file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
sequence
commit
stringclasses
4 values
url
stringclasses
4 values
start
sequence
Mathlib/MeasureTheory/Function/StronglyMeasurable/Basic.lean
MeasureTheory.Subsingleton.stronglyMeasurable'
[ { "state_after": "no goals", "state_before": "α✝ : Type ?u.21646\nβ✝ : Type ?u.21649\nγ : Type ?u.21652\nι : Type ?u.21655\ninst✝³ : Countable ι\nα : Type u_1\nβ : Type u_2\ninst✝² : MeasurableSpace α\ninst✝¹ : TopologicalSpace β\ninst✝ : Subsingleton α\nf : α → β\nx y : α\n⊢ f x = f y", "tactic": "rw [Subsingleton.elim x y]" } ]
[ 186, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 184, 1 ]
Mathlib/Algebra/Tropical/Basic.lean
Tropical.zero_ne_trop_coe
[]
[ 250, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 249, 1 ]
Mathlib/ModelTheory/Substructures.lean
FirstOrder.Language.Substructure.subset_closure_withConstants
[ { "state_after": "L : Language\nM : Type w\nN : Type ?u.681989\nP : Type ?u.681992\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nS : Substructure L M\nA s : Set M\nh : A ⊆ ↑S\na : M\nha : a ∈ A\n⊢ a ∈ ↑(LowerAdjoint.toFun (closure (L[[↑A]])) s)", "state_before": "L : Language\nM : Type w\nN : Type ?u.681989\nP : Type ?u.681992\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nS : Substructure L M\nA s : Set M\nh : A ⊆ ↑S\n⊢ A ⊆ ↑(LowerAdjoint.toFun (closure (L[[↑A]])) s)", "tactic": "intro a ha" }, { "state_after": "L : Language\nM : Type w\nN : Type ?u.681989\nP : Type ?u.681992\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nS : Substructure L M\nA s : Set M\nh : A ⊆ ↑S\na : M\nha : a ∈ A\n⊢ a ∈ LowerAdjoint.toFun (closure (L[[↑A]])) s", "state_before": "L : Language\nM : Type w\nN : Type ?u.681989\nP : Type ?u.681992\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nS : Substructure L M\nA s : Set M\nh : A ⊆ ↑S\na : M\nha : a ∈ A\n⊢ a ∈ ↑(LowerAdjoint.toFun (closure (L[[↑A]])) s)", "tactic": "simp only [SetLike.mem_coe]" }, { "state_after": "L : Language\nM : Type w\nN : Type ?u.681989\nP : Type ?u.681992\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nS : Substructure L M\nA s : Set M\nh : A ⊆ ↑S\na : M\nha : a ∈ A\na' : Language.Constants (L[[↑A]]) := Sum.inr { val := a, property := ha }\n⊢ a ∈ LowerAdjoint.toFun (closure (L[[↑A]])) s", "state_before": "L : Language\nM : Type w\nN : Type ?u.681989\nP : Type ?u.681992\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nS : Substructure L M\nA s : Set M\nh : A ⊆ ↑S\na : M\nha : a ∈ A\n⊢ a ∈ LowerAdjoint.toFun (closure (L[[↑A]])) s", "tactic": "let a' : L[[A]].Constants := Sum.inr ⟨a, ha⟩" }, { "state_after": "no goals", "state_before": "L : Language\nM : Type w\nN : Type ?u.681989\nP : Type ?u.681992\ninst✝² : Structure L M\ninst✝¹ : Structure L N\ninst✝ : Structure L P\nS : Substructure L M\nA s : Set M\nh : A ⊆ ↑S\na : M\nha : a ∈ A\na' : Language.Constants (L[[↑A]]) := Sum.inr { val := a, property := ha }\n⊢ a ∈ LowerAdjoint.toFun (closure (L[[↑A]])) s", "tactic": "exact constants_mem a'" } ]
[ 774, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 770, 1 ]
Mathlib/Algebra/BigOperators/Order.lean
Finset.one_lt_prod
[ { "state_after": "no goals", "state_before": "ι : Type u_1\nα : Type ?u.135473\nβ : Type ?u.135476\nM : Type u_2\nN : Type ?u.135482\nG : Type ?u.135485\nk : Type ?u.135488\nR : Type ?u.135491\ninst✝ : OrderedCancelCommMonoid M\nf g : ι → M\ns t : Finset ι\nh : ∀ (i : ι), i ∈ s → 1 < f i\nhs : Finset.Nonempty s\n⊢ 1 ≤ ∏ i in s, 1", "tactic": "rw [prod_const_one]" } ]
[ 509, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 508, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Deriv.lean
ContDiffWithinAt.sinh
[]
[ 1185, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1183, 1 ]
Mathlib/Analysis/InnerProductSpace/Calculus.lean
Differentiable.dist
[]
[ 257, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 255, 1 ]
Mathlib/RingTheory/Congruence.lean
RingCon.quot_mk_eq_coe
[]
[ 169, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 168, 1 ]
Mathlib/MeasureTheory/Integral/IntervalIntegral.lean
intervalIntegral.integral_comp_add_div
[ { "state_after": "no goals", "state_before": "ι : Type ?u.14902596\n𝕜 : Type ?u.14902599\nE : Type u_1\nF : Type ?u.14902605\nA : Type ?u.14902608\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\na b c d✝ : ℝ\nf : ℝ → E\nhc : c ≠ 0\nd : ℝ\n⊢ (∫ (x : ℝ) in a..b, f (d + x / c)) = c • ∫ (x : ℝ) in d + a / c..d + b / c, f x", "tactic": "simpa only [div_eq_inv_mul, inv_inv] using integral_comp_add_mul f (inv_ne_zero hc) d" } ]
[ 791, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 789, 1 ]
Mathlib/Analysis/Normed/Field/Basic.lean
Filter.Tendsto.zero_mul_isBoundedUnder_le
[]
[ 216, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 213, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.disjoint_union_right
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.501362\nγ : Type ?u.501365\ninst✝ : DecidableEq α\ns t u : Multiset α\n⊢ Disjoint s (t ∪ u) ↔ Disjoint s t ∧ Disjoint s u", "tactic": "simp [Disjoint, or_imp, forall_and]" } ]
[ 2981, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2980, 1 ]
Mathlib/Analysis/SpecialFunctions/Pow/Complex.lean
Complex.cpow_int_cast
[ { "state_after": "no goals", "state_before": "x : ℂ\nn : ℕ\n⊢ x ^ ↑↑n = x ^ ↑n", "tactic": "simp" }, { "state_after": "x : ℂ\nn : ℕ\n⊢ x ^ ↑-[n+1] = (x ^ (n + 1))⁻¹", "state_before": "x : ℂ\nn : ℕ\n⊢ x ^ ↑-[n+1] = x ^ -[n+1]", "tactic": "rw [zpow_negSucc]" }, { "state_after": "no goals", "state_before": "x : ℂ\nn : ℕ\n⊢ x ^ ↑-[n+1] = (x ^ (n + 1))⁻¹", "tactic": "simp only [Int.negSucc_coe, Int.cast_neg, Complex.cpow_neg, inv_eq_one_div, Int.cast_ofNat,\n cpow_nat_cast]" } ]
[ 141, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 136, 1 ]
Mathlib/CategoryTheory/Abelian/Images.lean
CategoryTheory.Abelian.image.fac
[]
[ 64, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 63, 11 ]
Mathlib/Topology/UniformSpace/Basic.lean
mem_compRel
[]
[ 158, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 156, 1 ]
Mathlib/Analysis/Complex/UnitDisc/Basic.lean
Complex.UnitDisc.coe_ne_neg_one
[ { "state_after": "z : 𝔻\n⊢ ↑abs ↑z ≠ 1", "state_before": "z : 𝔻\n⊢ ↑abs ↑z ≠ ↑abs (-1)", "tactic": "rw [abs.map_neg, map_one]" }, { "state_after": "no goals", "state_before": "z : 𝔻\n⊢ ↑abs ↑z ≠ 1", "tactic": "exact z.abs_ne_one" } ]
[ 68, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 65, 1 ]
Mathlib/LinearAlgebra/AffineSpace/AffineMap.lean
AffineMap.lineMap_vadd_apply
[ { "state_after": "no goals", "state_before": "k : Type u_2\nV1 : Type u_3\nP1 : Type u_1\nV2 : Type ?u.423603\nP2 : Type ?u.423606\nV3 : Type ?u.423609\nP3 : Type ?u.423612\nV4 : Type ?u.423615\nP4 : Type ?u.423618\ninst✝¹² : Ring k\ninst✝¹¹ : AddCommGroup V1\ninst✝¹⁰ : Module k V1\ninst✝⁹ : AffineSpace V1 P1\ninst✝⁸ : AddCommGroup V2\ninst✝⁷ : Module k V2\ninst✝⁶ : AffineSpace V2 P2\ninst✝⁵ : AddCommGroup V3\ninst✝⁴ : Module k V3\ninst✝³ : AffineSpace V3 P3\ninst✝² : AddCommGroup V4\ninst✝¹ : Module k V4\ninst✝ : AffineSpace V4 P4\np : P1\nv : V1\nc : k\n⊢ ↑(lineMap p (v +ᵥ p)) c = c • v +ᵥ p", "tactic": "rw [lineMap_apply, vadd_vsub]" } ]
[ 538, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 537, 1 ]
Mathlib/Analysis/SpecialFunctions/Log/Basic.lean
Filter.Tendsto.log
[]
[ 383, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 381, 1 ]
Mathlib/MeasureTheory/Integral/SetIntegral.lean
MeasureTheory.integral_inter_add_diff
[]
[ 125, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 123, 1 ]
Mathlib/LinearAlgebra/Quotient.lean
Submodule.ker_mkQ
[ { "state_after": "case h\nR : Type u_2\nM : Type u_1\nr : R\nx y : M\ninst✝⁵ : Ring R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\np p' : Submodule R M\nR₂ : Type ?u.220917\nM₂ : Type ?u.220920\ninst✝² : Ring R₂\ninst✝¹ : AddCommGroup M₂\ninst✝ : Module R₂ M₂\nτ₁₂ : R →+* R₂\nx✝ : M\n⊢ x✝ ∈ ker (mkQ p) ↔ x✝ ∈ p", "state_before": "R : Type u_2\nM : Type u_1\nr : R\nx y : M\ninst✝⁵ : Ring R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\np p' : Submodule R M\nR₂ : Type ?u.220917\nM₂ : Type ?u.220920\ninst✝² : Ring R₂\ninst✝¹ : AddCommGroup M₂\ninst✝ : Module R₂ M₂\nτ₁₂ : R →+* R₂\n⊢ ker (mkQ p) = p", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\nR : Type u_2\nM : Type u_1\nr : R\nx y : M\ninst✝⁵ : Ring R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\np p' : Submodule R M\nR₂ : Type ?u.220917\nM₂ : Type ?u.220920\ninst✝² : Ring R₂\ninst✝¹ : AddCommGroup M₂\ninst✝ : Module R₂ M₂\nτ₁₂ : R →+* R₂\nx✝ : M\n⊢ x✝ ∈ ker (mkQ p) ↔ x✝ ∈ p", "tactic": "simp" } ]
[ 381, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 381, 1 ]
Mathlib/Algebra/GroupPower/Basic.lean
pow_two
[ { "state_after": "no goals", "state_before": "α : Type ?u.11869\nM : Type u\nN : Type v\nG : Type w\nH : Type x\nA : Type y\nB : Type z\nR : Type u₁\nS : Type u₂\ninst✝¹ : Monoid M\ninst✝ : AddMonoid A\na : M\n⊢ a ^ 2 = a * a", "tactic": "rw [pow_succ, pow_one]" } ]
[ 105, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 105, 1 ]
Mathlib/Analysis/Calculus/MeanValue.lean
hasStrictDerivAt_of_hasDerivAt_of_continuousAt
[]
[ 1357, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1353, 1 ]
Mathlib/Analysis/Calculus/MeanValue.lean
is_const_of_fderiv_eq_zero
[ { "state_after": "E : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\nF : Type ?u.251275\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\n𝕜 : Type u_1\nG : Type u_3\ninst✝³ : IsROrC 𝕜\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nf g : E → G\nC : ℝ\ns : Set E\nx✝² y✝ : E\nf' g' : E → E →L[𝕜] G\nφ : E →L[𝕜] G\nhf : Differentiable 𝕜 f\nhf' : ∀ (x : E), fderiv 𝕜 f x = 0\nx✝¹ y x : E\nx✝ : x ∈ univ\n⊢ fderiv 𝕜 f x = 0", "state_before": "E : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\nF : Type ?u.251275\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\n𝕜 : Type u_1\nG : Type u_3\ninst✝³ : IsROrC 𝕜\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nf g : E → G\nC : ℝ\ns : Set E\nx✝² y✝ : E\nf' g' : E → E →L[𝕜] G\nφ : E →L[𝕜] G\nhf : Differentiable 𝕜 f\nhf' : ∀ (x : E), fderiv 𝕜 f x = 0\nx✝¹ y x : E\nx✝ : x ∈ univ\n⊢ fderivWithin 𝕜 f univ x = 0", "tactic": "rw [fderivWithin_univ]" }, { "state_after": "no goals", "state_before": "E : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\nF : Type ?u.251275\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\n𝕜 : Type u_1\nG : Type u_3\ninst✝³ : IsROrC 𝕜\ninst✝² : NormedSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup G\ninst✝ : NormedSpace 𝕜 G\nf g : E → G\nC : ℝ\ns : Set E\nx✝² y✝ : E\nf' g' : E → E →L[𝕜] G\nφ : E →L[𝕜] G\nhf : Differentiable 𝕜 f\nhf' : ∀ (x : E), fderiv 𝕜 f x = 0\nx✝¹ y x : E\nx✝ : x ∈ univ\n⊢ fderiv 𝕜 f x = 0", "tactic": "exact hf' x" } ]
[ 602, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 599, 1 ]
Mathlib/Topology/MetricSpace/Basic.lean
Embedding.isSeparable_preimage
[]
[ 1949, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1947, 11 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.disjoint_right
[]
[ 2909, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2908, 1 ]
Mathlib/Order/Atoms.lean
IsAtom.Iic_eq
[]
[ 96, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 95, 1 ]
Std/Data/Option/Lemmas.lean
Option.map_comp_map
[ { "state_after": "case h\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nf : α → β\ng : β → γ\nx : Option α\n⊢ (Option.map g ∘ Option.map f) x = Option.map (g ∘ f) x", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nf : α → β\ng : β → γ\n⊢ Option.map g ∘ Option.map f = Option.map (g ∘ f)", "tactic": "funext x" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_1\nβ : Type u_2\nγ : Type u_3\nf : α → β\ng : β → γ\nx : Option α\n⊢ (Option.map g ∘ Option.map f) x = Option.map (g ∘ f) x", "tactic": "simp" } ]
[ 152, 74 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 151, 9 ]
Mathlib/Topology/ContinuousFunction/Bounded.lean
BoundedContinuousFunction.coe_zsmulRec
[ { "state_after": "no goals", "state_before": "F : Type ?u.1031657\nα : Type u\nβ : Type v\nγ : Type w\ninst✝¹ : TopologicalSpace α\ninst✝ : SeminormedAddCommGroup β\nf g : α →ᵇ β\nx : α\nC : ℝ\nn : ℕ\n⊢ ↑(zsmulRec (Int.ofNat n) f) = Int.ofNat n • ↑f", "tactic": "rw [zsmulRec, Int.ofNat_eq_coe, coe_nsmulRec, coe_nat_zsmul]" }, { "state_after": "no goals", "state_before": "F : Type ?u.1031657\nα : Type u\nβ : Type v\nγ : Type w\ninst✝¹ : TopologicalSpace α\ninst✝ : SeminormedAddCommGroup β\nf g : α →ᵇ β\nx : α\nC : ℝ\nn : ℕ\n⊢ ↑(zsmulRec (Int.negSucc n) f) = Int.negSucc n • ↑f", "tactic": "rw [zsmulRec, negSucc_zsmul, coe_neg, coe_nsmulRec]" } ]
[ 973, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 971, 1 ]
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.Valid'.rotateR
[ { "state_after": "α : Type u_1\ninst✝ : Preorder α\nl : Ordnode α\nx : α\nr : Ordnode α\no₁ : WithBot α\no₂ : WithTop α\nhl : Valid' o₁ l ↑x\nhr : Valid' (↑x) r o₂\nH1 : ¬size l + size r ≤ 1\nH2 : delta * size r < size l\nH3 : 2 * size l ≤ 9 * size r + 5 ∨ size l ≤ 3\n⊢ Valid' o₂ (Ordnode.dual (Ordnode.rotateR l x r)) o₁", "state_before": "α : Type u_1\ninst✝ : Preorder α\nl : Ordnode α\nx : α\nr : Ordnode α\no₁ : WithBot α\no₂ : WithTop α\nhl : Valid' o₁ l ↑x\nhr : Valid' (↑x) r o₂\nH1 : ¬size l + size r ≤ 1\nH2 : delta * size r < size l\nH3 : 2 * size l ≤ 9 * size r + 5 ∨ size l ≤ 3\n⊢ Valid' o₁ (Ordnode.rotateR l x r) o₂", "tactic": "refine' Valid'.dual_iff.2 _" }, { "state_after": "α : Type u_1\ninst✝ : Preorder α\nl : Ordnode α\nx : α\nr : Ordnode α\no₁ : WithBot α\no₂ : WithTop α\nhl : Valid' o₁ l ↑x\nhr : Valid' (↑x) r o₂\nH1 : ¬size l + size r ≤ 1\nH2 : delta * size r < size l\nH3 : 2 * size l ≤ 9 * size r + 5 ∨ size l ≤ 3\n⊢ Valid' o₂ (Ordnode.rotateL (Ordnode.dual r) x (Ordnode.dual l)) o₁", "state_before": "α : Type u_1\ninst✝ : Preorder α\nl : Ordnode α\nx : α\nr : Ordnode α\no₁ : WithBot α\no₂ : WithTop α\nhl : Valid' o₁ l ↑x\nhr : Valid' (↑x) r o₂\nH1 : ¬size l + size r ≤ 1\nH2 : delta * size r < size l\nH3 : 2 * size l ≤ 9 * size r + 5 ∨ size l ≤ 3\n⊢ Valid' o₂ (Ordnode.dual (Ordnode.rotateR l x r)) o₁", "tactic": "rw [dual_rotateR]" }, { "state_after": "case refine'_1\nα : Type u_1\ninst✝ : Preorder α\nl : Ordnode α\nx : α\nr : Ordnode α\no₁ : WithBot α\no₂ : WithTop α\nhl : Valid' o₁ l ↑x\nhr : Valid' (↑x) r o₂\nH1 : ¬size l + size r ≤ 1\nH2 : delta * size r < size l\nH3 : 2 * size l ≤ 9 * size r + 5 ∨ size l ≤ 3\n⊢ ¬size (Ordnode.dual r) + size (Ordnode.dual l) ≤ 1\n\ncase refine'_2\nα : Type u_1\ninst✝ : Preorder α\nl : Ordnode α\nx : α\nr : Ordnode α\no₁ : WithBot α\no₂ : WithTop α\nhl : Valid' o₁ l ↑x\nhr : Valid' (↑x) r o₂\nH1 : ¬size l + size r ≤ 1\nH2 : delta * size r < size l\nH3 : 2 * size l ≤ 9 * size r + 5 ∨ size l ≤ 3\n⊢ delta * size (Ordnode.dual r) < size (Ordnode.dual l)\n\ncase refine'_3\nα : Type u_1\ninst✝ : Preorder α\nl : Ordnode α\nx : α\nr : Ordnode α\no₁ : WithBot α\no₂ : WithTop α\nhl : Valid' o₁ l ↑x\nhr : Valid' (↑x) r o₂\nH1 : ¬size l + size r ≤ 1\nH2 : delta * size r < size l\nH3 : 2 * size l ≤ 9 * size r + 5 ∨ size l ≤ 3\n⊢ 2 * size (Ordnode.dual l) ≤ 9 * size (Ordnode.dual r) + 5 ∨ size (Ordnode.dual l) ≤ 3", "state_before": "α : Type u_1\ninst✝ : Preorder α\nl : Ordnode α\nx : α\nr : Ordnode α\no₁ : WithBot α\no₂ : WithTop α\nhl : Valid' o₁ l ↑x\nhr : Valid' (↑x) r o₂\nH1 : ¬size l + size r ≤ 1\nH2 : delta * size r < size l\nH3 : 2 * size l ≤ 9 * size r + 5 ∨ size l ≤ 3\n⊢ Valid' o₂ (Ordnode.rotateL (Ordnode.dual r) x (Ordnode.dual l)) o₁", "tactic": "refine' hr.dual.rotateL hl.dual _ _ _" }, { "state_after": "no goals", "state_before": "case refine'_1\nα : Type u_1\ninst✝ : Preorder α\nl : Ordnode α\nx : α\nr : Ordnode α\no₁ : WithBot α\no₂ : WithTop α\nhl : Valid' o₁ l ↑x\nhr : Valid' (↑x) r o₂\nH1 : ¬size l + size r ≤ 1\nH2 : delta * size r < size l\nH3 : 2 * size l ≤ 9 * size r + 5 ∨ size l ≤ 3\n⊢ ¬size (Ordnode.dual r) + size (Ordnode.dual l) ≤ 1", "tactic": "rwa [size_dual, size_dual, add_comm]" }, { "state_after": "no goals", "state_before": "case refine'_2\nα : Type u_1\ninst✝ : Preorder α\nl : Ordnode α\nx : α\nr : Ordnode α\no₁ : WithBot α\no₂ : WithTop α\nhl : Valid' o₁ l ↑x\nhr : Valid' (↑x) r o₂\nH1 : ¬size l + size r ≤ 1\nH2 : delta * size r < size l\nH3 : 2 * size l ≤ 9 * size r + 5 ∨ size l ≤ 3\n⊢ delta * size (Ordnode.dual r) < size (Ordnode.dual l)", "tactic": "rwa [size_dual, size_dual]" }, { "state_after": "no goals", "state_before": "case refine'_3\nα : Type u_1\ninst✝ : Preorder α\nl : Ordnode α\nx : α\nr : Ordnode α\no₁ : WithBot α\no₂ : WithTop α\nhl : Valid' o₁ l ↑x\nhr : Valid' (↑x) r o₂\nH1 : ¬size l + size r ≤ 1\nH2 : delta * size r < size l\nH3 : 2 * size l ≤ 9 * size r + 5 ∨ size l ≤ 3\n⊢ 2 * size (Ordnode.dual l) ≤ 9 * size (Ordnode.dual r) + 5 ∨ size (Ordnode.dual l) ≤ 3", "tactic": "rwa [size_dual, size_dual]" } ]
[ 1303, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1295, 1 ]
Mathlib/Analysis/Convex/Join.lean
convexJoin_assoc_aux
[ { "state_after": "ι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx y : E\ns t u : Set E\n⊢ ∀ (x : E),\n (∃ a, (∃ a_1, a_1 ∈ s ∧ ∃ b, b ∈ t ∧ a ∈ segment 𝕜 a_1 b) ∧ ∃ b, b ∈ u ∧ x ∈ segment 𝕜 a b) →\n ∃ a, a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ x ∈ segment 𝕜 a b", "state_before": "ι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx y : E\ns t u : Set E\n⊢ convexJoin 𝕜 (convexJoin 𝕜 s t) u ⊆ convexJoin 𝕜 s (convexJoin 𝕜 t u)", "tactic": "simp_rw [subset_def, mem_convexJoin]" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ b₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂ : 0 ≤ b₂\nhab₂ : a₂ + b₂ = 1\n⊢ ∃ a,\n a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ a₂ • (a₁ • x + b₁ • y) + b₂ • z ∈ segment 𝕜 a b", "state_before": "ι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx y : E\ns t u : Set E\n⊢ ∀ (x : E),\n (∃ a, (∃ a_1, a_1 ∈ s ∧ ∃ b, b ∈ t ∧ a ∈ segment 𝕜 a_1 b) ∧ ∃ b, b ∈ u ∧ x ∈ segment 𝕜 a b) →\n ∃ a, a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ x ∈ segment 𝕜 a b", "tactic": "rintro _ ⟨z, ⟨x, hx, y, hy, a₁, b₁, ha₁, hb₁, hab₁, rfl⟩, z, hz, a₂, b₂, ha₂, hb₂, hab₂, rfl⟩" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inl\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂ : 0 ≤ 0\nhab₂ : a₂ + 0 = 1\n⊢ ∃ a, a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ a₂ • (a₁ • x + b₁ • y) + 0 • z ∈ segment 𝕜 a b\n\ncase intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ b₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂✝ : 0 ≤ b₂\nhab₂ : a₂ + b₂ = 1\nhb₂ : 0 < b₂\n⊢ ∃ a,\n a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ a₂ • (a₁ • x + b₁ • y) + b₂ • z ∈ segment 𝕜 a b", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ b₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂ : 0 ≤ b₂\nhab₂ : a₂ + b₂ = 1\n⊢ ∃ a,\n a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ a₂ • (a₁ • x + b₁ • y) + b₂ • z ∈ segment 𝕜 a b", "tactic": "obtain rfl | hb₂ := hb₂.eq_or_lt" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ b₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂✝ : 0 ≤ b₂\nhab₂ : a₂ + b₂ = 1\nhb₂ : 0 < b₂\nha₂b₁ : 0 ≤ a₂ * b₁\n⊢ ∃ a,\n a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ a₂ • (a₁ • x + b₁ • y) + b₂ • z ∈ segment 𝕜 a b", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ b₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂✝ : 0 ≤ b₂\nhab₂ : a₂ + b₂ = 1\nhb₂ : 0 < b₂\n⊢ ∃ a,\n a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ a₂ • (a₁ • x + b₁ • y) + b₂ • z ∈ segment 𝕜 a b", "tactic": "have ha₂b₁ : 0 ≤ a₂ * b₁ := mul_nonneg ha₂ hb₁" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ b₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂✝ : 0 ≤ b₂\nhab₂ : a₂ + b₂ = 1\nhb₂ : 0 < b₂\nha₂b₁ : 0 ≤ a₂ * b₁\nhab : 0 < a₂ * b₁ + b₂\n⊢ ∃ a,\n a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ a₂ • (a₁ • x + b₁ • y) + b₂ • z ∈ segment 𝕜 a b", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ b₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂✝ : 0 ≤ b₂\nhab₂ : a₂ + b₂ = 1\nhb₂ : 0 < b₂\nha₂b₁ : 0 ≤ a₂ * b₁\n⊢ ∃ a,\n a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ a₂ • (a₁ • x + b₁ • y) + b₂ • z ∈ segment 𝕜 a b", "tactic": "have hab : 0 < a₂ * b₁ + b₂ := add_pos_of_nonneg_of_pos ha₂b₁ hb₂" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr.refine'_1\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ b₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂✝ : 0 ≤ b₂\nhab₂ : a₂ + b₂ = 1\nhb₂ : 0 < b₂\nha₂b₁ : 0 ≤ a₂ * b₁\nhab : 0 < a₂ * b₁ + b₂\n⊢ 0 ≤ a₂ * b₁ / (a₂ * b₁ + b₂)\n\ncase intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr.refine'_2\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ b₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂✝ : 0 ≤ b₂\nhab₂ : a₂ + b₂ = 1\nhb₂ : 0 < b₂\nha₂b₁ : 0 ≤ a₂ * b₁\nhab : 0 < a₂ * b₁ + b₂\n⊢ 0 ≤ b₂ / (a₂ * b₁ + b₂)\n\ncase intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr.refine'_3\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ b₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂✝ : 0 ≤ b₂\nhab₂ : a₂ + b₂ = 1\nhb₂ : 0 < b₂\nha₂b₁ : 0 ≤ a₂ * b₁\nhab : 0 < a₂ * b₁ + b₂\n⊢ a₂ * b₁ / (a₂ * b₁ + b₂) + b₂ / (a₂ * b₁ + b₂) = 1\n\ncase intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr.refine'_4\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ b₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂✝ : 0 ≤ b₂\nhab₂ : a₂ + b₂ = 1\nhb₂ : 0 < b₂\nha₂b₁ : 0 ≤ a₂ * b₁\nhab : 0 < a₂ * b₁ + b₂\n⊢ a₂ * a₁ + (a₂ * b₁ + b₂) = 1\n\ncase intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr.refine'_5\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ b₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂✝ : 0 ≤ b₂\nhab₂ : a₂ + b₂ = 1\nhb₂ : 0 < b₂\nha₂b₁ : 0 ≤ a₂ * b₁\nhab : 0 < a₂ * b₁ + b₂\n⊢ (a₂ * a₁) • x + (a₂ * b₁ + b₂) • ((a₂ * b₁ / (a₂ * b₁ + b₂)) • y + (b₂ / (a₂ * b₁ + b₂)) • z) =\n a₂ • (a₁ • x + b₁ • y) + b₂ • z", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ b₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂✝ : 0 ≤ b₂\nhab₂ : a₂ + b₂ = 1\nhb₂ : 0 < b₂\nha₂b₁ : 0 ≤ a₂ * b₁\nhab : 0 < a₂ * b₁ + b₂\n⊢ ∃ a,\n a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ a₂ • (a₁ • x + b₁ • y) + b₂ • z ∈ segment 𝕜 a b", "tactic": "refine'\n ⟨x, hx, (a₂ * b₁ / (a₂ * b₁ + b₂)) • y + (b₂ / (a₂ * b₁ + b₂)) • z,\n ⟨y, hy, z, hz, _, _, _, _, _, rfl⟩, a₂ * a₁, a₂ * b₁ + b₂, mul_nonneg ha₂ ha₁, hab.le, _, _⟩" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inl\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂ : 0 ≤ 0\nhab₂ : a₂ + 0 = 1\n⊢ a₁ • x + b₁ • y = a₂ • (a₁ • x + b₁ • y) + 0 • z", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inl\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂ : 0 ≤ 0\nhab₂ : a₂ + 0 = 1\n⊢ ∃ a, a ∈ s ∧ ∃ b, (∃ a, a ∈ t ∧ ∃ b_1, b_1 ∈ u ∧ b ∈ segment 𝕜 a b_1) ∧ a₂ • (a₁ • x + b₁ • y) + 0 • z ∈ segment 𝕜 a b", "tactic": "refine' ⟨x, hx, y, ⟨y, hy, z, hz, left_mem_segment 𝕜 _ _⟩, a₁, b₁, ha₁, hb₁, hab₁, _⟩" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inl\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂ : 0 ≤ 0\nhab₂ : a₂ = 1\n⊢ a₁ • x + b₁ • y = a₂ • (a₁ • x + b₁ • y) + 0 • z", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inl\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂ : 0 ≤ 0\nhab₂ : a₂ + 0 = 1\n⊢ a₁ • x + b₁ • y = a₂ • (a₁ • x + b₁ • y) + 0 • z", "tactic": "rw [add_zero] at hab₂" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inl\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂ : 0 ≤ 0\nhab₂ : a₂ = 1\n⊢ a₁ • x + b₁ • y = a₂ • (a₁ • x + b₁ • y) + 0 • z", "tactic": "rw [hab₂, one_smul, zero_smul, add_zero]" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr.refine'_1\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ b₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂✝ : 0 ≤ b₂\nhab₂ : a₂ + b₂ = 1\nhb₂ : 0 < b₂\nha₂b₁ : 0 ≤ a₂ * b₁\nhab : 0 < a₂ * b₁ + b₂\n⊢ 0 ≤ a₂ * b₁ / (a₂ * b₁ + b₂)", "tactic": "exact div_nonneg ha₂b₁ hab.le" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr.refine'_2\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ b₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂✝ : 0 ≤ b₂\nhab₂ : a₂ + b₂ = 1\nhb₂ : 0 < b₂\nha₂b₁ : 0 ≤ a₂ * b₁\nhab : 0 < a₂ * b₁ + b₂\n⊢ 0 ≤ b₂ / (a₂ * b₁ + b₂)", "tactic": "exact div_nonneg hb₂.le hab.le" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr.refine'_3\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ b₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂✝ : 0 ≤ b₂\nhab₂ : a₂ + b₂ = 1\nhb₂ : 0 < b₂\nha₂b₁ : 0 ≤ a₂ * b₁\nhab : 0 < a₂ * b₁ + b₂\n⊢ a₂ * b₁ / (a₂ * b₁ + b₂) + b₂ / (a₂ * b₁ + b₂) = 1", "tactic": "rw [← add_div, div_self hab.ne']" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr.refine'_4\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ b₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂✝ : 0 ≤ b₂\nhab₂ : a₂ + b₂ = 1\nhb₂ : 0 < b₂\nha₂b₁ : 0 ≤ a₂ * b₁\nhab : 0 < a₂ * b₁ + b₂\n⊢ a₂ * a₁ + (a₂ * b₁ + b₂) = 1", "tactic": "rw [← add_assoc, ← mul_add, hab₁, mul_one, hab₂]" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.inr.refine'_5\nι : Sort ?u.52859\n𝕜 : Type u_2\nE : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns✝ t✝ u✝ : Set E\nx✝ y✝ : E\ns t u : Set E\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ t\na₁ b₁ : 𝕜\nha₁ : 0 ≤ a₁\nhb₁ : 0 ≤ b₁\nhab₁ : a₁ + b₁ = 1\nz : E\nhz : z ∈ u\na₂ b₂ : 𝕜\nha₂ : 0 ≤ a₂\nhb₂✝ : 0 ≤ b₂\nhab₂ : a₂ + b₂ = 1\nhb₂ : 0 < b₂\nha₂b₁ : 0 ≤ a₂ * b₁\nhab : 0 < a₂ * b₁ + b₂\n⊢ (a₂ * a₁) • x + (a₂ * b₁ + b₂) • ((a₂ * b₁ / (a₂ * b₁ + b₂)) • y + (b₂ / (a₂ * b₁ + b₂)) • z) =\n a₂ • (a₁ • x + b₁ • y) + b₂ • z", "tactic": "simp_rw [smul_add, ← mul_smul, mul_div_cancel' _ hab.ne', add_assoc]" } ]
[ 154, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 137, 1 ]
Mathlib/FieldTheory/Finite/Basic.lean
FiniteField.X_pow_card_pow_sub_X_ne_zero
[]
[ 257, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 256, 1 ]
Mathlib/Data/Real/Basic.lean
Real.mk_one
[ { "state_after": "x y : ℝ\n⊢ mk 1 = { cauchy := 1 }", "state_before": "x y : ℝ\n⊢ mk 1 = 1", "tactic": "rw [← ofCauchy_one]" }, { "state_after": "no goals", "state_before": "x y : ℝ\n⊢ mk 1 = { cauchy := 1 }", "tactic": "rfl" } ]
[ 331, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 331, 1 ]
Mathlib/LinearAlgebra/Basic.lean
LinearMap.funLeft_comp
[]
[ 2616, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2614, 1 ]
Mathlib/Data/Set/Function.lean
Set.LeftInvOn.image_image
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.60024\nι : Sort ?u.60027\nπ : α → Type ?u.60032\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\np : Set γ\nf f₁ f₂ f₃ : α → β\ng g₁ g₂ : β → γ\nf' f₁' f₂' : β → α\ng' : γ → β\na : α\nb : β\nhf : LeftInvOn f' f s\n⊢ f' '' (f '' s) = s", "tactic": "rw [Set.image_image, image_congr hf, image_id']" } ]
[ 1088, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1087, 1 ]
Mathlib/ModelTheory/Substructures.lean
FirstOrder.Language.Substructure.comap_top
[]
[ 539, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 538, 1 ]
Mathlib/Data/Polynomial/Splits.lean
Polynomial.map_rootOfSplits
[]
[ 317, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 315, 1 ]
Mathlib/Topology/PathConnected.lean
IsPathConnected.isConnected
[ { "state_after": "X : Type u_1\nY : Type ?u.695184\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type ?u.695199\nF : Set X\nhF : IsPathConnected F\n⊢ ConnectedSpace ↑F", "state_before": "X : Type u_1\nY : Type ?u.695184\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type ?u.695199\nF : Set X\nhF : IsPathConnected F\n⊢ IsConnected F", "tactic": "rw [isConnected_iff_connectedSpace]" }, { "state_after": "X : Type u_1\nY : Type ?u.695184\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type ?u.695199\nF : Set X\nhF : PathConnectedSpace ↑F\n⊢ ConnectedSpace ↑F", "state_before": "X : Type u_1\nY : Type ?u.695184\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type ?u.695199\nF : Set X\nhF : IsPathConnected F\n⊢ ConnectedSpace ↑F", "tactic": "rw [isPathConnected_iff_pathConnectedSpace] at hF" }, { "state_after": "no goals", "state_before": "X : Type u_1\nY : Type ?u.695184\ninst✝¹ : TopologicalSpace X\ninst✝ : TopologicalSpace Y\nx y z : X\nι : Type ?u.695199\nF : Set X\nhF : PathConnectedSpace ↑F\n⊢ ConnectedSpace ↑F", "tactic": "exact @PathConnectedSpace.connectedSpace _ _ hF" } ]
[ 1165, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1162, 1 ]
Mathlib/Data/Real/EReal.lean
EReal.coe_ennreal_ofReal
[]
[ 458, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 457, 1 ]
Mathlib/Algebra/Lie/Basic.lean
LieModuleHom.sub_apply
[]
[ 892, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 891, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/ZeroMorphisms.lean
CategoryTheory.Limits.HasZeroMorphisms.ext
[ { "state_after": "case w\nC : Type u\ninst✝¹ : Category C\nD : Type u'\ninst✝ : Category D\nI J : HasZeroMorphisms C\n⊢ ∀ (X Y : C), Zero.zero = Zero.zero", "state_before": "C : Type u\ninst✝¹ : Category C\nD : Type u'\ninst✝ : Category D\nI J : HasZeroMorphisms C\n⊢ I = J", "tactic": "apply ext_aux" }, { "state_after": "case w\nC : Type u\ninst✝¹ : Category C\nD : Type u'\ninst✝ : Category D\nI J : HasZeroMorphisms C\nX Y : C\n⊢ Zero.zero = Zero.zero", "state_before": "case w\nC : Type u\ninst✝¹ : Category C\nD : Type u'\ninst✝ : Category D\nI J : HasZeroMorphisms C\n⊢ ∀ (X Y : C), Zero.zero = Zero.zero", "tactic": "intro X Y" }, { "state_after": "case w\nC : Type u\ninst✝¹ : Category C\nD : Type u'\ninst✝ : Category D\nI J : HasZeroMorphisms C\nX Y : C\nthis : Zero.zero ≫ Zero.zero = Zero.zero\n⊢ Zero.zero = Zero.zero", "state_before": "case w\nC : Type u\ninst✝¹ : Category C\nD : Type u'\ninst✝ : Category D\nI J : HasZeroMorphisms C\nX Y : C\n⊢ Zero.zero = Zero.zero", "tactic": "have : (I.Zero X Y).zero ≫ (J.Zero Y Y).zero = (I.Zero X Y).zero := by\n apply I.zero_comp X (J.Zero Y Y).zero" }, { "state_after": "case w\nC : Type u\ninst✝¹ : Category C\nD : Type u'\ninst✝ : Category D\nI J : HasZeroMorphisms C\nX Y : C\nthis : Zero.zero ≫ Zero.zero = Zero.zero\nthat : Zero.zero ≫ Zero.zero = Zero.zero\n⊢ Zero.zero = Zero.zero", "state_before": "case w\nC : Type u\ninst✝¹ : Category C\nD : Type u'\ninst✝ : Category D\nI J : HasZeroMorphisms C\nX Y : C\nthis : Zero.zero ≫ Zero.zero = Zero.zero\n⊢ Zero.zero = Zero.zero", "tactic": "have that : (I.Zero X Y).zero ≫ (J.Zero Y Y).zero = (J.Zero X Y).zero := by\n apply J.comp_zero (I.Zero X Y).zero Y" }, { "state_after": "no goals", "state_before": "case w\nC : Type u\ninst✝¹ : Category C\nD : Type u'\ninst✝ : Category D\nI J : HasZeroMorphisms C\nX Y : C\nthis : Zero.zero ≫ Zero.zero = Zero.zero\nthat : Zero.zero ≫ Zero.zero = Zero.zero\n⊢ Zero.zero = Zero.zero", "tactic": "rw[←this,←that]" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝¹ : Category C\nD : Type u'\ninst✝ : Category D\nI J : HasZeroMorphisms C\nX Y : C\n⊢ Zero.zero ≫ Zero.zero = Zero.zero", "tactic": "apply I.zero_comp X (J.Zero Y Y).zero" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝¹ : Category C\nD : Type u'\ninst✝ : Category D\nI J : HasZeroMorphisms C\nX Y : C\nthis : Zero.zero ≫ Zero.zero = Zero.zero\n⊢ Zero.zero ≫ Zero.zero = Zero.zero", "tactic": "apply J.comp_zero (I.Zero X Y).zero Y" } ]
[ 119, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 112, 1 ]
Mathlib/Deprecated/Subgroup.lean
Group.mclosure_subset
[]
[ 616, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 615, 1 ]
Mathlib/Topology/DenseEmbedding.lean
DenseInducing.closure_range
[]
[ 62, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 61, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.iInf_add
[]
[ 2400, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2398, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/ZeroMorphisms.lean
CategoryTheory.Limits.hasZeroObject_of_hasInitial_object
[ { "state_after": "C : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\ninst✝ : HasInitial C\nX : C\nf : X ⟶ ⊥_ C\n⊢ f = default", "state_before": "C : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\ninst✝ : HasInitial C\n⊢ HasZeroObject C", "tactic": "refine' ⟨⟨⊥_ C, fun X => ⟨⟨⟨0⟩, by aesop_cat⟩⟩, fun X => ⟨⟨⟨0⟩, fun f => _⟩⟩⟩⟩" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\ninst✝ : HasInitial C\nX : C\nf : X ⟶ ⊥_ C\n⊢ f = default", "tactic": "calc\n f = f ≫ 𝟙 _ := (Category.comp_id _).symm\n _ = f ≫ 0 := by congr!\n _ = 0 := HasZeroMorphisms.comp_zero _ _" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\ninst✝ : HasInitial C\nX : C\n⊢ ∀ (a : ⊥_ C ⟶ X), a = default", "tactic": "aesop_cat" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝³ : Category C\nD : Type u'\ninst✝² : Category D\ninst✝¹ : HasZeroMorphisms C\ninst✝ : HasInitial C\nX : C\nf : X ⟶ ⊥_ C\n⊢ f ≫ 𝟙 (⊥_ C) = f ≫ 0", "tactic": "congr!" } ]
[ 552, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 546, 1 ]
Mathlib/LinearAlgebra/Ray.lean
Module.Ray.ne_neg_self
[ { "state_after": "case h\nR : Type u_1\ninst✝⁵ : StrictOrderedCommRing R\nM : Type u_2\nN : Type ?u.180935\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\nx✝ y : M\ninst✝ : NoZeroSMulDivisors R M\nx : M\nhx : x ≠ 0\n⊢ rayOfNeZero R x hx ≠ -rayOfNeZero R x hx", "state_before": "R : Type u_1\ninst✝⁵ : StrictOrderedCommRing R\nM : Type u_2\nN : Type ?u.180935\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\nx✝ y : M\ninst✝ : NoZeroSMulDivisors R M\nx : Ray R M\n⊢ x ≠ -x", "tactic": "induction' x using Module.Ray.ind with x hx" }, { "state_after": "case h\nR : Type u_1\ninst✝⁵ : StrictOrderedCommRing R\nM : Type u_2\nN : Type ?u.180935\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\nx✝ y : M\ninst✝ : NoZeroSMulDivisors R M\nx : M\nhx : x ≠ 0\n⊢ ¬SameRay R x (-x)", "state_before": "case h\nR : Type u_1\ninst✝⁵ : StrictOrderedCommRing R\nM : Type u_2\nN : Type ?u.180935\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\nx✝ y : M\ninst✝ : NoZeroSMulDivisors R M\nx : M\nhx : x ≠ 0\n⊢ rayOfNeZero R x hx ≠ -rayOfNeZero R x hx", "tactic": "rw [neg_rayOfNeZero, Ne.def, ray_eq_iff]" }, { "state_after": "no goals", "state_before": "case h\nR : Type u_1\ninst✝⁵ : StrictOrderedCommRing R\nM : Type u_2\nN : Type ?u.180935\ninst✝⁴ : AddCommGroup M\ninst✝³ : AddCommGroup N\ninst✝² : Module R M\ninst✝¹ : Module R N\nx✝ y : M\ninst✝ : NoZeroSMulDivisors R M\nx : M\nhx : x ≠ 0\n⊢ ¬SameRay R x (-x)", "tactic": "exact mt eq_zero_of_sameRay_self_neg hx" } ]
[ 480, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 477, 1 ]
Mathlib/Analysis/Convex/Cone/Basic.lean
Submodule.toConvexCone_le_iff
[]
[ 528, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 527, 1 ]
Mathlib/NumberTheory/ArithmeticFunction.lean
Nat.ArithmeticFunction.zeta_apply
[]
[ 453, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 452, 1 ]
Mathlib/RingTheory/AdjoinRoot.lean
AdjoinRoot.liftHom_mk
[]
[ 337, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 336, 1 ]
Mathlib/GroupTheory/QuotientGroup.lean
QuotientGroup.mk'_surjective
[]
[ 97, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 96, 1 ]
Mathlib/Topology/ContinuousOn.lean
preimage_coe_mem_nhds_subtype
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.304580\nγ : Type ?u.304583\nδ : Type ?u.304586\ninst✝ : TopologicalSpace α\ns t : Set α\na : ↑s\n⊢ Subtype.val ⁻¹' t ∈ 𝓝 a ↔ t ∈ 𝓝[s] ↑a", "tactic": "rw [← map_nhds_subtype_val, mem_map]" } ]
[ 507, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 506, 1 ]
Mathlib/Topology/Basic.lean
isClosed_imp
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nι : Sort w\na : α\ns s₁ s₂ t : Set α\np✝ p₁ p₂ : α → Prop\ninst✝ : TopologicalSpace α\np q : α → Prop\nhp : IsOpen {x | p x}\nhq : IsClosed {x | q x}\n⊢ IsClosed {x | p x → q x}", "tactic": "simpa only [imp_iff_not_or] using hp.isClosed_compl.union hq" } ]
[ 267, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 265, 1 ]
Mathlib/Data/List/Chain.lean
List.Chain'.suffix
[]
[ 315, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 314, 1 ]
Std/Data/RBMap/WF.lean
Std.RBNode.cmpLT.trans
[]
[ 31, 32 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 30, 1 ]
Mathlib/MeasureTheory/Function/AEEqOfIntegral.lean
MeasureTheory.ae_le_of_forall_set_integral_le
[ { "state_after": "α : Type u_1\nE : Type ?u.79505\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\np : ℝ≥0∞\nf✝ f g : α → ℝ\nhf : Integrable f\nhg : Integrable g\nhf_le : ∀ (s : Set α), MeasurableSet s → ↑↑μ s < ⊤ → (∫ (x : α) in s, f x ∂μ) ≤ ∫ (x : α) in s, g x ∂μ\n⊢ 0 ≤ᵐ[μ] g - f", "state_before": "α : Type u_1\nE : Type ?u.79505\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\np : ℝ≥0∞\nf✝ f g : α → ℝ\nhf : Integrable f\nhg : Integrable g\nhf_le : ∀ (s : Set α), MeasurableSet s → ↑↑μ s < ⊤ → (∫ (x : α) in s, f x ∂μ) ≤ ∫ (x : α) in s, g x ∂μ\n⊢ f ≤ᵐ[μ] g", "tactic": "rw [← eventually_sub_nonneg]" }, { "state_after": "α : Type u_1\nE : Type ?u.79505\nm m0 : MeasurableSpace α\nμ : Measure α\ns✝ t : Set α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\np : ℝ≥0∞\nf✝ f g : α → ℝ\nhf : Integrable f\nhg : Integrable g\nhf_le : ∀ (s : Set α), MeasurableSet s → ↑↑μ s < ⊤ → (∫ (x : α) in s, f x ∂μ) ≤ ∫ (x : α) in s, g x ∂μ\ns : Set α\nhs : MeasurableSet s\n⊢ ↑↑μ s < ⊤ → 0 ≤ ∫ (x : α) in s, (g - f) x ∂μ", "state_before": "α : Type u_1\nE : Type ?u.79505\nm m0 : MeasurableSpace α\nμ : Measure α\ns t : Set α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\np : ℝ≥0∞\nf✝ f g : α → ℝ\nhf : Integrable f\nhg : Integrable g\nhf_le : ∀ (s : Set α), MeasurableSet s → ↑↑μ s < ⊤ → (∫ (x : α) in s, f x ∂μ) ≤ ∫ (x : α) in s, g x ∂μ\n⊢ 0 ≤ᵐ[μ] g - f", "tactic": "refine' ae_nonneg_of_forall_set_integral_nonneg (hg.sub hf) fun s hs => _" }, { "state_after": "α : Type u_1\nE : Type ?u.79505\nm m0 : MeasurableSpace α\nμ : Measure α\ns✝ t : Set α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\np : ℝ≥0∞\nf✝ f g : α → ℝ\nhf : Integrable f\nhg : Integrable g\nhf_le : ∀ (s : Set α), MeasurableSet s → ↑↑μ s < ⊤ → (∫ (x : α) in s, f x ∂μ) ≤ ∫ (x : α) in s, g x ∂μ\ns : Set α\nhs : MeasurableSet s\n⊢ ↑↑μ s < ⊤ → (∫ (a : α) in s, f a ∂μ) ≤ ∫ (a : α) in s, g a ∂μ", "state_before": "α : Type u_1\nE : Type ?u.79505\nm m0 : MeasurableSpace α\nμ : Measure α\ns✝ t : Set α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\np : ℝ≥0∞\nf✝ f g : α → ℝ\nhf : Integrable f\nhg : Integrable g\nhf_le : ∀ (s : Set α), MeasurableSet s → ↑↑μ s < ⊤ → (∫ (x : α) in s, f x ∂μ) ≤ ∫ (x : α) in s, g x ∂μ\ns : Set α\nhs : MeasurableSet s\n⊢ ↑↑μ s < ⊤ → 0 ≤ ∫ (x : α) in s, (g - f) x ∂μ", "tactic": "rw [integral_sub' hg.integrableOn hf.integrableOn, sub_nonneg]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nE : Type ?u.79505\nm m0 : MeasurableSpace α\nμ : Measure α\ns✝ t : Set α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℝ E\ninst✝ : CompleteSpace E\np : ℝ≥0∞\nf✝ f g : α → ℝ\nhf : Integrable f\nhg : Integrable g\nhf_le : ∀ (s : Set α), MeasurableSet s → ↑↑μ s < ⊤ → (∫ (x : α) in s, f x ∂μ) ≤ ∫ (x : α) in s, g x ∂μ\ns : Set α\nhs : MeasurableSet s\n⊢ ↑↑μ s < ⊤ → (∫ (a : α) in s, f a ∂μ) ≤ ∫ (a : α) in s, g a ∂μ", "tactic": "exact hf_le s hs" } ]
[ 303, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 297, 1 ]
Mathlib/Analysis/InnerProductSpace/PiL2.lean
LinearIsometry.extend_apply
[ { "state_after": "ι : Type ?u.1751792\nι' : Type ?u.1751795\n𝕜 : Type u_1\ninst✝¹² : IsROrC 𝕜\nE : Type ?u.1751804\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : InnerProductSpace 𝕜 E\nE' : Type ?u.1751824\ninst✝⁹ : NormedAddCommGroup E'\ninst✝⁸ : InnerProductSpace 𝕜 E'\nF : Type ?u.1751842\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : InnerProductSpace ℝ F\nF' : Type ?u.1751862\ninst✝⁵ : NormedAddCommGroup F'\ninst✝⁴ : InnerProductSpace ℝ F'\ninst✝³ : Fintype ι\nV : Type u_2\ninst✝² : NormedAddCommGroup V\ninst✝¹ : InnerProductSpace 𝕜 V\ninst✝ : FiniteDimensional 𝕜 V\nS : Submodule 𝕜 V\nL✝ L : { x // x ∈ S } →ₗᵢ[𝕜] V\ns : { x // x ∈ S }\nthis : CompleteSpace { x // x ∈ S }\n⊢ ↑(extend L) ↑s = ↑L s", "state_before": "ι : Type ?u.1751792\nι' : Type ?u.1751795\n𝕜 : Type u_1\ninst✝¹² : IsROrC 𝕜\nE : Type ?u.1751804\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : InnerProductSpace 𝕜 E\nE' : Type ?u.1751824\ninst✝⁹ : NormedAddCommGroup E'\ninst✝⁸ : InnerProductSpace 𝕜 E'\nF : Type ?u.1751842\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : InnerProductSpace ℝ F\nF' : Type ?u.1751862\ninst✝⁵ : NormedAddCommGroup F'\ninst✝⁴ : InnerProductSpace ℝ F'\ninst✝³ : Fintype ι\nV : Type u_2\ninst✝² : NormedAddCommGroup V\ninst✝¹ : InnerProductSpace 𝕜 V\ninst✝ : FiniteDimensional 𝕜 V\nS : Submodule 𝕜 V\nL✝ L : { x // x ∈ S } →ₗᵢ[𝕜] V\ns : { x // x ∈ S }\n⊢ ↑(extend L) ↑s = ↑L s", "tactic": "haveI : CompleteSpace S := FiniteDimensional.complete 𝕜 S" }, { "state_after": "ι : Type ?u.1751792\nι' : Type ?u.1751795\n𝕜 : Type u_1\ninst✝¹² : IsROrC 𝕜\nE : Type ?u.1751804\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : InnerProductSpace 𝕜 E\nE' : Type ?u.1751824\ninst✝⁹ : NormedAddCommGroup E'\ninst✝⁸ : InnerProductSpace 𝕜 E'\nF : Type ?u.1751842\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : InnerProductSpace ℝ F\nF' : Type ?u.1751862\ninst✝⁵ : NormedAddCommGroup F'\ninst✝⁴ : InnerProductSpace ℝ F'\ninst✝³ : Fintype ι\nV : Type u_2\ninst✝² : NormedAddCommGroup V\ninst✝¹ : InnerProductSpace 𝕜 V\ninst✝ : FiniteDimensional 𝕜 V\nS : Submodule 𝕜 V\nL✝ L : { x // x ∈ S } →ₗᵢ[𝕜] V\ns : { x // x ∈ S }\nthis : CompleteSpace { x // x ∈ S }\n⊢ ↑(LinearMap.comp L.toLinearMap ↑(orthogonalProjection S) +\n LinearMap.comp\n (comp (subtypeₗᵢ (LinearMap.range L.toLinearMap)ᗮ)\n (LinearIsometryEquiv.toLinearIsometry\n (LinearIsometryEquiv.trans (stdOrthonormalBasis 𝕜 { x // x ∈ Sᗮ }).repr\n (LinearIsometryEquiv.symm\n (OrthonormalBasis.reindex (stdOrthonormalBasis 𝕜 { x // x ∈ (LinearMap.range L.toLinearMap)ᗮ })\n (finCongr\n (_ :\n finrank 𝕜 { x // x ∈ (LinearMap.range L.toLinearMap)ᗮ } =\n finrank 𝕜 { x // x ∈ Sᗮ }))).repr)))).toLinearMap\n ↑(orthogonalProjection Sᗮ))\n ↑s =\n ↑L.toLinearMap s", "state_before": "ι : Type ?u.1751792\nι' : Type ?u.1751795\n𝕜 : Type u_1\ninst✝¹² : IsROrC 𝕜\nE : Type ?u.1751804\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : InnerProductSpace 𝕜 E\nE' : Type ?u.1751824\ninst✝⁹ : NormedAddCommGroup E'\ninst✝⁸ : InnerProductSpace 𝕜 E'\nF : Type ?u.1751842\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : InnerProductSpace ℝ F\nF' : Type ?u.1751862\ninst✝⁵ : NormedAddCommGroup F'\ninst✝⁴ : InnerProductSpace ℝ F'\ninst✝³ : Fintype ι\nV : Type u_2\ninst✝² : NormedAddCommGroup V\ninst✝¹ : InnerProductSpace 𝕜 V\ninst✝ : FiniteDimensional 𝕜 V\nS : Submodule 𝕜 V\nL✝ L : { x // x ∈ S } →ₗᵢ[𝕜] V\ns : { x // x ∈ S }\nthis : CompleteSpace { x // x ∈ S }\n⊢ ↑(extend L) ↑s = ↑L s", "tactic": "simp only [LinearIsometry.extend, ← LinearIsometry.coe_toLinearMap]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.1751792\nι' : Type ?u.1751795\n𝕜 : Type u_1\ninst✝¹² : IsROrC 𝕜\nE : Type ?u.1751804\ninst✝¹¹ : NormedAddCommGroup E\ninst✝¹⁰ : InnerProductSpace 𝕜 E\nE' : Type ?u.1751824\ninst✝⁹ : NormedAddCommGroup E'\ninst✝⁸ : InnerProductSpace 𝕜 E'\nF : Type ?u.1751842\ninst✝⁷ : NormedAddCommGroup F\ninst✝⁶ : InnerProductSpace ℝ F\nF' : Type ?u.1751862\ninst✝⁵ : NormedAddCommGroup F'\ninst✝⁴ : InnerProductSpace ℝ F'\ninst✝³ : Fintype ι\nV : Type u_2\ninst✝² : NormedAddCommGroup V\ninst✝¹ : InnerProductSpace 𝕜 V\ninst✝ : FiniteDimensional 𝕜 V\nS : Submodule 𝕜 V\nL✝ L : { x // x ∈ S } →ₗᵢ[𝕜] V\ns : { x // x ∈ S }\nthis : CompleteSpace { x // x ∈ S }\n⊢ ↑(LinearMap.comp L.toLinearMap ↑(orthogonalProjection S) +\n LinearMap.comp\n (comp (subtypeₗᵢ (LinearMap.range L.toLinearMap)ᗮ)\n (LinearIsometryEquiv.toLinearIsometry\n (LinearIsometryEquiv.trans (stdOrthonormalBasis 𝕜 { x // x ∈ Sᗮ }).repr\n (LinearIsometryEquiv.symm\n (OrthonormalBasis.reindex (stdOrthonormalBasis 𝕜 { x // x ∈ (LinearMap.range L.toLinearMap)ᗮ })\n (finCongr\n (_ :\n finrank 𝕜 { x // x ∈ (LinearMap.range L.toLinearMap)ᗮ } =\n finrank 𝕜 { x // x ∈ Sᗮ }))).repr)))).toLinearMap\n ↑(orthogonalProjection Sᗮ))\n ↑s =\n ↑L.toLinearMap s", "tactic": "simp only [add_right_eq_self, LinearIsometry.coe_toLinearMap,\n LinearIsometryEquiv.coe_toLinearIsometry, LinearIsometry.coe_comp, Function.comp_apply,\n orthogonalProjection_mem_subspace_eq_self, LinearMap.coe_comp, ContinuousLinearMap.coe_coe,\n Submodule.coeSubtype, LinearMap.add_apply, Submodule.coe_eq_zero,\n LinearIsometryEquiv.map_eq_zero_iff, Submodule.coe_subtypeₗᵢ,\n orthogonalProjection_mem_subspace_orthogonalComplement_eq_zero, Submodule.orthogonal_orthogonal,\n Submodule.coe_mem]" } ]
[ 963, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 954, 1 ]
Mathlib/Algebra/Lie/SkewAdjoint.lean
skewAdjointMatricesLieSubalgebraEquivTranspose_apply
[]
[ 170, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 166, 1 ]
Mathlib/Topology/Algebra/GroupWithZero.lean
ContinuousAt.inv₀
[]
[ 131, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 129, 8 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.toReal_div
[ { "state_after": "no goals", "state_before": "α : Type ?u.837272\nβ : Type ?u.837275\na✝ b✝ c d : ℝ≥0∞\nr p q : ℝ≥0\na b : ℝ≥0∞\n⊢ ENNReal.toReal (a / b) = ENNReal.toReal a / ENNReal.toReal b", "tactic": "rw [div_eq_mul_inv, toReal_mul, toReal_inv, div_eq_mul_inv]" } ]
[ 2326, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2325, 1 ]
Mathlib/Computability/TuringMachine.lean
Turing.Reaches₀.refl
[]
[ 788, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 787, 1 ]
Std/Data/Nat/Lemmas.lean
Nat.lt_add_right
[]
[ 87, 46 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 86, 11 ]
Mathlib/RingTheory/Finiteness.lean
Submodule.FG.sup
[ { "state_after": "no goals", "state_before": "R : Type u_1\nM : Type u_2\ninst✝² : Semiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nN₁ N₂ : Submodule R M\nhN₁ : FG N₁\nhN₂ : FG N₂\nt₁ : Set M\nht₁ : Set.Finite t₁ ∧ span R t₁ = N₁\nt₂ : Set M\nht₂ : Set.Finite t₂ ∧ span R t₂ = N₂\n⊢ span R (t₁ ∪ t₂) = N₁ ⊔ N₂", "tactic": "rw [span_union, ht₁.2, ht₂.2]" } ]
[ 185, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 182, 1 ]
Mathlib/Data/Polynomial/RingDivision.lean
Polynomial.map_roots_le
[ { "state_after": "R : Type u\nS : Type v\nT : Type w\na b✝ : R\nn : ℕ\nA : Type u_1\nB : Type u_2\ninst✝³ : CommRing A\ninst✝² : CommRing B\ninst✝¹ : IsDomain A\ninst✝ : IsDomain B\np : A[X]\nf : A →+* B\nh : map f p ≠ 0\nb : B\n⊢ Multiset.count b (Multiset.map (↑f) (roots p)) ≤ rootMultiplicity b (map f p)", "state_before": "R : Type u\nS : Type v\nT : Type w\na b✝ : R\nn : ℕ\nA : Type u_1\nB : Type u_2\ninst✝³ : CommRing A\ninst✝² : CommRing B\ninst✝¹ : IsDomain A\ninst✝ : IsDomain B\np : A[X]\nf : A →+* B\nh : map f p ≠ 0\nb : B\n⊢ Multiset.count b (Multiset.map (↑f) (roots p)) ≤ Multiset.count b (roots (map f p))", "tactic": "rw [count_roots]" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\na b✝ : R\nn : ℕ\nA : Type u_1\nB : Type u_2\ninst✝³ : CommRing A\ninst✝² : CommRing B\ninst✝¹ : IsDomain A\ninst✝ : IsDomain B\np : A[X]\nf : A →+* B\nh : map f p ≠ 0\nb : B\n⊢ Multiset.count b (Multiset.map (↑f) (roots p)) ≤ rootMultiplicity b (map f p)", "tactic": "apply count_map_roots h" } ]
[ 1186, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1182, 1 ]
Mathlib/Topology/UniformSpace/Completion.lean
CauchyFilter.compRel_gen_gen_subset_gen_compRel
[]
[ 116, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 107, 9 ]
Mathlib/Topology/SubsetProperties.lean
isIrreducible_irreducibleComponent
[]
[ 1801, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1800, 1 ]
Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.deleteEdges_empty_eq
[ { "state_after": "case Adj.h.h.a\nι : Sort ?u.156154\n𝕜 : Type ?u.156157\nV : Type u\nW : Type v\nX : Type w\nG : SimpleGraph V\nG' : SimpleGraph W\na b c u v w : V\ne : Sym2 V\nx✝¹ x✝ : V\n⊢ Adj (deleteEdges G ∅) x✝¹ x✝ ↔ Adj G x✝¹ x✝", "state_before": "ι : Sort ?u.156154\n𝕜 : Type ?u.156157\nV : Type u\nW : Type v\nX : Type w\nG : SimpleGraph V\nG' : SimpleGraph W\na b c u v w : V\ne : Sym2 V\n⊢ deleteEdges G ∅ = G", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case Adj.h.h.a\nι : Sort ?u.156154\n𝕜 : Type ?u.156157\nV : Type u\nW : Type v\nX : Type w\nG : SimpleGraph V\nG' : SimpleGraph W\na b c u v w : V\ne : Sym2 V\nx✝¹ x✝ : V\n⊢ Adj (deleteEdges G ∅) x✝¹ x✝ ↔ Adj G x✝¹ x✝", "tactic": "simp" } ]
[ 1141, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1139, 1 ]
Mathlib/LinearAlgebra/Matrix/Determinant.lean
Matrix.det_conjTranspose
[]
[ 354, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 353, 1 ]
Mathlib/Data/Polynomial/Laurent.lean
LaurentPolynomial.induction_on'
[ { "state_after": "case refine'_1\nR : Type u_1\ninst✝ : Semiring R\nM : R[T;T⁻¹] → Prop\np : R[T;T⁻¹]\nh_add : ∀ (p q : R[T;T⁻¹]), M p → M q → M (p + q)\nh_C_mul_T : ∀ (n : ℤ) (a : R), M (↑C a * T n)\na : R\n⊢ M (↑C a)", "state_before": "R : Type u_1\ninst✝ : Semiring R\nM : R[T;T⁻¹] → Prop\np : R[T;T⁻¹]\nh_add : ∀ (p q : R[T;T⁻¹]), M p → M q → M (p + q)\nh_C_mul_T : ∀ (n : ℤ) (a : R), M (↑C a * T n)\n⊢ M p", "tactic": "refine' p.induction_on (fun a => _) (fun {p q} => h_add p q) _ _ <;>\n try exact fun n f _ => h_C_mul_T _ f" }, { "state_after": "case h.e'_1\nR : Type u_1\ninst✝ : Semiring R\nM : R[T;T⁻¹] → Prop\np : R[T;T⁻¹]\nh_add : ∀ (p q : R[T;T⁻¹]), M p → M q → M (p + q)\nh_C_mul_T : ∀ (n : ℤ) (a : R), M (↑C a * T n)\na : R\n⊢ ↑C a = ↑C a * T 0", "state_before": "case refine'_1\nR : Type u_1\ninst✝ : Semiring R\nM : R[T;T⁻¹] → Prop\np : R[T;T⁻¹]\nh_add : ∀ (p q : R[T;T⁻¹]), M p → M q → M (p + q)\nh_C_mul_T : ∀ (n : ℤ) (a : R), M (↑C a * T n)\na : R\n⊢ M (↑C a)", "tactic": "convert h_C_mul_T 0 a" }, { "state_after": "no goals", "state_before": "case h.e'_1\nR : Type u_1\ninst✝ : Semiring R\nM : R[T;T⁻¹] → Prop\np : R[T;T⁻¹]\nh_add : ∀ (p q : R[T;T⁻¹]), M p → M q → M (p + q)\nh_C_mul_T : ∀ (n : ℤ) (a : R), M (↑C a * T n)\na : R\n⊢ ↑C a = ↑C a * T 0", "tactic": "exact (mul_one _).symm" }, { "state_after": "no goals", "state_before": "case refine'_3\nR : Type u_1\ninst✝ : Semiring R\nM : R[T;T⁻¹] → Prop\np : R[T;T⁻¹]\nh_add : ∀ (p q : R[T;T⁻¹]), M p → M q → M (p + q)\nh_C_mul_T : ∀ (n : ℤ) (a : R), M (↑C a * T n)\n⊢ ∀ (n : ℕ) (a : R), M (↑C a * T (-↑n)) → M (↑C a * T (-↑n - 1))", "tactic": "exact fun n f _ => h_C_mul_T _ f" } ]
[ 316, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 310, 11 ]
Mathlib/Algebra/Group/Basic.lean
eq_div_iff_mul_eq''
[ { "state_after": "no goals", "state_before": "α : Type ?u.70975\nβ : Type ?u.70978\nG : Type u_1\ninst✝ : CommGroup G\na b c d : G\n⊢ a = b / c ↔ c * a = b", "tactic": "rw [eq_div_iff_mul_eq', mul_comm]" } ]
[ 953, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 953, 1 ]
Mathlib/Algebra/Algebra/Pi.lean
Pi.constAlgHom_eq_algebra_ofId
[]
[ 95, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 94, 1 ]
Mathlib/Topology/MetricSpace/Basic.lean
Metric.uniformity_eq_comap_nhds_zero
[ { "state_after": "case a\nα : Type u\nβ : Type v\nX : Type ?u.203876\nι : Type ?u.203879\ninst✝ : PseudoMetricSpace α\ns : Set (α × α)\n⊢ s ∈ 𝓤 α ↔ s ∈ comap (fun p => dist p.fst p.snd) (𝓝 0)", "state_before": "α : Type u\nβ : Type v\nX : Type ?u.203876\nι : Type ?u.203879\ninst✝ : PseudoMetricSpace α\n⊢ 𝓤 α = comap (fun p => dist p.fst p.snd) (𝓝 0)", "tactic": "ext s" }, { "state_after": "case a\nα : Type u\nβ : Type v\nX : Type ?u.203876\nι : Type ?u.203879\ninst✝ : PseudoMetricSpace α\ns : Set (α × α)\n⊢ (∃ ε, ε > 0 ∧ ∀ {a b : α}, dist a b < ε → (a, b) ∈ s) ↔ ∃ i, 0 < i ∧ (fun p => dist p.fst p.snd) ⁻¹' ball 0 i ⊆ s", "state_before": "case a\nα : Type u\nβ : Type v\nX : Type ?u.203876\nι : Type ?u.203879\ninst✝ : PseudoMetricSpace α\ns : Set (α × α)\n⊢ s ∈ 𝓤 α ↔ s ∈ comap (fun p => dist p.fst p.snd) (𝓝 0)", "tactic": "simp only [mem_uniformity_dist, (nhds_basis_ball.comap _).mem_iff]" }, { "state_after": "no goals", "state_before": "case a\nα : Type u\nβ : Type v\nX : Type ?u.203876\nι : Type ?u.203879\ninst✝ : PseudoMetricSpace α\ns : Set (α × α)\n⊢ (∃ ε, ε > 0 ∧ ∀ {a b : α}, dist a b < ε → (a, b) ∈ s) ↔ ∃ i, 0 < i ∧ (fun p => dist p.fst p.snd) ⁻¹' ball 0 i ⊆ s", "tactic": "simp [subset_def, Real.dist_0_eq_abs]" } ]
[ 1455, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1451, 1 ]
Mathlib/Data/Polynomial/Degree/Definitions.lean
Polynomial.leadingCoeff_eq_zero_iff_deg_eq_bot
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\na b c d : R\nn m : ℕ\ninst✝ : Semiring R\np q : R[X]\nι : Type ?u.514960\n⊢ leadingCoeff p = 0 ↔ degree p = ⊥", "tactic": "rw [leadingCoeff_eq_zero, degree_eq_bot]" } ]
[ 672, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 671, 1 ]
Mathlib/Analysis/Seminorm.lean
Seminorm.continuousAt_zero'
[ { "state_after": "R : Type ?u.1359761\nR' : Type ?u.1359764\n𝕜 : Type u_2\n𝕜₂ : Type ?u.1359770\n𝕜₃ : Type ?u.1359773\n𝕝 : Type ?u.1359776\nE : Type u_1\nE₂ : Type ?u.1359782\nE₃ : Type ?u.1359785\nF : Type ?u.1359788\nG : Type ?u.1359791\nι : Type ?u.1359794\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : SeminormedRing 𝕝\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : Module 𝕝 E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousConstSMul 𝕜 E\np : Seminorm 𝕜 E\nr : ℝ\nhr : 0 < r\nhp : closedBall p 0 r ∈ 𝓝 0\n⊢ ∀ (i : ℝ), 0 < i → ∀ᶠ (x : E) in 𝓝 0, ↑p x ∈ Metric.closedBall (↑p 0) i", "state_before": "R : Type ?u.1359761\nR' : Type ?u.1359764\n𝕜 : Type u_2\n𝕜₂ : Type ?u.1359770\n𝕜₃ : Type ?u.1359773\n𝕝 : Type ?u.1359776\nE : Type u_1\nE₂ : Type ?u.1359782\nE₃ : Type ?u.1359785\nF : Type ?u.1359788\nG : Type ?u.1359791\nι : Type ?u.1359794\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : SeminormedRing 𝕝\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : Module 𝕝 E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousConstSMul 𝕜 E\np : Seminorm 𝕜 E\nr : ℝ\nhr : 0 < r\nhp : closedBall p 0 r ∈ 𝓝 0\n⊢ ContinuousAt (↑p) 0", "tactic": "refine' Metric.nhds_basis_closedBall.tendsto_right_iff.mpr _" }, { "state_after": "R : Type ?u.1359761\nR' : Type ?u.1359764\n𝕜 : Type u_2\n𝕜₂ : Type ?u.1359770\n𝕜₃ : Type ?u.1359773\n𝕝 : Type ?u.1359776\nE : Type u_1\nE₂ : Type ?u.1359782\nE₃ : Type ?u.1359785\nF : Type ?u.1359788\nG : Type ?u.1359791\nι : Type ?u.1359794\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : SeminormedRing 𝕝\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : Module 𝕝 E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousConstSMul 𝕜 E\np : Seminorm 𝕜 E\nr : ℝ\nhr : 0 < r\nhp : closedBall p 0 r ∈ 𝓝 0\nε : ℝ\nhε : 0 < ε\n⊢ ∀ᶠ (x : E) in 𝓝 0, ↑p x ∈ Metric.closedBall (↑p 0) ε", "state_before": "R : Type ?u.1359761\nR' : Type ?u.1359764\n𝕜 : Type u_2\n𝕜₂ : Type ?u.1359770\n𝕜₃ : Type ?u.1359773\n𝕝 : Type ?u.1359776\nE : Type u_1\nE₂ : Type ?u.1359782\nE₃ : Type ?u.1359785\nF : Type ?u.1359788\nG : Type ?u.1359791\nι : Type ?u.1359794\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : SeminormedRing 𝕝\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : Module 𝕝 E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousConstSMul 𝕜 E\np : Seminorm 𝕜 E\nr : ℝ\nhr : 0 < r\nhp : closedBall p 0 r ∈ 𝓝 0\n⊢ ∀ (i : ℝ), 0 < i → ∀ᶠ (x : E) in 𝓝 0, ↑p x ∈ Metric.closedBall (↑p 0) i", "tactic": "intro ε hε" }, { "state_after": "R : Type ?u.1359761\nR' : Type ?u.1359764\n𝕜 : Type u_2\n𝕜₂ : Type ?u.1359770\n𝕜₃ : Type ?u.1359773\n𝕝 : Type ?u.1359776\nE : Type u_1\nE₂ : Type ?u.1359782\nE₃ : Type ?u.1359785\nF : Type ?u.1359788\nG : Type ?u.1359791\nι : Type ?u.1359794\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : SeminormedRing 𝕝\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : Module 𝕝 E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousConstSMul 𝕜 E\np : Seminorm 𝕜 E\nr : ℝ\nhr : 0 < r\nhp : closedBall p 0 r ∈ 𝓝 0\nε : ℝ\nhε : 0 < ε\n⊢ ∀ᶠ (x : E) in 𝓝 0, ↑p x ∈ Metric.closedBall 0 ε", "state_before": "R : Type ?u.1359761\nR' : Type ?u.1359764\n𝕜 : Type u_2\n𝕜₂ : Type ?u.1359770\n𝕜₃ : Type ?u.1359773\n𝕝 : Type ?u.1359776\nE : Type u_1\nE₂ : Type ?u.1359782\nE₃ : Type ?u.1359785\nF : Type ?u.1359788\nG : Type ?u.1359791\nι : Type ?u.1359794\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : SeminormedRing 𝕝\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : Module 𝕝 E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousConstSMul 𝕜 E\np : Seminorm 𝕜 E\nr : ℝ\nhr : 0 < r\nhp : closedBall p 0 r ∈ 𝓝 0\nε : ℝ\nhε : 0 < ε\n⊢ ∀ᶠ (x : E) in 𝓝 0, ↑p x ∈ Metric.closedBall (↑p 0) ε", "tactic": "rw [map_zero]" }, { "state_after": "R : Type ?u.1359761\nR' : Type ?u.1359764\n𝕜 : Type u_2\n𝕜₂ : Type ?u.1359770\n𝕜₃ : Type ?u.1359773\n𝕝 : Type ?u.1359776\nE : Type u_1\nE₂ : Type ?u.1359782\nE₃ : Type ?u.1359785\nF : Type ?u.1359788\nG : Type ?u.1359791\nι : Type ?u.1359794\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : SeminormedRing 𝕝\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : Module 𝕝 E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousConstSMul 𝕜 E\np : Seminorm 𝕜 E\nr : ℝ\nhr : 0 < r\nhp : closedBall p 0 r ∈ 𝓝 0\nε : ℝ\nhε : 0 < ε\n⊢ closedBall p 0 ε ∈ 𝓝 0", "state_before": "R : Type ?u.1359761\nR' : Type ?u.1359764\n𝕜 : Type u_2\n𝕜₂ : Type ?u.1359770\n𝕜₃ : Type ?u.1359773\n𝕝 : Type ?u.1359776\nE : Type u_1\nE₂ : Type ?u.1359782\nE₃ : Type ?u.1359785\nF : Type ?u.1359788\nG : Type ?u.1359791\nι : Type ?u.1359794\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : SeminormedRing 𝕝\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : Module 𝕝 E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousConstSMul 𝕜 E\np : Seminorm 𝕜 E\nr : ℝ\nhr : 0 < r\nhp : closedBall p 0 r ∈ 𝓝 0\nε : ℝ\nhε : 0 < ε\n⊢ ∀ᶠ (x : E) in 𝓝 0, ↑p x ∈ Metric.closedBall 0 ε", "tactic": "suffices p.closedBall 0 ε ∈ (𝓝 0 : Filter E) by\n rwa [Seminorm.closedBall_zero_eq_preimage_closedBall] at this" }, { "state_after": "case intro.intro\nR : Type ?u.1359761\nR' : Type ?u.1359764\n𝕜 : Type u_2\n𝕜₂ : Type ?u.1359770\n𝕜₃ : Type ?u.1359773\n𝕝 : Type ?u.1359776\nE : Type u_1\nE₂ : Type ?u.1359782\nE₃ : Type ?u.1359785\nF : Type ?u.1359788\nG : Type ?u.1359791\nι : Type ?u.1359794\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : SeminormedRing 𝕝\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : Module 𝕝 E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousConstSMul 𝕜 E\np : Seminorm 𝕜 E\nr : ℝ\nhr : 0 < r\nhp : closedBall p 0 r ∈ 𝓝 0\nε : ℝ\nhε : 0 < ε\nk : 𝕜\nhk0 : 0 < ‖k‖\nhkε : ‖k‖ < ε / r\n⊢ closedBall p 0 ε ∈ 𝓝 0", "state_before": "R : Type ?u.1359761\nR' : Type ?u.1359764\n𝕜 : Type u_2\n𝕜₂ : Type ?u.1359770\n𝕜₃ : Type ?u.1359773\n𝕝 : Type ?u.1359776\nE : Type u_1\nE₂ : Type ?u.1359782\nE₃ : Type ?u.1359785\nF : Type ?u.1359788\nG : Type ?u.1359791\nι : Type ?u.1359794\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : SeminormedRing 𝕝\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : Module 𝕝 E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousConstSMul 𝕜 E\np : Seminorm 𝕜 E\nr : ℝ\nhr : 0 < r\nhp : closedBall p 0 r ∈ 𝓝 0\nε : ℝ\nhε : 0 < ε\n⊢ closedBall p 0 ε ∈ 𝓝 0", "tactic": "rcases exists_norm_lt 𝕜 (div_pos hε hr) with ⟨k, hk0, hkε⟩" }, { "state_after": "case intro.intro\nR : Type ?u.1359761\nR' : Type ?u.1359764\n𝕜 : Type u_2\n𝕜₂ : Type ?u.1359770\n𝕜₃ : Type ?u.1359773\n𝕝 : Type ?u.1359776\nE : Type u_1\nE₂ : Type ?u.1359782\nE₃ : Type ?u.1359785\nF : Type ?u.1359788\nG : Type ?u.1359791\nι : Type ?u.1359794\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : SeminormedRing 𝕝\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : Module 𝕝 E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousConstSMul 𝕜 E\np : Seminorm 𝕜 E\nr : ℝ\nhr : 0 < r\nhp : closedBall p 0 r ∈ 𝓝 0\nε : ℝ\nhε : 0 < ε\nk : 𝕜\nhk0 : 0 < ‖k‖\nhkε : ‖k‖ < ε / r\nhk0' : k ≠ 0\n⊢ closedBall p 0 ε ∈ 𝓝 0", "state_before": "case intro.intro\nR : Type ?u.1359761\nR' : Type ?u.1359764\n𝕜 : Type u_2\n𝕜₂ : Type ?u.1359770\n𝕜₃ : Type ?u.1359773\n𝕝 : Type ?u.1359776\nE : Type u_1\nE₂ : Type ?u.1359782\nE₃ : Type ?u.1359785\nF : Type ?u.1359788\nG : Type ?u.1359791\nι : Type ?u.1359794\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : SeminormedRing 𝕝\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : Module 𝕝 E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousConstSMul 𝕜 E\np : Seminorm 𝕜 E\nr : ℝ\nhr : 0 < r\nhp : closedBall p 0 r ∈ 𝓝 0\nε : ℝ\nhε : 0 < ε\nk : 𝕜\nhk0 : 0 < ‖k‖\nhkε : ‖k‖ < ε / r\n⊢ closedBall p 0 ε ∈ 𝓝 0", "tactic": "have hk0' := norm_pos_iff.mp hk0" }, { "state_after": "case intro.intro\nR : Type ?u.1359761\nR' : Type ?u.1359764\n𝕜 : Type u_2\n𝕜₂ : Type ?u.1359770\n𝕜₃ : Type ?u.1359773\n𝕝 : Type ?u.1359776\nE : Type u_1\nE₂ : Type ?u.1359782\nE₃ : Type ?u.1359785\nF : Type ?u.1359788\nG : Type ?u.1359791\nι : Type ?u.1359794\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : SeminormedRing 𝕝\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : Module 𝕝 E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousConstSMul 𝕜 E\np : Seminorm 𝕜 E\nr : ℝ\nhr : 0 < r\nhp : closedBall p 0 r ∈ 𝓝 0\nε : ℝ\nhε : 0 < ε\nk : 𝕜\nhk0 : 0 < ‖k‖\nhkε : ‖k‖ < ε / r\nhk0' : k ≠ 0\nthis : k • closedBall p 0 r ∈ 𝓝 0\n⊢ closedBall p 0 ε ∈ 𝓝 0", "state_before": "case intro.intro\nR : Type ?u.1359761\nR' : Type ?u.1359764\n𝕜 : Type u_2\n𝕜₂ : Type ?u.1359770\n𝕜₃ : Type ?u.1359773\n𝕝 : Type ?u.1359776\nE : Type u_1\nE₂ : Type ?u.1359782\nE₃ : Type ?u.1359785\nF : Type ?u.1359788\nG : Type ?u.1359791\nι : Type ?u.1359794\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : SeminormedRing 𝕝\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : Module 𝕝 E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousConstSMul 𝕜 E\np : Seminorm 𝕜 E\nr : ℝ\nhr : 0 < r\nhp : closedBall p 0 r ∈ 𝓝 0\nε : ℝ\nhε : 0 < ε\nk : 𝕜\nhk0 : 0 < ‖k‖\nhkε : ‖k‖ < ε / r\nhk0' : k ≠ 0\n⊢ closedBall p 0 ε ∈ 𝓝 0", "tactic": "have := (set_smul_mem_nhds_zero_iff hk0').mpr hp" }, { "state_after": "case intro.intro\nR : Type ?u.1359761\nR' : Type ?u.1359764\n𝕜 : Type u_2\n𝕜₂ : Type ?u.1359770\n𝕜₃ : Type ?u.1359773\n𝕝 : Type ?u.1359776\nE : Type u_1\nE₂ : Type ?u.1359782\nE₃ : Type ?u.1359785\nF : Type ?u.1359788\nG : Type ?u.1359791\nι : Type ?u.1359794\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : SeminormedRing 𝕝\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : Module 𝕝 E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousConstSMul 𝕜 E\np : Seminorm 𝕜 E\nr : ℝ\nhr : 0 < r\nhp : closedBall p 0 r ∈ 𝓝 0\nε : ℝ\nhε : 0 < ε\nk : 𝕜\nhk0 : 0 < ‖k‖\nhkε : ‖k‖ < ε / r\nhk0' : k ≠ 0\nthis : k • closedBall p 0 r ∈ 𝓝 0\nx : E\nhx : x ∈ closedBall p 0 r\n⊢ k • x ∈ closedBall p 0 ε", "state_before": "case intro.intro\nR : Type ?u.1359761\nR' : Type ?u.1359764\n𝕜 : Type u_2\n𝕜₂ : Type ?u.1359770\n𝕜₃ : Type ?u.1359773\n𝕝 : Type ?u.1359776\nE : Type u_1\nE₂ : Type ?u.1359782\nE₃ : Type ?u.1359785\nF : Type ?u.1359788\nG : Type ?u.1359791\nι : Type ?u.1359794\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : SeminormedRing 𝕝\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : Module 𝕝 E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousConstSMul 𝕜 E\np : Seminorm 𝕜 E\nr : ℝ\nhr : 0 < r\nhp : closedBall p 0 r ∈ 𝓝 0\nε : ℝ\nhε : 0 < ε\nk : 𝕜\nhk0 : 0 < ‖k‖\nhkε : ‖k‖ < ε / r\nhk0' : k ≠ 0\nthis : k • closedBall p 0 r ∈ 𝓝 0\n⊢ closedBall p 0 ε ∈ 𝓝 0", "tactic": "refine' Filter.mem_of_superset this (smul_set_subset_iff.mpr fun x hx => _)" }, { "state_after": "case intro.intro\nR : Type ?u.1359761\nR' : Type ?u.1359764\n𝕜 : Type u_2\n𝕜₂ : Type ?u.1359770\n𝕜₃ : Type ?u.1359773\n𝕝 : Type ?u.1359776\nE : Type u_1\nE₂ : Type ?u.1359782\nE₃ : Type ?u.1359785\nF : Type ?u.1359788\nG : Type ?u.1359791\nι : Type ?u.1359794\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : SeminormedRing 𝕝\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : Module 𝕝 E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousConstSMul 𝕜 E\np : Seminorm 𝕜 E\nr : ℝ\nhr : 0 < r\nhp : closedBall p 0 r ∈ 𝓝 0\nε : ℝ\nhε : 0 < ε\nk : 𝕜\nhk0 : 0 < ‖k‖\nhkε : ‖k‖ < ε / r\nhk0' : k ≠ 0\nthis : k • closedBall p 0 r ∈ 𝓝 0\nx : E\nhx : x ∈ closedBall p 0 r\n⊢ ‖k‖ * ↑p x ≤ ε / r * r", "state_before": "case intro.intro\nR : Type ?u.1359761\nR' : Type ?u.1359764\n𝕜 : Type u_2\n𝕜₂ : Type ?u.1359770\n𝕜₃ : Type ?u.1359773\n𝕝 : Type ?u.1359776\nE : Type u_1\nE₂ : Type ?u.1359782\nE₃ : Type ?u.1359785\nF : Type ?u.1359788\nG : Type ?u.1359791\nι : Type ?u.1359794\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : SeminormedRing 𝕝\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : Module 𝕝 E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousConstSMul 𝕜 E\np : Seminorm 𝕜 E\nr : ℝ\nhr : 0 < r\nhp : closedBall p 0 r ∈ 𝓝 0\nε : ℝ\nhε : 0 < ε\nk : 𝕜\nhk0 : 0 < ‖k‖\nhkε : ‖k‖ < ε / r\nhk0' : k ≠ 0\nthis : k • closedBall p 0 r ∈ 𝓝 0\nx : E\nhx : x ∈ closedBall p 0 r\n⊢ k • x ∈ closedBall p 0 ε", "tactic": "rw [mem_closedBall_zero, map_smul_eq_mul, ← div_mul_cancel ε hr.ne.symm]" }, { "state_after": "case intro.intro.h₂\nR : Type ?u.1359761\nR' : Type ?u.1359764\n𝕜 : Type u_2\n𝕜₂ : Type ?u.1359770\n𝕜₃ : Type ?u.1359773\n𝕝 : Type ?u.1359776\nE : Type u_1\nE₂ : Type ?u.1359782\nE₃ : Type ?u.1359785\nF : Type ?u.1359788\nG : Type ?u.1359791\nι : Type ?u.1359794\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : SeminormedRing 𝕝\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : Module 𝕝 E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousConstSMul 𝕜 E\np : Seminorm 𝕜 E\nr : ℝ\nhr : 0 < r\nhp : closedBall p 0 r ∈ 𝓝 0\nε : ℝ\nhε : 0 < ε\nk : 𝕜\nhk0 : 0 < ‖k‖\nhkε : ‖k‖ < ε / r\nhk0' : k ≠ 0\nthis : k • closedBall p 0 r ∈ 𝓝 0\nx : E\nhx : x ∈ closedBall p 0 r\n⊢ ↑p x ≤ r", "state_before": "case intro.intro\nR : Type ?u.1359761\nR' : Type ?u.1359764\n𝕜 : Type u_2\n𝕜₂ : Type ?u.1359770\n𝕜₃ : Type ?u.1359773\n𝕝 : Type ?u.1359776\nE : Type u_1\nE₂ : Type ?u.1359782\nE₃ : Type ?u.1359785\nF : Type ?u.1359788\nG : Type ?u.1359791\nι : Type ?u.1359794\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : SeminormedRing 𝕝\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : Module 𝕝 E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousConstSMul 𝕜 E\np : Seminorm 𝕜 E\nr : ℝ\nhr : 0 < r\nhp : closedBall p 0 r ∈ 𝓝 0\nε : ℝ\nhε : 0 < ε\nk : 𝕜\nhk0 : 0 < ‖k‖\nhkε : ‖k‖ < ε / r\nhk0' : k ≠ 0\nthis : k • closedBall p 0 r ∈ 𝓝 0\nx : E\nhx : x ∈ closedBall p 0 r\n⊢ ‖k‖ * ↑p x ≤ ε / r * r", "tactic": "gcongr" }, { "state_after": "no goals", "state_before": "case intro.intro.h₂\nR : Type ?u.1359761\nR' : Type ?u.1359764\n𝕜 : Type u_2\n𝕜₂ : Type ?u.1359770\n𝕜₃ : Type ?u.1359773\n𝕝 : Type ?u.1359776\nE : Type u_1\nE₂ : Type ?u.1359782\nE₃ : Type ?u.1359785\nF : Type ?u.1359788\nG : Type ?u.1359791\nι : Type ?u.1359794\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : SeminormedRing 𝕝\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : Module 𝕝 E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousConstSMul 𝕜 E\np : Seminorm 𝕜 E\nr : ℝ\nhr : 0 < r\nhp : closedBall p 0 r ∈ 𝓝 0\nε : ℝ\nhε : 0 < ε\nk : 𝕜\nhk0 : 0 < ‖k‖\nhkε : ‖k‖ < ε / r\nhk0' : k ≠ 0\nthis : k • closedBall p 0 r ∈ 𝓝 0\nx : E\nhx : x ∈ closedBall p 0 r\n⊢ ↑p x ≤ r", "tactic": "exact p.mem_closedBall_zero.mp hx" }, { "state_after": "no goals", "state_before": "R : Type ?u.1359761\nR' : Type ?u.1359764\n𝕜 : Type u_2\n𝕜₂ : Type ?u.1359770\n𝕜₃ : Type ?u.1359773\n𝕝 : Type ?u.1359776\nE : Type u_1\nE₂ : Type ?u.1359782\nE₃ : Type ?u.1359785\nF : Type ?u.1359788\nG : Type ?u.1359791\nι : Type ?u.1359794\ninst✝⁶ : NontriviallyNormedField 𝕜\ninst✝⁵ : SeminormedRing 𝕝\ninst✝⁴ : AddCommGroup E\ninst✝³ : Module 𝕜 E\ninst✝² : Module 𝕝 E\ninst✝¹ : TopologicalSpace E\ninst✝ : ContinuousConstSMul 𝕜 E\np : Seminorm 𝕜 E\nr : ℝ\nhr : 0 < r\nhp : closedBall p 0 r ∈ 𝓝 0\nε : ℝ\nhε : 0 < ε\nthis : closedBall p 0 ε ∈ 𝓝 0\n⊢ ∀ᶠ (x : E) in 𝓝 0, ↑p x ∈ Metric.closedBall 0 ε", "tactic": "rwa [Seminorm.closedBall_zero_eq_preimage_closedBall] at this" } ]
[ 1125, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1112, 1 ]
Mathlib/Combinatorics/SetFamily/Kleitman.lean
Finset.card_biUnion_le_of_intersecting
[ { "state_after": "ι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns : Finset ι\nf : ι → Finset (Finset α)\nhf : ∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)\nthis : DecidableEq ι\n⊢ card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)", "state_before": "ι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns : Finset ι\nf : ι → Finset (Finset α)\nhf : ∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)\n⊢ card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)", "tactic": "have : DecidableEq ι := by\n classical\n infer_instance" }, { "state_after": "case inl\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns : Finset ι\nf : ι → Finset (Finset α)\nhf : ∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)\nthis : DecidableEq ι\nhs : Fintype.card α ≤ card s\n⊢ card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\n\ncase inr\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns : Finset ι\nf : ι → Finset (Finset α)\nhf : ∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)\nthis : DecidableEq ι\nhs : card s ≤ Fintype.card α\n⊢ card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)", "state_before": "ι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns : Finset ι\nf : ι → Finset (Finset α)\nhf : ∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)\nthis : DecidableEq ι\n⊢ card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)", "tactic": "obtain hs | hs := le_total (Fintype.card α) s.card" }, { "state_after": "case inr.empty\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s ≤ Fintype.card α\nf : ι → Finset (Finset α)\nhf : ∀ (i : ι), i ∈ ∅ → Set.Intersecting ↑(f i)\nhs : card ∅ ≤ Fintype.card α\n⊢ card (Finset.biUnion ∅ f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card ∅)\n\ncase inr.cons\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\n⊢ card (Finset.biUnion (cons i s hi) f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi))", "state_before": "case inr\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns : Finset ι\nf : ι → Finset (Finset α)\nhf : ∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)\nthis : DecidableEq ι\nhs : card s ≤ Fintype.card α\n⊢ card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)", "tactic": "induction' s using Finset.cons_induction with i s hi ih generalizing f" }, { "state_after": "case inr.cons\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\n⊢ card (Finset.biUnion (cons i s hi) f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi))", "state_before": "case inr.cons\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\n⊢ card (Finset.biUnion (cons i s hi) f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi))", "tactic": "set f' : ι → Finset (Finset α) :=\n fun j ↦ if hj : j ∈ cons i s hi then (hf j hj).exists_card_eq.choose else ∅" }, { "state_after": "case inr.cons\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\n⊢ card (Finset.biUnion (cons i s hi) f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi))", "state_before": "case inr.cons\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\n⊢ card (Finset.biUnion (cons i s hi) f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi))", "tactic": "have hf₁ : ∀ j, j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * (f' j).card =\n 2 ^ Fintype.card α ∧ (f' j : Set (Finset α)).Intersecting := by\n rintro j hj\n simp_rw [dif_pos hj, ← Fintype.card_finset]\n exact Classical.choose_spec (hf j hj).exists_card_eq" }, { "state_after": "case inr.cons\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ card (Finset.biUnion (cons i s hi) f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi))", "state_before": "case inr.cons\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\n⊢ card (Finset.biUnion (cons i s hi) f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi))", "tactic": "have hf₂ : ∀ j, j ∈ cons i s hi → IsUpperSet (f' j : Set (Finset α)) := by\n refine' fun j hj ↦ (hf₁ _ hj).2.2.isUpperSet' ((hf₁ _ hj).2.2.is_max_iff_card_eq.2 _)\n rw [Fintype.card_finset]\n exact (hf₁ _ hj).2.1" }, { "state_after": "case inr.cons\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ card (Finset.biUnion (cons i s hi) fun j => f' j) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi))", "state_before": "case inr.cons\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ card (Finset.biUnion (cons i s hi) f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi))", "tactic": "refine' (card_le_of_subset <| biUnion_mono fun j hj ↦ (hf₁ _ hj).1).trans _" }, { "state_after": "case inr.cons\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ card (Finset.biUnion (insert i s) fun j => f' j) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi))", "state_before": "case inr.cons\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ card (Finset.biUnion (cons i s hi) fun j => f' j) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi))", "tactic": "nth_rw 1 [cons_eq_insert i]" }, { "state_after": "case inr.cons\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ card (f' i ∪ Finset.biUnion s fun j => f' j) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi))", "state_before": "case inr.cons\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ card (Finset.biUnion (insert i s) fun j => f' j) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi))", "tactic": "rw [biUnion_insert]" }, { "state_after": "case inr.cons\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ card (f' i) + card ((f' i ∪ Finset.biUnion s fun j => f' j) \\ f' i) ≤\n 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi))", "state_before": "case inr.cons\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ card (f' i ∪ Finset.biUnion s fun j => f' j) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi))", "tactic": "refine' (card_mono <| @le_sup_sdiff _ _ _ <| f' i).trans ((card_union_le _ _).trans _)" }, { "state_after": "case inr.cons\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ card (f' i) + card ((Finset.biUnion s fun j => f' j) ∩ f' iᶜ) ≤\n 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi))", "state_before": "case inr.cons\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ card (f' i) + card ((f' i ∪ Finset.biUnion s fun j => f' j) \\ f' i) ≤\n 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi))", "tactic": "rw [union_sdiff_left, sdiff_eq_inter_compl]" }, { "state_after": "case inr.cons\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ 2 ^ (Fintype.card α + 1) * (card (f' i) + card ((Finset.biUnion s fun j => f' j) ∩ f' iᶜ)) ≤\n 2 ^ (Fintype.card α + 1) * (2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi)))", "state_before": "case inr.cons\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ card (f' i) + card ((Finset.biUnion s fun j => f' j) ∩ f' iᶜ) ≤\n 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi))", "tactic": "refine' le_of_mul_le_mul_left _ (pow_pos (zero_lt_two' ℕ) <| Fintype.card α + 1)" }, { "state_after": "case inr.cons\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ 2 ^ Fintype.card α * (2 * card (f' i)) + 2 * (2 ^ Fintype.card α * card ((Finset.biUnion s fun j => f' j) ∩ f' iᶜ)) ≤\n 2 * 2 ^ Fintype.card α * (2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi)))", "state_before": "case inr.cons\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ 2 ^ (Fintype.card α + 1) * (card (f' i) + card ((Finset.biUnion s fun j => f' j) ∩ f' iᶜ)) ≤\n 2 ^ (Fintype.card α + 1) * (2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi)))", "tactic": "rw [pow_succ', mul_add, mul_assoc, mul_comm _ 2, mul_assoc]" }, { "state_after": "case inr.cons.refine'_1\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ IsUpperSet ↑(Finset.biUnion s fun j => f' j)\n\ncase inr.cons.refine'_2\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ IsLowerSet ↑(f' iᶜ)\n\ncase inr.cons.refine'_3\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ 2 ^ Fintype.card α * Fintype.card (Finset α) + 2 * (card (Finset.biUnion s fun j => f' j) * card (f' iᶜ)) ≤\n 2 * 2 ^ Fintype.card α * (2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi)))", "state_before": "case inr.cons\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ 2 ^ Fintype.card α * (2 * card (f' i)) + 2 * (2 ^ Fintype.card α * card ((Finset.biUnion s fun j => f' j) ∩ f' iᶜ)) ≤\n 2 * 2 ^ Fintype.card α * (2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi)))", "tactic": "refine' (add_le_add\n ((mul_le_mul_left <| pow_pos (zero_lt_two' ℕ) _).2\n (hf₁ _ <| mem_cons_self _ _).2.2.card_le) <|\n (mul_le_mul_left <| zero_lt_two' ℕ).2 <| IsUpperSet.card_inter_le_finset _ _).trans _" }, { "state_after": "case inr.cons.refine'_3\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ 2 ^ Fintype.card α * (2 ^ Fintype.card α + card (Finset.biUnion s fun j => f' j)) ≤\n 2 ^ Fintype.card α * (2 * (2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi))))", "state_before": "case inr.cons.refine'_3\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ 2 ^ Fintype.card α * Fintype.card (Finset α) + 2 * (card (Finset.biUnion s fun j => f' j) * card (f' iᶜ)) ≤\n 2 * 2 ^ Fintype.card α * (2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi)))", "tactic": "rw [mul_tsub, card_compl, Fintype.card_finset, mul_left_comm, mul_tsub,\n (hf₁ _ <| mem_cons_self _ _).2.1, two_mul, add_tsub_cancel_left, ← mul_tsub, ← mul_two,\n mul_assoc, ← add_mul, mul_comm]" }, { "state_after": "case inr.cons.refine'_3\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ 2 ^ Fintype.card α + card (Finset.biUnion s fun j => f' j) ≤\n 2 * (2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi)))", "state_before": "case inr.cons.refine'_3\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ 2 ^ Fintype.card α * (2 ^ Fintype.card α + card (Finset.biUnion s fun j => f' j)) ≤\n 2 ^ Fintype.card α * (2 * (2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi))))", "tactic": "refine' mul_le_mul_left' _ _" }, { "state_after": "case inr.cons.refine'_3\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ 2 ^ Fintype.card α + (2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)) ≤\n 2 * (2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi)))", "state_before": "case inr.cons.refine'_3\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ 2 ^ Fintype.card α + card (Finset.biUnion s fun j => f' j) ≤\n 2 * (2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi)))", "tactic": "refine' (add_le_add_left\n (ih _ (fun i hi ↦ (hf₁ _ <| subset_cons _ hi).2.2)\n ((card_le_of_subset <| subset_cons _).trans hs)) _).trans _" }, { "state_after": "no goals", "state_before": "case inr.cons.refine'_3\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ 2 ^ Fintype.card α + (2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)) ≤\n 2 * (2 ^ Fintype.card α - 2 ^ (Fintype.card α - card (cons i s hi)))", "tactic": "rw [mul_tsub, two_mul, ← pow_succ,\n ← add_tsub_assoc_of_le (pow_le_pow' (one_le_two : (1 : ℕ) ≤ 2) tsub_le_self),\n tsub_add_eq_add_tsub hs, card_cons, add_tsub_add_eq_tsub_right]" }, { "state_after": "no goals", "state_before": "ι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns : Finset ι\nf : ι → Finset (Finset α)\nhf : ∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)\n⊢ DecidableEq ι", "tactic": "classical\ninfer_instance" }, { "state_after": "no goals", "state_before": "ι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns : Finset ι\nf : ι → Finset (Finset α)\nhf : ∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)\n⊢ DecidableEq ι", "tactic": "infer_instance" }, { "state_after": "case inl\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns : Finset ι\nf : ι → Finset (Finset α)\nhf : ∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)\nthis : DecidableEq ι\nhs : Fintype.card α ≤ card s\n⊢ card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 1", "state_before": "case inl\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns : Finset ι\nf : ι → Finset (Finset α)\nhf : ∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)\nthis : DecidableEq ι\nhs : Fintype.card α ≤ card s\n⊢ card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)", "tactic": "rw [tsub_eq_zero_of_le hs, pow_zero]" }, { "state_after": "case inl\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns : Finset ι\nf : ι → Finset (Finset α)\nhf : ∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)\nthis : DecidableEq ι\nhs : Fintype.card α ≤ card s\n⊢ card ({⊥}ᶜ) = 2 ^ Fintype.card α - 1", "state_before": "case inl\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns : Finset ι\nf : ι → Finset (Finset α)\nhf : ∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)\nthis : DecidableEq ι\nhs : Fintype.card α ≤ card s\n⊢ card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 1", "tactic": "refine' (card_le_of_subset <| biUnion_subset.2 fun i hi a ha ↦\n mem_compl.2 <| not_mem_singleton.2 <| (hf _ hi).ne_bot ha).trans_eq _" }, { "state_after": "no goals", "state_before": "case inl\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns : Finset ι\nf : ι → Finset (Finset α)\nhf : ∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)\nthis : DecidableEq ι\nhs : Fintype.card α ≤ card s\n⊢ card ({⊥}ᶜ) = 2 ^ Fintype.card α - 1", "tactic": "rw [card_compl, Fintype.card_finset, card_singleton]" }, { "state_after": "no goals", "state_before": "case inr.empty\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s ≤ Fintype.card α\nf : ι → Finset (Finset α)\nhf : ∀ (i : ι), i ∈ ∅ → Set.Intersecting ↑(f i)\nhs : card ∅ ≤ Fintype.card α\n⊢ card (Finset.biUnion ∅ f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card ∅)", "tactic": "simp" }, { "state_after": "ι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nj : ι\nhj : j ∈ cons i s hi\n⊢ f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)", "state_before": "ι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\n⊢ ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)", "tactic": "rintro j hj" }, { "state_after": "ι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nj : ι\nhj : j ∈ cons i s hi\n⊢ f j ⊆ Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t) ∧\n 2 * card (Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)) =\n Fintype.card (Finset α) ∧\n Set.Intersecting ↑(Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t))", "state_before": "ι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nj : ι\nhj : j ∈ cons i s hi\n⊢ f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)", "tactic": "simp_rw [dif_pos hj, ← Fintype.card_finset]" }, { "state_after": "no goals", "state_before": "ι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nj : ι\nhj : j ∈ cons i s hi\n⊢ f j ⊆ Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t) ∧\n 2 * card (Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)) =\n Fintype.card (Finset α) ∧\n Set.Intersecting ↑(Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t))", "tactic": "exact Classical.choose_spec (hf j hj).exists_card_eq" }, { "state_after": "ι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nj : ι\nhj : j ∈ cons i s hi\n⊢ 2 * card (f' j) = Fintype.card (Finset α)", "state_before": "ι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\n⊢ ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)", "tactic": "refine' fun j hj ↦ (hf₁ _ hj).2.2.isUpperSet' ((hf₁ _ hj).2.2.is_max_iff_card_eq.2 _)" }, { "state_after": "ι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nj : ι\nhj : j ∈ cons i s hi\n⊢ 2 * card (f' j) = 2 ^ Fintype.card α", "state_before": "ι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nj : ι\nhj : j ∈ cons i s hi\n⊢ 2 * card (f' j) = Fintype.card (Finset α)", "tactic": "rw [Fintype.card_finset]" }, { "state_after": "no goals", "state_before": "ι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nj : ι\nhj : j ∈ cons i s hi\n⊢ 2 * card (f' j) = 2 ^ Fintype.card α", "tactic": "exact (hf₁ _ hj).2.1" }, { "state_after": "case inr.cons.refine'_1\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ IsUpperSet (⋃ (x : ι) (_ : x ∈ ↑s), ↑(f' x))", "state_before": "case inr.cons.refine'_1\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ IsUpperSet ↑(Finset.biUnion s fun j => f' j)", "tactic": "rw [coe_biUnion]" }, { "state_after": "no goals", "state_before": "case inr.cons.refine'_1\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ IsUpperSet (⋃ (x : ι) (_ : x ∈ ↑s), ↑(f' x))", "tactic": "exact isUpperSet_iUnion₂ fun i hi ↦ hf₂ _ <| subset_cons _ hi" }, { "state_after": "case inr.cons.refine'_2\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ IsLowerSet (↑(f' i)ᶜ)", "state_before": "case inr.cons.refine'_2\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ IsLowerSet ↑(f' iᶜ)", "tactic": "rw [coe_compl]" }, { "state_after": "no goals", "state_before": "case inr.cons.refine'_2\nι : Type u_1\nα : Type u_2\ninst✝² : Fintype α\ninst✝¹ : DecidableEq α\ninst✝ : Nonempty α\ns✝ : Finset ι\nf✝ : ι → Finset (Finset α)\nhf✝ : ∀ (i : ι), i ∈ s✝ → Set.Intersecting ↑(f✝ i)\nthis : DecidableEq ι\nhs✝ : card s✝ ≤ Fintype.card α\ni : ι\ns : Finset ι\nhi : ¬i ∈ s\nih :\n ∀ (f : ι → Finset (Finset α)),\n (∀ (i : ι), i ∈ s → Set.Intersecting ↑(f i)) →\n card s ≤ Fintype.card α → card (Finset.biUnion s f) ≤ 2 ^ Fintype.card α - 2 ^ (Fintype.card α - card s)\nf : ι → Finset (Finset α)\nhf : ∀ (i_1 : ι), i_1 ∈ cons i s hi → Set.Intersecting ↑(f i_1)\nhs : card (cons i s hi) ≤ Fintype.card α\nf' : ι → Finset (Finset α) :=\n fun j =>\n if hj : j ∈ cons i s hi then\n Exists.choose (_ : ∃ t, f j ⊆ t ∧ 2 * card t = Fintype.card (Finset α) ∧ Set.Intersecting ↑t)\n else ∅\nhf₁ : ∀ (j : ι), j ∈ cons i s hi → f j ⊆ f' j ∧ 2 * card (f' j) = 2 ^ Fintype.card α ∧ Set.Intersecting ↑(f' j)\nhf₂ : ∀ (j : ι), j ∈ cons i s hi → IsUpperSet ↑(f' j)\n⊢ IsLowerSet (↑(f' i)ᶜ)", "tactic": "exact (hf₂ _ <| mem_cons_self _ _).compl" } ]
[ 88, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 40, 1 ]
Mathlib/LinearAlgebra/Matrix/GeneralLinearGroup.lean
Matrix.SpecialLinearGroup.coeToGL_det
[]
[ 172, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 170, 1 ]
Mathlib/Analysis/Calculus/DiffContOnCl.lean
DiffContOnCl.mono
[]
[ 90, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 89, 11 ]
Mathlib/Analysis/Calculus/Deriv/Basic.lean
HasDerivWithinAt.congr_of_eventuallyEq
[]
[ 590, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 588, 1 ]
Mathlib/Computability/Primrec.lean
Primrec.succ
[]
[ 268, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 267, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.inf_eq_inter
[]
[ 1316, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1315, 1 ]
Mathlib/Data/Matrix/Kronecker.lean
Matrix.one_kronecker
[]
[ 356, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 352, 1 ]
src/lean/Init/Data/List/Basic.lean
List.of_concat_eq_concat
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nas bs : List α\na b : α\nh : concat as a = concat bs b\n⊢ as = bs ∧ a = b", "tactic": "match as, bs with\n| [], [] => simp [concat] at h; simp [h]\n| [_], [] => simp [concat] at h\n| _::_::_, [] => simp [concat] at h\n| [], [_] => simp [concat] at h\n| [], _::_::_ => simp [concat] at h\n| _::_, _::_ => simp [concat] at h; simp [h]; apply of_concat_eq_concat h.2" }, { "state_after": "α : Type u\nβ : Type v\nγ : Type w\nas bs : List α\na b : α\nh : a = b\n⊢ nil = nil ∧ a = b", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nas bs : List α\na b : α\nh : concat nil a = concat nil b\n⊢ nil = nil ∧ a = b", "tactic": "simp [concat] at h" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nas bs : List α\na b : α\nh : a = b\n⊢ nil = nil ∧ a = b", "tactic": "simp [h]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nas bs : List α\na b head✝ : α\nh : concat (head✝ :: nil) a = concat nil b\n⊢ head✝ :: nil = nil ∧ a = b", "tactic": "simp [concat] at h" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nas bs : List α\na b head✝¹ head✝ : α\ntail✝ : List α\nh : concat (head✝¹ :: head✝ :: tail✝) a = concat nil b\n⊢ head✝¹ :: head✝ :: tail✝ = nil ∧ a = b", "tactic": "simp [concat] at h" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nas bs : List α\na b head✝ : α\nh : concat nil a = concat (head✝ :: nil) b\n⊢ nil = head✝ :: nil ∧ a = b", "tactic": "simp [concat] at h" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nas bs : List α\na b head✝¹ head✝ : α\ntail✝ : List α\nh : concat nil a = concat (head✝¹ :: head✝ :: tail✝) b\n⊢ nil = head✝¹ :: head✝ :: tail✝ ∧ a = b", "tactic": "simp [concat] at h" }, { "state_after": "α : Type u\nβ : Type v\nγ : Type w\nas bs : List α\na b head✝¹ : α\ntail✝¹ : List α\nhead✝ : α\ntail✝ : List α\nh : head✝¹ = head✝ ∧ concat tail✝¹ a = concat tail✝ b\n⊢ head✝¹ :: tail✝¹ = head✝ :: tail✝ ∧ a = b", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nas bs : List α\na b head✝¹ : α\ntail✝¹ : List α\nhead✝ : α\ntail✝ : List α\nh : concat (head✝¹ :: tail✝¹) a = concat (head✝ :: tail✝) b\n⊢ head✝¹ :: tail✝¹ = head✝ :: tail✝ ∧ a = b", "tactic": "simp [concat] at h" }, { "state_after": "α : Type u\nβ : Type v\nγ : Type w\nas bs : List α\na b head✝¹ : α\ntail✝¹ : List α\nhead✝ : α\ntail✝ : List α\nh : head✝¹ = head✝ ∧ concat tail✝¹ a = concat tail✝ b\n⊢ tail✝¹ = tail✝ ∧ a = b", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nas bs : List α\na b head✝¹ : α\ntail✝¹ : List α\nhead✝ : α\ntail✝ : List α\nh : head✝¹ = head✝ ∧ concat tail✝¹ a = concat tail✝ b\n⊢ head✝¹ :: tail✝¹ = head✝ :: tail✝ ∧ a = b", "tactic": "simp [h]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nas bs : List α\na b head✝¹ : α\ntail✝¹ : List α\nhead✝ : α\ntail✝ : List α\nh : head✝¹ = head✝ ∧ concat tail✝¹ a = concat tail✝ b\n⊢ tail✝¹ = tail✝ ∧ a = b", "tactic": "apply of_concat_eq_concat h.2" } ]
[ 848, 78 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 841, 1 ]
Mathlib/Data/Num/Lemmas.lean
ZNum.to_of_int
[ { "state_after": "no goals", "state_before": "α : Type ?u.1062538\nn : ℤ\n⊢ ↑↑0 = 0", "tactic": "simp" }, { "state_after": "no goals", "state_before": "α : Type ?u.1062538\nn : ℤ\n⊢ ∀ (k : ℤ), 0 ≤ k → ↑↑k = k → ↑↑(k + 1) = k + 1", "tactic": "simp" }, { "state_after": "no goals", "state_before": "α : Type ?u.1062538\nn : ℤ\n⊢ ∀ (k : ℤ), k ≤ 0 → ↑↑k = k → ↑↑(k - 1) = k - 1", "tactic": "simp" } ]
[ 1556, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1555, 1 ]
Std/Data/Nat/Gcd.lean
Nat.gcd_assoc
[]
[ 79, 71 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 70, 1 ]
Mathlib/MeasureTheory/Decomposition/Lebesgue.lean
MeasureTheory.Measure.withDensity_rnDeriv_le
[ { "state_after": "case pos\nα : Type u_1\nβ : Type ?u.34335\nm : MeasurableSpace α\nμ✝ ν✝ μ ν : Measure α\nhl : HaveLebesgueDecomposition μ ν\n⊢ withDensity ν (rnDeriv μ ν) ≤ μ\n\ncase neg\nα : Type u_1\nβ : Type ?u.34335\nm : MeasurableSpace α\nμ✝ ν✝ μ ν : Measure α\nhl : ¬HaveLebesgueDecomposition μ ν\n⊢ withDensity ν (rnDeriv μ ν) ≤ μ", "state_before": "α : Type u_1\nβ : Type ?u.34335\nm : MeasurableSpace α\nμ✝ ν✝ μ ν : Measure α\n⊢ withDensity ν (rnDeriv μ ν) ≤ μ", "tactic": "by_cases hl : HaveLebesgueDecomposition μ ν" }, { "state_after": "case pos.intro\nα : Type u_1\nβ : Type ?u.34335\nm : MeasurableSpace α\nμ✝ ν✝ μ ν : Measure α\nhl : HaveLebesgueDecomposition μ ν\nleft✝ : singularPart μ ν ⟂ₘ ν\nh : μ = singularPart μ ν + withDensity ν (rnDeriv μ ν)\n⊢ withDensity ν (rnDeriv μ ν) ≤ μ", "state_before": "case pos\nα : Type u_1\nβ : Type ?u.34335\nm : MeasurableSpace α\nμ✝ ν✝ μ ν : Measure α\nhl : HaveLebesgueDecomposition μ ν\n⊢ withDensity ν (rnDeriv μ ν) ≤ μ", "tactic": "cases' (haveLebesgueDecomposition_spec μ ν).2 with _ h" }, { "state_after": "case pos.intro\nα : Type u_1\nβ : Type ?u.34335\nm : MeasurableSpace α\nμ✝ ν✝ μ ν : Measure α\nhl : HaveLebesgueDecomposition μ ν\nleft✝ : singularPart μ ν ⟂ₘ ν\nh : μ = singularPart μ ν + withDensity ν (rnDeriv μ ν)\n⊢ withDensity ν (rnDeriv μ ν) ≤ singularPart μ ν + withDensity ν (rnDeriv μ ν)", "state_before": "case pos.intro\nα : Type u_1\nβ : Type ?u.34335\nm : MeasurableSpace α\nμ✝ ν✝ μ ν : Measure α\nhl : HaveLebesgueDecomposition μ ν\nleft✝ : singularPart μ ν ⟂ₘ ν\nh : μ = singularPart μ ν + withDensity ν (rnDeriv μ ν)\n⊢ withDensity ν (rnDeriv μ ν) ≤ μ", "tactic": "conv_rhs => rw [h]" }, { "state_after": "no goals", "state_before": "case pos.intro\nα : Type u_1\nβ : Type ?u.34335\nm : MeasurableSpace α\nμ✝ ν✝ μ ν : Measure α\nhl : HaveLebesgueDecomposition μ ν\nleft✝ : singularPart μ ν ⟂ₘ ν\nh : μ = singularPart μ ν + withDensity ν (rnDeriv μ ν)\n⊢ withDensity ν (rnDeriv μ ν) ≤ singularPart μ ν + withDensity ν (rnDeriv μ ν)", "tactic": "exact Measure.le_add_left le_rfl" }, { "state_after": "case neg\nα : Type u_1\nβ : Type ?u.34335\nm : MeasurableSpace α\nμ✝ ν✝ μ ν : Measure α\nhl : ¬HaveLebesgueDecomposition μ ν\n⊢ 0 ≤ μ", "state_before": "case neg\nα : Type u_1\nβ : Type ?u.34335\nm : MeasurableSpace α\nμ✝ ν✝ μ ν : Measure α\nhl : ¬HaveLebesgueDecomposition μ ν\n⊢ withDensity ν (rnDeriv μ ν) ≤ μ", "tactic": "rw [rnDeriv, dif_neg hl, withDensity_zero]" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_1\nβ : Type ?u.34335\nm : MeasurableSpace α\nμ✝ ν✝ μ ν : Measure α\nhl : ¬HaveLebesgueDecomposition μ ν\n⊢ 0 ≤ μ", "tactic": "exact Measure.zero_le μ" } ]
[ 156, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 150, 1 ]
Mathlib/Algebra/Module/LinearMap.lean
LinearMap.restrictScalars_apply
[]
[ 465, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 464, 1 ]
Mathlib/Algebra/Regular/SMul.lean
IsSMulRegular.of_smul_eq_one
[ { "state_after": "R : Type u_2\nS : Type u_1\nM : Type u_3\na b : R\ns : S\ninst✝⁴ : Monoid S\ninst✝³ : SMul R M\ninst✝² : SMul R S\ninst✝¹ : MulAction S M\ninst✝ : IsScalarTower R S M\nh : a • s = 1\n⊢ IsSMulRegular M 1", "state_before": "R : Type u_2\nS : Type u_1\nM : Type u_3\na b : R\ns : S\ninst✝⁴ : Monoid S\ninst✝³ : SMul R M\ninst✝² : SMul R S\ninst✝¹ : MulAction S M\ninst✝ : IsScalarTower R S M\nh : a • s = 1\n⊢ IsSMulRegular M (a • s)", "tactic": "rw [h]" }, { "state_after": "no goals", "state_before": "R : Type u_2\nS : Type u_1\nM : Type u_3\na b : R\ns : S\ninst✝⁴ : Monoid S\ninst✝³ : SMul R M\ninst✝² : SMul R S\ninst✝¹ : MulAction S M\ninst✝ : IsScalarTower R S M\nh : a • s = 1\n⊢ IsSMulRegular M 1", "tactic": "exact one M" } ]
[ 180, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 176, 1 ]
Mathlib/Topology/Sets/Compacts.lean
TopologicalSpace.CompactOpens.map_comp
[]
[ 595, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 592, 1 ]
Mathlib/LinearAlgebra/Matrix/Block.lean
Matrix.equiv_block_det
[ { "state_after": "no goals", "state_before": "α : Type ?u.40762\nβ : Type ?u.40765\nm : Type u_1\nn : Type ?u.40771\no : Type ?u.40774\nm' : α → Type ?u.40779\nn' : α → Type ?u.40784\nR : Type v\ninst✝⁶ : CommRing R\nM✝ N : Matrix m m R\nb : m → α\ninst✝⁵ : DecidableEq m\ninst✝⁴ : Fintype m\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\nM : Matrix m m R\np q : m → Prop\ninst✝¹ : DecidablePred p\ninst✝ : DecidablePred q\ne : ∀ (x : m), q x ↔ p x\n⊢ det (toSquareBlockProp M p) = det (toSquareBlockProp M q)", "tactic": "convert Matrix.det_reindex_self (Equiv.subtypeEquivRight e) (toSquareBlockProp M q)" } ]
[ 157, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 155, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.Measure.restrict_eq_self_of_ae_mem
[]
[ 1794, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1790, 1 ]
Mathlib/Order/Zorn.lean
zorn_nonempty_preorder
[]
[ 115, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 113, 1 ]
Mathlib/Data/Finset/Prod.lean
Finset.subset_product_image_snd
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.6733\ns s' : Finset α\nt t' : Finset β\na : α\nb : β\ninst✝ : DecidableEq β\ni : β\n⊢ i ∈ image Prod.snd (s ×ˢ t) → i ∈ t", "tactic": "simp (config := { contextual := true }) [mem_image]" } ]
[ 75, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 74, 1 ]
Mathlib/Data/List/Forall2.lean
List.sublistForall₂_iff
[ { "state_after": "case mp\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₁ : List α\nl₂ : List β\nh : SublistForall₂ R l₁ l₂\n⊢ ∃ l, Forall₂ R l₁ l ∧ l <+ l₂\n\ncase mpr\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₁ : List α\nl₂ : List β\nh : ∃ l, Forall₂ R l₁ l ∧ l <+ l₂\n⊢ SublistForall₂ R l₁ l₂", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₁ : List α\nl₂ : List β\n⊢ SublistForall₂ R l₁ l₂ ↔ ∃ l, Forall₂ R l₁ l ∧ l <+ l₂", "tactic": "constructor <;> intro h" }, { "state_after": "case mp.nil\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₁ : List α\nl₂ l✝ : List β\n⊢ ∃ l, Forall₂ R [] l ∧ l <+ l✝\n\ncase mp.cons\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₁ : List α\nl₂ : List β\na : α\nb : β\nl1 : List α\nl2 : List β\nrab : R a b\na✝ : SublistForall₂ R l1 l2\nih : ∃ l, Forall₂ R l1 l ∧ l <+ l2\n⊢ ∃ l, Forall₂ R (a :: l1) l ∧ l <+ b :: l2\n\ncase mp.cons_right\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₁ : List α\nl₂ : List β\nb : β\nl1 : List α\nl2 : List β\na✝ : SublistForall₂ R l1 l2\nih : ∃ l, Forall₂ R l1 l ∧ l <+ l2\n⊢ ∃ l, Forall₂ R l1 l ∧ l <+ b :: l2", "state_before": "case mp\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₁ : List α\nl₂ : List β\nh : SublistForall₂ R l₁ l₂\n⊢ ∃ l, Forall₂ R l₁ l ∧ l <+ l₂", "tactic": "induction' h with _ a b l1 l2 rab _ ih b l1 l2 _ ih" }, { "state_after": "no goals", "state_before": "case mp.nil\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₁ : List α\nl₂ l✝ : List β\n⊢ ∃ l, Forall₂ R [] l ∧ l <+ l✝", "tactic": "exact ⟨nil, Forall₂.nil, nil_sublist _⟩" }, { "state_after": "case mp.cons.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₁ : List α\nl₂ : List β\na : α\nb : β\nl1 : List α\nl2 : List β\nrab : R a b\na✝ : SublistForall₂ R l1 l2\nl : List β\nhl1 : Forall₂ R l1 l\nhl2 : l <+ l2\n⊢ ∃ l, Forall₂ R (a :: l1) l ∧ l <+ b :: l2", "state_before": "case mp.cons\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₁ : List α\nl₂ : List β\na : α\nb : β\nl1 : List α\nl2 : List β\nrab : R a b\na✝ : SublistForall₂ R l1 l2\nih : ∃ l, Forall₂ R l1 l ∧ l <+ l2\n⊢ ∃ l, Forall₂ R (a :: l1) l ∧ l <+ b :: l2", "tactic": "obtain ⟨l, hl1, hl2⟩ := ih" }, { "state_after": "no goals", "state_before": "case mp.cons.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₁ : List α\nl₂ : List β\na : α\nb : β\nl1 : List α\nl2 : List β\nrab : R a b\na✝ : SublistForall₂ R l1 l2\nl : List β\nhl1 : Forall₂ R l1 l\nhl2 : l <+ l2\n⊢ ∃ l, Forall₂ R (a :: l1) l ∧ l <+ b :: l2", "tactic": "refine' ⟨b :: l, Forall₂.cons rab hl1, hl2.cons_cons b⟩" }, { "state_after": "case mp.cons_right.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₁ : List α\nl₂ : List β\nb : β\nl1 : List α\nl2 : List β\na✝ : SublistForall₂ R l1 l2\nl : List β\nhl1 : Forall₂ R l1 l\nhl2 : l <+ l2\n⊢ ∃ l, Forall₂ R l1 l ∧ l <+ b :: l2", "state_before": "case mp.cons_right\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₁ : List α\nl₂ : List β\nb : β\nl1 : List α\nl2 : List β\na✝ : SublistForall₂ R l1 l2\nih : ∃ l, Forall₂ R l1 l ∧ l <+ l2\n⊢ ∃ l, Forall₂ R l1 l ∧ l <+ b :: l2", "tactic": "obtain ⟨l, hl1, hl2⟩ := ih" }, { "state_after": "no goals", "state_before": "case mp.cons_right.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₁ : List α\nl₂ : List β\nb : β\nl1 : List α\nl2 : List β\na✝ : SublistForall₂ R l1 l2\nl : List β\nhl1 : Forall₂ R l1 l\nhl2 : l <+ l2\n⊢ ∃ l, Forall₂ R l1 l ∧ l <+ b :: l2", "tactic": "exact ⟨l, hl1, hl2.trans (Sublist.cons _ (Sublist.refl _))⟩" }, { "state_after": "case mpr.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₁ : List α\nl₂ l : List β\nhl1 : Forall₂ R l₁ l\nhl2 : l <+ l₂\n⊢ SublistForall₂ R l₁ l₂", "state_before": "case mpr\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₁ : List α\nl₂ : List β\nh : ∃ l, Forall₂ R l₁ l ∧ l <+ l₂\n⊢ SublistForall₂ R l₁ l₂", "tactic": "obtain ⟨l, hl1, hl2⟩ := h" }, { "state_after": "case mpr.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₂ l : List β\nhl2 : l <+ l₂\n⊢ ∀ {l₁ : List α}, Forall₂ R l₁ l → SublistForall₂ R l₁ l₂", "state_before": "case mpr.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₁ : List α\nl₂ l : List β\nhl1 : Forall₂ R l₁ l\nhl2 : l <+ l₂\n⊢ SublistForall₂ R l₁ l₂", "tactic": "revert l₁" }, { "state_after": "case mpr.intro.intro.slnil\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₂ l : List β\nl₁ : List α\nhl1 : Forall₂ R l₁ []\n⊢ SublistForall₂ R l₁ []\n\ncase mpr.intro.intro.cons\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₂ l l₁✝ l₂✝ : List β\na✝¹ : β\na✝ : l₁✝ <+ l₂✝\nih : ∀ {l₁ : List α}, Forall₂ R l₁ l₁✝ → SublistForall₂ R l₁ l₂✝\nl₁ : List α\nhl1 : Forall₂ R l₁ l₁✝\n⊢ SublistForall₂ R l₁ (a✝¹ :: l₂✝)\n\ncase mpr.intro.intro.cons₂\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₂ l l₁✝ l₂✝ : List β\na✝¹ : β\na✝ : l₁✝ <+ l₂✝\nih : ∀ {l₁ : List α}, Forall₂ R l₁ l₁✝ → SublistForall₂ R l₁ l₂✝\nl₁ : List α\nhl1 : Forall₂ R l₁ (a✝¹ :: l₁✝)\n⊢ SublistForall₂ R l₁ (a✝¹ :: l₂✝)", "state_before": "case mpr.intro.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₂ l : List β\nhl2 : l <+ l₂\n⊢ ∀ {l₁ : List α}, Forall₂ R l₁ l → SublistForall₂ R l₁ l₂", "tactic": "induction' hl2 with _ _ _ _ ih _ _ _ _ ih <;> intro l₁ hl1" }, { "state_after": "case mpr.intro.intro.slnil\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₂ l : List β\nl₁ : List α\nhl1 : Forall₂ R l₁ []\n⊢ SublistForall₂ R [] []", "state_before": "case mpr.intro.intro.slnil\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₂ l : List β\nl₁ : List α\nhl1 : Forall₂ R l₁ []\n⊢ SublistForall₂ R l₁ []", "tactic": "rw [forall₂_nil_right_iff.1 hl1]" }, { "state_after": "no goals", "state_before": "case mpr.intro.intro.slnil\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₂ l : List β\nl₁ : List α\nhl1 : Forall₂ R l₁ []\n⊢ SublistForall₂ R [] []", "tactic": "exact SublistForall₂.nil" }, { "state_after": "no goals", "state_before": "case mpr.intro.intro.cons\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₂ l l₁✝ l₂✝ : List β\na✝¹ : β\na✝ : l₁✝ <+ l₂✝\nih : ∀ {l₁ : List α}, Forall₂ R l₁ l₁✝ → SublistForall₂ R l₁ l₂✝\nl₁ : List α\nhl1 : Forall₂ R l₁ l₁✝\n⊢ SublistForall₂ R l₁ (a✝¹ :: l₂✝)", "tactic": "exact SublistForall₂.cons_right (ih hl1)" }, { "state_after": "case mpr.intro.intro.cons₂.cons\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₂ l l₁✝¹ l₂✝ : List β\na✝² : β\na✝¹ : l₁✝¹ <+ l₂✝\nih : ∀ {l₁ : List α}, Forall₂ R l₁ l₁✝¹ → SublistForall₂ R l₁ l₂✝\na✝ : α\nl₁✝ : List α\nhr : R a✝ a✝²\nhl : Forall₂ R l₁✝ l₁✝¹\n⊢ SublistForall₂ R (a✝ :: l₁✝) (a✝² :: l₂✝)", "state_before": "case mpr.intro.intro.cons₂\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₂ l l₁✝ l₂✝ : List β\na✝¹ : β\na✝ : l₁✝ <+ l₂✝\nih : ∀ {l₁ : List α}, Forall₂ R l₁ l₁✝ → SublistForall₂ R l₁ l₂✝\nl₁ : List α\nhl1 : Forall₂ R l₁ (a✝¹ :: l₁✝)\n⊢ SublistForall₂ R l₁ (a✝¹ :: l₂✝)", "tactic": "cases' hl1 with _ _ _ _ hr hl _" }, { "state_after": "no goals", "state_before": "case mpr.intro.intro.cons₂.cons\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.158809\nδ : Type ?u.158812\nR S : α → β → Prop\nP : γ → δ → Prop\nRₐ : α → α → Prop\nl₂ l l₁✝¹ l₂✝ : List β\na✝² : β\na✝¹ : l₁✝¹ <+ l₂✝\nih : ∀ {l₁ : List α}, Forall₂ R l₁ l₁✝¹ → SublistForall₂ R l₁ l₂✝\na✝ : α\nl₁✝ : List α\nhr : R a✝ a✝²\nhl : Forall₂ R l₁✝ l₁✝¹\n⊢ SublistForall₂ R (a✝ :: l₁✝) (a✝² :: l₂✝)", "tactic": "exact SublistForall₂.cons hr (ih hl)" } ]
[ 349, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 333, 1 ]
Mathlib/Order/Bounds/Basic.lean
not_bddAbove_univ
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Sort x\ninst✝² : Preorder α\ninst✝¹ : Preorder β\ns t : Set α\na b : α\ninst✝ : NoMaxOrder α\n⊢ ¬BddAbove univ", "tactic": "simp [BddAbove]" } ]
[ 850, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 850, 1 ]
Mathlib/LinearAlgebra/LinearIndependent.lean
linearDependent_comp_subtype'
[ { "state_after": "no goals", "state_before": "ι : Type u'\nι' : Type ?u.174501\nR : Type u_1\nK : Type ?u.174507\nM : Type u_2\nM' : Type ?u.174513\nM'' : Type ?u.174516\nV : Type u\nV' : Type ?u.174521\nv : ι → M\ninst✝⁶ : Semiring R\ninst✝⁵ : AddCommMonoid M\ninst✝⁴ : AddCommMonoid M'\ninst✝³ : AddCommMonoid M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\ns : Set ι\n⊢ ¬LinearIndependent R (v ∘ Subtype.val) ↔ ∃ f, f ∈ Finsupp.supported R R s ∧ ↑(Finsupp.total ι M R v) f = 0 ∧ f ≠ 0", "tactic": "simp [linearIndependent_comp_subtype, and_left_comm]" } ]
[ 371, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 368, 1 ]
Mathlib/SetTheory/Ordinal/Arithmetic.lean
Ordinal.sup_le_of_range_subset
[]
[ 1328, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1324, 1 ]
Mathlib/CategoryTheory/Groupoid/FreeGroupoid.lean
CategoryTheory.Groupoid.Free.of_eq
[]
[ 152, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 150, 1 ]
Mathlib/Algebra/Module/Equiv.lean
LinearEquiv.coe_toEquiv_symm
[]
[ 308, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 307, 1 ]
Mathlib/Data/Set/Basic.lean
Set.Nonempty.eq_univ
[ { "state_after": "case intro\nα : Type u\nβ : Type v\nγ : Type w\nι : Sort x\na b : α\ns s₁ s₂ t t₁ t₂ u : Set α\ninst✝ : Subsingleton α\nx : α\nhx : x ∈ s\n⊢ s = univ", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Sort x\na b : α\ns s₁ s₂ t t₁ t₂ u : Set α\ninst✝ : Subsingleton α\n⊢ Set.Nonempty s → s = univ", "tactic": "rintro ⟨x, hx⟩" }, { "state_after": "no goals", "state_before": "case intro\nα : Type u\nβ : Type v\nγ : Type w\nι : Sort x\na b : α\ns s₁ s₂ t t₁ t₂ u : Set α\ninst✝ : Subsingleton α\nx : α\nhx : x ∈ s\n⊢ s = univ", "tactic": "refine' eq_univ_of_forall fun y => by rwa [Subsingleton.elim y x]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Sort x\na b : α\ns s₁ s₂ t t₁ t₂ u : Set α\ninst✝ : Subsingleton α\nx : α\nhx : x ∈ s\ny : α\n⊢ y ∈ s", "tactic": "rwa [Subsingleton.elim y x]" } ]
[ 699, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 697, 1 ]
Mathlib/Data/List/Sigma.lean
List.nodupKeys_singleton
[]
[ 133, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 132, 1 ]
Mathlib/LinearAlgebra/Span.lean
Submodule.mem_sup'
[ { "state_after": "no goals", "state_before": "R : Type u_2\nR₂ : Type ?u.100784\nK : Type ?u.100787\nM : Type u_1\nM₂ : Type ?u.100793\nV : Type ?u.100796\nS : Type ?u.100799\ninst✝⁵ : Semiring R\ninst✝⁴ : AddCommMonoid M\ninst✝³ : Module R M\nx : M\np p' : Submodule R M\ninst✝² : Semiring R₂\nσ₁₂ : R →+* R₂\ninst✝¹ : AddCommMonoid M₂\ninst✝ : Module R₂ M₂\ns t : Set M\n⊢ (∃ y, y ∈ p ∧ ∃ z, z ∈ p' ∧ y + z = x) ↔ ∃ y z, ↑y + ↑z = x", "tactic": "simp only [Subtype.exists, exists_prop]" } ]
[ 363, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 362, 1 ]
Mathlib/RingTheory/Localization/Basic.lean
IsLocalization.ringHom_ext
[]
[ 542, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 540, 1 ]
Mathlib/Topology/Algebra/Order/Field.lean
Filter.Tendsto.div_atTop
[ { "state_after": "𝕜 : Type u_2\nα : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : TopologicalSpace 𝕜\ninst✝ : OrderTopology 𝕜\nl : Filter α\nf g : α → 𝕜\na : 𝕜\nh : Tendsto f l (𝓝 a)\nhg : Tendsto g l atTop\n⊢ Tendsto (fun x => f x * (g x)⁻¹) l (𝓝 0)", "state_before": "𝕜 : Type u_2\nα : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : TopologicalSpace 𝕜\ninst✝ : OrderTopology 𝕜\nl : Filter α\nf g : α → 𝕜\na : 𝕜\nh : Tendsto f l (𝓝 a)\nhg : Tendsto g l atTop\n⊢ Tendsto (fun x => f x / g x) l (𝓝 0)", "tactic": "simp only [div_eq_mul_inv]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_2\nα : Type u_1\ninst✝² : LinearOrderedField 𝕜\ninst✝¹ : TopologicalSpace 𝕜\ninst✝ : OrderTopology 𝕜\nl : Filter α\nf g : α → 𝕜\na : 𝕜\nh : Tendsto f l (𝓝 a)\nhg : Tendsto g l atTop\n⊢ Tendsto (fun x => f x * (g x)⁻¹) l (𝓝 0)", "tactic": "exact mul_zero a ▸ h.mul (tendsto_inv_atTop_zero.comp hg)" } ]
[ 146, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 143, 1 ]
Mathlib/LinearAlgebra/Lagrange.lean
Lagrange.eval_nodal_not_at_node
[ { "state_after": "F : Type u_2\ninst✝ : Field F\nι : Type u_1\ns : Finset ι\nv : ι → F\ni : ι\nr : ι → F\nx : F\nhx : ∀ (i : ι), i ∈ s → x ≠ v i\n⊢ ∀ (a : ι), a ∈ s → x ≠ v a", "state_before": "F : Type u_2\ninst✝ : Field F\nι : Type u_1\ns : Finset ι\nv : ι → F\ni : ι\nr : ι → F\nx : F\nhx : ∀ (i : ι), i ∈ s → x ≠ v i\n⊢ eval x (nodal s v) ≠ 0", "tactic": "simp_rw [nodal, eval_prod, prod_ne_zero_iff, eval_sub, eval_X, eval_C, sub_ne_zero]" }, { "state_after": "no goals", "state_before": "F : Type u_2\ninst✝ : Field F\nι : Type u_1\ns : Finset ι\nv : ι → F\ni : ι\nr : ι → F\nx : F\nhx : ∀ (i : ι), i ∈ s → x ≠ v i\n⊢ ∀ (a : ι), a ∈ s → x ≠ v a", "tactic": "exact hx" } ]
[ 515, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 513, 1 ]