
1. What is the range of Δ in which you can expect reliable results from the approximation, i.e., the difference from the true solution is small?
2. How does the quality of your approximation improve if you increase the number of known derivatives?
3. What else can you do to improve your solution?
Regarding the first question, many people misbelieve that the approximation is
good as long as Δ (the shift from the expansion point) is small. This is right
and wrong at the same time. Indeed, to classify Δ as small, you need to
compare it against some value. For Taylor series this is the radius of
convergence. Convergence radii can be quite huge and sometimes super small.
Also keep in mind that the numerical value of Δ in most engineering
applications is meaningless if it is not linked to some unit of measure.
(You know the joke: What is larger, 1 km or a million mm?)
So how do we get the radius of convergence? It's as simple as
```julia
r=conv_radius(sol,:τ)
```
```
30-element Array{Float64,1}:
0.0026438071359421856
0.0018498027477203886
0.0012670310435927681
0.0009886548876531008
0.0009100554815832927
0.0008709697017278116
0.000838910762099998
0.0008140058757174155
0.0007955250149644752
0.0007813536279922974
0.0007700125089152769
0.0007607027504841114
0.000752936147548007
0.0007463656620716248
0.0007407359084332154
0.0007358585624584575
0.0007315926734366027
0.0007278304643904657
0.0007244879957019495
0.0007214989316859786
0.0007188101801265639
0.0007163787543387638
0.0007141694816882979
0.0007121533078940557
0.0007103060243302641
0.0007086072999209774
0.000707039935855723
0.0007055892855979911
0.0007042427990056821
0.0007029896606802446
```
The return value here is an array that holds N-1 values, where N is the order
of Taylor-series coefficients that have been computed for `:τ`. This is
because the convergence radius is estimated based on the ratio of two
consecutive Taylor-series coefficients. Usually, the last entry of r should
give you the best approximate.
```julia
println("Best estimate available: r=$(r[end])")
```
```
Best estimate available: r=0.0007029896606802446
```
However, there are cases where the estimation procedure for the convergence
radius is not appropriate. That is why you can have a look on the other entries
in r to judge whether there is smooth convergence.
Let's see what's happening if we evaluate the Taylor series beyond it's radius
of convergence. We therefore try to find an approximation for a two that is
twice our estimate for r away from the baseline value.
```julia
ω_approx=sol(:τ,τ+r[end]*2,20)
L.params[:τ]=τ+r[end]*2
sol_exact,nn,flag=mslp(L,ω_approx,maxiter=20,tol=1E-11) #solve again
ω_exact=sol_exact.params[:ω]
println(" exact=$(ω_exact/2/pi) vs approx=$(ω_approx/2/pi))")
```
```
Launching MSLP solver...
Iter dz: z:
----------------------------------
0 Inf 8.879592083136003e6 - 1.1737122716657885e6im
1 4.0600651883038566e6 4.870901607915898e6 - 529872.223861651im
2 1.682178480929161e6 3.225729888267407e6 - 178967.03072543198im
3 437944.1873905101 2.8166148076510336e6 - 22698.153205330833im
4 34045.990823039225 2.7910564230047897e6 - 205.96644198751892im
5 207.55279886998233 2.7910300114278947e6 - 0.1009691061235003im
6 0.012185956885981062 2.791030020923184e6 - 0.1086069737550432im
7 4.672416133789498e-10 2.7910300209231847e6 - 0.10860697371664671im
8 0.0011653820248254138 2.2028212587343887e-13 2.7910300209231847e6 - 0.10860697371686699im
Solution has converged!
...finished MSLP!
#####################
Results
#####################
Number of steps: 8
Last step parameter variation:2.2028212587343887e-13
Auxiliary eigenvalue λ residual (rhs):0.0011653820248254138
Eigenvalue:2.7910300209231847e6 - 0.10860697371686699im
exact=444206.22414780094 - 0.01728533672129094im vs approx=1.413230972670755e6 - 186802.10980322777im)
```
Outch, the approximation is completely off. Also note that the exact solutions
has a ridicoulously high value. What's happening here? Well, because we are
evaluating the power series outside of its convergence radius, we find an
extremely high value. Keep in mind that any quadratic or higher polynomial will
tend to infinity when its argument tends to infinity. Because our estimate is
nonsense but high and because we use this estimate to initialize our iterative
solver, we also find a high exact eigenvalue which of course does not match our
estimate.
Remember question 2? Maybe the estimate gets better if we increase the
perturbation order ? At least the last time we've seen an improvement.
But this time...
```julia
ω_approx=sol(:τ,τ+r[end]+0.001,30)
println("approx=$(ω_approx/2/pi))")
```
```
approx=-4.308053889489341e11 + 1.7221050696555923e10im)
```
things get *way* worse! A higher order polynomial tends faster to infinity,
therefore our is now extremely large. Indeed, if we would feed it into the
iterative solver it would trigger an error, because the code can't handle numbers
this large. The large magnitude of the result is exactly the reason why some
clever person named r the radius of *convergence*. Beyond that radius we cannot
make the Taylor-series converge without shifting the expansion point. You might
think: "*Well, then let's shift the expansion point!*" While this is definitely
a valid approach, there is something better you can do...
## Series accelaration by Padé approximation
The Taylor-series cannot converge beyond its radius of convergence. So why
not trying something else than a Taylor-series? The truncated Taylor series is
a polynomial approximation to our unknown relation ω=ω(τ). An alternative
(if not to say a generalization) of this approach is to consider rational
polynomial approximations. So instead of
$f(x_0+Δ)≈∑_{n=0}^N f_n(x_0)Δ^n$
we try something like
```math
f(x_0+Δ)≈\frac{\sum_{l=0}^L a_l(x_0)Δ^l }{ 1 + \sum_{m=0}^M b_m(x_0)Δ^m }
```
This approach is known as Padé approximation.
In order to get the same asymptotic behavior close to our expansion point, we
demand that the truncated Taylor series expansion of our Padé approximant is
identical to the approximation of our unknown function. Here comes the clou:
we already know these values because we computed the Taylor-series
coefficients. Only little algebra is needed to convert the Taylor coefficients
to Padé coefficients and all of this is build in to the solution type. All you
need to know is that the number of Padé coefficients is related to the number
of Taylor coefficients by the simple formula L+M=N. Let's give it a try and
compute the Padé approximant for L=M=10 (a so-called diagonal Padé
approximant). This is just achieve by an extra argument for the call to our
solution object.
```julia
ω_approx=sol(:τ,τ+r[end]*2,10,10)
sol_exact,nn,flag=mslp(L,ω_approx,maxiter=20,tol=1E-11)
ω_exact=sol_exact.params[:ω]
println(" exact=$(ω_exact/2/pi) vs approx=$(ω_approx/2/pi))")
```
```
Launching MSLP solver...
Iter dz: z:
----------------------------------
0 Inf 668.5373997804821 + 529.4636751544649im
1 4.96034674936746e-7 668.537399929806 + 529.4636746814398im
2 1.1965642295134598e-8 4.1740258326821776e-12 668.537399929804 + 529.4636746814361im
Solution has converged!
...finished MSLP!
#####################
Results
#####################
Number of steps: 2
Last step parameter variation:4.1740258326821776e-12
Auxiliary eigenvalue λ residual (rhs):1.1965642295134598e-8
Eigenvalue:668.537399929804 + 529.4636746814361im
exact=106.40103184063163 + 84.26676101314976im vs approx=106.40103181686632 + 84.26676108843462im)
```
Wow! There is now only a difference of about 0.00001hz between the true solution
and it's estimate. I'would say that's fine for many engineering applications.
What's your opinion?
## Summary
You learnt how to use perturbation theory. The main computational costs for
this approach is the computation of Taylor-series coefficients. Once you have
them everything comes down to ta few evaluations of scalar polynomials.
Especially, when you like to rapidly evalaute your model for a bunch of values
in a given parameter range. This approach should speed up your computations.
The next tutorial will familiarize you with the use of higher order
finite elements.
# References
[1] G.A. Mensah, Efficient Computation of Thermoacoustic Modes, Ph.D. Thesis, TU Berlin, 2019, [doi:10.14279/depositonce-8952 ](http://dx.doi.org/10.14279/depositonce-8952)
[2] G.A. Mensah, A. Orchini, J.P. Moeck, Perturbation theory of nonlinear, non-self-adjoint eigenvalue problems: Simple eigenvalues, JSV, 2020, [doi:10.1016/j.jsv.2020.115200](https://doi.org/10.1016/j.jsv.2020.115200)
---
*This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | docs | 2990 | ```@meta
EditURL = "<unknown>/tutorial_05_mesh_refinement.jl"
```
# Tutorial 05 Mesh Refinement
## Intro
This tutorial explains you to utilities for performing mesh-refinement.
The main function here is `finer_mesh=octosplit(mesh)`, which splits all
tetrahedral cells in `mesh` by bisecting each edge. This will lead to a
subdivision of each tetrahedron into eight new tetrahedra. Such a division is
not unique. There are three ways of splitting a tetrahedron into eight new
tetrahedra and bisecting all six original edges. `octosplit` chooses the
splitting such that the maximum of the newly created edges is minimized.
## Basic set-up
We start with initializing the standard Rijke-Tube example.
```@example tutorial_05_mesh_refinement
using WavesAndEigenvalues.Helmholtz
mesh=Mesh("Rijke_mm.msh",scale=0.001)
dscrp=Dict() #initialize model descriptor
dscrp["Interior"]=(:interior, ()) #define resonant cavity
dscrp["Outlet"]=(:admittance, (:Y,1E15)) #specify outlet BC
γ=1.4 #ratio of specific heats
ρ=1.225 #density at the reference location upstream to the flame in kg/m^3
Tu=300.0 #K unburnt gas temperature
Tb=1200.0 #K burnt gas temperature
P0=101325.0 #ambient pressure in Pa
A=pi*0.025^2 #cross sectional area of the tube
Q02U0=P0*(Tb/Tu-1)*A*γ/(γ-1) #the ratio of mean heat release to mean velocity Q02U0
x_ref=[0.0; 0.0; -0.00101] #reference point
n_ref=[0.0; 0.0; 1.00] #directional unit vector of reference velocity
n=0.01 #interaction index
τ=0.001 #time delay
dscrp["Flame"]=(:flame,(γ,ρ,Q02U0,x_ref,n_ref,:n,:τ,n,τ)) #flame dynamics
R=287.05 # J/(kg*K) specific gas constant (air)
speedofsound(x,y,z) = z<0. ? sqrt(γ*R*Tu) : sqrt(γ*R*Tb)
c=generate_field(mesh,speedofsound)
L=discretize(mesh,dscrp,c)
sol,nn,flag=householder(L,400*2*pi,maxiter=10)
data=Dict()
data["speed_of_sound"]=c
data["abs"]=abs.(sol.v)/maximum(abs.(sol.v)) #normalize so that max=1
data["phase"]=angle.(sol.v)
vtk_write("test", mesh, data) # Write the solution to paraview
```
## refine mesh
Now let's call `octosplit` for creating the refined mesh
```@example tutorial_05_mesh_refinement
fine_mesh=octosplit(mesh)
```
and solve the problem again with the fine mesh for comparison.
```@example tutorial_05_mesh_refinement
c=generate_field(fine_mesh,speedofsound)
L=discretize(fine_mesh,dscrp,c)
sol,nn,flag=householder(L,400*2*pi,maxiter=10)
#write to file
data=Dict()
data["speed_of_sound"]=c
data["abs"]=abs.(sol.v)/maximum(abs.(sol.v)) #normalize so that max=1
data["phase"]=angle.(sol.v)
vtk_write("fine_test", fine_mesh, data) # Write the solution to paraview
# If you think that's not enough, well, then try...
fine_mesh=octosplit(fine_mesh)
```
## Summary
The `octosplit`-function allows you to refine your mesh by bisecting all edges.
This creates a new mesh with eight-times as many tetrahedral cells. The tool is
quite useful for running h-convergence tests for your set-up.
---
*This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | docs | 2292 | ```@meta
EditURL = "<unknown>/tutorial_06_second_order_elements.jl"
```
# Tutorial 06 Second Order Elements
So far we have deployed linear elements for the FEM discretization of the
Helmholtz equation. But WavesAndEigenvalues.Helmholtz can do more. Second order
elements are also available. All you have to do is to set the `order` keyword in
the call to `order=:quad`.
## Model set-up
We demonstrate things with the usual Rijke tube set-up from Tutorial 01.
```@example tutorial_06_second_order_elements
using WavesAndEigenvalues.Helmholtz
mesh=Mesh("Rijke_mm.msh",scale=0.001) #load mesh
dscrp=Dict() #initialize model descriptor
dscrp["Interior"]=(:interior, ()) #define resonant cavity
dscrp["Outlet"]=(:admittance, (:Y,1E15)) #specify outlet BC
γ=1.4 #ratio of specific heats
ρ=1.225 #density at the reference location upstream to the flame in kg/m^3
Tu=300.0 #K unburnt gas temperature
Tb=1200.0 #K burnt gas temperature
P0=101325.0 # ambient pressure in Pa
A=pi*0.025^2 # cross sectional area of the tube
Q02U0=P0*(Tb/Tu-1)*A*γ/(γ-1) #the ratio of mean heat release to mean velocity Q02U0
x_ref=[0.0; 0.0; -0.00101] #reference point
n_ref=[0.0; 0.0; 1.00] #directional unit vector of reference velocity
n=0.01 #interaction index
τ=0.001 #time delay
dscrp["Flame"]=(:flame,(γ,ρ,Q02U0,x_ref,n_ref,:n,:τ,n,τ)) #flame dynamics
R=287.05 # J/(kg*K) specific gas constant (air)
speedofsound(x,y,z) = z<0. ? sqrt(γ*R*Tu) : sqrt(γ*R*Tb)
c=generate_field(mesh,speedofsound)
```
The key difference is that we opt for second order elements during discretization
```@example tutorial_06_second_order_elements
L=discretize(mesh,dscrp,c, order=:quad)
```
All subsequent steps are the same. For instance, solving for an eigenvalue is done by
```@example tutorial_06_second_order_elements
sol,nn,flag=mslp(L,340*2*pi,maxiter=20,tol=1E-11,output=true)
#
```
And writing output to paraview by
```@example tutorial_06_second_order_elements
data=Dict()
data["abs mode"]=abs.(sol.v)
vtk_write("tutorial06",mesh, data)
```
Note However, that the vtk-file name will be `tutorial06_quad.vtu`.
## Summary
Quadratic elements are an easy matter. Just set `order=:quad` when calling
`discretize`.
---
*This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | docs | 7666 | ```@meta
EditURL = "<unknown>/tutorial_07_Bloch_periodicity.jl"
```
# Tutorial 07 Bloch periodicity
The Helmholtz solver was designed with the application of thermoacoustic
stability assesment in mind. A very common case is that an annular combustion
chamber needs assessment. These chamber types feature a discrete rotational
symmetry, i.e., they are built from one cionstituent entity -- the unit cell -- that
implicitly defines the annular geometry by copying it around the circumference
multiple times. This high regularity of the geometry can be used to efficiently
model the problem, e.g. only storing the unit cell instead of the
entire geometry in a mesh-file in order to save memory and even performing the
entire analysis just and thereby significantly accelerating the computations.[1]
This tutorial teaches you how to use these features.
!!! note
To do this tutorial yourself you will need the `"NTNU_12.msh`" file.
Download it [here](NTNU_12.msh).
## Model Set-up
As a geometry we choose the laboratory-scale annular combustor used at NTNU
Norway [2]. The NTNU combustor features unit cells that are reflection-symmetric.
The meshfile `NTNU_12.msh`, thus, stores only one half of the unit cell. Let's
load it...
```@example tutorial_07_Bloch_periodicity
using WavesAndEigenvalues.Helmholtz
mesh=Mesh("NTNU_12.msh",scale=1.0);
nothing #hide
```
Note that there are two special domains named `"Bloch"` and `"Symmetry"`. These
are surfaces associated with the special symmetries of the combustor geometry.
`"Bloch"` is the surface where one unit cell ends and the next one should begin,
while `"Symmetry"` is the symmetry plane of the unit-cell. As the mesh is stored
as a half-cell both surfaces are boundaries. The code will automatically use
them to create the full mesh or just a unit-cell. First ,let's create a full mesh
We therefore specify the expansion scheme, this is a list of tuples containing
all domain names we like to expand together with a qualifyer that is either
`:full`,`:unit`, or `:half`, in order to tell the the code whether the copied
versions should be merged into one addressable domain of the same name spanning
the entire annulus (`:full`), pairs of domains from two corresponding half cells
should be merged into individually adressable entities (`:unit`), or the copied
hald cells remain individually addressable (:half). In the current case we only
need individual names for each flames and can sefely merge all other entities.
The scheme therefore reads:
```@example tutorial_07_Bloch_periodicity
doms=[("Interior",:full),("Inlet",:full), ("Outlet_high",:full),
("Outlet_low",:full), ("Flame",:unit),];
nothing #hide
```
and we can generate the mesh by
```@example tutorial_07_Bloch_periodicity
full_mesh=extend_mesh(mesh,doms);
nothing #hide
```
The code automatically recognizes the degree of symmetry -- 12 in the current
case-- and expands the mesh. Note how the full mesh now has 12 connsecutively
numbered flames, while all other entities still have a single name even though
they were copied expanded.
## Discretizing the full mesh
The generated mesh behaves just like any other mesh. We can use it to discretize
the model.
```@example tutorial_07_Bloch_periodicity
speedofsound(x,y,z)=z<0.415 ? 347.0 : 850.0; #speed of sound field in m/s
C=generate_field(full_mesh,speedofsound);
dscrp=Dict(); #model description
dscrp["Interior"]=(:interior,());
dscrp["Outlet_high"]=(:admittance, (:Y_in,0));# src
dscrp["Outlet_low"]=(:admittance, (:Y_out,0));# src
L=discretize(full_mesh, dscrp, C,order=:lin)
```
We can use all our standard tools to solve the model. For instance, Indlekofer
et al. report on a plenum-dominant 1124Hz-mode that is first order with respect to the
azimuthal direction and also first order with respect to the axial direction.
Let's see whether we can find it by putting 1000 Hz as an initial guess.
```@example tutorial_07_Bloch_periodicity
sol,nn,flag=mslp(L,1000,tol=1E-9,scale=2pi,output=true);
nothing #hide
```
There it is! But to be honest the computation is kinda slow. Obviously, this is
because the full mesh is quite large. Let's see how the unit cell computation
would do....
## Unit cell computation
Ok, first, we create the unit cell mesh. We therefore set the keyowrd parameter
`unit` to `true`in the call to `extend_mesh`.
```@example tutorial_07_Bloch_periodicity
unit_mesh=extend_mesh(mesh,doms,unit=true)
```
Voila, there we have it! Discretization is nearly as simple as with a normal mesh.
However, to invoke special Bloch-periodic boundary conditions the optional
parameter `b` must be set to define a symbol that is used as the Bloch wavenumber.
This option will also triger. The rest is as before.
```@example tutorial_07_Bloch_periodicity
#
c=generate_field(unit_mesh,speedofsound);
l=discretize(unit_mesh, dscrp, c, b=:b)
```
Note how the signature of the discretized operator is now much longer. These
extra terms facilitate the Bloch periodicity. What is important is the parameter
`:b` that is used to set the Bloch wavenumber. For relatively low frequencies,
the Bloch wave number corresponds to the azimuthal mode order. Effectively, it
acts like a filter to the eigenmodes. Setting it to `1` will give us mainly first
order modes. (In general it gives us modes with azimuthal order `k*12+1` where
`k` is a natural number including 0, but 13th order modes are very high in frequency
and therefore don't bother us). In comparison to the full model, this is an extra
advantage of Bloch wave theory, as we cannot filter for certain mode shapes using
the full mesh. This feature also allows us to reduce the estimate for eigenvalues
inside the integration contour when using Beyn's algorithm, as there can only be
eigenmodes corresponding to the current Bloch wavenumber. Let's try finding
1124-Hz mode again. It's of first azimuthal order so we should put the Bloch
wavenumber to 1.
```@example tutorial_07_Bloch_periodicity
l.params[:b] = 1;
sol,nn,flag = mslp(l,1000,tol=1E-9, scale=2pi, output=true);
nothing #hide
```
The computation is much faster than with the full mesh, but the eigenfrequency
is exactly the same!
## Writing output to paraview
Not only the eigemnvalues much but also the mode shapes. Bloch wave theory
clearly dictates how to extzend the mode shape from the unit cell to recover
the full-annulus solution.
The vtk_write function does this for you. You, therefore, have to provide it
with the current Bloch wavenumber. If you provide it with the unit_cell mesh,
it will just write a single sector to the file.
```@example tutorial_07_Bloch_periodicity
data=Dict();
v=bloch_expand(full_mesh,sol,:b);
data["abs"]=abs.(v)./maximum(abs.(v));
data["pahase"]=angle.(v)./pi;
vtk_write("Bloch_tutorial",full_mesh,data);
nothing #hide
```
## Summary
Bloch-wave-based analysis, significantly reduces the size of your problem
without sacrificing any precission. It thereby saves you both memory and
computational time. All you need to provide is
## References
[1] Efficient Computation of Thermoacoustic Modes in Industrial Annular
Combustion Chambers Based on Bloch-Wave Theory, G.A. Mensah, G. Campa, J.P. Moeck
2016, J. Eng. Gas Turb. and Power,[doi:10.1115/1.4032335](https://doi.org/10.1115/1.4032335)
[2] The effect of dynamic operating conditions on the thermoacoustic response of
hydrogen rich flames in an annular combustor, T. Indlekofer, A. Faure-Beaulieu,
N. Noiray and J. Dawson, 2021, Comb. and Flame, [doi:10.1016/j.combustflame.2020.10.013](https://doi.org/10.1016/j.combustflame.2020.10.013)
---
*This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.2.4 | c44c8db5d87cfd7600b5e72a41d3081537db1690 | docs | 7782 | ```@meta
EditURL = "<unknown>/tutorial_08_custom_FTF.jl"
```
# Tutorial 08 Custom FTF
!!! warning
This tutorial is still under construction. We are publishing updated versions
of our code and more tutorials every now and then. So stay tuned.
The typical use case for thermoacoustic stability assessment will require
case-speicific data. e.g, measured impedance functions or flame transfer
functions. This tutorial explains how to specify custom functions in order to
include them in your model.
## Model set-up
The model is the same Rijke tube configuration as in Tutorial 01. However,
this time the FTF is customly defined. Let's start with the definition of the
flame transfer function. The custom function must return the FTF and all its
derivatives w.r.t. the complex freqeuncy. Therefore, the interface **must** be
a function with two inputs: a complex number and an integer. For an n-τ-model
it reads.
```@example tutorial_08_custom_FTF
function FTF(ω::ComplexF64, k::Int=0)::ComplexF64
return n*(-1.0im*τ)^k*exp(-1.0im*ω*τ)
end
```
!!! note
`n` and `τ` aren't defined yet, but Julia is a quite generous
programming language; it won't complain if we define them before making our
first call to the function.
Of course, it is sometimes hard to find a closed-form expression for an FTF
and all its derivatives. You need to specify at least these derivative orders
that will be used by the methods applied to analyse the model. This is at
least the first order derivative for beyn and the standard mslp method.
You might return derivative orders up to the order you need it using an if
clause for each order. Anyway, the function may get complicated. The implicit
method explained further below is then a viable alternative.
For convenience we can also specify a display signature, that is used to nicely
display our function when the discretized model is displayed in the REPL. Let's
say in our case we want the function to be named `"ntau(z)"` where `"z"` is a
placeholder for whatever the name of the argument will be. We achieve this by
adding a method to our FTF function that takes a symbol as input and returns a
string.
```@example tutorial_08_custom_FTF
function FTF(z::Symbol)::String
return "ntau($z)"
end
```
Now let's set-up the Rijke tube model. The data is the same as in tutorial 1
```@example tutorial_08_custom_FTF
using WavesAndEigenvalues.Helmholtz
mesh=Mesh("Rijke_mm.msh",scale=0.001) #load mesh
dscrp=Dict() #initialize model descriptor
dscrp["Interior"]=(:interior, ()) #define resonant cavity
dscrp["Outlet"]=(:admittance, (:Y,1E15)) #specify outlet BC
γ=1.4; #ratio of specific heats
ρ=1.225; #density at the reference location upstream to the flame in kg/m^3
Tu=300.0; #K unburnt gas temperature
Tb=1200.0; #K burnt gas temperature
P0=101325.0; # ambient pressure in Pa
A=pi*0.025^2; # cross sectional area of the tube
Q02U0=P0*(Tb/Tu-1)*A*γ/(γ-1); #the ratio of mean heat release to mean velocity Q02U0
x_ref=[0.0; 0.0; -0.00101]; #reference point
n_ref=[0.0; 0.0; 1.00]; #directional unit vector of reference velocity
R=287.05; # J/(kg*K) specific gas constant (air)
speedofsound(x,y,z) = z<0. ? sqrt(γ*R*Tu) : sqrt(γ*R*Tb);
c=generate_field(mesh,speedofsound);
nothing #hide
```
btw this is the moment where we specify the values of n and τ
```@example tutorial_08_custom_FTF
n=1; #interaction index
τ=0.001; #time delay
nothing #hide
```
but instead of passing n and τ and its values to the flame description we
just pass the FTF
```@example tutorial_08_custom_FTF
dscrp["Flame"]=(:flame,(γ,ρ,Q02U0,x_ref,n_ref,FTF)); #flame dynamics
#... discretize ...
L=discretize(mesh,dscrp,c)
```
and done! Note how the function is currectly displayed as "natu(ω)" if we
wouldn't have named it, the FTF will be displayed as `"FTF(ω)"`
in the signature of the operator.
## Checking the model
Solving the problem shows that we get the same result as with the built-in
n-τ-model in Tutorial 1
```@example tutorial_08_custom_FTF
sol,nn,flag=mslp(L,340,maxiter=20,tol=1E-9,scale=2*pi)
# changing the parameters
```
Because the system parameters n and τ are defined in this outer scope,
changing them will change the FTF and thus the model without rediscretization.
For instance, you can completely deactivate the FTF by setting n to 0.
```@example tutorial_08_custom_FTF
n=0
```
Indeed the model now converges to purely acoustic mode
```@example tutorial_08_custom_FTF
sol,nn,flag=mslp(L,340*2*pi,maxiter=20,tol=1E-11)
```
However, be aware that there is currently no mechanism keeping track of these
parameters. It is the programmer's (that's you) responsibility to know the
specification of the FTF when `sol` was computed.
Also, note the parameters are defined in this scope. You cannot change it by
iterating it in a for-loop or from within a function, due to julia's scoping
rules.
```@example tutorial_08_custom_FTF
# Something else than n-τ...
```
Of course this is an academic example. In practice you will specify
something very custom as FTF. Maybe a superposition of σ-τ-models or even
a statespace model fitted to experimental data.
A faily generic way of handling was intoduced in [1]. This approach is not
considering a specific FTF but parametrizes the problem in terms of the flame
response. Using perturbation theory it is than possible to get the
frequency as a function of the flame response. Closing the system with a
specific FTF is than possible, and the eigenfrequency is found by solving a
scalar equation! Here is a demonstration on how that works:
```@example tutorial_08_custom_FTF
dscrp["Flame"]=(:flame,(γ,ρ,Q02U0,x_ref,n_ref)) #no flame dynamics specified at all
H=discretize(mesh,dscrp,c)
η0=0
H.params[:FTF]=η0
sol_base,nn,flag=mslp(H,340*2*pi,maxiter=20,tol=1E-11)
```
The model H has no flame transfer function, but the flame response appears as a
parameter `:FTF`. We set this parameter to 0 and solved the model, i.e. we
computed a passive solution. This solution will serve as a baseline. Note, that
it is not necessary to use a passive solution as baseline, a nonzero baseline
flame response would also work. Anyway, the baseline solution is used to build
a 16th-order Padé-approximation. For convenience we import some tools to handle
the algebra.
```@example tutorial_08_custom_FTF
using WavesAndEigenvalues.Helmholtz.NLEVP.Pade: Polynomial, Rational_Polynomial, prodrange, pade
perturb_fast!(sol_base,H,:FTF,16)
func=pade(Polynomial(sol_base.eigval_pert[Symbol("FTF/Taylor")]),8,8)
ω(z,k=0)=func(z-η0,k)
```
## Newton-Raphson for finding flame response
Now, we can deploy a simple Newton-Raphson iteration for finding the eigenfrequency
for a chosen FTF as a postprocessing step. This is possible, because we have a good
approximation of ``\omega`` as a function of the flame response ``\eta`` and a FTF
would link ``\omega``to a flame response. Hence, the eigenfrequency of the problem
is implicitly given by the scalar (sic!) equation:
```math
\eta = FTF(\omega(\Delta\eta))-\eta_0
```
Which we can first solve for ``\eta`` using Newton-Raphson
```math
Δη_{k+1}=Δη_{k}-\frac{FTF(ω(Δη_k))-Δη_k}{FTF'(ω(Δη_k))ω(Δη_k)-1}
```
and then for ``\omega`` by plugging ``\eta`` into ``\omega=\omega(\eta)``.
```@example tutorial_08_custom_FTF
n=1
τ=0.001
η=sol_base.params[:FTF]
for ii=1:10
global omeg,η
omeg=ω(η)
η-=(FTF(omeg)-η)/(FTF(omeg,1)*ω(η,1)-1)
println("iteration #",ii," estimate η:",η)
end
println(ω(η)/2pi," η :",η," Res:",FTF(omeg)-η)
sol_exact,nn,flag=mslp(L,ω(η)/2pi,maxiter=20,tol=1E-11,output=false) #solve again
ω_exact=sol_exact.params[:ω]
println(" exact=$(ω_exact/2/pi) vs approx=$(ω(η)/2pi))")
```
Works like a charm!
---
*This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
| WavesAndEigenvalues | https://github.com/JulHoltzDevelopers/WavesAndEigenvalues.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 1944 | using Documenter
using AtomicLevels
makedocs(
modules = [AtomicLevels],
sitename = "AtomicLevels",
pages = [
"Home" => "index.md",
"Orbitals" => "orbitals.md",
"Configurations" => "configurations.md",
"Term symbols" => "terms.md",
"CSFs" => "csfs.md",
"Other utilities" => "utilities.md",
"Internals" => "internals.md",
],
format = Documenter.HTML(
mathengine = MathJax(Dict(
:TeX => Dict(
:equationNumbers => Dict(:autoNumber => "AMS"),
:Macros => Dict(
:defd => "≝",
:ket => ["|#1\\rangle", 1],
:bra => ["\\langle#1|", 1],
:braket => ["\\langle#1|#2\\rangle", 2],
:ketbra => ["|#1\\rangle\\!\\langle#2|", 2],
:matrixel => ["\\langle#1|#2|#3\\rangle", 3],
:vec => ["\\mathbf{#1}", 1],
:mat => ["\\mathsf{#1}", 1],
:conj => ["#1^*", 1],
:im => "\\mathrm{i}",
:operator => ["\\mathfrak{#1}", 1],
:Hamiltonian => "\\operator{H}",
:hamiltonian => "\\operator{h}",
:Lagrangian => "\\operator{L}",
:fock => "\\operator{f}",
:lagrange => ["\\epsilon_{#1}", 1],
:vary => ["\\delta_{#1}", 1],
:onebody => ["(#1|#2)", 2],
:twobody => ["[#1|#2]", 2],
:twobodydx => ["[#1||#2]", 2],
:direct => ["{\\operator{J}_{#1}}", 1],
:exchange => ["{\\operator{K}_{#1}}", 1],
:diff => ["\\mathrm{d}#1\\,", 1]
)
)
))
),
doctest = false
)
deploydocs(repo = "github.com/JuliaAtoms/AtomicLevels.jl.git",
push_preview = true)
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 719 | module AtomicLevels
using UnicodeFun
using Format
using Parameters
using BlockBandedMatrices
using BlockArrays
using FillArrays
using WignerSymbols
using HalfIntegers
using Combinatorics
include("common.jl")
include("unicode.jl")
include("parity.jl")
include("orbitals.jl")
include("relativistic_orbitals.jl")
include("spin_orbitals.jl")
include("configurations.jl")
include("excited_configurations.jl")
include("terms.jl")
include("allchoices.jl")
include("jj_terms.jl")
include("intermediate_terms.jl")
include("couple_terms.jl")
include("csfs.jl")
include("jj2lsj.jl")
include("levels.jl")
module Utils
include("utils/print_states.jl")
end
# Deprecations
@deprecate jj2lsj(args...) jj2ℓsj(args...)
end # module
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 738 | struct allchoices{T,V<:AbstractVector{T}}
choices::Vector{V}
dims::Vector{Int}
end
function allchoices(choices::Vector{V}) where {T,V<:AbstractVector{T}}
allchoices(choices, length.(choices))
end
Base.length(ac::allchoices) = prod(ac.dims)
Base.eltype(ac::allchoices{T}) where T = Vector{T}
function Base.iterate(ac::allchoices{T,V}, (el,i)=(first.(ac.choices),ones(Int,length(ac.dims)))) where {T,V}
i == 0 && return nothing
finish_next = false
for j ∈ reverse(eachindex(i))
i[j] += 1
if i[j] > ac.dims[j]
j == 1 && (finish_next = true)
i[j] = 1
else
break
end
end
el, ([c[ii] for (c,ii) in zip(ac.choices,i)], finish_next ? 0 : i)
end
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 217 | const spectroscopic = "spdfghiklmnoqrtuvwxyz"
function spectroscopic_label(ℓ)
ℓ >= 0 || throw(DomainError(ℓ, "Negative ℓ values not allowed"))
ℓ + 1 ≤ length(spectroscopic) ? spectroscopic[ℓ+1] : "[$(ℓ)]"
end
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 39418 | """
struct Configuration{<:AbstractOrbital}
Represents a configuration -- a set of orbitals and their associated
occupation number. Furthermore, each orbital can be in one of the
following _states_: `:open`, `:closed` or `:inactive`.
# Constructors
Configuration(orbitals :: Vector{<:AbstractOrbital},
occupancy :: Vector{Int},
states :: Vector{Symbol}
[; sorted=false])
Configuration(orbitals :: Vector{Tuple{<:AbstractOrbital, Int, Symbol}}
[; sorted=false])
In the first case, the parameters of each orbital have to be passed as
separate vectors, and the orbitals and occupancy have to be of the
same length. The `states` vector can be shorter and then the latter
orbitals that were not explicitly specified by `states` are assumed to
be `:open`.
The second constructor allows you to pass a vector of tuples instead,
where each tuple is a triplet `(orbital :: AbstractOrbital, occupancy
:: Int, state :: Symbol)` corresponding to each orbital.
In all cases, all the orbitals have to be distinct. The orbitals in
the configuration will be sorted (if `sorted`) according to the
ordering defined for the particular [`AbstractOrbital`](@ref).
"""
struct Configuration{O<:AbstractOrbital}
orbitals::Vector{O}
occupancy::Vector{Int}
states::Vector{Symbol}
sorted::Bool
function Configuration(
orbitals::Vector{O},
occupancy::Vector{Int},
states::Vector{Symbol}=[:open for o in orbitals];
sorted=false) where {O<:AbstractOrbital}
length(orbitals) == length(occupancy) ||
throw(ArgumentError("Need to specify occupation numbers for all orbitals"))
length(states) ≤ length(orbitals) ||
throw(ArgumentError("Cannot provide more states than orbitals"))
length(orbitals) == length(unique(orbitals)) ||
throw(ArgumentError("Not all orbitals are unique"))
if length(states) < length(orbitals)
append!(states, repeat([:open], length(orbitals) - length(states)))
end
sd = setdiff(states, [:open, :closed, :inactive])
isempty(sd) || throw(ArgumentError("Unknown orbital states $(sd)"))
for i in eachindex(orbitals)
occ = occupancy[i]
occ < 1 && throw(ArgumentError("Invalid occupancy $(occ)"))
orb = orbitals[i]
degen_orb = degeneracy(orb)
if occ > degen_orb
if O <: Orbital || O <: SpinOrbital
throw(ArgumentError("Higher occupancy than possible for $(orb) with degeneracy $(degen_orb)"))
elseif O <: RelativisticOrbital
orb_conj = flip_j(orb)
degen_orb_conj = degeneracy(orb_conj)
if occ == degen_orb + degen_orb_conj && orb_conj ∉ orbitals
occupancy[i] = degen_orb
push!(orbitals, orb_conj)
push!(occupancy, degen_orb_conj)
push!(states, states[i])
elseif orb_conj ∈ orbitals
throw(ArgumentError("Higher occupancy than possible for $(orb) with degeneracy $(degen_orb)"))
else
throw(ArgumentError("Can only specify higher occupancy for $(orb) if completely filling the $(orb),$(orb_conj) subshell (for total degeneracy of $(degen_orb+degen_orb_conj))"))
end
end
end
end
for i in eachindex(orbitals)
states[i] == :closed && occupancy[i] < degeneracy(orbitals[i]) &&
throw(ArgumentError("Can only close filled orbitals"))
end
p = sorted ? sortperm(orbitals) : eachindex(orbitals)
new{O}(orbitals[p], occupancy[p], states[p], sorted)
end
end
function Configuration(orbs::Vector{Tuple{O,Int,Symbol}}; sorted=false) where {O<:AbstractOrbital}
orbitals = Vector{O}()
occupancy = Vector{Int}()
states = Vector{Symbol}()
for (orb,occ,state) in orbs
push!(orbitals, orb)
push!(occupancy, occ)
push!(states, state)
end
Configuration(orbitals, occupancy, states, sorted=sorted)
end
Configuration(orbital::O, occupancy::Int, state::Symbol=:open; sorted=false) where {O<:AbstractOrbital} =
Configuration([orbital], [occupancy], [state], sorted=sorted)
Configuration{O}(;sorted=false) where {O<:AbstractOrbital} =
Configuration(O[], Int[], Symbol[], sorted=sorted)
Base.copy(cfg::Configuration) =
Configuration(copy(cfg.orbitals), copy(cfg.occupancy), copy(cfg.states),
sorted=cfg.sorted)
const RelativisticConfiguration = Configuration{<:RelativisticOrbital}
"""
issorted(cfg::Configuration)
Tests if the orbitals of `cfg` is sorted.
"""
Base.issorted(cfg::Configuration) = cfg.sorted || issorted(cfg.orbitals)
"""
sort(cfg::Configuration)
Returns a sorted copy of `cfg`.
"""
Base.sort(cfg::Configuration) =
Configuration(cfg.orbitals, cfg.occupancy, cfg.states, sorted=true)
"""
sorted(cfg::Configuration)
Returns `cfg` if it is already sorted or a sorted copy otherwise.
"""
sorted(cfg::Configuration) =
issorted(cfg) ? cfg : sort(cfg)
"""
issimilar(a::Configuration, b::Configuration)
Compares the electronic configurations `a` and `b`, only considering
the constituent orbitals and their occupancy, but disregarding their
ordering and states (`:open`, `:closed`, &c).
# Examples
```jldoctest
julia> a = c"1s 2s"
1s 2s
julia> b = c"2si 1s"
2sⁱ 1s
julia> issimilar(a, b)
true
julia> a==b
false
```
"""
function issimilar(a::Configuration{<:O}, b::Configuration{<:O}) where {O<:AbstractOrbital}
ca = sorted(a)
cb = sorted(b)
ca.orbitals == cb.orbitals && ca.occupancy == cb.occupancy
end
"""
==(a::Configuration, b::Configuration)
Tests if configurations `a` and `b` are the same, considering orbital occupancy,
ordering, and states.
# Examples
```jldoctest
julia> c"1s 2s" == c"1s 2s"
true
julia> c"1s 2s" == c"1s 2si"
false
julia> c"1s 2s" == c"2s 1s"
false
```
"""
Base.:(==)(a::Configuration{<:O}, b::Configuration{<:O}) where {O<:AbstractOrbital} =
a.orbitals == b.orbitals &&
a.occupancy == b.occupancy &&
a.states == b.states
Base.hash(c::Configuration, h::UInt) = hash(c.orbitals, hash(c.occupancy, hash(c.states, h)))
"""
fill(c::Configuration)
Returns a corresponding configuration where the orbitals are completely filled (as
determined by [`degeneracy`](@ref)).
See also: [`fill!`](@ref)
"""
Base.fill(config::Configuration) = fill!(deepcopy(config))
"""
fill!(c::Configuration)
Sets all the occupancies in configuration `c` to maximum, as determined by the
[`degeneracy`](@ref) function.
See also: [`fill`](@ref)
"""
function Base.fill!(config::Configuration)
config.occupancy .= (degeneracy(o) for o in config.orbitals)
return config
end
"""
close(c::Configuration)
Return a corresponding configuration where where all the orbitals are marked `:closed`.
See also: [`close!`](@ref)
"""
Base.close(config::Configuration) = close!(deepcopy(config))
"""
close!(c::Configuration)
Marks all the orbitals in configuration `c` as closed.
See also: [`close`](@ref)
"""
function close!(config::Configuration)
if any(occ != degeneracy(o) for (o, occ, _) in config)
throw(ArgumentError("Can't close $config due to unfilled orbitals."))
end
config.states .= :closed
return config
end
function write_orbitals(io::IO, config::Configuration)
ascii = get(io, :ascii, false)
for (i,(orb,occ,state)) in enumerate(config)
i > 1 && write(io, " ")
show(io, orb)
occ > 1 && write(io, ascii ? "$occ" : to_superscript(occ))
state == :closed && write(io, ascii ? "c" : "ᶜ")
state == :inactive && write(io, ascii ? "i" : "ⁱ")
end
end
function Base.show(io::IO, config::Configuration{O}) where O
ascii = get(io, :ascii, false)
nc = length(config)
if nc == 0
write(io, ascii ? "empty" : "∅")
return
end
noble_core_name = get_noble_core_name(config)
core_config = core(config)
ncc = length(core_config)
if !isnothing(noble_core_name)
write(io, "[$(noble_core_name)]")
write(io, ascii ? "c" : "ᶜ")
ngc = length(get_noble_gas(O, noble_core_name))
core_config = core(config)
if ncc > ngc
write(io, ' ')
write_orbitals(io, core_config[ngc+1:end])
end
nc > ncc && write(io, ' ')
elseif ncc > 0
write_orbitals(io, core_config)
end
write_orbitals(io, peel(config))
end
function Base.ascii(config::Configuration)
io = IOBuffer()
ctx = IOContext(io, :ascii=>true)
show(ctx, config)
String(take!(io))
end
"""
get_noble_core_name(config::Configuration)
Returns the name of the noble gas with the most electrons whose configuration still forms
the first part of the closed part of `config`, or `nothing` if no such element is found.
```jldoctest
julia> AtomicLevels.get_noble_core_name(c"[He] 2s2")
"He"
julia> AtomicLevels.get_noble_core_name(c"1s2c 2s2c 2p6c 3s2c")
"Ne"
julia> AtomicLevels.get_noble_core_name(c"1s2") === nothing
true
```
"""
function get_noble_core_name(config::Configuration{O}) where O
nc = length(config)
nc == 0 && return nothing
core_config = core(config)
ncc = length(core_config)
if length(core_config) > 0
for gas in Iterators.reverse(noble_gases)
gas_cfg = get_noble_gas(O, gas)
ngc = length(gas_cfg)
if ncc ≥ ngc && issimilar(core_config[1:length(gas_cfg)], gas_cfg)
return gas
end
end
end
return nothing
end
function state_sym(state::AbstractString)
if state == "c" || state == "ᶜ"
:closed
elseif state == "i" || state == "ⁱ"
:inactive
else
:open
end
end
function core_configuration(::Type{O}, element::AbstractString, state::AbstractString, sorted) where {O<:AbstractOrbital}
element ∉ keys(noble_gases_configurations[O]) && throw(ArgumentError("Unknown noble gas $(element)"))
state = state_sym(state == "" ? "c" : state) # By default, we'd like cores to be frozen
core_config = noble_gases_configurations[O][element]
Configuration(core_config.orbitals, core_config.occupancy,
[state for o in core_config.orbitals],
sorted=sorted)
end
function parse_orbital_occupation(::Type{O}, orb_str) where {O<:AbstractOrbital}
m = match(r"^(([0-9]+|.)([a-z]|\[[0-9]+\])[-]{0,1})([0-9]*)([*ci]{0,1})$", orb_str)
m2 = match(r"^(([0-9]+|.)([a-z]|\[[0-9]+\])[-]{0,1})([¹²³⁴⁵⁶⁷⁸⁹⁰]*)([ᶜⁱ]{0,1})$", orb_str)
orb,occ,state = if !isnothing(m)
m[1], m[4], m[5]
elseif !isnothing(m2)
m2[1], from_superscript(m2[4]), m2[5]
else
throw(ArgumentError("Unknown subshell specification $(orb_str)"))
end
parse(O, orb) , (occ == "") ? 1 : parse(Int, occ), state_sym(state)
end
function Base.parse(::Type{Configuration{O}}, conf_str; sorted=false) where {O<:AbstractOrbital}
isempty(conf_str) && return Configuration{O}(sorted=sorted)
orbs = split(conf_str, r"[\. ]")
core_m = match(r"\[([a-zA-Z]+)\]([*ciᶜⁱ]{0,1})", first(orbs))
if !isnothing(core_m)
core_config = core_configuration(O, core_m[1], core_m[2], sorted)
if length(orbs) > 1
peel_config = Configuration(parse_orbital_occupation.(Ref(O), orbs[2:end]))
Configuration(vcat(core_config.orbitals, peel_config.orbitals),
vcat(core_config.occupancy, peel_config.occupancy),
vcat(core_config.states, peel_config.states),
sorted=sorted)
else
core_config
end
else
Configuration(parse_orbital_occupation.(Ref(O), orbs), sorted=sorted)
end
end
function parse_conf_str(::Type{O}, conf_str, suffix) where O
suffix ∈ ["", "s"] || throw(ArgumentError("Unknown configuration suffix $suffix"))
parse(Configuration{O}, conf_str, sorted=suffix=="s")
end
"""
@c_str -> Configuration{Orbital}
Construct a [`Configuration`](@ref), representing a non-relativistic
configuration, out of a string. With the added string macro suffix
`s`, the configuration is sorted.
# Examples
```jldoctest
julia> c"1s2 2s"
1s² 2s
julia> c"1s² 2s"
1s² 2s
julia> c"1s2.2s"
1s² 2s
julia> c"[Kr] 4d10 5s2 4f2"
[Kr]ᶜ 4d¹⁰ 5s² 4f²
julia> c"[Kr] 4d10 5s2 4f2"s
[Kr]ᶜ 4d¹⁰ 4f² 5s²
```
"""
macro c_str(conf_str, suffix="")
parse_conf_str(Orbital, conf_str, suffix)
end
"""
@rc_str -> Configuration{RelativisticOrbital}
Construct a [`Configuration`](@ref) representing a relativistic
configuration out of a string. With the added string macro suffix `s`,
the configuration is sorted.
# Examples
```jldoctest
julia> rc"[Ne] 3s 3p- 3p"
[Ne]ᶜ 3s 3p- 3p
julia> rc"[Ne] 3s 3p-2 3p4"
[Ne]ᶜ 3s 3p-² 3p⁴
julia> rc"[Ne] 3s 3p-² 3p⁴"
[Ne]ᶜ 3s 3p-² 3p⁴
julia> rc"2p- 1s"s
1s 2p-
```
"""
macro rc_str(conf_str, suffix="")
parse_conf_str(RelativisticOrbital, conf_str, suffix)
end
"""
@scs_str -> Vector{<:SpinConfiguration{<:Orbital}}
Generate all possible spin-configurations out of a string. With the
added string macro suffix `s`, the configuration is sorted.
# Examples
```jldoctest
julia> scs"1s2 2p2"
15-element Vector{SpinConfiguration{SpinOrbital{Orbital{Int64}, Tuple{Int64, HalfIntegers.Half{Int64}}}}}:
1s₀α 1s₀β 2p₋₁α 2p₋₁β
1s₀α 1s₀β 2p₋₁α 2p₀α
1s₀α 1s₀β 2p₋₁α 2p₀β
1s₀α 1s₀β 2p₋₁α 2p₁α
1s₀α 1s₀β 2p₋₁α 2p₁β
1s₀α 1s₀β 2p₋₁β 2p₀α
1s₀α 1s₀β 2p₋₁β 2p₀β
1s₀α 1s₀β 2p₋₁β 2p₁α
1s₀α 1s₀β 2p₋₁β 2p₁β
1s₀α 1s₀β 2p₀α 2p₀β
1s₀α 1s₀β 2p₀α 2p₁α
1s₀α 1s₀β 2p₀α 2p₁β
1s₀α 1s₀β 2p₀β 2p₁α
1s₀α 1s₀β 2p₀β 2p₁β
1s₀α 1s₀β 2p₁α 2p₁β
```
"""
macro scs_str(conf_str, suffix="")
spin_configurations(parse_conf_str(Orbital, conf_str, suffix))
end
"""
@rscs_str -> Vector{<:SpinConfiguration{<:RelativisticOrbital}}
Generate all possible relativistic spin-configurations out of a
string. With the added string macro suffix `s`, the configuration is
sorted.
# Examples
```jldoctest
julia> rscs"1s2 2p2"
6-element Vector{SpinConfiguration{SpinOrbital{RelativisticOrbital{Int64}, Tuple{HalfIntegers.Half{Int64}}}}}:
1s(-1/2) 1s(1/2) 2p(-3/2) 2p(-1/2)
1s(-1/2) 1s(1/2) 2p(-3/2) 2p(1/2)
1s(-1/2) 1s(1/2) 2p(-3/2) 2p(3/2)
1s(-1/2) 1s(1/2) 2p(-1/2) 2p(1/2)
1s(-1/2) 1s(1/2) 2p(-1/2) 2p(3/2)
1s(-1/2) 1s(1/2) 2p(1/2) 2p(3/2)
```
"""
macro rscs_str(conf_str, suffix="")
spin_configurations(parse_conf_str(RelativisticOrbital, conf_str, suffix))
end
Base.getindex(conf::Configuration{O}, i::Integer) where O =
(conf.orbitals[i], conf.occupancy[i], conf.states[i])
Base.getindex(conf::Configuration{O}, i::Union{<:UnitRange{<:Integer},<:AbstractVector{<:Integer}}) where O =
Configuration(Tuple{O,Int,Symbol}[conf[ii] for ii in i], sorted=conf.sorted)
Base.iterate(conf::Configuration, i=1) =
i > length(conf) ? nothing : (conf[i],i+1)
Base.length(conf::Configuration) = length(conf.orbitals)
Base.firstindex(conf::Configuration) = 1
Base.lastindex(conf::Configuration) = length(conf)
Base.eachindex(conf::Configuration) = Base.OneTo(length(conf))
Base.eltype(conf::Configuration{O}) where O = Tuple{O,Int,Symbol}
function Base.write(io::IO, conf::Configuration{O}) where O
write(io, 'c')
if O <: Orbital
write(io, 'n')
elseif O <: RelativisticOrbital
write(io, 'r')
elseif O <: SpinOrbital
write(io, 's')
end
write(io, length(conf))
for (orb,occ,state) in conf
write(io, orb, occ, first(string(state)))
end
write(io, conf.sorted)
end
function Base.read(io::IO, ::Type{Configuration})
read(io, Char) == 'c' || throw(ArgumentError("Failed to read a Configuration from stream"))
kind = read(io, Char)
O = if kind == 'n'
Orbital
elseif kind == 'r'
RelativisticOrbital
elseif kind == 's'
SpinOrbital
else
throw(ArgumentError("Unknown orbital type $(kind)"))
end
n = read(io, Int)
occupations = Vector{Int}(undef, n)
states = Vector{Symbol}(undef, n)
orbitals = map(1:n) do i
orb = read(io, O)
occupations[i] = read(io, Int)
s = read(io, Char)
states[i] = if s == 'o'
:open
elseif s == 'c'
:closed
elseif s == 'i'
:inactive
else
throw(ArgumentError("Unknown orbital state $(s)"))
end
orb
end
sorted = read(io, Bool)
Configuration(orbitals, occupations, states, sorted=sorted)
end
function Base.isless(a::Configuration{<:O}, b::Configuration{<:O}) where {O<:AbstractOrbital}
a = sorted(a)
b = sorted(b)
l = min(length(a),length(b))
# If they are equal up to orbital l, designate the shorter config
# as the smaller one.
a[1:l] == b[1:l] && return length(a) == l
norm_occ = (orb,w) -> 2w ≥ degeneracy(orb) ? degeneracy(orb) - w : w
for ((orba,occa,statea),(orbb,occb,stateb)) in zip(a[1:l],b[1:l])
if orba < orbb
return true
elseif orba == orbb
# This is slightly arbitrary, but we designate the orbital
# with occupation closest to a filled shell as the smaller
# one.
norm_occ(orba,occa) < norm_occ(orbb,occb) && return true
else
return false
end
end
false
end
"""
num_electrons(c::Configuration) -> Int
Return the number of electrons in the configuration.
```jldoctest
julia> num_electrons(c"1s2")
2
julia> num_electrons(rc"[Kr] 5s2 5p-2 5p2")
42
```
"""
num_electrons(c::Configuration) = sum(c.occupancy)
"""
num_electrons(c::Configuration, o::AbstractOrbital) -> Int
Returns the number of electrons on orbital `o` in configuration `c`. If `o` is not part of
the configuration, returns `0`.
```jldoctest
julia> num_electrons(c"1s 2s2", o"2s")
2
julia> num_electrons(rc"[Rn] Qf-5 Pf3", ro"Qf-")
5
julia> num_electrons(c"[Ne]", o"3s")
0
```
"""
function num_electrons(c::Configuration, o::AbstractOrbital)
idx = findfirst(isequal(o), c.orbitals)
isnothing(idx) && return 0
c.occupancy[idx]
end
"""
in(o::AbstractOrbital, c::Configuration) -> Bool
Checks if orbital `o` is part of configuration `c`.
```jldoctest
julia> in(o"2s", c"1s2 2s2")
true
julia> o"2p" ∈ c"1s2 2s2"
false
```
"""
Base.in(orb::O, conf::Configuration{O}) where {O<:AbstractOrbital} =
orb ∈ conf.orbitals
"""
orbitals(c::Configuration{O}) -> Vector{O}
Access the underlying list of orbitals
```jldoctest
julia> orbitals(c"1s2 2s2")
2-element Vector{Orbital{Int64}}:
1s
2s
julia> orbitals(rc"1s2 2p-2")
2-element Vector{RelativisticOrbital{Int64}}:
1s
2p-
```
"""
orbitals(conf::Configuration) = conf.orbitals
"""
filter(f, c::Configuration) -> Configuration
Filter out the orbitals from configuration `c` for which the predicate `f` returns `false`.
The predicate `f` needs to take three arguments: `orbital`, `occupancy` and `state`.
```julia
julia> filter((o,occ,s) -> o.ℓ == 1, c"[Kr]")
2p⁶ᶜ 3p⁶ᶜ 4p⁶ᶜ
```
"""
Base.filter(f::Function, conf::Configuration) =
conf[filter(j -> f(conf[j]...), eachindex(conf.orbitals))]
"""
core(::Configuration) -> Configuration
Return the core configuration (i.e. the sub-configuration of all the orbitals that are
marked `:closed`).
```jldoctest
julia> core(c"1s2c 2s2c 2p6c 3s2")
[Ne]ᶜ
julia> core(c"1s2 2s2")
∅
julia> core(c"1s2 2s2c 2p6c")
2s²ᶜ 2p⁶ᶜ
```
"""
core(conf::Configuration) = filter((orb,occ,state) -> state == :closed, conf)
"""
peel(::Configuration) -> Configuration
Return the non-core part of the configuration (i.e. orbitals not marked `:closed`).
```jldoctest
julia> peel(c"1s2c 2s2c 2p3")
2p³
julia> peel(c"[Ne] 3s 3p3")
3s 3p³
```
"""
peel(conf::Configuration) = filter((orb,occ,state) -> state != :closed, conf)
"""
inactive(::Configuration) -> Configuration
Return the part of the configuration marked `:inactive`.
```jldoctest
julia> inactive(c"1s2c 2s2i 2p3i 3s2")
2s²ⁱ 2p³ⁱ
```
"""
inactive(conf::Configuration) = filter((orb,occ,state) -> state == :inactive, conf)
"""
active(::Configuration) -> Configuration
Return the part of the configuration marked `:open`.
```jldoctest
julia> active(c"1s2c 2s2i 2p3i 3s2")
3s²
```
"""
active(conf::Configuration) = filter((orb,occ,state) -> state != :inactive, peel(conf))
"""
bound(::Configuration) -> Configuration
Return the bound part of the configuration (see also [`isbound`](@ref)).
```jldoctest
julia> bound(c"1s2 2s2 2p4 Ks2 Kp1")
1s² 2s² 2p⁴
```
"""
bound(conf::Configuration) = filter((orb,occ,state) -> isbound(orb), conf)
"""
continuum(::Configuration) -> Configuration
Return the non-bound (continuum) part of the configuration (see also [`isbound`](@ref)).
```jldoctest
julia> continuum(c"1s2 2s2 2p4 Ks2 Kp1")
Ks² Kp
```
"""
continuum(conf::Configuration) = filter((orb,occ,state) -> !isbound(orb), peel(conf))
Base.empty(conf::Configuration{O}) where {O<:AbstractOrbital} =
Configuration(empty(conf.orbitals), empty(conf.occupancy), empty(conf.states), sorted=conf.sorted)
"""
parity(::Configuration) -> Parity
Return the parity of the configuration.
```jldoctest
julia> parity(c"1s 2p")
odd
julia> parity(c"1s 2p2")
even
```
See also: [`Parity`](@ref)
"""
parity(conf::Configuration) = mapreduce(o -> parity(o[1])^o[2], *, conf)
"""
replace(conf, a => b[; append=false])
Substitute one electron in orbital `a` of `conf` by one electron in
orbital `b`. If `conf` is unsorted the substitution is performed
in-place, unless `append`, in which case the new orbital is appended
instead.
# Examples
```jldoctest
julia> replace(c"1s2 2s", o"1s" => o"2p")
1s 2p 2s
julia> replace(c"1s2 2s", o"1s" => o"2p", append=true)
1s 2s 2p
julia> replace(c"1s2 2s"s, o"1s" => o"2p")
1s 2s 2p
```
"""
function Base.replace(conf::Configuration{O₁}, orbs::Pair{O₂,O₃};
append=false) where {O<:AbstractOrbital,O₁<:O,O₂<:O,O₃<:O}
src,dest = orbs
orbitals = promote_type(O₁,O₂,O₃)[]
append!(orbitals, conf.orbitals)
occupancy = copy(conf.occupancy)
states = copy(conf.states)
i = findfirst(isequal(src), orbitals)
isnothing(i) && throw(ArgumentError("$(src) not present in $(conf)"))
j = findfirst(isequal(dest), orbitals)
if isnothing(j)
j = (append ? length(orbitals) : i) + 1
insert!(orbitals, j, dest)
insert!(occupancy, j, 1)
insert!(states, j, :open)
else
occupancy[j] == degeneracy(dest) &&
throw(ArgumentError("$(dest) already maximally occupied in $(conf)"))
occupancy[j] += 1
end
occupancy[i] -= 1
if occupancy[i] == 0
deleteat!(orbitals, i)
deleteat!(occupancy, i)
deleteat!(states, i)
end
Configuration(orbitals, occupancy, states, sorted=conf.sorted)
end
"""
-(configuration::Configuration, orbital::AbstractOrbital[, n=1])
Remove `n` electrons in the orbital `orbital` from the configuration
`configuration`. If the orbital had previously been `:closed` or
`:inactive`, it will now be `:open`.
"""
function Base.:(-)(configuration::Configuration{O₁}, orbital::O₂, n::Int=1) where {O<:AbstractOrbital,O₁<:O,O₂<:O}
orbitals = promote_type(O₁,O₂)[]
append!(orbitals, configuration.orbitals)
occupancy = copy(configuration.occupancy)
states = copy(configuration.states)
i = findfirst(isequal(orbital), orbitals)
isnothing(i) && throw(ArgumentError("$(orbital) not present in $(configuration)"))
occupancy[i] ≥ n ||
throw(ArgumentError("Trying to remove $(n) electrons from orbital $(orbital) with occupancy $(occupancy[i])"))
occupancy[i] -= n
states[i] = :open
if occupancy[i] == 0
deleteat!(orbitals, i)
deleteat!(occupancy, i)
deleteat!(states, i)
end
Configuration(orbitals, occupancy, states, sorted=configuration.sorted)
end
"""
+(::Configuration, ::Configuration)
Add two configurations together. If both configuration have an orbital, the number of
electrons gets added together, but in this case the status of the orbitals must match.
```jldoctest
julia> c"1s" + c"2s"
1s 2s
julia> c"1s" + c"1s"
1s²
```
"""
function Base.:(+)(a::Configuration{O₁}, b::Configuration{O₂}) where {O<:AbstractOrbital,O₁<:O,O₂<:O}
orbitals = promote_type(O₁,O₂)[]
append!(orbitals, a.orbitals)
occupancy = copy(a.occupancy)
states = copy(a.states)
for (orb,occ,state) in b
i = findfirst(isequal(orb), orbitals)
if isnothing(i)
push!(orbitals, orb)
push!(occupancy, occ)
push!(states, state)
else
occupancy[i] += occ
states[i] == state || throw(ArgumentError("Incompatible states for $(orb): $(states[i]) and $state"))
end
end
Configuration(orbitals, occupancy, states, sorted=a.sorted && b.sorted)
end
"""
delete!(c::Configuration, o::AbstractOrbital)
Remove the entire subshell corresponding to orbital `o` from configuration `c`.
```jldoctest
julia> delete!(c"[Ar] 4s2 3d10 4p2", o"4s")
[Ar]ᶜ 3d¹⁰ 4p²
```
"""
function Base.delete!(c::Configuration{O}, o::O) where O <: AbstractOrbital
idx = findfirst(isequal(o), [co[1] for co in c])
idx === nothing && return c
deleteat!(c.orbitals, idx)
deleteat!(c.occupancy, idx)
deleteat!(c.states, idx)
return c
end
"""
⊗(::Union{Configuration, Vector{Configuration}}, ::Union{Configuration, Vector{Configuration}})
Given two collections of `Configuration`s, it creates an array of `Configuration`s with all
possible juxtapositions of configurations from each collection.
# Examples
```jldoctest
julia> c"1s" ⊗ [c"2s2", c"2s 2p"]
2-element Vector{Configuration{Orbital{Int64}}}:
1s 2s²
1s 2s 2p
julia> [rc"1s", rc"2s"] ⊗ [rc"2p-", rc"2p"]
4-element Vector{Configuration{RelativisticOrbital{Int64}}}:
1s 2p-
1s 2p
2s 2p-
2s 2p
```
"""
⊗(a::Vector{<:Configuration}, b::Vector{<:Configuration}) =
[x+y for x in a for y in b]
⊗(a::Union{<:Configuration,Vector{<:Configuration}}, b::Configuration) =
a ⊗ [b]
⊗(a::Configuration, b::Vector{<:Configuration}) =
[a] ⊗ b
"""
rconfigurations_from_orbital(n, ℓ, occupancy)
Generate all `Configuration`s with relativistic orbitals corresponding to the
non-relativistic orbital with `n` and `ℓ` quantum numbers, with given occupancy.
# Examples
```jldoctest; filter = r"#s[0-9]+"
julia> AtomicLevels.rconfigurations_from_orbital(3, 1, 2)
3-element Vector{Configuration{<:RelativisticOrbital}}:
3p-²
3p- 3p
3p²
```
"""
function rconfigurations_from_orbital(n::N, ℓ::Int, occupancy::Int) where {N<:MQ}
n isa Integer && ℓ + 1 > n && throw(ArgumentError("ℓ=$ℓ too high for given n=$n"))
occupancy > 2*(2ℓ + 1) && throw(ArgumentError("occupancy=$occupancy too high for given ℓ=$ℓ"))
degeneracy_ℓm, degeneracy_ℓp = 2ℓ, 2ℓ + 2 # degeneracies of nℓ- and nℓ orbitals
nlow_min = max(occupancy - degeneracy_ℓp, 0)
nlow_max = min(degeneracy_ℓm, occupancy)
confs = RelativisticConfiguration[]
for nlow = nlow_max:-1:nlow_min
nhigh = occupancy - nlow
conf = if nlow == 0
Configuration([RelativisticOrbital(n, ℓ, ℓ + 1//2)], [nhigh])
elseif nhigh == 0
Configuration([RelativisticOrbital(n, ℓ, ℓ - 1//2)], [nlow])
else
Configuration(
[RelativisticOrbital(n, ℓ, ℓ - 1//2),
RelativisticOrbital(n, ℓ, ℓ + 1//2)],
[nlow, nhigh]
)
end
push!(confs, conf)
end
return confs
end
"""
rconfigurations_from_orbital(orbital::Orbital, occupancy)
Generate all `Configuration`s with relativistic orbitals corresponding to the
non-relativistic version of the `orbital` with a given occupancy.
# Examples
```jldoctest; filter = r"#s[0-9]+"
julia> AtomicLevels.rconfigurations_from_orbital(o"3p", 2)
3-element Vector{Configuration{<:RelativisticOrbital}}:
3p-²
3p- 3p
3p²
```
"""
function rconfigurations_from_orbital(orbital::Orbital, occupation::Integer)
rconfigurations_from_orbital(orbital.n, orbital.ℓ, occupation)
end
function rconfigurations_from_nrstring(orb_str::AbstractString)
m = match(r"^([0-9]+|.)([a-z]+)([0-9]+)?$", orb_str)
isnothing(m) && throw(ArgumentError("Invalid orbital string: $(orb_str)"))
n = parse_orbital_n(m)
ℓ = parse_orbital_ℓ(m)
occupancy = isnothing(m[3]) ? 1 : parse(Int, m[3])
return rconfigurations_from_orbital(n, ℓ, occupancy)
end
"""
relconfigurations(c::Configuration{<:Orbital}) -> Vector{<:Configuration{<:RelativisticOrbital}}
Generate all relativistic configurations from the non-relativistic
configuration `c`, by applying [`rconfigurations_from_orbital`](@ref)
to each subshell and combining the results.
"""
function relconfigurations(c::Configuration{<:Orbital})
rcs = map(c) do (orb,occ,state)
orcs = rconfigurations_from_orbital(orb, occ)
if state == :closed
close!.(orcs)
end
orcs
end
if length(rcs) > 1
rcs = map(Iterators.product(rcs...)) do subshells
reduce(⊗, subshells)
end
end
reduce(vcat, rcs)
end
relconfigurations(cs::Vector{<:Configuration{<:Orbital}}) =
reduce(vcat, map(relconfigurations, cs))
"""
@rcs_str -> Vector{Configuration{RelativisticOrbital}}
Construct a `Vector` of all `Configuration`s corresponding to the non-relativistic `nℓ`
orbital with the given occupancy from the input string.
The string is assumed to have the following syntax: `\$(n)\$(ℓ)\$(occupancy)`, where `n`
and `occupancy` are integers, and `ℓ` is in spectroscopic notation.
# Examples
```jldoctest; filter = r"#s[0-9]+"
julia> rcs"3p2"
3-element Vector{Configuration{<:RelativisticOrbital}}:
3p-²
3p- 3p
3p²
```
"""
macro rcs_str(s)
rconfigurations_from_nrstring(s)
end
"""
spin_configurations(configuration)
Generate all possible configurations of spin-orbitals from `configuration`, i.e. all
permissible values for the quantum numbers `n`, `ℓ`, `mℓ`, `ms` for each electron. Example:
```jldoctest; filter = r"#s[0-9]+"
julia> spin_configurations(c"1s2")
1-element Vector{SpinConfiguration{SpinOrbital{Orbital{Int64}, Tuple{Int64, HalfIntegers.Half{Int64}}}}}:
1s₀α 1s₀β
julia> spin_configurations(c"1s2"s)
1-element Vector{SpinConfiguration{SpinOrbital{Orbital{Int64}, Tuple{Int64, HalfIntegers.Half{Int64}}}}}:
1s₀α 1s₀β
julia> spin_configurations(c"1s ks")
4-element Vector{SpinConfiguration{SpinOrbital{<:Orbital, Tuple{Int64, HalfIntegers.Half{Int64}}}}}:
1s₀α ks₀α
1s₀β ks₀α
1s₀α ks₀β
1s₀β ks₀β
```
"""
function spin_configurations(cfg::Configuration{O}) where O
states = Dict{O,Symbol}()
orbitals = map(cfg) do (orb,occ,state)
states[orb] = state
sorbs = spin_orbitals(orb)
collect(combinations(sorbs, occ))
end
map(Iterators.product(orbitals...)) do choice
c = vcat(choice...)
s = [states[orb.orb] for orb in c]
Configuration(c, ones(Int,length(c)), s, sorted=cfg.sorted)
end |> vec
end
Base.convert(::Type{Configuration{O}}, c::Configuration) where {O<:AbstractOrbital} =
Configuration(Vector{O}(c.orbitals), c.occupancy, c.states, sorted=c.sorted)
Base.convert(::Type{Configuration{SO}}, c::Configuration{<:SpinOrbital}) where {SO<:SpinOrbital} =
Configuration(Vector{SO}(c.orbitals), c.occupancy, c.states, sorted=c.sorted)
Base.promote_type(::Type{Configuration{SO}}, ::Type{Configuration{SO}}) where {SO<:SpinOrbital} =
Configuration{SO}
Base.promote_type(::Type{CA}, ::Type{CB}) where {
A<:SpinOrbital,CA<:Configuration{A},
B<:SpinOrbital,CB<:Configuration{B}
} =
Configuration{promote_type(A,B)}
Base.promote_type(::Type{Cfg}, ::Type{Union{}}) where {SO<:SpinOrbital,Cfg<:Configuration{SO}} = Cfg
"""
spin_configurations(configurations)
For each configuration in `configurations`, generate all possible configurations of
spin-orbitals.
"""
function spin_configurations(cs::Vector{<:Configuration})
scs = map(spin_configurations, cs)
sort(reduce(vcat, scs))
end
"""
SpinConfiguration
Specialization of [`Configuration`](@ref) for configurations
consisting of [`SpinOrbital`](@ref)s.
"""
const SpinConfiguration{O<:SpinOrbital} = Configuration{O}
spin_configurations(c::SpinConfiguration) = [c]
function Base.parse(::Type{SpinConfiguration{SO}}, conf_str; sorted=false) where {O<:AbstractOrbital,SO<:SpinOrbital{O}}
isempty(conf_str) && return SpinConfiguration{SO}(sorted=sorted)
orbs = split(conf_str, r"[ ]")
core_m = match(r"\[([a-zA-Z]+)\]([*ci]{0,1})", first(orbs))
if !isnothing(core_m)
core_config = first(spin_configurations(core_configuration(O, core_m[1], core_m[2], sorted)))
if length(orbs) > 1
peel_orbitals = parse.(Ref(SO), orbs[2:end])
orbitals = vcat(core_config.orbitals, peel_orbitals)
Configuration(orbitals,
ones(Int, length(orbitals)),
vcat(core_config.states, fill(:open, length(peel_orbitals))),
sorted=sorted)
else
core_config
end
else
Configuration(parse.(Ref(SO), orbs), ones(Int, length(orbs)), sorted=sorted)
end
end
"""
@sc_str -> SpinConfiguration{<:SpinOrbital{<:Orbital}}
A string macro to construct a non-relativistic [`SpinConfiguration`](@ref).
# Examples
```jldoctest
julia> sc"1s₀α 2p₋₁β"
1s₀α 2p₋₁β
julia> sc"ks(0,-1/2) l[4](-3,1/2)"
ks₀β lg₋₃α
```
"""
macro sc_str(conf_str, suffix="")
parse(SpinConfiguration{SpinOrbital{Orbital}}, conf_str, sorted=suffix=="s")
end
"""
@rsc_str -> SpinConfiguration{<:SpinOrbital{<:RelativisticOrbital}}
A string macro to construct a relativistic [`SpinConfiguration`](@ref).
# Examples
```jldoctest
julia> rsc"1s(1/2) 2p(-1/2)"
1s(1/2) 2p(-1/2)
julia> rsc"ks(-1/2) l[4]-(-5/2)"
ks(-1/2) lg-(-5/2)
```
"""
macro rsc_str(conf_str, suffix="")
parse(SpinConfiguration{SpinOrbital{RelativisticOrbital}}, conf_str, sorted=suffix=="s")
end
function Base.show(io::IO, c::SpinConfiguration{O}) where {O<:SpinOrbital}
ascii = get(io, :ascii, false)
nc = length(c)
if nc == 0
write(io, ascii ? "empty" : "∅")
return
end
core_orbitals = sort(unique(map(o -> o.orb, orbitals(core(c)))))
if !isempty(core_orbitals)
core_cfg = Configuration(core_orbitals, ones(Int, length(core_orbitals))) |> fill |> close
show(io, core_cfg)
write(io, " ")
end
# if !c.sorted
# In the unsorted case, we do not yet contract subshells for
# printing; to be implemented.
so = string.(orbitals(peel(c)))
write(io, join(so, " "))
return
# end
# os = Dict{Orbital, Vector{O}}()
# for orb in orbitals(peel(c))
# os[orb.orb] = push!(get(os, orb.orb, SpinOrbital[]), orb)
# end
# map(sort(collect(keys(os)))) do orb
# ℓ = orb.ℓ
# g = degeneracy(orb)
# sub_shell = os[orb]
# if length(sub_shell) == g
# format("{1:s}{2:s}", orb, to_superscript(g))
# else
# map(Iterators.product()mℓrange(orb)) do mℓ
# mℓshell = findall(o -> o.mℓ == mℓ, sub_shell)
# if length(mℓshell) == 2
# format("{1:s}{2:s}{3:s}", orb, to_subscript(mℓ), to_superscript(2))
# elseif length(mℓshell) == 1
# string(sub_shell[mℓshell[1]])
# else
# ""
# end
# end |> so -> join(filter(s -> !isempty(s), so), " ")
# end
# end |> so -> write(io, join(so, " "))
end
"""
substitutions(src::SpinConfiguration, dst::SpinConfiguration)
Find all orbital substitutions going from spin-configuration `src` to
configuration `dst`.
"""
function substitutions(src::Configuration{A}, dst::Configuration{B}) where {A<:SpinOrbital,B<:SpinOrbital}
src == dst && return []
# This is only valid for spin-configurations, since occupation
# numbers are not dealt with.
num_electrons(src) == num_electrons(dst) ||
throw(ArgumentError("Configurations not of same amount of electrons"))
r = Vector{Pair{A,B}}()
missing = A[]
same = Int[]
for (i,(orb,occ,state)) in enumerate(src)
j = findfirst(isequal(orb), dst.orbitals)
if j === nothing
push!(missing, orb)
else
push!(same, j)
end
end
new = [j for j ∈ 1:num_electrons(dst)
if j ∉ same]
[mo => dst.orbitals[j] for (mo,j) in zip(missing, new)]
end
# We need to declare noble_gases first, with empty entries for Orbital and RelativisticOrbital
# since parse(Configuration, ...) uses it.
const noble_gases_configurations = Dict(
O => Dict{String,Configuration{<:O}}()
for O in [Orbital, RelativisticOrbital]
)
const noble_gases_configuration_strings = [
"He" => "1s2",
"Ne" => "[He] 2s2 2p6",
"Ar" => "[Ne] 3s2 3p6",
"Kr" => "[Ar] 3d10 4s2 4p6",
"Xe" => "[Kr] 4d10 5s2 5p6",
"Rn" => "[Xe] 4f14 5d10 6s2 6p6",
]
const noble_gases = [gas for (gas, _) in noble_gases_configuration_strings]
for (gas, configuration) in noble_gases_configuration_strings, O in [Orbital, RelativisticOrbital]
noble_gases_configurations[O][gas] = parse(Configuration{O}, configuration)
end
# This construct is needed since when showing configurations, they
# will be specialized on the Orbital parameterization, which we cannot
# index noble_gases with.
for O in [Orbital, RelativisticOrbital]
@eval get_noble_gas(::Type{<:$O}, k) = noble_gases_configurations[$O][k]
end
"""
nonrelconfiguration(c::Configuration{<:RelativisticOrbital}) -> Configuration{<:Orbital}
Reduces a relativistic configuration down to the corresponding non-relativistic configuration.
```jldoctest
julia> c = rc"1s2 2p-2 2s 2p2 3s2 3p-"s
1s² 2s 2p-² 2p² 3s² 3p-
julia> nonrelconfiguration(c)
1s² 2s 2p⁴ 3s² 3p
```
"""
function nonrelconfiguration(c::Configuration{<:RelativisticOrbital})
mq = Union{mqtype.(c.orbitals)...}
nrorbitals, nroccupancies, nrstates = Orbital{<:mq}[], Int[], Symbol[]
for (orbital, occupancy, state) in c
nrorbital = nonrelorbital(orbital)
nridx = findfirst(isequal(nrorbital), nrorbitals)
if isnothing(nridx)
push!(nrorbitals, nrorbital)
push!(nroccupancies, occupancy)
push!(nrstates, state)
else
nrstates[nridx] == state || throw(ArgumentError("Mismatching states for $(nrorbital). Previously found $(nrstates[nridx]), but $(orbital) has $(state)"))
nroccupancies[nridx] += occupancy
end
end
Configuration(nrorbitals, nroccupancies, nrstates)
end
"""
multiplicity(::Configuration)
Calculates the number of Slater determinants corresponding to the configuration.
"""
multiplicity(c::Configuration) = prod(binomial.(degeneracy.(c.orbitals), c.occupancy))
export Configuration, @c_str, @rc_str, @sc_str, @rsc_str, @scs_str, @rscs_str, issimilar,
num_electrons, orbitals, core, peel, active, inactive, bound, continuum, parity, ⊗, @rcs_str,
SpinConfiguration, spin_configurations, substitutions, close!,
nonrelconfiguration, relconfigurations
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 3271 | """
couple_terms(t1, t2)
Generate all possible coupling terms between `t1` and `t2`. It is
assumed that `t1` and `t2` originate from non-equivalent electrons
(i.e. from _different_ subshells), since the vector model does not
predict correct term couplings for equivalent electrons; some of the
generated terms would violate the Pauli principle; cf. Cowan
p. 108–109.
# Examples
```jldoctest
julia> couple_terms(T"1Po", T"2Se")
1-element Vector{Term}:
²Pᵒ
julia> couple_terms(T"3Po", T"2Se")
2-element Vector{Term}:
²Pᵒ
⁴Pᵒ
julia> couple_terms(T"3Po", T"2De")
6-element Vector{Term}:
²Pᵒ
²Dᵒ
²Fᵒ
⁴Pᵒ
⁴Dᵒ
⁴Fᵒ
```
"""
function couple_terms(t1::Term, t2::Term)
L1 = t1.L
L2 = t2.L
S1 = t1.S
S2 = t2.S
p = t1.parity * t2.parity
sort(vcat([[Term(L, S, p) for S in abs(S1-S2):(S1+S2)]
for L in abs(L1-L2):(L1+L2)]...))
end
"""
couple_terms(t1s, t2s)
Generate all coupling between all terms in `t1s` and all terms in
`t2s`.
"""
function couple_terms(t1s::Vector{T}, t2s::Vector{T}) where {T<:Union{Term,<:Real}}
ts = map(t1s) do t1
map(t2s) do t2
couple_terms(t1, t2)
end
end
sort(unique(vcat(vcat(ts...)...)))
end
"""
final_terms(ts::Vector{<:Vector{<:Union{Term,Real}}})
Generate all possible final terms from the vector of vectors of
individual subshell terms by coupling from left to right.
# Examples
```jldoctest
julia> ts = [[T"1S", T"3S"], [T"2P", T"2D"]]
2-element Vector{Vector{Term}}:
[¹S, ³S]
[²P, ²D]
julia> AtomicLevels.final_terms(ts)
4-element Vector{Term}:
²P
²D
⁴P
⁴D
```
"""
final_terms(ts::Vector{<:Vector{<:T}}) where {T<:Union{Term,Real}} =
foldl(couple_terms, ts)
couple_terms(J1::T, J2::T) where {T <: Union{Integer,HalfInteger}} =
collect(abs(J1-J2):(J1+J2))
couple_terms(J1::Real, J2::Real) =
couple_terms(convert(HalfInteger, J1), convert(HalfInteger, J2))
function intermediate_couplings(its::Vector{T}, t₀::T=zero(T)) where {T<:Union{Term,Integer,HalfInteger}}
ts = Vector{Vector{T}}()
for t in couple_terms(t₀, its[1])
if length(its) == 1
push!(ts, [t₀, t])
else
for ts′ in intermediate_couplings(its[2:end], t)
push!(ts, vcat(t₀, ts′...))
end
end
end
ts
end
"""
intermediate_couplings(its::Vector{IntermediateTerm,Integer,HalfInteger}, t₀ = T"1S")
Generate all intermediate coupling trees from the vector of
intermediate terms `its`, starting from the initial term `t₀`.
# Examples
```jldoctest
julia> intermediate_couplings([IntermediateTerm(T"2S", 1), IntermediateTerm(T"2D", 1)])
2-element Vector{Vector{Term}}:
[¹S, ²S, ¹D]
[¹S, ²S, ³D]
```
"""
intermediate_couplings(its::Vector{<:IntermediateTerm{T}}, t₀::T=zero(T)) where T =
intermediate_couplings(map(t -> t.term, its), t₀)
"""
intermediate_couplings(J::Vector{<:Real}, j₀ = 0)
# Examples
```jldoctest
julia> intermediate_couplings([1//2, 3//2])
2-element Vector{Vector{HalfIntegers.Half{Int64}}}:
[0, 1/2, 1]
[0, 1/2, 2]
```
"""
intermediate_couplings(J::Vector{IT}, j₀::T=zero(IT)) where {IT <: Real, T <: Real} =
intermediate_couplings(convert.(HalfInteger, J), convert(HalfInteger, j₀))
export couple_terms, intermediate_couplings
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 6308 | """
struct CSF
Represents a single _configuration state function_ (CSF) adapted to angular momentum
symmetries. Depending on the type parameters, it can represent both non-relativistic CSFs in
[``LS``-coupling](@ref) and relativistic CSFs in [``jj``-coupling](@ref).
A CSF is defined by the following information:
* The configuration, i.e. an ordered list of subshells together with their occupations.
* A list of intermediate coupling terms (including the seniority quantum number to label
states in degenerate subspaces) for each subshell in the configuration.
* A list of coupling terms for the coupling tree. The coupling is assumed to be done by,
first, coupling two orbitals together, then coupling that to the next orbital, and so on.
An instance of a [`CSF`](@ref) object does not specify the ``J_z`` or ``L_z``/``S_z``
quantum number(s).
# Constructors
CSF(configuration::Configuration, subshell_terms::Vector, terms::Vector)
Constructs an instance of a [`CSF`](@ref) from the information provided. The arguments have
different requirements depending on whether it is `configuration` is based on relativistic
or non-relativistic orbitals.
* If the configuration is based on [`Orbital`](@ref)s, `subshell_terms` must be a list of
[`IntermediateTerm`](@ref)s and `terms` a list of [`Term`](@ref)s.
* If it is a configuration of [`RelativisticOrbital`](@ref)s, both `subshell_terms` and
`terms` should both be a list of half-integer values.
"""
struct CSF{O<:AbstractOrbital, T<:Union{Term,HalfInteger}, S}
config::Configuration{<:O}
subshell_terms::Vector{IntermediateTerm{T,S}}
terms::Vector{T}
function CSF(config::Configuration{O},
subshell_terms::Vector{IntermediateTerm{T,S}},
terms::Vector{T}) where {O<:Union{<:Orbital,<:RelativisticOrbital},
T<:Union{Term,HalfInt}, S}
length(subshell_terms) == length(peel(config)) ||
throw(ArgumentError("Need to provide $(length(peel(config))) subshell terms for $(config)"))
length(terms) == length(peel(config)) ||
throw(ArgumentError("Need to provide $(length(peel(config))) terms for $(config)"))
for (i,(orb,occ,_)) in enumerate(peel(config))
st = subshell_terms[i]
assert_unique_classification(orb, occ, st) ||
throw(ArgumentError("$(st) is not a unique classification of $(orb)$(to_superscript(occ))"))
end
new{O,T,S}(config, subshell_terms, terms)
end
CSF(config, subshell_terms::Vector{<:IntermediateTerm}, terms::Vector{<:Real}) =
CSF(config, subshell_terms, convert.(HalfInt, terms))
end
"""
const NonRelativisticCSF = CSF{<:Orbital,Term}
"""
const NonRelativisticCSF = CSF{<:Orbital,Term}
"""
const RelativisticCSF = CSF{<:RelativisticOrbital,HalfInt}
"""
const RelativisticCSF = CSF{<:RelativisticOrbital,HalfInt}
Base.:(==)(a::CSF{O,T}, b::CSF{O,T}) where {O,T} =
(a.config == b.config) && (a.subshell_terms == b.subshell_terms) && (a.terms == b.terms)
# We possibly want to sort on configuration as well
Base.isless(a::CSF, b::CSF) = last(a.terms) < last(b.terms)
num_electrons(csf::CSF) = num_electrons(csf.config)
"""
orbitals(csf::CSF{O}) -> Vector
Access the underlying list of orbitals
```jldoctest
julia> csf = first(csfs(rc"1s2 2p-2"))
1s² 2p-²
0 0
0 0+
julia> orbitals(csf)
2-element Vector{RelativisticOrbital{Int64}}:
1s
2p-
```
"""
orbitals(csf::CSF) = orbitals(csf.config)
"""
csfs(::Configuration) -> Vector{CSF}
csfs(::Vector{Configuration}) -> Vector{CSF}
Generate all [`CSF`](@ref)s corresponding to a particular configuration or a set of
configurations.
"""
function csfs end
function csfs(config::Configuration)
map(allchoices(intermediate_terms(peel(config)))) do subshell_terms
map(intermediate_couplings(subshell_terms)) do coupled_terms
CSF(config, subshell_terms, coupled_terms[2:end])
end
end |> c -> vcat(c...) |> sort
end
csfs(configs::Vector{Configuration{O}}) where O = vcat(map(csfs, configs)...)
Base.length(csf::CSF) = length(peel(csf.config))
Base.firstindex(csf::CSF) = 1
Base.lastindex(csf::CSF) = length(csf)
Base.eachindex(csf::CSF) = Base.OneTo(length(csf))
Base.getindex(csf::CSF, i::Integer) =
(peel(csf.config)[i],csf.subshell_terms[i],csf.terms[i])
Base.eltype(csf::CSF{<:Any,T,S}) where {T,S} = Tuple{eltype(csf.config),IntermediateTerm{T,S},T}
Base.iterate(csf::CSF, (el, i)=(length(csf)>0 ? csf[1] : nothing,1)) =
i > length(csf) ? nothing : (el, (csf[i==length(csf) ? i : i+1],i+1))
function Base.show(io::IO, csf::CSF)
c = core(csf.config)
p = peel(csf.config)
nc = length(c)
if nc > 0
show(io, c)
write(io, " ")
end
for (i,((orb,occ,state),st,t)) in enumerate(csf)
show(io, orb)
occ > 1 && write(io, to_superscript(occ))
write(io, "($(st)|$(t))")
i != lastindex(p) && write(io, " ")
end
print(io, iseven(parity(csf.config)) ? "+" : "-")
end
function Base.show(io::IO, ::MIME"text/plain", csf::RelativisticCSF)
c = core(csf.config)
nc = length(c)
cw = length(string(c))
w = 0
p = peel(csf.config)
for (orb,occ,state) in p
w = max(w, length(string(orb))+length(digits(occ)))
end
w += 1
cfmt = FormatExpr("{1:$(cw)s} ")
ofmt = FormatExpr("{1:<$(w+1)s}")
ifmt = FormatExpr("{1:>$(w+1)d}")
rfmt = FormatExpr("{1:>$(w-1)d}/2")
nc > 0 && printfmt(io, cfmt, c)
for (orb,occ,state) in p
printfmt(io, ofmt, join([string(orb), occ > 1 ? to_superscript(occ) : ""], ""))
end
println(io)
nc > 0 && printfmt(io, cfmt, "")
for it in csf.subshell_terms
j = it.term
if denominator(j) == 1
printfmt(io, ifmt, numerator(j))
else
printfmt(io, rfmt, numerator(j))
end
end
println(io)
nc > 0 && printfmt(io, cfmt, "")
print(io, " ")
for j in csf.terms
if denominator(j) == 1
printfmt(io, ifmt, numerator(j))
else
printfmt(io, rfmt, numerator(j))
end
end
print(io, iseven(parity(csf.config)) ? "+" : "-")
end
export CSF, NonRelativisticCSF, RelativisticCSF, csfs
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 13055 | """
orbital_priority(fun, orig_cfg, orbitals)
Generate priorities for the substitution `orbitals`, i.e. the
preferred ordering of the orbitals in configurations excited from
`orig_cfg`. `fun` can optionally transform the labels of substitution
orbitals, in which case they will be ordered just after their parent
orbital in the source configuration; otherwise they will be appended
to the priority list.
"""
function orbital_priority(fun::Function, orig_cfg::Configuration{O₁}, orbitals::Vector{O₂}) where {O₁<:AbstractOrbital,O₂<:AbstractOrbital}
orbital_priority = Vector{promote_type(O₁,O₂)}()
append!(orbital_priority, orig_cfg.orbitals)
for (orb,occ,state) in orig_cfg
for new_orb in orbitals
subs_orb = fun(new_orb, orb)
(new_orb == subs_orb || subs_orb ∈ orbital_priority) && continue
push!(orbital_priority, subs_orb)
end
end
# This is not exactly correct, since if there is a transformation
# in effect (`fun` not returning the same orbital), they should
# not be included in the orbital priority list, whereas if there
# is no transformation, they should be appended since they have
# the lowest priority (compared to the original
# orbitals). However, if there is a transformation, the resulting
# orbitals will be different from the ingoing ones, and the
# subsequent excitations will never consider the untransformed
# substitution orbitals, so there is really no harm done.
for new_orb in orbitals
(new_orb ∈ orbital_priority) && continue
push!(orbital_priority, new_orb)
end
Dict(o => i for (i,o) in enumerate(orbital_priority))
end
function single_excitations!(fun::Function,
excitations::Vector{<:Configuration},
ref_set::Configuration,
orbitals::Vector{<:AbstractOrbital},
min_occupancy::Vector{Int},
max_occupancy::Vector{Int},
excite_from::Int)
orig_cfg = first(excitations)
orbital_order = orbital_priority(fun, orig_cfg, orbitals)
for config ∈ excitations[end-excite_from+1:end]
for (orb_i,(orb,occ,state)) ∈ enumerate(config)
state != :open && continue
# If the orbital we propose to excite from is among those
# from the reference set and already at its minimum
# occupancy, we continue.
i = findfirst(isequal(orb), ref_set.orbitals)
!isnothing(i) && occ == min_occupancy[i] && continue
for (new_orb_i,new_orb) ∈ enumerate(orbitals)
subs_orb = fun(new_orb, orb)
subs_orb == orb && continue
# If the proposed substitution orbital is among those
# from the reference set and already present in the
# configuration to excite, we check if it is already
# at its maximum occupancy, in which case we continue.
j = findfirst(isequal(subs_orb), ref_set.orbitals)
k = findfirst(isequal(subs_orb), config.orbitals)
!isnothing(j) && !isnothing(k) && config.occupancy[k] == max_occupancy[j] && continue
# Likewise, if the proposed substitution orbital is
# already at its maximum, due to the degeneracy, we
# continue.
!isnothing(k) && config.occupancy[k] == degeneracy(subs_orb) && continue
# If we are working with unsorted configurations and
# the substitution orbital is not already present in
# config, we need to check if the substitution would
# generate a configuration that violates the desired
# orbital priority.
if isnothing(k) && !config.sorted
sp = orbital_order[subs_orb]
# Make sure that no preceding orbital has higher
# value than subs_orb.
any(orbital_order[o] > sp
for o in config.orbitals) && continue
end
excited_config = replace(config, orb=>subs_orb, append=true)
excited_config ∉ excitations && push!(excitations, excited_config)
end
end
end
end
# For configurations of spatial orbitals only, the orbitals of the
# reference are valid orbitals to excite to as well.
substitution_orbitals(ref_set::Configuration, orbitals::O...) where {O<:AbstractOrbital} =
unique(vcat(peel(ref_set).orbitals, orbitals...))
# For spin-orbitals, we do not want to excite to the orbitals of the
# reference set.
substitution_orbitals(ref_set::SpinConfiguration, orbitals::O...) where {O<:SpinOrbital} =
filter(o -> o ∉ ref_set, O[orbitals...])
function substitutions!(fun, excitations, ref_set, orbitals,
min_excitations, max_excitations,
min_occupancy, max_occupancy)
excite_from = 1
retain = 1
for i in 1:max_excitations
i ≤ min_excitations && (retain = length(excitations)+1)
single_excitations!(fun, excitations, ref_set, orbitals,
min_occupancy, max_occupancy, excite_from)
excite_from = length(excitations)-excite_from
end
deleteat!(excitations, 1:retain-1)
end
function substitutions!(fun, excitations::Vector{<:SpinConfiguration},
ref_set::SpinConfiguration, orbitals::Vector{<:SpinOrbital},
min_excitations, max_excitations,
min_occupancy, max_occupancy)
subs_orbs = Vector{Vector{eltype(orbitals)}}()
for orb ∈ ref_set.orbitals
push!(subs_orbs, filter(!isnothing, map(subs_orb -> fun(subs_orb, orb), orbitals)))
end
# Either all substitution orbitals are the same for all source
# orbitals, or all source orbitals have unique substitution
# orbitals (generated using `fun`); for simplicity, we do not
# support a mixture.
all_same = true
for i ∈ 2:length(subs_orbs)
d = [isempty(setdiff(subs_orbs[i], subs_orbs[j]))
for j in 1:i-1]
i == 2 && !any(d) && (all_same = false)
all(d) && all_same || !any(d) && !all_same ||
throw(ArgumentError("All substitution orbitals have to equal or non-overlapping"))
end
source_orbitals = findall(iszero, min_occupancy)
for i ∈ min_excitations:max_excitations
# Loop over all slots, e.g. all spin-orbitals we want to
# excite from.
for srci ∈ combinations(source_orbitals,i)
all_substitutions = if all_same
# In this case, in the first slot, any of the i..n
# substitution orbitals goes, in the next i+1..n, in
# the second i+2..n, &c.
combinations(subs_orbs[1], i)
else
# In this case, we simply form the direct product of
# the source-orbital specific substitution orbitals.
Iterators.product([subs_orbs[src] for src in srci]...)
end
for substitutions in all_substitutions
cfg = ref_set
for (j,subs_orb) in enumerate(substitutions)
cfg = replace(cfg, ref_set.orbitals[srci[j]] => subs_orb)
end
push!(excitations, cfg)
end
end
end
deleteat!(excitations, 1)
end
"""
excited_configurations([fun::Function, ] cfg::Configuration,
orbitals::AbstractOrbital...
[; min_excitations=0, max_excitations=:doubles,
min_occupancy=[0, 0, ...], max_occupancy=[..., g_i, ...],
keep_parity=true])
Generate all excitations from the reference set `cfg` by substituting
at least `min_excitations` and at most `max_excitations` of the
substitution `orbitals`. `min_occupancy` specifies the minimum
occupation number for each of the source orbitals (default `0`) and
equivalently `max_occupancy` specifies the maximum occupation number
(default is the degeneracy for each orbital). `keep_parity` controls
whether the excited configuration has to have the same parity as
`cfg`. Finally, `fun` allows modification of the substitution orbitals
depending on the source orbitals, which is useful for generating
ionized configurations. If `fun` returns `nothing`, that particular
substitution will be rejected.
# Examples
```jldoctest; filter = r"#s[0-9]+"
julia> excited_configurations(c"1s2", o"2s", o"2p")
4-element Vector{Configuration{Orbital{Int64}}}:
1s²
1s 2s
2s²
2p²
julia> excited_configurations(c"1s2 2p", o"2p")
2-element Vector{Configuration{Orbital{Int64}}}:
1s² 2p
2p³
julia> excited_configurations(c"1s2 2p", o"2p", max_occupancy=[2,2])
1-element Vector{Configuration{Orbital{Int64}}}:
1s² 2p
julia> excited_configurations(first(scs"1s2"), sos"k[s]"...) do dst,src
if isbound(src)
# Generate label that indicates src orbital,
# i.e. the resultant hole
SpinOrbital(Orbital(Symbol("[\$(src)]"), dst.orb.ℓ), dst.m)
else
dst
end
end
9-element Vector{SpinConfiguration{SpinOrbital{<:Orbital, Tuple{Int64, HalfIntegers.Half{Int64}}}}}:
1s₀α 1s₀β
[1s₀α]s₀α 1s₀β
[1s₀α]s₀β 1s₀β
1s₀α [1s₀β]s₀α
1s₀α [1s₀β]s₀β
[1s₀α]s₀α [1s₀β]s₀α
[1s₀α]s₀β [1s₀β]s₀α
[1s₀α]s₀α [1s₀β]s₀β
[1s₀α]s₀β [1s₀β]s₀β
julia> excited_configurations((a,b) -> a.m == b.m ? a : nothing,
spin_configurations(c"1s"), sos"k[s-d]"..., keep_parity=false)
8-element Vector{SpinConfiguration{SpinOrbital{<:Orbital, Tuple{Int64, HalfIntegers.Half{Int64}}}}}:
1s₀α
ks₀α
kp₀α
kd₀α
1s₀β
ks₀β
kp₀β
kd₀β
```
"""
function excited_configurations(fun::Function,
ref_set::Configuration{O},
orbitals...;
min_excitations::Int=zero(Int),
max_excitations::Union{Int,Symbol}=:doubles,
min_occupancy::Vector{Int}=zeros(Int, length(peel(ref_set))),
max_occupancy::Vector{Int}=[degeneracy(first(o)) for o in peel(ref_set)],
keep_parity::Bool=true) where {O<:AbstractOrbital}
if max_excitations isa Symbol
max_excitations = if max_excitations == :singles
1
elseif max_excitations == :doubles
2
else
throw(ArgumentError("Invalid maximum excitations specification $(max_excitations)"))
end
elseif max_excitations < 0
throw(ArgumentError("Invalid maximum excitations specification $(max_excitations)"))
end
min_excitations ≥ 0 && min_excitations ≤ max_excitations ||
throw(ArgumentError("Invalid minimum excitations specification $(min_excitations)"))
lp = length(peel(ref_set))
length(min_occupancy) == lp ||
throw(ArgumentError("Need to specify $(lp) minimum occupancies for active subshells: $(peel(ref_set))"))
length(max_occupancy) == lp ||
throw(ArgumentError("Need to specify $(lp) maximum occupancies for active subshells: $(peel(ref_set))"))
all(min_occupancy .>= 0) || throw(ArgumentError("Invalid minimum occupancy requested"))
all(min_occupancy .<= max_occupancy .<= [degeneracy(first(o)) for o in peel(ref_set)]) ||
throw(ArgumentError("Invalid maximum occupancy requested"))
ref_set_core = core(ref_set)
ref_set_peel = peel(ref_set)
orbitals = substitution_orbitals(ref_set, orbitals...)
Cfg = Configuration{promote_type(O,eltype(orbitals))}
excitations = Cfg[ref_set_peel]
substitutions!(fun, excitations, ref_set_peel, orbitals,
min_excitations, max_excitations,
min_occupancy, max_occupancy)
keep_parity && filter!(e -> parity(e) == parity(ref_set), excitations)
Cfg[ref_set_core + e for e in excitations]
end
excited_configurations(fun::Function, ref_set::Vector{<:Configuration}, args...; kwargs...) =
unique(reduce(vcat, map(r -> excited_configurations(fun, r, args...; kwargs...), ref_set)))
default_substitution(subs_orb,orb) = subs_orb
excited_configurations(ref_set::Configuration, args...; kwargs...) =
excited_configurations(default_substitution, ref_set, args...; kwargs...)
excited_configurations(ref_set::Vector{<:Configuration}, args...; kwargs...) =
excited_configurations(default_substitution, ref_set, args...; kwargs...)
ion_continuum(neutral::Configuration{<:Orbital{<:Integer}},
continuum_orbitals::Vector{Orbital{Symbol}},
max_excitations=:singles) =
excited_configurations(neutral, continuum_orbitals...;
max_excitations=max_excitations, keep_parity=false)
export excited_configurations, ion_continuum
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 6487 | # * Seniority
"""
Seniority(ν)
Seniority is an extra quantum number introduced by Giulio Racah (1943)
to disambiguate between terms belonging to a subshell with a specific
occupancy, that are assigned the same term symbols. For partially
filled f-shells (in ``LS`` coupling) or partially filled ``9/2``
shells (in ``jj`` coupling), seniority alone is not enough to
disambiguate all the arising terms.
The seniority number is defined as the minimum occupancy number `ν ∈
n:-2:0` for which the term first appears, e.g. the ²D term first
occurs in the d¹ configuration, then twice in the d³ configuration
(which will then have the terms ₁²D and ₃²D).
"""
struct Seniority
ν::Int
end
Base.isless(a::Seniority, b::Seniority) = a.ν < b.ν
Base.iseven(s::Seniority) = iseven(s.ν)
Base.isodd(s::Seniority) = isodd(s.ν)
# This is the notation by Giulio Racah, p.377:
# - Racah, G. (1943). Theory of complex spectra. III. Physical Review,
# 63(9-10), 367–382. http://dx.doi.org/10.1103/physrev.63.367
Base.show(io::IO, s::Seniority) = write(io, to_subscript(s.ν))
istermvalid(term, s::Seniority) =
iseven(multiplicity(term)) ⊻ iseven(s)
# This is due to the statement "For partially filled f-shells,
# seniority alone is not sufficient to distinguish all possible
# states." on page 24 of
#
# - Froese Fischer, C., Brage, T., & Jönsson, P. (1997). Computational
# Atomic Structure : An Mchf Approach. Bristol, UK Philadelphia, Penn:
# Institute of Physics Publ.
#
# This is too strict, i.e. there are partially filled (ℓ ≥ f)-shells
# for which seniority /is/ enough, but I don't know which, so better
# play it safe.
assert_unique_classification(orb::Orbital, occupation, term::Term, s::Seniority) =
istermvalid(term, s) &&
(orb.ℓ < 3 || occupation == degeneracy(orb))
function assert_unique_classification(orb::RelativisticOrbital, occupation, J::HalfInteger, s::Seniority)
ν = s.ν
# This is deduced by looking at Table A.10 of
#
# - Grant, I. P. (2007). Relativistic Quantum Theory of Atoms and
# Molecules : Theory and Computation. New York: Springer.
istermvalid(J, s) &&
!((orb.j == half(9) && (occupation == 4 || occupation == 6) &&
(J == 4 || J == 6) && ν == 4) ||
orb.j > half(9)) # Again, too strict.
end
# * Intermediate terms, seniority
"""
struct IntermediateTerm{T,S}
Represents a term together with its extra disambiguating quantum number(s), labelled by `ν`.
The term symbol (`::T`) can either be a [`Term`](@ref) (for ``LS``-coupling) or a
`HalfInteger` (for ``jj``-coupling).
The disambiguating quantum number(s) (`::S`) can be anything as long as they are sortable
(i.e. implementing `isless`). It is up to the user to pick a scheme that is suitable for
their application. See "[Disambiguating quantum numbers](@ref)" in the manual for discussion
on how it is used in AtomicLevels.
See also: [`Term`](@ref), [`Seniority`](@ref)
# Constructors
IntermediateTerm(term, ν)
Constructs an intermediate term with the term symbol `term` and disambiguating quantum
number(s) `ν`.
# Properties
To access the term symbol and the disambiguating quantum number(s), you can use the
`.term :: T` and `.ν :: S` (or `.nu :: S`) properties, respectively. E.g.:
```jldoctest
julia> it = IntermediateTerm(T"2D", 2)
₍₂₎²D
julia> it.term, it.ν
(²D, 2)
julia> it = IntermediateTerm(5//2, Seniority(2))
₂5/2
julia> it.term, it.nu
(5/2, ₂)
```
"""
struct IntermediateTerm{T,S}
term::T
ν::S
IntermediateTerm(term::T, ν::S) where {T<:Union{Term,<:HalfInteger}, S} =
new{T,S}(term, ν)
IntermediateTerm(term::Real, ν) =
IntermediateTerm(convert(HalfInt, term), ν)
end
Base.getproperty(it::IntermediateTerm, s::Symbol) = s == :nu ? getfield(it, :ν) : getfield(it, s)
Base.propertynames(::IntermediateTerm, private::Bool=false) = (:term, :ν, :nu)
function Base.show(io::IO, iterm::IntermediateTerm{<:Any,<:Integer})
write(io, "₍")
write(io, to_subscript(iterm.ν))
write(io, "₎")
show(io, iterm.term)
end
function Base.show(io::IO, iterm::IntermediateTerm)
show(io, iterm.ν)
show(io, iterm.term)
end
Base.isless(a::IntermediateTerm, b::IntermediateTerm) =
a.ν < b.ν ||
a.ν == b.ν && a.term < b.term
"""
intermediate_terms(orb::Orbital, w::Int=one(Int))
Generates all [`IntermediateTerm`](@ref) for a given non-relativstic
orbital `orb` and occupation `w`.
# Examples
```jldoctest
julia> intermediate_terms(o"2p", 2)
3-element Vector{IntermediateTerm{Term, Seniority}}:
₀¹S
₂¹D
₂³P
```
The preceding subscript is the seniority number, which indicates at
which occupancy a certain term is first seen, cf.
```jldoctest
julia> intermediate_terms(o"3d", 1)
1-element Vector{IntermediateTerm{Term, Seniority}}:
₁²D
julia> intermediate_terms(o"3d", 3)
8-element Vector{IntermediateTerm{Term, Seniority}}:
₁²D
₃²P
₃²D
₃²F
₃²G
₃²H
₃⁴P
₃⁴F
```
In the second case, we see both `₁²D` and `₃²D`, since there are two
ways of coupling 3 `d` electrons to a `²D` symmetry.
"""
function intermediate_terms(orb::Union{<:Orbital,<:RelativisticOrbital}, w::Int=one(Int))
g = degeneracy(orb)
w > g÷2 && (w = g - w)
ts = terms(orb, w)
its = map(unique(ts)) do t
its = IntermediateTerm{typeof(t),Seniority}[]
previously_seen = 0
# We have to loop in reverse, since odd occupation numbers
# should go from 1 and even from 0.
for ν ∈ reverse(w:-2:0)
nn = count_terms(orb, ν, t) - previously_seen
previously_seen += nn
append!(its, repeat([IntermediateTerm(t, Seniority(ν))], nn))
end
its
end
sort(vcat(its...))
end
"""
intermediate_terms(config)
Generate the intermediate terms for each subshell of `config`.
# Examples
```jldoctest
julia> intermediate_terms(c"1s 2p3")
2-element Vector{Vector{IntermediateTerm{Term, Seniority}}}:
[₁²S]
[₁²Pᵒ, ₃²Dᵒ, ₃⁴Sᵒ]
julia> intermediate_terms(rc"3d2 5g3")
2-element Vector{Vector{IntermediateTerm{HalfIntegers.Half{Int64}, Seniority}}}:
[₀0, ₂2, ₂4]
[₁9/2, ₃3/2, ₃5/2, ₃7/2, ₃9/2, ₃11/2, ₃13/2, ₃15/2, ₃17/2, ₃21/2]
```
"""
function intermediate_terms(config::Configuration)
map(config) do (orb,occupation,state)
intermediate_terms(orb,occupation)
end
end
assert_unique_classification(orb, occupation, it::IntermediateTerm) =
assert_unique_classification(orb, occupation, it.term, it.ν)
export IntermediateTerm, intermediate_terms, Seniority
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 7611 | struct ClebschGordan{A,B,C,j₁T,j₂T}
j₁::A
m₁::A
j₂::B
m₂::B
J::C
M::C
end
Base.zero(::Type{ClebschGordan{A,B,C,j₁T,j₂T}}) where {A,B,C,j₁T,j₂T} =
ClebschGordan{A,B,C,j₁T,j₂T}(zero(A),zero(A),zero(B),zero(B),zero(C),zero(C))
const ClebschGordanℓs{I<:Integer} = ClebschGordan{I,Half{I},Half{I},:ℓ,:s}
ClebschGordanℓs(j₁::I, m₁::I, j₂::R, m₂::R, J::R, M::R) where {I<:Integer,R<:Half{I}} =
ClebschGordanℓs{I}(j₁, m₁, j₂, m₂, J, M)
Base.convert(::Type{T}, cg::ClebschGordan) where {T<:Real} =
clebschgordan(cg.j₁,cg.m₁,cg.j₂,cg.m₂,cg.J,cg.M)
# We have chosen the Clebsch–Gordan coefficients to be real.
Base.adjoint(cg::ClebschGordan) = cg
Base.show(io::IO, cg::ClebschGordan) =
write(io, "⟨$(cg.j₁),$(cg.j₂);$(cg.m₁),$(cg.m₂)|$(cg.J),$(cg.M)⟩")
function Base.show(io::IO, cg::ClebschGordanℓs)
spin = cg.m₂ > 0 ? "↑" : "↓"
write(io, "⟨$(spectroscopic_label(cg.j₁));$(cg.m₁),$(spin)|$(cg.J),$(cg.M)⟩")
end
#=
Relevant equations taken from
- Sakurai, J. J., & Napolitano, J. J. (2010). Modern quantum mechanics
(2nd edition). : Addison-Wesley.
=#
#=
Repeated action [Eq. (3.8.45)] with the ladder operators on the jmⱼ
basis
J±|ℓs;jmⱼ⟩
gives the following recursion relations, Eq. (3.8.49):
√((j∓mⱼ)(j±mⱼ+1))⟨ℓs;mₗ,mₛ|ℓs;j,mⱼ±1⟩
= √((ℓ∓mₗ+1)(ℓ±mₗ))⟨ℓs;mₗ∓1,mₛ|ℓs;j,mⱼ⟩
+ √((s∓mₛ+1)(s±mₛ))⟨ℓs;mₗ,mₛ∓1|ℓs;j,mⱼ⟩.
We know [Eq. (3.8.58)] that
⟨ℓs;±ℓ,±1/2|ℓs;ℓ±1/2,ℓ±1/2⟩ = 1.
=#
function rotate!(blocks::Vector{M}, orbs::RelativisticOrbital...) where {T,M<:AbstractMatrix{T}}
2length(blocks) == sum(degeneracy.(orbs))-2 ||
throw(ArgumentError("Invalid block size for $(orbs...)"))
ℓ = κ2ℓ(first(orbs).κ)
# We sort by mⱼ and remove the first and last elements since they
# are pure and trivially unity.
ℓms = sort(vcat([[(ℓ,m,s) for m ∈ -ℓ:ℓ] for s = -half(1):half(1)]...)[2:end-1], by=((ℓms)) -> (ℓms[2],+(ℓms[2:3]...)))
jmⱼ = sort(vcat([[(j,mⱼ) for mⱼ ∈ -j:j] for j ∈ [κ2j(o.κ) for o in orbs]]...), by=last)[2:end-1]
for (a,(ℓ,m,s)) in enumerate(ℓms)
bi = cld(a, 2)
o = 2*(bi-1)
for (b,(j,mⱼ)) in enumerate(jmⱼ)
b-o ∉ 1:2 && continue
blocks[bi][a-o,b-o] = convert(T, ClebschGordanℓs(ℓ,m,half(1),s,j,mⱼ))
end
end
blocks
end
"""
jj2ℓsj([T=Float64, ]orbs...)
Generates the block-diagonal matrix that transforms jj-coupled
configurations to lsj-coupled ones.
The blocks correspond to invariant subspaces, which rotate among
themselves to form new linear combinations.
They are sorted according to n,ℓ and within the blocks, the columns
are sorted according to mⱼ,j (increasing) and the rows according to
s,ℓ,m (increasing).
E.g. the p-block will have the following structure:
```
⟨p;-1,↓|3/2,-3/2⟩ │ ⋅ ⋅ │ ⋅ ⋅ │ ⋅
───────────────────┼────────────────────────────────────────┼────────────────────────────────────┼─────────────────
⋅ │ ⟨p;0,↓|1/2,-1/2⟩ ⟨p;0,↓|3/2,-1/2⟩ │ ⋅ ⋅ │ ⋅
⋅ │ ⟨p;-1,↑|1/2,-1/2⟩ ⟨p;-1,↑|3/2,-1/2⟩ │ ⋅ ⋅ │ ⋅
───────────────────┼────────────────────────────────────────┼────────────────────────────────────┼─────────────────
⋅ │ ⋅ ⋅ │ ⟨p;1,↓|1/2,1/2⟩ ⟨p;1,↓|3/2,1/2⟩ │ ⋅
⋅ │ ⋅ ⋅ │ ⟨p;0,↑|1/2,1/2⟩ ⟨p;0,↑|3/2,1/2⟩ │ ⋅
───────────────────┼────────────────────────────────────────┼────────────────────────────────────┼─────────────────
⋅ │ ⋅ ⋅ │ ⋅ ⋅ │ ⟨p;1,↑|3/2,3/2⟩
```
"""
function jj2ℓsj(::Type{T}, orbs::RelativisticOrbital...) where T
nℓs = map(o -> (o.n, κ2ℓ(o.κ)), sort([orbs...]))
blocks = map(unique(nℓs)) do (n,ℓ)
i = findall(isequal((n,ℓ)), nℓs)
subspace = orbs[i]
mⱼ = map(subspace) do orb
j = convert(Rational, κ2j(orb.κ))
-j:j
end
jₘₐₓ = maximum([κ2j(o.κ) for o in subspace])
pure = [Matrix{T}(undef,1,1),Matrix{T}(undef,1,1)]
pure[1][1] = convert(T, ClebschGordanℓs(ℓ,-ℓ,half(1),-half(1),jₘₐₓ,-jₘₐₓ))
pure[2][1] = convert(T, ClebschGordanℓs(ℓ,ℓ,half(1),half(1),jₘₐₓ,jₘₐₓ))
n = sum(length.(mⱼ))-2
if n > 0
nblocks = div(n,2)
b = [zeros(T,2,2) for i = 1:nblocks]
rotate!(b, subspace...)
[pure[1],b...,pure[2]]
else
pure
end
end |> b -> vcat(b...)
rows = size.(blocks,1)
N = sum(rows)
R = BlockBandedMatrix(Zeros{T}(N,N), rows,rows, (0,0))
for (i,b) in enumerate(blocks)
R[Block(i,i)] .= b
end
R
end
jj2ℓsj(orbs::RelativisticOrbital...) = jj2ℓsj(Float64, orbs...)
angular_integral(a::SpinOrbital{<:Orbital}, b::SpinOrbital{<:Orbital}) =
a.orb.ℓ == b.orb.ℓ && a.m == b.m
angular_integral(a::SpinOrbital{<:RelativisticOrbital}, b::SpinOrbital{<:RelativisticOrbital}) =
a.orb.ℓ == b.orb.ℓ && a.m == b.m
angular_integral(a::SpinOrbital{<:Orbital}, b::SpinOrbital{<:RelativisticOrbital}) =
Int(a.orb.ℓ == b.orb.ℓ) * clebschgordan(a.orb.ℓ, a.m[1], half(1), a.m[2], b.orb.j, b.m[1])
angular_integral(a::SpinOrbital{<:RelativisticOrbital}, b::SpinOrbital{<:Orbital}) =
conj(angular_integral(b, a))
function jj2ℓsj(sorb::SpinOrbital{<:Orbital})
orb,(mℓ,ms) = sorb.orb,sorb.m
@unpack n,ℓ = orb
mj = mℓ + ms
map(max(abs(mj),ℓ-half(1)):(ℓ+half(1))) do j
ro = SpinOrbital(RelativisticOrbital(n,ℓ,j),mj)
ro => angular_integral(ro, sorb)
end
end
function jj2ℓsj(sorb::SpinOrbital{<:RelativisticOrbital})
orb,(mj,) = sorb.orb,sorb.m
@unpack n,ℓ,j = orb
map(max(-ℓ, mj-half(1)):min(ℓ, mj+half(1))) do mℓ
ms = mj - mℓ
o = SpinOrbital(Orbital(n,ℓ),(Int(mℓ),ms))
o => angular_integral(o, sorb)
end
end
function jj2ℓsj(sorbs::AbstractVector{<:SpinOrbital{<:RelativisticOrbital}})
@assert issorted(sorbs)
# For each jj spin-orbital, find all corresponding ls
# spin-orbitals with their CG coeffs.
couplings = map(jj2ℓsj, sorbs)
CGT = typeof(couplings[1][1][2])
LSOT = eltype(reduce(vcat, map(c -> map(first, c), couplings)))
blocks = Vector{Tuple{Int,Int,Matrix{CGT}}}()
tmp_blocks = Vector{Matrix{CGT}}(undef, length(sorbs))
# Sort the ls spin-orbitals such that appear in the same place as
# those jj orbitals with the same mⱼ; this is essential to allow
# applying the JJ ↔ LS transform in-place via orbital
# rotations. Also generate the rotation matrices which are either
# 1×1 (for pure states) or 2×2.
orb_map = Dict{LSOT,Int}()
ls_orbitals = Vector{LSOT}(undef, length(sorbs))
for (i,cs) in enumerate(couplings)
if length(cs) == 1
(o,coeff) = first(cs)
ls_orbitals[i] = o
M = zeros(CGT, 1, 1)
M[1] = coeff
push!(blocks, (i,i,M))
else
(a,ca),(b,cb) = cs
mi,ma = minmax(a,b)
j = get!(orb_map, mi, i)
ls_orbitals[i] = if i == j # First time we see this block
tmp_blocks[i] = zeros(CGT, 2, 2)
mi
else # Block finished
push!(blocks, (j, i, tmp_blocks[j]))
ma
end
tmp_blocks[j][(i == j ? 1 : 2),:] .= a < b ? (ca,cb) : (cb,ca)
end
end
ls_orbitals, blocks
end
export jj2ℓsj, ClebschGordan, ClebschGordanℓs
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 3781 | """
terms(o::RelativisticOrbital, w = 1) -> Vector{HalfInt}
Returns a sorted list of valid ``J`` values of `w` equivalent ``jj``-coupled particles on
orbital `o` (i.e. `oʷ`).
When there are degeneracies (i.e. multiple states with the same ``J`` and ``M`` quantum
numbers), the corresponding ``J`` value is repeated in the output array.
# Examples
```jldoctest
julia> terms(ro"3d", 3)
3-element Vector{HalfIntegers.Half{Int64}}:
3/2
5/2
9/2
julia> terms(ro"3d-", 3)
1-element Vector{HalfIntegers.Half{Int64}}:
3/2
julia> terms(ro"4f", 4)
8-element Vector{HalfIntegers.Half{Int64}}:
0
2
2
4
4
5
6
8
```
"""
function terms(orb::RelativisticOrbital, w::Int=one(Int))
j = κ2j(orb.κ)
0 <= w <= 2*j+1 || throw(DomainError(w, "w must be 0 <= w <= 2j+1 (=$(2j+1)) for j=$j"))
# We can equivalently calculate the JJ terms for holes, so we'll do that when we have
# fewer holes than particles on this shell
2w ≥ 2j+1 && (w = convert(Int, 2j) + 1 - w)
# Zero and one particle cases are simple special cases
w == 0 && return [zero(HalfInt)]
w == 1 && return [j]
# _terms_jw is guaranteed to be in descending order
reverse!(_terms_jw(j, w))
end
function _terms_jw_histogram(j, w)
Jmax = j*w
NJ = convert(Int, 2*Jmax + 1)
hist = zeros(Int, NJ)
for c in combinations(HalfInt(-j):HalfInt(j), w)
M = sum(c)
i = convert(Int, M + Jmax) + 1
hist[i] += 1
end
hist
end
function _terms_jw(j::HalfInteger, w::Integer)
j >= 0 || throw(DomainError(j, "j must be positive"))
1 <= w <= 2*j+1 || throw(DomainError(w, "w must be 1 <= w <= 2j+1 (=$(2j+1)) for j=$j"))
# This works by considering all possible n-particle fermionic product states (Slater
# determinants; i.e. each orbital can only appear once) of the orbitals with different
# m quantum numbers -- they are just different n-element combinations of the possible
# m quantum numbers (m ∈ -j:j).
Jmax = j*w
hist = _terms_jw_histogram(j, w)
NJ = length(hist)
# Each of the product states is still a J_z eigenstate and the
# eigenvalue is just a sum of the J_z eigenvalues of the
# orbitals. As for every coupled J, we also get M ∈ -J:J, we can
# just look at the histogram of all the M quantum numbers to
# figure out which J states and how many of them we have.
# Go through the histogram to figure out the J terms.
jvalues = HalfInt[]
Jmid = div(NJ, 2) + (isodd(NJ) ? 1 : 0)
for i = 1:Jmid
@assert hist[NJ - i + 1] == hist[i] # make sure that the histogram is symmetric
J = convert(HalfInt, Jmax - i + 1)
lastbin = (i > 1) ? hist[i-1] : 0
@assert hist[i] >= lastbin
for _ = 1:(hist[i]-lastbin)
push!(jvalues, J)
end
end
return jvalues
end
function count_terms(orb::RelativisticOrbital, w::Integer, J::HalfInteger)
j = κ2j(orb.κ)
0 <= w <= 2*j+1 || throw(DomainError(w, "w must be 0 <= w <= 2j+1 (=$(2j+1)) for j=$j"))
# We can equivalently calculate the JJ terms for holes, so we'll do that when we have
# fewer holes than particles on this shell
2w ≥ 2j+1 && (w = convert(Int, 2j) + 1 - w)
# Zero and one particle cases are simple special cases
if w == 0
iszero(J) ? 1 : 0
elseif w == 1
J == j ? 1 : 0
else
Jmax = j*w
J > Jmax && return 0
hist = _terms_jw_histogram(j, w)
NJ = length(hist)
i = convert(Int, Jmax - J + 1)
hist[i] - ((i > 1) ? hist[i-1] : 0)
end
end
count_terms(orb::RelativisticOrbital, w, J::Real) =
count_terms(orb, w, convert(HalfInt, J))
multiplicity(J::HalfInteger) = convert(Int, 2J + 1)
weight(J::HalfInteger) = multiplicity(J)
export terms, intermediate_terms
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 4513 | # * Level
"""
Level(csf, J)
Given a [`CSF`](@ref) with a final [`Term`](@ref), a `Level`
additionally specifies a total angular momentum ``J``. By further
specifying a projection quantum number ``M_J``, we get a
[`State`](@ref).
"""
struct Level{O,IT,T}
csf::CSF{O,IT,T}
J::HalfInt
function Level(csf::CSF{O,IT,T}, J::HalfInteger) where {O,IT,T}
J ∈ J_range(last(csf.terms)) ||
throw(ArgumentError("Invalid J = $(J) for term $(last(csf.terms))"))
new{O,IT,T}(csf, J)
end
end
Level(csf::CSF, J::Integer) = Level(csf, convert(HalfInteger, J))
function Base.show(io::IO, level::Level)
write(io, "|")
show(io, level.csf)
write(io, ", J = $(level.J)⟩")
end
"""
weight(l::Level)
Returns the statistical weight of the [`Level`](@ref) `l`, i.e. the
number of possible microstates: ``2J+1``.
# Example
```jldoctest
julia> l = Level(first(csfs(c"1s 2p")), 1)
|1s(₁²S|²S) 2p(₁²Pᵒ|¹Pᵒ)-, J = 1⟩
julia> weight(l)
3
```
"""
weight(l::Level) = convert(Int, 2l.J + 1)
Base.:(==)(l1::Level, l2::Level) = ((l1.csf == l2.csf) && (l1.J == l2.J))
# It makes no sense to sort levels with different electron configurations
Base.isless(l1::Level, l2::Level) = ((l1.csf < l2.csf)) ||
((l1.csf == l2.csf)) && (l1.J < l2.J)
"""
J_range(term::Term)
List the permissible values of the total angular momentum ``J`` for
`term`.
# Examples
```jldoctest
julia> J_range(T"¹S")
0:0
julia> J_range(T"²S")
1/2:1/2
julia> J_range(T"³P")
0:2
julia> J_range(T"²D")
3/2:5/2
```
"""
J_range(term::Term) = abs(term.L-term.S):(term.L+term.S)
"""
J_range(J)
The permissible range of the total angular momentum ``J`` in ``jj``
coupling is simply the value of ``J`` for the final term.
"""
J_range(J::HalfInteger) = J:J
J_range(J::Integer) = J_range(convert(HalfInteger, J))
"""
levels(csf)
Generate all permissible [`Level`](@ref)s given `csf`.
# Examples
```jldoctest
julia> levels.(csfs(c"1s 2p"))
2-element Vector{Vector{Level{Orbital{Int64}, Term, Seniority}}}:
[|1s(₁²S|²S) 2p(₁²Pᵒ|¹Pᵒ)-, J = 1⟩]
[|1s(₁²S|²S) 2p(₁²Pᵒ|³Pᵒ)-, J = 0⟩, |1s(₁²S|²S) 2p(₁²Pᵒ|³Pᵒ)-, J = 1⟩, |1s(₁²S|²S) 2p(₁²Pᵒ|³Pᵒ)-, J = 2⟩]
julia> levels.(csfs(rc"1s 2p"))
2-element Vector{Vector{Level{RelativisticOrbital{Int64}, HalfIntegers.Half{Int64}, Seniority}}}:
[|1s(₁1/2|1/2) 2p(₁3/2|1)-, J = 1⟩]
[|1s(₁1/2|1/2) 2p(₁3/2|2)-, J = 2⟩]
julia> levels.(csfs(rc"1s 2p-"))
2-element Vector{Vector{Level{RelativisticOrbital{Int64}, HalfIntegers.Half{Int64}, Seniority}}}:
[|1s(₁1/2|1/2) 2p-(₁1/2|0)-, J = 0⟩]
[|1s(₁1/2|1/2) 2p-(₁1/2|1)-, J = 1⟩]
```
"""
levels(csf::CSF) = sort([Level(csf,J) for J in J_range(last(csf.terms))])
# * State
@doc raw"""
State(level, M_J)
A states defines, in addition to the total angular momentum ``J`` of
`level`, its projection ``M_J\in -J..J``.
"""
struct State{O,IT,T}
level::Level{O,IT,T}
M_J::HalfInt
function State(level::Level{O,IT,T}, M_J::HalfInteger) where {O,IT,T}
abs(M_J) ≤ level.J ||
throw(ArgumentError("Invalid M_J = $(M_J) for level with J = $(level.J)"))
new{O,IT,T}(level, M_J)
end
end
State(level::Level, M_J::Integer) = State(level, convert(HalfInteger, M_J))
function Base.show(io::IO, state::State)
write(io, "|")
show(io, state.level.csf)
write(io, ", J = $(state.level.J), M_J = $(state.M_J)⟩")
end
Base.:(==)(a::State,b::State) = a.level == b.level && a.M_J == b.M_J
Base.isless(a::State,b::State) = a.level < b.level || a.level == b.level && a.M_J < b.M_J
"""
states(level)
Generate all permissible [`State`](@ref) given `level`.
# Example
```jldoctest
julia> l = Level(first(csfs(c"1s 2p")), 1)
|1s(₁²S|²S) 2p(₁²Pᵒ|¹Pᵒ)-, J = 1⟩
julia> states(l)
3-element Vector{State{Orbital{Int64}, Term, Seniority}}:
|1s(₁²S|²S) 2p(₁²Pᵒ|¹Pᵒ)-, J = 1, M_J = -1⟩
|1s(₁²S|²S) 2p(₁²Pᵒ|¹Pᵒ)-, J = 1, M_J = 0⟩
|1s(₁²S|²S) 2p(₁²Pᵒ|¹Pᵒ)-, J = 1, M_J = 1⟩
```
"""
function states(level::Level{O,IT,T}) where {O,IT,T}
J = level.J
[State(level, M_J) for M_J ∈ -J:J]
end
"""
states(csf)
Directly generate all permissible [`State`](@ref)s for `csf`.
# Example
```jldoctest
julia> c = first(csfs(c"1s 2p"))
1s(₁²S|²S) 2p(₁²Pᵒ|¹Pᵒ)-
julia> states(c)
1-element Vector{Vector{State{Orbital{Int64}, Term, Seniority}}}:
[|1s(₁²S|²S) 2p(₁²Pᵒ|¹Pᵒ)-, J = 1, M_J = -1⟩, |1s(₁²S|²S) 2p(₁²Pᵒ|¹Pᵒ)-, J = 1, M_J = 0⟩, |1s(₁²S|²S) 2p(₁²Pᵒ|¹Pᵒ)-, J = 1, M_J = 1⟩]
```
"""
states(csf::CSF) = states.(levels(csf))
export Level, weight, J_range, levels, State, states
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 7173 | """
abstract type AbstractOrbital
Abstract supertype of all orbital types.
!!! note "Broadcasting"
When broadcasting, orbital objects behave like scalars.
"""
abstract type AbstractOrbital end
Base.Broadcast.broadcastable(x::AbstractOrbital) = Ref(x)
"""
const MQ = Union{Int,Symbol}
Defines the possible types that may represent the main quantum number. It can either be an
non-negative integer or a `Symbol` value (generally used to label continuum electrons).
"""
const MQ = Union{Int,Symbol}
nisless(an::T, bn::T) where T = an < bn
# Our convention is that symbolic main quantum numbers are always
# greater than numeric ones, such that ks appears after 2p, etc.
nisless(an::I, bn::Symbol) where {I<:Integer} = true
nisless(an::Symbol, bn::I) where {I<:Integer} = false
function Base.ascii(o::AbstractOrbital)
io = IOBuffer()
ctx = IOContext(io, :ascii=>true)
show(ctx, o)
String(take!(io))
end
# * Non-relativistic orbital
"""
struct Orbital{N <: AtomicLevels.MQ} <: AbstractOrbital
Label for an atomic orbital with a principal quantum number `n::N` and orbital angular
momentum `ℓ`.
The type parameter `N` has to be such that it can represent a proper principal quantum number
(i.e. a subtype of [`AtomicLevels.MQ`](@ref)).
# Properties
The following properties are part of the public API:
* `.n :: N` -- principal quantum number ``n``
* `.ℓ :: Int` -- the orbital angular momentum ``\\ell``
# Constructors
Orbital(n::Int, ℓ::Int)
Orbital(n::Symbol, ℓ::Int)
Construct an orbital label with principal quantum number `n` and orbital angular momentum `ℓ`.
If the principal quantum number `n` is an integer, it has to positive and the angular momentum
must satisfy `0 <= ℓ < n`.
```jldoctest
julia> Orbital(1, 0)
1s
julia> Orbital(:K, 2)
Kd
```
"""
struct Orbital{N<:MQ} <: AbstractOrbital
n::N
ℓ::Int
function Orbital(n::Int, ℓ::Int)
n ≥ 1 || throw(ArgumentError("Invalid principal quantum number $(n)"))
0 ≤ ℓ && ℓ < n || throw(ArgumentError("Angular quantum number has to be ∈ [0,$(n-1)] when n = $(n)"))
new{Int}(n, ℓ)
end
function Orbital(n::Symbol, ℓ::Int)
new{Symbol}(n, ℓ)
end
end
Orbital{N}(n::N, ℓ::Int) where {N<:MQ} = Orbital(n, ℓ)
Base.:(==)(a::Orbital, b::Orbital) =
a.n == b.n && a.ℓ == b.ℓ
Base.hash(o::Orbital, h::UInt) = hash(o.n, hash(o.ℓ, h))
"""
mqtype(::Orbital{MQ}) = MQ
Returns the main quantum number type of an [`Orbital`](@ref).
"""
mqtype(::Orbital{MQ}) where MQ = MQ
Base.show(io::IO, orb::Orbital{N}) where N =
write(io, "$(orb.n)$(spectroscopic_label(orb.ℓ))")
"""
degeneracy(orbital::Orbital)
Returns the degeneracy of `orbital` which is `2(2ℓ+1)`
# Examples
```jldoctest
julia> degeneracy(o"1s")
2
julia> degeneracy(o"2p")
6
```
"""
degeneracy(orb::Orbital) = 2*(2orb.ℓ + 1)
"""
isless(a::Orbital, b::Orbital)
Compares the orbitals `a` and `b` to decide which one comes before the
other in a configuration.
# Examples
```jldoctest
julia> o"1s" < o"2s"
true
julia> o"1s" < o"2p"
true
julia> o"ks" < o"2p"
false
```
"""
function Base.isless(a::Orbital, b::Orbital)
nisless(a.n, b.n) && return true
a.n == b.n && a.ℓ < b.ℓ && return true
false
end
"""
parity(orbital::Orbital)
Returns the parity of `orbital`, defined as `(-1)^ℓ`.
# Examples
```jldoctest
julia> parity(o"1s")
even
julia> parity(o"2p")
odd
```
"""
parity(orb::Orbital) = p"odd"^orb.ℓ
"""
symmetry(orbital::Orbital)
Returns the symmetry for `orbital` which is simply `ℓ`.
"""
symmetry(orb::Orbital) = orb.ℓ
"""
isbound(::Orbital)
Returns `true` is the main quantum number is an integer, `false`
otherwise.
```jldoctest
julia> isbound(o"1s")
true
julia> isbound(o"ks")
false
```
"""
function isbound end
isbound(::Orbital{Int}) = true
isbound(::Orbital{Symbol}) = false
"""
angular_momenta(orbital)
Returns the angular momentum quantum numbers of `orbital`.
# Examples
```jldoctest
julia> angular_momenta(o"2s")
(0, 1/2)
julia> angular_momenta(o"3d")
(2, 1/2)
```
"""
angular_momenta(orbital::Orbital) = (orbital.ℓ,half(1))
angular_momentum_labels(::Orbital) = ("ℓ","s")
"""
angular_momentum_ranges(orbital)
Return the valid ranges within which projections of each of the
angular momentum quantum numbers of `orbital` must fall.
# Examples
```jldoctest
julia> angular_momentum_ranges(o"2s")
(0:0, -1/2:1/2)
julia> angular_momentum_ranges(o"4f")
(-3:3, -1/2:1/2)
```
"""
angular_momentum_ranges(orbital::AbstractOrbital) =
map(j -> -j:j, angular_momenta(orbital))
# ** Saving/loading
Base.write(io::IO, o::Orbital{Int}) = write(io, 'i', o.n, o.ℓ)
Base.write(io::IO, o::Orbital{Symbol}) = write(io, 's', sizeof(o.n), o.n, o.ℓ)
function Base.read(io::IO, ::Type{Orbital})
kind = read(io, Char)
n = if kind == 'i'
read(io, Int)
elseif kind == 's'
b = Vector{UInt8}(undef, read(io, Int))
readbytes!(io, b)
Symbol(b)
else
error("Unknown Orbital type $(kind)")
end
ℓ = read(io, Int)
Orbital(n, ℓ)
end
# * Orbital construction from strings
parse_orbital_n(m::RegexMatch,i=1) =
isnumeric(m[i][1]) ? parse(Int, m[i]) : Symbol(m[i])
function parse_orbital_ℓ(m::RegexMatch,i=2)
ℓs = strip(m[i], ['[',']'])
if isnumeric(ℓs[1])
parse(Int, ℓs)
else
ℓi = findfirst(ℓs, spectroscopic)
isnothing(ℓi) && throw(ArgumentError("Invalid spectroscopic label: $(m[i])"))
first(ℓi) - 1
end
end
function Base.parse(::Type{<:Orbital}, orb_str)
m = match(r"^([0-9]+|.)([a-z]|\[[0-9]+\])$", orb_str)
isnothing(m) && throw(ArgumentError("Invalid orbital string: $(orb_str)"))
n = parse_orbital_n(m)
ℓ = parse_orbital_ℓ(m)
Orbital(n, ℓ)
end
"""
@o_str -> Orbital
A string macro to construct an [`Orbital`](@ref) from the canonical string representation.
```jldoctest
julia> o"1s"
1s
julia> o"Fd"
Fd
```
"""
macro o_str(orb_str)
parse(Orbital, orb_str)
end
function orbitals_from_string(::Type{O}, orbs_str::AbstractString) where {O<:AbstractOrbital}
map(split(orbs_str)) do orb_str
m = match(r"^([0-9]+|.)\[([a-z]|[0-9]+)(-([a-z]|[0-9]+)){0,1}\]$", strip(orb_str))
m === nothing && throw(ArgumentError("Invalid orbitals string: $(orb_str)"))
n = parse_orbital_n(m)
ℓs = map(filter(i -> !isnothing(m[i]), [2,4])) do i
parse_orbital_ℓ(m, i)
end
orbs = if O == RelativisticOrbital
orbs = map(ℓ -> O(n, ℓ, ℓ-1//2), max(first(ℓs),1):last(ℓs))
append!(orbs, map(ℓ -> O(n, ℓ, ℓ+1//2), first(ℓs):last(ℓs)))
else
map(ℓ -> O(n, ℓ), first(ℓs):last(ℓs))
end
sort(orbs)
end |> o -> vcat(o...) |> sort
end
"""
@os_str -> Vector{Orbital}
Can be used to easily construct a list of [`Orbital`](@ref)s.
# Examples
```jldoctest
julia> os"5[d] 6[s-p] k[7-10]"
7-element Vector{Orbital}:
5d
6s
6p
kk
kl
km
kn
```
"""
macro os_str(orbs_str)
orbitals_from_string(Orbital, orbs_str)
end
export AbstractOrbital, Orbital,
@o_str, @os_str,
degeneracy, symmetry, isbound, angular_momenta, angular_momentum_ranges
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 1534 | """
struct Parity
Represents the parity of a quantum system, taking two possible values: `even` or `odd`.
The integer values that correspond to `even` and `odd` parity are `+1` and `-1`, respectively.
`Base.convert` can be used to convert integers into `Parity` values.
```jldoctest
julia> convert(Parity, 1)
even
julia> convert(Parity, -1)
odd
```
"""
struct Parity
p::Bool
end
"""
@p_str
A string macro to easily construct [`Parity`](@ref) values.
```jldoctest
julia> p"even"
even
julia> p"odd"
odd
```
"""
macro p_str(ps)
if ps == "even"
Parity(true)
elseif ps == "odd"
Parity(false)
else
throw(ArgumentError("Invalid parity string $(ps)"))
end
end
function Base.convert(::Type{Parity}, i::I) where {I<:Integer}
i == 1 && return p"even"
i == -1 && return p"odd"
throw(ArgumentError("Don't know how to convert $(i) to parity"))
end
Base.convert(::Type{I}, p::Parity) where {I<:Integer} = I(p.p ? 1 : -1)
Base.iseven(p::Parity) = p.p
Base.isodd(p::Parity) = !p.p
Base.isless(a::Parity, b::Parity) = isodd(a) && iseven(b)
Base.:*(a::Parity, b::Parity) = Parity(a == b)
Base.:^(p::Parity, i::I) where {I<:Integer} =
p.p || iseven(i) ? Parity(true) : Parity(false)
Base.:-(p::Parity) = Parity(!p.p)
Base.show(io::IO, p::Parity) =
write(io, iseven(p) ? "even" : "odd")
UnicodeFun.to_superscript(p::Parity) = iseven(p) ? "" : "ᵒ"
"""
parity(object) -> Parity
Returns the parity of `object`.
"""
function parity end
export Parity, @p_str, parity
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 8335 | # * Relativistic orbital
"""
κ2ℓ(κ::Integer) -> Integer
Calculate the `ℓ` quantum number corresponding to the `κ` quantum number.
Note: `κ` and `ℓ` values are always integers.
"""
function κ2ℓ(κ::Integer)
κ == zero(κ) && throw(ArgumentError("κ can not be zero"))
(κ < 0) ? -(κ + 1) : κ
end
"""
κ2j(κ::Integer) -> HalfInteger
Calculate the `j` quantum number corresponding to the `κ` quantum number.
Note: `κ` is always an integer, but `j` will be a half-integer value.
"""
function κ2j(kappa::Integer)
kappa == zero(kappa) && throw(ArgumentError("κ can not be zero"))
half(2*abs(kappa) - 1)
end
"""
ℓj2κ(ℓ::Integer, j::Real) -> Integer
Converts a valid `(ℓ, j)` pair to the corresponding `κ` value.
Note: there is a one-to-one correspondence between valid `(ℓ,j)` pairs and `κ` values
such that for `j = ℓ ± 1/2`, `κ = ∓(j + 1/2)`.
"""
function ℓj2κ(ℓ::Integer, j::Real)
assert_orbital_ℓj(ℓ, j)
(j < ℓ) ? ℓ : -(ℓ + 1)
end
function assert_orbital_ℓj(ℓ::Integer, j::Real)
j = HalfInteger(j)
s = half(1)
(ℓ == j + s) || (ℓ == j - s) ||
throw(ArgumentError("Invalid (ℓ, j) = $(ℓ), $(j) pair, expected j = ℓ ± 1/2."))
return
end
"""
struct RelativisticOrbital{N <: AtomicLevels.MQ} <: AbstractOrbital
Label for an atomic orbital with a principal quantum number `n::N` and well-defined total
angular momentum ``j``. The angular component of the orbital is labelled by the ``(\\ell, j)``
pair, conventionally written as ``\\ell_j`` (e.g. ``p_{3/2}``).
The ``\\ell`` and ``j`` can not be arbitrary, but must satisfy ``j = \\ell \\pm 1/2``.
Internally, the ``\\kappa`` quantum number, which is a unique integer corresponding to every
physical ``(\\ell, j)`` pair, is used to label each allowed pair.
When ``j = \\ell \\pm 1/2``, the corresponding ``\\kappa = \\mp(j + 1/2)``.
When printing and parsing `RelativisticOrbital`s, the notation `nℓ` and `nℓ-` is used (e.g.
`2p` and `2p-`), corresponding to the orbitals with ``j = \\ell + 1/2`` and
``j = \\ell - 1/2``, respectively.
The type parameter `N` has to be such that it can represent a proper principal quantum number
(i.e. a subtype of [`AtomicLevels.MQ`](@ref)).
# Properties
The following properties are part of the public API:
* `.n :: N` -- principal quantum number ``n``
* `.κ :: Int` -- ``\\kappa`` quantum number
* `.ℓ :: Int` -- the orbital angular momentum label ``\\ell``
* `.j :: HalfInteger` -- total angular momentum ``j``
```jldoctest
julia> orb = ro"5g-"
5g-
julia> orb.n
5
julia> orb.j
7/2
julia> orb.ℓ
4
```
# Constructors
RelativisticOrbital(n::Integer, κ::Integer)
RelativisticOrbital(n::Symbol, κ::Integer)
RelativisticOrbital(n, ℓ::Integer, j::Real)
Construct an orbital label with the quantum numbers `n` and `κ`.
If the principal quantum number `n` is an integer, it has to positive and the orbital angular
momentum must satisfy `0 <= ℓ < n`.
Instead of `κ`, valid `ℓ` and `j` values can also be specified instead.
```jldoctest
julia> RelativisticOrbital(1, 0, 1//2)
1s
julia> RelativisticOrbital(2, -1)
2s
julia> RelativisticOrbital(:K, 2, 3//2)
Kd-
```
"""
struct RelativisticOrbital{N<:MQ} <: AbstractOrbital
n::N
κ::Int
function RelativisticOrbital(n::Integer, κ::Integer)
n ≥ 1 || throw(ArgumentError("Invalid principal quantum number $(n)"))
κ == zero(κ) && throw(ArgumentError("κ can not be zero"))
ℓ = κ2ℓ(κ)
0 ≤ ℓ && ℓ < n || throw(ArgumentError("Angular quantum number has to be ∈ [0,$(n-1)] when n = $(n)"))
new{Int}(n, κ)
end
function RelativisticOrbital(n::Symbol, κ::Integer)
κ == zero(κ) && throw(ArgumentError("κ can not be zero"))
new{Symbol}(n, κ)
end
end
RelativisticOrbital(n::MQ, ℓ::Integer, j::Real) = RelativisticOrbital(n, ℓj2κ(ℓ, j))
Base.:(==)(a::RelativisticOrbital, b::RelativisticOrbital) =
a.n == b.n && a.κ == b.κ
Base.hash(o::RelativisticOrbital, h::UInt) = hash(o.n, hash(o.κ, h))
"""
mqtype(::RelativisticOrbital{MQ}) = MQ
Returns the main quantum number type of a [`RelativisticOrbital`](@ref).
"""
mqtype(::RelativisticOrbital{MQ}) where MQ = MQ
Base.propertynames(::RelativisticOrbital) = (fieldnames(RelativisticOrbital)..., :j, :ℓ)
function Base.getproperty(o::RelativisticOrbital, s::Symbol)
s === :j ? κ2j(o.κ) :
s === :ℓ ? κ2ℓ(o.κ) :
getfield(o, s)
end
function Base.show(io::IO, orb::RelativisticOrbital)
write(io, "$(orb.n)$(spectroscopic_label(κ2ℓ(orb.κ)))")
orb.κ > 0 && write(io, "-")
end
function flip_j(orb::RelativisticOrbital)
orb.κ == -1 && return RelativisticOrbital(orb.n, -1) # nothing to flip for s-orbitals
RelativisticOrbital(orb.n, orb.κ < 0 ? abs(orb.κ) - 1 : -(orb.κ + 1))
end
degeneracy(orb::RelativisticOrbital{N}) where N = 2*abs(orb.κ) # 2j + 1 = 2|κ|
function Base.isless(a::RelativisticOrbital, b::RelativisticOrbital)
nisless(a.n, b.n) && return true
aℓ, bℓ = κ2ℓ(a.κ), κ2ℓ(b.κ)
a.n == b.n && aℓ < bℓ && return true
a.n == b.n && aℓ == bℓ && abs(a.κ) < abs(b.κ) && return true
false
end
parity(orb::RelativisticOrbital) = p"odd"^κ2ℓ(orb.κ)
symmetry(orb::RelativisticOrbital) = orb.κ
isbound(::RelativisticOrbital{Int}) = true
isbound(::RelativisticOrbital{Symbol}) = false
"""
angular_momenta(orbital)
Returns the angular momentum quantum numbers of `orbital`.
# Examples
```jldoctest
julia> angular_momenta(ro"2p-")
(1/2,)
julia> angular_momenta(ro"3d")
(5/2,)
```
"""
angular_momenta(orbital::RelativisticOrbital) = (orbital.j,)
angular_momentum_labels(::RelativisticOrbital) = ("j",)
# ** Saving/loading
Base.write(io::IO, o::RelativisticOrbital{Int}) = write(io, 'i', o.n, o.κ)
Base.write(io::IO, o::RelativisticOrbital{Symbol}) = write(io, 's', sizeof(o.n), o.n, o.κ)
function Base.read(io::IO, ::Type{RelativisticOrbital})
kind = read(io, Char)
n = if kind == 'i'
read(io, Int)
elseif kind == 's'
b = Vector{UInt8}(undef, read(io, Int))
readbytes!(io, b)
Symbol(b)
else
error("Unknown RelativisticOrbital type $(kind)")
end
κ = read(io, Int)
RelativisticOrbital(n, κ)
end
# * Orbital construction from strings
function Base.parse(::Type{<:RelativisticOrbital}, orb_str)
m = match(r"^([0-9]+|.)([a-z]|\[[0-9]+\])([-]{0,1})$", orb_str)
isnothing(m) && throw(ArgumentError("Invalid orbital string: $(orb_str)"))
n = parse_orbital_n(m)
ℓ = parse_orbital_ℓ(m)
j = ℓ + (m[3] == "-" ? -1 : 1)*1//2
RelativisticOrbital(n, ℓ, j)
end
"""
@ro_str -> RelativisticOrbital
A string macro to construct an [`RelativisticOrbital`](@ref) from the canonical string
representation.
```jldoctest
julia> ro"1s"
1s
julia> ro"2p-"
2p-
julia> ro"Kf-"
Kf-
```
"""
macro ro_str(orb_str)
parse(RelativisticOrbital, orb_str)
end
"""
@ros_str -> Vector{RelativisticOrbital}
Can be used to easily construct a list of [`RelativisticOrbital`](@ref)s.
# Examples
```jldoctest
julia> ros"2[s-p] 3[p] k[0-d]"
10-element Vector{RelativisticOrbital}:
2s
2p-
2p
3p-
3p
ks
kp-
kp
kd-
kd
```
"""
macro ros_str(orbs_str)
orbitals_from_string(RelativisticOrbital, orbs_str)
end
"""
str2κ(s) -> Int
A function to convert the canonical string representation of a ``\\ell_j`` angular label
(i.e. `ℓ-` or `ℓ`) into the corresponding ``\\kappa`` quantum number.
```jldoctest
julia> str2κ.(["s", "p-", "p"])
3-element Vector{Int64}:
-1
1
-2
```
"""
function str2κ(κ_str)
m = match(r"^([a-z]|\[[0-9]+\])([-]{0,1})$", κ_str)
m === nothing && throw(ArgumentError("Invalid κ string: $(κ_str)"))
ℓ = parse_orbital_ℓ(m, 1)
j = ℓ + half(m[2] == "-" ? -1 : 1)
ℓj2κ(ℓ, j)
end
"""
@κ_str -> Int
A string macro to convert the canonical string representation of a ``\\ell_j`` angular label
(i.e. `ℓ-` or `ℓ`) into the corresponding ``\\kappa`` quantum number.
```jldoctest
julia> κ"s", κ"p-", κ"p"
(-1, 1, -2)
```
"""
macro κ_str(κ_str)
str2κ(κ_str)
end
"""
nonrelorbital(o)
Return the non-relativistic orbital corresponding to `o`.
# Examples
```jldoctest
julia> nonrelorbital(o"2p")
2p
julia> nonrelorbital(ro"2p-")
2p
```
"""
nonrelorbital(o::Orbital) = o
nonrelorbital(o::RelativisticOrbital) = Orbital(o.n, o.ℓ)
export RelativisticOrbital, @ro_str, @ros_str, @κ_str, nonrelorbital, str2κ, κ2ℓ, κ2j, ℓj2κ
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 7312 | parse_projection(m::Number) = m
function parse_projection(m::AbstractString)
n = tryparse(Float64, m)
isnothing(n) || return n
if m == "α"
half(1)
elseif m == "β"
-half(1)
elseif occursin('/', m)
n,d = split(m, "/")
parse(Int,n)//parse(Int,d)
else
throw(ArgumentError("Don't know how to parse projection quantum number $(m)"))
end
end
"""
struct SpinOrbital{O<:Orbital} <: AbstractOrbital
Spin orbitals are fully characterized orbitals, i.e. the projections
of all angular momenta are specified.
"""
struct SpinOrbital{O<:AbstractOrbital,M<:Tuple} <: AbstractOrbital
orb::O
m::M
function SpinOrbital(orb::O, m::Tuple) where O
O <: SpinOrbital &&
throw(ArgumentError("Cannot create SpinOrbital from $O"))
am = angular_momentum_ranges(orb)
aml = angular_momentum_labels(orb)
nam = length(am)
nm = length(m)
nm == nam ||
throw(ArgumentError("$(nam) projection quantum numbers required, got $(nm)"))
newm = ()
for (mi,ar,l) in zip(m,am,aml)
mm = parse_projection(mi)
mm ∈ ar ||
throw(ArgumentError("Projection $mi of quantum number $l not in valid set $ar"))
newm = (newm..., convert(eltype(ar), mm))
end
new{O,typeof(newm)}(orb, newm)
end
end
SpinOrbital(orb, m...) = SpinOrbital(orb, m)
Base.:(==)(a::SpinOrbital, b::SpinOrbital) =
a.orb == b.orb && a.m == b.m
Base.hash(o::SpinOrbital, h::UInt) = hash(o.orb, hash(o.m, h))
function Base.show(io::IO, so::SpinOrbital)
show(io, so.orb)
projections = map(((l,m),) -> "m_$l = $m", zip(angular_momentum_labels(so.orb),so.m))
write(io, "(", join(projections, ", "), ")")
end
function Base.show(io::IO, so::SpinOrbital{<:Orbital})
show(io, so.orb)
mℓ,ms = so.m
write(io, to_subscript(mℓ))
write(io, ms == half(1) ? "α" : "β")
end
function Base.show(io::IO, so::SpinOrbital{<:RelativisticOrbital})
show(io, so.orb)
write(io, "($(so.m[1]))")
end
degeneracy(::SpinOrbital) = 1
# We cannot order spin-orbitals of differing orbital types
Base.isless(a::SpinOrbital{O,M}, b::SpinOrbital{O,N}) where {O<:AbstractOrbital,M,N} = false
function Base.isless(a::SpinOrbital{<:O,M}, b::SpinOrbital{<:O,M}) where {O,M}
a.orb < b.orb && return true
a.orb > b.orb && return false
for (ma,mb) in zip(a.m,b.m)
ma < mb && return true
ma > mb && return false
end
# All projections were equal
return false
end
function Base.isless(a::SpinOrbital{<:Orbital}, b::SpinOrbital{<:Orbital})
a.orb < b.orb && return true
a.orb > b.orb && return false
a.m[1] < b.m[1] ||
a.m[1] == b.m[1] && a.m[2] > b.m[2] # We prefer α to appear before β
end
parity(so::SpinOrbital) = parity(so.orb)
symmetry(so::SpinOrbital) = (symmetry(so.orb), so.m...)
isbound(so::SpinOrbital) = isbound(so.orb)
Base.promote_type(::Type{SO}, ::Type{SO}) where {SO<:SpinOrbital} = SO
Base.promote_type(::Type{SpinOrbital{O}}, ::Type{SpinOrbital}) where O = SpinOrbital
Base.promote_type(::Type{SpinOrbital}, ::Type{SpinOrbital{O}}) where O = SpinOrbital
Base.promote_type(::Type{SpinOrbital{A,M}}, ::Type{SpinOrbital{B,M}}) where {A,B,M} =
SpinOrbital{<:promote_type(A,B),M}
# ** Saving/loading
Base.write(io::IO, o::SpinOrbital{<:Orbital}) = write(io, 'n', o.orb, o.m[1], o.m[2].twice)
Base.write(io::IO, o::SpinOrbital{<:RelativisticOrbital}) = write(io, 'r', o.orb, o.m[1].twice)
function Base.read(io::IO, ::Type{SpinOrbital})
kind = read(io, Char)
if kind == 'n'
orb = read(io, Orbital)
mℓ = read(io, Int)
ms = half(read(io, Int))
SpinOrbital(orb, (mℓ, ms))
elseif kind == 'r'
orb = read(io, RelativisticOrbital)
mj = half(read(io, Int))
SpinOrbital(orb, mj)
else
error("Unknown SpinOrbital type $(kind)")
end
end
# * Orbital construction from strings
function Base.parse(::Type{O}, orb_str) where {OO<:AbstractOrbital,O<:SpinOrbital{OO}}
m = match(r"^(.*)\((.*)\)$", orb_str)
# For non-relativistic spin-orbitals, we also support specifying
# the m_ℓ quantum number using Unicode subscripts and the spin
# label using α/β
m2 = match(r"^(.*?)([₋]{0,1}[₁₂₃₄₅₆₇₈₉₀]+)([αβ])$", orb_str)
if !isnothing(m)
o = parse(OO, m[1])
SpinOrbital(o, (split(m[2], ",")...,))
elseif !isnothing(m2) && OO <: Orbital
o = parse(OO, m2[1])
SpinOrbital(o, from_subscript(m2[2]), m2[3])
else
throw(ArgumentError("Invalid spin-orbital string: $(orb_str)"))
end
end
"""
@so_str -> SpinOrbital{<:Orbital}
String macro to quickly construct a non-relativistic spin-orbital; it
is similar to [`@o_str`](@ref), with the added specification of
the magnetic quantum numbers ``m_ℓ`` and ``m_s``.
# Examples
```jldoctest
julia> so"1s(0,α)"
1s₀α
julia> so"kd(2,β)"
kd₂β
julia> so"2p(1,0.5)"
2p₁α
julia> so"2p(1,-1/2)"
2p₁β
```
"""
macro so_str(orb_str)
parse(SpinOrbital{Orbital}, orb_str)
end
"""
@rso_str -> SpinOrbital{<:RelativisticOrbital}
String macro to quickly construct a relativistic spin-orbital; it
is similar to [`@o_str`](@ref), with the added specification of
the magnetic quantum number ``m_j``.
# Examples
```jldoctest
julia> rso"2p-(1/2)"
2p-(1/2)
julia> rso"2p(-3/2)"
2p(-3/2)
julia> rso"3d(2.5)"
3d(5/2)
```
"""
macro rso_str(orb_str)
parse(SpinOrbital{RelativisticOrbital}, orb_str)
end
"""
spin_orbitals(orbital)
Generate all permissible spin-orbitals for a given `orbital`, e.g. 2p
-> 2p ⊗ mℓ = {-1,0,1} ⊗ ms = {α,β}
# Examples
```jldoctest
julia> spin_orbitals(o"2p")
6-element Vector{SpinOrbital{Orbital{Int64}, Tuple{Int64, HalfIntegers.Half{Int64}}}}:
2p₋₁α
2p₋₁β
2p₀α
2p₀β
2p₁α
2p₁β
julia> spin_orbitals(ro"2p-")
2-element Vector{SpinOrbital{RelativisticOrbital{Int64}, Tuple{HalfIntegers.Half{Int64}}}}:
2p-(-1/2)
2p-(1/2)
julia> spin_orbitals(ro"2p")
4-element Vector{SpinOrbital{RelativisticOrbital{Int64}, Tuple{HalfIntegers.Half{Int64}}}}:
2p(-3/2)
2p(-1/2)
2p(1/2)
2p(3/2)
```
"""
function spin_orbitals(orb::O) where {O<:AbstractOrbital}
map(reduce(vcat, Iterators.product(angular_momentum_ranges(orb)...))) do m
SpinOrbital(orb, m...)
end |> sort
end
"""
@sos_str -> Vector{<:SpinOrbital{<:Orbital}}
Can be used to easily construct a list of [`SpinOrbital`](@ref)s.
# Examples
```jldoctest
julia> sos"3[s-p]"
8-element Vector{SpinOrbital{Orbital{Int64}, Tuple{Int64, HalfIntegers.Half{Int64}}}}:
3s₀α
3s₀β
3p₋₁α
3p₋₁β
3p₀α
3p₀β
3p₁α
3p₁β
```
"""
macro sos_str(orbs_str)
reduce(vcat, map(spin_orbitals, orbitals_from_string(Orbital, orbs_str)))
end
"""
@rsos_str -> Vector{<:SpinOrbital{<:RelativisticOrbital}}
Can be used to easily construct a list of [`SpinOrbital`](@ref)s.
# Examples
```jldoctest
julia> rsos"3[s-p]"
8-element Vector{SpinOrbital{RelativisticOrbital{Int64}, Tuple{HalfIntegers.Half{Int64}}}}:
3s(-1/2)
3s(1/2)
3p-(-1/2)
3p-(1/2)
3p(-3/2)
3p(-1/2)
3p(1/2)
3p(3/2)
```
"""
macro rsos_str(orbs_str)
reduce(vcat, map(spin_orbitals, orbitals_from_string(RelativisticOrbital, orbs_str)))
end
export SpinOrbital, spin_orbitals, @so_str, @rso_str, @sos_str, @rsos_str
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 7136 | # * Term symbols
"""
struct Term
Represents a term symbol with specific parity in LS-coupling.
Only the ``L``, ``S`` and parity values of the symbol ``{}^{2S+1}L_{J}`` are specified. To
specify a _level_, the ``J`` value would have to be specified separately. The valid ``J``
values corresponding to given ``L`` and ``S`` fall in the following range:
```math
|L - S| \\leq J \\leq L+S
```
# Constructors
Term(L::Real, S::Real, parity::Union{Parity,Integer})
Constructs a `Term` object with the given ``L`` and ``S`` quantum numbers and parity. `L`
and `S` both have to be convertible to `HalfInteger`s and `parity` must be of type
[`Parity`](@ref) or `±1`.
See also: [`@T_str`](@ref)
# Properties
To access the quantum number values, you can use the `.L`, `.S` and `.parity` properties to
access the ``L``, ``S`` and parity values (represented with [`Parity`](@ref)), respectively.
E.g.:
```jldoctest
julia> t = Term(2, 1//2, p"odd")
²Dᵒ
julia> t.L, t.S, t.parity
(2, 1/2, odd)
```
"""
struct Term
L::HalfInt
S::HalfInt
parity::Parity
function Term(L::HalfInteger, S::HalfInteger, parity::Parity)
L >= 0 || throw(DomainError(L, "Term symbol can not have negative L"))
S >= 0 || throw(DomainError(S, "Term symbol can not have negative S"))
new(L, S, parity)
end
end
Term(L::Real, S::Real, parity::Union{Parity,Integer}) =
Term(convert(HalfInteger, L), convert(HalfInteger, S), convert(Parity, parity))
"""
parse(::Type{Term}, ::AbstractString) -> Term
Parses a string into a [`Term`](@ref) object.
```jldoctest
julia> parse(Term, "4Po")
⁴Pᵒ
julia> parse(Term, "⁴Pᵒ")
⁴Pᵒ
```
See also: [`@T_str`](@ref)
"""
function Base.parse(::Type{Term}, s::AbstractString)
m = match(r"([0-9]+)([A-Z]|\[[0-9/]+\])([oe ]{0,1})", s)
m2 = match(r"([¹²³⁴⁵⁶⁷⁸⁹⁰]+)([A-Z]|\[[0-9/]+\])([ᵒᵉ]{0,1})", s)
Sstr,Lstr,Pstr = if !isnothing(m)
m[1],m[2],m[3]
elseif !isnothing(m2)
from_superscript(m2[1]),m2[2],m2[3]
else
throw(ArgumentError("Invalid term string $s"))
end
L = lowercase(Lstr)
L = if L[1] == '['
L = strip(L, ['[',']'])
if occursin("/", L)
Ls = split(L, "/")
length(Ls) == 2 && length(Ls[1]) > 0 && length(Ls[2]) > 0 ||
throw(ArgumentError("Invalid term string $(s)"))
Rational(parse(Int, Ls[1]),parse(Int, Ls[2]))
else
parse(Int, L)
end
else
findfirst(L, spectroscopic)[1]-1
end
denominator(L) ∈ [1,2] || throw(ArgumentError("L must be integer or half-integer"))
S = (parse(Int, Sstr) - 1)//2
Term(L, S, Pstr == "o" || Pstr == "ᵒ" ? p"odd" : p"even")
end
"""
@T_str -> Term
Constructs a [`Term`](@ref) object out of its canonical string representation.
```jldoctest
julia> T"1S"
¹S
julia> T"4Po"
⁴Pᵒ
julia> T"⁴Pᵒ"
⁴Pᵒ
julia> T"2[3/2]o" # jK coupling, common in noble gases
²[3/2]ᵒ
```
"""
macro T_str(s::AbstractString)
parse(Term, s)
end
Base.zero(::Type{Term}) = T"1S"
"""
multiplicity(t::Term)
Returns the spin multiplicity of the [`Term`](@ref) `t`, i.e. the
number of possible values of ``J`` for a given value of ``L`` and
``S``.
# Examples
```jldoctest
julia> multiplicity(T"¹S")
1
julia> multiplicity(T"²S")
2
julia> multiplicity(T"³P")
3
```
"""
multiplicity(t::Term) = convert(Int, 2t.S + 1)
"""
weight(t::Term)
Returns the statistical weight of the [`Term`](@ref) `t`, i.e. the
number of possible microstates: ``(2S+1)(2L+1)``.
# Examples
```jldoctest
julia> weight(T"¹S")
1
julia> weight(T"²S")
2
julia> weight(T"³P")
9
```
"""
weight(t::Term) = (2t.L + 1) * multiplicity(t)
import Base.==
==(t1::Term, t2::Term) = ((t1.L == t2.L) && (t1.S == t2.S) && (t1.parity == t2.parity))
import Base.<
<(t1::Term, t2::Term) = ((t1.S < t2.S) || (t1.S == t2.S) && (t1.L < t2.L)
|| (t1.S == t2.S) && (t1.L == t2.L) && (t1.parity < t2.parity))
import Base.isless
isless(t1::Term, t2::Term) = (t1 < t2)
Base.hash(t::Term) = hash((t.L,t.S,t.parity))
include("xu2006.jl")
"""
xu_terms(ℓ, w, p)
Return all term symbols for the orbital `ℓʷ` and parity `p`; the term
multiplicity is computed using [`AtomicLevels.Xu.X`](@ref).
# Examples
```jldoctest
julia> AtomicLevels.xu_terms(3, 3, parity(c"3d3"))
17-element Vector{Term}:
²P
²D
²D
²F
²F
²G
²G
²H
²H
²I
²K
²L
⁴S
⁴D
⁴F
⁴G
⁴I
```
"""
function xu_terms(ℓ::Int, w::Int, p::Parity)
ts = map(((w//2 - floor(Int, w//2)):w//2)) do S
S′ = 2S |> Int
map(L -> repeat([Term(L,S,p)], Xu.X(w, ℓ, S′, L)), 0:w*ℓ)
end
vcat(vcat(ts...)...)
end
"""
terms(orb::Orbital, w::Int=one(Int))
Returns a list of valid LS term symbols for the orbital `orb` with `w`
occupancy.
# Examples
```jldoctest
julia> terms(o"3d", 3)
8-element Vector{Term}:
²P
²D
²D
²F
²G
²H
⁴P
⁴F
```
"""
function terms(orb::Orbital, w::Int=one(Int))
ℓ = orb.ℓ
g = degeneracy(orb)
w > g && throw(DomainError(w, "Invalid occupancy $w for $orb with degeneracy $g"))
# For shells that are more than half-filled, we instead consider
# the equivalent problem of g-w coupled holes.
(w > g/2 && w != g) && (w = g - w)
p = parity(orb)^w
if w == 1
[Term(ℓ,1//2,p)] # Single electron
elseif ℓ == 0 && w == 2 || w == degeneracy(orb) || w == 0
[Term(0,0,p"even")] # Filled ℓ shell
else
xu_terms(ℓ, w, p) # All other cases
end
end
"""
terms(config)
Generate all final ``LS`` terms for `config`.
# Examples
```jldoctest
julia> terms(c"1s")
1-element Vector{Term}:
²S
julia> terms(c"1s 2p")
2-element Vector{Term}:
¹Pᵒ
³Pᵒ
julia> terms(c"[Ne] 3d3")
7-element Vector{Term}:
²P
²D
²F
²G
²H
⁴P
⁴F
```
"""
function terms(config::Configuration{O}) where {O<:AbstractOrbital}
ts = map(config) do (orb,occ,state)
terms(orb,occ)
end
final_terms(ts)
end
"""
count_terms(orbital, occupation, term)
Count how many times `term` occurs among the valid terms of `orbital^occupation`.
```jldoctest
julia> count_terms(o"1s", 2, T"1S")
1
julia> count_terms(ro"6h", 4, 8)
4
```
"""
function count_terms end
function count_terms(orb::Orbital, occ::Int, term::Term)
ℓ = orb.ℓ
g = degeneracy(orb)
occ > g && throw(ArgumentError("Invalid occupancy $occ for $orb with degeneracy $g"))
(occ > g/2 && occ != g) && (occ = g - occ)
p = parity(orb)^occ
if occ == 1
term == Term(ℓ,1//2,p) ? 1 : 0
elseif ℓ == 0 && occ == 2 || occ == degeneracy(orb) || occ == 0
term == Term(0,0,p"even") ? 1 : 0
else
S′ = convert(Int, 2term.S)
Xu.X(occ, orb.ℓ, S′, convert(Int, term.L))
end
end
function write_L(io::IO, term::Term)
if isinteger(term.L)
write(io, uppercase(spectroscopic_label(convert(Int, term.L))))
else
write(io, "[$(numerator(term.L))/$(denominator(term.L))]")
end
end
function Base.show(io::IO, term::Term)
write(io, to_superscript(multiplicity(term)))
write_L(io, term)
write(io, to_superscript(term.parity))
end
export Term, @T_str, multiplicity, weight, terms, count_terms
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 829 | function from_subscript(s)
inverse_subscript_map = Dict('₋' => '-', '₊' => '+', '₀' => '0',
'₁' => '1', '₂' => '2', '₃' => '3',
'₄' => '4', '₅' => '5', '₆' => '6',
'₇' => '7', '₈' => '8', '₉' => '9',
'₀' => '0')
map(Base.Fix1(getindex, inverse_subscript_map), s)
end
function from_superscript(s)
inverse_superscript_map = Dict('⁻' => '-', '⁺' => '+', '⁰' => '0',
'¹' => '1', '²' => '2', '³' => '3',
'⁴' => '4', '⁵' => '5', '⁶' => '6',
'⁷' => '7', '⁸' => '8', '⁹' => '9',
'⁰' => '0')
map(Base.Fix1(getindex, inverse_superscript_map), s)
end
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 2829 | module Xu
@doc raw"""
f(n,ℓ)
```math
f(n,\ell)=\begin{cases}
\displaystyle\sum_{m=0}^n \ell-m, & n\geq0\\
0, & n<0
\end{cases}
```
"""
f(n::I,ℓ::I) where {I<:Integer} = n >= 0 ? sum(ℓ-m for m in 0:n) : 0
@doc raw"""
``A(N,\ell,\ell_b,M_S',M_L)`` obeys four different cases:
## Case 1
``M_S'=1``, ``|M_L|\leq\ell``, and ``N=1``:
```math
A(1,\ell,\ell_b,1,M_L) = 1
```
## Case 2
``\{M_S'\}={2-N,4-N,...,N-2}``, ``|M_L| \leq f\left(\frac{N-M_S'}{2}-1\right)+f\left(\frac{N+M_S'}{2}-1\right)``, and ``1<N\leq 2\ell+1``:
```math
\begin{aligned}
A(N,\ell,\ell,M_S',M_L) =
\sum_{M_{L-}\max\left\{-f\left(\frac{N-M_S'}{2}-1\right),M_L-f\left(\frac{N+M_S'}{2}-1\right)\right\}}
^{\min\left\{f\left(\frac{N-M_S'}{2}-1\right),M_L+f\left(\frac{N+M_S'}{2}-1\right)\right\}}
\Bigg\{A\left(\frac{N-M_S'}{2},\ell,\ell,\frac{N-M_S'}{2},M_{L-}\right)\\
\times
A\left(\frac{N+M_S'}{2},\ell,\ell,\frac{N+M_S'}{2},M_L-M_{L-}\right)\Bigg\}
\end{aligned}
```
## Case 3
``M_S'=N``, ``|M_L|\leq f(N-1)``, and ``1<N\leq 2\ell+1``:
```math
A(N,\ell,\ell_b,N,M_L) =
\sum_{M_{L_I} = \left\lfloor{\frac{M_L-1}{N}+\frac{N+1}{2}}\right\rfloor}
^{\min\{\ell_b,M_L+f(N-2)\}}
A(N-1,\ell,M_{L_I}-1,N-1,M_L-M_{L_I})
```
## Case 4
else:
```math
A(N,\ell,\ell_b,M_S',M_L) = 0
```
"""
function A(N::I, ℓ::I, ℓ_b::I, M_S′::I, M_L::I) where {I<:Integer}
if M_S′ == 1 && abs(M_L) <= ℓ && N == 1
1 # Case 1
elseif 1 < N && N <= 2ℓ + 1
# Cases 2 and 3
# N ± M_S' is always an even number
a = (N-M_S′) >> 1
b = (N+M_S′) >> 1
fa = f(a-1,ℓ)
fb = f(b-1,ℓ)
if M_S′ in 2-N:2:N-2 && abs(M_L) <= fa + fb
mapreduce(+, max(-fa, M_L - fb):min(fa, M_L + fb)) do M_Lm
A(a,ℓ,ℓ,a,M_Lm)*A(b,ℓ,ℓ,b,M_L-M_Lm)
end
elseif M_S′ == N && abs(M_L) <= f(N-1,ℓ)
mapreduce(+, floor(Int, (M_L-1)//N + (N+1)//2):min(ℓ_b,M_L + f(N-2,ℓ))) do M_LI
A(N - 1, ℓ, M_LI - 1, N - 1, M_L-M_LI)
end
else
0 # Case 4
end
else
0 # Case 4
end
end
@doc raw"""
X(N, ℓ, S′, L)
Calculate the multiplicity of the term ``^{2S+1}L`` (``S'=2S``) for
the orbital `ℓ` with occupancy `N`, according to the formula:
```math
\begin{aligned}
X(N, \ell, S', L) =&+ A(N, \ell,\ell,S',L)\\
&- A(N, \ell,\ell,S',L+1)\\
&+A(N, \ell,\ell,S'+2,L+1)\\
&- A(N, \ell,\ell,S'+2,L)
\end{aligned}
```
Note that this is not correct for filled (empty) shells, for which the
only possible term trivially is `¹S`.
# Examples
```jldoctest
julia> AtomicLevels.Xu.X(1, 0, 1, 0) # Multiplicity of ²S term for s¹
1
julia> AtomicLevels.Xu.X(3, 3, 1, 3) # Multiplicity of ²D term for d³
2
```
"""
X(N::I, ℓ::I, S′::I, L::I) where {I<:Integer} = A(N,ℓ,ℓ,S′,L) - A(N,ℓ,ℓ,S′,L+1) + A(N,ℓ,ℓ,S′+2,L+1) - A(N,ℓ,ℓ,S′+2,L)
end
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 1047 | using AtomicLevels
function print_block(fun::Function,out=stdout)
io = IOBuffer()
fun(io)
data = split(String(take!(io)), "\n")
if length(data) == 1
println(out, "[ $(data[1])")
elseif length(data) > 1
for (p,dl) in zip(vcat("⎡", repeat(["⎢"], length(data)-2), "⎣"),data)
println(out, "$(p) $(dl)")
end
end
end
function print_states(cfgs::Vector{<:Configuration})
foreach(cfgs) do cfg
print_block() do io
println(io, cfg)
foreach(states.(csfs(cfg))) do ss
print_block(io) do io
println(io, last(first(first(ss)).level.csf.terms))
foreach(ss) do s
print_block(io) do io
println(io)
foreach(sss -> println(io, sss), s)
end
end
end
end
end
end
end
print_states(cfgs::Configuration...) = print_states([cfgs...])
export print_states
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 28305 | @testset "Configurations" begin
@testset "Construction" begin
config = Configuration([o"1s", o"2s", o"2p", o"3s", o"3p"], [2,2,6,2,6], [:closed])
rconfig = Configuration([ro"1s", ro"2s", ro"2p", ro"3s", ro"3p"], [2,2,6,2,6], [:closed], sorted=true)
@test orbitals(config) ==
[o"1s", o"2s", o"2p", o"3s", o"3p"]
@test orbitals(rconfig) ==
[ro"1s", ro"2s", ro"2p-", ro"2p", ro"3s", ro"3p-", ro"3p"]
@test config.occupancy == [2, 2, 6, 2, 6]
@test rconfig.occupancy == [2, 2, 2, 4, 2, 2, 4]
@test config.states == [:closed, :open, :open, :open, :open]
@test rconfig.states == [:closed, :open, :open, :open, :open, :open, :open]
@test c"1s2c 2s2 2p6 3s2 3p6" == config
@test c"1s2c.2s2.2p6.3s2.3p6" == config
@test c"[He]c 2s2 2p6 3s2 3p6" == config
# We sort the configurations since the non-relativistic
# convenience labels (2p) &c expand to two orbitals each, one
# of which is appended to the orbitals list.
@test rc"1s2c 2s2 2p6 3s2 3p6"s == rconfig
@test rc"1s2c.2s2.2p6.3s2.3p6"s == rconfig
@test rc"[He]c 2s2 2p6 3s2 3p6"s == rconfig
@test c"[Kr]c 5s2" == Configuration([o"1s", o"2s", o"2p", o"3s", o"3p", o"3d", o"4s", o"4p", o"5s"],
[2,2,6,2,6,10,2,6,2],
[:closed,:closed,:closed,:closed,:closed,:closed,:closed,:closed,:open])
@test length(c"") == 0
@test length(rc"") == 0
@test rc"1s ld-2 kp6" == Configuration([ro"1s", ro"ld-", ro"kp", ro"kp-"], [1, 2, 4, 2])
@test rc"1s ld-2 kp6"s == Configuration([ro"1s", ro"kp-", ro"kp", ro"ld-"], [1, 2, 4, 2])
@test_throws ArgumentError parse(Configuration{Orbital}, "1sc")
@test_throws ArgumentError parse(Configuration{Orbital}, "1s 1s")
@test_throws ArgumentError parse(Configuration{Orbital}, "[He]c 1s")
@test_throws ArgumentError parse(Configuration{Orbital}, "1s3")
@test_throws ArgumentError parse(Configuration{RelativisticOrbital}, "1s3")
@test_throws ArgumentError parse(Configuration{Orbital}, "1s2 2p-2")
@testset "Unicode occupations/states" begin
for c in [c"1s2 2p6", c"[He]c 2p6", c"[He]i 2p6", c"1s 3d4", c"[Xe]*"]
@test parse(Configuration{Orbital}, string(c)) == c
end
for c in [rc"1s2 2p6", rc"1s 2p- 2p3", rc"[He]c 2p6", rc"[He]i 2p6", rc"1s 3d4", rc"[Xe]*"]
@test parse(Configuration{RelativisticOrbital}, string(c)) == c
end
end
@testset "Spin-configurations" begin
a = sc""
@test a isa SpinConfiguration{<:SpinOrbital{<:Orbital}}
@test isempty(a)
b = rsc""
@test b isa SpinConfiguration{<:SpinOrbital{<:RelativisticOrbital}}
@test isempty(b)
@test sc"1s(0,α) 2p(1,β)" == Configuration([so"1s(0,α)", so"2p(1,β)"], ones(Int, 2))
@test sc"[He]c 2p(1,β)" == Configuration([so"1s(0,α)", so"1s(0,β)", so"2p(1,β)"], ones(Int, 3), [:closed, :closed, :open])
@test rsc"[He]c 2p(-1/2)" == Configuration([rso"1s(-1/2)", rso"1s(1/2)", rso"2p(-1/2)"], ones(Int, 3), [:closed, :closed, :open])
# Test parsing of Unicode m_ℓ quantum numbers
@test sc"1s₀α 2p₁β" == sc"1s(0,α) 2p(1,β)"
c = rsc"[Xe]*"
@test parse(SpinConfiguration{SpinOrbital{RelativisticOrbital}}, string(c)) == c
end
@test fill(c"1s 2s 2p") == c"1s2 2s2 2p6"
@test fill(rc"1s 2s 2p- 2p") == rc"1s2 2s2 2p-2 2p4"
@test close(c"1s2") == c"1s2c"
let c = c"1s2c 2s 2p"
@test fill!(c) == c"1s2c 2s2 2p6"
@test c == c"1s2c 2s2 2p6"
close!(c)
@test sort(c) == c"[Ne]"s
end
let c = rc"1s2c 2s 2p- 2p2"
@test fill!(c) == rc"1s2c 2s2 2p-2 2p4"
@test c == rc"1s2c 2s2 2p-2 2p4"
close!(c)
@test sort(c) == rc"[Ne]"s
end
@test_throws ArgumentError close(c"1s")
@test_throws ArgumentError close(rc"1s2 2s")
@test_throws ArgumentError close!(c"1s")
@test_throws ArgumentError close!(rc"1s2 2s")
# Tests for #19
@test c"10s2" == Configuration([o"10s"], [2], [:open])
@test c"9999l32" == Configuration([o"9999l"], [32], [:open])
@testset "Hashing" begin
let c1a = c"1s 2s", c1b = c"1s 2s", c2 = c"1s 2p"
@test c1a == c1b
@test isequal(c1a, c1b)
@test c1a != c2
@test !isequal(c1a, c2)
@test hash(c1a) == hash(c1a)
@test hash(c1a) == hash(c1b)
# If hashing is not properly implemented, unique fails to detect all equal pairs
@test unique([c1a, c1b]) == [c1a]
@test unique([c1a, c1a]) == [c1a]
@test unique([c1a, c1a, c1b]) == [c1a]
@test length(unique([c1a, c2, c1a, c1b, c2])) == 2
end
end
@testset "Serialization" begin
cs = [sc"1s(0,α) 2p(1,β)", sc"[He]c 2p(1,β)", rsc"[He]c 2p(-1/2)", sc"1s₀α 2p₁β", rsc"[Xe]*",
c"1s2 2p6", c"[He]c 2p6", c"[He]i 2p6", c"1s 3d4", c"[Xe]*",
rc"1s2 2p6", rc"1s 2p- 2p3", rc"[He]c 2p6", rc"[He]i 2p6", rc"1s 3d4", rc"[Xe]*"]
ncs = let io = IOBuffer()
foreach(Base.Fix1(write, io), cs)
seekstart(io)
[read(io, Configuration)
for i in eachindex(cs)]
end
@test cs == ncs
end
end
@testset "Number of electrons" begin
@test num_electrons(c"1s") == 1
@test num_electrons(c"[He]") == 2
@test num_electrons(rc"[He]") == 2
@test num_electrons(c"[Xe]") == 54
@test num_electrons(rc"[Xe]") == 54
@test num_electrons(peel(c"[Kr]c 5s2 5p6")) == 8
@test num_electrons(c"[Xe]", o"1s") == 2
@test num_electrons(rc"[Xe]", ro"1s") == 2
@test num_electrons(c"[Ne] 3s 3p", o"3p") == 1
@test num_electrons(rc"[Kr] Af-2 Bf5", ro"Bf") == 5
@test num_electrons(c"[Kr]", ro"5s") == 0
@test num_electrons(rc"[Rn]", ro"As") == 0
end
@testset "Empty configurations" begin
ec = empty(c"1s2")
rec = empty(rc"1s2")
@test num_electrons(ec) == 0
@test num_electrons(rec) == 0
end
@testset "Access subsets" begin
@test core(c"[Kr]c 5s2") == c"[Kr]c"
@test peel(c"[Kr]c 5s2") == c"5s2"
@test core(c"[Kr]c 5s2c 5p6") == c"[Kr]c 5s2c"
@test peel(c"[Kr]c 5s2c 5p6") == c"5p6"
@test active(c"[Kr]c 5s2") == c"5s2"
@test inactive(c"[Kr]c 5s2i") == c"5s2i"
@test inactive(c"[Kr]c 5s2") == c""
@test bound(c"[Kr] 5s2 5p5 ks") == c"[Kr] 5s2 5p5"
@test continuum(c"[Kr] 5s2 5p5 ks") == c"ks"
@test bound(c"[Kr] 5s2 5p4 ks ld") == c"[Kr] 5s2 5p4"
@test continuum(c"[Kr] 5s2 5p4 ks ld") == c"ks ld"
@test bound(rc"[Kr] 5s2 5p-2 5p3 ks") == rc"[Kr] 5s2 5p-2 5p3"
@test continuum(rc"[Kr] 5s2 5p-2 5p3 ks") == rc"ks"
@test bound(rc"[Kr] 5s2 5p-2 5p2 ks ld") == rc"[Kr] 5s2 5p-2 5p2"
@test continuum(rc"[Kr] 5s2 5p-2 5p2 ks ld") == rc"ks ld"
let c = c"[Ne]"
@test c[1] == (o"1s",2,:closed)
@test c[1:2] == c"1s2c 2s2c"
@test c[end-1:end] == c"2s2c 2p6c"
@test c[begin+1:end-1] == c"2s2c"
@test eachindex(c) === Base.OneTo(3)
@test collect(c) == [c[i] for i in eachindex(c)]
end
@test c"1s2 2p kp"[2:3] == c"2p kp"
@test o"1s" ∈ c"[He]"
@test ro"1s" ∈ rc"[He]"
end
@testset "Sorting" begin
@test c"1s2" < c"1s 2s"
@test c"1s2" < c"1s 2p"
@test c"1s2" < c"ks2"
# @test c"kp2" < c"kp kd" # Ideally this would be true, but too
# # complicated to implement
end
@testset "Parity" begin
@test iseven(parity(c"1s"))
@test iseven(parity(c"1s2"))
@test iseven(parity(c"1s2 2s"))
@test iseven(parity(c"1s2 2s2"))
@test iseven(parity(c"[He]c 2s"))
@test iseven(parity(c"[He]c 2s2"))
@test isodd(parity(c"[He]c 2s 2p"))
@test isodd(parity(c"[He]c 2s2 2p"))
@test iseven(parity(c"[He]c 2s 2p2"))
@test iseven(parity(c"[He]c 2s2 2p2"))
@test iseven(parity(c"[He]c 2s2 2p2 3d"))
@test isodd(parity(c"[He]c 2s kp"))
end
@testset "Pretty printing" begin
Xe⁺ = rc"[Kr]c 5s2 5p-2 5p3"
map([c"1s" => "1s",
c"1s2" => "1s²",
c"1s2 2s2" => "1s² 2s²",
c"1s2 2s2 2p" => "1s² 2s² 2p",
c"1s2c 2s2 2p" => "[He]ᶜ 2s² 2p",
c"[He]* 2s2" => "1s² 2s²",
c"[He]c 2s2" => "[He]ᶜ 2s²",
c"[He]i 2s2" => "1s²ⁱ 2s²",
c"[Kr]c 5s2" => "[Kr]ᶜ 5s²",
Xe⁺ => "[Kr]ᶜ 5s² 5p-² 5p³",
core(Xe⁺) => "[Kr]ᶜ",
peel(Xe⁺) => "5s² 5p-² 5p³",
rc"[Kr] 5s2c 5p6"s => "[Kr]ᶜ 5s²ᶜ 5p-² 5p⁴",
c"[Ne]"[end:end] => "2p⁶ᶜ",
sort(rc"[Ne]"[end-1:end]) => "2p-²ᶜ 2p⁴ᶜ",
c"5s2" => "5s²",
rc"[Kr]*"s => "1s² 2s² 2p-² 2p⁴ 3s² 3p-² 3p⁴ 3d-⁴ 3d⁶ 4s² 4p-² 4p⁴",
c"[Kr]c" =>"[Kr]ᶜ",
c"1s2 kp" => "1s² kp",
c"" => "∅"]) do (c,s)
@test "$(c)" == s
end
# Test pretty-printing of vectors of spin-configurations; if
# there is a mix of integer and symbolic principal quantum
# numbers, the underlying orbital type of the SpinOrbital
# becomes a UnionAll, which complicates printing of the core
# configuration (if any).
@test string.([sc"1s₀α"]) == ["1s₀α"]
@test string.([sc"1s₀α 1s₀β"]) == ["1s₀α 1s₀β"]
@test string.([sc"1s₀α ks₀β"]) == ["1s₀α ks₀β"]
@test string.([sc"[He]c 2s₀α 2s₀β", sc"[He]c ks₀α ks₀β"]) == ["[He]ᶜ 2s₀α 2s₀β", "[He]ᶜ ks₀α ks₀β"]
@test string.([rsc"[He]c 2s(1/2) 2s(-1/2)", sc"[He]c ks₀α ks₀β"]) == ["[He]ᶜ 2s(1/2) 2s(-1/2)", "[He]ᶜ ks₀α ks₀β"]
@test string.([rsc"[He]c 2s(1/2) 2s(-1/2)", rsc"[He]c ks(1/2) ks(-1/2)"]) == ["[He]ᶜ 2s(1/2) 2s(-1/2)", "[He]ᶜ ks(1/2) ks(-1/2)"]
@test string.([sc"2s₀α 2s₀β", sc"ks₀α ks₀β"]) == ["2s₀α 2s₀β", "ks₀α ks₀β"]
@test string.([rsc"2s(1/2) 2s(-1/2)", rsc"ks(1/2) ks(-1/2)"]) == ["2s(1/2) 2s(-1/2)", "ks(1/2) ks(-1/2)"]
end
@testset "Orbital substitutions" begin
@test replace(c"1s2", o"1s"=>o"2p") == c"1s 2p"
@test replace(c"1s2", o"1s"=>o"kp") == c"1s kp"
@test replace(c"1s kp", o"kp"=>o"ld") == c"1s ld"
@test_throws ArgumentError replace(c"1s2", o"2p"=>o"3p")
@test_throws ArgumentError replace(c"1s2 2s", o"2s"=>o"1s")
@test replace(c"1s2 2s", o"1s"=>o"2p") == c"1s 2p 2s"
@test replace(c"1s2 2s", o"1s"=>o"2p", append=true) == c"1s 2s 2p"
@test replace(c"1s2 2s"s, o"1s"=>o"2p") == c"1s 2s 2p"
end
@testset "Orbital removal" begin
@test c"1s2" - o"1s" == c"1s"
@test c"1s" - o"1s" == c""
@test c"1s 2s" - o"1s" == c"2s"
@test c"[Ne]" - o"2s" == c"[He] 2s 2p6c"
@test -(c"1s2 2s", o"1s", 2) == c"2s"
@test delete!(c"1s 2s", o"1s") == c"2s"
@test delete!(c"1s2 2s", o"1s") == c"2s"
@test delete!(c"[Ne]", o"2p") == c"1s2c 2s2c"
@test delete!(rc"[Ne]", ro"2p-") == rc"1s2c 2s2c 2p4c"
end
@testset "Configuration additions" begin
@test c"1s" + c"1s" == c"[He]*"
@test c"1s" + c"2p" == c"1s 2p"
@test c"1s" + c"ld" == c"1s ld"
@test c"[Kr]*" + c"4d10" + c"5s2" + c"5p6" == c"[Xe]*"
@test_throws ArgumentError c"[He]*" + c"1s"
@test_throws ArgumentError c"1si" + c"1s"
end
@testset "Configuration juxtapositions" begin
@test c"" ⊗ c"" == [c""]
@test c"1s" ⊗ c"" == [c"1s"]
@test c"" ⊗ c"1s" == [c"1s"]
@test c"1s" ⊗ c"2s" == [c"1s 2s"]
@test rc"1s" ⊗ [rc"2s", rc"2p-", rc"2p"] == [rc"1s 2s", rc"1s 2p-", rc"1s 2p"]
@test [rc"1s", rc"2s"] ⊗ rc"2p-" == [rc"1s 2p-", rc"2s 2p-"]
@test [rc"1s", rc"2s"] ⊗ [rc"2p-", rc"2p"] == [rc"1s 2p-", rc"1s 2p", rc"2s 2p-", rc"2s 2p"]
@test [rc"1s 2s"] ⊗ [rc"2p-2", rc"2p4"] == [rc"1s 2s 2p-2", rc"1s 2s 2p4"]
@test [rc"1s 2s"] ⊗ [rc"kp-2", rc"lp4"] == [rc"1s 2s kp-2", rc"1s 2s lp4"]
end
@testset "Non-relativistic orbitals" begin
import AtomicLevels: rconfigurations_from_orbital
@test rconfigurations_from_orbital(1, 0, 1) == [rc"1s"]
@test rconfigurations_from_orbital(1, 0, 2) == [rc"1s2"]
@test rconfigurations_from_orbital(2, 0, 2) == [rc"2s2"]
@test rconfigurations_from_orbital(2, 1, 1) == [rc"2p-", rc"2p"]
@test rconfigurations_from_orbital(2, 1, 2) == [rc"2p-2", rc"2p- 2p", rc"2p2"]
@test rconfigurations_from_orbital(2, 1, 3) == [rc"2p-2 2p1", rc"2p- 2p2", rc"2p3"]
@test rconfigurations_from_orbital(2, 1, 4) == [rc"2p-2 2p2", rc"2p- 2p3", rc"2p4"]
@test rconfigurations_from_orbital(2, 1, 5) == [rc"2p-2 2p3", rc"2p- 2p4"]
@test rconfigurations_from_orbital(2, 1, 6) == [rc"2p-2 2p4"]
@test rconfigurations_from_orbital(4, 2, 10) == [rc"4d-4 4d6"]
@test rconfigurations_from_orbital(4, 2, 5) == [rc"4d-4 4d1", rc"4d-3 4d2", rc"4d-2 4d3", rc"4d-1 4d4", rc"4d5"]
@test rconfigurations_from_orbital(:k, 2, 5) == [rc"kd-4 kd1", rc"kd-3 kd2", rc"kd-2 kd3", rc"kd-1 kd4", rc"kd5"]
@test_throws ArgumentError rconfigurations_from_orbital(1, 2, 1)
@test_throws ArgumentError rconfigurations_from_orbital(1, 0, 3)
@test rconfigurations_from_orbital(o"1s", 2) == [rc"1s2"]
@test rconfigurations_from_orbital(o"2p", 2) == [rc"2p-2", rc"2p- 2p", rc"2p2"]
@test_throws ArgumentError rconfigurations_from_orbital(o"3d", 20)
@test rcs"1s" == [rc"1s"]
@test rcs"2s2" == [rc"2s2"]
@test rcs"2p4" == [rc"2p-2 2p2", rc"2p- 2p3", rc"2p4"]
@test rcs"4d5" == [rc"4d-4 4d1", rc"4d-3 4d2", rc"4d-2 4d3", rc"4d-1 4d4", rc"4d5"]
@test rc"1s2" ⊗ rcs"2p" == [rc"1s2 2p-", rc"1s2 2p"]
@test rc"1s2" ⊗ rcs"kp" == [rc"1s2 kp-", rc"1s2 kp"]
end
@testset "Spin-orbitals" begin
up, down = half(1),-half(1)
@test_throws ArgumentError Configuration(spin_orbitals(o"1s"), [2,1])
@test_throws ArgumentError Configuration(spin_orbitals(o"1s"), [1,2])
@test spin_configurations(c"1s2") ==
[Configuration([SpinOrbital(o"1s",0,up), SpinOrbital(o"1s",0,down)], [1, 1])]
@test spin_configurations(c"1s2") isa Vector{Configuration{SpinOrbital{Orbital{Int},Tuple{Int,HalfInt}}}}
@test spin_configurations(c"ks2") isa Vector{Configuration{SpinOrbital{Orbital{Symbol},Tuple{Int,HalfInt}}}}
@test spin_configurations(c"1s ks") isa Vector{Configuration{SpinOrbital{<:Orbital,Tuple{Int,HalfInt}}}}
@test spin_configurations(sc"1s₀α") == [sc"1s₀α"]
@test scs"1s 2p" == spin_configurations(c"1s 2p") ==
[Configuration([SpinOrbital(o"1s",0,up), SpinOrbital(o"2p",-1,up)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,down), SpinOrbital(o"2p",-1,up)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,up), SpinOrbital(o"2p",-1,down)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,down), SpinOrbital(o"2p",-1,down)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,up), SpinOrbital(o"2p",0,up)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,down), SpinOrbital(o"2p",0,up)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,up), SpinOrbital(o"2p",0,down)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,down), SpinOrbital(o"2p",0,down)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,up), SpinOrbital(o"2p",1,up)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,down), SpinOrbital(o"2p",1,up)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,up), SpinOrbital(o"2p",1,down)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,down), SpinOrbital(o"2p",1,down)], [1, 1])]
@test rscs"1s 2p" == spin_configurations(rc"1s 2p") ==
[Configuration([rso"1s(-1/2)", rso"2p(-3/2)"], [1, 1])
Configuration([rso"1s(1/2)", rso"2p(-3/2)"], [1, 1])
Configuration([rso"1s(-1/2)", rso"2p(-1/2)"], [1, 1])
Configuration([rso"1s(1/2)", rso"2p(-1/2)"], [1, 1])
Configuration([rso"1s(-1/2)", rso"2p(1/2)"], [1, 1])
Configuration([rso"1s(1/2)", rso"2p(1/2)"], [1, 1])
Configuration([rso"1s(-1/2)", rso"2p(3/2)"], [1, 1])
Configuration([rso"1s(1/2)", rso"2p(3/2)"], [1, 1])]
@testset "Excited spin configurations" begin
function excited_spin_configurations(cfg, orbitals)
ec = excited_configurations(cfg, orbitals...,
max_excitations=:singles, keep_parity=false)
spin_configurations(ec)
end
a = excited_spin_configurations(c"1s2", os"2[s-p]")
@test a isa Vector{Configuration{SpinOrbital{Orbital{Int},Tuple{Int,HalfInt}}}}
b = excited_spin_configurations(c"1s2", os"k[s-p]")
@test b isa Vector{<:Configuration{<:SpinOrbital{<:Orbital,Tuple{Int,HalfInt}}}}
c = excited_spin_configurations(c"ks2", os"l[s-p]")
@test c isa Vector{Configuration{SpinOrbital{Orbital{Symbol},Tuple{Int,HalfInt}}}}
for (u,v) in [(a,b), (a,c), (b,c)]
@test vcat(u,v) isa Vector{<:Configuration{<:SpinOrbital{<:Orbital,Tuple{Int,HalfInt}}}}
end
@test b ==
[Configuration([SpinOrbital(o"1s",0,up), SpinOrbital(o"1s",0,down)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,up), SpinOrbital(o"ks",0,up)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,up), SpinOrbital(o"ks",0,down)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,up), SpinOrbital(o"kp",-1,up)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,up), SpinOrbital(o"kp",-1,down)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,up), SpinOrbital(o"kp",0,up)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,up), SpinOrbital(o"kp",0,down)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,up), SpinOrbital(o"kp",1,up)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,up), SpinOrbital(o"kp",1,down)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,down), SpinOrbital(o"ks",0,up)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,down), SpinOrbital(o"ks",0,down)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,down), SpinOrbital(o"kp",-1,up)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,down), SpinOrbital(o"kp",-1,down)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,down), SpinOrbital(o"kp",0,up)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,down), SpinOrbital(o"kp",0,down)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,down), SpinOrbital(o"kp",1,up)], [1, 1]),
Configuration([SpinOrbital(o"1s",0,down), SpinOrbital(o"kp",1,down)], [1, 1])]
d=excited_spin_configurations(rc"1s2", ros"2[s-p]")
@test d isa Vector{Configuration{SpinOrbital{RelativisticOrbital{Int},Tuple{HalfInt}}}}
e=excited_spin_configurations(rc"1s2", ros"k[s-p]")
@test e isa Vector{<:Configuration{<:SpinOrbital{<:RelativisticOrbital,Tuple{HalfInt}}}}
f=excited_spin_configurations(rc"ks2", ros"l[s-p]")
@test f isa Vector{Configuration{SpinOrbital{RelativisticOrbital{Symbol},Tuple{HalfInt}}}}
for (u,v) in [(d,e), (d,f), (e,f)]
@test vcat(u,v) isa Vector{<:Configuration{<:SpinOrbital{<:RelativisticOrbital,Tuple{HalfInt}}}}
end
for (u,v) in Iterators.product([a,b,c], [d,e,f])
@test vcat(u,v) isa Vector{<:Configuration{<:SpinOrbital}}
end
end
@test bound(Configuration([SpinOrbital(o"1s",0,up), SpinOrbital(o"ks",0,up)], [1, 1])) ==
Configuration([SpinOrbital(o"1s",0,up),], [1,])
@test continuum(Configuration([SpinOrbital(o"1s",0,up), SpinOrbital(o"ks",0,up)], [1, 1])) ==
Configuration([SpinOrbital(o"ks",0,up),], [1,])
@test all([o ∈ spin_configurations(c"1s2")[1]
for o in spin_orbitals(o"1s")])
@test map(spin_configurations(c"[Kr] 5s2 5p6")[1]) do (orb,occ,state)
orb.orb.n < 5 && state == :closed || orb.orb.n == 5 && state == :open
end |> all
@test_broken string.(spin_configurations(c"2s2 2p"s)) ==
["2s² 2p₋₁α",
"2s² 2p₋₁β",
"2s² 2p₀α",
"2s² 2p₀β",
"2s² 2p₁α",
"2s² 2p₁β"]
@test_broken string.(spin_configurations(c"[Kr] 5s2 5p5 ks"s)) ==
["[Kr]ᶜ 5s² 5p₋₁² 5p₀² 5p₁α ks₀α",
"[Kr]ᶜ 5s² 5p₋₁² 5p₀² 5p₁β ks₀α",
"[Kr]ᶜ 5s² 5p₋₁² 5p₀α 5p₁² ks₀α",
"[Kr]ᶜ 5s² 5p₋₁² 5p₀β 5p₁² ks₀α",
"[Kr]ᶜ 5s² 5p₋₁α 5p₀² 5p₁² ks₀α",
"[Kr]ᶜ 5s² 5p₋₁β 5p₀² 5p₁² ks₀α",
"[Kr]ᶜ 5s² 5p₋₁² 5p₀² 5p₁α ks₀β",
"[Kr]ᶜ 5s² 5p₋₁² 5p₀² 5p₁β ks₀β",
"[Kr]ᶜ 5s² 5p₋₁² 5p₀α 5p₁² ks₀β",
"[Kr]ᶜ 5s² 5p₋₁² 5p₀β 5p₁² ks₀β",
"[Kr]ᶜ 5s² 5p₋₁α 5p₀² 5p₁² ks₀β",
"[Kr]ᶜ 5s² 5p₋₁β 5p₀² 5p₁² ks₀β"]
@test_broken string.(spin_configurations(c"[Kr] 5s2 5p4"s)) ==
["[Kr]ᶜ 5s² 5p₋₁² 5p₀²",
"[Kr]ᶜ 5s² 5p₋₁² 5p₀α 5p₁α",
"[Kr]ᶜ 5s² 5p₋₁² 5p₀α 5p₁β",
"[Kr]ᶜ 5s² 5p₋₁² 5p₀β 5p₁α",
"[Kr]ᶜ 5s² 5p₋₁² 5p₀β 5p₁β",
"[Kr]ᶜ 5s² 5p₋₁² 5p₁²",
"[Kr]ᶜ 5s² 5p₋₁α 5p₀² 5p₁α",
"[Kr]ᶜ 5s² 5p₋₁α 5p₀² 5p₁β",
"[Kr]ᶜ 5s² 5p₋₁α 5p₀α 5p₁²",
"[Kr]ᶜ 5s² 5p₋₁α 5p₀β 5p₁²",
"[Kr]ᶜ 5s² 5p₋₁β 5p₀² 5p₁α",
"[Kr]ᶜ 5s² 5p₋₁β 5p₀² 5p₁β",
"[Kr]ᶜ 5s² 5p₋₁β 5p₀α 5p₁²",
"[Kr]ᶜ 5s² 5p₋₁β 5p₀β 5p₁²",
"[Kr]ᶜ 5s² 5p₀² 5p₁²"]
@test substitutions(spin_configurations(c"1s2")[1],
spin_configurations(c"1s2")[1]) == []
@test substitutions(spin_configurations(c"1s2")[1],
spin_configurations(c"1s ks")[2]) ==
[SpinOrbital(o"1s",0,up)=>SpinOrbital(o"ks",0,up)]
@test spin_configurations([c"1s2", c"2p6"]) == [sc"1s₀α 1s₀β", sc"2p₋₁α 2p₋₁β 2p₀α 2p₀β 2p₁α 2p₁β"]
@test spin_configurations([rc"1s2", rc"2p6"]) == [rsc"1s(-1/2) 1s(1/2)", rsc"2p(-3/2) 2p(-1/2) 2p(1/2) 2p(3/2) 2p-(-1/2) 2p-(1/2)"]
end
@testset "Configuration transformations" begin
@testset "Relativistic -> non-relativistic" begin
@test nonrelconfiguration(rc"1s2 2p-2 2s 2p2 3s2 3p-"s) == c"1s2 2s 2p4 3s2 3p"s
@test nonrelconfiguration(rc"1s2 ks2"s) == c"1s2 ks2"s
@test nonrelconfiguration(rc"kp-2 kp4 lp-2 lp"s) == c"kp6 lp3"s
end
@testset "Non-relativistic -> relativistic" begin
@test relconfigurations(c"1s") == [rc"1s"]
@test relconfigurations(c"1s2") == [rc"1s2"]
@test relconfigurations(c"[He] 2p") == [rc"[He] 2p-", rc"[He] 2p"]
@test relconfigurations(c"[Ne]"s) == [rc"[Ne]"s]
@test relconfigurations([c"1s 2p", c"2s 2p"]) == [rc"1s 2p-", rc"1s 2p", rc"2s 2p-", rc"2s 2p"]
end
end
@testset "Internal utilities" begin
@test AtomicLevels.get_noble_core_name(c"1s2 2s2 2p6") === nothing
@test AtomicLevels.get_noble_core_name(c"1s2c 2s2 2p6") === "He"
@test AtomicLevels.get_noble_core_name(c"1s2c 2s2c 2p6c") === "Ne"
@test AtomicLevels.get_noble_core_name(c"[He] 2s2 2p6c 3s2c 3p6c") === "He"
for gas in ["Rn", "Xe", "Kr", "Ar", "Ne", "He"]
c = parse(Configuration{Orbital}, "[$gas]")
@test AtomicLevels.get_noble_core_name(c) === gas
rc = parse(Configuration{RelativisticOrbital}, "[$gas]")
@test AtomicLevels.get_noble_core_name(rc) === gas
end
end
@testset "Unsorted configurations" begin
@testset "Comparisons" begin
# These configurations should be similar but not equal
@test issimilar(c"1s 2s", c"1s 2si")
@test issimilar(c"1s 2s", c"2s 1s")
@test issimilar(c"1s 2s", c"2si 1s")
@test c"1s 2s" != c"1s 2si"
@test c"1s 2s" != c"2s 1s"
@test c"1s 2s" == c"2s 1s"s
@test c"1s 2s" != c"2si 1s"
@test rc"1s 2s" != rc"1s 2si"
@test rc"1s 2s" != rc"2s 1s"
@test rc"1s 2s" == rc"2s 1s"s
@test rc"1s 2s" != rc"2si 1s"
end
@testset "Substitutions" begin
@testset "Spatial orbitals" begin
# Sorted case
a = Configuration([o"1s", o"2s"], [1,1], [:open, :open], sorted=true)
@test replace(a, o"1s" => o"2p").orbitals == [o"2s", o"2p"]
b = Configuration([o"1s", o"2s"], [1,1], [:open, :open], sorted=false)
c = replace(b, o"1s" => o"2p")
@test c.orbitals == [o"2p", o"2s"]
@test "$c" == "2p 2s"
d = c"[He]" + Configuration([o"2p"], [1], [:open], sorted=false) + c"2s"
@test core(d) == c"[He]"
@test peel(d) == c
end
@testset "Spin orbitals" begin
orbs = [spin_orbitals(o) for o in [o"1s", o"2s"]]
a = spin_configurations(Configuration(o"1s", 2, :open, sorted=true))[1]
@test replace(a, orbs[1][1]=>orbs[2][1]).orbitals == [orbs[1][2], orbs[2][1]]
b = spin_configurations(Configuration(o"1s", 2, :open, sorted=false))[1]
c = replace(b, orbs[1][1]=>orbs[2][1])
@test c.orbitals == [orbs[2][1], orbs[1][2]]
@test "$c" == "2s₀α 1s₀β"
end
end
end
@testset "String representation" begin
@test string(c"[Ar]c 3d10c 4s2c 4p6 4d10 5s2i 5p6") == "[Ar]ᶜ 3d¹⁰ᶜ 4s²ᶜ 4p⁶ 4d¹⁰ 5s²ⁱ 5p⁶"
@test ascii(c"[Ar]c 3d10c 4s2c 4p6 4d10 5s2i 5p6") == "[Ar]c 3d10c 4s2c 4p6 4d10 5s2i 5p6"
@test string(rc"[Ar]*") == "1s² 2s² 2p⁴ 2p-² 3s² 3p⁴ 3p-²"
@test ascii(rc"[Ar]*") == "1s2 2s2 2p4 2p-2 3s2 3p4 3p-2"
@test ascii(empty(c"1s2")) == "empty"
end
@testset "multiplicity" begin
@test multiplicity(c"1s") == 2
@test multiplicity(c"2s2") == 1
@test multiplicity(c"2p") == 6
@test multiplicity(c"2p5") == 6
@test multiplicity(c"2p2") == 15
@test multiplicity(rc"1s") == 2
@test multiplicity(rc"2p-2") == 1
@test multiplicity(rc"2p4") == 1
@test multiplicity(rc"3d3") == 20
@test multiplicity(c"1s 2s") == 4
@test multiplicity(c"1s 2s 2p") == 24
@test multiplicity(c"1s2 2s2 2p6") == 1
@test multiplicity(rc"1s2 2s2 2p-2 2p4") == 1
let c = c"1s 2s2 2p3"; @test multiplicity(c) == length(spin_configurations(c)) end
let c = c"1s2 4f1 5g1"; @test multiplicity(c) == length(spin_configurations(c)) end
let c = rc"1s 2s2 2p3 2p-"; @test multiplicity(c) == length(spin_configurations(c)) end
let c = rc"1s2 2s2 2p-2"; @test multiplicity(c) == length(spin_configurations(c)) end
let c = rc"ag-6 bf4"; @test multiplicity(c) == length(spin_configurations(c)) end
for c in spin_configurations(c"1s 2s2 2p3")
@test multiplicity(c) == 1
end
for c in spin_configurations(rc"1s2 2s2 2p- 2p2")
@test multiplicity(c) == 1
end
end
end
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 2570 | @testset "Term coupling" begin
@testset "LS Coupling" begin
# Coupling two 2S terms should yields singlets and triplets of S,P,D
@test couple_terms(Term(1,1//2,1), Term(1,1//2,1)) ==
sort([Term(2,0,1), Term(2,1,1), Term(0,0,1), Term(1,1,1), Term(1,0,1), Term(0,1,1)])
@test couple_terms(Term(0,1//2,1), Term(1,1//2,-1)) ==
sort([Term(1,0,-1), Term(1,1,-1)])
@test couple_terms(Term(0,1//2,-1), Term(1,1//2,-1)) ==
sort([Term(1,0,1), Term(1,1,1)])
function test_coupling(o1, o2)
c1 = couple_terms(terms(o1), terms(o2))
r = o1 + o2
c2 = terms(r)
@test c1 == c2
end
test_coupling(c"1s", c"2p")
test_coupling(c"2s", c"2p")
test_coupling(c"2p", c"3p")
test_coupling(c"2p", c"3d")
@test terms(c"1s") == [T"2S"]
@test terms(c"1s2") == [T"1S"]
@test terms(c"2p") == [T"2Po"]
@test terms(c"[He]") == [T"1S"]
@test terms(c"[Ne]") == [T"1S"]
@test terms(c"[Ar]") == [T"1S"]
@test terms(c"[Kr]") == [T"1S"]
@test terms(c"[Xe]") == [T"1S"]
@test terms(c"[Rn]") == [T"1S"]
@test terms(c"1s ks") == [T"1S", T"3S"]
@test terms(c"1s kp") == [T"1Po", T"3Po"]
end
@testset "Coupling of jj terms" begin
@test couple_terms(1, 2) isa Vector{Int}
@test couple_terms(1//2, 1//2) isa Vector{HalfInt}
@test couple_terms(1.0, 1.5) isa Vector{HalfInt}
@test couple_terms(HalfInteger(1//2), HalfInteger(0)) == [1//2]
@test couple_terms(1//2, HalfInteger(0)) == [1//2]
@test couple_terms(HalfInteger(1//2), 0) == [1//2]
@test couple_terms(0, 1) == 1:1
@test couple_terms(1//2,1//2) == 0:1
@test couple_terms(1, 1) == 0:2
@test couple_terms(1//1, 3//2) == 1//2:5//2
@test couple_terms(0, 1.0) == 1:1
@test couple_terms(1.0, 1.5) == 1//2:5//2
@test intermediate_couplings([1, 2], 3) isa Vector{Vector{Int}}
@test intermediate_couplings([1, 2], HalfInteger(3)) isa Vector{Vector{HalfInt}}
@test intermediate_couplings([1, 2], HalfInteger(3//2)) isa Vector{Vector{HalfInt}}
@test intermediate_couplings([1, 2.5], 3) isa Vector{Vector{HalfInt}}
@test intermediate_couplings([0, 0], 0) == [[0,0,0]]
@test intermediate_couplings([0, 0], 1) == [[1,1,1]]
@test intermediate_couplings([1//2, 1//2], 0) == [[0,1//2,0],[0,1//2,1]]
@test terms(rc"1s 2s") == [0,1]
end
end
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 3646 | using Test
using AtomicLevels
# ^^^ -- to make it possible to run the test file separately
module ATSPParser
using Test
using AtomicLevels
import AtomicLevels: CSF, csfs
include("atsp/csfparser.jl")
compare_with_atsp(f, csfout) = @testset "ATSP CSFs: $(csfout)" begin
atsp_csfs = parse_csf(joinpath(@__DIR__, "atsp", csfout))
atlev_csfs = f()
@test length(atlev_csfs) == length(atsp_csfs)
for atlev_csf in atlev_csfs
@test atlev_csf in atsp_csfs
end
end
export compare_with_atsp
end
using .ATSPParser
@testset "CSFs" begin
@testset "Construction" begin
csf = CSF(rc"1s2 2p- 2p", [IntermediateTerm(0,Seniority(0)), IntermediateTerm(1//2,Seniority(1)), IntermediateTerm(3//2,Seniority(1))], [0, 1//2, 2])
@test csf isa CSF{RelativisticOrbital{Int},HalfInt}
@test csf isa RelativisticCSF
@test csf == csf
@test csf != CSF(rc"1s2 2p- 2p", [IntermediateTerm(0,Seniority(0)), IntermediateTerm(1//2,Seniority(1)), IntermediateTerm(3//2,Seniority(1))], [0, 1//2, 1])
@test num_electrons(csf) == 4
@test orbitals(csf) == [ro"1s", ro"2p-", ro"2p"]
@test CSF(c"1s2 2p", [IntermediateTerm(T"1S",Seniority(0)), IntermediateTerm(T"2Po", Seniority(1))], [T"1S", T"2Po"]) isa NonRelativisticCSF
end
@testset "CSF list generation" begin
@testset "ls coupling" begin
csf_1s2 = CSF(c"1s2", [IntermediateTerm(T"1S",Seniority(0))],[T"1S"])
@test csfs(c"1s2") == [csf_1s2]
@test string(csf_1s2) == "1s²(₀¹S|¹S)+"
csfs_1s_kp = [CSF(c"1s kp",
[IntermediateTerm(T"2S",Seniority(1)),IntermediateTerm(T"2Po",Seniority(1))],
[T"2S", T"1Po"]),
CSF(c"1s kp",
[IntermediateTerm(T"2S",Seniority(1)),IntermediateTerm(T"2Po",Seniority(1))],
[T"2S", T"3Po"])]
@test csfs(c"1s kp") == csfs_1s_kp
#= zgenconf input
OI
1s 2s
2 4 -1 2 0 2 n_orbitals, n_electrons, parity, n_ref, k_min, k_max
2p 3d
0 0
6 10
=#
compare_with_atsp("1s2c_2s2c_2p1_3_3d3_1.csfs") do
csfs(c"1s2c 2s2c" ⊗ [c"2p1 3d3", c"2p3 3d1"])
end
end
@testset "jj coupling" begin
# These are not real tests, they only make sure that the
# generation does not crash.
sort(csfs([rc"3s 3p2",rc"3s 3p- 3p"]))
csfs(rc"[Kr] 5s2 5p-2 5p3 6s")
csfs(rc"1s kp")
@test string(CSF(rc"[Kr] 5s2 5p- 5p4 kd",
[IntermediateTerm(0//1, Seniority(0)), IntermediateTerm(1//2, Seniority(1)), IntermediateTerm(0//1, Seniority(0)), IntermediateTerm(5//2, Seniority(1))],
[0//1, 1//2, 1//2, 3//1])) ==
"[Kr]ᶜ 5s²(₀0|0) 5p-(₁1/2|1/2) 5p⁴(₀0|1/2) kd(₁5/2|3)-"
end
end
@testset "Access subshells" begin
c = rc"1s 2p"
for (i,csf) in enumerate(csfs(c))
@test length(csf) == 2
@test csf[begin] == ((ro"1s", 1, :open), IntermediateTerm(half(1), Seniority(1)), half(1))
# It just so happens that for this particular configuration, the accumulated intermediate term is J = 1, 2
@test csf[end] == ((ro"2p", 1, :open), IntermediateTerm(half(3), Seniority(1)), i)
@test collect(csf) == [csf[i] for i in eachindex(csf)]
end
end
end
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 15088 | using Test
using AtomicLevels
using HalfIntegers: HalfInt, half
# ^^^ -- to make it possible to run the test file separately
module GRASPParser
using Test
using AtomicLevels
import AtomicLevels: CSF, csfs
include("grasp/rcsfparser.jl")
compare_with_grasp(f, rcsfout) = @testset "GRASP CSFs: $(rcsfout)" begin
grasp_csfs = parse_rcsf(joinpath(@__DIR__, "grasp", rcsfout))
atlev_csfs = f()
@test length(atlev_csfs) == length(grasp_csfs)
for atlev_csf in atlev_csfs
@test atlev_csf in grasp_csfs
end
end
export compare_with_grasp
end
using .GRASPParser
"""
ispermutation(a, b[; cmp=isequal])
Tests is `a` is a permutation of `b`, i.e. if all elements are present
in both arrays. The comparison of two elements can be customized by
supplying a binary function `cmp`.
# Examples
```jldoctest
julia> ispermutation([1,2],[1,2])
true
julia> ispermutation([1,2],[2,1])
true
julia> ispermutation([1,2],[2,2])
false
julia> ispermutation([1,2],[1,-2])
false
julia> ispermutation([1,2],[1,-2],cmp=(a,b)->abs(a)==abs(b))
true
```
"""
ispermutation(a, b; cmp=isequal) =
length(a) == length(b) &&
all(any(Base.Fix2(cmp, x), b)
for x in a)
@testset "Excited configurations" begin
@testset "Simple" begin
@test_throws ArgumentError excited_configurations(rc"[Kr] 5s2 5p6", min_excitations=-1)
@test_throws ArgumentError excited_configurations(rc"[Kr] 5s2 5p6", min_excitations=3, max_excitations=2)
@test_throws ArgumentError excited_configurations(rc"[Kr] 5s2 5p6", max_excitations=-1)
@test_throws ArgumentError excited_configurations(rc"[Kr] 5s2 5p6", max_excitations=:triples)
@test_throws ArgumentError excited_configurations(rc"[Kr] 5s2 5p6", min_occupancy=[2,0])
@test_throws ArgumentError excited_configurations(rc"[Kr] 5s2 5p6", max_occupancy=[2,0])
@test_throws ArgumentError excited_configurations(rc"[Kr] 5s2 5p6", min_occupancy=[-1,0,0])
@test_throws ArgumentError excited_configurations(rc"[Kr] 5s2 5p6", max_occupancy=[3,2,4])
@test sort(excited_configurations(c"1s 2p", keep_parity=false)) == [c"1s²", c"1s 2p", c"2p²"]
@test sort(excited_configurations(c"1s kp", keep_parity=false)) == [c"1s²", c"1s kp", c"kp²"]
@test excited_configurations(rc"[Kr] 5s2 5p-2 5p3") == [rc"[Kr]ᶜ 5s² 5p-² 5p³", rc"[Kr]ᶜ 5s² 5p- 5p⁴"]
@testset "Minimum excitations" begin
@testset "Beryllium" begin
@test ispermutation(excited_configurations(c"1s2 2s2", o"2p", keep_parity=false,
min_excitations=0),
[c"1s2 2s2",
c"1s 2s2 2p",
c"1s2 2s 2p",
c"2s2 2p2",
c"1s 2s 2p2",
c"1s2 2p2"])
@test ispermutation(excited_configurations(c"1s2 2s2", o"2p", keep_parity=false,
min_excitations=1),
[c"1s 2s2 2p",
c"1s2 2s 2p",
c"2s2 2p2",
c"1s 2s 2p2",
c"1s2 2p2"])
@test ispermutation(excited_configurations(c"1s2 2s2", o"2p", keep_parity=false,
min_excitations=2),
[c"2s2 2p2",
c"1s 2s 2p2",
c"1s2 2p2"])
end
@testset "Neon" begin
Ne_singles = [
c"1s 2s2 2p6 3s",
c"1s 2s2 2p6 3p",
c"1s2 2s 2p6 3s",
c"1s2 2s 2p6 3p",
c"1s2 2s2 2p5 3s",
c"1s2 2s2 2p5 3p"
]
Ne_doubles = [
c"2s2 2p6 3s2",
c"2s2 2p6 3s 3p",
c"1s 2s 2p6 3s2",
c"1s 2s 2p6 3s 3p",
c"1s 2s2 2p5 3s2",
c"1s 2s2 2p5 3s 3p",
c"2s2 2p6 3p2",
c"1s 2s 2p6 3p2",
c"1s 2s2 2p5 3p2",
c"1s2 2p6 3s2",
c"1s2 2p6 3s 3p",
c"1s2 2s 2p5 3s2",
c"1s2 2s 2p5 3s 3p",
c"1s2 2p6 3p2",
c"1s2 2s 2p5 3p2",
c"1s2 2s2 2p4 3s2",
c"1s2 2s2 2p4 3s 3p",
c"1s2 2s2 2p4 3p2"
]
@test ispermutation(excited_configurations(c"[Ne]*", os"3[s-p]"..., keep_parity=false),
vcat(c"[Ne]*", Ne_singles, Ne_doubles))
@test ispermutation(excited_configurations(c"[Ne]*", os"3[s-p]"..., keep_parity=false,
min_excitations=1),
vcat(Ne_singles, Ne_doubles))
@test ispermutation(excited_configurations(c"[Ne]*", os"3[s-p]"..., keep_parity=false,
min_excitations=2),
Ne_doubles)
end
end
@testset "Unsorted base configuration" begin
# Expect respected substitution orbitals ordering
@test ispermutation(excited_configurations(c"1s2", o"2s", o"2p", keep_parity=false),
[c"1s2", c"1s 2s", c"1s 2p", c"2s2", c"2s 2p", c"2p2"])
@test ispermutation(excited_configurations(c"1s2", o"2p", o"2s", keep_parity=false),
[c"1s2", c"1s 2p", c"1s 2s", c"2p2", c"2p 2s", c"2s2"])
@test ispermutation(excited_configurations(c"1s 2s", o"2p", o"2s", keep_parity=false),
[c"1s 2s", c"2s2", c"1s2", c"1s 2p", c"2s 2p", c"2p2"])
@test ispermutation(excited_configurations(c"1s 2s", o"2p", o"3s", keep_parity=false),
[c"1s 2s", c"2s2", c"1s2", c"1s 2p", c"1s 3s", c"2s 2p", c"2s 3s", c"2p2", c"2p 3s", c"3s2"])
@test ispermutation(excited_configurations(rc"1s2", ro"2s", ro"2p-", ro"2p"),
[rc"1s2", rc"1s 2s", rc"2s2", rc"2p-2", rc"2p- 2p", rc"2p2"])
@test ispermutation(excited_configurations(rc"1s2", ro"2s", ro"2p", ro"2p-"),
[rc"1s2", rc"1s 2s", rc"2s2", rc"2p2", rc"2p 2p-", rc"2p-2"])
@testset "Core orbital replacements" begin
reference = excited_configurations(c"[Ne]*"s, os"3[s-d]"...,
keep_parity=false)
@test length(reference) == 46
test1 = excited_configurations(c"[Ne]*", os"3[s-d]"...,
keep_parity=false)
test2 = excited_configurations(c"[Ne]*", o"3p", o"3d", o"3s",
keep_parity=false)
@test ispermutation(reference, test1)
@test !ispermutation(reference, test2)
@test ispermutation(reference, test2, cmp=issimilar)
for cfg in test2
i = findfirst(isequal(o"3p"), cfg.orbitals)
j = findfirst(isequal(o"3d"), cfg.orbitals)
k = findfirst(isequal(o"3s"), cfg.orbitals)
if !isnothing(i)
!isnothing(j) && @test i < j
!isnothing(k) && @test i < k
end
!isnothing(j) && !isnothing(k) && @test j < k
end
end
end
@testset "Sorted base configuration" begin
# Expect canonical ordering (of the orbitals, not the configurations)
@test excited_configurations(c"1s2"s, o"2p", o"2s", keep_parity=false) ==
[c"1s2", c"1s 2p", c"1s 2s", c"2p2", c"2s 2p", c"2s2"]
@test excited_configurations(rc"1s2"s, ro"2s", ro"2p", ro"2p-") ==
[rc"1s2", rc"1s 2s", rc"2s2", rc"2p2", rc"2p- 2p", rc"2p-2"]
end
end
@testset "Custom substitutions" begin
@test excited_configurations(c"1s2 2s2", os"k[s-p]"...,
max_excitations=:singles, keep_parity=false) do a,b
Orbital(Symbol("{$b}"), a.ℓ)
end == [
c"1s2 2s2",
replace(c"1s2 2s2", o"1s" => Orbital(Symbol("{1s}"), 0), append=true),
replace(c"1s2 2s2", o"1s" => Orbital(Symbol("{1s}"), 1), append=true),
replace(c"1s2 2s2", o"2s" => Orbital(Symbol("{2s}"), 0), append=true),
replace(c"1s2 2s2", o"2s" => Orbital(Symbol("{2s}"), 1), append=true)
]
end
@testset "Custom filtering of substitutions" begin
cfg = spin_configurations(c"1s")[1]
ecfgs = excited_configurations((a,b) -> a.m == b.m ? a : nothing,
cfg, sos"k[s-d]"..., keep_parity=false)
@test ecfgs == [Configuration([SpinOrbital(orb, (0,half(1)))],[1],[:open])
for orb in vcat(o"1s", os"k[s-d]")]
ecfgs = excited_configurations(cfg, sos"k[s-d]"..., keep_parity=false) do a,b
a.m == b.m ? SpinOrbital(Orbital(Symbol("{$b}"), a.orb.ℓ), a.m) : nothing
end
@test ecfgs == [Configuration([SpinOrbital(orb, (0,half(1)))],[1],[:open])
for orb in vcat(o"1s", [Orbital(Symbol("{1s₀α}"), ℓ) for ℓ ∈ 0:2])]
end
@testset "Multiple references" begin
@test ispermutation(excited_configurations([c"1s2"s, c"2s2"s], o"1s", o"2s",
max_excitations=:singles, keep_parity=false),
[c"1s2", c"1s 2s", c"2s2"])
end
@testset "Spin-configurations" begin
@testset "Bound substitutions" begin
cfg = first(scs"1s2")
orbitals = sos"3[s]"
@test ispermutation(excited_configurations(cfg, orbitals..., keep_parity=false),
vcat(cfg,
[replace(cfg, cfg.orbitals[1]=>o) for o in orbitals],
[replace(cfg, cfg.orbitals[2]=>o) for o in orbitals],
scs"3s2"))
@test ispermutation(excited_configurations(cfg, orbitals..., keep_parity=false,
min_occupancy=[1,0]),
vcat(cfg,
[replace(cfg, cfg.orbitals[2]=>o) for o in orbitals]))
end
@testset "Continuum substitutions" begin
gst = first(scs"1s2 2s2")
orbitals = sos"k[s]"
ionize = (subs_orb, orb) -> isbound(orb) ? SpinOrbital(Orbital(Symbol("[$(orb)]"), subs_orb.orb.ℓ), subs_orb.m) : subs_orb
singles = [replace(gst, o => ionize(so,o))
for so in orbitals
for o in gst.orbitals]
doubles = unique([replace(cfg, o => ionize(so,o))
for cfg in singles
for so in orbitals
for o in bound(cfg).orbitals])
@test ispermutation(excited_configurations(ionize, gst, orbitals..., keep_parity=false),
vcat(gst, singles, doubles))
end
@testset "Double excitations of spin-configurations" begin
gst = spin_configurations(Configuration(o"1s", 2, :open, sorted=false))[1]
orbitals = reduce(vcat, spin_orbitals.(os"2[s]"))
cs = excited_configurations(gst, orbitals...)
@test cs[1] == gst
@test cs[2:3] == [replace(gst, gst.orbitals[1]=>o) for o in orbitals]
@test cs[4:5] == [replace(gst, gst.orbitals[2]=>o) for o in orbitals]
@test cs[6] == Configuration(orbitals, [1,1])
end
end
@testset "Ion–continuum" begin
ic = ion_continuum(c"1s2", os"k[s-d]")
@test ic == [c"1s2", c"1s ks", c"1s kp", c"1s kd"]
@test spin_configurations(ic) isa Vector{<:Configuration{<:SpinOrbital{<:Orbital,Tuple{Int,HalfInt}}}}
end
@testset "GRASP comparisons" begin
@test excited_configurations(c"1s2", os"2[s-p]"...) ==
[c"1s2", c"1s 2s", c"2s2", c"2p2"]
@test excited_configurations(c"1s2", os"k[s-p]"...) ==
[c"1s2", c"1s ks", c"ks2", c"kp2"]
@test excited_configurations(rc"1s2", ros"2[s-p]"...) ==
[rc"1s2", rc"1s 2s", rc"2s2", rc"2p-2", rc"2p- 2p", rc"2p2"]
@test excited_configurations(rc"1s2", ro"2s") == [rc"1s2", rc"1s 2s", rc"2s2"]
@test excited_configurations(rc"1s2", ro"2p-") == [rc"1s2", rc"2p-2"]
#= rcsfgenerate input:
*
1
2s(2,i)2p(2,i)
2s,2p
0 10
0
n
=#
compare_with_grasp("rcsf.out.1.txt") do
csfs(rc"1s2 2s2" ⊗ rcs"2p2")
end
#= rcsfgenerate input:
*
0
3s(1,i)3p(3,i)3d(4,i)
3s,3p,3d
0 50
0
n
=#
compare_with_grasp("rcsf.out.2.txt") do
csfs(rc"3s1" ⊗ rcs"3p3" ⊗ rcs"3d4")
end
#= rcsfgenerate input:
*
2
3s(1,i)3p(2,i)3d(2,i)
3s,3p,3d
1 51
0
n
=#
compare_with_grasp("rcsf.out.3.txt") do
csfs(rc"[Ne]* 3s1"s ⊗ rcs"3p2" ⊗ rcs"3d2")
end
# TODO: The following two tests are wrapped in
# unique(map(sort, ...)) until excited_configurations are
# fixed to take the ordering of excitation orbitals into
# account.
#= rcsfgenerate input:
*
0
1s(2,*)
2s,2p
0 20
2
n
=#
compare_with_grasp("rcsf.out.4.txt") do
csfs(excited_configurations(rc"1s2", ro"2s", ro"2p-", ro"2p"))
end
#= rcsfgenerate input:
*
0
1s(2,*)
3s,3p,3d
0 20
2
n
=#
compare_with_grasp("rcsf.out.5.txt") do
excited_configurations(
rc"1s2",
ro"2s", ro"2p-", ro"2p", ro"3s", ro"3p-", ro"3p", ro"3d-", ro"3d"
) |> csfs
end
# TODO:
#= rcsfgenerate input: (problematic alphas with semicolons etc)
*
0
5f(5,i)
5s,5p,5d,5f
1 51
0
n
=#
end
end
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
|
[
"MIT"
] | 0.1.11 | b1d6aa60cb01562ae7dca8079b76ec83da36388e | code | 5135 | using AtomicLevels
using HalfIntegers
using Test
@testset "Intermediate terms" begin
@testset "LS coupling" begin
@test !AtomicLevels.istermvalid(T"2S", Seniority(2))
@test string(IntermediateTerm(T"2D", Seniority(3))) == "₃²D"
@test string(IntermediateTerm(T"2D", 3)) == "₍₃₎²D"
for t in [T"2D", T"2Do"], ν in [1, Seniority(2), 3]
it = IntermediateTerm(t, ν)
@test length(propertynames(it)) == 3
@test hasproperty(it, :term)
@test hasproperty(it, :ν)
@test hasproperty(it, :nu)
@test it.term == t
@test it.ν == it.nu
@test it.nu == ν
@test !hasproperty(it, :foo)
@test_throws ErrorException it.foo
end
@testset "Seniority" begin
# Table taken from p. 25 of
#
# - Froese Fischer, C., Brage, T., & Jönsson, P. (1997). Computational
# Atomic Structure : An MCHF Approach. Bristol, UK Philadelphia, Penn:
# Institute of Physics Publ.
subshell_terms = [
o"1s" => (1 => "2S1",
2 => "1S0"),
o"2p" => (1 => "2P1",
2 => ("1S0", "1D2", "3P2"),
3 => ("2P1", "2D3", "4S3")),
o"3d" => (1 => "2D1",
2 => ("1S0", "1D2", "1G2", "3P2", "3F2"),
3 => ("2D1", "2P3", "2D3", "2F3", "2G3", "2H3", "4P3", "4F3"),
4 => ("1S0", "1D2", "1G2", "3P2", "3F2", "1S4", "1D4", "1F4", "1G4", "1I4", "3P4", "3D4", "3F4", "3G4", "3H4", "5D4"),
5 => ("2D1", "2P3", "2D3", "2F3", "2G3", "2H3", "4P3", "4F3", "2S5", "2D5", "2F5", "2G5", "2I5", "4D5", "4G5", "6S5")),
o"4f" => (1 => "2F1",
2 => ("1S0", "1D2", "1G2", "1I2", "3P2", "3F2", "3H2"))
]
foreach(subshell_terms) do (orb, data)
foreach(data) do (occ, expected_its)
p = parity(orb)^occ
expected_its = map(expected_its isa String ? (expected_its,) : expected_its) do ei
t_str = "$(ei[1:2])$(isodd(p) ? "o" : "")"
IntermediateTerm(parse(Term, t_str), Seniority(parse(Int, ei[end])))
end
its = intermediate_terms(orb, occ)
@test its == [expected_its...]
end
end
end
end
@testset "jj coupling" begin
# Taken from Table A.10 of
#
# - Grant, I. P. (2007). Relativistic Quantum Theory of Atoms and
# Molecules : Theory and Computation. New York: Springer.
#
# except for the last row, which seems to have a typo since J=19/2 is
# missing. Cf. Table 4-5 of
#
# - Cowan, R. (1981). The Theory of Atomic Structure and
# Spectra. Berkeley: University of California Press.
ref_table = [[rc"1s2", rc"2p-2"] => [0 => [0]],
[rc"1s", rc"2p-"] => [1 => [1/2]],
[rc"2p4", rc"3d-4"] => [0 => [0]],
[rc"2p", rc"2p3", rc"3d-", rc"3d-3"] => [1 => [3/2]],
[rc"2p2", rc"3d-2"] => [0 => [0], 2 => [2]],
[rc"3d6", rc"4f-6"] => [0 => [0]],
[rc"3d", rc"3d5", rc"4f-", rc"4f-5"] => [1 => [5/2]],
[rc"3d2", rc"3d4", rc"4f-2", rc"4f-4"] => [0 => [0], 2 => [2,4]],
[rc"3d3", rc"4f-3"] => [1 => [5/2], 3 => [3/2, 9/2]],
[rc"4f8", rc"5g-8"] => [0 => [0]],
[rc"4f", rc"4f7", rc"5g-", rc"5g-7"] => [1 => [7/2]],
[rc"4f2", rc"4f6", rc"5g-2", rc"5g-6"] => [0 => [0], 2 => [2,4,6]],
[rc"4f3", rc"4f5", rc"5g-3", rc"5g-5"] => [1 => [7/2], 3 => [3/2, 5/2, 9/2, 11/2, 15/2]],
[rc"4f4", rc"5g-4"] => [0 => [0], 2 => [2,4,6], 4 => [2,4,5,8]],
[rc"5g10", rc"6h-10"] => [0 => [0]],
[rc"5g", rc"5g9", rc"6h-", rc"6h-9"] => [1 => [9/2]],
[rc"5g2", rc"5g8", rc"6h-2", rc"6h-8"] => [0 => [0], 2 => [2,4,6,8]],
[rc"5g3", rc"5g7", rc"6h-3", rc"6h-7"] => [1 => [9/2],
3 => vcat((3:2:17), 21)./2],
[rc"5g4", rc"5g6", rc"6h-4", rc"6h-6"] => [0 => 0, 2 => [2,4,6,8],
4 => [0,2,3,4,4,5,6,6,7,8,9,10,12]],
[rc"5g5", rc"6h-5"] => [1 => [9/2], 3 => vcat((3:2:17), 21)./2,
5 => vcat(1, (5:2:19), 25)./2]]
for (cfgs,cases) in ref_table
ref = [reduce(vcat, [[IntermediateTerm(convert(HalfInt, J), Seniority(ν))
for J in Js]
for (ν,Js) in cases])]
for cfg in cfgs
@test intermediate_terms(cfg) == ref
end
end
end
end
| AtomicLevels | https://github.com/JuliaAtoms/AtomicLevels.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.