desc
stringlengths 3
26.7k
| decl
stringlengths 11
7.89k
| bodies
stringlengths 8
553k
|
---|---|---|
'Collates the join inputs prior to delegating to the superclass.'
| def _run_command(self, execute, copyfiles=True):
| self._collate_join_field_inputs()
return super(JoinNode, self)._run_command(execute, copyfiles)
|
'Collects each override join item field into the interface join
field input.'
| def _collate_join_field_inputs(self):
| for field in self.inputs.copyable_trait_names():
if (field in self.joinfield):
val = self._collate_input_value(field)
try:
setattr(self._interface.inputs, field, val)
except Exception as e:
raise ValueError((u'>>JN %s %s %s %s %s: %s' % (self, field, val, self.inputs.copyable_trait_names(), self.joinfield, e)))
elif hasattr(self._interface.inputs, field):
val = getattr(self._inputs, field)
if isdefined(val):
setattr(self._interface.inputs, field, val)
logger.debug(u'Collated %d inputs into the %s node join fields', self._next_slot_index, self)
|
'Collects the join item field values into a list or set value for
the given field, as follows:
- If the field trait is a Set, then the values are collected into
a set.
- Otherwise, the values are collected into a list which preserves
the iterables order. If the ``unique`` flag is set, then duplicate
values are removed but the iterables order is preserved.'
| def _collate_input_value(self, field):
| val = [self._slot_value(field, idx) for idx in range(self._next_slot_index)]
basetrait = self._interface.inputs.trait(field)
if isinstance(basetrait.trait_type, traits.Set):
return set(val)
elif self._unique:
return list(OrderedDict.fromkeys(val))
else:
return val
|
'Parameters
interface : interface object
node specific interface (fsl.Bet(), spm.Coregister())
iterfield : string or list of strings
name(s) of input fields that will receive a list of whatever kind
of input they take. the node will be run separately for each
value in these lists. for more than one input, the values are
paired (i.e. it does not compute a combinatorial product).
name : alphanumeric string
node specific name
serial : boolean
flag to enforce executing the jobs of the mapnode in a serial manner rather than parallel
nested : boolea
support for nested lists, if set the input list will be flattened before running, and the
nested list structure of the outputs will be resored
See Node docstring for additional keyword arguments.'
| def __init__(self, interface, iterfield, name, serial=False, nested=False, **kwargs):
| super(MapNode, self).__init__(interface, name, **kwargs)
if isinstance(iterfield, (str, bytes)):
iterfield = [iterfield]
self.iterfield = iterfield
self.nested = nested
self._inputs = self._create_dynamic_traits(self._interface.inputs, fields=self.iterfield)
self._inputs.on_trait_change(self._set_mapnode_input)
self._got_inputs = False
self._serial = serial
|
'Convert specific fields of a trait to accept multiple inputs'
| def _create_dynamic_traits(self, basetraits, fields=None, nitems=None):
| output = DynamicTraitedSpec()
if (fields is None):
fields = basetraits.copyable_trait_names()
for (name, spec) in list(basetraits.items()):
if ((name in fields) and ((nitems is None) or (nitems > 1))):
logger.debug(u'adding multipath trait: %s', name)
if self.nested:
output.add_trait(name, InputMultiPath(traits.Any()))
else:
output.add_trait(name, InputMultiPath(spec.trait_type))
else:
output.add_trait(name, traits.Trait(spec))
setattr(output, name, Undefined)
value = getattr(basetraits, name)
if isdefined(value):
setattr(output, name, value)
value = getattr(output, name)
return output
|
'Set interface input value or nodewrapper attribute
Priority goes to interface.'
| def set_input(self, parameter, val):
| logger.debug(u'setting nodelevel(%s) input %s = %s', to_str(self), parameter, to_str(val))
self._set_mapnode_input(self.inputs, parameter, deepcopy(val))
|
'Compute hash including iterfield lists.'
| def _get_hashval(self):
| if (not self._got_inputs):
self._get_inputs()
self._got_inputs = True
self._check_iterfield()
hashinputs = deepcopy(self._interface.inputs)
for name in self.iterfield:
hashinputs.remove_trait(name)
hashinputs.add_trait(name, InputMultiPath(self._interface.inputs.traits()[name].trait_type))
logger.debug(u'setting hashinput %s-> %s', name, getattr(self._inputs, name))
if self.nested:
setattr(hashinputs, name, flatten(getattr(self._inputs, name)))
else:
setattr(hashinputs, name, getattr(self._inputs, name))
(hashed_inputs, hashvalue) = hashinputs.get_hashval(hash_method=self.config[u'execution'][u'hash_method'])
rm_extra = self.config[u'execution'][u'remove_unnecessary_outputs']
if (str2bool(rm_extra) and self.needed_outputs):
hashobject = md5()
hashobject.update(hashvalue.encode())
sorted_outputs = sorted(self.needed_outputs)
hashobject.update(str(sorted_outputs).encode())
hashvalue = hashobject.hexdigest()
hashed_inputs.append((u'needed_outputs', sorted_outputs))
return (hashed_inputs, hashvalue)
|
'Checks iterfield
* iterfield must be in inputs
* number of elements must match across iterfield'
| def _check_iterfield(self):
| for iterfield in self.iterfield:
if (not isdefined(getattr(self.inputs, iterfield))):
raise ValueError((u'Input %s was not set but it is listed in iterfields.' % iterfield))
if (len(self.iterfield) > 1):
first_len = len(filename_to_list(getattr(self.inputs, self.iterfield[0])))
for iterfield in self.iterfield[1:]:
if (first_len != len(filename_to_list(getattr(self.inputs, iterfield)))):
raise ValueError((u'All iterfields of a MapNode have to have the same length. %s' % str(self.inputs)))
|
'Run the mapnode interface
This is primarily intended for serial execution of mapnode. A parallel
execution requires creation of new nodes that can be spawned'
| def _run_interface(self, execute=True, updatehash=False):
| old_cwd = os.getcwd()
cwd = self.output_dir()
os.chdir(cwd)
self._check_iterfield()
if execute:
if self.nested:
nitems = len(filename_to_list(flatten(getattr(self.inputs, self.iterfield[0]))))
else:
nitems = len(filename_to_list(getattr(self.inputs, self.iterfield[0])))
nodenames = [((u'_' + self.name) + str(i)) for i in range(nitems)]
self._collate_results(self._node_runner(self._make_nodes(cwd), updatehash=updatehash))
self._save_results(self._result, cwd)
dirs2remove = []
for path in glob(op.join(cwd, u'mapflow', u'*')):
if op.isdir(path):
if (path.split(op.sep)[(-1)] not in nodenames):
dirs2remove.append(path)
for path in dirs2remove:
shutil.rmtree(path)
else:
self._result = self._load_results(cwd)
os.chdir(old_cwd)
|
'Create a workflow object.
Parameters
name : alphanumeric string
unique identifier for the workflow
base_dir : string, optional
path to workflow storage'
| def __init__(self, name, base_dir=None):
| super(Workflow, self).__init__(name, base_dir)
self._graph = nx.DiGraph()
self.config = deepcopy(config._sections)
|
'Clone a workflow
.. note::
Will reset attributes used for executing workflow. See
_init_runtime_fields.
Parameters
name: alphanumeric name
unique name for the workflow'
| def clone(self, name):
| clone = super(Workflow, self).clone(name)
clone._reset_hierarchy()
return clone
|
'Connect nodes in the pipeline.
This routine also checks if inputs and outputs are actually provided by
the nodes that are being connected.
Creates edges in the directed graph using the nodes and edges specified
in the `connection_list`. Uses the NetworkX method
DiGraph.add_edges_from.
Parameters
args : list or a set of four positional arguments
Four positional arguments of the form::
connect(source, sourceoutput, dest, destinput)
source : nodewrapper node
sourceoutput : string (must be in source.outputs)
dest : nodewrapper node
destinput : string (must be in dest.inputs)
A list of 3-tuples of the following form::
[(source, target,
[(\'sourceoutput/attribute\', \'targetinput\'),
Or::
[(source, target, [((\'sourceoutput1\', func, arg2, ...),
\'targetinput\'), ...]),
sourceoutput1 will always be the first argument to func
and func will be evaluated and the results sent ot targetinput
currently func needs to define all its needed imports within the
function as we use the inspect module to get at the source code
and execute it remotely'
| def connect(self, *args, **kwargs):
| if (len(args) == 1):
connection_list = args[0]
elif (len(args) == 4):
connection_list = [(args[0], args[2], [(args[1], args[3])])]
else:
raise TypeError((u'connect() takes either 4 arguments, or 1 list of connection tuples (%d args given)' % len(args)))
disconnect = False
if kwargs:
disconnect = kwargs.get(u'disconnect', False)
if disconnect:
self.disconnect(connection_list)
return
newnodes = []
for (srcnode, destnode, _) in connection_list:
if (self in [srcnode, destnode]):
msg = (u'Workflow connect cannot contain itself as node: src[%s] dest[%s] workflow[%s]' % (srcnode, destnode, self.name))
raise IOError(msg)
if ((srcnode not in newnodes) and (not self._has_node(srcnode))):
newnodes.append(srcnode)
if ((destnode not in newnodes) and (not self._has_node(destnode))):
newnodes.append(destnode)
if newnodes:
self._check_nodes(newnodes)
for node in newnodes:
if (node._hierarchy is None):
node._hierarchy = self.name
not_found = []
connected_ports = {}
for (srcnode, destnode, connects) in connection_list:
if (destnode not in connected_ports):
connected_ports[destnode] = []
if ((not disconnect) and (destnode in self._graph.nodes())):
for edge in self._graph.in_edges_iter(destnode):
data = self._graph.get_edge_data(*edge)
for (sourceinfo, destname) in data[u'connect']:
if (destname not in connected_ports[destnode]):
connected_ports[destnode] += [destname]
for (source, dest) in connects:
if (dest in connected_ports[destnode]):
raise Exception((u"\nTrying to connect %s:%s to %s:%s but input '%s' of node '%s' is already\nconnected.\n" % (srcnode, source, destnode, dest, dest, destnode)))
if (not (hasattr(destnode, u'_interface') and ((u'.io' in str(destnode._interface.__class__)) or any([(u'.io' in str(val)) for val in destnode._interface.__class__.__bases__])))):
if (not destnode._check_inputs(dest)):
not_found.append([u'in', destnode.name, dest])
if (not (hasattr(srcnode, u'_interface') and ((u'.io' in str(srcnode._interface.__class__)) or any([(u'.io' in str(val)) for val in srcnode._interface.__class__.__bases__])))):
if isinstance(source, tuple):
sourcename = source[0]
elif isinstance(source, (str, bytes)):
sourcename = source
else:
raise Exception((u'Unknown source specification in connection from output of %s' % srcnode.name))
if (sourcename and (not srcnode._check_outputs(sourcename))):
not_found.append([u'out', srcnode.name, sourcename])
connected_ports[destnode] += [dest]
infostr = []
for info in not_found:
infostr += [(u'Module %s has no %sput called %s\n' % (info[1], info[0], info[2]))]
if not_found:
raise Exception(u'\n'.join(([u'Some connections were not found'] + infostr)))
for (srcnode, destnode, connects) in connection_list:
for (idx, (src, dest)) in enumerate(connects):
if (isinstance(src, tuple) and (not isinstance(src[1], (str, bytes)))):
function_source = getsource(src[1])
connects[idx] = ((src[0], function_source, src[2:]), dest)
for (srcnode, destnode, connects) in connection_list:
edge_data = self._graph.get_edge_data(srcnode, destnode, None)
if edge_data:
logger.debug(u'(%s, %s): Edge data exists: %s', srcnode, destnode, to_str(edge_data))
for data in connects:
if (data not in edge_data[u'connect']):
edge_data[u'connect'].append(data)
if disconnect:
logger.debug(u'Removing connection: %s', to_str(data))
edge_data[u'connect'].remove(data)
if edge_data[u'connect']:
self._graph.add_edges_from([(srcnode, destnode, edge_data)])
else:
logger.debug(u'Removing connection: %s->%s', srcnode, destnode)
self._graph.remove_edges_from([(srcnode, destnode)])
elif (not disconnect):
logger.debug(u'(%s, %s): No edge data', srcnode, destnode)
self._graph.add_edges_from([(srcnode, destnode, {u'connect': connects})])
edge_data = self._graph.get_edge_data(srcnode, destnode)
logger.debug(u'(%s, %s): new edge data: %s', srcnode, destnode, to_str(edge_data))
|
'Disconnect nodes
See the docstring for connect for format.'
| def disconnect(self, *args):
| if (len(args) == 1):
connection_list = args[0]
elif (len(args) == 4):
connection_list = [(args[0], args[2], [(args[1], args[3])])]
else:
raise TypeError((u'disconnect() takes either 4 arguments, or 1 list of connection tuples (%d args given)' % len(args)))
for (srcnode, dstnode, conn) in connection_list:
logger.debug(u'disconnect(): %s->%s %s', srcnode, dstnode, to_str(conn))
if (self in [srcnode, dstnode]):
raise (IOError(u'Workflow connect cannot contain itself as node: src[%s] dest[%s] workflow[%s]') % (srcnode, dstnode, self.name))
if ((not self._has_node(srcnode)) or (not self._has_node(dstnode))):
continue
edge_data = self._graph.get_edge_data(srcnode, dstnode, {u'connect': []})
ed_conns = [(c[0], c[1]) for c in edge_data[u'connect']]
remove = []
for edge in conn:
if (edge in ed_conns):
idx = ed_conns.index(edge)
remove.append((edge[0], edge[1]))
logger.debug(u'disconnect(): remove list %s', to_str(remove))
for el in remove:
edge_data[u'connect'].remove(el)
logger.debug(u'disconnect(): removed connection %s', to_str(el))
if (not edge_data[u'connect']):
self._graph.remove_edge(srcnode, dstnode)
else:
self._graph.add_edges_from([(srcnode, dstnode, edge_data)])
|
'Add nodes to a workflow
Parameters
nodes : list
A list of EngineBase-based objects'
| def add_nodes(self, nodes):
| newnodes = []
all_nodes = self._get_all_nodes()
for node in nodes:
if self._has_node(node):
raise IOError((u'Node %s already exists in the workflow' % node))
if isinstance(node, Workflow):
for subnode in node._get_all_nodes():
if (subnode in all_nodes):
raise IOError((u'Subnode %s of node %s already exists in the workflow' % (subnode, node)))
newnodes.append(node)
if (not newnodes):
logger.debug(u'no new nodes to add')
return
for node in newnodes:
if (not issubclass(node.__class__, EngineBase)):
raise Exception(u'Node %s must be a subclass of EngineBase', node)
self._check_nodes(newnodes)
for node in newnodes:
if (node._hierarchy is None):
node._hierarchy = self.name
self._graph.add_nodes_from(newnodes)
|
'Remove nodes from a workflow
Parameters
nodes : list
A list of EngineBase-based objects'
| def remove_nodes(self, nodes):
| self._graph.remove_nodes_from(nodes)
|
'Return an internal node by name'
| def get_node(self, name):
| nodenames = name.split(u'.')
nodename = nodenames[0]
outnode = [node for node in self._graph.nodes() if str(node).endswith((u'.' + nodename))]
if outnode:
outnode = outnode[0]
if (nodenames[1:] and issubclass(outnode.__class__, Workflow)):
outnode = outnode.get_node(u'.'.join(nodenames[1:]))
else:
outnode = None
return outnode
|
'List names of all nodes in a workflow'
| def list_node_names(self):
| outlist = []
for node in nx.topological_sort(self._graph):
if isinstance(node, Workflow):
outlist.extend([u'.'.join((node.name, nodename)) for nodename in node.list_node_names()])
else:
outlist.append(node.name)
return sorted(outlist)
|
'Generates a graphviz dot file and a png file
Parameters
graph2use: \'orig\', \'hierarchical\' (default), \'flat\', \'exec\', \'colored\'
orig - creates a top level graph without expanding internal
workflow nodes;
flat - expands workflow nodes recursively;
hierarchical - expands workflow nodes recursively with a
notion on hierarchy;
colored - expands workflow nodes recursively with a
notion on hierarchy in color;
exec - expands workflows to depict iterables
format: \'png\', \'svg\'
simple_form: boolean (default: True)
Determines if the node name used in the graph should be of the form
\'nodename (package)\' when True or \'nodename.Class.package\' when
False.'
| def write_graph(self, dotfilename=u'graph.dot', graph2use=u'hierarchical', format=u'png', simple_form=True):
| graphtypes = [u'orig', u'flat', u'hierarchical', u'exec', u'colored']
if (graph2use not in graphtypes):
raise ValueError((u'Unknown graph2use keyword. Must be one of: ' + str(graphtypes)))
(base_dir, dotfilename) = op.split(dotfilename)
if (base_dir == u''):
if self.base_dir:
base_dir = self.base_dir
if self.name:
base_dir = op.join(base_dir, self.name)
else:
base_dir = os.getcwd()
base_dir = make_output_dir(base_dir)
if (graph2use in [u'hierarchical', u'colored']):
if self.name[:1].isdigit():
raise ValueError(u'{} graph failed, workflow name cannot begin with a number'.format(graph2use))
dotfilename = op.join(base_dir, dotfilename)
self.write_hierarchical_dotfile(dotfilename=dotfilename, colored=(graph2use == u'colored'), simple_form=simple_form)
outfname = format_dot(dotfilename, format=format)
else:
graph = self._graph
if (graph2use in [u'flat', u'exec']):
graph = self._create_flat_graph()
if (graph2use == u'exec'):
graph = generate_expanded_graph(deepcopy(graph))
outfname = export_graph(graph, base_dir, dotfilename=dotfilename, format=format, simple_form=simple_form)
logger.info((u'Generated workflow graph: %s (graph2use=%s, simple_form=%s).' % (outfname, graph2use, simple_form)))
return outfname
|
'Export object into a different format
Parameters
filename: string
file to save the code to; overrides prefix
prefix: string
prefix to use for output file
format: string
one of "python"
include_config: boolean
whether to include node and workflow config values'
| def export(self, filename=None, prefix=u'output', format=u'python', include_config=False):
| formats = [u'python']
if (format not in formats):
raise ValueError((u'format must be one of: %s' % u'|'.join(formats)))
flatgraph = self._create_flat_graph()
nodes = nx.topological_sort(flatgraph)
lines = [u'# Workflow']
importlines = [u'from nipype.pipeline.engine import Workflow, Node, MapNode']
functions = {}
if (format == u'python'):
connect_template = (u'%s.connect(%%s, %%s, %%s, "%%s")' % self.name)
connect_template2 = (u'%s.connect(%%s, "%%s", %%s, "%%s")' % self.name)
wfdef = (u'%s = Workflow("%s")' % (self.name, self.name))
lines.append(wfdef)
if include_config:
lines.append((u'%s.config = %s' % (self.name, self.config)))
for (idx, node) in enumerate(nodes):
nodename = node.fullname.replace(u'.', u'_')
nodelines = format_node(node, format=u'python', include_config=include_config)
for line in nodelines:
if line.startswith(u'from'):
if (line not in importlines):
importlines.append(line)
else:
lines.append(line)
for (u, _, d) in flatgraph.in_edges_iter(nbunch=node, data=True):
for cd in d[u'connect']:
if isinstance(cd[0], tuple):
args = list(cd[0])
if (args[1] in functions):
funcname = functions[args[1]]
else:
func = create_function_from_source(args[1])
funcname = [name for name in func.__globals__ if (name != u'__builtins__')][0]
functions[args[1]] = funcname
args[1] = funcname
args = tuple([arg for arg in args if arg])
line_args = (u.fullname.replace(u'.', u'_'), args, nodename, cd[1])
line = (connect_template % line_args)
line = line.replace((u"'%s'" % funcname), funcname)
lines.append(line)
else:
line_args = (u.fullname.replace(u'.', u'_'), cd[0], nodename, cd[1])
lines.append((connect_template2 % line_args))
functionlines = [u'# Functions']
for function in functions:
functionlines.append(pickle.loads(function).rstrip())
all_lines = ((importlines + functionlines) + lines)
if (not filename):
filename = (u'%s%s.py' % (prefix, self.name))
with open(filename, u'wt') as fp:
fp.writelines(u'\n'.join(all_lines))
return all_lines
|
'Execute the workflow
Parameters
plugin: plugin name or object
Plugin to use for execution. You can create your own plugins for
execution.
plugin_args : dictionary containing arguments to be sent to plugin
constructor. see individual plugin doc strings for details.'
| def run(self, plugin=None, plugin_args=None, updatehash=False):
| if (plugin is None):
plugin = config.get(u'execution', u'plugin')
if (not isinstance(plugin, (str, bytes))):
runner = plugin
else:
name = u'.'.join((__name__.split(u'.')[:(-2)] + [u'plugins']))
try:
__import__(name)
except ImportError:
msg = (u'Could not import plugin module: %s' % name)
logger.error(msg)
raise ImportError(msg)
else:
plugin_mod = getattr(sys.modules[name], (u'%sPlugin' % plugin))
runner = plugin_mod(plugin_args=plugin_args)
flatgraph = self._create_flat_graph()
self.config = merge_dict(deepcopy(config._sections), self.config)
if (u'crashdump_dir' in self.config):
warn(u"Deprecated: workflow.config['crashdump_dir']\nPlease use config['execution']['crashdump_dir']")
crash_dir = self.config[u'crashdump_dir']
self.config[u'execution'][u'crashdump_dir'] = crash_dir
del self.config[u'crashdump_dir']
logger.info(u'Workflow %s settings: %s', self.name, to_str(sorted(self.config)))
self._set_needed_outputs(flatgraph)
execgraph = generate_expanded_graph(deepcopy(flatgraph))
for (index, node) in enumerate(execgraph.nodes()):
node.config = merge_dict(deepcopy(self.config), node.config)
node.base_dir = self.base_dir
node.index = index
if isinstance(node, MapNode):
node.use_plugin = (plugin, plugin_args)
self._configure_exec_nodes(execgraph)
if str2bool(self.config[u'execution'][u'create_report']):
self._write_report_info(self.base_dir, self.name, execgraph)
runner.run(execgraph, updatehash=updatehash, config=self.config)
datestr = datetime.utcnow().strftime(u'%Y%m%dT%H%M%S')
if str2bool(self.config[u'execution'][u'write_provenance']):
prov_base = op.join(self.base_dir, (u'workflow_provenance_%s' % datestr))
logger.info((u'Provenance file prefix: %s' % prov_base))
write_workflow_prov(execgraph, prov_base, format=u'all')
return execgraph
|
'Initialize node with list of which outputs are needed.'
| def _set_needed_outputs(self, graph):
| rm_outputs = self.config[u'execution'][u'remove_unnecessary_outputs']
if (not str2bool(rm_outputs)):
return
for node in graph.nodes():
node.needed_outputs = []
for edge in graph.out_edges_iter(node):
data = graph.get_edge_data(*edge)
sourceinfo = [(v1[0] if isinstance(v1, tuple) else v1) for (v1, v2) in data[u'connect']]
node.needed_outputs += [v for v in sourceinfo if (v not in node.needed_outputs)]
if node.needed_outputs:
node.needed_outputs = sorted(node.needed_outputs)
|
'Ensure that each node knows where to get inputs from'
| def _configure_exec_nodes(self, graph):
| for node in graph.nodes():
node.input_source = {}
for edge in graph.in_edges_iter(node):
data = graph.get_edge_data(*edge)
for (sourceinfo, field) in data[u'connect']:
node.input_source[field] = (op.join(edge[0].output_dir(), (u'result_%s.pklz' % edge[0].name)), sourceinfo)
|
'Checks if any of the nodes are already in the graph'
| def _check_nodes(self, nodes):
| node_names = [node.name for node in self._graph.nodes()]
node_lineage = [node._hierarchy for node in self._graph.nodes()]
for node in nodes:
if (node.name in node_names):
idx = node_names.index(node.name)
if (node_lineage[idx] in [node._hierarchy, self.name]):
raise IOError((u'Duplicate node name %s found.' % node.name))
else:
node_names.append(node.name)
|
'Checks if a parameter is available as an input or output'
| def _has_attr(self, parameter, subtype=u'in'):
| if (subtype == u'in'):
subobject = self.inputs
else:
subobject = self.outputs
attrlist = parameter.split(u'.')
cur_out = subobject
for attr in attrlist:
if (not hasattr(cur_out, attr)):
return False
cur_out = getattr(cur_out, attr)
return True
|
'Returns the underlying node corresponding to an input or
output parameter'
| def _get_parameter_node(self, parameter, subtype=u'in'):
| if (subtype == u'in'):
subobject = self.inputs
else:
subobject = self.outputs
attrlist = parameter.split(u'.')
cur_out = subobject
for attr in attrlist[:(-1)]:
cur_out = getattr(cur_out, attr)
return cur_out.traits()[attrlist[(-1)]].node
|
'Returns the inputs of a workflow
This function does not return any input ports that are already
connected'
| def _get_inputs(self):
| inputdict = TraitedSpec()
for node in self._graph.nodes():
inputdict.add_trait(node.name, traits.Instance(TraitedSpec))
if isinstance(node, Workflow):
setattr(inputdict, node.name, node.inputs)
else:
taken_inputs = []
for (_, _, d) in self._graph.in_edges_iter(nbunch=node, data=True):
for cd in d[u'connect']:
taken_inputs.append(cd[1])
unconnectedinputs = TraitedSpec()
for (key, trait) in list(node.inputs.items()):
if (key not in taken_inputs):
unconnectedinputs.add_trait(key, traits.Trait(trait, node=node))
value = getattr(node.inputs, key)
setattr(unconnectedinputs, key, value)
setattr(inputdict, node.name, unconnectedinputs)
getattr(inputdict, node.name).on_trait_change(self._set_input)
return inputdict
|
'Returns all possible output ports that are not already connected'
| def _get_outputs(self):
| outputdict = TraitedSpec()
for node in self._graph.nodes():
outputdict.add_trait(node.name, traits.Instance(TraitedSpec))
if isinstance(node, Workflow):
setattr(outputdict, node.name, node.outputs)
elif node.outputs:
outputs = TraitedSpec()
for (key, _) in list(node.outputs.items()):
outputs.add_trait(key, traits.Any(node=node))
setattr(outputs, key, None)
setattr(outputdict, node.name, outputs)
return outputdict
|
'Trait callback function to update a node input'
| def _set_input(self, object, name, newvalue):
| object.traits()[name].node.set_input(name, newvalue)
|
'Set inputs of a node given the edge connection'
| def _set_node_input(self, node, param, source, sourceinfo):
| if isinstance(sourceinfo, (str, bytes)):
val = source.get_output(sourceinfo)
elif isinstance(sourceinfo, tuple):
if callable(sourceinfo[1]):
val = sourceinfo[1](source.get_output(sourceinfo[0]), *sourceinfo[2:])
newval = val
if isinstance(val, TraitDictObject):
newval = dict(val)
if isinstance(val, TraitListObject):
newval = val[:]
logger.debug(u'setting node input: %s->%s', param, to_str(newval))
node.set_input(param, deepcopy(newval))
|
'Make a simple DAG where no node is a workflow.'
| def _create_flat_graph(self):
| logger.debug(u'Creating flat graph for workflow: %s', self.name)
workflowcopy = deepcopy(self)
workflowcopy._generate_flatgraph()
return workflowcopy._graph
|
'Reset the hierarchy on a graph'
| def _reset_hierarchy(self):
| for node in self._graph.nodes():
if isinstance(node, Workflow):
node._reset_hierarchy()
for innernode in node._graph.nodes():
innernode._hierarchy = u'.'.join((self.name, innernode._hierarchy))
else:
node._hierarchy = self.name
|
'Generate a graph containing only Nodes or MapNodes'
| def _generate_flatgraph(self):
| logger.debug(u'expanding workflow: %s', self)
nodes2remove = []
if (not nx.is_directed_acyclic_graph(self._graph)):
raise Exception((u'Workflow: %s is not a directed acyclic graph (DAG)' % self.name))
nodes = nx.topological_sort(self._graph)
for node in nodes:
logger.debug(u'processing node: %s', node)
if isinstance(node, Workflow):
nodes2remove.append(node)
for (u, _, d) in self._graph.in_edges(nbunch=node, data=True):
logger.debug(u'in: connections-> %s', to_str(d[u'connect']))
for cd in deepcopy(d[u'connect']):
logger.debug(u'in: %s', to_str(cd))
dstnode = node._get_parameter_node(cd[1], subtype=u'in')
srcnode = u
srcout = cd[0]
dstin = cd[1].split(u'.')[(-1)]
logger.debug(u'in edges: %s %s %s %s', srcnode, srcout, dstnode, dstin)
self.disconnect(u, cd[0], node, cd[1])
self.connect(srcnode, srcout, dstnode, dstin)
for (_, v, d) in self._graph.out_edges(nbunch=node, data=True):
logger.debug(u'out: connections-> %s', to_str(d[u'connect']))
for cd in deepcopy(d[u'connect']):
logger.debug(u'out: %s', to_str(cd))
dstnode = v
if isinstance(cd[0], tuple):
parameter = cd[0][0]
else:
parameter = cd[0]
srcnode = node._get_parameter_node(parameter, subtype=u'out')
if isinstance(cd[0], tuple):
srcout = list(cd[0])
srcout[0] = parameter.split(u'.')[(-1)]
srcout = tuple(srcout)
else:
srcout = parameter.split(u'.')[(-1)]
dstin = cd[1]
logger.debug(u'out edges: %s %s %s %s', srcnode, srcout, dstnode, dstin)
self.disconnect(node, cd[0], v, cd[1])
self.connect(srcnode, srcout, dstnode, dstin)
node._generate_flatgraph()
for innernode in node._graph.nodes():
innernode._hierarchy = u'.'.join((self.name, innernode._hierarchy))
self._graph.add_nodes_from(node._graph.nodes())
self._graph.add_edges_from(node._graph.edges(data=True))
if nodes2remove:
self._graph.remove_nodes_from(nodes2remove)
logger.debug(u'finished expanding workflow: %s', self)
|
'Create a dot file with connection info'
| def _get_dot(self, prefix=None, hierarchy=None, colored=False, simple_form=True, level=0):
| if (prefix is None):
prefix = u' '
if (hierarchy is None):
hierarchy = []
colorset = [u'#FFFFC8', u'#0000FF', u'#B4B4FF', u'#E6E6FF', u'#FF0000', u'#FFB4B4', u'#FFE6E6', u'#00A300', u'#B4FFB4', u'#E6FFE6', u'#0000FF', u'#B4B4FF']
if (level > (len(colorset) - 2)):
level = 3
dotlist = [(u'%slabel="%s";' % (prefix, self.name))]
for node in nx.topological_sort(self._graph):
fullname = u'.'.join((hierarchy + [node.fullname]))
nodename = fullname.replace(u'.', u'_')
if (not isinstance(node, Workflow)):
node_class_name = get_print_name(node, simple_form=simple_form)
if (not simple_form):
node_class_name = u'.'.join(node_class_name.split(u'.')[1:])
if (hasattr(node, u'iterables') and node.iterables):
dotlist.append((u'%s[label="%s", shape=box3d,style=filled, color=black, colorscheme=greys7 fillcolor=2];' % (nodename, node_class_name)))
elif colored:
dotlist.append((u'%s[label="%s", style=filled, fillcolor="%s"];' % (nodename, node_class_name, colorset[level])))
else:
dotlist.append((u'%s[label="%s"];' % (nodename, node_class_name)))
for node in nx.topological_sort(self._graph):
if isinstance(node, Workflow):
fullname = u'.'.join((hierarchy + [node.fullname]))
nodename = fullname.replace(u'.', u'_')
dotlist.append((u'subgraph cluster_%s {' % nodename))
if colored:
dotlist.append(((prefix + prefix) + (u'edge [color="%s"];' % colorset[(level + 1)])))
dotlist.append(((prefix + prefix) + u'style=filled;'))
dotlist.append(((prefix + prefix) + (u'fillcolor="%s";' % colorset[(level + 2)])))
dotlist.append(node._get_dot(prefix=(prefix + prefix), hierarchy=(hierarchy + [self.name]), colored=colored, simple_form=simple_form, level=(level + 3)))
dotlist.append(u'}')
else:
for subnode in self._graph.successors_iter(node):
if (node._hierarchy != subnode._hierarchy):
continue
if (not isinstance(subnode, Workflow)):
nodefullname = u'.'.join((hierarchy + [node.fullname]))
subnodefullname = u'.'.join((hierarchy + [subnode.fullname]))
nodename = nodefullname.replace(u'.', u'_')
subnodename = subnodefullname.replace(u'.', u'_')
for _ in self._graph.get_edge_data(node, subnode)[u'connect']:
dotlist.append((u'%s -> %s;' % (nodename, subnodename)))
logger.debug(u'connection: %s', dotlist[(-1)])
for (u, v, d) in self._graph.edges_iter(data=True):
uname = u'.'.join((hierarchy + [u.fullname]))
vname = u'.'.join((hierarchy + [v.fullname]))
for (src, dest) in d[u'connect']:
uname1 = uname
vname1 = vname
if isinstance(src, tuple):
srcname = src[0]
else:
srcname = src
if (u'.' in srcname):
uname1 += (u'.' + u'.'.join(srcname.split(u'.')[:(-1)]))
if ((u'.' in dest) and (u'@' not in dest)):
if (not isinstance(v, Workflow)):
if (u'datasink' not in str(v._interface.__class__).lower()):
vname1 += (u'.' + u'.'.join(dest.split(u'.')[:(-1)]))
else:
vname1 += (u'.' + u'.'.join(dest.split(u'.')[:(-1)]))
if (uname1.split(u'.')[:(-1)] != vname1.split(u'.')[:(-1)]):
dotlist.append((u'%s -> %s;' % (uname1.replace(u'.', u'_'), vname1.replace(u'.', u'_'))))
logger.debug(u'cross connection: %s', dotlist[(-1)])
return (u'\n' + prefix).join(dotlist)
|
'Open the specified file and use it as the stream for logging.
By default, the file grows indefinitely. You can specify particular
values of maxBytes and backupCount to allow the file to rollover at
a predetermined size.
Rollover occurs whenever the current log file is nearly maxBytes in
length. If backupCount is >= 1, the system will successively create
new files with the same pathname as the base file, but with extensions
".1", ".2" etc. appended to it. For example, with a backupCount of 5
and a base file name of "app.log", you would get "app.log",
"app.log.1", "app.log.2", ... through to "app.log.5". The file being
written to is always "app.log" - when it gets filled up, it is closed
and renamed to "app.log.1", and if files "app.log.1", "app.log.2" etc.
exist, then they are renamed to "app.log.2", "app.log.3" etc.
respectively.
If maxBytes is zero, rollover never occurs.
On Windows, it is not possible to rename a file that is currently opened
by another process. This means that it is not possible to rotate the
log files if multiple processes is using the same log file. In this
case, the current log file will continue to grow until the rotation can
be completed successfully. In order for rotation to be possible, all of
the other processes need to close the file first. A mechanism, called
"degraded" mode, has been created for this scenario. In degraded mode,
the log file is closed after each log message is written. So once all
processes have entered degraded mode, the next rotate log attempt should
be successful and then normal logging can be resumed.
This log handler assumes that all concurrent processes logging to a
single file will are using only this class, and that the exact same
parameters are provided to each instance of this class. If, for
example, two different processes are using this class, but with
different values for \'maxBytes\' or \'backupCount\', then odd behavior is
expected. The same is true if this class is used by one application, but
the RotatingFileHandler is used by another.
NOTE: You should always provide \'filename\' as an absolute path, since
this class will need to re-open the file during rotation. If your
application call os.chdir() then subsequent log files could be created
in the wrong directory.'
| def __init__(self, filename, mode='a', maxBytes=0, backupCount=0, encoding=None, debug=True, supress_abs_warn=False):
| if (not os.path.isabs(filename)):
if (FORCE_ABSOLUTE_PATH or (not os.path.split(filename)[0])):
filename = os.path.abspath(filename)
elif (not supress_abs_warn):
from warnings import warn
warn("The given 'filename' should be an absolute path. If your application calls os.chdir(), your logs may get messed up. Use 'supress_abs_warn=True' to hide this message.")
try:
BaseRotatingHandler.__init__(self, filename, mode, encoding)
except TypeError:
BaseRotatingHandler.__init__(self, filename, mode)
self.encoding = encoding
self._rotateFailed = False
self.maxBytes = maxBytes
self.backupCount = backupCount
if filename.endswith('.log'):
lock_file = filename[:(-4)]
else:
lock_file = filename
self.stream_lock = open((lock_file + '.lock'), 'w')
if debug:
self._degrade = self._degrade_debug
|
'Acquire thread and file locks. Also re-opening log file when running
in \'degraded\' mode.'
| def acquire(self):
| Handler.acquire(self)
lock(self.stream_lock, LOCK_EX)
if self.stream.closed:
self._openFile(self.mode)
|
'Release file and thread locks. Flush stream and take care of closing
stream in \'degraded\' mode.'
| def release(self):
| try:
if (not self.stream.closed):
self.stream.flush()
if self._rotateFailed:
self.stream.close()
except IOError:
if self._rotateFailed:
self.stream.close()
finally:
try:
unlock(self.stream_lock)
finally:
Handler.release(self)
|
'Closes the stream.'
| def close(self):
| if (not self.stream.closed):
self.stream.flush()
self.stream.close()
Handler.close(self)
|
'flush(): Do nothing.
Since a flush is issued in release(), we don\'t do it here. To do a flush
here, it would be necessary to re-lock everything, and it is just easier
and cleaner to do it all in release(), rather than requiring two lock
ops per handle() call.
Doing a flush() here would also introduces a window of opportunity for
another process to write to the log file in between calling
stream.write() and stream.flush(), which seems like a bad thing.'
| def flush(self):
| pass
|
'Set degrade mode or not. Ignore msg.'
| def _degrade(self, degrade, msg, *args):
| self._rotateFailed = degrade
del msg, args
|
'A more colorful version of _degade(). (This is enabled by passing
"debug=True" at initialization).'
| def _degrade_debug(self, degrade, msg, *args):
| if degrade:
if (not self._rotateFailed):
sys.stderr.write(('Degrade mode - ENTERING - (pid=%d) %s\n' % (os.getpid(), (msg % args))))
self._rotateFailed = True
elif self._rotateFailed:
sys.stderr.write(('Degrade mode - EXITING - (pid=%d) %s\n' % (os.getpid(), (msg % args))))
self._rotateFailed = False
|
'Do a rollover, as described in __init__().'
| def doRollover(self):
| if (self.backupCount <= 0):
self.stream.close()
self._openFile('w')
return
self.stream.close()
try:
tmpname = None
while ((not tmpname) or os.path.exists(tmpname)):
tmpname = ('%s.rotate.%08d' % (self.baseFilename, randint(0, 99999999)))
try:
os.rename(self.baseFilename, tmpname)
except (IOError, OSError):
exc_value = sys.exc_info()[1]
self._degrade(True, 'rename failed. File in use? exception=%s', exc_value)
return
for i in range((self.backupCount - 1), 0, (-1)):
sfn = ('%s.%d' % (self.baseFilename, i))
dfn = ('%s.%d' % (self.baseFilename, (i + 1)))
if os.path.exists(sfn):
if os.path.exists(dfn):
os.remove(dfn)
os.rename(sfn, dfn)
dfn = (self.baseFilename + '.1')
if os.path.exists(dfn):
os.remove(dfn)
os.rename(tmpname, dfn)
self._degrade(False, 'Rotation completed')
finally:
self._openFile(self.mode)
|
'Determine if rollover should occur.
For those that are keeping track. This differs from the standard
library\'s RotatingLogHandler class. Because there is no promise to keep
the file size under maxBytes we ignore the length of the current record.'
| def shouldRollover(self, record):
| del record
if self._shouldRollover():
self.stream.close()
self._openFile(self.mode)
return self._shouldRollover()
return False
|
'Perform no good and no bad'
| def _donothing(self, *args, **kwargs):
| pass
|
'If I could cite I would'
| def dcite(self, *args, **kwargs):
| def nondecorating_decorator(func):
return func
return nondecorating_decorator
|
'Temporary filesystem for testing non-POSIX filesystems on a POSIX
system.
with TempFATFS() as fatdir:
target = os.path.join(fatdir, \'target\')
copyfile(file1, target, copy=False)
assert not os.path.islink(target)
Arguments
size_in_mbytes : int
Size (in MiB) of filesystem to create
delay : float
Time (in seconds) to wait for fusefat to start, stop'
| def __init__(self, size_in_mbytes=8, delay=0.5):
| self.delay = delay
self.tmpdir = mkdtemp()
self.dev_null = open(os.devnull, u'wb')
vfatfile = os.path.join(self.tmpdir, u'vfatblock')
self.vfatmount = os.path.join(self.tmpdir, u'vfatmount')
self.canary = os.path.join(self.vfatmount, u'.canary')
with open(vfatfile, u'wb') as fobj:
fobj.write(('\x00' * (int(size_in_mbytes) << 20)))
os.mkdir(self.vfatmount)
mkfs_args = [u'mkfs.vfat', vfatfile]
mount_args = [u'fusefat', u'-o', u'rw+', u'-f', vfatfile, self.vfatmount]
try:
subprocess.check_call(args=mkfs_args, stdout=self.dev_null, stderr=self.dev_null)
except CalledProcessError as e:
raise_from(IOError(u'mkfs.vfat failed'), e)
try:
self.fusefat = subprocess.Popen(args=mount_args, stdout=self.dev_null, stderr=self.dev_null)
except OSError as e:
raise_from(IOError(u'fusefat is not installed'), e)
time.sleep(self.delay)
if (self.fusefat.poll() is not None):
raise IOError(u'fusefat terminated too soon')
open(self.canary, u'wb').close()
|
'test that usage of misc.TSNR trips a warning to use confounds.TSNR instead'
| @mock.patch('warnings.warn')
def test_warning(self, mock_warn):
| misc.TSNR(in_file=self.in_filenames['in_file'])
assert (True in [(args[0].count('confounds') > 0) for (_, args, _) in mock_warn.mock_calls])
|
'exactly the same as compcor except the header'
| def __init__(self, *args, **kwargs):
| super(CompCor, self).__init__(*args, **kwargs)
self._header = u'CompCor'
|
'exactly the same as compcor except the header'
| def __init__(self, *args, **kwargs):
| super(ACompCor, self).__init__(*args, **kwargs)
self._header = u'aCompCor'
|
'exactly the same as compcor except the header'
| def __init__(self, *args, **kwargs):
| super(TCompCor, self).__init__(*args, **kwargs)
self._header = u'tCompCor'
self._mask_files = []
|
'Generates a standard design matrix paradigm given information about
each run'
| def _generate_standard_design(self, infolist, functional_runs=None, realignment_parameters=None, outliers=None):
| sessinfo = []
output_units = u'secs'
if (u'output_units' in self.inputs.traits()):
output_units = self.inputs.output_units
for (i, info) in enumerate(infolist):
sessinfo.insert(i, dict(cond=[]))
if isdefined(self.inputs.high_pass_filter_cutoff):
sessinfo[i][u'hpf'] = np.float(self.inputs.high_pass_filter_cutoff)
if (hasattr(info, u'conditions') and (info.conditions is not None)):
for (cid, cond) in enumerate(info.conditions):
sessinfo[i][u'cond'].insert(cid, dict())
sessinfo[i][u'cond'][cid][u'name'] = info.conditions[cid]
scaled_onset = scale_timings(info.onsets[cid], self.inputs.input_units, output_units, self.inputs.time_repetition)
sessinfo[i][u'cond'][cid][u'onset'] = scaled_onset
scaled_duration = scale_timings(info.durations[cid], self.inputs.input_units, output_units, self.inputs.time_repetition)
sessinfo[i][u'cond'][cid][u'duration'] = scaled_duration
if (hasattr(info, u'amplitudes') and info.amplitudes):
sessinfo[i][u'cond'][cid][u'amplitudes'] = info.amplitudes[cid]
if (hasattr(info, u'tmod') and info.tmod and (len(info.tmod) > cid)):
sessinfo[i][u'cond'][cid][u'tmod'] = info.tmod[cid]
if (hasattr(info, u'pmod') and info.pmod and (len(info.pmod) > cid)):
if info.pmod[cid]:
sessinfo[i][u'cond'][cid][u'pmod'] = []
for (j, name) in enumerate(info.pmod[cid].name):
sessinfo[i][u'cond'][cid][u'pmod'].insert(j, {})
sessinfo[i][u'cond'][cid][u'pmod'][j][u'name'] = name
sessinfo[i][u'cond'][cid][u'pmod'][j][u'poly'] = info.pmod[cid].poly[j]
sessinfo[i][u'cond'][cid][u'pmod'][j][u'param'] = info.pmod[cid].param[j]
sessinfo[i][u'regress'] = []
if (hasattr(info, u'regressors') and (info.regressors is not None)):
for (j, r) in enumerate(info.regressors):
sessinfo[i][u'regress'].insert(j, dict(name=u'', val=[]))
if (hasattr(info, u'regressor_names') and (info.regressor_names is not None)):
sessinfo[i][u'regress'][j][u'name'] = info.regressor_names[j]
else:
sessinfo[i][u'regress'][j][u'name'] = (u'UR%d' % (j + 1))
sessinfo[i][u'regress'][j][u'val'] = info.regressors[j]
sessinfo[i][u'scans'] = functional_runs[i]
if (realignment_parameters is not None):
for (i, rp) in enumerate(realignment_parameters):
mc = realignment_parameters[i]
for col in range(mc.shape[1]):
colidx = len(sessinfo[i][u'regress'])
sessinfo[i][u'regress'].insert(colidx, dict(name=u'', val=[]))
sessinfo[i][u'regress'][colidx][u'name'] = (u'Realign%d' % (col + 1))
sessinfo[i][u'regress'][colidx][u'val'] = mc[:, col].tolist()
if (outliers is not None):
for (i, out) in enumerate(outliers):
numscans = 0
for f in filename_to_list(sessinfo[i][u'scans']):
shape = load(f, mmap=NUMPY_MMAP).shape
if ((len(shape) == 3) or (shape[3] == 1)):
iflogger.warning(u'You are using 3D instead of 4D files. Are you sure this was intended?')
numscans += 1
else:
numscans += shape[3]
for (j, scanno) in enumerate(out):
colidx = len(sessinfo[i][u'regress'])
sessinfo[i][u'regress'].insert(colidx, dict(name=u'', val=[]))
sessinfo[i][u'regress'][colidx][u'name'] = (u'Outlier%d' % (j + 1))
sessinfo[i][u'regress'][colidx][u'val'] = np.zeros((1, numscans))[0].tolist()
sessinfo[i][u'regress'][colidx][u'val'][int(scanno)] = 1
return sessinfo
|
'Generate design specification for a typical fmri paradigm'
| def _generate_design(self, infolist=None):
| realignment_parameters = []
if isdefined(self.inputs.realignment_parameters):
for parfile in self.inputs.realignment_parameters:
realignment_parameters.append(np.apply_along_axis(func1d=normalize_mc_params, axis=1, arr=np.loadtxt(parfile), source=self.inputs.parameter_source))
outliers = []
if isdefined(self.inputs.outlier_files):
for filename in self.inputs.outlier_files:
try:
outindices = np.loadtxt(filename, dtype=int)
except IOError:
outliers.append([])
else:
if (outindices.size == 1):
outliers.append([outindices.tolist()])
else:
outliers.append(outindices.tolist())
if (infolist is None):
if isdefined(self.inputs.subject_info):
infolist = self.inputs.subject_info
else:
infolist = gen_info(self.inputs.event_files)
self._sessinfo = self._generate_standard_design(infolist, functional_runs=self.inputs.functional_runs, realignment_parameters=realignment_parameters, outliers=outliers)
|
''
| def _run_interface(self, runtime):
| self._sessioninfo = None
self._generate_design()
return runtime
|
'Generates a regressor for a sparse/clustered-sparse acquisition'
| def _gen_regress(self, i_onsets, i_durations, i_amplitudes, nscans):
| bplot = False
if (isdefined(self.inputs.save_plot) and self.inputs.save_plot):
bplot = True
import matplotlib
matplotlib.use(config.get(u'execution', u'matplotlib_backend'))
import matplotlib.pyplot as plt
TR = np.round((self.inputs.time_repetition * 1000))
if self.inputs.time_acquisition:
TA = np.round((self.inputs.time_acquisition * 1000))
else:
TA = TR
nvol = self.inputs.volumes_in_cluster
SCANONSET = np.round((self.inputs.scan_onset * 1000))
total_time = ((((TR * (nscans - nvol)) / nvol) + (TA * nvol)) + SCANONSET)
SILENCE = (TR - (TA * nvol))
dt = (TA / 10.0)
durations = np.round((np.array(i_durations) * 1000))
if (len(durations) == 1):
durations = (durations * np.ones(len(i_onsets)))
onsets = np.round((np.array(i_onsets) * 1000))
dttemp = gcd(TA, gcd(SILENCE, TR))
if (dt < dttemp):
if ((dttemp % dt) != 0):
dt = float(gcd(dttemp, dt))
if (dt < 1):
raise Exception(u'Time multiple less than 1 ms')
iflogger.info((u'Setting dt = %d ms\n' % dt))
npts = int(np.ceil((total_time / dt)))
times = (np.arange(0, total_time, dt) * 0.001)
timeline = np.zeros(npts)
timeline2 = np.zeros(npts)
if (isdefined(self.inputs.model_hrf) and self.inputs.model_hrf):
hrf = spm_hrf((dt * 0.001))
reg_scale = 1.0
if self.inputs.scale_regressors:
boxcar = np.zeros(int(((50.0 * 1000.0) / dt)))
if self.inputs.stimuli_as_impulses:
boxcar[int(((1.0 * 1000.0) / dt))] = 1.0
reg_scale = float((TA / dt))
else:
boxcar[int(((1.0 * 1000.0) / dt)):int(((2.0 * 1000.0) / dt))] = 1.0
if (isdefined(self.inputs.model_hrf) and self.inputs.model_hrf):
response = np.convolve(boxcar, hrf)
reg_scale = (1.0 / response.max())
iflogger.info((u'response sum: %.4f max: %.4f' % (response.sum(), response.max())))
iflogger.info((u'reg_scale: %.4f' % reg_scale))
for (i, t) in enumerate(onsets):
idx = int(np.round((t / dt)))
if i_amplitudes:
if (len(i_amplitudes) > 1):
timeline2[idx] = i_amplitudes[i]
else:
timeline2[idx] = i_amplitudes[0]
else:
timeline2[idx] = 1
if bplot:
plt.subplot(4, 1, 1)
plt.plot(times, timeline2)
if (not self.inputs.stimuli_as_impulses):
if (durations[i] == 0):
durations[i] = (TA * nvol)
stimdur = np.ones(int((durations[i] / dt)))
timeline2 = np.convolve(timeline2, stimdur)[0:len(timeline2)]
timeline += timeline2
timeline2[:] = 0
if bplot:
plt.subplot(4, 1, 2)
plt.plot(times, timeline)
if (isdefined(self.inputs.model_hrf) and self.inputs.model_hrf):
timeline = np.convolve(timeline, hrf)[0:len(timeline)]
if (isdefined(self.inputs.use_temporal_deriv) and self.inputs.use_temporal_deriv):
timederiv = np.concatenate(([0], np.diff(timeline)))
if bplot:
plt.subplot(4, 1, 3)
plt.plot(times, timeline)
if (isdefined(self.inputs.use_temporal_deriv) and self.inputs.use_temporal_deriv):
plt.plot(times, timederiv)
timeline2 = np.zeros(npts)
reg = []
regderiv = []
for (i, trial) in enumerate((np.arange(nscans) / nvol)):
scanstart = int((((SCANONSET + (trial * TR)) + ((i % nvol) * TA)) / dt))
scanidx = (scanstart + np.arange(int((TA / dt))))
timeline2[scanidx] = np.max(timeline)
reg.insert(i, (np.mean(timeline[scanidx]) * reg_scale))
if (isdefined(self.inputs.use_temporal_deriv) and self.inputs.use_temporal_deriv):
regderiv.insert(i, (np.mean(timederiv[scanidx]) * reg_scale))
if (isdefined(self.inputs.use_temporal_deriv) and self.inputs.use_temporal_deriv):
iflogger.info(u'orthoganlizing derivative w.r.t. main regressor')
regderiv = orth(reg, regderiv)
if bplot:
plt.subplot(4, 1, 3)
plt.plot(times, timeline2)
plt.subplot(4, 1, 4)
plt.bar(np.arange(len(reg)), reg, width=0.5)
plt.savefig(u'sparse.png')
plt.savefig(u'sparse.svg')
if regderiv:
return [reg, regderiv]
else:
return reg
|
'Converts condition information to full regressors'
| def _cond_to_regress(self, info, nscans):
| reg = []
regnames = []
for (i, cond) in enumerate(info.conditions):
if (hasattr(info, u'amplitudes') and info.amplitudes):
amplitudes = info.amplitudes[i]
else:
amplitudes = None
regnames.insert(len(regnames), cond)
scaled_onsets = scale_timings(info.onsets[i], self.inputs.input_units, u'secs', self.inputs.time_repetition)
scaled_durations = scale_timings(info.durations[i], self.inputs.input_units, u'secs', self.inputs.time_repetition)
regressor = self._gen_regress(scaled_onsets, scaled_durations, amplitudes, nscans)
if (isdefined(self.inputs.use_temporal_deriv) and self.inputs.use_temporal_deriv):
reg.insert(len(reg), regressor[0])
regnames.insert(len(regnames), (cond + u'_D'))
reg.insert(len(reg), regressor[1])
else:
reg.insert(len(reg), regressor)
nvol = self.inputs.volumes_in_cluster
if (nvol > 1):
for i in range((nvol - 1)):
treg = np.zeros(((nscans / nvol), nvol))
treg[:, i] = 1
reg.insert(len(reg), treg.ravel().tolist())
regnames.insert(len(regnames), (u'T1effect_%d' % i))
return (reg, regnames)
|
'Generates condition information for sparse-clustered
designs.'
| def _generate_clustered_design(self, infolist):
| infoout = deepcopy(infolist)
for (i, info) in enumerate(infolist):
infoout[i].conditions = None
infoout[i].onsets = None
infoout[i].durations = None
if info.conditions:
img = load(self.inputs.functional_runs[i], mmap=NUMPY_MMAP)
nscans = img.shape[3]
(reg, regnames) = self._cond_to_regress(info, nscans)
if (hasattr(infoout[i], u'regressors') and infoout[i].regressors):
if (not infoout[i].regressor_names):
infoout[i].regressor_names = [(u'R%d' % j) for j in range(len(infoout[i].regressors))]
else:
infoout[i].regressors = []
infoout[i].regressor_names = []
for (j, r) in enumerate(reg):
regidx = len(infoout[i].regressors)
infoout[i].regressor_names.insert(regidx, regnames[j])
infoout[i].regressors.insert(regidx, r)
return infoout
|
'Generate output files based on motion filenames
Parameters
motionfile: file/string
Filename for motion parameter file
output_dir: string
output directory in which the files will be generated'
| def _get_output_filenames(self, motionfile, output_dir):
| if isinstance(motionfile, (str, bytes)):
infile = motionfile
elif isinstance(motionfile, list):
infile = motionfile[0]
else:
raise Exception(u'Unknown type of file')
(_, filename, ext) = split_filename(infile)
artifactfile = os.path.join(output_dir, u''.join((u'art.', filename, u'_outliers.txt')))
intensityfile = os.path.join(output_dir, u''.join((u'global_intensity.', filename, u'.txt')))
statsfile = os.path.join(output_dir, u''.join((u'stats.', filename, u'.txt')))
normfile = os.path.join(output_dir, u''.join((u'norm.', filename, u'.txt')))
plotfile = os.path.join(output_dir, u''.join((u'plot.', filename, u'.', self.inputs.plot_type)))
displacementfile = os.path.join(output_dir, u''.join((u'disp.', filename, ext)))
maskfile = os.path.join(output_dir, u''.join((u'mask.', filename, ext)))
return (artifactfile, intensityfile, statsfile, normfile, plotfile, displacementfile, maskfile)
|
'Core routine for detecting outliers'
| def _detect_outliers_core(self, imgfile, motionfile, runidx, cwd=None):
| if (not cwd):
cwd = os.getcwd()
if isinstance(imgfile, (str, bytes)):
nim = load(imgfile, mmap=NUMPY_MMAP)
elif isinstance(imgfile, list):
if (len(imgfile) == 1):
nim = load(imgfile[0], mmap=NUMPY_MMAP)
else:
images = [load(f, mmap=NUMPY_MMAP) for f in imgfile]
nim = funcs.concat_images(images)
(x, y, z, timepoints) = nim.shape
data = nim.get_data()
affine = nim.affine
g = np.zeros((timepoints, 1))
masktype = self.inputs.mask_type
if (masktype == u'spm_global'):
iflogger.debug(u'art: using spm global')
intersect_mask = self.inputs.intersect_mask
if intersect_mask:
mask = np.ones((x, y, z), dtype=bool)
for t0 in range(timepoints):
vol = data[:, :, :, t0]
mask_tmp = (vol > (_nanmean(vol) / self.inputs.global_threshold))
mask = (mask * mask_tmp)
for t0 in range(timepoints):
vol = data[:, :, :, t0]
g[t0] = _nanmean(vol[mask])
if (len(find_indices(mask)) < (np.prod((x, y, z)) / 10)):
intersect_mask = False
g = np.zeros((timepoints, 1))
if (not intersect_mask):
iflogger.info(u'not intersect_mask is True')
mask = np.zeros((x, y, z, timepoints))
for t0 in range(timepoints):
vol = data[:, :, :, t0]
mask_tmp = (vol > (_nanmean(vol) / self.inputs.global_threshold))
mask[:, :, :, t0] = mask_tmp
g[t0] = (np.nansum((vol * mask_tmp)) / np.nansum(mask_tmp))
elif (masktype == u'file'):
maskimg = load(self.inputs.mask_file, mmap=NUMPY_MMAP)
mask = maskimg.get_data()
affine = maskimg.affine
mask = (mask > 0.5)
for t0 in range(timepoints):
vol = data[:, :, :, t0]
g[t0] = _nanmean(vol[mask])
elif (masktype == u'thresh'):
for t0 in range(timepoints):
vol = data[:, :, :, t0]
mask = (vol > self.inputs.mask_threshold)
g[t0] = _nanmean(vol[mask])
else:
mask = np.ones((x, y, z))
g = _nanmean(data[(mask > 0), :], 1)
gz = signal.detrend(g, axis=0)
if self.inputs.use_differences[1]:
gz = np.concatenate((np.zeros((1, 1)), np.diff(gz, n=1, axis=0)), axis=0)
gz = ((gz - np.mean(gz)) / np.std(gz))
iidx = find_indices((abs(gz) > self.inputs.zintensity_threshold))
mc_in = np.loadtxt(motionfile)
mc = deepcopy(mc_in)
(artifactfile, intensityfile, statsfile, normfile, plotfile, displacementfile, maskfile) = self._get_output_filenames(imgfile, cwd)
mask_img = Nifti1Image(mask.astype(np.uint8), affine)
mask_img.to_filename(maskfile)
if self.inputs.use_norm:
brain_pts = None
if self.inputs.bound_by_brainmask:
voxel_coords = np.nonzero(mask)
coords = np.vstack((voxel_coords[0], np.vstack((voxel_coords[1], voxel_coords[2])))).T
brain_pts = np.dot(affine, np.hstack((coords, np.ones((coords.shape[0], 1)))).T)
(normval, displacement) = _calc_norm(mc, self.inputs.use_differences[0], self.inputs.parameter_source, brain_pts=brain_pts)
tidx = find_indices((normval > self.inputs.norm_threshold))
ridx = find_indices((normval < 0))
if (displacement is not None):
dmap = np.zeros((x, y, z, timepoints), dtype=np.float)
for i in range(timepoints):
dmap[(voxel_coords[0], voxel_coords[1], voxel_coords[2], i)] = displacement[i, :]
dimg = Nifti1Image(dmap, affine)
dimg.to_filename(displacementfile)
else:
if self.inputs.use_differences[0]:
mc = np.concatenate((np.zeros((1, 6)), np.diff(mc_in, n=1, axis=0)), axis=0)
traval = mc[:, 0:3]
rotval = mc[:, 3:6]
tidx = find_indices((np.sum((abs(traval) > self.inputs.translation_threshold), 1) > 0))
ridx = find_indices((np.sum((abs(rotval) > self.inputs.rotation_threshold), 1) > 0))
outliers = np.unique(np.union1d(iidx, np.union1d(tidx, ridx)))
np.savetxt(artifactfile, outliers, fmt='%d', delimiter=u' ')
np.savetxt(intensityfile, g, fmt='%.2f', delimiter=u' ')
if self.inputs.use_norm:
np.savetxt(normfile, normval, fmt='%.4f', delimiter=u' ')
if (isdefined(self.inputs.save_plot) and self.inputs.save_plot):
import matplotlib
matplotlib.use(config.get(u'execution', u'matplotlib_backend'))
import matplotlib.pyplot as plt
fig = plt.figure()
if (isdefined(self.inputs.use_norm) and self.inputs.use_norm):
plt.subplot(211)
else:
plt.subplot(311)
self._plot_outliers_with_wave(gz, iidx, u'Intensity')
if (isdefined(self.inputs.use_norm) and self.inputs.use_norm):
plt.subplot(212)
self._plot_outliers_with_wave(normval, np.union1d(tidx, ridx), u'Norm (mm)')
else:
diff = u''
if self.inputs.use_differences[0]:
diff = u'diff'
plt.subplot(312)
self._plot_outliers_with_wave(traval, tidx, (u'Translation (mm)' + diff))
plt.subplot(313)
self._plot_outliers_with_wave(rotval, ridx, (u'Rotation (rad)' + diff))
plt.savefig(plotfile)
plt.close(fig)
motion_outliers = np.union1d(tidx, ridx)
stats = [{u'motion_file': motionfile, u'functional_file': imgfile}, {u'common_outliers': len(np.intersect1d(iidx, motion_outliers)), u'intensity_outliers': len(np.setdiff1d(iidx, motion_outliers)), u'motion_outliers': len(np.setdiff1d(motion_outliers, iidx))}, {u'motion': [{u'using differences': self.inputs.use_differences[0]}, {u'mean': np.mean(mc_in, axis=0).tolist(), u'min': np.min(mc_in, axis=0).tolist(), u'max': np.max(mc_in, axis=0).tolist(), u'std': np.std(mc_in, axis=0).tolist()}]}, {u'intensity': [{u'using differences': self.inputs.use_differences[1]}, {u'mean': np.mean(gz, axis=0).tolist(), u'min': np.min(gz, axis=0).tolist(), u'max': np.max(gz, axis=0).tolist(), u'std': np.std(gz, axis=0).tolist()}]}]
if self.inputs.use_norm:
stats.insert(3, {u'motion_norm': {u'mean': np.mean(normval, axis=0).tolist(), u'min': np.min(normval, axis=0).tolist(), u'max': np.max(normval, axis=0).tolist(), u'std': np.std(normval, axis=0).tolist()}})
save_json(statsfile, stats)
|
'Execute this module.'
| def _run_interface(self, runtime):
| funcfilelist = filename_to_list(self.inputs.realigned_files)
motparamlist = filename_to_list(self.inputs.realignment_parameters)
for (i, imgf) in enumerate(funcfilelist):
self._detect_outliers_core(imgf, motparamlist[i], i, cwd=os.getcwd())
return runtime
|
'Generate output files based on motion filenames
Parameters
motionfile: file/string
Filename for motion parameter file
output_dir: string
output directory in which the files will be generated'
| def _get_output_filenames(self, motionfile, output_dir):
| (_, filename) = os.path.split(motionfile)
(filename, _) = os.path.splitext(filename)
corrfile = os.path.join(output_dir, u''.join((u'qa.', filename, u'_stimcorr.txt')))
return corrfile
|
'Core routine for determining stimulus correlation'
| def _stimcorr_core(self, motionfile, intensityfile, designmatrix, cwd=None):
| if (not cwd):
cwd = os.getcwd()
mc_in = np.loadtxt(motionfile)
g_in = np.loadtxt(intensityfile)
g_in.shape = (g_in.shape[0], 1)
dcol = designmatrix.shape[1]
mccol = mc_in.shape[1]
concat_matrix = np.hstack((np.hstack((designmatrix, mc_in)), g_in))
cm = np.corrcoef(concat_matrix, rowvar=0)
corrfile = self._get_output_filenames(motionfile, cwd)
file = open(corrfile, u'w')
file.write(u'Stats for:\n')
file.write((u'Stimulus correlated motion:\n%s\n' % motionfile))
for i in range(dcol):
file.write((u'SCM.%d:' % i))
for v in cm[(i, (dcol + np.arange(mccol)))]:
file.write((u' %.2f' % v))
file.write(u'\n')
file.write((u'Stimulus correlated intensity:\n%s\n' % intensityfile))
for i in range(dcol):
file.write((u'SCI.%d: %.2f\n' % (i, cm[(i, (-1))])))
file.close()
|
'Parameters
spmmat: scipy matlab object
full SPM.mat file loaded into a scipy object
sessidx: int
index to session that needs to be extracted.'
| def _get_spm_submatrix(self, spmmat, sessidx, rows=None):
| designmatrix = spmmat[u'SPM'][0][0].xX[0][0].X
U = spmmat[u'SPM'][0][0].Sess[0][sessidx].U[0]
if (rows is None):
rows = (spmmat[u'SPM'][0][0].Sess[0][sessidx].row[0] - 1)
cols = (spmmat[u'SPM'][0][0].Sess[0][sessidx].col[0][list(range(len(U)))] - 1)
outmatrix = designmatrix.take(rows.tolist(), axis=0).take(cols.tolist(), axis=1)
return outmatrix
|
'Execute this module.'
| def _run_interface(self, runtime):
| motparamlist = self.inputs.realignment_parameters
intensityfiles = self.inputs.intensity_values
spmmat = sio.loadmat(self.inputs.spm_mat_file, struct_as_record=False)
nrows = []
for i in range(len(motparamlist)):
sessidx = i
rows = None
if self.inputs.concatenated_design:
sessidx = 0
mc_in = np.loadtxt(motparamlist[i])
rows = (np.sum(nrows) + np.arange(mc_in.shape[0]))
nrows.append(mc_in.shape[0])
matrix = self._get_spm_submatrix(spmmat, sessidx, rows)
self._stimcorr_core(motparamlist[i], intensityfiles[i], matrix, os.getcwd())
return runtime
|
'Generates a copy of an image with a certain amount of
added gaussian noise (rayleigh for background in mask)'
| def gen_noise(self, image, mask=None, snr_db=10.0, dist=u'normal', bg_dist=u'normal'):
| from math import sqrt
snr = sqrt(np.power(10.0, (snr_db / 10.0)))
if (mask is None):
mask = np.ones_like(image)
else:
mask[(mask > 0)] = 1
mask[(mask < 1)] = 0
if (mask.ndim < image.ndim):
mask = np.rollaxis(np.array(([mask] * image.shape[3])), 0, 4)
signal = image[(mask > 0)].reshape((-1))
if (dist == u'normal'):
signal = (signal - signal.mean())
sigma_n = sqrt((signal.var() / snr))
noise = np.random.normal(size=image.shape, scale=sigma_n)
if (np.any((mask == 0)) and (bg_dist == u'rayleigh')):
bg_noise = np.random.rayleigh(size=image.shape, scale=sigma_n)
noise[(mask == 0)] = bg_noise[(mask == 0)]
im_noise = (image + noise)
elif (dist == u'rician'):
sigma_n = (signal.mean() / snr)
n_1 = np.random.normal(size=image.shape, scale=sigma_n)
n_2 = np.random.normal(size=image.shape, scale=sigma_n)
stde_1 = (n_1 / sqrt(2.0))
stde_2 = (n_2 / sqrt(2.0))
im_noise = np.sqrt((((image + stde_1) ** 2) + (stde_2 ** 2)))
else:
raise NotImplementedError(u'Only normal and rician distributions are supported')
return im_noise
|
'Parameters
interface: a nipype interface class
The interface class to wrap
base_dir: a string
The directory in which the computation will be
stored
callback: a callable
An optional callable called each time after the function
is called.'
| def __init__(self, interface, base_dir, callback=None):
| if (not (isinstance(interface, type) and issubclass(interface, BaseInterface))):
raise ValueError((u'the interface argument should be a nipype interface class, but %s (type %s) was passed.' % (interface, type(interface))))
self.interface = interface
base_dir = os.path.abspath(base_dir)
if ((not os.path.exists(base_dir)) and os.path.isdir(base_dir)):
raise ValueError(u'base_dir should be an existing directory')
self.base_dir = base_dir
doc = (u'%s\n%s' % (self.interface.__doc__, self.interface.help(returnhelp=True)))
self.__doc__ = doc
self.callback = callback
|
'Returns a callable that caches the output of an interface
Parameters
interface: nipype interface
The nipype interface class to be wrapped and cached
Returns
pipe_func: a PipeFunc callable object
An object that can be used as a function to apply the
interface to arguments. Inputs of the interface are given
as keyword arguments, bearing the same name as the name
in the inputs specs of the interface.
Examples
>>> from tempfile import mkdtemp
>>> mem = Memory(mkdtemp())
>>> from nipype.interfaces import fsl
Here we create a callable that can be used to apply an
fsl.Merge interface to files
>>> fsl_merge = mem.cache(fsl.Merge)
Now we apply it to a list of files. We need to specify the
list of input files and the dimension along which the files
should be merged.
>>> results = fsl_merge(in_files=[\'a.nii\', \'b.nii\'],
... dimension=\'t\') # doctest: +SKIP
We can retrieve the resulting file from the outputs:
>>> results.outputs.merged_file # doctest: +SKIP'
| def cache(self, interface):
| return PipeFunc(interface, self.base_dir, _MemoryCallback(self))
|
'Increment counters tracking which cached function get executed.'
| def _log_name(self, dir_name, job_name):
| base_dir = self.base_dir
with open(os.path.join(base_dir, u'log.current'), u'a') as currentlog:
currentlog.write((u'%s/%s\n' % (dir_name, job_name)))
t = time.localtime()
year_dir = os.path.join(base_dir, (u'log.%i' % t.tm_year))
try:
os.mkdir(year_dir)
except OSError:
u'Dir exists'
month_dir = os.path.join(year_dir, (u'%02i' % t.tm_mon))
try:
os.mkdir(month_dir)
except OSError:
u'Dir exists'
with open(os.path.join(month_dir, (u'%02i.log' % t.tm_mday)), u'a') as rotatefile:
rotatefile.write((u'%s/%s\n' % (dir_name, job_name)))
|
'Remove all the cache that where not used in the latest run of
the memory object: i.e. since the corresponding Python object
was created.
Parameters
warn: boolean, optional
If true, echoes warning messages for all directory
removed'
| def clear_previous_runs(self, warn=True):
| base_dir = self.base_dir
latest_runs = read_log(os.path.join(base_dir, u'log.current'))
self._clear_all_but(latest_runs, warn=warn)
|
'Remove all the cache that where not used since the given date
Parameters
day, month, year: integers, optional
The integers specifying the latest day (in localtime) that
a node should have been accessed to be kept. If not
given, the current date is used.
warn: boolean, optional
If true, echoes warning messages for all directory
removed'
| def clear_runs_since(self, day=None, month=None, year=None, warn=True):
| t = time.localtime()
day = (day if (day is not None) else t.tm_mday)
month = (month if (month is not None) else t.tm_mon)
year = (year if (year is not None) else t.tm_year)
base_dir = self.base_dir
cut_off_file = (u'%s/log.%i/%02i/%02i.log' % (base_dir, year, month, day))
logs_to_flush = list()
recent_runs = dict()
for log_name in glob.glob((u'%s/log.*/*/*.log' % base_dir)):
if (log_name < cut_off_file):
logs_to_flush.append(log_name)
else:
recent_runs = read_log(log_name, recent_runs)
self._clear_all_but(recent_runs, warn=warn)
for log_name in logs_to_flush:
os.remove(log_name)
|
'Remove all the runs appart from those given to the function
input.'
| def _clear_all_but(self, runs, warn=True):
| rm_all_but(self.base_dir, set(runs.keys()), warn=warn)
for (dir_name, job_names) in list(runs.items()):
rm_all_but(os.path.join(self.base_dir, dir_name), job_names, warn=warn)
|
'Convert input to appropriate format for seg_maths.'
| def _format_arg(self, opt, spec, val):
| if ((opt in ['proportion', 'prob_update_flag', 'set_pq', 'mrf_value', 'max_iter', 'unc_thresh', 'conv']) and (self.inputs.classifier_type not in ['STAPLE', 'STEPS'])):
return ''
if (opt == 'sm_ranking'):
return self.get_staple_args(val)
if ((opt == 'classifier_type') and (val == 'STEPS')):
return self.get_steps_args()
return super(LabelFusion, self)._format_arg(opt, spec, val)
|
'Convert input to appropriate format for seg_EM.'
| def _format_arg(self, opt, spec, val):
| if (opt == 'priors'):
_nb_priors = len(self.inputs.priors)
return ('-priors %d %s' % (_nb_priors, ' '.join(self.inputs.priors)))
else:
return super(EM, self)._format_arg(opt, spec, val)
|
'Convert input to appropriate format for seg_maths.'
| def _format_arg(self, opt, spec, val):
| if ((opt == 'operand_str') and (self.inputs.operation != 'splitinter')):
err = 'operand_str set but with an operation different than "splitinter"'
raise NipypeInterfaceError(err)
if (opt == 'operation'):
if (val in ['pow', 'thr', 'uthr', 'smo', 'edge', 'sobel3', 'sobel5', 'smol']):
if (not isdefined(self.inputs.operand_value)):
err = 'operand_value not set for {0}.'.format(val)
raise NipypeInterfaceError(err)
elif (val in ['min', 'llsnorm', 'masknan', 'hdr_copy']):
if (not isdefined(self.inputs.operand_file)):
err = 'operand_file not set for {0}.'.format(val)
raise NipypeInterfaceError(err)
elif (val == 'splitinter'):
if (not isdefined(self.inputs.operand_str)):
err = 'operand_str not set for splitinter.'
raise NipypeInterfaceError(err)
if ((opt == 'operand_value') and (float(val) == 0.0)):
return '0'
return super(BinaryMaths, self)._format_arg(opt, spec, val)
|
'Convert input to appropriate format for seg_maths.'
| def _format_arg(self, opt, spec, val):
| if (opt == 'merge_files'):
return ('-merge %d %d %s' % (len(val), self.inputs.dimension, ' '.join(val)))
return super(Merge, self)._format_arg(opt, spec, val)
|
'update existing attribute, or create new attribute
Note: update is very much like HasTraits.set'
| def update(self, *args, **kwargs):
| self.__dict__.update(*args, **kwargs)
|
'iterates over bunch attributes as key, value pairs'
| def items(self):
| return list(self.__dict__.items())
|
'iterates over bunch attributes as key, value pairs'
| def iteritems(self):
| warn(u'iteritems is deprecated, use items instead')
return list(self.items())
|
'Support dictionary get() functionality'
| def get(self, *args):
| return self.__dict__.get(*args)
|
'Support dictionary get() functionality'
| def set(self, **kwargs):
| return self.__dict__.update(**kwargs)
|
'returns a deep copy of existing Bunch as a dictionary'
| def dictcopy(self):
| return deepcopy(self.__dict__)
|
'representation of the sorted Bunch as a string
Currently, this string representation of the `inputs` Bunch of
interfaces is hashed to determine if the process\' dirty-bit
needs setting or not. Till that mechanism changes, only alter
this after careful consideration.'
| def __repr__(self):
| outstr = [u'Bunch(']
first = True
for (k, v) in sorted(self.items()):
if (not first):
outstr.append(u', ')
if isinstance(v, dict):
pairs = []
for (key, value) in sorted(v.items()):
pairs.append((u"'%s': %s" % (key, value)))
v = ((u'{' + u', '.join(pairs)) + u'}')
outstr.append((u'%s=%s' % (k, v)))
else:
outstr.append((u'%s=%r' % (k, v)))
first = False
outstr.append(u')')
return u''.join(outstr)
|
'Return a dictionary of our items with hashes for each file.
Searches through dictionary items and if an item is a file, it
calculates the md5 hash of the file contents and stores the
file name and hash value as the new key value.
However, the overall bunch hash is calculated only on the hash
value of a file. The path and name of the file are not used in
the overall hash calculation.
Returns
dict_withhash : dict
Copy of our dictionary with the new file hashes included
with each file.
hashvalue : str
The md5 hash value of the `dict_withhash`'
| def _get_bunch_hash(self):
| infile_list = []
for (key, val) in list(self.items()):
if is_container(val):
if isinstance(val, dict):
item = None
else:
if (len(val) == 0):
raise AttributeError((u'%s attribute is empty' % key))
item = val[0]
else:
item = val
try:
if (isinstance(item, str) and os.path.isfile(item)):
infile_list.append(key)
except TypeError:
continue
dict_withhash = self.dictcopy()
dict_nofilename = self.dictcopy()
for item in infile_list:
dict_withhash[item] = self._hash_infile(dict_withhash, item)
dict_nofilename[item] = [val[1] for val in dict_withhash[item]]
sorted_dict = to_str(sorted(dict_nofilename.items()))
return (dict_withhash, md5(sorted_dict.encode()).hexdigest())
|
'Support for the pretty module
pretty is included in ipython.externals for ipython > 0.10'
| def __pretty__(self, p, cycle):
| if cycle:
p.text(u'Bunch(...)')
else:
p.begin_group(6, u'Bunch(')
first = True
for (k, v) in sorted(self.items()):
if (not first):
p.text(u',')
p.breakable()
p.text((k + u'='))
p.pretty(v)
first = False
p.end_group(6, u')')
|
'Initialize handlers and inputs'
| def __init__(self, **kwargs):
| super(BaseTraitedSpec, self).__init__(**kwargs)
traits.push_exception_handler(reraise_exceptions=True)
undefined_traits = {}
for trait in self.copyable_trait_names():
if (not self.traits()[trait].usedefault):
undefined_traits[trait] = Undefined
self.trait_set(trait_change_notify=False, **undefined_traits)
self._generate_handlers()
self.trait_set(**kwargs)
|
'Name, trait generator for user modifiable traits'
| def items(self):
| for name in sorted(self.copyable_trait_names()):
(yield (name, self.traits()[name]))
|
'Return a well-formatted representation of the traits'
| def __repr__(self):
| outstr = []
for (name, value) in sorted(self.trait_get().items()):
outstr.append((u'%s = %s' % (name, value)))
return u'\n{}\n'.format(u'\n'.join(outstr))
|
'Find all traits with the \'xor\' metadata and attach an event
handler to them.'
| def _generate_handlers(self):
| has_xor = dict(xor=(lambda t: (t is not None)))
xors = self.trait_names(**has_xor)
for elem in xors:
self.on_trait_change(self._xor_warn, elem)
has_deprecation = dict(deprecated=(lambda t: (t is not None)))
deprecated = self.trait_names(**has_deprecation)
for elem in deprecated:
self.on_trait_change(self._deprecated_warn, elem)
|
'Generates warnings for xor traits'
| def _xor_warn(self, obj, name, old, new):
| if isdefined(new):
trait_spec = self.traits()[name]
for trait_name in trait_spec.xor:
if (trait_name == name):
continue
if isdefined(getattr(self, trait_name)):
self.trait_set(trait_change_notify=False, **{(u'%s' % name): Undefined})
msg = (u'Input "%s" is mutually exclusive with input "%s", which is already set' % (name, trait_name))
raise IOError(msg)
|
'Part of the xor behavior'
| def _requires_warn(self, obj, name, old, new):
| if isdefined(new):
trait_spec = self.traits()[name]
msg = None
for trait_name in trait_spec.requires:
if (not isdefined(getattr(self, trait_name))):
if (not msg):
msg = (u'Input %s requires inputs: %s' % (name, u', '.join(trait_spec.requires)))
if msg:
warn(msg)
|
'Checks if a user assigns a value to a deprecated trait'
| def _deprecated_warn(self, obj, name, old, new):
| if isdefined(new):
trait_spec = self.traits()[name]
msg1 = (u'Input %s in interface %s is deprecated.' % (name, self.__class__.__name__.split(u'InputSpec')[0]))
msg2 = (u'Will be removed or raise an error as of release %s' % trait_spec.deprecated)
if trait_spec.new_name:
if (trait_spec.new_name not in self.copyable_trait_names()):
raise TraitError((msg1 + (u' Replacement trait %s not found' % trait_spec.new_name)))
msg3 = (u'It has been replaced by %s.' % trait_spec.new_name)
else:
msg3 = u''
msg = u' '.join((msg1, msg2, msg3))
if (Version(str(trait_spec.deprecated)) < self.package_version):
raise TraitError(msg)
else:
if trait_spec.new_name:
msg += (u'Unsetting old value %s; setting new value %s.' % (name, trait_spec.new_name))
warn(msg)
if trait_spec.new_name:
self.trait_set(trait_change_notify=False, **{(u'%s' % name): Undefined, (u'%s' % trait_spec.new_name): new})
|
'Inject file hashes into adict[key]'
| def _hash_infile(self, adict, key):
| stuff = adict[key]
if (not is_container(stuff)):
stuff = [stuff]
file_list = []
for afile in stuff:
if is_container(afile):
hashlist = self._hash_infile({u'infiles': afile}, u'infiles')
hash = [val[1] for val in hashlist]
elif (config.get(u'execution', u'hash_method').lower() == u'timestamp'):
hash = hash_timestamp(afile)
elif (config.get(u'execution', u'hash_method').lower() == u'content'):
hash = hash_infile(afile)
else:
raise Exception((u'Unknown hash method: %s' % config.get(u'execution', u'hash_method')))
file_list.append((afile, hash))
return file_list
|
'Returns traited class as a dict
Augments the trait get function to return a dictionary without
notification handles'
| def get(self, **kwargs):
| out = super(BaseTraitedSpec, self).get(**kwargs)
out = self._clean_container(out, Undefined)
return out
|
'Returns traited class as a dict
Augments the trait get function to return a dictionary without
any traits. The dictionary does not contain any attributes that
were Undefined'
| def get_traitsfree(self, **kwargs):
| out = super(BaseTraitedSpec, self).get(**kwargs)
out = self._clean_container(out, skipundefined=True)
return out
|
'Convert a traited obejct into a pure python representation.'
| def _clean_container(self, object, undefinedval=None, skipundefined=False):
| if (isinstance(object, TraitDictObject) or isinstance(object, dict)):
out = {}
for (key, val) in list(object.items()):
if isdefined(val):
out[key] = self._clean_container(val, undefinedval)
elif (not skipundefined):
out[key] = undefinedval
elif (isinstance(object, TraitListObject) or isinstance(object, list) or isinstance(object, tuple)):
out = []
for val in object:
if isdefined(val):
out.append(self._clean_container(val, undefinedval))
elif (not skipundefined):
out.append(undefinedval)
else:
out.append(None)
if isinstance(object, tuple):
out = tuple(out)
elif isdefined(object):
out = object
elif (not skipundefined):
out = undefinedval
return out
|
'Return has_metadata for the requested trait name in this
interface'
| def has_metadata(self, name, metadata, value=None, recursive=True):
| return has_metadata(self.trait(name).trait_type, metadata, value, recursive)
|
'Return a dictionary of our items with hashes for each file.
Searches through dictionary items and if an item is a file, it
calculates the md5 hash of the file contents and stores the
file name and hash value as the new key value.
However, the overall bunch hash is calculated only on the hash
value of a file. The path and name of the file are not used in
the overall hash calculation.
Returns
dict_withhash : dict
Copy of our dictionary with the new file hashes included
with each file.
hashvalue : str
The md5 hash value of the traited spec'
| def get_hashval(self, hash_method=None):
| dict_withhash = []
dict_nofilename = []
for (name, val) in sorted(self.get().items()):
if ((not isdefined(val)) or self.has_metadata(name, u'nohash', True)):
continue
hash_files = ((not self.has_metadata(name, u'hash_files', False)) and (not self.has_metadata(name, u'name_source')))
dict_nofilename.append((name, self._get_sorteddict(val, hash_method=hash_method, hash_files=hash_files)))
dict_withhash.append((name, self._get_sorteddict(val, True, hash_method=hash_method, hash_files=hash_files)))
return (dict_withhash, md5(to_str(dict_nofilename).encode()).hexdigest())
|
'bug in deepcopy for HasTraits results in weird cloning behavior for
added traits'
| def __deepcopy__(self, memo):
| id_self = id(self)
if (id_self in memo):
return memo[id_self]
dup_dict = deepcopy(self.get(), memo)
for key in self.copyable_trait_names():
if (key in self.__dict__.keys()):
_ = getattr(self, key)
dup = self.clone_traits(memo=memo)
for key in self.copyable_trait_names():
try:
_ = getattr(dup, key)
except:
pass
dup = self.clone_traits(memo=memo)
dup.trait_set(**dup_dict)
return dup
|
'Initialize command with given args and inputs.'
| def __init__(self, **inputs):
| raise NotImplementedError
|
'Prints class help'
| @classmethod
def help(cls):
| raise NotImplementedError
|
'Prints inputs help'
| @classmethod
def _inputs_help(cls):
| raise NotImplementedError
|
'Prints outputs help'
| @classmethod
def _outputs_help(cls):
| raise NotImplementedError
|
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.