desc
stringlengths 3
26.7k
| decl
stringlengths 11
7.89k
| bodies
stringlengths 8
553k
|
---|---|---|
'Parameters
weight_init_std : éã¿ã®æšæºåå·®ãæå®ïŒe.g. 0.01ïŒ
\'relu\'ãŸãã¯\'he\'ãæå®ããå Žåã¯ãHeã®åæå€ããèšå®
\'sigmoid\'ãŸãã¯\'xavier\'ãæå®ããå Žåã¯ãXavierã®åæå€ããèšå®'
| def __init_weight(self, weight_init_std):
| all_size_list = (([self.input_size] + self.hidden_size_list) + [self.output_size])
for idx in range(1, len(all_size_list)):
scale = weight_init_std
if (str(weight_init_std).lower() in ('relu', 'he')):
scale = np.sqrt((2.0 / all_size_list[(idx - 1)]))
elif (str(weight_init_std).lower() in ('sigmoid', 'xavier')):
scale = np.sqrt((1.0 / all_size_list[(idx - 1)]))
self.params[('W' + str(idx))] = (scale * np.random.randn(all_size_list[(idx - 1)], all_size_list[idx]))
self.params[('b' + str(idx))] = np.zeros(all_size_list[idx])
|
'åŒæ°ã®xã¯å
¥åããŒã¿ãtã¯æåž«ã©ãã«'
| def loss(self, x, t, train_flg=False):
| y = self.predict(x, train_flg)
weight_decay = 0
for idx in range(1, (self.hidden_layer_num + 2)):
W = self.params[('W' + str(idx))]
weight_decay += ((0.5 * self.weight_decay_lambda) * np.sum((W ** 2)))
return (self.last_layer.forward(y, t) + weight_decay)
|
'Parameters
X : å
¥åããŒã¿
T : æåž«ã©ãã«
Returns
grads[\'W1\']ãgrads[\'W2\']ã...ã¯åå±€ã®éã¿
grads[\'b1\']ãgrads[\'b2\']ã...ã¯åå±€ã®ãã€ã¢ã¹'
| def numerical_gradient(self, X, T):
| loss_W = (lambda W: self.loss(X, T, train_flg=True))
grads = {}
for idx in range(1, (self.hidden_layer_num + 2)):
grads[('W' + str(idx))] = numerical_gradient(loss_W, self.params[('W' + str(idx))])
grads[('b' + str(idx))] = numerical_gradient(loss_W, self.params[('b' + str(idx))])
if (self.use_batchnorm and (idx != (self.hidden_layer_num + 1))):
grads[('gamma' + str(idx))] = numerical_gradient(loss_W, self.params[('gamma' + str(idx))])
grads[('beta' + str(idx))] = numerical_gradient(loss_W, self.params[('beta' + str(idx))])
return grads
|
'åŒæ°ã®xã¯å
¥åããŒã¿ãtã¯æåž«ã©ãã«'
| def loss(self, x, t):
| y = self.predict(x)
return self.last_layer.forward(y, t)
|
'Parameters
x : å
¥åããŒã¿
t : æåž«ã©ãã«
Returns
grads[\'W1\']ãgrads[\'W2\']ã...ã¯åå±€ã®éã¿
grads[\'b1\']ãgrads[\'b2\']ã...ã¯åå±€ã®ãã€ã¢ã¹'
| def numerical_gradient(self, x, t):
| loss_w = (lambda w: self.loss(x, t))
grads = {}
for idx in (1, 2, 3):
grads[('W' + str(idx))] = numerical_gradient(loss_w, self.params[('W' + str(idx))])
grads[('b' + str(idx))] = numerical_gradient(loss_w, self.params[('b' + str(idx))])
return grads
|
'Parameters
x : å
¥åããŒã¿
t : æåž«ã©ãã«
Returns
grads[\'W1\']ãgrads[\'W2\']ã...ã¯åå±€ã®éã¿
grads[\'b1\']ãgrads[\'b2\']ã...ã¯åå±€ã®ãã€ã¢ã¹'
| def gradient(self, x, t):
| self.loss(x, t)
dout = 1
dout = self.last_layer.backward(dout)
layers = list(self.layers.values())
layers.reverse()
for layer in layers:
dout = layer.backward(dout)
grads = {}
(grads['W1'], grads['b1']) = (self.layers['Conv1'].dW, self.layers['Conv1'].db)
(grads['W2'], grads['b2']) = (self.layers['Affine1'].dW, self.layers['Affine1'].db)
(grads['W3'], grads['b3']) = (self.layers['Affine2'].dW, self.layers['Affine2'].db)
return grads
|
'Start the server.'
| def start(self):
| plugins = voltron.plugin.pm.web_plugins
self.app = DispatcherMiddleware(RootFlaskApp(), {'/api': APIFlaskApp(server=self), '/view': SharedDataMiddleware(None, {'/{}'.format(n): os.path.join(p._dir, 'static') for (n, p) in six.iteritems(plugins)}), '/ui': ui_app})
def run_listener(name, cls, arg):
log.debug('Starting listener for {} socket on {}'.format(name, str(arg)))
s = cls(*arg)
t = threading.Thread(target=s.serve_forever)
t.daemon = True
t.start()
self.threads.append(t)
self.listeners.append(s)
if voltron.config.server.listen.tcp:
run_listener('tcp', ThreadedVoltronWSGIServer, (list(voltron.config.server.listen.tcp) + [self.app]))
if (voltron.config.server.listen.domain and (sys.platform != 'win32')):
path = os.path.expanduser(str(voltron.config.server.listen.domain))
try:
os.unlink(path)
except:
pass
run_listener('domain', ThreadedUnixWSGIServer, [path, self.app])
self.is_running = True
|
'Stop the server.'
| def stop(self):
| log.debug('Stopping listeners')
self.queue_lock.acquire()
for s in self.listeners:
log.debug('Stopping {}'.format(s))
s.shutdown()
s.socket.close()
self.cancel_queue()
for t in self.threads:
t.join()
self.listeners = []
self.threads = []
self.is_running = False
self.queue_lock.release()
log.debug('Listeners stopped and threads joined')
|
'Cancel all requests in the queue so we can exit.'
| def cancel_queue(self):
| q = list(self.queue)
self.queue = []
log.debug('Canceling requests: {}'.format(q))
for req in q:
req.response = APIServerNotRunningErrorResponse()
for req in q:
req.signal()
|
'Dispatch any queued requests.
Called by the debugger when it stops.'
| def dispatch_queue(self):
| self.queue_lock.acquire()
q = list(self.queue)
self.queue = []
self.queue_lock.release()
log.debug('Dispatching requests: {}'.format(q))
for req in q:
req.response = self.dispatch_request(req)
for req in q:
req.signal()
|
'Dispatch a request object.'
| def dispatch_request(self, req):
| log.debug('Dispatching request: {}'.format(str(req)))
res = None
try:
req.validate()
except MissingFieldError as e:
res = APIMissingFieldErrorResponse(str(e))
if (not res):
try:
res = req.dispatch()
except Exception as e:
msg = 'Exception raised while dispatching request: {}'.format(repr(e))
log.exception(msg)
res = APIGenericErrorResponse(msg)
log.debug('Response: {}'.format(str(res)))
return res
|
'Initialise a new client'
| def __init__(self, host='127.0.0.1', port=5555, sockfile=None, url=None, build_requests=None, callback=None, supports_blocking=True):
| self.session = requests.Session()
if url:
self.url = url
elif sockfile:
self.url = 'http+unix://{}/api/request'.format(sockfile.replace('/', '%2F'))
elif voltron.config.view.api_url:
self.url = voltron.config.view.api_url
else:
self.url = 'http://{}:{}/api/request'.format(host, port)
self.url = self.url.replace('~', os.path.expanduser('~').replace('/', '%2f'))
self.callback = callback
self.build_requests = build_requests
self.done = False
self.server_version = None
self.block = False
self.supports_blocking = supports_blocking
|
'Send a request to the server.
`request` is an APIRequest subclass.
Returns an APIResponse or subclass instance. If an error occurred, it
will be an APIErrorResponse, if the request was successful it will be
the plugin\'s specified response class if one exists, otherwise it will
be an APIResponse.'
| def send_request(self, request):
| res = APIEmptyResponseErrorResponse()
log.debug(('Client sending request: ' + str(request)))
response = self.session.post(self.url, data=str(request))
data = response.text
if (response.status_code != 200):
res = APIGenericErrorResponse(response.text)
elif (data and (len(data) > 0)):
log.debug(('Client received message: ' + data))
try:
generic_response = APIResponse(data=data)
if generic_response.is_error:
res = APIErrorResponse(data=data)
else:
plugin = voltron.plugin.pm.api_plugin_for_request(request.request)
if (plugin and plugin.response_class):
res = plugin.response_class(data=data)
else:
res = generic_response
except Exception as e:
log.exception(('Exception parsing message: ' + str(e)))
log.error(('Invalid message: ' + data))
else:
res = APIEmptyResponseErrorResponse()
return res
|
'Send a set of requests.
Each request is sent over its own connection and the function will
return when all the requests have been fulfilled.'
| def send_requests(self, *args):
| threads = [ClientThread(self, req) for req in args]
for t in threads:
t.start()
for t in threads:
t.join()
exceptions = [t.exception for t in threads if t.exception]
if len(exceptions):
raise exceptions[0]
return [t.response for t in threads]
|
'Create a request.
`request_type` is the request type (string). This is used to look up a
plugin, whose request class is instantiated and passed the remaining
arguments passed to this function.'
| def create_request(self, request_type, *args, **kwargs):
| return api_request(request_type, *args, **kwargs)
|
'Create and send a request.
`request_type` is the request type (string). This is used to look up a
plugin, whose request class is instantiated and passed the remaining
arguments passed to this function.'
| def perform_request(self, request_type, *args, **kwargs):
| req = api_request(request_type, *args, **kwargs)
res = self.send_request(req)
return res
|
'Update the display'
| def update(self):
| reqs = self.build_requests()
for r in reqs:
r.block = self.block
results = self.send_requests(*reqs)
self.callback(results)
|
'Run the client in a loop, calling the callback each time the debugger
stops.'
| def run(self, build_requests=None, callback=None):
| if callback:
self.callback = callback
if build_requests:
self.build_requests = build_requests
def normalise_requests_err(e):
try:
msg = e.message.args[1].strerror
except:
try:
msg = e.message.args[0]
except:
msg = str(e)
return msg
while (not self.done):
try:
if (not self.server_version):
self.server_version = self.perform_request('version')
if (self.server_version.capabilities and ('async' in self.server_version.capabilities)):
self.update()
self.block = False
elif self.supports_blocking:
self.block = True
else:
raise BlockingNotSupportedError('Debugger requires blocking mode')
if self.block:
self.update()
else:
res = self.perform_request('null', block=True)
if res.is_success:
self.server_version = res
self.update()
except ConnectionError as e:
self.callback(error='Error: {}'.format(normalise_requests_err(e)))
self.server_version = None
time.sleep(1)
|
'Run the client using a background thread.'
| def start(self, build_requests=None, callback=None):
| if callback:
self.callback = callback
if build_requests:
self.build_requests = build_requests
self.sw = threading.Thread(target=self.run)
self.sw.start()
|
'Stop the background thread.'
| def stop(self):
| self.done = True
|
'Build requests for this view. Concrete view subclasses must implement
this.'
| def build_requests(self):
| return []
|
'Run the view event loop.'
| def run(self):
| def render(results=[], error=None):
if (len(results) and (not results[0].timed_out)):
self.render(results)
elif error:
self.do_render(error=error)
self.client.start(self.build_requests, render)
try:
with self.t.cbreak():
val = ''
while (not self.done):
val = self.t.inkey(timeout=1)
if val:
self.handle_key(val)
except KeyboardInterrupt:
self.exit()
|
'Handle a keypress. Concrete subclasses can implement this method if
custom keypresses need to be handled other than for exit and scrolling.'
| def handle_key(self, key):
| try:
func = None
if key.is_sequence:
try:
func = self.config.keymap[key.name]
except:
try:
func = self.config.keymap[key.code]
except:
func = self.config.keymap[str(key)]
else:
func = self.config.keymap[str(key)]
if (func in self.valid_key_funcs):
getattr(self, func)()
except:
raise
|
'Returns True or False indicating whether or not the specified
target is present and valid.
`target_id` is a target ID (or None for the first target)'
| def target_exists(self, target_id=0):
| try:
target = self._target(target_id=target_id)
except Exception as e:
log.error('Exception checking if target exists: {} {}'.format(type(e), e))
return False
return (target is not None)
|
'Returns True or False indicating whether or not the specified
target is present and valid.
`target_id` is a target ID (or None for the first target)'
| def target_is_valid(self, target_id=0):
| try:
target = self._target(target_id=target_id)
except:
return False
return (target['state'] != 'invalid')
|
'Returns True or False indicating whether or not the specified
target is busy.
`target_id` is a target ID (or None for the first target)'
| def target_is_busy(self, target_id=0):
| try:
target = self._target(target_id=target_id)
except:
raise NoSuchTargetException()
return (target['state'] == 'running')
|
'Add a listener for state changes.'
| def add_listener(self, callback, state_changes=['stopped']):
| self.listeners.append({'callback': callback, 'state_changes': state_changes})
|
'Remove a listener.'
| def remove_listener(self, callback):
| listeners = filter((lambda x: (x['callback'] == callback)), self.listeners)
for l in listeners:
self.listeners.remove(l)
|
'Notify all the listeners (probably `wait` plugins) that the state
has changed.
This is called by the debugger\'s stop-hook.'
| def update_state(self):
| for listener in self.listeners:
listener['callback']()
|
'Return a list of the debugger\'s capabilities.
Thus far only the \'async\' capability is supported. This indicates
that the debugger host can be queried from a background thread,
and that views can use non-blocking API requests without queueing
requests to be dispatched next time the debugger stops.'
| def capabilities(self):
| return []
|
'Disassemble with capstone.'
| def disassemble_capstone(self, target_id=0, address=None, count=None):
| target = self._target(target_id)
if (not address):
(pc_name, address) = self.pc()
mem = self.memory(address, (count * 16), target_id=target_id)
md = capstone.Cs(*self.cs_archs[target['arch']])
output = []
for (idx, i) in enumerate(md.disasm(mem, address)):
if (idx >= count):
break
output.append(('0x%x: DCTB %s DCTB %s' % (i.address, i.mnemonic, i.op_str)))
return '\n'.join(output)
|
'Return a string (JSON) representation of the API message properties.'
| def __str__(self):
| return self.to_json()
|
'Return a transmission-safe dictionary representation of the API message properties.'
| def to_dict(self):
| d = {field: getattr(self, field) for field in self._top_fields if hasattr(self, field)}
d['data'] = {}
for field in self._fields:
if hasattr(self, field):
if (field in self._encode_fields):
val = getattr(self, field)
if val:
val = cast_s(base64.b64encode(cast_b(val)))
d['data'][field] = val
else:
d['data'][field] = getattr(self, field)
return d
|
'Initialise an API message from a transmission-safe dictionary.'
| def from_dict(self, d):
| for key in d:
if (key == 'data'):
for dkey in d['data']:
if (dkey in self._encode_fields):
setattr(self, str(dkey), base64.b64decode(d['data'][dkey]))
else:
setattr(self, str(dkey), d['data'][dkey])
else:
setattr(self, str(key), d[key])
|
'Return a JSON representation of the API message properties.'
| def to_json(self):
| return json.dumps(self.to_dict())
|
'Initialise an API message from a JSON representation.'
| def from_json(self, data):
| try:
d = json.loads(data)
except ValueError:
raise InvalidMessageException()
self.from_dict(d)
|
'Attribute accessor.
If a defined field is requested that doesn\'t have a value set,
return None.'
| def __getattr__(self, name):
| if (name in self._fields):
return None
|
'Validate the message.
Ensure all the required fields are present and not None.'
| def validate(self):
| required_fields = list(filter((lambda x: self._fields[x]), self._fields.keys()))
for field in (self._top_fields + required_fields):
if ((not hasattr(self, field)) or (hasattr(self, field) and (getattr(self, field) == None))):
raise MissingFieldError(field)
|
'In concrete subclasses this method will actually dispatch the request
to the debugger host and return a response. In this case it raises an
exception.'
| @server_side
def dispatch(self):
| raise NotImplementedError('Subclass APIRequest')
|
'Wait for the request to be dispatched.'
| @server_side
def wait(self):
| self.wait_event = threading.Event()
timeout = (int(self.timeout) if self.timeout else None)
self.timed_out = (not self.wait_event.wait(timeout))
|
'Signal that the request has been dispatched and can return.'
| def signal(self):
| self.wait_event.set()
|
'Initialise a new PluginManager.'
| def __init__(self):
| self._api_plugins = defaultdict((lambda : None))
self._debugger_plugins = defaultdict((lambda : None))
self._view_plugins = defaultdict((lambda : None))
self._web_plugins = defaultdict((lambda : None))
self._command_plugins = defaultdict((lambda : None))
|
'Register a new plugin with the PluginManager.
`plugin` is a subclass of scruffy\'s Plugin class.
This is called by __init__(), but may also be called by the debugger
host to load a specific plugin at runtime.'
| def register_plugin(self, plugin):
| if hasattr(plugin, 'initialise'):
plugin.initialise()
if self.valid_api_plugin(plugin):
log.debug('Registering API plugin: {}'.format(plugin))
self._api_plugins[plugin.request] = plugin()
elif self.valid_debugger_plugin(plugin):
log.debug('Registering debugger plugin: {}'.format(plugin))
self._debugger_plugins[plugin.host] = plugin()
elif self.valid_view_plugin(plugin):
log.debug('Registering view plugin: {}'.format(plugin))
self._view_plugins[plugin.name] = plugin()
elif self.valid_web_plugin(plugin):
log.debug('Registering web plugin: {}'.format(plugin))
self._web_plugins[plugin.name] = plugin()
elif self.valid_command_plugin(plugin):
log.debug('Registering command plugin: {}'.format(plugin))
self._command_plugins[plugin.name] = plugin()
if voltron.debugger:
voltron.debugger.register_command_plugin(plugin.name, plugin.command_class)
else:
log.debug('Ignoring invalid plugin: {}'.format(plugin))
|
'Validate an API plugin, ensuring it is an API plugin and has the
necessary fields present.
`plugin` is a subclass of scruffy\'s Plugin class.'
| def valid_api_plugin(self, plugin):
| if (issubclass(plugin, APIPlugin) and hasattr(plugin, 'plugin_type') and (plugin.plugin_type == 'api') and hasattr(plugin, 'request') and (plugin.request != None) and hasattr(plugin, 'request_class') and (plugin.request_class != None) and hasattr(plugin, 'response_class') and (plugin.response_class != None)):
return True
return False
|
'Validate a debugger plugin, ensuring it is a debugger plugin and has
the necessary fields present.
`plugin` is a subclass of scruffy\'s Plugin class.'
| def valid_debugger_plugin(self, plugin):
| if (issubclass(plugin, DebuggerAdaptorPlugin) and hasattr(plugin, 'plugin_type') and (plugin.plugin_type == 'debugger') and hasattr(plugin, 'host') and (plugin.host != None)):
return True
return False
|
'Validate a view plugin, ensuring it is a view plugin and has the
necessary fields present.
`plugin` is a subclass of scruffy\'s Plugin class.'
| def valid_view_plugin(self, plugin):
| if (issubclass(plugin, ViewPlugin) and hasattr(plugin, 'plugin_type') and (plugin.plugin_type == 'view') and hasattr(plugin, 'name') and (plugin.name != None) and hasattr(plugin, 'view_class') and (plugin.view_class != None)):
return True
return False
|
'Validate a web plugin, ensuring it is a web plugin and has the
necessary fields present.
`plugin` is a subclass of scruffy\'s Plugin class.'
| def valid_web_plugin(self, plugin):
| if (issubclass(plugin, WebPlugin) and hasattr(plugin, 'plugin_type') and (plugin.plugin_type == 'web') and hasattr(plugin, 'name') and (plugin.name != None)):
return True
return False
|
'Validate a command plugin, ensuring it is a command plugin and has the
necessary fields present.
`plugin` is a subclass of scruffy\'s Plugin class.'
| def valid_command_plugin(self, plugin):
| if (issubclass(plugin, CommandPlugin) and hasattr(plugin, 'plugin_type') and (plugin.plugin_type == 'command') and hasattr(plugin, 'name') and (plugin.name != None)):
return True
return False
|
'Find an API plugin that supports the given request type.'
| def api_plugin_for_request(self, request=None):
| return self.api_plugins[request]
|
'Find a debugger plugin that supports the debugger host.'
| def debugger_plugin_for_host(self, host=None):
| return self.debugger_plugins[host]
|
'Find a view plugin that for the given view name.'
| def view_plugin_with_name(self, name=None):
| return self.view_plugins[name]
|
'Find a web plugin that for the given view name.'
| def web_plugin_with_name(self, name=None):
| return self.web_plugins[name]
|
'Find a command plugin that for the given view name.'
| def command_plugin_with_name(self, name=None):
| return self.command_plugins[name]
|
'A t-Distributed Stochastic Neighbor Embedding implementation.
Parameters
max_iter : int, default 200
perplexity : float, default 30.0
n_components : int, default 2'
| def __init__(self, n_components=2, perplexity=30.0, max_iter=200, learning_rate=500):
| self.max_iter = max_iter
self.perplexity = perplexity
self.n_components = n_components
self.initial_momentum = 0.5
self.final_momentum = 0.8
self.min_gain = 0.01
self.lr = learning_rate
self.tol = 1e-05
self.perplexity_tries = 50
|
'Computes pairwise affinities.'
| def _get_pairwise_affinities(self, X):
| affines = np.zeros((self.n_samples, self.n_samples), dtype=np.float32)
target_entropy = np.log(self.perplexity)
distances = l2_distance(X)
for i in range(self.n_samples):
affines[i, :] = self._binary_search(distances[i], target_entropy)
np.fill_diagonal(affines, 1e-12)
affines = affines.clip(min=1e-100)
affines = ((affines + affines.T) / (2 * self.n_samples))
return affines
|
'Performs binary search to find suitable precision.'
| def _binary_search(self, dist, target_entropy):
| precision_min = 0
precision_max = 1000000000000000.0
precision = 100000.0
for _ in range(self.perplexity_tries):
denom = np.sum(np.exp(((- dist[(dist > 0.0)]) / precision)))
beta = (np.exp(((- dist) / precision)) / denom)
g_beta = beta[(beta > 0.0)]
entropy = (- np.sum((g_beta * np.log2(g_beta))))
error = (entropy - target_entropy)
if (error > 0):
precision_max = precision
precision = ((precision + precision_min) / 2.0)
else:
precision_min = precision
precision = ((precision + precision_max) / 2.0)
if (np.abs(error) < self.tol):
break
return beta
|
'Computes Student t-distribution.'
| def _q_distribution(self, D):
| Q = (1.0 / (1.0 + D))
np.fill_diagonal(Q, 0.0)
Q = Q.clip(min=1e-100)
return Q
|
'Predict log likelihood for given row.'
| def _predict_row(self, x):
| output = []
for y in range(self.n_classes):
prior = np.log(self._priors[y])
posterior = np.log(self._pdf(y, x)).sum()
prediction = (prior + posterior)
output.append(prediction)
return output
|
'Calculate Gaussian PDF for each feature.'
| def _pdf(self, n_class, x):
| mean = self._mean[n_class]
var = self._var[n_class]
numerator = np.exp(((- ((x - mean) ** 2)) / (2 * var)))
denominator = np.sqrt(((2 * np.pi) * var))
return (numerator / denominator)
|
'Deep Q learning implementation.
Parameters
min_epsilon : float
Minimal value for epsilon.
epsilon : float
ε-greedy value.
decay : float
Epsilon decay rate.
memory_limit : int
Limit of experience replay memory.'
| def __init__(self, n_episodes=500, gamma=0.99, batch_size=32, epsilon=1.0, decay=0.005, min_epsilon=0.1, memory_limit=500):
| self.memory_limit = memory_limit
self.min_epsilon = min_epsilon
self.gamma = gamma
self.epsilon = epsilon
self.n_episodes = n_episodes
self.batch_size = batch_size
self.decay = decay
|
'Bernoulli Restricted Boltzmann Machine (RBM)
Parameters
n_hidden : int, default 128
The number of hidden units.
learning_rate : float, default 0.1
batch_size : int, default 10
max_epochs : int, default 100'
| def __init__(self, n_hidden=128, learning_rate=0.1, batch_size=10, max_epochs=100):
| self.max_epochs = max_epochs
self.batch_size = batch_size
self.lr = learning_rate
self.n_hidden = n_hidden
|
'Use CD-1 training procedure, basically an exact inference for `positive_associations`,
followed by a "non burn-in" block Gibbs Sampling for the `negative_associations`.'
| def _train(self):
| for i in range(self.max_epochs):
error = 0
for batch in batch_iterator(self.X, batch_size=self.batch_size):
positive_hidden = sigmoid((np.dot(batch, self.W) + self.bias_h))
hidden_states = self._sample(positive_hidden)
positive_associations = np.dot(batch.T, positive_hidden)
negative_visible = sigmoid((np.dot(hidden_states, self.W.T) + self.bias_v))
negative_visible = self._sample(negative_visible)
negative_hidden = sigmoid((np.dot(negative_visible, self.W) + self.bias_h))
negative_associations = np.dot(negative_visible.T, negative_hidden)
lr = (self.lr / float(batch.shape[0]))
self.W += (lr * ((positive_associations - negative_associations) / float(self.batch_size)))
self.bias_h += (lr * (negative_hidden.sum(axis=0) - negative_associations.sum(axis=0)))
self.bias_v += (lr * (np.asarray(batch.sum(axis=0)).squeeze() - negative_visible.sum(axis=0)))
error += np.sum(((batch - negative_visible) ** 2))
self.errors.append(error)
logging.info(('Iteration %s, error %s' % (i, error)))
logging.debug(('Weights: %s' % self.W))
logging.debug(('Hidden bias: %s' % self.bias_h))
logging.debug(('Visible bias: %s' % self.bias_v))
|
'Support vector machines implementation using simplified SMO optimization.
Parameters
C : float, default 1.0
kernel : Kernel object
tol : float , default 1e-3
max_iter : int, default 100'
| def __init__(self, C=1.0, kernel=None, tol=0.001, max_iter=100):
| self.C = C
self.tol = tol
self.max_iter = max_iter
if (kernel is None):
self.kernel = Linear()
else:
self.kernel = kernel
self.b = 0
self.alpha = None
self.K = None
|
'Error for single example.'
| def _error(self, i):
| return (self._predict_row(self.X[i]) - self.y[i])
|
'Find L and H such that L <= alpha <= H.
Also, alpha must satisfy the constraint 0 <= αlpha <= C.'
| def _find_bounds(self, i, j):
| if (self.y[i] != self.y[j]):
L = max(0, (self.alpha[j] - self.alpha[i]))
H = min(self.C, ((self.C - self.alpha[i]) + self.alpha[j]))
else:
L = max(0, ((self.alpha[i] + self.alpha[j]) - self.C))
H = min(self.C, (self.alpha[i] + self.alpha[j]))
return (L, H)
|
'Base class for RandomForest.
Parameters
n_estimators : int
The number of decision tree.
max_features : int
The number of features to consider when looking for the best split.
min_samples_split : int
The minimum number of samples required to split an internal node.
max_depth : int
Maximum depth of the tree.
criterion : str
The function to measure the quality of a split.'
| def __init__(self, n_estimators=10, max_features=None, min_samples_split=10, max_depth=None, criterion=None):
| self.max_depth = max_depth
self.min_samples_split = min_samples_split
self.max_features = max_features
self.n_estimators = n_estimators
self.trees = []
|
'First order gradient.'
| def grad(self, actual, predicted):
| raise NotImplementedError()
|
'Second order gradient.'
| def hess(self, actual, predicted):
| raise NotImplementedError()
|
'Approximate leaf value.'
| def approximate(self, actual, predicted):
| return (self.grad(actual, predicted).sum() / (self.hess(actual, predicted).sum() + self.regularization))
|
'Transform predictions values.'
| def transform(self, pred):
| return pred
|
'Calculate gain for split search.'
| def gain(self, actual, predicted):
| nominator = (self.grad(actual, predicted).sum() ** 2)
denominator = (self.hess(actual, predicted).sum() + self.regularization)
return (0.5 * (nominator / denominator))
|
'Find all possible split values.'
| def _find_splits(self, X):
| split_values = set()
x_unique = list(np.unique(X))
for i in range(1, len(x_unique)):
average = ((x_unique[(i - 1)] + x_unique[i]) / 2.0)
split_values.add(average)
return list(split_values)
|
'Find best feature and value for a split. Greedy algorithm.'
| def _find_best_split(self, X, target, n_features):
| subset = random.sample(list(range(0, X.shape[1])), n_features)
(max_gain, max_col, max_val) = (None, None, None)
for column in subset:
split_values = self._find_splits(X[:, column])
for value in split_values:
if (self.loss is None):
splits = split(X[:, column], target['y'], value)
gain = self.criterion(target['y'], splits)
else:
(left, right) = split_dataset(X, target, column, value, return_X=False)
gain = xgb_criterion(target, left, right, self.loss)
if ((max_gain is None) or (gain > max_gain)):
(max_col, max_val, max_gain) = (column, value, gain)
return (max_col, max_val, max_gain)
|
'Build a decision tree from training set.
Parameters
X : array-like
Feature dataset.
target : dictionary or array-like
Target values.
max_features : int or None
The number of features to consider when looking for the best split.
min_samples_split : int
The minimum number of samples required to split an internal node.
max_depth : int
Maximum depth of the tree.
minimum_gain : float, default 0.01
Minimum gain required for splitting.
loss : function, default None
Loss function for gradient boosting.'
| def train(self, X, target, max_features=None, min_samples_split=10, max_depth=None, minimum_gain=0.01, loss=None):
| if (not isinstance(target, dict)):
target = {'y': target}
if (loss is not None):
self.loss = loss
try:
assert (X.shape[0] > min_samples_split)
assert (max_depth > 0)
if (max_features is None):
max_features = X.shape[1]
(column, value, gain) = self._find_best_split(X, target, max_features)
assert (gain is not None)
if self.regression:
assert (gain != 0)
else:
assert (gain > minimum_gain)
self.column_index = column
self.threshold = value
self.impurity = gain
(left_X, right_X, left_target, right_target) = split_dataset(X, target, column, value)
self.left_child = Tree(self.regression, self.criterion)
self.left_child.train(left_X, left_target, max_features, min_samples_split, (max_depth - 1), minimum_gain, loss)
self.right_child = Tree(self.regression, self.criterion)
self.right_child.train(right_X, right_target, max_features, min_samples_split, (max_depth - 1), minimum_gain, loss)
except AssertionError:
self._calculate_leaf_value(target)
|
'Find optimal value for leaf.'
| def _calculate_leaf_value(self, targets):
| if (self.loss is not None):
self.outcome = self.loss.approximate(targets['actual'], targets['y_pred'])
elif self.regression:
self.outcome = np.mean(targets['y'])
else:
self.outcome = (stats.itemfreq(targets['y'])[:, 1] / float(targets['y'].shape[0]))
|
'Predict single row.'
| def predict_row(self, row):
| if (not self.is_terminal):
if (row[self.column_index] < self.threshold):
return self.left_child.predict_row(row)
else:
return self.right_child.predict_row(row)
return self.outcome
|
'Ensure inputs to an estimator are in the expected format.
Ensures X and y are stored as numpy ndarrays by converting from an
array-like object if necessary. Enables estimators to define whether
they require a set of y target values or not with y_required, e.g.
kmeans clustering requires no target labels and is fit against only X.
Parameters
X : array-like
Feature dataset.
y : array-like
Target values. By default is required, but if y_required = false
then may be omitted.'
| def _setup_input(self, X, y=None):
| if (not isinstance(X, np.ndarray)):
X = np.array(X)
if (X.size == 0):
raise ValueError('Number of features must be > 0')
if (X.ndim == 1):
(self.n_samples, self.n_features) = (1, X.shape)
else:
(self.n_samples, self.n_features) = (X.shape[0], np.prod(X.shape[1:]))
self.X = X
if self.y_required:
if (y is None):
raise ValueError('Missed required argument y')
if (not isinstance(y, np.ndarray)):
y = np.array(y)
if (y.size == 0):
raise ValueError('Number of targets must be > 0')
self.y = y
|
'Set the initial centroids.'
| def _initialize_centroids(self, init):
| if (init == 'random'):
self.centroids = [self.X[x] for x in random.sample(range(self.n_samples), self.K)]
elif (init == '++'):
self.centroids = [random.choice(self.X)]
while (len(self.centroids) < self.K):
self.centroids.append(self._choose_next_center())
else:
raise ValueError('Unknown type of init parameter')
|
'Perform clustering on the dataset.'
| def _predict(self, X=None):
| self._initialize_centroids(self.init)
centroids = self.centroids
for _ in range(self.max_iters):
self._assign(centroids)
centroids_old = centroids
centroids = [self._get_centroid(cluster) for cluster in self.clusters]
if self._is_converged(centroids_old, centroids):
break
self.centroids = centroids
return self._get_predictions()
|
'Find the closest centroid for a point.'
| def _closest(self, fpoint, centroids):
| closest_index = None
closest_distance = None
for (i, point) in enumerate(centroids):
dist = euclidean_distance(self.X[fpoint], point)
if ((closest_index is None) or (dist < closest_distance)):
closest_index = i
closest_distance = dist
return closest_index
|
'Get values by indices and take the mean.'
| def _get_centroid(self, cluster):
| return [np.mean(np.take(self.X[:, i], cluster)) for i in range(self.n_features)]
|
'Calculate distance from centers.'
| def _dist_from_centers(self):
| return np.array([min([euclidean_distance(x, c) for c in self.centroids]) for x in self.X])
|
'Check if the distance between old and new centroids is zero.'
| def _is_converged(self, centroids_old, centroids):
| distance = 0
for i in range(self.K):
distance += euclidean_distance(centroids_old[i], centroids[i])
return (distance == 0)
|
'Basic class for implementing continuous regression estimators which
are trained with gradient descent optimization on their particular loss
function.
Parameters
lr : float, default 0.001
Learning rate.
penalty : str, {\'l1\', \'l2\', None\'}, default None
Regularization function name.
C : float, default 0.01
The regularization coefficient.
tolerance : float, default 0.0001
If the gradient descent updates are smaller than `tolerance`, then
stop optimization process.
max_iters : int, default 10000
The maximum number of iterations.'
| def __init__(self, lr=0.001, penalty='None', C=0.01, tolerance=0.0001, max_iters=1000):
| self.C = C
self.penalty = penalty
self.tolerance = tolerance
self.lr = lr
self.max_iters = max_iters
self.errors = []
self.theta = []
(self.n_samples, self.n_features) = (None, None)
self.cost_func = None
|
'Apply regularization to the loss.'
| def _add_penalty(self, loss, w):
| if (self.penalty == 'l1'):
loss += (self.C * np.abs(w[:(-1)]).sum())
elif (self.penalty == 'l2'):
loss += ((0.5 * self.C) * (w[:(-1)] ** 2).mean())
return loss
|
'Simplified factorization machines implementation using SGD optimizer.'
| def __init__(self, n_components=10, max_iter=100, init_stdev=0.1, learning_rate=0.01, reg_v=0.1, reg_w=0.5, reg_w0=0.0):
| self.reg_w0 = reg_w0
self.reg_w = reg_w
self.reg_v = reg_v
self.n_components = n_components
self.lr = learning_rate
self.init_stdev = init_stdev
self.max_iter = max_iter
self.loss = None
self.loss_grad = None
|
'Base class for Nearest neighbors classifier and regressor.
Parameters
k : int, default 5
The number of neighbors to take into account. If 0, all the
training examples are used.
distance_func : function, default euclidean distance
A distance function taking two arguments. Any function from
scipy.spatial.distance will do.'
| def __init__(self, k=5, distance_func=euclidean):
| self.k = (None if (k == 0) else k)
self.distance_func = distance_func
|
'Predict the label of a single instance x.'
| def _predict_x(self, x):
| distances = (self.distance_func(x, example) for example in self.X)
neighbors = sorted(((dist, target) for (dist, target) in zip(distances, self.y)), key=(lambda x: x[0]))
neighbors_targets = [target for (_, target) in neighbors[:self.k]]
return self.aggregate(neighbors_targets)
|
'Return the most common target label.'
| def aggregate(self, neighbors_targets):
| most_common_label = Counter(neighbors_targets).most_common(1)[0][0]
return most_common_label
|
'Return the mean of all targets.'
| def aggregate(self, neighbors_targets):
| return np.mean(neighbors_targets)
|
'Perform ExpectationâMaximization (EM) until converged.'
| def fit(self, X, y=None):
| self._setup_input(X, y)
self._initialize()
for _ in range(self.max_iters):
self._E_step()
self._M_step()
if self._is_converged():
break
|
'Set the initial weights, means and covs (with full covariance matrix).
weights: the prior of the clusters (what percentage of data does a cluster have)
means: the mean points of the clusters
covs: the covariance matrix of the clusters'
| def _initialize(self):
| self.weights = np.ones(self.K)
if (self.init == 'random'):
self.means = [self.X[x] for x in random.sample(range(self.n_samples), self.K)]
self.covs = [np.cov(self.X.T) for _ in range(K)]
elif (self.init == 'kmeans'):
kmeans = KMeans(K=self.K, max_iters=(self.max_iters // 3), init='++')
kmeans.fit(self.X)
self.assignments = kmeans.predict()
self.means = kmeans.centroids
self.covs = []
for i in np.unique(self.assignments):
self.weights[int(i)] = (self.assignments == i).sum()
self.covs.append(np.cov(self.X[(self.assignments == i)].T))
else:
raise ValueError('Unknown type of init parameter')
self.weights /= self.weights.sum()
|
'Expectation(E-step) for Gaussian Mixture.'
| def _E_step(self):
| likelihoods = self._get_likelihood(self.X)
self.likelihood.append(likelihoods.sum())
weighted_likelihoods = self._get_weighted_likelihood(likelihoods)
self.assignments = weighted_likelihoods.argmax(axis=1)
weighted_likelihoods /= weighted_likelihoods.sum(axis=1)[:, np.newaxis]
self.responsibilities = weighted_likelihoods
|
'Maximization (M-step) for Gaussian Mixture.'
| def _M_step(self):
| weights = self.responsibilities.sum(axis=0)
for assignment in range(self.K):
resp = self.responsibilities[:, assignment][:, np.newaxis]
self.means[assignment] = ((resp * self.X).sum(axis=0) / resp.sum())
self.covs[assignment] = ((self.X - self.means[assignment]).T.dot(((self.X - self.means[assignment]) * resp)) / weights[assignment])
self.weights = (weights / weights.sum())
|
'Check if the difference of the latest two likelihood is less than the tolerance.'
| def _is_converged(self):
| if ((len(self.likelihood) > 1) and ((self.likelihood[(-1)] - self.likelihood[(-2)]) <= self.tolerance)):
return True
return False
|
'Get the assignments for X with GMM clusters.'
| def _predict(self, X):
| if (not X.shape):
return self.assignments
likelihoods = self._get_likelihood(X)
weighted_likelihoods = self._get_weighted_likelihood(likelihoods)
assignments = weighted_likelihoods.argmax(axis=1)
return assignments
|
'Plot contour for 2D data.'
| def plot(self, data=None, ax=None, holdon=False):
| if (not ((len(self.X.shape) == 2) and (self.X.shape[1] == 2))):
raise AttributeError('Only support for visualizing 2D data.')
if (ax is None):
(_, ax) = plt.subplots()
if (data is None):
data = self.X
assignments = self.assignments
else:
assignments = self.predict(data)
COLOR = 'bgrcmyk'
cmap = (lambda assignment: COLOR[(int(assignment) % len(COLOR))])
delta = 0.025
margin = 0.2
(xmax, ymax) = (self.X.max(axis=0) + margin)
(xmin, ymin) = (self.X.min(axis=0) - margin)
(axis_X, axis_Y) = np.meshgrid(np.arange(xmin, xmax, delta), np.arange(ymin, ymax, delta))
def grid_gaussian_pdf(mean, cov):
grid_array = np.array(list(zip(axis_X.flatten(), axis_Y.flatten())))
return multivariate_normal.pdf(grid_array, mean, cov).reshape(axis_X.shape)
if (assignments is None):
c = None
else:
c = [cmap(assignment) for assignment in assignments]
ax.scatter(data[:, 0], data[:, 1], c=c)
for assignment in range(self.K):
ax.contour(axis_X, axis_Y, grid_gaussian_pdf(self.means[assignment], self.covs[assignment]), colors=cmap(assignment))
if (not holdon):
plt.show()
|
'Principal component analysis (PCA) implementation.
Transforms a dataset of possibly correlated values into n linearly
uncorrelated components. The components are ordered such that the first
has the largest possible variance and each following component as the
largest possible variance given the previous components. This causes
the early components to contain most of the variability in the dataset.
Parameters
n_components : int
solver : str, default \'svd\'
{\'svd\', \'eigen\'}'
| def __init__(self, n_components, solver='svd'):
| self.solver = solver
self.n_components = n_components
self.components = None
self.mean = None
|
'Performs an update of parameters.'
| def update(self, network):
| raise NotImplementedError
|
'Creates additional variables.
Note: Must be called before optimization process.'
| def setup(self, network):
| raise NotImplementedError
|
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.