file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
sequence
commit
stringclasses
4 values
url
stringclasses
4 values
start
sequence
Mathlib/Algebra/Hom/Freiman.lean
FreimanHom.inv_comp
[]
[ 374, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 373, 1 ]
Mathlib/Data/Set/Pointwise/SMul.lean
Set.smul_set_iInter₂_subset
[]
[ 402, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 400, 1 ]
Mathlib/Data/Fintype/BigOperators.lean
Fintype.card_eq_sum_ones
[]
[ 47, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 46, 1 ]
Mathlib/RingTheory/RootsOfUnity/Basic.lean
IsPrimitiveRoot.pow_iff_coprime
[ { "state_after": "M : Type u_1\nN : Type ?u.2013558\nG : Type ?u.2013561\nR : Type ?u.2013564\nS : Type ?u.2013567\nF : Type ?u.2013570\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni : ℕ\n⊢ IsPrimitiveRoot (ζ ^ i) k → Nat.coprime i k", "state_before": "M : Type u_1\nN : Type ?u.2013558\nG : Type ?u.2013561\nR : Type ?u.2013564\nS : Type ?u.2013567\nF : Type ?u.2013570\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni : ℕ\n⊢ IsPrimitiveRoot (ζ ^ i) k ↔ Nat.coprime i k", "tactic": "refine' ⟨_, h.pow_of_coprime i⟩" }, { "state_after": "M : Type u_1\nN : Type ?u.2013558\nG : Type ?u.2013561\nR : Type ?u.2013564\nS : Type ?u.2013567\nF : Type ?u.2013570\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni : ℕ\nhi : IsPrimitiveRoot (ζ ^ i) k\n⊢ Nat.coprime i k", "state_before": "M : Type u_1\nN : Type ?u.2013558\nG : Type ?u.2013561\nR : Type ?u.2013564\nS : Type ?u.2013567\nF : Type ?u.2013570\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni : ℕ\n⊢ IsPrimitiveRoot (ζ ^ i) k → Nat.coprime i k", "tactic": "intro hi" }, { "state_after": "case intro\nM : Type u_1\nN : Type ?u.2013558\nG : Type ?u.2013561\nR : Type ?u.2013564\nS : Type ?u.2013567\nF : Type ?u.2013570\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni : ℕ\nhi : IsPrimitiveRoot (ζ ^ i) k\na : ℕ\nha : i = Nat.gcd i k * a\n⊢ Nat.coprime i k", "state_before": "M : Type u_1\nN : Type ?u.2013558\nG : Type ?u.2013561\nR : Type ?u.2013564\nS : Type ?u.2013567\nF : Type ?u.2013570\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni : ℕ\nhi : IsPrimitiveRoot (ζ ^ i) k\n⊢ Nat.coprime i k", "tactic": "obtain ⟨a, ha⟩ := i.gcd_dvd_left k" }, { "state_after": "case intro.intro\nM : Type u_1\nN : Type ?u.2013558\nG : Type ?u.2013561\nR : Type ?u.2013564\nS : Type ?u.2013567\nF : Type ?u.2013570\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni : ℕ\nhi : IsPrimitiveRoot (ζ ^ i) k\na : ℕ\nha : i = Nat.gcd i k * a\nb : ℕ\nhb : k = Nat.gcd i k * b\n⊢ Nat.coprime i k", "state_before": "case intro\nM : Type u_1\nN : Type ?u.2013558\nG : Type ?u.2013561\nR : Type ?u.2013564\nS : Type ?u.2013567\nF : Type ?u.2013570\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni : ℕ\nhi : IsPrimitiveRoot (ζ ^ i) k\na : ℕ\nha : i = Nat.gcd i k * a\n⊢ Nat.coprime i k", "tactic": "obtain ⟨b, hb⟩ := i.gcd_dvd_right k" }, { "state_after": "case intro.intro\nM : Type u_1\nN : Type ?u.2013558\nG : Type ?u.2013561\nR : Type ?u.2013564\nS : Type ?u.2013567\nF : Type ?u.2013570\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni : ℕ\nhi : IsPrimitiveRoot (ζ ^ i) k\na : ℕ\nha : i = Nat.gcd i k * a\nb : ℕ\nhb : k = Nat.gcd i k * b\n⊢ b = k", "state_before": "case intro.intro\nM : Type u_1\nN : Type ?u.2013558\nG : Type ?u.2013561\nR : Type ?u.2013564\nS : Type ?u.2013567\nF : Type ?u.2013570\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni : ℕ\nhi : IsPrimitiveRoot (ζ ^ i) k\na : ℕ\nha : i = Nat.gcd i k * a\nb : ℕ\nhb : k = Nat.gcd i k * b\n⊢ Nat.coprime i k", "tactic": "suffices b = k by\n rw [this, eq_comm, Nat.mul_left_eq_self_iff h0] at hb\n rwa [Nat.coprime]" }, { "state_after": "case intro.intro\nM : Type u_1\nN : Type ?u.2013558\nG : Type ?u.2013561\nR : Type ?u.2013564\nS : Type ?u.2013567\nF : Type ?u.2013570\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni a : ℕ\nhi : IsPrimitiveRoot (ζ ^ (Nat.gcd i k * a)) k\nha : i = Nat.gcd i k * a\nb : ℕ\nhb : k = Nat.gcd i k * b\n⊢ b = k", "state_before": "case intro.intro\nM : Type u_1\nN : Type ?u.2013558\nG : Type ?u.2013561\nR : Type ?u.2013564\nS : Type ?u.2013567\nF : Type ?u.2013570\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni : ℕ\nhi : IsPrimitiveRoot (ζ ^ i) k\na : ℕ\nha : i = Nat.gcd i k * a\nb : ℕ\nhb : k = Nat.gcd i k * b\n⊢ b = k", "tactic": "rw [ha] at hi" }, { "state_after": "case intro.intro\nM : Type u_1\nN : Type ?u.2013558\nG : Type ?u.2013561\nR : Type ?u.2013564\nS : Type ?u.2013567\nF : Type ?u.2013570\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni a : ℕ\nhi : IsPrimitiveRoot (ζ ^ (Nat.gcd i k * a)) k\nha : i = Nat.gcd i k * a\nb : ℕ\nhb : k = b * Nat.gcd i k\n⊢ b = k", "state_before": "case intro.intro\nM : Type u_1\nN : Type ?u.2013558\nG : Type ?u.2013561\nR : Type ?u.2013564\nS : Type ?u.2013567\nF : Type ?u.2013570\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni a : ℕ\nhi : IsPrimitiveRoot (ζ ^ (Nat.gcd i k * a)) k\nha : i = Nat.gcd i k * a\nb : ℕ\nhb : k = Nat.gcd i k * b\n⊢ b = k", "tactic": "rw [mul_comm] at hb" }, { "state_after": "M : Type u_1\nN : Type ?u.2013558\nG : Type ?u.2013561\nR : Type ?u.2013564\nS : Type ?u.2013567\nF : Type ?u.2013570\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni a : ℕ\nhi : IsPrimitiveRoot (ζ ^ (Nat.gcd i k * a)) k\nha : i = Nat.gcd i k * a\nb : ℕ\nhb : k = b * Nat.gcd i k\n⊢ (ζ ^ (Nat.gcd i k * a)) ^ b = 1", "state_before": "case intro.intro\nM : Type u_1\nN : Type ?u.2013558\nG : Type ?u.2013561\nR : Type ?u.2013564\nS : Type ?u.2013567\nF : Type ?u.2013570\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni a : ℕ\nhi : IsPrimitiveRoot (ζ ^ (Nat.gcd i k * a)) k\nha : i = Nat.gcd i k * a\nb : ℕ\nhb : k = b * Nat.gcd i k\n⊢ b = k", "tactic": "apply Nat.dvd_antisymm ⟨i.gcd k, hb⟩ (hi.dvd_of_pow_eq_one b _)" }, { "state_after": "no goals", "state_before": "M : Type u_1\nN : Type ?u.2013558\nG : Type ?u.2013561\nR : Type ?u.2013564\nS : Type ?u.2013567\nF : Type ?u.2013570\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni a : ℕ\nhi : IsPrimitiveRoot (ζ ^ (Nat.gcd i k * a)) k\nha : i = Nat.gcd i k * a\nb : ℕ\nhb : k = b * Nat.gcd i k\n⊢ (ζ ^ (Nat.gcd i k * a)) ^ b = 1", "tactic": "rw [← pow_mul', ← mul_assoc, ← hb, pow_mul, h.pow_eq_one, one_pow]" }, { "state_after": "M : Type u_1\nN : Type ?u.2013558\nG : Type ?u.2013561\nR : Type ?u.2013564\nS : Type ?u.2013567\nF : Type ?u.2013570\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni : ℕ\nhi : IsPrimitiveRoot (ζ ^ i) k\na : ℕ\nha : i = Nat.gcd i k * a\nb : ℕ\nhb : Nat.gcd i k = 1\nthis : b = k\n⊢ Nat.coprime i k", "state_before": "M : Type u_1\nN : Type ?u.2013558\nG : Type ?u.2013561\nR : Type ?u.2013564\nS : Type ?u.2013567\nF : Type ?u.2013570\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni : ℕ\nhi : IsPrimitiveRoot (ζ ^ i) k\na : ℕ\nha : i = Nat.gcd i k * a\nb : ℕ\nhb : k = Nat.gcd i k * b\nthis : b = k\n⊢ Nat.coprime i k", "tactic": "rw [this, eq_comm, Nat.mul_left_eq_self_iff h0] at hb" }, { "state_after": "no goals", "state_before": "M : Type u_1\nN : Type ?u.2013558\nG : Type ?u.2013561\nR : Type ?u.2013564\nS : Type ?u.2013567\nF : Type ?u.2013570\ninst✝² : CommMonoid M\ninst✝¹ : CommMonoid N\ninst✝ : DivisionCommMonoid G\nk l : ℕ\nζ : M\nf : F\nh✝ h : IsPrimitiveRoot ζ k\nh0 : 0 < k\ni : ℕ\nhi : IsPrimitiveRoot (ζ ^ i) k\na : ℕ\nha : i = Nat.gcd i k * a\nb : ℕ\nhb : Nat.gcd i k = 1\nthis : b = k\n⊢ Nat.coprime i k", "tactic": "rwa [Nat.coprime]" } ]
[ 452, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 439, 1 ]
Mathlib/Logic/Equiv/Defs.lean
Equiv.symm_symm
[ { "state_after": "case mk\nα : Sort u\nβ : Sort v\nγ : Sort w\ntoFun✝ : α → β\ninvFun✝ : β → α\nleft_inv✝ : LeftInverse invFun✝ toFun✝\nright_inv✝ : Function.RightInverse invFun✝ toFun✝\n⊢ { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }.symm.symm =\n { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }", "state_before": "α : Sort u\nβ : Sort v\nγ : Sort w\ne : α ≃ β\n⊢ e.symm.symm = e", "tactic": "cases e" }, { "state_after": "no goals", "state_before": "case mk\nα : Sort u\nβ : Sort v\nγ : Sort w\ntoFun✝ : α → β\ninvFun✝ : β → α\nleft_inv✝ : LeftInverse invFun✝ toFun✝\nright_inv✝ : Function.RightInverse invFun✝ toFun✝\n⊢ { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }.symm.symm =\n { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ }", "tactic": "rfl" } ]
[ 338, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 338, 9 ]
Mathlib/Topology/SubsetProperties.lean
compactSpace_of_finite_subfamily_closed
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nι : Type ?u.76247\nπ : ι → Type ?u.76252\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns t : Set α\nh :\n ∀ {ι : Type u} (Z : ι → Set α),\n (∀ (i : ι), IsClosed (Z i)) → (⋂ (i : ι), Z i) = ∅ → ∃ t, (⋂ (i : ι) (_ : i ∈ t), Z i) = ∅\nι✝ : Type u\nZ : ι✝ → Set α\n⊢ (∀ (i : ι✝), IsClosed (Z i)) → (univ ∩ ⋂ (i : ι✝), Z i) = ∅ → ∃ t, (univ ∩ ⋂ (i : ι✝) (_ : i ∈ t), Z i) = ∅", "tactic": "simpa using h Z" } ]
[ 738, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 733, 1 ]
Mathlib/Data/Set/Image.lean
Function.Injective.mem_range_iff_exists_unique
[]
[ 1334, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1332, 1 ]
Mathlib/GroupTheory/Subgroup/Basic.lean
Subgroup.comap_map_eq
[ { "state_after": "G : Type u_1\nG' : Type ?u.565766\ninst✝³ : Group G\ninst✝² : Group G'\nA : Type ?u.565775\ninst✝¹ : AddGroup A\nN : Type u_2\ninst✝ : Group N\nf : G →* N\nH : Subgroup G\n⊢ comap f (map f H) ≤ H ⊔ ker f", "state_before": "G : Type u_1\nG' : Type ?u.565766\ninst✝³ : Group G\ninst✝² : Group G'\nA : Type ?u.565775\ninst✝¹ : AddGroup A\nN : Type u_2\ninst✝ : Group N\nf : G →* N\nH : Subgroup G\n⊢ comap f (map f H) = H ⊔ ker f", "tactic": "refine' le_antisymm _ (sup_le (le_comap_map _ _) (ker_le_comap _ _))" }, { "state_after": "G : Type u_1\nG' : Type ?u.565766\ninst✝³ : Group G\ninst✝² : Group G'\nA : Type ?u.565775\ninst✝¹ : AddGroup A\nN : Type u_2\ninst✝ : Group N\nf : G →* N\nH : Subgroup G\nx : G\nhx : x ∈ comap f (map f H)\n⊢ x ∈ H ⊔ ker f", "state_before": "G : Type u_1\nG' : Type ?u.565766\ninst✝³ : Group G\ninst✝² : Group G'\nA : Type ?u.565775\ninst✝¹ : AddGroup A\nN : Type u_2\ninst✝ : Group N\nf : G →* N\nH : Subgroup G\n⊢ comap f (map f H) ≤ H ⊔ ker f", "tactic": "intro x hx" }, { "state_after": "G : Type u_1\nG' : Type ?u.565766\ninst✝³ : Group G\ninst✝² : Group G'\nA : Type ?u.565775\ninst✝¹ : AddGroup A\nN : Type u_2\ninst✝ : Group N\nf : G →* N\nH : Subgroup G\nx : G\nhx : ∃ x_1, x_1 ∈ H ∧ ↑f x_1 = ↑f x\n⊢ x ∈ H ⊔ ker f", "state_before": "G : Type u_1\nG' : Type ?u.565766\ninst✝³ : Group G\ninst✝² : Group G'\nA : Type ?u.565775\ninst✝¹ : AddGroup A\nN : Type u_2\ninst✝ : Group N\nf : G →* N\nH : Subgroup G\nx : G\nhx : x ∈ comap f (map f H)\n⊢ x ∈ H ⊔ ker f", "tactic": "simp only [exists_prop, mem_map, mem_comap] at hx" }, { "state_after": "case intro.intro\nG : Type u_1\nG' : Type ?u.565766\ninst✝³ : Group G\ninst✝² : Group G'\nA : Type ?u.565775\ninst✝¹ : AddGroup A\nN : Type u_2\ninst✝ : Group N\nf : G →* N\nH : Subgroup G\nx y : G\nhy : y ∈ H\nhy' : ↑f y = ↑f x\n⊢ x ∈ H ⊔ ker f", "state_before": "G : Type u_1\nG' : Type ?u.565766\ninst✝³ : Group G\ninst✝² : Group G'\nA : Type ?u.565775\ninst✝¹ : AddGroup A\nN : Type u_2\ninst✝ : Group N\nf : G →* N\nH : Subgroup G\nx : G\nhx : ∃ x_1, x_1 ∈ H ∧ ↑f x_1 = ↑f x\n⊢ x ∈ H ⊔ ker f", "tactic": "rcases hx with ⟨y, hy, hy'⟩" }, { "state_after": "case intro.intro\nG : Type u_1\nG' : Type ?u.565766\ninst✝³ : Group G\ninst✝² : Group G'\nA : Type ?u.565775\ninst✝¹ : AddGroup A\nN : Type u_2\ninst✝ : Group N\nf : G →* N\nH : Subgroup G\nx y : G\nhy : y ∈ H\nhy' : ↑f y = ↑f x\n⊢ y * (y⁻¹ * x) ∈ H ⊔ ker f", "state_before": "case intro.intro\nG : Type u_1\nG' : Type ?u.565766\ninst✝³ : Group G\ninst✝² : Group G'\nA : Type ?u.565775\ninst✝¹ : AddGroup A\nN : Type u_2\ninst✝ : Group N\nf : G →* N\nH : Subgroup G\nx y : G\nhy : y ∈ H\nhy' : ↑f y = ↑f x\n⊢ x ∈ H ⊔ ker f", "tactic": "rw [← mul_inv_cancel_left y x]" }, { "state_after": "no goals", "state_before": "case intro.intro\nG : Type u_1\nG' : Type ?u.565766\ninst✝³ : Group G\ninst✝² : Group G'\nA : Type ?u.565775\ninst✝¹ : AddGroup A\nN : Type u_2\ninst✝ : Group N\nf : G →* N\nH : Subgroup G\nx y : G\nhy : y ∈ H\nhy' : ↑f y = ↑f x\n⊢ y * (y⁻¹ * x) ∈ H ⊔ ker f", "tactic": "exact mul_mem_sup hy (by simp [mem_ker, hy'])" }, { "state_after": "no goals", "state_before": "G : Type u_1\nG' : Type ?u.565766\ninst✝³ : Group G\ninst✝² : Group G'\nA : Type ?u.565775\ninst✝¹ : AddGroup A\nN : Type u_2\ninst✝ : Group N\nf : G →* N\nH : Subgroup G\nx y : G\nhy : y ∈ H\nhy' : ↑f y = ↑f x\n⊢ y⁻¹ * x ∈ ker f", "tactic": "simp [mem_ker, hy']" } ]
[ 3019, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3014, 1 ]
Mathlib/Topology/Maps.lean
Inducing.map_nhds_eq
[]
[ 105, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 104, 1 ]
Mathlib/Data/Fin/Tuple/Basic.lean
Fin.snoc_update
[ { "state_after": "case h\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\n⊢ snoc (update p i y) x j = update (snoc p x) (↑castSucc i) y j", "state_before": "m n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\n⊢ snoc (update p i y) x = update (snoc p x) (↑castSucc i) y", "tactic": "ext j" }, { "state_after": "case pos\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\n⊢ snoc (update p i y) x j = update (snoc p x) (↑castSucc i) y j\n\ncase neg\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ¬↑j < n\n⊢ snoc (update p i y) x j = update (snoc p x) (↑castSucc i) y j", "state_before": "case h\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\n⊢ snoc (update p i y) x j = update (snoc p x) (↑castSucc i) y j", "tactic": "by_cases h : j.val < n" }, { "state_after": "case pos\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\n⊢ (if h : ↑j < n then _root_.cast (_ : α (↑castSucc (castLT j h)) = α j) (update p i y (castLT j h))\n else _root_.cast (_ : α (last n) = α j) x) =\n update (snoc p x) (↑castSucc i) y j", "state_before": "case pos\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\n⊢ snoc (update p i y) x j = update (snoc p x) (↑castSucc i) y j", "tactic": "rw [snoc]" }, { "state_after": "case pos\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\n⊢ (if h_1 : True then\n _root_.cast (_ : α (↑castSucc (castLT j (_ : ↑j < n))) = α j) (update p i y (castLT j (_ : ↑j < n)))\n else _root_.cast (_ : α (last n) = α j) x) =\n update (snoc p x) (↑castSucc i) y j", "state_before": "case pos\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\n⊢ (if h : ↑j < n then _root_.cast (_ : α (↑castSucc (castLT j h)) = α j) (update p i y (castLT j h))\n else _root_.cast (_ : α (last n) = α j) x) =\n update (snoc p x) (↑castSucc i) y j", "tactic": "simp only [h]" }, { "state_after": "case pos\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\n⊢ _root_.cast (_ : α (↑castSucc (castLT j (_ : ↑j < n))) = α j) (update p i y (castLT j (_ : ↑j < n))) =\n update (snoc p x) (↑castSucc i) y j", "state_before": "case pos\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\n⊢ (if h_1 : True then\n _root_.cast (_ : α (↑castSucc (castLT j (_ : ↑j < n))) = α j) (update p i y (castLT j (_ : ↑j < n)))\n else _root_.cast (_ : α (last n) = α j) x) =\n update (snoc p x) (↑castSucc i) y j", "tactic": "simp only [dif_pos]" }, { "state_after": "case pos\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\n⊢ _root_.cast (_ : α (↑castSucc (castLT j (_ : ↑j < n))) = α j) (update p i y (castLT j (_ : ↑j < n))) =\n update (snoc p x) (↑castSucc i) y j\n\ncase neg\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : ¬j = ↑castSucc i\n⊢ _root_.cast (_ : α (↑castSucc (castLT j (_ : ↑j < n))) = α j) (update p i y (castLT j (_ : ↑j < n))) =\n update (snoc p x) (↑castSucc i) y j", "state_before": "case pos\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\n⊢ _root_.cast (_ : α (↑castSucc (castLT j (_ : ↑j < n))) = α j) (update p i y (castLT j (_ : ↑j < n))) =\n update (snoc p x) (↑castSucc i) y j", "tactic": "by_cases h' : j = castSucc i" }, { "state_after": "case pos\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\nC1 : α (↑castSucc i) = α j\n⊢ _root_.cast (_ : α (↑castSucc (castLT j (_ : ↑j < n))) = α j) (update p i y (castLT j (_ : ↑j < n))) =\n update (snoc p x) (↑castSucc i) y j", "state_before": "case pos\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\n⊢ _root_.cast (_ : α (↑castSucc (castLT j (_ : ↑j < n))) = α j) (update p i y (castLT j (_ : ↑j < n))) =\n update (snoc p x) (↑castSucc i) y j", "tactic": "have C1 : α (castSucc i) = α j := by rw [h']" }, { "state_after": "case pos\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\nC1 : α (↑castSucc i) = α j\nE1 : update (snoc p x) (↑castSucc i) y j = _root_.cast C1 y\nC2 : α (↑castSucc i) = α (↑castSucc (castLT j h))\n⊢ _root_.cast (_ : α (↑castSucc (castLT j (_ : ↑j < n))) = α j) (update p i y (castLT j (_ : ↑j < n))) =\n update (snoc p x) (↑castSucc i) y j", "state_before": "case pos\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\nC1 : α (↑castSucc i) = α j\nE1 : update (snoc p x) (↑castSucc i) y j = _root_.cast C1 y\n⊢ _root_.cast (_ : α (↑castSucc (castLT j (_ : ↑j < n))) = α j) (update p i y (castLT j (_ : ↑j < n))) =\n update (snoc p x) (↑castSucc i) y j", "tactic": "have C2 : α (castSucc i) = α (castSucc (castLT j h)) := by rw [castSucc_castLT, h']" }, { "state_after": "case pos\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\nC1 : α (↑castSucc i) = α j\nE1 : update (snoc p x) (↑castSucc i) y j = _root_.cast C1 y\nC2 : α (↑castSucc i) = α (↑castSucc (castLT j h))\nE2 : update p i y (castLT j h) = _root_.cast C2 y\n⊢ _root_.cast (_ : α (↑castSucc (castLT j (_ : ↑j < n))) = α j) (_root_.cast C2 y) = _root_.cast C1 y", "state_before": "case pos\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\nC1 : α (↑castSucc i) = α j\nE1 : update (snoc p x) (↑castSucc i) y j = _root_.cast C1 y\nC2 : α (↑castSucc i) = α (↑castSucc (castLT j h))\nE2 : update p i y (castLT j h) = _root_.cast C2 y\n⊢ _root_.cast (_ : α (↑castSucc (castLT j (_ : ↑j < n))) = α j) (update p i y (castLT j (_ : ↑j < n))) =\n update (snoc p x) (↑castSucc i) y j", "tactic": "rw [E1, E2]" }, { "state_after": "no goals", "state_before": "case pos\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\nC1 : α (↑castSucc i) = α j\nE1 : update (snoc p x) (↑castSucc i) y j = _root_.cast C1 y\nC2 : α (↑castSucc i) = α (↑castSucc (castLT j h))\nE2 : update p i y (castLT j h) = _root_.cast C2 y\n⊢ _root_.cast (_ : α (↑castSucc (castLT j (_ : ↑j < n))) = α j) (_root_.cast C2 y) = _root_.cast C1 y", "tactic": "exact eq_rec_compose (Eq.trans C2.symm C1) C2 y" }, { "state_after": "no goals", "state_before": "m n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\n⊢ α (↑castSucc i) = α j", "tactic": "rw [h']" }, { "state_after": "m n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\nC1 : α (↑castSucc i) = α j\nthis : update (snoc p x) j (_root_.cast C1 y) j = _root_.cast C1 y\n⊢ update (snoc p x) (↑castSucc i) y j = _root_.cast C1 y", "state_before": "m n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\nC1 : α (↑castSucc i) = α j\n⊢ update (snoc p x) (↑castSucc i) y j = _root_.cast C1 y", "tactic": "have : update (snoc p x) j (_root_.cast C1 y) j = _root_.cast C1 y := by simp" }, { "state_after": "case h.e'_2.h.e'_5\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\nC1 : α (↑castSucc i) = α j\nthis : update (snoc p x) j (_root_.cast C1 y) j = _root_.cast C1 y\n⊢ ↑castSucc i = j\n\ncase h.e'_2.h.e'_6\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\nC1 : α (↑castSucc i) = α j\nthis : update (snoc p x) j (_root_.cast C1 y) j = _root_.cast C1 y\ne_5✝ : ↑castSucc i = j\n⊢ HEq y (_root_.cast C1 y)", "state_before": "m n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\nC1 : α (↑castSucc i) = α j\nthis : update (snoc p x) j (_root_.cast C1 y) j = _root_.cast C1 y\n⊢ update (snoc p x) (↑castSucc i) y j = _root_.cast C1 y", "tactic": "convert this" }, { "state_after": "no goals", "state_before": "m n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\nC1 : α (↑castSucc i) = α j\n⊢ update (snoc p x) j (_root_.cast C1 y) j = _root_.cast C1 y", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case h.e'_2.h.e'_5\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\nC1 : α (↑castSucc i) = α j\nthis : update (snoc p x) j (_root_.cast C1 y) j = _root_.cast C1 y\n⊢ ↑castSucc i = j", "tactic": "exact h'.symm" }, { "state_after": "no goals", "state_before": "case h.e'_2.h.e'_6\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\nC1 : α (↑castSucc i) = α j\nthis : update (snoc p x) j (_root_.cast C1 y) j = _root_.cast C1 y\ne_5✝ : ↑castSucc i = j\n⊢ HEq y (_root_.cast C1 y)", "tactic": "exact heq_of_cast_eq (congr_arg α (Eq.symm h')) rfl" }, { "state_after": "no goals", "state_before": "m n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\nC1 : α (↑castSucc i) = α j\nE1 : update (snoc p x) (↑castSucc i) y j = _root_.cast C1 y\n⊢ α (↑castSucc i) = α (↑castSucc (castLT j h))", "tactic": "rw [castSucc_castLT, h']" }, { "state_after": "m n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\nC1 : α (↑castSucc i) = α j\nE1 : update (snoc p x) (↑castSucc i) y j = _root_.cast C1 y\nC2 : α (↑castSucc i) = α (↑castSucc (castLT j h))\nthis : update p (castLT j h) (_root_.cast C2 y) (castLT j h) = _root_.cast C2 y\n⊢ update p i y (castLT j h) = _root_.cast C2 y", "state_before": "m n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\nC1 : α (↑castSucc i) = α j\nE1 : update (snoc p x) (↑castSucc i) y j = _root_.cast C1 y\nC2 : α (↑castSucc i) = α (↑castSucc (castLT j h))\n⊢ update p i y (castLT j h) = _root_.cast C2 y", "tactic": "have : update p (castLT j h) (_root_.cast C2 y) (castLT j h) = _root_.cast C2 y := by simp" }, { "state_after": "case h.e'_2.h.e'_5\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\nC1 : α (↑castSucc i) = α j\nE1 : update (snoc p x) (↑castSucc i) y j = _root_.cast C1 y\nC2 : α (↑castSucc i) = α (↑castSucc (castLT j h))\nthis : update p (castLT j h) (_root_.cast C2 y) (castLT j h) = _root_.cast C2 y\n⊢ i = castLT j h\n\ncase h.e'_2.h.e'_6\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\nC1 : α (↑castSucc i) = α j\nE1 : update (snoc p x) (↑castSucc i) y j = _root_.cast C1 y\nC2 : α (↑castSucc i) = α (↑castSucc (castLT j h))\nthis : update p (castLT j h) (_root_.cast C2 y) (castLT j h) = _root_.cast C2 y\ne_5✝ : i = castLT j h\n⊢ HEq y (_root_.cast C2 y)", "state_before": "m n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\nC1 : α (↑castSucc i) = α j\nE1 : update (snoc p x) (↑castSucc i) y j = _root_.cast C1 y\nC2 : α (↑castSucc i) = α (↑castSucc (castLT j h))\nthis : update p (castLT j h) (_root_.cast C2 y) (castLT j h) = _root_.cast C2 y\n⊢ update p i y (castLT j h) = _root_.cast C2 y", "tactic": "convert this" }, { "state_after": "no goals", "state_before": "m n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\nC1 : α (↑castSucc i) = α j\nE1 : update (snoc p x) (↑castSucc i) y j = _root_.cast C1 y\nC2 : α (↑castSucc i) = α (↑castSucc (castLT j h))\n⊢ update p (castLT j h) (_root_.cast C2 y) (castLT j h) = _root_.cast C2 y", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case h.e'_2.h.e'_5\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\nC1 : α (↑castSucc i) = α j\nE1 : update (snoc p x) (↑castSucc i) y j = _root_.cast C1 y\nC2 : α (↑castSucc i) = α (↑castSucc (castLT j h))\nthis : update p (castLT j h) (_root_.cast C2 y) (castLT j h) = _root_.cast C2 y\n⊢ i = castLT j h", "tactic": "simp [h, h']" }, { "state_after": "no goals", "state_before": "case h.e'_2.h.e'_6\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : j = ↑castSucc i\nC1 : α (↑castSucc i) = α j\nE1 : update (snoc p x) (↑castSucc i) y j = _root_.cast C1 y\nC2 : α (↑castSucc i) = α (↑castSucc (castLT j h))\nthis : update p (castLT j h) (_root_.cast C2 y) (castLT j h) = _root_.cast C2 y\ne_5✝ : i = castLT j h\n⊢ HEq y (_root_.cast C2 y)", "tactic": "exact heq_of_cast_eq C2 rfl" }, { "state_after": "case neg\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : ¬j = ↑castSucc i\nthis : ¬castLT j h = i\n⊢ _root_.cast (_ : α (↑castSucc (castLT j (_ : ↑j < n))) = α j) (update p i y (castLT j (_ : ↑j < n))) =\n update (snoc p x) (↑castSucc i) y j", "state_before": "case neg\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : ¬j = ↑castSucc i\n⊢ _root_.cast (_ : α (↑castSucc (castLT j (_ : ↑j < n))) = α j) (update p i y (castLT j (_ : ↑j < n))) =\n update (snoc p x) (↑castSucc i) y j", "tactic": "have : ¬castLT j h = i := by\n intro E\n apply h'\n rw [← E, castSucc_castLT]" }, { "state_after": "no goals", "state_before": "case neg\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : ¬j = ↑castSucc i\nthis : ¬castLT j h = i\n⊢ _root_.cast (_ : α (↑castSucc (castLT j (_ : ↑j < n))) = α j) (update p i y (castLT j (_ : ↑j < n))) =\n update (snoc p x) (↑castSucc i) y j", "tactic": "simp [h', this, snoc, h]" }, { "state_after": "m n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : ¬j = ↑castSucc i\nE : castLT j h = i\n⊢ False", "state_before": "m n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : ¬j = ↑castSucc i\n⊢ ¬castLT j h = i", "tactic": "intro E" }, { "state_after": "m n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : ¬j = ↑castSucc i\nE : castLT j h = i\n⊢ j = ↑castSucc i", "state_before": "m n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : ¬j = ↑castSucc i\nE : castLT j h = i\n⊢ False", "tactic": "apply h'" }, { "state_after": "no goals", "state_before": "m n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ↑j < n\nh' : ¬j = ↑castSucc i\nE : castLT j h = i\n⊢ j = ↑castSucc i", "tactic": "rw [← E, castSucc_castLT]" }, { "state_after": "case neg\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ¬↑j < n\n⊢ snoc (update p i y) x (last n) = update (snoc p x) (↑castSucc i) y (last n)", "state_before": "case neg\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ¬↑j < n\n⊢ snoc (update p i y) x j = update (snoc p x) (↑castSucc i) y j", "tactic": "rw [eq_last_of_not_lt h]" }, { "state_after": "no goals", "state_before": "case neg\nm n : ℕ\nα : Fin (n + 1) → Type u\nx : α (last n)\nq : (i : Fin (n + 1)) → α i\np : (i : Fin n) → α (↑castSucc i)\ni : Fin n\ny : α (↑castSucc i)\nz : α (last n)\nj : Fin (n + 1)\nh : ¬↑j < n\n⊢ snoc (update p i y) x (last n) = update (snoc p x) (↑castSucc i) y (last n)", "tactic": "simp [Ne.symm (ne_of_lt (castSucc_lt_last i))]" } ]
[ 528, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 501, 1 ]
Mathlib/Order/WithBot.lean
WithBot.none_lt_some
[]
[ 271, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 270, 1 ]
Mathlib/Analysis/LocallyConvex/BalancedCoreHull.lean
balancedCore_empty
[]
[ 81, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 80, 1 ]
Mathlib/Topology/Algebra/Group/Basic.lean
Homeomorph.mulRight_symm
[ { "state_after": "case H\nα : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝² : TopologicalSpace G\ninst✝¹ : Group G\ninst✝ : ContinuousMul G\na x✝ : G\n⊢ ↑(Homeomorph.symm (Homeomorph.mulRight a)) x✝ = ↑(Homeomorph.mulRight a⁻¹) x✝", "state_before": "α : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝² : TopologicalSpace G\ninst✝¹ : Group G\ninst✝ : ContinuousMul G\na : G\n⊢ Homeomorph.symm (Homeomorph.mulRight a) = Homeomorph.mulRight a⁻¹", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case H\nα : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝² : TopologicalSpace G\ninst✝¹ : Group G\ninst✝ : ContinuousMul G\na x✝ : G\n⊢ ↑(Homeomorph.symm (Homeomorph.mulRight a)) x✝ = ↑(Homeomorph.mulRight a⁻¹) x✝", "tactic": "rfl" } ]
[ 122, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 119, 1 ]
Mathlib/Algebra/Hom/NonUnitalAlg.lean
NonUnitalAlgHom.inr_apply
[]
[ 405, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 404, 1 ]
Mathlib/Analysis/Convex/Measure.lean
Convex.add_haar_frontier
[ { "state_after": "case inl\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nhspan : affineSpan ℝ s ≠ ⊤\n⊢ ↑↑μ (frontier s) = 0\n\ncase inr\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nhspan : affineSpan ℝ s = ⊤\n⊢ ↑↑μ (frontier s) = 0", "state_before": "E : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\n⊢ ↑↑μ (frontier s) = 0", "tactic": "cases' ne_or_eq (affineSpan ℝ s) ⊤ with hspan hspan" }, { "state_after": "case inr\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nhspan : Set.Nonempty (interior s)\n⊢ ↑↑μ (frontier s) = 0", "state_before": "case inr\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nhspan : affineSpan ℝ s = ⊤\n⊢ ↑↑μ (frontier s) = 0", "tactic": "rw [← hs.interior_nonempty_iff_affineSpan_eq_top] at hspan" }, { "state_after": "case inr.intro\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\n⊢ ↑↑μ (frontier s) = 0", "state_before": "case inr\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nhspan : Set.Nonempty (interior s)\n⊢ ↑↑μ (frontier s) = 0", "tactic": "rcases hspan with ⟨x, hx⟩" }, { "state_after": "case inr.intro\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\n⊢ ↑↑μ (frontier s) = 0\n\ncase H\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\n⊢ ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0", "state_before": "case inr.intro\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\n⊢ ↑↑μ (frontier s) = 0", "tactic": "suffices H : ∀ t : Set E, Convex ℝ t → x ∈ interior t → Bounded t → μ (frontier t) = 0" }, { "state_after": "case H\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : Metric.Bounded s\n⊢ ↑↑μ (frontier s) = 0", "state_before": "case H\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\n⊢ ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0", "tactic": "intro s hs hx hb" }, { "state_after": "case hb\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : Metric.Bounded s\n⊢ ↑↑μ (interior s) ≠ ⊤\n\ncase H\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : ↑↑μ (interior s) ≠ ⊤\n⊢ ↑↑μ (frontier s) = 0", "state_before": "case H\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : Metric.Bounded s\n⊢ ↑↑μ (frontier s) = 0", "tactic": "replace hb : μ (interior s) ≠ ∞" }, { "state_after": "case H\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : ↑↑μ (interior s) ≠ ⊤\n⊢ ↑↑μ (frontier s) = 0", "state_before": "case hb\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : Metric.Bounded s\n⊢ ↑↑μ (interior s) ≠ ⊤\n\ncase H\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : ↑↑μ (interior s) ≠ ⊤\n⊢ ↑↑μ (frontier s) = 0", "tactic": "exact (hb.mono interior_subset).measure_lt_top.ne" }, { "state_after": "case H\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : ↑↑μ (interior s) ≠ ⊤\n⊢ ↑↑μ (closure s) ≤ ↑↑μ (interior s)", "state_before": "case H\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : ↑↑μ (interior s) ≠ ⊤\n⊢ ↑↑μ (frontier s) = 0", "tactic": "suffices μ (closure s) ≤ μ (interior s) by\n rwa [frontier, measure_diff interior_subset_closure isOpen_interior.measurableSet hb,\n tsub_eq_zero_iff_le]" }, { "state_after": "case H\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : ↑↑μ (interior s) ≠ ⊤\nd : ℕ := finrank ℝ E\n⊢ ↑↑μ (closure s) ≤ ↑↑μ (interior s)", "state_before": "case H\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : ↑↑μ (interior s) ≠ ⊤\n⊢ ↑↑μ (closure s) ≤ ↑↑μ (interior s)", "tactic": "set d : ℕ := FiniteDimensional.finrank ℝ E" }, { "state_after": "case H\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : ↑↑μ (interior s) ≠ ⊤\nd : ℕ := finrank ℝ E\nthis : ∀ (r : ℝ≥0), 1 < r → ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)\n⊢ ↑↑μ (closure s) ≤ ↑↑μ (interior s)", "state_before": "case H\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : ↑↑μ (interior s) ≠ ⊤\nd : ℕ := finrank ℝ E\n⊢ ↑↑μ (closure s) ≤ ↑↑μ (interior s)", "tactic": "have : ∀ r : ℝ≥0, 1 < r → μ (closure s) ≤ ↑(r ^ d) * μ (interior s) := by\n intro r hr\n refine' (measure_mono <|\n hs.closure_subset_image_homothety_interior_of_one_lt hx r hr).trans_eq _\n rw [add_haar_image_homothety, ← NNReal.coe_pow, NNReal.abs_eq, ENNReal.ofReal_coe_nnreal]" }, { "state_after": "case H\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : ↑↑μ (interior s) ≠ ⊤\nd : ℕ := finrank ℝ E\nthis✝ : ∀ (r : ℝ≥0), 1 < r → ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)\nthis : ∀ᶠ (r : ℝ≥0) in 𝓝[Ioi 1] 1, ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)\n⊢ ↑↑μ (closure s) ≤ ↑↑μ (interior s)", "state_before": "case H\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : ↑↑μ (interior s) ≠ ⊤\nd : ℕ := finrank ℝ E\nthis : ∀ (r : ℝ≥0), 1 < r → ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)\n⊢ ↑↑μ (closure s) ≤ ↑↑μ (interior s)", "tactic": "have : ∀ᶠ (r : ℝ≥0) in 𝓝[>] 1, μ (closure s) ≤ ↑(r ^ d) * μ (interior s) :=\n mem_of_superset self_mem_nhdsWithin this" }, { "state_after": "case H\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : ↑↑μ (interior s) ≠ ⊤\nd : ℕ := finrank ℝ E\nthis✝ : ∀ (r : ℝ≥0), 1 < r → ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)\nthis : ∀ᶠ (r : ℝ≥0) in 𝓝[Ioi 1] 1, ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)\n⊢ Tendsto (fun c => ↑(c ^ d) * ↑↑μ (interior s)) (𝓝[Ioi 1] 1) (𝓝 (↑↑μ (interior s)))", "state_before": "case H\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : ↑↑μ (interior s) ≠ ⊤\nd : ℕ := finrank ℝ E\nthis✝ : ∀ (r : ℝ≥0), 1 < r → ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)\nthis : ∀ᶠ (r : ℝ≥0) in 𝓝[Ioi 1] 1, ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)\n⊢ ↑↑μ (closure s) ≤ ↑↑μ (interior s)", "tactic": "refine' ge_of_tendsto _ this" }, { "state_after": "case H\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : ↑↑μ (interior s) ≠ ⊤\nd : ℕ := finrank ℝ E\nthis✝ : ∀ (r : ℝ≥0), 1 < r → ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)\nthis : ∀ᶠ (r : ℝ≥0) in 𝓝[Ioi 1] 1, ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)\n⊢ ((fun x => x * ↑↑μ (interior s)) ∘ ENNReal.some ∘ fun a => a ^ d) 1 = ↑↑μ (interior s)", "state_before": "case H\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : ↑↑μ (interior s) ≠ ⊤\nd : ℕ := finrank ℝ E\nthis✝ : ∀ (r : ℝ≥0), 1 < r → ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)\nthis : ∀ᶠ (r : ℝ≥0) in 𝓝[Ioi 1] 1, ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)\n⊢ Tendsto (fun c => ↑(c ^ d) * ↑↑μ (interior s)) (𝓝[Ioi 1] 1) (𝓝 (↑↑μ (interior s)))", "tactic": "refine' (((ENNReal.continuous_mul_const hb).comp\n (ENNReal.continuous_coe.comp (continuous_pow d))).tendsto' _ _ _).mono_left nhdsWithin_le_nhds" }, { "state_after": "no goals", "state_before": "case H\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : ↑↑μ (interior s) ≠ ⊤\nd : ℕ := finrank ℝ E\nthis✝ : ∀ (r : ℝ≥0), 1 < r → ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)\nthis : ∀ᶠ (r : ℝ≥0) in 𝓝[Ioi 1] 1, ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)\n⊢ ((fun x => x * ↑↑μ (interior s)) ∘ ENNReal.some ∘ fun a => a ^ d) 1 = ↑↑μ (interior s)", "tactic": "simp" }, { "state_after": "case inl\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nhspan : affineSpan ℝ s ≠ ⊤\n⊢ frontier s ⊆ ↑(affineSpan ℝ s)", "state_before": "case inl\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nhspan : affineSpan ℝ s ≠ ⊤\n⊢ ↑↑μ (frontier s) = 0", "tactic": "refine' measure_mono_null _ (add_haar_affineSubspace _ _ hspan)" }, { "state_after": "no goals", "state_before": "case inl\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nhspan : affineSpan ℝ s ≠ ⊤\n⊢ frontier s ⊆ ↑(affineSpan ℝ s)", "tactic": "exact frontier_subset_closure.trans\n (closure_minimal (subset_affineSpan _ _) (affineSpan ℝ s).closed_of_finiteDimensional)" }, { "state_after": "case inr.intro\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\n⊢ ↑↑μ (frontier s) = 0", "state_before": "case inr.intro\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\n⊢ ↑↑μ (frontier s) = 0", "tactic": "let B : ℕ → Set E := fun n => ball x (n + 1)" }, { "state_after": "case inr.intro\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\nthis : ↑↑μ (⋃ (n : ℕ), frontier (s ∩ B n)) = 0\n⊢ ↑↑μ (frontier s) = 0", "state_before": "case inr.intro\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\n⊢ ↑↑μ (frontier s) = 0", "tactic": "have : μ (⋃ n : ℕ, frontier (s ∩ B n)) = 0 := by\n refine' measure_iUnion_null fun n =>\n H _ (hs.inter (convex_ball _ _)) _ (bounded_ball.mono (inter_subset_right _ _))\n rw [interior_inter, isOpen_ball.interior_eq]\n exact ⟨hx, mem_ball_self (add_pos_of_nonneg_of_pos n.cast_nonneg zero_lt_one)⟩" }, { "state_after": "case inr.intro\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\nthis : ↑↑μ (⋃ (n : ℕ), frontier (s ∩ B n)) = 0\ny : E\nhy : y ∈ frontier s\n⊢ y ∈ ⋃ (n : ℕ), frontier (s ∩ B n)", "state_before": "case inr.intro\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\nthis : ↑↑μ (⋃ (n : ℕ), frontier (s ∩ B n)) = 0\n⊢ ↑↑μ (frontier s) = 0", "tactic": "refine' measure_mono_null (fun y hy => _) this" }, { "state_after": "case inr.intro\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\ny : E\nhy : y ∈ frontier s\n⊢ y ∈ ⋃ (n : ℕ), frontier (s ∩ B n)", "state_before": "case inr.intro\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\nthis : ↑↑μ (⋃ (n : ℕ), frontier (s ∩ B n)) = 0\ny : E\nhy : y ∈ frontier s\n⊢ y ∈ ⋃ (n : ℕ), frontier (s ∩ B n)", "tactic": "clear this" }, { "state_after": "case inr.intro\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\ny : E\nhy : y ∈ frontier s\nN : ℕ := ⌊dist y x⌋₊\n⊢ y ∈ ⋃ (n : ℕ), frontier (s ∩ B n)", "state_before": "case inr.intro\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\ny : E\nhy : y ∈ frontier s\n⊢ y ∈ ⋃ (n : ℕ), frontier (s ∩ B n)", "tactic": "set N : ℕ := ⌊dist y x⌋₊" }, { "state_after": "case inr.intro\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\ny : E\nhy : y ∈ frontier s\nN : ℕ := ⌊dist y x⌋₊\n⊢ y ∈ frontier (s ∩ B N)", "state_before": "case inr.intro\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\ny : E\nhy : y ∈ frontier s\nN : ℕ := ⌊dist y x⌋₊\n⊢ y ∈ ⋃ (n : ℕ), frontier (s ∩ B n)", "tactic": "refine' mem_iUnion.2 ⟨N, _⟩" }, { "state_after": "case inr.intro\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\ny : E\nhy : y ∈ frontier s\nN : ℕ := ⌊dist y x⌋₊\nhN : y ∈ B N\n⊢ y ∈ frontier (s ∩ B N)", "state_before": "case inr.intro\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\ny : E\nhy : y ∈ frontier s\nN : ℕ := ⌊dist y x⌋₊\n⊢ y ∈ frontier (s ∩ B N)", "tactic": "have hN : y ∈ B N := by simp [Nat.lt_floor_add_one]" }, { "state_after": "case inr.intro\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\ny : E\nhy : y ∈ frontier s\nN : ℕ := ⌊dist y x⌋₊\nhN : y ∈ B N\nthis : y ∈ frontier (s ∩ B N) ∩ B N\n⊢ y ∈ frontier (s ∩ B N)\n\ncase this\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\ny : E\nhy : y ∈ frontier s\nN : ℕ := ⌊dist y x⌋₊\nhN : y ∈ B N\n⊢ y ∈ frontier (s ∩ B N) ∩ B N", "state_before": "case inr.intro\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\ny : E\nhy : y ∈ frontier s\nN : ℕ := ⌊dist y x⌋₊\nhN : y ∈ B N\n⊢ y ∈ frontier (s ∩ B N)", "tactic": "suffices : y ∈ frontier (s ∩ B N) ∩ B N" }, { "state_after": "case this\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\ny : E\nhy : y ∈ frontier s\nN : ℕ := ⌊dist y x⌋₊\nhN : y ∈ B N\n⊢ y ∈ frontier (s ∩ B N) ∩ B N", "state_before": "case inr.intro\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\ny : E\nhy : y ∈ frontier s\nN : ℕ := ⌊dist y x⌋₊\nhN : y ∈ B N\nthis : y ∈ frontier (s ∩ B N) ∩ B N\n⊢ y ∈ frontier (s ∩ B N)\n\ncase this\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\ny : E\nhy : y ∈ frontier s\nN : ℕ := ⌊dist y x⌋₊\nhN : y ∈ B N\n⊢ y ∈ frontier (s ∩ B N) ∩ B N", "tactic": "exact this.1" }, { "state_after": "case this\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\ny : E\nhy : y ∈ frontier s\nN : ℕ := ⌊dist y x⌋₊\nhN : y ∈ B N\n⊢ y ∈ frontier s ∩ ball x (↑N + 1)", "state_before": "case this\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\ny : E\nhy : y ∈ frontier s\nN : ℕ := ⌊dist y x⌋₊\nhN : y ∈ B N\n⊢ y ∈ frontier (s ∩ B N) ∩ B N", "tactic": "rw [frontier_inter_open_inter isOpen_ball]" }, { "state_after": "no goals", "state_before": "case this\nE : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\ny : E\nhy : y ∈ frontier s\nN : ℕ := ⌊dist y x⌋₊\nhN : y ∈ B N\n⊢ y ∈ frontier s ∩ ball x (↑N + 1)", "tactic": "exact ⟨hy, hN⟩" }, { "state_after": "E : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\nn : ℕ\n⊢ x ∈ interior (s ∩ B n)", "state_before": "E : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\n⊢ ↑↑μ (⋃ (n : ℕ), frontier (s ∩ B n)) = 0", "tactic": "refine' measure_iUnion_null fun n =>\n H _ (hs.inter (convex_ball _ _)) _ (bounded_ball.mono (inter_subset_right _ _))" }, { "state_after": "E : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\nn : ℕ\n⊢ x ∈ interior s ∩ ball x (↑n + 1)", "state_before": "E : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\nn : ℕ\n⊢ x ∈ interior (s ∩ B n)", "tactic": "rw [interior_inter, isOpen_ball.interior_eq]" }, { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\nn : ℕ\n⊢ x ∈ interior s ∩ ball x (↑n + 1)", "tactic": "exact ⟨hx, mem_ball_self (add_pos_of_nonneg_of_pos n.cast_nonneg zero_lt_one)⟩" }, { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns : Set E\nhs : Convex ℝ s\nx : E\nhx : x ∈ interior s\nH : ∀ (t : Set E), Convex ℝ t → x ∈ interior t → Metric.Bounded t → ↑↑μ (frontier t) = 0\nB : ℕ → Set E := fun n => ball x (↑n + 1)\ny : E\nhy : y ∈ frontier s\nN : ℕ := ⌊dist y x⌋₊\n⊢ y ∈ B N", "tactic": "simp [Nat.lt_floor_add_one]" }, { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : ↑↑μ (interior s) ≠ ⊤\nthis : ↑↑μ (closure s) ≤ ↑↑μ (interior s)\n⊢ ↑↑μ (frontier s) = 0", "tactic": "rwa [frontier, measure_diff interior_subset_closure isOpen_interior.measurableSet hb,\n tsub_eq_zero_iff_le]" }, { "state_after": "E : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : ↑↑μ (interior s) ≠ ⊤\nd : ℕ := finrank ℝ E\nr : ℝ≥0\nhr : 1 < r\n⊢ ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)", "state_before": "E : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : ↑↑μ (interior s) ≠ ⊤\nd : ℕ := finrank ℝ E\n⊢ ∀ (r : ℝ≥0), 1 < r → ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)", "tactic": "intro r hr" }, { "state_after": "E : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : ↑↑μ (interior s) ≠ ⊤\nd : ℕ := finrank ℝ E\nr : ℝ≥0\nhr : 1 < r\n⊢ ↑↑μ (↑(AffineMap.homothety x ↑r) '' interior s) = ↑(r ^ d) * ↑↑μ (interior s)", "state_before": "E : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : ↑↑μ (interior s) ≠ ⊤\nd : ℕ := finrank ℝ E\nr : ℝ≥0\nhr : 1 < r\n⊢ ↑↑μ (closure s) ≤ ↑(r ^ d) * ↑↑μ (interior s)", "tactic": "refine' (measure_mono <|\n hs.closure_subset_image_homothety_interior_of_one_lt hx r hr).trans_eq _" }, { "state_after": "no goals", "state_before": "E : Type u_1\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedSpace ℝ E\ninst✝³ : MeasurableSpace E\ninst✝² : BorelSpace E\ninst✝¹ : FiniteDimensional ℝ E\nμ : MeasureTheory.Measure E\ninst✝ : IsAddHaarMeasure μ\ns✝ : Set E\nhs✝ : Convex ℝ s✝\nx : E\nhx✝ : x ∈ interior s✝\ns : Set E\nhs : Convex ℝ s\nhx : x ∈ interior s\nhb : ↑↑μ (interior s) ≠ ⊤\nd : ℕ := finrank ℝ E\nr : ℝ≥0\nhr : 1 < r\n⊢ ↑↑μ (↑(AffineMap.homothety x ↑r) '' interior s) = ↑(r ^ d) * ↑↑μ (interior s)", "tactic": "rw [add_haar_image_homothety, ← NNReal.coe_pow, NNReal.abs_eq, ENNReal.ofReal_coe_nnreal]" } ]
[ 85, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 36, 1 ]
Mathlib/Data/Nat/Cast/Basic.lean
ext_nat'
[ { "state_after": "α : Type ?u.27138\nβ : Type ?u.27141\nA : Type u_1\nB : Type ?u.27147\nF : Type u_2\ninst✝² : AddMonoidWithOne B\ninst✝¹ : AddMonoid A\ninst✝ : AddMonoidHomClass F ℕ A\nf g : F\nh : ↑f 1 = ↑g 1\nn : ℕ\n⊢ ↑f n = ↑g n", "state_before": "α : Type ?u.27138\nβ : Type ?u.27141\nA : Type u_1\nB : Type ?u.27147\nF : Type u_2\ninst✝² : AddMonoidWithOne B\ninst✝¹ : AddMonoid A\ninst✝ : AddMonoidHomClass F ℕ A\nf g : F\nh : ↑f 1 = ↑g 1\n⊢ ∀ (x : ℕ), ↑f x = ↑g x", "tactic": "intro n" }, { "state_after": "no goals", "state_before": "α : Type ?u.27138\nβ : Type ?u.27141\nA : Type u_1\nB : Type ?u.27147\nF : Type u_2\ninst✝² : AddMonoidWithOne B\ninst✝¹ : AddMonoid A\ninst✝ : AddMonoidHomClass F ℕ A\nf g : F\nh : ↑f 1 = ↑g 1\nn : ℕ\n⊢ ↑f n = ↑g n", "tactic": "induction n with\n| zero => simp_rw [Nat.zero_eq, map_zero f, map_zero g]\n| succ n ihn =>\n simp [Nat.succ_eq_add_one, h, ihn]" }, { "state_after": "no goals", "state_before": "case zero\nα : Type ?u.27138\nβ : Type ?u.27141\nA : Type u_1\nB : Type ?u.27147\nF : Type u_2\ninst✝² : AddMonoidWithOne B\ninst✝¹ : AddMonoid A\ninst✝ : AddMonoidHomClass F ℕ A\nf g : F\nh : ↑f 1 = ↑g 1\n⊢ ↑f Nat.zero = ↑g Nat.zero", "tactic": "simp_rw [Nat.zero_eq, map_zero f, map_zero g]" }, { "state_after": "no goals", "state_before": "case succ\nα : Type ?u.27138\nβ : Type ?u.27141\nA : Type u_1\nB : Type ?u.27147\nF : Type u_2\ninst✝² : AddMonoidWithOne B\ninst✝¹ : AddMonoid A\ninst✝ : AddMonoidHomClass F ℕ A\nf g : F\nh : ↑f 1 = ↑g 1\nn : ℕ\nihn : ↑f n = ↑g n\n⊢ ↑f (Nat.succ n) = ↑g (Nat.succ n)", "tactic": "simp [Nat.succ_eq_add_one, h, ihn]" } ]
[ 208, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 202, 1 ]
Mathlib/Data/Int/ModEq.lean
Int.modEq_iff_dvd
[ { "state_after": "m n a b c d : ℤ\n⊢ b % n = a % n ↔ n ∣ b - a", "state_before": "m n a b c d : ℤ\n⊢ a ≡ b [ZMOD n] ↔ n ∣ b - a", "tactic": "rw [ModEq, eq_comm]" }, { "state_after": "no goals", "state_before": "m n a b c d : ℤ\n⊢ b % n = a % n ↔ n ∣ b - a", "tactic": "simp [emod_eq_emod_iff_emod_sub_eq_zero, dvd_iff_emod_eq_zero]" } ]
[ 99, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 97, 1 ]
Mathlib/Topology/List.lean
Vector.continuousAt_removeNth
[ { "state_after": "α : Type u_1\nβ : Type ?u.68450\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nn : ℕ\ni : Fin (n + 1)\nl : List α\nhl : List.length l = n + 1\n⊢ Tendsto (fun x => ↑(removeNth i x)) (𝓝 { val := l, property := hl })\n (𝓝\n ↑(match { val := l, property := hl } with\n | { val := l, property := p } =>\n { val := List.removeNth l ↑i, property := (_ : List.length (List.removeNth l ↑i) = n + 1 - 1) }))", "state_before": "α : Type u_1\nβ : Type ?u.68450\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nn : ℕ\ni : Fin (n + 1)\nl : List α\nhl : List.length l = n + 1\n⊢ ContinuousAt (removeNth i) { val := l, property := hl }", "tactic": "rw [ContinuousAt, removeNth, tendsto_subtype_rng]" }, { "state_after": "α : Type u_1\nβ : Type ?u.68450\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nn : ℕ\ni : Fin (n + 1)\nl : List α\nhl : List.length l = n + 1\n⊢ Tendsto (fun x => List.removeNth ↑x ↑i) (𝓝 { val := l, property := hl }) (𝓝 (List.removeNth l ↑i))", "state_before": "α : Type u_1\nβ : Type ?u.68450\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nn : ℕ\ni : Fin (n + 1)\nl : List α\nhl : List.length l = n + 1\n⊢ Tendsto (fun x => ↑(removeNth i x)) (𝓝 { val := l, property := hl })\n (𝓝\n ↑(match { val := l, property := hl } with\n | { val := l, property := p } =>\n { val := List.removeNth l ↑i, property := (_ : List.length (List.removeNth l ↑i) = n + 1 - 1) }))", "tactic": "simp only [Vector.removeNth_val]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.68450\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\nn : ℕ\ni : Fin (n + 1)\nl : List α\nhl : List.length l = n + 1\n⊢ Tendsto (fun x => List.removeNth ↑x ↑i) (𝓝 { val := l, property := hl }) (𝓝 (List.removeNth l ↑i))", "tactic": "exact Tendsto.comp List.tendsto_removeNth continuousAt_subtype_val" } ]
[ 223, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 218, 1 ]
Mathlib/Data/Finset/Lattice.lean
Finset.min'_mem
[ { "state_after": "F : Type ?u.332825\nα : Type u_1\nβ : Type ?u.332831\nγ : Type ?u.332834\nι : Type ?u.332837\nκ : Type ?u.332840\ninst✝ : LinearOrder α\ns : Finset α\nH : Finset.Nonempty s\nx : α\n⊢ inf s WithTop.some = inf s (WithTop.some ∘ fun x => x)", "state_before": "F : Type ?u.332825\nα : Type u_1\nβ : Type ?u.332831\nγ : Type ?u.332834\nι : Type ?u.332837\nκ : Type ?u.332840\ninst✝ : LinearOrder α\ns : Finset α\nH : Finset.Nonempty s\nx : α\n⊢ Finset.min s = ↑(min' s H)", "tactic": "simp only [Finset.min, min', id_eq, coe_inf']" }, { "state_after": "no goals", "state_before": "F : Type ?u.332825\nα : Type u_1\nβ : Type ?u.332831\nγ : Type ?u.332834\nι : Type ?u.332837\nκ : Type ?u.332840\ninst✝ : LinearOrder α\ns : Finset α\nH : Finset.Nonempty s\nx : α\n⊢ inf s WithTop.some = inf s (WithTop.some ∘ fun x => x)", "tactic": "rfl" } ]
[ 1325, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1324, 1 ]
Mathlib/Combinatorics/SimpleGraph/Density.lean
Rel.abs_edgeDensity_sub_edgeDensity_le_one_sub_mul
[ { "state_after": "𝕜 : Type ?u.36968\nι : Type ?u.36971\nκ : Type ?u.36974\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrderedField 𝕜\nr : α → β → Prop\ninst✝ : (a : α) → DecidablePred (r a)\ns s₁ s₂ : Finset α\nt t₁ t₂ : Finset β\na : α\nb : β\nδ : 𝕜\nhs : s₂ ⊆ s₁\nht : t₂ ⊆ t₁\nhs₂ : Finset.Nonempty s₂\nht₂ : Finset.Nonempty t₂\n⊢ edgeDensity r s₁ t₁ - edgeDensity r s₂ t₂ ≤ 1 - ↑(card s₂) / ↑(card s₁) * (↑(card t₂) / ↑(card t₁))", "state_before": "𝕜 : Type ?u.36968\nι : Type ?u.36971\nκ : Type ?u.36974\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrderedField 𝕜\nr : α → β → Prop\ninst✝ : (a : α) → DecidablePred (r a)\ns s₁ s₂ : Finset α\nt t₁ t₂ : Finset β\na : α\nb : β\nδ : 𝕜\nhs : s₂ ⊆ s₁\nht : t₂ ⊆ t₁\nhs₂ : Finset.Nonempty s₂\nht₂ : Finset.Nonempty t₂\n⊢ abs (edgeDensity r s₂ t₂ - edgeDensity r s₁ t₁) ≤ 1 - ↑(card s₂) / ↑(card s₁) * (↑(card t₂) / ↑(card t₁))", "tactic": "refine' abs_sub_le_iff.2 ⟨edgeDensity_sub_edgeDensity_le_one_sub_mul r hs ht hs₂ ht₂, _⟩" }, { "state_after": "𝕜 : Type ?u.36968\nι : Type ?u.36971\nκ : Type ?u.36974\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrderedField 𝕜\nr : α → β → Prop\ninst✝ : (a : α) → DecidablePred (r a)\ns s₁ s₂ : Finset α\nt t₁ t₂ : Finset β\na : α\nb : β\nδ : 𝕜\nhs : s₂ ⊆ s₁\nht : t₂ ⊆ t₁\nhs₂ : Finset.Nonempty s₂\nht₂ : Finset.Nonempty t₂\n⊢ edgeDensity (fun x y => ¬r x y) s₂ t₂ - edgeDensity (fun x y => ¬r x y) s₁ t₁ ≤\n 1 - ↑(card s₂) / ↑(card s₁) * (↑(card t₂) / ↑(card t₁))", "state_before": "𝕜 : Type ?u.36968\nι : Type ?u.36971\nκ : Type ?u.36974\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrderedField 𝕜\nr : α → β → Prop\ninst✝ : (a : α) → DecidablePred (r a)\ns s₁ s₂ : Finset α\nt t₁ t₂ : Finset β\na : α\nb : β\nδ : 𝕜\nhs : s₂ ⊆ s₁\nht : t₂ ⊆ t₁\nhs₂ : Finset.Nonempty s₂\nht₂ : Finset.Nonempty t₂\n⊢ edgeDensity r s₁ t₁ - edgeDensity r s₂ t₂ ≤ 1 - ↑(card s₂) / ↑(card s₁) * (↑(card t₂) / ↑(card t₁))", "tactic": "rw [← add_sub_cancel (edgeDensity r s₁ t₁) (edgeDensity (fun x y ↦ ¬r x y) s₁ t₁),\n ← add_sub_cancel (edgeDensity r s₂ t₂) (edgeDensity (fun x y ↦ ¬r x y) s₂ t₂),\n edgeDensity_add_edgeDensity_compl _ (hs₂.mono hs) (ht₂.mono ht),\n edgeDensity_add_edgeDensity_compl _ hs₂ ht₂, sub_sub_sub_cancel_left]" }, { "state_after": "no goals", "state_before": "𝕜 : Type ?u.36968\nι : Type ?u.36971\nκ : Type ?u.36974\nα : Type u_1\nβ : Type u_2\ninst✝¹ : LinearOrderedField 𝕜\nr : α → β → Prop\ninst✝ : (a : α) → DecidablePred (r a)\ns s₁ s₂ : Finset α\nt t₁ t₂ : Finset β\na : α\nb : β\nδ : 𝕜\nhs : s₂ ⊆ s₁\nht : t₂ ⊆ t₁\nhs₂ : Finset.Nonempty s₂\nht₂ : Finset.Nonempty t₂\n⊢ edgeDensity (fun x y => ¬r x y) s₂ t₂ - edgeDensity (fun x y => ¬r x y) s₁ t₁ ≤\n 1 - ↑(card s₂) / ↑(card s₁) * (↑(card t₂) / ↑(card t₁))", "tactic": "exact edgeDensity_sub_edgeDensity_le_one_sub_mul _ hs ht hs₂ ht₂" } ]
[ 215, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 207, 1 ]
Mathlib/CategoryTheory/Sites/SheafOfTypes.lean
CategoryTheory.Presieve.extend_restrict
[ { "state_after": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P (generate R).arrows\nt : FamilyOfElements.SieveCompatible x\n⊢ FamilyOfElements.sieveExtend (FamilyOfElements.restrict (_ : R ≤ (generate R).arrows) x) = x", "state_before": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P (generate R).arrows\nt : FamilyOfElements.Compatible x\n⊢ FamilyOfElements.sieveExtend (FamilyOfElements.restrict (_ : R ≤ (generate R).arrows) x) = x", "tactic": "rw [compatible_iff_sieveCompatible] at t" }, { "state_after": "case h.h.h\nC : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P (generate R).arrows\nt : FamilyOfElements.SieveCompatible x\nx✝¹ : C\nx✝ : x✝¹ ⟶ X\nh : (generate R).arrows x✝\n⊢ FamilyOfElements.sieveExtend (FamilyOfElements.restrict (_ : R ≤ (generate R).arrows) x) x✝ h = x x✝ h", "state_before": "C : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P (generate R).arrows\nt : FamilyOfElements.SieveCompatible x\n⊢ FamilyOfElements.sieveExtend (FamilyOfElements.restrict (_ : R ≤ (generate R).arrows) x) = x", "tactic": "funext _ _ h" }, { "state_after": "case h.h.h\nC : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P (generate R).arrows\nt : FamilyOfElements.SieveCompatible x\nx✝¹ : C\nx✝ : x✝¹ ⟶ X\nh : (generate R).arrows x✝\n⊢ x\n (Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫\n Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫ g = x✝))\n (_ :\n (generate R).arrows\n (Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫\n Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫ g = x✝))) =\n x x✝ h", "state_before": "case h.h.h\nC : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P (generate R).arrows\nt : FamilyOfElements.SieveCompatible x\nx✝¹ : C\nx✝ : x✝¹ ⟶ X\nh : (generate R).arrows x✝\n⊢ FamilyOfElements.sieveExtend (FamilyOfElements.restrict (_ : R ≤ (generate R).arrows) x) x✝ h = x x✝ h", "tactic": "apply (t _ _ _).symm.trans" }, { "state_after": "case h.h.h.e_f\nC : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P (generate R).arrows\nt : FamilyOfElements.SieveCompatible x\nx✝¹ : C\nx✝ : x✝¹ ⟶ X\nh : (generate R).arrows x✝\n⊢ Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫\n Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫ g = x✝) =\n x✝", "state_before": "case h.h.h\nC : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P (generate R).arrows\nt : FamilyOfElements.SieveCompatible x\nx✝¹ : C\nx✝ : x✝¹ ⟶ X\nh : (generate R).arrows x✝\n⊢ x\n (Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫\n Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫ g = x✝))\n (_ :\n (generate R).arrows\n (Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫\n Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫ g = x✝))) =\n x x✝ h", "tactic": "congr" }, { "state_after": "no goals", "state_before": "case h.h.h.e_f\nC : Type u₁\ninst✝ : Category C\nP Q U : Cᵒᵖ ⥤ Type w\nX Y : C\nS : Sieve X\nR : Presieve X\nJ J₂ : GrothendieckTopology C\nx : FamilyOfElements P (generate R).arrows\nt : FamilyOfElements.SieveCompatible x\nx✝¹ : C\nx✝ : x✝¹ ⟶ X\nh : (generate R).arrows x✝\n⊢ Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫\n Exists.choose (_ : ∃ g, R g ∧ Exists.choose (_ : ∃ h_1 g, R g ∧ h_1 ≫ g = x✝) ≫ g = x✝) =\n x✝", "tactic": "exact h.choose_spec.choose_spec.choose_spec.2" } ]
[ 256, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 250, 1 ]
Mathlib/Order/BoundedOrder.lean
not_isMax_bot
[]
[ 420, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 419, 1 ]
Mathlib/NumberTheory/Padics/PadicNumbers.lean
Padic.div_nat_pos
[ { "state_after": "no goals", "state_before": "p : ℕ\ninst✝ : Fact (Nat.Prime p)\nf : CauSeq ℚ_[p] ↑padicNormE\nn : ℕ\n⊢ 0 < ↑n + 1", "tactic": "exact_mod_cast succ_pos _" } ]
[ 683, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 682, 9 ]
Mathlib/Algebra/FreeMonoid/Basic.lean
FreeMonoid.ofList_toList
[]
[ 68, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 68, 1 ]
Mathlib/Geometry/Manifold/Instances/Real.lean
range_quadrant
[]
[ 101, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 99, 1 ]
Mathlib/Data/Nat/GCD/Basic.lean
Nat.pow_dvd_pow_iff
[ { "state_after": "a b n : ℕ\nn0 : 0 < n\nh : a ^ n ∣ b ^ n\n⊢ a ∣ b", "state_before": "a b n : ℕ\nn0 : 0 < n\n⊢ a ^ n ∣ b ^ n ↔ a ∣ b", "tactic": "refine' ⟨fun h => _, fun h => pow_dvd_pow_of_dvd h _⟩" }, { "state_after": "case inl\na b n : ℕ\nn0 : 0 < n\nh : a ^ n ∣ b ^ n\ng0 : gcd a b = 0\n⊢ a ∣ b\n\ncase inr\na b n : ℕ\nn0 : 0 < n\nh : a ^ n ∣ b ^ n\ng0 : gcd a b > 0\n⊢ a ∣ b", "state_before": "a b n : ℕ\nn0 : 0 < n\nh : a ^ n ∣ b ^ n\n⊢ a ∣ b", "tactic": "cases' Nat.eq_zero_or_pos (gcd a b) with g0 g0" }, { "state_after": "case inr.intro.intro.intro.intro.intro.intro\nn : ℕ\nn0 : 0 < n\ng : ℕ\na' b' : ℕ\ng0' : 0 < g\nco : coprime a' b'\nh : (a' * g) ^ n ∣ (b' * g) ^ n\ng0 : gcd (a' * g) (b' * g) > 0\n⊢ a' * g ∣ b' * g", "state_before": "case inr\na b n : ℕ\nn0 : 0 < n\nh : a ^ n ∣ b ^ n\ng0 : gcd a b > 0\n⊢ a ∣ b", "tactic": "rcases exists_coprime' g0 with ⟨g, a', b', g0', co, rfl, rfl⟩" }, { "state_after": "case inr.intro.intro.intro.intro.intro.intro\nn : ℕ\nn0 : 0 < n\ng : ℕ\na' b' : ℕ\ng0' : 0 < g\nco : coprime a' b'\nh : a' ^ n * g ^ n ∣ b' ^ n * g ^ n\ng0 : gcd (a' * g) (b' * g) > 0\n⊢ a' * g ∣ b' * g", "state_before": "case inr.intro.intro.intro.intro.intro.intro\nn : ℕ\nn0 : 0 < n\ng : ℕ\na' b' : ℕ\ng0' : 0 < g\nco : coprime a' b'\nh : (a' * g) ^ n ∣ (b' * g) ^ n\ng0 : gcd (a' * g) (b' * g) > 0\n⊢ a' * g ∣ b' * g", "tactic": "rw [mul_pow, mul_pow] at h" }, { "state_after": "case inr.intro.intro.intro.intro.intro.intro\nn : ℕ\nn0 : 0 < n\ng : ℕ\na' b' : ℕ\ng0' : 0 < g\nco : coprime a' b'\ng0 : gcd (a' * g) (b' * g) > 0\nh : a' ^ n ∣ b' ^ n\n⊢ a' * g ∣ b' * g", "state_before": "case inr.intro.intro.intro.intro.intro.intro\nn : ℕ\nn0 : 0 < n\ng : ℕ\na' b' : ℕ\ng0' : 0 < g\nco : coprime a' b'\nh : a' ^ n * g ^ n ∣ b' ^ n * g ^ n\ng0 : gcd (a' * g) (b' * g) > 0\n⊢ a' * g ∣ b' * g", "tactic": "replace h := Nat.dvd_of_mul_dvd_mul_right (pow_pos g0' _) h" }, { "state_after": "case inr.intro.intro.intro.intro.intro.intro\nn : ℕ\nn0 : 0 < n\ng : ℕ\na' b' : ℕ\ng0' : 0 < g\nco : coprime a' b'\ng0 : gcd (a' * g) (b' * g) > 0\nh : a' ^ n ∣ b' ^ n\nthis : a' ^ succ 0 ∣ a' ^ n\n⊢ a' * g ∣ b' * g", "state_before": "case inr.intro.intro.intro.intro.intro.intro\nn : ℕ\nn0 : 0 < n\ng : ℕ\na' b' : ℕ\ng0' : 0 < g\nco : coprime a' b'\ng0 : gcd (a' * g) (b' * g) > 0\nh : a' ^ n ∣ b' ^ n\n⊢ a' * g ∣ b' * g", "tactic": "have := pow_dvd_pow a' n0" }, { "state_after": "case inr.intro.intro.intro.intro.intro.intro\nn : ℕ\nn0 : 0 < n\ng : ℕ\na' b' : ℕ\ng0' : 0 < g\nco : coprime a' b'\ng0 : gcd (a' * g) (b' * g) > 0\nh : a' ^ n ∣ b' ^ n\nthis : a' ∣ 1\n⊢ a' * g ∣ b' * g", "state_before": "case inr.intro.intro.intro.intro.intro.intro\nn : ℕ\nn0 : 0 < n\ng : ℕ\na' b' : ℕ\ng0' : 0 < g\nco : coprime a' b'\ng0 : gcd (a' * g) (b' * g) > 0\nh : a' ^ n ∣ b' ^ n\nthis : a' ^ succ 0 ∣ a' ^ n\n⊢ a' * g ∣ b' * g", "tactic": "rw [pow_one, (co.pow n n).eq_one_of_dvd h] at this" }, { "state_after": "no goals", "state_before": "case inr.intro.intro.intro.intro.intro.intro\nn : ℕ\nn0 : 0 < n\ng : ℕ\na' b' : ℕ\ng0' : 0 < g\nco : coprime a' b'\ng0 : gcd (a' * g) (b' * g) > 0\nh : a' ^ n ∣ b' ^ n\nthis : a' ∣ 1\n⊢ a' * g ∣ b' * g", "tactic": "simp [eq_one_of_dvd_one this]" }, { "state_after": "no goals", "state_before": "case inl\na b n : ℕ\nn0 : 0 < n\nh : a ^ n ∣ b ^ n\ng0 : gcd a b = 0\n⊢ a ∣ b", "tactic": "simp [eq_zero_of_gcd_eq_zero_right g0]" } ]
[ 268, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 259, 1 ]
Mathlib/Algebra/Tropical/Basic.lean
Tropical.inf_eq_add
[]
[ 317, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 316, 1 ]
Mathlib/Data/Finset/Lattice.lean
Finset.inf_def
[]
[ 324, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 323, 1 ]
Mathlib/Topology/Sequences.lean
isSeqClosed_iff
[]
[ 113, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 112, 1 ]
Mathlib/Data/Complex/Exponential.lean
Complex.ofReal_tanh
[]
[ 715, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 714, 1 ]
Mathlib/RingTheory/Ideal/Operations.lean
Ideal.comap_top
[]
[ 1440, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1439, 1 ]
Mathlib/Data/Int/GCD.lean
Nat.xgcd_zero_left
[ { "state_after": "no goals", "state_before": "s t : ℤ\nr' : ℕ\ns' t' : ℤ\n⊢ xgcdAux 0 s t r' s' t' = (r', s', t')", "tactic": "simp [xgcdAux]" } ]
[ 58, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 58, 1 ]
Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
csInf_Ioo
[]
[ 745, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 744, 1 ]
Mathlib/RingTheory/PowerSeries/Basic.lean
PowerSeries.rescale_mk
[ { "state_after": "case h\nR : Type u_1\ninst✝ : CommSemiring R\nf : ℕ → R\na : R\nn✝ : ℕ\n⊢ ↑(coeff R n✝) (↑(rescale a) (mk f)) = ↑(coeff R n✝) (mk fun n => a ^ n * f n)", "state_before": "R : Type u_1\ninst✝ : CommSemiring R\nf : ℕ → R\na : R\n⊢ ↑(rescale a) (mk f) = mk fun n => a ^ n * f n", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\nR : Type u_1\ninst✝ : CommSemiring R\nf : ℕ → R\na : R\nn✝ : ℕ\n⊢ ↑(coeff R n✝) (↑(rescale a) (mk f)) = ↑(coeff R n✝) (mk fun n => a ^ n * f n)", "tactic": "rw [coeff_rescale, coeff_mk, coeff_mk]" } ]
[ 1787, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1785, 1 ]
Mathlib/MeasureTheory/Integral/Bochner.lean
MeasureTheory.weightedSMul_smul
[ { "state_after": "no goals", "state_before": "α : Type u_3\nE : Type ?u.60121\nF : Type u_2\n𝕜 : Type u_1\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : NormedSpace ℝ F\nm : MeasurableSpace α\nμ : Measure α\ninst✝² : NormedField 𝕜\ninst✝¹ : NormedSpace 𝕜 F\ninst✝ : SMulCommClass ℝ 𝕜 F\nc : 𝕜\ns : Set α\nx : F\n⊢ ↑(weightedSMul μ s) (c • x) = c • ↑(weightedSMul μ s) x", "tactic": "simp_rw [weightedSMul_apply, smul_comm]" } ]
[ 233, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 231, 1 ]
Mathlib/Data/Real/NNReal.lean
Set.OrdConnected.preimage_coe_nnreal_real
[]
[ 1022, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1021, 1 ]
Mathlib/FieldTheory/Finite/Polynomial.lean
MvPolynomial.degrees_indicator
[ { "state_after": "K : Type u_2\nσ : Type u_1\ninst✝² : Fintype K\ninst✝¹ : Fintype σ\ninst✝ : CommRing K\nc : σ → K\n⊢ degrees (∏ n : σ, (1 - (X n - ↑C (c n)) ^ (Fintype.card K - 1))) ≤ ∑ s : σ, (Fintype.card K - 1) • {s}", "state_before": "K : Type u_2\nσ : Type u_1\ninst✝² : Fintype K\ninst✝¹ : Fintype σ\ninst✝ : CommRing K\nc : σ → K\n⊢ degrees (indicator c) ≤ ∑ s : σ, (Fintype.card K - 1) • {s}", "tactic": "rw [indicator]" }, { "state_after": "K : Type u_2\nσ : Type u_1\ninst✝² : Fintype K\ninst✝¹ : Fintype σ\ninst✝ : CommRing K\nc : σ → K\ns : σ\nx✝ : s ∈ Finset.univ\n⊢ degrees (1 - (X s - ↑C (c s)) ^ (Fintype.card K - 1)) ≤ (Fintype.card K - 1) • {s}", "state_before": "K : Type u_2\nσ : Type u_1\ninst✝² : Fintype K\ninst✝¹ : Fintype σ\ninst✝ : CommRing K\nc : σ → K\n⊢ degrees (∏ n : σ, (1 - (X n - ↑C (c n)) ^ (Fintype.card K - 1))) ≤ ∑ s : σ, (Fintype.card K - 1) • {s}", "tactic": "refine' le_trans (degrees_prod _ _) (Finset.sum_le_sum fun s _ => _)" }, { "state_after": "K : Type u_2\nσ : Type u_1\ninst✝² : Fintype K\ninst✝¹ : Fintype σ\ninst✝ : CommRing K\nc : σ → K\ns : σ\nx✝ : s ∈ Finset.univ\n⊢ degrees 1 ⊔ degrees ((X s - ↑C (c s)) ^ (Fintype.card K - 1)) ≤ (Fintype.card K - 1) • {s}", "state_before": "K : Type u_2\nσ : Type u_1\ninst✝² : Fintype K\ninst✝¹ : Fintype σ\ninst✝ : CommRing K\nc : σ → K\ns : σ\nx✝ : s ∈ Finset.univ\n⊢ degrees (1 - (X s - ↑C (c s)) ^ (Fintype.card K - 1)) ≤ (Fintype.card K - 1) • {s}", "tactic": "refine' le_trans (degrees_sub _ _) _" }, { "state_after": "K : Type u_2\nσ : Type u_1\ninst✝² : Fintype K\ninst✝¹ : Fintype σ\ninst✝ : CommRing K\nc : σ → K\ns : σ\nx✝ : s ∈ Finset.univ\n⊢ degrees ((X s - ↑C (c s)) ^ (Fintype.card K - 1)) ≤ (Fintype.card K - 1) • {s}", "state_before": "K : Type u_2\nσ : Type u_1\ninst✝² : Fintype K\ninst✝¹ : Fintype σ\ninst✝ : CommRing K\nc : σ → K\ns : σ\nx✝ : s ∈ Finset.univ\n⊢ degrees 1 ⊔ degrees ((X s - ↑C (c s)) ^ (Fintype.card K - 1)) ≤ (Fintype.card K - 1) • {s}", "tactic": "rw [degrees_one, ← bot_eq_zero, bot_sup_eq]" }, { "state_after": "K : Type u_2\nσ : Type u_1\ninst✝² : Fintype K\ninst✝¹ : Fintype σ\ninst✝ : CommRing K\nc : σ → K\ns : σ\nx✝ : s ∈ Finset.univ\n⊢ degrees (X s - ↑C (c s)) ≤ {s}", "state_before": "K : Type u_2\nσ : Type u_1\ninst✝² : Fintype K\ninst✝¹ : Fintype σ\ninst✝ : CommRing K\nc : σ → K\ns : σ\nx✝ : s ∈ Finset.univ\n⊢ degrees ((X s - ↑C (c s)) ^ (Fintype.card K - 1)) ≤ (Fintype.card K - 1) • {s}", "tactic": "refine' le_trans (degrees_pow _ _) (nsmul_le_nsmul_of_le_right _ _)" }, { "state_after": "K : Type u_2\nσ : Type u_1\ninst✝² : Fintype K\ninst✝¹ : Fintype σ\ninst✝ : CommRing K\nc : σ → K\ns : σ\nx✝ : s ∈ Finset.univ\n⊢ degrees (X s) ⊔ degrees (↑C (c s)) ≤ {s}", "state_before": "K : Type u_2\nσ : Type u_1\ninst✝² : Fintype K\ninst✝¹ : Fintype σ\ninst✝ : CommRing K\nc : σ → K\ns : σ\nx✝ : s ∈ Finset.univ\n⊢ degrees (X s - ↑C (c s)) ≤ {s}", "tactic": "refine' le_trans (degrees_sub _ _) _" }, { "state_after": "K : Type u_2\nσ : Type u_1\ninst✝² : Fintype K\ninst✝¹ : Fintype σ\ninst✝ : CommRing K\nc : σ → K\ns : σ\nx✝ : s ∈ Finset.univ\n⊢ degrees (X s) ≤ {s}", "state_before": "K : Type u_2\nσ : Type u_1\ninst✝² : Fintype K\ninst✝¹ : Fintype σ\ninst✝ : CommRing K\nc : σ → K\ns : σ\nx✝ : s ∈ Finset.univ\n⊢ degrees (X s) ⊔ degrees (↑C (c s)) ≤ {s}", "tactic": "rw [degrees_C, ← bot_eq_zero, sup_bot_eq]" }, { "state_after": "no goals", "state_before": "K : Type u_2\nσ : Type u_1\ninst✝² : Fintype K\ninst✝¹ : Fintype σ\ninst✝ : CommRing K\nc : σ → K\ns : σ\nx✝ : s ∈ Finset.univ\n⊢ degrees (X s) ≤ {s}", "tactic": "exact degrees_X' _" } ]
[ 93, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 84, 1 ]
Mathlib/CategoryTheory/Limits/Types.lean
CategoryTheory.Limits.Types.Image.lift_fac
[ { "state_after": "case h\nJ : Type v\ninst✝ : SmallCategory J\nα β : Type u\nf : α ⟶ β\nF' : MonoFactorisation f\nx : Image f\n⊢ (lift F' ≫ F'.m) x = ι f x", "state_before": "J : Type v\ninst✝ : SmallCategory J\nα β : Type u\nf : α ⟶ β\nF' : MonoFactorisation f\n⊢ lift F' ≫ F'.m = ι f", "tactic": "funext x" }, { "state_after": "case h\nJ : Type v\ninst✝ : SmallCategory J\nα β : Type u\nf : α ⟶ β\nF' : MonoFactorisation f\nx : Image f\n⊢ (F'.e ≫ F'.m) ↑(Classical.indefiniteDescription (fun x_1 => f x_1 = ↑x) (_ : ↑x ∈ Set.range f)) = ι f x", "state_before": "case h\nJ : Type v\ninst✝ : SmallCategory J\nα β : Type u\nf : α ⟶ β\nF' : MonoFactorisation f\nx : Image f\n⊢ (lift F' ≫ F'.m) x = ι f x", "tactic": "change (F'.e ≫ F'.m) _ = _" }, { "state_after": "case h\nJ : Type v\ninst✝ : SmallCategory J\nα β : Type u\nf : α ⟶ β\nF' : MonoFactorisation f\nx : Image f\n⊢ ↑x = ι f x", "state_before": "case h\nJ : Type v\ninst✝ : SmallCategory J\nα β : Type u\nf : α ⟶ β\nF' : MonoFactorisation f\nx : Image f\n⊢ (F'.e ≫ F'.m) ↑(Classical.indefiniteDescription (fun x_1 => f x_1 = ↑x) (_ : ↑x ∈ Set.range f)) = ι f x", "tactic": "rw [F'.fac, (Classical.indefiniteDescription _ x.2).2]" }, { "state_after": "no goals", "state_before": "case h\nJ : Type v\ninst✝ : SmallCategory J\nα β : Type u\nf : α ⟶ β\nF' : MonoFactorisation f\nx : Image f\n⊢ ↑x = ι f x", "tactic": "rfl" } ]
[ 529, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 525, 1 ]
Std/Data/Int/Lemmas.lean
Int.add_one_le_iff
[]
[ 846, 63 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 846, 1 ]
Mathlib/Data/Real/EReal.lean
EReal.coe_toReal
[ { "state_after": "case intro\nx : ℝ\nhx : ↑x ≠ ⊤\nh'x : ↑x ≠ ⊥\n⊢ ↑(toReal ↑x) = ↑x", "state_before": "x : EReal\nhx : x ≠ ⊤\nh'x : x ≠ ⊥\n⊢ ↑(toReal x) = x", "tactic": "lift x to ℝ using ⟨hx, h'x⟩" }, { "state_after": "no goals", "state_before": "case intro\nx : ℝ\nhx : ↑x ≠ ⊤\nh'x : ↑x ≠ ⊥\n⊢ ↑(toReal ↑x) = ↑x", "tactic": "rfl" } ]
[ 415, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 413, 1 ]
Mathlib/Data/Polynomial/Laurent.lean
ext
[]
[ 97, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 96, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean
Complex.exp_add_pi_mul_I
[]
[ 1393, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1392, 1 ]
Mathlib/Algebra/Order/UpperLower.lean
LowerSet.one_mul
[ { "state_after": "α : Type u_1\ninst✝ : OrderedCommGroup α\ns✝ t : Set α\na : α\ns : LowerSet α\n⊢ (⋃ (a : α) (_ : a ∈ Set.Iic 1), a • ↑s) ⊆ ↑s", "state_before": "α : Type u_1\ninst✝ : OrderedCommGroup α\ns✝ t : Set α\na : α\ns : LowerSet α\n⊢ Set.Iic 1 * ↑s ⊆ ↑s", "tactic": "rw [← smul_eq_mul, ← Set.iUnion_smul_set]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : OrderedCommGroup α\ns✝ t : Set α\na : α\ns : LowerSet α\n⊢ (⋃ (a : α) (_ : a ∈ Set.Iic 1), a • ↑s) ⊆ ↑s", "tactic": "exact Set.iUnion₂_subset fun _ ↦ s.lower.smul_subset" } ]
[ 248, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 244, 9 ]
Mathlib/Data/Nat/Interval.lean
Nat.Iio_eq_range
[ { "state_after": "case h.a\na b✝ c b x : ℕ\n⊢ x ∈ Iio b ↔ x ∈ range b", "state_before": "a b c : ℕ\n⊢ Iio = range", "tactic": "ext (b x)" }, { "state_after": "no goals", "state_before": "case h.a\na b✝ c b x : ℕ\n⊢ x ∈ Iio b ↔ x ∈ range b", "tactic": "rw [mem_Iio, mem_range]" } ]
[ 85, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 83, 1 ]
Mathlib/Order/Disjoint.lean
Codisjoint.top_le
[]
[ 317, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 316, 1 ]
Mathlib/Data/Bool/Count.lean
List.Chain'.two_mul_count_bool_eq_ite
[ { "state_after": "case pos\nl : List Bool\nhl : Chain' (fun x x_1 => x ≠ x_1) l\nb : Bool\nh2 : Even (length l)\n⊢ 2 * count b l =\n if Even (length l) then length l else if (some b == head? l) = true then length l + 1 else length l - 1\n\ncase neg\nl : List Bool\nhl : Chain' (fun x x_1 => x ≠ x_1) l\nb : Bool\nh2 : ¬Even (length l)\n⊢ 2 * count b l =\n if Even (length l) then length l else if (some b == head? l) = true then length l + 1 else length l - 1", "state_before": "l : List Bool\nhl : Chain' (fun x x_1 => x ≠ x_1) l\nb : Bool\n⊢ 2 * count b l =\n if Even (length l) then length l else if (some b == head? l) = true then length l + 1 else length l - 1", "tactic": "by_cases h2 : Even (length l)" }, { "state_after": "no goals", "state_before": "case pos\nl : List Bool\nhl : Chain' (fun x x_1 => x ≠ x_1) l\nb : Bool\nh2 : Even (length l)\n⊢ 2 * count b l =\n if Even (length l) then length l else if (some b == head? l) = true then length l + 1 else length l - 1", "tactic": "rw [if_pos h2, hl.two_mul_count_bool_of_even h2]" }, { "state_after": "case neg.nil\nb : Bool\nhl : Chain' (fun x x_1 => x ≠ x_1) []\nh2 : ¬Even (length [])\n⊢ 2 * count b [] =\n if Even (length []) then length [] else if (some b == head? []) = true then length [] + 1 else length [] - 1\n\ncase neg.cons\nb x : Bool\nl : List Bool\nhl : Chain' (fun x x_1 => x ≠ x_1) (x :: l)\nh2 : ¬Even (length (x :: l))\n⊢ 2 * count b (x :: l) =\n if Even (length (x :: l)) then length (x :: l)\n else if (some b == head? (x :: l)) = true then length (x :: l) + 1 else length (x :: l) - 1", "state_before": "case neg\nl : List Bool\nhl : Chain' (fun x x_1 => x ≠ x_1) l\nb : Bool\nh2 : ¬Even (length l)\n⊢ 2 * count b l =\n if Even (length l) then length l else if (some b == head? l) = true then length l + 1 else length l - 1", "tactic": "cases' l with x l" }, { "state_after": "case neg.cons\nb x : Bool\nl : List Bool\nhl : Chain' (fun x x_1 => x ≠ x_1) (x :: l)\nh2 : ¬Even (length (x :: l))\n⊢ (2 * count b l + 2 * if b = x then 1 else 0) =\n if (some b == some x) = true then length (x :: l) + 1 else length (x :: l) - 1", "state_before": "case neg.cons\nb x : Bool\nl : List Bool\nhl : Chain' (fun x x_1 => x ≠ x_1) (x :: l)\nh2 : ¬Even (length (x :: l))\n⊢ 2 * count b (x :: l) =\n if Even (length (x :: l)) then length (x :: l)\n else if (some b == head? (x :: l)) = true then length (x :: l) + 1 else length (x :: l) - 1", "tactic": "simp only [if_neg h2, count_cons', mul_add, head?, Option.mem_some_iff, @eq_comm _ x]" }, { "state_after": "case neg.cons\nb x : Bool\nl : List Bool\nhl : Chain' (fun x x_1 => x ≠ x_1) (x :: l)\nh2 : Even (length l)\n⊢ (2 * count b l + 2 * if b = x then 1 else 0) =\n if (some b == some x) = true then length (x :: l) + 1 else length (x :: l) - 1", "state_before": "case neg.cons\nb x : Bool\nl : List Bool\nhl : Chain' (fun x x_1 => x ≠ x_1) (x :: l)\nh2 : ¬Even (length (x :: l))\n⊢ (2 * count b l + 2 * if b = x then 1 else 0) =\n if (some b == some x) = true then length (x :: l) + 1 else length (x :: l) - 1", "tactic": "rw [length_cons, Nat.even_add_one, not_not] at h2" }, { "state_after": "case neg.cons\nb x : Bool\nl : List Bool\nh2 : Even (length l)\nhl : Chain' (fun x x_1 => x ≠ x_1) l\n⊢ (length l + 2 * if b = x then 1 else 0) =\n if (some b == some x) = true then length (x :: l) + 1 else length (x :: l) - 1", "state_before": "case neg.cons\nb x : Bool\nl : List Bool\nh2 : Even (length l)\nhl : Chain' (fun x x_1 => x ≠ x_1) l\n⊢ (2 * count b l + 2 * if b = x then 1 else 0) =\n if (some b == some x) = true then length (x :: l) + 1 else length (x :: l) - 1", "tactic": "rw [hl.two_mul_count_bool_of_even h2]" }, { "state_after": "no goals", "state_before": "case neg.cons\nb x : Bool\nl : List Bool\nh2 : Even (length l)\nhl : Chain' (fun x x_1 => x ≠ x_1) l\n⊢ (length l + 2 * if b = x then 1 else 0) =\n if (some b == some x) = true then length (x :: l) + 1 else length (x :: l) - 1", "tactic": "cases b <;> cases x <;> split_ifs <;> simp <;> contradiction" }, { "state_after": "no goals", "state_before": "case neg.nil\nb : Bool\nhl : Chain' (fun x x_1 => x ≠ x_1) []\nh2 : ¬Even (length [])\n⊢ 2 * count b [] =\n if Even (length []) then length [] else if (some b == head? []) = true then length [] + 1 else length [] - 1", "tactic": "exact (h2 even_zero).elim" } ]
[ 120, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 108, 1 ]
Mathlib/Data/IsROrC/Basic.lean
IsROrC.conj_im
[]
[ 345, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 344, 1 ]
Mathlib/Algebra/GroupWithZero/Basic.lean
inv_mul_mul_self
[ { "state_after": "case pos\nα : Type ?u.25133\nM₀ : Type ?u.25136\nG₀ : Type u_1\nM₀' : Type ?u.25142\nG₀' : Type ?u.25145\nF : Type ?u.25148\nF' : Type ?u.25151\ninst✝ : GroupWithZero G₀\na✝ b c a : G₀\nh : a = 0\n⊢ a⁻¹ * a * a = a\n\ncase neg\nα : Type ?u.25133\nM₀ : Type ?u.25136\nG₀ : Type u_1\nM₀' : Type ?u.25142\nG₀' : Type ?u.25145\nF : Type ?u.25148\nF' : Type ?u.25151\ninst✝ : GroupWithZero G₀\na✝ b c a : G₀\nh : ¬a = 0\n⊢ a⁻¹ * a * a = a", "state_before": "α : Type ?u.25133\nM₀ : Type ?u.25136\nG₀ : Type u_1\nM₀' : Type ?u.25142\nG₀' : Type ?u.25145\nF : Type ?u.25148\nF' : Type ?u.25151\ninst✝ : GroupWithZero G₀\na✝ b c a : G₀\n⊢ a⁻¹ * a * a = a", "tactic": "by_cases h : a = 0" }, { "state_after": "no goals", "state_before": "case pos\nα : Type ?u.25133\nM₀ : Type ?u.25136\nG₀ : Type u_1\nM₀' : Type ?u.25142\nG₀' : Type ?u.25145\nF : Type ?u.25148\nF' : Type ?u.25151\ninst✝ : GroupWithZero G₀\na✝ b c a : G₀\nh : a = 0\n⊢ a⁻¹ * a * a = a", "tactic": "rw [h, inv_zero, mul_zero]" }, { "state_after": "no goals", "state_before": "case neg\nα : Type ?u.25133\nM₀ : Type ?u.25136\nG₀ : Type u_1\nM₀' : Type ?u.25142\nG₀' : Type ?u.25145\nF : Type ?u.25148\nF' : Type ?u.25151\ninst✝ : GroupWithZero G₀\na✝ b c a : G₀\nh : ¬a = 0\n⊢ a⁻¹ * a * a = a", "tactic": "rw [inv_mul_cancel h, one_mul]" } ]
[ 368, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 365, 1 ]
Mathlib/Algebra/Order/Module.lean
lt_of_smul_lt_smul_of_nonpos
[ { "state_after": "k : Type u_2\nM : Type u_1\nN : Type ?u.22212\ninst✝³ : OrderedRing k\ninst✝² : OrderedAddCommGroup M\ninst✝¹ : Module k M\ninst✝ : OrderedSMul k M\na b : M\nc : k\nh : -c • b < -c • a\nhc : c ≤ 0\n⊢ b < a", "state_before": "k : Type u_2\nM : Type u_1\nN : Type ?u.22212\ninst✝³ : OrderedRing k\ninst✝² : OrderedAddCommGroup M\ninst✝¹ : Module k M\ninst✝ : OrderedSMul k M\na b : M\nc : k\nh : c • a < c • b\nhc : c ≤ 0\n⊢ b < a", "tactic": "rw [← neg_neg c, neg_smul, neg_smul (-c), neg_lt_neg_iff] at h" }, { "state_after": "no goals", "state_before": "k : Type u_2\nM : Type u_1\nN : Type ?u.22212\ninst✝³ : OrderedRing k\ninst✝² : OrderedAddCommGroup M\ninst✝¹ : Module k M\ninst✝ : OrderedSMul k M\na b : M\nc : k\nh : -c • b < -c • a\nhc : c ≤ 0\n⊢ b < a", "tactic": "exact lt_of_smul_lt_smul_of_nonneg h (neg_nonneg_of_nonpos hc)" } ]
[ 73, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 71, 1 ]
Mathlib/Analysis/Calculus/ContDiff.lean
ContDiffOn.derivWithin
[ { "state_after": "case none\n𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type ?u.3032059\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nb : E × F → G\nn : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nf₂ : 𝕜 → F\ns₂ : Set 𝕜\nhf : ContDiffOn 𝕜 n f₂ s₂\nhs : UniqueDiffOn 𝕜 s₂\nhmn : none + 1 ≤ n\n⊢ ContDiffOn 𝕜 none (derivWithin f₂ s₂) s₂\n\ncase some\n𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type ?u.3032059\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nb : E × F → G\nn : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nf₂ : 𝕜 → F\ns₂ : Set 𝕜\nhf : ContDiffOn 𝕜 n f₂ s₂\nhs : UniqueDiffOn 𝕜 s₂\nval✝ : ℕ\nhmn : some val✝ + 1 ≤ n\n⊢ ContDiffOn 𝕜 (some val✝) (derivWithin f₂ s₂) s₂", "state_before": "𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type ?u.3032059\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nb : E × F → G\nm n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nf₂ : 𝕜 → F\ns₂ : Set 𝕜\nhf : ContDiffOn 𝕜 n f₂ s₂\nhs : UniqueDiffOn 𝕜 s₂\nhmn : m + 1 ≤ n\n⊢ ContDiffOn 𝕜 m (derivWithin f₂ s₂) s₂", "tactic": "cases m" }, { "state_after": "case none\n𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type ?u.3032059\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nb : E × F → G\nn : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nf₂ : 𝕜 → F\ns₂ : Set 𝕜\nhf : ContDiffOn 𝕜 n f₂ s₂\nhs : UniqueDiffOn 𝕜 s₂\nhmn : ⊤ + 1 ≤ n\n⊢ ContDiffOn 𝕜 none (derivWithin f₂ s₂) s₂", "state_before": "case none\n𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type ?u.3032059\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nb : E × F → G\nn : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nf₂ : 𝕜 → F\ns₂ : Set 𝕜\nhf : ContDiffOn 𝕜 n f₂ s₂\nhs : UniqueDiffOn 𝕜 s₂\nhmn : none + 1 ≤ n\n⊢ ContDiffOn 𝕜 none (derivWithin f₂ s₂) s₂", "tactic": "change ∞ + 1 ≤ n at hmn" }, { "state_after": "case none\n𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type ?u.3032059\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nb : E × F → G\nn : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nf₂ : 𝕜 → F\ns₂ : Set 𝕜\nhf : ContDiffOn 𝕜 n f₂ s₂\nhs : UniqueDiffOn 𝕜 s₂\nhmn : ⊤ + 1 ≤ n\nthis : n = ⊤\n⊢ ContDiffOn 𝕜 none (derivWithin f₂ s₂) s₂", "state_before": "case none\n𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type ?u.3032059\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nb : E × F → G\nn : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nf₂ : 𝕜 → F\ns₂ : Set 𝕜\nhf : ContDiffOn 𝕜 n f₂ s₂\nhs : UniqueDiffOn 𝕜 s₂\nhmn : ⊤ + 1 ≤ n\n⊢ ContDiffOn 𝕜 none (derivWithin f₂ s₂) s₂", "tactic": "have : n = ∞ := by simpa using hmn" }, { "state_after": "case none\n𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type ?u.3032059\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nb : E × F → G\nn : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nf₂ : 𝕜 → F\ns₂ : Set 𝕜\nhf : ContDiffOn 𝕜 ⊤ f₂ s₂\nhs : UniqueDiffOn 𝕜 s₂\nhmn : ⊤ + 1 ≤ n\nthis : n = ⊤\n⊢ ContDiffOn 𝕜 none (derivWithin f₂ s₂) s₂", "state_before": "case none\n𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type ?u.3032059\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nb : E × F → G\nn : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nf₂ : 𝕜 → F\ns₂ : Set 𝕜\nhf : ContDiffOn 𝕜 n f₂ s₂\nhs : UniqueDiffOn 𝕜 s₂\nhmn : ⊤ + 1 ≤ n\nthis : n = ⊤\n⊢ ContDiffOn 𝕜 none (derivWithin f₂ s₂) s₂", "tactic": "rw [this] at hf" }, { "state_after": "no goals", "state_before": "case none\n𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type ?u.3032059\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nb : E × F → G\nn : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nf₂ : 𝕜 → F\ns₂ : Set 𝕜\nhf : ContDiffOn 𝕜 ⊤ f₂ s₂\nhs : UniqueDiffOn 𝕜 s₂\nhmn : ⊤ + 1 ≤ n\nthis : n = ⊤\n⊢ ContDiffOn 𝕜 none (derivWithin f₂ s₂) s₂", "tactic": "exact ((contDiffOn_top_iff_derivWithin hs).1 hf).2" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type ?u.3032059\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nb : E × F → G\nn : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nf₂ : 𝕜 → F\ns₂ : Set 𝕜\nhf : ContDiffOn 𝕜 n f₂ s₂\nhs : UniqueDiffOn 𝕜 s₂\nhmn : ⊤ + 1 ≤ n\n⊢ n = ⊤", "tactic": "simpa using hmn" }, { "state_after": "case some\n𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type ?u.3032059\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nb : E × F → G\nn : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nf₂ : 𝕜 → F\ns₂ : Set 𝕜\nhf : ContDiffOn 𝕜 n f₂ s₂\nhs : UniqueDiffOn 𝕜 s₂\nval✝ : ℕ\nhmn : ↑(Nat.succ val✝) ≤ n\n⊢ ContDiffOn 𝕜 (some val✝) (derivWithin f₂ s₂) s₂", "state_before": "case some\n𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type ?u.3032059\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nb : E × F → G\nn : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nf₂ : 𝕜 → F\ns₂ : Set 𝕜\nhf : ContDiffOn 𝕜 n f₂ s₂\nhs : UniqueDiffOn 𝕜 s₂\nval✝ : ℕ\nhmn : some val✝ + 1 ≤ n\n⊢ ContDiffOn 𝕜 (some val✝) (derivWithin f₂ s₂) s₂", "tactic": "change (Nat.succ _ : ℕ∞) ≤ n at hmn" }, { "state_after": "no goals", "state_before": "case some\n𝕜 : Type u_1\ninst✝¹⁰ : NontriviallyNormedField 𝕜\nD : Type uD\ninst✝⁹ : NormedAddCommGroup D\ninst✝⁸ : NormedSpace 𝕜 D\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type ?u.3032059\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nb : E × F → G\nn : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nf₂ : 𝕜 → F\ns₂ : Set 𝕜\nhf : ContDiffOn 𝕜 n f₂ s₂\nhs : UniqueDiffOn 𝕜 s₂\nval✝ : ℕ\nhmn : ↑(Nat.succ val✝) ≤ n\n⊢ ContDiffOn 𝕜 (some val✝) (derivWithin f₂ s₂) s₂", "tactic": "exact ((contDiffOn_succ_iff_derivWithin hs).1 (hf.of_le hmn)).2" } ]
[ 2129, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2121, 11 ]
Mathlib/Algebra/Hom/GroupAction.lean
DistribMulActionHom.id_apply
[ { "state_after": "no goals", "state_before": "M' : Type ?u.147246\nX : Type ?u.147249\ninst✝²³ : SMul M' X\nY : Type ?u.147256\ninst✝²² : SMul M' Y\nZ : Type ?u.147263\ninst✝²¹ : SMul M' Z\nM : Type u_2\ninst✝²⁰ : Monoid M\nA : Type u_1\ninst✝¹⁹ : AddMonoid A\ninst✝¹⁸ : DistribMulAction M A\nA' : Type ?u.147304\ninst✝¹⁷ : AddGroup A'\ninst✝¹⁶ : DistribMulAction M A'\nB : Type ?u.147580\ninst✝¹⁵ : AddMonoid B\ninst✝¹⁴ : DistribMulAction M B\nB' : Type ?u.147606\ninst✝¹³ : AddGroup B'\ninst✝¹² : DistribMulAction M B'\nC : Type ?u.147882\ninst✝¹¹ : AddMonoid C\ninst✝¹⁰ : DistribMulAction M C\nR : Type ?u.147908\ninst✝⁹ : Semiring R\ninst✝⁸ : MulSemiringAction M R\nR' : Type ?u.147935\ninst✝⁷ : Ring R'\ninst✝⁶ : MulSemiringAction M R'\nS : Type ?u.148131\ninst✝⁵ : Semiring S\ninst✝⁴ : MulSemiringAction M S\nS' : Type ?u.148158\ninst✝³ : Ring S'\ninst✝² : MulSemiringAction M S'\nT : Type ?u.148354\ninst✝¹ : Semiring T\ninst✝ : MulSemiringAction M T\nx : A\n⊢ ↑(DistribMulActionHom.id M) x = x", "tactic": "rfl" } ]
[ 332, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 331, 1 ]
Mathlib/Analysis/Calculus/LocalExtr.lean
exists_Ioo_extr_on_Icc
[ { "state_after": "f f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\n⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c", "state_before": "f f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\n⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c", "tactic": "have ne : (Icc a b).Nonempty := nonempty_Icc.2 (le_of_lt hab)" }, { "state_after": "case intro.intro\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\n⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c", "state_before": "f f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\n⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c", "tactic": "obtain ⟨c, cmem, cle⟩ : ∃ c ∈ Icc a b, ∀ x ∈ Icc a b, f c ≤ f x :=\n isCompact_Icc.exists_forall_le ne hfc" }, { "state_after": "case intro.intro.intro.intro\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\n⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c", "state_before": "case intro.intro\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\n⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c", "tactic": "obtain ⟨C, Cmem, Cge⟩ : ∃ C ∈ Icc a b, ∀ x ∈ Icc a b, f x ≤ f C :=\n isCompact_Icc.exists_forall_ge ne hfc" }, { "state_after": "case pos\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : f c = f a\n⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c\n\ncase neg\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : ¬f c = f a\n⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c", "state_before": "case intro.intro.intro.intro\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\n⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c", "tactic": "by_cases hc : f c = f a" }, { "state_after": "case pos\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : f c = f a\nhC : f C = f a\n⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c\n\ncase neg\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : f c = f a\nhC : ¬f C = f a\n⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c", "state_before": "case pos\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : f c = f a\n⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c", "tactic": "by_cases hC : f C = f a" }, { "state_after": "case pos\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : f c = f a\nhC : f C = f a\nthis : ∀ (x : ℝ), x ∈ Icc a b → f x = f a\n⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c", "state_before": "case pos\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : f c = f a\nhC : f C = f a\n⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c", "tactic": "have : ∀ x ∈ Icc a b, f x = f a := fun x hx => le_antisymm (hC ▸ Cge x hx) (hc ▸ cle x hx)" }, { "state_after": "case pos.intro\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : f c = f a\nhC : f C = f a\nthis : ∀ (x : ℝ), x ∈ Icc a b → f x = f a\nc' : ℝ\nhc' : c' ∈ Ioo a b\n⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c", "state_before": "case pos\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : f c = f a\nhC : f C = f a\nthis : ∀ (x : ℝ), x ∈ Icc a b → f x = f a\n⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c", "tactic": "rcases nonempty_Ioo.2 hab with ⟨c', hc'⟩" }, { "state_after": "case pos.intro\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : f c = f a\nhC : f C = f a\nthis : ∀ (x : ℝ), x ∈ Icc a b → f x = f a\nc' : ℝ\nhc' : c' ∈ Ioo a b\nx : ℝ\nhx : x ∈ Icc a b\n⊢ x ∈ {x | (fun x => f c' ≤ f x) x}", "state_before": "case pos.intro\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : f c = f a\nhC : f C = f a\nthis : ∀ (x : ℝ), x ∈ Icc a b → f x = f a\nc' : ℝ\nhc' : c' ∈ Ioo a b\n⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c", "tactic": "refine ⟨c', hc', Or.inl fun x hx ↦ ?_⟩" }, { "state_after": "no goals", "state_before": "case pos.intro\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : f c = f a\nhC : f C = f a\nthis : ∀ (x : ℝ), x ∈ Icc a b → f x = f a\nc' : ℝ\nhc' : c' ∈ Ioo a b\nx : ℝ\nhx : x ∈ Icc a b\n⊢ x ∈ {x | (fun x => f c' ≤ f x) x}", "tactic": "simp only [mem_setOf_eq, this x hx, this c' (Ioo_subset_Icc_self hc'), le_rfl]" }, { "state_after": "case neg.refine'_1\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : f c = f a\nhC : ¬f C = f a\n⊢ a = C → f C = f a\n\ncase neg.refine'_2\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : f c = f a\nhC : ¬f C = f a\n⊢ C = b → f C = f a", "state_before": "case neg\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : f c = f a\nhC : ¬f C = f a\n⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c", "tactic": "refine' ⟨C, ⟨lt_of_le_of_ne Cmem.1 <| mt _ hC, lt_of_le_of_ne Cmem.2 <| mt _ hC⟩, Or.inr Cge⟩" }, { "state_after": "no goals", "state_before": "case neg.refine'_1\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : f c = f a\nhC : ¬f C = f a\n⊢ a = C → f C = f a\n\ncase neg.refine'_2\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : f c = f a\nhC : ¬f C = f a\n⊢ C = b → f C = f a", "tactic": "exacts [fun h => by rw [h], fun h => by rw [h, hfI]]" }, { "state_after": "no goals", "state_before": "f f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : f c = f a\nhC : ¬f C = f a\nh : a = C\n⊢ f C = f a", "tactic": "rw [h]" }, { "state_after": "no goals", "state_before": "f f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : f c = f a\nhC : ¬f C = f a\nh : C = b\n⊢ f C = f a", "tactic": "rw [h, hfI]" }, { "state_after": "case neg.refine'_1\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : ¬f c = f a\n⊢ a = c → f c = f a\n\ncase neg.refine'_2\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : ¬f c = f a\n⊢ c = b → f c = f a", "state_before": "case neg\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : ¬f c = f a\n⊢ ∃ c, c ∈ Ioo a b ∧ IsExtrOn f (Icc a b) c", "tactic": "refine' ⟨c, ⟨lt_of_le_of_ne cmem.1 <| mt _ hc, lt_of_le_of_ne cmem.2 <| mt _ hc⟩, Or.inl cle⟩" }, { "state_after": "no goals", "state_before": "case neg.refine'_1\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : ¬f c = f a\n⊢ a = c → f c = f a\n\ncase neg.refine'_2\nf f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : ¬f c = f a\n⊢ c = b → f c = f a", "tactic": "exacts [fun h => by rw [h], fun h => by rw [h, hfI]]" }, { "state_after": "no goals", "state_before": "f f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : ¬f c = f a\nh : a = c\n⊢ f c = f a", "tactic": "rw [h]" }, { "state_after": "no goals", "state_before": "f f' : ℝ → ℝ\na b : ℝ\nhab : a < b\nhfc : ContinuousOn f (Icc a b)\nhfI : f a = f b\nne : Set.Nonempty (Icc a b)\nc : ℝ\ncmem : c ∈ Icc a b\ncle : ∀ (x : ℝ), x ∈ Icc a b → f c ≤ f x\nC : ℝ\nCmem : C ∈ Icc a b\nCge : ∀ (x : ℝ), x ∈ Icc a b → f x ≤ f C\nhc : ¬f c = f a\nh : c = b\n⊢ f c = f a", "tactic": "rw [h, hfI]" } ]
[ 287, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 269, 1 ]
Mathlib/Algebra/Hom/Group.lean
MonoidHom.div_apply
[]
[ 1688, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1687, 1 ]
Mathlib/Algebra/Module/Submodule/Pointwise.lean
Submodule.pointwise_smul_toAddSubmonoid
[]
[ 220, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 218, 1 ]
Mathlib/Topology/Sets/Closeds.lean
TopologicalSpace.Closeds.coe_finset_sup
[]
[ 149, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 147, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.nsmul_singleton
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.91193\nγ : Type ?u.91196\na : α\nn : ℕ\n⊢ n • {a} = replicate n a", "tactic": "rw [← replicate_one, nsmul_replicate, mul_one]" } ]
[ 965, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 964, 1 ]
Mathlib/LinearAlgebra/Finrank.lean
finrank_span_finset_le_card
[ { "state_after": "no goals", "state_before": "K : Type u\nV : Type v\ninst✝² : DivisionRing K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\ns : Finset V\n⊢ Finset.card (Set.toFinset ↑s) = Finset.card s", "tactic": "simp" } ]
[ 321, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 318, 1 ]
Std/Data/Array/Init/Lemmas.lean
Array.pop_data
[]
[ 188, 83 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 188, 9 ]
Mathlib/Algebra/Order/Group/Defs.lean
mul_inv_le_iff_le_mul'
[ { "state_after": "no goals", "state_before": "α : Type u\ninst✝² : CommGroup α\ninst✝¹ : LE α\ninst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1\na b c d : α\n⊢ a * b⁻¹ ≤ c ↔ a ≤ b * c", "tactic": "rw [← inv_mul_le_iff_le_mul, mul_comm]" } ]
[ 536, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 535, 1 ]
Mathlib/CategoryTheory/Monoidal/CoherenceLemmas.lean
CategoryTheory.MonoidalCategory.id_tensor_rightUnitor_inv
[ { "state_after": "no goals", "state_before": "C : Type u_2\ninst✝¹ : Category C\ninst✝ : MonoidalCategory C\nX Y : C\n⊢ 𝟙 X ⊗ (ρ_ Y).inv = (ρ_ (X ⊗ Y)).inv ≫ (α_ X Y tensorUnit').hom", "tactic": "coherence" } ]
[ 50, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 49, 1 ]
Mathlib/Analysis/NormedSpace/Pointwise.lean
smul_sphere'
[ { "state_after": "case h\n𝕜 : Type u_1\nE : Type u_2\ninst✝² : NormedField 𝕜\ninst✝¹ : SeminormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nc : 𝕜\nhc : c ≠ 0\nx : E\nr : ℝ\ny : E\n⊢ y ∈ c • sphere x r ↔ y ∈ sphere (c • x) (‖c‖ * r)", "state_before": "𝕜 : Type u_1\nE : Type u_2\ninst✝² : NormedField 𝕜\ninst✝¹ : SeminormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nc : 𝕜\nhc : c ≠ 0\nx : E\nr : ℝ\n⊢ c • sphere x r = sphere (c • x) (‖c‖ * r)", "tactic": "ext y" }, { "state_after": "case h\n𝕜 : Type u_1\nE : Type u_2\ninst✝² : NormedField 𝕜\ninst✝¹ : SeminormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nc : 𝕜\nhc : c ≠ 0\nx : E\nr : ℝ\ny : E\n⊢ c⁻¹ • y ∈ sphere x r ↔ y ∈ sphere (c • x) (‖c‖ * r)", "state_before": "case h\n𝕜 : Type u_1\nE : Type u_2\ninst✝² : NormedField 𝕜\ninst✝¹ : SeminormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nc : 𝕜\nhc : c ≠ 0\nx : E\nr : ℝ\ny : E\n⊢ y ∈ c • sphere x r ↔ y ∈ sphere (c • x) (‖c‖ * r)", "tactic": "rw [mem_smul_set_iff_inv_smul_mem₀ hc]" }, { "state_after": "case h\n𝕜 : Type u_1\nE : Type u_2\ninst✝² : NormedField 𝕜\ninst✝¹ : SeminormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nc : 𝕜\nhc : c ≠ 0\nx : E\nr : ℝ\ny : E\n⊢ c⁻¹ • y ∈ sphere (c⁻¹ • c • x) r ↔ y ∈ sphere (c • x) (‖c‖ * r)", "state_before": "case h\n𝕜 : Type u_1\nE : Type u_2\ninst✝² : NormedField 𝕜\ninst✝¹ : SeminormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nc : 𝕜\nhc : c ≠ 0\nx : E\nr : ℝ\ny : E\n⊢ c⁻¹ • y ∈ sphere x r ↔ y ∈ sphere (c • x) (‖c‖ * r)", "tactic": "conv_lhs => rw [← inv_smul_smul₀ hc x]" }, { "state_after": "no goals", "state_before": "case h\n𝕜 : Type u_1\nE : Type u_2\ninst✝² : NormedField 𝕜\ninst✝¹ : SeminormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nc : 𝕜\nhc : c ≠ 0\nx : E\nr : ℝ\ny : E\n⊢ c⁻¹ • y ∈ sphere (c⁻¹ • c • x) r ↔ y ∈ sphere (c • x) (‖c‖ * r)", "tactic": "simp only [mem_sphere, dist_smul₀, norm_inv, ← div_eq_inv_mul, div_eq_iff (norm_pos_iff.2 hc).ne',\n mul_comm r]" } ]
[ 107, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 101, 1 ]
Mathlib/Data/Nat/Factorial/DoubleFactorial.lean
Nat.doubleFactorial_two_mul
[ { "state_after": "n : ℕ\n⊢ (2 * n + 2) * (2 ^ n * n !) = 2 ^ n * 2 * ((n + 1) * n !)", "state_before": "n : ℕ\n⊢ (2 * (n + 1))‼ = 2 ^ (n + 1) * (n + 1)!", "tactic": "rw [mul_add, mul_one, doubleFactorial_add_two, factorial, pow_succ, doubleFactorial_two_mul _,\n succ_eq_add_one]" }, { "state_after": "no goals", "state_before": "n : ℕ\n⊢ (2 * n + 2) * (2 ^ n * n !) = 2 ^ n * 2 * ((n + 1) * n !)", "tactic": "ring" } ]
[ 61, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 56, 1 ]
Mathlib/Topology/Algebra/InfiniteSum/Real.lean
dist_le_tsum_dist_of_tendsto₀
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : PseudoMetricSpace α\nf : ℕ → α\na : α\nh : Summable fun n => dist (f n) (f (Nat.succ n))\nha : Tendsto f atTop (𝓝 a)\n⊢ dist (f 0) a ≤ ∑' (n : ℕ), dist (f n) (f (Nat.succ n))", "tactic": "simpa only [zero_add] using dist_le_tsum_dist_of_tendsto h ha 0" } ]
[ 98, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 96, 1 ]
Mathlib/Data/Finset/Pointwise.lean
Finset.inter_smul_subset
[]
[ 1395, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1394, 1 ]
Mathlib/Combinatorics/Additive/Behrend.lean
Behrend.lower_bound_le_one
[ { "state_after": "case inl\nα : Type ?u.881020\nβ : Type ?u.881023\nn d k : ℕ\nx : Fin n → ℕ\nhN : 1 ≤ 1\nhN' : 1 ≤ 4096\n⊢ ↑1 * exp (-4 * Real.sqrt (log ↑1)) ≤ 1\n\ncase inr\nα : Type ?u.881020\nβ : Type ?u.881023\nn d k N : ℕ\nx : Fin n → ℕ\nhN✝ : 1 ≤ N\nhN' : N ≤ 4096\nhN : 1 < N\n⊢ ↑N * exp (-4 * Real.sqrt (log ↑N)) ≤ 1", "state_before": "α : Type ?u.881020\nβ : Type ?u.881023\nn d k N : ℕ\nx : Fin n → ℕ\nhN : 1 ≤ N\nhN' : N ≤ 4096\n⊢ ↑N * exp (-4 * Real.sqrt (log ↑N)) ≤ 1", "tactic": "obtain rfl | hN := hN.eq_or_lt" }, { "state_after": "no goals", "state_before": "case inl\nα : Type ?u.881020\nβ : Type ?u.881023\nn d k : ℕ\nx : Fin n → ℕ\nhN : 1 ≤ 1\nhN' : 1 ≤ 4096\n⊢ ↑1 * exp (-4 * Real.sqrt (log ↑1)) ≤ 1", "tactic": "norm_num" }, { "state_after": "no goals", "state_before": "case inr\nα : Type ?u.881020\nβ : Type ?u.881023\nn d k N : ℕ\nx : Fin n → ℕ\nhN✝ : 1 ≤ N\nhN' : N ≤ 4096\nhN : 1 < N\n⊢ ↑N * exp (-4 * Real.sqrt (log ↑N)) ≤ 1", "tactic": "exact lower_bound_le_one' hN hN'" } ]
[ 549, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 545, 1 ]
Mathlib/Algebra/IndicatorFunction.lean
Set.mulIndicator_self_mul_compl
[]
[ 440, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 438, 1 ]
Mathlib/Data/List/Basic.lean
List.enum_get?
[ { "state_after": "ι : Type ?u.431551\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\n⊢ List α → ℕ → True", "state_before": "ι : Type ?u.431551\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\n⊢ ∀ (l : List α) (n : ℕ), get? (enum l) n = (fun a => (n, a)) <$> get? l n", "tactic": "simp only [enum, enumFrom_get?, zero_add]" }, { "state_after": "ι : Type ?u.431551\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ l✝ : List α\nn✝ : ℕ\n⊢ True", "state_before": "ι : Type ?u.431551\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\n⊢ List α → ℕ → True", "tactic": "intros" }, { "state_after": "no goals", "state_before": "ι : Type ?u.431551\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ l✝ : List α\nn✝ : ℕ\n⊢ True", "tactic": "trivial" } ]
[ 3832, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3831, 1 ]
src/lean/Init/Control/Lawful.lean
StateT.seqRight_eq
[ { "state_after": "case h\nm : Type u_1 → Type u_2\nσ α β : Type u_1\ninst✝¹ : Monad m\ninst✝ : LawfulMonad m\nx : StateT σ m α\ny : StateT σ m β\n⊢ ∀ (s : σ), run (SeqRight.seqRight x fun x => y) s = run (Seq.seq (const α id <$> x) fun x => y) s", "state_before": "m : Type u_1 → Type u_2\nσ α β : Type u_1\ninst✝¹ : Monad m\ninst✝ : LawfulMonad m\nx : StateT σ m α\ny : StateT σ m β\n⊢ (SeqRight.seqRight x fun x => y) = Seq.seq (const α id <$> x) fun x => y", "tactic": "apply ext" }, { "state_after": "case h\nm : Type u_1 → Type u_2\nσ α β : Type u_1\ninst✝¹ : Monad m\ninst✝ : LawfulMonad m\nx : StateT σ m α\ny : StateT σ m β\ns : σ\n⊢ run (SeqRight.seqRight x fun x => y) s = run (Seq.seq (const α id <$> x) fun x => y) s", "state_before": "case h\nm : Type u_1 → Type u_2\nσ α β : Type u_1\ninst✝¹ : Monad m\ninst✝ : LawfulMonad m\nx : StateT σ m α\ny : StateT σ m β\n⊢ ∀ (s : σ), run (SeqRight.seqRight x fun x => y) s = run (Seq.seq (const α id <$> x) fun x => y) s", "tactic": "intro s" }, { "state_after": "case h\nm : Type u_1 → Type u_2\nσ α β : Type u_1\ninst✝¹ : Monad m\ninst✝ : LawfulMonad m\nx : StateT σ m α\ny : StateT σ m β\ns : σ\n⊢ (do\n let p ← run x s\n run y p.snd) =\n do\n let x ← run x s\n let a ← run y x.snd\n pure (a.fst, a.snd)", "state_before": "case h\nm : Type u_1 → Type u_2\nσ α β : Type u_1\ninst✝¹ : Monad m\ninst✝ : LawfulMonad m\nx : StateT σ m α\ny : StateT σ m β\ns : σ\n⊢ run (SeqRight.seqRight x fun x => y) s = run (Seq.seq (const α id <$> x) fun x => y) s", "tactic": "simp [map_eq_pure_bind, const]" }, { "state_after": "case h.h\nm : Type u_1 → Type u_2\nσ α β : Type u_1\ninst✝¹ : Monad m\ninst✝ : LawfulMonad m\nx : StateT σ m α\ny : StateT σ m β\ns : σ\n⊢ ∀ (a : α × σ),\n run y a.snd = do\n let a ← run y a.snd\n pure (a.fst, a.snd)", "state_before": "case h\nm : Type u_1 → Type u_2\nσ α β : Type u_1\ninst✝¹ : Monad m\ninst✝ : LawfulMonad m\nx : StateT σ m α\ny : StateT σ m β\ns : σ\n⊢ (do\n let p ← run x s\n run y p.snd) =\n do\n let x ← run x s\n let a ← run y x.snd\n pure (a.fst, a.snd)", "tactic": "apply bind_congr" }, { "state_after": "case h.h\nm : Type u_1 → Type u_2\nσ α β : Type u_1\ninst✝¹ : Monad m\ninst✝ : LawfulMonad m\nx : StateT σ m α\ny : StateT σ m β\ns : σ\np : α × σ\n⊢ run y p.snd = do\n let a ← run y p.snd\n pure (a.fst, a.snd)", "state_before": "case h.h\nm : Type u_1 → Type u_2\nσ α β : Type u_1\ninst✝¹ : Monad m\ninst✝ : LawfulMonad m\nx : StateT σ m α\ny : StateT σ m β\ns : σ\n⊢ ∀ (a : α × σ),\n run y a.snd = do\n let a ← run y a.snd\n pure (a.fst, a.snd)", "tactic": "intro p" }, { "state_after": "case h.h.mk\nm : Type u_1 → Type u_2\nσ α β : Type u_1\ninst✝¹ : Monad m\ninst✝ : LawfulMonad m\nx : StateT σ m α\ny : StateT σ m β\ns : σ\nfst✝ : α\nsnd✝ : σ\n⊢ run y (fst✝, snd✝).snd = do\n let a ← run y (fst✝, snd✝).snd\n pure (a.fst, a.snd)", "state_before": "case h.h\nm : Type u_1 → Type u_2\nσ α β : Type u_1\ninst✝¹ : Monad m\ninst✝ : LawfulMonad m\nx : StateT σ m α\ny : StateT σ m β\ns : σ\np : α × σ\n⊢ run y p.snd = do\n let a ← run y p.snd\n pure (a.fst, a.snd)", "tactic": "cases p" }, { "state_after": "no goals", "state_before": "case h.h.mk\nm : Type u_1 → Type u_2\nσ α β : Type u_1\ninst✝¹ : Monad m\ninst✝ : LawfulMonad m\nx : StateT σ m α\ny : StateT σ m β\ns : σ\nfst✝ : α\nsnd✝ : σ\n⊢ run y (fst✝, snd✝).snd = do\n let a ← run y (fst✝, snd✝).snd\n pure (a.fst, a.snd)", "tactic": "simp [Prod.eta]" } ]
[ 292, 18 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 288, 1 ]
Mathlib/Data/List/Basic.lean
List.map_erase
[ { "state_after": "ι : Type ?u.425891\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝¹ : DecidableEq α\ninst✝ : DecidableEq β\nf : α → β\nfinj : Injective f\na : α\nl : List α\nthis : Eq a = Eq (f a) ∘ f\n⊢ map f (List.erase l a) = List.erase (map f l) (f a)", "state_before": "ι : Type ?u.425891\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝¹ : DecidableEq α\ninst✝ : DecidableEq β\nf : α → β\nfinj : Injective f\na : α\nl : List α\n⊢ map f (List.erase l a) = List.erase (map f l) (f a)", "tactic": "have this : Eq a = Eq (f a) ∘ f := by ext b; simp [finj.eq_iff]" }, { "state_after": "ι : Type ?u.425891\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝¹ : DecidableEq α\ninst✝ : DecidableEq β\nf : α → β\nfinj : Injective f\na : α\nl : List α\nthis : Eq a = Eq (f a) ∘ f\n⊢ map f (eraseP (fun b => decide (f a = f b)) l) = map f (eraseP ((fun b => decide (f a = b)) ∘ f) l)", "state_before": "ι : Type ?u.425891\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝¹ : DecidableEq α\ninst✝ : DecidableEq β\nf : α → β\nfinj : Injective f\na : α\nl : List α\nthis : Eq a = Eq (f a) ∘ f\n⊢ map f (List.erase l a) = List.erase (map f l) (f a)", "tactic": "simp [erase_eq_eraseP, erase_eq_eraseP, eraseP_map, this]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.425891\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝¹ : DecidableEq α\ninst✝ : DecidableEq β\nf : α → β\nfinj : Injective f\na : α\nl : List α\nthis : Eq a = Eq (f a) ∘ f\n⊢ map f (eraseP (fun b => decide (f a = f b)) l) = map f (eraseP ((fun b => decide (f a = b)) ∘ f) l)", "tactic": "rfl" }, { "state_after": "case h.a\nι : Type ?u.425891\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝¹ : DecidableEq α\ninst✝ : DecidableEq β\nf : α → β\nfinj : Injective f\na : α\nl : List α\nb : α\n⊢ a = b ↔ (Eq (f a) ∘ f) b", "state_before": "ι : Type ?u.425891\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝¹ : DecidableEq α\ninst✝ : DecidableEq β\nf : α → β\nfinj : Injective f\na : α\nl : List α\n⊢ Eq a = Eq (f a) ∘ f", "tactic": "ext b" }, { "state_after": "no goals", "state_before": "case h.a\nι : Type ?u.425891\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝¹ : DecidableEq α\ninst✝ : DecidableEq β\nf : α → β\nfinj : Injective f\na : α\nl : List α\nb : α\n⊢ a = b ↔ (Eq (f a) ∘ f) b", "tactic": "simp [finj.eq_iff]" } ]
[ 3746, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3743, 1 ]
Mathlib/Topology/MetricSpace/Basic.lean
edist_lt_top
[]
[ 343, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 342, 1 ]
Mathlib/Algebra/Parity.lean
Even.add_odd
[ { "state_after": "case intro.intro\nF : Type ?u.81616\nα : Type u_1\nβ : Type ?u.81622\nR : Type ?u.81625\ninst✝¹ : Semiring α\ninst✝ : Semiring β\nm n : α\n⊢ Odd (m + m + (2 * n + 1))", "state_before": "F : Type ?u.81616\nα : Type u_1\nβ : Type ?u.81622\nR : Type ?u.81625\ninst✝¹ : Semiring α\ninst✝ : Semiring β\nm n : α\n⊢ Even m → Odd n → Odd (m + n)", "tactic": "rintro ⟨m, rfl⟩ ⟨n, rfl⟩" }, { "state_after": "no goals", "state_before": "case intro.intro\nF : Type ?u.81616\nα : Type u_1\nβ : Type ?u.81622\nR : Type ?u.81625\ninst✝¹ : Semiring α\ninst✝ : Semiring β\nm n : α\n⊢ Odd (m + m + (2 * n + 1))", "tactic": "exact ⟨m + n, by rw [mul_add, ← two_mul, add_assoc]⟩" }, { "state_after": "no goals", "state_before": "F : Type ?u.81616\nα : Type u_1\nβ : Type ?u.81622\nR : Type ?u.81625\ninst✝¹ : Semiring α\ninst✝ : Semiring β\nm n : α\n⊢ m + m + (2 * n + 1) = 2 * (m + n) + 1", "tactic": "rw [mul_add, ← two_mul, add_assoc]" } ]
[ 332, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 330, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/StrictInitial.lean
CategoryTheory.Limits.terminal.hom_ext
[]
[ 251, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 250, 1 ]
Mathlib/Order/Heyting/Hom.lean
map_hnot
[ { "state_after": "no goals", "state_before": "F : Type u_3\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.37721\nδ : Type ?u.37724\ninst✝² : CoheytingAlgebra α\ninst✝¹ : CoheytingAlgebra β\ninst✝ : CoheytingHomClass F α β\nf : F\na : α\n⊢ ↑f (¬a) = ¬↑f a", "tactic": "rw [← top_sdiff', ← top_sdiff', map_sdiff, map_top]" } ]
[ 208, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 208, 1 ]
Mathlib/Topology/MetricSpace/Isometry.lean
Isometry.closedEmbedding
[]
[ 214, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 212, 1 ]
Mathlib/Algebra/Free.lean
FreeSemigroup.lift_comp_of
[]
[ 546, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 546, 1 ]
Mathlib/ModelTheory/Semantics.lean
FirstOrder.Language.Formula.realize_equivSentence_symm_con
[ { "state_after": "L : Language\nL' : Language\nM : Type w\nN : Type ?u.257040\nP : Type ?u.257043\ninst✝⁴ : Structure L M\ninst✝³ : Structure L N\ninst✝² : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\ninst✝¹ : Structure (L[[α]]) M\ninst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M\nφ : Sentence (L[[α]])\n⊢ BoundedFormula.Realize (↑BoundedFormula.constantsVarsEquiv φ)\n (fun x => ↑(Language.con L (↑(Equiv.sumEmpty α Empty) x))) default ↔\n M ⊨ φ", "state_before": "L : Language\nL' : Language\nM : Type w\nN : Type ?u.257040\nP : Type ?u.257043\ninst✝⁴ : Structure L M\ninst✝³ : Structure L N\ninst✝² : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\ninst✝¹ : Structure (L[[α]]) M\ninst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M\nφ : Sentence (L[[α]])\n⊢ (Realize (↑equivSentence.symm φ) fun a => ↑(Language.con L a)) ↔ M ⊨ φ", "tactic": "simp only [equivSentence, Equiv.symm_symm, Equiv.coe_trans, Realize,\n BoundedFormula.realize_relabelEquiv, Function.comp]" }, { "state_after": "L : Language\nL' : Language\nM : Type w\nN : Type ?u.257040\nP : Type ?u.257043\ninst✝⁴ : Structure L M\ninst✝³ : Structure L N\ninst✝² : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\ninst✝¹ : Structure (L[[α]]) M\ninst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M\nφ : Sentence (L[[α]])\n⊢ BoundedFormula.Realize (↑BoundedFormula.constantsVarsEquiv φ)\n (fun x => ↑(Language.con L (↑(Equiv.sumEmpty α Empty) x))) default ↔\n BoundedFormula.Realize (↑BoundedFormula.constantsVarsEquiv φ) (Sum.elim (fun a => ↑(Language.con L a)) default)\n default", "state_before": "L : Language\nL' : Language\nM : Type w\nN : Type ?u.257040\nP : Type ?u.257043\ninst✝⁴ : Structure L M\ninst✝³ : Structure L N\ninst✝² : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\ninst✝¹ : Structure (L[[α]]) M\ninst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M\nφ : Sentence (L[[α]])\n⊢ BoundedFormula.Realize (↑BoundedFormula.constantsVarsEquiv φ)\n (fun x => ↑(Language.con L (↑(Equiv.sumEmpty α Empty) x))) default ↔\n M ⊨ φ", "tactic": "refine' _root_.trans _ BoundedFormula.realize_constantsVarsEquiv" }, { "state_after": "L : Language\nL' : Language\nM : Type w\nN : Type ?u.257040\nP : Type ?u.257043\ninst✝⁴ : Structure L M\ninst✝³ : Structure L N\ninst✝² : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\ninst✝¹ : Structure (L[[α]]) M\ninst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M\nφ : Sentence (L[[α]])\n⊢ BoundedFormula.Realize (↑BoundedFormula.constantsVarsEquiv φ)\n (fun x => ↑(Language.con L (↑(Equiv.sumEmpty α Empty) x))) default =\n BoundedFormula.Realize (↑BoundedFormula.constantsVarsEquiv φ) (Sum.elim (fun a => ↑(Language.con L a)) default)\n default", "state_before": "L : Language\nL' : Language\nM : Type w\nN : Type ?u.257040\nP : Type ?u.257043\ninst✝⁴ : Structure L M\ninst✝³ : Structure L N\ninst✝² : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\ninst✝¹ : Structure (L[[α]]) M\ninst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M\nφ : Sentence (L[[α]])\n⊢ BoundedFormula.Realize (↑BoundedFormula.constantsVarsEquiv φ)\n (fun x => ↑(Language.con L (↑(Equiv.sumEmpty α Empty) x))) default ↔\n BoundedFormula.Realize (↑BoundedFormula.constantsVarsEquiv φ) (Sum.elim (fun a => ↑(Language.con L a)) default)\n default", "tactic": "rw [iff_iff_eq]" }, { "state_after": "case e__v.h.inl\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.257040\nP : Type ?u.257043\ninst✝⁴ : Structure L M\ninst✝³ : Structure L N\ninst✝² : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\ninst✝¹ : Structure (L[[α]]) M\ninst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M\nφ : Sentence (L[[α]])\nval✝ : α\n⊢ ↑(Language.con L (↑(Equiv.sumEmpty α Empty) (Sum.inl val✝))) =\n Sum.elim (fun a => ↑(Language.con L a)) default (Sum.inl val✝)\n\ncase e__v.h.inr\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.257040\nP : Type ?u.257043\ninst✝⁴ : Structure L M\ninst✝³ : Structure L N\ninst✝² : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\ninst✝¹ : Structure (L[[α]]) M\ninst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M\nφ : Sentence (L[[α]])\na : Empty\n⊢ ↑(Language.con L (↑(Equiv.sumEmpty α Empty) (Sum.inr a))) =\n Sum.elim (fun a => ↑(Language.con L a)) default (Sum.inr a)", "state_before": "L : Language\nL' : Language\nM : Type w\nN : Type ?u.257040\nP : Type ?u.257043\ninst✝⁴ : Structure L M\ninst✝³ : Structure L N\ninst✝² : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\ninst✝¹ : Structure (L[[α]]) M\ninst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M\nφ : Sentence (L[[α]])\n⊢ BoundedFormula.Realize (↑BoundedFormula.constantsVarsEquiv φ)\n (fun x => ↑(Language.con L (↑(Equiv.sumEmpty α Empty) x))) default =\n BoundedFormula.Realize (↑BoundedFormula.constantsVarsEquiv φ) (Sum.elim (fun a => ↑(Language.con L a)) default)\n default", "tactic": "congr with (_ | a)" }, { "state_after": "case e__v.h.inr\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.257040\nP : Type ?u.257043\ninst✝⁴ : Structure L M\ninst✝³ : Structure L N\ninst✝² : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\ninst✝¹ : Structure (L[[α]]) M\ninst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M\nφ : Sentence (L[[α]])\na : Empty\n⊢ ↑(Language.con L (↑(Equiv.sumEmpty α Empty) (Sum.inr a))) =\n Sum.elim (fun a => ↑(Language.con L a)) default (Sum.inr a)", "state_before": "case e__v.h.inl\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.257040\nP : Type ?u.257043\ninst✝⁴ : Structure L M\ninst✝³ : Structure L N\ninst✝² : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\ninst✝¹ : Structure (L[[α]]) M\ninst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M\nφ : Sentence (L[[α]])\nval✝ : α\n⊢ ↑(Language.con L (↑(Equiv.sumEmpty α Empty) (Sum.inl val✝))) =\n Sum.elim (fun a => ↑(Language.con L a)) default (Sum.inl val✝)\n\ncase e__v.h.inr\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.257040\nP : Type ?u.257043\ninst✝⁴ : Structure L M\ninst✝³ : Structure L N\ninst✝² : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\ninst✝¹ : Structure (L[[α]]) M\ninst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M\nφ : Sentence (L[[α]])\na : Empty\n⊢ ↑(Language.con L (↑(Equiv.sumEmpty α Empty) (Sum.inr a))) =\n Sum.elim (fun a => ↑(Language.con L a)) default (Sum.inr a)", "tactic": ". simp" }, { "state_after": "no goals", "state_before": "case e__v.h.inr\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.257040\nP : Type ?u.257043\ninst✝⁴ : Structure L M\ninst✝³ : Structure L N\ninst✝² : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\ninst✝¹ : Structure (L[[α]]) M\ninst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M\nφ : Sentence (L[[α]])\na : Empty\n⊢ ↑(Language.con L (↑(Equiv.sumEmpty α Empty) (Sum.inr a))) =\n Sum.elim (fun a => ↑(Language.con L a)) default (Sum.inr a)", "tactic": ". cases a" }, { "state_after": "no goals", "state_before": "case e__v.h.inl\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.257040\nP : Type ?u.257043\ninst✝⁴ : Structure L M\ninst✝³ : Structure L N\ninst✝² : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\ninst✝¹ : Structure (L[[α]]) M\ninst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M\nφ : Sentence (L[[α]])\nval✝ : α\n⊢ ↑(Language.con L (↑(Equiv.sumEmpty α Empty) (Sum.inl val✝))) =\n Sum.elim (fun a => ↑(Language.con L a)) default (Sum.inl val✝)", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case e__v.h.inr\nL : Language\nL' : Language\nM : Type w\nN : Type ?u.257040\nP : Type ?u.257043\ninst✝⁴ : Structure L M\ninst✝³ : Structure L N\ninst✝² : Structure L P\nα : Type u'\nβ : Type v'\nn : ℕ\ninst✝¹ : Structure (L[[α]]) M\ninst✝ : LHom.IsExpansionOn (lhomWithConstants L α) M\nφ : Sentence (L[[α]])\na : Empty\n⊢ ↑(Language.con L (↑(Equiv.sumEmpty α Empty) (Sum.inr a))) =\n Sum.elim (fun a => ↑(Language.con L a)) default (Sum.inr a)", "tactic": "cases a" } ]
[ 745, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 736, 1 ]
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.IsCycle.extendDomain
[ { "state_after": "case intro.intro\nι : Type ?u.344602\nα : Type u_2\nβ : Type u_1\nf✝ g : Perm α\nx y : α\np : β → Prop\ninst✝ : DecidablePred p\nf : α ≃ Subtype p\na : α\nha : ↑g a ≠ a\nha' : ∀ ⦃y : α⦄, ↑g y ≠ y → SameCycle g a y\n⊢ IsCycle (extendDomain g f)", "state_before": "ι : Type ?u.344602\nα : Type u_2\nβ : Type u_1\nf✝ g : Perm α\nx y : α\np : β → Prop\ninst✝ : DecidablePred p\nf : α ≃ Subtype p\n⊢ IsCycle g → IsCycle (extendDomain g f)", "tactic": "rintro ⟨a, ha, ha'⟩" }, { "state_after": "case intro.intro.refine'_1\nι : Type ?u.344602\nα : Type u_2\nβ : Type u_1\nf✝ g : Perm α\nx y : α\np : β → Prop\ninst✝ : DecidablePred p\nf : α ≃ Subtype p\na : α\nha : ↑g a ≠ a\nha' : ∀ ⦃y : α⦄, ↑g y ≠ y → SameCycle g a y\n⊢ ↑(extendDomain g f) ↑(↑f a) ≠ ↑(↑f a)\n\ncase intro.intro.refine'_2\nι : Type ?u.344602\nα : Type u_2\nβ : Type u_1\nf✝ g : Perm α\nx y : α\np : β → Prop\ninst✝ : DecidablePred p\nf : α ≃ Subtype p\na : α\nha : ↑g a ≠ a\nha' : ∀ ⦃y : α⦄, ↑g y ≠ y → SameCycle g a y\nb : β\nhb : ↑(extendDomain g f) b ≠ b\n⊢ SameCycle (extendDomain g f) (↑(↑f a)) b", "state_before": "case intro.intro\nι : Type ?u.344602\nα : Type u_2\nβ : Type u_1\nf✝ g : Perm α\nx y : α\np : β → Prop\ninst✝ : DecidablePred p\nf : α ≃ Subtype p\na : α\nha : ↑g a ≠ a\nha' : ∀ ⦃y : α⦄, ↑g y ≠ y → SameCycle g a y\n⊢ IsCycle (extendDomain g f)", "tactic": "refine' ⟨f a, _, fun b hb => _⟩" }, { "state_after": "case intro.intro.refine'_2\nι : Type ?u.344602\nα : Type u_2\nβ : Type u_1\nf✝ g : Perm α\nx y : α\np : β → Prop\ninst✝ : DecidablePred p\nf : α ≃ Subtype p\na : α\nha : ↑g a ≠ a\nha' : ∀ ⦃y : α⦄, ↑g y ≠ y → SameCycle g a y\nb : β\nhb : ↑(extendDomain g f) b ≠ b\nh : b = ↑(↑f (↑f.symm { val := b, property := (_ : p b) }))\n⊢ SameCycle (extendDomain g f) (↑(↑f a)) b", "state_before": "case intro.intro.refine'_2\nι : Type ?u.344602\nα : Type u_2\nβ : Type u_1\nf✝ g : Perm α\nx y : α\np : β → Prop\ninst✝ : DecidablePred p\nf : α ≃ Subtype p\na : α\nha : ↑g a ≠ a\nha' : ∀ ⦃y : α⦄, ↑g y ≠ y → SameCycle g a y\nb : β\nhb : ↑(extendDomain g f) b ≠ b\n⊢ SameCycle (extendDomain g f) (↑(↑f a)) b", "tactic": "have h : b = f (f.symm ⟨b, of_not_not <| hb ∘ extendDomain_apply_not_subtype _ _⟩) := by\n rw [apply_symm_apply, Subtype.coe_mk]" }, { "state_after": "case intro.intro.refine'_2\nι : Type ?u.344602\nα : Type u_2\nβ : Type u_1\nf✝ g : Perm α\nx y : α\np : β → Prop\ninst✝ : DecidablePred p\nf : α ≃ Subtype p\na : α\nha : ↑g a ≠ a\nha' : ∀ ⦃y : α⦄, ↑g y ≠ y → SameCycle g a y\nb : β\nhb✝ : ↑(extendDomain g f) b ≠ b\nhb :\n ↑(extendDomain g f) ↑(↑f (↑f.symm { val := b, property := (_ : p b) })) ≠\n ↑(↑f (↑f.symm { val := b, property := (_ : p b) }))\nh : b = ↑(↑f (↑f.symm { val := b, property := (_ : p b) }))\n⊢ SameCycle (extendDomain g f) ↑(↑f a) ↑(↑f (↑f.symm { val := b, property := (_ : p b) }))", "state_before": "case intro.intro.refine'_2\nι : Type ?u.344602\nα : Type u_2\nβ : Type u_1\nf✝ g : Perm α\nx y : α\np : β → Prop\ninst✝ : DecidablePred p\nf : α ≃ Subtype p\na : α\nha : ↑g a ≠ a\nha' : ∀ ⦃y : α⦄, ↑g y ≠ y → SameCycle g a y\nb : β\nhb : ↑(extendDomain g f) b ≠ b\nh : b = ↑(↑f (↑f.symm { val := b, property := (_ : p b) }))\n⊢ SameCycle (extendDomain g f) (↑(↑f a)) b", "tactic": "rw [h] at hb⊢" }, { "state_after": "case intro.intro.refine'_2\nι : Type ?u.344602\nα : Type u_2\nβ : Type u_1\nf✝ g : Perm α\nx y : α\np : β → Prop\ninst✝ : DecidablePred p\nf : α ≃ Subtype p\na : α\nha : ↑g a ≠ a\nha' : ∀ ⦃y : α⦄, ↑g y ≠ y → SameCycle g a y\nb : β\nhb✝ : ↑(extendDomain g f) b ≠ b\nh : b = ↑(↑f (↑f.symm { val := b, property := (_ : p b) }))\nhb : ↑g (↑f.symm { val := b, property := (_ : p b) }) ≠ ↑f.symm { val := b, property := (_ : p b) }\n⊢ SameCycle (extendDomain g f) ↑(↑f a) ↑(↑f (↑f.symm { val := b, property := (_ : p b) }))", "state_before": "case intro.intro.refine'_2\nι : Type ?u.344602\nα : Type u_2\nβ : Type u_1\nf✝ g : Perm α\nx y : α\np : β → Prop\ninst✝ : DecidablePred p\nf : α ≃ Subtype p\na : α\nha : ↑g a ≠ a\nha' : ∀ ⦃y : α⦄, ↑g y ≠ y → SameCycle g a y\nb : β\nhb✝ : ↑(extendDomain g f) b ≠ b\nhb :\n ↑(extendDomain g f) ↑(↑f (↑f.symm { val := b, property := (_ : p b) })) ≠\n ↑(↑f (↑f.symm { val := b, property := (_ : p b) }))\nh : b = ↑(↑f (↑f.symm { val := b, property := (_ : p b) }))\n⊢ SameCycle (extendDomain g f) ↑(↑f a) ↑(↑f (↑f.symm { val := b, property := (_ : p b) }))", "tactic": "simp only [extendDomain_apply_image, Subtype.coe_injective.ne_iff, f.injective.ne_iff] at hb" }, { "state_after": "no goals", "state_before": "case intro.intro.refine'_2\nι : Type ?u.344602\nα : Type u_2\nβ : Type u_1\nf✝ g : Perm α\nx y : α\np : β → Prop\ninst✝ : DecidablePred p\nf : α ≃ Subtype p\na : α\nha : ↑g a ≠ a\nha' : ∀ ⦃y : α⦄, ↑g y ≠ y → SameCycle g a y\nb : β\nhb✝ : ↑(extendDomain g f) b ≠ b\nh : b = ↑(↑f (↑f.symm { val := b, property := (_ : p b) }))\nhb : ↑g (↑f.symm { val := b, property := (_ : p b) }) ≠ ↑f.symm { val := b, property := (_ : p b) }\n⊢ SameCycle (extendDomain g f) ↑(↑f a) ↑(↑f (↑f.symm { val := b, property := (_ : p b) }))", "tactic": "exact (ha' hb).extendDomain" }, { "state_after": "case intro.intro.refine'_1\nι : Type ?u.344602\nα : Type u_2\nβ : Type u_1\nf✝ g : Perm α\nx y : α\np : β → Prop\ninst✝ : DecidablePred p\nf : α ≃ Subtype p\na : α\nha : ↑g a ≠ a\nha' : ∀ ⦃y : α⦄, ↑g y ≠ y → SameCycle g a y\n⊢ ↑(↑f (↑g a)) ≠ ↑(↑f a)", "state_before": "case intro.intro.refine'_1\nι : Type ?u.344602\nα : Type u_2\nβ : Type u_1\nf✝ g : Perm α\nx y : α\np : β → Prop\ninst✝ : DecidablePred p\nf : α ≃ Subtype p\na : α\nha : ↑g a ≠ a\nha' : ∀ ⦃y : α⦄, ↑g y ≠ y → SameCycle g a y\n⊢ ↑(extendDomain g f) ↑(↑f a) ≠ ↑(↑f a)", "tactic": "rw [extendDomain_apply_image]" }, { "state_after": "no goals", "state_before": "case intro.intro.refine'_1\nι : Type ?u.344602\nα : Type u_2\nβ : Type u_1\nf✝ g : Perm α\nx y : α\np : β → Prop\ninst✝ : DecidablePred p\nf : α ≃ Subtype p\na : α\nha : ↑g a ≠ a\nha' : ∀ ⦃y : α⦄, ↑g y ≠ y → SameCycle g a y\n⊢ ↑(↑f (↑g a)) ≠ ↑(↑f a)", "tactic": "exact Subtype.coe_injective.ne (f.injective.ne ha)" }, { "state_after": "no goals", "state_before": "ι : Type ?u.344602\nα : Type u_2\nβ : Type u_1\nf✝ g : Perm α\nx y : α\np : β → Prop\ninst✝ : DecidablePred p\nf : α ≃ Subtype p\na : α\nha : ↑g a ≠ a\nha' : ∀ ⦃y : α⦄, ↑g y ≠ y → SameCycle g a y\nb : β\nhb : ↑(extendDomain g f) b ≠ b\n⊢ b = ↑(↑f (↑f.symm { val := b, property := (_ : p b) }))", "tactic": "rw [apply_symm_apply, Subtype.coe_mk]" } ]
[ 337, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 327, 11 ]
Mathlib/MeasureTheory/Integral/FundThmCalculus.lean
intervalIntegral.integral_comp_smul_deriv''
[ { "state_after": "ι : Type ?u.1904826\n𝕜 : Type ?u.1904829\nE : Type u_1\nF : Type ?u.1904835\nA : Type ?u.1904838\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf✝¹ : ℝ → E\ng' g✝ φ : ℝ → ℝ\nf✝ f'✝ : ℝ → E\na b : ℝ\nf f' : ℝ → ℝ\ng : ℝ → E\nhf : ContinuousOn f [[a, b]]\nhff' : ∀ (x : ℝ), x ∈ Ioo (min a b) (max a b) → HasDerivWithinAt f (f' x) (Ioi x) x\nhf' : ContinuousOn f' [[a, b]]\nhg : ContinuousOn g (f '' [[a, b]])\n⊢ IntegrableOn g (f '' [[a, b]])", "state_before": "ι : Type ?u.1904826\n𝕜 : Type ?u.1904829\nE : Type u_1\nF : Type ?u.1904835\nA : Type ?u.1904838\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf✝¹ : ℝ → E\ng' g✝ φ : ℝ → ℝ\nf✝ f'✝ : ℝ → E\na b : ℝ\nf f' : ℝ → ℝ\ng : ℝ → E\nhf : ContinuousOn f [[a, b]]\nhff' : ∀ (x : ℝ), x ∈ Ioo (min a b) (max a b) → HasDerivWithinAt f (f' x) (Ioi x) x\nhf' : ContinuousOn f' [[a, b]]\nhg : ContinuousOn g (f '' [[a, b]])\n⊢ (∫ (x : ℝ) in a..b, f' x • (g ∘ f) x) = ∫ (u : ℝ) in f a..f b, g u", "tactic": "refine'\n integral_comp_smul_deriv''' hf hff' (hg.mono <| image_subset _ Ioo_subset_Icc_self) _\n (hf'.smul (hg.comp hf <| subset_preimage_image f _)).integrableOn_Icc" }, { "state_after": "ι : Type ?u.1904826\n𝕜 : Type ?u.1904829\nE : Type u_1\nF : Type ?u.1904835\nA : Type ?u.1904838\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf✝¹ : ℝ → E\ng' g✝ φ : ℝ → ℝ\nf✝ f'✝ : ℝ → E\na b : ℝ\nf f' : ℝ → ℝ\ng : ℝ → E\nhf : ContinuousOn f [[a, b]]\nhff' : ∀ (x : ℝ), x ∈ Ioo (min a b) (max a b) → HasDerivWithinAt f (f' x) (Ioi x) x\nhf' : ContinuousOn f' [[a, b]]\nhg : ContinuousOn g [[sInf (f '' [[a, b]]), sSup (f '' [[a, b]])]]\n⊢ IntegrableOn g [[sInf (f '' [[a, b]]), sSup (f '' [[a, b]])]]", "state_before": "ι : Type ?u.1904826\n𝕜 : Type ?u.1904829\nE : Type u_1\nF : Type ?u.1904835\nA : Type ?u.1904838\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf✝¹ : ℝ → E\ng' g✝ φ : ℝ → ℝ\nf✝ f'✝ : ℝ → E\na b : ℝ\nf f' : ℝ → ℝ\ng : ℝ → E\nhf : ContinuousOn f [[a, b]]\nhff' : ∀ (x : ℝ), x ∈ Ioo (min a b) (max a b) → HasDerivWithinAt f (f' x) (Ioi x) x\nhf' : ContinuousOn f' [[a, b]]\nhg : ContinuousOn g (f '' [[a, b]])\n⊢ IntegrableOn g (f '' [[a, b]])", "tactic": "rw [hf.image_uIcc] at hg ⊢" }, { "state_after": "no goals", "state_before": "ι : Type ?u.1904826\n𝕜 : Type ?u.1904829\nE : Type u_1\nF : Type ?u.1904835\nA : Type ?u.1904838\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf✝¹ : ℝ → E\ng' g✝ φ : ℝ → ℝ\nf✝ f'✝ : ℝ → E\na b : ℝ\nf f' : ℝ → ℝ\ng : ℝ → E\nhf : ContinuousOn f [[a, b]]\nhff' : ∀ (x : ℝ), x ∈ Ioo (min a b) (max a b) → HasDerivWithinAt f (f' x) (Ioi x) x\nhf' : ContinuousOn f' [[a, b]]\nhg : ContinuousOn g [[sInf (f '' [[a, b]]), sSup (f '' [[a, b]])]]\n⊢ IntegrableOn g [[sInf (f '' [[a, b]]), sSup (f '' [[a, b]])]]", "tactic": "exact hg.integrableOn_Icc" } ]
[ 1407, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1399, 1 ]
Mathlib/Tactic/NormNum/Basic.lean
Mathlib.Meta.NormNum.isInt_cast
[ { "state_after": "case mk.refl\nR : Type u_1\ninst✝ : Ring R\nm : ℤ\n⊢ IsInt (↑↑m) m", "state_before": "R : Type u_1\ninst✝ : Ring R\nn m : ℤ\n⊢ IsInt n m → IsInt (↑n) m", "tactic": "rintro ⟨⟨⟩⟩" }, { "state_after": "no goals", "state_before": "case mk.refl\nR : Type u_1\ninst✝ : Ring R\nm : ℤ\n⊢ IsInt (↑↑m) m", "tactic": "exact ⟨rfl⟩" } ]
[ 87, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 86, 1 ]
Mathlib/LinearAlgebra/LinearPMap.lean
LinearMap.toPMap_apply
[]
[ 640, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 639, 1 ]
Mathlib/Order/Chain.lean
IsChain.mono_rel
[]
[ 81, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 79, 1 ]
Std/Data/Int/Lemmas.lean
Int.mul_self_le_mul_self
[]
[ 1234, 47 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1233, 11 ]
Mathlib/RingTheory/RootsOfUnity/Basic.lean
IsPrimitiveRoot.mem_rootsOfUnity
[]
[ 488, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 486, 11 ]
Mathlib/Topology/Homeomorph.lean
Homeomorph.comp_isOpenMap_iff'
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type ?u.72743\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\nh : α ≃ₜ β\nf : β → γ\n⊢ IsOpenMap (f ∘ ↑h) → IsOpenMap f", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type ?u.72743\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\nh : α ≃ₜ β\nf : β → γ\n⊢ IsOpenMap (f ∘ ↑h) ↔ IsOpenMap f", "tactic": "refine' ⟨_, fun hf => hf.comp h.isOpenMap⟩" }, { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type ?u.72743\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\nh : α ≃ₜ β\nf : β → γ\nhf : IsOpenMap (f ∘ ↑h)\n⊢ IsOpenMap f", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type ?u.72743\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\nh : α ≃ₜ β\nf : β → γ\n⊢ IsOpenMap (f ∘ ↑h) → IsOpenMap f", "tactic": "intro hf" }, { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type ?u.72743\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\nh : α ≃ₜ β\nf : β → γ\nhf : IsOpenMap (f ∘ ↑h)\n⊢ IsOpenMap ((f ∘ ↑h) ∘ ↑(Homeomorph.symm h))", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type ?u.72743\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\nh : α ≃ₜ β\nf : β → γ\nhf : IsOpenMap (f ∘ ↑h)\n⊢ IsOpenMap f", "tactic": "rw [← Function.comp.right_id f, ← h.self_comp_symm, ← Function.comp.assoc]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type ?u.72743\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\nh : α ≃ₜ β\nf : β → γ\nhf : IsOpenMap (f ∘ ↑h)\n⊢ IsOpenMap ((f ∘ ↑h) ∘ ↑(Homeomorph.symm h))", "tactic": "exact hf.comp h.symm.isOpenMap" } ]
[ 447, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 443, 1 ]
Mathlib/NumberTheory/Zsqrtd/Basic.lean
Zsqrtd.norm_eq_zero
[ { "state_after": "d : ℤ\nh_nonsquare : ∀ (n : ℤ), d ≠ n * n\na : ℤ√d\nha : norm a = 0\n⊢ a.re = 0.re ∧ a.im = 0.im", "state_before": "d : ℤ\nh_nonsquare : ∀ (n : ℤ), d ≠ n * n\na : ℤ√d\n⊢ norm a = 0 ↔ a = 0", "tactic": "refine' ⟨fun ha => ext.mpr _, fun h => by rw [h, norm_zero]⟩" }, { "state_after": "d : ℤ\nh_nonsquare : ∀ (n : ℤ), d ≠ n * n\na : ℤ√d\nha : a.re * a.re - d * a.im * a.im = 0\n⊢ a.re = 0.re ∧ a.im = 0.im", "state_before": "d : ℤ\nh_nonsquare : ∀ (n : ℤ), d ≠ n * n\na : ℤ√d\nha : norm a = 0\n⊢ a.re = 0.re ∧ a.im = 0.im", "tactic": "dsimp only [norm] at ha" }, { "state_after": "d : ℤ\nh_nonsquare : ∀ (n : ℤ), d ≠ n * n\na : ℤ√d\nha : a.re * a.re = d * a.im * a.im\n⊢ a.re = 0.re ∧ a.im = 0.im", "state_before": "d : ℤ\nh_nonsquare : ∀ (n : ℤ), d ≠ n * n\na : ℤ√d\nha : a.re * a.re - d * a.im * a.im = 0\n⊢ a.re = 0.re ∧ a.im = 0.im", "tactic": "rw [sub_eq_zero] at ha" }, { "state_after": "case pos\nd : ℤ\nh_nonsquare : ∀ (n : ℤ), d ≠ n * n\na : ℤ√d\nha : a.re * a.re = d * a.im * a.im\nh : 0 ≤ d\n⊢ a.re = 0.re ∧ a.im = 0.im\n\ncase neg\nd : ℤ\nh_nonsquare : ∀ (n : ℤ), d ≠ n * n\na : ℤ√d\nha : a.re * a.re = d * a.im * a.im\nh : ¬0 ≤ d\n⊢ a.re = 0.re ∧ a.im = 0.im", "state_before": "d : ℤ\nh_nonsquare : ∀ (n : ℤ), d ≠ n * n\na : ℤ√d\nha : a.re * a.re = d * a.im * a.im\n⊢ a.re = 0.re ∧ a.im = 0.im", "tactic": "by_cases h : 0 ≤ d" }, { "state_after": "no goals", "state_before": "d : ℤ\nh_nonsquare : ∀ (n : ℤ), d ≠ n * n\na : ℤ√d\nh : a = 0\n⊢ norm a = 0", "tactic": "rw [h, norm_zero]" }, { "state_after": "case pos.intro\nd' : ℕ\nh_nonsquare : ∀ (n : ℤ), ↑d' ≠ n * n\na : ℤ√↑d'\nha : a.re * a.re = ↑d' * a.im * a.im\nh : 0 ≤ ↑d'\n⊢ a.re = 0.re ∧ a.im = 0.im", "state_before": "case pos\nd : ℤ\nh_nonsquare : ∀ (n : ℤ), d ≠ n * n\na : ℤ√d\nha : a.re * a.re = d * a.im * a.im\nh : 0 ≤ d\n⊢ a.re = 0.re ∧ a.im = 0.im", "tactic": "obtain ⟨d', rfl⟩ := Int.eq_ofNat_of_zero_le h" }, { "state_after": "case pos.intro\nd' : ℕ\nh_nonsquare : ∀ (n : ℤ), ↑d' ≠ n * n\na : ℤ√↑d'\nha : a.re * a.re = ↑d' * a.im * a.im\nh : 0 ≤ ↑d'\nthis : Nonsquare d'\n⊢ a.re = 0.re ∧ a.im = 0.im", "state_before": "case pos.intro\nd' : ℕ\nh_nonsquare : ∀ (n : ℤ), ↑d' ≠ n * n\na : ℤ√↑d'\nha : a.re * a.re = ↑d' * a.im * a.im\nh : 0 ≤ ↑d'\n⊢ a.re = 0.re ∧ a.im = 0.im", "tactic": "haveI : Nonsquare d' := ⟨fun n h => h_nonsquare n <| by exact_mod_cast h⟩" }, { "state_after": "no goals", "state_before": "case pos.intro\nd' : ℕ\nh_nonsquare : ∀ (n : ℤ), ↑d' ≠ n * n\na : ℤ√↑d'\nha : a.re * a.re = ↑d' * a.im * a.im\nh : 0 ≤ ↑d'\nthis : Nonsquare d'\n⊢ a.re = 0.re ∧ a.im = 0.im", "tactic": "exact divides_sq_eq_zero_z ha" }, { "state_after": "no goals", "state_before": "d' : ℕ\nh_nonsquare : ∀ (n : ℤ), ↑d' ≠ n * n\na : ℤ√↑d'\nha : a.re * a.re = ↑d' * a.im * a.im\nh✝ : 0 ≤ ↑d'\nn : ℕ\nh : d' = n * n\n⊢ ↑d' = ↑n * ↑n", "tactic": "exact_mod_cast h" }, { "state_after": "case neg\nd : ℤ\nh_nonsquare : ∀ (n : ℤ), d ≠ n * n\na : ℤ√d\nha : a.re * a.re = d * a.im * a.im\nh : d < 0\n⊢ a.re = 0.re ∧ a.im = 0.im", "state_before": "case neg\nd : ℤ\nh_nonsquare : ∀ (n : ℤ), d ≠ n * n\na : ℤ√d\nha : a.re * a.re = d * a.im * a.im\nh : ¬0 ≤ d\n⊢ a.re = 0.re ∧ a.im = 0.im", "tactic": "push_neg at h" }, { "state_after": "case neg\nd : ℤ\nh_nonsquare : ∀ (n : ℤ), d ≠ n * n\na : ℤ√d\nha : a.re * a.re = d * a.im * a.im\nh : d < 0\n⊢ a.re * a.re = 0", "state_before": "case neg\nd : ℤ\nh_nonsquare : ∀ (n : ℤ), d ≠ n * n\na : ℤ√d\nha : a.re * a.re = d * a.im * a.im\nh : d < 0\n⊢ a.re = 0.re ∧ a.im = 0.im", "tactic": "suffices a.re * a.re = 0 by\n rw [eq_zero_of_mul_self_eq_zero this] at ha⊢\n simpa only [true_and_iff, or_self_right, zero_re, zero_im, eq_self_iff_true, zero_eq_mul,\n mul_zero, mul_eq_zero, h.ne, false_or_iff, or_self_iff] using ha" }, { "state_after": "d : ℤ\nh_nonsquare : ∀ (n : ℤ), d ≠ n * n\na : ℤ√d\nha : a.re * a.re = d * a.im * a.im\nh : d < 0\n⊢ a.re * a.re ≤ 0", "state_before": "case neg\nd : ℤ\nh_nonsquare : ∀ (n : ℤ), d ≠ n * n\na : ℤ√d\nha : a.re * a.re = d * a.im * a.im\nh : d < 0\n⊢ a.re * a.re = 0", "tactic": "apply _root_.le_antisymm _ (mul_self_nonneg _)" }, { "state_after": "d : ℤ\nh_nonsquare : ∀ (n : ℤ), d ≠ n * n\na : ℤ√d\nha : a.re * a.re = d * a.im * a.im\nh : d < 0\n⊢ d * (a.im * a.im) ≤ 0", "state_before": "d : ℤ\nh_nonsquare : ∀ (n : ℤ), d ≠ n * n\na : ℤ√d\nha : a.re * a.re = d * a.im * a.im\nh : d < 0\n⊢ a.re * a.re ≤ 0", "tactic": "rw [ha, mul_assoc]" }, { "state_after": "no goals", "state_before": "d : ℤ\nh_nonsquare : ∀ (n : ℤ), d ≠ n * n\na : ℤ√d\nha : a.re * a.re = d * a.im * a.im\nh : d < 0\n⊢ d * (a.im * a.im) ≤ 0", "tactic": "exact mul_nonpos_of_nonpos_of_nonneg h.le (mul_self_nonneg _)" }, { "state_after": "d : ℤ\nh_nonsquare : ∀ (n : ℤ), d ≠ n * n\na : ℤ√d\nha : 0 * 0 = d * a.im * a.im\nh : d < 0\nthis : a.re * a.re = 0\n⊢ 0 = 0.re ∧ a.im = 0.im", "state_before": "d : ℤ\nh_nonsquare : ∀ (n : ℤ), d ≠ n * n\na : ℤ√d\nha : a.re * a.re = d * a.im * a.im\nh : d < 0\nthis : a.re * a.re = 0\n⊢ a.re = 0.re ∧ a.im = 0.im", "tactic": "rw [eq_zero_of_mul_self_eq_zero this] at ha⊢" }, { "state_after": "no goals", "state_before": "d : ℤ\nh_nonsquare : ∀ (n : ℤ), d ≠ n * n\na : ℤ√d\nha : 0 * 0 = d * a.im * a.im\nh : d < 0\nthis : a.re * a.re = 0\n⊢ 0 = 0.re ∧ a.im = 0.im", "tactic": "simpa only [true_and_iff, or_self_right, zero_re, zero_im, eq_self_iff_true, zero_eq_mul,\n mul_zero, mul_eq_zero, h.ne, false_or_iff, or_self_iff] using ha" } ]
[ 1026, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1011, 1 ]
Mathlib/CategoryTheory/Localization/Construction.lean
CategoryTheory.Localization.Construction.morphismProperty_is_top'
[]
[ 268, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 264, 1 ]
Std/Data/List/Lemmas.lean
List.foldl_map
[ { "state_after": "no goals", "state_before": "β₁ : Type u_1\nβ₂ : Type u_2\nα : Type u_3\nf : β₁ → β₂\ng : α → β₂ → α\nl : List β₁\ninit : α\n⊢ foldl g init (map f l) = foldl (fun x y => g x (f y)) init l", "tactic": "induction l generalizing init <;> simp [*]" } ]
[ 1411, 45 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1409, 1 ]
Mathlib/Analysis/InnerProductSpace/GramSchmidtOrtho.lean
coe_gramSchmidtBasis
[]
[ 262, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 261, 1 ]
Mathlib/Topology/Connected.lean
connectedComponent_eq_iff_mem
[]
[ 678, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 676, 1 ]
Mathlib/Algebra/Lie/Basic.lean
LieHom.ext
[]
[ 385, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 384, 1 ]
Mathlib/LinearAlgebra/Lagrange.lean
Lagrange.values_eq_on_of_interpolate_eq
[ { "state_after": "no goals", "state_before": "F : Type u_2\ninst✝¹ : Field F\nι : Type u_1\ninst✝ : DecidableEq ι\ns t : Finset ι\ni j : ι\nv r r' : ι → F\nhvs : Set.InjOn v ↑s\nhrr' : ↑(interpolate s v) r = ↑(interpolate s v) r'\nx✝ : ι\nhi : x✝ ∈ s\n⊢ r x✝ = r' x✝", "tactic": "rw [← eval_interpolate_at_node r hvs hi, hrr', eval_interpolate_at_node r' hvs hi]" } ]
[ 361, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 359, 1 ]
Mathlib/Algebra/Group/OrderSynonym.lean
toLex_mul
[]
[ 254, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 254, 1 ]
Mathlib/MeasureTheory/Function/StronglyMeasurable/Basic.lean
MeasureTheory.FinStronglyMeasurable.sup
[ { "state_after": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.278636\nι : Type ?u.278639\ninst✝⁴ : Countable ι\nm0 : MeasurableSpace α\nμ : Measure α\nf g : α → β\ninst✝³ : TopologicalSpace β\ninst✝² : Zero β\ninst✝¹ : SemilatticeSup β\ninst✝ : ContinuousSup β\nhf : FinStronglyMeasurable f μ\nhg : FinStronglyMeasurable g μ\nn : ℕ\n⊢ ↑↑μ (support ↑((fun n => FinStronglyMeasurable.approx hf n ⊔ FinStronglyMeasurable.approx hg n) n)) < ⊤", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.278636\nι : Type ?u.278639\ninst✝⁴ : Countable ι\nm0 : MeasurableSpace α\nμ : Measure α\nf g : α → β\ninst✝³ : TopologicalSpace β\ninst✝² : Zero β\ninst✝¹ : SemilatticeSup β\ninst✝ : ContinuousSup β\nhf : FinStronglyMeasurable f μ\nhg : FinStronglyMeasurable g μ\n⊢ FinStronglyMeasurable (f ⊔ g) μ", "tactic": "refine'\n ⟨fun n => hf.approx n ⊔ hg.approx n, fun n => _, fun x =>\n (hf.tendsto_approx x).sup_right_nhds (hg.tendsto_approx x)⟩" }, { "state_after": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.278636\nι : Type ?u.278639\ninst✝⁴ : Countable ι\nm0 : MeasurableSpace α\nμ : Measure α\nf g : α → β\ninst✝³ : TopologicalSpace β\ninst✝² : Zero β\ninst✝¹ : SemilatticeSup β\ninst✝ : ContinuousSup β\nhf : FinStronglyMeasurable f μ\nhg : FinStronglyMeasurable g μ\nn : ℕ\n⊢ ↑↑μ\n ((support fun x => ↑(FinStronglyMeasurable.approx hf n) x) ∪\n support fun x => ↑(FinStronglyMeasurable.approx hg n) x) <\n ⊤", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.278636\nι : Type ?u.278639\ninst✝⁴ : Countable ι\nm0 : MeasurableSpace α\nμ : Measure α\nf g : α → β\ninst✝³ : TopologicalSpace β\ninst✝² : Zero β\ninst✝¹ : SemilatticeSup β\ninst✝ : ContinuousSup β\nhf : FinStronglyMeasurable f μ\nhg : FinStronglyMeasurable g μ\nn : ℕ\n⊢ ↑↑μ (support ↑((fun n => FinStronglyMeasurable.approx hf n ⊔ FinStronglyMeasurable.approx hg n) n)) < ⊤", "tactic": "refine' (measure_mono (support_sup _ _)).trans_lt _" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.278636\nι : Type ?u.278639\ninst✝⁴ : Countable ι\nm0 : MeasurableSpace α\nμ : Measure α\nf g : α → β\ninst✝³ : TopologicalSpace β\ninst✝² : Zero β\ninst✝¹ : SemilatticeSup β\ninst✝ : ContinuousSup β\nhf : FinStronglyMeasurable f μ\nhg : FinStronglyMeasurable g μ\nn : ℕ\n⊢ ↑↑μ\n ((support fun x => ↑(FinStronglyMeasurable.approx hf n) x) ∪\n support fun x => ↑(FinStronglyMeasurable.approx hg n) x) <\n ⊤", "tactic": "exact measure_union_lt_top_iff.mpr ⟨hf.fin_support_approx n, hg.fin_support_approx n⟩" } ]
[ 1116, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1110, 11 ]
Mathlib/Order/Basic.lean
lt_of_not_le
[]
[ 472, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 471, 1 ]
Mathlib/Data/Rel.lean
Rel.core_univ
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.23811\nr : Rel α β\n⊢ ∀ (x : α), x ∈ core r Set.univ ↔ x ∈ Set.univ", "tactic": "simp [mem_core]" } ]
[ 236, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 235, 1 ]
Mathlib/Order/Basic.lean
Pi.le_def
[]
[ 798, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 796, 1 ]
Mathlib/Data/Set/Pointwise/SMul.lean
Set.smul_set_union
[]
[ 370, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 369, 1 ]
Mathlib/Analysis/Complex/ReImTopology.lean
Complex.closure_setOf_re_lt
[ { "state_after": "no goals", "state_before": "a : ℝ\n⊢ closure {z | z.re < a} = {z | z.re ≤ a}", "tactic": "simpa only [closure_Iio] using closure_preimage_re (Iio a)" } ]
[ 118, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 117, 1 ]
Mathlib/Order/RelClasses.lean
IsTotal.isTrichotomous
[]
[ 128, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 127, 11 ]
Mathlib/Data/Complex/Basic.lean
Complex.I_zpow_bit1
[ { "state_after": "no goals", "state_before": "n : ℤ\n⊢ I ^ bit1 n = (-1) ^ n * I", "tactic": "rw [zpow_bit1', I_mul_I]" } ]
[ 776, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 776, 1 ]