premise
stringlengths
12
3.12k
hypothesis
stringlengths
10
236
label
stringclasses
3 values
premise_tptp
stringlengths
51
8k
hypothesis_tptp
stringlengths
41
352
proof_inputs
sequencelengths
0
20
proof
stringlengths
767
76.8k
rule_concentration
float64
0
0.72
Ira is the only person in the room. If “Kathy and Ira like each other” then “Ira dreamt that “everyone in the room who is liked by Linda is liked by Nelson and is liked by Gladys””. If “at least one person in the room does not like Gladys” then “everyone in the room who likes Kathy does not like Nelson”. “Everyone in the room is not liked by Linda only if they is not liked by Kathy and is not liked by Nelson” if “Ira is not liked by Linda”. Everyone in the room is liked by Nelson if they is not liked by Kathy and is not liked by Nelson. Someone in the room does not like Linda or is not liked by Nelson or both. Everyone in the room is liked by Linda and is not liked by Linda if they is liked by Gladys. Everyone in the room is liked by Linda and is not liked by Linda if they is not liked by Gladys, likes Kathy and does not like Kathy and vice versa. Ira does not like Nelson. If someone does not like Linda then he/she neither likes Linda nor does not like Nelson and vice versa.
Ira is liked by Nelson.
contradiction
room(ira)&(![X]:(room(X)=>(X='ira')))& (((like(kathy,ira) & like(ira,kathy)))=>((ira_dream=>(![X]:(room(X)=>(((like(X,linda))=>(((like(X,nelson))&(like(X,gladys)))))))))))& ((((?[X]:(room(X)&~like(gladys,X)))))=>(![X]:(room(X)=>(((like(kathy,X))=>(~like(nelson,X)))))))& ((~like(ira,linda))=>(![X]:(room(X)=>(((((~like(X,kathy))&(~like(X,nelson))))<=(~like(X,linda)))))))& (![X]:(room(X)=>(((((~like(X,kathy))&(~like(X,nelson))))=>(like(X,nelson))))))& (?[X]:(room(X)&(((~like(linda,X))|(~like(X,nelson))))))& (![X]:(room(X)=>(((like(X,gladys))=>(((like(X,linda))&(~like(X,linda))))))))& (![X]:(room(X)=>(((((like(X,linda))&(~like(X,linda))))<=>(((~like(X,gladys))&(like(kathy,X))&(~like(kathy,X))))))))& (~like(nelson,ira))& (![X]:(room(X)=>(((~like(kathy,X))=>(like(X,kathy))))))& (![X]:(room(X)=>(((~like(gladys,X))=>(((~like(kathy,X))&(like(X,nelson))))))))& (![X]:(room(X)=>(((((~like(kathy,X))&(like(X,nelson))))=>(~((~like(nelson,X))|(~like(X,nelson))))))))& ((![X]:((~like(linda,X))<=>(~((like(linda,X))|(~like(nelson,X)))))))& (?[X,Y]:((like(X,kathy))&(~like(Y,linda))&(like(X,Y))))& (![X]:(room(X)=>(((~like(nelson,X))<=(((like(linda,X))&(like(X,kathy))))))))& (![X]:(room(X)=>(((((like(X,nelson))|(like(X,gladys))))=>(like(X,nelson))))))& (![X]:(room(X)=>(((((~like(X,kathy))&(~like(X,nelson))))<=(~like(X,linda))))))
room(ira)&(![X]:(room(X)=>(X='ira')))& like(ira,nelson)
[ "p0", "p5", "p8", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 5465668290705335375372333 % SZS output start Proof for 5465668290705335375372333 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 49. ? [X0] : ((~like(X0,paul) | ~like(fred,X0)) & room(X0)) [input p5] 52. ~like(paul,mary) [input p8] 56. ! [X0] : (~like(fred,X0) <=> ~(~like(paul,X0) | like(fred,X0))) [input p12] 61. like(mary,paul) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 136. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 152. ! [X0] : (~like(fred,X0) <=> (like(paul,X0) & ~like(fred,X0))) [ennf transformation 56] 159. like(mary,paul) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 61] 162. ? [X0] : ((~like(X0,paul) | ~like(fred,X0)) & room(X0)) => ((~like(sK0,paul) | ~like(fred,sK0)) & room(sK0)) [choice axiom] 163. (~like(sK0,paul) | ~like(fred,sK0)) & room(sK0) [skolemisation 49,162] 166. ! [X0] : ((~like(fred,X0) | (~like(paul,X0) | like(fred,X0))) & ((like(paul,X0) & ~like(fred,X0)) | like(fred,X0))) [nnf transformation 152] 167. ! [X0] : ((~like(fred,X0) | ~like(paul,X0) | like(fred,X0)) & ((like(paul,X0) & ~like(fred,X0)) | like(fred,X0))) [flattening 166] 251. ~room(X0) | mary = X0 [cnf transformation 136] 256. room(sK0) [cnf transformation 163] 257. ~like(sK0,paul) | ~like(fred,sK0) [cnf transformation 163] 265. ~like(paul,mary) [cnf transformation 52] 272. like(fred,X0) | like(paul,X0) [cnf transformation 167] 284. like(mary,paul) [cnf transformation 159] 306. 6 <=> like(fred,sK0) [avatar definition] 308. ~like(fred,sK0) <- (~6) [avatar component clause 306] 310. 7 <=> like(sK0,paul) [avatar definition] 312. ~like(sK0,paul) <- (~7) [avatar component clause 310] 313. ~6 | ~7 [avatar split clause 257,310,306] 318. mary = sK0 [resolution 251,256] 319. ~like(mary,paul) <- (~7) [backward demodulation 312,318] 321. $false <- (~7) [subsumption resolution 319,284] 322. 7 [avatar contradiction clause 321] 324. ~like(fred,mary) <- (~6) [forward demodulation 308,318] 325. like(paul,mary) <- (~6) [resolution 272,324] 327. $false <- (~6) [subsumption resolution 325,265] 328. 6 [avatar contradiction clause 327] 338. $false [avatar sat refutation 313,322,328] % SZS output end Proof for 5465668290705335375372333 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.121999
There is a room. Everyone in the room creates augmented reality experiences for mobile applications if and only if they enjoys origami and makes intricate hand-cut paper art for exhibitions. Everyone anywhere who enjoys origami and makes intricate hand-cut paper art for exhibitions enjoys wildlife photography and reads mystery novels. Everyone anywhere enjoys wildlife photography and reads mystery novels if and only if they neither collects first edition books nor is an enthusiastic bird watcher who travels for rare sightings. If someone enjoys wildlife photography then he/she plays the drums and vice versa. Everyone anywhere does not collect luxury watches or trains for and competes in international triathlons or both if and only if they is not an enthusiastic bird watcher who travels for rare sightings, trains for and competes in international triathlons or collects luxury watches. Everyone in the room is not an enthusiastic bird watcher who travels for rare sightings, trains for and competes in international triathlons or collects luxury watches if and only if they neither collects first edition books nor owns a smartwatch. Everyone in the room makes intricate hand-cut paper art for exhibitions and creates augmented reality experiences for mobile applications if they neither collects first edition books nor owns a smartwatch. No one in the room makes intricate hand-cut paper art for exhibitions and creates augmented reality experiences for mobile applications if and only if they enjoys origami and practices digital art. Everyone in the room does not collect first edition books or enjoys origami and practices digital art. Everyone anywhere does not collect first edition books if and only if they writes and illustrates their own graphic novels and enjoys salsa dancing. Not everyone in the room writes and illustrates their own graphic novels and enjoys salsa dancing if and only if they collects first edition books. Everyone in the room enjoys wildlife photography or does not practice digital art. Everyone in the room does not train for and competes in international triathlons, is a scotch connoisseur or does not collect foreign coins. Everyone in the room enjoys skydiving if and only if they does not collect limited-edition art prints from contemporary artists and collects limited-edition art prints from contemporary artists. Everyone in the room is not a craft beer aficionado or does not collect limited-edition art prints from contemporary artists and collects limited-edition art prints from contemporary artists. Everyone in the room owns a smartwatch and plays the drums if and only if they makes intricate hand-cut paper art for exhibitions and enjoys skydiving. Everyone in the room makes intricate hand-cut paper art for exhibitions and enjoys skydiving if and only if they owns a telescope and writes and illustrates their own graphic novels.
Everyone in the room practices digital art.
contradiction
(there_is_a_room)& (![X]:(room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))<=>(((enjoys_origami(X))&(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))))))& (![X]:(anywhere(X)=>(((((enjoys_origami(X))&(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))=>(((enjoys_wildlife_photography(X))&(reads_mystery_novels(X))))))))& (![X]:(anywhere(X)=>(((((enjoys_wildlife_photography(X))&(reads_mystery_novels(X))))<=>(~((collects_first_edition_books(X))|(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))))& ((![X]:((enjoys_wildlife_photography(X))<=>(plays_the_drums(X)))))& (![X]:(anywhere(X)=>(((((does_not_collect_luxury_watches(X))|(trains_for_and_competes_in_international_triathlons(X))))<=>(((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))|(trains_for_and_competes_in_international_triathlons(X))|(collects_luxury_watches(X))))))))& (![X]:(room(X)=>(((((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))|(trains_for_and_competes_in_international_triathlons(X))|(collects_luxury_watches(X))))<=>(~((collects_first_edition_books(X))|(owns_a_smartwatch(X))))))))& (![X]:(room(X)=>(((~((collects_first_edition_books(X))|(owns_a_smartwatch(X))))=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))&(creates_augmented_reality_experiences_for_mobile_applications(X))))))))& (~?[X]:(room(X)=>(((((makes_intricate_hand-cut_paper_art_for_exhibitions(X))&(creates_augmented_reality_experiences_for_mobile_applications(X))))<=>(((enjoys_origami(X))&(practices_digital_art(X))))))))& (![X]:(room(X)=>(((((enjoys_origami(X))&(practices_digital_art(X))))|(does_not_collect_first_edition_books(X))))))& (![X]:(anywhere(X)=>(((does_not_collect_first_edition_books(X))<=>(((writes_and_illustrates_their_own_graphic_novels(X))&(enjoys_salsa_dancing(X))))))))& (~![X]:(room(X)=>(((((writes_and_illustrates_their_own_graphic_novels(X))&(enjoys_salsa_dancing(X))))<=>(collects_first_edition_books(X))))))& (![X]:(room(X)=>(((does_not_practice_digital_art(X))|(enjoys_wildlife_photography(X))))))& (![X]:(room(X)=>(((does_not_train_for_and_competes_in_international_triathlons(X))|(is_a_scotch_connoisseur(X))|(does_not_collect_foreign_coins(X))))))& (![X]:(room(X)=>(((enjoys_skydiving(X))<=>(((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))&(collects_limited-edition_art_prints_from_contemporary_artists(X))))))))& (![X]:(room(X)=>(((((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))&(collects_limited-edition_art_prints_from_contemporary_artists(X))))|(is_not_a_craft_beer_aficionado(X))))))& (![X]:(room(X)=>(((((owns_a_smartwatch(X))&(plays_the_drums(X))))<=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))&(enjoys_skydiving(X))))))))& (![X]:(room(X)=>(((((makes_intricate_hand-cut_paper_art_for_exhibitions(X))&(enjoys_skydiving(X))))<=>(((owns_a_telescope(X))&(writes_and_illustrates_their_own_graphic_novels(X))))))))& (![X]:(room(X)=>(((is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))& (![X]:(room(X)=>(((((trains_for_and_competes_in_international_triathlons(X))&(watches_fantasy_movies(X))))=>(enjoys_skydiving(X))))))& (![X]:(~room(X)=>(((enjoys_skydiving(X))<=>(writes_and_illustrates_their_own_graphic_novels(X))))))
(there_is_a_room)& ![X]:(room(X)=>(practices_digital_art(X)))
[ "b4", "p1", "p4", "p5", "p6", "p7", "p8", "p12", "p14", "p16", "hypothesis" ]
% SZS status Unsatisfiable for 2025408186233612007681521 % SZS output start Proof for 2025408186233612007681521 5. ! [X0] : anywhere(X0) [input b4] 45. ! [X0] : (room(X0) => (predl(X0) <=> (predv(X0) & predo(X0)))) [input p1] 48. ! [X0] : (predz(X0) <=> predw(X0)) [input p4] 49. ! [X0] : (anywhere(X0) => ((predb(X0) | ~predn(X0)) <=> (predn(X0) | predb(X0) | ~predp(X0)))) [input p5] 50. ! [X0] : (room(X0) => ((predn(X0) | predb(X0) | ~predp(X0)) <=> ~(predh(X0) | predc(X0)))) [input p6] 51. ! [X0] : (room(X0) => (~(predh(X0) | predc(X0)) => (predl(X0) & predv(X0)))) [input p7] 52. ~? [X0] : (room(X0) => ((predl(X0) & predv(X0)) <=> (predk(X0) & predo(X0)))) [input p8] 56. ! [X0] : (room(X0) => (predz(X0) | ~predk(X0))) [input p12] 58. ! [X0] : (room(X0) => (predu(X0) <=> (predd(X0) & ~predd(X0)))) [input p14] 60. ! [X0] : (room(X0) => ((predw(X0) & predh(X0)) <=> (predu(X0) & predv(X0)))) [input p16] 65. ! [X0] : (room(X0) => predk(X0)) & there_is_a_room [input hypothesis] 70. ! [X0] : (room(X0) => predk(X0)) [pure predicate removal 65] 143. ! [X0] : ((predl(X0) <=> (predv(X0) & predo(X0))) | ~room(X0)) [ennf transformation 45] 147. ! [X0] : (((predb(X0) | ~predn(X0)) <=> (predn(X0) | predb(X0) | ~predp(X0))) | ~anywhere(X0)) [ennf transformation 49] 148. ! [X0] : (((predn(X0) | predb(X0) | ~predp(X0)) <=> (~predh(X0) & ~predc(X0))) | ~room(X0)) [ennf transformation 50] 149. ! [X0] : (((predl(X0) & predv(X0)) | (predh(X0) | predc(X0))) | ~room(X0)) [ennf transformation 51] 150. ! [X0] : ((predl(X0) & predv(X0)) | predh(X0) | predc(X0) | ~room(X0)) [flattening 149] 151. ! [X0] : (((predl(X0) & predv(X0)) <~> (predk(X0) & predo(X0))) & room(X0)) [ennf transformation 52] 156. ! [X0] : ((predz(X0) | ~predk(X0)) | ~room(X0)) [ennf transformation 56] 157. ! [X0] : (predz(X0) | ~predk(X0) | ~room(X0)) [flattening 156] 158. ! [X0] : ((predu(X0) <=> (predd(X0) & ~predd(X0))) | ~room(X0)) [ennf transformation 58] 159. ! [X0] : (((predw(X0) & predh(X0)) <=> (predu(X0) & predv(X0))) | ~room(X0)) [ennf transformation 60] 162. ! [X0] : (predk(X0) | ~room(X0)) [ennf transformation 70] 164. ! [X0] : (((predl(X0) | (~predv(X0) | ~predo(X0))) & ((predv(X0) & predo(X0)) | ~predl(X0))) | ~room(X0)) [nnf transformation 143] 165. ! [X0] : (((predl(X0) | ~predv(X0) | ~predo(X0)) & ((predv(X0) & predo(X0)) | ~predl(X0))) | ~room(X0)) [flattening 164] 168. ! [X0] : ((predz(X0) | ~predw(X0)) & (predw(X0) | ~predz(X0))) [nnf transformation 48] 169. ! [X0] : ((((predb(X0) | ~predn(X0)) | (~predn(X0) & ~predb(X0) & predp(X0))) & ((predn(X0) | predb(X0) | ~predp(X0)) | (~predb(X0) & predn(X0)))) | ~anywhere(X0)) [nnf transformation 147] 170. ! [X0] : (((predb(X0) | ~predn(X0) | (~predn(X0) & ~predb(X0) & predp(X0))) & (predn(X0) | predb(X0) | ~predp(X0) | (~predb(X0) & predn(X0)))) | ~anywhere(X0)) [flattening 169] 171. ! [X0] : ((((predn(X0) | predb(X0) | ~predp(X0)) | (predh(X0) | predc(X0))) & ((~predh(X0) & ~predc(X0)) | (~predn(X0) & ~predb(X0) & predp(X0)))) | ~room(X0)) [nnf transformation 148] 172. ! [X0] : (((predn(X0) | predb(X0) | ~predp(X0) | predh(X0) | predc(X0)) & ((~predh(X0) & ~predc(X0)) | (~predn(X0) & ~predb(X0) & predp(X0)))) | ~room(X0)) [flattening 171] 173. ! [X0] : ((((~predk(X0) | ~predo(X0)) | (~predl(X0) | ~predv(X0))) & ((predk(X0) & predo(X0)) | (predl(X0) & predv(X0)))) & room(X0)) [nnf transformation 151] 174. ! [X0] : ((~predk(X0) | ~predo(X0) | ~predl(X0) | ~predv(X0)) & ((predk(X0) & predo(X0)) | (predl(X0) & predv(X0))) & room(X0)) [flattening 173] 181. ! [X0] : (((predu(X0) | (~predd(X0) | predd(X0))) & ((predd(X0) & ~predd(X0)) | ~predu(X0))) | ~room(X0)) [nnf transformation 158] 182. ! [X0] : (((predu(X0) | ~predd(X0) | predd(X0)) & ((predd(X0) & ~predd(X0)) | ~predu(X0))) | ~room(X0)) [flattening 181] 183. ! [X0] : ((((predw(X0) & predh(X0)) | (~predu(X0) | ~predv(X0))) & ((predu(X0) & predv(X0)) | (~predw(X0) | ~predh(X0)))) | ~room(X0)) [nnf transformation 159] 184. ! [X0] : ((((predw(X0) & predh(X0)) | ~predu(X0) | ~predv(X0)) & ((predu(X0) & predv(X0)) | ~predw(X0) | ~predh(X0))) | ~room(X0)) [flattening 183] 188. anywhere(X0) [cnf transformation 5] 269. ~predl(X0) | predo(X0) | ~room(X0) [cnf transformation 165] 271. ~predv(X0) | predl(X0) | ~predo(X0) | ~room(X0) [cnf transformation 165] 278. ~predz(X0) | predw(X0) [cnf transformation 168] 280. predn(X0) | predb(X0) | ~predp(X0) | predn(X0) | ~anywhere(X0) [cnf transformation 170] 284. predb(X0) | ~predn(X0) | ~predn(X0) | ~anywhere(X0) [cnf transformation 170] 285. ~predc(X0) | predp(X0) | ~room(X0) [cnf transformation 172] 286. ~predb(X0) | ~predc(X0) | ~room(X0) [cnf transformation 172] 292. ~room(X0) | predh(X0) | predc(X0) | predv(X0) [cnf transformation 150] 294. room(X0) [cnf transformation 174] 296. predo(X0) | predl(X0) [cnf transformation 174] 299. ~predk(X0) | ~predo(X0) | ~predl(X0) | ~predv(X0) [cnf transformation 174] 309. predz(X0) | ~predk(X0) | ~room(X0) [cnf transformation 157] 310. ~predd(X0) | ~predu(X0) | ~room(X0) [cnf transformation 182] 311. predd(X0) | ~predu(X0) | ~room(X0) [cnf transformation 182] 314. predu(X0) | ~predw(X0) | ~predh(X0) | ~room(X0) [cnf transformation 184] 323. predk(X0) | ~room(X0) [cnf transformation 162] 324. predn(X0) | predb(X0) | ~predp(X0) | ~anywhere(X0) [duplicate literal removal 280] 325. predb(X0) | ~predn(X0) | ~anywhere(X0) [duplicate literal removal 284] 332. ~predn(X0) | predb(X0) [subsumption resolution 325,188] 333. predn(X0) | predb(X0) | ~predp(X0) [subsumption resolution 324,188] 334. ~predp(X0) | predb(X0) [subsumption resolution 333,332] 340. ~predk(X0) | predz(X0) [subsumption resolution 309,294] 341. ~predu(X0) | predd(X0) [subsumption resolution 311,294] 342. ~predd(X0) | ~predu(X0) [subsumption resolution 310,294] 343. ~predu(X0) [subsumption resolution 342,341] 344. ~predw(X0) | ~predh(X0) | ~room(X0) [subsumption resolution 314,343] 345. ~predh(X0) | ~predw(X0) [subsumption resolution 344,294] 348. predk(X0) [subsumption resolution 323,294] 351. predz(X2) [resolution 340,348] 352. predw(X0) [resolution 351,278] 365. predh(X0) | predc(X0) | predv(X0) [resolution 292,294] 369. predc(X3) | predv(X3) | ~predw(X3) [resolution 365,345] 373. predc(X3) | predv(X3) [subsumption resolution 369,352] 376. predv(X1) | predp(X1) | ~room(X1) [resolution 373,285] 380. predp(X1) | predv(X1) [subsumption resolution 376,294] 383. ~predv(X2) | ~predl(X2) | ~predo(X2) [resolution 299,348] 385. predb(X1) | predv(X1) [resolution 380,334] 386. predv(X0) | ~predc(X0) | ~room(X0) [resolution 385,286] 387. predv(X0) | ~predc(X0) [subsumption resolution 386,294] 388. predv(X0) [subsumption resolution 387,373] 389. predl(X0) | ~predo(X0) | ~room(X0) [resolution 388,271] 392. predl(X0) | ~predo(X0) [subsumption resolution 389,294] 393. predl(X0) [subsumption resolution 392,296] 395. predo(X1) | ~room(X1) [resolution 393,269] 396. predo(X1) [subsumption resolution 395,294] 404. ~predl(X0) | ~predo(X0) [resolution 383,388] 406. ~predo(X0) [subsumption resolution 404,393] 407. $false [subsumption resolution 406,396] % SZS output end Proof for 2025408186233612007681521 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.393493
There is a room. “No one in the room does not enjoy coding in Python or does not write and illustrates their own graphic novels” if “everyone in the room does not write and illustrates their own graphic novels or reads mystery novels”. Not everyone in the room does not drive a hybrid car or does not enjoy coding in Python. Everyone in the room who does not drive a hybrid car neither does enjoy mountain biking nor is an amateur astronomer who builds and uses custom telescopes. Everyone in the room who neither does enjoy mountain biking nor is an amateur astronomer who builds and uses custom telescopes enjoys kayaking. Someone in the room neither writes and illustrates their own graphic novels nor is a night owl. If someone maintains a large, organic vegetable garden year-round then he/she either has a pet dog or enjoys wildlife photography but not both and vice versa. Everyone in the room writes and illustrates their own graphic novels, enjoys rooftop gardening or is dedicated to sustainable living and zero-waste practices if and only if they does enjoy mountain biking, enjoys coding in Python or enjoys kayaking. Everyone in the room who does enjoy mountain biking, enjoys coding in Python or enjoys kayaking maintains a large, organic vegetable garden year-round, does enjoy mountain biking and enjoys wildlife photography. Everyone in the room maintains a large, organic vegetable garden year-round, does enjoy mountain biking and enjoys wildlife photography if and only if they does enjoy trail running, is a night owl or is dedicated to sustainable living and zero-waste practices. Everyone in the room uses a Windows laptop or does not enjoy rooftop gardening. Everyone in the room who uses a Windows laptop neither enjoys kayaking nor has a pet dog. Everyone in the room does not own a telescope or neither has a specialized collection of handmade artisan pottery nor uses a Windows laptop. Everyone in the room who does not own a telescope is a night owl.
Everyone in the room has a specialized collection of handmade artisan pottery.
contradiction
(there_is_a_room)& ((![X]:(room(X)=>(((reads_mystery_novels(X))|(does_not_write_and_illustrates_their_own_graphic_novels(X))))))=>(~?[X]:(room(X)=>(((does_not_write_and_illustrates_their_own_graphic_novels(X))|(does_not_enjoy_coding_in_Python(X)))))))& (~![X]:(room(X)=>(((does_not_enjoy_coding_in_Python(X))|(does_not_drive_a_hybrid_car(X))))))& (![X]:(room(X)=>(((does_not_drive_a_hybrid_car(X))=>(~((does_enjoy_mountain_biking(X))|(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))))& (![X]:(room(X)=>(((~((does_enjoy_mountain_biking(X))|(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))=>(enjoys_kayaking(X))))))& (?[X]:(room(X)&(~((writes_and_illustrates_their_own_graphic_novels(X))|(is_a_night_owl(X))))))& ((![X]:((maintains_a_large,_organic_vegetable_garden_year-round(X))<=>(((has_a_pet_dog(X))<~>(enjoys_wildlife_photography(X)))))))& (![X]:(room(X)=>(((((writes_and_illustrates_their_own_graphic_novels(X))|(enjoys_rooftop_gardening(X))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))<=>(((does_enjoy_mountain_biking(X))|(enjoys_coding_in_Python(X))|(enjoys_kayaking(X))))))))& (![X]:(room(X)=>(((((does_enjoy_mountain_biking(X))|(enjoys_coding_in_Python(X))|(enjoys_kayaking(X))))=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))&(does_enjoy_mountain_biking(X))&(enjoys_wildlife_photography(X))))))))& (![X]:(room(X)=>(((((maintains_a_large,_organic_vegetable_garden_year-round(X))&(does_enjoy_mountain_biking(X))&(enjoys_wildlife_photography(X))))<=>(((does_enjoy_trail_running(X))|(is_a_night_owl(X))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))))& (![X]:(room(X)=>(((does_not_enjoy_rooftop_gardening(X))|(uses_a_Windows_laptop(X))))))& (![X]:(room(X)=>(((uses_a_Windows_laptop(X))=>(~((enjoys_kayaking(X))|(has_a_pet_dog(X))))))))& (![X]:(room(X)=>(((~((enjoys_kayaking(X))|(has_a_pet_dog(X))))=>(((enjoys_rooftop_gardening(X))|(is_a_night_owl(X))|(collects_classic_novels(X))))))))& (![X]:(anywhere(X)=>(((((drives_a_hybrid_car(X))<~>(enjoys_rooftop_gardening(X))))<=(maintains_a_large,_organic_vegetable_garden_year-round(X))))))& (((?[X]:(anywhere(X)&can_play_the_piano(X)))))& (((?[X]:(anywhere(X)&~((does_enjoy_mountain_biking(X))|(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X)))))))& (![X]:(room(X)=>(((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(enjoys_kayaking(X))))))& (~![X]:(room(X)=>(((enjoys_kayaking(X))<=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))))& (~![X]:(room(X)=>(((does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))|(can_play_the_piano(X))))))& (![X]:(room(X)=>(((can_play_the_piano(X))=>(((does_enjoy_mountain_biking(X))<~>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))))& (![X]:(room(X)=>(((((has_a_pet_dog(X))&(has_a_specialized_collection_of_handmade_artisan_pottery(X))&(does_enjoy_mountain_biking(X))))=>(~((has_a_specialized_collection_of_handmade_artisan_pottery(X))|(uses_a_Windows_laptop(X))))))))& (![X]:(room(X)=>(((~((has_a_specialized_collection_of_handmade_artisan_pottery(X))|(uses_a_Windows_laptop(X))))|(does_not_own_a_telescope(X))))))& (![X]:(room(X)=>(((does_not_own_a_telescope(X))=>(is_a_night_owl(X))))))
(there_is_a_room)& ![X]:(room(X)=>(has_a_specialized_collection_of_handmade_artisan_pottery(X)))
[ "p5", "p21", "p22", "hypothesis" ]
% SZS status Unsatisfiable for 4674956346979050887530018 % SZS output start Proof for 4674956346979050887530018 49. ? [X0] : (~(preda(X0) | predu(X0)) & room(X0)) [input p5] 65. ! [X0] : (room(X0) => (~preds(X0) | ~(predl(X0) | predc(X0)))) [input p21] 66. ! [X0] : (room(X0) => (~preds(X0) => preda(X0))) [input p22] 67. ! [X0] : (room(X0) => predc(X0)) & there_is_a_room [input hypothesis] 72. ! [X0] : (room(X0) => predc(X0)) [pure predicate removal 67] 152. ? [X0] : ((~preda(X0) & ~predu(X0)) & room(X0)) [ennf transformation 49] 153. ? [X0] : (~preda(X0) & ~predu(X0) & room(X0)) [flattening 152] 175. ! [X0] : ((~preds(X0) | (~predl(X0) & ~predc(X0))) | ~room(X0)) [ennf transformation 65] 176. ! [X0] : (~preds(X0) | (~predl(X0) & ~predc(X0)) | ~room(X0)) [flattening 175] 177. ! [X0] : ((preda(X0) | preds(X0)) | ~room(X0)) [ennf transformation 66] 178. ! [X0] : (preda(X0) | preds(X0) | ~room(X0)) [flattening 177] 179. ! [X0] : (predc(X0) | ~room(X0)) [ennf transformation 72] 190. ? [X0] : (~preda(X0) & ~predu(X0) & room(X0)) => (~preda(sK4) & ~predu(sK4) & room(sK4)) [choice axiom] 191. ~preda(sK4) & ~predu(sK4) & room(sK4) [skolemisation 153,190] 305. room(sK4) [cnf transformation 191] 307. ~preda(sK4) [cnf transformation 191] 353. ~preds(X0) | ~predc(X0) | ~room(X0) [cnf transformation 176] 355. ~room(X0) | preds(X0) | preda(X0) [cnf transformation 178] 356. ~room(X0) | predc(X0) [cnf transformation 179] 397. predc(sK4) [resolution 356,305] 558. preds(sK4) | preda(sK4) [resolution 355,305] 579. preds(sK4) [subsumption resolution 558,307] 682. ~predc(sK4) | ~room(sK4) [resolution 579,353] 684. ~room(sK4) [subsumption resolution 682,397] 685. $false [subsumption resolution 684,305] % SZS output end Proof for 4674956346979050887530018 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.034377
Georgia, Candelaria, Terry, Nelia are the only persons in the room. If “Terry is a quiet person” then “Nelia is a old person”. Either “Nelia and Terry are respectively quiet and old” or “Georgia is a old person” but not both. “Georgia is not a quiet person” only if “Terry who is quiet is old”. Terry who is quiet is old. Only one person in the room is quiet.
Georgia is old.
entailment
room(georgia)&room(candelaria)&room(terry)&room(nelia)&(![X]:(room(X)=>(X='georgia'|X='candelaria'|X='terry'|X='nelia')))& ((quiet(terry)&person(terry))=>(old(nelia)&person(nelia)))& (((quiet(nelia))&(old(terry)))<~>(old(georgia)&person(georgia)))& ((~(quiet(georgia)&person(georgia)))=>((quiet(terry))&(old(terry))))& (quieter(candelaria,jeff))& (old(candelaria))& ((![X]:((richer(jeff,X))<=>(older(jeff,X)))))& ((quiet(terry))&(old(terry)))& (((?[X]:(room(X)&quiet(X)))&(![X,Y]:((room(X)&room(Y)&(quiet(X))&(quiet(Y)))=>(X=Y)))))& (((old(candelaria)&person(candelaria))|(richer(jeff,candelaria))))
room(georgia)&room(candelaria)&room(terry)&room(nelia)&(![X]:(room(X)=>(X='georgia'|X='candelaria'|X='terry'|X='nelia')))& old(georgia)
[ "b42", "p0", "p2", "p7", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 3237621885609845390765422 % SZS output start Proof for 3237621885609845390765422 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. (old(fred) & quiet(alice)) <~> (person(mary) & old(mary)) [input p2] 51. old(fred) & quiet(fred) [input p7] 52. ! [X0,X1] : ((quiet(X1) & quiet(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (quiet(X0) & room(X0)) [input p8] 54. ~(old(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 55. ! [X0,X1] : ((quiet(X1) & quiet(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (quiet(X2) & room(X2)) [rectify 52] 128. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 129. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 128] 133. ! [X0,X1] : (X0 = X1 | (~quiet(X1) | ~quiet(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (quiet(X2) & room(X2)) [ennf transformation 55] 134. ! [X0,X1] : (X0 = X1 | ~quiet(X1) | ~quiet(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (quiet(X2) & room(X2)) [flattening 133] 135. ~old(mary) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 54] 136. ~old(mary) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 135] 138. ((~person(mary) | ~old(mary)) | (~old(fred) | ~quiet(alice))) & ((person(mary) & old(mary)) | (old(fred) & quiet(alice))) [nnf transformation 46] 139. (~person(mary) | ~old(mary) | ~old(fred) | ~quiet(alice)) & ((person(mary) & old(mary)) | (old(fred) & quiet(alice))) [flattening 138] 141. ? [X2] : (quiet(X2) & room(X2)) => (quiet(sK0) & room(sK0)) [choice axiom] 142. ! [X0,X1] : (X0 = X1 | ~quiet(X1) | ~quiet(X0) | ~room(X1) | ~room(X0)) & (quiet(sK0) & room(sK0)) [skolemisation 134,141] 143. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 144. ~old(mary) | (alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 136,143] 203. fred != alice [cnf transformation 43] 225. room(mary) [cnf transformation 129] 226. room(paul) [cnf transformation 129] 227. room(fred) [cnf transformation 129] 228. room(alice) [cnf transformation 129] 229. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 129] 232. old(mary) | quiet(alice) [cnf transformation 139] 245. quiet(fred) [cnf transformation 51] 249. ~room(X1) | ~quiet(X1) | ~quiet(X0) | X0 = X1 | ~room(X0) [cnf transformation 142] 252. ~old(mary) | room(sK1) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 144] 253. ~old(mary) | mary != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 144] 254. ~old(mary) | paul != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 144] 255. ~old(mary) | fred != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 144] 256. ~old(mary) | alice != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 144] 258. 1 <=> quiet(fred) [avatar definition] 259. quiet(fred) <- (1) [avatar component clause 258] 276. 5 <=> quiet(alice) [avatar definition] 284. 7 <=> old(mary) [avatar definition] 295. 5 | 7 [avatar split clause 232,284,276] 305. 1 [avatar split clause 245,258] 315. ~old(mary) | alice != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 256,228] 316. ~old(mary) | alice != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 315,227] 317. ~old(mary) | alice != sK1 | ~room(mary) [subsumption resolution 316,226] 318. ~old(mary) | alice != sK1 [subsumption resolution 317,225] 320. 12 <=> alice = sK1 [avatar definition] 322. alice != sK1 <- (~12) [avatar component clause 320] 323. ~12 | ~7 [avatar split clause 318,284,320] 324. ~old(mary) | fred != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 255,228] 325. ~old(mary) | fred != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 324,227] 326. ~old(mary) | fred != sK1 | ~room(mary) [subsumption resolution 325,226] 327. ~old(mary) | fred != sK1 [subsumption resolution 326,225] 329. 13 <=> fred = sK1 [avatar definition] 331. fred != sK1 <- (~13) [avatar component clause 329] 332. ~13 | ~7 [avatar split clause 327,284,329] 333. ~old(mary) | paul != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 254,228] 334. ~old(mary) | paul != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 333,227] 335. ~old(mary) | paul != sK1 | ~room(mary) [subsumption resolution 334,226] 336. ~old(mary) | paul != sK1 [subsumption resolution 335,225] 338. 14 <=> paul = sK1 [avatar definition] 340. paul != sK1 <- (~14) [avatar component clause 338] 341. ~14 | ~7 [avatar split clause 336,284,338] 342. ~old(mary) | mary != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 253,228] 343. ~old(mary) | mary != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 342,227] 344. ~old(mary) | mary != sK1 | ~room(mary) [subsumption resolution 343,226] 345. ~old(mary) | mary != sK1 [subsumption resolution 344,225] 347. 15 <=> mary = sK1 [avatar definition] 349. mary != sK1 <- (~15) [avatar component clause 347] 350. ~15 | ~7 [avatar split clause 345,284,347] 351. ~old(mary) | room(sK1) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 252,228] 352. ~old(mary) | room(sK1) | ~room(paul) | ~room(mary) [subsumption resolution 351,227] 353. ~old(mary) | room(sK1) | ~room(mary) [subsumption resolution 352,226] 354. ~old(mary) | room(sK1) [subsumption resolution 353,225] 356. 16 <=> room(sK1) [avatar definition] 358. room(sK1) <- (16) [avatar component clause 356] 359. 16 | ~7 [avatar split clause 354,284,356] 453. ~quiet(fred) | ~quiet(X2) | fred = X2 | ~room(X2) [resolution 249,227] 460. ~room(X2) | fred = X2 | ~quiet(X2) <- (1) [subsumption resolution 453,259] 493. fred = alice | ~quiet(alice) <- (1) [resolution 460,228] 494. ~quiet(alice) <- (1) [subsumption resolution 493,203] 497. ~5 | ~1 [avatar split clause 494,258,276] 529. fred = sK1 | paul = sK1 | mary = sK1 | alice = sK1 <- (16) [resolution 358,229] 532. paul = sK1 | mary = sK1 | alice = sK1 <- (~13, 16) [subsumption resolution 529,331] 533. mary = sK1 | alice = sK1 <- (~13, ~14, 16) [subsumption resolution 532,340] 534. alice = sK1 <- (~13, ~14, ~15, 16) [subsumption resolution 533,349] 535. $false <- (~12, ~13, ~14, ~15, 16) [subsumption resolution 534,322] 536. 12 | 13 | 14 | 15 | ~16 [avatar contradiction clause 535] 537. $false [avatar sat refutation 295,305,323,332,341,350,359,497,536] % SZS output end Proof for 3237621885609845390765422 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.022612
Charles is the only person in the room. “Charles collects action figures” unless “Charles is a drone photographer”. If “Charles enjoys making ceramics” then “it is not the case that “Charles plays the violin””. If “Charles collects luxury watches” then “Charles is a scotch connoisseur”. Either “it is not the case that “Charles frequently participates in hackathons and coding competitions”” or “Charles collects first edition books” but not both. Someone in the room is a wine connoisseur. Charles is a professional photographer specializing in portrait photography. Charles is a drone photographer. If someone owns an extensive assortment of vintage comic book memorabilia then he/she participates in long-distance cycling events across the country or is a scotch connoisseur or both and vice versa. If someone owns a microscope then he/she participates in citizen science projects related to wildlife monitoring. Charles who owns a smartwatch does not collect action figures. Charles enjoys making ceramics. Charles owns an extensive assortment of vintage comic book memorabilia. Charles own a television. Only one person in the room collects luxury watches. Everyone in the room who enjoys skydiving regularly contributes to tech forums and online communities. Charles neither collects first edition books nor plays the violin. Everyone outside the room is a professional photographer specializing in portrait photography if they enjoys skydiving. Charles collects luxury watches. If someone is a professional photographer specializing in portrait photography then he/she writes a travel blog and vice versa. At least one person in the room practices zumba. Charles enjoys skydiving.
Charles participates in citizen science projects related to wildlife monitoring.
neutral
room(charles)&(![X]:(room(X)=>(X='charles')))& (~(is_a_drone_photographer(charles))=>(collects_action_figures(charles)))& ((enjoys_making_ceramics(charles))=>(~(plays_the_violin(charles))))& ((collects_luxury_watches(charles))=>(is_a_scotch_connoisseur(charles)))& ((~(frequently_participates_in_hackathons_and_coding_competitions(charles)))<~>(collects_first_edition_books(charles)))& (?[X]:(room(X)&(is_a_wine_connoisseur(X))))& (is_a_professional_photographer_specializing_in_portrait_photography(charles))& (is_a_drone_photographer(charles))& ((![X]:((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))<=>(((participates_in_long-distance_cycling_events_across_the_country(X))|(is_a_scotch_connoisseur(X)))))))& ((![X]:((owns_a_microscope(X))=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X)))))& ((owns_a_smartwatch(charles))&(does_not_collect_action_figures(charles)))& (enjoys_making_ceramics(charles))& (owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(charles))& (own_a_television(charles))& (((?[X]:(room(X)&collects_luxury_watches(X)))&(![X,Y]:((room(X)&room(Y)&(collects_luxury_watches(X))&(collects_luxury_watches(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((enjoys_skydiving(X))=>(regularly_contributes_to_tech_forums_and_online_communities(X))))))& (~((collects_first_edition_books(charles))|(plays_the_violin(charles))))& (![X]:(~room(X)=>(((enjoys_skydiving(X))=>(is_a_professional_photographer_specializing_in_portrait_photography(X))))))& (collects_luxury_watches(charles))& ((![X]:((is_a_professional_photographer_specializing_in_portrait_photography(X))<=>(writes_a_travel_blog(X)))))& (((?[X]:(room(X)&practices_zumba(X)))))& (enjoys_skydiving(charles))
room(charles)&(![X]:(room(X)=>(X='charles')))& participates_in_citizen_science_projects_related_to_wildlife_monitoring(charles)
[]
null
0.201059
Erica is the only person in the room. If “it is not the case that “Erica is a old person”” then “if someone is a quiet old person and is richer than Steven then he/she is old and vice versa”. Erica is older than Nancy. Erica is the quietest in the room. Erica is old. Erica is richer than Nancy. Erica is quiet. If someone is a quiet person then he/she is a quiet old person and vice versa. Erica neither is older than Steven nor is not old. At least one person in the room is not not old. Erica is quieter than Steven. Erica is not not not not not not quiet. If someone is older than Nancy then he/she is old and vice versa. All old person is quiet. Nancy is quieter than Erica. Erica is a quiet person. Erica is the richest in the room. Someone who is quieter than Nancy is older than someone who is older than Steven.
Steven is richer than Erica.
neutral
room(erica)&(![X]:(room(X)=>(X='erica')))& ((~(old(erica)&person(erica)))=>((![X]:((((quiet(X)&old(X)&person(X))&(richer(steven,X))))<=>(old(X))))))& (older(nancy,erica))& (![X]:((room(X)&(X!=erica))=>quieter(X,erica)))& (old(erica))& (richer(nancy,erica))& (quiet(erica))& ((![X]:((quiet(X)&person(X))<=>(quiet(X)&old(X)&person(X)))))& (~((older(steven,erica))|(~old(erica))))& (((?[X]:(room(X)&~~old(X)))))& (quieter(steven,erica))& (~~~~~~quiet(erica))& ((![X]:((older(nancy,X))<=>(old(X)))))& (![X]:(old(X)=>quiet(X)))& (quieter(erica,nancy))& (quiet(erica)&person(erica))& (![X]:((room(X)&(X!=erica))=>richer(X,erica)))& (?[X,Y]:((quieter(nancy,X))&(older(steven,Y))&(older(X,Y))))
room(erica)&(![X]:(room(X)=>(X='erica')))& richer(erica,steven)
[]
null
0.538788
Renee is the only person in the room. If “it is true that “Renee hosts a popular podcast about emerging technologies or practices digital art or both”” then “Renee does not collect classic novels”. If “at least one person in the room either practices digital art or collects classic novels but not both” then “Renee is not a client of Costco”. If someone is a client of Costco then he/she collects classic novels and vice versa.
Renee is a client of Costco.
contradiction
room(renee)&(![X]:(room(X)=>(X='renee')))& ((((hosts_a_popular_podcast_about_emerging_technologies(renee))|(practices_digital_art(renee))))=>(does_not_collect_classic_novels(renee)))& ((((?[X]:(room(X)&((practices_digital_art(X))<~>(collects_classic_novels(X)))))))=>(is_not_a_client_of_Costco(renee)))& ((((?[X]:(room(X)&((is_a_client_of_Costco(X))<~>(collects_classic_novels(X)))))))=>(((?[X]:(room(X)&is_a_client_of_Costco(X)))&(![X,Y]:((room(X)&room(Y)&(is_a_client_of_Costco(X))&(is_a_client_of_Costco(Y)))=>(X=Y))))))& ((~((travels_domestically_frequently(renee))|(is_a_client_of_Costco(renee))))=>(is_a_client_of_Costco(renee)))& (((?[X]:(room(X)&((practices_digital_art(X))<~>(collects_classic_novels(X)))))))& (does_enjoy_mountain_biking(renee))& (((?[X]:(room(X)&~((hosts_a_popular_podcast_about_emerging_technologies(X))|(does_not_enjoy_mountain_biking(X)))))&(![X,Y]:((room(X)&room(Y)&(~((hosts_a_popular_podcast_about_emerging_technologies(X))|(does_not_enjoy_mountain_biking(X))))&(~((hosts_a_popular_podcast_about_emerging_technologies(Y))|(does_not_enjoy_mountain_biking(Y)))))=>(X=Y)))))& (travels_domestically_frequently(renee))& ((![X]:((is_a_client_of_Costco(X))<=>(collects_classic_novels(X)))))
room(renee)&(![X]:(room(X)=>(X='renee')))& is_a_client_of_Costco(renee)
[ "p0", "p1", "p2", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 2126658556347736606920709 % SZS output start Proof for 2126658556347736606920709 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 45. (predb(mary) | preda(mary)) => ~prede(mary) [input p1] 46. ? [X0] : ((predb(X0) <~> prede(X0)) & room(X0)) => ~predd(mary) [input p2] 53. ! [X0] : (predd(X0) <=> prede(X0)) [input p9] 54. predd(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 131. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 132. ~prede(mary) | (~predb(mary) & ~preda(mary)) [ennf transformation 45] 133. ~predd(mary) | ! [X0] : ((predb(X0) <=> prede(X0)) | ~room(X0)) [ennf transformation 46] 138. predd(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 54] 140. ~predd(mary) | ! [X0] : (((predb(X0) | ~prede(X0)) & (prede(X0) | ~predb(X0))) | ~room(X0)) [nnf transformation 133] 151. ! [X0] : ((predd(X0) | ~prede(X0)) & (prede(X0) | ~predd(X0))) [nnf transformation 53] 232. room(mary) [cnf transformation 131] 235. ~prede(mary) | ~predb(mary) [cnf transformation 132] 237. ~predd(mary) | predb(X0) | ~prede(X0) | ~room(X0) [cnf transformation 140] 252. ~predd(X0) | prede(X0) [cnf transformation 151] 256. predd(mary) [cnf transformation 138] 258. 1 <=> predb(mary) [avatar definition] 260. ~predb(mary) <- (~1) [avatar component clause 258] 262. 2 <=> prede(mary) [avatar definition] 263. prede(mary) <- (2) [avatar component clause 262] 265. ~1 | ~2 [avatar split clause 235,262,258] 272. 4 <=> ! [X0] : (predb(X0) | ~room(X0) | ~prede(X0)) [avatar definition] 273. ~prede(X0) | ~room(X0) | predb(X0) <- (4) [avatar component clause 272] 275. 5 <=> predd(mary) [avatar definition] 276. predd(mary) <- (5) [avatar component clause 275] 278. 4 | ~5 [avatar split clause 237,275,272] 316. 5 [avatar split clause 256,275] 317. prede(mary) <- (5) [resolution 252,276] 320. 2 | ~5 [avatar split clause 317,275,262] 337. ~room(mary) | predb(mary) <- (2, 4) [resolution 273,263] 338. predb(mary) <- (2, 4) [subsumption resolution 337,232] 339. $false <- (~1, 2, 4) [subsumption resolution 338,260] 340. 1 | ~2 | ~4 [avatar contradiction clause 339] 341. $false [avatar sat refutation 265,278,316,320,340] % SZS output end Proof for 2126658556347736606920709 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.1003
There is a room. If “everyone in the room does not have a tattoo or enjoys deep-sea diving and exploring underwater caves” then “everyone in the room enjoys salsa dancing if they plays as a goalkeeper for a local amateur soccer team”.
Everyone in the room cannot play the flute or practices zumba.
neutral
(there_is_a_room)& ((![X]:(room(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))|(does_not_have_a_tattoo(X))))))=>(![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(enjoys_salsa_dancing(X)))))))& (~?[X]:(room(X)=>(((enjoys_salsa_dancing(X))=>(is_not_an_avid_hiker(X))))))& ((![X]:((((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))&(can_play_the_flute(X))))=>(enjoys_salsa_dancing(X)))))& ((![X]:((((has_a_tattoo(X))&(enjoys_salsa_dancing(X))))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))& (![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(practices_digital_art(X))))))& (![X]:(anywhere(X)=>(((practices_digital_art(X))=>(((is_an_avid_hiker(X))&(has_a_tattoo(X))&(can_play_the_flute(X))))))))& (![X]:(room(X)=>(((((is_an_avid_hiker(X))&(has_a_tattoo(X))&(can_play_the_flute(X))))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))& (![X]:(room(X)=>(((((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))&(can_play_the_flute(X))&(does_not_have_a_tattoo(X))))<=(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))& (![X]:(room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))& (![X]:(room(X)=>(((((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))&(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))&(has_a_tattoo(X))))=>(((has_a_tattoo(X))&(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))&(practices_zumba(X))))))))& (![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(enjoys_salsa_dancing(X))))))& ((robert_dream=>(![X]:(room(X)=>(((enjoys_salsa_dancing(X))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))))& (![X]:(anywhere(X)=>(((((plays_the_violin(X))&(is_an_avid_hiker(X))))<=>(cannot_play_the_flute(X))))))& (~![X]:(room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))=>(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))))))& (![X]:(room(X)=>(((has_a_tattoo(X))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (?[X]:(room(X)&(enjoys_salsa_dancing(X))))& ((?[X,Y]:(room(X)&room(Y)&(enjoys_salsa_dancing(X)&enjoys_salsa_dancing(Y))&(X!=Y))))& (![X]:(~room(X)=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))
(there_is_a_room)& ![X]:(room(X)=>(((practices_zumba(X))|(cannot_play_the_flute(X)))))
[]
null
0.090288
Kate, Marisa, Jessica, Irene are the only persons in the room. If “everyone in the room does not collect first edition books or collects antique clocks” then “everyone in the room is a scotch connoisseur or is not an avid hiker”. If “everyone in the room is a scotch connoisseur or is not an avid hiker” then “everyone in the room does not collect first edition books or uses contact lenses”. Everyone in the room who collects first edition books frequently participates in hackathons and coding competitions or bakes bread at home or both. Everyone in the room who frequently participates in hackathons and coding competitions or bakes bread at home or both neither frequently participates in hackathons and coding competitions nor does not have a curated collection of mid-century modern furniture. Everyone in the room does not own an extensive assortment of vintage comic book memorabilia if they neither frequently participates in hackathons and coding competitions nor does not have a curated collection of mid-century modern furniture. Marisa is not a cybersecurity expert. Not everyone in the room collects first edition books if they is a scotch connoisseur. If someone is a cybersecurity expert, creates augmented reality experiences for mobile applications or is a scotch connoisseur then he/she either is a cybersecurity expert or collects first edition books but not both. Everyone anywhere has a curated collection of mid-century modern furniture if they participates in long-distance cycling events across the country and vice versa. Jessica does not use contact lenses. Kate collects first edition books. Everyone in the room does not collect first edition books or uses contact lenses. Jessica bakes bread at home. Not everyone in the room participates in long-distance cycling events across the country only if they has a specialized collection of handmade artisan pottery. Kate bakes bread at home.
Marisa frequently participates in hackathons and coding competitions.
contradiction
room(kate)&room(marisa)&room(jessica)&room(irene)&(![X]:(room(X)=>(X='kate'|X='marisa'|X='jessica'|X='irene')))& (((![X]:(room(X)=>(((collects_antique_clocks(X))|(does_not_collect_first_edition_books(X))))))=>(![X]:(room(X)=>(((is_not_an_avid_hiker(X))|(is_a_scotch_connoisseur(X)))))))& ((![X]:(room(X)=>(((is_not_an_avid_hiker(X))|(is_a_scotch_connoisseur(X))))))=>(![X]:(room(X)=>(((uses_contact_lenses(X))|(does_not_collect_first_edition_books(X))))))))& (![X]:(room(X)=>(((collects_first_edition_books(X))=>(((frequently_participates_in_hackathons_and_coding_competitions(X))|(bakes_bread_at_home(X))))))))& (![X]:(room(X)=>(((((frequently_participates_in_hackathons_and_coding_competitions(X))|(bakes_bread_at_home(X))))=>(~((frequently_participates_in_hackathons_and_coding_competitions(X))|(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))))))))& (![X]:(room(X)=>(((~((frequently_participates_in_hackathons_and_coding_competitions(X))|(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))))=>(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))& (is_not_a_cybersecurity_expert(marisa))& (~![X]:(room(X)=>(((is_a_scotch_connoisseur(X))=>(collects_first_edition_books(X))))))& ((![X]:((((is_a_cybersecurity_expert(X))|(creates_augmented_reality_experiences_for_mobile_applications(X))|(is_a_scotch_connoisseur(X))))=>(((is_a_cybersecurity_expert(X))<~>(collects_first_edition_books(X)))))))& (![X]:(anywhere(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))<=>(participates_in_long-distance_cycling_events_across_the_country(X))))))& (does_not_use_contact_lenses(jessica))& (collects_first_edition_books(kate))& (![X]:(room(X)=>(((uses_contact_lenses(X))|(does_not_collect_first_edition_books(X))))))& (bakes_bread_at_home(jessica))& (~![X]:(room(X)=>(((has_a_specialized_collection_of_handmade_artisan_pottery(X))<=(participates_in_long-distance_cycling_events_across_the_country(X))))))& (bakes_bread_at_home(kate))& (has_a_specialized_collection_of_handmade_artisan_pottery(jessica))& ((((frequently_participates_in_hackathons_and_coding_competitions(kate))|(bakes_bread_at_home(kate))))&(uses_contact_lenses(kate)))
room(kate)&room(marisa)&room(jessica)&room(irene)&(![X]:(room(X)=>(X='kate'|X='marisa'|X='jessica'|X='irene')))& frequently_participates_in_hackathons_and_coding_competitions(marisa)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 7071506601873119178582529 % SZS output start Proof for 7071506601873119178582529 44. predk(mary) & (predd(mary) | predh(mary)) & predl(fred) & predd(mary) & ~! [X0] : (room(X0) => (predm(X0) => predl(X0))) & predd(fred) & ! [X0] : (room(X0) => (~predo(X0) | predk(X0))) & predo(mary) & ~predk(fred) & ! [X0] : (anywhere(X0) => (predj(X0) <=> predm(X0))) & ! [X0] : ((prede(X0) | predp(X0) | predc(X0)) => (predc(X0) <~> predo(X0))) & ~! [X0] : (room(X0) => (prede(X0) => predo(X0))) & ~predc(paul) & ! [X0] : (room(X0) => (~(~predj(X0) | predh(X0)) => ~predf(X0))) & ! [X0] : (room(X0) => ((predd(X0) | predh(X0)) => ~(~predj(X0) | predh(X0)))) & ! [X0] : (room(X0) => (predo(X0) => (predd(X0) | predh(X0)))) & (! [X0] : (room(X0) => (prede(X0) | ~predn(X0))) => ! [X0] : (room(X0) => (~predo(X0) | predk(X0)))) & (! [X0] : (room(X0) => (~predo(X0) | predg(X0))) => ! [X0] : (room(X0) => (prede(X0) | ~predn(X0)))) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. predh(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 46. predk(mary) & (predd(mary) | predh(mary)) & predl(fred) & predd(mary) & ~! [X0] : (room(X0) => (predm(X0) => predl(X0))) & predd(fred) & ! [X1] : (room(X1) => (~predo(X1) | predk(X1))) & predo(mary) & ~predk(fred) & ! [X2] : (anywhere(X2) => (predj(X2) <=> predm(X2))) & ! [X3] : ((prede(X3) | predp(X3) | predc(X3)) => (predc(X3) <~> predo(X3))) & ~! [X4] : (room(X4) => (prede(X4) => predo(X4))) & ~predc(paul) & ! [X5] : (room(X5) => (~(~predj(X5) | predh(X5)) => ~predf(X5))) & ! [X6] : (room(X6) => ((predd(X6) | predh(X6)) => ~(~predj(X6) | predh(X6)))) & ! [X7] : (room(X7) => (predo(X7) => (predd(X7) | predh(X7)))) & (! [X8] : (room(X8) => (prede(X8) | ~predn(X8))) => ! [X9] : (room(X9) => (~predo(X9) | predk(X9)))) & (! [X10] : (room(X10) => (~predo(X10) | predg(X10))) => ! [X11] : (room(X11) => (prede(X11) | ~predn(X11)))) & ! [X12] : (room(X12) => (alice = X12 | fred = X12 | paul = X12 | mary = X12)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 44] 47. predk(mary) & (predd(mary) | predh(mary)) & predl(fred) & predd(mary) & ~! [X0] : (room(X0) => (predm(X0) => predl(X0))) & predd(fred) & ! [X1] : (room(X1) => (~predo(X1) | predk(X1))) & predo(mary) & ~predk(fred) & ! [X2] : (anywhere(X2) => (predj(X2) <=> predm(X2))) & ! [X3] : ((prede(X3) | predc(X3)) => (predc(X3) <~> predo(X3))) & ~! [X4] : (room(X4) => (prede(X4) => predo(X4))) & ~predc(paul) & ! [X5] : (room(X5) => (~(~predj(X5) | predh(X5)) => ~predf(X5))) & ! [X6] : (room(X6) => ((predd(X6) | predh(X6)) => ~(~predj(X6) | predh(X6)))) & ! [X7] : (room(X7) => (predo(X7) => (predd(X7) | predh(X7)))) & (! [X8] : (room(X8) => (prede(X8) | ~predn(X8))) => ! [X9] : (room(X9) => (~predo(X9) | predk(X9)))) & (! [X10] : (room(X10) => (~predo(X10) | predg(X10))) => ! [X11] : (room(X11) => (prede(X11) | ~predn(X11)))) & ! [X12] : (room(X12) => (alice = X12 | fred = X12 | paul = X12 | mary = X12)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 48. predk(mary) & (predd(mary) | predh(mary)) & predl(fred) & predd(mary) & ~! [X0] : (room(X0) => (predm(X0) => predl(X0))) & predd(fred) & ! [X1] : (room(X1) => (~predo(X1) | predk(X1))) & predo(mary) & ~predk(fred) & ! [X2] : (anywhere(X2) => (predj(X2) <=> predm(X2))) & ! [X3] : ((prede(X3) | predc(X3)) => (predc(X3) <~> predo(X3))) & ~! [X4] : (room(X4) => (prede(X4) => predo(X4))) & ~predc(paul) & ! [X6] : (room(X6) => ((predd(X6) | predh(X6)) => ~(~predj(X6) | predh(X6)))) & ! [X7] : (room(X7) => (predo(X7) => (predd(X7) | predh(X7)))) & (! [X8] : (room(X8) => (prede(X8) | ~predn(X8))) => ! [X9] : (room(X9) => (~predo(X9) | predk(X9)))) & (! [X10] : (room(X10) => (~predo(X10) | predg(X10))) => ! [X11] : (room(X11) => (prede(X11) | ~predn(X11)))) & ! [X12] : (room(X12) => (alice = X12 | fred = X12 | paul = X12 | mary = X12)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 47] 49. predk(mary) & (predd(mary) | predh(mary)) & predl(fred) & predd(mary) & ~! [X0] : (room(X0) => (predm(X0) => predl(X0))) & predd(fred) & ! [X1] : (room(X1) => (~predo(X1) | predk(X1))) & predo(mary) & ~predk(fred) & ! [X2] : (anywhere(X2) => (predj(X2) <=> predm(X2))) & ! [X3] : ((prede(X3) | predc(X3)) => (predc(X3) <~> predo(X3))) & ~! [X4] : (room(X4) => (prede(X4) => predo(X4))) & ~predc(paul) & ! [X6] : (room(X6) => ((predd(X6) | predh(X6)) => ~(~predj(X6) | predh(X6)))) & ! [X7] : (room(X7) => (predo(X7) => (predd(X7) | predh(X7)))) & (! [X8] : (room(X8) => (prede(X8) | ~predn(X8))) => ! [X9] : (room(X9) => (~predo(X9) | predk(X9)))) & (! [X10] : (room(X10) => ~predo(X10)) => ! [X11] : (room(X11) => (prede(X11) | ~predn(X11)))) & ! [X12] : (room(X12) => (alice = X12 | fred = X12 | paul = X12 | mary = X12)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 48] 121. predk(mary) & (predd(mary) | predh(mary)) & predl(fred) & predd(mary) & ? [X0] : ((~predl(X0) & predm(X0)) & room(X0)) & predd(fred) & ! [X1] : ((~predo(X1) | predk(X1)) | ~room(X1)) & predo(mary) & ~predk(fred) & ! [X2] : ((predj(X2) <=> predm(X2)) | ~anywhere(X2)) & ! [X3] : ((predc(X3) <~> predo(X3)) | (~prede(X3) & ~predc(X3))) & ? [X4] : ((~predo(X4) & prede(X4)) & room(X4)) & ~predc(paul) & ! [X6] : (((predj(X6) & ~predh(X6)) | (~predd(X6) & ~predh(X6))) | ~room(X6)) & ! [X7] : (((predd(X7) | predh(X7)) | ~predo(X7)) | ~room(X7)) & (! [X9] : ((~predo(X9) | predk(X9)) | ~room(X9)) | ? [X8] : ((~prede(X8) & predn(X8)) & room(X8))) & (! [X11] : ((prede(X11) | ~predn(X11)) | ~room(X11)) | ? [X10] : (predo(X10) & room(X10))) & ! [X12] : ((alice = X12 | fred = X12 | paul = X12 | mary = X12) | ~room(X12)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 49] 122. predk(mary) & (predd(mary) | predh(mary)) & predl(fred) & predd(mary) & ? [X0] : (~predl(X0) & predm(X0) & room(X0)) & predd(fred) & ! [X1] : (~predo(X1) | predk(X1) | ~room(X1)) & predo(mary) & ~predk(fred) & ! [X2] : ((predj(X2) <=> predm(X2)) | ~anywhere(X2)) & ! [X3] : ((predc(X3) <~> predo(X3)) | (~prede(X3) & ~predc(X3))) & ? [X4] : (~predo(X4) & prede(X4) & room(X4)) & ~predc(paul) & ! [X6] : ((predj(X6) & ~predh(X6)) | (~predd(X6) & ~predh(X6)) | ~room(X6)) & ! [X7] : (predd(X7) | predh(X7) | ~predo(X7) | ~room(X7)) & (! [X9] : (~predo(X9) | predk(X9) | ~room(X9)) | ? [X8] : (~prede(X8) & predn(X8) & room(X8))) & (! [X11] : (prede(X11) | ~predn(X11) | ~room(X11)) | ? [X10] : (predo(X10) & room(X10))) & ! [X12] : (alice = X12 | fred = X12 | paul = X12 | mary = X12 | ~room(X12)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 121] 123. predh(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 45] 124. predh(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 123] 126. predk(mary) & (predd(mary) | predh(mary)) & predl(fred) & predd(mary) & ? [X0] : (~predl(X0) & predm(X0) & room(X0)) & predd(fred) & ! [X1] : (~predo(X1) | predk(X1) | ~room(X1)) & predo(mary) & ~predk(fred) & ! [X2] : (((predj(X2) | ~predm(X2)) & (predm(X2) | ~predj(X2))) | ~anywhere(X2)) & ! [X3] : (((~predo(X3) | ~predc(X3)) & (predo(X3) | predc(X3))) | (~prede(X3) & ~predc(X3))) & ? [X4] : (~predo(X4) & prede(X4) & room(X4)) & ~predc(paul) & ! [X6] : ((predj(X6) & ~predh(X6)) | (~predd(X6) & ~predh(X6)) | ~room(X6)) & ! [X7] : (predd(X7) | predh(X7) | ~predo(X7) | ~room(X7)) & (! [X9] : (~predo(X9) | predk(X9) | ~room(X9)) | ? [X8] : (~prede(X8) & predn(X8) & room(X8))) & (! [X11] : (prede(X11) | ~predn(X11) | ~room(X11)) | ? [X10] : (predo(X10) & room(X10))) & ! [X12] : (alice = X12 | fred = X12 | paul = X12 | mary = X12 | ~room(X12)) & room(alice) & room(fred) & room(paul) & room(mary) [nnf transformation 122] 127. predk(mary) & (predd(mary) | predh(mary)) & predl(fred) & predd(mary) & ? [X0] : (~predl(X0) & predm(X0) & room(X0)) & predd(fred) & ! [X1] : (~predo(X1) | predk(X1) | ~room(X1)) & predo(mary) & ~predk(fred) & ! [X2] : (((predj(X2) | ~predm(X2)) & (predm(X2) | ~predj(X2))) | ~anywhere(X2)) & ! [X3] : (((~predo(X3) | ~predc(X3)) & (predo(X3) | predc(X3))) | (~prede(X3) & ~predc(X3))) & ? [X4] : (~predo(X4) & prede(X4) & room(X4)) & ~predc(paul) & ! [X5] : ((predj(X5) & ~predh(X5)) | (~predd(X5) & ~predh(X5)) | ~room(X5)) & ! [X6] : (predd(X6) | predh(X6) | ~predo(X6) | ~room(X6)) & (! [X7] : (~predo(X7) | predk(X7) | ~room(X7)) | ? [X8] : (~prede(X8) & predn(X8) & room(X8))) & (! [X9] : (prede(X9) | ~predn(X9) | ~room(X9)) | ? [X10] : (predo(X10) & room(X10))) & ! [X11] : (alice = X11 | fred = X11 | paul = X11 | mary = X11 | ~room(X11)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 126] 128. ? [X0] : (~predl(X0) & predm(X0) & room(X0)) => (~predl(sK0) & predm(sK0) & room(sK0)) [choice axiom] 129. ? [X4] : (~predo(X4) & prede(X4) & room(X4)) => (~predo(sK1) & prede(sK1) & room(sK1)) [choice axiom] 130. ? [X8] : (~prede(X8) & predn(X8) & room(X8)) => (~prede(sK2) & predn(sK2) & room(sK2)) [choice axiom] 131. ? [X10] : (predo(X10) & room(X10)) => (predo(sK3) & room(sK3)) [choice axiom] 132. predk(mary) & (predd(mary) | predh(mary)) & predl(fred) & predd(mary) & (~predl(sK0) & predm(sK0) & room(sK0)) & predd(fred) & ! [X1] : (~predo(X1) | predk(X1) | ~room(X1)) & predo(mary) & ~predk(fred) & ! [X2] : (((predj(X2) | ~predm(X2)) & (predm(X2) | ~predj(X2))) | ~anywhere(X2)) & ! [X3] : (((~predo(X3) | ~predc(X3)) & (predo(X3) | predc(X3))) | (~prede(X3) & ~predc(X3))) & (~predo(sK1) & prede(sK1) & room(sK1)) & ~predc(paul) & ! [X5] : ((predj(X5) & ~predh(X5)) | (~predd(X5) & ~predh(X5)) | ~room(X5)) & ! [X6] : (predd(X6) | predh(X6) | ~predo(X6) | ~room(X6)) & (! [X7] : (~predo(X7) | predk(X7) | ~room(X7)) | (~prede(sK2) & predn(sK2) & room(sK2))) & (! [X9] : (prede(X9) | ~predn(X9) | ~room(X9)) | (predo(sK3) & room(sK3))) & ! [X11] : (alice = X11 | fred = X11 | paul = X11 | mary = X11 | ~room(X11)) & room(alice) & room(fred) & room(paul) & room(mary) [skolemisation 127,131,130,129,128] 215. room(paul) [cnf transformation 132] 225. ~predh(X5) | ~predh(X5) | ~room(X5) [cnf transformation 132] 255. predh(paul) [cnf transformation 124] 256. ~predh(X5) | ~room(X5) [duplicate literal removal 225] 284. ~room(paul) [resolution 256,255] 285. $false [subsumption resolution 284,215] % SZS output end Proof for 7071506601873119178582529 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0
Leslie, Patricia, Thomas, Carmen, Vicki are the only persons in the room. Carmen is generous if Thomas neither is a patient creative person nor is brave. Either Carmen is quiet or Patricia neither is a humble person nor is kind but not both. If Leslie is a tall person then everyone anywhere is a curious person. Either Leslie neither is generous nor is not a brave person or everyone outside the room either is creative or is tall but not both but not both. Patricia is a generous quiet old person unless Leslie is wise. No humble person is generous unless Leslie is brave. Carmen is not a old person unless Leslie is creative. Everyone outside the room is happy only if Carmen is kind. All happy persons are strong unless Patricia is not a generous person. Leslie is a tall person. Leslie is not a calm person. Everyone outside the room is generous if they is humble. If someone is calm then he/she neither is a patient person nor is a generous person and vice versa. No strong person is humble. Patricia is not a generous person. Everyone in the room who is kind is old. No quiet person is calm.
Patricia is old.
entailment
room(leslie)&room(patricia)&room(thomas)&room(carmen)&room(vicki)&(![X]:(room(X)=>(X='leslie'|X='patricia'|X='thomas'|X='carmen'|X='vicki')))& ((~((patient(thomas)&creative(thomas)&person(thomas))|(brave(thomas))))=>(generous(carmen)))& ((quiet(carmen))<~>(~((humble(patricia)&person(patricia))|(kind(patricia)))))& ((tall(leslie)&person(leslie))=>(![X]:(anywhere(X)=>(curious(X)&person(X)))))& ((~((generous(leslie))|(~(brave(leslie)&person(leslie)))))<~>(![X]:(~room(X)=>(((creative(X))<~>(tall(X)))))))& (~(wise(leslie))=>(generous(patricia)&quiet(patricia)&old(patricia)&person(patricia)))& (~(brave(leslie))=>(~?[X]:(humble(X)=>generous(X))))& (~(creative(leslie))=>(~(old(carmen)&person(carmen))))& ((![X]:(~room(X)=>(happy(X))))=>(kind(carmen)))& (~(~(generous(patricia)&person(patricia)))=>(![X]:(happy(X)=>strong(X))))& (tall(leslie)&person(leslie))& (~(calm(leslie)&person(leslie)))& (![X]:(~room(X)=>(((humble(X))=>(generous(X))))))& ((![X]:((calm(X))<=>(~((patient(X)&person(X))|(generous(X)&person(X)))))))& (~?[X]:(strong(X)=>humble(X)))& (~(generous(patricia)&person(patricia)))& (((calm(carmen))<~>(funny(carmen))))& (![X]:(room(X)=>(((happy(X))=>(~((happy(X))|(old(X)&person(X))))))))& (((kind(carmen))<~>(generous(carmen)&person(carmen))))& (strong(patricia))& (![X]:(room(X)=>(((kind(X))=>(old(X))))))& (![X]:(funny(X)=>strong(X)))& (~?[X]:(quiet(X)=>calm(X)))
room(leslie)&room(patricia)&room(thomas)&room(carmen)&room(vicki)&(![X]:(room(X)=>(X='leslie'|X='patricia'|X='thomas'|X='carmen'|X='vicki')))& old(patricia)
[ "p0", "p2", "p14", "p20", "p22", "hypothesis" ]
% SZS status Unsatisfiable for 3336550950232389264816384 % SZS output start Proof for 3336550950232389264816384 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. quiet(alice) <~> ~(kind(paul) | (person(paul) & humble(paul))) [input p2] 58. ~? [X0] : (strong(X0) => humble(X0)) [input p14] 64. ! [X0] : (room(X0) => (kind(X0) => old(X0))) [input p20] 66. ~? [X0] : (quiet(X0) => calm(X0)) [input p22] 67. ~(old(paul) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 70. ~? [X0] : humble(X0) [pure predicate removal 58] 148. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 149. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 148] 152. quiet(alice) <~> (~kind(paul) & (~person(paul) | ~humble(paul))) [ennf transformation 46] 165. ! [X0] : ~humble(X0) [ennf transformation 70] 167. ! [X0] : ((old(X0) | ~kind(X0)) | ~room(X0)) [ennf transformation 64] 168. ! [X0] : (old(X0) | ~kind(X0) | ~room(X0)) [flattening 167] 169. ! [X0] : (~calm(X0) & quiet(X0)) [ennf transformation 66] 170. ~old(paul) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 67] 171. ~old(paul) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 170] 175. ((kind(paul) | (person(paul) & humble(paul))) | ~quiet(alice)) & ((~kind(paul) & (~person(paul) | ~humble(paul))) | quiet(alice)) [nnf transformation 152] 176. (kind(paul) | (person(paul) & humble(paul)) | ~quiet(alice)) & ((~kind(paul) & (~person(paul) | ~humble(paul))) | quiet(alice)) [flattening 175] 191. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK3 & alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 192. ~old(paul) | (john != sK3 & alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 171,191] 274. room(mary) [cnf transformation 149] 275. room(paul) [cnf transformation 149] 276. room(fred) [cnf transformation 149] 277. room(alice) [cnf transformation 149] 278. room(john) [cnf transformation 149] 279. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 149] 285. kind(paul) | humble(paul) | ~quiet(alice) [cnf transformation 176] 311. ~humble(X0) [cnf transformation 165] 318. ~kind(X0) | old(X0) | ~room(X0) [cnf transformation 168] 319. quiet(X0) [cnf transformation 169] 321. ~old(paul) | room(sK3) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 192] 322. ~old(paul) | mary != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 192] 323. ~old(paul) | paul != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 192] 324. ~old(paul) | fred != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 192] 325. ~old(paul) | alice != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 192] 326. ~old(paul) | john != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 192] 352. 6 <=> quiet(alice) [avatar definition] 354. ~quiet(alice) <- (~6) [avatar component clause 352] 360. 8 <=> kind(paul) [avatar definition] 362. kind(paul) <- (8) [avatar component clause 360] 365. 9 <=> humble(paul) [avatar definition] 367. humble(paul) <- (9) [avatar component clause 365] 368. ~6 | 9 | 8 [avatar split clause 285,360,365,352] 478. ~old(paul) | john != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 326,278] 479. ~old(paul) | john != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 478,277] 480. ~old(paul) | john != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 479,276] 481. ~old(paul) | john != sK3 | ~room(mary) [subsumption resolution 480,275] 482. ~old(paul) | john != sK3 [subsumption resolution 481,274] 484. 32 <=> john = sK3 [avatar definition] 486. john != sK3 <- (~32) [avatar component clause 484] 488. 33 <=> old(paul) [avatar definition] 490. ~old(paul) <- (~33) [avatar component clause 488] 491. ~32 | ~33 [avatar split clause 482,488,484] 492. ~old(paul) | alice != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 325,278] 493. ~old(paul) | alice != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 492,277] 494. ~old(paul) | alice != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 493,276] 495. ~old(paul) | alice != sK3 | ~room(mary) [subsumption resolution 494,275] 496. ~old(paul) | alice != sK3 [subsumption resolution 495,274] 498. 34 <=> alice = sK3 [avatar definition] 500. alice != sK3 <- (~34) [avatar component clause 498] 501. ~34 | ~33 [avatar split clause 496,488,498] 502. ~old(paul) | fred != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 324,278] 503. ~old(paul) | fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 502,277] 504. ~old(paul) | fred != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 503,276] 505. ~old(paul) | fred != sK3 | ~room(mary) [subsumption resolution 504,275] 506. ~old(paul) | fred != sK3 [subsumption resolution 505,274] 508. 35 <=> fred = sK3 [avatar definition] 510. fred != sK3 <- (~35) [avatar component clause 508] 511. ~35 | ~33 [avatar split clause 506,488,508] 512. ~old(paul) | paul != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 323,278] 513. ~old(paul) | paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 512,277] 514. ~old(paul) | paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 513,276] 515. ~old(paul) | paul != sK3 | ~room(mary) [subsumption resolution 514,275] 516. ~old(paul) | paul != sK3 [subsumption resolution 515,274] 518. 36 <=> paul = sK3 [avatar definition] 520. paul != sK3 <- (~36) [avatar component clause 518] 521. ~36 | ~33 [avatar split clause 516,488,518] 522. ~old(paul) | mary != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 322,278] 523. ~old(paul) | mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 522,277] 524. ~old(paul) | mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 523,276] 525. ~old(paul) | mary != sK3 | ~room(mary) [subsumption resolution 524,275] 526. ~old(paul) | mary != sK3 [subsumption resolution 525,274] 528. 37 <=> mary = sK3 [avatar definition] 530. mary != sK3 <- (~37) [avatar component clause 528] 531. ~37 | ~33 [avatar split clause 526,488,528] 532. ~old(paul) | room(sK3) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 321,278] 533. ~old(paul) | room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 532,277] 534. ~old(paul) | room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 533,276] 535. ~old(paul) | room(sK3) | ~room(mary) [subsumption resolution 534,275] 536. ~old(paul) | room(sK3) [subsumption resolution 535,274] 538. 38 <=> room(sK3) [avatar definition] 540. room(sK3) <- (38) [avatar component clause 538] 541. 38 | ~33 [avatar split clause 536,488,538] 546. $false <- (~6) [subsumption resolution 354,319] 547. 6 [avatar contradiction clause 546] 554. old(paul) | ~room(paul) <- (8) [resolution 318,362] 555. ~room(paul) <- (8, ~33) [subsumption resolution 554,490] 556. $false <- (8, ~33) [subsumption resolution 555,275] 557. ~8 | 33 [avatar contradiction clause 556] 558. $false <- (9) [subsumption resolution 367,311] 559. ~9 [avatar contradiction clause 558] 610. alice = sK3 | fred = sK3 | paul = sK3 | mary = sK3 | john = sK3 <- (38) [resolution 279,540] 611. fred = sK3 | paul = sK3 | mary = sK3 | john = sK3 <- (~34, 38) [subsumption resolution 610,500] 612. paul = sK3 | mary = sK3 | john = sK3 <- (~34, ~35, 38) [subsumption resolution 611,510] 613. mary = sK3 | john = sK3 <- (~34, ~35, ~36, 38) [subsumption resolution 612,520] 614. john = sK3 <- (~34, ~35, ~36, ~37, 38) [subsumption resolution 613,530] 615. $false <- (~32, ~34, ~35, ~36, ~37, 38) [subsumption resolution 614,486] 616. 32 | 34 | 35 | 36 | 37 | ~38 [avatar contradiction clause 615] 617. $false [avatar sat refutation 368,491,501,511,521,531,541,547,557,559,616] % SZS output end Proof for 3336550950232389264816384 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.157257
Ethan, Earl are the only persons in the room. Ethan neither regularly contributes to tech forums and online communities nor uses an ios phone. If someone is a drone photographer then he/she own a television and vice versa. If someone own a television then he/she is a drone photographer. Ethan is not a drone photographer. Ethan does not use an ios phone. Ethan owns a 3D printer. Not everyone in the room own a television if they is a cybersecurity expert. Ethan who does not use an ios phone either is a cybersecurity expert or owns a 3D printer but not both. Everyone in the room does not use an ios phone if they is a cybersecurity expert. If someone regularly contributes to tech forums and online communities then he/she is a drone photographer or is a cybersecurity expert or both. Everyone outside the room owns a 3D printer only if they is not a drone photographer. Everyone in the room owns a 3D printer.
It is true that “Earl is a cybersecurity expert”.
entailment
room(ethan)&room(earl)&(![X]:(room(X)=>(X='ethan'|X='earl')))& (~((regularly_contributes_to_tech_forums_and_online_communities(ethan))|(uses_an_ios_phone(ethan))))& ((![X]:((is_a_drone_photographer(X))<=>(own_a_television(X)))))& ((![X]:((own_a_television(X))=>(is_a_drone_photographer(X)))))& (is_not_a_drone_photographer(ethan))& (does_not_use_an_ios_phone(ethan))& (owns_a_3D_printer(ethan))& (~![X]:(room(X)=>(((is_a_cybersecurity_expert(X))=>(own_a_television(X))))))& ((does_not_use_an_ios_phone(ethan))&(((is_a_cybersecurity_expert(ethan))<~>(owns_a_3D_printer(ethan)))))& (![X]:(room(X)=>(((is_a_cybersecurity_expert(X))=>(does_not_use_an_ios_phone(X))))))& ((![X]:((regularly_contributes_to_tech_forums_and_online_communities(X))=>(((is_a_drone_photographer(X))|(is_a_cybersecurity_expert(X)))))))& (![X]:(~room(X)=>(((is_not_a_drone_photographer(X))<=(owns_a_3D_printer(X))))))& (![X]:(room(X)=>(owns_a_3D_printer(X))))& (((uses_an_ios_phone(ethan))<~>(is_not_a_drone_photographer(ethan))))& (~(is_a_drone_photographer(ethan)))& (![X]:(room(X)=>(((((uses_an_ios_phone(X))|(regularly_contributes_to_tech_forums_and_online_communities(X))))=>(((is_a_cybersecurity_expert(X))&(regularly_contributes_to_tech_forums_and_online_communities(X))&(does_not_own_a_3D_printer(X))))))))
room(ethan)&room(earl)&(![X]:(room(X)=>(X='ethan'|X='earl')))& is_a_cybersecurity_expert(earl)
[ "p0", "p6", "p7", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 745144540879286116484546 % SZS output start Proof for 745144540879286116484546 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 50. predf(mary) [input p6] 51. ~! [X0] : (room(X0) => (preda(X0) => predb(X0))) [input p7] 52. (preda(mary) <~> predf(mary)) & ~prede(mary) [input p8] 60. ~(preda(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 133. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 134. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 133] 137. ? [X0] : ((~predb(X0) & preda(X0)) & room(X0)) [ennf transformation 51] 138. ? [X0] : (~predb(X0) & preda(X0) & room(X0)) [flattening 137] 148. ~preda(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 60] 149. ~preda(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 148] 152. ? [X0] : (~predb(X0) & preda(X0) & room(X0)) => (~predb(sK0) & preda(sK0) & room(sK0)) [choice axiom] 153. ~predb(sK0) & preda(sK0) & room(sK0) [skolemisation 138,152] 154. ((~predf(mary) | ~preda(mary)) & (predf(mary) | preda(mary))) & ~prede(mary) [nnf transformation 52] 155. (~predf(mary) | ~preda(mary)) & (predf(mary) | preda(mary)) & ~prede(mary) [flattening 154] 157. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 158. ~preda(paul) | (paul != sK1 & mary != sK1 & room(sK1)) | ~room(paul) | ~room(mary) [skolemisation 149,157] 239. room(mary) [cnf transformation 134] 240. room(paul) [cnf transformation 134] 241. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 134] 249. predf(mary) [cnf transformation 50] 250. room(sK0) [cnf transformation 153] 251. preda(sK0) [cnf transformation 153] 255. ~predf(mary) | ~preda(mary) [cnf transformation 155] 269. ~preda(paul) | room(sK1) | ~room(paul) | ~room(mary) [cnf transformation 158] 270. ~preda(paul) | mary != sK1 | ~room(paul) | ~room(mary) [cnf transformation 158] 271. ~preda(paul) | paul != sK1 | ~room(paul) | ~room(mary) [cnf transformation 158] 272. ~preda(mary) [subsumption resolution 255,249] 275. ~preda(paul) | paul != sK1 | ~room(mary) [subsumption resolution 271,240] 276. ~preda(paul) | paul != sK1 [subsumption resolution 275,239] 278. 1 <=> paul = sK1 [avatar definition] 280. paul != sK1 <- (~1) [avatar component clause 278] 282. 2 <=> preda(paul) [avatar definition] 285. ~1 | ~2 [avatar split clause 276,282,278] 286. ~preda(paul) | mary != sK1 | ~room(mary) [subsumption resolution 270,240] 287. ~preda(paul) | mary != sK1 [subsumption resolution 286,239] 289. 3 <=> mary = sK1 [avatar definition] 291. mary != sK1 <- (~3) [avatar component clause 289] 292. ~3 | ~2 [avatar split clause 287,282,289] 293. ~preda(paul) | room(sK1) | ~room(mary) [subsumption resolution 269,240] 294. ~preda(paul) | room(sK1) [subsumption resolution 293,239] 296. 4 <=> room(sK1) [avatar definition] 298. room(sK1) <- (4) [avatar component clause 296] 299. 4 | ~2 [avatar split clause 294,282,296] 309. mary = sK0 | paul = sK0 [resolution 241,250] 311. 5 <=> paul = sK0 [avatar definition] 313. paul = sK0 <- (5) [avatar component clause 311] 315. 6 <=> mary = sK0 [avatar definition] 317. mary = sK0 <- (6) [avatar component clause 315] 318. 5 | 6 [avatar split clause 309,315,311] 327. preda(mary) <- (6) [backward demodulation 251,317] 329. $false <- (6) [subsumption resolution 327,272] 330. ~6 [avatar contradiction clause 329] 334. preda(paul) <- (5) [backward demodulation 251,313] 336. 2 | ~5 [avatar split clause 334,311,282] 338. mary = sK1 | paul = sK1 <- (4) [resolution 298,241] 340. paul = sK1 <- (~3, 4) [subsumption resolution 338,291] 341. $false <- (~1, ~3, 4) [subsumption resolution 340,280] 342. 1 | 3 | ~4 [avatar contradiction clause 341] 343. $false [avatar sat refutation 285,292,299,318,330,336,342] % SZS output end Proof for 745144540879286116484546 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.037649
Douglas is the only person in the room. Douglas neither collects historical artifacts related to ancient civilizations nor does practice yoga. Douglas has a piercing. Douglas collects rare minerals and is a client of Meta. Everyone in the room who uses contact lenses collects rare minerals. Everyone in the room who uses contact lenses collects first edition books. Everyone anywhere collects rare minerals if they has a piercing.
Douglas collects historical artifacts related to ancient civilizations.
contradiction
room(douglas)&(![X]:(room(X)=>(X='douglas')))& (~((collects_historical_artifacts_related_to_ancient_civilizations(douglas))|(does_practice_yoga(douglas))))& (has_a_piercing(douglas))& (((collects_rare_minerals(douglas))&(is_a_client_of_Meta(douglas))))& (![X]:(room(X)=>(((uses_contact_lenses(X))=>(collects_rare_minerals(X))))))& (![X]:(room(X)=>(((uses_contact_lenses(X))=>(collects_first_edition_books(X))))))& (![X]:(anywhere(X)=>(((has_a_piercing(X))=>(collects_rare_minerals(X))))))& (![X]:(room(X)=>(((does_not_have_a_piercing(X))|(is_a_client_of_Meta(X))))))& (![X]:(room(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(does_practice_yoga(X))))))& (![X]:(room(X)=>(((((does_practice_yoga(X))<~>(uses_contact_lenses(X))))=>(collects_first_edition_books(X))))))& (![X]:(room(X)=>(((collects_first_edition_books(X))=>(practices_pilates(X))))))& (![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(collects_rare_minerals(X))))))& (enjoys_salsa_dancing(douglas))& (collects_rare_minerals(douglas))
room(douglas)&(![X]:(room(X)=>(X='douglas')))& collects_historical_artifacts_related_to_ancient_civilizations(douglas)
[ "p1", "hypothesis" ]
% SZS status Unsatisfiable for 6865450123200583249149047 % SZS output start Proof for 6865450123200583249149047 45. ~(predj(mary) | predd(mary)) [input p1] 58. predd(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 66. ~predd(mary) [pure predicate removal 45] 146. ~predd(mary) [ennf transformation 66] 147. predd(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 58] 231. ~predd(mary) [cnf transformation 146] 234. predd(mary) [cnf transformation 147] 235. $false [subsumption resolution 234,231] % SZS output end Proof for 6865450123200583249149047 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.030 s % ------------------------------ % ------------------------------
0.047775
Roy, Edith, Rebecca, Arthur, Jacques are the only persons in the room. All quiet persons are old. No tall person is kind.
All kind persons are tall.
entailment
room(roy)&room(edith)&room(rebecca)&room(arthur)&room(jacques)&(![X]:(room(X)=>(X='roy'|X='edith'|X='rebecca'|X='arthur'|X='jacques')))& (![X]:(quiet(X)=>old(X)))& (~?[X]:(tall(X)=>kind(X)))
room(roy)&room(edith)&room(rebecca)&room(arthur)&room(jacques)&(![X]:(room(X)=>(X='roy'|X='edith'|X='rebecca'|X='arthur'|X='jacques')))& ![X]:(kind(X)=>tall(X))
[ "p0", "p2", "hypothesis" ]
% SZS status Unsatisfiable for 8996233585885935519987456 % SZS output start Proof for 8996233585885935519987456 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. ~? [X0] : (tall(X0) => kind(X0)) [input p2] 47. ~(! [X0] : (kind(X0) => tall(X0)) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 48. ~(! [X0] : (kind(X0) => tall(X0)) & ! [X1] : (room(X1) => (john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [rectify 47] 121. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 122. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 121] 124. ! [X0] : (~kind(X0) & tall(X0)) [ennf transformation 46] 125. ? [X0] : (~tall(X0) & kind(X0)) | ? [X1] : ((john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1) & room(X1)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 48] 126. ? [X0] : (~tall(X0) & kind(X0)) | ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 125] 127. ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [predicate definition introduction] 128. ? [X0] : (~tall(X0) & kind(X0)) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [definition folding 126,127] 130. ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [nnf transformation 127] 131. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~sP0 [rectify 130] 132. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK1 & alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 133. (john != sK1 & alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) | ~sP0 [skolemisation 131,132] 134. ? [X0] : (~tall(X0) & kind(X0)) => (~tall(sK2) & kind(sK2)) [choice axiom] 135. (~tall(sK2) & kind(sK2)) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 128,134] 216. room(mary) [cnf transformation 122] 217. room(paul) [cnf transformation 122] 218. room(fred) [cnf transformation 122] 219. room(alice) [cnf transformation 122] 220. room(john) [cnf transformation 122] 221. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 122] 224. ~kind(X0) [cnf transformation 124] 225. room(sK1) | ~sP0 [cnf transformation 133] 226. mary != sK1 | ~sP0 [cnf transformation 133] 227. paul != sK1 | ~sP0 [cnf transformation 133] 228. fred != sK1 | ~sP0 [cnf transformation 133] 229. alice != sK1 | ~sP0 [cnf transformation 133] 230. john != sK1 | ~sP0 [cnf transformation 133] 231. kind(sK2) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 135] 234. 1 <=> sP0 [avatar definition] 238. 2 <=> john = sK1 [avatar definition] 240. john != sK1 <- (~2) [avatar component clause 238] 241. ~1 | ~2 [avatar split clause 230,238,234] 243. 3 <=> alice = sK1 [avatar definition] 245. alice != sK1 <- (~3) [avatar component clause 243] 246. ~1 | ~3 [avatar split clause 229,243,234] 248. 4 <=> fred = sK1 [avatar definition] 250. fred != sK1 <- (~4) [avatar component clause 248] 251. ~1 | ~4 [avatar split clause 228,248,234] 253. 5 <=> paul = sK1 [avatar definition] 255. paul != sK1 <- (~5) [avatar component clause 253] 256. ~1 | ~5 [avatar split clause 227,253,234] 258. 6 <=> mary = sK1 [avatar definition] 260. mary != sK1 <- (~6) [avatar component clause 258] 261. ~1 | ~6 [avatar split clause 226,258,234] 263. 7 <=> room(sK1) [avatar definition] 265. room(sK1) <- (7) [avatar component clause 263] 266. ~1 | 7 [avatar split clause 225,263,234] 274. sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 231,224] 275. sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 274,220] 276. sP0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 275,219] 277. sP0 | ~room(paul) | ~room(mary) [subsumption resolution 276,218] 278. sP0 | ~room(mary) [subsumption resolution 277,217] 279. sP0 [subsumption resolution 278,216] 280. 1 [avatar split clause 279,234] 328. alice = sK1 | fred = sK1 | paul = sK1 | mary = sK1 | john = sK1 <- (7) [resolution 221,265] 329. fred = sK1 | paul = sK1 | mary = sK1 | john = sK1 <- (~3, 7) [subsumption resolution 328,245] 330. paul = sK1 | mary = sK1 | john = sK1 <- (~3, ~4, 7) [subsumption resolution 329,250] 331. mary = sK1 | john = sK1 <- (~3, ~4, ~5, 7) [subsumption resolution 330,255] 332. john = sK1 <- (~3, ~4, ~5, ~6, 7) [subsumption resolution 331,260] 333. $false <- (~2, ~3, ~4, ~5, ~6, 7) [subsumption resolution 332,240] 334. 2 | 3 | 4 | 5 | 6 | ~7 [avatar contradiction clause 333] 335. $false [avatar sat refutation 241,246,251,256,261,266,280,334] % SZS output end Proof for 8996233585885935519987456 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.144485
There is a room. Everyone in the room drives a hybrid car if they enjoys origami. No one in the room is a skilled home brewer experimenting with craft beer recipes.
Everyone in the room does not enjoy salsa dancing or enjoys origami.
neutral
(there_is_a_room)& (![X]:(room(X)=>(((enjoys_origami(X))=>(drives_a_hybrid_car(X))))))& (~?[X]:(room(X)=>(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))& (![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))=>(does_not_enjoy_wildlife_photography(X))))))& (![X]:(room(X)=>(((is_an_avid_hiker(X))=>(volunteers_for_local_environmental_conservation_projects(X))))))& (![X]:(room(X)=>(((works_on_fridays(X))=>(enjoys_origami(X))))))& (![X]:(~room(X)=>(((enjoys_origami(X))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (![X]:(room(X)=>(((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))=>(collects_limited-edition_art_prints_from_contemporary_artists(X))))))& (![X]:(room(X)=>(((volunteers_for_local_environmental_conservation_projects(X))=>(((does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))|(does_not_play_the_violin(X))|(uses_contact_lenses(X))))))))& ((?[X,Y]:(room(X)&room(Y)&(uses_contact_lenses(X)&uses_contact_lenses(Y))&(X!=Y))))& (![X]:(room(X)=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (~![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(enjoys_salsa_dancing(X))))))& ((![X]:((practices_kickboxing(X))<=>(enjoys_wildlife_photography(X)))))& (~![X]:(room(X)=>(((drives_a_hybrid_car(X))=>(practices_kickboxing(X))))))& (![X]:(anywhere(X)=>(is_an_avid_hiker(X))))& (![X]:(room(X)=>(uses_contact_lenses(X))))& (![X]:(room(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(~((plays_the_violin(X))|(has_a_curated_collection_of_mid-century_modern_furniture(X))))))))& (![X]:(room(X)=>(((is_a_cybersecurity_expert(X))=>(does_not_own_an_Android_phone(X))))))& (![X]:(room(X)=>(((plays_the_violin(X))=>(can_play_the_flute(X))))))& ((![X]:((does_not_volunteer_for_local_environmental_conservation_projects(X))=>(((uses_contact_lenses(X))|(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X)))))))& (![X]:(room(X)=>(((does_not_use_contact_lenses(X))=>(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))))& (![X]:(room(X)=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))=>(enjoys_salsa_dancing(X))))))& (![X]:(room(X)=>(((((works_on_fridays(X))|(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))|(does_not_drive_a_hybrid_car(X))))=>(owns_an_Android_phone(X))))))& (![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(enjoys_wildlife_photography(X))))))& (![X]:(room(X)=>(((enjoys_wildlife_photography(X))=>(collects_limited-edition_art_prints_from_contemporary_artists(X))))))& ((![X]:((practices_kickboxing(X))=>(owns_a_smartwatch(X)))))& (![X]:(anywhere(X)=>(does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))& ((?[X,Y]:(room(X)&room(Y)&(practices_kickboxing(X)&practices_kickboxing(Y))&(X!=Y))))
(there_is_a_room)& ![X]:(room(X)=>(((enjoys_origami(X))|(does_not_enjoy_salsa_dancing(X)))))
[]
null
0.485297
Helen, Luis are the only persons in the room. If “not everyone in the room is not a wine connoisseur or practices archery” then “everyone in the room does not enjoy writing detailed reviews of new and classic board games or is not a wine connoisseur”. If “everyone in the room plays the drums or does not have a pet dog” then “everyone in the room practices kickboxing if they maintains a personal blog focused on cybersecurity tips and vice versa”. Everyone in the room who maintains a personal blog focused on cybersecurity tips practices kickboxing. Helen plays the violin. If someone is a wine connoisseur then he/she is an amateur astronomer who builds and uses custom telescopes and vice versa. Helen enjoys deep-sea diving and exploring underwater caves and is not dedicated to sustainable living and zero-waste practices. Helen practices archery. At least one person in the room is an amateur astronomer who builds and uses custom telescopes. Helen enjoys camping and organizing outdoor survival workshops. Luis is a tea enthusiast. Only one person in the room competes in national level swimming championships or enjoys spelunking or both. Everyone in the room who is dedicated to sustainable living and zero-waste practices is not a tea enthusiast. Someone in the room does not practice archery. Everyone in the room practices kickboxing if they maintains a personal blog focused on cybersecurity tips and vice versa. Everyone in the room who has a pet dog uses a Windows laptop. If someone plays the violin then he/she plays the drums. Luis does not play the drums. Luis who does not practice kickboxing enjoys writing detailed reviews of new and classic board games or is an amateur astronomer who builds and uses custom telescopes or both. Luis writes a travel blog.
Luis is dedicated to sustainable living and zero-waste practices.
contradiction
room(helen)&room(luis)&(![X]:(room(X)=>(X='helen'|X='luis')))& ((~![X]:(room(X)=>(((practices_archery(X))|(is_not_a_wine_connoisseur(X))))))=>(![X]:(room(X)=>(((is_not_a_wine_connoisseur(X))|(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X)))))))& ((![X]:(room(X)=>(((does_not_have_a_pet_dog(X))|(plays_the_drums(X))))))=>(![X]:(room(X)=>(((practices_kickboxing(X))<=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X)))))))& (![X]:(room(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))=>(practices_kickboxing(X))))))& (plays_the_violin(helen))& ((![X]:((is_a_wine_connoisseur(X))<=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X)))))& (((enjoys_deep-sea_diving_and_exploring_underwater_caves(helen))&(is_not_dedicated_to_sustainable_living_and_zero-waste_practices(helen))))& (practices_archery(helen))& (((?[X]:(room(X)&is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X)))))& (enjoys_camping_and_organizing_outdoor_survival_workshops(helen))& (is_a_tea_enthusiast(luis))& (((?[X]:(room(X)&((competes_in_national_level_swimming_championships(X))|(enjoys_spelunking(X)))))&(![X,Y]:((room(X)&room(Y)&(((competes_in_national_level_swimming_championships(X))|(enjoys_spelunking(X))))&(((competes_in_national_level_swimming_championships(Y))|(enjoys_spelunking(Y)))))=>(X=Y)))))& (![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(is_not_a_tea_enthusiast(X))))))& (?[X]:(room(X)&(does_not_practice_archery(X))))& (![X]:(room(X)=>(((practices_kickboxing(X))<=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))& (![X]:(room(X)=>(((has_a_pet_dog(X))=>(uses_a_Windows_laptop(X))))))& ((![X]:((plays_the_violin(X))=>(plays_the_drums(X)))))& (does_not_play_the_drums(luis))& ((does_not_practice_kickboxing(luis))&(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(luis))|(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(luis)))))& (writes_a_travel_blog(luis))
room(helen)&room(luis)&(![X]:(room(X)=>(X='helen'|X='luis')))& is_dedicated_to_sustainable_living_and_zero-waste_practices(luis)
[ "p0", "p10", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 2258178783494630826162281 % SZS output start Proof for 2258178783494630826162281 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 54. predc(paul) [input p10] 56. ! [X0] : (room(X0) => (predd(X0) => ~predc(X0))) [input p12] 64. predd(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 146. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 147. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 146] 156. ! [X0] : ((~predc(X0) | ~predd(X0)) | ~room(X0)) [ennf transformation 56] 157. ! [X0] : (~predc(X0) | ~predd(X0) | ~room(X0)) [flattening 156] 160. predd(paul) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 64] 161. predd(paul) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 160] 256. room(paul) [cnf transformation 147] 270. predc(paul) [cnf transformation 54] 277. ~predc(X0) | ~predd(X0) | ~room(X0) [cnf transformation 157] 289. predd(paul) [cnf transformation 161] 338. ~predd(paul) | ~room(paul) [resolution 277,270] 339. ~room(paul) [subsumption resolution 338,289] 340. $false [subsumption resolution 339,256] % SZS output end Proof for 2258178783494630826162281 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0
Larry is the only person in the room. If “everyone in the room is not a wine connoisseur with a private cellar of vintage wines or plays eSports competitively” then “if someone is a wine connoisseur with a private cellar of vintage wines then he/she is not right-handed and vice versa”. If “everyone in the room is not a wine connoisseur with a private cellar of vintage wines or is a wine connoisseur with a private cellar of vintage wines” then “everyone in the room is right-handed if they is not a wine connoisseur with a private cellar of vintage wines”. Everyone anywhere collects modern art if they is right-handed. It is not the case that “more than one person in the room plays eSports competitively”. Everyone in the room is right-handed if they is not a wine connoisseur with a private cellar of vintage wines. Larry who has a curated collection of mid-century modern furniture, is not a wine connoisseur with a private cellar of vintage wines or competes in national level swimming championships collects modern art. If someone is right-handed then he/she competes in national level swimming championships and vice versa. Someone in the room is right-handed.
Larry is right-handed, collects modern art and competes in national level swimming championships.
entailment
room(larry)&(![X]:(room(X)=>(X='larry')))& ((![X]:(room(X)=>(((plays_eSports_competitively(X))|(is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))=>((![X]:((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))<=>(is_not_right-handed(X))))))& ((![X]:(room(X)=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))|(is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))=>(![X]:(room(X)=>(((is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))=>(is_right-handed(X)))))))& (![X]:(anywhere(X)=>(((is_right-handed(X))=>(collects_modern_art(X))))))& (~((?[X,Y]:(room(X)&room(Y)&(plays_eSports_competitively(X)&plays_eSports_competitively(Y))&(X!=Y)))))& (![X]:(room(X)=>(((is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))=>(is_right-handed(X))))))& (![X]:(room(X)=>(((is_not_right-handed(X))=>(competes_in_national_level_swimming_championships(X))))))& (![X]:(room(X)=>(((competes_in_national_level_swimming_championships(X))=>(plays_eSports_competitively(X))))))& (![X]:(room(X)=>(((plays_eSports_competitively(X))=>(((competes_in_national_level_swimming_championships(X))&(is_right-handed(X))))))))& (![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))=>(competes_in_national_level_swimming_championships(X))))))& (~?[X]:(anywhere(X)=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))<=(plays_eSports_competitively(X))))))& (![X]:(room(X)=>(((collects_modern_art(X))=>(plays_eSports_competitively(X))))))& ((((has_a_curated_collection_of_mid-century_modern_furniture(larry))|(is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(larry))|(competes_in_national_level_swimming_championships(larry))))&(collects_modern_art(larry)))& (![X]:(room(X)=>(((((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))<~>(is_right-handed(X))))<=>(plays_eSports_competitively(X))))))& ((![X]:((competes_in_national_level_swimming_championships(X))<=>(has_a_curated_collection_of_mid-century_modern_furniture(X)))))& (![X]:(room(X)=>(((collects_modern_art(X))<=(((does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))&(plays_eSports_competitively(X))))))))& ((![X]:((is_not_right-handed(X))<=>(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X)))))& ((![X]:((is_right-handed(X))<=>(competes_in_national_level_swimming_championships(X)))))& (?[X]:(room(X)&(is_right-handed(X))))& (![X]:(anywhere(X)=>(((is_right-handed(X))=>(has_a_curated_collection_of_mid-century_modern_furniture(X))))))& (![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))=>(plays_eSports_competitively(X))))))
room(larry)&(![X]:(room(X)=>(X='larry')))& ((is_right-handed(larry))&(collects_modern_art(larry))&(competes_in_national_level_swimming_championships(larry)))
[ "p0", "p12", "p17", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 7791539656834823644594743 % SZS output start Proof for 7791539656834823644594743 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 56. preda(mary) & (predb(mary) | ~predd(mary) | predc(mary)) [input p12] 61. ! [X0] : (prede(X0) <=> predb(X0)) [input p17] 62. ? [X0] : (prede(X0) & room(X0)) [input p18] 65. ~(predb(mary) & preda(mary) & prede(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 139. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 168. ~predb(mary) | ~preda(mary) | ~prede(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 65] 180. ! [X0] : ((prede(X0) | ~predb(X0)) & (predb(X0) | ~prede(X0))) [nnf transformation 61] 181. ? [X0] : (prede(X0) & room(X0)) => (prede(sK2) & room(sK2)) [choice axiom] 182. prede(sK2) & room(sK2) [skolemisation 62,181] 183. ? [X0] : (mary != X0 & room(X0)) => (mary != sK3 & room(sK3)) [choice axiom] 184. ~predb(mary) | ~preda(mary) | ~prede(mary) | (mary != sK3 & room(sK3)) | ~room(mary) [skolemisation 168,183] 266. room(mary) [cnf transformation 139] 267. ~room(X0) | mary = X0 [cnf transformation 139] 290. preda(mary) [cnf transformation 56] 300. ~prede(X0) | predb(X0) [cnf transformation 180] 301. ~predb(X0) | prede(X0) [cnf transformation 180] 302. room(sK2) [cnf transformation 182] 303. prede(sK2) [cnf transformation 182] 306. ~predb(mary) | ~preda(mary) | ~prede(mary) | room(sK3) | ~room(mary) [cnf transformation 184] 307. ~predb(mary) | ~preda(mary) | ~prede(mary) | mary != sK3 | ~room(mary) [cnf transformation 184] 349. ~predb(mary) | ~prede(mary) | mary != sK3 | ~room(mary) [subsumption resolution 307,290] 350. ~predb(mary) | ~prede(mary) | mary != sK3 [subsumption resolution 349,266] 351. ~predb(mary) | mary != sK3 [subsumption resolution 350,301] 353. 9 <=> mary = sK3 [avatar definition] 355. mary != sK3 <- (~9) [avatar component clause 353] 357. 10 <=> predb(mary) [avatar definition] 360. ~9 | ~10 [avatar split clause 351,357,353] 361. ~predb(mary) | ~prede(mary) | room(sK3) | ~room(mary) [subsumption resolution 306,290] 362. ~predb(mary) | ~prede(mary) | room(sK3) [subsumption resolution 361,266] 363. ~predb(mary) | room(sK3) [subsumption resolution 362,301] 365. 11 <=> room(sK3) [avatar definition] 367. room(sK3) <- (11) [avatar component clause 365] 368. 11 | ~10 [avatar split clause 363,357,365] 373. predb(sK2) [resolution 300,303] 391. mary = sK2 [resolution 267,302] 392. mary = sK3 <- (11) [resolution 267,367] 394. predb(mary) [backward demodulation 373,391] 398. $false <- (~9, 11) [subsumption resolution 392,355] 399. 9 | ~11 [avatar contradiction clause 398] 400. 10 [avatar split clause 394,357] 405. $false [avatar sat refutation 360,368,399,400] % SZS output end Proof for 7791539656834823644594743 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.239382
Frank, Howard are the only persons in the room. Howard is a night owl or competes in national level swimming championships or both. Everyone in the room who competes in national level swimming championships hosts regular game nights featuring complex strategy games. Everyone in the room competes in national level swimming championships if they hosts regular game nights featuring complex strategy games.
Howard is a night owl.
neutral
room(frank)&room(howard)&(![X]:(room(X)=>(X='frank'|X='howard')))& (((is_a_night_owl(howard))|(competes_in_national_level_swimming_championships(howard))))& (![X]:(room(X)=>(((competes_in_national_level_swimming_championships(X))=>(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))& (![X]:(room(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))=>(competes_in_national_level_swimming_championships(X))))))& (does_not_host_regular_game_nights_featuring_complex_strategy_games(frank))& (does_not_have_a_piercing(frank))& (![X]:(room(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))=>(has_a_piercing(X))))))& (![X]:(room(X)=>(((has_a_piercing(X))<=>(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))& (((?[X]:(room(X)&competes_in_national_level_swimming_championships(X)))))
room(frank)&room(howard)&(![X]:(room(X)=>(X='frank'|X='howard')))& is_a_night_owl(howard)
[]
null
0.085352
Helen, Carol are the only persons in the room. If “Carol does not have a tattoo, does not enjoy writing detailed reviews of new and classic board games or does not own a microscope” then “Carol does not own a 3D printer and is not an enthusiastic bird watcher who travels for rare sightings” otherwise “Carol does not host regular game nights featuring complex strategy games”. Helen neither does not play as a goalkeeper for a local amateur soccer team nor does not enjoy making ceramics. Carol does not have a tattoo and does not enjoy making ceramics. Helen either does not own a 3D printer or does not enjoy making ceramics but not both.
Everyone in the room does not own a 3D printer.
entailment
room(helen)&room(carol)&(![X]:(room(X)=>(X='helen'|X='carol')))& (((does_not_practice_tai_chi(helen))=>(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(helen)))&((~(does_not_practice_tai_chi(helen)))=>(((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(helen))|(is_not_a_tea_enthusiast(helen))|(does_not_enjoy_making_ceramics(helen))))))& ((((is_not_a_night_owl(carol))<~>(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(carol))))<~>(((does_not_host_regular_game_nights_featuring_complex_strategy_games(carol))<~>(does_not_have_a_tattoo(carol)))))& ((((is_not_a_night_owl(carol))|(does_not_use_a_Windows_laptop(carol))|(does_not_host_regular_game_nights_featuring_complex_strategy_games(carol))))=>(does_not_have_a_tattoo(carol)))& ((((does_not_own_a_microscope(carol))|(does_not_have_a_tattoo(carol))|(does_not_practice_tai_chi(carol))))<~>(~((does_not_practice_tai_chi(carol))|(does_not_watche_fantasy_movies(carol)))))& (((((does_not_have_a_tattoo(carol))|(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(carol))|(does_not_own_a_microscope(carol))))=>(((does_not_own_a_3D_printer(carol))&(is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(carol)))))&((~(((does_not_have_a_tattoo(carol))|(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(carol))|(does_not_own_a_microscope(carol)))))=>(does_not_host_regular_game_nights_featuring_complex_strategy_games(carol))))& ((((does_not_own_a_3D_printer(helen))<~>(is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(helen))))=>(((does_not_use_a_Windows_laptop(helen))<~>(does_not_have_a_tattoo(helen)))))& (((does_not_play_the_violin(carol))|(does_not_work_on_fridays(carol))|(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(carol))))& (~((does_not_own_a_microscope(carol))|(is_not_a_night_owl(carol))))& (~((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(helen))|(does_not_enjoy_making_ceramics(helen))))& (((does_not_watche_fantasy_movies(helen))<~>(does_not_host_regular_game_nights_featuring_complex_strategy_games(helen))))& (((?[X]:(room(X)&((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))<~>(does_not_own_a_3D_printer(X)))))&(![X,Y]:((room(X)&room(Y)&(((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))<~>(does_not_own_a_3D_printer(X))))&(((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(Y))<~>(does_not_own_a_3D_printer(Y)))))=>(X=Y)))))& (((does_not_have_a_tattoo(carol))&(does_not_enjoy_making_ceramics(carol))))& (does_not_practice_tai_chi(carol))& (((does_not_own_a_3D_printer(helen))<~>(does_not_enjoy_making_ceramics(helen))))& (does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(helen))& (((does_not_host_regular_game_nights_featuring_complex_strategy_games(helen))&(does_not_work_on_fridays(helen))))
room(helen)&room(carol)&(![X]:(room(X)=>(X='helen'|X='carol')))& ![X]:(room(X)=>(does_not_own_a_3D_printer(X)))
[ "p0", "p5", "p9", "p12", "p14", "hypothesis" ]
% SZS status Unsatisfiable for 1607418936972487265707223 % SZS output start Proof for 1607418936972487265707223 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 49. (~(~predc(paul) | ~prede(paul) | ~predn(paul)) => ~predf(paul)) & ((~predc(paul) | ~prede(paul) | ~predn(paul)) => (~predb(paul) & ~predh(paul))) [input p5] 53. ~(~predk(mary) | ~predj(mary)) [input p9] 56. ~predk(paul) & ~predn(paul) [input p12] 58. ~predh(mary) <~> ~predk(mary) [input p14] 61. ~(! [X0] : (room(X0) => ~predh(X0)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 63. ~(! [X0] : (room(X0) => ~predh(X0)) & ! [X1] : (room(X1) => (paul = X1 | mary = X1)) & room(paul) & room(mary)) [rectify 61] 139. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 140. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 139] 144. (~predf(paul) | (~predc(paul) | ~prede(paul) | ~predn(paul))) & ((~predb(paul) & ~predh(paul)) | (predc(paul) & prede(paul) & predn(paul))) [ennf transformation 49] 145. (~predf(paul) | ~predc(paul) | ~prede(paul) | ~predn(paul)) & ((~predb(paul) & ~predh(paul)) | (predc(paul) & prede(paul) & predn(paul))) [flattening 144] 148. predk(mary) & predj(mary) [ennf transformation 53] 151. ? [X0] : (predh(X0) & room(X0)) | ? [X1] : ((paul != X1 & mary != X1) & room(X1)) | ~room(paul) | ~room(mary) [ennf transformation 63] 152. ? [X0] : (predh(X0) & room(X0)) | ? [X1] : (paul != X1 & mary != X1 & room(X1)) | ~room(paul) | ~room(mary) [flattening 151] 163. (predk(mary) | predh(mary)) & (~predk(mary) | ~predh(mary)) [nnf transformation 58] 164. ? [X0] : (predh(X0) & room(X0)) => (predh(sK1) & room(sK1)) [choice axiom] 165. ? [X1] : (paul != X1 & mary != X1 & room(X1)) => (paul != sK2 & mary != sK2 & room(sK2)) [choice axiom] 166. (predh(sK1) & room(sK1)) | (paul != sK2 & mary != sK2 & room(sK2)) | ~room(paul) | ~room(mary) [skolemisation 152,165,164] 247. room(mary) [cnf transformation 140] 248. room(paul) [cnf transformation 140] 249. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 140] 267. ~predh(paul) | predn(paul) [cnf transformation 145] 281. predk(mary) [cnf transformation 148] 291. ~predn(paul) [cnf transformation 56] 294. ~predk(mary) | ~predh(mary) [cnf transformation 163] 298. room(sK1) | room(sK2) | ~room(paul) | ~room(mary) [cnf transformation 166] 299. room(sK1) | mary != sK2 | ~room(paul) | ~room(mary) [cnf transformation 166] 300. room(sK1) | paul != sK2 | ~room(paul) | ~room(mary) [cnf transformation 166] 301. predh(sK1) | room(sK2) | ~room(paul) | ~room(mary) [cnf transformation 166] 302. predh(sK1) | mary != sK2 | ~room(paul) | ~room(mary) [cnf transformation 166] 303. predh(sK1) | paul != sK2 | ~room(paul) | ~room(mary) [cnf transformation 166] 322. 5 <=> predn(paul) [avatar definition] 372. 13 <=> predh(paul) [avatar definition] 374. ~predh(paul) <- (~13) [avatar component clause 372] 377. 5 | ~13 [avatar split clause 267,372,322] 383. 15 <=> predh(mary) [avatar definition] 385. ~predh(mary) <- (~15) [avatar component clause 383] 420. ~5 [avatar split clause 291,322] 422. ~predh(mary) [subsumption resolution 294,281] 423. ~15 [avatar split clause 422,383] 426. predh(sK1) | paul != sK2 | ~room(mary) [subsumption resolution 303,248] 427. predh(sK1) | paul != sK2 [subsumption resolution 426,247] 429. 22 <=> paul = sK2 [avatar definition] 431. paul != sK2 <- (~22) [avatar component clause 429] 433. 23 <=> predh(sK1) [avatar definition] 435. predh(sK1) <- (23) [avatar component clause 433] 436. ~22 | 23 [avatar split clause 427,433,429] 437. predh(sK1) | mary != sK2 | ~room(mary) [subsumption resolution 302,248] 438. predh(sK1) | mary != sK2 [subsumption resolution 437,247] 440. 24 <=> mary = sK2 [avatar definition] 442. mary != sK2 <- (~24) [avatar component clause 440] 443. ~24 | 23 [avatar split clause 438,433,440] 444. predh(sK1) | room(sK2) | ~room(mary) [subsumption resolution 301,248] 445. predh(sK1) | room(sK2) [subsumption resolution 444,247] 447. 25 <=> room(sK2) [avatar definition] 449. room(sK2) <- (25) [avatar component clause 447] 450. 25 | 23 [avatar split clause 445,433,447] 451. room(sK1) | paul != sK2 | ~room(mary) [subsumption resolution 300,248] 452. room(sK1) | paul != sK2 [subsumption resolution 451,247] 454. 26 <=> room(sK1) [avatar definition] 456. room(sK1) <- (26) [avatar component clause 454] 457. ~22 | 26 [avatar split clause 452,454,429] 458. room(sK1) | mary != sK2 | ~room(mary) [subsumption resolution 299,248] 459. room(sK1) | mary != sK2 [subsumption resolution 458,247] 460. ~24 | 26 [avatar split clause 459,454,440] 461. room(sK1) | room(sK2) | ~room(mary) [subsumption resolution 298,248] 462. room(sK1) | room(sK2) [subsumption resolution 461,247] 463. 25 | 26 [avatar split clause 462,454,447] 467. mary = sK2 | paul = sK2 <- (25) [resolution 249,449] 477. paul = sK2 <- (~24, 25) [subsumption resolution 467,442] 478. $false <- (~22, ~24, 25) [subsumption resolution 477,431] 479. 22 | 24 | ~25 [avatar contradiction clause 478] 483. mary = sK1 | paul = sK1 <- (26) [resolution 456,249] 485. 29 <=> paul = sK1 [avatar definition] 487. paul = sK1 <- (29) [avatar component clause 485] 489. 30 <=> mary = sK1 [avatar definition] 491. mary = sK1 <- (30) [avatar component clause 489] 492. 29 | 30 | ~26 [avatar split clause 483,454,489,485] 493. predh(paul) <- (23, 29) [backward demodulation 435,487] 495. $false <- (~13, 23, 29) [subsumption resolution 493,374] 496. 13 | ~23 | ~29 [avatar contradiction clause 495] 497. predh(mary) <- (23, 30) [backward demodulation 435,491] 499. $false <- (~15, 23, 30) [subsumption resolution 497,385] 500. 15 | ~23 | ~30 [avatar contradiction clause 499] 502. $false [avatar sat refutation 377,420,423,436,443,450,457,460,463,479,492,496,500] % SZS output end Proof for 1607418936972487265707223 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.323196
Janae, Earl, Issac are the only persons in the room. Everyone in the room plays video games if they has lived in exactly three countries. Everyone in the room collects historical artifacts related to ancient civilizations if they is an avid collector of autographed memorabilia from famous musicians. Everyone in the room does not collect historical artifacts related to ancient civilizations. Everyone in the room either does not enjoy salsa dancing or has lived in exactly three countries but not both only if they either is a skilled home brewer experimenting with craft beer recipes or is a wine connoisseur but not both. Everyone in the room either is a skilled home brewer experimenting with craft beer recipes or is a wine connoisseur but not both only if they is an avid collector of autographed memorabilia from famous musicians. Everyone in the room who drives a hybrid car, plays video games or enjoys windsurfing has a pet dog, hosts a popular podcast about emerging technologies and does not own a high-end gaming PC with custom-built components. Everyone in the room enjoys salsa dancing if they has a pet dog, hosts a popular podcast about emerging technologies and does not own a high-end gaming PC with custom-built components.
Issac enjoys salsa dancing.
entailment
room(janae)&room(earl)&room(issac)&(![X]:(room(X)=>(X='janae'|X='earl'|X='issac')))& (((maintains_a_large,_organic_vegetable_garden_year-round(janae))=>(![X]:(room(X)=>(practices_calligraphy(X)))))&((~(maintains_a_large,_organic_vegetable_garden_year-round(janae)))=>(((has_a_pet_dog(issac))|(does_not_own_a_high-end_gaming_PC_with_custom-built_components(issac))))))& (((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(issac))=>(~![X]:(room(X)=>(((enjoys_salsa_dancing(X))=>(does_not_collect_action_figures(X)))))))&((~(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(issac)))=>(![X]:(room(X)=>(((does_not_collect_action_figures(X))=>(((has_lived_in_exactly_three_countries(X))|(own_a_television(X))))))))))& ((?[X]:(room(X)&(has_a_pet_dog(X))))=>(![X]:(room(X)=>(((collects_luxury_watches(X))=>(owns_a_high-end_gaming_PC_with_custom-built_components(X)))))))& ((((collects_first_edition_books(earl))&(collects_historical_artifacts_related_to_ancient_civilizations(earl))))=>(owns_a_smartwatch(earl)))& ((![X]:(room(X)=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))|(does_not_enjoy_salsa_dancing(X))))))=>(![X]:(~room(X)=>(((does_not_enjoy_salsa_dancing(X))=>(enjoys_windsurfing(X)))))))& (does_enjoy_mountain_biking(issac))& ((?[X,Y]:(room(X)&room(Y)&(is_a_wine_connoisseur(X)&is_a_wine_connoisseur(Y))&(X!=Y))))& (![X]:(room(X)=>(((has_lived_in_exactly_three_countries(X))=>(plays_video_games(X))))))& (maintains_a_large,_organic_vegetable_garden_year-round(issac))& (does_not_collect_luxury_watches(janae))& (![X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))=>(collects_historical_artifacts_related_to_ancient_civilizations(X))))))& (![X]:(room(X)=>(does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))))& (![X]:(room(X)=>(((((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))<~>(is_a_wine_connoisseur(X))))<=(((does_not_enjoy_salsa_dancing(X))<~>(has_lived_in_exactly_three_countries(X))))))))& (![X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))<=(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))<~>(is_a_wine_connoisseur(X))))))))& (practices_calligraphy(janae))& (![X]:(room(X)=>(((((is_a_client_of_Meta(X))&(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))=>(does_not_own_a_television(X))))))& (![X]:(room(X)=>(((does_not_own_a_television(X))=>(~((does_not_host_a_popular_podcast_about_emerging_technologies(X))|(collects_luxury_watches(X))))))))& (![X]:(room(X)=>(((~((collects_luxury_watches(X))|(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))<=(~((does_not_host_a_popular_podcast_about_emerging_technologies(X))|(collects_luxury_watches(X))))))))& (collects_action_figures(issac))& (is_dedicated_to_sustainable_living_and_zero-waste_practices(earl))& (![X]:(~room(X)=>(((is_not_a_wine_connoisseur(X))|(is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))& (![X]:(room(X)=>(((((drives_a_hybrid_car(X))|(plays_video_games(X))|(enjoys_windsurfing(X))))=>(((has_a_pet_dog(X))&(hosts_a_popular_podcast_about_emerging_technologies(X))&(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))))))))& (![X]:(room(X)=>(((((has_a_pet_dog(X))&(hosts_a_popular_podcast_about_emerging_technologies(X))&(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))))=>(enjoys_salsa_dancing(X))))))& ((enjoys_salsa_dancing(earl))&(does_enjoy_mountain_biking(earl)))& (does_not_practice_calligraphy(issac))& (owns_a_high-end_gaming_PC_with_custom-built_components(earl))& (is_allergic_to_anything(janae))
room(janae)&room(earl)&room(issac)&(![X]:(room(X)=>(X='janae'|X='earl'|X='issac')))& enjoys_salsa_dancing(issac)
[ "p0", "p8", "p11", "p12", "p13", "p14", "p22", "p23", "hypothesis" ]
% SZS status Unsatisfiable for 3590974228736957468382898 % SZS output start Proof for 3590974228736957468382898 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 52. ! [X0] : (room(X0) => (predb(X0) => predo(X0))) [input p8] 55. ! [X0] : (room(X0) => (prede(X0) => predi(X0))) [input p11] 56. ! [X0] : (room(X0) => ~predi(X0)) [input p12] 57. ! [X0] : (room(X0) => ((~predx(X0) <~> predb(X0)) => (predy(X0) <~> predu(X0)))) [input p13] 58. ! [X0] : (room(X0) => ((predy(X0) <~> predu(X0)) => prede(X0))) [input p14] 66. ! [X0] : (room(X0) => ((predq(X0) | predo(X0) | predt(X0)) => (~predg(X0) & predd(X0) & predn(X0)))) [input p22] 67. ! [X0] : (room(X0) => ((~predg(X0) & predd(X0) & predn(X0)) => predx(X0))) [input p23] 72. ~(predx(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 77. ! [X0] : (room(X0) => ((predq(X0) | predo(X0)) => (~predg(X0) & predd(X0) & predn(X0)))) [pure predicate removal 66] 158. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 159. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 158] 166. ! [X0] : ((predo(X0) | ~predb(X0)) | ~room(X0)) [ennf transformation 52] 167. ! [X0] : (predo(X0) | ~predb(X0) | ~room(X0)) [flattening 166] 168. ! [X0] : ((predi(X0) | ~prede(X0)) | ~room(X0)) [ennf transformation 55] 169. ! [X0] : (predi(X0) | ~prede(X0) | ~room(X0)) [flattening 168] 170. ! [X0] : (~predi(X0) | ~room(X0)) [ennf transformation 56] 171. ! [X0] : (((predy(X0) <~> predu(X0)) | (~predx(X0) <=> predb(X0))) | ~room(X0)) [ennf transformation 57] 172. ! [X0] : ((predy(X0) <~> predu(X0)) | (~predx(X0) <=> predb(X0)) | ~room(X0)) [flattening 171] 173. ! [X0] : ((prede(X0) | (predy(X0) <=> predu(X0))) | ~room(X0)) [ennf transformation 58] 174. ! [X0] : (prede(X0) | (predy(X0) <=> predu(X0)) | ~room(X0)) [flattening 173] 179. ! [X0] : (((~predg(X0) & predd(X0) & predn(X0)) | (~predq(X0) & ~predo(X0))) | ~room(X0)) [ennf transformation 77] 180. ! [X0] : ((~predg(X0) & predd(X0) & predn(X0)) | (~predq(X0) & ~predo(X0)) | ~room(X0)) [flattening 179] 181. ! [X0] : ((predx(X0) | (predg(X0) | ~predd(X0) | ~predn(X0))) | ~room(X0)) [ennf transformation 67] 182. ! [X0] : (predx(X0) | predg(X0) | ~predd(X0) | ~predn(X0) | ~room(X0)) [flattening 181] 183. ~predx(fred) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 72] 184. ~predx(fred) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 183] 192. ! [X0] : (((~predu(X0) | ~predy(X0)) & (predu(X0) | predy(X0))) | ((~predx(X0) | ~predb(X0)) & (predb(X0) | predx(X0))) | ~room(X0)) [nnf transformation 172] 193. ! [X0] : (prede(X0) | ((predy(X0) | ~predu(X0)) & (predu(X0) | ~predy(X0))) | ~room(X0)) [nnf transformation 174] 194. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 195. ~predx(fred) | (fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 184,194] 276. room(mary) [cnf transformation 159] 277. room(paul) [cnf transformation 159] 278. room(fred) [cnf transformation 159] 279. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 159] 291. ~predb(X0) | predo(X0) | ~room(X0) [cnf transformation 167] 294. ~prede(X0) | predi(X0) | ~room(X0) [cnf transformation 169] 295. ~predi(X0) | ~room(X0) [cnf transformation 170] 296. ~room(X0) | predy(X0) | predb(X0) | predx(X0) | predu(X0) [cnf transformation 192] 298. ~predy(X0) | ~predu(X0) | predb(X0) | predx(X0) | ~room(X0) [cnf transformation 192] 300. ~predy(X0) | predu(X0) | prede(X0) | ~room(X0) [cnf transformation 193] 301. ~predu(X0) | predy(X0) | prede(X0) | ~room(X0) [cnf transformation 193] 307. ~predo(X0) | predn(X0) | ~room(X0) [cnf transformation 180] 309. ~predo(X0) | predd(X0) | ~room(X0) [cnf transformation 180] 311. ~predo(X0) | ~predg(X0) | ~room(X0) [cnf transformation 180] 313. ~predd(X0) | predg(X0) | predx(X0) | ~predn(X0) | ~room(X0) [cnf transformation 182] 317. ~predx(fred) | room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 195] 318. ~predx(fred) | mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 195] 319. ~predx(fred) | paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 195] 320. ~predx(fred) | fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 195] 326. 2 <=> predn(fred) [avatar definition] 328. predn(fred) <- (2) [avatar component clause 326] 330. 3 <=> predg(fred) [avatar definition] 363. ~predx(fred) | fred != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 320,278] 364. ~predx(fred) | fred != sK3 | ~room(mary) [subsumption resolution 363,277] 365. ~predx(fred) | fred != sK3 [subsumption resolution 364,276] 367. 11 <=> fred = sK3 [avatar definition] 369. fred != sK3 <- (~11) [avatar component clause 367] 371. 12 <=> predx(fred) [avatar definition] 373. ~predx(fred) <- (~12) [avatar component clause 371] 374. ~11 | ~12 [avatar split clause 365,371,367] 375. ~predx(fred) | paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 319,278] 376. ~predx(fred) | paul != sK3 | ~room(mary) [subsumption resolution 375,277] 377. ~predx(fred) | paul != sK3 [subsumption resolution 376,276] 379. 13 <=> paul = sK3 [avatar definition] 381. paul != sK3 <- (~13) [avatar component clause 379] 382. ~13 | ~12 [avatar split clause 377,371,379] 383. ~predx(fred) | mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 318,278] 384. ~predx(fred) | mary != sK3 | ~room(mary) [subsumption resolution 383,277] 385. ~predx(fred) | mary != sK3 [subsumption resolution 384,276] 387. 14 <=> mary = sK3 [avatar definition] 389. mary != sK3 <- (~14) [avatar component clause 387] 390. ~14 | ~12 [avatar split clause 385,371,387] 391. ~predx(fred) | room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 317,278] 392. ~predx(fred) | room(sK3) | ~room(mary) [subsumption resolution 391,277] 393. ~predx(fred) | room(sK3) [subsumption resolution 392,276] 395. 15 <=> room(sK3) [avatar definition] 397. room(sK3) <- (15) [avatar component clause 395] 398. 15 | ~12 [avatar split clause 393,371,395] 475. predy(fred) | predb(fred) | predx(fred) | predu(fred) [resolution 296,278] 497. 24 <=> predu(fred) [avatar definition] 499. predu(fred) <- (24) [avatar component clause 497] 501. 25 <=> predb(fred) [avatar definition] 503. predb(fred) <- (25) [avatar component clause 501] 505. 26 <=> predy(fred) [avatar definition] 507. predy(fred) <- (26) [avatar component clause 505] 509. 24 | 12 | 25 | 26 [avatar split clause 475,505,501,371,497] 535. predy(fred) | prede(fred) | ~room(fred) <- (24) [resolution 499,301] 536. predy(fred) | prede(fred) <- (24) [subsumption resolution 535,278] 538. 32 <=> prede(fred) [avatar definition] 540. prede(fred) <- (32) [avatar component clause 538] 541. 32 | 26 | ~24 [avatar split clause 536,497,505,538] 656. paul = sK3 | mary = sK3 | fred = sK3 <- (15) [resolution 397,279] 658. mary = sK3 | fred = sK3 <- (~13, 15) [subsumption resolution 656,381] 659. fred = sK3 <- (~13, ~14, 15) [subsumption resolution 658,389] 660. $false <- (~11, ~13, ~14, 15) [subsumption resolution 659,369] 661. 11 | 13 | 14 | ~15 [avatar contradiction clause 660] 690. ~predu(fred) | predb(fred) | predx(fred) | ~room(fred) <- (26) [resolution 507,298] 691. predu(fred) | prede(fred) | ~room(fred) <- (26) [resolution 507,300] 711. predi(fred) | ~room(fred) <- (32) [resolution 540,294] 712. predi(fred) <- (32) [subsumption resolution 711,278] 722. ~room(fred) <- (32) [resolution 712,295] 723. $false <- (32) [subsumption resolution 722,278] 724. ~32 [avatar contradiction clause 723] 725. predu(fred) | prede(fred) <- (26) [subsumption resolution 691,278] 726. 32 | 24 | ~26 [avatar split clause 725,505,497,538] 727. ~predu(fred) | predb(fred) | ~room(fred) <- (~12, 26) [subsumption resolution 690,373] 728. ~predu(fred) | predb(fred) <- (~12, 26) [subsumption resolution 727,278] 729. 25 | ~24 | 12 | ~26 [avatar split clause 728,505,371,497,501] 732. predo(fred) | ~room(fred) <- (25) [resolution 503,291] 733. predo(fred) <- (25) [subsumption resolution 732,278] 750. ~predg(fred) | ~room(fred) <- (25) [resolution 733,311] 751. predd(fred) | ~room(fred) <- (25) [resolution 733,309] 752. predn(fred) | ~room(fred) <- (25) [resolution 733,307] 753. predd(fred) <- (25) [subsumption resolution 751,278] 754. predn(fred) <- (25) [subsumption resolution 752,278] 755. 2 | ~25 [avatar split clause 754,501,326] 767. predg(fred) | predx(fred) | ~predn(fred) | ~room(fred) <- (25) [resolution 753,313] 774. predg(fred) | ~predn(fred) | ~room(fred) <- (~12, 25) [subsumption resolution 767,373] 775. predg(fred) | ~room(fred) <- (2, ~12, 25) [subsumption resolution 774,328] 776. predg(fred) <- (2, ~12, 25) [subsumption resolution 775,278] 777. 3 | ~2 | 12 | ~25 [avatar split clause 776,501,371,326,330] 778. ~predg(fred) <- (25) [subsumption resolution 750,278] 779. ~3 | ~25 [avatar split clause 778,501,330] 780. $false [avatar sat refutation 374,382,390,398,509,541,661,724,726,729,755,777,779] % SZS output end Proof for 3590974228736957468382898 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.142547
Morris, Kermit are the only persons in the room. 'It is not the case that 'Morris is not old'' if 'Kermit is not a funny kind patient old happy person'. 'If someone is older than John then he/she is not quiet and vice versa' unless 'it is not the case that 'someone in the room is a kind person''. 'Morris and Kermit are wise quiet persons' if 'Kermit is older than John' and vice versa. If 'Morris either is a kind person or is older than Antonia but not both' then 'everyone in the room who is not a funny person or is a generous quiet person or both is not kind' otherwise 'everyone in the room who is a humble tall generous person is brave'. Kermit is kind. Everyone in the room is not a kind person if they is not a patient person. Everyone in the room is a kind curious tall calm person if they is not a quiet strong brave person. Only one person in the room is older than John. Everyone in the room is quieter than Norma. Morris and Kermit are not a happy persons. Everyone in the room is richer than Norma if they is not kind and vice versa.
Morris is tall.
entailment
room(morris)&room(kermit)&(![X]:(room(X)=>(X='morris'|X='kermit')))& ((~(funny(kermit)&kind(kermit)&patient(kermit)&old(kermit)&happy(kermit)&person(kermit)))=>(~(~old(morris))))& (~(~(?[X]:(room(X)&(kind(X)&person(X)))))=>((![X]:((older(john,X))<=>(~quiet(X))))))& ((older(john,kermit))<=>(wise(morris)&quiet(morris)&person(morris)&wise(kermit)&quiet(kermit)&person(kermit)))& (((((kind(morris)&person(morris))<~>(older(antonia,morris))))=>(![X]:(room(X)=>(((((~(funny(X)&person(X)))|(generous(X)&quiet(X)&person(X))))=>(~kind(X)))))))&((~(((kind(morris)&person(morris))<~>(older(antonia,morris)))))=>(![X]:(room(X)=>(((humble(X)&tall(X)&generous(X)&person(X))=>(brave(X))))))))& (kind(kermit))& (![X]:(room(X)=>(((~(patient(X)&person(X)))=>(~(kind(X)&person(X)))))))& (![X]:(room(X)=>(((~(quiet(X)&strong(X)&brave(X)&person(X)))=>(kind(X)&curious(X)&tall(X)&calm(X)&person(X))))))& (((?[X]:(room(X)&older(john,X)))&(![X,Y]:((room(X)&room(Y)&(older(john,X))&(older(john,Y)))=>(X=Y)))))& (![X]:(room(X)=>(quieter(norma,X))))& (~(happy(morris)&person(morris))&~(happy(kermit)&person(kermit)))& (![X]:(room(X)=>(((richer(norma,X))<=>(~kind(X))))))
room(morris)&room(kermit)&(![X]:(room(X)=>(X='morris'|X='kermit')))& tall(morris)
[ "p0", "p2", "p3", "p5", "p7", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 4743739308422921464302409 % SZS output start Proof for 4743739308422921464302409 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 46. ~~? [X0] : (person(X0) & kind(X0) & room(X0)) => ! [X0] : (older(john,X0) <=> ~quiet(X0)) [input p2] 47. older(john,paul) <=> (person(paul) & quiet(paul) & wise(paul) & person(mary) & quiet(mary) & wise(mary)) [input p3] 49. kind(paul) [input p5] 51. ! [X0] : (room(X0) => (~(person(X0) & brave(X0) & strong(X0) & quiet(X0)) => (person(X0) & calm(X0) & tall(X0) & curious(X0) & kind(X0)))) [input p7] 52. ! [X0,X1] : ((older(john,X1) & older(john,X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (older(john,X0) & room(X0)) [input p8] 56. ~(tall(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 57. ~~? [X0] : (person(X0) & kind(X0) & room(X0)) => ! [X1] : (older(john,X1) <=> ~quiet(X1)) [rectify 46] 58. ? [X0] : (person(X0) & kind(X0) & room(X0)) => ! [X1] : (older(john,X1) <=> ~quiet(X1)) [flattening 57] 60. ! [X0,X1] : ((older(john,X1) & older(john,X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (older(john,X2) & room(X2)) [rectify 52] 61. ! [X0] : (room(X0) => (~(person(X0) & brave(X0) & strong(X0) & quiet(X0)) => (person(X0) & tall(X0) & curious(X0) & kind(X0)))) [pure predicate removal 51] 62. ! [X0] : (room(X0) => (~(person(X0) & brave(X0) & strong(X0) & quiet(X0)) => (person(X0) & tall(X0) & kind(X0)))) [pure predicate removal 61] 63. ! [X0] : (room(X0) => (~(person(X0) & brave(X0) & quiet(X0)) => (person(X0) & tall(X0) & kind(X0)))) [pure predicate removal 62] 65. ! [X0] : (room(X0) => (~(person(X0) & quiet(X0)) => (person(X0) & tall(X0) & kind(X0)))) [pure predicate removal 63] 143. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 144. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 143] 146. ! [X1] : (older(john,X1) <=> ~quiet(X1)) | ! [X0] : (~person(X0) | ~kind(X0) | ~room(X0)) [ennf transformation 58] 151. ! [X0] : (((person(X0) & tall(X0) & kind(X0)) | (person(X0) & quiet(X0))) | ~room(X0)) [ennf transformation 65] 152. ! [X0] : ((person(X0) & tall(X0) & kind(X0)) | (person(X0) & quiet(X0)) | ~room(X0)) [flattening 151] 153. ! [X0,X1] : (X0 = X1 | (~older(john,X1) | ~older(john,X0) | ~room(X1) | ~room(X0))) & ? [X2] : (older(john,X2) & room(X2)) [ennf transformation 60] 154. ! [X0,X1] : (X0 = X1 | ~older(john,X1) | ~older(john,X0) | ~room(X1) | ~room(X0)) & ? [X2] : (older(john,X2) & room(X2)) [flattening 153] 158. ~tall(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 56] 159. ~tall(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 158] 161. ! [X1] : ((older(john,X1) | quiet(X1)) & (~quiet(X1) | ~older(john,X1))) | ! [X0] : (~person(X0) | ~kind(X0) | ~room(X0)) [nnf transformation 146] 162. ! [X0] : ((older(john,X0) | quiet(X0)) & (~quiet(X0) | ~older(john,X0))) | ! [X1] : (~person(X1) | ~kind(X1) | ~room(X1)) [rectify 161] 163. (older(john,paul) | (~person(paul) | ~quiet(paul) | ~wise(paul) | ~person(mary) | ~quiet(mary) | ~wise(mary))) & ((person(paul) & quiet(paul) & wise(paul) & person(mary) & quiet(mary) & wise(mary)) | ~older(john,paul)) [nnf transformation 47] 164. (older(john,paul) | ~person(paul) | ~quiet(paul) | ~wise(paul) | ~person(mary) | ~quiet(mary) | ~wise(mary)) & ((person(paul) & quiet(paul) & wise(paul) & person(mary) & quiet(mary) & wise(mary)) | ~older(john,paul)) [flattening 163] 168. ? [X2] : (older(john,X2) & room(X2)) => (older(john,sK0) & room(sK0)) [choice axiom] 169. ! [X0,X1] : (X0 = X1 | ~older(john,X1) | ~older(john,X0) | ~room(X1) | ~room(X0)) & (older(john,sK0) & room(sK0)) [skolemisation 154,168] 171. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 172. ~tall(mary) | (paul != sK1 & mary != sK1 & room(sK1)) | ~room(paul) | ~room(mary) [skolemisation 159,171] 253. room(mary) [cnf transformation 144] 254. room(paul) [cnf transformation 144] 255. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 144] 260. ~quiet(X0) | ~older(john,X0) | ~person(X1) | ~kind(X1) | ~room(X1) [cnf transformation 162] 266. quiet(paul) | ~older(john,paul) [cnf transformation 164] 272. kind(paul) [cnf transformation 49] 276. ~room(X0) | quiet(X0) | tall(X0) [cnf transformation 152] 279. person(X0) | person(X0) | ~room(X0) [cnf transformation 152] 280. room(sK0) [cnf transformation 169] 281. older(john,sK0) [cnf transformation 169] 288. ~tall(mary) | room(sK1) | ~room(paul) | ~room(mary) [cnf transformation 172] 289. ~tall(mary) | mary != sK1 | ~room(paul) | ~room(mary) [cnf transformation 172] 290. ~tall(mary) | paul != sK1 | ~room(paul) | ~room(mary) [cnf transformation 172] 291. ~room(X0) | person(X0) [duplicate literal removal 279] 312. 5 <=> kind(paul) [avatar definition] 314. kind(paul) <- (5) [avatar component clause 312] 317. 6 <=> ! [X1] : (~person(X1) | ~room(X1) | ~kind(X1)) [avatar definition] 318. ~person(X1) | ~room(X1) | ~kind(X1) <- (6) [avatar component clause 317] 324. 8 <=> ! [X0] : (~quiet(X0) | ~older(john,X0)) [avatar definition] 325. ~older(john,X0) | ~quiet(X0) <- (8) [avatar component clause 324] 326. 6 | 8 [avatar split clause 260,324,317] 344. 13 <=> quiet(paul) [avatar definition] 345. quiet(paul) <- (13) [avatar component clause 344] 348. 14 <=> older(john,paul) [avatar definition] 349. ~older(john,paul) <- (~14) [avatar component clause 348] 353. ~14 | 13 [avatar split clause 266,344,348] 372. 5 [avatar split clause 272,312] 379. ~tall(mary) | paul != sK1 | ~room(mary) [subsumption resolution 290,254] 380. ~tall(mary) | paul != sK1 [subsumption resolution 379,253] 382. 19 <=> paul = sK1 [avatar definition] 384. paul != sK1 <- (~19) [avatar component clause 382] 386. 20 <=> tall(mary) [avatar definition] 389. ~19 | ~20 [avatar split clause 380,386,382] 390. ~tall(mary) | mary != sK1 | ~room(mary) [subsumption resolution 289,254] 391. ~tall(mary) | mary != sK1 [subsumption resolution 390,253] 393. 21 <=> mary = sK1 [avatar definition] 395. mary != sK1 <- (~21) [avatar component clause 393] 396. ~21 | ~20 [avatar split clause 391,386,393] 397. ~tall(mary) | room(sK1) | ~room(mary) [subsumption resolution 288,254] 398. ~tall(mary) | room(sK1) [subsumption resolution 397,253] 400. 22 <=> room(sK1) [avatar definition] 402. room(sK1) <- (22) [avatar component clause 400] 403. 22 | ~20 [avatar split clause 398,386,400] 404. ~kind(X1) | ~room(X1) <- (6) [subsumption resolution 318,291] 414. ~room(paul) <- (5, 6) [resolution 404,314] 415. $false <- (5, 6) [subsumption resolution 414,254] 416. ~5 | ~6 [avatar contradiction clause 415] 419. ~quiet(sK0) <- (8) [resolution 325,281] 430. quiet(sK0) | tall(sK0) [resolution 276,280] 433. tall(sK0) <- (8) [subsumption resolution 430,419] 456. mary = sK0 | paul = sK0 [resolution 255,280] 458. 26 <=> paul = sK0 [avatar definition] 460. paul = sK0 <- (26) [avatar component clause 458] 462. 27 <=> mary = sK0 [avatar definition] 464. mary = sK0 <- (27) [avatar component clause 462] 465. 26 | 27 [avatar split clause 456,462,458] 468. ~quiet(paul) <- (8, 26) [backward demodulation 419,460] 471. older(john,paul) <- (26) [backward demodulation 281,460] 472. $false <- (8, 13, 26) [subsumption resolution 468,345] 473. ~8 | ~13 | ~26 [avatar contradiction clause 472] 474. $false <- (~14, 26) [subsumption resolution 471,349] 475. 14 | ~26 [avatar contradiction clause 474] 476. tall(mary) <- (8, 27) [backward demodulation 433,464] 488. 20 | ~8 | ~27 [avatar split clause 476,462,324,386] 489. mary = sK1 | paul = sK1 <- (22) [resolution 402,255] 493. paul = sK1 <- (~21, 22) [subsumption resolution 489,395] 494. $false <- (~19, ~21, 22) [subsumption resolution 493,384] 495. 19 | 21 | ~22 [avatar contradiction clause 494] 496. $false [avatar sat refutation 326,353,372,389,396,403,416,465,473,475,488,495] % SZS output end Proof for 4743739308422921464302409 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.043563
Juan, Earl, Jeffrey, Lawrence, Stuart are the only persons in the room. “Everyone anywhere is not a old person” unless “everyone outside the room is not tall”. Either “not everyone in the room is quiet” or “everyone in the room is quiet” but not both. Either “everyone in the room is quiet” or “everyone in the room is old” but not both. “Everyone in the room is not old and is old” if “everyone outside the room is a quiet person” and vice versa. Everyone in the room is quiet. Everyone outside the room is not tall, is not a kind person or is a old quiet person only if they is a tall person. Everyone in the room is old, is a quiet person or is tall. If someone is a old person then he/she is a kind person. Earl is the least rich in the room. Not everyone in the room is kind. Not everyone in the room is not quiet.
Earl is old.
neutral
room(juan)&room(earl)&room(jeffrey)&room(lawrence)&room(stuart)&(![X]:(room(X)=>(X='juan'|X='earl'|X='jeffrey'|X='lawrence'|X='stuart')))& (~(![X]:(~room(X)=>(~tall(X))))=>(![X]:(anywhere(X)=>(~(old(X)&person(X))))))& ((~![X]:(room(X)=>(quiet(X))))<~>(![X]:(room(X)=>(quiet(X)))))& ((![X]:(room(X)=>(quiet(X))))<~>(![X]:(room(X)=>(old(X)))))& ((![X]:(~room(X)=>(quiet(X)&person(X))))<=>(![X]:(room(X)=>(((~old(X))&(old(X)))))))& (![X]:(room(X)=>(quiet(X))))& (![X]:(~room(X)=>(((tall(X)&person(X))<=(((~tall(X))|(~(kind(X)&person(X)))|(old(X)&quiet(X)&person(X))))))))& (![X]:(room(X)=>(((old(X))|(quiet(X)&person(X))|(tall(X))))))& ((![X]:((old(X)&person(X))=>(kind(X)&person(X)))))& (![X]:((room(X)&(X!=earl))=>richer(earl,X)))& (~![X]:(room(X)=>(kind(X))))& (~![X]:(room(X)=>(~quiet(X))))
room(juan)&room(earl)&room(jeffrey)&room(lawrence)&room(stuart)&(![X]:(room(X)=>(X='juan'|X='earl'|X='jeffrey'|X='lawrence'|X='stuart')))& old(earl)
[]
null
0.677538
Ebony, Jody, Charlotte are the only persons in the room. Everyone in the room is a happy person. Everyone in the room is not a kind person. Everyone in the room is not a creative person. Everyone in the room is a wise person. Everyone in the room is a strong person. Ebony is the least old in the room. Everyone in the room is a generous person. No strong person is tall. Everyone in the room is quiet. Ebony who is generous is a creative person or is not a curious person or both. Ebony who is a happy person is not creative and is a brave person. Everyone in the room is wise.
Ebony is kind.
contradiction
room(ebony)&room(jody)&room(charlotte)&(![X]:(room(X)=>(X='ebony'|X='jody'|X='charlotte')))& (![X]:(room(X)=>(happy(X)&person(X))))& (![X]:(room(X)=>(~(kind(X)&person(X)))))& (![X]:(room(X)=>(~(creative(X)&person(X)))))& (![X]:(room(X)=>(wise(X)&person(X))))& (![X]:(room(X)=>(strong(X)&person(X))))& (![X]:((room(X)&(X!=ebony))=>older(ebony,X)))& (![X]:(room(X)=>(generous(X)&person(X))))& (~?[X]:(strong(X)=>tall(X)))& (![X]:(room(X)=>(quiet(X))))& ((generous(ebony))&(((creative(ebony)&person(ebony))|(~(curious(ebony)&person(ebony))))))& ((happy(ebony)&person(ebony))&(((~creative(ebony))&(brave(ebony)&person(ebony)))))& (![X]:(room(X)=>(wise(X))))
room(ebony)&room(jody)&room(charlotte)&(![X]:(room(X)=>(X='ebony'|X='jody'|X='charlotte')))& kind(ebony)
[ "p0", "p1", "p2", "hypothesis" ]
% SZS status Unsatisfiable for 602146756866002794492389 % SZS output start Proof for 602146756866002794492389 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. ! [X0] : (room(X0) => (person(X0) & happy(X0))) [input p1] 46. ! [X0] : (room(X0) => ~(person(X0) & kind(X0))) [input p2] 57. kind(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 69. ! [X0] : (room(X0) => person(X0)) [pure predicate removal 45] 143. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 144. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 143] 145. ! [X0] : (person(X0) | ~room(X0)) [ennf transformation 69] 146. ! [X0] : ((~person(X0) | ~kind(X0)) | ~room(X0)) [ennf transformation 46] 147. ! [X0] : (~person(X0) | ~kind(X0) | ~room(X0)) [flattening 146] 154. kind(mary) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 57] 155. kind(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 154] 237. room(mary) [cnf transformation 144] 241. ~room(X0) | person(X0) [cnf transformation 145] 242. ~person(X0) | ~kind(X0) | ~room(X0) [cnf transformation 147] 254. kind(mary) [cnf transformation 155] 255. ~kind(X0) | ~room(X0) [subsumption resolution 242,241] 262. ~room(mary) [resolution 255,254] 263. $false [subsumption resolution 262,237] % SZS output end Proof for 602146756866002794492389 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.033 s % ------------------------------ % ------------------------------
0.278262
Kristopher, Sylvia, Nancy are the only persons in the room. Either “everyone in the room neither does not practice kickboxing nor does not collect rare and antique scientific instruments” or “Kristopher does not enjoy snowboarding” but not both. Kristopher is not an amateur astronomer who builds and uses custom telescopes. If someone has lived in exactly three countries then he/she is not an expert in identifying and foraging wild edible plants and vice versa. Everyone anywhere does not collect antique jewelry. Kristopher does not regularly contributes to tech forums and online communities, does not enjoy stargazing and does not collect rare and antique scientific instruments. If someone either is not an expert in identifying and foraging wild edible plants or does not practice kickboxing but not both then he/she does not practice kickboxing and vice versa. Everyone in the room does not practice kickboxing. Kristopher neither does not read mystery novels nor is not a client of LVMH. Kristopher does not enjoy stargazing. Kristopher either is not an amateur astronomer who builds and uses custom telescopes or does not read mystery novels but not both.
Kristopher enjoys snowboarding.
contradiction
room(kristopher)&room(sylvia)&room(nancy)&(![X]:(room(X)=>(X='kristopher'|X='sylvia'|X='nancy')))& ((![X]:(room(X)=>(~((does_not_practice_kickboxing(X))|(does_not_collect_rare_and_antique_scientific_instruments(X))))))<~>(does_not_enjoy_snowboarding(kristopher)))& (is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(kristopher))& ((![X]:((has_lived_in_exactly_three_countries(X))<=>(is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X)))))& (![X]:(anywhere(X)=>(does_not_collect_antique_jewelry(X))))& (((does_not_regularly_contributes_to_tech_forums_and_online_communities(kristopher))&(does_not_enjoy_stargazing(kristopher))&(does_not_collect_rare_and_antique_scientific_instruments(kristopher))))& ((![X]:((((is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))<~>(does_not_practice_kickboxing(X))))<=>(does_not_practice_kickboxing(X)))))& (![X]:(room(X)=>(does_not_practice_kickboxing(X))))& (~((does_not_read_mystery_novels(kristopher))|(is_not_a_client_of_LVMH(kristopher))))& (does_not_enjoy_stargazing(kristopher))& (((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(kristopher))<~>(does_not_read_mystery_novels(kristopher))))
room(kristopher)&room(sylvia)&room(nancy)&(![X]:(room(X)=>(X='kristopher'|X='sylvia'|X='nancy')))& enjoys_snowboarding(kristopher)
[ "p0", "p1", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 471023000545437068267500 % SZS output start Proof for 471023000545437068267500 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. ! [X0] : (room(X0) => ~(~predc(X0) | ~predj(X0))) <~> ~predb(mary) [input p1] 51. ! [X0] : (room(X0) => ~predj(X0)) [input p7] 55. predb(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 133. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 134. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 133] 135. ! [X0] : ((predc(X0) & predj(X0)) | ~room(X0)) <~> ~predb(mary) [ennf transformation 45] 136. ! [X0] : (~predj(X0) | ~room(X0)) [ennf transformation 51] 138. predb(mary) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 55] 139. predb(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 138] 141. (predb(mary) | ? [X0] : ((~predc(X0) | ~predj(X0)) & room(X0))) & (~predb(mary) | ! [X0] : ((predc(X0) & predj(X0)) | ~room(X0))) [nnf transformation 135] 142. (predb(mary) | ? [X0] : ((~predc(X0) | ~predj(X0)) & room(X0))) & (~predb(mary) | ! [X1] : ((predc(X1) & predj(X1)) | ~room(X1))) [rectify 141] 143. ? [X0] : ((~predc(X0) | ~predj(X0)) & room(X0)) => ((~predc(sK0) | ~predj(sK0)) & room(sK0)) [choice axiom] 144. (predb(mary) | ((~predc(sK0) | ~predj(sK0)) & room(sK0))) & (~predb(mary) | ! [X1] : ((predc(X1) & predj(X1)) | ~room(X1))) [skolemisation 142,143] 227. room(mary) [cnf transformation 134] 231. ~predb(mary) | predj(X1) | ~room(X1) [cnf transformation 144] 241. ~predj(X0) | ~room(X0) [cnf transformation 136] 249. predb(mary) [cnf transformation 139] 261. 3 <=> predb(mary) [avatar definition] 275. 6 <=> ! [X1] : (predj(X1) | ~room(X1)) [avatar definition] 276. predj(X1) | ~room(X1) <- (6) [avatar component clause 275] 277. 6 | ~3 [avatar split clause 231,261,275] 279. 3 [avatar split clause 249,261] 280. ~room(X1) <- (6) [subsumption resolution 276,241] 281. $false <- (6) [resolution 280,227] 286. ~6 [avatar contradiction clause 281] 287. $false [avatar sat refutation 277,279,286] % SZS output end Proof for 471023000545437068267500 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.006917
Jerry, Alissa, Donald are the only persons in the room. Everyone outside the room collect rare sneakers if they is a dedicated volunteer for local community service projects if at least one person in the room is a certified yoga instructor teaching classes weekly. Everyone in the room does not enjoy trail running if and only if they is a cybersecurity expert. Everyone outside the room collect rare sneakers if they is a dedicated volunteer for local community service projects. More than one person in the room is a certified yoga instructor teaching classes weekly. Everyone in the room who is a certified yoga instructor teaching classes weekly trains for and competes in international triathlons. Jerry is dedicated to sustainable living and zero-waste practices. At least one person in the room is a certified yoga instructor teaching classes weekly. Alissa collect rare sneakers. If someone regularly contributes to tech forums and online communities then he/she is a cybersecurity expert and vice versa. If someone participates in citizen science projects related to wildlife monitoring or enjoys deep-sea diving and exploring underwater caves or both then he/she participates in citizen science projects related to wildlife monitoring and is dedicated to sustainable living and zero-waste practices and vice versa. Donald regularly contributes to tech forums and online communities. Everyone in the room who enjoys coding in Python participates in citizen science projects related to wildlife monitoring. Everyone in the room participates in citizen science projects related to wildlife monitoring if they does not enjoy coding in Python and vice versa. Alissa is a certified yoga instructor teaching classes weekly. Everyone anywhere neither is a cybersecurity expert nor is dedicated to sustainable living and zero-waste practices only if they neither collect rare sneakers nor is a certified yoga instructor teaching classes weekly. If someone is a certified yoga instructor teaching classes weekly then he/she trains for and competes in international triathlons or enjoys deep-sea diving and exploring underwater caves or both. Not everyone in the room enjoys deep-sea diving and exploring underwater caves or is dedicated to sustainable living and zero-waste practices or both only if they collect rare sneakers. Donald enjoys deep-sea diving and exploring underwater caves or is dedicated to sustainable living and zero-waste practices or both. If someone enjoys deep-sea diving and exploring underwater caves or regularly contributes to tech forums and online communities or both then he/she is a cybersecurity expert. Donald is dedicated to sustainable living and zero-waste practices. At least one person in the room trains for and competes in international triathlons. Jerry trains for and competes in international triathlons.
Alissa neither trains for and competes in international triathlons nor participates in citizen science projects related to wildlife monitoring.
contradiction
room(jerry)&room(alissa)&room(donald)&(![X]:(room(X)=>(X='jerry'|X='alissa'|X='donald')))& ((((?[X]:(room(X)&is_a_certified_yoga_instructor_teaching_classes_weekly(X)))))=>(![X]:(~room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(collect_rare_sneakers(X)))))))& (![X]:(room(X)=>(((does_not_enjoy_trail_running(X))<=>(is_a_cybersecurity_expert(X))))))& (![X]:(~room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(collect_rare_sneakers(X))))))& ((?[X,Y]:(room(X)&room(Y)&(is_a_certified_yoga_instructor_teaching_classes_weekly(X)&is_a_certified_yoga_instructor_teaching_classes_weekly(Y))&(X!=Y))))& (![X]:(room(X)=>(((is_a_certified_yoga_instructor_teaching_classes_weekly(X))=>(trains_for_and_competes_in_international_triathlons(X))))))& (is_dedicated_to_sustainable_living_and_zero-waste_practices(jerry))& (((?[X]:(room(X)&is_a_certified_yoga_instructor_teaching_classes_weekly(X)))))& (collect_rare_sneakers(alissa))& ((![X]:((regularly_contributes_to_tech_forums_and_online_communities(X))<=>(is_a_cybersecurity_expert(X)))))& ((![X]:((((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))<=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))&(is_dedicated_to_sustainable_living_and_zero-waste_practices(X)))))))& (regularly_contributes_to_tech_forums_and_online_communities(donald))& (![X]:(room(X)=>(((enjoys_coding_in_Python(X))=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))& (![X]:(room(X)=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))<=>(does_not_enjoy_coding_in_Python(X))))))& (is_a_certified_yoga_instructor_teaching_classes_weekly(alissa))& (![X]:(anywhere(X)=>(((~((collect_rare_sneakers(X))|(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))<=(~((is_a_cybersecurity_expert(X))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))))& ((![X]:((is_a_certified_yoga_instructor_teaching_classes_weekly(X))=>(((trains_for_and_competes_in_international_triathlons(X))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(X)))))))& (~![X]:(room(X)=>(((collect_rare_sneakers(X))<=(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))))& (((enjoys_deep-sea_diving_and_exploring_underwater_caves(donald))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(donald))))& ((![X]:((((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))|(regularly_contributes_to_tech_forums_and_online_communities(X))))=>(is_a_cybersecurity_expert(X)))))& (is_dedicated_to_sustainable_living_and_zero-waste_practices(donald))& (((?[X]:(room(X)&trains_for_and_competes_in_international_triathlons(X)))))& (trains_for_and_competes_in_international_triathlons(jerry))
room(jerry)&room(alissa)&room(donald)&(![X]:(room(X)=>(X='jerry'|X='alissa'|X='donald')))& ~((trains_for_and_competes_in_international_triathlons(alissa))|(participates_in_citizen_science_projects_related_to_wildlife_monitoring(alissa)))
[ "p0", "p12", "p13", "hypothesis" ]
% SZS status Unsatisfiable for 8037383333085168375169396 % SZS output start Proof for 8037383333085168375169396 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 56. ! [X0] : (room(X0) => (predc(X0) => predf(X0))) [input p12] 57. ! [X0] : (room(X0) => (predf(X0) <=> ~predc(X0))) [input p13] 67. ~(predf(paul) | predj(paul)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 142. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 143. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 142] 147. ! [X0] : ((predf(X0) | ~predc(X0)) | ~room(X0)) [ennf transformation 56] 148. ! [X0] : (predf(X0) | ~predc(X0) | ~room(X0)) [flattening 147] 149. ! [X0] : ((predf(X0) <=> ~predc(X0)) | ~room(X0)) [ennf transformation 57] 157. (~predf(paul) & ~predj(paul)) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 67] 158. ~predf(paul) & ~predj(paul) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 157] 168. ! [X0] : (((predf(X0) | predc(X0)) & (~predc(X0) | ~predf(X0))) | ~room(X0)) [nnf transformation 149] 255. room(paul) [cnf transformation 143] 278. predf(X0) | ~predc(X0) | ~room(X0) [cnf transformation 148] 280. predf(X0) | predc(X0) | ~room(X0) [cnf transformation 168] 300. ~predf(paul) [cnf transformation 158] 301. ~room(X0) | predf(X0) [subsumption resolution 280,278] 310. predf(paul) [resolution 301,255] 317. $false [subsumption resolution 310,300] % SZS output end Proof for 8037383333085168375169396 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.045797
Herman is the only person in the room. “Everyone anywhere practices zumba if and only if they does not create bespoke furniture pieces from reclaimed wood” if “someone in the room practices archery”. If “everyone in the room does not train for and competes in international triathlons or practices zumba” then “everyone anywhere either composes and performs experimental electronic music or is a cybersecurity expert but not both if they does not train for and competes in international triathlons”. “Herman does not host themed dinner parties featuring gourmet home-cooked meals and enjoys wildlife photography” unless “Herman practices kickboxing”. Herman who either competes in national level swimming championships or is passionate about collecting and restoring classic cars but not both has a saltwater aquarium. At least one person in the room practices kickboxing. Everyone in the room enjoys wildlife photography if they uses an ios phone. If someone is a cybersecurity expert then he/she collects foreign coins. Not everyone in the room hosts themed dinner parties featuring gourmet home-cooked meals, has a saltwater aquarium and creates bespoke furniture pieces from reclaimed wood if and only if they composes and performs experimental electronic music. Everyone in the room does not enjoy wildlife photography if they composes and performs experimental electronic music. At least one person in the room enjoys bird watching. Everyone in the room who does not practice and performs acrobatic dance routines or owns an Android phone or both does not have a saltwater aquarium. Everyone outside the room can play the guitar only if they hosts themed dinner parties featuring gourmet home-cooked meals. Herman collects foreign coins.
It is not the case that “more than one person in the room owns an Android phone”.
entailment
room(herman)&(![X]:(room(X)=>(X='herman')))& ((?[X]:(room(X)&(practices_archery(X))))=>(![X]:(anywhere(X)=>(((practices_zumba(X))<=>(does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X)))))))& ((![X]:(room(X)=>(((practices_zumba(X))|(does_not_train_for_and_competes_in_international_triathlons(X))))))=>(![X]:(anywhere(X)=>(((does_not_train_for_and_competes_in_international_triathlons(X))=>(((composes_and_performs_experimental_electronic_music(X))<~>(is_a_cybersecurity_expert(X)))))))))& (~(practices_kickboxing(herman))=>(((does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(herman))&(enjoys_wildlife_photography(herman)))))& ((((competes_in_national_level_swimming_championships(herman))<~>(is_passionate_about_collecting_and_restoring_classic_cars(herman))))&(has_a_saltwater_aquarium(herman)))& (((?[X]:(room(X)&practices_kickboxing(X)))))& (![X]:(room(X)=>(((uses_an_ios_phone(X))=>(enjoys_wildlife_photography(X))))))& ((![X]:((is_a_cybersecurity_expert(X))=>(collects_foreign_coins(X)))))& (~![X]:(room(X)=>(((((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))&(has_a_saltwater_aquarium(X))&(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))<=>(composes_and_performs_experimental_electronic_music(X))))))& (![X]:(room(X)=>(((composes_and_performs_experimental_electronic_music(X))=>(does_not_enjoy_wildlife_photography(X))))))& (((?[X]:(room(X)&enjoys_bird_watching(X)))))& (![X]:(room(X)=>(((((does_not_practice_and_performs_acrobatic_dance_routines(X))|(owns_an_Android_phone(X))))=>(does_not_have_a_saltwater_aquarium(X))))))& (![X]:(~room(X)=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))<=(can_play_the_guitar(X))))))& (collects_foreign_coins(herman))& ((?[X,Y]:(~room(X)&~room(Y)&(does_enjoy_trail_running(X)&does_enjoy_trail_running(Y))&(X!=Y))))& (![X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))=>(is_not_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(~room(X)=>(((~((is_a_cybersecurity_expert(X))|(is_passionate_about_collecting_and_restoring_classic_cars(X))))=>(((practices_urban_gardening(X))&(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))&(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))))& (![X]:(~room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(enjoys_bird_watching(X))))))& (is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(herman))& (![X]:(room(X)=>(((~((enjoys_bird_watching(X))|(can_play_the_flute(X))))=>(((collects_modern_art(X))&(is_passionate_about_collecting_and_restoring_classic_cars(X))))))))& (![X]:(~room(X)=>(((does_not_use_an_ios_phone(X))=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))& (does_not_practice_tai_chi(herman))& (![X]:(room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(uses_an_ios_phone(X))))))& (uses_an_ios_phone(herman))& (((does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(herman))|(uses_an_ios_phone(herman))|(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(herman))))& (((?[X]:(room(X)&practices_urban_gardening(X)))))& (?[X]:(room(X)&(practices_archery(X))))& (practices_kickboxing(herman))
room(herman)&(![X]:(room(X)=>(X='herman')))& ~((?[X,Y]:(room(X)&room(Y)&(owns_an_Android_phone(X)&owns_an_Android_phone(Y))&(X!=Y))))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 5398013886706103903373360 % SZS output start Proof for 5398013886706103903373360 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 72. ~(~? [X0,X1] : (X0 != X1 & predc(X1) & predc(X0) & room(X1) & room(X0)) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 75. ~(~? [X0,X1] : (X0 != X1 & predc(X1) & predc(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => mary = X2) & room(mary)) [rectify 72] 166. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 179. ? [X0,X1] : (X0 != X1 & predc(X1) & predc(X0) & room(X1) & room(X0)) | ? [X2] : (mary != X2 & room(X2)) | ~room(mary) [ennf transformation 75] 180. ? [X0,X1] : (X0 != X1 & predc(X1) & predc(X0) & room(X1) & room(X0)) | ~sP0 [predicate definition introduction] 181. sP0 | ? [X2] : (mary != X2 & room(X2)) | ~room(mary) [definition folding 179,180] 201. ? [X0,X1] : (X0 != X1 & predc(X1) & predc(X0) & room(X1) & room(X0)) | ~sP0 [nnf transformation 180] 202. ? [X0,X1] : (X0 != X1 & predc(X1) & predc(X0) & room(X1) & room(X0)) => (sK8 != sK9 & predc(sK9) & predc(sK8) & room(sK9) & room(sK8)) [choice axiom] 203. (sK8 != sK9 & predc(sK9) & predc(sK8) & room(sK9) & room(sK8)) | ~sP0 [skolemisation 201,202] 204. sP0 | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [rectify 181] 205. ? [X0] : (mary != X0 & room(X0)) => (mary != sK10 & room(sK10)) [choice axiom] 206. sP0 | (mary != sK10 & room(sK10)) | ~room(mary) [skolemisation 204,205] 288. room(mary) [cnf transformation 166] 289. ~room(X0) | mary = X0 [cnf transformation 166] 315. room(sK8) | ~sP0 [cnf transformation 203] 316. room(sK9) | ~sP0 [cnf transformation 203] 319. sK8 != sK9 | ~sP0 [cnf transformation 203] 320. sP0 | room(sK10) | ~room(mary) [cnf transformation 206] 321. sP0 | mary != sK10 | ~room(mary) [cnf transformation 206] 366. 10 <=> sP0 [avatar definition] 370. 11 <=> sK8 = sK9 [avatar definition] 372. sK8 != sK9 <- (~11) [avatar component clause 370] 373. ~10 | ~11 [avatar split clause 319,370,366] 385. 14 <=> room(sK9) [avatar definition] 387. room(sK9) <- (14) [avatar component clause 385] 388. ~10 | 14 [avatar split clause 316,385,366] 390. 15 <=> room(sK8) [avatar definition] 392. room(sK8) <- (15) [avatar component clause 390] 393. ~10 | 15 [avatar split clause 315,390,366] 394. sP0 | mary != sK10 [subsumption resolution 321,288] 396. 16 <=> mary = sK10 [avatar definition] 398. mary != sK10 <- (~16) [avatar component clause 396] 399. ~16 | 10 [avatar split clause 394,366,396] 400. sP0 | room(sK10) [subsumption resolution 320,288] 402. 17 <=> room(sK10) [avatar definition] 404. room(sK10) <- (17) [avatar component clause 402] 405. 17 | 10 [avatar split clause 400,366,402] 414. mary = sK8 <- (15) [resolution 289,392] 415. mary = sK9 <- (14) [resolution 289,387] 427. mary != sK9 <- (~11, 15) [backward demodulation 372,414] 430. $false <- (~11, 14, 15) [subsumption resolution 415,427] 431. 11 | ~14 | ~15 [avatar contradiction clause 430] 435. mary = sK10 <- (17) [resolution 404,289] 436. $false <- (~16, 17) [subsumption resolution 435,398] 437. 16 | ~17 [avatar contradiction clause 436] 438. $false [avatar sat refutation 373,388,393,399,405,431,437] % SZS output end Proof for 5398013886706103903373360 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.014347
Amber is the only person in the room. Everyone in the room is a sibling of Roland only if they either is a sibling of Sheila or is a sibling of Roland but not both. Amber is a sibling of Amanda. Everyone anywhere is a sibling of Sheila if they is a sibling of Amanda.
Amber is a sibling of Roland.
contradiction
room(amber)&(![X]:(room(X)=>(X='amber')))& (![X]:(room(X)=>(((((sibling(sheila,X))<~>(sibling(roland,X))))<=(sibling(roland,X))))))& (sibling(amanda,amber))& (![X]:(anywhere(X)=>(((sibling(amanda,X))=>(sibling(sheila,X))))))& (![X]:(room(X)=>(((((sibling(roland,X))&(sibling(lane,X))&(sibling(amanda,X))))=>(sibling(lane,X))))))& (((sibling(roland,amber))<~>(sibling(lane,amber))))
room(amber)&(![X]:(room(X)=>(X='amber')))& sibling(roland,amber)
[ "b4", "p0", "p1", "p2", "p3", "hypothesis" ]
% SZS status Unsatisfiable for 5925910297440660174227652 % SZS output start Proof for 5925910297440660174227652 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 45. ! [X0] : (room(X0) => (sibling(alice,X0) => (sibling(john,X0) <~> sibling(alice,X0)))) [input p1] 46. sibling(fred,mary) [input p2] 47. ! [X0] : (anywhere(X0) => (sibling(fred,X0) => sibling(john,X0))) [input p3] 50. sibling(alice,mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 122. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 123. ! [X0] : (((sibling(john,X0) <~> sibling(alice,X0)) | ~sibling(alice,X0)) | ~room(X0)) [ennf transformation 45] 124. ! [X0] : ((sibling(john,X0) <~> sibling(alice,X0)) | ~sibling(alice,X0) | ~room(X0)) [flattening 123] 125. ! [X0] : ((sibling(john,X0) | ~sibling(fred,X0)) | ~anywhere(X0)) [ennf transformation 47] 126. ! [X0] : (sibling(john,X0) | ~sibling(fred,X0) | ~anywhere(X0)) [flattening 125] 129. sibling(alice,mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 50] 131. ! [X0] : (((~sibling(alice,X0) | ~sibling(john,X0)) & (sibling(alice,X0) | sibling(john,X0))) | ~sibling(alice,X0) | ~room(X0)) [nnf transformation 124] 133. anywhere(X0) [cnf transformation 5] 214. room(mary) [cnf transformation 122] 217. ~sibling(alice,X0) | ~sibling(john,X0) | ~sibling(alice,X0) | ~room(X0) [cnf transformation 131] 218. sibling(fred,mary) [cnf transformation 46] 219. sibling(john,X0) | ~sibling(fred,X0) | ~anywhere(X0) [cnf transformation 126] 225. sibling(alice,mary) [cnf transformation 129] 226. ~sibling(john,X0) | ~sibling(alice,X0) | ~room(X0) [duplicate literal removal 217] 227. ~sibling(fred,X0) | sibling(john,X0) [subsumption resolution 219,133] 229. 1 <=> sibling(alice,mary) [avatar definition] 230. sibling(alice,mary) <- (1) [avatar component clause 229] 238. 1 [avatar split clause 225,229] 240. sibling(john,mary) [resolution 227,218] 241. ~sibling(alice,mary) | ~room(mary) [resolution 240,226] 242. ~room(mary) <- (1) [subsumption resolution 241,230] 243. $false <- (1) [subsumption resolution 242,214] 244. ~1 [avatar contradiction clause 243] 245. $false [avatar sat refutation 238,244] % SZS output end Proof for 5925910297440660174227652 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0.102263
Lisa, Christopher, Tracey, Laurie, Amy are the only persons in the room. If “Tracey and Lisa are strong” then “Tracey enjoys logic puzzles” otherwise “no strong person is quiet”. “Tracey is a wine connoisseur” if “everyone in the room is not a wine connoisseur or is a wine connoisseur”. Everyone in the room who neither enjoys logic puzzles nor is a quiet strong european is a wine connoisseur. Only one person in the room enjoys logic puzzles. Tracey is a wine connoisseur. Tracey who either is a wine connoisseur or is not a quiet european but not both is a wine connoisseur. Someone in the room is a wine connoisseur. All wise persons are strong. Tracey enjoys logic puzzles. It is true that “everyone in the room is a wine connoisseur”. Everyone outside the room enjoys logic puzzles if and only if they is a wine connoisseur.
Laurie is a wine connoisseur.
entailment
room(lisa)&room(christopher)&room(tracey)&room(laurie)&room(amy)&(![X]:(room(X)=>(X='lisa'|X='christopher'|X='tracey'|X='laurie'|X='amy')))& (((strong(tracey)&strong(lisa))=>(enjoys_logic_puzzles(tracey)))&((~(strong(tracey)&strong(lisa)))=>(~?[X]:(strong(X)=>quiet(X)))))& ((![X]:(room(X)=>(((is_a_wine_connoisseur(X))|(is_not_a_wine_connoisseur(X))))))=>(is_a_wine_connoisseur(tracey)))& (![X]:(room(X)=>(((~((enjoys_logic_puzzles(X))|(quiet(X)&strong(X)&european(X))))=>(is_a_wine_connoisseur(X))))))& (((?[X]:(room(X)&enjoys_logic_puzzles(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_logic_puzzles(X))&(enjoys_logic_puzzles(Y)))=>(X=Y)))))& (is_a_wine_connoisseur(tracey))& ((((is_a_wine_connoisseur(tracey))<~>(~(quiet(tracey)&european(tracey)))))&(is_a_wine_connoisseur(tracey)))& (?[X]:(room(X)&(is_a_wine_connoisseur(X))))& (![X]:(wise(X)=>strong(X)))& (enjoys_logic_puzzles(tracey))& (![X]:(room(X)=>(is_a_wine_connoisseur(X))))& (![X]:(~room(X)=>(((enjoys_logic_puzzles(X))<=>(is_a_wine_connoisseur(X))))))
room(lisa)&room(christopher)&room(tracey)&room(laurie)&room(amy)&(![X]:(room(X)=>(X='lisa'|X='christopher'|X='tracey'|X='laurie'|X='amy')))& is_a_wine_connoisseur(laurie)
[ "p0", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 8532918475989128635891494 % SZS output start Proof for 8532918475989128635891494 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 54. ! [X0] : (room(X0) => predk(X0)) [input p10] 56. ~(predk(alice) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 131. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 132. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 131] 142. ! [X0] : (predk(X0) | ~room(X0)) [ennf transformation 54] 144. ~predk(alice) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 56] 145. ~predk(alice) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 144] 156. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK3 & alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 157. ~predk(alice) | (john != sK3 & alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 145,156] 238. room(mary) [cnf transformation 132] 239. room(paul) [cnf transformation 132] 240. room(fred) [cnf transformation 132] 241. room(alice) [cnf transformation 132] 242. room(john) [cnf transformation 132] 243. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 132] 266. ~room(X0) | predk(X0) [cnf transformation 142] 269. ~predk(alice) | room(sK3) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 270. ~predk(alice) | mary != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 271. ~predk(alice) | paul != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 272. ~predk(alice) | fred != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 273. ~predk(alice) | alice != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 274. ~predk(alice) | john != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 328. ~predk(alice) | john != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 274,242] 329. ~predk(alice) | john != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 328,241] 330. ~predk(alice) | john != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 329,240] 331. ~predk(alice) | john != sK3 | ~room(mary) [subsumption resolution 330,239] 332. ~predk(alice) | john != sK3 [subsumption resolution 331,238] 334. 11 <=> john = sK3 [avatar definition] 336. john != sK3 <- (~11) [avatar component clause 334] 338. 12 <=> predk(alice) [avatar definition] 341. ~11 | ~12 [avatar split clause 332,338,334] 342. ~predk(alice) | alice != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 273,242] 343. ~predk(alice) | alice != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 342,241] 344. ~predk(alice) | alice != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 343,240] 345. ~predk(alice) | alice != sK3 | ~room(mary) [subsumption resolution 344,239] 346. ~predk(alice) | alice != sK3 [subsumption resolution 345,238] 348. 13 <=> alice = sK3 [avatar definition] 350. alice != sK3 <- (~13) [avatar component clause 348] 351. ~13 | ~12 [avatar split clause 346,338,348] 352. ~predk(alice) | fred != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 272,242] 353. ~predk(alice) | fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 352,241] 354. ~predk(alice) | fred != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 353,240] 355. ~predk(alice) | fred != sK3 | ~room(mary) [subsumption resolution 354,239] 356. ~predk(alice) | fred != sK3 [subsumption resolution 355,238] 358. 14 <=> fred = sK3 [avatar definition] 360. fred != sK3 <- (~14) [avatar component clause 358] 361. ~14 | ~12 [avatar split clause 356,338,358] 362. ~predk(alice) | paul != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 271,242] 363. ~predk(alice) | paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 362,241] 364. ~predk(alice) | paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 363,240] 365. ~predk(alice) | paul != sK3 | ~room(mary) [subsumption resolution 364,239] 366. ~predk(alice) | paul != sK3 [subsumption resolution 365,238] 368. 15 <=> paul = sK3 [avatar definition] 370. paul != sK3 <- (~15) [avatar component clause 368] 371. ~15 | ~12 [avatar split clause 366,338,368] 372. ~predk(alice) | mary != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 270,242] 373. ~predk(alice) | mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 372,241] 374. ~predk(alice) | mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 373,240] 375. ~predk(alice) | mary != sK3 | ~room(mary) [subsumption resolution 374,239] 376. ~predk(alice) | mary != sK3 [subsumption resolution 375,238] 378. 16 <=> mary = sK3 [avatar definition] 380. mary != sK3 <- (~16) [avatar component clause 378] 381. ~16 | ~12 [avatar split clause 376,338,378] 382. ~predk(alice) | room(sK3) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 269,242] 383. ~predk(alice) | room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 382,241] 384. ~predk(alice) | room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 383,240] 385. ~predk(alice) | room(sK3) | ~room(mary) [subsumption resolution 384,239] 386. ~predk(alice) | room(sK3) [subsumption resolution 385,238] 388. 17 <=> room(sK3) [avatar definition] 390. room(sK3) <- (17) [avatar component clause 388] 391. 17 | ~12 [avatar split clause 386,338,388] 397. predk(alice) [resolution 266,241] 403. 12 [avatar split clause 397,338] 492. alice = sK3 | fred = sK3 | paul = sK3 | mary = sK3 | john = sK3 <- (17) [resolution 243,390] 514. fred = sK3 | paul = sK3 | mary = sK3 | john = sK3 <- (~13, 17) [subsumption resolution 492,350] 515. paul = sK3 | mary = sK3 | john = sK3 <- (~13, ~14, 17) [subsumption resolution 514,360] 516. mary = sK3 | john = sK3 <- (~13, ~14, ~15, 17) [subsumption resolution 515,370] 517. john = sK3 <- (~13, ~14, ~15, ~16, 17) [subsumption resolution 516,380] 518. $false <- (~11, ~13, ~14, ~15, ~16, 17) [subsumption resolution 517,336] 519. 11 | 13 | 14 | 15 | 16 | ~17 [avatar contradiction clause 518] 520. $false [avatar sat refutation 341,351,361,371,381,391,403,519] % SZS output end Proof for 8532918475989128635891494 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.033393
Daniel is the only person in the room. “Everyone in the room is a chess master who participates in national tournaments or does not host themed dinner parties featuring gourmet home-cooked meals” if “Daniel enjoys spelunking” and vice versa. “Daniel enjoys macrame” if “Daniel hosts themed dinner parties featuring gourmet home-cooked meals” and vice versa. “Daniel enjoys spelunking” if “Daniel writes poetry”. If “Daniel hosts themed dinner parties featuring gourmet home-cooked meals” then “Daniel writes a travel blog”. At least one person in the room neither writes poetry nor is a wine connoisseur. Daniel writes a travel blog and collects antique clocks. Daniel participates in long-distance cycling events across the country. Daniel collects comic books. Not everyone in the room who enjoys kayaking and exploring remote waterways has a pet dog. Daniel enjoys spelunking. Everyone in the room who participates in long-distance cycling events across the country has a pet dog, is a chess master who participates in national tournaments or collect rare sneakers. Everyone in the room who writes a travel blog neither owns a smart tv nor watches fantasy movies. At least one person in the room enjoys kayaking and exploring remote waterways. Everyone in the room who is a chess master who participates in national tournaments or writes a travel blog or both collects antique clocks. Daniel participates in long-distance cycling events across the country or enjoys kayaking and exploring remote waterways or both. Everyone in the room is not a scotch connoisseur or enjoys spelunking. Daniel collects antique clocks. Everyone in the room collects antique clocks or does not collect rare sneakers. Everyone in the room collects antique clocks only if they collect rare sneakers.
Daniel is a chess master who participates in national tournaments.
neutral
room(daniel)&(![X]:(room(X)=>(X='daniel')))& ((enjoys_spelunking(daniel))<=>(![X]:(room(X)=>(((does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(is_a_chess_master_who_participates_in_national_tournaments(X)))))))& ((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(daniel))<=>(enjoys_macrame(daniel)))& ((writes_poetry(daniel))=>(enjoys_spelunking(daniel)))& ((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(daniel))=>(writes_a_travel_blog(daniel)))& (((?[X]:(room(X)&~((writes_poetry(X))|(is_a_wine_connoisseur(X)))))))& (((writes_a_travel_blog(daniel))&(collects_antique_clocks(daniel))))& (participates_in_long-distance_cycling_events_across_the_country(daniel))& (collects_comic_books(daniel))& (~![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))=>(has_a_pet_dog(X))))))& (enjoys_spelunking(daniel))& (![X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))=>(((has_a_pet_dog(X))|(is_a_chess_master_who_participates_in_national_tournaments(X))|(collect_rare_sneakers(X))))))))& (![X]:(room(X)=>(((writes_a_travel_blog(X))=>(~((owns_a_smart_tv(X))|(watches_fantasy_movies(X))))))))& (((?[X]:(room(X)&enjoys_kayaking_and_exploring_remote_waterways(X)))))& (![X]:(room(X)=>(((((is_a_chess_master_who_participates_in_national_tournaments(X))|(writes_a_travel_blog(X))))=>(collects_antique_clocks(X))))))& (((participates_in_long-distance_cycling_events_across_the_country(daniel))|(enjoys_kayaking_and_exploring_remote_waterways(daniel))))& (![X]:(room(X)=>(((enjoys_spelunking(X))|(is_not_a_scotch_connoisseur(X))))))& (collects_antique_clocks(daniel))& (![X]:(room(X)=>(((does_not_collect_rare_sneakers(X))|(collects_antique_clocks(X))))))& (![X]:(room(X)=>(((collect_rare_sneakers(X))<=(collects_antique_clocks(X))))))
room(daniel)&(![X]:(room(X)=>(X='daniel')))& is_a_chess_master_who_participates_in_national_tournaments(daniel)
[]
null
0.095632
Jeremiah, Terry, Robert are the only persons in the room. "Everyone anywhere knows morse code only if they is an avid collector of autographed memorabilia from famous musicians" if "everyone in the room does not practice archery or builds model airplanes". "Jeremiah regularly contributes to tech forums and online communities" if "Terry collects modern art, owns a telescope and does not enjoy cross-country skiing" and vice versa. If "everyone in the room does not build model airplanes or regularly contributes to tech forums and online communities" then "Terry collects modern art". Everyone in the room neither is a wine connoisseur nor collects antique jewelry if they does enjoy trail running or is a wine connoisseur or both. Terry collects modern art.
Jeremiah is a wine connoisseur.
contradiction
room(jeremiah)&room(terry)&room(robert)&(![X]:(room(X)=>(X='jeremiah'|X='terry'|X='robert')))& ((![X]:(room(X)=>(((builds_model_airplanes(X))|(does_not_practice_archery(X))))))=>(![X]:(anywhere(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))<=(knows_morse_code(X)))))))& ((((collects_modern_art(terry))&(owns_a_telescope(terry))&(does_not_enjoy_cross-country_skiing(terry))))<=>(regularly_contributes_to_tech_forums_and_online_communities(jeremiah)))& ((![X]:(room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))|(does_not_build_model_airplanes(X))))))=>(collects_modern_art(terry)))& (![X]:(room(X)=>(((((does_enjoy_trail_running(X))|(is_a_wine_connoisseur(X))))=>(~((is_a_wine_connoisseur(X))|(collects_antique_jewelry(X))))))))& (collects_modern_art(terry))& (?[X]:(room(X)&(collects_modern_art(X))))& (((is_an_avid_hiker(jeremiah))&(does_enjoy_trail_running(jeremiah))&(collects_modern_art(jeremiah))))& (![X]:(room(X)=>(((((is_a_wine_connoisseur(X))<~>(owns_a_telescope(X))))=>(((is_not_an_avid_hiker(X))&(does_practice_yoga(X))))))))& (![X]:(anywhere(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))<=(knows_morse_code(X))))))& (![X]:(room(X)=>(((does_not_enjoy_trail_running(X))=>(is_a_wine_connoisseur(X))))))& (does_practice_yoga(terry))& (~![X]:(room(X)=>(((((practices_and_performs_acrobatic_dance_routines(X))|(builds_model_airplanes(X))|(enjoys_snowboarding(X))))=>(~((regularly_contributes_to_tech_forums_and_online_communities(X))|(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))))& (![X]:(room(X)=>(((owns_a_telescope(X))<=>(enjoys_snowboarding(X))))))& (![X]:(room(X)=>(((does_enjoy_trail_running(X))=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))<~>(collects_antique_jewelry(X))))))))& ((![X]:((practices_archery(X))<=>(regularly_contributes_to_tech_forums_and_online_communities(X)))))& (regularly_contributes_to_tech_forums_and_online_communities(terry))& (![X]:(room(X)=>(((practices_archery(X))=>(does_practice_yoga(X))))))& (((does_enjoy_trail_running(jeremiah))|(is_a_wine_connoisseur(jeremiah))))& (((knows_morse_code(jeremiah))<~>(does_not_enjoy_trail_running(jeremiah))))
room(jeremiah)&room(terry)&room(robert)&(![X]:(room(X)=>(X='jeremiah'|X='terry'|X='robert')))& is_a_wine_connoisseur(jeremiah)
[ "p0", "p4", "hypothesis" ]
% SZS status Unsatisfiable for 6716045887067326103183738 % SZS output start Proof for 6716045887067326103183738 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 48. ! [X0] : (room(X0) => ((predk(X0) | predg(X0)) => ~(predb(X0) | predk(X0)))) [input p4] 64. predk(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 142. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 143. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 142] 148. ! [X0] : (((~predb(X0) & ~predk(X0)) | (~predk(X0) & ~predg(X0))) | ~room(X0)) [ennf transformation 48] 149. ! [X0] : ((~predb(X0) & ~predk(X0)) | (~predk(X0) & ~predg(X0)) | ~room(X0)) [flattening 148] 161. predk(mary) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 64] 162. predk(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 161] 260. room(mary) [cnf transformation 143] 275. ~predk(X0) | ~predk(X0) | ~room(X0) [cnf transformation 149] 303. predk(mary) [cnf transformation 162] 304. ~predk(X0) | ~room(X0) [duplicate literal removal 275] 377. ~room(mary) [resolution 304,303] 378. $false [subsumption resolution 377,260] % SZS output end Proof for 6716045887067326103183738 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.100229
Corey, Howard, Bradly, Ruby, Manuel are the only persons in the room. If someone owns a microscope then he/she collects modern art and vice versa. Everyone in the room hosts a popular podcast about emerging technologies only if they neither enjoys coding in Python nor owns a microscope. Everyone in the room neither enjoys coding in Python nor owns a microscope if and only if they is a skilled home brewer experimenting with craft beer recipes and collects modern art.
Corey hosts a popular podcast about emerging technologies.
contradiction
room(corey)&room(howard)&room(bradly)&room(ruby)&room(manuel)&(![X]:(room(X)=>(X='corey'|X='howard'|X='bradly'|X='ruby'|X='manuel')))& ((![X]:(~room(X)=>(((does_not_collect_first_edition_books(X))|(hosts_a_popular_podcast_about_emerging_technologies(X))))))=>(![X]:(~room(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))<=>(collects_vintage_vinyl_records(X)))))))& ((~?[X]:(room(X)=>(((does_not_practice_pilates(X))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))=>(((has_a_saltwater_aquarium(howard))<~>(collects_modern_art(howard)))))& ((((enjoys_coding_in_Python(howard))<~>(practices_pilates(howard))))=>(((practices_digital_art(howard))<~>(collects_vintage_vinyl_records(howard)))))& ((![X]:(room(X)=>(((does_not_collect_modern_art(X))|(practices_digital_art(X))))))=>(![X]:(room(X)=>(owns_a_microscope(X)))))& (((owns_a_microscope(corey))=>((corey_dream=>(collects_modern_art(corey)))))&((~(owns_a_microscope(corey)))=>(?[X]:(room(X)&(writes_and_illustrates_their_own_graphic_novels(X))))))& ((![X]:((owns_a_microscope(X))<=>(collects_modern_art(X)))))& (![X]:(anywhere(X)=>(((((practices_pilates(X))<~>(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))<=(collects_first_edition_books(X))))))& (![X]:(room(X)=>(((((practices_pilates(X))<~>(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))=>(collects_vintage_vinyl_records(X))))))& (![X]:(room(X)=>(((enjoys_making_ceramics(X))<=(collects_vintage_vinyl_records(X))))))& (((enjoys_landscape_photography(howard))<~>(enjoys_making_ceramics(howard))))& (![X]:(~room(X)=>(((does_not_collect_vintage_vinyl_records(X))|(hosts_a_popular_podcast_about_emerging_technologies(X))))))& (~![X]:(room(X)=>(((does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(has_a_saltwater_aquarium(X))))))& (![X]:(room(X)=>(((collects_first_edition_books(X))<=(owns_a_microscope(X))))))& (is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(corey))& (![X]:(room(X)=>(((~((enjoys_coding_in_Python(X))|(owns_a_microscope(X))))<=(hosts_a_popular_podcast_about_emerging_technologies(X))))))& (![X]:(room(X)=>(((~((enjoys_coding_in_Python(X))|(owns_a_microscope(X))))<=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))&(collects_modern_art(X))))))))
room(corey)&room(howard)&room(bradly)&room(ruby)&room(manuel)&(![X]:(room(X)=>(X='corey'|X='howard'|X='bradly'|X='ruby'|X='manuel')))& hosts_a_popular_podcast_about_emerging_technologies(corey)
[ "p0", "p6", "p15", "p16", "hypothesis" ]
% SZS status Unsatisfiable for 5917794719215008758356374 % SZS output start Proof for 5917794719215008758356374 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 50. ! [X0] : (predp(X0) <=> predn(X0)) [input p6] 59. ! [X0] : (room(X0) => (predl(X0) => ~(predp(X0) | predd(X0)))) [input p15] 60. ! [X0] : (room(X0) => (~(predp(X0) | predd(X0)) <=> (predn(X0) & predo(X0)))) [input p16] 61. predl(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 141. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 142. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 141] 160. ! [X0] : (((~predp(X0) & ~predd(X0)) | ~predl(X0)) | ~room(X0)) [ennf transformation 59] 161. ! [X0] : ((~predp(X0) & ~predd(X0)) | ~predl(X0) | ~room(X0)) [flattening 160] 162. ! [X0] : (((~predp(X0) & ~predd(X0)) <=> (predn(X0) & predo(X0))) | ~room(X0)) [ennf transformation 60] 163. predl(mary) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 61] 164. predl(mary) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 163] 176. ! [X0] : ((predp(X0) | ~predn(X0)) & (predn(X0) | ~predp(X0))) [nnf transformation 50] 182. ! [X0] : ((((~predp(X0) & ~predd(X0)) | (~predn(X0) | ~predo(X0))) & ((predn(X0) & predo(X0)) | (predp(X0) | predd(X0)))) | ~room(X0)) [nnf transformation 162] 183. ! [X0] : ((((~predp(X0) & ~predd(X0)) | ~predn(X0) | ~predo(X0)) & ((predn(X0) & predo(X0)) | predp(X0) | predd(X0))) | ~room(X0)) [flattening 182] 265. room(mary) [cnf transformation 142] 286. ~predn(X0) | predp(X0) [cnf transformation 176] 297. ~predd(X0) | ~predl(X0) | ~room(X0) [cnf transformation 161] 298. ~predp(X0) | ~predl(X0) | ~room(X0) [cnf transformation 161] 300. predn(X0) | predp(X0) | predd(X0) | ~room(X0) [cnf transformation 183] 309. predl(mary) [cnf transformation 164] 373. 14 <=> predp(mary) [avatar definition] 374. ~predp(mary) <- (~14) [avatar component clause 373] 375. predp(mary) <- (14) [avatar component clause 373] 395. ~room(X0) | predd(X0) | predp(X0) [subsumption resolution 300,286] 418. ~predl(mary) | ~room(mary) <- (14) [resolution 298,375] 423. ~room(mary) <- (14) [subsumption resolution 418,309] 424. $false <- (14) [subsumption resolution 423,265] 425. ~14 [avatar contradiction clause 424] 465. predd(mary) | predp(mary) [resolution 395,265] 473. predd(mary) <- (~14) [subsumption resolution 465,374] 520. ~predl(mary) | ~room(mary) <- (~14) [resolution 473,297] 521. ~room(mary) <- (~14) [subsumption resolution 520,309] 522. $false <- (~14) [subsumption resolution 521,265] 523. 14 [avatar contradiction clause 522] 524. $false [avatar sat refutation 425,523] % SZS output end Proof for 5917794719215008758356374 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.026 s % ------------------------------ % ------------------------------
0.556916
There is a room. “Everyone in the room is funny” only if “no one in the room neither is tall nor is not a old person if and only if they is creative”. “Everyone in the room neither is creative nor is happy” only if “everyone in the room is calm”. “Everyone in the room is not a quiet creative person” only if “everyone in the room is not generous only if they is not a patient person and is quiet”. If “no one anywhere is a tall person” then “everyone in the room is kind if and only if they is old” otherwise “everyone in the room is curious”. If “everyone outside the room is humble” then “everyone in the room is not a funny person” otherwise “everyone outside the room is not funny, not generous”. Everyone in the room is calm if and only if they is not strong. At least one person in the room is happy. Everyone in the room is a tall person or is a patient person or both. Someone who either is kind or is patient but not both is quieter than someone who is not a generous person. Everyone in the room is a brave person if they is tall. Everyone in the room is a brave person if and only if they is quiet.
Everyone in the room is a tall person.
neutral
(there_is_a_room)& ((![X]:(room(X)=>(funny(X))))=>(~?[X]:(room(X)=>(((~((tall(X))|(~(old(X)&person(X)))))<=>(creative(X)))))))& ((![X]:(room(X)=>(~((creative(X))|(happy(X))))))=>(![X]:(room(X)=>(calm(X)))))& ((![X]:(room(X)=>(~(quiet(X)&creative(X)&person(X)))))=>(![X]:(room(X)=>(((((~(patient(X)&person(X)))&(quiet(X))))<=(~generous(X)))))))& (((~?[X]:(anywhere(X)=>(tall(X)&person(X))))=>(![X]:(room(X)=>(((kind(X))<=>(old(X)))))))&((~(~?[X]:(anywhere(X)=>(tall(X)&person(X)))))=>(![X]:(room(X)=>(curious(X))))))& (((![X]:(~room(X)=>(humble(X))))=>(![X]:(room(X)=>(~(funny(X)&person(X))))))&((~(![X]:(~room(X)=>(humble(X)))))=>(![X]:(~room(X)=>(~funny(X)&~generous(X))))))& (![X]:(room(X)=>(((calm(X))<=>(~strong(X))))))& (((?[X]:(room(X)&happy(X)))))& (![X]:(room(X)=>(((tall(X)&person(X))|(patient(X)&person(X))))))& (?[X,Y]:((((kind(X))<~>(patient(X))))&(~(generous(Y)&person(Y)))&(quieter(X,Y))))& (![X]:(room(X)=>(((tall(X))=>(brave(X)&person(X))))))& (![X]:(room(X)=>(((brave(X)&person(X))<=>(quiet(X))))))
(there_is_a_room)& ![X]:(room(X)=>(tall(X)&person(X)))
[]
null
0.686153
Jane, Shelby, Christal, Anamaria are the only persons in the room. “Everyone anywhere who does not work on fridays is older than Drew” if “no one in the room does not collect vintage vinyl records or is older than Drew”. If “not everyone in the room is a old person or does not write in-depth travel guides for off-the-beaten-path destinations” then “everyone in the room is older than Robert if they writes in-depth travel guides for off-the-beaten-path destinations”. Not everyone in the room writes in-depth travel guides for off-the-beaten-path destinations if they works on fridays. Everyone in the room is old if they writes in-depth travel guides for off-the-beaten-path destinations. Everyone in the room is older than Robert if they is a old person and vice versa. Everyone anywhere does not collect vintage vinyl records or does not work on fridays. More than one person in the room is older than Robert. It is not the case that “Christal works on fridays”. Robert is older than Anamaria. Christal writes in-depth travel guides for off-the-beaten-path destinations.
Anamaria writes in-depth travel guides for off-the-beaten-path destinations.
contradiction
room(jane)&room(shelby)&room(christal)&room(anamaria)&(![X]:(room(X)=>(X='jane'|X='shelby'|X='christal'|X='anamaria')))& ((~?[X]:(room(X)=>(((older(drew,X))|(does_not_collect_vintage_vinyl_records(X))))))=>(![X]:(anywhere(X)=>(((does_not_work_on_fridays(X))=>(older(drew,X)))))))& ((~![X]:(room(X)=>(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))|(old(X)&person(X))))))=>(![X]:(room(X)=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))=>(older(robert,X)))))))& (~![X]:(room(X)=>(((works_on_fridays(X))=>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))& (![X]:(room(X)=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))=>(old(X))))))& (![X]:(room(X)=>(((older(robert,X))<=>(old(X)&person(X))))))& (![X]:(anywhere(X)=>(((does_not_work_on_fridays(X))|(does_not_collect_vintage_vinyl_records(X))))))& ((?[X,Y]:(room(X)&room(Y)&(older(robert,X)&older(robert,Y))&(X!=Y))))& (~(works_on_fridays(christal)))& (older(anamaria,robert))& (writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(christal))
room(jane)&room(shelby)&room(christal)&room(anamaria)&(![X]:(room(X)=>(X='jane'|X='shelby'|X='christal'|X='anamaria')))& writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(anamaria)
[ "b19", "b42", "p0", "p2", "p4", "p5", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 5106350281938425887189033 % SZS output start Proof for 5106350281938425887189033 20. ! [X0,X1] : (X0 != X1 => (older(X0,X1) => ~older(X1,X0))) [input b19] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. ~! [X0] : (room(X0) => ((person(X0) & old(X0)) | ~predj(X0))) => ! [X0] : (room(X0) => (predj(X0) => older(john,X0))) [input p2] 48. ! [X0] : (room(X0) => (predj(X0) => old(X0))) [input p4] 49. ! [X0] : (room(X0) => (older(john,X0) <=> (person(X0) & old(X0)))) [input p5] 53. older(alice,john) [input p9] 55. predj(alice) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 57. ~! [X0] : (room(X0) => ((person(X0) & old(X0)) | ~predj(X0))) => ! [X1] : (room(X1) => (predj(X1) => older(john,X1))) [rectify 46] 90. ! [X0,X1] : ((~older(X1,X0) | ~older(X0,X1)) | X0 = X1) [ennf transformation 20] 91. ! [X0,X1] : (~older(X1,X0) | ~older(X0,X1) | X0 = X1) [flattening 90] 132. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 133. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 132] 134. ! [X1] : ((older(john,X1) | ~predj(X1)) | ~room(X1)) | ! [X0] : (((person(X0) & old(X0)) | ~predj(X0)) | ~room(X0)) [ennf transformation 57] 135. ! [X1] : (older(john,X1) | ~predj(X1) | ~room(X1)) | ! [X0] : ((person(X0) & old(X0)) | ~predj(X0) | ~room(X0)) [flattening 134] 138. ! [X0] : ((old(X0) | ~predj(X0)) | ~room(X0)) [ennf transformation 48] 139. ! [X0] : (old(X0) | ~predj(X0) | ~room(X0)) [flattening 138] 140. ! [X0] : ((older(john,X0) <=> (person(X0) & old(X0))) | ~room(X0)) [ennf transformation 49] 141. predj(alice) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 55] 142. predj(alice) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 141] 144. ! [X0] : (older(john,X0) | ~predj(X0) | ~room(X0)) | ! [X1] : ((person(X1) & old(X1)) | ~predj(X1) | ~room(X1)) [rectify 135] 147. ! [X0] : (((older(john,X0) | (~person(X0) | ~old(X0))) & ((person(X0) & old(X0)) | ~older(john,X0))) | ~room(X0)) [nnf transformation 140] 148. ! [X0] : (((older(john,X0) | ~person(X0) | ~old(X0)) & ((person(X0) & old(X0)) | ~older(john,X0))) | ~room(X0)) [flattening 147] 166. ~older(X1,X0) | ~older(X0,X1) | X0 = X1 [cnf transformation 91] 216. alice != john [cnf transformation 43] 234. room(alice) [cnf transformation 133] 237. older(john,X0) | ~predj(X0) | ~room(X0) | person(X1) | ~predj(X1) | ~room(X1) [cnf transformation 144] 241. old(X0) | ~predj(X0) | ~room(X0) [cnf transformation 139] 244. older(john,X0) | ~person(X0) | ~old(X0) | ~room(X0) [cnf transformation 148] 251. older(alice,john) [cnf transformation 53] 258. predj(alice) [cnf transformation 142] 260. 1 <=> ! [X1] : (person(X1) | ~room(X1) | ~predj(X1)) [avatar definition] 261. ~predj(X1) | ~room(X1) | person(X1) <- (1) [avatar component clause 260] 263. 2 <=> ! [X0] : (older(john,X0) | ~room(X0) | ~predj(X0)) [avatar definition] 264. older(john,X0) | ~room(X0) | ~predj(X0) <- (2) [avatar component clause 263] 265. 1 | 2 [avatar split clause 237,263,260] 267. 3 <=> ! [X1] : (old(X1) | ~room(X1) | ~predj(X1)) [avatar definition] 268. ~predj(X1) | ~room(X1) | old(X1) <- (3) [avatar component clause 267] 270. 3 [avatar split clause 241,267] 272. ~room(alice) | old(alice) <- (3) [resolution 268,258] 274. old(alice) <- (3) [subsumption resolution 272,234] 289. ~room(alice) | person(alice) <- (1) [resolution 261,258] 291. person(alice) <- (1) [subsumption resolution 289,234] 295. ~older(john,alice) | alice = john [resolution 166,251] 314. ~older(john,alice) [subsumption resolution 295,216] 355. ~room(alice) | ~predj(alice) <- (2) [resolution 314,264] 356. ~predj(alice) <- (2) [subsumption resolution 355,234] 357. $false <- (2) [subsumption resolution 356,258] 358. ~2 [avatar contradiction clause 357] 364. ~person(alice) | ~old(alice) | ~room(alice) [resolution 244,314] 369. ~old(alice) | ~room(alice) <- (1) [subsumption resolution 364,291] 370. ~room(alice) <- (1, 3) [subsumption resolution 369,274] 371. $false <- (1, 3) [subsumption resolution 370,234] 372. ~1 | ~3 [avatar contradiction clause 371] 373. $false [avatar sat refutation 265,270,358,372] % SZS output end Proof for 5106350281938425887189033 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.021 s % ------------------------------ % ------------------------------
0
There is a room. If someone is not a dedicated advocate for digital privacy and encryption, does not enjoy mountain biking and does not play as a goalkeeper for a local amateur soccer team then he/she neither does not have a curated collection of mid-century modern furniture nor is not an avid collector of autographed memorabilia from famous musicians. Not everyone in the room either is not a dedicated advocate for digital privacy and encryption or does not play as a goalkeeper for a local amateur soccer team but not both. If someone is not an avid collector of autographed memorabilia from famous musicians then he/she is not a dedicated advocate for digital privacy and encryption and does not play as a goalkeeper for a local amateur soccer team and vice versa. If someone does not enjoy mountain biking or does not own a telescope or both then he/she does not play as a goalkeeper for a local amateur soccer team and vice versa. Everyone in the room either does not have a curated collection of mid-century modern furniture or does not enjoy mountain biking but not both. Everyone in the room is not an avid collector of autographed memorabilia from famous musicians. Everyone outside the room either is not an avid collector of autographed memorabilia from famous musicians or does not have a curated collection of mid-century modern furniture but not both. If someone does not play as a goalkeeper for a local amateur soccer team then he/she is not an avid collector of autographed memorabilia from famous musicians and vice versa. Everyone in the room does not own a telescope, does not have a curated collection of mid-century modern furniture or does not enjoy mountain biking. Everyone in the room is not a dedicated advocate for digital privacy and encryption, does not own a telescope or does not have a curated collection of mid-century modern furniture.
Everyone outside the room owns a telescope.
neutral
(there_is_a_room)& ((![X]:((((is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))&(does_not_enjoy_mountain_biking(X))&(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))=>(~((does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))|(is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X)))))))& (~![X]:(room(X)=>(((is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))<~>(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& ((![X]:((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))<=>(((is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))&(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))))& ((![X]:((((does_not_enjoy_mountain_biking(X))|(does_not_own_a_telescope(X))))<=>(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))& (![X]:(room(X)=>(((does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))<~>(does_not_enjoy_mountain_biking(X))))))& (![X]:(room(X)=>(is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))& (![X]:(~room(X)=>(((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))<~>(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))))))& ((![X]:((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))<=>(is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X)))))& (![X]:(room(X)=>(((does_not_own_a_telescope(X))|(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))|(does_not_enjoy_mountain_biking(X))))))& (![X]:(room(X)=>(((is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(does_not_own_a_telescope(X))|(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))))))
(there_is_a_room)& ![X]:(~room(X)=>(owns_a_telescope(X)))
[]
null
0.169541
There is a room. Everyone in the room who does not hate Luis does not like Marina. If someone is not hated by Marina then he/she is hated by Luis and vice versa. At least one person outside the room does not like Luis. Everyone anywhere who is hated by Luis either does not like Henry or does not hate Marina but not both. Everyone anywhere who does not like Luis does not hate Luis or does not like Luis or both. Everyone in the room who does not hate Luis or does not like Luis or both does not like Luis. Everyone in the room who does not like Henry does not like David. At least one person in the room likes Henry, hates Marina and does not hate Luis. Everyone in the room who does not like David does not hate David. Everyone anywhere who does not hate David is hated by Luis. Henry dreamt that “everyone in the room who is hated by Luis does not like Luis, does not hate Luis and does not hate Marina”. Everyone in the room who hates David is not liked by Henry. Everyone in the room who does not hate Marina either does not hate Marina or does not like David but not both.
More than one person in the room is liked by David.
neutral
(there_is_a_room)& (![X]:(room(X)=>(((~hate(luis,X))=>(~like(marina,X))))))& ((![X]:((~hate(X,marina))<=>(hate(X,luis)))))& (((?[X]:(~room(X)&~like(luis,X)))))& (![X]:(anywhere(X)=>(((hate(X,luis))=>(((~like(henry,X))<~>(~hate(marina,X))))))))& (![X]:(anywhere(X)=>(((~like(luis,X))=>(((~hate(luis,X))|(~like(luis,X))))))))& (![X]:(room(X)=>(((((~hate(luis,X))|(~like(luis,X))))=>(~like(luis,X))))))& (![X]:(room(X)=>(((~like(henry,X))=>(~like(david,X))))))& (((?[X]:(room(X)&((like(henry,X))&(hate(marina,X))&(~hate(luis,X)))))))& (![X]:(room(X)=>(((~like(david,X))=>(~hate(david,X))))))& (![X]:(anywhere(X)=>(((~hate(david,X))=>(hate(X,luis))))))& ((henry_dream=>(![X]:(room(X)=>(((hate(X,luis))=>(((~like(luis,X))&(~hate(luis,X))&(~hate(marina,X))))))))))& (![X]:(room(X)=>(((hate(david,X))=>(~like(X,henry))))))& (![X]:(room(X)=>(((~hate(marina,X))=>(((~hate(marina,X))<~>(~like(david,X))))))))
(there_is_a_room)& (?[X,Y]:(room(X)&room(Y)&(like(X,david)&like(Y,david))&(X!=Y)))
[]
null
0.302817
Mark, David, Trena are the only persons in the room. Trena does not collect luxury watches, can play the piano and enjoys snowboarding. If someone does not enjoy origami then he/she maintains a personal blog focused on cybersecurity tips. Everyone in the room who does not collect limited-edition art prints from contemporary artists does practice yoga. David does not collect luxury watches. Mark does not collect limited-edition art prints from contemporary artists. It is not the case that “Trena enjoys spelunking”. Everyone anywhere bakes bread at home if they either does not enjoy kayaking or plays video games but not both. Everyone in the room who bakes bread at home collects rare and antique scientific instruments. Trena bakes bread at home. Everyone in the room who enjoys spelunking does not create bespoke furniture pieces from reclaimed wood. David is a certified yoga instructor teaching classes weekly. Everyone anywhere hosts themed dinner parties featuring gourmet home-cooked meals. Not everyone in the room does enjoy mountain biking if they does not collect limited-edition art prints from contemporary artists, bakes bread at home or collects luxury watches. Everyone in the room who enjoys spelunking, does practice yoga or is a drone photographer plays video games.
Mark neither plays video games nor can play the piano.
contradiction
room(mark)&room(david)&room(trena)&(![X]:(room(X)=>(X='mark'|X='david'|X='trena')))& (((does_not_collect_luxury_watches(trena))&(can_play_the_piano(trena))&(enjoys_snowboarding(trena))))& ((![X]:((does_not_enjoy_origami(X))=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X)))))& (![X]:(room(X)=>(((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))=>(does_practice_yoga(X))))))& (does_not_collect_luxury_watches(david))& (does_not_collect_limited-edition_art_prints_from_contemporary_artists(mark))& (~(enjoys_spelunking(trena)))& (![X]:(anywhere(X)=>(((((does_not_enjoy_kayaking(X))<~>(plays_video_games(X))))=>(bakes_bread_at_home(X))))))& (![X]:(room(X)=>(((bakes_bread_at_home(X))=>(collects_rare_and_antique_scientific_instruments(X))))))& (bakes_bread_at_home(trena))& (![X]:(room(X)=>(((enjoys_spelunking(X))=>(does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (is_a_certified_yoga_instructor_teaching_classes_weekly(david))& (![X]:(anywhere(X)=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))& (~![X]:(room(X)=>(((((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))|(bakes_bread_at_home(X))|(collects_luxury_watches(X))))=>(does_enjoy_mountain_biking(X))))))& (![X]:(room(X)=>(((((enjoys_spelunking(X))|(does_practice_yoga(X))|(is_a_drone_photographer(X))))=>(plays_video_games(X))))))& (![X]:(room(X)=>(((does_not_collect_first_edition_books(X))=>(~((does_not_enjoy_spelunking(X))|(does_not_play_video_games(X))))))))
room(mark)&room(david)&room(trena)&(![X]:(room(X)=>(X='mark'|X='david'|X='trena')))& ~((plays_video_games(mark))|(can_play_the_piano(mark)))
[ "p0", "p3", "p5", "p14", "hypothesis" ]
% SZS status Unsatisfiable for 1126966081151308908325140 % SZS output start Proof for 1126966081151308908325140 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 47. ! [X0] : (room(X0) => (~predu(X0) => prede(X0))) [input p3] 49. ~predu(mary) [input p5] 58. ! [X0] : (room(X0) => ((predn(X0) | prede(X0) | predg(X0)) => preda(X0))) [input p14] 60. ~(predb(mary) | preda(mary)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 63. ! [X0] : (room(X0) => ((predn(X0) | prede(X0)) => preda(X0))) [pure predicate removal 58] 65. ! [X0] : (room(X0) => (prede(X0) => preda(X0))) [pure predicate removal 63] 149. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 150. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 149] 151. ! [X0] : ((prede(X0) | predu(X0)) | ~room(X0)) [ennf transformation 47] 152. ! [X0] : (prede(X0) | predu(X0) | ~room(X0)) [flattening 151] 154. ! [X0] : ((preda(X0) | ~prede(X0)) | ~room(X0)) [ennf transformation 65] 155. ! [X0] : (preda(X0) | ~prede(X0) | ~room(X0)) [flattening 154] 156. (~predb(mary) & ~preda(mary)) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 60] 157. ~predb(mary) & ~preda(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 156] 241. room(mary) [cnf transformation 150] 246. ~room(X0) | predu(X0) | prede(X0) [cnf transformation 152] 247. ~predu(mary) [cnf transformation 49] 249. ~prede(X0) | preda(X0) | ~room(X0) [cnf transformation 155] 254. ~preda(mary) [cnf transformation 157] 256. predu(mary) | prede(mary) [resolution 246,241] 260. prede(mary) [subsumption resolution 256,247] 288. preda(mary) | ~room(mary) [resolution 260,249] 289. ~room(mary) [subsumption resolution 288,254] 290. $false [subsumption resolution 289,241] % SZS output end Proof for 1126966081151308908325140 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.709413
Preston, Terry, Thomas, Felecia are the only persons in the room. Thomas is not an avid collector of autographed memorabilia from famous musicians. Thomas enjoys bird watching. Preston can play the harmonica. Terry is a wine connoisseur. Preston volunteers for local environmental conservation projects. Preston is a wine connoisseur. At least one person in the room volunteers for local environmental conservation projects. Preston is a client of Meta. Preston is a certified yoga instructor teaching classes weekly or collects historical artifacts related to ancient civilizations or both. Someone outside the room is a client of LVMH and enjoys bird watching. Preston is a client of LVMH.
Thomas can play the harmonica.
neutral
room(preston)&room(terry)&room(thomas)&room(felecia)&(![X]:(room(X)=>(X='preston'|X='terry'|X='thomas'|X='felecia')))& (is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(thomas))& (enjoys_bird_watching(thomas))& (can_play_the_harmonica(preston))& (is_a_wine_connoisseur(terry))& (volunteers_for_local_environmental_conservation_projects(preston))& (is_a_wine_connoisseur(preston))& (((?[X]:(room(X)&volunteers_for_local_environmental_conservation_projects(X)))))& (is_a_client_of_Meta(preston))& (((is_a_certified_yoga_instructor_teaching_classes_weekly(preston))|(collects_historical_artifacts_related_to_ancient_civilizations(preston))))& (?[X]:(~room(X)&(((is_a_client_of_LVMH(X))&(enjoys_bird_watching(X))))))& (is_a_client_of_LVMH(preston))& ((?[X,Y]:(room(X)&room(Y)&(plays_the_violin(X)&plays_the_violin(Y))&(X!=Y))))& (collects_classic_novels(thomas))& (((?[X]:(room(X)&~((is_not_a_client_of_LVMH(X))|(collects_historical_artifacts_related_to_ancient_civilizations(X)))))&(![X,Y]:((room(X)&room(Y)&(~((is_not_a_client_of_LVMH(X))|(collects_historical_artifacts_related_to_ancient_civilizations(X))))&(~((is_not_a_client_of_LVMH(Y))|(collects_historical_artifacts_related_to_ancient_civilizations(Y)))))=>(X=Y)))))& (is_a_certified_yoga_instructor_teaching_classes_weekly(thomas))& (is_a_wine_connoisseur(thomas))& (collects_historical_artifacts_related_to_ancient_civilizations(terry))& (is_a_certified_yoga_instructor_teaching_classes_weekly(terry))& (?[X]:(room(X)&(collects_historical_artifacts_related_to_ancient_civilizations(X))))& (((?[X]:(room(X)&((is_a_client_of_LVMH(X))|(is_a_client_of_Meta(X)))))))& (is_a_client_of_LVMH(thomas))& (is_a_certified_yoga_instructor_teaching_classes_weekly(preston))& (collects_historical_artifacts_related_to_ancient_civilizations(preston))& (((can_play_the_harmonica(thomas))|(collects_historical_artifacts_related_to_ancient_civilizations(thomas))))
room(preston)&room(terry)&room(thomas)&room(felecia)&(![X]:(room(X)=>(X='preston'|X='terry'|X='thomas'|X='felecia')))& can_play_the_harmonica(thomas)
[]
null
0.330242
There is a room. Everyone anywhere does not use an ios phone if they is not an avid mountain climber who has scaled several peaks. Everyone in the room practices zumba. No one in the room does not host a YouTube channel dedicated to art tutorials if they is an avid mountain climber who has scaled several peaks. Not everyone in the room does not host a YouTube channel dedicated to art tutorials and does not practice zumba. If someone does not practice zumba then he/she hosts a YouTube channel dedicated to art tutorials. Everyone in the room does not practice urban gardening, does not use an ios phone or is not an avid mountain climber who has scaled several peaks. Everyone in the room either does not host a YouTube channel dedicated to art tutorials or is not an avid mountain climber who has scaled several peaks but not both if they does not host a YouTube channel dedicated to art tutorials. Not everyone in the room is not an avid mountain climber who has scaled several peaks.
Everyone in the room is an avid mountain climber who has scaled several peaks.
entailment
(there_is_a_room)& (![X]:(anywhere(X)=>(((is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))=>(does_not_use_an_ios_phone(X))))))& (![X]:(room(X)=>(practices_zumba(X))))& (~?[X]:(room(X)=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))=>(does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))))))& (~![X]:(room(X)=>(((does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))&(does_not_practice_zumba(X))))))& ((![X]:((does_not_practice_zumba(X))=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X)))))& (![X]:(room(X)=>(((does_not_practice_urban_gardening(X))|(does_not_use_an_ios_phone(X))|(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))& (![X]:(room(X)=>(((does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))=>(((does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))<~>(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))))& (~![X]:(room(X)=>(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))
(there_is_a_room)& ![X]:(room(X)=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X)))
[ "p0", "p3", "hypothesis" ]
% SZS status Unsatisfiable for 6197506649044383777921227 % SZS output start Proof for 6197506649044383777921227 44. there_is_a_room [input p0] 47. ~? [X0] : (room(X0) => (predc(X0) => ~preda(X0))) [input p3] 53. ~(! [X0] : (room(X0) => predc(X0)) & there_is_a_room) [input hypothesis] 131. ! [X0] : ((preda(X0) & predc(X0)) & room(X0)) [ennf transformation 47] 132. ! [X0] : (preda(X0) & predc(X0) & room(X0)) [flattening 131] 137. ? [X0] : (~predc(X0) & room(X0)) | ~there_is_a_room [ennf transformation 53] 144. ? [X0] : (~predc(X0) & room(X0)) => (~predc(sK2) & room(sK2)) [choice axiom] 145. (~predc(sK2) & room(sK2)) | ~there_is_a_room [skolemisation 137,144] 226. there_is_a_room [cnf transformation 44] 228. predc(X0) [cnf transformation 132] 236. ~predc(sK2) | ~there_is_a_room [cnf transformation 145] 238. ~there_is_a_room [subsumption resolution 236,228] 239. $false [subsumption resolution 238,226] % SZS output end Proof for 6197506649044383777921227 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.27442
Solomon, Mark, Jordan are the only persons in the room. Mark can play the piano or owns a telescope or both. Solomon collects limited-edition art prints from contemporary artists. Solomon dreamt that “Mark writes and illustrates their own graphic novels”. Everyone anywhere who can play the piano is passionate about collecting and restoring classic cars. Mark who practices urban gardening does not practice urban gardening, writes a travel blog or designs and sews custom cosplay costumes for conventions. It is true that “Solomon writes and illustrates their own graphic novels”. Everyone in the room who neither owns a telescope nor hosts themed dinner parties featuring gourmet home-cooked meals enjoys spelunking. Everyone in the room collects antique clocks if they owns a smartwatch, creates large-scale murals for public art installations or designs and sews custom cosplay costumes for conventions. It is true that “someone in the room does not enjoy salsa dancing or can play the guitar or both”. If someone enjoys logic puzzles then he/she regularly goes on multi-day backpacking trips in national parks and vice versa. At least one person in the room neither owns a telescope nor hosts themed dinner parties featuring gourmet home-cooked meals. Everyone in the room cannot play the guitar if they either does not write a travel blog or enjoys spelunking but not both. Everyone in the room who owns a smartwatch does practice yoga. Everyone in the room does practice yoga if they creates large-scale murals for public art installations and vice versa. Mark who can play the piano practices kickboxing. Everyone in the room writes a travel blog if they designs and sews custom cosplay costumes for conventions. Everyone in the room uses contact lenses if they writes a travel blog.
Mark uses contact lenses.
entailment
room(solomon)&room(mark)&room(jordan)&(![X]:(room(X)=>(X='solomon'|X='mark'|X='jordan')))& (((can_play_the_piano(mark))|(owns_a_telescope(mark))))& (collects_limited-edition_art_prints_from_contemporary_artists(solomon))& ((solomon_dream=>(writes_and_illustrates_their_own_graphic_novels(mark))))& (![X]:(anywhere(X)=>(((can_play_the_piano(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& ((practices_urban_gardening(mark))&(((does_not_practice_urban_gardening(mark))|(writes_a_travel_blog(mark))|(designs_and_sews_custom_cosplay_costumes_for_conventions(mark)))))& (writes_and_illustrates_their_own_graphic_novels(solomon))& (![X]:(room(X)=>(((~((owns_a_telescope(X))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))=>(enjoys_spelunking(X))))))& (![X]:(room(X)=>(((((owns_a_smartwatch(X))|(creates_large-scale_murals_for_public_art_installations(X))|(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))=>(collects_antique_clocks(X))))))& (?[X]:(room(X)&(((does_not_enjoy_salsa_dancing(X))|(can_play_the_guitar(X))))))& ((![X]:((enjoys_logic_puzzles(X))<=>(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X)))))& (((?[X]:(room(X)&~((owns_a_telescope(X))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)))))))& (![X]:(room(X)=>(((((does_not_write_a_travel_blog(X))<~>(enjoys_spelunking(X))))=>(cannot_play_the_guitar(X))))))& (![X]:(room(X)=>(((owns_a_smartwatch(X))=>(does_practice_yoga(X))))))& (![X]:(room(X)=>(((does_practice_yoga(X))<=>(creates_large-scale_murals_for_public_art_installations(X))))))& ((can_play_the_piano(mark))&(practices_kickboxing(mark)))& (![X]:(~room(X)=>(~((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(owns_a_smartwatch(X))))))& (![X]:(room(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))|(can_play_the_piano(X))))))))& (![X]:(anywhere(X)=>(((can_play_the_guitar(X))<=(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))|(can_play_the_piano(X))))))))& (writes_and_illustrates_their_own_graphic_novels(mark))& (((?[X]:(room(X)&hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)))&(![X,Y]:((room(X)&room(Y)&(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))&(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))& (![X]:(room(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))=>(writes_a_travel_blog(X))))))& (does_practice_yoga(mark))& (![X]:(room(X)=>(((does_not_create_large-scale_murals_for_public_art_installations(X))=>(owns_a_telescope(X))))))& (![X]:(room(X)=>(((uses_contact_lenses(X))=>(does_practice_yoga(X))))))& (![X]:(room(X)=>(((writes_a_travel_blog(X))=>(uses_contact_lenses(X))))))
room(solomon)&room(mark)&room(jordan)&(![X]:(room(X)=>(X='solomon'|X='mark'|X='jordan')))& uses_contact_lenses(mark)
[ "p0", "p5", "p22", "p26", "hypothesis" ]
% SZS status Unsatisfiable for 651834556948580464517818 % SZS output start Proof for 651834556948580464517818 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 49. (predl(paul) | predb(paul) | ~predc(paul)) & predc(paul) [input p5] 66. ! [X0] : (room(X0) => (predl(X0) => predb(X0))) [input p22] 70. ! [X0] : (room(X0) => (predb(X0) => predm(X0))) [input p26] 71. ~(predm(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 155. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 156. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 155] 170. ! [X0] : ((predb(X0) | ~predl(X0)) | ~room(X0)) [ennf transformation 66] 171. ! [X0] : (predb(X0) | ~predl(X0) | ~room(X0)) [flattening 170] 176. ! [X0] : ((predm(X0) | ~predb(X0)) | ~room(X0)) [ennf transformation 70] 177. ! [X0] : (predm(X0) | ~predb(X0) | ~room(X0)) [flattening 176] 178. ~predm(paul) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 71] 179. ~predm(paul) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 178] 189. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 190. ~predm(paul) | (fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 179,189] 272. room(mary) [cnf transformation 156] 273. room(paul) [cnf transformation 156] 274. room(fred) [cnf transformation 156] 275. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 156] 278. predc(paul) [cnf transformation 49] 279. predl(paul) | predb(paul) | ~predc(paul) [cnf transformation 49] 296. ~predl(X0) | predb(X0) | ~room(X0) [cnf transformation 171] 300. ~predb(X0) | predm(X0) | ~room(X0) [cnf transformation 177] 301. ~predm(paul) | room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 190] 302. ~predm(paul) | mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 190] 303. ~predm(paul) | paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 190] 304. ~predm(paul) | fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 190] 315. 3 <=> predc(paul) [avatar definition] 319. 4 <=> predb(paul) [avatar definition] 321. predb(paul) <- (4) [avatar component clause 319] 323. 5 <=> predl(paul) [avatar definition] 325. predl(paul) <- (5) [avatar component clause 323] 326. ~3 | 4 | 5 [avatar split clause 279,323,319,315] 327. 3 [avatar split clause 278,315] 331. ~predm(paul) | fred != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 304,274] 332. ~predm(paul) | fred != sK3 | ~room(mary) [subsumption resolution 331,273] 333. ~predm(paul) | fred != sK3 [subsumption resolution 332,272] 335. 6 <=> fred = sK3 [avatar definition] 337. fred != sK3 <- (~6) [avatar component clause 335] 339. 7 <=> predm(paul) [avatar definition] 342. ~6 | ~7 [avatar split clause 333,339,335] 343. ~predm(paul) | paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 303,274] 344. ~predm(paul) | paul != sK3 | ~room(mary) [subsumption resolution 343,273] 345. ~predm(paul) | paul != sK3 [subsumption resolution 344,272] 347. 8 <=> paul = sK3 [avatar definition] 349. paul != sK3 <- (~8) [avatar component clause 347] 350. ~8 | ~7 [avatar split clause 345,339,347] 351. ~predm(paul) | mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 302,274] 352. ~predm(paul) | mary != sK3 | ~room(mary) [subsumption resolution 351,273] 353. ~predm(paul) | mary != sK3 [subsumption resolution 352,272] 355. 9 <=> mary = sK3 [avatar definition] 357. mary != sK3 <- (~9) [avatar component clause 355] 358. ~9 | ~7 [avatar split clause 353,339,355] 359. ~predm(paul) | room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 301,274] 360. ~predm(paul) | room(sK3) | ~room(mary) [subsumption resolution 359,273] 361. ~predm(paul) | room(sK3) [subsumption resolution 360,272] 363. 10 <=> room(sK3) [avatar definition] 365. room(sK3) <- (10) [avatar component clause 363] 366. 10 | ~7 [avatar split clause 361,339,363] 414. predm(paul) | ~room(paul) <- (4) [resolution 300,321] 418. predm(paul) <- (4) [subsumption resolution 414,273] 419. 7 | ~4 [avatar split clause 418,319,339] 431. predb(paul) | ~room(paul) <- (5) [resolution 325,296] 435. predb(paul) <- (5) [subsumption resolution 431,273] 436. 4 | ~5 [avatar split clause 435,323,319] 544. paul = sK3 | mary = sK3 | fred = sK3 <- (10) [resolution 275,365] 584. mary = sK3 | fred = sK3 <- (~8, 10) [subsumption resolution 544,349] 585. fred = sK3 <- (~8, ~9, 10) [subsumption resolution 584,357] 586. $false <- (~6, ~8, ~9, 10) [subsumption resolution 585,337] 587. 6 | 8 | 9 | ~10 [avatar contradiction clause 586] 588. $false [avatar sat refutation 326,327,342,350,358,366,419,436,587] % SZS output end Proof for 651834556948580464517818 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.011723
Charles, Tom, Trina, Roger, Roland are the only persons in the room. If 'Roland is richer than Danielle, is poorer than Danielle or is not liked by Sally' then 'Trina is the least old in the room'. Everyone in the room who is a wise tall humble funny quiet person does not stream on Twitch. Charles is the least young in the room. Everyone in the room is strong if they streams on Twitch. Roland and Tom are not curious, not creative. Only one person in the room enjoys deep-sea diving and exploring underwater caves. Everyone outside the room who is not a quiet european reads mystery novels and does not hate Danielle. Someone in the room is louder than Danielle, enjoys deep-sea diving and exploring underwater caves or enjoys writing detailed reviews of new and classic board games. If someone is not brave, not generous then he/she is a sibling of Danielle. Roger who enjoys writing detailed reviews of new and classic board games is poorer than Danielle. Everyone in the room who is a sibling of Danielle does not enjoy writing detailed reviews of new and classic board games. If someone hosts regular workshops on creative writing then he/she writes poetry and vice versa. All curious persons are brave. All strong persons are tall. Not everyone in the room who trains for and competes in international triathlons does not make intricate hand-cut paper art for exhibitions. Everyone anywhere volunteers for local environmental conservation projects if they does not make intricate hand-cut paper art for exhibitions. Tom does not enjoy deep-sea diving and exploring underwater caves.
Everyone in the room does not enjoy writing detailed reviews of new and classic board games.
contradiction
room(charles)&room(tom)&room(trina)&room(roger)&room(roland)&(![X]:(room(X)=>(X='charles'|X='tom'|X='trina'|X='roger'|X='roland')))& ((((richer(danielle,roland))|(poorer(danielle,roland))|(~like(roland,sally))))=>(![X]:((room(X)&(X!=trina))=>older(trina,X))))& (![X]:(room(X)=>(((wise(X)&tall(X)&humble(X)&funny(X)&quiet(X)&person(X))=>(does_not_stream_on_Twitch(X))))))& (![X]:((room(X)&(X!=charles))=>younger(charles,X)))& (![X]:(room(X)=>(((streams_on_Twitch(X))=>(strong(X))))))& (~curious(roland)&~creative(roland)&~curious(tom)&~creative(tom))& (((?[X]:(room(X)&enjoys_deep-sea_diving_and_exploring_underwater_caves(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))&(enjoys_deep-sea_diving_and_exploring_underwater_caves(Y)))=>(X=Y)))))& (![X]:(~room(X)=>(((~(quiet(X)&european(X)))=>(((reads_mystery_novels(X))&(~hate(danielle,X))))))))& (?[X]:(room(X)&(((louder(danielle,X))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))|(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))))& ((![X]:((~brave(X)&~generous(X))=>(sibling(danielle,X)))))& ((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(roger))&(poorer(danielle,roger)))& (![X]:(room(X)=>(((sibling(danielle,X))=>(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))))))& ((![X]:((hosts_regular_workshops_on_creative_writing(X))<=>(writes_poetry(X)))))& (![X]:(curious(X)=>brave(X)))& (![X]:(strong(X)=>tall(X)))& (~![X]:(room(X)=>(((trains_for_and_competes_in_international_triathlons(X))=>(does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))))))& (![X]:(anywhere(X)=>(((does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))=>(volunteers_for_local_environmental_conservation_projects(X))))))& (does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(tom))& (client(tom,danielle))& (hate(danielle,trina))& (![X]:(room(X)=>(((~((sibling(sally,X))|(~like(X,sally))))=>(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))))))& (poorer(trina,danielle))
room(charles)&room(tom)&room(trina)&room(roger)&room(roland)&(![X]:(room(X)=>(X='charles'|X='tom'|X='trina'|X='roger'|X='roland')))& ![X]:(room(X)=>(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X)))
[ "p0", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 6193517354976401458664941 % SZS output start Proof for 6193517354976401458664941 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 54. poorer(susan,alice) & predk(alice) [input p10] 66. ! [X0] : (room(X0) => ~predk(X0)) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 68. ! [X0] : (room(X0) => ~predk(X0)) & ! [X1] : (room(X1) => (john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 66] 157. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 158. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 157] 170. ! [X0] : (~predk(X0) | ~room(X0)) & ! [X1] : ((john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1) | ~room(X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 68] 171. ! [X0] : (~predk(X0) | ~room(X0)) & ! [X1] : (john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1 | ~room(X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 170] 264. room(alice) [cnf transformation 158] 277. predk(alice) [cnf transformation 54] 290. ~predk(X0) | ~room(X0) [cnf transformation 171] 322. ~room(alice) [resolution 290,277] 323. $false [subsumption resolution 322,264] % SZS output end Proof for 6193517354976401458664941 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.041369
Joseph is the only person in the room. “Joseph creates augmented reality experiences for mobile applications” unless “everyone in the room does not enjoy deep-sea diving and exploring underwater caves or creates YouTube content”. “Everyone in the room enjoys virtual reality gaming if they collects vintage vinyl records” if “Joseph collects vintage vinyl records”. “If someone collects luxury watches then he/she hosts regular game nights featuring complex strategy games” if “no one in the room is not a drone photographer or participates in long-distance cycling events across the country”. “Joseph does not create YouTube content” if “everyone in the room does not collect luxury watches or is a drone photographer”. If “Joseph does not create YouTube content” then “everyone in the room is a drone photographer and uses an ios phone if they participates in long-distance cycling events across the country”. Joseph uses an ios phone and does not frequently participates in hackathons and coding competitions. Joseph participates in long-distance cycling events across the country and practices tai chi. Everyone anywhere makes homemade pastries. Everyone in the room who hosts regular game nights featuring complex strategy games makes homemade pastries. Everyone in the room enjoys virtual reality gaming if they collects vintage vinyl records. Joseph does not collect vintage vinyl records. Joseph enjoys virtual reality gaming. Joseph collects luxury watches. Joseph makes homemade pastries. Joseph does not create YouTube content. Joseph hosts regular game nights featuring complex strategy games.
Joseph is a drone photographer.
entailment
room(joseph)&(![X]:(room(X)=>(X='joseph')))& (~(![X]:(room(X)=>(((creates_YouTube_content(X))|(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))))))=>(creates_augmented_reality_experiences_for_mobile_applications(joseph)))& ((collects_vintage_vinyl_records(joseph))=>(![X]:(room(X)=>(((collects_vintage_vinyl_records(X))=>(enjoys_virtual_reality_gaming(X)))))))& ((~?[X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))|(is_not_a_drone_photographer(X))))))=>((![X]:((collects_luxury_watches(X))=>(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))& ((![X]:(room(X)=>(((is_a_drone_photographer(X))|(does_not_collect_luxury_watches(X))))))=>(does_not_create_YouTube_content(joseph)))& ((does_not_create_YouTube_content(joseph))=>(![X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))=>(((is_a_drone_photographer(X))&(uses_an_ios_phone(X)))))))))& (((uses_an_ios_phone(joseph))&(does_not_frequently_participates_in_hackathons_and_coding_competitions(joseph))))& (((participates_in_long-distance_cycling_events_across_the_country(joseph))&(practices_tai_chi(joseph))))& (![X]:(anywhere(X)=>(makes_homemade_pastries(X))))& (![X]:(room(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))=>(makes_homemade_pastries(X))))))& (![X]:(room(X)=>(((collects_vintage_vinyl_records(X))=>(enjoys_virtual_reality_gaming(X))))))& (does_not_collect_vintage_vinyl_records(joseph))& (enjoys_virtual_reality_gaming(joseph))& (collects_luxury_watches(joseph))& (makes_homemade_pastries(joseph))& (does_not_create_YouTube_content(joseph))& (hosts_regular_game_nights_featuring_complex_strategy_games(joseph))
room(joseph)&(![X]:(room(X)=>(X='joseph')))& is_a_drone_photographer(joseph)
[ "p0", "p5", "p7", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 2298807457307326772165171 % SZS output start Proof for 2298807457307326772165171 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 49. ~preda(mary) => ! [X0] : (room(X0) => (predj(X0) => (prede(X0) & predb(X0)))) [input p5] 51. predc(mary) & predj(mary) [input p7] 59. ~preda(mary) [input p15] 61. ~(predb(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 71. predj(mary) [pure predicate removal 51] 74. ~preda(mary) => ! [X0] : (room(X0) => (predj(X0) => predb(X0))) [pure predicate removal 49] 151. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 153. ! [X0] : ((predb(X0) | ~predj(X0)) | ~room(X0)) | preda(mary) [ennf transformation 74] 154. ! [X0] : (predb(X0) | ~predj(X0) | ~room(X0)) | preda(mary) [flattening 153] 155. ~predb(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 61] 159. ? [X0] : (mary != X0 & room(X0)) => (mary != sK1 & room(sK1)) [choice axiom] 160. ~predb(mary) | (mary != sK1 & room(sK1)) | ~room(mary) [skolemisation 155,159] 241. room(mary) [cnf transformation 151] 242. ~room(X0) | mary = X0 [cnf transformation 151] 245. predb(X0) | ~predj(X0) | ~room(X0) | preda(mary) [cnf transformation 154] 246. predj(mary) [cnf transformation 71] 247. ~preda(mary) [cnf transformation 59] 248. ~predb(mary) | room(sK1) | ~room(mary) [cnf transformation 160] 249. ~predb(mary) | mary != sK1 | ~room(mary) [cnf transformation 160] 255. 2 <=> preda(mary) [avatar definition] 265. 4 <=> ! [X0] : (predb(X0) | ~room(X0) | ~predj(X0)) [avatar definition] 266. ~predj(X0) | ~room(X0) | predb(X0) <- (4) [avatar component clause 265] 267. 2 | 4 [avatar split clause 245,265,255] 268. ~2 [avatar split clause 247,255] 269. ~predb(mary) | mary != sK1 [subsumption resolution 249,241] 271. 5 <=> mary = sK1 [avatar definition] 273. mary != sK1 <- (~5) [avatar component clause 271] 275. 6 <=> predb(mary) [avatar definition] 278. ~5 | ~6 [avatar split clause 269,275,271] 279. ~predb(mary) | room(sK1) [subsumption resolution 248,241] 281. 7 <=> room(sK1) [avatar definition] 283. room(sK1) <- (7) [avatar component clause 281] 284. 7 | ~6 [avatar split clause 279,275,281] 286. ~room(mary) | predb(mary) <- (4) [resolution 266,246] 287. predb(mary) <- (4) [subsumption resolution 286,241] 290. 6 | ~4 [avatar split clause 287,265,275] 291. mary = sK1 <- (7) [resolution 283,242] 292. $false <- (~5, 7) [subsumption resolution 291,273] 293. 5 | ~7 [avatar contradiction clause 292] 294. $false [avatar sat refutation 267,268,278,284,290,293] % SZS output end Proof for 2298807457307326772165171 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.022021
Marcia, Heidi, Donald, Joel are the only persons in the room. Either “everyone in the room is not allergic to anything or does not collect modern art” or “it is true that “everyone in the room is not an amateur astronomer who builds and uses custom telescopes or does not collect modern art”” but not both. If someone participates in long-distance cycling events across the country then he/she neither does not collect classic novels nor is not allergic to anything. Donald neither does not enjoy bird watching nor practices graffiti art. Everyone in the room is an amateur astronomer who builds and uses custom telescopes if they does not build model airplanes and vice versa. Heidi owns a significant collection of rare gemstones and minerals. Joel is a certified yoga instructor teaching classes weekly, does not practice graffiti art and does not maintain a personal blog focused on cybersecurity tips. Heidi does not enjoy rooftop gardening. Donald builds model airplanes or does not regularly goes on multi-day backpacking trips in national parks or both. Marcia does not regularly goes on multi-day backpacking trips in national parks. Everyone in the room regularly goes on multi-day backpacking trips in national parks, owns a significant collection of rare gemstones and minerals and is a drone photographer if they collects classic novels. Joel who does not collect classic novels practices archery. Everyone outside the room participates in long-distance cycling events across the country. Everyone in the room neither collects modern art nor is a certified yoga instructor teaching classes weekly if they neither has a curated collection of mid-century modern furniture nor does not collect classic novels and vice versa. Not everyone in the room builds model airplanes if they neither has a curated collection of mid-century modern furniture nor does not collect classic novels. Marcia neither is not a certified yoga instructor teaching classes weekly nor participates in long-distance cycling events across the country. Everyone in the room does not practice graffiti art if they collects classic novels.
Heidi builds model airplanes.
contradiction
room(marcia)&room(heidi)&room(donald)&room(joel)&(![X]:(room(X)=>(X='marcia'|X='heidi'|X='donald'|X='joel')))& ((![X]:(room(X)=>(((does_not_collect_modern_art(X))|(is_not_allergic_to_anything(X))))))<~>(![X]:(room(X)=>(((does_not_collect_modern_art(X))|(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X)))))))& ((![X]:((participates_in_long-distance_cycling_events_across_the_country(X))=>(~((does_not_collect_classic_novels(X))|(is_not_allergic_to_anything(X)))))))& (~((does_not_enjoy_bird_watching(donald))|(practices_graffiti_art(donald))))& (![X]:(room(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))<=>(does_not_build_model_airplanes(X))))))& (owns_a_significant_collection_of_rare_gemstones_and_minerals(heidi))& (((is_a_certified_yoga_instructor_teaching_classes_weekly(joel))&(does_not_practice_graffiti_art(joel))&(does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(joel))))& (does_not_enjoy_rooftop_gardening(heidi))& (((builds_model_airplanes(donald))|(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(donald))))& (does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(marcia))& (![X]:(room(X)=>(((collects_classic_novels(X))=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))&(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))&(is_a_drone_photographer(X))))))))& ((does_not_collect_classic_novels(joel))&(practices_archery(joel)))& (![X]:(~room(X)=>(participates_in_long-distance_cycling_events_across_the_country(X))))& (![X]:(room(X)=>(((~((collects_modern_art(X))|(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))<=>(~((has_a_curated_collection_of_mid-century_modern_furniture(X))|(does_not_collect_classic_novels(X))))))))& (~![X]:(room(X)=>(((~((has_a_curated_collection_of_mid-century_modern_furniture(X))|(does_not_collect_classic_novels(X))))=>(builds_model_airplanes(X))))))& (~((is_not_a_certified_yoga_instructor_teaching_classes_weekly(marcia))|(participates_in_long-distance_cycling_events_across_the_country(marcia))))& (![X]:(room(X)=>(((collects_classic_novels(X))=>(does_not_practice_graffiti_art(X))))))& (![X]:(room(X)=>(((is_not_a_client_of_Costco(X))=>(is_not_a_drone_photographer(X))))))& (does_not_practice_archery(heidi))& (![X]:(room(X)=>(((does_enjoy_trail_running(X))=>(((collects_luxury_watches(X))|(is_not_allergic_to_anything(X))))))))
room(marcia)&room(heidi)&room(donald)&room(joel)&(![X]:(room(X)=>(X='marcia'|X='heidi'|X='donald'|X='joel')))& builds_model_airplanes(heidi)
[ "p0", "p4", "p8", "p9", "p10", "p11", "p14", "hypothesis" ]
% SZS status Unsatisfiable for 258614301787183469965446 % SZS output start Proof for 258614301787183469965446 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 48. ! [X0] : (room(X0) => (predi(X0) <=> ~predd(X0))) [input p4] 52. ~predb(fred) | predd(fred) [input p8] 53. ~predb(mary) [input p9] 54. ! [X0] : (room(X0) => (preda(X0) => (preds(X0) & predo(X0) & predb(X0)))) [input p10] 55. predu(alice) & ~preda(alice) [input p11] 58. ~! [X0] : (room(X0) => (~(~preda(X0) | predr(X0)) => predd(X0))) [input p14] 64. predd(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 68. ! [X0] : (room(X0) => (preda(X0) => (predo(X0) & predb(X0)))) [pure predicate removal 54] 72. ! [X0] : (room(X0) => (preda(X0) => predb(X0))) [pure predicate removal 68] 149. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 150. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 149] 154. ! [X0] : ((predi(X0) <=> ~predd(X0)) | ~room(X0)) [ennf transformation 48] 155. ! [X0] : ((predb(X0) | ~preda(X0)) | ~room(X0)) [ennf transformation 72] 156. ! [X0] : (predb(X0) | ~preda(X0) | ~room(X0)) [flattening 155] 159. ? [X0] : ((~predd(X0) & (preda(X0) & ~predr(X0))) & room(X0)) [ennf transformation 58] 160. ? [X0] : (~predd(X0) & preda(X0) & ~predr(X0) & room(X0)) [flattening 159] 162. predd(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 64] 163. predd(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 162] 170. ! [X0] : (((predi(X0) | predd(X0)) & (~predd(X0) | ~predi(X0))) | ~room(X0)) [nnf transformation 154] 173. ? [X0] : (~predd(X0) & preda(X0) & ~predr(X0) & room(X0)) => (~predd(sK2) & preda(sK2) & ~predr(sK2) & room(sK2)) [choice axiom] 174. ~predd(sK2) & preda(sK2) & ~predr(sK2) & room(sK2) [skolemisation 160,173] 256. room(paul) [cnf transformation 150] 259. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 150] 272. ~predd(X0) | ~predi(X0) | ~room(X0) [cnf transformation 170] 273. ~room(X0) | predd(X0) | predi(X0) [cnf transformation 170] 275. ~predb(fred) | predd(fred) [cnf transformation 52] 276. ~predb(mary) [cnf transformation 53] 277. ~preda(X0) | predb(X0) | ~room(X0) [cnf transformation 156] 278. ~preda(alice) [cnf transformation 55] 285. room(sK2) [cnf transformation 174] 287. preda(sK2) [cnf transformation 174] 288. ~predd(sK2) [cnf transformation 174] 297. predd(paul) [cnf transformation 163] 339. 9 <=> predd(fred) [avatar definition] 341. predd(fred) <- (9) [avatar component clause 339] 343. 10 <=> predb(fred) [avatar definition] 345. ~predb(fred) <- (~10) [avatar component clause 343] 346. 9 | ~10 [avatar split clause 275,343,339] 350. ~predi(paul) | ~room(paul) [resolution 272,297] 351. ~predi(paul) [subsumption resolution 350,256] 357. predd(sK2) | predi(sK2) [resolution 273,285] 381. predi(sK2) [subsumption resolution 357,288] 385. predb(sK2) | ~room(sK2) [resolution 277,287] 386. predb(sK2) [subsumption resolution 385,285] 501. fred = sK2 | paul = sK2 | mary = sK2 | alice = sK2 [resolution 259,285] 520. 30 <=> alice = sK2 [avatar definition] 522. alice = sK2 <- (30) [avatar component clause 520] 524. 31 <=> mary = sK2 [avatar definition] 526. mary = sK2 <- (31) [avatar component clause 524] 528. 32 <=> paul = sK2 [avatar definition] 530. paul = sK2 <- (32) [avatar component clause 528] 532. 33 <=> fred = sK2 [avatar definition] 534. fred = sK2 <- (33) [avatar component clause 532] 535. 30 | 31 | 32 | 33 [avatar split clause 501,532,528,524,520] 538. preda(alice) <- (30) [backward demodulation 287,522] 543. $false <- (30) [subsumption resolution 538,278] 544. ~30 [avatar contradiction clause 543] 551. predb(mary) <- (31) [backward demodulation 386,526] 557. $false <- (31) [subsumption resolution 551,276] 558. ~31 [avatar contradiction clause 557] 564. predi(paul) <- (32) [backward demodulation 381,530] 571. $false <- (32) [subsumption resolution 564,351] 572. ~32 [avatar contradiction clause 571] 576. ~predd(fred) <- (33) [backward demodulation 288,534] 578. predb(fred) <- (33) [backward demodulation 386,534] 584. $false <- (9, 33) [subsumption resolution 576,341] 585. ~9 | ~33 [avatar contradiction clause 584] 588. $false <- (~10, 33) [subsumption resolution 578,345] 589. 10 | ~33 [avatar contradiction clause 588] 592. $false [avatar sat refutation 346,535,544,558,572,585,589] % SZS output end Proof for 258614301787183469965446 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.488052
Debra, Jose are the only persons in the room. It is not the case that “more than one person anywhere owns a smartwatch”. Debra dreamt that “everyone in the room who is not an avid collector of autographed memorabilia from famous musicians collects vintage vinyl records”. Everyone in the room owns a smartwatch only if they does not play video games. More than one person in the room enjoys kayaking. At least one person in the room is a tea enthusiast. Everyone in the room owns a smartwatch if they has a tattoo. If someone is an avid collector of autographed memorabilia from famous musicians then he/she does not own a telescope and vice versa. Everyone in the room who does not collect vintage vinyl records does not enjoy snowboarding. Everyone in the room who does not enjoy snowboarding either enjoys kayaking or is not a tea enthusiast but not both.
Jose either does not collect modern art or does not enjoy snowboarding but not both.
neutral
room(debra)&room(jose)&(![X]:(room(X)=>(X='debra'|X='jose')))& (~((?[X,Y]:(anywhere(X)&anywhere(Y)&(owns_a_smartwatch(X)&owns_a_smartwatch(Y))&(X!=Y)))))& ((debra_dream=>(![X]:(room(X)=>(((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))=>(collects_vintage_vinyl_records(X))))))))& (![X]:(room(X)=>(((does_not_play_video_games(X))<=(owns_a_smartwatch(X))))))& ((?[X,Y]:(room(X)&room(Y)&(enjoys_kayaking(X)&enjoys_kayaking(Y))&(X!=Y))))& (((?[X]:(room(X)&is_a_tea_enthusiast(X)))))& (![X]:(room(X)=>(((has_a_tattoo(X))=>(owns_a_smartwatch(X))))))& ((![X]:((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))<=>(does_not_own_a_telescope(X)))))& (![X]:(room(X)=>(((does_not_collect_vintage_vinyl_records(X))=>(does_not_enjoy_snowboarding(X))))))& (![X]:(room(X)=>(((does_not_enjoy_snowboarding(X))=>(((enjoys_kayaking(X))<~>(is_not_a_tea_enthusiast(X))))))))& (~![X]:(anywhere(X)=>(((((enjoys_kayaking(X))<~>(is_not_a_tea_enthusiast(X))))=>(((can_play_the_harmonica(X))<~>(collects_luxury_watches(X))))))))& (((?[X]:(~room(X)&does_not_own_a_telescope(X)))))& (![X]:(room(X)=>(((collects_foreign_coins(X))=>(enjoys_snowboarding(X))))))& (![X]:(room(X)=>(enjoys_kayaking(X))))& (![X]:(room(X)=>(((plays_video_games(X))=>(is_a_tea_enthusiast(X))))))& (![X]:(~room(X)=>(((can_play_the_harmonica(X))=>(collects_vintage_vinyl_records(X))))))& (((?[X]:(~room(X)&does_not_collect_modern_art(X)))&(![X,Y]:((~room(X)&~room(Y)&(does_not_collect_modern_art(X))&(does_not_collect_modern_art(Y)))=>(X=Y)))))
room(debra)&room(jose)&(![X]:(room(X)=>(X='debra'|X='jose')))& ((does_not_collect_modern_art(jose))<~>(does_not_enjoy_snowboarding(jose)))
[]
null
0.493523
Todd, Lester, Stephen, Jessica, Tony are the only persons in the room. 'Todd is not a old person' only if 'everyone in the room is not quiet, not old if and only if they either is quiet or is not quiet, not tall but not both'. 'Lester either is not quiet, not old or is old but not both' only if 'Lester and Todd are respectively tall and quiet'. No quiet person is tall.
Lester and Stephen are respectively old and quiet.
contradiction
room(todd)&room(lester)&room(stephen)&room(jessica)&room(tony)&(![X]:(room(X)=>(X='todd'|X='lester'|X='stephen'|X='jessica'|X='tony')))& ((~(old(todd)&person(todd)))=>(![X]:(room(X)=>(((~quiet(X)&~old(X))<=>(((quiet(X))<~>(~quiet(X)&~tall(X)))))))))& (~((tall(todd))&(old(lester)))=>((![X]:((quiet(X))=>(~(old(X)&tall(X)&quiet(X)&person(X)))))))& ((((~tall(todd))<~>(~old(todd))))<=>(((~tall(lester))|(~~old(lester)))))& ((((~quiet(lester)&~old(lester))<~>(old(lester))))=>((tall(lester))&(quiet(todd))))& ((?[X]:(~room(X)&(tall(X))))=>(~quiet(todd)&~old(todd)&~quiet(lester)&~old(lester)))& (~((tall(todd))|(~tall(todd)&~old(todd))))& (~?[X]:(quiet(X)=>tall(X)))& (![X]:((room(X)&(X!=todd))=>older(X,todd)))& (~~quiet(todd))& (quiet(todd))& (quiet(todd)&person(todd))& (((?[X]:(room(X)&((~~old(X))|(~quiet(X)))))&(![X,Y]:((room(X)&room(Y)&(((~~old(X))|(~quiet(X))))&(((~~old(Y))|(~quiet(Y)))))=>(X=Y)))))& (((?[X]:(room(X)&quiet(X)))))& (![X]:(room(X)=>(((~(tall(X)&old(X)&person(X)))=>(~(old(X)&tall(X)&person(X)))))))& (![X]:(~room(X)=>(((old(X))<=>(~~old(X))))))& (~(tall(lester)&old(lester)&person(lester)))
room(todd)&room(lester)&room(stephen)&room(jessica)&room(tony)&(![X]:(room(X)=>(X='todd'|X='lester'|X='stephen'|X='jessica'|X='tony')))& (old(lester))&(quiet(stephen))
[ "p4", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 8828282029494750020627249 % SZS output start Proof for 8828282029494750020627249 48. ((~old(paul) & ~quiet(paul)) <~> old(paul)) => (quiet(mary) & tall(paul)) [input p4] 51. ~? [X0] : (quiet(X0) => tall(X0)) [input p7] 61. quiet(fred) & old(paul) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 140. (quiet(mary) & tall(paul)) | ((~old(paul) & ~quiet(paul)) <=> old(paul)) [ennf transformation 48] 143. ! [X0] : (~tall(X0) & quiet(X0)) [ennf transformation 51] 152. quiet(fred) & old(paul) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 61] 153. quiet(fred) & old(paul) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 152] 164. (quiet(mary) & tall(paul)) | (((~old(paul) & ~quiet(paul)) | ~old(paul)) & (old(paul) | (old(paul) | quiet(paul)))) [nnf transformation 140] 165. (quiet(mary) & tall(paul)) | (((~old(paul) & ~quiet(paul)) | ~old(paul)) & (old(paul) | old(paul) | quiet(paul))) [flattening 164] 278. tall(paul) | ~old(paul) | ~old(paul) [cnf transformation 165] 289. ~tall(X0) [cnf transformation 143] 315. old(paul) [cnf transformation 153] 318. tall(paul) | ~old(paul) [duplicate literal removal 278] 339. 4 <=> old(paul) [avatar definition] 353. 7 <=> tall(paul) [avatar definition] 355. tall(paul) <- (7) [avatar component clause 353] 372. ~4 | 7 [avatar split clause 318,353,339] 386. 4 [avatar split clause 315,339] 387. $false <- (7) [subsumption resolution 355,289] 388. ~7 [avatar contradiction clause 387] 389. $false [avatar sat refutation 372,386,388] % SZS output end Proof for 8828282029494750020627249 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.157917
Jane, Roberto, Brendon are the only persons in the room. If “everyone in the room does not collect foreign coins or is a tea enthusiast” then “Jane is a cybersecurity expert”. “Jane is a tea enthusiast” if “everyone outside the room collects foreign coins or does not enjoy stargazing” and vice versa. If “everyone in the room is not a cybersecurity expert or cannot play the guitar” then “everyone in the room who is not a cybersecurity expert plays the drums”. If “at least one person in the room collect rare sneakers” then “Jane enjoys stargazing”. If “Jane enjoys stargazing” then “everyone in the room who does not participate in citizen science projects related to wildlife monitoring is not a cybersecurity expert”. If “everyone in the room enjoys logic puzzles or does not mentor a youth basketball team on weekends” then “Jane who is an expert in identifying and foraging wild edible plants and cannot play the guitar is a tea enthusiast”. If “Jane does practice yoga” then “Jane collects foreign coins”. If “everyone in the room is a cybersecurity expert or does not drive a hybrid car” then “if someone owns an extensive assortment of vintage comic book memorabilia or plays the drums or both then he/she drives a hybrid car and vice versa”. Everyone in the room enjoys origami if they is a cybersecurity expert. If someone owns an extensive assortment of vintage comic book memorabilia or plays the drums or both then he/she drives a hybrid car and vice versa. Someone in the room does not work as a freelance web developer specializing in e-commerce sites. If someone does not work as a freelance web developer specializing in e-commerce sites and is an enthusiastic bird watcher who travels for rare sightings then he/she has a vast collection of first-edition science fiction novels.
Jane reads mystery novels.
entailment
room(jane)&room(roberto)&room(brendon)&(![X]:(room(X)=>(X='jane'|X='roberto'|X='brendon')))& ((![X]:(room(X)=>(((is_a_tea_enthusiast(X))|(does_not_collect_foreign_coins(X))))))=>(is_a_cybersecurity_expert(jane)))& ((![X]:(~room(X)=>(((does_not_enjoy_stargazing(X))|(collects_foreign_coins(X))))))<=>(is_a_tea_enthusiast(jane)))& ((![X]:(room(X)=>(((cannot_play_the_guitar(X))|(is_not_a_cybersecurity_expert(X))))))=>(![X]:(room(X)=>(((is_not_a_cybersecurity_expert(X))=>(plays_the_drums(X)))))))& (((((?[X]:(room(X)&collect_rare_sneakers(X)))))=>(enjoys_stargazing(jane)))& ((enjoys_stargazing(jane))=>(![X]:(room(X)=>(((does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))=>(is_not_a_cybersecurity_expert(X))))))))& ((![X]:(room(X)=>(((does_not_mentor_a_youth_basketball_team_on_weekends(X))|(enjoys_logic_puzzles(X))))))=>((((is_an_expert_in_identifying_and_foraging_wild_edible_plants(jane))&(cannot_play_the_guitar(jane))))&(is_a_tea_enthusiast(jane))))& ((does_practice_yoga(jane))=>(collects_foreign_coins(jane)))& ((![X]:(room(X)=>(((does_not_drive_a_hybrid_car(X))|(is_a_cybersecurity_expert(X))))))=>((![X]:((((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(plays_the_drums(X))))<=>(drives_a_hybrid_car(X))))))& (![X]:(room(X)=>(((is_a_cybersecurity_expert(X))=>(enjoys_origami(X))))))& ((![X]:((((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(plays_the_drums(X))))<=>(drives_a_hybrid_car(X)))))& (?[X]:(room(X)&(does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))& ((![X]:((((does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))&(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))=>(has_a_vast_collection_of_first-edition_science_fiction_novels(X)))))& (![X]:(room(X)=>(((collect_rare_sneakers(X))=>(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))& (((?[X]:(room(X)&is_a_cybersecurity_expert(X)))))& (![X]:(room(X)=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))))& (![X]:(room(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))=>(reads_mystery_novels(X))))))& ((![X]:((mentors_a_youth_basketball_team_on_weekends(X))=>(does_not_own_an_Android_phone(X)))))& (![X]:(~room(X)=>(((plays_the_drums(X))=>(is_a_cybersecurity_expert(X))))))& (is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(jane))& (is_a_tea_enthusiast(jane))& (![X]:(room(X)=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(does_not_own_a_smartwatch(X))))))& (owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(jane))& (![X]:(room(X)=>(((collect_rare_sneakers(X))=>(does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))& (![X]:(room(X)=>(((does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))=>(((does_not_enjoy_stargazing(X))&(does_not_own_an_Android_phone(X))&(enjoys_logic_puzzles(X))))))))& ((![X]:((((enjoys_stargazing(X))|(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))<=>(does_not_collect_foreign_coins(X)))))& (does_practice_yoga(jane))& (![X]:(room(X)=>(((owns_a_microscope(X))=>(can_play_the_guitar(X))))))& (?[X]:(room(X)&(((collect_rare_sneakers(X))<~>(collects_vintage_vinyl_records(X))))))& (![X]:(room(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(does_not_practice_yoga(X))))))& ((![X]:((((mentors_a_youth_basketball_team_on_weekends(X))|(does_practice_yoga(X))))=>(is_a_tea_enthusiast(X)))))
room(jane)&room(roberto)&room(brendon)&(![X]:(room(X)=>(X='jane'|X='roberto'|X='brendon')))& reads_mystery_novels(jane)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 8064775687150474887404183 % SZS output start Proof for 8064775687150474887404183 44. ! [X0] : ((preds(X0) | predx(X0)) => predd(X0)) & ! [X0] : (room(X0) => (~preds(X0) | predp(X0))) & ? [X0] : ((predi(X0) <~> predv(X0)) & room(X0)) & ! [X0] : (room(X0) => (predl(X0) => predn(X0))) & preds(mary) & ! [X0] : ((predf(X0) | predq(X0)) <=> ~predy(X0)) & ! [X0] : (room(X0) => (~predu(X0) => (predj(X0) & ~prede(X0) & ~predq(X0)))) & ! [X0] : (room(X0) => (predi(X0) => ~predu(X0))) & predp(mary) & ! [X0] : (room(X0) => (~predc(X0) | predu(X0))) & predd(mary) & predo(mary) & ! [X0] : (~room(X0) => (preda(X0) => predw(X0))) & ! [X0] : (predx(X0) => ~prede(X0)) & ! [X0] : (room(X0) => (predp(X0) => predz(X0))) & ! [X0] : (room(X0) => predh(X0)) & ? [X0] : (predw(X0) & room(X0)) & ! [X0] : (room(X0) => (predi(X0) => ~predh(X0))) & ! [X0] : ((predo(X0) & ~predu(X0)) => predf(X0)) & ? [X0] : (~predu(X0) & room(X0)) & ! [X0] : ((preda(X0) | predp(X0)) <=> predk(X0)) & ! [X0] : (room(X0) => (predw(X0) => predg(X0))) & (! [X0] : (room(X0) => (predw(X0) | ~predk(X0))) => ! [X0] : ((preda(X0) | predp(X0)) <=> predk(X0))) & (preds(mary) => predy(mary)) & (! [X0] : (room(X0) => (predj(X0) | ~predx(X0))) => (predd(mary) & ~predn(mary) & predm(mary))) & (predq(mary) => ! [X0] : (room(X0) => (~predh(X0) => ~predw(X0)))) & (? [X0] : (predi(X0) & room(X0)) => predq(mary)) & (! [X0] : (room(X0) => (~predw(X0) | ~predn(X0))) => ! [X0] : (room(X0) => (~predw(X0) => preda(X0)))) & (! [X0] : (~room(X0) => (predy(X0) | ~predq(X0))) <=> predd(mary)) & (! [X0] : (room(X0) => (~predy(X0) | predd(X0))) => predw(mary)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. ~(predz(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 46. ! [X0] : ((preds(X0) | predx(X0)) => predd(X0)) & ! [X1] : (room(X1) => (~preds(X1) | predp(X1))) & ? [X2] : ((predi(X2) <~> predv(X2)) & room(X2)) & ! [X3] : (room(X3) => (predl(X3) => predn(X3))) & preds(mary) & ! [X4] : ((predf(X4) | predq(X4)) <=> ~predy(X4)) & ! [X5] : (room(X5) => (~predu(X5) => (predj(X5) & ~prede(X5) & ~predq(X5)))) & ! [X6] : (room(X6) => (predi(X6) => ~predu(X6))) & predp(mary) & ! [X7] : (room(X7) => (~predc(X7) | predu(X7))) & predd(mary) & predo(mary) & ! [X8] : (~room(X8) => (preda(X8) => predw(X8))) & ! [X9] : (predx(X9) => ~prede(X9)) & ! [X10] : (room(X10) => (predp(X10) => predz(X10))) & ! [X11] : (room(X11) => predh(X11)) & ? [X12] : (predw(X12) & room(X12)) & ! [X13] : (room(X13) => (predi(X13) => ~predh(X13))) & ! [X14] : ((predo(X14) & ~predu(X14)) => predf(X14)) & ? [X15] : (~predu(X15) & room(X15)) & ! [X16] : ((preda(X16) | predp(X16)) <=> predk(X16)) & ! [X17] : (room(X17) => (predw(X17) => predg(X17))) & (! [X18] : (room(X18) => (predw(X18) | ~predk(X18))) => ! [X19] : ((preda(X19) | predp(X19)) <=> predk(X19))) & (preds(mary) => predy(mary)) & (! [X20] : (room(X20) => (predj(X20) | ~predx(X20))) => (predd(mary) & ~predn(mary) & predm(mary))) & (predq(mary) => ! [X21] : (room(X21) => (~predh(X21) => ~predw(X21)))) & (? [X22] : (predi(X22) & room(X22)) => predq(mary)) & (! [X23] : (room(X23) => (~predw(X23) | ~predn(X23))) => ! [X24] : (room(X24) => (~predw(X24) => preda(X24)))) & (! [X25] : (~room(X25) => (predy(X25) | ~predq(X25))) <=> predd(mary)) & (! [X26] : (room(X26) => (~predy(X26) | predd(X26))) => predw(mary)) & ! [X27] : (room(X27) => (fred = X27 | paul = X27 | mary = X27)) & room(fred) & room(paul) & room(mary) [rectify 44] 47. ! [X0] : ((preds(X0) | predx(X0)) => predd(X0)) & ! [X1] : (room(X1) => (~preds(X1) | predp(X1))) & ? [X2] : ((predi(X2) <~> predv(X2)) & room(X2)) & preds(mary) & ! [X4] : ((predf(X4) | predq(X4)) <=> ~predy(X4)) & ! [X5] : (room(X5) => (~predu(X5) => (predj(X5) & ~prede(X5) & ~predq(X5)))) & ! [X6] : (room(X6) => (predi(X6) => ~predu(X6))) & predp(mary) & ! [X7] : (room(X7) => (~predc(X7) | predu(X7))) & predd(mary) & predo(mary) & ! [X8] : (~room(X8) => (preda(X8) => predw(X8))) & ! [X9] : (predx(X9) => ~prede(X9)) & ! [X10] : (room(X10) => (predp(X10) => predz(X10))) & ! [X11] : (room(X11) => predh(X11)) & ? [X12] : (predw(X12) & room(X12)) & ! [X13] : (room(X13) => (predi(X13) => ~predh(X13))) & ! [X14] : ((predo(X14) & ~predu(X14)) => predf(X14)) & ? [X15] : (~predu(X15) & room(X15)) & ! [X16] : ((preda(X16) | predp(X16)) <=> predk(X16)) & ! [X17] : (room(X17) => (predw(X17) => predg(X17))) & (! [X18] : (room(X18) => (predw(X18) | ~predk(X18))) => ! [X19] : ((preda(X19) | predp(X19)) <=> predk(X19))) & (preds(mary) => predy(mary)) & (! [X20] : (room(X20) => (predj(X20) | ~predx(X20))) => (predd(mary) & ~predn(mary) & predm(mary))) & (predq(mary) => ! [X21] : (room(X21) => (~predh(X21) => ~predw(X21)))) & (? [X22] : (predi(X22) & room(X22)) => predq(mary)) & (! [X23] : (room(X23) => (~predw(X23) | ~predn(X23))) => ! [X24] : (room(X24) => (~predw(X24) => preda(X24)))) & (! [X25] : (~room(X25) => (predy(X25) | ~predq(X25))) <=> predd(mary)) & (! [X26] : (room(X26) => (~predy(X26) | predd(X26))) => predw(mary)) & ! [X27] : (room(X27) => (fred = X27 | paul = X27 | mary = X27)) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 48. ! [X0] : ((preds(X0) | predx(X0)) => predd(X0)) & ! [X1] : (room(X1) => (~preds(X1) | predp(X1))) & ? [X2] : ((predi(X2) <~> predv(X2)) & room(X2)) & preds(mary) & ! [X4] : ((predf(X4) | predq(X4)) <=> ~predy(X4)) & ! [X5] : (room(X5) => (~predu(X5) => (predj(X5) & ~prede(X5) & ~predq(X5)))) & ! [X6] : (room(X6) => (predi(X6) => ~predu(X6))) & predp(mary) & predd(mary) & predo(mary) & ! [X8] : (~room(X8) => (preda(X8) => predw(X8))) & ! [X9] : (predx(X9) => ~prede(X9)) & ! [X10] : (room(X10) => (predp(X10) => predz(X10))) & ! [X11] : (room(X11) => predh(X11)) & ? [X12] : (predw(X12) & room(X12)) & ! [X13] : (room(X13) => (predi(X13) => ~predh(X13))) & ! [X14] : ((predo(X14) & ~predu(X14)) => predf(X14)) & ? [X15] : (~predu(X15) & room(X15)) & ! [X16] : ((preda(X16) | predp(X16)) <=> predk(X16)) & ! [X17] : (room(X17) => (predw(X17) => predg(X17))) & (! [X18] : (room(X18) => (predw(X18) | ~predk(X18))) => ! [X19] : ((preda(X19) | predp(X19)) <=> predk(X19))) & (preds(mary) => predy(mary)) & (! [X20] : (room(X20) => (predj(X20) | ~predx(X20))) => (predd(mary) & ~predn(mary) & predm(mary))) & (predq(mary) => ! [X21] : (room(X21) => (~predh(X21) => ~predw(X21)))) & (? [X22] : (predi(X22) & room(X22)) => predq(mary)) & (! [X23] : (room(X23) => (~predw(X23) | ~predn(X23))) => ! [X24] : (room(X24) => (~predw(X24) => preda(X24)))) & (! [X25] : (~room(X25) => (predy(X25) | ~predq(X25))) <=> predd(mary)) & (! [X26] : (room(X26) => (~predy(X26) | predd(X26))) => predw(mary)) & ! [X27] : (room(X27) => (fred = X27 | paul = X27 | mary = X27)) & room(fred) & room(paul) & room(mary) [pure predicate removal 47] 49. ! [X0] : ((preds(X0) | predx(X0)) => predd(X0)) & ! [X1] : (room(X1) => (~preds(X1) | predp(X1))) & ? [X2] : ((predi(X2) <~> predv(X2)) & room(X2)) & preds(mary) & ! [X4] : ((predf(X4) | predq(X4)) <=> ~predy(X4)) & ! [X5] : (room(X5) => (~predu(X5) => (predj(X5) & ~predq(X5)))) & ! [X6] : (room(X6) => (predi(X6) => ~predu(X6))) & predp(mary) & predd(mary) & predo(mary) & ! [X8] : (~room(X8) => (preda(X8) => predw(X8))) & ! [X10] : (room(X10) => (predp(X10) => predz(X10))) & ! [X11] : (room(X11) => predh(X11)) & ? [X12] : (predw(X12) & room(X12)) & ! [X13] : (room(X13) => (predi(X13) => ~predh(X13))) & ! [X14] : ((predo(X14) & ~predu(X14)) => predf(X14)) & ? [X15] : (~predu(X15) & room(X15)) & ! [X16] : ((preda(X16) | predp(X16)) <=> predk(X16)) & ! [X17] : (room(X17) => (predw(X17) => predg(X17))) & (! [X18] : (room(X18) => (predw(X18) | ~predk(X18))) => ! [X19] : ((preda(X19) | predp(X19)) <=> predk(X19))) & (preds(mary) => predy(mary)) & (! [X20] : (room(X20) => (predj(X20) | ~predx(X20))) => (predd(mary) & ~predn(mary) & predm(mary))) & (predq(mary) => ! [X21] : (room(X21) => (~predh(X21) => ~predw(X21)))) & (? [X22] : (predi(X22) & room(X22)) => predq(mary)) & (! [X23] : (room(X23) => (~predw(X23) | ~predn(X23))) => ! [X24] : (room(X24) => (~predw(X24) => preda(X24)))) & (! [X25] : (~room(X25) => (predy(X25) | ~predq(X25))) <=> predd(mary)) & (! [X26] : (room(X26) => (~predy(X26) | predd(X26))) => predw(mary)) & ! [X27] : (room(X27) => (fred = X27 | paul = X27 | mary = X27)) & room(fred) & room(paul) & room(mary) [pure predicate removal 48] 50. ! [X0] : ((preds(X0) | predx(X0)) => predd(X0)) & ! [X1] : (room(X1) => (~preds(X1) | predp(X1))) & ? [X2] : ((predi(X2) <~> predv(X2)) & room(X2)) & preds(mary) & ! [X4] : ((predf(X4) | predq(X4)) <=> ~predy(X4)) & ! [X5] : (room(X5) => (~predu(X5) => (predj(X5) & ~predq(X5)))) & ! [X6] : (room(X6) => (predi(X6) => ~predu(X6))) & predp(mary) & predd(mary) & predo(mary) & ! [X8] : (~room(X8) => (preda(X8) => predw(X8))) & ! [X10] : (room(X10) => (predp(X10) => predz(X10))) & ! [X11] : (room(X11) => predh(X11)) & ? [X12] : (predw(X12) & room(X12)) & ! [X13] : (room(X13) => (predi(X13) => ~predh(X13))) & ! [X14] : ((predo(X14) & ~predu(X14)) => predf(X14)) & ? [X15] : (~predu(X15) & room(X15)) & ! [X16] : ((preda(X16) | predp(X16)) <=> predk(X16)) & (! [X18] : (room(X18) => (predw(X18) | ~predk(X18))) => ! [X19] : ((preda(X19) | predp(X19)) <=> predk(X19))) & (preds(mary) => predy(mary)) & (! [X20] : (room(X20) => (predj(X20) | ~predx(X20))) => (predd(mary) & ~predn(mary) & predm(mary))) & (predq(mary) => ! [X21] : (room(X21) => (~predh(X21) => ~predw(X21)))) & (? [X22] : (predi(X22) & room(X22)) => predq(mary)) & (! [X23] : (room(X23) => (~predw(X23) | ~predn(X23))) => ! [X24] : (room(X24) => (~predw(X24) => preda(X24)))) & (! [X25] : (~room(X25) => (predy(X25) | ~predq(X25))) <=> predd(mary)) & (! [X26] : (room(X26) => (~predy(X26) | predd(X26))) => predw(mary)) & ! [X27] : (room(X27) => (fred = X27 | paul = X27 | mary = X27)) & room(fred) & room(paul) & room(mary) [pure predicate removal 49] 51. ! [X0] : ((preds(X0) | predx(X0)) => predd(X0)) & ! [X1] : (room(X1) => (~preds(X1) | predp(X1))) & ? [X2] : ((predi(X2) <~> predv(X2)) & room(X2)) & preds(mary) & ! [X4] : ((predf(X4) | predq(X4)) <=> ~predy(X4)) & ! [X5] : (room(X5) => (~predu(X5) => (predj(X5) & ~predq(X5)))) & ! [X6] : (room(X6) => (predi(X6) => ~predu(X6))) & predp(mary) & predd(mary) & predo(mary) & ! [X8] : (~room(X8) => (preda(X8) => predw(X8))) & ! [X10] : (room(X10) => (predp(X10) => predz(X10))) & ! [X11] : (room(X11) => predh(X11)) & ? [X12] : (predw(X12) & room(X12)) & ! [X13] : (room(X13) => (predi(X13) => ~predh(X13))) & ! [X14] : ((predo(X14) & ~predu(X14)) => predf(X14)) & ? [X15] : (~predu(X15) & room(X15)) & ! [X16] : ((preda(X16) | predp(X16)) <=> predk(X16)) & (! [X18] : (room(X18) => (predw(X18) | ~predk(X18))) => ! [X19] : ((preda(X19) | predp(X19)) <=> predk(X19))) & (preds(mary) => predy(mary)) & (! [X20] : (room(X20) => (predj(X20) | ~predx(X20))) => (predd(mary) & ~predn(mary))) & (predq(mary) => ! [X21] : (room(X21) => (~predh(X21) => ~predw(X21)))) & (? [X22] : (predi(X22) & room(X22)) => predq(mary)) & (! [X23] : (room(X23) => (~predw(X23) | ~predn(X23))) => ! [X24] : (room(X24) => (~predw(X24) => preda(X24)))) & (! [X25] : (~room(X25) => (predy(X25) | ~predq(X25))) <=> predd(mary)) & (! [X26] : (room(X26) => (~predy(X26) | predd(X26))) => predw(mary)) & ! [X27] : (room(X27) => (fred = X27 | paul = X27 | mary = X27)) & room(fred) & room(paul) & room(mary) [pure predicate removal 50] 124. ! [X0] : (predd(X0) | (~preds(X0) & ~predx(X0))) & ! [X1] : ((~preds(X1) | predp(X1)) | ~room(X1)) & ? [X2] : ((predi(X2) <~> predv(X2)) & room(X2)) & preds(mary) & ! [X4] : ((predf(X4) | predq(X4)) <=> ~predy(X4)) & ! [X5] : (((predj(X5) & ~predq(X5)) | predu(X5)) | ~room(X5)) & ! [X6] : ((~predu(X6) | ~predi(X6)) | ~room(X6)) & predp(mary) & predd(mary) & predo(mary) & ! [X8] : ((predw(X8) | ~preda(X8)) | room(X8)) & ! [X10] : ((predz(X10) | ~predp(X10)) | ~room(X10)) & ! [X11] : (predh(X11) | ~room(X11)) & ? [X12] : (predw(X12) & room(X12)) & ! [X13] : ((~predh(X13) | ~predi(X13)) | ~room(X13)) & ! [X14] : (predf(X14) | (~predo(X14) | predu(X14))) & ? [X15] : (~predu(X15) & room(X15)) & ! [X16] : ((preda(X16) | predp(X16)) <=> predk(X16)) & (! [X19] : ((preda(X19) | predp(X19)) <=> predk(X19)) | ? [X18] : ((~predw(X18) & predk(X18)) & room(X18))) & (predy(mary) | ~preds(mary)) & ((predd(mary) & ~predn(mary)) | ? [X20] : ((~predj(X20) & predx(X20)) & room(X20))) & (! [X21] : ((~predw(X21) | predh(X21)) | ~room(X21)) | ~predq(mary)) & (predq(mary) | ! [X22] : (~predi(X22) | ~room(X22))) & (! [X24] : ((preda(X24) | predw(X24)) | ~room(X24)) | ? [X23] : ((predw(X23) & predn(X23)) & room(X23))) & (! [X25] : ((predy(X25) | ~predq(X25)) | room(X25)) <=> predd(mary)) & (predw(mary) | ? [X26] : ((predy(X26) & ~predd(X26)) & room(X26))) & ! [X27] : ((fred = X27 | paul = X27 | mary = X27) | ~room(X27)) & room(fred) & room(paul) & room(mary) [ennf transformation 51] 125. ! [X0] : (predd(X0) | (~preds(X0) & ~predx(X0))) & ! [X1] : (~preds(X1) | predp(X1) | ~room(X1)) & ? [X2] : ((predi(X2) <~> predv(X2)) & room(X2)) & preds(mary) & ! [X4] : ((predf(X4) | predq(X4)) <=> ~predy(X4)) & ! [X5] : ((predj(X5) & ~predq(X5)) | predu(X5) | ~room(X5)) & ! [X6] : (~predu(X6) | ~predi(X6) | ~room(X6)) & predp(mary) & predd(mary) & predo(mary) & ! [X8] : (predw(X8) | ~preda(X8) | room(X8)) & ! [X10] : (predz(X10) | ~predp(X10) | ~room(X10)) & ! [X11] : (predh(X11) | ~room(X11)) & ? [X12] : (predw(X12) & room(X12)) & ! [X13] : (~predh(X13) | ~predi(X13) | ~room(X13)) & ! [X14] : (predf(X14) | ~predo(X14) | predu(X14)) & ? [X15] : (~predu(X15) & room(X15)) & ! [X16] : ((preda(X16) | predp(X16)) <=> predk(X16)) & (! [X19] : ((preda(X19) | predp(X19)) <=> predk(X19)) | ? [X18] : (~predw(X18) & predk(X18) & room(X18))) & (predy(mary) | ~preds(mary)) & ((predd(mary) & ~predn(mary)) | ? [X20] : (~predj(X20) & predx(X20) & room(X20))) & (! [X21] : (~predw(X21) | predh(X21) | ~room(X21)) | ~predq(mary)) & (predq(mary) | ! [X22] : (~predi(X22) | ~room(X22))) & (! [X24] : (preda(X24) | predw(X24) | ~room(X24)) | ? [X23] : (predw(X23) & predn(X23) & room(X23))) & (! [X25] : (predy(X25) | ~predq(X25) | room(X25)) <=> predd(mary)) & (predw(mary) | ? [X26] : (predy(X26) & ~predd(X26) & room(X26))) & ! [X27] : (fred = X27 | paul = X27 | mary = X27 | ~room(X27)) & room(fred) & room(paul) & room(mary) [flattening 124] 126. ~predz(mary) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 45] 127. ~predz(mary) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 126] 128. ? [X18] : (~predw(X18) & predk(X18) & room(X18)) | ~sP0 [predicate definition introduction] 129. ! [X0] : (predd(X0) | (~preds(X0) & ~predx(X0))) & ! [X1] : (~preds(X1) | predp(X1) | ~room(X1)) & ? [X2] : ((predi(X2) <~> predv(X2)) & room(X2)) & preds(mary) & ! [X4] : ((predf(X4) | predq(X4)) <=> ~predy(X4)) & ! [X5] : ((predj(X5) & ~predq(X5)) | predu(X5) | ~room(X5)) & ! [X6] : (~predu(X6) | ~predi(X6) | ~room(X6)) & predp(mary) & predd(mary) & predo(mary) & ! [X8] : (predw(X8) | ~preda(X8) | room(X8)) & ! [X10] : (predz(X10) | ~predp(X10) | ~room(X10)) & ! [X11] : (predh(X11) | ~room(X11)) & ? [X12] : (predw(X12) & room(X12)) & ! [X13] : (~predh(X13) | ~predi(X13) | ~room(X13)) & ! [X14] : (predf(X14) | ~predo(X14) | predu(X14)) & ? [X15] : (~predu(X15) & room(X15)) & ! [X16] : ((preda(X16) | predp(X16)) <=> predk(X16)) & (! [X19] : ((preda(X19) | predp(X19)) <=> predk(X19)) | sP0) & (predy(mary) | ~preds(mary)) & ((predd(mary) & ~predn(mary)) | ? [X20] : (~predj(X20) & predx(X20) & room(X20))) & (! [X21] : (~predw(X21) | predh(X21) | ~room(X21)) | ~predq(mary)) & (predq(mary) | ! [X22] : (~predi(X22) | ~room(X22))) & (! [X24] : (preda(X24) | predw(X24) | ~room(X24)) | ? [X23] : (predw(X23) & predn(X23) & room(X23))) & (! [X25] : (predy(X25) | ~predq(X25) | room(X25)) <=> predd(mary)) & (predw(mary) | ? [X26] : (predy(X26) & ~predd(X26) & room(X26))) & ! [X27] : (fred = X27 | paul = X27 | mary = X27 | ~room(X27)) & room(fred) & room(paul) & room(mary) [definition folding 125,128] 135. ! [X0] : (predd(X0) | (~preds(X0) & ~predx(X0))) & ! [X1] : (~preds(X1) | predp(X1) | ~room(X1)) & ? [X2] : (((~predv(X2) | ~predi(X2)) & (predv(X2) | predi(X2))) & room(X2)) & preds(mary) & ! [X4] : (((predf(X4) | predq(X4)) | predy(X4)) & (~predy(X4) | (~predf(X4) & ~predq(X4)))) & ! [X5] : ((predj(X5) & ~predq(X5)) | predu(X5) | ~room(X5)) & ! [X6] : (~predu(X6) | ~predi(X6) | ~room(X6)) & predp(mary) & predd(mary) & predo(mary) & ! [X8] : (predw(X8) | ~preda(X8) | room(X8)) & ! [X10] : (predz(X10) | ~predp(X10) | ~room(X10)) & ! [X11] : (predh(X11) | ~room(X11)) & ? [X12] : (predw(X12) & room(X12)) & ! [X13] : (~predh(X13) | ~predi(X13) | ~room(X13)) & ! [X14] : (predf(X14) | ~predo(X14) | predu(X14)) & ? [X15] : (~predu(X15) & room(X15)) & ! [X16] : (((preda(X16) | predp(X16)) | ~predk(X16)) & (predk(X16) | (~preda(X16) & ~predp(X16)))) & (! [X19] : (((preda(X19) | predp(X19)) | ~predk(X19)) & (predk(X19) | (~preda(X19) & ~predp(X19)))) | sP0) & (predy(mary) | ~preds(mary)) & ((predd(mary) & ~predn(mary)) | ? [X20] : (~predj(X20) & predx(X20) & room(X20))) & (! [X21] : (~predw(X21) | predh(X21) | ~room(X21)) | ~predq(mary)) & (predq(mary) | ! [X22] : (~predi(X22) | ~room(X22))) & (! [X24] : (preda(X24) | predw(X24) | ~room(X24)) | ? [X23] : (predw(X23) & predn(X23) & room(X23))) & ((! [X25] : (predy(X25) | ~predq(X25) | room(X25)) | ~predd(mary)) & (predd(mary) | ? [X25] : (~predy(X25) & predq(X25) & ~room(X25)))) & (predw(mary) | ? [X26] : (predy(X26) & ~predd(X26) & room(X26))) & ! [X27] : (fred = X27 | paul = X27 | mary = X27 | ~room(X27)) & room(fred) & room(paul) & room(mary) [nnf transformation 129] 136. ! [X0] : (predd(X0) | (~preds(X0) & ~predx(X0))) & ! [X1] : (~preds(X1) | predp(X1) | ~room(X1)) & ? [X2] : ((~predv(X2) | ~predi(X2)) & (predv(X2) | predi(X2)) & room(X2)) & preds(mary) & ! [X4] : ((predf(X4) | predq(X4) | predy(X4)) & (~predy(X4) | (~predf(X4) & ~predq(X4)))) & ! [X5] : ((predj(X5) & ~predq(X5)) | predu(X5) | ~room(X5)) & ! [X6] : (~predu(X6) | ~predi(X6) | ~room(X6)) & predp(mary) & predd(mary) & predo(mary) & ! [X8] : (predw(X8) | ~preda(X8) | room(X8)) & ! [X10] : (predz(X10) | ~predp(X10) | ~room(X10)) & ! [X11] : (predh(X11) | ~room(X11)) & ? [X12] : (predw(X12) & room(X12)) & ! [X13] : (~predh(X13) | ~predi(X13) | ~room(X13)) & ! [X14] : (predf(X14) | ~predo(X14) | predu(X14)) & ? [X15] : (~predu(X15) & room(X15)) & ! [X16] : ((preda(X16) | predp(X16) | ~predk(X16)) & (predk(X16) | (~preda(X16) & ~predp(X16)))) & (! [X19] : ((preda(X19) | predp(X19) | ~predk(X19)) & (predk(X19) | (~preda(X19) & ~predp(X19)))) | sP0) & (predy(mary) | ~preds(mary)) & ((predd(mary) & ~predn(mary)) | ? [X20] : (~predj(X20) & predx(X20) & room(X20))) & (! [X21] : (~predw(X21) | predh(X21) | ~room(X21)) | ~predq(mary)) & (predq(mary) | ! [X22] : (~predi(X22) | ~room(X22))) & (! [X24] : (preda(X24) | predw(X24) | ~room(X24)) | ? [X23] : (predw(X23) & predn(X23) & room(X23))) & (! [X25] : (predy(X25) | ~predq(X25) | room(X25)) | ~predd(mary)) & (predd(mary) | ? [X25] : (~predy(X25) & predq(X25) & ~room(X25))) & (predw(mary) | ? [X26] : (predy(X26) & ~predd(X26) & room(X26))) & ! [X27] : (fred = X27 | paul = X27 | mary = X27 | ~room(X27)) & room(fred) & room(paul) & room(mary) [flattening 135] 137. ! [X0] : (predd(X0) | (~preds(X0) & ~predx(X0))) & ! [X1] : (~preds(X1) | predp(X1) | ~room(X1)) & ? [X2] : ((~predv(X2) | ~predi(X2)) & (predv(X2) | predi(X2)) & room(X2)) & preds(mary) & ! [X3] : ((predf(X3) | predq(X3) | predy(X3)) & (~predy(X3) | (~predf(X3) & ~predq(X3)))) & ! [X4] : ((predj(X4) & ~predq(X4)) | predu(X4) | ~room(X4)) & ! [X5] : (~predu(X5) | ~predi(X5) | ~room(X5)) & predp(mary) & predd(mary) & predo(mary) & ! [X6] : (predw(X6) | ~preda(X6) | room(X6)) & ! [X7] : (predz(X7) | ~predp(X7) | ~room(X7)) & ! [X8] : (predh(X8) | ~room(X8)) & ? [X9] : (predw(X9) & room(X9)) & ! [X10] : (~predh(X10) | ~predi(X10) | ~room(X10)) & ! [X11] : (predf(X11) | ~predo(X11) | predu(X11)) & ? [X12] : (~predu(X12) & room(X12)) & ! [X13] : ((preda(X13) | predp(X13) | ~predk(X13)) & (predk(X13) | (~preda(X13) & ~predp(X13)))) & (! [X14] : ((preda(X14) | predp(X14) | ~predk(X14)) & (predk(X14) | (~preda(X14) & ~predp(X14)))) | sP0) & (predy(mary) | ~preds(mary)) & ((predd(mary) & ~predn(mary)) | ? [X15] : (~predj(X15) & predx(X15) & room(X15))) & (! [X16] : (~predw(X16) | predh(X16) | ~room(X16)) | ~predq(mary)) & (predq(mary) | ! [X17] : (~predi(X17) | ~room(X17))) & (! [X18] : (preda(X18) | predw(X18) | ~room(X18)) | ? [X19] : (predw(X19) & predn(X19) & room(X19))) & (! [X20] : (predy(X20) | ~predq(X20) | room(X20)) | ~predd(mary)) & (predd(mary) | ? [X21] : (~predy(X21) & predq(X21) & ~room(X21))) & (predw(mary) | ? [X22] : (predy(X22) & ~predd(X22) & room(X22))) & ! [X23] : (fred = X23 | paul = X23 | mary = X23 | ~room(X23)) & room(fred) & room(paul) & room(mary) [rectify 136] 138. ? [X2] : ((~predv(X2) | ~predi(X2)) & (predv(X2) | predi(X2)) & room(X2)) => ((~predv(sK2) | ~predi(sK2)) & (predv(sK2) | predi(sK2)) & room(sK2)) [choice axiom] 139. ? [X9] : (predw(X9) & room(X9)) => (predw(sK3) & room(sK3)) [choice axiom] 140. ? [X12] : (~predu(X12) & room(X12)) => (~predu(sK4) & room(sK4)) [choice axiom] 141. ? [X15] : (~predj(X15) & predx(X15) & room(X15)) => (~predj(sK5) & predx(sK5) & room(sK5)) [choice axiom] 142. ? [X19] : (predw(X19) & predn(X19) & room(X19)) => (predw(sK6) & predn(sK6) & room(sK6)) [choice axiom] 143. ? [X21] : (~predy(X21) & predq(X21) & ~room(X21)) => (~predy(sK7) & predq(sK7) & ~room(sK7)) [choice axiom] 144. ? [X22] : (predy(X22) & ~predd(X22) & room(X22)) => (predy(sK8) & ~predd(sK8) & room(sK8)) [choice axiom] 145. ! [X0] : (predd(X0) | (~preds(X0) & ~predx(X0))) & ! [X1] : (~preds(X1) | predp(X1) | ~room(X1)) & ((~predv(sK2) | ~predi(sK2)) & (predv(sK2) | predi(sK2)) & room(sK2)) & preds(mary) & ! [X3] : ((predf(X3) | predq(X3) | predy(X3)) & (~predy(X3) | (~predf(X3) & ~predq(X3)))) & ! [X4] : ((predj(X4) & ~predq(X4)) | predu(X4) | ~room(X4)) & ! [X5] : (~predu(X5) | ~predi(X5) | ~room(X5)) & predp(mary) & predd(mary) & predo(mary) & ! [X6] : (predw(X6) | ~preda(X6) | room(X6)) & ! [X7] : (predz(X7) | ~predp(X7) | ~room(X7)) & ! [X8] : (predh(X8) | ~room(X8)) & (predw(sK3) & room(sK3)) & ! [X10] : (~predh(X10) | ~predi(X10) | ~room(X10)) & ! [X11] : (predf(X11) | ~predo(X11) | predu(X11)) & (~predu(sK4) & room(sK4)) & ! [X13] : ((preda(X13) | predp(X13) | ~predk(X13)) & (predk(X13) | (~preda(X13) & ~predp(X13)))) & (! [X14] : ((preda(X14) | predp(X14) | ~predk(X14)) & (predk(X14) | (~preda(X14) & ~predp(X14)))) | sP0) & (predy(mary) | ~preds(mary)) & ((predd(mary) & ~predn(mary)) | (~predj(sK5) & predx(sK5) & room(sK5))) & (! [X16] : (~predw(X16) | predh(X16) | ~room(X16)) | ~predq(mary)) & (predq(mary) | ! [X17] : (~predi(X17) | ~room(X17))) & (! [X18] : (preda(X18) | predw(X18) | ~room(X18)) | (predw(sK6) & predn(sK6) & room(sK6))) & (! [X20] : (predy(X20) | ~predq(X20) | room(X20)) | ~predd(mary)) & (predd(mary) | (~predy(sK7) & predq(sK7) & ~room(sK7))) & (predw(mary) | (predy(sK8) & ~predd(sK8) & room(sK8))) & ! [X23] : (fred = X23 | paul = X23 | mary = X23 | ~room(X23)) & room(fred) & room(paul) & room(mary) [skolemisation 137,144,143,142,141,140,139,138] 146. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK9 & paul != sK9 & mary != sK9 & room(sK9)) [choice axiom] 147. ~predz(mary) | (fred != sK9 & paul != sK9 & mary != sK9 & room(sK9)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 127,146] 231. room(mary) [cnf transformation 145] 232. room(paul) [cnf transformation 145] 233. room(fred) [cnf transformation 145] 234. ~room(X23) | paul = X23 | mary = X23 | fred = X23 [cnf transformation 145] 267. ~predp(X7) | predz(X7) | ~room(X7) [cnf transformation 145] 271. predp(mary) [cnf transformation 145] 285. ~predz(mary) | room(sK9) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 147] 286. ~predz(mary) | mary != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 147] 287. ~predz(mary) | paul != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 147] 288. ~predz(mary) | fred != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 147] 378. ~predz(mary) | fred != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 288,233] 379. ~predz(mary) | fred != sK9 | ~room(mary) [subsumption resolution 378,232] 380. ~predz(mary) | fred != sK9 [subsumption resolution 379,231] 382. 19 <=> fred = sK9 [avatar definition] 384. fred != sK9 <- (~19) [avatar component clause 382] 386. 20 <=> predz(mary) [avatar definition] 389. ~19 | ~20 [avatar split clause 380,386,382] 390. ~predz(mary) | paul != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 287,233] 391. ~predz(mary) | paul != sK9 | ~room(mary) [subsumption resolution 390,232] 392. ~predz(mary) | paul != sK9 [subsumption resolution 391,231] 394. 21 <=> paul = sK9 [avatar definition] 396. paul != sK9 <- (~21) [avatar component clause 394] 397. ~21 | ~20 [avatar split clause 392,386,394] 398. ~predz(mary) | mary != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 286,233] 399. ~predz(mary) | mary != sK9 | ~room(mary) [subsumption resolution 398,232] 400. ~predz(mary) | mary != sK9 [subsumption resolution 399,231] 402. 22 <=> mary = sK9 [avatar definition] 404. mary != sK9 <- (~22) [avatar component clause 402] 405. ~22 | ~20 [avatar split clause 400,386,402] 406. ~predz(mary) | room(sK9) | ~room(paul) | ~room(mary) [subsumption resolution 285,233] 407. ~predz(mary) | room(sK9) | ~room(mary) [subsumption resolution 406,232] 408. ~predz(mary) | room(sK9) [subsumption resolution 407,231] 410. 23 <=> room(sK9) [avatar definition] 412. room(sK9) <- (23) [avatar component clause 410] 413. 23 | ~20 [avatar split clause 408,386,410] 436. predz(mary) | ~room(mary) [resolution 267,271] 440. predz(mary) [subsumption resolution 436,231] 441. 20 [avatar split clause 440,386] 611. paul = sK9 | mary = sK9 | fred = sK9 <- (23) [resolution 234,412] 651. mary = sK9 | fred = sK9 <- (~21, 23) [subsumption resolution 611,396] 652. fred = sK9 <- (~21, ~22, 23) [subsumption resolution 651,404] 653. $false <- (~19, ~21, ~22, 23) [subsumption resolution 652,384] 654. 19 | 21 | 22 | ~23 [avatar contradiction clause 653] 655. $false [avatar sat refutation 389,397,405,413,441,654] % SZS output end Proof for 8064775687150474887404183 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.005488
Ronnie, Rina are the only persons in the room. If 'everyone in the room owns a high-end gaming PC with custom-built components or does not have lived in exactly three countries' then 'if someone does not design and sews custom cosplay costumes for conventions then he/she does not own a high-end gaming PC with custom-built components and vice versa'. 'Rina collects rare and antique scientific instruments' if 'it is true that 'everyone in the room does not collect vintage vinyl records'' and vice versa. 'Everyone in the room does not collect rare and antique scientific instruments or is not an enthusiastic bird watcher who travels for rare sightings' if 'everyone in the room does not own a telescope or uses contact lenses or both' and vice versa. If 'no one in the room does not host regular game nights featuring complex strategy games or is a skilled home brewer experimenting with craft beer recipes' then 'everyone in the room enjoys wildlife photography'. If 'everyone in the room enjoys wildlife photography' then 'Rina who collects rare minerals does not have lived in exactly three countries and does not develop open-source software projects in their free time'. If 'not everyone in the room does not own a significant collection of rare gemstones and minerals or does not own a high-end gaming PC with custom-built components' then 'everyone in the room does not collect rare minerals or does not collect modern art'. If 'everyone in the room does not collect rare minerals or does not collect modern art' then 'if someone does not develop open-source software projects in their free time then he/she does not enjoy origami and vice versa'. If someone is not a skilled home brewer experimenting with craft beer recipes or does not enjoy kayaking or both then he/she develops open-source software projects in their free time, is not a skilled home brewer experimenting with craft beer recipes and does not own an extensive assortment of vintage comic book memorabilia and vice versa. If someone volunteers for local environmental conservation projects then he/she does not collect action figures and vice versa. If someone practices digital art then he/she does not own a high-end gaming PC with custom-built components and vice versa. Everyone in the room owns a telescope if they writes and illustrates their own graphic novels.
Everyone in the room does not collect vintage vinyl records.
neutral
room(ronnie)&room(rina)&(![X]:(room(X)=>(X='ronnie'|X='rina')))& ((![X]:(room(X)=>(((does_not_have_lived_in_exactly_three_countries(X))|(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))=>((![X]:((does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))<=>(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))))))& ((![X]:(room(X)=>(does_not_collect_vintage_vinyl_records(X))))<=>(collects_rare_and_antique_scientific_instruments(rina)))& ((![X]:(room(X)=>(((does_not_own_a_telescope(X))|(uses_contact_lenses(X))))))<=>(![X]:(room(X)=>(((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))|(does_not_collect_rare_and_antique_scientific_instruments(X)))))))& (((~?[X]:(room(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(does_not_host_regular_game_nights_featuring_complex_strategy_games(X))))))=>(![X]:(room(X)=>(enjoys_wildlife_photography(X)))))& ((![X]:(room(X)=>(enjoys_wildlife_photography(X))))=>((collects_rare_minerals(rina))&(((does_not_have_lived_in_exactly_three_countries(rina))&(does_not_develop_open-source_software_projects_in_their_free_time(rina)))))))& (((~![X]:(room(X)=>(((does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))|(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))))))=>(![X]:(room(X)=>(((does_not_collect_modern_art(X))|(does_not_collect_rare_minerals(X)))))))& ((![X]:(room(X)=>(((does_not_collect_modern_art(X))|(does_not_collect_rare_minerals(X))))))=>((![X]:((does_not_develop_open-source_software_projects_in_their_free_time(X))<=>(does_not_enjoy_origami(X)))))))& ((![X]:((((is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(does_not_enjoy_kayaking(X))))<=>(((develops_open-source_software_projects_in_their_free_time(X))&(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))&(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X)))))))& ((![X]:((volunteers_for_local_environmental_conservation_projects(X))<=>(does_not_collect_action_figures(X)))))& ((![X]:((practices_digital_art(X))<=>(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X)))))& (![X]:(room(X)=>(((writes_and_illustrates_their_own_graphic_novels(X))=>(owns_a_telescope(X))))))& (![X]:(room(X)=>(((owns_a_telescope(X))=>(((does_not_enjoy_origami(X))|(does_not_enjoy_wildlife_photography(X))))))))& ((does_not_enjoy_origami(ronnie))&(((is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(ronnie))|(owns_a_telescope(ronnie)))))& (![X]:(room(X)=>(((does_not_own_a_telescope(X))|(uses_contact_lenses(X))))))& (?[X]:(room(X)&(enjoys_kayaking(X))))& (![X]:(room(X)=>(((((does_not_collect_rare_and_antique_scientific_instruments(X))<~>(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))))=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))& ((![X]:((practices_digital_art(X))<=>(collects_action_figures(X)))))
room(ronnie)&room(rina)&(![X]:(room(X)=>(X='ronnie'|X='rina')))& ![X]:(room(X)=>(does_not_collect_vintage_vinyl_records(X)))
[]
null
0.410214
Jeffrey, Keith, Ronald are the only persons in the room. “Ronald enjoys deep-sea diving and exploring underwater caves or has a tattoo or both” if “Keith collects limited-edition art prints from contemporary artists”. If someone either collects limited-edition art prints from contemporary artists or enjoys deep-sea diving and exploring underwater caves but not both then he/she has a tattoo, collects limited-edition art prints from contemporary artists or does not collect limited-edition art prints from contemporary artists and vice versa. Only one person in the room is a skilled home brewer experimenting with craft beer recipes.
Keith collects limited-edition art prints from contemporary artists.
neutral
room(jeffrey)&room(keith)&room(ronald)&(![X]:(room(X)=>(X='jeffrey'|X='keith'|X='ronald')))& ((collects_limited-edition_art_prints_from_contemporary_artists(keith))=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(ronald))|(has_a_tattoo(ronald)))))& ((![X]:((((collects_limited-edition_art_prints_from_contemporary_artists(X))<~>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))<=>(((has_a_tattoo(X))|(collects_limited-edition_art_prints_from_contemporary_artists(X))|(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X)))))))& (((?[X]:(room(X)&is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X)))&(![X,Y]:((room(X)&room(Y)&(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))&(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(Y)))=>(X=Y)))))
room(jeffrey)&room(keith)&room(ronald)&(![X]:(room(X)=>(X='jeffrey'|X='keith'|X='ronald')))& collects_limited-edition_art_prints_from_contemporary_artists(keith)
[]
null
0.298714
Larry, Douglas, Sandra, Donna are the only persons in the room. If "not everyone in the room does not practice and performs acrobatic dance routines or composes and performs experimental electronic music" then "if someone creates augmented reality experiences for mobile applications then he/she practices zumba". "Not everyone outside the room is not a skilled home brewer experimenting with craft beer recipes or has a vast collection of first-edition science fiction novels" only if "everyone in the room who plays as a goalkeeper for a local amateur soccer team can play the flute". Everyone in the room does not bake bread at home if they can play the flute. If someone creates augmented reality experiences for mobile applications then he/she practices zumba. More than one person in the room does not enjoy virtual reality gaming. Douglas who uses an ios phone does not enjoy virtual reality gaming. If someone does not compose and performs experimental electronic music, has a vast collection of first-edition science fiction novels and volunteers for local environmental conservation projects then he/she watches fantasy movies, is a skilled home brewer experimenting with craft beer recipes and composes and performs experimental electronic music. It is true that "more than one person in the room does not collect luxury watches". More than one person anywhere practices and performs acrobatic dance routines. Everyone in the room does not volunteer for local environmental conservation projects or collects classic novels. Someone in the room has lived in exactly three countries. Everyone in the room does not practice and performs acrobatic dance routines or does not compose and performs experimental electronic music. Everyone in the room uses an ios phone only if they either does not use an ios phone or regularly contributes to tech forums and online communities but not both. Everyone in the room who regularly contributes to tech forums and online communities volunteers for local environmental conservation projects. Larry who composes and performs experimental electronic music enjoys spelunking. Everyone in the room is a tea enthusiast if they does not have a vast collection of first-edition science fiction novels. It is true that "Douglas watches fantasy movies". More than one person anywhere enjoys virtual reality gaming. Douglas collects luxury watches.
Larry practices and performs acrobatic dance routines.
contradiction
room(larry)&room(douglas)&room(sandra)&room(donna)&(![X]:(room(X)=>(X='larry'|X='douglas'|X='sandra'|X='donna')))& ((~![X]:(room(X)=>(((composes_and_performs_experimental_electronic_music(X))|(does_not_practice_and_performs_acrobatic_dance_routines(X))))))=>((![X]:((creates_augmented_reality_experiences_for_mobile_applications(X))=>(practices_zumba(X))))))& ((~![X]:(~room(X)=>(((has_a_vast_collection_of_first-edition_science_fiction_novels(X))|(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))=>(![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(can_play_the_flute(X)))))))& (![X]:(room(X)=>(((can_play_the_flute(X))=>(does_not_bake_bread_at_home(X))))))& ((![X]:((creates_augmented_reality_experiences_for_mobile_applications(X))=>(practices_zumba(X)))))& ((?[X,Y]:(room(X)&room(Y)&(does_not_enjoy_virtual_reality_gaming(X)&does_not_enjoy_virtual_reality_gaming(Y))&(X!=Y))))& ((uses_an_ios_phone(douglas))&(does_not_enjoy_virtual_reality_gaming(douglas)))& ((![X]:((((does_not_compose_and_performs_experimental_electronic_music(X))&(has_a_vast_collection_of_first-edition_science_fiction_novels(X))&(volunteers_for_local_environmental_conservation_projects(X))))=>(((watches_fantasy_movies(X))&(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))&(composes_and_performs_experimental_electronic_music(X)))))))& ((?[X,Y]:(room(X)&room(Y)&(does_not_collect_luxury_watches(X)&does_not_collect_luxury_watches(Y))&(X!=Y))))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(practices_and_performs_acrobatic_dance_routines(X)&practices_and_performs_acrobatic_dance_routines(Y))&(X!=Y))))& (![X]:(room(X)=>(((collects_classic_novels(X))|(does_not_volunteer_for_local_environmental_conservation_projects(X))))))& (?[X]:(room(X)&(has_lived_in_exactly_three_countries(X))))& (![X]:(room(X)=>(((does_not_compose_and_performs_experimental_electronic_music(X))|(does_not_practice_and_performs_acrobatic_dance_routines(X))))))& (![X]:(room(X)=>(((((does_not_use_an_ios_phone(X))<~>(regularly_contributes_to_tech_forums_and_online_communities(X))))<=(uses_an_ios_phone(X))))))& (![X]:(room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))=>(volunteers_for_local_environmental_conservation_projects(X))))))& ((composes_and_performs_experimental_electronic_music(larry))&(enjoys_spelunking(larry)))& (![X]:(room(X)=>(((does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))=>(is_a_tea_enthusiast(X))))))& (watches_fantasy_movies(douglas))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(enjoys_virtual_reality_gaming(X)&enjoys_virtual_reality_gaming(Y))&(X!=Y))))& (collects_luxury_watches(douglas))
room(larry)&room(douglas)&room(sandra)&room(donna)&(![X]:(room(X)=>(X='larry'|X='douglas'|X='sandra'|X='donna')))& practices_and_performs_acrobatic_dance_routines(larry)
[ "p0", "p12", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 2299788560385692884845507 % SZS output start Proof for 2299788560385692884845507 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 56. ! [X0] : (room(X0) => (~predp(X0) | ~predx(X0))) [input p12] 59. predk(mary) & predx(mary) [input p15] 64. predp(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 68. predx(mary) [pure predicate removal 59] 154. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 155. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 154] 156. ! [X0] : ((~predp(X0) | ~predx(X0)) | ~room(X0)) [ennf transformation 56] 157. ! [X0] : (~predp(X0) | ~predx(X0) | ~room(X0)) [flattening 156] 160. predp(mary) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 64] 161. predp(mary) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 160] 254. room(mary) [cnf transformation 155] 275. ~predp(X0) | ~predx(X0) | ~room(X0) [cnf transformation 157] 278. predx(mary) [cnf transformation 68] 288. predp(mary) [cnf transformation 161] 292. ~predx(mary) | ~room(mary) [resolution 275,288] 311. ~room(mary) [subsumption resolution 292,278] 312. $false [subsumption resolution 311,254] % SZS output end Proof for 2299788560385692884845507 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.019 s % ------------------------------ % ------------------------------
0.710937
Lorinyette, Loriny, Rebecca, Martin, Lori are the only persons in the room. "Lorinyette hosts a popular podcast about emerging technologies" if "Lorinyette is a tea enthusiast". If "someone in the room can play the guitar" then "if someone neither maintains a personal blog focused on cybersecurity tips nor hosts a YouTube channel dedicated to art tutorials then he/she collects limited-edition art prints from contemporary artists and has a tattoo and vice versa". "Lorinyette collects foreign coins" if "at least one person in the room has completed a triathlon" and vice versa. "Lorinyette collects comic books" only if "Lorinyette hosts a YouTube channel dedicated to art tutorials and collects limited-edition art prints from contemporary artists". If "someone in the room hosts a popular podcast about emerging technologies" then "if someone regularly contributes to tech forums and online communities then he/she neither hosts a popular podcast about emerging technologies nor collects foreign coins and vice versa". If "Lorinyette is right-handed" then "everyone in the room collects rare minerals only if they has a tattoo and maintains a personal blog focused on cybersecurity tips". Lorinyette can play the guitar. If someone collects limited-edition art prints from contemporary artists then he/she maintains a personal blog focused on cybersecurity tips and vice versa. Someone in the room hosts a YouTube channel dedicated to art tutorials and collects rare minerals.
Lorinyette is right-handed.
contradiction
room(lorinyette)&room(loriny)&room(rebecca)&room(martin)&room(lori)&(![X]:(room(X)=>(X='lorinyette'|X='loriny'|X='rebecca'|X='martin'|X='lori')))& ((is_a_tea_enthusiast(lorinyette))=>(hosts_a_popular_podcast_about_emerging_technologies(lorinyette)))& ((?[X]:(room(X)&(can_play_the_guitar(X))))=>((![X]:((~((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))|(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))<=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))&(has_a_tattoo(X))))))))& ((((?[X]:(room(X)&has_completed_a_triathlon(X)))))<=>(collects_foreign_coins(lorinyette)))& ((collects_comic_books(lorinyette))=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(lorinyette))&(collects_limited-edition_art_prints_from_contemporary_artists(lorinyette)))))& ((?[X]:(room(X)&(hosts_a_popular_podcast_about_emerging_technologies(X))))=>((![X]:((regularly_contributes_to_tech_forums_and_online_communities(X))<=>(~((hosts_a_popular_podcast_about_emerging_technologies(X))|(collects_foreign_coins(X))))))))& ((is_right-handed(lorinyette))=>(![X]:(room(X)=>(((((has_a_tattoo(X))&(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))<=(collects_rare_minerals(X)))))))& ((![X]:(room(X)=>(((does_not_compete_in_national_level_swimming_championships(X))|(is_allergic_to_anything(X))))))=>(uses_an_ios_phone(lorinyette)))& (does_not_compete_in_national_level_swimming_championships(lorinyette))& (?[X]:(room(X)&(collects_foreign_coins(X))))& ((?[X,Y]:(room(X)&room(Y)&(competes_in_national_level_swimming_championships(X)&competes_in_national_level_swimming_championships(Y))&(X!=Y))))& (can_play_the_guitar(lorinyette))& ((![X]:((collects_limited-edition_art_prints_from_contemporary_artists(X))<=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X)))))& (regularly_contributes_to_tech_forums_and_online_communities(lorinyette))& (?[X]:(room(X)&(collects_comic_books(X))))& (is_a_client_of_Meta(lorinyette))& (?[X]:(room(X)&(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))&(collects_rare_minerals(X))))))& (![X]:(room(X)=>(((owns_an_Android_phone(X))=>(((collects_foreign_coins(X))&(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))))
room(lorinyette)&room(loriny)&room(rebecca)&room(martin)&room(lori)&(![X]:(room(X)=>(X='lorinyette'|X='loriny'|X='rebecca'|X='martin'|X='lori')))& is_right-handed(lorinyette)
[ "p0", "p2", "p6", "p11", "p12", "p16", "hypothesis" ]
% SZS status Unsatisfiable for 4337448645978094514469547 % SZS output start Proof for 4337448645978094514469547 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. ? [X0] : (predb(X0) & room(X0)) => ! [X0] : (~(predv(X0) | predr(X0)) <=> (predz(X0) & predx(X0))) [input p2] 50. predc(mary) => ! [X0] : (room(X0) => (predj(X0) => (predr(X0) & predz(X0)))) [input p6] 55. predb(mary) [input p11] 56. ! [X0] : (predx(X0) <=> predr(X0)) [input p12] 60. ? [X0] : (predj(X0) & predv(X0) & room(X0)) [input p16] 62. predc(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 63. ? [X0] : (predb(X0) & room(X0)) => ! [X1] : (~(predv(X1) | predr(X1)) <=> (predz(X1) & predx(X1))) [rectify 46] 142. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 143. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 142] 144. ! [X1] : ((~predv(X1) & ~predr(X1)) <=> (predz(X1) & predx(X1))) | ! [X0] : (~predb(X0) | ~room(X0)) [ennf transformation 63] 147. ! [X0] : (((predr(X0) & predz(X0)) | ~predj(X0)) | ~room(X0)) | ~predc(mary) [ennf transformation 50] 148. ! [X0] : ((predr(X0) & predz(X0)) | ~predj(X0) | ~room(X0)) | ~predc(mary) [flattening 147] 149. predc(mary) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 62] 150. predc(mary) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 149] 152. ! [X1] : (((~predv(X1) & ~predr(X1)) | (~predz(X1) | ~predx(X1))) & ((predz(X1) & predx(X1)) | (predv(X1) | predr(X1)))) | ! [X0] : (~predb(X0) | ~room(X0)) [nnf transformation 144] 153. ! [X1] : (((~predv(X1) & ~predr(X1)) | ~predz(X1) | ~predx(X1)) & ((predz(X1) & predx(X1)) | predv(X1) | predr(X1))) | ! [X0] : (~predb(X0) | ~room(X0)) [flattening 152] 154. ! [X0] : (((~predv(X0) & ~predr(X0)) | ~predz(X0) | ~predx(X0)) & ((predz(X0) & predx(X0)) | predv(X0) | predr(X0))) | ! [X1] : (~predb(X1) | ~room(X1)) [rectify 153] 166. ! [X0] : ((predx(X0) | ~predr(X0)) & (predr(X0) | ~predx(X0))) [nnf transformation 56] 169. ? [X0] : (predj(X0) & predv(X0) & room(X0)) => (predj(sK5) & predv(sK5) & room(sK5)) [choice axiom] 170. predj(sK5) & predv(sK5) & room(sK5) [skolemisation 60,169] 251. room(mary) [cnf transformation 143] 259. ~predr(X0) | ~predz(X0) | ~predx(X0) | ~predb(X1) | ~room(X1) [cnf transformation 154] 269. predz(X0) | ~predj(X0) | ~room(X0) | ~predc(mary) [cnf transformation 148] 270. predr(X0) | ~predj(X0) | ~room(X0) | ~predc(mary) [cnf transformation 148] 279. predb(mary) [cnf transformation 55] 280. ~predx(X0) | predr(X0) [cnf transformation 166] 281. ~predr(X0) | predx(X0) [cnf transformation 166] 285. room(sK5) [cnf transformation 170] 287. predj(sK5) [cnf transformation 170] 294. predc(mary) [cnf transformation 150] 296. 1 <=> ! [X1] : (~predb(X1) | ~room(X1)) [avatar definition] 297. ~predb(X1) | ~room(X1) <- (1) [avatar component clause 296] 303. 3 <=> ! [X0] : (~predr(X0) | ~predx(X0) | ~predz(X0)) [avatar definition] 304. ~predr(X0) | ~predx(X0) | ~predz(X0) <- (3) [avatar component clause 303] 305. 1 | 3 [avatar split clause 259,303,296] 362. 17 <=> predc(mary) [avatar definition] 366. 18 <=> ! [X0] : (predr(X0) | ~room(X0) | ~predj(X0)) [avatar definition] 367. ~predj(X0) | ~room(X0) | predr(X0) <- (18) [avatar component clause 366] 368. ~17 | 18 [avatar split clause 270,366,362] 370. 19 <=> ! [X0] : (predz(X0) | ~room(X0) | ~predj(X0)) [avatar definition] 371. ~predj(X0) | ~room(X0) | predz(X0) <- (19) [avatar component clause 370] 372. ~17 | 19 [avatar split clause 269,370,362] 373. 17 [avatar split clause 294,362] 375. ~predz(X0) | ~predx(X0) <- (3) [subsumption resolution 304,280] 376. ~room(sK5) | predr(sK5) <- (18) [resolution 367,287] 377. predr(sK5) <- (18) [subsumption resolution 376,285] 378. ~room(sK5) | predz(sK5) <- (19) [resolution 371,287] 379. predz(sK5) <- (19) [subsumption resolution 378,285] 380. predx(sK5) <- (18) [resolution 377,281] 381. ~predx(sK5) <- (3, 19) [resolution 379,375] 382. $false <- (3, 18, 19) [subsumption resolution 381,380] 383. ~3 | ~18 | ~19 [avatar contradiction clause 382] 384. ~room(mary) <- (1) [resolution 297,279] 385. $false <- (1) [subsumption resolution 384,251] 386. ~1 [avatar contradiction clause 385] 387. $false [avatar sat refutation 305,368,372,373,383,386] % SZS output end Proof for 4337448645978094514469547 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.021431
Patrick, Beatrice, Jennifer, Matthew are the only persons in the room. If “everyone in the room practices archery or is not a coffee connoisseur” then “everyone anywhere enjoys stand-up paddleboarding if they collects luxury watches or does not enjoy macrame or both”. If “someone in the room practices graffiti art” then “if someone builds model airplanes, is allergic to anything or does not own a telescope then he/she collects luxury watches or does not collect luxury watches or both and vice versa”. If “everyone in the room creates YouTube content or does not collect foreign coins” then “everyone in the room collects foreign coins if they creates YouTube content”. If “everyone in the room is allergic to anything or is not an active member of a local robotics club” then “someone anywhere is a certified scuba diver with advanced underwater photography skills”. If “someone anywhere is a certified scuba diver with advanced underwater photography skills” then “everyone in the room has lived in exactly three countries”. Everyone in the room either has a curated collection of mid-century modern furniture or builds model airplanes but not both. Everyone in the room has a curated collection of mid-century modern furniture if they practices graffiti art or is an expert in identifying and foraging wild edible plants or both. Everyone in the room owns a telescope if they has a curated collection of mid-century modern furniture. Everyone in the room enjoys macrame if they owns a telescope. Everyone in the room enjoys macrame if they owns a telescope and vice versa. Not everyone outside the room has a tattoo if they owns a telescope. Everyone in the room is not an avid hiker if they has a tattoo. Everyone in the room is an active member of a local robotics club if they is not an avid hiker. Everyone in the room who does not build model airplanes or practices graffiti art or both enjoys macrame or creates YouTube content or both. Everyone in the room collects luxury watches if they has lived in exactly three countries. Everyone in the room does not have a tattoo if they collects luxury watches. Everyone in the room who does not enjoy mountain biking collects luxury watches. If someone is not a certified scuba diver with advanced underwater photography skills then he/she can play the piano. Everyone in the room has lived in exactly three countries. Everyone in the room is a culinary enthusiast who experiments with international cuisines.
Patrick collects luxury watches.
entailment
room(patrick)&room(beatrice)&room(jennifer)&room(matthew)&(![X]:(room(X)=>(X='patrick'|X='beatrice'|X='jennifer'|X='matthew')))& ((![X]:(room(X)=>(((is_not_a_coffee_connoisseur(X))|(practices_archery(X))))))=>(![X]:(anywhere(X)=>(((((collects_luxury_watches(X))|(does_not_enjoy_macrame(X))))=>(enjoys_stand-up_paddleboarding(X)))))))& ((?[X]:(room(X)&(practices_graffiti_art(X))))=>((![X]:((((builds_model_airplanes(X))|(is_allergic_to_anything(X))|(does_not_own_a_telescope(X))))<=>(((collects_luxury_watches(X))|(does_not_collect_luxury_watches(X))))))))& ((![X]:(room(X)=>(((does_not_collect_foreign_coins(X))|(creates_YouTube_content(X))))))=>(![X]:(room(X)=>(((creates_YouTube_content(X))=>(collects_foreign_coins(X)))))))& (((![X]:(room(X)=>(((is_not_an_active_member_of_a_local_robotics_club(X))|(is_allergic_to_anything(X))))))=>(?[X]:(anywhere(X)&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X)))))& ((?[X]:(anywhere(X)&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))=>(![X]:(room(X)=>(has_lived_in_exactly_three_countries(X))))))& (![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))<~>(builds_model_airplanes(X))))))& (![X]:(room(X)=>(((((practices_graffiti_art(X))|(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))=>(has_a_curated_collection_of_mid-century_modern_furniture(X))))))& (![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))=>(owns_a_telescope(X))))))& (![X]:(room(X)=>(((owns_a_telescope(X))=>(enjoys_macrame(X))))))& (![X]:(room(X)=>(((enjoys_macrame(X))<=>(owns_a_telescope(X))))))& (~![X]:(~room(X)=>(((owns_a_telescope(X))=>(has_a_tattoo(X))))))& (![X]:(room(X)=>(((has_a_tattoo(X))=>(is_not_an_avid_hiker(X))))))& (![X]:(room(X)=>(((is_not_an_avid_hiker(X))=>(is_an_active_member_of_a_local_robotics_club(X))))))& (![X]:(room(X)=>(((((does_not_build_model_airplanes(X))|(practices_graffiti_art(X))))=>(((enjoys_macrame(X))|(creates_YouTube_content(X))))))))& (![X]:(room(X)=>(((has_lived_in_exactly_three_countries(X))=>(collects_luxury_watches(X))))))& (![X]:(room(X)=>(((collects_luxury_watches(X))=>(does_not_have_a_tattoo(X))))))& (![X]:(room(X)=>(((does_not_enjoy_mountain_biking(X))=>(collects_luxury_watches(X))))))& ((![X]:((is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))=>(can_play_the_piano(X)))))& (![X]:(room(X)=>(has_lived_in_exactly_three_countries(X))))& (![X]:(room(X)=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))
room(patrick)&room(beatrice)&room(jennifer)&room(matthew)&(![X]:(room(X)=>(X='patrick'|X='beatrice'|X='jennifer'|X='matthew')))& collects_luxury_watches(patrick)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 7797752090894464606120289 % SZS output start Proof for 7797752090894464606120289 44. ! [X0] : (room(X0) => predo(X0)) & ! [X0] : (room(X0) => predk(X0)) & ! [X0] : (~predt(X0) => prede(X0)) & ! [X0] : (room(X0) => (~predv(X0) => predb(X0))) & ! [X0] : (room(X0) => (predb(X0) => ~predr(X0))) & ! [X0] : (room(X0) => (predk(X0) => predb(X0))) & ! [X0] : (room(X0) => ((predl(X0) | ~predn(X0)) => (predp(X0) | preda(X0)))) & ! [X0] : (room(X0) => (~predh(X0) => predx(X0))) & ! [X0] : (room(X0) => (predr(X0) => ~predh(X0))) & ~! [X0] : (~room(X0) => (predg(X0) => predr(X0))) & ! [X0] : (room(X0) => (preda(X0) <=> predg(X0))) & ! [X0] : (room(X0) => (predg(X0) => preda(X0))) & ! [X0] : (room(X0) => (predq(X0) => predg(X0))) & ! [X0] : (room(X0) => ((predm(X0) | predl(X0)) => predq(X0))) & ! [X0] : (room(X0) => (predq(X0) <~> predn(X0))) & (? [X0] : (predt(X0) & anywhere(X0)) => ! [X0] : (room(X0) => predk(X0))) & (! [X0] : (room(X0) => (predf(X0) | ~predx(X0))) => ? [X0] : (predt(X0) & anywhere(X0))) & (! [X0] : (room(X0) => (predp(X0) | ~predi(X0))) => ! [X0] : (room(X0) => (predp(X0) => predi(X0)))) & (? [X0] : (predl(X0) & room(X0)) => ! [X0] : ((~predg(X0) | predf(X0) | predn(X0)) <=> (~predb(X0) | predb(X0)))) & (! [X0] : (room(X0) => (predy(X0) | ~predj(X0))) => ! [X0] : (anywhere(X0) => ((~preda(X0) | predb(X0)) => preds(X0)))) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ~(predb(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 46. ! [X0] : (room(X0) => predo(X0)) & ! [X1] : (room(X1) => predk(X1)) & ! [X2] : (~predt(X2) => prede(X2)) & ! [X3] : (room(X3) => (~predv(X3) => predb(X3))) & ! [X4] : (room(X4) => (predb(X4) => ~predr(X4))) & ! [X5] : (room(X5) => (predk(X5) => predb(X5))) & ! [X6] : (room(X6) => ((predl(X6) | ~predn(X6)) => (predp(X6) | preda(X6)))) & ! [X7] : (room(X7) => (~predh(X7) => predx(X7))) & ! [X8] : (room(X8) => (predr(X8) => ~predh(X8))) & ~! [X9] : (~room(X9) => (predg(X9) => predr(X9))) & ! [X10] : (room(X10) => (preda(X10) <=> predg(X10))) & ! [X11] : (room(X11) => (predg(X11) => preda(X11))) & ! [X12] : (room(X12) => (predq(X12) => predg(X12))) & ! [X13] : (room(X13) => ((predm(X13) | predl(X13)) => predq(X13))) & ! [X14] : (room(X14) => (predq(X14) <~> predn(X14))) & (? [X15] : (predt(X15) & anywhere(X15)) => ! [X16] : (room(X16) => predk(X16))) & (! [X17] : (room(X17) => (predf(X17) | ~predx(X17))) => ? [X18] : (predt(X18) & anywhere(X18))) & (! [X19] : (room(X19) => (predp(X19) | ~predi(X19))) => ! [X20] : (room(X20) => (predp(X20) => predi(X20)))) & (? [X21] : (predl(X21) & room(X21)) => ! [X22] : ((~predg(X22) | predf(X22) | predn(X22)) <=> (~predb(X22) | predb(X22)))) & (! [X23] : (room(X23) => (predy(X23) | ~predj(X23))) => ! [X24] : (anywhere(X24) => ((~preda(X24) | predb(X24)) => preds(X24)))) & ! [X25] : (room(X25) => (alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 44] 47. ! [X1] : (room(X1) => predk(X1)) & ! [X2] : (~predt(X2) => prede(X2)) & ! [X3] : (room(X3) => (~predv(X3) => predb(X3))) & ! [X4] : (room(X4) => (predb(X4) => ~predr(X4))) & ! [X5] : (room(X5) => (predk(X5) => predb(X5))) & ! [X6] : (room(X6) => ((predl(X6) | ~predn(X6)) => (predp(X6) | preda(X6)))) & ! [X7] : (room(X7) => (~predh(X7) => predx(X7))) & ! [X8] : (room(X8) => (predr(X8) => ~predh(X8))) & ~! [X9] : (~room(X9) => (predg(X9) => predr(X9))) & ! [X10] : (room(X10) => (preda(X10) <=> predg(X10))) & ! [X11] : (room(X11) => (predg(X11) => preda(X11))) & ! [X12] : (room(X12) => (predq(X12) => predg(X12))) & ! [X13] : (room(X13) => ((predm(X13) | predl(X13)) => predq(X13))) & ! [X14] : (room(X14) => (predq(X14) <~> predn(X14))) & (? [X15] : (predt(X15) & anywhere(X15)) => ! [X16] : (room(X16) => predk(X16))) & (! [X17] : (room(X17) => (predf(X17) | ~predx(X17))) => ? [X18] : (predt(X18) & anywhere(X18))) & (! [X19] : (room(X19) => (predp(X19) | ~predi(X19))) => ! [X20] : (room(X20) => (predp(X20) => predi(X20)))) & (? [X21] : (predl(X21) & room(X21)) => ! [X22] : ((~predg(X22) | predf(X22) | predn(X22)) <=> (~predb(X22) | predb(X22)))) & (! [X23] : (room(X23) => (predy(X23) | ~predj(X23))) => ! [X24] : (anywhere(X24) => ((~preda(X24) | predb(X24)) => preds(X24)))) & ! [X25] : (room(X25) => (alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 48. ! [X1] : (room(X1) => predk(X1)) & ! [X3] : (room(X3) => (~predv(X3) => predb(X3))) & ! [X4] : (room(X4) => (predb(X4) => ~predr(X4))) & ! [X5] : (room(X5) => (predk(X5) => predb(X5))) & ! [X6] : (room(X6) => ((predl(X6) | ~predn(X6)) => (predp(X6) | preda(X6)))) & ! [X7] : (room(X7) => (~predh(X7) => predx(X7))) & ! [X8] : (room(X8) => (predr(X8) => ~predh(X8))) & ~! [X9] : (~room(X9) => (predg(X9) => predr(X9))) & ! [X10] : (room(X10) => (preda(X10) <=> predg(X10))) & ! [X11] : (room(X11) => (predg(X11) => preda(X11))) & ! [X12] : (room(X12) => (predq(X12) => predg(X12))) & ! [X13] : (room(X13) => ((predm(X13) | predl(X13)) => predq(X13))) & ! [X14] : (room(X14) => (predq(X14) <~> predn(X14))) & (? [X15] : (predt(X15) & anywhere(X15)) => ! [X16] : (room(X16) => predk(X16))) & (! [X17] : (room(X17) => (predf(X17) | ~predx(X17))) => ? [X18] : (predt(X18) & anywhere(X18))) & (! [X19] : (room(X19) => (predp(X19) | ~predi(X19))) => ! [X20] : (room(X20) => (predp(X20) => predi(X20)))) & (? [X21] : (predl(X21) & room(X21)) => ! [X22] : ((~predg(X22) | predf(X22) | predn(X22)) <=> (~predb(X22) | predb(X22)))) & (! [X23] : (room(X23) => (predy(X23) | ~predj(X23))) => ! [X24] : (anywhere(X24) => ((~preda(X24) | predb(X24)) => preds(X24)))) & ! [X25] : (room(X25) => (alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 47] 49. ! [X1] : (room(X1) => predk(X1)) & ! [X4] : (room(X4) => (predb(X4) => ~predr(X4))) & ! [X5] : (room(X5) => (predk(X5) => predb(X5))) & ! [X6] : (room(X6) => ((predl(X6) | ~predn(X6)) => (predp(X6) | preda(X6)))) & ! [X7] : (room(X7) => (~predh(X7) => predx(X7))) & ! [X8] : (room(X8) => (predr(X8) => ~predh(X8))) & ~! [X9] : (~room(X9) => (predg(X9) => predr(X9))) & ! [X10] : (room(X10) => (preda(X10) <=> predg(X10))) & ! [X11] : (room(X11) => (predg(X11) => preda(X11))) & ! [X12] : (room(X12) => (predq(X12) => predg(X12))) & ! [X13] : (room(X13) => ((predm(X13) | predl(X13)) => predq(X13))) & ! [X14] : (room(X14) => (predq(X14) <~> predn(X14))) & (? [X15] : (predt(X15) & anywhere(X15)) => ! [X16] : (room(X16) => predk(X16))) & (! [X17] : (room(X17) => (predf(X17) | ~predx(X17))) => ? [X18] : (predt(X18) & anywhere(X18))) & (! [X19] : (room(X19) => (predp(X19) | ~predi(X19))) => ! [X20] : (room(X20) => (predp(X20) => predi(X20)))) & (? [X21] : (predl(X21) & room(X21)) => ! [X22] : ((~predg(X22) | predf(X22) | predn(X22)) <=> (~predb(X22) | predb(X22)))) & (! [X23] : (room(X23) => (predy(X23) | ~predj(X23))) => ! [X24] : (anywhere(X24) => ((~preda(X24) | predb(X24)) => preds(X24)))) & ! [X25] : (room(X25) => (alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 48] 50. ! [X1] : (room(X1) => predk(X1)) & ! [X5] : (room(X5) => (predk(X5) => predb(X5))) & ! [X6] : (room(X6) => ((predl(X6) | ~predn(X6)) => (predp(X6) | preda(X6)))) & ! [X7] : (room(X7) => (~predh(X7) => predx(X7))) & ~! [X9] : (~room(X9) => ~predg(X9)) & ! [X10] : (room(X10) => (preda(X10) <=> predg(X10))) & ! [X11] : (room(X11) => (predg(X11) => preda(X11))) & ! [X12] : (room(X12) => (predq(X12) => predg(X12))) & ! [X13] : (room(X13) => ((predm(X13) | predl(X13)) => predq(X13))) & ! [X14] : (room(X14) => (predq(X14) <~> predn(X14))) & (? [X15] : (predt(X15) & anywhere(X15)) => ! [X16] : (room(X16) => predk(X16))) & (! [X17] : (room(X17) => (predf(X17) | ~predx(X17))) => ? [X18] : (predt(X18) & anywhere(X18))) & (! [X19] : (room(X19) => (predp(X19) | ~predi(X19))) => ! [X20] : (room(X20) => (predp(X20) => predi(X20)))) & (? [X21] : (predl(X21) & room(X21)) => ! [X22] : ((~predg(X22) | predf(X22) | predn(X22)) <=> (~predb(X22) | predb(X22)))) & (! [X23] : (room(X23) => (predy(X23) | ~predj(X23))) => ! [X24] : (anywhere(X24) => ((~preda(X24) | predb(X24)) => preds(X24)))) & ! [X25] : (room(X25) => (alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 49] 51. ! [X1] : (room(X1) => predk(X1)) & ! [X5] : (room(X5) => (predk(X5) => predb(X5))) & ! [X6] : (room(X6) => ((predl(X6) | ~predn(X6)) => (predp(X6) | preda(X6)))) & ~! [X9] : (~room(X9) => ~predg(X9)) & ! [X10] : (room(X10) => (preda(X10) <=> predg(X10))) & ! [X11] : (room(X11) => (predg(X11) => preda(X11))) & ! [X12] : (room(X12) => (predq(X12) => predg(X12))) & ! [X13] : (room(X13) => ((predm(X13) | predl(X13)) => predq(X13))) & ! [X14] : (room(X14) => (predq(X14) <~> predn(X14))) & (? [X15] : (predt(X15) & anywhere(X15)) => ! [X16] : (room(X16) => predk(X16))) & (! [X17] : (room(X17) => (predf(X17) | ~predx(X17))) => ? [X18] : (predt(X18) & anywhere(X18))) & (! [X19] : (room(X19) => (predp(X19) | ~predi(X19))) => ! [X20] : (room(X20) => (predp(X20) => predi(X20)))) & (? [X21] : (predl(X21) & room(X21)) => ! [X22] : ((~predg(X22) | predf(X22) | predn(X22)) <=> (~predb(X22) | predb(X22)))) & (! [X23] : (room(X23) => (predy(X23) | ~predj(X23))) => ! [X24] : (anywhere(X24) => ((~preda(X24) | predb(X24)) => preds(X24)))) & ! [X25] : (room(X25) => (alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 50] 52. ! [X1] : (room(X1) => predk(X1)) & ! [X5] : (room(X5) => (predk(X5) => predb(X5))) & ! [X6] : (room(X6) => ((predl(X6) | ~predn(X6)) => (predp(X6) | preda(X6)))) & ~! [X9] : (~room(X9) => ~predg(X9)) & ! [X10] : (room(X10) => (preda(X10) <=> predg(X10))) & ! [X11] : (room(X11) => (predg(X11) => preda(X11))) & ! [X12] : (room(X12) => (predq(X12) => predg(X12))) & ! [X13] : (room(X13) => (predl(X13) => predq(X13))) & ! [X14] : (room(X14) => (predq(X14) <~> predn(X14))) & (? [X15] : (predt(X15) & anywhere(X15)) => ! [X16] : (room(X16) => predk(X16))) & (! [X17] : (room(X17) => (predf(X17) | ~predx(X17))) => ? [X18] : (predt(X18) & anywhere(X18))) & (! [X19] : (room(X19) => (predp(X19) | ~predi(X19))) => ! [X20] : (room(X20) => (predp(X20) => predi(X20)))) & (? [X21] : (predl(X21) & room(X21)) => ! [X22] : ((~predg(X22) | predf(X22) | predn(X22)) <=> (~predb(X22) | predb(X22)))) & (! [X23] : (room(X23) => (predy(X23) | ~predj(X23))) => ! [X24] : (anywhere(X24) => ((~preda(X24) | predb(X24)) => preds(X24)))) & ! [X25] : (room(X25) => (alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 51] 53. ! [X1] : (room(X1) => predk(X1)) & ! [X5] : (room(X5) => (predk(X5) => predb(X5))) & ! [X6] : (room(X6) => ((predl(X6) | ~predn(X6)) => (predp(X6) | preda(X6)))) & ~! [X9] : (~room(X9) => ~predg(X9)) & ! [X10] : (room(X10) => (preda(X10) <=> predg(X10))) & ! [X11] : (room(X11) => (predg(X11) => preda(X11))) & ! [X12] : (room(X12) => (predq(X12) => predg(X12))) & ! [X13] : (room(X13) => (predl(X13) => predq(X13))) & ! [X14] : (room(X14) => (predq(X14) <~> predn(X14))) & (? [X15] : (predt(X15) & anywhere(X15)) => ! [X16] : (room(X16) => predk(X16))) & (! [X17] : (room(X17) => predf(X17)) => ? [X18] : (predt(X18) & anywhere(X18))) & (! [X19] : (room(X19) => (predp(X19) | ~predi(X19))) => ! [X20] : (room(X20) => (predp(X20) => predi(X20)))) & (? [X21] : (predl(X21) & room(X21)) => ! [X22] : ((~predg(X22) | predf(X22) | predn(X22)) <=> (~predb(X22) | predb(X22)))) & (! [X23] : (room(X23) => (predy(X23) | ~predj(X23))) => ! [X24] : (anywhere(X24) => ((~preda(X24) | predb(X24)) => preds(X24)))) & ! [X25] : (room(X25) => (alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 52] 54. ! [X1] : (room(X1) => predk(X1)) & ! [X5] : (room(X5) => (predk(X5) => predb(X5))) & ! [X6] : (room(X6) => ((predl(X6) | ~predn(X6)) => (predp(X6) | preda(X6)))) & ~! [X9] : (~room(X9) => ~predg(X9)) & ! [X10] : (room(X10) => (preda(X10) <=> predg(X10))) & ! [X11] : (room(X11) => (predg(X11) => preda(X11))) & ! [X12] : (room(X12) => (predq(X12) => predg(X12))) & ! [X13] : (room(X13) => (predl(X13) => predq(X13))) & ! [X14] : (room(X14) => (predq(X14) <~> predn(X14))) & (? [X15] : (predt(X15) & anywhere(X15)) => ! [X16] : (room(X16) => predk(X16))) & (! [X17] : (room(X17) => predf(X17)) => ? [X18] : (predt(X18) & anywhere(X18))) & (? [X21] : (predl(X21) & room(X21)) => ! [X22] : ((~predg(X22) | predf(X22) | predn(X22)) <=> (~predb(X22) | predb(X22)))) & (! [X23] : (room(X23) => (predy(X23) | ~predj(X23))) => ! [X24] : (anywhere(X24) => ((~preda(X24) | predb(X24)) => preds(X24)))) & ! [X25] : (room(X25) => (alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 53] 55. ! [X1] : (room(X1) => predk(X1)) & ! [X5] : (room(X5) => (predk(X5) => predb(X5))) & ~! [X9] : (~room(X9) => ~predg(X9)) & ! [X10] : (room(X10) => (preda(X10) <=> predg(X10))) & ! [X11] : (room(X11) => (predg(X11) => preda(X11))) & ! [X12] : (room(X12) => (predq(X12) => predg(X12))) & ! [X13] : (room(X13) => (predl(X13) => predq(X13))) & ! [X14] : (room(X14) => (predq(X14) <~> predn(X14))) & (? [X15] : (predt(X15) & anywhere(X15)) => ! [X16] : (room(X16) => predk(X16))) & (! [X17] : (room(X17) => predf(X17)) => ? [X18] : (predt(X18) & anywhere(X18))) & (? [X21] : (predl(X21) & room(X21)) => ! [X22] : ((~predg(X22) | predf(X22) | predn(X22)) <=> (~predb(X22) | predb(X22)))) & (! [X23] : (room(X23) => (predy(X23) | ~predj(X23))) => ! [X24] : (anywhere(X24) => ((~preda(X24) | predb(X24)) => preds(X24)))) & ! [X25] : (room(X25) => (alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 54] 56. ! [X1] : (room(X1) => predk(X1)) & ! [X5] : (room(X5) => (predk(X5) => predb(X5))) & ~! [X9] : (~room(X9) => ~predg(X9)) & ! [X10] : (room(X10) => (preda(X10) <=> predg(X10))) & ! [X11] : (room(X11) => (predg(X11) => preda(X11))) & ! [X12] : (room(X12) => (predq(X12) => predg(X12))) & ! [X14] : (room(X14) => (predq(X14) <~> predn(X14))) & (? [X15] : (predt(X15) & anywhere(X15)) => ! [X16] : (room(X16) => predk(X16))) & (! [X17] : (room(X17) => predf(X17)) => ? [X18] : (predt(X18) & anywhere(X18))) & (! [X23] : (room(X23) => (predy(X23) | ~predj(X23))) => ! [X24] : (anywhere(X24) => ((~preda(X24) | predb(X24)) => preds(X24)))) & ! [X25] : (room(X25) => (alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 55] 57. ! [X1] : (room(X1) => predk(X1)) & ! [X5] : (room(X5) => (predk(X5) => predb(X5))) & ~! [X9] : (~room(X9) => ~predg(X9)) & ! [X10] : (room(X10) => (preda(X10) <=> predg(X10))) & ! [X11] : (room(X11) => (predg(X11) => preda(X11))) & ! [X12] : (room(X12) => (predq(X12) => predg(X12))) & ! [X14] : (room(X14) => (predq(X14) <~> predn(X14))) & (? [X15] : (predt(X15) & anywhere(X15)) => ! [X16] : (room(X16) => predk(X16))) & (! [X17] : ~room(X17) => ? [X18] : (predt(X18) & anywhere(X18))) & (! [X23] : (room(X23) => (predy(X23) | ~predj(X23))) => ! [X24] : (anywhere(X24) => ((~preda(X24) | predb(X24)) => preds(X24)))) & ! [X25] : (room(X25) => (alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 56] 58. ! [X1] : (room(X1) => predk(X1)) & ! [X5] : (room(X5) => (predk(X5) => predb(X5))) & ~! [X9] : (~room(X9) => ~predg(X9)) & ! [X10] : (room(X10) => (preda(X10) <=> predg(X10))) & ! [X11] : (room(X11) => (predg(X11) => preda(X11))) & ! [X12] : (room(X12) => (predq(X12) => predg(X12))) & ! [X14] : (room(X14) => (predq(X14) <~> predn(X14))) & (? [X15] : (predt(X15) & anywhere(X15)) => ! [X16] : (room(X16) => predk(X16))) & (! [X17] : ~room(X17) => ? [X18] : (predt(X18) & anywhere(X18))) & ! [X25] : (room(X25) => (alice = X25 | fred = X25 | paul = X25 | mary = X25)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 57] 130. ! [X1] : (predk(X1) | ~room(X1)) & ! [X5] : ((predb(X5) | ~predk(X5)) | ~room(X5)) & ? [X9] : (predg(X9) & ~room(X9)) & ! [X10] : ((preda(X10) <=> predg(X10)) | ~room(X10)) & ! [X11] : ((preda(X11) | ~predg(X11)) | ~room(X11)) & ! [X12] : ((predg(X12) | ~predq(X12)) | ~room(X12)) & ! [X14] : ((predq(X14) <~> predn(X14)) | ~room(X14)) & (! [X16] : (predk(X16) | ~room(X16)) | ! [X15] : (~predt(X15) | ~anywhere(X15))) & (? [X18] : (predt(X18) & anywhere(X18)) | ? [X17] : room(X17)) & ! [X25] : ((alice = X25 | fred = X25 | paul = X25 | mary = X25) | ~room(X25)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 58] 131. ! [X1] : (predk(X1) | ~room(X1)) & ! [X5] : (predb(X5) | ~predk(X5) | ~room(X5)) & ? [X9] : (predg(X9) & ~room(X9)) & ! [X10] : ((preda(X10) <=> predg(X10)) | ~room(X10)) & ! [X11] : (preda(X11) | ~predg(X11) | ~room(X11)) & ! [X12] : (predg(X12) | ~predq(X12) | ~room(X12)) & ! [X14] : ((predq(X14) <~> predn(X14)) | ~room(X14)) & (! [X16] : (predk(X16) | ~room(X16)) | ! [X15] : (~predt(X15) | ~anywhere(X15))) & (? [X18] : (predt(X18) & anywhere(X18)) | ? [X17] : room(X17)) & ! [X25] : (alice = X25 | fred = X25 | paul = X25 | mary = X25 | ~room(X25)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 130] 132. ~predb(mary) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 45] 133. ~predb(mary) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 132] 135. ! [X1] : (predk(X1) | ~room(X1)) & ! [X5] : (predb(X5) | ~predk(X5) | ~room(X5)) & ? [X9] : (predg(X9) & ~room(X9)) & ! [X10] : (((preda(X10) | ~predg(X10)) & (predg(X10) | ~preda(X10))) | ~room(X10)) & ! [X11] : (preda(X11) | ~predg(X11) | ~room(X11)) & ! [X12] : (predg(X12) | ~predq(X12) | ~room(X12)) & ! [X14] : (((~predn(X14) | ~predq(X14)) & (predn(X14) | predq(X14))) | ~room(X14)) & (! [X16] : (predk(X16) | ~room(X16)) | ! [X15] : (~predt(X15) | ~anywhere(X15))) & (? [X18] : (predt(X18) & anywhere(X18)) | ? [X17] : room(X17)) & ! [X25] : (alice = X25 | fred = X25 | paul = X25 | mary = X25 | ~room(X25)) & room(alice) & room(fred) & room(paul) & room(mary) [nnf transformation 131] 136. ! [X0] : (predk(X0) | ~room(X0)) & ! [X1] : (predb(X1) | ~predk(X1) | ~room(X1)) & ? [X2] : (predg(X2) & ~room(X2)) & ! [X3] : (((preda(X3) | ~predg(X3)) & (predg(X3) | ~preda(X3))) | ~room(X3)) & ! [X4] : (preda(X4) | ~predg(X4) | ~room(X4)) & ! [X5] : (predg(X5) | ~predq(X5) | ~room(X5)) & ! [X6] : (((~predn(X6) | ~predq(X6)) & (predn(X6) | predq(X6))) | ~room(X6)) & (! [X7] : (predk(X7) | ~room(X7)) | ! [X8] : (~predt(X8) | ~anywhere(X8))) & (? [X9] : (predt(X9) & anywhere(X9)) | ? [X10] : room(X10)) & ! [X11] : (alice = X11 | fred = X11 | paul = X11 | mary = X11 | ~room(X11)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 135] 137. ? [X2] : (predg(X2) & ~room(X2)) => (predg(sK0) & ~room(sK0)) [choice axiom] 138. ? [X9] : (predt(X9) & anywhere(X9)) => (predt(sK1) & anywhere(sK1)) [choice axiom] 139. ? [X10] : room(X10) => room(sK2) [choice axiom] 140. ! [X0] : (predk(X0) | ~room(X0)) & ! [X1] : (predb(X1) | ~predk(X1) | ~room(X1)) & (predg(sK0) & ~room(sK0)) & ! [X3] : (((preda(X3) | ~predg(X3)) & (predg(X3) | ~preda(X3))) | ~room(X3)) & ! [X4] : (preda(X4) | ~predg(X4) | ~room(X4)) & ! [X5] : (predg(X5) | ~predq(X5) | ~room(X5)) & ! [X6] : (((~predn(X6) | ~predq(X6)) & (predn(X6) | predq(X6))) | ~room(X6)) & (! [X7] : (predk(X7) | ~room(X7)) | ! [X8] : (~predt(X8) | ~anywhere(X8))) & ((predt(sK1) & anywhere(sK1)) | room(sK2)) & ! [X11] : (alice = X11 | fred = X11 | paul = X11 | mary = X11 | ~room(X11)) & room(alice) & room(fred) & room(paul) & room(mary) [skolemisation 136,139,138,137] 141. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 142. ~predb(mary) | (alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 133,141] 224. room(mary) [cnf transformation 140] 225. room(paul) [cnf transformation 140] 226. room(fred) [cnf transformation 140] 227. room(alice) [cnf transformation 140] 228. ~room(X11) | fred = X11 | paul = X11 | mary = X11 | alice = X11 [cnf transformation 140] 240. predb(X1) | ~predk(X1) | ~room(X1) [cnf transformation 140] 241. ~room(X0) | predk(X0) [cnf transformation 140] 242. ~predb(mary) | room(sK3) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 142] 243. ~predb(mary) | mary != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 142] 244. ~predb(mary) | paul != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 142] 245. ~predb(mary) | fred != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 142] 246. ~predb(mary) | alice != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 142] 247. ~room(X1) | predb(X1) [subsumption resolution 240,241] 257. ~predb(mary) | alice != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 246,227] 258. ~predb(mary) | alice != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 257,226] 259. ~predb(mary) | alice != sK3 | ~room(mary) [subsumption resolution 258,225] 260. ~predb(mary) | alice != sK3 [subsumption resolution 259,224] 262. 3 <=> alice = sK3 [avatar definition] 264. alice != sK3 <- (~3) [avatar component clause 262] 266. 4 <=> predb(mary) [avatar definition] 269. ~3 | ~4 [avatar split clause 260,266,262] 270. ~predb(mary) | fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 245,227] 271. ~predb(mary) | fred != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 270,226] 272. ~predb(mary) | fred != sK3 | ~room(mary) [subsumption resolution 271,225] 273. ~predb(mary) | fred != sK3 [subsumption resolution 272,224] 275. 5 <=> fred = sK3 [avatar definition] 277. fred != sK3 <- (~5) [avatar component clause 275] 278. ~5 | ~4 [avatar split clause 273,266,275] 279. ~predb(mary) | paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 244,227] 280. ~predb(mary) | paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 279,226] 281. ~predb(mary) | paul != sK3 | ~room(mary) [subsumption resolution 280,225] 282. ~predb(mary) | paul != sK3 [subsumption resolution 281,224] 284. 6 <=> paul = sK3 [avatar definition] 286. paul != sK3 <- (~6) [avatar component clause 284] 287. ~6 | ~4 [avatar split clause 282,266,284] 288. ~predb(mary) | mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 243,227] 289. ~predb(mary) | mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 288,226] 290. ~predb(mary) | mary != sK3 | ~room(mary) [subsumption resolution 289,225] 291. ~predb(mary) | mary != sK3 [subsumption resolution 290,224] 293. 7 <=> mary = sK3 [avatar definition] 295. mary != sK3 <- (~7) [avatar component clause 293] 296. ~7 | ~4 [avatar split clause 291,266,293] 297. ~predb(mary) | room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 242,227] 298. ~predb(mary) | room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 297,226] 299. ~predb(mary) | room(sK3) | ~room(mary) [subsumption resolution 298,225] 300. ~predb(mary) | room(sK3) [subsumption resolution 299,224] 302. 8 <=> room(sK3) [avatar definition] 304. room(sK3) <- (8) [avatar component clause 302] 305. 8 | ~4 [avatar split clause 300,266,302] 310. predb(mary) [resolution 247,224] 316. 4 [avatar split clause 310,266] 410. fred = sK3 | paul = sK3 | mary = sK3 | alice = sK3 <- (8) [resolution 228,304] 411. paul = sK3 | mary = sK3 | alice = sK3 <- (~5, 8) [subsumption resolution 410,277] 412. mary = sK3 | alice = sK3 <- (~5, ~6, 8) [subsumption resolution 411,286] 413. alice = sK3 <- (~5, ~6, ~7, 8) [subsumption resolution 412,295] 414. $false <- (~3, ~5, ~6, ~7, 8) [subsumption resolution 413,264] 415. 3 | 5 | 6 | 7 | ~8 [avatar contradiction clause 414] 416. $false [avatar sat refutation 269,278,287,296,305,316,415] % SZS output end Proof for 7797752090894464606120289 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.235191
Lorrie, Diana are the only persons in the room. If “Nicholas is quieter than Lorrie” then “Lorrie is the least rich in the room”. If “Nicholas is richer than Diana” then “Lorrie is richer than Nicholas”. If “Lorrie is a tall person” then “Lorrie who is older than Nicholas is a wise person” otherwise “Diana is not curious”. If “Diana is older than Nicholas” then “Nicholas is quieter than Diana”. “Diana is a humble curious person” only if “Diana is quieter than Nicholas”. If “Diana is a brave curious person” then “someone who is a wise quiet person, is older than Nicholas and is quieter than Nicholas is quieter than someone who is older than Nicholas”. If someone is a creative old person then he/she is a old wise brave person.
All patient persons are humble.
neutral
room(lorrie)&room(diana)&(![X]:(room(X)=>(X='lorrie'|X='diana')))& ((quieter(lorrie,nicholas))=>(![X]:((room(X)&(X!=lorrie))=>richer(lorrie,X))))& ((richer(diana,nicholas))=>(richer(nicholas,lorrie)))& (((tall(lorrie)&person(lorrie))=>((older(nicholas,lorrie))&(wise(lorrie)&person(lorrie))))&((~(tall(lorrie)&person(lorrie)))=>(~curious(diana))))& ((older(nicholas,diana))=>(quieter(diana,nicholas)))& ((humble(diana)&curious(diana)&person(diana))=>(quieter(nicholas,diana)))& ((brave(diana)&curious(diana)&person(diana))=>(?[X,Y]:((((wise(X)&quiet(X)&person(X))&(older(nicholas,X))&(quieter(nicholas,X))))&(older(nicholas,Y))&(quieter(X,Y)))))& ((![X]:((creative(X)&old(X)&person(X))=>(old(X)&wise(X)&brave(X)&person(X)))))& ((![X]:((brave(X)&person(X))<=>(quiet(X)&person(X)))))& (((?[X]:(room(X)&~tall(X)))))& (quieter(nicholas,diana))& (![X]:((room(X)&(X!=lorrie))=>older(X,lorrie)))& (![X]:(funny(X)=>wise(X)))& (happy(diana)&person(diana)&happy(lorrie)&person(lorrie))& (old(lorrie)&person(lorrie))& (((patient(lorrie)&person(lorrie))&(richer(nicholas,lorrie))))& (~(older(nicholas,diana)))& (richer(nicholas,lorrie))& ((older(nicholas,lorrie))&(wise(lorrie)&person(lorrie)))& ((![X]:((((richer(nicholas,X))<~>(~kind(X))))=>(richer(nicholas,X)))))& (richer(nicholas,diana))& ((humble(lorrie)&brave(lorrie)&person(lorrie))&(older(nicholas,lorrie)))& (((?[X]:(room(X)&creative(X)&quiet(X)&person(X)))&(![X,Y]:((room(X)&room(Y)&(creative(X)&quiet(X)&person(X))&(creative(Y)&quiet(Y)&person(Y)))=>(X=Y)))))& ((![X]:((wise(X)&person(X))<=>(curious(X)))))& (~(((old(diana))|(humble(diana)&person(diana)))))
room(lorrie)&room(diana)&(![X]:(room(X)=>(X='lorrie'|X='diana')))& ![X]:(patient(X)=>humble(X))
[]
null
0.11174
Charles is the only person in the room. Everyone in the room who hosts themed dinner parties featuring gourmet home-cooked meals, enjoys making ceramics and is a craft beer aficionado hosts themed dinner parties featuring gourmet home-cooked meals. Charles plays the drums. If someone enjoys stargazing then he/she watches fantasy movies and vice versa. Everyone outside the room drives a hybrid car if and only if they hosts a YouTube channel dedicated to art tutorials. Everyone in the room who participates in citizen science projects related to wildlife monitoring is a craft beer aficionado. Charles hosts themed dinner parties featuring gourmet home-cooked meals. Everyone in the room who enjoys deep-sea diving and exploring underwater caves enjoys camping and organizing outdoor survival workshops. Charles watches fantasy movies. Everyone in the room enjoys making ceramics or does not watche fantasy movies.
Charles watches fantasy movies.
entailment
room(charles)&(![X]:(room(X)=>(X='charles')))& (![X]:(room(X)=>(((((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))&(enjoys_making_ceramics(X))&(is_a_craft_beer_aficionado(X))))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (plays_the_drums(charles))& ((![X]:((enjoys_stargazing(X))<=>(watches_fantasy_movies(X)))))& (![X]:(~room(X)=>(((drives_a_hybrid_car(X))<=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))& (![X]:(room(X)=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))=>(is_a_craft_beer_aficionado(X))))))& (hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(charles))& (![X]:(room(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))& (watches_fantasy_movies(charles))& (![X]:(room(X)=>(((does_not_watche_fantasy_movies(X))|(enjoys_making_ceramics(X))))))
room(charles)&(![X]:(room(X)=>(X='charles')))& watches_fantasy_movies(charles)
[ "p0", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 5963312220630878399315120 % SZS output start Proof for 5963312220630878399315120 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 52. predb(mary) [input p8] 54. ~(predb(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 133. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 135. ~predb(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 54] 138. ? [X0] : (mary != X0 & room(X0)) => (mary != sK0 & room(sK0)) [choice axiom] 139. ~predb(mary) | (mary != sK0 & room(sK0)) | ~room(mary) [skolemisation 135,138] 220. room(mary) [cnf transformation 133] 221. ~room(X0) | mary = X0 [cnf transformation 133] 224. predb(mary) [cnf transformation 52] 225. ~predb(mary) | room(sK0) | ~room(mary) [cnf transformation 139] 226. ~predb(mary) | mary != sK0 | ~room(mary) [cnf transformation 139] 227. mary != sK0 | ~room(mary) [subsumption resolution 226,224] 228. mary != sK0 [subsumption resolution 227,220] 229. room(sK0) | ~room(mary) [subsumption resolution 225,224] 230. room(sK0) [subsumption resolution 229,220] 232. mary = sK0 [resolution 221,230] 233. $false [subsumption resolution 232,228] % SZS output end Proof for 5963312220630878399315120 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.028 s % ------------------------------ % ------------------------------
0.053892
Daniel, Maria, Gloria, Hector, Jon are the only persons in the room. Either "Jon neither practices graffiti art nor owns a smart tv" or "Hector can play the piano" but not both.
Jon practices graffiti art.
neutral
room(daniel)&room(maria)&room(gloria)&room(hector)&room(jon)&(![X]:(room(X)=>(X='daniel'|X='maria'|X='gloria'|X='hector'|X='jon')))& ((~((practices_graffiti_art(jon))|(owns_a_smart_tv(jon))))<~>(can_play_the_piano(hector)))& ((practices_graffiti_art(jon))=>(does_enjoy_mountain_biking(maria)))& (can_play_the_piano(gloria))& (~(practices_graffiti_art(gloria)))& (is_a_coffee_connoisseur(jon))& (can_play_the_piano(maria))& (((can_play_the_piano(jon))&(collects_vintage_stamps(jon))))& (~((is_a_coffee_connoisseur(daniel))|(can_play_the_piano(daniel))))& (does_enjoy_mountain_biking(jon))& (collects_vintage_stamps(daniel))& (owns_a_smart_tv(jon))& (does_enjoy_mountain_biking(maria))& (((does_enjoy_mountain_biking(gloria))|(can_play_the_piano(gloria))))& ((is_a_coffee_connoisseur(jon))&(does_enjoy_mountain_biking(jon)))& (practices_graffiti_art(daniel))& ((![X]:((does_enjoy_mountain_biking(X))<=>(can_play_the_piano(X)))))& (?[X]:(anywhere(X)&(collects_vintage_stamps(X))))& (is_a_coffee_connoisseur(maria))& (owns_a_smart_tv(maria))& (collects_vintage_stamps(jon))
room(daniel)&room(maria)&room(gloria)&room(hector)&room(jon)&(![X]:(room(X)=>(X='daniel'|X='maria'|X='gloria'|X='hector'|X='jon')))& practices_graffiti_art(jon)
[]
null
0.193476
David, Grant, Stephen are the only persons in the room. If “David own a television” then “someone in the room either is a scotch connoisseur or is an avid collector of autographed memorabilia from famous musicians but not both” otherwise “at least one person in the room is an enthusiastic bird watcher who travels for rare sightings”. If “everyone outside the room does not write poetry or owns an extensive assortment of vintage comic book memorabilia” then “only one person in the room regularly contributes to tech forums and online communities”. Stephen who can play the piano, is a tea enthusiast and writes poetry travels domestically frequently.
Stephen can play the piano.
entailment
room(david)&room(grant)&room(stephen)&(![X]:(room(X)=>(X='david'|X='grant'|X='stephen')))& (((own_a_television(david))=>(?[X]:(room(X)&(((is_a_scotch_connoisseur(X))<~>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X)))))))&((~(own_a_television(david)))=>(((?[X]:(room(X)&is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X)))))))& ((![X]:(~room(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(does_not_write_poetry(X))))))=>(((?[X]:(room(X)&regularly_contributes_to_tech_forums_and_online_communities(X)))&(![X,Y]:((room(X)&room(Y)&(regularly_contributes_to_tech_forums_and_online_communities(X))&(regularly_contributes_to_tech_forums_and_online_communities(Y)))=>(X=Y))))))& (((own_a_television(grant))=>(![X]:(room(X)=>(((practices_digital_art(X))=>(has_a_specialized_collection_of_handmade_artisan_pottery(X)))))))&((~(own_a_television(grant)))=>(?[X]:(room(X)&(~((is_a_dedicated_volunteer_for_local_community_service_projects(X))|(is_a_scotch_connoisseur(X))))))))& ((((can_play_the_guitar(stephen))&(regularly_contributes_to_tech_forums_and_online_communities(stephen))))=>(is_a_tea_enthusiast(stephen)))& (![X]:(room(X)=>(((is_not_right-handed(X))=>(is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))& (is_a_tea_enthusiast(stephen))& (![X]:(room(X)=>(((practices_digital_art(X))=>(can_play_the_guitar(X))))))& ((((can_play_the_piano(stephen))&(is_a_tea_enthusiast(stephen))&(writes_poetry(stephen))))&(travels_domestically_frequently(stephen)))& (((?[X]:(room(X)&has_a_specialized_collection_of_handmade_artisan_pottery(X)))))& (((?[X]:(room(X)&is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X)))))& (practices_digital_art(david))& (![X]:(room(X)=>(((((enjoys_fishing(X))&(is_right-handed(X))))<=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& (?[X]:(room(X)&(owns_a_3D_printer(X))))& ((?[X,Y]:(room(X)&room(Y)&(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X)&owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(Y))&(X!=Y))))& (![X]:(room(X)=>(((is_a_certified_yoga_instructor_teaching_classes_weekly(X))=>(regularly_contributes_to_tech_forums_and_online_communities(X))))))& (![X]:(room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))=>(enjoys_fishing(X))))))& ((![X]:((enjoys_camping_and_organizing_outdoor_survival_workshops(X))=>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X)))))& (![X]:(room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(((is_a_tea_enthusiast(X))|(trains_for_and_competes_in_international_triathlons(X))))))))& ((david_dream=>(![X]:(room(X)=>(((collects_antique_clocks(X))&(practices_digital_art(X))))))))& (![X]:(room(X)=>(((travels_domestically_frequently(X))=>(regularly_contributes_to_tech_forums_and_online_communities(X))))))& (![X]:(room(X)=>(((can_play_the_flute(X))=>(~((does_not_host_regular_game_nights_featuring_complex_strategy_games(X))|(is_not_a_dedicated_volunteer_for_local_community_service_projects(X))))))))
room(david)&room(grant)&room(stephen)&(![X]:(room(X)=>(X='david'|X='grant'|X='stephen')))& can_play_the_piano(stephen)
[ "p0", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 8430567867202675195764728 % SZS output start Proof for 8430567867202675195764728 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 52. predo(fred) & predw(fred) & predg(fred) & predl(fred) [input p8] 66. ~(predl(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 81. predo(fred) & predw(fred) & predl(fred) [pure predicate removal 52] 87. predo(fred) & predl(fred) [pure predicate removal 81] 160. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 161. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 160] 173. ~predl(fred) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 66] 174. ~predl(fred) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 173] 197. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK10 & paul != sK10 & mary != sK10 & room(sK10)) [choice axiom] 198. ~predl(fred) | (fred != sK10 & paul != sK10 & mary != sK10 & room(sK10)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 174,197] 279. room(mary) [cnf transformation 161] 280. room(paul) [cnf transformation 161] 281. room(fred) [cnf transformation 161] 282. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 161] 297. predl(fred) [cnf transformation 87] 313. ~predl(fred) | room(sK10) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 198] 314. ~predl(fred) | mary != sK10 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 198] 315. ~predl(fred) | paul != sK10 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 198] 316. ~predl(fred) | fred != sK10 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 198] 385. fred != sK10 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 316,297] 386. fred != sK10 | ~room(paul) | ~room(mary) [subsumption resolution 385,281] 387. fred != sK10 | ~room(mary) [subsumption resolution 386,280] 388. fred != sK10 [subsumption resolution 387,279] 389. paul != sK10 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 315,297] 390. paul != sK10 | ~room(paul) | ~room(mary) [subsumption resolution 389,281] 391. paul != sK10 | ~room(mary) [subsumption resolution 390,280] 392. paul != sK10 [subsumption resolution 391,279] 393. mary != sK10 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 314,297] 394. mary != sK10 | ~room(paul) | ~room(mary) [subsumption resolution 393,281] 395. mary != sK10 | ~room(mary) [subsumption resolution 394,280] 396. mary != sK10 [subsumption resolution 395,279] 397. room(sK10) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 313,297] 398. room(sK10) | ~room(paul) | ~room(mary) [subsumption resolution 397,281] 399. room(sK10) | ~room(mary) [subsumption resolution 398,280] 400. room(sK10) [subsumption resolution 399,279] 471. paul = sK10 | mary = sK10 | fred = sK10 [resolution 282,400] 550. mary = sK10 | fred = sK10 [subsumption resolution 471,392] 551. fred = sK10 [subsumption resolution 550,396] 552. $false [subsumption resolution 551,388] % SZS output end Proof for 8430567867202675195764728 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.001568
Lana, Robert are the only persons in the room. All tall persons are old. All quiet persons are kind. All kind persons are tall. Robert is the quietest in the room. At least one person in the room is a quiet person.
Robert is old.
entailment
room(lana)&room(robert)&(![X]:(room(X)=>(X='lana'|X='robert')))& (![X]:(tall(X)=>old(X)))& (((?[X]:(room(X)&~(quiet(X)&person(X))))))& (![X]:(quiet(X)=>kind(X)))& (((?[X]:(~room(X)&~(old(X)&person(X))))))& (![X]:(kind(X)=>tall(X)))& (?[X]:(room(X)&(tall(X)&person(X))))& (~(~(?[X]:(room(X)&(kind(X))))))& (?[X]:(room(X)&(tall(X))))& (((?[X]:(room(X)&tall(X)))))& (![X]:((room(X)&(X!=robert))=>quieter(X,robert)))& (![X]:((room(X)&(X!=lana))=>richer(X,lana)))& (((?[X]:(room(X)&quiet(X)&person(X)))))
room(lana)&room(robert)&(![X]:(room(X)=>(X='lana'|X='robert')))& old(robert)
[ "b13", "b15", "b42", "p0", "p1", "p3", "p5", "p10", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 2083739911408331401294881 % SZS output start Proof for 2083739911408331401294881 14. ! [X0,X1] : (X0 != X1 => (quieter(X0,X1) => ~quieter(X1,X0))) [input b13] 16. ! [X0,X1] : (X0 != X1 => ((quiet(X1) & ~quiet(X0)) => quieter(X0,X1))) [input b15] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. ! [X0] : (tall(X0) => old(X0)) [input p1] 47. ! [X0] : (quiet(X0) => kind(X0)) [input p3] 49. ! [X0] : (kind(X0) => tall(X0)) [input p5] 54. ! [X0] : ((paul != X0 & room(X0)) => quieter(X0,paul)) [input p10] 56. ? [X0] : (person(X0) & quiet(X0) & room(X0)) [input p12] 57. ~(old(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 78. ! [X0,X1] : ((~quieter(X1,X0) | ~quieter(X0,X1)) | X0 = X1) [ennf transformation 14] 79. ! [X0,X1] : (~quieter(X1,X0) | ~quieter(X0,X1) | X0 = X1) [flattening 78] 82. ! [X0,X1] : ((quieter(X0,X1) | (~quiet(X1) | quiet(X0))) | X0 = X1) [ennf transformation 16] 83. ! [X0,X1] : (quieter(X0,X1) | ~quiet(X1) | quiet(X0) | X0 = X1) [flattening 82] 131. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 132. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 131] 133. ! [X0] : (old(X0) | ~tall(X0)) [ennf transformation 45] 135. ! [X0] : (kind(X0) | ~quiet(X0)) [ennf transformation 47] 137. ! [X0] : (tall(X0) | ~kind(X0)) [ennf transformation 49] 138. ! [X0] : (quieter(X0,paul) | (paul = X0 | ~room(X0))) [ennf transformation 54] 139. ! [X0] : (quieter(X0,paul) | paul = X0 | ~room(X0)) [flattening 138] 142. ~old(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 57] 143. ~old(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 142] 157. ? [X0] : (person(X0) & quiet(X0) & room(X0)) => (person(sK6) & quiet(sK6) & room(sK6)) [choice axiom] 158. person(sK6) & quiet(sK6) & room(sK6) [skolemisation 56,157] 159. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK7 & mary != sK7 & room(sK7)) [choice axiom] 160. ~old(paul) | (paul != sK7 & mary != sK7 & room(sK7)) | ~room(paul) | ~room(mary) [skolemisation 143,159] 170. ~quieter(X1,X0) | ~quieter(X0,X1) | X0 = X1 [cnf transformation 79] 172. quieter(X0,X1) | ~quiet(X1) | quiet(X0) | X0 = X1 [cnf transformation 83] 205. mary != paul [cnf transformation 43] 241. room(mary) [cnf transformation 132] 242. room(paul) [cnf transformation 132] 243. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 132] 244. ~tall(X0) | old(X0) [cnf transformation 133] 247. ~quiet(X0) | kind(X0) [cnf transformation 135] 250. ~kind(X0) | tall(X0) [cnf transformation 137] 260. quieter(X0,paul) | paul = X0 | ~room(X0) [cnf transformation 139] 262. room(sK6) [cnf transformation 158] 263. quiet(sK6) [cnf transformation 158] 265. ~old(paul) | room(sK7) | ~room(paul) | ~room(mary) [cnf transformation 160] 266. ~old(paul) | mary != sK7 | ~room(paul) | ~room(mary) [cnf transformation 160] 267. ~old(paul) | paul != sK7 | ~room(paul) | ~room(mary) [cnf transformation 160] 286. ~old(paul) | paul != sK7 | ~room(mary) [subsumption resolution 267,242] 287. ~old(paul) | paul != sK7 [subsumption resolution 286,241] 289. 5 <=> paul = sK7 [avatar definition] 291. paul != sK7 <- (~5) [avatar component clause 289] 293. 6 <=> old(paul) [avatar definition] 295. ~old(paul) <- (~6) [avatar component clause 293] 296. ~5 | ~6 [avatar split clause 287,293,289] 297. ~old(paul) | mary != sK7 | ~room(mary) [subsumption resolution 266,242] 298. ~old(paul) | mary != sK7 [subsumption resolution 297,241] 300. 7 <=> mary = sK7 [avatar definition] 302. mary != sK7 <- (~7) [avatar component clause 300] 303. ~7 | ~6 [avatar split clause 298,293,300] 304. ~old(paul) | room(sK7) | ~room(mary) [subsumption resolution 265,242] 305. ~old(paul) | room(sK7) [subsumption resolution 304,241] 307. 8 <=> room(sK7) [avatar definition] 309. room(sK7) <- (8) [avatar component clause 307] 310. 8 | ~6 [avatar split clause 305,293,307] 314. kind(sK6) [resolution 247,263] 323. mary = sK6 | paul = sK6 [resolution 243,262] 370. 19 <=> paul = sK6 [avatar definition] 372. paul = sK6 <- (19) [avatar component clause 370] 374. 20 <=> mary = sK6 [avatar definition] 376. mary = sK6 <- (20) [avatar component clause 374] 377. 19 | 20 [avatar split clause 323,374,370] 378. kind(paul) <- (19) [backward demodulation 314,372] 411. mary = sK7 | paul = sK7 <- (8) [resolution 309,243] 412. paul = sK7 <- (~7, 8) [subsumption resolution 411,302] 413. $false <- (~5, ~7, 8) [subsumption resolution 412,291] 414. 5 | 7 | ~8 [avatar contradiction clause 413] 434. tall(paul) <- (19) [resolution 378,250] 443. old(paul) <- (19) [resolution 434,244] 444. $false <- (~6, 19) [subsumption resolution 443,295] 445. 6 | ~19 [avatar contradiction clause 444] 448. quiet(mary) <- (20) [backward demodulation 263,376] 461. ~quieter(paul,X0) | paul = X0 | paul = X0 | ~room(X0) [resolution 170,260] 462. ~quieter(paul,X0) | paul = X0 | ~room(X0) [duplicate literal removal 461] 502. 23 <=> quiet(paul) [avatar definition] 504. quiet(paul) <- (23) [avatar component clause 502] 506. 24 <=> ! [X0] : (~quiet(X0) | ~room(X0) | paul = X0) [avatar definition] 507. ~room(X0) | ~quiet(X0) | paul = X0 <- (24) [avatar component clause 506] 509. kind(paul) <- (23) [resolution 504,247] 513. ~quiet(X6) | quiet(paul) | paul = X6 | paul = X6 | ~room(X6) [resolution 172,462] 514. ~quiet(X6) | quiet(paul) | paul = X6 | ~room(X6) [duplicate literal removal 513] 518. tall(paul) <- (23) [resolution 509,250] 519. old(paul) <- (23) [resolution 518,244] 520. $false <- (~6, 23) [subsumption resolution 519,295] 521. 6 | ~23 [avatar contradiction clause 520] 522. 23 | 24 [avatar split clause 514,506,502] 547. ~quiet(mary) | mary = paul <- (24) [resolution 507,241] 549. mary = paul <- (20, 24) [subsumption resolution 547,448] 550. $false <- (20, 24) [subsumption resolution 549,205] 551. ~20 | ~24 [avatar contradiction clause 550] 552. $false [avatar sat refutation 296,303,310,377,414,445,521,522,551] % SZS output end Proof for 2083739911408331401294881 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.696885
There is a room. “No one in the room can play the guitar or does not have a pet dog” if “everyone in the room builds model airplanes or does not play video games” and vice versa. “Only one person in the room has a specialized collection of handmade artisan pottery” if “everyone in the room does not own a television or hosts themed dinner parties featuring gourmet home-cooked meals”. “Everyone in the room does not host themed dinner parties featuring gourmet home-cooked meals or is right-handed” if “someone in the room mentors a youth basketball team on weekends” and vice versa. “Everyone in the room has a specialized collection of handmade artisan pottery or is not an expert in identifying and foraging wild edible plants” only if “if someone practices calligraphy then he/she collect rare sneakers and vice versa”. If “everyone anywhere can play the guitar or cannot play the guitar” then “everyone in the room who does not host themed dinner parties featuring gourmet home-cooked meals builds model airplanes”. Everyone in the room who builds model airplanes does enjoy mountain biking. If someone enjoys skydiving then he/she own a television and vice versa. No one in the room who collect rare sneakers is a client of Meta. Someone in the room has a saltwater aquarium. Someone anywhere collects first edition books. No one in the room does not make homemade pastries if they makes homemade pastries.
Everyone outside the room does not collect modern art.
entailment
(there_is_a_room)& ((![X]:(room(X)=>(((does_not_play_video_games(X))|(builds_model_airplanes(X))))))<=>(~?[X]:(room(X)=>(((does_not_have_a_pet_dog(X))|(can_play_the_guitar(X)))))))& ((![X]:(room(X)=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(does_not_own_a_television(X))))))=>(((?[X]:(room(X)&has_a_specialized_collection_of_handmade_artisan_pottery(X)))&(![X,Y]:((room(X)&room(Y)&(has_a_specialized_collection_of_handmade_artisan_pottery(X))&(has_a_specialized_collection_of_handmade_artisan_pottery(Y)))=>(X=Y))))))& ((?[X]:(room(X)&(mentors_a_youth_basketball_team_on_weekends(X))))<=>(![X]:(room(X)=>(((is_right-handed(X))|(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)))))))& ((![X]:(room(X)=>(((is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))|(has_a_specialized_collection_of_handmade_artisan_pottery(X))))))=>((![X]:((practices_calligraphy(X))<=>(collect_rare_sneakers(X))))))& ((![X]:(anywhere(X)=>(((cannot_play_the_guitar(X))|(can_play_the_guitar(X))))))=>(![X]:(room(X)=>(((does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))=>(builds_model_airplanes(X)))))))& (![X]:(room(X)=>(((builds_model_airplanes(X))=>(does_enjoy_mountain_biking(X))))))& ((![X]:((enjoys_skydiving(X))<=>(own_a_television(X)))))& (~?[X]:(room(X)=>(((collect_rare_sneakers(X))=>(is_a_client_of_Meta(X))))))& (?[X]:(room(X)&(has_a_saltwater_aquarium(X))))& (?[X]:(anywhere(X)&(collects_first_edition_books(X))))& (![X]:(room(X)=>(((has_a_pet_dog(X))=>(does_enjoy_mountain_biking(X))))))& (![X]:(room(X)=>(((does_enjoy_mountain_biking(X))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (![X]:(room(X)=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))=>(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))& ((![X]:((is_right-handed(X))=>(mentors_a_youth_basketball_team_on_weekends(X)))))& (((?[X]:(room(X)&does_not_play_video_games(X)))))& (![X]:(room(X)=>(((is_right-handed(X))<=>(((is_a_client_of_Costco(X))&(has_a_saltwater_aquarium(X))))))))& (![X]:(room(X)=>(((((is_a_client_of_Costco(X))&(has_a_saltwater_aquarium(X))))=>(practices_calligraphy(X))))))& ((![X]:((enjoys_skydiving(X))<=>(has_a_saltwater_aquarium(X)))))& (~?[X]:(room(X)=>(((makes_homemade_pastries(X))=>(does_not_make_homemade_pastries(X))))))& (?[X]:(room(X)&(is_right-handed(X))))& (![X]:(room(X)=>(((collects_modern_art(X))<=>(does_enjoy_trail_running(X))))))& (?[X]:(anywhere(X)&(hosts_regular_game_nights_featuring_complex_strategy_games(X))))& (![X]:(room(X)=>(((makes_homemade_pastries(X))=>(does_enjoy_trail_running(X))))))
(there_is_a_room)& ![X]:(~room(X)=>(does_not_collect_modern_art(X)))
[ "p0", "p19", "hypothesis" ]
% SZS status Unsatisfiable for 1753858943565248788679573 % SZS output start Proof for 1753858943565248788679573 44. there_is_a_room [input p0] 63. ~? [X0] : (room(X0) => (predq(X0) => ~predq(X0))) [input p19] 68. ~(! [X0] : (~room(X0) => ~preda(X0)) & there_is_a_room) [input hypothesis] 174. ! [X0] : ((predq(X0) & predq(X0)) & room(X0)) [ennf transformation 63] 175. ! [X0] : (predq(X0) & predq(X0) & room(X0)) [flattening 174] 179. ? [X0] : (preda(X0) & ~room(X0)) | ~there_is_a_room [ennf transformation 68] 222. ? [X0] : (preda(X0) & ~room(X0)) => (preda(sK13) & ~room(sK13)) [choice axiom] 223. (preda(sK13) & ~room(sK13)) | ~there_is_a_room [skolemisation 179,222] 304. there_is_a_room [cnf transformation 44] 350. room(X0) [cnf transformation 175] 358. ~room(sK13) | ~there_is_a_room [cnf transformation 223] 405. 11 <=> ! [X1] : room(X1) [avatar definition] 406. room(X1) <- (11) [avatar component clause 405] 502. 11 [avatar split clause 350,405] 505. ~room(sK13) [subsumption resolution 358,304] 508. $false <- (11) [resolution 505,406] 509. ~11 [avatar contradiction clause 508] 510. $false [avatar sat refutation 502,509] % SZS output end Proof for 1753858943565248788679573 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.141092
Fanny, Joseph are the only persons in the room. Everyone in the room works as a freelance web developer specializing in e-commerce sites only if they creates bespoke furniture pieces from reclaimed wood. Everyone anywhere who creates bespoke furniture pieces from reclaimed wood enjoys origami. More than one person in the room enjoys wildlife photography. Someone in the room hosts themed dinner parties featuring gourmet home-cooked meals. Everyone in the room does not enjoy stargazing or is not an enthusiastic bird watcher who travels for rare sightings.
Joseph enjoys wildlife photography.
entailment
room(fanny)&room(joseph)&(![X]:(room(X)=>(X='fanny'|X='joseph')))& (![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))<=(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))& (![X]:(anywhere(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(enjoys_origami(X))))))& ((?[X,Y]:(room(X)&room(Y)&(enjoys_wildlife_photography(X)&enjoys_wildlife_photography(Y))&(X!=Y))))& (?[X]:(room(X)&(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))& (![X]:(room(X)=>(((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))|(does_not_enjoy_stargazing(X))))))& (((?[X]:(anywhere(X)&is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X)))))& (is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(joseph))& (![X]:(room(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(does_enjoy_trail_running(X))|(competes_in_national_level_swimming_championships(X))))))& (![X]:(anywhere(X)=>(((is_a_tea_enthusiast(X))=>(plays_eSports_competitively(X))))))& (plays_eSports_competitively(fanny))& ((![X]:((((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(enjoys_watercolor_painting(X))|(does_not_enjoy_stargazing(X))))=>(is_a_tea_enthusiast(X)))))& (![X]:(room(X)=>(((plays_eSports_competitively(X))<=(competes_in_national_level_swimming_championships(X))))))& (![X]:(room(X)=>(((~((is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))|(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))=>(competes_in_national_level_swimming_championships(X))))))& (![X]:(anywhere(X)=>(((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))<=(competes_in_national_level_swimming_championships(X))))))& ((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(joseph))&(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(joseph)))& (((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(fanny))|(does_enjoy_trail_running(fanny))|(enjoys_origami(fanny))))& (![X]:(room(X)=>(((competes_in_national_level_swimming_championships(X))=>(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))& (is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(joseph))& (![X]:(room(X)=>(((does_not_compete_in_national_level_swimming_championships(X))|(does_not_collect_antique_jewelry(X))))))& (?[X]:(room(X)&(enjoys_stargazing(X))))& (owns_a_significant_collection_of_rare_gemstones_and_minerals(fanny))& (![X]:(~room(X)=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))&(enjoys_stargazing(X))&(creates_YouTube_content(X))))))))& (creates_bespoke_furniture_pieces_from_reclaimed_wood(fanny))& (collects_vintage_stamps(joseph))& ((![X]:((((creates_YouTube_content(X))&(mentors_a_youth_basketball_team_on_weekends(X))))=>(((mentors_a_youth_basketball_team_on_weekends(X))&(composes_and_performs_experimental_electronic_music(X))&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X)))))))
room(fanny)&room(joseph)&(![X]:(room(X)=>(X='fanny'|X='joseph')))& enjoys_wildlife_photography(joseph)
[ "p0", "p3", "hypothesis" ]
% SZS status Unsatisfiable for 6795439064945123228746609 % SZS output start Proof for 6795439064945123228746609 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 47. ? [X0,X1] : (X0 != X1 & predh(X1) & predh(X0) & room(X1) & room(X0)) [input p3] 70. ~(predh(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 166. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 167. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 166] 170. ~predh(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 70] 171. ~predh(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 170] 173. ? [X0,X1] : (X0 != X1 & predh(X1) & predh(X0) & room(X1) & room(X0)) => (sK0 != sK1 & predh(sK1) & predh(sK0) & room(sK1) & room(sK0)) [choice axiom] 174. sK0 != sK1 & predh(sK1) & predh(sK0) & room(sK1) & room(sK0) [skolemisation 47,173] 181. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK5 & mary != sK5 & room(sK5)) [choice axiom] 182. ~predh(paul) | (paul != sK5 & mary != sK5 & room(sK5)) | ~room(paul) | ~room(mary) [skolemisation 171,181] 263. room(mary) [cnf transformation 167] 264. room(paul) [cnf transformation 167] 265. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 167] 266. room(sK0) [cnf transformation 174] 267. room(sK1) [cnf transformation 174] 268. predh(sK0) [cnf transformation 174] 269. predh(sK1) [cnf transformation 174] 270. sK0 != sK1 [cnf transformation 174] 278. ~predh(paul) | room(sK5) | ~room(paul) | ~room(mary) [cnf transformation 182] 279. ~predh(paul) | mary != sK5 | ~room(paul) | ~room(mary) [cnf transformation 182] 280. ~predh(paul) | paul != sK5 | ~room(paul) | ~room(mary) [cnf transformation 182] 281. ~predh(paul) | paul != sK5 | ~room(mary) [subsumption resolution 280,264] 282. ~predh(paul) | paul != sK5 [subsumption resolution 281,263] 284. 1 <=> paul = sK5 [avatar definition] 286. paul != sK5 <- (~1) [avatar component clause 284] 288. 2 <=> predh(paul) [avatar definition] 290. ~predh(paul) <- (~2) [avatar component clause 288] 291. ~1 | ~2 [avatar split clause 282,288,284] 292. ~predh(paul) | mary != sK5 | ~room(mary) [subsumption resolution 279,264] 293. ~predh(paul) | mary != sK5 [subsumption resolution 292,263] 295. 3 <=> mary = sK5 [avatar definition] 298. ~3 | ~2 [avatar split clause 293,288,295] 299. ~predh(paul) | room(sK5) | ~room(mary) [subsumption resolution 278,264] 300. ~predh(paul) | room(sK5) [subsumption resolution 299,263] 302. 4 <=> room(sK5) [avatar definition] 304. room(sK5) <- (4) [avatar component clause 302] 305. 4 | ~2 [avatar split clause 300,288,302] 310. mary = sK0 | paul = sK0 [resolution 265,266] 311. mary = sK1 | paul = sK1 [resolution 265,267] 315. 5 <=> paul = sK0 [avatar definition] 317. paul = sK0 <- (5) [avatar component clause 315] 319. 6 <=> mary = sK0 [avatar definition] 321. mary = sK0 <- (6) [avatar component clause 319] 322. 5 | 6 [avatar split clause 310,319,315] 324. 7 <=> paul = sK1 [avatar definition] 326. paul = sK1 <- (7) [avatar component clause 324] 328. 8 <=> mary = sK1 [avatar definition] 331. 7 | 8 [avatar split clause 311,328,324] 357. predh(paul) <- (7) [backward demodulation 269,326] 363. predh(paul) <- (5) [backward demodulation 268,317] 364. $false <- (~2, 5) [subsumption resolution 363,290] 365. 2 | ~5 [avatar contradiction clause 364] 366. 2 | ~7 [avatar split clause 357,324,288] 374. mary = sK5 | paul = sK5 <- (4) [resolution 304,265] 378. mary = sK5 <- (~1, 4) [subsumption resolution 374,286] 379. 3 | 1 | ~4 [avatar split clause 378,302,284,295] 380. mary != sK1 <- (6) [forward demodulation 270,321] 381. ~8 | ~6 [avatar split clause 380,319,328] 387. $false [avatar sat refutation 291,298,305,322,331,365,366,379,381] % SZS output end Proof for 6795439064945123228746609 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0
No one in the room does not mentor a youth basketball team on weekends and is a client of Costco. Everyone in the room does not write a travel blog, is a chess master who participates in national tournaments and is not a scotch connoisseur if they either enjoys spelunking or collects antique clocks but not both and vice versa. Everyone in the room is right-handed, enjoys watercolor painting or is not a client of Costco only if they is not a chess master who participates in national tournaments, does not make intricate hand-cut paper art for exhibitions and does not write a travel blog. Everyone in the room is not a chess master who participates in national tournaments, does not make intricate hand-cut paper art for exhibitions and does not write a travel blog if and only if they owns an extensive assortment of vintage comic book memorabilia, enjoys watercolor painting or does not enjoy spelunking. Everyone anywhere does not collect antique clocks. If someone is not a scotch connoisseur, does not participate in long-distance cycling events across the country or enjoys macrame then he/she owns an extensive assortment of vintage comic book memorabilia or plays as a goalkeeper for a local amateur soccer team or both and vice versa. Everyone in the room either plays as a goalkeeper for a local amateur soccer team or mentors a youth basketball team on weekends but not both.
Everyone in the room enjoys spelunking.
contradiction
(there_is_a_room)& ((![X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))|(does_not_enjoy_watercolor_painting(X))))))=>(![X]:(room(X)=>(((((owns_a_smartwatch(X))<~>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))<=(does_not_enjoy_watercolor_painting(X)))))))& ((![X]:(room(X)=>(writes_a_travel_blog(X))))=>(![X]:(room(X)=>(((((does_not_participate_in_long-distance_cycling_events_across_the_country(X))&(does_not_mentor_a_youth_basketball_team_on_weekends(X))))<=>(((collects_action_figures(X))<~>(does_not_enjoy_kayaking(X)))))))))& ((![X]:(room(X)=>(((does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))|(enjoys_kayaking(X))))))=>(![X]:(room(X)=>(((((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(collects_antique_clocks(X))|(is_not_a_scotch_connoisseur(X))))<=(enjoys_kayaking(X)))))))& (((![X]:(~room(X)=>(((does_not_own_a_television(X))|(enjoys_spelunking(X))))))=>(![X]:(room(X)=>(((does_not_own_a_television(X))|(is_not_a_scotch_connoisseur(X)))))))&((~(![X]:(~room(X)=>(((does_not_own_a_television(X))|(enjoys_spelunking(X)))))))=>(![X]:(room(X)=>(((((does_not_enjoy_macrame(X))<~>(is_right-handed(X))))<=(((is_not_a_client_of_Costco(X))|(does_not_make_homemade_pastries(X))))))))))& ((![X]:(room(X)=>(((is_not_right-handed(X))|(does_not_write_a_travel_blog(X))))))<=>(![X]:(room(X)=>(((is_a_scotch_connoisseur(X))|(does_not_enjoy_kayaking(X)))))))& (~(![X]:(room(X)=>(((is_not_a_client_of_Costco(X))<~>(is_not_an_active_member_of_a_local_robotics_club(X))))))=>(![X]:(room(X)=>(((((enjoys_spelunking(X))|(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))|(is_not_a_scotch_connoisseur(X))))<=>(((enjoys_watercolor_painting(X))&(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))&(collects_action_figures(X)))))))))& (~?[X]:(room(X)=>(((does_not_mentor_a_youth_basketball_team_on_weekends(X))&(is_a_client_of_Costco(X))))))& (![X]:(room(X)=>(((((does_not_write_a_travel_blog(X))&(is_a_chess_master_who_participates_in_national_tournaments(X))&(is_not_a_scotch_connoisseur(X))))<=>(((enjoys_spelunking(X))<~>(collects_antique_clocks(X))))))))& (![X]:(room(X)=>(((is_not_a_client_of_Costco(X))<~>(is_not_an_active_member_of_a_local_robotics_club(X))))))& (![X]:(room(X)=>(((((is_right-handed(X))|(enjoys_watercolor_painting(X))|(is_not_a_client_of_Costco(X))))<=(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))&(does_not_participate_in_long-distance_cycling_events_across_the_country(X))))))))& (![X]:(room(X)=>(((((is_not_a_chess_master_who_participates_in_national_tournaments(X))&(does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))&(does_not_write_a_travel_blog(X))))<=(((is_right-handed(X))|(enjoys_watercolor_painting(X))|(is_not_a_client_of_Costco(X))))))))& (![X]:(room(X)=>(((((is_not_a_chess_master_who_participates_in_national_tournaments(X))&(does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))&(does_not_write_a_travel_blog(X))))<=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(enjoys_watercolor_painting(X))|(does_not_enjoy_spelunking(X))))))))& (![X]:(anywhere(X)=>(does_not_collect_antique_clocks(X))))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(participates_in_long-distance_cycling_events_across_the_country(X)&participates_in_long-distance_cycling_events_across_the_country(Y))&(X!=Y))))& (~?[X]:(room(X)=>(((mentors_a_youth_basketball_team_on_weekends(X))<~>(collects_action_figures(X))))))& ((![X]:((((is_not_a_scotch_connoisseur(X))|(does_not_participate_in_long-distance_cycling_events_across_the_country(X))|(enjoys_macrame(X))))<=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))))& (![X]:(room(X)=>(((((makes_homemade_pastries(X))<~>(does_not_enjoy_kayaking(X))))<=(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))&(does_not_mentor_a_youth_basketball_team_on_weekends(X))&(own_a_television(X))))))))& (![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))<~>(mentors_a_youth_basketball_team_on_weekends(X))))))& (~![X]:(room(X)=>(((((enjoys_macrame(X))|(does_not_make_homemade_pastries(X))|(enjoys_watercolor_painting(X))))<=(((collects_antique_clocks(X))<~>(participates_in_long-distance_cycling_events_across_the_country(X))))))))& (![X]:(room(X)=>(((((does_not_own_a_television(X))<~>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))<=(((participates_in_long-distance_cycling_events_across_the_country(X))|(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))))& (![X]:(room(X)=>(((((does_not_own_a_television(X))<~>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))|(is_not_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(room(X)=>(((((owns_a_smartwatch(X))|(does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))))<=(is_not_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(anywhere(X)=>(((((has_a_vast_collection_of_first-edition_science_fiction_novels(X))|(does_not_enjoy_spelunking(X))))<=(((enjoys_spelunking(X))<~>(does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))))& (![X]:(room(X)=>(((is_not_right-handed(X))|(does_not_write_a_travel_blog(X))))))
(there_is_a_room)& ![X]:(room(X)=>(enjoys_spelunking(X)))
[ "b4", "p7", "p8", "p11", "p12", "p13", "p16", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 5203737349059189594810391 % SZS output start Proof for 5203737349059189594810391 5. ! [X0] : anywhere(X0) [input b4] 51. ~? [X0] : (room(X0) => (prede(X0) & ~predl(X0))) [input p7] 52. ! [X0] : (room(X0) => ((~predy(X0) & predz(X0) & ~predd(X0)) <=> (predk(X0) <~> predo(X0)))) [input p8] 55. ! [X0] : (room(X0) => ((~prede(X0) | predf(X0) | predv(X0)) => (~predd(X0) & ~predj(X0) & ~predz(X0)))) [input p11] 56. ! [X0] : (room(X0) => ((~predd(X0) & ~predj(X0) & ~predz(X0)) <=> (~predk(X0) | predf(X0) | predp(X0)))) [input p12] 57. ! [X0] : (anywhere(X0) => ~predo(X0)) [input p13] 60. ! [X0] : ((predx(X0) | ~predb(X0) | ~predy(X0)) <=> (predt(X0) | predp(X0))) [input p16] 62. ! [X0] : (room(X0) => (predt(X0) <~> predl(X0))) [input p18] 69. ! [X0] : (room(X0) => predk(X0)) & there_is_a_room [input hypothesis] 82. ! [X0] : (room(X0) => predk(X0)) [pure predicate removal 69] 164. ! [X0] : ((~prede(X0) | predl(X0)) & room(X0)) [ennf transformation 51] 165. ! [X0] : (((~predy(X0) & predz(X0) & ~predd(X0)) <=> (predk(X0) <~> predo(X0))) | ~room(X0)) [ennf transformation 52] 167. ! [X0] : (((~predd(X0) & ~predj(X0) & ~predz(X0)) | (prede(X0) & ~predf(X0) & ~predv(X0))) | ~room(X0)) [ennf transformation 55] 168. ! [X0] : ((~predd(X0) & ~predj(X0) & ~predz(X0)) | (prede(X0) & ~predf(X0) & ~predv(X0)) | ~room(X0)) [flattening 167] 169. ! [X0] : (((~predd(X0) & ~predj(X0) & ~predz(X0)) <=> (~predk(X0) | predf(X0) | predp(X0))) | ~room(X0)) [ennf transformation 56] 170. ! [X0] : (~predo(X0) | ~anywhere(X0)) [ennf transformation 57] 172. ! [X0] : ((predt(X0) <~> predl(X0)) | ~room(X0)) [ennf transformation 62] 183. ! [X0] : (predk(X0) | ~room(X0)) [ennf transformation 82] 189. ! [X0] : ((prede(X0) & ~predf(X0) & ~predv(X0)) | ~sP3(X0)) [predicate definition introduction] 190. ! [X0] : ((~predd(X0) & ~predj(X0) & ~predz(X0)) | sP3(X0) | ~room(X0)) [definition folding 168,189] 191. ! [X0] : (sP4(X0) <=> (~predd(X0) & ~predj(X0) & ~predz(X0))) [predicate definition introduction] 192. ! [X0] : ((sP4(X0) <=> (~predk(X0) | predf(X0) | predp(X0))) | ~room(X0)) [definition folding 169,191] 222. ! [X0] : ((((~predy(X0) & predz(X0) & ~predd(X0)) | ((predk(X0) | ~predo(X0)) & (predo(X0) | ~predk(X0)))) & (((~predo(X0) | ~predk(X0)) & (predo(X0) | predk(X0))) | (predy(X0) | ~predz(X0) | predd(X0)))) | ~room(X0)) [nnf transformation 165] 223. ! [X0] : ((((~predy(X0) & predz(X0) & ~predd(X0)) | ((predk(X0) | ~predo(X0)) & (predo(X0) | ~predk(X0)))) & (((~predo(X0) | ~predk(X0)) & (predo(X0) | predk(X0))) | predy(X0) | ~predz(X0) | predd(X0))) | ~room(X0)) [flattening 222] 225. ! [X0] : ((prede(X0) & ~predf(X0) & ~predv(X0)) | ~sP3(X0)) [nnf transformation 189] 226. ! [X0] : ((sP4(X0) | (predd(X0) | predj(X0) | predz(X0))) & ((~predd(X0) & ~predj(X0) & ~predz(X0)) | ~sP4(X0))) [nnf transformation 191] 227. ! [X0] : ((sP4(X0) | predd(X0) | predj(X0) | predz(X0)) & ((~predd(X0) & ~predj(X0) & ~predz(X0)) | ~sP4(X0))) [flattening 226] 228. ! [X0] : (((sP4(X0) | (predk(X0) & ~predf(X0) & ~predp(X0))) & ((~predk(X0) | predf(X0) | predp(X0)) | ~sP4(X0))) | ~room(X0)) [nnf transformation 192] 229. ! [X0] : (((sP4(X0) | (predk(X0) & ~predf(X0) & ~predp(X0))) & (~predk(X0) | predf(X0) | predp(X0) | ~sP4(X0))) | ~room(X0)) [flattening 228] 234. ! [X0] : (((predx(X0) | ~predb(X0) | ~predy(X0)) | (~predt(X0) & ~predp(X0))) & ((predt(X0) | predp(X0)) | (~predx(X0) & predb(X0) & predy(X0)))) [nnf transformation 60] 235. ! [X0] : ((predx(X0) | ~predb(X0) | ~predy(X0) | (~predt(X0) & ~predp(X0))) & (predt(X0) | predp(X0) | (~predx(X0) & predb(X0) & predy(X0)))) [flattening 234] 236. ! [X0] : (((~predl(X0) | ~predt(X0)) & (predl(X0) | predt(X0))) | ~room(X0)) [nnf transformation 172] 243. anywhere(X0) [cnf transformation 5] 362. room(X0) [cnf transformation 164] 363. ~prede(X0) | predl(X0) [cnf transformation 164] 368. predz(X0) | predo(X0) | ~predk(X0) | ~room(X0) [cnf transformation 223] 370. ~predy(X0) | predo(X0) | ~predk(X0) | ~room(X0) [cnf transformation 223] 376. ~sP3(X0) | prede(X0) [cnf transformation 225] 377. ~predz(X0) | sP3(X0) | ~room(X0) [cnf transformation 190] 380. ~sP4(X0) | ~predz(X0) [cnf transformation 227] 385. sP4(X0) | ~predp(X0) | ~room(X0) [cnf transformation 229] 388. ~predo(X0) | ~anywhere(X0) [cnf transformation 170] 397. predt(X0) | predp(X0) | predy(X0) [cnf transformation 235] 403. ~predl(X0) | ~predt(X0) | ~room(X0) [cnf transformation 236] 417. predk(X0) | ~room(X0) [cnf transformation 183] 592. ~predk(X0) | predo(X0) | ~predy(X0) [subsumption resolution 370,362] 594. ~predk(X0) | predo(X0) | predz(X0) [subsumption resolution 368,362] 603. ~predz(X0) | sP3(X0) [subsumption resolution 377,362] 606. ~predp(X0) | sP4(X0) [subsumption resolution 385,362] 608. ~predo(X0) [subsumption resolution 388,243] 609. ~predt(X0) | ~predl(X0) [subsumption resolution 403,362] 620. predk(X0) [subsumption resolution 417,362] 659. predp(X0) | predy(X0) | ~predl(X0) [resolution 397,609] 663. predo(X0) | ~predy(X0) [resolution 592,620] 664. ~predy(X0) [subsumption resolution 663,608] 667. predo(X0) | predz(X0) [resolution 594,620] 668. predz(X0) [subsumption resolution 667,608] 672. ~predl(X0) | predp(X0) [subsumption resolution 659,664] 674. sP3(X0) [resolution 668,603] 678. prede(X0) [resolution 674,376] 686. predl(X0) [resolution 678,363] 689. predp(X0) [resolution 672,686] 690. sP4(X0) [resolution 689,606] 696. ~predz(X2) [resolution 690,380] 697. $false [subsumption resolution 696,668] % SZS output end Proof for 5203737349059189594810391 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.027 s % ------------------------------ % ------------------------------
0.426914
Moises is the only person in the room. If “Moises enjoys stargazing” then “Moises watches fantasy movies”. If “Moises writes and illustrates their own graphic novels, can play the flute or is a member of a local theater group specializing in improv” then “Moises enjoys macrame”. If someone enjoys stargazing then he/she is an avid hiker and has a tattoo and vice versa. Moises is an avid hiker and has a tattoo.
Moises watches fantasy movies.
entailment
room(moises)&(![X]:(room(X)=>(X='moises')))& ((enjoys_stargazing(moises))=>(watches_fantasy_movies(moises)))& ((((writes_and_illustrates_their_own_graphic_novels(moises))|(can_play_the_flute(moises))|(is_a_member_of_a_local_theater_group_specializing_in_improv(moises))))=>(enjoys_macrame(moises)))& ((![X]:((enjoys_stargazing(X))<=>(((is_an_avid_hiker(X))&(has_a_tattoo(X)))))))& ((![X]:((can_play_the_flute(X))=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X)))))& (is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(moises))& ((![X]:((enjoys_stargazing(X))=>(is_an_avid_hiker(X)))))& (writes_and_illustrates_their_own_graphic_novels(moises))& (((enjoys_bird_watching(moises))|(collects_historical_artifacts_related_to_ancient_civilizations(moises))|(enjoys_macrame(moises))))& (is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(moises))& (((frequently_participates_in_hackathons_and_coding_competitions(moises))&(collects_historical_artifacts_related_to_ancient_civilizations(moises))))& (((is_an_avid_hiker(moises))&(has_a_tattoo(moises))))
room(moises)&(![X]:(room(X)=>(X='moises')))& watches_fantasy_movies(moises)
[ "p0", "p1", "p3", "p11", "hypothesis" ]
% SZS status Unsatisfiable for 3530008407571570772347356 % SZS output start Proof for 3530008407571570772347356 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 45. predz(mary) => predt(mary) [input p1] 47. ! [X0] : (predz(X0) <=> (predw(X0) & predx(X0))) [input p3] 55. predw(mary) & predx(mary) [input p11] 56. ~(predt(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 57. ! [X0] : ((predw(X0) & predx(X0)) => predz(X0)) [unused predicate definition removal 47] 138. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 139. predt(mary) | ~predz(mary) [ennf transformation 45] 140. ! [X0] : (predz(X0) | (~predw(X0) | ~predx(X0))) [ennf transformation 57] 141. ! [X0] : (predz(X0) | ~predw(X0) | ~predx(X0)) [flattening 140] 143. ~predt(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 56] 145. ? [X0] : (mary != X0 & room(X0)) => (mary != sK0 & room(sK0)) [choice axiom] 146. ~predt(mary) | (mary != sK0 & room(sK0)) | ~room(mary) [skolemisation 143,145] 227. room(mary) [cnf transformation 138] 228. ~room(X0) | mary = X0 [cnf transformation 138] 229. predt(mary) | ~predz(mary) [cnf transformation 139] 230. ~predw(X0) | predz(X0) | ~predx(X0) [cnf transformation 141] 232. predx(mary) [cnf transformation 55] 233. predw(mary) [cnf transformation 55] 234. ~predt(mary) | room(sK0) | ~room(mary) [cnf transformation 146] 235. ~predt(mary) | mary != sK0 | ~room(mary) [cnf transformation 146] 237. 1 <=> predz(mary) [avatar definition] 241. 2 <=> predt(mary) [avatar definition] 244. ~1 | 2 [avatar split clause 229,241,237] 245. ~predt(mary) | mary != sK0 [subsumption resolution 235,227] 247. 3 <=> mary = sK0 [avatar definition] 249. mary != sK0 <- (~3) [avatar component clause 247] 250. ~3 | ~2 [avatar split clause 245,241,247] 251. ~predt(mary) | room(sK0) [subsumption resolution 234,227] 253. 4 <=> room(sK0) [avatar definition] 255. room(sK0) <- (4) [avatar component clause 253] 256. 4 | ~2 [avatar split clause 251,241,253] 258. predz(mary) | ~predx(mary) [resolution 230,233] 262. predz(mary) [subsumption resolution 258,232] 263. 1 [avatar split clause 262,237] 265. mary = sK0 <- (4) [resolution 255,228] 266. $false <- (~3, 4) [subsumption resolution 265,249] 267. 3 | ~4 [avatar contradiction clause 266] 268. $false [avatar sat refutation 244,250,256,263,267] % SZS output end Proof for 3530008407571570772347356 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.482584
Lisa, Doris, Joseph, Laci are the only persons in the room. If 'Lisa is a quiet person' then 'everyone in the room is a old person if they is a quiet person'. If 'Joseph is older than Rita, is quieter than Rita or is a old person' then 'all quiet persons are tall'. If 'it is not the case that 'Lisa is richer than Rita, is a old person and is not a quiet tall person'' then 'everyone in the room who is quiet neither is a old tall person nor is a tall person'. If 'Lisa is quieter than Rita' then 'no one in the room who is richer than Rita is quieter than Rita, is richer than Rita and is a old tall quiet person'.
Doris is a quiet old person.
neutral
room(lisa)&room(doris)&room(joseph)&room(laci)&(![X]:(room(X)=>(X='lisa'|X='doris'|X='joseph'|X='laci')))& ((quiet(lisa)&person(lisa))=>(![X]:(room(X)=>(((quiet(X)&person(X))=>(old(X)&person(X)))))))& ((((older(rita,joseph))|(quieter(rita,joseph))|(old(joseph)&person(joseph))))=>(![X]:(quiet(X)=>tall(X))))& ((~(((richer(rita,lisa))&(old(lisa)&person(lisa))&(~(quiet(lisa)&tall(lisa)&person(lisa))))))=>(![X]:(room(X)=>(((quiet(X))=>(~((old(X)&tall(X)&person(X))|(tall(X)&person(X)))))))))& ((quieter(rita,lisa))=>(~?[X]:(room(X)=>(((richer(rita,X))=>(((quieter(rita,X))&(richer(rita,X))&(old(X)&tall(X)&quiet(X)&person(X)))))))))& ((old(joseph)&old(laci))=>(![X]:(~room(X)=>(((old(X))=>(~(tall(X)&person(X))))))))& ((![X]:((tall(X))=>(~quiet(X)))))& (richer(doris,rita))& (quieter(rita,laci))& ((old(lisa)&quiet(lisa)&person(lisa))&(richer(rita,lisa)))& (older(rita,laci))& (((?[X]:(room(X)&quieter(rita,X)))))& (richer(rita,laci)&richer(rita,lisa))
room(lisa)&room(doris)&room(joseph)&room(laci)&(![X]:(room(X)=>(X='lisa'|X='doris'|X='joseph'|X='laci')))& quiet(doris)&old(doris)&person(doris)
[]
null
0.088623
Joseph, Jorge, Vernon, Margaret are the only persons in the room. If “Jorge is a tall person” then “everyone in the room is a old person if they is not old”. “Jorge is a tall person or is not a tall person or both” if “Joseph is a tall person” and vice versa. Jorge is a quiet person. Everyone in the room is a old person, is not old and is a quiet person if they neither is a tall old person nor is a old tall person. Not everyone in the room who is a old person is not a quiet person.
Joseph is tall.
entailment
room(joseph)&room(jorge)&room(vernon)&room(margaret)&(![X]:(room(X)=>(X='joseph'|X='jorge'|X='vernon'|X='margaret')))& ((tall(jorge)&person(jorge))=>(![X]:(room(X)=>(((~old(X))=>(old(X)&person(X)))))))& ((tall(joseph)&person(joseph))<=>(((tall(jorge)&person(jorge))|(~(tall(jorge)&person(jorge))))))& (quiet(jorge)&person(jorge))& (![X]:(room(X)=>(((~((tall(X)&old(X)&person(X))|(old(X)&tall(X)&person(X))))=>(((old(X)&person(X))&(~old(X))&(quiet(X)&person(X))))))))& (~![X]:(room(X)=>(((old(X)&person(X))=>(~(quiet(X)&person(X)))))))
room(joseph)&room(jorge)&room(vernon)&room(margaret)&(![X]:(room(X)=>(X='joseph'|X='jorge'|X='vernon'|X='margaret')))& tall(joseph)
[ "p0", "p2", "p3", "p4", "hypothesis" ]
% SZS status Unsatisfiable for 4252066132662261446537000 % SZS output start Proof for 4252066132662261446537000 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. (person(mary) & tall(mary)) <=> (~(person(paul) & tall(paul)) | (person(paul) & tall(paul))) [input p2] 47. person(paul) & quiet(paul) [input p3] 48. ! [X0] : (room(X0) => (~((person(X0) & tall(X0) & old(X0)) | (person(X0) & old(X0) & tall(X0))) => (person(X0) & quiet(X0) & ~old(X0) & person(X0) & old(X0)))) [input p4] 50. ~(tall(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 123. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 124. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 123] 127. (person(mary) & tall(mary)) <=> ((~person(paul) | ~tall(paul)) | (person(paul) & tall(paul))) [ennf transformation 46] 128. (person(mary) & tall(mary)) <=> (~person(paul) | ~tall(paul) | (person(paul) & tall(paul))) [flattening 127] 129. ! [X0] : (((person(X0) & quiet(X0) & ~old(X0) & person(X0) & old(X0)) | ((person(X0) & tall(X0) & old(X0)) | (person(X0) & old(X0) & tall(X0)))) | ~room(X0)) [ennf transformation 48] 130. ! [X0] : ((person(X0) & quiet(X0) & ~old(X0) & person(X0) & old(X0)) | (person(X0) & tall(X0) & old(X0)) | (person(X0) & old(X0) & tall(X0)) | ~room(X0)) [flattening 129] 133. ~tall(mary) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 50] 134. ~tall(mary) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 133] 135. ! [X0] : ((person(X0) & quiet(X0) & ~old(X0) & person(X0) & old(X0)) | ~sP0(X0)) [predicate definition introduction] 136. ! [X0] : ((person(X0) & old(X0) & tall(X0)) | ~sP1(X0)) [predicate definition introduction] 137. ! [X0] : (sP0(X0) | (person(X0) & tall(X0) & old(X0)) | sP1(X0) | ~room(X0)) [definition folding 130,136,135] 139. ((person(mary) & tall(mary)) | (person(paul) & tall(paul) & (~person(paul) | ~tall(paul)))) & ((~person(paul) | ~tall(paul) | (person(paul) & tall(paul))) | (~person(mary) | ~tall(mary))) [nnf transformation 128] 140. ((person(mary) & tall(mary)) | (person(paul) & tall(paul) & (~person(paul) | ~tall(paul)))) & (~person(paul) | ~tall(paul) | (person(paul) & tall(paul)) | ~person(mary) | ~tall(mary)) [flattening 139] 141. ! [X0] : ((person(X0) & old(X0) & tall(X0)) | ~sP1(X0)) [nnf transformation 136] 142. ! [X0] : ((person(X0) & quiet(X0) & ~old(X0) & person(X0) & old(X0)) | ~sP0(X0)) [nnf transformation 135] 145. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 146. ~tall(mary) | (alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 134,145] 227. room(mary) [cnf transformation 124] 228. room(paul) [cnf transformation 124] 229. room(fred) [cnf transformation 124] 230. room(alice) [cnf transformation 124] 231. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 124] 236. tall(mary) | ~person(paul) | ~tall(paul) [cnf transformation 140] 243. person(paul) [cnf transformation 47] 244. ~sP1(X0) | tall(X0) [cnf transformation 141] 247. old(X0) | ~sP0(X0) [cnf transformation 142] 249. ~sP0(X0) | ~old(X0) [cnf transformation 142] 253. sP0(X0) | tall(X0) | sP1(X0) | ~room(X0) [cnf transformation 137] 260. ~tall(mary) | room(sK3) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 146] 261. ~tall(mary) | mary != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 146] 262. ~tall(mary) | paul != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 146] 263. ~tall(mary) | fred != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 146] 264. ~tall(mary) | alice != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 146] 267. 1 <=> tall(paul) [avatar definition] 271. 2 <=> person(paul) [avatar definition] 290. 6 <=> tall(mary) [avatar definition] 295. ~1 | ~2 | 6 [avatar split clause 236,290,271,267] 296. 2 [avatar split clause 243,271] 297. ~sP0(X0) [subsumption resolution 247,249] 300. tall(X0) | sP1(X0) | ~room(X0) [subsumption resolution 253,297] 301. ~room(X0) | tall(X0) [subsumption resolution 300,244] 305. ~tall(mary) | alice != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 264,230] 306. ~tall(mary) | alice != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 305,229] 307. ~tall(mary) | alice != sK3 | ~room(mary) [subsumption resolution 306,228] 308. ~tall(mary) | alice != sK3 [subsumption resolution 307,227] 310. 7 <=> alice = sK3 [avatar definition] 312. alice != sK3 <- (~7) [avatar component clause 310] 313. ~7 | ~6 [avatar split clause 308,290,310] 314. ~tall(mary) | fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 263,230] 315. ~tall(mary) | fred != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 314,229] 316. ~tall(mary) | fred != sK3 | ~room(mary) [subsumption resolution 315,228] 317. ~tall(mary) | fred != sK3 [subsumption resolution 316,227] 319. 8 <=> fred = sK3 [avatar definition] 321. fred != sK3 <- (~8) [avatar component clause 319] 322. ~8 | ~6 [avatar split clause 317,290,319] 323. ~tall(mary) | paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 262,230] 324. ~tall(mary) | paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 323,229] 325. ~tall(mary) | paul != sK3 | ~room(mary) [subsumption resolution 324,228] 326. ~tall(mary) | paul != sK3 [subsumption resolution 325,227] 328. 9 <=> paul = sK3 [avatar definition] 330. paul != sK3 <- (~9) [avatar component clause 328] 331. ~9 | ~6 [avatar split clause 326,290,328] 332. ~tall(mary) | mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 261,230] 333. ~tall(mary) | mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 332,229] 334. ~tall(mary) | mary != sK3 | ~room(mary) [subsumption resolution 333,228] 335. ~tall(mary) | mary != sK3 [subsumption resolution 334,227] 337. 10 <=> mary = sK3 [avatar definition] 339. mary != sK3 <- (~10) [avatar component clause 337] 340. ~10 | ~6 [avatar split clause 335,290,337] 341. ~tall(mary) | room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 260,230] 342. ~tall(mary) | room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 341,229] 343. ~tall(mary) | room(sK3) | ~room(mary) [subsumption resolution 342,228] 344. ~tall(mary) | room(sK3) [subsumption resolution 343,227] 346. 11 <=> room(sK3) [avatar definition] 348. room(sK3) <- (11) [avatar component clause 346] 349. 11 | ~6 [avatar split clause 344,290,346] 363. tall(paul) [resolution 301,228] 370. 1 [avatar split clause 363,267] 418. fred = sK3 | paul = sK3 | mary = sK3 | alice = sK3 <- (11) [resolution 231,348] 436. paul = sK3 | mary = sK3 | alice = sK3 <- (~8, 11) [subsumption resolution 418,321] 437. mary = sK3 | alice = sK3 <- (~8, ~9, 11) [subsumption resolution 436,330] 438. alice = sK3 <- (~8, ~9, ~10, 11) [subsumption resolution 437,339] 439. $false <- (~7, ~8, ~9, ~10, 11) [subsumption resolution 438,312] 440. 7 | 8 | 9 | 10 | ~11 [avatar contradiction clause 439] 441. $false [avatar sat refutation 295,296,313,322,331,340,349,370,440] % SZS output end Proof for 4252066132662261446537000 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.445414
Leslie, Maurice, Jose, Brandon are the only persons in the room. Either “everyone in the room does not volunteer for local environmental conservation projects or enjoys watercolor painting” or “everyone in the room is not allergic to anything or does not work on fridays” but not both. “Leslie volunteers for local environmental conservation projects” unless “it is not the case that “Maurice is a client of LVMH””. If “it is true that “Brandon is a tea enthusiast”” then “more than one person in the room practices pilates”. “Everyone in the room plays the violin or is not a client of LVMH” only if “everyone in the room is a tea enthusiast if and only if they is right-handed”. Either “someone in the room does not enjoy camping and organizing outdoor survival workshops” or “at least one person anywhere is right-handed” but not both. If “it is not the case that “Leslie uses an ios phone”” then “everyone in the room who is not a wine connoisseur is an active member of a local robotics club”. “Brandon owns a significant collection of rare gemstones and minerals” only if “Leslie enjoys virtual reality gaming”. Maurice plays the violin. Maurice does not own a high-end gaming PC with custom-built components. If someone plays the drums then he/she plays the drums and owns a 3D printer. Leslie enjoys virtual reality gaming. Someone outside the room is a scotch connoisseur. If someone either does not play the violin or has a piercing but not both then he/she enjoys watercolor painting. Everyone anywhere enjoys camping and organizing outdoor survival workshops or is a night owl or both only if they uses an ios phone. Everyone in the room who uses an ios phone is a wine connoisseur. If someone does not own a 3D printer then he/she enjoys watercolor painting or owns a high-end gaming PC with custom-built components or both and vice versa. Maurice who enjoys camping and organizing outdoor survival workshops or is a night owl or both practices pilates. If someone has a pet dog then he/she knows morse code, plays the drums or owns a high-end gaming PC with custom-built components.
Everyone in the room is right-handed or is not right-handed.
entailment
room(leslie)&room(maurice)&room(jose)&room(brandon)&(![X]:(room(X)=>(X='leslie'|X='maurice'|X='jose'|X='brandon')))& ((![X]:(room(X)=>(((enjoys_watercolor_painting(X))|(does_not_volunteer_for_local_environmental_conservation_projects(X))))))<~>(![X]:(room(X)=>(((does_not_work_on_fridays(X))|(is_not_allergic_to_anything(X)))))))& (~(~(is_a_client_of_LVMH(maurice)))=>(volunteers_for_local_environmental_conservation_projects(leslie)))& ((is_a_tea_enthusiast(brandon))=>((?[X,Y]:(room(X)&room(Y)&(practices_pilates(X)&practices_pilates(Y))&(X!=Y)))))& ((![X]:(room(X)=>(((is_not_a_client_of_LVMH(X))|(plays_the_violin(X))))))=>(![X]:(room(X)=>(((is_a_tea_enthusiast(X))<=>(is_right-handed(X)))))))& ((?[X]:(room(X)&(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))<~>(((?[X]:(anywhere(X)&is_right-handed(X))))))& ((~(uses_an_ios_phone(leslie)))=>(![X]:(room(X)=>(((is_not_a_wine_connoisseur(X))=>(is_an_active_member_of_a_local_robotics_club(X)))))))& ((owns_a_significant_collection_of_rare_gemstones_and_minerals(brandon))=>(enjoys_virtual_reality_gaming(leslie)))& (plays_the_violin(maurice))& (does_not_own_a_high-end_gaming_PC_with_custom-built_components(maurice))& ((![X]:((plays_the_drums(X))=>(((plays_the_drums(X))&(owns_a_3D_printer(X)))))))& (enjoys_virtual_reality_gaming(leslie))& (?[X]:(~room(X)&(is_a_scotch_connoisseur(X))))& ((![X]:((((does_not_play_the_violin(X))<~>(has_a_piercing(X))))=>(enjoys_watercolor_painting(X)))))& (![X]:(anywhere(X)=>(((uses_an_ios_phone(X))<=(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))|(is_a_night_owl(X))))))))& (![X]:(room(X)=>(((uses_an_ios_phone(X))=>(is_a_wine_connoisseur(X))))))& ((![X]:((does_not_own_a_3D_printer(X))<=>(((enjoys_watercolor_painting(X))|(owns_a_high-end_gaming_PC_with_custom-built_components(X)))))))& ((((enjoys_camping_and_organizing_outdoor_survival_workshops(maurice))|(is_a_night_owl(maurice))))&(practices_pilates(maurice)))& ((![X]:((has_a_pet_dog(X))=>(((knows_morse_code(X))|(plays_the_drums(X))|(owns_a_high-end_gaming_PC_with_custom-built_components(X)))))))& (![X]:(room(X)=>(((uses_an_ios_phone(X))=>(regularly_contributes_to_tech_forums_and_online_communities(X))))))& (?[X]:(room(X)&(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))& (![X]:(room(X)=>(((((is_an_active_member_of_a_local_robotics_club(X))|(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))=>(~((plays_the_drums(X))|(is_a_wine_connoisseur(X))))))))& (does_not_have_a_piercing(leslie))& (![X]:(room(X)=>(((((is_not_right-handed(X))&(works_on_fridays(X))))=>(practices_pilates(X))))))& ((![X]:((((practices_zumba(X))|(works_on_fridays(X))|(is_a_wine_connoisseur(X))))<=>(is_a_tea_enthusiast(X)))))& (![X]:(anywhere(X)=>(((volunteers_for_local_environmental_conservation_projects(X))=>(is_not_a_client_of_LVMH(X))))))& (practices_pilates(jose))
room(leslie)&room(maurice)&room(jose)&room(brandon)&(![X]:(room(X)=>(X='leslie'|X='maurice'|X='jose'|X='brandon')))& ![X]:(room(X)=>(((is_not_right-handed(X))|(is_right-handed(X)))))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 3901155673842820600711214 % SZS output start Proof for 3901155673842820600711214 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 71. ~(! [X0] : (room(X0) => (predw(X0) | ~predw(X0))) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 75. ~(! [X0] : (room(X0) => (predw(X0) | ~predw(X0))) & ! [X1] : (room(X1) => (alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(alice) & room(fred) & room(paul) & room(mary)) [rectify 71] 160. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 161. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 160] 181. ? [X0] : ((~predw(X0) & predw(X0)) & room(X0)) | ? [X1] : ((alice != X1 & fred != X1 & paul != X1 & mary != X1) & room(X1)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 75] 182. ? [X0] : (~predw(X0) & predw(X0) & room(X0)) | ? [X1] : (alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 181] 183. ? [X1] : (alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [predicate definition introduction] 184. ? [X0] : (~predw(X0) & predw(X0) & room(X0)) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [definition folding 182,183] 209. ? [X1] : (alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [nnf transformation 183] 210. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~sP0 [rectify 209] 211. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK10 & fred != sK10 & paul != sK10 & mary != sK10 & room(sK10)) [choice axiom] 212. (alice != sK10 & fred != sK10 & paul != sK10 & mary != sK10 & room(sK10)) | ~sP0 [skolemisation 210,211] 213. ? [X0] : (~predw(X0) & predw(X0) & room(X0)) => (~predw(sK11) & predw(sK11) & room(sK11)) [choice axiom] 214. (~predw(sK11) & predw(sK11) & room(sK11)) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 184,213] 296. room(mary) [cnf transformation 161] 297. room(paul) [cnf transformation 161] 298. room(fred) [cnf transformation 161] 299. room(alice) [cnf transformation 161] 300. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 161] 348. room(sK10) | ~sP0 [cnf transformation 212] 349. mary != sK10 | ~sP0 [cnf transformation 212] 350. paul != sK10 | ~sP0 [cnf transformation 212] 351. fred != sK10 | ~sP0 [cnf transformation 212] 352. alice != sK10 | ~sP0 [cnf transformation 212] 354. predw(sK11) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 214] 355. ~predw(sK11) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 214] 491. 29 <=> sP0 [avatar definition] 495. 30 <=> alice = sK10 [avatar definition] 497. alice != sK10 <- (~30) [avatar component clause 495] 498. ~29 | ~30 [avatar split clause 352,495,491] 500. 31 <=> fred = sK10 [avatar definition] 502. fred != sK10 <- (~31) [avatar component clause 500] 503. ~29 | ~31 [avatar split clause 351,500,491] 505. 32 <=> paul = sK10 [avatar definition] 507. paul != sK10 <- (~32) [avatar component clause 505] 508. ~29 | ~32 [avatar split clause 350,505,491] 510. 33 <=> mary = sK10 [avatar definition] 512. mary != sK10 <- (~33) [avatar component clause 510] 513. ~29 | ~33 [avatar split clause 349,510,491] 515. 34 <=> room(sK10) [avatar definition] 517. room(sK10) <- (34) [avatar component clause 515] 518. ~29 | 34 [avatar split clause 348,515,491] 519. ~predw(sK11) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 355,299] 520. ~predw(sK11) | sP0 | ~room(paul) | ~room(mary) [subsumption resolution 519,298] 521. ~predw(sK11) | sP0 | ~room(mary) [subsumption resolution 520,297] 522. ~predw(sK11) | sP0 [subsumption resolution 521,296] 524. 35 <=> predw(sK11) [avatar definition] 527. 29 | ~35 [avatar split clause 522,524,491] 528. predw(sK11) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 354,299] 529. predw(sK11) | sP0 | ~room(paul) | ~room(mary) [subsumption resolution 528,298] 530. predw(sK11) | sP0 | ~room(mary) [subsumption resolution 529,297] 531. predw(sK11) | sP0 [subsumption resolution 530,296] 532. 29 | 35 [avatar split clause 531,524,491] 622. fred = sK10 | paul = sK10 | mary = sK10 | alice = sK10 <- (34) [resolution 300,517] 691. paul = sK10 | mary = sK10 | alice = sK10 <- (~31, 34) [subsumption resolution 622,502] 692. mary = sK10 | alice = sK10 <- (~31, ~32, 34) [subsumption resolution 691,507] 693. alice = sK10 <- (~31, ~32, ~33, 34) [subsumption resolution 692,512] 694. $false <- (~30, ~31, ~32, ~33, 34) [subsumption resolution 693,497] 695. 30 | 31 | 32 | 33 | ~34 [avatar contradiction clause 694] 696. $false [avatar sat refutation 498,503,508,513,518,527,532,695] % SZS output end Proof for 3901155673842820600711214 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.002247
Stanley, Thelma are the only persons in the room. Everyone in the room owns a high-end gaming PC with custom-built components if they practices digital art. Thelma practices digital art. More than one person in the room uses a Windows laptop. Only one person in the room practices digital art. At least one person in the room does not collect modern art. Not everyone in the room who is a craft beer aficionado can play the piano. Thelma is a certified scuba diver with advanced underwater photography skills. Everyone in the room does not own a smartwatch or does not practice digital art. Thelma participates in long-distance cycling events across the country.
Thelma is a certified scuba diver with advanced underwater photography skills.
entailment
room(stanley)&room(thelma)&(![X]:(room(X)=>(X='stanley'|X='thelma')))& (![X]:(room(X)=>(((practices_digital_art(X))=>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))& (practices_digital_art(thelma))& ((?[X,Y]:(room(X)&room(Y)&(uses_a_Windows_laptop(X)&uses_a_Windows_laptop(Y))&(X!=Y))))& (((?[X]:(room(X)&practices_digital_art(X)))&(![X,Y]:((room(X)&room(Y)&(practices_digital_art(X))&(practices_digital_art(Y)))=>(X=Y)))))& (((?[X]:(room(X)&does_not_collect_modern_art(X)))))& (~![X]:(room(X)=>(((is_a_craft_beer_aficionado(X))=>(can_play_the_piano(X))))))& (is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(thelma))& (![X]:(room(X)=>(((does_not_practice_digital_art(X))|(does_not_own_a_smartwatch(X))))))& (participates_in_long-distance_cycling_events_across_the_country(thelma))& (![X]:(room(X)=>(((does_not_collect_vintage_vinyl_records(X))|(owns_a_smartwatch(X))))))& (![X]:(room(X)=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))<=(collects_modern_art(X))))))& (((?[X]:(~room(X)&practices_digital_art(X)))))& (owns_a_high-end_gaming_PC_with_custom-built_components(stanley))& (?[X]:(room(X)&(hosts_regular_workshops_on_creative_writing(X))))& (owns_a_high-end_gaming_PC_with_custom-built_components(thelma))& (is_not_a_professional_photographer_specializing_in_portrait_photography(thelma))& (?[X]:(anywhere(X)&(reads_mystery_novels(X))))& (![X]:(room(X)=>(((((practices_digital_art(X))|(does_not_use_a_Windows_laptop(X))|(collects_modern_art(X))))=>(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))& (![X]:(~room(X)=>(((plays_video_games(X))=>(participates_in_long-distance_cycling_events_across_the_country(X))))))
room(stanley)&room(thelma)&(![X]:(room(X)=>(X='stanley'|X='thelma')))& is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(thelma)
[ "p0", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 2628262280922229544733452 % SZS output start Proof for 2628262280922229544733452 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 51. prede(paul) [input p7] 64. ~(prede(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 156. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 157. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 156] 163. ~prede(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 64] 164. ~prede(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 163] 178. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK7 & mary != sK7 & room(sK7)) [choice axiom] 179. ~prede(paul) | (paul != sK7 & mary != sK7 & room(sK7)) | ~room(paul) | ~room(mary) [skolemisation 164,178] 260. room(mary) [cnf transformation 157] 261. room(paul) [cnf transformation 157] 262. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 157] 272. prede(paul) [cnf transformation 51] 277. ~prede(paul) | room(sK7) | ~room(paul) | ~room(mary) [cnf transformation 179] 278. ~prede(paul) | mary != sK7 | ~room(paul) | ~room(mary) [cnf transformation 179] 279. ~prede(paul) | paul != sK7 | ~room(paul) | ~room(mary) [cnf transformation 179] 280. paul != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 279,272] 281. paul != sK7 | ~room(mary) [subsumption resolution 280,261] 282. paul != sK7 [subsumption resolution 281,260] 283. mary != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 278,272] 284. mary != sK7 | ~room(mary) [subsumption resolution 283,261] 285. mary != sK7 [subsumption resolution 284,260] 286. room(sK7) | ~room(paul) | ~room(mary) [subsumption resolution 277,272] 287. room(sK7) | ~room(mary) [subsumption resolution 286,261] 288. room(sK7) [subsumption resolution 287,260] 301. mary = sK7 | paul = sK7 [resolution 262,288] 356. paul = sK7 [subsumption resolution 301,285] 357. $false [subsumption resolution 356,282] % SZS output end Proof for 2628262280922229544733452 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0
Angelika, Emma are the only persons in the room. “Angelika is a member of a local theater group specializing in improv” if “Emma practices graffiti art and makes homemade pastries”. If “someone in the room uses an ios phone” then “if someone has a saltwater aquarium then he/she has a pet dog and vice versa” otherwise “only one person in the room practices graffiti art”.
Everyone in the room does not enjoy trail running or makes homemade pastries.
neutral
room(angelika)&room(emma)&(![X]:(room(X)=>(X='angelika'|X='emma')))& ((((practices_graffiti_art(emma))&(makes_homemade_pastries(emma))))=>(is_a_member_of_a_local_theater_group_specializing_in_improv(angelika)))& (((?[X]:(room(X)&(uses_an_ios_phone(X))))=>((![X]:((has_a_saltwater_aquarium(X))<=>(has_a_pet_dog(X))))))&((~(?[X]:(room(X)&(uses_an_ios_phone(X)))))=>(((?[X]:(room(X)&practices_graffiti_art(X)))&(![X,Y]:((room(X)&room(Y)&(practices_graffiti_art(X))&(practices_graffiti_art(Y)))=>(X=Y)))))))& ((((enjoys_rooftop_gardening(angelika))<~>(uses_an_ios_phone(angelika))))=>(cannot_play_the_guitar(angelika)))& ((can_play_the_guitar(emma))<=>(has_a_pet_dog(emma)))& ((((does_not_drive_a_hybrid_car(angelika))&(has_a_saltwater_aquarium(angelika))&(drives_a_hybrid_car(angelika))))=>(has_a_pet_dog(emma)))& (has_a_pet_dog(emma))& (does_not_have_a_pet_dog(angelika))& (owns_a_telescope(emma))& (does_enjoy_trail_running(angelika))& (has_a_saltwater_aquarium(emma))& ((![X]:((frequently_participates_in_hackathons_and_coding_competitions(X))<=>(has_a_pet_dog(X)))))& (is_a_member_of_a_local_theater_group_specializing_in_improv(emma))& (?[X]:(~room(X)&(collects_classic_novels(X))))& (((?[X]:(room(X)&((practices_graffiti_art(X))<~>(drives_a_hybrid_car(X)))))))& (~(has_a_saltwater_aquarium(angelika)))& (((is_a_dedicated_volunteer_for_local_community_service_projects(angelika))|(has_a_pet_dog(angelika))))
room(angelika)&room(emma)&(![X]:(room(X)=>(X='angelika'|X='emma')))& ![X]:(room(X)=>(((makes_homemade_pastries(X))|(does_not_enjoy_trail_running(X)))))
[]
null
0.083489
Patricia, James, Adam are the only persons in the room. If someone owns a microscope then he/she owns a significant collection of rare gemstones and minerals. James who owns a significant collection of rare gemstones and minerals creates bespoke furniture pieces from reclaimed wood, owns a microscope and does not collect vintage vinyl records. If someone owns a significant collection of rare gemstones and minerals, owns a microscope and practices calligraphy then he/she owns a significant collection of rare gemstones and minerals and vice versa. More than one person in the room collects vintage vinyl records. More than one person in the room owns a significant collection of rare gemstones and minerals.
James collects vintage vinyl records.
contradiction
room(patricia)&room(james)&room(adam)&(![X]:(room(X)=>(X='patricia'|X='james'|X='adam')))& ((![X]:((owns_a_microscope(X))=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X)))))& ((owns_a_significant_collection_of_rare_gemstones_and_minerals(james))&(((creates_bespoke_furniture_pieces_from_reclaimed_wood(james))&(owns_a_microscope(james))&(does_not_collect_vintage_vinyl_records(james)))))& ((![X]:((((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))&(owns_a_microscope(X))&(practices_calligraphy(X))))<=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X)))))& ((?[X,Y]:(room(X)&room(Y)&(collects_vintage_vinyl_records(X)&collects_vintage_vinyl_records(Y))&(X!=Y))))& ((?[X,Y]:(room(X)&room(Y)&(owns_a_significant_collection_of_rare_gemstones_and_minerals(X)&owns_a_significant_collection_of_rare_gemstones_and_minerals(Y))&(X!=Y))))
room(patricia)&room(james)&room(adam)&(![X]:(room(X)=>(X='patricia'|X='james'|X='adam')))& collects_vintage_vinyl_records(james)
[ "p2", "hypothesis" ]
% SZS status Unsatisfiable for 8770283293760657597678031 % SZS output start Proof for 8770283293760657597678031 46. ~predb(paul) & predd(paul) & prede(paul) & predf(paul) [input p2] 50. predb(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 51. ~predb(paul) & predd(paul) & predf(paul) [pure predicate removal 46] 127. predb(paul) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 50] 128. predb(paul) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 127] 223. ~predb(paul) [cnf transformation 51] 242. predb(paul) [cnf transformation 128] 243. $false [subsumption resolution 242,223] % SZS output end Proof for 8770283293760657597678031 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.284106
Edythe, Pete, David, Jim are the only persons in the room. 'Pete is a generous person' if 'Edythe either hosts a popular podcast about emerging technologies or is an amateur astronomer who builds and uses custom telescopes but not both'. If 'Edythe is a funny person' then 'Pete watches fantasy movies'.
Pete uses contact lenses.
contradiction
room(edythe)&room(pete)&room(david)&room(jim)&(![X]:(room(X)=>(X='edythe'|X='pete'|X='david'|X='jim')))& ((((hosts_a_popular_podcast_about_emerging_technologies(edythe))<~>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(edythe))))=>(generous(pete)&person(pete)))& (((funny(edythe)&person(edythe))=>(watches_fantasy_movies(pete)))& ((watches_fantasy_movies(pete))=>(brave(david)&tourist(david)&brave(edythe)&tourist(edythe))))& ((~(old(jim)&tourist(jim)))<=>(collects_rare_minerals(jim)))& (like(edythe,omar))& (quiet(pete)&european(pete))& ((![X]:((patient(X)&person(X))=>(builds_model_airplanes(X)))))& (tall(pete)&european(pete))& (strong(jim)&person(jim))& ((~(strong(pete)&person(pete)))&(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(pete)))& ((hate(omar,pete) & hate(pete,omar)))& ((~(calm(edythe)&person(edythe)))&(does_not_enjoy_wildlife_photography(edythe)))& ((![X]:((funny(X)&tourist(X))<=>(owns_a_3D_printer(X)))))& ((![X]:((does_not_use_contact_lenses(X))<=>(((~wise(X))|(collects_rare_minerals(X)))))))& ((collects_rare_minerals(pete))&(((bakes_bread_at_home(pete))|(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(pete)))))& (can_play_the_flute(edythe))& (((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(jim))<~>(~(kind(jim)&european(jim)))))
room(edythe)&room(pete)&room(david)&room(jim)&(![X]:(room(X)=>(X='edythe'|X='pete'|X='david'|X='jim')))& uses_contact_lenses(pete)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 449478091573344054568937 % SZS output start Proof for 449478091573344054568937 44. (predn(alice) <~> ~(european(alice) & kind(alice))) & preds(mary) & (predp(paul) | predd(paul)) & predh(paul) & ! [X0] : (~predr(X0) <=> (predh(X0) | ~wise(X0))) & ! [X0] : ((tourist(X0) & funny(X0)) <=> predz(X0)) & ~predi(mary) & ~(person(mary) & calm(mary)) & hate(paul,lucy) & hate(lucy,paul) & predp(paul) & ~(person(paul) & strong(paul)) & person(alice) & strong(alice) & european(paul) & tall(paul) & ! [X0] : ((person(X0) & patient(X0)) => prede(X0)) & european(paul) & quiet(paul) & like(mary,lucy) & (~(tourist(alice) & old(alice)) <=> predh(alice)) & (predv(paul) => (tourist(mary) & brave(mary) & tourist(fred) & brave(fred))) & ((person(mary) & funny(mary)) => predv(paul)) & ((predk(mary) <~> predp(mary)) => (person(paul) & generous(paul))) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. predr(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 46. (predn(alice) <~> ~(european(alice) & kind(alice))) & preds(mary) & (predp(paul) | predd(paul)) & predh(paul) & ! [X0] : (~predr(X0) <=> (predh(X0) | ~wise(X0))) & ! [X1] : ((tourist(X1) & funny(X1)) <=> predz(X1)) & ~predi(mary) & ~(person(mary) & calm(mary)) & hate(paul,lucy) & hate(lucy,paul) & predp(paul) & ~(person(paul) & strong(paul)) & person(alice) & strong(alice) & european(paul) & tall(paul) & ! [X2] : ((person(X2) & patient(X2)) => prede(X2)) & european(paul) & quiet(paul) & like(mary,lucy) & (~(tourist(alice) & old(alice)) <=> predh(alice)) & (predv(paul) => (tourist(mary) & brave(mary) & tourist(fred) & brave(fred))) & ((person(mary) & funny(mary)) => predv(paul)) & ((predk(mary) <~> predp(mary)) => (person(paul) & generous(paul))) & ! [X3] : (room(X3) => (alice = X3 | fred = X3 | paul = X3 | mary = X3)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 44] 47. (predn(alice) <~> ~(european(alice) & kind(alice))) & (predp(paul) | predd(paul)) & predh(paul) & ! [X0] : (~predr(X0) <=> (predh(X0) | ~wise(X0))) & ! [X1] : ((tourist(X1) & funny(X1)) <=> predz(X1)) & ~predi(mary) & ~(person(mary) & calm(mary)) & hate(paul,lucy) & hate(lucy,paul) & predp(paul) & ~(person(paul) & strong(paul)) & person(alice) & strong(alice) & european(paul) & tall(paul) & ! [X2] : ((person(X2) & patient(X2)) => prede(X2)) & european(paul) & quiet(paul) & like(mary,lucy) & (~(tourist(alice) & old(alice)) <=> predh(alice)) & (predv(paul) => (tourist(mary) & brave(mary) & tourist(fred) & brave(fred))) & ((person(mary) & funny(mary)) => predv(paul)) & ((predk(mary) <~> predp(mary)) => (person(paul) & generous(paul))) & ! [X3] : (room(X3) => (alice = X3 | fred = X3 | paul = X3 | mary = X3)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 48. (predn(alice) <~> ~(european(alice) & kind(alice))) & predh(paul) & ! [X0] : (~predr(X0) <=> (predh(X0) | ~wise(X0))) & ! [X1] : ((tourist(X1) & funny(X1)) <=> predz(X1)) & ~predi(mary) & ~(person(mary) & calm(mary)) & hate(paul,lucy) & hate(lucy,paul) & predp(paul) & ~(person(paul) & strong(paul)) & person(alice) & strong(alice) & european(paul) & tall(paul) & ! [X2] : ((person(X2) & patient(X2)) => prede(X2)) & european(paul) & quiet(paul) & like(mary,lucy) & (~(tourist(alice) & old(alice)) <=> predh(alice)) & (predv(paul) => (tourist(mary) & brave(mary) & tourist(fred) & brave(fred))) & ((person(mary) & funny(mary)) => predv(paul)) & ((predk(mary) <~> predp(mary)) => (person(paul) & generous(paul))) & ! [X3] : (room(X3) => (alice = X3 | fred = X3 | paul = X3 | mary = X3)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 47] 49. (predn(alice) <~> ~(european(alice) & kind(alice))) & predh(paul) & ! [X0] : (~predr(X0) <=> (predh(X0) | ~wise(X0))) & ! [X1] : ((tourist(X1) & funny(X1)) <=> predz(X1)) & ~(person(mary) & calm(mary)) & hate(paul,lucy) & hate(lucy,paul) & predp(paul) & ~(person(paul) & strong(paul)) & person(alice) & strong(alice) & european(paul) & tall(paul) & ! [X2] : ((person(X2) & patient(X2)) => prede(X2)) & european(paul) & quiet(paul) & like(mary,lucy) & (~(tourist(alice) & old(alice)) <=> predh(alice)) & (predv(paul) => (tourist(mary) & brave(mary) & tourist(fred) & brave(fred))) & ((person(mary) & funny(mary)) => predv(paul)) & ((predk(mary) <~> predp(mary)) => (person(paul) & generous(paul))) & ! [X3] : (room(X3) => (alice = X3 | fred = X3 | paul = X3 | mary = X3)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 48] 50. (predn(alice) <~> ~(european(alice) & kind(alice))) & predh(paul) & ! [X0] : (~predr(X0) <=> (predh(X0) | ~wise(X0))) & ! [X1] : ((tourist(X1) & funny(X1)) <=> predz(X1)) & hate(paul,lucy) & hate(lucy,paul) & predp(paul) & ~(person(paul) & strong(paul)) & person(alice) & strong(alice) & european(paul) & tall(paul) & ! [X2] : ((person(X2) & patient(X2)) => prede(X2)) & european(paul) & quiet(paul) & like(mary,lucy) & (~(tourist(alice) & old(alice)) <=> predh(alice)) & (predv(paul) => (tourist(mary) & brave(mary) & tourist(fred) & brave(fred))) & ((person(mary) & funny(mary)) => predv(paul)) & ((predk(mary) <~> predp(mary)) => (person(paul) & generous(paul))) & ! [X3] : (room(X3) => (alice = X3 | fred = X3 | paul = X3 | mary = X3)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 49] 51. (predn(alice) <~> ~(european(alice) & kind(alice))) & predh(paul) & ! [X0] : (~predr(X0) <=> (predh(X0) | ~wise(X0))) & ! [X1] : ((tourist(X1) & funny(X1)) <=> predz(X1)) & hate(paul,lucy) & hate(lucy,paul) & predp(paul) & ~(person(paul) & strong(paul)) & person(alice) & strong(alice) & european(paul) & ! [X2] : ((person(X2) & patient(X2)) => prede(X2)) & european(paul) & quiet(paul) & like(mary,lucy) & (~(tourist(alice) & old(alice)) <=> predh(alice)) & (predv(paul) => (tourist(mary) & brave(mary) & tourist(fred) & brave(fred))) & ((person(mary) & funny(mary)) => predv(paul)) & ((predk(mary) <~> predp(mary)) => (person(paul) & generous(paul))) & ! [X3] : (room(X3) => (alice = X3 | fred = X3 | paul = X3 | mary = X3)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 50] 52. (predn(alice) <~> ~(european(alice) & kind(alice))) & predh(paul) & ! [X0] : (~predr(X0) <=> (predh(X0) | ~wise(X0))) & ! [X1] : ((tourist(X1) & funny(X1)) <=> predz(X1)) & hate(paul,lucy) & hate(lucy,paul) & predp(paul) & ~(person(paul) & strong(paul)) & person(alice) & strong(alice) & european(paul) & european(paul) & quiet(paul) & like(mary,lucy) & (~(tourist(alice) & old(alice)) <=> predh(alice)) & (predv(paul) => (tourist(mary) & brave(mary) & tourist(fred) & brave(fred))) & ((person(mary) & funny(mary)) => predv(paul)) & ((predk(mary) <~> predp(mary)) => (person(paul) & generous(paul))) & ! [X3] : (room(X3) => (alice = X3 | fred = X3 | paul = X3 | mary = X3)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 51] 53. (predn(alice) <~> ~(european(alice) & kind(alice))) & predh(paul) & ! [X0] : (~predr(X0) <=> (predh(X0) | ~wise(X0))) & ! [X1] : ((tourist(X1) & funny(X1)) <=> predz(X1)) & hate(paul,lucy) & hate(lucy,paul) & predp(paul) & ~(person(paul) & strong(paul)) & person(alice) & strong(alice) & european(paul) & european(paul) & quiet(paul) & like(mary,lucy) & (~(tourist(alice) & old(alice)) <=> predh(alice)) & (predv(paul) => (tourist(mary) & tourist(fred))) & ((person(mary) & funny(mary)) => predv(paul)) & ((predk(mary) <~> predp(mary)) => (person(paul) & generous(paul))) & ! [X3] : (room(X3) => (alice = X3 | fred = X3 | paul = X3 | mary = X3)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 52] 54. (predn(alice) <~> ~(european(alice) & kind(alice))) & predh(paul) & ! [X0] : (~predr(X0) <=> (predh(X0) | ~wise(X0))) & ! [X1] : ((tourist(X1) & funny(X1)) <=> predz(X1)) & hate(paul,lucy) & hate(lucy,paul) & predp(paul) & ~(person(paul) & strong(paul)) & person(alice) & strong(alice) & european(paul) & european(paul) & quiet(paul) & like(mary,lucy) & (~(tourist(alice) & old(alice)) <=> predh(alice)) & (predv(paul) => (tourist(mary) & tourist(fred))) & ((person(mary) & funny(mary)) => predv(paul)) & ((predk(mary) <~> predp(mary)) => person(paul)) & ! [X3] : (room(X3) => (alice = X3 | fred = X3 | paul = X3 | mary = X3)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 53] 129. (predn(alice) <~> (~european(alice) | ~kind(alice))) & predh(paul) & ! [X0] : (~predr(X0) <=> (predh(X0) | ~wise(X0))) & ! [X1] : ((tourist(X1) & funny(X1)) <=> predz(X1)) & hate(paul,lucy) & hate(lucy,paul) & predp(paul) & (~person(paul) | ~strong(paul)) & person(alice) & strong(alice) & european(paul) & european(paul) & quiet(paul) & like(mary,lucy) & ((~tourist(alice) | ~old(alice)) <=> predh(alice)) & ((tourist(mary) & tourist(fred)) | ~predv(paul)) & (predv(paul) | (~person(mary) | ~funny(mary))) & (person(paul) | (predk(mary) <=> predp(mary))) & ! [X3] : ((alice = X3 | fred = X3 | paul = X3 | mary = X3) | ~room(X3)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 54] 130. (predn(alice) <~> (~european(alice) | ~kind(alice))) & predh(paul) & ! [X0] : (~predr(X0) <=> (predh(X0) | ~wise(X0))) & ! [X1] : ((tourist(X1) & funny(X1)) <=> predz(X1)) & hate(paul,lucy) & hate(lucy,paul) & predp(paul) & (~person(paul) | ~strong(paul)) & person(alice) & strong(alice) & european(paul) & european(paul) & quiet(paul) & like(mary,lucy) & ((~tourist(alice) | ~old(alice)) <=> predh(alice)) & ((tourist(mary) & tourist(fred)) | ~predv(paul)) & (predv(paul) | ~person(mary) | ~funny(mary)) & (person(paul) | (predk(mary) <=> predp(mary))) & ! [X3] : (alice = X3 | fred = X3 | paul = X3 | mary = X3 | ~room(X3)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 129] 131. predr(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 45] 132. predr(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 131] 134. (((european(alice) & kind(alice)) | ~predn(alice)) & ((~european(alice) | ~kind(alice)) | predn(alice))) & predh(paul) & ! [X0] : ((~predr(X0) | (~predh(X0) & wise(X0))) & ((predh(X0) | ~wise(X0)) | predr(X0))) & ! [X1] : (((tourist(X1) & funny(X1)) | ~predz(X1)) & (predz(X1) | (~tourist(X1) | ~funny(X1)))) & hate(paul,lucy) & hate(lucy,paul) & predp(paul) & (~person(paul) | ~strong(paul)) & person(alice) & strong(alice) & european(paul) & european(paul) & quiet(paul) & like(mary,lucy) & (((~tourist(alice) | ~old(alice)) | ~predh(alice)) & (predh(alice) | (tourist(alice) & old(alice)))) & ((tourist(mary) & tourist(fred)) | ~predv(paul)) & (predv(paul) | ~person(mary) | ~funny(mary)) & (person(paul) | ((predk(mary) | ~predp(mary)) & (predp(mary) | ~predk(mary)))) & ! [X3] : (alice = X3 | fred = X3 | paul = X3 | mary = X3 | ~room(X3)) & room(alice) & room(fred) & room(paul) & room(mary) [nnf transformation 130] 135. ((european(alice) & kind(alice)) | ~predn(alice)) & (~european(alice) | ~kind(alice) | predn(alice)) & predh(paul) & ! [X0] : ((~predr(X0) | (~predh(X0) & wise(X0))) & (predh(X0) | ~wise(X0) | predr(X0))) & ! [X1] : (((tourist(X1) & funny(X1)) | ~predz(X1)) & (predz(X1) | ~tourist(X1) | ~funny(X1))) & hate(paul,lucy) & hate(lucy,paul) & predp(paul) & (~person(paul) | ~strong(paul)) & person(alice) & strong(alice) & european(paul) & european(paul) & quiet(paul) & like(mary,lucy) & (~tourist(alice) | ~old(alice) | ~predh(alice)) & (predh(alice) | (tourist(alice) & old(alice))) & ((tourist(mary) & tourist(fred)) | ~predv(paul)) & (predv(paul) | ~person(mary) | ~funny(mary)) & (person(paul) | ((predk(mary) | ~predp(mary)) & (predp(mary) | ~predk(mary)))) & ! [X3] : (alice = X3 | fred = X3 | paul = X3 | mary = X3 | ~room(X3)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 134] 136. ((european(alice) & kind(alice)) | ~predn(alice)) & (~european(alice) | ~kind(alice) | predn(alice)) & predh(paul) & ! [X0] : ((~predr(X0) | (~predh(X0) & wise(X0))) & (predh(X0) | ~wise(X0) | predr(X0))) & ! [X1] : (((tourist(X1) & funny(X1)) | ~predz(X1)) & (predz(X1) | ~tourist(X1) | ~funny(X1))) & hate(paul,lucy) & hate(lucy,paul) & predp(paul) & (~person(paul) | ~strong(paul)) & person(alice) & strong(alice) & european(paul) & european(paul) & quiet(paul) & like(mary,lucy) & (~tourist(alice) | ~old(alice) | ~predh(alice)) & (predh(alice) | (tourist(alice) & old(alice))) & ((tourist(mary) & tourist(fred)) | ~predv(paul)) & (predv(paul) | ~person(mary) | ~funny(mary)) & (person(paul) | ((predk(mary) | ~predp(mary)) & (predp(mary) | ~predk(mary)))) & ! [X2] : (alice = X2 | fred = X2 | paul = X2 | mary = X2 | ~room(X2)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 135] 249. ~predr(X0) | ~predh(X0) [cnf transformation 136] 250. predh(paul) [cnf transformation 136] 259. predr(paul) [cnf transformation 132] 335. ~predh(paul) [resolution 249,259] 336. $false [subsumption resolution 335,250] % SZS output end Proof for 449478091573344054568937 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.387907
Violet, Donna are the only persons in the room. Either "Donna does not practice graffiti art" or "it is true that "Donna is not an amateur astronomer who builds and uses custom telescopes"" but not both. "Violet does not play as a goalkeeper for a local amateur soccer team" only if "Donna does not collect rare and antique scientific instruments and does not practice graffiti art". Either "everyone anywhere does not participate in citizen science projects related to wildlife monitoring or does not regularly goes on multi-day backpacking trips in national parks" or "Violet does not practice kickboxing" but not both. If "everyone in the room does not collect luxury watches" then "everyone in the room creates YouTube content and does not practice graffiti art".
Violet uses a Windows laptop.
entailment
room(violet)&room(donna)&(![X]:(room(X)=>(X='violet'|X='donna')))& ((does_not_practice_graffiti_art(donna))<~>(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(donna)))& ((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(violet))=>(((does_not_collect_rare_and_antique_scientific_instruments(donna))&(does_not_practice_graffiti_art(donna)))))& ((![X]:(anywhere(X)=>(((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))|(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))<~>(does_not_practice_kickboxing(violet)))& (((![X]:(room(X)=>(does_not_collect_luxury_watches(X))))=>(![X]:(room(X)=>(((creates_YouTube_content(X))&(does_not_practice_graffiti_art(X)))))))& ((![X]:(room(X)=>(((creates_YouTube_content(X))&(does_not_practice_graffiti_art(X))))))=>(![X]:(room(X)=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))& (does_not_practice_graffiti_art(violet))& (![X]:(room(X)=>(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))& (![X]:(room(X)=>(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))& ((?[X,Y]:(room(X)&room(Y)&(~((is_not_a_night_owl(X))|(does_not_use_a_Windows_laptop(X)))&~((is_not_a_night_owl(Y))|(does_not_use_a_Windows_laptop(Y))))&(X!=Y))))& (does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(violet))& (![X]:(room(X)=>(does_not_practice_graffiti_art(X))))& (((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(donna))|(does_not_host_regular_workshops_on_creative_writing(donna))))& (![X]:(room(X)=>(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))& (~![X]:(room(X)=>(((cannot_play_the_guitar(X))|(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))))& (((?[X]:(room(X)&~((does_not_collect_luxury_watches(X))|(does_not_have_completed_a_triathlon(X)))))&(![X,Y]:((room(X)&room(Y)&(~((does_not_collect_luxury_watches(X))|(does_not_have_completed_a_triathlon(X))))&(~((does_not_collect_luxury_watches(Y))|(does_not_have_completed_a_triathlon(Y)))))=>(X=Y)))))& (![X]:(room(X)=>(((does_not_collect_rare_and_antique_scientific_instruments(X))&(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))& (((does_not_have_a_curated_collection_of_mid-century_modern_furniture(donna))|(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(donna))))& (![X]:(room(X)=>(((((does_not_collect_rare_and_antique_scientific_instruments(X))&(does_not_use_a_Windows_laptop(X))))=>(does_not_collect_luxury_watches(X))))))
room(violet)&room(donna)&(![X]:(room(X)=>(X='violet'|X='donna')))& uses_a_Windows_laptop(violet)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 2956281987487807921932969 % SZS output start Proof for 2956281987487807921932969 44. ! [X0] : (room(X0) => ((~prede(X0) & ~predk(X0)) => ~preds(X0))) & (~predi(paul) | ~predu(paul)) & ! [X0] : (room(X0) => (~preda(X0) & ~predk(X0))) & ! [X0,X1] : ((~(~predp(X1) | ~preds(X1)) & ~(~predp(X0) | ~preds(X0)) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (~(~predp(X0) | ~preds(X0)) & room(X0)) & ~! [X0] : (room(X0) => (predm(X0) | ~predn(X0))) & ! [X0] : (room(X0) => ~predt(X0)) & (~predc(paul) | ~predy(paul)) & ! [X0] : (room(X0) => ~predg(X0)) & ~predd(mary) & ? [X0,X1] : (X0 != X1 & ~(~prede(X1) | ~predw(X1)) & ~(~prede(X0) | ~predw(X0)) & room(X1) & room(X0)) & ! [X0] : (room(X0) => ~predi(X0)) & ! [X0] : (room(X0) => ~predh(X0)) & ~predg(mary) & (! [X0] : (room(X0) => (~predg(X0) & predv(X0))) => ! [X0] : (room(X0) => predz(X0))) & (! [X0] : (room(X0) => ~preds(X0)) => ! [X0] : (room(X0) => (~predg(X0) & predv(X0)))) & (! [X0] : (anywhere(X0) => (~preda(X0) | ~predi(X0))) <~> ~predl(mary)) & (~predt(mary) => (~predg(paul) & ~predk(paul))) & (~predg(paul) <~> ~predz(paul)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. ~(prede(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 46. ! [X0] : (room(X0) => ((~prede(X0) & ~predk(X0)) => ~preds(X0))) & (~predi(paul) | ~predu(paul)) & ! [X1] : (room(X1) => (~preda(X1) & ~predk(X1))) & ! [X2,X3] : ((~(~predp(X3) | ~preds(X3)) & ~(~predp(X2) | ~preds(X2)) & room(X3) & room(X2)) => X2 = X3) & ? [X4] : (~(~predp(X4) | ~preds(X4)) & room(X4)) & ~! [X5] : (room(X5) => (predm(X5) | ~predn(X5))) & ! [X6] : (room(X6) => ~predt(X6)) & (~predc(paul) | ~predy(paul)) & ! [X7] : (room(X7) => ~predg(X7)) & ~predd(mary) & ? [X8,X9] : (X8 != X9 & ~(~prede(X9) | ~predw(X9)) & ~(~prede(X8) | ~predw(X8)) & room(X9) & room(X8)) & ! [X10] : (room(X10) => ~predi(X10)) & ! [X11] : (room(X11) => ~predh(X11)) & ~predg(mary) & (! [X12] : (room(X12) => (~predg(X12) & predv(X12))) => ! [X13] : (room(X13) => predz(X13))) & (! [X14] : (room(X14) => ~preds(X14)) => ! [X15] : (room(X15) => (~predg(X15) & predv(X15)))) & (! [X16] : (anywhere(X16) => (~preda(X16) | ~predi(X16))) <~> ~predl(mary)) & (~predt(mary) => (~predg(paul) & ~predk(paul))) & (~predg(paul) <~> ~predz(paul)) & ! [X17] : (room(X17) => (paul = X17 | mary = X17)) & room(paul) & room(mary) [rectify 44] 47. ! [X0] : (room(X0) => ((~prede(X0) & ~predk(X0)) => ~preds(X0))) & ! [X1] : (room(X1) => (~preda(X1) & ~predk(X1))) & ! [X2,X3] : ((~(~predp(X3) | ~preds(X3)) & ~(~predp(X2) | ~preds(X2)) & room(X3) & room(X2)) => X2 = X3) & ? [X4] : (~(~predp(X4) | ~preds(X4)) & room(X4)) & ~! [X5] : (room(X5) => (predm(X5) | ~predn(X5))) & ! [X6] : (room(X6) => ~predt(X6)) & (~predc(paul) | ~predy(paul)) & ! [X7] : (room(X7) => ~predg(X7)) & ~predd(mary) & ? [X8,X9] : (X8 != X9 & ~(~prede(X9) | ~predw(X9)) & ~(~prede(X8) | ~predw(X8)) & room(X9) & room(X8)) & ! [X10] : (room(X10) => ~predi(X10)) & ! [X11] : (room(X11) => ~predh(X11)) & ~predg(mary) & (! [X12] : (room(X12) => (~predg(X12) & predv(X12))) => ! [X13] : (room(X13) => predz(X13))) & (! [X14] : (room(X14) => ~preds(X14)) => ! [X15] : (room(X15) => (~predg(X15) & predv(X15)))) & (! [X16] : (anywhere(X16) => (~preda(X16) | ~predi(X16))) <~> ~predl(mary)) & (~predt(mary) => (~predg(paul) & ~predk(paul))) & (~predg(paul) <~> ~predz(paul)) & ! [X17] : (room(X17) => (paul = X17 | mary = X17)) & room(paul) & room(mary) [pure predicate removal 46] 48. ! [X0] : (room(X0) => ((~prede(X0) & ~predk(X0)) => ~preds(X0))) & ! [X1] : (room(X1) => (~preda(X1) & ~predk(X1))) & ! [X2,X3] : ((~(~predp(X3) | ~preds(X3)) & ~(~predp(X2) | ~preds(X2)) & room(X3) & room(X2)) => X2 = X3) & ? [X4] : (~(~predp(X4) | ~preds(X4)) & room(X4)) & ~! [X5] : (room(X5) => ~predn(X5)) & ! [X6] : (room(X6) => ~predt(X6)) & (~predc(paul) | ~predy(paul)) & ! [X7] : (room(X7) => ~predg(X7)) & ~predd(mary) & ? [X8,X9] : (X8 != X9 & ~(~prede(X9) | ~predw(X9)) & ~(~prede(X8) | ~predw(X8)) & room(X9) & room(X8)) & ! [X10] : (room(X10) => ~predi(X10)) & ! [X11] : (room(X11) => ~predh(X11)) & ~predg(mary) & (! [X12] : (room(X12) => (~predg(X12) & predv(X12))) => ! [X13] : (room(X13) => predz(X13))) & (! [X14] : (room(X14) => ~preds(X14)) => ! [X15] : (room(X15) => (~predg(X15) & predv(X15)))) & (! [X16] : (anywhere(X16) => (~preda(X16) | ~predi(X16))) <~> ~predl(mary)) & (~predt(mary) => (~predg(paul) & ~predk(paul))) & (~predg(paul) <~> ~predz(paul)) & ! [X17] : (room(X17) => (paul = X17 | mary = X17)) & room(paul) & room(mary) [pure predicate removal 47] 49. ! [X0] : (room(X0) => ((~prede(X0) & ~predk(X0)) => ~preds(X0))) & ! [X1] : (room(X1) => (~preda(X1) & ~predk(X1))) & ! [X2,X3] : ((~(~predp(X3) | ~preds(X3)) & ~(~predp(X2) | ~preds(X2)) & room(X3) & room(X2)) => X2 = X3) & ? [X4] : (~(~predp(X4) | ~preds(X4)) & room(X4)) & ~! [X5] : ~room(X5) & ! [X6] : (room(X6) => ~predt(X6)) & (~predc(paul) | ~predy(paul)) & ! [X7] : (room(X7) => ~predg(X7)) & ~predd(mary) & ? [X8,X9] : (X8 != X9 & ~(~prede(X9) | ~predw(X9)) & ~(~prede(X8) | ~predw(X8)) & room(X9) & room(X8)) & ! [X10] : (room(X10) => ~predi(X10)) & ! [X11] : (room(X11) => ~predh(X11)) & ~predg(mary) & (! [X12] : (room(X12) => (~predg(X12) & predv(X12))) => ! [X13] : (room(X13) => predz(X13))) & (! [X14] : (room(X14) => ~preds(X14)) => ! [X15] : (room(X15) => (~predg(X15) & predv(X15)))) & (! [X16] : (anywhere(X16) => (~preda(X16) | ~predi(X16))) <~> ~predl(mary)) & (~predt(mary) => (~predg(paul) & ~predk(paul))) & (~predg(paul) <~> ~predz(paul)) & ! [X17] : (room(X17) => (paul = X17 | mary = X17)) & room(paul) & room(mary) [pure predicate removal 48] 50. ! [X0] : (room(X0) => ((~prede(X0) & ~predk(X0)) => ~preds(X0))) & ! [X1] : (room(X1) => (~preda(X1) & ~predk(X1))) & ! [X2,X3] : ((~(~predp(X3) | ~preds(X3)) & ~(~predp(X2) | ~preds(X2)) & room(X3) & room(X2)) => X2 = X3) & ? [X4] : (~(~predp(X4) | ~preds(X4)) & room(X4)) & ~! [X5] : ~room(X5) & ! [X6] : (room(X6) => ~predt(X6)) & ! [X7] : (room(X7) => ~predg(X7)) & ~predd(mary) & ? [X8,X9] : (X8 != X9 & ~(~prede(X9) | ~predw(X9)) & ~(~prede(X8) | ~predw(X8)) & room(X9) & room(X8)) & ! [X10] : (room(X10) => ~predi(X10)) & ! [X11] : (room(X11) => ~predh(X11)) & ~predg(mary) & (! [X12] : (room(X12) => (~predg(X12) & predv(X12))) => ! [X13] : (room(X13) => predz(X13))) & (! [X14] : (room(X14) => ~preds(X14)) => ! [X15] : (room(X15) => (~predg(X15) & predv(X15)))) & (! [X16] : (anywhere(X16) => (~preda(X16) | ~predi(X16))) <~> ~predl(mary)) & (~predt(mary) => (~predg(paul) & ~predk(paul))) & (~predg(paul) <~> ~predz(paul)) & ! [X17] : (room(X17) => (paul = X17 | mary = X17)) & room(paul) & room(mary) [pure predicate removal 49] 51. ! [X0] : (room(X0) => ((~prede(X0) & ~predk(X0)) => ~preds(X0))) & ! [X1] : (room(X1) => (~preda(X1) & ~predk(X1))) & ! [X2,X3] : ((~(~predp(X3) | ~preds(X3)) & ~(~predp(X2) | ~preds(X2)) & room(X3) & room(X2)) => X2 = X3) & ? [X4] : (~(~predp(X4) | ~preds(X4)) & room(X4)) & ~! [X5] : ~room(X5) & ! [X6] : (room(X6) => ~predt(X6)) & ! [X7] : (room(X7) => ~predg(X7)) & ? [X8,X9] : (X8 != X9 & ~(~prede(X9) | ~predw(X9)) & ~(~prede(X8) | ~predw(X8)) & room(X9) & room(X8)) & ! [X10] : (room(X10) => ~predi(X10)) & ! [X11] : (room(X11) => ~predh(X11)) & ~predg(mary) & (! [X12] : (room(X12) => (~predg(X12) & predv(X12))) => ! [X13] : (room(X13) => predz(X13))) & (! [X14] : (room(X14) => ~preds(X14)) => ! [X15] : (room(X15) => (~predg(X15) & predv(X15)))) & (! [X16] : (anywhere(X16) => (~preda(X16) | ~predi(X16))) <~> ~predl(mary)) & (~predt(mary) => (~predg(paul) & ~predk(paul))) & (~predg(paul) <~> ~predz(paul)) & ! [X17] : (room(X17) => (paul = X17 | mary = X17)) & room(paul) & room(mary) [pure predicate removal 50] 52. ! [X0] : (room(X0) => ((~prede(X0) & ~predk(X0)) => ~preds(X0))) & ! [X1] : (room(X1) => (~preda(X1) & ~predk(X1))) & ! [X2,X3] : ((~(~predp(X3) | ~preds(X3)) & ~(~predp(X2) | ~preds(X2)) & room(X3) & room(X2)) => X2 = X3) & ? [X4] : (~(~predp(X4) | ~preds(X4)) & room(X4)) & ~! [X5] : ~room(X5) & ! [X6] : (room(X6) => ~predt(X6)) & ! [X7] : (room(X7) => ~predg(X7)) & ? [X8,X9] : (X8 != X9 & ~~prede(X9) & ~~prede(X8) & room(X9) & room(X8)) & ! [X10] : (room(X10) => ~predi(X10)) & ! [X11] : (room(X11) => ~predh(X11)) & ~predg(mary) & (! [X12] : (room(X12) => (~predg(X12) & predv(X12))) => ! [X13] : (room(X13) => predz(X13))) & (! [X14] : (room(X14) => ~preds(X14)) => ! [X15] : (room(X15) => (~predg(X15) & predv(X15)))) & (! [X16] : (anywhere(X16) => (~preda(X16) | ~predi(X16))) <~> ~predl(mary)) & (~predt(mary) => (~predg(paul) & ~predk(paul))) & (~predg(paul) <~> ~predz(paul)) & ! [X17] : (room(X17) => (paul = X17 | mary = X17)) & room(paul) & room(mary) [pure predicate removal 51] 53. ! [X0] : (room(X0) => ((~prede(X0) & ~predk(X0)) => ~preds(X0))) & ! [X1] : (room(X1) => (~preda(X1) & ~predk(X1))) & ! [X2,X3] : ((~(~predp(X3) | ~preds(X3)) & ~(~predp(X2) | ~preds(X2)) & room(X3) & room(X2)) => X2 = X3) & ? [X4] : (~(~predp(X4) | ~preds(X4)) & room(X4)) & ~! [X5] : ~room(X5) & ! [X6] : (room(X6) => ~predt(X6)) & ! [X7] : (room(X7) => ~predg(X7)) & ? [X8,X9] : (X8 != X9 & ~~prede(X9) & ~~prede(X8) & room(X9) & room(X8)) & ! [X10] : (room(X10) => ~predi(X10)) & ~predg(mary) & (! [X12] : (room(X12) => (~predg(X12) & predv(X12))) => ! [X13] : (room(X13) => predz(X13))) & (! [X14] : (room(X14) => ~preds(X14)) => ! [X15] : (room(X15) => (~predg(X15) & predv(X15)))) & (! [X16] : (anywhere(X16) => (~preda(X16) | ~predi(X16))) <~> ~predl(mary)) & (~predt(mary) => (~predg(paul) & ~predk(paul))) & (~predg(paul) <~> ~predz(paul)) & ! [X17] : (room(X17) => (paul = X17 | mary = X17)) & room(paul) & room(mary) [pure predicate removal 52] 125. ! [X0] : ((~preds(X0) | (prede(X0) | predk(X0))) | ~room(X0)) & ! [X1] : ((~preda(X1) & ~predk(X1)) | ~room(X1)) & ! [X2,X3] : (X2 = X3 | ((~predp(X3) | ~preds(X3)) | (~predp(X2) | ~preds(X2)) | ~room(X3) | ~room(X2))) & ? [X4] : ((predp(X4) & preds(X4)) & room(X4)) & ? [X5] : room(X5) & ! [X6] : (~predt(X6) | ~room(X6)) & ! [X7] : (~predg(X7) | ~room(X7)) & ? [X8,X9] : (X8 != X9 & prede(X9) & prede(X8) & room(X9) & room(X8)) & ! [X10] : (~predi(X10) | ~room(X10)) & ~predg(mary) & (! [X13] : (predz(X13) | ~room(X13)) | ? [X12] : ((predg(X12) | ~predv(X12)) & room(X12))) & (! [X15] : ((~predg(X15) & predv(X15)) | ~room(X15)) | ? [X14] : (preds(X14) & room(X14))) & (! [X16] : ((~preda(X16) | ~predi(X16)) | ~anywhere(X16)) <~> ~predl(mary)) & ((~predg(paul) & ~predk(paul)) | predt(mary)) & (~predg(paul) <~> ~predz(paul)) & ! [X17] : ((paul = X17 | mary = X17) | ~room(X17)) & room(paul) & room(mary) [ennf transformation 53] 126. ! [X0] : (~preds(X0) | prede(X0) | predk(X0) | ~room(X0)) & ! [X1] : ((~preda(X1) & ~predk(X1)) | ~room(X1)) & ! [X2,X3] : (X2 = X3 | ~predp(X3) | ~preds(X3) | ~predp(X2) | ~preds(X2) | ~room(X3) | ~room(X2)) & ? [X4] : (predp(X4) & preds(X4) & room(X4)) & ? [X5] : room(X5) & ! [X6] : (~predt(X6) | ~room(X6)) & ! [X7] : (~predg(X7) | ~room(X7)) & ? [X8,X9] : (X8 != X9 & prede(X9) & prede(X8) & room(X9) & room(X8)) & ! [X10] : (~predi(X10) | ~room(X10)) & ~predg(mary) & (! [X13] : (predz(X13) | ~room(X13)) | ? [X12] : ((predg(X12) | ~predv(X12)) & room(X12))) & (! [X15] : ((~predg(X15) & predv(X15)) | ~room(X15)) | ? [X14] : (preds(X14) & room(X14))) & (! [X16] : (~preda(X16) | ~predi(X16) | ~anywhere(X16)) <~> ~predl(mary)) & ((~predg(paul) & ~predk(paul)) | predt(mary)) & (~predg(paul) <~> ~predz(paul)) & ! [X17] : (paul = X17 | mary = X17 | ~room(X17)) & room(paul) & room(mary) [flattening 125] 127. ~prede(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 45] 128. ~prede(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 127] 130. ! [X0] : (~preds(X0) | prede(X0) | predk(X0) | ~room(X0)) & ! [X1] : ((~preda(X1) & ~predk(X1)) | ~room(X1)) & ! [X2,X3] : (X2 = X3 | ~predp(X3) | ~preds(X3) | ~predp(X2) | ~preds(X2) | ~room(X3) | ~room(X2)) & ? [X4] : (predp(X4) & preds(X4) & room(X4)) & ? [X5] : room(X5) & ! [X6] : (~predt(X6) | ~room(X6)) & ! [X7] : (~predg(X7) | ~room(X7)) & ? [X8,X9] : (X8 != X9 & prede(X9) & prede(X8) & room(X9) & room(X8)) & ! [X10] : (~predi(X10) | ~room(X10)) & ~predg(mary) & (! [X13] : (predz(X13) | ~room(X13)) | ? [X12] : ((predg(X12) | ~predv(X12)) & room(X12))) & (! [X15] : ((~predg(X15) & predv(X15)) | ~room(X15)) | ? [X14] : (preds(X14) & room(X14))) & ((predl(mary) | ? [X16] : (preda(X16) & predi(X16) & anywhere(X16))) & (~predl(mary) | ! [X16] : (~preda(X16) | ~predi(X16) | ~anywhere(X16)))) & ((~predg(paul) & ~predk(paul)) | predt(mary)) & ((predz(paul) | predg(paul)) & (~predz(paul) | ~predg(paul))) & ! [X17] : (paul = X17 | mary = X17 | ~room(X17)) & room(paul) & room(mary) [nnf transformation 126] 131. ! [X0] : (~preds(X0) | prede(X0) | predk(X0) | ~room(X0)) & ! [X1] : ((~preda(X1) & ~predk(X1)) | ~room(X1)) & ! [X2,X3] : (X2 = X3 | ~predp(X3) | ~preds(X3) | ~predp(X2) | ~preds(X2) | ~room(X3) | ~room(X2)) & ? [X4] : (predp(X4) & preds(X4) & room(X4)) & ? [X5] : room(X5) & ! [X6] : (~predt(X6) | ~room(X6)) & ! [X7] : (~predg(X7) | ~room(X7)) & ? [X8,X9] : (X8 != X9 & prede(X9) & prede(X8) & room(X9) & room(X8)) & ! [X10] : (~predi(X10) | ~room(X10)) & ~predg(mary) & (! [X13] : (predz(X13) | ~room(X13)) | ? [X12] : ((predg(X12) | ~predv(X12)) & room(X12))) & (! [X15] : ((~predg(X15) & predv(X15)) | ~room(X15)) | ? [X14] : (preds(X14) & room(X14))) & (predl(mary) | ? [X16] : (preda(X16) & predi(X16) & anywhere(X16))) & (~predl(mary) | ! [X16] : (~preda(X16) | ~predi(X16) | ~anywhere(X16))) & ((~predg(paul) & ~predk(paul)) | predt(mary)) & (predz(paul) | predg(paul)) & (~predz(paul) | ~predg(paul)) & ! [X17] : (paul = X17 | mary = X17 | ~room(X17)) & room(paul) & room(mary) [flattening 130] 132. ! [X0] : (~preds(X0) | prede(X0) | predk(X0) | ~room(X0)) & ! [X1] : ((~preda(X1) & ~predk(X1)) | ~room(X1)) & ! [X2,X3] : (X2 = X3 | ~predp(X3) | ~preds(X3) | ~predp(X2) | ~preds(X2) | ~room(X3) | ~room(X2)) & ? [X4] : (predp(X4) & preds(X4) & room(X4)) & ? [X5] : room(X5) & ! [X6] : (~predt(X6) | ~room(X6)) & ! [X7] : (~predg(X7) | ~room(X7)) & ? [X8,X9] : (X8 != X9 & prede(X9) & prede(X8) & room(X9) & room(X8)) & ! [X10] : (~predi(X10) | ~room(X10)) & ~predg(mary) & (! [X11] : (predz(X11) | ~room(X11)) | ? [X12] : ((predg(X12) | ~predv(X12)) & room(X12))) & (! [X13] : ((~predg(X13) & predv(X13)) | ~room(X13)) | ? [X14] : (preds(X14) & room(X14))) & (predl(mary) | ? [X15] : (preda(X15) & predi(X15) & anywhere(X15))) & (~predl(mary) | ! [X16] : (~preda(X16) | ~predi(X16) | ~anywhere(X16))) & ((~predg(paul) & ~predk(paul)) | predt(mary)) & (predz(paul) | predg(paul)) & (~predz(paul) | ~predg(paul)) & ! [X17] : (paul = X17 | mary = X17 | ~room(X17)) & room(paul) & room(mary) [rectify 131] 133. ? [X4] : (predp(X4) & preds(X4) & room(X4)) => (predp(sK0) & preds(sK0) & room(sK0)) [choice axiom] 134. ? [X5] : room(X5) => room(sK1) [choice axiom] 135. ? [X8,X9] : (X8 != X9 & prede(X9) & prede(X8) & room(X9) & room(X8)) => (sK2 != sK3 & prede(sK3) & prede(sK2) & room(sK3) & room(sK2)) [choice axiom] 136. ? [X12] : ((predg(X12) | ~predv(X12)) & room(X12)) => ((predg(sK4) | ~predv(sK4)) & room(sK4)) [choice axiom] 137. ? [X14] : (preds(X14) & room(X14)) => (preds(sK5) & room(sK5)) [choice axiom] 138. ? [X15] : (preda(X15) & predi(X15) & anywhere(X15)) => (preda(sK6) & predi(sK6) & anywhere(sK6)) [choice axiom] 139. ! [X0] : (~preds(X0) | prede(X0) | predk(X0) | ~room(X0)) & ! [X1] : ((~preda(X1) & ~predk(X1)) | ~room(X1)) & ! [X2,X3] : (X2 = X3 | ~predp(X3) | ~preds(X3) | ~predp(X2) | ~preds(X2) | ~room(X3) | ~room(X2)) & (predp(sK0) & preds(sK0) & room(sK0)) & room(sK1) & ! [X6] : (~predt(X6) | ~room(X6)) & ! [X7] : (~predg(X7) | ~room(X7)) & (sK2 != sK3 & prede(sK3) & prede(sK2) & room(sK3) & room(sK2)) & ! [X10] : (~predi(X10) | ~room(X10)) & ~predg(mary) & (! [X11] : (predz(X11) | ~room(X11)) | ((predg(sK4) | ~predv(sK4)) & room(sK4))) & (! [X13] : ((~predg(X13) & predv(X13)) | ~room(X13)) | (preds(sK5) & room(sK5))) & (predl(mary) | (preda(sK6) & predi(sK6) & anywhere(sK6))) & (~predl(mary) | ! [X16] : (~preda(X16) | ~predi(X16) | ~anywhere(X16))) & ((~predg(paul) & ~predk(paul)) | predt(mary)) & (predz(paul) | predg(paul)) & (~predz(paul) | ~predg(paul)) & ! [X17] : (paul = X17 | mary = X17 | ~room(X17)) & room(paul) & room(mary) [skolemisation 132,138,137,136,135,134,133] 140. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK7 & mary != sK7 & room(sK7)) [choice axiom] 141. ~prede(mary) | (paul != sK7 & mary != sK7 & room(sK7)) | ~room(paul) | ~room(mary) [skolemisation 128,140] 223. room(mary) [cnf transformation 139] 224. room(paul) [cnf transformation 139] 225. ~room(X17) | mary = X17 | paul = X17 [cnf transformation 139] 242. room(sK2) [cnf transformation 139] 243. room(sK3) [cnf transformation 139] 244. prede(sK2) [cnf transformation 139] 245. prede(sK3) [cnf transformation 139] 246. sK2 != sK3 [cnf transformation 139] 257. ~prede(mary) | room(sK7) | ~room(paul) | ~room(mary) [cnf transformation 141] 258. ~prede(mary) | mary != sK7 | ~room(paul) | ~room(mary) [cnf transformation 141] 259. ~prede(mary) | paul != sK7 | ~room(paul) | ~room(mary) [cnf transformation 141] 329. ~prede(mary) | paul != sK7 | ~room(mary) [subsumption resolution 259,224] 330. ~prede(mary) | paul != sK7 [subsumption resolution 329,223] 332. 16 <=> paul = sK7 [avatar definition] 334. paul != sK7 <- (~16) [avatar component clause 332] 336. 17 <=> prede(mary) [avatar definition] 339. ~16 | ~17 [avatar split clause 330,336,332] 340. ~prede(mary) | mary != sK7 | ~room(mary) [subsumption resolution 258,224] 341. ~prede(mary) | mary != sK7 [subsumption resolution 340,223] 343. 18 <=> mary = sK7 [avatar definition] 345. mary != sK7 <- (~18) [avatar component clause 343] 346. ~18 | ~17 [avatar split clause 341,336,343] 347. ~prede(mary) | room(sK7) | ~room(mary) [subsumption resolution 257,224] 348. ~prede(mary) | room(sK7) [subsumption resolution 347,223] 350. 19 <=> room(sK7) [avatar definition] 352. room(sK7) <- (19) [avatar component clause 350] 353. 19 | ~17 [avatar split clause 348,336,350] 378. mary = sK2 | paul = sK2 [resolution 225,242] 379. mary = sK3 | paul = sK3 [resolution 225,243] 399. 24 <=> paul = sK2 [avatar definition] 403. 25 <=> mary = sK2 [avatar definition] 405. mary = sK2 <- (25) [avatar component clause 403] 406. 24 | 25 [avatar split clause 378,403,399] 408. 26 <=> paul = sK3 [avatar definition] 410. paul = sK3 <- (26) [avatar component clause 408] 412. 27 <=> mary = sK3 [avatar definition] 414. mary = sK3 <- (27) [avatar component clause 412] 415. 26 | 27 [avatar split clause 379,412,408] 420. paul != sK2 <- (26) [backward demodulation 246,410] 421. ~24 | ~26 [avatar split clause 420,408,399] 437. prede(mary) <- (25) [backward demodulation 244,405] 441. 17 | ~25 [avatar split clause 437,403,336] 442. mary = sK7 | paul = sK7 <- (19) [resolution 352,225] 445. paul = sK7 <- (~18, 19) [subsumption resolution 442,345] 446. $false <- (~16, ~18, 19) [subsumption resolution 445,334] 447. 16 | 18 | ~19 [avatar contradiction clause 446] 451. prede(mary) <- (27) [backward demodulation 245,414] 453. 17 | ~27 [avatar split clause 451,412,336] 460. $false [avatar sat refutation 339,346,353,406,415,421,441,447,453] % SZS output end Proof for 2956281987487807921932969 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.690514
Sue, Elizabeth, Aisha are the only persons in the room. Everyone anywhere is right-handed if they is a drone photographer. Sue who does not regularly goes on multi-day backpacking trips in national parks is not passionate about collecting and restoring classic cars.
Everyone anywhere is passionate about collecting and restoring classic cars.
contradiction
room(sue)&room(elizabeth)&room(aisha)&(![X]:(room(X)=>(X='sue'|X='elizabeth'|X='aisha')))& (![X]:(anywhere(X)=>(((is_a_drone_photographer(X))=>(is_right-handed(X))))))& (~(is_passionate_about_collecting_and_restoring_classic_cars(elizabeth)))& (is_a_client_of_Meta(elizabeth))& ((uses_an_ios_phone(aisha))&(collects_rare_minerals(aisha)))& ((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(sue))&(is_not_passionate_about_collecting_and_restoring_classic_cars(sue)))& (((watches_fantasy_movies(sue))<~>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(sue))))& (((?[X]:(room(X)&~((collects_rare_minerals(X))|(streams_on_Twitch(X)))))&(![X,Y]:((room(X)&room(Y)&(~((collects_rare_minerals(X))|(streams_on_Twitch(X))))&(~((collects_rare_minerals(Y))|(streams_on_Twitch(Y)))))=>(X=Y)))))& (is_an_active_member_of_a_local_robotics_club(elizabeth))& (regularly_goes_on_multi-day_backpacking_trips_in_national_parks(elizabeth))& (is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(sue))& (![X]:(anywhere(X)=>(collects_rare_and_antique_scientific_instruments(X))))& (((does_not_enjoy_stargazing(elizabeth))<~>(collects_rare_and_antique_scientific_instruments(elizabeth))))& (streams_on_Twitch(aisha))& ((((collects_rare_and_antique_scientific_instruments(aisha))&(enjoys_stargazing(aisha))&(participates_in_citizen_science_projects_related_to_wildlife_monitoring(aisha))))&(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(aisha)))& (is_a_client_of_Meta(aisha))
room(sue)&room(elizabeth)&room(aisha)&(![X]:(room(X)=>(X='sue'|X='elizabeth'|X='aisha')))& ![X]:(anywhere(X)=>(is_passionate_about_collecting_and_restoring_classic_cars(X)))
[ "b4", "p5", "hypothesis" ]
% SZS status Unsatisfiable for 8016061315055579566791062 % SZS output start Proof for 8016061315055579566791062 5. ! [X0] : anywhere(X0) [input b4] 49. ~predb(mary) & ~predp(mary) [input p5] 60. ! [X0] : (anywhere(X0) => predb(X0)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 62. ! [X0] : (anywhere(X0) => predb(X0)) & ! [X1] : (room(X1) => (fred = X1 | paul = X1 | mary = X1)) & room(fred) & room(paul) & room(mary) [rectify 60] 145. ! [X0] : (predb(X0) | ~anywhere(X0)) & ! [X1] : ((fred = X1 | paul = X1 | mary = X1) | ~room(X1)) & room(fred) & room(paul) & room(mary) [ennf transformation 62] 146. ! [X0] : (predb(X0) | ~anywhere(X0)) & ! [X1] : (fred = X1 | paul = X1 | mary = X1 | ~room(X1)) & room(fred) & room(paul) & room(mary) [flattening 145] 152. anywhere(X0) [cnf transformation 5] 240. ~predb(mary) [cnf transformation 49] 260. predb(X0) | ~anywhere(X0) [cnf transformation 146] 274. predb(X0) [subsumption resolution 260,152] 276. $false [resolution 274,240] % SZS output end Proof for 8016061315055579566791062 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.052899
Anthony is the only person in the room. “Anthony has a curated collection of mid-century modern furniture” only if “Anthony practices tai chi”. “Anthony collects rare and antique scientific instruments” unless “Anthony enjoys windsurfing”. If someone collects rare and antique scientific instruments then he/she has a curated collection of mid-century modern furniture and vice versa. Anthony has a curated collection of mid-century modern furniture. If someone enjoys windsurfing, has a curated collection of mid-century modern furniture and drives a hybrid car then he/she has a curated collection of mid-century modern furniture and vice versa. Anthony practices tai chi. Anthony enjoys windsurfing. Someone in the room practices tai chi.
Anthony practices tai chi, has a curated collection of mid-century modern furniture and enjoys windsurfing.
entailment
room(anthony)&(![X]:(room(X)=>(X='anthony')))& ((has_a_curated_collection_of_mid-century_modern_furniture(anthony))=>(practices_tai_chi(anthony)))& (~(enjoys_windsurfing(anthony))=>(collects_rare_and_antique_scientific_instruments(anthony)))& ((![X]:((collects_rare_and_antique_scientific_instruments(X))<=>(has_a_curated_collection_of_mid-century_modern_furniture(X)))))& (has_a_curated_collection_of_mid-century_modern_furniture(anthony))& ((![X]:((((enjoys_windsurfing(X))&(has_a_curated_collection_of_mid-century_modern_furniture(X))&(drives_a_hybrid_car(X))))<=>(has_a_curated_collection_of_mid-century_modern_furniture(X)))))& (practices_tai_chi(anthony))& (enjoys_windsurfing(anthony))& (?[X]:(room(X)&(practices_tai_chi(X))))
room(anthony)&(![X]:(room(X)=>(X='anthony')))& ((practices_tai_chi(anthony))&(has_a_curated_collection_of_mid-century_modern_furniture(anthony))&(enjoys_windsurfing(anthony)))
[ "p0", "p4", "p5", "p6", "hypothesis" ]
% SZS status Unsatisfiable for 1521084457132061965181950 % SZS output start Proof for 1521084457132061965181950 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 48. preda(mary) [input p4] 49. ! [X0] : ((predc(X0) & preda(X0) & predb(X0)) <=> preda(X0)) [input p5] 50. prede(mary) [input p6] 53. ~(predb(mary) & preda(mary) & prede(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 127. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 131. ~predb(mary) | ~preda(mary) | ~prede(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 53] 133. ! [X0] : (((predc(X0) & preda(X0) & predb(X0)) | ~preda(X0)) & (preda(X0) | (~predc(X0) | ~preda(X0) | ~predb(X0)))) [nnf transformation 49] 134. ! [X0] : (((predc(X0) & preda(X0) & predb(X0)) | ~preda(X0)) & (preda(X0) | ~predc(X0) | ~preda(X0) | ~predb(X0))) [flattening 133] 137. ? [X0] : (mary != X0 & room(X0)) => (mary != sK1 & room(sK1)) [choice axiom] 138. ~predb(mary) | ~preda(mary) | ~prede(mary) | (mary != sK1 & room(sK1)) | ~room(mary) [skolemisation 131,137] 219. room(mary) [cnf transformation 127] 220. ~room(X0) | mary = X0 [cnf transformation 127] 224. preda(mary) [cnf transformation 48] 226. ~preda(X0) | predb(X0) [cnf transformation 134] 229. prede(mary) [cnf transformation 50] 233. ~predb(mary) | ~preda(mary) | ~prede(mary) | room(sK1) | ~room(mary) [cnf transformation 138] 234. ~predb(mary) | ~preda(mary) | ~prede(mary) | mary != sK1 | ~room(mary) [cnf transformation 138] 236. 1 <=> preda(mary) [avatar definition] 240. 2 <=> prede(mary) [avatar definition] 253. 1 [avatar split clause 224,236] 254. 2 [avatar split clause 229,240] 256. ~predb(mary) | ~preda(mary) | ~prede(mary) | mary != sK1 [subsumption resolution 234,219] 257. ~preda(mary) | ~prede(mary) | mary != sK1 [subsumption resolution 256,226] 259. 5 <=> mary = sK1 [avatar definition] 261. mary != sK1 <- (~5) [avatar component clause 259] 262. ~5 | ~2 | ~1 [avatar split clause 257,236,240,259] 263. ~predb(mary) | ~preda(mary) | ~prede(mary) | room(sK1) [subsumption resolution 233,219] 264. ~preda(mary) | ~prede(mary) | room(sK1) [subsumption resolution 263,226] 266. 6 <=> room(sK1) [avatar definition] 268. room(sK1) <- (6) [avatar component clause 266] 269. 6 | ~2 | ~1 [avatar split clause 264,236,240,266] 274. mary = sK1 <- (6) [resolution 220,268] 277. $false <- (~5, 6) [subsumption resolution 274,261] 278. 5 | ~6 [avatar contradiction clause 277] 279. $false [avatar sat refutation 253,254,262,269,278] % SZS output end Proof for 1521084457132061965181950 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.178939
Ron, Colleen are the only persons in the room. More than one person in the room is louder than Ruth or is louder than Darryl or both. Ron is louder than Thomas. Colleen who is louder than Ruth or is louder than Darryl or both is louder than Thomas, is louder than Darryl or is louder than Ruth. Louise is louder than Ron. Colleen is louder than Ruth or is louder than Thomas or both. Colleen is louder than Ruth. More than one person in the room is louder than Thomas. Someone in the room is louder than Darryl, is louder than Louise or is louder than Charles. If someone is louder than Ruth, is louder than Thomas and is louder than Charles then he/she neither is louder than Thomas nor is louder than Charles and vice versa.
Colleen is louder than Thomas.
entailment
room(ron)&room(colleen)&(![X]:(room(X)=>(X='ron'|X='colleen')))& ((?[X,Y]:(room(X)&room(Y)&(((louder(ruth,X))|(louder(darryl,X)))&((louder(ruth,Y))|(louder(darryl,Y))))&(X!=Y))))& (louder(thomas,ron))& ((((louder(ruth,colleen))|(louder(darryl,colleen))))&(((louder(thomas,colleen))|(louder(darryl,colleen))|(louder(ruth,colleen)))))& (louder(ron,louise))& (((louder(ruth,colleen))|(louder(thomas,colleen))))& (louder(ruth,colleen))& ((?[X,Y]:(room(X)&room(Y)&(louder(thomas,X)&louder(thomas,Y))&(X!=Y))))& (?[X]:(room(X)&(((louder(darryl,X))|(louder(louise,X))|(louder(charles,X))))))& ((![X]:((((louder(ruth,X))&(louder(thomas,X))&(louder(charles,X))))<=>(~((louder(thomas,X))|(louder(charles,X)))))))
room(ron)&room(colleen)&(![X]:(room(X)=>(X='ron'|X='colleen')))& louder(thomas,colleen)
[ "p0", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 136805830313738340176454 % SZS output start Proof for 136805830313738340176454 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 51. ? [X0,X1] : (X0 != X1 & louder(fred,X1) & louder(fred,X0) & room(X1) & room(X0)) [input p7] 54. ~(louder(fred,paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 127. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 128. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 127] 130. ~louder(fred,paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 54] 131. ~louder(fred,paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 130] 135. ? [X0,X1] : (X0 != X1 & louder(fred,X1) & louder(fred,X0) & room(X1) & room(X0)) => (sK2 != sK3 & louder(fred,sK3) & louder(fred,sK2) & room(sK3) & room(sK2)) [choice axiom] 136. sK2 != sK3 & louder(fred,sK3) & louder(fred,sK2) & room(sK3) & room(sK2) [skolemisation 51,135] 141. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK5 & mary != sK5 & room(sK5)) [choice axiom] 142. ~louder(fred,paul) | (paul != sK5 & mary != sK5 & room(sK5)) | ~room(paul) | ~room(mary) [skolemisation 131,141] 223. room(mary) [cnf transformation 128] 224. room(paul) [cnf transformation 128] 225. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 128] 237. room(sK2) [cnf transformation 136] 238. room(sK3) [cnf transformation 136] 239. louder(fred,sK2) [cnf transformation 136] 240. louder(fred,sK3) [cnf transformation 136] 241. sK2 != sK3 [cnf transformation 136] 249. ~louder(fred,paul) | room(sK5) | ~room(paul) | ~room(mary) [cnf transformation 142] 250. ~louder(fred,paul) | mary != sK5 | ~room(paul) | ~room(mary) [cnf transformation 142] 251. ~louder(fred,paul) | paul != sK5 | ~room(paul) | ~room(mary) [cnf transformation 142] 275. 5 <=> louder(fred,paul) [avatar definition] 276. ~louder(fred,paul) <- (~5) [avatar component clause 275] 303. ~louder(fred,paul) | paul != sK5 | ~room(mary) [subsumption resolution 251,224] 304. ~louder(fred,paul) | paul != sK5 [subsumption resolution 303,223] 306. 11 <=> paul = sK5 [avatar definition] 308. paul != sK5 <- (~11) [avatar component clause 306] 309. ~11 | ~5 [avatar split clause 304,275,306] 310. ~louder(fred,paul) | mary != sK5 | ~room(mary) [subsumption resolution 250,224] 311. ~louder(fred,paul) | mary != sK5 [subsumption resolution 310,223] 313. 12 <=> mary = sK5 [avatar definition] 315. mary != sK5 <- (~12) [avatar component clause 313] 316. ~12 | ~5 [avatar split clause 311,275,313] 317. ~louder(fred,paul) | room(sK5) | ~room(mary) [subsumption resolution 249,224] 318. ~louder(fred,paul) | room(sK5) [subsumption resolution 317,223] 320. 13 <=> room(sK5) [avatar definition] 322. room(sK5) <- (13) [avatar component clause 320] 323. 13 | ~5 [avatar split clause 318,275,320] 328. mary = sK2 | paul = sK2 [resolution 225,237] 329. mary = sK3 | paul = sK3 [resolution 225,238] 350. 18 <=> paul = sK2 [avatar definition] 352. paul = sK2 <- (18) [avatar component clause 350] 354. 19 <=> mary = sK2 [avatar definition] 356. mary = sK2 <- (19) [avatar component clause 354] 357. 18 | 19 [avatar split clause 328,354,350] 359. 20 <=> paul = sK3 [avatar definition] 361. paul = sK3 <- (20) [avatar component clause 359] 363. 21 <=> mary = sK3 [avatar definition] 366. 20 | 21 [avatar split clause 329,363,359] 380. louder(fred,paul) <- (20) [backward demodulation 240,361] 386. louder(fred,paul) <- (18) [backward demodulation 239,352] 387. $false <- (~5, 18) [subsumption resolution 386,276] 388. 5 | ~18 [avatar contradiction clause 387] 396. 5 | ~20 [avatar split clause 380,359,275] 403. mary = sK5 | paul = sK5 <- (13) [resolution 322,225] 404. paul = sK5 <- (~12, 13) [subsumption resolution 403,315] 405. $false <- (~11, ~12, 13) [subsumption resolution 404,308] 406. 11 | 12 | ~13 [avatar contradiction clause 405] 407. mary != sK3 <- (19) [forward demodulation 241,356] 408. ~21 | ~19 [avatar split clause 407,354,363] 412. $false [avatar sat refutation 309,316,323,357,366,388,396,406,408] % SZS output end Proof for 136805830313738340176454 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0.028065
Eric, Daniel, Thomas are the only persons in the room. Someone in the room is not a old person. Everyone anywhere is not old if and only if they is not a old person. Thomas is not a tall quiet person. Daniel and Eric are old. Thomas and Eric are quiet persons. Thomas is not a quiet person, is not a kind tall person or is not not not old. Eric and Thomas are not tall. If someone is kind then he/she is old and vice versa. Everyone anywhere is old only if they is not a tall person. If someone is not kind and is tall then he/she is not a tall person and is not a quiet person and vice versa. Someone in the room is quiet. All old persons are kind.
Thomas and Daniel are quiet.
entailment
room(eric)&room(daniel)&room(thomas)&(![X]:(room(X)=>(X='eric'|X='daniel'|X='thomas')))& (?[X]:(room(X)&(~(old(X)&person(X)))))& (![X]:(anywhere(X)=>(((~old(X))<=>(~(old(X)&person(X)))))))& (~(tall(thomas)&quiet(thomas)&person(thomas)))& (old(daniel)&old(eric))& (quiet(thomas)&person(thomas)&quiet(eric)&person(eric))& (((~(quiet(thomas)&person(thomas)))|(~(kind(thomas)&tall(thomas)&person(thomas)))|(~~~old(thomas))))& (~tall(eric)&~tall(thomas))& ((![X]:((kind(X))<=>(old(X)))))& (![X]:(anywhere(X)=>(((~(tall(X)&person(X)))<=(old(X))))))& ((![X]:((((~kind(X))&(tall(X))))<=>(((~(tall(X)&person(X)))&(~(quiet(X)&person(X))))))))& (?[X]:(room(X)&(quiet(X))))& (![X]:(old(X)=>kind(X)))
room(eric)&room(daniel)&room(thomas)&(![X]:(room(X)=>(X='eric'|X='daniel'|X='thomas')))& quiet(thomas)&quiet(daniel)
[ "b4", "p0", "p2", "p4", "p5", "p9", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 7175163131717274584649011 % SZS output start Proof for 7175163131717274584649011 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 46. ! [X0] : (anywhere(X0) => (~old(X0) <=> ~(person(X0) & old(X0)))) [input p2] 48. old(mary) & old(paul) [input p4] 49. person(mary) & quiet(mary) & person(fred) & quiet(fred) [input p5] 53. ! [X0] : (anywhere(X0) => (old(X0) => ~(person(X0) & tall(X0)))) [input p9] 54. ! [X0] : ((tall(X0) & ~kind(X0)) <=> (~(person(X0) & quiet(X0)) & ~(person(X0) & tall(X0)))) [input p10] 57. ~(quiet(paul) & quiet(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 129. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 130. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 129] 132. ! [X0] : ((~old(X0) <=> (~person(X0) | ~old(X0))) | ~anywhere(X0)) [ennf transformation 46] 136. ! [X0] : (((~person(X0) | ~tall(X0)) | ~old(X0)) | ~anywhere(X0)) [ennf transformation 53] 137. ! [X0] : (~person(X0) | ~tall(X0) | ~old(X0) | ~anywhere(X0)) [flattening 136] 138. ! [X0] : ((tall(X0) & ~kind(X0)) <=> ((~person(X0) | ~quiet(X0)) & (~person(X0) | ~tall(X0)))) [ennf transformation 54] 140. ~quiet(paul) | ~quiet(fred) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 57] 141. ~quiet(paul) | ~quiet(fred) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 140] 142. ! [X0] : (sP0(X0) <=> ((~person(X0) | ~quiet(X0)) & (~person(X0) | ~tall(X0)))) [predicate definition introduction] 143. ! [X0] : ((tall(X0) & ~kind(X0)) <=> sP0(X0)) [definition folding 138,142] 147. ! [X0] : (((~old(X0) | (person(X0) & old(X0))) & ((~person(X0) | ~old(X0)) | old(X0))) | ~anywhere(X0)) [nnf transformation 132] 148. ! [X0] : (((~old(X0) | (person(X0) & old(X0))) & (~person(X0) | ~old(X0) | old(X0))) | ~anywhere(X0)) [flattening 147] 150. ! [X0] : ((sP0(X0) | ((person(X0) & quiet(X0)) | (person(X0) & tall(X0)))) & (((~person(X0) | ~quiet(X0)) & (~person(X0) | ~tall(X0))) | ~sP0(X0))) [nnf transformation 142] 151. ! [X0] : ((sP0(X0) | (person(X0) & quiet(X0)) | (person(X0) & tall(X0))) & (((~person(X0) | ~quiet(X0)) & (~person(X0) | ~tall(X0))) | ~sP0(X0))) [flattening 150] 152. ! [X0] : (((tall(X0) & ~kind(X0)) | ~sP0(X0)) & (sP0(X0) | (~tall(X0) | kind(X0)))) [nnf transformation 143] 153. ! [X0] : (((tall(X0) & ~kind(X0)) | ~sP0(X0)) & (sP0(X0) | ~tall(X0) | kind(X0))) [flattening 152] 156. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 157. ~quiet(paul) | ~quiet(fred) | (fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 141,156] 158. anywhere(X0) [cnf transformation 5] 239. room(mary) [cnf transformation 130] 240. room(paul) [cnf transformation 130] 241. room(fred) [cnf transformation 130] 242. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 130] 247. ~old(X0) | person(X0) | ~anywhere(X0) [cnf transformation 148] 249. old(paul) [cnf transformation 48] 251. quiet(fred) [cnf transformation 49] 260. ~person(X0) | ~tall(X0) | ~old(X0) | ~anywhere(X0) [cnf transformation 137] 263. sP0(X0) | quiet(X0) | tall(X0) [cnf transformation 151] 269. ~sP0(X0) | tall(X0) [cnf transformation 153] 273. ~quiet(paul) | ~quiet(fred) | room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 274. ~quiet(paul) | ~quiet(fred) | mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 275. ~quiet(paul) | ~quiet(fred) | paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 276. ~quiet(paul) | ~quiet(fred) | fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 157] 288. ~old(X0) | person(X0) [subsumption resolution 247,158] 294. 4 <=> quiet(fred) [avatar definition] 303. 4 [avatar split clause 251,294] 315. ~person(X0) | ~tall(X0) | ~old(X0) [subsumption resolution 260,158] 316. ~tall(X0) | ~old(X0) [subsumption resolution 315,288] 317. ~quiet(paul) | ~quiet(fred) | fred != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 276,241] 318. ~quiet(paul) | ~quiet(fred) | fred != sK3 | ~room(mary) [subsumption resolution 317,240] 319. ~quiet(paul) | ~quiet(fred) | fred != sK3 [subsumption resolution 318,239] 321. 8 <=> fred = sK3 [avatar definition] 323. fred != sK3 <- (~8) [avatar component clause 321] 325. 9 <=> quiet(paul) [avatar definition] 328. ~8 | ~4 | ~9 [avatar split clause 319,325,294,321] 329. ~quiet(paul) | ~quiet(fred) | paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 275,241] 330. ~quiet(paul) | ~quiet(fred) | paul != sK3 | ~room(mary) [subsumption resolution 329,240] 331. ~quiet(paul) | ~quiet(fred) | paul != sK3 [subsumption resolution 330,239] 333. 10 <=> paul = sK3 [avatar definition] 335. paul != sK3 <- (~10) [avatar component clause 333] 336. ~10 | ~4 | ~9 [avatar split clause 331,325,294,333] 337. ~quiet(paul) | ~quiet(fred) | mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 274,241] 338. ~quiet(paul) | ~quiet(fred) | mary != sK3 | ~room(mary) [subsumption resolution 337,240] 339. ~quiet(paul) | ~quiet(fred) | mary != sK3 [subsumption resolution 338,239] 341. 11 <=> mary = sK3 [avatar definition] 343. mary != sK3 <- (~11) [avatar component clause 341] 344. ~11 | ~4 | ~9 [avatar split clause 339,325,294,341] 345. ~quiet(paul) | ~quiet(fred) | room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 273,241] 346. ~quiet(paul) | ~quiet(fred) | room(sK3) | ~room(mary) [subsumption resolution 345,240] 347. ~quiet(paul) | ~quiet(fred) | room(sK3) [subsumption resolution 346,239] 349. 12 <=> room(sK3) [avatar definition] 351. room(sK3) <- (12) [avatar component clause 349] 352. 12 | ~4 | ~9 [avatar split clause 347,325,294,349] 370. quiet(X2) | tall(X2) | tall(X2) [resolution 263,269] 372. tall(X2) | quiet(X2) [duplicate literal removal 370] 375. ~old(X0) | quiet(X0) [resolution 372,316] 378. quiet(paul) [resolution 375,249] 382. 9 [avatar split clause 378,325] 432. paul = sK3 | mary = sK3 | fred = sK3 <- (12) [resolution 242,351] 459. mary = sK3 | fred = sK3 <- (~10, 12) [subsumption resolution 432,335] 460. fred = sK3 <- (~10, ~11, 12) [subsumption resolution 459,343] 461. $false <- (~8, ~10, ~11, 12) [subsumption resolution 460,323] 462. 8 | 10 | 11 | ~12 [avatar contradiction clause 461] 463. $false [avatar sat refutation 303,328,336,344,352,382,462] % SZS output end Proof for 7175163131717274584649011 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.691671
Tammara, Nancy are the only persons in the room. Either "everyone in the room regularly goes on multi-day backpacking trips in national parks or is not an avid hiker" or "Nancy is a professional photographer specializing in portrait photography" but not both. If "Nancy works on fridays" then "Tammara practices digital art". If "everyone in the room creates YouTube content or does not create YouTube content" then "Nancy regularly goes on multi-day backpacking trips in national parks". Everyone in the room creates YouTube content only if they does not collect limited-edition art prints from contemporary artists. Everyone outside the room is passionate about collecting and restoring classic cars if they does not collect limited-edition art prints from contemporary artists. Tammara enjoys bird watching. Everyone anywhere is passionate about collecting and restoring classic cars only if they is a professional photographer specializing in portrait photography. Everyone in the room who enjoys writing detailed reviews of new and classic board games either works on fridays or does not regularly goes on multi-day backpacking trips in national parks but not both. Tammara is an avid hiker. Tammara practices digital art. Everyone in the room who works on fridays does not collect limited-edition art prints from contemporary artists. Everyone in the room who does not collect limited-edition art prints from contemporary artists regularly goes on multi-day backpacking trips in national parks. Everyone in the room creates YouTube content if they works on fridays. Everyone in the room regularly goes on multi-day backpacking trips in national parks or does not create YouTube content. Everyone in the room who regularly goes on multi-day backpacking trips in national parks enjoys bird watching.
Nancy either does not create YouTube content or does not collect limited-edition art prints from contemporary artists but not both.
neutral
room(tammara)&room(nancy)&(![X]:(room(X)=>(X='tammara'|X='nancy')))& ((![X]:(room(X)=>(((is_not_an_avid_hiker(X))|(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))<~>(is_a_professional_photographer_specializing_in_portrait_photography(nancy)))& ((works_on_fridays(nancy))=>(practices_digital_art(tammara)))& ((![X]:(room(X)=>(((does_not_create_YouTube_content(X))|(creates_YouTube_content(X))))))=>(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(nancy)))& (![X]:(room(X)=>(((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))<=(creates_YouTube_content(X))))))& (![X]:(~room(X)=>(((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& (enjoys_bird_watching(tammara))& (![X]:(anywhere(X)=>(((is_a_professional_photographer_specializing_in_portrait_photography(X))<=(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(room(X)=>(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))=>(((works_on_fridays(X))<~>(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))))& (is_an_avid_hiker(tammara))& (practices_digital_art(tammara))& (![X]:(room(X)=>(((works_on_fridays(X))=>(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))))& (![X]:(room(X)=>(((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))=>(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))& (![X]:(room(X)=>(((works_on_fridays(X))=>(creates_YouTube_content(X))))))& (![X]:(room(X)=>(((does_not_create_YouTube_content(X))|(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))& (![X]:(room(X)=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))=>(enjoys_bird_watching(X))))))
room(tammara)&room(nancy)&(![X]:(room(X)=>(X='tammara'|X='nancy')))& ((does_not_create_YouTube_content(nancy))<~>(does_not_collect_limited-edition_art_prints_from_contemporary_artists(nancy)))
[]
null
0.375906
Henry, Mauricio, Rita, Richard, Ricky are the only persons in the room. If “everyone in the room collects luxury watches” then “if someone practices tai chi, enjoys landscape photography or is not a strong european then he/she collects antique jewelry” otherwise “Ricky hosts regular game nights featuring complex strategy games”. “Richard and Rita are not a patient persons” unless “everyone in the room does not collect antique clocks”. “Ricky writes a travel blog” unless “everyone outside the room is quiet”. If “everyone in the room is not a kind person” then “everyone in the room reads mystery novels”. If “everyone in the room reads mystery novels” then “someone who practices tai chi is a sibling of someone who is not a creative tourist”. “Not everyone in the room is a curious european” if “everyone in the room hosts a YouTube channel dedicated to art tutorials”. “Richard and Rita are respectively quiet and old” unless “Richard is an avid mountain climber who has scaled several peaks”. Either “Mauricio does not hate Catherine” or “everyone in the room does enjoy trail running” but not both. “No tall person is happy” unless “everyone in the room builds model airplanes”. “Everyone in the room does not hate Whitney” unless “Mauricio collects antique jewelry”. “Everyone in the room hosts themed dinner parties featuring gourmet home-cooked meals” if “no one in the room does not practice calligraphy”. Henry who reads mystery novels is strong. Richard is an avid mountain climber who has scaled several peaks. Everyone outside the room builds model airplanes. Henry who enjoys watercolor painting writes a travel blog. Everyone anywhere own a television. Everyone in the room is a generous tourist. No brave person is creative. Everyone in the room does not hate Whitney. Everyone in the room is not a wise tourist. Everyone in the room has a piercing. Mauricio writes in-depth travel guides for off-the-beaten-path destinations. All happy persons are funny.
Not everyone in the room is not a old person, is quiet and is not quiet.
entailment
room(henry)&room(mauricio)&room(rita)&room(richard)&room(ricky)&(![X]:(room(X)=>(X='henry'|X='mauricio'|X='rita'|X='richard'|X='ricky')))& (((![X]:(room(X)=>(collects_luxury_watches(X))))=>((![X]:((((practices_tai_chi(X))|(enjoys_landscape_photography(X))|(~(strong(X)&european(X)))))=>(collects_antique_jewelry(X))))))&((~(![X]:(room(X)=>(collects_luxury_watches(X)))))=>(hosts_regular_game_nights_featuring_complex_strategy_games(ricky))))& (~(![X]:(room(X)=>(does_not_collect_antique_clocks(X))))=>(~(patient(richard)&person(richard))&~(patient(rita)&person(rita))))& (~(![X]:(~room(X)=>(quiet(X))))=>(writes_a_travel_blog(ricky)))& (((![X]:(room(X)=>(~(kind(X)&person(X)))))=>(![X]:(room(X)=>(reads_mystery_novels(X)))))& ((![X]:(room(X)=>(reads_mystery_novels(X))))=>(?[X,Y]:((practices_tai_chi(X))&(~(creative(Y)&tourist(Y)))&(sibling(X,Y))))))& ((![X]:(room(X)=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))=>(~![X]:(room(X)=>(curious(X)&european(X)))))& (~(is_an_avid_mountain_climber_who_has_scaled_several_peaks(richard))=>((quiet(richard))&(old(rita))))& ((~hate(catherine,mauricio))<~>(![X]:(room(X)=>(does_enjoy_trail_running(X)))))& (~(![X]:(room(X)=>(builds_model_airplanes(X))))=>(~?[X]:(tall(X)=>happy(X))))& (~(collects_antique_jewelry(mauricio))=>(![X]:(room(X)=>(~hate(whitney,X)))))& ((~?[X]:(room(X)=>(does_not_practice_calligraphy(X))))=>(![X]:(room(X)=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)))))& ((reads_mystery_novels(henry))&(strong(henry)))& (is_an_avid_mountain_climber_who_has_scaled_several_peaks(richard))& (![X]:(~room(X)=>(builds_model_airplanes(X))))& ((enjoys_watercolor_painting(henry))&(writes_a_travel_blog(henry)))& (![X]:(anywhere(X)=>(own_a_television(X))))& (![X]:(room(X)=>(generous(X)&tourist(X))))& (~?[X]:(brave(X)=>creative(X)))& (![X]:(room(X)=>(~hate(whitney,X))))& (![X]:(room(X)=>(~(wise(X)&tourist(X)))))& (![X]:(room(X)=>(has_a_piercing(X))))& (writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(mauricio))& (![X]:(happy(X)=>funny(X)))
room(henry)&room(mauricio)&room(rita)&room(richard)&room(ricky)&(![X]:(room(X)=>(X='henry'|X='mauricio'|X='rita'|X='richard'|X='ricky')))& ~![X]:(room(X)=>(((~(old(X)&person(X)))&(quiet(X))&(~quiet(X)))))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 5204732750300119341360134 % SZS output start Proof for 5204732750300119341360134 44. ! [X0] : (happy(X0) => funny(X0)) & predl(paul) & ! [X0] : (room(X0) => predf(X0)) & ! [X0] : (room(X0) => ~(tourist(X0) & wise(X0))) & ! [X0] : (room(X0) => ~hate(susan,X0)) & ~? [X0] : (brave(X0) => creative(X0)) & ! [X0] : (room(X0) => (tourist(X0) & generous(X0))) & ! [X0] : (anywhere(X0) => predc(X0)) & predz(mary) & predy(mary) & ! [X0] : (~room(X0) => preds(X0)) & predg(alice) & strong(mary) & predx(mary) & (~? [X0] : (room(X0) => ~predj(X0)) => ! [X0] : (room(X0) => predd(X0))) & (~predi(paul) => ! [X0] : (room(X0) => ~hate(susan,X0))) & (~! [X0] : (room(X0) => preds(X0)) => ~? [X0] : (tall(X0) => happy(X0))) & (~hate(lucy,paul) <~> ! [X0] : (room(X0) => predo(X0))) & (~predg(alice) => (old(fred) & quiet(alice))) & (! [X0] : (room(X0) => predq(X0)) => ~! [X0] : (room(X0) => (european(X0) & curious(X0)))) & (! [X0] : (room(X0) => predx(X0)) => ? [X0,X1] : (sibling(X0,X1) & ~(tourist(X1) & creative(X1)) & predm(X0))) & (! [X0] : (room(X0) => ~(person(X0) & kind(X0))) => ! [X0] : (room(X0) => predx(X0))) & (~! [X0] : (~room(X0) => quiet(X0)) => predz(john)) & (~! [X0] : (room(X0) => ~predv(X0)) => (~(person(fred) & patient(fred)) & ~(person(alice) & patient(alice)))) & (~! [X0] : (room(X0) => predr(X0)) => predp(john)) & (! [X0] : (room(X0) => predr(X0)) => ! [X0] : ((~(european(X0) & strong(X0)) | predn(X0) | predm(X0)) => predi(X0))) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ~(~! [X0] : (room(X0) => (~quiet(X0) & quiet(X0) & ~(person(X0) & old(X0)))) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 46. ! [X0] : (happy(X0) => funny(X0)) & predl(paul) & ! [X1] : (room(X1) => predf(X1)) & ! [X2] : (room(X2) => ~(tourist(X2) & wise(X2))) & ! [X3] : (room(X3) => ~hate(susan,X3)) & ~? [X4] : (brave(X4) => creative(X4)) & ! [X5] : (room(X5) => (tourist(X5) & generous(X5))) & ! [X6] : (anywhere(X6) => predc(X6)) & predz(mary) & predy(mary) & ! [X7] : (~room(X7) => preds(X7)) & predg(alice) & strong(mary) & predx(mary) & (~? [X8] : (room(X8) => ~predj(X8)) => ! [X9] : (room(X9) => predd(X9))) & (~predi(paul) => ! [X10] : (room(X10) => ~hate(susan,X10))) & (~! [X11] : (room(X11) => preds(X11)) => ~? [X12] : (tall(X12) => happy(X12))) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (~predg(alice) => (old(fred) & quiet(alice))) & (! [X14] : (room(X14) => predq(X14)) => ~! [X15] : (room(X15) => (european(X15) & curious(X15)))) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : (sibling(X17,X18) & ~(tourist(X18) & creative(X18)) & predm(X17))) & (! [X19] : (room(X19) => ~(person(X19) & kind(X19))) => ! [X20] : (room(X20) => predx(X20))) & (~! [X21] : (~room(X21) => quiet(X21)) => predz(john)) & (~! [X22] : (room(X22) => ~predv(X22)) => (~(person(fred) & patient(fred)) & ~(person(alice) & patient(alice)))) & (~! [X23] : (room(X23) => predr(X23)) => predp(john)) & (! [X24] : (room(X24) => predr(X24)) => ! [X25] : ((~(european(X25) & strong(X25)) | predn(X25) | predm(X25)) => predi(X25))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 44] 47. ~(~! [X0] : (room(X0) => (~quiet(X0) & quiet(X0) & ~(person(X0) & old(X0)))) & ! [X1] : (room(X1) => (john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [rectify 45] 48. predl(paul) & ! [X1] : (room(X1) => predf(X1)) & ! [X2] : (room(X2) => ~(tourist(X2) & wise(X2))) & ! [X3] : (room(X3) => ~hate(susan,X3)) & ~? [X4] : (brave(X4) => creative(X4)) & ! [X5] : (room(X5) => (tourist(X5) & generous(X5))) & ! [X6] : (anywhere(X6) => predc(X6)) & predz(mary) & predy(mary) & ! [X7] : (~room(X7) => preds(X7)) & predg(alice) & strong(mary) & predx(mary) & (~? [X8] : (room(X8) => ~predj(X8)) => ! [X9] : (room(X9) => predd(X9))) & (~predi(paul) => ! [X10] : (room(X10) => ~hate(susan,X10))) & (~! [X11] : (room(X11) => preds(X11)) => ~? [X12] : (tall(X12) => happy(X12))) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (~predg(alice) => (old(fred) & quiet(alice))) & (! [X14] : (room(X14) => predq(X14)) => ~! [X15] : (room(X15) => (european(X15) & curious(X15)))) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : (sibling(X17,X18) & ~(tourist(X18) & creative(X18)) & predm(X17))) & (! [X19] : (room(X19) => ~(person(X19) & kind(X19))) => ! [X20] : (room(X20) => predx(X20))) & (~! [X21] : (~room(X21) => quiet(X21)) => predz(john)) & (~! [X22] : (room(X22) => ~predv(X22)) => (~(person(fred) & patient(fred)) & ~(person(alice) & patient(alice)))) & (~! [X23] : (room(X23) => predr(X23)) => predp(john)) & (! [X24] : (room(X24) => predr(X24)) => ! [X25] : ((~(european(X25) & strong(X25)) | predn(X25) | predm(X25)) => predi(X25))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 49. ! [X1] : (room(X1) => predf(X1)) & ! [X2] : (room(X2) => ~(tourist(X2) & wise(X2))) & ! [X3] : (room(X3) => ~hate(susan,X3)) & ~? [X4] : (brave(X4) => creative(X4)) & ! [X5] : (room(X5) => (tourist(X5) & generous(X5))) & ! [X6] : (anywhere(X6) => predc(X6)) & predz(mary) & predy(mary) & ! [X7] : (~room(X7) => preds(X7)) & predg(alice) & strong(mary) & predx(mary) & (~? [X8] : (room(X8) => ~predj(X8)) => ! [X9] : (room(X9) => predd(X9))) & (~predi(paul) => ! [X10] : (room(X10) => ~hate(susan,X10))) & (~! [X11] : (room(X11) => preds(X11)) => ~? [X12] : (tall(X12) => happy(X12))) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (~predg(alice) => (old(fred) & quiet(alice))) & (! [X14] : (room(X14) => predq(X14)) => ~! [X15] : (room(X15) => (european(X15) & curious(X15)))) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : (sibling(X17,X18) & ~(tourist(X18) & creative(X18)) & predm(X17))) & (! [X19] : (room(X19) => ~(person(X19) & kind(X19))) => ! [X20] : (room(X20) => predx(X20))) & (~! [X21] : (~room(X21) => quiet(X21)) => predz(john)) & (~! [X22] : (room(X22) => ~predv(X22)) => (~(person(fred) & patient(fred)) & ~(person(alice) & patient(alice)))) & (~! [X23] : (room(X23) => predr(X23)) => predp(john)) & (! [X24] : (room(X24) => predr(X24)) => ! [X25] : ((~(european(X25) & strong(X25)) | predn(X25) | predm(X25)) => predi(X25))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 48] 50. ! [X2] : (room(X2) => ~(tourist(X2) & wise(X2))) & ! [X3] : (room(X3) => ~hate(susan,X3)) & ~? [X4] : (brave(X4) => creative(X4)) & ! [X5] : (room(X5) => (tourist(X5) & generous(X5))) & ! [X6] : (anywhere(X6) => predc(X6)) & predz(mary) & predy(mary) & ! [X7] : (~room(X7) => preds(X7)) & predg(alice) & strong(mary) & predx(mary) & (~? [X8] : (room(X8) => ~predj(X8)) => ! [X9] : (room(X9) => predd(X9))) & (~predi(paul) => ! [X10] : (room(X10) => ~hate(susan,X10))) & (~! [X11] : (room(X11) => preds(X11)) => ~? [X12] : (tall(X12) => happy(X12))) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (~predg(alice) => (old(fred) & quiet(alice))) & (! [X14] : (room(X14) => predq(X14)) => ~! [X15] : (room(X15) => (european(X15) & curious(X15)))) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : (sibling(X17,X18) & ~(tourist(X18) & creative(X18)) & predm(X17))) & (! [X19] : (room(X19) => ~(person(X19) & kind(X19))) => ! [X20] : (room(X20) => predx(X20))) & (~! [X21] : (~room(X21) => quiet(X21)) => predz(john)) & (~! [X22] : (room(X22) => ~predv(X22)) => (~(person(fred) & patient(fred)) & ~(person(alice) & patient(alice)))) & (~! [X23] : (room(X23) => predr(X23)) => predp(john)) & (! [X24] : (room(X24) => predr(X24)) => ! [X25] : ((~(european(X25) & strong(X25)) | predn(X25) | predm(X25)) => predi(X25))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 49] 51. ! [X3] : (room(X3) => ~hate(susan,X3)) & ~? [X4] : (brave(X4) => creative(X4)) & ! [X5] : (room(X5) => (tourist(X5) & generous(X5))) & ! [X6] : (anywhere(X6) => predc(X6)) & predz(mary) & predy(mary) & ! [X7] : (~room(X7) => preds(X7)) & predg(alice) & strong(mary) & predx(mary) & (~? [X8] : (room(X8) => ~predj(X8)) => ! [X9] : (room(X9) => predd(X9))) & (~predi(paul) => ! [X10] : (room(X10) => ~hate(susan,X10))) & (~! [X11] : (room(X11) => preds(X11)) => ~? [X12] : (tall(X12) => happy(X12))) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (~predg(alice) => (old(fred) & quiet(alice))) & (! [X14] : (room(X14) => predq(X14)) => ~! [X15] : (room(X15) => (european(X15) & curious(X15)))) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : (sibling(X17,X18) & ~(tourist(X18) & creative(X18)) & predm(X17))) & (! [X19] : (room(X19) => ~(person(X19) & kind(X19))) => ! [X20] : (room(X20) => predx(X20))) & (~! [X21] : (~room(X21) => quiet(X21)) => predz(john)) & (~! [X22] : (room(X22) => ~predv(X22)) => (~(person(fred) & patient(fred)) & ~(person(alice) & patient(alice)))) & (~! [X23] : (room(X23) => predr(X23)) => predp(john)) & (! [X24] : (room(X24) => predr(X24)) => ! [X25] : ((~(european(X25) & strong(X25)) | predn(X25) | predm(X25)) => predi(X25))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 50] 52. ! [X3] : (room(X3) => ~hate(susan,X3)) & ~? [X4] : creative(X4) & ! [X5] : (room(X5) => (tourist(X5) & generous(X5))) & ! [X6] : (anywhere(X6) => predc(X6)) & predz(mary) & predy(mary) & ! [X7] : (~room(X7) => preds(X7)) & predg(alice) & strong(mary) & predx(mary) & (~? [X8] : (room(X8) => ~predj(X8)) => ! [X9] : (room(X9) => predd(X9))) & (~predi(paul) => ! [X10] : (room(X10) => ~hate(susan,X10))) & (~! [X11] : (room(X11) => preds(X11)) => ~? [X12] : (tall(X12) => happy(X12))) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (~predg(alice) => (old(fred) & quiet(alice))) & (! [X14] : (room(X14) => predq(X14)) => ~! [X15] : (room(X15) => (european(X15) & curious(X15)))) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : (sibling(X17,X18) & ~(tourist(X18) & creative(X18)) & predm(X17))) & (! [X19] : (room(X19) => ~(person(X19) & kind(X19))) => ! [X20] : (room(X20) => predx(X20))) & (~! [X21] : (~room(X21) => quiet(X21)) => predz(john)) & (~! [X22] : (room(X22) => ~predv(X22)) => (~(person(fred) & patient(fred)) & ~(person(alice) & patient(alice)))) & (~! [X23] : (room(X23) => predr(X23)) => predp(john)) & (! [X24] : (room(X24) => predr(X24)) => ! [X25] : ((~(european(X25) & strong(X25)) | predn(X25) | predm(X25)) => predi(X25))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 51] 53. ! [X3] : (room(X3) => ~hate(susan,X3)) & ~? [X4] : creative(X4) & ! [X5] : (room(X5) => tourist(X5)) & ! [X6] : (anywhere(X6) => predc(X6)) & predz(mary) & predy(mary) & ! [X7] : (~room(X7) => preds(X7)) & predg(alice) & strong(mary) & predx(mary) & (~? [X8] : (room(X8) => ~predj(X8)) => ! [X9] : (room(X9) => predd(X9))) & (~predi(paul) => ! [X10] : (room(X10) => ~hate(susan,X10))) & (~! [X11] : (room(X11) => preds(X11)) => ~? [X12] : (tall(X12) => happy(X12))) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (~predg(alice) => (old(fred) & quiet(alice))) & (! [X14] : (room(X14) => predq(X14)) => ~! [X15] : (room(X15) => (european(X15) & curious(X15)))) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : (sibling(X17,X18) & ~(tourist(X18) & creative(X18)) & predm(X17))) & (! [X19] : (room(X19) => ~(person(X19) & kind(X19))) => ! [X20] : (room(X20) => predx(X20))) & (~! [X21] : (~room(X21) => quiet(X21)) => predz(john)) & (~! [X22] : (room(X22) => ~predv(X22)) => (~(person(fred) & patient(fred)) & ~(person(alice) & patient(alice)))) & (~! [X23] : (room(X23) => predr(X23)) => predp(john)) & (! [X24] : (room(X24) => predr(X24)) => ! [X25] : ((~(european(X25) & strong(X25)) | predn(X25) | predm(X25)) => predi(X25))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 52] 54. ! [X3] : (room(X3) => ~hate(susan,X3)) & ~? [X4] : creative(X4) & ! [X5] : (room(X5) => tourist(X5)) & predz(mary) & predy(mary) & ! [X7] : (~room(X7) => preds(X7)) & predg(alice) & strong(mary) & predx(mary) & (~? [X8] : (room(X8) => ~predj(X8)) => ! [X9] : (room(X9) => predd(X9))) & (~predi(paul) => ! [X10] : (room(X10) => ~hate(susan,X10))) & (~! [X11] : (room(X11) => preds(X11)) => ~? [X12] : (tall(X12) => happy(X12))) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (~predg(alice) => (old(fred) & quiet(alice))) & (! [X14] : (room(X14) => predq(X14)) => ~! [X15] : (room(X15) => (european(X15) & curious(X15)))) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : (sibling(X17,X18) & ~(tourist(X18) & creative(X18)) & predm(X17))) & (! [X19] : (room(X19) => ~(person(X19) & kind(X19))) => ! [X20] : (room(X20) => predx(X20))) & (~! [X21] : (~room(X21) => quiet(X21)) => predz(john)) & (~! [X22] : (room(X22) => ~predv(X22)) => (~(person(fred) & patient(fred)) & ~(person(alice) & patient(alice)))) & (~! [X23] : (room(X23) => predr(X23)) => predp(john)) & (! [X24] : (room(X24) => predr(X24)) => ! [X25] : ((~(european(X25) & strong(X25)) | predn(X25) | predm(X25)) => predi(X25))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 53] 56. ! [X3] : (room(X3) => ~hate(susan,X3)) & ~? [X4] : creative(X4) & ! [X5] : (room(X5) => tourist(X5)) & predz(mary) & ! [X7] : (~room(X7) => preds(X7)) & predg(alice) & strong(mary) & predx(mary) & (~? [X8] : (room(X8) => ~predj(X8)) => ! [X9] : (room(X9) => predd(X9))) & (~predi(paul) => ! [X10] : (room(X10) => ~hate(susan,X10))) & (~! [X11] : (room(X11) => preds(X11)) => ~? [X12] : (tall(X12) => happy(X12))) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (~predg(alice) => (old(fred) & quiet(alice))) & (! [X14] : (room(X14) => predq(X14)) => ~! [X15] : (room(X15) => (european(X15) & curious(X15)))) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : (sibling(X17,X18) & ~(tourist(X18) & creative(X18)) & predm(X17))) & (! [X19] : (room(X19) => ~(person(X19) & kind(X19))) => ! [X20] : (room(X20) => predx(X20))) & (~! [X21] : (~room(X21) => quiet(X21)) => predz(john)) & (~! [X22] : (room(X22) => ~predv(X22)) => (~(person(fred) & patient(fred)) & ~(person(alice) & patient(alice)))) & (~! [X23] : (room(X23) => predr(X23)) => predp(john)) & (! [X24] : (room(X24) => predr(X24)) => ! [X25] : ((~(european(X25) & strong(X25)) | predn(X25) | predm(X25)) => predi(X25))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 54] 57. ! [X3] : (room(X3) => ~hate(susan,X3)) & ~? [X4] : creative(X4) & ! [X5] : (room(X5) => tourist(X5)) & predz(mary) & ! [X7] : (~room(X7) => preds(X7)) & predg(alice) & strong(mary) & predx(mary) & (~predi(paul) => ! [X10] : (room(X10) => ~hate(susan,X10))) & (~! [X11] : (room(X11) => preds(X11)) => ~? [X12] : (tall(X12) => happy(X12))) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (~predg(alice) => (old(fred) & quiet(alice))) & (! [X14] : (room(X14) => predq(X14)) => ~! [X15] : (room(X15) => (european(X15) & curious(X15)))) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : (sibling(X17,X18) & ~(tourist(X18) & creative(X18)) & predm(X17))) & (! [X19] : (room(X19) => ~(person(X19) & kind(X19))) => ! [X20] : (room(X20) => predx(X20))) & (~! [X21] : (~room(X21) => quiet(X21)) => predz(john)) & (~! [X22] : (room(X22) => ~predv(X22)) => (~(person(fred) & patient(fred)) & ~(person(alice) & patient(alice)))) & (~! [X23] : (room(X23) => predr(X23)) => predp(john)) & (! [X24] : (room(X24) => predr(X24)) => ! [X25] : ((~(european(X25) & strong(X25)) | predn(X25) | predm(X25)) => predi(X25))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 56] 58. ! [X3] : (room(X3) => ~hate(susan,X3)) & ~? [X4] : creative(X4) & ! [X5] : (room(X5) => tourist(X5)) & predz(mary) & ! [X7] : (~room(X7) => preds(X7)) & predg(alice) & strong(mary) & predx(mary) & (~predi(paul) => ! [X10] : (room(X10) => ~hate(susan,X10))) & (~! [X11] : (room(X11) => preds(X11)) => ~? [X12] : ~tall(X12)) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (~predg(alice) => (old(fred) & quiet(alice))) & (! [X14] : (room(X14) => predq(X14)) => ~! [X15] : (room(X15) => (european(X15) & curious(X15)))) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : (sibling(X17,X18) & ~(tourist(X18) & creative(X18)) & predm(X17))) & (! [X19] : (room(X19) => ~(person(X19) & kind(X19))) => ! [X20] : (room(X20) => predx(X20))) & (~! [X21] : (~room(X21) => quiet(X21)) => predz(john)) & (~! [X22] : (room(X22) => ~predv(X22)) => (~(person(fred) & patient(fred)) & ~(person(alice) & patient(alice)))) & (~! [X23] : (room(X23) => predr(X23)) => predp(john)) & (! [X24] : (room(X24) => predr(X24)) => ! [X25] : ((~(european(X25) & strong(X25)) | predn(X25) | predm(X25)) => predi(X25))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 57] 59. ! [X3] : (room(X3) => ~hate(susan,X3)) & ~? [X4] : creative(X4) & ! [X5] : (room(X5) => tourist(X5)) & predz(mary) & ! [X7] : (~room(X7) => preds(X7)) & predg(alice) & strong(mary) & predx(mary) & (~predi(paul) => ! [X10] : (room(X10) => ~hate(susan,X10))) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (~predg(alice) => (old(fred) & quiet(alice))) & (! [X14] : (room(X14) => predq(X14)) => ~! [X15] : (room(X15) => (european(X15) & curious(X15)))) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : (sibling(X17,X18) & ~(tourist(X18) & creative(X18)) & predm(X17))) & (! [X19] : (room(X19) => ~(person(X19) & kind(X19))) => ! [X20] : (room(X20) => predx(X20))) & (~! [X21] : (~room(X21) => quiet(X21)) => predz(john)) & (~! [X22] : (room(X22) => ~predv(X22)) => (~(person(fred) & patient(fred)) & ~(person(alice) & patient(alice)))) & (~! [X23] : (room(X23) => predr(X23)) => predp(john)) & (! [X24] : (room(X24) => predr(X24)) => ! [X25] : ((~(european(X25) & strong(X25)) | predn(X25) | predm(X25)) => predi(X25))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 58] 60. ! [X3] : (room(X3) => ~hate(susan,X3)) & ~? [X4] : creative(X4) & ! [X5] : (room(X5) => tourist(X5)) & predz(mary) & predg(alice) & strong(mary) & predx(mary) & (~predi(paul) => ! [X10] : (room(X10) => ~hate(susan,X10))) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (~predg(alice) => (old(fred) & quiet(alice))) & (! [X14] : (room(X14) => predq(X14)) => ~! [X15] : (room(X15) => (european(X15) & curious(X15)))) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : (sibling(X17,X18) & ~(tourist(X18) & creative(X18)) & predm(X17))) & (! [X19] : (room(X19) => ~(person(X19) & kind(X19))) => ! [X20] : (room(X20) => predx(X20))) & (~! [X21] : (~room(X21) => quiet(X21)) => predz(john)) & (~! [X22] : (room(X22) => ~predv(X22)) => (~(person(fred) & patient(fred)) & ~(person(alice) & patient(alice)))) & (~! [X23] : (room(X23) => predr(X23)) => predp(john)) & (! [X24] : (room(X24) => predr(X24)) => ! [X25] : ((~(european(X25) & strong(X25)) | predn(X25) | predm(X25)) => predi(X25))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 59] 61. ! [X3] : (room(X3) => ~hate(susan,X3)) & ~? [X4] : creative(X4) & ! [X5] : (room(X5) => tourist(X5)) & predz(mary) & strong(mary) & predx(mary) & (~predi(paul) => ! [X10] : (room(X10) => ~hate(susan,X10))) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (! [X14] : (room(X14) => predq(X14)) => ~! [X15] : (room(X15) => (european(X15) & curious(X15)))) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : (sibling(X17,X18) & ~(tourist(X18) & creative(X18)) & predm(X17))) & (! [X19] : (room(X19) => ~(person(X19) & kind(X19))) => ! [X20] : (room(X20) => predx(X20))) & (~! [X21] : (~room(X21) => quiet(X21)) => predz(john)) & (~! [X22] : (room(X22) => ~predv(X22)) => (~(person(fred) & patient(fred)) & ~(person(alice) & patient(alice)))) & (~! [X23] : (room(X23) => predr(X23)) => predp(john)) & (! [X24] : (room(X24) => predr(X24)) => ! [X25] : ((~(european(X25) & strong(X25)) | predn(X25) | predm(X25)) => predi(X25))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 60] 62. ! [X3] : (room(X3) => ~hate(susan,X3)) & ~? [X4] : creative(X4) & ! [X5] : (room(X5) => tourist(X5)) & predz(mary) & strong(mary) & predx(mary) & (~predi(paul) => ! [X10] : (room(X10) => ~hate(susan,X10))) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (! [X14] : (room(X14) => predq(X14)) => ~! [X15] : ~room(X15)) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : (sibling(X17,X18) & ~(tourist(X18) & creative(X18)) & predm(X17))) & (! [X19] : (room(X19) => ~(person(X19) & kind(X19))) => ! [X20] : (room(X20) => predx(X20))) & (~! [X21] : (~room(X21) => quiet(X21)) => predz(john)) & (~! [X22] : (room(X22) => ~predv(X22)) => (~(person(fred) & patient(fred)) & ~(person(alice) & patient(alice)))) & (~! [X23] : (room(X23) => predr(X23)) => predp(john)) & (! [X24] : (room(X24) => predr(X24)) => ! [X25] : ((~(european(X25) & strong(X25)) | predn(X25) | predm(X25)) => predi(X25))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 61] 63. ! [X3] : (room(X3) => ~hate(susan,X3)) & ~? [X4] : creative(X4) & ! [X5] : (room(X5) => tourist(X5)) & predz(mary) & strong(mary) & predx(mary) & (~predi(paul) => ! [X10] : (room(X10) => ~hate(susan,X10))) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (! [X14] : ~room(X14) => ~! [X15] : ~room(X15)) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : (sibling(X17,X18) & ~(tourist(X18) & creative(X18)) & predm(X17))) & (! [X19] : (room(X19) => ~(person(X19) & kind(X19))) => ! [X20] : (room(X20) => predx(X20))) & (~! [X21] : (~room(X21) => quiet(X21)) => predz(john)) & (~! [X22] : (room(X22) => ~predv(X22)) => (~(person(fred) & patient(fred)) & ~(person(alice) & patient(alice)))) & (~! [X23] : (room(X23) => predr(X23)) => predp(john)) & (! [X24] : (room(X24) => predr(X24)) => ! [X25] : ((~(european(X25) & strong(X25)) | predn(X25) | predm(X25)) => predi(X25))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 62] 64. ! [X3] : (room(X3) => ~hate(susan,X3)) & ! [X5] : (room(X5) => tourist(X5)) & predz(mary) & strong(mary) & predx(mary) & (~predi(paul) => ! [X10] : (room(X10) => ~hate(susan,X10))) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (! [X14] : ~room(X14) => ~! [X15] : ~room(X15)) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : (sibling(X17,X18) & predm(X17))) & (! [X19] : (room(X19) => ~(person(X19) & kind(X19))) => ! [X20] : (room(X20) => predx(X20))) & (~! [X21] : (~room(X21) => quiet(X21)) => predz(john)) & (~! [X22] : (room(X22) => ~predv(X22)) => (~(person(fred) & patient(fred)) & ~(person(alice) & patient(alice)))) & (~! [X23] : (room(X23) => predr(X23)) => predp(john)) & (! [X24] : (room(X24) => predr(X24)) => ! [X25] : ((~(european(X25) & strong(X25)) | predn(X25) | predm(X25)) => predi(X25))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 63] 65. ! [X3] : (room(X3) => ~hate(susan,X3)) & ! [X5] : (room(X5) => tourist(X5)) & predz(mary) & strong(mary) & predx(mary) & (~predi(paul) => ! [X10] : (room(X10) => ~hate(susan,X10))) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (! [X14] : ~room(X14) => ~! [X15] : ~room(X15)) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : (sibling(X17,X18) & predm(X17))) & (! [X19] : (room(X19) => ~person(X19)) => ! [X20] : (room(X20) => predx(X20))) & (~! [X21] : (~room(X21) => quiet(X21)) => predz(john)) & (~! [X22] : (room(X22) => ~predv(X22)) => (~(person(fred) & patient(fred)) & ~(person(alice) & patient(alice)))) & (~! [X23] : (room(X23) => predr(X23)) => predp(john)) & (! [X24] : (room(X24) => predr(X24)) => ! [X25] : ((~(european(X25) & strong(X25)) | predn(X25) | predm(X25)) => predi(X25))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 64] 66. ! [X3] : (room(X3) => ~hate(susan,X3)) & ! [X5] : (room(X5) => tourist(X5)) & strong(mary) & predx(mary) & (~predi(paul) => ! [X10] : (room(X10) => ~hate(susan,X10))) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (! [X14] : ~room(X14) => ~! [X15] : ~room(X15)) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : (sibling(X17,X18) & predm(X17))) & (! [X19] : (room(X19) => ~person(X19)) => ! [X20] : (room(X20) => predx(X20))) & (~! [X22] : (room(X22) => ~predv(X22)) => (~(person(fred) & patient(fred)) & ~(person(alice) & patient(alice)))) & (~! [X23] : (room(X23) => predr(X23)) => predp(john)) & (! [X24] : (room(X24) => predr(X24)) => ! [X25] : ((~(european(X25) & strong(X25)) | predn(X25) | predm(X25)) => predi(X25))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 65] 67. ! [X3] : (room(X3) => ~hate(susan,X3)) & ! [X5] : (room(X5) => tourist(X5)) & strong(mary) & predx(mary) & (~predi(paul) => ! [X10] : (room(X10) => ~hate(susan,X10))) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (! [X14] : ~room(X14) => ~! [X15] : ~room(X15)) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : (sibling(X17,X18) & predm(X17))) & (! [X19] : (room(X19) => ~person(X19)) => ! [X20] : (room(X20) => predx(X20))) & (~! [X23] : (room(X23) => predr(X23)) => predp(john)) & (! [X24] : (room(X24) => predr(X24)) => ! [X25] : ((~(european(X25) & strong(X25)) | predn(X25) | predm(X25)) => predi(X25))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 66] 68. ! [X3] : (room(X3) => ~hate(susan,X3)) & ! [X5] : (room(X5) => tourist(X5)) & strong(mary) & predx(mary) & (~predi(paul) => ! [X10] : (room(X10) => ~hate(susan,X10))) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (! [X14] : ~room(X14) => ~! [X15] : ~room(X15)) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : (sibling(X17,X18) & predm(X17))) & (! [X19] : (room(X19) => ~person(X19)) => ! [X20] : (room(X20) => predx(X20))) & (! [X24] : (room(X24) => predr(X24)) => ! [X25] : ((~(european(X25) & strong(X25)) | predn(X25) | predm(X25)) => predi(X25))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 67] 69. ! [X3] : (room(X3) => ~hate(susan,X3)) & ! [X5] : (room(X5) => tourist(X5)) & strong(mary) & predx(mary) & (~predi(paul) => ! [X10] : (room(X10) => ~hate(susan,X10))) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (! [X14] : ~room(X14) => ~! [X15] : ~room(X15)) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : (sibling(X17,X18) & predm(X17))) & (! [X19] : (room(X19) => ~person(X19)) => ! [X20] : (room(X20) => predx(X20))) & (! [X24] : ~room(X24) => ! [X25] : ((~(european(X25) & strong(X25)) | predn(X25) | predm(X25)) => predi(X25))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 68] 70. ! [X3] : (room(X3) => ~hate(susan,X3)) & ! [X5] : (room(X5) => tourist(X5)) & strong(mary) & predx(mary) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (! [X14] : ~room(X14) => ~! [X15] : ~room(X15)) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : (sibling(X17,X18) & predm(X17))) & (! [X19] : (room(X19) => ~person(X19)) => ! [X20] : (room(X20) => predx(X20))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 69] 72. ! [X3] : (room(X3) => ~hate(susan,X3)) & ! [X5] : (room(X5) => tourist(X5)) & strong(mary) & predx(mary) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (! [X14] : ~room(X14) => ~! [X15] : ~room(X15)) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : sibling(X17,X18)) & (! [X19] : (room(X19) => ~person(X19)) => ! [X20] : (room(X20) => predx(X20))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 70] 73. ! [X3] : (room(X3) => ~hate(susan,X3)) & ! [X5] : (room(X5) => tourist(X5)) & predx(mary) & (~hate(lucy,paul) <~> ! [X13] : (room(X13) => predo(X13))) & (! [X14] : ~room(X14) => ~! [X15] : ~room(X15)) & (! [X16] : (room(X16) => predx(X16)) => ? [X17,X18] : sibling(X17,X18)) & (! [X19] : (room(X19) => ~person(X19)) => ! [X20] : (room(X20) => predx(X20))) & ! [X26] : (room(X26) => (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 72] 144. ! [X3] : (~hate(susan,X3) | ~room(X3)) & ! [X5] : (tourist(X5) | ~room(X5)) & predx(mary) & (~hate(lucy,paul) <~> ! [X13] : (predo(X13) | ~room(X13))) & (? [X15] : room(X15) | ? [X14] : room(X14)) & (? [X17,X18] : sibling(X17,X18) | ? [X16] : (~predx(X16) & room(X16))) & (! [X20] : (predx(X20) | ~room(X20)) | ? [X19] : (person(X19) & room(X19))) & ! [X26] : ((john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26) | ~room(X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 73] 145. ! [X3] : (~hate(susan,X3) | ~room(X3)) & ! [X5] : (tourist(X5) | ~room(X5)) & predx(mary) & (~hate(lucy,paul) <~> ! [X13] : (predo(X13) | ~room(X13))) & (? [X15] : room(X15) | ? [X14] : room(X14)) & (? [X17,X18] : sibling(X17,X18) | ? [X16] : (~predx(X16) & room(X16))) & (! [X20] : (predx(X20) | ~room(X20)) | ? [X19] : (person(X19) & room(X19))) & ! [X26] : (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26 | ~room(X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 144] 146. ! [X0] : ((~quiet(X0) & quiet(X0) & (~person(X0) | ~old(X0))) | ~room(X0)) | ? [X1] : ((john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1) & room(X1)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 47] 147. ! [X0] : ((~quiet(X0) & quiet(X0) & (~person(X0) | ~old(X0))) | ~room(X0)) | ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 146] 148. ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [predicate definition introduction] 149. ! [X0] : ((~quiet(X0) & quiet(X0) & (~person(X0) | ~old(X0))) | ~room(X0)) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [definition folding 147,148] 151. ! [X3] : (~hate(susan,X3) | ~room(X3)) & ! [X5] : (tourist(X5) | ~room(X5)) & predx(mary) & ((? [X13] : (~predo(X13) & room(X13)) | hate(lucy,paul)) & (! [X13] : (predo(X13) | ~room(X13)) | ~hate(lucy,paul))) & (? [X15] : room(X15) | ? [X14] : room(X14)) & (? [X17,X18] : sibling(X17,X18) | ? [X16] : (~predx(X16) & room(X16))) & (! [X20] : (predx(X20) | ~room(X20)) | ? [X19] : (person(X19) & room(X19))) & ! [X26] : (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26 | ~room(X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [nnf transformation 145] 152. ! [X3] : (~hate(susan,X3) | ~room(X3)) & ! [X5] : (tourist(X5) | ~room(X5)) & predx(mary) & (? [X13] : (~predo(X13) & room(X13)) | hate(lucy,paul)) & (! [X13] : (predo(X13) | ~room(X13)) | ~hate(lucy,paul)) & (? [X15] : room(X15) | ? [X14] : room(X14)) & (? [X17,X18] : sibling(X17,X18) | ? [X16] : (~predx(X16) & room(X16))) & (! [X20] : (predx(X20) | ~room(X20)) | ? [X19] : (person(X19) & room(X19))) & ! [X26] : (john = X26 | alice = X26 | fred = X26 | paul = X26 | mary = X26 | ~room(X26)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 151] 153. ! [X0] : (~hate(susan,X0) | ~room(X0)) & ! [X1] : (tourist(X1) | ~room(X1)) & predx(mary) & (? [X2] : (~predo(X2) & room(X2)) | hate(lucy,paul)) & (! [X3] : (predo(X3) | ~room(X3)) | ~hate(lucy,paul)) & (? [X4] : room(X4) | ? [X5] : room(X5)) & (? [X6,X7] : sibling(X6,X7) | ? [X8] : (~predx(X8) & room(X8))) & (! [X9] : (predx(X9) | ~room(X9)) | ? [X10] : (person(X10) & room(X10))) & ! [X11] : (john = X11 | alice = X11 | fred = X11 | paul = X11 | mary = X11 | ~room(X11)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 152] 154. ? [X2] : (~predo(X2) & room(X2)) => (~predo(sK1) & room(sK1)) [choice axiom] 155. ? [X4] : room(X4) => room(sK2) [choice axiom] 156. ? [X5] : room(X5) => room(sK3) [choice axiom] 157. ? [X6,X7] : sibling(X6,X7) => sibling(sK4,sK5) [choice axiom] 158. ? [X8] : (~predx(X8) & room(X8)) => (~predx(sK6) & room(sK6)) [choice axiom] 159. ? [X10] : (person(X10) & room(X10)) => (person(sK7) & room(sK7)) [choice axiom] 160. ! [X0] : (~hate(susan,X0) | ~room(X0)) & ! [X1] : (tourist(X1) | ~room(X1)) & predx(mary) & ((~predo(sK1) & room(sK1)) | hate(lucy,paul)) & (! [X3] : (predo(X3) | ~room(X3)) | ~hate(lucy,paul)) & (room(sK2) | room(sK3)) & (sibling(sK4,sK5) | (~predx(sK6) & room(sK6))) & (! [X9] : (predx(X9) | ~room(X9)) | (person(sK7) & room(sK7))) & ! [X11] : (john = X11 | alice = X11 | fred = X11 | paul = X11 | mary = X11 | ~room(X11)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [skolemisation 153,159,158,157,156,155,154] 161. ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [nnf transformation 148] 162. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~sP0 [rectify 161] 163. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK8 & alice != sK8 & fred != sK8 & paul != sK8 & mary != sK8 & room(sK8)) [choice axiom] 164. (john != sK8 & alice != sK8 & fred != sK8 & paul != sK8 & mary != sK8 & room(sK8)) | ~sP0 [skolemisation 162,163] 246. room(mary) [cnf transformation 160] 247. room(paul) [cnf transformation 160] 248. room(fred) [cnf transformation 160] 249. room(alice) [cnf transformation 160] 250. room(john) [cnf transformation 160] 251. ~room(X11) | alice = X11 | fred = X11 | paul = X11 | mary = X11 | john = X11 [cnf transformation 160] 263. room(sK8) | ~sP0 [cnf transformation 164] 264. mary != sK8 | ~sP0 [cnf transformation 164] 265. paul != sK8 | ~sP0 [cnf transformation 164] 266. fred != sK8 | ~sP0 [cnf transformation 164] 267. alice != sK8 | ~sP0 [cnf transformation 164] 268. john != sK8 | ~sP0 [cnf transformation 164] 270. quiet(X0) | ~room(X0) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 149] 271. ~quiet(X0) | ~room(X0) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 149] 327. 13 <=> sP0 [avatar definition] 331. 14 <=> john = sK8 [avatar definition] 333. john != sK8 <- (~14) [avatar component clause 331] 334. ~13 | ~14 [avatar split clause 268,331,327] 336. 15 <=> alice = sK8 [avatar definition] 338. alice != sK8 <- (~15) [avatar component clause 336] 339. ~13 | ~15 [avatar split clause 267,336,327] 341. 16 <=> fred = sK8 [avatar definition] 344. ~13 | ~16 [avatar split clause 266,341,327] 346. 17 <=> paul = sK8 [avatar definition] 348. paul != sK8 <- (~17) [avatar component clause 346] 349. ~13 | ~17 [avatar split clause 265,346,327] 351. 18 <=> mary = sK8 [avatar definition] 353. mary != sK8 <- (~18) [avatar component clause 351] 354. ~13 | ~18 [avatar split clause 264,351,327] 356. 19 <=> room(sK8) [avatar definition] 358. room(sK8) <- (19) [avatar component clause 356] 359. ~13 | 19 [avatar split clause 263,356,327] 360. ~quiet(X0) | ~room(X0) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 271,250] 361. ~quiet(X0) | ~room(X0) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 360,249] 362. ~quiet(X0) | ~room(X0) | sP0 | ~room(paul) | ~room(mary) [subsumption resolution 361,248] 363. ~quiet(X0) | ~room(X0) | sP0 | ~room(mary) [subsumption resolution 362,247] 364. ~quiet(X0) | ~room(X0) | sP0 [subsumption resolution 363,246] 366. 20 <=> ! [X0] : (~quiet(X0) | ~room(X0)) [avatar definition] 367. ~quiet(X0) | ~room(X0) <- (20) [avatar component clause 366] 368. 13 | 20 [avatar split clause 364,366,327] 369. quiet(X0) | ~room(X0) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 270,250] 370. quiet(X0) | ~room(X0) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 369,249] 371. quiet(X0) | ~room(X0) | sP0 | ~room(paul) | ~room(mary) [subsumption resolution 370,248] 372. quiet(X0) | ~room(X0) | sP0 | ~room(mary) [subsumption resolution 371,247] 373. quiet(X0) | ~room(X0) | sP0 [subsumption resolution 372,246] 375. 21 <=> ! [X0] : (quiet(X0) | ~room(X0)) [avatar definition] 376. quiet(X0) | ~room(X0) <- (21) [avatar component clause 375] 377. 13 | 21 [avatar split clause 373,375,327] 473. alice = sK8 | fred = sK8 | paul = sK8 | mary = sK8 | john = sK8 <- (19) [resolution 251,358] 558. fred = sK8 | paul = sK8 | mary = sK8 | john = sK8 <- (~15, 19) [subsumption resolution 473,338] 564. fred = sK8 | mary = sK8 | john = sK8 <- (~15, ~17, 19) [subsumption resolution 558,348] 565. fred = sK8 | john = sK8 <- (~15, ~17, ~18, 19) [subsumption resolution 564,353] 566. fred = sK8 <- (~14, ~15, ~17, ~18, 19) [subsumption resolution 565,333] 567. 16 | 14 | 15 | 17 | 18 | ~19 [avatar split clause 566,356,351,346,336,331,341] 571. ~room(X0) <- (20, 21) [subsumption resolution 367,376] 578. $false <- (20, 21) [resolution 571,246] 587. ~20 | ~21 [avatar contradiction clause 578] 588. $false [avatar sat refutation 334,339,344,349,354,359,368,377,567,587] % SZS output end Proof for 5204732750300119341360134 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.042 s % ------------------------------ % ------------------------------
0.326532
If “Tamie is an expert in identifying and foraging wild edible plants” then “Ruth practices archery or practices digital art or both”. “Lizette practices calligraphy” if “Lizette designs and sews custom cosplay costumes for conventions” and vice versa. Either “Stuart designs and sews custom cosplay costumes for conventions” or “Stuart is a Linux enthusiast” but not both. If “Tamie practices calligraphy” then “Tamie develops open-source software projects in their free time”. If “Ruth collects limited-edition art prints from contemporary artists or owns a significant collection of rare gemstones and minerals or both” then “Stuart practices digital art”. Either “Ruth owns a significant collection of rare gemstones and minerals” or “Ruth neither practices digital art nor enjoys bird watching” but not both. “It is not the case that “Ruth collects foreign coins”” if “Ruth has a tattoo” and vice versa. If “Lizette has a tattoo” then “Tamie is a Linux enthusiast”. Ruth practices digital art. Lizette can play the piano. Tamie is a Linux enthusiast. Ruth is a dedicated advocate for digital privacy and encryption. Lizette enjoys virtual reality gaming. Stuart is a night owl. Ruth owns a telescope. Tamie neither can play the piano nor own a television. Lizette owns a significant collection of rare gemstones and minerals. It is not the case that “Stuart is allergic to anything”. Ruth practices archery. Tamie practices archery. Ruth knows morse code. Stuart has a specialized collection of handmade artisan pottery. Tamie enjoys virtual reality gaming. Tamie is right-handed. It is not the case that “Tamie develops open-source software projects in their free time”.
Tamie develops open-source software projects in their free time.
contradiction
room(stuart)&room(tamie)&room(lizette)&room(ruth)&(![X]:(room(X)=>(X='stuart'|X='tamie'|X='lizette'|X='ruth')))& ((is_an_expert_in_identifying_and_foraging_wild_edible_plants(tamie))=>(((practices_archery(ruth))|(practices_digital_art(ruth)))))& ((designs_and_sews_custom_cosplay_costumes_for_conventions(lizette))<=>(practices_calligraphy(lizette)))& ((designs_and_sews_custom_cosplay_costumes_for_conventions(stuart))<~>(is_a_Linux_enthusiast(stuart)))& ((practices_calligraphy(tamie))=>(develops_open-source_software_projects_in_their_free_time(tamie)))& ((((collects_limited-edition_art_prints_from_contemporary_artists(ruth))|(owns_a_significant_collection_of_rare_gemstones_and_minerals(ruth))))=>(practices_digital_art(stuart)))& ((owns_a_significant_collection_of_rare_gemstones_and_minerals(ruth))<~>(~((practices_digital_art(ruth))|(enjoys_bird_watching(ruth)))))& ((has_a_tattoo(ruth))<=>(~(collects_foreign_coins(ruth))))& ((has_a_tattoo(lizette))=>(is_a_Linux_enthusiast(tamie)))& (practices_digital_art(ruth))& (can_play_the_piano(lizette))& (is_a_Linux_enthusiast(tamie))& (is_a_dedicated_advocate_for_digital_privacy_and_encryption(ruth))& (enjoys_virtual_reality_gaming(lizette))& (is_a_night_owl(stuart))& (owns_a_telescope(ruth))& (~((can_play_the_piano(tamie))|(own_a_television(tamie))))& (owns_a_significant_collection_of_rare_gemstones_and_minerals(lizette))& (~(is_allergic_to_anything(stuart)))& (practices_archery(ruth))& (practices_archery(tamie))& (knows_morse_code(ruth))& (has_a_specialized_collection_of_handmade_artisan_pottery(stuart))& (enjoys_virtual_reality_gaming(tamie))& (is_right-handed(tamie))& (~(develops_open-source_software_projects_in_their_free_time(tamie)))
room(stuart)&room(tamie)&room(lizette)&room(ruth)&(![X]:(room(X)=>(X='stuart'|X='tamie'|X='lizette'|X='ruth')))& develops_open-source_software_projects_in_their_free_time(tamie)
[ "p25", "hypothesis" ]
% SZS status Unsatisfiable for 2638785879211341267910726 % SZS output start Proof for 2638785879211341267910726 69. ~predf(paul) [input p25] 70. predf(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 164. predf(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 70] 165. predf(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 164] 274. ~predf(paul) [cnf transformation 69] 280. predf(paul) [cnf transformation 165] 306. 6 <=> predf(paul) [avatar definition] 351. ~6 [avatar split clause 274,306] 352. 6 [avatar split clause 280,306] 353. $false [avatar sat refutation 351,352] % SZS output end Proof for 2638785879211341267910726 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.594903
James, Anthony are the only persons in the room. James is not a Linux enthusiast if everyone in the room is not a Linux enthusiast or does not collect rare minerals and vice versa. Anthony collects rare minerals unless everyone in the room collects rare minerals or does not collect rare minerals. Anthony collects rare minerals. Anthony is a Linux enthusiast. James does not collect rare minerals. Everyone in the room is a Linux enthusiast if they collects rare minerals. Only one person in the room does not collect rare minerals. Anthony collects rare minerals, is not a Linux enthusiast or is a Linux enthusiast. Everyone anywhere is a Linux enthusiast if they is not a Linux enthusiast.
James is a Linux enthusiast.
entailment
room(james)&room(anthony)&(![X]:(room(X)=>(X='james'|X='anthony')))& ((![X]:(room(X)=>(((does_not_collect_rare_minerals(X))|(is_not_a_Linux_enthusiast(X))))))<=>(is_not_a_Linux_enthusiast(james)))& (~(![X]:(room(X)=>(((does_not_collect_rare_minerals(X))|(collects_rare_minerals(X))))))=>(collects_rare_minerals(anthony)))& (collects_rare_minerals(anthony))& (is_a_Linux_enthusiast(anthony))& (does_not_collect_rare_minerals(james))& (![X]:(room(X)=>(((collects_rare_minerals(X))=>(is_a_Linux_enthusiast(X))))))& (((?[X]:(room(X)&does_not_collect_rare_minerals(X)))&(![X,Y]:((room(X)&room(Y)&(does_not_collect_rare_minerals(X))&(does_not_collect_rare_minerals(Y)))=>(X=Y)))))& (((collects_rare_minerals(anthony))|(is_not_a_Linux_enthusiast(anthony))|(is_a_Linux_enthusiast(anthony))))& (~![X]:(room(X)=>(((collects_rare_minerals(X))|(is_not_a_Linux_enthusiast(X))))))& (![X]:(anywhere(X)=>(((is_not_a_Linux_enthusiast(X))=>(is_a_Linux_enthusiast(X))))))
room(james)&room(anthony)&(![X]:(room(X)=>(X='james'|X='anthony')))& is_a_Linux_enthusiast(james)
[ "b4", "p0", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 2161963653000348304611704 % SZS output start Proof for 2161963653000348304611704 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 54. ! [X0] : (anywhere(X0) => (~predz(X0) => predz(X0))) [input p10] 55. ~(predz(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 128. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 129. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 128] 140. ! [X0] : ((predz(X0) | predz(X0)) | ~anywhere(X0)) [ennf transformation 54] 141. ! [X0] : (predz(X0) | predz(X0) | ~anywhere(X0)) [flattening 140] 142. ~predz(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 55] 143. ~predz(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 142] 153. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 154. ~predz(mary) | (paul != sK3 & mary != sK3 & room(sK3)) | ~room(paul) | ~room(mary) [skolemisation 143,153] 155. anywhere(X0) [cnf transformation 5] 236. room(mary) [cnf transformation 129] 237. room(paul) [cnf transformation 129] 238. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 129] 255. predz(X0) | predz(X0) | ~anywhere(X0) [cnf transformation 141] 256. ~predz(mary) | room(sK3) | ~room(paul) | ~room(mary) [cnf transformation 154] 257. ~predz(mary) | mary != sK3 | ~room(paul) | ~room(mary) [cnf transformation 154] 258. ~predz(mary) | paul != sK3 | ~room(paul) | ~room(mary) [cnf transformation 154] 259. predz(X0) | ~anywhere(X0) [duplicate literal removal 255] 283. predz(X0) [subsumption resolution 259,155] 284. paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 258,283] 285. paul != sK3 | ~room(mary) [subsumption resolution 284,237] 286. paul != sK3 [subsumption resolution 285,236] 287. mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 257,283] 288. mary != sK3 | ~room(mary) [subsumption resolution 287,237] 289. mary != sK3 [subsumption resolution 288,236] 290. room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 256,283] 291. room(sK3) | ~room(mary) [subsumption resolution 290,237] 292. room(sK3) [subsumption resolution 291,236] 309. mary = sK3 | paul = sK3 [resolution 238,292] 337. paul = sK3 [subsumption resolution 309,289] 338. $false [subsumption resolution 337,286] % SZS output end Proof for 2161963653000348304611704 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.094726
Mildred, Eugenia, Judy are the only persons in the room. “Everyone in the room is not an avid hiker or is a drone photographer” if “no one in the room enjoys skydiving or does not write in-depth travel guides for off-the-beaten-path destinations” and vice versa. Everyone in the room enjoys skydiving if they is not an avid hiker. Mildred maintains a personal blog focused on cybersecurity tips, writes poetry or can play the harmonica. Everyone in the room does not practice yoga if they cannot play the harmonica. Everyone in the room does not practice yoga only if they trains for and competes in international triathlons. Everyone in the room either hosts themed dinner parties featuring gourmet home-cooked meals or does not host themed dinner parties featuring gourmet home-cooked meals but not both if they is a professional photographer specializing in portrait photography. Someone in the room regularly goes on multi-day backpacking trips in national parks. Not everyone in the room has a piercing only if they does not write in-depth travel guides for off-the-beaten-path destinations. Everyone anywhere who maintains a personal blog focused on cybersecurity tips works on fridays. Everyone in the room works on fridays, is a client of LVMH and enjoys macrame if they works on fridays. Mildred is not an avid hiker. Everyone in the room enjoys skydiving only if they maintains a personal blog focused on cybersecurity tips.
Mildred is a client of LVMH.
entailment
room(mildred)&room(eugenia)&room(judy)&(![X]:(room(X)=>(X='mildred'|X='eugenia'|X='judy')))& ((~?[X]:(room(X)=>(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))|(enjoys_skydiving(X))))))<=>(![X]:(room(X)=>(((is_a_drone_photographer(X))|(is_not_an_avid_hiker(X)))))))& (![X]:(room(X)=>(((is_not_an_avid_hiker(X))=>(enjoys_skydiving(X))))))& (((maintains_a_personal_blog_focused_on_cybersecurity_tips(mildred))|(writes_poetry(mildred))|(can_play_the_harmonica(mildred))))& (![X]:(room(X)=>(((cannot_play_the_harmonica(X))=>(does_not_practice_yoga(X))))))& (![X]:(room(X)=>(((trains_for_and_competes_in_international_triathlons(X))<=(does_not_practice_yoga(X))))))& (![X]:(room(X)=>(((is_a_professional_photographer_specializing_in_portrait_photography(X))=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))<~>(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))))& (?[X]:(room(X)&(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))& (~![X]:(room(X)=>(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))<=(has_a_piercing(X))))))& (~(is_a_professional_photographer_specializing_in_portrait_photography(mildred)))& (does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(mildred))& ((?[X,Y]:(room(X)&room(Y)&(is_a_client_of_LVMH(X)&is_a_client_of_LVMH(Y))&(X!=Y))))& (![X]:(room(X)=>(((is_a_client_of_LVMH(X))<=(is_a_tea_enthusiast(X))))))& (![X]:(~room(X)=>(((is_a_client_of_Meta(X))=>(collects_comic_books(X))))))& (![X]:(anywhere(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))=>(works_on_fridays(X))))))& (~(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(mildred)))& (![X]:(anywhere(X)=>(((does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))=>(has_a_piercing(X))))))& ((?[X,Y]:(room(X)&room(Y)&(collects_historical_artifacts_related_to_ancient_civilizations(X)&collects_historical_artifacts_related_to_ancient_civilizations(Y))&(X!=Y))))& (((has_lived_in_exactly_three_countries(mildred))|(does_not_enjoy_skydiving(mildred))|(trains_for_and_competes_in_international_triathlons(mildred))))& (![X]:(room(X)=>(((works_on_fridays(X))=>(((works_on_fridays(X))&(is_a_client_of_LVMH(X))&(enjoys_macrame(X))))))))& (?[X]:(anywhere(X)&(collects_comic_books(X))))& (~![X]:(room(X)=>(((is_not_a_professional_photographer_specializing_in_portrait_photography(X))|(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))& (is_not_an_avid_hiker(mildred))& (![X]:(room(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))<=(enjoys_skydiving(X))))))& (((collects_comic_books(mildred))|(hosts_a_YouTube_channel_dedicated_to_art_tutorials(mildred))|(has_lived_in_exactly_three_countries(mildred))))
room(mildred)&room(eugenia)&room(judy)&(![X]:(room(X)=>(X='mildred'|X='eugenia'|X='judy')))& is_a_client_of_LVMH(mildred)
[ "b4", "p0", "p2", "p14", "p19", "p22", "p23", "hypothesis" ]
% SZS status Unsatisfiable for 4920684672586692624838413 % SZS output start Proof for 4920684672586692624838413 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 46. ! [X0] : (room(X0) => (~predl(X0) => predx(X0))) [input p2] 58. ! [X0] : (anywhere(X0) => (preds(X0) => predj(X0))) [input p14] 63. ! [X0] : (room(X0) => (predj(X0) => (predm(X0) & predo(X0) & predj(X0)))) [input p19] 66. ~predl(mary) [input p22] 67. ! [X0] : (room(X0) => (predx(X0) => preds(X0))) [input p23] 69. ~(predo(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 71. ! [X0] : (room(X0) => (predj(X0) => (predo(X0) & predj(X0)))) [pure predicate removal 63] 156. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 157. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 156] 160. ! [X0] : ((predx(X0) | predl(X0)) | ~room(X0)) [ennf transformation 46] 161. ! [X0] : (predx(X0) | predl(X0) | ~room(X0)) [flattening 160] 165. ! [X0] : ((predj(X0) | ~preds(X0)) | ~anywhere(X0)) [ennf transformation 58] 166. ! [X0] : (predj(X0) | ~preds(X0) | ~anywhere(X0)) [flattening 165] 167. ! [X0] : (((predo(X0) & predj(X0)) | ~predj(X0)) | ~room(X0)) [ennf transformation 71] 168. ! [X0] : ((predo(X0) & predj(X0)) | ~predj(X0) | ~room(X0)) [flattening 167] 170. ! [X0] : ((preds(X0) | ~predx(X0)) | ~room(X0)) [ennf transformation 67] 171. ! [X0] : (preds(X0) | ~predx(X0) | ~room(X0)) [flattening 170] 172. ~predo(mary) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 69] 173. ~predo(mary) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 172] 198. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK11 & paul != sK11 & mary != sK11 & room(sK11)) [choice axiom] 199. ~predo(mary) | (fred != sK11 & paul != sK11 & mary != sK11 & room(sK11)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 173,198] 200. anywhere(X0) [cnf transformation 5] 281. room(mary) [cnf transformation 157] 282. room(paul) [cnf transformation 157] 283. room(fred) [cnf transformation 157] 284. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 157] 293. ~room(X0) | predl(X0) | predx(X0) [cnf transformation 161] 306. predj(X0) | ~preds(X0) | ~anywhere(X0) [cnf transformation 166] 312. ~predj(X0) | predo(X0) | ~room(X0) [cnf transformation 168] 316. ~predl(mary) [cnf transformation 66] 317. ~predx(X0) | preds(X0) | ~room(X0) [cnf transformation 171] 318. ~predo(mary) | room(sK11) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 199] 319. ~predo(mary) | mary != sK11 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 199] 320. ~predo(mary) | paul != sK11 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 199] 321. ~predo(mary) | fred != sK11 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 199] 370. ~preds(X0) | predj(X0) [subsumption resolution 306,200] 371. ~predo(mary) | fred != sK11 | ~room(paul) | ~room(mary) [subsumption resolution 321,283] 372. ~predo(mary) | fred != sK11 | ~room(mary) [subsumption resolution 371,282] 373. ~predo(mary) | fred != sK11 [subsumption resolution 372,281] 375. 12 <=> fred = sK11 [avatar definition] 377. fred != sK11 <- (~12) [avatar component clause 375] 379. 13 <=> predo(mary) [avatar definition] 382. ~12 | ~13 [avatar split clause 373,379,375] 383. ~predo(mary) | paul != sK11 | ~room(paul) | ~room(mary) [subsumption resolution 320,283] 384. ~predo(mary) | paul != sK11 | ~room(mary) [subsumption resolution 383,282] 385. ~predo(mary) | paul != sK11 [subsumption resolution 384,281] 387. 14 <=> paul = sK11 [avatar definition] 389. paul != sK11 <- (~14) [avatar component clause 387] 390. ~14 | ~13 [avatar split clause 385,379,387] 391. ~predo(mary) | mary != sK11 | ~room(paul) | ~room(mary) [subsumption resolution 319,283] 392. ~predo(mary) | mary != sK11 | ~room(mary) [subsumption resolution 391,282] 393. ~predo(mary) | mary != sK11 [subsumption resolution 392,281] 395. 15 <=> mary = sK11 [avatar definition] 397. mary != sK11 <- (~15) [avatar component clause 395] 398. ~15 | ~13 [avatar split clause 393,379,395] 399. ~predo(mary) | room(sK11) | ~room(paul) | ~room(mary) [subsumption resolution 318,283] 400. ~predo(mary) | room(sK11) | ~room(mary) [subsumption resolution 399,282] 401. ~predo(mary) | room(sK11) [subsumption resolution 400,281] 403. 16 <=> room(sK11) [avatar definition] 405. room(sK11) <- (16) [avatar component clause 403] 406. 16 | ~13 [avatar split clause 401,379,403] 407. predl(mary) | predx(mary) [resolution 293,281] 418. predx(mary) [subsumption resolution 407,316] 500. preds(mary) | ~room(mary) [resolution 317,418] 501. preds(mary) [subsumption resolution 500,281] 520. predj(mary) [resolution 501,370] 548. predo(mary) | ~room(mary) [resolution 520,312] 552. predo(mary) [subsumption resolution 548,281] 553. 13 [avatar split clause 552,379] 608. paul = sK11 | mary = sK11 | fred = sK11 <- (16) [resolution 284,405] 713. mary = sK11 | fred = sK11 <- (~14, 16) [subsumption resolution 608,389] 714. fred = sK11 <- (~14, ~15, 16) [subsumption resolution 713,397] 715. $false <- (~12, ~14, ~15, 16) [subsumption resolution 714,377] 716. 12 | 14 | 15 | ~16 [avatar contradiction clause 715] 717. $false [avatar sat refutation 382,390,398,406,553,716] % SZS output end Proof for 4920684672586692624838413 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.032 s % ------------------------------ % ------------------------------
0.001524
There is a room. “Everyone in the room does not enjoy snowboarding or enjoys camping and organizing outdoor survival workshops” only if “everyone in the room is not passionate about collecting and restoring classic cars and writes in-depth travel guides for off-the-beaten-path destinations if they does not enjoy snowboarding”. If “everyone in the room owns a 3D printer or does not own a 3D printer” then “everyone in the room does not enjoy snowboarding if they owns a 3D printer”. Everyone in the room does not enjoy salsa dancing and is not a drone photographer if they does not enjoy snowboarding. Everyone in the room does not maintain a large, organic vegetable garden year-round or does not write in-depth travel guides for off-the-beaten-path destinations or both. Someone in the room does not write in-depth travel guides for off-the-beaten-path destinations and is not an active member of a local robotics club. Everyone in the room either does not own a microscope or owns a microscope but not both. Only one person outside the room is passionate about collecting and restoring classic cars, does not own a microscope and enjoys salsa dancing.
Everyone in the room does not enjoy spelunking.
neutral
(there_is_a_room)& ((![X]:(room(X)=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))|(does_not_enjoy_snowboarding(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_snowboarding(X))=>(((is_not_passionate_about_collecting_and_restoring_classic_cars(X))&(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X)))))))))& ((![X]:(room(X)=>(((does_not_own_a_3D_printer(X))|(owns_a_3D_printer(X))))))=>(![X]:(room(X)=>(((owns_a_3D_printer(X))=>(does_not_enjoy_snowboarding(X)))))))& (![X]:(room(X)=>(((does_not_enjoy_snowboarding(X))=>(((does_not_enjoy_salsa_dancing(X))&(is_not_a_drone_photographer(X))))))))& (![X]:(room(X)=>(((does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))|(does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))& (?[X]:(room(X)&(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))&(is_not_an_active_member_of_a_local_robotics_club(X))))))& (![X]:(room(X)=>(((does_not_own_a_microscope(X))<~>(owns_a_microscope(X))))))& (((?[X]:(~room(X)&((is_passionate_about_collecting_and_restoring_classic_cars(X))&(does_not_own_a_microscope(X))&(enjoys_salsa_dancing(X)))))&(![X,Y]:((~room(X)&~room(Y)&(((is_passionate_about_collecting_and_restoring_classic_cars(X))&(does_not_own_a_microscope(X))&(enjoys_salsa_dancing(X))))&(((is_passionate_about_collecting_and_restoring_classic_cars(Y))&(does_not_own_a_microscope(Y))&(enjoys_salsa_dancing(Y)))))=>(X=Y)))))& (![X]:(room(X)=>(((((does_not_own_a_microscope(X))&(enjoys_salsa_dancing(X))))=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))&(is_not_an_active_member_of_a_local_robotics_club(X))))))))& (?[X]:(room(X)&(((does_not_enjoy_salsa_dancing(X))&(does_not_host_regular_game_nights_featuring_complex_strategy_games(X))))))& (~![X]:(room(X)=>(enjoys_snowboarding(X))))& (![X]:(room(X)=>(is_not_a_drone_photographer(X))))& (![X]:(room(X)=>(((does_not_host_regular_game_nights_featuring_complex_strategy_games(X))=>(((does_not_own_a_microscope(X))&(does_not_enjoy_spelunking(X))))))))& (![X]:(room(X)=>(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))))& (![X]:(room(X)=>(((is_not_an_active_member_of_a_local_robotics_club(X))<=>(((does_not_have_a_pet_dog(X))&(is_not_passionate_about_collecting_and_restoring_classic_cars(X))&(does_not_own_a_3D_printer(X))))))))& (![X]:(room(X)=>(((((does_not_host_regular_game_nights_featuring_complex_strategy_games(X))&(owns_a_microscope(X))))=>(is_not_an_active_member_of_a_local_robotics_club(X))))))& (![X]:(room(X)=>(((is_not_an_active_member_of_a_local_robotics_club(X))|(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))))))
(there_is_a_room)& ![X]:(room(X)=>(does_not_enjoy_spelunking(X)))
[]
null
0.474232
Barbara, Douglas, Donald are the only persons in the room. More than one person in the room does not enjoy trail running. If someone does not enjoy coding in Python or does not participate in citizen science projects related to wildlife monitoring or both then he/she either does not develop open-source software projects in their free time or does not practice archery but not both and vice versa. It is true that “if someone does not enjoy wildlife photography or does not host a popular podcast about emerging technologies or both then he/she either does not own a significant collection of rare gemstones and minerals or does not host a popular podcast about emerging technologies but not both and vice versa”. If someone does not enjoy fishing then he/she does not participate in citizen science projects related to wildlife monitoring and vice versa. More than one person in the room does not host a popular podcast about emerging technologies. More than one person anywhere does not enjoy fishing. If someone does not host a popular podcast about emerging technologies or does not enjoy trail running or both then he/she either does not enjoy fishing or does not host a popular podcast about emerging technologies but not both and vice versa.
Everyone outside the room participates in citizen science projects related to wildlife monitoring.
contradiction
room(barbara)&room(douglas)&room(donald)&(![X]:(room(X)=>(X='barbara'|X='douglas'|X='donald')))& ((?[X,Y]:(room(X)&room(Y)&(does_not_enjoy_trail_running(X)&does_not_enjoy_trail_running(Y))&(X!=Y))))& ((![X]:((((does_not_enjoy_coding_in_Python(X))|(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))))<=>(((does_not_develop_open-source_software_projects_in_their_free_time(X))<~>(does_not_practice_archery(X)))))))& ((![X]:((((does_not_enjoy_wildlife_photography(X))|(does_not_host_a_popular_podcast_about_emerging_technologies(X))))<=>(((does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))<~>(does_not_host_a_popular_podcast_about_emerging_technologies(X)))))))& ((![X]:((does_not_enjoy_fishing(X))<=>(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X)))))& ((![X]:((((does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))|(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))))<=>(does_not_stream_on_Twitch(X)))))& ((?[X,Y]:(room(X)&room(Y)&(does_not_host_a_popular_podcast_about_emerging_technologies(X)&does_not_host_a_popular_podcast_about_emerging_technologies(Y))&(X!=Y))))& ((?[X,Y]:(room(X)&room(Y)&(((does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))|(does_not_practice_archery(X)))&((does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(Y))|(does_not_practice_archery(Y))))&(X!=Y))))& ((?[X,Y]:(room(X)&room(Y)&(does_not_work_on_fridays(X)&does_not_work_on_fridays(Y))&(X!=Y))))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(does_not_enjoy_fishing(X)&does_not_enjoy_fishing(Y))&(X!=Y))))& ((![X]:((does_not_develop_open-source_software_projects_in_their_free_time(X))<=>(((does_not_stream_on_Twitch(X))<~>(does_not_compete_in_national_level_swimming_championships(X)))))))& ((![X]:((((does_not_host_a_popular_podcast_about_emerging_technologies(X))|(does_not_enjoy_trail_running(X))))<=>(((does_not_enjoy_fishing(X))<~>(does_not_host_a_popular_podcast_about_emerging_technologies(X)))))))& ((![X]:((((does_not_practice_archery(X))|(does_not_enjoy_wildlife_photography(X))))<=>(((does_not_practice_archery(X))<~>(does_not_have_a_saltwater_aquarium(X)))))))& ((![X]:((((does_not_enjoy_wildlife_photography(X))|(does_not_practice_archery(X))))<=>(((does_not_host_a_popular_podcast_about_emerging_technologies(X))<~>(does_not_compete_in_national_level_swimming_championships(X)))))))& ((![X]:((does_not_enjoy_wildlife_photography(X))<=>(does_not_host_a_popular_podcast_about_emerging_technologies(X)))))& ((![X]:((((does_not_develop_open-source_software_projects_in_their_free_time(X))<~>(does_not_enjoy_skydiving(X))))<=>(does_not_enjoy_coding_in_Python(X)))))& (((?[X]:(room(X)&does_not_work_on_fridays(X)))))
room(barbara)&room(douglas)&room(donald)&(![X]:(room(X)=>(X='barbara'|X='douglas'|X='donald')))& ![X]:(~room(X)=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X)))
[ "p0", "p4", "p6", "p9", "p11", "hypothesis" ]
% SZS status Unsatisfiable for 3234050707733112374969824 % SZS output start Proof for 3234050707733112374969824 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 48. ! [X0] : (~predc(X0) <=> ~prede(X0)) [input p4] 50. ? [X0,X1] : (X0 != X1 & ~predb(X1) & ~predb(X0) & room(X1) & room(X0)) [input p6] 53. ? [X0,X1] : (X0 != X1 & ~predc(X1) & ~predc(X0) & anywhere(X1) & anywhere(X0)) [input p9] 55. ! [X0] : ((~preda(X0) | ~predb(X0)) <=> (~predc(X0) <~> ~predb(X0))) [input p11] 61. ! [X0] : (~room(X0) => prede(X0)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 62. ! [X0] : (~room(X0) => prede(X0)) & ! [X1] : (room(X1) => (fred = X1 | paul = X1 | mary = X1)) & room(fred) & room(paul) & room(mary) [rectify 61] 65. ? [X0,X1] : (X0 != X1 & ~predc(X1) & ~predc(X0)) [pure predicate removal 53] 138. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 139. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 138] 140. ! [X0] : (prede(X0) | room(X0)) & ! [X1] : ((fred = X1 | paul = X1 | mary = X1) | ~room(X1)) & room(fred) & room(paul) & room(mary) [ennf transformation 62] 141. ! [X0] : (prede(X0) | room(X0)) & ! [X1] : (fred = X1 | paul = X1 | mary = X1 | ~room(X1)) & room(fred) & room(paul) & room(mary) [flattening 140] 149. ! [X0] : ((~predc(X0) | prede(X0)) & (~prede(X0) | predc(X0))) [nnf transformation 48] 152. ? [X0,X1] : (X0 != X1 & ~predb(X1) & ~predb(X0) & room(X1) & room(X0)) => (sK2 != sK3 & ~predb(sK3) & ~predb(sK2) & room(sK3) & room(sK2)) [choice axiom] 153. sK2 != sK3 & ~predb(sK3) & ~predb(sK2) & room(sK3) & room(sK2) [skolemisation 50,152] 158. ? [X0,X1] : (X0 != X1 & ~predc(X1) & ~predc(X0)) => (sK8 != sK9 & ~predc(sK9) & ~predc(sK8)) [choice axiom] 159. sK8 != sK9 & ~predc(sK9) & ~predc(sK8) [skolemisation 65,158] 161. ! [X0] : (((~preda(X0) | ~predb(X0)) | ((~predc(X0) | predb(X0)) & (~predb(X0) | predc(X0)))) & (((predb(X0) | predc(X0)) & (~predb(X0) | ~predc(X0))) | (preda(X0) & predb(X0)))) [nnf transformation 55] 162. ! [X0] : ((~preda(X0) | ~predb(X0) | ((~predc(X0) | predb(X0)) & (~predb(X0) | predc(X0)))) & (((predb(X0) | predc(X0)) & (~predb(X0) | ~predc(X0))) | (preda(X0) & predb(X0)))) [flattening 161] 254. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 139] 272. ~prede(X0) | predc(X0) [cnf transformation 149] 273. ~predc(X0) | prede(X0) [cnf transformation 149] 277. room(sK2) [cnf transformation 153] 278. room(sK3) [cnf transformation 153] 279. ~predb(sK2) [cnf transformation 153] 280. ~predb(sK3) [cnf transformation 153] 281. sK2 != sK3 [cnf transformation 153] 290. ~predc(sK8) [cnf transformation 159] 291. ~predc(sK9) [cnf transformation 159] 292. sK8 != sK9 [cnf transformation 159] 299. predb(X0) | predc(X0) | predb(X0) [cnf transformation 162] 326. prede(X0) | room(X0) [cnf transformation 141] 329. predc(X0) | predb(X0) [duplicate literal removal 299] 352. predc(X0) | room(X0) [resolution 326,272] 353. predb(sK8) [resolution 329,290] 354. predb(sK9) [resolution 329,291] 355. predb(X0) | prede(X0) [resolution 329,273] 382. room(sK8) [resolution 352,290] 383. room(sK9) [resolution 352,291] 387. prede(sK3) [resolution 355,280] 394. predc(sK3) [resolution 387,272] 618. paul = sK2 | mary = sK2 | fred = sK2 [resolution 254,277] 619. paul = sK3 | mary = sK3 | fred = sK3 [resolution 254,278] 624. paul = sK8 | mary = sK8 | fred = sK8 [resolution 254,382] 625. paul = sK9 | mary = sK9 | fred = sK9 [resolution 254,383] 654. 25 <=> fred = sK2 [avatar definition] 656. fred = sK2 <- (25) [avatar component clause 654] 658. 26 <=> mary = sK2 [avatar definition] 660. mary = sK2 <- (26) [avatar component clause 658] 662. 27 <=> paul = sK2 [avatar definition] 664. paul = sK2 <- (27) [avatar component clause 662] 665. 25 | 26 | 27 [avatar split clause 618,662,658,654] 667. 28 <=> fred = sK3 [avatar definition] 669. fred = sK3 <- (28) [avatar component clause 667] 671. 29 <=> mary = sK3 [avatar definition] 673. mary = sK3 <- (29) [avatar component clause 671] 675. 30 <=> paul = sK3 [avatar definition] 677. paul = sK3 <- (30) [avatar component clause 675] 678. 28 | 29 | 30 [avatar split clause 619,675,671,667] 732. 43 <=> fred = sK8 [avatar definition] 734. fred = sK8 <- (43) [avatar component clause 732] 736. 44 <=> mary = sK8 [avatar definition] 738. mary = sK8 <- (44) [avatar component clause 736] 740. 45 <=> paul = sK8 [avatar definition] 742. paul = sK8 <- (45) [avatar component clause 740] 743. 43 | 44 | 45 [avatar split clause 624,740,736,732] 745. 46 <=> fred = sK9 [avatar definition] 747. fred = sK9 <- (46) [avatar component clause 745] 749. 47 <=> mary = sK9 [avatar definition] 751. mary = sK9 <- (47) [avatar component clause 749] 753. 48 <=> paul = sK9 [avatar definition] 755. paul = sK9 <- (48) [avatar component clause 753] 756. 46 | 47 | 48 [avatar split clause 625,753,749,745] 772. fred != sK8 <- (46) [backward demodulation 292,747] 773. predb(fred) <- (46) [backward demodulation 354,747] 784. ~43 | ~46 [avatar split clause 772,745,732] 814. ~predb(fred) <- (28) [backward demodulation 280,669] 820. $false <- (28, 46) [subsumption resolution 814,773] 821. ~28 | ~46 [avatar contradiction clause 820] 826. ~predb(fred) <- (25) [backward demodulation 279,656] 831. $false <- (25, 46) [subsumption resolution 826,773] 832. ~25 | ~46 [avatar contradiction clause 831] 840. predb(mary) <- (44) [backward demodulation 353,738] 864. ~predb(mary) <- (29) [backward demodulation 280,673] 865. mary != sK2 <- (29) [backward demodulation 281,673] 870. $false <- (29, 44) [subsumption resolution 864,840] 871. ~29 | ~44 [avatar contradiction clause 870] 872. ~26 | ~29 [avatar split clause 865,671,658] 877. ~predb(mary) <- (26) [backward demodulation 279,660] 882. $false <- (26, 44) [subsumption resolution 877,840] 883. ~26 | ~44 [avatar contradiction clause 882] 898. ~predb(paul) <- (27) [backward demodulation 279,664] 903. predb(paul) <- (45) [backward demodulation 353,742] 917. $false <- (27, 45) [subsumption resolution 903,898] 918. ~27 | ~45 [avatar contradiction clause 917] 925. ~predb(mary) <- (29) [backward demodulation 280,673] 931. predb(mary) <- (47) [backward demodulation 354,751] 944. $false <- (29, 47) [subsumption resolution 931,925] 945. ~29 | ~47 [avatar contradiction clause 944] 949. ~predc(fred) <- (43) [backward demodulation 290,734] 950. predb(fred) <- (43) [backward demodulation 353,734] 969. ~predc(paul) <- (48) [backward demodulation 291,755] 970. predb(paul) <- (48) [backward demodulation 354,755] 984. $false <- (27, 48) [subsumption resolution 970,898] 985. ~27 | ~48 [avatar contradiction clause 984] 992. ~predb(fred) <- (25) [backward demodulation 279,656] 997. $false <- (25, 43) [subsumption resolution 992,950] 998. ~25 | ~43 [avatar contradiction clause 997] 1003. predc(fred) <- (28) [backward demodulation 394,669] 1009. $false <- (28, 43) [subsumption resolution 1003,949] 1010. ~28 | ~43 [avatar contradiction clause 1009] 1014. ~predb(mary) <- (26) [backward demodulation 279,660] 1019. ~predb(paul) <- (30) [backward demodulation 280,677] 1021. predc(paul) <- (30) [backward demodulation 394,677] 1026. $false <- (30, 48) [subsumption resolution 1021,969] 1027. ~30 | ~48 [avatar contradiction clause 1026] 1030. predb(mary) <- (47) [backward demodulation 354,751] 1045. $false <- (26, 47) [subsumption resolution 1030,1014] 1046. ~26 | ~47 [avatar contradiction clause 1045] 1054. paul != sK2 <- (30) [forward demodulation 281,677] 1055. ~27 | ~30 [avatar split clause 1054,675,662] 1060. predb(paul) <- (45) [backward demodulation 353,742] 1073. $false <- (30, 45) [subsumption resolution 1060,1019] 1074. ~30 | ~45 [avatar contradiction clause 1073] 1085. fred != sK3 <- (25) [forward demodulation 281,656] 1086. ~28 | ~25 [avatar split clause 1085,654,667] 1089. paul != sK9 <- (45) [forward demodulation 292,742] 1090. ~48 | ~45 [avatar split clause 1089,740,753] 1119. mary != sK8 <- (47) [backward demodulation 292,751] 1133. ~44 | ~47 [avatar split clause 1119,749,736] 1165. $false [avatar sat refutation 665,678,743,756,784,821,832,871,872,883,918,945,985,998,1010,1027,1046,1055,1074,1086,1090,1133] % SZS output end Proof for 3234050707733112374969824 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.043 s % ------------------------------ % ------------------------------
0.487863
Homer, Jeniffer, Marie are the only persons in the room. If “everyone in the room trains for and competes in international triathlons or does not know morse code” then “everyone outside the room who neither is a culinary enthusiast who experiments with international cuisines nor plays as a goalkeeper for a local amateur soccer team has a vast collection of first-edition science fiction novels”. If “everyone in the room collects classic novels or does not enjoy windsurfing” then “Jeniffer collects classic novels”. If “someone in the room enjoys virtual reality gaming” then “everyone in the room who enjoys windsurfing uses contact lenses”. Everyone anywhere uses contact lenses if they is a skilled home brewer experimenting with craft beer recipes and vice versa. Not everyone in the room who is a skilled home brewer experimenting with craft beer recipes is a client of Meta. Everyone in the room who is a client of Meta has a vast collection of first-edition science fiction novels. Marie plays as a goalkeeper for a local amateur soccer team. Everyone in the room who practices archery enjoys windsurfing. Everyone in the room trains for and competes in international triathlons or does not know morse code. It is not the case that “Jeniffer collects classic novels”. Everyone in the room is a chess master who participates in national tournaments if they practices zumba and vice versa. Everyone in the room who has a tattoo is a craft beer aficionado. It is not the case that “Homer is a craft beer aficionado”. Everyone in the room is a dedicated volunteer for local community service projects, collects limited-edition art prints from contemporary artists or is a chess master who participates in national tournaments only if they does enjoy trail running. Everyone in the room who does enjoy trail running has a tattoo.
Homer is a chess master who participates in national tournaments.
contradiction
room(homer)&room(jeniffer)&room(marie)&(![X]:(room(X)=>(X='homer'|X='jeniffer'|X='marie')))& ((![X]:(room(X)=>(((does_not_know_morse_code(X))|(trains_for_and_competes_in_international_triathlons(X))))))=>(![X]:(~room(X)=>(((~((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))=>(has_a_vast_collection_of_first-edition_science_fiction_novels(X)))))))& ((![X]:(room(X)=>(((does_not_enjoy_windsurfing(X))|(collects_classic_novels(X))))))=>(collects_classic_novels(jeniffer)))& ((?[X]:(room(X)&(enjoys_virtual_reality_gaming(X))))=>(![X]:(room(X)=>(((enjoys_windsurfing(X))=>(uses_contact_lenses(X)))))))& (![X]:(anywhere(X)=>(((uses_contact_lenses(X))<=>(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))& (~![X]:(room(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(is_a_client_of_Meta(X))))))& (![X]:(room(X)=>(((is_a_client_of_Meta(X))=>(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))))& (plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(marie))& (![X]:(room(X)=>(((practices_archery(X))=>(enjoys_windsurfing(X))))))& (![X]:(room(X)=>(((does_not_know_morse_code(X))|(trains_for_and_competes_in_international_triathlons(X))))))& (~(collects_classic_novels(jeniffer)))& (![X]:(room(X)=>(((is_a_chess_master_who_participates_in_national_tournaments(X))<=>(practices_zumba(X))))))& (![X]:(room(X)=>(((practices_zumba(X))=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))& (![X]:(room(X)=>(((has_a_tattoo(X))=>(is_a_craft_beer_aficionado(X))))))& (![X]:(anywhere(X)=>(((is_a_craft_beer_aficionado(X))=>(has_a_tattoo(X))))))& (![X]:(room(X)=>(((is_not_a_client_of_Costco(X))|(practices_archery(X))))))& (does_enjoy_trail_running(jeniffer))& (~(is_a_craft_beer_aficionado(homer)))& (~(is_a_client_of_Costco(homer)))& (practices_archery(marie))& ((?[X,Y]:(room(X)&room(Y)&(practices_archery(X)&practices_archery(Y))&(X!=Y))))& (![X]:(room(X)=>(((does_enjoy_trail_running(X))<=(((is_a_dedicated_volunteer_for_local_community_service_projects(X))|(collects_limited-edition_art_prints_from_contemporary_artists(X))|(is_a_chess_master_who_participates_in_national_tournaments(X))))))))& (![X]:(room(X)=>(((does_enjoy_trail_running(X))=>(has_a_tattoo(X))))))& (![X]:(room(X)=>(((has_a_tattoo(X))=>(plays_the_drums(X))))))& ((![X]:((has_a_vast_collection_of_first-edition_science_fiction_novels(X))=>(plays_the_drums(X)))))& (![X]:(room(X)=>(((((trains_for_and_competes_in_international_triathlons(X))|(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))|(has_a_specialized_collection_of_handmade_artisan_pottery(X))))=>(knows_morse_code(X))))))& (![X]:(room(X)=>(((knows_morse_code(X))=>(((has_a_tattoo(X))|(knows_morse_code(X))|(is_a_client_of_Meta(X))))))))& (![X]:(room(X)=>(((((has_a_tattoo(X))|(knows_morse_code(X))|(is_a_client_of_Meta(X))))=>(enjoys_windsurfing(X))))))& (?[X]:(room(X)&(enjoys_virtual_reality_gaming(X))))
room(homer)&room(jeniffer)&room(marie)&(![X]:(room(X)=>(X='homer'|X='jeniffer'|X='marie')))& is_a_chess_master_who_participates_in_national_tournaments(homer)
[ "p0", "p13", "p17", "p21", "p22", "hypothesis" ]
% SZS status Unsatisfiable for 7731137513463109413799108 % SZS output start Proof for 7731137513463109413799108 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 57. ! [X0] : (room(X0) => (predn(X0) => predy(X0))) [input p13] 61. ~predy(mary) [input p17] 65. ! [X0] : (room(X0) => ((predo(X0) | predh(X0) | predx(X0)) => predi(X0))) [input p21] 66. ! [X0] : (room(X0) => (predi(X0) => predn(X0))) [input p22] 73. predo(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 82. ! [X0] : (room(X0) => ((predo(X0) | predx(X0)) => predi(X0))) [pure predicate removal 65] 83. ! [X0] : (room(X0) => (predo(X0) => predi(X0))) [pure predicate removal 82] 159. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 160. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 159] 173. ! [X0] : ((predy(X0) | ~predn(X0)) | ~room(X0)) [ennf transformation 57] 174. ! [X0] : (predy(X0) | ~predn(X0) | ~room(X0)) [flattening 173] 177. ! [X0] : ((predi(X0) | ~predo(X0)) | ~room(X0)) [ennf transformation 83] 178. ! [X0] : (predi(X0) | ~predo(X0) | ~room(X0)) [flattening 177] 179. ! [X0] : ((predn(X0) | ~predi(X0)) | ~room(X0)) [ennf transformation 66] 180. ! [X0] : (predn(X0) | ~predi(X0) | ~room(X0)) [flattening 179] 187. predo(mary) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 73] 188. predo(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 187] 282. room(mary) [cnf transformation 160] 300. ~predn(X0) | predy(X0) | ~room(X0) [cnf transformation 174] 303. ~predy(mary) [cnf transformation 61] 310. ~predo(X0) | predi(X0) | ~room(X0) [cnf transformation 178] 311. ~predi(X0) | predn(X0) | ~room(X0) [cnf transformation 180] 323. predo(mary) [cnf transformation 188] 365. predi(mary) | ~room(mary) [resolution 310,323] 366. predi(mary) [subsumption resolution 365,282] 368. predn(mary) | ~room(mary) [resolution 311,366] 370. predn(mary) [subsumption resolution 368,282] 373. predy(mary) | ~room(mary) [resolution 370,300] 374. ~room(mary) [subsumption resolution 373,303] 375. $false [subsumption resolution 374,282] % SZS output end Proof for 7731137513463109413799108 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0.126553
Shawna, Guy are the only persons in the room. Either "everyone in the room is not an avid hiker or does not collect rare minerals" or "Shawna is an avid hiker" but not both. If "everyone in the room is an avid hiker or does not collect rare minerals" then "Shawna does not collect rare minerals". Shawna collects rare minerals. Everyone outside the room is an avid hiker if and only if they enjoys writing detailed reviews of new and classic board games. Everyone anywhere does not enjoy writing detailed reviews of new and classic board games if they enjoys writing detailed reviews of new and classic board games. Guy either is not an avid hiker or enjoys writing detailed reviews of new and classic board games but not both. Everyone in the room is not an avid hiker only if they collects rare minerals.
Guy collects rare minerals.
entailment
room(shawna)&room(guy)&(![X]:(room(X)=>(X='shawna'|X='guy')))& ((![X]:(room(X)=>(((does_not_collect_rare_minerals(X))|(is_not_an_avid_hiker(X))))))<~>(is_an_avid_hiker(shawna)))& ((![X]:(room(X)=>(((does_not_collect_rare_minerals(X))|(is_an_avid_hiker(X))))))=>(does_not_collect_rare_minerals(shawna)))& (collects_rare_minerals(shawna))& (![X]:(~room(X)=>(((is_an_avid_hiker(X))<=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))))& (![X]:(anywhere(X)=>(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))=>(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))))))& (((is_not_an_avid_hiker(guy))<~>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(guy))))& (![X]:(room(X)=>(((collects_rare_minerals(X))<=(is_not_an_avid_hiker(X))))))
room(shawna)&room(guy)&(![X]:(room(X)=>(X='shawna'|X='guy')))& collects_rare_minerals(guy)
[ "b4", "p0", "p5", "p6", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 3546941670566262701560387 % SZS output start Proof for 3546941670566262701560387 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 49. ! [X0] : (anywhere(X0) => (preda(X0) => ~preda(X0))) [input p5] 50. ~predb(paul) <~> preda(paul) [input p6] 51. ! [X0] : (room(X0) => (~predb(X0) => predc(X0))) [input p7] 52. ~(predc(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 124. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 125. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 124] 131. ! [X0] : ((~preda(X0) | ~preda(X0)) | ~anywhere(X0)) [ennf transformation 49] 132. ! [X0] : (~preda(X0) | ~preda(X0) | ~anywhere(X0)) [flattening 131] 133. ! [X0] : ((predc(X0) | predb(X0)) | ~room(X0)) [ennf transformation 51] 134. ! [X0] : (predc(X0) | predb(X0) | ~room(X0)) [flattening 133] 135. ~predc(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 52] 136. ~predc(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 135] 145. (~preda(paul) | predb(paul)) & (preda(paul) | ~predb(paul)) [nnf transformation 50] 146. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK2 & mary != sK2 & room(sK2)) [choice axiom] 147. ~predc(paul) | (paul != sK2 & mary != sK2 & room(sK2)) | ~room(paul) | ~room(mary) [skolemisation 136,146] 148. anywhere(X0) [cnf transformation 5] 229. room(mary) [cnf transformation 125] 230. room(paul) [cnf transformation 125] 231. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 125] 242. ~preda(X0) | ~preda(X0) | ~anywhere(X0) [cnf transformation 132] 243. preda(paul) | ~predb(paul) [cnf transformation 145] 245. ~room(X0) | predb(X0) | predc(X0) [cnf transformation 134] 246. ~predc(paul) | room(sK2) | ~room(paul) | ~room(mary) [cnf transformation 147] 247. ~predc(paul) | mary != sK2 | ~room(paul) | ~room(mary) [cnf transformation 147] 248. ~predc(paul) | paul != sK2 | ~room(paul) | ~room(mary) [cnf transformation 147] 249. ~preda(X0) | ~anywhere(X0) [duplicate literal removal 242] 293. ~preda(X0) [subsumption resolution 249,148] 294. ~predb(paul) [subsumption resolution 243,293] 295. ~predc(paul) | paul != sK2 | ~room(mary) [subsumption resolution 248,230] 296. ~predc(paul) | paul != sK2 [subsumption resolution 295,229] 298. 10 <=> paul = sK2 [avatar definition] 300. paul != sK2 <- (~10) [avatar component clause 298] 302. 11 <=> predc(paul) [avatar definition] 305. ~10 | ~11 [avatar split clause 296,302,298] 306. ~predc(paul) | mary != sK2 | ~room(mary) [subsumption resolution 247,230] 307. ~predc(paul) | mary != sK2 [subsumption resolution 306,229] 309. 12 <=> mary = sK2 [avatar definition] 311. mary != sK2 <- (~12) [avatar component clause 309] 312. ~12 | ~11 [avatar split clause 307,302,309] 313. ~predc(paul) | room(sK2) | ~room(mary) [subsumption resolution 246,230] 314. ~predc(paul) | room(sK2) [subsumption resolution 313,229] 316. 13 <=> room(sK2) [avatar definition] 318. room(sK2) <- (13) [avatar component clause 316] 319. 13 | ~11 [avatar split clause 314,302,316] 321. predb(paul) | predc(paul) [resolution 245,230] 323. predc(paul) [subsumption resolution 321,294] 326. 11 [avatar split clause 323,302] 340. mary = sK2 | paul = sK2 <- (13) [resolution 231,318] 350. paul = sK2 <- (~12, 13) [subsumption resolution 340,311] 351. $false <- (~10, ~12, 13) [subsumption resolution 350,300] 352. 10 | 12 | ~13 [avatar contradiction clause 351] 353. $false [avatar sat refutation 305,312,319,326,352] % SZS output end Proof for 3546941670566262701560387 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0
There is a room. Everyone in the room is not a dedicated advocate for digital privacy and encryption and does not enjoy watercolor painting if they is not a dedicated advocate for digital privacy and encryption. If someone does not have a specialized collection of handmade artisan pottery then he/she collects luxury watches. Everyone in the room does not practice archery if they does not collect luxury watches and does not practice archery. If someone practices archery then he/she enjoys watercolor painting and vice versa. No one anywhere is a dedicated advocate for digital privacy and encryption and does not enjoy watercolor painting. Someone anywhere enjoys watercolor painting. Everyone in the room who has a specialized collection of handmade artisan pottery collects luxury watches, does not enjoy watercolor painting and practices archery. Everyone in the room enjoys watercolor painting. Everyone in the room does not have a specialized collection of handmade artisan pottery. Everyone in the room enjoys watercolor painting if they does not have a specialized collection of handmade artisan pottery. Everyone in the room practices archery.
Everyone outside the room is a dedicated advocate for digital privacy and encryption.
neutral
(there_is_a_room)& (![X]:(room(X)=>(((is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))=>(((is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))&(does_not_enjoy_watercolor_painting(X))))))))& ((![X]:((does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))=>(collects_luxury_watches(X)))))& (![X]:(room(X)=>(((((does_not_collect_luxury_watches(X))&(does_not_practice_archery(X))))=>(does_not_practice_archery(X))))))& ((![X]:((practices_archery(X))<=>(enjoys_watercolor_painting(X)))))& (~?[X]:(anywhere(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))&(does_not_enjoy_watercolor_painting(X))))))& (?[X]:(anywhere(X)&(enjoys_watercolor_painting(X))))& (![X]:(room(X)=>(((has_a_specialized_collection_of_handmade_artisan_pottery(X))=>(((collects_luxury_watches(X))&(does_not_enjoy_watercolor_painting(X))&(practices_archery(X))))))))& (![X]:(room(X)=>(enjoys_watercolor_painting(X))))& (![X]:(room(X)=>(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))))& (![X]:(room(X)=>(((does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))=>(enjoys_watercolor_painting(X))))))& (![X]:(room(X)=>(practices_archery(X))))
(there_is_a_room)& ![X]:(~room(X)=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X)))
[]
null
0.058851
Todd is the only person in the room. Everyone in the room either hosts regular workshops on creative writing or collects antique jewelry but not both if they maintains a personal blog focused on cybersecurity tips. Everyone in the room does not make intricate hand-cut paper art for exhibitions. If someone is passionate about collecting and restoring classic cars then he/she enjoys kayaking and vice versa. Everyone anywhere maintains a personal blog focused on cybersecurity tips if they is passionate about collecting and restoring classic cars. If someone is a skilled home brewer experimenting with craft beer recipes then he/she is not an avid mountain climber who has scaled several peaks and vice versa. Everyone in the room does not collect action figures if and only if they has a specialized collection of handmade artisan pottery and travels domestically frequently. Everyone in the room who does not train for and competes in international triathlons is passionate about collecting and restoring classic cars. Everyone in the room is passionate about collecting and restoring classic cars if and only if they does not work on fridays. Everyone in the room is an avid hiker if they does not regularly contributes to tech forums and online communities and collects action figures. If someone does not own a smart tv then he/she is a skilled home brewer experimenting with craft beer recipes and vice versa. If someone does not work as a freelance web developer specializing in e-commerce sites then he/she uses contact lenses and vice versa. Someone in the room is an avid hiker. Not everyone in the room mentors a youth basketball team on weekends. Everyone in the room who is not passionate about collecting and restoring classic cars, uses contact lenses or does not host regular workshops on creative writing practices pilates. Everyone in the room either does not drive a hybrid car or does not enjoy cross-country skiing but not both if they makes intricate hand-cut paper art for exhibitions. Everyone in the room trains for and competes in international triathlons or does not have a specialized collection of handmade artisan pottery. Everyone in the room does not work as a freelance web developer specializing in e-commerce sites if they does not mentor a youth basketball team on weekends.
Todd practices pilates.
entailment
room(todd)&(![X]:(room(X)=>(X='todd')))& (![X]:(room(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))=>(((hosts_regular_workshops_on_creative_writing(X))<~>(collects_antique_jewelry(X))))))))& (![X]:(room(X)=>(does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))))& ((![X]:((is_passionate_about_collecting_and_restoring_classic_cars(X))<=>(enjoys_kayaking(X)))))& (![X]:(anywhere(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))& ((![X]:((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))<=>(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X)))))& (![X]:(room(X)=>(((does_not_collect_action_figures(X))<=>(((has_a_specialized_collection_of_handmade_artisan_pottery(X))&(travels_domestically_frequently(X))))))))& (![X]:(room(X)=>(((does_not_train_for_and_competes_in_international_triathlons(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))<=>(does_not_work_on_fridays(X))))))& (![X]:(room(X)=>(((((does_not_regularly_contributes_to_tech_forums_and_online_communities(X))&(collects_action_figures(X))))=>(is_an_avid_hiker(X))))))& ((![X]:((does_not_own_a_smart_tv(X))<=>(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X)))))& ((![X]:((does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))<=>(uses_contact_lenses(X)))))& (?[X]:(room(X)&(is_an_avid_hiker(X))))& (~![X]:(room(X)=>(mentors_a_youth_basketball_team_on_weekends(X))))& (![X]:(room(X)=>(((((is_not_passionate_about_collecting_and_restoring_classic_cars(X))|(uses_contact_lenses(X))|(does_not_host_regular_workshops_on_creative_writing(X))))=>(practices_pilates(X))))))& (![X]:(room(X)=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))=>(((does_not_drive_a_hybrid_car(X))<~>(does_not_enjoy_cross-country_skiing(X))))))))& (![X]:(room(X)=>(((does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))|(trains_for_and_competes_in_international_triathlons(X))))))& (![X]:(room(X)=>(((((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))&(does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))))=>(does_not_mentor_a_youth_basketball_team_on_weekends(X))))))& (![X]:(room(X)=>(((does_not_mentor_a_youth_basketball_team_on_weekends(X))=>(does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))& ((![X]:((((does_not_work_on_fridays(X))<~>(does_not_enjoy_cross-country_skiing(X))))<=>(hosts_regular_workshops_on_creative_writing(X)))))& (![X]:(room(X)=>(((((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))&(is_passionate_about_collecting_and_restoring_classic_cars(X))))=>(((drives_a_hybrid_car(X))&(does_not_work_on_fridays(X))))))))
room(todd)&(![X]:(room(X)=>(X='todd')))& practices_pilates(todd)
[ "p0", "p11", "p13", "p14", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 4366859611816671896909125 % SZS output start Proof for 4366859611816671896909125 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 55. ! [X0] : (~preda(X0) <=> predv(X0)) [input p11] 57. ~! [X0] : (room(X0) => predy(X0)) [input p13] 58. ! [X0] : (room(X0) => ((~predz(X0) | predv(X0) | ~predb(X0)) => predw(X0))) [input p14] 62. ! [X0] : (room(X0) => (~predy(X0) => ~preda(X0))) [input p18] 65. ~(predw(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 66. ! [X0] : (~preda(X0) => predv(X0)) [unused predicate definition removal 55] 147. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 154. ! [X0] : (predv(X0) | preda(X0)) [ennf transformation 66] 155. ? [X0] : (~predy(X0) & room(X0)) [ennf transformation 57] 156. ! [X0] : ((predw(X0) | (predz(X0) & ~predv(X0) & predb(X0))) | ~room(X0)) [ennf transformation 58] 157. ! [X0] : (predw(X0) | (predz(X0) & ~predv(X0) & predb(X0)) | ~room(X0)) [flattening 156] 160. ! [X0] : ((~preda(X0) | predy(X0)) | ~room(X0)) [ennf transformation 62] 161. ! [X0] : (~preda(X0) | predy(X0) | ~room(X0)) [flattening 160] 162. ~predw(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 65] 171. ? [X0] : (~predy(X0) & room(X0)) => (~predy(sK1) & room(sK1)) [choice axiom] 172. ~predy(sK1) & room(sK1) [skolemisation 155,171] 174. ? [X0] : (mary != X0 & room(X0)) => (mary != sK2 & room(sK2)) [choice axiom] 175. ~predw(mary) | (mary != sK2 & room(sK2)) | ~room(mary) [skolemisation 162,174] 257. room(mary) [cnf transformation 147] 258. ~room(X0) | mary = X0 [cnf transformation 147] 269. predv(X0) | preda(X0) [cnf transformation 154] 271. room(sK1) [cnf transformation 172] 272. ~predy(sK1) [cnf transformation 172] 274. ~predv(X0) | predw(X0) | ~room(X0) [cnf transformation 157] 277. ~preda(X0) | predy(X0) | ~room(X0) [cnf transformation 161] 282. ~predw(mary) | room(sK2) | ~room(mary) [cnf transformation 175] 283. ~predw(mary) | mary != sK2 | ~room(mary) [cnf transformation 175] 285. ~predw(mary) | mary != sK2 [subsumption resolution 283,257] 287. 1 <=> mary = sK2 [avatar definition] 289. mary != sK2 <- (~1) [avatar component clause 287] 291. 2 <=> predw(mary) [avatar definition] 293. ~predw(mary) <- (~2) [avatar component clause 291] 294. ~1 | ~2 [avatar split clause 285,291,287] 295. ~predw(mary) | room(sK2) [subsumption resolution 282,257] 297. 3 <=> room(sK2) [avatar definition] 299. room(sK2) <- (3) [avatar component clause 297] 300. 3 | ~2 [avatar split clause 295,291,297] 303. mary = sK1 [resolution 258,271] 306. ~predy(mary) [backward demodulation 272,303] 336. ~room(X0) | predw(X0) | preda(X0) [resolution 274,269] 356. mary = sK2 <- (3) [resolution 299,258] 390. $false <- (~1, 3) [subsumption resolution 356,289] 391. 1 | ~3 [avatar contradiction clause 390] 401. predw(mary) | preda(mary) [resolution 336,257] 402. preda(mary) <- (~2) [subsumption resolution 401,293] 403. predy(mary) | ~room(mary) <- (~2) [resolution 402,277] 404. ~room(mary) <- (~2) [subsumption resolution 403,306] 405. $false <- (~2) [subsumption resolution 404,257] 406. 2 [avatar contradiction clause 405] 407. $false [avatar sat refutation 294,300,391,406] % SZS output end Proof for 4366859611816671896909125 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.022873
Rick, David, Patrick are the only persons in the room. David maintains a personal blog focused on cybersecurity tips. Not everyone outside the room who maintains a personal blog focused on cybersecurity tips is a client of LVMH. Patrick practices and performs acrobatic dance routines. Patrick enjoys kayaking. Everyone in the room can play the flute only if they is a professional photographer specializing in portrait photography and enjoys kayaking. Everyone outside the room is a professional photographer specializing in portrait photography and enjoys kayaking if and only if they has a pet dog. Rick is a scotch connoisseur. If someone is a professional photographer specializing in portrait photography then he/she neither enjoys stand-up paddleboarding nor competes in national level swimming championships and vice versa. Not everyone in the room competes in national level swimming championships or does not enjoy kayaking. Rick creates augmented reality experiences for mobile applications and competes in national level swimming championships. Everyone in the room who maintains a personal blog focused on cybersecurity tips practices tai chi. Everyone in the room who practices tai chi is a professional photographer specializing in portrait photography. Everyone in the room who enjoys rooftop gardening is allergic to anything and enjoys kayaking.
David competes in national level swimming championships.
contradiction
room(rick)&room(david)&room(patrick)&(![X]:(room(X)=>(X='rick'|X='david'|X='patrick')))& (maintains_a_personal_blog_focused_on_cybersecurity_tips(david))& (~![X]:(~room(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))=>(is_a_client_of_LVMH(X))))))& (practices_and_performs_acrobatic_dance_routines(patrick))& (enjoys_kayaking(patrick))& (![X]:(room(X)=>(((((is_a_professional_photographer_specializing_in_portrait_photography(X))&(enjoys_kayaking(X))))<=(can_play_the_flute(X))))))& (![X]:(~room(X)=>(((((is_a_professional_photographer_specializing_in_portrait_photography(X))&(enjoys_kayaking(X))))<=>(has_a_pet_dog(X))))))& (is_a_scotch_connoisseur(rick))& ((![X]:((is_a_professional_photographer_specializing_in_portrait_photography(X))<=>(~((enjoys_stand-up_paddleboarding(X))|(competes_in_national_level_swimming_championships(X)))))))& (~![X]:(room(X)=>(((does_not_enjoy_kayaking(X))|(competes_in_national_level_swimming_championships(X))))))& (((creates_augmented_reality_experiences_for_mobile_applications(rick))&(competes_in_national_level_swimming_championships(rick))))& (![X]:(room(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))=>(practices_tai_chi(X))))))& (![X]:(room(X)=>(((practices_tai_chi(X))=>(is_a_professional_photographer_specializing_in_portrait_photography(X))))))& (![X]:(room(X)=>(((enjoys_rooftop_gardening(X))=>(((is_allergic_to_anything(X))&(enjoys_kayaking(X))))))))
room(rick)&room(david)&room(patrick)&(![X]:(room(X)=>(X='rick'|X='david'|X='patrick')))& competes_in_national_level_swimming_championships(david)
[ "p0", "p1", "p8", "p11", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 288308884061782949664016 % SZS output start Proof for 288308884061782949664016 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. predv(paul) [input p1] 52. ! [X0] : (predq(X0) <=> ~(predx(X0) | predn(X0))) [input p8] 55. ! [X0] : (room(X0) => (predv(X0) => predh(X0))) [input p11] 56. ! [X0] : (room(X0) => (predh(X0) => predq(X0))) [input p12] 58. predx(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 138. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 139. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 138] 142. ! [X0] : (predq(X0) <=> (~predx(X0) & ~predn(X0))) [ennf transformation 52] 145. ! [X0] : ((predh(X0) | ~predv(X0)) | ~room(X0)) [ennf transformation 55] 146. ! [X0] : (predh(X0) | ~predv(X0) | ~room(X0)) [flattening 145] 147. ! [X0] : ((predq(X0) | ~predh(X0)) | ~room(X0)) [ennf transformation 56] 148. ! [X0] : (predq(X0) | ~predh(X0) | ~room(X0)) [flattening 147] 149. predx(paul) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 58] 150. predx(paul) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 149] 156. ! [X0] : ((predq(X0) | (predx(X0) | predn(X0))) & ((~predx(X0) & ~predn(X0)) | ~predq(X0))) [nnf transformation 142] 157. ! [X0] : ((predq(X0) | predx(X0) | predn(X0)) & ((~predx(X0) & ~predn(X0)) | ~predq(X0))) [flattening 156] 241. room(paul) [cnf transformation 139] 244. predv(paul) [cnf transformation 45] 252. ~predx(X0) | ~predq(X0) [cnf transformation 157] 258. ~predv(X0) | predh(X0) | ~room(X0) [cnf transformation 146] 259. ~predh(X0) | predq(X0) | ~room(X0) [cnf transformation 148] 264. predx(paul) [cnf transformation 150] 266. ~predq(paul) [resolution 252,264] 278. predh(paul) | ~room(paul) [resolution 258,244] 280. predh(paul) [subsumption resolution 278,241] 281. predq(paul) | ~room(paul) [resolution 280,259] 282. ~room(paul) [subsumption resolution 281,266] 283. $false [subsumption resolution 282,241] % SZS output end Proof for 288308884061782949664016 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.149609
Ella, Woodrow, Christopher, Carlos are the only persons in the room. "Someone in the room is not a tea enthusiast" if "Ella does not make homemade pastries, makes homemade pastries and enjoys logic puzzles". "Ella is a tea enthusiast" if "Ella designs and sews custom cosplay costumes for conventions, is not a tea enthusiast and enjoys logic puzzles". Either "Ella is a tea enthusiast" or "Ella designs and sews custom cosplay costumes for conventions" but not both. "Ella does not design and sews custom cosplay costumes for conventions" if "someone in the room does not enjoy logic puzzles" and vice versa. Either "Ella enjoys logic puzzles" or "Ella does not design and sews custom cosplay costumes for conventions" but not both.
It is not the case that "Woodrow is a tea enthusiast".
neutral
room(ella)&room(woodrow)&room(christopher)&room(carlos)&(![X]:(room(X)=>(X='ella'|X='woodrow'|X='christopher'|X='carlos')))& ((((does_not_make_homemade_pastries(ella))&(makes_homemade_pastries(ella))&(enjoys_logic_puzzles(ella))))=>(?[X]:(room(X)&(is_not_a_tea_enthusiast(X)))))& ((((designs_and_sews_custom_cosplay_costumes_for_conventions(ella))&(is_not_a_tea_enthusiast(ella))&(enjoys_logic_puzzles(ella))))=>(is_a_tea_enthusiast(ella)))& ((is_a_tea_enthusiast(ella))<~>(designs_and_sews_custom_cosplay_costumes_for_conventions(ella)))& ((?[X]:(room(X)&(does_not_enjoy_logic_puzzles(X))))<=>(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(ella)))& ((enjoys_logic_puzzles(ella))<~>(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(ella)))& ((designs_and_sews_custom_cosplay_costumes_for_conventions(ella))<=>(?[X]:(room(X)&(((is_not_a_tea_enthusiast(X))&(enjoys_logic_puzzles(X))&(designs_and_sews_custom_cosplay_costumes_for_conventions(X)))))))& (((?[X]:(room(X)&makes_homemade_pastries(X)))&(![X,Y]:((room(X)&room(Y)&(makes_homemade_pastries(X))&(makes_homemade_pastries(Y)))=>(X=Y)))))& (?[X]:(room(X)&(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))& (((enjoys_logic_puzzles(ella))|(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(ella))|(does_not_make_homemade_pastries(ella))))& (does_not_make_homemade_pastries(ella))
room(ella)&room(woodrow)&room(christopher)&room(carlos)&(![X]:(room(X)=>(X='ella'|X='woodrow'|X='christopher'|X='carlos')))& ~(is_a_tea_enthusiast(woodrow))
[]
null
0.00346
Eugene, Joseph, Helen, Preston are the only persons in the room. Everyone in the room does not own a 3D printer if they enjoys landscape photography. Everyone anywhere does not own a 3D printer if they enjoys fishing and vice versa. Everyone in the room who does not mentor a youth basketball team on weekends mentors a youth basketball team on weekends. Everyone anywhere owns a smart tv if they mentors a youth basketball team on weekends. Everyone in the room who owns a smart tv is an avid collector of autographed memorabilia from famous musicians.
Eugene does not own a 3D printer or is an avid collector of autographed memorabilia from famous musicians or both.
entailment
room(eugene)&room(joseph)&room(helen)&room(preston)&(![X]:(room(X)=>(X='eugene'|X='joseph'|X='helen'|X='preston')))& (![X]:(room(X)=>(((enjoys_landscape_photography(X))=>(does_not_own_a_3D_printer(X))))))& (![X]:(anywhere(X)=>(((does_not_own_a_3D_printer(X))<=>(enjoys_fishing(X))))))& (?[X]:(room(X)&(owns_a_smart_tv(X))))& (![X]:(room(X)=>(((enjoys_landscape_photography(X))=>(mentors_a_youth_basketball_team_on_weekends(X))))))& ((![X]:((collects_vintage_vinyl_records(X))<=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X)))))& (![X]:(room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))=>(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))))))& ((![X]:((has_a_specialized_collection_of_handmade_artisan_pottery(X))<=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X)))))& (![X]:(room(X)=>(((enjoys_fishing(X))=>(does_not_own_a_smart_tv(X))))))& (?[X]:(room(X)&(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))& (![X]:(room(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))<=>(does_not_mentor_a_youth_basketball_team_on_weekends(X))))))& (![X]:(room(X)=>(((does_not_mentor_a_youth_basketball_team_on_weekends(X))=>(mentors_a_youth_basketball_team_on_weekends(X))))))& (![X]:(room(X)=>(((mentors_a_youth_basketball_team_on_weekends(X))=>(does_practice_yoga(X))))))& (![X]:(anywhere(X)=>(((mentors_a_youth_basketball_team_on_weekends(X))=>(owns_a_smart_tv(X))))))& (![X]:(room(X)=>(((owns_a_smart_tv(X))=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& (![X]:(anywhere(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))=>(((competes_in_national_level_swimming_championships(X))|(does_not_practice_yoga(X))))))))& (![X]:(room(X)=>(((((competes_in_national_level_swimming_championships(X))|(does_not_practice_yoga(X))))=>(is_a_cybersecurity_expert(X))))))& (![X]:(room(X)=>(((enjoys_kayaking(X))=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& (![X]:(room(X)=>(((enjoys_kayaking(X))=>(is_not_an_avid_hiker(X))))))& (![X]:(room(X)=>(((is_not_an_avid_hiker(X))=>(builds_model_airplanes(X))))))& (![X]:(room(X)=>(is_an_avid_hiker(X))))
room(eugene)&room(joseph)&room(helen)&room(preston)&(![X]:(room(X)=>(X='eugene'|X='joseph'|X='helen'|X='preston')))& ((does_not_own_a_3D_printer(eugene))|(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(eugene)))
[ "b4", "p0", "p11", "p13", "p14", "hypothesis" ]
% SZS status Unsatisfiable for 7858708917587712720650799 % SZS output start Proof for 7858708917587712720650799 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 55. ! [X0] : (room(X0) => (~predk(X0) => predk(X0))) [input p11] 57. ! [X0] : (anywhere(X0) => (predk(X0) => preds(X0))) [input p13] 58. ! [X0] : (room(X0) => (preds(X0) => predd(X0))) [input p14] 65. ~((predd(mary) | ~predf(mary)) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 150. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 151. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 150] 156. ! [X0] : ((predk(X0) | predk(X0)) | ~room(X0)) [ennf transformation 55] 157. ! [X0] : (predk(X0) | predk(X0) | ~room(X0)) [flattening 156] 158. ! [X0] : ((preds(X0) | ~predk(X0)) | ~anywhere(X0)) [ennf transformation 57] 159. ! [X0] : (preds(X0) | ~predk(X0) | ~anywhere(X0)) [flattening 158] 160. ! [X0] : ((predd(X0) | ~preds(X0)) | ~room(X0)) [ennf transformation 58] 161. ! [X0] : (predd(X0) | ~preds(X0) | ~room(X0)) [flattening 160] 162. (~predd(mary) & predf(mary)) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 65] 163. (~predd(mary) & predf(mary)) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 162] 164. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~sP0 [predicate definition introduction] 165. (~predd(mary) & predf(mary)) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [definition folding 163,164] 173. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~sP0 [nnf transformation 164] 174. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 175. (alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~sP0 [skolemisation 173,174] 176. anywhere(X0) [cnf transformation 5] 257. room(mary) [cnf transformation 151] 258. room(paul) [cnf transformation 151] 259. room(fred) [cnf transformation 151] 260. room(alice) [cnf transformation 151] 261. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 151] 270. predk(X0) | predk(X0) | ~room(X0) [cnf transformation 157] 271. preds(X0) | ~predk(X0) | ~anywhere(X0) [cnf transformation 159] 272. ~preds(X0) | predd(X0) | ~room(X0) [cnf transformation 161] 273. room(sK3) | ~sP0 [cnf transformation 175] 274. mary != sK3 | ~sP0 [cnf transformation 175] 275. paul != sK3 | ~sP0 [cnf transformation 175] 276. fred != sK3 | ~sP0 [cnf transformation 175] 277. alice != sK3 | ~sP0 [cnf transformation 175] 279. ~predd(mary) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 165] 280. ~room(X0) | predk(X0) [duplicate literal removal 270] 283. ~predk(X0) | preds(X0) [subsumption resolution 271,176] 285. 1 <=> sP0 [avatar definition] 289. 2 <=> alice = sK3 [avatar definition] 291. alice != sK3 <- (~2) [avatar component clause 289] 292. ~1 | ~2 [avatar split clause 277,289,285] 294. 3 <=> fred = sK3 [avatar definition] 296. fred != sK3 <- (~3) [avatar component clause 294] 297. ~1 | ~3 [avatar split clause 276,294,285] 299. 4 <=> paul = sK3 [avatar definition] 301. paul != sK3 <- (~4) [avatar component clause 299] 302. ~1 | ~4 [avatar split clause 275,299,285] 304. 5 <=> mary = sK3 [avatar definition] 306. mary != sK3 <- (~5) [avatar component clause 304] 307. ~1 | ~5 [avatar split clause 274,304,285] 309. 6 <=> room(sK3) [avatar definition] 311. room(sK3) <- (6) [avatar component clause 309] 312. ~1 | 6 [avatar split clause 273,309,285] 313. ~predd(mary) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 279,260] 314. ~predd(mary) | sP0 | ~room(paul) | ~room(mary) [subsumption resolution 313,259] 315. ~predd(mary) | sP0 | ~room(mary) [subsumption resolution 314,258] 316. ~predd(mary) | sP0 [subsumption resolution 315,257] 318. 7 <=> predd(mary) [avatar definition] 321. 1 | ~7 [avatar split clause 316,318,285] 331. predk(mary) [resolution 280,257] 338. preds(mary) [resolution 283,331] 355. predd(mary) | ~room(mary) [resolution 338,272] 361. predd(mary) [subsumption resolution 355,257] 362. 7 [avatar split clause 361,318] 444. fred = sK3 | paul = sK3 | mary = sK3 | alice = sK3 <- (6) [resolution 261,311] 479. paul = sK3 | mary = sK3 | alice = sK3 <- (~3, 6) [subsumption resolution 444,296] 480. mary = sK3 | alice = sK3 <- (~3, ~4, 6) [subsumption resolution 479,301] 481. alice = sK3 <- (~3, ~4, ~5, 6) [subsumption resolution 480,306] 482. $false <- (~2, ~3, ~4, ~5, 6) [subsumption resolution 481,291] 483. 2 | 3 | 4 | 5 | ~6 [avatar contradiction clause 482] 484. $false [avatar sat refutation 292,297,302,307,312,321,362,483] % SZS output end Proof for 7858708917587712720650799 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.566021
Martin is the only person in the room. If someone enjoys writing detailed reviews of new and classic board games then he/she hosts regular workshops on creative writing. Martin drives a hybrid car. Everyone in the room who is an avid collector of autographed memorabilia from famous musicians enjoys stargazing. At least one person outside the room collects first edition books. Martin writes a travel blog, enjoys coding in Python and is a cybersecurity expert. Martin writes a travel blog. Martin hosts a popular podcast about emerging technologies. Not everyone in the room who hosts a popular podcast about emerging technologies is an amateur astronomer who builds and uses custom telescopes. If someone hosts a popular podcast about emerging technologies then he/she is an avid collector of autographed memorabilia from famous musicians. Martin is a client of Costco. Everyone outside the room does not enjoy salsa dancing.
Martin enjoys salsa dancing.
neutral
room(martin)&(![X]:(room(X)=>(X='martin')))& ((![X]:((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))=>(hosts_regular_workshops_on_creative_writing(X)))))& (drives_a_hybrid_car(martin))& (![X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))=>(enjoys_stargazing(X))))))& (((?[X]:(~room(X)&collects_first_edition_books(X)))))& (((writes_a_travel_blog(martin))&(enjoys_coding_in_Python(martin))&(is_a_cybersecurity_expert(martin))))& (writes_a_travel_blog(martin))& (hosts_a_popular_podcast_about_emerging_technologies(martin))& (~![X]:(room(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))& ((![X]:((hosts_a_popular_podcast_about_emerging_technologies(X))=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X)))))& (is_a_client_of_Costco(martin))& (![X]:(~room(X)=>(does_not_enjoy_salsa_dancing(X))))& (own_a_television(martin))& ((![X]:((((enjoys_rooftop_gardening(X))&(hosts_regular_workshops_on_creative_writing(X))))=>(writes_a_travel_blog(X)))))& (does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(martin))& (enjoys_coding_in_Python(martin))& (is_an_active_member_of_a_local_robotics_club(martin))& (is_a_cybersecurity_expert(martin))& (![X]:(room(X)=>(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))|(hosts_regular_workshops_on_creative_writing(X))))))& (is_a_client_of_Meta(martin))& ((![X]:((is_a_cybersecurity_expert(X))=>(uses_contact_lenses(X)))))& (enjoys_writing_detailed_reviews_of_new_and_classic_board_games(martin))& (![X]:(room(X)=>(((uses_contact_lenses(X))=>(enjoys_rooftop_gardening(X))))))
room(martin)&(![X]:(room(X)=>(X='martin')))& enjoys_salsa_dancing(martin)
[]
null
0.196095
Brooks, Ronald, Martin, Gregory are the only persons in the room. If Carl is older than Ronald then Martin is not funny, not generous, not happy, not old, not quiet, not brave, not strong. If Gregory is richer than Carl then Carl is quieter than Martin. If Gregory and Ronald are respectively tall and humble then everyone in the room who is older than Carl is richer than Carl otherwise Ronald is older than Carl. If Brooks is richer than Carl and is older than Carl then someone outside the room is richer than Carl. Everyone anywhere who is quieter than Carl is not a old patient person. It is true that someone in the room is tall. Someone who is quieter than Carl or is not a calm person or both is quieter than someone who is older than Carl. Martin is the oldest in the room. Everyone in the room who is humble is brave. Brooks is richer than Carl. Everyone in the room who is older than Carl is not a kind creative calm brave curious person.
Everyone anywhere neither is a happy person nor is a kind happy person.
neutral
room(brooks)&room(ronald)&room(martin)&room(gregory)&(![X]:(room(X)=>(X='brooks'|X='ronald'|X='martin'|X='gregory')))& ((older(ronald,carl))=>(~funny(martin)&~generous(martin)&~happy(martin)&~old(martin)&~quiet(martin)&~brave(martin)&~strong(martin)))& ((richer(carl,gregory))=>(quieter(martin,carl)))& ((((tall(gregory))&(humble(ronald)))=>(![X]:(room(X)=>(((older(carl,X))=>(richer(carl,X)))))))&((~((tall(gregory))&(humble(ronald))))=>(older(carl,ronald))))& ((((richer(carl,brooks))&(older(carl,brooks))))=>(?[X]:(~room(X)&(richer(carl,X)))))& (![X]:(anywhere(X)=>(((quieter(carl,X))=>(~(old(X)&patient(X)&person(X)))))))& (?[X]:(room(X)&(tall(X))))& (?[X,Y]:((((quieter(carl,X))|(~(calm(X)&person(X)))))&(older(carl,Y))&(quieter(X,Y))))& (![X]:((room(X)&(X!=martin))=>older(X,martin)))& (![X]:(room(X)=>(((humble(X))=>(brave(X))))))& (richer(carl,brooks))& (![X]:(room(X)=>(((older(carl,X))=>(~(kind(X)&creative(X)&calm(X)&brave(X)&curious(X)&person(X)))))))
room(brooks)&room(ronald)&room(martin)&room(gregory)&(![X]:(room(X)=>(X='brooks'|X='ronald'|X='martin'|X='gregory')))& ![X]:(anywhere(X)=>(~((happy(X)&person(X))|(kind(X)&happy(X)&person(X)))))
[]
null
0.005534
There is a room. Everyone in the room who knows morse code or does not host themed dinner parties featuring gourmet home-cooked meals or both neither does not enjoy snowboarding nor is a chess master who participates in national tournaments. Everyone anywhere knows morse code if they plays the violin. No one in the room does not collect modern art, is a certified yoga instructor teaching classes weekly and is a drone photographer. Everyone in the room who enjoys snowboarding owns a telescope and hosts regular game nights featuring complex strategy games. No one in the room does not collect first edition books or hosts regular game nights featuring complex strategy games.
Everyone in the room does not play the violin.
entailment
(there_is_a_room)& ((~(?[X]:(room(X)&(((trains_for_and_competes_in_international_triathlons(X))&(travels_domestically_frequently(X))&(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)))))))=>(![X]:(room(X)=>(((((knows_morse_code(X))|(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))=>(~((does_not_enjoy_snowboarding(X))|(is_a_chess_master_who_participates_in_national_tournaments(X)))))))))& (![X]:(room(X)=>(((((knows_morse_code(X))|(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))=>(~((does_not_enjoy_snowboarding(X))|(is_a_chess_master_who_participates_in_national_tournaments(X))))))))& (?[X]:(room(X)&(((is_a_drone_photographer(X))&(owns_a_telescope(X))&(has_a_specialized_collection_of_handmade_artisan_pottery(X))))))& (![X]:(anywhere(X)=>(((plays_the_violin(X))=>(knows_morse_code(X))))))& (![X]:(room(X)=>(((is_a_drone_photographer(X))<=>(trains_for_and_competes_in_international_triathlons(X))))))& (~?[X]:(room(X)=>(((does_not_collect_modern_art(X))&(is_a_certified_yoga_instructor_teaching_classes_weekly(X))&(is_a_drone_photographer(X))))))& (![X]:(room(X)=>(((is_a_drone_photographer(X))=>(travels_domestically_frequently(X))))))& (((?[X]:(room(X)&is_not_a_drone_photographer(X)))&(![X,Y]:((room(X)&room(Y)&(is_not_a_drone_photographer(X))&(is_not_a_drone_photographer(Y)))=>(X=Y)))))& ((![X]:((enjoys_origami(X))=>(does_not_play_the_violin(X)))))& (![X]:(room(X)=>(collects_first_edition_books(X))))& (![X]:(room(X)=>(((enjoys_snowboarding(X))=>(((owns_a_telescope(X))&(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))))& (![X]:(~room(X)=>(((((owns_a_telescope(X))&(hosts_regular_game_nights_featuring_complex_strategy_games(X))))=>(enjoys_snowboarding(X))))))& ((![X]:((travels_domestically_frequently(X))<=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)))))& (~?[X]:(room(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))|(does_not_collect_first_edition_books(X))))))
(there_is_a_room)& ![X]:(room(X)=>(does_not_play_the_violin(X)))
[ "b4", "p0", "p2", "p4", "p6", "p11", "p14", "hypothesis" ]
% SZS status Unsatisfiable for 7364547516441316479972497 % SZS output start Proof for 7364547516441316479972497 5. ! [X0] : anywhere(X0) [input b4] 44. there_is_a_room [input p0] 46. ! [X0] : (room(X0) => ((~predl(X0) | predi(X0)) => ~(predo(X0) | ~predq(X0)))) [input p2] 48. ! [X0] : (anywhere(X0) => (predm(X0) => predi(X0))) [input p4] 50. ~? [X0] : (room(X0) => (predc(X0) & predg(X0) & ~predt(X0))) [input p6] 55. ! [X0] : (room(X0) => (predq(X0) => (preda(X0) & predr(X0)))) [input p11] 58. ~? [X0] : (room(X0) => (~predj(X0) | preda(X0))) [input p14] 59. ~(! [X0] : (room(X0) => ~predm(X0)) & there_is_a_room) [input hypothesis] 63. ~? [X0] : (room(X0) => preda(X0)) [pure predicate removal 58] 66. ~? [X0] : ~room(X0) [pure predicate removal 50] 68. ! [X0] : (room(X0) => ((~predl(X0) | predi(X0)) => ~~predq(X0))) [pure predicate removal 46] 143. ! [X0] : ((predq(X0) | (predl(X0) & ~predi(X0))) | ~room(X0)) [ennf transformation 68] 144. ! [X0] : (predq(X0) | (predl(X0) & ~predi(X0)) | ~room(X0)) [flattening 143] 145. ! [X0] : ((predi(X0) | ~predm(X0)) | ~anywhere(X0)) [ennf transformation 48] 146. ! [X0] : (predi(X0) | ~predm(X0) | ~anywhere(X0)) [flattening 145] 148. ! [X0] : room(X0) [ennf transformation 66] 153. ! [X0] : (((preda(X0) & predr(X0)) | ~predq(X0)) | ~room(X0)) [ennf transformation 55] 154. ! [X0] : ((preda(X0) & predr(X0)) | ~predq(X0) | ~room(X0)) [flattening 153] 158. ! [X0] : (~preda(X0) & room(X0)) [ennf transformation 63] 159. ? [X0] : (predm(X0) & room(X0)) | ~there_is_a_room [ennf transformation 59] 169. ? [X0] : (predm(X0) & room(X0)) => (predm(sK3) & room(sK3)) [choice axiom] 170. (predm(sK3) & room(sK3)) | ~there_is_a_room [skolemisation 159,169] 171. anywhere(X0) [cnf transformation 5] 252. there_is_a_room [cnf transformation 44] 261. predq(X0) | ~predi(X0) | ~room(X0) [cnf transformation 144] 266. predi(X0) | ~predm(X0) | ~anywhere(X0) [cnf transformation 146] 269. room(X0) [cnf transformation 148] 275. preda(X0) | ~predq(X0) | ~room(X0) [cnf transformation 154] 279. ~preda(X0) [cnf transformation 158] 281. predm(sK3) | ~there_is_a_room [cnf transformation 170] 306. 6 <=> ! [X0] : (predq(X0) | ~room(X0) | ~predi(X0)) [avatar definition] 307. predq(X0) | ~room(X0) | ~predi(X0) <- (6) [avatar component clause 306] 313. 6 [avatar split clause 261,306] 314. ~predm(X0) | predi(X0) [subsumption resolution 266,171] 318. ~predq(X0) | preda(X0) [subsumption resolution 275,269] 320. predm(sK3) [subsumption resolution 281,252] 321. ~predi(X0) | predq(X0) <- (6) [subsumption resolution 307,269] 323. predi(sK3) [resolution 314,320] 326. predq(sK3) <- (6) [resolution 321,323] 328. preda(sK3) <- (6) [resolution 326,318] 329. $false <- (6) [subsumption resolution 328,279] 330. ~6 [avatar contradiction clause 329] 331. $false [avatar sat refutation 313,330] % SZS output end Proof for 7364547516441316479972497 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.092876
Tom, Joan are the only persons in the room. “Everyone in the room is not old or does not work on fridays” only if “A clock does not measure time in various colors.”. Either “Sean is older than Joan” or ““A pen does not exist that only writes secrets.” or “A tower does not lean significantly without falling.” or both” but not both. “At least one person in the room is older than William” only if “if someone does not travel domestically frequently or works on fridays or both then he/she is younger than Sean and vice versa”. If “everyone in the room is older than Sean or does not work on fridays” then ““A clock measures time in various colors.” or “A pen does not exist that only writes secrets.” but not both”. If “William is younger than Joan” then “Tom is the youngest in the room”. If “at least one person in the room is older than Sean” then “someone who is younger than Sean is younger than someone who is younger than William”. If “Tom is happy” then “Tom travels domestically frequently”. All old persons are wise. Only one person in the room works on fridays. “A pen does not exist that only writes secrets.” or “A tower does not lean significantly without falling.” or both. Only one person anywhere does not work on fridays. Tom travels domestically frequently. Tom is younger than Sean. All humble persons are wise. “A pen does not exist that only writes secrets.” or “A pizza does not exist that tastes like ice cream.” or both. Someone in the room is younger than William.
Joan is not happy.
neutral
room(tom)&room(joan)&(![X]:(room(X)=>(X='tom'|X='joan')))& ((![X]:(room(X)=>(((does_not_work_on_fridays(X))|(~old(X))))))=>(A_clock_does_not_measure_time_in_various_colors.))& ((older(joan,sean))<~>(((A_pen_does_not_exist_that_only_writes_secrets.)|(A_tower_does_not_lean_significantly_without_falling.))))& ((((?[X]:(room(X)&older(william,X)))))=>((![X]:((((does_not_travel_domestically_frequently(X))|(works_on_fridays(X))))<=>(younger(sean,X))))))& ((![X]:(room(X)=>(((does_not_work_on_fridays(X))|(older(sean,X))))))=>(((A_clock_measures_time_in_various_colors.)<~>(A_pen_does_not_exist_that_only_writes_secrets.))))& ((younger(joan,william))=>(![X]:((room(X)&(X!=tom))=>younger(X,tom))))& ((((?[X]:(room(X)&older(sean,X)))))=>(?[X,Y]:((younger(sean,X))&(younger(william,Y))&(younger(X,Y)))))& ((happy(tom))=>(travels_domestically_frequently(tom)))& (![X]:(old(X)=>wise(X)))& (((?[X]:(room(X)&works_on_fridays(X)))&(![X,Y]:((room(X)&room(Y)&(works_on_fridays(X))&(works_on_fridays(Y)))=>(X=Y)))))& (((A_pen_does_not_exist_that_only_writes_secrets.)|(A_tower_does_not_lean_significantly_without_falling.)))& (((?[X]:(anywhere(X)&does_not_work_on_fridays(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(does_not_work_on_fridays(X))&(does_not_work_on_fridays(Y)))=>(X=Y)))))& (travels_domestically_frequently(tom))& (younger(sean,tom))& (![X]:(humble(X)=>wise(X)))& (((A_pen_does_not_exist_that_only_writes_secrets.)|(A_pizza_does_not_exist_that_tastes_like_ice_cream.)))& (?[X]:(room(X)&(younger(william,X))))& (younger(william,tom))& (((A_clock_does_not_measure_time_in_various_colors.)<~>(A_clock_measures_time_in_various_colors.)))
room(tom)&room(joan)&(![X]:(room(X)=>(X='tom'|X='joan')))& ~happy(joan)
[]
null
0.078912
Joseph, Ashley, Richard are the only persons in the room. Ashley practices zumba. Ashley is a drone photographer. If someone frequently participates in hackathons and coding competitions then he/she has a piercing. If someone does not practice zumba or is dedicated to sustainable living and zero-waste practices or both then he/she is a member of a local theater group specializing in improv and vice versa. Joseph who is a certified yoga instructor teaching classes weekly or does not work on fridays or both is a certified yoga instructor teaching classes weekly. If someone neither is not right-handed nor works on fridays then he/she enjoys bird watching or does not play eSports competitively or both and vice versa. Richard frequently participates in hackathons and coding competitions. Richard does not own an Android phone. Richard composes and performs experimental electronic music. Richard is dedicated to sustainable living and zero-waste practices. Ashley who does not have a piercing is a drone photographer. Someone outside the room is not a certified scuba diver with advanced underwater photography skills. Joseph does not practice zumba or hosts a YouTube channel dedicated to art tutorials or both. It is true that “everyone in the room does not practice zumba if they is right-handed”. Richard enjoys deep-sea diving and exploring underwater caves. Ashley does not own an Android phone. Joseph practices zumba. Richard who is not an avid collector of autographed memorabilia from famous musicians either does not play eSports competitively or does not enjoy fishing but not both. Richard does not play eSports competitively. Ashley either is a certified scuba diver with advanced underwater photography skills or composes and performs experimental electronic music but not both.
Joseph plays eSports competitively.
entailment
room(joseph)&room(ashley)&room(richard)&(![X]:(room(X)=>(X='joseph'|X='ashley'|X='richard')))& (practices_zumba(ashley))& (is_a_drone_photographer(ashley))& ((![X]:((frequently_participates_in_hackathons_and_coding_competitions(X))=>(has_a_piercing(X)))))& ((![X]:((((does_not_practice_zumba(X))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))<=>(is_a_member_of_a_local_theater_group_specializing_in_improv(X)))))& ((((is_a_certified_yoga_instructor_teaching_classes_weekly(joseph))|(does_not_work_on_fridays(joseph))))&(is_a_certified_yoga_instructor_teaching_classes_weekly(joseph)))& ((![X]:((~((is_not_right-handed(X))|(works_on_fridays(X))))<=>(((enjoys_bird_watching(X))|(does_not_play_eSports_competitively(X)))))))& (frequently_participates_in_hackathons_and_coding_competitions(richard))& (does_not_own_an_Android_phone(richard))& (composes_and_performs_experimental_electronic_music(richard))& (is_dedicated_to_sustainable_living_and_zero-waste_practices(richard))& ((does_not_have_a_piercing(ashley))&(is_a_drone_photographer(ashley)))& (?[X]:(~room(X)&(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))& (((does_not_practice_zumba(joseph))|(hosts_a_YouTube_channel_dedicated_to_art_tutorials(joseph))))& (![X]:(room(X)=>(((is_right-handed(X))=>(does_not_practice_zumba(X))))))& (enjoys_deep-sea_diving_and_exploring_underwater_caves(richard))& (does_not_own_an_Android_phone(ashley))& (practices_zumba(joseph))& ((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(richard))&(((does_not_play_eSports_competitively(richard))<~>(does_not_enjoy_fishing(richard)))))& (does_not_play_eSports_competitively(richard))& (((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(ashley))<~>(composes_and_performs_experimental_electronic_music(ashley))))& ((![X]:((does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))=>(((owns_an_Android_phone(X))<~>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X)))))))& ((![X]:((does_not_enjoy_bird_watching(X))<=>(((is_a_drone_photographer(X))<~>(enjoys_bird_watching(X)))))))& (is_not_dedicated_to_sustainable_living_and_zero-waste_practices(joseph))& (~(((?[X]:(room(X)&does_not_use_an_ios_phone(X))))))& (hosts_a_YouTube_channel_dedicated_to_art_tutorials(richard))& (((practices_archery(joseph))<~>(has_a_piercing(joseph))))& ((is_not_a_Linux_enthusiast(ashley))&(does_not_enjoy_fishing(ashley)))
room(joseph)&room(ashley)&room(richard)&(![X]:(room(X)=>(X='joseph'|X='ashley'|X='richard')))& plays_eSports_competitively(joseph)
[ "p0", "p6", "p14", "p17", "hypothesis" ]
% SZS status Unsatisfiable for 2794089374312935746780301 % SZS output start Proof for 2794089374312935746780301 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 50. ! [X0] : (~(predt(X0) | ~predo(X0)) <=> (~predh(X0) | predn(X0))) [input p6] 58. ! [X0] : (room(X0) => (predo(X0) => ~predf(X0))) [input p14] 61. predf(mary) [input p17] 72. ~(predh(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 155. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 156. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 155] 158. ! [X0] : ((~predt(X0) & predo(X0)) <=> (~predh(X0) | predn(X0))) [ennf transformation 50] 159. ! [X0] : ((~predf(X0) | ~predo(X0)) | ~room(X0)) [ennf transformation 58] 160. ! [X0] : (~predf(X0) | ~predo(X0) | ~room(X0)) [flattening 159] 161. ~predh(mary) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 72] 162. ~predh(mary) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 161] 164. ! [X0] : (((~predt(X0) & predo(X0)) | (predh(X0) & ~predn(X0))) & ((~predh(X0) | predn(X0)) | (predt(X0) | ~predo(X0)))) [nnf transformation 158] 165. ! [X0] : (((~predt(X0) & predo(X0)) | (predh(X0) & ~predn(X0))) & (~predh(X0) | predn(X0) | predt(X0) | ~predo(X0))) [flattening 164] 172. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 173. ~predh(mary) | (fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 162,172] 254. room(mary) [cnf transformation 156] 255. room(paul) [cnf transformation 156] 256. room(fred) [cnf transformation 156] 257. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 156] 263. predh(X0) | predo(X0) [cnf transformation 165] 273. ~predo(X0) | ~predf(X0) | ~room(X0) [cnf transformation 160] 274. predf(mary) [cnf transformation 61] 288. ~predh(mary) | room(sK1) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 173] 289. ~predh(mary) | mary != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 173] 290. ~predh(mary) | paul != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 173] 291. ~predh(mary) | fred != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 173] 326. ~predh(mary) | fred != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 291,256] 327. ~predh(mary) | fred != sK1 | ~room(mary) [subsumption resolution 326,255] 328. ~predh(mary) | fred != sK1 [subsumption resolution 327,254] 330. 7 <=> fred = sK1 [avatar definition] 332. fred != sK1 <- (~7) [avatar component clause 330] 334. 8 <=> predh(mary) [avatar definition] 336. ~predh(mary) <- (~8) [avatar component clause 334] 337. ~7 | ~8 [avatar split clause 328,334,330] 338. ~predh(mary) | paul != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 290,256] 339. ~predh(mary) | paul != sK1 | ~room(mary) [subsumption resolution 338,255] 340. ~predh(mary) | paul != sK1 [subsumption resolution 339,254] 342. 9 <=> paul = sK1 [avatar definition] 344. paul != sK1 <- (~9) [avatar component clause 342] 345. ~9 | ~8 [avatar split clause 340,334,342] 346. ~predh(mary) | mary != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 289,256] 347. ~predh(mary) | mary != sK1 | ~room(mary) [subsumption resolution 346,255] 348. ~predh(mary) | mary != sK1 [subsumption resolution 347,254] 350. 10 <=> mary = sK1 [avatar definition] 352. mary != sK1 <- (~10) [avatar component clause 350] 353. ~10 | ~8 [avatar split clause 348,334,350] 354. ~predh(mary) | room(sK1) | ~room(paul) | ~room(mary) [subsumption resolution 288,256] 355. ~predh(mary) | room(sK1) | ~room(mary) [subsumption resolution 354,255] 356. ~predh(mary) | room(sK1) [subsumption resolution 355,254] 358. 11 <=> room(sK1) [avatar definition] 360. room(sK1) <- (11) [avatar component clause 358] 361. 11 | ~8 [avatar split clause 356,334,358] 364. predo(mary) <- (~8) [resolution 263,336] 366. ~predf(mary) | ~room(mary) <- (~8) [resolution 273,364] 368. ~room(mary) <- (~8) [subsumption resolution 366,274] 369. $false <- (~8) [subsumption resolution 368,254] 370. 8 [avatar contradiction clause 369] 425. paul = sK1 | mary = sK1 | fred = sK1 <- (11) [resolution 257,360] 426. mary = sK1 | fred = sK1 <- (~9, 11) [subsumption resolution 425,344] 427. fred = sK1 <- (~9, ~10, 11) [subsumption resolution 426,352] 428. $false <- (~7, ~9, ~10, 11) [subsumption resolution 427,332] 429. 7 | 9 | 10 | ~11 [avatar contradiction clause 428] 430. $false [avatar sat refutation 337,345,353,361,370,429] % SZS output end Proof for 2794089374312935746780301 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.393314
There is a room. Everyone in the room does not have lived in exactly three countries if they reads mystery novels. Everyone in the room who does not have lived in exactly three countries does enjoy mountain biking, competes in national level swimming championships or is a wine connoisseur with a private cellar of vintage wines. Everyone in the room who is a wine connoisseur with a private cellar of vintage wines is a craft beer aficionado. Everyone anywhere who owns an Android phone, works on fridays and drives a hybrid car drives a hybrid car. Only one person in the room is a certified scuba diver with advanced underwater photography skills. Only one person anywhere does not have lived in exactly three countries. Everyone in the room does enjoy mountain biking, owns an Android phone or enjoys watercolor painting if they is a night owl. Not everyone in the room does enjoy mountain biking, owns an Android phone or enjoys watercolor painting only if they hosts a YouTube channel dedicated to art tutorials. No one in the room is a coffee connoisseur or does not practice graffiti art. Everyone outside the room who is a coffee connoisseur competes in national level swimming championships.
Everyone outside the room reads mystery novels.
entailment
(there_is_a_room)& (![X]:(room(X)=>(((reads_mystery_novels(X))=>(does_not_have_lived_in_exactly_three_countries(X))))))& (![X]:(room(X)=>(((does_not_have_lived_in_exactly_three_countries(X))=>(((does_enjoy_mountain_biking(X))|(competes_in_national_level_swimming_championships(X))|(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))))& (![X]:(room(X)=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))=>(is_a_craft_beer_aficionado(X))))))& (![X]:(anywhere(X)=>(((((owns_an_Android_phone(X))&(works_on_fridays(X))&(drives_a_hybrid_car(X))))=>(drives_a_hybrid_car(X))))))& (((?[X]:(room(X)&is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X)))&(![X,Y]:((room(X)&room(Y)&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(Y)))=>(X=Y)))))& (((?[X]:(anywhere(X)&does_not_have_lived_in_exactly_three_countries(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(does_not_have_lived_in_exactly_three_countries(X))&(does_not_have_lived_in_exactly_three_countries(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((is_a_night_owl(X))=>(((does_enjoy_mountain_biking(X))|(owns_an_Android_phone(X))|(enjoys_watercolor_painting(X))))))))& (~![X]:(room(X)=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))<=(((does_enjoy_mountain_biking(X))|(owns_an_Android_phone(X))|(enjoys_watercolor_painting(X))))))))& (~?[X]:(room(X)=>(((does_not_practice_graffiti_art(X))|(is_a_coffee_connoisseur(X))))))& (![X]:(~room(X)=>(((is_a_coffee_connoisseur(X))=>(competes_in_national_level_swimming_championships(X))))))& (![X]:(room(X)=>(((is_not_a_night_owl(X))|(is_a_coffee_connoisseur(X))))))& ((![X]:((is_not_a_night_owl(X))=>(((does_not_have_lived_in_exactly_three_countries(X))|(enjoys_snowboarding(X)))))))& (![X]:(anywhere(X)=>(((((enjoys_watercolor_painting(X))&(has_a_pet_dog(X))&(enjoys_stand-up_paddleboarding(X))))=>(((practices_tai_chi(X))|(works_on_fridays(X))|(owns_an_Android_phone(X))))))))& (~?[X]:(room(X)=>(((((practices_tai_chi(X))|(works_on_fridays(X))|(owns_an_Android_phone(X))))=>(((can_play_the_flute(X))&(owns_an_Android_phone(X))&(practices_graffiti_art(X))))))))& (![X]:(~room(X)=>(((reads_mystery_novels(X))|(does_not_enjoy_snowboarding(X))))))& (![X]:(~room(X)=>(((works_on_fridays(X))<=>(enjoys_salsa_dancing(X))))))& ((![X]:((((does_not_enjoy_snowboarding(X))&(does_not_have_a_tattoo(X))&(is_a_night_owl(X))))=>(practices_tai_chi(X)))))& (![X]:(room(X)=>(((owns_an_Android_phone(X))=>(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))))& (![X]:(room(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))=>(has_a_tattoo(X))))))& (![X]:(room(X)=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))=>(does_not_have_a_pet_dog(X))))))& (![X]:(room(X)=>(((does_not_have_a_pet_dog(X))=>(competes_in_national_level_swimming_championships(X))))))& (![X]:(room(X)=>(((competes_in_national_level_swimming_championships(X))=>(enjoys_snowboarding(X))))))& ((![X]:((~((practices_graffiti_art(X))|(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))=>(((does_enjoy_mountain_biking(X))<~>(has_lived_in_exactly_three_countries(X)))))))& (![X]:(room(X)=>(((drives_a_hybrid_car(X))=>(does_not_mentor_a_youth_basketball_team_on_weekends(X))))))& (![X]:(~room(X)=>(((does_not_mentor_a_youth_basketball_team_on_weekends(X))=>(is_a_craft_beer_aficionado(X))))))& ((![X]:((((enjoys_salsa_dancing(X))&(does_enjoy_mountain_biking(X))&(works_on_fridays(X))))=>(((has_lived_in_exactly_three_countries(X))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X)))))))& (![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))|(does_not_enjoy_mountain_biking(X))))))& (![X]:(room(X)=>(((does_not_enjoy_mountain_biking(X))=>(does_not_enjoy_snowboarding(X))))))
(there_is_a_room)& ![X]:(~room(X)=>(reads_mystery_novels(X)))
[ "p0", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 1755110481197060222578201 % SZS output start Proof for 1755110481197060222578201 44. there_is_a_room [input p0] 53. ~? [X0] : (room(X0) => (predw(X0) | ~predq(X0))) [input p9] 73. ~(! [X0] : (~room(X0) => predc(X0)) & there_is_a_room) [input hypothesis] 81. ~? [X0] : (room(X0) => predw(X0)) [pure predicate removal 53] 173. ! [X0] : (~predw(X0) & room(X0)) [ennf transformation 81] 190. ? [X0] : (~predc(X0) & ~room(X0)) | ~there_is_a_room [ennf transformation 73] 199. ? [X0] : (~predc(X0) & ~room(X0)) => (~predc(sK3) & ~room(sK3)) [choice axiom] 200. (~predc(sK3) & ~room(sK3)) | ~there_is_a_room [skolemisation 190,199] 282. there_is_a_room [cnf transformation 44] 291. room(X0) [cnf transformation 173] 303. ~room(sK3) | ~there_is_a_room [cnf transformation 200] 313. ~there_is_a_room [subsumption resolution 303,291] 314. $false [subsumption resolution 313,282] % SZS output end Proof for 1755110481197060222578201 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.636216
There is a room. “Everyone in the room is a old person” if “not everyone in the room is old” and vice versa. “Everyone outside the room is not tall” unless “everyone in the room is not a tall person”. Only one person in the room is not a old person. It is true that “if someone either is a tall person or is tall but not both then he/she is not a quiet person”. Everyone in the room is not a tall person. At least one person in the room is a old person.
All tall persons are quiet.
neutral
(there_is_a_room)& ((~![X]:(room(X)=>(old(X))))<=>(![X]:(room(X)=>(old(X)&person(X)))))& (~(![X]:(room(X)=>(~(tall(X)&person(X)))))=>(![X]:(~room(X)=>(~tall(X)))))& (((?[X]:(room(X)&~(old(X)&person(X))))&(![X,Y]:((room(X)&room(Y)&(~(old(X)&person(X)))&(~(old(Y)&person(Y))))=>(X=Y)))))& ((![X]:((((tall(X)&person(X))<~>(tall(X))))=>(~(quiet(X)&person(X))))))& (![X]:(room(X)=>(~(tall(X)&person(X)))))& (((?[X]:(room(X)&old(X)&person(X)))))& (((?[X]:(room(X)&~quiet(X)))&(![X,Y]:((room(X)&room(Y)&(~quiet(X))&(~quiet(Y)))=>(X=Y)))))& (((?[X]:(~room(X)&old(X)&person(X)))&(![X,Y]:((~room(X)&~room(Y)&(old(X)&person(X))&(old(Y)&person(Y)))=>(X=Y)))))& (((?[X]:(room(X)&quiet(X)))&(![X,Y]:((room(X)&room(Y)&(quiet(X))&(quiet(Y)))=>(X=Y)))))
(there_is_a_room)& ![X]:(tall(X)=>quiet(X))
[]
null
0.111172
Barbara, David, Irma, Patrick, Derrick are the only persons in the room. "Everyone in the room makes homemade pastries or does not practice calligraphy" if "Irma can play the piano" and vice versa. If "Barbara practices calligraphy" then "someone in the room practices calligraphy, collects vintage stamps and enjoys spelunking". If "someone in the room practices calligraphy, collects vintage stamps and enjoys spelunking" then "everyone anywhere who is a member of a local theater group specializing in improv enjoys deep-sea diving and exploring underwater caves". If "at least one person in the room does not own an Android phone" then "everyone anywhere enjoys deep-sea diving and exploring underwater caves if they does not write in-depth travel guides for off-the-beaten-path destinations, knows morse code or is right-handed". If "no one in the room does not write in-depth travel guides for off-the-beaten-path destinations or enjoys rooftop gardening" then "David does not write in-depth travel guides for off-the-beaten-path destinations, knows morse code or is right-handed". If "everyone in the room owns a smart tv or is not right-handed" then "Barbara does not collect vintage stamps" otherwise "Barbara does not practice calligraphy". "Barbara can play the piano" if "everyone in the room does not own an Android phone or is not an avid mountain climber who has scaled several peaks" and vice versa. "Everyone in the room does not enjoy deep-sea diving and exploring underwater caves or does not enjoy spelunking" if "everyone in the room does not enjoy spelunking or practices calligraphy" and vice versa. If "it is not the case that "at least one person anywhere enjoys spelunking"" then "Barbara is right-handed" otherwise "Barbara is a member of a local theater group specializing in improv". Everyone outside the room who collects vintage stamps enjoys salsa dancing. Everyone in the room who collects vintage stamps enjoys spelunking. Everyone anywhere enjoys macrame. Irma makes homemade pastries.
David is a member of a local theater group specializing in improv.
entailment
room(barbara)&room(david)&room(irma)&room(patrick)&room(derrick)&(![X]:(room(X)=>(X='barbara'|X='david'|X='irma'|X='patrick'|X='derrick')))& ((can_play_the_piano(irma))<=>(![X]:(room(X)=>(((does_not_practice_calligraphy(X))|(makes_homemade_pastries(X)))))))& (((practices_calligraphy(barbara))=>(?[X]:(room(X)&(((practices_calligraphy(X))&(collects_vintage_stamps(X))&(enjoys_spelunking(X)))))))& ((?[X]:(room(X)&(((practices_calligraphy(X))&(collects_vintage_stamps(X))&(enjoys_spelunking(X))))))=>(![X]:(anywhere(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))))& ((((?[X]:(room(X)&does_not_own_an_Android_phone(X)))))=>(![X]:(anywhere(X)=>(((((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))|(knows_morse_code(X))|(is_right-handed(X))))=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X)))))))& ((~?[X]:(room(X)=>(((enjoys_rooftop_gardening(X))|(does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))=>(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(david))|(knows_morse_code(david))|(is_right-handed(david)))))& (((![X]:(room(X)=>(((is_not_right-handed(X))|(owns_a_smart_tv(X))))))=>(does_not_collect_vintage_stamps(barbara)))&((~(![X]:(room(X)=>(((is_not_right-handed(X))|(owns_a_smart_tv(X)))))))=>(does_not_practice_calligraphy(barbara))))& ((![X]:(room(X)=>(((is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(does_not_own_an_Android_phone(X))))))<=>(can_play_the_piano(barbara)))& ((![X]:(room(X)=>(((practices_calligraphy(X))|(does_not_enjoy_spelunking(X))))))<=>(![X]:(room(X)=>(((does_not_enjoy_spelunking(X))|(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X)))))))& (((~(((?[X]:(anywhere(X)&enjoys_spelunking(X))))))=>(is_right-handed(barbara)))&((~(~(((?[X]:(anywhere(X)&enjoys_spelunking(X)))))))=>(is_a_member_of_a_local_theater_group_specializing_in_improv(barbara))))& (![X]:(~room(X)=>(((collects_vintage_stamps(X))=>(enjoys_salsa_dancing(X))))))& (![X]:(room(X)=>(((collects_vintage_stamps(X))=>(enjoys_spelunking(X))))))& (![X]:(anywhere(X)=>(enjoys_macrame(X))))& (makes_homemade_pastries(irma))& (collects_vintage_stamps(barbara))& (is_a_member_of_a_local_theater_group_specializing_in_improv(barbara))& (![X]:(anywhere(X)=>(((enjoys_salsa_dancing(X))=>(((enjoys_macrame(X))|(practices_calligraphy(X))|(owns_an_Android_phone(X))))))))& (enjoys_rooftop_gardening(patrick))& (![X]:(room(X)=>(((can_play_the_piano(X))=>(enjoys_salsa_dancing(X))))))& (is_a_member_of_a_local_theater_group_specializing_in_improv(david))& (is_a_member_of_a_local_theater_group_specializing_in_improv(patrick))& (enjoys_deep-sea_diving_and_exploring_underwater_caves(david))& (((?[X]:(room(X)&knows_morse_code(X)))))& (![X]:(room(X)=>(((enjoys_spelunking(X))=>(enjoys_salsa_dancing(X))))))
room(barbara)&room(david)&room(irma)&room(patrick)&room(derrick)&(![X]:(room(X)=>(X='barbara'|X='david'|X='irma'|X='patrick'|X='derrick')))& is_a_member_of_a_local_theater_group_specializing_in_improv(david)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 3465183498033842185435404 % SZS output start Proof for 3465183498033842185435404 44. ! [X0] : (room(X0) => (prede(X0) => predo(X0))) & ? [X0] : (predk(X0) & room(X0)) & predm(paul) & predj(alice) & predj(paul) & ! [X0] : (room(X0) => (predh(X0) => predo(X0))) & predp(alice) & ! [X0] : (anywhere(X0) => (predo(X0) => (predb(X0) | predc(X0) | predg(X0)))) & predj(mary) & predf(mary) & predn(fred) & ! [X0] : (anywhere(X0) => predg(X0)) & ! [X0] : (room(X0) => (predf(X0) => prede(X0))) & ! [X0] : (~room(X0) => (predf(X0) => predo(X0))) & (~~? [X0] : (prede(X0) & anywhere(X0)) => predj(mary)) & (~? [X0] : (prede(X0) & anywhere(X0)) => predl(mary)) & (! [X0] : (room(X0) => (~prede(X0) | predc(X0))) <=> ! [X0] : (room(X0) => (~predm(X0) | ~prede(X0)))) & (! [X0] : (room(X0) => (~predb(X0) | ~predi(X0))) <=> predh(mary)) & (~! [X0] : (room(X0) => (predd(X0) | ~predl(X0))) => ~predc(mary)) & (! [X0] : (room(X0) => (predd(X0) | ~predl(X0))) => ~predf(mary)) & (~? [X0] : (room(X0) => (~preda(X0) | predp(X0))) => (predl(paul) | predk(paul) | ~preda(paul))) & (? [X0] : (~predb(X0) & room(X0)) => ! [X0] : (anywhere(X0) => ((predl(X0) | predk(X0) | ~preda(X0)) => predm(X0)))) & (? [X0] : (prede(X0) & predf(X0) & predc(X0) & room(X0)) => ! [X0] : (anywhere(X0) => (predj(X0) => predm(X0)))) & (predc(mary) => ? [X0] : (prede(X0) & predf(X0) & predc(X0) & room(X0))) & (predh(fred) <=> ! [X0] : (room(X0) => (predn(X0) | ~predc(X0)))) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ~(predj(paul) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 46. ! [X0] : (room(X0) => (prede(X0) => predo(X0))) & ? [X1] : (predk(X1) & room(X1)) & predm(paul) & predj(alice) & predj(paul) & ! [X2] : (room(X2) => (predh(X2) => predo(X2))) & predp(alice) & ! [X3] : (anywhere(X3) => (predo(X3) => (predb(X3) | predc(X3) | predg(X3)))) & predj(mary) & predf(mary) & predn(fred) & ! [X4] : (anywhere(X4) => predg(X4)) & ! [X5] : (room(X5) => (predf(X5) => prede(X5))) & ! [X6] : (~room(X6) => (predf(X6) => predo(X6))) & (~~? [X7] : (prede(X7) & anywhere(X7)) => predj(mary)) & (~? [X8] : (prede(X8) & anywhere(X8)) => predl(mary)) & (! [X9] : (room(X9) => (~prede(X9) | predc(X9))) <=> ! [X10] : (room(X10) => (~predm(X10) | ~prede(X10)))) & (! [X11] : (room(X11) => (~predb(X11) | ~predi(X11))) <=> predh(mary)) & (~! [X12] : (room(X12) => (predd(X12) | ~predl(X12))) => ~predc(mary)) & (! [X13] : (room(X13) => (predd(X13) | ~predl(X13))) => ~predf(mary)) & (~? [X14] : (room(X14) => (~preda(X14) | predp(X14))) => (predl(paul) | predk(paul) | ~preda(paul))) & (? [X15] : (~predb(X15) & room(X15)) => ! [X16] : (anywhere(X16) => ((predl(X16) | predk(X16) | ~preda(X16)) => predm(X16)))) & (? [X17] : (prede(X17) & predf(X17) & predc(X17) & room(X17)) => ! [X18] : (anywhere(X18) => (predj(X18) => predm(X18)))) & (predc(mary) => ? [X19] : (prede(X19) & predf(X19) & predc(X19) & room(X19))) & (predh(fred) <=> ! [X20] : (room(X20) => (predn(X20) | ~predc(X20)))) & ! [X21] : (room(X21) => (john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 44] 47. ! [X0] : (room(X0) => (prede(X0) => predo(X0))) & ? [X1] : (predk(X1) & room(X1)) & predm(paul) & predj(alice) & predj(paul) & ! [X2] : (room(X2) => (predh(X2) => predo(X2))) & predp(alice) & ! [X3] : (anywhere(X3) => (predo(X3) => (predb(X3) | predc(X3) | predg(X3)))) & predj(mary) & predf(mary) & predn(fred) & ! [X4] : (anywhere(X4) => predg(X4)) & ! [X5] : (room(X5) => (predf(X5) => prede(X5))) & ! [X6] : (~room(X6) => (predf(X6) => predo(X6))) & (? [X7] : (prede(X7) & anywhere(X7)) => predj(mary)) & (~? [X8] : (prede(X8) & anywhere(X8)) => predl(mary)) & (! [X9] : (room(X9) => (~prede(X9) | predc(X9))) <=> ! [X10] : (room(X10) => (~predm(X10) | ~prede(X10)))) & (! [X11] : (room(X11) => (~predb(X11) | ~predi(X11))) <=> predh(mary)) & (~! [X12] : (room(X12) => (predd(X12) | ~predl(X12))) => ~predc(mary)) & (! [X13] : (room(X13) => (predd(X13) | ~predl(X13))) => ~predf(mary)) & (~? [X14] : (room(X14) => (~preda(X14) | predp(X14))) => (predl(paul) | predk(paul) | ~preda(paul))) & (? [X15] : (~predb(X15) & room(X15)) => ! [X16] : (anywhere(X16) => ((predl(X16) | predk(X16) | ~preda(X16)) => predm(X16)))) & (? [X17] : (prede(X17) & predf(X17) & predc(X17) & room(X17)) => ! [X18] : (anywhere(X18) => (predj(X18) => predm(X18)))) & (predc(mary) => ? [X19] : (prede(X19) & predf(X19) & predc(X19) & room(X19))) & (predh(fred) <=> ! [X20] : (room(X20) => (predn(X20) | ~predc(X20)))) & ! [X21] : (room(X21) => (john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 46] 48. ! [X0] : (room(X0) => (prede(X0) => predo(X0))) & ? [X1] : (predk(X1) & room(X1)) & predm(paul) & predj(alice) & predj(paul) & ! [X2] : (room(X2) => (predh(X2) => predo(X2))) & predp(alice) & predj(mary) & predf(mary) & predn(fred) & ! [X5] : (room(X5) => (predf(X5) => prede(X5))) & ! [X6] : (~room(X6) => (predf(X6) => predo(X6))) & (? [X7] : (prede(X7) & anywhere(X7)) => predj(mary)) & (~? [X8] : (prede(X8) & anywhere(X8)) => predl(mary)) & (! [X9] : (room(X9) => (~prede(X9) | predc(X9))) <=> ! [X10] : (room(X10) => (~predm(X10) | ~prede(X10)))) & (! [X11] : (room(X11) => (~predb(X11) | ~predi(X11))) <=> predh(mary)) & (~! [X12] : (room(X12) => (predd(X12) | ~predl(X12))) => ~predc(mary)) & (! [X13] : (room(X13) => (predd(X13) | ~predl(X13))) => ~predf(mary)) & (~? [X14] : (room(X14) => (~preda(X14) | predp(X14))) => (predl(paul) | predk(paul) | ~preda(paul))) & (? [X15] : (~predb(X15) & room(X15)) => ! [X16] : (anywhere(X16) => ((predl(X16) | predk(X16) | ~preda(X16)) => predm(X16)))) & (? [X17] : (prede(X17) & predf(X17) & predc(X17) & room(X17)) => ! [X18] : (anywhere(X18) => (predj(X18) => predm(X18)))) & (predc(mary) => ? [X19] : (prede(X19) & predf(X19) & predc(X19) & room(X19))) & (predh(fred) <=> ! [X20] : (room(X20) => (predn(X20) | ~predc(X20)))) & ! [X21] : (room(X21) => (john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 47] 49. ? [X1] : (predk(X1) & room(X1)) & predm(paul) & predj(alice) & predj(paul) & predp(alice) & predj(mary) & predf(mary) & predn(fred) & ! [X5] : (room(X5) => (predf(X5) => prede(X5))) & (? [X7] : (prede(X7) & anywhere(X7)) => predj(mary)) & (~? [X8] : (prede(X8) & anywhere(X8)) => predl(mary)) & (! [X9] : (room(X9) => (~prede(X9) | predc(X9))) <=> ! [X10] : (room(X10) => (~predm(X10) | ~prede(X10)))) & (! [X11] : (room(X11) => (~predb(X11) | ~predi(X11))) <=> predh(mary)) & (~! [X12] : (room(X12) => (predd(X12) | ~predl(X12))) => ~predc(mary)) & (! [X13] : (room(X13) => (predd(X13) | ~predl(X13))) => ~predf(mary)) & (~? [X14] : (room(X14) => (~preda(X14) | predp(X14))) => (predl(paul) | predk(paul) | ~preda(paul))) & (? [X15] : (~predb(X15) & room(X15)) => ! [X16] : (anywhere(X16) => ((predl(X16) | predk(X16) | ~preda(X16)) => predm(X16)))) & (? [X17] : (prede(X17) & predf(X17) & predc(X17) & room(X17)) => ! [X18] : (anywhere(X18) => (predj(X18) => predm(X18)))) & (predc(mary) => ? [X19] : (prede(X19) & predf(X19) & predc(X19) & room(X19))) & (predh(fred) <=> ! [X20] : (room(X20) => (predn(X20) | ~predc(X20)))) & ! [X21] : (room(X21) => (john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 48] 50. ? [X1] : (predk(X1) & room(X1)) & predm(paul) & predj(alice) & predj(paul) & predj(mary) & predf(mary) & predn(fred) & ! [X5] : (room(X5) => (predf(X5) => prede(X5))) & (? [X7] : (prede(X7) & anywhere(X7)) => predj(mary)) & (~? [X8] : (prede(X8) & anywhere(X8)) => predl(mary)) & (! [X9] : (room(X9) => (~prede(X9) | predc(X9))) <=> ! [X10] : (room(X10) => (~predm(X10) | ~prede(X10)))) & (! [X11] : (room(X11) => (~predb(X11) | ~predi(X11))) <=> predh(mary)) & (~! [X12] : (room(X12) => (predd(X12) | ~predl(X12))) => ~predc(mary)) & (! [X13] : (room(X13) => (predd(X13) | ~predl(X13))) => ~predf(mary)) & (? [X15] : (~predb(X15) & room(X15)) => ! [X16] : (anywhere(X16) => ((predl(X16) | predk(X16) | ~preda(X16)) => predm(X16)))) & (? [X17] : (prede(X17) & predf(X17) & predc(X17) & room(X17)) => ! [X18] : (anywhere(X18) => (predj(X18) => predm(X18)))) & (predc(mary) => ? [X19] : (prede(X19) & predf(X19) & predc(X19) & room(X19))) & (predh(fred) <=> ! [X20] : (room(X20) => (predn(X20) | ~predc(X20)))) & ! [X21] : (room(X21) => (john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 49] 51. ? [X1] : (predk(X1) & room(X1)) & predm(paul) & predj(alice) & predj(paul) & predj(mary) & predf(mary) & predn(fred) & ! [X5] : (room(X5) => (predf(X5) => prede(X5))) & (? [X7] : (prede(X7) & anywhere(X7)) => predj(mary)) & (~? [X8] : (prede(X8) & anywhere(X8)) => predl(mary)) & (! [X9] : (room(X9) => (~prede(X9) | predc(X9))) <=> ! [X10] : (room(X10) => (~predm(X10) | ~prede(X10)))) & (! [X11] : (room(X11) => (~predb(X11) | ~predi(X11))) <=> predh(mary)) & (~! [X12] : (room(X12) => (predd(X12) | ~predl(X12))) => ~predc(mary)) & (! [X13] : (room(X13) => (predd(X13) | ~predl(X13))) => ~predf(mary)) & (? [X15] : (~predb(X15) & room(X15)) => ! [X16] : (anywhere(X16) => ((predl(X16) | predk(X16)) => predm(X16)))) & (? [X17] : (prede(X17) & predf(X17) & predc(X17) & room(X17)) => ! [X18] : (anywhere(X18) => (predj(X18) => predm(X18)))) & (predc(mary) => ? [X19] : (prede(X19) & predf(X19) & predc(X19) & room(X19))) & (predh(fred) <=> ! [X20] : (room(X20) => (predn(X20) | ~predc(X20)))) & ! [X21] : (room(X21) => (john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 50] 123. ? [X1] : (predk(X1) & room(X1)) & predm(paul) & predj(alice) & predj(paul) & predj(mary) & predf(mary) & predn(fred) & ! [X5] : ((prede(X5) | ~predf(X5)) | ~room(X5)) & (predj(mary) | ! [X7] : (~prede(X7) | ~anywhere(X7))) & (predl(mary) | ? [X8] : (prede(X8) & anywhere(X8))) & (! [X9] : ((~prede(X9) | predc(X9)) | ~room(X9)) <=> ! [X10] : ((~predm(X10) | ~prede(X10)) | ~room(X10))) & (! [X11] : ((~predb(X11) | ~predi(X11)) | ~room(X11)) <=> predh(mary)) & (~predc(mary) | ! [X12] : ((predd(X12) | ~predl(X12)) | ~room(X12))) & (~predf(mary) | ? [X13] : ((~predd(X13) & predl(X13)) & room(X13))) & (! [X16] : ((predm(X16) | (~predl(X16) & ~predk(X16))) | ~anywhere(X16)) | ! [X15] : (predb(X15) | ~room(X15))) & (! [X18] : ((predm(X18) | ~predj(X18)) | ~anywhere(X18)) | ! [X17] : (~prede(X17) | ~predf(X17) | ~predc(X17) | ~room(X17))) & (? [X19] : (prede(X19) & predf(X19) & predc(X19) & room(X19)) | ~predc(mary)) & (predh(fred) <=> ! [X20] : ((predn(X20) | ~predc(X20)) | ~room(X20))) & ! [X21] : ((john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21) | ~room(X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 51] 124. ? [X1] : (predk(X1) & room(X1)) & predm(paul) & predj(alice) & predj(paul) & predj(mary) & predf(mary) & predn(fred) & ! [X5] : (prede(X5) | ~predf(X5) | ~room(X5)) & (predj(mary) | ! [X7] : (~prede(X7) | ~anywhere(X7))) & (predl(mary) | ? [X8] : (prede(X8) & anywhere(X8))) & (! [X9] : (~prede(X9) | predc(X9) | ~room(X9)) <=> ! [X10] : (~predm(X10) | ~prede(X10) | ~room(X10))) & (! [X11] : (~predb(X11) | ~predi(X11) | ~room(X11)) <=> predh(mary)) & (~predc(mary) | ! [X12] : (predd(X12) | ~predl(X12) | ~room(X12))) & (~predf(mary) | ? [X13] : (~predd(X13) & predl(X13) & room(X13))) & (! [X16] : (predm(X16) | (~predl(X16) & ~predk(X16)) | ~anywhere(X16)) | ! [X15] : (predb(X15) | ~room(X15))) & (! [X18] : (predm(X18) | ~predj(X18) | ~anywhere(X18)) | ! [X17] : (~prede(X17) | ~predf(X17) | ~predc(X17) | ~room(X17))) & (? [X19] : (prede(X19) & predf(X19) & predc(X19) & room(X19)) | ~predc(mary)) & (predh(fred) <=> ! [X20] : (predn(X20) | ~predc(X20) | ~room(X20))) & ! [X21] : (john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21 | ~room(X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 123] 125. ~predj(paul) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 45] 126. ~predj(paul) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 125] 128. ? [X1] : (predk(X1) & room(X1)) & predm(paul) & predj(alice) & predj(paul) & predj(mary) & predf(mary) & predn(fred) & ! [X5] : (prede(X5) | ~predf(X5) | ~room(X5)) & (predj(mary) | ! [X7] : (~prede(X7) | ~anywhere(X7))) & (predl(mary) | ? [X8] : (prede(X8) & anywhere(X8))) & ((! [X9] : (~prede(X9) | predc(X9) | ~room(X9)) | ? [X10] : (predm(X10) & prede(X10) & room(X10))) & (! [X10] : (~predm(X10) | ~prede(X10) | ~room(X10)) | ? [X9] : (prede(X9) & ~predc(X9) & room(X9)))) & ((! [X11] : (~predb(X11) | ~predi(X11) | ~room(X11)) | ~predh(mary)) & (predh(mary) | ? [X11] : (predb(X11) & predi(X11) & room(X11)))) & (~predc(mary) | ! [X12] : (predd(X12) | ~predl(X12) | ~room(X12))) & (~predf(mary) | ? [X13] : (~predd(X13) & predl(X13) & room(X13))) & (! [X16] : (predm(X16) | (~predl(X16) & ~predk(X16)) | ~anywhere(X16)) | ! [X15] : (predb(X15) | ~room(X15))) & (! [X18] : (predm(X18) | ~predj(X18) | ~anywhere(X18)) | ! [X17] : (~prede(X17) | ~predf(X17) | ~predc(X17) | ~room(X17))) & (? [X19] : (prede(X19) & predf(X19) & predc(X19) & room(X19)) | ~predc(mary)) & ((predh(fred) | ? [X20] : (~predn(X20) & predc(X20) & room(X20))) & (! [X20] : (predn(X20) | ~predc(X20) | ~room(X20)) | ~predh(fred))) & ! [X21] : (john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21 | ~room(X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [nnf transformation 124] 129. ? [X1] : (predk(X1) & room(X1)) & predm(paul) & predj(alice) & predj(paul) & predj(mary) & predf(mary) & predn(fred) & ! [X5] : (prede(X5) | ~predf(X5) | ~room(X5)) & (predj(mary) | ! [X7] : (~prede(X7) | ~anywhere(X7))) & (predl(mary) | ? [X8] : (prede(X8) & anywhere(X8))) & (! [X9] : (~prede(X9) | predc(X9) | ~room(X9)) | ? [X10] : (predm(X10) & prede(X10) & room(X10))) & (! [X10] : (~predm(X10) | ~prede(X10) | ~room(X10)) | ? [X9] : (prede(X9) & ~predc(X9) & room(X9))) & (! [X11] : (~predb(X11) | ~predi(X11) | ~room(X11)) | ~predh(mary)) & (predh(mary) | ? [X11] : (predb(X11) & predi(X11) & room(X11))) & (~predc(mary) | ! [X12] : (predd(X12) | ~predl(X12) | ~room(X12))) & (~predf(mary) | ? [X13] : (~predd(X13) & predl(X13) & room(X13))) & (! [X16] : (predm(X16) | (~predl(X16) & ~predk(X16)) | ~anywhere(X16)) | ! [X15] : (predb(X15) | ~room(X15))) & (! [X18] : (predm(X18) | ~predj(X18) | ~anywhere(X18)) | ! [X17] : (~prede(X17) | ~predf(X17) | ~predc(X17) | ~room(X17))) & (? [X19] : (prede(X19) & predf(X19) & predc(X19) & room(X19)) | ~predc(mary)) & (predh(fred) | ? [X20] : (~predn(X20) & predc(X20) & room(X20))) & (! [X20] : (predn(X20) | ~predc(X20) | ~room(X20)) | ~predh(fred)) & ! [X21] : (john = X21 | alice = X21 | fred = X21 | paul = X21 | mary = X21 | ~room(X21)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 128] 130. ? [X0] : (predk(X0) & room(X0)) & predm(paul) & predj(alice) & predj(paul) & predj(mary) & predf(mary) & predn(fred) & ! [X1] : (prede(X1) | ~predf(X1) | ~room(X1)) & (predj(mary) | ! [X2] : (~prede(X2) | ~anywhere(X2))) & (predl(mary) | ? [X3] : (prede(X3) & anywhere(X3))) & (! [X4] : (~prede(X4) | predc(X4) | ~room(X4)) | ? [X5] : (predm(X5) & prede(X5) & room(X5))) & (! [X6] : (~predm(X6) | ~prede(X6) | ~room(X6)) | ? [X7] : (prede(X7) & ~predc(X7) & room(X7))) & (! [X8] : (~predb(X8) | ~predi(X8) | ~room(X8)) | ~predh(mary)) & (predh(mary) | ? [X9] : (predb(X9) & predi(X9) & room(X9))) & (~predc(mary) | ! [X10] : (predd(X10) | ~predl(X10) | ~room(X10))) & (~predf(mary) | ? [X11] : (~predd(X11) & predl(X11) & room(X11))) & (! [X12] : (predm(X12) | (~predl(X12) & ~predk(X12)) | ~anywhere(X12)) | ! [X13] : (predb(X13) | ~room(X13))) & (! [X14] : (predm(X14) | ~predj(X14) | ~anywhere(X14)) | ! [X15] : (~prede(X15) | ~predf(X15) | ~predc(X15) | ~room(X15))) & (? [X16] : (prede(X16) & predf(X16) & predc(X16) & room(X16)) | ~predc(mary)) & (predh(fred) | ? [X17] : (~predn(X17) & predc(X17) & room(X17))) & (! [X18] : (predn(X18) | ~predc(X18) | ~room(X18)) | ~predh(fred)) & ! [X19] : (john = X19 | alice = X19 | fred = X19 | paul = X19 | mary = X19 | ~room(X19)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 129] 131. ? [X0] : (predk(X0) & room(X0)) => (predk(sK0) & room(sK0)) [choice axiom] 132. ? [X3] : (prede(X3) & anywhere(X3)) => (prede(sK1) & anywhere(sK1)) [choice axiom] 133. ? [X5] : (predm(X5) & prede(X5) & room(X5)) => (predm(sK2) & prede(sK2) & room(sK2)) [choice axiom] 134. ? [X7] : (prede(X7) & ~predc(X7) & room(X7)) => (prede(sK3) & ~predc(sK3) & room(sK3)) [choice axiom] 135. ? [X9] : (predb(X9) & predi(X9) & room(X9)) => (predb(sK4) & predi(sK4) & room(sK4)) [choice axiom] 136. ? [X11] : (~predd(X11) & predl(X11) & room(X11)) => (~predd(sK5) & predl(sK5) & room(sK5)) [choice axiom] 137. ? [X16] : (prede(X16) & predf(X16) & predc(X16) & room(X16)) => (prede(sK6) & predf(sK6) & predc(sK6) & room(sK6)) [choice axiom] 138. ? [X17] : (~predn(X17) & predc(X17) & room(X17)) => (~predn(sK7) & predc(sK7) & room(sK7)) [choice axiom] 139. (predk(sK0) & room(sK0)) & predm(paul) & predj(alice) & predj(paul) & predj(mary) & predf(mary) & predn(fred) & ! [X1] : (prede(X1) | ~predf(X1) | ~room(X1)) & (predj(mary) | ! [X2] : (~prede(X2) | ~anywhere(X2))) & (predl(mary) | (prede(sK1) & anywhere(sK1))) & (! [X4] : (~prede(X4) | predc(X4) | ~room(X4)) | (predm(sK2) & prede(sK2) & room(sK2))) & (! [X6] : (~predm(X6) | ~prede(X6) | ~room(X6)) | (prede(sK3) & ~predc(sK3) & room(sK3))) & (! [X8] : (~predb(X8) | ~predi(X8) | ~room(X8)) | ~predh(mary)) & (predh(mary) | (predb(sK4) & predi(sK4) & room(sK4))) & (~predc(mary) | ! [X10] : (predd(X10) | ~predl(X10) | ~room(X10))) & (~predf(mary) | (~predd(sK5) & predl(sK5) & room(sK5))) & (! [X12] : (predm(X12) | (~predl(X12) & ~predk(X12)) | ~anywhere(X12)) | ! [X13] : (predb(X13) | ~room(X13))) & (! [X14] : (predm(X14) | ~predj(X14) | ~anywhere(X14)) | ! [X15] : (~prede(X15) | ~predf(X15) | ~predc(X15) | ~room(X15))) & ((prede(sK6) & predf(sK6) & predc(sK6) & room(sK6)) | ~predc(mary)) & (predh(fred) | (~predn(sK7) & predc(sK7) & room(sK7))) & (! [X18] : (predn(X18) | ~predc(X18) | ~room(X18)) | ~predh(fred)) & ! [X19] : (john = X19 | alice = X19 | fred = X19 | paul = X19 | mary = X19 | ~room(X19)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [skolemisation 130,138,137,136,135,134,133,132,131] 140. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK8 & alice != sK8 & fred != sK8 & paul != sK8 & mary != sK8 & room(sK8)) [choice axiom] 141. ~predj(paul) | (john != sK8 & alice != sK8 & fred != sK8 & paul != sK8 & mary != sK8 & room(sK8)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 126,140] 223. room(mary) [cnf transformation 139] 224. room(paul) [cnf transformation 139] 225. room(fred) [cnf transformation 139] 226. room(alice) [cnf transformation 139] 227. room(john) [cnf transformation 139] 228. ~room(X19) | alice = X19 | fred = X19 | paul = X19 | mary = X19 | john = X19 [cnf transformation 139] 261. predj(paul) [cnf transformation 139] 266. ~predj(paul) | room(sK8) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 141] 267. ~predj(paul) | mary != sK8 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 141] 268. ~predj(paul) | paul != sK8 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 141] 269. ~predj(paul) | fred != sK8 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 141] 270. ~predj(paul) | alice != sK8 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 141] 271. ~predj(paul) | john != sK8 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 141] 416. john != sK8 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 271,261] 417. john != sK8 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 416,227] 418. john != sK8 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 417,226] 419. john != sK8 | ~room(paul) | ~room(mary) [subsumption resolution 418,225] 420. john != sK8 | ~room(mary) [subsumption resolution 419,224] 421. john != sK8 [subsumption resolution 420,223] 422. alice != sK8 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 270,261] 423. alice != sK8 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 422,227] 424. alice != sK8 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 423,226] 425. alice != sK8 | ~room(paul) | ~room(mary) [subsumption resolution 424,225] 426. alice != sK8 | ~room(mary) [subsumption resolution 425,224] 427. alice != sK8 [subsumption resolution 426,223] 428. fred != sK8 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 269,261] 429. fred != sK8 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 428,227] 430. fred != sK8 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 429,226] 431. fred != sK8 | ~room(paul) | ~room(mary) [subsumption resolution 430,225] 432. fred != sK8 | ~room(mary) [subsumption resolution 431,224] 433. fred != sK8 [subsumption resolution 432,223] 434. paul != sK8 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 268,261] 435. paul != sK8 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 434,227] 436. paul != sK8 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 435,226] 437. paul != sK8 | ~room(paul) | ~room(mary) [subsumption resolution 436,225] 438. paul != sK8 | ~room(mary) [subsumption resolution 437,224] 439. paul != sK8 [subsumption resolution 438,223] 440. mary != sK8 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 267,261] 441. mary != sK8 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 440,227] 442. mary != sK8 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 441,226] 443. mary != sK8 | ~room(paul) | ~room(mary) [subsumption resolution 442,225] 444. mary != sK8 | ~room(mary) [subsumption resolution 443,224] 445. mary != sK8 [subsumption resolution 444,223] 446. room(sK8) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 266,261] 447. room(sK8) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 446,227] 448. room(sK8) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 447,226] 449. room(sK8) | ~room(paul) | ~room(mary) [subsumption resolution 448,225] 450. room(sK8) | ~room(mary) [subsumption resolution 449,224] 451. room(sK8) [subsumption resolution 450,223] 539. alice = sK8 | fred = sK8 | paul = sK8 | mary = sK8 | john = sK8 [resolution 228,451] 666. fred = sK8 | paul = sK8 | mary = sK8 | john = sK8 [subsumption resolution 539,427] 667. paul = sK8 | mary = sK8 | john = sK8 [subsumption resolution 666,433] 668. mary = sK8 | john = sK8 [subsumption resolution 667,439] 669. john = sK8 [subsumption resolution 668,445] 670. $false [subsumption resolution 669,421] % SZS output end Proof for 3465183498033842185435404 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0
Joyce, Eunice, Lawrence are the only persons in the room. If “everyone in the room plays as a goalkeeper for a local amateur soccer team” then “if someone enjoys landscape photography then he/she is a scotch connoisseur” otherwise “Eunice collects first edition books or own a television or both”. If “at least one person anywhere collects first edition books, is allergic to anything or does not host themed dinner parties featuring gourmet home-cooked meals” then “Lawrence does enjoy mountain biking” otherwise “it is not the case that “Eunice maintains a personal blog focused on cybersecurity tips””. “Everyone in the room who regularly goes on multi-day backpacking trips in national parks and does not regularly goes on multi-day backpacking trips in national parks plays as a goalkeeper for a local amateur soccer team” unless “everyone outside the room maintains a personal blog focused on cybersecurity tips or does not host themed dinner parties featuring gourmet home-cooked meals”. If “Joyce own a television” then “Joyce practices urban gardening or enjoys macrame or both” otherwise “more than one person in the room mentors a youth basketball team on weekends”. More than one person in the room is a scotch connoisseur. Not everyone in the room who is a scotch connoisseur neither owns a smartwatch nor collects classic novels. Everyone in the room is not a Linux enthusiast if they is not allergic to anything, is a scotch connoisseur or plays as a goalkeeper for a local amateur soccer team. Eunice is not allergic to anything, is a scotch connoisseur or plays as a goalkeeper for a local amateur soccer team. Joyce is not allergic to anything, is a scotch connoisseur or plays as a goalkeeper for a local amateur soccer team. Joyce is allergic to anything. Everyone in the room who is not a Linux enthusiast enjoys watercolor painting.
Joyce neither enjoys watercolor painting nor enjoys macrame.
contradiction
room(joyce)&room(eunice)&room(lawrence)&(![X]:(room(X)=>(X='joyce'|X='eunice'|X='lawrence')))& (((![X]:(room(X)=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))=>((![X]:((enjoys_landscape_photography(X))=>(is_a_scotch_connoisseur(X))))))&((~(![X]:(room(X)=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))=>(((collects_first_edition_books(eunice))|(own_a_television(eunice))))))& (((((?[X]:(anywhere(X)&((collects_first_edition_books(X))|(is_allergic_to_anything(X))|(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)))))))=>(does_enjoy_mountain_biking(lawrence)))&((~(((?[X]:(anywhere(X)&((collects_first_edition_books(X))|(is_allergic_to_anything(X))|(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))))=>(~(maintains_a_personal_blog_focused_on_cybersecurity_tips(eunice)))))& (~(![X]:(~room(X)=>(((does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))=>(![X]:(room(X)=>(((((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))&(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))))& (((own_a_television(joyce))=>(((practices_urban_gardening(joyce))|(enjoys_macrame(joyce)))))&((~(own_a_television(joyce)))=>((?[X,Y]:(room(X)&room(Y)&(mentors_a_youth_basketball_team_on_weekends(X)&mentors_a_youth_basketball_team_on_weekends(Y))&(X!=Y))))))& ((?[X,Y]:(room(X)&room(Y)&(is_a_scotch_connoisseur(X)&is_a_scotch_connoisseur(Y))&(X!=Y))))& (~![X]:(room(X)=>(((is_a_scotch_connoisseur(X))=>(~((owns_a_smartwatch(X))|(collects_classic_novels(X))))))))& (![X]:(room(X)=>(((((is_not_allergic_to_anything(X))|(is_a_scotch_connoisseur(X))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))=>(is_not_a_Linux_enthusiast(X))))))& (((is_not_allergic_to_anything(eunice))|(is_a_scotch_connoisseur(eunice))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(eunice))))& (own_a_television(joyce))& (hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(eunice))& ((![X]:((((does_not_own_a_smartwatch(X))|(is_not_a_Linux_enthusiast(X))))<=>(((is_allergic_to_anything(X))|(enjoys_snowboarding(X)))))))& (((is_not_allergic_to_anything(joyce))|(is_a_scotch_connoisseur(joyce))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(joyce))))& (![X]:(~room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))<=>(enjoys_macrame(X))))))& ((![X]:((collects_historical_artifacts_related_to_ancient_civilizations(X))<=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))& (maintains_a_personal_blog_focused_on_cybersecurity_tips(lawrence))& (is_allergic_to_anything(joyce))& (![X]:(room(X)=>(((practices_calligraphy(X))=>(is_a_scotch_connoisseur(X))))))& (![X]:(room(X)=>(((is_not_a_Linux_enthusiast(X))=>(enjoys_watercolor_painting(X))))))& (![X]:(room(X)=>(((enjoys_watercolor_painting(X))=>(enjoys_snowboarding(X))))))& ((?[X,Y]:(room(X)&room(Y)&(mentors_a_youth_basketball_team_on_weekends(X)&mentors_a_youth_basketball_team_on_weekends(Y))&(X!=Y))))& ((?[X,Y]:(room(X)&room(Y)&(is_allergic_to_anything(X)&is_allergic_to_anything(Y))&(X!=Y))))& (~![X]:(room(X)=>(((((collects_classic_novels(X))|(enjoys_landscape_photography(X))))<=(((enjoys_snowboarding(X))<~>(collects_first_edition_books(X))))))))& (~((owns_a_smartwatch(joyce))|(mentors_a_youth_basketball_team_on_weekends(joyce))))& (~![X]:(room(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))<=(enjoys_snowboarding(X))))))& ((![X]:((is_allergic_to_anything(X))<=>(practices_calligraphy(X)))))
room(joyce)&room(eunice)&room(lawrence)&(![X]:(room(X)=>(X='joyce'|X='eunice'|X='lawrence')))& ~((enjoys_watercolor_painting(joyce))|(enjoys_macrame(joyce)))
[ "p0", "p7", "p12", "p16", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 862699181272579604860167 % SZS output start Proof for 862699181272579604860167 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 51. ! [X0] : (room(X0) => ((predg(X0) | predc(X0) | ~preds(X0)) => ~predo(X0))) [input p7] 56. predg(mary) | predc(mary) | ~preds(mary) [input p12] 60. preds(mary) [input p16] 62. ! [X0] : (room(X0) => (~predo(X0) => preda(X0))) [input p18] 70. ~(predb(mary) | preda(mary)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 154. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 155. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 154] 161. ! [X0] : ((~predo(X0) | (~predg(X0) & ~predc(X0) & preds(X0))) | ~room(X0)) [ennf transformation 51] 162. ! [X0] : (~predo(X0) | (~predg(X0) & ~predc(X0) & preds(X0)) | ~room(X0)) [flattening 161] 166. ! [X0] : ((preda(X0) | predo(X0)) | ~room(X0)) [ennf transformation 62] 167. ! [X0] : (preda(X0) | predo(X0) | ~room(X0)) [flattening 166] 175. (~predb(mary) & ~preda(mary)) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 70] 176. ~predb(mary) & ~preda(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 175] 279. room(mary) [cnf transformation 155] 294. ~predo(X0) | ~predc(X0) | ~room(X0) [cnf transformation 162] 295. ~predo(X0) | ~predg(X0) | ~room(X0) [cnf transformation 162] 302. predg(mary) | predc(mary) | ~preds(mary) [cnf transformation 56] 306. preds(mary) [cnf transformation 60] 308. ~room(X0) | predo(X0) | preda(X0) [cnf transformation 167] 335. ~preda(mary) [cnf transformation 176] 377. 10 <=> preds(mary) [avatar definition] 381. 11 <=> predc(mary) [avatar definition] 383. predc(mary) <- (11) [avatar component clause 381] 385. 12 <=> predg(mary) [avatar definition] 388. ~10 | 11 | 12 [avatar split clause 302,385,381,377] 389. 10 [avatar split clause 306,377] 433. predo(mary) | preda(mary) [resolution 308,279] 445. predo(mary) [subsumption resolution 433,335] 541. ~predg(mary) | ~room(mary) [resolution 445,295] 542. ~predc(mary) | ~room(mary) [resolution 445,294] 544. ~predg(mary) [subsumption resolution 541,279] 545. ~12 [avatar split clause 544,385] 546. ~room(mary) <- (11) [subsumption resolution 542,383] 547. $false <- (11) [subsumption resolution 546,279] 548. ~11 [avatar contradiction clause 547] 549. $false [avatar sat refutation 388,389,545,548] % SZS output end Proof for 862699181272579604860167 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.190751
Roger is the only person in the room. If "someone in the room enjoys kayaking" then "someone outside the room enjoys kayaking". "Everyone in the room is a wine connoisseur or does not play eSports competitively" only if "Roger enjoys macrame". If "everyone in the room does not enjoy kayaking or owns a microscope" then "everyone in the room who owns a microscope is an active member of a local robotics club". If someone plays eSports competitively then he/she enjoys macrame and vice versa. Everyone in the room who enjoys macrame is an active member of a local robotics club. Everyone in the room who owns a microscope is an active member of a local robotics club. Everyone in the room who enjoys kayaking enjoys macrame. Everyone in the room who plays eSports competitively enjoys macrame. Everyone in the room who is an active member of a local robotics club enjoys kayaking. Everyone in the room who is a wine connoisseur, is an active member of a local robotics club or enjoys macrame enjoys kayaking.
Roger is a wine connoisseur.
neutral
room(roger)&(![X]:(room(X)=>(X='roger')))& ((?[X]:(room(X)&(enjoys_kayaking(X))))=>(?[X]:(~room(X)&(enjoys_kayaking(X)))))& ((![X]:(room(X)=>(((does_not_play_eSports_competitively(X))|(is_a_wine_connoisseur(X))))))=>(enjoys_macrame(roger)))& ((![X]:(room(X)=>(((owns_a_microscope(X))|(does_not_enjoy_kayaking(X))))))=>(![X]:(room(X)=>(((owns_a_microscope(X))=>(is_an_active_member_of_a_local_robotics_club(X)))))))& ((![X]:((plays_eSports_competitively(X))<=>(enjoys_macrame(X)))))& (![X]:(room(X)=>(((enjoys_macrame(X))=>(is_an_active_member_of_a_local_robotics_club(X))))))& (![X]:(room(X)=>(((owns_a_microscope(X))=>(is_an_active_member_of_a_local_robotics_club(X))))))& (![X]:(room(X)=>(((enjoys_kayaking(X))=>(enjoys_macrame(X))))))& (![X]:(room(X)=>(((plays_eSports_competitively(X))=>(enjoys_macrame(X))))))& (![X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))=>(enjoys_kayaking(X))))))& (![X]:(room(X)=>(((((is_a_wine_connoisseur(X))|(is_an_active_member_of_a_local_robotics_club(X))|(enjoys_macrame(X))))=>(enjoys_kayaking(X))))))
room(roger)&(![X]:(room(X)=>(X='roger')))& is_a_wine_connoisseur(roger)
[]
null
0.011878
Lora, Joseph are the only persons in the room. If “everyone outside the room does enjoy mountain biking or does not enjoy mountain biking” then “Lora is a client of LVMH and competes in national level swimming championships”. Someone in the room uses a Windows laptop and enjoys landscape photography. Everyone anywhere is not a client of LVMH if they enjoys landscape photography.
Joseph enjoys landscape photography.
entailment
room(lora)&room(joseph)&(![X]:(room(X)=>(X='lora'|X='joseph')))& ((enjoys_landscape_photography(lora))=>((?[X,Y]:(room(X)&room(Y)&(~((does_enjoy_mountain_biking(X))|(enjoys_landscape_photography(X)))&~((does_enjoy_mountain_biking(Y))|(enjoys_landscape_photography(Y))))&(X!=Y)))))& ((![X]:(~room(X)=>(((does_not_enjoy_mountain_biking(X))|(does_enjoy_mountain_biking(X))))))=>(((is_a_client_of_LVMH(lora))&(competes_in_national_level_swimming_championships(lora)))))& ((competes_in_national_level_swimming_championships(lora))=>(?[X]:(~room(X)&(uses_a_Windows_laptop(X)))))& ((participates_in_long-distance_cycling_events_across_the_country(lora))<~>(competes_in_national_level_swimming_championships(lora)))& ((![X]:(room(X)=>(((does_not_compete_in_national_level_swimming_championships(X))|(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(lora)))& ((![X]:(anywhere(X)=>(((does_not_compete_in_national_level_swimming_championships(X))|(is_a_client_of_LVMH(X))))))<~>(does_not_play_video_games(lora)))& (does_not_enjoy_mountain_biking(lora))& (?[X]:(room(X)&(((uses_a_Windows_laptop(X))&(enjoys_landscape_photography(X))))))& ((?[X,Y]:(room(X)&room(Y)&(does_not_enjoy_mountain_biking(X)&does_not_enjoy_mountain_biking(Y))&(X!=Y))))& (![X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))|(does_not_collect_first_edition_books(X))))))& (participates_in_citizen_science_projects_related_to_wildlife_monitoring(lora))& (plays_video_games(lora))& (![X]:(anywhere(X)=>(((enjoys_landscape_photography(X))=>(is_not_a_client_of_LVMH(X))))))& (?[X]:(room(X)&(competes_in_national_level_swimming_championships(X))))& (maintains_a_large,_organic_vegetable_garden_year-round(lora))
room(lora)&room(joseph)&(![X]:(room(X)=>(X='lora'|X='joseph')))& enjoys_landscape_photography(joseph)
[ "b4", "p0", "p2", "p8", "p13", "hypothesis" ]
% SZS status Unsatisfiable for 1007245792112362172933485 % SZS output start Proof for 1007245792112362172933485 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 46. ! [X0] : (~room(X0) => (predk(X0) | ~predk(X0))) => (predh(mary) & predb(mary)) [input p2] 52. ? [X0] : (predd(X0) & predc(X0) & room(X0)) [input p8] 57. ! [X0] : (anywhere(X0) => (predd(X0) => ~predb(X0))) [input p13] 60. ~(predd(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 66. ? [X0] : (predd(X0) & room(X0)) [pure predicate removal 52] 138. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 139. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 138] 142. (predh(mary) & predb(mary)) | ? [X0] : ((~predk(X0) & predk(X0)) & ~room(X0)) [ennf transformation 46] 143. (predh(mary) & predb(mary)) | ? [X0] : (~predk(X0) & predk(X0) & ~room(X0)) [flattening 142] 147. ! [X0] : ((~predb(X0) | ~predd(X0)) | ~anywhere(X0)) [ennf transformation 57] 148. ! [X0] : (~predb(X0) | ~predd(X0) | ~anywhere(X0)) [flattening 147] 149. ~predd(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 60] 150. ~predd(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 149] 154. ? [X0] : (~predk(X0) & predk(X0) & ~room(X0)) => (~predk(sK2) & predk(sK2) & ~room(sK2)) [choice axiom] 155. (predh(mary) & predb(mary)) | (~predk(sK2) & predk(sK2) & ~room(sK2)) [skolemisation 143,154] 163. ? [X0] : (predd(X0) & room(X0)) => (predd(sK5) & room(sK5)) [choice axiom] 164. predd(sK5) & room(sK5) [skolemisation 66,163] 169. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK9 & mary != sK9 & room(sK9)) [choice axiom] 170. ~predd(paul) | (paul != sK9 & mary != sK9 & room(sK9)) | ~room(paul) | ~room(mary) [skolemisation 150,169] 171. anywhere(X0) [cnf transformation 5] 252. room(mary) [cnf transformation 139] 253. room(paul) [cnf transformation 139] 254. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 139] 263. predb(mary) | predk(sK2) [cnf transformation 155] 264. predb(mary) | ~predk(sK2) [cnf transformation 155] 276. room(sK5) [cnf transformation 164] 277. predd(sK5) [cnf transformation 164] 284. ~predb(X0) | ~predd(X0) | ~anywhere(X0) [cnf transformation 148] 287. ~predd(paul) | room(sK9) | ~room(paul) | ~room(mary) [cnf transformation 170] 288. ~predd(paul) | mary != sK9 | ~room(paul) | ~room(mary) [cnf transformation 170] 289. ~predd(paul) | paul != sK9 | ~room(paul) | ~room(mary) [cnf transformation 170] 291. 1 <=> predd(mary) [avatar definition] 330. 9 <=> predk(sK2) [avatar definition] 345. 12 <=> predb(mary) [avatar definition] 347. predb(mary) <- (12) [avatar component clause 345] 348. ~9 | 12 [avatar split clause 264,345,330] 349. 9 | 12 [avatar split clause 263,345,330] 382. ~predb(X0) | ~predd(X0) [subsumption resolution 284,171] 383. ~predd(paul) | paul != sK9 | ~room(mary) [subsumption resolution 289,253] 384. ~predd(paul) | paul != sK9 [subsumption resolution 383,252] 386. 19 <=> paul = sK9 [avatar definition] 388. paul != sK9 <- (~19) [avatar component clause 386] 390. 20 <=> predd(paul) [avatar definition] 393. ~19 | ~20 [avatar split clause 384,390,386] 394. ~predd(paul) | mary != sK9 | ~room(mary) [subsumption resolution 288,253] 395. ~predd(paul) | mary != sK9 [subsumption resolution 394,252] 397. 21 <=> mary = sK9 [avatar definition] 399. mary != sK9 <- (~21) [avatar component clause 397] 400. ~21 | ~20 [avatar split clause 395,390,397] 401. ~predd(paul) | room(sK9) | ~room(mary) [subsumption resolution 287,253] 402. ~predd(paul) | room(sK9) [subsumption resolution 401,252] 404. 22 <=> room(sK9) [avatar definition] 406. room(sK9) <- (22) [avatar component clause 404] 407. 22 | ~20 [avatar split clause 402,390,404] 410. ~predd(mary) <- (12) [resolution 382,347] 414. mary = sK5 | paul = sK5 [resolution 254,276] 419. 23 <=> paul = sK5 [avatar definition] 421. paul = sK5 <- (23) [avatar component clause 419] 423. 24 <=> mary = sK5 [avatar definition] 425. mary = sK5 <- (24) [avatar component clause 423] 426. 23 | 24 [avatar split clause 414,423,419] 474. predd(mary) <- (24) [backward demodulation 277,425] 478. 1 | ~24 [avatar split clause 474,423,291] 479. ~1 | ~12 [avatar split clause 410,345,291] 487. predd(paul) <- (23) [backward demodulation 277,421] 488. 20 | ~23 [avatar split clause 487,419,390] 509. mary = sK9 | paul = sK9 <- (22) [resolution 406,254] 510. paul = sK9 <- (~21, 22) [subsumption resolution 509,399] 511. $false <- (~19, ~21, 22) [subsumption resolution 510,388] 512. 19 | 21 | ~22 [avatar contradiction clause 511] 513. $false [avatar sat refutation 348,349,393,400,407,426,478,479,488,512] % SZS output end Proof for 1007245792112362172933485 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.185815
Sandra, Christopher are the only persons in the room. If “everyone in the room does not collect antique jewelry or owns a smart tv” then “everyone in the room does not enjoy kayaking and exploring remote waterways or does not enjoy writing detailed reviews of new and classic board games”. If “everyone in the room does not enjoy kayaking and exploring remote waterways or does not enjoy writing detailed reviews of new and classic board games” then “everyone outside the room neither is a client of Costco nor does not know morse code”. “Everyone outside the room does not enjoy virtual reality gaming” only if “Christopher owns a smart tv”. Everyone anywhere does not play as a goalkeeper for a local amateur soccer team, is an avid collector of autographed memorabilia from famous musicians or does not design and sews custom cosplay costumes for conventions. Not everyone in the room cannot play the piano or does not design and sews custom cosplay costumes for conventions or both. Everyone in the room does not collect antique jewelry if they is not an avid collector of autographed memorabilia from famous musicians, does not know morse code or does not design and sews custom cosplay costumes for conventions. Sandra does not use an ios phone, collects antique jewelry or does not host themed dinner parties featuring gourmet home-cooked meals. Everyone in the room is not a client of Costco. Everyone in the room does not play as a goalkeeper for a local amateur soccer team. Everyone in the room does not play as a goalkeeper for a local amateur soccer team, does not enjoy kayaking and exploring remote waterways or does not enjoy writing detailed reviews of new and classic board games.
Christopher plays as a goalkeeper for a local amateur soccer team.
contradiction
room(sandra)&room(christopher)&(![X]:(room(X)=>(X='sandra'|X='christopher')))& (((![X]:(room(X)=>(((owns_a_smart_tv(X))|(does_not_collect_antique_jewelry(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))|(does_not_enjoy_kayaking_and_exploring_remote_waterways(X)))))))& ((![X]:(room(X)=>(((does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))|(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))))))=>(![X]:(~room(X)=>(~((is_a_client_of_Costco(X))|(does_not_know_morse_code(X))))))))& ((![X]:(~room(X)=>(does_not_enjoy_virtual_reality_gaming(X))))=>(owns_a_smart_tv(christopher)))& (![X]:(anywhere(X)=>(((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))))))& (~![X]:(room(X)=>(((cannot_play_the_piano(X))|(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))))))& (![X]:(room(X)=>(((((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(does_not_know_morse_code(X))|(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))))=>(does_not_collect_antique_jewelry(X))))))& (((does_not_use_an_ios_phone(sandra))|(collects_antique_jewelry(sandra))|(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(sandra))))& (![X]:(room(X)=>(is_not_a_client_of_Costco(X))))& (![X]:(room(X)=>(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))& (![X]:(room(X)=>(((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))|(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))))))
room(sandra)&room(christopher)&(![X]:(room(X)=>(X='sandra'|X='christopher')))& plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(christopher)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 6329831214401308127152615 % SZS output start Proof for 6329831214401308127152615 44. ! [X0] : (room(X0) => (~prede(X0) | ~predf(X0) | ~predl(X0))) & ! [X0] : (room(X0) => ~predl(X0)) & ! [X0] : (room(X0) => ~predc(X0)) & (~predd(mary) | predn(mary) | ~predj(mary)) & ! [X0] : (room(X0) => ((~preda(X0) | ~predo(X0) | ~predp(X0)) => ~predn(X0))) & ~! [X0] : (room(X0) => (~preda(X0) | ~predh(X0))) & ! [X0] : (anywhere(X0) => (~preda(X0) | predp(X0) | ~predl(X0))) & (! [X0] : (~room(X0) => ~predi(X0)) => predm(paul)) & (! [X0] : (room(X0) => (~predf(X0) | ~prede(X0))) => ! [X0] : (~room(X0) => ~(~predo(X0) | predc(X0)))) & (! [X0] : (room(X0) => (~predn(X0) | predm(X0))) => ! [X0] : (room(X0) => (~predf(X0) | ~prede(X0)))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. predl(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 46. ! [X0] : (room(X0) => (~prede(X0) | ~predf(X0) | ~predl(X0))) & ! [X1] : (room(X1) => ~predl(X1)) & ! [X2] : (room(X2) => ~predc(X2)) & (~predd(mary) | predn(mary) | ~predj(mary)) & ! [X3] : (room(X3) => ((~preda(X3) | ~predo(X3) | ~predp(X3)) => ~predn(X3))) & ~! [X4] : (room(X4) => (~preda(X4) | ~predh(X4))) & ! [X5] : (anywhere(X5) => (~preda(X5) | predp(X5) | ~predl(X5))) & (! [X6] : (~room(X6) => ~predi(X6)) => predm(paul)) & (! [X7] : (room(X7) => (~predf(X7) | ~prede(X7))) => ! [X8] : (~room(X8) => ~(~predo(X8) | predc(X8)))) & (! [X9] : (room(X9) => (~predn(X9) | predm(X9))) => ! [X10] : (room(X10) => (~predf(X10) | ~prede(X10)))) & ! [X11] : (room(X11) => (paul = X11 | mary = X11)) & room(paul) & room(mary) [rectify 44] 47. ! [X0] : (room(X0) => (~prede(X0) | ~predf(X0) | ~predl(X0))) & ! [X1] : (room(X1) => ~predl(X1)) & ! [X2] : (room(X2) => ~predc(X2)) & ! [X3] : (room(X3) => ((~preda(X3) | ~predo(X3) | ~predp(X3)) => ~predn(X3))) & ~! [X4] : (room(X4) => (~preda(X4) | ~predh(X4))) & ! [X5] : (anywhere(X5) => (~preda(X5) | predp(X5) | ~predl(X5))) & (! [X6] : (~room(X6) => ~predi(X6)) => predm(paul)) & (! [X7] : (room(X7) => (~predf(X7) | ~prede(X7))) => ! [X8] : (~room(X8) => ~(~predo(X8) | predc(X8)))) & (! [X9] : (room(X9) => (~predn(X9) | predm(X9))) => ! [X10] : (room(X10) => (~predf(X10) | ~prede(X10)))) & ! [X11] : (room(X11) => (paul = X11 | mary = X11)) & room(paul) & room(mary) [pure predicate removal 46] 48. ! [X0] : (room(X0) => (~prede(X0) | ~predf(X0) | ~predl(X0))) & ! [X1] : (room(X1) => ~predl(X1)) & ! [X2] : (room(X2) => ~predc(X2)) & ! [X3] : (room(X3) => ((~preda(X3) | ~predo(X3) | ~predp(X3)) => ~predn(X3))) & ~! [X4] : (room(X4) => ~preda(X4)) & ! [X5] : (anywhere(X5) => (~preda(X5) | predp(X5) | ~predl(X5))) & (! [X6] : (~room(X6) => ~predi(X6)) => predm(paul)) & (! [X7] : (room(X7) => (~predf(X7) | ~prede(X7))) => ! [X8] : (~room(X8) => ~(~predo(X8) | predc(X8)))) & (! [X9] : (room(X9) => (~predn(X9) | predm(X9))) => ! [X10] : (room(X10) => (~predf(X10) | ~prede(X10)))) & ! [X11] : (room(X11) => (paul = X11 | mary = X11)) & room(paul) & room(mary) [pure predicate removal 47] 49. ! [X0] : (room(X0) => (~prede(X0) | ~predf(X0) | ~predl(X0))) & ! [X1] : (room(X1) => ~predl(X1)) & ! [X2] : (room(X2) => ~predc(X2)) & ! [X3] : (room(X3) => ((~preda(X3) | ~predo(X3)) => ~predn(X3))) & ~! [X4] : (room(X4) => ~preda(X4)) & (! [X6] : (~room(X6) => ~predi(X6)) => predm(paul)) & (! [X7] : (room(X7) => (~predf(X7) | ~prede(X7))) => ! [X8] : (~room(X8) => ~(~predo(X8) | predc(X8)))) & (! [X9] : (room(X9) => (~predn(X9) | predm(X9))) => ! [X10] : (room(X10) => (~predf(X10) | ~prede(X10)))) & ! [X11] : (room(X11) => (paul = X11 | mary = X11)) & room(paul) & room(mary) [pure predicate removal 48] 50. ! [X0] : (room(X0) => (~prede(X0) | ~predf(X0) | ~predl(X0))) & ! [X1] : (room(X1) => ~predl(X1)) & ! [X2] : (room(X2) => ~predc(X2)) & ! [X3] : (room(X3) => (~predo(X3) => ~predn(X3))) & ~! [X4] : ~room(X4) & (! [X6] : (~room(X6) => ~predi(X6)) => predm(paul)) & (! [X7] : (room(X7) => (~predf(X7) | ~prede(X7))) => ! [X8] : (~room(X8) => ~(~predo(X8) | predc(X8)))) & (! [X9] : (room(X9) => (~predn(X9) | predm(X9))) => ! [X10] : (room(X10) => (~predf(X10) | ~prede(X10)))) & ! [X11] : (room(X11) => (paul = X11 | mary = X11)) & room(paul) & room(mary) [pure predicate removal 49] 52. ! [X0] : (room(X0) => (~prede(X0) | ~predf(X0) | ~predl(X0))) & ! [X1] : (room(X1) => ~predl(X1)) & ! [X2] : (room(X2) => ~predc(X2)) & ! [X3] : (room(X3) => (~predo(X3) => ~predn(X3))) & ~! [X4] : ~room(X4) & (! [X6] : ~~room(X6) => predm(paul)) & (! [X7] : (room(X7) => (~predf(X7) | ~prede(X7))) => ! [X8] : (~room(X8) => ~(~predo(X8) | predc(X8)))) & (! [X9] : (room(X9) => (~predn(X9) | predm(X9))) => ! [X10] : (room(X10) => (~predf(X10) | ~prede(X10)))) & ! [X11] : (room(X11) => (paul = X11 | mary = X11)) & room(paul) & room(mary) [pure predicate removal 50] 53. ! [X0] : (room(X0) => (~prede(X0) | ~predf(X0) | ~predl(X0))) & ! [X1] : (room(X1) => ~predl(X1)) & ! [X2] : (room(X2) => ~predc(X2)) & ~! [X4] : ~room(X4) & (! [X6] : ~~room(X6) => predm(paul)) & (! [X7] : (room(X7) => (~predf(X7) | ~prede(X7))) => ! [X8] : (~room(X8) => ~predc(X8))) & (! [X9] : (room(X9) => (~predn(X9) | predm(X9))) => ! [X10] : (room(X10) => (~predf(X10) | ~prede(X10)))) & ! [X11] : (room(X11) => (paul = X11 | mary = X11)) & room(paul) & room(mary) [pure predicate removal 52] 54. ! [X0] : (room(X0) => (~prede(X0) | ~predf(X0) | ~predl(X0))) & ! [X1] : (room(X1) => ~predl(X1)) & ! [X2] : (room(X2) => ~predc(X2)) & ~! [X4] : ~room(X4) & (! [X6] : ~~room(X6) => predm(paul)) & (! [X7] : (room(X7) => (~predf(X7) | ~prede(X7))) => ! [X8] : (~room(X8) => ~predc(X8))) & (! [X9] : (room(X9) => predm(X9)) => ! [X10] : (room(X10) => (~predf(X10) | ~prede(X10)))) & ! [X11] : (room(X11) => (paul = X11 | mary = X11)) & room(paul) & room(mary) [pure predicate removal 53] 55. ! [X0] : (room(X0) => (~prede(X0) | ~predf(X0) | ~predl(X0))) & ! [X1] : (room(X1) => ~predl(X1)) & ~! [X4] : ~room(X4) & (! [X6] : ~~room(X6) => predm(paul)) & (! [X9] : (room(X9) => predm(X9)) => ! [X10] : (room(X10) => (~predf(X10) | ~prede(X10)))) & ! [X11] : (room(X11) => (paul = X11 | mary = X11)) & room(paul) & room(mary) [pure predicate removal 54] 56. ! [X1] : (room(X1) => ~predl(X1)) & ~! [X4] : ~room(X4) & (! [X6] : ~~room(X6) => predm(paul)) & ! [X11] : (room(X11) => (paul = X11 | mary = X11)) & room(paul) & room(mary) [pure predicate removal 55] 57. ! [X1] : (room(X1) => ~predl(X1)) & ~! [X4] : ~room(X4) & ! [X11] : (room(X11) => (paul = X11 | mary = X11)) & room(paul) & room(mary) [pure predicate removal 56] 129. ! [X1] : (~predl(X1) | ~room(X1)) & ? [X4] : room(X4) & ! [X11] : ((paul = X11 | mary = X11) | ~room(X11)) & room(paul) & room(mary) [ennf transformation 57] 130. ! [X1] : (~predl(X1) | ~room(X1)) & ? [X4] : room(X4) & ! [X11] : (paul = X11 | mary = X11 | ~room(X11)) & room(paul) & room(mary) [flattening 129] 131. predl(paul) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 45] 132. predl(paul) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 131] 134. ! [X0] : (~predl(X0) | ~room(X0)) & ? [X1] : room(X1) & ! [X2] : (paul = X2 | mary = X2 | ~room(X2)) & room(paul) & room(mary) [rectify 130] 135. ? [X1] : room(X1) => room(sK0) [choice axiom] 136. ! [X0] : (~predl(X0) | ~room(X0)) & room(sK0) & ! [X2] : (paul = X2 | mary = X2 | ~room(X2)) & room(paul) & room(mary) [skolemisation 134,135] 218. room(paul) [cnf transformation 136] 221. ~predl(X0) | ~room(X0) [cnf transformation 136] 225. predl(paul) [cnf transformation 132] 226. ~room(paul) [resolution 221,225] 227. $false [subsumption resolution 226,218] % SZS output end Proof for 6329831214401308127152615 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.08527
Christine, Maxine are the only persons in the room. “Christine is creative” if “it is not the case that “Christine is a curious person”” and vice versa. If “someone in the room is not a funny person” then “someone who is a calm wise person, is not strong and is strong is richer than someone who is not not tall”. No tall person is patient. Someone in the room is a calm person. Someone outside the room is a happy person. Someone in the room is a curious happy old generous kind person. It is not the case that “Christine is not a tall happy person”. Someone who is not generous is quieter than someone who is not patient. Christine either is kind or is not old but not both. Christine who is kind is humble. Christine is a quiet happy person. Christine is not a patient person. All strong persons are wise. Someone who is a old strong person is quieter than someone who is a creative calm strong person. If someone is kind then he/she is not not generous. All funny persons are quiet. Christine is tall. Someone in the room is a brave strong wise generous funny curious person. All kind persons are wise. All tall persons are curious.
Christine is not generous.
contradiction
room(christine)&room(maxine)&(![X]:(room(X)=>(X='christine'|X='maxine')))& ((~(curious(christine)&person(christine)))<=>(creative(christine)))& ((?[X]:(room(X)&(~(funny(X)&person(X)))))=>(?[X,Y]:((((calm(X)&wise(X)&person(X))&(~strong(X))&(strong(X))))&(~~tall(Y))&(richer(X,Y)))))& (~?[X]:(tall(X)=>patient(X)))& (?[X]:(room(X)&(calm(X)&person(X))))& (?[X]:(~room(X)&(happy(X)&person(X))))& (?[X]:(room(X)&(curious(X)&happy(X)&old(X)&generous(X)&kind(X)&person(X))))& (~(~(tall(christine)&happy(christine)&person(christine))))& (?[X,Y]:((~generous(X))&(~patient(Y))&(quieter(X,Y))))& (((kind(christine))<~>(~old(christine))))& ((kind(christine))&(humble(christine)))& (quiet(christine)&happy(christine)&person(christine))& (~(patient(christine)&person(christine)))& (![X]:(strong(X)=>wise(X)))& (?[X,Y]:((old(X)&strong(X)&person(X))&(creative(Y)&calm(Y)&strong(Y)&person(Y))&(quieter(X,Y))))& ((![X]:((kind(X))=>(~~generous(X)))))& (![X]:(funny(X)=>quiet(X)))& (tall(christine))& (?[X]:(room(X)&(brave(X)&strong(X)&wise(X)&generous(X)&funny(X)&curious(X)&person(X))))& (![X]:(kind(X)=>wise(X)))& (![X]:(tall(X)=>curious(X)))
room(christine)&room(maxine)&(![X]:(room(X)=>(X='christine'|X='maxine')))& ~generous(christine)
[ "p10", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 1819078431406085636140358 % SZS output start Proof for 1819078431406085636140358 54. humble(mary) & kind(mary) [input p10] 59. ! [X0] : (kind(X0) => generous(X0)) [input p15] 65. ~generous(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 69. kind(mary) [pure predicate removal 54] 161. ! [X0] : (generous(X0) | ~kind(X0)) [ennf transformation 59] 164. ~generous(mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 65] 165. ~generous(mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 164] 298. kind(mary) [cnf transformation 69] 308. ~kind(X0) | generous(X0) [cnf transformation 161] 321. ~generous(mary) [cnf transformation 165] 372. 11 <=> kind(mary) [avatar definition] 373. kind(mary) <- (11) [avatar component clause 372] 381. 11 [avatar split clause 298,372] 385. generous(mary) <- (11) [resolution 308,373] 386. $false <- (11) [subsumption resolution 385,321] 387. ~11 [avatar contradiction clause 386] 388. $false [avatar sat refutation 381,387] % SZS output end Proof for 1819078431406085636140358 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.444762
There is a room. If “everyone in the room does not maintain a large, organic vegetable garden year-round or works as a freelance web developer specializing in e-commerce sites” then “everyone outside the room who does not maintain a large, organic vegetable garden year-round enjoys stand-up paddleboarding” otherwise “not everyone in the room who enjoys stand-up paddleboarding is a night owl or enjoys salsa dancing or both”. No one in the room who is a night owl or enjoys salsa dancing or both has lived in exactly three countries. Everyone anywhere has lived in exactly three countries if they is a night owl and vice versa. More than one person in the room collect rare sneakers. Everyone outside the room who collects action figures owns a telescope. Everyone outside the room who does not maintain a large, organic vegetable garden year-round enjoys stand-up paddleboarding. Everyone in the room who uses an ios phone collect rare sneakers. Everyone in the room who collects vintage stamps practices and performs acrobatic dance routines, practices calligraphy and is a night owl. Everyone outside the room who practices and performs acrobatic dance routines, practices calligraphy and is a night owl is a night owl. Everyone in the room who is a night owl uses an ios phone. Everyone anywhere who uses an ios phone collect rare sneakers.
Everyone in the room is a night owl.
contradiction
(there_is_a_room)& (((![X]:(room(X)=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))))))=>(![X]:(~room(X)=>(((does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))=>(enjoys_stand-up_paddleboarding(X)))))))&((~(![X]:(room(X)=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X)))))))=>(~![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))=>(((is_a_night_owl(X))|(enjoys_salsa_dancing(X))))))))))& (~?[X]:(room(X)=>(((((is_a_night_owl(X))|(enjoys_salsa_dancing(X))))=>(has_lived_in_exactly_three_countries(X))))))& (![X]:(anywhere(X)=>(((has_lived_in_exactly_three_countries(X))<=>(is_a_night_owl(X))))))& ((?[X,Y]:(room(X)&room(Y)&(collect_rare_sneakers(X)&collect_rare_sneakers(Y))&(X!=Y))))& (![X]:(~room(X)=>(((collects_action_figures(X))=>(owns_a_telescope(X))))))& (![X]:(~room(X)=>(((does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))=>(enjoys_stand-up_paddleboarding(X))))))& (![X]:(room(X)=>(((uses_an_ios_phone(X))=>(collect_rare_sneakers(X))))))& (![X]:(room(X)=>(((collects_vintage_stamps(X))=>(((practices_and_performs_acrobatic_dance_routines(X))&(practices_calligraphy(X))&(is_a_night_owl(X))))))))& (![X]:(~room(X)=>(((((practices_and_performs_acrobatic_dance_routines(X))&(practices_calligraphy(X))&(is_a_night_owl(X))))=>(is_a_night_owl(X))))))& (![X]:(room(X)=>(((is_a_night_owl(X))=>(uses_an_ios_phone(X))))))& (![X]:(anywhere(X)=>(((uses_an_ios_phone(X))=>(collect_rare_sneakers(X))))))
(there_is_a_room)& ![X]:(room(X)=>(is_a_night_owl(X)))
[ "b4", "p2", "p3", "hypothesis" ]
% SZS status Unsatisfiable for 1413885462375285662452882 % SZS output start Proof for 1413885462375285662452882 5. ! [X0] : anywhere(X0) [input b4] 46. ~? [X0] : (room(X0) => ((predd(X0) | predc(X0)) => predr(X0))) [input p2] 47. ! [X0] : (anywhere(X0) => (predr(X0) <=> predc(X0))) [input p3] 56. ! [X0] : (room(X0) => predc(X0)) & there_is_a_room [input hypothesis] 68. ~? [X0] : (room(X0) => predr(X0)) [pure predicate removal 46] 69. ! [X0] : (room(X0) => predc(X0)) [pure predicate removal 56] 142. ! [X0] : (~predr(X0) & room(X0)) [ennf transformation 68] 143. ! [X0] : ((predr(X0) <=> predc(X0)) | ~anywhere(X0)) [ennf transformation 47] 144. ! [X0] : (predc(X0) | ~room(X0)) [ennf transformation 69] 146. ! [X0] : (((predr(X0) | ~predc(X0)) & (predc(X0) | ~predr(X0))) | ~anywhere(X0)) [nnf transformation 143] 149. anywhere(X0) [cnf transformation 5] 230. room(X0) [cnf transformation 142] 231. ~predr(X0) [cnf transformation 142] 233. predr(X0) | ~predc(X0) | ~anywhere(X0) [cnf transformation 146] 237. predc(X0) | ~room(X0) [cnf transformation 144] 238. ~predc(X0) | ~anywhere(X0) [subsumption resolution 233,231] 239. ~predc(X0) [subsumption resolution 238,149] 240. ~room(X0) [subsumption resolution 237,239] 241. $false [subsumption resolution 240,230] % SZS output end Proof for 1413885462375285662452882 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.67476
Flor, Eric, Warren are the only persons in the room. Flor hosts regular workshops on creative writing. Everyone in the room who owns an Android phone does enjoy mountain biking. Everyone in the room creates augmented reality experiences for mobile applications or does not make intricate hand-cut paper art for exhibitions. Everyone in the room creates augmented reality experiences for mobile applications only if they volunteers for local environmental conservation projects. More than one person in the room volunteers for local environmental conservation projects. Flor does enjoy mountain biking. Flor makes intricate hand-cut paper art for exhibitions. Everyone outside the room who is a skilled home brewer experimenting with craft beer recipes does enjoy mountain biking. Not everyone in the room is a client of LVMH if they neither owns a 3D printer nor creates augmented reality experiences for mobile applications and vice versa. Eric hosts regular workshops on creative writing. Everyone in the room trains for and competes in international triathlons only if they is an enthusiastic bird watcher who travels for rare sightings. Someone in the room practices graffiti art. Everyone in the room volunteers for local environmental conservation projects only if they practices kickboxing. Flor creates augmented reality experiences for mobile applications. It is not the case that 'Eric is a skilled home brewer experimenting with craft beer recipes'. Someone in the room is right-handed. It is not the case that 'Flor is an enthusiastic bird watcher who travels for rare sightings'. Eric is dedicated to sustainable living and zero-waste practices. Everyone in the room practices kickboxing only if they enjoys spelunking. Everyone in the room enjoys spelunking or is not a skilled home brewer experimenting with craft beer recipes. Eric who does not make intricate hand-cut paper art for exhibitions owns an Android phone. Eric who volunteers for local environmental conservation projects trains for and competes in international triathlons. Someone in the room is a skilled home brewer experimenting with craft beer recipes.
Eric neither creates augmented reality experiences for mobile applications nor enjoys spelunking.
contradiction
room(flor)&room(eric)&room(warren)&(![X]:(room(X)=>(X='flor'|X='eric'|X='warren')))& (hosts_regular_workshops_on_creative_writing(flor))& (![X]:(room(X)=>(((owns_an_Android_phone(X))=>(does_enjoy_mountain_biking(X))))))& (![X]:(room(X)=>(((does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))|(creates_augmented_reality_experiences_for_mobile_applications(X))))))& (![X]:(room(X)=>(((volunteers_for_local_environmental_conservation_projects(X))<=(creates_augmented_reality_experiences_for_mobile_applications(X))))))& ((?[X,Y]:(room(X)&room(Y)&(volunteers_for_local_environmental_conservation_projects(X)&volunteers_for_local_environmental_conservation_projects(Y))&(X!=Y))))& (does_enjoy_mountain_biking(flor))& (makes_intricate_hand-cut_paper_art_for_exhibitions(flor))& (![X]:(~room(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(does_enjoy_mountain_biking(X))))))& (~![X]:(room(X)=>(((is_a_client_of_LVMH(X))<=>(~((owns_a_3D_printer(X))|(creates_augmented_reality_experiences_for_mobile_applications(X))))))))& (hosts_regular_workshops_on_creative_writing(eric))& (![X]:(room(X)=>(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))<=(trains_for_and_competes_in_international_triathlons(X))))))& (?[X]:(room(X)&(practices_graffiti_art(X))))& (![X]:(room(X)=>(((practices_kickboxing(X))<=(volunteers_for_local_environmental_conservation_projects(X))))))& (creates_augmented_reality_experiences_for_mobile_applications(flor))& (~(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(eric)))& (?[X]:(room(X)&(is_right-handed(X))))& (~(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(flor)))& (is_dedicated_to_sustainable_living_and_zero-waste_practices(eric))& (![X]:(room(X)=>(((enjoys_spelunking(X))<=(practices_kickboxing(X))))))& (![X]:(room(X)=>(((is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(enjoys_spelunking(X))))))& ((does_not_make_intricate_hand-cut_paper_art_for_exhibitions(eric))&(owns_an_Android_phone(eric)))& ((volunteers_for_local_environmental_conservation_projects(eric))&(trains_for_and_competes_in_international_triathlons(eric)))& (?[X]:(room(X)&(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))& (![X]:(room(X)=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))=>(((hosts_regular_workshops_on_creative_writing(X))|(writes_a_travel_blog(X))))))))
room(flor)&room(eric)&room(warren)&(![X]:(room(X)=>(X='flor'|X='eric'|X='warren')))& ~((creates_augmented_reality_experiences_for_mobile_applications(eric))|(enjoys_spelunking(eric)))
[ "p0", "p13", "p19", "p22", "hypothesis" ]
% SZS status Unsatisfiable for 7132439038107467002531687 % SZS output start Proof for 7132439038107467002531687 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 57. ! [X0] : (room(X0) => (predi(X0) => predr(X0))) [input p13] 63. ! [X0] : (room(X0) => (predr(X0) => predf(X0))) [input p19] 66. predo(paul) & predi(paul) [input p22] 69. ~(predf(paul) | predj(paul)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 152. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 153. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 152] 161. ! [X0] : ((predr(X0) | ~predi(X0)) | ~room(X0)) [ennf transformation 57] 162. ! [X0] : (predr(X0) | ~predi(X0) | ~room(X0)) [flattening 161] 163. ! [X0] : ((predf(X0) | ~predr(X0)) | ~room(X0)) [ennf transformation 63] 164. ! [X0] : (predf(X0) | ~predr(X0) | ~room(X0)) [flattening 163] 167. (~predf(paul) & ~predj(paul)) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 69] 168. ~predf(paul) & ~predj(paul) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 167] 263. room(paul) [cnf transformation 153] 280. ~predi(X0) | predr(X0) | ~room(X0) [cnf transformation 162] 285. ~predr(X0) | predf(X0) | ~room(X0) [cnf transformation 164] 288. predi(paul) [cnf transformation 66] 297. ~predf(paul) [cnf transformation 168] 319. predr(paul) | ~room(paul) [resolution 280,288] 323. predr(paul) [subsumption resolution 319,263] 326. predf(paul) | ~room(paul) [resolution 323,285] 327. ~room(paul) [subsumption resolution 326,297] 328. $false [subsumption resolution 327,263] % SZS output end Proof for 7132439038107467002531687 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.621736
David, Derick are the only persons in the room. If “at least one person in the room is strong” then “if someone is older than Taryn then he/she is a tall wise calm person and vice versa”. “Someone outside the room is strong” if “someone in the room is a funny person”. “If someone is not a creative person then he/she is not a humble person” if “someone in the room is not a tall person”. “Taryn is quieter than David” only if “all quiet persons are brave”. “At least one person in the room is richer than Taryn” if “it is not the case that “at least one person in the room is quieter than Taryn””. “If someone is older than Taryn then he/she is a old person and vice versa” unless “someone anywhere is a curious person, is not a humble person and is not a kind person”. If “someone outside the room is richer than Taryn” then “Derick and David are old”. If “Derick and David are old” then “David is the richest anywhere”. At least one person in the room is not a strong person. At least one person in the room is calm. It is not the case that “it is not the case that “at least one person in the room either is generous or is a calm patient person but not both””. Derick who is richer than Taryn is not a generous person. Someone in the room is not a tall person. All strong persons are tall.
It is not the case that “it is not the case that “it is not the case that “more than one person in the room is not tall, is a kind person and is a old person”””.
neutral
room(david)&room(derick)&(![X]:(room(X)=>(X='david'|X='derick')))& ((((?[X]:(room(X)&strong(X)))))=>((![X]:((older(taryn,X))<=>(tall(X)&wise(X)&calm(X)&person(X))))))& ((?[X]:(room(X)&(funny(X)&person(X))))=>(?[X]:(~room(X)&(strong(X)))))& ((?[X]:(room(X)&(~(tall(X)&person(X)))))=>((![X]:((~(creative(X)&person(X)))=>(~(humble(X)&person(X)))))))& ((quieter(david,taryn))=>(![X]:(quiet(X)=>brave(X))))& ((~(((?[X]:(room(X)&quieter(taryn,X))))))=>(((?[X]:(room(X)&richer(taryn,X))))))& (~(?[X]:(anywhere(X)&(((curious(X)&person(X))&(~(humble(X)&person(X)))&(~(kind(X)&person(X)))))))=>((![X]:((older(taryn,X))<=>(old(X)&person(X))))))& (((?[X]:(~room(X)&(richer(taryn,X))))=>(old(derick)&old(david)))& ((old(derick)&old(david))=>(![X]:((anywhere(X)&(X!=david))=>richer(X,david)))))& (((?[X]:(room(X)&~(strong(X)&person(X))))))& (((?[X]:(room(X)&calm(X)))))& (~(~(((?[X]:(room(X)&((generous(X))<~>(calm(X)&patient(X)&person(X)))))))))& ((richer(taryn,derick))&(~(generous(derick)&person(derick))))& (?[X]:(room(X)&(~(tall(X)&person(X)))))& (![X]:(strong(X)=>tall(X)))& (![X]:(curious(X)=>quiet(X)))& (![X]:(patient(X)=>tall(X)))
room(david)&room(derick)&(![X]:(room(X)=>(X='david'|X='derick')))& ~(~(~((?[X,Y]:(room(X)&room(Y)&(((~tall(X))&(kind(X)&person(X))&(old(X)&person(X)))&((~tall(Y))&(kind(Y)&person(Y))&(old(Y)&person(Y))))&(X!=Y))))))
[]
null
0.077578