premise
stringlengths
12
3.12k
hypothesis
stringlengths
10
236
label
stringclasses
3 values
premise_tptp
stringlengths
51
8k
hypothesis_tptp
stringlengths
41
352
proof_inputs
sequencelengths
0
20
proof
stringlengths
767
76.8k
rule_concentration
float64
0
0.72
Henry is the only person in the room. If “everyone in the room does not have a pet dog or hosts themed dinner parties featuring gourmet home-cooked meals” then “more than one person in the room enjoys coding in Python” otherwise “everyone anywhere is a skilled home brewer experimenting with craft beer recipes only if they travels domestically frequently”. If “Henry maintains a large, organic vegetable garden year-round and is not a dedicated volunteer for local community service projects” then “everyone in the room who enjoys bird watching does not collect modern art”. Either “Henry has a pet dog” or “not everyone in the room is not a tea enthusiast or is a client of Meta” but not both. If “Henry enjoys coding in Python” then “everyone outside the room collects modern art if and only if they travels domestically frequently”. Everyone outside the room who travels domestically frequently either is a tea enthusiast or regularly contributes to tech forums and online communities but not both. If someone participates in long-distance cycling events across the country then he/she does not maintain a large, organic vegetable garden year-round and collects modern art. Everyone in the room enjoys bird watching if they regularly contributes to tech forums and online communities. More than one person outside the room travels domestically frequently. Not everyone in the room does not regularly contributes to tech forums and online communities or is a client of Meta. Everyone in the room who hosts themed dinner parties featuring gourmet home-cooked meals has a pet dog and is a dedicated volunteer for local community service projects. Henry enjoys bird watching. Henry enjoys spelunking. Only one person in the room is a client of LVMH. Henry regularly contributes to tech forums and online communities. Everyone in the room travels domestically frequently or does not enjoy spelunking. Henry participates in long-distance cycling events across the country.
Henry is a skilled home brewer experimenting with craft beer recipes.
neutral
room(henry)&(![X]:(room(X)=>(X='henry')))& (((![X]:(room(X)=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(does_not_have_a_pet_dog(X))))))=>((?[X,Y]:(room(X)&room(Y)&(enjoys_coding_in_Python(X)&enjoys_coding_in_Python(Y))&(X!=Y)))))&((~(![X]:(room(X)=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(does_not_have_a_pet_dog(X)))))))=>(![X]:(anywhere(X)=>(((travels_domestically_frequently(X))<=(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))))& ((((maintains_a_large,_organic_vegetable_garden_year-round(henry))&(is_not_a_dedicated_volunteer_for_local_community_service_projects(henry))))=>(![X]:(room(X)=>(((enjoys_bird_watching(X))=>(does_not_collect_modern_art(X)))))))& ((has_a_pet_dog(henry))<~>(~![X]:(room(X)=>(((is_a_client_of_Meta(X))|(is_not_a_tea_enthusiast(X)))))))& ((enjoys_coding_in_Python(henry))=>(![X]:(~room(X)=>(((collects_modern_art(X))<=>(travels_domestically_frequently(X)))))))& (![X]:(~room(X)=>(((travels_domestically_frequently(X))=>(((is_a_tea_enthusiast(X))<~>(regularly_contributes_to_tech_forums_and_online_communities(X))))))))& ((![X]:((participates_in_long-distance_cycling_events_across_the_country(X))=>(((does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))&(collects_modern_art(X)))))))& (![X]:(room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))=>(enjoys_bird_watching(X))))))& ((?[X,Y]:(~room(X)&~room(Y)&(travels_domestically_frequently(X)&travels_domestically_frequently(Y))&(X!=Y))))& (~![X]:(room(X)=>(((is_a_client_of_Meta(X))|(does_not_regularly_contributes_to_tech_forums_and_online_communities(X))))))& (![X]:(room(X)=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))=>(((has_a_pet_dog(X))&(is_a_dedicated_volunteer_for_local_community_service_projects(X))))))))& (enjoys_bird_watching(henry))& (enjoys_spelunking(henry))& (((?[X]:(room(X)&is_a_client_of_LVMH(X)))&(![X,Y]:((room(X)&room(Y)&(is_a_client_of_LVMH(X))&(is_a_client_of_LVMH(Y)))=>(X=Y)))))& (regularly_contributes_to_tech_forums_and_online_communities(henry))& (![X]:(room(X)=>(((does_not_enjoy_spelunking(X))|(travels_domestically_frequently(X))))))& (participates_in_long-distance_cycling_events_across_the_country(henry))
room(henry)&(![X]:(room(X)=>(X='henry')))& is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(henry)
[]
null
0
“It is not the case that “Laura owns an Android phone”” if “Laura either is a client of LVMH or hosts regular workshops on creative writing but not both” and vice versa. It is not the case that “Laura owns an Android phone”. Laura hosts regular workshops on creative writing.
Laura is a client of LVMH.
contradiction
room(laura)&room(alvin)&room(joyce)&(![X]:(room(X)=>(X='laura'|X='alvin'|X='joyce')))& (~(practices_calligraphy(laura))=>((?[X,Y]:(anywhere(X)&anywhere(Y)&(((owns_an_Android_phone(X))<~>(can_play_the_piano(X)))&((owns_an_Android_phone(Y))<~>(can_play_the_piano(Y))))&(X!=Y)))))& ((enjoys_spelunking(laura))<=>(practices_calligraphy(laura)))& ((((is_a_tea_enthusiast(laura))<~>(owns_a_significant_collection_of_rare_gemstones_and_minerals(laura))))<=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(laura))<~>(hosts_regular_workshops_on_creative_writing(laura)))))& ((works_on_fridays(laura))=>(collects_first_edition_books(laura)))& ((practices_graffiti_art(laura))<~>(((uses_contact_lenses(laura))|(is_a_client_of_LVMH(laura)))))& ((((enjoys_snowboarding(laura))<~>(can_play_the_piano(laura))))=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(laura)))& ((![X]:(room(X)=>(((does_not_practice_graffiti_art(X))|(practices_pilates(X))))))<=>(![X]:(room(X)=>(((does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(X)))))))& ((![X]:(room(X)=>(((does_not_practice_graffiti_art(X))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))=>(((?[X]:(anywhere(X)&practices_calligraphy(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(practices_calligraphy(X))&(practices_calligraphy(Y)))=>(X=Y))))))& ((~((practices_graffiti_art(laura))|(does_practice_yoga(laura))))=>(uses_contact_lenses(laura)))& (~(((enjoys_snowboarding(laura))|(hosts_regular_workshops_on_creative_writing(laura))))=>(~((hosts_regular_workshops_on_creative_writing(laura))|(works_on_fridays(laura)))))& ((((is_a_client_of_LVMH(laura))<~>(hosts_regular_workshops_on_creative_writing(laura))))<=>(~(owns_an_Android_phone(laura))))& (~(owns_an_Android_phone(laura)))& (hosts_regular_workshops_on_creative_writing(laura))& (enjoys_deep-sea_diving_and_exploring_underwater_caves(laura))& (((enjoys_snowboarding(laura))<~>(can_play_the_piano(laura))))& (is_a_culinary_enthusiast_who_experiments_with_international_cuisines(laura))& (does_not_practice_graffiti_art(laura))& (~((collects_vintage_vinyl_records(laura))|(owns_a_significant_collection_of_rare_gemstones_and_minerals(laura))))& (![X]:(room(X)=>(((does_not_work_on_fridays(X))=>(is_a_tea_enthusiast(X))))))& ((![X]:((((is_a_cybersecurity_expert(X))|(practices_pilates(X))))<=>(collects_vintage_vinyl_records(X)))))& (((uses_contact_lenses(laura))|(creates_augmented_reality_experiences_for_mobile_applications(laura))))& (?[X]:(room(X)&(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))|(does_practice_yoga(X))))))& (((?[X]:(anywhere(X)&practices_calligraphy(X)))))
room(laura)&room(alvin)&room(joyce)&(![X]:(room(X)=>(X='laura'|X='alvin'|X='joyce')))& is_a_client_of_LVMH(laura)
[ "p11", "p12", "p13", "hypothesis" ]
% SZS status Unsatisfiable for 56948772597286608375832 % SZS output start Proof for 56948772597286608375832 55. (predi(mary) <~> predt(mary)) <=> ~predb(mary) [input p11] 56. ~predb(mary) [input p12] 57. predt(mary) [input p13] 68. predi(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 162. predi(mary) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 68] 163. predi(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 162] 186. (((~predt(mary) | ~predi(mary)) & (predt(mary) | predi(mary))) | predb(mary)) & (~predb(mary) | ((predi(mary) | ~predt(mary)) & (predt(mary) | ~predi(mary)))) [nnf transformation 55] 314. ~predt(mary) | ~predi(mary) | predb(mary) [cnf transformation 186] 315. ~predb(mary) [cnf transformation 56] 316. predt(mary) [cnf transformation 57] 333. predi(mary) [cnf transformation 163] 370. 8 <=> predt(mary) [avatar definition] 398. 13 <=> predi(mary) [avatar definition] 462. 26 <=> predb(mary) [avatar definition] 465. 26 | ~13 | ~8 [avatar split clause 314,370,398,462] 469. ~26 [avatar split clause 315,462] 470. 8 [avatar split clause 316,370] 480. 13 [avatar split clause 333,398] 481. $false [avatar sat refutation 465,469,470,480] % SZS output end Proof for 56948772597286608375832 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.596853
Laura, Jean, Dewitt, Jose, Holly are the only persons in the room. If "everyone in the room does not watche fantasy movies or enjoys rooftop gardening" then "everyone in the room collect rare sneakers". If "someone in the room does not practice graffiti art" then "everyone outside the room who is passionate about collecting and restoring classic cars maintains a large, organic vegetable garden year-round". "Everyone in the room does not watche fantasy movies or watches fantasy movies" only if "everyone in the room does not watche fantasy movies only if they practices graffiti art and does not collect rare sneakers". If "someone in the room is passionate about collecting and restoring classic cars" then "someone in the room does not own an Android phone". It is true that "everyone in the room maintains a large, organic vegetable garden year-round if they enjoys rooftop gardening". Everyone in the room who maintains a large, organic vegetable garden year-round practices graffiti art. Everyone outside the room watches fantasy movies only if they does not enjoy rooftop gardening. Everyone outside the room does not practice graffiti art if they does not enjoy rooftop gardening. Everyone in the room does not practice graffiti art only if they collect rare sneakers. Everyone outside the room watches fantasy movies if and only if they frequently participates in hackathons and coding competitions. Not everyone anywhere owns an Android phone if they frequently participates in hackathons and coding competitions. Everyone in the room who does not collect rare sneakers mentors a youth basketball team on weekends. Everyone in the room is passionate about collecting and restoring classic cars if they is a wine connoisseur with a private cellar of vintage wines and vice versa. If someone enjoys rooftop gardening then he/she is a wine connoisseur with a private cellar of vintage wines and vice versa. Everyone anywhere who practices graffiti art is passionate about collecting and restoring classic cars. Everyone in the room does not practice graffiti art. Everyone anywhere who is a wine connoisseur with a private cellar of vintage wines practices graffiti art.
Laura is a wine connoisseur with a private cellar of vintage wines.
contradiction
room(laura)&room(jean)&room(dewitt)&room(jose)&room(holly)&(![X]:(room(X)=>(X='laura'|X='jean'|X='dewitt'|X='jose'|X='holly')))& ((![X]:(room(X)=>(((enjoys_rooftop_gardening(X))|(does_not_watche_fantasy_movies(X))))))=>(![X]:(room(X)=>(collect_rare_sneakers(X)))))& ((?[X]:(room(X)&(does_not_practice_graffiti_art(X))))=>(![X]:(~room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(maintains_a_large,_organic_vegetable_garden_year-round(X)))))))& ((![X]:(room(X)=>(((watches_fantasy_movies(X))|(does_not_watche_fantasy_movies(X))))))=>(![X]:(room(X)=>(((((practices_graffiti_art(X))&(does_not_collect_rare_sneakers(X))))<=(does_not_watche_fantasy_movies(X)))))))& ((?[X]:(room(X)&(is_passionate_about_collecting_and_restoring_classic_cars(X))))=>(?[X]:(room(X)&(does_not_own_an_Android_phone(X)))))& (![X]:(room(X)=>(((enjoys_rooftop_gardening(X))=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))))& (![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(practices_graffiti_art(X))))))& (![X]:(~room(X)=>(((does_not_enjoy_rooftop_gardening(X))<=(watches_fantasy_movies(X))))))& (![X]:(~room(X)=>(((does_not_enjoy_rooftop_gardening(X))=>(does_not_practice_graffiti_art(X))))))& (![X]:(room(X)=>(((collect_rare_sneakers(X))<=(does_not_practice_graffiti_art(X))))))& (![X]:(~room(X)=>(((watches_fantasy_movies(X))<=>(frequently_participates_in_hackathons_and_coding_competitions(X))))))& (~![X]:(anywhere(X)=>(((frequently_participates_in_hackathons_and_coding_competitions(X))=>(owns_an_Android_phone(X))))))& (![X]:(room(X)=>(((does_not_collect_rare_sneakers(X))=>(mentors_a_youth_basketball_team_on_weekends(X))))))& (![X]:(room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))<=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))& ((![X]:((enjoys_rooftop_gardening(X))<=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X)))))& (![X]:(anywhere(X)=>(((practices_graffiti_art(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(does_not_collect_rare_sneakers(X))))))& (?[X]:(~room(X)&(mentors_a_youth_basketball_team_on_weekends(X))))& (?[X]:(room(X)&(does_not_own_an_Android_phone(X))))& (~![X]:(~room(X)=>(((((maintains_a_large,_organic_vegetable_garden_year-round(X))&(does_not_enjoy_rooftop_gardening(X))))<=(frequently_participates_in_hackathons_and_coding_competitions(X))))))& ((![X]:((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))=>(maintains_a_large,_organic_vegetable_garden_year-round(X)))))& (![X]:(room(X)=>(frequently_participates_in_hackathons_and_coding_competitions(X))))& (![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(owns_an_Android_phone(X))))))& (![X]:(room(X)=>(((owns_an_Android_phone(X))=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))))& (![X]:(room(X)=>(does_not_practice_graffiti_art(X))))& (![X]:(anywhere(X)=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))=>(practices_graffiti_art(X))))))
room(laura)&room(jean)&room(dewitt)&room(jose)&room(holly)&(![X]:(room(X)=>(X='laura'|X='jean'|X='dewitt'|X='jose'|X='holly')))& is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(laura)
[ "b4", "p0", "p24", "p25", "hypothesis" ]
% SZS status Unsatisfiable for 859790681140852027202429 % SZS output start Proof for 859790681140852027202429 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 68. ! [X0] : (room(X0) => ~predi(X0)) [input p24] 69. ! [X0] : (anywhere(X0) => (preda(X0) => predi(X0))) [input p25] 70. preda(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 148. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 149. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 148] 183. ! [X0] : (~predi(X0) | ~room(X0)) [ennf transformation 68] 184. ! [X0] : ((predi(X0) | ~preda(X0)) | ~anywhere(X0)) [ennf transformation 69] 185. ! [X0] : (predi(X0) | ~preda(X0) | ~anywhere(X0)) [flattening 184] 186. preda(mary) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 70] 187. preda(mary) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 186] 210. anywhere(X0) [cnf transformation 5] 291. room(mary) [cnf transformation 149] 335. ~predi(X0) | ~room(X0) [cnf transformation 183] 336. predi(X0) | ~preda(X0) | ~anywhere(X0) [cnf transformation 185] 343. preda(mary) [cnf transformation 187] 412. ~preda(X0) | predi(X0) [subsumption resolution 336,210] 443. predi(mary) [resolution 412,343] 460. ~room(mary) [resolution 443,335] 461. $false [subsumption resolution 460,291] % SZS output end Proof for 859790681140852027202429 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.186501
There is a room. “Everyone in the room does not have a pet dog only if they is not a humble person” unless “someone in the room is a culinary enthusiast who experiments with international cuisines”. “Everyone anywhere is a culinary enthusiast who experiments with international cuisines” if “someone in the room is not a old person”. Everyone in the room is a culinary enthusiast who experiments with international cuisines. Someone in the room is a culinary enthusiast who experiments with international cuisines. Everyone anywhere is a culinary enthusiast who experiments with international cuisines. Everyone outside the room is not a humble person. Not everyone in the room has a pet dog. Everyone in the room is not a culinary enthusiast who experiments with international cuisines if they is a old person.
Not everyone in the room is humble.
neutral
(there_is_a_room)& (~(?[X]:(room(X)&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))=>(![X]:(room(X)=>(((~(humble(X)&person(X)))<=(does_not_have_a_pet_dog(X)))))))& ((?[X]:(room(X)&(~(old(X)&person(X)))))=>(![X]:(anywhere(X)=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X)))))& (![X]:(room(X)=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))& (?[X]:(room(X)&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))& (![X]:(anywhere(X)=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))& (![X]:(~room(X)=>(~(humble(X)&person(X)))))& (~![X]:(room(X)=>(has_a_pet_dog(X))))& (![X]:(room(X)=>(((old(X)&person(X))=>(is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))
(there_is_a_room)& ~![X]:(room(X)=>(humble(X)))
[]
null
0.019616
Greg is the only person in the room. Everyone in the room enjoys watercolor painting only if not everyone in the room who enjoys making ceramics either practices kickboxing or plays the violin but not both. Not everyone outside the room who makes homemade pastries is an avid collector of autographed memorabilia from famous musicians. Everyone anywhere who is an avid collector of autographed memorabilia from famous musicians hosts a popular podcast about emerging technologies. Not everyone in the room who hosts a popular podcast about emerging technologies plays the violin. Everyone in the room who is a member of a local theater group specializing in improv does not own an extensive assortment of vintage comic book memorabilia. Everyone in the room is a Linux enthusiast if they enjoys virtual reality gaming, owns an extensive assortment of vintage comic book memorabilia and owns a telescope and vice versa. Not everyone in the room who enjoys virtual reality gaming, owns an extensive assortment of vintage comic book memorabilia and owns a telescope has a tattoo. Not everyone in the room who has a vast collection of first-edition science fiction novels creates bespoke furniture pieces from reclaimed wood. Everyone in the room practices tai chi if they creates bespoke furniture pieces from reclaimed wood.
Greg owns a telescope.
entailment
room(greg)&(![X]:(room(X)=>(X='greg')))& ((![X]:(room(X)=>(enjoys_watercolor_painting(X))))=>(~![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(((practices_kickboxing(X))<~>(plays_the_violin(X)))))))))& (~![X]:(~room(X)=>(((makes_homemade_pastries(X))=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& (![X]:(anywhere(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))=>(hosts_a_popular_podcast_about_emerging_technologies(X))))))& (~![X]:(room(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))=>(plays_the_violin(X))))))& (![X]:(room(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))=>(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))& (![X]:(room(X)=>(((is_a_Linux_enthusiast(X))<=>(((enjoys_virtual_reality_gaming(X))&(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))&(owns_a_telescope(X))))))))& (~![X]:(room(X)=>(((((enjoys_virtual_reality_gaming(X))&(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))&(owns_a_telescope(X))))=>(has_a_tattoo(X))))))& (~![X]:(room(X)=>(((has_a_vast_collection_of_first-edition_science_fiction_novels(X))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(practices_tai_chi(X))))))
room(greg)&(![X]:(room(X)=>(X='greg')))& owns_a_telescope(greg)
[ "p0", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 931529839530945438140301 % SZS output start Proof for 931529839530945438140301 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 51. ~! [X0] : (room(X0) => ((predm(X0) & predj(X0) & predc(X0)) => predi(X0))) [input p7] 54. ~(predm(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 59. ~! [X0] : (room(X0) => ~(predm(X0) & predj(X0) & predc(X0))) [pure predicate removal 51] 139. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 144. ? [X0] : ((predm(X0) & predj(X0) & predc(X0)) & room(X0)) [ennf transformation 59] 145. ? [X0] : (predm(X0) & predj(X0) & predc(X0) & room(X0)) [flattening 144] 147. ~predm(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 54] 161. ? [X0] : (predm(X0) & predj(X0) & predc(X0) & room(X0)) => (predm(sK4) & predj(sK4) & predc(sK4) & room(sK4)) [choice axiom] 162. predm(sK4) & predj(sK4) & predc(sK4) & room(sK4) [skolemisation 145,161] 165. ? [X0] : (mary != X0 & room(X0)) => (mary != sK6 & room(sK6)) [choice axiom] 166. ~predm(mary) | (mary != sK6 & room(sK6)) | ~room(mary) [skolemisation 147,165] 247. room(mary) [cnf transformation 139] 248. ~room(X0) | mary = X0 [cnf transformation 139] 259. room(sK4) [cnf transformation 162] 262. predm(sK4) [cnf transformation 162] 264. ~predm(mary) | room(sK6) | ~room(mary) [cnf transformation 166] 265. ~predm(mary) | mary != sK6 | ~room(mary) [cnf transformation 166] 285. ~predm(mary) | mary != sK6 [subsumption resolution 265,247] 287. 5 <=> mary = sK6 [avatar definition] 289. mary != sK6 <- (~5) [avatar component clause 287] 291. 6 <=> predm(mary) [avatar definition] 294. ~5 | ~6 [avatar split clause 285,291,287] 295. ~predm(mary) | room(sK6) [subsumption resolution 264,247] 297. 7 <=> room(sK6) [avatar definition] 299. room(sK6) <- (7) [avatar component clause 297] 300. 7 | ~6 [avatar split clause 295,291,297] 304. mary = sK4 [resolution 248,259] 314. predm(mary) [backward demodulation 262,304] 318. 6 [avatar split clause 314,291] 319. mary = sK6 <- (7) [resolution 299,248] 320. $false <- (~5, 7) [subsumption resolution 319,289] 321. 5 | ~7 [avatar contradiction clause 320] 322. $false [avatar sat refutation 294,300,318,321] % SZS output end Proof for 931529839530945438140301 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.278652
Shelby, Valerie are the only persons in the room. If everyone anywhere does enjoy trail running then everyone anywhere is not a certified yoga instructor teaching classes weekly or own a television. If everyone anywhere is not a certified yoga instructor teaching classes weekly or own a television then everyone in the room who owns an Android phone either is a certified yoga instructor teaching classes weekly or has a tattoo but not both. Either everyone in the room own a television or cannot play the flute or Valerie own a television but not both. If everyone anywhere practices tai chi or does not own a television then at least one person in the room enjoys stargazing. If everyone in the room does not develop open-source software projects in their free time or owns an Android phone then Shelby does not develop open-source software projects in their free time. Someone in the room owns a 3D printer. If someone does not collect comic books then he/she owns an Android phone and enjoys making ceramics. Shelby own a television. Everyone anywhere does enjoy trail running. Everyone in the room has completed a triathlon if they owns an Android phone. It is not the case that Valerie owns an Android phone. Shelby does not develop open-source software projects in their free time. Shelby has a specialized collection of handmade artisan pottery. Someone anywhere owns an Android phone. Everyone in the room does not develop open-source software projects in their free time or owns an Android phone.
More than one person in the room can play the flute.
contradiction
room(shelby)&room(valerie)&(![X]:(room(X)=>(X='shelby'|X='valerie')))& (((![X]:(anywhere(X)=>(does_enjoy_trail_running(X))))=>(![X]:(anywhere(X)=>(((own_a_television(X))|(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X)))))))& ((![X]:(anywhere(X)=>(((own_a_television(X))|(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))))))=>(![X]:(room(X)=>(((owns_an_Android_phone(X))=>(((is_a_certified_yoga_instructor_teaching_classes_weekly(X))<~>(has_a_tattoo(X))))))))))& ((![X]:(room(X)=>(((cannot_play_the_flute(X))|(own_a_television(X))))))<~>(own_a_television(valerie)))& ((![X]:(anywhere(X)=>(((does_not_own_a_television(X))|(practices_tai_chi(X))))))=>(((?[X]:(room(X)&enjoys_stargazing(X))))))& ((![X]:(room(X)=>(((owns_an_Android_phone(X))|(does_not_develop_open-source_software_projects_in_their_free_time(X))))))=>(does_not_develop_open-source_software_projects_in_their_free_time(shelby)))& (?[X]:(room(X)&(owns_a_3D_printer(X))))& ((![X]:((does_not_collect_comic_books(X))=>(((owns_an_Android_phone(X))&(enjoys_making_ceramics(X)))))))& (own_a_television(shelby))& (![X]:(anywhere(X)=>(does_enjoy_trail_running(X))))& (![X]:(room(X)=>(((owns_an_Android_phone(X))=>(has_completed_a_triathlon(X))))))& (~(owns_an_Android_phone(valerie)))& (does_not_develop_open-source_software_projects_in_their_free_time(shelby))& (has_a_specialized_collection_of_handmade_artisan_pottery(shelby))& (?[X]:(anywhere(X)&(owns_an_Android_phone(X))))& (![X]:(room(X)=>(((owns_an_Android_phone(X))|(does_not_develop_open-source_software_projects_in_their_free_time(X))))))
room(shelby)&room(valerie)&(![X]:(room(X)=>(X='shelby'|X='valerie')))& (?[X,Y]:(room(X)&room(Y)&(can_play_the_flute(X)&can_play_the_flute(Y))&(X!=Y)))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 7589366798093278234842845 % SZS output start Proof for 7589366798093278234842845 44. ! [X0] : (room(X0) => (~predn(X0) | predo(X0))) & ? [X0] : (predo(X0) & anywhere(X0)) & predh(mary) & ~predn(mary) & ~predo(paul) & ! [X0] : (room(X0) => (predo(X0) => predk(X0))) & ! [X0] : (anywhere(X0) => predz(X0)) & predt(mary) & ! [X0] : (~predw(X0) => (predg(X0) & predo(X0))) & ? [X0] : (predx(X0) & room(X0)) & (! [X0] : (room(X0) => (~predn(X0) | predo(X0))) => ~predn(mary)) & (! [X0] : (anywhere(X0) => (predv(X0) | ~predt(X0))) => ? [X0] : (predm(X0) & room(X0))) & (! [X0] : (room(X0) => (predt(X0) | ~predf(X0))) <~> predt(paul)) & (! [X0] : (anywhere(X0) => (~predc(X0) | predt(X0))) => ! [X0] : (room(X0) => (predo(X0) => (predc(X0) <~> predy(X0))))) & (! [X0] : (anywhere(X0) => predz(X0)) => ! [X0] : (anywhere(X0) => (~predc(X0) | predt(X0)))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 46. ! [X0] : (room(X0) => (~predn(X0) | predo(X0))) & ? [X1] : (predo(X1) & anywhere(X1)) & predh(mary) & ~predn(mary) & ~predo(paul) & ! [X2] : (room(X2) => (predo(X2) => predk(X2))) & ! [X3] : (anywhere(X3) => predz(X3)) & predt(mary) & ! [X4] : (~predw(X4) => (predg(X4) & predo(X4))) & ? [X5] : (predx(X5) & room(X5)) & (! [X6] : (room(X6) => (~predn(X6) | predo(X6))) => ~predn(mary)) & (! [X7] : (anywhere(X7) => (predv(X7) | ~predt(X7))) => ? [X8] : (predm(X8) & room(X8))) & (! [X9] : (room(X9) => (predt(X9) | ~predf(X9))) <~> predt(paul)) & (! [X10] : (anywhere(X10) => (~predc(X10) | predt(X10))) => ! [X11] : (room(X11) => (predo(X11) => (predc(X11) <~> predy(X11))))) & (! [X12] : (anywhere(X12) => predz(X12)) => ! [X13] : (anywhere(X13) => (~predc(X13) | predt(X13)))) & ! [X14] : (room(X14) => (paul = X14 | mary = X14)) & room(paul) & room(mary) [rectify 44] 47. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => (paul = X2 | mary = X2)) & room(paul) & room(mary) [rectify 45] 48. ! [X0] : (room(X0) => (~predn(X0) | predo(X0))) & ? [X1] : (predo(X1) & anywhere(X1)) & ~predn(mary) & ~predo(paul) & ! [X2] : (room(X2) => (predo(X2) => predk(X2))) & ! [X3] : (anywhere(X3) => predz(X3)) & predt(mary) & ! [X4] : (~predw(X4) => (predg(X4) & predo(X4))) & ? [X5] : (predx(X5) & room(X5)) & (! [X6] : (room(X6) => (~predn(X6) | predo(X6))) => ~predn(mary)) & (! [X7] : (anywhere(X7) => (predv(X7) | ~predt(X7))) => ? [X8] : (predm(X8) & room(X8))) & (! [X9] : (room(X9) => (predt(X9) | ~predf(X9))) <~> predt(paul)) & (! [X10] : (anywhere(X10) => (~predc(X10) | predt(X10))) => ! [X11] : (room(X11) => (predo(X11) => (predc(X11) <~> predy(X11))))) & (! [X12] : (anywhere(X12) => predz(X12)) => ! [X13] : (anywhere(X13) => (~predc(X13) | predt(X13)))) & ! [X14] : (room(X14) => (paul = X14 | mary = X14)) & room(paul) & room(mary) [pure predicate removal 46] 49. ! [X0] : (room(X0) => (~predn(X0) | predo(X0))) & ? [X1] : (predo(X1) & anywhere(X1)) & ~predn(mary) & ~predo(paul) & ! [X3] : (anywhere(X3) => predz(X3)) & predt(mary) & ! [X4] : (~predw(X4) => (predg(X4) & predo(X4))) & ? [X5] : (predx(X5) & room(X5)) & (! [X6] : (room(X6) => (~predn(X6) | predo(X6))) => ~predn(mary)) & (! [X7] : (anywhere(X7) => (predv(X7) | ~predt(X7))) => ? [X8] : (predm(X8) & room(X8))) & (! [X9] : (room(X9) => (predt(X9) | ~predf(X9))) <~> predt(paul)) & (! [X10] : (anywhere(X10) => (~predc(X10) | predt(X10))) => ! [X11] : (room(X11) => (predo(X11) => (predc(X11) <~> predy(X11))))) & (! [X12] : (anywhere(X12) => predz(X12)) => ! [X13] : (anywhere(X13) => (~predc(X13) | predt(X13)))) & ! [X14] : (room(X14) => (paul = X14 | mary = X14)) & room(paul) & room(mary) [pure predicate removal 48] 50. ! [X0] : (room(X0) => (~predn(X0) | predo(X0))) & ? [X1] : (predo(X1) & anywhere(X1)) & ~predn(mary) & ~predo(paul) & ! [X3] : (anywhere(X3) => predz(X3)) & predt(mary) & ! [X4] : (~predw(X4) => predo(X4)) & ? [X5] : (predx(X5) & room(X5)) & (! [X6] : (room(X6) => (~predn(X6) | predo(X6))) => ~predn(mary)) & (! [X7] : (anywhere(X7) => (predv(X7) | ~predt(X7))) => ? [X8] : (predm(X8) & room(X8))) & (! [X9] : (room(X9) => (predt(X9) | ~predf(X9))) <~> predt(paul)) & (! [X10] : (anywhere(X10) => (~predc(X10) | predt(X10))) => ! [X11] : (room(X11) => (predo(X11) => (predc(X11) <~> predy(X11))))) & (! [X12] : (anywhere(X12) => predz(X12)) => ! [X13] : (anywhere(X13) => (~predc(X13) | predt(X13)))) & ! [X14] : (room(X14) => (paul = X14 | mary = X14)) & room(paul) & room(mary) [pure predicate removal 49] 51. ! [X0] : (room(X0) => (~predn(X0) | predo(X0))) & ? [X1] : (predo(X1) & anywhere(X1)) & ~predn(mary) & ~predo(paul) & ! [X3] : (anywhere(X3) => predz(X3)) & predt(mary) & ? [X5] : (predx(X5) & room(X5)) & (! [X6] : (room(X6) => (~predn(X6) | predo(X6))) => ~predn(mary)) & (! [X7] : (anywhere(X7) => (predv(X7) | ~predt(X7))) => ? [X8] : (predm(X8) & room(X8))) & (! [X9] : (room(X9) => (predt(X9) | ~predf(X9))) <~> predt(paul)) & (! [X10] : (anywhere(X10) => (~predc(X10) | predt(X10))) => ! [X11] : (room(X11) => (predo(X11) => (predc(X11) <~> predy(X11))))) & (! [X12] : (anywhere(X12) => predz(X12)) => ! [X13] : (anywhere(X13) => (~predc(X13) | predt(X13)))) & ! [X14] : (room(X14) => (paul = X14 | mary = X14)) & room(paul) & room(mary) [pure predicate removal 50] 52. ! [X0] : (room(X0) => (~predn(X0) | predo(X0))) & ? [X1] : (predo(X1) & anywhere(X1)) & ~predn(mary) & ~predo(paul) & ! [X3] : (anywhere(X3) => predz(X3)) & predt(mary) & ? [X5] : room(X5) & (! [X6] : (room(X6) => (~predn(X6) | predo(X6))) => ~predn(mary)) & (! [X7] : (anywhere(X7) => (predv(X7) | ~predt(X7))) => ? [X8] : (predm(X8) & room(X8))) & (! [X9] : (room(X9) => (predt(X9) | ~predf(X9))) <~> predt(paul)) & (! [X10] : (anywhere(X10) => (~predc(X10) | predt(X10))) => ! [X11] : (room(X11) => (predo(X11) => (predc(X11) <~> predy(X11))))) & (! [X12] : (anywhere(X12) => predz(X12)) => ! [X13] : (anywhere(X13) => (~predc(X13) | predt(X13)))) & ! [X14] : (room(X14) => (paul = X14 | mary = X14)) & room(paul) & room(mary) [pure predicate removal 51] 53. ! [X0] : (room(X0) => (~predn(X0) | predo(X0))) & ? [X1] : (predo(X1) & anywhere(X1)) & ~predn(mary) & ~predo(paul) & ! [X3] : (anywhere(X3) => predz(X3)) & predt(mary) & ? [X5] : room(X5) & (! [X6] : (room(X6) => (~predn(X6) | predo(X6))) => ~predn(mary)) & (! [X7] : (anywhere(X7) => (predv(X7) | ~predt(X7))) => ? [X8] : room(X8)) & (! [X9] : (room(X9) => (predt(X9) | ~predf(X9))) <~> predt(paul)) & (! [X10] : (anywhere(X10) => (~predc(X10) | predt(X10))) => ! [X11] : (room(X11) => (predo(X11) => (predc(X11) <~> predy(X11))))) & (! [X12] : (anywhere(X12) => predz(X12)) => ! [X13] : (anywhere(X13) => (~predc(X13) | predt(X13)))) & ! [X14] : (room(X14) => (paul = X14 | mary = X14)) & room(paul) & room(mary) [pure predicate removal 52] 54. ! [X0] : (room(X0) => (~predn(X0) | predo(X0))) & ? [X1] : (predo(X1) & anywhere(X1)) & ~predn(mary) & ~predo(paul) & ! [X3] : (anywhere(X3) => predz(X3)) & predt(mary) & ? [X5] : room(X5) & (! [X6] : (room(X6) => (~predn(X6) | predo(X6))) => ~predn(mary)) & (! [X7] : (anywhere(X7) => ~predt(X7)) => ? [X8] : room(X8)) & (! [X9] : (room(X9) => (predt(X9) | ~predf(X9))) <~> predt(paul)) & (! [X10] : (anywhere(X10) => (~predc(X10) | predt(X10))) => ! [X11] : (room(X11) => (predo(X11) => (predc(X11) <~> predy(X11))))) & (! [X12] : (anywhere(X12) => predz(X12)) => ! [X13] : (anywhere(X13) => (~predc(X13) | predt(X13)))) & ! [X14] : (room(X14) => (paul = X14 | mary = X14)) & room(paul) & room(mary) [pure predicate removal 53] 126. ! [X0] : ((~predn(X0) | predo(X0)) | ~room(X0)) & ? [X1] : (predo(X1) & anywhere(X1)) & ~predn(mary) & ~predo(paul) & ! [X3] : (predz(X3) | ~anywhere(X3)) & predt(mary) & ? [X5] : room(X5) & (~predn(mary) | ? [X6] : ((predn(X6) & ~predo(X6)) & room(X6))) & (? [X8] : room(X8) | ? [X7] : (predt(X7) & anywhere(X7))) & (! [X9] : ((predt(X9) | ~predf(X9)) | ~room(X9)) <~> predt(paul)) & (! [X11] : (((predc(X11) <~> predy(X11)) | ~predo(X11)) | ~room(X11)) | ? [X10] : ((predc(X10) & ~predt(X10)) & anywhere(X10))) & (! [X13] : ((~predc(X13) | predt(X13)) | ~anywhere(X13)) | ? [X12] : (~predz(X12) & anywhere(X12))) & ! [X14] : ((paul = X14 | mary = X14) | ~room(X14)) & room(paul) & room(mary) [ennf transformation 54] 127. ! [X0] : (~predn(X0) | predo(X0) | ~room(X0)) & ? [X1] : (predo(X1) & anywhere(X1)) & ~predn(mary) & ~predo(paul) & ! [X3] : (predz(X3) | ~anywhere(X3)) & predt(mary) & ? [X5] : room(X5) & (~predn(mary) | ? [X6] : (predn(X6) & ~predo(X6) & room(X6))) & (? [X8] : room(X8) | ? [X7] : (predt(X7) & anywhere(X7))) & (! [X9] : (predt(X9) | ~predf(X9) | ~room(X9)) <~> predt(paul)) & (! [X11] : ((predc(X11) <~> predy(X11)) | ~predo(X11) | ~room(X11)) | ? [X10] : (predc(X10) & ~predt(X10) & anywhere(X10))) & (! [X13] : (~predc(X13) | predt(X13) | ~anywhere(X13)) | ? [X12] : (~predz(X12) & anywhere(X12))) & ! [X14] : (paul = X14 | mary = X14 | ~room(X14)) & room(paul) & room(mary) [flattening 126] 128. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) & ! [X2] : ((paul = X2 | mary = X2) | ~room(X2)) & room(paul) & room(mary) [ennf transformation 47] 129. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) & ! [X2] : (paul = X2 | mary = X2 | ~room(X2)) & room(paul) & room(mary) [flattening 128] 131. ! [X0] : (~predn(X0) | predo(X0) | ~room(X0)) & ? [X1] : (predo(X1) & anywhere(X1)) & ~predn(mary) & ~predo(paul) & ! [X3] : (predz(X3) | ~anywhere(X3)) & predt(mary) & ? [X5] : room(X5) & (~predn(mary) | ? [X6] : (predn(X6) & ~predo(X6) & room(X6))) & (? [X8] : room(X8) | ? [X7] : (predt(X7) & anywhere(X7))) & ((~predt(paul) | ? [X9] : (~predt(X9) & predf(X9) & room(X9))) & (predt(paul) | ! [X9] : (predt(X9) | ~predf(X9) | ~room(X9)))) & (! [X11] : (((~predy(X11) | ~predc(X11)) & (predy(X11) | predc(X11))) | ~predo(X11) | ~room(X11)) | ? [X10] : (predc(X10) & ~predt(X10) & anywhere(X10))) & (! [X13] : (~predc(X13) | predt(X13) | ~anywhere(X13)) | ? [X12] : (~predz(X12) & anywhere(X12))) & ! [X14] : (paul = X14 | mary = X14 | ~room(X14)) & room(paul) & room(mary) [nnf transformation 127] 132. ! [X0] : (~predn(X0) | predo(X0) | ~room(X0)) & ? [X1] : (predo(X1) & anywhere(X1)) & ~predn(mary) & ~predo(paul) & ! [X3] : (predz(X3) | ~anywhere(X3)) & predt(mary) & ? [X5] : room(X5) & (~predn(mary) | ? [X6] : (predn(X6) & ~predo(X6) & room(X6))) & (? [X8] : room(X8) | ? [X7] : (predt(X7) & anywhere(X7))) & (~predt(paul) | ? [X9] : (~predt(X9) & predf(X9) & room(X9))) & (predt(paul) | ! [X9] : (predt(X9) | ~predf(X9) | ~room(X9))) & (! [X11] : (((~predy(X11) | ~predc(X11)) & (predy(X11) | predc(X11))) | ~predo(X11) | ~room(X11)) | ? [X10] : (predc(X10) & ~predt(X10) & anywhere(X10))) & (! [X13] : (~predc(X13) | predt(X13) | ~anywhere(X13)) | ? [X12] : (~predz(X12) & anywhere(X12))) & ! [X14] : (paul = X14 | mary = X14 | ~room(X14)) & room(paul) & room(mary) [flattening 131] 133. ! [X0] : (~predn(X0) | predo(X0) | ~room(X0)) & ? [X1] : (predo(X1) & anywhere(X1)) & ~predn(mary) & ~predo(paul) & ! [X2] : (predz(X2) | ~anywhere(X2)) & predt(mary) & ? [X3] : room(X3) & (~predn(mary) | ? [X4] : (predn(X4) & ~predo(X4) & room(X4))) & (? [X5] : room(X5) | ? [X6] : (predt(X6) & anywhere(X6))) & (~predt(paul) | ? [X7] : (~predt(X7) & predf(X7) & room(X7))) & (predt(paul) | ! [X8] : (predt(X8) | ~predf(X8) | ~room(X8))) & (! [X9] : (((~predy(X9) | ~predc(X9)) & (predy(X9) | predc(X9))) | ~predo(X9) | ~room(X9)) | ? [X10] : (predc(X10) & ~predt(X10) & anywhere(X10))) & (! [X11] : (~predc(X11) | predt(X11) | ~anywhere(X11)) | ? [X12] : (~predz(X12) & anywhere(X12))) & ! [X13] : (paul = X13 | mary = X13 | ~room(X13)) & room(paul) & room(mary) [rectify 132] 134. ? [X1] : (predo(X1) & anywhere(X1)) => (predo(sK0) & anywhere(sK0)) [choice axiom] 135. ? [X3] : room(X3) => room(sK1) [choice axiom] 136. ? [X4] : (predn(X4) & ~predo(X4) & room(X4)) => (predn(sK2) & ~predo(sK2) & room(sK2)) [choice axiom] 137. ? [X5] : room(X5) => room(sK3) [choice axiom] 138. ? [X6] : (predt(X6) & anywhere(X6)) => (predt(sK4) & anywhere(sK4)) [choice axiom] 139. ? [X7] : (~predt(X7) & predf(X7) & room(X7)) => (~predt(sK5) & predf(sK5) & room(sK5)) [choice axiom] 140. ? [X10] : (predc(X10) & ~predt(X10) & anywhere(X10)) => (predc(sK6) & ~predt(sK6) & anywhere(sK6)) [choice axiom] 141. ? [X12] : (~predz(X12) & anywhere(X12)) => (~predz(sK7) & anywhere(sK7)) [choice axiom] 142. ! [X0] : (~predn(X0) | predo(X0) | ~room(X0)) & (predo(sK0) & anywhere(sK0)) & ~predn(mary) & ~predo(paul) & ! [X2] : (predz(X2) | ~anywhere(X2)) & predt(mary) & room(sK1) & (~predn(mary) | (predn(sK2) & ~predo(sK2) & room(sK2))) & (room(sK3) | (predt(sK4) & anywhere(sK4))) & (~predt(paul) | (~predt(sK5) & predf(sK5) & room(sK5))) & (predt(paul) | ! [X8] : (predt(X8) | ~predf(X8) | ~room(X8))) & (! [X9] : (((~predy(X9) | ~predc(X9)) & (predy(X9) | predc(X9))) | ~predo(X9) | ~room(X9)) | (predc(sK6) & ~predt(sK6) & anywhere(sK6))) & (! [X11] : (~predc(X11) | predt(X11) | ~anywhere(X11)) | (~predz(sK7) & anywhere(sK7))) & ! [X13] : (paul = X13 | mary = X13 | ~room(X13)) & room(paul) & room(mary) [skolemisation 133,141,140,139,138,137,136,135,134] 143. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) => (sK8 != sK9 & predf(sK9) & predf(sK8) & room(sK9) & room(sK8)) [choice axiom] 144. (sK8 != sK9 & predf(sK9) & predf(sK8) & room(sK9) & room(sK8)) & ! [X2] : (paul = X2 | mary = X2 | ~room(X2)) & room(paul) & room(mary) [skolemisation 129,143] 227. room(paul) [cnf transformation 142] 228. ~room(X13) | mary = X13 | paul = X13 [cnf transformation 142] 237. predt(paul) | predt(X8) | ~predf(X8) | ~room(X8) [cnf transformation 142] 238. ~predt(paul) | room(sK5) [cnf transformation 142] 240. ~predt(paul) | ~predt(sK5) [cnf transformation 142] 247. predt(mary) [cnf transformation 142] 257. room(sK8) [cnf transformation 144] 258. room(sK9) [cnf transformation 144] 259. predf(sK8) [cnf transformation 144] 260. predf(sK9) [cnf transformation 144] 261. sK8 != sK9 [cnf transformation 144] 273. 3 <=> predt(sK5) [avatar definition] 275. ~predt(sK5) <- (~3) [avatar component clause 273] 277. 4 <=> predt(paul) [avatar definition] 278. predt(paul) <- (4) [avatar component clause 277] 279. ~predt(paul) <- (~4) [avatar component clause 277] 280. ~3 | ~4 [avatar split clause 240,277,273] 287. 6 <=> room(sK5) [avatar definition] 289. room(sK5) <- (6) [avatar component clause 287] 290. 6 | ~4 [avatar split clause 238,277,287] 292. 7 <=> ! [X8] : (predt(X8) | ~room(X8) | ~predf(X8)) [avatar definition] 293. ~predf(X8) | ~room(X8) | predt(X8) <- (7) [avatar component clause 292] 294. 7 | 4 [avatar split clause 237,277,292] 322. mary = sK5 | paul = sK5 <- (6) [resolution 228,289] 323. mary = sK8 | paul = sK8 [resolution 228,257] 324. mary = sK9 | paul = sK9 [resolution 228,258] 344. 16 <=> paul = sK5 [avatar definition] 346. paul = sK5 <- (16) [avatar component clause 344] 348. 17 <=> mary = sK5 [avatar definition] 350. mary = sK5 <- (17) [avatar component clause 348] 351. 16 | 17 | ~6 [avatar split clause 322,287,348,344] 353. 18 <=> paul = sK8 [avatar definition] 355. paul = sK8 <- (18) [avatar component clause 353] 357. 19 <=> mary = sK8 [avatar definition] 360. 18 | 19 [avatar split clause 323,357,353] 362. 20 <=> paul = sK9 [avatar definition] 364. paul = sK9 <- (20) [avatar component clause 362] 366. 21 <=> mary = sK9 [avatar definition] 368. mary = sK9 <- (21) [avatar component clause 366] 369. 20 | 21 [avatar split clause 324,366,362] 375. predf(paul) <- (18) [backward demodulation 259,355] 379. ~room(paul) | predt(paul) <- (7, 18) [resolution 293,375] 380. predt(paul) <- (7, 18) [subsumption resolution 379,227] 381. $false <- (~4, 7, 18) [subsumption resolution 380,279] 382. 4 | ~7 | ~18 [avatar contradiction clause 381] 384. predf(paul) <- (20) [backward demodulation 260,364] 390. ~room(paul) | predt(paul) <- (7, 20) [resolution 384,293] 391. predt(paul) <- (7, 20) [subsumption resolution 390,227] 392. $false <- (~4, 7, 20) [subsumption resolution 391,279] 393. 4 | ~7 | ~20 [avatar contradiction clause 392] 398. mary != sK8 <- (21) [backward demodulation 261,368] 399. ~19 | ~21 [avatar split clause 398,366,357] 403. ~predt(mary) <- (~3, 17) [backward demodulation 275,350] 405. $false <- (~3, 17) [subsumption resolution 403,247] 406. 3 | ~17 [avatar contradiction clause 405] 408. ~predt(paul) <- (~3, 16) [backward demodulation 275,346] 411. $false <- (~3, 4, 16) [subsumption resolution 408,278] 412. 3 | ~4 | ~16 [avatar contradiction clause 411] 413. $false [avatar sat refutation 280,290,294,351,360,369,382,393,399,406,412] % SZS output end Proof for 7589366798093278234842845 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.11352
Lorena, Darin, Patrick are the only persons in the room. "Darin is quieter than John" if "at least one person in the room is a wise person". "Everyone in the room is not a tall old person if they is old" if "everyone in the room is older than Beth". "Everyone in the room is a humble quiet person" only if "everyone in the room is richer than John if they is happy and vice versa". Lorena is a funny person. It is true that "Darin is a tall person". Lorena dreamt that "no one in the room neither is patient nor is a kind calm happy person if they is a humble patient person". If someone is richer than John then he/she is a happy humble curious funny person. Everyone in the room who either is not a patient old quiet person or is richer than John but not both is not a patient person. Everyone in the room is a humble quiet person. All tall persons are curious. It is true that "Lorena and Patrick are respectively wise and calm". No funny person is strong. Everyone in the room who is funny is not a kind wise person.
Lorena is kind.
contradiction
room(lorena)&room(darin)&room(patrick)&(![X]:(room(X)=>(X='lorena'|X='darin'|X='patrick')))& ((((?[X]:(room(X)&wise(X)&person(X)))))=>(quieter(john,darin)))& ((![X]:(room(X)=>(older(beth,X))))=>(![X]:(room(X)=>(((old(X))=>(~(tall(X)&old(X)&person(X))))))))& ((![X]:(room(X)=>(humble(X)&quiet(X)&person(X))))=>(![X]:(room(X)=>(((richer(john,X))<=>(happy(X)))))))& (funny(lorena)&person(lorena))& (tall(darin)&person(darin))& ((lorena_dream=>(~?[X]:(room(X)=>(((humble(X)&patient(X)&person(X))=>(~((patient(X))|(kind(X)&calm(X)&happy(X)&person(X))))))))))& ((![X]:((richer(john,X))=>(happy(X)&humble(X)&curious(X)&funny(X)&person(X)))))& (![X]:(room(X)=>(((((~(patient(X)&old(X)&quiet(X)&person(X)))<~>(richer(john,X))))=>(~(patient(X)&person(X)))))))& (![X]:(room(X)=>(humble(X)&quiet(X)&person(X))))& (![X]:(tall(X)=>curious(X)))& ((wise(lorena))&(calm(patrick)))& (richer(john,darin))& (tall(lorena))& (~?[X]:(funny(X)=>strong(X)))& (~calm(darin))& (![X]:(room(X)=>(((funny(X))=>(~(kind(X)&wise(X)&person(X)))))))& (![X]:(anywhere(X)=>(humble(X))))& (~(~(quieter(beth,lorena))))& (((?[X]:(room(X)&older(john,X)))))
room(lorena)&room(darin)&room(patrick)&(![X]:(room(X)=>(X='lorena'|X='darin'|X='patrick')))& kind(lorena)
[ "p0", "p9", "p11", "p14", "p16", "hypothesis" ]
% SZS status Unsatisfiable for 8422747566767215952623859 % SZS output start Proof for 8422747566767215952623859 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 53. ! [X0] : (room(X0) => (person(X0) & quiet(X0) & humble(X0))) [input p9] 55. calm(fred) & wise(mary) [input p11] 58. ~? [X0] : (funny(X0) => strong(X0)) [input p14] 60. ! [X0] : (room(X0) => (funny(X0) => ~(person(X0) & wise(X0) & kind(X0)))) [input p16] 64. kind(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 67. ~? [X0] : ~funny(X0) [pure predicate removal 58] 142. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 143. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 142] 151. ! [X0] : ((person(X0) & quiet(X0) & humble(X0)) | ~room(X0)) [ennf transformation 53] 152. ! [X0] : funny(X0) [ennf transformation 67] 153. ! [X0] : (((~person(X0) | ~wise(X0) | ~kind(X0)) | ~funny(X0)) | ~room(X0)) [ennf transformation 60] 154. ! [X0] : (~person(X0) | ~wise(X0) | ~kind(X0) | ~funny(X0) | ~room(X0)) [flattening 153] 156. kind(mary) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 64] 157. kind(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 156] 251. room(mary) [cnf transformation 143] 277. ~room(X0) | person(X0) [cnf transformation 151] 278. wise(mary) [cnf transformation 55] 282. funny(X0) [cnf transformation 152] 284. ~person(X0) | ~wise(X0) | ~kind(X0) | ~funny(X0) | ~room(X0) [cnf transformation 154] 293. kind(mary) [cnf transformation 157] 345. ~person(X0) | ~wise(X0) | ~kind(X0) | ~room(X0) [subsumption resolution 284,282] 346. ~kind(X0) | ~wise(X0) | ~room(X0) [subsumption resolution 345,277] 376. ~wise(mary) | ~room(mary) [resolution 346,293] 377. ~room(mary) [subsumption resolution 376,278] 378. $false [subsumption resolution 377,251] % SZS output end Proof for 8422747566767215952623859 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.000066
Earl, Jeffrey are the only persons in the room. If 'Earl collects historical artifacts related to ancient civilizations' then 'Earl is right-handed'. Someone in the room enjoys watercolor painting. Everyone in the room is not right-handed or is a culinary enthusiast who experiments with international cuisines. Earl enjoys watercolor painting. Earl is a dedicated advocate for digital privacy and encryption. Earl is a culinary enthusiast who experiments with international cuisines. Everyone outside the room is an avid hiker if they collects historical artifacts related to ancient civilizations. Earl is a member of a local theater group specializing in improv. Everyone in the room who uses contact lenses, collects limited-edition art prints from contemporary artists or is right-handed creates YouTube content. Everyone in the room creates YouTube content only if they enjoys watercolor painting.
Earl is right-handed.
neutral
room(earl)&room(jeffrey)&(![X]:(room(X)=>(X='earl'|X='jeffrey')))& ((collects_historical_artifacts_related_to_ancient_civilizations(earl))=>(is_right-handed(earl)))& (?[X]:(room(X)&(enjoys_watercolor_painting(X))))& (![X]:(room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))|(is_not_right-handed(X))))))& (enjoys_watercolor_painting(earl))& (is_a_dedicated_advocate_for_digital_privacy_and_encryption(earl))& (is_a_culinary_enthusiast_who_experiments_with_international_cuisines(earl))& (![X]:(~room(X)=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))=>(is_an_avid_hiker(X))))))& (is_a_member_of_a_local_theater_group_specializing_in_improv(earl))& (![X]:(room(X)=>(((((uses_contact_lenses(X))|(collects_limited-edition_art_prints_from_contemporary_artists(X))|(is_right-handed(X))))=>(creates_YouTube_content(X))))))& (![X]:(room(X)=>(((enjoys_watercolor_painting(X))<=(creates_YouTube_content(X))))))
room(earl)&room(jeffrey)&(![X]:(room(X)=>(X='earl'|X='jeffrey')))& is_right-handed(earl)
[]
null
0.013813
There is a room. If “everyone in the room does not enjoy mountain biking or frequently participates in hackathons and coding competitions” then “only one person in the room hosts regular game nights featuring complex strategy games”. If “everyone in the room composes and performs experimental electronic music” then “no one outside the room who does not enjoy mountain biking, collects rare and antique scientific instruments and frequently participates in hackathons and coding competitions is an avid hiker”. No one in the room develops open-source software projects in their free time if they enjoys virtual reality gaming or collects rare and antique scientific instruments or both. Everyone anywhere collects rare and antique scientific instruments if they frequently participates in hackathons and coding competitions. Everyone in the room hosts regular game nights featuring complex strategy games or does not collect rare and antique scientific instruments.
Everyone in the room frequently participates in hackathons and coding competitions.
contradiction
(there_is_a_room)& ((![X]:(room(X)=>(((frequently_participates_in_hackathons_and_coding_competitions(X))|(does_not_enjoy_mountain_biking(X))))))=>(((?[X]:(room(X)&hosts_regular_game_nights_featuring_complex_strategy_games(X)))&(![X,Y]:((room(X)&room(Y)&(hosts_regular_game_nights_featuring_complex_strategy_games(X))&(hosts_regular_game_nights_featuring_complex_strategy_games(Y)))=>(X=Y))))))& ((![X]:(room(X)=>(composes_and_performs_experimental_electronic_music(X))))=>(~?[X]:(~room(X)=>(((((does_not_enjoy_mountain_biking(X))&(collects_rare_and_antique_scientific_instruments(X))&(frequently_participates_in_hackathons_and_coding_competitions(X))))=>(is_an_avid_hiker(X)))))))& (![X]:(anywhere(X)=>(((is_an_avid_hiker(X))=>(drives_a_hybrid_car(X))))))& (![X]:(room(X)=>(((drives_a_hybrid_car(X))=>(develops_open-source_software_projects_in_their_free_time(X))))))& ((![X]:((is_an_avid_hiker(X))<=>(((does_not_host_a_popular_podcast_about_emerging_technologies(X))|(is_an_avid_hiker(X)))))))& (![X]:(room(X)=>(((is_an_avid_hiker(X))=>(((enjoys_virtual_reality_gaming(X))|(collects_rare_and_antique_scientific_instruments(X))))))))& (~?[X]:(room(X)=>(((((enjoys_virtual_reality_gaming(X))|(collects_rare_and_antique_scientific_instruments(X))))=>(develops_open-source_software_projects_in_their_free_time(X))))))& (![X]:(room(X)=>(((develops_open-source_software_projects_in_their_free_time(X))=>(frequently_participates_in_hackathons_and_coding_competitions(X))))))& (![X]:(anywhere(X)=>(((frequently_participates_in_hackathons_and_coding_competitions(X))=>(collects_rare_and_antique_scientific_instruments(X))))))& (![X]:(room(X)=>(((does_not_enjoy_logic_puzzles(X))<=(collects_rare_and_antique_scientific_instruments(X))))))& (![X]:(anywhere(X)=>(((~((enjoys_logic_puzzles(X))|(hosts_a_popular_podcast_about_emerging_technologies(X))))=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))&(hosts_a_popular_podcast_about_emerging_technologies(X))&(develops_open-source_software_projects_in_their_free_time(X))))))))& (![X]:(room(X)=>(((does_not_develop_open-source_software_projects_in_their_free_time(X))=>(does_not_enjoy_logic_puzzles(X))))))& (((?[X]:(room(X)&does_enjoy_mountain_biking(X)))))& (![X]:(room(X)=>(((composes_and_performs_experimental_electronic_music(X))<=(drives_a_hybrid_car(X))))))& (![X]:(room(X)=>(((does_not_collect_rare_and_antique_scientific_instruments(X))|(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))
(there_is_a_room)& ![X]:(room(X)=>(frequently_participates_in_hackathons_and_coding_competitions(X)))
[ "b4", "b42", "p1", "p7", "p9", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 5180643621015238590519483 % SZS output start Proof for 5180643621015238590519483 5. ! [X0] : anywhere(X0) [input b4] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 45. ! [X0] : (room(X0) => (~predf(X0) | predc(X0))) => (! [X0,X1] : ((preda(X1) & preda(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (preda(X0) & room(X0))) [input p1] 51. ~? [X0] : (room(X0) => ((predk(X0) | prede(X0)) => predb(X0))) [input p7] 53. ! [X0] : (anywhere(X0) => (predc(X0) => predk(X0))) [input p9] 59. ! [X0] : (room(X0) => (preda(X0) | ~predk(X0))) [input p15] 60. ! [X0] : (room(X0) => predc(X0)) & there_is_a_room [input hypothesis] 61. ! [X0] : (room(X0) => (~predf(X0) | predc(X0))) => (! [X1,X2] : ((preda(X2) & preda(X1) & room(X2) & room(X1)) => X1 = X2) & ? [X3] : (preda(X3) & room(X3))) [rectify 45] 64. ~? [X0] : (room(X0) => predb(X0)) [pure predicate removal 51] 66. ! [X0] : (room(X0) => predc(X0)) [pure predicate removal 60] 138. (! [X1,X2] : (X1 = X2 | (~preda(X2) | ~preda(X1) | ~room(X2) | ~room(X1))) & ? [X3] : (preda(X3) & room(X3))) | ? [X0] : ((predf(X0) & ~predc(X0)) & room(X0)) [ennf transformation 61] 139. (! [X1,X2] : (X1 = X2 | ~preda(X2) | ~preda(X1) | ~room(X2) | ~room(X1)) & ? [X3] : (preda(X3) & room(X3))) | ? [X0] : (predf(X0) & ~predc(X0) & room(X0)) [flattening 138] 146. ! [X0] : (~predb(X0) & room(X0)) [ennf transformation 64] 149. ! [X0] : ((predk(X0) | ~predc(X0)) | ~anywhere(X0)) [ennf transformation 53] 150. ! [X0] : (predk(X0) | ~predc(X0) | ~anywhere(X0)) [flattening 149] 159. ! [X0] : ((preda(X0) | ~predk(X0)) | ~room(X0)) [ennf transformation 59] 160. ! [X0] : (preda(X0) | ~predk(X0) | ~room(X0)) [flattening 159] 161. ! [X0] : (predc(X0) | ~room(X0)) [ennf transformation 66] 162. ? [X0] : (predf(X0) & ~predc(X0) & room(X0)) | ~sP0 [predicate definition introduction] 163. (! [X1,X2] : (X1 = X2 | ~preda(X2) | ~preda(X1) | ~room(X2) | ~room(X1)) & ? [X3] : (preda(X3) & room(X3))) | sP0 [definition folding 139,162] 167. ? [X0] : (predf(X0) & ~predc(X0) & room(X0)) | ~sP0 [nnf transformation 162] 168. ? [X0] : (predf(X0) & ~predc(X0) & room(X0)) => (predf(sK2) & ~predc(sK2) & room(sK2)) [choice axiom] 169. (predf(sK2) & ~predc(sK2) & room(sK2)) | ~sP0 [skolemisation 167,168] 170. (! [X0,X1] : (X0 = X1 | ~preda(X1) | ~preda(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (preda(X2) & room(X2))) | sP0 [rectify 163] 171. ? [X2] : (preda(X2) & room(X2)) => (preda(sK3) & room(sK3)) [choice axiom] 172. (! [X0,X1] : (X0 = X1 | ~preda(X1) | ~preda(X0) | ~room(X1) | ~room(X0)) & (preda(sK3) & room(sK3))) | sP0 [skolemisation 170,171] 181. anywhere(X0) [cnf transformation 5] 256. mary != lucy [cnf transformation 43] 263. ~predc(sK2) | ~sP0 [cnf transformation 169] 267. X0 = X1 | ~preda(X1) | ~preda(X0) | ~room(X1) | ~room(X0) | sP0 [cnf transformation 172] 280. room(X0) [cnf transformation 146] 283. predk(X0) | ~predc(X0) | ~anywhere(X0) [cnf transformation 150] 292. preda(X0) | ~predk(X0) | ~room(X0) [cnf transformation 160] 293. predc(X0) | ~room(X0) [cnf transformation 161] 296. 1 <=> sP0 [avatar definition] 305. 3 <=> predc(sK2) [avatar definition] 307. ~predc(sK2) <- (~3) [avatar component clause 305] 308. ~1 | ~3 [avatar split clause 263,305,296] 315. 5 <=> ! [X0,X1] : (X0 = X1 | ~room(X0) | ~room(X1) | ~preda(X0) | ~preda(X1)) [avatar definition] 316. X0 = X1 | ~room(X0) | ~room(X1) | ~preda(X0) | ~preda(X1) <- (5) [avatar component clause 315] 317. 1 | 5 [avatar split clause 267,315,296] 337. 10 <=> ! [X0] : predc(X0) [avatar definition] 338. predc(X0) <- (10) [avatar component clause 337] 341. 11 <=> ! [X0] : predk(X0) [avatar definition] 342. predk(X0) <- (11) [avatar component clause 341] 363. ~predc(X0) | predk(X0) [subsumption resolution 283,181] 370. ~predk(X0) | preda(X0) [subsumption resolution 292,280] 371. predc(X0) [subsumption resolution 293,280] 372. 10 [avatar split clause 371,337] 375. X0 = X1 | ~room(X1) | ~preda(X0) | ~preda(X1) <- (5) [subsumption resolution 316,280] 376. ~preda(X1) | ~preda(X0) | X0 = X1 <- (5) [subsumption resolution 375,280] 379. predk(X0) <- (10) [resolution 363,338] 383. preda(X0) <- (11) [resolution 370,342] 385. ~preda(X1) | X1 = X2 <- (5, 11) [resolution 376,383] 389. X1 = X2 <- (5, 11) [subsumption resolution 385,383] 439. mary != X20 <- (5, 11) [superposition 256,389] 526. $false <- (5, 11) [subsumption resolution 439,389] 527. ~5 | ~11 [avatar contradiction clause 526] 528. 11 | ~10 [avatar split clause 379,337,341] 529. $false <- (~3, 10) [subsumption resolution 307,338] 530. 3 | ~10 [avatar contradiction clause 529] 531. $false [avatar sat refutation 308,317,372,527,528,530] % SZS output end Proof for 5180643621015238590519483 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0
Maria, Stephen are the only persons in the room. If “Maria plays the violin” then “everyone in the room plays video games if they plays the violin”. If “everyone in the room is a cybersecurity expert or does not collect vintage vinyl records” then “everyone in the room volunteers for local environmental conservation projects if they has a piercing”. “Everyone in the room who uses contact lenses hosts a YouTube channel dedicated to art tutorials” if “no one anywhere uses contact lenses or does not use a Windows laptop”. “Everyone in the room hosts regular game nights featuring complex strategy games or does not enjoy logic puzzles” if “everyone outside the room writes in-depth travel guides for off-the-beaten-path destinations or does not create augmented reality experiences for mobile applications” and vice versa. Maria uses contact lenses. Maria does not collect vintage vinyl records. No one anywhere uses a Windows laptop if they enjoys logic puzzles. Not everyone in the room who plays the violin uses contact lenses or collects vintage vinyl records or both. If someone is not a client of Costco then he/she works as a freelance web developer specializing in e-commerce sites and vice versa. Not everyone anywhere writes and illustrates their own graphic novels if they volunteers for local environmental conservation projects. Everyone in the room who uses contact lenses is a client of Costco. Everyone anywhere who creates large-scale murals for public art installations collects historical artifacts related to ancient civilizations. At least one person in the room volunteers for local environmental conservation projects. If someone is a client of Costco then he/she hosts regular game nights featuring complex strategy games and vice versa. If someone hosts regular workshops on creative writing then he/she plays video games and has a curated collection of mid-century modern furniture and vice versa. Everyone in the room who collects vintage vinyl records, writes and illustrates their own graphic novels or uses contact lenses has a piercing. Everyone in the room who uses contact lenses hosts a YouTube channel dedicated to art tutorials. It is not the case that “Maria is a dedicated volunteer for local community service projects”. Maria practices tai chi. More than one person in the room creates large-scale murals for public art installations.
Stephen uses contact lenses.
contradiction
room(maria)&room(stephen)&(![X]:(room(X)=>(X='maria'|X='stephen')))& ((plays_the_violin(maria))=>(![X]:(room(X)=>(((plays_the_violin(X))=>(plays_video_games(X)))))))& ((![X]:(room(X)=>(((does_not_collect_vintage_vinyl_records(X))|(is_a_cybersecurity_expert(X))))))=>(![X]:(room(X)=>(((has_a_piercing(X))=>(volunteers_for_local_environmental_conservation_projects(X)))))))& ((~?[X]:(anywhere(X)=>(((does_not_use_a_Windows_laptop(X))|(uses_contact_lenses(X))))))=>(![X]:(room(X)=>(((uses_contact_lenses(X))=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X)))))))& ((![X]:(~room(X)=>(((does_not_create_augmented_reality_experiences_for_mobile_applications(X))|(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))<=>(![X]:(room(X)=>(((does_not_enjoy_logic_puzzles(X))|(hosts_regular_game_nights_featuring_complex_strategy_games(X)))))))& (uses_contact_lenses(maria))& (does_not_collect_vintage_vinyl_records(maria))& (~?[X]:(anywhere(X)=>(((enjoys_logic_puzzles(X))=>(uses_a_Windows_laptop(X))))))& (~![X]:(room(X)=>(((plays_the_violin(X))=>(((uses_contact_lenses(X))|(collects_vintage_vinyl_records(X))))))))& ((![X]:((is_not_a_client_of_Costco(X))<=>(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X)))))& (~![X]:(anywhere(X)=>(((volunteers_for_local_environmental_conservation_projects(X))=>(writes_and_illustrates_their_own_graphic_novels(X))))))& (![X]:(room(X)=>(((uses_contact_lenses(X))=>(is_a_client_of_Costco(X))))))& (![X]:(anywhere(X)=>(((creates_large-scale_murals_for_public_art_installations(X))=>(collects_historical_artifacts_related_to_ancient_civilizations(X))))))& (((?[X]:(room(X)&volunteers_for_local_environmental_conservation_projects(X)))))& ((![X]:((is_a_client_of_Costco(X))<=>(hosts_regular_game_nights_featuring_complex_strategy_games(X)))))& ((![X]:((hosts_regular_workshops_on_creative_writing(X))<=>(((plays_video_games(X))&(has_a_curated_collection_of_mid-century_modern_furniture(X)))))))& (![X]:(room(X)=>(((((collects_vintage_vinyl_records(X))|(writes_and_illustrates_their_own_graphic_novels(X))|(uses_contact_lenses(X))))=>(has_a_piercing(X))))))& (![X]:(room(X)=>(((uses_contact_lenses(X))=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))& (~(is_a_dedicated_volunteer_for_local_community_service_projects(maria)))& (practices_tai_chi(maria))& ((?[X,Y]:(room(X)&room(Y)&(creates_large-scale_murals_for_public_art_installations(X)&creates_large-scale_murals_for_public_art_installations(Y))&(X!=Y))))
room(maria)&room(stephen)&(![X]:(room(X)=>(X='maria'|X='stephen')))& uses_contact_lenses(stephen)
[ "p0", "p5", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 3176637011343374758692730 % SZS output start Proof for 3176637011343374758692730 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 49. predf(mary) [input p5] 52. ~! [X0] : (room(X0) => (predt(X0) => (prede(X0) | predf(X0)))) [input p8] 65. predf(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 70. ~! [X0] : (room(X0) => (prede(X0) | predf(X0))) [pure predicate removal 52] 88. ~! [X0] : (room(X0) => predf(X0)) [pure predicate removal 70] 160. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 161. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 160] 165. ? [X0] : (~predf(X0) & room(X0)) [ennf transformation 88] 168. predf(paul) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 65] 169. predf(paul) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 168] 176. ? [X0] : (~predf(X0) & room(X0)) => (~predf(sK2) & room(sK2)) [choice axiom] 177. ~predf(sK2) & room(sK2) [skolemisation 165,176] 266. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 161] 273. predf(mary) [cnf transformation 49] 275. room(sK2) [cnf transformation 177] 276. ~predf(sK2) [cnf transformation 177] 289. predf(paul) [cnf transformation 169] 342. mary = sK2 | paul = sK2 [resolution 266,275] 347. 9 <=> paul = sK2 [avatar definition] 349. paul = sK2 <- (9) [avatar component clause 347] 351. 10 <=> mary = sK2 [avatar definition] 353. mary = sK2 <- (10) [avatar component clause 351] 354. 9 | 10 [avatar split clause 342,351,347] 393. ~predf(paul) <- (9) [backward demodulation 276,349] 394. $false <- (9) [subsumption resolution 393,289] 395. ~9 [avatar contradiction clause 394] 402. ~predf(mary) <- (10) [backward demodulation 276,353] 403. $false <- (10) [subsumption resolution 402,273] 404. ~10 [avatar contradiction clause 403] 406. $false [avatar sat refutation 354,395,404] % SZS output end Proof for 3176637011343374758692730 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.010454
There is a room. “Everyone in the room is kind” unless “everyone anywhere is quiet”. “Everyone in the room is not a kind person” if “everyone in the room is a tall person”. Everyone in the room is a kind person. No quiet person is old. Only one person in the room either is not a old person or is a tall person but not both. Everyone in the room is a quiet person.
All tall persons are old.
neutral
(there_is_a_room)& (~(![X]:(anywhere(X)=>(quiet(X))))=>(![X]:(room(X)=>(kind(X)))))& ((![X]:(room(X)=>(tall(X)&person(X))))=>(![X]:(room(X)=>(~(kind(X)&person(X))))))& (![X]:(room(X)=>(kind(X)&person(X))))& (~?[X]:(quiet(X)=>old(X)))& (((?[X]:(room(X)&((~(old(X)&person(X)))<~>(tall(X)&person(X)))))&(![X,Y]:((room(X)&room(Y)&(((~(old(X)&person(X)))<~>(tall(X)&person(X))))&(((~(old(Y)&person(Y)))<~>(tall(Y)&person(Y)))))=>(X=Y)))))& (![X]:(room(X)=>(quiet(X)&person(X))))
(there_is_a_room)& ![X]:(tall(X)=>old(X))
[]
null
0.089871
Mildred, Mark, Maria are the only persons in the room. Everyone in the room creates YouTube content only if they is a member of a local theater group specializing in improv. Everyone in the room is an enthusiastic bird watcher who travels for rare sightings if they maintains a personal blog focused on cybersecurity tips. Mark maintains a personal blog focused on cybersecurity tips.
Mark is an enthusiastic bird watcher who travels for rare sightings.
entailment
room(mildred)&room(mark)&room(maria)&(![X]:(room(X)=>(X='mildred'|X='mark'|X='maria')))& (![X]:(room(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))<=(creates_YouTube_content(X))))))& (((?[X]:(room(X)&((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))<~>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X)))))&(![X,Y]:((room(X)&room(Y)&(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))<~>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))))&(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(Y))<~>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(Y)))))=>(X=Y)))))& (~![X]:(room(X)=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))=>(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))))& (is_a_drone_photographer(mildred))& (![X]:(room(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))=>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))& ((![X]:((has_a_vast_collection_of_first-edition_science_fiction_novels(X))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X)))))& (![X]:(room(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))=>(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))))& ((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(mildred))&(enjoys_salsa_dancing(mildred)))& (maintains_a_personal_blog_focused_on_cybersecurity_tips(mark))& (enjoys_salsa_dancing(mildred))& (![X]:(~room(X)=>(((is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(owns_an_Android_phone(X))))))))& (![X]:(room(X)=>(((((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(owns_an_Android_phone(X))))=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))& (![X]:(room(X)=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))=>(writes_and_illustrates_their_own_graphic_novels(X))))))& (![X]:(room(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))& (maintains_a_personal_blog_focused_on_cybersecurity_tips(mildred))& (![X]:(room(X)=>(((is_a_wine_connoisseur(X))<=>(has_a_piercing(X))))))& (makes_intricate_hand-cut_paper_art_for_exhibitions(mark))& (?[X]:(room(X)&(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))& (![X]:(room(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))<=>(is_a_client_of_Costco(X))))))& (![X]:(room(X)=>(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))=>(is_a_client_of_Costco(X))))))& (![X]:(room(X)=>(((writes_and_illustrates_their_own_graphic_novels(X))<=(is_a_client_of_Costco(X))))))
room(mildred)&room(mark)&room(maria)&(![X]:(room(X)=>(X='mildred'|X='mark'|X='maria')))& is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(mark)
[ "p0", "p5", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 600514776890386783465178 % SZS output start Proof for 600514776890386783465178 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 49. ! [X0] : (room(X0) => (predp(X0) => predl(X0))) [input p5] 53. predp(paul) [input p9] 66. ~(predl(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 150. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 151. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 150] 156. ! [X0] : ((predl(X0) | ~predp(X0)) | ~room(X0)) [ennf transformation 49] 157. ! [X0] : (predl(X0) | ~predp(X0) | ~room(X0)) [flattening 156] 170. ~predl(paul) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 66] 171. ~predl(paul) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 170] 183. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 184. ~predl(paul) | (fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 171,183] 265. room(mary) [cnf transformation 151] 266. room(paul) [cnf transformation 151] 267. room(fred) [cnf transformation 151] 268. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 151] 279. ~predp(X0) | predl(X0) | ~room(X0) [cnf transformation 157] 281. predp(paul) [cnf transformation 53] 294. ~predl(paul) | room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 184] 295. ~predl(paul) | mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 184] 296. ~predl(paul) | paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 184] 297. ~predl(paul) | fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 184] 308. ~predl(paul) | fred != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 297,267] 309. ~predl(paul) | fred != sK3 | ~room(mary) [subsumption resolution 308,266] 310. ~predl(paul) | fred != sK3 [subsumption resolution 309,265] 312. 3 <=> fred = sK3 [avatar definition] 314. fred != sK3 <- (~3) [avatar component clause 312] 316. 4 <=> predl(paul) [avatar definition] 319. ~3 | ~4 [avatar split clause 310,316,312] 320. ~predl(paul) | paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 296,267] 321. ~predl(paul) | paul != sK3 | ~room(mary) [subsumption resolution 320,266] 322. ~predl(paul) | paul != sK3 [subsumption resolution 321,265] 324. 5 <=> paul = sK3 [avatar definition] 326. paul != sK3 <- (~5) [avatar component clause 324] 327. ~5 | ~4 [avatar split clause 322,316,324] 328. ~predl(paul) | mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 295,267] 329. ~predl(paul) | mary != sK3 | ~room(mary) [subsumption resolution 328,266] 330. ~predl(paul) | mary != sK3 [subsumption resolution 329,265] 332. 6 <=> mary = sK3 [avatar definition] 334. mary != sK3 <- (~6) [avatar component clause 332] 335. ~6 | ~4 [avatar split clause 330,316,332] 336. ~predl(paul) | room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 294,267] 337. ~predl(paul) | room(sK3) | ~room(mary) [subsumption resolution 336,266] 338. ~predl(paul) | room(sK3) [subsumption resolution 337,265] 340. 7 <=> room(sK3) [avatar definition] 342. room(sK3) <- (7) [avatar component clause 340] 343. 7 | ~4 [avatar split clause 338,316,340] 344. predl(paul) | ~room(paul) [resolution 279,281] 350. predl(paul) [subsumption resolution 344,266] 351. 4 [avatar split clause 350,316] 410. paul = sK3 | mary = sK3 | fred = sK3 <- (7) [resolution 268,342] 450. mary = sK3 | fred = sK3 <- (~5, 7) [subsumption resolution 410,326] 451. fred = sK3 <- (~5, ~6, 7) [subsumption resolution 450,334] 452. $false <- (~3, ~5, ~6, 7) [subsumption resolution 451,314] 453. 3 | 5 | 6 | ~7 [avatar contradiction clause 452] 454. $false [avatar sat refutation 319,327,335,343,351,453] % SZS output end Proof for 600514776890386783465178 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.117082
“No one in the room owns a high-end gaming PC with custom-built components or does not own an extensive assortment of vintage comic book memorabilia” if “everyone in the room does not enjoy cross-country skiing or enjoys making ceramics” and vice versa. Everyone anywhere does not enjoy macrame, practices pilates or mentors a youth basketball team on weekends if they is a certified scuba diver with advanced underwater photography skills. Everyone in the room does not enjoy macrame, practices pilates or mentors a youth basketball team on weekends if they enjoys making ceramics and vice versa. Everyone in the room who enjoys making ceramics collects foreign coins. Only one person in the room collects foreign coins.
Everyone in the room is a certified scuba diver with advanced underwater photography skills.
contradiction
(there_is_a_room)& (((![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(does_not_practice_graffiti_art(X))))))=>(![X]:(~room(X)=>(((does_not_practice_graffiti_art(X))=>(practices_graffiti_art(X)))))))&((~(![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(does_not_practice_graffiti_art(X)))))))=>(![X]:(room(X)=>(((practices_graffiti_art(X))<=>(((practices_pilates(X))&(collects_antique_clocks(X))&(enjoys_macrame(X))))))))))& (((![X]:(~room(X)=>(enjoys_making_ceramics(X))))=>(![X]:(room(X)=>(((knows_morse_code(X))<=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(does_practice_yoga(X))|(writes_a_travel_blog(X)))))))))&((~(![X]:(~room(X)=>(enjoys_making_ceramics(X)))))=>(![X]:(room(X)=>(((((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(does_practice_yoga(X))|(writes_a_travel_blog(X))))=>(collects_foreign_coins(X))))))))& (((![X]:(room(X)=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(does_not_collect_antique_clocks(X))))))=>(![X]:(anywhere(X)=>(((does_not_collect_antique_clocks(X))=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X)))))))&((~(![X]:(room(X)=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(does_not_collect_antique_clocks(X)))))))=>(![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(does_not_practice_pilates(X))))))))& ((![X]:(room(X)=>(((trains_for_and_competes_in_international_triathlons(X))|(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))))))=>(~?[X]:(anywhere(X)=>(((does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))<=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X)))))))& ((![X]:(room(X)=>(((enjoys_making_ceramics(X))|(does_not_enjoy_cross-country_skiing(X))))))<=>(~?[X]:(room(X)=>(((does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(owns_a_high-end_gaming_PC_with_custom-built_components(X)))))))& ((![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))|(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))))))=>((![X]:((does_practice_yoga(X))=>(mentors_a_youth_basketball_team_on_weekends(X))))))& (![X]:(room(X)=>(((does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))=>(mentors_a_youth_basketball_team_on_weekends(X))))))& (![X]:(room(X)=>(((mentors_a_youth_basketball_team_on_weekends(X))=>(enjoys_kayaking_and_exploring_remote_waterways(X))))))& (![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))|(does_not_enjoy_salsa_dancing(X))))))& (![X]:(room(X)=>(((does_not_enjoy_salsa_dancing(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))|(does_not_drive_a_hybrid_car(X))))))& ((![X]:((((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))|(enjoys_making_ceramics(X))))=>(enjoys_watercolor_painting(X)))))& (![X]:(room(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))))& (![X]:(anywhere(X)=>(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))=>(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))& (![X]:(anywhere(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))=>(((does_not_enjoy_macrame(X))|(practices_pilates(X))|(mentors_a_youth_basketball_team_on_weekends(X))))))))& (![X]:(room(X)=>(((((does_not_enjoy_macrame(X))|(practices_pilates(X))|(mentors_a_youth_basketball_team_on_weekends(X))))<=>(enjoys_making_ceramics(X))))))& (![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(collects_foreign_coins(X))))))& (((?[X]:(room(X)&collects_foreign_coins(X)))&(![X,Y]:((room(X)&room(Y)&(collects_foreign_coins(X))&(collects_foreign_coins(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((practices_graffiti_art(X))<=>(trains_for_and_competes_in_international_triathlons(X))))))& (~?[X]:(anywhere(X)=>(((does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))<=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))& (![X]:(room(X)=>(((((collects_foreign_coins(X))|(owns_a_high-end_gaming_PC_with_custom-built_components(X))))=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))& (![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(does_not_train_for_and_competes_in_international_triathlons(X))))))& ((![X]:((does_practice_yoga(X))=>(mentors_a_youth_basketball_team_on_weekends(X)))))& (![X]:(room(X)=>(((does_not_practice_graffiti_art(X))=>(enjoys_making_ceramics(X))))))& (![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))
(there_is_a_room)& ![X]:(room(X)=>(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X)))
[ "b4", "b42", "p5", "p15", "p16", "p17", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 9184303942574449283674451 % SZS output start Proof for 9184303942574449283674451 5. ! [X0] : anywhere(X0) [input b4] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 49. ! [X0] : (room(X0) => (~predf(X0) | predy(X0))) <=> ~? [X0] : (room(X0) => (predu(X0) | ~predi(X0))) [input p5] 59. ! [X0] : (anywhere(X0) => (predk(X0) => (predp(X0) | preds(X0) | ~predl(X0)))) [input p15] 60. ! [X0] : (room(X0) => ((predp(X0) | preds(X0) | ~predl(X0)) <=> predy(X0))) [input p16] 61. ! [X0] : (room(X0) => (predy(X0) => predg(X0))) [input p17] 62. ! [X0,X1] : ((predg(X1) & predg(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predg(X0) & room(X0)) [input p18] 70. ! [X0] : (room(X0) => predk(X0)) & there_is_a_room [input hypothesis] 75. ! [X0] : (room(X0) => (~predf(X0) | predy(X0))) <=> ~? [X1] : (room(X1) => (predu(X1) | ~predi(X1))) [rectify 49] 77. ! [X0,X1] : ((predg(X1) & predg(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (predg(X2) & room(X2)) [rectify 62] 82. ! [X0] : (room(X0) => predk(X0)) [pure predicate removal 70] 163. ! [X0] : ((~predf(X0) | predy(X0)) | ~room(X0)) <=> ! [X1] : ((~predu(X1) & predi(X1)) & room(X1)) [ennf transformation 75] 164. ! [X0] : (~predf(X0) | predy(X0) | ~room(X0)) <=> ! [X1] : (~predu(X1) & predi(X1) & room(X1)) [flattening 163] 175. ! [X0] : (((predp(X0) | preds(X0) | ~predl(X0)) | ~predk(X0)) | ~anywhere(X0)) [ennf transformation 59] 176. ! [X0] : (predp(X0) | preds(X0) | ~predl(X0) | ~predk(X0) | ~anywhere(X0)) [flattening 175] 177. ! [X0] : (((predp(X0) | preds(X0) | ~predl(X0)) <=> predy(X0)) | ~room(X0)) [ennf transformation 60] 178. ! [X0] : ((predg(X0) | ~predy(X0)) | ~room(X0)) [ennf transformation 61] 179. ! [X0] : (predg(X0) | ~predy(X0) | ~room(X0)) [flattening 178] 180. ! [X0,X1] : (X0 = X1 | (~predg(X1) | ~predg(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (predg(X2) & room(X2)) [ennf transformation 77] 181. ! [X0,X1] : (X0 = X1 | ~predg(X1) | ~predg(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (predg(X2) & room(X2)) [flattening 180] 193. ! [X0] : (predk(X0) | ~room(X0)) [ennf transformation 82] 196. sP1 <=> ! [X0] : (~predf(X0) | predy(X0) | ~room(X0)) [predicate definition introduction] 197. sP1 <=> ! [X1] : (~predu(X1) & predi(X1) & room(X1)) [definition folding 164,196] 218. (sP1 | ? [X0] : (predf(X0) & ~predy(X0) & room(X0))) & (! [X0] : (~predf(X0) | predy(X0) | ~room(X0)) | ~sP1) [nnf transformation 196] 219. (sP1 | ? [X0] : (predf(X0) & ~predy(X0) & room(X0))) & (! [X1] : (~predf(X1) | predy(X1) | ~room(X1)) | ~sP1) [rectify 218] 220. ? [X0] : (predf(X0) & ~predy(X0) & room(X0)) => (predf(sK6) & ~predy(sK6) & room(sK6)) [choice axiom] 221. (sP1 | (predf(sK6) & ~predy(sK6) & room(sK6))) & (! [X1] : (~predf(X1) | predy(X1) | ~room(X1)) | ~sP1) [skolemisation 219,220] 222. (sP1 | ? [X1] : (predu(X1) | ~predi(X1) | ~room(X1))) & (! [X1] : (~predu(X1) & predi(X1) & room(X1)) | ~sP1) [nnf transformation 197] 223. (sP1 | ? [X0] : (predu(X0) | ~predi(X0) | ~room(X0))) & (! [X1] : (~predu(X1) & predi(X1) & room(X1)) | ~sP1) [rectify 222] 224. ? [X0] : (predu(X0) | ~predi(X0) | ~room(X0)) => (predu(sK7) | ~predi(sK7) | ~room(sK7)) [choice axiom] 225. (sP1 | (predu(sK7) | ~predi(sK7) | ~room(sK7))) & (! [X1] : (~predu(X1) & predi(X1) & room(X1)) | ~sP1) [skolemisation 223,224] 229. ! [X0] : ((((predp(X0) | preds(X0) | ~predl(X0)) | ~predy(X0)) & (predy(X0) | (~predp(X0) & ~preds(X0) & predl(X0)))) | ~room(X0)) [nnf transformation 177] 230. ! [X0] : (((predp(X0) | preds(X0) | ~predl(X0) | ~predy(X0)) & (predy(X0) | (~predp(X0) & ~preds(X0) & predl(X0)))) | ~room(X0)) [flattening 229] 231. ? [X2] : (predg(X2) & room(X2)) => (predg(sK9) & room(sK9)) [choice axiom] 232. ! [X0,X1] : (X0 = X1 | ~predg(X1) | ~predg(X0) | ~room(X1) | ~room(X0)) & (predg(sK9) & room(sK9)) [skolemisation 181,231] 236. anywhere(X0) [cnf transformation 5] 311. mary != lucy [cnf transformation 43] 346. sP1 | room(sK6) [cnf transformation 221] 347. sP1 | ~predy(sK6) [cnf transformation 221] 349. room(X1) | ~sP1 [cnf transformation 225] 360. predp(X0) | preds(X0) | ~predl(X0) | ~predk(X0) | ~anywhere(X0) [cnf transformation 176] 361. ~room(X0) | predl(X0) | predy(X0) [cnf transformation 230] 362. ~preds(X0) | predy(X0) | ~room(X0) [cnf transformation 230] 363. ~predp(X0) | predy(X0) | ~room(X0) [cnf transformation 230] 365. ~predy(X0) | predg(X0) | ~room(X0) [cnf transformation 179] 368. ~predg(X1) | X0 = X1 | ~predg(X0) | ~room(X1) | ~room(X0) [cnf transformation 232] 380. ~room(X0) | predk(X0) [cnf transformation 193] 437. 14 <=> predy(sK3) [avatar definition] 438. predy(sK3) <- (14) [avatar component clause 437] 439. ~predy(sK3) <- (~14) [avatar component clause 437] 524. 33 <=> sP1 [avatar definition] 529. 34 <=> predy(sK6) [avatar definition] 530. predy(sK6) <- (34) [avatar component clause 529] 531. ~predy(sK6) <- (~34) [avatar component clause 529] 532. ~34 | 33 [avatar split clause 347,524,529] 534. 35 <=> room(sK6) [avatar definition] 535. ~room(sK6) <- (~35) [avatar component clause 534] 536. room(sK6) <- (35) [avatar component clause 534] 537. 35 | 33 [avatar split clause 346,524,534] 564. 42 <=> ! [X1] : room(X1) [avatar definition] 565. room(X1) <- (42) [avatar component clause 564] 566. ~33 | 42 [avatar split clause 349,564,524] 586. ~predk(X0) | preds(X0) | ~predl(X0) | predp(X0) [subsumption resolution 360,236] 609. 49 <=> predp(sK6) [avatar definition] 611. predp(sK6) <- (49) [avatar component clause 609] 618. $false <- (~35, 42) [subsumption resolution 535,565] 619. 35 | ~42 [avatar contradiction clause 618] 621. predk(sK6) <- (35) [resolution 536,380] 630. predl(sK6) | predy(sK6) <- (35) [resolution 361,536] 640. predl(sK6) <- (~34, 35) [subsumption resolution 630,531] 699. preds(sK6) | ~predl(sK6) | predp(sK6) <- (35) [resolution 586,621] 702. preds(sK6) | predp(sK6) <- (~34, 35) [subsumption resolution 699,640] 704. 54 <=> preds(sK6) [avatar definition] 706. preds(sK6) <- (54) [avatar component clause 704] 707. 49 | 54 | 34 | ~35 [avatar split clause 702,534,529,704,609] 708. predy(sK6) | ~room(sK6) <- (49) [resolution 611,363] 710. ~room(sK6) <- (~34, 49) [subsumption resolution 708,531] 711. $false <- (~34, 35, 49) [subsumption resolution 710,536] 712. 34 | ~35 | ~49 [avatar contradiction clause 711] 721. predy(sK6) | ~room(sK6) <- (54) [resolution 706,362] 722. ~room(sK6) <- (~34, 54) [subsumption resolution 721,531] 723. $false <- (~34, 35, 54) [subsumption resolution 722,536] 724. 34 | ~35 | ~54 [avatar contradiction clause 723] 739. predg(sK6) | ~room(sK6) <- (34) [resolution 530,365] 743. predy(X1) | predl(X1) <- (42) [resolution 565,361] 745. predk(X3) <- (42) [resolution 565,380] 752. ~predl(X0) | preds(X0) | predp(X0) <- (42) [resolution 745,586] 794. predl(X1) | predg(X1) | ~room(X1) <- (42) [resolution 743,365] 824. 57 <=> predp(sK3) [avatar definition] 825. ~predp(sK3) <- (~57) [avatar component clause 824] 826. predp(sK3) <- (57) [avatar component clause 824] 828. 58 <=> preds(sK3) [avatar definition] 830. preds(sK3) <- (58) [avatar component clause 828] 832. predy(sK3) | ~room(sK3) <- (57) [resolution 826,363] 838. predy(sK3) <- (42, 57) [subsumption resolution 832,565] 839. 14 | ~42 | ~57 [avatar split clause 838,824,564,437] 895. predg(X1) | predl(X1) <- (42) [subsumption resolution 794,565] 897. predg(sK6) <- (34, 35) [subsumption resolution 739,536] 930. sK6 = X0 | ~predg(X0) | ~room(sK6) | ~room(X0) <- (34, 35) [resolution 897,368] 932. sK6 = X0 | ~predg(X0) | ~room(X0) <- (34, 35) [subsumption resolution 930,536] 933. ~predg(X0) | sK6 = X0 <- (34, 35, 42) [subsumption resolution 932,565] 987. predl(sK3) <- (~14, 42) [resolution 439,743] 1036. preds(sK3) | predp(sK3) <- (~14, 42) [resolution 987,752] 1038. preds(sK3) <- (~14, 42, ~57) [subsumption resolution 1036,825] 1039. 58 | 14 | ~42 | 57 [avatar split clause 1038,824,564,437,828] 1080. predy(sK3) | ~room(sK3) <- (58) [resolution 830,362] 1081. ~room(sK3) <- (~14, 58) [subsumption resolution 1080,439] 1082. $false <- (~14, 42, 58) [subsumption resolution 1081,565] 1083. 14 | ~42 | ~58 [avatar contradiction clause 1082] 1086. predg(sK3) | ~room(sK3) <- (14) [resolution 438,365] 1088. predg(sK3) <- (14, 42) [subsumption resolution 1086,565] 1089. sK3 = X0 | ~predg(X0) | ~room(sK3) | ~room(X0) <- (14, 42) [resolution 1088,368] 1091. sK3 = X0 | ~predg(X0) | ~room(X0) <- (14, 42) [subsumption resolution 1089,565] 1092. ~predg(X0) | sK3 = X0 <- (14, 42) [subsumption resolution 1091,565] 1112. sK3 = sK6 <- (14, 34, 35, 42) [resolution 933,1088] 1114. sK6 = X1 | predl(X1) <- (34, 35, 42) [resolution 933,895] 1129. predl(X1) | sK3 = X1 <- (14, 34, 35, 42) [forward demodulation 1114,1112] 1191. predp(X0) | preds(X0) | sK3 = X0 <- (14, 34, 35, 42) [resolution 1129,752] 1257. preds(X0) | sK3 = X0 | predy(X0) | ~room(X0) <- (14, 34, 35, 42) [resolution 1191,363] 1260. predy(X0) | sK3 = X0 | preds(X0) <- (14, 34, 35, 42) [subsumption resolution 1257,565] 1339. sK3 = X2 | preds(X2) | predg(X2) | ~room(X2) <- (14, 34, 35, 42) [resolution 1260,365] 1341. sK3 = X2 | preds(X2) | predg(X2) <- (14, 34, 35, 42) [subsumption resolution 1339,565] 1342. preds(X2) | sK3 = X2 <- (14, 34, 35, 42) [subsumption resolution 1341,1092] 1349. sK3 = X0 | predy(X0) | ~room(X0) <- (14, 34, 35, 42) [resolution 1342,362] 1350. predy(X0) | sK3 = X0 <- (14, 34, 35, 42) [subsumption resolution 1349,565] 1359. sK3 = X2 | predg(X2) | ~room(X2) <- (14, 34, 35, 42) [resolution 1350,365] 1360. sK3 = X2 | predg(X2) <- (14, 34, 35, 42) [subsumption resolution 1359,565] 1361. sK3 = X2 <- (14, 34, 35, 42) [subsumption resolution 1360,1092] 1368. X0 = X1 <- (14, 34, 35, 42) [superposition 1361,1361] 1512. mary != X20 <- (14, 34, 35, 42) [superposition 311,1368] 1609. $false <- (14, 34, 35, 42) [subsumption resolution 1512,1368] 1610. ~14 | ~34 | ~35 | ~42 [avatar contradiction clause 1609] 1611. $false [avatar sat refutation 532,537,566,619,707,712,724,839,1039,1083,1610] % SZS output end Proof for 9184303942574449283674451 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5756 % Time elapsed: 0.048 s % ------------------------------ % ------------------------------
0.510839
Sandra, Jackie are the only persons in the room. It is true that “Sandra who composes and performs experimental electronic music drives a hybrid car”. Everyone in the room who is an amateur astronomer who builds and uses custom telescopes drives a hybrid car. Everyone in the room writes in-depth travel guides for off-the-beaten-path destinations. Everyone in the room hosts regular workshops on creative writing, is an amateur astronomer who builds and uses custom telescopes or does not create augmented reality experiences for mobile applications only if they either is a coffee connoisseur or competes in national level swimming championships but not both.
More than one person in the room creates augmented reality experiences for mobile applications.
neutral
room(sandra)&room(jackie)&(![X]:(room(X)=>(X='sandra'|X='jackie')))& ((composes_and_performs_experimental_electronic_music(sandra))&(drives_a_hybrid_car(sandra)))& (![X]:(room(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))=>(drives_a_hybrid_car(X))))))& (![X]:(room(X)=>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))& (![X]:(room(X)=>(((((is_a_coffee_connoisseur(X))<~>(competes_in_national_level_swimming_championships(X))))<=(((hosts_regular_workshops_on_creative_writing(X))|(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(does_not_create_augmented_reality_experiences_for_mobile_applications(X))))))))& (![X]:(room(X)=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))&(competes_in_national_level_swimming_championships(X))))))& (![X]:(room(X)=>(((((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))<~>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))=>(enjoys_cross-country_skiing(X))))))& (creates_augmented_reality_experiences_for_mobile_applications(sandra))& (![X]:(room(X)=>(((((hosts_regular_workshops_on_creative_writing(X))&(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))=>(does_not_compose_and_performs_experimental_electronic_music(X))))))& (![X]:(room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))|(does_not_regularly_contributes_to_tech_forums_and_online_communities(X))))))& (~?[X]:(anywhere(X)=>(((hosts_regular_workshops_on_creative_writing(X))<=(composes_and_performs_experimental_electronic_music(X))))))& (?[X]:(room(X)&(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))& (![X]:(room(X)=>(((is_a_coffee_connoisseur(X))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))& (![X]:(room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))=>(creates_augmented_reality_experiences_for_mobile_applications(X))))))& (![X]:(room(X)=>(enjoys_macrame(X))))& (![X]:(room(X)=>(((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))=>(hosts_regular_workshops_on_creative_writing(X))))))& (![X]:(room(X)=>(((hosts_regular_workshops_on_creative_writing(X))=>(drives_a_hybrid_car(X))))))
room(sandra)&room(jackie)&(![X]:(room(X)=>(X='sandra'|X='jackie')))& (?[X,Y]:(room(X)&room(Y)&(creates_augmented_reality_experiences_for_mobile_applications(X)&creates_augmented_reality_experiences_for_mobile_applications(Y))&(X!=Y)))
[]
null
0.076933
Joseph, Maria are the only persons in the room. If “everyone in the room does not enjoy camping and organizing outdoor survival workshops or does not collect foreign coins” then “everyone anywhere who does not enjoy camping and organizing outdoor survival workshops enjoys kayaking and exploring remote waterways”. If “everyone outside the room does not enjoy deep-sea diving and exploring underwater caves or enjoys watercolor painting” then “if someone does not own a smartwatch then he/she either participates in citizen science projects related to wildlife monitoring or can play the flute but not both”. Everyone in the room does not enjoy deep-sea diving and exploring underwater caves if they either enjoys origami or collects modern art but not both and vice versa. Everyone in the room either enjoys origami or collects modern art but not both if and only if they does not enjoy origami. Everyone in the room either regularly goes on multi-day backpacking trips in national parks or does not collect modern art but not both if they does not enjoy origami. Everyone in the room either regularly goes on multi-day backpacking trips in national parks or does not collect modern art but not both only if they does not develop open-source software projects in their free time. Everyone in the room enjoys origami if they has a specialized collection of handmade artisan pottery. Everyone in the room who enjoys origami is a dedicated advocate for digital privacy and encryption. Everyone in the room who is a dedicated advocate for digital privacy and encryption collects modern art. Everyone in the room who collects modern art collects foreign coins. Joseph who collects modern art is a dedicated advocate for digital privacy and encryption. If someone builds model airplanes then he/she either collects foreign coins or enjoys kayaking and exploring remote waterways but not both. Maria who enjoys making ceramics enjoys deep-sea diving and exploring underwater caves. If someone does not own a smartwatch then he/she either participates in citizen science projects related to wildlife monitoring or can play the flute but not both. If someone owns a smartwatch then he/she is an active member of a local robotics club.
Maria is a dedicated advocate for digital privacy and encryption.
entailment
room(joseph)&room(maria)&(![X]:(room(X)=>(X='joseph'|X='maria')))& ((![X]:(room(X)=>(((does_not_collect_foreign_coins(X))|(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))))=>(![X]:(anywhere(X)=>(((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))=>(enjoys_kayaking_and_exploring_remote_waterways(X)))))))& ((![X]:(~room(X)=>(((enjoys_watercolor_painting(X))|(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))))))=>((![X]:((does_not_own_a_smartwatch(X))=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))<~>(can_play_the_flute(X))))))))& (![X]:(room(X)=>(((does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))<=>(((enjoys_origami(X))<~>(collects_modern_art(X))))))))& (![X]:(room(X)=>(((((enjoys_origami(X))<~>(collects_modern_art(X))))<=>(does_not_enjoy_origami(X))))))& (![X]:(room(X)=>(((does_not_enjoy_origami(X))=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))<~>(does_not_collect_modern_art(X))))))))& (![X]:(room(X)=>(((does_not_develop_open-source_software_projects_in_their_free_time(X))<=(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))<~>(does_not_collect_modern_art(X))))))))& (![X]:(room(X)=>(((has_a_specialized_collection_of_handmade_artisan_pottery(X))=>(enjoys_origami(X))))))& (![X]:(room(X)=>(((enjoys_origami(X))=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))& (![X]:(room(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))=>(collects_modern_art(X))))))& (![X]:(room(X)=>(((collects_modern_art(X))=>(collects_foreign_coins(X))))))& ((collects_modern_art(joseph))&(is_a_dedicated_advocate_for_digital_privacy_and_encryption(joseph)))& ((![X]:((builds_model_airplanes(X))=>(((collects_foreign_coins(X))<~>(enjoys_kayaking_and_exploring_remote_waterways(X)))))))& ((enjoys_making_ceramics(maria))&(enjoys_deep-sea_diving_and_exploring_underwater_caves(maria)))& ((![X]:((does_not_own_a_smartwatch(X))=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))<~>(can_play_the_flute(X)))))))& ((![X]:((owns_a_smartwatch(X))=>(is_an_active_member_of_a_local_robotics_club(X)))))
room(joseph)&room(maria)&(![X]:(room(X)=>(X='joseph'|X='maria')))& is_a_dedicated_advocate_for_digital_privacy_and_encryption(maria)
[ "p0", "p3", "p4", "p8", "p13", "hypothesis" ]
% SZS status Unsatisfiable for 548647454942917471771397 % SZS output start Proof for 548647454942917471771397 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 47. ! [X0] : (room(X0) => (~predt(X0) <=> (predp(X0) <~> predn(X0)))) [input p3] 48. ! [X0] : (room(X0) => ((predp(X0) <~> predn(X0)) <=> ~predp(X0))) [input p4] 52. ! [X0] : (room(X0) => (predp(X0) => preds(X0))) [input p8] 57. predt(paul) & predz(paul) [input p13] 60. ~(preds(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 66. predt(paul) [pure predicate removal 57] 144. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 145. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 144] 146. ! [X0] : ((~predt(X0) <=> (predp(X0) <~> predn(X0))) | ~room(X0)) [ennf transformation 47] 147. ! [X0] : (((predp(X0) <~> predn(X0)) <=> ~predp(X0)) | ~room(X0)) [ennf transformation 48] 150. ! [X0] : ((preds(X0) | ~predp(X0)) | ~room(X0)) [ennf transformation 52] 151. ! [X0] : (preds(X0) | ~predp(X0) | ~room(X0)) [flattening 150] 154. ~preds(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 60] 155. ~preds(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 154] 157. ! [X0] : (((~predt(X0) | ((predp(X0) | ~predn(X0)) & (predn(X0) | ~predp(X0)))) & (((~predn(X0) | ~predp(X0)) & (predn(X0) | predp(X0))) | predt(X0))) | ~room(X0)) [nnf transformation 146] 158. ! [X0] : (((((~predn(X0) | ~predp(X0)) & (predn(X0) | predp(X0))) | predp(X0)) & (~predp(X0) | ((predp(X0) | ~predn(X0)) & (predn(X0) | ~predp(X0))))) | ~room(X0)) [nnf transformation 147] 160. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK0 & mary != sK0 & room(sK0)) [choice axiom] 161. ~preds(paul) | (paul != sK0 & mary != sK0 & room(sK0)) | ~room(paul) | ~room(mary) [skolemisation 155,160] 242. room(mary) [cnf transformation 145] 243. room(paul) [cnf transformation 145] 244. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 145] 248. ~predn(X0) | predp(X0) | ~predt(X0) | ~room(X0) [cnf transformation 157] 249. ~predp(X0) | predn(X0) | ~predp(X0) | ~room(X0) [cnf transformation 158] 251. predn(X0) | predp(X0) | predp(X0) | ~room(X0) [cnf transformation 158] 255. ~predp(X0) | preds(X0) | ~room(X0) [cnf transformation 151] 259. predt(paul) [cnf transformation 66] 260. ~preds(paul) | room(sK0) | ~room(paul) | ~room(mary) [cnf transformation 161] 261. ~preds(paul) | mary != sK0 | ~room(paul) | ~room(mary) [cnf transformation 161] 262. ~preds(paul) | paul != sK0 | ~room(paul) | ~room(mary) [cnf transformation 161] 263. ~predp(X0) | predn(X0) | ~room(X0) [duplicate literal removal 249] 264. ~room(X0) | predp(X0) | predn(X0) [duplicate literal removal 251] 265. ~room(X0) | predn(X0) [subsumption resolution 263,264] 267. ~preds(paul) | paul != sK0 | ~room(mary) [subsumption resolution 262,243] 268. ~preds(paul) | paul != sK0 [subsumption resolution 267,242] 270. 1 <=> paul = sK0 [avatar definition] 272. paul != sK0 <- (~1) [avatar component clause 270] 274. 2 <=> preds(paul) [avatar definition] 277. ~1 | ~2 [avatar split clause 268,274,270] 278. ~preds(paul) | mary != sK0 | ~room(mary) [subsumption resolution 261,243] 279. ~preds(paul) | mary != sK0 [subsumption resolution 278,242] 281. 3 <=> mary = sK0 [avatar definition] 283. mary != sK0 <- (~3) [avatar component clause 281] 284. ~3 | ~2 [avatar split clause 279,274,281] 285. ~preds(paul) | room(sK0) | ~room(mary) [subsumption resolution 260,243] 286. ~preds(paul) | room(sK0) [subsumption resolution 285,242] 288. 4 <=> room(sK0) [avatar definition] 290. room(sK0) <- (4) [avatar component clause 288] 291. 4 | ~2 [avatar split clause 286,274,288] 293. predn(paul) [resolution 265,243] 312. 8 <=> predp(paul) [avatar definition] 314. predp(paul) <- (8) [avatar component clause 312] 329. predp(paul) | ~predt(paul) | ~room(paul) [resolution 248,293] 333. predp(paul) | ~room(paul) [subsumption resolution 329,259] 334. predp(paul) [subsumption resolution 333,243] 335. 8 [avatar split clause 334,312] 337. preds(paul) | ~room(paul) <- (8) [resolution 314,255] 341. preds(paul) <- (8) [subsumption resolution 337,243] 342. 2 | ~8 [avatar split clause 341,312,274] 344. mary = sK0 | paul = sK0 <- (4) [resolution 290,244] 361. paul = sK0 <- (~3, 4) [subsumption resolution 344,283] 362. $false <- (~1, ~3, 4) [subsumption resolution 361,272] 363. 1 | 3 | ~4 [avatar contradiction clause 362] 371. $false [avatar sat refutation 277,284,291,335,342,363] % SZS output end Proof for 548647454942917471771397 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.030 s % ------------------------------ % ------------------------------
0.170445
Barbara, Debra, Sheryll, Jasper, Brandon are the only persons in the room. If “Barbara practices zumba” then “Barbara either owns a smartwatch or does not own a smartwatch but not both”. “If someone is a coffee connoisseur then he/she owns an extensive assortment of vintage comic book memorabilia and vice versa” if “Debra creates large-scale murals for public art installations”. Either “Barbara owns a smartwatch” or “Debra collects classic novels” but not both. “Barbara does not play the drums” if “Barbara owns a smart tv”. If “someone in the room collects classic novels, hosts regular workshops on creative writing and owns a smart tv” then “Debra creates large-scale murals for public art installations”. Someone in the room plays the drums. If someone owns a smartwatch then he/she has completed a triathlon, creates large-scale murals for public art installations and owns a smart tv. Barbara owns a smartwatch. If someone does not practice zumba then he/she owns a smartwatch. If someone owns a smartwatch then he/she practices zumba. If someone practices zumba then he/she creates large-scale murals for public art installations. Only one person in the room is not a coffee connoisseur. Debra is not a coffee connoisseur.
Jasper owns an extensive assortment of vintage comic book memorabilia.
entailment
room(barbara)&room(debra)&room(sheryll)&room(jasper)&room(brandon)&(![X]:(room(X)=>(X='barbara'|X='debra'|X='sheryll'|X='jasper'|X='brandon')))& ((practices_zumba(barbara))=>(((owns_a_smartwatch(barbara))<~>(does_not_own_a_smartwatch(barbara)))))& ((creates_large-scale_murals_for_public_art_installations(debra))=>((![X]:((is_a_coffee_connoisseur(X))<=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))& ((owns_a_smartwatch(barbara))<~>(collects_classic_novels(debra)))& ((owns_a_smart_tv(barbara))=>(does_not_play_the_drums(barbara)))& ((?[X]:(room(X)&(((collects_classic_novels(X))&(hosts_regular_workshops_on_creative_writing(X))&(owns_a_smart_tv(X))))))=>(creates_large-scale_murals_for_public_art_installations(debra)))& (?[X]:(room(X)&(plays_the_drums(X))))& ((![X]:((owns_a_smartwatch(X))=>(((has_completed_a_triathlon(X))&(creates_large-scale_murals_for_public_art_installations(X))&(owns_a_smart_tv(X)))))))& (owns_a_smartwatch(barbara))& (practices_archery(debra))& ((has_completed_a_triathlon(barbara))&(is_a_coffee_connoisseur(barbara)))& (?[X]:(anywhere(X)&(creates_large-scale_murals_for_public_art_installations(X))))& ((![X]:((does_not_practice_zumba(X))=>(owns_a_smartwatch(X)))))& ((![X]:((owns_a_smartwatch(X))=>(practices_zumba(X)))))& ((![X]:((practices_zumba(X))=>(creates_large-scale_murals_for_public_art_installations(X)))))& ((![X]:((does_not_practice_zumba(X))=>(does_not_have_completed_a_triathlon(X)))))& (owns_a_smart_tv(barbara))& (?[X]:(room(X)&(is_a_coffee_connoisseur(X))))& (((?[X]:(room(X)&is_not_a_coffee_connoisseur(X)))&(![X,Y]:((room(X)&room(Y)&(is_not_a_coffee_connoisseur(X))&(is_not_a_coffee_connoisseur(Y)))=>(X=Y)))))& (((practices_archery(barbara))&(hosts_regular_workshops_on_creative_writing(barbara))&(does_not_play_the_drums(barbara))))& (((?[X]:(room(X)&has_completed_a_triathlon(X)))))& (((?[X]:(room(X)&collects_classic_novels(X)))&(![X,Y]:((room(X)&room(Y)&(collects_classic_novels(X))&(collects_classic_novels(Y)))=>(X=Y)))))& (is_not_a_coffee_connoisseur(debra))& (?[X]:(anywhere(X)&(hosts_regular_workshops_on_creative_writing(X))))& (does_not_own_a_smart_tv(debra))& (creates_large-scale_murals_for_public_art_installations(debra))& (owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(barbara))& (is_a_coffee_connoisseur(barbara))
room(barbara)&room(debra)&room(sheryll)&room(jasper)&room(brandon)&(![X]:(room(X)=>(X='barbara'|X='debra'|X='sheryll'|X='jasper'|X='brandon')))& owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(jasper)
[ "b42", "p0", "p2", "p12", "p13", "p14", "p18", "p22", "hypothesis" ]
% SZS status Unsatisfiable for 6755489534369009944966079 % SZS output start Proof for 6755489534369009944966079 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. predi(paul) => ! [X0] : (predh(X0) <=> predb(X0)) [input p2] 56. ! [X0] : (~predd(X0) => predc(X0)) [input p12] 57. ! [X0] : (predc(X0) => predd(X0)) [input p13] 58. ! [X0] : (predd(X0) => predi(X0)) [input p14] 62. ! [X0,X1] : ((~predh(X1) & ~predh(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (~predh(X0) & room(X0)) [input p18] 66. ~predh(paul) [input p22] 72. ~(predb(alice) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 73. ! [X0,X1] : ((~predh(X1) & ~predh(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~predh(X2) & room(X2)) [rectify 62] 151. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 152. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 151] 154. ! [X0] : (predh(X0) <=> predb(X0)) | ~predi(paul) [ennf transformation 46] 158. ! [X0] : (predc(X0) | predd(X0)) [ennf transformation 56] 159. ! [X0] : (predd(X0) | ~predc(X0)) [ennf transformation 57] 160. ! [X0] : (predi(X0) | ~predd(X0)) [ennf transformation 58] 162. ! [X0,X1] : (X0 = X1 | (predh(X1) | predh(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (~predh(X2) & room(X2)) [ennf transformation 73] 163. ! [X0,X1] : (X0 = X1 | predh(X1) | predh(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (~predh(X2) & room(X2)) [flattening 162] 166. ~predb(alice) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 72] 167. ~predb(alice) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 166] 170. ! [X0] : ((predh(X0) | ~predb(X0)) & (predb(X0) | ~predh(X0))) | ~predi(paul) [nnf transformation 154] 178. ? [X2] : (~predh(X2) & room(X2)) => (~predh(sK3) & room(sK3)) [choice axiom] 179. ! [X0,X1] : (X0 = X1 | predh(X1) | predh(X0) | ~room(X1) | ~room(X0)) & (~predh(sK3) & room(sK3)) [skolemisation 163,178] 186. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK7 & alice != sK7 & fred != sK7 & paul != sK7 & mary != sK7 & room(sK7)) [choice axiom] 187. ~predb(alice) | (john != sK7 & alice != sK7 & fred != sK7 & paul != sK7 & mary != sK7 & room(sK7)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 167,186] 245. paul != alice [cnf transformation 43] 268. room(mary) [cnf transformation 152] 269. room(paul) [cnf transformation 152] 270. room(fred) [cnf transformation 152] 271. room(alice) [cnf transformation 152] 272. room(john) [cnf transformation 152] 273. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 152] 276. predb(X0) | ~predh(X0) | ~predi(paul) [cnf transformation 170] 291. predc(X0) | predd(X0) [cnf transformation 158] 292. predd(X0) | ~predc(X0) [cnf transformation 159] 293. predi(X0) | ~predd(X0) [cnf transformation 160] 300. ~room(X1) | predh(X1) | predh(X0) | X0 = X1 | ~room(X0) [cnf transformation 179] 308. ~predh(paul) [cnf transformation 66] 314. ~predb(alice) | room(sK7) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 187] 315. ~predb(alice) | mary != sK7 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 187] 316. ~predb(alice) | paul != sK7 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 187] 317. ~predb(alice) | fred != sK7 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 187] 318. ~predb(alice) | alice != sK7 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 187] 319. ~predb(alice) | john != sK7 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 187] 321. 1 <=> predi(paul) [avatar definition] 323. ~predi(paul) <- (~1) [avatar component clause 321] 329. 3 <=> ! [X0] : (predb(X0) | ~predh(X0)) [avatar definition] 330. ~predh(X0) | predb(X0) <- (3) [avatar component clause 329] 331. ~1 | 3 [avatar split clause 276,329,321] 356. predd(X0) [subsumption resolution 292,291] 357. predi(X0) [subsumption resolution 293,356] 360. ~predb(alice) | john != sK7 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 319,272] 361. ~predb(alice) | john != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 360,271] 362. ~predb(alice) | john != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 361,270] 363. ~predb(alice) | john != sK7 | ~room(mary) [subsumption resolution 362,269] 364. ~predb(alice) | john != sK7 [subsumption resolution 363,268] 366. 9 <=> john = sK7 [avatar definition] 368. john != sK7 <- (~9) [avatar component clause 366] 370. 10 <=> predb(alice) [avatar definition] 373. ~9 | ~10 [avatar split clause 364,370,366] 374. ~predb(alice) | alice != sK7 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 318,272] 375. ~predb(alice) | alice != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 374,271] 376. ~predb(alice) | alice != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 375,270] 377. ~predb(alice) | alice != sK7 | ~room(mary) [subsumption resolution 376,269] 378. ~predb(alice) | alice != sK7 [subsumption resolution 377,268] 380. 11 <=> alice = sK7 [avatar definition] 382. alice != sK7 <- (~11) [avatar component clause 380] 383. ~11 | ~10 [avatar split clause 378,370,380] 384. ~predb(alice) | fred != sK7 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 317,272] 385. ~predb(alice) | fred != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 384,271] 386. ~predb(alice) | fred != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 385,270] 387. ~predb(alice) | fred != sK7 | ~room(mary) [subsumption resolution 386,269] 388. ~predb(alice) | fred != sK7 [subsumption resolution 387,268] 390. 12 <=> fred = sK7 [avatar definition] 392. fred != sK7 <- (~12) [avatar component clause 390] 393. ~12 | ~10 [avatar split clause 388,370,390] 394. ~predb(alice) | paul != sK7 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 316,272] 395. ~predb(alice) | paul != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 394,271] 396. ~predb(alice) | paul != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 395,270] 397. ~predb(alice) | paul != sK7 | ~room(mary) [subsumption resolution 396,269] 398. ~predb(alice) | paul != sK7 [subsumption resolution 397,268] 400. 13 <=> paul = sK7 [avatar definition] 402. paul != sK7 <- (~13) [avatar component clause 400] 403. ~13 | ~10 [avatar split clause 398,370,400] 404. ~predb(alice) | mary != sK7 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 315,272] 405. ~predb(alice) | mary != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 404,271] 406. ~predb(alice) | mary != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 405,270] 407. ~predb(alice) | mary != sK7 | ~room(mary) [subsumption resolution 406,269] 408. ~predb(alice) | mary != sK7 [subsumption resolution 407,268] 410. 14 <=> mary = sK7 [avatar definition] 412. mary != sK7 <- (~14) [avatar component clause 410] 413. ~14 | ~10 [avatar split clause 408,370,410] 414. ~predb(alice) | room(sK7) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 314,272] 415. ~predb(alice) | room(sK7) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 414,271] 416. ~predb(alice) | room(sK7) | ~room(paul) | ~room(mary) [subsumption resolution 415,270] 417. ~predb(alice) | room(sK7) | ~room(mary) [subsumption resolution 416,269] 418. ~predb(alice) | room(sK7) [subsumption resolution 417,268] 420. 15 <=> room(sK7) [avatar definition] 422. room(sK7) <- (15) [avatar component clause 420] 423. 15 | ~10 [avatar split clause 418,370,420] 424. $false <- (~1) [subsumption resolution 323,357] 425. 1 [avatar contradiction clause 424] 490. predh(paul) | predh(X1) | paul = X1 | ~room(X1) [resolution 300,269] 499. ~room(X1) | paul = X1 | predh(X1) [subsumption resolution 490,308] 512. 22 <=> predh(alice) [avatar definition] 514. predh(alice) <- (22) [avatar component clause 512] 552. paul = alice | predh(alice) [resolution 499,271] 561. predh(alice) [subsumption resolution 552,245] 562. 22 [avatar split clause 561,512] 702. predb(alice) <- (3, 22) [resolution 514,330] 705. 10 | ~3 | ~22 [avatar split clause 702,512,329,370] 707. alice = sK7 | fred = sK7 | paul = sK7 | mary = sK7 | john = sK7 <- (15) [resolution 422,273] 710. fred = sK7 | paul = sK7 | mary = sK7 | john = sK7 <- (~11, 15) [subsumption resolution 707,382] 711. paul = sK7 | mary = sK7 | john = sK7 <- (~11, ~12, 15) [subsumption resolution 710,392] 712. mary = sK7 | john = sK7 <- (~11, ~12, ~13, 15) [subsumption resolution 711,402] 713. john = sK7 <- (~11, ~12, ~13, ~14, 15) [subsumption resolution 712,412] 714. $false <- (~9, ~11, ~12, ~13, ~14, 15) [subsumption resolution 713,368] 715. 9 | 11 | 12 | 13 | 14 | ~15 [avatar contradiction clause 714] 717. $false [avatar sat refutation 331,373,383,393,403,413,423,425,562,705,715] % SZS output end Proof for 6755489534369009944966079 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.068803
Maureen, Lisa, Eldridge are the only persons in the room. Either "Lisa is not a cybersecurity expert" or "everyone in the room does not play as a goalkeeper for a local amateur soccer team or is an enthusiastic bird watcher who travels for rare sightings" but not both. "Everyone in the room is not a scotch connoisseur or enjoys salsa dancing" only if "Maureen who is not an enthusiastic bird watcher who travels for rare sightings does not play as a goalkeeper for a local amateur soccer team". Either "everyone in the room is an enthusiastic bird watcher who travels for rare sightings or does not make intricate hand-cut paper art for exhibitions" or "Maureen is an enthusiastic bird watcher who travels for rare sightings" but not both. "Maureen plays video games and enjoys origami" if "someone in the room is a scotch connoisseur" and vice versa. "Everyone in the room does not enjoy salsa dancing or enjoys salsa dancing" if "Maureen writes a travel blog" and vice versa. Maureen is not an enthusiastic bird watcher who travels for rare sightings. Everyone in the room who writes a travel blog neither makes intricate hand-cut paper art for exhibitions nor enjoys salsa dancing. If someone collect rare sneakers, makes intricate hand-cut paper art for exhibitions and enjoys origami then he/she enjoys origami and vice versa. Lisa is not a cybersecurity expert. Lisa is an enthusiastic bird watcher who travels for rare sightings.
More than one person in the room does not make intricate hand-cut paper art for exhibitions.
entailment
room(maureen)&room(lisa)&room(eldridge)&(![X]:(room(X)=>(X='maureen'|X='lisa'|X='eldridge')))& ((![X]:(~room(X)=>(((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(enjoys_origami(X))))))=>(![X]:(room(X)=>(((((does_not_enjoy_salsa_dancing(X))&(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))&(is_a_scotch_connoisseur(X))))=>(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))))& ((is_not_a_cybersecurity_expert(lisa))<~>(![X]:(room(X)=>(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))|(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))))& ((![X]:(room(X)=>(((enjoys_salsa_dancing(X))|(is_not_a_scotch_connoisseur(X))))))=>((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(maureen))&(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(maureen))))& ((![X]:(room(X)=>(((does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))|(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))<~>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(maureen)))& ((?[X]:(room(X)&(is_a_scotch_connoisseur(X))))<=>(((plays_video_games(maureen))&(enjoys_origami(maureen)))))& ((![X]:(room(X)=>(((does_not_enjoy_origami(X))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))<~>(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(lisa)))& ((writes_a_travel_blog(maureen))<=>(![X]:(room(X)=>(((enjoys_salsa_dancing(X))|(does_not_enjoy_salsa_dancing(X)))))))& ((![X]:(room(X)=>(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))|(does_not_play_video_games(X))))))=>((does_not_enjoy_origami(maureen))&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(maureen))))& (is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(maureen))& (![X]:(room(X)=>(((writes_a_travel_blog(X))=>(~((makes_intricate_hand-cut_paper_art_for_exhibitions(X))|(enjoys_salsa_dancing(X))))))))& (![X]:(anywhere(X)=>(((enjoys_salsa_dancing(X))=>(is_not_a_cybersecurity_expert(X))))))& ((![X]:((((collect_rare_sneakers(X))&(makes_intricate_hand-cut_paper_art_for_exhibitions(X))&(enjoys_origami(X))))<=>(enjoys_origami(X)))))& (is_not_a_cybersecurity_expert(lisa))& (![X]:(~room(X)=>(((writes_a_travel_blog(X))=>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))& (?[X]:(~room(X)&(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))& (is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(lisa))& ((![X]:((does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))=>(writes_a_travel_blog(X)))))& (plays_video_games(lisa))
room(maureen)&room(lisa)&room(eldridge)&(![X]:(room(X)=>(X='maureen'|X='lisa'|X='eldridge')))& (?[X,Y]:(room(X)&room(Y)&(does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X)&does_not_make_intricate_hand-cut_paper_art_for_exhibitions(Y))&(X!=Y)))
[ "b42", "p0", "p2", "p3", "p4", "p5", "p7", "p9", "p10", "p12", "p13", "p16", "hypothesis" ]
% SZS status Unsatisfiable for 814276564526903066905761 % SZS output start Proof for 814276564526903066905761 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 46. ~predc(paul) <~> ! [X0] : (room(X0) => (~predh(X0) | predb(X0))) [input p2] 47. ! [X0] : (room(X0) => (~predi(X0) | predk(X0))) => (~predh(mary) & ~predb(mary)) [input p3] 48. ! [X0] : (room(X0) => (predb(X0) | ~prede(X0))) <~> predb(mary) [input p4] 49. ? [X0] : (predi(X0) & room(X0)) <=> (predg(mary) & predd(mary)) [input p5] 51. predf(mary) <=> ! [X0] : (room(X0) => (~predk(X0) | predk(X0))) [input p7] 53. ~predb(mary) [input p9] 54. ! [X0] : (room(X0) => (predf(X0) => ~(predk(X0) | prede(X0)))) [input p10] 56. ! [X0] : ((predg(X0) & prede(X0) & preda(X0)) <=> predg(X0)) [input p12] 57. ~predc(paul) [input p13] 60. predb(paul) [input p16] 63. ~(? [X0,X1] : (X0 != X1 & ~prede(X1) & ~prede(X0) & room(X1) & room(X0)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 65. ~(? [X0,X1] : (X0 != X1 & ~prede(X1) & ~prede(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => (fred = X2 | paul = X2 | mary = X2)) & room(fred) & room(paul) & room(mary)) [rectify 63] 137. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 138. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 137] 141. ~predc(paul) <~> ! [X0] : ((~predh(X0) | predb(X0)) | ~room(X0)) [ennf transformation 46] 142. ~predc(paul) <~> ! [X0] : (~predh(X0) | predb(X0) | ~room(X0)) [flattening 141] 143. (~predh(mary) & ~predb(mary)) | ? [X0] : ((predi(X0) & ~predk(X0)) & room(X0)) [ennf transformation 47] 144. (~predh(mary) & ~predb(mary)) | ? [X0] : (predi(X0) & ~predk(X0) & room(X0)) [flattening 143] 145. ! [X0] : ((predb(X0) | ~prede(X0)) | ~room(X0)) <~> predb(mary) [ennf transformation 48] 146. ! [X0] : (predb(X0) | ~prede(X0) | ~room(X0)) <~> predb(mary) [flattening 145] 149. predf(mary) <=> ! [X0] : ((~predk(X0) | predk(X0)) | ~room(X0)) [ennf transformation 51] 150. predf(mary) <=> ! [X0] : (~predk(X0) | predk(X0) | ~room(X0)) [flattening 149] 153. ! [X0] : (((~predk(X0) & ~prede(X0)) | ~predf(X0)) | ~room(X0)) [ennf transformation 54] 154. ! [X0] : ((~predk(X0) & ~prede(X0)) | ~predf(X0) | ~room(X0)) [flattening 153] 160. ! [X0,X1] : (X0 = X1 | prede(X1) | prede(X0) | ~room(X1) | ~room(X0)) | ? [X2] : ((fred != X2 & paul != X2 & mary != X2) & room(X2)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 65] 161. ! [X0,X1] : (X0 = X1 | prede(X1) | prede(X0) | ~room(X1) | ~room(X0)) | ? [X2] : (fred != X2 & paul != X2 & mary != X2 & room(X2)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 160] 166. (? [X0] : (predh(X0) & ~predb(X0) & room(X0)) | predc(paul)) & (! [X0] : (~predh(X0) | predb(X0) | ~room(X0)) | ~predc(paul)) [nnf transformation 142] 167. (? [X0] : (predh(X0) & ~predb(X0) & room(X0)) | predc(paul)) & (! [X1] : (~predh(X1) | predb(X1) | ~room(X1)) | ~predc(paul)) [rectify 166] 168. ? [X0] : (predh(X0) & ~predb(X0) & room(X0)) => (predh(sK1) & ~predb(sK1) & room(sK1)) [choice axiom] 169. ((predh(sK1) & ~predb(sK1) & room(sK1)) | predc(paul)) & (! [X1] : (~predh(X1) | predb(X1) | ~room(X1)) | ~predc(paul)) [skolemisation 167,168] 170. ? [X0] : (predi(X0) & ~predk(X0) & room(X0)) => (predi(sK2) & ~predk(sK2) & room(sK2)) [choice axiom] 171. (~predh(mary) & ~predb(mary)) | (predi(sK2) & ~predk(sK2) & room(sK2)) [skolemisation 144,170] 172. (~predb(mary) | ? [X0] : (~predb(X0) & prede(X0) & room(X0))) & (predb(mary) | ! [X0] : (predb(X0) | ~prede(X0) | ~room(X0))) [nnf transformation 146] 173. (~predb(mary) | ? [X0] : (~predb(X0) & prede(X0) & room(X0))) & (predb(mary) | ! [X1] : (predb(X1) | ~prede(X1) | ~room(X1))) [rectify 172] 174. ? [X0] : (~predb(X0) & prede(X0) & room(X0)) => (~predb(sK3) & prede(sK3) & room(sK3)) [choice axiom] 175. (~predb(mary) | (~predb(sK3) & prede(sK3) & room(sK3))) & (predb(mary) | ! [X1] : (predb(X1) | ~prede(X1) | ~room(X1))) [skolemisation 173,174] 176. (? [X0] : (predi(X0) & room(X0)) | (~predg(mary) | ~predd(mary))) & ((predg(mary) & predd(mary)) | ! [X0] : (~predi(X0) | ~room(X0))) [nnf transformation 49] 177. (? [X0] : (predi(X0) & room(X0)) | ~predg(mary) | ~predd(mary)) & ((predg(mary) & predd(mary)) | ! [X0] : (~predi(X0) | ~room(X0))) [flattening 176] 178. (? [X0] : (predi(X0) & room(X0)) | ~predg(mary) | ~predd(mary)) & ((predg(mary) & predd(mary)) | ! [X1] : (~predi(X1) | ~room(X1))) [rectify 177] 179. ? [X0] : (predi(X0) & room(X0)) => (predi(sK4) & room(sK4)) [choice axiom] 180. ((predi(sK4) & room(sK4)) | ~predg(mary) | ~predd(mary)) & ((predg(mary) & predd(mary)) | ! [X1] : (~predi(X1) | ~room(X1))) [skolemisation 178,179] 185. (predf(mary) | ? [X0] : (predk(X0) & ~predk(X0) & room(X0))) & (! [X0] : (~predk(X0) | predk(X0) | ~room(X0)) | ~predf(mary)) [nnf transformation 150] 186. (predf(mary) | ? [X0] : (predk(X0) & ~predk(X0) & room(X0))) & (! [X1] : (~predk(X1) | predk(X1) | ~room(X1)) | ~predf(mary)) [rectify 185] 187. ? [X0] : (predk(X0) & ~predk(X0) & room(X0)) => (predk(sK6) & ~predk(sK6) & room(sK6)) [choice axiom] 188. (predf(mary) | (predk(sK6) & ~predk(sK6) & room(sK6))) & (! [X1] : (~predk(X1) | predk(X1) | ~room(X1)) | ~predf(mary)) [skolemisation 186,187] 191. ! [X0] : (((predg(X0) & prede(X0) & preda(X0)) | ~predg(X0)) & (predg(X0) | (~predg(X0) | ~prede(X0) | ~preda(X0)))) [nnf transformation 56] 192. ! [X0] : (((predg(X0) & prede(X0) & preda(X0)) | ~predg(X0)) & (predg(X0) | ~predg(X0) | ~prede(X0) | ~preda(X0))) [flattening 191] 195. ? [X2] : (fred != X2 & paul != X2 & mary != X2 & room(X2)) => (fred != sK9 & paul != sK9 & mary != sK9 & room(sK9)) [choice axiom] 196. ! [X0,X1] : (X0 = X1 | prede(X1) | prede(X0) | ~room(X1) | ~room(X0)) | (fred != sK9 & paul != sK9 & mary != sK9 & room(sK9)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 161,195] 248. mary != fred [cnf transformation 43] 278. room(mary) [cnf transformation 138] 279. room(paul) [cnf transformation 138] 280. room(fred) [cnf transformation 138] 281. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 138] 286. room(sK1) | predc(paul) [cnf transformation 169] 287. ~predb(sK1) | predc(paul) [cnf transformation 169] 288. predh(sK1) | predc(paul) [cnf transformation 169] 292. ~predh(mary) | room(sK2) [cnf transformation 171] 294. ~predh(mary) | predi(sK2) [cnf transformation 171] 295. predb(mary) | predb(X1) | ~prede(X1) | ~room(X1) [cnf transformation 175] 300. predg(mary) | ~predi(X1) | ~room(X1) [cnf transformation 180] 309. predf(mary) | ~predk(sK6) [cnf transformation 188] 310. predf(mary) | predk(sK6) [cnf transformation 188] 317. ~predb(mary) [cnf transformation 53] 318. ~predf(X0) | ~prede(X0) | ~room(X0) [cnf transformation 154] 323. ~predg(X0) | prede(X0) [cnf transformation 192] 325. ~predc(paul) [cnf transformation 57] 329. predb(paul) [cnf transformation 60] 332. X0 = X1 | prede(X1) | prede(X0) | ~room(X1) | ~room(X0) | room(sK9) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 196] 333. X0 = X1 | prede(X1) | prede(X0) | ~room(X1) | ~room(X0) | mary != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 196] 334. X0 = X1 | prede(X1) | prede(X0) | ~room(X1) | ~room(X0) | paul != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 196] 335. X0 = X1 | prede(X1) | prede(X0) | ~room(X1) | ~room(X0) | fred != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 196] 337. 1 <=> predc(paul) [avatar definition] 341. 2 <=> predh(sK1) [avatar definition] 343. predh(sK1) <- (2) [avatar component clause 341] 344. 1 | 2 [avatar split clause 288,341,337] 346. 3 <=> predb(sK1) [avatar definition] 348. ~predb(sK1) <- (~3) [avatar component clause 346] 349. 1 | ~3 [avatar split clause 287,346,337] 351. 4 <=> room(sK1) [avatar definition] 353. room(sK1) <- (4) [avatar component clause 351] 354. 1 | 4 [avatar split clause 286,351,337] 360. 6 <=> predi(sK2) [avatar definition] 362. predi(sK2) <- (6) [avatar component clause 360] 364. 7 <=> predh(mary) [avatar definition] 367. 6 | ~7 [avatar split clause 294,364,360] 374. 9 <=> room(sK2) [avatar definition] 376. room(sK2) <- (9) [avatar component clause 374] 377. 9 | ~7 [avatar split clause 292,364,374] 379. 10 <=> predb(mary) [avatar definition] 401. 14 <=> ! [X1] : (predb(X1) | ~room(X1) | ~prede(X1)) [avatar definition] 402. ~prede(X1) | ~room(X1) | predb(X1) <- (14) [avatar component clause 401] 403. 14 | 10 [avatar split clause 295,379,401] 409. 16 <=> predg(mary) [avatar definition] 410. predg(mary) <- (16) [avatar component clause 409] 423. 19 <=> ! [X1] : (~predi(X1) | ~room(X1)) [avatar definition] 424. ~predi(X1) | ~room(X1) <- (19) [avatar component clause 423] 425. 19 | 16 [avatar split clause 300,409,423] 451. 25 <=> predk(sK6) [avatar definition] 455. 26 <=> predf(mary) [avatar definition] 457. predf(mary) <- (26) [avatar component clause 455] 458. 25 | 26 [avatar split clause 310,455,451] 459. ~25 | 26 [avatar split clause 309,455,451] 487. ~10 [avatar split clause 317,379] 489. ~1 [avatar split clause 325,337] 490. X0 = X1 | prede(X1) | prede(X0) | ~room(X1) | ~room(X0) | fred != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 335,280] 491. X0 = X1 | prede(X1) | prede(X0) | ~room(X1) | ~room(X0) | fred != sK9 | ~room(mary) [subsumption resolution 490,279] 492. X0 = X1 | prede(X1) | prede(X0) | ~room(X1) | ~room(X0) | fred != sK9 [subsumption resolution 491,278] 494. 32 <=> fred = sK9 [avatar definition] 496. fred != sK9 <- (~32) [avatar component clause 494] 498. 33 <=> ! [X0,X1] : (X0 = X1 | ~room(X0) | ~room(X1) | prede(X0) | prede(X1)) [avatar definition] 499. ~room(X1) | ~room(X0) | X0 = X1 | prede(X0) | prede(X1) <- (33) [avatar component clause 498] 500. ~32 | 33 [avatar split clause 492,498,494] 501. X0 = X1 | prede(X1) | prede(X0) | ~room(X1) | ~room(X0) | paul != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 334,280] 502. X0 = X1 | prede(X1) | prede(X0) | ~room(X1) | ~room(X0) | paul != sK9 | ~room(mary) [subsumption resolution 501,279] 503. X0 = X1 | prede(X1) | prede(X0) | ~room(X1) | ~room(X0) | paul != sK9 [subsumption resolution 502,278] 505. 34 <=> paul = sK9 [avatar definition] 507. paul != sK9 <- (~34) [avatar component clause 505] 508. ~34 | 33 [avatar split clause 503,498,505] 509. X0 = X1 | prede(X1) | prede(X0) | ~room(X1) | ~room(X0) | mary != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 333,280] 510. X0 = X1 | prede(X1) | prede(X0) | ~room(X1) | ~room(X0) | mary != sK9 | ~room(mary) [subsumption resolution 509,279] 511. X0 = X1 | prede(X1) | prede(X0) | ~room(X1) | ~room(X0) | mary != sK9 [subsumption resolution 510,278] 513. 35 <=> mary = sK9 [avatar definition] 515. mary != sK9 <- (~35) [avatar component clause 513] 516. ~35 | 33 [avatar split clause 511,498,513] 517. X0 = X1 | prede(X1) | prede(X0) | ~room(X1) | ~room(X0) | room(sK9) | ~room(paul) | ~room(mary) [subsumption resolution 332,280] 518. X0 = X1 | prede(X1) | prede(X0) | ~room(X1) | ~room(X0) | room(sK9) | ~room(mary) [subsumption resolution 517,279] 519. X0 = X1 | prede(X1) | prede(X0) | ~room(X1) | ~room(X0) | room(sK9) [subsumption resolution 518,278] 521. 36 <=> room(sK9) [avatar definition] 523. room(sK9) <- (36) [avatar component clause 521] 524. 36 | 33 [avatar split clause 519,498,521] 527. ~prede(mary) | ~room(mary) <- (26) [resolution 318,457] 529. ~prede(mary) <- (26) [subsumption resolution 527,278] 585. paul = sK1 | mary = sK1 | fred = sK1 <- (4) [resolution 281,353] 588. 37 <=> fred = sK1 [avatar definition] 590. fred = sK1 <- (37) [avatar component clause 588] 592. 38 <=> mary = sK1 [avatar definition] 594. mary = sK1 <- (38) [avatar component clause 592] 596. 39 <=> paul = sK1 [avatar definition] 598. paul = sK1 <- (39) [avatar component clause 596] 599. 37 | 38 | 39 | ~4 [avatar split clause 585,351,596,592,588] 619. ~predb(fred) <- (~3, 37) [backward demodulation 348,590] 641. 46 <=> prede(fred) [avatar definition] 643. prede(fred) <- (46) [avatar component clause 641] 645. 47 <=> ! [X2] : (~room(X2) | prede(X2) | fred = X2) [avatar definition] 646. ~room(X2) | prede(X2) | fred = X2 <- (47) [avatar component clause 645] 648. paul = sK9 | mary = sK9 | fred = sK9 <- (36) [resolution 523,281] 649. mary = sK9 | fred = sK9 <- (~34, 36) [subsumption resolution 648,507] 650. fred = sK9 <- (~34, ~35, 36) [subsumption resolution 649,515] 651. $false <- (~32, ~34, ~35, 36) [subsumption resolution 650,496] 652. 32 | 34 | 35 | ~36 [avatar contradiction clause 651] 653. ~room(fred) | predb(fred) <- (14, 46) [resolution 643,402] 654. predb(fred) <- (14, 46) [subsumption resolution 653,280] 655. $false <- (~3, 14, 37, 46) [subsumption resolution 654,619] 656. 3 | ~14 | ~37 | ~46 [avatar contradiction clause 655] 660. ~room(X2) | fred = X2 | prede(X2) | prede(fred) <- (33) [resolution 499,280] 677. prede(mary) | mary = fred <- (47) [resolution 646,278] 680. mary = fred <- (26, 47) [subsumption resolution 677,529] 681. $false <- (26, 47) [subsumption resolution 680,248] 682. ~26 | ~47 [avatar contradiction clause 681] 683. 46 | 47 | ~33 [avatar split clause 660,498,645,641] 691. ~room(sK2) <- (6, 19) [resolution 362,424] 692. $false <- (6, 9, 19) [subsumption resolution 691,376] 693. ~6 | ~9 | ~19 [avatar contradiction clause 692] 695. ~predb(paul) <- (~3, 39) [backward demodulation 348,598] 698. $false <- (~3, 39) [subsumption resolution 695,329] 699. 3 | ~39 [avatar contradiction clause 698] 701. predh(mary) <- (2, 38) [backward demodulation 343,594] 705. 7 | ~2 | ~38 [avatar split clause 701,592,341,364] 734. prede(mary) <- (16) [resolution 410,323] 736. $false <- (16, 26) [subsumption resolution 734,529] 737. ~16 | ~26 [avatar contradiction clause 736] 738. $false [avatar sat refutation 344,349,354,367,377,403,425,458,459,487,489,500,508,516,524,599,652,656,682,683,693,699,705,737] % SZS output end Proof for 814276564526903066905761 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.011281
Ethan is the only person in the room. Ethan is a kind person. Ethan is a creative person. Lucille is richer than Ethan. Everyone in the room either is quieter than Timothy or is funny but not both if they is a creative happy quiet person and vice versa. Someone in the room is a curious person. Everyone in the room who is a patient person is a wise person, is not patient, not quiet or is not a generous happy wise humble person. All creative person is tall. Not everyone in the room who is kind and is not a wise strong person is not a generous person. All humble person is strong. Everyone anywhere who is quieter than Lucille is happy.
Everyone anywhere is richer than Lucille.
contradiction
room(ethan)&(![X]:(room(X)=>(X='ethan')))& (kind(ethan)&person(ethan))& (creative(ethan)&person(ethan))& (richer(ethan,lucille))& (![X]:(room(X)=>(((((quieter(timothy,X))<~>(funny(X))))<=>(creative(X)&happy(X)&quiet(X)&person(X))))))& (?[X]:(room(X)&(curious(X)&person(X))))& (![X]:(room(X)=>(((patient(X)&person(X))=>(((wise(X)&person(X))|(~patient(X)&~quiet(X))|(~(generous(X)&happy(X)&wise(X)&humble(X)&person(X)))))))))& (![X]:(creative(X)=>tall(X)))& (~![X]:(room(X)=>(((((kind(X))&(~(wise(X)&strong(X)&person(X)))))=>(~(generous(X)&person(X)))))))& (![X]:(humble(X)=>strong(X)))& (![X]:(anywhere(X)=>(((quieter(lucille,X))=>(happy(X))))))
room(ethan)&(![X]:(room(X)=>(X='ethan')))& ![X]:(anywhere(X)=>(richer(lucille,X)))
[ "b4", "b7", "b42", "p3", "hypothesis" ]
% SZS status Unsatisfiable for 4412819308080124055890948 % SZS output start Proof for 4412819308080124055890948 5. ! [X0] : anywhere(X0) [input b4] 8. ! [X0,X1] : (X0 != X1 => (richer(X0,X1) => ~richer(X1,X0))) [input b7] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 47. richer(mary,paul) [input p3] 55. ! [X0] : (anywhere(X0) => richer(paul,X0)) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 56. ! [X0] : (anywhere(X0) => richer(paul,X0)) & ! [X1] : (room(X1) => mary = X1) & room(mary) [rectify 55] 72. ! [X0,X1] : ((~richer(X1,X0) | ~richer(X0,X1)) | X0 = X1) [ennf transformation 8] 73. ! [X0,X1] : (~richer(X1,X0) | ~richer(X0,X1) | X0 = X1) [flattening 72] 141. ! [X0] : (richer(paul,X0) | ~anywhere(X0)) & ! [X1] : (mary = X1 | ~room(X1)) & room(mary) [ennf transformation 56] 153. anywhere(X0) [cnf transformation 5] 157. ~richer(X1,X0) | ~richer(X0,X1) | X0 = X1 [cnf transformation 73] 198. mary != paul [cnf transformation 43] 239. richer(mary,paul) [cnf transformation 47] 257. richer(paul,X0) | ~anywhere(X0) [cnf transformation 141] 259. richer(paul,X0) [subsumption resolution 257,153] 272. ~richer(paul,mary) | mary = paul [resolution 157,239] 274. mary = paul [subsumption resolution 272,259] 275. $false [subsumption resolution 274,198] % SZS output end Proof for 4412819308080124055890948 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0
Linda, Melissa are the only persons in the room. “Everyone in the room is old” if “it is not the case that “Linda is quiet”” and vice versa. Either “everyone in the room is old” or “someone outside the room is a old person” but not both. Either “everyone anywhere is old” or “everyone in the room is a old person” but not both. Everyone in the room is a old person.
Linda is old.
entailment
room(linda)&room(melissa)&(![X]:(room(X)=>(X='linda'|X='melissa')))& ((~(quiet(linda)))<=>(![X]:(room(X)=>(old(X)))))& ((![X]:(room(X)=>(old(X))))<~>(?[X]:(~room(X)&(old(X)&person(X)))))& ((![X]:(anywhere(X)=>(old(X))))<~>(![X]:(room(X)=>(old(X)&person(X)))))& (![X]:(room(X)=>(old(X)&person(X))))& (~![X]:(room(X)=>(~(old(X)&person(X)))))& (quiet(melissa)&person(melissa))& (quiet(melissa))& ((linda_dream=>(quiet(melissa)&person(melissa))))
room(linda)&room(melissa)&(![X]:(room(X)=>(X='linda'|X='melissa')))& old(linda)
[ "p0", "p4", "hypothesis" ]
% SZS status Unsatisfiable for 5860738623169866809633900 % SZS output start Proof for 5860738623169866809633900 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 48. ! [X0] : (room(X0) => (person(X0) & old(X0))) [input p4] 53. ~(old(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 128. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 129. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 128] 133. ! [X0] : ((person(X0) & old(X0)) | ~room(X0)) [ennf transformation 48] 136. ~old(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 53] 137. ~old(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 136] 155. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK6 & mary != sK6 & room(sK6)) [choice axiom] 156. ~old(mary) | (paul != sK6 & mary != sK6 & room(sK6)) | ~room(paul) | ~room(mary) [skolemisation 137,155] 238. room(mary) [cnf transformation 129] 239. room(paul) [cnf transformation 129] 240. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 129] 255. old(X0) | ~room(X0) [cnf transformation 133] 263. ~old(mary) | room(sK6) | ~room(paul) | ~room(mary) [cnf transformation 156] 264. ~old(mary) | mary != sK6 | ~room(paul) | ~room(mary) [cnf transformation 156] 265. ~old(mary) | paul != sK6 | ~room(paul) | ~room(mary) [cnf transformation 156] 281. 4 <=> ! [X1] : (old(X1) | ~room(X1)) [avatar definition] 282. ~room(X1) | old(X1) <- (4) [avatar component clause 281] 341. 4 [avatar split clause 255,281] 342. ~old(mary) | paul != sK6 | ~room(mary) [subsumption resolution 265,239] 343. ~old(mary) | paul != sK6 [subsumption resolution 342,238] 345. 17 <=> paul = sK6 [avatar definition] 347. paul != sK6 <- (~17) [avatar component clause 345] 349. 18 <=> old(mary) [avatar definition] 352. ~17 | ~18 [avatar split clause 343,349,345] 353. ~old(mary) | mary != sK6 | ~room(mary) [subsumption resolution 264,239] 354. ~old(mary) | mary != sK6 [subsumption resolution 353,238] 356. 19 <=> mary = sK6 [avatar definition] 358. mary != sK6 <- (~19) [avatar component clause 356] 359. ~19 | ~18 [avatar split clause 354,349,356] 360. ~old(mary) | room(sK6) | ~room(mary) [subsumption resolution 263,239] 361. ~old(mary) | room(sK6) [subsumption resolution 360,238] 363. 20 <=> room(sK6) [avatar definition] 365. room(sK6) <- (20) [avatar component clause 363] 366. 20 | ~18 [avatar split clause 361,349,363] 367. old(mary) <- (4) [resolution 282,238] 372. 18 | ~4 [avatar split clause 367,281,349] 385. mary = sK6 | paul = sK6 <- (20) [resolution 240,365] 395. paul = sK6 <- (~19, 20) [subsumption resolution 385,358] 396. $false <- (~17, ~19, 20) [subsumption resolution 395,347] 397. 17 | 19 | ~20 [avatar contradiction clause 396] 398. $false [avatar sat refutation 341,352,359,366,372,397] % SZS output end Proof for 5860738623169866809633900 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.709034
Tracy, Bradley, Margaret, Noel, Olga are the only persons in the room. Either “everyone in the room does not volunteer for local environmental conservation projects or does not use a Windows laptop” or “everyone in the room composes and performs experimental electronic music or does not use a Windows laptop” but not both.
Margaret enjoys macrame.
neutral
room(tracy)&room(bradley)&room(margaret)&room(noel)&room(olga)&(![X]:(room(X)=>(X='tracy'|X='bradley'|X='margaret'|X='noel'|X='olga')))& ((![X]:(room(X)=>(((does_not_use_a_Windows_laptop(X))|(does_not_volunteer_for_local_environmental_conservation_projects(X))))))<~>(![X]:(room(X)=>(((does_not_use_a_Windows_laptop(X))|(composes_and_performs_experimental_electronic_music(X)))))))& ((![X]:(room(X)=>(((uses_a_Windows_laptop(X))|(does_not_use_a_Windows_laptop(X))))))=>((composes_and_performs_experimental_electronic_music(bradley))&(enjoys_macrame(bradley))))& ((![X]:(room(X)=>(((does_not_use_a_Windows_laptop(X))|(enjoys_macrame(X))))))=>(enjoys_macrame(margaret)))& (![X]:(room(X)=>(((enjoys_macrame(X))=>(uses_a_Windows_laptop(X))))))& (((?[X]:(anywhere(X)&volunteers_for_local_environmental_conservation_projects(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(volunteers_for_local_environmental_conservation_projects(X))&(volunteers_for_local_environmental_conservation_projects(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((enjoys_macrame(X))=>(collects_modern_art(X))))))& (![X]:(room(X)=>(((uses_a_Windows_laptop(X))=>(composes_and_performs_experimental_electronic_music(X))))))& (volunteers_for_local_environmental_conservation_projects(bradley))& (![X]:(room(X)=>(((volunteers_for_local_environmental_conservation_projects(X))=>(composes_and_performs_experimental_electronic_music(X))))))& ((![X]:((enjoys_macrame(X))=>(((collects_modern_art(X))|(composes_and_performs_experimental_electronic_music(X))|(does_not_volunteer_for_local_environmental_conservation_projects(X)))))))& (![X]:(room(X)=>(((((volunteers_for_local_environmental_conservation_projects(X))|(composes_and_performs_experimental_electronic_music(X))|(uses_a_Windows_laptop(X))))<=(enjoys_macrame(X))))))
room(tracy)&room(bradley)&room(margaret)&room(noel)&room(olga)&(![X]:(room(X)=>(X='tracy'|X='bradley'|X='margaret'|X='noel'|X='olga')))& enjoys_macrame(margaret)
[]
null
0.062931
There is a room. “Everyone in the room is an avid hiker” only if “everyone in the room either collects antique jewelry or writes in-depth travel guides for off-the-beaten-path destinations but not both if they creates YouTube content”. If someone competes in national level swimming championships then he/she is a dedicated advocate for digital privacy and encryption. Someone outside the room writes in-depth travel guides for off-the-beaten-path destinations. Not everyone in the room writes in-depth travel guides for off-the-beaten-path destinations, owns an Android phone and creates YouTube content only if they competes in national level swimming championships or writes a travel blog or both. Everyone in the room writes in-depth travel guides for off-the-beaten-path destinations, frequently participates in hackathons and coding competitions and does not write a travel blog if they neither collects antique jewelry nor competes in national level swimming championships. Everyone in the room either collects antique jewelry or writes in-depth travel guides for off-the-beaten-path destinations but not both if they creates YouTube content. Someone anywhere does not compete in national level swimming championships. Everyone outside the room collects antique jewelry, regularly contributes to tech forums and online communities or is an avid hiker only if they competes in national level swimming championships. Everyone in the room either owns an extensive assortment of vintage comic book memorabilia or creates YouTube content but not both if they competes in national level swimming championships.
Everyone in the room does not write in-depth travel guides for off-the-beaten-path destinations or owns an extensive assortment of vintage comic book memorabilia.
neutral
(there_is_a_room)& ((![X]:(room(X)=>(is_an_avid_hiker(X))))=>(![X]:(room(X)=>(((creates_YouTube_content(X))=>(((collects_antique_jewelry(X))<~>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X)))))))))& ((![X]:((competes_in_national_level_swimming_championships(X))=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X)))))& (?[X]:(~room(X)&(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))& (~![X]:(room(X)=>(((((competes_in_national_level_swimming_championships(X))|(writes_a_travel_blog(X))))<=(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))&(owns_an_Android_phone(X))&(creates_YouTube_content(X))))))))& (![X]:(room(X)=>(((~((collects_antique_jewelry(X))|(competes_in_national_level_swimming_championships(X))))=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))&(frequently_participates_in_hackathons_and_coding_competitions(X))&(does_not_write_a_travel_blog(X))))))))& (![X]:(room(X)=>(((creates_YouTube_content(X))=>(((collects_antique_jewelry(X))<~>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))))& (?[X]:(anywhere(X)&(does_not_compete_in_national_level_swimming_championships(X))))& (![X]:(~room(X)=>(((competes_in_national_level_swimming_championships(X))<=(((collects_antique_jewelry(X))|(regularly_contributes_to_tech_forums_and_online_communities(X))|(is_an_avid_hiker(X))))))))& (![X]:(room(X)=>(((competes_in_national_level_swimming_championships(X))=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))<~>(creates_YouTube_content(X))))))))& (![X]:(room(X)=>(((((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))<~>(creates_YouTube_content(X))))=>(is_an_avid_hiker(X))))))& (((?[X]:(~room(X)&owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X)))))& (![X]:(room(X)=>(((is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(does_not_write_a_travel_blog(X))))))& (![X]:(room(X)=>(((creates_YouTube_content(X))<=>(((collects_antique_jewelry(X))|(regularly_contributes_to_tech_forums_and_online_communities(X))|(is_an_avid_hiker(X))))))))
(there_is_a_room)& ![X]:(room(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X)))))
[]
null
0
Christine, Winnie, Gary are the only persons in the room. Christine is richer than Isaac. All kind persons are quiet. Everyone in the room either is a quiet old person or is not kind, not old, not tall but not both if they is old. All tall persons are quiet. Someone who is quiet is richer than someone who is older than Isaac. More than one person in the room is not a quiet person. Everyone in the room is kind. Winnie is a kind person.
Christine is old.
contradiction
room(christine)&room(winnie)&room(gary)&(![X]:(room(X)=>(X='christine'|X='winnie'|X='gary')))& (richer(isaac,christine))& (![X]:(kind(X)=>quiet(X)))& (![X]:(room(X)=>(((old(X))=>(((quiet(X)&old(X)&person(X))<~>(~kind(X)&~old(X)&~tall(X))))))))& (![X]:(tall(X)=>quiet(X)))& (?[X,Y]:((quiet(X))&(older(isaac,Y))&(richer(X,Y))))& ((?[X,Y]:(room(X)&room(Y)&(~(quiet(X)&person(X))&~(quiet(Y)&person(Y)))&(X!=Y))))& (?[X,Y]:((quiet(X)&person(X))&(~old(Y))&(richer(X,Y))))& (![X]:(room(X)=>(((richer(isaac,X))=>(((older(isaac,X))<~>(tall(X)&kind(X)&person(X))))))))& (((?[X]:(room(X)&richer(timothy,X)))))& (![X]:(room(X)=>(kind(X))))& (![X]:(anywhere(X)=>(((quieter(timothy,X))=>(tall(X))))))& (![X]:((~room(X)&(X!=winnie))=>richer(X,winnie)))& (kind(winnie)&person(winnie))& (![X]:(old(X)=>tall(X)))& (?[X]:(anywhere(X)&(~(tall(X)&person(X)))))
room(christine)&room(winnie)&room(gary)&(![X]:(room(X)=>(X='christine'|X='winnie'|X='gary')))& old(christine)
[ "p0", "p2", "p3", "p6", "p10", "p13", "hypothesis" ]
% SZS status Unsatisfiable for 71736764476761634334657 % SZS output start Proof for 71736764476761634334657 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 46. ! [X0] : (kind(X0) => quiet(X0)) [input p2] 47. ! [X0] : (room(X0) => (old(X0) => ((person(X0) & old(X0) & quiet(X0)) <~> (~tall(X0) & ~old(X0) & ~kind(X0))))) [input p3] 50. ? [X0,X1] : (X0 != X1 & ~(person(X1) & quiet(X1)) & ~(person(X0) & quiet(X0)) & room(X1) & room(X0)) [input p6] 54. ! [X0] : (room(X0) => kind(X0)) [input p10] 57. person(paul) & kind(paul) [input p13] 60. old(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 132. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 133. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 132] 134. ! [X0] : (quiet(X0) | ~kind(X0)) [ennf transformation 46] 135. ! [X0] : ((((person(X0) & old(X0) & quiet(X0)) <~> (~tall(X0) & ~old(X0) & ~kind(X0))) | ~old(X0)) | ~room(X0)) [ennf transformation 47] 136. ! [X0] : (((person(X0) & old(X0) & quiet(X0)) <~> (~tall(X0) & ~old(X0) & ~kind(X0))) | ~old(X0) | ~room(X0)) [flattening 135] 138. ? [X0,X1] : (X0 != X1 & (~person(X1) | ~quiet(X1)) & (~person(X0) | ~quiet(X0)) & room(X1) & room(X0)) [ennf transformation 50] 141. ! [X0] : (kind(X0) | ~room(X0)) [ennf transformation 54] 148. old(mary) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 60] 149. old(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 148] 151. ! [X0] : ((((tall(X0) | old(X0) | kind(X0)) | (~person(X0) | ~old(X0) | ~quiet(X0))) & ((~tall(X0) & ~old(X0) & ~kind(X0)) | (person(X0) & old(X0) & quiet(X0)))) | ~old(X0) | ~room(X0)) [nnf transformation 136] 152. ! [X0] : (((tall(X0) | old(X0) | kind(X0) | ~person(X0) | ~old(X0) | ~quiet(X0)) & ((~tall(X0) & ~old(X0) & ~kind(X0)) | (person(X0) & old(X0) & quiet(X0)))) | ~old(X0) | ~room(X0)) [flattening 151] 155. ? [X0,X1] : (X0 != X1 & (~person(X1) | ~quiet(X1)) & (~person(X0) | ~quiet(X0)) & room(X1) & room(X0)) => (sK2 != sK3 & (~person(sK3) | ~quiet(sK3)) & (~person(sK2) | ~quiet(sK2)) & room(sK3) & room(sK2)) [choice axiom] 156. sK2 != sK3 & (~person(sK3) | ~quiet(sK3)) & (~person(sK2) | ~quiet(sK2)) & room(sK3) & room(sK2) [skolemisation 138,155] 246. room(mary) [cnf transformation 133] 249. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 133] 251. ~kind(X0) | quiet(X0) [cnf transformation 134] 257. ~old(X0) | person(X0) | ~old(X0) | ~room(X0) [cnf transformation 152] 266. room(sK2) [cnf transformation 156] 267. room(sK3) [cnf transformation 156] 268. ~person(sK2) | ~quiet(sK2) [cnf transformation 156] 269. ~person(sK3) | ~quiet(sK3) [cnf transformation 156] 270. sK2 != sK3 [cnf transformation 156] 281. ~room(X0) | kind(X0) [cnf transformation 141] 285. person(paul) [cnf transformation 57] 293. old(mary) [cnf transformation 149] 296. ~room(X0) | person(X0) | ~old(X0) [duplicate literal removal 257] 299. 1 <=> quiet(sK3) [avatar definition] 303. 2 <=> person(sK3) [avatar definition] 305. ~person(sK3) <- (~2) [avatar component clause 303] 306. ~1 | ~2 [avatar split clause 269,303,299] 308. 3 <=> quiet(sK2) [avatar definition] 312. 4 <=> person(sK2) [avatar definition] 314. ~person(sK2) <- (~4) [avatar component clause 312] 315. ~3 | ~4 [avatar split clause 268,312,308] 330. kind(sK2) [resolution 281,266] 331. kind(sK3) [resolution 281,267] 357. quiet(sK2) [resolution 330,251] 358. 3 [avatar split clause 357,308] 359. quiet(sK3) [resolution 331,251] 362. 1 [avatar split clause 359,299] 368. person(mary) | ~old(mary) [resolution 296,246] 374. person(mary) [subsumption resolution 368,293] 680. paul = sK2 | mary = sK2 | fred = sK2 [resolution 249,266] 681. paul = sK3 | mary = sK3 | fred = sK3 [resolution 249,267] 691. 43 <=> fred = sK2 [avatar definition] 695. 44 <=> mary = sK2 [avatar definition] 697. mary = sK2 <- (44) [avatar component clause 695] 699. 45 <=> paul = sK2 [avatar definition] 701. paul = sK2 <- (45) [avatar component clause 699] 702. 43 | 44 | 45 [avatar split clause 680,699,695,691] 704. 46 <=> fred = sK3 [avatar definition] 706. fred = sK3 <- (46) [avatar component clause 704] 708. 47 <=> mary = sK3 [avatar definition] 710. mary = sK3 <- (47) [avatar component clause 708] 712. 48 <=> paul = sK3 [avatar definition] 714. paul = sK3 <- (48) [avatar component clause 712] 715. 46 | 47 | 48 [avatar split clause 681,712,708,704] 729. fred != sK2 <- (46) [backward demodulation 270,706] 731. ~43 | ~46 [avatar split clause 729,704,691] 741. ~person(mary) <- (~4, 44) [backward demodulation 314,697] 745. $false <- (~4, 44) [subsumption resolution 741,374] 746. 4 | ~44 [avatar contradiction clause 745] 751. ~person(paul) <- (~4, 45) [backward demodulation 314,701] 754. $false <- (~4, 45) [subsumption resolution 751,285] 755. 4 | ~45 [avatar contradiction clause 754] 758. ~person(mary) <- (~2, 47) [backward demodulation 305,710] 764. $false <- (~2, 47) [subsumption resolution 758,374] 765. 2 | ~47 [avatar contradiction clause 764] 775. ~person(paul) <- (~2, 48) [backward demodulation 305,714] 779. $false <- (~2, 48) [subsumption resolution 775,285] 780. 2 | ~48 [avatar contradiction clause 779] 781. $false [avatar sat refutation 306,315,358,362,702,715,731,746,755,765,780] % SZS output end Proof for 71736764476761634334657 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0
There is a room. If 'everyone outside the room is not a certified yoga instructor teaching classes weekly or enjoys landscape photography' then 'someone in the room does not create augmented reality experiences for mobile applications' otherwise 'not everyone anywhere who owns a significant collection of rare gemstones and minerals, practices pilates and collects modern art watches fantasy movies or owns a significant collection of rare gemstones and minerals or both'. If 'everyone in the room does not enjoy origami or is not a professional photographer specializing in portrait photography' then 'everyone in the room uses contact lenses if they does not enjoy origami'. Everyone in the room uses contact lenses. Everyone in the room uses contact lenses if they creates augmented reality experiences for mobile applications. Everyone anywhere either cannot play the harmonica or hosts regular game nights featuring complex strategy games but not both if they uses contact lenses. Everyone outside the room is not a certified yoga instructor teaching classes weekly or enjoys landscape photography. Everyone in the room knows morse code. Everyone anywhere who hosts themed dinner parties featuring gourmet home-cooked meals does not create augmented reality experiences for mobile applications. If someone collects modern art then he/she does not enjoy salsa dancing. Everyone in the room uses contact lenses or does not know morse code. Everyone in the room who uses contact lenses hosts themed dinner parties featuring gourmet home-cooked meals. Everyone in the room who hosts themed dinner parties featuring gourmet home-cooked meals enjoys salsa dancing or creates augmented reality experiences for mobile applications or both. Everyone outside the room who enjoys salsa dancing or creates augmented reality experiences for mobile applications or both is a dedicated volunteer for local community service projects. Everyone outside the room does not practice digital art or is a dedicated volunteer for local community service projects. If someone either does not create augmented reality experiences for mobile applications or enjoys salsa dancing but not both then he/she collects luxury watches. Someone anywhere practices digital art.
Everyone in the room does not use contact lenses.
contradiction
(there_is_a_room)& (((![X]:(~room(X)=>(((enjoys_landscape_photography(X))|(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))))))=>(?[X]:(room(X)&(does_not_create_augmented_reality_experiences_for_mobile_applications(X)))))&((~(![X]:(~room(X)=>(((enjoys_landscape_photography(X))|(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X)))))))=>(~![X]:(anywhere(X)=>(((((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))&(practices_pilates(X))&(collects_modern_art(X))))=>(((watches_fantasy_movies(X))|(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))))))))& ((![X]:(room(X)=>(((is_not_a_professional_photographer_specializing_in_portrait_photography(X))|(does_not_enjoy_origami(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_origami(X))=>(uses_contact_lenses(X)))))))& (![X]:(room(X)=>(uses_contact_lenses(X))))& (![X]:(room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))=>(uses_contact_lenses(X))))))& (![X]:(anywhere(X)=>(((uses_contact_lenses(X))=>(((cannot_play_the_harmonica(X))<~>(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))))& (![X]:(~room(X)=>(((enjoys_landscape_photography(X))|(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))))))& (![X]:(room(X)=>(knows_morse_code(X))))& (![X]:(anywhere(X)=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))=>(does_not_create_augmented_reality_experiences_for_mobile_applications(X))))))& ((![X]:((collects_modern_art(X))=>(does_not_enjoy_salsa_dancing(X)))))& (![X]:(room(X)=>(((does_not_know_morse_code(X))|(uses_contact_lenses(X))))))& (![X]:(room(X)=>(((uses_contact_lenses(X))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (![X]:(room(X)=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))=>(((enjoys_salsa_dancing(X))|(creates_augmented_reality_experiences_for_mobile_applications(X))))))))& (![X]:(~room(X)=>(((((enjoys_salsa_dancing(X))|(creates_augmented_reality_experiences_for_mobile_applications(X))))=>(is_a_dedicated_volunteer_for_local_community_service_projects(X))))))& (![X]:(~room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))|(does_not_practice_digital_art(X))))))& ((![X]:((((does_not_create_augmented_reality_experiences_for_mobile_applications(X))<~>(enjoys_salsa_dancing(X))))=>(collects_luxury_watches(X)))))& (?[X]:(anywhere(X)&(practices_digital_art(X))))
(there_is_a_room)& ![X]:(room(X)=>(does_not_use_contact_lenses(X)))
[ "p1", "p3", "p6", "hypothesis" ]
% SZS status Unsatisfiable for 2506186306513052794558610 % SZS output start Proof for 2506186306513052794558610 45. (~! [X0] : (~room(X0) => (~predb(X0) | predu(X0))) => ~! [X0] : (anywhere(X0) => ((predo(X0) & predq(X0) & predn(X0)) => (predn(X0) | predd(X0))))) & (! [X0] : (~room(X0) => (~predb(X0) | predu(X0))) => ? [X0] : (~predj(X0) & room(X0))) [input p1] 47. ! [X0] : (room(X0) => predm(X0)) [input p3] 50. ! [X0] : (~room(X0) => (~predb(X0) | predu(X0))) [input p6] 61. ! [X0] : (room(X0) => ~predm(X0)) & there_is_a_room [input hypothesis] 62. (~! [X0] : (~room(X0) => (~predb(X0) | predu(X0))) => ~! [X1] : (anywhere(X1) => ((predo(X1) & predq(X1) & predn(X1)) => (predn(X1) | predd(X1))))) & (! [X2] : (~room(X2) => (~predb(X2) | predu(X2))) => ? [X3] : (~predj(X3) & room(X3))) [rectify 45] 69. (~! [X0] : (~room(X0) => (~predb(X0) | predu(X0))) => ~! [X1] : (anywhere(X1) => ((predo(X1) & predq(X1) & predn(X1)) => predn(X1)))) & (! [X2] : (~room(X2) => (~predb(X2) | predu(X2))) => ? [X3] : (~predj(X3) & room(X3))) [pure predicate removal 62] 70. (~! [X0] : (~room(X0) => (~predb(X0) | predu(X0))) => ~! [X1] : (anywhere(X1) => ((predo(X1) & predn(X1)) => predn(X1)))) & (! [X2] : (~room(X2) => (~predb(X2) | predu(X2))) => ? [X3] : (~predj(X3) & room(X3))) [pure predicate removal 69] 72. ! [X0] : (room(X0) => ~predm(X0)) [pure predicate removal 61] 144. (? [X1] : ((~predn(X1) & (predo(X1) & predn(X1))) & anywhere(X1)) | ! [X0] : ((~predb(X0) | predu(X0)) | room(X0))) & (? [X3] : (~predj(X3) & room(X3)) | ? [X2] : ((predb(X2) & ~predu(X2)) & ~room(X2))) [ennf transformation 70] 145. (? [X1] : (~predn(X1) & predo(X1) & predn(X1) & anywhere(X1)) | ! [X0] : (~predb(X0) | predu(X0) | room(X0))) & (? [X3] : (~predj(X3) & room(X3)) | ? [X2] : (predb(X2) & ~predu(X2) & ~room(X2))) [flattening 144] 146. ! [X0] : (predm(X0) | ~room(X0)) [ennf transformation 47] 151. ! [X0] : ((~predb(X0) | predu(X0)) | room(X0)) [ennf transformation 50] 152. ! [X0] : (~predb(X0) | predu(X0) | room(X0)) [flattening 151] 163. ! [X0] : (~predm(X0) | ~room(X0)) [ennf transformation 72] 165. (? [X0] : (~predn(X0) & predo(X0) & predn(X0) & anywhere(X0)) | ! [X1] : (~predb(X1) | predu(X1) | room(X1))) & (? [X2] : (~predj(X2) & room(X2)) | ? [X3] : (predb(X3) & ~predu(X3) & ~room(X3))) [rectify 145] 166. ? [X0] : (~predn(X0) & predo(X0) & predn(X0) & anywhere(X0)) => (~predn(sK0) & predo(sK0) & predn(sK0) & anywhere(sK0)) [choice axiom] 167. ? [X2] : (~predj(X2) & room(X2)) => (~predj(sK1) & room(sK1)) [choice axiom] 168. ? [X3] : (predb(X3) & ~predu(X3) & ~room(X3)) => (predb(sK2) & ~predu(sK2) & ~room(sK2)) [choice axiom] 169. ((~predn(sK0) & predo(sK0) & predn(sK0) & anywhere(sK0)) | ! [X1] : (~predb(X1) | predu(X1) | room(X1))) & ((~predj(sK1) & room(sK1)) | (predb(sK2) & ~predu(sK2) & ~room(sK2))) [skolemisation 165,168,167,166] 255. room(sK1) | ~predu(sK2) [cnf transformation 169] 256. room(sK1) | predb(sK2) [cnf transformation 169] 264. ~room(X0) | predm(X0) [cnf transformation 146] 268. ~predb(X0) | predu(X0) | room(X0) [cnf transformation 152] 276. ~predm(X0) | ~room(X0) [cnf transformation 163] 278. 1 <=> ! [X1] : (~predb(X1) | room(X1) | predu(X1)) [avatar definition] 279. ~predb(X1) | room(X1) | predu(X1) <- (1) [avatar component clause 278] 292. 4 <=> predb(sK2) [avatar definition] 294. predb(sK2) <- (4) [avatar component clause 292] 301. 6 <=> predu(sK2) [avatar definition] 303. ~predu(sK2) <- (~6) [avatar component clause 301] 311. 8 <=> room(sK1) [avatar definition] 313. room(sK1) <- (8) [avatar component clause 311] 314. 4 | 8 [avatar split clause 256,311,292] 315. ~6 | 8 [avatar split clause 255,311,301] 319. 1 [avatar split clause 268,278] 324. ~room(X0) [subsumption resolution 276,264] 325. ~predb(X1) | predu(X1) <- (1) [subsumption resolution 279,324] 326. predu(sK2) <- (1, 4) [resolution 325,294] 327. $false <- (1, 4, ~6) [subsumption resolution 326,303] 328. ~1 | ~4 | 6 [avatar contradiction clause 327] 329. $false <- (8) [subsumption resolution 313,324] 330. ~8 [avatar contradiction clause 329] 331. $false [avatar sat refutation 314,315,319,328,330] % SZS output end Proof for 2506186306513052794558610 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.065507
Carlene, Sandra, Ellen, Eva are the only persons in the room. If “it is not the case that “Sandra is a night owl”” then “everyone in the room who enjoys coding in Python is a night owl”. “Sandra neither travels domestically frequently nor is a night owl” if “Sandra enjoys logic puzzles” and vice versa. Sandra travels domestically frequently. If someone is a dedicated volunteer for local community service projects then he/she writes poetry. If someone does practice yoga then he/she is an active member of a local robotics club. Not everyone outside the room either is a dedicated volunteer for local community service projects or travels domestically frequently but not both only if they creates bespoke furniture pieces from reclaimed wood. No one anywhere travels domestically frequently if and only if they is a dedicated volunteer for local community service projects. Sandra writes poetry. Only one person in the room has a vast collection of first-edition science fiction novels. Only one person in the room travels domestically frequently.
Ellen writes poetry.
entailment
room(carlene)&room(sandra)&room(ellen)&room(eva)&(![X]:(room(X)=>(X='carlene'|X='sandra'|X='ellen'|X='eva')))& ((~(is_a_night_owl(sandra)))=>(![X]:(room(X)=>(((enjoys_coding_in_Python(X))=>(is_a_night_owl(X)))))))& ((enjoys_logic_puzzles(sandra))<=>(~((travels_domestically_frequently(sandra))|(is_a_night_owl(sandra)))))& (travels_domestically_frequently(sandra))& ((![X]:((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(writes_poetry(X)))))& ((![X]:((does_practice_yoga(X))=>(is_an_active_member_of_a_local_robotics_club(X)))))& (~![X]:(~room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))<=(((is_a_dedicated_volunteer_for_local_community_service_projects(X))<~>(travels_domestically_frequently(X))))))))& (~?[X]:(anywhere(X)=>(((travels_domestically_frequently(X))<=>(is_a_dedicated_volunteer_for_local_community_service_projects(X))))))& (writes_poetry(sandra))& (((?[X]:(room(X)&has_a_vast_collection_of_first-edition_science_fiction_novels(X)))&(![X,Y]:((room(X)&room(Y)&(has_a_vast_collection_of_first-edition_science_fiction_novels(X))&(has_a_vast_collection_of_first-edition_science_fiction_novels(Y)))=>(X=Y)))))& (((?[X]:(room(X)&travels_domestically_frequently(X)))&(![X,Y]:((room(X)&room(Y)&(travels_domestically_frequently(X))&(travels_domestically_frequently(Y)))=>(X=Y)))))
room(carlene)&room(sandra)&room(ellen)&room(eva)&(![X]:(room(X)=>(X='carlene'|X='sandra'|X='ellen'|X='eva')))& writes_poetry(ellen)
[ "b42", "p0", "p3", "p4", "p7", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 5399291138153318159561264 % SZS output start Proof for 5399291138153318159561264 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 47. predj(paul) [input p3] 48. ! [X0] : (predf(X0) => preda(X0)) [input p4] 51. ~? [X0] : (anywhere(X0) => (predj(X0) <=> predf(X0))) [input p7] 54. ! [X0,X1] : ((predj(X1) & predj(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predj(X0) & room(X0)) [input p10] 55. ~(preda(fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 57. ! [X0,X1] : ((predj(X1) & predj(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (predj(X2) & room(X2)) [rectify 54] 61. ~? [X0] : (predj(X0) <=> predf(X0)) [pure predicate removal 51] 134. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 135. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 134] 137. ! [X0] : (preda(X0) | ~predf(X0)) [ennf transformation 48] 139. ! [X0] : (predj(X0) <~> predf(X0)) [ennf transformation 61] 142. ! [X0,X1] : (X0 = X1 | (~predj(X1) | ~predj(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (predj(X2) & room(X2)) [ennf transformation 57] 143. ! [X0,X1] : (X0 = X1 | ~predj(X1) | ~predj(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (predj(X2) & room(X2)) [flattening 142] 144. ~preda(fred) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 55] 145. ~preda(fred) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 144] 153. ! [X0] : ((~predf(X0) | ~predj(X0)) & (predf(X0) | predj(X0))) [nnf transformation 139] 156. ? [X2] : (predj(X2) & room(X2)) => (predj(sK2) & room(sK2)) [choice axiom] 157. ! [X0,X1] : (X0 = X1 | ~predj(X1) | ~predj(X0) | ~room(X1) | ~room(X0)) & (predj(sK2) & room(sK2)) [skolemisation 143,156] 158. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 159. ~preda(fred) | (alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 145,158] 211. paul != fred [cnf transformation 43] 240. room(mary) [cnf transformation 135] 241. room(paul) [cnf transformation 135] 242. room(fred) [cnf transformation 135] 243. room(alice) [cnf transformation 135] 244. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 135] 248. predj(paul) [cnf transformation 47] 249. ~predf(X0) | preda(X0) [cnf transformation 137] 253. predf(X0) | predj(X0) [cnf transformation 153] 259. room(sK2) [cnf transformation 157] 260. predj(sK2) [cnf transformation 157] 261. ~predj(X1) | X0 = X1 | ~predj(X0) | ~room(X1) | ~room(X0) [cnf transformation 157] 262. ~preda(fred) | room(sK3) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 159] 263. ~preda(fred) | mary != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 159] 264. ~preda(fred) | paul != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 159] 265. ~preda(fred) | fred != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 159] 266. ~preda(fred) | alice != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 159] 268. 1 <=> predj(paul) [avatar definition] 270. predj(paul) <- (1) [avatar component clause 268] 282. 1 [avatar split clause 248,268] 293. ~preda(fred) | alice != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 266,243] 294. ~preda(fred) | alice != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 293,242] 295. ~preda(fred) | alice != sK3 | ~room(mary) [subsumption resolution 294,241] 296. ~preda(fred) | alice != sK3 [subsumption resolution 295,240] 298. 6 <=> alice = sK3 [avatar definition] 300. alice != sK3 <- (~6) [avatar component clause 298] 302. 7 <=> preda(fred) [avatar definition] 304. ~preda(fred) <- (~7) [avatar component clause 302] 305. ~6 | ~7 [avatar split clause 296,302,298] 306. ~preda(fred) | fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 265,243] 307. ~preda(fred) | fred != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 306,242] 308. ~preda(fred) | fred != sK3 | ~room(mary) [subsumption resolution 307,241] 309. ~preda(fred) | fred != sK3 [subsumption resolution 308,240] 311. 8 <=> fred = sK3 [avatar definition] 313. fred != sK3 <- (~8) [avatar component clause 311] 314. ~8 | ~7 [avatar split clause 309,302,311] 315. ~preda(fred) | paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 264,243] 316. ~preda(fred) | paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 315,242] 317. ~preda(fred) | paul != sK3 | ~room(mary) [subsumption resolution 316,241] 318. ~preda(fred) | paul != sK3 [subsumption resolution 317,240] 320. 9 <=> paul = sK3 [avatar definition] 322. paul != sK3 <- (~9) [avatar component clause 320] 323. ~9 | ~7 [avatar split clause 318,302,320] 324. ~preda(fred) | mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 263,243] 325. ~preda(fred) | mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 324,242] 326. ~preda(fred) | mary != sK3 | ~room(mary) [subsumption resolution 325,241] 327. ~preda(fred) | mary != sK3 [subsumption resolution 326,240] 329. 10 <=> mary = sK3 [avatar definition] 331. mary != sK3 <- (~10) [avatar component clause 329] 332. ~10 | ~7 [avatar split clause 327,302,329] 333. ~preda(fred) | room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 262,243] 334. ~preda(fred) | room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 333,242] 335. ~preda(fred) | room(sK3) | ~room(mary) [subsumption resolution 334,241] 336. ~preda(fred) | room(sK3) [subsumption resolution 335,240] 338. 11 <=> room(sK3) [avatar definition] 340. room(sK3) <- (11) [avatar component clause 338] 341. 11 | ~7 [avatar split clause 336,302,338] 343. preda(X0) | predj(X0) [resolution 253,249] 346. predj(fred) <- (~7) [resolution 343,304] 392. sK2 = X0 | ~predj(X0) | ~room(sK2) | ~room(X0) [resolution 261,260] 395. ~predj(X0) | sK2 = X0 | ~room(X0) [subsumption resolution 392,259] 399. paul = sK2 | ~room(paul) <- (1) [resolution 395,270] 400. fred = sK2 | ~room(fred) <- (~7) [resolution 395,346] 401. paul = sK2 <- (1) [subsumption resolution 399,241] 405. fred = sK2 <- (~7) [subsumption resolution 400,242] 406. paul = fred <- (1, ~7) [forward demodulation 405,401] 407. $false <- (1, ~7) [subsumption resolution 406,211] 408. ~1 | 7 [avatar contradiction clause 407] 414. fred = sK3 | paul = sK3 | mary = sK3 | alice = sK3 <- (11) [resolution 244,340] 432. paul = sK3 | mary = sK3 | alice = sK3 <- (~8, 11) [subsumption resolution 414,313] 433. mary = sK3 | alice = sK3 <- (~8, ~9, 11) [subsumption resolution 432,322] 434. alice = sK3 <- (~8, ~9, ~10, 11) [subsumption resolution 433,331] 435. $false <- (~6, ~8, ~9, ~10, 11) [subsumption resolution 434,300] 436. 6 | 8 | 9 | 10 | ~11 [avatar contradiction clause 435] 437. $false [avatar sat refutation 282,305,314,323,332,341,408,436] % SZS output end Proof for 5399291138153318159561264 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.105121
Jaime, Thomas are the only persons in the room. 'Everyone outside the room is old' if 'Jaime is not quiet'. If 'Jaime is not a old person' then 'Jaime is not a tall person' otherwise 'someone outside the room is a tall person'. 'Everyone in the room is old' if 'Jaime is a old person or is not tall or both' and vice versa. If 'Jaime is a old person' then 'everyone in the room is a quiet person' otherwise 'Jaime is a tall person or is not a tall person or both'. Everyone outside the room is tall. Jaime is a tall person or is not a tall person or both. It is true that 'everyone anywhere is a quiet person'. Everyone in the room is old. Someone outside the room is a tall person. Jaime is not a tall person. Everyone in the room is a quiet person. Everyone in the room is not a tall person.
Jaime is quiet.
entailment
room(jaime)&room(thomas)&(![X]:(room(X)=>(X='jaime'|X='thomas')))& ((~quiet(jaime))=>(![X]:(~room(X)=>(old(X)))))& (((~(old(jaime)&person(jaime)))=>(~(tall(jaime)&person(jaime))))&((~(~(old(jaime)&person(jaime))))=>(?[X]:(~room(X)&(tall(X)&person(X))))))& ((((old(jaime)&person(jaime))|(~tall(jaime))))<=>(![X]:(room(X)=>(old(X)))))& (((old(jaime)&person(jaime))=>(![X]:(room(X)=>(quiet(X)&person(X)))))&((~(old(jaime)&person(jaime)))=>(((tall(jaime)&person(jaime))|(~(tall(jaime)&person(jaime)))))))& (![X]:(~room(X)=>(tall(X))))& (((tall(jaime)&person(jaime))|(~(tall(jaime)&person(jaime)))))& (![X]:(anywhere(X)=>(quiet(X)&person(X))))& (![X]:(room(X)=>(old(X))))& (?[X]:(~room(X)&(tall(X)&person(X))))& (~(tall(jaime)&person(jaime)))& (![X]:(room(X)=>(quiet(X)&person(X))))& (![X]:(room(X)=>(~(tall(X)&person(X)))))
room(jaime)&room(thomas)&(![X]:(room(X)=>(X='jaime'|X='thomas')))& quiet(jaime)
[ "b4", "p0", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 2444579411890150313766098 % SZS output start Proof for 2444579411890150313766098 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 51. ! [X0] : (anywhere(X0) => (person(X0) & quiet(X0))) [input p7] 57. ~(quiet(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 130. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 131. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 130] 141. ! [X0] : ((person(X0) & quiet(X0)) | ~anywhere(X0)) [ennf transformation 51] 147. ~quiet(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 57] 148. ~quiet(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 147] 159. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 160. ~quiet(mary) | (paul != sK3 & mary != sK3 & room(sK3)) | ~room(paul) | ~room(mary) [skolemisation 148,159] 161. anywhere(X0) [cnf transformation 5] 242. room(mary) [cnf transformation 131] 243. room(paul) [cnf transformation 131] 244. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 131] 266. quiet(X0) | ~anywhere(X0) [cnf transformation 141] 276. ~quiet(mary) | room(sK3) | ~room(paul) | ~room(mary) [cnf transformation 160] 277. ~quiet(mary) | mary != sK3 | ~room(paul) | ~room(mary) [cnf transformation 160] 278. ~quiet(mary) | paul != sK3 | ~room(paul) | ~room(mary) [cnf transformation 160] 342. quiet(X0) [subsumption resolution 266,161] 347. paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 278,342] 348. paul != sK3 | ~room(mary) [subsumption resolution 347,243] 349. paul != sK3 [subsumption resolution 348,242] 350. mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 277,342] 351. mary != sK3 | ~room(mary) [subsumption resolution 350,243] 352. mary != sK3 [subsumption resolution 351,242] 353. room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 276,342] 354. room(sK3) | ~room(mary) [subsumption resolution 353,243] 355. room(sK3) [subsumption resolution 354,242] 373. mary = sK3 | paul = sK3 [resolution 244,355] 374. paul = sK3 [subsumption resolution 373,352] 375. $false [subsumption resolution 374,349] % SZS output end Proof for 2444579411890150313766098 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.376163
If someone is generous then he/she is older than Lisa and vice versa. No one in the room who is calm is quieter than Lisa. If someone is a curious person and is a old person then he/she is old and vice versa. Everyone in the room is generous if they is not not not not calm. Everyone in the room who is older than Lisa is not patient, not curious.
Everyone in the room is a old person or is quieter than Lisa or both.
contradiction
(there_is_a_room)& ((![X]:((generous(X))<=>(older(lisa,X)))))& (![X]:(strong(X)=>brave(X)))& (~?[X]:(room(X)=>(((calm(X))=>(quieter(lisa,X))))))& (![X]:(room(X)=>(((quieter(lisa,X))=>(older(lisa,X))))))& ((![X]:((((curious(X)&person(X))&(old(X)&person(X))))<=>(old(X)))))& (![X]:(wise(X)=>calm(X)))& (![X]:(room(X)=>(((~creative(X)&~generous(X)&~kind(X)&~happy(X))=>(quieter(lisa,X))))))& (![X]:(room(X)=>(((quieter(lisa,X))=>(wise(X)&happy(X)&person(X))))))& (![X]:(calm(X)=>creative(X)))& (![X]:(~room(X)=>(((older(lisa,X))=>(quiet(X))))))& (![X]:(room(X)=>(((quiet(X))=>(quieter(lisa,X))))))& (![X]:(room(X)=>(((richer(lisa,X))=>(~~~~calm(X))))))& (![X]:(room(X)=>(((~~~~calm(X))=>(generous(X))))))& (![X]:(room(X)=>(((older(lisa,X))=>(~patient(X)&~curious(X))))))& (![X]:(room(X)=>(((~patient(X)&~curious(X))=>(richer(lisa,X))))))
(there_is_a_room)& ![X]:(room(X)=>(((old(X)&person(X))|(quieter(lisa,X)))))
[ "p1", "p3", "p5", "p13", "p14", "hypothesis" ]
% SZS status Unsatisfiable for 6050759186178297320762541 % SZS output start Proof for 6050759186178297320762541 45. ! [X0] : (generous(X0) <=> older(mary,X0)) [input p1] 47. ~? [X0] : (room(X0) => (calm(X0) => quieter(mary,X0))) [input p3] 49. ! [X0] : ((person(X0) & old(X0) & person(X0) & curious(X0)) <=> old(X0)) [input p5] 57. ! [X0] : (room(X0) => (calm(X0) => generous(X0))) [input p13] 58. ! [X0] : (room(X0) => (older(mary,X0) => (~curious(X0) & ~patient(X0)))) [input p14] 60. ! [X0] : (room(X0) => (quieter(mary,X0) | (person(X0) & old(X0)))) & there_is_a_room [input hypothesis] 61. ! [X0] : (generous(X0) => older(mary,X0)) [unused predicate definition removal 45] 67. ! [X0] : (room(X0) => (quieter(mary,X0) | (person(X0) & old(X0)))) [pure predicate removal 60] 140. ! [X0] : (older(mary,X0) | ~generous(X0)) [ennf transformation 61] 141. ! [X0] : ((~quieter(mary,X0) & calm(X0)) & room(X0)) [ennf transformation 47] 142. ! [X0] : (~quieter(mary,X0) & calm(X0) & room(X0)) [flattening 141] 154. ! [X0] : ((generous(X0) | ~calm(X0)) | ~room(X0)) [ennf transformation 57] 155. ! [X0] : (generous(X0) | ~calm(X0) | ~room(X0)) [flattening 154] 156. ! [X0] : (((~curious(X0) & ~patient(X0)) | ~older(mary,X0)) | ~room(X0)) [ennf transformation 58] 157. ! [X0] : ((~curious(X0) & ~patient(X0)) | ~older(mary,X0) | ~room(X0)) [flattening 156] 160. ! [X0] : ((quieter(mary,X0) | (person(X0) & old(X0))) | ~room(X0)) [ennf transformation 67] 161. ! [X0] : (quieter(mary,X0) | (person(X0) & old(X0)) | ~room(X0)) [flattening 160] 163. ! [X0] : (((person(X0) & old(X0) & person(X0) & curious(X0)) | ~old(X0)) & (old(X0) | (~person(X0) | ~old(X0) | ~person(X0) | ~curious(X0)))) [nnf transformation 49] 164. ! [X0] : (((person(X0) & old(X0) & person(X0) & curious(X0)) | ~old(X0)) & (old(X0) | ~person(X0) | ~old(X0) | ~person(X0) | ~curious(X0))) [flattening 163] 245. older(mary,X0) | ~generous(X0) [cnf transformation 140] 246. room(X0) [cnf transformation 142] 247. calm(X0) [cnf transformation 142] 248. ~quieter(mary,X0) [cnf transformation 142] 251. ~old(X0) | curious(X0) [cnf transformation 164] 261. generous(X0) | ~calm(X0) | ~room(X0) [cnf transformation 155] 263. ~curious(X0) | ~older(mary,X0) | ~room(X0) [cnf transformation 157] 265. quieter(mary,X0) | old(X0) | ~room(X0) [cnf transformation 161] 270. generous(X0) | ~room(X0) [subsumption resolution 261,247] 271. generous(X0) [subsumption resolution 270,246] 272. ~older(mary,X0) | ~curious(X0) [subsumption resolution 263,246] 277. old(X0) | ~room(X0) [subsumption resolution 265,248] 278. old(X0) [subsumption resolution 277,246] 279. curious(X0) [resolution 251,278] 281. ~curious(X0) | ~generous(X0) [resolution 272,245] 282. ~generous(X0) [subsumption resolution 281,279] 283. $false [subsumption resolution 282,271] % SZS output end Proof for 6050759186178297320762541 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.027 s % ------------------------------ % ------------------------------
0.110858
There is a room. If 'everyone in the room is quiet' then 'everyone in the room is humble' otherwise 'everyone outside the room is a generous person'. If 'everyone in the room is strong' then 'all happy persons are funny' otherwise 'all brave persons are quiet'. Everyone in the room is kind. Everyone in the room is wise. Everyone in the room is kind, is wise or is a curious person. Everyone in the room is a humble person, is not kind and is brave. Everyone in the room is strong. Everyone in the room is a wise person. Everyone in the room is brave. All calm persons are kind. Everyone in the room is patient. All creative persons are brave. Everyone anywhere is tall.
Not everyone in the room is humble.
contradiction
(there_is_a_room)& (((![X]:(room(X)=>(quiet(X))))=>(![X]:(room(X)=>(humble(X)))))&((~(![X]:(room(X)=>(quiet(X)))))=>(![X]:(~room(X)=>(generous(X)&person(X))))))& (((![X]:(room(X)=>(strong(X))))=>(![X]:(happy(X)=>funny(X))))&((~(![X]:(room(X)=>(strong(X)))))=>(![X]:(brave(X)=>quiet(X)))))& (![X]:(room(X)=>(kind(X))))& (![X]:(room(X)=>(wise(X))))& (![X]:(room(X)=>(((kind(X))|(wise(X))|(curious(X)&person(X))))))& (![X]:(room(X)=>(((humble(X)&person(X))&(~kind(X))&(brave(X))))))& (![X]:(room(X)=>(strong(X))))& (![X]:(room(X)=>(wise(X)&person(X))))& (![X]:(room(X)=>(brave(X))))& (![X]:(calm(X)=>kind(X)))& (![X]:(room(X)=>(patient(X))))& (![X]:(creative(X)=>brave(X)))& (![X]:(anywhere(X)=>(tall(X))))
(there_is_a_room)& ~![X]:(room(X)=>(humble(X)))
[ "p3", "p6", "hypothesis" ]
% SZS status Unsatisfiable for 65262050586587344743459 % SZS output start Proof for 65262050586587344743459 47. ! [X0] : (room(X0) => kind(X0)) [input p3] 50. ! [X0] : (room(X0) => (brave(X0) & ~kind(X0) & person(X0) & humble(X0))) [input p6] 58. ~! [X0] : (room(X0) => humble(X0)) & there_is_a_room [input hypothesis] 73. ! [X0] : (room(X0) => (~kind(X0) & person(X0) & humble(X0))) [pure predicate removal 50] 76. ~! [X0] : (room(X0) => humble(X0)) [pure predicate removal 58] 80. ! [X0] : (room(X0) => (~kind(X0) & humble(X0))) [pure predicate removal 73] 153. ! [X0] : (kind(X0) | ~room(X0)) [ennf transformation 47] 154. ! [X0] : ((~kind(X0) & humble(X0)) | ~room(X0)) [ennf transformation 80] 155. ? [X0] : (~humble(X0) & room(X0)) [ennf transformation 76] 160. ? [X0] : (~humble(X0) & room(X0)) => (~humble(sK1) & room(sK1)) [choice axiom] 161. ~humble(sK1) & room(sK1) [skolemisation 155,160] 244. kind(X0) | ~room(X0) [cnf transformation 153] 246. ~kind(X0) | ~room(X0) [cnf transformation 154] 247. room(sK1) [cnf transformation 161] 262. ~room(X0) [subsumption resolution 246,244] 263. $false [subsumption resolution 247,262] % SZS output end Proof for 65262050586587344743459 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.025 s % ------------------------------ % ------------------------------
0.313085
Larry, Joseph, Randall, Megan are the only persons in the room. Everyone in the room is louder than Katherine or is not a Linux enthusiast. Everyone anywhere who is louder than Katherine collect rare sneakers. Everyone in the room who owns a significant collection of rare gemstones and minerals collect rare sneakers. Everyone outside the room who collects historical artifacts related to ancient civilizations is generous. Everyone in the room collect rare sneakers if and only if they is generous. Everyone in the room is generous if they owns a significant collection of rare gemstones and minerals and vice versa. Megan owns a significant collection of rare gemstones and minerals. Everyone in the room who is a Linux enthusiast neither collects historical artifacts related to ancient civilizations nor owns a significant collection of rare gemstones and minerals. Everyone in the room who collect rare sneakers owns a significant collection of rare gemstones and minerals.
Larry is a Linux enthusiast.
contradiction
room(larry)&room(joseph)&room(randall)&room(megan)&(![X]:(room(X)=>(X='larry'|X='joseph'|X='randall'|X='megan')))& (![X]:(room(X)=>(((is_not_a_Linux_enthusiast(X))|(louder(katherine,X))))))& (![X]:(anywhere(X)=>(((louder(katherine,X))=>(collect_rare_sneakers(X))))))& (![X]:(room(X)=>(((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))=>(collect_rare_sneakers(X))))))& (![X]:(~room(X)=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))=>(generous(X))))))& (![X]:(room(X)=>(((collect_rare_sneakers(X))<=>(generous(X))))))& (![X]:(room(X)=>(((generous(X))<=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))))& (owns_a_significant_collection_of_rare_gemstones_and_minerals(megan))& (![X]:(room(X)=>(((is_a_Linux_enthusiast(X))=>(~((collects_historical_artifacts_related_to_ancient_civilizations(X))|(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))))))& (![X]:(room(X)=>(((collect_rare_sneakers(X))=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))))
room(larry)&room(joseph)&room(randall)&room(megan)&(![X]:(room(X)=>(X='larry'|X='joseph'|X='randall'|X='megan')))& is_a_Linux_enthusiast(larry)
[ "b4", "p0", "p1", "p2", "p8", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 3894465186998778338140832 % SZS output start Proof for 3894465186998778338140832 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ! [X0] : (room(X0) => (louder(john,X0) | ~predh(X0))) [input p1] 46. ! [X0] : (anywhere(X0) => (louder(john,X0) => predf(X0))) [input p2] 52. ! [X0] : (room(X0) => (predh(X0) => ~(predg(X0) | predr(X0)))) [input p8] 53. ! [X0] : (room(X0) => (predf(X0) => predg(X0))) [input p9] 54. predh(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 56. ! [X0] : (room(X0) => (predh(X0) => ~predg(X0))) [pure predicate removal 52] 128. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 129. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 128] 130. ! [X0] : ((louder(john,X0) | ~predh(X0)) | ~room(X0)) [ennf transformation 45] 131. ! [X0] : (louder(john,X0) | ~predh(X0) | ~room(X0)) [flattening 130] 132. ! [X0] : ((predf(X0) | ~louder(john,X0)) | ~anywhere(X0)) [ennf transformation 46] 133. ! [X0] : (predf(X0) | ~louder(john,X0) | ~anywhere(X0)) [flattening 132] 138. ! [X0] : ((~predg(X0) | ~predh(X0)) | ~room(X0)) [ennf transformation 56] 139. ! [X0] : (~predg(X0) | ~predh(X0) | ~room(X0)) [flattening 138] 140. ! [X0] : ((predg(X0) | ~predf(X0)) | ~room(X0)) [ennf transformation 53] 141. ! [X0] : (predg(X0) | ~predf(X0) | ~room(X0)) [flattening 140] 142. predh(mary) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 54] 143. predh(mary) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 142] 147. anywhere(X0) [cnf transformation 5] 228. room(mary) [cnf transformation 129] 233. louder(john,X0) | ~predh(X0) | ~room(X0) [cnf transformation 131] 234. predf(X0) | ~louder(john,X0) | ~anywhere(X0) [cnf transformation 133] 241. ~predg(X0) | ~predh(X0) | ~room(X0) [cnf transformation 139] 242. ~predf(X0) | predg(X0) | ~room(X0) [cnf transformation 141] 248. predh(mary) [cnf transformation 143] 249. ~louder(john,X0) | predf(X0) [subsumption resolution 234,147] 260. ~predh(X0) | ~room(X0) | predf(X0) [resolution 233,249] 261. ~room(mary) | predf(mary) [resolution 260,248] 262. predf(mary) [subsumption resolution 261,228] 263. predg(mary) | ~room(mary) [resolution 262,242] 265. predg(mary) [subsumption resolution 263,228] 267. ~predh(mary) | ~room(mary) [resolution 265,241] 270. ~room(mary) [subsumption resolution 267,248] 271. $false [subsumption resolution 270,228] % SZS output end Proof for 3894465186998778338140832 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.033 s % ------------------------------ % ------------------------------
0.23054
David, Glenn, Eva are the only persons in the room. Everyone in the room who collects comic books, owns a high-end gaming PC with custom-built components and owns an extensive assortment of vintage comic book memorabilia owns a high-end gaming PC with custom-built components. Everyone in the room who enjoys kayaking and exploring remote waterways is not a client of Meta. If someone is a tea enthusiast then he/she collects comic books. David is a client of Meta, drives a hybrid car or owns a high-end gaming PC with custom-built components. Everyone in the room who is a tea enthusiast enjoys deep-sea diving and exploring underwater caves, travels domestically frequently and owns a high-end gaming PC with custom-built components. Everyone in the room owns a high-end gaming PC with custom-built components or does not own an extensive assortment of vintage comic book memorabilia. If someone enjoys kayaking and exploring remote waterways, does not own an extensive assortment of vintage comic book memorabilia or is a client of Meta then he/she drives a hybrid car. Everyone in the room is a tea enthusiast or does not enjoy deep-sea diving and exploring underwater caves. Eva enjoys stargazing. Eva owns an extensive assortment of vintage comic book memorabilia. Not everyone in the room who drives a hybrid car owns a high-end gaming PC with custom-built components, drives a hybrid car and owns an extensive assortment of vintage comic book memorabilia. Not everyone in the room who owns a high-end gaming PC with custom-built components, drives a hybrid car and owns an extensive assortment of vintage comic book memorabilia owns a telescope.
More than one person in the room does not drive a hybrid car.
contradiction
room(david)&room(glenn)&room(eva)&(![X]:(room(X)=>(X='david'|X='glenn'|X='eva')))& (![X]:(room(X)=>(((((collects_comic_books(X))&(owns_a_high-end_gaming_PC_with_custom-built_components(X))&(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))=>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))& (![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))=>(is_not_a_client_of_Meta(X))))))& ((![X]:((is_a_tea_enthusiast(X))=>(collects_comic_books(X)))))& (((is_a_client_of_Meta(david))|(drives_a_hybrid_car(david))|(owns_a_high-end_gaming_PC_with_custom-built_components(david))))& (![X]:(room(X)=>(((is_a_tea_enthusiast(X))=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))&(travels_domestically_frequently(X))&(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))))& (![X]:(room(X)=>(((does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))& ((![X]:((((enjoys_kayaking_and_exploring_remote_waterways(X))|(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(is_a_client_of_Meta(X))))=>(drives_a_hybrid_car(X)))))& (![X]:(room(X)=>(((does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))|(is_a_tea_enthusiast(X))))))& (enjoys_stargazing(eva))& (~![X]:(~room(X)=>(((is_a_client_of_Meta(X))|(does_not_collect_comic_books(X))))))& (![X]:(room(X)=>(((does_not_collect_comic_books(X))=>(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))))))& (owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(eva))& (~![X]:(room(X)=>(((drives_a_hybrid_car(X))=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))&(drives_a_hybrid_car(X))&(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))))& (~![X]:(room(X)=>(((((owns_a_high-end_gaming_PC_with_custom-built_components(X))&(drives_a_hybrid_car(X))&(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))=>(owns_a_telescope(X))))))& (collects_comic_books(david))& (![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))=>(enjoys_stargazing(X))))))
room(david)&room(glenn)&room(eva)&(![X]:(room(X)=>(X='david'|X='glenn'|X='eva')))& (?[X,Y]:(room(X)&room(Y)&(does_not_drive_a_hybrid_car(X)&does_not_drive_a_hybrid_car(Y))&(X!=Y)))
[ "p0", "p6", "p7", "p12", "p13", "p14", "hypothesis" ]
% SZS status Unsatisfiable for 79774601919250067444906 % SZS output start Proof for 79774601919250067444906 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 50. ! [X0] : (room(X0) => (predi(X0) | ~predd(X0))) [input p6] 51. ! [X0] : ((predb(X0) | ~predd(X0) | predc(X0)) => prede(X0)) [input p7] 56. predd(fred) [input p12] 57. ~! [X0] : (room(X0) => (prede(X0) => (predd(X0) & prede(X0) & predi(X0)))) [input p13] 58. ~! [X0] : (room(X0) => ((predd(X0) & prede(X0) & predi(X0)) => predh(X0))) [input p14] 61. ? [X0,X1] : (X0 != X1 & ~prede(X1) & ~prede(X0) & room(X1) & room(X0)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 62. ? [X0,X1] : (X0 != X1 & ~prede(X1) & ~prede(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => (fred = X2 | paul = X2 | mary = X2)) & room(fred) & room(paul) & room(mary) [rectify 61] 63. ~! [X0] : (room(X0) => ~(predd(X0) & prede(X0) & predi(X0))) [pure predicate removal 58] 67. ! [X0] : ((predb(X0) | ~predd(X0)) => prede(X0)) [pure predicate removal 51] 141. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 142. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 141] 148. ! [X0] : ((predi(X0) | ~predd(X0)) | ~room(X0)) [ennf transformation 50] 149. ! [X0] : (predi(X0) | ~predd(X0) | ~room(X0)) [flattening 148] 150. ! [X0] : (prede(X0) | (~predb(X0) & predd(X0))) [ennf transformation 67] 157. ? [X0] : (((~predd(X0) | ~prede(X0) | ~predi(X0)) & prede(X0)) & room(X0)) [ennf transformation 57] 158. ? [X0] : ((~predd(X0) | ~prede(X0) | ~predi(X0)) & prede(X0) & room(X0)) [flattening 157] 159. ? [X0] : ((predd(X0) & prede(X0) & predi(X0)) & room(X0)) [ennf transformation 63] 160. ? [X0] : (predd(X0) & prede(X0) & predi(X0) & room(X0)) [flattening 159] 161. ? [X0,X1] : (X0 != X1 & ~prede(X1) & ~prede(X0) & room(X1) & room(X0)) & ! [X2] : ((fred = X2 | paul = X2 | mary = X2) | ~room(X2)) & room(fred) & room(paul) & room(mary) [ennf transformation 62] 162. ? [X0,X1] : (X0 != X1 & ~prede(X1) & ~prede(X0) & room(X1) & room(X0)) & ! [X2] : (fred = X2 | paul = X2 | mary = X2 | ~room(X2)) & room(fred) & room(paul) & room(mary) [flattening 161] 166. ? [X0] : ((~predd(X0) | ~prede(X0) | ~predi(X0)) & prede(X0) & room(X0)) => ((~predd(sK1) | ~prede(sK1) | ~predi(sK1)) & prede(sK1) & room(sK1)) [choice axiom] 167. (~predd(sK1) | ~prede(sK1) | ~predi(sK1)) & prede(sK1) & room(sK1) [skolemisation 158,166] 168. ? [X0] : (predd(X0) & prede(X0) & predi(X0) & room(X0)) => (predd(sK2) & prede(sK2) & predi(sK2) & room(sK2)) [choice axiom] 169. predd(sK2) & prede(sK2) & predi(sK2) & room(sK2) [skolemisation 160,168] 170. ? [X0,X1] : (X0 != X1 & ~prede(X1) & ~prede(X0) & room(X1) & room(X0)) => (sK3 != sK4 & ~prede(sK4) & ~prede(sK3) & room(sK4) & room(sK3)) [choice axiom] 171. (sK3 != sK4 & ~prede(sK4) & ~prede(sK3) & room(sK4) & room(sK3)) & ! [X2] : (fred = X2 | paul = X2 | mary = X2 | ~room(X2)) & room(fred) & room(paul) & room(mary) [skolemisation 162,170] 254. room(fred) [cnf transformation 142] 255. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 142] 261. ~predd(X0) | predi(X0) | ~room(X0) [cnf transformation 149] 262. prede(X0) | predd(X0) [cnf transformation 150] 269. predd(fred) [cnf transformation 56] 270. room(sK1) [cnf transformation 167] 271. prede(sK1) [cnf transformation 167] 272. ~predd(sK1) | ~prede(sK1) | ~predi(sK1) [cnf transformation 167] 273. room(sK2) [cnf transformation 169] 274. predi(sK2) [cnf transformation 169] 275. prede(sK2) [cnf transformation 169] 276. predd(sK2) [cnf transformation 169] 282. room(sK3) [cnf transformation 171] 283. room(sK4) [cnf transformation 171] 284. ~prede(sK3) [cnf transformation 171] 285. ~prede(sK4) [cnf transformation 171] 286. sK3 != sK4 [cnf transformation 171] 292. 2 <=> prede(mary) [avatar definition] 296. 3 <=> predi(mary) [avatar definition] 301. 4 <=> predi(sK1) [avatar definition] 303. ~predi(sK1) <- (~4) [avatar component clause 301] 305. 5 <=> prede(sK1) [avatar definition] 306. prede(sK1) <- (5) [avatar component clause 305] 309. 6 <=> predd(sK1) [avatar definition] 311. ~predd(sK1) <- (~6) [avatar component clause 309] 312. ~4 | ~5 | ~6 [avatar split clause 272,309,305,301] 313. 5 [avatar split clause 271,305] 314. predd(sK3) [resolution 262,284] 315. predd(sK4) [resolution 262,285] 316. predi(fred) | ~room(fred) [resolution 261,269] 320. predi(fred) [subsumption resolution 316,254] 370. paul = sK1 | mary = sK1 | fred = sK1 [resolution 255,270] 371. paul = sK2 | mary = sK2 | fred = sK2 [resolution 255,273] 372. paul = sK3 | mary = sK3 | fred = sK3 [resolution 255,282] 373. paul = sK4 | mary = sK4 | fred = sK4 [resolution 255,283] 375. 7 <=> fred = sK1 [avatar definition] 377. fred = sK1 <- (7) [avatar component clause 375] 379. 8 <=> mary = sK1 [avatar definition] 381. mary = sK1 <- (8) [avatar component clause 379] 383. 9 <=> paul = sK1 [avatar definition] 385. paul = sK1 <- (9) [avatar component clause 383] 386. 7 | 8 | 9 [avatar split clause 370,383,379,375] 388. 10 <=> fred = sK2 [avatar definition] 390. fred = sK2 <- (10) [avatar component clause 388] 392. 11 <=> mary = sK2 [avatar definition] 394. mary = sK2 <- (11) [avatar component clause 392] 396. 12 <=> paul = sK2 [avatar definition] 398. paul = sK2 <- (12) [avatar component clause 396] 399. 10 | 11 | 12 [avatar split clause 371,396,392,388] 401. 13 <=> fred = sK3 [avatar definition] 403. fred = sK3 <- (13) [avatar component clause 401] 405. 14 <=> mary = sK3 [avatar definition] 407. mary = sK3 <- (14) [avatar component clause 405] 409. 15 <=> paul = sK3 [avatar definition] 411. paul = sK3 <- (15) [avatar component clause 409] 412. 13 | 14 | 15 [avatar split clause 372,409,405,401] 414. 16 <=> fred = sK4 [avatar definition] 416. fred = sK4 <- (16) [avatar component clause 414] 418. 17 <=> mary = sK4 [avatar definition] 420. mary = sK4 <- (17) [avatar component clause 418] 422. 18 <=> paul = sK4 [avatar definition] 424. paul = sK4 <- (18) [avatar component clause 422] 425. 16 | 17 | 18 [avatar split clause 373,422,418,414] 430. ~prede(fred) <- (16) [backward demodulation 285,416] 441. prede(fred) <- (10) [backward demodulation 275,390] 443. $false <- (10, 16) [subsumption resolution 441,430] 444. ~10 | ~16 [avatar contradiction clause 443] 445. prede(fred) <- (5, 7) [backward demodulation 306,377] 446. ~predd(fred) <- (~6, 7) [backward demodulation 311,377] 448. $false <- (5, 7, 16) [subsumption resolution 445,430] 449. ~5 | ~7 | ~16 [avatar contradiction clause 448] 450. $false <- (~6, 7) [subsumption resolution 446,269] 451. 6 | ~7 [avatar contradiction clause 450] 454. predd(mary) <- (14) [backward demodulation 314,407] 469. ~predd(mary) <- (~6, 8) [backward demodulation 311,381] 471. $false <- (~6, 8, 14) [subsumption resolution 469,454] 472. 6 | ~8 | ~14 [avatar contradiction clause 471] 478. ~prede(paul) <- (15) [backward demodulation 284,411] 482. predi(paul) <- (12) [backward demodulation 274,398] 483. prede(paul) <- (12) [backward demodulation 275,398] 484. predd(paul) <- (12) [backward demodulation 276,398] 486. $false <- (12, 15) [subsumption resolution 483,478] 487. ~12 | ~15 [avatar contradiction clause 486] 490. predd(mary) <- (17) [backward demodulation 315,420] 495. $false <- (~6, 8, 17) [subsumption resolution 490,469] 496. 6 | ~8 | ~17 [avatar contradiction clause 495] 514. ~predi(paul) <- (~4, 9) [backward demodulation 303,385] 515. $false <- (~4, 9, 12) [subsumption resolution 514,482] 516. 4 | ~9 | ~12 [avatar contradiction clause 515] 517. ~predd(paul) <- (~6, 9) [forward demodulation 311,385] 518. $false <- (~6, 9, 12) [subsumption resolution 517,484] 519. 6 | ~9 | ~12 [avatar contradiction clause 518] 526. ~predi(fred) <- (~4, 7) [forward demodulation 303,377] 527. $false <- (~4, 7) [subsumption resolution 526,320] 528. 4 | ~7 [avatar contradiction clause 527] 534. ~prede(paul) <- (18) [backward demodulation 285,424] 536. $false <- (12, 18) [subsumption resolution 534,483] 537. ~12 | ~18 [avatar contradiction clause 536] 538. prede(mary) <- (5, 8) [backward demodulation 306,381] 541. ~predi(mary) <- (~4, 8) [backward demodulation 303,381] 543. 2 | ~5 | ~8 [avatar split clause 538,379,305,292] 544. ~3 | 4 | ~8 [avatar split clause 541,379,301,296] 560. predi(mary) <- (11) [backward demodulation 274,394] 562. predd(mary) <- (11) [backward demodulation 276,394] 566. 3 | ~11 [avatar split clause 560,392,296] 567. ~predd(mary) <- (~6, 8) [forward demodulation 311,381] 568. $false <- (~6, 8, 11) [subsumption resolution 567,562] 569. 6 | ~8 | ~11 [avatar contradiction clause 568] 575. ~prede(paul) <- (18) [backward demodulation 285,424] 582. prede(fred) <- (10) [backward demodulation 275,390] 585. paul != sK3 <- (18) [forward demodulation 286,424] 586. ~15 | ~18 [avatar split clause 585,422,409] 588. ~prede(fred) <- (13) [backward demodulation 284,403] 592. $false <- (10, 13) [subsumption resolution 588,582] 593. ~10 | ~13 [avatar contradiction clause 592] 596. prede(mary) <- (11) [backward demodulation 275,394] 601. prede(paul) <- (5, 9) [backward demodulation 306,385] 604. $false <- (5, 9, 18) [subsumption resolution 601,575] 605. ~5 | ~9 | ~18 [avatar contradiction clause 604] 609. 2 | ~11 [avatar split clause 596,392,292] 622. fred != sK3 <- (16) [backward demodulation 286,416] 626. ~13 | ~16 [avatar split clause 622,414,401] 628. ~prede(paul) <- (15) [backward demodulation 284,411] 632. $false <- (5, 9, 15) [subsumption resolution 628,601] 633. ~5 | ~9 | ~15 [avatar contradiction clause 632] 638. ~prede(mary) <- (17) [backward demodulation 285,420] 639. mary != sK3 <- (17) [backward demodulation 286,420] 644. ~2 | ~17 [avatar split clause 638,418,292] 645. ~14 | ~17 [avatar split clause 639,418,405] 648. ~prede(mary) <- (14) [backward demodulation 284,407] 654. ~2 | ~14 [avatar split clause 648,405,292] 660. $false [avatar sat refutation 312,313,386,399,412,425,444,449,451,472,487,496,516,519,528,537,543,544,566,569,586,593,605,609,626,633,644,645,654] % SZS output end Proof for 79774601919250067444906 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.026 s % ------------------------------ % ------------------------------
0.559416
Joseph, Stanley, Edith are the only persons in the room. “At least one person in the room neither is not right-handed nor is not a culinary enthusiast who experiments with international cuisines” if “Joseph is not a night owl or does not mentor a youth basketball team on weekends or both” and vice versa. Stanley is not right-handed. Everyone in the room is not a client of Costco and is not a night owl. Edith does not enjoy fishing, is not right-handed and does not have a curated collection of mid-century modern furniture.
Joseph is a culinary enthusiast who experiments with international cuisines.
entailment
room(joseph)&room(stanley)&room(edith)&(![X]:(room(X)=>(X='joseph'|X='stanley'|X='edith')))& ((((is_not_a_night_owl(joseph))|(does_not_mentor_a_youth_basketball_team_on_weekends(joseph))))<=>(((?[X]:(room(X)&~((is_not_right-handed(X))|(is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))))& ((![X]:(room(X)=>(does_not_collect_rare_sneakers(X))))=>((does_not_have_completed_a_triathlon(stanley))&(((does_not_enjoy_wildlife_photography(stanley))<~>(does_not_practice_tai_chi(stanley))))))& ((((does_not_enjoy_snowboarding(stanley))|(does_not_have_completed_a_triathlon(stanley))))=>(![X]:(room(X)=>(((is_not_a_night_owl(X))|(is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X)))))))& (![X]:(anywhere(X)=>(((is_not_a_night_owl(X))|(does_not_enjoy_logic_puzzles(X))|(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))))& (![X]:(room(X)=>(((does_not_mentor_a_youth_basketball_team_on_weekends(X))<~>(does_not_have_completed_a_triathlon(X))))))& (((does_not_have_a_piercing(stanley))&(does_not_mentor_a_youth_basketball_team_on_weekends(stanley))))& (![X]:(room(X)=>(is_not_a_drone_photographer(X))))& (![X]:(~room(X)=>(((does_not_have_completed_a_triathlon(X))&(does_not_enjoy_fishing(X))))))& (![X]:(room(X)=>(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))|(is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))|(does_not_play_eSports_competitively(X))))))& (is_not_right-handed(stanley))& (((does_not_practice_archery(edith))&(does_not_enjoy_fishing(edith))&(is_not_a_drone_photographer(edith))))& (((does_not_practice_archery(edith))&(does_not_play_eSports_competitively(edith))))& (![X]:(room(X)=>(((is_not_a_client_of_Costco(X))&(is_not_a_night_owl(X))))))& (![X]:(anywhere(X)=>(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))))& ((![X]:((does_not_have_a_piercing(X))=>(((is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))&(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))&(does_not_enjoy_macrame(X)))))))& (![X]:(room(X)=>(~((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))|(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))& ((does_not_own_a_microscope(edith))&(((does_not_have_a_curated_collection_of_mid-century_modern_furniture(edith))&(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(edith))&(is_not_a_drone_photographer(edith)))))& (((does_not_enjoy_fishing(edith))&(is_not_right-handed(edith))&(does_not_have_a_curated_collection_of_mid-century_modern_furniture(edith))))& (((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(edith))|(does_not_have_a_saltwater_aquarium(edith))))& (![X]:(room(X)=>(((does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))|(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))|(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))))& (![X]:(room(X)=>(((does_not_own_a_microscope(X))<~>(does_not_have_a_saltwater_aquarium(X))))))& (![X]:(room(X)=>(((is_not_a_night_owl(X))|(is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))& (((?[X]:(room(X)&((does_not_mentor_a_youth_basketball_team_on_weekends(X))<~>(does_not_play_eSports_competitively(X)))))&(![X,Y]:((room(X)&room(Y)&(((does_not_mentor_a_youth_basketball_team_on_weekends(X))<~>(does_not_play_eSports_competitively(X))))&(((does_not_mentor_a_youth_basketball_team_on_weekends(Y))<~>(does_not_play_eSports_competitively(Y)))))=>(X=Y)))))& ((![X]:((is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))=>(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))&(does_not_enjoy_macrame(X)))))))
room(joseph)&room(stanley)&room(edith)&(![X]:(room(X)=>(X='joseph'|X='stanley'|X='edith')))& is_a_culinary_enthusiast_who_experiments_with_international_cuisines(joseph)
[ "p0", "p1", "p10", "p13", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 2472170725276531553983249 % SZS output start Proof for 2472170725276531553983249 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. (~predi(mary) | ~predg(mary)) <=> ? [X0] : (~(~predz(X0) | ~predc(X0)) & room(X0)) [input p1] 54. ~predc(paul) [input p10] 57. ! [X0] : (room(X0) => (~predg(X0) & ~predn(X0))) [input p13] 62. ~predx(fred) & ~predc(fred) & ~predf(fred) [input p18] 69. ~(predz(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 72. ~predc(fred) & ~predf(fred) [pure predicate removal 62] 80. ! [X0] : (room(X0) => ~predg(X0)) [pure predicate removal 57] 87. ~predc(fred) [pure predicate removal 72] 168. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 169. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 168] 170. (~predi(mary) | ~predg(mary)) <=> ? [X0] : ((predz(X0) & predc(X0)) & room(X0)) [ennf transformation 45] 171. (~predi(mary) | ~predg(mary)) <=> ? [X0] : (predz(X0) & predc(X0) & room(X0)) [flattening 170] 177. ! [X0] : (~predg(X0) | ~room(X0)) [ennf transformation 80] 184. ~predz(mary) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 69] 185. ~predz(mary) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 184] 187. ((~predi(mary) | ~predg(mary)) | ! [X0] : (~predz(X0) | ~predc(X0) | ~room(X0))) & (? [X0] : (predz(X0) & predc(X0) & room(X0)) | (predi(mary) & predg(mary))) [nnf transformation 171] 188. (~predi(mary) | ~predg(mary) | ! [X0] : (~predz(X0) | ~predc(X0) | ~room(X0))) & (? [X0] : (predz(X0) & predc(X0) & room(X0)) | (predi(mary) & predg(mary))) [flattening 187] 189. (~predi(mary) | ~predg(mary) | ! [X0] : (~predz(X0) | ~predc(X0) | ~room(X0))) & (? [X1] : (predz(X1) & predc(X1) & room(X1)) | (predi(mary) & predg(mary))) [rectify 188] 190. ? [X1] : (predz(X1) & predc(X1) & room(X1)) => (predz(sK0) & predc(sK0) & room(sK0)) [choice axiom] 191. (~predi(mary) | ~predg(mary) | ! [X0] : (~predz(X0) | ~predc(X0) | ~room(X0))) & ((predz(sK0) & predc(sK0) & room(sK0)) | (predi(mary) & predg(mary))) [skolemisation 189,190] 202. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 203. ~predz(mary) | (fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 185,202] 284. room(mary) [cnf transformation 169] 285. room(paul) [cnf transformation 169] 286. room(fred) [cnf transformation 169] 287. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 169] 288. room(sK0) | predg(mary) [cnf transformation 191] 290. predc(sK0) | predg(mary) [cnf transformation 191] 292. predz(sK0) | predg(mary) [cnf transformation 191] 304. ~predc(paul) [cnf transformation 54] 306. ~predg(X0) | ~room(X0) [cnf transformation 177] 309. ~predc(fred) [cnf transformation 87] 320. ~predz(mary) | room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 203] 321. ~predz(mary) | mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 203] 322. ~predz(mary) | paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 203] 323. ~predz(mary) | fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 203] 328. 2 <=> predg(mary) [avatar definition] 329. predg(mary) <- (2) [avatar component clause 328] 337. 4 <=> predz(sK0) [avatar definition] 339. predz(sK0) <- (4) [avatar component clause 337] 341. 2 | 4 [avatar split clause 292,337,328] 343. 5 <=> predc(sK0) [avatar definition] 345. predc(sK0) <- (5) [avatar component clause 343] 347. 2 | 5 [avatar split clause 290,343,328] 349. 6 <=> room(sK0) [avatar definition] 351. room(sK0) <- (6) [avatar component clause 349] 353. 2 | 6 [avatar split clause 288,349,328] 387. ~predz(mary) | fred != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 323,286] 388. ~predz(mary) | fred != sK3 | ~room(mary) [subsumption resolution 387,285] 389. ~predz(mary) | fred != sK3 [subsumption resolution 388,284] 391. 14 <=> fred = sK3 [avatar definition] 393. fred != sK3 <- (~14) [avatar component clause 391] 395. 15 <=> predz(mary) [avatar definition] 398. ~14 | ~15 [avatar split clause 389,395,391] 399. ~predz(mary) | paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 322,286] 400. ~predz(mary) | paul != sK3 | ~room(mary) [subsumption resolution 399,285] 401. ~predz(mary) | paul != sK3 [subsumption resolution 400,284] 403. 16 <=> paul = sK3 [avatar definition] 405. paul != sK3 <- (~16) [avatar component clause 403] 406. ~16 | ~15 [avatar split clause 401,395,403] 407. ~predz(mary) | mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 321,286] 408. ~predz(mary) | mary != sK3 | ~room(mary) [subsumption resolution 407,285] 409. ~predz(mary) | mary != sK3 [subsumption resolution 408,284] 411. 17 <=> mary = sK3 [avatar definition] 413. mary != sK3 <- (~17) [avatar component clause 411] 414. ~17 | ~15 [avatar split clause 409,395,411] 415. ~predz(mary) | room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 320,286] 416. ~predz(mary) | room(sK3) | ~room(mary) [subsumption resolution 415,285] 417. ~predz(mary) | room(sK3) [subsumption resolution 416,284] 419. 18 <=> room(sK3) [avatar definition] 421. room(sK3) <- (18) [avatar component clause 419] 422. 18 | ~15 [avatar split clause 417,395,419] 424. ~room(mary) <- (2) [resolution 306,329] 425. $false <- (2) [subsumption resolution 424,284] 426. ~2 [avatar contradiction clause 425] 589. paul = sK0 | mary = sK0 | fred = sK0 <- (6) [resolution 287,351] 593. 35 <=> fred = sK0 [avatar definition] 595. fred = sK0 <- (35) [avatar component clause 593] 597. 36 <=> mary = sK0 [avatar definition] 599. mary = sK0 <- (36) [avatar component clause 597] 601. 37 <=> paul = sK0 [avatar definition] 603. paul = sK0 <- (37) [avatar component clause 601] 604. 35 | 36 | 37 | ~6 [avatar split clause 589,349,601,597,593] 646. predc(fred) <- (5, 35) [backward demodulation 345,595] 653. $false <- (5, 35) [subsumption resolution 646,309] 654. ~5 | ~35 [avatar contradiction clause 653] 660. predz(mary) <- (4, 36) [backward demodulation 339,599] 673. 15 | ~4 | ~36 [avatar split clause 660,597,337,395] 675. paul = sK3 | mary = sK3 | fred = sK3 <- (18) [resolution 421,287] 678. mary = sK3 | fred = sK3 <- (~16, 18) [subsumption resolution 675,405] 679. fred = sK3 <- (~16, ~17, 18) [subsumption resolution 678,413] 680. $false <- (~14, ~16, ~17, 18) [subsumption resolution 679,393] 681. 14 | 16 | 17 | ~18 [avatar contradiction clause 680] 701. predc(paul) <- (5, 37) [backward demodulation 345,603] 709. $false <- (5, 37) [subsumption resolution 701,304] 710. ~5 | ~37 [avatar contradiction clause 709] 717. $false [avatar sat refutation 341,347,353,398,406,414,422,426,604,654,673,681,710] % SZS output end Proof for 2472170725276531553983249 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.122921
Joseph, Thomas, Clay, Amanda are the only persons in the room. If “Joseph practices digital art” then “Joseph is a wine connoisseur with a private cellar of vintage wines”. If “Joseph uses a Windows laptop” then “Joseph neither is a wine connoisseur with a private cellar of vintage wines nor practices digital art”. If “Joseph has a saltwater aquarium or is a Linux enthusiast or both” then “Thomas is a member of a local theater group specializing in improv”. If “Joseph mentors a youth basketball team on weekends” then “Thomas uses a Windows laptop”. “Thomas uses a Windows laptop” if “Joseph enjoys landscape photography” and vice versa. If “Thomas has a saltwater aquarium” then “Thomas uses a Windows laptop, has a saltwater aquarium or enjoys landscape photography”. If “Thomas practices digital art” then “Joseph mentors a youth basketball team on weekends” otherwise “Joseph is a Linux enthusiast”. If “Joseph is a wine connoisseur with a private cellar of vintage wines” then “Joseph uses a Windows laptop”. If “Thomas either is a member of a local theater group specializing in improv or enjoys cross-country skiing but not both” then “Joseph mentors a youth basketball team on weekends” otherwise “Joseph neither does enjoy mountain biking nor composes and performs experimental electronic music”. If “Thomas enjoys cross-country skiing” then “it is not the case that “Joseph practices digital art””. Joseph mentors a youth basketball team on weekends. Joseph composes and performs experimental electronic music. Joseph enjoys cross-country skiing. Thomas practices digital art. Thomas is a wine connoisseur with a private cellar of vintage wines. Thomas is a Linux enthusiast. Joseph does enjoy mountain biking. Thomas either does enjoy mountain biking or is a member of a local theater group specializing in improv but not both.
Joseph uses a Windows laptop.
neutral
room(joseph)&room(thomas)&room(clay)&room(amanda)&(![X]:(room(X)=>(X='joseph'|X='thomas'|X='clay'|X='amanda')))& ((practices_digital_art(joseph))=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(joseph)))& ((uses_a_Windows_laptop(joseph))=>(~((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(joseph))|(practices_digital_art(joseph)))))& ((((has_a_saltwater_aquarium(joseph))|(is_a_Linux_enthusiast(joseph))))=>(is_a_member_of_a_local_theater_group_specializing_in_improv(thomas)))& ((mentors_a_youth_basketball_team_on_weekends(joseph))=>(uses_a_Windows_laptop(thomas)))& ((enjoys_landscape_photography(joseph))<=>(uses_a_Windows_laptop(thomas)))& ((has_a_saltwater_aquarium(thomas))=>(((uses_a_Windows_laptop(thomas))|(has_a_saltwater_aquarium(thomas))|(enjoys_landscape_photography(thomas)))))& (((practices_digital_art(thomas))=>(mentors_a_youth_basketball_team_on_weekends(joseph)))&((~(practices_digital_art(thomas)))=>(is_a_Linux_enthusiast(joseph))))& ((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(joseph))=>(uses_a_Windows_laptop(joseph)))& (((((is_a_member_of_a_local_theater_group_specializing_in_improv(thomas))<~>(enjoys_cross-country_skiing(thomas))))=>(mentors_a_youth_basketball_team_on_weekends(joseph)))&((~(((is_a_member_of_a_local_theater_group_specializing_in_improv(thomas))<~>(enjoys_cross-country_skiing(thomas)))))=>(~((does_enjoy_mountain_biking(joseph))|(composes_and_performs_experimental_electronic_music(joseph))))))& ((enjoys_cross-country_skiing(thomas))=>(~(practices_digital_art(joseph))))& (mentors_a_youth_basketball_team_on_weekends(joseph))& (composes_and_performs_experimental_electronic_music(joseph))& (enjoys_cross-country_skiing(joseph))& (practices_digital_art(thomas))& (is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(thomas))& (is_a_Linux_enthusiast(thomas))& (does_enjoy_mountain_biking(joseph))& (((does_enjoy_mountain_biking(thomas))<~>(is_a_member_of_a_local_theater_group_specializing_in_improv(thomas))))& (has_a_saltwater_aquarium(joseph))& (has_a_saltwater_aquarium(thomas))& (is_a_member_of_a_local_theater_group_specializing_in_improv(joseph))& (~(~((mentors_a_youth_basketball_team_on_weekends(thomas))|(does_enjoy_mountain_biking(thomas)))))& ((?[X,Y]:(room(X)&room(Y)&(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X)&is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(Y))&(X!=Y))))& (enjoys_landscape_photography(thomas))& (enjoys_landscape_photography(joseph))
room(joseph)&room(thomas)&room(clay)&room(amanda)&(![X]:(room(X)=>(X='joseph'|X='thomas'|X='clay'|X='amanda')))& uses_a_Windows_laptop(joseph)
[]
null
0.491187
Barbara, Douglas, Helen are the only persons in the room. Everyone in the room does not enjoy stand-up paddleboarding or enjoys stargazing only if everyone in the room does not enjoy stand-up paddleboarding if they either has a saltwater aquarium or plays the drums but not both and vice versa. Helen either bakes bread at home or can play the guitar but not both if someone in the room is an active member of a local robotics club and vice versa. Everyone in the room maintains a large, organic vegetable garden year-round or does not practice archery only if everyone in the room who maintains a large, organic vegetable garden year-round is right-handed. If Barbara practices and performs acrobatic dance routines then Barbara owns a 3D printer. Everyone in the room enjoys rooftop gardening or is not a craft beer aficionado. Barbara owns a 3D printer. Everyone in the room maintains a large, organic vegetable garden year-round or is an avid mountain climber who has scaled several peaks or both if and only if they is right-handed. Everyone in the room regularly contributes to tech forums and online communities and watches fantasy movies if and only if they does practice yoga. Barbara does practice yoga. Everyone in the room watches fantasy movies only if they neither is an active member of a local robotics club nor is a craft beer aficionado. Everyone anywhere enjoys stand-up paddleboarding only if they is a craft beer aficionado and can play the guitar.
Barbara enjoys stand-up paddleboarding.
contradiction
room(barbara)&room(douglas)&room(helen)&(![X]:(room(X)=>(X='barbara'|X='douglas'|X='helen')))& ((![X]:(room(X)=>(((enjoys_stargazing(X))|(does_not_enjoy_stand-up_paddleboarding(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_stand-up_paddleboarding(X))<=>(((has_a_saltwater_aquarium(X))<~>(plays_the_drums(X)))))))))& ((?[X]:(room(X)&(is_an_active_member_of_a_local_robotics_club(X))))<=>(((bakes_bread_at_home(helen))<~>(can_play_the_guitar(helen)))))& ((![X]:(room(X)=>(((does_not_practice_archery(X))|(maintains_a_large,_organic_vegetable_garden_year-round(X))))))=>(![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(is_right-handed(X)))))))& ((practices_and_performs_acrobatic_dance_routines(barbara))=>(owns_a_3D_printer(barbara)))& (![X]:(room(X)=>(((is_not_a_craft_beer_aficionado(X))|(enjoys_rooftop_gardening(X))))))& (owns_a_3D_printer(barbara))& (![X]:(room(X)=>(((((maintains_a_large,_organic_vegetable_garden_year-round(X))|(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))<=>(is_right-handed(X))))))& (![X]:(room(X)=>(((((is_a_craft_beer_aficionado(X))<~>(is_right-handed(X))))<=(((builds_model_airplanes(X))|(is_a_client_of_LVMH(X))))))))& (![X]:(room(X)=>(((bakes_bread_at_home(X))<=(maintains_a_large,_organic_vegetable_garden_year-round(X))))))& (![X]:(room(X)=>(((((regularly_contributes_to_tech_forums_and_online_communities(X))&(watches_fantasy_movies(X))))<=>(does_practice_yoga(X))))))& (?[X]:(room(X)&(((bakes_bread_at_home(X))|(writes_and_illustrates_their_own_graphic_novels(X))))))& (![X]:(anywhere(X)=>(((plays_the_drums(X))=>(regularly_contributes_to_tech_forums_and_online_communities(X))))))& (enjoys_stargazing(douglas))& ((?[X,Y]:(room(X)&room(Y)&(bakes_bread_at_home(X)&bakes_bread_at_home(Y))&(X!=Y))))& ((?[X,Y]:(room(X)&room(Y)&(enjoys_stargazing(X)&enjoys_stargazing(Y))&(X!=Y))))& (((?[X]:(~room(X)&does_practice_yoga(X)))))& (![X]:(~room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))=>(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))))))& ((?[X,Y]:(room(X)&room(Y)&(is_not_a_craft_beer_aficionado(X)&is_not_a_craft_beer_aficionado(Y))&(X!=Y))))& (~((can_play_the_guitar(douglas))|(can_play_the_harmonica(douglas))))& (![X]:(room(X)=>(((((bakes_bread_at_home(X))|(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))<=(can_play_the_guitar(X))))))& ((creates_YouTube_content(barbara))&(regularly_contributes_to_tech_forums_and_online_communities(barbara)))& (((bakes_bread_at_home(helen))<~>(can_play_the_guitar(helen))))& (does_practice_yoga(barbara))& (![X]:(room(X)=>(((~((is_an_active_member_of_a_local_robotics_club(X))|(is_a_craft_beer_aficionado(X))))<=(watches_fantasy_movies(X))))))& (?[X]:(room(X)&(watches_fantasy_movies(X))))& (![X]:(anywhere(X)=>(((((is_a_craft_beer_aficionado(X))&(can_play_the_guitar(X))))<=(enjoys_stand-up_paddleboarding(X))))))
room(barbara)&room(douglas)&room(helen)&(![X]:(room(X)=>(X='barbara'|X='douglas'|X='helen')))& enjoys_stand-up_paddleboarding(barbara)
[ "b4", "p0", "p10", "p23", "p24", "p26", "hypothesis" ]
% SZS status Unsatisfiable for 3346784793990214270207142 % SZS output start Proof for 3346784793990214270207142 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 54. ! [X0] : (room(X0) => ((predv(X0) & prede(X0)) <=> predg(X0))) [input p10] 67. predg(mary) [input p23] 68. ! [X0] : (room(X0) => (predv(X0) => ~(predp(X0) | predt(X0)))) [input p24] 70. ! [X0] : (anywhere(X0) => (predj(X0) => (predz(X0) & predp(X0)))) [input p26] 71. predj(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 155. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 156. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 155] 164. ! [X0] : (((predv(X0) & prede(X0)) <=> predg(X0)) | ~room(X0)) [ennf transformation 54] 170. ! [X0] : (((~predp(X0) & ~predt(X0)) | ~predv(X0)) | ~room(X0)) [ennf transformation 68] 171. ! [X0] : ((~predp(X0) & ~predt(X0)) | ~predv(X0) | ~room(X0)) [flattening 170] 172. ! [X0] : (((predz(X0) & predp(X0)) | ~predj(X0)) | ~anywhere(X0)) [ennf transformation 70] 173. ! [X0] : ((predz(X0) & predp(X0)) | ~predj(X0) | ~anywhere(X0)) [flattening 172] 174. predj(mary) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 71] 175. predj(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 174] 192. ! [X0] : ((((predv(X0) & prede(X0)) | ~predg(X0)) & (predg(X0) | (~predv(X0) | ~prede(X0)))) | ~room(X0)) [nnf transformation 164] 193. ! [X0] : ((((predv(X0) & prede(X0)) | ~predg(X0)) & (predg(X0) | ~predv(X0) | ~prede(X0))) | ~room(X0)) [flattening 192] 207. anywhere(X0) [cnf transformation 5] 288. room(mary) [cnf transformation 156] 313. ~predg(X0) | predv(X0) | ~room(X0) [cnf transformation 193] 339. predg(mary) [cnf transformation 67] 341. ~predv(X0) | ~predp(X0) | ~room(X0) [cnf transformation 171] 344. predp(X0) | ~predj(X0) | ~anywhere(X0) [cnf transformation 173] 350. predj(mary) [cnf transformation 175] 429. ~predj(X0) | predp(X0) [subsumption resolution 344,207] 432. predp(mary) [resolution 429,350] 437. predv(mary) | ~room(mary) [resolution 313,339] 438. predv(mary) [subsumption resolution 437,288] 444. ~predp(mary) | ~room(mary) [resolution 341,438] 446. ~room(mary) [subsumption resolution 444,432] 447. $false [subsumption resolution 446,288] % SZS output end Proof for 3346784793990214270207142 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.648052
There is a room. If someone hosts a YouTube channel dedicated to art tutorials then he/she collects first edition books and vice versa. More than one person in the room is a coffee connoisseur. Everyone outside the room who does not own a smartwatch enjoys spelunking.
Everyone in the room enjoys kayaking.
neutral
(there_is_a_room)& ((![X]:((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))<=>(collects_first_edition_books(X)))))& ((?[X,Y]:(room(X)&room(Y)&(is_a_coffee_connoisseur(X)&is_a_coffee_connoisseur(Y))&(X!=Y))))& (![X]:(~room(X)=>(((does_not_own_a_smartwatch(X))=>(enjoys_spelunking(X))))))& ((![X]:((owns_a_smartwatch(X))<=>(collects_comic_books(X)))))& (![X]:(~room(X)=>(((does_not_play_video_games(X))=>(composes_and_performs_experimental_electronic_music(X))))))& (![X]:(room(X)=>(((composes_and_performs_experimental_electronic_music(X))<=>(collects_first_edition_books(X))))))& (![X]:(room(X)=>(((((plays_video_games(X))&(does_not_compose_and_performs_experimental_electronic_music(X))&(is_not_a_coffee_connoisseur(X))))=>(does_not_create_YouTube_content(X))))))& (![X]:(room(X)=>(((does_not_create_YouTube_content(X))=>(does_practice_yoga(X))))))& (![X]:(room(X)=>(((does_practice_yoga(X))=>(does_not_own_a_smartwatch(X))))))& ((?[X,Y]:(room(X)&room(Y)&(enjoys_kayaking(X)&enjoys_kayaking(Y))&(X!=Y))))& (![X]:(room(X)=>(((is_not_a_coffee_connoisseur(X))=>(enjoys_kayaking(X))))))& (((?[X]:(room(X)&hosts_a_YouTube_channel_dedicated_to_art_tutorials(X)))))& (![X]:(room(X)=>(((does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))=>(collects_first_edition_books(X))))))& (~?[X]:(room(X)=>(((collects_first_edition_books(X))=>(enjoys_spelunking(X))))))& (![X]:(~room(X)=>(((enjoys_spelunking(X))=>(((does_practice_yoga(X))&(enjoys_kayaking(X))&(plays_video_games(X))))))))& (![X]:(room(X)=>(((~((creates_YouTube_content(X))|(enjoys_spelunking(X))))=>(enjoys_kayaking(X))))))& (~?[X]:(room(X)=>(((does_not_own_a_smartwatch(X))|(plays_video_games(X))))))& (~![X]:(room(X)=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))=>(((is_a_coffee_connoisseur(X))&(does_practice_yoga(X))&(composes_and_performs_experimental_electronic_music(X))))))))& (![X]:(room(X)=>(((((is_a_coffee_connoisseur(X))&(does_practice_yoga(X))&(composes_and_performs_experimental_electronic_music(X))))=>(does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))))))& (?[X]:(room(X)&(((creates_YouTube_content(X))|(collects_comic_books(X))|(does_not_collect_comic_books(X))))))& (![X]:(room(X)=>(((~((collects_first_edition_books(X))|(owns_a_smartwatch(X))))=>(((enjoys_spelunking(X))<~>(collects_comic_books(X))))))))& (![X]:(~room(X)=>(((owns_a_smartwatch(X))=>(collects_first_edition_books(X))))))
(there_is_a_room)& ![X]:(room(X)=>(enjoys_kayaking(X)))
[]
null
0.030483
Francis, Angelina, Russell, Stephen are the only persons in the room. 'Everyone in the room does not own a 3D printer or is a night owl' unless 'everyone in the room does not own a television or enjoys spelunking'. 'Francis owns an extensive assortment of vintage comic book memorabilia' unless 'Angelina is an amateur astronomer who builds and uses custom telescopes'. 'Everyone outside the room who does not host regular game nights featuring complex strategy games is not a chess master who participates in national tournaments' unless 'Francis is a chess master who participates in national tournaments'. Angelina who hosts regular game nights featuring complex strategy games is an amateur astronomer who builds and uses custom telescopes. Everyone anywhere owns an extensive assortment of vintage comic book memorabilia if they regularly contributes to tech forums and online communities. Everyone in the room is a chess master who participates in national tournaments or is not an amateur astronomer who builds and uses custom telescopes. Everyone in the room who regularly contributes to tech forums and online communities is an amateur astronomer who builds and uses custom telescopes. Everyone anywhere who is an amateur astronomer who builds and uses custom telescopes does not enjoy camping and organizing outdoor survival workshops. Francis owns an extensive assortment of vintage comic book memorabilia. Francis is an amateur astronomer who builds and uses custom telescopes. Everyone in the room either is an amateur astronomer who builds and uses custom telescopes or drives a hybrid car but not both if they is a night owl. Everyone in the room own a television if they either is an amateur astronomer who builds and uses custom telescopes or drives a hybrid car but not both. Everyone in the room is not a chess master who participates in national tournaments or own a television. Francis is a night owl. Francis is a chess master who participates in national tournaments. Everyone outside the room is a chess master who participates in national tournaments or is not an amateur astronomer who builds and uses custom telescopes. Francis does not host regular game nights featuring complex strategy games. Everyone anywhere is a night owl or does not own a television. Everyone outside the room who drives a hybrid car and does not enjoy spelunking hosts regular game nights featuring complex strategy games and drives a hybrid car. Everyone anywhere does not own a 3D printer or enjoys spelunking. Everyone in the room drives a hybrid car if they does not own a 3D printer.
It is true that 'Francis enjoys camping and organizing outdoor survival workshops'.
contradiction
room(francis)&room(angelina)&room(russell)&room(stephen)&(![X]:(room(X)=>(X='francis'|X='angelina'|X='russell'|X='stephen')))& (~(![X]:(room(X)=>(((enjoys_spelunking(X))|(does_not_own_a_television(X))))))=>(![X]:(room(X)=>(((is_a_night_owl(X))|(does_not_own_a_3D_printer(X)))))))& (~(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(angelina))=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(francis)))& (~(is_a_chess_master_who_participates_in_national_tournaments(francis))=>(![X]:(~room(X)=>(((does_not_host_regular_game_nights_featuring_complex_strategy_games(X))=>(is_not_a_chess_master_who_participates_in_national_tournaments(X)))))))& ((hosts_regular_game_nights_featuring_complex_strategy_games(angelina))&(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(angelina)))& (![X]:(anywhere(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))& (![X]:(room(X)=>(((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(is_a_chess_master_who_participates_in_national_tournaments(X))))))& (![X]:(room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))& (![X]:(anywhere(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))=>(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))))& (owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(francis))& (is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(francis))& (![X]:(room(X)=>(((is_a_night_owl(X))=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))<~>(drives_a_hybrid_car(X))))))))& (![X]:(room(X)=>(((((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))<~>(drives_a_hybrid_car(X))))=>(own_a_television(X))))))& (![X]:(room(X)=>(((own_a_television(X))|(is_not_a_chess_master_who_participates_in_national_tournaments(X))))))& (is_a_night_owl(francis))& (is_a_chess_master_who_participates_in_national_tournaments(francis))& (![X]:(~room(X)=>(((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(is_a_chess_master_who_participates_in_national_tournaments(X))))))& (does_not_host_regular_game_nights_featuring_complex_strategy_games(francis))& (![X]:(anywhere(X)=>(((does_not_own_a_television(X))|(is_a_night_owl(X))))))& (![X]:(~room(X)=>(((((drives_a_hybrid_car(X))&(does_not_enjoy_spelunking(X))))=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))&(drives_a_hybrid_car(X))))))))& (![X]:(anywhere(X)=>(((enjoys_spelunking(X))|(does_not_own_a_3D_printer(X))))))& (![X]:(room(X)=>(((does_not_own_a_3D_printer(X))=>(drives_a_hybrid_car(X))))))
room(francis)&room(angelina)&room(russell)&room(stephen)&(![X]:(room(X)=>(X='francis'|X='angelina'|X='russell'|X='stephen')))& enjoys_camping_and_organizing_outdoor_survival_workshops(francis)
[ "b4", "p8", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 4516294673851543859643006 % SZS output start Proof for 4516294673851543859643006 5. ! [X0] : anywhere(X0) [input b4] 52. ! [X0] : (anywhere(X0) => (predh(X0) => ~predf(X0))) [input p8] 54. predh(mary) [input p10] 66. predf(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 153. ! [X0] : ((~predf(X0) | ~predh(X0)) | ~anywhere(X0)) [ennf transformation 52] 154. ! [X0] : (~predf(X0) | ~predh(X0) | ~anywhere(X0)) [flattening 153] 165. predf(mary) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 66] 166. predf(mary) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 165] 170. anywhere(X0) [cnf transformation 5] 260. ~predf(X0) | ~predh(X0) | ~anywhere(X0) [cnf transformation 154] 261. predh(mary) [cnf transformation 54] 277. predf(mary) [cnf transformation 166] 286. ~predf(X0) | ~predh(X0) [subsumption resolution 260,170] 290. ~predh(mary) [resolution 286,277] 291. $false [subsumption resolution 290,261] % SZS output end Proof for 4516294673851543859643006 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.675331
Shawn, Rebecca are the only persons in the room. “Someone in the room is not a certified yoga instructor teaching classes weekly” only if “everyone in the room who is an avid mountain climber who has scaled several peaks collects vintage vinyl records”. “Shawn can play the guitar” if “someone in the room enjoys bird watching”. Either “everyone in the room has completed a triathlon or is not a drone photographer” or “Shawn is a drone photographer and can play the guitar” but not both. If “Shawn owns a smart tv” then “Shawn plays video games”. If “Shawn plays video games” then “at least one person in the room does not build model airplanes”. “Someone anywhere does not enjoy watercolor painting” unless “Shawn enjoys rooftop gardening”. Either “everyone in the room does not own a smart tv or enjoys bird watching” or “everyone in the room makes homemade pastries or is not a tea enthusiast” but not both. If “everyone in the room enjoys bird watching or does not play video games” then “if someone enjoys wildlife photography then he/she builds model airplanes” otherwise “Shawn can play the guitar”. Everyone in the room is a tea enthusiast. Everyone in the room builds model airplanes if they works as a freelance web developer specializing in e-commerce sites. Shawn works as a freelance web developer specializing in e-commerce sites. Everyone in the room volunteers for local environmental conservation projects only if they practices tai chi. Shawn who is not a drone photographer owns a smart tv. Everyone in the room who enjoys wildlife photography, is a certified yoga instructor teaching classes weekly and plays video games is a drone photographer. Everyone in the room who is a drone photographer enjoys kayaking or is a drone photographer or both.
Shawn is a tea enthusiast.
entailment
room(shawn)&room(rebecca)&(![X]:(room(X)=>(X='shawn'|X='rebecca')))& ((?[X]:(room(X)&(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))))=>(![X]:(room(X)=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))=>(collects_vintage_vinyl_records(X)))))))& ((?[X]:(room(X)&(enjoys_bird_watching(X))))=>(can_play_the_guitar(shawn)))& ((![X]:(room(X)=>(((is_not_a_drone_photographer(X))|(has_completed_a_triathlon(X))))))<~>(((is_a_drone_photographer(shawn))&(can_play_the_guitar(shawn)))))& (((owns_a_smart_tv(shawn))=>(plays_video_games(shawn)))& ((plays_video_games(shawn))=>(((?[X]:(room(X)&does_not_build_model_airplanes(X)))))))& (~(enjoys_rooftop_gardening(shawn))=>(?[X]:(anywhere(X)&(does_not_enjoy_watercolor_painting(X)))))& ((![X]:(room(X)=>(((enjoys_bird_watching(X))|(does_not_own_a_smart_tv(X))))))<~>(![X]:(room(X)=>(((is_not_a_tea_enthusiast(X))|(makes_homemade_pastries(X)))))))& (((![X]:(room(X)=>(((does_not_play_video_games(X))|(enjoys_bird_watching(X))))))=>((![X]:((enjoys_wildlife_photography(X))=>(builds_model_airplanes(X))))))&((~(![X]:(room(X)=>(((does_not_play_video_games(X))|(enjoys_bird_watching(X)))))))=>(can_play_the_guitar(shawn))))& (![X]:(room(X)=>(is_a_tea_enthusiast(X))))& (![X]:(room(X)=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))=>(builds_model_airplanes(X))))))& (works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(shawn))& (![X]:(room(X)=>(((practices_tai_chi(X))<=(volunteers_for_local_environmental_conservation_projects(X))))))& ((is_not_a_drone_photographer(shawn))&(owns_a_smart_tv(shawn)))& (![X]:(room(X)=>(((((enjoys_wildlife_photography(X))&(is_a_certified_yoga_instructor_teaching_classes_weekly(X))&(plays_video_games(X))))=>(is_a_drone_photographer(X))))))& (![X]:(room(X)=>(((is_a_drone_photographer(X))=>(((enjoys_kayaking(X))|(is_a_drone_photographer(X))))))))& ((![X]:((((collect_rare_sneakers(X))<~>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))<=>(does_not_enjoy_kayaking(X)))))& (is_not_an_avid_hiker(shawn))& ((?[X,Y]:(room(X)&room(Y)&(((enjoys_watercolor_painting(X))|(practices_graffiti_art(X)))&((enjoys_watercolor_painting(Y))|(practices_graffiti_art(Y))))&(X!=Y))))& (?[X]:(room(X)&(((collect_rare_sneakers(X))|(enjoys_watercolor_painting(X))))))& (![X]:(room(X)=>(((enjoys_bird_watching(X))=>(has_completed_a_triathlon(X))))))& (~![X]:(~room(X)=>(((has_completed_a_triathlon(X))=>(collects_modern_art(X))))))
room(shawn)&room(rebecca)&(![X]:(room(X)=>(X='shawn'|X='rebecca')))& is_a_tea_enthusiast(shawn)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 4351180570925745601593863 % SZS output start Proof for 4351180570925745601593863 44. ~! [X0] : (~room(X0) => (predb(X0) => prede(X0))) & ! [X0] : (room(X0) => (predx(X0) => predb(X0))) & ? [X0] : ((predj(X0) | predz(X0)) & room(X0)) & ? [X0,X1] : (X0 != X1 & (predl(X1) | predj(X1)) & (predl(X0) | predj(X0)) & room(X1) & room(X0)) & ~predu(mary) & ! [X0] : ((predz(X0) <~> preda(X0)) <=> ~predt(X0)) & ! [X0] : (room(X0) => (predh(X0) => (predh(X0) | predt(X0)))) & ! [X0] : (room(X0) => ((predm(X0) & predw(X0) & predg(X0)) => predh(X0))) & predn(mary) & ~predh(mary) & ! [X0] : (room(X0) => (predk(X0) => preds(X0))) & predq(mary) & ! [X0] : (room(X0) => (predq(X0) => predp(X0))) & ! [X0] : (room(X0) => predy(X0)) & (~! [X0] : (room(X0) => (predx(X0) | ~predm(X0))) => predf(mary)) & (! [X0] : (room(X0) => (predx(X0) | ~predm(X0))) => ! [X0] : (predg(X0) => predp(X0))) & (! [X0] : (room(X0) => (~predn(X0) | predx(X0))) <~> ! [X0] : (room(X0) => (predi(X0) | ~predy(X0)))) & (~predo(mary) => ? [X0] : (~predj(X0) & anywhere(X0))) & (predm(mary) => ? [X0] : (~predp(X0) & room(X0))) & (predn(mary) => predm(mary)) & (! [X0] : (room(X0) => (predb(X0) | ~predh(X0))) <~> (predf(mary) & predh(mary))) & (? [X0] : (predx(X0) & room(X0)) => predf(mary)) & (? [X0] : (~predw(X0) & room(X0)) => ! [X0] : (room(X0) => (predc(X0) => predr(X0)))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. ~(predy(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 46. ~! [X0] : (~room(X0) => (predb(X0) => prede(X0))) & ! [X1] : (room(X1) => (predx(X1) => predb(X1))) & ? [X2] : ((predj(X2) | predz(X2)) & room(X2)) & ? [X3,X4] : (X3 != X4 & (predl(X4) | predj(X4)) & (predl(X3) | predj(X3)) & room(X4) & room(X3)) & ~predu(mary) & ! [X5] : ((predz(X5) <~> preda(X5)) <=> ~predt(X5)) & ! [X6] : (room(X6) => (predh(X6) => (predh(X6) | predt(X6)))) & ! [X7] : (room(X7) => ((predm(X7) & predw(X7) & predg(X7)) => predh(X7))) & predn(mary) & ~predh(mary) & ! [X8] : (room(X8) => (predk(X8) => preds(X8))) & predq(mary) & ! [X9] : (room(X9) => (predq(X9) => predp(X9))) & ! [X10] : (room(X10) => predy(X10)) & (~! [X11] : (room(X11) => (predx(X11) | ~predm(X11))) => predf(mary)) & (! [X12] : (room(X12) => (predx(X12) | ~predm(X12))) => ! [X13] : (predg(X13) => predp(X13))) & (! [X14] : (room(X14) => (~predn(X14) | predx(X14))) <~> ! [X15] : (room(X15) => (predi(X15) | ~predy(X15)))) & (~predo(mary) => ? [X16] : (~predj(X16) & anywhere(X16))) & (predm(mary) => ? [X17] : (~predp(X17) & room(X17))) & (predn(mary) => predm(mary)) & (! [X18] : (room(X18) => (predb(X18) | ~predh(X18))) <~> (predf(mary) & predh(mary))) & (? [X19] : (predx(X19) & room(X19)) => predf(mary)) & (? [X20] : (~predw(X20) & room(X20)) => ! [X21] : (room(X21) => (predc(X21) => predr(X21)))) & ! [X22] : (room(X22) => (paul = X22 | mary = X22)) & room(paul) & room(mary) [rectify 44] 47. ~! [X0] : (~room(X0) => ~predb(X0)) & ! [X1] : (room(X1) => (predx(X1) => predb(X1))) & ? [X2] : ((predj(X2) | predz(X2)) & room(X2)) & ? [X3,X4] : (X3 != X4 & (predl(X4) | predj(X4)) & (predl(X3) | predj(X3)) & room(X4) & room(X3)) & ~predu(mary) & ! [X5] : ((predz(X5) <~> preda(X5)) <=> ~predt(X5)) & ! [X6] : (room(X6) => (predh(X6) => (predh(X6) | predt(X6)))) & ! [X7] : (room(X7) => ((predm(X7) & predw(X7) & predg(X7)) => predh(X7))) & predn(mary) & ~predh(mary) & ! [X8] : (room(X8) => (predk(X8) => preds(X8))) & predq(mary) & ! [X9] : (room(X9) => (predq(X9) => predp(X9))) & ! [X10] : (room(X10) => predy(X10)) & (~! [X11] : (room(X11) => (predx(X11) | ~predm(X11))) => predf(mary)) & (! [X12] : (room(X12) => (predx(X12) | ~predm(X12))) => ! [X13] : (predg(X13) => predp(X13))) & (! [X14] : (room(X14) => (~predn(X14) | predx(X14))) <~> ! [X15] : (room(X15) => (predi(X15) | ~predy(X15)))) & (~predo(mary) => ? [X16] : (~predj(X16) & anywhere(X16))) & (predm(mary) => ? [X17] : (~predp(X17) & room(X17))) & (predn(mary) => predm(mary)) & (! [X18] : (room(X18) => (predb(X18) | ~predh(X18))) <~> (predf(mary) & predh(mary))) & (? [X19] : (predx(X19) & room(X19)) => predf(mary)) & (? [X20] : (~predw(X20) & room(X20)) => ! [X21] : (room(X21) => (predc(X21) => predr(X21)))) & ! [X22] : (room(X22) => (paul = X22 | mary = X22)) & room(paul) & room(mary) [pure predicate removal 46] 48. ~! [X0] : (~room(X0) => ~predb(X0)) & ! [X1] : (room(X1) => (predx(X1) => predb(X1))) & ? [X2] : ((predj(X2) | predz(X2)) & room(X2)) & ? [X3,X4] : (X3 != X4 & room(X4) & room(X3)) & ~predu(mary) & ! [X5] : ((predz(X5) <~> preda(X5)) <=> ~predt(X5)) & ! [X6] : (room(X6) => (predh(X6) => (predh(X6) | predt(X6)))) & ! [X7] : (room(X7) => ((predm(X7) & predw(X7) & predg(X7)) => predh(X7))) & predn(mary) & ~predh(mary) & ! [X8] : (room(X8) => (predk(X8) => preds(X8))) & predq(mary) & ! [X9] : (room(X9) => (predq(X9) => predp(X9))) & ! [X10] : (room(X10) => predy(X10)) & (~! [X11] : (room(X11) => (predx(X11) | ~predm(X11))) => predf(mary)) & (! [X12] : (room(X12) => (predx(X12) | ~predm(X12))) => ! [X13] : (predg(X13) => predp(X13))) & (! [X14] : (room(X14) => (~predn(X14) | predx(X14))) <~> ! [X15] : (room(X15) => (predi(X15) | ~predy(X15)))) & (~predo(mary) => ? [X16] : (~predj(X16) & anywhere(X16))) & (predm(mary) => ? [X17] : (~predp(X17) & room(X17))) & (predn(mary) => predm(mary)) & (! [X18] : (room(X18) => (predb(X18) | ~predh(X18))) <~> (predf(mary) & predh(mary))) & (? [X19] : (predx(X19) & room(X19)) => predf(mary)) & (? [X20] : (~predw(X20) & room(X20)) => ! [X21] : (room(X21) => (predc(X21) => predr(X21)))) & ! [X22] : (room(X22) => (paul = X22 | mary = X22)) & room(paul) & room(mary) [pure predicate removal 47] 49. ~! [X0] : (~room(X0) => ~predb(X0)) & ! [X1] : (room(X1) => (predx(X1) => predb(X1))) & ? [X2] : ((predj(X2) | predz(X2)) & room(X2)) & ? [X3,X4] : (X3 != X4 & room(X4) & room(X3)) & ! [X5] : ((predz(X5) <~> preda(X5)) <=> ~predt(X5)) & ! [X6] : (room(X6) => (predh(X6) => (predh(X6) | predt(X6)))) & ! [X7] : (room(X7) => ((predm(X7) & predw(X7) & predg(X7)) => predh(X7))) & predn(mary) & ~predh(mary) & ! [X8] : (room(X8) => (predk(X8) => preds(X8))) & predq(mary) & ! [X9] : (room(X9) => (predq(X9) => predp(X9))) & ! [X10] : (room(X10) => predy(X10)) & (~! [X11] : (room(X11) => (predx(X11) | ~predm(X11))) => predf(mary)) & (! [X12] : (room(X12) => (predx(X12) | ~predm(X12))) => ! [X13] : (predg(X13) => predp(X13))) & (! [X14] : (room(X14) => (~predn(X14) | predx(X14))) <~> ! [X15] : (room(X15) => (predi(X15) | ~predy(X15)))) & (~predo(mary) => ? [X16] : (~predj(X16) & anywhere(X16))) & (predm(mary) => ? [X17] : (~predp(X17) & room(X17))) & (predn(mary) => predm(mary)) & (! [X18] : (room(X18) => (predb(X18) | ~predh(X18))) <~> (predf(mary) & predh(mary))) & (? [X19] : (predx(X19) & room(X19)) => predf(mary)) & (? [X20] : (~predw(X20) & room(X20)) => ! [X21] : (room(X21) => (predc(X21) => predr(X21)))) & ! [X22] : (room(X22) => (paul = X22 | mary = X22)) & room(paul) & room(mary) [pure predicate removal 48] 50. ~! [X0] : (~room(X0) => ~predb(X0)) & ! [X1] : (room(X1) => (predx(X1) => predb(X1))) & ? [X2] : ((predj(X2) | predz(X2)) & room(X2)) & ? [X3,X4] : (X3 != X4 & room(X4) & room(X3)) & ! [X5] : ((predz(X5) <~> preda(X5)) <=> ~predt(X5)) & ! [X6] : (room(X6) => (predh(X6) => (predh(X6) | predt(X6)))) & ! [X7] : (room(X7) => ((predm(X7) & predw(X7) & predg(X7)) => predh(X7))) & predn(mary) & ~predh(mary) & predq(mary) & ! [X9] : (room(X9) => (predq(X9) => predp(X9))) & ! [X10] : (room(X10) => predy(X10)) & (~! [X11] : (room(X11) => (predx(X11) | ~predm(X11))) => predf(mary)) & (! [X12] : (room(X12) => (predx(X12) | ~predm(X12))) => ! [X13] : (predg(X13) => predp(X13))) & (! [X14] : (room(X14) => (~predn(X14) | predx(X14))) <~> ! [X15] : (room(X15) => (predi(X15) | ~predy(X15)))) & (~predo(mary) => ? [X16] : (~predj(X16) & anywhere(X16))) & (predm(mary) => ? [X17] : (~predp(X17) & room(X17))) & (predn(mary) => predm(mary)) & (! [X18] : (room(X18) => (predb(X18) | ~predh(X18))) <~> (predf(mary) & predh(mary))) & (? [X19] : (predx(X19) & room(X19)) => predf(mary)) & (? [X20] : (~predw(X20) & room(X20)) => ! [X21] : (room(X21) => (predc(X21) => predr(X21)))) & ! [X22] : (room(X22) => (paul = X22 | mary = X22)) & room(paul) & room(mary) [pure predicate removal 49] 51. ~! [X0] : (~room(X0) => ~predb(X0)) & ! [X1] : (room(X1) => (predx(X1) => predb(X1))) & ? [X2] : ((predj(X2) | predz(X2)) & room(X2)) & ? [X3,X4] : (X3 != X4 & room(X4) & room(X3)) & ! [X5] : ((predz(X5) <~> preda(X5)) <=> ~predt(X5)) & ! [X6] : (room(X6) => (predh(X6) => (predh(X6) | predt(X6)))) & predn(mary) & ~predh(mary) & predq(mary) & ! [X9] : (room(X9) => (predq(X9) => predp(X9))) & ! [X10] : (room(X10) => predy(X10)) & (~! [X11] : (room(X11) => (predx(X11) | ~predm(X11))) => predf(mary)) & (! [X14] : (room(X14) => (~predn(X14) | predx(X14))) <~> ! [X15] : (room(X15) => (predi(X15) | ~predy(X15)))) & (~predo(mary) => ? [X16] : (~predj(X16) & anywhere(X16))) & (predm(mary) => ? [X17] : (~predp(X17) & room(X17))) & (predn(mary) => predm(mary)) & (! [X18] : (room(X18) => (predb(X18) | ~predh(X18))) <~> (predf(mary) & predh(mary))) & (? [X19] : (predx(X19) & room(X19)) => predf(mary)) & (? [X20] : (~predw(X20) & room(X20)) => ! [X21] : (room(X21) => (predc(X21) => predr(X21)))) & ! [X22] : (room(X22) => (paul = X22 | mary = X22)) & room(paul) & room(mary) [pure predicate removal 50] 52. ~! [X0] : (~room(X0) => ~predb(X0)) & ! [X1] : (room(X1) => (predx(X1) => predb(X1))) & ? [X2] : ((predj(X2) | predz(X2)) & room(X2)) & ? [X3,X4] : (X3 != X4 & room(X4) & room(X3)) & ! [X5] : ((predz(X5) <~> preda(X5)) <=> ~predt(X5)) & ! [X6] : (room(X6) => (predh(X6) => (predh(X6) | predt(X6)))) & predn(mary) & ~predh(mary) & predq(mary) & ! [X9] : (room(X9) => (predq(X9) => predp(X9))) & ! [X10] : (room(X10) => predy(X10)) & (~! [X11] : (room(X11) => (predx(X11) | ~predm(X11))) => predf(mary)) & (! [X14] : (room(X14) => (~predn(X14) | predx(X14))) <~> ! [X15] : (room(X15) => (predi(X15) | ~predy(X15)))) & (~predo(mary) => ? [X16] : (~predj(X16) & anywhere(X16))) & (predm(mary) => ? [X17] : (~predp(X17) & room(X17))) & (predn(mary) => predm(mary)) & (! [X18] : (room(X18) => (predb(X18) | ~predh(X18))) <~> (predf(mary) & predh(mary))) & (? [X19] : (predx(X19) & room(X19)) => predf(mary)) & ! [X22] : (room(X22) => (paul = X22 | mary = X22)) & room(paul) & room(mary) [pure predicate removal 51] 53. ~! [X0] : (~room(X0) => ~predb(X0)) & ! [X1] : (room(X1) => (predx(X1) => predb(X1))) & ? [X2] : ((predj(X2) | predz(X2)) & room(X2)) & ? [X3,X4] : (X3 != X4 & room(X4) & room(X3)) & ! [X5] : ((predz(X5) <~> preda(X5)) <=> ~predt(X5)) & ! [X6] : (room(X6) => (predh(X6) => (predh(X6) | predt(X6)))) & predn(mary) & ~predh(mary) & predq(mary) & ! [X9] : (room(X9) => (predq(X9) => predp(X9))) & ! [X10] : (room(X10) => predy(X10)) & (~! [X11] : (room(X11) => (predx(X11) | ~predm(X11))) => predf(mary)) & (! [X14] : (room(X14) => (~predn(X14) | predx(X14))) <~> ! [X15] : (room(X15) => (predi(X15) | ~predy(X15)))) & (predm(mary) => ? [X17] : (~predp(X17) & room(X17))) & (predn(mary) => predm(mary)) & (! [X18] : (room(X18) => (predb(X18) | ~predh(X18))) <~> (predf(mary) & predh(mary))) & (? [X19] : (predx(X19) & room(X19)) => predf(mary)) & ! [X22] : (room(X22) => (paul = X22 | mary = X22)) & room(paul) & room(mary) [pure predicate removal 52] 54. ~! [X0] : (~room(X0) => ~predb(X0)) & ! [X1] : (room(X1) => (predx(X1) => predb(X1))) & ? [X2] : room(X2) & ? [X3,X4] : (X3 != X4 & room(X4) & room(X3)) & ! [X5] : ((predz(X5) <~> preda(X5)) <=> ~predt(X5)) & ! [X6] : (room(X6) => (predh(X6) => (predh(X6) | predt(X6)))) & predn(mary) & ~predh(mary) & predq(mary) & ! [X9] : (room(X9) => (predq(X9) => predp(X9))) & ! [X10] : (room(X10) => predy(X10)) & (~! [X11] : (room(X11) => (predx(X11) | ~predm(X11))) => predf(mary)) & (! [X14] : (room(X14) => (~predn(X14) | predx(X14))) <~> ! [X15] : (room(X15) => (predi(X15) | ~predy(X15)))) & (predm(mary) => ? [X17] : (~predp(X17) & room(X17))) & (predn(mary) => predm(mary)) & (! [X18] : (room(X18) => (predb(X18) | ~predh(X18))) <~> (predf(mary) & predh(mary))) & (? [X19] : (predx(X19) & room(X19)) => predf(mary)) & ! [X22] : (room(X22) => (paul = X22 | mary = X22)) & room(paul) & room(mary) [pure predicate removal 53] 127. ? [X0] : (predb(X0) & ~room(X0)) & ! [X1] : ((predb(X1) | ~predx(X1)) | ~room(X1)) & ? [X2] : room(X2) & ? [X3,X4] : (X3 != X4 & room(X4) & room(X3)) & ! [X5] : ((predz(X5) <~> preda(X5)) <=> ~predt(X5)) & ! [X6] : (((predh(X6) | predt(X6)) | ~predh(X6)) | ~room(X6)) & predn(mary) & ~predh(mary) & predq(mary) & ! [X9] : ((predp(X9) | ~predq(X9)) | ~room(X9)) & ! [X10] : (predy(X10) | ~room(X10)) & (predf(mary) | ! [X11] : ((predx(X11) | ~predm(X11)) | ~room(X11))) & (! [X14] : ((~predn(X14) | predx(X14)) | ~room(X14)) <~> ! [X15] : ((predi(X15) | ~predy(X15)) | ~room(X15))) & (? [X17] : (~predp(X17) & room(X17)) | ~predm(mary)) & (predm(mary) | ~predn(mary)) & (! [X18] : ((predb(X18) | ~predh(X18)) | ~room(X18)) <~> (predf(mary) & predh(mary))) & (predf(mary) | ! [X19] : (~predx(X19) | ~room(X19))) & ! [X22] : ((paul = X22 | mary = X22) | ~room(X22)) & room(paul) & room(mary) [ennf transformation 54] 128. ? [X0] : (predb(X0) & ~room(X0)) & ! [X1] : (predb(X1) | ~predx(X1) | ~room(X1)) & ? [X2] : room(X2) & ? [X3,X4] : (X3 != X4 & room(X4) & room(X3)) & ! [X5] : ((predz(X5) <~> preda(X5)) <=> ~predt(X5)) & ! [X6] : (predh(X6) | predt(X6) | ~predh(X6) | ~room(X6)) & predn(mary) & ~predh(mary) & predq(mary) & ! [X9] : (predp(X9) | ~predq(X9) | ~room(X9)) & ! [X10] : (predy(X10) | ~room(X10)) & (predf(mary) | ! [X11] : (predx(X11) | ~predm(X11) | ~room(X11))) & (! [X14] : (~predn(X14) | predx(X14) | ~room(X14)) <~> ! [X15] : (predi(X15) | ~predy(X15) | ~room(X15))) & (? [X17] : (~predp(X17) & room(X17)) | ~predm(mary)) & (predm(mary) | ~predn(mary)) & (! [X18] : (predb(X18) | ~predh(X18) | ~room(X18)) <~> (predf(mary) & predh(mary))) & (predf(mary) | ! [X19] : (~predx(X19) | ~room(X19))) & ! [X22] : (paul = X22 | mary = X22 | ~room(X22)) & room(paul) & room(mary) [flattening 127] 129. ~predy(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 45] 130. ~predy(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 129] 132. ? [X0] : (predb(X0) & ~room(X0)) & ! [X1] : (predb(X1) | ~predx(X1) | ~room(X1)) & ? [X2] : room(X2) & ? [X3,X4] : (X3 != X4 & room(X4) & room(X3)) & ! [X5] : ((((~preda(X5) | ~predz(X5)) & (preda(X5) | predz(X5))) | predt(X5)) & (~predt(X5) | ((predz(X5) | ~preda(X5)) & (preda(X5) | ~predz(X5))))) & ! [X6] : (predh(X6) | predt(X6) | ~predh(X6) | ~room(X6)) & predn(mary) & ~predh(mary) & predq(mary) & ! [X9] : (predp(X9) | ~predq(X9) | ~room(X9)) & ! [X10] : (predy(X10) | ~room(X10)) & (predf(mary) | ! [X11] : (predx(X11) | ~predm(X11) | ~room(X11))) & ((? [X15] : (~predi(X15) & predy(X15) & room(X15)) | ? [X14] : (predn(X14) & ~predx(X14) & room(X14))) & (! [X15] : (predi(X15) | ~predy(X15) | ~room(X15)) | ! [X14] : (~predn(X14) | predx(X14) | ~room(X14)))) & (? [X17] : (~predp(X17) & room(X17)) | ~predm(mary)) & (predm(mary) | ~predn(mary)) & (((~predf(mary) | ~predh(mary)) | ? [X18] : (~predb(X18) & predh(X18) & room(X18))) & ((predf(mary) & predh(mary)) | ! [X18] : (predb(X18) | ~predh(X18) | ~room(X18)))) & (predf(mary) | ! [X19] : (~predx(X19) | ~room(X19))) & ! [X22] : (paul = X22 | mary = X22 | ~room(X22)) & room(paul) & room(mary) [nnf transformation 128] 133. ? [X0] : (predb(X0) & ~room(X0)) & ! [X1] : (predb(X1) | ~predx(X1) | ~room(X1)) & ? [X2] : room(X2) & ? [X3,X4] : (X3 != X4 & room(X4) & room(X3)) & ! [X5] : ((((~preda(X5) | ~predz(X5)) & (preda(X5) | predz(X5))) | predt(X5)) & (~predt(X5) | ((predz(X5) | ~preda(X5)) & (preda(X5) | ~predz(X5))))) & ! [X6] : (predh(X6) | predt(X6) | ~predh(X6) | ~room(X6)) & predn(mary) & ~predh(mary) & predq(mary) & ! [X9] : (predp(X9) | ~predq(X9) | ~room(X9)) & ! [X10] : (predy(X10) | ~room(X10)) & (predf(mary) | ! [X11] : (predx(X11) | ~predm(X11) | ~room(X11))) & (? [X15] : (~predi(X15) & predy(X15) & room(X15)) | ? [X14] : (predn(X14) & ~predx(X14) & room(X14))) & (! [X15] : (predi(X15) | ~predy(X15) | ~room(X15)) | ! [X14] : (~predn(X14) | predx(X14) | ~room(X14))) & (? [X17] : (~predp(X17) & room(X17)) | ~predm(mary)) & (predm(mary) | ~predn(mary)) & (~predf(mary) | ~predh(mary) | ? [X18] : (~predb(X18) & predh(X18) & room(X18))) & ((predf(mary) & predh(mary)) | ! [X18] : (predb(X18) | ~predh(X18) | ~room(X18))) & (predf(mary) | ! [X19] : (~predx(X19) | ~room(X19))) & ! [X22] : (paul = X22 | mary = X22 | ~room(X22)) & room(paul) & room(mary) [flattening 132] 134. ? [X0] : (predb(X0) & ~room(X0)) & ! [X1] : (predb(X1) | ~predx(X1) | ~room(X1)) & ? [X2] : room(X2) & ? [X3,X4] : (X3 != X4 & room(X4) & room(X3)) & ! [X5] : ((((~preda(X5) | ~predz(X5)) & (preda(X5) | predz(X5))) | predt(X5)) & (~predt(X5) | ((predz(X5) | ~preda(X5)) & (preda(X5) | ~predz(X5))))) & ! [X6] : (predh(X6) | predt(X6) | ~predh(X6) | ~room(X6)) & predn(mary) & ~predh(mary) & predq(mary) & ! [X7] : (predp(X7) | ~predq(X7) | ~room(X7)) & ! [X8] : (predy(X8) | ~room(X8)) & (predf(mary) | ! [X9] : (predx(X9) | ~predm(X9) | ~room(X9))) & (? [X10] : (~predi(X10) & predy(X10) & room(X10)) | ? [X11] : (predn(X11) & ~predx(X11) & room(X11))) & (! [X12] : (predi(X12) | ~predy(X12) | ~room(X12)) | ! [X13] : (~predn(X13) | predx(X13) | ~room(X13))) & (? [X14] : (~predp(X14) & room(X14)) | ~predm(mary)) & (predm(mary) | ~predn(mary)) & (~predf(mary) | ~predh(mary) | ? [X15] : (~predb(X15) & predh(X15) & room(X15))) & ((predf(mary) & predh(mary)) | ! [X16] : (predb(X16) | ~predh(X16) | ~room(X16))) & (predf(mary) | ! [X17] : (~predx(X17) | ~room(X17))) & ! [X18] : (paul = X18 | mary = X18 | ~room(X18)) & room(paul) & room(mary) [rectify 133] 135. ? [X0] : (predb(X0) & ~room(X0)) => (predb(sK0) & ~room(sK0)) [choice axiom] 136. ? [X2] : room(X2) => room(sK1) [choice axiom] 137. ? [X3,X4] : (X3 != X4 & room(X4) & room(X3)) => (sK2 != sK3 & room(sK3) & room(sK2)) [choice axiom] 138. ? [X10] : (~predi(X10) & predy(X10) & room(X10)) => (~predi(sK4) & predy(sK4) & room(sK4)) [choice axiom] 139. ? [X11] : (predn(X11) & ~predx(X11) & room(X11)) => (predn(sK5) & ~predx(sK5) & room(sK5)) [choice axiom] 140. ? [X14] : (~predp(X14) & room(X14)) => (~predp(sK6) & room(sK6)) [choice axiom] 141. ? [X15] : (~predb(X15) & predh(X15) & room(X15)) => (~predb(sK7) & predh(sK7) & room(sK7)) [choice axiom] 142. (predb(sK0) & ~room(sK0)) & ! [X1] : (predb(X1) | ~predx(X1) | ~room(X1)) & room(sK1) & (sK2 != sK3 & room(sK3) & room(sK2)) & ! [X5] : ((((~preda(X5) | ~predz(X5)) & (preda(X5) | predz(X5))) | predt(X5)) & (~predt(X5) | ((predz(X5) | ~preda(X5)) & (preda(X5) | ~predz(X5))))) & ! [X6] : (predh(X6) | predt(X6) | ~predh(X6) | ~room(X6)) & predn(mary) & ~predh(mary) & predq(mary) & ! [X7] : (predp(X7) | ~predq(X7) | ~room(X7)) & ! [X8] : (predy(X8) | ~room(X8)) & (predf(mary) | ! [X9] : (predx(X9) | ~predm(X9) | ~room(X9))) & ((~predi(sK4) & predy(sK4) & room(sK4)) | (predn(sK5) & ~predx(sK5) & room(sK5))) & (! [X12] : (predi(X12) | ~predy(X12) | ~room(X12)) | ! [X13] : (~predn(X13) | predx(X13) | ~room(X13))) & ((~predp(sK6) & room(sK6)) | ~predm(mary)) & (predm(mary) | ~predn(mary)) & (~predf(mary) | ~predh(mary) | (~predb(sK7) & predh(sK7) & room(sK7))) & ((predf(mary) & predh(mary)) | ! [X16] : (predb(X16) | ~predh(X16) | ~room(X16))) & (predf(mary) | ! [X17] : (~predx(X17) | ~room(X17))) & ! [X18] : (paul = X18 | mary = X18 | ~room(X18)) & room(paul) & room(mary) [skolemisation 134,141,140,139,138,137,136,135] 143. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK8 & mary != sK8 & room(sK8)) [choice axiom] 144. ~predy(mary) | (paul != sK8 & mary != sK8 & room(sK8)) | ~room(paul) | ~room(mary) [skolemisation 130,143] 225. room(mary) [cnf transformation 142] 226. room(paul) [cnf transformation 142] 227. ~room(X18) | mary = X18 | paul = X18 [cnf transformation 142] 248. ~room(X8) | predy(X8) [cnf transformation 142] 265. ~predy(mary) | room(sK8) | ~room(paul) | ~room(mary) [cnf transformation 144] 266. ~predy(mary) | mary != sK8 | ~room(paul) | ~room(mary) [cnf transformation 144] 267. ~predy(mary) | paul != sK8 | ~room(paul) | ~room(mary) [cnf transformation 144] 343. ~predy(mary) | paul != sK8 | ~room(mary) [subsumption resolution 267,226] 344. ~predy(mary) | paul != sK8 [subsumption resolution 343,225] 346. 16 <=> paul = sK8 [avatar definition] 348. paul != sK8 <- (~16) [avatar component clause 346] 350. 17 <=> predy(mary) [avatar definition] 353. ~16 | ~17 [avatar split clause 344,350,346] 354. ~predy(mary) | mary != sK8 | ~room(mary) [subsumption resolution 266,226] 355. ~predy(mary) | mary != sK8 [subsumption resolution 354,225] 357. 18 <=> mary = sK8 [avatar definition] 359. mary != sK8 <- (~18) [avatar component clause 357] 360. ~18 | ~17 [avatar split clause 355,350,357] 361. ~predy(mary) | room(sK8) | ~room(mary) [subsumption resolution 265,226] 362. ~predy(mary) | room(sK8) [subsumption resolution 361,225] 364. 19 <=> room(sK8) [avatar definition] 366. room(sK8) <- (19) [avatar component clause 364] 367. 19 | ~17 [avatar split clause 362,350,364] 368. predy(mary) [resolution 248,225] 377. 17 [avatar split clause 368,350] 403. mary = sK8 | paul = sK8 <- (19) [resolution 227,366] 449. paul = sK8 <- (~18, 19) [subsumption resolution 403,359] 450. $false <- (~16, ~18, 19) [subsumption resolution 449,348] 451. 16 | 18 | ~19 [avatar contradiction clause 450] 452. $false [avatar sat refutation 353,360,367,377,451] % SZS output end Proof for 4351180570925745601593863 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.00475
Austin, Aimee, Frank are the only persons in the room. Austin either has a tattoo or composes and performs experimental electronic music but not both. Not everyone in the room who composes and performs experimental electronic music or has a tattoo or both neither writes in-depth travel guides for off-the-beaten-path destinations nor has a tattoo. Everyone in the room who neither writes in-depth travel guides for off-the-beaten-path destinations nor has a tattoo practices kickboxing. Everyone in the room composes and performs experimental electronic music or does not write in-depth travel guides for off-the-beaten-path destinations.
Frank composes and performs experimental electronic music.
neutral
room(austin)&room(aimee)&room(frank)&(![X]:(room(X)=>(X='austin'|X='aimee'|X='frank')))& (((has_a_tattoo(austin))<~>(composes_and_performs_experimental_electronic_music(austin))))& (~![X]:(room(X)=>(((((composes_and_performs_experimental_electronic_music(X))|(has_a_tattoo(X))))=>(~((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))|(has_a_tattoo(X))))))))& (![X]:(room(X)=>(((~((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))|(has_a_tattoo(X))))=>(practices_kickboxing(X))))))& (![X]:(room(X)=>(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))|(composes_and_performs_experimental_electronic_music(X))))))& (has_a_tattoo(frank))& ((![X]:((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))<~>(practices_kickboxing(X)))))))& (![X]:(anywhere(X)=>(((does_not_practice_kickboxing(X))|(has_a_tattoo(X))))))& (composes_and_performs_experimental_electronic_music(aimee))& (~![X]:(anywhere(X)=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))<=>(practices_kickboxing(X))))))& (practices_kickboxing(frank))& (![X]:(anywhere(X)=>(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))|(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))
room(austin)&room(aimee)&room(frank)&(![X]:(room(X)=>(X='austin'|X='aimee'|X='frank')))& composes_and_performs_experimental_electronic_music(frank)
[]
null
0.212525
David, Edith, Aaron are the only persons in the room. Everyone in the room does not maintain a large, organic vegetable garden year-round if they does not collect comic books. Aaron does not collect comic books.
Aaron maintains a large, organic vegetable garden year-round.
contradiction
room(david)&room(edith)&room(aaron)&(![X]:(room(X)=>(X='david'|X='edith'|X='aaron')))& (((?[X]:(room(X)&((does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))|(does_not_enjoy_wildlife_photography(X))|(does_not_practice_calligraphy(X)))))))& (![X]:(room(X)=>(((does_not_collect_comic_books(X))=>(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))))))& (((?[X]:(room(X)&does_not_collect_comic_books(X)))))& (![X]:(~room(X)=>(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))))& ((![X]:((does_not_stream_on_Twitch(X))=>(((collects_classic_novels(X))<~>(enjoys_rooftop_gardening(X)))))))& ((![X]:((((does_not_enjoy_kayaking(X))<~>(practices_calligraphy(X))))=>(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X)))))& (?[X]:(room(X)&(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))))& (?[X]:(anywhere(X)&(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))))& (![X]:(room(X)=>(((is_a_chess_master_who_participates_in_national_tournaments(X))=>(does_not_enjoy_kayaking(X))))))& (does_not_collect_comic_books(aaron))& (![X]:(room(X)=>(((((does_not_travel_domestically_frequently(X))|(is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))|(does_not_enjoy_rooftop_gardening(X))))<=(((does_not_frequently_participates_in_hackathons_and_coding_competitions(X))<~>(does_not_collect_comic_books(X))))))))& (![X]:(room(X)=>(((((does_not_frequently_participates_in_hackathons_and_coding_competitions(X))<~>(does_not_collect_comic_books(X))))=>(does_not_practice_calligraphy(X))))))& ((![X]:((does_not_have_lived_in_exactly_three_countries(X))=>(is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X)))))& (?[X]:(room(X)&(does_not_collect_comic_books(X))))& (?[X]:(room(X)&(((does_not_enjoy_kayaking(X))<~>(does_not_frequently_participates_in_hackathons_and_coding_competitions(X))))))& (![X]:(~room(X)=>(((does_not_own_a_television(X))=>(((does_not_enjoy_kayaking(X))<~>(does_not_practice_zumba(X))))))))& (~?[X]:(anywhere(X)=>(((does_not_enjoy_wildlife_photography(X))|(does_not_frequently_participates_in_hackathons_and_coding_competitions(X))|(does_not_write_a_travel_blog(X))))))& (?[X]:(room(X)&(((does_not_enjoy_rooftop_gardening(X))<~>(does_not_practice_zumba(X))))))& (?[X]:(room(X)&(is_not_a_drone_photographer(X))))& (![X]:(room(X)=>(enjoys_wildlife_photography(X))))& (((?[X]:(room(X)&~((practices_calligraphy(X))|(does_not_have_lived_in_exactly_three_countries(X)))))&(![X,Y]:((room(X)&room(Y)&(~((practices_calligraphy(X))|(does_not_have_lived_in_exactly_three_countries(X))))&(~((practices_calligraphy(Y))|(does_not_have_lived_in_exactly_three_countries(Y)))))=>(X=Y)))))
room(david)&room(edith)&room(aaron)&(![X]:(room(X)=>(X='david'|X='edith'|X='aaron')))& maintains_a_large,_organic_vegetable_garden_year-round(aaron)
[ "p0", "p2", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 4243135445976240577538388 % SZS output start Proof for 4243135445976240577538388 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 46. ! [X0] : (room(X0) => (~predp(X0) => ~predn(X0))) [input p2] 54. ~predp(fred) [input p10] 66. predn(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 152. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 153. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 152] 154. ! [X0] : ((~predn(X0) | predp(X0)) | ~room(X0)) [ennf transformation 46] 155. ! [X0] : (~predn(X0) | predp(X0) | ~room(X0)) [flattening 154] 163. predn(fred) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 66] 164. predn(fred) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 163] 272. room(fred) [cnf transformation 153] 275. ~predn(X0) | predp(X0) | ~room(X0) [cnf transformation 155] 284. ~predp(fred) [cnf transformation 54] 305. predn(fred) [cnf transformation 164] 327. predp(fred) | ~room(fred) [resolution 275,305] 328. ~room(fred) [subsumption resolution 327,284] 329. $false [subsumption resolution 328,272] % SZS output end Proof for 4243135445976240577538388 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.631994
Gladys, Laura, David, William are the only persons in the room. Everyone in the room is a humble european. No tall person is funny. Everyone in the room does not like Brian if they is not liked by Pat. No quiet person is patient. David and Brian like each other. More than one person in the room is a quiet european. Everyone in the room is not a curious european only if they is not kind. Everyone outside the room is a tall european. Everyone in the room does not own an Android phone or is a generous tourist. Everyone in the room collects first edition books only if they either is a funny european or is not liked by Kevin but not both. Laura and William are sibling of Kevin. Everyone anywhere is a old tourist.
Gladys and David are respectively old and quiet.
entailment
room(gladys)&room(laura)&room(david)&room(william)&(![X]:(room(X)=>(X='gladys'|X='laura'|X='david'|X='william')))& (![X]:(room(X)=>(humble(X)&european(X))))& (~?[X]:(tall(X)=>funny(X)))& (![X]:(room(X)=>(((~like(X,pat))=>(~like(brian,X))))))& (~?[X]:(quiet(X)=>patient(X)))& ((like(david,brian) & like(brian,david)))& ((?[X,Y]:(room(X)&room(Y)&(quiet(X)&european(X)&quiet(Y)&european(Y))&(X!=Y))))& (![X]:(room(X)=>(((~kind(X))<=(~(curious(X)&european(X)))))))& (![X]:(~room(X)=>(tall(X)&european(X))))& (![X]:(room(X)=>(((generous(X)&tourist(X))|(does_not_own_an_Android_phone(X))))))& (![X]:(room(X)=>(((((funny(X)&european(X))<~>(~like(X,kevin))))<=(collects_first_edition_books(X))))))& (sibling(kevin,laura)&sibling(kevin,william))& (![X]:(anywhere(X)=>(old(X)&tourist(X))))
room(gladys)&room(laura)&room(david)&room(william)&(![X]:(room(X)=>(X='gladys'|X='laura'|X='david'|X='william')))& (old(gladys))&(quiet(david))
[ "b4", "p0", "p4", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 4280865631831994319428046 % SZS output start Proof for 4280865631831994319428046 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 48. ~? [X0] : (quiet(X0) => patient(X0)) [input p4] 56. ! [X0] : (anywhere(X0) => (tourist(X0) & old(X0))) [input p12] 57. ~(quiet(fred) & old(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 63. ~? [X0] : ~quiet(X0) [pure predicate removal 48] 69. ! [X0] : (anywhere(X0) => old(X0)) [pure predicate removal 56] 142. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 143. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 142] 146. ! [X0] : quiet(X0) [ennf transformation 63] 147. ! [X0] : (old(X0) | ~anywhere(X0)) [ennf transformation 69] 148. ~quiet(fred) | ~old(mary) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 57] 149. ~quiet(fred) | ~old(mary) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 148] 153. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK2 & fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) [choice axiom] 154. ~quiet(fred) | ~old(mary) | (alice != sK2 & fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 149,153] 155. anywhere(X0) [cnf transformation 5] 236. room(mary) [cnf transformation 143] 237. room(paul) [cnf transformation 143] 238. room(fred) [cnf transformation 143] 239. room(alice) [cnf transformation 143] 240. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 143] 242. quiet(X0) [cnf transformation 146] 252. old(X0) | ~anywhere(X0) [cnf transformation 147] 253. ~quiet(fred) | ~old(mary) | room(sK2) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 154] 254. ~quiet(fred) | ~old(mary) | mary != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 154] 255. ~quiet(fred) | ~old(mary) | paul != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 154] 256. ~quiet(fred) | ~old(mary) | fred != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 154] 257. ~quiet(fred) | ~old(mary) | alice != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 154] 258. old(X0) [subsumption resolution 252,155] 259. ~old(mary) | alice != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 257,242] 260. alice != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 259,258] 261. alice != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 260,239] 262. alice != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 261,238] 263. alice != sK2 | ~room(mary) [subsumption resolution 262,237] 264. alice != sK2 [subsumption resolution 263,236] 265. ~old(mary) | fred != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 256,242] 266. fred != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 265,258] 267. fred != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 266,239] 268. fred != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 267,238] 269. fred != sK2 | ~room(mary) [subsumption resolution 268,237] 270. fred != sK2 [subsumption resolution 269,236] 271. ~old(mary) | paul != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 255,242] 272. paul != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 271,258] 273. paul != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 272,239] 274. paul != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 273,238] 275. paul != sK2 | ~room(mary) [subsumption resolution 274,237] 276. paul != sK2 [subsumption resolution 275,236] 277. ~old(mary) | mary != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 254,242] 278. mary != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 277,258] 279. mary != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 278,239] 280. mary != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 279,238] 281. mary != sK2 | ~room(mary) [subsumption resolution 280,237] 282. mary != sK2 [subsumption resolution 281,236] 283. ~old(mary) | room(sK2) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 253,242] 284. room(sK2) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 283,258] 285. room(sK2) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 284,239] 286. room(sK2) | ~room(paul) | ~room(mary) [subsumption resolution 285,238] 287. room(sK2) | ~room(mary) [subsumption resolution 286,237] 288. room(sK2) [subsumption resolution 287,236] 345. fred = sK2 | paul = sK2 | mary = sK2 | alice = sK2 [resolution 240,288] 380. paul = sK2 | mary = sK2 | alice = sK2 [subsumption resolution 345,270] 381. mary = sK2 | alice = sK2 [subsumption resolution 380,276] 382. alice = sK2 [subsumption resolution 381,282] 383. $false [subsumption resolution 382,264] % SZS output end Proof for 4280865631831994319428046 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0.052138
Eleanor, Sarah, Martina are the only persons in the room. Either “Sarah enjoys windsurfing” or “at least one person in the room does not compose and performs experimental electronic music” but not both. Eleanor collects foreign coins. Everyone in the room who collects foreign coins owns an Android phone, enjoys logic puzzles or builds model airplanes. Sarah practices and performs acrobatic dance routines, collects foreign coins or owns an Android phone. At least one person in the room collects modern art. Eleanor enjoys windsurfing. Someone in the room does not enjoy windsurfing. Sarah collects limited-edition art prints from contemporary artists. Eleanor composes and performs experimental electronic music. Everyone in the room who practices and performs acrobatic dance routines does not collect limited-edition art prints from contemporary artists. Everyone in the room who collect rare sneakers composes and performs experimental electronic music. Not everyone in the room who collect rare sneakers collects foreign coins. Eleanor collects limited-edition art prints from contemporary artists. Sarah collect rare sneakers. Not everyone in the room who owns an Android phone collects limited-edition art prints from contemporary artists. Eleanor enjoys logic puzzles. Everyone in the room who collects limited-edition art prints from contemporary artists composes and performs experimental electronic music. Sarah enjoys windsurfing. Everyone in the room collects modern art. Everyone in the room who collects modern art collect rare sneakers.
Martina enjoys windsurfing.
contradiction
room(eleanor)&room(sarah)&room(martina)&(![X]:(room(X)=>(X='eleanor'|X='sarah'|X='martina')))& ((enjoys_windsurfing(sarah))<~>(((?[X]:(room(X)&does_not_compose_and_performs_experimental_electronic_music(X))))))& (collects_foreign_coins(eleanor))& (![X]:(room(X)=>(((collects_foreign_coins(X))=>(((owns_an_Android_phone(X))|(enjoys_logic_puzzles(X))|(builds_model_airplanes(X))))))))& (((practices_and_performs_acrobatic_dance_routines(sarah))|(collects_foreign_coins(sarah))|(owns_an_Android_phone(sarah))))& (((?[X]:(room(X)&collects_modern_art(X)))))& (enjoys_windsurfing(eleanor))& (?[X]:(room(X)&(does_not_enjoy_windsurfing(X))))& (collects_limited-edition_art_prints_from_contemporary_artists(sarah))& (composes_and_performs_experimental_electronic_music(eleanor))& (![X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))=>(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))))& (![X]:(room(X)=>(((collect_rare_sneakers(X))=>(composes_and_performs_experimental_electronic_music(X))))))& (~![X]:(room(X)=>(((collect_rare_sneakers(X))=>(collects_foreign_coins(X))))))& (collects_limited-edition_art_prints_from_contemporary_artists(eleanor))& (collect_rare_sneakers(sarah))& (~![X]:(room(X)=>(((owns_an_Android_phone(X))=>(collects_limited-edition_art_prints_from_contemporary_artists(X))))))& (enjoys_logic_puzzles(eleanor))& (![X]:(room(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))=>(composes_and_performs_experimental_electronic_music(X))))))& (enjoys_windsurfing(sarah))& (![X]:(room(X)=>(collects_modern_art(X))))& (![X]:(room(X)=>(((collects_modern_art(X))=>(collect_rare_sneakers(X))))))& (builds_model_airplanes(sarah))& (![X]:(room(X)=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))=>(~((owns_an_Android_phone(X))|(practices_and_performs_acrobatic_dance_routines(X))))))))& (![X]:(room(X)=>(((builds_model_airplanes(X))<=(~((owns_an_Android_phone(X))|(practices_and_performs_acrobatic_dance_routines(X))))))))& (![X]:(room(X)=>(((builds_model_airplanes(X))=>(collect_rare_sneakers(X))))))& (collects_modern_art(eleanor))
room(eleanor)&room(sarah)&room(martina)&(![X]:(room(X)=>(X='eleanor'|X='sarah'|X='martina')))& enjoys_windsurfing(martina)
[ "p0", "p6", "p7", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 1818149439032019610292709 % SZS output start Proof for 1818149439032019610292709 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 50. predc(mary) [input p6] 51. ? [X0] : (~predc(X0) & room(X0)) [input p7] 62. predc(paul) [input p18] 70. predc(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 150. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 151. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 150] 164. predc(fred) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 70] 165. predc(fred) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 164] 173. ? [X0] : (~predc(X0) & room(X0)) => (~predc(sK2) & room(sK2)) [choice axiom] 174. ~predc(sK2) & room(sK2) [skolemisation 51,173] 262. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 151] 269. predc(mary) [cnf transformation 50] 270. room(sK2) [cnf transformation 174] 271. ~predc(sK2) [cnf transformation 174] 283. predc(paul) [cnf transformation 62] 293. predc(fred) [cnf transformation 165] 295. 1 <=> predc(paul) [avatar definition] 296. predc(paul) <- (1) [avatar component clause 295] 312. 1 [avatar split clause 283,295] 390. paul = sK2 | mary = sK2 | fred = sK2 [resolution 262,270] 407. 8 <=> fred = sK2 [avatar definition] 409. fred = sK2 <- (8) [avatar component clause 407] 411. 9 <=> mary = sK2 [avatar definition] 413. mary = sK2 <- (9) [avatar component clause 411] 415. 10 <=> paul = sK2 [avatar definition] 417. paul = sK2 <- (10) [avatar component clause 415] 418. 8 | 9 | 10 [avatar split clause 390,415,411,407] 459. ~predc(fred) <- (8) [backward demodulation 271,409] 460. $false <- (8) [subsumption resolution 459,293] 461. ~8 [avatar contradiction clause 460] 470. ~predc(mary) <- (9) [backward demodulation 271,413] 471. $false <- (9) [subsumption resolution 470,269] 472. ~9 [avatar contradiction clause 471] 478. ~predc(paul) <- (10) [backward demodulation 271,417] 480. $false <- (1, 10) [subsumption resolution 478,296] 481. ~1 | ~10 [avatar contradiction clause 480] 482. $false [avatar sat refutation 312,418,461,472,481] % SZS output end Proof for 1818149439032019610292709 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.021 s % ------------------------------ % ------------------------------
0.22311
Keith is the only person in the room. If “Keith enjoys watercolor painting” then “someone in the room does not enjoy spelunking”. “Keith owns a telescope or is allergic to anything or both” if “Keith enjoys spelunking, is a member of a local theater group specializing in improv and participates in long-distance cycling events across the country”. If “everyone outside the room is a client of LVMH or does not watche fantasy movies” then “it is true that “everyone anywhere is a client of LVMH if they has completed a triathlon and vice versa”” otherwise “everyone in the room does not enjoy wildlife photography if they has completed a triathlon”. Everyone in the room who does not enjoy wildlife photography does not create large-scale murals for public art installations. Keith does not enjoy spelunking, has completed a triathlon and own a television. Everyone in the room watches fantasy movies if they volunteers for local environmental conservation projects. Keith frequently participates in hackathons and coding competitions. Keith enjoys wildlife photography. Someone outside the room drives a hybrid car, collects limited-edition art prints from contemporary artists and enjoys virtual reality gaming. Keith enjoys stand-up paddleboarding. Everyone in the room does not enjoy stand-up paddleboarding only if they owns a telescope. Everyone outside the room does not watche fantasy movies if they owns a telescope. Keith enjoys deep-sea diving and exploring underwater caves. Everyone outside the room is not a night owl if they frequently participates in hackathons and coding competitions. Keith is allergic to anything. It is true that “everyone anywhere is a client of LVMH if they has completed a triathlon and vice versa”. Keith collects vintage vinyl records. If someone is not a member of a local theater group specializing in improv or practices kickboxing or both then he/she collects limited-edition art prints from contemporary artists and vice versa. Keith plays eSports competitively. If someone owns a telescope then he/she participates in long-distance cycling events across the country. Keith either is allergic to anything or does not practice kickboxing but not both. Keith regularly goes on multi-day backpacking trips in national parks.
Keith is a night owl.
neutral
room(keith)&(![X]:(room(X)=>(X='keith')))& ((enjoys_watercolor_painting(keith))=>(?[X]:(room(X)&(does_not_enjoy_spelunking(X)))))& ((((enjoys_spelunking(keith))&(is_a_member_of_a_local_theater_group_specializing_in_improv(keith))&(participates_in_long-distance_cycling_events_across_the_country(keith))))=>(((owns_a_telescope(keith))|(is_allergic_to_anything(keith)))))& (((![X]:(~room(X)=>(((does_not_watche_fantasy_movies(X))|(is_a_client_of_LVMH(X))))))=>(![X]:(anywhere(X)=>(((is_a_client_of_LVMH(X))<=>(has_completed_a_triathlon(X)))))))&((~(![X]:(~room(X)=>(((does_not_watche_fantasy_movies(X))|(is_a_client_of_LVMH(X)))))))=>(![X]:(room(X)=>(((has_completed_a_triathlon(X))=>(does_not_enjoy_wildlife_photography(X))))))))& (![X]:(room(X)=>(((does_not_enjoy_wildlife_photography(X))=>(does_not_create_large-scale_murals_for_public_art_installations(X))))))& (((does_not_enjoy_spelunking(keith))&(has_completed_a_triathlon(keith))&(own_a_television(keith))))& (![X]:(room(X)=>(((volunteers_for_local_environmental_conservation_projects(X))=>(watches_fantasy_movies(X))))))& (frequently_participates_in_hackathons_and_coding_competitions(keith))& (enjoys_wildlife_photography(keith))& (?[X]:(~room(X)&(((drives_a_hybrid_car(X))&(collects_limited-edition_art_prints_from_contemporary_artists(X))&(enjoys_virtual_reality_gaming(X))))))& (enjoys_stand-up_paddleboarding(keith))& (![X]:(room(X)=>(((owns_a_telescope(X))<=(does_not_enjoy_stand-up_paddleboarding(X))))))& (![X]:(~room(X)=>(((owns_a_telescope(X))=>(does_not_watche_fantasy_movies(X))))))& (enjoys_deep-sea_diving_and_exploring_underwater_caves(keith))& (![X]:(~room(X)=>(((frequently_participates_in_hackathons_and_coding_competitions(X))=>(is_not_a_night_owl(X))))))& (is_allergic_to_anything(keith))& (![X]:(anywhere(X)=>(((is_a_client_of_LVMH(X))<=>(has_completed_a_triathlon(X))))))& (collects_vintage_vinyl_records(keith))& ((![X]:((((is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))|(practices_kickboxing(X))))<=>(collects_limited-edition_art_prints_from_contemporary_artists(X)))))& (plays_eSports_competitively(keith))& ((![X]:((owns_a_telescope(X))=>(participates_in_long-distance_cycling_events_across_the_country(X)))))& (((is_allergic_to_anything(keith))<~>(does_not_practice_kickboxing(keith))))& (regularly_goes_on_multi-day_backpacking_trips_in_national_parks(keith))
room(keith)&(![X]:(room(X)=>(X='keith')))& is_a_night_owl(keith)
[]
null
0
Linda is the only person in the room. Everyone in the room is not happy, not brave if they is not patient, not tall, not generous and vice versa. Everyone outside the room who is not a brave person is not generous, not wise, not quiet. Everyone in the room who is not generous, not wise, not quiet is creative. Linda is humble. All wise person is quiet. Everyone in the room is not not not not calm only if they is quiet. All creative person is kind. Linda is not a humble creative tall generous patient curious person. Everyone in the room is not a calm patient old person only if they neither is not a brave kind calm wise person nor is not brave, not happy, not curious. Not everyone outside the room neither is not tall, not humble nor is wise if they is not a tall happy humble brave kind person and vice versa. Linda is the least old outside the room. Linda is not a old person. Linda who is creative is brave. Linda is richer than Megan. Everyone in the room is older than Megan if they is generous. Not everyone in the room who is a funny brave person is not patient, not generous, not happy. At least one person in the room is creative. Everyone in the room is funny only if they is not curious. Everyone in the room is quieter than Gabriella if they is creative, is brave and is happy and vice versa. Linda dreamt that “all calm person is wise”. Everyone in the room is a calm tall brave generous person if they is happy and vice versa.
Linda is funny.
entailment
room(linda)&(![X]:(room(X)=>(X='linda')))& (![X]:(room(X)=>(((~happy(X)&~brave(X))<=>(~patient(X)&~tall(X)&~generous(X))))))& (![X]:(~room(X)=>(((~(brave(X)&person(X)))=>(~generous(X)&~wise(X)&~quiet(X))))))& (![X]:(room(X)=>(((~generous(X)&~wise(X)&~quiet(X))=>(creative(X))))))& (humble(linda))& (![X]:(wise(X)=>quiet(X)))& (![X]:(room(X)=>(((quiet(X))<=(~~~~calm(X))))))& (![X]:(creative(X)=>kind(X)))& (~(humble(linda)&creative(linda)&tall(linda)&generous(linda)&patient(linda)&curious(linda)&person(linda)))& (![X]:(room(X)=>(((~((~(brave(X)&kind(X)&calm(X)&wise(X)&person(X)))|(~brave(X)&~happy(X)&~curious(X))))<=(~(calm(X)&patient(X)&old(X)&person(X)))))))& (~![X]:(~room(X)=>(((~((~tall(X)&~humble(X))|(wise(X))))<=>(~(tall(X)&happy(X)&humble(X)&brave(X)&kind(X)&person(X)))))))& (![X]:((~room(X)&(X!=linda))=>older(linda,X)))& (~(old(linda)&person(linda)))& ((creative(linda))&(brave(linda)))& (richer(megan,linda))& (![X]:(room(X)=>(((generous(X))=>(older(megan,X))))))& (~![X]:(room(X)=>(((funny(X)&brave(X)&person(X))=>(~patient(X)&~generous(X)&~happy(X))))))& (((?[X]:(room(X)&creative(X)))))& (![X]:(room(X)=>(((~curious(X))<=(funny(X))))))& (![X]:(room(X)=>(((quieter(gabriella,X))<=>(((creative(X))&(brave(X))&(happy(X))))))))& ((linda_dream=>(![X]:(calm(X)=>wise(X)))))& (![X]:(room(X)=>(((calm(X)&tall(X)&brave(X)&generous(X)&person(X))<=>(happy(X))))))
room(linda)&(![X]:(room(X)=>(X='linda')))& funny(linda)
[ "p0", "p16", "hypothesis" ]
% SZS status Unsatisfiable for 2778968409027482010578447 % SZS output start Proof for 2778968409027482010578447 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 60. ~! [X0] : (room(X0) => ((person(X0) & brave(X0) & funny(X0)) => (~happy(X0) & ~generous(X0) & ~patient(X0)))) [input p16] 66. ~(funny(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 140. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 159. ? [X0] : (((happy(X0) | generous(X0) | patient(X0)) & (person(X0) & brave(X0) & funny(X0))) & room(X0)) [ennf transformation 60] 160. ? [X0] : ((happy(X0) | generous(X0) | patient(X0)) & person(X0) & brave(X0) & funny(X0) & room(X0)) [flattening 159] 165. ~funny(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 66] 180. ? [X0] : ((happy(X0) | generous(X0) | patient(X0)) & person(X0) & brave(X0) & funny(X0) & room(X0)) => ((happy(sK3) | generous(sK3) | patient(sK3)) & person(sK3) & brave(sK3) & funny(sK3) & room(sK3)) [choice axiom] 181. (happy(sK3) | generous(sK3) | patient(sK3)) & person(sK3) & brave(sK3) & funny(sK3) & room(sK3) [skolemisation 160,180] 188. ? [X0] : (mary != X0 & room(X0)) => (mary != sK5 & room(sK5)) [choice axiom] 189. ~funny(mary) | (mary != sK5 & room(sK5)) | ~room(mary) [skolemisation 165,188] 270. room(mary) [cnf transformation 140] 271. ~room(X0) | mary = X0 [cnf transformation 140] 317. room(sK3) [cnf transformation 181] 318. funny(sK3) [cnf transformation 181] 335. ~funny(mary) | room(sK5) | ~room(mary) [cnf transformation 189] 336. ~funny(mary) | mary != sK5 | ~room(mary) [cnf transformation 189] 407. ~funny(mary) | mary != sK5 [subsumption resolution 336,270] 409. 15 <=> mary = sK5 [avatar definition] 411. mary != sK5 <- (~15) [avatar component clause 409] 413. 16 <=> funny(mary) [avatar definition] 416. ~15 | ~16 [avatar split clause 407,413,409] 417. ~funny(mary) | room(sK5) [subsumption resolution 335,270] 419. 17 <=> room(sK5) [avatar definition] 421. room(sK5) <- (17) [avatar component clause 419] 422. 17 | ~16 [avatar split clause 417,413,419] 437. mary = sK3 [resolution 271,317] 442. funny(mary) [backward demodulation 318,437] 453. 16 [avatar split clause 442,413] 454. mary = sK5 <- (17) [resolution 421,271] 457. $false <- (~15, 17) [subsumption resolution 454,411] 458. 15 | ~17 [avatar contradiction clause 457] 459. $false [avatar sat refutation 416,422,453,458] % SZS output end Proof for 2778968409027482010578447 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.084274
There is a room. Someone in the room makes intricate hand-cut paper art for exhibitions, enjoys wildlife photography and uses contact lenses. If someone owns a high-end gaming PC with custom-built components then he/she is a Linux enthusiast and vice versa. Everyone in the room enjoys wildlife photography if they works as a freelance web developer specializing in e-commerce sites. Everyone in the room who enjoys wildlife photography uses contact lenses. Not everyone in the room is a drone photographer if they uses contact lenses. Someone in the room does not use contact lenses. Not everyone in the room uses contact lenses. Not everyone in the room is a drone photographer if they enjoys wildlife photography and vice versa. It is not the case that 'at least one person in the room works as a freelance web developer specializing in e-commerce sites'. Everyone in the room makes intricate hand-cut paper art for exhibitions if and only if they collects luxury watches. Everyone in the room who collects luxury watches owns a high-end gaming PC with custom-built components. Everyone in the room is not a Linux enthusiast or does not work as a freelance web developer specializing in e-commerce sites. Everyone in the room does not work as a freelance web developer specializing in e-commerce sites if they is not a Linux enthusiast.
Everyone outside the room enjoys wildlife photography.
neutral
(there_is_a_room)& (?[X]:(room(X)&(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))&(enjoys_wildlife_photography(X))&(uses_contact_lenses(X))))))& ((![X]:((owns_a_high-end_gaming_PC_with_custom-built_components(X))<=>(is_a_Linux_enthusiast(X)))))& (![X]:(room(X)=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))=>(enjoys_wildlife_photography(X))))))& (![X]:(room(X)=>(((enjoys_wildlife_photography(X))=>(uses_contact_lenses(X))))))& (~![X]:(room(X)=>(((uses_contact_lenses(X))=>(is_a_drone_photographer(X))))))& (?[X]:(room(X)&(does_not_use_contact_lenses(X))))& (~![X]:(room(X)=>(uses_contact_lenses(X))))& (~![X]:(room(X)=>(((is_a_drone_photographer(X))<=>(enjoys_wildlife_photography(X))))))& (~(((?[X]:(room(X)&works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))& (![X]:(room(X)=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))<=>(collects_luxury_watches(X))))))& (![X]:(room(X)=>(((collects_luxury_watches(X))=>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))& (![X]:(room(X)=>(((does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(is_not_a_Linux_enthusiast(X))))))& (![X]:(room(X)=>(((is_not_a_Linux_enthusiast(X))=>(does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))
(there_is_a_room)& ![X]:(~room(X)=>(enjoys_wildlife_photography(X)))
[]
null
0
Willie, Sherry, Christopher, Rose, Matthew are the only persons in the room. Either “Willie is a culinary enthusiast who experiments with international cuisines” or “everyone in the room enjoys salsa dancing or is not a culinary enthusiast who experiments with international cuisines” but not both. Everyone in the room enjoys salsa dancing if they enjoys landscape photography. Everyone in the room does not enjoy salsa dancing or enjoys salsa dancing. Everyone in the room who enjoys salsa dancing is passionate about collecting and restoring classic cars. Everyone in the room enjoys landscape photography and does not enjoy virtual reality gaming if they is passionate about collecting and restoring classic cars. Rose enjoys salsa dancing. Everyone in the room is a culinary enthusiast who experiments with international cuisines if they enjoys virtual reality gaming. Everyone in the room who is a culinary enthusiast who experiments with international cuisines enjoys landscape photography.
Willie is a culinary enthusiast who experiments with international cuisines.
contradiction
room(willie)&room(sherry)&room(christopher)&room(rose)&room(matthew)&(![X]:(room(X)=>(X='willie'|X='sherry'|X='christopher'|X='rose'|X='matthew')))& ((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(willie))<~>(![X]:(room(X)=>(((is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))|(enjoys_salsa_dancing(X)))))))& (![X]:(room(X)=>(((enjoys_landscape_photography(X))=>(enjoys_salsa_dancing(X))))))& (![X]:(room(X)=>(((enjoys_salsa_dancing(X))|(does_not_enjoy_salsa_dancing(X))))))& (![X]:(room(X)=>(((enjoys_salsa_dancing(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(((enjoys_landscape_photography(X))&(does_not_enjoy_virtual_reality_gaming(X))))))))& (enjoys_salsa_dancing(rose))& (![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))& (![X]:(room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))=>(enjoys_landscape_photography(X))))))
room(willie)&room(sherry)&room(christopher)&room(rose)&room(matthew)&(![X]:(room(X)=>(X='willie'|X='sherry'|X='christopher'|X='rose'|X='matthew')))& is_a_culinary_enthusiast_who_experiments_with_international_cuisines(willie)
[ "p1", "p2", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 5099089014886910218601207 % SZS output start Proof for 5099089014886910218601207 45. prede(mary) <~> ! [X0] : (room(X0) => (predb(X0) | ~prede(X0))) [input p1] 46. ! [X0] : (room(X0) => (preda(X0) => predb(X0))) [input p2] 52. ! [X0] : (room(X0) => (prede(X0) => preda(X0))) [input p8] 53. prede(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 130. prede(mary) <~> ! [X0] : ((predb(X0) | ~prede(X0)) | ~room(X0)) [ennf transformation 45] 131. prede(mary) <~> ! [X0] : (predb(X0) | ~prede(X0) | ~room(X0)) [flattening 130] 132. ! [X0] : ((predb(X0) | ~preda(X0)) | ~room(X0)) [ennf transformation 46] 133. ! [X0] : (predb(X0) | ~preda(X0) | ~room(X0)) [flattening 132] 140. ! [X0] : ((preda(X0) | ~prede(X0)) | ~room(X0)) [ennf transformation 52] 141. ! [X0] : (preda(X0) | ~prede(X0) | ~room(X0)) [flattening 140] 142. prede(mary) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 53] 143. prede(mary) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 142] 145. (? [X0] : (~predb(X0) & prede(X0) & room(X0)) | ~prede(mary)) & (! [X0] : (predb(X0) | ~prede(X0) | ~room(X0)) | prede(mary)) [nnf transformation 131] 146. (? [X0] : (~predb(X0) & prede(X0) & room(X0)) | ~prede(mary)) & (! [X1] : (predb(X1) | ~prede(X1) | ~room(X1)) | prede(mary)) [rectify 145] 147. ? [X0] : (~predb(X0) & prede(X0) & room(X0)) => (~predb(sK0) & prede(sK0) & room(sK0)) [choice axiom] 148. ((~predb(sK0) & prede(sK0) & room(sK0)) | ~prede(mary)) & (! [X1] : (predb(X1) | ~prede(X1) | ~room(X1)) | prede(mary)) [skolemisation 146,147] 236. room(sK0) | ~prede(mary) [cnf transformation 148] 237. prede(sK0) | ~prede(mary) [cnf transformation 148] 238. ~predb(sK0) | ~prede(mary) [cnf transformation 148] 239. ~preda(X0) | predb(X0) | ~room(X0) [cnf transformation 133] 244. ~prede(X0) | preda(X0) | ~room(X0) [cnf transformation 141] 251. prede(mary) [cnf transformation 143] 253. 1 <=> prede(mary) [avatar definition] 257. 2 <=> predb(sK0) [avatar definition] 259. ~predb(sK0) <- (~2) [avatar component clause 257] 260. ~1 | ~2 [avatar split clause 238,257,253] 262. 3 <=> prede(sK0) [avatar definition] 264. prede(sK0) <- (3) [avatar component clause 262] 265. ~1 | 3 [avatar split clause 237,262,253] 267. 4 <=> room(sK0) [avatar definition] 269. room(sK0) <- (4) [avatar component clause 267] 270. ~1 | 4 [avatar split clause 236,267,253] 275. 1 [avatar split clause 251,253] 282. preda(sK0) | ~room(sK0) <- (3) [resolution 244,264] 284. preda(sK0) <- (3, 4) [subsumption resolution 282,269] 287. predb(sK0) | ~room(sK0) <- (3, 4) [resolution 284,239] 288. ~room(sK0) <- (~2, 3, 4) [subsumption resolution 287,259] 289. $false <- (~2, 3, 4) [subsumption resolution 288,269] 290. 2 | ~3 | ~4 [avatar contradiction clause 289] 291. $false [avatar sat refutation 260,265,270,275,290] % SZS output end Proof for 5099089014886910218601207 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0
Sean is the only person in the room. Someone in the room does not enjoy coding in Python. More than one person outside the room bakes bread at home. Only one person in the room does not enjoy cross-country skiing. Sean composes and performs experimental electronic music. If someone bakes bread at home then he/she is a chess master who participates in national tournaments.
Sean does enjoy mountain biking.
neutral
room(sean)&(![X]:(room(X)=>(X='sean')))& (?[X]:(room(X)&(does_not_enjoy_coding_in_Python(X))))& ((?[X,Y]:(~room(X)&~room(Y)&(bakes_bread_at_home(X)&bakes_bread_at_home(Y))&(X!=Y))))& (((?[X]:(room(X)&does_not_enjoy_cross-country_skiing(X)))&(![X,Y]:((room(X)&room(Y)&(does_not_enjoy_cross-country_skiing(X))&(does_not_enjoy_cross-country_skiing(Y)))=>(X=Y)))))& (composes_and_performs_experimental_electronic_music(sean))& ((![X]:((bakes_bread_at_home(X))=>(is_a_chess_master_who_participates_in_national_tournaments(X)))))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(does_enjoy_mountain_biking(X)&does_enjoy_mountain_biking(Y))&(X!=Y))))& (uses_an_ios_phone(sean))& (has_a_curated_collection_of_mid-century_modern_furniture(sean))& (((?[X]:(room(X)&enjoys_salsa_dancing(X)))))& (is_not_a_drone_photographer(sean))& (~(?[X]:(~room(X)&(enjoys_cross-country_skiing(X)))))& (?[X]:(room(X)&(collects_rare_minerals(X))))& ((![X]:((enjoys_coding_in_Python(X))=>(owns_a_microscope(X)))))& (enjoys_deep-sea_diving_and_exploring_underwater_caves(sean))& (is_a_tea_enthusiast(sean))& (~(enjoys_macrame(sean)))& (collects_rare_minerals(sean))
room(sean)&(![X]:(room(X)=>(X='sean')))& does_enjoy_mountain_biking(sean)
[]
null
0.001301
Tracy, Jerry, Ellen are the only persons in the room. If “Tracy practices and performs acrobatic dance routines” then “all quiet persons are kind”. If “Jerry is quieter than Margie” then “Tracy either is younger than Margie or does not have a pet dog but not both” otherwise “Tracy is not passionate about collecting and restoring classic cars”. If “Tracy is quieter than Margie” then “all quiet persons are curious” otherwise “Tracy is passionate about collecting and restoring classic cars”. All curious persons are kind. Tracy is quieter than Margie. Tracy is quiet.
Tracy is kind.
entailment
room(tracy)&room(jerry)&room(ellen)&(![X]:(room(X)=>(X='tracy'|X='jerry'|X='ellen')))& ((practices_and_performs_acrobatic_dance_routines(tracy))=>(![X]:(quiet(X)=>kind(X))))& (((quieter(margie,jerry))=>(((younger(margie,tracy))<~>(does_not_have_a_pet_dog(tracy)))))&((~(quieter(margie,jerry)))=>(is_not_passionate_about_collecting_and_restoring_classic_cars(tracy))))& ((younger(jerry,margie))=>(![X]:(kind(X)=>quiet(X))))& (~(younger(tracy,margie))=>(((?[X]:(room(X)&quieter(margie,X))))))& (((quieter(margie,tracy))=>(![X]:(quiet(X)=>curious(X))))&((~(quieter(margie,tracy)))=>(is_passionate_about_collecting_and_restoring_classic_cars(tracy))))& (~(younger(margie,tracy))=>(?[X,Y]:((quieter(margie,X))&(practices_and_performs_acrobatic_dance_routines(Y))&(younger(X,Y)))))& ((quieter(margie,tracy))=>(younger(margie,jerry)))& ((younger(margie,tracy))<~>(![X]:(room(X)=>(((does_not_frequently_participates_in_hackathons_and_coding_competitions(X))|(younger(margie,X)))))))& (![X]:(curious(X)=>kind(X)))& (![X]:(curious(X)=>quiet(X)))& (younger(margie,tracy)&younger(margie,jerry))& (is_passionate_about_collecting_and_restoring_classic_cars(jerry))& (((younger(margie,tracy))|(does_not_practice_and_performs_acrobatic_dance_routines(tracy))))& (quieter(margie,tracy))& (quiet(tracy))& (has_a_pet_dog(tracy))
room(tracy)&room(jerry)&room(ellen)&(![X]:(room(X)=>(X='tracy'|X='jerry'|X='ellen')))& kind(tracy)
[ "p0", "p5", "p9", "p14", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 5774457902251847112747811 % SZS output start Proof for 5774457902251847112747811 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 49. (~quieter(john,mary) => predl(mary)) & (quieter(john,mary) => ! [X0] : (quiet(X0) => curious(X0))) [input p5] 53. ! [X0] : (curious(X0) => kind(X0)) [input p9] 58. quieter(john,mary) [input p14] 59. quiet(mary) [input p15] 61. ~(kind(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 134. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 135. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 134] 140. (predl(mary) | quieter(john,mary)) & (! [X0] : (curious(X0) | ~quiet(X0)) | ~quieter(john,mary)) [ennf transformation 49] 145. ! [X0] : (kind(X0) | ~curious(X0)) [ennf transformation 53] 147. ~kind(mary) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 61] 148. ~kind(mary) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 147] 159. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) [choice axiom] 160. ~kind(mary) | (fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 148,159] 241. room(mary) [cnf transformation 135] 242. room(paul) [cnf transformation 135] 243. room(fred) [cnf transformation 135] 244. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 135] 252. curious(X0) | ~quiet(X0) | ~quieter(john,mary) [cnf transformation 140] 262. ~curious(X0) | kind(X0) [cnf transformation 145] 268. quieter(john,mary) [cnf transformation 58] 269. quiet(mary) [cnf transformation 59] 271. ~kind(mary) | room(sK4) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 160] 272. ~kind(mary) | mary != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 160] 273. ~kind(mary) | paul != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 160] 274. ~kind(mary) | fred != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 160] 325. 12 <=> quieter(john,mary) [avatar definition] 330. 13 <=> ! [X0] : (curious(X0) | ~quiet(X0)) [avatar definition] 331. ~quiet(X0) | curious(X0) <- (13) [avatar component clause 330] 332. ~12 | 13 [avatar split clause 252,330,325] 375. 12 [avatar split clause 268,325] 377. ~kind(mary) | fred != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 274,243] 378. ~kind(mary) | fred != sK4 | ~room(mary) [subsumption resolution 377,242] 379. ~kind(mary) | fred != sK4 [subsumption resolution 378,241] 381. 22 <=> fred = sK4 [avatar definition] 383. fred != sK4 <- (~22) [avatar component clause 381] 385. 23 <=> kind(mary) [avatar definition] 388. ~22 | ~23 [avatar split clause 379,385,381] 389. ~kind(mary) | paul != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 273,243] 390. ~kind(mary) | paul != sK4 | ~room(mary) [subsumption resolution 389,242] 391. ~kind(mary) | paul != sK4 [subsumption resolution 390,241] 393. 24 <=> paul = sK4 [avatar definition] 395. paul != sK4 <- (~24) [avatar component clause 393] 396. ~24 | ~23 [avatar split clause 391,385,393] 397. ~kind(mary) | mary != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 272,243] 398. ~kind(mary) | mary != sK4 | ~room(mary) [subsumption resolution 397,242] 399. ~kind(mary) | mary != sK4 [subsumption resolution 398,241] 401. 25 <=> mary = sK4 [avatar definition] 403. mary != sK4 <- (~25) [avatar component clause 401] 404. ~25 | ~23 [avatar split clause 399,385,401] 405. ~kind(mary) | room(sK4) | ~room(paul) | ~room(mary) [subsumption resolution 271,243] 406. ~kind(mary) | room(sK4) | ~room(mary) [subsumption resolution 405,242] 407. ~kind(mary) | room(sK4) [subsumption resolution 406,241] 409. 26 <=> room(sK4) [avatar definition] 411. room(sK4) <- (26) [avatar component clause 409] 412. 26 | ~23 [avatar split clause 407,385,409] 413. curious(mary) <- (13) [resolution 331,269] 415. kind(mary) <- (13) [resolution 413,262] 418. 23 | ~13 [avatar split clause 415,330,385] 574. paul = sK4 | mary = sK4 | fred = sK4 <- (26) [resolution 244,411] 592. mary = sK4 | fred = sK4 <- (~24, 26) [subsumption resolution 574,395] 593. fred = sK4 <- (~24, ~25, 26) [subsumption resolution 592,403] 594. $false <- (~22, ~24, ~25, 26) [subsumption resolution 593,383] 595. 22 | 24 | 25 | ~26 [avatar contradiction clause 594] 596. $false [avatar sat refutation 332,375,388,396,404,412,418,595] % SZS output end Proof for 5774457902251847112747811 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0.032437
Donald, Ivory are the only persons in the room. If “everyone in the room does not practice pilates or does not collect comic books” then “everyone in the room is a client of Meta if they is an active member of a local robotics club and vice versa” otherwise “Donald practices kickboxing”. If “everyone anywhere is a craft beer aficionado or does not practice pilates” then “at least one person in the room practices kickboxing”. “Everyone in the room is a drone photographer or does not create bespoke furniture pieces from reclaimed wood” only if “if someone is a certified scuba diver with advanced underwater photography skills then he/she enjoys writing detailed reviews of new and classic board games and vice versa”. If someone designs and sews custom cosplay costumes for conventions and hosts regular game nights featuring complex strategy games then he/she practices pilates and vice versa. Donald who is a drone photographer practices kickboxing. Not everyone in the room who can play the piano is a drone photographer. If someone does not create bespoke furniture pieces from reclaimed wood then he/she either collects limited-edition art prints from contemporary artists or creates bespoke furniture pieces from reclaimed wood but not both and vice versa. Only one person in the room enjoys writing detailed reviews of new and classic board games. Donald is a chess master who participates in national tournaments. Donald does not collect comic books. Everyone in the room does not collect comic books. Donald frequently participates in hackathons and coding competitions. Donald neither designs and sews custom cosplay costumes for conventions nor is a craft beer aficionado. Everyone in the room who reads mystery novels neither is a drone photographer nor is a client of Meta. At least one person in the room practices kickboxing. Everyone outside the room who does not create bespoke furniture pieces from reclaimed wood designs and sews custom cosplay costumes for conventions. If someone is a certified scuba diver with advanced underwater photography skills then he/she enjoys writing detailed reviews of new and classic board games and vice versa. Everyone in the room does not practice pilates or does not collect comic books.
Donald practices pilates.
contradiction
room(donald)&room(ivory)&(![X]:(room(X)=>(X='donald'|X='ivory')))& (((![X]:(room(X)=>(((does_not_collect_comic_books(X))|(does_not_practice_pilates(X))))))=>(![X]:(room(X)=>(((is_a_client_of_Meta(X))<=>(is_an_active_member_of_a_local_robotics_club(X)))))))&((~(![X]:(room(X)=>(((does_not_collect_comic_books(X))|(does_not_practice_pilates(X)))))))=>(practices_kickboxing(donald))))& ((![X]:(anywhere(X)=>(((does_not_practice_pilates(X))|(is_a_craft_beer_aficionado(X))))))=>(((?[X]:(room(X)&practices_kickboxing(X))))))& ((![X]:(room(X)=>(((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))|(is_a_drone_photographer(X))))))=>((![X]:((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))<=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))))& ((![X]:((((designs_and_sews_custom_cosplay_costumes_for_conventions(X))&(hosts_regular_game_nights_featuring_complex_strategy_games(X))))<=>(practices_pilates(X)))))& ((is_a_drone_photographer(donald))&(practices_kickboxing(donald)))& (~![X]:(room(X)=>(((can_play_the_piano(X))=>(is_a_drone_photographer(X))))))& ((![X]:((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))<=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))<~>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X)))))))& (((?[X]:(room(X)&enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))&(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(Y)))=>(X=Y)))))& (is_a_chess_master_who_participates_in_national_tournaments(donald))& (does_not_collect_comic_books(donald))& (![X]:(room(X)=>(does_not_collect_comic_books(X))))& (frequently_participates_in_hackathons_and_coding_competitions(donald))& (~((designs_and_sews_custom_cosplay_costumes_for_conventions(donald))|(is_a_craft_beer_aficionado(donald))))& (![X]:(room(X)=>(((reads_mystery_novels(X))=>(~((is_a_drone_photographer(X))|(is_a_client_of_Meta(X))))))))& (((?[X]:(room(X)&practices_kickboxing(X)))))& (![X]:(~room(X)=>(((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))& ((![X]:((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))<=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X)))))& (![X]:(room(X)=>(((does_not_collect_comic_books(X))|(does_not_practice_pilates(X))))))
room(donald)&room(ivory)&(![X]:(room(X)=>(X='donald'|X='ivory')))& practices_pilates(donald)
[ "p4", "p13", "hypothesis" ]
% SZS status Unsatisfiable for 4656288665611184731596686 % SZS output start Proof for 4656288665611184731596686 48. ! [X0] : ((predq(X0) & predu(X0)) <=> predh(X0)) [input p4] 57. ~(predi(mary) | predu(mary)) [input p13] 63. predh(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 73. ~predu(mary) [pure predicate removal 57] 162. ~predu(mary) [ennf transformation 73] 167. predh(mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 63] 168. predh(mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 167] 182. ! [X0] : (((predq(X0) & predu(X0)) | ~predh(X0)) & (predh(X0) | (~predq(X0) | ~predu(X0)))) [nnf transformation 48] 183. ! [X0] : (((predq(X0) & predu(X0)) | ~predh(X0)) & (predh(X0) | ~predq(X0) | ~predu(X0))) [flattening 182] 289. ~predh(X0) | predu(X0) [cnf transformation 183] 303. ~predu(mary) [cnf transformation 162] 312. predh(mary) [cnf transformation 168] 375. predu(mary) [resolution 289,312] 377. $false [subsumption resolution 375,303] % SZS output end Proof for 4656288665611184731596686 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.030 s % ------------------------------ % ------------------------------
0
“Alex is a cybersecurity expert” only if “Alex does not host themed dinner parties featuring gourmet home-cooked meals”. Either “Alex is dedicated to sustainable living and zero-waste practices” or “Alex does not work on fridays” but not both. Either “Alex trains for and competes in international triathlons” or “Alex is a cybersecurity expert” but not both. If “Alex does not train for and competes in international triathlons” then “Alex enjoys bird watching”. Alex is a drone photographer. Alex is allergic to anything, works on fridays and builds model airplanes. Alex is allergic to anything. Alex collects historical artifacts related to ancient civilizations. Alex is a professional photographer specializing in portrait photography. Alex is a client of Costco. Alex works as a freelance web developer specializing in e-commerce sites. Alex does not know morse code and is not a Linux enthusiast.
Alex is a cybersecurity expert.
neutral
room(alex)&(![X]:(room(X)=>(X='alex')))& ((is_a_cybersecurity_expert(alex))=>(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(alex)))& ((is_dedicated_to_sustainable_living_and_zero-waste_practices(alex))<~>(does_not_work_on_fridays(alex)))& ((trains_for_and_competes_in_international_triathlons(alex))<~>(is_a_cybersecurity_expert(alex)))& ((does_not_train_for_and_competes_in_international_triathlons(alex))=>(enjoys_bird_watching(alex)))& (is_a_drone_photographer(alex))& (((is_allergic_to_anything(alex))&(works_on_fridays(alex))&(builds_model_airplanes(alex))))& (is_allergic_to_anything(alex))& (collects_historical_artifacts_related_to_ancient_civilizations(alex))& (is_a_professional_photographer_specializing_in_portrait_photography(alex))& (is_a_client_of_Costco(alex))& (works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(alex))& (((does_not_know_morse_code(alex))&(is_not_a_Linux_enthusiast(alex))))
room(alex)&(![X]:(room(X)=>(X='alex')))& is_a_cybersecurity_expert(alex)
[]
null
0.595611
Estella, Janice, Marilyn, Christina are the only persons in the room. It is not the case that “someone in the room is older than Richard”. If someone is not tall, not calm, not happy, is not happy, not curious, not humble, not kind and is richer than Richard then he/she is creative and vice versa. If someone is humble, is creative or is richer than Richard then he/she is richer than Richard and vice versa. All calm persons are kind. Richard is richer than Janice. All calm persons are curious. All curious persons are patient. Marilyn and Janice either are old or are old kind brave creative persons but not both. Estella is the least old anywhere.
Everyone anywhere neither is a happy person nor is a kind happy person.
neutral
room(estella)&room(janice)&room(marilyn)&room(christina)&(![X]:(room(X)=>(X='estella'|X='janice'|X='marilyn'|X='christina')))& (~(?[X]:(room(X)&(older(richard,X)))))& ((![X]:((((~tall(X)&~calm(X)&~happy(X))&(~happy(X)&~curious(X)&~humble(X)&~kind(X))&(richer(richard,X))))<=>(creative(X)))))& ((![X]:((((humble(X))|(creative(X))|(richer(richard,X))))<=>(richer(richard,X)))))& (![X]:(calm(X)=>kind(X)))& (richer(janice,richard))& (![X]:(calm(X)=>curious(X)))& (![X]:(curious(X)=>patient(X)))& (((old(marilyn))<~>(old(marilyn)&kind(marilyn)&brave(marilyn)&creative(marilyn)&person(marilyn)))&((old(janice))<~>(old(janice)&kind(janice)&brave(janice)&creative(janice)&person(janice))))& (![X]:((anywhere(X)&(X!=estella))=>older(estella,X)))
room(estella)&room(janice)&room(marilyn)&room(christina)&(![X]:(room(X)=>(X='estella'|X='janice'|X='marilyn'|X='christina')))& ![X]:(anywhere(X)=>(~((happy(X)&person(X))|(kind(X)&happy(X)&person(X)))))
[]
null
0.648418
Steven, Olivia, Marilyn, Patricia, Joann are the only persons in the room. If “Steven is not a wine connoisseur with a private cellar of vintage wines” then “Olivia who maintains a large, organic vegetable garden year-round streams on Twitch”. If “Patricia maintains a large, organic vegetable garden year-round” then “if someone maintains a large, organic vegetable garden year-round then he/she is a wine connoisseur with a private cellar of vintage wines and vice versa”. If “Steven is a member of a local theater group specializing in improv” then “Olivia maintains a large, organic vegetable garden year-round”.
Steven is a member of a local theater group specializing in improv.
neutral
room(steven)&room(olivia)&room(marilyn)&room(patricia)&room(joann)&(![X]:(room(X)=>(X='steven'|X='olivia'|X='marilyn'|X='patricia'|X='joann')))& ((is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(steven))=>((maintains_a_large,_organic_vegetable_garden_year-round(olivia))&(streams_on_Twitch(olivia))))& ((maintains_a_large,_organic_vegetable_garden_year-round(patricia))=>((![X]:((maintains_a_large,_organic_vegetable_garden_year-round(X))<=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))& ((is_a_member_of_a_local_theater_group_specializing_in_improv(steven))=>(maintains_a_large,_organic_vegetable_garden_year-round(olivia)))& ((![X]:(room(X)=>(((streams_on_Twitch(X))|(does_not_collect_luxury_watches(X))))))=>(![X]:(room(X)=>(((does_not_collect_luxury_watches(X))=>(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X)))))))& ((![X]:((maintains_a_large,_organic_vegetable_garden_year-round(X))<=>(collects_luxury_watches(X)))))& (![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))<=>(streams_on_Twitch(X))))))& ((![X]:((designs_and_sews_custom_cosplay_costumes_for_conventions(X))<=>(is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X)))))& ((?[X,Y]:(room(X)&room(Y)&(streams_on_Twitch(X)&streams_on_Twitch(Y))&(X!=Y))))& ((![X]:((is_a_member_of_a_local_theater_group_specializing_in_improv(X))=>(streams_on_Twitch(X)))))& ((![X]:((collects_luxury_watches(X))=>(is_a_member_of_a_local_theater_group_specializing_in_improv(X)))))
room(steven)&room(olivia)&room(marilyn)&room(patricia)&room(joann)&(![X]:(room(X)=>(X='steven'|X='olivia'|X='marilyn'|X='patricia'|X='joann')))& is_a_member_of_a_local_theater_group_specializing_in_improv(steven)
[]
null
0
Donald is the only person in the room. "Donald neither plays as a goalkeeper for a local amateur soccer team nor hosts a YouTube channel dedicated to art tutorials" if "at least one person anywhere neither watches fantasy movies nor is an avid mountain climber who has scaled several peaks" and vice versa. "Someone in the room practices tai chi" unless "someone in the room competes in national level swimming championships". If "no one in the room does not play as a goalkeeper for a local amateur soccer team or practices tai chi" then "Donald neither has a specialized collection of handmade artisan pottery nor builds model airplanes". "Donald either enjoys logic puzzles or writes a travel blog but not both" if "everyone in the room does not compete in national level swimming championships or is an active member of a local robotics club". "If someone plays as a goalkeeper for a local amateur soccer team then he/she enjoys logic puzzles" unless "everyone outside the room does not write a travel blog or practices urban gardening". If "not everyone outside the room reads mystery novels or does not write a travel blog" then "Donald hosts a YouTube channel dedicated to art tutorials" otherwise "more than one person anywhere is an active member of a local robotics club". Everyone in the room reads mystery novels if they is an avid mountain climber who has scaled several peaks, builds model airplanes or enjoys camping and organizing outdoor survival workshops and vice versa. Donald designs and sews custom cosplay costumes for conventions. Everyone in the room who is a scotch connoisseur is a dedicated volunteer for local community service projects, is a skilled home brewer experimenting with craft beer recipes and competes in national level swimming championships. Donald enjoys camping and organizing outdoor survival workshops. Donald practices urban gardening. If someone practices tai chi then he/she either competes in national level swimming championships or writes and illustrates their own graphic novels but not both.
Donald builds model airplanes.
neutral
room(donald)&(![X]:(room(X)=>(X='donald')))& ((((?[X]:(anywhere(X)&~((watches_fantasy_movies(X))|(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X)))))))<=>(~((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(donald))|(hosts_a_YouTube_channel_dedicated_to_art_tutorials(donald)))))& (~(?[X]:(room(X)&(competes_in_national_level_swimming_championships(X))))=>(?[X]:(room(X)&(practices_tai_chi(X)))))& ((~?[X]:(room(X)=>(((practices_tai_chi(X))|(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))=>(~((has_a_specialized_collection_of_handmade_artisan_pottery(donald))|(builds_model_airplanes(donald)))))& ((![X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))|(does_not_compete_in_national_level_swimming_championships(X))))))=>(((enjoys_logic_puzzles(donald))<~>(writes_a_travel_blog(donald)))))& (~(![X]:(~room(X)=>(((practices_urban_gardening(X))|(does_not_write_a_travel_blog(X))))))=>((![X]:((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(enjoys_logic_puzzles(X))))))& (((~![X]:(~room(X)=>(((does_not_write_a_travel_blog(X))|(reads_mystery_novels(X))))))=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(donald)))&((~(~![X]:(~room(X)=>(((does_not_write_a_travel_blog(X))|(reads_mystery_novels(X)))))))=>((?[X,Y]:(anywhere(X)&anywhere(Y)&(is_an_active_member_of_a_local_robotics_club(X)&is_an_active_member_of_a_local_robotics_club(Y))&(X!=Y))))))& (![X]:(room(X)=>(((reads_mystery_novels(X))<=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(builds_model_airplanes(X))|(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))))& (designs_and_sews_custom_cosplay_costumes_for_conventions(donald))& (![X]:(room(X)=>(((is_a_scotch_connoisseur(X))=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))&(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))&(competes_in_national_level_swimming_championships(X))))))))& (enjoys_camping_and_organizing_outdoor_survival_workshops(donald))& (practices_urban_gardening(donald))& ((![X]:((practices_tai_chi(X))=>(((competes_in_national_level_swimming_championships(X))<~>(writes_and_illustrates_their_own_graphic_novels(X)))))))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(is_an_active_member_of_a_local_robotics_club(X)&is_an_active_member_of_a_local_robotics_club(Y))&(X!=Y))))& (trains_for_and_competes_in_international_triathlons(donald))& (![X]:(room(X)=>(((is_a_scotch_connoisseur(X))=>(trains_for_and_competes_in_international_triathlons(X))))))& (practices_tai_chi(donald))& (has_a_specialized_collection_of_handmade_artisan_pottery(donald))& (![X]:(room(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))<=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (![X]:(room(X)=>(((competes_in_national_level_swimming_championships(X))=>(hosts_a_popular_podcast_about_emerging_technologies(X))))))& (hosts_a_popular_podcast_about_emerging_technologies(donald))& (![X]:(room(X)=>(((competes_in_national_level_swimming_championships(X))<=>(is_a_dedicated_volunteer_for_local_community_service_projects(X))))))& (competes_in_national_level_swimming_championships(donald))& (reads_mystery_novels(donald))& (![X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))|(does_not_compete_in_national_level_swimming_championships(X))))))& ((practices_urban_gardening(donald))&(competes_in_national_level_swimming_championships(donald)))
room(donald)&(![X]:(room(X)=>(X='donald')))& builds_model_airplanes(donald)
[]
null
0.211541
Jay, Vera, Deanna, Robert, Willie are the only persons in the room. “Jay is calm” unless “Jay is a quiet person”. “Jay is funny” unless “Jay is strong”. Jay who is strong or is a patient person or both is kind. Jay is strong, is a creative person or is funny. No brave person is funny. Jay either is a old person or is a strong person but not both. Jay is happy. Someone who is strong or is a kind person or both is older than someone who is a kind person. Someone who is a curious person, is happy or is a funny person is quieter than someone who is quiet. Jay is humble. Jay is a wise person or is wise or both. Jay is strong. At least one person in the room either is a brave person or is a old person but not both. Jay either is calm or is a curious person but not both. Jay is calm. Jay is kind. Only one person in the room is humble. Someone who is wise is quieter than someone who is calm. At least one person anywhere either is a tall person or is a creative person but not both. Jay is a strong person. All kind persons are strong.
Jay is curious.
contradiction
room(jay)&room(vera)&room(deanna)&room(robert)&room(willie)&(![X]:(room(X)=>(X='jay'|X='vera'|X='deanna'|X='robert'|X='willie')))& (~(quiet(jay)&person(jay))=>(calm(jay)))& (~(strong(jay))=>(funny(jay)))& ((((strong(jay))|(patient(jay)&person(jay))))&(kind(jay)))& (((strong(jay))|(creative(jay)&person(jay))|(funny(jay))))& (~?[X]:(brave(X)=>funny(X)))& (((old(jay)&person(jay))<~>(strong(jay)&person(jay))))& (happy(jay))& (?[X,Y]:((((strong(X))|(kind(X)&person(X))))&(kind(Y)&person(Y))&(older(X,Y))))& (?[X,Y]:((((curious(X)&person(X))|(happy(X))|(funny(X)&person(X))))&(quiet(Y))&(quieter(X,Y))))& (humble(jay))& (((wise(jay)&person(jay))|(wise(jay))))& (strong(jay))& (((?[X]:(room(X)&((brave(X)&person(X))<~>(old(X)&person(X)))))))& (((calm(jay))<~>(curious(jay)&person(jay))))& (calm(jay))& (kind(jay))& (((?[X]:(room(X)&humble(X)))&(![X,Y]:((room(X)&room(Y)&(humble(X))&(humble(Y)))=>(X=Y)))))& (?[X,Y]:((wise(X))&(calm(Y))&(quieter(X,Y))))& (((?[X]:(anywhere(X)&((tall(X)&person(X))<~>(creative(X)&person(X)))))))& (strong(jay)&person(jay))& (![X]:(kind(X)=>strong(X)))& (tall(jay))
room(jay)&room(vera)&room(deanna)&room(robert)&room(willie)&(![X]:(room(X)=>(X='jay'|X='vera'|X='deanna'|X='robert'|X='willie')))& curious(jay)
[ "p14", "p15", "p20", "hypothesis" ]
% SZS status Unsatisfiable for 929650896517194575175528 % SZS output start Proof for 929650896517194575175528 58. calm(mary) <~> (person(mary) & curious(mary)) [input p14] 59. calm(mary) [input p15] 64. person(mary) & strong(mary) [input p20] 67. curious(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 155. curious(mary) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 67] 156. curious(mary) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 155] 168. ((~person(mary) | ~curious(mary)) | ~calm(mary)) & ((person(mary) & curious(mary)) | calm(mary)) [nnf transformation 58] 169. (~person(mary) | ~curious(mary) | ~calm(mary)) & ((person(mary) & curious(mary)) | calm(mary)) [flattening 168] 295. ~person(mary) | ~curious(mary) | ~calm(mary) [cnf transformation 169] 296. calm(mary) [cnf transformation 59] 309. person(mary) [cnf transformation 64] 318. curious(mary) [cnf transformation 156] 326. 1 <=> person(mary) [avatar definition] 330. 2 <=> calm(mary) [avatar definition] 392. 13 <=> curious(mary) [avatar definition] 395. ~2 | ~13 | ~1 [avatar split clause 295,326,392,330] 398. 2 [avatar split clause 296,330] 416. 1 [avatar split clause 309,326] 418. 13 [avatar split clause 318,392] 419. $false [avatar sat refutation 395,398,416,418] % SZS output end Proof for 929650896517194575175528 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.033 s % ------------------------------ % ------------------------------
0.473201
Larry is the only person in the room. Larry works as a freelance web developer specializing in e-commerce sites. If someone enjoys skydiving then he/she does not enjoy cross-country skiing and vice versa. Larry who maintains a personal blog focused on cybersecurity tips enjoys cross-country skiing and works as a freelance web developer specializing in e-commerce sites. Larry maintains a personal blog focused on cybersecurity tips and works as a freelance web developer specializing in e-commerce sites. Larry maintains a personal blog focused on cybersecurity tips. Larry enjoys cross-country skiing. Everyone anywhere does not enjoy skydiving or works as a freelance web developer specializing in e-commerce sites. Someone anywhere works as a freelance web developer specializing in e-commerce sites.
It is not the case that “Larry enjoys skydiving”.
entailment
room(larry)&(![X]:(room(X)=>(X='larry')))& (works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(larry))& ((![X]:((enjoys_skydiving(X))<=>(does_not_enjoy_cross-country_skiing(X)))))& ((maintains_a_personal_blog_focused_on_cybersecurity_tips(larry))&(((enjoys_cross-country_skiing(larry))&(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(larry)))))& (((maintains_a_personal_blog_focused_on_cybersecurity_tips(larry))&(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(larry))))& (maintains_a_personal_blog_focused_on_cybersecurity_tips(larry))& (enjoys_cross-country_skiing(larry))& (![X]:(anywhere(X)=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(does_not_enjoy_skydiving(X))))))& (?[X]:(anywhere(X)&(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))
room(larry)&(![X]:(room(X)=>(X='larry')))& ~(enjoys_skydiving(larry))
[ "p0", "p2", "p3", "hypothesis" ]
% SZS status Unsatisfiable for 359742603515598139495424 % SZS output start Proof for 359742603515598139495424 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 46. ! [X0] : (preda(X0) <=> ~predd(X0)) [input p2] 47. predc(mary) & predd(mary) & predb(mary) [input p3] 53. ~(~preda(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 56. predc(mary) & predd(mary) [pure predicate removal 47] 59. predd(mary) [pure predicate removal 56] 68. ! [X0] : (preda(X0) => ~predd(X0)) [unused predicate definition removal 46] 136. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 137. ! [X0] : (~predd(X0) | ~preda(X0)) [ennf transformation 68] 138. preda(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 53] 140. ? [X0] : (mary != X0 & room(X0)) => (mary != sK0 & room(sK0)) [choice axiom] 141. preda(mary) | (mary != sK0 & room(sK0)) | ~room(mary) [skolemisation 138,140] 222. room(mary) [cnf transformation 136] 223. ~room(X0) | mary = X0 [cnf transformation 136] 224. ~predd(X0) | ~preda(X0) [cnf transformation 137] 225. predd(mary) [cnf transformation 59] 227. preda(mary) | room(sK0) | ~room(mary) [cnf transformation 141] 228. preda(mary) | mary != sK0 | ~room(mary) [cnf transformation 141] 229. preda(mary) | mary != sK0 [subsumption resolution 228,222] 231. 1 <=> mary = sK0 [avatar definition] 233. mary != sK0 <- (~1) [avatar component clause 231] 235. 2 <=> preda(mary) [avatar definition] 238. ~1 | 2 [avatar split clause 229,235,231] 239. preda(mary) | room(sK0) [subsumption resolution 227,222] 241. 3 <=> room(sK0) [avatar definition] 243. room(sK0) <- (3) [avatar component clause 241] 244. 3 | 2 [avatar split clause 239,235,241] 245. ~preda(mary) [resolution 224,225] 248. ~2 [avatar split clause 245,235] 250. mary = sK0 <- (3) [resolution 223,243] 251. $false <- (~1, 3) [subsumption resolution 250,233] 252. 1 | ~3 [avatar contradiction clause 251] 253. $false [avatar sat refutation 238,244,248,252] % SZS output end Proof for 359742603515598139495424 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.680574
Jerry is the only person in the room. Everyone in the room does not hate Shawna and is hated by Christopher if they does not like Shawna and vice versa. Everyone in the room does not like Shawna only if they is not hated by Shawna. Everyone outside the room who is not hated by Shawna does not like Christopher. Everyone in the room hates Shawna if they does not like Christopher. Everyone outside the room is liked by Shawna. Everyone anywhere is hated by Shawna if they hates Shawna. Everyone in the room is not hated by Shawna if they is hated by Shawna. Everyone in the room does not like Shawna if they is not liked by Christopher. Everyone in the room does not like Shawna. Everyone in the room who is not liked by Shawna does not like Christopher and is not hated by Christopher. Everyone in the room does not like Christopher and is not hated by Christopher if they is not hated by Christopher and vice versa.
Jerry and Shawna like each other.
contradiction
room(jerry)&(![X]:(room(X)=>(X='jerry')))& (![X]:(room(X)=>(((((~hate(shawna,X))&(hate(X,christopher))))<=>(~like(shawna,X))))))& (![X]:(room(X)=>(((~hate(X,shawna))<=(~like(shawna,X))))))& (![X]:(~room(X)=>(((~hate(X,shawna))=>(~like(christopher,X))))))& (![X]:(room(X)=>(((~like(christopher,X))=>(hate(shawna,X))))))& (![X]:(~room(X)=>(like(X,shawna))))& (![X]:(anywhere(X)=>(((hate(shawna,X))=>(hate(X,shawna))))))& (![X]:(room(X)=>(((hate(X,shawna))=>(~hate(X,shawna))))))& (![X]:(room(X)=>(((~like(X,christopher))=>(~like(shawna,X))))))& (![X]:(room(X)=>(~like(shawna,X))))& (![X]:(room(X)=>(((~like(X,shawna))=>(((~like(christopher,X))&(~hate(X,christopher))))))))& (![X]:(room(X)=>(((((~like(christopher,X))&(~hate(X,christopher))))<=>(~hate(X,christopher))))))
room(jerry)&(![X]:(room(X)=>(X='jerry')))& (like(jerry,shawna) & like(shawna,jerry))
[ "p0", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 5269034398004589499950800 % SZS output start Proof for 5269034398004589499950800 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 53. ! [X0] : (room(X0) => ~like(paul,X0)) [input p9] 56. like(paul,mary) & like(mary,paul) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 130. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 145. ! [X0] : (~like(paul,X0) | ~room(X0)) [ennf transformation 53] 149. like(paul,mary) & like(mary,paul) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 56] 238. room(mary) [cnf transformation 130] 250. ~like(paul,X0) | ~room(X0) [cnf transformation 145] 259. like(paul,mary) [cnf transformation 149] 265. ~room(mary) [resolution 250,259] 267. $false [subsumption resolution 265,238] % SZS output end Proof for 5269034398004589499950800 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.533124
Marylynn, Jacob, Adam, Ivy, James are the only persons in the room. Everyone in the room who either works on fridays or does not enjoy kayaking and exploring remote waterways but not both is a wine connoisseur with a private cellar of vintage wines, works on fridays and enjoys kayaking and exploring remote waterways unless Marylynn writes a travel blog. If Marylynn does not have lived in exactly three countries then everyone in the room is a wine connoisseur with a private cellar of vintage wines if they works on fridays. If it is true that Marylynn neither writes a travel blog nor enjoys kayaking and exploring remote waterways then everyone in the room does not have lived in exactly three countries if they does not stream on Twitch. If everyone in the room does not stream on Twitch or writes a travel blog then everyone in the room who does not stream on Twitch collects rare minerals and plays the drums. Either not everyone in the room enjoys kayaking and exploring remote waterways or Marylynn plays the drums but not both. Jacob either works on fridays or does not enjoy kayaking and exploring remote waterways but not both. Everyone in the room plays the drums if they has completed a triathlon. Everyone in the room does not have lived in exactly three countries or plays the drums. Not everyone in the room enjoys kayaking and exploring remote waterways. Everyone in the room is dedicated to sustainable living and zero-waste practices if they does not play the drums. Everyone in the room who does not stream on Twitch collects rare minerals and plays the drums. Jacob enjoys kayaking and exploring remote waterways. Jacob has completed a triathlon. Everyone in the room is a wine connoisseur with a private cellar of vintage wines if they enjoys kayaking and exploring remote waterways. Jacob has lived in exactly three countries. Everyone in the room plays the drums if and only if they is a wine connoisseur with a private cellar of vintage wines.
Marylynn writes a travel blog.
entailment
room(marylynnlynn)&room(jacob)&room(adam)&room(ivy)&room(james)&(![X]:(room(X)=>(X='marylynnlynn'|X='jacob'|X='adam'|X='ivy'|X='james')))& (~(writes_a_travel_blog(marylynnlynn))=>(![X]:(room(X)=>(((((works_on_fridays(X))<~>(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))))=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))&(works_on_fridays(X))&(enjoys_kayaking_and_exploring_remote_waterways(X)))))))))& ((does_not_have_lived_in_exactly_three_countries(marylynnlynn))=>(![X]:(room(X)=>(((works_on_fridays(X))=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X)))))))& ((~((writes_a_travel_blog(marylynnlynn))|(enjoys_kayaking_and_exploring_remote_waterways(marylynnlynn))))=>(![X]:(room(X)=>(((does_not_stream_on_Twitch(X))=>(does_not_have_lived_in_exactly_three_countries(X)))))))& ((![X]:(room(X)=>(((writes_a_travel_blog(X))|(does_not_stream_on_Twitch(X))))))=>(![X]:(room(X)=>(((does_not_stream_on_Twitch(X))=>(((collects_rare_minerals(X))&(plays_the_drums(X)))))))))& ((~![X]:(room(X)=>(enjoys_kayaking_and_exploring_remote_waterways(X))))<~>(plays_the_drums(marylynnlynn)))& (((works_on_fridays(jacob))<~>(does_not_enjoy_kayaking_and_exploring_remote_waterways(jacob))))& (![X]:(room(X)=>(((has_completed_a_triathlon(X))=>(plays_the_drums(X))))))& (![X]:(room(X)=>(((plays_the_drums(X))|(does_not_have_lived_in_exactly_three_countries(X))))))& (~![X]:(room(X)=>(enjoys_kayaking_and_exploring_remote_waterways(X))))& (![X]:(room(X)=>(((does_not_play_the_drums(X))=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))& (![X]:(room(X)=>(((does_not_stream_on_Twitch(X))=>(((collects_rare_minerals(X))&(plays_the_drums(X))))))))& (enjoys_kayaking_and_exploring_remote_waterways(jacob))& (has_completed_a_triathlon(jacob))& (![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))& (has_lived_in_exactly_three_countries(jacob))& (((streams_on_Twitch(jacob))&(writes_a_travel_blog(jacob))&(volunteers_for_local_environmental_conservation_projects(jacob))))& (![X]:(room(X)=>(((plays_the_drums(X))<=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))& (![X]:(room(X)=>(((works_on_fridays(X))=>(streams_on_Twitch(X))))))& (![X]:(anywhere(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))=>(streams_on_Twitch(X))))))& (plays_the_drums(jacob))& (collects_rare_minerals(jacob))& ((?[X,Y]:(~room(X)&~room(Y)&(works_on_fridays(X)&works_on_fridays(Y))&(X!=Y))))& ((has_completed_a_triathlon(jacob))&(((enjoys_kayaking_and_exploring_remote_waterways(jacob))|(is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(jacob))|(has_lived_in_exactly_three_countries(jacob)))))
room(marylynnlynn)&room(jacob)&room(adam)&room(ivy)&room(james)&(![X]:(room(X)=>(X='marylynnlynn'|X='jacob'|X='adam'|X='ivy'|X='james')))& writes_a_travel_blog(marylynnlynn)
[ "p0", "p1", "p2", "p5", "p8", "p9", "p14", "p17", "hypothesis" ]
% SZS status Unsatisfiable for 6893739702252291686893089 % SZS output start Proof for 6893739702252291686893089 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ~predh(mary) => ! [X0] : (room(X0) => ((predf(X0) <~> ~predj(X0)) => (predj(X0) & predf(X0) & predc(X0)))) [input p1] 46. ~predi(mary) => ! [X0] : (room(X0) => (predf(X0) => predc(X0))) [input p2] 49. ~! [X0] : (room(X0) => predj(X0)) <~> predd(mary) [input p5] 52. ! [X0] : (room(X0) => (~predi(X0) | predd(X0))) [input p8] 53. ~! [X0] : (room(X0) => predj(X0)) [input p9] 58. ! [X0] : (room(X0) => (predj(X0) => predc(X0))) [input p14] 61. ! [X0] : (room(X0) => (predd(X0) <=> predc(X0))) [input p17] 68. ~(predh(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 153. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 154. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 153] 155. ! [X0] : (((predj(X0) & predf(X0) & predc(X0)) | (predf(X0) <=> ~predj(X0))) | ~room(X0)) | predh(mary) [ennf transformation 45] 156. ! [X0] : ((predj(X0) & predf(X0) & predc(X0)) | (predf(X0) <=> ~predj(X0)) | ~room(X0)) | predh(mary) [flattening 155] 157. ! [X0] : ((predc(X0) | ~predf(X0)) | ~room(X0)) | predi(mary) [ennf transformation 46] 158. ! [X0] : (predc(X0) | ~predf(X0) | ~room(X0)) | predi(mary) [flattening 157] 159. ? [X0] : (~predj(X0) & room(X0)) <~> predd(mary) [ennf transformation 49] 162. ! [X0] : ((~predi(X0) | predd(X0)) | ~room(X0)) [ennf transformation 52] 163. ! [X0] : (~predi(X0) | predd(X0) | ~room(X0)) [flattening 162] 164. ? [X0] : (~predj(X0) & room(X0)) [ennf transformation 53] 165. ! [X0] : ((predc(X0) | ~predj(X0)) | ~room(X0)) [ennf transformation 58] 166. ! [X0] : (predc(X0) | ~predj(X0) | ~room(X0)) [flattening 165] 167. ! [X0] : ((predd(X0) <=> predc(X0)) | ~room(X0)) [ennf transformation 61] 168. ~predh(mary) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 68] 169. ~predh(mary) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 168] 171. ! [X0] : ((predj(X0) & predf(X0) & predc(X0)) | ((predf(X0) | predj(X0)) & (~predj(X0) | ~predf(X0))) | ~room(X0)) | predh(mary) [nnf transformation 156] 172. (~predd(mary) | ! [X0] : (predj(X0) | ~room(X0))) & (predd(mary) | ? [X0] : (~predj(X0) & room(X0))) [nnf transformation 159] 173. (~predd(mary) | ! [X0] : (predj(X0) | ~room(X0))) & (predd(mary) | ? [X1] : (~predj(X1) & room(X1))) [rectify 172] 174. ? [X1] : (~predj(X1) & room(X1)) => (~predj(sK0) & room(sK0)) [choice axiom] 175. (~predd(mary) | ! [X0] : (predj(X0) | ~room(X0))) & (predd(mary) | (~predj(sK0) & room(sK0))) [skolemisation 173,174] 177. ? [X0] : (~predj(X0) & room(X0)) => (~predj(sK1) & room(sK1)) [choice axiom] 178. ~predj(sK1) & room(sK1) [skolemisation 164,177] 179. ! [X0] : (((predd(X0) | ~predc(X0)) & (predc(X0) | ~predd(X0))) | ~room(X0)) [nnf transformation 167] 182. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK4 & alice != sK4 & fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) [choice axiom] 183. ~predh(mary) | (john != sK4 & alice != sK4 & fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 169,182] 264. room(mary) [cnf transformation 154] 265. room(paul) [cnf transformation 154] 266. room(fred) [cnf transformation 154] 267. room(alice) [cnf transformation 154] 268. room(john) [cnf transformation 154] 269. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 154] 271. predc(X0) | predf(X0) | predj(X0) | ~room(X0) | predh(mary) [cnf transformation 171] 276. predc(X0) | ~predf(X0) | ~room(X0) | predi(mary) [cnf transformation 158] 279. ~predd(mary) | predj(X0) | ~room(X0) [cnf transformation 175] 283. ~predi(X0) | predd(X0) | ~room(X0) [cnf transformation 163] 284. room(sK1) [cnf transformation 178] 285. ~predj(sK1) [cnf transformation 178] 288. ~predj(X0) | predc(X0) | ~room(X0) [cnf transformation 166] 292. ~predc(X0) | predd(X0) | ~room(X0) [cnf transformation 179] 301. ~predh(mary) | room(sK4) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 183] 302. ~predh(mary) | mary != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 183] 303. ~predh(mary) | paul != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 183] 304. ~predh(mary) | fred != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 183] 305. ~predh(mary) | alice != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 183] 306. ~predh(mary) | john != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 183] 310. 1 <=> predh(mary) [avatar definition] 319. 3 <=> ! [X0] : (predc(X0) | ~room(X0) | predj(X0) | predf(X0)) [avatar definition] 320. predc(X0) | ~room(X0) | predj(X0) | predf(X0) <- (3) [avatar component clause 319] 321. 1 | 3 [avatar split clause 271,319,310] 327. 5 <=> predi(mary) [avatar definition] 329. predi(mary) <- (5) [avatar component clause 327] 331. 6 <=> ! [X0] : (predc(X0) | ~room(X0) | ~predf(X0)) [avatar definition] 332. ~predf(X0) | ~room(X0) | predc(X0) <- (6) [avatar component clause 331] 333. 5 | 6 [avatar split clause 276,331,327] 335. 7 <=> ! [X0] : (predj(X0) | ~room(X0)) [avatar definition] 336. ~room(X0) | predj(X0) <- (7) [avatar component clause 335] 338. 8 <=> predd(mary) [avatar definition] 340. ~predd(mary) <- (~8) [avatar component clause 338] 341. 7 | ~8 [avatar split clause 279,338,335] 363. ~predh(mary) | john != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 306,268] 364. ~predh(mary) | john != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 363,267] 365. ~predh(mary) | john != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 364,266] 366. ~predh(mary) | john != sK4 | ~room(mary) [subsumption resolution 365,265] 367. ~predh(mary) | john != sK4 [subsumption resolution 366,264] 369. 13 <=> john = sK4 [avatar definition] 371. john != sK4 <- (~13) [avatar component clause 369] 372. ~13 | ~1 [avatar split clause 367,310,369] 373. ~predh(mary) | alice != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 305,268] 374. ~predh(mary) | alice != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 373,267] 375. ~predh(mary) | alice != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 374,266] 376. ~predh(mary) | alice != sK4 | ~room(mary) [subsumption resolution 375,265] 377. ~predh(mary) | alice != sK4 [subsumption resolution 376,264] 379. 14 <=> alice = sK4 [avatar definition] 381. alice != sK4 <- (~14) [avatar component clause 379] 382. ~14 | ~1 [avatar split clause 377,310,379] 383. ~predh(mary) | fred != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 304,268] 384. ~predh(mary) | fred != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 383,267] 385. ~predh(mary) | fred != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 384,266] 386. ~predh(mary) | fred != sK4 | ~room(mary) [subsumption resolution 385,265] 387. ~predh(mary) | fred != sK4 [subsumption resolution 386,264] 389. 15 <=> fred = sK4 [avatar definition] 391. fred != sK4 <- (~15) [avatar component clause 389] 392. ~15 | ~1 [avatar split clause 387,310,389] 393. ~predh(mary) | paul != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 303,268] 394. ~predh(mary) | paul != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 393,267] 395. ~predh(mary) | paul != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 394,266] 396. ~predh(mary) | paul != sK4 | ~room(mary) [subsumption resolution 395,265] 397. ~predh(mary) | paul != sK4 [subsumption resolution 396,264] 399. 16 <=> paul = sK4 [avatar definition] 401. paul != sK4 <- (~16) [avatar component clause 399] 402. ~16 | ~1 [avatar split clause 397,310,399] 403. ~predh(mary) | mary != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 302,268] 404. ~predh(mary) | mary != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 403,267] 405. ~predh(mary) | mary != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 404,266] 406. ~predh(mary) | mary != sK4 | ~room(mary) [subsumption resolution 405,265] 407. ~predh(mary) | mary != sK4 [subsumption resolution 406,264] 409. 17 <=> mary = sK4 [avatar definition] 411. mary != sK4 <- (~17) [avatar component clause 409] 412. ~17 | ~1 [avatar split clause 407,310,409] 413. ~predh(mary) | room(sK4) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 301,268] 414. ~predh(mary) | room(sK4) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 413,267] 415. ~predh(mary) | room(sK4) | ~room(paul) | ~room(mary) [subsumption resolution 414,266] 416. ~predh(mary) | room(sK4) | ~room(mary) [subsumption resolution 415,265] 417. ~predh(mary) | room(sK4) [subsumption resolution 416,264] 419. 18 <=> room(sK4) [avatar definition] 421. room(sK4) <- (18) [avatar component clause 419] 422. 18 | ~1 [avatar split clause 417,310,419] 428. predj(sK1) <- (7) [resolution 336,284] 429. $false <- (7) [subsumption resolution 428,285] 430. ~7 [avatar contradiction clause 429] 433. predd(mary) | ~room(mary) <- (5) [resolution 283,329] 434. ~room(mary) <- (5, ~8) [subsumption resolution 433,340] 435. $false <- (5, ~8) [subsumption resolution 434,264] 436. ~5 | 8 [avatar contradiction clause 435] 486. predc(X0) | ~room(X0) | predf(X0) <- (3) [subsumption resolution 320,288] 487. ~room(X0) | predc(X0) <- (3, 6) [subsumption resolution 486,332] 488. predc(mary) <- (3, 6) [resolution 487,264] 499. predd(mary) | ~room(mary) <- (3, 6) [resolution 488,292] 500. ~room(mary) <- (3, 6, ~8) [subsumption resolution 499,340] 501. $false <- (3, 6, ~8) [subsumption resolution 500,264] 502. ~3 | ~6 | 8 [avatar contradiction clause 501] 552. alice = sK4 | fred = sK4 | paul = sK4 | mary = sK4 | john = sK4 <- (18) [resolution 269,421] 595. fred = sK4 | paul = sK4 | mary = sK4 | john = sK4 <- (~14, 18) [subsumption resolution 552,381] 596. paul = sK4 | mary = sK4 | john = sK4 <- (~14, ~15, 18) [subsumption resolution 595,391] 597. mary = sK4 | john = sK4 <- (~14, ~15, ~16, 18) [subsumption resolution 596,401] 598. john = sK4 <- (~14, ~15, ~16, ~17, 18) [subsumption resolution 597,411] 599. $false <- (~13, ~14, ~15, ~16, ~17, 18) [subsumption resolution 598,371] 600. 13 | 14 | 15 | 16 | 17 | ~18 [avatar contradiction clause 599] 601. $false [avatar sat refutation 321,333,341,372,382,392,402,412,422,430,436,502,600] % SZS output end Proof for 6893739702252291686893089 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.02662
Ella, Daniel, Elois are the only persons in the room. Ella is the quietest in the room. If someone is not a kind generous person then he/she is not a strong person, is not humble, not generous, not patient, not brave and is not a happy person and vice versa. It is true that “if someone is not curious then he/she is not a calm person, is not a brave patient person and is not a curious person and vice versa”. Elois is the richest in the room. Elois who is not a brave happy person is not a funny curious person. Daniel is the oldest in the room. Daniel is the least rich outside the room. Ella who is not a kind person is not a calm person. Ella who is not a happy person is not quiet, not brave, not calm. Ella is the least old in the room. Daniel who is not a kind quiet person is not a funny happy wise person, is not humble and is not a funny wise kind person. If someone is not happy then he/she is not generous and vice versa. It is true that “if someone is not a funny person then he/she is not a tall funny old person and vice versa”. Ella dreamt that “if someone is not a kind person then he/she is not generous and vice versa”. Elois is the least quiet in the room. If someone is not a curious person then he/she is not generous, not happy, not humble and vice versa. If someone is not a quiet person then he/she is not a brave person and vice versa. If someone is not a generous person then he/she is not a curious tall person and vice versa. Ella is the least old anywhere.
Everyone anywhere is not a brave person.
neutral
room(ella)&room(daniel)&room(elois)&(![X]:(room(X)=>(X='ella'|X='daniel'|X='elois')))& (![X]:((room(X)&(X!=ella))=>quieter(X,ella)))& ((![X]:((~(kind(X)&generous(X)&person(X)))<=>(((~(strong(X)&person(X)))&(~humble(X)&~generous(X)&~patient(X)&~brave(X))&(~(happy(X)&person(X))))))))& ((![X]:((~curious(X))<=>(((~(calm(X)&person(X)))&(~(brave(X)&patient(X)&person(X)))&(~(curious(X)&person(X))))))))& (![X]:((room(X)&(X!=elois))=>richer(X,elois)))& ((~(brave(elois)&happy(elois)&person(elois)))&(~(funny(elois)&curious(elois)&person(elois))))& (![X]:((room(X)&(X!=daniel))=>older(X,daniel)))& (![X]:((~room(X)&(X!=daniel))=>richer(daniel,X)))& ((~(kind(ella)&person(ella)))&(~(calm(ella)&person(ella))))& ((~(happy(ella)&person(ella)))&(~quiet(ella)&~brave(ella)&~calm(ella)))& (![X]:((room(X)&(X!=ella))=>older(ella,X)))& ((~(kind(daniel)&quiet(daniel)&person(daniel)))&(((~(funny(daniel)&happy(daniel)&wise(daniel)&person(daniel)))&(~humble(daniel))&(~(funny(daniel)&wise(daniel)&kind(daniel)&person(daniel))))))& ((![X]:((~happy(X))<=>(~generous(X)))))& ((![X]:((~(funny(X)&person(X)))<=>(~(tall(X)&funny(X)&old(X)&person(X))))))& ((ella_dream=>((![X]:((~(kind(X)&person(X)))<=>(~generous(X)))))))& (![X]:((room(X)&(X!=elois))=>quieter(elois,X)))& ((![X]:((~(curious(X)&person(X)))<=>(~generous(X)&~happy(X)&~humble(X)))))& ((![X]:((~(quiet(X)&person(X)))<=>(~(brave(X)&person(X))))))& ((![X]:((~(generous(X)&person(X)))<=>(~(curious(X)&tall(X)&person(X))))))& (![X]:((anywhere(X)&(X!=ella))=>older(ella,X)))& ((~generous(daniel)&~creative(daniel))&(~(generous(daniel)&curious(daniel)&brave(daniel)&person(daniel))))& ((![X]:((~(generous(X)&person(X)))<=>(~calm(X)&~humble(X)))))
room(ella)&room(daniel)&room(elois)&(![X]:(room(X)=>(X='ella'|X='daniel'|X='elois')))& ![X]:(anywhere(X)=>(~(brave(X)&person(X))))
[]
null
0.680847
Ronda, Thomas are the only persons in the room. If “everyone in the room does not write in-depth travel guides for off-the-beaten-path destinations or bakes bread at home” then “everyone in the room who does not write in-depth travel guides for off-the-beaten-path destinations is a tall humble person”. “Everyone in the room who is poorer than Dana is not a strong tourist” unless “everyone in the room is a humble person or does not enjoy spelunking”. Either “Ronda does not write in-depth travel guides for off-the-beaten-path destinations” or “no one outside the room is not a humble tall person or does not bake bread at home” but not both. If “no one outside the room does not write in-depth travel guides for off-the-beaten-path destinations or is a sibling of Dana” then “no one in the room writes in-depth travel guides for off-the-beaten-path destinations if they is poorer than Dana”. “Everyone in the room does not enjoy spelunking or is a strong humble tall person” only if “everyone in the room who does not bake bread at home is poorer than Dana”. Either “everyone in the room is a sibling of Dana or does not write in-depth travel guides for off-the-beaten-path destinations” or “Thomas is not humble” but not both. More than one person in the room enjoys spelunking. Thomas and Ronda are respectively strong and tall. Everyone in the room is humble. All strong persons are tall. Dana is a sibling of Thomas. Everyone in the room who is a humble tall tourist enjoys spelunking, is tall or is a humble person.
Thomas enjoys spelunking.
entailment
room(ronda)&room(thomas)&(![X]:(room(X)=>(X='ronda'|X='thomas')))& ((![X]:(room(X)=>(((bakes_bread_at_home(X))|(does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))=>(![X]:(room(X)=>(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))=>(tall(X)&humble(X)&person(X)))))))& (~(![X]:(room(X)=>(((does_not_enjoy_spelunking(X))|(humble(X)&person(X))))))=>(![X]:(room(X)=>(((poorer(dana,X))=>(~(strong(X)&tourist(X))))))))& ((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(ronda))<~>(~?[X]:(~room(X)=>(((does_not_bake_bread_at_home(X))|(~(humble(X)&tall(X)&person(X))))))))& ((~?[X]:(~room(X)=>(((sibling(dana,X))|(does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))=>(~?[X]:(room(X)=>(((poorer(dana,X))=>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X)))))))& ((![X]:(room(X)=>(((strong(X)&humble(X)&tall(X)&person(X))|(does_not_enjoy_spelunking(X))))))=>(![X]:(room(X)=>(((does_not_bake_bread_at_home(X))=>(poorer(dana,X)))))))& ((![X]:(room(X)=>(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))|(sibling(dana,X))))))<~>(~humble(thomas)))& ((?[X,Y]:(room(X)&room(Y)&(enjoys_spelunking(X)&enjoys_spelunking(Y))&(X!=Y))))& ((strong(thomas))&(tall(ronda)))& (![X]:(room(X)=>(humble(X))))& (![X]:(strong(X)=>tall(X)))& (sibling(thomas,dana))& (![X]:(room(X)=>(((humble(X)&tall(X)&tourist(X))=>(((enjoys_spelunking(X))|(tall(X))|(humble(X)&person(X))))))))
room(ronda)&room(thomas)&(![X]:(room(X)=>(X='ronda'|X='thomas')))& enjoys_spelunking(thomas)
[ "p0", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 5495238547430646913477049 % SZS output start Proof for 5495238547430646913477049 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 51. ? [X0,X1] : (X0 != X1 & predl(X1) & predl(X0) & room(X1) & room(X0)) [input p7] 57. ~(predl(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 136. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 137. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 136] 150. ~predl(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 57] 151. ~predl(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 150] 173. ? [X0,X1] : (X0 != X1 & predl(X1) & predl(X0) & room(X1) & room(X0)) => (sK6 != sK7 & predl(sK7) & predl(sK6) & room(sK7) & room(sK6)) [choice axiom] 174. sK6 != sK7 & predl(sK7) & predl(sK6) & room(sK7) & room(sK6) [skolemisation 51,173] 175. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK8 & mary != sK8 & room(sK8)) [choice axiom] 176. ~predl(paul) | (paul != sK8 & mary != sK8 & room(sK8)) | ~room(paul) | ~room(mary) [skolemisation 151,175] 257. room(mary) [cnf transformation 137] 258. room(paul) [cnf transformation 137] 259. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 137] 282. room(sK6) [cnf transformation 174] 283. room(sK7) [cnf transformation 174] 284. predl(sK6) [cnf transformation 174] 285. predl(sK7) [cnf transformation 174] 286. sK6 != sK7 [cnf transformation 174] 292. ~predl(paul) | room(sK8) | ~room(paul) | ~room(mary) [cnf transformation 176] 293. ~predl(paul) | mary != sK8 | ~room(paul) | ~room(mary) [cnf transformation 176] 294. ~predl(paul) | paul != sK8 | ~room(paul) | ~room(mary) [cnf transformation 176] 448. ~predl(paul) | paul != sK8 | ~room(mary) [subsumption resolution 294,258] 449. ~predl(paul) | paul != sK8 [subsumption resolution 448,257] 451. 37 <=> paul = sK8 [avatar definition] 453. paul != sK8 <- (~37) [avatar component clause 451] 455. 38 <=> predl(paul) [avatar definition] 457. ~predl(paul) <- (~38) [avatar component clause 455] 458. ~37 | ~38 [avatar split clause 449,455,451] 459. ~predl(paul) | mary != sK8 | ~room(mary) [subsumption resolution 293,258] 460. ~predl(paul) | mary != sK8 [subsumption resolution 459,257] 462. 39 <=> mary = sK8 [avatar definition] 464. mary != sK8 <- (~39) [avatar component clause 462] 465. ~39 | ~38 [avatar split clause 460,455,462] 466. ~predl(paul) | room(sK8) | ~room(mary) [subsumption resolution 292,258] 467. ~predl(paul) | room(sK8) [subsumption resolution 466,257] 469. 40 <=> room(sK8) [avatar definition] 471. room(sK8) <- (40) [avatar component clause 469] 472. 40 | ~38 [avatar split clause 467,455,469] 527. mary = sK6 | paul = sK6 [resolution 259,282] 528. mary = sK7 | paul = sK7 [resolution 259,283] 539. 49 <=> paul = sK6 [avatar definition] 541. paul = sK6 <- (49) [avatar component clause 539] 543. 50 <=> mary = sK6 [avatar definition] 545. mary = sK6 <- (50) [avatar component clause 543] 546. 49 | 50 [avatar split clause 527,543,539] 548. 51 <=> paul = sK7 [avatar definition] 550. paul = sK7 <- (51) [avatar component clause 548] 552. 52 <=> mary = sK7 [avatar definition] 555. 51 | 52 [avatar split clause 528,552,548] 559. predl(paul) <- (51) [backward demodulation 285,550] 567. predl(paul) <- (49) [backward demodulation 284,541] 568. $false <- (~38, 49) [subsumption resolution 567,457] 569. 38 | ~49 [avatar contradiction clause 568] 570. 38 | ~51 [avatar split clause 559,548,455] 604. mary = sK8 | paul = sK8 <- (40) [resolution 471,259] 607. paul = sK8 <- (~39, 40) [subsumption resolution 604,464] 608. $false <- (~37, ~39, 40) [subsumption resolution 607,453] 609. 37 | 39 | ~40 [avatar contradiction clause 608] 610. mary != sK7 <- (50) [forward demodulation 286,545] 611. ~52 | ~50 [avatar split clause 610,543,552] 619. $false [avatar sat refutation 458,465,472,546,555,569,570,609,611] % SZS output end Proof for 5495238547430646913477049 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0
Francesco, Maria, Ramon are the only persons in the room. If “everyone in the room does not enjoy wildlife photography, does not own a microscope and is not a night owl” then “everyone in the room does not have a vast collection of first-edition science fiction novels”. If “everyone in the room does not have a vast collection of first-edition science fiction novels” then “if someone does not collect modern art then he/she is not a client of LVMH or does not train for and competes in international triathlons or both”. “If someone does not have a specialized collection of handmade artisan pottery then he/she is not a skilled home brewer experimenting with craft beer recipes and vice versa” unless “everyone in the room does not read mystery novels”. “Everyone in the room does not read mystery novels, is not a client of LVMH or does not design and sews custom cosplay costumes for conventions” only if “everyone in the room does not participate in citizen science projects related to wildlife monitoring, does not write and illustrates their own graphic novels or does not host themed dinner parties featuring gourmet home-cooked meals”. “Everyone in the room does not host themed dinner parties featuring gourmet home-cooked meals and does not enjoy wildlife photography” unless “everyone in the room either does not volunteer for local environmental conservation projects or is not a skilled home brewer experimenting with craft beer recipes but not both”. Everyone in the room does not collect modern art, does not own a telescope and does not have a specialized collection of handmade artisan pottery. If someone does not write and illustrates their own graphic novels then he/she is not a client of LVMH.
Maria owns a telescope.
contradiction
room(francesco)&room(maria)&room(ramon)&(![X]:(room(X)=>(X='francesco'|X='maria'|X='ramon')))& (((![X]:(room(X)=>(((does_not_enjoy_wildlife_photography(X))&(does_not_own_a_microscope(X))&(is_not_a_night_owl(X))))))=>(![X]:(room(X)=>(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X)))))& ((![X]:(room(X)=>(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))))=>((![X]:((does_not_collect_modern_art(X))=>(((is_not_a_client_of_LVMH(X))|(does_not_train_for_and_competes_in_international_triathlons(X)))))))))& (~(![X]:(room(X)=>(does_not_read_mystery_novels(X))))=>((![X]:((does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))<=>(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))& ((![X]:(room(X)=>(((does_not_read_mystery_novels(X))|(is_not_a_client_of_LVMH(X))|(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))))))=>(![X]:(room(X)=>(((does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))|(does_not_write_and_illustrates_their_own_graphic_novels(X))|(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)))))))& (~(![X]:(room(X)=>(((does_not_volunteer_for_local_environmental_conservation_projects(X))<~>(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))=>(![X]:(room(X)=>(((does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))&(does_not_enjoy_wildlife_photography(X)))))))& (![X]:(room(X)=>(((does_not_collect_modern_art(X))&(does_not_own_a_telescope(X))&(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))))))& ((![X]:((does_not_write_and_illustrates_their_own_graphic_novels(X))=>(is_not_a_client_of_LVMH(X)))))& (![X]:(anywhere(X)=>(does_not_collect_rare_sneakers(X))))& (~![X]:(room(X)=>(((is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))))))& ((![X]:((((does_not_enjoy_kayaking_and_exploring_remote_waterways(X))<~>(does_not_train_for_and_competes_in_international_triathlons(X))))<=>(((does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(does_not_read_mystery_novels(X)))))))& (![X]:(anywhere(X)=>(((does_not_read_mystery_novels(X))|(does_not_collect_rare_sneakers(X))))))& ((is_not_a_client_of_LVMH(ramon))&(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(ramon)))& ((?[X,Y]:(room(X)&room(Y)&(((does_not_collect_modern_art(X))<~>(does_not_own_a_microscope(X)))&((does_not_collect_modern_art(Y))<~>(does_not_own_a_microscope(Y))))&(X!=Y))))& (![X]:(room(X)=>(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))))& ((![X]:((((is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(does_not_own_a_microscope(X))))=>(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X)))))& ((![X]:((does_not_volunteer_for_local_environmental_conservation_projects(X))<=>(does_not_have_completed_a_triathlon(X)))))& ((![X]:((((does_not_collect_classic_novels(X))|(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(does_not_write_poetry(X))))=>(is_not_a_night_owl(X)))))& (![X]:(room(X)=>(((does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))|(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))|(does_not_enjoy_wildlife_photography(X))))))& (![X]:(~room(X)=>(((does_not_enjoy_kayaking_and_exploring_remote_waterways(X))|(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))& ((![X]:((((does_not_write_and_illustrates_their_own_graphic_novels(X))&(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))))=>(((does_not_volunteer_for_local_environmental_conservation_projects(X))&(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))&(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X)))))))& ((![X]:((((does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))&(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))&(does_not_host_a_popular_podcast_about_emerging_technologies(X))))<=>(((does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))&(does_not_write_and_illustrates_their_own_graphic_novels(X)))))))& (![X]:(~room(X)=>(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))))& ((does_not_enjoy_kayaking_and_exploring_remote_waterways(maria))&(((does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(maria))&(is_not_a_night_owl(maria)))))
room(francesco)&room(maria)&room(ramon)&(![X]:(room(X)=>(X='francesco'|X='maria'|X='ramon')))& owns_a_telescope(maria)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 165290109911482813685868 % SZS output start Proof for 165290109911482813685868 44. ~predc(paul) & ~predo(paul) & ~predh(paul) & ! [X0] : (~room(X0) => ~predt(X0)) & ! [X0] : ((~predq(X0) & ~predo(X0) & ~predn(X0)) <=> (~predz(X0) & ~predb(X0))) & ! [X0] : ((~predn(X0) & ~predz(X0)) => (~predj(X0) & ~predh(X0) & ~preda(X0))) & ! [X0] : (~room(X0) => (~preds(X0) | ~prede(X0) | ~predh(X0))) & ! [X0] : (room(X0) => (~predf(X0) | ~predh(X0) | ~predn(X0))) & ! [X0] : ((~predm(X0) | ~predi(X0) | ~predv(X0)) => ~predc(X0)) & ! [X0] : (~preda(X0) <=> ~predy(X0)) & ! [X0] : ((~predx(X0) | ~predl(X0) | ~predi(X0)) => ~predn(X0)) & ! [X0] : (room(X0) => ~predn(X0)) & ? [X0,X1] : (X0 != X1 & (~predw(X1) <~> ~predx(X1)) & (~predw(X0) <~> ~predx(X0)) & room(X1) & room(X0)) & ~predn(fred) & ~predu(fred) & ! [X0] : (anywhere(X0) => (~predk(X0) | ~predd(X0))) & ! [X0] : ((~predh(X0) <~> ~predp(X0)) <=> (~predd(X0) | ~prede(X0))) & ~! [X0] : (room(X0) => (~predj(X0) | ~predo(X0) | ~predi(X0))) & ! [X0] : (anywhere(X0) => ~predk(X0)) & ! [X0] : (~predz(X0) => ~predu(X0)) & ! [X0] : (room(X0) => (~predn(X0) & ~predg(X0) & ~predw(X0))) & (~! [X0] : (room(X0) => (~preda(X0) <~> ~predi(X0))) => ! [X0] : (room(X0) => (~predf(X0) & ~prede(X0)))) & (! [X0] : (room(X0) => (~predt(X0) | ~predu(X0) | ~predd(X0))) => ! [X0] : (room(X0) => (~prede(X0) | ~predz(X0) | ~preds(X0)))) & (~! [X0] : (room(X0) => ~predd(X0)) => ! [X0] : (~predn(X0) <=> ~predi(X0))) & (! [X0] : (room(X0) => ~predb(X0)) => ! [X0] : (~predw(X0) => (~predp(X0) | ~predu(X0)))) & (! [X0] : (room(X0) => (~predc(X0) & ~predx(X0) & ~predf(X0))) => ! [X0] : (room(X0) => ~predb(X0))) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. predg(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 46. ~predc(paul) & ~predo(paul) & ~predh(paul) & ! [X0] : (~room(X0) => ~predt(X0)) & ! [X1] : ((~predq(X1) & ~predo(X1) & ~predn(X1)) <=> (~predz(X1) & ~predb(X1))) & ! [X2] : ((~predn(X2) & ~predz(X2)) => (~predj(X2) & ~predh(X2) & ~preda(X2))) & ! [X3] : (~room(X3) => (~preds(X3) | ~prede(X3) | ~predh(X3))) & ! [X4] : (room(X4) => (~predf(X4) | ~predh(X4) | ~predn(X4))) & ! [X5] : ((~predm(X5) | ~predi(X5) | ~predv(X5)) => ~predc(X5)) & ! [X6] : (~preda(X6) <=> ~predy(X6)) & ! [X7] : ((~predx(X7) | ~predl(X7) | ~predi(X7)) => ~predn(X7)) & ! [X8] : (room(X8) => ~predn(X8)) & ? [X9,X10] : (X9 != X10 & (~predw(X10) <~> ~predx(X10)) & (~predw(X9) <~> ~predx(X9)) & room(X10) & room(X9)) & ~predn(fred) & ~predu(fred) & ! [X11] : (anywhere(X11) => (~predk(X11) | ~predd(X11))) & ! [X12] : ((~predh(X12) <~> ~predp(X12)) <=> (~predd(X12) | ~prede(X12))) & ~! [X13] : (room(X13) => (~predj(X13) | ~predo(X13) | ~predi(X13))) & ! [X14] : (anywhere(X14) => ~predk(X14)) & ! [X15] : (~predz(X15) => ~predu(X15)) & ! [X16] : (room(X16) => (~predn(X16) & ~predg(X16) & ~predw(X16))) & (~! [X17] : (room(X17) => (~preda(X17) <~> ~predi(X17))) => ! [X18] : (room(X18) => (~predf(X18) & ~prede(X18)))) & (! [X19] : (room(X19) => (~predt(X19) | ~predu(X19) | ~predd(X19))) => ! [X20] : (room(X20) => (~prede(X20) | ~predz(X20) | ~preds(X20)))) & (~! [X21] : (room(X21) => ~predd(X21)) => ! [X22] : (~predn(X22) <=> ~predi(X22))) & (! [X23] : (room(X23) => ~predb(X23)) => ! [X24] : (~predw(X24) => (~predp(X24) | ~predu(X24)))) & (! [X25] : (room(X25) => (~predc(X25) & ~predx(X25) & ~predf(X25))) => ! [X26] : (room(X26) => ~predb(X26))) & ! [X27] : (room(X27) => (fred = X27 | paul = X27 | mary = X27)) & room(fred) & room(paul) & room(mary) [rectify 44] 47. ~predc(paul) & ~predo(paul) & ~predh(paul) & ! [X0] : (~room(X0) => ~predt(X0)) & ! [X1] : ((~predq(X1) & ~predo(X1) & ~predn(X1)) <=> (~predz(X1) & ~predb(X1))) & ! [X2] : ((~predn(X2) & ~predz(X2)) => (~predj(X2) & ~predh(X2) & ~preda(X2))) & ! [X3] : (~room(X3) => (~preds(X3) | ~prede(X3) | ~predh(X3))) & ! [X4] : (room(X4) => (~predf(X4) | ~predh(X4) | ~predn(X4))) & ! [X5] : ((~predi(X5) | ~predv(X5)) => ~predc(X5)) & ! [X6] : (~preda(X6) <=> ~predy(X6)) & ! [X7] : ((~predx(X7) | ~predl(X7) | ~predi(X7)) => ~predn(X7)) & ! [X8] : (room(X8) => ~predn(X8)) & ? [X9,X10] : (X9 != X10 & (~predw(X10) <~> ~predx(X10)) & (~predw(X9) <~> ~predx(X9)) & room(X10) & room(X9)) & ~predn(fred) & ~predu(fred) & ! [X11] : (anywhere(X11) => (~predk(X11) | ~predd(X11))) & ! [X12] : ((~predh(X12) <~> ~predp(X12)) <=> (~predd(X12) | ~prede(X12))) & ~! [X13] : (room(X13) => (~predj(X13) | ~predo(X13) | ~predi(X13))) & ! [X14] : (anywhere(X14) => ~predk(X14)) & ! [X15] : (~predz(X15) => ~predu(X15)) & ! [X16] : (room(X16) => (~predn(X16) & ~predg(X16) & ~predw(X16))) & (~! [X17] : (room(X17) => (~preda(X17) <~> ~predi(X17))) => ! [X18] : (room(X18) => (~predf(X18) & ~prede(X18)))) & (! [X19] : (room(X19) => (~predt(X19) | ~predu(X19) | ~predd(X19))) => ! [X20] : (room(X20) => (~prede(X20) | ~predz(X20) | ~preds(X20)))) & (~! [X21] : (room(X21) => ~predd(X21)) => ! [X22] : (~predn(X22) <=> ~predi(X22))) & (! [X23] : (room(X23) => ~predb(X23)) => ! [X24] : (~predw(X24) => (~predp(X24) | ~predu(X24)))) & (! [X25] : (room(X25) => (~predc(X25) & ~predx(X25) & ~predf(X25))) => ! [X26] : (room(X26) => ~predb(X26))) & ! [X27] : (room(X27) => (fred = X27 | paul = X27 | mary = X27)) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 48. ~predc(paul) & ~predo(paul) & ~predh(paul) & ! [X0] : (~room(X0) => ~predt(X0)) & ! [X1] : ((~predq(X1) & ~predo(X1) & ~predn(X1)) <=> (~predz(X1) & ~predb(X1))) & ! [X2] : ((~predn(X2) & ~predz(X2)) => (~predj(X2) & ~predh(X2) & ~preda(X2))) & ! [X3] : (~room(X3) => (~preds(X3) | ~prede(X3) | ~predh(X3))) & ! [X4] : (room(X4) => (~predf(X4) | ~predh(X4) | ~predn(X4))) & ! [X5] : (~predi(X5) => ~predc(X5)) & ! [X6] : (~preda(X6) <=> ~predy(X6)) & ! [X7] : ((~predx(X7) | ~predl(X7) | ~predi(X7)) => ~predn(X7)) & ! [X8] : (room(X8) => ~predn(X8)) & ? [X9,X10] : (X9 != X10 & (~predw(X10) <~> ~predx(X10)) & (~predw(X9) <~> ~predx(X9)) & room(X10) & room(X9)) & ~predn(fred) & ~predu(fred) & ! [X11] : (anywhere(X11) => (~predk(X11) | ~predd(X11))) & ! [X12] : ((~predh(X12) <~> ~predp(X12)) <=> (~predd(X12) | ~prede(X12))) & ~! [X13] : (room(X13) => (~predj(X13) | ~predo(X13) | ~predi(X13))) & ! [X14] : (anywhere(X14) => ~predk(X14)) & ! [X15] : (~predz(X15) => ~predu(X15)) & ! [X16] : (room(X16) => (~predn(X16) & ~predg(X16) & ~predw(X16))) & (~! [X17] : (room(X17) => (~preda(X17) <~> ~predi(X17))) => ! [X18] : (room(X18) => (~predf(X18) & ~prede(X18)))) & (! [X19] : (room(X19) => (~predt(X19) | ~predu(X19) | ~predd(X19))) => ! [X20] : (room(X20) => (~prede(X20) | ~predz(X20) | ~preds(X20)))) & (~! [X21] : (room(X21) => ~predd(X21)) => ! [X22] : (~predn(X22) <=> ~predi(X22))) & (! [X23] : (room(X23) => ~predb(X23)) => ! [X24] : (~predw(X24) => (~predp(X24) | ~predu(X24)))) & (! [X25] : (room(X25) => (~predc(X25) & ~predx(X25) & ~predf(X25))) => ! [X26] : (room(X26) => ~predb(X26))) & ! [X27] : (room(X27) => (fred = X27 | paul = X27 | mary = X27)) & room(fred) & room(paul) & room(mary) [pure predicate removal 47] 49. ~predc(paul) & ~predo(paul) & ~predh(paul) & ! [X0] : (~room(X0) => ~predt(X0)) & ! [X1] : ((~predq(X1) & ~predo(X1) & ~predn(X1)) <=> (~predz(X1) & ~predb(X1))) & ! [X2] : ((~predn(X2) & ~predz(X2)) => (~predj(X2) & ~predh(X2) & ~preda(X2))) & ! [X3] : (~room(X3) => (~preds(X3) | ~prede(X3) | ~predh(X3))) & ! [X4] : (room(X4) => (~predf(X4) | ~predh(X4) | ~predn(X4))) & ! [X5] : (~predi(X5) => ~predc(X5)) & ! [X6] : (~preda(X6) <=> ~predy(X6)) & ! [X7] : ((~predx(X7) | ~predi(X7)) => ~predn(X7)) & ! [X8] : (room(X8) => ~predn(X8)) & ? [X9,X10] : (X9 != X10 & (~predw(X10) <~> ~predx(X10)) & (~predw(X9) <~> ~predx(X9)) & room(X10) & room(X9)) & ~predn(fred) & ~predu(fred) & ! [X11] : (anywhere(X11) => (~predk(X11) | ~predd(X11))) & ! [X12] : ((~predh(X12) <~> ~predp(X12)) <=> (~predd(X12) | ~prede(X12))) & ~! [X13] : (room(X13) => (~predj(X13) | ~predo(X13) | ~predi(X13))) & ! [X14] : (anywhere(X14) => ~predk(X14)) & ! [X15] : (~predz(X15) => ~predu(X15)) & ! [X16] : (room(X16) => (~predn(X16) & ~predg(X16) & ~predw(X16))) & (~! [X17] : (room(X17) => (~preda(X17) <~> ~predi(X17))) => ! [X18] : (room(X18) => (~predf(X18) & ~prede(X18)))) & (! [X19] : (room(X19) => (~predt(X19) | ~predu(X19) | ~predd(X19))) => ! [X20] : (room(X20) => (~prede(X20) | ~predz(X20) | ~preds(X20)))) & (~! [X21] : (room(X21) => ~predd(X21)) => ! [X22] : (~predn(X22) <=> ~predi(X22))) & (! [X23] : (room(X23) => ~predb(X23)) => ! [X24] : (~predw(X24) => (~predp(X24) | ~predu(X24)))) & (! [X25] : (room(X25) => (~predc(X25) & ~predx(X25) & ~predf(X25))) => ! [X26] : (room(X26) => ~predb(X26))) & ! [X27] : (room(X27) => (fred = X27 | paul = X27 | mary = X27)) & room(fred) & room(paul) & room(mary) [pure predicate removal 48] 50. ~predc(paul) & ~predo(paul) & ~predh(paul) & ! [X0] : (~room(X0) => ~predt(X0)) & ! [X1] : ((~predq(X1) & ~predo(X1) & ~predn(X1)) <=> (~predz(X1) & ~predb(X1))) & ! [X2] : ((~predn(X2) & ~predz(X2)) => (~predj(X2) & ~predh(X2) & ~preda(X2))) & ! [X3] : (~room(X3) => (~preds(X3) | ~prede(X3) | ~predh(X3))) & ! [X4] : (room(X4) => (~predf(X4) | ~predh(X4) | ~predn(X4))) & ! [X5] : (~predi(X5) => ~predc(X5)) & ! [X6] : (~preda(X6) <=> ~predy(X6)) & ! [X7] : ((~predx(X7) | ~predi(X7)) => ~predn(X7)) & ! [X8] : (room(X8) => ~predn(X8)) & ? [X9,X10] : (X9 != X10 & (~predw(X10) <~> ~predx(X10)) & (~predw(X9) <~> ~predx(X9)) & room(X10) & room(X9)) & ~predn(fred) & ~predu(fred) & ! [X12] : ((~predh(X12) <~> ~predp(X12)) <=> (~predd(X12) | ~prede(X12))) & ~! [X13] : (room(X13) => (~predj(X13) | ~predo(X13) | ~predi(X13))) & ! [X15] : (~predz(X15) => ~predu(X15)) & ! [X16] : (room(X16) => (~predn(X16) & ~predg(X16) & ~predw(X16))) & (~! [X17] : (room(X17) => (~preda(X17) <~> ~predi(X17))) => ! [X18] : (room(X18) => (~predf(X18) & ~prede(X18)))) & (! [X19] : (room(X19) => (~predt(X19) | ~predu(X19) | ~predd(X19))) => ! [X20] : (room(X20) => (~prede(X20) | ~predz(X20) | ~preds(X20)))) & (~! [X21] : (room(X21) => ~predd(X21)) => ! [X22] : (~predn(X22) <=> ~predi(X22))) & (! [X23] : (room(X23) => ~predb(X23)) => ! [X24] : (~predw(X24) => (~predp(X24) | ~predu(X24)))) & (! [X25] : (room(X25) => (~predc(X25) & ~predx(X25) & ~predf(X25))) => ! [X26] : (room(X26) => ~predb(X26))) & ! [X27] : (room(X27) => (fred = X27 | paul = X27 | mary = X27)) & room(fred) & room(paul) & room(mary) [pure predicate removal 49] 52. ~predc(paul) & ~predo(paul) & ~predh(paul) & ! [X0] : (~room(X0) => ~predt(X0)) & ! [X1] : ((~predq(X1) & ~predo(X1) & ~predn(X1)) <=> (~predz(X1) & ~predb(X1))) & ! [X2] : ((~predn(X2) & ~predz(X2)) => (~predj(X2) & ~predh(X2) & ~preda(X2))) & ! [X4] : (room(X4) => (~predf(X4) | ~predh(X4) | ~predn(X4))) & ! [X5] : (~predi(X5) => ~predc(X5)) & ! [X6] : (~preda(X6) <=> ~predy(X6)) & ! [X7] : ((~predx(X7) | ~predi(X7)) => ~predn(X7)) & ! [X8] : (room(X8) => ~predn(X8)) & ? [X9,X10] : (X9 != X10 & (~predw(X10) <~> ~predx(X10)) & (~predw(X9) <~> ~predx(X9)) & room(X10) & room(X9)) & ~predn(fred) & ~predu(fred) & ! [X12] : ((~predh(X12) <~> ~predp(X12)) <=> (~predd(X12) | ~prede(X12))) & ~! [X13] : (room(X13) => (~predj(X13) | ~predo(X13) | ~predi(X13))) & ! [X15] : (~predz(X15) => ~predu(X15)) & ! [X16] : (room(X16) => (~predn(X16) & ~predg(X16) & ~predw(X16))) & (~! [X17] : (room(X17) => (~preda(X17) <~> ~predi(X17))) => ! [X18] : (room(X18) => (~predf(X18) & ~prede(X18)))) & (~! [X21] : (room(X21) => ~predd(X21)) => ! [X22] : (~predn(X22) <=> ~predi(X22))) & (! [X23] : (room(X23) => ~predb(X23)) => ! [X24] : (~predw(X24) => (~predp(X24) | ~predu(X24)))) & (! [X25] : (room(X25) => (~predc(X25) & ~predx(X25) & ~predf(X25))) => ! [X26] : (room(X26) => ~predb(X26))) & ! [X27] : (room(X27) => (fred = X27 | paul = X27 | mary = X27)) & room(fred) & room(paul) & room(mary) [pure predicate removal 50] 53. ~predc(paul) & ~predo(paul) & ~predh(paul) & ! [X1] : ((~predq(X1) & ~predo(X1) & ~predn(X1)) <=> (~predz(X1) & ~predb(X1))) & ! [X2] : ((~predn(X2) & ~predz(X2)) => (~predj(X2) & ~predh(X2) & ~preda(X2))) & ! [X4] : (room(X4) => (~predf(X4) | ~predh(X4) | ~predn(X4))) & ! [X5] : (~predi(X5) => ~predc(X5)) & ! [X6] : (~preda(X6) <=> ~predy(X6)) & ! [X7] : ((~predx(X7) | ~predi(X7)) => ~predn(X7)) & ! [X8] : (room(X8) => ~predn(X8)) & ? [X9,X10] : (X9 != X10 & (~predw(X10) <~> ~predx(X10)) & (~predw(X9) <~> ~predx(X9)) & room(X10) & room(X9)) & ~predn(fred) & ~predu(fred) & ! [X12] : ((~predh(X12) <~> ~predp(X12)) <=> (~predd(X12) | ~prede(X12))) & ~! [X13] : (room(X13) => (~predj(X13) | ~predo(X13) | ~predi(X13))) & ! [X15] : (~predz(X15) => ~predu(X15)) & ! [X16] : (room(X16) => (~predn(X16) & ~predg(X16) & ~predw(X16))) & (~! [X17] : (room(X17) => (~preda(X17) <~> ~predi(X17))) => ! [X18] : (room(X18) => (~predf(X18) & ~prede(X18)))) & (~! [X21] : (room(X21) => ~predd(X21)) => ! [X22] : (~predn(X22) <=> ~predi(X22))) & (! [X23] : (room(X23) => ~predb(X23)) => ! [X24] : (~predw(X24) => (~predp(X24) | ~predu(X24)))) & (! [X25] : (room(X25) => (~predc(X25) & ~predx(X25) & ~predf(X25))) => ! [X26] : (room(X26) => ~predb(X26))) & ! [X27] : (room(X27) => (fred = X27 | paul = X27 | mary = X27)) & room(fred) & room(paul) & room(mary) [pure predicate removal 52] 54. ~predc(paul) & ~predo(paul) & ~predh(paul) & ! [X1] : ((~predq(X1) & ~predo(X1) & ~predn(X1)) <=> (~predz(X1) & ~predb(X1))) & ! [X2] : ((~predn(X2) & ~predz(X2)) => (~predj(X2) & ~predh(X2) & ~preda(X2))) & ! [X4] : (room(X4) => (~predf(X4) | ~predh(X4) | ~predn(X4))) & ! [X5] : (~predi(X5) => ~predc(X5)) & ! [X6] : (~preda(X6) <=> ~predy(X6)) & ! [X7] : ((~predx(X7) | ~predi(X7)) => ~predn(X7)) & ! [X8] : (room(X8) => ~predn(X8)) & ? [X9,X10] : (X9 != X10 & (~predw(X10) <~> ~predx(X10)) & (~predw(X9) <~> ~predx(X9)) & room(X10) & room(X9)) & ~predn(fred) & ! [X12] : ((~predh(X12) <~> ~predp(X12)) <=> (~predd(X12) | ~prede(X12))) & ~! [X13] : (room(X13) => (~predj(X13) | ~predo(X13) | ~predi(X13))) & ! [X16] : (room(X16) => (~predn(X16) & ~predg(X16) & ~predw(X16))) & (~! [X17] : (room(X17) => (~preda(X17) <~> ~predi(X17))) => ! [X18] : (room(X18) => (~predf(X18) & ~prede(X18)))) & (~! [X21] : (room(X21) => ~predd(X21)) => ! [X22] : (~predn(X22) <=> ~predi(X22))) & (! [X25] : (room(X25) => (~predc(X25) & ~predx(X25) & ~predf(X25))) => ! [X26] : (room(X26) => ~predb(X26))) & ! [X27] : (room(X27) => (fred = X27 | paul = X27 | mary = X27)) & room(fred) & room(paul) & room(mary) [pure predicate removal 53] 126. ~predc(paul) & ~predo(paul) & ~predh(paul) & ! [X1] : ((~predq(X1) & ~predo(X1) & ~predn(X1)) <=> (~predz(X1) & ~predb(X1))) & ! [X2] : ((~predj(X2) & ~predh(X2) & ~preda(X2)) | (predn(X2) | predz(X2))) & ! [X4] : ((~predf(X4) | ~predh(X4) | ~predn(X4)) | ~room(X4)) & ! [X5] : (~predc(X5) | predi(X5)) & ! [X6] : (~preda(X6) <=> ~predy(X6)) & ! [X7] : (~predn(X7) | (predx(X7) & predi(X7))) & ! [X8] : (~predn(X8) | ~room(X8)) & ? [X9,X10] : (X9 != X10 & (~predw(X10) <~> ~predx(X10)) & (~predw(X9) <~> ~predx(X9)) & room(X10) & room(X9)) & ~predn(fred) & ! [X12] : ((~predh(X12) <~> ~predp(X12)) <=> (~predd(X12) | ~prede(X12))) & ? [X13] : ((predj(X13) & predo(X13) & predi(X13)) & room(X13)) & ! [X16] : ((~predn(X16) & ~predg(X16) & ~predw(X16)) | ~room(X16)) & (! [X18] : ((~predf(X18) & ~prede(X18)) | ~room(X18)) | ! [X17] : ((~preda(X17) <~> ~predi(X17)) | ~room(X17))) & (! [X22] : (~predn(X22) <=> ~predi(X22)) | ! [X21] : (~predd(X21) | ~room(X21))) & (! [X26] : (~predb(X26) | ~room(X26)) | ? [X25] : ((predc(X25) | predx(X25) | predf(X25)) & room(X25))) & ! [X27] : ((fred = X27 | paul = X27 | mary = X27) | ~room(X27)) & room(fred) & room(paul) & room(mary) [ennf transformation 54] 127. ~predc(paul) & ~predo(paul) & ~predh(paul) & ! [X1] : ((~predq(X1) & ~predo(X1) & ~predn(X1)) <=> (~predz(X1) & ~predb(X1))) & ! [X2] : ((~predj(X2) & ~predh(X2) & ~preda(X2)) | predn(X2) | predz(X2)) & ! [X4] : (~predf(X4) | ~predh(X4) | ~predn(X4) | ~room(X4)) & ! [X5] : (~predc(X5) | predi(X5)) & ! [X6] : (~preda(X6) <=> ~predy(X6)) & ! [X7] : (~predn(X7) | (predx(X7) & predi(X7))) & ! [X8] : (~predn(X8) | ~room(X8)) & ? [X9,X10] : (X9 != X10 & (~predw(X10) <~> ~predx(X10)) & (~predw(X9) <~> ~predx(X9)) & room(X10) & room(X9)) & ~predn(fred) & ! [X12] : ((~predh(X12) <~> ~predp(X12)) <=> (~predd(X12) | ~prede(X12))) & ? [X13] : (predj(X13) & predo(X13) & predi(X13) & room(X13)) & ! [X16] : ((~predn(X16) & ~predg(X16) & ~predw(X16)) | ~room(X16)) & (! [X18] : ((~predf(X18) & ~prede(X18)) | ~room(X18)) | ! [X17] : ((~preda(X17) <~> ~predi(X17)) | ~room(X17))) & (! [X22] : (~predn(X22) <=> ~predi(X22)) | ! [X21] : (~predd(X21) | ~room(X21))) & (! [X26] : (~predb(X26) | ~room(X26)) | ? [X25] : ((predc(X25) | predx(X25) | predf(X25)) & room(X25))) & ! [X27] : (fred = X27 | paul = X27 | mary = X27 | ~room(X27)) & room(fred) & room(paul) & room(mary) [flattening 126] 128. predg(paul) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 45] 129. predg(paul) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 128] 131. ~predc(paul) & ~predo(paul) & ~predh(paul) & ! [X1] : (((~predq(X1) & ~predo(X1) & ~predn(X1)) | (predz(X1) | predb(X1))) & ((~predz(X1) & ~predb(X1)) | (predq(X1) | predo(X1) | predn(X1)))) & ! [X2] : ((~predj(X2) & ~predh(X2) & ~preda(X2)) | predn(X2) | predz(X2)) & ! [X4] : (~predf(X4) | ~predh(X4) | ~predn(X4) | ~room(X4)) & ! [X5] : (~predc(X5) | predi(X5)) & ! [X6] : ((~preda(X6) | predy(X6)) & (~predy(X6) | preda(X6))) & ! [X7] : (~predn(X7) | (predx(X7) & predi(X7))) & ! [X8] : (~predn(X8) | ~room(X8)) & ? [X9,X10] : (X9 != X10 & ((predx(X10) | predw(X10)) & (~predx(X10) | ~predw(X10))) & ((predx(X9) | predw(X9)) & (~predx(X9) | ~predw(X9))) & room(X10) & room(X9)) & ~predn(fred) & ! [X12] : ((((predp(X12) | predh(X12)) & (~predp(X12) | ~predh(X12))) | (predd(X12) & prede(X12))) & ((~predd(X12) | ~prede(X12)) | ((~predh(X12) | predp(X12)) & (~predp(X12) | predh(X12))))) & ? [X13] : (predj(X13) & predo(X13) & predi(X13) & room(X13)) & ! [X16] : ((~predn(X16) & ~predg(X16) & ~predw(X16)) | ~room(X16)) & (! [X18] : ((~predf(X18) & ~prede(X18)) | ~room(X18)) | ! [X17] : (((predi(X17) | preda(X17)) & (~predi(X17) | ~preda(X17))) | ~room(X17))) & (! [X22] : ((~predn(X22) | predi(X22)) & (~predi(X22) | predn(X22))) | ! [X21] : (~predd(X21) | ~room(X21))) & (! [X26] : (~predb(X26) | ~room(X26)) | ? [X25] : ((predc(X25) | predx(X25) | predf(X25)) & room(X25))) & ! [X27] : (fred = X27 | paul = X27 | mary = X27 | ~room(X27)) & room(fred) & room(paul) & room(mary) [nnf transformation 127] 132. ~predc(paul) & ~predo(paul) & ~predh(paul) & ! [X1] : (((~predq(X1) & ~predo(X1) & ~predn(X1)) | predz(X1) | predb(X1)) & ((~predz(X1) & ~predb(X1)) | predq(X1) | predo(X1) | predn(X1))) & ! [X2] : ((~predj(X2) & ~predh(X2) & ~preda(X2)) | predn(X2) | predz(X2)) & ! [X4] : (~predf(X4) | ~predh(X4) | ~predn(X4) | ~room(X4)) & ! [X5] : (~predc(X5) | predi(X5)) & ! [X6] : ((~preda(X6) | predy(X6)) & (~predy(X6) | preda(X6))) & ! [X7] : (~predn(X7) | (predx(X7) & predi(X7))) & ! [X8] : (~predn(X8) | ~room(X8)) & ? [X9,X10] : (X9 != X10 & (predx(X10) | predw(X10)) & (~predx(X10) | ~predw(X10)) & (predx(X9) | predw(X9)) & (~predx(X9) | ~predw(X9)) & room(X10) & room(X9)) & ~predn(fred) & ! [X12] : ((((predp(X12) | predh(X12)) & (~predp(X12) | ~predh(X12))) | (predd(X12) & prede(X12))) & (~predd(X12) | ~prede(X12) | ((~predh(X12) | predp(X12)) & (~predp(X12) | predh(X12))))) & ? [X13] : (predj(X13) & predo(X13) & predi(X13) & room(X13)) & ! [X16] : ((~predn(X16) & ~predg(X16) & ~predw(X16)) | ~room(X16)) & (! [X18] : ((~predf(X18) & ~prede(X18)) | ~room(X18)) | ! [X17] : (((predi(X17) | preda(X17)) & (~predi(X17) | ~preda(X17))) | ~room(X17))) & (! [X22] : ((~predn(X22) | predi(X22)) & (~predi(X22) | predn(X22))) | ! [X21] : (~predd(X21) | ~room(X21))) & (! [X26] : (~predb(X26) | ~room(X26)) | ? [X25] : ((predc(X25) | predx(X25) | predf(X25)) & room(X25))) & ! [X27] : (fred = X27 | paul = X27 | mary = X27 | ~room(X27)) & room(fred) & room(paul) & room(mary) [flattening 131] 133. ~predc(paul) & ~predo(paul) & ~predh(paul) & ! [X0] : (((~predq(X0) & ~predo(X0) & ~predn(X0)) | predz(X0) | predb(X0)) & ((~predz(X0) & ~predb(X0)) | predq(X0) | predo(X0) | predn(X0))) & ! [X1] : ((~predj(X1) & ~predh(X1) & ~preda(X1)) | predn(X1) | predz(X1)) & ! [X2] : (~predf(X2) | ~predh(X2) | ~predn(X2) | ~room(X2)) & ! [X3] : (~predc(X3) | predi(X3)) & ! [X4] : ((~preda(X4) | predy(X4)) & (~predy(X4) | preda(X4))) & ! [X5] : (~predn(X5) | (predx(X5) & predi(X5))) & ! [X6] : (~predn(X6) | ~room(X6)) & ? [X7,X8] : (X7 != X8 & (predx(X8) | predw(X8)) & (~predx(X8) | ~predw(X8)) & (predx(X7) | predw(X7)) & (~predx(X7) | ~predw(X7)) & room(X8) & room(X7)) & ~predn(fred) & ! [X9] : ((((predp(X9) | predh(X9)) & (~predp(X9) | ~predh(X9))) | (predd(X9) & prede(X9))) & (~predd(X9) | ~prede(X9) | ((~predh(X9) | predp(X9)) & (~predp(X9) | predh(X9))))) & ? [X10] : (predj(X10) & predo(X10) & predi(X10) & room(X10)) & ! [X11] : ((~predn(X11) & ~predg(X11) & ~predw(X11)) | ~room(X11)) & (! [X12] : ((~predf(X12) & ~prede(X12)) | ~room(X12)) | ! [X13] : (((predi(X13) | preda(X13)) & (~predi(X13) | ~preda(X13))) | ~room(X13))) & (! [X14] : ((~predn(X14) | predi(X14)) & (~predi(X14) | predn(X14))) | ! [X15] : (~predd(X15) | ~room(X15))) & (! [X16] : (~predb(X16) | ~room(X16)) | ? [X17] : ((predc(X17) | predx(X17) | predf(X17)) & room(X17))) & ! [X18] : (fred = X18 | paul = X18 | mary = X18 | ~room(X18)) & room(fred) & room(paul) & room(mary) [rectify 132] 134. ? [X7,X8] : (X7 != X8 & (predx(X8) | predw(X8)) & (~predx(X8) | ~predw(X8)) & (predx(X7) | predw(X7)) & (~predx(X7) | ~predw(X7)) & room(X8) & room(X7)) => (sK0 != sK1 & (predx(sK1) | predw(sK1)) & (~predx(sK1) | ~predw(sK1)) & (predx(sK0) | predw(sK0)) & (~predx(sK0) | ~predw(sK0)) & room(sK1) & room(sK0)) [choice axiom] 135. ? [X10] : (predj(X10) & predo(X10) & predi(X10) & room(X10)) => (predj(sK2) & predo(sK2) & predi(sK2) & room(sK2)) [choice axiom] 136. ? [X17] : ((predc(X17) | predx(X17) | predf(X17)) & room(X17)) => ((predc(sK3) | predx(sK3) | predf(sK3)) & room(sK3)) [choice axiom] 137. ~predc(paul) & ~predo(paul) & ~predh(paul) & ! [X0] : (((~predq(X0) & ~predo(X0) & ~predn(X0)) | predz(X0) | predb(X0)) & ((~predz(X0) & ~predb(X0)) | predq(X0) | predo(X0) | predn(X0))) & ! [X1] : ((~predj(X1) & ~predh(X1) & ~preda(X1)) | predn(X1) | predz(X1)) & ! [X2] : (~predf(X2) | ~predh(X2) | ~predn(X2) | ~room(X2)) & ! [X3] : (~predc(X3) | predi(X3)) & ! [X4] : ((~preda(X4) | predy(X4)) & (~predy(X4) | preda(X4))) & ! [X5] : (~predn(X5) | (predx(X5) & predi(X5))) & ! [X6] : (~predn(X6) | ~room(X6)) & (sK0 != sK1 & (predx(sK1) | predw(sK1)) & (~predx(sK1) | ~predw(sK1)) & (predx(sK0) | predw(sK0)) & (~predx(sK0) | ~predw(sK0)) & room(sK1) & room(sK0)) & ~predn(fred) & ! [X9] : ((((predp(X9) | predh(X9)) & (~predp(X9) | ~predh(X9))) | (predd(X9) & prede(X9))) & (~predd(X9) | ~prede(X9) | ((~predh(X9) | predp(X9)) & (~predp(X9) | predh(X9))))) & (predj(sK2) & predo(sK2) & predi(sK2) & room(sK2)) & ! [X11] : ((~predn(X11) & ~predg(X11) & ~predw(X11)) | ~room(X11)) & (! [X12] : ((~predf(X12) & ~prede(X12)) | ~room(X12)) | ! [X13] : (((predi(X13) | preda(X13)) & (~predi(X13) | ~preda(X13))) | ~room(X13))) & (! [X14] : ((~predn(X14) | predi(X14)) & (~predi(X14) | predn(X14))) | ! [X15] : (~predd(X15) | ~room(X15))) & (! [X16] : (~predb(X16) | ~room(X16)) | ((predc(sK3) | predx(sK3) | predf(sK3)) & room(sK3))) & ! [X18] : (fred = X18 | paul = X18 | mary = X18 | ~room(X18)) & room(fred) & room(paul) & room(mary) [skolemisation 133,136,135,134] 219. room(paul) [cnf transformation 137] 231. ~predg(X11) | ~room(X11) [cnf transformation 137] 273. predg(paul) [cnf transformation 129] 341. ~room(paul) [resolution 231,273] 342. $false [subsumption resolution 341,219] % SZS output end Proof for 165290109911482813685868 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.024 s % ------------------------------ % ------------------------------
0.476468
Darrell is the only person in the room. If someone is an expert in identifying and foraging wild edible plants then he/she has a pet dog.
Darrell is an expert in identifying and foraging wild edible plants.
neutral
room(darrell)&(![X]:(room(X)=>(X='darrell')))& (![X]:((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))=>(has_a_pet_dog(X))))
room(darrell)&(![X]:(room(X)=>(X='darrell')))& is_an_expert_in_identifying_and_foraging_wild_edible_plants(darrell)
[]
null
0.430372
Maria, Kenneth, Thomas, Beverly are the only persons in the room. "Maria hosts regular workshops on creative writing" only if "everyone in the room who hosts regular workshops on creative writing has completed a triathlon". Either "Kenneth is a cybersecurity expert" or "everyone in the room is a chess master who participates in national tournaments or is not a chess master who participates in national tournaments" but not both. Either "someone in the room is a cybersecurity expert, is a chess master who participates in national tournaments and practices calligraphy" or "someone in the room is a chess master who participates in national tournaments" but not both. If "everyone anywhere does not have completed a triathlon or owns a high-end gaming PC with custom-built components" then "everyone in the room who plays the drums trains for and competes in international triathlons". If "not everyone in the room collects rare minerals or does not practice calligraphy" then "everyone in the room who collects rare minerals owns a high-end gaming PC with custom-built components". Someone outside the room hosts regular workshops on creative writing. Everyone in the room who is a client of LVMH collects rare minerals. Everyone in the room who collects rare minerals plays as a goalkeeper for a local amateur soccer team. Maria has completed a triathlon or plays as a goalkeeper for a local amateur soccer team or both. Kenneth is a client of LVMH. Everyone in the room who is a cybersecurity expert has completed a triathlon. Everyone in the room who has completed a triathlon plays the drums. Beverly who plays the drums and practices calligraphy hosts regular workshops on creative writing or has completed a triathlon or both. Everyone anywhere who is a cybersecurity expert plays as a goalkeeper for a local amateur soccer team. Maria is a client of LVMH. Everyone in the room who has completed a triathlon is a client of LVMH. Everyone in the room is a client of LVMH if and only if they plays as a goalkeeper for a local amateur soccer team. Everyone in the room who is a chess master who participates in national tournaments is a cybersecurity expert or plays the drums or both. Everyone in the room who is a cybersecurity expert or plays the drums or both plays the drums. Not everyone outside the room who plays the drums trains for and competes in international triathlons. Everyone in the room who trains for and competes in international triathlons practices calligraphy.
Maria has completed a triathlon.
neutral
room(maria)&room(kenneth)&room(thomas)&room(beverly)&(![X]:(room(X)=>(X='maria'|X='kenneth'|X='thomas'|X='beverly')))& ((hosts_regular_workshops_on_creative_writing(maria))=>(![X]:(room(X)=>(((hosts_regular_workshops_on_creative_writing(X))=>(has_completed_a_triathlon(X)))))))& ((is_a_cybersecurity_expert(kenneth))<~>(![X]:(room(X)=>(((is_not_a_chess_master_who_participates_in_national_tournaments(X))|(is_a_chess_master_who_participates_in_national_tournaments(X)))))))& ((?[X]:(room(X)&(((is_a_cybersecurity_expert(X))&(is_a_chess_master_who_participates_in_national_tournaments(X))&(practices_calligraphy(X))))))<~>(?[X]:(room(X)&(is_a_chess_master_who_participates_in_national_tournaments(X)))))& ((![X]:(anywhere(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))|(does_not_have_completed_a_triathlon(X))))))=>(![X]:(room(X)=>(((plays_the_drums(X))=>(trains_for_and_competes_in_international_triathlons(X)))))))& ((~![X]:(room(X)=>(((does_not_practice_calligraphy(X))|(collects_rare_minerals(X))))))=>(![X]:(room(X)=>(((collects_rare_minerals(X))=>(owns_a_high-end_gaming_PC_with_custom-built_components(X)))))))& (?[X]:(~room(X)&(hosts_regular_workshops_on_creative_writing(X))))& (![X]:(room(X)=>(((is_a_client_of_LVMH(X))=>(collects_rare_minerals(X))))))& (![X]:(room(X)=>(((collects_rare_minerals(X))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (((has_completed_a_triathlon(maria))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(maria))))& (is_a_client_of_LVMH(kenneth))& (![X]:(room(X)=>(((is_a_cybersecurity_expert(X))=>(has_completed_a_triathlon(X))))))& (![X]:(room(X)=>(((has_completed_a_triathlon(X))=>(plays_the_drums(X))))))& ((((plays_the_drums(beverly))&(practices_calligraphy(beverly))))&(((hosts_regular_workshops_on_creative_writing(beverly))|(has_completed_a_triathlon(beverly)))))& (![X]:(anywhere(X)=>(((is_a_cybersecurity_expert(X))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (is_a_client_of_LVMH(maria))& (![X]:(room(X)=>(((has_completed_a_triathlon(X))=>(is_a_client_of_LVMH(X))))))& (![X]:(room(X)=>(((is_a_client_of_LVMH(X))<=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (![X]:(room(X)=>(((is_a_chess_master_who_participates_in_national_tournaments(X))=>(((is_a_cybersecurity_expert(X))|(plays_the_drums(X))))))))& (![X]:(room(X)=>(((((is_a_cybersecurity_expert(X))|(plays_the_drums(X))))=>(plays_the_drums(X))))))& (~![X]:(~room(X)=>(((plays_the_drums(X))=>(trains_for_and_competes_in_international_triathlons(X))))))& (![X]:(room(X)=>(((trains_for_and_competes_in_international_triathlons(X))=>(practices_calligraphy(X))))))& (~(collects_rare_minerals(thomas)))& (does_not_practice_calligraphy(maria))
room(maria)&room(kenneth)&room(thomas)&room(beverly)&(![X]:(room(X)=>(X='maria'|X='kenneth'|X='thomas'|X='beverly')))& has_completed_a_triathlon(maria)
[]
null
0.523235
There is a room. "Everyone in the room who uses an ios phone writes poetry" unless "everyone in the room does not have a piercing or writes poetry". Everyone in the room who collects vintage vinyl records enjoys windsurfing. Everyone in the room enjoys windsurfing if and only if they collects limited-edition art prints from contemporary artists. Everyone in the room who collects limited-edition art prints from contemporary artists volunteers for local environmental conservation projects. Everyone in the room who volunteers for local environmental conservation projects creates augmented reality experiences for mobile applications.
Everyone in the room enjoys windsurfing.
neutral
(there_is_a_room)& (~(![X]:(room(X)=>(((writes_poetry(X))|(does_not_have_a_piercing(X))))))=>(![X]:(room(X)=>(((uses_an_ios_phone(X))=>(writes_poetry(X)))))))& (![X]:(room(X)=>(((collects_vintage_vinyl_records(X))=>(enjoys_windsurfing(X))))))& (![X]:(room(X)=>(((enjoys_windsurfing(X))<=>(collects_limited-edition_art_prints_from_contemporary_artists(X))))))& (![X]:(room(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))=>(volunteers_for_local_environmental_conservation_projects(X))))))& (![X]:(room(X)=>(((volunteers_for_local_environmental_conservation_projects(X))=>(creates_augmented_reality_experiences_for_mobile_applications(X))))))
(there_is_a_room)& ![X]:(room(X)=>(enjoys_windsurfing(X)))
[]
null
0.207291
Don, Bettie, Christopher are the only persons in the room. Everyone in the room does not have a vast collection of first-edition science fiction novels or trains for and competes in international triathlons if everyone in the room does not enjoy wildlife photography or is a dedicated advocate for digital privacy and encryption and vice versa. Everyone in the room does not use contact lenses or does not have a vast collection of first-edition science fiction novels. Everyone outside the room who does not use contact lenses is a dedicated advocate for digital privacy and encryption. Everyone in the room who is a dedicated advocate for digital privacy and encryption either is a dedicated volunteer for local community service projects or collects antique clocks but not both. Everyone anywhere either is a dedicated volunteer for local community service projects or collects antique clocks but not both if and only if they is right-handed. Everyone in the room is right-handed only if they own a television. No one anywhere own a television only if they is a client of LVMH. Everyone in the room does not collect modern art or is a client of LVMH. Everyone outside the room who does not collect modern art enjoys writing detailed reviews of new and classic board games. Everyone in the room who practices urban gardening is a client of LVMH or bakes bread at home or both. Everyone in the room bakes bread at home or practices urban gardening or both if they works on fridays, composes and performs experimental electronic music and participates in long-distance cycling events across the country and vice versa. Everyone in the room who is a client of LVMH or own a television or both collects antique clocks. Everyone in the room who collects antique clocks is a dedicated advocate for digital privacy and encryption and practices urban gardening. Everyone in the room who is a dedicated advocate for digital privacy and encryption and practices urban gardening uses contact lenses. Everyone in the room who uses contact lenses designs and sews custom cosplay costumes for conventions. Everyone in the room designs and sews custom cosplay costumes for conventions if and only if they owns a smart tv. Everyone in the room owns a smart tv only if they hosts themed dinner parties featuring gourmet home-cooked meals. Everyone in the room does not enjoy wildlife photography or hosts themed dinner parties featuring gourmet home-cooked meals. Everyone in the room who does not enjoy wildlife photography collects antique clocks. Bettie works on fridays. Everyone outside the room hosts themed dinner parties featuring gourmet home-cooked meals if they trains for and competes in international triathlons.
Don collects modern art.
contradiction
room(don)&room(bettie)&room(christopher)&(![X]:(room(X)=>(X='don'|X='bettie'|X='christopher')))& ((![X]:(room(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(does_not_enjoy_wildlife_photography(X))))))<=>(![X]:(room(X)=>(((trains_for_and_competes_in_international_triathlons(X))|(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X)))))))& (![X]:(room(X)=>(((does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))|(does_not_use_contact_lenses(X))))))& (![X]:(~room(X)=>(((does_not_use_contact_lenses(X))=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))& (![X]:(room(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))<~>(collects_antique_clocks(X))))))))& (![X]:(anywhere(X)=>(((((is_a_dedicated_volunteer_for_local_community_service_projects(X))<~>(collects_antique_clocks(X))))<=>(is_right-handed(X))))))& (![X]:(room(X)=>(((own_a_television(X))<=(is_right-handed(X))))))& (~?[X]:(anywhere(X)=>(((is_a_client_of_LVMH(X))<=(own_a_television(X))))))& (![X]:(room(X)=>(((is_a_client_of_LVMH(X))|(does_not_collect_modern_art(X))))))& (![X]:(~room(X)=>(((does_not_collect_modern_art(X))=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))))& (![X]:(room(X)=>(((practices_urban_gardening(X))=>(((is_a_client_of_LVMH(X))|(bakes_bread_at_home(X))))))))& (![X]:(room(X)=>(((((bakes_bread_at_home(X))|(practices_urban_gardening(X))))<=>(((works_on_fridays(X))&(composes_and_performs_experimental_electronic_music(X))&(participates_in_long-distance_cycling_events_across_the_country(X))))))))& (![X]:(room(X)=>(((((is_a_client_of_LVMH(X))|(own_a_television(X))))=>(collects_antique_clocks(X))))))& (![X]:(room(X)=>(((collects_antique_clocks(X))=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))&(practices_urban_gardening(X))))))))& (![X]:(room(X)=>(((((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))&(practices_urban_gardening(X))))=>(uses_contact_lenses(X))))))& (![X]:(room(X)=>(((uses_contact_lenses(X))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))& (![X]:(room(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))<=>(owns_a_smart_tv(X))))))& (![X]:(room(X)=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))<=(owns_a_smart_tv(X))))))& (![X]:(room(X)=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(does_not_enjoy_wildlife_photography(X))))))& (![X]:(room(X)=>(((does_not_enjoy_wildlife_photography(X))=>(collects_antique_clocks(X))))))& (works_on_fridays(bettie))& (![X]:(~room(X)=>(((trains_for_and_competes_in_international_triathlons(X))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (![X]:(room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(regularly_contributes_to_tech_forums_and_online_communities(X))))))& (![X]:(room(X)=>(((is_a_client_of_LVMH(X))=>(is_a_dedicated_volunteer_for_local_community_service_projects(X))))))& (![X]:(room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(participates_in_long-distance_cycling_events_across_the_country(X))))))
room(don)&room(bettie)&room(christopher)&(![X]:(room(X)=>(X='don'|X='bettie'|X='christopher')))& collects_modern_art(don)
[ "p0", "p7", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 4202752608032252237635463 % SZS output start Proof for 4202752608032252237635463 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 51. ~? [X0] : (anywhere(X0) => (predf(X0) => predc(X0))) [input p7] 52. ! [X0] : (room(X0) => (~predh(X0) | predc(X0))) [input p8] 69. predh(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 147. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 148. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 147] 160. ! [X0] : ((~predc(X0) & predf(X0)) & anywhere(X0)) [ennf transformation 51] 161. ! [X0] : (~predc(X0) & predf(X0) & anywhere(X0)) [flattening 160] 162. ! [X0] : ((~predh(X0) | predc(X0)) | ~room(X0)) [ennf transformation 52] 163. ! [X0] : (~predh(X0) | predc(X0) | ~room(X0)) [flattening 162] 182. predh(mary) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 69] 183. predh(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 182] 276. room(mary) [cnf transformation 148] 297. ~predc(X0) [cnf transformation 161] 298. ~predh(X0) | predc(X0) | ~room(X0) [cnf transformation 163] 323. predh(mary) [cnf transformation 183] 364. ~predh(X0) | ~room(X0) [subsumption resolution 298,297] 374. ~room(mary) [resolution 364,323] 375. $false [subsumption resolution 374,276] % SZS output end Proof for 4202752608032252237635463 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.020 s % ------------------------------ % ------------------------------
0.707194
Joseph, Ivory are the only persons in the room. “Everyone outside the room does not create YouTube content or streams on Twitch” only if “everyone in the room does not have a saltwater aquarium if they streams on Twitch and does not enjoy camping and organizing outdoor survival workshops”.
Joseph collects classic novels.
entailment
room(joseph)&room(ivory)&(![X]:(room(X)=>(X='joseph'|X='ivory')))& ((![X]:(~room(X)=>(((streams_on_Twitch(X))|(does_not_create_YouTube_content(X))))))=>(![X]:(room(X)=>(((((streams_on_Twitch(X))&(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))=>(does_not_have_a_saltwater_aquarium(X)))))))& ((![X]:(anywhere(X)=>(writes_and_illustrates_their_own_graphic_novels(X))))=>((![X]:((is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))<=>(((collects_classic_novels(X))&(does_not_have_a_tattoo(X))))))))& (((![X]:(~room(X)=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))|(does_not_enjoy_virtual_reality_gaming(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_virtual_reality_gaming(X))=>(is_a_client_of_Meta(X)))))))&((~(![X]:(~room(X)=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))|(does_not_enjoy_virtual_reality_gaming(X)))))))=>((![X]:((has_a_saltwater_aquarium(X))=>(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X)))))))& ((![X]:(room(X)=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))|(does_not_enjoy_virtual_reality_gaming(X))))))=>(?[X]:(anywhere(X)&(does_not_stream_on_Twitch(X)))))& (((~?[X]:(~room(X)=>(((does_not_stream_on_Twitch(X))|(collects_first_edition_books(X))))))=>(![X]:(room(X)=>(((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(is_a_client_of_LVMH(X)))))))& ((![X]:(room(X)=>(((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(is_a_client_of_LVMH(X))))))=>(![X]:(room(X)=>(((is_a_client_of_LVMH(X))=>(owns_a_microscope(X))))))))& ((![X]:(room(X)=>(((does_not_write_and_illustrates_their_own_graphic_novels(X))|(streams_on_Twitch(X))))))=>(![X]:(room(X)=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X)))))& ((![X]:(room(X)=>(((collects_first_edition_books(X))|(does_not_own_a_microscope(X))))))=>(![X]:(~room(X)=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X)))))))& (![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(owns_a_smart_tv(X))))))& (~![X]:(room(X)=>(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))& (![X]:(room(X)=>(((does_not_have_lived_in_exactly_three_countries(X))=>(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))& (~?[X]:(anywhere(X)=>(does_not_play_eSports_competitively(X))))& (![X]:(room(X)=>(((collects_classic_novels(X))&(enjoys_virtual_reality_gaming(X))))))& (![X]:(room(X)=>(((collects_first_edition_books(X))=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))& (![X]:(room(X)=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))=>(owns_a_microscope(X))))))& (~![X]:(room(X)=>(((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))<=(owns_a_microscope(X))))))& (![X]:(room(X)=>(((((is_a_certified_yoga_instructor_teaching_classes_weekly(X))<~>(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))=>(is_a_client_of_Meta(X))))))
room(joseph)&room(ivory)&(![X]:(room(X)=>(X='joseph'|X='ivory')))& collects_classic_novels(joseph)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 5584307606693149078470007 % SZS output start Proof for 5584307606693149078470007 44. ! [X0] : (room(X0) => ((predj(X0) <~> ~predy(X0)) => predl(X0))) & ~! [X0] : (room(X0) => (predr(X0) => ~predy(X0))) & ! [X0] : (room(X0) => (predq(X0) => predr(X0))) & ! [X0] : (room(X0) => (predn(X0) => predq(X0))) & ! [X0] : (room(X0) => (preda(X0) & predm(X0))) & ~? [X0] : (anywhere(X0) => ~predc(X0)) & ! [X0] : (room(X0) => (~predt(X0) => predy(X0))) & ~! [X0] : (room(X0) => ~predx(X0)) & ! [X0] : (room(X0) => (predz(X0) => predv(X0))) & (! [X0] : (room(X0) => (~predr(X0) | predn(X0))) => ! [X0] : (~room(X0) => (predy(X0) => predz(X0)))) & (! [X0] : (room(X0) => (prede(X0) | ~predh(X0))) => ! [X0] : (room(X0) => predq(X0))) & (! [X0] : (room(X0) => (predg(X0) | ~predz(X0))) => ! [X0] : (room(X0) => (predg(X0) => predr(X0)))) & (~? [X0] : (~room(X0) => (predn(X0) | ~prede(X0))) => ! [X0] : (room(X0) => (predg(X0) | ~predz(X0)))) & (! [X0] : (room(X0) => (~preda(X0) | predq(X0))) => ? [X0] : (~prede(X0) & anywhere(X0))) & (~! [X0] : (~room(X0) => (~preda(X0) | predq(X0))) => ! [X0] : (predd(X0) => predx(X0))) & (! [X0] : (~room(X0) => (~preda(X0) | predq(X0))) => ! [X0] : (room(X0) => (~preda(X0) => predl(X0)))) & (! [X0] : (anywhere(X0) => predh(X0)) => ! [X0] : (~predx(X0) <=> (~predf(X0) & predm(X0)))) & (! [X0] : (~room(X0) => (~predi(X0) | prede(X0))) => ! [X0] : (room(X0) => ((~predq(X0) & prede(X0)) => ~predd(X0)))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. ~(predm(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 46. ! [X0] : (room(X0) => ((predj(X0) <~> ~predy(X0)) => predl(X0))) & ~! [X1] : (room(X1) => (predr(X1) => ~predy(X1))) & ! [X2] : (room(X2) => (predq(X2) => predr(X2))) & ! [X3] : (room(X3) => (predn(X3) => predq(X3))) & ! [X4] : (room(X4) => (preda(X4) & predm(X4))) & ~? [X5] : (anywhere(X5) => ~predc(X5)) & ! [X6] : (room(X6) => (~predt(X6) => predy(X6))) & ~! [X7] : (room(X7) => ~predx(X7)) & ! [X8] : (room(X8) => (predz(X8) => predv(X8))) & (! [X9] : (room(X9) => (~predr(X9) | predn(X9))) => ! [X10] : (~room(X10) => (predy(X10) => predz(X10)))) & (! [X11] : (room(X11) => (prede(X11) | ~predh(X11))) => ! [X12] : (room(X12) => predq(X12))) & (! [X13] : (room(X13) => (predg(X13) | ~predz(X13))) => ! [X14] : (room(X14) => (predg(X14) => predr(X14)))) & (~? [X15] : (~room(X15) => (predn(X15) | ~prede(X15))) => ! [X16] : (room(X16) => (predg(X16) | ~predz(X16)))) & (! [X17] : (room(X17) => (~preda(X17) | predq(X17))) => ? [X18] : (~prede(X18) & anywhere(X18))) & (~! [X19] : (~room(X19) => (~preda(X19) | predq(X19))) => ! [X20] : (predd(X20) => predx(X20))) & (! [X21] : (~room(X21) => (~preda(X21) | predq(X21))) => ! [X22] : (room(X22) => (~preda(X22) => predl(X22)))) & (! [X23] : (anywhere(X23) => predh(X23)) => ! [X24] : (~predx(X24) <=> (~predf(X24) & predm(X24)))) & (! [X25] : (~room(X25) => (~predi(X25) | prede(X25))) => ! [X26] : (room(X26) => ((~predq(X26) & prede(X26)) => ~predd(X26)))) & ! [X27] : (room(X27) => (paul = X27 | mary = X27)) & room(paul) & room(mary) [rectify 44] 47. ! [X0] : (room(X0) => ((predj(X0) <~> ~predy(X0)) => predl(X0))) & ~! [X1] : (room(X1) => (predr(X1) => ~predy(X1))) & ! [X2] : (room(X2) => (predq(X2) => predr(X2))) & ! [X3] : (room(X3) => (predn(X3) => predq(X3))) & ! [X4] : (room(X4) => (preda(X4) & predm(X4))) & ~? [X5] : ~anywhere(X5) & ! [X6] : (room(X6) => (~predt(X6) => predy(X6))) & ~! [X7] : (room(X7) => ~predx(X7)) & ! [X8] : (room(X8) => (predz(X8) => predv(X8))) & (! [X9] : (room(X9) => (~predr(X9) | predn(X9))) => ! [X10] : (~room(X10) => (predy(X10) => predz(X10)))) & (! [X11] : (room(X11) => (prede(X11) | ~predh(X11))) => ! [X12] : (room(X12) => predq(X12))) & (! [X13] : (room(X13) => (predg(X13) | ~predz(X13))) => ! [X14] : (room(X14) => (predg(X14) => predr(X14)))) & (~? [X15] : (~room(X15) => (predn(X15) | ~prede(X15))) => ! [X16] : (room(X16) => (predg(X16) | ~predz(X16)))) & (! [X17] : (room(X17) => (~preda(X17) | predq(X17))) => ? [X18] : (~prede(X18) & anywhere(X18))) & (~! [X19] : (~room(X19) => (~preda(X19) | predq(X19))) => ! [X20] : (predd(X20) => predx(X20))) & (! [X21] : (~room(X21) => (~preda(X21) | predq(X21))) => ! [X22] : (room(X22) => (~preda(X22) => predl(X22)))) & (! [X23] : (anywhere(X23) => predh(X23)) => ! [X24] : (~predx(X24) <=> (~predf(X24) & predm(X24)))) & (! [X25] : (~room(X25) => (~predi(X25) | prede(X25))) => ! [X26] : (room(X26) => ((~predq(X26) & prede(X26)) => ~predd(X26)))) & ! [X27] : (room(X27) => (paul = X27 | mary = X27)) & room(paul) & room(mary) [pure predicate removal 46] 48. ! [X0] : (room(X0) => ((predj(X0) <~> ~predy(X0)) => predl(X0))) & ~! [X1] : (room(X1) => (predr(X1) => ~predy(X1))) & ! [X2] : (room(X2) => (predq(X2) => predr(X2))) & ! [X3] : (room(X3) => (predn(X3) => predq(X3))) & ! [X4] : (room(X4) => (preda(X4) & predm(X4))) & ~? [X5] : ~anywhere(X5) & ~! [X7] : (room(X7) => ~predx(X7)) & ! [X8] : (room(X8) => (predz(X8) => predv(X8))) & (! [X9] : (room(X9) => (~predr(X9) | predn(X9))) => ! [X10] : (~room(X10) => (predy(X10) => predz(X10)))) & (! [X11] : (room(X11) => (prede(X11) | ~predh(X11))) => ! [X12] : (room(X12) => predq(X12))) & (! [X13] : (room(X13) => (predg(X13) | ~predz(X13))) => ! [X14] : (room(X14) => (predg(X14) => predr(X14)))) & (~? [X15] : (~room(X15) => (predn(X15) | ~prede(X15))) => ! [X16] : (room(X16) => (predg(X16) | ~predz(X16)))) & (! [X17] : (room(X17) => (~preda(X17) | predq(X17))) => ? [X18] : (~prede(X18) & anywhere(X18))) & (~! [X19] : (~room(X19) => (~preda(X19) | predq(X19))) => ! [X20] : (predd(X20) => predx(X20))) & (! [X21] : (~room(X21) => (~preda(X21) | predq(X21))) => ! [X22] : (room(X22) => (~preda(X22) => predl(X22)))) & (! [X23] : (anywhere(X23) => predh(X23)) => ! [X24] : (~predx(X24) <=> (~predf(X24) & predm(X24)))) & (! [X25] : (~room(X25) => (~predi(X25) | prede(X25))) => ! [X26] : (room(X26) => ((~predq(X26) & prede(X26)) => ~predd(X26)))) & ! [X27] : (room(X27) => (paul = X27 | mary = X27)) & room(paul) & room(mary) [pure predicate removal 47] 49. ! [X0] : (room(X0) => ((predj(X0) <~> ~predy(X0)) => predl(X0))) & ~! [X1] : (room(X1) => (predr(X1) => ~predy(X1))) & ! [X2] : (room(X2) => (predq(X2) => predr(X2))) & ! [X3] : (room(X3) => (predn(X3) => predq(X3))) & ! [X4] : (room(X4) => (preda(X4) & predm(X4))) & ~? [X5] : ~anywhere(X5) & ~! [X7] : (room(X7) => ~predx(X7)) & (! [X9] : (room(X9) => (~predr(X9) | predn(X9))) => ! [X10] : (~room(X10) => (predy(X10) => predz(X10)))) & (! [X11] : (room(X11) => (prede(X11) | ~predh(X11))) => ! [X12] : (room(X12) => predq(X12))) & (! [X13] : (room(X13) => (predg(X13) | ~predz(X13))) => ! [X14] : (room(X14) => (predg(X14) => predr(X14)))) & (~? [X15] : (~room(X15) => (predn(X15) | ~prede(X15))) => ! [X16] : (room(X16) => (predg(X16) | ~predz(X16)))) & (! [X17] : (room(X17) => (~preda(X17) | predq(X17))) => ? [X18] : (~prede(X18) & anywhere(X18))) & (~! [X19] : (~room(X19) => (~preda(X19) | predq(X19))) => ! [X20] : (predd(X20) => predx(X20))) & (! [X21] : (~room(X21) => (~preda(X21) | predq(X21))) => ! [X22] : (room(X22) => (~preda(X22) => predl(X22)))) & (! [X23] : (anywhere(X23) => predh(X23)) => ! [X24] : (~predx(X24) <=> (~predf(X24) & predm(X24)))) & (! [X25] : (~room(X25) => (~predi(X25) | prede(X25))) => ! [X26] : (room(X26) => ((~predq(X26) & prede(X26)) => ~predd(X26)))) & ! [X27] : (room(X27) => (paul = X27 | mary = X27)) & room(paul) & room(mary) [pure predicate removal 48] 50. ! [X0] : (room(X0) => ((predj(X0) <~> ~predy(X0)) => predl(X0))) & ~! [X1] : (room(X1) => ~predy(X1)) & ! [X3] : (room(X3) => (predn(X3) => predq(X3))) & ! [X4] : (room(X4) => (preda(X4) & predm(X4))) & ~? [X5] : ~anywhere(X5) & ~! [X7] : (room(X7) => ~predx(X7)) & (! [X9] : (room(X9) => predn(X9)) => ! [X10] : (~room(X10) => (predy(X10) => predz(X10)))) & (! [X11] : (room(X11) => (prede(X11) | ~predh(X11))) => ! [X12] : (room(X12) => predq(X12))) & (~? [X15] : (~room(X15) => (predn(X15) | ~prede(X15))) => ! [X16] : (room(X16) => (predg(X16) | ~predz(X16)))) & (! [X17] : (room(X17) => (~preda(X17) | predq(X17))) => ? [X18] : (~prede(X18) & anywhere(X18))) & (~! [X19] : (~room(X19) => (~preda(X19) | predq(X19))) => ! [X20] : (predd(X20) => predx(X20))) & (! [X21] : (~room(X21) => (~preda(X21) | predq(X21))) => ! [X22] : (room(X22) => (~preda(X22) => predl(X22)))) & (! [X23] : (anywhere(X23) => predh(X23)) => ! [X24] : (~predx(X24) <=> (~predf(X24) & predm(X24)))) & (! [X25] : (~room(X25) => (~predi(X25) | prede(X25))) => ! [X26] : (room(X26) => ((~predq(X26) & prede(X26)) => ~predd(X26)))) & ! [X27] : (room(X27) => (paul = X27 | mary = X27)) & room(paul) & room(mary) [pure predicate removal 49] 51. ! [X0] : (room(X0) => ((predj(X0) <~> ~predy(X0)) => predl(X0))) & ~! [X1] : (room(X1) => ~predy(X1)) & ! [X3] : (room(X3) => (predn(X3) => predq(X3))) & ! [X4] : (room(X4) => (preda(X4) & predm(X4))) & ~? [X5] : ~anywhere(X5) & ~! [X7] : (room(X7) => ~predx(X7)) & (! [X9] : (room(X9) => predn(X9)) => ! [X10] : (~room(X10) => (predy(X10) => predz(X10)))) & (! [X11] : (room(X11) => (prede(X11) | ~predh(X11))) => ! [X12] : (room(X12) => predq(X12))) & (! [X17] : (room(X17) => (~preda(X17) | predq(X17))) => ? [X18] : (~prede(X18) & anywhere(X18))) & (~! [X19] : (~room(X19) => (~preda(X19) | predq(X19))) => ! [X20] : (predd(X20) => predx(X20))) & (! [X21] : (~room(X21) => (~preda(X21) | predq(X21))) => ! [X22] : (room(X22) => (~preda(X22) => predl(X22)))) & (! [X23] : (anywhere(X23) => predh(X23)) => ! [X24] : (~predx(X24) <=> (~predf(X24) & predm(X24)))) & (! [X25] : (~room(X25) => (~predi(X25) | prede(X25))) => ! [X26] : (room(X26) => ((~predq(X26) & prede(X26)) => ~predd(X26)))) & ! [X27] : (room(X27) => (paul = X27 | mary = X27)) & room(paul) & room(mary) [pure predicate removal 50] 52. ! [X0] : (room(X0) => ((predj(X0) <~> ~predy(X0)) => predl(X0))) & ~! [X1] : (room(X1) => ~predy(X1)) & ! [X3] : (room(X3) => (predn(X3) => predq(X3))) & ! [X4] : (room(X4) => (preda(X4) & predm(X4))) & ~? [X5] : ~anywhere(X5) & ~! [X7] : (room(X7) => ~predx(X7)) & (! [X11] : (room(X11) => (prede(X11) | ~predh(X11))) => ! [X12] : (room(X12) => predq(X12))) & (! [X17] : (room(X17) => (~preda(X17) | predq(X17))) => ? [X18] : (~prede(X18) & anywhere(X18))) & (~! [X19] : (~room(X19) => (~preda(X19) | predq(X19))) => ! [X20] : (predd(X20) => predx(X20))) & (! [X21] : (~room(X21) => (~preda(X21) | predq(X21))) => ! [X22] : (room(X22) => (~preda(X22) => predl(X22)))) & (! [X23] : (anywhere(X23) => predh(X23)) => ! [X24] : (~predx(X24) <=> (~predf(X24) & predm(X24)))) & (! [X25] : (~room(X25) => (~predi(X25) | prede(X25))) => ! [X26] : (room(X26) => ((~predq(X26) & prede(X26)) => ~predd(X26)))) & ! [X27] : (room(X27) => (paul = X27 | mary = X27)) & room(paul) & room(mary) [pure predicate removal 51] 53. ! [X0] : (room(X0) => ((predj(X0) <~> ~predy(X0)) => predl(X0))) & ~! [X1] : (room(X1) => ~predy(X1)) & ! [X4] : (room(X4) => (preda(X4) & predm(X4))) & ~? [X5] : ~anywhere(X5) & ~! [X7] : (room(X7) => ~predx(X7)) & (! [X11] : (room(X11) => (prede(X11) | ~predh(X11))) => ! [X12] : (room(X12) => predq(X12))) & (! [X17] : (room(X17) => (~preda(X17) | predq(X17))) => ? [X18] : (~prede(X18) & anywhere(X18))) & (~! [X19] : (~room(X19) => (~preda(X19) | predq(X19))) => ! [X20] : (predd(X20) => predx(X20))) & (! [X21] : (~room(X21) => (~preda(X21) | predq(X21))) => ! [X22] : (room(X22) => (~preda(X22) => predl(X22)))) & (! [X23] : (anywhere(X23) => predh(X23)) => ! [X24] : (~predx(X24) <=> (~predf(X24) & predm(X24)))) & (! [X25] : (~room(X25) => (~predi(X25) | prede(X25))) => ! [X26] : (room(X26) => ((~predq(X26) & prede(X26)) => ~predd(X26)))) & ! [X27] : (room(X27) => (paul = X27 | mary = X27)) & room(paul) & room(mary) [pure predicate removal 52] 54. ~! [X1] : (room(X1) => ~predy(X1)) & ! [X4] : (room(X4) => (preda(X4) & predm(X4))) & ~? [X5] : ~anywhere(X5) & ~! [X7] : (room(X7) => ~predx(X7)) & (! [X11] : (room(X11) => (prede(X11) | ~predh(X11))) => ! [X12] : (room(X12) => predq(X12))) & (! [X17] : (room(X17) => (~preda(X17) | predq(X17))) => ? [X18] : (~prede(X18) & anywhere(X18))) & (~! [X19] : (~room(X19) => (~preda(X19) | predq(X19))) => ! [X20] : (predd(X20) => predx(X20))) & (! [X23] : (anywhere(X23) => predh(X23)) => ! [X24] : (~predx(X24) <=> (~predf(X24) & predm(X24)))) & (! [X25] : (~room(X25) => (~predi(X25) | prede(X25))) => ! [X26] : (room(X26) => ((~predq(X26) & prede(X26)) => ~predd(X26)))) & ! [X27] : (room(X27) => (paul = X27 | mary = X27)) & room(paul) & room(mary) [pure predicate removal 53] 55. ~! [X1] : ~room(X1) & ! [X4] : (room(X4) => (preda(X4) & predm(X4))) & ~? [X5] : ~anywhere(X5) & ~! [X7] : (room(X7) => ~predx(X7)) & (! [X11] : (room(X11) => (prede(X11) | ~predh(X11))) => ! [X12] : (room(X12) => predq(X12))) & (! [X17] : (room(X17) => (~preda(X17) | predq(X17))) => ? [X18] : (~prede(X18) & anywhere(X18))) & (~! [X19] : (~room(X19) => (~preda(X19) | predq(X19))) => ! [X20] : (predd(X20) => predx(X20))) & (! [X23] : (anywhere(X23) => predh(X23)) => ! [X24] : (~predx(X24) <=> (~predf(X24) & predm(X24)))) & (! [X25] : (~room(X25) => (~predi(X25) | prede(X25))) => ! [X26] : (room(X26) => ((~predq(X26) & prede(X26)) => ~predd(X26)))) & ! [X27] : (room(X27) => (paul = X27 | mary = X27)) & room(paul) & room(mary) [pure predicate removal 54] 56. ~! [X1] : ~room(X1) & ! [X4] : (room(X4) => (preda(X4) & predm(X4))) & ~? [X5] : ~anywhere(X5) & ~! [X7] : (room(X7) => ~predx(X7)) & (! [X11] : (room(X11) => (prede(X11) | ~predh(X11))) => ! [X12] : (room(X12) => predq(X12))) & (! [X17] : (room(X17) => (~preda(X17) | predq(X17))) => ? [X18] : (~prede(X18) & anywhere(X18))) & (! [X23] : (anywhere(X23) => predh(X23)) => ! [X24] : (~predx(X24) <=> (~predf(X24) & predm(X24)))) & ! [X27] : (room(X27) => (paul = X27 | mary = X27)) & room(paul) & room(mary) [pure predicate removal 55] 57. ~! [X1] : ~room(X1) & ! [X4] : (room(X4) => predm(X4)) & ~? [X5] : ~anywhere(X5) & ~! [X7] : (room(X7) => ~predx(X7)) & (! [X11] : (room(X11) => (prede(X11) | ~predh(X11))) => ! [X12] : (room(X12) => predq(X12))) & (! [X17] : (room(X17) => predq(X17)) => ? [X18] : (~prede(X18) & anywhere(X18))) & (! [X23] : (anywhere(X23) => predh(X23)) => ! [X24] : (~predx(X24) <=> (~predf(X24) & predm(X24)))) & ! [X27] : (room(X27) => (paul = X27 | mary = X27)) & room(paul) & room(mary) [pure predicate removal 56] 58. ~! [X1] : ~room(X1) & ! [X4] : (room(X4) => predm(X4)) & ~? [X5] : ~anywhere(X5) & ~! [X7] : (room(X7) => ~predx(X7)) & (! [X11] : (room(X11) => ~predh(X11)) => ! [X12] : (room(X12) => predq(X12))) & (! [X17] : (room(X17) => predq(X17)) => ? [X18] : anywhere(X18)) & (! [X23] : (anywhere(X23) => predh(X23)) => ! [X24] : (~predx(X24) <=> (~predf(X24) & predm(X24)))) & ! [X27] : (room(X27) => (paul = X27 | mary = X27)) & room(paul) & room(mary) [pure predicate removal 57] 59. ~! [X1] : ~room(X1) & ! [X4] : (room(X4) => predm(X4)) & ~! [X7] : (room(X7) => ~predx(X7)) & (! [X11] : (room(X11) => ~predh(X11)) => ! [X12] : (room(X12) => predq(X12))) & (! [X23] : predh(X23) => ! [X24] : (~predx(X24) <=> (~predf(X24) & predm(X24)))) & ! [X27] : (room(X27) => (paul = X27 | mary = X27)) & room(paul) & room(mary) [pure predicate removal 58] 61. ~! [X1] : ~room(X1) & ! [X4] : (room(X4) => predm(X4)) & ~! [X7] : (room(X7) => ~predx(X7)) & (! [X23] : predh(X23) => ! [X24] : (~predx(X24) <=> (~predf(X24) & predm(X24)))) & ! [X27] : (room(X27) => (paul = X27 | mary = X27)) & room(paul) & room(mary) [pure predicate removal 59] 62. ~! [X1] : ~room(X1) & ! [X4] : (room(X4) => predm(X4)) & ~! [X7] : (room(X7) => ~predx(X7)) & ! [X27] : (room(X27) => (paul = X27 | mary = X27)) & room(paul) & room(mary) [pure predicate removal 61] 63. ~! [X1] : ~room(X1) & ! [X4] : (room(X4) => predm(X4)) & ~! [X7] : ~room(X7) & ! [X27] : (room(X27) => (paul = X27 | mary = X27)) & room(paul) & room(mary) [pure predicate removal 62] 135. ? [X1] : room(X1) & ! [X4] : (predm(X4) | ~room(X4)) & ? [X7] : room(X7) & ! [X27] : ((paul = X27 | mary = X27) | ~room(X27)) & room(paul) & room(mary) [ennf transformation 63] 136. ? [X1] : room(X1) & ! [X4] : (predm(X4) | ~room(X4)) & ? [X7] : room(X7) & ! [X27] : (paul = X27 | mary = X27 | ~room(X27)) & room(paul) & room(mary) [flattening 135] 137. ~predm(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 45] 138. ~predm(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 137] 140. ? [X0] : room(X0) & ! [X1] : (predm(X1) | ~room(X1)) & ? [X2] : room(X2) & ! [X3] : (paul = X3 | mary = X3 | ~room(X3)) & room(paul) & room(mary) [rectify 136] 141. ? [X0] : room(X0) => room(sK0) [choice axiom] 142. ? [X2] : room(X2) => room(sK1) [choice axiom] 143. room(sK0) & ! [X1] : (predm(X1) | ~room(X1)) & room(sK1) & ! [X3] : (paul = X3 | mary = X3 | ~room(X3)) & room(paul) & room(mary) [skolemisation 140,142,141] 144. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK2 & mary != sK2 & room(sK2)) [choice axiom] 145. ~predm(mary) | (paul != sK2 & mary != sK2 & room(sK2)) | ~room(paul) | ~room(mary) [skolemisation 138,144] 226. room(mary) [cnf transformation 143] 227. room(paul) [cnf transformation 143] 228. ~room(X3) | mary = X3 | paul = X3 [cnf transformation 143] 230. ~room(X1) | predm(X1) [cnf transformation 143] 232. ~predm(mary) | room(sK2) | ~room(paul) | ~room(mary) [cnf transformation 145] 233. ~predm(mary) | mary != sK2 | ~room(paul) | ~room(mary) [cnf transformation 145] 234. ~predm(mary) | paul != sK2 | ~room(paul) | ~room(mary) [cnf transformation 145] 235. ~predm(mary) | paul != sK2 | ~room(mary) [subsumption resolution 234,227] 236. ~predm(mary) | paul != sK2 [subsumption resolution 235,226] 238. 1 <=> paul = sK2 [avatar definition] 240. paul != sK2 <- (~1) [avatar component clause 238] 242. 2 <=> predm(mary) [avatar definition] 245. ~1 | ~2 [avatar split clause 236,242,238] 246. ~predm(mary) | mary != sK2 | ~room(mary) [subsumption resolution 233,227] 247. ~predm(mary) | mary != sK2 [subsumption resolution 246,226] 249. 3 <=> mary = sK2 [avatar definition] 251. mary != sK2 <- (~3) [avatar component clause 249] 252. ~3 | ~2 [avatar split clause 247,242,249] 253. ~predm(mary) | room(sK2) | ~room(mary) [subsumption resolution 232,227] 254. ~predm(mary) | room(sK2) [subsumption resolution 253,226] 256. 4 <=> room(sK2) [avatar definition] 258. room(sK2) <- (4) [avatar component clause 256] 259. 4 | ~2 [avatar split clause 254,242,256] 260. predm(mary) [resolution 230,226] 266. 2 [avatar split clause 260,242] 272. mary = sK2 | paul = sK2 <- (4) [resolution 228,258] 291. paul = sK2 <- (~3, 4) [subsumption resolution 272,251] 292. $false <- (~1, ~3, 4) [subsumption resolution 291,240] 293. 1 | 3 | ~4 [avatar contradiction clause 292] 294. $false [avatar sat refutation 245,252,259,266,293] % SZS output end Proof for 5584307606693149078470007 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.015872
There is a room. If someone enjoys coding in Python then he/she enjoys stargazing and vice versa. Not everyone in the room who regularly goes on multi-day backpacking trips in national parks enjoys coding in Python. Everyone in the room enjoys coding in Python if they uses contact lenses and vice versa. Not everyone anywhere who uses contact lenses makes intricate hand-cut paper art for exhibitions and regularly goes on multi-day backpacking trips in national parks. Only one person in the room enjoys stargazing. Only one person in the room uses contact lenses, makes intricate hand-cut paper art for exhibitions or enjoys stargazing. Everyone outside the room uses contact lenses or does not use contact lenses. Everyone in the room who uses contact lenses makes intricate hand-cut paper art for exhibitions and uses contact lenses.
Everyone in the room makes intricate hand-cut paper art for exhibitions.
contradiction
(there_is_a_room)& ((![X]:((enjoys_coding_in_Python(X))<=>(enjoys_stargazing(X)))))& (~![X]:(room(X)=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))=>(enjoys_coding_in_Python(X))))))& (![X]:(room(X)=>(((enjoys_coding_in_Python(X))<=>(uses_contact_lenses(X))))))& (~![X]:(anywhere(X)=>(((uses_contact_lenses(X))=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))&(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))))& (((?[X]:(room(X)&enjoys_stargazing(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_stargazing(X))&(enjoys_stargazing(Y)))=>(X=Y)))))& (((?[X]:(room(X)&((uses_contact_lenses(X))|(makes_intricate_hand-cut_paper_art_for_exhibitions(X))|(enjoys_stargazing(X)))))&(![X,Y]:((room(X)&room(Y)&(((uses_contact_lenses(X))|(makes_intricate_hand-cut_paper_art_for_exhibitions(X))|(enjoys_stargazing(X))))&(((uses_contact_lenses(Y))|(makes_intricate_hand-cut_paper_art_for_exhibitions(Y))|(enjoys_stargazing(Y)))))=>(X=Y)))))& (![X]:(~room(X)=>(((does_not_use_contact_lenses(X))|(uses_contact_lenses(X))))))& (![X]:(room(X)=>(((uses_contact_lenses(X))=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))&(uses_contact_lenses(X))))))))
(there_is_a_room)& ![X]:(room(X)=>(makes_intricate_hand-cut_paper_art_for_exhibitions(X)))
[ "p1", "p2", "p3", "p5", "p6", "hypothesis" ]
% SZS status Unsatisfiable for 4769292051075526532590649 % SZS output start Proof for 4769292051075526532590649 45. ! [X0] : (preda(X0) <=> predb(X0)) [input p1] 46. ~! [X0] : (room(X0) => (prede(X0) => preda(X0))) [input p2] 47. ! [X0] : (room(X0) => (preda(X0) <=> predd(X0))) [input p3] 49. ! [X0,X1] : ((predb(X1) & predb(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predb(X0) & room(X0)) [input p5] 50. ! [X0,X1] : (((predb(X1) | predc(X1) | predd(X1)) & (predb(X0) | predc(X0) | predd(X0)) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : ((predb(X0) | predc(X0) | predd(X0)) & room(X0)) [input p6] 53. ! [X0] : (room(X0) => predc(X0)) & there_is_a_room [input hypothesis] 54. ! [X0,X1] : ((predb(X1) & predb(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (predb(X2) & room(X2)) [rectify 49] 55. ! [X0,X1] : (((predb(X1) | predc(X1) | predd(X1)) & (predb(X0) | predc(X0) | predd(X0)) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : ((predb(X2) | predc(X2) | predd(X2)) & room(X2)) [rectify 50] 57. ! [X0] : (room(X0) => predc(X0)) [pure predicate removal 53] 131. ? [X0] : ((~preda(X0) & prede(X0)) & room(X0)) [ennf transformation 46] 132. ? [X0] : (~preda(X0) & prede(X0) & room(X0)) [flattening 131] 133. ! [X0] : ((preda(X0) <=> predd(X0)) | ~room(X0)) [ennf transformation 47] 135. ! [X0,X1] : (X0 = X1 | (~predb(X1) | ~predb(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (predb(X2) & room(X2)) [ennf transformation 54] 136. ! [X0,X1] : (X0 = X1 | ~predb(X1) | ~predb(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (predb(X2) & room(X2)) [flattening 135] 137. ! [X0,X1] : (X0 = X1 | ((~predb(X1) & ~predc(X1) & ~predd(X1)) | (~predb(X0) & ~predc(X0) & ~predd(X0)) | ~room(X1) | ~room(X0))) & ? [X2] : ((predb(X2) | predc(X2) | predd(X2)) & room(X2)) [ennf transformation 55] 138. ! [X0,X1] : (X0 = X1 | (~predb(X1) & ~predc(X1) & ~predd(X1)) | (~predb(X0) & ~predc(X0) & ~predd(X0)) | ~room(X1) | ~room(X0)) & ? [X2] : ((predb(X2) | predc(X2) | predd(X2)) & room(X2)) [flattening 137] 143. ! [X0] : (predc(X0) | ~room(X0)) [ennf transformation 57] 144. ! [X0] : ((~predb(X0) & ~predc(X0) & ~predd(X0)) | ~sP0(X0)) [predicate definition introduction] 145. ! [X0,X1] : (X0 = X1 | (~predb(X1) & ~predc(X1) & ~predd(X1)) | sP0(X0) | ~room(X1) | ~room(X0)) & ? [X2] : ((predb(X2) | predc(X2) | predd(X2)) & room(X2)) [definition folding 138,144] 147. ! [X0] : ((preda(X0) | ~predb(X0)) & (predb(X0) | ~preda(X0))) [nnf transformation 45] 148. ? [X0] : (~preda(X0) & prede(X0) & room(X0)) => (~preda(sK1) & prede(sK1) & room(sK1)) [choice axiom] 149. ~preda(sK1) & prede(sK1) & room(sK1) [skolemisation 132,148] 150. ! [X0] : (((preda(X0) | ~predd(X0)) & (predd(X0) | ~preda(X0))) | ~room(X0)) [nnf transformation 133] 153. ? [X2] : (predb(X2) & room(X2)) => (predb(sK3) & room(sK3)) [choice axiom] 154. ! [X0,X1] : (X0 = X1 | ~predb(X1) | ~predb(X0) | ~room(X1) | ~room(X0)) & (predb(sK3) & room(sK3)) [skolemisation 136,153] 155. ! [X0] : ((~predb(X0) & ~predc(X0) & ~predd(X0)) | ~sP0(X0)) [nnf transformation 144] 156. ? [X2] : ((predb(X2) | predc(X2) | predd(X2)) & room(X2)) => ((predb(sK4) | predc(sK4) | predd(sK4)) & room(sK4)) [choice axiom] 157. ! [X0,X1] : (X0 = X1 | (~predb(X1) & ~predc(X1) & ~predd(X1)) | sP0(X0) | ~room(X1) | ~room(X0)) & ((predb(sK4) | predc(sK4) | predd(sK4)) & room(sK4)) [skolemisation 145,156] 239. ~predb(X0) | preda(X0) [cnf transformation 147] 240. room(sK1) [cnf transformation 149] 242. ~preda(sK1) [cnf transformation 149] 243. ~room(X0) | ~preda(X0) | predd(X0) [cnf transformation 150] 247. room(sK3) [cnf transformation 154] 248. predb(sK3) [cnf transformation 154] 251. ~sP0(X0) | ~predc(X0) [cnf transformation 155] 255. ~predd(X1) | X0 = X1 | sP0(X0) | ~room(X1) | ~room(X0) [cnf transformation 157] 261. ~room(X0) | predc(X0) [cnf transformation 143] 284. preda(sK3) [resolution 239,248] 286. predc(sK1) [resolution 261,240] 291. ~preda(sK3) | predd(sK3) [resolution 243,247] 293. predd(sK3) [subsumption resolution 291,284] 364. sK3 = X2 | sP0(X2) | ~room(sK3) | ~room(X2) [resolution 255,293] 366. ~room(X2) | sP0(X2) | sK3 = X2 [subsumption resolution 364,247] 383. sP0(sK1) | sK1 = sK3 [resolution 366,240] 386. 10 <=> sK1 = sK3 [avatar definition] 388. sK1 = sK3 <- (10) [avatar component clause 386] 390. 11 <=> sP0(sK1) [avatar definition] 392. sP0(sK1) <- (11) [avatar component clause 390] 393. 10 | 11 [avatar split clause 383,390,386] 396. preda(sK1) <- (10) [backward demodulation 284,388] 404. $false <- (10) [subsumption resolution 396,242] 405. ~10 [avatar contradiction clause 404] 426. ~predc(sK1) <- (11) [resolution 392,251] 428. $false <- (11) [subsumption resolution 426,286] 429. ~11 [avatar contradiction clause 428] 430. $false [avatar sat refutation 393,405,429] % SZS output end Proof for 4769292051075526532590649 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.033 s % ------------------------------ % ------------------------------
0.018131
There is a room. Everyone in the room collects vintage vinyl records if they does not enjoy macrame. Everyone in the room enjoys making ceramics if they collects vintage vinyl records. Everyone in the room enjoys making ceramics, enjoys macrame and works on fridays if they enjoys making ceramics. Everyone outside the room who enjoys making ceramics, enjoys macrame and works on fridays practices archery. Everyone in the room collects vintage vinyl records. Everyone anywhere collects vintage vinyl records or does not create YouTube content. Not everyone outside the room who collects vintage vinyl records enjoys macrame. If someone enjoys macrame then he/she collects vintage vinyl records. Everyone anywhere works on fridays, creates YouTube content or enjoys making ceramics only if they works on fridays. Everyone in the room enjoys making ceramics if they works on fridays.
Everyone outside the room does not enjoy making ceramics.
neutral
(there_is_a_room)& (![X]:(room(X)=>(((does_not_enjoy_macrame(X))=>(collects_vintage_vinyl_records(X))))))& (![X]:(room(X)=>(((collects_vintage_vinyl_records(X))=>(enjoys_making_ceramics(X))))))& (![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(((enjoys_making_ceramics(X))&(enjoys_macrame(X))&(works_on_fridays(X))))))))& (![X]:(~room(X)=>(((((enjoys_making_ceramics(X))&(enjoys_macrame(X))&(works_on_fridays(X))))=>(practices_archery(X))))))& (![X]:(room(X)=>(collects_vintage_vinyl_records(X))))& (![X]:(anywhere(X)=>(((does_not_create_YouTube_content(X))|(collects_vintage_vinyl_records(X))))))& (~![X]:(~room(X)=>(((collects_vintage_vinyl_records(X))=>(enjoys_macrame(X))))))& ((![X]:((enjoys_macrame(X))=>(collects_vintage_vinyl_records(X)))))& (![X]:(anywhere(X)=>(((works_on_fridays(X))<=(((works_on_fridays(X))|(creates_YouTube_content(X))|(enjoys_making_ceramics(X))))))))& (![X]:(room(X)=>(((works_on_fridays(X))=>(enjoys_making_ceramics(X))))))
(there_is_a_room)& ![X]:(~room(X)=>(does_not_enjoy_making_ceramics(X)))
[]
null
0.162905
Eric, Shonda are the only persons in the room. If 'Eric and Shonda either are sibling of Willie or are sibling of Pablo but not both' then 'someone in the room is a sibling of Willie'. If 'someone in the room is a sibling of Donny' then 'if someone is a sibling of Willie then he/she is a sibling of Pablo and vice versa'. Someone in the room either is a sibling of Donny or is a sibling of Willie but not both. Donny is a sibling of Shonda. Someone in the room is a sibling of Donny. If someone is a sibling of Willie then he/she is a sibling of Donny. Eric is a sibling of Donny. Pablo is a sibling of Shonda.
Eric is a sibling of Pablo.
contradiction
room(eric)&room(shonda)&(![X]:(room(X)=>(X='eric'|X='shonda')))& ((((sibling(willie,eric))<~>(sibling(pablo,eric)))&((sibling(willie,shonda))<~>(sibling(pablo,shonda))))=>(?[X]:(room(X)&(sibling(willie,X)))))& ((?[X]:(room(X)&(sibling(donny,X))))=>((![X]:((sibling(willie,X))<=>(sibling(pablo,X))))))& (?[X]:(room(X)&(((sibling(donny,X))<~>(sibling(willie,X))))))& (sibling(shonda,donny))& (?[X]:(room(X)&(sibling(donny,X))))& ((![X]:((sibling(willie,X))=>(sibling(donny,X)))))& (sibling(donny,eric))& (sibling(shonda,pablo))
room(eric)&room(shonda)&(![X]:(room(X)=>(X='eric'|X='shonda')))& sibling(pablo,eric)
[ "b5", "b42", "p0", "p2", "p3", "p4", "p7", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 1663519502834493187613952 % SZS output start Proof for 1663519502834493187613952 6. ! [X0,X1] : (X0 != X1 => (sibling(X0,X1) <=> sibling(X1,X0))) [input b5] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 46. ? [X0] : (sibling(john,X0) & room(X0)) => ! [X0] : (sibling(alice,X0) <=> sibling(fred,X0)) [input p2] 47. ? [X0] : ((sibling(john,X0) <~> sibling(alice,X0)) & room(X0)) [input p3] 48. sibling(paul,john) [input p4] 51. sibling(john,mary) [input p7] 52. sibling(paul,fred) [input p8] 53. sibling(fred,mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 54. ? [X0] : (sibling(john,X0) & room(X0)) => ! [X1] : (sibling(alice,X1) <=> sibling(fred,X1)) [rectify 46] 60. ! [X0,X1] : ((sibling(X0,X1) <=> sibling(X1,X0)) | X0 = X1) [ennf transformation 6] 127. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 128. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 127] 131. ! [X1] : (sibling(alice,X1) <=> sibling(fred,X1)) | ! [X0] : (~sibling(john,X0) | ~room(X0)) [ennf transformation 54] 133. sibling(fred,mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 53] 134. sibling(fred,mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 133] 135. ! [X0,X1] : (((sibling(X0,X1) | ~sibling(X1,X0)) & (sibling(X1,X0) | ~sibling(X0,X1))) | X0 = X1) [nnf transformation 60] 139. ! [X1] : ((sibling(alice,X1) | ~sibling(fred,X1)) & (sibling(fred,X1) | ~sibling(alice,X1))) | ! [X0] : (~sibling(john,X0) | ~room(X0)) [nnf transformation 131] 140. ! [X0] : ((sibling(alice,X0) | ~sibling(fred,X0)) & (sibling(fred,X0) | ~sibling(alice,X0))) | ! [X1] : (~sibling(john,X1) | ~room(X1)) [rectify 139] 141. ? [X0] : (((~sibling(alice,X0) | ~sibling(john,X0)) & (sibling(alice,X0) | sibling(john,X0))) & room(X0)) [nnf transformation 47] 142. ? [X0] : ((~sibling(alice,X0) | ~sibling(john,X0)) & (sibling(alice,X0) | sibling(john,X0)) & room(X0)) [flattening 141] 143. ? [X0] : ((~sibling(alice,X0) | ~sibling(john,X0)) & (sibling(alice,X0) | sibling(john,X0)) & room(X0)) => ((~sibling(alice,sK1) | ~sibling(john,sK1)) & (sibling(alice,sK1) | sibling(john,sK1)) & room(sK1)) [choice axiom] 144. (~sibling(alice,sK1) | ~sibling(john,sK1)) & (sibling(alice,sK1) | sibling(john,sK1)) & room(sK1) [skolemisation 142,143] 148. ~sibling(X1,X0) | sibling(X0,X1) | X0 = X1 [cnf transformation 135] 198. paul != fred [cnf transformation 43] 210. paul != john [cnf transformation 43] 227. room(mary) [cnf transformation 128] 229. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 128] 239. sibling(alice,X0) | ~sibling(fred,X0) | ~sibling(john,X1) | ~room(X1) [cnf transformation 140] 240. room(sK1) [cnf transformation 144] 242. ~sibling(alice,sK1) | ~sibling(john,sK1) [cnf transformation 144] 243. sibling(paul,john) [cnf transformation 48] 247. sibling(john,mary) [cnf transformation 51] 248. sibling(paul,fred) [cnf transformation 52] 252. sibling(fred,mary) [cnf transformation 134] 254. 1 <=> sibling(fred,mary) [avatar definition] 255. sibling(fred,mary) <- (1) [avatar component clause 254] 258. 2 <=> sibling(alice,mary) [avatar definition] 260. sibling(alice,mary) <- (2) [avatar component clause 258] 262. 3 <=> sibling(fred,paul) [avatar definition] 263. sibling(fred,paul) <- (3) [avatar component clause 262] 266. 4 <=> sibling(alice,paul) [avatar definition] 286. 7 <=> ! [X1] : (~sibling(john,X1) | ~room(X1)) [avatar definition] 287. ~sibling(john,X1) | ~room(X1) <- (7) [avatar component clause 286] 289. 8 <=> ! [X0] : (sibling(alice,X0) | ~sibling(fred,X0)) [avatar definition] 290. ~sibling(fred,X0) | sibling(alice,X0) <- (8) [avatar component clause 289] 291. 7 | 8 [avatar split clause 239,289,286] 297. 10 <=> sibling(john,sK1) [avatar definition] 299. ~sibling(john,sK1) <- (~10) [avatar component clause 297] 301. 11 <=> sibling(alice,sK1) [avatar definition] 303. ~sibling(alice,sK1) <- (~11) [avatar component clause 301] 304. ~10 | ~11 [avatar split clause 242,301,297] 306. 1 [avatar split clause 252,254] 308. ~room(mary) <- (7) [resolution 287,247] 312. $false <- (7) [subsumption resolution 308,227] 313. ~7 [avatar contradiction clause 312] 316. sibling(alice,mary) <- (1, 8) [resolution 290,255] 317. 2 | ~1 | ~8 [avatar split clause 316,289,254,258] 322. mary = sK1 | paul = sK1 [resolution 229,240] 325. 12 <=> paul = sK1 [avatar definition] 327. paul = sK1 <- (12) [avatar component clause 325] 329. 13 <=> mary = sK1 [avatar definition] 331. mary = sK1 <- (13) [avatar component clause 329] 332. 12 | 13 [avatar split clause 322,329,325] 345. ~sibling(alice,paul) <- (~11, 12) [backward demodulation 303,327] 347. sibling(john,paul) | paul = john [resolution 148,243] 348. sibling(fred,paul) | paul = fred [resolution 148,248] 359. sibling(fred,paul) [subsumption resolution 348,198] 360. 3 [avatar split clause 359,262] 361. sibling(alice,paul) <- (3, 8) [resolution 263,290] 365. 4 | ~3 | ~8 [avatar split clause 361,289,262,266] 366. ~4 | 11 | ~12 [avatar split clause 345,325,301,266] 373. ~sibling(john,mary) <- (~10, 13) [backward demodulation 299,331] 374. $false <- (~10, 13) [subsumption resolution 373,247] 375. 10 | ~13 [avatar contradiction clause 374] 377. ~sibling(alice,mary) <- (~11, 13) [forward demodulation 303,331] 378. $false <- (2, ~11, 13) [subsumption resolution 377,260] 379. ~2 | 11 | ~13 [avatar contradiction clause 378] 381. sibling(john,paul) [subsumption resolution 347,210] 387. ~sibling(john,paul) <- (~10, 12) [forward demodulation 299,327] 388. $false <- (~10, 12) [subsumption resolution 387,381] 389. 10 | ~12 [avatar contradiction clause 388] 390. $false [avatar sat refutation 291,304,306,313,317,332,360,365,366,375,379,389] % SZS output end Proof for 1663519502834493187613952 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.012376
There is a room. “Everyone in the room does not enjoy camping and organizing outdoor survival workshops” only if “someone in the room does not collect comic books and does not enjoy making ceramics”. “Everyone in the room does not practice pilates” unless “everyone in the room does not collect limited-edition art prints from contemporary artists, does not practice pilates and does not enjoy making ceramics”. Everyone outside the room does not collect comic books. Everyone in the room is not a chess master who participates in national tournaments, does not collect comic books and does not collect limited-edition art prints from contemporary artists. Everyone in the room does not practice pilates. Everyone in the room does not enjoy camping and organizing outdoor survival workshops and does not enjoy making ceramics. Someone outside the room does not enjoy camping and organizing outdoor survival workshops and does not enjoy making ceramics. Everyone outside the room does not practice pilates. Everyone in the room does not collect limited-edition art prints from contemporary artists. Everyone in the room does not practice pilates and is not a chess master who participates in national tournaments. Everyone anywhere does not collect limited-edition art prints from contemporary artists. Everyone in the room does not enjoy camping and organizing outdoor survival workshops. Everyone in the room does not collect comic books. Everyone in the room does not enjoy making ceramics.
Everyone outside the room practices pilates.
contradiction
(there_is_a_room)& ((![X]:(room(X)=>(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))=>(?[X]:(room(X)&(((does_not_collect_comic_books(X))&(does_not_enjoy_making_ceramics(X)))))))& (~(![X]:(room(X)=>(((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))&(does_not_practice_pilates(X))&(does_not_enjoy_making_ceramics(X))))))=>(![X]:(room(X)=>(does_not_practice_pilates(X)))))& (![X]:(~room(X)=>(does_not_collect_comic_books(X))))& (![X]:(room(X)=>(((is_not_a_chess_master_who_participates_in_national_tournaments(X))&(does_not_collect_comic_books(X))&(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))))& (![X]:(room(X)=>(does_not_practice_pilates(X))))& (![X]:(room(X)=>(((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))&(does_not_enjoy_making_ceramics(X))))))& (?[X]:(~room(X)&(((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))&(does_not_enjoy_making_ceramics(X))))))& (![X]:(~room(X)=>(does_not_practice_pilates(X))))& (![X]:(room(X)=>(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))& (![X]:(room(X)=>(((does_not_practice_pilates(X))&(is_not_a_chess_master_who_participates_in_national_tournaments(X))))))& (![X]:(anywhere(X)=>(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))& (![X]:(room(X)=>(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))& (![X]:(room(X)=>(does_not_collect_comic_books(X))))& (![X]:(room(X)=>(does_not_enjoy_making_ceramics(X))))
(there_is_a_room)& ![X]:(~room(X)=>(practices_pilates(X)))
[ "p7", "p8", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 6766533186847121315634699 % SZS output start Proof for 6766533186847121315634699 51. ? [X0] : (~predf(X0) & ~prede(X0) & ~room(X0)) [input p7] 52. ! [X0] : (~room(X0) => ~predc(X0)) [input p8] 54. ! [X0] : (room(X0) => (~preda(X0) & ~predc(X0))) [input p10] 59. ! [X0] : (~room(X0) => predc(X0)) & there_is_a_room [input hypothesis] 63. ! [X0] : (room(X0) => ~predc(X0)) [pure predicate removal 54] 70. ? [X0] : (~prede(X0) & ~room(X0)) [pure predicate removal 51] 78. ! [X0] : (~room(X0) => predc(X0)) [pure predicate removal 59] 155. ! [X0] : (~predc(X0) | room(X0)) [ennf transformation 52] 156. ! [X0] : (~predc(X0) | ~room(X0)) [ennf transformation 63] 158. ! [X0] : (predc(X0) | room(X0)) [ennf transformation 78] 165. ? [X0] : (~prede(X0) & ~room(X0)) => (~prede(sK2) & ~room(sK2)) [choice axiom] 166. ~prede(sK2) & ~room(sK2) [skolemisation 70,165] 252. ~room(sK2) [cnf transformation 166] 254. ~predc(X0) | room(X0) [cnf transformation 155] 255. ~predc(X0) | ~room(X0) [cnf transformation 156] 257. predc(X0) | room(X0) [cnf transformation 158] 277. ~predc(X0) [subsumption resolution 255,254] 278. room(X0) [subsumption resolution 257,277] 279. $false [resolution 278,252] % SZS output end Proof for 6766533186847121315634699 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.032 s % ------------------------------ % ------------------------------
0.238863
Jane, Esther are the only persons in the room. If “everyone in the room does not watche fantasy movies or collects vintage stamps” then “more than one person in the room does not host themed dinner parties featuring gourmet home-cooked meals”. If “everyone in the room does not enjoy macrame or enjoys macrame” then “Jane watches fantasy movies”. Jane uses contact lenses. Everyone anywhere enjoys macrame.
Only one person in the room enjoys macrame.
contradiction
room(jane)&room(esther)&(![X]:(room(X)=>(X='jane'|X='esther')))& ((![X]:(room(X)=>(((collects_vintage_stamps(X))|(does_not_watche_fantasy_movies(X))))))=>((?[X,Y]:(room(X)&room(Y)&(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)&does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(Y))&(X!=Y)))))& ((![X]:(room(X)=>(((enjoys_macrame(X))|(does_not_enjoy_macrame(X))))))=>(watches_fantasy_movies(jane)))& (uses_contact_lenses(jane))& ((watches_fantasy_movies(esther))&(does_not_collect_vintage_stamps(esther)))& ((![X]:((collects_vintage_stamps(X))<=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(collects_vintage_stamps(X)))))))& (enjoys_macrame(jane))& (![X]:(room(X)=>(((collects_vintage_stamps(X))=>(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& ((![X]:((does_not_use_contact_lenses(X))<=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)))))& (![X]:(anywhere(X)=>(enjoys_macrame(X))))& (~(does_not_enjoy_macrame(esther)))& (![X]:(room(X)=>(((enjoys_macrame(X))|(does_not_enjoy_macrame(X))))))& ((![X]:((collects_vintage_stamps(X))=>(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)))))
room(jane)&room(esther)&(![X]:(room(X)=>(X='jane'|X='esther')))& ((?[X]:(room(X)&enjoys_macrame(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_macrame(X))&(enjoys_macrame(Y)))=>(X=Y))))
[ "b4", "b42", "p0", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 761892471665162850291884 % SZS output start Proof for 761892471665162850291884 5. ! [X0] : anywhere(X0) [input b4] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 53. ! [X0] : (anywhere(X0) => predc(X0)) [input p9] 57. ! [X0,X1] : ((predc(X1) & predc(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predc(X0) & room(X0)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 59. ! [X0,X1] : ((predc(X1) & predc(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (predc(X2) & room(X2)) & ! [X3] : (room(X3) => (paul = X3 | mary = X3)) & room(paul) & room(mary) [rectify 57] 135. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 136. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 135] 141. ! [X0] : (predc(X0) | ~anywhere(X0)) [ennf transformation 53] 145. ! [X0,X1] : (X0 = X1 | (~predc(X1) | ~predc(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (predc(X2) & room(X2)) & ! [X3] : ((paul = X3 | mary = X3) | ~room(X3)) & room(paul) & room(mary) [ennf transformation 59] 146. ! [X0,X1] : (X0 = X1 | ~predc(X1) | ~predc(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (predc(X2) & room(X2)) & ! [X3] : (paul = X3 | mary = X3 | ~room(X3)) & room(paul) & room(mary) [flattening 145] 158. ? [X2] : (predc(X2) & room(X2)) => (predc(sK4) & room(sK4)) [choice axiom] 159. ! [X0,X1] : (X0 = X1 | ~predc(X1) | ~predc(X0) | ~room(X1) | ~room(X0)) & (predc(sK4) & room(sK4)) & ! [X3] : (paul = X3 | mary = X3 | ~room(X3)) & room(paul) & room(mary) [skolemisation 146,158] 160. anywhere(X0) [cnf transformation 5] 205. mary != paul [cnf transformation 43] 241. room(mary) [cnf transformation 136] 242. room(paul) [cnf transformation 136] 259. predc(X0) | ~anywhere(X0) [cnf transformation 141] 268. X0 = X1 | ~predc(X1) | ~predc(X0) | ~room(X1) | ~room(X0) [cnf transformation 159] 309. predc(X0) [subsumption resolution 259,160] 311. X0 = X1 | ~predc(X0) | ~room(X1) | ~room(X0) [subsumption resolution 268,309] 312. ~room(X1) | X0 = X1 | ~room(X0) [subsumption resolution 311,309] 314. ~room(X0) | mary = X0 [resolution 312,241] 319. mary = paul [resolution 314,242] 322. $false [subsumption resolution 319,205] % SZS output end Proof for 761892471665162850291884 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.582933
Maurice, Quinn, Sherry, Catherine are the only persons in the room. Everyone anywhere who enjoys salsa dancing makes homemade pastries. If someone makes homemade pastries then he/she is dedicated to sustainable living and zero-waste practices and creates large-scale murals for public art installations and vice versa. If someone creates YouTube content then he/she does not practice graffiti art and vice versa. Sherry does not participate in long-distance cycling events across the country. Quinn competes in national level swimming championships and does not enjoy snowboarding. Everyone in the room competes in national level swimming championships only if they enjoys salsa dancing.
Quinn does not create large-scale murals for public art installations.
contradiction
room(maurice)&room(quinn)&room(sherry)&room(catherine)&(![X]:(room(X)=>(X='maurice'|X='quinn'|X='sherry'|X='catherine')))& (![X]:(anywhere(X)=>(((enjoys_salsa_dancing(X))=>(makes_homemade_pastries(X))))))& ((![X]:((makes_homemade_pastries(X))<=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))&(creates_large-scale_murals_for_public_art_installations(X)))))))& ((![X]:((creates_YouTube_content(X))<=>(does_not_practice_graffiti_art(X)))))& (does_not_participate_in_long-distance_cycling_events_across_the_country(sherry))& (((competes_in_national_level_swimming_championships(quinn))&(does_not_enjoy_snowboarding(quinn))))& (((competes_in_national_level_swimming_championships(maurice))<~>(enjoys_skydiving(maurice))))& (![X]:(room(X)=>(((enjoys_salsa_dancing(X))<=(competes_in_national_level_swimming_championships(X))))))& (?[X]:(room(X)&(participates_in_long-distance_cycling_events_across_the_country(X))))& (![X]:(room(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))=>(creates_large-scale_murals_for_public_art_installations(X))))))& (![X]:(room(X)=>(((is_a_night_owl(X))=>(enjoys_spelunking(X))))))& (enjoys_deep-sea_diving_and_exploring_underwater_caves(maurice))& (![X]:(room(X)=>(((is_a_tea_enthusiast(X))|(does_not_create_YouTube_content(X))))))& (does_not_create_YouTube_content(maurice))& (![X]:(room(X)=>(((does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))<=(is_a_night_owl(X))))))
room(maurice)&room(quinn)&room(sherry)&room(catherine)&(![X]:(room(X)=>(X='maurice'|X='quinn'|X='sherry'|X='catherine')))& does_not_create_large-scale_murals_for_public_art_installations(quinn)
[ "b4", "p0", "p1", "p2", "p5", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 1779070537278249084320465 % SZS output start Proof for 1779070537278249084320465 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ! [X0] : (anywhere(X0) => (predh(X0) => predj(X0))) [input p1] 46. ! [X0] : (predj(X0) <=> (predm(X0) & predk(X0))) [input p2] 49. ~predt(paul) & predq(paul) [input p5] 51. ! [X0] : (room(X0) => (predq(X0) => predh(X0))) [input p7] 59. ~predm(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 61. ! [X0] : (predj(X0) => (predm(X0) & predk(X0))) [unused predicate definition removal 46] 62. ! [X0] : (predj(X0) => predm(X0)) [pure predicate removal 61] 68. predq(paul) [pure predicate removal 49] 140. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 141. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 140] 142. ! [X0] : ((predj(X0) | ~predh(X0)) | ~anywhere(X0)) [ennf transformation 45] 143. ! [X0] : (predj(X0) | ~predh(X0) | ~anywhere(X0)) [flattening 142] 144. ! [X0] : (predm(X0) | ~predj(X0)) [ennf transformation 62] 145. ! [X0] : ((predh(X0) | ~predq(X0)) | ~room(X0)) [ennf transformation 51] 146. ! [X0] : (predh(X0) | ~predq(X0) | ~room(X0)) [flattening 145] 149. ~predm(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 59] 150. ~predm(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 149] 155. anywhere(X0) [cnf transformation 5] 237. room(paul) [cnf transformation 141] 241. predj(X0) | ~predh(X0) | ~anywhere(X0) [cnf transformation 143] 242. ~predj(X0) | predm(X0) [cnf transformation 144] 244. predq(paul) [cnf transformation 68] 247. ~predq(X0) | predh(X0) | ~room(X0) [cnf transformation 146] 257. ~predm(paul) [cnf transformation 150] 258. ~predh(X0) | predj(X0) [subsumption resolution 241,155] 269. predh(paul) | ~room(paul) [resolution 247,244] 270. predh(paul) [subsumption resolution 269,237] 271. predj(paul) [resolution 270,258] 274. predm(paul) [resolution 271,242] 275. $false [subsumption resolution 274,257] % SZS output end Proof for 1779070537278249084320465 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.031 s % ------------------------------ % ------------------------------
0
Jerry, Joseph, Larry are the only persons in the room. If 'everyone in the room does not work on fridays or enjoys macrame' then 'Jerry enjoys macrame'. 'Jerry enjoys macrame' if 'everyone in the room does not work on fridays or does not enjoy macrame' and vice versa. Jerry enjoys macrame. Everyone in the room does not work on fridays or enjoys macrame. Everyone outside the room enjoys macrame.
Joseph works on fridays.
contradiction
room(jerry)&room(joseph)&room(larry)&(![X]:(room(X)=>(X='jerry'|X='joseph'|X='larry')))& ((![X]:(room(X)=>(((enjoys_macrame(X))|(does_not_work_on_fridays(X))))))=>(enjoys_macrame(jerry)))& ((![X]:(room(X)=>(((does_not_enjoy_macrame(X))|(does_not_work_on_fridays(X))))))<=>(enjoys_macrame(jerry)))& (enjoys_macrame(jerry))& (![X]:(room(X)=>(((enjoys_macrame(X))|(does_not_work_on_fridays(X))))))& (![X]:(~room(X)=>(enjoys_macrame(X))))
room(jerry)&room(joseph)&room(larry)&(![X]:(room(X)=>(X='jerry'|X='joseph'|X='larry')))& works_on_fridays(joseph)
[ "p0", "p2", "p3", "p4", "hypothesis" ]
% SZS status Unsatisfiable for 4734806895192457858351373 % SZS output start Proof for 4734806895192457858351373 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 46. ! [X0] : (room(X0) => (~predq(X0) | ~predo(X0))) <=> predo(mary) [input p2] 47. predo(mary) [input p3] 48. ! [X0] : (room(X0) => (~predq(X0) | predo(X0))) [input p4] 50. predq(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 123. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 124. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 123] 127. ! [X0] : ((~predq(X0) | ~predo(X0)) | ~room(X0)) <=> predo(mary) [ennf transformation 46] 128. ! [X0] : (~predq(X0) | ~predo(X0) | ~room(X0)) <=> predo(mary) [flattening 127] 129. ! [X0] : ((~predq(X0) | predo(X0)) | ~room(X0)) [ennf transformation 48] 130. ! [X0] : (~predq(X0) | predo(X0) | ~room(X0)) [flattening 129] 132. predq(paul) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 50] 133. predq(paul) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 132] 137. (! [X0] : (~predq(X0) | ~predo(X0) | ~room(X0)) | ~predo(mary)) & (predo(mary) | ? [X0] : (predq(X0) & predo(X0) & room(X0))) [nnf transformation 128] 138. (! [X0] : (~predq(X0) | ~predo(X0) | ~room(X0)) | ~predo(mary)) & (predo(mary) | ? [X1] : (predq(X1) & predo(X1) & room(X1))) [rectify 137] 139. ? [X1] : (predq(X1) & predo(X1) & room(X1)) => (predq(sK1) & predo(sK1) & room(sK1)) [choice axiom] 140. (! [X0] : (~predq(X0) | ~predo(X0) | ~room(X0)) | ~predo(mary)) & (predo(mary) | (predq(sK1) & predo(sK1) & room(sK1))) [skolemisation 138,139] 222. room(paul) [cnf transformation 124] 231. ~predq(X0) | ~predo(X0) | ~room(X0) | ~predo(mary) [cnf transformation 140] 232. predo(mary) [cnf transformation 47] 233. ~predq(X0) | predo(X0) | ~room(X0) [cnf transformation 130] 239. predq(paul) [cnf transformation 133] 245. 2 <=> predo(mary) [avatar definition] 260. 5 <=> ! [X0] : (~predq(X0) | ~room(X0) | ~predo(X0)) [avatar definition] 261. ~predq(X0) | ~room(X0) | ~predo(X0) <- (5) [avatar component clause 260] 262. ~2 | 5 [avatar split clause 231,260,245] 278. 2 [avatar split clause 232,245] 279. ~predq(X0) | ~room(X0) <- (5) [subsumption resolution 261,233] 280. ~room(paul) <- (5) [resolution 279,239] 281. $false <- (5) [subsumption resolution 280,222] 282. ~5 [avatar contradiction clause 281] 283. $false [avatar sat refutation 262,278,282] % SZS output end Proof for 4734806895192457858351373 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.03886
There is a room. If 'it is true that 'everyone outside the room does not own a television or collects antique jewelry'' then 'everyone in the room who does not own a television can play the flute'. 'At least one person in the room collects antique clocks' if 'someone in the room bakes bread at home'. Someone in the room bakes bread at home. Everyone in the room plays eSports competitively if they is a craft beer aficionado. Everyone in the room who plays eSports competitively collects rare and antique scientific instruments. If someone plays the drums then he/she either collects rare minerals or is a certified yoga instructor teaching classes weekly but not both. Everyone in the room is a craft beer aficionado or own a television or both if they practices archery. It is true that 'everyone in the room does not practice archery if they is a craft beer aficionado or own a television or both'. If someone either own a television or collects limited-edition art prints from contemporary artists but not both then he/she plays eSports competitively. If someone plays eSports competitively then he/she collects rare and antique scientific instruments and vice versa. Everyone in the room who cannot play the flute can play the flute, collects limited-edition art prints from contemporary artists and is a craft beer aficionado. Everyone in the room practices archery if they can play the flute, collects limited-edition art prints from contemporary artists and is a craft beer aficionado. If someone does not collect antique jewelry then he/she is not a certified yoga instructor teaching classes weekly. Everyone in the room collects antique clocks if they does not collect rare and antique scientific instruments.
Everyone in the room is a craft beer aficionado.
neutral
(there_is_a_room)& ((![X]:(~room(X)=>(((collects_antique_jewelry(X))|(does_not_own_a_television(X))))))=>(![X]:(room(X)=>(((does_not_own_a_television(X))=>(can_play_the_flute(X)))))))& ((?[X]:(room(X)&(bakes_bread_at_home(X))))=>(((?[X]:(room(X)&collects_antique_clocks(X))))))& (?[X]:(room(X)&(bakes_bread_at_home(X))))& (![X]:(room(X)=>(((is_a_craft_beer_aficionado(X))=>(plays_eSports_competitively(X))))))& (![X]:(room(X)=>(((plays_eSports_competitively(X))=>(collects_rare_and_antique_scientific_instruments(X))))))& ((![X]:((plays_the_drums(X))=>(((collects_rare_minerals(X))<~>(is_a_certified_yoga_instructor_teaching_classes_weekly(X)))))))& (![X]:(room(X)=>(((practices_archery(X))=>(((is_a_craft_beer_aficionado(X))|(own_a_television(X))))))))& (![X]:(room(X)=>(((((is_a_craft_beer_aficionado(X))|(own_a_television(X))))=>(does_not_practice_archery(X))))))& ((![X]:((((own_a_television(X))<~>(collects_limited-edition_art_prints_from_contemporary_artists(X))))=>(plays_eSports_competitively(X)))))& ((![X]:((plays_eSports_competitively(X))<=>(collects_rare_and_antique_scientific_instruments(X)))))& (![X]:(room(X)=>(((cannot_play_the_flute(X))=>(((can_play_the_flute(X))&(collects_limited-edition_art_prints_from_contemporary_artists(X))&(is_a_craft_beer_aficionado(X))))))))& (![X]:(room(X)=>(((((can_play_the_flute(X))&(collects_limited-edition_art_prints_from_contemporary_artists(X))&(is_a_craft_beer_aficionado(X))))=>(practices_archery(X))))))& ((![X]:((does_not_collect_antique_jewelry(X))=>(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X)))))& (![X]:(room(X)=>(((does_not_collect_rare_and_antique_scientific_instruments(X))=>(collects_antique_clocks(X))))))
(there_is_a_room)& ![X]:(room(X)=>(is_a_craft_beer_aficionado(X)))
[]
null
0
There is a room. If "everyone in the room does not travel domestically frequently or does not regularly contributes to tech forums and online communities" then "everyone in the room neither is not a coffee connoisseur nor plays as a goalkeeper for a local amateur soccer team if they does not travel domestically frequently" otherwise "only one person in the room neither does not collect vintage stamps nor does not develop open-source software projects in their free time". Either "everyone in the room is not a coffee connoisseur or does not regularly contributes to tech forums and online communities" or "everyone in the room does not develop open-source software projects in their free time or does not travel domestically frequently" but not both. Either "not everyone in the room travels domestically frequently or does not collect vintage stamps" or "everyone in the room neither does not play as a goalkeeper for a local amateur soccer team nor does not develop open-source software projects in their free time" but not both. Everyone in the room does not collect vintage stamps. Everyone in the room does not play as a goalkeeper for a local amateur soccer team if they collects vintage stamps, does not develop open-source software projects in their free time or is a coffee connoisseur. If someone does not travel domestically frequently then he/she plays as a goalkeeper for a local amateur soccer team. Everyone in the room does not collect vintage stamps, develops open-source software projects in their free time or plays as a goalkeeper for a local amateur soccer team. Everyone in the room does not regularly contributes to tech forums and online communities if they does not develop open-source software projects in their free time. Someone anywhere does not travel domestically frequently. If someone does not develop open-source software projects in their free time then he/she neither is a coffee connoisseur nor does not play as a goalkeeper for a local amateur soccer team. Not everyone outside the room develops open-source software projects in their free time. Everyone in the room either develops open-source software projects in their free time or does not develop open-source software projects in their free time but not both if they does not travel domestically frequently.
Everyone outside the room does not travel domestically frequently.
neutral
(there_is_a_room)& (((![X]:(room(X)=>(((does_not_regularly_contributes_to_tech_forums_and_online_communities(X))|(does_not_travel_domestically_frequently(X))))))=>(![X]:(room(X)=>(((does_not_travel_domestically_frequently(X))=>(~((is_not_a_coffee_connoisseur(X))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))))))&((~(![X]:(room(X)=>(((does_not_regularly_contributes_to_tech_forums_and_online_communities(X))|(does_not_travel_domestically_frequently(X)))))))=>(((?[X]:(room(X)&~((does_not_collect_vintage_stamps(X))|(does_not_develop_open-source_software_projects_in_their_free_time(X)))))&(![X,Y]:((room(X)&room(Y)&(~((does_not_collect_vintage_stamps(X))|(does_not_develop_open-source_software_projects_in_their_free_time(X))))&(~((does_not_collect_vintage_stamps(Y))|(does_not_develop_open-source_software_projects_in_their_free_time(Y)))))=>(X=Y)))))))& ((![X]:(room(X)=>(((does_not_regularly_contributes_to_tech_forums_and_online_communities(X))|(is_not_a_coffee_connoisseur(X))))))<~>(![X]:(room(X)=>(((does_not_travel_domestically_frequently(X))|(does_not_develop_open-source_software_projects_in_their_free_time(X)))))))& ((~![X]:(room(X)=>(((does_not_collect_vintage_stamps(X))|(travels_domestically_frequently(X))))))<~>(![X]:(room(X)=>(~((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(does_not_develop_open-source_software_projects_in_their_free_time(X)))))))& (![X]:(room(X)=>(does_not_collect_vintage_stamps(X))))& (![X]:(room(X)=>(((((collects_vintage_stamps(X))|(does_not_develop_open-source_software_projects_in_their_free_time(X))|(is_a_coffee_connoisseur(X))))=>(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& ((![X]:((does_not_travel_domestically_frequently(X))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))& (![X]:(room(X)=>(((does_not_collect_vintage_stamps(X))|(develops_open-source_software_projects_in_their_free_time(X))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (![X]:(room(X)=>(((does_not_develop_open-source_software_projects_in_their_free_time(X))=>(does_not_regularly_contributes_to_tech_forums_and_online_communities(X))))))& (?[X]:(anywhere(X)&(does_not_travel_domestically_frequently(X))))& ((![X]:((does_not_develop_open-source_software_projects_in_their_free_time(X))=>(~((is_a_coffee_connoisseur(X))|(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))))& (~![X]:(~room(X)=>(develops_open-source_software_projects_in_their_free_time(X))))& (![X]:(room(X)=>(((does_not_travel_domestically_frequently(X))=>(((develops_open-source_software_projects_in_their_free_time(X))<~>(does_not_develop_open-source_software_projects_in_their_free_time(X))))))))
(there_is_a_room)& ![X]:(~room(X)=>(does_not_travel_domestically_frequently(X)))
[]
null
0.09698
Joseph is the only person in the room. If “Joseph is a tea enthusiast” then “everyone in the room is a wine connoisseur with a private cellar of vintage wines or is not a tea enthusiast” otherwise “Joseph neither is a wine connoisseur with a private cellar of vintage wines nor enjoys macrame”. If “everyone in the room is not a tea enthusiast or practices digital art” then “Joseph who enjoys macrame volunteers for local environmental conservation projects”. If “Joseph practices digital art” then “everyone anywhere who enjoys macrame practices digital art”. If “everyone in the room is not a wine connoisseur with a private cellar of vintage wines or is a tea enthusiast” then “everyone in the room who is not a wine connoisseur with a private cellar of vintage wines practices digital art” otherwise “everyone in the room who practices digital art enjoys macrame”. “Joseph is a tea enthusiast” unless “Joseph practices digital art”. If “Joseph enjoys macrame” then “Joseph is a wine connoisseur with a private cellar of vintage wines” otherwise “everyone in the room is not a wine connoisseur with a private cellar of vintage wines or enjoys macrame”. “Joseph practices digital art” unless “Joseph does not have a tattoo”. Either “everyone outside the room enjoys macrame or is not a wine connoisseur with a private cellar of vintage wines” or “everyone in the room does not practice digital art or practices digital art” but not both. Joseph has a tattoo. Joseph enjoys macrame. Everyone in the room who is a tea enthusiast is a wine connoisseur with a private cellar of vintage wines. Joseph volunteers for local environmental conservation projects.
It is not the case that “Joseph volunteers for local environmental conservation projects”.
contradiction
room(joseph)&(![X]:(room(X)=>(X='joseph')))& (((is_a_tea_enthusiast(joseph))=>(![X]:(room(X)=>(((is_not_a_tea_enthusiast(X))|(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X)))))))&((~(is_a_tea_enthusiast(joseph)))=>(~((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(joseph))|(enjoys_macrame(joseph))))))& ((![X]:(room(X)=>(((practices_digital_art(X))|(is_not_a_tea_enthusiast(X))))))=>((enjoys_macrame(joseph))&(volunteers_for_local_environmental_conservation_projects(joseph))))& ((practices_digital_art(joseph))=>(![X]:(anywhere(X)=>(((enjoys_macrame(X))=>(practices_digital_art(X)))))))& (((![X]:(room(X)=>(((is_a_tea_enthusiast(X))|(is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))=>(![X]:(room(X)=>(((is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))=>(practices_digital_art(X)))))))&((~(![X]:(room(X)=>(((is_a_tea_enthusiast(X))|(is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X)))))))=>(![X]:(room(X)=>(((practices_digital_art(X))=>(enjoys_macrame(X))))))))& (~(practices_digital_art(joseph))=>(is_a_tea_enthusiast(joseph)))& (((enjoys_macrame(joseph))=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(joseph)))&((~(enjoys_macrame(joseph)))=>(![X]:(room(X)=>(((enjoys_macrame(X))|(is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))))& (~(does_not_have_a_tattoo(joseph))=>(practices_digital_art(joseph)))& ((![X]:(~room(X)=>(((is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))|(enjoys_macrame(X))))))<~>(![X]:(room(X)=>(((practices_digital_art(X))|(does_not_practice_digital_art(X)))))))& (has_a_tattoo(joseph))& (enjoys_macrame(joseph))& (![X]:(room(X)=>(((is_a_tea_enthusiast(X))=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))& (((volunteers_for_local_environmental_conservation_projects(joseph))&(enjoys_macrame(joseph))&(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(joseph))))& (is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(joseph))& (((has_a_tattoo(joseph))|(practices_digital_art(joseph))|(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(joseph))))& ((![X]:((volunteers_for_local_environmental_conservation_projects(X))<=>(is_a_tea_enthusiast(X)))))& (![X]:(room(X)=>(((practices_digital_art(X))|(does_not_practice_digital_art(X))))))& (volunteers_for_local_environmental_conservation_projects(joseph))& (![X]:(room(X)=>(((~((has_a_tattoo(X))|(is_a_tea_enthusiast(X))))=>(volunteers_for_local_environmental_conservation_projects(X))))))
room(joseph)&(![X]:(room(X)=>(X='joseph')))& ~(volunteers_for_local_environmental_conservation_projects(joseph))
[ "p17", "hypothesis" ]
% SZS status Unsatisfiable for 7964880774825442312845669 % SZS output start Proof for 7964880774825442312845669 61. preda(mary) [input p17] 63. ~preda(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 158. ~preda(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 63] 293. preda(mary) [cnf transformation 61] 297. ~preda(mary) [cnf transformation 158] 321. 6 <=> preda(mary) [avatar definition] 420. 6 [avatar split clause 293,321] 422. ~6 [avatar split clause 297,321] 423. $false [avatar sat refutation 420,422] % SZS output end Proof for 7964880774825442312845669 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.245916
Maria, Gary are the only persons in the room. If “Maria is passionate about collecting and restoring classic cars” then “everyone in the room does not make homemade pastries if they collects first edition books”. If “someone outside the room is a drone photographer” then “Maria collects first edition books” otherwise “Maria is passionate about collecting and restoring classic cars”. Either “everyone in the room is a client of Costco or does not collect rare minerals” or “not everyone in the room does practice yoga or is not a client of Meta” but not both. It is not the case that “Maria collects classic novels”. Maria creates bespoke furniture pieces from reclaimed wood. Everyone in the room is a certified scuba diver with advanced underwater photography skills if they is a drone photographer. Maria is passionate about collecting and restoring classic cars. It is true that “not everyone in the room is not a drone photographer if they does not collect rare minerals”. Someone in the room practices archery. If someone collects rare minerals then he/she creates bespoke furniture pieces from reclaimed wood. Everyone in the room does not practice yoga if they collects first edition books. Not everyone in the room does practice yoga or is not a client of Meta. Everyone anywhere who is a client of Meta or is an avid hiker or both is a client of Costco or is a coffee connoisseur or both. Everyone in the room has a specialized collection of handmade artisan pottery. Everyone anywhere is a tea enthusiast if they collects classic novels.
Everyone in the room is not a client of Costco.
neutral
room(maria)&room(gary)&(![X]:(room(X)=>(X='maria'|X='gary')))& ((is_passionate_about_collecting_and_restoring_classic_cars(maria))=>(![X]:(room(X)=>(((collects_first_edition_books(X))=>(does_not_make_homemade_pastries(X)))))))& (((?[X]:(~room(X)&(is_a_drone_photographer(X))))=>(collects_first_edition_books(maria)))&((~(?[X]:(~room(X)&(is_a_drone_photographer(X)))))=>(is_passionate_about_collecting_and_restoring_classic_cars(maria))))& ((![X]:(room(X)=>(((does_not_collect_rare_minerals(X))|(is_a_client_of_Costco(X))))))<~>(~![X]:(room(X)=>(((is_not_a_client_of_Meta(X))|(does_practice_yoga(X)))))))& (~(collects_classic_novels(maria)))& (creates_bespoke_furniture_pieces_from_reclaimed_wood(maria))& (![X]:(room(X)=>(((is_a_drone_photographer(X))=>(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))& (is_passionate_about_collecting_and_restoring_classic_cars(maria))& (~![X]:(room(X)=>(((does_not_collect_rare_minerals(X))=>(is_not_a_drone_photographer(X))))))& (?[X]:(room(X)&(practices_archery(X))))& ((![X]:((collects_rare_minerals(X))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X)))))& (![X]:(room(X)=>(((collects_first_edition_books(X))=>(does_not_practice_yoga(X))))))& (~![X]:(room(X)=>(((is_not_a_client_of_Meta(X))|(does_practice_yoga(X))))))& (![X]:(anywhere(X)=>(((((is_a_client_of_Meta(X))|(is_an_avid_hiker(X))))=>(((is_a_client_of_Costco(X))|(is_a_coffee_connoisseur(X))))))))& (![X]:(room(X)=>(has_a_specialized_collection_of_handmade_artisan_pottery(X))))& (![X]:(anywhere(X)=>(((collects_classic_novels(X))=>(is_a_tea_enthusiast(X))))))& (((is_a_client_of_Meta(maria))|(enjoys_making_ceramics(maria))|(enjoys_coding_in_Python(maria))))& (is_a_drone_photographer(maria))& (![X]:(room(X)=>(((practices_tai_chi(X))=>(plays_video_games(X))))))& (does_practice_yoga(maria))& (enjoys_making_ceramics(maria))& (![X]:(room(X)=>(((is_not_passionate_about_collecting_and_restoring_classic_cars(X))=>(is_an_avid_hiker(X))))))& (?[X]:(room(X)&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))& (![X]:(room(X)=>(((is_not_a_drone_photographer(X))<=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))& (![X]:(room(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))=>(does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (((?[X]:(room(X)&is_an_avid_hiker(X)))&(![X,Y]:((room(X)&room(Y)&(is_an_avid_hiker(X))&(is_an_avid_hiker(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((makes_homemade_pastries(X))=>(is_not_a_client_of_Costco(X))))))
room(maria)&room(gary)&(![X]:(room(X)=>(X='maria'|X='gary')))& ![X]:(room(X)=>(is_not_a_client_of_Costco(X)))
[]
null
0.26442
Angel, Ned, Rodney, Carrie are the only persons in the room. If someone collects rare minerals then he/she does not volunteer for local environmental conservation projects. Angel who enjoys virtual reality gaming neither is allergic to anything nor does not create augmented reality experiences for mobile applications. If someone collects rare minerals then he/she creates augmented reality experiences for mobile applications and vice versa. Everyone in the room volunteers for local environmental conservation projects if they is a client of Meta.
Angel is a client of Meta.
contradiction
room(angel)&room(ned)&room(rodney)&room(carrie)&(![X]:(room(X)=>(X='angel'|X='ned'|X='rodney'|X='carrie')))& (~(![X]:(room(X)=>(((collects_luxury_watches(X))|(does_not_enjoy_virtual_reality_gaming(X))))))=>(owns_a_high-end_gaming_PC_with_custom-built_components(angel)))& ((((?[X]:(room(X)&enjoys_cross-country_skiing(X)))))=>(~?[X]:(anywhere(X)=>(collects_luxury_watches(X)))))& (~(((has_lived_in_exactly_three_countries(angel))|(can_play_the_flute(angel))))=>(does_not_create_large-scale_murals_for_public_art_installations(ned)))& ((((writes_and_illustrates_their_own_graphic_novels(ned))&(is_right-handed(ned))&(hosts_regular_workshops_on_creative_writing(ned))))=>(![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))=>(enjoys_cross-country_skiing(X)))))))& (?[X]:(room(X)&(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))& (writes_and_illustrates_their_own_graphic_novels(angel))& ((![X]:((collects_rare_minerals(X))=>(does_not_volunteer_for_local_environmental_conservation_projects(X)))))& ((enjoys_virtual_reality_gaming(angel))&(~((is_allergic_to_anything(angel))|(does_not_create_augmented_reality_experiences_for_mobile_applications(angel)))))& (((?[X]:(room(X)&enjoys_cross-country_skiing(X)))))& (![X]:(room(X)=>(((creates_large-scale_murals_for_public_art_installations(X))=>(collects_rare_minerals(X))))))& ((![X]:((collects_rare_minerals(X))<=>(creates_augmented_reality_experiences_for_mobile_applications(X)))))& (~![X]:(room(X)=>(((((hosts_regular_workshops_on_creative_writing(X))|(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))=>(does_not_own_a_smartwatch(X))))))& (((?[X]:(room(X)&collects_comic_books(X)))))& ((![X]:((owns_a_smartwatch(X))=>(((owns_a_smartwatch(X))&(has_lived_in_exactly_three_countries(X)))))))& (![X]:(room(X)=>(((does_not_create_large-scale_murals_for_public_art_installations(X))=>(creates_augmented_reality_experiences_for_mobile_applications(X))))))& (~((has_a_curated_collection_of_mid-century_modern_furniture(angel))|(practices_archery(angel))))& (owns_a_high-end_gaming_PC_with_custom-built_components(ned))& ((?[X,Y]:(room(X)&room(Y)&(enjoys_virtual_reality_gaming(X)&enjoys_virtual_reality_gaming(Y))&(X!=Y))))& (enjoys_kayaking_and_exploring_remote_waterways(angel))& (has_completed_a_triathlon(angel))& (((writes_and_illustrates_their_own_graphic_novels(ned))&(is_right-handed(ned))&(hosts_regular_workshops_on_creative_writing(ned))))& (![X]:(anywhere(X)=>(((practices_archery(X))=>(~((has_lived_in_exactly_three_countries(X))|(does_not_create_augmented_reality_experiences_for_mobile_applications(X))))))))& (![X]:(room(X)=>(((is_a_client_of_Meta(X))=>(volunteers_for_local_environmental_conservation_projects(X))))))& (![X]:(~room(X)=>(((does_not_have_completed_a_triathlon(X))=>(((does_not_enjoy_cross-country_skiing(X))&(can_play_the_flute(X))))))))& (~![X]:(room(X)=>(((((does_not_enjoy_cross-country_skiing(X))&(can_play_the_flute(X))))=>(collects_comic_books(X))))))
room(angel)&room(ned)&room(rodney)&room(carrie)&(![X]:(room(X)=>(X='angel'|X='ned'|X='rodney'|X='carrie')))& is_a_client_of_Meta(angel)
[ "p0", "p7", "p8", "p11", "p23", "hypothesis" ]
% SZS status Unsatisfiable for 3972959673026594584713082 % SZS output start Proof for 3972959673026594584713082 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 51. ! [X0] : (preda(X0) => ~predw(X0)) [input p7] 52. ~(~predb(mary) | predr(mary)) & predk(mary) [input p8] 55. ! [X0] : (preda(X0) <=> predb(X0)) [input p11] 67. ! [X0] : (room(X0) => (preds(X0) => predw(X0))) [input p23] 70. preds(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 83. ~~predb(mary) & predk(mary) [pure predicate removal 52] 160. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 161. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 160] 164. ! [X0] : (~predw(X0) | ~preda(X0)) [ennf transformation 51] 165. predb(mary) & predk(mary) [ennf transformation 83] 172. ! [X0] : ((predw(X0) | ~preds(X0)) | ~room(X0)) [ennf transformation 67] 173. ! [X0] : (predw(X0) | ~preds(X0) | ~room(X0)) [flattening 172] 176. preds(mary) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 70] 177. preds(mary) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 176] 183. ! [X0] : ((preda(X0) | ~predb(X0)) & (predb(X0) | ~preda(X0))) [nnf transformation 55] 272. room(mary) [cnf transformation 161] 280. ~predw(X0) | ~preda(X0) [cnf transformation 164] 282. predb(mary) [cnf transformation 165] 287. ~predb(X0) | preda(X0) [cnf transformation 183] 302. ~preds(X0) | predw(X0) | ~room(X0) [cnf transformation 173] 311. preds(mary) [cnf transformation 177] 331. preda(mary) [resolution 287,282] 436. predw(mary) | ~room(mary) [resolution 302,311] 437. predw(mary) [subsumption resolution 436,272] 453. ~preda(mary) [resolution 437,280] 454. $false [subsumption resolution 453,331] % SZS output end Proof for 3972959673026594584713082 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.039588
Harold, Robert are the only persons in the room. “Harold enjoys camping and organizing outdoor survival workshops” if “Harold has a saltwater aquarium” and vice versa. Either “Robert composes and performs experimental electronic music” or “not everyone in the room composes and performs experimental electronic music or does not enjoy camping and organizing outdoor survival workshops” but not both. Harold enjoys camping and organizing outdoor survival workshops.
Robert composes and performs experimental electronic music.
neutral
room(harold)&room(robert)&(![X]:(room(X)=>(X='harold'|X='robert')))& ((has_a_saltwater_aquarium(harold))<=>(enjoys_camping_and_organizing_outdoor_survival_workshops(harold)))& ((composes_and_performs_experimental_electronic_music(robert))<~>(~![X]:(room(X)=>(((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))|(composes_and_performs_experimental_electronic_music(X)))))))& (enjoys_camping_and_organizing_outdoor_survival_workshops(harold))& (?[X]:(~room(X)&(has_a_saltwater_aquarium(X))))& (?[X]:(room(X)&(composes_and_performs_experimental_electronic_music(X))))& (has_a_saltwater_aquarium(harold))& ((harold_dream=>(?[X]:(room(X)&(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))& (composes_and_performs_experimental_electronic_music(harold))& (![X]:(anywhere(X)=>(((((enjoys_camping_and_organizing_outdoor_survival_workshops(X))&(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))& (?[X]:(room(X)&(has_a_saltwater_aquarium(X))))
room(harold)&room(robert)&(![X]:(room(X)=>(X='harold'|X='robert')))& composes_and_performs_experimental_electronic_music(robert)
[]
null
0.001892
Diane, Pauline, Ronald, Virginia, Leila are the only persons in the room. Either “everyone anywhere develops open-source software projects in their free time” or “no one in the room develops open-source software projects in their free time or does not develop open-source software projects in their free time” but not both. “Everyone in the room is not not strong or does not enjoy mountain biking” unless “everyone in the room does not develop open-source software projects in their free time or enjoys windsurfing”. Everyone in the room is strong if and only if they enjoys windsurfing. Everyone in the room does enjoy mountain biking.
Pauline enjoys windsurfing.
entailment
room(diane)&room(paulineine)&room(ronald)&room(virginia)&room(leila)&(![X]:(room(X)=>(X='diane'|X='paulineine'|X='ronald'|X='virginia'|X='leila')))& ((![X]:(anywhere(X)=>(((does_not_enjoy_windsurfing(X))|(wise(X))))))<~>(![X]:(room(X)=>(((does_not_enjoy_windsurfing(X))|(enjoys_windsurfing(X)))))))& ((~?[X]:(room(X)=>(((does_not_enjoy_mountain_biking(X))|(does_enjoy_mountain_biking(X))))))=>(![X]:(room(X)=>(((does_enjoy_mountain_biking(X))|(does_not_enjoy_mountain_biking(X)))))))& (~(~![X]:(room(X)=>(((does_not_enjoy_mountain_biking(X))|(can_play_the_guitar(X))))))=>(![X]:(room(X)=>(((develops_open-source_software_projects_in_their_free_time(X))|(does_not_develop_open-source_software_projects_in_their_free_time(X)))))))& ((![X]:(room(X)=>(((does_not_enjoy_mountain_biking(X))|(can_play_the_guitar(X))))))<~>(![X]:(room(X)=>(((does_not_develop_open-source_software_projects_in_their_free_time(X))|(enjoys_windsurfing(X)))))))& ((![X]:(anywhere(X)=>(develops_open-source_software_projects_in_their_free_time(X))))<~>(~?[X]:(room(X)=>(((does_not_develop_open-source_software_projects_in_their_free_time(X))|(develops_open-source_software_projects_in_their_free_time(X)))))))& ((![X]:(~room(X)=>(((does_enjoy_mountain_biking(X))|(does_not_develop_open-source_software_projects_in_their_free_time(X))))))<~>(![X]:(room(X)=>(((does_not_develop_open-source_software_projects_in_their_free_time(X))|(develops_open-source_software_projects_in_their_free_time(X)))))))& (~(![X]:(room(X)=>(((enjoys_windsurfing(X))|(does_not_develop_open-source_software_projects_in_their_free_time(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_mountain_biking(X))|(~~strong(X)))))))& (?[X]:(room(X)&(can_play_the_guitar(X))))& ((?[X,Y]:(room(X)&room(Y)&(strong(X)&strong(Y))&(X!=Y))))& (?[X,Y]:((does_not_enjoy_windsurfing(X))&(develops_open-source_software_projects_in_their_free_time(Y))&(richer(X,Y))))& (![X]:(room(X)=>(((strong(X))<=>(enjoys_windsurfing(X))))))& (?[X]:(room(X)&(does_enjoy_mountain_biking(X))))& (![X]:(room(X)=>(((does_not_enjoy_windsurfing(X))|(strong(X))))))& (![X]:(room(X)=>(does_enjoy_mountain_biking(X))))& (?[X,Y]:((enjoys_windsurfing(X))&(does_not_enjoy_mountain_biking(Y))&(richer(X,Y))))& (![X]:(room(X)=>(((does_enjoy_mountain_biking(X))|(does_not_enjoy_windsurfing(X))))))& (![X]:(room(X)=>(((cannot_play_the_guitar(X))|(can_play_the_guitar(X))))))& (![X]:(~room(X)=>(((does_not_enjoy_mountain_biking(X))|(wise(X))))))& (~![X]:(room(X)=>(((wise(X))<=>(strong(X))))))& (![X]:(room(X)=>(((does_not_enjoy_windsurfing(X))|(develops_open-source_software_projects_in_their_free_time(X))))))& (![X]:(wise(X)=>strong(X)))
room(diane)&room(paulineine)&room(ronald)&room(virginia)&room(leila)&(![X]:(room(X)=>(X='diane'|X='paulineine'|X='ronald'|X='virginia'|X='leila')))& enjoys_windsurfing(paulineine)
[ "b4", "p0", "p5", "p7", "p11", "p14", "hypothesis" ]
% SZS status Unsatisfiable for 7258991152227448117203968 % SZS output start Proof for 7258991152227448117203968 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 49. ! [X0] : (anywhere(X0) => predr(X0)) <~> ~? [X0] : (room(X0) => (predr(X0) | ~predr(X0))) [input p5] 51. ~! [X0] : (room(X0) => (~predr(X0) | predp(X0))) => ! [X0] : (room(X0) => (strong(X0) | ~predl(X0))) [input p7] 55. ! [X0] : (room(X0) => (strong(X0) <=> predp(X0))) [input p11] 58. ! [X0] : (room(X0) => predl(X0)) [input p14] 66. ~(predp(paul) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 72. ! [X0] : (anywhere(X0) => predr(X0)) <~> ~? [X1] : (room(X1) => (predr(X1) | ~predr(X1))) [rectify 49] 74. ~! [X0] : (room(X0) => (~predr(X0) | predp(X0))) => ! [X1] : (room(X1) => (strong(X1) | ~predl(X1))) [rectify 51] 146. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 147. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 146] 156. ! [X0] : (predr(X0) | ~anywhere(X0)) <~> ! [X1] : ((~predr(X1) & predr(X1)) & room(X1)) [ennf transformation 72] 157. ! [X0] : (predr(X0) | ~anywhere(X0)) <~> ! [X1] : (~predr(X1) & predr(X1) & room(X1)) [flattening 156] 160. ! [X1] : ((strong(X1) | ~predl(X1)) | ~room(X1)) | ! [X0] : ((~predr(X0) | predp(X0)) | ~room(X0)) [ennf transformation 74] 161. ! [X1] : (strong(X1) | ~predl(X1) | ~room(X1)) | ! [X0] : (~predr(X0) | predp(X0) | ~room(X0)) [flattening 160] 162. ! [X0] : ((strong(X0) <=> predp(X0)) | ~room(X0)) [ennf transformation 55] 165. ! [X0] : (predl(X0) | ~room(X0)) [ennf transformation 58] 176. ~predp(paul) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 66] 177. ~predp(paul) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 176] 195. (? [X1] : (predr(X1) | ~predr(X1) | ~room(X1)) | ? [X0] : (~predr(X0) & anywhere(X0))) & (! [X1] : (~predr(X1) & predr(X1) & room(X1)) | ! [X0] : (predr(X0) | ~anywhere(X0))) [nnf transformation 157] 196. (? [X0] : (predr(X0) | ~predr(X0) | ~room(X0)) | ? [X1] : (~predr(X1) & anywhere(X1))) & (! [X2] : (~predr(X2) & predr(X2) & room(X2)) | ! [X3] : (predr(X3) | ~anywhere(X3))) [rectify 195] 197. ? [X0] : (predr(X0) | ~predr(X0) | ~room(X0)) => (predr(sK6) | ~predr(sK6) | ~room(sK6)) [choice axiom] 198. ? [X1] : (~predr(X1) & anywhere(X1)) => (~predr(sK7) & anywhere(sK7)) [choice axiom] 199. ((predr(sK6) | ~predr(sK6) | ~room(sK6)) | (~predr(sK7) & anywhere(sK7))) & (! [X2] : (~predr(X2) & predr(X2) & room(X2)) | ! [X3] : (predr(X3) | ~anywhere(X3))) [skolemisation 196,198,197] 205. ! [X0] : (strong(X0) | ~predl(X0) | ~room(X0)) | ! [X1] : (~predr(X1) | predp(X1) | ~room(X1)) [rectify 161] 212. ! [X0] : (((strong(X0) | ~predp(X0)) & (predp(X0) | ~strong(X0))) | ~room(X0)) [nnf transformation 162] 221. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK19 & alice != sK19 & fred != sK19 & paul != sK19 & mary != sK19 & room(sK19)) [choice axiom] 222. ~predp(paul) | (john != sK19 & alice != sK19 & fred != sK19 & paul != sK19 & mary != sK19 & room(sK19)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 177,221] 223. anywhere(X0) [cnf transformation 5] 304. room(mary) [cnf transformation 147] 305. room(paul) [cnf transformation 147] 306. room(fred) [cnf transformation 147] 307. room(alice) [cnf transformation 147] 308. room(john) [cnf transformation 147] 309. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 147] 335. predr(X2) | predr(X3) | ~anywhere(X3) [cnf transformation 199] 349. strong(X0) | ~predl(X0) | ~room(X0) | ~predr(X1) | predp(X1) | ~room(X1) [cnf transformation 205] 360. ~strong(X0) | predp(X0) | ~room(X0) [cnf transformation 212] 365. ~room(X0) | predl(X0) [cnf transformation 165] 377. ~predp(paul) | room(sK19) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 222] 378. ~predp(paul) | mary != sK19 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 222] 379. ~predp(paul) | paul != sK19 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 222] 380. ~predp(paul) | fred != sK19 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 222] 381. ~predp(paul) | alice != sK19 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 222] 382. ~predp(paul) | john != sK19 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 222] 442. 12 <=> ! [X2] : (predp(X2) | ~room(X2) | ~predr(X2)) [avatar definition] 443. predp(X2) | ~room(X2) | ~predr(X2) <- (12) [avatar component clause 442] 447. 13 <=> ! [X3] : predr(X3) [avatar definition] 448. predr(X3) <- (13) [avatar component clause 447] 453. predr(X2) | predr(X3) [subsumption resolution 335,223] 454. 13 | 13 [avatar split clause 453,447,447] 490. 21 <=> ! [X0] : (strong(X0) | ~room(X0) | ~predl(X0)) [avatar definition] 491. strong(X0) | ~room(X0) | ~predl(X0) <- (21) [avatar component clause 490] 492. 12 | 21 [avatar split clause 349,490,442] 503. ~predp(paul) | john != sK19 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 382,308] 504. ~predp(paul) | john != sK19 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 503,307] 505. ~predp(paul) | john != sK19 | ~room(paul) | ~room(mary) [subsumption resolution 504,306] 506. ~predp(paul) | john != sK19 | ~room(mary) [subsumption resolution 505,305] 507. ~predp(paul) | john != sK19 [subsumption resolution 506,304] 509. 24 <=> john = sK19 [avatar definition] 511. john != sK19 <- (~24) [avatar component clause 509] 513. 25 <=> predp(paul) [avatar definition] 515. ~predp(paul) <- (~25) [avatar component clause 513] 516. ~24 | ~25 [avatar split clause 507,513,509] 517. ~predp(paul) | alice != sK19 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 381,308] 518. ~predp(paul) | alice != sK19 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 517,307] 519. ~predp(paul) | alice != sK19 | ~room(paul) | ~room(mary) [subsumption resolution 518,306] 520. ~predp(paul) | alice != sK19 | ~room(mary) [subsumption resolution 519,305] 521. ~predp(paul) | alice != sK19 [subsumption resolution 520,304] 523. 26 <=> alice = sK19 [avatar definition] 525. alice != sK19 <- (~26) [avatar component clause 523] 526. ~26 | ~25 [avatar split clause 521,513,523] 527. ~predp(paul) | fred != sK19 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 380,308] 528. ~predp(paul) | fred != sK19 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 527,307] 529. ~predp(paul) | fred != sK19 | ~room(paul) | ~room(mary) [subsumption resolution 528,306] 530. ~predp(paul) | fred != sK19 | ~room(mary) [subsumption resolution 529,305] 531. ~predp(paul) | fred != sK19 [subsumption resolution 530,304] 533. 27 <=> fred = sK19 [avatar definition] 535. fred != sK19 <- (~27) [avatar component clause 533] 536. ~27 | ~25 [avatar split clause 531,513,533] 537. ~predp(paul) | paul != sK19 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 379,308] 538. ~predp(paul) | paul != sK19 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 537,307] 539. ~predp(paul) | paul != sK19 | ~room(paul) | ~room(mary) [subsumption resolution 538,306] 540. ~predp(paul) | paul != sK19 | ~room(mary) [subsumption resolution 539,305] 541. ~predp(paul) | paul != sK19 [subsumption resolution 540,304] 543. 28 <=> paul = sK19 [avatar definition] 545. paul != sK19 <- (~28) [avatar component clause 543] 546. ~28 | ~25 [avatar split clause 541,513,543] 547. ~predp(paul) | mary != sK19 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 378,308] 548. ~predp(paul) | mary != sK19 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 547,307] 549. ~predp(paul) | mary != sK19 | ~room(paul) | ~room(mary) [subsumption resolution 548,306] 550. ~predp(paul) | mary != sK19 | ~room(mary) [subsumption resolution 549,305] 551. ~predp(paul) | mary != sK19 [subsumption resolution 550,304] 553. 29 <=> mary = sK19 [avatar definition] 555. mary != sK19 <- (~29) [avatar component clause 553] 556. ~29 | ~25 [avatar split clause 551,513,553] 557. ~predp(paul) | room(sK19) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 377,308] 558. ~predp(paul) | room(sK19) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 557,307] 559. ~predp(paul) | room(sK19) | ~room(paul) | ~room(mary) [subsumption resolution 558,306] 560. ~predp(paul) | room(sK19) | ~room(mary) [subsumption resolution 559,305] 561. ~predp(paul) | room(sK19) [subsumption resolution 560,304] 563. 30 <=> room(sK19) [avatar definition] 565. room(sK19) <- (30) [avatar component clause 563] 566. 30 | ~25 [avatar split clause 561,513,563] 567. ~room(X2) | predp(X2) <- (12, 13) [subsumption resolution 443,448] 583. predp(paul) <- (12, 13) [resolution 567,305] 593. $false <- (12, 13, ~25) [subsumption resolution 583,515] 594. ~12 | ~13 | 25 [avatar contradiction clause 593] 595. ~room(X0) | strong(X0) <- (21) [subsumption resolution 491,365] 598. strong(paul) <- (21) [resolution 595,305] 687. predp(paul) | ~room(paul) <- (21) [resolution 598,360] 688. ~room(paul) <- (21, ~25) [subsumption resolution 687,515] 689. $false <- (21, ~25) [subsumption resolution 688,305] 690. ~21 | 25 [avatar contradiction clause 689] 840. alice = sK19 | fred = sK19 | paul = sK19 | mary = sK19 | john = sK19 <- (30) [resolution 309,565] 988. fred = sK19 | paul = sK19 | mary = sK19 | john = sK19 <- (~26, 30) [subsumption resolution 840,525] 989. paul = sK19 | mary = sK19 | john = sK19 <- (~26, ~27, 30) [subsumption resolution 988,535] 990. mary = sK19 | john = sK19 <- (~26, ~27, ~28, 30) [subsumption resolution 989,545] 991. john = sK19 <- (~26, ~27, ~28, ~29, 30) [subsumption resolution 990,555] 992. $false <- (~24, ~26, ~27, ~28, ~29, 30) [subsumption resolution 991,511] 993. 24 | 26 | 27 | 28 | 29 | ~30 [avatar contradiction clause 992] 994. $false [avatar sat refutation 454,492,516,526,536,546,556,566,594,690,993] % SZS output end Proof for 7258991152227448117203968 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.042 s % ------------------------------ % ------------------------------
0.448763
Bonnie is the only person in the room. “Bonnie does not practice and performs acrobatic dance routines” only if “Bonnie is not a night owl”. It is not the case that “Bonnie neither does not practice and performs acrobatic dance routines nor collects classic novels”. Only one person in the room enjoys landscape photography. If someone enjoys landscape photography then he/she practices and performs acrobatic dance routines or is a night owl or both.
Bonnie collects classic novels.
entailment
room(bonnie)&(![X]:(room(X)=>(X='bonnie')))& ((does_not_practice_and_performs_acrobatic_dance_routines(bonnie))=>(is_not_a_night_owl(bonnie)))& ((plays_the_violin(bonnie))<=>(enjoys_kayaking(bonnie)))& ((~?[X]:(room(X)=>(((does_not_enjoy_kayaking(X))|(plays_the_violin(X))))))=>(![X]:(anywhere(X)=>(((does_not_have_completed_a_triathlon(X))|(does_not_train_for_and_competes_in_international_triathlons(X)))))))& ((is_a_night_owl(bonnie))=>(does_not_practice_and_performs_acrobatic_dance_routines(bonnie)))& (((enjoys_camping_and_organizing_outdoor_survival_workshops(bonnie))=>(plays_the_violin(bonnie)))&((~(enjoys_camping_and_organizing_outdoor_survival_workshops(bonnie)))=>(is_a_night_owl(bonnie))))& (~(~((does_not_practice_and_performs_acrobatic_dance_routines(bonnie))|(collects_classic_novels(bonnie)))))& ((![X]:((does_not_play_the_violin(X))=>(practices_and_performs_acrobatic_dance_routines(X)))))& (![X]:(anywhere(X)=>(((does_not_enjoy_landscape_photography(X))|(enjoys_landscape_photography(X))))))& (((?[X]:(room(X)&enjoys_landscape_photography(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_landscape_photography(X))&(enjoys_landscape_photography(Y)))=>(X=Y)))))& (is_not_a_drone_photographer(bonnie))& (plays_the_violin(bonnie))& (has_completed_a_triathlon(bonnie))& (((?[X]:(room(X)&enjoys_kayaking(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_kayaking(X))&(enjoys_kayaking(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((does_not_have_completed_a_triathlon(X))=>(((enjoys_landscape_photography(X))|(practices_and_performs_acrobatic_dance_routines(X))))))))& ((![X]:((enjoys_landscape_photography(X))=>(((practices_and_performs_acrobatic_dance_routines(X))|(is_a_night_owl(X)))))))& (![X]:(room(X)=>(((collects_classic_novels(X))|(does_not_train_for_and_competes_in_international_triathlons(X))))))& (((?[X]:(~room(X)&enjoys_landscape_photography(X)))&(![X,Y]:((~room(X)&~room(Y)&(enjoys_landscape_photography(X))&(enjoys_landscape_photography(Y)))=>(X=Y)))))& (trains_for_and_competes_in_international_triathlons(bonnie))& (![X]:(room(X)=>(((plays_the_violin(X))=>(enjoys_kayaking(X))))))& (((?[X]:(anywhere(X)&collects_classic_novels(X)))))& (enjoys_kayaking(bonnie))& (enjoys_camping_and_organizing_outdoor_survival_workshops(bonnie))& (frequently_participates_in_hackathons_and_coding_competitions(bonnie))& (![X]:(room(X)=>(((enjoys_landscape_photography(X))=>(trains_for_and_competes_in_international_triathlons(X))))))
room(bonnie)&(![X]:(room(X)=>(X='bonnie')))& collects_classic_novels(bonnie)
[ "p0", "p1", "p6", "p9", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 6776446243073800655659584 % SZS output start Proof for 6776446243073800655659584 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 45. ~predk(mary) => ~predd(mary) [input p1] 50. ~~(predg(mary) | ~predk(mary)) [input p6] 53. ! [X0,X1] : ((preda(X1) & preda(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (preda(X0) & room(X0)) [input p9] 59. ! [X0] : (preda(X0) => (predd(X0) | predk(X0))) [input p15] 69. ~(predg(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 71. predg(mary) | ~predk(mary) [flattening 50] 72. ! [X0,X1] : ((preda(X1) & preda(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (preda(X2) & room(X2)) [rectify 53] 148. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 149. ~predd(mary) | predk(mary) [ennf transformation 45] 157. ! [X0,X1] : (X0 = X1 | (~preda(X1) | ~preda(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (preda(X2) & room(X2)) [ennf transformation 72] 158. ! [X0,X1] : (X0 = X1 | ~preda(X1) | ~preda(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (preda(X2) & room(X2)) [flattening 157] 163. ! [X0] : ((predd(X0) | predk(X0)) | ~preda(X0)) [ennf transformation 59] 164. ! [X0] : (predd(X0) | predk(X0) | ~preda(X0)) [flattening 163] 173. ~predg(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 69] 179. ? [X2] : (preda(X2) & room(X2)) => (preda(sK1) & room(sK1)) [choice axiom] 180. ! [X0,X1] : (X0 = X1 | ~preda(X1) | ~preda(X0) | ~room(X1) | ~room(X0)) & (preda(sK1) & room(sK1)) [skolemisation 158,179] 187. ? [X0] : (mary != X0 & room(X0)) => (mary != sK5 & room(sK5)) [choice axiom] 188. ~predg(mary) | (mary != sK5 & room(sK5)) | ~room(mary) [skolemisation 173,187] 270. room(mary) [cnf transformation 148] 271. ~room(X0) | mary = X0 [cnf transformation 148] 272. ~predd(mary) | predk(mary) [cnf transformation 149] 279. predg(mary) | ~predk(mary) [cnf transformation 71] 282. room(sK1) [cnf transformation 180] 283. preda(sK1) [cnf transformation 180] 291. ~preda(X0) | predk(X0) | predd(X0) [cnf transformation 164] 303. ~predg(mary) | room(sK5) | ~room(mary) [cnf transformation 188] 304. ~predg(mary) | mary != sK5 | ~room(mary) [cnf transformation 188] 306. 1 <=> predk(mary) [avatar definition] 310. 2 <=> predd(mary) [avatar definition] 312. ~predd(mary) <- (~2) [avatar component clause 310] 313. 1 | ~2 [avatar split clause 272,310,306] 349. 10 <=> predg(mary) [avatar definition] 352. ~1 | 10 [avatar split clause 279,349,306] 356. ~predg(mary) | mary != sK5 [subsumption resolution 304,270] 358. 11 <=> mary = sK5 [avatar definition] 360. mary != sK5 <- (~11) [avatar component clause 358] 361. ~11 | ~10 [avatar split clause 356,349,358] 362. ~predg(mary) | room(sK5) [subsumption resolution 303,270] 364. 12 <=> room(sK5) [avatar definition] 366. room(sK5) <- (12) [avatar component clause 364] 367. 12 | ~10 [avatar split clause 362,349,364] 369. mary = sK1 [resolution 271,282] 372. preda(mary) [backward demodulation 283,369] 376. predk(mary) | predd(mary) [resolution 291,372] 389. predk(mary) <- (~2) [subsumption resolution 376,312] 390. 1 | 2 [avatar split clause 389,310,306] 391. mary = sK5 <- (12) [resolution 366,271] 392. $false <- (~11, 12) [subsumption resolution 391,360] 393. 11 | ~12 [avatar contradiction clause 392] 394. $false [avatar sat refutation 313,352,361,367,390,393] % SZS output end Proof for 6776446243073800655659584 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.019 s % ------------------------------ % ------------------------------
0.170577
There is a room. Elizabeth dreamt that “more than one person in the room does not bake bread at home”. Everyone in the room who is a culinary enthusiast who experiments with international cuisines works on fridays. More than one person in the room is a culinary enthusiast who experiments with international cuisines. No one in the room is an expert in identifying and foraging wild edible plants if they neither maintains a personal blog focused on cybersecurity tips nor does not use a Windows laptop. Everyone in the room who is an expert in identifying and foraging wild edible plants bakes bread at home. Everyone in the room writes and illustrates their own graphic novels only if they is a culinary enthusiast who experiments with international cuisines. Everyone anywhere who is a culinary enthusiast who experiments with international cuisines or uses a Windows laptop or both does not bake bread at home. Everyone anywhere who does not bake bread at home hosts regular game nights featuring complex strategy games. Everyone anywhere enjoys snowboarding if they hosts regular game nights featuring complex strategy games. Everyone in the room enjoys snowboarding if and only if they does enjoy trail running or maintains a personal blog focused on cybersecurity tips or both. No one in the room who plays the drums develops open-source software projects in their free time. Everyone in the room who is an expert in identifying and foraging wild edible plants is a client of Costco and enjoys snowboarding. Everyone in the room is a client of Costco and enjoys snowboarding only if they designs and sews custom cosplay costumes for conventions. Everyone outside the room who maintains a personal blog focused on cybersecurity tips travels domestically frequently. Everyone in the room maintains a personal blog focused on cybersecurity tips if they neither creates YouTube content nor collects historical artifacts related to ancient civilizations. If someone creates YouTube content, maintains a personal blog focused on cybersecurity tips or works on fridays then he/she enjoys snowboarding. Everyone in the room who does not bake bread at home designs and sews custom cosplay costumes for conventions. Everyone outside the room is a client of Costco if they designs and sews custom cosplay costumes for conventions. Everyone in the room designs and sews custom cosplay costumes for conventions or does not use a Windows laptop. If someone hosts regular game nights featuring complex strategy games then he/she is an active member of a local robotics club. If someone works on fridays then he/she uses a Windows laptop. Everyone outside the room designs and sews custom cosplay costumes for conventions only if they bakes bread at home. Only one person in the room is a client of Costco.
Everyone in the room does not collect historical artifacts related to ancient civilizations or works on fridays.
neutral
(there_is_a_room)& ((elizabeth_dream=>((?[X,Y]:(room(X)&room(Y)&(does_not_bake_bread_at_home(X)&does_not_bake_bread_at_home(Y))&(X!=Y))))))& (![X]:(room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))=>(works_on_fridays(X))))))& ((?[X,Y]:(room(X)&room(Y)&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X)&is_a_culinary_enthusiast_who_experiments_with_international_cuisines(Y))&(X!=Y))))& (~?[X]:(room(X)=>(((~((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))|(does_not_use_a_Windows_laptop(X))))=>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))& (![X]:(room(X)=>(((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))=>(bakes_bread_at_home(X))))))& (![X]:(room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))<=(writes_and_illustrates_their_own_graphic_novels(X))))))& (![X]:(anywhere(X)=>(((((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))|(uses_a_Windows_laptop(X))))=>(does_not_bake_bread_at_home(X))))))& (![X]:(anywhere(X)=>(((does_not_bake_bread_at_home(X))=>(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))& (![X]:(anywhere(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))=>(enjoys_snowboarding(X))))))& (![X]:(room(X)=>(((enjoys_snowboarding(X))<=>(((does_enjoy_trail_running(X))|(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))))& (~?[X]:(room(X)=>(((plays_the_drums(X))=>(develops_open-source_software_projects_in_their_free_time(X))))))& (![X]:(room(X)=>(((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))=>(((is_a_client_of_Costco(X))&(enjoys_snowboarding(X))))))))& (![X]:(room(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))<=(((is_a_client_of_Costco(X))&(enjoys_snowboarding(X))))))))& (![X]:(~room(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))=>(travels_domestically_frequently(X))))))& (![X]:(room(X)=>(((~((creates_YouTube_content(X))|(collects_historical_artifacts_related_to_ancient_civilizations(X))))=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))& ((![X]:((((creates_YouTube_content(X))|(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))|(works_on_fridays(X))))=>(enjoys_snowboarding(X)))))& (![X]:(room(X)=>(((does_not_bake_bread_at_home(X))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))& (![X]:(~room(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))=>(is_a_client_of_Costco(X))))))& (![X]:(room(X)=>(((does_not_use_a_Windows_laptop(X))|(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))& ((![X]:((hosts_regular_game_nights_featuring_complex_strategy_games(X))=>(is_an_active_member_of_a_local_robotics_club(X)))))& ((![X]:((works_on_fridays(X))=>(uses_a_Windows_laptop(X)))))& (![X]:(~room(X)=>(((bakes_bread_at_home(X))<=(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))& (((?[X]:(room(X)&is_a_client_of_Costco(X)))&(![X,Y]:((room(X)&room(Y)&(is_a_client_of_Costco(X))&(is_a_client_of_Costco(Y)))=>(X=Y)))))
(there_is_a_room)& ![X]:(room(X)=>(((works_on_fridays(X))|(does_not_collect_historical_artifacts_related_to_ancient_civilizations(X)))))
[]
null
0.08865
Henry is the only person in the room. If everyone in the room competes in national level swimming championships or does not stream on Twitch then everyone in the room regularly contributes to tech forums and online communities. If no one in the room cannot play the flute or collects historical artifacts related to ancient civilizations then Henry who collects historical artifacts related to ancient civilizations enjoys stargazing. If Henry owns a smartwatch then only one person outside the room is a chess master who participates in national tournaments otherwise Henry neither collects first edition books nor is a chess master who participates in national tournaments. Everyone in the room owns a smartwatch. Everyone in the room is a Linux enthusiast if they owns a smartwatch. If someone collects classic novels and enjoys stargazing then he/she collects historical artifacts related to ancient civilizations and vice versa. Everyone anywhere who enjoys stargazing can play the flute. Henry practices zumba. Henry streams on Twitch. Everyone in the room who enjoys stargazing does not enjoy stargazing.
Not everyone in the room enjoys stargazing.
entailment
room(henry)&(![X]:(room(X)=>(X='henry')))& ((![X]:(room(X)=>(((does_not_stream_on_Twitch(X))|(competes_in_national_level_swimming_championships(X))))))=>(![X]:(room(X)=>(regularly_contributes_to_tech_forums_and_online_communities(X)))))& ((~?[X]:(room(X)=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))|(cannot_play_the_flute(X))))))=>((collects_historical_artifacts_related_to_ancient_civilizations(henry))&(enjoys_stargazing(henry))))& (((owns_a_smartwatch(henry))=>(((?[X]:(~room(X)&is_a_chess_master_who_participates_in_national_tournaments(X)))&(![X,Y]:((~room(X)&~room(Y)&(is_a_chess_master_who_participates_in_national_tournaments(X))&(is_a_chess_master_who_participates_in_national_tournaments(Y)))=>(X=Y))))))&((~(owns_a_smartwatch(henry)))=>(~((collects_first_edition_books(henry))|(is_a_chess_master_who_participates_in_national_tournaments(henry))))))& (![X]:(room(X)=>(owns_a_smartwatch(X))))& (![X]:(room(X)=>(((owns_a_smartwatch(X))=>(is_a_Linux_enthusiast(X))))))& ((![X]:((((collects_classic_novels(X))&(enjoys_stargazing(X))))<=>(collects_historical_artifacts_related_to_ancient_civilizations(X)))))& (![X]:(anywhere(X)=>(((enjoys_stargazing(X))=>(can_play_the_flute(X))))))& (practices_zumba(henry))& (streams_on_Twitch(henry))& (![X]:(room(X)=>(((enjoys_stargazing(X))=>(does_not_enjoy_stargazing(X))))))
room(henry)&(![X]:(room(X)=>(X='henry')))& ~![X]:(room(X)=>(enjoys_stargazing(X)))
[ "p0", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 985061681281959506448373 % SZS output start Proof for 985061681281959506448373 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 54. ! [X0] : (room(X0) => (predd(X0) => ~predd(X0))) [input p10] 55. ~(~! [X0] : (room(X0) => predd(X0)) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 58. ~(~! [X0] : (room(X0) => predd(X0)) & ! [X1] : (room(X1) => mary = X1) & room(mary)) [rectify 55] 137. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 146. ! [X0] : ((~predd(X0) | ~predd(X0)) | ~room(X0)) [ennf transformation 54] 147. ! [X0] : (~predd(X0) | ~predd(X0) | ~room(X0)) [flattening 146] 148. ! [X0] : (predd(X0) | ~room(X0)) | ? [X1] : (mary != X1 & room(X1)) | ~room(mary) [ennf transformation 58] 154. ? [X1] : (mary != X1 & room(X1)) => (mary != sK2 & room(sK2)) [choice axiom] 155. ! [X0] : (predd(X0) | ~room(X0)) | (mary != sK2 & room(sK2)) | ~room(mary) [skolemisation 148,154] 237. room(mary) [cnf transformation 137] 238. ~room(X0) | mary = X0 [cnf transformation 137] 248. ~predd(X0) | ~predd(X0) | ~room(X0) [cnf transformation 147] 249. predd(X0) | ~room(X0) | room(sK2) | ~room(mary) [cnf transformation 155] 250. predd(X0) | ~room(X0) | mary != sK2 | ~room(mary) [cnf transformation 155] 251. ~predd(X0) | ~room(X0) [duplicate literal removal 248] 298. predd(X0) | ~room(X0) | mary != sK2 [subsumption resolution 250,237] 299. ~room(X0) | mary != sK2 [subsumption resolution 298,251] 301. 11 <=> mary = sK2 [avatar definition] 303. mary != sK2 <- (~11) [avatar component clause 301] 305. 12 <=> ! [X0] : ~room(X0) [avatar definition] 306. ~room(X0) <- (12) [avatar component clause 305] 307. ~11 | 12 [avatar split clause 299,305,301] 308. predd(X0) | ~room(X0) | room(sK2) [subsumption resolution 249,237] 309. ~room(X0) | room(sK2) [subsumption resolution 308,251] 311. 13 <=> room(sK2) [avatar definition] 313. room(sK2) <- (13) [avatar component clause 311] 314. 13 | 12 [avatar split clause 309,305,311] 315. $false <- (12) [resolution 306,237] 316. ~12 [avatar contradiction clause 315] 323. mary = sK2 <- (13) [resolution 238,313] 324. $false <- (~11, 13) [subsumption resolution 323,303] 325. 11 | ~13 [avatar contradiction clause 324] 326. $false [avatar sat refutation 307,314,316,325] % SZS output end Proof for 985061681281959506448373 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0
There is a room. Either “everyone in the room does not have a vast collection of first-edition science fiction novels or travels domestically frequently” or “everyone in the room does not have a vast collection of first-edition science fiction novels or is a coffee connoisseur” but not both. “Everyone in the room does not enjoy watercolor painting or does not volunteer for local environmental conservation projects” only if “everyone in the room who does not enjoy watercolor painting is a coffee connoisseur”. Everyone outside the room owns a high-end gaming PC with custom-built components if they is a coffee connoisseur. Everyone in the room who is a coffee connoisseur owns a high-end gaming PC with custom-built components. At least one person in the room does not enjoy watercolor painting. No one in the room enjoys stargazing if and only if they regularly goes on multi-day backpacking trips in national parks. No one in the room does not play as a goalkeeper for a local amateur soccer team only if they enjoys stargazing, is a tea enthusiast or plays as a goalkeeper for a local amateur soccer team. Everyone in the room has lived in exactly three countries if they does practice yoga. Everyone in the room who has lived in exactly three countries either enjoys watercolor painting or is a tea enthusiast but not both. Everyone in the room who has lived in exactly three countries is not a coffee connoisseur. If someone owns a high-end gaming PC with custom-built components then he/she is a coffee connoisseur and vice versa. Everyone in the room who does not own an Android phone does practice yoga. Everyone in the room does not host themed dinner parties featuring gourmet home-cooked meals or does practice yoga. Everyone in the room either writes in-depth travel guides for off-the-beaten-path destinations or has lived in exactly three countries but not both if they is a coffee connoisseur. Everyone in the room has lived in exactly three countries if they neither does not enjoy stargazing nor does not make intricate hand-cut paper art for exhibitions.
Everyone in the room does practice yoga.
contradiction
(there_is_a_room)& ((![X]:(room(X)=>(((travels_domestically_frequently(X))|(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))))))<~>(![X]:(room(X)=>(((is_a_coffee_connoisseur(X))|(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X)))))))& ((![X]:(room(X)=>(((does_not_volunteer_for_local_environmental_conservation_projects(X))|(does_not_enjoy_watercolor_painting(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_watercolor_painting(X))=>(is_a_coffee_connoisseur(X)))))))& (![X]:(~room(X)=>(((is_a_coffee_connoisseur(X))=>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))& (![X]:(room(X)=>(((is_a_coffee_connoisseur(X))=>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))& (((?[X]:(room(X)&does_not_enjoy_watercolor_painting(X)))))& (~?[X]:(room(X)=>(((enjoys_stargazing(X))<=>(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))& (~?[X]:(room(X)=>(((((enjoys_stargazing(X))|(is_a_tea_enthusiast(X))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))<=(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (![X]:(room(X)=>(((does_practice_yoga(X))=>(has_lived_in_exactly_three_countries(X))))))& (![X]:(room(X)=>(((has_lived_in_exactly_three_countries(X))=>(((enjoys_watercolor_painting(X))<~>(is_a_tea_enthusiast(X))))))))& (![X]:(room(X)=>(((has_lived_in_exactly_three_countries(X))=>(is_not_a_coffee_connoisseur(X))))))& ((![X]:((owns_a_high-end_gaming_PC_with_custom-built_components(X))<=>(is_a_coffee_connoisseur(X)))))& (![X]:(room(X)=>(((does_not_own_an_Android_phone(X))=>(does_practice_yoga(X))))))& (![X]:(room(X)=>(((does_practice_yoga(X))|(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (![X]:(room(X)=>(((is_a_coffee_connoisseur(X))=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))<~>(has_lived_in_exactly_three_countries(X))))))))& (![X]:(room(X)=>(((~((does_not_enjoy_stargazing(X))|(does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))))=>(has_lived_in_exactly_three_countries(X))))))
(there_is_a_room)& ![X]:(room(X)=>(does_practice_yoga(X)))
[ "p5", "p6", "p7", "p8", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 311015922128951740281608 % SZS output start Proof for 311015922128951740281608 49. ? [X0] : (~predf(X0) & room(X0)) [input p5] 50. ~? [X0] : (room(X0) => (predd(X0) <=> predu(X0))) [input p6] 51. ~? [X0] : (room(X0) => (~predl(X0) => (predl(X0) | prede(X0) | predd(X0)))) [input p7] 52. ! [X0] : (room(X0) => (predk(X0) => predc(X0))) [input p8] 53. ! [X0] : (room(X0) => (predc(X0) => (predf(X0) <~> prede(X0)))) [input p9] 60. ! [X0] : (room(X0) => predk(X0)) & there_is_a_room [input hypothesis] 67. ~? [X0] : (room(X0) => (prede(X0) | predd(X0))) [pure predicate removal 51] 70. ! [X0] : (room(X0) => predk(X0)) [pure predicate removal 60] 151. ! [X0] : ((predd(X0) <~> predu(X0)) & room(X0)) [ennf transformation 50] 152. ! [X0] : ((~prede(X0) & ~predd(X0)) & room(X0)) [ennf transformation 67] 153. ! [X0] : (~prede(X0) & ~predd(X0) & room(X0)) [flattening 152] 154. ! [X0] : ((predc(X0) | ~predk(X0)) | ~room(X0)) [ennf transformation 52] 155. ! [X0] : (predc(X0) | ~predk(X0) | ~room(X0)) [flattening 154] 156. ! [X0] : (((predf(X0) <~> prede(X0)) | ~predc(X0)) | ~room(X0)) [ennf transformation 53] 157. ! [X0] : ((predf(X0) <~> prede(X0)) | ~predc(X0) | ~room(X0)) [flattening 156] 163. ! [X0] : (predk(X0) | ~room(X0)) [ennf transformation 70] 173. ? [X0] : (~predf(X0) & room(X0)) => (~predf(sK3) & room(sK3)) [choice axiom] 174. ~predf(sK3) & room(sK3) [skolemisation 49,173] 175. ! [X0] : (((~predu(X0) | ~predd(X0)) & (predu(X0) | predd(X0))) & room(X0)) [nnf transformation 151] 176. ! [X0] : ((~predu(X0) | ~predd(X0)) & (predu(X0) | predd(X0)) & room(X0)) [flattening 175] 177. ! [X0] : (((~prede(X0) | ~predf(X0)) & (prede(X0) | predf(X0))) | ~predc(X0) | ~room(X0)) [nnf transformation 157] 274. ~predf(sK3) [cnf transformation 174] 275. room(X0) [cnf transformation 176] 280. ~prede(X0) [cnf transformation 153] 281. predc(X0) | ~predk(X0) | ~room(X0) [cnf transformation 155] 282. prede(X0) | predf(X0) | ~predc(X0) | ~room(X0) [cnf transformation 177] 288. predk(X0) | ~room(X0) [cnf transformation 163] 343. ~predk(X0) | predc(X0) [subsumption resolution 281,275] 344. predf(X0) | ~predc(X0) | ~room(X0) [subsumption resolution 282,280] 345. ~predc(X0) | predf(X0) [subsumption resolution 344,275] 349. predk(X0) [subsumption resolution 288,275] 353. predc(X0) [resolution 343,349] 354. predf(X0) [resolution 353,345] 356. $false [resolution 354,274] % SZS output end Proof for 311015922128951740281608 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.020807
There is a room. Everyone in the room does not enjoy snowboarding, writes a travel blog or enjoys snowboarding only if they is dedicated to sustainable living and zero-waste practices. Everyone in the room enjoys snowboarding if they does not enjoy snowboarding. If someone enjoys snowboarding then he/she does not enjoy snowboarding. Everyone in the room is dedicated to sustainable living and zero-waste practices. If someone writes a travel blog, is dedicated to sustainable living and zero-waste practices and practices digital art then he/she writes a travel blog. Everyone outside the room is dedicated to sustainable living and zero-waste practices if they neither enjoys snowboarding nor does not enjoy snowboarding. Everyone anywhere is not dedicated to sustainable living and zero-waste practices and does not write a travel blog if they is not dedicated to sustainable living and zero-waste practices.
Everyone in the room enjoys snowboarding.
entailment
(there_is_a_room)& (![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))<=(((does_not_enjoy_snowboarding(X))|(writes_a_travel_blog(X))|(enjoys_snowboarding(X))))))))& (![X]:(room(X)=>(((does_not_enjoy_snowboarding(X))=>(enjoys_snowboarding(X))))))& ((![X]:((enjoys_snowboarding(X))=>(does_not_enjoy_snowboarding(X)))))& (![X]:(room(X)=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))& ((![X]:((((writes_a_travel_blog(X))&(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))&(practices_digital_art(X))))=>(writes_a_travel_blog(X)))))& (![X]:(~room(X)=>(((~((enjoys_snowboarding(X))|(does_not_enjoy_snowboarding(X))))=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))& (![X]:(anywhere(X)=>(((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))&(does_not_write_a_travel_blog(X))))))))& (![X]:(room(X)=>(((enjoys_snowboarding(X))<=>(does_not_enjoy_snowboarding(X))))))& (![X]:(room(X)=>(((does_not_enjoy_snowboarding(X))=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))
(there_is_a_room)& ![X]:(room(X)=>(enjoys_snowboarding(X)))
[ "p0", "p2", "p3", "hypothesis" ]
% SZS status Unsatisfiable for 3020791847186614880338606 % SZS output start Proof for 3020791847186614880338606 44. there_is_a_room [input p0] 46. ! [X0] : (room(X0) => (~predc(X0) => predc(X0))) [input p2] 47. ! [X0] : (predc(X0) => ~predc(X0)) [input p3] 54. ~(! [X0] : (room(X0) => predc(X0)) & there_is_a_room) [input hypothesis] 131. ! [X0] : ((predc(X0) | predc(X0)) | ~room(X0)) [ennf transformation 46] 132. ! [X0] : (predc(X0) | predc(X0) | ~room(X0)) [flattening 131] 133. ! [X0] : (~predc(X0) | ~predc(X0)) [ennf transformation 47] 142. ? [X0] : (~predc(X0) & room(X0)) | ~there_is_a_room [ennf transformation 54] 145. ? [X0] : (~predc(X0) & room(X0)) => (~predc(sK0) & room(sK0)) [choice axiom] 146. (~predc(sK0) & room(sK0)) | ~there_is_a_room [skolemisation 142,145] 228. there_is_a_room [cnf transformation 44] 231. predc(X0) | predc(X0) | ~room(X0) [cnf transformation 132] 232. ~predc(X0) | ~predc(X0) [cnf transformation 133] 239. room(sK0) | ~there_is_a_room [cnf transformation 146] 243. ~predc(X0) [duplicate literal removal 232] 244. ~room(X0) | predc(X0) [duplicate literal removal 231] 246. room(sK0) [subsumption resolution 239,228] 247. predc(sK0) [resolution 244,246] 248. $false [subsumption resolution 247,243] % SZS output end Proof for 3020791847186614880338606 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0
Eulalia, Gary, Jessica, Robert are the only persons in the room. “Everyone in the room does not have a vast collection of first-edition science fiction novels or plays the drums” only if “everyone in the room who plays the drums or enjoys salsa dancing or both hosts a popular podcast about emerging technologies”. “Everyone in the room writes in-depth travel guides for off-the-beaten-path destinations if they collects rare minerals” unless “everyone in the room collects rare minerals or does not play the drums”. If “someone in the room enjoys origami and does not enjoy salsa dancing” then “no one in the room who has a vast collection of first-edition science fiction novels, enjoys origami or is a night owl plays the drums”. If “everyone in the room does not enjoy origami or collect rare sneakers” then “everyone in the room who enjoys salsa dancing and is a night owl is a culinary enthusiast who experiments with international cuisines”. Everyone in the room hosts a popular podcast about emerging technologies if they collects vintage stamps. It is not the case that “at least one person in the room collects rare minerals”. Everyone in the room who plays the drums collects vintage stamps. Everyone in the room who collects vintage stamps enjoys rooftop gardening. Everyone in the room who collect rare sneakers enjoys snowboarding or is a night owl or both. Everyone outside the room has a vast collection of first-edition science fiction novels, writes in-depth travel guides for off-the-beaten-path destinations or is a culinary enthusiast who experiments with international cuisines if they is a culinary enthusiast who experiments with international cuisines and vice versa. Everyone in the room who is a culinary enthusiast who experiments with international cuisines enjoys origami. Everyone in the room who collects vintage stamps plays the drums. Everyone in the room enjoys rooftop gardening. Everyone anywhere does not have a vast collection of first-edition science fiction novels if they enjoys snowboarding. Everyone in the room enjoys snowboarding. Everyone in the room who enjoys rooftop gardening plays the drums. Everyone in the room either enjoys rooftop gardening or collect rare sneakers but not both if they enjoys rooftop gardening.
Gary collect rare sneakers.
contradiction
room(eulalia)&room(gary)&room(jessica)&room(robert)&(![X]:(room(X)=>(X='eulalia'|X='gary'|X='jessica'|X='robert')))& ((![X]:(room(X)=>(((plays_the_drums(X))|(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))))))=>(![X]:(room(X)=>(((((plays_the_drums(X))|(enjoys_salsa_dancing(X))))=>(hosts_a_popular_podcast_about_emerging_technologies(X)))))))& (~(![X]:(room(X)=>(((does_not_play_the_drums(X))|(collects_rare_minerals(X))))))=>(![X]:(room(X)=>(((collects_rare_minerals(X))=>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X)))))))& ((?[X]:(room(X)&(((enjoys_origami(X))&(does_not_enjoy_salsa_dancing(X))))))=>(~?[X]:(room(X)=>(((((has_a_vast_collection_of_first-edition_science_fiction_novels(X))|(enjoys_origami(X))|(is_a_night_owl(X))))=>(plays_the_drums(X)))))))& ((![X]:(room(X)=>(((collect_rare_sneakers(X))|(does_not_enjoy_origami(X))))))=>(![X]:(room(X)=>(((((enjoys_salsa_dancing(X))&(is_a_night_owl(X))))=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X)))))))& (![X]:(room(X)=>(((collects_vintage_stamps(X))=>(hosts_a_popular_podcast_about_emerging_technologies(X))))))& (~(((?[X]:(room(X)&collects_rare_minerals(X))))))& (![X]:(room(X)=>(((plays_the_drums(X))=>(collects_vintage_stamps(X))))))& (![X]:(room(X)=>(((collects_vintage_stamps(X))=>(enjoys_rooftop_gardening(X))))))& (![X]:(room(X)=>(((collect_rare_sneakers(X))=>(((enjoys_snowboarding(X))|(is_a_night_owl(X))))))))& (![X]:(~room(X)=>(((((has_a_vast_collection_of_first-edition_science_fiction_novels(X))|(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))|(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))<=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))& (![X]:(room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))=>(enjoys_origami(X))))))& (![X]:(room(X)=>(((collects_vintage_stamps(X))=>(plays_the_drums(X))))))& (![X]:(room(X)=>(enjoys_rooftop_gardening(X))))& (![X]:(anywhere(X)=>(((enjoys_snowboarding(X))=>(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))))))& (![X]:(room(X)=>(enjoys_snowboarding(X))))& (![X]:(room(X)=>(((enjoys_rooftop_gardening(X))=>(plays_the_drums(X))))))& (![X]:(room(X)=>(((((enjoys_salsa_dancing(X))&(is_a_night_owl(X))))=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))& (![X]:(room(X)=>(((~((enjoys_origami(X))|(collects_vintage_stamps(X))))=>(enjoys_rooftop_gardening(X))))))& (![X]:(room(X)=>(((enjoys_rooftop_gardening(X))=>(((enjoys_rooftop_gardening(X))<~>(collect_rare_sneakers(X))))))))& (![X]:(room(X)=>(((((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(reads_mystery_novels(X))))=>(collects_vintage_stamps(X))))))
room(eulalia)&room(gary)&room(jessica)&room(robert)&(![X]:(room(X)=>(X='eulalia'|X='gary'|X='jessica'|X='robert')))& collect_rare_sneakers(gary)
[ "p0", "p13", "p19", "hypothesis" ]
% SZS status Unsatisfiable for 2265582322694978827254208 % SZS output start Proof for 2265582322694978827254208 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 57. ! [X0] : (room(X0) => predj(X0)) [input p13] 63. ! [X0] : (room(X0) => (predj(X0) => (predj(X0) <~> predh(X0)))) [input p19] 65. predh(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 145. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 146. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 145] 165. ! [X0] : (predj(X0) | ~room(X0)) [ennf transformation 57] 175. ! [X0] : (((predj(X0) <~> predh(X0)) | ~predj(X0)) | ~room(X0)) [ennf transformation 63] 176. ! [X0] : ((predj(X0) <~> predh(X0)) | ~predj(X0) | ~room(X0)) [flattening 175] 177. predh(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 65] 178. predh(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 177] 187. ! [X0] : (((~predh(X0) | ~predj(X0)) & (predh(X0) | predj(X0))) | ~predj(X0) | ~room(X0)) [nnf transformation 176] 270. room(paul) [cnf transformation 146] 291. ~room(X0) | predj(X0) [cnf transformation 165] 298. ~predh(X0) | ~predj(X0) | ~predj(X0) | ~room(X0) [cnf transformation 187] 304. predh(paul) [cnf transformation 178] 305. ~predh(X0) | ~predj(X0) | ~room(X0) [duplicate literal removal 298] 349. ~predh(X0) | ~room(X0) [subsumption resolution 305,291] 362. ~room(paul) [resolution 349,304] 363. $false [subsumption resolution 362,270] % SZS output end Proof for 2265582322694978827254208 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.031 s % ------------------------------ % ------------------------------
0.000809
Margarita is the only person in the room. Either “it is not the case that “at least one person in the room neither volunteers for local environmental conservation projects nor has a curated collection of mid-century modern furniture”” or “Margarita is a craft beer aficionado” but not both. Either “everyone anywhere enjoys rooftop gardening or does not volunteer for local environmental conservation projects” or “Margarita can play the harmonica” but not both. If “Margarita collects foreign coins” then “everyone in the room is an active member of a local robotics club”. At least one person in the room enjoys rooftop gardening. Everyone in the room owns a smartwatch if they neither does not have a curated collection of mid-century modern furniture nor enjoys skydiving. Margarita is a craft beer aficionado. Margarita participates in citizen science projects related to wildlife monitoring. Everyone anywhere does not practice tai chi or does not own a significant collection of rare gemstones and minerals. Margarita owns a significant collection of rare gemstones and minerals. Everyone in the room who plays the drums can play the harmonica. Margarita is allergic to anything. Margarita is a certified scuba diver with advanced underwater photography skills. Everyone in the room who is an active member of a local robotics club neither can play the flute nor enjoys skydiving. Everyone in the room who is not a certified scuba diver with advanced underwater photography skills neither participates in citizen science projects related to wildlife monitoring nor is not dedicated to sustainable living and zero-waste practices. Only one person in the room enjoys making ceramics. More than one person anywhere neither practices tai chi nor is allergic to anything. Everyone in the room who is allergic to anything owns a significant collection of rare gemstones and minerals. Everyone in the room has a specialized collection of handmade artisan pottery if they owns a significant collection of rare gemstones and minerals. Everyone in the room who owns a smartwatch collects comic books. Everyone outside the room who has a specialized collection of handmade artisan pottery, is a certified scuba diver with advanced underwater photography skills or collects comic books is right-handed. Everyone anywhere is an active member of a local robotics club if they collects foreign coins. Margarita is an active member of a local robotics club. Margarita can play the harmonica. Everyone in the room who has a curated collection of mid-century modern furniture drives a hybrid car, is an avid hiker or plays the drums.
Margarita is dedicated to sustainable living and zero-waste practices, participates in citizen science projects related to wildlife monitoring and is allergic to anything.
neutral
room(margarita)&(![X]:(room(X)=>(X='margarita')))& ((~(((?[X]:(room(X)&~((volunteers_for_local_environmental_conservation_projects(X))|(has_a_curated_collection_of_mid-century_modern_furniture(X))))))))<~>(is_a_craft_beer_aficionado(margarita)))& ((![X]:(anywhere(X)=>(((does_not_volunteer_for_local_environmental_conservation_projects(X))|(enjoys_rooftop_gardening(X))))))<~>(can_play_the_harmonica(margarita)))& ((collects_foreign_coins(margarita))=>(![X]:(room(X)=>(is_an_active_member_of_a_local_robotics_club(X)))))& (((?[X]:(room(X)&enjoys_rooftop_gardening(X)))))& (![X]:(room(X)=>(((~((does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))|(enjoys_skydiving(X))))=>(owns_a_smartwatch(X))))))& (is_a_craft_beer_aficionado(margarita))& (participates_in_citizen_science_projects_related_to_wildlife_monitoring(margarita))& (![X]:(anywhere(X)=>(((does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))|(does_not_practice_tai_chi(X))))))& (owns_a_significant_collection_of_rare_gemstones_and_minerals(margarita))& (![X]:(room(X)=>(((plays_the_drums(X))=>(can_play_the_harmonica(X))))))& (is_allergic_to_anything(margarita))& (is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(margarita))& (![X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))=>(~((can_play_the_flute(X))|(enjoys_skydiving(X))))))))& (![X]:(room(X)=>(((is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))=>(~((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))|(is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))))& (((?[X]:(room(X)&enjoys_making_ceramics(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_making_ceramics(X))&(enjoys_making_ceramics(Y)))=>(X=Y)))))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(~((practices_tai_chi(X))|(is_allergic_to_anything(X)))&~((practices_tai_chi(Y))|(is_allergic_to_anything(Y))))&(X!=Y))))& (![X]:(room(X)=>(((is_allergic_to_anything(X))=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))))& (![X]:(room(X)=>(((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))=>(has_a_specialized_collection_of_handmade_artisan_pottery(X))))))& (![X]:(room(X)=>(((owns_a_smartwatch(X))=>(collects_comic_books(X))))))& (![X]:(~room(X)=>(((((has_a_specialized_collection_of_handmade_artisan_pottery(X))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(collects_comic_books(X))))=>(is_right-handed(X))))))& (![X]:(anywhere(X)=>(((collects_foreign_coins(X))=>(is_an_active_member_of_a_local_robotics_club(X))))))& (is_an_active_member_of_a_local_robotics_club(margarita))& (can_play_the_harmonica(margarita))& (![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))=>(((drives_a_hybrid_car(X))|(is_an_avid_hiker(X))|(plays_the_drums(X))))))))
room(margarita)&(![X]:(room(X)=>(X='margarita')))& ((is_dedicated_to_sustainable_living_and_zero-waste_practices(margarita))&(participates_in_citizen_science_projects_related_to_wildlife_monitoring(margarita))&(is_allergic_to_anything(margarita)))
[]
null
0.413142
Allen, Suzanne, Melvina are the only persons in the room. Either "it is not the case that "Carlie and Melvina like each other"" or "someone in the room is a curious european" but not both. "Melvina who is a wise european uses a Windows laptop" if "someone in the room is a happy european". Either "Allen and Cheryl like each other" or "everyone in the room is not a old person" but not both. "All curious persons are strong" unless "Taisha and Melvina like each other". "Someone who does not like Dean, is happy or is a generous person is a sibling of someone who does not like Carlie" if "someone in the room either is not a funny tourist or is a brave person but not both". "Suzanne who is not a curious person is a strong european" unless "someone in the room is a old person". If "Suzanne and Dean hate each other" then "it is not the case that "someone in the room is not a curious tourist"" otherwise "Melvina and Dean like each other". If "it is not the case that "it is not the case that "at least one person in the room does not like Taisha""" then "someone in the room either is not a creative person or is brave but not both" otherwise "Allen is the quietest in the room". Allen who either is funny or is a strong person but not both is a wise european. Allen who is a old tourist does not hate Dean. Melvina who does not hate Cheryl is a funny european. Everyone in the room is a old tourist. Suzanne and Taisha like each other. It is true that "Melvina who is a generous person is a happy tourist". Suzanne and Melvina are respectively brave and kind. Melvina and Taisha hate each other. Someone in the room is a curious creative european. Someone in the room does not develop open-source software projects in their free time.
Melvina uses a Windows laptop.
entailment
room(allen)&room(suzanne)&room(melvina)&(![X]:(room(X)=>(X='allen'|X='suzanne'|X='melvina')))& ((~((like(carlie,melvina) & like(melvina,carlie))))<~>(?[X]:(room(X)&(curious(X)&european(X)))))& ((?[X]:(room(X)&(happy(X)&european(X))))=>((wise(melvina)&european(melvina))&(uses_a_Windows_laptop(melvina))))& (((like(allen,cheryl) & like(cheryl,allen)))<~>(![X]:(room(X)=>(~(old(X)&person(X))))))& (~((like(taisha,melvina) & like(melvina,taisha)))=>(![X]:(curious(X)=>strong(X))))& ((?[X]:(room(X)&(((~(funny(X)&tourist(X)))<~>(brave(X)&person(X))))))=>(?[X,Y]:((((~like(dean,X))|(happy(X))|(generous(X)&person(X))))&(~like(carlie,Y))&(sibling(X,Y)))))& (~(?[X]:(room(X)&(old(X)&person(X))))=>((~(curious(suzanne)&person(suzanne)))&(strong(suzanne)&european(suzanne))))& ((((hate(suzanne,dean) & hate(dean,suzanne)))=>(~(?[X]:(room(X)&(~(curious(X)&tourist(X)))))))&((~((hate(suzanne,dean) & hate(dean,suzanne))))=>((like(melvina,dean) & like(dean,melvina)))))& (((~(~(((?[X]:(room(X)&~like(taisha,X)))))))=>(?[X]:(room(X)&(((~(creative(X)&person(X)))<~>(brave(X)))))))&((~(~(~(((?[X]:(room(X)&~like(taisha,X))))))))=>(![X]:((room(X)&(X!=allen))=>quieter(X,allen)))))& ((((funny(allen))<~>(strong(allen)&person(allen))))&(wise(allen)&european(allen)))& ((old(allen)&tourist(allen))&(~hate(dean,allen)))& ((~hate(cheryl,melvina))&(funny(melvina)&european(melvina)))& (![X]:(room(X)=>(old(X)&tourist(X))))& ((like(suzanne,taisha) & like(taisha,suzanne)))& ((generous(melvina)&person(melvina))&(happy(melvina)&tourist(melvina)))& ((brave(suzanne))&(kind(melvina)))& ((hate(melvina,taisha) & hate(taisha,melvina)))& (?[X]:(room(X)&(curious(X)&creative(X)&european(X))))& (?[X]:(room(X)&(does_not_develop_open-source_software_projects_in_their_free_time(X))))
room(allen)&room(suzanne)&room(melvina)&(![X]:(room(X)=>(X='allen'|X='suzanne'|X='melvina')))& uses_a_Windows_laptop(melvina)
[ "p0", "p2", "p11", "p14", "hypothesis" ]
% SZS status Unsatisfiable for 740802135297214502320114 % SZS output start Proof for 740802135297214502320114 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 46. ? [X0] : (european(X0) & happy(X0) & room(X0)) => (predl(fred) & european(fred) & wise(fred)) [input p2] 55. european(fred) & funny(fred) & ~hate(susan,fred) [input p11] 58. tourist(fred) & happy(fred) & person(fred) & generous(fred) [input p14] 63. ~(predl(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 69. tourist(fred) & happy(fred) & person(fred) [pure predicate removal 58] 71. ? [X0] : (european(X0) & happy(X0) & room(X0)) => (predl(fred) & european(fred)) [pure predicate removal 46] 147. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 148. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 147] 150. (predl(fred) & european(fred)) | ! [X0] : (~european(X0) | ~happy(X0) | ~room(X0)) [ennf transformation 71] 161. ~predl(fred) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 63] 162. ~predl(fred) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 161] 198. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK11 & paul != sK11 & mary != sK11 & room(sK11)) [choice axiom] 199. ~predl(fred) | (fred != sK11 & paul != sK11 & mary != sK11 & room(sK11)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 162,198] 284. room(mary) [cnf transformation 148] 285. room(paul) [cnf transformation 148] 286. room(fred) [cnf transformation 148] 287. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 148] 294. predl(fred) | ~european(X0) | ~happy(X0) | ~room(X0) [cnf transformation 150] 337. european(fred) [cnf transformation 55] 343. happy(fred) [cnf transformation 69] 353. ~predl(fred) | room(sK11) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 199] 354. ~predl(fred) | mary != sK11 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 199] 355. ~predl(fred) | paul != sK11 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 199] 356. ~predl(fred) | fred != sK11 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 199] 386. 7 <=> ! [X0] : (~european(X0) | ~room(X0) | ~happy(X0)) [avatar definition] 387. ~happy(X0) | ~room(X0) | ~european(X0) <- (7) [avatar component clause 386] 389. 8 <=> predl(fred) [avatar definition] 392. 7 | 8 [avatar split clause 294,389,386] 394. 9 <=> european(fred) [avatar definition] 396. european(fred) <- (9) [avatar component clause 394] 605. 9 [avatar split clause 337,394] 607. ~predl(fred) | fred != sK11 | ~room(paul) | ~room(mary) [subsumption resolution 356,286] 608. ~predl(fred) | fred != sK11 | ~room(mary) [subsumption resolution 607,285] 609. ~predl(fred) | fred != sK11 [subsumption resolution 608,284] 611. 55 <=> fred = sK11 [avatar definition] 613. fred != sK11 <- (~55) [avatar component clause 611] 614. ~55 | ~8 [avatar split clause 609,389,611] 615. ~predl(fred) | paul != sK11 | ~room(paul) | ~room(mary) [subsumption resolution 355,286] 616. ~predl(fred) | paul != sK11 | ~room(mary) [subsumption resolution 615,285] 617. ~predl(fred) | paul != sK11 [subsumption resolution 616,284] 619. 56 <=> paul = sK11 [avatar definition] 621. paul != sK11 <- (~56) [avatar component clause 619] 622. ~56 | ~8 [avatar split clause 617,389,619] 623. ~predl(fred) | mary != sK11 | ~room(paul) | ~room(mary) [subsumption resolution 354,286] 624. ~predl(fred) | mary != sK11 | ~room(mary) [subsumption resolution 623,285] 625. ~predl(fred) | mary != sK11 [subsumption resolution 624,284] 627. 57 <=> mary = sK11 [avatar definition] 629. mary != sK11 <- (~57) [avatar component clause 627] 630. ~57 | ~8 [avatar split clause 625,389,627] 631. ~predl(fred) | room(sK11) | ~room(paul) | ~room(mary) [subsumption resolution 353,286] 632. ~predl(fred) | room(sK11) | ~room(mary) [subsumption resolution 631,285] 633. ~predl(fred) | room(sK11) [subsumption resolution 632,284] 635. 58 <=> room(sK11) [avatar definition] 637. room(sK11) <- (58) [avatar component clause 635] 638. 58 | ~8 [avatar split clause 633,389,635] 690. ~room(fred) | ~european(fred) <- (7) [resolution 387,343] 691. ~european(fred) <- (7) [subsumption resolution 690,286] 692. $false <- (7, 9) [subsumption resolution 691,396] 693. ~7 | ~9 [avatar contradiction clause 692] 874. paul = sK11 | mary = sK11 | fred = sK11 <- (58) [resolution 287,637] 929. mary = sK11 | fred = sK11 <- (~56, 58) [subsumption resolution 874,621] 930. fred = sK11 <- (~56, ~57, 58) [subsumption resolution 929,629] 931. $false <- (~55, ~56, ~57, 58) [subsumption resolution 930,613] 932. 55 | 56 | 57 | ~58 [avatar contradiction clause 931] 933. $false [avatar sat refutation 392,605,614,622,630,638,693,932] % SZS output end Proof for 740802135297214502320114 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.306996
David, Daniel, George are the only persons in the room. 'David neither practices and performs acrobatic dance routines nor does not collect rare sneakers' only if 'everyone in the room is a certified yoga instructor teaching classes weekly, does not enjoy trail running and is not a Linux enthusiast if they does not enjoy skydiving'. Either 'everyone in the room does not practice and performs acrobatic dance routines or collect rare sneakers' or 'someone in the room does not enjoy coding in Python' but not both. 'David creates bespoke furniture pieces from reclaimed wood, does not practice calligraphy or hosts regular workshops on creative writing' if 'everyone anywhere collects antique jewelry or is not a certified yoga instructor teaching classes weekly' and vice versa. 'Everyone in the room does not practice calligraphy or does not enjoy coding in Python' if 'everyone in the room is not a night owl or streams on Twitch' and vice versa. If 'David is a wine connoisseur with a private cellar of vintage wines or creates bespoke furniture pieces from reclaimed wood or both' then 'David streams on Twitch'. Everyone anywhere is a certified yoga instructor teaching classes weekly.
David is a certified yoga instructor teaching classes weekly.
entailment
room(david)&room(daniel)&room(george)&(![X]:(room(X)=>(X='david'|X='daniel'|X='george')))& ((~((practices_and_performs_acrobatic_dance_routines(david))|(does_not_collect_rare_sneakers(david))))=>(![X]:(room(X)=>(((does_not_enjoy_skydiving(X))=>(((is_a_certified_yoga_instructor_teaching_classes_weekly(X))&(does_not_enjoy_trail_running(X))&(is_not_a_Linux_enthusiast(X)))))))))& ((![X]:(room(X)=>(((collect_rare_sneakers(X))|(does_not_practice_and_performs_acrobatic_dance_routines(X))))))<~>(?[X]:(room(X)&(does_not_enjoy_coding_in_Python(X)))))& ((![X]:(anywhere(X)=>(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))|(collects_antique_jewelry(X))))))<=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(david))|(does_not_practice_calligraphy(david))|(hosts_regular_workshops_on_creative_writing(david)))))& ((![X]:(room(X)=>(((streams_on_Twitch(X))|(is_not_a_night_owl(X))))))<=>(![X]:(room(X)=>(((does_not_enjoy_coding_in_Python(X))|(does_not_practice_calligraphy(X)))))))& ((((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(david))|(creates_bespoke_furniture_pieces_from_reclaimed_wood(david))))=>(streams_on_Twitch(david)))& (((![X]:(room(X)=>(((does_not_stream_on_Twitch(X))|(enjoys_skydiving(X))))))=>(![X]:(room(X)=>(((((practices_kickboxing(X))|(does_enjoy_trail_running(X))))<=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X)))))))&((~(![X]:(room(X)=>(((does_not_stream_on_Twitch(X))|(enjoys_skydiving(X)))))))=>(~(does_not_collect_rare_sneakers(david)))))& ((![X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))|(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))<=>(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(david)))& (~(![X]:(room(X)=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))|(does_not_practice_kickboxing(X))))))=>(~(collects_antique_jewelry(david))))& (![X]:(room(X)=>(((is_a_Linux_enthusiast(X))<=(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& ((![X]:((collect_rare_sneakers(X))<=>(does_not_enjoy_trail_running(X)))))& (![X]:(room(X)=>(collects_antique_jewelry(X))))& (is_an_avid_mountain_climber_who_has_scaled_several_peaks(david))& (~(practices_and_performs_acrobatic_dance_routines(david)))& (is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(david))& (![X]:(~room(X)=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))=>(((collects_antique_jewelry(X))&(practices_and_performs_acrobatic_dance_routines(X))&(does_not_build_model_airplanes(X))))))))& (collect_rare_sneakers(david))& (![X]:(room(X)=>(does_not_enjoy_wildlife_photography(X))))& (![X]:(anywhere(X)=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))& (![X]:(room(X)=>(((practices_kickboxing(X))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(david))|(enjoys_skydiving(david))))& (![X]:(room(X)=>(((((works_on_fridays(X))|(is_a_certified_yoga_instructor_teaching_classes_weekly(X))|(does_not_enjoy_cross-country_skiing(X))))=>(streams_on_Twitch(X))))))
room(david)&room(daniel)&room(george)&(![X]:(room(X)=>(X='david'|X='daniel'|X='george')))& is_a_certified_yoga_instructor_teaching_classes_weekly(david)
[ "b4", "p0", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 4605607244589126580133583 % SZS output start Proof for 4605607244589126580133583 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 62. ! [X0] : (anywhere(X0) => predz(X0)) [input p18] 66. ~(predz(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 146. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 147. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 146] 168. ! [X0] : (predz(X0) | ~anywhere(X0)) [ennf transformation 62] 173. ~predz(mary) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 66] 174. ~predz(mary) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 173] 205. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK8 & paul != sK8 & mary != sK8 & room(sK8)) [choice axiom] 206. ~predz(mary) | (fred != sK8 & paul != sK8 & mary != sK8 & room(sK8)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 174,205] 207. anywhere(X0) [cnf transformation 5] 288. room(mary) [cnf transformation 147] 289. room(paul) [cnf transformation 147] 290. room(fred) [cnf transformation 147] 291. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 147] 336. predz(X0) | ~anywhere(X0) [cnf transformation 168] 339. ~predz(mary) | room(sK8) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 206] 340. ~predz(mary) | mary != sK8 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 206] 341. ~predz(mary) | paul != sK8 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 206] 342. ~predz(mary) | fred != sK8 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 206] 541. predz(X0) [subsumption resolution 336,207] 543. fred != sK8 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 342,541] 544. fred != sK8 | ~room(paul) | ~room(mary) [subsumption resolution 543,290] 545. fred != sK8 | ~room(mary) [subsumption resolution 544,289] 546. fred != sK8 [subsumption resolution 545,288] 547. paul != sK8 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 341,541] 548. paul != sK8 | ~room(paul) | ~room(mary) [subsumption resolution 547,290] 549. paul != sK8 | ~room(mary) [subsumption resolution 548,289] 550. paul != sK8 [subsumption resolution 549,288] 551. mary != sK8 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 340,541] 552. mary != sK8 | ~room(paul) | ~room(mary) [subsumption resolution 551,290] 553. mary != sK8 | ~room(mary) [subsumption resolution 552,289] 554. mary != sK8 [subsumption resolution 553,288] 555. room(sK8) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 339,541] 556. room(sK8) | ~room(paul) | ~room(mary) [subsumption resolution 555,290] 557. room(sK8) | ~room(mary) [subsumption resolution 556,289] 558. room(sK8) [subsumption resolution 557,288] 690. paul = sK8 | mary = sK8 | fred = sK8 [resolution 291,558] 717. mary = sK8 | fred = sK8 [subsumption resolution 690,550] 718. fred = sK8 [subsumption resolution 717,554] 719. $false [subsumption resolution 718,546] % SZS output end Proof for 4605607244589126580133583 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.022 s % ------------------------------ % ------------------------------
0.020806
There is a room. Everyone anywhere uses a Windows laptop, drives a hybrid car or enjoys virtual reality gaming if they enjoys logic puzzles. Everyone in the room does not own a telescope or uses a Windows laptop, drives a hybrid car or enjoys virtual reality gaming. If someone collects antique jewelry then he/she is not a tea enthusiast. Everyone in the room who plays the violin either is a Linux enthusiast or builds model airplanes but not both. No one in the room own a television only if they drives a hybrid car and builds model airplanes.
Everyone outside the room own a television.
entailment
(there_is_a_room)& (![X]:(anywhere(X)=>(((enjoys_logic_puzzles(X))=>(((uses_a_Windows_laptop(X))|(drives_a_hybrid_car(X))|(enjoys_virtual_reality_gaming(X))))))))& (![X]:(room(X)=>(((((uses_a_Windows_laptop(X))|(drives_a_hybrid_car(X))|(enjoys_virtual_reality_gaming(X))))|(does_not_own_a_telescope(X))))))& ((![X]:((collects_antique_jewelry(X))=>(is_not_a_tea_enthusiast(X)))))& (![X]:(room(X)=>(((plays_the_violin(X))=>(((is_a_Linux_enthusiast(X))<~>(builds_model_airplanes(X))))))))& (![X]:(room(X)=>(((owns_a_telescope(X))=>(reads_mystery_novels(X))))))& (![X]:(room(X)=>(((reads_mystery_novels(X))=>(is_a_Linux_enthusiast(X))))))& (?[X]:(room(X)&(((drives_a_hybrid_car(X))<~>(collects_rare_minerals(X))))))& (~?[X]:(room(X)=>(((((drives_a_hybrid_car(X))&(builds_model_airplanes(X))))<=(own_a_television(X))))))& (![X]:(room(X)=>(((((drives_a_hybrid_car(X))&(builds_model_airplanes(X))))<=>(watches_fantasy_movies(X))))))& (![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& (((?[X]:(room(X)&collects_antique_jewelry(X)))&(![X,Y]:((room(X)&room(Y)&(collects_antique_jewelry(X))&(collects_antique_jewelry(Y)))=>(X=Y)))))& (![X]:(room(X)=>(does_not_collect_rare_minerals(X))))& ((![X]:((builds_model_airplanes(X))<=>(((does_not_enjoy_logic_puzzles(X))&(plays_the_violin(X))&(is_a_Linux_enthusiast(X)))))))& ((![X]:((drives_a_hybrid_car(X))=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))&(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))&(does_not_enjoy_spelunking(X)))))))& (![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))|(is_a_Linux_enthusiast(X))|(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(room(X)=>(((does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))<=>(uses_a_Windows_laptop(X))))))& (?[X]:(room(X)&(((enjoys_spelunking(X))|(plays_the_violin(X))|(is_a_Linux_enthusiast(X))))))& (![X]:(anywhere(X)=>(((enjoys_virtual_reality_gaming(X))=>(enjoys_stand-up_paddleboarding(X))))))& ((![X]:((watches_fantasy_movies(X))<=>(enjoys_logic_puzzles(X)))))& ((![X]:((does_not_own_a_telescope(X))=>(enjoys_stand-up_paddleboarding(X)))))& (![X]:(room(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))=>(((plays_the_violin(X))&(enjoys_stand-up_paddleboarding(X))&(builds_model_airplanes(X))))))))& (![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))=>(own_a_television(X))))))& (((?[X]:(room(X)&((own_a_television(X))|(is_a_tea_enthusiast(X))|(does_not_have_a_tattoo(X)))))))& (![X]:(~room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))|(does_not_watche_fantasy_movies(X))))))
(there_is_a_room)& ![X]:(~room(X)=>(own_a_television(X)))
[ "p0", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 7270921149124746156106543 % SZS output start Proof for 7270921149124746156106543 44. there_is_a_room [input p0] 52. ~? [X0] : (room(X0) => (predc(X0) => (predj(X0) & preds(X0)))) [input p8] 69. ~(! [X0] : (~room(X0) => predc(X0)) & there_is_a_room) [input hypothesis] 157. ! [X0] : (((~predj(X0) | ~preds(X0)) & predc(X0)) & room(X0)) [ennf transformation 52] 158. ! [X0] : ((~predj(X0) | ~preds(X0)) & predc(X0) & room(X0)) [flattening 157] 174. ? [X0] : (~predc(X0) & ~room(X0)) | ~there_is_a_room [ennf transformation 69] 193. ? [X0] : (~predc(X0) & ~room(X0)) => (~predc(sK4) & ~room(sK4)) [choice axiom] 194. (~predc(sK4) & ~room(sK4)) | ~there_is_a_room [skolemisation 174,193] 276. there_is_a_room [cnf transformation 44] 287. predc(X0) [cnf transformation 158] 317. ~predc(sK4) | ~there_is_a_room [cnf transformation 194] 353. ~there_is_a_room [subsumption resolution 317,287] 354. $false [subsumption resolution 353,276] % SZS output end Proof for 7270921149124746156106543 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0
Lynette, Maria, Judy, Martin are the only persons in the room. 'Someone in the room is not not not funny' only if 'everyone in the room neither is not calm nor is happy only if they is not patient, is old and is creative'. 'Lynette is not generous, not kind, not strong or is happy or both' if 'Lynette is not not kind' and vice versa. If 'Lynette is not wise, not old and is generous' then 'only one person outside the room is not a humble person' otherwise 'someone anywhere is happy or is not strong or both'. 'Everyone in the room is not a wise old person if and only if they is not quiet' if 'Lynette is not a generous person or is not old, not brave, not kind or both'. 'Lynette is not generous' if 'no one in the room is brave' and vice versa. Lynette is humble. Not everyone in the room is calm or is not calm or both if and only if they is not old, not patient. Lynette is not funny. Someone anywhere is happy or is not strong or both. Everyone in the room is not humble if they is not funny, not happy, not curious and vice versa. Not everyone in the room is not funny, not happy, not curious only if they is not strong. Someone who is not a humble quiet person is older than someone who is not brave, not old, not kind, not wise, not strong. Everyone in the room is calm if they is brave and vice versa. Lynette is quiet. Everyone in the room is not creative or is not a happy strong old quiet person or both if they is not creative, not brave and vice versa. Everyone in the room is not creative, not brave if they is not a generous strong curious person and vice versa. Not everyone in the room is not patient or is not not not not old or both. Everyone in the room is kind and is not humble, not brave if they neither is generous nor is happy. Everyone in the room is humble if and only if they is kind. Everyone in the room is not happy if and only if they is not a kind person.
Everyone anywhere neither is a happy person nor is a kind happy person.
contradiction
room(lynette)&room(maria)&room(judy)&room(martin)&(![X]:(room(X)=>(X='lynette'|X='maria'|X='judy'|X='martin')))& ((?[X]:(room(X)&(~~~funny(X))))=>(![X]:(room(X)=>(((((~patient(X))&(old(X))&(creative(X))))<=(~((~calm(X))|(happy(X)))))))))& ((~~kind(lynette))<=>(((~generous(lynette)&~kind(lynette)&~strong(lynette))|(happy(lynette)))))& (((((~wise(lynette)&~old(lynette))&(generous(lynette))))=>(((?[X]:(~room(X)&~(humble(X)&person(X))))&(![X,Y]:((~room(X)&~room(Y)&(~(humble(X)&person(X)))&(~(humble(Y)&person(Y))))=>(X=Y))))))&((~(((~wise(lynette)&~old(lynette))&(generous(lynette)))))=>(?[X]:(anywhere(X)&(((happy(X))|(~strong(X))))))))& ((((~(generous(lynette)&person(lynette)))|(~old(lynette)&~brave(lynette)&~kind(lynette))))=>(![X]:(room(X)=>(((~(wise(X)&old(X)&person(X)))<=>(~quiet(X)))))))& ((~?[X]:(room(X)=>(brave(X))))<=>(~generous(lynette)))& (humble(lynette))& (~![X]:(room(X)=>(((((calm(X))|(~calm(X))))<=>(~old(X)&~patient(X))))))& (~funny(lynette))& (?[X]:(anywhere(X)&(((happy(X))|(~strong(X))))))& (![X]:(room(X)=>(((~humble(X))<=>(~funny(X)&~happy(X)&~curious(X))))))& (~![X]:(room(X)=>(((~strong(X))<=(~funny(X)&~happy(X)&~curious(X))))))& (?[X,Y]:((~(humble(X)&quiet(X)&person(X)))&(~brave(Y)&~old(Y)&~kind(Y)&~wise(Y)&~strong(Y))&(older(X,Y))))& (![X]:(room(X)=>(((calm(X))<=>(brave(X))))))& (quiet(lynette))& (![X]:(room(X)=>(((((~creative(X))|(~(happy(X)&strong(X)&old(X)&quiet(X)&person(X)))))<=>(~creative(X)&~brave(X))))))& (![X]:(room(X)=>(((~creative(X)&~brave(X))<=>(~(generous(X)&strong(X)&curious(X)&person(X)))))))& (~![X]:(room(X)=>(((~patient(X))|(~~~~old(X))))))& (![X]:(room(X)=>(((~((generous(X))|(happy(X))))=>(((kind(X))&(~humble(X)&~brave(X))))))))& ((![X]:((((~tall(X))&(humble(X))&(~kind(X)&~quiet(X))))<=>(~wise(X)&~patient(X)&~generous(X)&~curious(X)&~brave(X)&~creative(X)))))& (![X]:(room(X)=>(((humble(X))<=>(kind(X))))))& (![X]:(room(X)=>(((~happy(X))<=>(~(kind(X)&person(X)))))))
room(lynette)&room(maria)&room(judy)&room(martin)&(![X]:(room(X)=>(X='lynette'|X='maria'|X='judy'|X='martin')))& ![X]:(anywhere(X)=>(~((happy(X)&person(X))|(kind(X)&happy(X)&person(X)))))
[ "b4", "p0", "p2", "p6", "p20", "p21", "hypothesis" ]
% SZS status Unsatisfiable for 5953729724912211876278208 % SZS output start Proof for 5953729724912211876278208 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. kind(mary) <=> (happy(mary) | (~strong(mary) & ~kind(mary) & ~generous(mary))) [input p2] 50. humble(mary) [input p6] 64. ! [X0] : (room(X0) => (humble(X0) <=> kind(X0))) [input p20] 65. ! [X0] : (room(X0) => (~happy(X0) <=> ~(person(X0) & kind(X0)))) [input p21] 66. ! [X0] : (anywhere(X0) => ~((person(X0) & happy(X0) & kind(X0)) | (person(X0) & happy(X0)))) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 69. ! [X0] : (anywhere(X0) => ~((person(X0) & happy(X0) & kind(X0)) | (person(X0) & happy(X0)))) & ! [X1] : (room(X1) => (alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 66] 141. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 142. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 141] 163. ! [X0] : ((humble(X0) <=> kind(X0)) | ~room(X0)) [ennf transformation 64] 164. ! [X0] : ((~happy(X0) <=> (~person(X0) | ~kind(X0))) | ~room(X0)) [ennf transformation 65] 165. ! [X0] : (((~person(X0) | ~happy(X0) | ~kind(X0)) & (~person(X0) | ~happy(X0))) | ~anywhere(X0)) & ! [X1] : ((alice = X1 | fred = X1 | paul = X1 | mary = X1) | ~room(X1)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 69] 166. ! [X0] : (((~person(X0) | ~happy(X0) | ~kind(X0)) & (~person(X0) | ~happy(X0))) | ~anywhere(X0)) & ! [X1] : (alice = X1 | fred = X1 | paul = X1 | mary = X1 | ~room(X1)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 165] 175. (kind(mary) | (~happy(mary) & (strong(mary) | kind(mary) | generous(mary)))) & ((happy(mary) | (~strong(mary) & ~kind(mary) & ~generous(mary))) | ~kind(mary)) [nnf transformation 46] 176. (kind(mary) | (~happy(mary) & (strong(mary) | kind(mary) | generous(mary)))) & (happy(mary) | (~strong(mary) & ~kind(mary) & ~generous(mary)) | ~kind(mary)) [flattening 175] 211. ! [X0] : (((humble(X0) | ~kind(X0)) & (kind(X0) | ~humble(X0))) | ~room(X0)) [nnf transformation 163] 212. ! [X0] : (((~happy(X0) | (person(X0) & kind(X0))) & ((~person(X0) | ~kind(X0)) | happy(X0))) | ~room(X0)) [nnf transformation 164] 213. ! [X0] : (((~happy(X0) | (person(X0) & kind(X0))) & (~person(X0) | ~kind(X0) | happy(X0))) | ~room(X0)) [flattening 212] 214. anywhere(X0) [cnf transformation 5] 295. room(mary) [cnf transformation 142] 304. happy(mary) | ~kind(mary) | ~kind(mary) [cnf transformation 176] 330. humble(mary) [cnf transformation 50] 392. ~humble(X0) | kind(X0) | ~room(X0) [cnf transformation 211] 396. ~happy(X0) | person(X0) | ~room(X0) [cnf transformation 213] 402. ~person(X0) | ~happy(X0) | ~anywhere(X0) [cnf transformation 166] 404. happy(mary) | ~kind(mary) [duplicate literal removal 304] 422. 5 <=> happy(mary) [avatar definition] 423. happy(mary) <- (5) [avatar component clause 422] 426. 6 <=> kind(mary) [avatar definition] 440. ~6 | 5 [avatar split clause 404,422,426] 514. 25 <=> person(mary) [avatar definition] 515. ~person(mary) <- (~25) [avatar component clause 514] 573. ~happy(X0) | ~person(X0) [subsumption resolution 402,214] 594. kind(mary) | ~room(mary) [resolution 392,330] 598. kind(mary) [subsumption resolution 594,295] 599. 6 [avatar split clause 598,426] 601. ~person(mary) <- (5) [resolution 423,573] 602. ~25 | ~5 [avatar split clause 601,422,514] 605. person(mary) | ~room(mary) <- (5) [resolution 396,423] 606. ~room(mary) <- (5, ~25) [subsumption resolution 605,515] 607. $false <- (5, ~25) [subsumption resolution 606,295] 608. ~5 | 25 [avatar contradiction clause 607] 609. $false [avatar sat refutation 440,599,602,608] % SZS output end Proof for 5953729724912211876278208 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.235036
Larry, Renee, Jose are the only persons in the room. “Everyone outside the room is a culinary enthusiast who experiments with international cuisines if and only if they watches fantasy movies” unless “it is not the case that “Renee is a tea enthusiast””. Everyone outside the room is a tea enthusiast if they watches fantasy movies. Larry who maintains a large, organic vegetable garden year-round plays video games and maintains a large, organic vegetable garden year-round. Everyone in the room who makes homemade pastries is a tea enthusiast, is an avid collector of autographed memorabilia from famous musicians and makes homemade pastries. Larry who is a culinary enthusiast who experiments with international cuisines works on fridays. It is not the case that “Renee is a tea enthusiast”. If someone neither does enjoy trail running nor does enjoy mountain biking then he/she makes homemade pastries. Larry works on fridays. Larry dreamt that “everyone in the room makes homemade pastries”. If someone is a culinary enthusiast who experiments with international cuisines then he/she does enjoy trail running. Larry dreamt that “everyone in the room does not write in-depth travel guides for off-the-beaten-path destinations or does enjoy trail running”. Everyone in the room who does not write in-depth travel guides for off-the-beaten-path destinations works on fridays. Everyone anywhere who works on fridays has lived in exactly three countries or is a tea enthusiast or both. Everyone in the room writes in-depth travel guides for off-the-beaten-path destinations if they has lived in exactly three countries or is a tea enthusiast or both. Someone in the room does not enjoy trail running. More than one person in the room maintains a large, organic vegetable garden year-round. Renee does not have a curated collection of mid-century modern furniture. Everyone in the room plays video games or does not maintain a large, organic vegetable garden year-round.
Everyone in the room is a tea enthusiast.
contradiction
room(larry)&room(renee)&room(jose)&(![X]:(room(X)=>(X='larry'|X='renee'|X='jose')))& (~(~(is_a_tea_enthusiast(renee)))=>(![X]:(~room(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))<=>(watches_fantasy_movies(X)))))))& (![X]:(~room(X)=>(((watches_fantasy_movies(X))=>(is_a_tea_enthusiast(X))))))& ((maintains_a_large,_organic_vegetable_garden_year-round(larry))&(((plays_video_games(larry))&(maintains_a_large,_organic_vegetable_garden_year-round(larry)))))& (![X]:(room(X)=>(((makes_homemade_pastries(X))=>(((is_a_tea_enthusiast(X))&(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))&(makes_homemade_pastries(X))))))))& ((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(larry))&(works_on_fridays(larry)))& (~(is_a_tea_enthusiast(renee)))& ((![X]:((~((does_enjoy_trail_running(X))|(does_enjoy_mountain_biking(X))))=>(makes_homemade_pastries(X)))))& (works_on_fridays(larry))& ((larry_dream=>(![X]:(room(X)=>(makes_homemade_pastries(X))))))& ((![X]:((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))=>(does_enjoy_trail_running(X)))))& ((larry_dream=>(![X]:(room(X)=>(((does_enjoy_trail_running(X))|(does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))))& (![X]:(room(X)=>(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))=>(works_on_fridays(X))))))& (![X]:(anywhere(X)=>(((works_on_fridays(X))=>(((has_lived_in_exactly_three_countries(X))|(is_a_tea_enthusiast(X))))))))& (![X]:(room(X)=>(((((has_lived_in_exactly_three_countries(X))|(is_a_tea_enthusiast(X))))=>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))& (?[X]:(room(X)&(does_not_enjoy_trail_running(X))))& ((?[X,Y]:(room(X)&room(Y)&(maintains_a_large,_organic_vegetable_garden_year-round(X)&maintains_a_large,_organic_vegetable_garden_year-round(Y))&(X!=Y))))& (does_not_have_a_curated_collection_of_mid-century_modern_furniture(renee))& (![X]:(room(X)=>(((does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))|(plays_video_games(X))))))
room(larry)&room(renee)&room(jose)&(![X]:(room(X)=>(X='larry'|X='renee'|X='jose')))& ![X]:(room(X)=>(is_a_tea_enthusiast(X)))
[ "p0", "p6", "hypothesis" ]
% SZS status Unsatisfiable for 1065372683534409725245793 % SZS output start Proof for 1065372683534409725245793 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 50. ~preda(paul) [input p6] 63. ! [X0] : (room(X0) => preda(X0)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 64. ! [X0] : (room(X0) => preda(X0)) & ! [X1] : (room(X1) => (fred = X1 | paul = X1 | mary = X1)) & room(fred) & room(paul) & room(mary) [rectify 63] 151. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 152. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 151] 159. ! [X0] : (preda(X0) | ~room(X0)) & ! [X1] : ((fred = X1 | paul = X1 | mary = X1) | ~room(X1)) & room(fred) & room(paul) & room(mary) [ennf transformation 64] 160. ! [X0] : (preda(X0) | ~room(X0)) & ! [X1] : (fred = X1 | paul = X1 | mary = X1 | ~room(X1)) & room(fred) & room(paul) & room(mary) [flattening 159] 248. room(paul) [cnf transformation 152] 257. ~preda(paul) [cnf transformation 50] 268. ~room(X0) | preda(X0) [cnf transformation 160] 270. 1 <=> preda(paul) [avatar definition] 272. ~preda(paul) <- (~1) [avatar component clause 270] 281. ~1 [avatar split clause 257,270] 284. preda(paul) [resolution 268,248] 289. $false <- (~1) [subsumption resolution 284,272] 290. 1 [avatar contradiction clause 289] 291. $false [avatar sat refutation 281,290] % SZS output end Proof for 1065372683534409725245793 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.098201
Angelyn is the only person in the room. If 'someone in the room is not a night owl' then 'Angelyn who is not strong, not funny, not curious is poorer than Mary'. 'Mary and Angelyn hate each other' if 'Angelyn hates William' and vice versa. If 'Angelyn and Raymond hate each other' then 'Angelyn hates William'. If 'Angelyn hates William' then 'Angelyn is a sibling of Raymond, is a wise strong creative tall generous european or is not not not strong'. 'Angelyn either does not volunteer for local environmental conservation projects or is a sibling of Thelma but not both' if 'Angelyn is liked by Raymond' and vice versa. If 'Angelyn is not funny, does not collect antique jewelry or hates Raymond' then 'Angelyn neither is not a kind patient european nor is poorer than Kaye'. 'Kaye is richer than Angelyn' only if 'someone in the room does not design and sews custom cosplay costumes for conventions'. If 'Mary is a client of Angelyn' then 'Angelyn is a sibling of Raymond'. If 'Angelyn is not a cybersecurity expert' then 'Raymond is younger than Angelyn'. If 'Angelyn is strong' then 'Angelyn is not a quiet curious european'. If 'Angelyn is not a quiet curious european' then 'Angelyn and Kaye like each other'. If 'Kaye is a client of Angelyn' then 'Angelyn is the quietest in the room'. 'Someone in the room is a kind curious european' if 'it is not the case that 'Kaye is louder than Angelyn''. If 'Angelyn is a calm wise humble curious tourist' then 'more than one person outside the room is a curious person'. If 'Angelyn and Raymond like each other' then 'Angelyn is a old strong european'. It is not the case that 'Angelyn is a funny tourist'. Angelyn is not generous. Angelyn is a old person. It is true that 'Angelyn who is a sibling of Thelma is hated by Kaye'. Angelyn is a sibling of William. It is not the case that 'Angelyn and Thelma hate each other'. Angelyn is not a tall tourist. Someone anywhere is not a funny european. Angelyn is quieter than Raymond.
Angelyn is richer than Thelma.
contradiction
room(angelyn)&(![X]:(room(X)=>(X='angelyn')))& ((?[X]:(room(X)&(is_not_a_night_owl(X))))=>((~strong(angelyn)&~funny(angelyn)&~curious(angelyn))&(poorer(mary,angelyn))))& ((hate(william,angelyn))<=>((hate(mary,angelyn) & hate(angelyn,mary))))& ((((hate(angelyn,raymond) & hate(raymond,angelyn)))=>(hate(william,angelyn)))& ((hate(william,angelyn))=>(((sibling(raymond,angelyn))|(wise(angelyn)&strong(angelyn)&creative(angelyn)&tall(angelyn)&generous(angelyn)&european(angelyn))|(~~~strong(angelyn))))))& ((like(angelyn,raymond))<=>(((does_not_volunteer_for_local_environmental_conservation_projects(angelyn))<~>(sibling(thelma,angelyn)))))& ((((~funny(angelyn))|(does_not_collect_antique_jewelry(angelyn))|(hate(raymond,angelyn))))=>(~((~(kind(angelyn)&patient(angelyn)&european(angelyn)))|(poorer(kaye,angelyn)))))& ((richer(angelyn,kaye))=>(?[X]:(room(X)&(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X)))))& ((client(angelyn,mary))=>(sibling(raymond,angelyn)))& ((is_not_a_cybersecurity_expert(angelyn))=>(younger(angelyn,raymond)))& (((strong(angelyn))=>(~(quiet(angelyn)&curious(angelyn)&european(angelyn))))& ((~(quiet(angelyn)&curious(angelyn)&european(angelyn)))=>((like(angelyn,kaye) & like(kaye,angelyn)))))& ((client(angelyn,kaye))=>(![X]:((room(X)&(X!=angelyn))=>quieter(X,angelyn))))& ((~(louder(angelyn,kaye)))=>(?[X]:(room(X)&(kind(X)&curious(X)&european(X)))))& ((calm(angelyn)&wise(angelyn)&humble(angelyn)&curious(angelyn)&tourist(angelyn))=>((?[X,Y]:(~room(X)&~room(Y)&(curious(X)&person(X)&curious(Y)&person(Y))&(X!=Y)))))& (((like(angelyn,raymond) & like(raymond,angelyn)))=>(old(angelyn)&strong(angelyn)&european(angelyn)))& (~(funny(angelyn)&tourist(angelyn)))& (~generous(angelyn))& (old(angelyn)&person(angelyn))& ((sibling(thelma,angelyn))&(hate(angelyn,kaye)))& (sibling(william,angelyn))& (~((hate(angelyn,thelma) & hate(thelma,angelyn))))& (~(tall(angelyn)&tourist(angelyn)))& (?[X]:(anywhere(X)&(~(funny(X)&european(X)))))& (quieter(raymond,angelyn))& (like(raymond,angelyn))& (((happy(angelyn)&european(angelyn))<~>(sibling(raymond,angelyn))))& ((![X]:((~(strong(X)&kind(X)&tourist(X)))<=>(hate(X,mary)))))& (((quieter(kaye,angelyn))|(does_not_volunteer_for_local_environmental_conservation_projects(angelyn))|(calm(angelyn)&old(angelyn)&european(angelyn))))& (richer(angelyn,thelma))& (((kind(angelyn)&european(angelyn))|(sibling(raymond,angelyn))|(younger(raymond,angelyn))))& (~(older(raymond,angelyn)))& (![X]:((room(X)&(X!=angelyn))=>older(X,angelyn)))
room(angelyn)&(![X]:(room(X)=>(X='angelyn')))& richer(thelma,angelyn)
[ "b7", "b42", "p0", "hypothesis" ]
% SZS status Unsatisfiable for 8079418269161001208930755 % SZS output start Proof for 8079418269161001208930755 8. ! [X0,X1] : (X0 != X1 => (richer(X0,X1) => ~richer(X1,X0))) [input b7] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : ((mary != X0 & room(X0)) => older(X0,mary)) & ~older(john,mary) & (younger(alice,mary) | sibling(john,mary) | (european(mary) & kind(mary))) & richer(mary,paul) & ((european(mary) & old(mary) & calm(mary)) | ~predj(mary) | quieter(susan,mary)) & ! [X0] : (~(tourist(X0) & kind(X0) & strong(X0)) <=> hate(X0,lucy)) & ((european(mary) & happy(mary)) <~> sibling(alice,mary)) & like(john,mary) & quieter(john,mary) & ? [X0] : (~(european(X0) & funny(X0)) & anywhere(X0)) & ~(tourist(mary) & tall(mary)) & ~(hate(paul,mary) & hate(mary,paul)) & sibling(fred,mary) & hate(mary,susan) & sibling(paul,mary) & person(mary) & old(mary) & ~generous(mary) & ~(tourist(mary) & funny(mary)) & ((like(alice,mary) & like(mary,alice)) => (european(mary) & strong(mary) & old(mary))) & ((tourist(mary) & curious(mary) & humble(mary) & wise(mary) & calm(mary)) => ? [X0,X1] : (X0 != X1 & person(X1) & curious(X1) & person(X0) & curious(X0) & ~room(X1) & ~room(X0))) & (~louder(mary,susan) => ? [X0] : (european(X0) & curious(X0) & kind(X0) & room(X0))) & (client(mary,susan) => ! [X0] : ((mary != X0 & room(X0)) => quieter(X0,mary))) & (~(european(mary) & curious(mary) & quiet(mary)) => (like(susan,mary) & like(mary,susan))) & (strong(mary) => ~(european(mary) & curious(mary) & quiet(mary))) & (~predp(mary) => younger(mary,john)) & (client(mary,lucy) => sibling(alice,mary)) & (richer(mary,susan) => ? [X0] : (~prede(X0) & room(X0))) & ((hate(alice,mary) | ~predv(mary) | ~funny(mary)) => ~(poorer(susan,mary) | ~(european(mary) & patient(mary) & kind(mary)))) & (like(mary,john) <=> (~predj(mary) <~> sibling(paul,mary))) & (hate(fred,mary) => (~strong(mary) | (european(mary) & generous(mary) & tall(mary) & creative(mary) & strong(mary) & wise(mary)) | sibling(alice,mary))) & ((hate(alice,mary) & hate(mary,alice)) => hate(fred,mary)) & (hate(fred,mary) <=> (hate(mary,lucy) & hate(lucy,mary))) & (? [X0] : (~predt(X0) & room(X0)) => (poorer(lucy,mary) & ~curious(mary) & ~funny(mary) & ~strong(mary))) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 45. richer(paul,mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 46. ! [X0] : ((mary != X0 & room(X0)) => older(X0,mary)) & ~older(john,mary) & (younger(alice,mary) | sibling(john,mary) | (european(mary) & kind(mary))) & richer(mary,paul) & ((european(mary) & old(mary) & calm(mary)) | ~predj(mary) | quieter(susan,mary)) & ! [X1] : (~(tourist(X1) & kind(X1) & strong(X1)) <=> hate(X1,lucy)) & ((european(mary) & happy(mary)) <~> sibling(alice,mary)) & like(john,mary) & quieter(john,mary) & ? [X2] : (~(european(X2) & funny(X2)) & anywhere(X2)) & ~(tourist(mary) & tall(mary)) & ~(hate(paul,mary) & hate(mary,paul)) & sibling(fred,mary) & hate(mary,susan) & sibling(paul,mary) & person(mary) & old(mary) & ~generous(mary) & ~(tourist(mary) & funny(mary)) & ((like(alice,mary) & like(mary,alice)) => (european(mary) & strong(mary) & old(mary))) & ((tourist(mary) & curious(mary) & humble(mary) & wise(mary) & calm(mary)) => ? [X3,X4] : (X3 != X4 & person(X4) & curious(X4) & person(X3) & curious(X3) & ~room(X4) & ~room(X3))) & (~louder(mary,susan) => ? [X5] : (european(X5) & curious(X5) & kind(X5) & room(X5))) & (client(mary,susan) => ! [X6] : ((mary != X6 & room(X6)) => quieter(X6,mary))) & (~(european(mary) & curious(mary) & quiet(mary)) => (like(susan,mary) & like(mary,susan))) & (strong(mary) => ~(european(mary) & curious(mary) & quiet(mary))) & (~predp(mary) => younger(mary,john)) & (client(mary,lucy) => sibling(alice,mary)) & (richer(mary,susan) => ? [X7] : (~prede(X7) & room(X7))) & ((hate(alice,mary) | ~predv(mary) | ~funny(mary)) => ~(poorer(susan,mary) | ~(european(mary) & patient(mary) & kind(mary)))) & (like(mary,john) <=> (~predj(mary) <~> sibling(paul,mary))) & (hate(fred,mary) => (~strong(mary) | (european(mary) & generous(mary) & tall(mary) & creative(mary) & strong(mary) & wise(mary)) | sibling(alice,mary))) & ((hate(alice,mary) & hate(mary,alice)) => hate(fred,mary)) & (hate(fred,mary) <=> (hate(mary,lucy) & hate(lucy,mary))) & (? [X8] : (~predt(X8) & room(X8)) => (poorer(lucy,mary) & ~curious(mary) & ~funny(mary) & ~strong(mary))) & ! [X9] : (room(X9) => mary = X9) & room(mary) [rectify 44] 47. ! [X0] : ((mary != X0 & room(X0)) => older(X0,mary)) & ~older(john,mary) & (younger(alice,mary) | sibling(john,mary) | (european(mary) & kind(mary))) & richer(mary,paul) & ((european(mary) & old(mary) & calm(mary)) | ~predj(mary) | quieter(susan,mary)) & ! [X1] : (~(tourist(X1) & kind(X1) & strong(X1)) <=> hate(X1,lucy)) & ((european(mary) & happy(mary)) <~> sibling(alice,mary)) & like(john,mary) & quieter(john,mary) & ? [X2] : (~(european(X2) & funny(X2)) & anywhere(X2)) & ~(tourist(mary) & tall(mary)) & ~(hate(paul,mary) & hate(mary,paul)) & sibling(fred,mary) & hate(mary,susan) & sibling(paul,mary) & person(mary) & old(mary) & ~generous(mary) & ~(tourist(mary) & funny(mary)) & ((like(alice,mary) & like(mary,alice)) => (european(mary) & strong(mary) & old(mary))) & (~louder(mary,susan) => ? [X5] : (european(X5) & curious(X5) & kind(X5) & room(X5))) & (client(mary,susan) => ! [X6] : ((mary != X6 & room(X6)) => quieter(X6,mary))) & (~(european(mary) & curious(mary) & quiet(mary)) => (like(susan,mary) & like(mary,susan))) & (strong(mary) => ~(european(mary) & curious(mary) & quiet(mary))) & (~predp(mary) => younger(mary,john)) & (client(mary,lucy) => sibling(alice,mary)) & (richer(mary,susan) => ? [X7] : (~prede(X7) & room(X7))) & ((hate(alice,mary) | ~predv(mary) | ~funny(mary)) => ~(poorer(susan,mary) | ~(european(mary) & patient(mary) & kind(mary)))) & (like(mary,john) <=> (~predj(mary) <~> sibling(paul,mary))) & (hate(fred,mary) => (~strong(mary) | (european(mary) & generous(mary) & tall(mary) & creative(mary) & strong(mary) & wise(mary)) | sibling(alice,mary))) & ((hate(alice,mary) & hate(mary,alice)) => hate(fred,mary)) & (hate(fred,mary) <=> (hate(mary,lucy) & hate(lucy,mary))) & (? [X8] : (~predt(X8) & room(X8)) => (poorer(lucy,mary) & ~curious(mary) & ~funny(mary) & ~strong(mary))) & ! [X9] : (room(X9) => mary = X9) & room(mary) [pure predicate removal 46] 48. ! [X0] : ((mary != X0 & room(X0)) => older(X0,mary)) & ~older(john,mary) & (younger(alice,mary) | sibling(john,mary) | (european(mary) & kind(mary))) & richer(mary,paul) & ((european(mary) & old(mary) & calm(mary)) | ~predj(mary) | quieter(susan,mary)) & ! [X1] : (~(tourist(X1) & kind(X1) & strong(X1)) <=> hate(X1,lucy)) & ((european(mary) & happy(mary)) <~> sibling(alice,mary)) & like(john,mary) & quieter(john,mary) & ? [X2] : (~(european(X2) & funny(X2)) & anywhere(X2)) & ~(tourist(mary) & tall(mary)) & ~(hate(paul,mary) & hate(mary,paul)) & sibling(fred,mary) & hate(mary,susan) & sibling(paul,mary) & person(mary) & old(mary) & ~generous(mary) & ~(tourist(mary) & funny(mary)) & ((like(alice,mary) & like(mary,alice)) => (european(mary) & strong(mary) & old(mary))) & (~louder(mary,susan) => ? [X5] : (european(X5) & curious(X5) & kind(X5) & room(X5))) & (client(mary,susan) => ! [X6] : ((mary != X6 & room(X6)) => quieter(X6,mary))) & (~(european(mary) & curious(mary) & quiet(mary)) => (like(susan,mary) & like(mary,susan))) & (strong(mary) => ~(european(mary) & curious(mary) & quiet(mary))) & (~predp(mary) => younger(mary,john)) & (client(mary,lucy) => sibling(alice,mary)) & (richer(mary,susan) => ? [X7] : (~prede(X7) & room(X7))) & ((hate(alice,mary) | ~predv(mary) | ~funny(mary)) => ~(poorer(susan,mary) | ~(european(mary) & patient(mary) & kind(mary)))) & (like(mary,john) <=> (~predj(mary) <~> sibling(paul,mary))) & (hate(fred,mary) => (~strong(mary) | (european(mary) & generous(mary) & tall(mary) & creative(mary) & strong(mary)) | sibling(alice,mary))) & ((hate(alice,mary) & hate(mary,alice)) => hate(fred,mary)) & (hate(fred,mary) <=> (hate(mary,lucy) & hate(lucy,mary))) & (? [X8] : (~predt(X8) & room(X8)) => (poorer(lucy,mary) & ~curious(mary) & ~funny(mary) & ~strong(mary))) & ! [X9] : (room(X9) => mary = X9) & room(mary) [pure predicate removal 47] 49. ! [X0] : ((mary != X0 & room(X0)) => older(X0,mary)) & ~older(john,mary) & (younger(alice,mary) | sibling(john,mary) | (european(mary) & kind(mary))) & richer(mary,paul) & ((european(mary) & old(mary)) | ~predj(mary) | quieter(susan,mary)) & ! [X1] : (~(tourist(X1) & kind(X1) & strong(X1)) <=> hate(X1,lucy)) & ((european(mary) & happy(mary)) <~> sibling(alice,mary)) & like(john,mary) & quieter(john,mary) & ? [X2] : (~(european(X2) & funny(X2)) & anywhere(X2)) & ~(tourist(mary) & tall(mary)) & ~(hate(paul,mary) & hate(mary,paul)) & sibling(fred,mary) & hate(mary,susan) & sibling(paul,mary) & person(mary) & old(mary) & ~generous(mary) & ~(tourist(mary) & funny(mary)) & ((like(alice,mary) & like(mary,alice)) => (european(mary) & strong(mary) & old(mary))) & (~louder(mary,susan) => ? [X5] : (european(X5) & curious(X5) & kind(X5) & room(X5))) & (client(mary,susan) => ! [X6] : ((mary != X6 & room(X6)) => quieter(X6,mary))) & (~(european(mary) & curious(mary) & quiet(mary)) => (like(susan,mary) & like(mary,susan))) & (strong(mary) => ~(european(mary) & curious(mary) & quiet(mary))) & (~predp(mary) => younger(mary,john)) & (client(mary,lucy) => sibling(alice,mary)) & (richer(mary,susan) => ? [X7] : (~prede(X7) & room(X7))) & ((hate(alice,mary) | ~predv(mary) | ~funny(mary)) => ~(poorer(susan,mary) | ~(european(mary) & patient(mary) & kind(mary)))) & (like(mary,john) <=> (~predj(mary) <~> sibling(paul,mary))) & (hate(fred,mary) => (~strong(mary) | (european(mary) & generous(mary) & tall(mary) & creative(mary) & strong(mary)) | sibling(alice,mary))) & ((hate(alice,mary) & hate(mary,alice)) => hate(fred,mary)) & (hate(fred,mary) <=> (hate(mary,lucy) & hate(lucy,mary))) & (? [X8] : (~predt(X8) & room(X8)) => (poorer(lucy,mary) & ~curious(mary) & ~funny(mary) & ~strong(mary))) & ! [X9] : (room(X9) => mary = X9) & room(mary) [pure predicate removal 48] 50. ! [X0] : ((mary != X0 & room(X0)) => older(X0,mary)) & ~older(john,mary) & (younger(alice,mary) | sibling(john,mary) | (european(mary) & kind(mary))) & richer(mary,paul) & ((european(mary) & old(mary)) | ~predj(mary) | quieter(susan,mary)) & ! [X1] : (~(tourist(X1) & kind(X1) & strong(X1)) <=> hate(X1,lucy)) & ((european(mary) & happy(mary)) <~> sibling(alice,mary)) & like(john,mary) & quieter(john,mary) & ? [X2] : (~(european(X2) & funny(X2)) & anywhere(X2)) & ~(tourist(mary) & tall(mary)) & ~(hate(paul,mary) & hate(mary,paul)) & sibling(fred,mary) & hate(mary,susan) & sibling(paul,mary) & person(mary) & old(mary) & ~generous(mary) & ~(tourist(mary) & funny(mary)) & ((like(alice,mary) & like(mary,alice)) => (european(mary) & strong(mary) & old(mary))) & (~louder(mary,susan) => ? [X5] : (european(X5) & curious(X5) & kind(X5) & room(X5))) & (client(mary,susan) => ! [X6] : ((mary != X6 & room(X6)) => quieter(X6,mary))) & (~(european(mary) & curious(mary) & quiet(mary)) => (like(susan,mary) & like(mary,susan))) & (strong(mary) => ~(european(mary) & curious(mary) & quiet(mary))) & (client(mary,lucy) => sibling(alice,mary)) & (richer(mary,susan) => ? [X7] : (~prede(X7) & room(X7))) & ((hate(alice,mary) | ~predv(mary) | ~funny(mary)) => ~(poorer(susan,mary) | ~(european(mary) & patient(mary) & kind(mary)))) & (like(mary,john) <=> (~predj(mary) <~> sibling(paul,mary))) & (hate(fred,mary) => (~strong(mary) | (european(mary) & generous(mary) & tall(mary) & creative(mary) & strong(mary)) | sibling(alice,mary))) & ((hate(alice,mary) & hate(mary,alice)) => hate(fred,mary)) & (hate(fred,mary) <=> (hate(mary,lucy) & hate(lucy,mary))) & (? [X8] : (~predt(X8) & room(X8)) => (poorer(lucy,mary) & ~curious(mary) & ~funny(mary) & ~strong(mary))) & ! [X9] : (room(X9) => mary = X9) & room(mary) [pure predicate removal 49] 51. ! [X0] : ((mary != X0 & room(X0)) => older(X0,mary)) & ~older(john,mary) & (younger(alice,mary) | sibling(john,mary) | (european(mary) & kind(mary))) & richer(mary,paul) & ((european(mary) & old(mary)) | ~predj(mary) | quieter(susan,mary)) & ! [X1] : (~(tourist(X1) & kind(X1) & strong(X1)) <=> hate(X1,lucy)) & ((european(mary) & happy(mary)) <~> sibling(alice,mary)) & like(john,mary) & quieter(john,mary) & ? [X2] : (~(european(X2) & funny(X2)) & anywhere(X2)) & ~(tourist(mary) & tall(mary)) & ~(hate(paul,mary) & hate(mary,paul)) & sibling(fred,mary) & hate(mary,susan) & sibling(paul,mary) & person(mary) & old(mary) & ~generous(mary) & ~(tourist(mary) & funny(mary)) & ((like(alice,mary) & like(mary,alice)) => (european(mary) & strong(mary) & old(mary))) & (~louder(mary,susan) => ? [X5] : (european(X5) & curious(X5) & kind(X5) & room(X5))) & (~(european(mary) & curious(mary) & quiet(mary)) => (like(susan,mary) & like(mary,susan))) & (strong(mary) => ~(european(mary) & curious(mary) & quiet(mary))) & (richer(mary,susan) => ? [X7] : (~prede(X7) & room(X7))) & ((hate(alice,mary) | ~predv(mary) | ~funny(mary)) => ~(poorer(susan,mary) | ~(european(mary) & patient(mary) & kind(mary)))) & (like(mary,john) <=> (~predj(mary) <~> sibling(paul,mary))) & (hate(fred,mary) => (~strong(mary) | (european(mary) & generous(mary) & tall(mary) & creative(mary) & strong(mary)) | sibling(alice,mary))) & ((hate(alice,mary) & hate(mary,alice)) => hate(fred,mary)) & (hate(fred,mary) <=> (hate(mary,lucy) & hate(lucy,mary))) & (? [X8] : (~predt(X8) & room(X8)) => (poorer(lucy,mary) & ~curious(mary) & ~funny(mary) & ~strong(mary))) & ! [X9] : (room(X9) => mary = X9) & room(mary) [pure predicate removal 50] 52. ! [X0] : ((mary != X0 & room(X0)) => older(X0,mary)) & ~older(john,mary) & (younger(alice,mary) | sibling(john,mary) | (european(mary) & kind(mary))) & richer(mary,paul) & ((european(mary) & old(mary)) | ~predj(mary) | quieter(susan,mary)) & ! [X1] : (~(tourist(X1) & kind(X1) & strong(X1)) <=> hate(X1,lucy)) & ((european(mary) & happy(mary)) <~> sibling(alice,mary)) & like(john,mary) & quieter(john,mary) & ? [X2] : (~(european(X2) & funny(X2)) & anywhere(X2)) & ~(tourist(mary) & tall(mary)) & ~(hate(paul,mary) & hate(mary,paul)) & sibling(fred,mary) & hate(mary,susan) & sibling(paul,mary) & person(mary) & old(mary) & ~generous(mary) & ~(tourist(mary) & funny(mary)) & ((like(alice,mary) & like(mary,alice)) => (european(mary) & strong(mary) & old(mary))) & (~louder(mary,susan) => ? [X5] : (european(X5) & curious(X5) & kind(X5) & room(X5))) & (~(european(mary) & curious(mary) & quiet(mary)) => (like(susan,mary) & like(mary,susan))) & (strong(mary) => ~(european(mary) & curious(mary) & quiet(mary))) & (richer(mary,susan) => ? [X7] : room(X7)) & ((hate(alice,mary) | ~predv(mary) | ~funny(mary)) => ~(poorer(susan,mary) | ~(european(mary) & patient(mary) & kind(mary)))) & (like(mary,john) <=> (~predj(mary) <~> sibling(paul,mary))) & (hate(fred,mary) => (~strong(mary) | (european(mary) & generous(mary) & tall(mary) & creative(mary) & strong(mary)) | sibling(alice,mary))) & ((hate(alice,mary) & hate(mary,alice)) => hate(fred,mary)) & (hate(fred,mary) <=> (hate(mary,lucy) & hate(lucy,mary))) & (? [X8] : (~predt(X8) & room(X8)) => (poorer(lucy,mary) & ~curious(mary) & ~funny(mary) & ~strong(mary))) & ! [X9] : (room(X9) => mary = X9) & room(mary) [pure predicate removal 51] 53. ! [X0] : ((mary != X0 & room(X0)) => older(X0,mary)) & ~older(john,mary) & (younger(alice,mary) | sibling(john,mary) | (european(mary) & kind(mary))) & richer(mary,paul) & ((european(mary) & old(mary)) | ~predj(mary) | quieter(susan,mary)) & ! [X1] : (~(tourist(X1) & kind(X1) & strong(X1)) <=> hate(X1,lucy)) & ((european(mary) & happy(mary)) <~> sibling(alice,mary)) & like(john,mary) & quieter(john,mary) & ? [X2] : (~(european(X2) & funny(X2)) & anywhere(X2)) & ~(tourist(mary) & tall(mary)) & ~(hate(paul,mary) & hate(mary,paul)) & sibling(fred,mary) & hate(mary,susan) & sibling(paul,mary) & person(mary) & old(mary) & ~generous(mary) & ~(tourist(mary) & funny(mary)) & ((like(alice,mary) & like(mary,alice)) => (european(mary) & strong(mary) & old(mary))) & (~louder(mary,susan) => ? [X5] : (european(X5) & curious(X5) & kind(X5) & room(X5))) & (~(european(mary) & curious(mary) & quiet(mary)) => (like(susan,mary) & like(mary,susan))) & (strong(mary) => ~(european(mary) & curious(mary) & quiet(mary))) & (richer(mary,susan) => ? [X7] : room(X7)) & ((hate(alice,mary) | ~predv(mary) | ~funny(mary)) => ~(poorer(susan,mary) | ~(european(mary) & kind(mary)))) & (like(mary,john) <=> (~predj(mary) <~> sibling(paul,mary))) & (hate(fred,mary) => (~strong(mary) | (european(mary) & generous(mary) & tall(mary) & creative(mary) & strong(mary)) | sibling(alice,mary))) & ((hate(alice,mary) & hate(mary,alice)) => hate(fred,mary)) & (hate(fred,mary) <=> (hate(mary,lucy) & hate(lucy,mary))) & (? [X8] : (~predt(X8) & room(X8)) => (poorer(lucy,mary) & ~curious(mary) & ~funny(mary) & ~strong(mary))) & ! [X9] : (room(X9) => mary = X9) & room(mary) [pure predicate removal 52] 54. ! [X0] : ((mary != X0 & room(X0)) => older(X0,mary)) & ~older(john,mary) & (younger(alice,mary) | sibling(john,mary) | (european(mary) & kind(mary))) & richer(mary,paul) & ((european(mary) & old(mary)) | ~predj(mary) | quieter(susan,mary)) & ! [X1] : (~(tourist(X1) & kind(X1) & strong(X1)) <=> hate(X1,lucy)) & ((european(mary) & happy(mary)) <~> sibling(alice,mary)) & like(john,mary) & quieter(john,mary) & ? [X2] : (~(european(X2) & funny(X2)) & anywhere(X2)) & ~(tourist(mary) & tall(mary)) & ~(hate(paul,mary) & hate(mary,paul)) & sibling(fred,mary) & hate(mary,susan) & sibling(paul,mary) & person(mary) & old(mary) & ~generous(mary) & ~(tourist(mary) & funny(mary)) & ((like(alice,mary) & like(mary,alice)) => (european(mary) & strong(mary) & old(mary))) & (~louder(mary,susan) => ? [X5] : (european(X5) & curious(X5) & kind(X5) & room(X5))) & (~(european(mary) & curious(mary) & quiet(mary)) => (like(susan,mary) & like(mary,susan))) & (strong(mary) => ~(european(mary) & curious(mary) & quiet(mary))) & (richer(mary,susan) => ? [X7] : room(X7)) & ((hate(alice,mary) | ~funny(mary)) => ~(poorer(susan,mary) | ~(european(mary) & kind(mary)))) & (like(mary,john) <=> (~predj(mary) <~> sibling(paul,mary))) & (hate(fred,mary) => (~strong(mary) | (european(mary) & generous(mary) & tall(mary) & creative(mary) & strong(mary)) | sibling(alice,mary))) & ((hate(alice,mary) & hate(mary,alice)) => hate(fred,mary)) & (hate(fred,mary) <=> (hate(mary,lucy) & hate(lucy,mary))) & (? [X8] : (~predt(X8) & room(X8)) => (poorer(lucy,mary) & ~curious(mary) & ~funny(mary) & ~strong(mary))) & ! [X9] : (room(X9) => mary = X9) & room(mary) [pure predicate removal 53] 55. ! [X0] : ((mary != X0 & room(X0)) => older(X0,mary)) & ~older(john,mary) & (younger(alice,mary) | sibling(john,mary) | (european(mary) & kind(mary))) & richer(mary,paul) & ((european(mary) & old(mary)) | ~predj(mary) | quieter(susan,mary)) & ! [X1] : (~(tourist(X1) & kind(X1) & strong(X1)) <=> hate(X1,lucy)) & ((european(mary) & happy(mary)) <~> sibling(alice,mary)) & like(john,mary) & quieter(john,mary) & ? [X2] : (~(european(X2) & funny(X2)) & anywhere(X2)) & ~(tourist(mary) & tall(mary)) & ~(hate(paul,mary) & hate(mary,paul)) & sibling(fred,mary) & hate(mary,susan) & sibling(paul,mary) & person(mary) & old(mary) & ~generous(mary) & ~(tourist(mary) & funny(mary)) & ((like(alice,mary) & like(mary,alice)) => (european(mary) & strong(mary) & old(mary))) & (~louder(mary,susan) => ? [X5] : (european(X5) & curious(X5) & kind(X5) & room(X5))) & (~(european(mary) & curious(mary) & quiet(mary)) => (like(susan,mary) & like(mary,susan))) & (strong(mary) => ~(european(mary) & curious(mary) & quiet(mary))) & (richer(mary,susan) => ? [X7] : room(X7)) & ((hate(alice,mary) | ~funny(mary)) => ~(poorer(susan,mary) | ~(european(mary) & kind(mary)))) & (like(mary,john) <=> (~predj(mary) <~> sibling(paul,mary))) & (hate(fred,mary) => (~strong(mary) | (european(mary) & generous(mary) & tall(mary) & strong(mary)) | sibling(alice,mary))) & ((hate(alice,mary) & hate(mary,alice)) => hate(fred,mary)) & (hate(fred,mary) <=> (hate(mary,lucy) & hate(lucy,mary))) & (? [X8] : (~predt(X8) & room(X8)) => (poorer(lucy,mary) & ~curious(mary) & ~funny(mary) & ~strong(mary))) & ! [X9] : (room(X9) => mary = X9) & room(mary) [pure predicate removal 54] 56. ! [X0] : ((mary != X0 & room(X0)) => older(X0,mary)) & ~older(john,mary) & (younger(alice,mary) | sibling(john,mary) | (european(mary) & kind(mary))) & richer(mary,paul) & ((european(mary) & old(mary)) | ~predj(mary) | quieter(susan,mary)) & ! [X1] : (~(tourist(X1) & kind(X1) & strong(X1)) <=> hate(X1,lucy)) & ((european(mary) & happy(mary)) <~> sibling(alice,mary)) & like(john,mary) & quieter(john,mary) & ? [X2] : (~(european(X2) & funny(X2)) & anywhere(X2)) & ~(tourist(mary) & tall(mary)) & ~(hate(paul,mary) & hate(mary,paul)) & sibling(fred,mary) & hate(mary,susan) & sibling(paul,mary) & person(mary) & old(mary) & ~generous(mary) & ~(tourist(mary) & funny(mary)) & ((like(alice,mary) & like(mary,alice)) => (european(mary) & strong(mary) & old(mary))) & (~louder(mary,susan) => ? [X5] : (european(X5) & curious(X5) & kind(X5) & room(X5))) & (~(european(mary) & curious(mary) & quiet(mary)) => (like(susan,mary) & like(mary,susan))) & (strong(mary) => ~(european(mary) & curious(mary) & quiet(mary))) & (richer(mary,susan) => ? [X7] : room(X7)) & ((hate(alice,mary) | ~funny(mary)) => ~(poorer(susan,mary) | ~(european(mary) & kind(mary)))) & (like(mary,john) <=> (~predj(mary) <~> sibling(paul,mary))) & (hate(fred,mary) => (~strong(mary) | (european(mary) & generous(mary) & tall(mary) & strong(mary)) | sibling(alice,mary))) & ((hate(alice,mary) & hate(mary,alice)) => hate(fred,mary)) & (hate(fred,mary) <=> (hate(mary,lucy) & hate(lucy,mary))) & ! [X9] : (room(X9) => mary = X9) & room(mary) [pure predicate removal 55] 57. ! [X0] : ((mary != X0 & room(X0)) => older(X0,mary)) & ~older(john,mary) & (younger(alice,mary) | sibling(john,mary) | (european(mary) & kind(mary))) & richer(mary,paul) & ((european(mary) & old(mary)) | ~predj(mary) | quieter(susan,mary)) & ! [X1] : (~(tourist(X1) & kind(X1) & strong(X1)) <=> hate(X1,lucy)) & ((european(mary) & happy(mary)) <~> sibling(alice,mary)) & like(john,mary) & quieter(john,mary) & ? [X2] : ~(european(X2) & funny(X2)) & ~(tourist(mary) & tall(mary)) & ~(hate(paul,mary) & hate(mary,paul)) & sibling(fred,mary) & hate(mary,susan) & sibling(paul,mary) & person(mary) & old(mary) & ~generous(mary) & ~(tourist(mary) & funny(mary)) & ((like(alice,mary) & like(mary,alice)) => (european(mary) & strong(mary) & old(mary))) & (~louder(mary,susan) => ? [X5] : (european(X5) & curious(X5) & kind(X5) & room(X5))) & (~(european(mary) & curious(mary) & quiet(mary)) => (like(susan,mary) & like(mary,susan))) & (strong(mary) => ~(european(mary) & curious(mary) & quiet(mary))) & (richer(mary,susan) => ? [X7] : room(X7)) & ((hate(alice,mary) | ~funny(mary)) => ~(poorer(susan,mary) | ~(european(mary) & kind(mary)))) & (like(mary,john) <=> (~predj(mary) <~> sibling(paul,mary))) & (hate(fred,mary) => (~strong(mary) | (european(mary) & generous(mary) & tall(mary) & strong(mary)) | sibling(alice,mary))) & ((hate(alice,mary) & hate(mary,alice)) => hate(fred,mary)) & (hate(fred,mary) <=> (hate(mary,lucy) & hate(lucy,mary))) & ! [X9] : (room(X9) => mary = X9) & room(mary) [pure predicate removal 56] 60. ! [X0] : ((mary != X0 & room(X0)) => older(X0,mary)) & ~older(john,mary) & (younger(alice,mary) | sibling(john,mary) | (european(mary) & kind(mary))) & richer(mary,paul) & ((european(mary) & old(mary)) | ~predj(mary) | quieter(susan,mary)) & ! [X1] : (~(tourist(X1) & kind(X1) & strong(X1)) <=> hate(X1,lucy)) & ((european(mary) & happy(mary)) <~> sibling(alice,mary)) & like(john,mary) & quieter(john,mary) & ? [X2] : ~(european(X2) & funny(X2)) & ~(tourist(mary) & tall(mary)) & ~(hate(paul,mary) & hate(mary,paul)) & sibling(fred,mary) & hate(mary,susan) & sibling(paul,mary) & old(mary) & ~generous(mary) & ~(tourist(mary) & funny(mary)) & ((like(alice,mary) & like(mary,alice)) => (european(mary) & strong(mary) & old(mary))) & (~louder(mary,susan) => ? [X5] : (european(X5) & curious(X5) & kind(X5) & room(X5))) & (~(european(mary) & curious(mary) & quiet(mary)) => (like(susan,mary) & like(mary,susan))) & (strong(mary) => ~(european(mary) & curious(mary) & quiet(mary))) & (richer(mary,susan) => ? [X7] : room(X7)) & ((hate(alice,mary) | ~funny(mary)) => ~(poorer(susan,mary) | ~(european(mary) & kind(mary)))) & (like(mary,john) <=> (~predj(mary) <~> sibling(paul,mary))) & (hate(fred,mary) => (~strong(mary) | (european(mary) & generous(mary) & tall(mary) & strong(mary)) | sibling(alice,mary))) & ((hate(alice,mary) & hate(mary,alice)) => hate(fred,mary)) & (hate(fred,mary) <=> (hate(mary,lucy) & hate(lucy,mary))) & ! [X9] : (room(X9) => mary = X9) & room(mary) [pure predicate removal 57] 69. ! [X0,X1] : ((~richer(X1,X0) | ~richer(X0,X1)) | X0 = X1) [ennf transformation 8] 70. ! [X0,X1] : (~richer(X1,X0) | ~richer(X0,X1) | X0 = X1) [flattening 69] 133. ! [X0] : (older(X0,mary) | (mary = X0 | ~room(X0))) & ~older(john,mary) & (younger(alice,mary) | sibling(john,mary) | (european(mary) & kind(mary))) & richer(mary,paul) & ((european(mary) & old(mary)) | ~predj(mary) | quieter(susan,mary)) & ! [X1] : ((~tourist(X1) | ~kind(X1) | ~strong(X1)) <=> hate(X1,lucy)) & ((european(mary) & happy(mary)) <~> sibling(alice,mary)) & like(john,mary) & quieter(john,mary) & ? [X2] : (~european(X2) | ~funny(X2)) & (~tourist(mary) | ~tall(mary)) & (~hate(paul,mary) | ~hate(mary,paul)) & sibling(fred,mary) & hate(mary,susan) & sibling(paul,mary) & old(mary) & ~generous(mary) & (~tourist(mary) | ~funny(mary)) & ((european(mary) & strong(mary) & old(mary)) | (~like(alice,mary) | ~like(mary,alice))) & (? [X5] : (european(X5) & curious(X5) & kind(X5) & room(X5)) | louder(mary,susan)) & ((like(susan,mary) & like(mary,susan)) | (european(mary) & curious(mary) & quiet(mary))) & ((~european(mary) | ~curious(mary) | ~quiet(mary)) | ~strong(mary)) & (? [X7] : room(X7) | ~richer(mary,susan)) & ((~poorer(susan,mary) & (european(mary) & kind(mary))) | (~hate(alice,mary) & funny(mary))) & (like(mary,john) <=> (~predj(mary) <~> sibling(paul,mary))) & ((~strong(mary) | (european(mary) & generous(mary) & tall(mary) & strong(mary)) | sibling(alice,mary)) | ~hate(fred,mary)) & (hate(fred,mary) | (~hate(alice,mary) | ~hate(mary,alice))) & (hate(fred,mary) <=> (hate(mary,lucy) & hate(lucy,mary))) & ! [X9] : (mary = X9 | ~room(X9)) & room(mary) [ennf transformation 60] 134. ! [X0] : (older(X0,mary) | mary = X0 | ~room(X0)) & ~older(john,mary) & (younger(alice,mary) | sibling(john,mary) | (european(mary) & kind(mary))) & richer(mary,paul) & ((european(mary) & old(mary)) | ~predj(mary) | quieter(susan,mary)) & ! [X1] : ((~tourist(X1) | ~kind(X1) | ~strong(X1)) <=> hate(X1,lucy)) & ((european(mary) & happy(mary)) <~> sibling(alice,mary)) & like(john,mary) & quieter(john,mary) & ? [X2] : (~european(X2) | ~funny(X2)) & (~tourist(mary) | ~tall(mary)) & (~hate(paul,mary) | ~hate(mary,paul)) & sibling(fred,mary) & hate(mary,susan) & sibling(paul,mary) & old(mary) & ~generous(mary) & (~tourist(mary) | ~funny(mary)) & ((european(mary) & strong(mary) & old(mary)) | ~like(alice,mary) | ~like(mary,alice)) & (? [X5] : (european(X5) & curious(X5) & kind(X5) & room(X5)) | louder(mary,susan)) & ((like(susan,mary) & like(mary,susan)) | (european(mary) & curious(mary) & quiet(mary))) & (~european(mary) | ~curious(mary) | ~quiet(mary) | ~strong(mary)) & (? [X7] : room(X7) | ~richer(mary,susan)) & ((~poorer(susan,mary) & european(mary) & kind(mary)) | (~hate(alice,mary) & funny(mary))) & (like(mary,john) <=> (~predj(mary) <~> sibling(paul,mary))) & (~strong(mary) | (european(mary) & generous(mary) & tall(mary) & strong(mary)) | sibling(alice,mary) | ~hate(fred,mary)) & (hate(fred,mary) | ~hate(alice,mary) | ~hate(mary,alice)) & (hate(fred,mary) <=> (hate(mary,lucy) & hate(lucy,mary))) & ! [X9] : (mary = X9 | ~room(X9)) & room(mary) [flattening 133] 135. richer(paul,mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 45] 137. ! [X0] : (older(X0,mary) | mary = X0 | ~room(X0)) & ~older(john,mary) & (younger(alice,mary) | sibling(john,mary) | (european(mary) & kind(mary))) & richer(mary,paul) & ((european(mary) & old(mary)) | ~predj(mary) | quieter(susan,mary)) & ! [X1] : (((~tourist(X1) | ~kind(X1) | ~strong(X1)) | ~hate(X1,lucy)) & (hate(X1,lucy) | (tourist(X1) & kind(X1) & strong(X1)))) & ((~sibling(alice,mary) | (~european(mary) | ~happy(mary))) & (sibling(alice,mary) | (european(mary) & happy(mary)))) & like(john,mary) & quieter(john,mary) & ? [X2] : (~european(X2) | ~funny(X2)) & (~tourist(mary) | ~tall(mary)) & (~hate(paul,mary) | ~hate(mary,paul)) & sibling(fred,mary) & hate(mary,susan) & sibling(paul,mary) & old(mary) & ~generous(mary) & (~tourist(mary) | ~funny(mary)) & ((european(mary) & strong(mary) & old(mary)) | ~like(alice,mary) | ~like(mary,alice)) & (? [X5] : (european(X5) & curious(X5) & kind(X5) & room(X5)) | louder(mary,susan)) & ((like(susan,mary) & like(mary,susan)) | (european(mary) & curious(mary) & quiet(mary))) & (~european(mary) | ~curious(mary) | ~quiet(mary) | ~strong(mary)) & (? [X7] : room(X7) | ~richer(mary,susan)) & ((~poorer(susan,mary) & european(mary) & kind(mary)) | (~hate(alice,mary) & funny(mary))) & ((like(mary,john) | ((~predj(mary) | ~sibling(paul,mary)) & (sibling(paul,mary) | predj(mary)))) & (((~sibling(paul,mary) | predj(mary)) & (sibling(paul,mary) | ~predj(mary))) | ~like(mary,john))) & (~strong(mary) | (european(mary) & generous(mary) & tall(mary) & strong(mary)) | sibling(alice,mary) | ~hate(fred,mary)) & (hate(fred,mary) | ~hate(alice,mary) | ~hate(mary,alice)) & ((hate(fred,mary) | (~hate(mary,lucy) | ~hate(lucy,mary))) & ((hate(mary,lucy) & hate(lucy,mary)) | ~hate(fred,mary))) & ! [X9] : (mary = X9 | ~room(X9)) & room(mary) [nnf transformation 134] 138. ! [X0] : (older(X0,mary) | mary = X0 | ~room(X0)) & ~older(john,mary) & (younger(alice,mary) | sibling(john,mary) | (european(mary) & kind(mary))) & richer(mary,paul) & ((european(mary) & old(mary)) | ~predj(mary) | quieter(susan,mary)) & ! [X1] : ((~tourist(X1) | ~kind(X1) | ~strong(X1) | ~hate(X1,lucy)) & (hate(X1,lucy) | (tourist(X1) & kind(X1) & strong(X1)))) & (~sibling(alice,mary) | ~european(mary) | ~happy(mary)) & (sibling(alice,mary) | (european(mary) & happy(mary))) & like(john,mary) & quieter(john,mary) & ? [X2] : (~european(X2) | ~funny(X2)) & (~tourist(mary) | ~tall(mary)) & (~hate(paul,mary) | ~hate(mary,paul)) & sibling(fred,mary) & hate(mary,susan) & sibling(paul,mary) & old(mary) & ~generous(mary) & (~tourist(mary) | ~funny(mary)) & ((european(mary) & strong(mary) & old(mary)) | ~like(alice,mary) | ~like(mary,alice)) & (? [X5] : (european(X5) & curious(X5) & kind(X5) & room(X5)) | louder(mary,susan)) & ((like(susan,mary) & like(mary,susan)) | (european(mary) & curious(mary) & quiet(mary))) & (~european(mary) | ~curious(mary) | ~quiet(mary) | ~strong(mary)) & (? [X7] : room(X7) | ~richer(mary,susan)) & ((~poorer(susan,mary) & european(mary) & kind(mary)) | (~hate(alice,mary) & funny(mary))) & (like(mary,john) | ((~predj(mary) | ~sibling(paul,mary)) & (sibling(paul,mary) | predj(mary)))) & (((~sibling(paul,mary) | predj(mary)) & (sibling(paul,mary) | ~predj(mary))) | ~like(mary,john)) & (~strong(mary) | (european(mary) & generous(mary) & tall(mary) & strong(mary)) | sibling(alice,mary) | ~hate(fred,mary)) & (hate(fred,mary) | ~hate(alice,mary) | ~hate(mary,alice)) & (hate(fred,mary) | ~hate(mary,lucy) | ~hate(lucy,mary)) & ((hate(mary,lucy) & hate(lucy,mary)) | ~hate(fred,mary)) & ! [X9] : (mary = X9 | ~room(X9)) & room(mary) [flattening 137] 139. ! [X0] : (older(X0,mary) | mary = X0 | ~room(X0)) & ~older(john,mary) & (younger(alice,mary) | sibling(john,mary) | (european(mary) & kind(mary))) & richer(mary,paul) & ((european(mary) & old(mary)) | ~predj(mary) | quieter(susan,mary)) & ! [X1] : ((~tourist(X1) | ~kind(X1) | ~strong(X1) | ~hate(X1,lucy)) & (hate(X1,lucy) | (tourist(X1) & kind(X1) & strong(X1)))) & (~sibling(alice,mary) | ~european(mary) | ~happy(mary)) & (sibling(alice,mary) | (european(mary) & happy(mary))) & like(john,mary) & quieter(john,mary) & ? [X2] : (~european(X2) | ~funny(X2)) & (~tourist(mary) | ~tall(mary)) & (~hate(paul,mary) | ~hate(mary,paul)) & sibling(fred,mary) & hate(mary,susan) & sibling(paul,mary) & old(mary) & ~generous(mary) & (~tourist(mary) | ~funny(mary)) & ((european(mary) & strong(mary) & old(mary)) | ~like(alice,mary) | ~like(mary,alice)) & (? [X3] : (european(X3) & curious(X3) & kind(X3) & room(X3)) | louder(mary,susan)) & ((like(susan,mary) & like(mary,susan)) | (european(mary) & curious(mary) & quiet(mary))) & (~european(mary) | ~curious(mary) | ~quiet(mary) | ~strong(mary)) & (? [X4] : room(X4) | ~richer(mary,susan)) & ((~poorer(susan,mary) & european(mary) & kind(mary)) | (~hate(alice,mary) & funny(mary))) & (like(mary,john) | ((~predj(mary) | ~sibling(paul,mary)) & (sibling(paul,mary) | predj(mary)))) & (((~sibling(paul,mary) | predj(mary)) & (sibling(paul,mary) | ~predj(mary))) | ~like(mary,john)) & (~strong(mary) | (european(mary) & generous(mary) & tall(mary) & strong(mary)) | sibling(alice,mary) | ~hate(fred,mary)) & (hate(fred,mary) | ~hate(alice,mary) | ~hate(mary,alice)) & (hate(fred,mary) | ~hate(mary,lucy) | ~hate(lucy,mary)) & ((hate(mary,lucy) & hate(lucy,mary)) | ~hate(fred,mary)) & ! [X5] : (mary = X5 | ~room(X5)) & room(mary) [rectify 138] 140. ? [X2] : (~european(X2) | ~funny(X2)) => (~european(sK0) | ~funny(sK0)) [choice axiom] 141. ? [X3] : (european(X3) & curious(X3) & kind(X3) & room(X3)) => (european(sK1) & curious(sK1) & kind(sK1) & room(sK1)) [choice axiom] 142. ? [X4] : room(X4) => room(sK2) [choice axiom] 143. ! [X0] : (older(X0,mary) | mary = X0 | ~room(X0)) & ~older(john,mary) & (younger(alice,mary) | sibling(john,mary) | (european(mary) & kind(mary))) & richer(mary,paul) & ((european(mary) & old(mary)) | ~predj(mary) | quieter(susan,mary)) & ! [X1] : ((~tourist(X1) | ~kind(X1) | ~strong(X1) | ~hate(X1,lucy)) & (hate(X1,lucy) | (tourist(X1) & kind(X1) & strong(X1)))) & (~sibling(alice,mary) | ~european(mary) | ~happy(mary)) & (sibling(alice,mary) | (european(mary) & happy(mary))) & like(john,mary) & quieter(john,mary) & (~european(sK0) | ~funny(sK0)) & (~tourist(mary) | ~tall(mary)) & (~hate(paul,mary) | ~hate(mary,paul)) & sibling(fred,mary) & hate(mary,susan) & sibling(paul,mary) & old(mary) & ~generous(mary) & (~tourist(mary) | ~funny(mary)) & ((european(mary) & strong(mary) & old(mary)) | ~like(alice,mary) | ~like(mary,alice)) & ((european(sK1) & curious(sK1) & kind(sK1) & room(sK1)) | louder(mary,susan)) & ((like(susan,mary) & like(mary,susan)) | (european(mary) & curious(mary) & quiet(mary))) & (~european(mary) | ~curious(mary) | ~quiet(mary) | ~strong(mary)) & (room(sK2) | ~richer(mary,susan)) & ((~poorer(susan,mary) & european(mary) & kind(mary)) | (~hate(alice,mary) & funny(mary))) & (like(mary,john) | ((~predj(mary) | ~sibling(paul,mary)) & (sibling(paul,mary) | predj(mary)))) & (((~sibling(paul,mary) | predj(mary)) & (sibling(paul,mary) | ~predj(mary))) | ~like(mary,john)) & (~strong(mary) | (european(mary) & generous(mary) & tall(mary) & strong(mary)) | sibling(alice,mary) | ~hate(fred,mary)) & (hate(fred,mary) | ~hate(alice,mary) | ~hate(mary,alice)) & (hate(fred,mary) | ~hate(mary,lucy) | ~hate(lucy,mary)) & ((hate(mary,lucy) & hate(lucy,mary)) | ~hate(fred,mary)) & ! [X5] : (mary = X5 | ~room(X5)) & room(mary) [skolemisation 139,142,141,140] 149. ~richer(X1,X0) | ~richer(X0,X1) | X0 = X1 [cnf transformation 70] 190. mary != paul [cnf transformation 43] 281. richer(mary,paul) [cnf transformation 143] 288. richer(paul,mary) [cnf transformation 135] 502. ~richer(paul,mary) | mary = paul [resolution 149,281] 504. mary = paul [subsumption resolution 502,288] 505. $false [subsumption resolution 504,190] % SZS output end Proof for 8079418269161001208930755 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.336224
Barbara, Victor are the only persons in the room. Either “Victor owns a microscope” or “everyone in the room is an enthusiastic bird watcher who travels for rare sightings or does not participate in citizen science projects related to wildlife monitoring” but not both. If “everyone in the room cannot play the harmonica or owns a 3D printer” then “it is not the case that “at least one person in the room can play the harmonica, uses contact lenses or collects foreign coins””. Everyone in the room does not collect foreign coins. Everyone in the room is a client of LVMH if they practices calligraphy and vice versa. Barbara does not use contact lenses. Everyone outside the room who either competes in national level swimming championships or can play the harmonica but not both owns a 3D printer. Barbara who has a piercing is a client of LVMH. Victor either competes in national level swimming championships or can play the harmonica but not both. Someone anywhere does not compete in national level swimming championships or enjoys snowboarding or both. Everyone outside the room who has a piercing enjoys snowboarding. Everyone in the room does enjoy mountain biking. More than one person in the room either can play the harmonica or is not a cybersecurity expert but not both. Everyone in the room who is not an enthusiastic bird watcher who travels for rare sightings competes in national level swimming championships. Everyone in the room competes in national level swimming championships if they participates in citizen science projects related to wildlife monitoring. Victor practices tai chi. Victor does not participate in citizen science projects related to wildlife monitoring. Someone outside the room neither enjoys rooftop gardening nor collects comic books. Barbara is a cybersecurity expert, writes a travel blog or participates in citizen science projects related to wildlife monitoring. Victor owns a microscope. Victor mentors a youth basketball team on weekends.
Everyone in the room does not mentor a youth basketball team on weekends.
contradiction
room(barbara)&room(victor)&(![X]:(room(X)=>(X='barbara'|X='victor')))& ((owns_a_microscope(victor))<~>(![X]:(room(X)=>(((does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))|(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X)))))))& ((![X]:(room(X)=>(((owns_a_3D_printer(X))|(cannot_play_the_harmonica(X))))))=>(~(((?[X]:(room(X)&((can_play_the_harmonica(X))|(uses_contact_lenses(X))|(collects_foreign_coins(X)))))))))& (![X]:(room(X)=>(does_not_collect_foreign_coins(X))))& (![X]:(room(X)=>(((is_a_client_of_LVMH(X))<=>(practices_calligraphy(X))))))& (does_not_use_contact_lenses(barbara))& (![X]:(~room(X)=>(((((competes_in_national_level_swimming_championships(X))<~>(can_play_the_harmonica(X))))=>(owns_a_3D_printer(X))))))& ((has_a_piercing(barbara))&(is_a_client_of_LVMH(barbara)))& (((competes_in_national_level_swimming_championships(victor))<~>(can_play_the_harmonica(victor))))& (?[X]:(anywhere(X)&(((does_not_compete_in_national_level_swimming_championships(X))|(enjoys_snowboarding(X))))))& (![X]:(~room(X)=>(((has_a_piercing(X))=>(enjoys_snowboarding(X))))))& (![X]:(room(X)=>(does_enjoy_mountain_biking(X))))& ((?[X,Y]:(room(X)&room(Y)&(((can_play_the_harmonica(X))<~>(is_not_a_cybersecurity_expert(X)))&((can_play_the_harmonica(Y))<~>(is_not_a_cybersecurity_expert(Y))))&(X!=Y))))& (![X]:(room(X)=>(((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))=>(competes_in_national_level_swimming_championships(X))))))& (![X]:(room(X)=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))=>(competes_in_national_level_swimming_championships(X))))))& (practices_tai_chi(victor))& (does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(victor))& (?[X]:(~room(X)&(~((enjoys_rooftop_gardening(X))|(collects_comic_books(X))))))& (((is_a_cybersecurity_expert(barbara))|(writes_a_travel_blog(barbara))|(participates_in_citizen_science_projects_related_to_wildlife_monitoring(barbara))))& (owns_a_microscope(victor))& (mentors_a_youth_basketball_team_on_weekends(victor))& (enjoys_snowboarding(victor))& (![X]:(room(X)=>(((does_not_collect_foreign_coins(X))<=(collects_foreign_coins(X))))))& ((![X]:((is_a_client_of_LVMH(X))=>(collects_comic_books(X)))))& (![X]:(room(X)=>(is_a_drone_photographer(X))))
room(barbara)&room(victor)&(![X]:(room(X)=>(X='barbara'|X='victor')))& ![X]:(room(X)=>(does_not_mentor_a_youth_basketball_team_on_weekends(X)))
[ "p0", "p20", "hypothesis" ]
% SZS status Unsatisfiable for 1940892386646298900403821 % SZS output start Proof for 1940892386646298900403821 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 64. predn(paul) [input p20] 69. ! [X0] : (room(X0) => ~predn(X0)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 71. ! [X0] : (room(X0) => ~predn(X0)) & ! [X1] : (room(X1) => (paul = X1 | mary = X1)) & room(paul) & room(mary) [rectify 69] 159. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 160. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 159] 174. ! [X0] : (~predn(X0) | ~room(X0)) & ! [X1] : ((paul = X1 | mary = X1) | ~room(X1)) & room(paul) & room(mary) [ennf transformation 71] 175. ! [X0] : (~predn(X0) | ~room(X0)) & ! [X1] : (paul = X1 | mary = X1 | ~room(X1)) & room(paul) & room(mary) [flattening 174] 274. room(paul) [cnf transformation 160] 303. predn(paul) [cnf transformation 64] 308. ~predn(X0) | ~room(X0) [cnf transformation 175] 382. ~room(paul) [resolution 308,303] 383. $false [subsumption resolution 382,274] % SZS output end Proof for 1940892386646298900403821 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0
There is a room. Not everyone in the room either is quieter than Sharon or is quiet but not both. Everyone in the room who is a old tall person is quieter than Shaun. Everyone in the room is a old person if they is quiet and vice versa. Everyone in the room who is quiet is older than Sharon. Everyone in the room is a old person if they is older than Sharon. Everyone in the room who either is richer than Shaun or is quiet but not both is older than Sharon. Everyone in the room who is a tall quiet person is quieter than Howard. No one anywhere is richer than Shaun. Everyone in the room who is a tall quiet person is not old, is quieter than Sharon and is a quiet old tall person. Everyone outside the room who either is not old or is a quiet person but not both is a old tall quiet person. All tall persons are quiet. Everyone in the room who is quiet is older than Howard. Everyone in the room who is older than Howard is old. Everyone in the room who is old is quieter than Shaun. All quiet persons are tall. Everyone in the room is quieter than Sharon if they is a old person. Everyone in the room is not quiet, not tall, not old, is older than Sharon or is quieter than Sharon if they is quieter than Sharon. No one anywhere is older than Shaun if they is quieter than Shaun or is old or both. Everyone in the room is richer than Sharon if they is a tall old person.
Everyone in the room is a old person or is quieter than Howard or both.
neutral
(there_is_a_room)& (~![X]:(room(X)=>(((quieter(sharon,X))<~>(quiet(X))))))& (![X]:(room(X)=>(((old(X)&tall(X)&person(X))=>(quieter(shaun,X))))))& (![X]:(room(X)=>(((old(X)&person(X))<=>(quiet(X))))))& (![X]:(room(X)=>(((quiet(X))=>(older(sharon,X))))))& (![X]:(room(X)=>(((older(sharon,X))=>(old(X)&person(X))))))& (![X]:(room(X)=>(((((richer(shaun,X))<~>(quiet(X))))=>(older(sharon,X))))))& (![X]:(room(X)=>(((tall(X)&quiet(X)&person(X))=>(quieter(howard,X))))))& (~?[X]:(anywhere(X)=>(richer(shaun,X))))& (![X]:(room(X)=>(((tall(X)&quiet(X)&person(X))=>(((~old(X))&(quieter(sharon,X))&(quiet(X)&old(X)&tall(X)&person(X))))))))& (![X]:(~room(X)=>(((((~old(X))<~>(quiet(X)&person(X))))=>(old(X)&tall(X)&quiet(X)&person(X))))))& (![X]:(tall(X)=>quiet(X)))& (![X]:(room(X)=>(((quiet(X))=>(older(howard,X))))))& (![X]:(room(X)=>(((older(howard,X))=>(old(X))))))& (![X]:(room(X)=>(((old(X))=>(quieter(shaun,X))))))& (![X]:(quiet(X)=>tall(X)))& (![X]:(room(X)=>(((old(X)&person(X))=>(quieter(sharon,X))))))& (![X]:(room(X)=>(((quieter(sharon,X))=>(((~quiet(X)&~tall(X)&~old(X))|(older(sharon,X))|(quieter(sharon,X))))))))& (~?[X]:(anywhere(X)=>(((((quieter(shaun,X))|(old(X))))=>(older(shaun,X))))))& (![X]:(room(X)=>(((tall(X)&old(X)&person(X))=>(richer(sharon,X))))))
(there_is_a_room)& ![X]:(room(X)=>(((old(X)&person(X))|(quieter(howard,X)))))
[]
null
0.372747
Barbara, Carol, Charlena, Gilbert are the only persons in the room. If 'Gilbert collects action figures' then 'everyone in the room is not a drone photographer or has lived in exactly three countries'. Charlena who does not collect vintage stamps regularly goes on multi-day backpacking trips in national parks, is a drone photographer and enjoys kayaking. Gilbert collects action figures.
Charlena has lived in exactly three countries.
entailment
room(barbara)&room(carol)&room(charlena)&room(gilbert)&(![X]:(room(X)=>(X='barbara'|X='carol'|X='charlena'|X='gilbert')))& ((![X]:(~room(X)=>(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))<~>(![X]:(room(X)=>(((enjoys_fishing(X))|(does_not_have_a_pet_dog(X)))))))& ((does_not_enjoy_kayaking_and_exploring_remote_waterways(carol))=>(~![X]:(room(X)=>(((~((reads_mystery_novels(X))|(has_lived_in_exactly_three_countries(X))))=>(enjoys_kayaking_and_exploring_remote_waterways(X)))))))& (~(((?[X]:(room(X)&enjoys_snowboarding(X)))))=>(enjoys_kayaking(gilbert)))& ((![X]:(room(X)=>(((has_lived_in_exactly_three_countries(X))|(does_not_enjoy_origami(X))))))<~>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(charlena))&(enjoys_origami(charlena)))))& ((![X]:(room(X)=>(((collects_vintage_stamps(X))|(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))))))=>(![X]:(room(X)=>(((collects_action_figures(X))<=(does_not_enjoy_kayaking_and_exploring_remote_waterways(X)))))))& ((![X]:(room(X)=>(((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(enjoys_kayaking_and_exploring_remote_waterways(X))))))=>(((?[X]:(room(X)&collects_action_figures(X))))))& ((~?[X]:(room(X)=>(((does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))|(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))=>(does_not_enjoy_origami(charlena)))& ((collects_action_figures(gilbert))=>(![X]:(room(X)=>(((has_lived_in_exactly_three_countries(X))|(is_not_a_drone_photographer(X)))))))& ((![X]:(room(X)=>(((enjoys_snowboarding(X))|(does_not_enjoy_origami(X))))))=>(![X]:(room(X)=>(((collects_vintage_stamps(X))<=(does_not_enjoy_origami(X)))))))& ((?[X]:(room(X)&(enjoys_kayaking(X))))=>(![X]:(room(X)=>(((collects_vintage_stamps(X))=>(((reads_mystery_novels(X))<~>(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X)))))))))& ((![X]:(room(X)=>(((is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(does_not_enjoy_kayaking(X))))))=>(~((reads_mystery_novels(barbara))|(has_lived_in_exactly_three_countries(barbara)))))& (((?[X]:(room(X)&(collects_historical_artifacts_related_to_ancient_civilizations(X))))=>(~(enjoys_origami(barbara))))&((~(?[X]:(room(X)&(collects_historical_artifacts_related_to_ancient_civilizations(X)))))=>((![X]:((reads_mystery_novels(X))<=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X)))))))& ((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(charlena))=>(![X]:(room(X)=>(((does_not_enjoy_fishing(X))=>(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X)))))))& (![X]:(room(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))=>(has_lived_in_exactly_three_countries(X))))))& ((does_not_collect_vintage_stamps(charlena))&(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(charlena))&(is_a_drone_photographer(charlena))&(enjoys_kayaking(charlena)))))& (enjoys_origami(barbara))& (![X]:(room(X)=>(((collects_action_figures(X))=>(has_a_pet_dog(X))))))& (~![X]:(~room(X)=>(((has_a_pet_dog(X))=>(is_a_drone_photographer(X))))))& (reads_mystery_novels(charlena))& (does_not_collect_vintage_stamps(gilbert))& (((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(gilbert))&(has_a_pet_dog(gilbert))&(owns_a_significant_collection_of_rare_gemstones_and_minerals(gilbert))))& (?[X]:(room(X)&(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))& (![X]:(room(X)=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))& (collects_action_figures(gilbert))& (![X]:(room(X)=>(((((is_a_drone_photographer(X))|(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))=>(enjoys_kayaking_and_exploring_remote_waterways(X))))))& (![X]:(room(X)=>(((does_not_enjoy_kayaking(X))|(has_a_pet_dog(X))))))& (does_not_collect_historical_artifacts_related_to_ancient_civilizations(carol))& (![X]:(room(X)=>(((does_not_enjoy_fishing(X))=>(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))
room(barbara)&room(carol)&room(charlena)&room(gilbert)&(![X]:(room(X)=>(X='barbara'|X='carol'|X='charlena'|X='gilbert')))& has_lived_in_exactly_three_countries(charlena)
[ "p0", "p8", "p15", "p24", "hypothesis" ]
% SZS status Unsatisfiable for 8181017595865259561346152 % SZS output start Proof for 8181017595865259561346152 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 52. predb(alice) => ! [X0] : (room(X0) => (~predd(X0) | predg(X0))) [input p8] 59. predh(fred) & predd(fred) & predm(fred) & ~preda(fred) [input p15] 68. predb(alice) [input p24] 73. ~(predg(fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 153. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 154. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 153] 167. ! [X0] : ((~predd(X0) | predg(X0)) | ~room(X0)) | ~predb(alice) [ennf transformation 52] 168. ! [X0] : (~predd(X0) | predg(X0) | ~room(X0)) | ~predb(alice) [flattening 167] 191. ~predg(fred) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 73] 192. ~predg(fred) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 191] 232. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK14 & fred != sK14 & paul != sK14 & mary != sK14 & room(sK14)) [choice axiom] 233. ~predg(fred) | (alice != sK14 & fred != sK14 & paul != sK14 & mary != sK14 & room(sK14)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 192,232] 314. room(mary) [cnf transformation 154] 315. room(paul) [cnf transformation 154] 316. room(fred) [cnf transformation 154] 317. room(alice) [cnf transformation 154] 318. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 154] 345. ~predd(X0) | predg(X0) | ~room(X0) | ~predb(alice) [cnf transformation 168] 366. predd(fred) [cnf transformation 59] 381. predb(alice) [cnf transformation 68] 387. ~predg(fred) | room(sK14) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 233] 388. ~predg(fred) | mary != sK14 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 233] 389. ~predg(fred) | paul != sK14 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 233] 390. ~predg(fred) | fred != sK14 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 233] 391. ~predg(fred) | alice != sK14 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 233] 543. 33 <=> predb(alice) [avatar definition] 547. 34 <=> ! [X0] : (~predd(X0) | ~room(X0) | predg(X0)) [avatar definition] 548. ~predd(X0) | ~room(X0) | predg(X0) <- (34) [avatar component clause 547] 549. ~33 | 34 [avatar split clause 345,547,543] 637. 33 [avatar split clause 381,543] 639. ~predg(fred) | alice != sK14 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 391,317] 640. ~predg(fred) | alice != sK14 | ~room(paul) | ~room(mary) [subsumption resolution 639,316] 641. ~predg(fred) | alice != sK14 | ~room(mary) [subsumption resolution 640,315] 642. ~predg(fred) | alice != sK14 [subsumption resolution 641,314] 644. 54 <=> alice = sK14 [avatar definition] 646. alice != sK14 <- (~54) [avatar component clause 644] 648. 55 <=> predg(fred) [avatar definition] 651. ~54 | ~55 [avatar split clause 642,648,644] 652. ~predg(fred) | fred != sK14 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 390,317] 653. ~predg(fred) | fred != sK14 | ~room(paul) | ~room(mary) [subsumption resolution 652,316] 654. ~predg(fred) | fred != sK14 | ~room(mary) [subsumption resolution 653,315] 655. ~predg(fred) | fred != sK14 [subsumption resolution 654,314] 657. 56 <=> fred = sK14 [avatar definition] 659. fred != sK14 <- (~56) [avatar component clause 657] 660. ~56 | ~55 [avatar split clause 655,648,657] 661. ~predg(fred) | paul != sK14 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 389,317] 662. ~predg(fred) | paul != sK14 | ~room(paul) | ~room(mary) [subsumption resolution 661,316] 663. ~predg(fred) | paul != sK14 | ~room(mary) [subsumption resolution 662,315] 664. ~predg(fred) | paul != sK14 [subsumption resolution 663,314] 666. 57 <=> paul = sK14 [avatar definition] 668. paul != sK14 <- (~57) [avatar component clause 666] 669. ~57 | ~55 [avatar split clause 664,648,666] 670. ~predg(fred) | mary != sK14 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 388,317] 671. ~predg(fred) | mary != sK14 | ~room(paul) | ~room(mary) [subsumption resolution 670,316] 672. ~predg(fred) | mary != sK14 | ~room(mary) [subsumption resolution 671,315] 673. ~predg(fred) | mary != sK14 [subsumption resolution 672,314] 675. 58 <=> mary = sK14 [avatar definition] 677. mary != sK14 <- (~58) [avatar component clause 675] 678. ~58 | ~55 [avatar split clause 673,648,675] 679. ~predg(fred) | room(sK14) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 387,317] 680. ~predg(fred) | room(sK14) | ~room(paul) | ~room(mary) [subsumption resolution 679,316] 681. ~predg(fred) | room(sK14) | ~room(mary) [subsumption resolution 680,315] 682. ~predg(fred) | room(sK14) [subsumption resolution 681,314] 684. 59 <=> room(sK14) [avatar definition] 686. room(sK14) <- (59) [avatar component clause 684] 687. 59 | ~55 [avatar split clause 682,648,684] 814. ~room(fred) | predg(fred) <- (34) [resolution 548,366] 815. predg(fred) <- (34) [subsumption resolution 814,316] 818. 55 | ~34 [avatar split clause 815,547,648] 1172. fred = sK14 | paul = sK14 | mary = sK14 | alice = sK14 <- (59) [resolution 318,686] 1275. paul = sK14 | mary = sK14 | alice = sK14 <- (~56, 59) [subsumption resolution 1172,659] 1276. mary = sK14 | alice = sK14 <- (~56, ~57, 59) [subsumption resolution 1275,668] 1277. alice = sK14 <- (~56, ~57, ~58, 59) [subsumption resolution 1276,677] 1278. $false <- (~54, ~56, ~57, ~58, 59) [subsumption resolution 1277,646] 1279. 54 | 56 | 57 | 58 | ~59 [avatar contradiction clause 1278] 1280. $false [avatar sat refutation 549,637,651,660,669,678,687,818,1279] % SZS output end Proof for 8181017595865259561346152 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5756 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0
Anthony, Gloria, Michele are the only persons in the room. Michele who hosts a YouTube channel dedicated to art tutorials, creates augmented reality experiences for mobile applications and practices kickboxing is allergic to anything. Everyone anywhere uses an ios phone if they is a Linux enthusiast or enjoys spelunking or both and vice versa. Everyone in the room who is a dedicated advocate for digital privacy and encryption does not use an ios phone. If someone is a chess master who participates in national tournaments or creates augmented reality experiences for mobile applications or both then he/she builds model airplanes. Everyone anywhere who builds model airplanes is a dedicated advocate for digital privacy and encryption.
Michele is a Linux enthusiast.
contradiction
room(anthony)&room(gloria)&room(michele)&(![X]:(room(X)=>(X='anthony'|X='gloria'|X='michele')))& (![X]:(~room(X)=>(((builds_model_airplanes(X))=>(practices_graffiti_art(X))))))& (~![X]:(room(X)=>(((practices_kickboxing(X))=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))& (![X]:(~room(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))=>(composes_and_performs_experimental_electronic_music(X))))))& (![X]:(room(X)=>(((is_a_wine_connoisseur(X))=>(builds_model_airplanes(X))))))& (![X]:(room(X)=>(((builds_model_airplanes(X))=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))& ((((hosts_a_YouTube_channel_dedicated_to_art_tutorials(michele))&(creates_augmented_reality_experiences_for_mobile_applications(michele))&(practices_kickboxing(michele))))&(is_allergic_to_anything(michele)))& (![X]:(anywhere(X)=>(((uses_an_ios_phone(X))<=>(((is_a_Linux_enthusiast(X))|(enjoys_spelunking(X))))))))& (~![X]:(room(X)=>(((((is_a_Linux_enthusiast(X))|(enjoys_spelunking(X))))<=>(collects_rare_minerals(X))))))& (![X]:(room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))=>(composes_and_performs_experimental_electronic_music(X))))))& (is_not_allergic_to_anything(anthony))& (![X]:(room(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))=>(does_not_use_an_ios_phone(X))))))& ((![X]:((((is_a_chess_master_who_participates_in_national_tournaments(X))|(creates_augmented_reality_experiences_for_mobile_applications(X))))=>(builds_model_airplanes(X)))))& ((![X]:((enjoys_rooftop_gardening(X))=>(is_a_wine_connoisseur(X)))))& (~![X]:(room(X)=>(((practices_graffiti_art(X))=>(is_a_Linux_enthusiast(X))))))& (![X]:(room(X)=>(((enjoys_logic_puzzles(X))<=(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))& (~![X]:(~room(X)=>(((enjoys_logic_puzzles(X))=>(enjoys_rooftop_gardening(X))))))& (![X]:(room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))=>(builds_model_airplanes(X))))))& (![X]:(anywhere(X)=>(((builds_model_airplanes(X))=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))& (owns_a_3D_printer(gloria))& (![X]:(room(X)=>(((((enjoys_logic_puzzles(X))<~>(practices_graffiti_art(X))))=>(is_a_wine_connoisseur(X))))))& (creates_large-scale_murals_for_public_art_installations(gloria))& ((?[X,Y]:(room(X)&room(Y)&(is_a_wine_connoisseur(X)&is_a_wine_connoisseur(Y))&(X!=Y))))& ((![X]:((composes_and_performs_experimental_electronic_music(X))=>(builds_model_airplanes(X)))))& (![X]:(room(X)=>(((is_allergic_to_anything(X))=>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))
room(anthony)&room(gloria)&room(michele)&(![X]:(room(X)=>(X='anthony'|X='gloria'|X='michele')))& is_a_Linux_enthusiast(michele)
[ "b4", "p0", "p6", "p7", "p11", "p12", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 3484927374941633601831685 % SZS output start Proof for 3484927374941633601831685 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 50. predo(fred) & predt(fred) & predk(fred) & predl(fred) [input p6] 51. ! [X0] : (anywhere(X0) => (predp(X0) <=> (preds(X0) | predg(X0)))) [input p7] 55. ! [X0] : (room(X0) => (predf(X0) => ~predp(X0))) [input p11] 56. ! [X0] : ((predk(X0) | predi(X0)) => predc(X0)) [input p12] 62. ! [X0] : (anywhere(X0) => (predc(X0) => predf(X0))) [input p18] 69. predg(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 76. ! [X0] : (predk(X0) => predc(X0)) [pure predicate removal 56] 77. predo(fred) & predt(fred) & predk(fred) [pure predicate removal 50] 80. predo(fred) & predk(fred) [pure predicate removal 77] 152. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 153. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 152] 161. ! [X0] : ((predp(X0) <=> (preds(X0) | predg(X0))) | ~anywhere(X0)) [ennf transformation 51] 165. ! [X0] : ((~predp(X0) | ~predf(X0)) | ~room(X0)) [ennf transformation 55] 166. ! [X0] : (~predp(X0) | ~predf(X0) | ~room(X0)) [flattening 165] 167. ! [X0] : (predc(X0) | ~predk(X0)) [ennf transformation 76] 173. ! [X0] : ((predf(X0) | ~predc(X0)) | ~anywhere(X0)) [ennf transformation 62] 174. ! [X0] : (predf(X0) | ~predc(X0) | ~anywhere(X0)) [flattening 173] 178. predg(fred) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 69] 179. predg(fred) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 178] 183. ! [X0] : (((predp(X0) | (~preds(X0) & ~predg(X0))) & ((preds(X0) | predg(X0)) | ~predp(X0))) | ~anywhere(X0)) [nnf transformation 161] 184. ! [X0] : (((predp(X0) | (~preds(X0) & ~predg(X0))) & (preds(X0) | predg(X0) | ~predp(X0))) | ~anywhere(X0)) [flattening 183] 196. anywhere(X0) [cnf transformation 5] 279. room(fred) [cnf transformation 153] 286. predk(fred) [cnf transformation 80] 289. predp(X0) | ~predg(X0) | ~anywhere(X0) [cnf transformation 184] 297. ~predp(X0) | ~predf(X0) | ~room(X0) [cnf transformation 166] 298. ~predk(X0) | predc(X0) [cnf transformation 167] 305. predf(X0) | ~predc(X0) | ~anywhere(X0) [cnf transformation 174] 318. predg(fred) [cnf transformation 179] 320. ~predg(X0) | predp(X0) [subsumption resolution 289,196] 337. ~predc(X0) | predf(X0) [subsumption resolution 305,196] 338. predc(fred) [resolution 298,286] 339. predp(fred) [resolution 320,318] 340. predf(fred) [resolution 337,338] 351. ~predf(fred) | ~room(fred) [resolution 297,339] 352. ~room(fred) [subsumption resolution 351,340] 353. $false [subsumption resolution 352,279] % SZS output end Proof for 3484927374941633601831685 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.687857
Linda, Sylvia are the only persons in the room. 'Everyone outside the room is a old quiet person' if 'Linda and Sylvia are respectively quiet and old' and vice versa. 'Everyone in the room is quieter than Gary if they is quieter than James' if 'everyone in the room is older than Gary'. If 'Gary is quieter than Sylvia' then 'everyone anywhere who is a old person is richer than James'. Everyone in the room who is quieter than Gary is not quiet. Someone in the room is a quiet old person. Gary is quieter than Linda. Sylvia who is richer than Gary is old. Everyone in the room who is richer than Gary is a quiet old person. James is quieter than Linda. James is richer than Sylvia.
Sylvia is richer than James.
contradiction
room(linda)&room(sylvia)&(![X]:(room(X)=>(X='linda'|X='sylvia')))& (((quiet(linda))&(old(sylvia)))<=>(![X]:(~room(X)=>(old(X)&quiet(X)&person(X)))))& ((![X]:(room(X)=>(older(gary,X))))=>(![X]:(room(X)=>(((quieter(james,X))=>(quieter(gary,X)))))))& ((quieter(sylvia,gary))=>(![X]:(anywhere(X)=>(((old(X)&person(X))=>(richer(james,X)))))))& (![X]:(room(X)=>(((quieter(gary,X))=>(~quiet(X))))))& (?[X]:(room(X)&(quiet(X)&old(X)&person(X))))& (quieter(linda,gary))& ((richer(gary,sylvia))&(old(sylvia)))& (![X]:(room(X)=>(((richer(gary,X))=>(quiet(X)&old(X)&person(X))))))& (quieter(linda,james))& (?[X,Y]:((quieter(james,X))&(older(gary,Y))&(older(X,Y))))& (richer(sylvia,james))& (![X]:(~room(X)=>(((older(james,X))=>(richer(james,X))))))
room(linda)&room(sylvia)&(![X]:(room(X)=>(X='linda'|X='sylvia')))& richer(james,sylvia)
[ "b7", "b42", "p11", "hypothesis" ]
% SZS status Unsatisfiable for 5066410480161668143832907 % SZS output start Proof for 5066410480161668143832907 8. ! [X0,X1] : (X0 != X1 => (richer(X0,X1) => ~richer(X1,X0))) [input b7] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 55. richer(paul,alice) [input p11] 57. richer(alice,paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 66. ! [X0,X1] : ((~richer(X1,X0) | ~richer(X0,X1)) | X0 = X1) [ennf transformation 8] 67. ! [X0,X1] : (~richer(X1,X0) | ~richer(X0,X1) | X0 = X1) [flattening 66] 143. richer(alice,paul) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 57] 144. richer(alice,paul) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 143] 162. ~richer(X1,X0) | ~richer(X0,X1) | X0 = X1 [cnf transformation 67] 216. paul != alice [cnf transformation 43] 267. richer(paul,alice) [cnf transformation 55] 272. richer(alice,paul) [cnf transformation 144] 368. ~richer(alice,paul) | paul = alice [resolution 162,267] 371. paul = alice [subsumption resolution 368,272] 372. $false [subsumption resolution 371,216] % SZS output end Proof for 5066410480161668143832907 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.11971
There is a room. Everyone in the room collects first edition books or does not create augmented reality experiences for mobile applications only if everyone in the room is not a Linux enthusiast or does not enjoy camping and organizing outdoor survival workshops. If everyone in the room is not a Linux enthusiast or is not a professional photographer specializing in portrait photography then not everyone in the room is a professional photographer specializing in portrait photography and creates augmented reality experiences for mobile applications if they is not a Linux enthusiast otherwise everyone in the room is not a Linux enthusiast if they is a professional photographer specializing in portrait photography and creates augmented reality experiences for mobile applications. Everyone anywhere own a television or does not enjoy camping and organizing outdoor survival workshops. Not everyone in the room who own a television does not collect first edition books. Everyone in the room who does not collect first edition books is an avid collector of autographed memorabilia from famous musicians or does not create augmented reality experiences for mobile applications or both. Everyone in the room enjoys snowboarding if they either does not enjoy camping and organizing outdoor survival workshops or is an avid collector of autographed memorabilia from famous musicians but not both. Not everyone in the room is not a Linux enthusiast. Everyone in the room enjoys snowboarding, enjoys camping and organizing outdoor survival workshops or does not own a television. Everyone anywhere who is not a professional photographer specializing in portrait photography, plays the violin or enjoys camping and organizing outdoor survival workshops does not enjoy snowboarding. Everyone outside the room neither does not own a television nor is an avid collector of autographed memorabilia from famous musicians. Everyone in the room neither creates augmented reality experiences for mobile applications nor enjoys snowboarding if they is a professional photographer specializing in portrait photography.
Everyone in the room own a television.
contradiction
(there_is_a_room)& ((![X]:(room(X)=>(((does_not_create_augmented_reality_experiences_for_mobile_applications(X))|(collects_first_edition_books(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))|(is_not_a_Linux_enthusiast(X)))))))& (((![X]:(room(X)=>(((is_not_a_professional_photographer_specializing_in_portrait_photography(X))|(is_not_a_Linux_enthusiast(X))))))=>(~![X]:(room(X)=>(((is_not_a_Linux_enthusiast(X))=>(((is_a_professional_photographer_specializing_in_portrait_photography(X))&(creates_augmented_reality_experiences_for_mobile_applications(X)))))))))&((~(![X]:(room(X)=>(((is_not_a_professional_photographer_specializing_in_portrait_photography(X))|(is_not_a_Linux_enthusiast(X)))))))=>(![X]:(room(X)=>(((((is_a_professional_photographer_specializing_in_portrait_photography(X))&(creates_augmented_reality_experiences_for_mobile_applications(X))))=>(is_not_a_Linux_enthusiast(X))))))))& (![X]:(anywhere(X)=>(((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))|(own_a_television(X))))))& (~![X]:(room(X)=>(((own_a_television(X))=>(does_not_collect_first_edition_books(X))))))& (![X]:(room(X)=>(((((is_a_professional_photographer_specializing_in_portrait_photography(X))&(creates_augmented_reality_experiences_for_mobile_applications(X))))=>(is_not_a_Linux_enthusiast(X))))))& (![X]:(room(X)=>(((does_not_collect_first_edition_books(X))=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(does_not_create_augmented_reality_experiences_for_mobile_applications(X))))))))& (![X]:(room(X)=>(((((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))<~>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))=>(enjoys_snowboarding(X))))))& (![X]:(anywhere(X)=>(((enjoys_snowboarding(X))=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(enjoys_wildlife_photography(X))))))))& (~![X]:(room(X)=>(is_not_a_Linux_enthusiast(X))))& (![X]:(room(X)=>(((enjoys_snowboarding(X))|(enjoys_camping_and_organizing_outdoor_survival_workshops(X))|(does_not_own_a_television(X))))))& (![X]:(anywhere(X)=>(((((is_not_a_professional_photographer_specializing_in_portrait_photography(X))|(plays_the_violin(X))|(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))=>(does_not_enjoy_snowboarding(X))))))& (![X]:(room(X)=>(((does_not_play_the_violin(X))=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))|(plays_the_violin(X))))))))& (?[X]:(room(X)&(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))& (![X]:(~room(X)=>(~((does_not_own_a_television(X))|(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& (![X]:(room(X)=>(((is_a_professional_photographer_specializing_in_portrait_photography(X))=>(~((creates_augmented_reality_experiences_for_mobile_applications(X))|(enjoys_snowboarding(X))))))))
(there_is_a_room)& ![X]:(room(X)=>(own_a_television(X)))
[ "b4", "p1", "p6", "p7", "p9", "p10", "p11", "p14", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 4808419074954997256717173 % SZS output start Proof for 4808419074954997256717173 5. ! [X0] : anywhere(X0) [input b4] 45. ! [X0] : (room(X0) => (predj(X0) | ~predg(X0))) => ! [X0] : (room(X0) => (~predb(X0) | ~predi(X0))) [input p1] 50. ! [X0] : (room(X0) => (~predj(X0) => (~predg(X0) | prede(X0)))) [input p6] 51. ! [X0] : (room(X0) => ((~predi(X0) <~> prede(X0)) => predf(X0))) [input p7] 53. ~! [X0] : (room(X0) => ~predb(X0)) [input p9] 54. ! [X0] : (room(X0) => (~predk(X0) | predi(X0) | predf(X0))) [input p10] 55. ! [X0] : (anywhere(X0) => ((predi(X0) | preda(X0) | ~predd(X0)) => ~predf(X0))) [input p11] 58. ! [X0] : (~room(X0) => ~(prede(X0) | ~predk(X0))) [input p14] 59. ! [X0] : (room(X0) => (predd(X0) => ~(predf(X0) | predg(X0)))) [input p15] 60. ! [X0] : (room(X0) => predk(X0)) & there_is_a_room [input hypothesis] 61. ! [X0] : (room(X0) => (predj(X0) | ~predg(X0))) => ! [X1] : (room(X1) => (~predb(X1) | ~predi(X1))) [rectify 45] 65. ! [X0] : (room(X0) => predk(X0)) [pure predicate removal 60] 137. ! [X1] : ((~predb(X1) | ~predi(X1)) | ~room(X1)) | ? [X0] : ((~predj(X0) & predg(X0)) & room(X0)) [ennf transformation 61] 138. ! [X1] : (~predb(X1) | ~predi(X1) | ~room(X1)) | ? [X0] : (~predj(X0) & predg(X0) & room(X0)) [flattening 137] 147. ! [X0] : (((~predg(X0) | prede(X0)) | predj(X0)) | ~room(X0)) [ennf transformation 50] 148. ! [X0] : (~predg(X0) | prede(X0) | predj(X0) | ~room(X0)) [flattening 147] 149. ! [X0] : ((predf(X0) | (~predi(X0) <=> prede(X0))) | ~room(X0)) [ennf transformation 51] 150. ! [X0] : (predf(X0) | (~predi(X0) <=> prede(X0)) | ~room(X0)) [flattening 149] 151. ? [X0] : (predb(X0) & room(X0)) [ennf transformation 53] 152. ! [X0] : ((~predk(X0) | predi(X0) | predf(X0)) | ~room(X0)) [ennf transformation 54] 153. ! [X0] : (~predk(X0) | predi(X0) | predf(X0) | ~room(X0)) [flattening 152] 154. ! [X0] : ((~predf(X0) | (~predi(X0) & ~preda(X0) & predd(X0))) | ~anywhere(X0)) [ennf transformation 55] 155. ! [X0] : (~predf(X0) | (~predi(X0) & ~preda(X0) & predd(X0)) | ~anywhere(X0)) [flattening 154] 158. ! [X0] : ((~prede(X0) & predk(X0)) | room(X0)) [ennf transformation 58] 159. ! [X0] : (((~predf(X0) & ~predg(X0)) | ~predd(X0)) | ~room(X0)) [ennf transformation 59] 160. ! [X0] : ((~predf(X0) & ~predg(X0)) | ~predd(X0) | ~room(X0)) [flattening 159] 161. ! [X0] : (predk(X0) | ~room(X0)) [ennf transformation 65] 165. ! [X0] : (~predb(X0) | ~predi(X0) | ~room(X0)) | ? [X1] : (~predj(X1) & predg(X1) & room(X1)) [rectify 138] 166. ? [X1] : (~predj(X1) & predg(X1) & room(X1)) => (~predj(sK1) & predg(sK1) & room(sK1)) [choice axiom] 167. ! [X0] : (~predb(X0) | ~predi(X0) | ~room(X0)) | (~predj(sK1) & predg(sK1) & room(sK1)) [skolemisation 165,166] 177. ! [X0] : (predf(X0) | ((~predi(X0) | ~prede(X0)) & (prede(X0) | predi(X0))) | ~room(X0)) [nnf transformation 150] 178. ? [X0] : (predb(X0) & room(X0)) => (predb(sK5) & room(sK5)) [choice axiom] 179. predb(sK5) & room(sK5) [skolemisation 151,178] 182. anywhere(X0) [cnf transformation 5] 263. ~predb(X0) | ~predi(X0) | ~room(X0) | room(sK1) [cnf transformation 167] 264. ~predb(X0) | ~predi(X0) | ~room(X0) | predg(sK1) [cnf transformation 167] 265. ~predb(X0) | ~predi(X0) | ~room(X0) | ~predj(sK1) [cnf transformation 167] 278. ~predg(X0) | prede(X0) | predj(X0) | ~room(X0) [cnf transformation 148] 280. ~prede(X0) | ~predi(X0) | predf(X0) | ~room(X0) [cnf transformation 177] 281. room(sK5) [cnf transformation 179] 282. predb(sK5) [cnf transformation 179] 283. ~predk(X0) | predi(X0) | predf(X0) | ~room(X0) [cnf transformation 153] 284. ~predf(X0) | predd(X0) | ~anywhere(X0) [cnf transformation 155] 286. ~predf(X0) | ~predi(X0) | ~anywhere(X0) [cnf transformation 155] 290. predk(X0) | room(X0) [cnf transformation 158] 293. ~predf(X0) | ~predd(X0) | ~room(X0) [cnf transformation 160] 294. predk(X0) | ~room(X0) [cnf transformation 161] 297. 1 <=> predj(sK1) [avatar definition] 299. ~predj(sK1) <- (~1) [avatar component clause 297] 301. 2 <=> ! [X0] : (~predb(X0) | ~room(X0) | ~predi(X0)) [avatar definition] 302. ~predb(X0) | ~room(X0) | ~predi(X0) <- (2) [avatar component clause 301] 303. ~1 | 2 [avatar split clause 265,301,297] 305. 3 <=> predg(sK1) [avatar definition] 307. predg(sK1) <- (3) [avatar component clause 305] 308. 3 | 2 [avatar split clause 264,301,305] 310. 4 <=> room(sK1) [avatar definition] 312. room(sK1) <- (4) [avatar component clause 310] 313. 4 | 2 [avatar split clause 263,301,310] 361. ~predf(X0) | ~predi(X0) [subsumption resolution 286,182] 363. ~predf(X0) | predd(X0) [subsumption resolution 284,182] 364. ~predf(X0) | ~room(X0) [subsumption resolution 293,363] 365. predk(X0) [subsumption resolution 294,290] 396. 20 <=> predi(sK5) [avatar definition] 417. ~room(sK5) | ~predi(sK5) <- (2) [resolution 302,282] 419. ~predi(sK5) <- (2) [subsumption resolution 417,281] 420. ~20 | ~2 [avatar split clause 419,301,396] 447. prede(sK1) | predj(sK1) | ~room(sK1) <- (3) [resolution 307,278] 448. prede(sK1) | ~room(sK1) <- (~1, 3) [subsumption resolution 447,299] 449. prede(sK1) <- (~1, 3, 4) [subsumption resolution 448,312] 457. 28 <=> predi(sK1) [avatar definition] 458. ~predi(sK1) <- (~28) [avatar component clause 457] 464. predi(X1) | predf(X1) | ~room(X1) [resolution 283,365] 465. ~room(X1) | predi(X1) [subsumption resolution 464,364] 471. ~predi(sK1) | predf(sK1) | ~room(sK1) <- (~1, 3, 4) [resolution 449,280] 473. ~predi(sK1) | predf(sK1) <- (~1, 3, 4) [subsumption resolution 471,312] 474. ~predi(sK1) <- (~1, 3, 4) [subsumption resolution 473,361] 475. ~28 | 1 | ~3 | ~4 [avatar split clause 474,310,305,297,457] 477. predi(sK1) <- (4) [resolution 465,312] 480. predi(sK5) [resolution 465,281] 482. $false <- (4, ~28) [subsumption resolution 477,458] 483. ~4 | 28 [avatar contradiction clause 482] 498. 20 [avatar split clause 480,396] 500. $false [avatar sat refutation 303,308,313,420,475,483,498] % SZS output end Proof for 4808419074954997256717173 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.10399
Princess, Lisa, Marcus are the only persons in the room. Lisa participates in long-distance cycling events across the country. Everyone in the room who practices archery and is a tea enthusiast owns a high-end gaming PC with custom-built components. Everyone in the room participates in long-distance cycling events across the country. Everyone anywhere creates large-scale murals for public art installations if they collect rare sneakers and practices archery. Lisa practices urban gardening. If someone enjoys making ceramics then he/she owns a microscope. Everyone anywhere who writes poetry is a dedicated advocate for digital privacy and encryption. If someone does not write poetry then he/she practices urban gardening. Princess either is not a dedicated advocate for digital privacy and encryption or creates large-scale murals for public art installations but not both. Lisa neither owns a microscope nor hosts a popular podcast about emerging technologies. Everyone in the room participates in long-distance cycling events across the country if they enjoys making ceramics. Everyone in the room either practices urban gardening or collects foreign coins but not both. Everyone in the room owns a high-end gaming PC with custom-built components if and only if they uses an ios phone. Someone in the room competes in national level swimming championships. Lisa collect rare sneakers. Princess creates large-scale murals for public art installations and mentors a youth basketball team on weekends. Not everyone in the room who enjoys watercolor painting practices pilates. Everyone in the room is a dedicated advocate for digital privacy and encryption, practices archery or collect rare sneakers if they writes poetry. Everyone in the room practices pilates if they is a dedicated advocate for digital privacy and encryption, practices archery or collect rare sneakers. It is true that “Lisa competes in national level swimming championships”.
Marcus enjoys watercolor painting.
entailment
room(princess)&room(lisa)&room(marcus)&(![X]:(room(X)=>(X='princess'|X='lisa'|X='marcus')))& (participates_in_long-distance_cycling_events_across_the_country(lisa))& (![X]:(room(X)=>(((((practices_archery(X))&(is_a_tea_enthusiast(X))))=>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))& (![X]:(room(X)=>(participates_in_long-distance_cycling_events_across_the_country(X))))& (![X]:(anywhere(X)=>(((((collect_rare_sneakers(X))&(practices_archery(X))))=>(creates_large-scale_murals_for_public_art_installations(X))))))& (practices_urban_gardening(lisa))& ((![X]:((enjoys_making_ceramics(X))=>(owns_a_microscope(X)))))& (![X]:(anywhere(X)=>(((writes_poetry(X))=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))& ((![X]:((does_not_write_poetry(X))=>(practices_urban_gardening(X)))))& (((is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(princess))<~>(creates_large-scale_murals_for_public_art_installations(princess))))& (~((owns_a_microscope(lisa))|(hosts_a_popular_podcast_about_emerging_technologies(lisa))))& (![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(participates_in_long-distance_cycling_events_across_the_country(X))))))& (![X]:(room(X)=>(((practices_urban_gardening(X))<~>(collects_foreign_coins(X))))))& (![X]:(room(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))<=>(uses_an_ios_phone(X))))))& (?[X]:(room(X)&(competes_in_national_level_swimming_championships(X))))& (collect_rare_sneakers(lisa))& (((creates_large-scale_murals_for_public_art_installations(princess))&(mentors_a_youth_basketball_team_on_weekends(princess))))& (~![X]:(room(X)=>(((enjoys_watercolor_painting(X))=>(practices_pilates(X))))))& (![X]:(room(X)=>(((writes_poetry(X))=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(practices_archery(X))|(collect_rare_sneakers(X))))))))& (![X]:(room(X)=>(((((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(practices_archery(X))|(collect_rare_sneakers(X))))=>(practices_pilates(X))))))& (competes_in_national_level_swimming_championships(lisa))
room(princess)&room(lisa)&room(marcus)&(![X]:(room(X)=>(X='princess'|X='lisa'|X='marcus')))& enjoys_watercolor_painting(marcus)
[ "p0", "p9", "p15", "p16", "p17", "p19", "hypothesis" ]
% SZS status Unsatisfiable for 544911174867088589899427 % SZS output start Proof for 544911174867088589899427 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 53. ~predk(mary) <~> predf(mary) [input p9] 59. predt(paul) [input p15] 60. prede(mary) & predf(mary) [input p16] 61. ~! [X0] : (room(X0) => (predl(X0) => predd(X0))) [input p17] 63. ! [X0] : (room(X0) => ((predt(X0) | predc(X0) | predk(X0)) => predd(X0))) [input p19] 65. ~(predl(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 66. predf(mary) [pure predicate removal 60] 147. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 148. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 147] 156. ? [X0] : ((~predd(X0) & predl(X0)) & room(X0)) [ennf transformation 61] 157. ? [X0] : (~predd(X0) & predl(X0) & room(X0)) [flattening 156] 160. ! [X0] : ((predd(X0) | (~predt(X0) & ~predc(X0) & ~predk(X0))) | ~room(X0)) [ennf transformation 63] 161. ! [X0] : (predd(X0) | (~predt(X0) & ~predc(X0) & ~predk(X0)) | ~room(X0)) [flattening 160] 162. ~predl(fred) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 65] 163. ~predl(fred) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 162] 165. (~predf(mary) | predk(mary)) & (predf(mary) | ~predk(mary)) [nnf transformation 53] 170. ? [X0] : (~predd(X0) & predl(X0) & room(X0)) => (~predd(sK1) & predl(sK1) & room(sK1)) [choice axiom] 171. ~predd(sK1) & predl(sK1) & room(sK1) [skolemisation 157,170] 172. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) [choice axiom] 173. ~predl(fred) | (fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 163,172] 255. room(mary) [cnf transformation 148] 256. room(paul) [cnf transformation 148] 257. room(fred) [cnf transformation 148] 258. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 148] 264. ~predf(mary) | predk(mary) [cnf transformation 165] 270. predt(paul) [cnf transformation 59] 271. predf(mary) [cnf transformation 66] 272. room(sK1) [cnf transformation 171] 273. predl(sK1) [cnf transformation 171] 274. ~predd(sK1) [cnf transformation 171] 276. ~predk(X0) | predd(X0) | ~room(X0) [cnf transformation 161] 278. ~predt(X0) | predd(X0) | ~room(X0) [cnf transformation 161] 279. ~predl(fred) | room(sK2) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 173] 280. ~predl(fred) | mary != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 173] 281. ~predl(fred) | paul != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 173] 282. ~predl(fred) | fred != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 173] 286. 1 <=> predk(mary) [avatar definition] 288. predk(mary) <- (1) [avatar component clause 286] 290. 2 <=> predf(mary) [avatar definition] 293. 1 | ~2 [avatar split clause 264,290,286] 295. 2 [avatar split clause 271,290] 296. ~predl(fred) | fred != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 282,257] 297. ~predl(fred) | fred != sK2 | ~room(mary) [subsumption resolution 296,256] 298. ~predl(fred) | fred != sK2 [subsumption resolution 297,255] 300. 3 <=> fred = sK2 [avatar definition] 302. fred != sK2 <- (~3) [avatar component clause 300] 304. 4 <=> predl(fred) [avatar definition] 307. ~3 | ~4 [avatar split clause 298,304,300] 308. ~predl(fred) | paul != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 281,257] 309. ~predl(fred) | paul != sK2 | ~room(mary) [subsumption resolution 308,256] 310. ~predl(fred) | paul != sK2 [subsumption resolution 309,255] 312. 5 <=> paul = sK2 [avatar definition] 314. paul != sK2 <- (~5) [avatar component clause 312] 315. ~5 | ~4 [avatar split clause 310,304,312] 316. ~predl(fred) | mary != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 280,257] 317. ~predl(fred) | mary != sK2 | ~room(mary) [subsumption resolution 316,256] 318. ~predl(fred) | mary != sK2 [subsumption resolution 317,255] 320. 6 <=> mary = sK2 [avatar definition] 322. mary != sK2 <- (~6) [avatar component clause 320] 323. ~6 | ~4 [avatar split clause 318,304,320] 324. ~predl(fred) | room(sK2) | ~room(paul) | ~room(mary) [subsumption resolution 279,257] 325. ~predl(fred) | room(sK2) | ~room(mary) [subsumption resolution 324,256] 326. ~predl(fred) | room(sK2) [subsumption resolution 325,255] 328. 7 <=> room(sK2) [avatar definition] 330. room(sK2) <- (7) [avatar component clause 328] 331. 7 | ~4 [avatar split clause 326,304,328] 380. predd(mary) | ~room(mary) <- (1) [resolution 276,288] 381. predd(mary) <- (1) [subsumption resolution 380,255] 385. predd(paul) | ~room(paul) [resolution 278,270] 386. predd(paul) [subsumption resolution 385,256] 452. paul = sK1 | mary = sK1 | fred = sK1 [resolution 258,272] 467. 21 <=> fred = sK1 [avatar definition] 469. fred = sK1 <- (21) [avatar component clause 467] 471. 22 <=> mary = sK1 [avatar definition] 473. mary = sK1 <- (22) [avatar component clause 471] 475. 23 <=> paul = sK1 [avatar definition] 477. paul = sK1 <- (23) [avatar component clause 475] 478. 21 | 22 | 23 [avatar split clause 452,475,471,467] 500. ~predd(mary) <- (22) [backward demodulation 274,473] 505. $false <- (1, 22) [subsumption resolution 500,381] 506. ~1 | ~22 [avatar contradiction clause 505] 513. predl(fred) <- (21) [backward demodulation 273,469] 517. 4 | ~21 [avatar split clause 513,467,304] 525. paul = sK2 | mary = sK2 | fred = sK2 <- (7) [resolution 330,258] 528. mary = sK2 | fred = sK2 <- (~5, 7) [subsumption resolution 525,314] 529. fred = sK2 <- (~5, ~6, 7) [subsumption resolution 528,322] 530. $false <- (~3, ~5, ~6, 7) [subsumption resolution 529,302] 531. 3 | 5 | 6 | ~7 [avatar contradiction clause 530] 551. ~predd(paul) <- (23) [backward demodulation 274,477] 552. $false <- (23) [subsumption resolution 551,386] 553. ~23 [avatar contradiction clause 552] 555. $false [avatar sat refutation 293,295,307,315,323,331,478,506,517,531,553] % SZS output end Proof for 544911174867088589899427 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.176921
There is a room. Everyone outside the room is not a member of a local theater group specializing in improv or uses an ios phone. Everyone in the room who is right-handed reads mystery novels. Everyone in the room who is a dedicated advocate for digital privacy and encryption is allergic to anything. If someone has a specialized collection of handmade artisan pottery then he/she uses an ios phone. Not everyone in the room who practices zumba watches fantasy movies.
Everyone in the room does not have a specialized collection of handmade artisan pottery or is a dedicated advocate for digital privacy and encryption.
neutral
(there_is_a_room)& (![X]:(~room(X)=>(((uses_an_ios_phone(X))|(is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))))))& (![X]:(room(X)=>(((is_right-handed(X))=>(reads_mystery_novels(X))))))& (![X]:(room(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))=>(is_allergic_to_anything(X))))))& ((![X]:((has_a_specialized_collection_of_handmade_artisan_pottery(X))=>(uses_an_ios_phone(X)))))& (~![X]:(room(X)=>(((practices_zumba(X))=>(watches_fantasy_movies(X))))))& (((?[X]:(room(X)&is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X)))))& (![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(is_a_client_of_LVMH(X))))))& (![X]:(room(X)=>(((composes_and_performs_experimental_electronic_music(X))<=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& (![X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))=>(has_a_specialized_collection_of_handmade_artisan_pottery(X))))))& (![X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))=>(enjoys_making_ceramics(X))))))& (![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& (![X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))=>(is_a_client_of_LVMH(X))))))& (![X]:(room(X)=>(((is_allergic_to_anything(X))=>(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))))& (![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(((composes_and_performs_experimental_electronic_music(X))&(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))))& (![X]:(room(X)=>(((can_play_the_guitar(X))=>(uses_an_ios_phone(X))))))& (![X]:(room(X)=>(((watches_fantasy_movies(X))=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& (![X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))=>(((reads_mystery_novels(X))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))))& (![X]:(room(X)=>(((is_allergic_to_anything(X))|(is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& (![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(can_play_the_piano(X))))))
(there_is_a_room)& ![X]:(room(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X)))))
[]
null
0.712319
Randall, Lorraine are the only persons in the room. If “someone in the room is not a skilled home brewer experimenting with craft beer recipes” then “someone in the room does not have a curated collection of mid-century modern furniture”. If “someone in the room does not have a curated collection of mid-century modern furniture” then “if someone does not enjoy kayaking, does not maintain a large, organic vegetable garden year-round and is not a craft beer aficionado then he/she does not have a piercing, does not practice kickboxing and does not practice archery”. If “at least one person in the room is not a craft beer aficionado, does not enjoy cross-country skiing and does not own a smart tv” then “someone in the room is not allergic to anything, does not practice archery and does not maintain a large, organic vegetable garden year-round”. If “someone in the room is not allergic to anything, does not practice archery and does not maintain a large, organic vegetable garden year-round” then “Randall who does not make homemade pastries, does not own an extensive assortment of vintage comic book memorabilia and does not have a curated collection of mid-century modern furniture does not collect vintage vinyl records”. “If someone does not have a piercing, does not have a curated collection of mid-century modern furniture and is not allergic to anything then he/she cannot play the flute” unless “someone anywhere does not own a smart tv”.
Randall is a client of LVMH.
contradiction
room(randall)&room(lorraine)&(![X]:(room(X)=>(X='randall'|X='lorraine')))& (((?[X]:(room(X)&(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))=>(?[X]:(room(X)&(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X)))))& ((?[X]:(room(X)&(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))))=>((![X]:((((does_not_enjoy_kayaking(X))&(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))&(is_not_a_craft_beer_aficionado(X))))=>(((does_not_have_a_piercing(X))&(does_not_practice_kickboxing(X))&(does_not_practice_archery(X)))))))))& (((((?[X]:(room(X)&((is_not_a_craft_beer_aficionado(X))&(does_not_enjoy_cross-country_skiing(X))&(does_not_own_a_smart_tv(X)))))))=>(?[X]:(room(X)&(((is_not_allergic_to_anything(X))&(does_not_practice_archery(X))&(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X)))))))& ((?[X]:(room(X)&(((is_not_allergic_to_anything(X))&(does_not_practice_archery(X))&(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))))))=>((((does_not_make_homemade_pastries(randall))&(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(randall))&(does_not_have_a_curated_collection_of_mid-century_modern_furniture(randall))))&(does_not_collect_vintage_vinyl_records(randall)))))& (~(?[X]:(anywhere(X)&(does_not_own_a_smart_tv(X))))=>((![X]:((((does_not_have_a_piercing(X))&(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))&(is_not_allergic_to_anything(X))))=>(cannot_play_the_flute(X))))))& (((?[X]:(room(X)&(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))=>(((?[X]:(room(X)&((is_not_a_craft_beer_aficionado(X))&(does_not_volunteer_for_local_environmental_conservation_projects(X))&(does_not_practice_kickboxing(X))))))))& ((((?[X]:(room(X)&((is_not_a_craft_beer_aficionado(X))&(does_not_volunteer_for_local_environmental_conservation_projects(X))&(does_not_practice_kickboxing(X)))))))=>((![X]:((cannot_play_the_flute(X))=>(is_not_allergic_to_anything(X)))))))& (~(?[X]:(room(X)&(does_not_collect_rare_minerals(X))))=>(?[X]:(room(X)&(is_not_allergic_to_anything(X)))))& (?[X]:(~room(X)&(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))& (?[X]:(room(X)&(is_not_a_client_of_LVMH(X))))& ((![X]:((is_not_allergic_to_anything(X))=>(((does_not_own_a_smart_tv(X))&(cannot_play_the_flute(X))&(does_not_have_a_piercing(X)))))))& ((does_not_practice_kickboxing(randall))&(((is_not_a_client_of_LVMH(randall))&(does_not_make_intricate_hand-cut_paper_art_for_exhibitions(randall))&(does_not_compose_and_performs_experimental_electronic_music(randall)))))& ((does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(randall))&(does_not_have_a_curated_collection_of_mid-century_modern_furniture(randall)))& (?[X]:(room(X)&(is_not_allergic_to_anything(X))))& (((?[X]:(room(X)&does_not_have_a_piercing(X)))))
room(randall)&room(lorraine)&(![X]:(room(X)=>(X='randall'|X='lorraine')))& is_a_client_of_LVMH(randall)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 5428160028022692230713655 % SZS output start Proof for 5428160028022692230713655 44. ? [X0] : (~predm(X0) & room(X0)) & ? [X0] : (~predo(X0) & room(X0)) & ~predh(mary) & ~predp(mary) & ~predc(mary) & ~predi(mary) & ~predx(mary) & ~preda(mary) & ! [X0] : (~predo(X0) => (~predm(X0) & ~predg(X0) & ~preds(X0))) & ? [X0] : (~predx(X0) & room(X0)) & ? [X0] : (~predp(X0) & ~room(X0)) & (~? [X0] : (~predr(X0) & room(X0)) => ? [X0] : (~predo(X0) & room(X0))) & (? [X0] : (~preda(X0) & ~predw(X0) & ~predj(X0) & room(X0)) => ! [X0] : (~predg(X0) => ~predo(X0))) & (? [X0] : (~predp(X0) & room(X0)) => ? [X0] : (~preda(X0) & ~predw(X0) & ~predj(X0) & room(X0))) & (~? [X0] : (~preds(X0) & anywhere(X0)) => ! [X0] : ((~predo(X0) & ~predh(X0) & ~predm(X0)) => ~predg(X0))) & (? [X0] : (~predn(X0) & ~predl(X0) & ~predo(X0) & room(X0)) => (~prede(mary) & ~predh(mary) & ~predp(mary) & ~predv(mary))) & (? [X0] : (~preds(X0) & ~predq(X0) & ~predj(X0) & room(X0)) => ? [X0] : (~predn(X0) & ~predl(X0) & ~predo(X0) & room(X0))) & (? [X0] : (~predh(X0) & room(X0)) => ! [X0] : ((~predj(X0) & ~predn(X0) & ~predf(X0)) => (~predl(X0) & ~preda(X0) & ~predm(X0)))) & (? [X0] : (~predb(X0) & room(X0)) => ? [X0] : (~predh(X0) & room(X0))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. predx(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 46. ? [X0] : (~predm(X0) & room(X0)) & ? [X1] : (~predo(X1) & room(X1)) & ~predh(mary) & ~predp(mary) & ~predc(mary) & ~predi(mary) & ~predx(mary) & ~preda(mary) & ! [X2] : (~predo(X2) => (~predm(X2) & ~predg(X2) & ~preds(X2))) & ? [X3] : (~predx(X3) & room(X3)) & ? [X4] : (~predp(X4) & ~room(X4)) & (~? [X5] : (~predr(X5) & room(X5)) => ? [X6] : (~predo(X6) & room(X6))) & (? [X7] : (~preda(X7) & ~predw(X7) & ~predj(X7) & room(X7)) => ! [X8] : (~predg(X8) => ~predo(X8))) & (? [X9] : (~predp(X9) & room(X9)) => ? [X10] : (~preda(X10) & ~predw(X10) & ~predj(X10) & room(X10))) & (~? [X11] : (~preds(X11) & anywhere(X11)) => ! [X12] : ((~predo(X12) & ~predh(X12) & ~predm(X12)) => ~predg(X12))) & (? [X13] : (~predn(X13) & ~predl(X13) & ~predo(X13) & room(X13)) => (~prede(mary) & ~predh(mary) & ~predp(mary) & ~predv(mary))) & (? [X14] : (~preds(X14) & ~predq(X14) & ~predj(X14) & room(X14)) => ? [X15] : (~predn(X15) & ~predl(X15) & ~predo(X15) & room(X15))) & (? [X16] : (~predh(X16) & room(X16)) => ! [X17] : ((~predj(X17) & ~predn(X17) & ~predf(X17)) => (~predl(X17) & ~preda(X17) & ~predm(X17)))) & (? [X18] : (~predb(X18) & room(X18)) => ? [X19] : (~predh(X19) & room(X19))) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [rectify 44] 47. ? [X0] : (~predm(X0) & room(X0)) & ? [X1] : (~predo(X1) & room(X1)) & ~predh(mary) & ~predp(mary) & ~predi(mary) & ~predx(mary) & ~preda(mary) & ! [X2] : (~predo(X2) => (~predm(X2) & ~predg(X2) & ~preds(X2))) & ? [X3] : (~predx(X3) & room(X3)) & ? [X4] : (~predp(X4) & ~room(X4)) & (~? [X5] : (~predr(X5) & room(X5)) => ? [X6] : (~predo(X6) & room(X6))) & (? [X7] : (~preda(X7) & ~predw(X7) & ~predj(X7) & room(X7)) => ! [X8] : (~predg(X8) => ~predo(X8))) & (? [X9] : (~predp(X9) & room(X9)) => ? [X10] : (~preda(X10) & ~predw(X10) & ~predj(X10) & room(X10))) & (~? [X11] : (~preds(X11) & anywhere(X11)) => ! [X12] : ((~predo(X12) & ~predh(X12) & ~predm(X12)) => ~predg(X12))) & (? [X13] : (~predn(X13) & ~predl(X13) & ~predo(X13) & room(X13)) => (~prede(mary) & ~predh(mary) & ~predp(mary) & ~predv(mary))) & (? [X14] : (~preds(X14) & ~predq(X14) & ~predj(X14) & room(X14)) => ? [X15] : (~predn(X15) & ~predl(X15) & ~predo(X15) & room(X15))) & (? [X16] : (~predh(X16) & room(X16)) => ! [X17] : ((~predj(X17) & ~predn(X17) & ~predf(X17)) => (~predl(X17) & ~preda(X17) & ~predm(X17)))) & (? [X18] : (~predb(X18) & room(X18)) => ? [X19] : (~predh(X19) & room(X19))) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 46] 48. ? [X0] : (~predm(X0) & room(X0)) & ? [X1] : (~predo(X1) & room(X1)) & ~predh(mary) & ~predp(mary) & ~predx(mary) & ~preda(mary) & ! [X2] : (~predo(X2) => (~predm(X2) & ~predg(X2) & ~preds(X2))) & ? [X3] : (~predx(X3) & room(X3)) & ? [X4] : (~predp(X4) & ~room(X4)) & (~? [X5] : (~predr(X5) & room(X5)) => ? [X6] : (~predo(X6) & room(X6))) & (? [X7] : (~preda(X7) & ~predw(X7) & ~predj(X7) & room(X7)) => ! [X8] : (~predg(X8) => ~predo(X8))) & (? [X9] : (~predp(X9) & room(X9)) => ? [X10] : (~preda(X10) & ~predw(X10) & ~predj(X10) & room(X10))) & (~? [X11] : (~preds(X11) & anywhere(X11)) => ! [X12] : ((~predo(X12) & ~predh(X12) & ~predm(X12)) => ~predg(X12))) & (? [X13] : (~predn(X13) & ~predl(X13) & ~predo(X13) & room(X13)) => (~prede(mary) & ~predh(mary) & ~predp(mary) & ~predv(mary))) & (? [X14] : (~preds(X14) & ~predq(X14) & ~predj(X14) & room(X14)) => ? [X15] : (~predn(X15) & ~predl(X15) & ~predo(X15) & room(X15))) & (? [X16] : (~predh(X16) & room(X16)) => ! [X17] : ((~predj(X17) & ~predn(X17) & ~predf(X17)) => (~predl(X17) & ~preda(X17) & ~predm(X17)))) & (? [X18] : (~predb(X18) & room(X18)) => ? [X19] : (~predh(X19) & room(X19))) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 47] 49. ? [X0] : (~predm(X0) & room(X0)) & ? [X1] : (~predo(X1) & room(X1)) & ~predh(mary) & ~predp(mary) & ~predx(mary) & ~preda(mary) & ! [X2] : (~predo(X2) => (~predm(X2) & ~predg(X2) & ~preds(X2))) & ? [X3] : (~predx(X3) & room(X3)) & ? [X4] : (~predp(X4) & ~room(X4)) & (~? [X5] : room(X5) => ? [X6] : (~predo(X6) & room(X6))) & (? [X7] : (~preda(X7) & ~predw(X7) & ~predj(X7) & room(X7)) => ! [X8] : (~predg(X8) => ~predo(X8))) & (? [X9] : (~predp(X9) & room(X9)) => ? [X10] : (~preda(X10) & ~predw(X10) & ~predj(X10) & room(X10))) & (~? [X11] : (~preds(X11) & anywhere(X11)) => ! [X12] : ((~predo(X12) & ~predh(X12) & ~predm(X12)) => ~predg(X12))) & (? [X13] : (~predn(X13) & ~predl(X13) & ~predo(X13) & room(X13)) => (~prede(mary) & ~predh(mary) & ~predp(mary) & ~predv(mary))) & (? [X14] : (~preds(X14) & ~predq(X14) & ~predj(X14) & room(X14)) => ? [X15] : (~predn(X15) & ~predl(X15) & ~predo(X15) & room(X15))) & (? [X16] : (~predh(X16) & room(X16)) => ! [X17] : ((~predj(X17) & ~predn(X17) & ~predf(X17)) => (~predl(X17) & ~preda(X17) & ~predm(X17)))) & (? [X18] : (~predb(X18) & room(X18)) => ? [X19] : (~predh(X19) & room(X19))) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 48] 50. ? [X0] : (~predm(X0) & room(X0)) & ? [X1] : (~predo(X1) & room(X1)) & ~predh(mary) & ~predp(mary) & ~predx(mary) & ~preda(mary) & ! [X2] : (~predo(X2) => (~predm(X2) & ~predg(X2) & ~preds(X2))) & ? [X3] : (~predx(X3) & room(X3)) & ? [X4] : (~predp(X4) & ~room(X4)) & (~? [X5] : room(X5) => ? [X6] : (~predo(X6) & room(X6))) & (? [X7] : (~preda(X7) & ~predw(X7) & ~predj(X7) & room(X7)) => ! [X8] : (~predg(X8) => ~predo(X8))) & (? [X9] : (~predp(X9) & room(X9)) => ? [X10] : (~preda(X10) & ~predw(X10) & ~predj(X10) & room(X10))) & (~? [X11] : (~preds(X11) & anywhere(X11)) => ! [X12] : ((~predo(X12) & ~predh(X12) & ~predm(X12)) => ~predg(X12))) & (? [X13] : (~predn(X13) & ~predl(X13) & ~predo(X13) & room(X13)) => (~predh(mary) & ~predp(mary) & ~predv(mary))) & (? [X14] : (~preds(X14) & ~predq(X14) & ~predj(X14) & room(X14)) => ? [X15] : (~predn(X15) & ~predl(X15) & ~predo(X15) & room(X15))) & (? [X16] : (~predh(X16) & room(X16)) => ! [X17] : ((~predj(X17) & ~predn(X17) & ~predf(X17)) => (~predl(X17) & ~preda(X17) & ~predm(X17)))) & (? [X18] : (~predb(X18) & room(X18)) => ? [X19] : (~predh(X19) & room(X19))) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 49] 51. ? [X0] : (~predm(X0) & room(X0)) & ? [X1] : (~predo(X1) & room(X1)) & ~predh(mary) & ~predp(mary) & ~predx(mary) & ~preda(mary) & ! [X2] : (~predo(X2) => (~predm(X2) & ~predg(X2) & ~preds(X2))) & ? [X3] : (~predx(X3) & room(X3)) & ? [X4] : (~predp(X4) & ~room(X4)) & (~? [X5] : room(X5) => ? [X6] : (~predo(X6) & room(X6))) & (? [X7] : (~preda(X7) & ~predw(X7) & ~predj(X7) & room(X7)) => ! [X8] : (~predg(X8) => ~predo(X8))) & (? [X9] : (~predp(X9) & room(X9)) => ? [X10] : (~preda(X10) & ~predw(X10) & ~predj(X10) & room(X10))) & (~? [X11] : (~preds(X11) & anywhere(X11)) => ! [X12] : ((~predo(X12) & ~predh(X12) & ~predm(X12)) => ~predg(X12))) & (? [X13] : (~predn(X13) & ~predl(X13) & ~predo(X13) & room(X13)) => (~predh(mary) & ~predp(mary))) & (? [X14] : (~preds(X14) & ~predq(X14) & ~predj(X14) & room(X14)) => ? [X15] : (~predn(X15) & ~predl(X15) & ~predo(X15) & room(X15))) & (? [X16] : (~predh(X16) & room(X16)) => ! [X17] : ((~predj(X17) & ~predn(X17) & ~predf(X17)) => (~predl(X17) & ~preda(X17) & ~predm(X17)))) & (? [X18] : (~predb(X18) & room(X18)) => ? [X19] : (~predh(X19) & room(X19))) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 50] 52. ? [X0] : (~predm(X0) & room(X0)) & ? [X1] : (~predo(X1) & room(X1)) & ~predh(mary) & ~predp(mary) & ~predx(mary) & ~preda(mary) & ! [X2] : (~predo(X2) => (~predm(X2) & ~predg(X2) & ~preds(X2))) & ? [X3] : (~predx(X3) & room(X3)) & ? [X4] : (~predp(X4) & ~room(X4)) & (~? [X5] : room(X5) => ? [X6] : (~predo(X6) & room(X6))) & (? [X7] : (~preda(X7) & ~predw(X7) & ~predj(X7) & room(X7)) => ! [X8] : (~predg(X8) => ~predo(X8))) & (? [X9] : (~predp(X9) & room(X9)) => ? [X10] : (~preda(X10) & ~predw(X10) & ~predj(X10) & room(X10))) & (~? [X11] : (~preds(X11) & anywhere(X11)) => ! [X12] : ((~predo(X12) & ~predh(X12) & ~predm(X12)) => ~predg(X12))) & (? [X13] : (~predn(X13) & ~predl(X13) & ~predo(X13) & room(X13)) => (~predh(mary) & ~predp(mary))) & (? [X16] : (~predh(X16) & room(X16)) => ! [X17] : ((~predj(X17) & ~predn(X17) & ~predf(X17)) => (~predl(X17) & ~preda(X17) & ~predm(X17)))) & (? [X18] : (~predb(X18) & room(X18)) => ? [X19] : (~predh(X19) & room(X19))) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 51] 53. ? [X0] : (~predm(X0) & room(X0)) & ? [X1] : (~predo(X1) & room(X1)) & ~predh(mary) & ~predp(mary) & ~predx(mary) & ~preda(mary) & ! [X2] : (~predo(X2) => (~predm(X2) & ~predg(X2) & ~preds(X2))) & ? [X3] : (~predx(X3) & room(X3)) & ? [X4] : (~predp(X4) & ~room(X4)) & (~? [X5] : room(X5) => ? [X6] : (~predo(X6) & room(X6))) & (? [X7] : (~preda(X7) & ~predw(X7) & ~predj(X7) & room(X7)) => ! [X8] : (~predg(X8) => ~predo(X8))) & (? [X9] : (~predp(X9) & room(X9)) => ? [X10] : (~preda(X10) & ~predw(X10) & ~predj(X10) & room(X10))) & (~? [X11] : (~preds(X11) & anywhere(X11)) => ! [X12] : ((~predo(X12) & ~predh(X12) & ~predm(X12)) => ~predg(X12))) & (? [X18] : (~predb(X18) & room(X18)) => ? [X19] : (~predh(X19) & room(X19))) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 52] 54. ? [X0] : (~predm(X0) & room(X0)) & ? [X1] : (~predo(X1) & room(X1)) & ~predh(mary) & ~predp(mary) & ~predx(mary) & ~preda(mary) & ! [X2] : (~predo(X2) => (~predm(X2) & ~predg(X2))) & ? [X3] : (~predx(X3) & room(X3)) & ? [X4] : (~predp(X4) & ~room(X4)) & (~? [X5] : room(X5) => ? [X6] : (~predo(X6) & room(X6))) & (? [X7] : (~preda(X7) & ~predw(X7) & ~predj(X7) & room(X7)) => ! [X8] : (~predg(X8) => ~predo(X8))) & (? [X9] : (~predp(X9) & room(X9)) => ? [X10] : (~preda(X10) & ~predw(X10) & ~predj(X10) & room(X10))) & (~? [X11] : anywhere(X11) => ! [X12] : ((~predo(X12) & ~predh(X12) & ~predm(X12)) => ~predg(X12))) & (? [X18] : (~predb(X18) & room(X18)) => ? [X19] : (~predh(X19) & room(X19))) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 53] 55. ? [X0] : (~predm(X0) & room(X0)) & ? [X1] : (~predo(X1) & room(X1)) & ~predh(mary) & ~predp(mary) & ~predx(mary) & ~preda(mary) & ! [X2] : (~predo(X2) => (~predm(X2) & ~predg(X2))) & ? [X3] : (~predx(X3) & room(X3)) & ? [X4] : (~predp(X4) & ~room(X4)) & (~? [X5] : room(X5) => ? [X6] : (~predo(X6) & room(X6))) & (? [X7] : (~preda(X7) & ~predw(X7) & ~predj(X7) & room(X7)) => ! [X8] : (~predg(X8) => ~predo(X8))) & (? [X9] : (~predp(X9) & room(X9)) => ? [X10] : (~preda(X10) & ~predw(X10) & ~predj(X10) & room(X10))) & (~? [X11] : anywhere(X11) => ! [X12] : ((~predo(X12) & ~predh(X12) & ~predm(X12)) => ~predg(X12))) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 54] 56. ? [X0] : (~predm(X0) & room(X0)) & ? [X1] : (~predo(X1) & room(X1)) & ~predh(mary) & ~predp(mary) & ~predx(mary) & ~preda(mary) & ! [X2] : (~predo(X2) => (~predm(X2) & ~predg(X2))) & ? [X3] : (~predx(X3) & room(X3)) & ? [X4] : (~predp(X4) & ~room(X4)) & (~? [X5] : room(X5) => ? [X6] : (~predo(X6) & room(X6))) & (? [X7] : (~preda(X7) & ~predw(X7) & ~predj(X7) & room(X7)) => ! [X8] : (~predg(X8) => ~predo(X8))) & (? [X9] : (~predp(X9) & room(X9)) => ? [X10] : (~preda(X10) & ~predw(X10) & ~predj(X10) & room(X10))) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 55] 58. ? [X0] : (~predm(X0) & room(X0)) & ? [X1] : (~predo(X1) & room(X1)) & ~predp(mary) & ~predx(mary) & ~preda(mary) & ! [X2] : (~predo(X2) => (~predm(X2) & ~predg(X2))) & ? [X3] : (~predx(X3) & room(X3)) & ? [X4] : (~predp(X4) & ~room(X4)) & (~? [X5] : room(X5) => ? [X6] : (~predo(X6) & room(X6))) & (? [X7] : (~preda(X7) & ~predw(X7) & ~predj(X7) & room(X7)) => ! [X8] : (~predg(X8) => ~predo(X8))) & (? [X9] : (~predp(X9) & room(X9)) => ? [X10] : (~preda(X10) & ~predw(X10) & ~predj(X10) & room(X10))) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 56] 59. ? [X0] : room(X0) & ? [X1] : (~predo(X1) & room(X1)) & ~predp(mary) & ~predx(mary) & ~preda(mary) & ! [X2] : (~predo(X2) => ~predg(X2)) & ? [X3] : (~predx(X3) & room(X3)) & ? [X4] : (~predp(X4) & ~room(X4)) & (~? [X5] : room(X5) => ? [X6] : (~predo(X6) & room(X6))) & (? [X7] : (~preda(X7) & ~predw(X7) & ~predj(X7) & room(X7)) => ! [X8] : (~predg(X8) => ~predo(X8))) & (? [X9] : (~predp(X9) & room(X9)) => ? [X10] : (~preda(X10) & ~predw(X10) & ~predj(X10) & room(X10))) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 58] 131. ? [X0] : room(X0) & ? [X1] : (~predo(X1) & room(X1)) & ~predp(mary) & ~predx(mary) & ~preda(mary) & ! [X2] : (~predg(X2) | predo(X2)) & ? [X3] : (~predx(X3) & room(X3)) & ? [X4] : (~predp(X4) & ~room(X4)) & (? [X6] : (~predo(X6) & room(X6)) | ? [X5] : room(X5)) & (! [X8] : (~predo(X8) | predg(X8)) | ! [X7] : (preda(X7) | predw(X7) | predj(X7) | ~room(X7))) & (? [X10] : (~preda(X10) & ~predw(X10) & ~predj(X10) & room(X10)) | ! [X9] : (predp(X9) | ~room(X9))) & ! [X20] : ((paul = X20 | mary = X20) | ~room(X20)) & room(paul) & room(mary) [ennf transformation 59] 132. ? [X0] : room(X0) & ? [X1] : (~predo(X1) & room(X1)) & ~predp(mary) & ~predx(mary) & ~preda(mary) & ! [X2] : (~predg(X2) | predo(X2)) & ? [X3] : (~predx(X3) & room(X3)) & ? [X4] : (~predp(X4) & ~room(X4)) & (? [X6] : (~predo(X6) & room(X6)) | ? [X5] : room(X5)) & (! [X8] : (~predo(X8) | predg(X8)) | ! [X7] : (preda(X7) | predw(X7) | predj(X7) | ~room(X7))) & (? [X10] : (~preda(X10) & ~predw(X10) & ~predj(X10) & room(X10)) | ! [X9] : (predp(X9) | ~room(X9))) & ! [X20] : (paul = X20 | mary = X20 | ~room(X20)) & room(paul) & room(mary) [flattening 131] 133. predx(mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 45] 134. predx(mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 133] 136. ? [X0] : room(X0) & ? [X1] : (~predo(X1) & room(X1)) & ~predp(mary) & ~predx(mary) & ~preda(mary) & ! [X2] : (~predg(X2) | predo(X2)) & ? [X3] : (~predx(X3) & room(X3)) & ? [X4] : (~predp(X4) & ~room(X4)) & (? [X5] : (~predo(X5) & room(X5)) | ? [X6] : room(X6)) & (! [X7] : (~predo(X7) | predg(X7)) | ! [X8] : (preda(X8) | predw(X8) | predj(X8) | ~room(X8))) & (? [X9] : (~preda(X9) & ~predw(X9) & ~predj(X9) & room(X9)) | ! [X10] : (predp(X10) | ~room(X10))) & ! [X11] : (paul = X11 | mary = X11 | ~room(X11)) & room(paul) & room(mary) [rectify 132] 137. ? [X0] : room(X0) => room(sK0) [choice axiom] 138. ? [X1] : (~predo(X1) & room(X1)) => (~predo(sK1) & room(sK1)) [choice axiom] 139. ? [X3] : (~predx(X3) & room(X3)) => (~predx(sK2) & room(sK2)) [choice axiom] 140. ? [X4] : (~predp(X4) & ~room(X4)) => (~predp(sK3) & ~room(sK3)) [choice axiom] 141. ? [X5] : (~predo(X5) & room(X5)) => (~predo(sK4) & room(sK4)) [choice axiom] 142. ? [X6] : room(X6) => room(sK5) [choice axiom] 143. ? [X9] : (~preda(X9) & ~predw(X9) & ~predj(X9) & room(X9)) => (~preda(sK6) & ~predw(sK6) & ~predj(sK6) & room(sK6)) [choice axiom] 144. room(sK0) & (~predo(sK1) & room(sK1)) & ~predp(mary) & ~predx(mary) & ~preda(mary) & ! [X2] : (~predg(X2) | predo(X2)) & (~predx(sK2) & room(sK2)) & (~predp(sK3) & ~room(sK3)) & ((~predo(sK4) & room(sK4)) | room(sK5)) & (! [X7] : (~predo(X7) | predg(X7)) | ! [X8] : (preda(X8) | predw(X8) | predj(X8) | ~room(X8))) & ((~preda(sK6) & ~predw(sK6) & ~predj(sK6) & room(sK6)) | ! [X10] : (predp(X10) | ~room(X10))) & ! [X11] : (paul = X11 | mary = X11 | ~room(X11)) & room(paul) & room(mary) [skolemisation 136,143,142,141,140,139,138,137] 241. ~predx(mary) [cnf transformation 144] 249. predx(mary) [cnf transformation 134] 294. $false [subsumption resolution 249,241] % SZS output end Proof for 5428160028022692230713655 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.571846
Charles, Carla are the only persons in the room. If “Charles does not watche fantasy movies and does not host a popular podcast about emerging technologies” then “Charles does not host a popular podcast about emerging technologies”. If “Charles does not host a popular podcast about emerging technologies” then “Charles is not a tea enthusiast”. If “Charles does not collect luxury watches” then “Charles does not read mystery novels”. If “Charles does not read mystery novels” then “Charles does not enjoy cross-country skiing”. “Charles does not read mystery novels” only if “Charles either is not right-handed or does not enjoy cross-country skiing but not both”. Charles does not own a high-end gaming PC with custom-built components. Charles is not right-handed. If someone neither does not own a high-end gaming PC with custom-built components nor does not practice kickboxing then he/she is not a dedicated volunteer for local community service projects, does not have a vast collection of first-edition science fiction novels and is not passionate about collecting and restoring classic cars. If someone is not a wine connoisseur, is not a tea enthusiast and does not have a vast collection of first-edition science fiction novels then he/she does not watche fantasy movies, is not right-handed and is not a dedicated volunteer for local community service projects and vice versa. Charles neither does not host a popular podcast about emerging technologies nor is not a wine connoisseur.
Charles enjoys virtual reality gaming.
contradiction
room(charles)&room(carla)&(![X]:(room(X)=>(X='charles'|X='carla')))& (((((does_not_watche_fantasy_movies(charles))&(does_not_host_a_popular_podcast_about_emerging_technologies(charles))))=>(does_not_host_a_popular_podcast_about_emerging_technologies(charles)))& ((does_not_host_a_popular_podcast_about_emerging_technologies(charles))=>(is_not_a_tea_enthusiast(charles))))& (((does_not_collect_luxury_watches(charles))=>(does_not_read_mystery_novels(charles)))& ((does_not_read_mystery_novels(charles))=>(does_not_enjoy_cross-country_skiing(charles))))& ((does_not_read_mystery_novels(charles))=>(((is_not_right-handed(charles))<~>(does_not_enjoy_cross-country_skiing(charles)))))& (does_not_own_a_high-end_gaming_PC_with_custom-built_components(charles))& (is_not_right-handed(charles))& ((![X]:((~((does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))|(does_not_practice_kickboxing(X))))=>(((is_not_a_dedicated_volunteer_for_local_community_service_projects(X))&(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))&(is_not_passionate_about_collecting_and_restoring_classic_cars(X)))))))& ((![X]:((((is_not_a_wine_connoisseur(X))&(is_not_a_tea_enthusiast(X))&(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))))<=>(((does_not_watche_fantasy_movies(X))&(is_not_right-handed(X))&(is_not_a_dedicated_volunteer_for_local_community_service_projects(X)))))))& (~((does_not_host_a_popular_podcast_about_emerging_technologies(charles))|(is_not_a_wine_connoisseur(charles))))& (does_not_enjoy_virtual_reality_gaming(charles))
room(charles)&room(carla)&(![X]:(room(X)=>(X='charles'|X='carla')))& enjoys_virtual_reality_gaming(charles)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 71357492607141372744067 % SZS output start Proof for 71357492607141372744067 44. ~predn(mary) & ~(~prede(mary) | ~predb(mary)) & ! [X0] : ((~predp(X0) & ~predk(X0) & ~prede(X0)) <=> (~predh(X0) & ~predm(X0) & ~predi(X0))) & ! [X0] : (~(~predf(X0) | ~predg(X0)) => (~predo(X0) & ~predp(X0) & ~predh(X0))) & ~predm(mary) & ~predg(mary) & (~predl(mary) => (~predm(mary) <~> ~predc(mary))) & (~predl(mary) => ~predc(mary)) & (~predj(mary) => ~predl(mary)) & (~predb(mary) => ~predk(mary)) & ((~predb(mary) & ~predi(mary)) => ~predb(mary)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. predn(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 46. ~predn(mary) & ~(~prede(mary) | ~predb(mary)) & ! [X0] : ((~predp(X0) & ~predk(X0) & ~prede(X0)) <=> (~predh(X0) & ~predm(X0) & ~predi(X0))) & ! [X1] : (~(~predf(X1) | ~predg(X1)) => (~predo(X1) & ~predp(X1) & ~predh(X1))) & ~predm(mary) & ~predg(mary) & (~predl(mary) => (~predm(mary) <~> ~predc(mary))) & (~predl(mary) => ~predc(mary)) & (~predj(mary) => ~predl(mary)) & (~predb(mary) => ~predk(mary)) & ((~predb(mary) & ~predi(mary)) => ~predb(mary)) & ! [X2] : (room(X2) => (paul = X2 | mary = X2)) & room(paul) & room(mary) [rectify 44] 47. ~predn(mary) & ~(~prede(mary) | ~predb(mary)) & ! [X0] : ((~predp(X0) & ~predk(X0) & ~prede(X0)) <=> (~predh(X0) & ~predm(X0) & ~predi(X0))) & ! [X1] : (~(~predf(X1) | ~predg(X1)) => (~predp(X1) & ~predh(X1))) & ~predm(mary) & ~predg(mary) & (~predl(mary) => (~predm(mary) <~> ~predc(mary))) & (~predl(mary) => ~predc(mary)) & (~predj(mary) => ~predl(mary)) & (~predb(mary) => ~predk(mary)) & ((~predb(mary) & ~predi(mary)) => ~predb(mary)) & ! [X2] : (room(X2) => (paul = X2 | mary = X2)) & room(paul) & room(mary) [pure predicate removal 46] 48. ~predn(mary) & ~(~prede(mary) | ~predb(mary)) & ! [X0] : ((~predp(X0) & ~predk(X0) & ~prede(X0)) <=> (~predh(X0) & ~predm(X0) & ~predi(X0))) & ~predm(mary) & ~predg(mary) & (~predl(mary) => (~predm(mary) <~> ~predc(mary))) & (~predl(mary) => ~predc(mary)) & (~predj(mary) => ~predl(mary)) & (~predb(mary) => ~predk(mary)) & ((~predb(mary) & ~predi(mary)) => ~predb(mary)) & ! [X2] : (room(X2) => (paul = X2 | mary = X2)) & room(paul) & room(mary) [pure predicate removal 47] 49. ~predn(mary) & ~(~prede(mary) | ~predb(mary)) & ! [X0] : ((~predp(X0) & ~predk(X0) & ~prede(X0)) <=> (~predh(X0) & ~predm(X0) & ~predi(X0))) & ~predm(mary) & (~predl(mary) => (~predm(mary) <~> ~predc(mary))) & (~predl(mary) => ~predc(mary)) & (~predj(mary) => ~predl(mary)) & (~predb(mary) => ~predk(mary)) & ((~predb(mary) & ~predi(mary)) => ~predb(mary)) & ! [X2] : (room(X2) => (paul = X2 | mary = X2)) & room(paul) & room(mary) [pure predicate removal 48] 50. ~predn(mary) & ~(~prede(mary) | ~predb(mary)) & ! [X0] : ((~predp(X0) & ~predk(X0) & ~prede(X0)) <=> (~predh(X0) & ~predm(X0) & ~predi(X0))) & ~predm(mary) & (~predl(mary) => (~predm(mary) <~> ~predc(mary))) & (~predl(mary) => ~predc(mary)) & (~predb(mary) => ~predk(mary)) & ((~predb(mary) & ~predi(mary)) => ~predb(mary)) & ! [X2] : (room(X2) => (paul = X2 | mary = X2)) & room(paul) & room(mary) [pure predicate removal 49] 51. ~predn(mary) & ~(~prede(mary) | ~predb(mary)) & ! [X0] : ((~predp(X0) & ~predk(X0) & ~prede(X0)) <=> (~predh(X0) & ~predm(X0) & ~predi(X0))) & ~predm(mary) & (~predb(mary) => ~predk(mary)) & ((~predb(mary) & ~predi(mary)) => ~predb(mary)) & ! [X2] : (room(X2) => (paul = X2 | mary = X2)) & room(paul) & room(mary) [pure predicate removal 50] 124. ~predn(mary) & (prede(mary) & predb(mary)) & ! [X0] : ((~predp(X0) & ~predk(X0) & ~prede(X0)) <=> (~predh(X0) & ~predm(X0) & ~predi(X0))) & ~predm(mary) & (~predk(mary) | predb(mary)) & (~predb(mary) | (predb(mary) | predi(mary))) & ! [X2] : ((paul = X2 | mary = X2) | ~room(X2)) & room(paul) & room(mary) [ennf transformation 51] 125. ~predn(mary) & prede(mary) & predb(mary) & ! [X0] : ((~predp(X0) & ~predk(X0) & ~prede(X0)) <=> (~predh(X0) & ~predm(X0) & ~predi(X0))) & ~predm(mary) & (~predk(mary) | predb(mary)) & (~predb(mary) | predb(mary) | predi(mary)) & ! [X2] : (paul = X2 | mary = X2 | ~room(X2)) & room(paul) & room(mary) [flattening 124] 126. predn(mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 45] 127. predn(mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 126] 129. ~predn(mary) & prede(mary) & predb(mary) & ! [X0] : (((~predp(X0) & ~predk(X0) & ~prede(X0)) | (predh(X0) | predm(X0) | predi(X0))) & ((~predh(X0) & ~predm(X0) & ~predi(X0)) | (predp(X0) | predk(X0) | prede(X0)))) & ~predm(mary) & (~predk(mary) | predb(mary)) & (~predb(mary) | predb(mary) | predi(mary)) & ! [X2] : (paul = X2 | mary = X2 | ~room(X2)) & room(paul) & room(mary) [nnf transformation 125] 130. ~predn(mary) & prede(mary) & predb(mary) & ! [X0] : (((~predp(X0) & ~predk(X0) & ~prede(X0)) | predh(X0) | predm(X0) | predi(X0)) & ((~predh(X0) & ~predm(X0) & ~predi(X0)) | predp(X0) | predk(X0) | prede(X0))) & ~predm(mary) & (~predk(mary) | predb(mary)) & (~predb(mary) | predb(mary) | predi(mary)) & ! [X2] : (paul = X2 | mary = X2 | ~room(X2)) & room(paul) & room(mary) [flattening 129] 131. ~predn(mary) & prede(mary) & predb(mary) & ! [X0] : (((~predp(X0) & ~predk(X0) & ~prede(X0)) | predh(X0) | predm(X0) | predi(X0)) & ((~predh(X0) & ~predm(X0) & ~predi(X0)) | predp(X0) | predk(X0) | prede(X0))) & ~predm(mary) & (~predk(mary) | predb(mary)) & (~predb(mary) | predb(mary) | predi(mary)) & ! [X1] : (paul = X1 | mary = X1 | ~room(X1)) & room(paul) & room(mary) [rectify 130] 226. ~predn(mary) [cnf transformation 131] 230. predn(mary) [cnf transformation 127] 231. $false [subsumption resolution 230,226] % SZS output end Proof for 71357492607141372744067 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.019 s % ------------------------------ % ------------------------------
0.348909
Marco, Lavonia, Michele, James are the only persons in the room. Everyone in the room collects limited-edition art prints from contemporary artists if they has a specialized collection of handmade artisan pottery or enjoys windsurfing or both. Everyone in the room enjoys windsurfing if they collects limited-edition art prints from contemporary artists. Everyone in the room who enjoys windsurfing either is an avid collector of autographed memorabilia from famous musicians or is a skilled home brewer experimenting with craft beer recipes but not both. Not everyone in the room who collects limited-edition art prints from contemporary artists, is an avid collector of autographed memorabilia from famous musicians or uses an ios phone has a specialized collection of handmade artisan pottery. Everyone in the room enjoys wildlife photography if they has a specialized collection of handmade artisan pottery. More than one person anywhere plays as a goalkeeper for a local amateur soccer team. Not everyone in the room does not enjoy windsurfing if they has a specialized collection of handmade artisan pottery. Everyone in the room does not enjoy spelunking or does not enjoy windsurfing. Everyone in the room does not enjoy wildlife photography or uses an ios phone. If someone does not play as a goalkeeper for a local amateur soccer team and is a wine connoisseur with a private cellar of vintage wines then he/she enjoys rooftop gardening, is a skilled home brewer experimenting with craft beer recipes or does not enjoy stand-up paddleboarding and vice versa. Everyone in the room who collects luxury watches enjoys windsurfing. Everyone in the room neither is an avid collector of autographed memorabilia from famous musicians nor collects limited-edition art prints from contemporary artists if they plays as a goalkeeper for a local amateur soccer team. Everyone in the room who neither is an avid collector of autographed memorabilia from famous musicians nor collects limited-edition art prints from contemporary artists either enjoys spelunking or is a wine connoisseur with a private cellar of vintage wines but not both. Everyone in the room either enjoys spelunking or is a wine connoisseur with a private cellar of vintage wines but not both only if they collects luxury watches or is a skilled home brewer experimenting with craft beer recipes or both.
Marco plays as a goalkeeper for a local amateur soccer team.
contradiction
room(marco)&room(lavonia)&room(michele)&room(james)&(![X]:(room(X)=>(X='marco'|X='lavonia'|X='michele'|X='james')))& (![X]:(room(X)=>(((((has_a_specialized_collection_of_handmade_artisan_pottery(X))|(enjoys_windsurfing(X))))=>(collects_limited-edition_art_prints_from_contemporary_artists(X))))))& (![X]:(room(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))=>(enjoys_windsurfing(X))))))& (![X]:(room(X)=>(((enjoys_windsurfing(X))=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))<~>(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))))& (~![X]:(room(X)=>(((((collects_limited-edition_art_prints_from_contemporary_artists(X))|(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(uses_an_ios_phone(X))))=>(has_a_specialized_collection_of_handmade_artisan_pottery(X))))))& (![X]:(room(X)=>(((has_a_specialized_collection_of_handmade_artisan_pottery(X))=>(enjoys_wildlife_photography(X))))))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)&plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(Y))&(X!=Y))))& (~![X]:(room(X)=>(((has_a_specialized_collection_of_handmade_artisan_pottery(X))=>(does_not_enjoy_windsurfing(X))))))& (![X]:(room(X)=>(((does_not_enjoy_windsurfing(X))|(does_not_enjoy_spelunking(X))))))& (![X]:(room(X)=>(((uses_an_ios_phone(X))|(does_not_enjoy_wildlife_photography(X))))))& ((![X]:((((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))&(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))<=>(((enjoys_rooftop_gardening(X))|(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(does_not_enjoy_stand-up_paddleboarding(X)))))))& (![X]:(room(X)=>(((((has_a_specialized_collection_of_handmade_artisan_pottery(X))<~>(does_practice_yoga(X))))<=>(bakes_bread_at_home(X))))))& (![X]:(room(X)=>(((does_practice_yoga(X))=>(~((enjoys_stand-up_paddleboarding(X))|(enjoys_spelunking(X))))))))& (![X]:(room(X)=>(((collects_luxury_watches(X))=>(enjoys_windsurfing(X))))))& (![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(~((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(collects_limited-edition_art_prints_from_contemporary_artists(X))))))))& (![X]:(room(X)=>(((~((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(collects_limited-edition_art_prints_from_contemporary_artists(X))))=>(((enjoys_spelunking(X))<~>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))))& (![X]:(room(X)=>(((((collects_luxury_watches(X))|(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))<=(((enjoys_spelunking(X))<~>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))))& (![X]:(room(X)=>(((((collects_limited-edition_art_prints_from_contemporary_artists(X))<~>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))=>(enjoys_stand-up_paddleboarding(X))))))& (~![X]:(room(X)=>(((enjoys_spelunking(X))<=(enjoys_rooftop_gardening(X))))))
room(marco)&room(lavonia)&room(michele)&room(james)&(![X]:(room(X)=>(X='marco'|X='lavonia'|X='michele'|X='james')))& plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(marco)
[ "p0", "p1", "p10", "p13", "p14", "p15", "p16", "hypothesis" ]
% SZS status Unsatisfiable for 569520856573176368190780 % SZS output start Proof for 569520856573176368190780 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ! [X0] : (room(X0) => ((preda(X0) | predd(X0)) => predj(X0))) [input p1] 54. ! [X0] : ((predk(X0) & ~predo(X0)) <=> (~predf(X0) | predn(X0) | predb(X0))) [input p10] 57. ! [X0] : (room(X0) => (predc(X0) => preda(X0))) [input p13] 58. ! [X0] : (room(X0) => (predo(X0) => ~(predj(X0) | predl(X0)))) [input p14] 59. ! [X0] : (room(X0) => (~(predj(X0) | predl(X0)) => (predi(X0) <~> predk(X0)))) [input p15] 60. ! [X0] : (room(X0) => ((predi(X0) <~> predk(X0)) => (predn(X0) | predc(X0)))) [input p16] 63. predo(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 140. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 141. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 140] 142. ! [X0] : ((predj(X0) | (~preda(X0) & ~predd(X0))) | ~room(X0)) [ennf transformation 45] 143. ! [X0] : (predj(X0) | (~preda(X0) & ~predd(X0)) | ~room(X0)) [flattening 142] 156. ! [X0] : ((preda(X0) | ~predc(X0)) | ~room(X0)) [ennf transformation 57] 157. ! [X0] : (preda(X0) | ~predc(X0) | ~room(X0)) [flattening 156] 158. ! [X0] : (((~predj(X0) & ~predl(X0)) | ~predo(X0)) | ~room(X0)) [ennf transformation 58] 159. ! [X0] : ((~predj(X0) & ~predl(X0)) | ~predo(X0) | ~room(X0)) [flattening 158] 160. ! [X0] : (((predi(X0) <~> predk(X0)) | (predj(X0) | predl(X0))) | ~room(X0)) [ennf transformation 59] 161. ! [X0] : ((predi(X0) <~> predk(X0)) | predj(X0) | predl(X0) | ~room(X0)) [flattening 160] 162. ! [X0] : (((predn(X0) | predc(X0)) | (predi(X0) <=> predk(X0))) | ~room(X0)) [ennf transformation 60] 163. ! [X0] : (predn(X0) | predc(X0) | (predi(X0) <=> predk(X0)) | ~room(X0)) [flattening 162] 168. predo(mary) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 63] 169. predo(mary) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 168] 178. ! [X0] : (((predk(X0) & ~predo(X0)) | (predf(X0) & ~predn(X0) & ~predb(X0))) & ((~predf(X0) | predn(X0) | predb(X0)) | (~predk(X0) | predo(X0)))) [nnf transformation 54] 179. ! [X0] : (((predk(X0) & ~predo(X0)) | (predf(X0) & ~predn(X0) & ~predb(X0))) & (~predf(X0) | predn(X0) | predb(X0) | ~predk(X0) | predo(X0))) [flattening 178] 181. ! [X0] : (((~predk(X0) | ~predi(X0)) & (predk(X0) | predi(X0))) | predj(X0) | predl(X0) | ~room(X0)) [nnf transformation 161] 182. ! [X0] : (predn(X0) | predc(X0) | ((predi(X0) | ~predk(X0)) & (predk(X0) | ~predi(X0))) | ~room(X0)) [nnf transformation 163] 266. room(mary) [cnf transformation 141] 272. ~preda(X0) | predj(X0) | ~room(X0) [cnf transformation 143] 287. ~predo(X0) | ~predn(X0) [cnf transformation 179] 290. ~predn(X0) | predk(X0) [cnf transformation 179] 298. ~predc(X0) | preda(X0) | ~room(X0) [cnf transformation 157] 299. ~predo(X0) | ~predl(X0) | ~room(X0) [cnf transformation 159] 300. ~predo(X0) | ~predj(X0) | ~room(X0) [cnf transformation 159] 301. ~room(X0) | predi(X0) | predj(X0) | predl(X0) | predk(X0) [cnf transformation 181] 302. ~predk(X0) | ~predi(X0) | predj(X0) | predl(X0) | ~room(X0) [cnf transformation 181] 303. predn(X0) | predc(X0) | predk(X0) | ~predi(X0) | ~room(X0) [cnf transformation 182] 304. ~predk(X0) | predc(X0) | predi(X0) | predn(X0) | ~room(X0) [cnf transformation 182] 315. predo(mary) [cnf transformation 169] 316. ~predi(X0) | predk(X0) | predc(X0) | ~room(X0) [subsumption resolution 303,290] 321. ~predn(mary) [resolution 287,315] 332. ~predl(mary) | ~room(mary) [resolution 299,315] 351. ~predl(mary) [subsumption resolution 332,266] 354. ~predj(mary) | ~room(mary) [resolution 300,315] 360. ~predj(mary) [subsumption resolution 354,266] 558. predi(mary) | predj(mary) | predl(mary) | predk(mary) [resolution 301,266] 565. predi(mary) | predl(mary) | predk(mary) [subsumption resolution 558,360] 566. predi(mary) | predk(mary) [subsumption resolution 565,351] 568. 36 <=> predk(mary) [avatar definition] 569. ~predk(mary) <- (~36) [avatar component clause 568] 570. predk(mary) <- (36) [avatar component clause 568] 572. 37 <=> predi(mary) [avatar definition] 574. predi(mary) <- (37) [avatar component clause 572] 575. 36 | 37 [avatar split clause 566,572,568] 754. predc(mary) | predi(mary) | predn(mary) | ~room(mary) <- (36) [resolution 570,304] 755. ~predi(mary) | predj(mary) | predl(mary) | ~room(mary) <- (36) [resolution 570,302] 756. predc(mary) | predi(mary) | ~room(mary) <- (36) [subsumption resolution 754,321] 757. predc(mary) | predi(mary) <- (36) [subsumption resolution 756,266] 759. 60 <=> predc(mary) [avatar definition] 761. predc(mary) <- (60) [avatar component clause 759] 762. 37 | 60 | ~36 [avatar split clause 757,568,759,572] 763. ~predi(mary) | predl(mary) | ~room(mary) <- (36) [subsumption resolution 755,360] 764. ~predi(mary) | ~room(mary) <- (36) [subsumption resolution 763,351] 765. ~predi(mary) <- (36) [subsumption resolution 764,266] 766. ~37 | ~36 [avatar split clause 765,568,572] 781. predk(mary) | predc(mary) | ~room(mary) <- (37) [resolution 574,316] 783. predc(mary) | ~room(mary) <- (~36, 37) [subsumption resolution 781,569] 784. predc(mary) <- (~36, 37) [subsumption resolution 783,266] 785. 60 | 36 | ~37 [avatar split clause 784,572,568,759] 862. preda(mary) | ~room(mary) <- (60) [resolution 761,298] 866. preda(mary) <- (60) [subsumption resolution 862,266] 888. predj(mary) | ~room(mary) <- (60) [resolution 866,272] 893. ~room(mary) <- (60) [subsumption resolution 888,360] 894. $false <- (60) [subsumption resolution 893,266] 895. ~60 [avatar contradiction clause 894] 896. $false [avatar sat refutation 575,762,766,785,895] % SZS output end Proof for 569520856573176368190780 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.042 s % ------------------------------ % ------------------------------
0