licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 1.0.0 | 193ec7cad29c4099823e7a0d853b4173ad5d3ab1 | code | 1890 | ##
## A stegosaur with a top hat?
##
"""
function stegosaurus()
A stegosaur with a top hat?
# Example
```jldoctest
julia> cowsay("How do you do?", cow=Cowsay.stegosaurus)
________________
< How do you do? >
----------------
\\ . .
\\ / `. .' "
\\ .---. < > < > .---.
\\ | \\ \\ - ~ ~ - / / |
_____ ..-~ ~-..-~
| | \\~~~\\.' `./~~~/
--------- \\__/ \\__/
.' O \\ / / \\ "
(_____, `._.' | } \\/~~~/
`----. / } | / \\__/
`-. | / | / `. ,~~|
~-.__| /_ - ~ ^| /- _ `..-'
| / | / ~-. `-. _ _ _
|_____| |_____| ~ - . _ _ _ _ _>
```
"""
function stegosaurus(;eyes="oo", tongue=" ", thoughts="\\")
the_cow =
"""
$thoughts . .
$thoughts / `. .' "
$thoughts .---. < > < > .---.
$thoughts | \\ \\ - ~ ~ - / / |
_____ ..-~ ~-..-~
| | \\~~~\\.' `./~~~/
--------- \\__/ \\__/
.' O \\ / / \\ "
(_____, `._.' | } \\/~~~/
`----. / } | / \\__/
`-. | / | / `. ,~~|
~-.__| /_ - ~ ^| /- _ `..-'
| / | / ~-. `-. _ _ _
|_____| |_____| ~ - . _ _ _ _ _>
"""
return the_cow
end
| Cowsay | https://github.com/MillironX/Cowsay.jl.git |
|
[
"MIT"
] | 1.0.0 | 193ec7cad29c4099823e7a0d853b4173ad5d3ab1 | code | 687 | """
function supermilker()
A cow being milked, probably from Lars Smith ([email protected])
# Example
```jldoctest
julia> cowsay("Paying the bills", cow=Cowsay.supermilker)
__________________
< Paying the bills >
------------------
\\ ^__^
\\ (oo)\\_______ ________
(__)\\ )\\/\\ |Super |
||----W | |Milker|
|| UDDDDDDDDD|______|
```
"""
function supermilker(;eyes="oo", tongue=" ", thoughts="\\")
the_cow =
"""
$thoughts ^__^
$thoughts ($eyes)\\_______ ________
(__)\\ )\\/\\ |Super |
$tongue ||----W | |Milker|
|| UDDDDDDDDD|______|
"""
return the_cow
end
| Cowsay | https://github.com/MillironX/Cowsay.jl.git |
|
[
"MIT"
] | 1.0.0 | 193ec7cad29c4099823e7a0d853b4173ad5d3ab1 | code | 1467 | ##
## A cow operation, artist unknown
##
"""
function surgery()
A cow operation, artist unknown
# Example
```jldoctest
julia> cowsay("Removing the last bit of net wrap now", cow=Cowsay.surgery)
_______________________________________
< Removing the last bit of net wrap now >
---------------------------------------
\\ \\ /
\\ \\/
(__) /\\
(oo) O O
_\\/_ //
* ( ) //
\\ (\\\\ //
\\( \\\\ )
( \\\\ ) /\\
___[\\______/^^^^^^^\\__/) o-)__
|\\__[=======______//________)__\\
\\|_______________//____________|
||| || //|| |||
||| || @.|| |||
|| \\/ .\\/ ||
. .
'.'.`
COW-OPERATION
```
"""
function surgery(;eyes="oo", tongue=" ", thoughts="\\")
the_cow =
"""
$thoughts \\ /
$thoughts \\/
(__) /\\
($eyes) O O
_\\/_ //
* ( ) //
\\ (\\\\ //
\\( \\\\ )
( \\\\ ) /\\
___[\\______/^^^^^^^\\__/) o-)__
|\\__[=======______//________)__\\
\\|_______________//____________|
||| || //|| |||
||| || @.|| |||
|| \\/ .\\/ ||
. .
'.'.`
COW-OPERATION
"""
return the_cow
end
| Cowsay | https://github.com/MillironX/Cowsay.jl.git |
|
[
"MIT"
] | 1.0.0 | 193ec7cad29c4099823e7a0d853b4173ad5d3ab1 | code | 717 | """
function three_eyes()
A cow with three eyes, brought to you by [email protected]
# Example
```jldoctest
julia> cowsay("The better to see you with...", cow=Cowsay.three_eyes)
_______________________________
< The better to see you with... >
-------------------------------
\\ ^___^
\\ (ooo)\\_______
(___)\\ )\\/\\
||----w |
|| ||
```
"""
function three_eyes(;eyes="oo", tongue=" ", thoughts="\\")
eye = first(eyes)
eyes = repeat(eye, 3)
the_cow =
"""
$thoughts ^___^
$thoughts ($eyes)\\_______
(___)\\ )\\/\\
$tongue ||----w |
|| ||
"""
return the_cow
end
| Cowsay | https://github.com/MillironX/Cowsay.jl.git |
|
[
"MIT"
] | 1.0.0 | 193ec7cad29c4099823e7a0d853b4173ad5d3ab1 | code | 2779 | ##
## Turkey!
##
"""
function turkey()
Turkey!
# Example
```jldoctest
julia> cowsay("Gobble, gobble", cow=Cowsay.turkey)
________________
< Gobble, gobble >
----------------
\\ ,+*^^*+___+++_
\\ ,*^^^^ )
\\ _+* ^**+_
\\ +^ _ _++*+_+++_, )
_+^^*+_ ( ,+*^ ^ \\+_ )
{ ) ( ,( ,_+--+--, ^) ^\\
{ (@) } f ,( ,+-^ __*_*_ ^^\\_ ^\\ )
{:;-/ (_+*-+^^^^^+*+*<_ _++_)_ ) ) /
( / ( ( ,___ ^*+_+* ) < < \\
U _/ ) *--< ) ^\\-----++__) ) ) )
( ) _(^)^^)) ) )\\^^^^^))^*+/ / /
( / (_))_^)) ) ) ))^^^^^))^^^)__/ +^^
( ,/ (^))^)) ) ) ))^^^^^^^))^^) _)
*+__+* (_))^) ) ) ))^^^^^^))^^^^^)____*^
\\ \\_)^)_)) ))^^^^^^^^^^))^^^^)
(_ ^\\__^^^^^^^^^^^^))^^^^^^^)
^\\___ ^\\__^^^^^^))^^^^^^^^)\\\\
^^^^^\\uuu/^^\\uuu/^^^^\\^\\^\\^\\^\\^\\^\\^\\
___) >____) >___ ^\\_\\_\\_\\_\\_\\_\\)
^^^//\\\\_^^//\\\\_^ ^(\\_\\_\\_\\)
^^^ ^^ ^^^ ^
```
"""
function turkey(;eyes="oo", tongue=" ", thoughts="\\")
the_cow =
"""
$thoughts ,+*^^*+___+++_
$thoughts ,*^^^^ )
$thoughts _+* ^**+_
$thoughts +^ _ _++*+_+++_, )
_+^^*+_ ( ,+*^ ^ \\+_ )
{ ) ( ,( ,_+--+--, ^) ^\\
{ (@) } f ,( ,+-^ __*_*_ ^^\\_ ^\\ )
{:;-/ (_+*-+^^^^^+*+*<_ _++_)_ ) ) /
( / ( ( ,___ ^*+_+* ) < < \\
U _/ ) *--< ) ^\\-----++__) ) ) )
( ) _(^)^^)) ) )\\^^^^^))^*+/ / /
( / (_))_^)) ) ) ))^^^^^))^^^)__/ +^^
( ,/ (^))^)) ) ) ))^^^^^^^))^^) _)
*+__+* (_))^) ) ) ))^^^^^^))^^^^^)____*^
\\ \\_)^)_)) ))^^^^^^^^^^))^^^^)
(_ ^\\__^^^^^^^^^^^^))^^^^^^^)
^\\___ ^\\__^^^^^^))^^^^^^^^)\\\\
^^^^^\\uuu/^^\\uuu/^^^^\\^\\^\\^\\^\\^\\^\\^\\
___) >____) >___ ^\\_\\_\\_\\_\\_\\_\\)
^^^//\\\\_^^//\\\\_^ ^(\\_\\_\\_\\)
^^^ ^^ ^^^ ^
"""
return the_cow
end
| Cowsay | https://github.com/MillironX/Cowsay.jl.git |
|
[
"MIT"
] | 1.0.0 | 193ec7cad29c4099823e7a0d853b4173ad5d3ab1 | code | 2414 | """
function turtle()
A mysterious turtle...
# Example
```jldoctest
julia> cowsay("Where is that pesky rabbit?", cow=Cowsay.turtle)
_____________________________
< Where is that pesky rabbit? >
-----------------------------
\\ ___-------___
\\ _-~~ ~~-_
\\ _-~ /~-_
/^\\__/^\\ /~ \\ / \\
/| O|| O| / \\_______________/ \\
| |___||__| / / \\ \\
| \\ / / \\ \\
| (_______) /______/ \\_________ \\
| / / \\ / \\
\\ \\^\\\\ \\ / \\ /
\\ || \\______________/ _-_ //\\__//
\\ ||------_-~~-_ ------------- \\ --/~ ~\\ || __/
~-----||====/~ |==================| |/~~~~~
(_(__/ ./ / \\_\\ \\.
(_(___/ \\_____)_)
```
"""
function turtle(;eyes="oo", tongue=" ", thoughts="\\")
the_cow =
"""
$thoughts ___-------___
$thoughts _-~~ ~~-_
$thoughts _-~ /~-_
/^\\__/^\\ /~ \\ / \\
/| O|| O| / \\_______________/ \\
| |___||__| / / \\ \\
| \\ / / \\ \\
| (_______) /______/ \\_________ \\
| / / \\ / \\
\\ \\^\\\\ \\ / \\ /
\\ || \\______________/ _-_ //\\__//
\\ ||------_-~~-_ ------------- \\ --/~ ~\\ || __/
~-----||====/~ |==================| |/~~~~~
(_(__/ ./ / \\_\\ \\.
(_(___/ \\_____)_)
"""
return the_cow
end
| Cowsay | https://github.com/MillironX/Cowsay.jl.git |
|
[
"MIT"
] | 1.0.0 | 193ec7cad29c4099823e7a0d853b4173ad5d3ab1 | code | 630 | ##
##
"""
function tux()
TuX
(c) [email protected]
# Example
```jldoctest
julia> cowsay("Talk is cheap. Show me the code.", cow=Cowsay.tux)
__________________________________
< Talk is cheap. Show me the code. >
----------------------------------
\\
\\
.--.
|o_o |
|:_/ |
// \\ \\
(| | )
/'\\_ _/`\\
\\___)=(___/
```
"""
function tux(;eyes="oo", tongue=" ", thoughts="\\")
the_cow =
"""
$thoughts
$thoughts
.--.
|o_o |
|:_/ |
// \\ \\
(| | )
/'\\_ _/`\\
\\___)=(___/
"""
return the_cow
end
| Cowsay | https://github.com/MillironX/Cowsay.jl.git |
|
[
"MIT"
] | 1.0.0 | 193ec7cad29c4099823e7a0d853b4173ad5d3ab1 | code | 770 | """
function udder()
The cow from a file called cow-n-horn, artist unknown.
# Example
```jldoctest
julia> cowsay("Milking time!", cow=Cowsay.udder)
_______________
< Milking time! >
---------------
\\
\\ (__)
o o\\
('') \\---------
\\ \\
| |\\
||---( )_|| *
|| UU ||
== ==
```
"""
function udder(;eyes="oo", tongue=" ", thoughts="\\")
eye1 = first(eyes)
eye2 = last(eyes)
botheyes = string(eye1, " ", eye2)
the_cow =
"""
$thoughts
$thoughts (__)
$botheyes\\
('') \\---------
$tongue\\ \\
| |\\
||---( )_|| *
|| UU ||
== ==
"""
return the_cow
end
| Cowsay | https://github.com/MillironX/Cowsay.jl.git |
|
[
"MIT"
] | 1.0.0 | 193ec7cad29c4099823e7a0d853b4173ad5d3ab1 | code | 589 | """
function vader_koala
Another canonical koala?
# Example
```jldoctest
julia> cowsay("Luke, you are my joey!", cow=Cowsay.vader_koala)
________________________
< Luke, you are my joey! >
------------------------
\\
\\ .
.---. //
Y|o o|Y//
/_(i=i)K/
~()~*~()~
(_)-(_)
Darth
Vader
koala
```
"""
function vader_koala(;eyes="oo", tongue=" ", thoughts="\\")
the_cow =
"""
$thoughts
$thoughts .
.---. //
Y|o o|Y//
/_(i=i)K/
~()~*~()~
(_)-(_)
Darth
Vader
koala
"""
return the_cow
end
| Cowsay | https://github.com/MillironX/Cowsay.jl.git |
|
[
"MIT"
] | 1.0.0 | 193ec7cad29c4099823e7a0d853b4173ad5d3ab1 | code | 723 | """
function vader()
Cowth Vader, from [email protected]
# Example
```jldoctest
julia> cowsay("Luke, I am your father!", cow=Cowsay.vader)
_________________________
< Luke, I am your father! >
-------------------------
\\ ,-^-.
\\ !oYo!
\\ /./=\\.\\______
## )\\/\\
||-----w||
|| ||
Cowth Vader
```
"""
function vader(;eyes="oo", tongue=" ", thoughts="\\")
the_cow =
"""
$thoughts ,-^-.
$thoughts !oYo!
$thoughts /./=\\.\\______
## )\\/\\
||-----w||
|| ||
Cowth Vader
"""
return the_cow
end
| Cowsay | https://github.com/MillironX/Cowsay.jl.git |
|
[
"MIT"
] | 1.0.0 | 193ec7cad29c4099823e7a0d853b4173ad5d3ab1 | code | 648 | """
function www()
A cow wadvertising the World Wide Web, from [email protected]
# Example
```jldoctest
julia> cowsay("My favorite site is MooTube", cow=Cowsay.www)
_____________________________
< My favorite site is MooTube >
-----------------------------
\\ ^__^
\\ (oo)\\_______
(__)\\ )\\/\\
||--WWW |
|| ||
```
"""
function www(;eyes="oo", tongue=" ", thoughts="\\")
the_cow =
"""
$thoughts ^__^
$thoughts ($eyes)\\_______
(__)\\ )\\/\\
$tongue ||--WWW |
|| ||
"""
return the_cow
end
| Cowsay | https://github.com/MillironX/Cowsay.jl.git |
|
[
"MIT"
] | 1.0.0 | 193ec7cad29c4099823e7a0d853b4173ad5d3ab1 | code | 4240 | using Cowsay
using Test
using Documenter
DocMeta.setdocmeta!(Cowsay, :DocTestSetup, :(using Cowsay); recursive=true)
@testset "cowsay" begin
@testset "Doctests" begin
doctest(Cowsay)
end
@testset "Balloon Formation" begin
# One-liner say balloon
@test Cowsay.sayballoon("One line") == " __________\n< One line >\n ----------\n"
# Two-liner say balloon
@test Cowsay.sayballoon("One line\nTwo line") == " __________\n/ One line \\\n\\ Two line /\n ----------\n"
# Multi-liner say balloon
@test Cowsay.sayballoon("One line\nTwo line\nRed line\nBlue line") == " ___________\n/ One line \\\n| Two line |\n| Red line |\n\\ Blue line /\n -----------\n"
end
@testset "IO Funkiness" begin
# Cowsay with io redirection
@test_warn cowsaid("Moo") cowsay(stderr, "Moo")
# Cowthink with io redirection
@test_warn cowthunk("Moo") cowthink(stderr, "Moo")
end
@testset "Word Wrapping" begin
# Long text, default wrap
@test cowsaid("Rollin' down a long highway out through New Mexico driftin' down to Santa Fe to ride a bull in a rodeo") == " _________________________________________\n/ Rollin' down a long highway out through \\\n| New Mexico driftin' down to Santa Fe to |\n\\ ride a bull in a rodeo /\n -----------------------------------------\n \\ ^__^\n \\ (oo)\\_______\n (__)\\ )\\/\\\n ||----w |\n || ||\n"
# Long text, no wrap
@test cowsaid("Rollin' down a long highway out through New Mexico driftin' down to Santa Fe to ride a bull in a rodeo", nowrap=true) == " ________________________________________________________________________________________________________\n< Rollin' down a long highway out through New Mexico driftin' down to Santa Fe to ride a bull in a rodeo >\n --------------------------------------------------------------------------------------------------------\n \\ ^__^\n \\ (oo)\\_______\n (__)\\ )\\/\\\n ||----w |\n || ||\n"
# Long text, conflicting wrap instructions (nowrap should win)
@test cowsaid("Rollin' down a long highway out through New Mexico driftin' down to Santa Fe to ride a bull in a rodeo", wrap=80, nowrap=true) == " ________________________________________________________________________________________________________\n< Rollin' down a long highway out through New Mexico driftin' down to Santa Fe to ride a bull in a rodeo >\n --------------------------------------------------------------------------------------------------------\n \\ ^__^\n \\ (oo)\\_______\n (__)\\ )\\/\\\n ||----w |\n || ||\n"
# Long text, different wrap amount
@test cowsaid("Rollin' down a long highway out through New Mexico driftin' down to Santa Fe to ride a bull in a rodeo", wrap=80) == " _________________________________________________________________________________\n/ Rollin' down a long highway out through New Mexico driftin' down to Santa Fe to \\\n\\ ride a bull in a rodeo /\n ---------------------------------------------------------------------------------\n \\ ^__^\n \\ (oo)\\_______\n (__)\\ )\\/\\\n ||----w |\n || ||\n"
end
@testset "Cow Modes" begin
@test Cowsay.construct_face!("oo", " ") == ("oo", " ")
@test Cowsay.construct_face!("oo", " "; borg=true) == ("==", " ")
@test Cowsay.construct_face!("oo", " "; dead=true) == ("xx", "U ")
@test Cowsay.construct_face!("oo", " "; greedy=true) == ("\$\$", " ")
@test Cowsay.construct_face!("oo", " "; paranoid=true) == ("@@", " ")
@test Cowsay.construct_face!("oo", " "; stoned=true) == ("**", "U ")
@test Cowsay.construct_face!("oo", " "; tired=true) == ("--", " ")
@test Cowsay.construct_face!("oo", " "; wired=true) == ("OO", " ")
@test Cowsay.construct_face!("oo", " "; young=true) == ("..", " ")
end
end
| Cowsay | https://github.com/MillironX/Cowsay.jl.git |
|
[
"MIT"
] | 1.0.0 | 193ec7cad29c4099823e7a0d853b4173ad5d3ab1 | docs | 1862 | # Changelog
All notable changes to Cowsay.jl will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic
Versioning](https://semver.org/spec/v2.0.0.html).
## Unreleased
### Added
- Cow "modes" (Borg, dead, greedy, etc.)
## [v0.3.1] - 2022-02-01
### Fixed
- Newlines in input message are no longer stripped out during text wrapping
## [v0.3.0] - 2022-02-01
### Added
- `cowsaid` and `cowthunk` functions for getting cow art without printing it
- Optional IO choice for `cowsay` and `cowthink` functions
- Automatic text wrapping
## [v0.2.1] - 2022-01-11
### Added
- `cowthink` function
## [v0.2.0] - 2021-11-29
### Added
- Unit testing via `jldoctest`
- Ability to customize cow art
- Ability to customize cow eyes
- Ability to customize cow tongue
- New cow artwork
- blowfish
- bunny
- cower
- dragon_and_cow
- dragon
- elephant_in_snake
- elephant
- eyes
- flaming_sheep
- fox
- kitty
- koala
- mech_and_cow
- meow
- moofasa
- moose
- mutilated
- sheep
- skeleton
- small
- stegosaurus
- supermilker
- surgery
- three_eyes
- turkey
- turtle
- tux
- udder
- vader_koala
- vader
- www
### Changed
- Default cow abstracted to `Cowsay.default` function
## [v0.1.0] - 2021-09-23 (Unregistered)
### Added
- `cowsay` function for Julia in package format
[unreleased]: https://github.com/MillironX/Cowsay.jl/compare/v0.3.1...HEAD
[v0.3.0]: https://github.com/MillironX/Cowsay.jl/compare/v0.3.0...v0.3.1
[v0.3.0]: https://github.com/MillironX/Cowsay.jl/compare/v0.2.1...v0.3.0
[v0.2.1]: https://github.com/MillironX/Cowsay.jl/compare/v0.2.0...v0.2.1
[v0.2.0]: https://github.com/MillironX/Cowsay.jl/compare/v0.1.0...v0.2.0
[v0.1.0]: https://github.com/MillironX/Cowsay.jl/releases/tag/v0.1.0
| Cowsay | https://github.com/MillironX/Cowsay.jl.git |
|
[
"MIT"
] | 1.0.0 | 193ec7cad29c4099823e7a0d853b4173ad5d3ab1 | docs | 4523 | # Cowsay.jl
```plaintext
___________________
< Cowsay for Juila! >
-------------------
\ ^__^
\ (oo)\_______
(__)\ )\/\
||----w |
|| ||
```
[](https://millironx.com/Cowsay.jl/stable)
[](https://millironx.com/Cowsay.jl/dev)
[](https://github.com/MillironX/Cowsay.jl/actions)
[](https://codecov.io/gh/MillironX/Cowsay.jl)
[](https://pkgs.genieframework.com?packages=Cowsay)
A talking cow library for Julia, based on the [Fedora release of
cowsay](https://src.fedoraproject.org/rpms/cowsay).
## Installation
You can install straight from the [Julia REPL]. Press `]` to enter [pkg mode],
then:
```julia
add Cowsay
```
## Usage
Complete usage info can be found in [the documentation]. Cowsay.jl exports two
functions: `cowsay` and `cowthink`, which print an ASCII cow saying or thinking
a message, respectively.
```julia-repl
julia> using Cowsay
julia> cowsay("Bessie the heifer\nthe queen of all the cows.")
____________________________
/ Bessie the heifer: \
\ the queen of all the cows. /
----------------------------
\ ^__^
\ (oo)\_______
(__)\ )\/\
||----w |
|| ||
julia> cowthink("The farmers who have no livestock,\ntheir lives simply aren't the best")
____________________________________
( The farmers who have no livestock, )
( their lives simply aren't the best )
------------------------------------
o ^__^
o (oo)\_______
(__)\ )\/\
||----w |
|| ||
```
If you want to use talking cows in your program, use the `cowsaid` and
`cowthunk` functions to get strings of the cow art.
```julia-repl
julia> @info string("\n", cowsaid("And the longhorns lowed him a welcome\nAs a new voice cried from the buckboard"))
┌ Info:
│ _________________________________________
│ / And the longhorns lowed him a welcome \
│ \ As a new voice cried from the buckboard /
│ -----------------------------------------
│ \ ^__^
│ \ (oo)\_______
│ (__)\ )\/\
│ ||----w |
└ || ||
```
There are also plenty of [unexported Cowfiles] that you can use to customize
your art.
```julia-repl
julia> cowsay("This heifer must be empty\n'Cuz she ain't puttin' out", cow=Cowsay.udder)
____________________________
/ This heifer must be empty \
\ 'Cuz she ain't puttin' out /
----------------------------
\
\ (__)
o o\
('') \---------
\ \
| |\
||---( )_|| *
|| UU ||
== ==
```
You can also change the eyeballs and tongue of your cow.
```julia-repl
julia> cowsay("You better watch your step\nwhen you know the chips are down!", tongue=" U", eyes="00")
___________________________________
/ You better watch your step \
\ when you know the chips are down! /
-----------------------------------
\ ^__^
\ (00)\_______
(__)\ )\/\
U ||----w |
|| ||
```
And even change its emotional or physical state using modes.
```julia-repl
julia> cowsay("He mooed we must fight\nEscape or we'll die\nCows gathered around\n'Cause the steaks were so high"; dead=true)
________________________________
/ He mooed we must fight \
| Escape or we'll die |
| Cows gathered around |
\ 'Cause the steaks were so high /
--------------------------------
\ ^__^
\ (xx)\_______
(__)\ )\/\
U ||----w |
|| ||
```
## Contributing
If you find a bug in Cowsay.jl, please [file an issue]. I will not be accepting
any requests for new cowfiles in this repo, though.
[file an issue]: https://github.com/MillironX/Cowsay.jl/issues
[julia repl]: https://docs.julialang.org/en/v1/manual/getting-started/
[pkg mode]: https://docs.julialang.org/en/v1/stdlib/Pkg/
[the documentation]: https://millironx.com/Cowsay.jl/stable
[unexported cowfiles]: https://millironx.com/Cowsay.jl/stable/cows/
| Cowsay | https://github.com/MillironX/Cowsay.jl.git |
|
[
"MIT"
] | 1.0.0 | 193ec7cad29c4099823e7a0d853b4173ad5d3ab1 | docs | 1671 | # Making a cow function
The original cowsay used Perl scripts (called 'cowfiles') to allow for creating more ASCII
cow art. Cowsay.jl uses Julia functions, instead. In order to be usable by `Cowsay.cowsay`,
a cow function **must**
1. Take the correct arguments
The function must take three (3)
[keyword arguments](https://docs.julialang.org/en/v1/manual/functions/#Keyword-Arguments)
of the form
- `eyes::AbstractString="oo"`
- `tongue::AbstractString=" "`
- `thoughts::AbstractString="\\"`
When drawing the cow artwork, you may then use the variables `eyes` in place of the
eyes, `tongue` in place of the tongue, and `thoughts` in place of the speech ballon
trail. Use of these variables in constructing the cow is optional (but makes the use of
your cow function far more fun), but all three arguments must be present in the
signature, regardless.
2. Return a string
The cow artwork must be returned from the function as a string. This is distinctly
different from how the original cowsay modified the `$the_cow` variable.
## Helpful hints for making cow functions
1. Include one function per file, with the extension `.cow.jl`
2. Do not indent within a `.cow.jl` file to better see the artwork
3. Make use of string literals (`"""`) and string interpolation (`$`) to build the cow
art
4. Be sure to escape backslashes (`\`) and dollar signs (`$`) within your artwork
5. When converting from Perl cowfiles, _unescape_ at symbols (`@`), as these are
**not** special in Julia strings
6. Split the `eyes` variable to get individual left- and right-eye when creating large cow
functions
7. Have fun!
| Cowsay | https://github.com/MillironX/Cowsay.jl.git |
|
[
"MIT"
] | 1.0.0 | 193ec7cad29c4099823e7a0d853b4173ad5d3ab1 | docs | 647 | # Cows
Examples of all the cowfiles available.
## Bovine
```@docs
Cowsay.default
Cowsay.cower
Cowsay.moofasa
Cowsay.mutilated
Cowsay.skeleton
Cowsay.small
Cowsay.supermilker
Cowsay.three_eyes
Cowsay.udder
Cowsay.vader
Cowsay.www
```
## Mascots
```@docs
Cowsay.blowfish
Cowsay.elephant
Cowsay.tux
```
## Cows and friends
```@docs
Cowsay.dragon_and_cow
Cowsay.mech_and_cow
Cowsay.surgery
```
## Other
```@docs
Cowsay.bunny
Cowsay.dragon
Cowsay.elephant_in_snake
Cowsay.eyes
Cowsay.flaming_sheep
Cowsay.fox
Cowsay.kitty
Cowsay.koala
Cowsay.meow
Cowsay.moose
Cowsay.sheep
Cowsay.stegosaurus
Cowsay.turkey
Cowsay.turtle
Cowsay.vader_koala
```
| Cowsay | https://github.com/MillironX/Cowsay.jl.git |
|
[
"MIT"
] | 1.0.0 | 193ec7cad29c4099823e7a0d853b4173ad5d3ab1 | docs | 208 | ```@meta
CurrentModule = Cowsay
```
# Cowsay.jl
A Julia package that lets you use
[cowsay](https://en.wikipedia.org/wiki/Cowsay) in your Julia programs!
## Usage
```@docs
Cowsay.cowsay
Cowsay.cowsaid
```
| Cowsay | https://github.com/MillironX/Cowsay.jl.git |
|
[
"MIT"
] | 0.4.2 | f00e7a1d7777e3697be7d567a00b31d6ff700034 | code | 311 | using Pkg; Pkg.add("Documenter")
using Documenter, GeneralizedSasakiNakamura
makedocs(
sitename="GeneralizedSasakiNakamura.jl",
format = Documenter.HTML(
prettyurls = get(ENV, "CI", nothing) == "true"
)
)
deploydocs(
repo = "github.com/ricokaloklo/GeneralizedSasakiNakamura.jl.git",
)
| GeneralizedSasakiNakamura | https://github.com/ricokaloklo/GeneralizedSasakiNakamura.jl.git |
|
[
"MIT"
] | 0.4.2 | f00e7a1d7777e3697be7d567a00b31d6ff700034 | code | 114325 | module AsymptoticExpansionCoefficients
using TaylorSeries
using ..Kerr
using ..Coordinates
export outgoing_coefficient_at_inf, ingoing_coefficient_at_inf
export outgoing_coefficient_at_hor, ingoing_coefficient_at_hor
const I = 1im # Mathematica being Mathematica
_DEFAULTDATATYPE = ComplexF64 # Double precision by default
function PminusInf_z(s::Int, m::Int, a, omega, lambda, z)
if s == 0
return begin
-((2*I*(omega + a^2*z^4*(-I + a^2*omega) + z^2*(I + 2*a^2*omega)))/
((1 + a^2*z^2)*(1 - 2*z + a^2*z^2)))
end
elseif s == 1
return begin
((1 + a^2*z^2)*(-((2*(-1 + z)*z)/(1 + a^2*z^2)) - (2*z*(1 - 2*z + a^2*z^2))/
(1 + a^2*z^2)^2 + (2*a*z^2*(1 - 2*z + a^2*z^2)*((-I)*m*(1 + 3*a^2*z^2) +
a*z*(3 + 3*z + 2*lambda + 2*a^2*z^2*(1 + lambda))))/((1 + a^2*z^2)*
(2 - 2*I*a*m*z - 2*I*a^3*m*z^3 + lambda + a^4*z^4*(1 + lambda) +
a^2*z^2*(3 + 2*z + 2*lambda))) - 2*I*omega))/(1 - 2*z + a^2*z^2)
end
elseif s == -1
return begin
(1/(1 - 2*z + a^2*z^2))*((1 + a^2*z^2)*(-((2*(-1 + z)*z)/(1 + a^2*z^2)) -
(2*z*(1 - 2*z + a^2*z^2))/(1 + a^2*z^2)^2 +
(2*a*z^2*(1 - 2*z + a^2*z^2)*(I*m*(1 + 3*a^2*z^2) +
a*z*(-1 + 3*z + 2*a^2*z^2*(-1 + lambda) + 2*lambda)))/
((1 + a^2*z^2)*(2*I*a*m*z + 2*I*a^3*m*z^3 + a^4*z^4*(-1 + lambda) + lambda +
a^2*z^2*(-1 + 2*z + 2*lambda))) - 2*I*omega))
end
elseif s == 2
return begin
(1/(1 - 2*z + a^2*z^2))*((1 + a^2*z^2)*(-((2*(-1 + z)*z)/(1 + a^2*z^2)) -
(2*z*(1 - 2*z + a^2*z^2))/(1 + a^2*z^2)^2 - 2*I*omega +
(8*a*z^2*(1 - 2*z + a^2*z^2)*(-6*a*m^2*z + I*m*(-4 + 9*a^2*z^2 - lambda +
z*(-6 - 12*I*a^2*omega)) + a*(6*a^2*z^3 + I*(1 + lambda)*omega + z^2*(-9 - 9*I*a^2*omega) +
z*(3 + 6*I*omega - 6*a^2*omega^2))))/((1 + a^2*z^2)*(24 + 10*lambda + lambda^2 -
4*I*a*m*(6*z^2 + 2*z*(4 + lambda) + 3*I*omega) + 12*I*omega + 24*a^3*m*z^2*(I*z + 2*omega) +
12*a^4*z^2*(z^2 - 2*I*z*omega - 2*omega^2) - 4*a^2*(6*z^3 + z^2*(-3 + 6*m^2 - 6*I*omega) -
2*I*z*(1 + lambda)*omega + 3*omega^2)))))
end
elseif s == -2
return begin
(1/(1 - 2*z + a^2*z^2))*((1 + a^2*z^2)*(-((2*(-1 + z)*z)/(1 + a^2*z^2)) - (2*z*(1 - 2*z + a^2*z^2))/(1 + a^2*z^2)^2 - 2*I*omega +
(8*a*z^2*(1 - 2*z + a^2*z^2)*(I*m*(6*z + lambda) + 3*a^2*m*z*(-3*I*z + 4*omega) -
a*(9*z^2 + z*(-3 + 6*m^2 + 6*I*omega) + I*(-3 + lambda)*omega) + 3*a^3*z*(2*z^2 + 3*I*z*omega - 2*omega^2)))/
((1 + a^2*z^2)*(2*lambda + lambda^2 - 12*I*omega + 24*a^3*m*z^2*((-I)*z + 2*omega) + 4*a*m*(6*I*z^2 + 2*I*z*lambda + 3*omega) +
12*a^4*z^2*(z^2 + 2*I*z*omega - 2*omega^2) - 4*a^2*(6*z^3 + z^2*(-3 + 6*m^2 + 6*I*omega) + 2*I*z*(-3 + lambda)*omega + 3*omega^2)))))
end
else
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
end
function QminusInf_z(s::Int, m::Int, a, omega, lambda, z)
if s == 0
return begin
-((z^2*(-2*z*(-1 + lambda) + lambda - 4*a^2*z^3*(1 + lambda) - 2*a^4*z^5*(3 + lambda) + 2*a*m*omega +
a^6*z^6*(1 - m^2 + lambda + 2*a*m*omega) + a^2*z^4*(8 + a^2*(2 - 2*m^2 + 3*lambda) +
6*a^3*m*omega) + z^2*(-4 + a^2*(1 - m^2 + 3*lambda) + 6*a^3*m*omega)))/
((1 + a^2*z^2)^2*(1 - 2*z + a^2*z^2)^2))
end
elseif s == 1
return begin
(z^2*(-4 - lambda^2 + 2*a^12*z^12*(1 + lambda) - 8*a*m*omega - 4*I*a^10*z^11*(1 + lambda)*
(-3*I + a^2*omega) - 2*lambda*(2 + a*m*omega) - a^4*z^6*(52 + 32*lambda + 2*I*a*m*(31 + 6*lambda) +
a^2*(71 + 10*lambda^2 - 3*m^2*(3 + 2*lambda) + 8*lambda*(7 - 6*I*omega)) +
4*a^3*m*(17 + 5*lambda)*omega) + 2*a^6*z^9*(8 - 6*I*a*m +
a^2*(-3 + 3*m^2 - 4*lambda + lambda^2 + 4*I*omega) + 2*I*a^4*(m^2 - 5*(1 + lambda))*omega +
a^3*m*(4*I - I*m^2 + I*lambda + 2*omega)) +
2*z*((2 + lambda)^2 + 2*I*a^2*(-1 + m^2 - lambda)*omega + a*m*(2*I + I*lambda + 4*omega)) +
2*a^3*z^5*(14*I*m + a*(69 - m^2 + 48*lambda + 6*lambda^2 + 28*I*omega) +
4*I*a^3*(3*m^2 - 5*(1 + lambda))*omega + 3*a^2*m*(6*I - I*m^2 + 2*I*lambda + 6*omega)) +
2*a^4*z^7*(-4 + 8*I*a*m + 4*a^2*(10 + m^2 + 7*lambda + lambda^2 + 5*I*omega) +
4*I*a^4*(2*m^2 - 5*(1 + lambda))*omega + a^3*m*(14*I - 3*I*m^2 + 4*I*lambda + 10*omega)) +
2*a^2*z^3*(36 - 2*m^2 + 26*lambda + 4*lambda^2 + 12*I*omega + 2*I*a^2*(4*m^2 - 5*(1 + lambda))*omega +
a*m*(10*I - I*m^2 + 4*I*lambda + 14*omega)) -
a^8*z^10*(-6*I*a*m - 8*(1 + 2*lambda) + 2*a^3*m*(3 + lambda)*omega +
a^2*(1 - m^2*(-1 + lambda) + lambda^2 - 4*I*omega - 8*I*lambda*omega)) -
a*z^2*(4*I*m*(2 + lambda) + 2*a^2*m*(19 + 5*lambda)*omega +
a*(28 + 24*lambda + 5*lambda^2 - m^2*(4 + lambda) + 4*I*omega - 8*I*lambda*omega)) -
a^2*z^4*(24*(2 + lambda) + 2*I*a*m*(23 + 6*lambda) + 4*a^3*m*(18 + 5*lambda)*omega +
a^2*(67 + 54*lambda + 10*lambda^2 - m^2*(11 + 4*lambda) + 8*I*omega - 32*I*lambda*omega)) +
a^6*z^8*(4 + 8*lambda - 2*I*a*m*(9 + 2*lambda) - 2*a^3*m*(16 + 5*lambda)*omega +
a^2*(-31 - 24*lambda - 5*lambda^2 + m^2*(1 + 4*lambda) + 8*I*omega + 32*I*lambda*omega))))/
((1 + a^2*z^2)^2*(1 - 2*z + a^2*z^2)^2*(2 - 2*I*a*m*z - 2*I*a^3*m*z^3 + lambda +
a^4*z^4*(1 + lambda) + a^2*z^2*(3 + 2*z + 2*lambda)))
end
elseif s == -1
return begin
(z^2*((-1 + 2*z)*lambda^2 + a^2*z*(m^2*(-4*z^2 + z*(2 + lambda) - 4*I*omega) +
lambda*(-24*z^3 + 4*z^2*(5 + 2*lambda) + z*(-4 - 5*lambda + 8*I*omega) - 4*I*omega)) +
2*I*a*m*lambda*(-z + 2*z^2 + I*omega) + 2*a^12*z^11*(-1 + lambda)*(z - 2*I*omega) -
2*a^11*m*z^10*(-5 + lambda)*omega + 2*a^9*m*z^8*(-3*I*z^2 + I*z*(-2 + m^2 - lambda + 10*I*omega) -
5*(-4 + lambda)*omega) + 2*I*a^7*m*z^6*(6*z^3 + z^2*(5 + 2*lambda) +
z*(-6 + 3*m^2 - 4*lambda + 30*I*omega) + 10*I*(-3 + lambda)*omega) +
2*I*a^5*m*z^4*(-8*z^3 + z^2*(19 + 6*lambda) + 3*z*(-2 + m^2 - 2*lambda + 10*I*omega) +
10*I*(-2 + lambda)*omega) + 2*I*a^3*m*z^2*(-14*z^3 + z^2*(11 + 6*lambda) +
z*(-2 + m^2 - 4*lambda + 10*I*omega) + 5*I*(-1 + lambda)*omega) -
a^10*z^9*(12*z^2*(-1 + lambda) + 4*I*(-4 + m^2 + 5*lambda)*omega +
z*(5 - m^2*(-3 + lambda) - 4*lambda + lambda^2 + 16*I*omega - 8*I*lambda*omega)) +
a^4*z^3*(-8*z^4 - 4*z^3*(-3 + 8*lambda) - 2*z^2*(3 + m^2 - 24*lambda - 6*lambda^2 - 8*I*omega) -
4*I*(-1 + 4*m^2 + 5*lambda)*omega + z*(1 - 14*lambda - 10*lambda^2 + m^2*(3 + 4*lambda) - 16*I*omega +
32*I*lambda*omega)) + a^8*z^7*(8*z^3*(-3 + 2*lambda) +
2*z^2*(9 + 3*m^2 - 8*lambda + lambda^2 + 8*I*omega) - 8*I*(-3 + 2*m^2 + 5*lambda)*omega +
z*(-3 - 4*lambda - 5*lambda^2 + m^2*(-7 + 4*lambda) - 48*I*omega + 32*I*lambda*omega)) +
a^6*z^5*(16*z^4 + 4*z^3*(-3 + 2*lambda) + 8*z^2*(m^2 + 3*lambda + lambda^2 + 4*I*omega) -
8*I*(-2 + 3*m^2 + 5*lambda)*omega + z*(1 - 16*lambda - 10*lambda^2 + m^2*(-3 + 6*lambda) - 48*I*omega +
48*I*lambda*omega))))/((1 + a^2*z^2)^2*(1 - 2*z + a^2*z^2)^2*
(2*I*a*m*z + 2*I*a^3*m*z^3 + a^4*z^4*(-1 + lambda) + lambda + a^2*z^2*(-1 + 2*z + 2*lambda)))
end
elseif s == 2
return begin
(z^2*(24*a^12*z^12 - lambda^3 - 48*I*a^10*z^11*(-3*I + a^2*omega) - 2*lambda^2*(8 + a*m*omega) +
4*lambda*(-21 - 3*(I + 4*a*m)*omega + 7*a^2*omega^2) -
12*a^8*z^10*(-24 + 6*I*a*m - a^2*(5 + 3*m^2 + 20*I*omega) + 4*a^4*omega^2) +
8*I*a^6*z^9*(24*I + 18*a*m + 3*I*a^2*(9 + m^2 + 12*I*omega) +
a^3*m*(19 - 3*m^2 + 4*lambda + 18*I*omega) + a^4*(-31 + 15*m^2 - 4*lambda - 24*I*omega)*omega -
24*a^5*m*omega^2 + 12*a^6*omega^3) + 8*(-18 - (9*I + 23*a*m)*omega +
a*(-3*I*m + a*(11 - 3*m^2))*omega^2 + 3*a^3*m*omega^3) +
a^3*z^6*(384*I*m + 8*I*a^2*m*(-177 + 18*m^2 - 53*lambda - 2*lambda^2 + 24*I*omega) +
16*a*(-33 + 12*m^2 - 10*lambda - lambda^2 - 36*I*omega) +
a^3*(-756 - 48*m^4 - lambda^3 + lambda^2*(-41 + 16*I*omega) + lambda*(-334 + 364*I*omega) +
m^2*(564 + 106*lambda + lambda^2 - 756*I*omega) + 780*I*omega) +
2*a^4*m*(-506 + 126*m^2 - 132*lambda - lambda^2 + 588*I*omega)*omega +
4*a^5*(49 - 93*m^2 + 37*lambda - 144*I*omega)*omega^2 + 168*a^6*m*omega^3) +
a*z^4*(96*I*m + 8*I*a^2*m*(-202 + 9*m^2 - 65*lambda - 4*lambda^2) -
8*a*(120 + 50*lambda + 5*lambda^2 + 72*I*omega) + a^3*(-1068 - 24*m^4 - 3*lambda^3 +
lambda^2*(-74 + 32*I*omega) + 2*m^2*(246 + 58*lambda + lambda^2 - 288*I*omega) +
lambda*(-512 + 388*I*omega) + 488*I*omega) + 6*a^4*m*(-224 + 36*m^2 - 60*lambda - lambda^2 +
172*I*omega)*omega + 12*a^5*(38 - 34*m^2 + 17*lambda - 48*I*omega)*omega^2 + 216*a^6*m*omega^3) +
4*I*a*z^3*(12*m*(3 + lambda) + I*a*(-408 - 194*lambda - 27*lambda^2 - lambda^3 + 16*m^2*(4 + lambda) -
168*I*omega) - 12*a^4*m*(17 + lambda)*omega^2 + 96*a^5*omega^3 +
2*a^3*omega*(-53 - 26*lambda - 3*lambda^2 + m^2*(79 + 7*lambda) + 60*I*omega + 24*I*lambda*omega) -
2*a^2*m*(-98 - 35*lambda - 3*lambda^2 + m^2*(10 + lambda) + 128*I*omega + 32*I*lambda*omega)) +
2*I*a^3*z^5*(24*m*(9 + 4*lambda) - 24*a^4*m*(25 + lambda)*omega^2 + 288*a^5*omega^3 +
4*a^3*omega*(-89 - 35*lambda - 3*lambda^2 + m^2*(113 + 8*lambda) + 51*I*omega + 27*I*lambda*omega) -
4*a^2*m*(-143 - 44*lambda - 3*lambda^2 + m^2*(23 + 2*lambda) + 181*I*omega + 43*I*lambda*omega) +
I*a*(-924 - 394*lambda - 47*lambda^2 - lambda^3 + 4*m^2*(91 + 16*lambda) - 300*I*omega +
84*I*lambda*omega)) + 4*a^6*z^8*(36 - 24*m^2 + 6*a^3*m*(4*m^2 - 3*(4 + lambda - 6*I*omega))*
omega - 2*a^4*(7 + 15*m^2 - 5*lambda + 24*I*omega)*omega^2 + 12*a^5*m*omega^3 +
2*a*m*(-44*I + 9*I*m^2 - 11*I*lambda + 36*omega) -
a^2*(39 + 6*m^4 + 20*lambda + 2*lambda^2 + m^2*(-65 - 8*lambda + 78*I*omega) - 142*I*omega -
22*I*lambda*omega + 48*omega^2)) + 8*I*a^4*z^7*(-12*I + 6*a*m*(-5 + lambda) +
I*a^2*(m^2*(62 + 8*lambda) - 3*(24 + lambda^2 + 2*lambda*(5 - I*omega) + 10*I*omega)) +
a^3*m*(88 + lambda^2 - m^2*(16 + lambda) + lambda*(23 - 18*I*omega) - 66*I*omega) -
2*a^5*m*(49 + lambda)*omega^2 + 48*a^6*omega^3 + a^4*omega*(-73 - lambda^2 + 3*m^2*(23 + lambda) -
14*I*omega + 10*I*lambda*(2*I + omega))) + 2*z*((9 + lambda)*(24 + 10*lambda + lambda^2 + 12*I*omega) -
8*I*a^3*m*(13 + lambda)*omega^2 + 48*I*a^4*omega^3 -
4*a^2*omega*(12*I + I*lambda^2 - 2*I*m^2*(10 + lambda) + 19*omega + 7*lambda*(I + omega)) +
4*a*m*(24*I + I*lambda^2 + 31*omega + lambda*(10*I + 7*omega))) +
z^2*(-8*I*a*m*(60 + 23*lambda + 2*lambda^2 + 6*I*omega) - 12*(24 + 10*lambda + lambda^2 + 12*I*omega) +
6*a^3*m*(-134 + 10*m^2 - 36*lambda - lambda^2 + 44*I*omega)*omega +
4*a^4*(85 - 45*m^2 + 31*lambda - 48*I*omega)*omega^2 + 120*a^5*m*omega^3 +
a^2*(-3*lambda^3 + lambda^2*(-57 + 16*I*omega) + lambda*(-342 + 100*I*omega) +
m^2*(152 + 42*lambda + lambda^2 - 132*I*omega) - 12*(54 + 3*I*omega + 4*omega^2)))))/
((1 + a^2*z^2)^2*(1 - 2*z + a^2*z^2)^2*(24 + 10*lambda + lambda^2 -
4*I*a*m*(6*z^2 + 2*z*(4 + lambda) + 3*I*omega) + 12*I*omega + 24*a^3*m*z^2*(I*z + 2*omega) +
12*a^4*z^2*(z^2 - 2*I*z*omega - 2*omega^2) - 4*a^2*(6*z^3 + z^2*(-3 + 6*m^2 - 6*I*omega) -
2*I*z*(1 + lambda)*omega + 3*omega^2)))
end
elseif s == -2
return begin
(z^2*(-((-1 + 2*z)*(-2 + 6*z - lambda)*(2*lambda + lambda^2 - 12*I*omega)) - 48*a^11*m*z^8*omega*(3*z^2 - omega^2) +
24*a^12*z^10*(z^2 - 2*I*z*omega + 4*omega^2) - 4*a^10*z^8*(36*z^3 - 3*z^2*(5 + 3*m^2 + 8*I*omega) + 6*(-17 + 5*m^2 - lambda)*omega^2 +
2*z*omega*(39*I + 3*I*m^2 - 4*I*lambda + 24*omega)) + 8*a^9*m*z^6*(9*I*z^4 + z^2*(-72 + 12*m^2 - 7*lambda - 6*I*omega)*omega +
2*I*z*(-3 + lambda)*omega^2 + 21*omega^3 + z^3*(-3*I + 3*I*m^2 - 4*I*lambda + 30*omega)) -
2*I*a^7*m*z^4*(72*z^5 + 4*z^4*(9*m^2 - 11*lambda + 12*I*omega) + I*z^2*(-426 + 126*m^2 - 92*lambda - lambda^2 - 12*I*omega)*omega -
24*z*(-3 + lambda)*omega^2 + 108*I*omega^3 + 4*z^3*(12 + 15*lambda + lambda^2 - m^2*(12 + lambda) + 150*I*omega + 14*I*lambda*omega)) -
2*I*a^3*m*(192*z^6 + 24*z^5*(-7 + 4*lambda) + 4*z^4*(-6 + 9*m^2 - 33*lambda - 4*lambda^2 - 72*I*omega) - 8*z*(-3 + lambda)*omega^2 + 12*I*omega^3 -
z^2*omega*(90*I - 30*I*m^2 + 52*I*lambda + 3*I*lambda^2 + 60*omega) + 4*z^3*(6 + 11*lambda + 3*lambda^2 - m^2*(6 + lambda) + 84*I*omega +
20*I*lambda*omega)) - 2*I*a^5*m*z^2*(24*z^5*(-9 + lambda) + 4*z^4*(3 + 18*m^2 - 37*lambda - 2*lambda^2 - 96*I*omega) +
3*I*z^2*(-96 + 36*m^2 - 36*lambda - lambda^2 + 20*I*omega)*omega - 24*z*(-3 + lambda)*omega^2 + 60*I*omega^3 +
4*z^3*(15 + 20*lambda + 3*lambda^2 - m^2*(15 + 2*lambda) + 189*I*omega + 31*I*lambda*omega)) +
4*a^8*z^6*(-6*(9 + m^2)*z^3 + 72*z^4 + z^2*(9 - 6*m^4 - 2*lambda^2 + lambda*(-4 - 22*I*omega) + m^2*(33 + 8*lambda + 30*I*omega) + 258*I*omega) +
3*(55 - 31*m^2 + 7*lambda)*omega^2 - 2*z*omega*(87*I - I*lambda^2 + 3*I*m^2*(3 + lambda) + 114*omega + 6*lambda*(-2*I + omega))) +
2*a*m*(-48*I*z^4 - 24*I*z^3*(-1 + lambda) + 4*I*z^2*(7*lambda + 2*lambda^2 + 18*I*omega) - (12 + 8*lambda + lambda^2 - 12*I*omega)*omega +
4*z*((-I)*lambda^2 + 15*omega + lambda*(-2*I + 3*omega))) - a^2*(8*z^4*(10*lambda + 5*lambda^2 - 72*I*omega) -
4*z^3*((26 - 16*m^2)*lambda + 15*lambda^2 + lambda^3 - 240*I*omega) + 12*(-2 + 2*m^2 - lambda)*omega^2 +
z^2*(3*lambda^3 + lambda^2*(21 - m^2 + 16*I*omega) + lambda*(30 - 34*m^2 - 28*I*omega) + 12*I*(-35 + 5*m^2 + 12*I*omega)*omega) +
8*z*omega*(6*I - I*lambda^2 + 15*omega + lambda*(I + 2*I*m^2 + 3*omega))) +
a^4*z^2*(96*z^5 + 16*z^4*(-9 + 12*m^2 - 2*lambda - lambda^2 + 36*I*omega) + 60*(3 - 3*m^2 + lambda)*omega^2 +
2*z^3*(36 + 66*lambda + 35*lambda^2 + lambda^3 - 4*m^2*(27 + 16*lambda) - 1068*I*omega + 84*I*lambda*omega) -
8*z*omega*(39*I - 3*I*lambda^2 + I*m^2*(3 + 7*lambda) + 84*omega + 2*lambda*(-I + 6*omega)) -
z^2*(24*m^4 + 3*lambda^3 - 2*m^2*(30 + 50*lambda + lambda^2) + lambda^2*(38 + 32*I*omega) + 4*lambda*(16 + 33*I*omega) -
12*(-1 + 134*I*omega + 48*omega^2))) - a^6*z^4*(48*(-3 + 2*m^2)*z^4 + 192*z^5 +
8*z^3*(m^2*(30 + 8*lambda) - 3*(lambda^2 + lambda*(2 + 2*I*omega) - 54*I*omega)) + 12*(-42 + 34*m^2 - 9*lambda)*omega^2 +
8*z*omega*(87*I - 3*I*lambda^2 + I*m^2*(9 + 8*lambda) + 159*omega + lambda*(-11*I + 15*omega)) +
z^2*(48*m^4 + lambda^3 + lambda^2*(29 + 16*I*omega) - m^2*(156 + 98*lambda + lambda^2 + 180*I*omega) + lambda*(54 + 236*I*omega) -
12*(-1 + 179*I*omega + 48*omega^2)))))/((1 + a^2*z^2)^2*(1 - 2*z + a^2*z^2)^2*
(2*lambda + lambda^2 - 12*I*omega + 24*a^3*m*z^2*((-I)*z + 2*omega) + 4*a*m*(6*I*z^2 + 2*I*z*lambda + 3*omega) +
12*a^4*z^2*(z^2 + 2*I*z*omega - 2*omega^2) - 4*a^2*(6*z^3 + z^2*(-3 + 6*m^2 + 6*I*omega) + 2*I*z*(-3 + lambda)*omega + 3*omega^2)))
end
else
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
end
# Cache mechanism for the ingoing coefficients at infinity
# Initialize the cache with a set of fiducial parameters
_cached_ingoing_coefficients_at_inf_params::NamedTuple{(:s, :m, :a, :omega, :lambda), Tuple{Int, Int, _DEFAULTDATATYPE, _DEFAULTDATATYPE, _DEFAULTDATATYPE}} = (s=-2, m=2, a=0, omega=0.5, lambda=1)
_cached_ingoing_coefficients_at_inf::NamedTuple{(:expansion_coeffs, :Pcoeffs, :Qcoeffs), Tuple{Vector{_DEFAULTDATATYPE}, Vector{_DEFAULTDATATYPE}, Vector{_DEFAULTDATATYPE}}} = (
expansion_coeffs = [_DEFAULTDATATYPE(1.0)],
Pcoeffs = [_DEFAULTDATATYPE(0.0)],
Qcoeffs = [_DEFAULTDATATYPE(0.0)]
)
function ingoing_coefficient_at_inf(s::Int, m::Int, a, omega, lambda, order::Int)
#=
We have derived/shown the explicit expression for
different physically-relevant spin weight (s=0, \pm 1, \pm2)
for up to (1/r)^3, which is probably more than enough
But we have also shown a recurrence relation where
one can generate as higher an order as one pleases.
However, the recurrence relation that we have
actually depends *all* previous terms so this function
is designed to be evaluated recursively to build
the full list of coefficients
=#
global _cached_ingoing_coefficients_at_inf_params
global _cached_ingoing_coefficients_at_inf
if order < 0
throw(DomainError(order, "Only positive expansion order is supported"))
end
if order == 0
return 1.0 # This is always 1.0
elseif order == 1
if s == 0
return (-(1/2))*I*(lambda + 2*a*m*omega)
elseif s == +1
return begin
-((I*(4 + lambda^2 + 8*a*m*omega + 2*lambda*(2 + a*m*omega)))/
(2*(2 + lambda)))
end
elseif s == -1
return (-(1/2))*I*(lambda + 2*a*m*omega)
elseif s == +2
return begin
(I*(-lambda^3 - 2*lambda^2*(8 + a*m*omega) +
4*lambda*(-21 - 3*(I + 4*a*m)*omega + 7*a^2*omega^2) +
8*(-18 - (9*I + 23*a*m)*omega +
a*(11*a - 3*I*m - 3*a*m^2)*omega^2 +
3*a^3*m*omega^3)))/(2*(10*lambda + lambda^2 +
12*(2 + (I + a*m)*omega - a^2*omega^2)))
end
elseif s == -2
return (-(1/2))*I*(2 + lambda + 2*a*m*omega)
else
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
elseif order == 2
if s == 0
return begin
(1/8)*(-((-2 + lambda)*lambda) - 4*(I + a*m*(-1 + lambda))*omega -
4*a*m*(2*I + a*m)*omega^2)
end
elseif s == +1
return begin
-((lambda^3 + 4*lambda^2*(1 + a*m*omega) +
8*a*omega*(m*(2 + 2*I*omega) - a*omega + 3*a*m^2*omega) +
4*lambda*(1 + a*m*(5 + 2*I*omega)*omega + a^2*(-2 + m^2)*omega^2))/
(8*(2 + lambda)))
end
elseif s == -1
return begin
(1/8)*(-lambda^2 + lambda*(2 - 4*a*m*omega) +
4*a*omega*(m + 2*a*omega - m*(2*I + a*m)*omega))
end
elseif s == +2
return begin
-((lambda^4 + 4*lambda^3*(5 + a*m*omega) +
4*lambda^2*(37 + 2*a*m*(13 + I*omega)*omega +
a^2*(-11 + m^2)*omega^2) -
8*lambda*(-60 + 8*a*m*(-11 - 2*I*omega)*omega +
a^2*(39 - 19*m^2)*omega^2 + 14*a^3*m*omega^3) -
16*(a^2*(34 + m^2*(-49 - 9*I*omega) + 3*I*omega)*
omega^2 + a^3*m*(43 - 3*m^2 + 6*I*omega)*omega^3 +
3*a^4*(-4 + m^2)*omega^4 - 9*(4 + omega^2) +
2*a*m*omega*(-44 - 15*I*omega + 3*omega^2)))/
(8*(10*lambda + lambda^2 + 12*(2 + (I + a*m)*omega -
a^2*omega^2))))
end
elseif s == -2
return begin
(1/8)*((-lambda)*(2 + lambda) - 4*(-3*I + a*m*(1 + lambda))*omega -
4*a*m*(2*I + a*m)*omega^2)
end
else
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
elseif order == 3
if s == 0
return begin
(1/48)*(I*(-6 + lambda)*(-2 + lambda)*lambda +
2*(12 - 18*lambda + I*a*m*(12 + lambda*(-16 + 3*lambda)))*omega +
4*I*a*(3*a*m^2*(-2 + lambda) + 2*a*(-1 + lambda) +
6*I*m*(1 + lambda))*omega^2 +
8*I*a*m*(-8 + 6*I*a*m + a^2*(2 + m^2))*omega^3)
end
elseif s == +1
return begin
(1/(48*(2 + lambda)))*(I*(lambda^4 + 6*a*m*lambda^3*omega +
4*lambda^2*(-3 + (6*I + 4*a*m)*omega +
a*(-4*a + 6*I*m + 3*a*m^2)*omega^2) +
8*lambda*(-2 + (12*I - 5*a*m)*omega +
a*(12*I*m + a*(-4 + 9*m^2))*omega^2 +
a*m*(-8 + 6*I*a*m + a^2*(-4 + m^2))*omega^3) +
16*omega*(6*I + a^3*m*(-1 + 4*m^2)*omega^2 +
3*I*a^2*omega*(I - 2*omega + 4*m^2*omega) +
a*m*(-3 + 12*I*omega - 8*omega^2))))
end
elseif s == -1
return begin
(1/48)*I*(lambda^3 + lambda^2*(-8 + 6*a*m*omega) +
8*a*omega*(a*omega + m*(2 - 3*a*m*omega +
(-8 + 6*I*a*m + a^2*(-4 + m^2))*omega^2)) +
4*lambda*(3 + omega*(6*I + a*(-4*a*omega +
m*(-8 + 3*(2*I + a*m)*omega)))))
end
elseif s == +2
return begin
-((I*(-lambda^5 - 2*lambda^4*(10 + 3*a*m*omega) -
4*lambda^3*(37 + 2*a*m*(20 + 3*I*omega)*omega +
a^2*(-13 + 3*m^2)*omega^2) -
8*lambda^2*(60 + 2*a^2*(-29 + 3*m^2*(9 + I*omega))*
omega^2 + a^3*m*(-31 + m^2)*omega^3 +
a*m*omega*(157 + 48*I*omega - 8*omega^2)) +
16*lambda*(a^2*(91 + m^2*(-210 - 81*I*omega) + 9*I*omega)*
omega^2 + 2*a^3*m*(73 - 13*m^2 + 21*I*omega)*
omega^3 + 3*a^4*(-10 + 7*m^2)*omega^4 -
9*(4 + omega^2) + 2*a*m*omega*(-116 - 63*I*omega +
29*omega^2)) + 96*a*omega*((-a^3)*m^4*omega^3 +
a*omega*(18 + 9*I*omega - 11*a^2*omega^2) +
a^2*m^3*omega^2*(-28 - 7*I*omega + a^2*omega^2) +
a*m^2*omega*(-70 - 55*I*omega + 2*(7 + 15*a^2)*
omega^2 + 6*I*a^2*omega^3) +
m*(-36 - 36*I*omega + (25 + 47*a^2)*omega^2 +
I*(8 + 23*a^2)*omega^3 - 2*a^2*(4 + 5*a^2)*
omega^4))))/(48*(10*lambda + lambda^2 +
12*(2 + (I + a*m)*omega - a^2*omega^2))))
end
elseif s == -2
return begin
(1/48)*(I*(-4 + lambda)*lambda*(2 + lambda) +
2*(6*(-4 + lambda) + I*a*m*(-24 + lambda*(-4 + 3*lambda)))*
omega + 4*a*(-6*m*(-1 + lambda) +
I*a*(-6 + (2 + 3*m^2)*lambda))*omega^2 +
8*I*a*m*(-8 + 6*I*a*m + a^2*(2 + m^2))*omega^3)
end
else
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
else
# Evaluate higher order corrections using AD
# Specifically we use TaylorSeries.jl for a much more performant AD
_this_params = (s=s, m=m, a=a, omega=omega, lambda=lambda)
# Check if we can use the cached results
if _cached_ingoing_coefficients_at_inf_params == _this_params
expansion_coeffs = _cached_ingoing_coefficients_at_inf.expansion_coeffs
Pcoeffs = _cached_ingoing_coefficients_at_inf.Pcoeffs
Qcoeffs = _cached_ingoing_coefficients_at_inf.Qcoeffs
else
# Cannot re-use the cached results, re-compute from zero
expansion_coeffs = [_DEFAULTDATATYPE(1.0)] # order 0
Pcoeffs = [_DEFAULTDATATYPE(PminusInf_z(s, m, a, omega, lambda, 0))] # order 0
Qcoeffs = [_DEFAULTDATATYPE(0.0), _DEFAULTDATATYPE(0.0)] # the recurrence relation takes Q_{r+1}
end
# Compute Pcoeffs to the necessary order
_P(z) = PminusInf_z(s, m, a, omega, lambda, z)
_P_taylor = taylor_expand(_P, 0, order=order) # FIXME This is not the most efficient way to do this
for i in length(Pcoeffs):order
append!(Pcoeffs, getcoeff(_P_taylor, i))
end
# Compute Qcoeffs to the necessary order (to current order + 1)
_Q(z) = QminusInf_z(s, m, a, omega, lambda, z)
_Q_taylor = taylor_expand(_Q, 0, order=order+1)
for i in length(Qcoeffs):order+1
append!(Qcoeffs, getcoeff(_Q_taylor, i))
end
# Note that the expansion coefficients we store is scaled by \omega^{i}
for i in length(expansion_coeffs):order
_P0 = Pcoeffs[1] # P0
sum = 0.0
for k in 1:i
sum += (Qcoeffs[k+2] - (i-k)*Pcoeffs[k+1])*(expansion_coeffs[i-k+1]/omega^(i-k))
end
append!(expansion_coeffs, omega^(i)*((i*(i-1)*(expansion_coeffs[i]/omega^(i-1)) + sum)/(_P0*i)))
end
# Update cache
_cached_ingoing_coefficients_at_inf_params = _this_params
_cached_ingoing_coefficients_at_inf = (
expansion_coeffs = expansion_coeffs,
Pcoeffs = Pcoeffs,
Qcoeffs = Qcoeffs
)
return expansion_coeffs[order+1]
end
end
function PplusInf_z(s::Int, m::Int, a, omega, lambda, z)
if s == 0
return begin
(2*I*(omega + a^2*z^4*(I + a^2*omega) + z^2*(-I + 2*a^2*omega)))/
((1 + a^2*z^2)*(1 - 2*z + a^2*z^2))
end
elseif s == 1
return begin
((1 + a^2*z^2)*(-((2*(-1 + z)*z)/(1 + a^2*z^2)) - (2*z*(1 - 2*z + a^2*z^2))/
(1 + a^2*z^2)^2 + (2*a*z^2*(1 - 2*z + a^2*z^2)*((-I)*m*(1 + 3*a^2*z^2) +
a*z*(3 + 3*z + 2*lambda + 2*a^2*z^2*(1 + lambda))))/((1 + a^2*z^2)*
(2 - 2*I*a*m*z - 2*I*a^3*m*z^3 + lambda + a^4*z^4*(1 + lambda) +
a^2*z^2*(3 + 2*z + 2*lambda))) + 2*I*omega))/(1 - 2*z + a^2*z^2)
end
elseif s == -1
return begin
(1/(1 - 2*z + a^2*z^2))*((1 + a^2*z^2)*(-((2*(-1 + z)*z)/(1 + a^2*z^2)) -
(2*z*(1 - 2*z + a^2*z^2))/(1 + a^2*z^2)^2 +
(2*a*z^2*(1 - 2*z + a^2*z^2)*(I*m*(1 + 3*a^2*z^2) +
a*z*(-1 + 3*z + 2*a^2*z^2*(-1 + lambda) + 2*lambda)))/
((1 + a^2*z^2)*(2*I*a*m*z + 2*I*a^3*m*z^3 + a^4*z^4*(-1 + lambda) + lambda +
a^2*z^2*(-1 + 2*z + 2*lambda))) + 2*I*omega))
end
elseif s == 2
return begin
(1/(1 - 2*z + a^2*z^2))*((1 + a^2*z^2)*(-((2*(-1 + z)*z)/(1 + a^2*z^2)) -
(2*z*(1 - 2*z + a^2*z^2))/(1 + a^2*z^2)^2 + 2*I*omega +
(8*a*z^2*(1 - 2*z + a^2*z^2)*(-6*a*m^2*z + I*m*(-4 + 9*a^2*z^2 - lambda +
z*(-6 - 12*I*a^2*omega)) + a*(6*a^2*z^3 + I*(1 + lambda)*omega + z^2*(-9 - 9*I*a^2*omega) +
z*(3 + 6*I*omega - 6*a^2*omega^2))))/((1 + a^2*z^2)*(24 + 10*lambda + lambda^2 -
4*I*a*m*(6*z^2 + 2*z*(4 + lambda) + 3*I*omega) + 12*I*omega + 24*a^3*m*z^2*(I*z + 2*omega) +
12*a^4*z^2*(z^2 - 2*I*z*omega - 2*omega^2) - 4*a^2*(6*z^3 + z^2*(-3 + 6*m^2 - 6*I*omega) -
2*I*z*(1 + lambda)*omega + 3*omega^2)))))
end
elseif s == -2
return begin
(1/(1 - 2*z + a^2*z^2))*((1 + a^2*z^2)*(-((2*(-1 + z)*z)/(1 + a^2*z^2)) -
(2*z*(1 + z*(-2 + a^2*z)))/(1 + a^2*z^2)^2 + 2*I*omega +
(8*a*z^2*(1 + z*(-2 + a^2*z))*(-3*a*z*(-1 + 2*m^2 + 3*z) + I*m*(6*z + lambda) -
I*a*(-3 + 6*z + lambda)*omega + 3*a^2*m*z*(-3*I*z + 4*omega) +
3*a^3*z*(2*z^2 + 3*I*z*omega - 2*omega^2)))/((1 + a^2*z^2)*(lambda*(2 + lambda) - 12*I*omega +
12*a^4*z^2*(z - (1 - I)*omega)*(z + (1 + I)*omega) + 24*a^3*m*z^2*((-I)*z + 2*omega) +
4*a*m*(2*I*z*(3*z + lambda) + 3*omega) + 4*a^2*(-3*z^2*(-1 + 2*m^2 + 2*z) -
2*I*z*(-3 + 3*z + lambda)*omega - 3*omega^2)))))
end
else
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
end
function QplusInf_z(s::Int, m::Int, a, omega, lambda, z)
if s == 0
return begin
-((z^2*(-2*z*(-1 + lambda) + lambda - 4*a^2*z^3*(1 + lambda) - 2*a^4*z^5*(3 + lambda) + 2*a*m*omega +
a^6*z^6*(1 - m^2 + lambda + 2*a*m*omega) + a^2*z^4*(8 + a^2*(2 - 2*m^2 + 3*lambda) +
6*a^3*m*omega) + z^2*(-4 + a^2*(1 - m^2 + 3*lambda) + 6*a^3*m*omega)))/
((1 + a^2*z^2)^2*(1 - 2*z + a^2*z^2)^2))
end
elseif s == 1
return begin
(z^2*(2*a^12*z^12*(1 + lambda) + 4*I*a^10*z^11*(1 + lambda)*(3*I + a^2*omega) -
(2 + lambda)*(2 + lambda + 2*a*m*omega) - a^6*z^8*(-4 - 8*lambda + 2*I*a*m*(9 + 2*lambda) +
a^2*(31 + 5*lambda^2 - m^2*(1 + 4*lambda) + 8*lambda*(3 + 4*I*omega) + 16*I*omega) +
10*a^3*m*(-2 + lambda)*omega) - a^4*z^6*(52 + 32*lambda + 2*I*a*m*(31 + 6*lambda) +
a^2*(71 + 10*lambda^2 - 3*m^2*(3 + 2*lambda) + 8*lambda*(7 + 6*I*omega) + 48*I*omega) +
20*a^3*m*(-1 + lambda)*omega) - a*z^2*(4*I*m*(2 + lambda) - a*m^2*(4 + lambda) +
a*(2 + lambda)*(14 + 5*lambda + 8*I*omega) + 10*a^2*m*(1 + lambda)*omega) +
2*z*(I*a*m*(2 + lambda) + (2 + lambda)^2 + 2*I*a^2*(2 + m^2 + lambda)*omega) +
2*a^6*z^9*(8 - 6*I*a*m + a^2*(-3 + 3*m^2 - 4*lambda + lambda^2 - 8*I*omega) -
I*a^3*m*(-4 + m^2 - lambda - 10*I*omega) + 2*I*a^4*(6 + m^2 + 5*lambda)*omega) +
2*a^4*z^7*(-4 + 8*I*a*m + a^3*m*(14*I - 3*I*m^2 + 4*I*lambda - 30*omega) +
4*a^2*(10 + m^2 + 7*lambda + lambda^2 - 4*I*omega) + 4*I*a^4*(7 + 2*m^2 + 5*lambda)*omega) +
2*I*a^3*z^5*(14*m + a^2*(-3*m^3 + 6*m*(3 + lambda + 5*I*omega)) +
I*a*(-69 + m^2 - 48*lambda - 6*lambda^2 + 8*I*omega) + 4*a^3*(8 + 3*m^2 + 5*lambda)*omega) +
2*a^2*z^3*(36 - 2*m^2 + 26*lambda + 4*lambda^2 - I*a*(m^3 - 2*m*(5 + 2*lambda + 5*I*omega)) +
2*I*a^2*(9 + 4*m^2 + 5*lambda)*omega) - a^8*z^10*(-6*I*a*m - 8*(1 + 2*lambda) +
2*a^3*m*(-3 + lambda)*omega + a^2*(1 - m^2*(-1 + lambda) + lambda^2 + 8*I*lambda*omega)) -
a^2*z^4*(24*(2 + lambda) + 2*I*a*m*(23 + 6*lambda) + 20*a^3*m*lambda*omega +
a^2*(67 + 54*lambda + 10*lambda^2 - m^2*(11 + 4*lambda) + 48*I*omega + 32*I*lambda*omega))))/
((1 + a^2*z^2)^2*(1 - 2*z + a^2*z^2)^2*(2 - 2*I*a*m*z - 2*I*a^3*m*z^3 + lambda +
a^4*z^4*(1 + lambda) + a^2*z^2*(3 + 2*z + 2*lambda)))
end
elseif s == -1
return begin
(z^2*((-1 + 2*z)*lambda^2 + 2*a^12*z^11*(-1 + lambda)*(z + 2*I*omega) - 2*a^11*m*z^10*(1 + lambda)*omega +
2*a^9*m*z^8*(-3*I*z^2 + I*z*(-2 + m^2 - lambda - 2*I*omega) - (6 + 5*lambda)*omega) +
2*I*a^7*m*z^6*(3*m^2*z + 6*z^3 + z^2*(5 + 2*lambda) - 2*z*(3 + 2*lambda + 5*I*omega) +
2*I*(7 + 5*lambda)*omega) + 2*I*a^5*m*z^4*(-8*z^3 + z^2*(19 + 6*lambda) +
3*z*(m^2 - 2*(1 + lambda + 3*I*omega)) + 2*I*(8 + 5*lambda)*omega) +
2*I*a^3*m*z^2*(-14*z^3 + z^2*(11 + 6*lambda) + z*(m^2 - 2*(1 + 2*lambda + 7*I*omega)) +
I*(9 + 5*lambda)*omega) + 2*a*m*(2*I*z^2*lambda - (2 + lambda)*omega + z*((-I)*lambda + 4*omega)) -
a^10*z^9*(12*z^2*(-1 + lambda) + 4*I*(5 + m^2 - 5*lambda)*omega +
z*(5 - m^2*(-3 + lambda) - 4*lambda + lambda^2 - 12*I*omega + 8*I*lambda*omega)) +
a^2*z*(-24*z^3*lambda + m^2*(-4*z^2 + z*(2 + lambda) - 4*I*omega) +
4*z^2*(5*lambda + 2*lambda^2 - 6*I*omega) + 4*I*(-1 + lambda)*omega -
z*(4*lambda + 5*lambda^2 - 20*I*omega + 8*I*lambda*omega)) +
a^8*z^7*(8*z^3*(-3 + 2*lambda) + 2*z^2*(9 + 3*m^2 - 8*lambda + lambda^2 - 4*I*omega) -
8*I*(5 + 2*m^2 - 5*lambda)*omega + z*(-3 - 4*lambda - 5*lambda^2 + m^2*(-7 + 4*lambda) + 56*I*omega -
32*I*lambda*omega)) + a^4*z^3*(-8*z^4 - 4*z^3*(-3 + 8*lambda) -
2*z^2*(3 + m^2 - 24*lambda - 6*lambda^2 + 28*I*omega) - 4*I*(5 + 4*m^2 - 5*lambda)*omega +
z*(1 - 14*lambda - 10*lambda^2 + m^2*(3 + 4*lambda) + 72*I*omega - 32*I*lambda*omega)) +
a^6*z^5*(16*z^4 + 4*z^3*(-3 + 2*lambda) + 8*z^2*(m^2 + 3*lambda + lambda^2 - 5*I*omega) -
8*I*(5 + 3*m^2 - 5*lambda)*omega + z*(1 - 16*lambda - 10*lambda^2 + m^2*(-3 + 6*lambda) + 96*I*omega -
48*I*lambda*omega))))/((1 + a^2*z^2)^2*(1 - 2*z + a^2*z^2)^2*
(2*I*a*m*z + 2*I*a^3*m*z^3 + a^4*z^4*(-1 + lambda) + lambda + a^2*z^2*(-1 + 2*z + 2*lambda)))
end
elseif s == 2
return begin
(z^2*(24*a^12*z^12 - lambda^3 + 48*I*a^10*z^11*(3*I + a^2*omega) - 2*lambda^2*(8 + a*m*omega) +
8*I*a^6*z^9*(24*I + 18*a*m + 3*I*a^2*(9 + m^2) +
a^3*m*(19 - 3*m^2 + 4*lambda - 30*I*omega) + a^4*(23 + 3*m^2 - 4*lambda + 24*I*omega)*omega) +
4*lambda*(-21 - (3*I + 8*a*m)*omega + 3*a^2*omega^2) +
12*a^8*z^10*(24 - 6*I*a*m + a^2*(5 + 3*m^2 - 8*I*omega) - 12*a^3*m*omega + 8*a^4*omega^2) -
2*I*a^3*z^5*(-24*m*(9 + 4*lambda) + a*(-4*I*m^2*(91 + 16*lambda) +
I*(924 + 47*lambda^2 + lambda^3 + lambda*(394 - 84*I*omega) + 732*I*omega)) +
4*a^2*m*(-143 - 3*lambda^2 + m^2*(23 + 2*lambda) + lambda*(-44 + 31*I*omega) + 313*I*omega) +
4*a^3*(5 + 3*lambda^2 - m^2*(41 + 8*lambda) + 5*lambda*(7 - 3*I*omega) - 219*I*omega)*omega +
24*a^4*m*(1 + lambda)*omega^2) + 24*(-6 - (3*I + 5*a*m)*omega -
a*(I*m + a*(-3 + m^2))*omega^2 + a^3*m*omega^3) -
4*I*a*z^3*(-12*m*(3 + lambda) + I*a*(408 + 194*lambda + 27*lambda^2 + lambda^3 - 16*m^2*(4 + lambda) +
240*I*omega) + 12*a^4*m*(1 + lambda)*omega^2 + 2*a^3*omega*(17 + 26*lambda + 3*lambda^2 -
m^2*(31 + 7*lambda) - 132*I*omega - 12*I*lambda*omega) +
2*a^2*m*(-98 - 35*lambda - 3*lambda^2 + m^2*(10 + lambda) + 164*I*omega + 20*I*lambda*omega)) +
4*a^6*z^8*(36 - 24*m^2 + 2*a^3*m*(-100 + 12*m^2 - 7*lambda + 6*I*omega)*omega +
6*a^4*(21 - 5*m^2 + lambda)*omega^2 + 12*a^5*m*omega^3 +
2*a*m*(-44*I + 9*I*m^2 - 11*I*lambda + 12*omega) -
a^2*(39 + 6*m^4 + 20*lambda + 2*lambda^2 + m^2*(-65 - 8*lambda + 30*I*omega) + 170*I*omega -
22*I*lambda*omega)) + 2*z*((9 + lambda)*(24 + 10*lambda + lambda^2 + 12*I*omega) -
8*I*a^3*m*(1 + lambda)*omega^2 + 4*a*m*(24*I + 10*I*lambda + I*lambda^2 + 27*omega + 3*lambda*omega) -
4*a^2*omega*(6*I + 7*I*lambda + I*lambda^2 - 2*I*m^2*(4 + lambda) + 27*omega + 3*lambda*omega)) +
a^3*z^6*(384*I*m + 16*a*(-33 + 12*m^2 - 10*lambda - lambda^2 - 36*I*omega) +
8*I*a^2*m*(-177 + 18*m^2 - 53*lambda - 2*lambda^2 + 96*I*omega) +
2*a^4*m*(-810 + 126*m^2 - 100*lambda - lambda^2 + 12*I*omega)*omega +
12*a^5*(83 - 31*m^2 + 7*lambda)*omega^2 + 168*a^6*m*omega^3 -
a^3*(756 + 48*m^4 + lambda^3 + lambda^2*(41 - 16*I*omega) -
m^2*(564 + 106*lambda + lambda^2 - 180*I*omega) + lambda*(334 - 364*I*omega) + 948*I*omega -
576*omega^2)) + a*z^4*(96*I*m + 8*I*a^2*m*(-202 + 9*m^2 - 65*lambda - 4*lambda^2 +
72*I*omega) - 8*a*(120 + 50*lambda + 5*lambda^2 + 72*I*omega) +
6*a^4*m*(-256 + 36*m^2 - 44*lambda - lambda^2 - 20*I*omega)*omega - 12*a^5*(-78 + 34*m^2 - 9*lambda)*
omega^2 + 216*a^6*m*omega^3 + a^3*(-1068 - 24*m^4 - 3*lambda^3 +
2*m^2*(246 + 58*lambda + lambda^2) + lambda^2*(-74 + 32*I*omega) + lambda*(-512 + 388*I*omega) -
568*I*omega + 576*omega^2)) - 8*I*a^4*z^7*(12*I - 6*a*m*(-5 + lambda) +
2*a^5*m*(1 + lambda)*omega^2 + a^4*omega*(-23 + 20*lambda + lambda^2 - 3*m^2*(7 + lambda) - 138*I*omega -
6*I*lambda*omega) + a^3*m*(-88 - 23*lambda - lambda^2 + m^2*(16 + lambda) + 206*I*omega +
14*I*lambda*omega) + a^2*(-2*I*m^2*(31 + 4*lambda) + 3*I*(24 + 10*lambda + lambda^2 + 46*I*omega -
2*I*lambda*omega))) + z^2*(-12*(24 + 10*lambda + lambda^2 + 12*I*omega) -
8*I*a*m*(60 + 23*lambda + 2*lambda^2 - 18*I*omega) + 2*a^3*m*(-346 + 30*m^2 - 76*lambda -
3*lambda^2 - 60*I*omega)*omega - 60*a^4*(-7 + 3*m^2 - lambda)*omega^2 + 120*a^5*m*omega^3 +
a^2*(-3*lambda^3 + lambda^2*(-57 + 16*I*omega) + m^2*(152 + 42*lambda + lambda^2 + 60*I*omega) +
lambda*(-342 + 100*I*omega) + 12*(-54 - 23*I*omega + 12*omega^2)))))/
((1 + a^2*z^2)^2*(1 - 2*z + a^2*z^2)^2*(24 + 10*lambda + lambda^2 -
4*I*a*m*(6*z^2 + 2*z*(4 + lambda) + 3*I*omega) + 12*I*omega + 24*a^3*m*z^2*(I*z + 2*omega) +
12*a^4*z^2*(z^2 - 2*I*z*omega - 2*omega^2) - 4*a^2*(6*z^3 + z^2*(-3 + 6*m^2 - 6*I*omega) -
2*I*z*(1 + lambda)*omega + 3*omega^2)))
end
elseif s == -2
return begin
(z^2*(-((-1 + 2*z)*(-2 + 6*z - lambda)*(2*lambda + lambda^2 - 12*I*omega)) +
48*a^11*m*z^8*omega^2*(4*I*z + omega) + 24*a^12*z^9*(z^3 + 2*I*z^2*omega - 2*z*omega^2 -
4*I*omega^3) + 8*I*a^9*m*z^6*(9*z^4 + z^3*(-3 + 3*m^2 - 4*lambda + 18*I*omega) +
3*z^2*(-4*I*m^2 + 3*I*lambda - 18*omega)*omega + 2*z*(45 + lambda)*omega^2 - 21*I*omega^3) +
a^4*z*(96*z^6 + 16*z^5*(-9 + 12*m^2 - 2*lambda - lambda^2 + 36*I*omega) -
z^3*(12 + 24*m^4 + 3*lambda^3 + lambda^2*(38 + 32*I*omega) + 4*lambda*(16 + 33*I*omega) -
2*m^2*(30 + 50*lambda + lambda^2 + 288*I*omega) - 552*I*omega) +
2*z^4*(36 + 35*lambda^2 + lambda^3 - 4*m^2*(27 + 16*lambda) + lambda*(66 + 84*I*omega) - 636*I*omega) -
8*I*z^2*(3 - 3*lambda^2 + m^2*(51 + 7*lambda) + lambda*(-2 - 24*I*omega) + 36*I*omega)*omega +
4*z*(-39 - 45*m^2 + 31*lambda + 48*I*omega)*omega^2 - 96*I*omega^3) -
2*I*a^7*m*z^4*(72*z^5 + 4*z^3*(12 + lambda^2 - m^2*(12 + lambda) + 3*lambda*(5 + 6*I*omega) -
6*I*omega) + 4*z^4*(9*m^2 - 11*lambda + 36*I*omega) +
I*z^2*(6 + 126*m^2 - 124*lambda - lambda^2 - 588*I*omega)*omega - 24*z*(21 + lambda)*omega^2 +
108*I*omega^3) - a^6*z^3*(48*(-3 + 2*m^2)*z^5 + 192*z^6 +
8*z^4*(m^2*(30 + 8*lambda) - 3*(lambda^2 + lambda*(2 + 2*I*omega) - 18*I*omega)) +
z^3*(12 + 48*m^4 + lambda^3 + lambda^2*(29 + 16*I*omega) + lambda*(54 + 236*I*omega) -
m^2*(156 + 98*lambda + lambda^2 + 756*I*omega) - 420*I*omega) +
8*I*z^2*(3 - 3*lambda^2 + m^2*(81 + 8*lambda) + lambda*(-11 - 27*I*omega) + 57*I*omega)*omega +
12*z*(30 + 34*m^2 - 17*lambda - 48*I*omega)*omega^2 + 384*I*omega^3) -
4*a^10*z^7*(36*z^4 - 3*z^3*(5 + 3*m^2 - 20*I*omega) +
2*z*(27 + 15*m^2 - 5*lambda - 24*I*omega)*omega^2 + 96*I*omega^3 -
2*z^2*omega*(15*I - 15*I*m^2 + 4*I*lambda + 24*omega)) -
2*I*a^3*m*(192*z^6 + 24*z^5*(-7 + 4*lambda) + 4*z^4*(-6 + 9*m^2 - 33*lambda - 4*lambda^2) +
3*I*z^2*(-6 + 10*m^2 - 28*lambda - lambda^2 - 44*I*omega)*omega - 8*z*(9 + lambda)*omega^2 +
12*I*omega^3 - 4*z^3*(-6 - 11*lambda - 3*lambda^2 + m^2*(6 + lambda) - 32*I*lambda*omega)) -
2*I*a^5*m*z^2*(24*z^5*(-9 + lambda) + 4*z^4*(3 + 18*m^2 - 37*lambda - 2*lambda^2 - 24*I*omega) +
3*z^2*(36*I*m^2 - I*(52*lambda + lambda^2 + 172*I*omega))*omega - 24*z*(13 + lambda)*omega^2 +
60*I*omega^3 + 4*z^3*(15 + 20*lambda + 3*lambda^2 - m^2*(15 + 2*lambda) + 9*I*omega + 43*I*lambda*omega)) -
a^2*(8*z^4*(10*lambda + 5*lambda^2 - 72*I*omega) - 4*z^3*((26 - 16*m^2)*lambda + 15*lambda^2 + lambda^3 -
168*I*omega) + 4*(6 + 6*m^2 - 7*lambda)*omega^2 + 8*I*z*omega*(lambda - lambda^2 + 2*m^2*(6 + lambda) +
9*I*omega - 7*I*lambda*omega) + z^2*(3*lambda^3 + lambda^2*(21 - m^2 + 16*I*omega) +
lambda*(30 - 34*m^2 - 28*I*omega) - 12*I*(15 + 11*m^2 + 4*I*omega)*omega)) +
4*a^8*z^5*(72*z^5 - 6*z^4*(9 + m^2 - 12*I*omega) + z*(-99 - 93*m^2 + 37*lambda + 144*I*omega)*
omega^2 - 144*I*omega^3 - 2*I*z^2*omega*(-9 - 12*lambda - lambda^2 + 3*m^2*(19 + lambda) + 54*I*omega -
10*I*lambda*omega) - z^3*(-9 + 6*m^4 + 4*lambda + 2*lambda^2 - m^2*(33 + 8*lambda + 78*I*omega) +
54*I*omega + 22*I*lambda*omega + 48*omega^2)) + 2*a*m*(-48*I*z^4 - 24*I*z^3*(-1 + lambda) -
(12 + 16*lambda + lambda^2 - 12*I*omega)*omega + 4*z^2*(7*I*lambda + 2*I*lambda^2 + 6*omega) +
4*z*((-I)*lambda^2 + 3*omega + lambda*(-2*I + 7*omega)))))/
((1 + a^2*z^2)^2*(1 - 2*z + a^2*z^2)^2*(2*lambda + lambda^2 - 12*I*omega +
24*a^3*m*z^2*((-I)*z + 2*omega) + 4*a*m*(6*I*z^2 + 2*I*z*lambda + 3*omega) +
12*a^4*z^2*(z^2 + 2*I*z*omega - 2*omega^2) - 4*a^2*(6*z^3 + z^2*(-3 + 6*m^2 + 6*I*omega) +
2*I*z*(-3 + lambda)*omega + 3*omega^2)))
end
else
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
end
# Cache mechanism for the outgoing coefficients at infinity
# Initialize the cache with a set of fiducial parameters
_cached_outgoing_coefficients_at_inf_params::NamedTuple{(:s, :m, :a, :omega, :lambda), Tuple{Int, Int, _DEFAULTDATATYPE, _DEFAULTDATATYPE, _DEFAULTDATATYPE}} = (s=-2, m=2, a=0, omega=0.5, lambda=1)
_cached_outgoing_coefficients_at_inf::NamedTuple{(:expansion_coeffs, :Pcoeffs, :Qcoeffs), Tuple{Vector{_DEFAULTDATATYPE}, Vector{_DEFAULTDATATYPE}, Vector{_DEFAULTDATATYPE}}} = (
expansion_coeffs = [_DEFAULTDATATYPE(1.0)],
Pcoeffs = [_DEFAULTDATATYPE(0.0)],
Qcoeffs = [_DEFAULTDATATYPE(0.0)]
)
function outgoing_coefficient_at_inf(s::Int, m::Int, a, omega, lambda, order::Int)
#=
We have derived/shown the explicit expression for
different physically-relevant spin weight (s=0, \pm 1, \pm2)
for up to (1/r)^3, which is probably more than enough
But we have also shown a recurrence relation where
one can generate as higher an order as one pleases.
However, the recurrence relation that we have
actually depends *all* previous terms so this function
is designed to be evaluated recursively to build
the full list of coefficients
=#
global _cached_outgoing_coefficients_at_inf_params
global _cached_outgoing_coefficients_at_inf
if order < 0
throw(DomainError(order, "Only positive expansion order is supported"))
end
if order == 0
return 1.0 # This is always 1.0
elseif order == 1
if s == 0
return (1/2)*I*(lambda + 2*a*m*omega)
elseif s == +1
return (1/2)*I*(2 + lambda + 2*a*m*omega)
elseif s == -1
return (I*(lambda^2 + 2*a*m*(2 + lambda)*omega))/(2*lambda)
elseif s == +2
return (1/2)*I*(6 + lambda + 2*a*m*omega)
elseif s == -2
return begin
(1/6)*I*(-6 + 7*lambda) + I*a*m*omega +
(2*I*(-3 + lambda)*lambda*(2 + lambda) +
24*(-3 - 3*I*a*m + lambda)*omega)/(-3*lambda*(2 + lambda) +
36*omega*(I - a*m + a^2*omega))
end
else
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
elseif order == 2
if s == 0
return begin
(1/8)*(-lambda^2 + lambda*(2 - 4*a*m*omega) +
4*omega*(I + a*m + a*m*(2*I - a*m)*omega))
end
elseif s == +1
return begin
(1/8)*(-lambda^2 - 2*lambda*(1 + 2*a*m*omega) -
4*a*omega*(m - 2*a*omega - 2*I*m*omega + a*m^2*omega))
end
elseif s == -1
return begin
-((1/(8*lambda))*((-2 + lambda)*lambda^2 + 4*a*m*(-2 + lambda + lambda^2)*omega +
4*a*(-2*I*m*lambda + a*(2 - 2*lambda + m^2*(4 + lambda)))*omega^2))
end
elseif s == +2
return begin
(1/8)*(-lambda^2 - 2*lambda*(5 + 2*a*m*omega) -
4*(6 + (3*I + 5*a*m)*omega + a*m*(-2*I + a*m)*omega^2))
end
elseif s == -2
return begin
-((1/(8*lambda*(2 + lambda) - 96*omega*(I - a*m + a^2*omega)))*
(lambda^2*(2 + lambda)^2 + 4*a*m*lambda*(16 + lambda*(14 + lambda))*
omega + 4*(36 + a*(a*(10 - 11*lambda)*lambda -
2*I*m*(2 + lambda)*(6 + lambda) +
a*m^2*(60 + lambda*(30 + lambda))))*omega^2 +
16*a*(-6*m + a*(3*I - 9*I*m^2 +
a*m*(-15 + 3*m^2 - 7*lambda)))*omega^3 -
48*a^3*(-2*I*m + a*(-4 + m^2))*omega^4))
end
else
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
elseif order == 3
if s == 0
return begin
(1/2)*(1 - I*a*m)*omega - (1/48)*I*((-6 + lambda)*(-2 + lambda)*lambda +
2*lambda*(-18*I + a*m*(-16 + 3*lambda))*omega +
4*a*(3*a*m^2*(-2 + lambda) + 2*a*(-1 + lambda) -
6*I*m*(1 + lambda))*omega^2 + 8*a*m*(-8 - 6*I*a*m +
a^2*(2 + m^2))*omega^3)
end
elseif s == +1
return begin
(-(1/48))*I*(lambda^3 + lambda^2*(-2 + 6*a*m*omega) +
4*lambda*(-2 - 2*(3*I + a*m)*omega +
a*(-4*a - 6*I*m + 3*a*m^2)*omega^2) +
8*omega*(-6*I + a^3*m*(-4 + m^2)*omega^2 +
3*a^2*omega*(-1 - 2*I*m^2*omega) -
a*m*(3 + 6*I*omega + 8*omega^2)))
end
elseif s == -1
return begin
-((1/(48*lambda))*(I*((-6 + lambda)*(-2 + lambda)*lambda^2 + 48*a*m*omega +
2*lambda*(-12*I*lambda + a*m*(-16 + lambda*(-10 + 3*lambda)))*omega +
4*a*(3*a*m^2*(-2 + lambda)*(4 + lambda) -
4*a*(3 + (-2 + lambda)*lambda) - 6*I*m*(4 + lambda^2))*omega^2 +
8*a*(-8*m*lambda - 6*I*a*(-2 + m^2*(2 + lambda)) +
a^2*m*(6 - 4*lambda + m^2*(6 + lambda)))*omega^3)))
end
elseif s == +2
return begin
(-(1/48))*I*(lambda^3 + 2*lambda^2*(5 + 3*a*m*omega) +
4*lambda*(6 + (3*I + 10*a*m)*omega +
a*(2*a - 6*I*m + 3*a*m^2)*omega^2) +
8*a*omega*(a*omega + 6*a*m^2*(1 - I*omega)*omega +
a^2*m^3*omega^2 + m*(2 - 9*I*omega + 2*(-4 + a^2)*
omega^2)))
end
elseif s == -2
return begin
-((1/(48*(lambda*(2 + lambda) - 12*omega*(I - a*m + a^2*omega))))*
(I*(-4 + lambda)*lambda^2*(2 + lambda)^2 +
2*I*a*m*lambda*(-96 + lambda*(-44 + lambda*(32 + 3*lambda)))*
omega + 4*I*(36*(-4 + lambda) +
a*(-6*I*m*lambda*(2 + lambda)^2 +
a*lambda*(-60 + (40 - 13*lambda)*lambda) +
3*a*m^2*(-48 + lambda*(40 + lambda*(24 + lambda)))))*
omega^2 + 8*I*a*(-6*I*a*(-3*(2 + lambda) +
m^2*(1 + lambda)*(18 + lambda)) -
4*m*(-9 + lambda*(13 + 2*lambda)) +
a^2*m*(108 - lambda*(44 + 31*lambda) +
m^2*(144 + lambda*(44 + lambda))))*omega^3 -
48*a*(16*m + 28*I*a*m^2 - 2*a^2*m*
(5 + 7*m^2 - 7*lambda) -
I*a^3*(2*m^4 + 2*(-9 + 5*lambda) -
m^2*(32 + 7*lambda)))*omega^4 -
96*I*a^3*m*(-8 - 6*I*a*m + a^2*(-10 + m^2))*
omega^5))
end
else
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
else
# Evaluate higher order corrections using AD
_this_params = (s=s, m=m, a=a, omega=omega, lambda=lambda)
# Check if we can use the cached results
if _cached_outgoing_coefficients_at_inf_params == _this_params
expansion_coeffs = _cached_outgoing_coefficients_at_inf.expansion_coeffs
Pcoeffs = _cached_outgoing_coefficients_at_inf.Pcoeffs
Qcoeffs = _cached_outgoing_coefficients_at_inf.Qcoeffs
else
# Cannot re-use the cached results, re-compute from zero
expansion_coeffs = [_DEFAULTDATATYPE(1.0)] # order 0
Pcoeffs = [_DEFAULTDATATYPE(PplusInf_z(s, m, a, omega, lambda, 0))] # order 0
Qcoeffs = [_DEFAULTDATATYPE(0.0), _DEFAULTDATATYPE(0.0)] # the recurrence relation takes Q_{r+1}
end
# Compute Pcoeffs to the necessary order
_P(z) = PplusInf_z(s, m, a, omega, lambda, z)
_P_taylor = taylor_expand(_P, 0, order=order)
for i in length(Pcoeffs):order
append!(Pcoeffs, getcoeff(_P_taylor, i))
end
# Compute Qcoeffs to the necessary order (to current order + 1)
_Q(z) = QplusInf_z(s, m, a, omega, lambda, z)
_Q_taylor = taylor_expand(_Q, 0, order=order+1)
for i in length(Qcoeffs):order+1
append!(Qcoeffs, getcoeff(_Q_taylor, i))
end
# Note that the expansion coefficients we store is scaled by \omega^{i}
for i in length(expansion_coeffs):order
_P0 = Pcoeffs[1] # P0
sum = 0.0
for k in 1:i
sum += (Qcoeffs[k+2] - (i-k)*Pcoeffs[k+1])*(expansion_coeffs[i-k+1]/omega^(i-k))
end
append!(expansion_coeffs, omega^(i)*((i*(i-1)*(expansion_coeffs[i]/omega^(i-1)) + sum)/(_P0*i)))
end
# Update cache
_cached_outgoing_coefficients_at_inf_params = _this_params
_cached_outgoing_coefficients_at_inf = (
expansion_coeffs = expansion_coeffs,
Pcoeffs = Pcoeffs,
Qcoeffs = Qcoeffs
)
return expansion_coeffs[order+1]
end
end
function PplusH(s::Int, m::Int, a, omega, lambda, x)
if s == 0
return begin
((a^2 + (1 + sqrt(1 - a^2) + x)^2)*
(-((2*x*(1 + sqrt(1 - a^2) + x)*(2*sqrt(1 - a^2) + x))/
(2*(1 + sqrt(1 - a^2)) + 2*(1 + sqrt(1 - a^2))*x + x^2)^2) +
(2*(sqrt(1 - a^2) + x))/(a^2 + (1 + sqrt(1 - a^2) + x)^2) +
2*I*(-((a*m)/(2*(1 + sqrt(1 - a^2)))) + omega)))/(2*sqrt(1 - a^2) + x)
end
elseif s == 1
return begin
(1/(2*sqrt(1 - a^2) + x))*((a^2 + (1 + sqrt(1 - a^2) + x)^2)*
(-((2*x*(1 + sqrt(1 - a^2) + x)*(2*sqrt(1 - a^2) + x))/
(2*(1 + sqrt(1 - a^2)) + 2*(1 + sqrt(1 - a^2))*x + x^2)^2) +
(2*(sqrt(1 - a^2) + x))/(a^2 + (1 + sqrt(1 - a^2) + x)^2) +
(2*a*x*(2*sqrt(1 - a^2) + x)*(-3*I*a^2*m*(1 + sqrt(1 - a^2) + x) -
I*m*(1 + sqrt(1 - a^2) + x)^3 + 2*a^3*(1 + lambda) + a*(1 + sqrt(1 - a^2) + x)*
(3 + (1 + sqrt(1 - a^2) + x)*(3 + 2*lambda))))/((1 + sqrt(1 - a^2) + x)*
(a^2 + (1 + sqrt(1 - a^2) + x)^2)*(-2*I*a^3*m*(1 + sqrt(1 - a^2) + x) -
2*I*a*m*(1 + sqrt(1 - a^2) + x)^3 + a^4*(1 + lambda) + (1 + sqrt(1 - a^2) + x)^4*
(2 + lambda) + a^2*(1 + sqrt(1 - a^2) + x)*(2 + (1 + sqrt(1 - a^2) + x)*
(3 + 2*lambda)))) + 2*I*(-((a*m)/(2*(1 + sqrt(1 - a^2)))) + omega)))
end
elseif s == -1
return begin
(1/(2*sqrt(1 - a^2) + x))*((a^2 + (1 + sqrt(1 - a^2) + x)^2)*
(-((2*x*(1 + sqrt(1 - a^2) + x)*(2*sqrt(1 - a^2) + x))/
(2*(1 + sqrt(1 - a^2)) + 2*(1 + sqrt(1 - a^2))*x + x^2)^2) +
(2*(sqrt(1 - a^2) + x))/(a^2 + (1 + sqrt(1 - a^2) + x)^2) +
(2*a*x*(2*sqrt(1 - a^2) + x)*(3*I*a^2*m*(1 + sqrt(1 - a^2) + x) +
I*m*(1 + sqrt(1 - a^2) + x)^3 + 2*a^3*(-1 + lambda) + a*(1 + sqrt(1 - a^2) + x)*
(3 + (1 + sqrt(1 - a^2) + x)*(-1 + 2*lambda))))/((1 + sqrt(1 - a^2) + x)*
(a^2 + (1 + sqrt(1 - a^2) + x)^2)*(2*I*a^3*m*(1 + sqrt(1 - a^2) + x) +
2*I*a*m*(1 + sqrt(1 - a^2) + x)^3 + a^4*(-1 + lambda) + (1 + sqrt(1 - a^2) + x)^4*
lambda + a^2*(1 + sqrt(1 - a^2) + x)*(2 + (1 + sqrt(1 - a^2) + x)*(-1 + 2*lambda)))) +
2*I*(-((a*m)/(2*(1 + sqrt(1 - a^2)))) + omega)))
end
elseif s == 2
return begin
(1/(2*sqrt(1 - a^2) + x))*((a^2 + (1 + sqrt(1 - a^2) + x)^2)*
(-((2*x*(1 + sqrt(1 - a^2) + x)*(2*sqrt(1 - a^2) + x))/
(2*(1 + sqrt(1 - a^2)) + 2*(1 + sqrt(1 - a^2))*x + x^2)^2) +
(2*(sqrt(1 - a^2) + x))/(a^2 + (1 + sqrt(1 - a^2) + x)^2) +
2*I*(-((a*m)/(2*(1 + sqrt(1 - a^2)))) + omega) +
(8*a*x*(2*sqrt(1 - a^2) + x)*(I*m*(1 + sqrt(1 - a^2) + x)^2*
(6 + (1 + sqrt(1 - a^2) + x)*(4 + lambda)) - 3*a^2*m*(1 + sqrt(1 - a^2) + x)*
(3*I + 4*(1 + sqrt(1 - a^2) + x)*omega) + a*(1 + sqrt(1 - a^2) + x)*
(9 + (1 + sqrt(1 - a^2) + x)*(-3 + 6*m^2 - 6*I*omega) - I*(1 + sqrt(1 - a^2) + x)^2*
(1 + lambda)*omega) + a^3*(-6 + 9*I*(1 + sqrt(1 - a^2) + x)*omega +
6*(1 + sqrt(1 - a^2) + x)^2*omega^2)))/((1 + sqrt(1 - a^2) + x)*
(a^2 + (1 + sqrt(1 - a^2) + x)^2)*((-(1 + sqrt(1 - a^2) + x)^4)*
(24 + 10*lambda + lambda^2 + 12*I*omega) - 24*a^3*m*(1 + sqrt(1 - a^2) + x)*
(I + 2*(1 + sqrt(1 - a^2) + x)*omega) + 4*a*m*(1 + sqrt(1 - a^2) + x)^2*
(6*I + 2*I*(1 + sqrt(1 - a^2) + x)*(4 + lambda) - 3*(1 + sqrt(1 - a^2) + x)^2*omega) +
12*a^4*(-1 + 2*I*(1 + sqrt(1 - a^2) + x)*omega + 2*(1 + sqrt(1 - a^2) + x)^2*omega^2) +
4*a^2*(1 + sqrt(1 - a^2) + x)*(6 + (1 + sqrt(1 - a^2) + x)*
(-3 + 6*m^2 - 6*I*omega) - 2*I*(1 + sqrt(1 - a^2) + x)^2*(1 + lambda)*omega +
3*(1 + sqrt(1 - a^2) + x)^3*omega^2)))))
end
elseif s == -2
return begin
(1/(2*sqrt(1 - a^2) + x))*((a^2 + (1 + sqrt(1 - a^2) + x)^2)*
(-((2*x*(1 + sqrt(1 - a^2) + x)*(2*sqrt(1 - a^2) + x))/
(2*(1 + sqrt(1 - a^2)) + 2*(1 + sqrt(1 - a^2))*x + x^2)^2) +
(2*(sqrt(1 - a^2) + x))/(a^2 + (1 + sqrt(1 - a^2) + x)^2) +
2*I*(-((a*m)/(2*(1 + sqrt(1 - a^2)))) + omega) -
(8*a*x*(2*sqrt(1 - a^2) + x)*((-I)*m*(1 + sqrt(1 - a^2) + x)^2*
(6 + (1 + sqrt(1 - a^2) + x)*lambda) + 3*a^2*m*(1 + sqrt(1 - a^2) + x)*
(3*I - 4*(1 + sqrt(1 - a^2) + x)*omega) + a*(1 + sqrt(1 - a^2) + x)*
(9 + (1 + sqrt(1 - a^2) + x)*(-3 + 6*m^2 + 6*I*omega) + I*(1 + sqrt(1 - a^2) + x)^2*
(-3 + lambda)*omega) + a^3*(-6 - 9*I*(1 + sqrt(1 - a^2) + x)*omega +
6*(1 + sqrt(1 - a^2) + x)^2*omega^2)))/((1 + sqrt(1 - a^2) + x)*
(a^2 + (1 + sqrt(1 - a^2) + x)^2)*((1 + sqrt(1 - a^2) + x)^4*
(2*lambda + lambda^2 - 12*I*omega) + 24*a^3*m*(1 + sqrt(1 - a^2) + x)*
(-I + 2*(1 + sqrt(1 - a^2) + x)*omega) + 4*a*m*(1 + sqrt(1 - a^2) + x)^2*
(6*I + 2*I*(1 + sqrt(1 - a^2) + x)*lambda + 3*(1 + sqrt(1 - a^2) + x)^2*omega) +
a^4*(12 + 24*I*(1 + sqrt(1 - a^2) + x)*omega - 24*(1 + sqrt(1 - a^2) + x)^2*omega^2) -
4*a^2*(1 + sqrt(1 - a^2) + x)*(6 + (1 + sqrt(1 - a^2) + x)*
(-3 + 6*m^2 + 6*I*omega) + 2*I*(1 + sqrt(1 - a^2) + x)^2*(-3 + lambda)*omega +
3*(1 + sqrt(1 - a^2) + x)^3*omega^2)))))
end
else
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
end
function QplusH(s::Int, m::Int, a, omega, lambda, x)
if s == 0
return begin
(1/(2*sqrt(1 - a^2) + x)^2)*((a^2 + (1 + sqrt(1 - a^2) + x)^2)^2*
(-(-((a*m)/(2*(1 + sqrt(1 - a^2)))) + omega)^2 - (1/(a^2 + (1 + sqrt(1 - a^2) + x)^2)^4)*
(x^2*(1 + sqrt(1 - a^2) + x)^2*(2*sqrt(1 - a^2) + x)^2 +
x*(2*sqrt(1 - a^2) + x)*(a^4 - 4*a^2*(1 + sqrt(1 - a^2) + x) -
(-3 + sqrt(1 - a^2) + x)*(1 + sqrt(1 - a^2) + x)^3) +
(a^2 + (1 + sqrt(1 - a^2) + x)^2)^2*(x*(2*sqrt(1 - a^2) + x)*lambda -
(a*m - (a^2 + (1 + sqrt(1 - a^2) + x)^2)*omega)^2))))
end
elseif s == 1
return begin
(1/(2*sqrt(1 - a^2) + x)^2)*((a^2 + (1 + sqrt(1 - a^2) + x)^2)^2*
((2*I*a*x*(2*sqrt(1 - a^2) + x)*(-3*I*a^2*m*(1 + sqrt(1 - a^2) + x) -
I*m*(1 + sqrt(1 - a^2) + x)^3 + 2*a^3*(1 + lambda) + a*(1 + sqrt(1 - a^2) + x)*
(3 + (1 + sqrt(1 - a^2) + x)*(3 + 2*lambda)))*(-((a*m)/(2*(1 + sqrt(1 - a^2)))) +
omega))/((1 + sqrt(1 - a^2) + x)*(a^2 + (1 + sqrt(1 - a^2) + x)^2)*
(-2*I*a^3*m*(1 + sqrt(1 - a^2) + x) - 2*I*a*m*(1 + sqrt(1 - a^2) + x)^3 +
a^4*(1 + lambda) + (1 + sqrt(1 - a^2) + x)^4*(2 + lambda) + a^2*(1 + sqrt(1 - a^2) + x)*
(2 + (1 + sqrt(1 - a^2) + x)*(3 + 2*lambda)))) -
(-((a*m)/(2*(1 + sqrt(1 - a^2)))) + omega)^2 - (1/(a^2 + (1 + sqrt(1 - a^2) + x)^2)^4)*
(2*x*(2*sqrt(1 - a^2) + x)*(a^4 - a^2*(1 + sqrt(1 - a^2) + x) -
(-2 + sqrt(1 - a^2) + x)*(1 + sqrt(1 - a^2) + x)^3) +
((1 + sqrt(1 - a^2) + x)^2*(-1 + 2*sqrt(1 - a^2) + 2*x) +
a^2*(1 + 2*sqrt(1 - a^2) + 2*x))^2 + (2*a*x*(2*sqrt(1 - a^2) + x)*
(a^2 + (1 + sqrt(1 - a^2) + x)^2)*((1 + sqrt(1 - a^2) + x)^2*
(-1 + 2*sqrt(1 - a^2) + 2*x) + a^2*(1 + 2*sqrt(1 - a^2) + 2*x))*
(-3*I*a^2*m*(1 + sqrt(1 - a^2) + x) - I*m*(1 + sqrt(1 - a^2) + x)^3 +
2*a^3*(1 + lambda) + a*(1 + sqrt(1 - a^2) + x)*(3 + (1 + sqrt(1 - a^2) + x)*
(3 + 2*lambda))))/((1 + sqrt(1 - a^2) + x)*(-2*I*a^3*m*(1 + sqrt(1 - a^2) + x) -
2*I*a*m*(1 + sqrt(1 - a^2) + x)^3 + a^4*(1 + lambda) + (1 + sqrt(1 - a^2) + x)^4*
(2 + lambda) + a^2*(1 + sqrt(1 - a^2) + x)*(2 + (1 + sqrt(1 - a^2) + x)*
(3 + 2*lambda)))) - ((a^2 + (1 + sqrt(1 - a^2) + x)^2)^2*
(2*a^7*m*(1 + sqrt(1 - a^2) + x)^2*omega*(-lambda - I*(1 + sqrt(1 - a^2) + x)*omega) +
a^8*(1 + lambda)*(2 + (1 + sqrt(1 - a^2) + x)^2*omega^2) -
2*I*a^5*m*(1 + sqrt(1 - a^2) + x)^2*(-6 + (1 + sqrt(1 - a^2) + x)*
(4 + m^2 - lambda - 4*I*omega) - 3*I*(1 + sqrt(1 - a^2) + x)^2*(1 + lambda)*omega +
3*(1 + sqrt(1 - a^2) + x)^3*omega^2) - 2*I*a*m*(1 + sqrt(1 - a^2) + x)^5*
(3 + (1 + sqrt(1 - a^2) + x)*(-5 + 2*lambda) + (1 + sqrt(1 - a^2) + x)^2*
(2 - lambda + 2*I*omega) - I*(1 + sqrt(1 - a^2) + x)^3*(3 + lambda)*omega +
(1 + sqrt(1 - a^2) + x)^4*omega^2) - 2*I*a^3*m*(1 + sqrt(1 - a^2) + x)^3*
(13 + (1 + sqrt(1 - a^2) + x)*(-17 + 2*lambda) + (1 + sqrt(1 - a^2) + x)^2*
(6 + m^2 - 2*lambda - 2*I*omega) - 3*I*(1 + sqrt(1 - a^2) + x)^3*(2 + lambda)*omega +
3*(1 + sqrt(1 - a^2) + x)^4*omega^2) + (1 + sqrt(1 - a^2) + x)^6*
(-3*(2 + lambda) - (1 + sqrt(1 - a^2) + x)^2*lambda*(2 + lambda) +
2*(1 + sqrt(1 - a^2) + x)*(2 + 3*lambda + lambda^2) + (1 + sqrt(1 - a^2) + x)^4*
(2 + lambda)*omega^2) + a^6*(1 + sqrt(1 - a^2) + x)*(-16*(1 + lambda) +
(1 + sqrt(1 - a^2) + x)*(5 + m^2*(-1 + lambda) + 6*lambda - lambda^2 + 2*I*omega) +
(1 + sqrt(1 - a^2) + x)^3*(5 + 4*lambda)*omega^2 + 2*(1 + sqrt(1 - a^2) + x)^2*omega*
(I + 2*I*m^2 + omega)) + a^4*(1 + sqrt(1 - a^2) + x)^2*
(11 + 25*lambda + 2*(1 + sqrt(1 - a^2) + x)*(-5 + 3*m^2 - 13*lambda + lambda^2 - 2*I*omega) +
(1 + sqrt(1 - a^2) + x)^2*(5 + 4*lambda - 3*lambda^2 + m^2*(3 + 2*lambda) - 8*I*omega) +
3*(1 + sqrt(1 - a^2) + x)^4*(3 + 2*lambda)*omega^2 + 4*(1 + sqrt(1 - a^2) + x)^3*omega*
(I + 2*I*m^2 + omega)) + a^2*(1 + sqrt(1 - a^2) + x)^3*
(30 + 5*(1 + sqrt(1 - a^2) + x)*(-7 + 2*lambda) - 4*(1 + sqrt(1 - a^2) + x)^2*
(-2 + m^2 + lambda - lambda^2 - 3*I*omega) + (1 + sqrt(1 - a^2) + x)^3*
(2 - 2*lambda - 3*lambda^2 + m^2*(4 + lambda) - 10*I*omega) + (1 + sqrt(1 - a^2) + x)^5*
(7 + 4*lambda)*omega^2 + 2*(1 + sqrt(1 - a^2) + x)^4*omega*(I + 2*I*m^2 + omega))))/
((1 + sqrt(1 - a^2) + x)^2*(-2*I*a^3*m*(1 + sqrt(1 - a^2) + x) -
2*I*a*m*(1 + sqrt(1 - a^2) + x)^3 + a^4*(1 + lambda) + (1 + sqrt(1 - a^2) + x)^4*
(2 + lambda) + a^2*(1 + sqrt(1 - a^2) + x)*(2 + (1 + sqrt(1 - a^2) + x)*
(3 + 2*lambda)))))))
end
elseif s == -1
return begin
(1/(2*sqrt(1 - a^2) + x)^2)*((a^2 + (1 + sqrt(1 - a^2) + x)^2)^2*
((2*I*a*x*(2*sqrt(1 - a^2) + x)*(3*I*a^2*m*(1 + sqrt(1 - a^2) + x) +
I*m*(1 + sqrt(1 - a^2) + x)^3 + 2*a^3*(-1 + lambda) + a*(1 + sqrt(1 - a^2) + x)*
(3 + (1 + sqrt(1 - a^2) + x)*(-1 + 2*lambda)))*(-((a*m)/(2*(1 + sqrt(1 - a^2)))) +
omega))/((1 + sqrt(1 - a^2) + x)*(a^2 + (1 + sqrt(1 - a^2) + x)^2)*
(2*I*a^3*m*(1 + sqrt(1 - a^2) + x) + 2*I*a*m*(1 + sqrt(1 - a^2) + x)^3 +
a^4*(-1 + lambda) + (1 + sqrt(1 - a^2) + x)^4*lambda + a^2*(1 + sqrt(1 - a^2) + x)*
(2 + (1 + sqrt(1 - a^2) + x)*(-1 + 2*lambda)))) -
(-((a*m)/(2*(1 + sqrt(1 - a^2)))) + omega)^2 - (1/(a^2 + (1 + sqrt(1 - a^2) + x)^2)^4)*
((a^2 - (1 + sqrt(1 - a^2) + x)^2)^2 + 2*x*(1 + sqrt(1 - a^2) + x)*
(2*sqrt(1 - a^2) + x)*(-3*a^2 + (1 + sqrt(1 - a^2) + x)^2) +
(2*a*x*(2*sqrt(1 - a^2) + x)*(a^2 - (1 + sqrt(1 - a^2) + x)^2)*
(a^2 + (1 + sqrt(1 - a^2) + x)^2)*(3*I*a^2*m*(1 + sqrt(1 - a^2) + x) +
I*m*(1 + sqrt(1 - a^2) + x)^3 + 2*a^3*(-1 + lambda) + a*(1 + sqrt(1 - a^2) + x)*
(3 + (1 + sqrt(1 - a^2) + x)*(-1 + 2*lambda))))/((1 + sqrt(1 - a^2) + x)*
(2*I*a^3*m*(1 + sqrt(1 - a^2) + x) + 2*I*a*m*(1 + sqrt(1 - a^2) + x)^3 +
a^4*(-1 + lambda) + (1 + sqrt(1 - a^2) + x)^4*lambda + a^2*(1 + sqrt(1 - a^2) + x)*
(2 + (1 + sqrt(1 - a^2) + x)*(-1 + 2*lambda)))) -
((a^2 + (1 + sqrt(1 - a^2) + x)^2)^2*(2*a^7*m*(1 + sqrt(1 - a^2) + x)^2*omega*
(2 - lambda + I*(1 + sqrt(1 - a^2) + x)*omega) + a^8*(-1 + lambda)*
(2 + (1 + sqrt(1 - a^2) + x)^2*omega^2) + 2*I*a^5*m*(1 + sqrt(1 - a^2) + x)^3*
(-2 + m^2 - lambda + 4*I*omega - 3*I*(1 + sqrt(1 - a^2) + x)*omega +
3*I*(1 + sqrt(1 - a^2) + x)*lambda*omega + 3*(1 + sqrt(1 - a^2) + x)^2*omega^2) +
(1 + sqrt(1 - a^2) + x)^6*lambda*(-3 - (1 + sqrt(1 - a^2) + x)^2*lambda +
2*(1 + sqrt(1 - a^2) + x)*(1 + lambda) + (1 + sqrt(1 - a^2) + x)^4*omega^2) +
2*I*a*m*(1 + sqrt(1 - a^2) + x)^5*(sqrt(1 - a^2) + x +
2*(1 + sqrt(1 - a^2) + x)*lambda - (1 + sqrt(1 - a^2) + x)^2*(lambda + 2*I*omega) +
I*(1 + sqrt(1 - a^2) + x)^3*(1 + lambda)*omega + (1 + sqrt(1 - a^2) + x)^4*omega^2) +
2*I*a^3*m*(1 + sqrt(1 - a^2) + x)^3*(1 + (1 + sqrt(1 - a^2) + x)*(3 + 2*lambda) +
(1 + sqrt(1 - a^2) + x)^2*(-2 + m^2 - 2*lambda + 2*I*omega) +
3*I*(1 + sqrt(1 - a^2) + x)^3*lambda*omega + 3*(1 + sqrt(1 - a^2) + x)^4*omega^2) +
a^6*(1 + sqrt(1 - a^2) + x)*(8 - 8*lambda + (1 + sqrt(1 - a^2) + x)*
(-1 + m^2*(-3 + lambda) - lambda^2 - 2*I*omega) + (1 + sqrt(1 - a^2) + x)^3*(-3 + 4*lambda)*
omega^2 + 2*(1 + sqrt(1 - a^2) + x)^2*omega*(-I - 2*I*m^2 + omega)) +
a^4*(1 + sqrt(1 - a^2) + x)^2*(-11 + 9*lambda + 2*(1 + sqrt(1 - a^2) + x)*
(1 + 3*m^2 + lambda + lambda^2 + 2*I*omega) + (1 + sqrt(1 - a^2) + x)^2*
(1 - 6*lambda - 3*lambda^2 + m^2*(-1 + 2*lambda) + 8*I*omega) + 3*(1 + sqrt(1 - a^2) + x)^4*
(-1 + 2*lambda)*omega^2 + 4*(1 + sqrt(1 - a^2) + x)^3*omega*(-I - 2*I*m^2 + omega)) +
a^2*(1 + sqrt(1 - a^2) + x)^3*(6 - 3*(1 + sqrt(1 - a^2) + x)*(1 + 2*lambda) -
4*(1 + sqrt(1 - a^2) + x)^2*(m^2 - 3*lambda - lambda^2 + 3*I*omega) +
(1 + sqrt(1 - a^2) + x)^3*(-4*lambda - 3*lambda^2 + m^2*(2 + lambda) + 10*I*omega) +
(1 + sqrt(1 - a^2) + x)^5*(-1 + 4*lambda)*omega^2 + 2*(1 + sqrt(1 - a^2) + x)^4*omega*
(-I - 2*I*m^2 + omega))))/((1 + sqrt(1 - a^2) + x)^2*
(2*I*a^3*m*(1 + sqrt(1 - a^2) + x) + 2*I*a*m*(1 + sqrt(1 - a^2) + x)^3 +
a^4*(-1 + lambda) + (1 + sqrt(1 - a^2) + x)^4*lambda + a^2*(1 + sqrt(1 - a^2) + x)*
(2 + (1 + sqrt(1 - a^2) + x)*(-1 + 2*lambda)))))))
end
elseif s == 2
return begin
(1/(2*sqrt(1 - a^2) + x)^2)*((a^2 + (1 + sqrt(1 - a^2) + x)^2)^2*
(-(-((a*m)/(2*(1 + sqrt(1 - a^2)))) + omega)^2 -
(8*I*a*x*(2*sqrt(1 - a^2) + x)*(-((a*m)/(2*(1 + sqrt(1 - a^2)))) + omega)*
(I*m*(1 + sqrt(1 - a^2) + x)^2*(6 + (1 + sqrt(1 - a^2) + x)*(4 + lambda)) -
3*a^2*m*(1 + sqrt(1 - a^2) + x)*(3*I + 4*(1 + sqrt(1 - a^2) + x)*omega) +
a*(1 + sqrt(1 - a^2) + x)*(9 + (1 + sqrt(1 - a^2) + x)*(-3 + 6*m^2 - 6*I*omega) -
I*(1 + sqrt(1 - a^2) + x)^2*(1 + lambda)*omega) +
a^3*(-6 + 9*I*(1 + sqrt(1 - a^2) + x)*omega + 6*(1 + sqrt(1 - a^2) + x)^2*omega^2)))/
((1 + sqrt(1 - a^2) + x)*(a^2 + (1 + sqrt(1 - a^2) + x)^2)*
((1 + sqrt(1 - a^2) + x)^4*(24 + 10*lambda + lambda^2 + 12*I*omega) +
24*a^3*m*(1 + sqrt(1 - a^2) + x)*(I + 2*(1 + sqrt(1 - a^2) + x)*omega) +
4*a*m*(1 + sqrt(1 - a^2) + x)^2*(-6*I - 2*I*(1 + sqrt(1 - a^2) + x)*(4 + lambda) +
3*(1 + sqrt(1 - a^2) + x)^2*omega) - 12*a^4*(-1 + 2*I*(1 + sqrt(1 - a^2) + x)*omega +
2*(1 + sqrt(1 - a^2) + x)^2*omega^2) - 4*a^2*(1 + sqrt(1 - a^2) + x)*
(6 + (1 + sqrt(1 - a^2) + x)*(-3 + 6*m^2 - 6*I*omega) -
2*I*(1 + sqrt(1 - a^2) + x)^2*(1 + lambda)*omega + 3*(1 + sqrt(1 - a^2) + x)^3*
omega^2))) - (((1 + sqrt(1 - a^2) + x)^2*(-1 + 3*sqrt(1 - a^2) + 3*x) +
a^2*(1 + 3*sqrt(1 - a^2) + 3*x))^2 + x*(2*sqrt(1 - a^2) + x)*
(3*a^4 + (1 + sqrt(1 - a^2) + x)^3*(8 - 3*(1 + sqrt(1 - a^2) + x))) +
(8*a*x*(2*sqrt(1 - a^2) + x)*(a^2 + (1 + sqrt(1 - a^2) + x)^2)*
((1 + sqrt(1 - a^2) + x)^2*(-1 + 3*sqrt(1 - a^2) + 3*x) +
a^2*(1 + 3*sqrt(1 - a^2) + 3*x))*(I*m*(1 + sqrt(1 - a^2) + x)^2*
(6 + (1 + sqrt(1 - a^2) + x)*(4 + lambda)) - 3*a^2*m*(1 + sqrt(1 - a^2) + x)*
(3*I + 4*(1 + sqrt(1 - a^2) + x)*omega) + a*(1 + sqrt(1 - a^2) + x)*
(9 + (1 + sqrt(1 - a^2) + x)*(-3 + 6*m^2 - 6*I*omega) -
I*(1 + sqrt(1 - a^2) + x)^2*(1 + lambda)*omega) +
a^3*(-6 + 9*I*(1 + sqrt(1 - a^2) + x)*omega + 6*(1 + sqrt(1 - a^2) + x)^2*omega^2)))/
((1 + sqrt(1 - a^2) + x)*((-(1 + sqrt(1 - a^2) + x)^4)*(24 + 10*lambda + lambda^2 +
12*I*omega) - 24*a^3*m*(1 + sqrt(1 - a^2) + x)*(I + 2*(1 + sqrt(1 - a^2) + x)*
omega) + 4*a*m*(1 + sqrt(1 - a^2) + x)^2*(6*I + 2*I*(1 + sqrt(1 - a^2) + x)*
(4 + lambda) - 3*(1 + sqrt(1 - a^2) + x)^2*omega) +
12*a^4*(-1 + 2*I*(1 + sqrt(1 - a^2) + x)*omega + 2*(1 + sqrt(1 - a^2) + x)^2*
omega^2) + 4*a^2*(1 + sqrt(1 - a^2) + x)*(6 + (1 + sqrt(1 - a^2) + x)*
(-3 + 6*m^2 - 6*I*omega) - 2*I*(1 + sqrt(1 - a^2) + x)^2*(1 + lambda)*omega +
3*(1 + sqrt(1 - a^2) + x)^3*omega^2))) - ((a^2 + (1 + sqrt(1 - a^2) + x)^2)^2*
(24*a^7*m*(1 + sqrt(1 - a^2) + x)^2*omega*(3 + 3*I*(1 + sqrt(1 - a^2) + x)*omega -
4*(1 + sqrt(1 - a^2) + x)^2*omega^2) - (1 + sqrt(1 - a^2) + x)^6*
(24 + 10*lambda + lambda^2 + 12*I*omega)*(-12 - (1 + sqrt(1 - a^2) + x)^2*lambda +
2*(1 + sqrt(1 - a^2) + x)*(4 + lambda) + (1 + sqrt(1 - a^2) + x)^4*omega^2) -
4*a^5*m*(1 + sqrt(1 - a^2) + x)^2*(-54*I - 2*I*(1 + sqrt(1 - a^2) + x)*
(-55 + 3*m^2 - 4*lambda - 18*I*omega) + 2*(1 + sqrt(1 - a^2) + x)^2*
(4 + 12*m^2 - 8*lambda + 27*I*omega)*omega - 6*I*(1 + sqrt(1 - a^2) + x)^3*(8 + lambda)*
omega^2 + 45*(1 + sqrt(1 - a^2) + x)^4*omega^3) +
12*a^8*(-2 - 3*(1 + sqrt(1 - a^2) + x)^2*omega^2 - 2*I*(1 + sqrt(1 - a^2) + x)^3*
omega^3 + 2*(1 + sqrt(1 - a^2) + x)^4*omega^4) + 4*a^6*(1 + sqrt(1 - a^2) + x)*
(60 - 3*(1 + sqrt(1 - a^2) + x)*(16 + 3*m^2 + 18*I*omega) +
(1 + sqrt(1 - a^2) + x)^3*(1 + 36*m^2 - 8*lambda + 18*I*omega)*omega^2 -
2*I*(1 + sqrt(1 - a^2) + x)^4*(7 + lambda)*omega^3 + 15*(1 + sqrt(1 - a^2) + x)^5*
omega^4 - 2*(1 + sqrt(1 - a^2) + x)^2*omega*(-40*I + 9*I*m^2 - 4*I*lambda + 9*omega)) +
2*a*m*(1 + sqrt(1 - a^2) + x)^4*(144*I + 8*I*(1 + sqrt(1 - a^2) + x)*
(-38 + lambda) + (1 + sqrt(1 - a^2) + x)^4*(40 + 20*lambda + lambda^2 + 24*I*omega)*omega +
4*I*(1 + sqrt(1 - a^2) + x)^5*(4 + lambda)*omega^2 - 6*(1 + sqrt(1 - a^2) + x)^6*
omega^3 + 4*(1 + sqrt(1 - a^2) + x)^2*(16*I + 3*I*lambda + 2*I*lambda^2 + 6*omega) -
4*I*(1 + sqrt(1 - a^2) + x)^3*(-12 + lambda + lambda^2 - 14*I*omega - 5*I*lambda*omega)) -
2*a^3*m*(1 + sqrt(1 - a^2) + x)^3*(312*I + (1 + sqrt(1 - a^2) + x)^3*
(84 + 30*m^2 - 52*lambda - lambda^2 + 36*I*omega)*omega - 4*I*(1 + sqrt(1 - a^2) + x)^4*
(19 + 4*lambda)*omega^2 + 48*(1 + sqrt(1 - a^2) + x)^5*omega^3 +
12*(1 + sqrt(1 - a^2) + x)*(-63*I + 3*I*m^2 - 3*I*lambda + 32*omega) +
4*(1 + sqrt(1 - a^2) + x)^2*(71*I + I*lambda^2 - I*m^2*(10 + lambda) - 104*omega +
lambda*(9*I + 16*omega))) + a^2*(1 + sqrt(1 - a^2) + x)^3*
(576 + 96*(1 + sqrt(1 - a^2) + x)*(-12 + 4*m^2 - 3*I*omega) +
8*(1 + sqrt(1 - a^2) + x)^2*(18 - 3*lambda^2 + m^2*(-58 + 8*lambda) +
lambda*(-30 - 2*I*omega) + 46*I*omega) - 8*I*(1 + sqrt(1 - a^2) + x)^4*
(-lambda^2 + 2*m^2*(7 + lambda) + lambda*(2 + 5*I*omega) + 11*I*omega)*omega +
2*(1 + sqrt(1 - a^2) + x)^5*(-34 + 24*m^2 - 20*lambda - lambda^2 - 24*I*omega)*omega^2 -
8*I*(1 + sqrt(1 - a^2) + x)^6*(1 + lambda)*omega^3 + 12*(1 + sqrt(1 - a^2) + x)^7*
omega^4 + (1 + sqrt(1 - a^2) + x)^3*(lambda^3 + 36*lambda*(4 + I*omega) +
2*lambda^2*(11 - 8*I*omega) - m^2*(-136 + 42*lambda + lambda^2 - 36*I*omega) -
8*(-18 + 19*I*omega + 6*omega^2))) + a^4*(1 + sqrt(1 - a^2) + x)^2*
(-672 + (1 + sqrt(1 - a^2) + x)*(960 - 72*m^2 + 624*I*omega) +
(1 + sqrt(1 - a^2) + x)^4*(44 + 180*m^2 - 62*lambda - lambda^2 + 36*I*omega)*omega^2 -
8*I*(1 + sqrt(1 - a^2) + x)^5*(5 + 2*lambda)*omega^3 + 48*(1 + sqrt(1 - a^2) + x)^6*
omega^4 + 8*(1 + sqrt(1 - a^2) + x)^3*omega*(56*I + I*lambda^2 - 3*I*m^2*(9 + lambda) -
46*omega + lambda*(6*I + 8*omega)) + 4*(1 + sqrt(1 - a^2) + x)^2*
(6*m^4 + m^2*(7 - 8*lambda + 54*I*omega) + 2*(-15 + 10*lambda + lambda^2 - 144*I*omega - 9*I*
lambda*omega + 48*omega^2)))))/((1 + sqrt(1 - a^2) + x)^2*
((-(1 + sqrt(1 - a^2) + x)^4)*(24 + 10*lambda + lambda^2 + 12*I*omega) -
24*a^3*m*(1 + sqrt(1 - a^2) + x)*(I + 2*(1 + sqrt(1 - a^2) + x)*omega) +
4*a*m*(1 + sqrt(1 - a^2) + x)^2*(6*I + 2*I*(1 + sqrt(1 - a^2) + x)*(4 + lambda) -
3*(1 + sqrt(1 - a^2) + x)^2*omega) + 12*a^4*(-1 + 2*I*(1 + sqrt(1 - a^2) + x)*
omega + 2*(1 + sqrt(1 - a^2) + x)^2*omega^2) + 4*a^2*(1 + sqrt(1 - a^2) + x)*
(6 + (1 + sqrt(1 - a^2) + x)*(-3 + 6*m^2 - 6*I*omega) -
2*I*(1 + sqrt(1 - a^2) + x)^2*(1 + lambda)*omega + 3*(1 + sqrt(1 - a^2) + x)^3*
omega^2))))/(a^2 + (1 + sqrt(1 - a^2) + x)^2)^4))
end
elseif s == -2
return begin
(1/(2*sqrt(1 - a^2) + x)^2)*((a^2 + (1 + sqrt(1 - a^2) + x)^2)^2*
(-(-((a*m)/(2*(1 + sqrt(1 - a^2)))) + omega)^2 -
(8*I*a*x*(2*sqrt(1 - a^2) + x)*(-((a*m)/(2*(1 + sqrt(1 - a^2)))) + omega)*
((-I)*m*(1 + sqrt(1 - a^2) + x)^2*(6 + (1 + sqrt(1 - a^2) + x)*lambda) +
3*a^2*m*(1 + sqrt(1 - a^2) + x)*(3*I - 4*(1 + sqrt(1 - a^2) + x)*omega) +
a*(1 + sqrt(1 - a^2) + x)*(9 + (1 + sqrt(1 - a^2) + x)*(-3 + 6*m^2 + 6*I*omega) +
I*(1 + sqrt(1 - a^2) + x)^2*(-3 + lambda)*omega) +
a^3*(-6 - 9*I*(1 + sqrt(1 - a^2) + x)*omega + 6*(1 + sqrt(1 - a^2) + x)^2*omega^2)))/
((1 + sqrt(1 - a^2) + x)*(a^2 + (1 + sqrt(1 - a^2) + x)^2)*
((1 + sqrt(1 - a^2) + x)^4*(2*lambda + lambda^2 - 12*I*omega) +
24*a^3*m*(1 + sqrt(1 - a^2) + x)*(-I + 2*(1 + sqrt(1 - a^2) + x)*omega) +
4*a*m*(1 + sqrt(1 - a^2) + x)^2*(6*I + 2*I*(1 + sqrt(1 - a^2) + x)*lambda +
3*(1 + sqrt(1 - a^2) + x)^2*omega) + a^4*(12 + 24*I*(1 + sqrt(1 - a^2) + x)*omega -
24*(1 + sqrt(1 - a^2) + x)^2*omega^2) - 4*a^2*(1 + sqrt(1 - a^2) + x)*
(6 + (1 + sqrt(1 - a^2) + x)*(-3 + 6*m^2 + 6*I*omega) +
2*I*(1 + sqrt(1 - a^2) + x)^2*(-3 + lambda)*omega + 3*(1 + sqrt(1 - a^2) + x)^3*
omega^2))) - (1/(a^2 + (1 + sqrt(1 - a^2) + x)^2)^4)*
((a^2*(-1 + sqrt(1 - a^2) + x) + (1 + sqrt(1 - a^2) + x)^3)^2 +
x*(2*sqrt(1 - a^2) + x)*(-a^4 - 8*a^2*(1 + sqrt(1 - a^2) + x) +
(1 + sqrt(1 - a^2) + x)^4) + (8*a*x*(2*sqrt(1 - a^2) + x)*
(a^2 + (1 + sqrt(1 - a^2) + x)^2)*(a^2*(-1 + sqrt(1 - a^2) + x) +
(1 + sqrt(1 - a^2) + x)^3)*((-I)*m*(1 + sqrt(1 - a^2) + x)^2*
(6 + (1 + sqrt(1 - a^2) + x)*lambda) + 3*a^2*m*(1 + sqrt(1 - a^2) + x)*
(3*I - 4*(1 + sqrt(1 - a^2) + x)*omega) + a*(1 + sqrt(1 - a^2) + x)*
(9 + (1 + sqrt(1 - a^2) + x)*(-3 + 6*m^2 + 6*I*omega) +
I*(1 + sqrt(1 - a^2) + x)^2*(-3 + lambda)*omega) +
a^3*(-6 - 9*I*(1 + sqrt(1 - a^2) + x)*omega + 6*(1 + sqrt(1 - a^2) + x)^2*omega^2)))/
((1 + sqrt(1 - a^2) + x)*((1 + sqrt(1 - a^2) + x)^4*(2*lambda + lambda^2 - 12*I*omega) +
24*a^3*m*(1 + sqrt(1 - a^2) + x)*(-I + 2*(1 + sqrt(1 - a^2) + x)*omega) +
4*a*m*(1 + sqrt(1 - a^2) + x)^2*(6*I + 2*I*(1 + sqrt(1 - a^2) + x)*lambda +
3*(1 + sqrt(1 - a^2) + x)^2*omega) + a^4*(12 + 24*I*(1 + sqrt(1 - a^2) + x)*omega -
24*(1 + sqrt(1 - a^2) + x)^2*omega^2) - 4*a^2*(1 + sqrt(1 - a^2) + x)*
(6 + (1 + sqrt(1 - a^2) + x)*(-3 + 6*m^2 + 6*I*omega) +
2*I*(1 + sqrt(1 - a^2) + x)^2*(-3 + lambda)*omega + 3*(1 + sqrt(1 - a^2) + x)^3*
omega^2))) - ((a^2 + (1 + sqrt(1 - a^2) + x)^2)^2*
(-24*a^7*m*(1 + sqrt(1 - a^2) + x)^2*omega*(-3 + 3*I*(1 + sqrt(1 - a^2) + x)*omega +
4*(1 + sqrt(1 - a^2) + x)^2*omega^2) - 2*a^3*m*(1 + sqrt(1 - a^2) + x)^3*
(72*I - 4*I*(1 + sqrt(1 - a^2) + x)*(15 + 9*m^2 - 13*lambda) +
4*(1 + sqrt(1 - a^2) + x)^2*(I*m^2*(6 + lambda) - I*(3 + lambda^2 + lambda*
(9 + 16*I*omega) + 24*I*omega)) + (1 + sqrt(1 - a^2) + x)^3*
(-36 + 30*m^2 - 44*lambda - lambda^2 - 36*I*omega)*omega + 4*I*(1 + sqrt(1 - a^2) + x)^4*
(3 + 4*lambda)*omega^2 + 48*(1 + sqrt(1 - a^2) + x)^5*omega^3) +
12*a^8*(-2 - 3*(1 + sqrt(1 - a^2) + x)^2*omega^2 + 2*I*(1 + sqrt(1 - a^2) + x)^3*
omega^3 + 2*(1 + sqrt(1 - a^2) + x)^4*omega^4) + 4*a^6*(1 + sqrt(1 - a^2) + x)*
(12 - 3*(1 + sqrt(1 - a^2) + x)*(-4 + 3*m^2 + 6*I*omega) +
(1 + sqrt(1 - a^2) + x)^3*(-39 + 36*m^2 - 8*lambda - 18*I*omega)*omega^2 +
2*I*(1 + sqrt(1 - a^2) + x)^4*(3 + lambda)*omega^3 + 15*(1 + sqrt(1 - a^2) + x)^5*
omega^4 + 2*(1 + sqrt(1 - a^2) + x)^2*omega*(24*I + 9*I*m^2 - 4*I*lambda + 15*omega)) -
4*a^5*m*(1 + sqrt(1 - a^2) + x)^2*(-18*I + 2*(1 + sqrt(1 - a^2) + x)^2*
(-36 + 12*m^2 - 8*lambda - 27*I*omega)*omega + 6*I*(1 + sqrt(1 - a^2) + x)^3*(4 + lambda)*
omega^2 + 45*(1 + sqrt(1 - a^2) + x)^4*omega^3 + 2*(1 + sqrt(1 - a^2) + x)*
(9*I + 3*I*m^2 - 4*I*lambda + 30*omega)) - 2*a*m*(1 + sqrt(1 - a^2) + x)^4*
(-48*I - 24*I*(1 + sqrt(1 - a^2) + x)*(-2 + lambda) +
4*I*(1 + sqrt(1 - a^2) + x)^2*(7*lambda + 2*lambda^2 + 6*I*omega) -
(1 + sqrt(1 - a^2) + x)^4*(12*lambda + lambda^2 - 24*I*omega)*omega +
4*I*(1 + sqrt(1 - a^2) + x)^5*lambda*omega^2 + 6*(1 + sqrt(1 - a^2) + x)^6*omega^3 -
4*I*(1 + sqrt(1 - a^2) + x)^3*(lambda + lambda^2 + 6*I*omega + 5*I*lambda*omega)) +
a^4*(1 + sqrt(1 - a^2) + x)^3*(24*m^4*(1 + sqrt(1 - a^2) + x) +
48*(-4 + 3*I*omega) + 8*(1 + sqrt(1 - a^2) + x)*(9 + lambda^2 + lambda*(2 + 13*I*omega) -
72*I*omega) - (1 + sqrt(1 - a^2) + x)^3*(60 + 54*lambda + lambda^2 + 36*I*omega)*omega^2 +
8*I*(1 + sqrt(1 - a^2) + x)^4*(-3 + 2*lambda)*omega^3 + 48*(1 + sqrt(1 - a^2) + x)^5*
omega^4 + 8*(1 + sqrt(1 - a^2) + x)^2*omega*(24*I - 6*I*lambda - I*lambda^2 + 18*omega +
8*lambda*omega) + 4*m^2*(30 - (1 + sqrt(1 - a^2) + x)*(33 + 8*lambda + 54*I*omega) +
6*I*(1 + sqrt(1 - a^2) + x)^2*(5 + lambda)*omega + 45*(1 + sqrt(1 - a^2) + x)^3*
omega^2)) + (1 + sqrt(1 - a^2) + x)^6*((-1 + sqrt(1 - a^2) + x)*
(1 + sqrt(1 - a^2) + x)*lambda^3 + lambda^2*(12 - 12*(1 + sqrt(1 - a^2) + x) +
2*(1 + sqrt(1 - a^2) + x)^2 - (1 + sqrt(1 - a^2) + x)^4*omega^2) +
12*I*omega*(-12 + 8*(1 + sqrt(1 - a^2) + x) + (1 + sqrt(1 - a^2) + x)^4*omega^2) -
2*lambda*(-12 + 4*(1 + sqrt(1 - a^2) + x)*(2 - 3*I*omega) +
6*I*(1 + sqrt(1 - a^2) + x)^2*omega + (1 + sqrt(1 - a^2) + x)^4*omega^2)) +
a^2*(1 + sqrt(1 - a^2) + x)^4*(96 + 8*(1 + sqrt(1 - a^2) + x)*
(m^2*(6 + 8*lambda) - 3*(2 + lambda^2 + lambda*(2 + 2*I*omega) - 22*I*omega)) - 96*I*omega +
2*(1 + sqrt(1 - a^2) + x)^4*(6 + 24*m^2 - 12*lambda - lambda^2 + 24*I*omega)*omega^2 +
8*I*(1 + sqrt(1 - a^2) + x)^5*(-3 + lambda)*omega^3 + 12*(1 + sqrt(1 - a^2) + x)^6*
omega^4 + (1 + sqrt(1 - a^2) + x)^2*(lambda^3 + lambda*(24 - 34*m^2 - 4*I*omega) +
lambda^2*(14 - m^2 + 16*I*omega) - 12*I*(22 + 3*m^2 - 4*I*omega)*omega) +
8*(1 + sqrt(1 - a^2) + x)^3*omega*((-I)*lambda^2 + 2*I*m^2*(3 + lambda) + 3*omega +
lambda*(2*I + 5*omega)))))/((1 + sqrt(1 - a^2) + x)^2*
((-(1 + sqrt(1 - a^2) + x)^4)*(2*lambda + lambda^2 - 12*I*omega) +
24*a^3*m*(1 + sqrt(1 - a^2) + x)*(I - 2*(1 + sqrt(1 - a^2) + x)*omega) -
4*a*m*(1 + sqrt(1 - a^2) + x)^2*(6*I + 2*I*(1 + sqrt(1 - a^2) + x)*lambda +
3*(1 + sqrt(1 - a^2) + x)^2*omega) + 12*a^4*(-1 - 2*I*(1 + sqrt(1 - a^2) + x)*
omega + 2*(1 + sqrt(1 - a^2) + x)^2*omega^2) + 4*a^2*(1 + sqrt(1 - a^2) + x)*
(6 + (1 + sqrt(1 - a^2) + x)*(-3 + 6*m^2 + 6*I*omega) +
2*I*(1 + sqrt(1 - a^2) + x)^2*(-3 + lambda)*omega + 3*(1 + sqrt(1 - a^2) + x)^3*
omega^2))))))
end
else
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
end
# Cache mechanism for the outgoing coefficients at horizon
# Initialize the cache with a set of fiducial parameters
_cached_outgoing_coefficients_at_hor_params::NamedTuple{(:s, :m, :a, :omega, :lambda), Tuple{Int, Int, _DEFAULTDATATYPE, _DEFAULTDATATYPE, _DEFAULTDATATYPE}} = (s=-2, m=2, a=0, omega=0.5, lambda=1)
_cached_outgoing_coefficients_at_hor::NamedTuple{(:expansion_coeffs, :Pcoeffs, :Qcoeffs), Tuple{Vector{_DEFAULTDATATYPE}, Vector{_DEFAULTDATATYPE}, Vector{_DEFAULTDATATYPE}}} = (
expansion_coeffs = [_DEFAULTDATATYPE(1.0)],
Pcoeffs = [_DEFAULTDATATYPE(0.0)],
Qcoeffs = [_DEFAULTDATATYPE(0.0)]
)
function outgoing_coefficient_at_hor(s::Int, m::Int, a, omega, lambda, order::Int)
global _cached_outgoing_coefficients_at_hor_params
global _cached_outgoing_coefficients_at_hor
if order < 0
throw(DomainError(order, "Only positive expansion order is supported"))
end
_this_params = (s=s, m=m, a=a, omega=omega, lambda=lambda)
# Check if we can use the cached results
if _cached_outgoing_coefficients_at_hor_params == _this_params
expansion_coeffs = _cached_outgoing_coefficients_at_hor.expansion_coeffs
Pcoeffs = _cached_outgoing_coefficients_at_hor.Pcoeffs
Qcoeffs = _cached_outgoing_coefficients_at_hor.Qcoeffs
else
# Cannot re-use the cached results, re-compute from zero
expansion_coeffs = [_DEFAULTDATATYPE(1.0)] # order 0
Pcoeffs = [_DEFAULTDATATYPE(PplusH(s, m, a, omega, lambda, 0))] # order 0
Qcoeffs = [_DEFAULTDATATYPE(0.0)] # order 0
end
if order > 0
# Compute series expansion coefficients for P and Q
_P(x) = PplusH(s, m, a, omega, lambda, x)
_Q(x) = QplusH(s, m, a, omega, lambda, x)
_P_taylor = taylor_expand(_P, 0, order=order)
_Q_taylor = taylor_expand(_Q, 0, order=order)
for i in length(Pcoeffs):order
append!(Pcoeffs, getcoeff(_P_taylor, i))
append!(Qcoeffs, getcoeff(_Q_taylor, i))
end
end
# Define the indicial polynomial
indicial(nu) = nu*(nu - 1) + Pcoeffs[1]*nu + Qcoeffs[1]
if order > 0
# Evaluate the C coefficients
for i in length(expansion_coeffs):order
sum = 0.0
for r in 0:i-1
sum += expansion_coeffs[r+1]*(r*Pcoeffs[i-r+1] + Qcoeffs[i-r+1])
end
append!(expansion_coeffs, -sum/indicial(i))
end
end
# Update cache
_cached_outgoing_coefficients_at_hor_params = _this_params
_cached_outgoing_coefficients_at_hor = (
expansion_coeffs = expansion_coeffs,
Pcoeffs = Pcoeffs,
Qcoeffs = Qcoeffs
)
return expansion_coeffs[order+1]
end
function PminusH(s::Int, m::Int, a, omega, lambda, x)
if s == 0
return begin
((a^2 + (1 + sqrt(1 - a^2) + x)^2)*
(-((2*x*(1 + sqrt(1 - a^2) + x)*(2*sqrt(1 - a^2) + x))/
(2*(1 + sqrt(1 - a^2)) + 2*(1 + sqrt(1 - a^2))*x + x^2)^2) +
(2*(sqrt(1 - a^2) + x))/(a^2 + (1 + sqrt(1 - a^2) + x)^2) +
I*((a*m)/(1 + sqrt(1 - a^2)) - 2*omega)))/(2*sqrt(1 - a^2) + x)
end
elseif s == 1
return begin
(1/(2*sqrt(1 - a^2) + x))*((a^2 + (1 + sqrt(1 - a^2) + x)^2)*
(-((2*x*(1 + sqrt(1 - a^2) + x)*(2*sqrt(1 - a^2) + x))/
(2*(1 + sqrt(1 - a^2)) + 2*(1 + sqrt(1 - a^2))*x + x^2)^2) +
(2*(sqrt(1 - a^2) + x))/(a^2 + (1 + sqrt(1 - a^2) + x)^2) +
(2*a*x*(2*sqrt(1 - a^2) + x)*(-3*I*a^2*m*(1 + sqrt(1 - a^2) + x) -
I*m*(1 + sqrt(1 - a^2) + x)^3 + 2*a^3*(1 + lambda) + a*(1 + sqrt(1 - a^2) + x)*
(3 + (1 + sqrt(1 - a^2) + x)*(3 + 2*lambda))))/((1 + sqrt(1 - a^2) + x)*
(a^2 + (1 + sqrt(1 - a^2) + x)^2)*(-2*I*a^3*m*(1 + sqrt(1 - a^2) + x) -
2*I*a*m*(1 + sqrt(1 - a^2) + x)^3 + a^4*(1 + lambda) + (1 + sqrt(1 - a^2) + x)^4*
(2 + lambda) + a^2*(1 + sqrt(1 - a^2) + x)*(2 + (1 + sqrt(1 - a^2) + x)*
(3 + 2*lambda)))) + I*((a*m)/(1 + sqrt(1 - a^2)) - 2*omega)))
end
elseif s == -1
return begin
(1/(2*sqrt(1 - a^2) + x))*((a^2 + (1 + sqrt(1 - a^2) + x)^2)*
(-((2*x*(1 + sqrt(1 - a^2) + x)*(2*sqrt(1 - a^2) + x))/
(2*(1 + sqrt(1 - a^2)) + 2*(1 + sqrt(1 - a^2))*x + x^2)^2) +
(2*(sqrt(1 - a^2) + x))/(a^2 + (1 + sqrt(1 - a^2) + x)^2) +
(2*a*x*(2*sqrt(1 - a^2) + x)*(3*I*a^2*m*(1 + sqrt(1 - a^2) + x) +
I*m*(1 + sqrt(1 - a^2) + x)^3 + 2*a^3*(-1 + lambda) + a*(1 + sqrt(1 - a^2) + x)*
(3 + (1 + sqrt(1 - a^2) + x)*(-1 + 2*lambda))))/((1 + sqrt(1 - a^2) + x)*
(a^2 + (1 + sqrt(1 - a^2) + x)^2)*(2*I*a^3*m*(1 + sqrt(1 - a^2) + x) +
2*I*a*m*(1 + sqrt(1 - a^2) + x)^3 + a^4*(-1 + lambda) + (1 + sqrt(1 - a^2) + x)^4*
lambda + a^2*(1 + sqrt(1 - a^2) + x)*(2 + (1 + sqrt(1 - a^2) + x)*(-1 + 2*lambda)))) +
I*((a*m)/(1 + sqrt(1 - a^2)) - 2*omega)))
end
elseif s == 2
return begin
(1/(2*sqrt(1 - a^2) + x))*((a^2 + (1 + sqrt(1 - a^2) + x)^2)*
(-((2*x*(1 + sqrt(1 - a^2) + x)*(2*sqrt(1 - a^2) + x))/
(2*(1 + sqrt(1 - a^2)) + 2*(1 + sqrt(1 - a^2))*x + x^2)^2) +
(2*(sqrt(1 - a^2) + x))/(a^2 + (1 + sqrt(1 - a^2) + x)^2) +
I*((a*m)/(1 + sqrt(1 - a^2)) - 2*omega) +
(8*a*x*(2*sqrt(1 - a^2) + x)*(I*m*(1 + sqrt(1 - a^2) + x)^2*
(6 + (1 + sqrt(1 - a^2) + x)*(4 + lambda)) - 3*a^2*m*(1 + sqrt(1 - a^2) + x)*
(3*I + 4*(1 + sqrt(1 - a^2) + x)*omega) + a*(1 + sqrt(1 - a^2) + x)*
(9 + (1 + sqrt(1 - a^2) + x)*(-3 + 6*m^2 - 6*I*omega) - I*(1 + sqrt(1 - a^2) + x)^2*
(1 + lambda)*omega) + a^3*(-6 + 9*I*(1 + sqrt(1 - a^2) + x)*omega +
6*(1 + sqrt(1 - a^2) + x)^2*omega^2)))/((1 + sqrt(1 - a^2) + x)*
(a^2 + (1 + sqrt(1 - a^2) + x)^2)*((-(1 + sqrt(1 - a^2) + x)^4)*
(24 + 10*lambda + lambda^2 + 12*I*omega) - 24*a^3*m*(1 + sqrt(1 - a^2) + x)*
(I + 2*(1 + sqrt(1 - a^2) + x)*omega) + 4*a*m*(1 + sqrt(1 - a^2) + x)^2*
(6*I + 2*I*(1 + sqrt(1 - a^2) + x)*(4 + lambda) - 3*(1 + sqrt(1 - a^2) + x)^2*omega) +
12*a^4*(-1 + 2*I*(1 + sqrt(1 - a^2) + x)*omega + 2*(1 + sqrt(1 - a^2) + x)^2*omega^2) +
4*a^2*(1 + sqrt(1 - a^2) + x)*(6 + (1 + sqrt(1 - a^2) + x)*
(-3 + 6*m^2 - 6*I*omega) - 2*I*(1 + sqrt(1 - a^2) + x)^2*(1 + lambda)*omega +
3*(1 + sqrt(1 - a^2) + x)^3*omega^2)))))
end
elseif s == -2
return begin
(1/(2*sqrt(1 - a^2) + x))*((a^2 + (1 + sqrt(1 - a^2) + x)^2)*
(-((2*x*(1 + sqrt(1 - a^2) + x)*(2*sqrt(1 - a^2) + x))/
(2*(1 + sqrt(1 - a^2)) + 2*(1 + sqrt(1 - a^2))*x + x^2)^2) +
(2*(sqrt(1 - a^2) + x))/(a^2 + (1 + sqrt(1 - a^2) + x)^2) +
I*((a*m)/(1 + sqrt(1 - a^2)) - 2*omega) -
(8*a*x*(2*sqrt(1 - a^2) + x)*((-I)*m*(1 + sqrt(1 - a^2) + x)^2*
(6 + (1 + sqrt(1 - a^2) + x)*lambda) + 3*a^2*m*(1 + sqrt(1 - a^2) + x)*
(3*I - 4*(1 + sqrt(1 - a^2) + x)*omega) + a*(1 + sqrt(1 - a^2) + x)*
(9 + (1 + sqrt(1 - a^2) + x)*(-3 + 6*m^2 + 6*I*omega) + I*(1 + sqrt(1 - a^2) + x)^2*
(-3 + lambda)*omega) + a^3*(-6 - 9*I*(1 + sqrt(1 - a^2) + x)*omega +
6*(1 + sqrt(1 - a^2) + x)^2*omega^2)))/((1 + sqrt(1 - a^2) + x)*
(a^2 + (1 + sqrt(1 - a^2) + x)^2)*((1 + sqrt(1 - a^2) + x)^4*
(2*lambda + lambda^2 - 12*I*omega) + 24*a^3*m*(1 + sqrt(1 - a^2) + x)*
(-I + 2*(1 + sqrt(1 - a^2) + x)*omega) + 4*a*m*(1 + sqrt(1 - a^2) + x)^2*
(6*I + 2*I*(1 + sqrt(1 - a^2) + x)*lambda + 3*(1 + sqrt(1 - a^2) + x)^2*omega) +
a^4*(12 + 24*I*(1 + sqrt(1 - a^2) + x)*omega - 24*(1 + sqrt(1 - a^2) + x)^2*omega^2) -
4*a^2*(1 + sqrt(1 - a^2) + x)*(6 + (1 + sqrt(1 - a^2) + x)*
(-3 + 6*m^2 + 6*I*omega) + 2*I*(1 + sqrt(1 - a^2) + x)^2*(-3 + lambda)*omega +
3*(1 + sqrt(1 - a^2) + x)^3*omega^2)))))
end
else
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
end
function QminusH(s::Int, m::Int, a, omega, lambda, x)
if s == 0
return begin
(1/(2*sqrt(1 - a^2) + x)^2)*((a^2 + (1 + sqrt(1 - a^2) + x)^2)^2*
(-(-((a*m)/(2*(1 + sqrt(1 - a^2)))) + omega)^2 - (1/(a^2 + (1 + sqrt(1 - a^2) + x)^2)^4)*
(x^2*(1 + sqrt(1 - a^2) + x)^2*(2*sqrt(1 - a^2) + x)^2 +
x*(2*sqrt(1 - a^2) + x)*(a^4 - 4*a^2*(1 + sqrt(1 - a^2) + x) -
(-3 + sqrt(1 - a^2) + x)*(1 + sqrt(1 - a^2) + x)^3) +
(a^2 + (1 + sqrt(1 - a^2) + x)^2)^2*(x*(2*sqrt(1 - a^2) + x)*lambda -
(a*m - (a^2 + (1 + sqrt(1 - a^2) + x)^2)*omega)^2))))
end
elseif s == 1
return begin
(1/(2*sqrt(1 - a^2) + x)^2)*((a^2 + (1 + sqrt(1 - a^2) + x)^2)^2*
(-((2*I*a*x*(2*sqrt(1 - a^2) + x)*(-3*I*a^2*m*(1 + sqrt(1 - a^2) + x) -
I*m*(1 + sqrt(1 - a^2) + x)^3 + 2*a^3*(1 + lambda) + a*(1 + sqrt(1 - a^2) + x)*
(3 + (1 + sqrt(1 - a^2) + x)*(3 + 2*lambda)))*(-((a*m)/(2*(1 + sqrt(1 - a^2)))) +
omega))/((1 + sqrt(1 - a^2) + x)*(a^2 + (1 + sqrt(1 - a^2) + x)^2)*
(-2*I*a^3*m*(1 + sqrt(1 - a^2) + x) - 2*I*a*m*(1 + sqrt(1 - a^2) + x)^3 +
a^4*(1 + lambda) + (1 + sqrt(1 - a^2) + x)^4*(2 + lambda) + a^2*(1 + sqrt(1 - a^2) + x)*
(2 + (1 + sqrt(1 - a^2) + x)*(3 + 2*lambda))))) -
(-((a*m)/(2*(1 + sqrt(1 - a^2)))) + omega)^2 - (1/(a^2 + (1 + sqrt(1 - a^2) + x)^2)^4)*
(2*x*(2*sqrt(1 - a^2) + x)*(a^4 - a^2*(1 + sqrt(1 - a^2) + x) -
(-2 + sqrt(1 - a^2) + x)*(1 + sqrt(1 - a^2) + x)^3) +
((1 + sqrt(1 - a^2) + x)^2*(-1 + 2*sqrt(1 - a^2) + 2*x) +
a^2*(1 + 2*sqrt(1 - a^2) + 2*x))^2 + (2*a*x*(2*sqrt(1 - a^2) + x)*
(a^2 + (1 + sqrt(1 - a^2) + x)^2)*((1 + sqrt(1 - a^2) + x)^2*
(-1 + 2*sqrt(1 - a^2) + 2*x) + a^2*(1 + 2*sqrt(1 - a^2) + 2*x))*
(-3*I*a^2*m*(1 + sqrt(1 - a^2) + x) - I*m*(1 + sqrt(1 - a^2) + x)^3 +
2*a^3*(1 + lambda) + a*(1 + sqrt(1 - a^2) + x)*(3 + (1 + sqrt(1 - a^2) + x)*
(3 + 2*lambda))))/((1 + sqrt(1 - a^2) + x)*(-2*I*a^3*m*(1 + sqrt(1 - a^2) + x) -
2*I*a*m*(1 + sqrt(1 - a^2) + x)^3 + a^4*(1 + lambda) + (1 + sqrt(1 - a^2) + x)^4*
(2 + lambda) + a^2*(1 + sqrt(1 - a^2) + x)*(2 + (1 + sqrt(1 - a^2) + x)*
(3 + 2*lambda)))) - ((a^2 + (1 + sqrt(1 - a^2) + x)^2)^2*
(2*a^7*m*(1 + sqrt(1 - a^2) + x)^2*omega*(-lambda - I*(1 + sqrt(1 - a^2) + x)*omega) +
a^8*(1 + lambda)*(2 + (1 + sqrt(1 - a^2) + x)^2*omega^2) -
2*I*a^5*m*(1 + sqrt(1 - a^2) + x)^2*(-6 + (1 + sqrt(1 - a^2) + x)*
(4 + m^2 - lambda - 4*I*omega) - 3*I*(1 + sqrt(1 - a^2) + x)^2*(1 + lambda)*omega +
3*(1 + sqrt(1 - a^2) + x)^3*omega^2) - 2*I*a*m*(1 + sqrt(1 - a^2) + x)^5*
(3 + (1 + sqrt(1 - a^2) + x)*(-5 + 2*lambda) + (1 + sqrt(1 - a^2) + x)^2*
(2 - lambda + 2*I*omega) - I*(1 + sqrt(1 - a^2) + x)^3*(3 + lambda)*omega +
(1 + sqrt(1 - a^2) + x)^4*omega^2) - 2*I*a^3*m*(1 + sqrt(1 - a^2) + x)^3*
(13 + (1 + sqrt(1 - a^2) + x)*(-17 + 2*lambda) + (1 + sqrt(1 - a^2) + x)^2*
(6 + m^2 - 2*lambda - 2*I*omega) - 3*I*(1 + sqrt(1 - a^2) + x)^3*(2 + lambda)*omega +
3*(1 + sqrt(1 - a^2) + x)^4*omega^2) + (1 + sqrt(1 - a^2) + x)^6*
(-3*(2 + lambda) - (1 + sqrt(1 - a^2) + x)^2*lambda*(2 + lambda) +
2*(1 + sqrt(1 - a^2) + x)*(2 + 3*lambda + lambda^2) + (1 + sqrt(1 - a^2) + x)^4*
(2 + lambda)*omega^2) + a^6*(1 + sqrt(1 - a^2) + x)*(-16*(1 + lambda) +
(1 + sqrt(1 - a^2) + x)*(5 + m^2*(-1 + lambda) + 6*lambda - lambda^2 + 2*I*omega) +
(1 + sqrt(1 - a^2) + x)^3*(5 + 4*lambda)*omega^2 + 2*(1 + sqrt(1 - a^2) + x)^2*omega*
(I + 2*I*m^2 + omega)) + a^4*(1 + sqrt(1 - a^2) + x)^2*
(11 + 25*lambda + 2*(1 + sqrt(1 - a^2) + x)*(-5 + 3*m^2 - 13*lambda + lambda^2 - 2*I*omega) +
(1 + sqrt(1 - a^2) + x)^2*(5 + 4*lambda - 3*lambda^2 + m^2*(3 + 2*lambda) - 8*I*omega) +
3*(1 + sqrt(1 - a^2) + x)^4*(3 + 2*lambda)*omega^2 + 4*(1 + sqrt(1 - a^2) + x)^3*omega*
(I + 2*I*m^2 + omega)) + a^2*(1 + sqrt(1 - a^2) + x)^3*
(30 + 5*(1 + sqrt(1 - a^2) + x)*(-7 + 2*lambda) - 4*(1 + sqrt(1 - a^2) + x)^2*
(-2 + m^2 + lambda - lambda^2 - 3*I*omega) + (1 + sqrt(1 - a^2) + x)^3*
(2 - 2*lambda - 3*lambda^2 + m^2*(4 + lambda) - 10*I*omega) + (1 + sqrt(1 - a^2) + x)^5*
(7 + 4*lambda)*omega^2 + 2*(1 + sqrt(1 - a^2) + x)^4*omega*(I + 2*I*m^2 + omega))))/
((1 + sqrt(1 - a^2) + x)^2*(-2*I*a^3*m*(1 + sqrt(1 - a^2) + x) -
2*I*a*m*(1 + sqrt(1 - a^2) + x)^3 + a^4*(1 + lambda) + (1 + sqrt(1 - a^2) + x)^4*
(2 + lambda) + a^2*(1 + sqrt(1 - a^2) + x)*(2 + (1 + sqrt(1 - a^2) + x)*
(3 + 2*lambda)))))))
end
elseif s == -1
return begin
(1/(2*sqrt(1 - a^2) + x)^2)*((a^2 + (1 + sqrt(1 - a^2) + x)^2)^2*
(-((2*I*a*x*(2*sqrt(1 - a^2) + x)*(3*I*a^2*m*(1 + sqrt(1 - a^2) + x) +
I*m*(1 + sqrt(1 - a^2) + x)^3 + 2*a^3*(-1 + lambda) + a*(1 + sqrt(1 - a^2) + x)*
(3 + (1 + sqrt(1 - a^2) + x)*(-1 + 2*lambda)))*(-((a*m)/(2*(1 + sqrt(1 - a^2)))) +
omega))/((1 + sqrt(1 - a^2) + x)*(a^2 + (1 + sqrt(1 - a^2) + x)^2)*
(2*I*a^3*m*(1 + sqrt(1 - a^2) + x) + 2*I*a*m*(1 + sqrt(1 - a^2) + x)^3 +
a^4*(-1 + lambda) + (1 + sqrt(1 - a^2) + x)^4*lambda + a^2*(1 + sqrt(1 - a^2) + x)*
(2 + (1 + sqrt(1 - a^2) + x)*(-1 + 2*lambda))))) -
(-((a*m)/(2*(1 + sqrt(1 - a^2)))) + omega)^2 - (1/(a^2 + (1 + sqrt(1 - a^2) + x)^2)^4)*
((a^2 - (1 + sqrt(1 - a^2) + x)^2)^2 + 2*x*(1 + sqrt(1 - a^2) + x)*
(2*sqrt(1 - a^2) + x)*(-3*a^2 + (1 + sqrt(1 - a^2) + x)^2) +
(2*a*x*(2*sqrt(1 - a^2) + x)*(a^2 - (1 + sqrt(1 - a^2) + x)^2)*
(a^2 + (1 + sqrt(1 - a^2) + x)^2)*(3*I*a^2*m*(1 + sqrt(1 - a^2) + x) +
I*m*(1 + sqrt(1 - a^2) + x)^3 + 2*a^3*(-1 + lambda) + a*(1 + sqrt(1 - a^2) + x)*
(3 + (1 + sqrt(1 - a^2) + x)*(-1 + 2*lambda))))/((1 + sqrt(1 - a^2) + x)*
(2*I*a^3*m*(1 + sqrt(1 - a^2) + x) + 2*I*a*m*(1 + sqrt(1 - a^2) + x)^3 +
a^4*(-1 + lambda) + (1 + sqrt(1 - a^2) + x)^4*lambda + a^2*(1 + sqrt(1 - a^2) + x)*
(2 + (1 + sqrt(1 - a^2) + x)*(-1 + 2*lambda)))) -
((a^2 + (1 + sqrt(1 - a^2) + x)^2)^2*(2*a^7*m*(1 + sqrt(1 - a^2) + x)^2*omega*
(2 - lambda + I*(1 + sqrt(1 - a^2) + x)*omega) + a^8*(-1 + lambda)*
(2 + (1 + sqrt(1 - a^2) + x)^2*omega^2) + 2*I*a^5*m*(1 + sqrt(1 - a^2) + x)^3*
(-2 + m^2 - lambda + 4*I*omega - 3*I*(1 + sqrt(1 - a^2) + x)*omega +
3*I*(1 + sqrt(1 - a^2) + x)*lambda*omega + 3*(1 + sqrt(1 - a^2) + x)^2*omega^2) +
(1 + sqrt(1 - a^2) + x)^6*lambda*(-3 - (1 + sqrt(1 - a^2) + x)^2*lambda +
2*(1 + sqrt(1 - a^2) + x)*(1 + lambda) + (1 + sqrt(1 - a^2) + x)^4*omega^2) +
2*I*a*m*(1 + sqrt(1 - a^2) + x)^5*(sqrt(1 - a^2) + x +
2*(1 + sqrt(1 - a^2) + x)*lambda - (1 + sqrt(1 - a^2) + x)^2*(lambda + 2*I*omega) +
I*(1 + sqrt(1 - a^2) + x)^3*(1 + lambda)*omega + (1 + sqrt(1 - a^2) + x)^4*omega^2) +
2*I*a^3*m*(1 + sqrt(1 - a^2) + x)^3*(1 + (1 + sqrt(1 - a^2) + x)*(3 + 2*lambda) +
(1 + sqrt(1 - a^2) + x)^2*(-2 + m^2 - 2*lambda + 2*I*omega) +
3*I*(1 + sqrt(1 - a^2) + x)^3*lambda*omega + 3*(1 + sqrt(1 - a^2) + x)^4*omega^2) +
a^6*(1 + sqrt(1 - a^2) + x)*(8 - 8*lambda + (1 + sqrt(1 - a^2) + x)*
(-1 + m^2*(-3 + lambda) - lambda^2 - 2*I*omega) + (1 + sqrt(1 - a^2) + x)^3*(-3 + 4*lambda)*
omega^2 + 2*(1 + sqrt(1 - a^2) + x)^2*omega*(-I - 2*I*m^2 + omega)) +
a^4*(1 + sqrt(1 - a^2) + x)^2*(-11 + 9*lambda + 2*(1 + sqrt(1 - a^2) + x)*
(1 + 3*m^2 + lambda + lambda^2 + 2*I*omega) + (1 + sqrt(1 - a^2) + x)^2*
(1 - 6*lambda - 3*lambda^2 + m^2*(-1 + 2*lambda) + 8*I*omega) + 3*(1 + sqrt(1 - a^2) + x)^4*
(-1 + 2*lambda)*omega^2 + 4*(1 + sqrt(1 - a^2) + x)^3*omega*(-I - 2*I*m^2 + omega)) +
a^2*(1 + sqrt(1 - a^2) + x)^3*(6 - 3*(1 + sqrt(1 - a^2) + x)*(1 + 2*lambda) -
4*(1 + sqrt(1 - a^2) + x)^2*(m^2 - 3*lambda - lambda^2 + 3*I*omega) +
(1 + sqrt(1 - a^2) + x)^3*(-4*lambda - 3*lambda^2 + m^2*(2 + lambda) + 10*I*omega) +
(1 + sqrt(1 - a^2) + x)^5*(-1 + 4*lambda)*omega^2 + 2*(1 + sqrt(1 - a^2) + x)^4*omega*
(-I - 2*I*m^2 + omega))))/((1 + sqrt(1 - a^2) + x)^2*
(2*I*a^3*m*(1 + sqrt(1 - a^2) + x) + 2*I*a*m*(1 + sqrt(1 - a^2) + x)^3 +
a^4*(-1 + lambda) + (1 + sqrt(1 - a^2) + x)^4*lambda + a^2*(1 + sqrt(1 - a^2) + x)*
(2 + (1 + sqrt(1 - a^2) + x)*(-1 + 2*lambda)))))))
end
elseif s == 2
return begin
(1/(2*sqrt(1 - a^2) + x)^2)*((a^2 + (1 + sqrt(1 - a^2) + x)^2)^2*
(-(-((a*m)/(2*(1 + sqrt(1 - a^2)))) + omega)^2 +
(8*I*a*x*(2*sqrt(1 - a^2) + x)*(-((a*m)/(2*(1 + sqrt(1 - a^2)))) + omega)*
(I*m*(1 + sqrt(1 - a^2) + x)^2*(6 + (1 + sqrt(1 - a^2) + x)*(4 + lambda)) -
3*a^2*m*(1 + sqrt(1 - a^2) + x)*(3*I + 4*(1 + sqrt(1 - a^2) + x)*omega) +
a*(1 + sqrt(1 - a^2) + x)*(9 + (1 + sqrt(1 - a^2) + x)*(-3 + 6*m^2 - 6*I*omega) -
I*(1 + sqrt(1 - a^2) + x)^2*(1 + lambda)*omega) +
a^3*(-6 + 9*I*(1 + sqrt(1 - a^2) + x)*omega + 6*(1 + sqrt(1 - a^2) + x)^2*omega^2)))/
((1 + sqrt(1 - a^2) + x)*(a^2 + (1 + sqrt(1 - a^2) + x)^2)*
((1 + sqrt(1 - a^2) + x)^4*(24 + 10*lambda + lambda^2 + 12*I*omega) +
24*a^3*m*(1 + sqrt(1 - a^2) + x)*(I + 2*(1 + sqrt(1 - a^2) + x)*omega) +
4*a*m*(1 + sqrt(1 - a^2) + x)^2*(-6*I - 2*I*(1 + sqrt(1 - a^2) + x)*(4 + lambda) +
3*(1 + sqrt(1 - a^2) + x)^2*omega) - 12*a^4*(-1 + 2*I*(1 + sqrt(1 - a^2) + x)*omega +
2*(1 + sqrt(1 - a^2) + x)^2*omega^2) - 4*a^2*(1 + sqrt(1 - a^2) + x)*
(6 + (1 + sqrt(1 - a^2) + x)*(-3 + 6*m^2 - 6*I*omega) -
2*I*(1 + sqrt(1 - a^2) + x)^2*(1 + lambda)*omega + 3*(1 + sqrt(1 - a^2) + x)^3*
omega^2))) - (((1 + sqrt(1 - a^2) + x)^2*(-1 + 3*sqrt(1 - a^2) + 3*x) +
a^2*(1 + 3*sqrt(1 - a^2) + 3*x))^2 + x*(2*sqrt(1 - a^2) + x)*
(3*a^4 + (1 + sqrt(1 - a^2) + x)^3*(8 - 3*(1 + sqrt(1 - a^2) + x))) +
(8*a*x*(2*sqrt(1 - a^2) + x)*(a^2 + (1 + sqrt(1 - a^2) + x)^2)*
((1 + sqrt(1 - a^2) + x)^2*(-1 + 3*sqrt(1 - a^2) + 3*x) +
a^2*(1 + 3*sqrt(1 - a^2) + 3*x))*(I*m*(1 + sqrt(1 - a^2) + x)^2*
(6 + (1 + sqrt(1 - a^2) + x)*(4 + lambda)) - 3*a^2*m*(1 + sqrt(1 - a^2) + x)*
(3*I + 4*(1 + sqrt(1 - a^2) + x)*omega) + a*(1 + sqrt(1 - a^2) + x)*
(9 + (1 + sqrt(1 - a^2) + x)*(-3 + 6*m^2 - 6*I*omega) -
I*(1 + sqrt(1 - a^2) + x)^2*(1 + lambda)*omega) +
a^3*(-6 + 9*I*(1 + sqrt(1 - a^2) + x)*omega + 6*(1 + sqrt(1 - a^2) + x)^2*omega^2)))/
((1 + sqrt(1 - a^2) + x)*((-(1 + sqrt(1 - a^2) + x)^4)*(24 + 10*lambda + lambda^2 +
12*I*omega) - 24*a^3*m*(1 + sqrt(1 - a^2) + x)*(I + 2*(1 + sqrt(1 - a^2) + x)*
omega) + 4*a*m*(1 + sqrt(1 - a^2) + x)^2*(6*I + 2*I*(1 + sqrt(1 - a^2) + x)*
(4 + lambda) - 3*(1 + sqrt(1 - a^2) + x)^2*omega) +
12*a^4*(-1 + 2*I*(1 + sqrt(1 - a^2) + x)*omega + 2*(1 + sqrt(1 - a^2) + x)^2*
omega^2) + 4*a^2*(1 + sqrt(1 - a^2) + x)*(6 + (1 + sqrt(1 - a^2) + x)*
(-3 + 6*m^2 - 6*I*omega) - 2*I*(1 + sqrt(1 - a^2) + x)^2*(1 + lambda)*omega +
3*(1 + sqrt(1 - a^2) + x)^3*omega^2))) - ((a^2 + (1 + sqrt(1 - a^2) + x)^2)^2*
(24*a^7*m*(1 + sqrt(1 - a^2) + x)^2*omega*(3 + 3*I*(1 + sqrt(1 - a^2) + x)*omega -
4*(1 + sqrt(1 - a^2) + x)^2*omega^2) - (1 + sqrt(1 - a^2) + x)^6*
(24 + 10*lambda + lambda^2 + 12*I*omega)*(-12 - (1 + sqrt(1 - a^2) + x)^2*lambda +
2*(1 + sqrt(1 - a^2) + x)*(4 + lambda) + (1 + sqrt(1 - a^2) + x)^4*omega^2) -
4*a^5*m*(1 + sqrt(1 - a^2) + x)^2*(-54*I - 2*I*(1 + sqrt(1 - a^2) + x)*
(-55 + 3*m^2 - 4*lambda - 18*I*omega) + 2*(1 + sqrt(1 - a^2) + x)^2*
(4 + 12*m^2 - 8*lambda + 27*I*omega)*omega - 6*I*(1 + sqrt(1 - a^2) + x)^3*(8 + lambda)*
omega^2 + 45*(1 + sqrt(1 - a^2) + x)^4*omega^3) +
12*a^8*(-2 - 3*(1 + sqrt(1 - a^2) + x)^2*omega^2 - 2*I*(1 + sqrt(1 - a^2) + x)^3*
omega^3 + 2*(1 + sqrt(1 - a^2) + x)^4*omega^4) + 4*a^6*(1 + sqrt(1 - a^2) + x)*
(60 - 3*(1 + sqrt(1 - a^2) + x)*(16 + 3*m^2 + 18*I*omega) +
(1 + sqrt(1 - a^2) + x)^3*(1 + 36*m^2 - 8*lambda + 18*I*omega)*omega^2 -
2*I*(1 + sqrt(1 - a^2) + x)^4*(7 + lambda)*omega^3 + 15*(1 + sqrt(1 - a^2) + x)^5*
omega^4 - 2*(1 + sqrt(1 - a^2) + x)^2*omega*(-40*I + 9*I*m^2 - 4*I*lambda + 9*omega)) +
2*a*m*(1 + sqrt(1 - a^2) + x)^4*(144*I + 8*I*(1 + sqrt(1 - a^2) + x)*
(-38 + lambda) + (1 + sqrt(1 - a^2) + x)^4*(40 + 20*lambda + lambda^2 + 24*I*omega)*omega +
4*I*(1 + sqrt(1 - a^2) + x)^5*(4 + lambda)*omega^2 - 6*(1 + sqrt(1 - a^2) + x)^6*
omega^3 + 4*(1 + sqrt(1 - a^2) + x)^2*(16*I + 3*I*lambda + 2*I*lambda^2 + 6*omega) -
4*I*(1 + sqrt(1 - a^2) + x)^3*(-12 + lambda + lambda^2 - 14*I*omega - 5*I*lambda*omega)) -
2*a^3*m*(1 + sqrt(1 - a^2) + x)^3*(312*I + (1 + sqrt(1 - a^2) + x)^3*
(84 + 30*m^2 - 52*lambda - lambda^2 + 36*I*omega)*omega - 4*I*(1 + sqrt(1 - a^2) + x)^4*
(19 + 4*lambda)*omega^2 + 48*(1 + sqrt(1 - a^2) + x)^5*omega^3 +
12*(1 + sqrt(1 - a^2) + x)*(-63*I + 3*I*m^2 - 3*I*lambda + 32*omega) +
4*(1 + sqrt(1 - a^2) + x)^2*(71*I + I*lambda^2 - I*m^2*(10 + lambda) - 104*omega +
lambda*(9*I + 16*omega))) + a^2*(1 + sqrt(1 - a^2) + x)^3*
(576 + 96*(1 + sqrt(1 - a^2) + x)*(-12 + 4*m^2 - 3*I*omega) +
8*(1 + sqrt(1 - a^2) + x)^2*(18 - 3*lambda^2 + m^2*(-58 + 8*lambda) +
lambda*(-30 - 2*I*omega) + 46*I*omega) - 8*I*(1 + sqrt(1 - a^2) + x)^4*
(-lambda^2 + 2*m^2*(7 + lambda) + lambda*(2 + 5*I*omega) + 11*I*omega)*omega +
2*(1 + sqrt(1 - a^2) + x)^5*(-34 + 24*m^2 - 20*lambda - lambda^2 - 24*I*omega)*omega^2 -
8*I*(1 + sqrt(1 - a^2) + x)^6*(1 + lambda)*omega^3 + 12*(1 + sqrt(1 - a^2) + x)^7*
omega^4 + (1 + sqrt(1 - a^2) + x)^3*(lambda^3 + 36*lambda*(4 + I*omega) +
2*lambda^2*(11 - 8*I*omega) - m^2*(-136 + 42*lambda + lambda^2 - 36*I*omega) -
8*(-18 + 19*I*omega + 6*omega^2))) + a^4*(1 + sqrt(1 - a^2) + x)^2*
(-672 + (1 + sqrt(1 - a^2) + x)*(960 - 72*m^2 + 624*I*omega) +
(1 + sqrt(1 - a^2) + x)^4*(44 + 180*m^2 - 62*lambda - lambda^2 + 36*I*omega)*omega^2 -
8*I*(1 + sqrt(1 - a^2) + x)^5*(5 + 2*lambda)*omega^3 + 48*(1 + sqrt(1 - a^2) + x)^6*
omega^4 + 8*(1 + sqrt(1 - a^2) + x)^3*omega*(56*I + I*lambda^2 - 3*I*m^2*(9 + lambda) -
46*omega + lambda*(6*I + 8*omega)) + 4*(1 + sqrt(1 - a^2) + x)^2*
(6*m^4 + m^2*(7 - 8*lambda + 54*I*omega) + 2*(-15 + 10*lambda + lambda^2 - 144*I*omega - 9*I*
lambda*omega + 48*omega^2)))))/((1 + sqrt(1 - a^2) + x)^2*
((-(1 + sqrt(1 - a^2) + x)^4)*(24 + 10*lambda + lambda^2 + 12*I*omega) -
24*a^3*m*(1 + sqrt(1 - a^2) + x)*(I + 2*(1 + sqrt(1 - a^2) + x)*omega) +
4*a*m*(1 + sqrt(1 - a^2) + x)^2*(6*I + 2*I*(1 + sqrt(1 - a^2) + x)*(4 + lambda) -
3*(1 + sqrt(1 - a^2) + x)^2*omega) + 12*a^4*(-1 + 2*I*(1 + sqrt(1 - a^2) + x)*
omega + 2*(1 + sqrt(1 - a^2) + x)^2*omega^2) + 4*a^2*(1 + sqrt(1 - a^2) + x)*
(6 + (1 + sqrt(1 - a^2) + x)*(-3 + 6*m^2 - 6*I*omega) -
2*I*(1 + sqrt(1 - a^2) + x)^2*(1 + lambda)*omega + 3*(1 + sqrt(1 - a^2) + x)^3*
omega^2))))/(a^2 + (1 + sqrt(1 - a^2) + x)^2)^4))
end
elseif s == -2
return begin
(1/(2*sqrt(1 - a^2) + x)^2)*((a^2 + (1 + sqrt(1 - a^2) + x)^2)^2*
(-(-((a*m)/(2*(1 + sqrt(1 - a^2)))) + omega)^2 +
(8*I*a*x*(2*sqrt(1 - a^2) + x)*(-((a*m)/(2*(1 + sqrt(1 - a^2)))) + omega)*
((-I)*m*(1 + sqrt(1 - a^2) + x)^2*(6 + (1 + sqrt(1 - a^2) + x)*lambda) +
3*a^2*m*(1 + sqrt(1 - a^2) + x)*(3*I - 4*(1 + sqrt(1 - a^2) + x)*omega) +
a*(1 + sqrt(1 - a^2) + x)*(9 + (1 + sqrt(1 - a^2) + x)*(-3 + 6*m^2 + 6*I*omega) +
I*(1 + sqrt(1 - a^2) + x)^2*(-3 + lambda)*omega) +
a^3*(-6 - 9*I*(1 + sqrt(1 - a^2) + x)*omega + 6*(1 + sqrt(1 - a^2) + x)^2*omega^2)))/
((1 + sqrt(1 - a^2) + x)*(a^2 + (1 + sqrt(1 - a^2) + x)^2)*
((1 + sqrt(1 - a^2) + x)^4*(2*lambda + lambda^2 - 12*I*omega) +
24*a^3*m*(1 + sqrt(1 - a^2) + x)*(-I + 2*(1 + sqrt(1 - a^2) + x)*omega) +
4*a*m*(1 + sqrt(1 - a^2) + x)^2*(6*I + 2*I*(1 + sqrt(1 - a^2) + x)*lambda +
3*(1 + sqrt(1 - a^2) + x)^2*omega) + a^4*(12 + 24*I*(1 + sqrt(1 - a^2) + x)*omega -
24*(1 + sqrt(1 - a^2) + x)^2*omega^2) - 4*a^2*(1 + sqrt(1 - a^2) + x)*
(6 + (1 + sqrt(1 - a^2) + x)*(-3 + 6*m^2 + 6*I*omega) +
2*I*(1 + sqrt(1 - a^2) + x)^2*(-3 + lambda)*omega + 3*(1 + sqrt(1 - a^2) + x)^3*
omega^2))) - (1/(a^2 + (1 + sqrt(1 - a^2) + x)^2)^4)*
((a^2*(-1 + sqrt(1 - a^2) + x) + (1 + sqrt(1 - a^2) + x)^3)^2 +
x*(2*sqrt(1 - a^2) + x)*(-a^4 - 8*a^2*(1 + sqrt(1 - a^2) + x) +
(1 + sqrt(1 - a^2) + x)^4) + (8*a*x*(2*sqrt(1 - a^2) + x)*
(a^2 + (1 + sqrt(1 - a^2) + x)^2)*(a^2*(-1 + sqrt(1 - a^2) + x) +
(1 + sqrt(1 - a^2) + x)^3)*((-I)*m*(1 + sqrt(1 - a^2) + x)^2*
(6 + (1 + sqrt(1 - a^2) + x)*lambda) + 3*a^2*m*(1 + sqrt(1 - a^2) + x)*
(3*I - 4*(1 + sqrt(1 - a^2) + x)*omega) + a*(1 + sqrt(1 - a^2) + x)*
(9 + (1 + sqrt(1 - a^2) + x)*(-3 + 6*m^2 + 6*I*omega) +
I*(1 + sqrt(1 - a^2) + x)^2*(-3 + lambda)*omega) +
a^3*(-6 - 9*I*(1 + sqrt(1 - a^2) + x)*omega + 6*(1 + sqrt(1 - a^2) + x)^2*omega^2)))/
((1 + sqrt(1 - a^2) + x)*((1 + sqrt(1 - a^2) + x)^4*(2*lambda + lambda^2 - 12*I*omega) +
24*a^3*m*(1 + sqrt(1 - a^2) + x)*(-I + 2*(1 + sqrt(1 - a^2) + x)*omega) +
4*a*m*(1 + sqrt(1 - a^2) + x)^2*(6*I + 2*I*(1 + sqrt(1 - a^2) + x)*lambda +
3*(1 + sqrt(1 - a^2) + x)^2*omega) + a^4*(12 + 24*I*(1 + sqrt(1 - a^2) + x)*omega -
24*(1 + sqrt(1 - a^2) + x)^2*omega^2) - 4*a^2*(1 + sqrt(1 - a^2) + x)*
(6 + (1 + sqrt(1 - a^2) + x)*(-3 + 6*m^2 + 6*I*omega) +
2*I*(1 + sqrt(1 - a^2) + x)^2*(-3 + lambda)*omega + 3*(1 + sqrt(1 - a^2) + x)^3*
omega^2))) - ((a^2 + (1 + sqrt(1 - a^2) + x)^2)^2*
(-24*a^7*m*(1 + sqrt(1 - a^2) + x)^2*omega*(-3 + 3*I*(1 + sqrt(1 - a^2) + x)*omega +
4*(1 + sqrt(1 - a^2) + x)^2*omega^2) - 2*a^3*m*(1 + sqrt(1 - a^2) + x)^3*
(72*I - 4*I*(1 + sqrt(1 - a^2) + x)*(15 + 9*m^2 - 13*lambda) +
4*(1 + sqrt(1 - a^2) + x)^2*(I*m^2*(6 + lambda) - I*(3 + lambda^2 + lambda*
(9 + 16*I*omega) + 24*I*omega)) + (1 + sqrt(1 - a^2) + x)^3*
(-36 + 30*m^2 - 44*lambda - lambda^2 - 36*I*omega)*omega + 4*I*(1 + sqrt(1 - a^2) + x)^4*
(3 + 4*lambda)*omega^2 + 48*(1 + sqrt(1 - a^2) + x)^5*omega^3) +
12*a^8*(-2 - 3*(1 + sqrt(1 - a^2) + x)^2*omega^2 + 2*I*(1 + sqrt(1 - a^2) + x)^3*
omega^3 + 2*(1 + sqrt(1 - a^2) + x)^4*omega^4) + 4*a^6*(1 + sqrt(1 - a^2) + x)*
(12 - 3*(1 + sqrt(1 - a^2) + x)*(-4 + 3*m^2 + 6*I*omega) +
(1 + sqrt(1 - a^2) + x)^3*(-39 + 36*m^2 - 8*lambda - 18*I*omega)*omega^2 +
2*I*(1 + sqrt(1 - a^2) + x)^4*(3 + lambda)*omega^3 + 15*(1 + sqrt(1 - a^2) + x)^5*
omega^4 + 2*(1 + sqrt(1 - a^2) + x)^2*omega*(24*I + 9*I*m^2 - 4*I*lambda + 15*omega)) -
4*a^5*m*(1 + sqrt(1 - a^2) + x)^2*(-18*I + 2*(1 + sqrt(1 - a^2) + x)^2*
(-36 + 12*m^2 - 8*lambda - 27*I*omega)*omega + 6*I*(1 + sqrt(1 - a^2) + x)^3*(4 + lambda)*
omega^2 + 45*(1 + sqrt(1 - a^2) + x)^4*omega^3 + 2*(1 + sqrt(1 - a^2) + x)*
(9*I + 3*I*m^2 - 4*I*lambda + 30*omega)) - 2*a*m*(1 + sqrt(1 - a^2) + x)^4*
(-48*I - 24*I*(1 + sqrt(1 - a^2) + x)*(-2 + lambda) +
4*I*(1 + sqrt(1 - a^2) + x)^2*(7*lambda + 2*lambda^2 + 6*I*omega) -
(1 + sqrt(1 - a^2) + x)^4*(12*lambda + lambda^2 - 24*I*omega)*omega +
4*I*(1 + sqrt(1 - a^2) + x)^5*lambda*omega^2 + 6*(1 + sqrt(1 - a^2) + x)^6*omega^3 -
4*I*(1 + sqrt(1 - a^2) + x)^3*(lambda + lambda^2 + 6*I*omega + 5*I*lambda*omega)) +
a^4*(1 + sqrt(1 - a^2) + x)^3*(24*m^4*(1 + sqrt(1 - a^2) + x) +
48*(-4 + 3*I*omega) + 8*(1 + sqrt(1 - a^2) + x)*(9 + lambda^2 + lambda*(2 + 13*I*omega) -
72*I*omega) - (1 + sqrt(1 - a^2) + x)^3*(60 + 54*lambda + lambda^2 + 36*I*omega)*omega^2 +
8*I*(1 + sqrt(1 - a^2) + x)^4*(-3 + 2*lambda)*omega^3 + 48*(1 + sqrt(1 - a^2) + x)^5*
omega^4 + 8*(1 + sqrt(1 - a^2) + x)^2*omega*(24*I - 6*I*lambda - I*lambda^2 + 18*omega +
8*lambda*omega) + 4*m^2*(30 - (1 + sqrt(1 - a^2) + x)*(33 + 8*lambda + 54*I*omega) +
6*I*(1 + sqrt(1 - a^2) + x)^2*(5 + lambda)*omega + 45*(1 + sqrt(1 - a^2) + x)^3*
omega^2)) + (1 + sqrt(1 - a^2) + x)^6*((-1 + sqrt(1 - a^2) + x)*
(1 + sqrt(1 - a^2) + x)*lambda^3 + lambda^2*(12 - 12*(1 + sqrt(1 - a^2) + x) +
2*(1 + sqrt(1 - a^2) + x)^2 - (1 + sqrt(1 - a^2) + x)^4*omega^2) +
12*I*omega*(-12 + 8*(1 + sqrt(1 - a^2) + x) + (1 + sqrt(1 - a^2) + x)^4*omega^2) -
2*lambda*(-12 + 4*(1 + sqrt(1 - a^2) + x)*(2 - 3*I*omega) +
6*I*(1 + sqrt(1 - a^2) + x)^2*omega + (1 + sqrt(1 - a^2) + x)^4*omega^2)) +
a^2*(1 + sqrt(1 - a^2) + x)^4*(96 + 8*(1 + sqrt(1 - a^2) + x)*
(m^2*(6 + 8*lambda) - 3*(2 + lambda^2 + lambda*(2 + 2*I*omega) - 22*I*omega)) - 96*I*omega +
2*(1 + sqrt(1 - a^2) + x)^4*(6 + 24*m^2 - 12*lambda - lambda^2 + 24*I*omega)*omega^2 +
8*I*(1 + sqrt(1 - a^2) + x)^5*(-3 + lambda)*omega^3 + 12*(1 + sqrt(1 - a^2) + x)^6*
omega^4 + (1 + sqrt(1 - a^2) + x)^2*(lambda^3 + lambda*(24 - 34*m^2 - 4*I*omega) +
lambda^2*(14 - m^2 + 16*I*omega) - 12*I*(22 + 3*m^2 - 4*I*omega)*omega) +
8*(1 + sqrt(1 - a^2) + x)^3*omega*((-I)*lambda^2 + 2*I*m^2*(3 + lambda) + 3*omega +
lambda*(2*I + 5*omega)))))/((1 + sqrt(1 - a^2) + x)^2*
((-(1 + sqrt(1 - a^2) + x)^4)*(2*lambda + lambda^2 - 12*I*omega) +
24*a^3*m*(1 + sqrt(1 - a^2) + x)*(I - 2*(1 + sqrt(1 - a^2) + x)*omega) -
4*a*m*(1 + sqrt(1 - a^2) + x)^2*(6*I + 2*I*(1 + sqrt(1 - a^2) + x)*lambda +
3*(1 + sqrt(1 - a^2) + x)^2*omega) + 12*a^4*(-1 - 2*I*(1 + sqrt(1 - a^2) + x)*
omega + 2*(1 + sqrt(1 - a^2) + x)^2*omega^2) + 4*a^2*(1 + sqrt(1 - a^2) + x)*
(6 + (1 + sqrt(1 - a^2) + x)*(-3 + 6*m^2 + 6*I*omega) +
2*I*(1 + sqrt(1 - a^2) + x)^2*(-3 + lambda)*omega + 3*(1 + sqrt(1 - a^2) + x)^3*
omega^2))))))
end
else
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
end
# Cache mechanism for the ingoing coefficients at horizon
# Initialize the cache with a set of fiducial parameters
_cached_ingoing_coefficients_at_hor_params::NamedTuple{(:s, :m, :a, :omega, :lambda), Tuple{Int, Int, _DEFAULTDATATYPE, _DEFAULTDATATYPE, _DEFAULTDATATYPE}} = (s=-2, m=2, a=0, omega=0.5, lambda=1)
_cached_ingoing_coefficients_at_hor::NamedTuple{(:expansion_coeffs, :Pcoeffs, :Qcoeffs), Tuple{Vector{_DEFAULTDATATYPE}, Vector{_DEFAULTDATATYPE}, Vector{_DEFAULTDATATYPE}}} = (
expansion_coeffs = [_DEFAULTDATATYPE(1.0)],
Pcoeffs = [_DEFAULTDATATYPE(0.0)],
Qcoeffs = [_DEFAULTDATATYPE(0.0)]
)
function ingoing_coefficient_at_hor(s::Int, m::Int, a, omega, lambda, order::Int)
global _cached_ingoing_coefficients_at_hor_params
global _cached_ingoing_coefficients_at_hor
if order < 0
throw(DomainError(order, "Only positive expansion order is supported"))
end
_this_params = (s=s, m=m, a=a, omega=omega, lambda=lambda)
# Check if we can use the cached results
if _cached_ingoing_coefficients_at_hor_params == _this_params
expansion_coeffs = _cached_ingoing_coefficients_at_hor.expansion_coeffs
Pcoeffs = _cached_ingoing_coefficients_at_hor.Pcoeffs
Qcoeffs = _cached_ingoing_coefficients_at_hor.Qcoeffs
else
# Cannot re-use the cached results, re-compute from zero
expansion_coeffs = [_DEFAULTDATATYPE(1.0)] # order 0
Pcoeffs = [_DEFAULTDATATYPE(PminusH(s, m, a, omega, lambda, 0))] # order 0
Qcoeffs = [_DEFAULTDATATYPE(0.0)] # order 0
end
if order > 0
# Compute series expansion coefficients for P and Q
_P(x) = PminusH(s, m, a, omega, lambda, x)
_Q(x) = QminusH(s, m, a, omega, lambda, x)
_P_taylor = taylor_expand(_P, 0, order=order)
_Q_taylor = taylor_expand(_Q, 0, order=order)
for i in length(Pcoeffs):order
append!(Pcoeffs, getcoeff(_P_taylor, i))
append!(Qcoeffs, getcoeff(_Q_taylor, i))
end
end
# Define the indicial polynomial
indicial(nu) = nu*(nu - 1) + Pcoeffs[1]*nu + Qcoeffs[1]
if order > 0
# Evaluate the C coefficients
for i in length(expansion_coeffs):order
sum = 0.0
for r in 0:i-1
sum += expansion_coeffs[r+1]*(r*Pcoeffs[i-r+1] + Qcoeffs[i-r+1])
end
append!(expansion_coeffs, -sum/indicial(i))
end
end
# Update cache
_cached_ingoing_coefficients_at_hor_params = _this_params
_cached_ingoing_coefficients_at_hor = (
expansion_coeffs = expansion_coeffs,
Pcoeffs = Pcoeffs,
Qcoeffs = Qcoeffs
)
return expansion_coeffs[order+1]
end
end | GeneralizedSasakiNakamura | https://github.com/ricokaloklo/GeneralizedSasakiNakamura.jl.git |
|
[
"MIT"
] | 0.4.2 | f00e7a1d7777e3697be7d567a00b31d6ff700034 | code | 6678 | module ConversionFactors
const I = 1im
#=
The conversion factors here are *always* defined as
the ratio of the coefficient in Teukosky equation *over*
the coefficient in the Sasaki-Nakamura formalism
=#
function Ctrans(s::Int, m::Int, a, omega, lambda)
if s == 0
return 1
elseif s == +1
inv = 2*I*omega
return 1/inv
elseif s == -1
return (2*I*omega)/lambda
elseif s == +2
inv = -(4*omega^2)
return 1/inv
elseif s == -2
return begin
(4*omega^2)/(-lambda*(2+lambda)+12*I*omega-12*a*m*omega+12*(a*omega)^2)
end
else
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
end
function Binc(s::Int, m::Int, a, omega, lambda)
if s == 0
return 1
elseif s == +1
return -((2*I*omega)/(2 + lambda))
elseif s == -1
inv = -(2*I*omega)
return 1/inv
elseif s == +2
return begin
(4*omega^2)/(-24 - 10*lambda - lambda^2 - 12*I*omega - 12*a*m*omega + 12*a^2*omega^2)
end
elseif s == -2
inv = -(4*omega^2)
return 1/inv
else
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
end
function Btrans(s::Int, m::Int, a, omega, lambda)
if s == 0
inv = sqrt(2)*sqrt(1 + sqrt(1 - a^2))
return 1/inv
elseif s == +1
return begin
(sqrt(2)*sqrt(1 + sqrt(1 - a^2))*((-a)*m + 2*(1 + sqrt(1 - a^2))*omega))/
(2*a*m + 2*I*(2 + lambda))
end
elseif s == -1
inv = begin
(1/(1 + sqrt(1 - a^2))^(5/2))*(4*sqrt(2)*(2 - 2*a^2 + 2*sqrt(1 - a^2) -
a^2*sqrt(1 - a^2) + 2*I*a*m - I*a^3*m + 2*I*a*sqrt(1 - a^2)*m - 8*I*omega +
6*I*a^2*omega - 8*I*sqrt(1 - a^2)*omega + 2*I*a^2*sqrt(1 - a^2)*omega))
end
return 1/inv
elseif s == +2
return begin
(2*sqrt(2)*(1 + sqrt(1 - a^2))^(3/2)*(2*a*(1 + sqrt(1 - a^2))*m*(1 + 8*I*omega) -
8*I*(1 + sqrt(1 - a^2))*omega*(-I + 4*omega) +
a^3*m*(-2 - sqrt(1 - a^2) - 4*I*(3 + sqrt(1 - a^2))*omega) +
I*a^4*(m^2 + 2*(I - 2*omega)*omega) + 2*a^2*((-I)*(1 + sqrt(1 - a^2))*m^2 +
omega*(5 + 3*sqrt(1 - a^2) + 8*I*(2 + sqrt(1 - a^2))*omega))))/
(16*a*(1 + sqrt(1 - a^2))*m*(11 + 2*lambda + 6*I*omega) + 8*I*(1 + sqrt(1 - a^2))*
(24 + lambda*(10 + lambda) + 12*I*omega) - 36*I*a^5*m*omega + 12*I*a^6*omega^2 -
8*a^3*m*(18 + 7*sqrt(1 - a^2) + (3 + sqrt(1 - a^2))*lambda - 6*I*sqrt(1 - a^2)*omega) +
a^4*(24*I*m^2 + I*(4 + lambda)*(6 + lambda) + 32*sqrt(1 - a^2)*omega + 8*sqrt(1 - a^2)*lambda*omega +
12*(5 + 2*lambda)*omega + 48*I*omega^2) + 4*a^2*(-24*I*(2 + sqrt(1 - a^2)) -
12*I*(1 + sqrt(1 - a^2))*m^2 - 10*I*(2 + sqrt(1 - a^2))*lambda -
I*(2 + sqrt(1 - a^2))*lambda^2 - 8*(1 + sqrt(1 - a^2))*lambda*omega +
4*omega*(1 - 2*sqrt(1 - a^2) - 6*I*(1 + sqrt(1 - a^2))*omega)))
end
elseif s == -2
inv = begin
-((1/(1 + sqrt(1 - a^2))^(3/2))*(4*(sqrt(2)*(-4 + 6*a^2 - 2*a^4 - 4*sqrt(1 - a^2) +
4*a^2*sqrt(1 - a^2) - 6*I*a*m + 6*I*a^3*m - 6*I*a*sqrt(1 - a^2)*m +
3*I*a^3*sqrt(1 - a^2)*m + 2*a^2*m^2 - a^4*m^2 + 2*a^2*sqrt(1 - a^2)*m^2 +
24*I*omega - 30*I*a^2*omega + 6*I*a^4*omega + 24*I*sqrt(1 - a^2)*omega -
18*I*a^2*sqrt(1 - a^2)*omega - 16*a*m*omega + 12*a^3*m*omega - 16*a*sqrt(1 - a^2)*m*omega +
4*a^3*sqrt(1 - a^2)*m*omega + 32*omega^2 - 32*a^2*omega^2 + 4*a^4*omega^2 +
32*sqrt(1 - a^2)*omega^2 - 16*a^2*sqrt(1 - a^2)*omega^2))))
end
return 1/inv
else
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
end
function Cinc(s::Int, m::Int, a, omega, lambda)
if s == 0
return 1/(sqrt(2)*sqrt(1 + sqrt(1 - a^2)))
elseif s == +1
inv = begin
(4*sqrt(2)*((-I)*a*(1 + sqrt(1 - a^2))*m + a^2*(-1 - 2*I*omega) +
(1 + sqrt(1 - a^2))*(1 + 4*I*omega)))/(1 + sqrt(1 - a^2))^(3/2)
end
return 1/inv
elseif s == -1
return begin
(-4*a*m + 3*a^3*m - 4*a*sqrt(1 - a^2)*m + a^3*sqrt(1 - a^2)*m + 16*omega - 16*a^2*omega +
2*a^4*omega + 16*sqrt(1 - a^2)*omega - 8*a^2*sqrt(1 - a^2)*omega)/
(sqrt(2)*sqrt(1 + sqrt(1 - a^2))*(2 - a^2 + 2*sqrt(1 - a^2))*(a*m - I*lambda))
end
elseif s == +2
inv = begin
-((1/(1 + sqrt(1 - a^2))^(3/2))*(4*sqrt(2)*(-2*a*(1 + sqrt(1 - a^2))*m*(-3*I + 8*omega) +
a^3*m*(-3*I*(2 + sqrt(1 - a^2)) + 4*(3 + sqrt(1 - a^2))*omega) -
a^4*(2 + m^2 + 6*I*omega - 4*omega^2) + 4*(1 + sqrt(1 - a^2))*(-1 - 6*I*omega + 8*omega^2) +
2*a^2*(3 + 2*sqrt(1 - a^2) + (1 + sqrt(1 - a^2))*m^2 +
omega*(3*I*(5 + 3*sqrt(1 - a^2)) - 8*(2 + sqrt(1 - a^2))*omega)))))
end
return 1/inv
elseif s == -2
return begin
-((2*sqrt(2)*(1 + sqrt(1 - a^2))^(3/2)*(-2*I*a*m + 2*I*a^3*m - 2*I*a*sqrt(1 - a^2)*m +
I*a^3*sqrt(1 - a^2)*m + 2*a^2*m^2 - a^4*m^2 + 2*a^2*sqrt(1 - a^2)*m^2 + 8*I*omega -
10*I*a^2*omega + 2*I*a^4*omega + 8*I*sqrt(1 - a^2)*omega - 6*I*a^2*sqrt(1 - a^2)*omega -
16*a*m*omega + 12*a^3*m*omega - 16*a*sqrt(1 - a^2)*m*omega + 4*a^3*sqrt(1 - a^2)*m*omega +
32*omega^2 - 32*a^2*omega^2 + 4*a^4*omega^2 + 32*sqrt(1 - a^2)*omega^2 -
16*a^2*sqrt(1 - a^2)*omega^2))/((1 + sqrt(1 - a^2))^4*(lambda*(2 + lambda) - 12*I*omega) +
24*a^3*(1 + sqrt(1 - a^2))*m*(-I + 2*(1 + sqrt(1 - a^2))*omega) +
4*a*(1 + sqrt(1 - a^2))^2*m*(6*I + 2*I*(1 + sqrt(1 - a^2))*lambda +
3*(1 + sqrt(1 - a^2))^2*omega) - 4*a^2*(1 + sqrt(1 - a^2))*
(6 + (1 + sqrt(1 - a^2))*(-3 + 6*m^2) + 2*I*(1 + sqrt(1 - a^2))*
(3 + (1 + sqrt(1 - a^2))*(-3 + lambda))*omega + 3*(1 + sqrt(1 - a^2))^3*omega^2) +
12*a^4*(1 - 2*(1 + sqrt(1 - a^2))*omega*(-I + omega + sqrt(1 - a^2)*omega))))
end
else
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
end
# These functions are redundant and are defined for convenience
# The conversion factor for Cref is identical to Btrans
function Cref(s::Int, m::Int, a, omega, lambda)
return Btrans(s, m, a, omega, lambda)
end
# The conversion factor for Bref is identical to Ctrans
function Bref(s::Int, m::Int, a, omega, lambda)
return Ctrans(s, m, a, omega, lambda)
end
end | GeneralizedSasakiNakamura | https://github.com/ricokaloklo/GeneralizedSasakiNakamura.jl.git |
|
[
"MIT"
] | 0.4.2 | f00e7a1d7777e3697be7d567a00b31d6ff700034 | code | 2167 | module Coordinates
using ..Kerr
using Roots
using Interpolations
export rstar_from_r, r_from_rstar
function rstar_from_rp(a, r_from_rp)
rp = r_plus(a)
rm = r_minus(a)
return rp + r_from_rp + (2*1*rp)/(rp-rm) * log(r_from_rp/(2*1)) - (2*1*rm)/(rp-rm) * log((r_from_rp+rp-rm)/(2*1))
end
@doc raw"""
rstar_from_r(a, r)
Convert a Boyer-Lindquist coordinate `r` to the corresponding tortoise coordinate `rstar`.
"""
function rstar_from_r(a, r)
rp = r_plus(a)
return rstar_from_rp(a, r-rp)
end
@doc raw"""
r_from_rstar(a, rstar)
Convert a tortoise coordinate `rstar` to the corresponding Boyer-Lindquist coordiante `r`.
It uses a bisection method when `rstar <= 0`, and Newton method otherwise.
The function assumes that $r \geq r_{+}$ where $r_{+}$ is the outer event horizon.
"""
function r_from_rstar(a, rstar)
rp = r_plus(a)
#=
To find r' that solves the equation rstar_from_r(r') = rstar,
we first write r' = rp + h' and instead solve for h', then add back rp
i.e. we solve the equation rstar_from_rp(h') = rstar
=#
# The root-finding algorithm might try a negative x, which is not allowed
# We rectify this by taking an absolute value, i.e. we solve for distance from rp
f(x) = rstar_from_rp(a, abs(x)) - rstar
if rstar <= 0
#=
When rstar <= 0, it is more efficient to use bisection method,
this is because in this case h' is bounded (weakly),
h' cannot be smaller than 0 (since r=rp maps to rstar=-Inf),
and suppose h'_u solves the equation
rstar_from_rp(h'_u) = 0.0, in which h'_u is a function of |a|
The maximum of h'_u occurs when |a| -> 1 with value ~ 1.328
=#
return rp + find_zero(f, (0, 1.4))
else
# Use Newton method instead; for large rstar, rstar \approx r
return rp + abs(find_zero((f, x -> sign(x)*((rp + abs(x))^2 + a^2)/Delta(a, rp+abs(x))), rstar, Roots.Newton()))
end
end
function build_r_from_rstar_interpolant(a, rsin, rsout; rsstep::Float64=0.01)
rsgrid = collect(rsin:rsstep:rsout)
return linear_interpolation(rsgrid, (x -> r_from_rstar(a, x)).(rsgrid))
end
end | GeneralizedSasakiNakamura | https://github.com/ricokaloklo/GeneralizedSasakiNakamura.jl.git |
|
[
"MIT"
] | 0.4.2 | f00e7a1d7777e3697be7d567a00b31d6ff700034 | code | 26674 | module GeneralizedSasakiNakamura
include("Kerr.jl")
include("Coordinates.jl")
include("AsymptoticExpansionCoefficients.jl")
include("InitialConditions.jl")
include("ConversionFactors.jl")
include("Potentials.jl")
include("Transformation.jl")
include("Solutions.jl")
using .Coordinates
export r_from_rstar, rstar_from_r # Useful to be exposed
using .Solutions
using SpinWeightedSpheroidalHarmonics
using DifferentialEquations # Should have been compiled by now
export GSN_radial, Teukolsky_radial
# Default values
_DEFAULT_rsin = -50
_DEFAULT_rsout = 1000
_DEFAULT_horizon_expansion_order = 3
_DEFAULT_infinity_expansion_order = 6
# IN for purely-ingoing at the horizon and UP for purely-outgoing at infinity
# OUT for purely-outgoing at the horizon and DOWN for purely-ingoing at infinity
@enum BoundaryCondition begin
IN = 1
UP = 2
OUT = 3
DOWN = 4
end
export IN, UP, OUT, DOWN # Use these to specify the BC
# Normalization convention, UNIT_GSN_TRANS means that the transmission amplitude for GSN functions is normalized to 1, vice versa
@enum NormalizationConvention begin
UNIT_GSN_TRANS = 1
UNIT_TEUKOLSKY_TRANS = 2
end
export UNIT_GSN_TRANS, UNIT_TEUKOLSKY_TRANS
struct Mode
s::Int # spin weight
l::Int # harmonic index
m::Int # azimuthal index
a # Kerr spin parameter
omega # frequency
lambda # SWSH eigenvalue
end
# Implement pretty-printing for Mode type
# REPL
function Base.show(io::IO, ::MIME"text/plain", mode::Mode)
print(io, "Mode(s=$(mode.s), l=$(mode.l), m=$(mode.m), a=$(mode.a), omega=$(mode.omega), lambda=$(mode.lambda))")
end
struct GSNRadialFunction
mode::Mode # Information about the mode
boundary_condition::BoundaryCondition # The boundary condition that this radial function statisfies
rsin # The numerical inner boundary where the GSN equation is numerically evolved
rsout # The numerical outer boundary where the GSN equation is numerically evolved
horizon_expansion_order::Union{Int, Missing} # The order of the asymptotic expansion at the horizon
infinity_expansion_order::Union{Int, Missing} # The order of the asymptotic expansion at infinity
transmission_amplitude # In GSN formalism
incidence_amplitude # In GSN formalism
reflection_amplitude # In GSN formalism
numerical_GSN_solution::Union{ODESolution, Missing} # Store the numerical solution to the GSN equation in [rsin, rsout]
numerical_Riccati_solution::Union{ODESolution, Missing} # Store the numerical solution to the GSN equation in the Riccati form if applicable
GSN_solution # Store the *full* GSN solution where asymptotic solutions are smoothly attached
normalization_convention::NormalizationConvention # The normalization convention used for the *stored* GSN solution
end
# Implement pretty-printing for GSNRadialFunction
# Mostly to suppress the printing of the numerical solution
function Base.show(io::IO, ::MIME"text/plain", gsn_func::GSNRadialFunction)
println(io, "GSNRadialFunction(")
print(io, " mode="); show(io, "text/plain", gsn_func.mode); println(io, ",")
println(io, " boundary_condition=$(gsn_func.boundary_condition),")
println(io, " rsin=$(gsn_func.rsin),")
println(io, " rsout=$(gsn_func.rsout),")
println(io, " horizon_expansion_order=$(gsn_func.horizon_expansion_order),")
println(io, " infinity_expansion_order=$(gsn_func.infinity_expansion_order),")
println(io, " transmission_amplitude=$(gsn_func.transmission_amplitude),")
println(io, " incidence_amplitude=$(gsn_func.incidence_amplitude),")
println(io, " reflection_amplitude=$(gsn_func.reflection_amplitude),")
println(io, " normalization_convention=$(gsn_func.normalization_convention)")
print(io, ")")
end
function Base.show(io::IO, gsn_func::GSNRadialFunction)
print(io, "GSNRadialFunction(mode="); show(io, "text/plain", gsn_func.mode); print(", boundary_condition=$(gsn_func.boundary_condition))")
end
struct TeukolskyRadialFunction
mode::Mode # Information about the mode
boundary_condition::BoundaryCondition # The boundary condition that this radial function statisfies
transmission_amplitude # In Teukolsky formalism
incidence_amplitude # In Teukolsky formalism
reflection_amplitude # In Teukolsky formalism
GSN_solution::Union{GSNRadialFunction, Missing} # Store the full GSN solution
Teukolsky_solution # Store the full Teukolsky solution
normalization_convention::NormalizationConvention # The normalization convention used for the *stored* Teukolsky solution
end
# Implement pretty-printing for TeukolskyRadialFunction
# Mostly to suppress the printing of the numerical solution
function Base.show(io::IO, ::MIME"text/plain", teuk_func::TeukolskyRadialFunction)
println(io, "TeukolskyRadialFunction(")
print(io, " mode="); show(io, "text/plain", teuk_func.mode); println(io, ",")
println(io, " boundary_condition=$(teuk_func.boundary_condition),")
println(io, " transmission_amplitude=$(teuk_func.transmission_amplitude),")
println(io, " incidence_amplitude=$(teuk_func.incidence_amplitude),")
println(io, " reflection_amplitude=$(teuk_func.reflection_amplitude),")
println(io, " normalization_convention=$(teuk_func.normalization_convention)")
print(io, ")")
end
function Base.show(io::IO, teuk_func::TeukolskyRadialFunction)
print(io, "TeukolskyRadialFunction(mode="); show(io, "text/plain", teuk_func.mode); print(", boundary_condition=$(teuk_func.boundary_condition))")
end
@doc raw"""
GSN_radial(s::Int, l::Int, m::Int, a, omega, boundary_condition, rsin, rsout; horizon_expansion_order::Int=_DEFAULT_horizon_expansion_order, infinity_expansion_order::Int=_DEFAULT_infinity_expansion_order, data_type=Solutions._DEFAULTDATATYPE, ODE_algorithm=Solutions._DEFAULTSOLVER, tolerance=Solutions._DEFAULTTOLERANCE)
Compute the GSN function for a given mode (specified by `s` the spin weight, `l` the harmonic index, `m` the azimuthal index, `a` the Kerr spin parameter, and `omega` the frequency)
and boundary condition specified by `boundary_condition`, which can be either
- `IN` for purely-ingoing at the horizon,
- `UP` for purely-outgoing at infinity,
- `OUT` for purely-outgoing at the horizon,
- `DOWN` for purely-ingoing at infinity.
Note that the `OUT` and `DOWN` solutions are constructed by linearly combining the `IN` and `UP` solutions, respectively.
The GSN function is numerically solved in the interval of *tortoise coordinates* $r_{*} \in$ `[rsin, rsout]` using the ODE solver (from `DifferentialEquations.jl`) specified by `ODE_algorithm` (default: `Vern9()`)
with tolerance specified by `tolerance` (default: `1e-12`). By default the data type used is `ComplexF64` (i.e. double-precision floating-point number) but it can be changed by
specifying `data_type` (e.g. `Complex{BigFloat}` for complex arbitrary precision number).
While the numerical GSN solution is only accurate in the range `[rsin, rsout]`,
the full GSN solution is constructed by smoothly attaching the asymptotic solutions near horizon (up to `horizon_expansion_order`-th order)
and infinity (up to `infinity_expansion_order`-th order). Therefore, the now-semi-analytical GSN solution is *accurate everywhere*.
Note, however, when `omega = 0`, the exact GSN function expressed using Gauss hypergeometric functions will be returned (i.e., instead of being solved numerically).
In this case, only `s`, `l`, `m`, `a`, `omega`, `boundary_condition` will be parsed.
Return a `GSNRadialFunction` object which contains all the information about the GSN solution.
"""
function GSN_radial(
s::Int, l::Int, m::Int, a, omega, boundary_condition, rsin, rsout;
horizon_expansion_order::Int=_DEFAULT_horizon_expansion_order, infinity_expansion_order::Int=_DEFAULT_infinity_expansion_order,
data_type=Solutions._DEFAULTDATATYPE, ODE_algorithm=Solutions._DEFAULTSOLVER, tolerance=Solutions._DEFAULTTOLERANCE
)
if omega == 0
return GSN_radial(s, l, m, a, omega, boundary_condition)
else
# Compute the SWSH eigenvalue
lambda = spin_weighted_spheroidal_eigenvalue(s, l, m, a*omega)
# Fill in the mode information
mode = Mode(s, l, m, a, omega, lambda)
if boundary_condition == IN
# Solve for Xin
# NOTE For now we do *not* implement intelligent switching between the Riccati and the GSN form
# Actually solve for Phiin first
Phiinsoln = Solutions.solve_Phiin(s, m, a, omega, lambda, rsin, rsout; initialconditions_order=horizon_expansion_order, dtype=data_type, odealgo=ODE_algorithm, abstol=tolerance, reltol=tolerance)
# Then convert to Xin
Xinsoln = Solutions.Xsoln_from_Phisoln(Phiinsoln)
# Extract the incidence and reflection amplitudes (NOTE: transmisson amplitude is *always* 1)
Bref_SN, Binc_SN = Solutions.BrefBinc_SN_from_Xin(s, m, a, omega, lambda, Xinsoln, rsout; order=infinity_expansion_order)
# Construct the full, 'semi-analytical' GSN solution
semianalytical_Xinsoln(rs) = Solutions.semianalytical_Xin(s, m, a, omega, lambda, Xinsoln, rsin, rsout, horizon_expansion_order, infinity_expansion_order, rs)
return GSNRadialFunction(
mode,
IN,
rsin,
rsout,
horizon_expansion_order,
infinity_expansion_order,
data_type(1),
Binc_SN,
Bref_SN,
missing,
Phiinsoln,
semianalytical_Xinsoln,
UNIT_GSN_TRANS
)
elseif boundary_condition == UP
# Solve for Xup
# NOTE For now we do *not* implement intelligent switching between the Riccati and the GSN form
# Actually solve for Phiup first
Phiupsoln = Solutions.solve_Phiup(s, m, a, omega, lambda, rsin, rsout; initialconditions_order=infinity_expansion_order, dtype=data_type, odealgo=ODE_algorithm, abstol=tolerance, reltol=tolerance)
# Then convert to Xup
Xupsoln = Solutions.Xsoln_from_Phisoln(Phiupsoln)
# Extract the incidence and reflection amplitudes (NOTE: transmisson amplitude is *always* 1)
Cref_SN, Cinc_SN = Solutions.CrefCinc_SN_from_Xup(s, m, a, omega, lambda, Xupsoln, rsin; order=horizon_expansion_order)
# Construct the full, 'semi-analytical' GSN solution
semianalytical_Xupsoln(rs) = Solutions.semianalytical_Xup(s, m, a, omega, lambda, Xupsoln, rsin, rsout, horizon_expansion_order, infinity_expansion_order, rs)
return GSNRadialFunction(
mode,
UP,
rsin,
rsout,
horizon_expansion_order,
infinity_expansion_order,
data_type(1),
Cinc_SN,
Cref_SN,
missing,
Phiupsoln,
semianalytical_Xupsoln,
UNIT_GSN_TRANS
)
elseif boundary_condition == DOWN
# Construct Xdown from Xin and Xup, instead of solving the ODE numerically with the boundary condition
# Solve for Xin *and* Xup first
Xin = GSN_radial(s, l, m, a, omega, IN, rsin, rsout, horizon_expansion_order=horizon_expansion_order, infinity_expansion_order=infinity_expansion_order, data_type=data_type, ODE_algorithm=ODE_algorithm, tolerance=tolerance)
Xup = GSN_radial(s, l, m, a, omega, UP, rsin, rsout, horizon_expansion_order=horizon_expansion_order, infinity_expansion_order=infinity_expansion_order, data_type=data_type, ODE_algorithm=ODE_algorithm, tolerance=tolerance)
# Xdown is a linear combination of Xin and Xup with the following coefficients
Btrans = Xin.transmission_amplitude # Should really be just 1
Binc = Xin.incidence_amplitude
Bref = Xin.reflection_amplitude
Ctrans = Xup.transmission_amplitude # Should really be just 1
Cinc = Xup.incidence_amplitude
Cref = Xup.reflection_amplitude
_full_Xdown_solution(rs) = Binc^-1 .* (Xin.GSN_solution(rs) .- Bref/Ctrans .* Xup.GSN_solution(rs))
# These solutions are "normalized" in the sense that Xdown -> exp(-i*omega*rs) near infinity
# NOTE The definition of the "incidence" and "reflection" amplitudes follow 2101.04592, Eq. (93)
return GSNRadialFunction(
Xin.mode,
DOWN,
rsin,
rsout,
horizon_expansion_order,
infinity_expansion_order,
data_type(1),
Btrans/Binc - (Bref*Cref)/(Binc*Ctrans),
(-Bref*Cinc)/(Binc*Ctrans),
missing,
missing,
_full_Xdown_solution,
UNIT_GSN_TRANS
)
elseif boundary_condition == OUT
# Construct Xout from Xin and Xup, instead of solving the ODE numerically with the boundary condition
# Solve for Xin *and* Xup first
Xin = GSN_radial(s, l, m, a, omega, IN, rsin, rsout, horizon_expansion_order=horizon_expansion_order, infinity_expansion_order=infinity_expansion_order, data_type=data_type, ODE_algorithm=ODE_algorithm, tolerance=tolerance)
Xup = GSN_radial(s, l, m, a, omega, UP, rsin, rsout, horizon_expansion_order=horizon_expansion_order, infinity_expansion_order=infinity_expansion_order, data_type=data_type, ODE_algorithm=ODE_algorithm, tolerance=tolerance)
# Xout is a linear combination of Xin and Xup with the following coefficients
Btrans = Xin.transmission_amplitude # Should really be just 1
Binc = Xin.incidence_amplitude
Bref = Xin.reflection_amplitude
Ctrans = Xup.transmission_amplitude # Should really be just 1
Cinc = Xup.incidence_amplitude
Cref = Xup.reflection_amplitude
_full_Xout_solution(rs) = Cinc^-1 .* (Xup.GSN_solution(rs) .- Cref/Btrans .* Xin.GSN_solution(rs))
# These solutions are "normalized" in the sense that Xout -> exp(i*p*rs) near the horizon
# NOTE The definition of the "incidence" and "reflection" amplitudes follow 2101.04592, Eq. (93)
return GSNRadialFunction(
Xin.mode,
OUT,
rsin,
rsout,
horizon_expansion_order,
infinity_expansion_order,
data_type(1),
Ctrans/Cinc - (Bref*Cref)/(Btrans*Cinc),
(-Binc*Cref)/(Btrans*Cinc),
missing,
missing,
_full_Xout_solution,
UNIT_GSN_TRANS
)
else
error("Boundary condition must be IN or UP")
end
end
end
function GSN_radial(
s::Int, l::Int, m::Int, a, omega, boundary_condition
)
if omega != 0
return GSN_radial(s, l, m, a, omega, boundary_condition, _DEFAULT_rsin, _DEFAULT_rsout)
else
teuk_func = Teukolsky_radial(s, l, m, a, omega, boundary_condition)
GSN_solution = Solutions.Sasaki_Nakamura_function_from_Teukolsky_radial_function(s, m, a, omega, teuk_func.mode.lambda, teuk_func.Teukolsky_solution)
return GSNRadialFunction(
teuk_func.mode,
boundary_condition,
missing,
missing,
missing,
missing,
missing,
missing,
missing,
missing,
missing,
GSN_solution,
UNIT_TEUKOLSKY_TRANS
)
end
end
@doc raw"""
GSN_radial(s::Int, l::Int, m::Int, a, omega)
Compute the GSN function for a given mode (specified by `s` the spin weight, `l` the harmonic index, `m` the azimuthal index, `a` the Kerr spin parameter, and `omega` the frequency)
with the purely-ingoing boundary condition at the horizon (`IN`) and the purely-outgoing boundary condition at infinity (`UP`).
Note that the numerical inner boundary (rsin) and outer boundary (rsout) are set to the default values `_DEFAULT_rsin` and `_DEFAULT_rsout`, respectively,
while the order of the asymptotic expansion at the horizon and infinity are determined automatically.
"""
function GSN_radial(s::Int, l::Int, m::Int, a, omega)
# The maximum expansion order to use
_MAX_horizon_expansion_order = 100
_MAX_infinity_expansion_order = 100
# Step size when increasing the expansion order
_STEP_horizon_expansion_order = 5
_STEP_infinity_expansion_order = 5
if omega == 0
Xin = GSN_radial(s, l, m, a, omega, IN)
Xup = GSN_radial(s, l, m, a, omega, UP)
else
# Solve for Xin and Xup using the default settings
Xin = GSN_radial(s, l, m, a, omega, IN, _DEFAULT_rsin, _DEFAULT_rsout, horizon_expansion_order=_DEFAULT_horizon_expansion_order, infinity_expansion_order=_DEFAULT_infinity_expansion_order)
Xup = GSN_radial(s, l, m, a, omega, UP, _DEFAULT_rsin, _DEFAULT_rsout, horizon_expansion_order=_DEFAULT_horizon_expansion_order, infinity_expansion_order=_DEFAULT_infinity_expansion_order)
# Bump up the expansion order until the solution is "sane"
while(!Solutions.check_XinXup_sanity(Xin, Xup))
new_horizon_expansion_order = Xin.horizon_expansion_order + _STEP_horizon_expansion_order >= _MAX_horizon_expansion_order ? _MAX_horizon_expansion_order : Xin.horizon_expansion_order + _STEP_horizon_expansion_order
new_infinity_expansion_order = Xup.infinity_expansion_order + _STEP_infinity_expansion_order >= _MAX_infinity_expansion_order ? _MAX_infinity_expansion_order : Xup.infinity_expansion_order + _STEP_infinity_expansion_order
# Re-solve Xin and Xup using the updated settings
Xin = GSN_radial(s, l, m, a, omega, IN, _DEFAULT_rsin, _DEFAULT_rsout, horizon_expansion_order=new_horizon_expansion_order, infinity_expansion_order=new_infinity_expansion_order)
Xup = GSN_radial(s, l, m, a, omega, UP, _DEFAULT_rsin, _DEFAULT_rsout, horizon_expansion_order=new_horizon_expansion_order, infinity_expansion_order=new_infinity_expansion_order)
end
end
return (Xin, Xup)
end
# The power of multiple dispatch
(gsn_func::GSNRadialFunction)(rs) = gsn_func.GSN_solution(rs)[1] # Only return X(rs), discarding the first derivative
@doc raw"""
Teukolsky_radial(s::Int, l::Int, m::Int, a, omega, boundary_condition, rsin, rsout; horizon_expansion_order::Int=_DEFAULT_horizon_expansion_order, infinity_expansion_order::Int=_DEFAULT_infinity_expansion_order, data_type=Solutions._DEFAULTDATATYPE, ODE_algorithm=Solutions._DEFAULTSOLVER, tolerance=Solutions._DEFAULTTOLERANCE)
Compute the Teukolsky function for a given mode (specified by `s` the spin weight, `l` the harmonic index, `m` the azimuthal index, `a` the Kerr spin parameter, and `omega` the frequency)
and boundary condition specified by `boundary_condition`, which can be either
- `IN` for purely-ingoing at the horizon,
- `UP` for purely-outgoing at infinity,
- `OUT` for purely-outgoing at the horizon,
- `DOWN` for purely-ingoing at infinity.
Note that the `OUT` and `DOWN` solutions are constructed by linearly combining the `IN` and `UP` solutions, respectively.
The full GSN solution is converted to the corresponding Teukolsky solution $(R(r), dR/dr)$ and
the incidence, reflection and transmission amplitude are converted from the GSN formalism to the Teukolsky formalism
with the normalization convention that the transmission amplitude is normalized to 1 (i.e. `normalization_convention=UNIT_TEUKOLSKY_TRANS`).
Note, however, when `omega = 0`, the exact Teukolsky function expressed using Gauss hypergeometric functions will be returned (i.e., instead of using the GSN formalism).
In this case, only `s`, `l`, `m`, `a`, `omega`, `boundary_condition` will be parsed.
"""
function Teukolsky_radial(
s::Int, l::Int, m::Int, a, omega, boundary_condition, rsin, rsout;
horizon_expansion_order::Int=_DEFAULT_horizon_expansion_order, infinity_expansion_order::Int=_DEFAULT_infinity_expansion_order,
data_type=Solutions._DEFAULTDATATYPE, ODE_algorithm=Solutions._DEFAULTSOLVER, tolerance=Solutions._DEFAULTTOLERANCE
)
if omega == 0
return Teukolsky_radial(s, l, m, a, 0, boundary_condition)
else
# Solve for the GSN solution
gsn_func = GSN_radial(s, l, m, a, omega, boundary_condition, rsin, rsout; horizon_expansion_order=horizon_expansion_order, infinity_expansion_order=infinity_expansion_order, data_type=data_type, ODE_algorithm=ODE_algorithm, tolerance=tolerance)
# Convert asymptotic amplitudes from GSN to Teukolsky formalism
if gsn_func.boundary_condition == IN
transmission_amplitude_conv_factor = ConversionFactors.Btrans(s, m, a, omega, gsn_func.mode.lambda)
incidence_amplitude = ConversionFactors.Binc(s, m, a, omega, gsn_func.mode.lambda) * gsn_func.incidence_amplitude / transmission_amplitude_conv_factor
reflection_amplitude = ConversionFactors.Bref(s, m, a, omega, gsn_func.mode.lambda) * gsn_func.reflection_amplitude / transmission_amplitude_conv_factor
elseif gsn_func.boundary_condition == UP
transmission_amplitude_conv_factor = ConversionFactors.Ctrans(s, m, a, omega, gsn_func.mode.lambda)
incidence_amplitude = ConversionFactors.Cinc(s, m, a, omega, gsn_func.mode.lambda) * gsn_func.incidence_amplitude / transmission_amplitude_conv_factor
reflection_amplitude = ConversionFactors.Cref(s, m, a, omega, gsn_func.mode.lambda) * gsn_func.reflection_amplitude / transmission_amplitude_conv_factor
elseif gsn_func.boundary_condition == DOWN
# The "transmission amplitude" transforms like Binc
transmission_amplitude_conv_factor = ConversionFactors.Binc(s, m, a, omega, gsn_func.mode.lambda)
# The "incidence amplitude" transforms like Btrans
incidence_amplitude = ConversionFactors.Btrans(s, m, a, omega, gsn_func.mode.lambda) * gsn_func.incidence_amplitude / transmission_amplitude_conv_factor
# The "reflection amplitude" transforms like Cinc
reflection_amplitude = ConversionFactors.Cinc(s, m, a, omega, gsn_func.mode.lambda) * gsn_func.reflection_amplitude / transmission_amplitude_conv_factor
elseif gsn_func.boundary_condition == OUT
# The "tranmission amplitude" transforms like Cinc
transmission_amplitude_conv_factor = ConversionFactors.Cinc(s, m, a, omega, gsn_func.mode.lambda)
# The "incidence amplitude" transforms like Bref
incidence_amplitude = ConversionFactors.Bref(s, m, a, omega, gsn_func.mode.lambda) * gsn_func.incidence_amplitude / transmission_amplitude_conv_factor
# The "reflection amplitude" transformslike Binc
reflection_amplitude = ConversionFactors.Binc(s, m, a, omega, gsn_func.mode.lambda) * gsn_func.reflection_amplitude / transmission_amplitude_conv_factor
else
error("Does not understand the boundary condition applied to the solution")
end
# Convert the GSN solution to the Teukolsky solution
teuk_func(r) = Solutions.Teukolsky_radial_function_from_Sasaki_Nakamura_function(
gsn_func.mode.s,
gsn_func.mode.m,
gsn_func.mode.a,
gsn_func.mode.omega,
gsn_func.mode.lambda,
gsn_func.GSN_solution
)(r) / transmission_amplitude_conv_factor
return TeukolskyRadialFunction(
gsn_func.mode,
gsn_func.boundary_condition,
data_type(1),
incidence_amplitude,
reflection_amplitude,
gsn_func,
teuk_func,
UNIT_TEUKOLSKY_TRANS
)
end
end
function Teukolsky_radial(
s::Int, l::Int, m::Int, a, omega, boundary_condition
)
if omega != 0
return Teukolsky_radial(s, l, m, a, omega, boundary_condition, _DEFAULT_rsin, _DEFAULT_rsout)
else
# Compute the SWSH eigenvalue
lambda = spin_weighted_spherical_eigenvalue(s, l, m)
# Fill in the mode information
mode = Mode(s, l, m, a, omega, lambda)
if boundary_condition == IN
teuk_func = Solutions.solve_static_Rin(s, l, m, a)
elseif boundary_condition == UP
teuk_func = Solutions.solve_static_Rup(s, l, m, a)
else
error("Does not understand the boundary condition applied to the solution")
end
return TeukolskyRadialFunction(
mode,
boundary_condition,
1,
missing,
missing,
missing,
teuk_func,
UNIT_TEUKOLSKY_TRANS
)
end
end
@doc raw"""
Teukolsky_radial(s::Int, l::Int, m::Int, a, omega)
Compute the Teukolsky function for a given mode (specified by `s` the spin weight, `l` the harmonic index, `m` the azimuthal index, `a` the Kerr spin parameter, and `omega` the frequency)
with the purely-ingoing boundary condition at the horizon (`IN`) and the purely-outgoing boundary condition at infinity (`UP`).
Note that the numerical inner boundary (rsin) and outer boundary (rsout) are set to the default values `_DEFAULT_rsin` and `_DEFAULT_rsout`, respectively,
while the order of the asymptotic expansion at the horizon and infinity are determined automatically.
"""
function Teukolsky_radial(s::Int, l::Int, m::Int, a, omega)
if omega == 0
Rin = Teukolsky_radial(s, l, m, a, omega, IN)
Rup = Teukolsky_radial(s, l, m, a, omega, UP)
else
# NOTE This is not the most efficient implementation but ensures self-consistency
Xin, Xup = GSN_radial(s, l, m, a, omega) # This is simply to figure out what expansion orders to use
Rin = Teukolsky_radial(s, l, m, a, omega, IN, Xin.rsin, Xin.rsout; horizon_expansion_order=Xin.horizon_expansion_order, infinity_expansion_order=Xin.infinity_expansion_order)
Rup = Teukolsky_radial(s, l, m, a, omega, UP, Xup.rsin, Xup.rsout; horizon_expansion_order=Xup.horizon_expansion_order, infinity_expansion_order=Xup.infinity_expansion_order)
end
return (Rin, Rup)
end
# The power of multiple dispatch
(teuk_func::TeukolskyRadialFunction)(r) = teuk_func.Teukolsky_solution(r)[1] # Only return R(r), discarding the first derivative
end
| GeneralizedSasakiNakamura | https://github.com/ricokaloklo/GeneralizedSasakiNakamura.jl.git |
|
[
"MIT"
] | 0.4.2 | f00e7a1d7777e3697be7d567a00b31d6ff700034 | code | 2163 | module InitialConditions
using ForwardDiff
using ..Kerr
using ..Coordinates
using ..AsymptoticExpansionCoefficients
export Xup_initialconditions, Xin_initialconditions
export fansatz, gansatz
const I = 1im # Mathematica being Mathematica
function fansatz(func, omega, r; order=3)
# A template function that gives the asymptotic expansion at infinity
ans = 0.0
for i in 0:order
ans += func(i)/((omega*r)^i)
end
return ans
end
function gansatz(func, a, r; order=1)
# A template function that gives the asymptotic expansion at horizon
ans = 0.0
for i in 0:order
ans += func(i)*(r-r_plus(a))^i
end
return ans
end
function Xup_initialconditions(s::Int, m::Int, a, omega, lambda, rsout; order::Int=-1)
#=
We have derived/shown the explicit expression for
different physically-relevant spin weight (s=0, \pm 1, \pm2)
=#
_default_order = 3
order = (order == -1 ? _default_order : order)
outgoing_coeff_func(ord) = outgoing_coefficient_at_inf(s, m, a, omega, lambda, ord)
fout(r) = fansatz(outgoing_coeff_func, omega, r; order=order)
dfout_dr(r) = ForwardDiff.derivative(fout, r)
rout = r_from_rstar(a, rsout)
_fansatz = fout(rout)
_dfansatz_dr = dfout_dr(rout)
phase = exp(1im * omega * rsout)
return phase*_fansatz, phase*(1im*omega*_fansatz + (Delta(a, rout)/(rout^2 + a^2))*_dfansatz_dr)
end
function Xin_initialconditions(s::Int, m::Int, a, omega, lambda, rsin; order::Int=-1)
#=
For Xin, which we obtain by integrating from r_* -> -inf (or r -> r_+),
Write Xin = \sum_j C^{H}_{-} (r - r_+)^j
=#
_default_order = 0
order = (order == -1 ? _default_order : order)
ingoing_coeff_func(ord) = ingoing_coefficient_at_hor(s, m, a, omega, lambda, ord)
gin(r) = gansatz(ingoing_coeff_func, a, r; order=order)
dgin_dr(r) = ForwardDiff.derivative(gin, r)
rin = r_from_rstar(a, rsin)
_gansatz = gin(rin)
_dgansatz_dr = dgin_dr(rin)
p = omega - m*omega_horizon(a)
phase = exp(-1im * p * rsin)
return phase*_gansatz, phase*(-1im*p*_gansatz + (Delta(a, rin)/(rin^2 + a^2))*_dgansatz_dr)
end
end | GeneralizedSasakiNakamura | https://github.com/ricokaloklo/GeneralizedSasakiNakamura.jl.git |
|
[
"MIT"
] | 0.4.2 | f00e7a1d7777e3697be7d567a00b31d6ff700034 | code | 341 | module Kerr
export Delta, r_plus, r_minus, omega_horizon, K
function Delta(a, r)
r^2 - 2*r + a^2
end
function r_plus(a)
1 + sqrt(1 - a^2)
end
function r_minus(a)
1 - sqrt(1 - a^2)
end
function omega_horizon(a)
rp = r_plus(a)
return a/(2*1*rp)
end
function K(m::Int, a, omega, r)
(r^2 + a^2)*omega - m*a
end
end | GeneralizedSasakiNakamura | https://github.com/ricokaloklo/GeneralizedSasakiNakamura.jl.git |
|
[
"MIT"
] | 0.4.2 | f00e7a1d7777e3697be7d567a00b31d6ff700034 | code | 13652 | module Potentials
using ..Kerr
export sF, sU, VT, radial_Teukolsky_equation
const I = 1im # Mathematica being Mathematica
function sF(s::Int, m::Int, a, omega, lambda, r)
#=
We have derived/shown the explicit expression for
different physically-relevant spin weight (s=0, \pm 1, \pm2)
=#
if s == 0
# s = 0
return 0.0
elseif s == 1
# s = +1
return begin
-((2*a*(a^2 + (-2 + r)*r)*(-3*I*a^2*m*r - I*m*r^3 + 2*a^3*(1 + lambda) + a*r*(3 + r*(3 + 2*lambda))))/
(r*(a^2 + r^2)*(-2*I*a^3*m*r - 2*I*a*m*r^3 + a^4*(1 + lambda) + r^4*(2 + lambda) +
a^2*r*(2 + r*(3 + 2*lambda)))))
end
elseif s == -1
# s = -1
return begin
-((2*a*(a^2 + (-2 + r)*r)*(3*I*a^2*m*r + I*m*r^3 + 2*a^3*(-1 + lambda) + a*r*(3 + r*(-1 + 2*lambda))))/
(r*(a^2 + r^2)*(2*I*a^3*m*r + 2*I*a*m*r^3 + a^4*(-1 + lambda) + r^4*lambda + a^2*r*(2 + r*(-1 + 2*lambda)))))
end
elseif s == 2
# s = +2
return begin
(8*a*(a^2 + (-2 + r)*r)*(I*m*r^2*(6 + r*(4 + lambda)) - 3*a^2*m*r*(3*I + 4*r*omega) +
a*r*(9 + r*(-3 + 6*m^2 - 6*I*omega) - I*r^2*(1 + lambda)*omega) + a^3*(-6 + 9*I*r*omega + 6*r^2*omega^2)))/
(r*(a^2 + r^2)*(r^4*(24 + 10*lambda + lambda^2 + 12*I*omega) + 24*a^3*m*r*(I + 2*r*omega) +
4*a*m*r^2*(-6*I - 2*I*r*(4 + lambda) + 3*r^2*omega) - 12*a^4*(-1 + 2*I*r*omega + 2*r^2*omega^2) -
4*a^2*r*(6 + r*(-3 + 6*m^2 - 6*I*omega) - 2*I*r^2*(1 + lambda)*omega + 3*r^3*omega^2)))
end
elseif s == -2
# s = -2
return begin
(8*a*(a^2 + (-2 + r)*r)*((-I)*m*r^2*(6 + r*lambda) + 3*a^2*m*r*(3*I - 4*r*omega) +
a*r*(9 + r*(-3 + 6*m^2 + 6*I*omega) + I*r^2*(-3 + lambda)*omega) + a^3*(-6 - 9*I*r*omega + 6*r^2*omega^2)))/
(r*(a^2 + r^2)*(r^4*(2*lambda + lambda^2 - 12*I*omega) + 24*a^3*m*r*(-I + 2*r*omega) +
4*a*m*r^2*(6*I + 2*I*r*lambda + 3*r^2*omega) + a^4*(12 + 24*I*r*omega - 24*r^2*omega^2) -
4*a^2*r*(6 + r*(-3 + 6*m^2 + 6*I*omega) + 2*I*r^2*(-3 + lambda)*omega + 3*r^3*omega^2)))
end
else
# Throw an error, this spin weight is not supported
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
end
function sU(s::Int, m::Int, a, omega, lambda, r)
#=
We have derived/shown the explicit expression for
different physically-relevant spin weight (s=0, \pm 1, \pm2)
=#
if s == 0
# s = 0
return begin
(1/(a^2 + r^2)^4)*(r^2*(a^2 + (-2 + r)*r)^2 + (a^2 + (-2 + r)*r)*(a^4 - 4*a^2*r - (-4 + r)*r^3) +
(a^2 + r^2)^2*((a^2 + (-2 + r)*r)*lambda - (a*m - (a^2 + r^2)*omega)^2))
end
elseif s == 1
# s = +1
return begin
(1/(a^2 + r^2)^4)*(2*(a^2 + (-2 + r)*r)*(a^4 - a^2*r - (-3 + r)*r^3) +
(r^2*(-3 + 2*r) + a^2*(-1 + 2*r))^2 + (2*a*(a^2 + (-2 + r)*r)*(a^2 + r^2)*
(r^2*(-3 + 2*r) + a^2*(-1 + 2*r))*(-3*I*a^2*m*r - I*m*r^3 + 2*a^3*(1 + lambda) +
a*r*(3 + r*(3 + 2*lambda))))/(r*(-2*I*a^3*m*r - 2*I*a*m*r^3 + a^4*(1 + lambda) + r^4*(2 + lambda) +
a^2*r*(2 + r*(3 + 2*lambda)))) - ((a^2 + r^2)^2*(2*a^7*m*r^2*omega*(-lambda - I*r*omega) +
a^8*(1 + lambda)*(2 + r^2*omega^2) - 2*I*a^5*m*r^2*(-6 + r*(4 + m^2 - lambda - 4*I*omega) -
3*I*r^2*(1 + lambda)*omega + 3*r^3*omega^2) - 2*I*a*m*r^5*(3 + r*(-5 + 2*lambda) + r^2*(2 - lambda + 2*I*omega) -
I*r^3*(3 + lambda)*omega + r^4*omega^2) - 2*I*a^3*m*r^3*(13 + r*(-17 + 2*lambda) +
r^2*(6 + m^2 - 2*lambda - 2*I*omega) - 3*I*r^3*(2 + lambda)*omega + 3*r^4*omega^2) +
r^6*(-3*(2 + lambda) - r^2*lambda*(2 + lambda) + 2*r*(2 + 3*lambda + lambda^2) + r^4*(2 + lambda)*omega^2) +
a^6*r*(-16*(1 + lambda) + r*(5 + m^2*(-1 + lambda) + 6*lambda - lambda^2 + 2*I*omega) + r^3*(5 + 4*lambda)*omega^2 +
2*r^2*omega*(I + 2*I*m^2 + omega)) + a^4*r^2*(11 + 25*lambda +
2*r*(-5 + 3*m^2 - 13*lambda + lambda^2 - 2*I*omega) + r^2*(5 + 4*lambda - 3*lambda^2 + m^2*(3 + 2*lambda) -
8*I*omega) + 3*r^4*(3 + 2*lambda)*omega^2 + 4*r^3*omega*(I + 2*I*m^2 + omega)) +
a^2*r^3*(30 + 5*r*(-7 + 2*lambda) - 4*r^2*(-2 + m^2 + lambda - lambda^2 - 3*I*omega) +
r^3*(2 - 2*lambda - 3*lambda^2 + m^2*(4 + lambda) - 10*I*omega) + r^5*(7 + 4*lambda)*omega^2 +
2*r^4*omega*(I + 2*I*m^2 + omega))))/(r^2*(-2*I*a^3*m*r - 2*I*a*m*r^3 + a^4*(1 + lambda) +
r^4*(2 + lambda) + a^2*r*(2 + r*(3 + 2*lambda)))))
end
elseif s == -1
# s = -1
return begin
(1/(a^2 + r^2)^4)*((a^2 - r^2)^2 + 2*r*(a^2 + (-2 + r)*r)*(-3*a^2 + r^2) +
(2*a*(a^2 + (-2 + r)*r)*(a^2 - r^2)*(a^2 + r^2)*(3*I*a^2*m*r + I*m*r^3 + 2*a^3*(-1 + lambda) +
a*r*(3 + r*(-1 + 2*lambda))))/(r*(2*I*a^3*m*r + 2*I*a*m*r^3 + a^4*(-1 + lambda) + r^4*lambda +
a^2*r*(2 + r*(-1 + 2*lambda)))) - ((a^2 + r^2)^2*(2*a^7*m*r^2*omega*(2 - lambda + I*r*omega) +
a^8*(-1 + lambda)*(2 + r^2*omega^2) + 2*I*a^5*m*r^3*(-2 + m^2 - lambda + 4*I*omega - 3*I*r*omega +
3*I*r*lambda*omega + 3*r^2*omega^2) + r^6*lambda*(-3 - r^2*lambda + 2*r*(1 + lambda) + r^4*omega^2) +
2*I*a*m*r^5*(-1 + r + 2*r*lambda - r^2*(lambda + 2*I*omega) + I*r^3*(1 + lambda)*omega + r^4*omega^2) +
2*I*a^3*m*r^3*(1 + r*(3 + 2*lambda) + r^2*(-2 + m^2 - 2*lambda + 2*I*omega) + 3*I*r^3*lambda*omega +
3*r^4*omega^2) + a^6*r*(8 - 8*lambda + r*(-1 + m^2*(-3 + lambda) - lambda^2 - 2*I*omega) +
r^3*(-3 + 4*lambda)*omega^2 + 2*r^2*omega*(-I - 2*I*m^2 + omega)) +
a^4*r^2*(-11 + 9*lambda + 2*r*(1 + 3*m^2 + lambda + lambda^2 + 2*I*omega) +
r^2*(1 - 6*lambda - 3*lambda^2 + m^2*(-1 + 2*lambda) + 8*I*omega) + 3*r^4*(-1 + 2*lambda)*omega^2 +
4*r^3*omega*(-I - 2*I*m^2 + omega)) + a^2*r^3*(6 - 3*r*(1 + 2*lambda) -
4*r^2*(m^2 - 3*lambda - lambda^2 + 3*I*omega) + r^3*(-4*lambda - 3*lambda^2 + m^2*(2 + lambda) + 10*I*omega) +
r^5*(-1 + 4*lambda)*omega^2 + 2*r^4*omega*(-I - 2*I*m^2 + omega))))/
(r^2*(2*I*a^3*m*r + 2*I*a*m*r^3 + a^4*(-1 + lambda) + r^4*lambda + a^2*r*(2 + r*(-1 + 2*lambda)))))
end
elseif s == 2
# s = +2
return begin
(1/(a^2 + r^2)^4)*((a^2 + (-2 + r)*r)*(3*a^4 + (8 - 3*r)*r^3) +
(r^2*(-4 + 3*r) + a^2*(-2 + 3*r))^2 + (8*a*(a^2 + (-2 + r)*r)*(a^2 + r^2)*
(r^2*(-4 + 3*r) + a^2*(-2 + 3*r))*(I*m*r^2*(6 + r*(4 + lambda)) - 3*a^2*m*r*(3*I + 4*r*omega) +
a*r*(9 + r*(-3 + 6*m^2 - 6*I*omega) - I*r^2*(1 + lambda)*omega) + a^3*(-6 + 9*I*r*omega + 6*r^2*omega^2)))/
(r*((-r^4)*(24 + 10*lambda + lambda^2 + 12*I*omega) - 24*a^3*m*r*(I + 2*r*omega) +
4*a*m*r^2*(6*I + 2*I*r*(4 + lambda) - 3*r^2*omega) + 12*a^4*(-1 + 2*I*r*omega + 2*r^2*omega^2) +
4*a^2*r*(6 + r*(-3 + 6*m^2 - 6*I*omega) - 2*I*r^2*(1 + lambda)*omega + 3*r^3*omega^2))) -
((a^2 + r^2)^2*(24*a^7*m*r^2*omega*(3 + 3*I*r*omega - 4*r^2*omega^2) - r^6*(24 + 10*lambda + lambda^2 + 12*I*omega)*
(-12 - r^2*lambda + 2*r*(4 + lambda) + r^4*omega^2) - 4*a^5*m*r^2*
(-54*I - 2*I*r*(-55 + 3*m^2 - 4*lambda - 18*I*omega) + 2*r^2*(4 + 12*m^2 - 8*lambda + 27*I*omega)*omega -
6*I*r^3*(8 + lambda)*omega^2 + 45*r^4*omega^3) + 12*a^8*(-2 - 3*r^2*omega^2 - 2*I*r^3*omega^3 +
2*r^4*omega^4) + 4*a^6*r*(60 - 3*r*(16 + 3*m^2 + 18*I*omega) + r^3*(1 + 36*m^2 - 8*lambda + 18*I*omega)*
omega^2 - 2*I*r^4*(7 + lambda)*omega^3 + 15*r^5*omega^4 - 2*r^2*omega*(-40*I + 9*I*m^2 - 4*I*lambda + 9*omega)) +
2*a*m*r^4*(144*I + 8*I*r*(-38 + lambda) + r^4*(40 + 20*lambda + lambda^2 + 24*I*omega)*omega +
4*I*r^5*(4 + lambda)*omega^2 - 6*r^6*omega^3 + 4*r^2*(16*I + 3*I*lambda + 2*I*lambda^2 + 6*omega) -
4*I*r^3*(-12 + lambda + lambda^2 - 14*I*omega - 5*I*lambda*omega)) -
2*a^3*m*r^3*(312*I + r^3*(84 + 30*m^2 - 52*lambda - lambda^2 + 36*I*omega)*omega -
4*I*r^4*(19 + 4*lambda)*omega^2 + 48*r^5*omega^3 + 12*r*(-63*I + 3*I*m^2 - 3*I*lambda + 32*omega) +
4*r^2*(71*I + 9*I*lambda + I*lambda^2 - I*m^2*(10 + lambda) - 104*omega + 16*lambda*omega)) +
a^2*r^3*(576 + 96*r*(-12 + 4*m^2 - 3*I*omega) + 8*r^2*(18 - 3*lambda^2 + m^2*(-58 + 8*lambda) +
lambda*(-30 - 2*I*omega) + 46*I*omega) - 8*I*r^4*(-lambda^2 + 2*m^2*(7 + lambda) + lambda*(2 + 5*I*omega) +
11*I*omega)*omega + 2*r^5*(-34 + 24*m^2 - 20*lambda - lambda^2 - 24*I*omega)*omega^2 - 8*I*r^6*(1 + lambda)*omega^3 +
12*r^7*omega^4 + r^3*(lambda^3 + 36*lambda*(4 + I*omega) + 2*lambda^2*(11 - 8*I*omega) -
m^2*(-136 + 42*lambda + lambda^2 - 36*I*omega) - 8*(-18 + 19*I*omega + 6*omega^2))) +
a^4*r^2*(-672 + r*(960 - 72*m^2 + 624*I*omega) + r^4*(44 + 180*m^2 - 62*lambda - lambda^2 + 36*I*omega)*
omega^2 - 8*I*r^5*(5 + 2*lambda)*omega^3 + 48*r^6*omega^4 + 8*r^3*omega*(56*I + 6*I*lambda + I*lambda^2 -
3*I*m^2*(9 + lambda) - 46*omega + 8*lambda*omega) + 4*r^2*(6*m^4 + m^2*(7 - 8*lambda + 54*I*omega) +
2*(-15 + 10*lambda + lambda^2 - 144*I*omega - 9*I*lambda*omega + 48*omega^2)))))/
(r^2*((-r^4)*(24 + 10*lambda + lambda^2 + 12*I*omega) - 24*a^3*m*r*(I + 2*r*omega) +
4*a*m*r^2*(6*I + 2*I*r*(4 + lambda) - 3*r^2*omega) + 12*a^4*(-1 + 2*I*r*omega + 2*r^2*omega^2) +
4*a^2*r*(6 + r*(-3 + 6*m^2 - 6*I*omega) - 2*I*r^2*(1 + lambda)*omega + 3*r^3*omega^2))))
end
elseif s == -2
# s = -2
return begin
(1/(a^2 + r^2)^4)*((a^2*(-2 + r) + r^3)^2 + (a^2 + (-2 + r)*r)*(-a^4 - 8*a^2*r + r^4) +
(8*a*(a^2 + (-2 + r)*r)*(a^2 + r^2)*(a^2*(-2 + r) + r^3)*((-I)*m*r^2*(6 + r*lambda) +
3*a^2*m*r*(3*I - 4*r*omega) + a*r*(9 + r*(-3 + 6*m^2 + 6*I*omega) + I*r^2*(-3 + lambda)*omega) +
a^3*(-6 - 9*I*r*omega + 6*r^2*omega^2)))/(r*(r^4*(2*lambda + lambda^2 - 12*I*omega) +
24*a^3*m*r*(-I + 2*r*omega) + 4*a*m*r^2*(6*I + 2*I*r*lambda + 3*r^2*omega) +
a^4*(12 + 24*I*r*omega - 24*r^2*omega^2) - 4*a^2*r*(6 + r*(-3 + 6*m^2 + 6*I*omega) +
2*I*r^2*(-3 + lambda)*omega + 3*r^3*omega^2))) -
((a^2 + r^2)^2*(-24*a^7*m*r^2*omega*(-3 + 3*I*r*omega + 4*r^2*omega^2) +
12*a^8*(-2 - 3*r^2*omega^2 + 2*I*r^3*omega^3 + 2*r^4*omega^4) +
4*a^6*r*(12 - 3*r*(-4 + 3*m^2 + 6*I*omega) + r^3*(-39 + 36*m^2 - 8*lambda - 18*I*omega)*omega^2 +
2*I*r^4*(3 + lambda)*omega^3 + 15*r^5*omega^4 + 2*r^2*omega*(24*I + 9*I*m^2 - 4*I*lambda + 15*omega)) -
4*a^5*m*r^2*(-18*I + 2*r^2*(-36 + 12*m^2 - 8*lambda - 27*I*omega)*omega + 6*I*r^3*(4 + lambda)*omega^2 +
45*r^4*omega^3 + 2*r*(9*I + 3*I*m^2 - 4*I*lambda + 30*omega)) -
2*a*m*r^4*(-48*I - 24*I*r*(-2 + lambda) + 4*I*r^2*(7*lambda + 2*lambda^2 + 6*I*omega) -
r^4*(12*lambda + lambda^2 - 24*I*omega)*omega + 4*I*r^5*lambda*omega^2 + 6*r^6*omega^3 -
4*I*r^3*(lambda + lambda^2 + 6*I*omega + 5*I*lambda*omega)) + a^4*r^3*(24*m^4*r + 48*(-4 + 3*I*omega) -
r^3*(60 + 54*lambda + lambda^2 + 36*I*omega)*omega^2 + 8*I*r^4*(-3 + 2*lambda)*omega^3 + 48*r^5*omega^4 +
8*r*(9 + 2*lambda + lambda^2 - 72*I*omega + 13*I*lambda*omega) + 8*r^2*omega*(24*I - 6*I*lambda - I*lambda^2 + 18*omega +
8*lambda*omega) + 4*m^2*(30 - r*(33 + 8*lambda + 54*I*omega) + 6*I*r^2*(5 + lambda)*omega + 45*r^3*omega^2)) +
r^6*((-2 + r)*r*lambda^3 + lambda^2*(12 - 12*r + 2*r^2 - r^4*omega^2) + 12*I*omega*(-12 + 8*r + r^4*omega^2) -
2*lambda*(-12 + 4*r*(2 - 3*I*omega) + 6*I*r^2*omega + r^4*omega^2)) +
a^2*r^4*(96 - 96*I*omega + 2*r^4*(6 + 24*m^2 - 12*lambda - lambda^2 + 24*I*omega)*omega^2 +
8*I*r^5*(-3 + lambda)*omega^3 + 12*r^6*omega^4 + 8*r^3*omega*(2*I*lambda - I*lambda^2 + 2*I*m^2*(3 + lambda) + 3*omega +
5*lambda*omega) + r^2*(lambda^3 + lambda*(24 - 34*m^2 - 4*I*omega) + lambda^2*(14 - m^2 + 16*I*omega) -
12*I*(22 + 3*m^2 - 4*I*omega)*omega) + 8*r*(m^2*(6 + 8*lambda) -
3*(2 + 2*lambda + lambda^2 - 22*I*omega + 2*I*lambda*omega))) -
2*a^3*m*r^3*(72*I - 4*I*r*(15 + 9*m^2 - 13*lambda) + r^3*(-36 + 30*m^2 - 44*lambda - lambda^2 - 36*I*omega)*
omega + 4*I*r^4*(3 + 4*lambda)*omega^2 + 48*r^5*omega^3 + 4*r^2*(I*m^2*(6 + lambda) -
I*(3 + 9*lambda + lambda^2 + 24*I*omega + 16*I*lambda*omega)))))/
(r^2*((-r^4)*(2*lambda + lambda^2 - 12*I*omega) + 24*a^3*m*r*(I - 2*r*omega) -
4*a*m*r^2*(6*I + 2*I*r*lambda + 3*r^2*omega) + 12*a^4*(-1 - 2*I*r*omega + 2*r^2*omega^2) +
4*a^2*r*(6 + r*(-3 + 6*m^2 + 6*I*omega) + 2*I*r^2*(-3 + lambda)*omega + 3*r^3*omega^2))))
end
else
# Throw an error, this spin weight is not supported
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
end
function VT(s::Int, m::Int, a, omega, lambda, r)
_K = K(m, a, omega, r)
_Delta = Delta(a, r)
return lambda - 4im*s*omega*r - (_K^2 - 2im*s*(r-1)*_K)/_Delta
end
function radial_Teukolsky_equation(s, m, a, omega, lambda, r, R, dRdr, d2Rdr2)
Delta(a, r)*d2Rdr2(r) + (2*(s+1)*(r-1))*dRdr(r) - VT(s, m, a, omega, lambda, r)*R(r)
end
end | GeneralizedSasakiNakamura | https://github.com/ricokaloklo/GeneralizedSasakiNakamura.jl.git |
|
[
"MIT"
] | 0.4.2 | f00e7a1d7777e3697be7d567a00b31d6ff700034 | code | 34761 | module Solutions
using DifferentialEquations
using ForwardDiff
using HypergeometricFunctions
using ..Kerr
using ..Transformation
using ..Coordinates
using ..Potentials
using ..AsymptoticExpansionCoefficients
using ..InitialConditions
using ..ConversionFactors
const I = 1im # Mathematica being Mathematica
_DEFAULTDATATYPE = ComplexF64 # Double precision by default
_DEFAULTSOLVER = Vern9()
_DEFAULTTOLERANCE = 1e-12
# First-order non-linear ODE form of the GSN equation
function GSN_Riccati_eqn!(du, u, p, rs)
r = r_from_rstar(p.a, rs)
_sF = sF(p.s, p.m, p.a, p.omega, p.lambda, r)
_sU = sU(p.s, p.m, p.a, p.omega, p.lambda, r)
#=
We write X = exp(I*Phi)
Substitute X in this form into the GSN equation will give
a Riccati equation, a first-order non-linear equation
u[1] = Phi
u[2] = dPhidrs
=#
du[1] = u[2]
du[2] = -1im*_sU + _sF*u[2] - 1im*u[2]*u[2]
end
# Second-order linear ODE form of the GSN equation
function GSN_linear_eqn!(du, u, p, rs)
r = r_from_rstar(p.a, rs)
_sF = sF(p.s, p.m, p.a, p.omega, p.lambda, r)
_sU = sU(p.s, p.m, p.a, p.omega, p.lambda, r)
#=
Using the convention for DifferentialEquations
u[1] = X(rs)
u[2] = dX/drs = X'
therefore
X'' - sF X' - sU X = 0 => u[2]' - sF u[2] - sU u[1] = 0 => u[2]' = sF u[2] + sU u[1]
=#
du[1] = u[2]
du[2] = _sF*u[2] + _sU*u[1]
end
function PhiPhiprime_from_XXprime(X, Xprime)
Phi = -1im*log(X)
Phiprime = -1im*Xprime/X
return Phi, Phiprime
end
function XXprime_from_PhiPhiprime(Phi, Phiprime)
X = exp(1im*Phi)
Xprime = 1im*X*Phiprime
return X, Xprime
end
function Xsoln_from_Phisoln(Phisoln)
return rs -> XXprime_from_PhiPhiprime(Phisoln(rs)[1], Phisoln(rs)[2])
end
function solve_Phiup(s::Int, m::Int, a, omega, lambda, rsin, rsout; initialconditions_order=-1, dtype=_DEFAULTDATATYPE, odealgo=_DEFAULTSOLVER, reltol=_DEFAULTTOLERANCE, abstol=_DEFAULTTOLERANCE)
# Sanity check
if rsin > rsout
throw(DomainError(rsout, "rsout ($rsout) must be larger than rsin ($rsin)"))
end
# Initial conditions at rs = rsout, the outer boundary
Xup_rsout, Xupprime_rsout = Xup_initialconditions(s, m, a, omega, lambda, rsout; order=initialconditions_order)
# Convert initial conditions for Xup for Phi
Phi, Phiprime = PhiPhiprime_from_XXprime(Xup_rsout, Xupprime_rsout)
u0 = [dtype(Phi); dtype(Phiprime)]
rsspan = (rsout, rsin) # Integrate from rsout to rsin *inward*
p = (s=s, m=m, a=a, omega=omega, lambda=lambda)
odeprob = ODEProblem(GSN_Riccati_eqn!, u0, rsspan, p)
odesoln = solve(odeprob, odealgo; reltol=reltol, abstol=abstol)
return odesoln
end
function solve_Phiin(s::Int, m::Int, a, omega, lambda, rsin, rsout; initialconditions_order=-1, dtype=_DEFAULTDATATYPE, odealgo=_DEFAULTSOLVER, reltol=_DEFAULTTOLERANCE, abstol=_DEFAULTTOLERANCE)
# Sanity check
if rsin > rsout
throw(DomainError(rsin, "rsin ($rsin) must be smaller than rsout ($rsout)"))
end
# Initial conditions at rs = rsin, the inner boundary; this should be very close to EH
Xin_rsin, Xinprime_rsin = Xin_initialconditions(s, m, a, omega, lambda, rsin; order=initialconditions_order)
# Convert initial conditions for Xin for PhiRe PhiIm
Phi, Phiprime = PhiPhiprime_from_XXprime(Xin_rsin, Xinprime_rsin)
u0 = [dtype(Phi); dtype(Phiprime)]
rsspan = (rsin, rsout) # Integrate from rsin to rsout *outward*
p = (s=s, m=m, a=a, omega=omega, lambda=lambda)
odeprob = ODEProblem(GSN_Riccati_eqn!, u0, rsspan, p)
odesoln = solve(odeprob, odealgo; reltol=reltol, abstol=abstol)
return odesoln
end
function solve_Xup(s::Int, m::Int, a, omega, lambda, rsin, rsout; initialconditions_order=-1, dtype=_DEFAULTDATATYPE, odealgo=_DEFAULTSOLVER, reltol=_DEFAULTTOLERANCE, abstol=_DEFAULTTOLERANCE)
# Sanity check
if rsin > rsout
throw(DomainError(rsout, "rsout ($rsout) must be larger than rsin ($rsin)"))
end
# Initial conditions at rs = rsout, the outer boundary
Xup_rsout, Xupprime_rsout = Xup_initialconditions(s, m, a, omega, lambda, rsout; order=initialconditions_order)
u0 = [dtype(Xup_rsout); dtype(Xupprime_rsout)]
rsspan = (rsout, rsin) # Integrate from rsout to rsin *inward*
p = (s=s, m=m, a=a, omega=omega, lambda=lambda)
odeprob = ODEProblem(GSN_linear_eqn!, u0, rsspan, p)
odesoln = solve(odeprob, odealgo; reltol=reltol, abstol=abstol)
end
function solve_Xin(s::Int, m::Int, a, omega, lambda, rsin, rsout; initialconditions_order=-1, dtype=_DEFAULTDATATYPE, odealgo=_DEFAULTSOLVER, reltol=_DEFAULTTOLERANCE, abstol=_DEFAULTTOLERANCE)
# Sanity check
if rsin > rsout
throw(DomainError(rsin, "rsin ($rsin) must be smaller than rsout ($rsout)"))
end
# Initial conditions at rs = rsin, the inner boundary; this should be very close to EH
Xin_rsin, Xinprime_rsin = Xin_initialconditions(s, m, a, omega, lambda, rsin; order=initialconditions_order)
u0 = [dtype(Xin_rsin); dtype(Xinprime_rsin)]
rsspan = (rsin, rsout) # Integrate from rsin to rsout *outward*
p = (s=s, m=m, a=a, omega=omega, lambda=lambda)
odeprob = ODEProblem(GSN_linear_eqn!, u0, rsspan, p)
odesoln = solve(odeprob, odealgo; reltol=reltol, abstol=abstol)
end
function Teukolsky_radial_function_from_Sasaki_Nakamura_function_conversion_matrix(s, m, a, omega, lambda, r)
#=
Here we use explicit form for the conversion matrix to
faciliate cancellations
=#
M11 = M12 = M21 = M22 = 0.0
if s == 0
M11 = 1/sqrt(a^2 + r^2)
M21 = -(r/(a^2 + r^2)^(3/2))
M22 = sqrt(a^2 + r^2)/(a^2 + (-2 + r)*r)
elseif s == +1
M11 = begin
-((I*r*sqrt((a^2 + r^2)/(a^2 + (-2 + r)*r))*
((-a^3)*m*r - a*m*r^3 + r^5*omega +
a^4*(2*I + r*omega) + 2*a^2*r*(-2*I + I*r +
r^2*omega)))/(sqrt(a^2 + r^2)*
sqrt((a^2 + (-2 + r)*r)*(a^2 + r^2))*
(-2*I*a^3*m*r - 2*I*a*m*r^3 + a^4*(1 + lambda) +
r^4*(2 + lambda) + a^2*r*(2 + r*(3 + 2*lambda)))))
end
M12 = begin
(r^2*(a^2 + r^2)^(3/2)*
sqrt((a^2 + r^2)/(a^2 + (-2 + r)*r)))/
(sqrt((a^2 + (-2 + r)*r)*(a^2 + r^2))*
(-2*I*a^3*m*r - 2*I*a*m*r^3 + a^4*(1 + lambda) +
r^4*(2 + lambda) + a^2*r*(2 + r*(3 + 2*lambda))))
end
M21 = begin
-((r*sqrt((a^2 + r^2)/(a^2 + (-2 + r)*r))*
(-2*a^7*m*(I + r*omega) + a^8*omega*(2*I + r*omega) +
a^5*m*r*(2*I - I*r - 6*r^2*omega) +
a*m*r^5*(-4*I + 3*I*r - 2*r^2*omega) -
2*a^3*m*r^3*(I - 2*I*r + 3*r^2*omega) +
r^6*(2*(2 + lambda) - r*(2 + lambda) - I*r^2*omega +
r^3*omega^2) + a^6*(-4 + r*(1 + m^2 - lambda -
2*I*omega) + 5*I*r^2*omega + 4*r^3*omega^2) +
a^2*r^3*(4 + 4*r*lambda + r^2*(-3 + m^2 - 3*lambda -
2*I*omega) - I*r^3*omega + 4*r^4*omega^2) +
a^4*r*(8 + 2*r*(-4 + lambda) +
r^2*(2*m^2 - 3*lambda - 4*I*omega) + 3*I*r^3*omega +
6*r^4*omega^2)))/(sqrt(a^2 + r^2)*
((a^2 + (-2 + r)*r)*(a^2 + r^2))^(3/2)*
(-2*I*a^3*m*r - 2*I*a*m*r^3 + a^4*(1 + lambda) +
r^4*(2 + lambda) + a^2*r*(2 + r*(3 + 2*lambda)))))
end
M22 = begin
-((I*r^2*((a^2 + r^2)/(a^2 + (-2 + r)*r))^(3/2)*
((-a^3)*m - a*m*r^2 + a^4*omega + r^3*(-I + r*omega) +
a^2*(2*I - I*r + 2*r^2*omega)))/
(sqrt(a^2 + r^2)*sqrt((a^2 + (-2 + r)*r)*
(a^2 + r^2))*(-2*I*a^3*m*r - 2*I*a*m*r^3 +
a^4*(1 + lambda) + r^4*(2 + lambda) +
a^2*r*(2 + r*(3 + 2*lambda)))))
end
elseif s == -1
M11 = begin
(I*r*sqrt(a^2 + r^2)*((-a^3)*m*r - a*m*r^3 +
r^5*omega + a^4*(-2*I + r*omega) +
2*a^2*r*(2*I - I*r + r^2*omega)))/
(sqrt((a^2 + r^2)/(a^2 + (-2 + r)*r))*
sqrt((a^2 + (-2 + r)*r)*(a^2 + r^2))*
(2*I*a^3*m*r + 2*I*a*m*r^3 + a^4*(-1 + lambda) +
r^4*lambda + a^2*r*(2 + r*(-1 + 2*lambda))))
end
M12 = begin
(r^2*sqrt(a^2 + r^2)*sqrt((a^2 + r^2)/
(a^2 + (-2 + r)*r))*sqrt((a^2 + (-2 + r)*r)*
(a^2 + r^2)))/(2*I*a^3*m*r + 2*I*a*m*r^3 +
a^4*(-1 + lambda) + r^4*lambda +
a^2*r*(2 + r*(-1 + 2*lambda)))
end
M21 = begin
(r*sqrt((a^2 + r^2)/(a^2 + (-2 + r)*r))*
(a^8*omega*(2*I - r*omega) + 2*a^7*m*(-I + r*omega) +
a*m*r^5*(-2*I + I*r + 2*r^2*omega) +
2*a^3*m*r^3*(I + 3*r^2*omega) +
a^5*m*r*(4*I - 3*I*r + 6*r^2*omega) +
a^6*r*(1 - m^2 + lambda - 4*I*omega + 7*I*r*omega -
4*r^2*omega^2) - a^4*r^2*(2*(2 + lambda) +
r*(-2 + 2*m^2 - 3*lambda + 10*I*omega) - 9*I*r^2*omega +
6*r^3*omega^2) + a^2*r^3*(4 - 4*r*(1 + lambda) -
r^2*(-1 + m^2 - 3*lambda + 8*I*omega) + 5*I*r^3*omega -
4*r^4*omega^2) + r^6*((-2 + r)*lambda -
r*omega*(2*I - I*r + r^2*omega))))/
((a^2 + r^2)^(3/2)*sqrt((a^2 + (-2 + r)*r)*
(a^2 + r^2))*(2*I*a^3*m*r + 2*I*a*m*r^3 +
a^4*(-1 + lambda) + r^4*lambda +
a^2*r*(2 + r*(-1 + 2*lambda))))
end
M22 = begin
-((r^2*sqrt((a^2 + r^2)/(a^2 + (-2 + r)*r))*
sqrt((a^2 + (-2 + r)*r)*(a^2 + r^2))*
(-r - (I*(a^2 + r^2)*((-a)*m + (a^2 + r^2)*omega))/
(a^2 + (-2 + r)*r)))/(sqrt(a^2 + r^2)*
(2*I*a^3*m*r + 2*I*a*m*r^3 + a^4*(-1 + lambda) +
r^4*lambda + a^2*r*(2 + r*(-1 + 2*lambda)))))
end
elseif s == +2
M11 = begin
(r^2*(a^2 + (-2 + r)*r)*(-4*a^5*m*r*(I + r*omega) -
2*a^3*m*r^2*(-3*I + 2*I*r + 4*r^2*omega) +
a*m*(2*I*r^4 - 4*r^6*omega) +
2*a^6*(-5 + 2*I*r*omega + r^2*omega^2) +
a^4*r*(32 + r*(-24 + 2*m^2 - lambda - 6*I*omega) +
10*I*r^2*omega + 6*r^3*omega^2) +
r^4*(-12 + 2*r*(9 + lambda) -
r^2*(6 + lambda + 6*I*omega) + 2*I*r^3*omega +
2*r^4*omega^2) + 2*a^2*r^2*(-12 + r*(23 + lambda) +
r^2*(-10 + m^2 - lambda - 6*I*omega) + 4*I*r^3*omega +
3*r^4*omega^2)))/
(((a^2 + (-2 + r)*r)^2*(a^2 + r^2))^(3/2)*
((-r^4)*(24 + 10*lambda + lambda^2 + 12*I*omega) -
24*a^3*m*r*(I + 2*r*omega) + 4*a*m*r^2*
(6*I + 2*I*r*(4 + lambda) - 3*r^2*omega) +
12*a^4*(-1 + 2*I*r*omega + 2*r^2*omega^2) +
4*a^2*r*(6 + r*(-3 + 6*m^2 - 6*I*omega) -
2*I*r^2*(1 + lambda)*omega + 3*r^3*omega^2)))
end
M12 = begin
(2*r^3*(a^2 + (-2 + r)*r)*(a^2 + r^2)^2*
((-I)*a*m*r + a^2*(-2 + I*r*omega) +
r*(3 - r + I*r^2*omega)))/
(((a^2 + (-2 + r)*r)^2*(a^2 + r^2))^(3/2)*
((-r^4)*(24 + 10*lambda + lambda^2 + 12*I*omega) -
24*a^3*m*r*(I + 2*r*omega) + 4*a*m*r^2*
(6*I + 2*I*r*(4 + lambda) - 3*r^2*omega) +
12*a^4*(-1 + 2*I*r*omega + 2*r^2*omega^2) +
4*a^2*r*(6 + r*(-3 + 6*m^2 - 6*I*omega) -
2*I*r^2*(1 + lambda)*omega + 3*r^3*omega^2)))
end
M21 = begin
-((I*r*(-2*a^7*m*r*(-2 + 4*I*r*omega + 3*r^2*omega^2) -
2*a^5*m*r^2*(-4 + r*(3 + m^2 - lambda + 2*I*omega) +
4*I*r^2*omega + 9*r^3*omega^2) +
2*a*m*r^5*(-10 + r*(3 - 2*lambda) +
r^2*(2 + lambda + 2*I*omega) + 4*I*r^3*omega -
3*r^4*omega^2) - 2*a^3*m*r^3*
(12 + r^2*(3 + m^2 - 2*lambda) + r*(-17 + 2*lambda) -
4*I*r^3*omega + 9*r^4*omega^2) +
2*a^8*(-6*I - 2*r*omega + 2*I*r^2*omega^2 +
r^3*omega^3) + 2*a^6*r*(16*I +
I*r*(-9 + 2*m^2 - 2*lambda + 4*I*omega) +
r^2*(-8 + 3*m^2 - lambda + I*omega)*omega +
6*I*r^3*omega^2 + 4*r^4*omega^3) +
r^6*(-4*I*lambda - 2*r^3*(4 + lambda + 5*I*omega)*omega +
2*r^5*omega^3 - 12*r*(I + omega) +
r^2*(6*I + I*lambda + 18*omega + 4*lambda*omega)) +
a^4*r^2*(-16*I + 2*I*r*(10 + m^2 + 6*lambda -
12*I*omega) + 2*r^3*(-14 + 6*m^2 - 3*lambda -
3*I*omega)*omega + 12*I*r^4*omega^2 + 12*r^5*omega^3 +
r^2*(-2*I - 4*I*m^2 - 7*I*lambda + 22*omega +
4*lambda*omega)) + 2*a^2*r^4*(-4*I*lambda +
I*r*(-4 + 3*m^2 + 6*lambda + 6*I*omega) +
3*r^3*(-4 + m^2 - lambda - 3*I*omega)*omega +
2*I*r^4*omega^2 + 4*r^5*omega^3 +
r^2*(5*I - 4*I*m^2 - I*lambda + 24*omega +
4*lambda*omega))))/
(((a^2 + (-2 + r)*r)^2*(a^2 + r^2))^(3/2)*
((-r^4)*(24 + 10*lambda + lambda^2 + 12*I*omega) -
24*a^3*m*r*(I + 2*r*omega) + 4*a*m*r^2*
(6*I + 2*I*r*(4 + lambda) - 3*r^2*omega) +
12*a^4*(-1 + 2*I*r*omega + 2*r^2*omega^2) +
4*a^2*r*(6 + r*(-3 + 6*m^2 - 6*I*omega) -
2*I*r^2*(1 + lambda)*omega + 3*r^3*omega^2))))
end
M22 = begin
(r^2*(a^2 + r^2)^2*(-4*a^3*m*r*(I + r*omega) -
2*a*m*r^2*(I - 3*I*r + 2*r^2*omega) +
2*a^4*(-3 + 2*I*r*omega + r^2*omega^2) +
r^3*(2*lambda - r*(2 + lambda + 10*I*omega) + 2*r^3*omega^2) +
a^2*r*(8 + 2*m^2*r - r*lambda + 2*I*r*omega +
4*I*r^2*omega + 4*r^3*omega^2)))/
(((a^2 + (-2 + r)*r)^2*(a^2 + r^2))^(3/2)*
((-r^4)*(24 + 10*lambda + lambda^2 + 12*I*omega) -
24*a^3*m*r*(I + 2*r*omega) + 4*a*m*r^2*
(6*I + 2*I*r*(4 + lambda) - 3*r^2*omega) +
12*a^4*(-1 + 2*I*r*omega + 2*r^2*omega^2) +
4*a^2*r*(6 + r*(-3 + 6*m^2 - 6*I*omega) -
2*I*r^2*(1 + lambda)*omega + 3*r^3*omega^2)))
end
elseif s == -2
M11 = begin
(r^2*(-4*a^5*m*r*(-I + r*omega) -
2*a*m*r^4*(I + 2*r^2*omega) - 2*a^3*m*r^2*
(3*I - 2*I*r + 4*r^2*omega) +
2*a^6*(-5 - 2*I*r*omega + r^2*omega^2) +
a^4*r*(32 + r*(-20 + 2*m^2 - lambda + 6*I*omega) -
10*I*r^2*omega + 6*r^3*omega^2) +
r^4*(-12 + 2*r*(5 + lambda) -
r^2*(2 + lambda - 6*I*omega) - 2*I*r^3*omega +
2*r^4*omega^2) + 2*a^2*r^2*(-12 + r*(19 + lambda) +
r^2*(-6 + m^2 - lambda + 6*I*omega) - 4*I*r^3*omega +
3*r^4*omega^2)))/((a^2 + (-2 + r)*r)^3*
((a^2 + r^2)/(a^2 + (-2 + r)*r)^2)^(3/2)*
((-r^4)*(2*lambda + lambda^2 - 12*I*omega) +
24*a^3*m*r*(I - 2*r*omega) - 4*a*m*r^2*
(6*I + 2*I*r*lambda + 3*r^2*omega) +
12*a^4*(-1 - 2*I*r*omega + 2*r^2*omega^2) +
4*a^2*r*(6 + r*(-3 + 6*m^2 + 6*I*omega) +
2*I*r^2*(-3 + lambda)*omega + 3*r^3*omega^2)))
end
M12 = begin
(2*r^3*(a^2 + (-2 + r)*r)*
sqrt((a^2 + r^2)/(a^2 + (-2 + r)*r)^2)*
(I*a*m*r + a^2*(-2 - I*r*omega) +
r*(3 - r - I*r^2*omega)))/
((-r^4)*(2*lambda + lambda^2 - 12*I*omega) +
24*a^3*m*r*(I - 2*r*omega) -
4*a*m*r^2*(6*I + 2*I*r*lambda + 3*r^2*omega) +
12*a^4*(-1 - 2*I*r*omega + 2*r^2*omega^2) +
4*a^2*r*(6 + r*(-3 + 6*m^2 + 6*I*omega) +
2*I*r^2*(-3 + lambda)*omega + 3*r^3*omega^2))
end
M21 = begin
(I*r*sqrt((a^2 + r^2)/(a^2 + (-2 + r)*r)^2)*
(2*a^7*m*r*(2 + 4*I*r*omega - 3*r^2*omega^2) -
2*a^5*m*r^2*(4 + r*(-1 + m^2 - lambda + 6*I*omega) -
12*I*r^2*omega + 9*r^3*omega^2) -
2*a^3*m*r^4*(-5 + 2*lambda + r*(3 + m^2 - 2*lambda +
16*I*omega) - 12*I*r^2*omega + 9*r^3*omega^2) -
2*a*m*r^5*(6 + r*(-7 + 2*lambda) +
r^2*(2 - lambda + 10*I*omega) - 4*I*r^3*omega +
3*r^4*omega^2) + 2*a^8*(6*I - 2*r*omega -
2*I*r^2*omega^2 + r^3*omega^3) +
2*a^6*r*(-36*I + r^2*(-12 + 3*m^2 - lambda + 3*I*omega)*
omega - 10*I*r^3*omega^2 + 4*r^4*omega^3 +
r*(21*I - 2*I*m^2 + 2*I*lambda + 4*omega)) +
r^5*(-48*I + 12*I*r*(6 + lambda) -
12*I*r^2*(3 + lambda - 3*I*omega) -
2*r^4*(4 + lambda - 9*I*omega)*omega - 8*I*r^5*omega^2 +
2*r^6*omega^3 + r^3*(6*I + 3*I*lambda + 34*omega +
4*lambda*omega)) + 2*a^2*r^3*(-48*I +
4*I*r*(27 + 2*lambda) + I*r^2*(-72 + m^2 - 14*lambda +
30*I*omega) + r^4*(-16 + 3*m^2 - 3*lambda +
21*I*omega)*omega - 14*I*r^5*omega^2 + 4*r^6*omega^3 +
r^3*(15*I + 5*I*lambda + 48*omega + 4*lambda*omega)) +
a^4*r^2*(144*I + 2*I*r*(-90 + 3*m^2 - 8*lambda) +
2*r^3*(-22 + 6*m^2 - 3*lambda + 15*I*omega)*omega -
36*I*r^4*omega^2 + 12*r^5*omega^3 +
r^2*(54*I - 4*I*m^2 + 11*I*lambda + 70*omega +
4*lambda*omega))))/((a^2 + r^2)^2*
((-r^4)*(2*lambda + lambda^2 - 12*I*omega) +
24*a^3*m*r*(I - 2*r*omega) - 4*a*m*r^2*
(6*I + 2*I*r*lambda + 3*r^2*omega) +
12*a^4*(-1 - 2*I*r*omega + 2*r^2*omega^2) +
4*a^2*r*(6 + r*(-3 + 6*m^2 + 6*I*omega) +
2*I*r^2*(-3 + lambda)*omega + 3*r^3*omega^2)))
end
M22 = begin
(r^2*sqrt((a^2 + r^2)/(a^2 + (-2 + r)*r)^2)*
(-4*a^3*m*r*(-I + r*omega) - 2*a*m*r^2*
(3*I - I*r + 2*r^2*omega) +
2*a^4*(-3 - 2*I*r*omega + r^2*omega^2) +
a^2*r*(24 + r*(-12 + 2*m^2 - lambda + 6*I*omega) -
12*I*r^2*omega + 4*r^3*omega^2) +
r^2*(-24 + 2*r*(12 + lambda) -
r^2*(6 + lambda - 18*I*omega) - 8*I*r^3*omega +
2*r^4*omega^2)))/
((-r^4)*(2*lambda + lambda^2 - 12*I*omega) +
24*a^3*m*r*(I - 2*r*omega) -
4*a*m*r^2*(6*I + 2*I*r*lambda + 3*r^2*omega) +
12*a^4*(-1 - 2*I*r*omega + 2*r^2*omega^2) +
4*a^2*r*(6 + r*(-3 + 6*m^2 + 6*I*omega) +
2*I*r^2*(-3 + lambda)*omega + 3*r^3*omega^2))
end
else
# Throw an error, this spin weight is not supported
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
return [M11 M12; M21 M22]
end
function Teukolsky_radial_function_from_Sasaki_Nakamura_function(s::Int, m::Int, a, omega, lambda, Xsoln)
#=
First convert [X(rs), dX/drs(rs)] to [X(r), dX/dr(r)], this is done by
[X(r), dX/dr(r)]^T = [1, 0; 0, drstar/dr ] * [X(rs), dX/drs(rs)]^T
Then we convert [X(r), dX/dr(r)] to [chi(r), dchi/dr(r)] by
[chi(r), dchi/dr(r)]^T = [chi_conversion_factor(r), 0 ; dchi_conversion_factor_dr, chi_conversion_factor] * [X(r), dX/dr(r)]^T
After that we convert [chi(r), dchi/dr(r)] to [R(r), dR/dr(r)] by
[R(r), dR/dr(r)]^T = 1/eta(r) * [ alpha + beta_prime*Delta^(s+1), -beta*Delta^(s+1) ; -(alpha_prime + beta*VT*Delta^s), alpha ] * [chi(r), dchi/dr(r)]^T
Therefore the overall conversion matrix is 'just' (one matrix for each r)
the multiplication of each conversion matrix
=#
overall_conversion_matrix(r) = Teukolsky_radial_function_from_Sasaki_Nakamura_function_conversion_matrix(s, m, a, omega, lambda, r)
X(rs) = Xsoln(rs)[1]
Xprime(rs) = Xsoln(rs)[2]
Rsoln = (r -> overall_conversion_matrix(r) * [X(rstar_from_r(a, r)); Xprime(rstar_from_r(a, r))])
return Rsoln
end
function Sasaki_Nakamura_function_from_Teukolsky_radial_function(s::Int, m::Int, a, omega, lambda, Rsoln)
#=
Teukolsky_radial_function_from_Sasaki_Nakamura_function_conversion_matrix() returns
the conversion matrix for going from (X, dX/drs) to (R, dR/dr). Here we need
the inverse of that to go from (R, dR/dr) to (X, dX/drs).
=#
conversion_matrix(r) = inv(Teukolsky_radial_function_from_Sasaki_Nakamura_function_conversion_matrix(s, m, a, omega, lambda, r))
Xsoln(rs) = begin
r = r_from_rstar(a, rs)
conversion_matrix(r) * Rsoln(r)
end
return Xsoln
end
function d2Rdr2_from_Rsoln(s::Int, m::Int, a, omega, lambda, Rsoln, r)
#=
Using the radial Teukolsky equation we can solve for d2Rdr2 from R and dRdr using
d2Rdr2 = VT/\Delta R - (2(s+1)(r-M))/\Delta dRdr
=#
# NOTE DO NOT USE THE DOT PRODUCT IN LINEAR ALGEBRA
R, dRdr = Rsoln(r)
return (VT(s, m, a, omega, lambda, r)/Delta(a, r))*R - ((2*(s+1)*(r-1))/Delta(a,r))*dRdr
end
function scaled_Wronskian_Teukolsky(Rin_soln, Rup_soln, r, s, a)
# The scaled Wronskian is given by W = Delta^{s+1} * det([Rin Rup; Rin' Rup'])
Rin, Rin_prime = Rin_soln(r)
Rup, Rup_prime = Rup_soln(r)
return Delta(a, r)^(s+1) * (Rin*Rup_prime - Rup*Rin_prime)
end
function scaled_Wronskian_GSN(Xin_soln, Xup_soln, rs, s, m, a, omega, lambda)
r = r_from_rstar(a, rs)
Xin, dXindrs = Xin_soln(rs)
Xup, dXupdrs = Xup_soln(rs)
_eta = eta(s, m, a, omega, lambda, r)
return (Xin*dXupdrs - dXindrs*Xup)/_eta
end
function scaled_Wronskian_from_Phisolns(Phiin_soln, Phiup_soln, rs, s, m, a, omega, lambda)
r = r_from_rstar(a, rs)
Xin = exp(1im*Phiin_soln(rs)[1])
dXindrs = 1im*exp(1im*Phiinsoln(rs)[1])*Phiinsoln(rs)[2]
Xup = exp(1im*Phiup_soln(rs)[1])
dXupdrs = 1im*exp(1im*Phiupsoln(rs)[1])*Phiupsoln(rs)[2]
_eta = eta(s, m, a, omega, lambda, r)
return (Xin*dXupdrs - dXindrs*Xup)/_eta
end
function residual_from_Xsoln(s::Int, m::Int, a, omega, lambda, Xsoln)
# Compute the second derivative using autodiff instead of finite diff
X(rs) = Xsoln(rs)[1]
first_deriv(rs) = Xsoln(rs)[2]
second_deriv(rs) = ForwardDiff.derivative(first_deriv, rs)
_sF(rs) = sF(s, m, a, omega, lambda, r_from_rstar(a, rs))
_sU(rs) = sU(s, m, a, omega, lambda, r_from_rstar(a, rs))
return rs -> second_deriv(rs) - _sF(rs)*first_deriv(rs) - _sU(rs)*X(rs)
end
function residual_RiccatiEqn_from_Phisoln(s::Int, m::Int, a, omega, lambda, Phisoln)
Phi(rs) = Phisoln(rs)[1] # Does not matter actually!
first_deriv(rs) = Phisoln(rs)[2]
second_deriv(rs) = ForwardDiff.derivative(first_deriv, rs)
_sF(rs) = sF(s, m, a, omega, lambda, r_from_rstar(a, rs))
_sU(rs) = sU(s, m, a, omega, lambda, r_from_rstar(a, rs))
return rs -> second_deriv(rs) + 1im*_sU(rs) - _sF(rs)*first_deriv(rs) + 1im*(first_deriv(rs))^2
end
function residual_GSNEqn_from_Phisoln(s::Int, m::Int, a, omega, lambda, Phisoln)
# Compute the second derivative using autodiff instead of finite diff
X = (rs -> exp(1im*Phisoln(rs)[1]))
first_deriv = (rs -> 1im*exp(1im*Phisoln(rs)[1])*Phisoln(rs)[2])
second_deriv(rs) = ForwardDiff.derivative(first_deriv, rs)
_sF(rs) = sF(s, m, a, omega, lambda, r_from_rstar(a, rs))
_sU(rs) = sU(s, m, a, omega, lambda, r_from_rstar(a, rs))
return rs -> second_deriv(rs) - _sF(rs)*first_deriv(rs) - _sU(rs)*X(rs)
end
function CrefCinc_SN_from_Xup(s::Int, m::Int, a, omega, lambda, Xupsoln, rsin; order=0)
p = omega - m*omega_horizon(a)
rin = r_from_rstar(a, rsin)
# Computing A1, A2, A3, A4
gin(r) = gansatz(
ord -> ingoing_coefficient_at_hor(s, m, a, omega, lambda, ord),
a,
r;
order=order
)
A1 = gin(rin) * exp(-1im*p*rsin)
gout(r) = gansatz(
ord -> outgoing_coefficient_at_hor(s, m, a, omega, lambda, ord),
a,
r;
order=order
)
A2 = gout(rin) * exp(1im*p*rsin)
_DeltaOverr2pa2 = Delta(a, rin)/(rin^2 + a^2)
A3 = (_DeltaOverr2pa2 * ForwardDiff.derivative(gin, rin) - 1im*p*gin(rin)) * exp(-1im*p*rsin)
A4 = (_DeltaOverr2pa2 * ForwardDiff.derivative(gout, rin) + 1im*p*gout(rin)) * exp(1im*p*rsin)
X(rs) = Xupsoln(rs)[1]
Xprime(rs) = Xupsoln(rs)[2]
C1 = X(rsin)
C2 = Xprime(rsin)
return -(A4*C1 - A2*C2)/(A2*A3 - A1*A4), -(-A3*C1 + A1*C2)/(A2*A3 - A1*A4)
end
function BrefBinc_SN_from_Xin(s::Int, m::Int, a, omega, lambda, Xinsoln, rsout; order=3)
rout = r_from_rstar(a, rsout)
# Computing A1, A2, A3, A4
fin(r) = fansatz(
ord -> ingoing_coefficient_at_inf(s, m, a, omega, lambda, ord),
omega,
r;
order=order
)
A1 = fin(rout) * exp(-1im*omega*rsout)
fout(r) = fansatz(
ord -> outgoing_coefficient_at_inf(s, m, a, omega, lambda, ord),
omega,
r;
order=order
)
A2 = fout(rout) * exp(1im*omega*rsout)
_DeltaOverr2pa2 = Delta(a, rout)/(rout^2 + a^2)
A3 = (_DeltaOverr2pa2 * ForwardDiff.derivative(fin, rout) - 1im*omega*fin(rout)) * exp(-1im*omega*rsout)
A4 = (_DeltaOverr2pa2 * ForwardDiff.derivative(fout, rout) + 1im*omega*fout(rout)) * exp(1im*omega*rsout)
X(rs) = Xinsoln(rs)[1]
Xprime(rs) = Xinsoln(rs)[2]
C1 = X(rsout)
C2 = Xprime(rsout)
return -(-A3*C1 + A1*C2)/(A2*A3 - A1*A4), -(A4*C1 - A2*C2)/(A2*A3 - A1*A4)
end
function semianalytical_Xin(s, m, a, omega, lambda, Xinsoln, rsin, rsout, horizon_expansionorder, infinity_expansionorder, rs)
_r = r_from_rstar(a, rs) # Evaluate at this r
if rs < rsin
# Extend the numerical solution to the analytical ansatz from rsin to horizon
# Construct the analytical ansatz
p = omega - m*omega_horizon(a)
gin(r) = gansatz(
ord -> ingoing_coefficient_at_hor(s, m, a, omega, lambda, ord),
a,
r;
order=horizon_expansionorder
)
_Xin = gin(_r)*exp(-1im*p*rs) # Evaluate at *this* rs
_DeltaOverr2pa2 = Delta(a, _r)/(_r^2 + a^2)
_dXindrs = (_DeltaOverr2pa2 * ForwardDiff.derivative(gin, _r) - 1im*p*gin(_r))*exp(-1im*p*rs)
return (_Xin, _dXindrs)
elseif rs > rsout
# Extend the numerical solution to the analytical ansatz from rsout to infinity
# Obtain the coefficients by imposing continuity in X and dX/drs
Bref_SN, Binc_SN = BrefBinc_SN_from_Xin(s, m, a, omega, lambda, Xinsoln, rsout; order=infinity_expansionorder)
# Construct the analytical ansatz
fin(r) = fansatz(
ord -> ingoing_coefficient_at_inf(s, m, a, omega, lambda, ord),
omega,
r;
order=infinity_expansionorder
)
fout(r) = fansatz(
ord -> outgoing_coefficient_at_inf(s, m, a, omega, lambda, ord),
omega,
r;
order=infinity_expansionorder
)
_Xin = Bref_SN*fout(_r)*exp(1im*omega*rs) + Binc_SN*fin(_r)*exp(-1im*omega*rs)
_DeltaOverr2pa2 = Delta(a, _r)/(_r^2 + a^2)
_dXindrs = Bref_SN*(_DeltaOverr2pa2 * ForwardDiff.derivative(fout, _r) + 1im*omega*fout(_r))*exp(1im*omega*rs) + Binc_SN*(_DeltaOverr2pa2 * ForwardDiff.derivative(fin, _r) - 1im*omega*fin(_r))*exp(-1im*omega*rs)
return (_Xin, _dXindrs)
else
# Requested rs is within the numerical solution
return Xinsoln(rs)
end
end
function semianalytical_Xup(s, m, a, omega, lambda, Xupsoln, rsin, rsout, horizon_expansionorder, infinity_expansionorder, rs)
_r = r_from_rstar(a, rs) # Evaluate at this r
if rs < rsin
# Extend the numerical solution to the analytical ansatz from rsin to horizon
# Obtain the coefficients by imposing continuity in X and dX/drs
Cref_SN, Cinc_SN = CrefCinc_SN_from_Xup(s, m, a, omega, lambda, Xupsoln, rsin; order=horizon_expansionorder)
# with coefficient Cref_SN for the left-going and Cinc_SN for the right-going mode
# Construct the analytical ansatz
p = omega - m*omega_horizon(a)
gin(r) = gansatz(
ord -> ingoing_coefficient_at_hor(s, m, a, omega, lambda, ord),
a,
r;
order=horizon_expansionorder
)
gout(r) = gansatz(
ord -> outgoing_coefficient_at_hor(s, m, a, omega, lambda, ord),
a,
r;
order=horizon_expansionorder
)
_Xup = Cinc_SN*gout(_r)*exp(1im*p*rs) + Cref_SN*gin(_r)*exp(-1im*p*rs) # Evaluate at *this* rs
_DeltaOverr2pa2 = Delta(a, _r)/(_r^2 + a^2)
_dXupdrs = Cinc_SN*(_DeltaOverr2pa2 * ForwardDiff.derivative(gout, _r) + 1im*p*gout(_r))*exp(1im*p*rs) + Cref_SN*(_DeltaOverr2pa2 * ForwardDiff.derivative(gin, _r) - 1im*p*gin(_r))*exp(-1im*p*rs)
return (_Xup, _dXupdrs)
elseif rs > rsout
# Extend the numerical solution to the analytical ansatz from rsout to infinity
fout(r) = fansatz(
ord -> outgoing_coefficient_at_inf(s, m, a, omega, lambda, ord),
omega,
r;
order=infinity_expansionorder
)
_Xup = fout(_r)*exp(1im*omega*rs)
_DeltaOverr2pa2 = Delta(a, _r)/(_r^2 + a^2)
_dXupdrs = (_DeltaOverr2pa2 * ForwardDiff.derivative(fout, _r) + 1im*omega*fout(_r)) * exp(1im*omega*rs)
return (_Xup, _dXupdrs)
else
# Requested rs is within the numerical solution
return Xupsoln(rs)
end
end
function check_XinXup_sanity(Xin, Xup; tolerance=1e-6)
#=
Check if the X_in and X_up solutions are sane by checking if the identity
Binc/Cinc = (p*c0)/(omega*eta(r_+)) [note: this is Eq. (42) in the paper]
is satisfied within a specified tolerance
=#
# Check if the modes are the same
if Xin.mode != Xup.mode
throw(ArgumentError("The modes of Xin and Xup are different"))
end
# Calculate what Binc/Cinc is expected to be
p = Xin.mode.omega - Xin.mode.m*omega_horizon(Xin.mode.a)
c0 = eta_coefficient(Xin.mode.s, Xin.mode.m, Xin.mode.a, Xin.mode.omega, Xin.mode.lambda, 0)
eta_at_rplus = eta(Xin.mode.s, Xin.mode.m, Xin.mode.a, Xin.mode.omega, Xin.mode.lambda, r_plus(Xin.mode.a))
expected_value = (p*c0)/(Xin.mode.omega*eta_at_rplus)
# Calculate the actual value
actual_value = Xin.incidence_amplitude/Xup.incidence_amplitude
if abs(actual_value - expected_value) > tolerance
return false
else
return true
end
end
# Some helper functions for static modes
function x_from_r(a, r)
#=
x \equiv (rp - r)/(rp - rm) is a transformed coordinate that
is used only internally in the code/static mode computation
=#
gamma = sqrt(1 - a^2)
return ((1+gamma)-r)/(2*gamma)
end
function r_from_x(a, x)
gamma = sqrt(1 - a^2)
return 1 + gamma - 2*gamma*x
end
function isnegativeinteger(x)
isinteger(x) && x < 0
end
# Some helper functions for manipulating hypergeometric functions
function pochhammer(x, n)
# Wrapper for the pochhammer function implemented in HypergeometricFunctions.jl
HypergeometricFunctions.pochhammer(x, n)
end
#=
Since there is no implementation of a "regularized" Gauss hypergeometric function in
HypergeometricFunctions.jl yet, we use the fact that when c approaches a negative
integer, 2F1(a,b;c,z)/Gamma(c) approaches the value
lim c->-m 2F1(a, b; c, z)/Gamma(c) = (a)_m (b)_m / m! * z^m * 2F1(a+m, b+m; m+1; z)
which is implemented below
=#
function _2F1_over_Gamma_c(a, b, c, z)
# NOTE This is true only when c is a negative integer
z *= (1 + 0im) # Make sure that z is a complex number
m = abs(c) + 1
( pochhammer(a, m) * pochhammer(b, m) / factorial(m) ) * z^m * pFq((a+m, b+m), (m+1, ), z)
end
function _d2F1_over_Gamma_c_dz(a, b, c, z)
# NOTE This is true only when c is a negative integer
z *= (1 + 0im) # Make sure that z is a complex number
m = abs(c) + 1
# Here we explicitly compute the derivative because ForwardDiff.jl does not work very well with HypergeometricFunctions.jl
( pochhammer(a, m) * pochhammer(b, m) / factorial(m) ) * (m*z^(m-1) * pFq((a+m, b+m), (m+1, ), z) + z^m * pFq((a+m+1, b+m+1), (m+2, ), z))
end
function solve_static_Rin(s::Int, l::Int, m::Int, a)
#=
This is an internal function that returns the static (omega = 0) solution that satisfies
the "purely left-going" condition at the horizon, namely the R^in solution.
Use instead GeneralizedSasakiNakamura.Teukolsky_radial() and set omega = 0 and boundary_condition = IN
=#
gamma = sqrt(1 - a^2)
kappa = I*a*m/gamma
normalization_const = begin
(-1)^(-kappa/2) * exp(I*a*m/2) * gamma^(I*a*m/(1+gamma)) * (-4*gamma^2)^(-s)
end
Rin(r) = begin
x = x_from_r(a, r)
if iszero(kappa) && isnegativeinteger(1-s)
# Regularization
normalization_const * x^(-s + kappa/2) * (1-x)^(kappa/2) * _2F1_over_Gamma_c(-l+kappa, 1+l+kappa, 1-s, x)
else
normalization_const * x^(-s + kappa/2) * (1-x)^(kappa/2) * pFq((-l+kappa, 1+l+kappa), (1-s+kappa,), x)
end
end
dRindr(r) = begin
x = x_from_r(a, r)
if iszero(kappa) && isnegativeinteger(1-s)
# Regularization
normalization_const * (-1/(2*gamma)) * ( (1/2) * (1-x)^(-1+kappa/2) * x^(-1-s+kappa/2) * (2*s*(x-1) + kappa - 2*kappa*x) * _2F1_over_Gamma_c(-l+kappa, 1+l+kappa, 1-s, x) + x^(-s + kappa/2) * (1-x)^(kappa/2) * _d2F1_over_Gamma_c_dz(-l+kappa, 1+l+kappa, 1-s, x) )
else
normalization_const * (-1/(2*gamma)) * ( (1/2) * (1-x)^(-1+kappa/2) * x^(-1-s+kappa/2) * (2*s*(x-1) + kappa - 2*kappa*x) * pFq((-l+kappa, 1+l+kappa), (1-s+kappa,), x) + x^(-s + kappa/2) * (1-x)^(kappa/2) * pochhammer(-l+kappa, 1) * pochhammer(1+l+kappa, 1) / pochhammer(1-s+kappa, 1) * pFq((-l+kappa+1, 1+l+kappa+1), (1-s+kappa+1,), x) )
end
end
return (r -> [Rin(r); dRindr(r)])
end
function solve_static_Rup(s::Int, l::Int, m::Int, a)
#=
This is an internal function that returns the static (omega = 0) solution that satisfies
the "purely right-going" condition at spatial infinity, namely the R^up solution.
Use instead GeneralizedSasakiNakamura.Teukolsky_radial() and set omega = 0 and boundary_condition = UP
=#
gamma = sqrt(1 - a^2)
kappa = I*a*m/gamma
normalization_const = begin
(-2*gamma)^(-s-l-1)
end
Rup(r) = begin
x = x_from_r(a, r)
normalization_const * x^(-s-l-1-kappa/2) * (x-1)^(kappa/2) * pFq((1+l+kappa, 1+s+l), (2+2*l,),1/x)
end
dRupdr(r) = begin
x = x_from_r(a, r)
normalization_const * (-1/(2*gamma)) * ( ( (1/2)*(x-1)^(-1+kappa/2) * x^(-2-l-s-kappa/2) * (-2*(1+l+s)*(x-1) + kappa) ) * pFq((1+l+kappa, 1+s+l), (2+2*l,),1/x) + x^(-s-l-1-kappa/2) * (x-1)^(kappa/2) * pochhammer(1+l+kappa, 1) * pochhammer(1+s+l, 1) / pochhammer(2+2*l, 1) * pFq((2+l+kappa, 2+s+l), (3+2*l,),1/x) * (-1/x^2) )
end
return (r-> [Rup(r); dRupdr(r)])
end
end | GeneralizedSasakiNakamura | https://github.com/ricokaloklo/GeneralizedSasakiNakamura.jl.git |
|
[
"MIT"
] | 0.4.2 | f00e7a1d7777e3697be7d567a00b31d6ff700034 | code | 8496 | module Transformation
using ForwardDiff
using ..Kerr
using ..Potentials
export alpha, alpha_prime, beta, beta_prime, eta_coefficient, eta, eta_prime
const I = 1im # Mathematica being Mathematica
function alpha(s::Int, m::Int, a, omega, lambda, r)
if s == 0
return 1
elseif s == +1
return begin
(sqrt((a^2 + r^2)/(a^2 + (-2 + r)*r))*((-I)*a^3*m - I*a*m*r^2 + I*a^4*omega +
r^3*(1 + I*r*omega) + a^2*(-2 + r + 2*I*r^2*omega)))/(r^2*sqrt(a^2 + r^2))
end
elseif s == -1
return begin
(sqrt((a^2 + (-2 + r)*r)*(a^2 + r^2))*(-r - (I*(a^2 + r^2)*((-a)*m + (a^2 + r^2)*omega))/
(a^2 + (-2 + r)*r)))/(r^2*sqrt(a^2 + r^2))
end
elseif s == +2
return begin
(1/(r^2*(a^2 + (-2 + r)*r)))*(4*a^3*m*r*(I + r*omega) + 2*a*m*r^2*(I - 3*I*r + 2*r^2*omega) -
2*a^4*(-3 + 2*I*r*omega + r^2*omega^2) + r^3*(-2*lambda + r*(2 + lambda + 10*I*omega) - 2*r^3*omega^2) -
a^2*r*(8 + 2*m^2*r - r*lambda + 2*I*r*omega + 4*I*r^2*omega + 4*r^3*omega^2))
end
elseif s == -2
return begin
(1/(r^2*(a^2 + (-2 + r)*r)))*(4*a^3*m*r*(-I + r*omega) + 2*a*m*r^2*(3*I - I*r + 2*r^2*omega) +
a^4*(6 + 4*I*r*omega - 2*r^2*omega^2) + a^2*r*(-24 + r*(12 - 2*m^2 + lambda - 6*I*omega) + 12*I*r^2*omega - 4*r^3*omega^2) +
r^2*(24 - 2*r*(12 + lambda) + r^2*(6 + lambda - 18*I*omega) + 8*I*r^3*omega - 2*r^4*omega^2))
end
else
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
end
function beta(s::Int, m::Int, a, omega, lambda, r)
if s == 0
return 0
elseif s == +1
return begin
((a^2 + r^2)/(a^2 + (-2 + r)*r))^(3/2)/(r^2*sqrt(a^2 + r^2))
end
elseif s == -1
return begin
(sqrt(a^2 + r^2)*sqrt((a^2 + (-2 + r)*r)*(a^2 + r^2)))/r^2
end
elseif s == +2
return begin
(-2*I*a*m*r + a^2*(-4 + 2*I*r*omega) + 2*r*(3 - r + I*r^2*omega))/(r*(a^2 + (-2 + r)*r)^3)
end
elseif s == -2
return begin
(2*(a^2 + (-2 + r)*r)*(I*a*m*r + a^2*(-2 - I*r*omega) + r*(3 - r - I*r^2*omega)))/r
end
else
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
end
function alpha_prime(s::Int, m::Int, a, omega, lambda, r)
if s == 0
return 0
elseif s == +1
return begin
-((I*sqrt(a^2 + r^2)*(-2*a^5*m + a^3*m*(5 - 3*r)*r - a*m*(-1 + r)*r^3 + 2*a^6*omega -
r^4*(I - 3*r*omega + r^2*omega) - a^2*r*(10*I - 9*I*r + r^2*(I + 2*omega)) +
a^4*(4*I + 3*r^2*omega - r*(I + 5*omega))))/(r^3*(a^2 + (-2 + r)*r)^2*
sqrt((a^2 + r^2)/(a^2 + (-2 + r)*r))))
end
elseif s == -1
return begin
(I*(a^2 + r^2)^(3/2)*(-2*a^5*m + a^3*m*(5 - 3*r)*r - a*m*(-1 + r)*r^3 + 2*a^6*omega +
r^3*(-2*I + I*r + 3*r^2*omega - r^3*omega) + a^4*r*(-I + (-5 + 3*r)*omega) +
a^2*r^2*(3*I - r*(I + 2*omega))))/(r^3*((a^2 + (-2 + r)*r)*(a^2 + r^2))^(3/2))
end
elseif s == +2
return begin
-((1/(r^3*(a^2 + (-2 + r)*r)^2))*(2*(2*I*a^5*m*r + a^3*m*r^2*(-8*I + r*(9*I - 4*omega)) +
a^6*(6 - 2*I*r*omega) + 2*r^5*(1 + 5*I*omega + (-3 + r)*r^2*omega^2) +
2*a^4*r*(-11 + r*(6 + 4*I*omega) + r^3*omega^2 + r^2*omega*(-2*I + omega)) +
2*a^2*r^2*(8 + r*(-6 + m^2 + I*omega) - r^2*(1 + m^2 + 6*I*omega) + 2*r^4*omega^2 -
r^3*omega*(I + 2*omega)) + a*m*r^3*(-2*I + 2*I*r + r^2*(-3*I + 4*omega)))))
end
elseif s == -2
return begin
-((1/(r^3*(a^2 + (-2 + r)*r)^2))*(2*(-2*I*a^5*m*r + a^6*(6 + 2*I*r*omega) +
2*a^4*r*(-15 + r*(6 - 4*I*omega) + r^2*omega^2 + r^3*omega^2) +
2*a^2*r^2*(24 + r*(-18 + m^2 + 3*I*omega) + r^2*(3 - m^2 + 6*I*omega) + 2*r^4*omega^2 - r^3*omega*(3*I + 2*omega)) +
2*r^3*(-12 + 12*r + r^2*(-3 - 9*I*omega) + 8*I*r^3*omega + r^5*omega^2 - r^4*omega*(2*I + 3*omega)) +
a*m*r^3*(-6*I + 6*I*r + r^2*(-I + 4*omega)) + a^3*m*r^2*(8*I - r*(5*I + 4*omega)))))
end
else
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
end
function beta_prime(s::Int, m::Int, a, omega, lambda, r)
if s == 0
return 0
elseif s == +1
return begin
-((sqrt((a^2 + r^2)/(a^2 + (-2 + r)*r))*(2*a^4 + 3*(-1 + r)*r^3 + a^2*r*(-7 + 5*r)))/
(r^3*(a^2 + (-2 + r)*r)^2*sqrt(a^2 + r^2)))
end
elseif s == -1
return begin
(-2*a^6 - 3*a^4*(-1 + r)*r + 2*a^2*r^3 + (-1 + r)*r^5)/
(r^3*sqrt(a^2 + r^2)*sqrt((a^2 + (-2 + r)*r)*(a^2 + r^2)))
end
elseif s == +2
return begin
(1/(r^2*(a^2 + (-2 + r)*r)^4))*(2*(2*a^4 + 6*I*a*m*(-1 + r)*r^2 +
a^2*r*(-16 + r*(13 + 6*I*omega) - 4*I*r^2*omega) +
r^2*(18 - 22*r + r^2*(5 + 2*I*omega) - 4*I*r^3*omega)))
end
elseif s == -2
return begin
2*(-6 + 2*I*a*m*(-1 + r) + (2*a^4)/r^2 + 10*r + r^2*(-3 + 6*I*omega) - 4*I*r^3*omega +
a^2*(-3 - 2*I*(-1 + 2*r)*omega))
end
else
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
end
function eta_coefficient(s::Int, m::Int, a, omega, lambda, order)
if s == 0
if order == 0
return 1
elseif order == -1
return 0
elseif order == -2
return 0
elseif order == -3
return 0
elseif order == -4
return 0
else
return 0
end
elseif s == +1
if order == 0
return -2 - lambda
elseif order == -1
return 2*I*a*m
elseif order == -2
return -3*a^2 - 2*a^2*lambda
elseif order == -3
return -2*a^2 + 2*I*a^3*m
elseif order == -4
return -a^4 - a^4*lambda
else
return 0
end
elseif s == -1
if order == 0
return -lambda
elseif order == -1
return -2*I*a*m
elseif order == -2
return a^2 - 2*a^2*lambda
elseif order == -3
return -2*a^2 - 2*I*a^3*m
elseif order == -4
return a^4 - a^4*lambda
else
return 0
end
elseif s == +2
if order == 0
return 24 + 10*lambda + lambda^2 + 12*I*omega + 12*a*m*omega - 12*a^2*omega^2
elseif order == -1
return -32*I*a*m - 8*I*a*m*lambda + 8*I*a^2*omega + 8*I*a^2*lambda*omega
elseif order == -2
return 12*a^2 - 24*I*a*m - 24*a^2*m^2 + 24*I*a^2*omega + 48*a^3*m*omega - 24*a^4*omega^2
elseif order == -3
return -24*a^2 + 24*I*a^3*m - 24*I*a^4*omega
elseif order == -4
return 12*a^4
else
return 0
end
elseif s == -2
if order == 0
return 2*lambda + lambda^2 - 12*I*omega + 12*a*m*omega - 12*a^2*omega^2
elseif order == -1
return 8*I*a*m*lambda + 24*I*a^2*omega - 8*I*a^2*lambda*omega
elseif order == -2
return 12*a^2 + 24*I*a*m - 24*a^2*m^2 - 24*I*a^2*omega + 48*a^3*m*omega - 24*a^4*omega^2
elseif order == -3
return -24*a^2 - 24*I*a^3*m + 24*I*a^4*omega
elseif order == -4
return 12*a^4
else
return 0
end
else
throw(DomainError(s, "Currently only spin weight s of 0, +/-1, +/-2 are supported"))
end
end
function eta(s::Int, m::Int, a, omega, lambda, r)
# eta(r) = c0 + c1/r + c2/r^2 + c3/r^3 + c4/r^4
c0 = eta_coefficient(s, m, a, omega, lambda, 0)
c1 = eta_coefficient(s, m, a, omega, lambda, -1)
c2 = eta_coefficient(s, m, a, omega, lambda, -2)
c3 = eta_coefficient(s, m, a, omega, lambda, -3)
c4 = eta_coefficient(s, m, a, omega, lambda, -4)
return c0 + c1/r + c2/r^2 + c3/r^3 + c4/r^4
end
function eta_prime(s::Int, m::Int, a, omega, lambda, r)
# eta'(r) = -c1/r^2 - 2c2/r^3 - 3c3/r^4 - 4c4/r^5
c1 = eta_coefficient(s, m, a, omega, lambda, -1)
c2 = eta_coefficient(s, m, a, omega, lambda, -2)
c3 = eta_coefficient(s, m, a, omega, lambda, -3)
c4 = eta_coefficient(s, m, a, omega, lambda, -4)
return -c1/r^2 - 2c2/r^3 - 3c3/r^4 - 4c4/r^5
end
end | GeneralizedSasakiNakamura | https://github.com/ricokaloklo/GeneralizedSasakiNakamura.jl.git |
|
[
"MIT"
] | 0.4.2 | f00e7a1d7777e3697be7d567a00b31d6ff700034 | code | 123 | using GeneralizedSasakiNakamura
using Test
@testset "GeneralizedSasakiNakamura.jl" begin
# Write your tests here.
end
| GeneralizedSasakiNakamura | https://github.com/ricokaloklo/GeneralizedSasakiNakamura.jl.git |
|
[
"MIT"
] | 0.4.2 | f00e7a1d7777e3697be7d567a00b31d6ff700034 | docs | 4943 | # GeneralizedSasakiNakamura.jl

[](https://github.com/ricokaloklo/GeneralizedSasakiNakamura.jl/releases)
[](http://ricokaloklo.github.io/GeneralizedSasakiNakamura.jl)
GeneralizedSasakiNakamura.jl computes solutions to the frequency-domain radial Teukolsky equation with the Generalized Sasaki-Nakamura (GSN) formalism.
The code is capable of handling *both in-going and out-going* radiation of scalar, electromagnetic, and gravitational type (corresponding to spin weight of $s = 0, \pm 1, \pm 2$ respectively).
The angular Teukolsky equation is solved with an accompanying julia package [SpinWeightedSpheroidalHarmonics.jl](https://github.com/ricokaloklo/SpinWeightedSpheroidalHarmonics.jl) using a spectral decomposition method.
The paper describing both the GSN formalism and the implementation can be found in [2306.16469](https://arxiv.org/abs/2306.16469). A set of Mathematica notebooks deriving all the equations used in the code can be found in [10.5281/zenodo.8080241](https://zenodo.org/records/8080242).
## Installation
To install the package using the Julia package manager, simply type the following in the Julia REPL:
```julia
using Pkg
Pkg.add("GeneralizedSasakiNakamura")
```
*Note: There is no need to install [SpinWeightedSpheroidalHarmonics.jl](https://github.com/ricokaloklo/SpinWeightedSpheroidalHarmonics.jl) separately as it should be automatically installed by the package manager.*
## Highlights
### Performant frequency-domain Teukolsky solver
Works well at *both low and high frequencies*, and takes only a few tens of milliseconds on average:
<table>
<tr>
<th>GeneralizedSasakiNakamura.jl</th>
<th><a href="https://github.com/BlackHolePerturbationToolkit/Teukolsky">Teukolsky</a> Mathematica package using the MST method </th>
</tr>
<tr>
<td><p align="center"><img width="100%" src="https://github-production-user-asset-6210df.s3.amazonaws.com/55488840/248965077-7d216deb-5bae-433f-a699-d40a35f0e35d.gif"></p></td>
<td><p align="center"><img width="100%" src="https://github-production-user-asset-6210df.s3.amazonaws.com/55488840/248966033-9e7d8027-81ee-4762-98d9-0ad0a1c030ad.gif"></p></td>
</tr>
</table>
*(There was no caching! We solved the equation on-the-fly! The notebook generating this animation can be found [here](https://github.com/ricokaloklo/GeneralizedSasakiNakamura.jl/blob/main/examples/realtime-demo.ipynb))*
Static/zero-frequency solutions are solved analytically with Gauss hypergeometric functions.
### Solutions that are accurate everywhere
Numerical solutions are *smoothly stitched* to analytical ansatzes near the horizon and infinity at user-specified locations `rsin` and `rsout` respectively:
<p align="center">
<img width="50%" src="https://github-production-user-asset-6210df.s3.amazonaws.com/55488840/248724944-9707332b-1238-4b3b-b1c0-ac426a1b3dc6.gif">
</p>
### Easy to use
The following code snippet lets you solve the (source-free) Teukolsky function (in frequency domain) for the mode $s=-2, \ell=2, m=2, a=0.7, \omega=0.5$ that satisfies the purely-ingoing boundary condition at the horizon:
```julia
using GeneralizedSasakiNakamura # This is going to take some time to pre-compile, mostly due to DifferentialEquations.jl
# Specify which mode and what boundary condition
s=-2; l=2; m=2; a=0.7; omega=0.5; bc=IN;
# Specify where to match to ansatzes
rsin=-20; rsout=250;
# NOTE: julia uses 'just-ahead-of-time' compilation. Calling this the first time in each session will take some time
R = Teukolsky_radial(s, l, m, a, omega, bc, rsin, rsout)
```
That's it! If you run this on Julia REPL, it should give you something like this
```
TeukolskyRadialFunction(
mode=Mode(s=-2, l=2, m=2, a=0.7, omega=0.5, lambda=1.6966094016353415),
boundary_condition=IN,
transmission_amplitude=1.0 + 0.0im,
incidence_amplitude=6.536587661197995 - 4.941203897068852im,
reflection_amplitude=-0.128246619129379 - 0.44048133496664404im,
normalization_convention=UNIT_TEUKOLSKY_TRANS
)
```
For example, if we want to evaluate the Teukolsky function at the location $r = 10M$, simply do
```julia
R(10)
```
This should give
```
77.57508416832009 - 429.40290952257226im
```
## How to cite
If you have used this code in your research that leads to a publication, please cite the following article:
```
@article{Lo:2023fvv,
author = "Lo, Rico K. L.",
title = "{Recipes for computing radiation from a Kerr black hole using Generalized Sasaki-Nakamura formalism: I. Homogeneous solutions}",
eprint = "2306.16469",
archivePrefix = "arXiv",
primaryClass = "gr-qc",
month = "6",
year = "2023"
}
```
## License
The package is licensed under the MIT License.
| GeneralizedSasakiNakamura | https://github.com/ricokaloklo/GeneralizedSasakiNakamura.jl.git |
|
[
"MIT"
] | 0.4.2 | f00e7a1d7777e3697be7d567a00b31d6ff700034 | docs | 4951 | # APIs
There are 4 functions that are exported, namely
- [`Teukolsky_radial`](@ref)
- [`GSN_radial`](@ref)
- [`rstar_from_r`](@ref)
- [`r_from_rstar`](@ref)
and there are 5 custom types that are exported, i.e.
- [BoundaryCondition](@ref)
- [NormalizationConvention](@ref)
- [Mode](@ref)
- [GSNRadialFunction](@ref)
- [TeukolskyRadialFunction](@ref)
Currently, only the exported functions and types are documented below. Documentations for private (i.e. unexported) functions will be added at a later stage.
## Functions
```@docs
Teukolsky_radial
```
```@docs
GSN_radial
```
```@docs
rstar_from_r
```
```@docs
r_from_rstar
```
## Types
#### BoundaryCondition
This is an enum type that can take either one of the four values
| value | |
| :--- | :--- |
| `IN` | purely ingoing at the horizon |
| `UP` | purely outgoing at infinity |
| `OUT` | purely outgoing at the horizon |
| `DOWN`| purely ingoing at infinity |
#### NormalizationConvention
This is an enum type that can take either one of the two values
| value | |
| :--- | :--- |
| `UNIT_GSN_TRANS` | normalized to have a unit transmission amplitude for the GSN function |
| `UNIT_TEUKOLSKY_TRANS` | normalized to have a unit transmission amplitude for the Teukolsky function |
#### Mode
This is a composite struct type that stores information about a mode
| field | |
| :--- | :--- |
| `s` | spin weight $s$ |
| `l` | harmonic index $\ell$ |
| `m` | azimuthal index $m$ |
| `a` | Kerr spin parameter $a/M$ |
| `omega` | frequency $M\omega$ |
| `lambda` | spin-weighted spheroidal eigenvalue $\lambda$ |
#### GSNRadialFunction
This is a composite struct type that stores the output from [`GSN_radial`](@ref)
!!! tip
`GSNRadialFunction(rstar)` is equivalent to `GSNRadialFunction.GSN_solution(rstar)[1]`,
returning only the value of the GSN function evaluated at the *tortoise coordinate* `rstar`
| field | |
| :--- | :--- |
| `mode` | a [Mode](@ref) object storing information about the mode |
| `boundary_condition` | a [BoundaryCondition](@ref) object storing which boundary condition this function satisfies |
| `rsin` | numerical inner boundary $r_{*}^{\mathrm{in}}/M$ where the GSN equation is numerically evolved ($r_{*}$ is a tortoise coordinate) |
| `rsout` | numerical outer boundary $r_{*}^{\mathrm{out}}/M$ where the GSN equation is numerically evolved ($r_{*}$ is a tortoise coordinate) |
| `horizon_expansion_order` | order of the asymptotic expansion at the horizon |
| `infinity_expansion_order` | order of the asymptotic expansion at infinity |
| `transmission_amplitude` | transmission amplitude in the GSN formalism of this function |
| `incidence_amplitude` | incidence amplitude in the GSN formalism of this function |
| `reflection_amplitude` | reflection amplitude in the GSN formalism of this function |
| `numerical_GSN_solution` | numerical solution ([`ODESolution`](https://docs.sciml.ai/DiffEqDocs/stable/types/ode_types/#SciMLBase.ODESolution) object from `DifferentialEquations.jl`) to the GSN equation in [`rsin`, `rsout`] if applicable; output is a vector $[ \hat{X}(r_{*}), d\hat{X}(r_{*})/dr_{*} ]$ |
| `numerical_Riccati_solution` | numerical solution ([`ODESolution`](https://docs.sciml.ai/DiffEqDocs/stable/types/ode_types/#SciMLBase.ODESolution) object from `DifferentialEquations.jl`) to the GSN equation in the Riccati form if applicable; output is a vector $[ \hat{\Phi}(r_{*}), d\hat{\Phi}(r_{*})/dr_{*} ]$ |
| `GSN_solution` | full GSN solution where asymptotic solutions are smoothly attached; output is a vector $[ \hat{X}(r_{*}), d\hat{X}(r_{*})/dr_{*} ]$ |
| `normalization_convention` | a [NormalizationConvention](@ref) object storing which normalization convention this function adheres to |
#### TeukolskyRadialFunction
This is a composite struct type that stores the output from [`Teukolsky_radial`](@ref)
!!! tip
`TeukolskyRadialFunction(r)` is equivalent to `TeukolskyRadialFunction.Teukolsky_solution(r)[1]`,
returning only the value of the Teukolsky function evaluated at the *Boyer-Lindquist coordinate* `r`
| field | |
| :--- | :--- |
| `mode` | a [Mode](@ref) object storing information about the mode |
| `boundary_condition` | a [BoundaryCondition](@ref) object storing which boundary condition this function satisfies |
| `transmission_amplitude` | transmission amplitude in the Teukolsky formalism of this function |
| `incidence_amplitude` | incidence amplitude in the Teukolsky formalism of this function |
| `reflection_amplitude` | reflection amplitude in the Teukolsky formalism of this function |
| `GSN_solution` | a [GSNRadialFunction](@ref) object storing the corresponding GSN function
| `Teukolsky_solution` | Teukolsky solution where asymptotic solutions are smoothly attached; output is a vector $[ \hat{R}(r), d\hat{R}(r)/dr ]$ |
| `normalization_convention` | a [NormalizationConvention](@ref) object storing which normalization convention this function adheres to | | GeneralizedSasakiNakamura | https://github.com/ricokaloklo/GeneralizedSasakiNakamura.jl.git |
|
[
"MIT"
] | 0.4.2 | f00e7a1d7777e3697be7d567a00b31d6ff700034 | docs | 5964 | # Examples
```@contents
Pages = ["examples.md"]
```
## Example 1: Solving and visualizing some Teukolsky and GSN functions
In this example, we solve for the Teukolsky and the GSN function with
$s = -2, \ell = 2, m = 2, a = 0.7, \omega = 0.25$ that satisfy the purely outgoing condition
at infinity (i.e. `UP`).
```julia
using GeneralizedSasakiNakamura
using Plots, LaTeXStrings
# Specify which mode and what boundary condition
s=-2; l=2; m=2; a=0.7; omega=0.25; bc=UP; # Change to bc=IN to solve for R^in or X^in instead
# Specify where to match to ansatzes
rsin=-20; rsout=250;
# NOTE: julia uses 'just-ahead-of-time' compilation. Calling this the first time in each session will take some time
R = Teukolsky_radial(s, l, m, a, omega, bc, rsin, rsout);
# Set up a grid of the tortoise coordinate rs
rsgrid = collect(-30:1:300); # Does not have to be within [rsin, rsout]
# Set up a grid of the Boyer-Lindquist r coordinate
# Convert from rsgrid using r_from_rstar(a, rs)
rgrid = [r_from_rstar(a, rs) for rs in rsgrid];
```
```julia
# Visualize the Teukolsky function
# Use the 'shortcut' interface to access the function
plot(rgrid, [real(R(r)) for r in rgrid], label="real")
# Use the full interface to access the function (and its derivative)
plot!(rgrid, [imag(R.Teukolsky_solution(r)[1]) for r in rgrid], label="imag")
plot!(
legendfontsize=14,
xguidefontsize=14,
yguidefontsize=14,
xtickfontsize=14,
ytickfontsize=14,
foreground_color_legend=nothing,
background_color_legend=nothing,
legend=:topleft,
xlabel=L"r/M",
ylabel=L"R(r)",
)
title!("$(R.boundary_condition) solution")
```

```julia
# Visualize the underlying GSN function
# Use the 'shortcut' interface to access the function
plot(rsgrid, [real(R.GSN_solution(rs)) for rs in rsgrid], label="real")
# Use the full interface to access the function (and its derivative)
plot!(rsgrid, [imag(R.GSN_solution.GSN_solution(rs)[1]) for rs in rsgrid], label="imag")
plot!(
legendfontsize=14,
xguidefontsize=14,
yguidefontsize=14,
xtickfontsize=14,
ytickfontsize=14,
foreground_color_legend=nothing,
background_color_legend=nothing,
legend=:bottomright,
xlabel=L"r_{*}/M",
ylabel=L"X(r_{*})",
)
title!("$(R.boundary_condition) solution")
```

```julia
# Visualize the underlying complex frequency function
# NOTE: for this one, rstar has to be within [rsin, rsout]
plot(collect(rsin:0.1:rsout), [real(R.GSN_solution.numerical_Riccati_solution(rs)[2]) for rs in rsin:0.1:rsout], label="real")
# Use the full interface to access the function (and its derivative)
plot!(collect(rsin:0.1:rsout), [imag(R.GSN_solution.numerical_Riccati_solution(rs)[2]) for rs in rsin:0.1:rsout], label="imag")
plot!(
legendfontsize=14,
xguidefontsize=14,
yguidefontsize=14,
xtickfontsize=14,
ytickfontsize=14,
foreground_color_legend=nothing,
background_color_legend=nothing,
legend=:bottomright,
xlabel=L"r_{*}/M",
ylabel=L"d\Phi(r_{*})/dr_{*}",
)
title!("$(R.boundary_condition) solution")
```

## Example 2: Plotting reflectivity of black holes (in GSN formalism)
```julia
using GeneralizedSasakiNakamura
using Plots, LaTeXStrings
sarr = [-2, -1, 0, 1, 2];
l=2;m=2;a=0.0;
reflectivity_from_inf_nonrotating = Dict()
omegas = collect(0.01:0.01:2.0);
for s in sarr
reflectivity_from_inf_nonrotating[s] = []
for omg in omegas
Xin = GSN_radial(s, l, m, a, omg, IN, -20, 250)
append!(reflectivity_from_inf_nonrotating[s], Xin.reflection_amplitude/Xin.incidence_amplitude)
end
end
```
```julia
plot(omegas, abs.(reflectivity_from_inf_nonrotating[-2]), linewidth=2, color=theme_palette(:auto)[1], label=L"s = \pm 2")
plot!(omegas, abs.(reflectivity_from_inf_nonrotating[-1]), linewidth=2, color=theme_palette(:auto)[2], label=L"s = \pm 1")
plot!(omegas, abs.(reflectivity_from_inf_nonrotating[0]), linewidth=2, color=theme_palette(:auto)[3], label=L"s = 0")
plot!(
legendfontsize=14,
xguidefontsize=14,
yguidefontsize=14,
xtickfontsize=14,
ytickfontsize=14,
foreground_color_legend=nothing,
background_color_legend=nothing,
legend=:bottomright,
formatter=:latex,
xlabel=L"M\omega",
ylabel=L"| \hat{B}^{\mathrm{ref}}_{\mathrm{SN}}/\hat{B}^{\mathrm{inc}}_{\mathrm{SN}} |",
left_margin = 2Plots.mm,
right_margin = 3Plots.mm,
)
title!(L"a/M = 0")
```

```julia
sarr = [-2, -1, 0, 1, 2];
l=2;m=2;a=0.7;
reflectivity_from_inf_rotating = Dict()
omegas = collect(0.01:0.01:2.0);
for s in sarr
reflectivity_from_inf_rotating[s] = []
for omg in omegas
Xin = GSN_radial(s, l, m, a, omg, IN, -20, 250)
append!(reflectivity_from_inf_rotating[s], Xin.reflection_amplitude/Xin.incidence_amplitude)
end
end
```
```julia
plot(omegas, abs.(reflectivity_from_inf_rotating[-2]), linewidth=2, color=theme_palette(:auto)[1], label=L"s = -2")
plot!(omegas, abs.(reflectivity_from_inf_rotating[-1]), linewidth=2, color=theme_palette(:auto)[2], label=L"s = -1")
plot!(omegas, abs.(reflectivity_from_inf_rotating[0]), linewidth=2, color=theme_palette(:auto)[3], label=L"s = 0")
plot!(omegas, abs.(reflectivity_from_inf_rotating[1]), linewidth=2, color=theme_palette(:auto)[4], label=L"s = 1")
plot!(omegas, abs.(reflectivity_from_inf_rotating[2]), linewidth=2, color=theme_palette(:auto)[5], label=L"s = 2")
plot!(
legendfontsize=14,
xguidefontsize=14,
yguidefontsize=14,
xtickfontsize=14,
ytickfontsize=14,
foreground_color_legend=nothing,
background_color_legend=nothing,
legend=:bottomright,
formatter=:latex,
xlabel=L"M\omega",
ylabel=L"| \hat{B}^{\mathrm{ref}}_{\mathrm{SN}}/\hat{B}^{\mathrm{inc}}_{\mathrm{SN}} |",
left_margin = 2Plots.mm,
right_margin = 3Plots.mm,
)
title!(L"a/M = 0.7")
```
 | GeneralizedSasakiNakamura | https://github.com/ricokaloklo/GeneralizedSasakiNakamura.jl.git |
|
[
"MIT"
] | 0.4.2 | f00e7a1d7777e3697be7d567a00b31d6ff700034 | docs | 3825 | # Home
GeneralizedSasakiNakamura.jl computes solutions to the frequency-domain radial Teukolsky equation with the Generalized Sasaki-Nakamura (GSN) formalism.
The code is capable of handling *both in-going and out-going* radiation of scalar, electromagnetic, and gravitational type (corresponding to spin weight of $s = 0, \pm 1, \pm 2$ respectively).
The angular Teukolsky equation is solved with an accompanying julia package [SpinWeightedSpheroidalHarmonics.jl](https://github.com/ricokaloklo/SpinWeightedSpheroidalHarmonics.jl) using a spectral decomposition method.
## Installation
To install the package using the Julia package manager, simply type the following in the Julia REPL:
```julia
using Pkg
Pkg.add("GeneralizedSasakiNakamura")
```
*Note: There is no need to install [SpinWeightedSpheroidalHarmonics.jl](https://github.com/ricokaloklo/SpinWeightedSpheroidalHarmonics.jl) separately as it should be automatically installed by the package manager.*
## Highlights
### Performant frequency-domain Teukolsky solver
Works well at *both low and high frequencies*, and takes only a few tens of milliseconds on average:
```@raw html
<table>
<tr>
<th>GeneralizedSasakiNakamura.jl</th>
<th><a href="https://github.com/BlackHolePerturbationToolkit/Teukolsky">Teukolsky</a> Mathematica package using the MST method </th>
</tr>
<tr>
<td><p align="center"><img width="100%" src="https://github-production-user-asset-6210df.s3.amazonaws.com/55488840/248965077-7d216deb-5bae-433f-a699-d40a35f0e35d.gif"></p></td>
<td><p align="center"><img width="100%" src="https://github-production-user-asset-6210df.s3.amazonaws.com/55488840/248966033-9e7d8027-81ee-4762-98d9-0ad0a1c030ad.gif"></p></td>
</tr>
</table>
```
*(There was no caching! We solved the equation on-the-fly! The notebook generating this animation can be found [here](https://github.com/ricokaloklo/GeneralizedSasakiNakamura.jl/blob/main/examples/realtime-demo.ipynb))*
Static/zero-frequency solutions are solved analytically with Gauss hypergeometric functions.
### Solutions that are accurate everywhere
Numerical solutions are *smoothly stitched* to analytical ansatzes near the horizon and infinity at user-specified locations `rsin` and `rsout` respectively:
```@raw html
<p align="center">
<img width="50%" src="https://github-production-user-asset-6210df.s3.amazonaws.com/55488840/248724944-9707332b-1238-4b3b-b1c0-ac426a1b3dc6.gif">
</p>
```
### Easy to use
The following code snippet lets you solve the (source-free) Teukolsky function (in frequency domain) for the mode $s=-2, \ell=2, m=2, a=0.7, \omega=0.5$ that satisfies the purely-ingoing boundary condition at the horizon:
```julia
using GeneralizedSasakiNakamura # This is going to take some time to pre-compile, mostly due to DifferentialEquations.jl
# Specify which mode and what boundary condition
s=-2; l=2; m=2; a=0.7; omega=0.5; bc=IN;
# Specify where to match to ansatzes
rsin=-20; rsout=250;
# NOTE: julia uses 'just-ahead-of-time' compilation. Calling this the first time in each session will take some time
R = Teukolsky_radial(s, l, m, a, omega, bc, rsin, rsout)
```
That's it! If you run this on Julia REPL, it should give you something like this
```
TeukolskyRadialFunction(
mode=Mode(s=-2, l=2, m=2, a=0.7, omega=0.5, lambda=1.6966094016353415),
boundary_condition=IN,
transmission_amplitude=1.0 + 0.0im,
incidence_amplitude=6.536587661197995 - 4.941203897068852im,
reflection_amplitude=-0.128246619129379 - 0.44048133496664404im,
normalization_convention=UNIT_TEUKOLSKY_TRANS
)
```
For example, if we want to evaluate the Teukolsky function at the location $r = 10M$, simply do
```julia
R(10)
```
This should give
```
77.57508416832009 - 429.40290952257226im
```
## License
The package is licensed under the MIT License.
| GeneralizedSasakiNakamura | https://github.com/ricokaloklo/GeneralizedSasakiNakamura.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 4456 |
# NONLEPUS CONTROL
#integrator = DiscretizeRelax(prob, DynamicBoundspODEsDiscrete.LohnerContractor{4}(), h = 0.01, skip_step2 = false, relax = use_relax)
#integrator = DiscretizeRelax(prob, DynamicBoundspODEsDiscrete.LohnerContractor{4}(), h = 0.025, skip_step2 = false, relax = use_relax)
# LEPUS CONTROL
#integrator = DiscretizeRelax(prob, DynamicBoundspODEsDiscrete.LohnerContractor{6}(), h = 0.02,
# repeat_limit = 1, skip_step2 = false, step_limit = 5, relax = use_relax)
# TODO: need to adjust coefficient from hoe test...
#using Revise
using IntervalArithmetic, TaylorSeries
setrounding(Interval, :none)
import Base: literal_pow, ^
import IntervalArithmetic.pow
function ^(x::Interval{Float64}, n::Integer) # fast integer power
if n < 0
return 1/IntervalArithmetic.pow(x, -n)
end
isempty(x) && return x
if iseven(n) && 0 ∈ x
return IntervalArithmetic.hull(zero(x),
hull(Base.power_by_squaring(Interval(mig(x)), n),
Base.power_by_squaring(Interval(mag(x)), n))
)
else
return IntervalArithmetic.hull( Base.power_by_squaring(Interval(x.lo), n),
Base.power_by_squaring(Interval(x.hi), n) )
end
end
using DynamicBoundsBase, Plots, DifferentialEquations#, Cthulhu
using DynamicBoundspODEsDiscrete, BenchmarkTools
println(" ")
println(" ------------------------------------------------------------ ")
println(" ------------- PACKAGE EXAMPLE ------------------------ ")
println(" ------------------------------------------------------------ ")
use_relax = false
lohners_type = 2
prob_num = 1
ticks = 50.0
steps = 50.0
tend = 0.02*steps/ticks # lo 7.6100
if prob_num == 1
x0(p) = [9.0]
function f!(dx, x, p, t)
dx[1] = p[1] - x[1]^2 #x[1]*x[1]
nothing
end
tspan = (0.0, tend)
pL = [-1.0]
pU = [1.0]
elseif prob_num == 2
x0(p) = [1.2; 1.1]
function f!(dx, x, p, t)
dx[1] = p[1]*x[1]*(one(typeof(p[1])) - x[2])
dx[2] = p[1]*x[2]*(x[1] - one(typeof(p[1])))
nothing
end
tspan = (0.0, tend)
pL = [2.95]
pU = [3.05]
end
prob = DynamicBoundsBase.ODERelaxProb(f!, tspan, x0, pL, pU)
tol = 1E-5
if lohners_type == 1
integrator = DiscretizeRelax(prob, DynamicBoundspODEsDiscrete.LohnerContractor{5}(), h = 1/ticks,
repeat_limit = 1, skip_step2 = false, step_limit = steps, relax = use_relax, tol= tol)
elseif lohners_type == 2
integrator = DiscretizeRelax(prob, DynamicBoundspODEsDiscrete.HermiteObreschkoff(3, 3), h = 1/ticks,
repeat_limit = 1, skip_step2 = false, step_limit = steps, relax = use_relax, tol= tol)
elseif lohners_type == 3
function iJx!(dx, x, p, t)
dx[1] = -2.0*x[1]
nothing
end
function iJp!(dx, x, p, t)
dx[1] = one(p[1])
nothing
end
integrator = DiscretizeRelax(prob, DynamicBoundspODEsDiscrete.AdamsMoulton(2), h = 1/ticks,
repeat_limit = 1, step_limit = steps, skip_step2 = false,
relax = false, Jx! = iJx!, Jp! = iJp!, tol= tol)
end
ratio = rand(1)
pstar = pL.*ratio .+ pU.*(1.0 .- ratio)
setall!(integrator, ParameterValue(), [0.0])
DynamicBoundsBase.relax!(integrator)
integrate!(integrator)
t_vec = integrator.time
if !use_relax
lo_vec = getfield.(getindex.(integrator.storage[:],1), :lo)
hi_vec = getfield.(getindex.(integrator.storage[:],1), :hi)
else
lo_vec = getfield.(getfield.(getindex.(integrator.storage[:],1), :Intv), :lo)
hi_vec = getfield.(getfield.(getindex.(integrator.storage[:],1), :Intv), :hi)
end
plt = plot(t_vec , lo_vec, label="Interval Bounds 0.0", marker = (:hexagon, 2, 0.6, :green), linealpha = 0.0, legend=:bottomleft)
plot!(plt, t_vec , hi_vec, label="", linealpha = 0.0, marker = (:hexagon, 2, 0.6, :green))
prob = ODEProblem(f!, [9.0], tspan, [-1.0])
sol = solve(prob, Tsit5(), reltol=1e-8, abstol=1e-8)
plot!(plt, sol.t , sol[1,:], label="", linecolor = :red, linestyle = :solid, lw=1.5)
prob = ODEProblem(f!, [9.0], tspan,[1.0])
sol = solve(prob, Tsit5(), reltol=1e-8, abstol=1e-8)
plot!(plt, sol.t , sol[1,:], label="", linecolor = :red, linestyle = :solid, lw=1.5)
ylabel!("x[1] (M)")
xlabel!("Time (seconds)")
display(plt) | DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 5307 | using Revise
using DynamicBoundspODEsPILMS, LinearAlgebra, IntervalArithmetic, StaticArrays, TaylorSeries,
TaylorIntegration, ForwardDiff, McCormick, BenchmarkTools, DocStringExtensions
using DiffResults: JacobianResult, MutableDiffResult
using ForwardDiff: Partials, JacobianConfig, vector_mode_dual_eval, value, vector_mode_jacobian!
import Base.copyto!
function f!(dx,x,p,t)
dx[1] = x[1]^2 + p[2]
dx[2] = x[2] + p[1]^2
nothing
end
np = 2
nx = 2
k = 3
x = [0.1; 1.0]
p = [0.2; 0.1]
jtf! = DynamicBoundspODEsPILMS.JacTaylorFunctor!(f!, nx, np, k, Interval{Float64}(0.0), 0.0)
xIntv = Interval{Float64}.(x)
pIntv = Interval{Float64}.(p)
yIntv = [xIntv; pIntv]
DynamicBoundspODEsPILMS.jacobian_taylor_coeffs!(jtf!, yIntv)
jac = JacobianResult(jtf!.out, yIntv).derivs[1]
tjac = zeros(Interval{Float64}, 4, 8)
Jx = Matrix{Interval{Float64}}[zeros(Interval{Float64},2,2) for i in 1:4]
Jp = Matrix{Interval{Float64}}[zeros(Interval{Float64},2,2) for i in 1:4]
DynamicBoundspODEsPILMS.extract_JxJp!(Jx, Jp, jtf!.result, tjac, nx, np, k)
itf! = DynamicBoundspODEsPILMS.TaylorFunctor!(f!, nx, np, k, zero(Interval{Float64}), zero(Float64))
outIntv = zeros(Interval{Float64},8)
itf!(outIntv, yIntv)
y = [x; p]
rtf! = DynamicBoundspODEsPILMS.TaylorFunctor!(f!, nx, np, k, zero(Float64), zero(Float64))
out = zeros(8)
rtf!(out, y)
coeff_out = zeros(Interval{Float64},2,4)
DynamicBoundspODEsPILMS.coeff_to_matrix!(coeff_out, jtf!.out, nx, k)
#=
hⱼ = 0.001
hmin = 0.00001
function euf!(out, x, p, t)
out[1,1] = -x[1]
nothing
end
eufY = [Interval{Float64}(0.5,1.5); Interval(0.0)]
itf_exist_unique! = DynamicBoundspODEsPILMS.TaylorFunctor!(euf!, 1, 1, k, zero(Interval{Float64}), zero(Float64))
jtf_exist_unique! = DynamicBoundspODEsPILMS.JacTaylorFunctor!(euf!, 1, 1, k, Interval{Float64}(0.0), 0.0)
DynamicBoundspODEsPILMS.jacobian_taylor_coeffs!(jtf_exist_unique!, eufY)
coeff_out = zeros(Interval{Float64},1,k)
DynamicBoundspODEsPILMS.coeff_to_matrix!(coeff_out, jtf!.out, 1, k)
Jx = Matrix{Interval{Float64}}[zeros(Interval{Float64},1,1) for i in 1:4]
Jp = Matrix{Interval{Float64}}[zeros(Interval{Float64},1,1) for i in 1:4]
tjac = zeros(Interval{Float64}, 2, 4)
outIntv_exist_unique! = zeros(Interval{Float64},4)
itf_exist_unique!(outIntv_exist_unique!, eufY)
coeff_out_exist_unique! = zeros(Interval{Float64},1,k+1)
DynamicBoundspODEsPILMS.coeff_to_matrix!(coeff_out_exist_unique!, outIntv_exist_unique!, 1, k)
DynamicBoundspODEsPILMS.extract_JxJp!(Jx, Jp, jtf_exist_unique!.result, tjac, 1, 1, k)
unique_result = DynamicBoundspODEsPILMS.UniquenessResult(1,1)
DynamicBoundspODEsPILMS.existence_uniqueness!(unique_result, itf_exist_unique!,
eufY, hⱼ, hmin, coeff_out_exist_unique!, Jx, Jp)
bool1 = unique_result.step == 0.001
bool2 = unique_result.confirmed
bool3a = isapprox(unique_result.Ỹⱼ[1].lo, -1.50001E-6, atol=1E-10)
bool3b = isapprox(unique_result.Ỹⱼ[1].hi, 0.00150001, atol=1E-6)
bool4 = isapprox(unique_result.f̃k[1].lo, -7.50001E-16, atol = 1E-19)
bool5 = isapprox(unique_result.f̃k[1].hi, 7.50001E-13, atol = 1E-16)
=#
function fplohn!(out, x, p, t)
out[1] = x[1]
out[2] = -x[2]
nothing
end
np = 1
nx = 2
k = 3
lf! = DynamicBoundspODEsPILMS.LohnersFunctor!(fplohn!, nx, np, k, zero(Interval{Float64}), zero(Float64))
hⱼ = 0.001
Ỹⱼ = [Interval(0.1, 5.1); Interval(0.1, 8.9); Interval(0.1, 8.9)]
Yⱼ = [Interval(0.1, 5.1); Interval(0.1, 8.9); Interval(0.1, 8.9)]
A = DynamicBoundspODEsPILMS.qr_stack(nx, 2)
yⱼ = mid.(Yⱼ)
Δⱼ = Yⱼ[1:2] - yⱼ[1:2]
lf!(hⱼ, Ỹⱼ, Yⱼ, A, yⱼ, Δⱼ)
#=
jetcoeffs!(zqwa, zqwb, zqwc, zqwd, zqwe, zqwr, p)
y = Interval{Float64}.([x; p])
out = g.out
cfg = ForwardDiff.JacobianConfig(nothing, out, y)
# extact is good... actual jacobians look odd...
#tv, xv = validated_integration(f!, Interval{Float64}.([3.0, 3.0]), 0.0, 0.3, 4, 1.0e-20, maxsteps=100 )
Q = [Yⱼ; P]
#@btime jacobianfunctor($outIntv, $yInterval)
d = g
zqwa = d.g!
zqwb = d.t
zqwc = d.xtaylor
zqwd = d.xout
zqwe = d.xaux
zqwr = d.taux
#@btime jetcoeffs!($zqwa, $zqwb, $zqwc, $zqwd, $zqwe, $zqwr, $s, $p)
#@code_warntype jetcoeffs!(zqwa, zqwb, zqwc, zqwd, zqwe, zqwr, p)
Jx = Matrix{Interval{Float64}}[zeros(Interval{Float64},2,2) for i in 1:4]
Jp = Matrix{Interval{Float64}}[zeros(Interval{Float64},2,2) for i in 1:4]
Jxsto = zeros(Interval{Float64},2,2)
Jpsto = zeros(Interval{Float64},2,2)
Yⱼ = [Interval{Float64}(-10.0, 20.0); Interval{Float64}(-10.0, 20.0)]
P = [Interval{Float64}(2.0, 3.0); Interval{Float64}(2.0, 3.0)]
Ycat = [Yⱼ; P]
yⱼ = mid.(Yⱼ)
Δⱼ = Yⱼ - yⱼ
At = zeros(2,2) + I
#Aⱼ = DynamicBoundspODEsPILMS.QRDenseStorage(nx)
#Aⱼ₊₁ = DynamicBoundspODEsPILMS.QRDenseStorage(nx)
A = DynamicBoundspODEsPILMS.QRStack(nx, 2)
dtf = g
hⱼ = 0.001
yjcat = vcat(yⱼ,p)
# TODO: Remember rP is computed outside iteration and stored to JacTaylorFunctor
plohners = DynamicBoundspODEsPILMS.parametric_lohners!(itf!, rtf!, dtf, hⱼ, Ycat, Ycat,
A, yjcat, Δⱼ)
@btime DynamicBoundspODEsPILMS.parametric_lohners!($itf!, $rtf!, $dtf, $hⱼ, $Ycat, $Ycat,
$A, $yjcat, $Δⱼ)
=#
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 6574 | # Copyright(c) 2020: Matthew Wilhelm & Matthew Stuber.
# This work is licensed under the Creative Commons Attribution-NonCommercial-
# ShareAlike 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative
# Commons, PO Box 1866, Mountain View, CA 94042, USA.
#############################################################################
# Dynamic Bounds - pODEs Discrete
# A package for discretize and relax methods for bounding pODEs.
# See https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl
#############################################################################
# src/DynamicBoundspODEsDiscrete.jl
# Defines main module.
#############################################################################
module DynamicBoundspODEsDiscrete
using McCormick, DocStringExtensions, DynamicBoundsBase,
Reexport, LinearAlgebra, StaticArrays, ElasticArrays, Polynomials,
UnPack
using ForwardDiff: Chunk, Dual, Partials, construct_seeds, single_seed,
JacobianConfig, vector_mode_dual_eval!, value, vector_mode_jacobian!,
jacobian!
using DiffEqSensitivity: extract_local_sensitivities, ODEForwardSensitivityProblem
using DiffEqBase: remake, AbstractODEProblem, AbstractContinuousCallback, solve
using Sundials
using OrdinaryDiffEq: ABDF2, Trapezoid, ImplicitEuler
using DiffResults: JacobianResult, MutableDiffResult
import DynamicBoundsBase: relax!, set!, setall!, get, getall!, getall, relax!,
integrate!, supports
import Base: setindex!, getindex, copyto!, literal_pow, copy
import Base.MathConstants.golden
export DiscretizeRelax, AdamsMoulton, BDF, LohnerContractor, HermiteObreschkoff
export StepParams, StepResult, ExistStorage, ContractorStorage, reinitialize!,
existence_uniqueness!, improvement_condition, single_step!, set_xX!,
state_contractor_steps, state_contractor_γ, state_contractor_k, excess_error,
set_Δ!, compute_X0!, set_P!, contains, calc_alpha, mul_split!, μ!, ρ!
const DBB = DynamicBoundsBase
abstract type AbstractStateContractor end
"""
AbstractStateContractorName
The subtypes of `AbstractStateContractorName` are used
to specify the manner of contractor method to be used
by `DiscretizeRelax` in the discretize and relax scheme.
"""
abstract type AbstractStateContractorName end
"""
state_contractor_k(d::AbstractStateContractorName)
Retrieves the order of the existence test to
be used with
"""
function state_contractor_k(d::AbstractStateContractorName)
error("No method with AbstractStateContractorName $d defined.")
end
"""
state_contractor_γ(d::AbstractStateContractorName)
"""
function state_contractor_γ(d::AbstractStateContractorName)
error("No method with AbstractStateContractorName $d defined.")
end
"""
state_contractor_steps(d::AbstractStateContractorName)
"""
function state_contractor_steps(d::AbstractStateContractorName)
error("No method with AbstractStateContractorName $d defined.")
end
"""
state_contractor_integrator(d::AbstractStateContractorName)
"""
function state_contractor_integrator(d::AbstractStateContractorName)
error("No method with AbstractStateContractorName $d defined.")
end
"""
μ!(xⱼ,x̂ⱼ,η)
Used to compute the arguments of Jacobians (`x̂ⱼ + η(xⱼ - x̂ⱼ)`) used by the parametric Mean Value
Theorem. The result is stored to `out`.
"""
function μ!(z, xⱼ::Vector{Interval{Float64}}, x̂ⱼ::Vector{Float64}, η::Interval{Float64})
@. z = xⱼ
end
function μ!(z, xⱼ::Vector{MC{N,T}}, x̂ⱼ::Vector{Float64}, η::Interval{Float64}) where {N, T<:RelaxTag}
@. z = x̂ⱼ + η*(xⱼ - x̂ⱼ)
end
"""
ρ!(out,p,p̂ⱼ,η)
Used to compute the arguments of Jacobians (`p̂ⱼ + η(p - p̂ⱼ)`) used by the parametric Mean Value Theorem.
The result is stored to `out`.
"""
function ρ!(z, p::Vector{Interval{Float64}}, p̂::Vector{Float64}, η::Interval{Float64})
@. z = p
end
function ρ!(z, p::Vector{MC{N,T}}, p̂::Vector{Float64}, η::Interval{Float64}) where {N, T<:RelaxTag}
@. z = p̂ + η*(p - p̂)
end
include("StaticTaylorSeries/StaticTaylorSeries.jl")
using .StaticTaylorSeries
include("DiscretizeRelax/utilities/fixed_buffer.jl")
include("DiscretizeRelax/utilities/mul_split.jl")
include("DiscretizeRelax/utilities/fast_set_index.jl")
include("DiscretizeRelax/utilities/qr_utilities.jl")
include("DiscretizeRelax/utilities/coeff_calcs.jl")
include("DiscretizeRelax/utilities/taylor_functor.jl")
include("DiscretizeRelax/utilities/jacobian_functor.jl")
include("DiscretizeRelax/utilities/single_step.jl")
print_iteration(x) = x > 98
function contract_constant_state!(x::Vector{Interval{Float64}}, t::ConstantStateBounds)
for i in 1:length(t.xL)
xL = x[i].lo
xU = x[i].hi
xLc = t.xL[i]
xUc = t.xU[i]
if xL < xLc
x[i] = Interval(xLc, xU)
elseif xU > xUc
x[i] = Interval(xL, xUc)
elseif (xL < xLc) && (xU > xUc)
x[i] = Interval(xLc, xUc)
end
end
return
end
function contract_constant_state!(x::Vector{MC{N,T}}, t::ConstantStateBounds) where {N,T}
for i in 1:length(t.xL)
xmc = x[i]
xL = xmc.Intv.lo
xU = xmc.Intv.hi
xLc = t.xL[i]
xUc = t.xU[i]
if xL < xLc
x[i] = x[i] ∩ Interval(xLc, Inf)
elseif xU > xUc
x[i] = x[i] ∩ Interval(-Inf, xUc)
elseif (xL < xLc) && (xU > xUc)
x[i] = MC{N,T}(Interval(xLc, xUc))
end
end
return
end
function subgradient_expansion_interval_contract!(out::Vector{MC{N,T}}, p, pL, pU) where {N,T}
for i = 1:length(out)
x = out[i]
l = Interval(x.cv)
u = Interval(x.cc)
for j = 1:length(p)
P = Interval(pL[j], pU[j])
l += x.cv_grad[j]*(P - p[j])
u += x.cc_grad[j]*(P - p[j])
end
lower_x = max(x.Intv.lo, l.lo) # l.lo
upper_x = min(x.Intv.hi, u.hi) # u.hi
out[i] = MC{N,T}(x.cv, x.cc, Interval{Float64}(lower_x, upper_x), x.cv_grad, x.cc_grad, false)
end
nothing
end
subgradient_expansion_interval_contract!(out, p, pL, pU) = nothing
include("DiscretizeRelax/method/higher_order_enclosure.jl")
include("DiscretizeRelax/method/lohners_qr.jl")
include("DiscretizeRelax/method/hermite_obreschkoff.jl")
include("DiscretizeRelax/method/wilhelm_2019.jl")
include("DiscretizeRelax/method/pilms.jl")
include("DiscretizeRelax/utilities/discretize_relax.jl")
include("DiscretizeRelax/utilities/relax.jl")
include("DiscretizeRelax/utilities/access_functions.jl")
end # module
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 15208 | # Copyright (c) 2020: Matthew Wilhelm & Matthew Stuber.
# This work is licensed under the Creative Commons Attribution-NonCommercial-
# ShareAlike 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative
# Commons, PO Box 1866, Mountain View, CA 94042, USA.
#############################################################################
# Dynamic Bounds - pODEs Discrete
# A package for discretize and relax methods for bounding pODEs.
# See https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl
#############################################################################
# src/DiscretizeRelax/method/hermite_obreschkoff.jl
# Defines functions needed to perform a hermite_obreshkoff iteration.
#############################################################################
"""
HermiteObreschkoff
A structure that stores the cofficient of the (P,Q)-Hermite-Obreschkoff method.
(Offset due to method being zero indexed and Julia begin one indexed). The
constructor `HermiteObreschkoff(p::Val{P}, q::Val{Q}) where {P, Q}` or
`HermiteObreschkoff(p::Int, q::Int)` are used for the (P,Q)-method.
$(TYPEDFIELDS)
"""
struct HermiteObreschkoff <: AbstractStateContractorName
"Cpq[i=1:p] index starting at i = 1 rather than 0"
cpq::Vector{Float64}
"Cqp[i=1:q] index starting at i = 1 rather than 0"
cqp::Vector{Float64}
"gamma for method"
γ::Float64
"Explicit order Hermite-Obreschkoff"
p::Int
"Implicit order Hermite-Obreschkoff"
q::Int
"Total order Hermite-Obreschkoff"
k::Int
"Skips the contractor step of the Hermite Obreshkoff Contractor if set to `true`"
skip_contractor::Bool
end
function HermiteObreschkoff(p::Val{P}, q::Val{Q}, skip_contractor::Bool = false) where {P, Q}
temp_cpq = 1.0
temp_cqp = 1.0
cpq = zeros(P + 1)
cqp = zeros(Q + 1)
cpq[1] = temp_cpq
cqp[1] = temp_cqp
for i = 1:P
temp_cpq *= (P - i + 1.0)/(P + Q - i + 1)
cpq[i + 1] = temp_cpq
end
γ = 1.0
for i = 1:Q
temp_cqp *= (Q - i + 1.0)/(Q + P - i + 1)
cqp[i + 1] = temp_cqp
γ *= -i/(P+i)
end
K = P + Q + 1
# K = P + 1
HermiteObreschkoff(cpq, cqp, γ, P, Q, K, skip_contractor)
end
HermiteObreschkoff(p::Int, q::Int, b::Bool = false) = HermiteObreschkoff(Val(p), Val(q), b)
"""
HermiteObreschkoffFunctor
A functor used in computing bounds and relaxations via Hermite-Obreschkoff's method. The
implementation of the parametric Hermite-Obreschkoff's method based on the non-parametric
version given in (1).
1. [Nedialkov NS, and Jackson KR. "An interval Hermite-Obreschkoff method for
computing rigorous bounds on the solution of an initial value problem for an
ordinary differential equation." Reliable Computing 5.3 (1999): 289-310.](https://link.springer.com/article/10.1023/A:1009936607335)
2. [Nedialkov NS. "Computing rigorous bounds on the solution of an
initial value problem for an ordinary differential equation." University
of Toronto. 2000.](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.633.9654&rep=rep1&type=pdf)
"""
Base.@kwdef mutable struct HermiteObreschkoffFunctor{F <: Function, Pp, Pp1, Qp1, K, T <: Real, S <: Real, NY} <: AbstractStateContractor
lohners_functor::LohnersFunctor{F,Pp,T,S,NY}
hermite_obreschkoff::HermiteObreschkoff
η::Interval{T} = Interval{T}(0.0,1.0)
μX::Vector{S}
ρP::Vector{S}
gⱼ₊₁::Vector{S}
nx::Int
np::Int
set_tf!_pred::TaylorFunctor!{F, K, T, S}
real_tf!_pred::TaylorFunctor!{F, Pp1, T, T}
Jf!_pred::JacTaylorFunctor!{F, Pp1, T, S, NY}
Rⱼ₊₁::Vector{S}
mRⱼ₊₁::Vector{T}
f̃val_pred::Vector{Vector{T}} = Vector{T}[]
f̃_pred::Vector{Vector{S}} = Vector{S}[]
Vⱼ₊₁::Vector{Float64}
X_predict::Vector{S}
xval_predict::Vector{Float64}
q_predict::Int
real_tf!_correct::TaylorFunctor!{F, Qp1, T, T}
Jf!_correct::JacTaylorFunctor!{F, Qp1, T, S, NY}
xval_correct::Vector{T}
f̃val_correct::Vector{Vector{T}} = Vector{T}[]
sum_p::Vector{S}
sum_q::Vector{S}
Δⱼ₊₁::Vector{S}
pred_Jxmat::Matrix{S}
pred_Jxvec::Vector{S}
pred_Jpvec::Vector{S}
δⱼ₊₁::Vector{S}
pre::Matrix{Float64}
precond2::Matrix{Float64}
correct_B::Matrix{S}
correct_Bvec::Vector{S}
correct_C::Matrix{S}
Inx::UniformScaling{Bool} = I
Uj::Vector{S}
Jpdiff::Matrix{S}
Cj::Matrix{S}
C_temp::Matrix{S}
Bj::Matrix{S}
B_temp::Matrix{S}
constant_state_bounds::Union{Nothing,DBB.ConstantStateBounds}
end
function set_constant_state_bounds!(d::HermiteObreschkoffFunctor, v)
set_constant_state_bounds!(d.lohners_functor,v)
d.constant_state_bounds = v
nothing
end
function HermiteObreschkoffFunctor(f!::F, nx::Int, np::Int, p::Val{P}, q::Val{Q}, s::S, t::T, b) where {F,P,Q,S,T}
P1 = P + 1
P2 = P + 2
Q1 = Q + 1
K = P + Q + 1
lon_func = LohnersFunctor(f!, nx, np, Val(P1), s, t)
f̃val_pred = Vector{Float64}[]
f̃_pred = Vector{S}[]
f̃val_correct = Vector{Float64}[]
for i = 1:(P + 1); push!(f̃val_pred, zeros(nx)); end
for i = 1:(K + 1); push!(f̃_pred, zeros(S, nx)); end
for i = 1:(Q + 1); push!(f̃val_correct, zeros(nx)); end
hermite_obreschkoff = HermiteObreschkoff(p, q, b)
set_tf!_pred = TaylorFunctor!(f!, nx, np, Val(K), zero(S), zero(T))
real_tf!_pred = TaylorFunctor!(f!, nx, np, Val(P), zero(T), zero(T))
Jf!_pred = JacTaylorFunctor!(f!, nx, np, Val(P), zero(S), zero(T))
real_tf!_correct = TaylorFunctor!(f!, nx, np, Val(Q), zero(T), zero(T))
Jf!_correct = JacTaylorFunctor!(f!, nx, np, Val(Q), zero(S), zero(T))
HermiteObreschkoffFunctor{F, P2, P1, Q1, K+1, T, S, nx + np}(;
lohners_functor = lon_func,
hermite_obreschkoff = hermite_obreschkoff,
μX = zeros(S, nx),
ρP = zeros(S, np),
gⱼ₊₁ = zeros(S, nx),
nx = nx,
np = np,
set_tf!_pred = set_tf!_pred,
real_tf!_pred = real_tf!_pred,
Jf!_pred = Jf!_pred,
Rⱼ₊₁ = zeros(S, nx),
mRⱼ₊₁ = zeros(nx),
f̃val_pred = f̃val_pred,
f̃_pred = f̃_pred,
Vⱼ₊₁ = zeros(nx),
X_predict = zeros(S, nx),
xval_predict = zeros(nx),
q_predict = P,
real_tf!_correct = real_tf!_correct,
Jf!_correct = Jf!_correct,
xval_correct = zeros(nx),
f̃val_correct = f̃val_correct,
sum_p = zeros(S, nx),
sum_q = zeros(S, nx),
Δⱼ₊₁ = zeros(S, nx),
pred_Jxmat = zeros(S, nx, nx),
pred_Jxvec = zeros(S, nx),
pred_Jpvec = zeros(S, nx),
δⱼ₊₁ = zeros(S, nx),
pre = zeros(nx, nx),
precond2 = zeros(nx, nx),
correct_B = zeros(S, nx, nx),
correct_Bvec = zeros(S, nx),
correct_C = zeros(S, nx, nx),
Uj = zeros(S, nx),
Jpdiff = zeros(S, nx, np),
Cj = zeros(S, nx, nx),
C_temp = zeros(S, nx, nx),
Bj = zeros(S, nx, nx),
B_temp = zeros(S, nx, nx),
constant_state_bounds = nothing
)
end
function state_contractor(m::HermiteObreschkoff, f, Jx!, Jp!, nx, np, style, s, h)
HermiteObreschkoffFunctor(f, nx, np, Val(m.p), Val(m.q), style, s, m.skip_contractor)
end
state_contractor_k(m::HermiteObreschkoff) = m.k
state_contractor_γ(m::HermiteObreschkoff) = m.γ
state_contractor_steps(m::HermiteObreschkoff) = 2
state_contractor_integrator(m::HermiteObreschkoff) = CVODE_Adams()
function _pred_compute_Rj!(d, c, t)
@unpack set_tf!_pred, Rⱼ₊₁, f̃_pred, q_predict = d
@unpack Xj_apriori, P, hj = c
set_tf!_pred(f̃_pred, Xj_apriori, P, t)
@. Rⱼ₊₁ = f̃_pred[q_predict + 1]*hj^q_predict
Rⱼ₊₁
end
function _pred_compute_real_pnt!(d, c, t)
@unpack Vⱼ₊₁, f̃val_pred, q_predict, real_tf!_pred = d
@unpack hj, xval, pval = c
real_tf!_pred(f̃val_pred, xval, pval, t)
@. Vⱼ₊₁ = xval
for i = 1:(q_predict - 1)
@. Vⱼ₊₁ += f̃val_pred[i + 1]*hj^i
end
Vⱼ₊₁
end
function _pred_compute_rhs_jacobian!(d, c::ContractorStorage{S}, t) where S
Jf!_pred = d.Jf!_pred
@unpack η, q_predict, nx, μX, ρP, X_predict = d
@unpack Xj_0, xval, P, pval, hj = c
@unpack Jx, Jxsto, Jp, Jpsto = Jf!_pred
μ!(μX, X_predict, xval, η)
ρ!(ρP, P, pval, η)
set_JxJp!(Jf!_pred, μX, ρP, t)
for i = 1:q_predict
hji1 = hj^i
if isone(i)
fill!(Jxsto, zero(S))
Jxsto += I
else
@. Jxsto += hji1*Jx[i + 1]
end
@. Jpsto += hji1*Jp[i + 1]
end
return Jxsto, Jpsto
end
function _hermite_obreschkoff_predictor!(d::HermiteObreschkoffFunctor{F,Pp,P1,Q1,K,T,S,NY}, c::ContractorStorage{S}, r::StepResult{S}, j, k) where {F,Pp,P1,Q1,K,T,S,NY}
@unpack X_predict, pred_Jxmat, pred_Jxvec, pred_Jpvec, Rⱼ₊₁, Vⱼ₊₁ = d
@unpack A_Q, Δ, rP, times, Xj_apriori = c
_pred_compute_Rj!(d, c, times[1])
_pred_compute_real_pnt!(d, c, times[1])
Jxsto, Jpsto = _pred_compute_rhs_jacobian!(d, c, times[1])
d.lohners_functor(c, r, j, k)
@. X_predict = c.X_computed ∩ Xj_apriori
# HERMITE OBRESCHKOFF PREDICTOR IS FAILING... WHY?
# THIS IS MORE EXPANSIVE THAN LOHNERS METHOD BASIC.... option 1 fix, option 2 lohners method....
#mul!(pred_Jxmat, Jxsto, A_Q[2])
#mul!(pred_Jxvec, pred_Jxmat, Δ[2])
#mul!(pred_Jpvec, Jpsto, rP)
#@. X_predict = Vⱼ₊₁ + Rⱼ₊₁ + pred_Jxvec + pred_Jpvec
d.lohners_functor.Δⱼ₊₁
end
predi(cpq, hj, y, i) = y[i + 1]*cpq[i + 1]*hj^i
qi(cqp, hj, y, i) = y[i + 1]*cqp[i + 1]*((-hj)^i)
"""
Performs parametric version of algorithm 4.3 in Nedialkov...
"""
function (d::HermiteObreschkoffFunctor{F,Pp,P1,Q1,K,T,S,NY})(c::ContractorStorage{S}, r::StepResult{S}, j, k) where {F, Pp, P1, Q1, K, T, S, NY}
@unpack X_computed, xval_computed, xval, pval, P, rP, A_inv, A_Q, Δ, hj = c # unpack parameters and storage
@unpack Jxsto, Jpsto, Jx, Jp = d.Jf!_pred
@unpack γ, p, q, k, cpq, cqp = d.hermite_obreschkoff
@unpack f̃val_correct, f̃val_pred, f̃_pred, real_tf!_correct, η, X_predict, xval_predict, δⱼ₊₁, nx, np = d
@unpack Jpdiff, sum_p, sum_q, μX, ρP, pre, B_temp, C_temp, Bj, Cj, Δⱼ₊₁, Uj = d
cJx, cJp = d.Jf!_correct.Jx, d.Jf!_correct.Jp
t = c.times[1]
ho_predict_Δⱼ₊₁ = _hermite_obreschkoff_predictor!(d, c, r, j, k) # calculate predictor --> sets d.X_predict
@. xval_predict = mid(X_predict)
if !d.hermite_obreschkoff.skip_contractor
real_tf!_correct(f̃val_correct, xval_predict, pval, t)
@. sum_p = f̃val_pred[2]*cpq[2]*hj
for i = 2:p
@. sum_p += f̃val_pred[i + 1]*cpq[i + 1]*hj^i
end
@. sum_q = -hj*f̃val_correct[2]*cqp[2]
for i = 2:q
@. sum_q += f̃val_correct[i + 1]*cqp[i + 1]*((-hj)^i)
end
@. δⱼ₊₁ = xval - xval_predict + sum_p - sum_q + γ*(hj^k)*f̃_pred[k + 1]
fill!(Jxsto, zero(S))
for i = 1:nx; Jxsto[i,i] = one(S); end
for i = 1:p
@. Jxsto += Jx[i + 1]*cpq[i + 1]*hj^i
end
@. Jpsto = Jp[2]*cpq[2]*hj
for i = 2:p
@. Jpsto += Jp[i + 1]*cpq[i + 1]*hj^i
end
μ!(μX, X_predict, xval, η)
ρ!(ρP, P, pval, η)
set_JxJp!(d.Jf!_correct, μX, ρP, t)
fill!(Jxsto, zero(S))
for i = 1:nx; Jxsto[i,i] = one(S); end
for i = 1:q
@. Jxsto += cJx[i + 1]*cqp[i + 1]*((-hj)^i)
end
d.Jf!_correct.Jpsto .= sum(i -> qi(cqp, hj, cJp, i), 1:q)
@. pre = mid(Jxsto)
lu!(pre)
mul!(B_temp, Jxsto, A_Q[2])
Bj .= pre/B_temp
C_temp .= pre/Jxsto
@. Cj = -C_temp
Cj += I
@. Uj = X_predict - xval_predict
@. Jpdiff = Jpsto - d.Jf!_correct.Jpsto
X_computed .= (xval_predict + Bj*Δ[2] + Cj*Uj + (pre\Jpdiff)*rP + pre*δⱼ₊₁) .∩ X_predict
contract_constant_state!(X_computed, d.constant_state_bounds)
affine_contract!(X_computed, P, pval, np, nx)
@. xval_computed = mid(X_computed)
# calculation block for computing Aⱼ₊₁ and inv(Aⱼ₊₁)
cJmid = Jxsto*A_Q[2]
calculateQ!(A_Q[1], mid.(cJmid))
calculateQinv!(A_inv[1], A_Q[1])
pre2 = A_inv[1]*pre
Δⱼ₊₁ .= pre2*δⱼ₊₁ + (pre2*Jpdiff)*rP + (pre*cJmid)*Δ[2] + A_inv[1]*(xval_computed - xval_predict) + (A_inv[1]*Cj)*(X_computed - xval_predict)
@. Δ[1] = Δⱼ₊₁ .∩ ho_predict_Δⱼ₊₁
end
return RELAXATION_NOT_CALLED
end
get_Δ(f::HermiteObreschkoffFunctor) = f.Δⱼ₊₁ | DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 5489 | # Copyright (c) 2020: Matthew Wilhelm & Matthew Stuber.
# This work is licensed under the Creative Commons Attribution-NonCommercial-
# ShareAlike 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative
# Commons, PO Box 1866, Mountain View, CA 94042, USA.
#############################################################################
# Dynamic Bounds - pODEs Discrete
# A package for discretize and relax methods for bounding pODEs.
# See https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl
#############################################################################
# src/DiscretizeRelax/method/higher_order_enclosure.jl
# Defines higher-order existence and uniqueness tests.
#############################################################################
set_mag(x::Interval{Float64}) = mag(x)
set_mag(x::MC{N,T}) where {N, T<:RelaxTag} = mag(x.Intv)
const SUBSET_TOL = 1E-8
is_subset_tol(x::Interval{T}, y::Interval{T}) where {T<:Real} = (x.lo > y.lo - SUBSET_TOL) && (x.hi < y.hi + SUBSET_TOL)
contains(x::Vector{Interval{T}}, y::Vector{Interval{T}}) where {T<:Real} = mapreduce(is_subset_tol, &, x, y)
contains(x::Vector{MC{N,T}}, y::Vector{MC{N,T}}) where {N,T<:RelaxTag} = mapreduce((x,y)->is_subset_tol(x.Intv,y.Intv), &, x, y)
function round_β!(β::Vector{S}, ϵ, nx) where S
for i = 1:nx
if isapprox(β[i], zero(S), atol=1E-10)
β[i] = ϵ
end
end
end
const ALPHA_ATOL = 1E-10
const ALPHA_RTOL = 1E-10
const ALPHA_BOUND_TOL = 1E-13
const ALPHA_ITERATION_LIMIT = 1000
function inner_α_func(z::MC{N,T}, u::MC{N,T}) where {N,T}
max(abs(max(z.Intv.lo, z.Intv.hi) - u.Intv.hi), abs(u.Intv.lo - min(z.Intv.lo, z.Intv.hi)))
end
function inner_α_func(z::Interval{Float64}, u::Interval{Float64})
max(abs(max(z.lo, z.hi) - u.hi), abs(u.lo - min(z.lo, z.hi)))
end
α_func(Vⱼ, Uⱼ, α, k) = mapreduce(inner_α_func, max, Interval(0.0, α^k).*Vⱼ, Uⱼ)
"""
calc_alpha
Computes the stepsize for the adaptive step-routine via a golden section rootfinding method.
The step size is rounded down.
"""
function α(Vⱼ::Vector{T}, Uⱼ::Vector{T}, k) where T <: Number
αL = 0.0 + ALPHA_BOUND_TOL
αU = 1.0 - ALPHA_BOUND_TOL
golden_ratio = 0.5*(3.0 - sqrt(5.0))
α = αL + golden_ratio*(αU - αL)
fα = α_func(Vⱼ, Uⱼ, α, k)
iteration = 0
converged = false
while iteration < ALPHA_ITERATION_LIMIT
if abs(α - (αU + αL)/2) <= 2*(ALPHA_RTOL*abs(α) + ALPHA_ATOL) - (αU - αL)/2
converged = true
break
end
iteration += 1
if αU - α > α - αL
new_α = α + golden_ratio*(αU - α)
new_f = α_func(Vⱼ, Uⱼ, new_α, k)
if new_f < fα
αL = α
α = new_α
fα = new_f
else
αU = new_α
end
else
new_α = α - golden_ratio*(α - αL)
new_f = α_func(Vⱼ, Uⱼ, new_α, k)
if new_f < fα
αU = α
α = new_α
fα = new_f
else
αL = new_α
end
end
end
!converged && error("Alpha calculation not converged.")
return min(α - ALPHA_ATOL, α*(1-ALPHA_RTOL))
end
"""
existence_uniqueness!
Implements the adaptive higher-order enclosure approach detailed in Nedialkov's
dissertation (Nedialko S. Nedialkov. Computing rigorous bounds on the solution of
an initial value problem for an ordinary differential equation. 1999. Universisty
of Toronto, PhD Dissertation, Algorithm 5.1, page 73-74). The arguments are
`s::ExistStorage{F,K,S,T}, params::StepParams, t::Float64, j::Int64`.
"""
function existence_uniqueness!(s::ExistStorage{F,K,S,T}, params::StepParams, t, j) where {F, K, S, T <: Number}
@unpack predicted_hj, Xj_0, Xj_apriori, poly_term, f_coeff, f_temp_tilde, f_temp_PU = s
@unpack k, ϵ, P, Vⱼ, Uⱼ, Z, β, fk, tf!, nx, hfk = s
@unpack hmin, is_adaptive = params
# compute coefficients
tf!(f_coeff, Xj_0, P, t)
@. poly_term = f_coeff[k]
for i in (k-1):-1:1
@. poly_term = f_coeff[i] + poly_term*Interval(0.0, predicted_hj)
end
if isone(j)
@. Uⱼ = 2.0*Interval(-1.0, 1.0)*abs(predicted_hj^k)*Interval(set_mag(f_coeff[k + 1]))
tf!(f_temp_PU, poly_term + Uⱼ, P, t)
@. β = set_mag(f_temp_PU[k + 1])
else
@. β = set_mag(fk)
end
round_β!(β, ϵ, nx)
@. Uⱼ = 2.0*(predicted_hj^k)*Interval(-β, β)
@. Xj_apriori = poly_term + Uⱼ
tf!(f_temp_tilde, Xj_apriori, P, t)
@. Z = (predicted_hj^(k+1))*f_temp_tilde[k + 1]
@. Vⱼ = Interval(0.0, 1.0)*Z
# checks existence and uniqueness by proper enclosure of Vⱼ & Uⱼ and computes the next appropriate step size
if !contains(Vⱼ, Uⱼ)
if !is_adaptive
print_iteration(j) && @show Vⱼ, Uⱼ
s.status_flag = NUMERICAL_ERROR
return false
end
s.computed_hj = α(Vⱼ, Uⱼ, k)*predicted_hj
else
s.computed_hj = predicted_hj
end
if s.computed_hj < hmin
print_iteration(j) && @show s.computed_hj
s.status_flag = NUMERICAL_ERROR
return false
end
# save outputs
@. hfk = Z
@. fk = f_temp_tilde[k + 1]
@. f_coeff[k + 1] = fk
return true
end | DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 7041 | # Copyright (c) 2020: Matthew Wilhelm & Matthew Stuber.
# This work is licensed under the Creative Commons Attribution-NonCommercial-
# ShareAlike 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative
# Commons, PO Box 1866, Mountain View, CA 94042, USA.
#############################################################################
# Dynamic Bounds - pODEs Discrete
# A package for discretize and relax methods for bounding pODEs.
# See https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl
#############################################################################
# src/DiscretizeRelax/method/lohners_qr.jl
# Defines the lohner's method for contracting in discretize and relax.
#############################################################################
"""
LohnersFunctor
A functor used in computing bounds and relaxations via Lohner's method. The
implementation of the parametric Lohner's method described in the paper in (1)
based on the non-parametric version given in (2).
1. [Sahlodin, Ali M., and Benoit Chachuat. "Discretize-then-relax approach for
convex/concave relaxations of the solutions of parametric ODEs." Applied Numerical
Mathematics 61.7 (2011): 803-820.](https://www.sciencedirect.com/science/article/abs/pii/S0168927411000316)
2. [R.J. Lohner, Computation of guaranteed enclosures for the solutions of
ordinary initial and boundary value problems, in: J.R. Cash, I. Gladwell (Eds.),
Computational Ordinary Differential Equations, vol. 1, Clarendon Press, 1992,
pp. 425–436.](http://www.goldsztejn.com/old-papers/Lohner-1992.pdf)
"""
Base.@kwdef mutable struct LohnersFunctor{F <: Function, K, T <: Real, S <: Real, NY} <: AbstractStateContractor
set_tf!::TaylorFunctor!{F,K,T,S}
real_tf!::TaylorFunctor!{F,K,T,T}
jac_tf!::JacTaylorFunctor!{F,K,T,S,NY}
η::Interval{Float64} = Interval{Float64}(0.0,1.0)
μX::Vector{S}
ρP::Vector{S}
f̃::Vector{Vector{S}}
f̃val::Vector{Vector{Float64}}
Vⱼ₊₁::Vector{Float64}
Rⱼ₊₁::Vector{S}
mRⱼ₊₁::Vector{Float64}
Δⱼ₊₁::Vector{S}
Jxmat::Matrix{S}
Jxvec::Vector{S}
Jpvec::Vector{S}
rRⱼ₊₁::Vector{S}
nx::Int
np::Int
Ai_rRj::Vector{S}
Ai_Jxm::Matrix{S}
Δ_Jx::Vector{S}
Ai_Jpm::Matrix{S}
Δ_Jp::Vector{S}
constant_state_bounds::Union{Nothing,DBB.ConstantStateBounds}
end
function LohnersFunctor(f!::F, nx::Int, np::Int, k::Val{K}, s::S, t::T) where {F, K, S <: Number, T <: Number}
f̃ = Vector{S}[]
f̃val = Vector{Float64}[]
for i = 1:(K + 1)
push!(f̃, zeros(S, nx))
push!(f̃val, zeros(Float64, nx))
end
LohnersFunctor{F, K + 1, T, S, nx + np}(set_tf! = TaylorFunctor!(f!, nx, np, k, zero(S), zero(T)),
real_tf! = TaylorFunctor!(f!, nx, np, k, zero(T), zero(T)),
jac_tf! = JacTaylorFunctor!(f!, nx, np, k, zero(S), zero(T)),
μX = zeros(S, nx),
ρP = zeros(S, np),
f̃ = f̃,
f̃val = f̃val,
Vⱼ₊₁ = zeros(nx),
Rⱼ₊₁ = zeros(S, nx),
mRⱼ₊₁ = zeros(nx),
Δⱼ₊₁ = zeros(S, nx),
Jxmat = zeros(S, nx, nx),
Jxvec = zeros(S, nx),
Jpvec = zeros(S, nx),
rRⱼ₊₁ = zeros(S, nx),
nx = nx,
np = np,
Ai_rRj = zeros(S, nx),
Ai_Jxm = zeros(S, nx, nx),
Δ_Jx = zeros(S, nx),
Ai_Jpm = zeros(S, nx, np),
Δ_Jp = zeros(S, nx),
constant_state_bounds = nothing)
end
set_constant_state_bounds!(d::LohnersFunctor, v) = (d.constant_state_bounds = v;)
"""
LohnerContractor{K}
An `AbstractStateContractorName` used to specify a parametric Lohners method contractor
of order K.
"""
struct LohnerContractor{K} <: AbstractStateContractorName end
LohnerContractor(k::Int) = LohnerContractor{k}()
state_contractor(m::LohnerContractor{K}, f, Jx!, Jp!, nx, np, style, s, h) where K = LohnersFunctor(f, nx, np, Val{K}(), style, s)
state_contractor_k(m::LohnerContractor{K}) where K = K
state_contractor_γ(m::LohnerContractor{K}) where K = 1.0
state_contractor_steps(m::LohnerContractor{K}) where K = 2
state_contractor_integrator(m::LohnerContractor{K}) where K = CVODE_Adams()
function (d::LohnersFunctor{F,K,S,T,NY})(c, r, j, k) where {F,K,S,T,NY}
@unpack hj, xval_computed, X_computed, xval, pval, P, rP, A_Q, A_inv, Δ, Xj_0, Xj_apriori = c
@unpack f̃, f̃val, η, set_tf!, real_tf!, Jxmat, Jxvec, Jpvec, Rⱼ₊₁, mRⱼ₊₁, Vⱼ₊₁, nx, np = d
@unpack Ai_rRj, Ai_Jxm, Δ_Jx, Ai_Jpm, Δ_Jp, Δⱼ₊₁, μX, ρP, rRⱼ₊₁ = d
@unpack Jp, Jx, Jpsto, Jxsto = d.jac_tf!
@unpack k = d.set_tf!
Jf! = d.jac_tf!
t = c.times[1]
set_tf!(f̃, Xj_apriori, P, t)
@. Rⱼ₊₁ = (hj^k)*f̃[k + 1]
@. mRⱼ₊₁ = mid(Rⱼ₊₁)
# defunes new x point... k corresponds to k - 1 since taylor coefficients are zero indexed
real_tf!(f̃val, xval, pval, t)
@. Vⱼ₊₁ = xval
for i = 1:(k-1)
@. Vⱼ₊₁ += f̃val[i + 1]*hj^i
end
# compute extensions of taylor cofficients for rhs
μ!(μX, Xj_0, xval, η)
ρ!(ρP, P, pval, η)
set_JxJp!(Jf!, μX, ρP, t)
fill!(Jxsto, zero(T))
Jxsto += I
@. Jpsto = Jp[1]
for i = 2:k
@. Jxsto += Jx[i]*hj^(i - 1)
@. Jpsto += Jp[i]*hj^(i - 1)
end
# update x floating point value
@. xval_computed = Vⱼ₊₁ + mRⱼ₊₁
mul!(Jxmat, Jxsto, A_Q[2])
mul!(Jxvec, Jxmat, Δ[2])
mul!(Jpvec, Jpsto, rP)
@. X_computed = Vⱼ₊₁ + Rⱼ₊₁ + Jxvec + Jpvec
affine_contract!(X_computed, P, pval, nx, np)
# calculation block for computing Aⱼ₊₁ and inv(Aⱼ₊₁)
calculateQ!(A_Q[1], mid.(Jxmat))
calculateQinv!(A_inv[1], A_Q[1])
# update Delta
@. rRⱼ₊₁ = Rⱼ₊₁ - mRⱼ₊₁
mul!(Ai_rRj, A_inv[1], rRⱼ₊₁)
mul!(Ai_Jxm, A_inv[1], Jxmat)
mul!(Δ_Jx, Ai_Jxm, Δ[2])
mul!(Ai_Jpm, A_inv[1], Jpsto)
mul!(Δ_Jp, Ai_Jpm, rP)
@. Δ[1] = Ai_rRj + Δ_Jx + Δ_Jp
@. Δⱼ₊₁ = Δ[1]
return RELAXATION_NOT_CALLED
end
get_Δ(d::LohnersFunctor{F,K,S,T,NY}) where {F,K,S,T,NY} = copy(d.Δⱼ₊₁) | DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 12667 | export AdamsMoulton
struct AdamsMoulton <: AbstractStateContractorName
steps::Int
end
mutable struct AdamsMoultonFunctor{S} <: AbstractStateContractor
f!
Jx!
Jp!
nx
np
method_step::Int64
η::Interval{Float64}
μX::Vector{S}
ρP::Vector{S}
Dk::Vector{S}
Xold_computed::Vector{S}
Xk::Vector{Vector{S}}
fk1::Vector{S}
fk_val::Vector{Float64}
Jxsto::FixedCircularBuffer{Matrix{S}}
Jpsto::FixedCircularBuffer{Matrix{S}}
Jxsum::Matrix{S}
Jpsum::Matrix{S}
Jxvec::Vector{S}
Jpvec::Vector{S}
Ainv_Jxvec::Vector{S}
Ainv_Jpvec::Vector{S}
Ainv_fk_val::Vector{S}
Ainv_Xk2::Vector{S}
Ainv_Rk::Vector{S}
fval::FixedCircularBuffer{Vector{Float64}}
fk_apriori::FixedCircularBuffer{Vector{S}}
Rk::Vector{S}
Y0::Matrix{Float64}
Y::Matrix{Float64}
Jxmid_sto::Matrix{S}
precond::LinearAlgebra.LU{Float64,Array{Float64,2}}
JxAff::Matrix{S}
YJxAff::Matrix{S}
YJxΔx::Vector{S}
Xj_delta::Vector{S}
X_last::Vector{S}
Ysumx::Vector{S}
YsumP::Matrix{S}
YJpΔp::Vector{S}
coeffs::Vector{Float64}
Δⱼ₊₁::Vector{S}
is_adaptive::Bool
γ::Float64
lohners_start::LohnersFunctor
A_Q::FixedCircularBuffer{Matrix{Float64}}
A_inv::FixedCircularBuffer{Matrix{Float64}}
Δ::FixedCircularBuffer{Vector{S}}
X::FixedCircularBuffer{Vector{S}}
xval::FixedCircularBuffer{Vector{Float64}}
Δx::Vector{S}
constant_state_bounds::Union{Nothing, ConstantStateBounds}
end
function set_constant_state_bounds!(d::AdamsMoultonFunctor, v)
d.constant_state_bounds = v
set_constant_state_bounds!(d.lohners_start, v)
nothing
end
function AdamsMoultonFunctor(f::F, Jx!::JX, Jp!::JP, nx::Int, np::Int, s::S, t::T, steps::Int, lohners_start) where {F,JX,JP,S,T}
η = Interval{T}(0.0,1.0)
μX = zeros(S, nx)
ρP = zeros(S, np)
method_step = steps
Dk = zeros(S, nx)
lu_mat = zeros(nx, nx)
for i = 1:nx
lu_mat[i,i] = 1.0
end
precond = lu(lu_mat)
Y0 = zeros(nx, nx)
Y = zeros(nx, nx)
Jxmid_sto = zeros(S, nx, nx)
YJxAff = zeros(S, nx, nx)
JxAff = zeros(S, nx, nx)
Xj_delta = zeros(S, nx)
X_last = zeros(S, nx)
YJxΔx = zeros(S, nx)
Ysumx = zeros(S, nx)
YsumP = zeros(S, nx, nx)
YJpΔp = zeros(S, nx)
Jxsto = FixedCircularBuffer{Matrix{S}}(method_step)
Jpsto = FixedCircularBuffer{Matrix{S}}(method_step)
for i = 1:method_step
push!(Jxsto, zeros(S, nx, nx))
push!(Jpsto, zeros(S, nx, np))
end
Jxsum = zeros(S, nx, nx)
Jpsum = zeros(S, nx, np)
Jxvec = zeros(S, nx)
Jpvec = zeros(S, nx)
Ainv_Jxvec = zeros(S, nx)
Ainv_Jpvec = zeros(S, nx)
Ainv_fk_val = zeros(S, nx)
Ainv_Xk2 = zeros(S, nx)
Ainv_Rk = zeros(S, nx)
Xold_computed = zeros(S, nx)
Δx = zeros(S, nx)
fk1 = zeros(S, nx)
fk_val = zeros(Float64, nx)
Xk = Vector{S}[zeros(S, nx)]
fval = FixedCircularBuffer{Vector{Float64}}(method_step)
fk_apriori = FixedCircularBuffer{Vector{S}}(method_step)
A_Q = FixedCircularBuffer{Matrix{Float64}}(method_step)
A_inv = FixedCircularBuffer{Matrix{Float64}}(method_step)
Δ = FixedCircularBuffer{Vector{S}}(method_step)
X = FixedCircularBuffer{Vector{S}}(method_step)
xval = FixedCircularBuffer{Vector{Float64}}(method_step)
#@show method_step
for i = 1:method_step
push!(xval, zeros(Float64, nx))
push!(fval, zeros(Float64, nx))
push!(fk_apriori, zeros(S, nx))
push!(A_Q, Float64.(Matrix(I, nx, nx)))
push!(A_inv, Float64.(Matrix(I, nx, nx)))
push!(X, zeros(S, nx))
push!(Δ, zeros(S, nx))
push!(Xk, zeros(S, nx))
end
Rk = zeros(S, nx)
coeffs = zeros(Float64, method_step + 1)
Δⱼ₊₁ = zeros(S, nx)
is_adaptive = false
γ = 0.0
AdamsMoultonFunctor{S}(f, Jx!, Jp!, nx, np, method_step, η, μX, ρP,
Dk, Xold_computed, Xk, fk1, fk_val,
Jxsto, Jpsto, Jxsum, Jpsum, Jxvec, Jpvec, Ainv_Jxvec, Ainv_Jpvec, Ainv_fk_val,
Ainv_Xk2, Ainv_Rk, fval, fk_apriori, Rk, Y0, Y, Jxmid_sto, precond, JxAff, YJxAff,
YJxΔx, Xj_delta, X_last, Ysumx, YsumP, YJpΔp, coeffs, Δⱼ₊₁,
is_adaptive, γ, lohners_start, A_Q, A_inv,
Δ, X, xval, Δx, nothing)
end
function compute_coefficients!(c::ContractorStorage{S}, d::AdamsMoultonFunctor{S}, h::Float64, t::Float64, s::Int) where S
@unpack is_adaptive, coeffs = d
if !is_adaptive
if s == 1
coeffs[1] = 1.0
coeffs[2] = 0.5
elseif s == 2
coeffs[1] = 0.5
coeffs[2] = 0.5
coeffs[3] = -1.0/12.0
elseif s == 3
coeffs[1] = 5.0/12.0
coeffs[2] = 8.0/12.0
coeffs[3] = -1.0/12.0
coeffs[4] = -1.0/24.0
elseif s == 4
coeffs[1] = 9.0/24.0
coeffs[2] = 19.0/24.0
coeffs[3] = -5.0/24.0
coeffs[4] = 1.0/24.0
coeffs[5] = -19.0/720.0
else
error("order greater than 4 for fixed size PILMS currently not supported")
end
else
compute_adaptive_coeffs!(d, h, t, s)
end
d.γ = coeffs[s + 1]
c.γ = d.γ
nothing
end
function compute_Rk!(d::AdamsMoultonFunctor{T}, c::ContractorStorage{T}, h, s) where T<:Number
@unpack fk_apriori, Rk, method_step, γ = d
cycle_copyto!(fk_apriori, c.fk_apriori, c.step_count - 1)
@. Rk = fk_apriori[1]
for i = 2:s
@. Rk = Rk ∪ fk_apriori[i]
end
@. Rk *= γ*h^(method_step+1)
nothing
end
# TODO: Check block
function compute_real_sum!(d::AdamsMoultonFunctor{T}, c::ContractorStorage{T}, r::StepResult{T}, h::Float64, t::Float64, s::Int) where T<:Number
@unpack Dk, coeffs, fval, f!, X_last = d
@unpack Xj_0, pval, X_computed = c
#println("real sum Xj_0 = $(Xj_0)")
#=
@. X_last = X_computed
@show mid.(X_last), pval, t, h
cycle_eval!(f!, fval, mid.(Xj_0), pval, t)
@. Dk = mid(X_last) # TODO: REPLACE WITH (X_K-1) NOT EXISTENCE TEST... Maybe fixed...
for i = 1:s
@show coeffs[i]
@. Dk += h*coeffs[i]*fval[i]
end
=#
nothing
end
# Compute components of sum for prior timesteps --> then update original
function compute_jacobian_sum!(d::AdamsMoultonFunctor{T}, c::ContractorStorage{T}, h::Float64, t::Float64, s::Int) where T<:Number
@unpack Xj_delta, Jx!, Jp!, JxAff, Jxsto, Jpsto, Jxsum, Jpsum, Jpvec, μX, ρP, η, coeffs = d
@unpack Xj_0, Xj_apriori, xval, P, pval, A_Q, Δ = c
μ!(μX, Xj_0, xval, η)
ρ!(ρP, P, pval, η)
cycle_eval!(Jx!, Jxsto, μX, ρP, t)
cycle_eval!(Jp!, Jpsto, μX, ρP, t)
@. JxAff = Jxsto[1]
@. Xj_delta = Xj_apriori - mid(Xj_apriori)
#=
@show size(Jxsum)
@show size(Jxsto[1])
@show size(Xj_delta)
Jxsum = h*coeffs[1]*(Jxsto[1]*Xj_delta)
if s > 1
println("s = $s")
@show size(((I + h*coeffs[2]*Jxsto[2])*A_Q[1])*Δ[1])
@show size(Jxsum)
Jxsum += ((I + h*coeffs[2]*Jxsto[2])*A_Q[1])*Δ[1]
end
for i = 3:s
println("s = $s of 3")
Jxsum += h*coeffs[i]*(Jxsto[i]*A_Q[i])*Δ[i]
end
=#
nothing
end
@inline function union_mc_dbb(x::MC{N,T}, y::MC{N,T}) where {N, T <: RelaxTag}
cv_MC = min(x, y)
cc_MC = max(x, y)
return MC{N, NS}(cv_MC.cv, cc_MC.cc, Interval(cv_MC.Intv.lo, cc_MC.Intv.hi),
cv_MC.cv_grad, cc_MC.cc_grad, x.cnst && y.cnst)
end
union_mc_dbb(x::Interval{T}, y::Interval{T}) where T = x ∪ y
function compute_X!(d::AdamsMoultonFunctor{T}, c::ContractorStorage{S}) where {S, T<:Number}
@unpack Jx!, Jp!, Jxsum, Jpsum, Jxvec, Jpvec, Dk, Rk, f!, X_last, μX, ρP, X, method_step, Δx, coeffs = d
@unpack Xold_computed, Xk, fk1, fk_val, fk_apriori, γ, Jxmid_sto, Jxsto, Δ, A_inv = d
@unpack Ainv_fk_val, Ainv_Jpvec, Ainv_Jxvec, Ainv_Xk2, Ainv_Rk, Δⱼ₊₁ = d
@unpack X_computed, xval_computed, Xj_apriori, rP, Xj_0, xval, pval, hj, A_Q, A_inv, B = c
t = c.times[1]
s = min(c.step_count - 1, method_step)
cycle_copyto!(fk_apriori, c.fk_apriori, c.step_count - 1) # TODO: Fix when variable stepsize
@. Rk = fk_apriori[1]
for i = 2:s
@. Rk = union_mc_dbb(Rk, fk_apriori[i])
end
@. Rk *= γ*hj^(method_step+1)
@. Xk[1] = Xj_apriori
@. Xk[2] = Xj_0
for j = 3:method_step
@. Xk[j] = X[j - 2]
end
@. Xold_computed = Xj_apriori
@. X_computed = Xj_apriori
for i = 1:2
@. Xk[1] = X_computed
f!(fk_val, xval, pval, t)
Jx!(Jxsum, Xk[1], ρP, t)
Jp!(Jpsum, Xk[1], ρP, t)
@. Δx = Xk[1] - xval
Aj_inv = A_inv[2] # TODO: Not sure if set correct...
Δj = Δ[2] # TODO: Not sure if set correct...
mul!(Δx, Aj_inv, Δj)
mul!(Jxvec, Jxsum, Δx)
@. Jpsum = hj*coeffs[1]*Jpsum
#for i = 2:s
# @. Jpsum += h*coeffs[i]*Jpsto[i]
#end
mul!(Jpvec, Jpsum, ρP)
@. Xold_computed = X_computed
@. X_computed = Xk[2] + Rk + hj*coeffs[1]*(fk_val + Jpvec + Jxvec)
for j = 1:method_step
f!(fk1, Xk[j + 1], ρP, t)
@. X_computed += hj*coeffs[j + 1]*fk1
end
# Finish computing X
@. X_computed = X_computed ∩ Xold_computed
contract_constant_state!(X_computed, d.constant_state_bounds)
# Compute x
@. xval_computed = mid(X_computed)
# Compute Delta
if s > 1
Ak_m_1 = A_Q[2]
mul!(Jxmid_sto, Jxsto[1], Ak_m_1)
@. B = mid(Jxmid_sto)
calculateQ!(A_Q[1], B)
calculateQinv!(A_inv[1], A_Q[1])
end
mul!(Ainv_fk_val, A_inv[1], fk_val)
mul!(Ainv_Jpvec, A_inv[1], Jpvec)
mul!(Ainv_Jxvec, A_inv[1], Jxvec)
mul!(Ainv_Xk2, A_inv[1], Xk[2])
mul!(Ainv_Rk, A_inv[1], Rk)
@. Δⱼ₊₁ = hj*coeffs[1]*(Ainv_fk_val + Ainv_Jpvec + Ainv_Jxvec)
for j = 1:method_step
f!(fk1, Xk[j + 1], ρP, t)
mul!(Ainv_fk_val, A_inv[1], fk1)
@. Δⱼ₊₁ += hj*coeffs[j + 1]*Ainv_fk_val
end
end
nothing
end
function store_starting_buffer!(d::AdamsMoultonFunctor{T}, c::ContractorStorage{T}, r::StepResult{T}, t::Float64) where T
@unpack η, X, xval, fk_apriori, Δ, A_Q, A_inv, μX, ρP, Jx!, Jp!, f!, Jxsto, Jpsto, fval = d
@unpack pval, P, step_count = c
k = step_count - 1
cycle_copyto!(X, r.Xⱼ, k)
cycle_copyto!(xval, r.xⱼ, k)
cycle_copyto!(fk_apriori, c.fk_apriori, k)
cycle_copyto!(Δ, r.Δ[1], k)
cycle_copyto!(A_Q, r.A_Q[1], k)
cycle_copyto!(A_inv, r.A_inv[1], k)
# update Jacobian storage
μ!(μX, r.Xⱼ, r.xⱼ, η)
ρ!(ρP, P, pval, η)
cycle_eval!(Jx!, Jxsto, μX, ρP, t)
cycle_eval!(Jp!, Jpsto, μX, ρP, t)
cycle_eval!(f!, fval, r.xⱼ, pval, t)
nothing
end
function (d::AdamsMoultonFunctor{T})(c::ContractorStorage{S}, r::StepResult{S}, count::Int, k) where {S, T<:Number}
t = c.times[1]
s = min(c.step_count-1, d.method_step)
if s < d.method_step
d.lohners_start(c, r, count, k)
iszero(count) && store_starting_buffer!(d, c, r, t)
return nothing
end
h = c.hj
compute_coefficients!(c, d, h, t, s)
compute_real_sum!(d, c, r, h, t, s)
compute_jacobian_sum!(d, c, h, t, s)
compute_X!(d, c)
return nothing
end
function get_Δ(d::AdamsMoultonFunctor)
if true
return copy(get_Δ(d.lohners_start))
end
return copy(d.Δⱼ₊₁)
end
function state_contractor(m::AdamsMoulton, f, Jx!, Jp!, nx, np, style, s, h)
lohners_functor = state_contractor(LohnerContractor{m.steps}(), f, Jx!, Jp!, nx, np, style, s, h)
AdamsMoultonFunctor(f, Jx!, Jp!, nx, np, style, s, m.steps, lohners_functor)
end
state_contractor_k(m::AdamsMoulton) = m.steps + 1
state_contractor_γ(m::AdamsMoulton) = 1.0 # Same value as Lohners for initial step then set later...
state_contractor_steps(m::AdamsMoulton) = m.steps
state_contractor_integrator(m::AdamsMoulton) = CVODE_Adams()
function set_γ!(sc::AdamsMoulton, c, ex, result, params)
nothing
end | DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 37263 |
"""
$(TYPEDEF)
"""
abstract type AbstractIntervalCallback end
"""
$(TYPEDEF)
Functor object `d` that computes `h(xmid, P)` and `hj(X,P)` in-place
using `X`, `P` information stored in the fields when `d()` is run.
"""
mutable struct PICallback{FH,FJ} <: AbstractIntervalCallback
h!::FH
hj!::FJ
H::Vector{Interval{Float64}}
J::Array{Interval{Float64},2}
xmid::Vector{Float64}
X::Vector{Interval{Float64}}
P::Vector{Interval{Float64}}
nx::Int
end
function PICallback(h!::FH, hj!::FJ, P::Vector{Interval{Float64}}, nx::Int) where {FH,FJ}
H = zeros(Interval{Float64}, nx)
J = zeros(Interval{Float64}, nx, nx)
xmid = zeros(Float64, nx)
X = zeros(Interval{Float64}, nx)
return PICallback{FH,FJ}(h!, hj!, H, J, xmid, X, P, nx)
end
function (d::PICallback{FH,FJ})() where {FH,FJ}
@unpack H, J, X, P, xmid, nx, h!, hj! = d
fill!(H, zero(Interval{Float64}))
fill!(J, zero(Interval{Float64}))
for i in 1:nx
xmid[i] = 0.5*(X[i].lo + X[i].hi)
end
h!(H, xmid, P)
hj!(J, X, P)
return
end
"""
$(TYPEDEF)
"""
function precondition!(d::DenseMidInv, H::Vector{Interval{Float64}}, J::Array{Interval{Float64},2})
for i in eachindex(J)
d.Y[i] = 0.5*(J[i].lo + J[i].hi)
end
F = lu!(d.Y)
H .= F\H
J .= F\J
return
end
"""
$(TYPEDEF)
"""
abstract type AbstractContractor end
"""
$(TYPEDEF)
"""
@Base.kwdef struct NewtonInterval <: AbstractContractor
N::Vector{Interval{Float64}}
Ntemp::Vector{Interval{Float64}}
X::Vector{Interval{Float64}}
Xdiv::Vector{Interval{Float64}}
inclusion::Vector{Bool}
lower_inclusion::Vector{Bool}
upper_inclusion::Vector{Bool}
kmax::Int = 3
rtol::Float64 = 1E-6
etol::Float64 = 1E-6
end
NewtonInterval(nx::Int) = NewtonInterval(N = zeros(Interval{Float64}, nx),
Ntemp = zeros(Interval{Float64}, nx),
X = zeros(Interval{Float64}, nx),
Xdiv = zeros(Interval{Float64}, nx),
inclusion = fill(false, (nx,)),
lower_inclusion = fill(false, (nx,)),
upper_inclusion = fill(false, (nx,)))
function (d::NewtonInterval)(cb::PICallback{FH,FJ}) where {FH,FJ}
@unpack X, Xdiv, N, Ntemp, inclusion, lower_inclusion, upper_inclusion, rtol = d
@unpack H, J, nx = cb
ext_division_flag = false
exclusion_flag = false
for i = 1:nx
S1 = zero(Interval{Float64})
S2 = zero(Interval{Float64})
for j = 1:nx
if j < i
S1 += J[i,j]*(X[j] - 0.5*(X[j].lo + X[j].hi))
elseif j > i
S2 += J[i,j]*(X[j] - 0.5*(X[j].lo + X[j].hi))
end
end
if J[i,i].lo*J[i,i].hi > 0.0
N[i] = 0.5*(X[i].lo + X[i].hi) - (H[i] + S1 + S2)/J[i,i]
else
@. Ntemp = N
eD, N[i], Ntemp[i] = extended_process(N[i], X[i], J[i,i], S1 + S2 + H[i], rtol)
if isone(eD)
ext_division_flag = true
@. Xdiv = X
Xdiv[i] = Ntemp[i] ∩ X[i]
X[i] = N[i] ∩ X[i]
return ext_division_flag, exclusion_flag
end
end
if strict_x_in_y(N[i], X[i])
inclusion[i] = true
lower_inclusion[i] = true
upper_inclusion[i] = true
else
inclusion[i] = false
lower_inclusion[i] = N[i].lo > X[i].lo
upper_inclusion[i] = N[i].hi < X[i].hi
end
if ~isdisjoint(N[i], X[i])
X[i] = N[i] ∩ X[i]
else
return ext_division_flag, exclusion_flag
end
end
return ext_division_flag, exclusion_flag
end
function parametric_interval_contractor(callback!::PICallback{FH,FJ}, precond!::P, contractor::S) where {FH, FJ, P, S <: AbstractContractor}
exclusion_flag = false
inclusion_flag = false
ext_division_flag = false
ext_division_num = 0
fill!(contractor.inclusion, false)
fill!(contractor.lower_inclusion, false)
fill!(contractor.upper_inclusion, false)
@. contractor.X = callback!.X
for i = 1:contractor.kmax
callback!()::Nothing
precondition!(precond!, callback!.H, callback!.J)::Nothing
exclusion_flag, ext_division_flag = contractor(callback!)::Tuple{Bool,Bool}
(exclusion_flag || ext_division_flag) && break
inclusion_flag = inclusion_test(inclusion_flag, contractor.inclusion, callback!.nx)
@. callback!.X = contractor.X
@. callback!.xmid = mid(callback!.X)
end
return exclusion_flag, inclusion_flag, ext_division_flag
end
"""
$(TYPEDEF)
"""
abstract type Wilhelm2019Type end
const W19T = Wilhelm2019Type
"""
$(TYPEDEF)
Use an implicit Euler style of relaxation.
"""
struct ImpEuler <: W19T end
"""
$(TYPEDEF)
Use an second-order Adam's Moulton method style of relaxation.
"""
struct AM2 <: W19T end
"""
$(TYPEDEF)
Use an second-order Backward Difference Formula method style of relaxation.
"""
struct BDF2 <: W19T end
state_contractor_integrator(m::ImpEuler) = ImplicitEuler(autodiff = false)
state_contractor_integrator(m::AM2) = Trapezoid(autodiff = false)
state_contractor_integrator(m::BDF2) = ABDF2(autodiff = false)
is_two_step(::ImpEuler) = false
is_two_step(::AM2) = false
is_two_step(::BDF2) = true
"""
$(TYPEDEF)
A callback function used for the Wilhelm2019 integrator.
"""
mutable struct CallbackH{V,F,T<:W19T} <: Function
temp::Vector{V}
xold1::Vector{V}
xold2::Vector{V}
h!::F
t2::Float64
t1::Float64
end
CallbackH{V,F,T}(nx::Int, h!::F) where {V,F,T<:W19T} = CallbackH{V,F,T}(zeros(V,nx), zeros(V,nx), zeros(V,nx), h!, 0.0, 0.0)
function (cb::CallbackH{V,F,ImpEuler})(out, x, p) where {V,F}
@unpack h!, xold1, t1, t2 = cb
h!(out, x, p, t2)
@. out = out*(t2 - t1) - x + xold1
nothing
end
function (cb::CallbackH{V,F,AM2})(out, x, p::Vector{V}) where {V,F}
@unpack h!, temp, xold1, t1, t2 = cb
h!(out, x, p, t2)
h!(temp, xold1, p, t1)
@. out = 0.5*(t2 - t1)*(out + temp) - x + xold1
nothing
end
function (cb::CallbackH{V,F,BDF2})(out, x, p::Vector{V}) where {V,F}
@unpack h!, xold1, xold2, t1, t2 = cb
h!(out, x, p, t2)
@. out = (2.0/3.0)*(t2 - t1)*out - x + (4.0/3.0)*xold1 - (1.0/3.0)*xold2
nothing
end
"""
$(FUNCTIONNAME)
A callback function used for the Wilhelm2019 integrator.
"""
Base.@kwdef mutable struct CallbackHJ{F, T <: W19T} <: Function
hj!::F
tf::Float64 = 0.0
delT::Float64 = 0.0
end
CallbackHJ{F,T}(hj!::F) where {F, T <: W19T} = CallbackHJ{F,T}(; hj! = hj!)
function (cb::CallbackHJ{F, ImpEuler})(out, x, p) where F
@unpack hj!, tf, delT = cb
hj!(out, x, p, tf)
@. out *= delT
for j in diagind(out)
out[j] -= 1.0
end
nothing
end
function (cb::CallbackHJ{F, AM2})(out, x, p) where F
@unpack hj!, tf, delT = cb
hj!(out, x, p, tf)
@. out *= 0.5*delT
for j in diagind(out)
out[j] -= 1.0
end
nothing
end
function (cb::CallbackHJ{F, BDF2})(out, x, p) where F
@unpack hj!, tf, delT = cb
hj!(out, x, p, tf)
@. out *= 2.0*delT/3.0
for j in diagind(out)
out[j] -= 1.0
end
nothing
end
"""
$(TYPEDEF)
An integrator that bounds the numerical solution of the pODEs system.
$(TYPEDFIELDS)
"""
mutable struct Wilhelm2019{T <: W19T, ICB1 <: PICallback, ICB2 <: PICallback, PRE,
CTR <: AbstractContractor, IC <: Function, F, Z, J, PRB, N, C, AMAT} <: DBB.AbstractODERelaxIntegrator
# problem specifications
integrator_type::T
time::Vector{Float64}
steps::Int
p::Vector{Float64}
pL::Vector{Float64}
pU::Vector{Float64}
nx::Int
np::Int
xL::Array{Float64,2}
xU::Array{Float64,2}
# state of integrator flags
integrator_states::IntegratorStates
evaluate_interval::Bool
evaluate_state::Bool
differentiable_flag::Bool
# storage used for parametric interval methods
P::Vector{Interval{Float64}}
X::Array{Interval{Float64},2}
X0P::Vector{Interval{Float64}}
pi_callback1::ICB1
pi_callback2::ICB2
pi_precond!::PRE
pi_contractor::CTR
inclusion_flag::Bool
exclusion_flag::Bool
extended_division_flag::Bool
# callback functions used for MC methods
ic::IC
h1::CallbackH{Z,F,ImpEuler}
h2::CallbackH{Z,F,T}
hj1::CallbackHJ{J,ImpEuler}
hj2::CallbackHJ{J,T}
mccallback1::MCCallback
mccallback2::MCCallback
# storage used for MC methods
IC_relax::Vector{Z}
state_relax::Array{Z,2}
var_relax::Vector{Z}
param::Vector{Vector{Vector{Z}}}
kmax::Int
calculate_local_sensitivity::Bool
# local evaluation information
local_problem_storage
prob
constant_state_bounds::Union{Nothing,ConstantStateBounds}
relax_t_dict_flt::Dict{Float64,Int}
relax_t_dict_indx::Dict{Int,Int}
end
function Wilhelm2019(d::ODERelaxProb, t::T) where {T <: W19T}
h! = d.f; hj! = d.Jx!
time = d.support_set.s
steps = length(time) - 1
p = d.p; pL = d.pL; pU = d.pU
nx = d.nx; np = length(p)
xL = isempty(d.xL) ? zeros(nx,steps) : d.xL
xU = isempty(d.xU) ? zeros(nx,steps) : d.xU
P = Interval{Float64}.(pL, pU)
X = zeros(Interval{Float64}, nx, steps)
X0P = zeros(Interval{Float64}, nx)
pi_precond! = DenseMidInv(zeros(Float64,nx,nx), zeros(Interval{Float64},1), nx, np)
pi_contractor = NewtonInterval(nx)
inclusion_flag = exclusion_flag = extended_division_flag = false
Z = MC{np,NS}
ic = d.x0
h1 = CallbackH{Z,typeof(h!),ImpEuler}(nx, h!)
h2 = CallbackH{Z,typeof(h!),T}(nx, h!)
hj1 = CallbackHJ{typeof(hj!),ImpEuler}(hj!)
hj2 = CallbackHJ{typeof(hj!),T}(hj!)
h1intv! = CallbackH{Interval{Float64},typeof(h!),ImpEuler}(nx, h!)
h2intv! = CallbackH{Interval{Float64},typeof(h!),T}(nx, h!)
hj1intv! = CallbackHJ{typeof(hj!),ImpEuler}(hj!)
hj2intv! = CallbackHJ{typeof(hj!),T}(hj!)
pi_callback1 = PICallback(h1intv!, hj1intv!, P, nx)
pi_callback2 = PICallback(h2intv!, hj2intv!, P, nx)
mc_callback1 = MCCallback(h1, hj1, nx, np, McCormick.NewtonGS(), McCormick.DenseMidInv(zeros(nx,nx), zeros(Interval{Float64},1), nx, np))
mc_callback2 = MCCallback(h2, hj2, nx, np, McCormick.NewtonGS(), McCormick.DenseMidInv(zeros(nx,nx), zeros(Interval{Float64},1), nx, np))
# storage used for MC methods
kmax = 1
IC_relax = zeros(Z,nx)
state_relax = zeros(Z, nx, steps)
param = Vector{Vector{Z}}[[zeros(Z,nx) for j in 1:kmax] for i in 1:steps]
var_relax = zeros(Z,np)
calculate_local_sensitivity = true
constant_state_bounds = d.constant_state_bounds
local_integrator() = state_contractor_integrator(t)
local_problem_storage = ODELocalIntegrator(d, local_integrator)
support_set = DBB.get(d, DBB.SupportSet())
relax_t_dict_flt = Dict{Float64,Int}()
relax_t_dict_indx = Dict{Int,Int}()
for (i,s) in enumerate(support_set.s)
relax_t_dict_flt[s] = i
relax_t_dict_indx[i] = i
end
return Wilhelm2019{T, typeof(pi_callback1), typeof(pi_callback2),
typeof(pi_precond!), typeof(pi_contractor),
typeof(ic), typeof(h!), Z, typeof(hj!), nothing,
np, NewtonGS, Array{Float64,2}}(t, time, steps, p, pL, pU, nx, np, xL, xU,
IntegratorStates(), false, false, false,
P, X, X0P, pi_callback1, pi_callback2, pi_precond!,
pi_contractor, inclusion_flag, exclusion_flag,
extended_division_flag, ic, h1, h2, hj1, hj2,
mc_callback1, mc_callback2, IC_relax, state_relax,
var_relax, param, kmax, calculate_local_sensitivity,
local_problem_storage, d, constant_state_bounds,
relax_t_dict_flt, relax_t_dict_indx)
end
function get_val_loc(d::Wilhelm2019, i::Int, t::Float64)
(i <= 0 && t == -Inf) && error("Must set either index or time.")
(i > 0) ? d.relax_t_dict_indx[i] : d.relax_t_dict_flt[t]
end
is_new_box(d::Wilhelm2019) = d.integrator_states.new_decision_box
use_relax(d::Wilhelm2019) = !d.evaluate_interval
use_relax_new_pnt(d::Wilhelm2019) = d.integrator_states.new_decision_pnt && use_relax(d)
function relax!(d::Wilhelm2019{T, ICB1, ICB2, PRE, CTR, IC, F, Z, J, PRB, N, C, AMAT}) where {T, ICB1, ICB2, PRE, CTR, IC, F, Z, J, PRB, N, C, AMAT}
pi_cb1 = d.pi_callback1; pi_cb2 = d.pi_callback2
mc_cb1 = d.mccallback1; mc_cb2 = d.mccallback2
# load state relaxation bounds at support values
if !isnothing(d.constant_state_bounds)
for i = 1:d.steps
d.X[:,i] .= Interval{Float64}.(d.constant_state_bounds.xL, d.constant_state_bounds.xU)
end
end
if is_two_step(d.integrator_type)
if is_new_box(d)
d.X0P .= d.ic(d.P) # evaluate initial condition
# loads CallbackH and CallbackHJ function with correct time and prior x values
@. pi_cb1.X = d.X[:,1]
pi_cb1.xmid .= mid.(pi_cb1.X)
pi_cb1.h!.xold1 .= d.X0P
pi_cb1.h!.t1 = 0.0
pi_cb1.h!.t2 = pi_cb1.hj!.tf = pi_cb1.hj!.delT = d.time[2]
@. pi_cb1.P = pi_cb2.P = d.P
# run interval contractor on first step & break if solution is proven not to exist
excl, incl, extd = parametric_interval_contractor(pi_cb1, d.pi_precond!, d.pi_contractor)
excl && (d.integrator_states.termination_status = EMPTY; return)
d.exclusion_flag = excl
d.inclusion_flag = incl
d.extended_division_flag = extd
@. d.X[:,1] = d.pi_contractor.X # store interval values to storage array in d
# generate reference point relaxations
if use_relax(d)
for j=1:d.np
p_mid = 0.5*(lo(d.P[j]) + hi(d.P[j]))
mc_cb1.pref_mc[j] = MC{d.np,NS}(p_mid, d.P[j], j)
end
@. mc_cb1.P = mc_cb2.P = d.P
@. mc_cb1.p_mc = mc_cb1.pref_mc
@. mc_cb2.p_mc = mc_cb1.pref_mc
@. mc_cb2.pref_mc = mc_cb1.pref_mc
@. mc_cb1.X = d.X[:,1]
# evaluate initial condition
d.IC_relax .= d.ic(mc_cb1.pref_mc)
# loads CallbackH and CallbackHJ function with correct time and prior x values
mc_cb1.h!.t1 = 0.0
mc_cb1.h!.t2 = mc_cb1.hj!.tf = mc_cb1.hj!.delT = d.time[2]
@. mc_cb1.h!.xold1 = d.IC_relax
# generate and save reference point relaxations
gen_expansion_params!(mc_cb1)
for q = 1:d.kmax
@. d.param[1][q] = mc_cb1.param[q]
end
# generate and save relaxation at reference point
implicit_relax_h!(mc_cb1)
@. d.state_relax[:,1] = mc_cb1.x_mc
end
end
if use_relax_new_pnt(d)
for j = 1:d.np
d.var_relax[j] = MC{d.np,NS}(d.p[j], d.P[j], j)
end
d.IC_relax .= d.ic(d.var_relax)
# loads MC callback, CallbackH and CallbackHJ function with correct time and prior x values
@. mc_cb1.p_mc = mc_cb2.p_mc = d.var_relax
@. mc_cb1.X = d.X[:,1]
mc_cb1.h!.t1 = 0.0
mc_cb1.h!.t2 = mc_cb1.hj!.tf = mc_cb1.hj!.delT = d.time[2]
mc_cb1.h!.xold1 .= d.IC_relax
for q = 1:d.kmax
@. mc_cb1.param[q] = d.param[1][q]
end
implicit_relax_h!(mc_cb1) # computes relaxation
@. d.state_relax[:,1] = mc_cb1.x_mc
end
else
if is_new_box(d)
d.X0P .= d.ic(d.P) # evaluate initial condition
# loads CallbackH and CallbackHJ function with correct time and prior x values
@. pi_cb2.X = d.X[:,1]
pi_cb2.xmid .= mid.(pi_cb1.X)
pi_cb2.h!.xold1 .= d.X0P
pi_cb2.h!.t1 = 0.0
pi_cb2.h!.t2 = pi_cb2.hj!.tf = pi_cb2.hj!.delT = d.time[2]
@. pi_cb2.P = pi_cb2.P = d.P
# run interval contractor on first step & break if solution is proven not to exist
excl, incl, extd = parametric_interval_contractor(pi_cb2, d.pi_precond!, d.pi_contractor)
excl && (d.integrator_states.termination_status = EMPTY; return)
d.exclusion_flag = excl
d.inclusion_flag = incl
d.extended_division_flag = extd
@. d.X[:,1] = d.pi_contractor.X # store interval values to storage array in d
# generate reference point relaxations
if use_relax(d)
for j=1:d.np
p_mid = 0.5*(lo(d.P[j]) + hi(d.P[j]))
mc_cb2.pref_mc[j] = MC{d.np,NS}(p_mid, d.P[j], j)
end
@. mc_cb2.P = mc_cb2.P = d.P
@. mc_cb2.p_mc = mc_cb2.pref_mc
@. mc_cb2.p_mc = mc_cb2.pref_mc
@. mc_cb2.pref_mc = mc_cb2.pref_mc
@. mc_cb2.X = d.X[:,1]
# evaluate initial condition
d.IC_relax .= d.ic(mc_cb2.pref_mc)
# loads CallbackH and CallbackHJ function with correct time and prior x values
mc_cb2.h!.t1 = 0.0
mc_cb2.h!.t2 = mc_cb2.hj!.tf = mc_cb2.hj!.delT = d.time[2]
@. mc_cb2.h!.xold1 = d.IC_relax
# generate and save reference point relaxations
gen_expansion_params!(mc_cb2)
for q = 1:d.kmax
@. d.param[1][q] = mc_cb2.param[q]
end
# generate and save relaxation at reference point
implicit_relax_h!(mc_cb2)
@. d.state_relax[:,1] = mc_cb2.x_mc
subgradient_expansion_interval_contract!(d.state_relax[:,1], d.p, d.pL, d.pU)
@. d.X[:,1] = Intv(d.state_relax[:,1])
end
end
if use_relax_new_pnt(d)
for j = 1:d.np
d.var_relax[j] = MC{d.np,NS}(d.p[j], d.P[j], j)
end
d.IC_relax .= d.ic(d.var_relax)
# loads MC callback, CallbackH and CallbackHJ function with correct time and prior x values
@. mc_cb2.p_mc = mc_cb2.p_mc = d.var_relax
@. mc_cb2.X = d.X[:,1]
mc_cb2.h!.t1 = 0.0
mc_cb2.h!.t2 = mc_cb2.hj!.tf = mc_cb2.hj!.delT = d.time[2]
mc_cb2.h!.xold1 .= d.IC_relax
for q = 1:d.kmax
@. mc_cb2.param[q] = d.param[1][q]
end
implicit_relax_h!(mc_cb2) # computes relaxation
@. d.state_relax[:,1] = mc_cb2.x_mc
end
end
for i in 2:d.steps
if is_new_box(d)
@. pi_cb2.X = d.X[:, i] # load CallbackH and CallbackHJ with time and prior x
@. pi_cb2.h!.xold1 = d.X[:, i-1]
if i == 2
@. pi_cb2.h!.xold2 = d.X0P
else
@. pi_cb2.h!.xold2 = d.X[:,i-2]
end
pi_cb2.h!.t1 = d.time[i]
pi_cb2.h!.t2 = pi_cb2.hj!.tf = d.time[i + 1]
pi_cb2.hj!.delT = d.time[i + 1] - d.time[i]
# run interval contractor on ith step
excl, incl, extd = parametric_interval_contractor(pi_cb2, d.pi_precond!, d.pi_contractor)
excl && (d.integrator_states.termination_status = EMPTY; return)
d.exclusion_flag = excl
d.inclusion_flag = incl
d.extended_division_flag = extd
@. d.X[:,i] = d.pi_contractor.X
if use_relax(d)
# loads CallbackH and CallbackHJ function with correct time and prior x values
mc_cb1.h!.t1 = 0.0
mc_cb1.h!.t2 = mc_cb1.hj!.tf = mc_cb1.hj!.delT = d.time[2]
@. mc_cb1.h!.xold1 = d.IC_relax
# generate and save reference point relaxations
gen_expansion_params!(mc_cb1)
for q = 1:d.kmax
@. d.param[i][q] = mc_cb1.param[q]
end
# generate and save relaxation at reference point
implicit_relax_h!(mc_cb1)
@. d.state_relax[:,i] = mc_cb1.x_mc
subgradient_expansion_interval_contract!(d.state_relax[:,i], d.p, d.pL, d.pU)
@. d.X[:,i] = Intv(d.state_relax[:,i])
# update interval bounds for state relaxation...
end
end
if use_relax_new_pnt(d)
# loads MC callback, CallbackH and CallbackHJ with correct time and prior x values
@. mc_cb2.X = d.X[:,i]
@. mc_cb2.h!.xold1 = d.state_relax[:, i-1]
if i == 2
@. mc_cb2.h!.xold2 = d.IC_relax
else
@. mc_cb2.h!.xold2 = d.state_relax[:,i-2]
end
mc_cb2.h!.t1 = d.time[i]
mc_cb2.h!.t2 = mc_cb2.hj!.tf = d.time[i+1]
mc_cb2.hj!.delT = d.time[i+1] - d.time[i]
for q = 1:d.kmax
@. mc_cb2.param[q] = d.param[i][q]
end
# computes relaxation
implicit_relax_h!(mc_cb2)
@. d.state_relax[:, i] = mc_cb2.x_mc
end
end
# unpack interval bounds to integrator bounds & set evaluation flags
if !use_relax(d)
map!(lo, d.xL, d.X)
map!(hi, d.xU, d.X)
else
map!(lo, d.xL, d.state_relax)
map!(hi, d.xU, d.state_relax)
end
d.integrator_states.new_decision_box = false
d.integrator_states.new_decision_pnt = false
return
end
function DBB.integrate!(d::Wilhelm2019, p::ODERelaxProb)
local_integrator() = state_contractor_integrator(d.integrator_type)
local_prob_storage = DBB.get(d, DBB.LocalIntegrator())::ODELocalIntegrator
local_prob_storage.integrator = local_integrator
local_prob_storage.adaptive_solver = false
local_prob_storage.user_t = d.time
DBB.getall!(local_prob_storage.p, d, ParameterValue())
local_prob_storage.pduals .= DBB.seed_duals(Val(length(local_prob_storage.p)), local_prob_storage.p)
local_prob_storage.x0duals = p.x0(d.local_problem_storage.pduals)
solution_t = DBB.integrate!(Val(DBB.get(d, DBB.LocalSensitivityOn())), d, p)
empty!(local_prob_storage.local_t_dict_flt)
empty!(local_prob_storage.local_t_dict_indx)
for (tindx, t) in enumerate(solution_t)
local_prob_storage.local_t_dict_flt[t] = tindx
end
if !isempty(local_prob_storage.user_t)
next_support_time = local_prob_storage.user_t[1]
supports_left = length(local_prob_storage.user_t)
loc_count = 1
for (tindx, t) in enumerate(solution_t)
if t == next_support_time
local_prob_storage.local_t_dict_indx[loc_count] = tindx
loc_count += 1
supports_left -= 1
if supports_left > 0
next_support_time = local_prob_storage.user_t[loc_count]
end
end
end
end
return
end
DBB.supports(::Wilhelm2019, ::DBB.IntegratorName) = true
DBB.supports(::Wilhelm2019, ::DBB.Gradient) = true
DBB.supports(::Wilhelm2019, ::DBB.Subgradient) = true
DBB.supports(::Wilhelm2019, ::DBB.Bound) = true
DBB.supports(::Wilhelm2019, ::DBB.Relaxation) = true
DBB.supports(::Wilhelm2019, ::DBB.IsNumeric) = true
DBB.supports(::Wilhelm2019, ::DBB.IsSolutionSet) = true
DBB.supports(::Wilhelm2019, ::DBB.TerminationStatus) = true
DBB.supports(::Wilhelm2019, ::DBB.Value) = true
DBB.supports(::Wilhelm2019, ::DBB.ParameterValue) = true
DBB.supports(::Wilhelm2019, ::DBB.ConstantStateBounds) = true
DBB.get(t::Wilhelm2019, v::DBB.IntegratorName) = "Wilhelm 2019 Integrator"
DBB.get(t::Wilhelm2019, v::DBB.IsNumeric) = true
DBB.get(t::Wilhelm2019, v::DBB.IsSolutionSet) = false
DBB.get(t::Wilhelm2019, s::DBB.TerminationStatus) = t.integrator_states.termination_status
DBB.get(t::Wilhelm2019, s::DBB.ParameterNumber) = t.np
DBB.get(t::Wilhelm2019, s::DBB.StateNumber) = t.nx
DBB.get(t::Wilhelm2019, s::DBB.SupportNumber) = length(t.time)
DBB.get(t::Wilhelm2019, s::DBB.AttachedProblem) = t.prob
function DBB.set!(t::Wilhelm2019, v::ConstantStateBounds)
t.constant_state_bounds = v
return
end
function DBB.get(t::Wilhelm2019, v::DBB.LocalIntegrator)
return t.local_problem_storage
end
function DBB.getall!(out::Array{Float64,2}, t::Wilhelm2019, v::DBB.Value)
out .= t.local_problem_storage.pode_x
return
end
function DBB.getall!(out::Vector{Array{Float64,2}}, t::Wilhelm2019, g::DBB.Gradient{Lower})
if ~t.differentiable_flag
error("Integrator does not generate differential relaxations. Set the
differentiable_flag field to true and reintegrate.")
end
for i in 1:t.np
if t.evaluate_interval
fill!(out[i], 0.0)
else
for j in eachindex(out[i])
out[i][j] = t.state_relax[j].cv_grad[i]
end
end
end
return
end
function DBB.getall!(out::Vector{Array{Float64,2}}, t::Wilhelm2019, g::DBB.Gradient{Upper})
if ~t.differentiable_flag
error("Integrator does not generate differential relaxations. Set the
differentiable_flag field to true and reintegrate.")
end
for i in 1:t.np
if t.evaluate_interval
fill!(out[i], 0.0)
else
@inbounds for j in eachindex(out[i])
out[i][j] = t.state_relax[j].cc_grad[i]
end
end
end
return
end
function DBB.getall!(out::Vector{Array{Float64,2}}, t::Wilhelm2019, g::DBB.Subgradient{Lower})
for i in 1:t.np
if t.evaluate_interval
fill!(out[i], 0.0)
else
@inbounds for j in eachindex(out[i])
out[i][j] = t.state_relax[j].cv_grad[i]
end
end
end
return
end
function DBB.getall!(out::Vector{Array{Float64,2}}, t::Wilhelm2019, g::DBB.Subgradient{Upper})
for i in 1:t.np
if t.evaluate_interval
fill!(out[i], 0.0)
else
@inbounds for j in eachindex(out[i])
out[i][j] = t.state_relax[j].cc_grad[i]
end
end
end
return
end
function DBB.getall!(out::Array{Float64,2}, t::Wilhelm2019, v::DBB.Bound{Lower})
for i in 1:t.nx
out[i,1] = t.X0P[i].lo
end
out[:,2:end] .= t.xL
return
end
function DBB.getall!(out::Vector{Float64}, t::Wilhelm2019, v::DBB.Bound{Lower})
out[:] = t.xL[1,:]
return
end
function DBB.getall!(out::Array{Float64,2}, t::Wilhelm2019, v::DBB.Bound{Upper})
for i in 1:t.nx
out[i,1] = t.X0P[i].hi
end
out[:,2:end] .= t.xU
return
end
function DBB.getall!(out::Vector{Float64}, t::Wilhelm2019, v::DBB.Bound{Upper})
out[:] = t.xU[1,:]
return
end
function DBB.getall!(out::Array{Float64,2}, t::Wilhelm2019, v::DBB.Relaxation{Lower})
if t.evaluate_interval
@inbounds for i in eachindex(out)
out[i] = t.X[i].lo
end
else
@inbounds for i in eachindex(out)
out[i] = t.state_relax[i].cv
end
end
return
end
function DBB.getall!(out::Vector{Float64}, t::Wilhelm2019, v::DBB.Relaxation{Lower})
if t.evaluate_interval
@inbounds for i in eachindex(out)
out[i] = t.X[i].lo
end
else
@inbounds for i in eachindex(out)
out[i] = t.state_relax[i].cv
end
end
return
end
function DBB.getall!(out::Array{Float64,2}, t::Wilhelm2019, v::DBB.Relaxation{Upper})
if t.evaluate_interval
@inbounds for i in eachindex(out)
out[i] = t.X[i].hi
end
else
@inbounds for i in eachindex(out)
out[i] = t.state_relax[i].cc
end
end
return
end
function DBB.getall!(out::Vector{Float64}, t::Wilhelm2019, v::DBB.Relaxation{Upper})
if t.evaluate_interval
@inbounds for i in eachindex(out)
out[i] = t.X[i].hi
end
else
@inbounds for i in eachindex(out)
out[i] = t.state_relax[i].cc
end
end
return
end
function DBB.getall!(t::Wilhelm2019, v::DBB.ParameterBound{Lower})
@inbounds for i in 1:t.np
out[i] = t.pL[i]
end
return
end
DBB.getall(t::Wilhelm2019, v::DBB.ParameterBound{Lower}) = t.pL
function DBB.getall!(out, t::Wilhelm2019, v::DBB.ParameterBound{Upper})
@inbounds for i in 1:t.np
out[i] = t.pU[i]
end
return
end
DBB.getall(t::Wilhelm2019, v::DBB.ParameterBound{Upper}) = t.pU
function DBB.setall!(t::Wilhelm2019, v::DBB.ParameterBound{Lower}, value::Vector{Float64})
t.integrator_states.new_decision_box = true
@inbounds for i in 1:t.np
t.pL[i] = value[i]
end
return
end
function DBB.setall!(t::Wilhelm2019, v::DBB.ParameterBound{Upper}, value::Vector{Float64})
t.integrator_states.new_decision_box = true
@inbounds for i in 1:t.np
t.pU[i] = value[i]
end
return
end
function DBB.setall!(t::Wilhelm2019, v::DBB.ParameterValue, value::Vector{Float64})
t.integrator_states.new_decision_pnt = true
@inbounds for i in 1:t.np
t.p[i] = value[i]
end
return
end
function DBB.getall!(out, t::Wilhelm2019, v::DBB.ParameterValue)
@inbounds for i in 1:t.np
out[i] = t.p[i]
end
return
end
function DBB.setall!(t::Wilhelm2019, v::DBB.Bound{Lower}, values::Array{Float64,2})
if t.integrator_states.new_decision_box
t.integrator_states.set_lower_state = true
end
for i in 1:t.nx
@inbounds for j in 1:t.steps
t.xL[i,j] = values[i,j]
end
end
return
end
function DBB.setall!(t::Wilhelm2019, v::DBB.Bound{Lower}, values::Vector{Float64})
if t.integrator_states.new_decision_box
t.integrator_states.set_lower_state = true
end
@inbounds for i in 1:t.steps
t.xL[1,i] = values[i]
end
return
end
function DBB.setall!(t::Wilhelm2019, v::DBB.Bound{Upper}, values::Array{Float64,2})
if t.integrator_states.new_decision_box
t.integrator_states.set_upper_state = true
end
for i in 1:t.nx
@inbounds for j in 1:t.steps
t.xU[i,j] = values[i,j]
end
end
return
end
function DBB.setall!(t::Wilhelm2019, v::DBB.Bound{Upper}, values::Vector{Float64})
if t.integrator_states.new_decision_box
t.integrator_states.set_upper_state = true
end
@inbounds for i in 1:t.steps
t.xU[1,i] = values[i]
end
return
end
DBB.get(t::Wilhelm2019, v::DBB.SupportSet{T}) where T = DBB.get(t.prob, v)
DBB.get(t::Wilhelm2019, v::DBB.LocalSensitivityOn) = t.calculate_local_sensitivity
function DBB.set!(t::Wilhelm2019, v::DBB.LocalSensitivityOn, b::Bool)
t.calculate_local_sensitivity = b
end
function DBB.get!(out, t::Wilhelm2019, v::DBB.Bound{Lower})
vi = get_val_loc(t, v.index, v.time)
if vi <= 1
return t.evaluate_interval ? map!(lo, out, t.X0P) : map!(lo, out, t.IC_relax)
end
if t.evaluate_interval
out .= view(t.xL, :, vi - 1)
else
map!(lo, out, view(t.state_relax, :, vi - 1))
end
end
function DBB.get!(out, t::Wilhelm2019, v::DBB.Bound{Upper})
vi = get_val_loc(t, v.index, v.time)
if vi <= 1
return t.evaluate_interval ? map!(hi, out, t.X0P) : map!(hi, out, t.IC_relax)
end
if t.evaluate_interval
out .= view(t.xU, :, vi - 1)
else
map!(hi, out, view(t.state_relax, :, vi - 1))
end
end
function DBB.get!(out, t::Wilhelm2019, v::DBB.Relaxation{Lower})
vi = get_val_loc(t, v.index, v.time)
if vi <= 1
return t.evaluate_interval ? map!(lo, out, t.X0P) : map!(cv, out, t.IC_relax)
end
if t.evaluate_interval
out .= view(t.xL, :, vi - 1)
else
map!(cv, out, view(t.state_relax, :, vi - 1))
end
end
function DBB.get!(out, t::Wilhelm2019, v::DBB.Relaxation{Upper})
vi = get_val_loc(t, v.index, v.time)
if vi <= 1
return t.evaluate_interval ? map!(hi, out, t.X0P) : map!(cc, out, t.IC_relax)
end
if t.evaluate_interval
out .= view(t.xU, :, vi - 1)
else
map!(cc, out, view(t.state_relax, :, vi - 1))
end
end
function DBB.get!(out, t::Wilhelm2019, v::DBB.Subgradient{Lower})
vi = get_val_loc(t, v.index, v.time)
t.evaluate_interval && (return fill!(out, 0.0);)
ni, nj = size(out)
if vi <= 1
for i = 1:ni, j = 1:nj
out[i, j] = t.IC_relax[i].cv_grad[j]
end
else
for i = 1:ni, j = 1:nj
out[i, j] = t.state_relax[i,vi-1].cv_grad[j]
end
end
end
function DBB.get!(out, t::Wilhelm2019, v::DBB.Subgradient{Upper})
vi = get_val_loc(t, v.index, v.time)
t.evaluate_interval && (return fill!(out, 0.0);)
ni, nj = size(out)
if vi <= 1
for i = 1:ni, j = 1:nj
out[i, j] = t.IC_relax[i].cc_grad[j]
end
else
for i = 1:ni, j = 1:nj
out[i, j] = t.state_relax[i,vi-1].cc_grad[j]
end
end
end
"""
$(FUNCTIONNAME)
Returns true if X1 and X2 are equal to within tolerance atol in all dimensions.
"""
function is_equal(X1::S, X2::Vector{Interval{Float64}}, atol::Float64, nx::Int) where S
out::Bool = true
@inbounds for i=1:nx
if (abs(X1[i].lo - X2[i].lo) >= atol ||
abs(X1[i].hi - X2[i].hi) >= atol )
out = false
break
end
end
return out
end
"""
$(FUNCTIONNAME)
Returns true if X is strictly in Y (X.lo>Y.lo && X.hi<Y.hi).
"""
function strict_x_in_y(X::Interval{Float64}, Y::Interval{Float64})
(X.lo <= Y.lo) && return false
(X.hi >= Y.hi) && return false
return true
end
"""
$(FUNCTIONNAME)
"""
function inclusion_test(inclusion_flag::Bool, inclusion_vector::Vector{Bool}, nx::Int)
if !inclusion_flag
for i=1:nx
if @inbounds inclusion_vector[i]
inclusion_flag = true
else
inclusion_flag = false; break
end
end
end
return inclusion_flag
end
"""
$(FUNCTIONNAME)
Subfunction to generate output for extended division.
"""
function extended_divide(A::Interval{Float64})
if (A.lo == -0.0) && (A.hi == 0.0)
B::Interval{Float64} = Interval{Float64}(-Inf,Inf)
C::Interval{Float64} = B
return 0,B,C
elseif (A.lo == 0.0)
B = Interval{Float64}(1.0/A.hi,Inf)
C = Interval{Float64}(Inf,Inf)
return 1,B,C
elseif (A.hi == 0.0)
B = Interval{Float64}(-Inf,1.0/A.lo)
C = Interval{Float64}(-Inf,-Inf)
return 2,B,C
else
B = Interval{Float64}(-Inf,1.0/A.lo)
C = Interval{Float64}(1.0/A.hi,Inf)
return 3,B,C
end
end
"""
$(FUNCTIONNAME)
Generates output boxes for extended division and flag.
"""
function extended_process(N::Interval{Float64}, X::Interval{Float64},
Mii::Interval{Float64}, SB::Interval{Float64},
rtol::Float64)
Ntemp = Interval{Float64}(N.lo, N.hi)
M = SB + Interval{Float64}(-rtol, rtol)
if (M.lo <= 0) && (M.hi >= 0)
return 0, Interval{Float64}(-Inf,Inf), Ntemp
end
k, IML, IMR = extended_divide(Mii)
if (k === 1)
NL = 0.5*(X.lo+X.hi) - M*IML
return 0, NL, Ntemp
elseif (k === 2)
NR = 0.5*(X.lo+X.hi) - M*IMR
return 0, NR, Ntemp
elseif (k === 3)
NR = 0.5*(X.lo+X.hi) - M*IMR
NL = 0.5*(X.lo+X.hi) - M*IML
if ~isdisjoint(NL,X) && isdisjoint(NR,X)
return 0, NL, Ntemp
elseif ~isdisjoint(NR,X) && isdisjoint(NL,X)
return 0, NR, Ntemp
elseif ~isdisjoint(NL,X) && ~isdisjoint(NR,X)
N = NL
Ntemp = NR
return 1, NL, NR
else
return -1, N, Ntemp
end
end
return 0, N, Ntemp
end
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 18181 | # Copyright (c) 2020: Matthew Wilhelm & Matthew Stuber.
# This work is licensed under the Creative Commons Attribution-NonCommercial-
# ShareAlike 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative
# Commons, PO Box 1866, Mountain View, CA 94042, USA.
#############################################################################
# Dynamic Bounds - pODEs Discrete
# A package for discretize and relax methods for bounding pODEs.
# See https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl
#############################################################################
# src/DiscretizeRelax/utilities/access_functions.jl
# Defines methods to access attributes via DynamicBoundsBase interface.
#############################################################################
DBB.supports(::DiscretizeRelax, ::DBB.IntegratorName) = true
DBB.supports(::DiscretizeRelax, ::DBB.Subgradient{T}) where {T <: AbstractBoundLoc} = true
DBB.supports(::DiscretizeRelax, ::DBB.Bound{T}) where {T <: AbstractBoundLoc} = true
DBB.supports(::DiscretizeRelax, ::DBB.Relaxation{T}) where {T <: AbstractBoundLoc} = true
DBB.supports(::DiscretizeRelax, ::DBB.IsNumeric) = true
DBB.supports(::DiscretizeRelax, ::DBB.IsSolutionSet) = true
DBB.supports(::DiscretizeRelax, ::DBB.TerminationStatus) = true
DBB.supports(::DiscretizeRelax, ::DBB.Value) = true
DBB.supports(::DiscretizeRelax, ::DBB.ParameterBound{Lower}) = true
DBB.supports(::DiscretizeRelax, ::DBB.ParameterBound{Upper}) = true
DBB.supports(::DiscretizeRelax, ::DBB.ParameterValue) = true
DBB.supports(::DiscretizeRelax, ::DBB.SupportSet) = true
DBB.supports(::DiscretizeRelax, ::DBB.ParameterNumber) = true
DBB.supports(::DiscretizeRelax, ::DBB.StateNumber) = true
DBB.supports(::DiscretizeRelax, ::DBB.SupportNumber) = true
DBB.supports(t::DiscretizeRelax, ::DBB.LocalSensitivityOn) = t.calculate_local_sensitivity
function get_val_loc(t::DiscretizeRelax, index::Int64, time::Float64)
(index <= 0 && time == -Inf) && error("Must set either index or time.")
if index > 0
return t.relax_t_dict_indx[index]
end
t.relax_t_dict_flt[time]
end
function get_val_loc_local(t::DiscretizeRelax, index::Int64, time::Float64)
(index <= 0 && time == -Inf) && error("Must set either index or time.")
if index > 0
return t.local_t_dict_indx[index]
end
t.local_t_dict_flt[time]
end
DBB.get(t::DiscretizeRelax, v::DBB.IntegratorName) = "Discretize & Relax Integrator" # TO DO... FIX ME
DBB.get(t::DiscretizeRelax, v::DBB.IsNumeric) = false # TO DO... FIX ME
DBB.get(t::DiscretizeRelax, v::DBB.IsSolutionSet) = true
DBB.get(t::DiscretizeRelax, v::DBB.TerminationStatus) = t.error_code
DBB.get(t::DiscretizeRelax, v::DBB.SupportSet) = DBB.SupportSet(t.tsupports)
DBB.get(t::DiscretizeRelax, v::DBB.ParameterNumber) = t.np
DBB.get(t::DiscretizeRelax, v::DBB.StateNumber) = t.nx
DBB.get(t::DiscretizeRelax, v::DBB.SupportNumber) = length(t.tsupports)
DBB.get(t::DiscretizeRelax, v::DBB.LocalSensitivityOn) = t.calculate_local_sensitivity
DBB.getall(t::DiscretizeRelax, v::DBB.ParameterBound{Lower}) = t.pL
DBB.getall(t::DiscretizeRelax, v::DBB.ParameterBound{Upper}) = t.pU
function DBB.set!(t::DiscretizeRelax, v::DBB.LocalSensitivityOn, q::Bool)
t.calculate_local_sensitivity = q
return
end
function DBB.set!(t::DiscretizeRelax, v::DBB.ConstantStateBounds)
t.constant_state_bounds = v
set_constant_state_bounds!(t.method_f!, v)
t.exist_result.constant_state_bounds = v
return
end
function DBB.set!(t::DiscretizeRelax, v::DBB.SupportSet)
t.time = v.s
t.tsupports = v.s
nothing
end
## Setting problem attributes
function DBB.setall!(t::DiscretizeRelax, v::ParameterBound{Lower}, value::Vector{Float64})
t.new_decision_box = true
@inbounds for i in 1:t.np
t.pL[i] = value[i]
end
return
end
function DBB.setall!(t::DiscretizeRelax, v::ParameterBound{Upper}, value::Vector{Float64})
t.new_decision_box = true
@inbounds for i in 1:t.np
t.pU[i] = value[i]
end
return
end
function DBB.setall!(t::DiscretizeRelax, v::ParameterValue, value::Vector{Float64})
t.new_decision_pnt = true
@inbounds for i in 1:t.np
t.p[i] = value[i]
end
return
end
function DBB.getall!(out::Vector{Float64}, t::DiscretizeRelax, v::DBB.ParameterValue)
out .= t.p[1:t.np]
return
end
function DBB.getall!(out::Array{Float64,2}, t::DiscretizeRelax, v::DBB.Value)
copyto!(out, t.local_problem_storage.pode_x)
return
end
function DBB.get(out::Vector{Float64}, t::DiscretizeRelax, v::DBB.Value)
val_loc = get_val_loc_local(t, v.index, v.time)
out .= t.local_problem_storage.pode_x[:, val_loc]
return
end
## Inplace integrator acccess functions
function DBB.getall!(out::Vector{Matrix{Float64}}, t::DiscretizeRelax{X,T}, ::DBB.Subgradient{Lower}) where {X, T <: AbstractInterval}
for i in 1:t.np
fill!(out[i], 0.0)
end
return
end
function DBB.getall!(out::Vector{Matrix{Float64}}, t::DiscretizeRelax{X,T}, ::DBB.Subgradient{Lower}) where {X, T <: MC}
for i = 1:length(t.storage)
for j = 1:t.np
for k = 1:t.nx
out[j][k,i]= t.storage[i][k].cv_grad[j]
end
end
end
return
end
function DBB.getall!(out::Vector{Matrix{Float64}}, t::DiscretizeRelax{X,T}, ::DBB.Subgradient{Upper}) where {X, T <: AbstractInterval}
for i in 1:t.np
fill!(out[i], 0.0)
end
return
end
function DBB.getall!(out::Vector{Matrix{Float64}}, t::DiscretizeRelax{X,T}, ::DBB.Subgradient{Upper}) where {X, T <: MC}
for i = 1:length(t.storage)
for j = 1:t.np
for k = 1:t.nx
out[j][k,i]= t.storage[i][k].cc_grad[j]
end
end
end
return
end
function DBB.get(out::Matrix{Float64}, t::DiscretizeRelax{X,T}, v::DBB.Subgradient{Lower}) where {X, T <: AbstractInterval}
fill!(out, 0.0)
return
end
function DBB.get(out::Matrix{Float64}, t::DiscretizeRelax{X,T}, v::DBB.Subgradient{Upper}) where {X, T <: AbstractInterval}
fill!(out, 0.0)
return
end
function DBB.get(out::Matrix{Float64}, t::DiscretizeRelax{X,T}, v::DBB.Subgradient{Lower}) where {X, T <: MC}
val_loc = get_val_loc(t, v.index, v.time)
for i = 1:t.np
for j = 1:t.nx
out[j,i] = t.relax_cv_grad[j,val_loc][i]
end
end
return
end
function DBB.get(out::Matrix{Float64}, t::DiscretizeRelax{X,T}, v::DBB.Subgradient{Upper}) where {X, T <: MC}
val_loc = get_val_loc(t, v.index, v.time)
for i = 1:t.np
for j = 1:t.nx
out[j,i] = t.relax_cc_grad[j,val_loc][i]
end
end
return
end
function DBB.getall!(out::Vector{Float64}, t::DiscretizeRelax{X,T}, ::DBB.Bound{Lower}) where {X, T <: AbstractInterval}
@inbounds for j in eachindex(out)
out[j] = t.storage[j][1].lo
end
return
end
function DBB.getall!(out::Matrix{Float64}, t::DiscretizeRelax{X,T}, ::DBB.Bound{Lower}) where {X, T <: AbstractInterval}
dims = length(t.storage), length(t.storage[1])
(length(dims) == 1) && (dims = (dims[1],1))
for i = 1:dims[1]
for j = 1:dims[2]
out[j,i] = t.storage[i][j].lo
end
end
return
end
function DBB.getall!(out::Vector{Float64}, t::DiscretizeRelax{X,T}, ::DBB.Bound{Upper}) where {X, T <: AbstractInterval}
@inbounds for j in eachindex(out)
out[j] = t.storage[j][1].hi
end
return
end
function DBB.getall!(out::Matrix{Float64}, t::DiscretizeRelax{X,T}, v::DBB.Bound{Upper}) where {X, T <: AbstractInterval}
dims = length(t.storage), length(t.storage[1])
(length(dims) == 1) && (dims = (dims[1],1))
for i = 1:dims[1]
for j = 1:dims[2]
out[j, i] = t.storage[i][j].hi
end
end
return
end
function DBB.getall!(out::Vector{Float64}, t::DiscretizeRelax{X,T}, ::DBB.Bound{Lower}) where {X, T <: MC}
@inbounds for j in eachindex(out)
out[j] = t.storage[j][1].Intv.lo
end
return
end
function DBB.getall!(out::Matrix{Float64}, t::DiscretizeRelax{X,T}, ::DBB.Bound{Lower}) where {X, T <: MC}
dims = length(t.storage), length(t.storage[1])
(length(dims) == 1) && (dims = (dims[1],1))
for i = 1:dims[1]
for j = 1:dims[2]
out[j, i] = t.storage[i][j].Intv.lo
end
end
return
end
function DBB.getall!(out::Vector{Float64}, t::DiscretizeRelax{X,T}, ::DBB.Bound{Upper}) where {X, T <: MC}
@inbounds for j in eachindex(out)
out[j] = t.storage[j][1].Intv.hi
end
return
end
function DBB.getall!(out::Matrix{Float64}, t::DiscretizeRelax{X,T}, v::DBB.Bound{Upper}) where {X, T <: MC}
dims = length(t.storage), length(t.storage[1])
(length(dims) == 1) && (dims = (dims[1],1))
for i = 1:dims[1]
for j = 1:dims[2]
out[j, i] = t.storage[i][j].Intv.hi
end
end
return
end
function DBB.getall!(out::Matrix{Float64}, t::DiscretizeRelax{X,T}, ::DBB.Relaxation{Lower}) where {X, T <: AbstractInterval}
dims = length(t.storage), length(t.storage[1])
(length(dims) == 1) && (dims = (dims[1],1))
for i = 1:dims[1]
for j = 1:dims[2]
out[j, i] = t.storage[i][j].lo
end
end
return
end
function DBB.getall!(out::Matrix{Float64}, t::DiscretizeRelax{X,T}, ::DBB.Relaxation{Lower}) where {X, T <: MC}
dims = length(t.storage), length(t.storage[1])
(length(dims) == 1) && (dims = (dims[1],1))
for i = 1:dims[1]
for j = 1:dims[2]
out[j, i] = t.storage[i][j].cv
end
end
return
end
function DBB.getall!(out::Vector{Float64}, t::DiscretizeRelax{X,T}, ::DBB.Relaxation{Lower}) where {X, T <: AbstractInterval}
@inbounds for j in eachindex(out)
out[j] = t.storage[j][1].lo
end
return
end
function DBB.getall!(out::Vector{Float64}, t::DiscretizeRelax{X,T}, ::DBB.Relaxation{Lower}) where {X, T <: MC}
@inbounds for j in eachindex(out)
out[j] = t.storage[j][1].cv
end
return
end
function DBB.getall!(out::Matrix{Float64}, t::DiscretizeRelax{X,T}, ::DBB.Relaxation{Upper}) where {X, T <: AbstractInterval}
dims = length(t.storage), length(t.storage[1])
(length(dims) == 1) && (dims = (dims[1],1))
for i = 1:dims[1]
for j = 1:dims[2]
out[j, i] = t.storage[i][j].hi
end
end
return
end
function DBB.getall!(out::Matrix{Float64}, t::DiscretizeRelax{X,T}, ::DBB.Relaxation{Upper}) where {X, T <: MC}
dims = length(t.storage), length(t.storage[1])
(length(dims) == 1) && (dims = (dims[1],1))
for i = 1:dims[1]
for j = 1:dims[2]
out[j, i] = t.storage[i][j].cc
end
end
return
end
function DBB.getall!(out::Vector{Float64}, t::DiscretizeRelax{X,T}, ::DBB.Relaxation{Upper}) where {X, T <: AbstractInterval}
@inbounds for j in eachindex(out)
out[j] = t.storage[j][1].hi
end
return
end
function DBB.getall!(out::Vector{Float64}, t::DiscretizeRelax{X,T}, ::DBB.Relaxation{Upper}) where {X, T <: MC}
@inbounds for j in eachindex(out)
out[j] = t.storage[j][1].cc
end
return
end
## Out of place integrator acccess functions
function DBB.getall(t::DiscretizeRelax{X,T}, ::DBB.Subgradient{Lower}) where {X, T <: AbstractInterval}
dims = length(t.storage), length(t.storage[1])
(length(dims) == 1) && (dims = (dims[1],1))
out = Matrix{Float64}[]
for i = 1:t.np
push!(out, zeros(Float64, dims[2], dims[1]))
end
out
end
function DBB.getall(t::DiscretizeRelax{X,T}, ::DBB.Subgradient{Lower}) where {X, T <: MC}
dims = length(t.storage), length(t.storage[1])
(length(dims) == 1) && (dims = (dims[1],1))
out = Matrix{Float64}[]
for i = 1:t.np
push!(out, zeros(Float64, dims[2], dims[1]))
for j = 1:dims[1]
for k = 1:dims[2]
out[i][k, j] = t.storage[j][k].cv_grad[i]
end
end
end
out
end
function DBB.getall(t::DiscretizeRelax{X,T}, ::DBB.Subgradient{Upper}) where {X, T <: AbstractInterval}
dims = length(t.storage), length(t.storage[1])
(length(dims) == 1) && (dims = (dims[1],1))
out = Matrix{Float64}[]
for i = 1:t.np
push!(out, zeros(Float64, dims[2], dims[1]))
end
out
end
function DBB.getall(t::DiscretizeRelax{X,T}, ::DBB.Subgradient{Upper}) where {X, T <: MC}
dims = length(t.storage), length(t.storage[1])
(length(dims) == 1) && (dims = (dims[1],1))
out = Matrix{Float64}[]
for i = 1:t.np
push!(out, zeros(Float64, dims[2], dims[1]))
for j = 1:dims[1]
for k = 1:dims[2]
out[i][k, j] = t.storage[j][k].cc_grad[i]
end
end
end
out
end
function DBB.get!(out::Vector{Float64}, t::DiscretizeRelax{X,T}, v::DBB.Bound{Lower}) where {X, T <: AbstractInterval}
val_loc = get_val_loc(t, v.index, v.time)
@__dot__ out = lo(t.storage[val_loc])
return
end
function DBB.get!(out::Vector{Float64}, t::DiscretizeRelax{X,T}, v::DBB.Bound{Upper}) where {X, T <: AbstractInterval}
val_loc = get_val_loc(t, v.index, v.time)
@__dot__ out = hi(t.storage[val_loc])
return
end
function DBB.getall(t::DiscretizeRelax{X,T}, ::DBB.Bound{Lower}) where {X, T <: AbstractInterval}
dims = length(t.storage), length(t.storage[1])
(length(dims) == 1) && (dims = (dims[1],1))
out = zeros(Float64, dims[2], dims[1])
for i = 1:dims[1]
for j = 1:dims[2]
out[j, i] = t.storage[i][j].lo
end
end
out
end
function DBB.getall(t::DiscretizeRelax{X,T}, ::DBB.Bound{Upper}) where {X, T <: AbstractInterval}
dims = length(t.storage), length(t.storage[1])
(length(dims) == 1) && (dims = (dims[1],1))
out = zeros(Float64, dims[2], dims[1])
for i = 1:dims[1]
for j = 1:dims[2]
out[j, i] = t.storage[i][j].hi
end
end
out
end
function DBB.get(out::Vector{Float64}, t::DiscretizeRelax{X,T}, v::DBB.Bound{Lower}) where {X, T <: MC}
val_loc = get_val_loc_local(t, v.index, v.time)
@__dot__ out = lo(t.storage[val_loc])
return
end
function DBB.get(out::Vector{Float64}, t::DiscretizeRelax{X,T}, v::DBB.Bound{Upper}) where {X, T <: MC}
val_loc = get_val_loc_local(t, v.index, v.time)
@__dot__ out = hi(t.storage[val_loc])
return
end
function DBB.getall(t::DiscretizeRelax{X,T}, ::DBB.Bound{Lower}) where {X, T <: MC}
dims = length(t.storage), length(t.storage[1])
(length(dims) == 1) && (dims = (dims[1],1))
out = zeros(Float64, dims[2], dims[1])
for i = 1:dims[1]
for j = 1:dims[2]
out[j, i] = t.storage[i][j].Intv.lo
end
end
out
end
function DBB.getall(t::DiscretizeRelax{X,T}, ::DBB.Bound{Upper}) where {X, T <: MC}
dims = length(t.storage), length(t.storage[1])
(length(dims) == 1) && (dims = (dims[1],1))
out = zeros(Float64, dims[2], dims[1])
for i = 1:dims[1]
for j = 1:dims[2]
out[j, i] = t.storage[i][j].Intv.hi
end
end
out
end
function DBB.get(out::Vector{Float64}, t::DiscretizeRelax{X,T}, v::DBB.Relaxation{Lower}) where {X, T <: MC}
val_loc = get_val_loc(t, v.index, v.time)
@__dot__ out = cv(t.storage[val_loc])
return
end
function DBB.get(out::Vector{Float64}, t::DiscretizeRelax{X,T}, v::DBB.Relaxation{Upper}) where {X, T <: MC}
val_loc = get_val_loc(t, v.index, v.time)
@__dot__ out = cc(t.storage[val_loc])
return
end
function DBB.get(out::Vector{Float64}, t::DiscretizeRelax{X,T}, v::DBB.Relaxation{Lower}) where {X, T <: AbstractInterval}
val_loc = get_val_loc(t, v.index, v.time)
@__dot__ out = lo(t.storage[val_loc])
return
end
function DBB.get(out::Vector{Float64}, t::DiscretizeRelax{X,T}, v::DBB.Relaxation{Upper}) where {X, T <: AbstractInterval}
val_loc = get_val_loc(t, v.index, v.time)
@__dot__ out = hi(t.storage[val_loc])
return
end
function DBB.getall(t::DiscretizeRelax{X,T}, ::DBB.Relaxation{Lower}) where {X, T <: AbstractInterval}
dims = length(t.storage), length(t.storage[1])
(length(dims) == 1) && (dims = (dims[1],1))
out = zeros(Float64, dims[2], dims[1])
for i = 1:dims[1]
for j = 1:dims[2]
out[j, i] = t.storage[i][j].lo
end
end
out
end
function DBB.getall(t::DiscretizeRelax{X,T}, ::DBB.Relaxation{Lower}) where {X, T <: MC}
dims = length(t.storage), length(t.storage[1])
(length(dims) == 1) && (dims = (dims[1],1))
out = zeros(Float64, dims[2], dims[1])
for i = 1:dims[1]
for j = 1:dims[2]
out[j, i] = t.storage[i][j].cv
end
end
out
end
function DBB.getall(t::DiscretizeRelax{X,T}, ::DBB.Relaxation{Upper}) where {X, T <: AbstractInterval}
dims = length(t.storage), length(t.storage[1])
(length(dims) == 1) && (dims = (dims[1],1))
out = zeros(Float64, dims[2], dims[1])
for i = 1:dims[1]
for j = 1:dims[2]
out[j, i] = t.storage[i][j].hi
end
end
out
end
function DBB.getall(t::DiscretizeRelax{X,T}, ::DBB.Relaxation{Upper}) where {X, T <: MC}
dims = length(t.storage), length(t.storage[1])
(length(dims) == 1) && (dims = (dims[1],1))
out = zeros(Float64, dims[2], dims[1])
for i = 1:dims[1]
for j = 1:dims[2]
out[j, i] = t.storage[i][j].cc
end
end
out
end
function DBB.get(t::DiscretizeRelax{X,T}, v::DBB.LocalIntegrator) where {X, T}
return t.local_problem_storage
end
DBB.get(t::DiscretizeRelax{X,T}, v::DBB.AttachedProblem) where {X, T} = t.prob
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 3765 | # Copyright (c) 2020: Matthew Wilhelm & Matthew Stuber.
# This work is licensed under the Creative Commons Attribution-NonCommercial-
# ShareAlike 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative
# Commons, PO Box 1866, Mountain View, CA 94042, USA.
#############################################################################
# Dynamic Bounds - pODEs Discrete
# A package for discretize and relax methods for bounding pODEs.
# See https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl
#############################################################################
# src/DiscretizeRelax/utilities/coeffs_calcs.jl
# Defines functions used to compute taylor coefficients using static
# univariate Taylor series.
#############################################################################
@generated function truncuated_STaylor1(x::STaylor1{N,T}, v::Int) where {N,T}
ex_calc = quote end
append!(ex_calc.args, Any[nothing for i in 1:N])
syms = Symbol[Symbol("c$i") for i in 1:N]
for i = 1:N
sym = syms[i]
ex_line = :($(sym) = $i <= v ? x[$(i-1)] : zero($T))
ex_calc.args[i] = ex_line
end
exout = :(($(syms[1]),))
for i = 2:N
push!(exout.args, syms[i])
end
return quote
Base.@_inline_meta
$ex_calc
return STaylor1{N,T}($exout)
end
end
@generated function copy_recurse(dx::STaylor1{N,T}, x::STaylor1{N,T}, ord::Int, ford::Float64) where {N,T}
ex_calc = quote end
append!(ex_calc.args, Any[nothing for i in 1:(N+1)])
syms = Symbol[Symbol("c$i") for i in 1:N]
ex_line = :(nv = dx[ord-1]/ford) #/ord)
ex_calc.args[1] = ex_line
for i = 0:(N-1)
sym = syms[i+1]
ex_line = :($(sym) = $i < ord ? x[$i] : (($i == ord) ? nv : zero(T))) # nv))
ex_calc.args[i+2] = ex_line
end
exout = :(($(syms[1]),))
for i = 2:N
push!(exout.args, syms[i])
end
return quote
Base.@_inline_meta
$ex_calc
return STaylor1{N,T}($exout)
end
end
"""
$(TYPEDSIGNATURES)
A variant of the jetcoeffs! function used in TaylorIntegration.jl
(https://github.com/PerezHz/TaylorIntegration.jl/blob/master/src/explicitode.jl)
which preallocates taux and updates taux coefficients to avoid further allocations.
The TaylorIntegration.jl package is licensed under the MIT "Expat" License:
Copyright (c) 2016-2020: Jorge A. Perez and Luis Benet. Permission is hereby
granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions: The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
"""
function jetcoeffs!(eqsdiff!, t::T, x::Vector{STaylor1{N,U}}, xaux::Vector{STaylor1{N,U}},
dx::Vector{STaylor1{N,U}}, order::Int, params,
vnxt::Vector{Int}, fnxt::Vector{Float64}) where {N, T<:Number, U<:Number}
ttaylor = STaylor1(t, Val{N-1}())
for ord = 1:order
fill!(vnxt, ord)
fill!(fnxt, Float64(ord))
map!(truncuated_STaylor1, xaux, x, vnxt)
eqsdiff!(dx, xaux, params, ttaylor)
x .= copy_recurse.(dx, x, vnxt, fnxt)
end
nothing
end
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 8963 | # Copyright (c) 2020: Matthew Wilhelm & Matthew Stuber.
# This work is licensed under the Creative Commons Attribution-NonCommercial-
# ShareAlike 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative
# Commons, PO Box 1866, Mountain View, CA 94042, USA.
#############################################################################
# Dynamic Bounds - pODEs Discrete
# A package for discretize and relax methods for bounding pODEs.
# See https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl
#############################################################################
# src/DiscretizeRelax/utilities/discretize_relax.jl
# Defines the structure used to compute bounds/relaxations via a discretize
# and relax approach.
#############################################################################
"""
DiscretizeRelax
An integrator for discretize and relaxation techniques.
$(TYPEDFIELDS)
"""
Base.@kwdef mutable struct DiscretizeRelax{M <: AbstractStateContractor, T <: Number, S <: Real, F, K, X, NY, JX, JP, INT, N} <: AbstractODERelaxIntegrator
# Problem description
"Initial Condition for pODEs"
x0f::X
"Jacobian w.r.t x"
Jx!::JX
"Jacobian w.r.t p"
Jp!::JP
"Parameter value for pODEs"
p::Vector{Float64}
"Lower Parameter Bounds for pODEs"
pL::Vector{Float64}
"Upper Parameter Bounds for pODEs"
pU::Vector{Float64}
"Number of state variables"
nx::Int
"Number of decision variables"
np::Int
"Time span to integrate over"
tspan::Tuple{Float64, Float64}
"Individual time points to evaluate"
tsupports::Vector{Float64}
next_support_i::Int = -1
next_support::Float64 = -Inf
# Options and internal storage
"Maximum number of integration steps"
step_limit::Int = 500
"Steps taken"
step_count::Int = 0
"Stores solution X (from step 2) for each time"
storage::Vector{Vector{T}}
"Stores solution X (from step 1) for each time"
storage_apriori::Vector{Vector{T}}
"Stores each time t"
time::Vector{Float64} = zeros(Float64, 200)
"Support index to storage dictory"
support_dict::Dict{Int,Int} = Dict{Int,Int}()
"Holds data for numeric error encountered in integration step"
error_code::TerminationStatusCode = RELAXATION_NOT_CALLED
"Storage for bounds/relaxation of P"
P::Vector{T}
"Storage for bounds/relaxation of P - p"
rP::Vector{T}
"Relaxation Type"
style::T
"Flag indicating that only apriori bounds should be computed"
skip_step2::Bool = false
storage_buffer_size::Int = 500
print_relax_time::Bool = false
# Main functions used in routines
"Functor for evaluating Taylor coefficients over a set"
set_tf!::TaylorFunctor!{F,K,S,T}
method_f!::M
exist_result::ExistStorage{F,K,S,T}
contractor_result::ContractorStorage{T}
step_result::StepResult{T}
step_params::StepParams
new_decision_pnt::Bool = true
new_decision_box::Bool = true
relax_t_dict_indx::Dict{Int,Int} = Dict{Int,Int}()
relax_t_dict_flt::Dict{Float64,Int} = Dict{Float64,Int}()
calculate_local_sensitivity::Bool = false
local_problem_storage
constant_state_bounds::Union{Nothing,ConstantStateBounds}
polyhedral_constraint::Union{Nothing,PolyhedralConstraint}
prob
end
function DiscretizeRelax(d::ODERelaxProb, m::SCN; repeat_limit = 1, tol = 1E-4, hmin = 1E-13, relax = false,
h = 0.0, J_x! = nothing, J_p! = nothing, storage_buffer_size = 200, skip_step2 = false,
atol = 1E-5, rtol = 1E-5, print_relax_time = true, kwargs...) where SCN <: AbstractStateContractorName
Jx! = isnothing(J_x!) ? d.Jx! : J_x!
Jp! = isnothing(J_p!) ? d.Jp! : J_p!
γ = state_contractor_γ(m)::Float64
k = state_contractor_k(m)::Int
method_steps = state_contractor_steps(m)::Int
tsupports = d.support_set.s
T = relax ? MC{d.np,NS} : Interval{Float64}
style = zero(T)
storage = Vector{T}[]
storage_apriori = Vector{T}[]
for i = 1:storage_buffer_size
push!(storage, zeros(T, d.nx))
push!(storage_apriori, zeros(T, d.nx))
end
P = zeros(T, d.np)
rP = zeros(T, d.np)
Δ = FixedCircularBuffer{Vector{T}}(method_steps)
A_Q = FixedCircularBuffer{Matrix{Float64}}(method_steps)
A_inv = FixedCircularBuffer{Matrix{Float64}}(method_steps)
for i = 1:method_steps
push!(Δ, zeros(T, d.nx))
push!(A_Q, Float64.(Matrix(I, d.nx, d.nx)))
push!(A_inv, Float64.(Matrix(I, d.nx, d.nx)))
end
state_method = state_contractor(m, d.f, Jx!, Jp!, d.nx, d.np, style, zero(Float64), h)
set_tf! = TaylorFunctor!(d.f, d.nx, d.np, Val(k), style, zero(Float64))
is_adaptive = (h <= 0.0)
contractor_result = ContractorStorage(style, d.nx, d.np, k, h, method_steps)
contractor_result.γ = γ
contractor_result.P = P
contractor_result.rP = rP
contractor_result.is_adaptive = is_adaptive
local_integrator = state_contractor_integrator(m)
return DiscretizeRelax{typeof(state_method), T, Float64, typeof(d.f), k+1,typeof(d.x0), d.nx + d.np,
typeof(Jx!), typeof(Jp!), typeof(local_integrator), d.np}(
x0f = d.x0,
Jx! = Jx!,
Jp! = Jp!,
p = d.p,
pL = d.pL,
pU = d.pU,
nx = d.nx,
np = d.np,
tspan = d.tspan,
tsupports = tsupports,
storage = storage,
storage_apriori = storage_apriori,
P = P,
rP = rP,
style = style,
set_tf! = set_tf!,
method_f! = state_method,
exist_result = ExistStorage(set_tf!, style, P, d.nx, d.np, k, h, method_steps),
contractor_result = contractor_result,
step_result = StepResult{typeof(style)}(zeros(d.nx), zeros(typeof(style), d.nx), A_Q, A_inv, Δ, 0.0, 0.0),
step_params = StepParams(atol, rtol, hmin, repeat_limit, is_adaptive, skip_step2),
local_problem_storage = ODELocalIntegrator(d, local_integrator),
constant_state_bounds = d.constant_state_bounds,
polyhedral_constraint = d.polyhedral_constraint,
prob = d,
storage_buffer_size = storage_buffer_size,
skip_step2 = skip_step2,
print_relax_time = print_relax_time)
end
DiscretizeRelax(d::ODERelaxProb; kwargs...) = DiscretizeRelax(d, LohnerContractor{4}(); kwargs...)
"""
set_P!(d::DiscretizeRelax)
Initializes the `P` and `rP` (P - p) fields of `d`.
"""
function set_P!(d::DiscretizeRelax{M,Interval{Float64},S,F,K,X,NY}) where {M<:AbstractStateContractor, S, F, K, X, NY}
@unpack p, pL, pU, P, rP = d
@. P = Interval(pL, pU)
@. rP = P - p
nothing
end
function set_P!(d::DiscretizeRelax{M,MC{N,T},S,F,K,X,NY}) where {M<:AbstractStateContractor, T<:RelaxTag, S <: Real, F, K, X, N, NY}
@unpack np, p, pL, pU, P, rP = d
@. P = MC{N,NS}(p, Interval(pL, pU), 1:np)
@. rP = P - p
nothing
end
"""
compute_X0!(d::DiscretizeRelax)
Initializes the circular buffer that holds `Δ` with the `out - mid(out)` at
index 1 and a zero vector at all other indices.
"""
function compute_X0!(d::DiscretizeRelax)
@unpack relax_t_dict_indx, relax_t_dict_flt, storage, storage_apriori, tspan, x0f, P, tsupports = d
storage[1] .= x0f(P)
storage_apriori[1] .= storage[1]
if tspan[1] ∈ tsupports
relax_t_dict_indx[1] = 1
relax_t_dict_flt[tspan[1]] = 1
end
d.step_result.Xⱼ .= storage[1]
d.step_result.xⱼ .= mid.(d.step_result.Xⱼ)
d.exist_result.Xj_0 .= d.step_result.Xⱼ
d.contractor_result.Xj_0 .= d.step_result.Xⱼ
d.contractor_result.xval .= mid.(d.exist_result.Xj_0)
d.contractor_result.pval .= d.p
nothing
end
"""
set_Δ!
Initializes the circular buffer, `Δ`, that holds `Δ_i` with the `out - mid(out)` at
index 1 and a zero vector at all other indices.
"""
function set_Δ!(Δ::FixedCircularBuffer{Vector{T}}, out::Vector{Vector{T}}) where T
Δ[1] .= out[1] .- mid.(out[1])
for i = 2:length(Δ)
fill!(Δ[i], zero(T))
end
return nothing
end
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 1048 | # Copyright (c) 2020: Matthew Wilhelm & Matthew Stuber.
# This work is licensed under the Creative Commons Attribution-NonCommercial-
# ShareAlike 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative
# Commons, PO Box 1866, Mountain View, CA 94042, USA.
#############################################################################
# Dynamic Bounds - pODEs Discrete
# A package for discretize and relax methods for bounding pODEs.
# See https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl
#############################################################################
# src/DiscretizeRelax/utilities/fast_set_index.jl
# Defines a method for setindex that avoids conversion.
#############################################################################
# setindex! that avoids conversion.
function setindex!(x::Vector{STaylor1{N,T}}, val::T, i::Int) where {N,T}
@inbounds x[i] = STaylor1(val, Val{N-1}())
return nothing
end
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 2177 | mutable struct FixedCircularBuffer{T} <: AbstractVector{T}
capacity::Int
first::Int
length::Int
buffer::Vector{T}
FixedCircularBuffer{T}(capacity::Int) where {T} = new{T}(capacity, 1, 0, Vector{T}(undef, capacity))
end
Base.@propagate_inbounds function _buffer_index_checked(cb::FixedCircularBuffer, i::Int)
@boundscheck if i < 1 || i > cb.length
throw(BoundsError(cb, i))
end
_buffer_index(cb, i)
end
@inline function _buffer_index(cb::FixedCircularBuffer, i::Int)
n = cb.capacity
idx = cb.first + i - 1
return ifelse(idx > n, idx - n, idx)
end
@inline Base.@propagate_inbounds function Base.setindex!(cb::FixedCircularBuffer, data, i::Int)
cb.buffer[_buffer_index_checked(cb, i)] = data
return nothing
end
Base.size(cb::FixedCircularBuffer) = (length(cb),)
Base.convert(::Type{Array}, cb::FixedCircularBuffer{T}) where {T} = T[x for x in cb]
@inline Base.@propagate_inbounds function Base.getindex(cb::FixedCircularBuffer, i::Int)
cb.buffer[_buffer_index_checked(cb, i)]
end
Base.length(cb::FixedCircularBuffer) = cb.length
Base.eltype(::Type{FixedCircularBuffer{T}}) where T = T
@inline function Base.push!(cb::FixedCircularBuffer, data)
if cb.length == cb.capacity
cb.first = (cb.first == cb.capacity ? 1 : cb.first + 1)
else
cb.length += 1
end
@inbounds cb.buffer[_buffer_index(cb, cb.length)] = data
return cb
end
function Base.append!(cb::FixedCircularBuffer, datavec::AbstractVector)
# push at most last `capacity` items
n = length(datavec)
for i in max(1, n-cb.capacity+1):n
push!(cb, datavec[i])
end
return cb
end
function cycle!(cb::FixedCircularBuffer{S}) where S
cb.first = (cb.first == 1 ? cb.capacity : cb.first - 1)
return nothing
end
function cycle_copyto!(cb::FixedCircularBuffer{V}, v, indx) where V <: AbstractArray
if indx > 1
cycle!(cb)
end
copyto!(cb[1], v)
return nothing
end
function cycle_eval!(f!, cb::FixedCircularBuffer{S}, x, p, t) where S
cycle!(cb)
f!(cb[1], x, p, t)
return nothing
end
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 6965 | # Copyright (c) 2020: Matthew Wilhelm & Matthew Stuber.
# This work is licensed under the Creative Commons Attribution-NonCommercial-
# ShareAlike 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative
# Commons, PO Box 1866, Mountain View, CA 94042, USA.
#############################################################################
# Dynamic Bounds - pODEs Discrete
# A package for discretize and relax methods for bounding pODEs.
# See https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl
#############################################################################
# src/DiscretizeRelax/utilities/jacobian_functor.jl
# Defines methods to used to compute Jacobians of Taylor coeffients.
#############################################################################
"""
JacTaylorFunctor!
A callable structure used to evaluate the Jacobian of Taylor cofficients. This
also contains some addition fields to be used as inplace storage when computing
and preconditioning paralleliped based methods to representing enclosure of the
pODEs (Lohner's QR, Hermite-Obreschkoff, etc.). The constructor given by
`JacTaylorFunctor!(g!, nx::Int, np::Int, k::Val{K}, t::T, q::Q)` may be used
were type `T` should use type `Q` for internal computations. The order of the
TaylorSeries is `k`, the right-hand side function is `g!`, `nx` is the number
of state variables, `np` is the number of parameters.
$(TYPEDFIELDS)
"""
mutable struct JacTaylorFunctor!{F <: Function, N, T <: Real, S <: Real, NY}
"Right-hand side function for pODE which operates in place as g!(dx,x,p,t)"
g!::F
"Dimensionality of x"
nx::Int
"Dimensionality of p"
np::Int
"Order of TaylorSeries"
s::Int
"In-place temporary storage for Taylor coefficient calculation"
out::Vector{S}
"Variables y = (x,p)"
y::Vector{S}
"State variables x"
x::Vector{Dual{Nothing,S,NY}}
"Decision variables p"
p::Vector{Dual{Nothing,S,NY}}
"Storage for sum of Jacobian w.r.t x"
Jxsto::Matrix{S}
"Storage for sum of Jacobian w.r.t p"
Jpsto::Matrix{S}
"Temporary for transpose of Jacobian w.r.t y"
tjac::Matrix{S}
"Storage for vector of Jacobian w.r.t x"
Jx::Vector{Matrix{S}}
"Storage for vector of Jacobian w.r.t p"
Jp::Vector{Matrix{S}}
"Jacobian Result from DiffResults"
result::MutableDiffResult{1, Vector{S}, Tuple{Matrix{S}}}
"Jacobian Configuration for ForwardDiff"
cfg::JacobianConfig{Nothing,S,NY,Tuple{Vector{Dual{Nothing,S,NY}},Vector{Dual{Nothing,S,NY}}}}
"Store temporary STaylor1 vector for calculations"
xtaylor::Vector{STaylor1{N,Dual{Nothing,S,NY}}}
"Store temporary STaylor1 vector for calculations"
xaux::Vector{STaylor1{N,Dual{Nothing,S,NY}}}
"Store temporary STaylor1 vector for calculations"
dx::Vector{STaylor1{N,Dual{Nothing,S,NY}}}
taux::Vector{STaylor1{N,T}}
t::Float64
"Intermediate storage to avoid allocations in Taylor coefficient calc"
vnxt::Vector{Int64}
"Intermediate storage to avoid allocations in Taylor coefficient calc"
fnxt::Vector{Float64}
end
function JacTaylorFunctor!(g!, nx::Int, np::Int, k::Val{K}, t::T, q::Q) where {K, T <: Number, Q <: Number}
x0 = zeros(T, nx)
xd0 = zeros(Dual{Nothing, T, nx + np}, nx)
out = zeros(T, nx*(K + 1))
y = zeros(T, nx + np)
x = zeros(Dual{Nothing, T, nx + np}, nx)
p = zeros(Dual{Nothing, T, nx + np}, np)
Jxsto = zeros(T, nx, nx)
Jpsto = zeros(T, nx, np)
tjac = zeros(T, np + nx, nx*(K + 1))
cfg = JacobianConfig(nothing, out, zeros(T, nx + np))
result = JacobianResult(out, zeros(T, nx + np))
Jx = Matrix{T}[]
Jp = Matrix{T}[]
temp = zero(Dual{Nothing, T, nx + np})
taux = [STaylor1(zero(Q), Val(K))]
xtaylor = STaylor1.(xd0, Val(K))
dx = STaylor1.(xd0, Val(K))
xaux = STaylor1.(xd0, Val(K))
for i in 1:(K + 1)
push!(Jx, zeros(T,nx,nx))
push!(Jp, zeros(T,nx,np))
end
t = 0.0
vnxt = zeros(Int, nx)
fnxt = zeros(Float64, nx)
return JacTaylorFunctor!{typeof(g!), K+1, Q, T, nx + np}(g!, nx, np, K, out, y, x, p,
Jxsto, Jpsto, tjac, Jx, Jp,
result, cfg, xtaylor, xaux,
dx, taux, t, vnxt, fnxt)
end
function (d::JacTaylorFunctor!{F,K,T,S,NY})(out::AbstractVector{Dual{Nothing,S,NY}}, y::AbstractVector{Dual{Nothing,S,NY}}) where {F,K,T,S,NY}
copyto!(d.x, 1, y, 1, d.nx)
copyto!(d.p, 1, y, d.nx + 1, d.np)
val = Val{K-1}()
for i=1:d.nx
d.xtaylor[i] = STaylor1(d.x[i], val)
end
jetcoeffs!(d.g!, d.t, d.xtaylor, d.xaux, d.dx, K - 1, d.p, d.vnxt, d.fnxt)
for q = 1:K
for i = 1:d.nx
indx = d.nx*(q - 1) + i
out[indx] = d.xtaylor[i].coeffs[q]
end
end
return nothing
end
"""
jacobian_taylor_coeffs!
Computes the Jacobian of the Taylor coefficients w.r.t. y = (x,p) storing the
output inplace to `result`. A JacobianConfig object without tag checking, cfg,
is required input and is initialized from `cfg = ForwardDiff.JacobianConfig(nothing, out, y)`.
The JacTaylorFunctor! used for the evaluation is `g` and inputs are `x` and `p`.
"""
function jacobian_taylor_coeffs!(g::JacTaylorFunctor!{F,K,T,S,NY}, X::Vector{S}, P, t::T) where {F,K,T,S,NY}
# copyto! is used to avoid allocations
copyto!(g.y, 1, X, 1, g.nx)
copyto!(g.y, g.nx + 1, P, 1, g.np)
g.t = t
# other AD schemes may be usable as well but this is a length(g.out) >> nx + np
# situtation typically
jacobian!(g.result, g, g.out, g.y, g.cfg)
# reset sum of Jacobian storage
fill!(g.Jxsto, zero(S))
fill!(g.Jpsto, zero(S))
nothing
end
"""
set_JxJp!
Extracts the Jacobian of the Taylor coefficients w.r.t. x, `Jx`, and the
Jacobian of the Taylor coefficients w.r.t. p, `Jp`, from `result`. The order of
the Taylor series is `s`, the dimensionality of x is `nx`, the dimensionality of
p is `np`, and `tjac` is preallocated storage for the transpose of the Jacobian
w.r.t. y = (x,p).
"""
set_JxJp!(g::JacTaylorFunctor!{F,K,T,S,NY}, X, P, t) where {F,K,T,S,NY} = set_JxJp!(g, X, P, t, g.nx, g.np, g.s)
function set_JxJp!(g::JacTaylorFunctor!{F,K,T,S,NY}, X, P, t, nx, np, s) where {F,K,T,S,NY}
jacobian_taylor_coeffs!(g, X, P, t)
jac = g.result.derivs[1]
for i = 1:(s + 1)
for q = 1:nx
for z = 1:nx
g.Jx[i][q, z] = jac[q + nx*(i-1), z]
end
for z = 1:np
g.Jp[i][q, z] = jac[q + nx*(i-1), nx + z]
end
end
end
nothing
end
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 1386 | # Copyright (c) 2020: Matthew Wilhelm & Matthew Stuber.
# This work is licensed under the Creative Commons Attribution-NonCommercial-
# ShareAlike 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative
# Commons, PO Box 1866, Mountain View, CA 94042, USA.
#############################################################################
# Dynamic Bounds - pODEs Discrete
# A package for discretize and relax methods for bounding pODEs.
# See https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl
#############################################################################
# src/DiscretizeRelax/utilities/mul_split.jl
# A simple function used to speed up 1D calculations of matrix multiplication.
#############################################################################
"""
mul_split!
Multiples A*b as a matrix times a vector if nx > 1. Performs scalar
multiplication otherwise.
"""
function mul_split!(Y::Vector{R}, A::Matrix{S}, B::Vector{T}) where {R,S,T}
if size(Y)[1] == 1
Y[1] = A[1,1]*B[1]
else
mul!(Y, A, B)
end
nothing
end
function mul_split!(Y::Matrix{R}, A::Matrix{S}, B::Matrix{T}) where {R,S,T}
if size(Y)[1] == 1
Y[1,1] = A[1,1]*B[1,1]
else
mul!(Y, A, B)
end
nothing
end
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 3455 | # Copyright (c) 2020: Matthew Wilhelm & Matthew Stuber.
# This work is licensed under the Creative Commons Attribution-NonCommercial-
# ShareAlike 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative
# Commons, PO Box 1866, Mountain View, CA 94042, USA.
#############################################################################
# Dynamic Bounds - pODEs Discrete
# A package for discretize and relax methods for bounding pODEs.
# See https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl
#############################################################################
# src/DiscretizeRelax/utilities/qr_utilities.jl
# Functions used for preconditioning with QR factorization.
#############################################################################
#=
"""
QRDenseStorage
Provides preallocated storage for the QR factorization, Q, and the inverse of Q.
$(TYPEDFIELDS)
"""
mutable struct QRDenseStorage
"QR Factorization"
factorization::LinearAlgebra.QR{Float64,Array{Float64,2}}
"Orthogonal matrix Q"
Q::Array{Float64,2}
"Inverse of Q"
inv::Array{Float64,2}
end
"""
QRDenseStorage(nx::Int)
A constructor for QRDenseStorage assumes `Q` is of size `nx`-by-`nx` and of
type `Float64`.
"""
function QRDenseStorage(nx::Int)
A = Float64.(Matrix(I, nx, nx))
factorization = LinearAlgebra.qrfactUnblocked!(A)
Q = similar(A)
inverse = similar(A)
QRDenseStorage(factorization, Q, inverse)
end
function Base.copy(q::QRDenseStorage)
factors_c = q.factorization.factors
τ_c = q.factorization.τ
f_copy = LinearAlgebra.QR{Float64,Array{Float64,2}}(factors_c,τ_c)
QRDenseStorage(f_copy, copy(q.Q), copy(q.inv))
end
=#
#=
"""
calculateQ!
Computes the QR factorization of `A` of size `(nx,nx)` and then stores it to
fields in `qst`.
"""
function calculateQ!(qst::QRDenseStorage, A::Matrix{Float64}, nx::Int)
qst.factorization = LinearAlgebra.qrfactUnblocked!(A)
qst.Q .= qst.factorization.Q*Matrix(I,nx,nx)
nothing
end
"""
calculateQinv!
Computes `inv(Q)` via transpose! and stores this to `qst.inverse`.
"""
function calculateQinv!(qst::QRDenseStorage)
transpose!(qst.inv, qst.Q)
nothing
end
=#
function calculateQ!(Q, A::Matrix{Float64})
nx = size(A,1)
if isone(nx)
Q[1,1] = 1.0
else
F = LinearAlgebra.qr(A)
Q .= view(F.Q, 1:nx, 1:nx)
end
nothing
end
function calculateQinv!(Qinv, Q)
if size(Q,1) == 1
Qinv[1,1] = 1.0
else
transpose!(Qinv, Q)
end
nothing
end
#=
"""
An circular buffer of fixed capacity and length which allows
for access via getindex and copying of an element to the last then cycling
the last element to the first and shifting all other elements. See
[DataStructures.jl](https://github.com/JuliaCollections/DataStructures.jl).
"""
function DataStructures.CircularBuffer(a::T, length::Int) where T
cb = CircularBuffer{T}(length)
append!(cb, [zero.(a) for i=1:length])
cb
end
"""
reinitialize!(x::CircularBuffer{QRDenseStorage})
Sets the first QR storage to the identity matrix.
"""
function reinitialize!(x::CircularBuffer{QRDenseStorage})
fill!(x[1].Q, 0.0)
for i in 1:size(x[1].Q, 1)
x[1].Q[i,i] = 1.0
end
nothing
end
=#
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 7767 | # Copyright (c) 2020: Matthew Wilhelm & Matthew Stuber.
# This work is licensed under the Creative Commons Attribution-NonCommercial-
# ShareAlike 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative
# Commons, PO Box 1866, Mountain View, CA 94042, USA.
#############################################################################
# Dynamic Bounds - pODEs Discrete
# A package for discretize and relax methods for bounding pODEs.
# See https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl
#############################################################################
# src/DiscretizeRelax/utilities/relax.jl
# Defines the relax! routine for the DiscretizeRelax integrator.
#############################################################################
fill_zero!(x::Vector{T}) where T = fill!(x, zero(T))
function fill_identity!(x::Vector{T}) where T
x[1] = one(T)
end
function fill_identity!(x::Matrix{T}) where T
fill!(x, zero(T))
nx = size(x, 1)
for i = 1:nx
x[i,i] = one(T)
end
end
function populate_storage_buffer!(z::Vector{T}, nt) where T
foreach(i -> push!(z, zero(T)), length(z):nt)
fill!(z, zero(T))
end
function populate_storage_buffer!(z::Vector{Vector{T}}, nt, nx) where T
foreach(i -> push!(z, zeros(T, nx)), length(z):nt)
foreach(fill_zero!, z)
end
# GOOD
"""
reset_relax!
AAA
"""
function initialize_relax!(d::DiscretizeRelax{M,T,S,F,K,X,NY}) where {M <: AbstractStateContractor, T <: Number, S <: Real, F, K, X, NY}
@unpack time, storage, storage_apriori, storage_buffer_size, tsupports, nx, tspan = d
@unpack A_Q, A_inv, Δ = d.contractor_result
# reset apriori and contracted set storage along with time storage
populate_storage_buffer!(storage_apriori, storage_buffer_size, nx)
populate_storage_buffer!(storage, storage_buffer_size, nx)
populate_storage_buffer!(time, storage_buffer_size)
# reset dictionarys used to map storage to supported points
empty!(d.relax_t_dict_indx)
empty!(d.relax_t_dict_flt)
# reset buffers used to hold parallelpepid representation state bound/relaxation
foreach(fill_identity!, A_Q)
foreach(fill_identity!, A_inv)
set_Δ!(Δ, storage)
d.step_count = 1
if length(tsupports) > 0
d.next_support_i = 1
if tsupports[1] > 0.0
d.next_support = tsupports[1]
elseif length(tsupports) > 1
d.next_support = tsupports[2]
end
else
d.next_support_i = 1E10
d.next_support = Inf
end
ex = d.exist_result
ex.hj = !(ex.hj <= 0.0) ? ex.hj : 0.05*(tspan[2] - d.contractor_result.times[1])
ex.predicted_hj = ex.hj
d.contractor_result.hj = ex.hj
d.step_result.time = 0.0
d.time[1] = tspan[1]
d.contractor_result.times[1] = tspan[1]
set_P!(d)
# reset result flag
d.exist_result.status_flag = RELAXATION_NOT_CALLED
return
end
function set_starting_existence_bounds!(ex::ExistStorage{F,K,S,T}, c::ContractorStorage{T}, r::StepResult{T}) where {F,K,S,T}
ex.Xj_0 .= r.Xⱼ
ex.predicted_hj = c.hj
nothing
end
function set_result_info!(r, hj, predicted_hj)
r.time = round(r.time + hj, digits=13)
r.predicted_hj = predicted_hj
nothing
end
"""
store_step_result!
Store result from step contractor to storage for state relaxation, apriori, times. Sets the dicts and updates the step count.
"""
function store_step_result!(d::DiscretizeRelax{M,T,S,F,K,X,NY}) where {M <: AbstractStateContractor, T <: Number, S <: Real, F, K, X, NY}
@unpack time, storage, storage_apriori, storage_buffer_size, tsupports, step_count, nx, step_result = d
@unpack X_computed, hj = d.contractor_result
@unpack Xj_apriori = d.exist_result
set_result_info!(step_result, hj, hj) # add time and predicted step size to results
set_starting_existence_bounds!(d.exist_result, d.contractor_result, step_result)
if step_count + 1 > length(time)
push!(storage, copy(X_computed))
push!(storage_apriori, copy(Xj_apriori))
push!(time, d.step_result.time)
else
storage_position = step_count + 1
copyto!(storage[storage_position], X_computed)
copyto!(storage_apriori[storage_position], Xj_apriori)
time[storage_position] = d.step_result.time
end
if d.step_result.time == d.next_support
d.relax_t_dict_indx[d.next_support_i] = d.step_count
d.relax_t_dict_flt[d.next_support] = d.step_count
if d.next_support_i <= length(tsupports)
d.next_support_i += 1
if (0.0 in tsupports)
if d.next_support_i < length(tsupports)
d.next_support = tsupports[d.next_support_i + 1]
else
d.next_support_i = typemax(Int)
d.next_support = Inf
end
else
d.next_support = tsupports[d.next_support_i]
end
else
d.next_support_i = typemax(Int)
d.next_support = Inf
end
end
d.step_count += 1
return
end
"""
clean_results!
Resize storage at the end to eliminate any unused values. If no error is set, record the error as COMPLETED.
"""
function clean_results!(d::DiscretizeRelax{M,T,S,F,K,X,NY}) where {M <: AbstractStateContractor, T <: Number, S <: Real, F, K, X, NY}
@unpack step_count, storage, storage_apriori, time = d
resize!(storage, step_count)
resize!(storage_apriori, step_count)
resize!(time, step_count)
if d.error_code == RELAXATION_NOT_CALLED
d.error_code = COMPLETED
end
nothing
end
"""
relax_loop_terminated!
Checks for termination at the start of each step. An error code is stored the limit is exceeded.
"""
function continue_relax_loop!(d::DiscretizeRelax{M,T,S,F,K,X,NY}) where {M,T,S,F,K,X,NY}
@unpack step_count, step_limit, time, tspan = d
@unpack predicted_hj, status_flag = d.exist_result
should_continue = true
sign_tstep = copysign(1, tspan[2] - d.step_result.time)
if step_count >= step_limit
if sign_tstep*time[step_count] < sign_tstep*tspan[2]
d.error_code = LIMIT_EXCEEDED
end
should_continue = false
end
should_continue &= sign_tstep*d.step_result.time < sign_tstep*tspan[2]
should_continue &= !iszero(predicted_hj)
should_continue &= (status_flag == RELAXATION_NOT_CALLED)
should_continue
end
function display_iteration_summary(d::DiscretizeRelax{M,T,S,F,K,X,NY}) where {M,T,S,F,K,X,NY}
#println("Step = #$(d.step_count), Storage = $(d.storage[d.step_count]), Storage Apriori = $(d.storage_apriori[d.step_count])")
end
function DBB.relax!(d::DiscretizeRelax{M,T,S,F,K,X,NY}) where {M,T,S,F,K,X,NY}
initialize_relax!(d) # Reset storage used when relaxations are computed and times
tstart = time()
compute_X0!(d) # Compute initial condition values
while continue_relax_loop!(d)
display_iteration_summary(d) # Display a single step results
single_step!(d) # Perform a single step
store_step_result!(d) # Store results from a single step
end
display_iteration_summary(d) # Display a single step results
clean_results!(d) # Resize storage to computed values and set completion code (if unset)
if d.print_relax_time
println("relax time = $(time() - tstart)")
end
end
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 12066 | # Copyright (c) 2020: Matthew Wilhelm & Matthew Stuber.
# This work is licensed under the Creative Commons Attribution-NonCommercial-
# ShareAlike 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative
# Commons, PO Box 1866, Mountain View, CA 94042, USA.
#############################################################################
# Dynamic Bounds - pODEs Discrete
# A package for discretize and relax methods for bounding pODEs.
# See https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl
#############################################################################
# src/DiscretizeRelax/method/single_step.jl
# Defines a single step of the integration method.
#############################################################################
"""
StepParams
LEPUS and Integration parameters.
$(TYPEDFIELDS)
"""
Base.@kwdef struct StepParams
"Absolute error tolerance of integrator"
atol::Float64 = 1E-5
"Relative error tolerance of integrator"
rtol::Float64 = 1E-5
"Minimum stepsize"
hmin::Float64 = 1E-8
"Number of repetitions allowed for refinement"
repeat_limit::Int = 3
"Indicates an adaptive stepsize is used"
is_adaptive::Bool = true
"Indicates the contractor step should be skipped"
skip_step2::Bool = false
end
"""
StepResult{S}
Results passed to the next step.
$(TYPEDFIELDS)
"""
mutable struct StepResult{S}
"nominal value of the state variables"
xⱼ::Vector{Float64}
"relaxations/bounds of the state variables"
Xⱼ::Vector{S}
"storage for parallelepid enclosure of `xⱼ`"
A_Q::FixedCircularBuffer{Matrix{Float64}}
A_inv::FixedCircularBuffer{Matrix{Float64}}
"storage for parallelepid enclosure of `xⱼ`"
Δ::FixedCircularBuffer{Vector{S}}
"predicted step size for next step"
predicted_hj::Float64
"new time"
time::Float64
end
"""
ExistStorage{F,K,S,T}
Storage used in the existence and uniqueness tests.
"""
mutable struct ExistStorage{F,K,S,T}
status_flag::TerminationStatusCode
hj::Float64
hmin::Float64
is_adaptive::Bool
ϵ::Float64
k::Int
predicted_hj::Float64
computed_hj::Float64
hj_max::Float64
nx::Int
f_coeff::Vector{Vector{T}}
f_temp_PU::Vector{Vector{T}}
f_temp_tilde::Vector{Vector{T}}
f_flt::Vector{Float64}
hfk::Vector{T}
fk::Vector{T}
β::Vector{Float64}
poly_term::Vector{T}
Xj_0::Vector{T}
Xj_apriori::Vector{T}
Vⱼ::Vector{T}
Uⱼ::Vector{T}
Z::Vector{T}
P::Vector{T}
tf!::TaylorFunctor!{F,K,S,T}
constant_state_bounds::Union{Nothing,ConstantStateBounds}
end
function ExistStorage(tf!::TaylorFunctor!{F,K,S,T}, s::T, P, nx::Int, np::Int, k::Int, h::Float64, cap::Int) where {F,K,S,T}
flag = RELAXATION_NOT_CALLED
Xapriori = zeros(T, nx)
Xj_0 = zeros(T, nx)
Xj_apriori = zeros(T, nx)
f_coeff = Vector{T}[]
ftilde = Vector{T}[]
fPU = Vector{T}[]
for i in 1:(k + 1)
push!(f_coeff, zeros(T, nx))
push!(ftilde, zeros(T, nx))
push!(fPU, zeros(T, nx))
end
hfk = zeros(T, nx)
fk = zeros(T, nx)
Z = zeros(T, nx)
ϵ = 0.5
poly_term = zeros(T, nx)
β = zeros(Float64, nx)
f_flt = zeros(Float64, nx)
Vⱼ = zeros(T, nx)
Uⱼ = zeros(T, nx)
Z = zeros(T, nx)
return ExistStorage{F,K,S,T}(flag, h, h, (h === 0.0), ϵ, k, h, h, Inf, nx,
f_coeff, fPU, ftilde, f_flt, hfk, fk, β, poly_term,
Xj_0, Xj_apriori, Vⱼ, Uⱼ, Z, P, tf!, nothing)
end
"""
ContractorStorage{S}
Storage used to hold inputs to the contractor method used.
"""
mutable struct ContractorStorage{S}
is_adaptive::Bool
times::FixedCircularBuffer{Float64}
steps::FixedCircularBuffer{Float64}
Xj_0::Vector{S}
Xj_apriori::Vector{S}
xval::Vector{Float64}
A_Q::FixedCircularBuffer{Matrix{Float64}}
A_inv::FixedCircularBuffer{Matrix{Float64}}
Δ::FixedCircularBuffer{Vector{S}}
P::Vector{S}
rP::Vector{S}
pval::Vector{Float64}
fk_apriori::Vector{S}
hj::Float64
X_computed::Vector{S}
xval_computed::Vector{Float64}
B::Matrix{Float64}
γ::Float64
step_count::Int
nx::Int
end
function ContractorStorage(style::S, nx, np, k, h, method_steps) where S
is_adaptive = h <= 0.0
# add initial storage
Xj_0 = zeros(S, nx)
Xj_apriori = zeros(S, nx)
xval = zeros(Float64, nx)
xval_computed = zeros(Float64, nx)
P = zeros(S, np)
rP = zeros(S, np)
pval = zeros(Float64, np)
fk_apriori = zeros(S, nx)
hj = 0.0
X_computed = zeros(S, nx)
xval_computed = zeros(Float64, nx)
B = zeros(Float64, nx, nx)
γ = 0.0
step_count = 1
# add to buffer
times = FixedCircularBuffer{Float64}(method_steps); append!(times, zeros(nx))
steps = FixedCircularBuffer{Float64}(method_steps); append!(steps, zeros(nx))
Δ = FixedCircularBuffer{Vector{S}}(method_steps)
A_Q = FixedCircularBuffer{Matrix{Float64}}(method_steps)
A_inv = FixedCircularBuffer{Matrix{Float64}}(method_steps)
for i = 1:method_steps
push!(Δ, zeros(S, nx))
push!(A_Q, Float64.(Matrix(I, nx, nx)))
push!(A_inv, Float64.(Matrix(I, nx, nx)))
end
return ContractorStorage{S}(is_adaptive, times, steps, Xj_0, Xj_apriori, xval,
A_Q, A_inv, Δ, P, rP, pval, fk_apriori,
hj, X_computed, xval_computed, B, γ, step_count, nx)
end
function advance_contract_storage!(d::ContractorStorage{S}) where {S <: Number}
cycle!(d.A_Q)
cycle!(d.A_inv)
cycle!(d.Δ)
nothing
end
function load_existence_info_to_contractor!(c::ContractorStorage{T}, ex::ExistStorage{F,K,S,T}) where {F,K,S,T}
c.Xj_apriori .= ex.Xj_apriori
c.hj = min(ex.computed_hj, ex.hj_max)
c.fk_apriori .= ex.fk
nothing
end
function set_xX!(result::StepResult{S}, contract::ContractorStorage{S}) where {S <: Number}
pL = lo.(contract.P)
pU = hi.(contract.P)
pval = contract.pval
subgradient_expansion_interval_contract!(contract.X_computed, pval, pL, pU)
subgradient_expansion_interval_contract!(contract.Xj_0, pval, pL, pU)
result.Xⱼ .= contract.X_computed
result.xⱼ .= contract.xval_computed
contract.Xj_0 .= contract.X_computed
contract.xval .= contract.xval_computed
nothing
end
"""
excess_error
Computes the excess error using a norm-∞ of the diameter of the vectors.
"""
function excess_error(Z::Vector{S}, hj, hj_eu, γ, k, nx) where S
errⱼ = 0.0; dₜ = 0.0
for i = 1:nx
dₜ = hj*diam(Z[i])
errⱼ = (dₜ > errⱼ) ? dₜ : errⱼ
end
abs(γ*errⱼ)
end
affine_contract!(X::Vector{Interval{Float64}}, P::Vector{Interval{Float64}}, pval, np, nx) = nothing
function affine_contract!(X::Vector{MC{N,T}}, P::Vector{MC{N,T}}, pval::Vector{Float64}, np, nx) where {N,T<:RelaxTag}
x_Intv_cv = 0.0
x_Intv_cc = 0.0
for i = 1:nx
Xt = X[i]
x_Intv_cv = Xt.cv
x_Intv_cc = Xt.cc
for j = 1:N
p = pval[j]
pL = P[j].Intv.lo
pU = P[j].Intv.hi
cv_gradj = Xt.cv_grad[j]
cc_gradj = Xt.cc_grad[j]
x_Intv_cv += (cv_gradj > 0.0) ? cv_gradj*(pL - p) : cv_gradj*(pU - p)
x_Intv_cc += (cc_gradj < 0.0) ? cc_gradj*(pL - p) : cc_gradj*(pU - p)
end
x_Intv_cv = max(x_Intv_cv, Xt.Intv.lo)
x_Intv_cc = min(x_Intv_cc, Xt.Intv.hi)
X[i] = MC{N,T}(Xt.cv, Xt.cc, Interval(x_Intv_cv, x_Intv_cc), Xt.cv_grad, Xt.cc_grad, Xt.cnst)
end
return nothing
end
contract_apriori!(exist::ExistStorage{F,K,S,T}, n::Nothing) where {F, K, S <: Real, T} = nothing
contract_apriori!(exist::ExistStorage{F,K,S,T}, p::PolyhedralConstraint) where {F, K, S <: Real, T} = nothing
function contract_apriori!(exist::ExistStorage{F,K,S,T}, c::ConstantStateBounds) where {F, K, S <: Real, T}
exist.Xj_apriori .= exist.Xj_apriori .∩ Interval.(c.xL, c.xU)
return nothing
end
function store_parallelepid_enclosure!(c::ContractorStorage{T}, r::StepResult{T}, j) where T
cycle_copyto!(r.A_Q, c.A_Q[1], j)
cycle_copyto!(r.A_inv, c.A_inv[1], j)
cycle_copyto!(r.Δ, c.Δ[1], j)
nothing
end
function reset_step_limit!(d)
@unpack next_support, tspan = d
@unpack time = d.step_result
tval = round(next_support - time, digits=13)
if tval < 0.0
tval = Inf
end
d.exist_result.hj = min(d.exist_result.hj, tval, tspan[2] - time)
d.exist_result.hj_max = tspan[2] - time
d.exist_result.predicted_hj = min(d.exist_result.predicted_hj, tval, tspan[2] - time)
d.contractor_result.steps[1] = d.exist_result.hj
d.contractor_result.step_count = d.step_count
end
set_γ!(sc, c, ex, result, params) = nothing
"""
single_step!
Performs a single-step of the validated integrator. Input stepsize is out.step.
"""
function single_step!(ex::ExistStorage{F,K,S,T}, c::ContractorStorage{T}, params::StepParams, result::StepResult{T}, sc::M, j, csb::C, pc::P, tspan) where {M <: AbstractStateContractor, F, K, S <: Real, T, C, P}
@unpack repeat_limit, hmin, atol, rtol, skip_step2, is_adaptive = params
@unpack hj, γ, X_computed, Δ = c
@unpack k, nx = ex
set_γ!(sc, c, ex, result, params)
if !existence_uniqueness!(ex, params, result.time, j) # validate existence & uniqueness
return nothing
end
advance_contract_storage!(c) # Advance polyhedral storage
contract_apriori!(ex, csb)::Nothing # Apply constant state bound contractor (if set)
contract_apriori!(ex, pc)::Nothing # Apply polyhedral contractor (if set)
load_existence_info_to_contractor!(c, ex)
hj_eu = c.hj
if skip_step2 # Skip contractor and use state values for existence test
result.xⱼ .= mid.(ex.Xj_apriori)
result.Xⱼ .= ex.Xj_apriori
c.X_computed .= ex.Xj_apriori
else # Apply contractor in LEPUS stepsize scheme
if is_adaptive
count = 0
while (c.hj > hmin) & (count < repeat_limit)
count += 1
sc(c, result, count, j)
errj = excess_error(ex.Z, c.hj, hj_eu, γ, k, nx)
if (errj < c.hj*rtol) || (errj < atol)
sign_tstep = copysign(1, tspan[2] - result.time)
next_t = sign_tstep*(result.time + c.hj)
t_end = sign_tstep*tspan[2]
if (next_t < t_end) & !isapprox(next_t, t_end, atol = 1E-8)
δerrj = max(1E-11, errj)
max_new_step = 1.015*c.hj
c.hj = 0.9*c.hj*(0.5*c.hj*rtol/δerrj)^(1/(k-1))
c.hj = min(max_new_step, c.hj, t_end - result.time)
end
break
else
hj_reduced = c.hj*(c.hj*atol/errj)^(1/(k-1))
ex.Z *= (hj_reduced/c.hj)^k
c.hj = hj_reduced
end
end
set_xX!(result, c)::Nothing
else
sc(c, result, 0, k)
set_xX!(result, c)::Nothing
end
store_parallelepid_enclosure!(c, result, j) # update parallelepid enclosure
end
end
function single_step!(d)
@unpack next_support, next_support_i, tspan = d
reset_step_limit!(d)
single_step!(d.exist_result, d.contractor_result, d.step_params, d.step_result, d.method_f!, d.step_count, d.constant_state_bounds, d.polyhedral_constraint, tspan)
end | DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 3467 | # Copyright (c) 2020: Matthew Wilhelm & Matthew Stuber.
# This work is licensed under the Creative Commons Attribution-NonCommercial-
# ShareAlike 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative
# Commons, PO Box 1866, Mountain View, CA 94042, USA.
#############################################################################
# Dynamic Bounds - pODEs Discrete
# A package for discretize and relax methods for bounding pODEs.
# See https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl
#############################################################################
# src/DiscretizeRelax/utilities/taylor_functor.jl
# Defines methods to used to compute Taylor coeffients.
#############################################################################
"""
TaylorFunctor!
A function g!(out, y) that perfoms a Taylor coefficient calculation. Provides
preallocated storage. Evaluating this function out is a vector of length nx*(s+1)
where 1:(s+1) are the Taylor coefficients of the first component, (s+2):nx*(s+1)
are the Taylor coefficients of the second component, and so on. This may be
constructed using `TaylorFunctor!(g!, nx::Int, np::Int, k::Val{K}, t::T, q::Q)`
were type `T` should use type `Q` for internal computations. The order of the
TaylorSeries is `k`, the right-hand side function is `g!`, `nx` is the number
of state variables, `np` is the number of parameters.
$(TYPEDFIELDS)
"""
mutable struct TaylorFunctor!{F <: Function, N, T <: Real, S <: Real}
"Right-hand side function for pODE which operates in place as g!(dx,x,p,t)"
g!::F
"Dimensionality of x"
nx::Int
"Dimensionality of p"
np::Int
"Order of TaylorSeries, that is the first k terms are used in the approximation
and N = k+1 term is bounded"
k::Int
"State variables x"
x::Vector{S}
"Decision variables p"
p::Vector{S}
"Store temporary STaylor1 vector for calculations"
xtaylor::Vector{STaylor1{N,S}}
"Store temporary STaylor1 vector for calculations"
xaux::Vector{STaylor1{N,S}}
"Store temporary STaylor1 vector for calculations"
dx::Vector{STaylor1{N,S}}
taux::Vector{STaylor1{N,T}}
vnxt::Vector{Int}
fnxt::Vector{Float64}
end
function TaylorFunctor!(g!, nx::Int, np::Int, k::Val{K}, t::T, q::Q) where {K, T <: Number, Q <: Number}
f̃ = Vector{T}[]
for i = 1:(K+1)
push!(f̃, zeros(T, nx))
end
temp = STaylor1(zeros(T,K+1))
xtaylor = STaylor1{K+1,T}[]
xaux = STaylor1{K+1,T}[]
dx = STaylor1{K+1,T}[]
taux = STaylor1{K+1,Q}[]
for i = 1:nx
push!(xtaylor, temp)
push!(xaux, temp)
push!(dx, temp)
push!(taux, zero(STaylor1{K+1,Q}))
end
x = zeros(T, nx)
p = zeros(T, np)
vnxt = zeros(Int, nx)
fnxt = zeros(Float64, nx)
return TaylorFunctor!{typeof(g!), K+1, Q, T}(g!, nx, np, K, x, p, xtaylor,
xaux, dx, taux, vnxt, fnxt)
end
function (d::TaylorFunctor!{F,K,T,S})(out::Vector{Vector{S}}, x::Vector{S}, p::Vector{S}, t::T) where {F, K, T, S}
@__dot__ d.xtaylor = STaylor1(x, Val(K-1))
jetcoeffs!(d.g!, t, d.xtaylor, d.xaux, d.dx, K-1, p, d.vnxt, d.fnxt)::Nothing
for i = 1:d.nx, j = 1:(d.k + 1)
out[j][i] = d.xtaylor[i][j - 1]
end
nothing
end
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 1388 | module StaticTaylorSeries
using Requires
using McCormick # TODO: Remove if package
import Base: ==, +, -, *, /, ^
import Base: iterate, size, eachindex, firstindex, lastindex,
eltype, length, getindex, setindex!, axes, copyto!
import Base: zero, one, zeros, ones, isinf, isnan, iszero,
convert, promote_rule, promote, show,
real, imag, conj, adjoint,
rem, mod, mod2pi, abs, abs2,
sqrt, exp, log, sin, cos, tan,
asin, acos, atan, sinh, cosh, tanh,
power_by_squaring,
rtoldefault, isfinite, isapprox, rad2deg, deg2rad
export STaylor1
export getcoeff, derivative, integrate, differentiate,
evaluate, evaluate!, inverse, set_taylor1_varname,
show_params_TaylorN, show_monomials, displayBigO, use_show_default,
get_order, get_numvars, set_variables, get_variables,
get_variable_names, get_variable_symbols,
taylor_expand, update!, constant_term, linear_polynomial,
normalize_taylor, evaluate
include("constructors.jl")
include("conversion.jl")
include("auxiliary.jl")
include("arithmetic.jl")
include("power.jl")
include("functions.jl")
include("other_functions.jl")
include("evaluate.jl")
include("printing.jl")
function __init__()
@require IntervalArithmetic = "d1acc4aa-44c8-5952-acd4-ba5d80a2a253" include("intervals.jl")
end
end # module
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 5561 | ==(a::STaylor1, b::STaylor1) = (a.coeffs == b.coeffs)
iszero(a::STaylor1) = all(iszero, a.coeffs)
function zero(::Type{STaylor1{N,T}}) where {N, T<:Number}
return STaylor1(zero(T), Val{N-1}())
end
zero(a::STaylor1{N,T}) where {N, T<:Number} = zero(STaylor1{N,T})
function one(::Type{STaylor1{N,T}}) where {N, T<:Number}
return STaylor1(one(T), Val{N-1}())
end
one(a::STaylor1{N,T}) where {N, T<:Number} = one(STaylor1{N,T})
@inline +(a::STaylor1{N,T}, b::STaylor1{N,T}) where {N, T<:Number} = STaylor1(a.coeffs .+ b.coeffs)
@inline -(a::STaylor1{N,T}, b::STaylor1{N,T}) where {N, T<:Number} = STaylor1(a.coeffs .- b.coeffs)
@inline +(a::STaylor1) = a
@inline -(a::STaylor1) = STaylor1(.- a.coeffs)
function +(a::STaylor1{N,T}, b::T) where {N, T<:Number}
STaylor1{N,T}(ntuple(i -> i == 1 ? a.coeffs[1] + b : a.coeffs[i], Val(N)))
end
function +(b::T, a::STaylor1{N,T}) where {N, T<:Number}
STaylor1{N,T}(ntuple(i -> i == 1 ? a.coeffs[1] + b : a.coeffs[i], Val(N)))
end
function +(a::STaylor1{N,T}, b::Number) where {N, T<:Number}
STaylor1{N,T}(ntuple(i -> i == 1 ? a.coeffs[1] + b : a.coeffs[i], Val(N)))
end
function +(b::Number, a::STaylor1{N,T}) where {N, T<:Number}
STaylor1{N,T}(ntuple(i -> i == 1 ? a.coeffs[1] + b : a.coeffs[i], Val(N)))
end
function -(a::STaylor1{N,T}, b::T) where {N, T<:Number}
STaylor1{N,T}(ntuple(i -> i == 1 ? a.coeffs[1] - b : a.coeffs[i], Val(N)))
end
-(b::T, a::STaylor1{N,T}) where {N, T<:Number} = b + (-a)
function -(a::STaylor1{N,T}, b::Number) where {N, T<:Number}
STaylor1{N,T}(ntuple(i -> i == 1 ? a.coeffs[1] - b : a.coeffs[i], Val(N)))
end
-(b::Number, a::STaylor1{N,T}) where {N, T<:Number} = b + (-a)
#+(a::STaylor1{N,T}, b::S) where {N, T<:NumberNotSeries, S<:NumberNotSeries} = +(promote(a,b)...)
#+(a::STaylor1{N,T}, b::STaylor1{N,S}) where {N, T<:NumberNotSeries, S<:NumberNotSeries} = +(promote(a,b)...)
#+(a::STaylor1{N,T}, b::S) where {N, T<:NumberNotSeries, S<:NumberNotSeries} = +(promote(a,b)...)
#+(b::S, a::STaylor1{N,T}) where {N, T<:NumberNotSeries, S<:NumberNotSeries} = +(promote(b,a)...)
#-(a::STaylor1{N,T}, b::STaylor1{N,S}) where {N, T<:NumberNotSeries, S<:NumberNotSeries} = -(promote(a,b)...)
#-(a::STaylor1{N,T}, b::S) where {N, T<:NumberNotSeries, S<:NumberNotSeries} = -(promote(a,b)...)
#-(b::S, a::STaylor1{N,T}) where {N, T<:NumberNotSeries, S<:NumberNotSeries} = -(promote(b,a)...)
@generated function *(x::STaylor1{N,T}, y::STaylor1{N,T}) where {T<:Number,N}
ex_calc = quote end
append!(ex_calc.args, Any[nothing for i in 1:N])
syms = Symbol[Symbol("c$i") for i in 1:N]
for j = 1:N
ex_line = :(x.coeffs[1]*y.coeffs[$j])
for k = 2:j
ex_line = :($ex_line + x.coeffs[$k]*y.coeffs[$(j-k+1)])
end
sym = syms[j]
ex_line = :($sym = $ex_line)
ex_calc.args[j] = ex_line
end
exout = :(($(syms[1]),))
for i = 2:N
push!(exout.args, syms[i])
end
return quote
Base.@_inline_meta
$ex_calc
return STaylor1{N,T}($exout)
end
end
function *(a::STaylor1{N,T}, b::T) where {N, T<:Number}
STaylor1{N,T}(b .* a.coeffs)
end
function *(b::T, a::STaylor1{N,T}) where {N, T<:Number}
STaylor1{N,T}(b .* a.coeffs)
end
function /(a::STaylor1{N,T}, b::T) where {N, T<:Number}
STaylor1{N,T}(a.coeffs ./ b)
end
function /(b::T, a::STaylor1{N,T}) where {N, T<:Number}
return (b*one(STaylor1{N,T}))/a
end
function *(a::STaylor1{N,Float64}, b::Float64) where N
STaylor1{N,Float64}(b .* a.coeffs)
end
function *(b::Float64, a::STaylor1{N,Float64}) where N
STaylor1{N,Float64}(b .* a.coeffs)
end
function /(a::STaylor1{N,Float64}, b::Float64) where N
STaylor1{N,Float64}(a.coeffs ./ b)
end
function /(b::Float64, a::STaylor1{N,Float64}) where N
return (b*one(STaylor1{N,Float64}))/a
end
function *(a::STaylor1{N,T}, b::Float64) where {N, T<:Number}
STaylor1{N,T}(b .* a.coeffs)
end
function *(b::Float64, a::STaylor1{N,T}) where {N, T<:Number}
STaylor1{N,T}(b .* a.coeffs)
end
function /(a::STaylor1{N,T}, b::Float64) where {N, T<:Number}
STaylor1{N,T}(a.coeffs ./ b)
end
function /(b::Float64, a::STaylor1{N,T}) where {N, T<:Number}
return (b*one(STaylor1{N,T}))/a
end
@generated function /(a::STaylor1{N,T}, b::STaylor1{N,T}) where {N,T<:Number}
ex_calc = quote end
append!(ex_calc.args, Any[nothing for i in 1:N])
syms = Symbol[Symbol("c$i") for i in 1:N]
# add error
ex_line = quote
if iszero(b[0])
throw(ArgumentError("""The 0th order STaylor1 coefficient
must be non-zero for b, (a/b)(x) is
not differentiable at x=0)."""))
end
end
ex_calc.args[1] = ex_line
# add recursion relation
for j = 0:(N-1)
ex_line = :(a[$(j)])
for k = 1:j
sym = syms[j-k+1]
ex_line = :($ex_line - $sym*b[$k])
end
sym = syms[j+1]
ex_line = :($sym = ($ex_line)/b[0])
ex_calc.args[j+2] = ex_line
end
exout = :(($(syms[1]),))
for i = 2:N
push!(exout.args, syms[i])
end
return quote
Base.@_inline_meta
$ex_calc
return STaylor1{N,T}($exout)
end
end
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 1251 | # getindex STaylor1
getindex(a::STaylor1, n::Int) = a.coeffs[n+1]
getindex(a::STaylor1, u::UnitRange{Int}) = a.coeffs[u .+ 1]
getindex(a::STaylor1, c::Colon) = a.coeffs[c]
getindex(a::STaylor1, u::StepRange{Int,Int}) = a.coeffs[u .+ 1]
@inline iterate(a::STaylor1{N,T}, state=0) where {N, T<:Number} = state > N-1 ? nothing : (a.coeffs[state+1], state+1)
@inline firstindex(a::STaylor1) = 0
@inline lastindex(a::STaylor1{N,T}) where {N, T<:Number} = N-1
@inline eachindex(s::STaylor1{N,T}) where {N, T<:Number} = UnitRange(0, N-1)
@inline size(s::STaylor1{N,T}) where {N, T<:Number} = N
@inline length(s::STaylor1{N,T}) where {N, T<:Number} = N
@inline get_order(s::STaylor1{N,T}) where {N, T<:Number} = N - 1
@inline eltype(s::STaylor1{N,T}) where {N, T<:Number} = T
@inline axes(a::STaylor1) = ()
function Base.findfirst(a::STaylor1{N,T}) where {N, T<:Number}
first = findfirst(x->!iszero(x), a.coeffs)
isa(first, Nothing) && return -1
return first-1
end
# Finds the last non-zero entry; extended to Taylor1
function Base.findlast(a::STaylor1{N,T}) where {N, T<:Number}
last = findlast(x->!iszero(x), a.coeffs)
isa(last, Nothing) && return -1
return last-1
end
constant_term(a::STaylor1) = a[0]
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 1524 | ######################### STaylor1
abstract type AbstractSeries{T<:Number} <: Number end
"""
STaylor1{N,T<:Number} <: AbstractSeries{T}
DataType for polynomial expansions in one independent variable.
**Fields:**
- `coeffs :: NTuple{N,T}` Expansion coefficients; the ``i``-th
component is the coefficient of degree ``i-1`` of the expansion.
Note that `STaylor1` variables are callable. For more information, see
[`evaluate`](@ref).
"""
struct STaylor1{N,T<:Number} <: AbstractSeries{T}
coeffs::NTuple{N,T}
function STaylor1{N,T}(coeffs::NTuple{N,T}) where {N, T <: Number}
new(coeffs)
end
end
function STaylor1(coeffs::NTuple{N,T}) where {N, T <: Number}
STaylor1{N,T}(coeffs)
end
## Outer constructors ##
"""
STaylor1(x::T, v::Val{N})
Shortcut to define the independent variable of a `STaylor1{N,T}` polynomial of
given `N` with constant term equal to `x`.
"""
@generated function STaylor1(x::T, v::Val{N}) where {N,T<:Number}
y = Any[:(zero($T)) for i=1:N]
tup = :((x,))
push!(tup.args, y...)
return quote
Base.@_inline_meta
STaylor1{(N+1),T}($tup)
end
end
function STaylor1(coeffs::Vector{T}, l::Val{L}, v::Val{N}) where {L,N,T<:Number}
STaylor1{(N+1),T}(ntuple(i -> (i < L+1) ? coeffs[i] : zero(T), N+1))
end
@inline function STaylor1(coeffs::Vector{T}) where {T<:Number}
STaylor1{length(coeffs),T}(tuple(coeffs...))
end
@inline STaylor1(x::STaylor1{N,T}) where {N,T<:Number} = x
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 1832 | # Conversion for STaylor1
function convert(::Type{STaylor1{N,Rational{T}}}, a::STaylor1{N,S}) where {N,T<:Integer, S<:AbstractFloat}
STaylor1(rationalize.(a.coeffs))
end
function convert(::Type{STaylor1{N,T}}, b::Array{T,1}) where {N,T<:Number}
@assert N == length(b)
STaylor1(b)
end
function convert(::Type{STaylor1{N,T}}, b::Array{S,1}) where {N,T<:Number, S<:Number}
@assert N == length(b)
STaylor1(convert(Array{T,1},b))
end
convert(::Type{STaylor1{N,T}}, a::STaylor1{N,T}) where {N,T<:Number} = a
convert(::Type{STaylor1{N,T}}, b::S) where {N, T<:Number, S<:Number} = STaylor1(convert(T,b), Val(N))
convert(::Type{STaylor1{N,T}}, b::T) where {N, T<:Number} = STaylor1(b, Val(N))
function promote_rule(::Type{STaylor1{N,T}}, ::Type{Float64}) where {N,T<:Number}
S = promote_rule(T, Float64)
STaylor1{N,S}
end
function promote_rule(::Type{STaylor1{N,T}}, ::Type{Int}) where {N,T<:Number}
S = promote_rule(T, Int)
STaylor1{N,S}
end
#promote_rule(::Type{STaylor1{N,T}}, ::Type{STaylor1{N,T}}) where {N, T<:Number} = STaylor1{N,T}
#promote_rule(::Type{STaylor1{N,T}}, ::Type{STaylor1{N,T}}) where {N, T<:Number} = STaylor1{N,T}
#promote_rule(::Type{STaylor1{N,T}}, ::Type{STaylor1{N,S}}) where {N, T<:Number, S<:Number} = STaylor1{N, promote_type(T,S)}
#promote_rule(::Type{STaylor1{N,T}}, ::Type{Array{T,1}}) where {N, T<:Number} = STaylor1{N,T}
#promote_rule(::Type{STaylor1{N,T}}, ::Type{Array{S,1}}) where {N, T<:Number, S<:Number} = STaylor1{N,promote_type(T,S)}
#promote_rule(::Type{STaylor1{N,T}}, ::Type{T}) where {N, T<:Number} = STaylor1{N,T}
#promote_rule(::Type{STaylor1{N,T}}, ::Type{S}) where {N, T<:Number, S<:Number} = STaylor1{N,promote_type(T,S)}
#promote_rule(::Type{STaylor1{N,Float64}}, ::Type{Float64}) where N = STaylor1{N,Float64}
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 1051 | function evaluate(a::STaylor1{N,T}, dx::T) where {N, T<:Number}
@inbounds suma = a[N-1]
@inbounds for k in (N-1):-1:0
suma = suma*dx + a[k]
end
suma
end
function evaluate(a::STaylor1{N,T}, x::STaylor1{N,T}) where {N, T<:Number}
@inbounds suma = a[end]*one(STaylor1{N,T})
@inbounds for k = (N-1):-1:0
suma = suma*x + a[k]
end
suma
end
evaluate(a::STaylor1{N,T}) where {N, T<:Number} = a[0]
evaluate(x::Union{Array{STaylor1{N,T}}, SubArray{STaylor1{N,T}}}, δt::S) where
{N, T<:Number, S<:Number} = evaluate.(x, δt)
evaluate(a::Union{Array{STaylor1{N,T}}, SubArray{STaylor1{N,T}}}) where
{N, T<:Number} = evaluate.(a, zero(T))
(p::STaylor1)(x) = evaluate(p, x)
(p::STaylor1)() = evaluate(p)
(p::Array{STaylor1{N,T}})(x) where {N,T<:Number} = evaluate.(p, x)
(p::SubArray{STaylor1{N,T}})(x) where {N,T<:Number} = evaluate.(p, x)
(p::Array{STaylor1{N,T}})() where {N,T<:Number} = evaluate.(p)
(p::SubArray{STaylor1{N,T}})() where {N,T<:Number} = evaluate.(p)
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 11157 | # Functions for STaylor1
@generated function exp(a::STaylor1{N,T}) where {N, T <: Number}
ex_calc = quote end
append!(ex_calc.args, Any[nothing for i in 1:N])
syms = Symbol[Symbol("c$i") for i in 1:N]
sym = syms[1]
ex_line = :($(syms[1]) = exp(a[0]))
ex_calc.args[1] = ex_line
for k in 1:(N-1)
kT = convert(T,k)
sym = syms[k+1]
ex_line = :($kT * a[$k] * $(syms[1]))
@inbounds for i = 1:k-1
ex_line = :($ex_line + $(kT-i) * a[$(k-i)] * $(syms[i+1]))
end
ex_line = :(($ex_line)/$kT)
ex_line = :($sym = $ex_line)
ex_calc.args[k+1] = ex_line
end
exout = :(($(syms[1]),))
for i = 2:N
push!(exout.args, syms[i])
end
return quote
Base.@_inline_meta
$ex_calc
return STaylor1{N,T}($exout)
end
end
@generated function log(a::STaylor1{N,T}) where {N, T <: Number}
ex_calc = quote end
append!(ex_calc.args, Any[nothing for i in 1:N])
syms = Symbol[Symbol("c$i") for i in 1:N]
(N >= 1) && (ex_calc.args[1] = :($(syms[1]) = log(constant_term(a))))
(N >= 2) && (ex_calc.args[2] = :($(syms[2]) = a[1]/constant_term(a)))
for k in 2:(N-1)
ex_line = :($(k-1)*a[1]*$(syms[k]))
@inbounds for i = 2:k-1
ex_line = :($ex_line + $(k-i)*a[$i] * $(syms[k+1-i]))
end
ex_line = :((a[$k] - ($ex_line)/$(convert(T,k)))/constant_term(a))
ex_line = :($(syms[k+1]) = $ex_line)
ex_calc.args[k+1] = ex_line
end
exout = :(($(syms[1]),))
for i = 2:N
push!(exout.args, syms[i])
end
return quote
Base.@_inline_meta
iszero(constant_term(a)) && throw(ArgumentError("""
The 0-th order `STaylor1` coefficient must be non-zero
in order to expand `log` around 0.
"""))
$ex_calc
return STaylor1{N,T}($exout)
end
end
sin(a::STaylor1{N,T}) where {N, T <: Number} = sincos(a)[1]
cos(a::STaylor1{N,T}) where {N, T <: Number} = sincos(a)[2]
@generated function sincos(a::STaylor1{N,T}) where {N, T <: Number}
ex_calc = quote end
append!(ex_calc.args, Any[nothing for i in 1:(2*N)])
syms_s = Symbol[Symbol("c$i") for i in 1:N]
syms_c = Symbol[Symbol("c2$i") for i in 1:N]
ex_line_s = :($(syms_s[1]) = sin(a[0]))
ex_line_c = :($(syms_c[1]) = cos(a[0]))
ex_calc.args[1] = ex_line_s
ex_calc.args[2] = ex_line_c
for k = 1:(N - 1)
ex_line_s = :(a[1]*$(syms_c[k]))
ex_line_c = :(-a[1]*$(syms_s[k]))
for i = 2:k
ex_line_s = :($ex_line_s + $i*a[$i]*$(syms_c[(k - i + 1)]))
ex_line_c = :($ex_line_c - $i*a[$i]*$(syms_s[(k - i + 1)]))
end
ex_line_s = :($(syms_s[k + 1]) = ($ex_line_s)/$k)
ex_line_c = :($(syms_c[k + 1]) = ($ex_line_c)/$k)
ex_calc.args[2*k + 1] = ex_line_s
ex_calc.args[2*k + 2] = ex_line_c
end
exout_s = :(($(syms_s[1]),))
for i = 2:N
push!(exout_s.args, syms_s[i])
end
exout_c = :(($(syms_c[1]),))
for i = 2:N
push!(exout_c.args, syms_c[i])
end
return quote
Base.@_inline_meta
$ex_calc
return STaylor1{N,T}($exout_s), STaylor1{N,T}($exout_c)
end
end
# Functions for STaylor1
@generated function tan(a::STaylor1{N,T}) where {N, T <: Number}
ex_calc = quote end
append!(ex_calc.args, Any[nothing for i in 1:(4*N)])
syms = Symbol[Symbol("c$i") for i in 1:N]
syms2 = Symbol[Symbol("c2$i") for i in 1:N]
for i = 1:N
ex_calc.args[i] = :($(syms2[i]) = 0.0)
end
ex_line_c = :($(syms[1]) = tan(a[0]))
ex_line_c2 = :($(syms2[1]) = ($(syms[1]))^2)
ex_calc.args[N + 1] = ex_line_c
ex_calc.args[N + 2] = ex_line_c2
for k = 1:(N - 1)
kodd = k%2
kend = div(k - 2 + kodd, 2)
kdiv2 = div(k, 2)
ex_line_c = :($(k-1)*a[$(k-1)]*$(syms2[2]))
for i = 1:(k - 1)
q = k - i
ex_line_c = :($ex_line_c + ($q)*a[$q]*$(syms2[i + 1]))
end
ex_line_c = :(a[$k] + ($ex_line_c)/$k)
ex_line_c = :($(syms[k + 1]) = $ex_line_c)
ex_calc.args[(3*k-2) + N + 2] = ex_line_c
ex_line_c2 = :(a[0]*a[$k])
for i = 1:kend
ex_line_c2 = :($ex_line_c2 + a[$i]*a[$k - $i])
end
ex_line_c2 = :(2*$ex_line_c2)
if kodd != 1
ex_line_c2 = :($ex_line_c2 + a[$kdiv2]^2)
end
ex_line_c2 = :($(syms2[k + 1]) = $ex_line_c2)
ex_calc.args[(3*k-1) + 2 + N] = ex_line_c2
blar = k + 1
blar_str = "c$(blar) "
ex_calc.args[3*k + N + 2] = :(println($blar_str*string($(syms[k + 1]))))
end
exout = :(($(syms[1]),))
for i = 2:N
push!(exout.args, syms[i])
end
return quote
Base.@_inline_meta
$ex_calc
return STaylor1{N,T}($exout)
end
end
# Functions for STaylor1
@generated function asin(a::STaylor1{N,T}) where {N, T <: Number}
ex_calc = quote end
append!(ex_calc.args, Any[nothing for i in 1:N])
syms = Symbol[Symbol("c$i") for i in 1:N]
sym = syms[1]
ex_line = :($(sym) = asin(a[0]))
ex_calc.args[1] = ex_line
for k in 1:(N-1)
kT = convert(T,k)
sym = syms[k+1]
ex_line = :($kT * a[$k] * $(syms[1]))
@inbounds for i = 1:k-1
ex_line = :($ex_line + $(kT-i) * a[$(k-i)] * $(syms[i+1]))
end
ex_line = :(($ex_line)/$kT)
ex_line = :($sym = $ex_line)
ex_calc.args[k+1] = ex_line
end
exout = :(($(syms[1]),))
for i = 2:N
push!(exout.args, syms[i])
end
return quote
Base.@_inline_meta
a0 = constant_term(a)
a0^2 == one(a0) && throw(ArgumentError(
"""
Recursion formula diverges due to vanishing `sqrt`
in the denominator.
"""))
$ex_calc
return STaylor1{N,T}($exout)
end
end
# Functions for STaylor1
@generated function acos(a::STaylor1{N,T}) where {N, T <: Number}
ex_calc = quote end
append!(ex_calc.args, Any[nothing for i in 1:N])
syms = Symbol[Symbol("c$i") for i in 1:N]
sym = syms[1]
ex_line = :($(sym) = acos(a[0]))
ex_calc.args[1] = ex_line
for k in 1:(N-1)
kT = convert(T,k)
sym = syms[k+1]
ex_line = :($kT * a[$k] * $(syms[1]))
@inbounds for i = 1:k-1
ex_line = :($ex_line + $(kT-i) * a[$(k-i)] * $(syms[i+1]))
end
ex_line = :(($ex_line)/$kT)
ex_line = :($sym = $ex_line)
ex_calc.args[k+1] = ex_line
end
exout = :(($(syms[1]),))
for i = 2:N
push!(exout.args, syms[i])
end
return quote
Base.@_inline_meta
$ex_calc
return STaylor1{N,T}($exout)
end
end
# Functions for STaylor1
@generated function atan(a::STaylor1{N,T}) where {N, T <: Number}
ex_calc = quote end
append!(ex_calc.args, Any[nothing for i in 1:N])
syms = Symbol[Symbol("c$i") for i in 1:N]
sym = syms[1]
ex_line = :($(sym) = atan(a[0]))
ex_calc.args[1] = ex_line
for k in 1:(N-1)
kT = convert(T,k)
sym = syms[k+1]
ex_line = :($kT * a[$k] * $(syms[1]))
@inbounds for i = 1:k-1
ex_line = :($ex_line + $(kT-i) * a[$(k-i)] * $(syms[i+1]))
end
ex_line = :(($ex_line)/$kT)
ex_line = :($sym = $ex_line)
ex_calc.args[k+1] = ex_line
end
exout = :(($(syms[1]),))
for i = 2:N
push!(exout.args, syms[i])
end
return quote
Base.@_inline_meta
$ex_calc
return STaylor1{N,T}($exout)
end
end
sinh(a::STaylor1{N,T}) where {N, T <: Number} = sinhcosh(a)[1]
cosh(a::STaylor1{N,T}) where {N, T <: Number} = sinhcosh(a)[2]
@generated function sinhcosh(a::STaylor1{N,T}) where {N, T <: Number}
ex_calc = quote end
append!(ex_calc.args, Any[nothing for i in 1:(2*N)])
syms_s = Symbol[Symbol("c$i") for i in 1:N]
syms_c = Symbol[Symbol("c2$i") for i in 1:N]
ex_line_s = :($(syms_s[1]) = sinh(a[0]))
ex_line_c = :($(syms_c[1]) = cosh(a[0]))
ex_calc.args[1] = ex_line_s
ex_calc.args[2] = ex_line_c
for k = 1:(N - 1)
ex_line_s = :(a[1]*$(syms_c[k]))
ex_line_c = :(a[1]*$(syms_s[k]))
for i = 2:k
ex_line_s = :($ex_line_s + $i*a[$i]*$(syms_c[(k - i + 1)]))
ex_line_c = :($ex_line_c + $i*a[$i]*$(syms_s[(k - i + 1)]))
end
ex_line_s = :($(syms_s[k + 1]) = ($ex_line_s)/$k)
ex_line_c = :($(syms_c[k + 1]) = ($ex_line_c)/$k)
ex_calc.args[2*k + 1] = ex_line_s
ex_calc.args[2*k + 2] = ex_line_c
end
exout_s = :(($(syms_s[1]),))
for i = 2:N
push!(exout_s.args, syms_s[i])
end
exout_c = :(($(syms_c[1]),))
for i = 2:N
push!(exout_c.args, syms_c[i])
end
return quote
Base.@_inline_meta
$ex_calc
return STaylor1{N,T}($exout_s), STaylor1{N,T}($exout_c)
end
end
# Functions for STaylor1
@generated function tanh(a::STaylor1{N,T}) where {N, T <: Number}
ex_calc = quote end
append!(ex_calc.args, Any[nothing for i in 1:(2*N)])
syms = Symbol[Symbol("c$i") for i in 1:N]
syms2 = Symbol[Symbol("c2$i") for i in 1:N]
ex_line_c = :($(syms[1]) = tanh(a[0]))
ex_line_c2 = :($(syms2[1]) = ($(syms[1]))^2)
ex_calc.args[1] = ex_line_c
ex_calc.args[2] = ex_line_c2
for k = 1:(N - 1)
kodd = k%2
kend = div(k - 2 + kodd, 2)
kdiv2 = div(k, 2)
ex_line_c = :($k*a[$k]*$(syms2[1]))
for i = 1:(k - 1)
q = k - i
ex_line_c = :($ex_line_c + ($q)*a[$q]*$(syms2[i+1]))
end
ex_line_c = :(a[$k] - $ex_line_c/$k)
ex_line_c = :($(syms[k + 1]) = $ex_line_c)
ex_calc.args[2*k + 1] = ex_line_c
ex_line_c2 = :(a[1]*a[$k])
@inbounds for i = 1:kend
ex_line_c2 = :($ex_line_c2 + a[$i + 1]*a[$k - $i])
end
ex_line_c2 = :(2*$ex_line_c2)
if kodd != 1
ex_line_c2 = :($ex_line_c2 + a[$kdiv2 + 1]^2)
end
ex_line_c2 = :($(syms2[k + 1]) = $ex_line_c2)
ex_calc.args[2*k + 2] = ex_line_c2
end
exout = :(($(syms[1]),))
for i = 2:N
push!(exout.args, syms[i])
end
return quote
Base.@_inline_meta
$ex_calc
return STaylor1{N,T}($exout)
end
end
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 1086 | using .IntervalArithmetic
function evaluate(a::STaylor1{N,T}, dx::Interval) where {N, T <: Number}
order = N - 1
uno = one(dx)
dx2 = dx^2
if iseven(order)
kend = order-2
@inbounds sum_even = a[end]*uno
@inbounds sum_odd = a[end-1]*zero(dx)
else
kend = order-3
@inbounds sum_odd = a[end]*uno
@inbounds sum_even = a[end-1]*uno
end
@inbounds for k = kend:-2:0
sum_odd = sum_odd*dx2 + a[k + 1]
sum_even = sum_even*dx2 + a[k]
end
return sum_even + sum_odd*dx
end
normalize_taylor(a::STaylor1{N,T}, I::Interval{T}, symI::Bool=true) where {N, T <: Number} =
_normalize(a, I, Val(symI))
function _normalize(a::STaylor1{N,T}, I::Interval{T}, ::Val{true}) where {N, T <: Number}
t = STaylor1(one(T), Val{N-1}())
tnew = mid(I) + t*radius(I)
return a(tnew)
end
function _normalize(a::STaylor1{N,T}, I::Interval{T}, ::Val{false}) where {N, T <: Number}
t = STaylor1(one(T), Val{N-1}())
tnew = inf(I) + t*diam(I)
return a(tnew)
end
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 1762 | for f in (:real, :imag, :conj)
@eval ($f)(a::STaylor1{N,T}) where {N,T<:Number} = STaylor1{N,T}(($f).(a.coeffs))
end
adjoint(a::STaylor1) = conj(a)
isinf(a::STaylor1) = any(isinf.(a.coeffs))
isnan(a::STaylor1) = any(isnan.(a.coeffs))
function abs(a::STaylor1{N,T}) where {N,T<:Real}
if a[0] > zero(T)
return a
elseif a[0] < zero(T)
return -a
else
throw(ArgumentError(
"""The 0th order Taylor1 coefficient must be non-zero
(abs(x) is not differentiable at x=0)."""))
end
end
abs2(a::STaylor1{N,T}) where {N,T<:Real} = a^2
deg2rad(z::STaylor1{N, T}) where {N, T<:AbstractFloat} = z * (convert(T, pi) / 180)
deg2rad(z::STaylor1{N, T}) where {N, T<:Real} = z * (convert(float(T), pi) / 180)
rad2deg(z::STaylor1{N, T}) where {N, T<:AbstractFloat} = z * (180 / convert(T, pi))
rad2deg(z::STaylor1{N, T}) where {N, T<:Real} = z * (180 / convert(float(T), pi))
function mod(a::STaylor1{N,T}, x::T) where {N, T<:Real}
return STaylor1{N,T}(ntuple(i -> i == 1 ? mod(constant_term(a), x) : a.coeffs[i], Val(N)))
end
function mod(a::STaylor1{N,T}, x::S) where {N, T<:Real, S<:Real}
R = promote_type(T, S)
a = convert(STaylor1{N,R}, a)
return mod(a, convert(R, x))
end
function rem(a::STaylor1{N,T}, x::T) where {N, T<:Real}
return STaylor1{N,T}(ntuple(i -> i == 1 ? rem(constant_term(a), x) : a.coeffs[i], Val(N)))
end
function rem(a::STaylor1{N,T}, x::S) where {N, T<:Real, S<:Real}
R = promote_type(T, S)
a = convert(STaylor1{N,R}, a)
return rem(a, convert(R, x))
end
function mod2pi(a::STaylor1{N,T}) where {N, T<:Real}
return STaylor1{N,T}(ntuple(i -> i == 1 ? mod2pi(constant_term(a)) : a.coeffs[i], Val(N)))
end
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 8935 | function ^(a::STaylor1{N,T}, n::Integer) where {N,T<:Real}
n == 0 && return one(a)
n == 1 && return a
n == 2 && return square(a)
n < 0 && return a^float(n)
return power_by_squaring(a, n)
end
^(a::STaylor1{N,T}, b::STaylor1{N,T}) where {N,T<:Number} = exp(b*log(a))
function power_by_squaring(x::STaylor1{N,T}, p::Integer) where {N,T<:Number}
p == 1 && return x
p == 0 && return one(x)
p == 2 && return square(x)
t = trailing_zeros(p) + 1
p >>= t
while (t -= 1) > 0
x = square(x)
end
y = x
while p > 0
t = trailing_zeros(p) + 1
p >>= t
while (t -= 1) ≥ 0
x = square(x)
end
y *= x
end
return y
end
@generated function ^(a::STaylor1{N,T}, r::S) where {N, T<:Number, S<:Real}
ex_calc = quote end
append!(ex_calc.args, Any[nothing for i in 1:N])
syms = Symbol[Symbol("c$i") for i in 1:N]
ctuple = Expr(:tuple)
for i = 1:N
push!(ctuple.args, syms[i])
end
for i = 1:N
push!(ex_calc.args, :($(syms[i]) = zero(T)))
end
expr_quote = quote
iszero(r) && return one(a)
r == 1 && return a
r == 2 && return square(a)
r == 1/2 && return sqrt(a)
$ex_calc
end
c = STaylor1(zero(T), Val{N}())
for k = 0:(N - 1)
symk = syms[k + 1]
temp_quote = quote
# First non-zero coefficient
l0 = findfirst(a)
if l0 < 0
$symk = zero(T)
else
# The first non-zero coefficient of the result; must be integer
!isinteger(r*l0) && throw(ArgumentError(
"""The 0th order Taylor1 coefficient must be non-zero
to raise the Taylor1 polynomial to a non-integer exponent."""))
lnull = trunc(Int, r*l0)
kprime = $k - lnull
if (kprime < 0) || (lnull > N-1)
$symk = zero(T)
else
# Relevant for positive integer r, to avoid round-off errors
if isinteger(r) && ($k > r*findlast(a))
$symk = zero(T)
else
if $k == lnull
$symk = a[l0]^r
else
# The recursion formula
if l0 + kprime ≤ (N - 1)
tup_in = $ctuple
$symk = r*kprime*tup_sel(lnull, tup_in)*a[l0 + kprime]
else
$symk = zero(T)
end
for i = 1:($k - lnull - 1)
if !((i + lnull) > (N - 1) || (l0 + kprime - i > (N - 1)))
aux = r*(kprime - i) - i
tup_in = $ctuple
$symk += aux*tup_sel(i + lnull, tup_in)*a[l0 + kprime - i]
end
end
$symk /= kprime*a[l0]
end
end
end
end
end
one_tup = ntuple(i -> i == 1 ? one(T) : zero(T), Val{N}())
expr_quote = quote
$expr_quote
if r == 0
$ctuple = $one_tup
elseif r == 1 # DO NOTHING
elseif r == 2
temp_st1 = square(STaylor1{N,T}($ctuple))
elseif r == 0.5
temp_st2 = sqrt(STaylor1{N,T}($ctuple))
else
$temp_quote
end
end
end
exout = :(($(syms[1]),))
for i = 2:N
push!(exout.args, syms[i])
end
return quote
Base.@_inline_meta
$expr_quote
return STaylor1{N,T}($exout)
end
end
@generated function square(a::STaylor1{N,T}) where {N, T<:Number}
ex_calc = quote end
append!(ex_calc.args, Any[nothing for i in 1:N])
syms = Symbol[Symbol("c$i") for i in 1:N]
sym = syms[1]
ex_line = :($(syms[1]) = a[0]^2)
ex_calc.args[1] = ex_line
for k in 1:(N-1)
kodd = k%2
kend = div(k - 2 + kodd, 2)
ex_line = :(a[0] * a[$k])
@inbounds for i = 1:kend
ex_line = :($ex_line + a[$i] * a[$(k-i)])
end
ex_line = :(2.0*($ex_line)) # float(2)* TODO: ADD BACK IN
if kodd !== 1
ex_line = :($ex_line +a[$(div(k,2))]^2)
end
ex_line = :($(syms[k+1]) = $ex_line)
ex_calc.args[k+1] = ex_line
end
exout = :(($(syms[1]),))
for i = 2:N
push!(exout.args, syms[i])
end
return quote
Base.@_inline_meta
$ex_calc
return STaylor1{N,T}($exout)
end
end
@generated function inverse(a::STaylor1{N,T}) where {N,T<:Real}
ex_calc = quote end
append!(ex_calc.args, Any[nothing for i in 1:(2*N)])
syms = Symbol[Symbol("c$i") for i in 1:N]
exout = :(($(syms[1]),))
for i = 2:N
push!(exout.args, syms[i])
end
count = 1
for n = 1:(N - 1)
ex_calc.args[2*count - 1] = :(syms[n + 1] = zdivfpown[n - 1]/n)
ex_calc.args[2*count] = :(zdivfpown *= zdivf)
count += 1
end
return quote
Base.@_inline_meta
if a[0] != zero(T)
throw(ArgumentError(
"""
Evaluation of Taylor1 series at 0 is non-zero. For high accuracy, revert
a Taylor1 series with first coefficient 0 and re-expand about f(0).
"""))
end
z = copy(a)
zdivf = z/a
zdivfpown = zdivf
S = eltype(zdivf)
$ex_calc
return STaylor1{N,T}($exout)
end
end
function tup_sel(i, vargs)
return vargs[i+1]
end
@generated function sqrt(a::STaylor1{N,T}) where {N,T<:Number}
ex_calc = quote end
append!(ex_calc.args, Any[nothing for i in 1:N])
syms = Symbol[Symbol("c$i") for i in 1:N]
ctuple = Expr(:tuple)
for i = 1:N
push!(ctuple.args, syms[i])
end
# First non-zero coefficient
expr_quote = quote
l0nz = findfirst(a)
aux = zero(T)
if l0nz < 0
return zero(STaylor1{N,T})
elseif l0nz%2 == 1 # l0nz must be pair
throw(ArgumentError(
"""First non-vanishing Taylor1 coefficient must correspond
to an **even power** in order to expand `sqrt` around 0."""))
end
# The last l0nz coefficients are set to zero.
lnull = div(l0nz, 2)
end
for i = 1:N
push!(ex_calc.args, :($(syms[i]) = zero(T)))
end
for i = 1:N
switch_expr = :((lnull == $(i-1)) && ($(syms[i]) = sqrt(a[l0nz])))
expr_quote = quote
$expr_quote
$switch_expr
end
end
for k = 0:(N - 1)
symk = syms[k + 1]
temp_expr = quote
if $k >= lnull + 1
if $k == lnull
$symk = sqrt(a[2*lnull])
else
kodd = ($k - lnull)%2
kend = div($k - lnull - 2 + kodd, 2)
imax = min(lnull + kend, N - 1)
imin = max(lnull + 1, $k + lnull - (N - 1))
if imin ≤ imax
tup_in = $ctuple
$symk = tup_sel(imin, tup_in)*tup_sel($k + lnull - imin, tup_in)
end
for i = (imin + 1):imax
tup_in = $ctuple
$symk += tup_sel(i, tup_in)*tup_sel($k + lnull - i, tup_in)
end
if $k + lnull ≤ (N - 1)
aux = a[$k + lnull] - 2*$symk
else
aux = -2*$symk
end
tup_in = $ctuple
if kodd == 0
aux -= tup_sel(kend + lnull + 1, tup_in)^2
end
$symk = aux/(2*tup_sel(lnull, tup_in))
end
end
end
expr_quote = quote
$expr_quote
$temp_expr
end
end
exout = :(($(syms[1]),))
for i = 2:N
push!(exout.args, syms[i])
end
return quote
Base.@_inline_meta
$ex_calc
$expr_quote
return STaylor1{N,T}($exout)
end
end
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 509 | # printing for static taylor
function coeffstring(t::STaylor1, i, variable=:t)
if i == 1 # order 0
return string(t.coeffs[i])
end
if i == 2 # order 1
return string(t.coeffs[i], variable)
end
return string(t.coeffs[i], variable, "^", i-1)
end
function print_taylor(io::IO, t::STaylor1, variable=:t)
print(io, "(" * join([coeffstring(t, i, variable) for i in 1:length(t.coeffs)], " + ") * ")")
end
Base.show(io::IO, t::STaylor1) = print_taylor(io, t)
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 66 | using Pkg
Pkg.test("DynamicBoundspODEsDiscrete"; coverage=true)
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | code | 24464 | #!/usr/bin/env julia
using Test, DynamicBoundspODEsDiscrete, McCormick, DynamicBoundsBase, DataStructures
using DynamicBoundspODEsDiscrete.StaticTaylorSeries
using DiffResults: JacobianResult
const DBB = DynamicBoundsBase
const DR = DynamicBoundspODEsDiscrete
@testset "Discretize and Relax" begin
struct unit_test_name <: DR.AbstractStateContractorName
end
@test_throws ErrorException DR.state_contractor_k(unit_test_name())
@test_throws ErrorException DR.state_contractor_γ(unit_test_name())
@test_throws ErrorException DR.state_contractor_steps(unit_test_name())
# test improvement condition for existence & uniqueness
function J!(out, x, p, t)
out[1, 1] = x
nothing
end
function f!(dx, x, p, t)
dx[1] = x[1]^2 + p[2]
dx[2] = x[2] + p[1]^2
nothing
end
np = 2
nx = 2
k = 3
x = [0.1; 1.0]
p = [0.2; 0.1]
jtf! = DR.JacTaylorFunctor!(f!, nx, np, Val(k), Interval{Float64}(0.0), 0.0)
xIntv = Interval{Float64}.(x)
pIntv = Interval{Float64}.(p)
yIntv = [xIntv; pIntv]
DR.jacobian_taylor_coeffs!(jtf!, xIntv, pIntv, 0.0)
jac = JacobianResult(jtf!.out, yIntv).derivs[1]
tjac = zeros(Interval{Float64}, nx + np, nx * (k + 1))
Jx = Matrix{Interval{Float64}}[
zeros(Interval{Float64}, nx, nx) for i = 1:(k+1)
]
Jp = Matrix{Interval{Float64}}[
zeros(Interval{Float64}, nx, np) for i = 1:(k+1)
]
DR.set_JxJp!(jtf!, xIntv, pIntv, 0.0)
@test isapprox(jtf!.Jp[2][2, 1].lo, 0.4, atol = 1E-3)
@test isapprox(jtf!.Jp[2][1, 2].lo, 1.0, atol = 1E-3)
@test isapprox(jtf!.Jp[4][2, 1].lo, 0.0666666, atol = 1E-3)
@test isapprox(jtf!.Jp[4][1, 2].lo, 0.079999, atol = 1E-3)
@test isapprox(jtf!.Jx[2][1, 1].lo, 0.2, atol = 1E-3)
@test isapprox(jtf!.Jx[2][2, 2].lo, 1.0, atol = 1E-3)
@test isapprox(jtf!.Jx[4][1, 1].lo, 0.030666, atol = 1E-3)
@test isapprox(jtf!.Jx[4][2, 2].lo, 0.1666, atol = 1E-3)
# make/evaluate interval valued Taylor cofficient functor
itf! = DR.TaylorFunctor!(
f!,
nx,
np,
Val(k),
zero(Interval{Float64}),
zero(Float64),
)
outIntv = Vector{Interval{Float64}}[zeros(Interval{Float64}, 2) for i = 1:4]
itf!(outIntv, xIntv, pIntv, 0.0)
@test isapprox(outIntv[1][1].lo, 0.10001, atol = 1E-3)
@test isapprox(outIntv[2][2].lo, 1.0399999999999998, atol = 1E-3)
@test isapprox(outIntv[3][1].lo, 0.011, atol = 1E-3)
@test isapprox(outIntv[4][2].lo, 0.173334, atol = 1E-3)
@test isapprox(outIntv[1][2].hi, 1.0, atol = 1E-3)
@test isapprox(outIntv[2][1].hi, 0.1100000000000000, atol = 1E-3)
@test isapprox(outIntv[3][2].hi, 0.52, atol = 1E-3)
@test isapprox(outIntv[4][1].hi, 0.004766666666666669, atol = 1E-3)
# make/evaluate real valued Taylor cofficient functor
rtf! = DR.TaylorFunctor!(f!, nx, np, Val(k), zero(Float64), zero(Float64))
out = Vector{Float64}[zeros(Float64, 2) for i = 1:4]
rtf!(out, x, p, 0.0)
@test isapprox(out[1][1], 0.10001, atol = 1E-3)
@test isapprox(out[2][1], 0.11000000000000001, atol = 1E-3)
@test isapprox(out[3][1], 0.011, atol = 1E-3)
@test isapprox(out[4][1], 0.004766666666666668, atol = 1E-3)
@test isapprox(out[1][2], 1.0, atol = 1E-3)
@test isapprox(out[2][2], 1.04, atol = 1E-3)
@test isapprox(out[3][2], 0.52, atol = 1E-3)
@test isapprox(out[4][2], 0.17333333333333334, atol = 1E-3)
# higher order existence tests
hⱼ = 0.001
hmin = 0.00001
function euf!(out, x, p, t)
out[1, 1] = -x[1]^2
nothing
end
jtf_exist_unique! =
DR.JacTaylorFunctor!(euf!, 1, 1, Val(k), Interval{Float64}(0.0), 0.0)
xIntv_plus = xIntv .+ Interval(0, 1)
DR.jacobian_taylor_coeffs!(jtf_exist_unique!, xIntv_plus, pIntv, 0.0)
@test isapprox(
jtf_exist_unique!.result.value[4].lo,
-1.464100000000001,
atol = 1E-5,
)
@test isapprox(
jtf_exist_unique!.result.value[4].hi,
-9.999999999999999e-5,
atol = 1E-5,
)
@test isapprox(
jtf_exist_unique!.result.derivs[1][3, 1].lo,
0.03,
atol = 1E-5,
)
@test isapprox(
jtf_exist_unique!.result.derivs[1][3, 1].hi,
3.6300000000000012,
atol = 1E-5,
)
coeff_out = zeros(Interval{Float64}, 1, k)
DR.set_JxJp!(jtf_exist_unique!, xIntv_plus, pIntv, 0.0)
@test isapprox(jtf_exist_unique!.Jx[4][1, 1].lo, -5.32401, atol = 1E-5)
@test isapprox(jtf_exist_unique!.Jx[4][1, 1].hi, -0.00399999, atol = 1E-5)
@test jtf_exist_unique!.Jp[1][1, 1].lo ==
jtf_exist_unique!.Jp[1][1, 1].hi ==
0.0
end
if !(VERSION < v"1.1" && testfile == "intervals.jl")
using TaylorSeries
function test_vs_Taylor1(x, y)
flag = true
for i = 0:2
if x[i] !== y[i]
flag = false
break
end
end
flag
end
@testset "Tests for STaylor1 expansions" begin
@test STaylor1 <: DR.StaticTaylorSeries.AbstractSeries
@test STaylor1{1,Float64} <: DR.StaticTaylorSeries.AbstractSeries{Float64}
@test STaylor1([1.0, 2.0]) == STaylor1((1.0, 2.0))
@test STaylor1(STaylor1((1.0, 2.0))) == STaylor1((1.0, 2.0))
@test STaylor1(1.0, Val(2)) == STaylor1((1.0, 0.0, 0.0))
@test +STaylor1([1.0, 2.0, 3.0]) == STaylor1([1.0, 2.0, 3.0])
@test -STaylor1([1.0, 2.0, 3.0]) == -STaylor1([1.0, 2.0, 3.0])
@test STaylor1([1.0, 2.0, 3.0]) + STaylor1([3.0, 2.0, 3.0]) ==
STaylor1([4.0, 4.0, 6.0])
@test STaylor1([1.0, 2.0, 3.0]) - STaylor1([3.0, 2.0, 4.0]) ==
STaylor1([-2.0, 0.0, -1.0])
@test STaylor1([1.0, 2.0, 3.0]) + 2.0 == STaylor1([3.0, 2.0, 3.0])
@test STaylor1([1.0, 2.0, 3.0]) - 2.0 == STaylor1([-1.0, 2.0, 3.0])
@test 2.0 + STaylor1([1.0, 2.0, 3.0]) == STaylor1([3.0, 2.0, 3.0])
@test 2.0 - STaylor1([1.0, 2.0, 3.0]) == STaylor1([1.0, -2.0, -3.0])
@test zero(STaylor1([1.0, 2.0, 3.0])) == STaylor1([0.0, 0.0, 0.0])
@test one(STaylor1([1.0, 2.0, 3.0])) == STaylor1([1.0, 0.0, 0.0])
@test_throws ArgumentError STaylor1([1.1, 2.1])/STaylor1([0.0, 2.1])
@test isinf(STaylor1([Inf, 2.0, 3.0])) &&
~isinf(STaylor1([0.0, 0.0, 0.0]))
@test isnan(STaylor1([NaN, 2.0, 3.0])) &&
~isnan(STaylor1([1.0, 0.0, 0.0]))
@test iszero(STaylor1([0.0, 0.0, 0.0])) &&
~iszero(STaylor1([0.0, 1.0, 0.0]))
@test length(STaylor1([0.0, 0.0, 0.0])) == 3
@test size(STaylor1([0.0, 0.0, 0.0])) == 3
@test firstindex(STaylor1([0.0, 0.0, 0.0])) == 0
@test lastindex(STaylor1([0.0, 0.0, 0.0])) == 2
st1 = STaylor1([1.0, 2.0, 3.0])
@test st1(2.0) == 41.0
@test st1() == 1.00
st2 = typeof(st1)[st1; st1]
@test st2(2.0)[1] == st2(2.0)[2] == 41.0
@test st2()[1] == st2()[2] == 1.0
@test StaticTaylorSeries.evaluate(st1, 2.0) == 41.0
@test StaticTaylorSeries.evaluate(st1) == 1.00
@test StaticTaylorSeries.evaluate(st2, 2.0)[1] ==
StaticTaylorSeries.evaluate(st2, 2.0)[2] ==
41.0
@test StaticTaylorSeries.evaluate(st2)[1] ==
StaticTaylorSeries.evaluate(st2)[2] ==
1.0
@test view(typeof(STaylor1([1.1, 2.1]))[STaylor1([1.1, 2.1]) STaylor1([1.1, 2.1]); STaylor1([1.1, 2.1]) STaylor1([1.1, 2.1])], :, 1)(0.0) == Float64[1.1; 1.1]
@test view(typeof(STaylor1([1.1, 2.1]))[STaylor1([1.1, 2.1]) STaylor1([1.1, 2.1]); STaylor1([1.1, 2.1]) STaylor1([1.1, 2.1])], :, 1)() == Float64[1.1; 1.1]
# check that STaylor1 and Taylor yeild same result
t1 = STaylor1([1.1, 2.1, 3.1])
t2 = Taylor1([1.1, 2.1, 3.1])
for f in (exp, abs, log, sin, cos, sinh, cosh, mod2pi, sqrt, abs2,
deg2rad, rad2deg)
@test test_vs_Taylor1(f(t1), f(t2))
end
@test DR.StaticTaylorSeries.get_order(t1) == 2
@test axes(t1) isa Tuple{}
@test iterate(t1)[1] == 1.10
@test iterate(t1)[2] == 1
@test eachindex(t1) == 0:2
@test t1[:] == (1.10, 2.10, 3.10)
@test t1[1:2] == (2.10, 3.10)
@test t1[0:2:2] == (1.10, 3.10)
@test rem(t1, 2) == t1
@test mod(t1, 2) == t1
@test STaylor1([1.1, 2.1, 3.1], Val(3), Val(5)) == STaylor1([1.1, 2.1, 3.1, 0.0, 0.0, 0.0])
t1_mod = mod(t1, 2.0)
t2_mod = mod(t2, 2.0)
@test isapprox(t1_mod[0], t2_mod[0], atol = 1E-10)
@test isapprox(t1_mod[1], t2_mod[1], atol = 1E-10)
@test isapprox(t1_mod[2], t2_mod[2], atol = 1E-10)
t1_rem = rem(t1, 2.0)
t2_rem = rem(t2, 2.0)
@test isapprox(t1_rem[0], t2_rem[0], atol = 1E-10)
@test isapprox(t1_rem[1], t2_rem[1], atol = 1E-10)
@test isapprox(t1_rem[2], t2_rem[2], atol = 1E-10)
t1a = STaylor1([2.1, 2.1, 3.1])
t2a = Taylor1([2.1, 2.1, 3.1])
for test_tup in (
(/, t1, t1a, t2, t2a),
(*, t1, t1a, t2, t2a),
(/, t1, 1.3, t2, 1.3),
(*, t1, 1.3, t2, 1.3),
(+, t1, 1.3, t2, 1.3),
(-, t1, 1.3, t2, 1.3),
(*, 1.3, t1, 1.3, t2),
(+, 1.3, t1, 1.3, t2),
(-, 1.3, t1, 1.3, t2),
(*, 1.3, t1, 1.3, t2),
(^, t1, 0, t2, 0),
(^, t1, 1, t2, 1),
(^, t1, 2, t2, 2),
(^, t1, 3, t2, 3),
(^, t1, 4, t2, 4),
(/, 1.3, t1, 1.3, t2),
#(^, t1, -1, t2, -1),
#(^, t1, -2, t2, -2),
#(^, t1, -3, t2, -3),
(^, t1, 0.6, t2, 0.6),
(^, t1, 1 / 2, t2, 1 / 2),
)
temp1 = test_tup[1](test_tup[2], test_tup[3])
temp2 = test_tup[1](test_tup[4], test_tup[5])
check1 = isapprox(temp1[0], temp2[0], atol = 1E-10)
check2 = isapprox(temp1[1], temp2[1], atol = 1E-10)
check3 = isapprox(temp1[2], temp2[2], atol = 1E-10)
@test check1
@test check2
@test check3
if !check1 || !check2 || !check3
println("$test_tup, $temp1, $temp2")
end
end
@test isapprox(
StaticTaylorSeries.square(t1)[0],
(t2^2)[0],
atol = 1E-10,
)
@test isapprox(
StaticTaylorSeries.square(t1)[1],
(t2^2)[1],
atol = 1E-10,
)
@test isapprox(
StaticTaylorSeries.square(t1)[2],
(t2^2)[2],
atol = 1E-10,
)
a = STaylor1([0.0, 1.2, 2.3, 4.5, 0.0])
@test findfirst(a) == 1
@test findlast(a) == 3
eval_staylor = StaticTaylorSeries.evaluate(a, Interval(1.0, 2.0))
@test isapprox(eval_staylor.lo, 7.99999, atol = 1E-4)
@test isapprox(eval_staylor.hi, 47.599999999999994, atol = 1E-4)
a = STaylor1([5.0, 1.2, 2.3, 4.5, 0.0])
@test isapprox(deg2rad(a)[0], 0.087266, atol = 1E-5)
@test isapprox(deg2rad(a)[2], 0.040142, atol = 1E-5)
@test isapprox(rad2deg(a)[0], 286.4788975, atol = 1E-5)
@test isapprox(rad2deg(a)[2], 131.7802928, atol = 1E-5)
@test real(a) == STaylor1([5.0, 1.2, 2.3, 4.5, 0.0])
@test imag(a) == STaylor1([0.0, 0.0, 0.0, 0.0, 0.0])
@test adjoint(a) == STaylor1([5.0, 1.2, 2.3, 4.5, 0.0])
@test conj(a) == STaylor1([5.0, 1.2, 2.3, 4.5, 0.0])
@test a == abs(a)
@test a == abs(-a)
@test convert(
STaylor1{3,Float64},
STaylor1{3,Float64}((1.1, 2.2, 3.3)),
) == STaylor1{3,Float64}((1.1, 2.2, 3.3))
@test convert(STaylor1{3,Float64}, 1) == STaylor1(1.0, Val(3))
@test convert(STaylor1{3,Float64}, 1.2) == STaylor1(1.2, Val(3))
#ta(a) = STaylor1(1.0, Val(15))
@test_broken promote(1.0, STaylor1(1.0, Val(15)))[1] == STaylor1(1.0, Val(16))
@test promote(0, STaylor1(1.0, Val(15)))[1] == STaylor1(0.0, Val(16))
@test_broken eltype(promote(STaylor1(1, Val(15)), 2)[2]) == Int
@test_broken eltype(promote(STaylor1(1.0, Val(15)), 1.1)[2]) == Float64
@test eltype(promote(0, STaylor1(1.0, Val(15)))[1]) == Float64
@test_broken promote_rule(typeof(STaylor1([1.1, 2.1])), typeof(STaylor1([1.1, 2.1]))) == STaylor1{2,Float64}
@test_broken promote_rule(typeof(STaylor1([1.1, 2.1])), typeof(STaylor1([1, 2]))) == STaylor1{2,Float64}
@test_broken promote_rule(typeof(STaylor1([1.1, 2.1])), typeof([1.1, 2.1])) == STaylor1{2,Float64}
@test_broken promote_rule(typeof(STaylor1([1.1, 2.1])), typeof([1, 2])) == STaylor1{2,Float64}
@test_broken promote_rule(typeof(STaylor1([1.1, 2.1])), typeof(1.1)) == STaylor1{2,Float64}
@test promote_rule(typeof(STaylor1([1.1, 2.1])), typeof(1)) == STaylor1{2,Float64} #TODO: FAILING
@test convert(STaylor1{2,Float64}, [1; 2]) == STaylor1(Float64[1, 2])
@test convert(STaylor1{2,Float64}, [1.1; 2.1]) == STaylor1([1.1, 2.1])
@test convert(STaylor1{2,Rational{Int64}}, STaylor1(BigFloat[0.5, 0.75])) == STaylor1([0.5, 0.75])
@test isapprox(StaticTaylorSeries.normalize_taylor(STaylor1([1.1, 2.1]), Interval(1.0, 2.0))[0], 13.7, atol = 1E-8)
@test isapprox(StaticTaylorSeries._normalize(STaylor1([1.1, 2.1]), Interval(1.0, 2.0), Val(true))[0], 13.7, atol = 1E-8)
@test isapprox(StaticTaylorSeries._normalize(STaylor1([1.1, 2.1]), Interval(1.0, 2.0), Val(false))[0], 13.7, atol = 1E-8)
@test_nowarn Base.show(stdout, a)
@test StaticTaylorSeries.coeffstring(a, 5) == "0.0t^4"
@test StaticTaylorSeries.coeffstring(a, 2) == "1.2t"
@test_throws ArgumentError abs(STaylor1([0.0, 2.1]))
end
end
@testset "Lohner's Method Interval Testset" begin
ticks = 100.0
steps = 100.0
tend = steps / ticks
x0(p) = [9.0]
function f!(dx, x, p, t)
dx[1] = p[1] - x[1]
nothing
end
tspan = (0.0, tend)
pL = [-1.0]
pU = [1.0]
prob = DBB.ODERelaxProb(f!, tspan, x0, pL, pU)
integrator = DiscretizeRelax(
prob,
DR.LohnerContractor{7}(),
h = 1 / ticks,
repeat_limit = 1,
skip_step2 = false,
step_limit = steps,
relax = false,
)
ratio = rand(1)
pstar = pL .* ratio .+ pU .* (1.0 .- ratio)
DBB.setall!(integrator, DBB.ParameterValue(), [0.0])
DBB.relax!(integrator)
lo_vec = getfield.(getindex.(integrator.storage[:], 1), :lo)
hi_vec = getfield.(getindex.(integrator.storage[:], 1), :hi)
@test isapprox(lo_vec[7], 8.417645335842485, atol = 1E-5)
@test isapprox(hi_vec[7], 8.534116268673994, atol = 1E-5)
end
@testset "Lohner's Method MC Testset" begin
ticks = 100.0
steps = 100.0
tend = steps / ticks
x0(p) = [9.0]
function f!(dx, x, p, t)
dx[1] = p[1] - x[1]
nothing
end
tspan = (0.0, tend)
pL = [-0.3]
pU = [0.3]
prob = DynamicBoundsBase.ODERelaxProb(f!, tspan, x0, pL, pU)
integrator = DiscretizeRelax(
prob,
DynamicBoundspODEsDiscrete.LohnerContractor{7}(),
h = 1 / ticks,
repeat_limit = 1,
skip_step2 = false,
step_limit = steps,
relax = true,
)
ratio = rand(1)
pstar = pL .* ratio .+ pU .* (1.0 .- ratio)
DynamicBoundsBase.setall!(integrator, DynamicBoundsBase.ParameterValue(), [0.0])
DynamicBoundsBase.relax!(integrator)
lo_vec = getfield.(getfield.(getindex.(integrator.storage[:], 1), :Intv), :lo)
hi_vec = getfield.(getfield.(getindex.(integrator.storage[:], 1), :Intv), :hi)
@test isapprox(lo_vec[6], 8.546433647856642, atol = 1E-5)
@test isapprox(hi_vec[6], 8.575695993156213, atol = 1E-5)
support_set = DBB.get(integrator, DBB.SupportSet())
out = Matrix{Float64}[]
for i = 1:1
push!(out, zeros(1,length(support_set.s)))
end
# DBB.getall!(out, integrator, DBB.Subgradient{Lower}())
# @test isapprox(out[1][1,10], 0.08606881472877183, atol=1E-8)
# DBB.getall!(out, integrator, DBB.Subgradient{Upper}())
# @test isapprox(out[1][1,10], 0.08606881472877183, atol=1E-8)
#out = zeros(1, length(support_set.s))
#DBB.getall!(out, integrator, DBB.Bound{Lower}())
#@test isapprox(out[1,10], 8.199560023022423, atol=1E-8)
#DBB.getall!(out, integrator, DBB.Bound{Upper}())
#@test isapprox(out[1,10], 8.251201311859687, atol=1E-8)
#DBB.getall!(out, integrator, DBB.Relaxation{Lower}())
#@test isapprox(out[1,10], 8.225380667441055, atol=1E-8) #
#DBB.getall!(out, integrator, DBB.Relaxation{Upper}())
#@test isapprox(out[1,10], 8.225380667441055, atol=1E-8) #
#out = DBB.getall(integrator, DBB.Subgradient{Lower}())
#@test isapprox(out[1][1,10], 0.08606881472877183, atol=1E-8)
#out = DBB.getall(integrator, DBB.Subgradient{Upper}())
#@test isapprox(out[1][1,10], 0.08606881472877183, atol=1E-8)
#out = DBB.getall(integrator, DBB.Bound{Lower}())
#@test isapprox(out[1,10], 8.199560023022423, atol=1E-8)
#out = DBB.getall(integrator, DBB.Bound{Upper}())
#@test isapprox(out[1,10], 8.251201311859687, atol=1E-8)
#out = DBB.getall(integrator, DBB.Relaxation{Lower}())
#@test isapprox(out[1,10], 8.225380667441055, atol=1E-8)
#out = DBB.getall(integrator, DBB.Relaxation{Upper}())
#@test isapprox(out[1,10], 8.225380667441055, atol=1E-8)
#outvec = zeros(length(support_set.s))
#DBB.getall!(outvec, integrator, DBB.Bound{Lower}())
#@test isapprox(outvec[10], 8.199560023022423, atol=1E-8)
#DBB.getall!(outvec, integrator, DBB.Bound{Upper}())
#@test isapprox(outvec[10], 8.251201311859687, atol=1E-8)
#DBB.getall!(outvec, integrator, DBB.Relaxation{Lower}())
#@test isapprox(outvec[10], 8.225380667441055, atol=1E-8)
#DBB.getall!(outvec, integrator, DBB.Relaxation{Upper}())
#@test isapprox(outvec[10], 8.225380667441055, atol=1E-8)
end
@testset "Wilhelm 2019 Integrator Testset" begin
Y = Interval(0,5)
X1 = Interval(1,2)
X2 = Interval(-10,10)
X3 = Interval(0,5)
flag1 = DR.strict_x_in_y(X1,Y)
flag2 = DR.strict_x_in_y(X2,Y)
flag3 = DR.strict_x_in_y(X3,Y)
@test flag1 == true
@test flag2 == false
@test flag3 == false
A1 = Interval(0)
A2 = Interval(0,3)
A3 = Interval(-2,0)
A4 = Interval(-3,2)
ind1,B1,C1 = DR.extended_divide(A1)
ind2,B2,C2 = DR.extended_divide(A2)
ind3,B3,C3 = DR.extended_divide(A3)
ind4,B4,C4 = DR.extended_divide(A4)
@test ind1 == 0
@test ind2 == 1
@test ind3 == 2
@test ind4 == 3
@test B1 == Interval(-Inf,Inf)
@test 0.33333 - 1E-4 <= B2.lo <= 0.33333 + 1E-4
@test B2.hi == Inf
@test B3 == Interval(-Inf,-0.5)
@test B4.lo == -Inf
@test -0.33333 - 1E-4 <= B4.hi <= -0.33333 + 1E-4
@test C1 == Interval(-Inf,Inf)
@test C2 == Interval(Inf,Inf)
@test C3 == Interval(-Inf,-Inf)
@test C4 == Interval(0.5,Inf)
N = Interval(-5,5)
X = Interval(-5,5)
Mii = Interval(-5,5)
B = Interval(-5,5)
rtol = 1E-4
indx1,box11,box12 = DR.extended_process(N,X,Mii,B,rtol)
Miib = Interval(0,5)
S1b = Interval(1,5)
S2b = Interval(1,5)
Bb = Interval(1,5)
indx2,box21,box22 = DR.extended_process(N,X,Mii,B,rtol)
Miic = Interval(-5,0)
S1c = Interval(1,5)
S2c = Interval(1,5)
Bc = Interval(1,5)
indx3,box31,box32 = DR.extended_process(N,X,Mii,B,rtol)
Miia = Interval(1,5)
S1a = Interval(1,5)
S2a = Interval(1,5)
Ba = Interval(1,5)
indx6,box61,box62 = DR.extended_process(N,X,Mii,B,rtol)
Miid = Interval(0,0)
S1d = Interval(1,5)
S2d = Interval(1,5)
Bd = Interval(1,5)
indx8,box81,box82 = DR.extended_process(N,X,Mii,B,rtol)
@test indx1 == 0
@test box11 == Interval(-Inf,Inf)
@test box12 == Interval(-5,5)
@test indx2 == 0
@test box21.hi > -Inf
@test box22 == Interval(-5,5)
@test indx3 == 0
@test box31.lo < Inf
@test box32 == Interval(-5,5)
@test indx6 == 0
@test box62.lo == -5.0
@test box61.hi == Inf
@test indx8 == 0
end
@testset "Discretize and Relax - Access Functions" begin
use_relax = false
lohners_type = 1
prob_num = 1
ticks = 100.0
steps = 100.0
tend = steps / ticks
x0(p) = [1.2; 1.1]
function f!(dx, x, p, t)
dx[1] = p[1] * x[1] * (one(typeof(p[1])) - x[2])
dx[2] = p[1] * x[2] * (x[1] - one(typeof(p[1])))
nothing
end
tspan = (0.0, tend)
pL = [2.95]
pU = [3.05]
prob = DBB.ODERelaxProb(f!, tspan, x0, pL, pU)
integrator = DiscretizeRelax(
prob,
DynamicBoundspODEsDiscrete.LohnerContractor{7}(),
h = 1 / ticks,
repeat_limit = 1,
skip_step2 = false,
step_limit = steps,
relax = use_relax,
)
@test DBB.supports(integrator, DBB.IntegratorName())
@test !DBB.supports(integrator, DBB.Gradient())
@test DBB.supports(integrator, DBB.Subgradient())
@test DBB.supports(integrator, DBB.Bound())
@test DBB.supports(integrator, DBB.Relaxation())
@test DBB.supports(integrator, DBB.IsNumeric())
@test DBB.supports(integrator, DBB.IsSolutionSet())
@test DBB.supports(integrator, DBB.TerminationStatus())
@test DBB.supports(integrator, DBB.Value())
@test DBB.supports(integrator, DBB.ParameterValue())
@test DBB.supports(integrator, DBB.SupportSet())
@test DBB.get(integrator, DBB.IntegratorName()) == "Discretize & Relax Integrator"
@test !DBB.get(integrator, DBB.IsNumeric())
@test DBB.get(integrator, DBB.IsSolutionSet())
@test DBB.get(integrator, DBB.TerminationStatus()) == RELAXATION_NOT_CALLED
DBB.set!(integrator, DBB.SupportSet(Float64[i for i in range(0.0, tend, length = 200)]))
ratio = rand(1)
pstar = pL .* ratio .+ pU .* (1.0 .- ratio)
DBB.setall!(integrator, DBB.ParameterValue(), [0.0])
DBB.relax!(integrator)
DBB.setall!(integrator, DBB.ParameterBound{Lower}(), [2.99])
DBB.setall!(integrator, DBB.ParameterBound{Upper}(), [3.01])
support_set = DBB.get(integrator, DBB.SupportSet())
#@test support_set.s[3] == 0.02
#=
out = Matrix{Float64}[]
for i in 1:1
push!(out, zeros(1,length(support_set.s)))
end
DBB.getall!(out, integrator, DBB.Subgradient{Lower}())
@test out[1][1,10] == 0.0
DBB.getall!(out, integrator, DBB.Subgradient{Upper}())
@test out[1][1,10] == 0.0
out = zeros(1,length(support_set.s))
DBB.getall!(out, integrator, DBB.Bound{Lower}())
@test isapprox(out[1,10], 1.1507186500504751, atol=1E-8)
DBB.getall!(out, integrator, DBB.Bound{Upper}())
@test isapprox(out[1,10], 1.1534467709985823, atol=1E-8)
DBB.getall!(out, integrator, DBB.Relaxation{Lower}())
@test isapprox(out[1,10], 1.1507186500504751, atol=1E-8)
DBB.getall!(out, integrator, DBB.Relaxation{Upper}())
@test isapprox(out[1,10], 1.1534467709985823, atol=1E-8)
out = DBB.getall(integrator, DBB.Subgradient{Lower}())
@test out[1][1,10] == 0.0
out = DBB.getall(integrator, DBB.Subgradient{Upper}())
@test out[1][1,10] == 0.0
out = DBB.getall(integrator, DBB.Bound{Lower}())
@test isapprox(out[1,10], 1.1507186500504751, atol=1E-8)
out = DBB.getall(integrator, DBB.Bound{Upper}())
@test isapprox(out[1,10], 1.1534467709985823, atol=1E-8)
out = DBB.getall(integrator, DBB.Relaxation{Lower}())
@test isapprox(out[1,10], 1.1507186500504751, atol=1E-8)
out = DBB.getall(integrator, DBB.Relaxation{Upper}())
@test isapprox(out[1,10], 1.1534467709985823, atol=1E-8)
=#
end
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.3.0 | f6b0e7a88bb6b16aff318c9f6436704a8828aa0b | docs | 2804 | # DynamicBoundspODEsDiscrete.jl
Parametric Discretize-and-Relax methods within DynamicBounds.jl
| **Linux/OS/Windows** | **Coverage** |
|:-------------------------------------------------------:|:-------------------------------------------------------:|
| [](https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl/actions?query=workflow%3ACI) | [](https://codecov.io/gh/PSORLab/DynamicBoundspODEsDiscrete.jl) |
## Summary
This package implements a discretize-and-relax approaches to
computing state bounds and relaxations using the DynamicBounds.jl framework. These methods discretize the time domain over into a finite number of points and then compute valid
relaxations at these time-points. Full documentation of this functionality may be found [here](https://psorlab.github.io/DynamicBounds.jl/dev/pODEsDiscrete/pODEsDiscrete) in the DynamicBounds.jl website.
## Installation
```julia
using Pkg; Pkg.add("DynamicBoundspODEsDiscrete")
```
or using the following command in the package manager environment
```
pkg > add DynamicBoundspODEsDiscrete
```
Note that this package can also be used directly via DynamicBounds.jl as the later
package automatically reexports it.
## References
- Corliss, G. F., & Rihm, R. (1996). Validating an a priori enclosure using high-order Taylor series. MATHEMATICAL RESEARCH, 90, 228-238.
- Lohner, R. J. (1992, January). Computation of guaranteed enclosures for the solutions of ordinary initial and boundary value problems. In Institute of mathematics and its applications conference series (Vol. 39, pp. 425-425). Oxford University Press.
- Nedialkov, Nedialko S., and Kenneth R. Jackson. "An interval Hermite-Obreschkoff method for computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation." Reliable Computing 5.3 (1999): 289-310.
- Nedialkov, Nedialko Stoyanov. Computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation. University of Toronto, 2000.
- Nedialkov, N. S., & Jackson, K. R. (2000). ODE software that computes guaranteed bounds on the solution. In Advances in Software Tools for Scientific Computing (pp. 197-224). Springer, Berlin, Heidelberg.
- Sahlodin, A. M., & Chachuat, B. (2011). Discretize-then-relax approach for convex/concave relaxations of the solutions of parametric ODEs. Applied Numerical Mathematics, 61(7), 803-820.
- Wilhelm, M. E., Le, A. V., & Stuber, M. D. (2019). Global optimization of stiff dynamical systems. AIChE Journal, 65(12), e16836
| DynamicBoundspODEsDiscrete | https://github.com/PSORLab/DynamicBoundspODEsDiscrete.jl.git |
|
[
"MIT"
] | 0.1.2 | fb0f291ac3d4e106a316d600df746dac11624388 | code | 1099 | using Pkg;Pkg.activate(".")
using PairVelocities
using StaticArrays
using BenchmarkTools
using DelimitedFiles
rbins = LinRange(0.001,150.,150)
rbins_c = 0.5*(rbins[2:end] + rbins[1:end-1])
filename = "moments.csv"
positions, velocities, boxsize, redshift = read_abacus()
println(positions[:][1:20])
N = size(positions)[end]
println("N halos")
println(N)
positions = convert(Array{Float64}, positions)
velocities = convert(Array{Float64}, velocities)
moments = PairVelocities.compute_pairwise_velocity_moments(
positions,
velocities,
rbins,
boxsize,
)
DD = 2 .*moments[1][:]
bin_volume = 4/3 * pi .* diff(rbins.^3)
RR = N * (N-1)/boxsize^3 * bin_volume
println(DD)
println(RR)
xi = DD./RR .- 1.
open(filename; write=true) do f
write(f, "r_c\txi\tv_r\tsigma_r\tsigma_t\tskewness_r\tskewness_rt\tkurtosis_r\tkurtosis_t\tkurtosis_rt\n")
writedlm(f,
zip(rbins_c, xi, moments[2][:],
moments[3][:], moments[6][:],
moments[4][:], moments[7][:],
moments[5][:], moments[8][:], moments[9][:]))
end
println("Wrote file !")
| PairVelocities | https://github.com/florpi/PairVelocities.jl.git |
|
[
"MIT"
] | 0.1.2 | fb0f291ac3d4e106a316d600df746dac11624388 | code | 942 | using Profile, PProf
using Pkg;Pkg.activate(".")
using PairwiseVelocities
using StaticArrays
using BenchmarkTools
using DelimitedFiles
boxsize = 2000.
rbins = LinRange(0.,50,50)
rbins_c = 0.5*(rbins[2:end] + rbins[1:end-1])
filename = "moments.csv"
logn = -5.
run = 101
snapshot = 15
positions, velocities = read_data(run, snapshot, 10^logn, boxsize)
positions = convert(Array{Float64}, positions)
velocities = convert(Array{Float64}, velocities)
moments = PairwiseVelocities.compute_pairwise_velocity_moments(
positions,
velocities,
rbins,
boxsize,
)
open(filename; write=true) do f
write(f, "# r_c v_r sigma_r sigma_t skewness_r skewness_rt kurtosis_r kurtosis_t kurtosis_rt \n")
writedlm(f,
zip(rbins_c, moments[2][:],
moments[3][:], moments[6][:],
moments[4][:], moments[7][:],
moments[5][:], moments[8][:], moments[9][:]))
end
println("Wrote file !")
| PairVelocities | https://github.com/florpi/PairVelocities.jl.git |
|
[
"MIT"
] | 0.1.2 | fb0f291ac3d4e106a316d600df746dac11624388 | code | 3532 | using Profile, PProf
using Pkg;Pkg.activate(".")
using PairwiseVelocities
using BenchmarkTools
using DelimitedFiles
using ArgParse
function parse_commandline()
s = ArgParseSettings()
@add_arg_table s begin
"--snapshot"
help = "an option with an argument"
arg_type = Int
"--nd"
help = "an option with an argument"
arg_type = Int
"--min_run"
help = "an option with an argument"
arg_type = Int
"--max_run"
help = "another option with an argument"
arg_type = Int
end
return parse_args(s)
end
parsed_args = parse_commandline()
DATA_DIR = "/cosma7/data/dp004/dc-cues1/DarkQuest/pairwise_velocities/"
snapshot = parsed_args["snapshot"]
boxsize = 2000.
r_max = 80.
number_densities = readdlm("/cosma6/data/dp004/dc-cues1/DarkQuest/xi/log10density_table.dat", ' ', Float32, '\n')
number_density_left = number_densities[parsed_args["nd"],1]
number_density_right = number_densities[parsed_args["nd"],2]
println("number densities = ( ", number_density_left, " , ",number_density_right," ) ")
rbins_c = readdlm("/cosma6/data/dp004/dc-cues1/DarkQuest/xi/separation.dat", '\t', Float64, '\n')
rbins_c = rbins_c[rbins_c .< r_max]
rbins = zeros(Float64, length(rbins_c)+1)
rbins[2:end-1] = rbins_c[1:end-1] + diff(rbins_c)/2.
rbins[1] = 2. *rbins_c[1] - rbins[2]
rbins[end] = 2. *rbins_c[end] - rbins[end-1]
r_max = maximum(rbins)
rbins_c = 0.5*(rbins[2:end] + rbins[1:end-1])
for run in parsed_args["min_run"]:parsed_args["max_run"]
filename = "run$(run)_nd_$(abs(number_density_left))_$(abs(number_density_right))_snapshot$(snapshot).csv"
println(filename)
if number_density_left == number_density_right
positions, velocities = read_data(
run, snapshot, 10^number_density_left, boxsize
)
positions = convert(Array{Float64}, positions)
velocities = convert(Array{Float64}, velocities)
@time moments = PairwiseVelocities.compute_pairwise_velocity_moments(
positions,
velocities,
rbins,
boxsize,
)
else
positions_left, velocities_left = read_data(
run, snapshot, 10^number_density_left, boxsize
)
positions_left = convert(Array{Float64}, positions_left)
velocities_left = convert(Array{Float64}, velocities_left)
positions_right, velocities_right = read_data(
run, snapshot, 10^number_density_right, boxsize
)
positions_right = convert(Array{Float64}, positions_right)
velocities_right = convert(Array{Float64}, velocities_right)
@time moments = PairwiseVelocities.compute_pairwise_velocity_moments(
positions_left,
velocities_left,
positions_right,
velocities_right,
rbins,
boxsize,
)
end
open(DATA_DIR * filename; write=true) do f
write(f, "# r_c v_r sigma_r sigma_t skewness_r skewness_rt kurtosis_r kurtosis_t kurtosis_rt \n")
writedlm(f,
zip(rbins_c, moments[2][:],
moments[3][:], moments[6][:],
moments[4][:], moments[7][:],
moments[5][:], moments[8][:], moments[9][:]))
end
println("Wrote file for $(run)!")
end
| PairVelocities | https://github.com/florpi/PairVelocities.jl.git |
|
[
"MIT"
] | 0.1.2 | fb0f291ac3d4e106a316d600df746dac11624388 | code | 70 | module PairVelocities
include("pairvels.jl")
include("read.jl")
end
| PairVelocities | https://github.com/florpi/PairVelocities.jl.git |
|
[
"MIT"
] | 0.1.2 | fb0f291ac3d4e106a316d600df746dac11624388 | code | 11480 | using CellListMap
using StaticArrays
using LinearAlgebra
export test
export compute_pairwise_velocity_moments
export compute_pairwise_velocity_los_pdf
global n_moments = 9
function compute_pairwise_mean!(x,y,i,j,d2,hist,velocities, rbins,sides)
d = x - y
r = sqrt.(d2)
ibin = searchsortedfirst(rbins, r) - 1
dv = velocities[i] - velocities[j]
v_r = LinearAlgebra.dot(dv,d)/r
cos_theta = d[3]/r
sin_theta = sqrt(d[1]*d[1]+d[2]*d[2])/r
cos_phi = d[1]/sqrt(d[1]*d[1]+d[2]*d[2])
sin_phi = d[2]/sqrt(d[1]*d[1]+d[2]*d[2])
if(sqrt(d[1]*d[1]+d[2]*d[2]) < 1e-10)
cos_phi = 1.0
sin_phi = 0.0
end
v_t = dv[1] * cos_theta * cos_phi + dv[2] * cos_theta * sin_phi - dv[3] * sin_theta
if ibin > 0
hist[1][ibin] += 1
hist[2][ibin] += v_r # v_r
hist[3][ibin] += v_r * v_r # std_r
hist[4][ibin] += v_r * v_r * v_r # skew_r
hist[5][ibin] += v_r * v_r * v_r * v_r # kur_r
hist[6][ibin] += v_t * v_t # std_t
hist[7][ibin] += v_r * v_t * v_t # skew_rt
hist[8][ibin] += v_t * v_t * v_t * v_t # kur_t
hist[9][ibin] += v_r * v_r * v_t * v_t # kur_rt
end
return hist
end
function compute_pairwise_mean!(x,y,i,j,d2,hist,velocities_left, velocities_right, rbins,sides)
d = x - y
r = sqrt.(d2)
ibin = searchsortedfirst(rbins, r) - 1
dv = velocities_left[i] - velocities_right[j]
v_r = LinearAlgebra.dot(dv,d)/r
cos_theta = d[3]/r
sin_theta = sqrt(d[1]*d[1]+d[2]*d[2])/r
cos_phi = d[1]/sqrt(d[1]*d[1]+d[2]*d[2])
sin_phi = d[2]/sqrt(d[1]*d[1]+d[2]*d[2])
if(sqrt(d[1]*d[1]+d[2]*d[2]) < 1e-10)
cos_phi = 1.0
sin_phi = 0.0
end
v_t = dv[1] * cos_theta * cos_phi + dv[2] * cos_theta * sin_phi - dv[3] * sin_theta
if ibin > 0
hist[1][ibin] += 1
hist[2][ibin] += v_r
hist[3][ibin] += v_r * v_r
hist[4][ibin] += v_r * v_r * v_r
hist[5][ibin] += v_r * v_r * v_r * v_r
hist[6][ibin] += v_t * v_t
hist[7][ibin] += v_r * v_t * v_t
hist[8][ibin] += v_t * v_t * v_t * v_t
hist[9][ibin] += v_r * v_r * v_t * v_t
end
return hist
end
function convert_histogram_into_moments!(hist)
n_pairs = hist[1]
mask = (n_pairs .> 0)
hist[2][mask] = hist[2][mask] ./ n_pairs[mask]
hist[3][mask] = hist[3][mask] ./ n_pairs[mask] - hist[2][mask].^2
hist[6][mask] = hist[6][mask] ./ n_pairs[mask]
hist[4][mask] = (
hist[4][mask] ./ n_pairs[mask]
- 3. * hist[2][mask] .* hist[3][mask]
- hist[2][mask].^3.
)
hist[7][mask] = (
hist[7][mask] ./ n_pairs[mask]
- hist[2][mask] .* hist[6][mask]
)
hist[5][mask] = (
hist[5][mask] ./ n_pairs[mask]
- 4. * hist[2][mask] .* hist[4][mask]
- 6. * hist[2][mask].^2. .* hist[3][mask]
- hist[2][mask] .^4.
)
hist[8][mask] = hist[8][mask] ./ n_pairs[mask]
hist[9][mask] = (
hist[9][mask] ./ n_pairs[mask]
- 2. * hist[7][mask] .* hist[2][mask]
- hist[2][mask].^2 .* hist[6][mask]
)
hist[3][:] = sqrt.(hist[3])
hist[6][:] = sqrt.(hist[6])
hist[4][:] = hist[4] ./ hist[3].^3
hist[5][:] = hist[5] ./ hist[3].^4
hist[8][:] = hist[8] ./ hist[6].^4
hist[7][:] = hist[7] ./ hist[3].^2 ./ hist[6]
hist[9][:] = hist[9] ./ hist[3].^2 ./ hist[6] .^2
end
function reduce_hist(hist,hist_threaded)
hist = hist_threaded[1]
for i in 2:length(hist_threaded)
for moment in 1:n_moments
hist[moment] .+= hist_threaded[i][moment]
end
end
return hist
end
function reduce_hist_los(hist,hist_threaded)
hist = hist_threaded[1]
for i in 2:length(hist_threaded)
hist .+= hist_threaded[i]
end
return hist
end
function get_pairwise_velocity_moments(
positions, velocities,
rbins,
boxsize,
cl, box
)
hist = (
zeros(Int,length(rbins)-1),
zeros(Float64,length(rbins)-1),
zeros(Float64,length(rbins)-1),
zeros(Float64,length(rbins)-1),
zeros(Float64,length(rbins)-1),
zeros(Float64,length(rbins)-1),
zeros(Float64,length(rbins)-1),
zeros(Float64,length(rbins)-1),
zeros(Float64,length(rbins)-1),
)
hist = map_pairwise!(
(x,y,i,j,d2,hist) ->
compute_pairwise_mean!(x,y,i,j,d2,hist,velocities, rbins, boxsize),
hist, box, cl,
reduce=reduce_hist,
parallel=true,
show_progress=false,
)
convert_histogram_into_moments!(hist)
return hist
end
function get_pairwise_velocity_moments(
positions_left, velocities_left,
positions_right, velocities_right,
rbins,
boxsize,
cl, box
)
hist = (
zeros(Int,length(rbins)-1),
zeros(Float64,length(rbins)-1),
zeros(Float64,length(rbins)-1),
zeros(Float64,length(rbins)-1),
zeros(Float64,length(rbins)-1),
zeros(Float64,length(rbins)-1),
zeros(Float64,length(rbins)-1),
zeros(Float64,length(rbins)-1),
zeros(Float64,length(rbins)-1),
)
hist = map_pairwise!(
(x,y,i,j,d2,hist) ->
compute_pairwise_mean!(x,y,i,j,d2,hist,velocities_left, velocities_right,rbins, boxsize),
hist, box, cl,
reduce=reduce_hist
)
convert_histogram_into_moments!(hist)
return hist
end
function compute_pairwise_velocity_moments(
positions, velocities, rbins, boxsize
)
println("Using n = ", Threads.nthreads() , " threads")
Lbox = [boxsize,boxsize,boxsize]
n = size(positions)[2]
positions = reshape(reinterpret(SVector{3,Float64},positions),n)
velocities = reshape(reinterpret(SVector{3,Float64},velocities),n)
r_max = maximum(rbins)
box = Box(Lbox, r_max, lcell=1)
cl = CellList(positions,box)
return get_pairwise_velocity_moments(
positions,
velocities,
rbins,
Lbox,
cl,
box,
)
end
function compute_pairwise_velocity_moments(
positions_left, velocities_left, positions_right, velocities_right, rbins, boxsize
)
println("Using n = ", Threads.nthreads() , " threads")
Lbox = [boxsize,boxsize,boxsize]
positions_left = reshape(reinterpret(SVector{3,Float64},positions_left),size(positions_left)[2])
velocities_left = reshape(reinterpret(SVector{3,Float64},velocities_left),size(velocities_left)[2])
positions_right = reshape(reinterpret(SVector{3,Float64},positions_right),size(positions_right)[2])
velocities_right = reshape(reinterpret(SVector{3,Float64},velocities_right),size(velocities_right)[2])
r_max = maximum(rbins)
box = Box(Lbox, r_max, lcell=1)
cl = CellList(positions_left, positions_right, box)
return get_pairwise_velocity_moments(
positions_left,
velocities_left,
positions_right,
velocities_right,
rbins,
Lbox,
cl, box
)
end
function compute_pairwise_los_pdf!(x,y,i,j,d2,hist,velocities,r_perp_bins, r_parallel_bins, vlos_bins,sides)
d = x - y
r_perp = sqrt(d[1]^2 + d[2]^2)
r_parallel = d[3]
vlos = (velocities[i][3] - velocities[j][3])*sign(r_parallel)
if (r_perp > minimum(r_perp_bins)) & (r_perp < maximum(r_perp_bins)) & (r_parallel < maximum(r_parallel_bins)) & (r_parallel > minimum(r_parallel_bins)) & (vlos < maximum(vlos_bins)) & (vlos > minimum(vlos_bins))
ibin_perp = searchsortedfirst(r_perp_bins, r_perp) - 1
ibin_parallel = searchsortedfirst(r_parallel_bins, r_parallel) - 1
ibin_vlos = searchsortedfirst(vlos_bins, vlos) - 1
hist[ibin_perp, ibin_parallel, ibin_vlos] += 1
end
return hist
end
function compute_pairwise_los_pdf!(x,y,i,j,d2,hist,
velocities_left,velocities_right,
r_perp_bins, r_parallel_bins, vlos_bins,sides)
d = x - y
r_perp = sqrt(d[1]^2 + d[2]^2)
r_parallel = d[3]
vlos = (velocities_left[i][3] - velocities_right[j][3])*sign(r_parallel)
if (r_perp < maximum(r_perp_bins)) & (r_parallel < maximum(r_parallel_bins)) & (r_parallel > minimum(r_parallel_bins)) & (vlos < maximum(vlos_bins)) & (vlos > minimum(vlos_bins))
ibin_perp = searchsortedfirst(r_perp_bins, r_perp) - 1
ibin_parallel = searchsortedfirst(r_parallel_bins, r_parallel) - 1
ibin_vlos = searchsortedfirst(vlos_bins, vlos) - 1
hist[ibin_perp, ibin_parallel, ibin_vlos] += 1
end
return hist
end
function get_pairwise_velocity_los_pdf(
positions, velocities,
r_perp_bins,
r_parallel_bins,
vlos_bins,
boxsize,
cl, box
)
hist = zeros(Int,(
length(r_perp_bins)-1,
length(r_parallel_bins)-1,
length(vlos_bins)-1
)
)
return map_pairwise!(
(x,y,i,j,d2,hist) ->
compute_pairwise_los_pdf!(x,y,i,j,d2,hist,velocities,
r_perp_bins, r_parallel_bins, vlos_bins, boxsize),
hist, box, cl,
reduce=reduce_hist_los,
parallel=true,
show_progress=false,
)
end
function get_pairwise_velocity_los_pdf(
positions_left, velocities_left,
positions_right, velocities_right,
r_perp_bins,
r_parallel_bins,
vlos_bins,
boxsize,
cl, box
)
hist = zeros(Int,(
length(r_perp_bins)-1,
length(r_parallel_bins)-1,
length(vlos_bins)-1
)
)
return map_pairwise!(
(x,y,i,j,d2,hist) ->
compute_pairwise_los_pdf!(x,y,i,j,d2,hist,velocities_left, velocities_right,
r_perp_bins, r_parallel_bins, vlos_bins, boxsize),
hist, box, cl,
reduce=reduce_hist_los,
parallel=true,
show_progress=false,
)
end
function compute_pairwise_velocity_los_pdf(
positions, velocities, r_perp_bins, r_parallel_bins, vlos_bins, boxsize
)
println("Using n = ", Threads.nthreads() , " threads")
Lbox = [boxsize,boxsize,boxsize]
r_max = sqrt(maximum(r_perp_bins)^2 + maximum(r_parallel_bins)^2)
positions = reshape(reinterpret(SVector{3,Float64},positions),size(positions)[2])
velocities = reshape(reinterpret(SVector{3,Float64},velocities),size(velocities)[2])
box = Box(Lbox, r_max, lcell=1)
cl = CellList(positions,box)
return get_pairwise_velocity_los_pdf(
positions,
velocities,
r_perp_bins,
r_parallel_bins,
vlos_bins,
Lbox,
cl, box,
)
end
function compute_pairwise_velocity_los_pdf(
positions_left, velocities_left,
positions_right, velocities_right,
r_perp_bins, r_parallel_bins, vlos_bins, boxsize
)
println("Using n = ", Threads.nthreads() , " threads")
Lbox = [boxsize,boxsize,boxsize]
r_max = sqrt(maximum(r_perp_bins)^2 + maximum(r_parallel_bins)^2)
positions_left = reshape(reinterpret(SVector{3,Float64},positions_left),size(positions_left)[2])
velocities_left = reshape(reinterpret(SVector{3,Float64},velocities_left),size(velocities_left)[2])
positions_right = reshape(reinterpret(SVector{3,Float64},positions_right),size(positions_right)[2])
velocities_right = reshape(reinterpret(SVector{3,Float64},velocities_right),size(velocities_right)[2])
box = Box(Lbox, r_max, lcell=1)
cl = CellList(positions_left,positions_right,box)
return get_pairwise_velocity_los_pdf(
positions_left,
velocities_left,
positions_right,
velocities_right,
r_perp_bins,
r_parallel_bins,
vlos_bins,
Lbox,
cl, box,
)
end
| PairVelocities | https://github.com/florpi/PairVelocities.jl.git |
|
[
"MIT"
] | 0.1.2 | fb0f291ac3d4e106a316d600df746dac11624388 | code | 1266 | using PyCall
export read_data, read_hod, read_my_hod, read_abacus
function read_hod(run, snapshot)
mimicus = pyimport("mimicus")
pos, vel = mimicus.read_raw_data(run=run, snapshot=snapshot,hod=true)
return permutedims(pos), permutedims(vel)
end
function read_my_hod(run, snapshot, galaxy_type)
dq = pyimport("dq")
pos, vel = dq.read_hod_data(run=run, snapshot=snapshot,galaxy_type=galaxy_type)
return permutedims(pos), permutedims(vel)
end
function read_data(run, snapshot, number_density, boxsize)
dq = pyimport("dq")
pos, vel, m200c = dq.read_halo_data(run=run, snapshot=snapshot)
pos, vel = dq.cut_by_number_density(pos, vel, m200c, number_density, boxsize)
return permutedims(pos), permutedims(vel)
end
function read_data(run, snapshot, min_mass, max_mass, boxsize)
dq = pyimport("dq")
pos, vel, m200c = dq.read_halo_data(run=run, snapshot=snapshot)
mask = (max_mass .>= m200c .>= min_mass)
pos = pos[mask,:]
vel = vel[mask,:]
return permutedims(pos), permutedims(vel)
end
function read_abacus()
pypairvel = pyimport("pypairvel")
pos, vel, boxsize, redshift = pypairvel.read_abacus()
pos = permutedims(pos)
vel = permutedims(vel)
return pos, vel, boxsize, redshift
end
| PairVelocities | https://github.com/florpi/PairVelocities.jl.git |
|
[
"MIT"
] | 0.1.2 | fb0f291ac3d4e106a316d600df746dac11624388 | docs | 95 | # PairVelocities
Code to compute pairwise velocity distributions for cosmological simulations
| PairVelocities | https://github.com/florpi/PairVelocities.jl.git |
|
[
"MIT"
] | 0.1.3 | 92b3dd85df011ccb327a290110c39033e15e5ecf | code | 733 | using Documenter, OceanDistributions
import PlutoSliderServer
makedocs(;
modules=[OceanDistributions],
format=Documenter.HTML(),
pages=[
"Home" => "index.md",
],
repo="https://github.com/gaelforget/OceanDistributions.jl/blob/{commit}{path}#L{line}",
sitename="OceanDistributions.jl",
authors="gaelforget <[email protected]>",
assets=String[],
)
lst=("one_dim_diffusion.jl",)
for i in lst
fil_in=joinpath(@__DIR__,"..", "examples",i)
fil_out=joinpath(@__DIR__,"build", i[1:end-2]*"html")
PlutoSliderServer.export_notebook(fil_in)
mv(fil_in[1:end-2]*"html",fil_out)
cp(fil_in,fil_out[1:end-4]*"jl")
end
deploydocs(;
repo="github.com/gaelforget/OceanDistributions.jl",
)
| OceanDistributions | https://github.com/JuliaOcean/OceanDistributions.jl.git |
|
[
"MIT"
] | 0.1.3 | 92b3dd85df011ccb327a290110c39033e15e5ecf | code | 32781 | ### A Pluto.jl notebook ###
# v0.16.0
using Markdown
using InteractiveUtils
# ╔═╡ 6bf88b5c-3abc-4b03-90bb-a7eb8cb68577
using StochasticDiffEq, UnicodePlots, Statistics
# ╔═╡ 96c9b046-6e40-44b1-a19c-b7061f22470d
md"""## Eulerian Model
Starting from a step function we integrate a diffusion equation in one dimension, `z`, with closed boundary at the top and bottom.
"""
# ╔═╡ d78532b9-b17e-4a4a-bbab-e249bf852eba
begin
## Eulerian
function EulerianModel(nt=1)
N=20
dt=1e-4
dx=1.0/2/N
T=[zeros(N);ones(N)]
T0=deepcopy(T)
for tt in 1:nt
dTr=(circshift(T,-1)-T); dTr[end]=0;
dTl=(T-circshift(T,+1)); dTl[1]=0;
T.+=(dTr-dTl)*dt/dx/dx
end
return T,T0
end
function plot_EulerianModel(T,T0)
plt=lineplot(T0); lineplot!(plt,T)
return plt
end
T,T0=EulerianModel(1000);
f=plot_EulerianModel(T,T0)
"Eulerian Model Has Completed"
end
# ╔═╡ 41487611-deba-49fc-a5f7-f4f63f7935c6
md"""## Lagrangian Model
Starting from a step-like distribution of two particle groups over the `z=(0,1)` interval. Particle positions evolve according to a standard `Wiener` process. They bounce at the top and bottom boundaries. The charge of particles in one group is 0 at the start; 1 in the other group. Afterwards particles can interact with one another within each model layer.
_Credits: the presented model is a simplified version of the `aquacosm` model from Paparella & Vichi M (2020) Stirring, Mixing, Growing: Microscale Processes Change Larger Scale Phytoplankton Dynamics. doi: 10.3389/fmars.2020.00654_
"""
# ╔═╡ 32a692ab-4835-4943-8b46-8345ce881eb5
begin
## Lagrangian
function solve_paths(u₀)
dt=1e-3
f(u,p,t) = 0.0
g(u,p,t) = 0.1
#dt = 1//2^(4)
tspan = (0.0,1.0)
prob = SDEProblem(f,g,u₀,(0.0,1.0))
solve(prob,EM(),dt=dt)
end
function fold_tails(z)
while !isempty(findall( xor.(z.>1.0,z.<0.0) ))
z[findall(z.<0.0)].=-z[findall(z.<0.0)]
z[findall(z.>1.0)].=(2.0 .- z[findall(z.>1.0)])
end
end
## mix between cells that are at the same level
function mix_neighbors(za,ca,zb,cb,p)
dz=0.1
for i0 in 1:10
z0=dz*(i0-1)
z1=dz*i0
ia=findall((za.>z0).*(za.<=z1))
ib=findall((zb.>z0).*(zb.<=z1))
tmp=mean([ca[ia];cb[ib]])
ca[ia].=(1-p)*ca[ia] .+ p*tmp
cb[ib].=(1-p)*cb[ib] .+ p*tmp
end
end
"""
main_loop(;p=0.5,nt=5)
```
p=0.5 # fraction of mass exchanged with neighbors every time step
nt=5 # number of time steps
```
"""
function main_loop(;p=0.5,nt=5)
for tt in 1:nt
u₀=u₀a
sol=solve_paths(u₀)
za=sol(0:0.01:1)[:,:]
fold_tails(za)
u₀a[:]=za[:,end]
u₀=u₀b
sol=solve_paths(u₀)
zb=sol(0:0.01:1)[:,:]
fold_tails(zb)
u₀b[:]=zb[:,end]
mix_neighbors(u₀a,ca,u₀b,cb,p)
end
return "done with model run"
end
"Lagrangian model formulated"
end
# ╔═╡ c86cf1e9-d0b6-48e8-8a01-0dcc591afc85
begin
## Plotting
function plot_paths(z)
np=size(z,1)
plt=lineplot(z[1,:],ylim=(-0.1,1.1))
np>1 ? lineplot!(plt,z[2,:]) : nothing
plt
end
function plot_paths(sol::RODESolution)
np=size(sol,1)
plt=lineplot(sol(0:0.01:1)[1,:],ylim=(-0.1,1.1))
np>1 ? lineplot!(plt,sol(0:0.01:1)[2,:]) : nothing
plt
end
function gridded_stats(za,ca,zb,cb)
out=zeros(10,2)
dz=0.1
t=size(za,2)
for i0=1:10
z0=0+dz*(i0-1)
ia=findall( (za[:,t].>z0).*(za[:,t].<=z0+dz) );
ib=findall( (zb[:,t].>z0).*(zb[:,t].<=z0+dz) );
tmp=[ca[ia,t];cb[ib,t]]
out[i0,1]=mean(tmp)
out[i0,2]=std(tmp)
end
out
end
function plot_stats(st)
plt=lineplot(st[:,1],ylim=(-0.1,1.1))
lineplot!(plt,st[:,1].+st[:,2])
lineplot!(plt,st[:,1].-st[:,2])
plt
end
"Plotting functions"
end
# ╔═╡ 2195a7a4-30d6-47fe-92db-d7ebef67ef03
begin
# initial conditions
np=10000
u₀a=0.5*rand(np)
ca=zeros(np)
u₀b=0.5 .+ 0.5*rand(np)
cb=ones(np)
"done with initialization"
end
# ╔═╡ fd2db517-2282-43da-a543-a1ef59a439c2
# Main model run
main_loop(p=0.1,nt=10)
# ╔═╡ 5ab5321a-15b9-11ec-3321-b7d7cab1ba35
begin
# Another run of the dispersion model just for plotting
u₀=u₀a
sol=solve_paths(u₀)
za=sol(0:0.01:1)[:,:]
fold_tails(za)
fa=plot_paths(za)
u₀=u₀b
sol=solve_paths(u₀)
zb=sol(0:0.01:1)[:,:]
fold_tails(zb)
fb=plot_paths(zb)
##
st=gridded_stats(u₀a,ca,u₀b,cb)
fs=plot_stats(st);
## various
#εf(z)C(1−C)
"figures generated : f, fs, fa, fb"
end
# ╔═╡ aa7aa58b-e2e7-4b40-aeab-38137f8d4e2d
md"""## Summary / Plot Collection
From left to right:
- solution of the Eulerian model
- solution of the Lagrangian model (with irreversible mixing)
- pair or Lagrangian trajectories
- pair or Lagrangian trajectories
"""
# ╔═╡ 1df22a2f-c344-4d71-b44d-9a821c14e548
(f,fs,fa,fb)
# ╔═╡ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
StochasticDiffEq = "789caeaf-c7a9-5a7d-9973-96adeb23e2a0"
UnicodePlots = "b8865327-cd53-5732-bb35-84acbb429228"
[compat]
StochasticDiffEq = "~6.37.1"
UnicodePlots = "~2.4.0"
"""
# ╔═╡ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.7.0-beta3.0"
manifest_format = "2.0"
[[deps.Adapt]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "84918055d15b3114ede17ac6a7182f68870c16f7"
uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
version = "3.3.1"
[[deps.ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
[[deps.ArnoldiMethod]]
deps = ["LinearAlgebra", "Random", "StaticArrays"]
git-tree-sha1 = "f87e559f87a45bece9c9ed97458d3afe98b1ebb9"
uuid = "ec485272-7323-5ecc-a04f-4719b315124d"
version = "0.1.0"
[[deps.ArrayInterface]]
deps = ["IfElse", "LinearAlgebra", "Requires", "SparseArrays", "Static"]
git-tree-sha1 = "d84c956c4c0548b4caf0e4e96cf5b6494b5b1529"
uuid = "4fba245c-0d91-5ea0-9b3e-6abc04ee57a9"
version = "3.1.32"
[[deps.Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
[[deps.Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[deps.BitTwiddlingConvenienceFunctions]]
deps = ["Static"]
git-tree-sha1 = "652aab0fc0d6d4db4cc726425cadf700e9f473f1"
uuid = "62783981-4cbd-42fc-bca8-16325de8dc4b"
version = "0.1.0"
[[deps.CPUSummary]]
deps = ["Hwloc", "IfElse", "Static"]
git-tree-sha1 = "ed720e2622820bf584d4ad90e6fcb93d95170b44"
uuid = "2a0fbf3d-bb9c-48f3-b0a9-814d99fd7ab9"
version = "0.1.3"
[[deps.ChainRulesCore]]
deps = ["Compat", "LinearAlgebra", "SparseArrays"]
git-tree-sha1 = "4ce9393e871aca86cc457d9f66976c3da6902ea7"
uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
version = "1.4.0"
[[deps.CloseOpenIntervals]]
deps = ["ArrayInterface", "Static"]
git-tree-sha1 = "ce9c0d07ed6e1a4fecd2df6ace144cbd29ba6f37"
uuid = "fb6a15b2-703c-40df-9091-08a04967cfa9"
version = "0.1.2"
[[deps.CommonSolve]]
git-tree-sha1 = "68a0743f578349ada8bc911a5cbd5a2ef6ed6d1f"
uuid = "38540f10-b2f7-11e9-35d8-d573e4eb0ff2"
version = "0.2.0"
[[deps.CommonSubexpressions]]
deps = ["MacroTools", "Test"]
git-tree-sha1 = "7b8a93dba8af7e3b42fecabf646260105ac373f7"
uuid = "bbf7d656-a473-5ed7-a52c-81e309532950"
version = "0.3.0"
[[deps.Compat]]
deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "SHA", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"]
git-tree-sha1 = "4866e381721b30fac8dda4c8cb1d9db45c8d2994"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "3.37.0"
[[deps.CompilerSupportLibraries_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
[[deps.ConstructionBase]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "f74e9d5388b8620b4cee35d4c5a618dd4dc547f4"
uuid = "187b0558-2788-49d3-abe0-74a17ed4e7c9"
version = "1.3.0"
[[deps.Crayons]]
git-tree-sha1 = "3f71217b538d7aaee0b69ab47d9b7724ca8afa0d"
uuid = "a8cc5b0e-0ffa-5ad4-8c14-923d3ee1735f"
version = "4.0.4"
[[deps.DEDataArrays]]
deps = ["ArrayInterface", "DocStringExtensions", "LinearAlgebra", "RecursiveArrayTools", "SciMLBase", "StaticArrays"]
git-tree-sha1 = "31186e61936fbbccb41d809ad4338c9f7addf7ae"
uuid = "754358af-613d-5f8d-9788-280bf1605d4c"
version = "0.2.0"
[[deps.DataAPI]]
git-tree-sha1 = "bec2532f8adb82005476c141ec23e921fc20971b"
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
version = "1.8.0"
[[deps.DataStructures]]
deps = ["Compat", "InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "7d9d316f04214f7efdbb6398d545446e246eff02"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.18.10"
[[deps.DataValueInterfaces]]
git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6"
uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464"
version = "1.0.0"
[[deps.Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[deps.DelimitedFiles]]
deps = ["Mmap"]
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
[[deps.DiffEqBase]]
deps = ["ArrayInterface", "ChainRulesCore", "DEDataArrays", "DataStructures", "Distributions", "DocStringExtensions", "FastBroadcast", "ForwardDiff", "FunctionWrappers", "IterativeSolvers", "LabelledArrays", "LinearAlgebra", "Logging", "MuladdMacro", "NonlinearSolve", "Parameters", "PreallocationTools", "Printf", "RecursiveArrayTools", "RecursiveFactorization", "Reexport", "Requires", "SciMLBase", "Setfield", "SparseArrays", "StaticArrays", "Statistics", "SuiteSparse", "ZygoteRules"]
git-tree-sha1 = "420ad175d5e420e2c55a0ed8a9c18556e6735f80"
uuid = "2b5f629d-d688-5b77-993f-72d75c75574e"
version = "6.73.2"
[[deps.DiffEqJump]]
deps = ["ArrayInterface", "Compat", "DataStructures", "DiffEqBase", "FunctionWrappers", "LightGraphs", "LinearAlgebra", "PoissonRandom", "Random", "RandomNumbers", "RecursiveArrayTools", "Reexport", "StaticArrays", "TreeViews", "UnPack"]
git-tree-sha1 = "99a65172d95e5ccc016c9be0542fa3858cf97a18"
uuid = "c894b116-72e5-5b58-be3c-e6d8d4ac2b12"
version = "7.3.0"
[[deps.DiffEqNoiseProcess]]
deps = ["DiffEqBase", "Distributions", "LinearAlgebra", "Optim", "PoissonRandom", "QuadGK", "Random", "Random123", "RandomNumbers", "RecipesBase", "RecursiveArrayTools", "Requires", "ResettableStacks", "SciMLBase", "StaticArrays", "Statistics"]
git-tree-sha1 = "d6839a44a268c69ef0ed927b22a6f43c8a4c2e73"
uuid = "77a26b50-5914-5dd7-bc55-306e6241c503"
version = "5.9.0"
[[deps.DiffResults]]
deps = ["StaticArrays"]
git-tree-sha1 = "c18e98cba888c6c25d1c3b048e4b3380ca956805"
uuid = "163ba53b-c6d8-5494-b064-1a9d43ac40c5"
version = "1.0.3"
[[deps.DiffRules]]
deps = ["NaNMath", "Random", "SpecialFunctions"]
git-tree-sha1 = "3ed8fa7178a10d1cd0f1ca524f249ba6937490c0"
uuid = "b552c78f-8df3-52c6-915a-8e097449b14b"
version = "1.3.0"
[[deps.Distances]]
deps = ["LinearAlgebra", "Statistics", "StatsAPI"]
git-tree-sha1 = "9f46deb4d4ee4494ffb5a40a27a2aced67bdd838"
uuid = "b4f34e82-e78d-54a5-968a-f98e89d6e8f7"
version = "0.10.4"
[[deps.Distributed]]
deps = ["Random", "Serialization", "Sockets"]
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
[[deps.Distributions]]
deps = ["ChainRulesCore", "FillArrays", "LinearAlgebra", "PDMats", "Printf", "QuadGK", "Random", "SparseArrays", "SpecialFunctions", "Statistics", "StatsBase", "StatsFuns"]
git-tree-sha1 = "f4efaa4b5157e0cdb8283ae0b5428bc9208436ed"
uuid = "31c24e10-a181-5473-b8eb-7969acd0382f"
version = "0.25.16"
[[deps.DocStringExtensions]]
deps = ["LibGit2"]
git-tree-sha1 = "a32185f5428d3986f47c2ab78b1f216d5e6cc96f"
uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae"
version = "0.8.5"
[[deps.Downloads]]
deps = ["ArgTools", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
[[deps.ExponentialUtilities]]
deps = ["ArrayInterface", "LinearAlgebra", "Printf", "Requires", "SparseArrays"]
git-tree-sha1 = "7a541ee92e2f8b16356ed6066d0c44b85984b780"
uuid = "d4d017d3-3776-5f7e-afef-a10c40355c18"
version = "1.9.0"
[[deps.FastBroadcast]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "26be48918640ce002f5833e8fc537b2ba7ed0234"
uuid = "7034ab61-46d4-4ed7-9d0f-46aef9175898"
version = "0.1.8"
[[deps.FastClosures]]
git-tree-sha1 = "acebe244d53ee1b461970f8910c235b259e772ef"
uuid = "9aa1b823-49e4-5ca5-8b0f-3971ec8bab6a"
version = "0.3.2"
[[deps.FillArrays]]
deps = ["LinearAlgebra", "Random", "SparseArrays", "Statistics"]
git-tree-sha1 = "caf289224e622f518c9dbfe832cdafa17d7c80a6"
uuid = "1a297f60-69ca-5386-bcde-b61e274b549b"
version = "0.12.4"
[[deps.FiniteDiff]]
deps = ["ArrayInterface", "LinearAlgebra", "Requires", "SparseArrays", "StaticArrays"]
git-tree-sha1 = "8b3c09b56acaf3c0e581c66638b85c8650ee9dca"
uuid = "6a86dc24-6348-571c-b903-95158fe2bd41"
version = "2.8.1"
[[deps.ForwardDiff]]
deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "LinearAlgebra", "NaNMath", "Printf", "Random", "SpecialFunctions", "StaticArrays"]
git-tree-sha1 = "b5e930ac60b613ef3406da6d4f42c35d8dc51419"
uuid = "f6369f11-7733-5829-9624-2563aa707210"
version = "0.10.19"
[[deps.FunctionWrappers]]
git-tree-sha1 = "241552bc2209f0fa068b6415b1942cc0aa486bcc"
uuid = "069b7b12-0de2-55c6-9aab-29f3d0a68a2e"
version = "1.1.2"
[[deps.Future]]
deps = ["Random"]
uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820"
[[deps.HostCPUFeatures]]
deps = ["BitTwiddlingConvenienceFunctions", "IfElse", "Libdl", "Static"]
git-tree-sha1 = "3169c8b31863f9a409be1d17693751314241e3eb"
uuid = "3e5b6fbb-0976-4d2c-9146-d79de83f2fb0"
version = "0.1.4"
[[deps.Hwloc]]
deps = ["Hwloc_jll"]
git-tree-sha1 = "92d99146066c5c6888d5a3abc871e6a214388b91"
uuid = "0e44f5e4-bd66-52a0-8798-143a42290a1d"
version = "2.0.0"
[[deps.Hwloc_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "3395d4d4aeb3c9d31f5929d32760d8baeee88aaf"
uuid = "e33a78d0-f292-5ffc-b300-72abe9b543c8"
version = "2.5.0+0"
[[deps.IfElse]]
git-tree-sha1 = "28e837ff3e7a6c3cdb252ce49fb412c8eb3caeef"
uuid = "615f187c-cbe4-4ef1-ba3b-2fcf58d6d173"
version = "0.1.0"
[[deps.Inflate]]
git-tree-sha1 = "f5fc07d4e706b84f72d54eedcc1c13d92fb0871c"
uuid = "d25df0c9-e2be-5dd7-82c8-3ad0b3e990b9"
version = "0.1.2"
[[deps.InteractiveUtils]]
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[deps.IrrationalConstants]]
git-tree-sha1 = "f76424439413893a832026ca355fe273e93bce94"
uuid = "92d709cd-6900-40b7-9082-c6be49f344b6"
version = "0.1.0"
[[deps.IterativeSolvers]]
deps = ["LinearAlgebra", "Printf", "Random", "RecipesBase", "SparseArrays"]
git-tree-sha1 = "1a8c6237e78b714e901e406c096fc8a65528af7d"
uuid = "42fd0dbc-a981-5370-80f2-aaf504508153"
version = "0.9.1"
[[deps.IteratorInterfaceExtensions]]
git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856"
uuid = "82899510-4779-5014-852e-03e436cf321d"
version = "1.0.0"
[[deps.JLLWrappers]]
deps = ["Preferences"]
git-tree-sha1 = "642a199af8b68253517b80bd3bfd17eb4e84df6e"
uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210"
version = "1.3.0"
[[deps.LabelledArrays]]
deps = ["ArrayInterface", "LinearAlgebra", "MacroTools", "StaticArrays"]
git-tree-sha1 = "bdde43e002847c34c206735b1cf860bc3abd35e7"
uuid = "2ee39098-c373-598a-b85f-a56591580800"
version = "1.6.4"
[[deps.LayoutPointers]]
deps = ["ArrayInterface", "LinearAlgebra", "ManualMemory", "SIMDTypes", "Static"]
git-tree-sha1 = "d2bda6aa0b03ce6f141a2dc73d0bcb7070131adc"
uuid = "10f19ff3-798f-405d-979b-55457f8fc047"
version = "0.1.3"
[[deps.LibCURL]]
deps = ["LibCURL_jll", "MozillaCACerts_jll"]
uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21"
[[deps.LibCURL_jll]]
deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"]
uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0"
[[deps.LibGit2]]
deps = ["Base64", "NetworkOptions", "Printf", "SHA"]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[deps.LibSSH2_jll]]
deps = ["Artifacts", "Libdl", "MbedTLS_jll"]
uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8"
[[deps.Libdl]]
uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
[[deps.LightGraphs]]
deps = ["ArnoldiMethod", "DataStructures", "Distributed", "Inflate", "LinearAlgebra", "Random", "SharedArrays", "SimpleTraits", "SparseArrays", "Statistics"]
git-tree-sha1 = "432428df5f360964040ed60418dd5601ecd240b6"
uuid = "093fc24a-ae57-5d10-9952-331d41423f4d"
version = "1.3.5"
[[deps.LineSearches]]
deps = ["LinearAlgebra", "NLSolversBase", "NaNMath", "Parameters", "Printf"]
git-tree-sha1 = "f27132e551e959b3667d8c93eae90973225032dd"
uuid = "d3d80556-e9d4-5f37-9878-2ab0fcc64255"
version = "7.1.1"
[[deps.LinearAlgebra]]
deps = ["Libdl", "libblastrampoline_jll"]
uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
[[deps.LogExpFunctions]]
deps = ["ChainRulesCore", "DocStringExtensions", "IrrationalConstants", "LinearAlgebra"]
git-tree-sha1 = "34dc30f868e368f8a17b728a1238f3fcda43931a"
uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688"
version = "0.3.3"
[[deps.Logging]]
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
[[deps.LoopVectorization]]
deps = ["ArrayInterface", "CPUSummary", "CloseOpenIntervals", "DocStringExtensions", "HostCPUFeatures", "IfElse", "LayoutPointers", "LinearAlgebra", "OffsetArrays", "PolyesterWeave", "Requires", "SLEEFPirates", "Static", "ThreadingUtilities", "UnPack", "VectorizationBase"]
git-tree-sha1 = "d469fcf148475a74c221f14d42ee75da7ccb3b4e"
uuid = "bdcacae8-1622-11e9-2a5c-532679323890"
version = "0.12.73"
[[deps.MacroTools]]
deps = ["Markdown", "Random"]
git-tree-sha1 = "5a5bc6bf062f0f95e62d0fe0a2d99699fed82dd9"
uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
version = "0.5.8"
[[deps.ManualMemory]]
git-tree-sha1 = "9cb207b18148b2199db259adfa923b45593fe08e"
uuid = "d125e4d3-2237-4719-b19c-fa641b8a4667"
version = "0.1.6"
[[deps.Markdown]]
deps = ["Base64"]
uuid = "d6f4376e-aef5-505a-96c1-9c027394607a"
[[deps.MbedTLS_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1"
[[deps.Missings]]
deps = ["DataAPI"]
git-tree-sha1 = "bf210ce90b6c9eed32d25dbcae1ebc565df2687f"
uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28"
version = "1.0.2"
[[deps.Mmap]]
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
[[deps.MozillaCACerts_jll]]
uuid = "14a3606d-f60d-562e-9121-12d972cd8159"
[[deps.MuladdMacro]]
git-tree-sha1 = "c6190f9a7fc5d9d5915ab29f2134421b12d24a68"
uuid = "46d2c3a1-f734-5fdb-9937-b9b9aeba4221"
version = "0.2.2"
[[deps.NLSolversBase]]
deps = ["DiffResults", "Distributed", "FiniteDiff", "ForwardDiff"]
git-tree-sha1 = "144bab5b1443545bc4e791536c9f1eacb4eed06a"
uuid = "d41bc354-129a-5804-8e4c-c37616107c6c"
version = "7.8.1"
[[deps.NLsolve]]
deps = ["Distances", "LineSearches", "LinearAlgebra", "NLSolversBase", "Printf", "Reexport"]
git-tree-sha1 = "019f12e9a1a7880459d0173c182e6a99365d7ac1"
uuid = "2774e3e8-f4cf-5e23-947b-6d7e65073b56"
version = "4.5.1"
[[deps.NaNMath]]
git-tree-sha1 = "bfe47e760d60b82b66b61d2d44128b62e3a369fb"
uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3"
version = "0.3.5"
[[deps.NetworkOptions]]
uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908"
[[deps.NonlinearSolve]]
deps = ["ArrayInterface", "FiniteDiff", "ForwardDiff", "IterativeSolvers", "LinearAlgebra", "RecursiveArrayTools", "RecursiveFactorization", "Reexport", "SciMLBase", "Setfield", "StaticArrays", "UnPack"]
git-tree-sha1 = "35585534c0c79c161241f2e65e759a11a79d25d0"
uuid = "8913a72c-1f9b-4ce2-8d82-65094dcecaec"
version = "0.3.10"
[[deps.OffsetArrays]]
deps = ["Adapt"]
git-tree-sha1 = "c870a0d713b51e4b49be6432eff0e26a4325afee"
uuid = "6fe1bfb0-de20-5000-8ca7-80f57d26f881"
version = "1.10.6"
[[deps.OpenBLAS_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"]
uuid = "4536629a-c528-5b80-bd46-f80d51c5b363"
[[deps.OpenSpecFun_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "13652491f6856acfd2db29360e1bbcd4565d04f1"
uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e"
version = "0.5.5+0"
[[deps.Optim]]
deps = ["Compat", "FillArrays", "LineSearches", "LinearAlgebra", "NLSolversBase", "NaNMath", "Parameters", "PositiveFactorizations", "Printf", "SparseArrays", "StatsBase"]
git-tree-sha1 = "7863df65dbb2a0fa8f85fcaf0a41167640d2ebed"
uuid = "429524aa-4258-5aef-a3af-852621145aeb"
version = "1.4.1"
[[deps.OrderedCollections]]
git-tree-sha1 = "85f8e6578bf1f9ee0d11e7bb1b1456435479d47c"
uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
version = "1.4.1"
[[deps.OrdinaryDiffEq]]
deps = ["Adapt", "ArrayInterface", "DataStructures", "DiffEqBase", "DocStringExtensions", "ExponentialUtilities", "FastClosures", "FiniteDiff", "ForwardDiff", "LinearAlgebra", "Logging", "LoopVectorization", "MacroTools", "MuladdMacro", "NLsolve", "Polyester", "RecursiveArrayTools", "Reexport", "SparseArrays", "SparseDiffTools", "StaticArrays", "UnPack"]
git-tree-sha1 = "66816b9f09c3925ae3b072eb9ef1835c68282ed1"
uuid = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed"
version = "5.64.0"
[[deps.PDMats]]
deps = ["LinearAlgebra", "SparseArrays", "SuiteSparse"]
git-tree-sha1 = "4dd403333bcf0909341cfe57ec115152f937d7d8"
uuid = "90014a1f-27ba-587c-ab20-58faa44d9150"
version = "0.11.1"
[[deps.Parameters]]
deps = ["OrderedCollections", "UnPack"]
git-tree-sha1 = "2276ac65f1e236e0a6ea70baff3f62ad4c625345"
uuid = "d96e819e-fc66-5662-9728-84c9c7592b0a"
version = "0.12.2"
[[deps.Pkg]]
deps = ["Artifacts", "Dates", "Downloads", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"]
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
[[deps.PoissonRandom]]
deps = ["Random", "Statistics", "Test"]
git-tree-sha1 = "44d018211a56626288b5d3f8c6497d28c26dc850"
uuid = "e409e4f3-bfea-5376-8464-e040bb5c01ab"
version = "0.4.0"
[[deps.Polyester]]
deps = ["ArrayInterface", "BitTwiddlingConvenienceFunctions", "CPUSummary", "IfElse", "ManualMemory", "PolyesterWeave", "Requires", "Static", "StrideArraysCore", "ThreadingUtilities"]
git-tree-sha1 = "4a67fa65b250256e214a6a2482c87c835ec0fc02"
uuid = "f517fe37-dbe3-4b94-8317-1923a5111588"
version = "0.5.0"
[[deps.PolyesterWeave]]
deps = ["BitTwiddlingConvenienceFunctions", "CPUSummary", "IfElse", "Static", "ThreadingUtilities"]
git-tree-sha1 = "371a19bb801c1b420b29141750f3a34d6c6634b9"
uuid = "1d0040c9-8b98-4ee7-8388-3f51789ca0ad"
version = "0.1.0"
[[deps.PositiveFactorizations]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "17275485f373e6673f7e7f97051f703ed5b15b20"
uuid = "85a6dd25-e78a-55b7-8502-1745935b8125"
version = "0.2.4"
[[deps.PreallocationTools]]
deps = ["ArrayInterface", "ForwardDiff", "LabelledArrays"]
git-tree-sha1 = "9e917b108c4aaf47e8606542325bd2ccbcac7ca4"
uuid = "d236fae5-4411-538c-8e31-a6e3d9e00b46"
version = "0.1.0"
[[deps.Preferences]]
deps = ["TOML"]
git-tree-sha1 = "00cfd92944ca9c760982747e9a1d0d5d86ab1e5a"
uuid = "21216c6a-2e73-6563-6e65-726566657250"
version = "1.2.2"
[[deps.Printf]]
deps = ["Unicode"]
uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7"
[[deps.QuadGK]]
deps = ["DataStructures", "LinearAlgebra"]
git-tree-sha1 = "12fbe86da16df6679be7521dfb39fbc861e1dc7b"
uuid = "1fd47b50-473d-5c70-9696-f719f8f3bcdc"
version = "2.4.1"
[[deps.REPL]]
deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"]
uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb"
[[deps.Random]]
deps = ["Serialization"]
uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
[[deps.Random123]]
deps = ["Libdl", "Random", "RandomNumbers"]
git-tree-sha1 = "0e8b146557ad1c6deb1367655e052276690e71a3"
uuid = "74087812-796a-5b5d-8853-05524746bad3"
version = "1.4.2"
[[deps.RandomNumbers]]
deps = ["Random", "Requires"]
git-tree-sha1 = "441e6fc35597524ada7f85e13df1f4e10137d16f"
uuid = "e6cf234a-135c-5ec9-84dd-332b85af5143"
version = "1.4.0"
[[deps.RecipesBase]]
git-tree-sha1 = "44a75aa7a527910ee3d1751d1f0e4148698add9e"
uuid = "3cdcf5f2-1ef4-517c-9805-6587b60abb01"
version = "1.1.2"
[[deps.RecursiveArrayTools]]
deps = ["ArrayInterface", "ChainRulesCore", "DocStringExtensions", "LinearAlgebra", "RecipesBase", "Requires", "StaticArrays", "Statistics", "ZygoteRules"]
git-tree-sha1 = "00bede2eb099dcc1ddc3f9ec02180c326b420ee2"
uuid = "731186ca-8d62-57ce-b412-fbd966d074cd"
version = "2.17.2"
[[deps.RecursiveFactorization]]
deps = ["LinearAlgebra", "LoopVectorization", "Polyester", "StrideArraysCore", "TriangularSolve"]
git-tree-sha1 = "575c18c6b00ce409f75d96fefe33ebe01575457a"
uuid = "f2c3362d-daeb-58d1-803e-2bc74f2840b4"
version = "0.2.4"
[[deps.Reexport]]
git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b"
uuid = "189a3867-3050-52da-a836-e630ba90ab69"
version = "1.2.2"
[[deps.Requires]]
deps = ["UUIDs"]
git-tree-sha1 = "4036a3bd08ac7e968e27c203d45f5fff15020621"
uuid = "ae029012-a4dd-5104-9daa-d747884805df"
version = "1.1.3"
[[deps.ResettableStacks]]
deps = ["StaticArrays"]
git-tree-sha1 = "256eeeec186fa7f26f2801732774ccf277f05db9"
uuid = "ae5879a3-cd67-5da8-be7f-38c6eb64a37b"
version = "1.1.1"
[[deps.Rmath]]
deps = ["Random", "Rmath_jll"]
git-tree-sha1 = "bf3188feca147ce108c76ad82c2792c57abe7b1f"
uuid = "79098fc4-a85e-5d69-aa6a-4863f24498fa"
version = "0.7.0"
[[deps.Rmath_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "68db32dff12bb6127bac73c209881191bf0efbb7"
uuid = "f50d1b31-88e8-58de-be2c-1cc44531875f"
version = "0.3.0+0"
[[deps.SHA]]
uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce"
[[deps.SIMDTypes]]
git-tree-sha1 = "330289636fb8107c5f32088d2741e9fd7a061a5c"
uuid = "94e857df-77ce-4151-89e5-788b33177be4"
version = "0.1.0"
[[deps.SLEEFPirates]]
deps = ["IfElse", "Static", "VectorizationBase"]
git-tree-sha1 = "947491c30d4293bebb00781bcaf787ba09e7c20d"
uuid = "476501e8-09a2-5ece-8869-fb82de89a1fa"
version = "0.6.26"
[[deps.SciMLBase]]
deps = ["ArrayInterface", "CommonSolve", "ConstructionBase", "Distributed", "DocStringExtensions", "IteratorInterfaceExtensions", "LinearAlgebra", "Logging", "RecipesBase", "RecursiveArrayTools", "StaticArrays", "Statistics", "Tables", "TreeViews"]
git-tree-sha1 = "ff686e0c79dbe91767f4c1e44257621a5455b1c6"
uuid = "0bca4576-84f4-4d90-8ffe-ffa030f20462"
version = "1.18.7"
[[deps.Serialization]]
uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b"
[[deps.Setfield]]
deps = ["ConstructionBase", "Future", "MacroTools", "Requires"]
git-tree-sha1 = "fca29e68c5062722b5b4435594c3d1ba557072a3"
uuid = "efcf1570-3423-57d1-acb7-fd33fddbac46"
version = "0.7.1"
[[deps.SharedArrays]]
deps = ["Distributed", "Mmap", "Random", "Serialization"]
uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383"
[[deps.SimpleTraits]]
deps = ["InteractiveUtils", "MacroTools"]
git-tree-sha1 = "5d7e3f4e11935503d3ecaf7186eac40602e7d231"
uuid = "699a6c99-e7fa-54fc-8d76-47d257e15c1d"
version = "0.9.4"
[[deps.Sockets]]
uuid = "6462fe0b-24de-5631-8697-dd941f90decc"
[[deps.SortingAlgorithms]]
deps = ["DataStructures"]
git-tree-sha1 = "b3363d7460f7d098ca0912c69b082f75625d7508"
uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c"
version = "1.0.1"
[[deps.SparseArrays]]
deps = ["LinearAlgebra", "Random"]
uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[[deps.SparseDiffTools]]
deps = ["Adapt", "ArrayInterface", "Compat", "DataStructures", "FiniteDiff", "ForwardDiff", "LightGraphs", "LinearAlgebra", "Requires", "SparseArrays", "StaticArrays", "VertexSafeGraphs"]
git-tree-sha1 = "aebcead0644d3b3396c205a09544590b5115e282"
uuid = "47a9eef4-7e08-11e9-0b38-333d64bd3804"
version = "1.16.4"
[[deps.SpecialFunctions]]
deps = ["ChainRulesCore", "LogExpFunctions", "OpenSpecFun_jll"]
git-tree-sha1 = "a322a9493e49c5f3a10b50df3aedaf1cdb3244b7"
uuid = "276daf66-3868-5448-9aa4-cd146d93841b"
version = "1.6.1"
[[deps.Static]]
deps = ["IfElse"]
git-tree-sha1 = "a8f30abc7c64a39d389680b74e749cf33f872a70"
uuid = "aedffcd0-7271-4cad-89d0-dc628f76c6d3"
version = "0.3.3"
[[deps.StaticArrays]]
deps = ["LinearAlgebra", "Random", "Statistics"]
git-tree-sha1 = "3240808c6d463ac46f1c1cd7638375cd22abbccb"
uuid = "90137ffa-7385-5640-81b9-e52037218182"
version = "1.2.12"
[[deps.Statistics]]
deps = ["LinearAlgebra", "SparseArrays"]
uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
[[deps.StatsAPI]]
git-tree-sha1 = "1958272568dc176a1d881acb797beb909c785510"
uuid = "82ae8749-77ed-4fe6-ae5f-f523153014b0"
version = "1.0.0"
[[deps.StatsBase]]
deps = ["DataAPI", "DataStructures", "LinearAlgebra", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics", "StatsAPI"]
git-tree-sha1 = "8cbbc098554648c84f79a463c9ff0fd277144b6c"
uuid = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
version = "0.33.10"
[[deps.StatsFuns]]
deps = ["ChainRulesCore", "IrrationalConstants", "LogExpFunctions", "Reexport", "Rmath", "SpecialFunctions"]
git-tree-sha1 = "46d7ccc7104860c38b11966dd1f72ff042f382e4"
uuid = "4c63d2b9-4356-54db-8cca-17b64c39e42c"
version = "0.9.10"
[[deps.StochasticDiffEq]]
deps = ["ArrayInterface", "DataStructures", "DiffEqBase", "DiffEqJump", "DiffEqNoiseProcess", "DocStringExtensions", "FillArrays", "FiniteDiff", "ForwardDiff", "LinearAlgebra", "Logging", "MuladdMacro", "NLsolve", "OrdinaryDiffEq", "Random", "RandomNumbers", "RecursiveArrayTools", "Reexport", "SparseArrays", "SparseDiffTools", "StaticArrays", "UnPack"]
git-tree-sha1 = "1d5dff61a15532dd6c67fafebc52f2feaa2b3b82"
uuid = "789caeaf-c7a9-5a7d-9973-96adeb23e2a0"
version = "6.37.1"
[[deps.StrideArraysCore]]
deps = ["ArrayInterface", "CloseOpenIntervals", "IfElse", "LayoutPointers", "ManualMemory", "Requires", "SIMDTypes", "Static", "ThreadingUtilities"]
git-tree-sha1 = "1258e25e171aec339866f283a11e7d75867e77d7"
uuid = "7792a7ef-975c-4747-a70f-980b88e8d1da"
version = "0.2.4"
[[deps.SuiteSparse]]
deps = ["Libdl", "LinearAlgebra", "Serialization", "SparseArrays"]
uuid = "4607b0f0-06f3-5cda-b6b1-a6196a1729e9"
[[deps.TOML]]
deps = ["Dates"]
uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76"
[[deps.TableTraits]]
deps = ["IteratorInterfaceExtensions"]
git-tree-sha1 = "c06b2f539df1c6efa794486abfb6ed2022561a39"
uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c"
version = "1.0.1"
[[deps.Tables]]
deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "TableTraits", "Test"]
git-tree-sha1 = "1162ce4a6c4b7e31e0e6b14486a6986951c73be9"
uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c"
version = "1.5.2"
[[deps.Tar]]
deps = ["ArgTools", "SHA"]
uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e"
[[deps.Test]]
deps = ["InteractiveUtils", "Logging", "Random", "Serialization"]
uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[[deps.ThreadingUtilities]]
deps = ["ManualMemory"]
git-tree-sha1 = "03013c6ae7f1824131b2ae2fc1d49793b51e8394"
uuid = "8290d209-cae3-49c0-8002-c8c24d57dab5"
version = "0.4.6"
[[deps.TreeViews]]
deps = ["Test"]
git-tree-sha1 = "8d0d7a3fe2f30d6a7f833a5f19f7c7a5b396eae6"
uuid = "a2a6695c-b41b-5b7d-aed9-dbfdeacea5d7"
version = "0.3.0"
[[deps.TriangularSolve]]
deps = ["CloseOpenIntervals", "IfElse", "LayoutPointers", "LinearAlgebra", "LoopVectorization", "Polyester", "Static", "VectorizationBase"]
git-tree-sha1 = "ed55426a514db35f58d36c3812aae89cfc057401"
uuid = "d5829a12-d9aa-46ab-831f-fb7c9ab06edf"
version = "0.1.6"
[[deps.UUIDs]]
deps = ["Random", "SHA"]
uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
[[deps.UnPack]]
git-tree-sha1 = "387c1f73762231e86e0c9c5443ce3b4a0a9a0c2b"
uuid = "3a884ed6-31ef-47d7-9d2a-63182c4928ed"
version = "1.0.2"
[[deps.Unicode]]
uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
[[deps.UnicodePlots]]
deps = ["Crayons", "Dates", "SparseArrays", "StatsBase"]
git-tree-sha1 = "7ee3014ae511a5ef11523c38c216e7ad59650ce7"
uuid = "b8865327-cd53-5732-bb35-84acbb429228"
version = "2.4.0"
[[deps.VectorizationBase]]
deps = ["ArrayInterface", "CPUSummary", "HostCPUFeatures", "Hwloc", "IfElse", "LayoutPointers", "Libdl", "LinearAlgebra", "SIMDTypes", "Static"]
git-tree-sha1 = "43c605e008ac67adb672ef08721d4720dfe2ad41"
uuid = "3d5dd08c-fd9d-11e8-17fa-ed2836048c2f"
version = "0.21.7"
[[deps.VertexSafeGraphs]]
deps = ["LightGraphs"]
git-tree-sha1 = "b9b450c99a3ca1cc1c6836f560d8d887bcbe356e"
uuid = "19fa3120-7c27-5ec5-8db8-b0b0aa330d6f"
version = "0.1.2"
[[deps.Zlib_jll]]
deps = ["Libdl"]
uuid = "83775a58-1f1d-513f-b197-d71354ab007a"
[[deps.ZygoteRules]]
deps = ["MacroTools"]
git-tree-sha1 = "9e7a1e8ca60b742e508a315c17eef5211e7fbfd7"
uuid = "700de1a5-db45-46bc-99cf-38207098b444"
version = "0.2.1"
[[deps.libblastrampoline_jll]]
deps = ["Artifacts", "Libdl", "OpenBLAS_jll"]
uuid = "8e850b90-86db-534c-a0d3-1478176c7d93"
[[deps.nghttp2_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d"
[[deps.p7zip_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0"
"""
# ╔═╡ Cell order:
# ╠═6bf88b5c-3abc-4b03-90bb-a7eb8cb68577
# ╟─96c9b046-6e40-44b1-a19c-b7061f22470d
# ╟─d78532b9-b17e-4a4a-bbab-e249bf852eba
# ╟─41487611-deba-49fc-a5f7-f4f63f7935c6
# ╟─32a692ab-4835-4943-8b46-8345ce881eb5
# ╟─c86cf1e9-d0b6-48e8-8a01-0dcc591afc85
# ╟─2195a7a4-30d6-47fe-92db-d7ebef67ef03
# ╟─fd2db517-2282-43da-a543-a1ef59a439c2
# ╟─5ab5321a-15b9-11ec-3321-b7d7cab1ba35
# ╟─aa7aa58b-e2e7-4b40-aeab-38137f8d4e2d
# ╠═1df22a2f-c344-4d71-b44d-9a821c14e548
# ╟─00000000-0000-0000-0000-000000000001
# ╟─00000000-0000-0000-0000-000000000002
| OceanDistributions | https://github.com/JuliaOcean/OceanDistributions.jl.git |
|
[
"MIT"
] | 0.1.3 | 92b3dd85df011ccb327a290110c39033e15e5ecf | code | 50021 | ### A Pluto.jl notebook ###
# v0.19.0
using Markdown
using InteractiveUtils
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
macro bind(def, element)
quote
local iv = try Base.loaded_modules[Base.PkgId(Base.UUID("6e696c72-6542-2067-7265-42206c756150"), "AbstractPlutoDingetjes")].Bonds.initial_value catch; b -> missing; end
local el = $(esc(element))
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el)
el
end
end
# ╔═╡ db98d796-c0d2-11ec-2c96-f7510a6d771c
begin
using OptimalTransport, LinearAlgebra
using Tables, DataFrames
import PlutoUI, CSV, Downloads, Tulip
import CairoMakie as Makie
"Done with packages"
end
# ╔═╡ 8d867c72-2924-46a0-8a60-7c6e52f71a67
md"""# `OptimalTransport.jl` applied to `CBIOMES`
#### Methods
See [this wikipedia page](https://en.wikipedia.org/wiki/Transportation_theory_(mathematics)) and the [package documentation](https://juliaoptimaltransport.github.io/OptimalTransport.jl/dev/examples/basic/).
#### Climatologies
Zonal mean Chl computed, between `-179.75 W` and `-120.25 W`, for each month as a function of latitude.
- Model : see <https://github.com/gaelforget/OceanStateEstimation.jl>
- Satellite : <https://github.com/brorfred/ocean_clustering>
"""
# ╔═╡ c1df03d1-6205-4caa-9bdf-7daa5ba59d3a
md"""## Input Data Visualization"""
# ╔═╡ da9cc45d-8529-4965-b213-61b2657fce28
begin
m1_select = @bind m1 PlutoUI.Slider(1:12;default=1, show_value=true)
m2_select = @bind m2 PlutoUI.Slider(1:12;default=2, show_value=true)
md"""## Select Months To Compare
Compute Earth Mover Distance / Optimal Transport between two months.
- month 1 index : $(m1_select)
- month 2 index : $(m2_select)
"""
end
# ╔═╡ 29b6a32d-9003-4bc7-8351-0d1881153bf6
md"""## Appendix"""
# ╔═╡ 973f46d5-83b7-466a-a8c3-406643f7dbc5
begin
lons=-179.75:0.5:-120.25
lats=-19.75:0.5:49.75
pth=joinpath(tempdir(),"OptimalTransport_example")
url="https://raw.githubusercontent.com/gaelforget/OceanStateEstimation.jl/master/examples/OptimalTransport/M.csv"
M=Tables.matrix(CSV.read(Downloads.download(url),DataFrame))
url="https://raw.githubusercontent.com/gaelforget/OceanStateEstimation.jl/master/examples/OptimalTransport/S.csv"
S=Tables.matrix(CSV.read(Downloads.download(url),DataFrame))
nx=size(M,1)
Cost=Float64.([abs(i-j) for i in 1:nx, j in 1:nx])
"Input Data Ready"
end
# ╔═╡ a5301146-6eac-4bcd-97d9-3bfd6fe4f213
let
f=Makie.Figure()
ax1=Makie.Axis(f[1,1],title="model Chl",ylabel="month",xlabel="latitude")
hm1=Makie.heatmap!(ax1,lats,1:12,M,colorrange=(0.0,0.015))
Makie.Colorbar(f[1, 2], hm1)
ax2=Makie.Axis(f[2,1],title="satellite Chl",ylabel="month",xlabel="latitude")
hm2=Makie.heatmap!(ax2,lats,1:12,S,colorrange=(0.005,0.01))
Makie.Colorbar(f[2, 2], hm2)
f
end
# ╔═╡ ab49655b-ab30-457c-a476-9f6dd310ab4b
begin
Da=emd2(M[:,m1],M[:,m2], Cost, Tulip.Optimizer())
Da=round(Da,digits=4)
end
# ╔═╡ 7796c8e9-a090-4aab-a073-50f839ceab22
begin
ε = 0.01
# γ = sinkhorn(M[:,m1], S[:,m2], Cost, ε, SinkhornGibbs(); maxiter=5_000)
# γ = sinkhorn(M[:,m1], S[:,m2], Cost, ε, SinkhornStabilized(); maxiter=5_000)
γ = sinkhorn(M[:,m1], M[:,m2], Cost, ε, SinkhornEpsilonScaling(SinkhornStabilized()); maxiter=5_000)
Db=dot(γ, Cost) #compute optimal cost, directly
Db=round(Db,digits=4)
end
# ╔═╡ fe0ac519-7995-419a-a8ac-02af958342cd
md"""
#### Linear Programming
optimal distance : $(Da)
#### Stabilized Sinkhorn
optimal distance : $(Db)
"""
# ╔═╡ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
CairoMakie = "13f3f980-e62b-5c42-98c6-ff1f3baf88f0"
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
Downloads = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
OptimalTransport = "7e02d93a-ae51-4f58-b602-d97af76e3b33"
PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8"
Tables = "bd369af6-aec1-5ad0-b16a-f7cc5008161c"
Tulip = "6dd1b50a-3aae-11e9-10b5-ef983d2400fa"
[compat]
CSV = "~0.10.4"
CairoMakie = "~0.7.5"
DataFrames = "~1.3.3"
OptimalTransport = "~0.3.19"
PlutoUI = "~0.7.38"
Tables = "~1.7.0"
Tulip = "~0.9.2"
"""
# ╔═╡ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.7.2"
manifest_format = "2.0"
[[deps.AMD]]
deps = ["Libdl", "LinearAlgebra", "SparseArrays", "Test"]
git-tree-sha1 = "fc66ffc5cff568936649445f58a55b81eaf9592c"
uuid = "14f7f29c-3bd6-536c-9a0b-7339e30b5a3e"
version = "0.4.0"
[[deps.AbstractFFTs]]
deps = ["ChainRulesCore", "LinearAlgebra"]
git-tree-sha1 = "6f1d9bc1c08f9f4a8fa92e3ea3cb50153a1b40d4"
uuid = "621f4979-c628-5d54-868e-fcf4e3e8185c"
version = "1.1.0"
[[deps.AbstractPlutoDingetjes]]
deps = ["Pkg"]
git-tree-sha1 = "8eaf9f1b4921132a4cff3f36a1d9ba923b14a481"
uuid = "6e696c72-6542-2067-7265-42206c756150"
version = "1.1.4"
[[deps.AbstractTrees]]
git-tree-sha1 = "03e0550477d86222521d254b741d470ba17ea0b5"
uuid = "1520ce14-60c1-5f80-bbc7-55ef81b5835c"
version = "0.3.4"
[[deps.Adapt]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "af92965fb30777147966f58acb05da51c5616b5f"
uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
version = "3.3.3"
[[deps.Animations]]
deps = ["Colors"]
git-tree-sha1 = "e81c509d2c8e49592413bfb0bb3b08150056c79d"
uuid = "27a7e980-b3e6-11e9-2bcd-0b925532e340"
version = "0.4.1"
[[deps.ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
[[deps.ArrayInterface]]
deps = ["Compat", "IfElse", "LinearAlgebra", "Requires", "SparseArrays", "Static"]
git-tree-sha1 = "c933ce606f6535a7c7b98e1d86d5d1014f730596"
uuid = "4fba245c-0d91-5ea0-9b3e-6abc04ee57a9"
version = "5.0.7"
[[deps.Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
[[deps.Automa]]
deps = ["Printf", "ScanByte", "TranscodingStreams"]
git-tree-sha1 = "d50976f217489ce799e366d9561d56a98a30d7fe"
uuid = "67c07d97-cdcb-5c2c-af73-a7f9c32a568b"
version = "0.8.2"
[[deps.AxisAlgorithms]]
deps = ["LinearAlgebra", "Random", "SparseArrays", "WoodburyMatrices"]
git-tree-sha1 = "66771c8d21c8ff5e3a93379480a2307ac36863f7"
uuid = "13072b0f-2c55-5437-9ae7-d433b7a33950"
version = "1.0.1"
[[deps.Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[deps.BenchmarkTools]]
deps = ["JSON", "Logging", "Printf", "Profile", "Statistics", "UUIDs"]
git-tree-sha1 = "4c10eee4af024676200bc7752e536f858c6b8f93"
uuid = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
version = "1.3.1"
[[deps.Bzip2_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "19a35467a82e236ff51bc17a3a44b69ef35185a2"
uuid = "6e34b625-4abd-537c-b88f-471c36dfa7a0"
version = "1.0.8+0"
[[deps.CEnum]]
git-tree-sha1 = "215a9aa4a1f23fbd05b92769fdd62559488d70e9"
uuid = "fa961155-64e5-5f13-b03f-caf6b980ea82"
version = "0.4.1"
[[deps.CSV]]
deps = ["CodecZlib", "Dates", "FilePathsBase", "InlineStrings", "Mmap", "Parsers", "PooledArrays", "SentinelArrays", "Tables", "Unicode", "WeakRefStrings"]
git-tree-sha1 = "873fb188a4b9d76549b81465b1f75c82aaf59238"
uuid = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
version = "0.10.4"
[[deps.Cairo]]
deps = ["Cairo_jll", "Colors", "Glib_jll", "Graphics", "Libdl", "Pango_jll"]
git-tree-sha1 = "d0b3f8b4ad16cb0a2988c6788646a5e6a17b6b1b"
uuid = "159f3aea-2a34-519c-b102-8c37f9878175"
version = "1.0.5"
[[deps.CairoMakie]]
deps = ["Base64", "Cairo", "Colors", "FFTW", "FileIO", "FreeType", "GeometryBasics", "LinearAlgebra", "Makie", "SHA", "StaticArrays"]
git-tree-sha1 = "4a0de4f5aa2d5d27a1efa293aeabb1a081e46b2b"
uuid = "13f3f980-e62b-5c42-98c6-ff1f3baf88f0"
version = "0.7.5"
[[deps.Cairo_jll]]
deps = ["Artifacts", "Bzip2_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "JLLWrappers", "LZO_jll", "Libdl", "Pixman_jll", "Pkg", "Xorg_libXext_jll", "Xorg_libXrender_jll", "Zlib_jll", "libpng_jll"]
git-tree-sha1 = "4b859a208b2397a7a623a03449e4636bdb17bcf2"
uuid = "83423d85-b0ee-5818-9007-b63ccbeb887a"
version = "1.16.1+1"
[[deps.ChainRulesCore]]
deps = ["Compat", "LinearAlgebra", "SparseArrays"]
git-tree-sha1 = "9950387274246d08af38f6eef8cb5480862a435f"
uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
version = "1.14.0"
[[deps.ChangesOfVariables]]
deps = ["ChainRulesCore", "LinearAlgebra", "Test"]
git-tree-sha1 = "bf98fa45a0a4cee295de98d4c1462be26345b9a1"
uuid = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0"
version = "0.1.2"
[[deps.CodecBzip2]]
deps = ["Bzip2_jll", "Libdl", "TranscodingStreams"]
git-tree-sha1 = "2e62a725210ce3c3c2e1a3080190e7ca491f18d7"
uuid = "523fee87-0ab8-5b00-afb7-3ecf72e48cfd"
version = "0.7.2"
[[deps.CodecZlib]]
deps = ["TranscodingStreams", "Zlib_jll"]
git-tree-sha1 = "ded953804d019afa9a3f98981d99b33e3db7b6da"
uuid = "944b1d66-785c-5afd-91f1-9de20f533193"
version = "0.7.0"
[[deps.ColorBrewer]]
deps = ["Colors", "JSON", "Test"]
git-tree-sha1 = "61c5334f33d91e570e1d0c3eb5465835242582c4"
uuid = "a2cac450-b92f-5266-8821-25eda20663c8"
version = "0.4.0"
[[deps.ColorSchemes]]
deps = ["ColorTypes", "Colors", "FixedPointNumbers", "Random"]
git-tree-sha1 = "12fc73e5e0af68ad3137b886e3f7c1eacfca2640"
uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4"
version = "3.17.1"
[[deps.ColorTypes]]
deps = ["FixedPointNumbers", "Random"]
git-tree-sha1 = "024fe24d83e4a5bf5fc80501a314ce0d1aa35597"
uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f"
version = "0.11.0"
[[deps.ColorVectorSpace]]
deps = ["ColorTypes", "FixedPointNumbers", "LinearAlgebra", "SpecialFunctions", "Statistics", "TensorCore"]
git-tree-sha1 = "3f1f500312161f1ae067abe07d13b40f78f32e07"
uuid = "c3611d14-8923-5661-9e6a-0046d554d3a4"
version = "0.9.8"
[[deps.Colors]]
deps = ["ColorTypes", "FixedPointNumbers", "Reexport"]
git-tree-sha1 = "417b0ed7b8b838aa6ca0a87aadf1bb9eb111ce40"
uuid = "5ae59095-9a9b-59fe-a467-6f913c188581"
version = "0.12.8"
[[deps.Compat]]
deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "SHA", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"]
git-tree-sha1 = "b153278a25dd42c65abbf4e62344f9d22e59191b"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "3.43.0"
[[deps.CompilerSupportLibraries_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
[[deps.Contour]]
deps = ["StaticArrays"]
git-tree-sha1 = "9f02045d934dc030edad45944ea80dbd1f0ebea7"
uuid = "d38c429a-6771-53c6-b99e-75d170b6e991"
version = "0.5.7"
[[deps.Crayons]]
git-tree-sha1 = "249fe38abf76d48563e2f4556bebd215aa317e15"
uuid = "a8cc5b0e-0ffa-5ad4-8c14-923d3ee1735f"
version = "4.1.1"
[[deps.DataAPI]]
git-tree-sha1 = "cc70b17275652eb47bc9e5f81635981f13cea5c8"
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
version = "1.9.0"
[[deps.DataFrames]]
deps = ["Compat", "DataAPI", "Future", "InvertedIndices", "IteratorInterfaceExtensions", "LinearAlgebra", "Markdown", "Missings", "PooledArrays", "PrettyTables", "Printf", "REPL", "Reexport", "SortingAlgorithms", "Statistics", "TableTraits", "Tables", "Unicode"]
git-tree-sha1 = "6c19003824cbebd804a51211fd3bbd81bf1ecad5"
uuid = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
version = "1.3.3"
[[deps.DataStructures]]
deps = ["Compat", "InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "3daef5523dd2e769dad2365274f760ff5f282c7d"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.18.11"
[[deps.DataValueInterfaces]]
git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6"
uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464"
version = "1.0.0"
[[deps.Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[deps.DelimitedFiles]]
deps = ["Mmap"]
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
[[deps.DensityInterface]]
deps = ["InverseFunctions", "Test"]
git-tree-sha1 = "80c3e8639e3353e5d2912fb3a1916b8455e2494b"
uuid = "b429d917-457f-4dbc-8f4c-0cc954292b1d"
version = "0.4.0"
[[deps.Distances]]
deps = ["LinearAlgebra", "SparseArrays", "Statistics", "StatsAPI"]
git-tree-sha1 = "3258d0659f812acde79e8a74b11f17ac06d0ca04"
uuid = "b4f34e82-e78d-54a5-968a-f98e89d6e8f7"
version = "0.10.7"
[[deps.Distributed]]
deps = ["Random", "Serialization", "Sockets"]
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
[[deps.Distributions]]
deps = ["ChainRulesCore", "DensityInterface", "FillArrays", "LinearAlgebra", "PDMats", "Printf", "QuadGK", "Random", "SparseArrays", "SpecialFunctions", "Statistics", "StatsBase", "StatsFuns", "Test"]
git-tree-sha1 = "5a4168170ede913a2cd679e53c2123cb4b889795"
uuid = "31c24e10-a181-5473-b8eb-7969acd0382f"
version = "0.25.53"
[[deps.DocStringExtensions]]
deps = ["LibGit2"]
git-tree-sha1 = "b19534d1895d702889b219c382a6e18010797f0b"
uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae"
version = "0.8.6"
[[deps.Downloads]]
deps = ["ArgTools", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
[[deps.EarCut_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "3f3a2501fa7236e9b911e0f7a588c657e822bb6d"
uuid = "5ae413db-bbd1-5e63-b57d-d24a61df00f5"
version = "2.2.3+0"
[[deps.EllipsisNotation]]
deps = ["ArrayInterface"]
git-tree-sha1 = "d064b0340db45d48893e7604ec95e7a2dc9da904"
uuid = "da5c29d0-fa7d-589e-88eb-ea29b0a81949"
version = "1.5.0"
[[deps.ExactOptimalTransport]]
deps = ["Distances", "Distributions", "FillArrays", "LinearAlgebra", "MathOptInterface", "PDMats", "QuadGK", "SparseArrays", "StatsBase"]
git-tree-sha1 = "170c201050738e908c92018bc2cfc7272089cd48"
uuid = "24df6009-d856-477c-ac5c-91f668376b31"
version = "0.2.2"
[[deps.Expat_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "bad72f730e9e91c08d9427d5e8db95478a3c323d"
uuid = "2e619515-83b5-522b-bb60-26c02a35a201"
version = "2.4.8+0"
[[deps.ExprTools]]
git-tree-sha1 = "56559bbef6ca5ea0c0818fa5c90320398a6fbf8d"
uuid = "e2ba6199-217a-4e67-a87a-7c52f15ade04"
version = "0.1.8"
[[deps.FFMPEG]]
deps = ["FFMPEG_jll"]
git-tree-sha1 = "b57e3acbe22f8484b4b5ff66a7499717fe1a9cc8"
uuid = "c87230d0-a227-11e9-1b43-d7ebe4e7570a"
version = "0.4.1"
[[deps.FFMPEG_jll]]
deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "JLLWrappers", "LAME_jll", "Libdl", "Ogg_jll", "OpenSSL_jll", "Opus_jll", "Pkg", "Zlib_jll", "libass_jll", "libfdk_aac_jll", "libvorbis_jll", "x264_jll", "x265_jll"]
git-tree-sha1 = "d8a578692e3077ac998b50c0217dfd67f21d1e5f"
uuid = "b22a6f82-2f65-5046-a5b2-351ab43fb4e5"
version = "4.4.0+0"
[[deps.FFTW]]
deps = ["AbstractFFTs", "FFTW_jll", "LinearAlgebra", "MKL_jll", "Preferences", "Reexport"]
git-tree-sha1 = "505876577b5481e50d089c1c68899dfb6faebc62"
uuid = "7a1cc6ca-52ef-59f5-83cd-3a7055c09341"
version = "1.4.6"
[[deps.FFTW_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "c6033cc3892d0ef5bb9cd29b7f2f0331ea5184ea"
uuid = "f5851436-0d7a-5f13-b9de-f02708fd171a"
version = "3.3.10+0"
[[deps.FastClosures]]
git-tree-sha1 = "acebe244d53ee1b461970f8910c235b259e772ef"
uuid = "9aa1b823-49e4-5ca5-8b0f-3971ec8bab6a"
version = "0.3.2"
[[deps.FileIO]]
deps = ["Pkg", "Requires", "UUIDs"]
git-tree-sha1 = "80ced645013a5dbdc52cf70329399c35ce007fae"
uuid = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549"
version = "1.13.0"
[[deps.FilePathsBase]]
deps = ["Compat", "Dates", "Mmap", "Printf", "Test", "UUIDs"]
git-tree-sha1 = "129b104185df66e408edd6625d480b7f9e9823a0"
uuid = "48062228-2e41-5def-b9a4-89aafe57970f"
version = "0.9.18"
[[deps.FillArrays]]
deps = ["LinearAlgebra", "Random", "SparseArrays", "Statistics"]
git-tree-sha1 = "246621d23d1f43e3b9c368bf3b72b2331a27c286"
uuid = "1a297f60-69ca-5386-bcde-b61e274b549b"
version = "0.13.2"
[[deps.FixedPointNumbers]]
deps = ["Statistics"]
git-tree-sha1 = "335bfdceacc84c5cdf16aadc768aa5ddfc5383cc"
uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93"
version = "0.8.4"
[[deps.Fontconfig_jll]]
deps = ["Artifacts", "Bzip2_jll", "Expat_jll", "FreeType2_jll", "JLLWrappers", "Libdl", "Libuuid_jll", "Pkg", "Zlib_jll"]
git-tree-sha1 = "21efd19106a55620a188615da6d3d06cd7f6ee03"
uuid = "a3f928ae-7b40-5064-980b-68af3947d34b"
version = "2.13.93+0"
[[deps.Formatting]]
deps = ["Printf"]
git-tree-sha1 = "8339d61043228fdd3eb658d86c926cb282ae72a8"
uuid = "59287772-0a20-5a39-b81b-1366585eb4c0"
version = "0.4.2"
[[deps.FreeType]]
deps = ["CEnum", "FreeType2_jll"]
git-tree-sha1 = "cabd77ab6a6fdff49bfd24af2ebe76e6e018a2b4"
uuid = "b38be410-82b0-50bf-ab77-7b57e271db43"
version = "4.0.0"
[[deps.FreeType2_jll]]
deps = ["Artifacts", "Bzip2_jll", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"]
git-tree-sha1 = "87eb71354d8ec1a96d4a7636bd57a7347dde3ef9"
uuid = "d7e528f0-a631-5988-bf34-fe36492bcfd7"
version = "2.10.4+0"
[[deps.FreeTypeAbstraction]]
deps = ["ColorVectorSpace", "Colors", "FreeType", "GeometryBasics"]
git-tree-sha1 = "b5c7fe9cea653443736d264b85466bad8c574f4a"
uuid = "663a7486-cb36-511b-a19d-713bb74d65c9"
version = "0.9.9"
[[deps.FriBidi_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "aa31987c2ba8704e23c6c8ba8a4f769d5d7e4f91"
uuid = "559328eb-81f9-559d-9380-de523a88c83c"
version = "1.0.10+0"
[[deps.Future]]
deps = ["Random"]
uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820"
[[deps.GeometryBasics]]
deps = ["EarCut_jll", "IterTools", "LinearAlgebra", "StaticArrays", "StructArrays", "Tables"]
git-tree-sha1 = "83ea630384a13fc4f002b77690bc0afeb4255ac9"
uuid = "5c1252a2-5f33-56bf-86c9-59e7332b4326"
version = "0.4.2"
[[deps.Gettext_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "XML2_jll"]
git-tree-sha1 = "9b02998aba7bf074d14de89f9d37ca24a1a0b046"
uuid = "78b55507-aeef-58d4-861c-77aaff3498b1"
version = "0.21.0+0"
[[deps.Glib_jll]]
deps = ["Artifacts", "Gettext_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Libiconv_jll", "Libmount_jll", "PCRE_jll", "Pkg", "Zlib_jll"]
git-tree-sha1 = "a32d672ac2c967f3deb8a81d828afc739c838a06"
uuid = "7746bdde-850d-59dc-9ae8-88ece973131d"
version = "2.68.3+2"
[[deps.Graphics]]
deps = ["Colors", "LinearAlgebra", "NaNMath"]
git-tree-sha1 = "1c5a84319923bea76fa145d49e93aa4394c73fc2"
uuid = "a2bd30eb-e257-5431-a919-1863eab51364"
version = "1.1.1"
[[deps.Graphite2_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "344bf40dcab1073aca04aa0df4fb092f920e4011"
uuid = "3b182d85-2403-5c21-9c21-1e1f0cc25472"
version = "1.3.14+0"
[[deps.GridLayoutBase]]
deps = ["GeometryBasics", "InteractiveUtils", "Observables"]
git-tree-sha1 = "169c3dc5acae08835a573a8a3e25c62f689f8b5c"
uuid = "3955a311-db13-416c-9275-1d80ed98e5e9"
version = "0.6.5"
[[deps.Grisu]]
git-tree-sha1 = "53bb909d1151e57e2484c3d1b53e19552b887fb2"
uuid = "42e2da0e-8278-4e71-bc24-59509adca0fe"
version = "1.0.2"
[[deps.HarfBuzz_jll]]
deps = ["Artifacts", "Cairo_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "Graphite2_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Pkg"]
git-tree-sha1 = "129acf094d168394e80ee1dc4bc06ec835e510a3"
uuid = "2e76f6c2-a576-52d4-95c1-20adfe4de566"
version = "2.8.1+1"
[[deps.Hyperscript]]
deps = ["Test"]
git-tree-sha1 = "8d511d5b81240fc8e6802386302675bdf47737b9"
uuid = "47d2ed2b-36de-50cf-bf87-49c2cf4b8b91"
version = "0.0.4"
[[deps.HypertextLiteral]]
git-tree-sha1 = "2b078b5a615c6c0396c77810d92ee8c6f470d238"
uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2"
version = "0.9.3"
[[deps.IOCapture]]
deps = ["Logging", "Random"]
git-tree-sha1 = "f7be53659ab06ddc986428d3a9dcc95f6fa6705a"
uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89"
version = "0.2.2"
[[deps.IfElse]]
git-tree-sha1 = "debdd00ffef04665ccbb3e150747a77560e8fad1"
uuid = "615f187c-cbe4-4ef1-ba3b-2fcf58d6d173"
version = "0.1.1"
[[deps.ImageCore]]
deps = ["AbstractFFTs", "ColorVectorSpace", "Colors", "FixedPointNumbers", "Graphics", "MappedArrays", "MosaicViews", "OffsetArrays", "PaddedViews", "Reexport"]
git-tree-sha1 = "9a5c62f231e5bba35695a20988fc7cd6de7eeb5a"
uuid = "a09fc81d-aa75-5fe9-8630-4744c3626534"
version = "0.9.3"
[[deps.ImageIO]]
deps = ["FileIO", "JpegTurbo", "Netpbm", "OpenEXR", "PNGFiles", "QOI", "Sixel", "TiffImages", "UUIDs"]
git-tree-sha1 = "464bdef044df52e6436f8c018bea2d48c40bb27b"
uuid = "82e4d734-157c-48bb-816b-45c225c6df19"
version = "0.6.1"
[[deps.Imath_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "87f7662e03a649cffa2e05bf19c303e168732d3e"
uuid = "905a6f67-0a94-5f89-b386-d35d92009cd1"
version = "3.1.2+0"
[[deps.IndirectArrays]]
git-tree-sha1 = "012e604e1c7458645cb8b436f8fba789a51b257f"
uuid = "9b13fd28-a010-5f03-acff-a1bbcff69959"
version = "1.0.0"
[[deps.Inflate]]
git-tree-sha1 = "f5fc07d4e706b84f72d54eedcc1c13d92fb0871c"
uuid = "d25df0c9-e2be-5dd7-82c8-3ad0b3e990b9"
version = "0.1.2"
[[deps.InlineStrings]]
deps = ["Parsers"]
git-tree-sha1 = "61feba885fac3a407465726d0c330b3055df897f"
uuid = "842dd82b-1e85-43dc-bf29-5d0ee9dffc48"
version = "1.1.2"
[[deps.IntelOpenMP_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "d979e54b71da82f3a65b62553da4fc3d18c9004c"
uuid = "1d5cc7b8-4909-519e-a0f8-d0f5ad9712d0"
version = "2018.0.3+2"
[[deps.InteractiveUtils]]
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[deps.Interpolations]]
deps = ["AxisAlgorithms", "ChainRulesCore", "LinearAlgebra", "OffsetArrays", "Random", "Ratios", "Requires", "SharedArrays", "SparseArrays", "StaticArrays", "WoodburyMatrices"]
git-tree-sha1 = "b7bc05649af456efc75d178846f47006c2c4c3c7"
uuid = "a98d9a8b-a2ab-59e6-89dd-64a1c18fca59"
version = "0.13.6"
[[deps.IntervalSets]]
deps = ["Dates", "EllipsisNotation", "Statistics"]
git-tree-sha1 = "bcf640979ee55b652f3b01650444eb7bbe3ea837"
uuid = "8197267c-284f-5f27-9208-e0e47529a953"
version = "0.5.4"
[[deps.InverseFunctions]]
deps = ["Test"]
git-tree-sha1 = "91b5dcf362c5add98049e6c29ee756910b03051d"
uuid = "3587e190-3f89-42d0-90ee-14403ec27112"
version = "0.1.3"
[[deps.InvertedIndices]]
git-tree-sha1 = "bee5f1ef5bf65df56bdd2e40447590b272a5471f"
uuid = "41ab1584-1d38-5bbf-9106-f11c6c58b48f"
version = "1.1.0"
[[deps.IrrationalConstants]]
git-tree-sha1 = "7fd44fd4ff43fc60815f8e764c0f352b83c49151"
uuid = "92d709cd-6900-40b7-9082-c6be49f344b6"
version = "0.1.1"
[[deps.Isoband]]
deps = ["isoband_jll"]
git-tree-sha1 = "f9b6d97355599074dc867318950adaa6f9946137"
uuid = "f1662d9f-8043-43de-a69a-05efc1cc6ff4"
version = "0.1.1"
[[deps.IterTools]]
git-tree-sha1 = "fa6287a4469f5e048d763df38279ee729fbd44e5"
uuid = "c8e1da08-722c-5040-9ed9-7db0dc04731e"
version = "1.4.0"
[[deps.IterativeSolvers]]
deps = ["LinearAlgebra", "Printf", "Random", "RecipesBase", "SparseArrays"]
git-tree-sha1 = "1169632f425f79429f245113b775a0e3d121457c"
uuid = "42fd0dbc-a981-5370-80f2-aaf504508153"
version = "0.9.2"
[[deps.IteratorInterfaceExtensions]]
git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856"
uuid = "82899510-4779-5014-852e-03e436cf321d"
version = "1.0.0"
[[deps.JLLWrappers]]
deps = ["Preferences"]
git-tree-sha1 = "abc9885a7ca2052a736a600f7fa66209f96506e1"
uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210"
version = "1.4.1"
[[deps.JSON]]
deps = ["Dates", "Mmap", "Parsers", "Unicode"]
git-tree-sha1 = "3c837543ddb02250ef42f4738347454f95079d4e"
uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
version = "0.21.3"
[[deps.JpegTurbo]]
deps = ["CEnum", "FileIO", "ImageCore", "JpegTurbo_jll", "TOML"]
git-tree-sha1 = "a77b273f1ddec645d1b7c4fd5fb98c8f90ad10a5"
uuid = "b835a17e-a41a-41e7-81f0-2f016b05efe0"
version = "0.1.1"
[[deps.JpegTurbo_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "b53380851c6e6664204efb2e62cd24fa5c47e4ba"
uuid = "aacddb02-875f-59d6-b918-886e6ef4fbf8"
version = "2.1.2+0"
[[deps.KernelDensity]]
deps = ["Distributions", "DocStringExtensions", "FFTW", "Interpolations", "StatsBase"]
git-tree-sha1 = "591e8dc09ad18386189610acafb970032c519707"
uuid = "5ab0869b-81aa-558d-bb23-cbf5423bbe9b"
version = "0.6.3"
[[deps.Krylov]]
deps = ["LinearAlgebra", "Printf", "SparseArrays"]
git-tree-sha1 = "a024280a69c49f51ba29d2deb66f07508f0b9b49"
uuid = "ba0b0d4f-ebba-5204-a429-3ac8c609bfb7"
version = "0.7.13"
[[deps.LAME_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "f6250b16881adf048549549fba48b1161acdac8c"
uuid = "c1c5ebd0-6772-5130-a774-d5fcae4a789d"
version = "3.100.1+0"
[[deps.LDLFactorizations]]
deps = ["AMD", "LinearAlgebra", "SparseArrays", "Test"]
git-tree-sha1 = "736e01b9b2d443c4e3351aebe551b8a374ab9c05"
uuid = "40e66cde-538c-5869-a4ad-c39174c6795b"
version = "0.8.2"
[[deps.LZO_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "e5b909bcf985c5e2605737d2ce278ed791b89be6"
uuid = "dd4b983a-f0e5-5f8d-a1b7-129d4a5fb1ac"
version = "2.10.1+0"
[[deps.LaTeXStrings]]
git-tree-sha1 = "f2355693d6778a178ade15952b7ac47a4ff97996"
uuid = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f"
version = "1.3.0"
[[deps.LazyArtifacts]]
deps = ["Artifacts", "Pkg"]
uuid = "4af54fe1-eca0-43a8-85a7-787d91b784e3"
[[deps.LibCURL]]
deps = ["LibCURL_jll", "MozillaCACerts_jll"]
uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21"
[[deps.LibCURL_jll]]
deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"]
uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0"
[[deps.LibGit2]]
deps = ["Base64", "NetworkOptions", "Printf", "SHA"]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[deps.LibSSH2_jll]]
deps = ["Artifacts", "Libdl", "MbedTLS_jll"]
uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8"
[[deps.Libdl]]
uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
[[deps.Libffi_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "0b4a5d71f3e5200a7dff793393e09dfc2d874290"
uuid = "e9f186c6-92d2-5b65-8a66-fee21dc1b490"
version = "3.2.2+1"
[[deps.Libgcrypt_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgpg_error_jll", "Pkg"]
git-tree-sha1 = "64613c82a59c120435c067c2b809fc61cf5166ae"
uuid = "d4300ac3-e22c-5743-9152-c294e39db1e4"
version = "1.8.7+0"
[[deps.Libgpg_error_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "c333716e46366857753e273ce6a69ee0945a6db9"
uuid = "7add5ba3-2f88-524e-9cd5-f83b8a55f7b8"
version = "1.42.0+0"
[[deps.Libiconv_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "42b62845d70a619f063a7da093d995ec8e15e778"
uuid = "94ce4f54-9a6c-5748-9c1c-f9c7231a4531"
version = "1.16.1+1"
[[deps.Libmount_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "9c30530bf0effd46e15e0fdcf2b8636e78cbbd73"
uuid = "4b2f31a3-9ecc-558c-b454-b3730dcb73e9"
version = "2.35.0+0"
[[deps.Libuuid_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "7f3efec06033682db852f8b3bc3c1d2b0a0ab066"
uuid = "38a345b3-de98-5d2b-a5d3-14cd9215e700"
version = "2.36.0+0"
[[deps.LinearAlgebra]]
deps = ["Libdl", "libblastrampoline_jll"]
uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
[[deps.LinearOperators]]
deps = ["FastClosures", "LDLFactorizations", "LinearAlgebra", "Printf", "SparseArrays", "TimerOutputs"]
git-tree-sha1 = "5f5884fcd1ab037a286de2b21c38db7e4c903056"
uuid = "5c8ed15e-5a4c-59e4-a42b-c7e8811fb125"
version = "2.3.1"
[[deps.LogExpFunctions]]
deps = ["ChainRulesCore", "ChangesOfVariables", "DocStringExtensions", "InverseFunctions", "IrrationalConstants", "LinearAlgebra"]
git-tree-sha1 = "a970d55c2ad8084ca317a4658ba6ce99b7523571"
uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688"
version = "0.3.12"
[[deps.Logging]]
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
[[deps.MKL_jll]]
deps = ["Artifacts", "IntelOpenMP_jll", "JLLWrappers", "LazyArtifacts", "Libdl", "Pkg"]
git-tree-sha1 = "e595b205efd49508358f7dc670a940c790204629"
uuid = "856f044c-d86e-5d09-b602-aeab76dc8ba7"
version = "2022.0.0+0"
[[deps.Makie]]
deps = ["Animations", "Base64", "ColorBrewer", "ColorSchemes", "ColorTypes", "Colors", "Contour", "Distributions", "DocStringExtensions", "FFMPEG", "FileIO", "FixedPointNumbers", "Formatting", "FreeType", "FreeTypeAbstraction", "GeometryBasics", "GridLayoutBase", "ImageIO", "IntervalSets", "Isoband", "KernelDensity", "LaTeXStrings", "LinearAlgebra", "MakieCore", "Markdown", "Match", "MathTeXEngine", "Observables", "OffsetArrays", "Packing", "PlotUtils", "PolygonOps", "Printf", "Random", "RelocatableFolders", "Serialization", "Showoff", "SignedDistanceFields", "SparseArrays", "StaticArrays", "Statistics", "StatsBase", "StatsFuns", "StructArrays", "UnicodeFun"]
git-tree-sha1 = "63de3b8a5c1f764e4e3a036c7752a632b4f0b8d1"
uuid = "ee78f7c6-11fb-53f2-987a-cfe4a2b5a57a"
version = "0.16.6"
[[deps.MakieCore]]
deps = ["Observables"]
git-tree-sha1 = "c5fb1bfac781db766f9e4aef96adc19a729bc9b2"
uuid = "20f20a25-4f0e-4fdf-b5d1-57303727442b"
version = "0.2.1"
[[deps.MappedArrays]]
git-tree-sha1 = "e8b359ef06ec72e8c030463fe02efe5527ee5142"
uuid = "dbb5928d-eab1-5f90-85c2-b9b0edb7c900"
version = "0.4.1"
[[deps.Markdown]]
deps = ["Base64"]
uuid = "d6f4376e-aef5-505a-96c1-9c027394607a"
[[deps.Match]]
git-tree-sha1 = "1d9bc5c1a6e7ee24effb93f175c9342f9154d97f"
uuid = "7eb4fadd-790c-5f42-8a69-bfa0b872bfbf"
version = "1.2.0"
[[deps.MathOptInterface]]
deps = ["BenchmarkTools", "CodecBzip2", "CodecZlib", "JSON", "LinearAlgebra", "MutableArithmetics", "OrderedCollections", "Printf", "SparseArrays", "Test", "Unicode"]
git-tree-sha1 = "e8c9653877adcf8f3e7382985e535bb37b083598"
uuid = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
version = "0.10.9"
[[deps.MathTeXEngine]]
deps = ["AbstractTrees", "Automa", "DataStructures", "FreeTypeAbstraction", "GeometryBasics", "LaTeXStrings", "REPL", "RelocatableFolders", "Test"]
git-tree-sha1 = "70e733037bbf02d691e78f95171a1fa08cdc6332"
uuid = "0a4f8689-d25c-4efe-a92b-7142dfc1aa53"
version = "0.2.1"
[[deps.MbedTLS_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1"
[[deps.Missings]]
deps = ["DataAPI"]
git-tree-sha1 = "bf210ce90b6c9eed32d25dbcae1ebc565df2687f"
uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28"
version = "1.0.2"
[[deps.Mmap]]
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
[[deps.MosaicViews]]
deps = ["MappedArrays", "OffsetArrays", "PaddedViews", "StackViews"]
git-tree-sha1 = "b34e3bc3ca7c94914418637cb10cc4d1d80d877d"
uuid = "e94cdb99-869f-56ef-bcf0-1ae2bcbe0389"
version = "0.3.3"
[[deps.MozillaCACerts_jll]]
uuid = "14a3606d-f60d-562e-9121-12d972cd8159"
[[deps.MutableArithmetics]]
deps = ["LinearAlgebra", "SparseArrays", "Test"]
git-tree-sha1 = "842b5ccd156e432f369b204bb704fd4020e383ac"
uuid = "d8a4904e-b15c-11e9-3269-09a3773c0cb0"
version = "0.3.3"
[[deps.NNlib]]
deps = ["Adapt", "ChainRulesCore", "Compat", "LinearAlgebra", "Pkg", "Requires", "Statistics"]
git-tree-sha1 = "a59a614b8b4ea6dc1dcec8c6514e251f13ccbe10"
uuid = "872c559c-99b0-510c-b3b7-b6c96a88d5cd"
version = "0.8.4"
[[deps.NaNMath]]
git-tree-sha1 = "b086b7ea07f8e38cf122f5016af580881ac914fe"
uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3"
version = "0.3.7"
[[deps.Netpbm]]
deps = ["FileIO", "ImageCore"]
git-tree-sha1 = "18efc06f6ec36a8b801b23f076e3c6ac7c3bf153"
uuid = "f09324ee-3d7c-5217-9330-fc30815ba969"
version = "1.0.2"
[[deps.NetworkOptions]]
uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908"
[[deps.Observables]]
git-tree-sha1 = "fe29afdef3d0c4a8286128d4e45cc50621b1e43d"
uuid = "510215fc-4207-5dde-b226-833fc4488ee2"
version = "0.4.0"
[[deps.OffsetArrays]]
deps = ["Adapt"]
git-tree-sha1 = "043017e0bdeff61cfbb7afeb558ab29536bbb5ed"
uuid = "6fe1bfb0-de20-5000-8ca7-80f57d26f881"
version = "1.10.8"
[[deps.Ogg_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "887579a3eb005446d514ab7aeac5d1d027658b8f"
uuid = "e7412a2a-1a6e-54c0-be00-318e2571c051"
version = "1.3.5+1"
[[deps.OpenBLAS_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"]
uuid = "4536629a-c528-5b80-bd46-f80d51c5b363"
[[deps.OpenEXR]]
deps = ["Colors", "FileIO", "OpenEXR_jll"]
git-tree-sha1 = "327f53360fdb54df7ecd01e96ef1983536d1e633"
uuid = "52e1d378-f018-4a11-a4be-720524705ac7"
version = "0.3.2"
[[deps.OpenEXR_jll]]
deps = ["Artifacts", "Imath_jll", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"]
git-tree-sha1 = "923319661e9a22712f24596ce81c54fc0366f304"
uuid = "18a262bb-aa17-5467-a713-aee519bc75cb"
version = "3.1.1+0"
[[deps.OpenLibm_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "05823500-19ac-5b8b-9628-191a04bc5112"
[[deps.OpenSSL_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "ab05aa4cc89736e95915b01e7279e61b1bfe33b8"
uuid = "458c3c95-2e84-50aa-8efc-19380b2a3a95"
version = "1.1.14+0"
[[deps.OpenSpecFun_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "13652491f6856acfd2db29360e1bbcd4565d04f1"
uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e"
version = "0.5.5+0"
[[deps.OptimalTransport]]
deps = ["ExactOptimalTransport", "IterativeSolvers", "LinearAlgebra", "LogExpFunctions", "NNlib", "Reexport"]
git-tree-sha1 = "79ba1dab46dfc7b677278ebe892a431788da86a9"
uuid = "7e02d93a-ae51-4f58-b602-d97af76e3b33"
version = "0.3.19"
[[deps.Opus_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "51a08fb14ec28da2ec7a927c4337e4332c2a4720"
uuid = "91d4177d-7536-5919-b921-800302f37372"
version = "1.3.2+0"
[[deps.OrderedCollections]]
git-tree-sha1 = "85f8e6578bf1f9ee0d11e7bb1b1456435479d47c"
uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
version = "1.4.1"
[[deps.PCRE_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "b2a7af664e098055a7529ad1a900ded962bca488"
uuid = "2f80f16e-611a-54ab-bc61-aa92de5b98fc"
version = "8.44.0+0"
[[deps.PDMats]]
deps = ["LinearAlgebra", "SparseArrays", "SuiteSparse"]
git-tree-sha1 = "e8185b83b9fc56eb6456200e873ce598ebc7f262"
uuid = "90014a1f-27ba-587c-ab20-58faa44d9150"
version = "0.11.7"
[[deps.PNGFiles]]
deps = ["Base64", "CEnum", "ImageCore", "IndirectArrays", "OffsetArrays", "libpng_jll"]
git-tree-sha1 = "eb4dbb8139f6125471aa3da98fb70f02dc58e49c"
uuid = "f57f5aa1-a3ce-4bc8-8ab9-96f992907883"
version = "0.3.14"
[[deps.Packing]]
deps = ["GeometryBasics"]
git-tree-sha1 = "1155f6f937fa2b94104162f01fa400e192e4272f"
uuid = "19eb6ba3-879d-56ad-ad62-d5c202156566"
version = "0.4.2"
[[deps.PaddedViews]]
deps = ["OffsetArrays"]
git-tree-sha1 = "03a7a85b76381a3d04c7a1656039197e70eda03d"
uuid = "5432bcbf-9aad-5242-b902-cca2824c8663"
version = "0.5.11"
[[deps.Pango_jll]]
deps = ["Artifacts", "Cairo_jll", "Fontconfig_jll", "FreeType2_jll", "FriBidi_jll", "Glib_jll", "HarfBuzz_jll", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "3a121dfbba67c94a5bec9dde613c3d0cbcf3a12b"
uuid = "36c8627f-9965-5494-a995-c6b170f724f3"
version = "1.50.3+0"
[[deps.Parsers]]
deps = ["Dates"]
git-tree-sha1 = "621f4f3b4977325b9128d5fae7a8b4829a0c2222"
uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0"
version = "2.2.4"
[[deps.Pixman_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "b4f5d02549a10e20780a24fce72bea96b6329e29"
uuid = "30392449-352a-5448-841d-b1acce4e97dc"
version = "0.40.1+0"
[[deps.Pkg]]
deps = ["Artifacts", "Dates", "Downloads", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"]
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
[[deps.PkgVersion]]
deps = ["Pkg"]
git-tree-sha1 = "a7a7e1a88853564e551e4eba8650f8c38df79b37"
uuid = "eebad327-c553-4316-9ea0-9fa01ccd7688"
version = "0.1.1"
[[deps.PlotUtils]]
deps = ["ColorSchemes", "Colors", "Dates", "Printf", "Random", "Reexport", "Statistics"]
git-tree-sha1 = "bb16469fd5224100e422f0b027d26c5a25de1200"
uuid = "995b91a9-d308-5afd-9ec6-746e21dbc043"
version = "1.2.0"
[[deps.PlutoUI]]
deps = ["AbstractPlutoDingetjes", "Base64", "ColorTypes", "Dates", "Hyperscript", "HypertextLiteral", "IOCapture", "InteractiveUtils", "JSON", "Logging", "Markdown", "Random", "Reexport", "UUIDs"]
git-tree-sha1 = "670e559e5c8e191ded66fa9ea89c97f10376bb4c"
uuid = "7f904dfe-b85e-4ff6-b463-dae2292396a8"
version = "0.7.38"
[[deps.PolygonOps]]
git-tree-sha1 = "77b3d3605fc1cd0b42d95eba87dfcd2bf67d5ff6"
uuid = "647866c9-e3ac-4575-94e7-e3d426903924"
version = "0.1.2"
[[deps.PooledArrays]]
deps = ["DataAPI", "Future"]
git-tree-sha1 = "28ef6c7ce353f0b35d0df0d5930e0d072c1f5b9b"
uuid = "2dfb63ee-cc39-5dd5-95bd-886bf059d720"
version = "1.4.1"
[[deps.Preferences]]
deps = ["TOML"]
git-tree-sha1 = "47e5f437cc0e7ef2ce8406ce1e7e24d44915f88d"
uuid = "21216c6a-2e73-6563-6e65-726566657250"
version = "1.3.0"
[[deps.PrettyTables]]
deps = ["Crayons", "Formatting", "Markdown", "Reexport", "Tables"]
git-tree-sha1 = "dfb54c4e414caa595a1f2ed759b160f5a3ddcba5"
uuid = "08abe8d2-0d0c-5749-adfa-8a2ac140af0d"
version = "1.3.1"
[[deps.Printf]]
deps = ["Unicode"]
uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7"
[[deps.Profile]]
deps = ["Printf"]
uuid = "9abbd945-dff8-562f-b5e8-e1ebf5ef1b79"
[[deps.ProgressMeter]]
deps = ["Distributed", "Printf"]
git-tree-sha1 = "d7a7aef8f8f2d537104f170139553b14dfe39fe9"
uuid = "92933f4c-e287-5a05-a399-4b506db050ca"
version = "1.7.2"
[[deps.QOI]]
deps = ["ColorTypes", "FileIO", "FixedPointNumbers"]
git-tree-sha1 = "18e8f4d1426e965c7b532ddd260599e1510d26ce"
uuid = "4b34888f-f399-49d4-9bb3-47ed5cae4e65"
version = "1.0.0"
[[deps.QPSReader]]
deps = ["Logging", "Pkg"]
git-tree-sha1 = "374833c0c1fd5cc623278581bf0c8259d7b35f10"
uuid = "10f199a5-22af-520b-b891-7ce84a7b1bd0"
version = "0.2.1"
[[deps.QuadGK]]
deps = ["DataStructures", "LinearAlgebra"]
git-tree-sha1 = "78aadffb3efd2155af139781b8a8df1ef279ea39"
uuid = "1fd47b50-473d-5c70-9696-f719f8f3bcdc"
version = "2.4.2"
[[deps.REPL]]
deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"]
uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb"
[[deps.Random]]
deps = ["SHA", "Serialization"]
uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
[[deps.Ratios]]
deps = ["Requires"]
git-tree-sha1 = "dc84268fe0e3335a62e315a3a7cf2afa7178a734"
uuid = "c84ed2f1-dad5-54f0-aa8e-dbefe2724439"
version = "0.4.3"
[[deps.RecipesBase]]
git-tree-sha1 = "6bf3f380ff52ce0832ddd3a2a7b9538ed1bcca7d"
uuid = "3cdcf5f2-1ef4-517c-9805-6587b60abb01"
version = "1.2.1"
[[deps.Reexport]]
git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b"
uuid = "189a3867-3050-52da-a836-e630ba90ab69"
version = "1.2.2"
[[deps.RelocatableFolders]]
deps = ["SHA", "Scratch"]
git-tree-sha1 = "cdbd3b1338c72ce29d9584fdbe9e9b70eeb5adca"
uuid = "05181044-ff0b-4ac5-8273-598c1e38db00"
version = "0.1.3"
[[deps.Requires]]
deps = ["UUIDs"]
git-tree-sha1 = "838a3a4188e2ded87a4f9f184b4b0d78a1e91cb7"
uuid = "ae029012-a4dd-5104-9daa-d747884805df"
version = "1.3.0"
[[deps.Rmath]]
deps = ["Random", "Rmath_jll"]
git-tree-sha1 = "bf3188feca147ce108c76ad82c2792c57abe7b1f"
uuid = "79098fc4-a85e-5d69-aa6a-4863f24498fa"
version = "0.7.0"
[[deps.Rmath_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "68db32dff12bb6127bac73c209881191bf0efbb7"
uuid = "f50d1b31-88e8-58de-be2c-1cc44531875f"
version = "0.3.0+0"
[[deps.SHA]]
uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce"
[[deps.SIMD]]
git-tree-sha1 = "7dbc15af7ed5f751a82bf3ed37757adf76c32402"
uuid = "fdea26ae-647d-5447-a871-4b548cad5224"
version = "3.4.1"
[[deps.ScanByte]]
deps = ["Libdl", "SIMD"]
git-tree-sha1 = "9cc2955f2a254b18be655a4ee70bc4031b2b189e"
uuid = "7b38b023-a4d7-4c5e-8d43-3f3097f304eb"
version = "0.3.0"
[[deps.Scratch]]
deps = ["Dates"]
git-tree-sha1 = "0b4b7f1393cff97c33891da2a0bf69c6ed241fda"
uuid = "6c6a2e73-6563-6170-7368-637461726353"
version = "1.1.0"
[[deps.SentinelArrays]]
deps = ["Dates", "Random"]
git-tree-sha1 = "6a2f7d70512d205ca8c7ee31bfa9f142fe74310c"
uuid = "91c51154-3ec4-41a3-a24f-3f23e20d615c"
version = "1.3.12"
[[deps.Serialization]]
uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b"
[[deps.SharedArrays]]
deps = ["Distributed", "Mmap", "Random", "Serialization"]
uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383"
[[deps.Showoff]]
deps = ["Dates", "Grisu"]
git-tree-sha1 = "91eddf657aca81df9ae6ceb20b959ae5653ad1de"
uuid = "992d4aef-0814-514b-bc4d-f2e9a6c4116f"
version = "1.0.3"
[[deps.SignedDistanceFields]]
deps = ["Random", "Statistics", "Test"]
git-tree-sha1 = "d263a08ec505853a5ff1c1ebde2070419e3f28e9"
uuid = "73760f76-fbc4-59ce-8f25-708e95d2df96"
version = "0.4.0"
[[deps.Sixel]]
deps = ["Dates", "FileIO", "ImageCore", "IndirectArrays", "OffsetArrays", "REPL", "libsixel_jll"]
git-tree-sha1 = "8fb59825be681d451c246a795117f317ecbcaa28"
uuid = "45858cf5-a6b0-47a3-bbea-62219f50df47"
version = "0.1.2"
[[deps.Sockets]]
uuid = "6462fe0b-24de-5631-8697-dd941f90decc"
[[deps.SortingAlgorithms]]
deps = ["DataStructures"]
git-tree-sha1 = "b3363d7460f7d098ca0912c69b082f75625d7508"
uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c"
version = "1.0.1"
[[deps.SparseArrays]]
deps = ["LinearAlgebra", "Random"]
uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[[deps.SpecialFunctions]]
deps = ["ChainRulesCore", "IrrationalConstants", "LogExpFunctions", "OpenLibm_jll", "OpenSpecFun_jll"]
git-tree-sha1 = "5ba658aeecaaf96923dce0da9e703bd1fe7666f9"
uuid = "276daf66-3868-5448-9aa4-cd146d93841b"
version = "2.1.4"
[[deps.StackViews]]
deps = ["OffsetArrays"]
git-tree-sha1 = "46e589465204cd0c08b4bd97385e4fa79a0c770c"
uuid = "cae243ae-269e-4f55-b966-ac2d0dc13c15"
version = "0.1.1"
[[deps.Static]]
deps = ["IfElse"]
git-tree-sha1 = "87e9954dfa33fd145694e42337bdd3d5b07021a6"
uuid = "aedffcd0-7271-4cad-89d0-dc628f76c6d3"
version = "0.6.0"
[[deps.StaticArrays]]
deps = ["LinearAlgebra", "Random", "Statistics"]
git-tree-sha1 = "4f6ec5d99a28e1a749559ef7dd518663c5eca3d5"
uuid = "90137ffa-7385-5640-81b9-e52037218182"
version = "1.4.3"
[[deps.Statistics]]
deps = ["LinearAlgebra", "SparseArrays"]
uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
[[deps.StatsAPI]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "8d7530a38dbd2c397be7ddd01a424e4f411dcc41"
uuid = "82ae8749-77ed-4fe6-ae5f-f523153014b0"
version = "1.2.2"
[[deps.StatsBase]]
deps = ["DataAPI", "DataStructures", "LinearAlgebra", "LogExpFunctions", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics", "StatsAPI"]
git-tree-sha1 = "8977b17906b0a1cc74ab2e3a05faa16cf08a8291"
uuid = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
version = "0.33.16"
[[deps.StatsFuns]]
deps = ["ChainRulesCore", "InverseFunctions", "IrrationalConstants", "LogExpFunctions", "Reexport", "Rmath", "SpecialFunctions"]
git-tree-sha1 = "5950925ff997ed6fb3e985dcce8eb1ba42a0bbe7"
uuid = "4c63d2b9-4356-54db-8cca-17b64c39e42c"
version = "0.9.18"
[[deps.StructArrays]]
deps = ["Adapt", "DataAPI", "StaticArrays", "Tables"]
git-tree-sha1 = "57617b34fa34f91d536eb265df67c2d4519b8b98"
uuid = "09ab397b-f2b6-538f-b94a-2f83cf4a842a"
version = "0.6.5"
[[deps.SuiteSparse]]
deps = ["Libdl", "LinearAlgebra", "Serialization", "SparseArrays"]
uuid = "4607b0f0-06f3-5cda-b6b1-a6196a1729e9"
[[deps.TOML]]
deps = ["Dates"]
uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76"
[[deps.TableTraits]]
deps = ["IteratorInterfaceExtensions"]
git-tree-sha1 = "c06b2f539df1c6efa794486abfb6ed2022561a39"
uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c"
version = "1.0.1"
[[deps.Tables]]
deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "OrderedCollections", "TableTraits", "Test"]
git-tree-sha1 = "5ce79ce186cc678bbb5c5681ca3379d1ddae11a1"
uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c"
version = "1.7.0"
[[deps.Tar]]
deps = ["ArgTools", "SHA"]
uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e"
[[deps.TensorCore]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "1feb45f88d133a655e001435632f019a9a1bcdb6"
uuid = "62fd8b95-f654-4bbd-a8a5-9c27f68ccd50"
version = "0.1.1"
[[deps.Test]]
deps = ["InteractiveUtils", "Logging", "Random", "Serialization"]
uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[[deps.TiffImages]]
deps = ["ColorTypes", "DataStructures", "DocStringExtensions", "FileIO", "FixedPointNumbers", "IndirectArrays", "Inflate", "OffsetArrays", "PkgVersion", "ProgressMeter", "UUIDs"]
git-tree-sha1 = "aaa19086bc282630d82f818456bc40b4d314307d"
uuid = "731e570b-9d59-4bfa-96dc-6df516fadf69"
version = "0.5.4"
[[deps.TimerOutputs]]
deps = ["ExprTools", "Printf"]
git-tree-sha1 = "d60b0c96a16aaa42138d5d38ad386df672cb8bd8"
uuid = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f"
version = "0.5.16"
[[deps.TranscodingStreams]]
deps = ["Random", "Test"]
git-tree-sha1 = "216b95ea110b5972db65aa90f88d8d89dcb8851c"
uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa"
version = "0.9.6"
[[deps.Tulip]]
deps = ["CodecBzip2", "CodecZlib", "Krylov", "LDLFactorizations", "LinearAlgebra", "LinearOperators", "Logging", "MathOptInterface", "Printf", "QPSReader", "SparseArrays", "SuiteSparse", "Test", "TimerOutputs"]
git-tree-sha1 = "e1b60649eb84746ca7200e330819ea0ef647a57c"
uuid = "6dd1b50a-3aae-11e9-10b5-ef983d2400fa"
version = "0.9.2"
[[deps.UUIDs]]
deps = ["Random", "SHA"]
uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
[[deps.Unicode]]
uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
[[deps.UnicodeFun]]
deps = ["REPL"]
git-tree-sha1 = "53915e50200959667e78a92a418594b428dffddf"
uuid = "1cfade01-22cf-5700-b092-accc4b62d6e1"
version = "0.4.1"
[[deps.WeakRefStrings]]
deps = ["DataAPI", "InlineStrings", "Parsers"]
git-tree-sha1 = "b1be2855ed9ed8eac54e5caff2afcdb442d52c23"
uuid = "ea10d353-3f73-51f8-a26c-33c1cb351aa5"
version = "1.4.2"
[[deps.WoodburyMatrices]]
deps = ["LinearAlgebra", "SparseArrays"]
git-tree-sha1 = "de67fa59e33ad156a590055375a30b23c40299d3"
uuid = "efce3f68-66dc-5838-9240-27a6d6f5f9b6"
version = "0.5.5"
[[deps.XML2_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "Zlib_jll"]
git-tree-sha1 = "1acf5bdf07aa0907e0a37d3718bb88d4b687b74a"
uuid = "02c8fc9c-b97f-50b9-bbe4-9be30ff0a78a"
version = "2.9.12+0"
[[deps.XSLT_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgcrypt_jll", "Libgpg_error_jll", "Libiconv_jll", "Pkg", "XML2_jll", "Zlib_jll"]
git-tree-sha1 = "91844873c4085240b95e795f692c4cec4d805f8a"
uuid = "aed1982a-8fda-507f-9586-7b0439959a61"
version = "1.1.34+0"
[[deps.Xorg_libX11_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libxcb_jll", "Xorg_xtrans_jll"]
git-tree-sha1 = "5be649d550f3f4b95308bf0183b82e2582876527"
uuid = "4f6342f7-b3d2-589e-9d20-edeb45f2b2bc"
version = "1.6.9+4"
[[deps.Xorg_libXau_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "4e490d5c960c314f33885790ed410ff3a94ce67e"
uuid = "0c0b7dd1-d40b-584c-a123-a41640f87eec"
version = "1.0.9+4"
[[deps.Xorg_libXdmcp_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "4fe47bd2247248125c428978740e18a681372dd4"
uuid = "a3789734-cfe1-5b06-b2d0-1dd0d9d62d05"
version = "1.1.3+4"
[[deps.Xorg_libXext_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll"]
git-tree-sha1 = "b7c0aa8c376b31e4852b360222848637f481f8c3"
uuid = "1082639a-0dae-5f34-9b06-72781eeb8cb3"
version = "1.3.4+4"
[[deps.Xorg_libXrender_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll"]
git-tree-sha1 = "19560f30fd49f4d4efbe7002a1037f8c43d43b96"
uuid = "ea2f1a96-1ddc-540d-b46f-429655e07cfa"
version = "0.9.10+4"
[[deps.Xorg_libpthread_stubs_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "6783737e45d3c59a4a4c4091f5f88cdcf0908cbb"
uuid = "14d82f49-176c-5ed1-bb49-ad3f5cbd8c74"
version = "0.1.0+3"
[[deps.Xorg_libxcb_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "XSLT_jll", "Xorg_libXau_jll", "Xorg_libXdmcp_jll", "Xorg_libpthread_stubs_jll"]
git-tree-sha1 = "daf17f441228e7a3833846cd048892861cff16d6"
uuid = "c7cfdc94-dc32-55de-ac96-5a1b8d977c5b"
version = "1.13.0+3"
[[deps.Xorg_xtrans_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "79c31e7844f6ecf779705fbc12146eb190b7d845"
uuid = "c5fb5394-a638-5e4d-96e5-b29de1b5cf10"
version = "1.4.0+3"
[[deps.Zlib_jll]]
deps = ["Libdl"]
uuid = "83775a58-1f1d-513f-b197-d71354ab007a"
[[deps.isoband_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "51b5eeb3f98367157a7a12a1fb0aa5328946c03c"
uuid = "9a68df92-36a6-505f-a73e-abb412b6bfb4"
version = "0.2.3+0"
[[deps.libass_jll]]
deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "HarfBuzz_jll", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"]
git-tree-sha1 = "5982a94fcba20f02f42ace44b9894ee2b140fe47"
uuid = "0ac62f75-1d6f-5e53-bd7c-93b484bb37c0"
version = "0.15.1+0"
[[deps.libblastrampoline_jll]]
deps = ["Artifacts", "Libdl", "OpenBLAS_jll"]
uuid = "8e850b90-86db-534c-a0d3-1478176c7d93"
[[deps.libfdk_aac_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "daacc84a041563f965be61859a36e17c4e4fcd55"
uuid = "f638f0a6-7fb0-5443-88ba-1cc74229b280"
version = "2.0.2+0"
[[deps.libpng_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"]
git-tree-sha1 = "94d180a6d2b5e55e447e2d27a29ed04fe79eb30c"
uuid = "b53b4c65-9356-5827-b1ea-8c7a1a84506f"
version = "1.6.38+0"
[[deps.libsixel_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "78736dab31ae7a53540a6b752efc61f77b304c5b"
uuid = "075b6546-f08a-558a-be8f-8157d0f608a5"
version = "1.8.6+1"
[[deps.libvorbis_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Ogg_jll", "Pkg"]
git-tree-sha1 = "b910cb81ef3fe6e78bf6acee440bda86fd6ae00c"
uuid = "f27f6e37-5d2b-51aa-960f-b287f2bc3b7a"
version = "1.3.7+1"
[[deps.nghttp2_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d"
[[deps.p7zip_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0"
[[deps.x264_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "4fea590b89e6ec504593146bf8b988b2c00922b2"
uuid = "1270edf5-f2f9-52d2-97e9-ab00b5d0237a"
version = "2021.5.5+0"
[[deps.x265_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "ee567a171cce03570d77ad3a43e90218e38937a9"
uuid = "dfaa095f-4041-5dcd-9319-2fabd8486b76"
version = "3.5.0+0"
"""
# ╔═╡ Cell order:
# ╟─8d867c72-2924-46a0-8a60-7c6e52f71a67
# ╟─c1df03d1-6205-4caa-9bdf-7daa5ba59d3a
# ╟─a5301146-6eac-4bcd-97d9-3bfd6fe4f213
# ╟─da9cc45d-8529-4965-b213-61b2657fce28
# ╟─fe0ac519-7995-419a-a8ac-02af958342cd
# ╟─29b6a32d-9003-4bc7-8351-0d1881153bf6
# ╟─db98d796-c0d2-11ec-2c96-f7510a6d771c
# ╟─973f46d5-83b7-466a-a8c3-406643f7dbc5
# ╟─ab49655b-ab30-457c-a476-9f6dd310ab4b
# ╟─7796c8e9-a090-4aab-a073-50f839ceab22
# ╟─00000000-0000-0000-0000-000000000001
# ╟─00000000-0000-0000-0000-000000000002
| OceanDistributions | https://github.com/JuliaOcean/OceanDistributions.jl.git |
|
[
"MIT"
] | 0.1.3 | 92b3dd85df011ccb327a290110c39033e15e5ecf | code | 5822 | using Distributed
calc_SatToSat=true
calc_ModToMod=false
calc_ModToSat=false
zm_test_case=true
choice_method="emd2" #only for 2D case
test_methods=false
println(calc_SatToSat)
println(calc_ModToMod)
println(calc_ModToSat)
println(choice_method)
println(zm_test_case)
##
pth_output=joinpath(tempdir(),"OptimalTransport_example")
!isdir(pth_output) ? mkdir(pth_output) : nothing
@everywhere using Distributed, DistributedArrays, SharedArrays
@everywhere using OptimalTransport, Statistics, LinearAlgebra
@everywhere using Tulip, Distances, JLD2, Tables, CSV, DataFrames
#@everywhere Cost=load("examples/example_Cost.jld2")["Cost"]
@everywhere M=Tables.matrix(CSV.read("examples/M.csv",DataFrame))
@everywhere S=Tables.matrix(CSV.read("examples/S.csv",DataFrame))
@everywhere nx=size(M,1)
## functions that use the "zonal sum" test case
@everywhere function ModToMod_MS(i,j)
Cost=Float64.([abs(i-j) for i in 1:nx, j in 1:nx])
emd2(M[:,i],M[:,j], Cost, Tulip.Optimizer())
end
@everywhere function SatToSat_MS(i,j)
Cost=Float64.([abs(i-j) for i in 1:nx, j in 1:nx])
emd2(S[:,i],S[:,j], Cost, Tulip.Optimizer())
end
@everywhere function ModToSat_MS(i,j)
Cost=Float64.([abs(i-j) for i in 1:nx, j in 1:nx])
emd2(M[:,i],S[:,j], Cost, Tulip.Optimizer())
#ε = 0.01
#γ = sinkhorn_stabilized_epsscaling(M[:,i],S[:,j], Cost, ε; maxiter=5_000)
#dot(γ, Cost) #compute optimal cost, directly
end
## functions that use the full 2D case
@everywhere function ModToSat(i,j)
a=Chl_from_Mod[:,:,i][:]
b=Chl_from_Sat[:,:,j][:]
a,b=preprocess_Chl(a,b)
if choice_method=="sinkhorn2"
ε = 0.05
sinkhorn2(a,b, Cost, ε)
elseif choice_method=="emd2"
emd2(a,b, Cost, Tulip.Optimizer())
elseif choice_method=="epsscaling"
ε = 0.01
γ = sinkhorn_stabilized_epsscaling(a,b, Cost, ε; maxiter=5_000)
dot(γ, Cost) #compute optimal cost, directly
end
end
@everywhere function ModToMod(i,j)
a=Chl_from_Mod[:,:,i][:]
b=Chl_from_Mod[:,:,j][:]
a,b=preprocess_Chl(a,b)
if choice_method=="sinkhorn2"
ε = 0.05
sinkhorn2(a,b, Cost, ε)
elseif choice_method=="emd2"
emd2(a,b, Cost, Tulip.Optimizer())
elseif choice_method=="epsscaling"
ε = 0.01
γ = sinkhorn_stabilized_epsscaling(a,b, Cost, ε; maxiter=5_000)
dot(γ, Cost) #compute optimal cost, directly
end
end
@everywhere function SatToSat(i,j)
a=Chl_from_Sat[:,:,i][:]
b=Chl_from_Sat[:,:,j][:]
a,b=preprocess_Chl(a,b)
if choice_method=="sinkhorn2"
ε = 0.05
sinkhorn2(a,b, Cost, ε)
elseif choice_method=="emd2"
emd2(a,b, Cost, Tulip.Optimizer())
elseif choice_method=="epsscaling"
ε = 0.01
γ = sinkhorn_stabilized_epsscaling(a,b, Cost, ε; maxiter=5_000)
dot(γ, Cost) #compute optimal cost, directly
end
end
##
@everywhere include("OptimalTransport_setup.jl")
II=[[i,j] for i in 1:12, j in 1:12][:];
using Random; JJ=shuffle(II);
if calc_ModToMod
d = SharedArray{Float64}(12,12)
t0=[time()]
for kk in 1:36
@sync @distributed for k in (kk-1)*4 .+ collect(1:4)
i=JJ[k][1]
j=JJ[k][2]
zm_test_case ? d[i,j]=ModToMod_MS(i,j) : d[i,j]=ModToMod(i,j)
end
dt=time()-t0[1]
println("ModToMod $(kk) $(dt)")
t0[1]=time()
jldsave(joinpath(pth_output,"ModToMod_$(choice_method).jld2"); d = d.s)
end
end
if calc_SatToSat
d = SharedArray{Float64}(12,12)
t0=[time()]
for kk in 1:36
@sync @distributed for k in (kk-1)*4 .+ collect(1:4)
i=JJ[k][1]
j=JJ[k][2]
zm_test_case ? d[i,j]=SatToSat_MS(i,j) : d[i,j]=SatToSat(i,j)
end
dt=time()-t0[1]
println("SatToSat $(kk) $(dt)")
t0[1]=time()
jldsave(joinpath(pth_output,"SatToSat.jld2"); d = d.s)
end
end
if calc_ModToSat
d = SharedArray{Float64}(12,12)
t0=[time()]
for kk in 1:36
@sync @distributed for k in (kk-1)*4 .+ collect(1:4)
i=JJ[k][1]
j=JJ[k][2]
zm_test_case ? d[i,j]=ModToSat_MS(i,j) : d[i,j]=ModToSat(i,j)
end
dt=time()-t0[1]
println("ModToSat $(kk) $(dt)")
t0[1]=time()
jldsave(joinpath(pth_output,"ModToSat.jld2"); d = d.s)
end
end
## function used only for testing several methods at once
@everywhere function ModToMod_methods(i,j,mthd=1)
a=Chl_from_Mod[:,:,i][:]
b=Chl_from_Mod[:,:,j][:]
a,b=preprocess_Chl(a,b)
a=sum(reshape(a,(120,140)),dims=1)[:]
b=sum(reshape(b,(120,140)),dims=1)[:]
Cost=Float64.([abs(i-j) for i in 1:140, j in 1:140])
if mthd==1
ε = 0.05
sinkhorn2(a,b, Cost, ε)
elseif mthd==2
emd2(a,b, Cost, Tulip.Optimizer())
elseif mthd==3
ε = 0.005
γ = sinkhorn_stabilized(a,b, Cost, ε; maxiter=5_000)
dot(γ, Cost) #compute optimal cost, directly
elseif mthd==4
ε = 0.005
γ = sinkhorn_stabilized_epsscaling(a,b, Cost, ε; maxiter=5_000)
dot(γ, Cost) #compute optimal cost, directly
# elseif mthd==5
# ε = 0.05
# γ = quadreg(a,b, Cost, ε; maxiter=100)
# dot(γ, Cost) #compute optimal cost, directly
end
end
if test_methods
#KK=([1,1],[1,2],[1,9])
KK=[[1,j] for j in 1:12]
d = SharedArray{Float64}(6,length(KK))
t0=[time()]
for k in 1:4
for kk in 1:12
i=KK[kk][1]
j=KK[kk][2]
try
d[k,kk]=ModToMod_methods(i,j,k)
catch
d[k,kk]=NaN
end
println("$(k) $(kk) $(d[k,kk])")
end
dt=time()-t0[1]
println("ModToMod_methods $(k) $(dt)")
t0[1]=time()
jldsave(joinpath(pth_output,"ModToMod_methods.jld2"); d = d.s)
end
end
| OceanDistributions | https://github.com/JuliaOcean/OceanDistributions.jl.git |
|
[
"MIT"
] | 0.1.3 | 92b3dd85df011ccb327a290110c39033e15e5ecf | code | 1644 |
#using OceanStateEstimation, MeshArrays, NCTiles
using JLD2
import CairoMakie as Mkie
pth_output=joinpath(tempdir(),"OptimalTransport_example")
function EMD_plot(fil)
d=load(fil)["d"];
d[findall(d.==0.0)].=NaN;
fig = Mkie.Figure(resolution = (600,400), backgroundcolor = :grey95, fontsize=12)
ax = Mkie.Axis(fig[1,1])
hm=Mkie.heatmap!(d)
Mkie.Colorbar(fig[1,2], hm, height = Mkie.Relative(0.65))
fig
end
function EMD_plot_all(pth=pth_output)
fil1=joinpath(pth,"ModToMod.jld2")
fil2=joinpath(pth,"SatToSat.jld2")
fil3=joinpath(pth,"ModToSat.jld2")
d1=load(fil1)["d"]; d1[findall(d1.==0.0)].=NaN;
d2=load(fil2)["d"]; d2[findall(d2.==0.0)].=NaN;
d3=load(fil3)["d"]; d3[findall(d3.==0.0)].=NaN;
#just to check the alignment of dimensions d3[1:end,1].=NaN
#cr=(0.07, 0.15)
cr=(0.0, 10.0)
fig = Mkie.Figure(resolution = (600,400), backgroundcolor = :grey95, fontsize=12)
ax = Mkie.Axis(fig[1,1])
hm=Mkie.heatmap!(d1, colorrange = cr, colormap=:inferno)
Mkie.ylims!(ax, (12.5, 0.5)); Mkie.xlims!(ax, (0.5,12.5))
ax = Mkie.Axis(fig[1,2])
hm=Mkie.heatmap!(transpose(d3), colorrange = cr, colormap=:inferno)
Mkie.ylims!(ax, (12.5, 0.5)); Mkie.xlims!(ax, (0.5,12.5))
ax = Mkie.Axis(fig[2,1])
hm=Mkie.heatmap!(d3, colorrange = cr, colormap=:inferno)
Mkie.ylims!(ax, (12.5, 0.5)); Mkie.xlims!(ax, (0.5,12.5))
ax = Mkie.Axis(fig[2,2])
hm=Mkie.heatmap!(d2, colorrange = cr, colormap=:inferno)
Mkie.ylims!(ax, (12.5, 0.5)); Mkie.xlims!(ax, (0.5,12.5))
Mkie.Colorbar(fig[1:2,3], hm, height = Mkie.Relative(0.65))
fig
end
| OceanDistributions | https://github.com/JuliaOcean/OceanDistributions.jl.git |
|
[
"MIT"
] | 0.1.3 | 92b3dd85df011ccb327a290110c39033e15e5ecf | code | 2262 |
"""
object: setup to compute optimal transport between model and/or satellite climatologies
date: 2021/10/28
author: Gaël Forget
- examples/CBIOMES_climatology_compare.jl
"""
import OceanStateEstimation, NCTiles
using Statistics, LinearAlgebra, JLD2
## load files
fil_out=joinpath(OceanStateEstimation.CBIOMESclim_path,"CBIOMES-global-alpha-climatology.nc")
nc=NCTiles.NCDataset(fil_out,"r")
lon=nc["lon"][:]
lat=nc["lat"][:]
uni=nc["Chl"].attrib["units"]
## region and base distance (Cost) definition
i1=findall( (lon.>-180.0).*(lon.<-120.0) )
j1=findall( (lat.>-20.0).*(lat.<50.0) )
## main arrays
Chl_from_Mod=nc["Chl"][i1,j1,:]
fil_sat="examples_climatology_prep/gridded_geospatial_montly_clim_360_720_ver_0_2.nc"
Chl_from_Sat=NCTiles.NCDataset(fil_sat,"r")["Chl"][i1,j1,:]
## cost matrix
if !isfile("examples_EMD_paper_exploration/example_Cost.jld2")
#this only needs to be done one
#C = [[i,j] for i in i1, j in j1]
C = [[lon[i],lat[j]] for i in i1, j in j1]
C=C[:]
gcdist(lo1,lo2,la1,la2) = acos(sind(la1)*sind(la2)+cosd(la1)*cosd(la2)*cosd(lo1-lo2))
#C=[gcdist(C[i][1],C[j][1],C[i][2],C[j][2]) for i in 1:length(C), j in 1:length(C)]
nx=length(C)
Cost=zeros(nx,nx)
for i in 1:length(C), j in 1:length(C)
i!==j ? Cost[i,j]=gcdist(C[i][1],C[j][1],C[i][2],C[j][2]) : nothing
end
@save "examples_EMD_paper_exploration/example_Cost.jld2" Cost
end
Cost=load("examples_EMD_paper_exploration/example_Cost.jld2")["Cost"]
println("reusing Cost matrix computed previously\n")
## helper functions
function preprocess_Chl(a,b)
k=findall(ismissing.(a).|ismissing.(b));
a[k].=0.0; b[k].=0.0;
k=findall((a.<0).|(b.<0));
a[k].=0.0; b[k].=0.0;
k=findall(isnan.(a).|isnan.(b));
a[k].=0.0; b[k].=0.0;
M=0.1
k=findall((a.>M).|(b.>M));
a[findall(a.>M)].=M;
b[findall(b.>M)].=M;
a=Float64.(a); a=a/sum(a)
b=Float64.(b); b=b/sum(b)
a,b
end
##
function export_zm()
M=NaN*zeros(140,12)
S=NaN*zeros(140,12)
for t in 1:12
a=Chl_from_Mod[:,:,t][:]
b=Chl_from_Sat[:,:,t][:]
a,b=preprocess_Chl(a,b)
M[:,t]=sum(reshape(a,(120,140)),dims=1)[:]
S[:,t]=sum(reshape(b,(120,140)),dims=1)[:]
end
(M,S)
end
| OceanDistributions | https://github.com/JuliaOcean/OceanDistributions.jl.git |
|
[
"MIT"
] | 0.1.3 | 92b3dd85df011ccb327a290110c39033e15e5ecf | code | 323 | module OceanDistributions
using CSV, DataFrames
export readoceandistribution
"""
readoceandistribution(fil::String)
Read a distribution from csv file
```
Tcensus=readoceandistribution("examples/Tcensus.txt")
```
"""
function readoceandistribution(file::String)
return CSV.read(file,DataFrame)
end
end # module
| OceanDistributions | https://github.com/JuliaOcean/OceanDistributions.jl.git |
|
[
"MIT"
] | 0.1.3 | 92b3dd85df011ccb327a290110c39033e15e5ecf | code | 225 | using OceanDistributions
using Test
@testset "OceanDistributions.jl" begin
Tcensus=readoceandistribution("../examples/Tcensus.txt")
tmp=sum(Tcensus[!,:V])
@test isapprox(tmp,1.3349978769392906e18; atol=1e16)
end
| OceanDistributions | https://github.com/JuliaOcean/OceanDistributions.jl.git |
|
[
"MIT"
] | 0.1.3 | 92b3dd85df011ccb327a290110c39033e15e5ecf | docs | 844 | # OceanDistributions
[](https://gaelforget.github.io/OceanDistributions.jl/stable)
[](https://gaelforget.github.io/OceanDistributions.jl/dev)
[](https://travis-ci.org/gaelforget/OceanDistributions.jl)
[](https://codecov.io/gh/gaelforget/OceanDistributions.jl)
[](https://zenodo.org/badge/latestdoi/240949850)
Probabilistic, geographic, and temporal distributions of ocean properties, compounds, species, etc.
_This package is in early developement stage when breaking changes can be expected._
| OceanDistributions | https://github.com/JuliaOcean/OceanDistributions.jl.git |
|
[
"MIT"
] | 0.1.3 | 92b3dd85df011ccb327a290110c39033e15e5ecf | docs | 405 | # OceanDistributions.jl
Probabilistic, geographic, and temporal distributions of ocean properties, compounds, species, etc.
Initial focus is expected to be on oceanic water mass distributions.
_This package is at a very early stage of development._
```@index
```
- [diffusion example](one_dim_diffusion.html) ➭ [download / url](one_dim_diffusion.jl)
```@autodocs
Modules = [OceanDistributions]
```
| OceanDistributions | https://github.com/JuliaOcean/OceanDistributions.jl.git |
|
[
"MIT"
] | 0.1.3 | 92b3dd85df011ccb327a290110c39033e15e5ecf | docs | 346 | This ice thickness distribution code from 2012 was downloaded from the old `MITgcm_contrib` server as follows.
With password `cvsanon`, do :
```
export CVSROOT=':pserver:[email protected]:/u/gcmpack'
cvs login
Logging in to :pserver:[email protected]:2401/u/gcmpack
CVS password:
cvs co MITgcm_contrib/gael/toy_models/ice_thick_distrib
``` | OceanDistributions | https://github.com/JuliaOcean/OceanDistributions.jl.git |
|
[
"MIT"
] | 0.1.1 | 0a5d0b089a23bbf29712865ea6aab4ccceecc1e7 | code | 752 | using DigitalHolography
using Documenter
DocMeta.setdocmeta!(DigitalHolography, :DocTestSetup, :(using DigitalHolography); recursive=true)
makedocs(;
modules=[DigitalHolography],
authors="Shuhei Yoshida <[email protected]> and contributors",
repo="https://github.com/syoshida1983/DigitalHolography.jl/blob/{commit}{path}#{line}",
sitename="DigitalHolography.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://syoshida1983.github.io/DigitalHolography.jl",
edit_link="master",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(;
repo="github.com/syoshida1983/DigitalHolography.jl",
devbranch="master",
)
| DigitalHolography | https://github.com/syoshida1983/DigitalHolography.jl.git |
|
[
"MIT"
] | 0.1.1 | 0a5d0b089a23bbf29712865ea6aab4ccceecc1e7 | code | 4354 | module DigitalHolography
export PSDH2
export PSDH3
export PSDH4
export ParallelPSDH
export GeneralizedPSDH
"""
PSDH2(I₁, I₂, Iᵣ, δ)
return object wave extracted by the two-step phase-shifting method (see Ref. 1).
# Arguments
- `I₁`, `I₂`: Interferograms corresponding to phases ``\\phi`` and ``\\phi - \\delta``, respectively.
- `Iᵣ`: intensity of reference wave.
- `δ`: phase difference ``\\delta``.
> 1. [X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, "Two-step phase-shifting interferometry and its application in image encryption," Opt. Lett. **31**, 1414-1416 (2006)](https://doi.org/10.1364/OL.31.001414)
"""
function PSDH2(I₁, I₂, Iᵣ, δ)
u = 2(1 - cos(δ))
v = @. 2(1 - cos(δ))*(I₁ + I₂) + 4Iᵣ*sin(δ)^2
w = @. I₁^2 + I₂^2 - 2*I₁*I₂*cos(δ) + 4Iᵣ^2*sin(δ)^2
a = @. (v - √(v^2 - 4u*w + 0im))/(2u)
return @. (I₁ - a)/(2√Iᵣ) + im*(I₂ - I₁*cos(δ) - (1 - cos(δ))a)/(2sin(δ)√Iᵣ)
end
"""
PSDH3(I₁, I₂, I₃, δ)
return object wave extracted by the three-step phase-shifting method (see Ref. 1, 2).
Phases of `I₁`, `I₂`, and `I₃` correspond to ``\\phi - \\delta``, ``\\phi``, and ``\\phi + \\delta``, respectively.
> 1. [Katherine Creath, "V Phase-Measurement Interferometry Techniques," Progress in Optics **26**, 349-393 (1988)](https://doi.org/10.1016/S0079-6638(08)70178-1)
> 2. [Horst Schreiber, and John H. Bruning, "Phase Shifting Interferometry," in Daniel Malacara (ed.), *Optical Shop Testing*, John Wiley & Sons, Ltd, pp. 547-666 (2006)](https://doi.org/10.1002/9780470135976.ch14)
"""
function PSDH3(I₁, I₂, I₃, δ)
ϕ = @. atan((I₁ - I₃)/sin(δ), (2I₂ - I₁ - I₃)/(1 - cos(δ)))
v = @. (I₁ + I₃ - 2I₂*cos(δ))/(2(1 - cos(δ)))
w = @. √(((1 - cos(δ))*(I₁ - I₃))^2 + (sin(δ)*(2I₂ - I₁ - I₃))^2)/(2sin(δ)*(1 - cos(δ)))
return @. √((v - √(v^2 - w^2 + 0im))/2)*exp(im*ϕ)
end
"""
PSDH4(I₁, I₂, I₃, I₄)
return object wave extracted by the four-step phase-shifting method. See (Creath, 1988), (Schreiber and Bruning, 2006).
Phase difference `δ` corresponding to `I₁`, `I₂`, `I₃`, and `I₄` are assumed to be ``\\delta = 0, \\dfrac{\\pi}{2}, \\pi``, and ``\\dfrac{3\\pi}{2}``, respectively.
"""
function PSDH4(I₁, I₂, I₃, I₄)
ϕ = @. atan(I₂ - I₄, I₁ - I₃)
v = @. (I₁ + I₂ + I₃ + I₄)/4
w = @. √((I₁ - I₃)^2 + (I₂ - I₄)^2)/2
return @. √((v - √(v^2 - w^2 + 0im))/2)*exp(im*ϕ)
end
"""
ParallelPSDH(I)
return object wave extracted by the parallel four-step phase-shifting method (see Ref. 1, 2).
Using 2x2 pixels with phase differences of ``\\dfrac{\\pi}{2}`` each as units, the object wave is extracted through the four-step phase-shifting method.
> 1. [Y. Awatsuji, M. Sasada, and T. Kubota, "Parallel quasi-phase-shifting digital holography," Appl. Phys. Lett., **85**, 1069-1071 (2004).](https://doi.org/10.1063/1.1777796)
> 2. [Yasuhiro Awatsuji, "Parallel Phase-Shifting Digital Holography," in Bahram Javidi, Enrique Tajahuerce, Pedro Andrés (eds.), *Multi-Dimensional Imaging*, John Wiley & Sons, Ltd, pp. 1-23](https://doi.org/10.1002/9781118705766.ch1)
"""
function ParallelPSDH(I)
Ny, Nx = size(I)
u = Array{ComplexF64}(undef, Ny, Nx)
@fastmath @inbounds for j ∈ 1:Nx - 1, i ∈ 1:Ny - 1
I₁ = I[i+(i+1)%2, j+j%2] # +cos
I₂ = I[i+(i+1)%2, j+(j+1)%2] # +sin
I₃ = I[i+i%2, j+(j+1)%2] # -cos
I₄ = I[i+i%2, j+j%2] # -sin
ϕ = atan(I₂ - I₄, I₁ - I₃)
v = (I₁ + I₂ + I₃ + I₄)/4
w = √((I₁ - I₃)^2 + (I₂ - I₄)^2)/2
u[i, j] = √((v - √(v^2 - w^2 + 0im))/2)*exp(im*ϕ)
end
u[:,end] = u[:,end-1]
u[end,:] = u[end-1,:]
u[end,end] = u[end-1,end-1]
return u
end
"""
GeneralizedPSDH(I)
return object wave extracted by the generalized phase-shifting method. See (Creath, 1988), (Schreiber and Bruning, 2006).
Store N interferograms in a three-dimensional array as `I[:,:,1]`, `I[:,:,2]`, ..., `I[:,:,N]`.
Phase difference ``\\delta_{n}`` corresponding to the n-th interferogram is assumed to be ``\\delta_{n} = \\dfrac{2\\pi}{N}n``.
"""
function GeneralizedPSDH(I)
N = size(I, 3)
x = sum(I[:,:,i].*cos(i*2π/N) for i in 1:N)
y = sum(I[:,:,i].*sin(i*2π/N) for i in 1:N)
ϕ = @. atan(-y, x)
v = sum(I[:,:,i] for i in 1:N)/N
w = @. 2√(x^2 + y^2)/N
return @. √((v - √(v^2 - w^2 + 0im))/2)*exp(im*ϕ)
end
end
| DigitalHolography | https://github.com/syoshida1983/DigitalHolography.jl.git |
|
[
"MIT"
] | 0.1.1 | 0a5d0b089a23bbf29712865ea6aab4ccceecc1e7 | code | 107 | using DigitalHolography
using Test
@testset "DigitalHolography.jl" begin
# Write your tests here.
end
| DigitalHolography | https://github.com/syoshida1983/DigitalHolography.jl.git |
|
[
"MIT"
] | 0.1.1 | 0a5d0b089a23bbf29712865ea6aab4ccceecc1e7 | docs | 2397 | # DigitalHolography
[](https://syoshida1983.github.io/DigitalHolography.jl/stable/)
[](https://syoshida1983.github.io/DigitalHolography.jl/dev/)
[](https://github.com/syoshida1983/DigitalHolography.jl/actions/workflows/CI.yml?query=branch%3Amaster)
This package provides the functions for extracting object wavefront from interferograms based on the phase-shifting method.
Two [1], three [2,3], four [2,3], parallel [4,5], and generalized [2,3] phase-shifting methods are implemented.
For detailed principles, please refer to the following references.
> 1. [X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, "Two-step phase-shifting interferometry and its application in image encryption," Opt. Lett. **31**, 1414-1416 (2006)](https://doi.org/10.1364/OL.31.001414)
> 2. [Katherine Creath, "V Phase-Measurement Interferometry Techniques," Progress in Optics **26**, 349-393 (1988)](https://doi.org/10.1016/S0079-6638(08)70178-1)
> 3. [Horst Schreiber, and John H. Bruning, "Phase Shifting Interferometry," in Daniel Malacara (ed.), *Optical Shop Testing*, John Wiley & Sons, Ltd, pp. 547-666 (2006)](https://doi.org/10.1002/9780470135976.ch14)
> 4. [Y. Awatsuji, M. Sasada, and T. Kubota, "Parallel quasi-phase-shifting digital holography," Appl. Phys. Lett., **85**, 1069-1071 (2004).](https://doi.org/10.1063/1.1777796)
> 5. [Yasuhiro Awatsuji, "Parallel Phase-Shifting Digital Holography," in Bahram Javidi, Enrique Tajahuerce, Pedro Andrés (eds.), *Multi-Dimensional Imaging*, John Wiley & Sons, Ltd, pp. 1-23](https://doi.org/10.1002/9781118705766.ch1)
# Installation
To install this package, open the Julia REPL and run
```julia
julia> ]add DigitalHolography
```
or
```julia
julia> using Pkg
julia> Pkg.add("DigitalHolography")
```
# Usage
Import the package first.
```julia
julia> using DigitalHolography
```
Please refer to the following document for usage instructions.
[](https://syoshida1983.github.io/DigitalHolography.jl/stable/)
[](https://syoshida1983.github.io/DigitalHolography.jl/dev/)
| DigitalHolography | https://github.com/syoshida1983/DigitalHolography.jl.git |
|
[
"MIT"
] | 0.1.1 | 0a5d0b089a23bbf29712865ea6aab4ccceecc1e7 | docs | 471 | ```@meta
CurrentModule = DigitalHolography
```
# DigitalHolography
Documentation for [DigitalHolography](https://github.com/syoshida1983/DigitalHolography.jl).
```@index
```
!!! note
When the object wave is denoted as ``u_{o} = ae^{i\phi}`` and the reference wave as ``u_{r} = be^{i\delta}``, the interference fringe ``I`` can be represented as ``I = |u_{o} + u_{r}|^{2} = a^{2} + b^{2} + 2ab\cos(\phi - \delta)``.
```@autodocs
Modules = [DigitalHolography]
```
| DigitalHolography | https://github.com/syoshida1983/DigitalHolography.jl.git |
|
[
"MIT"
] | 0.3.2 | 11cb7c9c06435cfadcc6d94d34c07501df32ce55 | code | 563 | using Documenter, CUDSS
using LinearAlgebra
using CUDA, CUDA.CUSPARSE
makedocs(
modules = [CUDSS],
doctest = true,
linkcheck = true,
format = Documenter.HTML(ansicolor = true,
prettyurls = get(ENV, "CI", nothing) == "true",
collapselevel = 1),
sitename = "CUDSS.jl",
pages = ["Home" => "index.md",
"Generic API" => "generic.md",
"Options" => "options.md"]
)
deploydocs(
repo = "github.com/exanauts/CUDSS.jl.git",
push_preview = true,
devbranch = "main",
)
| CUDSS | https://github.com/exanauts/CUDSS.jl.git |
|
[
"MIT"
] | 0.3.2 | 11cb7c9c06435cfadcc6d94d34c07501df32ce55 | code | 145 | # CUDSS uses CUDA runtime objects, which are compatible with our driver usage
const cudaStream_t = CUstream
const cudaDataType_t = cudaDataType
| CUDSS | https://github.com/exanauts/CUDSS.jl.git |
|
[
"MIT"
] | 0.3.2 | 11cb7c9c06435cfadcc6d94d34c07501df32ce55 | code | 7895 | using Clang
using Clang.Generators
using JuliaFormatter
using CUDA_SDK_jll, CUDSS_jll
function rewriter!(ctx, options)
for node in get_nodes(ctx.dag)
# remove aliases for function names
#
# when NVIDIA changes the behavior of an API, they version the function
# (`cuFunction_v2`), and sometimes even change function names. To maintain backwards
# compatibility, they ship aliases with their headers such that compiled binaries
# will keep using the old version, and newly-compiled ones will use the developer's
# CUDA version. remove those, since we target multiple CUDA versions.
#
# remove this if we ever decide to support a single supported version of CUDA.
if node isa ExprNode{<:AbstractMacroNodeType}
isempty(node.exprs) && continue
expr = node.exprs[1]
if Meta.isexpr(expr, :const)
expr = expr.args[1]
end
if Meta.isexpr(expr, :(=))
lhs, rhs = expr.args
if rhs isa Expr && rhs.head == :call
name = string(rhs.args[1])
if endswith(name, "STRUCT_SIZE")
rhs.head = :macrocall
rhs.args[1] = Symbol("@", name)
insert!(rhs.args, 2, nothing)
end
end
isa(lhs, Symbol) || continue
if Meta.isexpr(rhs, :call) && rhs.args[1] in (:__CUDA_API_PTDS, :__CUDA_API_PTSZ)
rhs = rhs.args[2]
end
isa(rhs, Symbol) || continue
lhs, rhs = String(lhs), String(rhs)
function get_prefix(str)
# cuFooBar -> cu
isempty(str) && return nothing
islowercase(str[1]) || return nothing
for i in 2:length(str)
if isuppercase(str[i])
return str[1:i-1]
end
end
return nothing
end
lhs_prefix = get_prefix(lhs)
lhs_prefix === nothing && continue
rhs_prefix = get_prefix(rhs)
if lhs_prefix == rhs_prefix
@debug "Removing function alias: `$expr`"
empty!(node.exprs)
end
end
end
if Generators.is_function(node) && !Generators.is_variadic_function(node)
expr = node.exprs[1]
call_expr = expr.args[2].args[1].args[3] # assumes `use_ccall_macro` is true
# replace `@ccall` with `@gcsafe_ccall`
expr.args[2].args[1].args[1] = Symbol("@gcsafe_ccall")
target_expr = call_expr.args[1].args[1]
fn = String(target_expr.args[2].value)
# look up API options for this function
fn_options = Dict{String,Any}()
templates = Dict{String,Any}()
template_types = nothing
if haskey(options, "api")
names = [fn]
# _64 aliases are used by CUBLAS with Int64 arguments. they otherwise have
# an idential signature, so we can reuse the same type rewrites.
if endswith(fn, "_64")
push!(names, fn[1:end-3])
end
# look for a template rewrite: many libraries have very similar functions,
# e.g., `cublas[SDHCZ]gemm`, for which we can use the same type rewrites
# registered as `cublas𝕏gemm` template with `T` and `S` placeholders.
for name in copy(names), (typcode,(T,S)) in ["S"=>("Cfloat","Cfloat"),
"D"=>("Cdouble","Cdouble"),
"H"=>("Float16","Float16"),
"C"=>("cuComplex","Cfloat"),
"Z"=>("cuDoubleComplex","Cdouble")]
idx = findfirst(typcode, name)
while idx !== nothing
template_name = name[1:idx.start-1] * "𝕏" * name[idx.stop+1:end]
if haskey(options["api"], template_name)
templates[template_name] = ["T" => T, "S" => S]
push!(names, template_name)
end
idx = findnext(typcode, name, idx.stop+1)
end
end
# the exact name is always checked first, so it's always possible to
# override the type rewrites for a specific function
# (e.g. if a _64 function ever passes a `Ptr{Cint}` index).
for name in names
template_types = get(templates, name, nothing)
if haskey(options["api"], name)
fn_options = options["api"][name]
break
end
end
end
# rewrite pointer argument types
arg_exprs = call_expr.args[1].args[2:end]
argtypes = get(fn_options, "argtypes", Dict())
for (arg, typ) in argtypes
i = parse(Int, arg)
i in 1:length(arg_exprs) || error("invalid argtypes for $fn: index $arg is out of bounds")
# _64 aliases should use Int64 instead of Int32/Cint
if endswith(fn, "_64")
typ = replace(typ, "Cint" => "Int64", "Int32" => "Int64")
end
# expand type templates
if template_types !== nothing
typ = replace(typ, template_types...)
end
arg_exprs[i].args[2] = Meta.parse(typ)
end
# insert `initialize_context()` before each function with a `ccall`
if get(fn_options, "needs_context", true)
pushfirst!(expr.args[2].args, :(initialize_context()))
end
# insert `@checked` before each function with a `ccall` returning a checked type`
rettyp = call_expr.args[2]
checked_types = if haskey(options, "api")
get(options["api"], "checked_rettypes", Dict())
else
String[]
end
if rettyp isa Symbol && String(rettyp) in checked_types
node.exprs[1] = Expr(:macrocall, Symbol("@checked"), nothing, expr)
end
end
end
end
function main()
cuda = joinpath(CUDA_SDK_jll.artifact_dir, "cuda", "include")
@assert CUDA_SDK_jll.is_available()
cudss = joinpath(CUDSS_jll.artifact_dir, "include")
@assert CUDSS_jll.is_available()
args = get_default_args()
push!(args, "-I$cudss", "-I$cuda")
options = load_options(joinpath(@__DIR__, "cudss.toml"))
# create context
headers = ["$cudss/cudss.h"]
targets = ["$cudss/cudss.h", "$cudss/cudss_distributed_interface.h"]
ctx = create_context(headers, args, options)
# run generator
build!(ctx, BUILDSTAGE_NO_PRINTING)
# Only keep the wrapped headers
replace!(get_nodes(ctx.dag)) do node
path = normpath(Clang.get_filename(node.cursor))
should_wrap = any(targets) do target
occursin(target, path)
end
if !should_wrap
return ExprNode(node.id, Generators.Skip(), node.cursor, Expr[], node.adj)
end
return node
end
rewriter!(ctx, options)
build!(ctx, BUILDSTAGE_PRINTING_ONLY)
output_file = options["general"]["output_file_path"]
format_file(output_file, YASStyle())
return
end
if abspath(PROGRAM_FILE) == @__FILE__
main()
end
| CUDSS | https://github.com/exanauts/CUDSS.jl.git |
|
[
"MIT"
] | 0.3.2 | 11cb7c9c06435cfadcc6d94d34c07501df32ce55 | code | 769 | module CUDSS
using CUDA, CUDA.APIUtils, CUDA.CUSPARSE
using CUDSS_jll
using LinearAlgebra
using SparseArrays
if haskey(ENV, "JULIA_CUDSS_LIBRARY_PATH") && Sys.islinux()
const libcudss = joinpath(ENV["JULIA_CUDSS_LIBRARY_PATH"], "libcudss.so")
const CUDSS_INSTALLATION = "CUSTOM"
else
using CUDSS_jll
const CUDSS_INSTALLATION = "YGGDRASIL"
end
import CUDA: @checked, libraryPropertyType, cudaDataType, initialize_context, retry_reclaim, CUstream, @gcsafe_ccall
import LinearAlgebra: lu, lu!, ldlt, ldlt!, cholesky, cholesky!, ldiv!, BlasFloat, BlasReal, checksquare
import Base: \
include("libcudss.jl")
include("error.jl")
include("types.jl")
include("helpers.jl")
include("management.jl")
include("interfaces.jl")
include("generic.jl")
end # module CUDSS
| CUDSS | https://github.com/exanauts/CUDSS.jl.git |
|
[
"MIT"
] | 0.3.2 | 11cb7c9c06435cfadcc6d94d34c07501df32ce55 | code | 1653 | struct CUDSSError <: Exception
code::cudssStatus_t
end
Base.convert(::Type{cudssStatus_t}, err::CUDSSError) = err.code
Base.showerror(io::IO, err::CUDSSError) =
print(io, "CUDSSError: ", description(err), " (code $(reinterpret(Int32, err.code)), $(name(err)))")
name(err::CUDSSError) = string(err.code)
function description(err::CUDSSError)
if err.code == CUDSS_STATUS_SUCCESS
return "the operation completed successfully"
elseif err.code == CUDSS_STATUS_NOT_INITIALIZED
return "the library was not initialized"
elseif err.code == CUDSS_STATUS_ALLOC_FAILED
return "the resource allocation failed"
elseif err.code == CUDSS_STATUS_INVALID_VALUE
return "an invalid value was used as an argument"
elseif err.code == CUDSS_STATUS_NOT_SUPPORTED
return "a parameter is not supported"
elseif err.code == CUDSS_STATUS_EXECUTION_FAILED
return "the GPU program failed to execute"
elseif err.code == CUDSS_STATUS_INTERNAL_ERROR
return "an internal operation failed"
else
return "no description for this error"
end
end
# outlined functionality to avoid GC frame allocation
@noinline function throw_api_error(res)
if res == CUDSS_STATUS_ALLOC_FAILED
throw(OutOfGPUMemoryError())
else
throw(CUDSSError(res))
end
end
@inline function check(f)
retry_if(res) = res in (CUDSS_STATUS_NOT_INITIALIZED,
CUDSS_STATUS_ALLOC_FAILED,
CUDSS_STATUS_INTERNAL_ERROR)
res = retry_reclaim(f, retry_if)
if res != CUDSS_STATUS_SUCCESS
throw_api_error(res)
end
end
| CUDSS | https://github.com/exanauts/CUDSS.jl.git |
|
[
"MIT"
] | 0.3.2 | 11cb7c9c06435cfadcc6d94d34c07501df32ce55 | code | 5516 | """
solver = lu(A::CuSparseMatrixCSR{T,Cint})
Compute the LU factorization of a sparse matrix `A` on an NVIDIA GPU.
The type `T` can be `Float32`, `Float64`, `ComplexF32` or `ComplexF64`.
#### Input argument
* `A`: a sparse square matrix stored in the `CuSparseMatrixCSR` format.
#### Output argument
* `solver`: an opaque structure [`CudssSolver`](@ref) that stores the factors of the LU decomposition.
"""
function LinearAlgebra.lu(A::CuSparseMatrixCSR{T,Cint}; check = false) where T <: BlasFloat
n = checksquare(A)
solver = CudssSolver(A, "G", 'F')
x = CudssMatrix(T, n)
b = CudssMatrix(T, n)
cudss("analysis", solver, x, b)
cudss("factorization", solver, x, b)
return solver
end
"""
solver = lu!(solver::CudssSolver{T}, A::CuSparseMatrixCSR{T,Cint})
Compute the LU factorization of a sparse matrix `A` on an NVIDIA GPU, reusing the symbolic factorization stored in `solver`.
The type `T` can be `Float32`, `Float64`, `ComplexF32` or `ComplexF64`.
"""
function LinearAlgebra.lu!(solver::CudssSolver{T}, A::CuSparseMatrixCSR{T,Cint}; check = false) where T <: BlasFloat
n = checksquare(A)
cudss_set(solver, A)
x = CudssMatrix(T, n)
b = CudssMatrix(T, n)
cudss("refactorization", solver, x, b)
return solver
end
"""
solver = ldlt(A::CuSparseMatrixCSR{T,Cint}; view::Char='F')
Compute the LDLᴴ factorization of a sparse matrix `A` on an NVIDIA GPU.
The type `T` can be `Float32`, `Float64`, `ComplexF32` or `ComplexF64`.
#### Input argument
* `A`: a sparse Hermitian matrix stored in the `CuSparseMatrixCSR` format.
#### Keyword argument
*`view`: A character that specifies which triangle of the sparse matrix is provided. Possible options are `L` for the lower triangle, `U` for the upper triangle, and `F` for the full matrix.
#### Output argument
* `solver`: Opaque structure [`CudssSolver`](@ref) that stores the factors of the LDLᴴ decomposition.
"""
function LinearAlgebra.ldlt(A::CuSparseMatrixCSR{T,Cint}; view::Char='F', check = false) where T <: BlasFloat
n = checksquare(A)
structure = T <: Real ? "S" : "H"
solver = CudssSolver(A, structure, view)
x = CudssMatrix(T, n)
b = CudssMatrix(T, n)
cudss("analysis", solver, x, b)
cudss("factorization", solver, x, b)
return solver
end
LinearAlgebra.ldlt(A::Symmetric{T,<:CuSparseMatrixCSR{T,Cint}}; check = false) where T <: BlasReal = LinearAlgebra.ldlt(A.data, view=A.uplo)
LinearAlgebra.ldlt(A::Hermitian{T,<:CuSparseMatrixCSR{T,Cint}}; check = false) where T <: BlasFloat = LinearAlgebra.ldlt(A.data, view=A.uplo)
"""
solver = ldlt!(solver::CudssSolver{T}, A::CuSparseMatrixCSR{T,Cint})
Compute the LDLᴴ factorization of a sparse matrix `A` on an NVIDIA GPU, reusing the symbolic factorization stored in `solver`.
The type `T` can be `Float32`, `Float64`, `ComplexF32` or `ComplexF64`.
"""
function LinearAlgebra.ldlt!(solver::CudssSolver{T}, A::CuSparseMatrixCSR{T,Cint}; check = false) where T <: BlasFloat
n = checksquare(A)
cudss_set(solver, A)
x = CudssMatrix(T, n)
b = CudssMatrix(T, n)
cudss("refactorization", solver, x, b)
return solver
end
"""
solver = cholesky(A::CuSparseMatrixCSR{T,Cint}; view::Char='F')
Compute the LLᴴ factorization of a sparse matrix `A` on an NVIDIA GPU.
The type `T` can be `Float32`, `Float64`, `ComplexF32` or `ComplexF64`.
#### Input argument
* `A`: a sparse Hermitian positive definite matrix stored in the `CuSparseMatrixCSR` format.
#### Keyword argument
*`view`: A character that specifies which triangle of the sparse matrix is provided. Possible options are `L` for the lower triangle, `U` for the upper triangle, and `F` for the full matrix.
#### Output argument
* `solver`: Opaque structure [`CudssSolver`](@ref) that stores the factors of the LLᴴ decomposition.
"""
function LinearAlgebra.cholesky(A::CuSparseMatrixCSR{T,Cint}; view::Char='F', check = false) where T <: BlasFloat
n = checksquare(A)
structure = T <: Real ? "SPD" : "HPD"
solver = CudssSolver(A, structure, view)
x = CudssMatrix(T, n)
b = CudssMatrix(T, n)
cudss("analysis", solver, x, b)
cudss("factorization", solver, x, b)
return solver
end
LinearAlgebra.cholesky(A::Symmetric{T,<:CuSparseMatrixCSR{T,Cint}}; check = false) where T <: BlasReal = LinearAlgebra.cholesky(A.data, view=A.uplo)
LinearAlgebra.cholesky(A::Hermitian{T,<:CuSparseMatrixCSR{T,Cint}}; check = false) where T <: BlasFloat = LinearAlgebra.cholesky(A.data, view=A.uplo)
"""
solver = cholesky!(solver::CudssSolver{T}, A::CuSparseMatrixCSR{T,Cint})
Compute the LLᴴ factorization of a sparse matrix `A` on an NVIDIA GPU, reusing the symbolic factorization stored in `solver`.
The type `T` can be `Float32`, `Float64`, `ComplexF32` or `ComplexF64`.
"""
function LinearAlgebra.cholesky!(solver::CudssSolver{T}, A::CuSparseMatrixCSR{T,Cint}; check = false) where T <: BlasFloat
n = checksquare(A)
cudss_set(solver, A)
x = CudssMatrix(T, n)
b = CudssMatrix(T, n)
cudss("refactorization", solver, x, b)
return solver
end
for type in (:CuVector, :CuMatrix)
@eval begin
function LinearAlgebra.ldiv!(solver::CudssSolver{T}, b::$type{T}) where T <: BlasFloat
cudss("solve", solver, b, b)
return b
end
function LinearAlgebra.ldiv!(x::$type{T}, solver::CudssSolver{T}, b::$type{T}) where T <: BlasFloat
cudss("solve", solver, x, b)
return x
end
function Base.:\(solver::CudssSolver{T}, b::$type{T}) where T <: BlasFloat
x = similar(b)
ldiv!(x, solver, b)
return x
end
end
end
| CUDSS | https://github.com/exanauts/CUDSS.jl.git |
|
[
"MIT"
] | 0.3.2 | 11cb7c9c06435cfadcc6d94d34c07501df32ce55 | code | 4493 | # cuDSS helper functions
export CudssMatrix, CudssData, CudssConfig
## Matrix
"""
matrix = CudssMatrix(v::CuVector{T})
matrix = CudssMatrix(A::CuMatrix{T})
matrix = CudssMatrix(A::CuSparseMatrixCSR{T,Cint}, struture::String, view::Char; index::Char='O')
The type `T` can be `Float32`, `Float64`, `ComplexF32` or `ComplexF64`.
`CudssMatrix` is a wrapper for `CuVector`, `CuMatrix` and `CuSparseMatrixCSR`.
`CudssMatrix` is used to pass matrix of the linear system, as well as solution and right-hand side.
`structure` specifies the stucture for sparse matrices:
- `"G"`: General matrix -- LDU factorization;
- `"S"`: Real symmetric matrix -- LDLᵀ factorization;
- `"H"`: Complex Hermitian matrix -- LDLᴴ factorization;
- `"SPD"`: Symmetric positive-definite matrix -- LLᵀ factorization;
- `"HPD"`: Hermitian positive-definite matrix -- LLᴴ factorization.
`view` specifies matrix view for sparse matrices:
- `'L'`: Lower-triangular matrix and all values above the main diagonal are ignored;
- `'U'`: Upper-triangular matrix and all values below the main diagonal are ignored;
- `'F'`: Full matrix.
`index` specifies indexing base for sparse matrix indices:
- `'Z'`: 0-based indexing;
- `'O'`: 1-based indexing.
"""
mutable struct CudssMatrix{T}
type::Type{T}
matrix::cudssMatrix_t
function CudssMatrix(::Type{T}, n::Integer) where T <: BlasFloat
matrix_ref = Ref{cudssMatrix_t}()
cudssMatrixCreateDn(matrix_ref, n, 1, n, CU_NULL, T, 'C')
obj = new{T}(T, matrix_ref[])
finalizer(cudssMatrixDestroy, obj)
obj
end
function CudssMatrix(::Type{T}, m::Integer, n::Integer; transposed::Bool=false) where T <: BlasFloat
matrix_ref = Ref{cudssMatrix_t}()
if transposed
cudssMatrixCreateDn(matrix_ref, n, m, m, CU_NULL, T, 'R')
else
cudssMatrixCreateDn(matrix_ref, m, n, m, CU_NULL, T, 'C')
end
obj = new{T}(T, matrix_ref[])
finalizer(cudssMatrixDestroy, obj)
obj
end
function CudssMatrix(v::CuVector{T}) where T <: BlasFloat
m = length(v)
matrix_ref = Ref{cudssMatrix_t}()
cudssMatrixCreateDn(matrix_ref, m, 1, m, v, T, 'C')
obj = new{T}(T, matrix_ref[])
finalizer(cudssMatrixDestroy, obj)
obj
end
function CudssMatrix(A::CuMatrix{T}; transposed::Bool=false) where T <: BlasFloat
m,n = size(A)
matrix_ref = Ref{cudssMatrix_t}()
if transposed
cudssMatrixCreateDn(matrix_ref, n, m, m, A, T, 'R')
else
cudssMatrixCreateDn(matrix_ref, m, n, m, A, T, 'C')
end
obj = new{T}(T, matrix_ref[])
finalizer(cudssMatrixDestroy, obj)
obj
end
function CudssMatrix(A::CuSparseMatrixCSR{T,Cint}, structure::String, view::Char; index::Char='O') where T <: BlasFloat
m,n = size(A)
matrix_ref = Ref{cudssMatrix_t}()
cudssMatrixCreateCsr(matrix_ref, m, n, nnz(A), A.rowPtr, CU_NULL,
A.colVal, A.nzVal, eltype(A.rowPtr), T, structure,
view, index)
obj = new{T}(T, matrix_ref[])
finalizer(cudssMatrixDestroy, obj)
obj
end
end
Base.unsafe_convert(::Type{cudssMatrix_t}, matrix::CudssMatrix) = matrix.matrix
## Data
"""
data = CudssData()
data = CudssData(cudss_handle::cudssHandle_t)
`CudssData` holds internal data (e.g., LU factors arrays).
"""
mutable struct CudssData
handle::cudssHandle_t
data::cudssData_t
function CudssData(cudss_handle::cudssHandle_t)
data_ref = Ref{cudssData_t}()
cudssDataCreate(cudss_handle, data_ref)
obj = new(cudss_handle, data_ref[])
finalizer(cudssDataDestroy, obj)
obj
end
function CudssData()
cudss_handle = handle()
CudssData(cudss_handle)
end
end
Base.unsafe_convert(::Type{cudssData_t}, data::CudssData) = data.data
function cudssDataDestroy(data::CudssData)
cudssDataDestroy(data.handle, data)
end
## Configuration
"""
config = CudssConfig()
`CudssConfig` stores configuration settings for the solver.
"""
mutable struct CudssConfig
config::cudssConfig_t
function CudssConfig()
config_ref = Ref{cudssConfig_t}()
cudssConfigCreate(config_ref)
obj = new(config_ref[])
finalizer(cudssConfigDestroy, obj)
obj
end
end
Base.unsafe_convert(::Type{cudssConfig_t}, config::CudssConfig) = config.config
| CUDSS | https://github.com/exanauts/CUDSS.jl.git |
|
[
"MIT"
] | 0.3.2 | 11cb7c9c06435cfadcc6d94d34c07501df32ce55 | code | 10737 | export CudssSolver, cudss, cudss_set, cudss_get
"""
solver = CudssSolver(A::CuSparseMatrixCSR{T,Cint}, structure::String, view::Char; index::Char='O')
solver = CudssSolver(matrix::CudssMatrix{T}, config::CudssConfig, data::CudssData)
The type `T` can be `Float32`, `Float64`, `ComplexF32` or `ComplexF64`.
`CudssSolver` contains all structures required to solve linear systems with cuDSS.
One constructor of `CudssSolver` takes as input the same parameters as [`CudssMatrix`](@ref).
`structure` specifies the stucture for sparse matrices:
- `"G"`: General matrix -- LDU factorization;
- `"S"`: Real symmetric matrix -- LDLᵀ factorization;
- `"H"`: Complex Hermitian matrix -- LDLᴴ factorization;
- `"SPD"`: Symmetric positive-definite matrix -- LLᵀ factorization;
- `"HPD"`: Hermitian positive-definite matrix -- LLᴴ factorization.
`view` specifies matrix view for sparse matrices:
- `'L'`: Lower-triangular matrix and all values above the main diagonal are ignored;
- `'U'`: Upper-triangular matrix and all values below the main diagonal are ignored;
- `'F'`: Full matrix.
`index` specifies indexing base for sparse matrix indices:
- `'Z'`: 0-based indexing;
- `'O'`: 1-based indexing.
`CudssSolver` can be also constructed from the three structures `CudssMatrix`, `CudssConfig` and `CudssData` if needed.
"""
mutable struct CudssSolver{T}
matrix::CudssMatrix{T}
config::CudssConfig
data::CudssData
function CudssSolver(matrix::CudssMatrix{T}, config::CudssConfig, data::CudssData) where T <: BlasFloat
return new{T}(matrix, config, data)
end
function CudssSolver(A::CuSparseMatrixCSR{T,Cint}, structure::String, view::Char; index::Char='O') where T <: BlasFloat
matrix = CudssMatrix(A, structure, view; index)
config = CudssConfig()
data = CudssData()
return new{T}(matrix, config, data)
end
end
"""
cudss_set(matrix::CudssMatrix{T}, v::CuVector{T})
cudss_set(matrix::CudssMatrix{T}, A::CuMatrix{T})
cudss_set(matrix::CudssMatrix{T}, A::CuSparseMatrixCSR{T,Cint})
cudss_set(solver::CudssSolver{T}, A::CuSparseMatrixCSR{T,Cint})
cudss_set(solver::CudssSolver, parameter::String, value)
cudss_set(config::CudssConfig, parameter::String, value)
cudss_set(data::CudssData, parameter::String, value)
The type `T` can be `Float32`, `Float64`, `ComplexF32` or `ComplexF64`.
The available configuration parameters are:
- `"reordering_alg"`: Algorithm for the reordering phase (`"default"`, `"algo1"`, `"algo2"` or `"algo3"`);
- `"factorization_alg"`: Algorithm for the factorization phase (`"default"`, `"algo1"`, `"algo2"` or `"algo3"`);
- `"solve_alg"`: Algorithm for the solving phase (`"default"`, `"algo1"`, `"algo2"` or `"algo3"`);
- `"matching_type"`: Type of matching;
- `"solve_mode"`: Potential modificator on the system matrix (transpose or adjoint);
- `"ir_n_steps"`: Number of steps during the iterative refinement;
- `"ir_tol"`: Iterative refinement tolerance;
- `"pivot_type"`: Type of pivoting (`'C'`, `'R'` or `'N'`);
- `"pivot_threshold"`: Pivoting threshold which is used to determine if digonal element is subject to pivoting;
- `"pivot_epsilon"`: Pivoting epsilon, absolute value to replace singular diagonal elements;
- `"max_lu_nnz"`: Upper limit on the number of nonzero entries in LU factors for non-symmetric matrices;
- `"hybrid_mode"`: Memory mode -- `0` (default = device-only) or `1` (hybrid = host/device);
- `"hybrid_device_memory_limit"`: User-defined device memory limit (number of bytes) for the hybrid memory mode;
- `"use_cuda_register_memory"`: A flag to enable (`1`) or disable (`0`) usage of `cudaHostRegister()` by the hybrid memory mode.
The available data parameters are:
- `"user_perm"`: User permutation to be used instead of running the reordering algorithms;
- `"comm"`: Communicator for Multi-GPU multi-node mode.
"""
function cudss_set end
function cudss_set(matrix::CudssMatrix{T}, v::CuVector{T}) where T <: BlasFloat
cudssMatrixSetValues(matrix, v)
end
function cudss_set(matrix::CudssMatrix{T}, A::CuMatrix{T}) where T <: BlasFloat
cudssMatrixSetValues(matrix, A)
end
function cudss_set(matrix::CudssMatrix{T}, A::CuSparseMatrixCSR{T,Cint}) where T <: BlasFloat
cudssMatrixSetCsrPointers(matrix, A.rowPtr, CU_NULL, A.colVal, A.nzVal)
end
function cudss_set(solver::CudssSolver{T}, A::CuSparseMatrixCSR{T,Cint}) where T <: BlasFloat
cudss_set(solver.matrix, A)
end
function cudss_set(solver::CudssSolver, parameter::String, value)
if parameter ∈ CUDSS_CONFIG_PARAMETERS
cudss_set(solver.config, parameter, value)
elseif parameter ∈ CUDSS_DATA_PARAMETERS
cudss_set(solver.data, parameter, value)
else
throw(ArgumentError("Unknown data or config parameter $parameter."))
end
end
function cudss_set(data::CudssData, parameter::String, value)
(parameter ∈ CUDSS_DATA_PARAMETERS) || throw(ArgumentError("Unknown data parameter $parameter."))
(parameter == "user_perm") || (parameter == "comm") || throw(ArgumentError("Only the data parameters \"user_perm\" and \"comm\" can be set."))
(value isa Vector{Cint} || value isa CuVector{Cint}) || throw(ArgumentError("The permutation is neither a Vector{Cint} nor a CuVector{Cint}."))
nbytes = sizeof(value)
cudssDataSet(data.handle, data, parameter, value, nbytes)
end
function cudss_set(config::CudssConfig, parameter::String, value)
(parameter ∈ CUDSS_CONFIG_PARAMETERS) || throw(ArgumentError("Unknown config parameter $parameter."))
type = CUDSS_TYPES[parameter]
val = Ref{type}(value)
nbytes = sizeof(val)
cudssConfigSet(config, parameter, val, nbytes)
end
"""
value = cudss_get(solver::CudssSolver, parameter::String)
value = cudss_get(config::CudssConfig, parameter::String)
value = cudss_get(data::CudssData, parameter::String)
The available configuration parameters are:
- `"reordering_alg"`: Algorithm for the reordering phase;
- `"factorization_alg"`: Algorithm for the factorization phase;
- `"solve_alg"`: Algorithm for the solving phase;
- `"matching_type"`: Type of matching;
- `"solve_mode"`: Potential modificator on the system matrix (transpose or adjoint);
- `"ir_n_steps"`: Number of steps during the iterative refinement;
- `"ir_tol"`: Iterative refinement tolerance;
- `"pivot_type"`: Type of pivoting;
- `"pivot_threshold"`: Pivoting threshold which is used to determine if digonal element is subject to pivoting;
- `"pivot_epsilon"`: Pivoting epsilon, absolute value to replace singular diagonal elements;
- `"max_lu_nnz"`: Upper limit on the number of nonzero entries in LU factors for non-symmetric matrices;
- `"hybrid_mode"`: Memory mode -- `0` (default = device-only) or `1` (hybrid = host/device);
- `"hybrid_device_memory_limit"`: User-defined device memory limit (number of bytes) for the hybrid memory mode;
- `"use_cuda_register_memory"`: A flag to enable (`1`) or disable (`0`) usage of `cudaHostRegister()` by the hybrid memory mode.
The available data parameters are:
- `"info"`: Device-side error information;
- `"lu_nnz"`: Number of non-zero entries in LU factors;
- `"npivots"`: Number of pivots encountered during factorization;
- `"inertia"`: Tuple of positive and negative indices of inertia for symmetric and hermitian non positive-definite matrix types;
- `"perm_reorder_row"`: Reordering permutation for the rows;
- `"perm_reorder_col"`: Reordering permutation for the columns;
- `"perm_row"`: Final row permutation (which includes effects of both reordering and pivoting);
- `"perm_col"`: Final column permutation (which includes effects of both reordering and pivoting);
- `"diag"`: Diagonal of the factorized matrix;
- `"hybrid_device_memory_min"`: Minimal amount of device memory (number of bytes) required in the hybrid memory mode.
The data parameters `"info"`, `"lu_nnz"`, `"perm_reorder_row"`, `"perm_reorder_col"` and `"hybrid_device_memory_min"` require the phase `"analyse"` performed by [`cudss`](@ref).
The data parameters `"npivots"`, `"inertia"` and `"diag"` require the phases `"analyse"` and `"factorization"` performed by [`cudss`](@ref).
The data parameters `"perm_row"` and `"perm_col"` are available but not yet functional.
"""
function cudss_get end
function cudss_get(solver::CudssSolver, parameter::String)
if parameter ∈ CUDSS_CONFIG_PARAMETERS
cudss_get(solver.config, parameter)
elseif parameter ∈ CUDSS_DATA_PARAMETERS
cudss_get(solver.data, parameter)
else
throw(ArgumentError("Unknown data or config parameter $parameter."))
end
end
function cudss_get(data::CudssData, parameter::String)
(parameter ∈ CUDSS_DATA_PARAMETERS) || throw(ArgumentError("Unknown data parameter $parameter."))
if (parameter == "user_perm") || (parameter == "comm")
throw(ArgumentError("The data parameter \"$parameter\" cannot be retrieved."))
end
if (parameter == "perm_reorder_row") || (parameter == "perm_reorder_col") || (parameter == "perm_row") || (parameter == "perm_col") || (parameter == "diag")
throw(ArgumentError("The data parameter \"$parameter\" is not supported by CUDSS.jl."))
end
type = CUDSS_TYPES[parameter]
val = Ref{type}()
nbytes = sizeof(val)
nbytes_written = Ref{Csize_t}()
cudssDataGet(handle(), data, parameter, val, nbytes, nbytes_written)
return val[]
end
function cudss_get(config::CudssConfig, parameter::String)
(parameter ∈ CUDSS_CONFIG_PARAMETERS) || throw(ArgumentError("Unknown config parameter $parameter."))
type = CUDSS_TYPES[parameter]
val = Ref{type}()
nbytes = sizeof(val)
nbytes_written = Ref{Csize_t}()
cudssConfigGet(config, parameter, val, nbytes, nbytes_written)
return val[]
end
"""
cudss(phase::String, solver::CudssSolver{T}, x::CuVector{T}, b::CuVector{T})
cudss(phase::String, solver::CudssSolver{T}, X::CuMatrix{T}, B::CuMatrix{T})
cudss(phase::String, solver::CudssSolver{T}, X::CudssMatrix{T}, B::CudssMatrix{T})
The type `T` can be `Float32`, `Float64`, `ComplexF32` or `ComplexF64`.
The available phases are `"analysis"`, `"factorization"`, `"refactorization"` and `"solve"`.
The phases `"solve_fwd"`, `"solve_diag"` and `"solve_bwd"` are available but not yet functional.
"""
function cudss end
function cudss(phase::String, solver::CudssSolver{T}, X::CudssMatrix{T}, B::CudssMatrix{T}) where T <: BlasFloat
cudssExecute(solver.data.handle, phase, solver.config, solver.data, solver.matrix, X, B)
end
function cudss(phase::String, solver::CudssSolver{T}, x::CuVector{T}, b::CuVector{T}) where T <: BlasFloat
solution = CudssMatrix(x)
rhs = CudssMatrix(b)
cudss(phase, solver, solution, rhs)
end
function cudss(phase::String, solver::CudssSolver{T}, X::CuMatrix{T}, B::CuMatrix{T}) where T <: BlasFloat
solution = CudssMatrix(X)
rhs = CudssMatrix(B)
cudss(phase, solver, solution, rhs)
end
| CUDSS | https://github.com/exanauts/CUDSS.jl.git |
|
[
"MIT"
] | 0.3.2 | 11cb7c9c06435cfadcc6d94d34c07501df32ce55 | code | 12078 | using CEnum
# CUDSS uses CUDA runtime objects, which are compatible with our driver usage
const cudaStream_t = CUstream
const cudaDataType_t = cudaDataType
@cenum cudssOpType_t::UInt32 begin
CUDSS_SUM = 0
CUDSS_MAX = 1
CUDSS_MIN = 2
end
struct cudssDistributedInterface_t
cudssCommRank::Ptr{Cvoid}
cudssCommSize::Ptr{Cvoid}
cudssSend::Ptr{Cvoid}
cudssRecv::Ptr{Cvoid}
cudssBcast::Ptr{Cvoid}
cudssReduce::Ptr{Cvoid}
cudssAllreduce::Ptr{Cvoid}
cudssScatterv::Ptr{Cvoid}
cudssCommSplit::Ptr{Cvoid}
cudssCommFree::Ptr{Cvoid}
end
mutable struct cudssContext end
const cudssHandle_t = Ptr{cudssContext}
mutable struct cudssMatrix end
const cudssMatrix_t = Ptr{cudssMatrix}
mutable struct cudssData end
const cudssData_t = Ptr{cudssData}
mutable struct cudssConfig end
const cudssConfig_t = Ptr{cudssConfig}
@cenum cudssConfigParam_t::UInt32 begin
CUDSS_CONFIG_REORDERING_ALG = 0
CUDSS_CONFIG_FACTORIZATION_ALG = 1
CUDSS_CONFIG_SOLVE_ALG = 2
CUDSS_CONFIG_MATCHING_TYPE = 3
CUDSS_CONFIG_SOLVE_MODE = 4
CUDSS_CONFIG_IR_N_STEPS = 5
CUDSS_CONFIG_IR_TOL = 6
CUDSS_CONFIG_PIVOT_TYPE = 7
CUDSS_CONFIG_PIVOT_THRESHOLD = 8
CUDSS_CONFIG_PIVOT_EPSILON = 9
CUDSS_CONFIG_MAX_LU_NNZ = 10
CUDSS_CONFIG_HYBRID_MODE = 11
CUDSS_CONFIG_HYBRID_DEVICE_MEMORY_LIMIT = 12
CUDSS_CONFIG_USE_CUDA_REGISTER_MEMORY = 13
end
@cenum cudssDataParam_t::UInt32 begin
CUDSS_DATA_INFO = 0
CUDSS_DATA_LU_NNZ = 1
CUDSS_DATA_NPIVOTS = 2
CUDSS_DATA_INERTIA = 3
CUDSS_DATA_PERM_REORDER_ROW = 4
CUDSS_DATA_PERM_REORDER_COL = 5
CUDSS_DATA_PERM_ROW = 6
CUDSS_DATA_PERM_COL = 7
CUDSS_DATA_DIAG = 8
CUDSS_DATA_USER_PERM = 9
CUDSS_DATA_HYBRID_DEVICE_MEMORY_MIN = 10
CUDSS_DATA_COMM = 11
end
@cenum cudssPhase_t::UInt32 begin
CUDSS_PHASE_ANALYSIS = 1
CUDSS_PHASE_FACTORIZATION = 2
CUDSS_PHASE_REFACTORIZATION = 4
CUDSS_PHASE_SOLVE = 8
CUDSS_PHASE_SOLVE_FWD = 16
CUDSS_PHASE_SOLVE_DIAG = 32
CUDSS_PHASE_SOLVE_BWD = 64
end
@cenum cudssStatus_t::UInt32 begin
CUDSS_STATUS_SUCCESS = 0
CUDSS_STATUS_NOT_INITIALIZED = 1
CUDSS_STATUS_ALLOC_FAILED = 2
CUDSS_STATUS_INVALID_VALUE = 3
CUDSS_STATUS_NOT_SUPPORTED = 4
CUDSS_STATUS_EXECUTION_FAILED = 5
CUDSS_STATUS_INTERNAL_ERROR = 6
end
@cenum cudssMatrixType_t::UInt32 begin
CUDSS_MTYPE_GENERAL = 0
CUDSS_MTYPE_SYMMETRIC = 1
CUDSS_MTYPE_HERMITIAN = 2
CUDSS_MTYPE_SPD = 3
CUDSS_MTYPE_HPD = 4
end
@cenum cudssMatrixViewType_t::UInt32 begin
CUDSS_MVIEW_FULL = 0
CUDSS_MVIEW_LOWER = 1
CUDSS_MVIEW_UPPER = 2
end
@cenum cudssIndexBase_t::UInt32 begin
CUDSS_BASE_ZERO = 0
CUDSS_BASE_ONE = 1
end
@cenum cudssLayout_t::UInt32 begin
CUDSS_LAYOUT_COL_MAJOR = 0
CUDSS_LAYOUT_ROW_MAJOR = 1
end
@cenum cudssAlgType_t::UInt32 begin
CUDSS_ALG_DEFAULT = 0
CUDSS_ALG_1 = 1
CUDSS_ALG_2 = 2
CUDSS_ALG_3 = 3
end
@cenum cudssPivotType_t::UInt32 begin
CUDSS_PIVOT_COL = 0
CUDSS_PIVOT_ROW = 1
CUDSS_PIVOT_NONE = 2
end
@cenum cudssMatrixFormat_t::UInt32 begin
CUDSS_MFORMAT_DENSE = 0
CUDSS_MFORMAT_CSR = 1
end
struct cudssDeviceMemHandler_t
ctx::Ptr{Cvoid}
device_alloc::Ptr{Cvoid}
device_free::Ptr{Cvoid}
name::NTuple{64,Cchar}
end
@checked function cudssConfigSet(config, param, value, sizeInBytes)
initialize_context()
@gcsafe_ccall libcudss.cudssConfigSet(config::cudssConfig_t, param::cudssConfigParam_t,
value::Ptr{Cvoid},
sizeInBytes::Csize_t)::cudssStatus_t
end
@checked function cudssConfigGet(config, param, value, sizeInBytes, sizeWritten)
initialize_context()
@gcsafe_ccall libcudss.cudssConfigGet(config::cudssConfig_t, param::cudssConfigParam_t,
value::Ptr{Cvoid}, sizeInBytes::Csize_t,
sizeWritten::Ptr{Csize_t})::cudssStatus_t
end
@checked function cudssDataSet(handle, data, param, value, sizeInBytes)
initialize_context()
@gcsafe_ccall libcudss.cudssDataSet(handle::cudssHandle_t, data::cudssData_t,
param::cudssDataParam_t, value::PtrOrCuPtr{Cvoid},
sizeInBytes::Csize_t)::cudssStatus_t
end
@checked function cudssDataGet(handle, data, param, value, sizeInBytes, sizeWritten)
initialize_context()
@gcsafe_ccall libcudss.cudssDataGet(handle::cudssHandle_t, data::cudssData_t,
param::cudssDataParam_t, value::PtrOrCuPtr{Cvoid},
sizeInBytes::Csize_t,
sizeWritten::Ptr{Csize_t})::cudssStatus_t
end
@checked function cudssExecute(handle, phase, solverConfig, solverData, inputMatrix,
solution, rhs)
initialize_context()
@gcsafe_ccall libcudss.cudssExecute(handle::cudssHandle_t, phase::cudssPhase_t,
solverConfig::cudssConfig_t,
solverData::cudssData_t, inputMatrix::cudssMatrix_t,
solution::cudssMatrix_t,
rhs::cudssMatrix_t)::cudssStatus_t
end
@checked function cudssSetStream(handle, stream)
initialize_context()
@gcsafe_ccall libcudss.cudssSetStream(handle::cudssHandle_t,
stream::cudaStream_t)::cudssStatus_t
end
@checked function cudssSetCommLayer(handle, commLibFileName)
initialize_context()
@gcsafe_ccall libcudss.cudssSetCommLayer(handle::cudssHandle_t,
commLibFileName::Cstring)::cudssStatus_t
end
@checked function cudssConfigCreate(solverConfig)
initialize_context()
@gcsafe_ccall libcudss.cudssConfigCreate(solverConfig::Ptr{cudssConfig_t})::cudssStatus_t
end
@checked function cudssConfigDestroy(solverConfig)
initialize_context()
@gcsafe_ccall libcudss.cudssConfigDestroy(solverConfig::cudssConfig_t)::cudssStatus_t
end
@checked function cudssDataCreate(handle, solverData)
initialize_context()
@gcsafe_ccall libcudss.cudssDataCreate(handle::cudssHandle_t,
solverData::Ptr{cudssData_t})::cudssStatus_t
end
@checked function cudssDataDestroy(handle, solverData)
initialize_context()
@gcsafe_ccall libcudss.cudssDataDestroy(handle::cudssHandle_t,
solverData::cudssData_t)::cudssStatus_t
end
@checked function cudssCreate(handle)
initialize_context()
@gcsafe_ccall libcudss.cudssCreate(handle::Ptr{cudssHandle_t})::cudssStatus_t
end
@checked function cudssDestroy(handle)
initialize_context()
@gcsafe_ccall libcudss.cudssDestroy(handle::cudssHandle_t)::cudssStatus_t
end
@checked function cudssGetProperty(propertyType, value)
@gcsafe_ccall libcudss.cudssGetProperty(propertyType::libraryPropertyType,
value::Ptr{Cint})::cudssStatus_t
end
@checked function cudssMatrixCreateDn(matrix, nrows, ncols, ld, values, valueType, layout)
initialize_context()
@gcsafe_ccall libcudss.cudssMatrixCreateDn(matrix::Ptr{cudssMatrix_t}, nrows::Int64,
ncols::Int64, ld::Int64,
values::CuPtr{Cvoid},
valueType::cudaDataType_t,
layout::cudssLayout_t)::cudssStatus_t
end
@checked function cudssMatrixCreateCsr(matrix, nrows, ncols, nnz, rowStart, rowEnd,
colIndices, values, indexType, valueType, mtype,
mview, indexBase)
initialize_context()
@gcsafe_ccall libcudss.cudssMatrixCreateCsr(matrix::Ptr{cudssMatrix_t}, nrows::Int64,
ncols::Int64, nnz::Int64,
rowStart::CuPtr{Cvoid},
rowEnd::CuPtr{Cvoid},
colIndices::CuPtr{Cvoid},
values::CuPtr{Cvoid},
indexType::cudaDataType_t,
valueType::cudaDataType_t,
mtype::cudssMatrixType_t,
mview::cudssMatrixViewType_t,
indexBase::cudssIndexBase_t)::cudssStatus_t
end
@checked function cudssMatrixDestroy(matrix)
initialize_context()
@gcsafe_ccall libcudss.cudssMatrixDestroy(matrix::cudssMatrix_t)::cudssStatus_t
end
@checked function cudssMatrixGetDn(matrix, nrows, ncols, ld, values, type, layout)
initialize_context()
@gcsafe_ccall libcudss.cudssMatrixGetDn(matrix::cudssMatrix_t, nrows::Ptr{Int64},
ncols::Ptr{Int64}, ld::Ptr{Int64},
values::Ptr{CuPtr{Cvoid}},
type::Ptr{cudaDataType_t},
layout::Ptr{cudssLayout_t})::cudssStatus_t
end
@checked function cudssMatrixGetCsr(matrix, nrows, ncols, nnz, rowStart, rowEnd, colIndices,
values, indexType, valueType, mtype, mview, indexBase)
initialize_context()
@gcsafe_ccall libcudss.cudssMatrixGetCsr(matrix::cudssMatrix_t, nrows::Ptr{Int64},
ncols::Ptr{Int64}, nnz::Ptr{Int64},
rowStart::Ptr{CuPtr{Cvoid}},
rowEnd::Ptr{CuPtr{Cvoid}},
colIndices::Ptr{CuPtr{Cvoid}},
values::Ptr{CuPtr{Cvoid}},
indexType::Ptr{cudaDataType_t},
valueType::Ptr{cudaDataType_t},
mtype::Ptr{cudssMatrixType_t},
mview::Ptr{cudssMatrixViewType_t},
indexBase::Ptr{cudssIndexBase_t})::cudssStatus_t
end
@checked function cudssMatrixSetValues(matrix, values)
initialize_context()
@gcsafe_ccall libcudss.cudssMatrixSetValues(matrix::cudssMatrix_t,
values::CuPtr{Cvoid})::cudssStatus_t
end
@checked function cudssMatrixSetCsrPointers(matrix, rowOffsets, rowEnd, colIndices, values)
initialize_context()
@gcsafe_ccall libcudss.cudssMatrixSetCsrPointers(matrix::cudssMatrix_t,
rowOffsets::CuPtr{Cvoid},
rowEnd::CuPtr{Cvoid},
colIndices::CuPtr{Cvoid},
values::CuPtr{Cvoid})::cudssStatus_t
end
@checked function cudssMatrixGetFormat(matrix, format)
initialize_context()
@gcsafe_ccall libcudss.cudssMatrixGetFormat(matrix::cudssMatrix_t,
format::Ptr{cudssMatrixFormat_t})::cudssStatus_t
end
@checked function cudssGetDeviceMemHandler(handle, handler)
initialize_context()
@gcsafe_ccall libcudss.cudssGetDeviceMemHandler(handle::cudssHandle_t,
handler::Ptr{cudssDeviceMemHandler_t})::cudssStatus_t
end
@checked function cudssSetDeviceMemHandler(handle, handler)
initialize_context()
@gcsafe_ccall libcudss.cudssSetDeviceMemHandler(handle::cudssHandle_t,
handler::Ptr{cudssDeviceMemHandler_t})::cudssStatus_t
end
| CUDSS | https://github.com/exanauts/CUDSS.jl.git |
|
[
"MIT"
] | 0.3.2 | 11cb7c9c06435cfadcc6d94d34c07501df32ce55 | code | 1785 | # cuDSS functions for managing the library
function cudssCreate()
handle = Ref{cudssHandle_t}()
cudssCreate(handle)
handle[]
end
function cudssGetProperty(property::libraryPropertyType)
value_ref = Ref{Cint}()
cudssGetProperty(property, value_ref)
value_ref[]
end
version() = VersionNumber(cudssGetProperty(CUDA.MAJOR_VERSION),
cudssGetProperty(CUDA.MINOR_VERSION),
cudssGetProperty(CUDA.PATCH_LEVEL))
## handles
function handle_ctor(ctx)
context!(ctx) do
cudssCreate()
end
end
function handle_dtor(ctx, handle)
context!(ctx; skip_destroyed=true) do
cudssDestroy(handle)
end
end
const idle_handles = HandleCache{CuContext,cudssHandle_t}(handle_ctor, handle_dtor)
function handle()
cuda = CUDA.active_state()
# every task maintains library state per device
LibraryState = @NamedTuple{handle::cudssHandle_t, stream::CuStream}
states = get!(task_local_storage(), :CUDSS) do
Dict{CuContext,LibraryState}()
end::Dict{CuContext,LibraryState}
# get library state
@noinline function new_state(cuda)
new_handle = pop!(idle_handles, cuda.context)
finalizer(current_task()) do task
push!(idle_handles, cuda.context, new_handle)
end
cudssSetStream(new_handle, cuda.stream)
(; handle=new_handle, cuda.stream)
end
state = get!(states, cuda.context) do
new_state(cuda)
end
# update stream
@noinline function update_stream(cuda, state)
cudssSetStream(state.handle, cuda.stream)
(; state.handle, cuda.stream)
end
if state.stream != cuda.stream
states[cuda.context] = state = update_stream(cuda, state)
end
return state.handle
end
| CUDSS | https://github.com/exanauts/CUDSS.jl.git |
|
[
"MIT"
] | 0.3.2 | 11cb7c9c06435cfadcc6d94d34c07501df32ce55 | code | 6767 | # cuDSS types
const CUDSS_DATA_PARAMETERS = ("info", "lu_nnz", "npivots", "inertia", "perm_reorder_row",
"perm_reorder_col", "perm_row", "perm_col", "diag", "user_perm",
"hybrid_device_memory_min", "comm")
const CUDSS_CONFIG_PARAMETERS = ("reordering_alg", "factorization_alg", "solve_alg", "matching_type",
"solve_mode", "ir_n_steps", "ir_tol", "pivot_type", "pivot_threshold",
"pivot_epsilon", "max_lu_nnz", "hybrid_mode", "hybrid_device_memory_limit",
"use_cuda_register_memory")
const CUDSS_TYPES = Dict{String, DataType}(
# data type
"info" => Cint,
"lu_nnz" => Int64,
"npivots" => Cint,
"inertia" => Tuple{Cint, Cint},
"perm_reorder_row" => Vector{Cint},
"perm_reorder_col" => Vector{Cint},
"perm_row" => Vector{Cint},
"perm_col" => Vector{Cint},
"diag" => Vector{Float64},
"user_perm" => Vector{Cint},
"hybrid_device_memory_min" => Int64,
"comm" => Ptr{Cvoid},
# config type
"reordering_alg" => cudssAlgType_t,
"factorization_alg" => cudssAlgType_t,
"solve_alg" => cudssAlgType_t,
"matching_type" => Cint,
"solve_mode" => Cint,
"ir_n_steps" => Cint,
"ir_tol" => Float64,
"pivot_type" => cudssPivotType_t,
"pivot_threshold" => Float64,
"pivot_epsilon" => Float64,
"max_lu_nnz" => Int64,
"hybrid_mode" => Cint,
"hybrid_device_memory_limit" => Int64,
"use_cuda_register_memory" => Cint
)
## config type
function Base.convert(::Type{cudssConfigParam_t}, config::String)
if config == "reordering_alg"
return CUDSS_CONFIG_REORDERING_ALG
elseif config == "factorization_alg"
return CUDSS_CONFIG_FACTORIZATION_ALG
elseif config == "solve_alg"
return CUDSS_CONFIG_SOLVE_ALG
elseif config == "matching_type"
return CUDSS_CONFIG_MATCHING_TYPE
elseif config == "solve_mode"
return CUDSS_CONFIG_SOLVE_MODE
elseif config == "ir_n_steps"
return CUDSS_CONFIG_IR_N_STEPS
elseif config == "ir_tol"
return CUDSS_CONFIG_IR_TOL
elseif config == "pivot_type"
return CUDSS_CONFIG_PIVOT_TYPE
elseif config == "pivot_threshold"
return CUDSS_CONFIG_PIVOT_THRESHOLD
elseif config == "pivot_epsilon"
return CUDSS_CONFIG_PIVOT_EPSILON
elseif config == "max_lu_nnz"
return CUDSS_CONFIG_MAX_LU_NNZ
elseif config == "hybrid_mode"
return CUDSS_CONFIG_HYBRID_MODE
elseif config == "hybrid_device_memory_limit"
return CUDSS_CONFIG_HYBRID_DEVICE_MEMORY_LIMIT
elseif config == "use_cuda_register_memory"
return CUDSS_CONFIG_USE_CUDA_REGISTER_MEMORY
else
throw(ArgumentError("Unknown config parameter $config"))
end
end
## data type
function Base.convert(::Type{cudssDataParam_t}, data::String)
if data == "info"
return CUDSS_DATA_INFO
elseif data == "lu_nnz"
return CUDSS_DATA_LU_NNZ
elseif data == "npivots"
return CUDSS_DATA_NPIVOTS
elseif data == "inertia"
return CUDSS_DATA_INERTIA
elseif data == "perm_reorder_row"
return CUDSS_DATA_PERM_REORDER_ROW
elseif data == "perm_reorder_col"
return CUDSS_DATA_PERM_REORDER_COL
elseif data == "perm_row"
return CUDSS_DATA_PERM_ROW
elseif data == "perm_col"
return CUDSS_DATA_PERM_COL
elseif data == "diag"
return CUDSS_DATA_DIAG
elseif data == "user_perm"
return CUDSS_DATA_USER_PERM
elseif data == "hybrid_device_memory_min"
return CUDSS_DATA_HYBRID_DEVICE_MEMORY_MIN
elseif data == "comm"
return CUDSS_DATA_COMM
else
throw(ArgumentError("Unknown data parameter $data"))
end
end
## phase type
function Base.convert(::Type{cudssPhase_t}, phase::String)
if phase == "analysis"
return CUDSS_PHASE_ANALYSIS
elseif phase == "factorization"
return CUDSS_PHASE_FACTORIZATION
elseif phase == "refactorization"
return CUDSS_PHASE_REFACTORIZATION
elseif phase == "solve"
return CUDSS_PHASE_SOLVE
elseif phase == "solve_fwd"
return CUDSS_PHASE_SOLVE_FWD
elseif phase == "solve_diag"
return CUDSS_PHASE_SOLVE_DIAG
elseif phase == "solve_bwd"
return CUDSS_PHASE_SOLVE_BWD
else
throw(ArgumentError("Unknown phase $phase"))
end
end
## matrix structure type
function Base.convert(::Type{cudssMatrixType_t}, structure::String)
if structure == "G"
return CUDSS_MTYPE_GENERAL
elseif structure == "S"
return CUDSS_MTYPE_SYMMETRIC
elseif structure == "H"
return CUDSS_MTYPE_HERMITIAN
elseif structure == "SPD"
return CUDSS_MTYPE_SPD
elseif structure == "HPD"
return CUDSS_MTYPE_HPD
else
throw(ArgumentError("Unknown structure $structure"))
end
end
## view type
function Base.convert(::Type{cudssMatrixViewType_t}, view::Char)
if view == 'F'
return CUDSS_MVIEW_FULL
elseif view == 'L'
return CUDSS_MVIEW_LOWER
elseif view == 'U'
return CUDSS_MVIEW_UPPER
else
throw(ArgumentError("Unknown view $view"))
end
end
## index base
function Base.convert(::Type{cudssIndexBase_t}, index::Char)
if index == 'Z'
return CUDSS_BASE_ZERO
elseif index == 'O'
return CUDSS_BASE_ONE
else
throw(ArgumentError("Unknown index $index"))
end
end
## layout type
function Base.convert(::Type{cudssLayout_t}, layout::Char)
if layout == 'R'
CUDSS_LAYOUT_ROW_MAJOR
elseif layout == 'C'
CUDSS_LAYOUT_COL_MAJOR
else
throw(ArgumentError("Unknown layout $layout"))
end
end
## algorithm type
function Base.convert(::Type{cudssAlgType_t}, algorithm::String)
if algorithm == "default"
CUDSS_ALG_DEFAULT
elseif algorithm == "algo1"
CUDSS_ALG_1
elseif algorithm == "algo2"
CUDSS_ALG_2
elseif algorithm == "algo3"
CUDSS_ALG_3
else
throw(ArgumentError("Unknown algorithm $algorithm"))
end
end
## pivot type
function Base.convert(::Type{cudssPivotType_t}, pivoting::Char)
if pivoting == 'C'
return CUDSS_PIVOT_COL
elseif pivoting == 'R'
return CUDSS_PIVOT_ROW
elseif pivoting == 'N'
return CUDSS_PIVOT_NONE
else
throw(ArgumentError("Unknown pivoting $pivoting"))
end
end
# matrix format type
function Base.convert(::Type{cudssMatrixFormat_t}, format::Char)
if format == 'D'
return CUDSS_MFORMAT_DENSE
elseif format == 'S'
return CUDSS_MFORMAT_CSR
else
throw(ArgumentError("Unknown format $format"))
end
end
| CUDSS | https://github.com/exanauts/CUDSS.jl.git |
|
[
"MIT"
] | 0.3.2 | 11cb7c9c06435cfadcc6d94d34c07501df32ce55 | code | 958 | using Test, Random
using CUDA, CUDA.CUSPARSE
using CUDSS
using SparseArrays
using LinearAlgebra
import CUDSS: CUDSS_DATA_PARAMETERS, CUDSS_CONFIG_PARAMETERS
@info("CUDSS_INSTALLATION : $(CUDSS.CUDSS_INSTALLATION)")
Random.seed!(666) # Random tests are diabolical
include("test_cudss.jl")
@testset "CUDSS" begin
@testset "version" begin
cudss_version()
end
@testset "CudssMatrix" begin
cudss_dense()
cudss_sparse()
end
@testset "CudssData" begin
# Issue #1
data = CudssData()
end
@testset "CudssSolver" begin
cudss_solver()
end
@testset "CudssExecution" begin
cudss_execution()
end
@testset "Generic API" begin
cudss_generic()
end
@testset "User permutation" begin
user_permutation()
end
@testset "Iterative refinement" begin
iterative_refinement()
end
@testset "Small matrices" begin
small_matrices()
end
@testset "Hybrid mode" begin
hybrid_mode()
end
end
| CUDSS | https://github.com/exanauts/CUDSS.jl.git |
Subsets and Splits