path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
Advanced Algorithms/Greed Algorithms/Min_Operations.ipynb
###Markdown Min Operations Starting from the number `0`, find the minimum number of operations required to reach a given positive `target number`. You can only use the following two operations: 1. Add 1 2. Double the number Example:1. For `Target = 18`, `output = 6`, because it takes at least 6 steps shown below to reach the target * `start = 0` * `step 1 ==> 0 + 1 = 1` * `step 2 ==> 1 * 2 = 2` or 1 + 1 = 2 * `step 3 ==> 2 * 2 = 4` * `step 4 ==> 4 * 2 = 8` * `step 5 ==> 8 + 1 = 9` * `step 6 ==> 9 * 2 = 18` 2. For `Target = 69`, `output = 9`, because it takes at least 8 steps to reach `69` from `0` using the allowed operations * `start = 0` * `step 1 ==> 0 + 1 = 1` * `step 2 ==> 1 + 1 = 2` * `step 3 ==> 2 * 2 = 4` * `step 4 ==> 4 * 2 = 8` * `step 5 ==> 8 * 2 = 16` * `step 6 ==> 16 + 1 = 17` * `step 7 ==> 17 * 2 = 34` * `step 8 ==> 34 * 2 = 68` * `step 9 ==> 68 + 1 = 69` ###Code # Your solution def min_operations(target): """ Return number of steps taken to reach a target number input: target number (as an integer) output: number of steps (as an integer) """ num_steps = 0 while target != 0: # start backwards from the target # if target is odd --> subtract 1 # if target is even --> divide by 2 if target % 2 == 0: target = target // 2 num_steps += 1 else: target = target - 1 num_steps += 1 return num_steps # Test Cases def test_function(test_case): target = test_case[0] solution = test_case[1] output = min_operations(target) if output == solution: print("Pass") else: print("Fail") target = 18 solution = 6 test_case = [target, solution] test_function(test_case) target = 69 solution = 9 test_case = [target, solution] test_function(test_case) ###Output _____no_output_____ ###Markdown Hide Solution ###Code def min_operations(target): """ Return number of steps taken to reach a target number input:- target number an integer output:- number of steps an integer """ num_steps = 0 # start backwards from the target # if target is odd --> subtract 1 # if target is even --> divide by 2 while target != 0: if target % 2 == 0: target = target // 2 else: target = target - 1 num_steps += 1 return num_steps ###Output _____no_output_____
Python for Data Science/Week 7 - Intro to Machine Learning/Clustering Model - Weather Data Clustering with k-Means.ipynb
###Markdown Clustering with k-Means Model We will use cluster analysis to generate a big picture model of the weather at a local station using a minute-graunlarity data. Goal: Create 12 clusters of them**NOTE:** The dataset is in a large CSV file called *minute_weather.csv*. The download link is: https://drive.google.com/open?id=0B8iiZ7pSaSFZb3ItQ1l4LWRMTjg Importing the libraries ###Code from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans import os import utils from sklearn import metrics from scipy.spatial.distance import cdist import pandas as pd import numpy as np from itertools import cycle,islice import matplotlib.pyplot as plt from pandas.plotting import parallel_coordinates %matplotlib inline ###Output _____no_output_____ ###Markdown Minute Weather Data DescriptionThe **minute weather dataset** comes from the same source as the daily weather dataset that we used in the decision tree based classifier notebook. The main difference between these two datasets is that the minute weather dataset contains raw sensor measurements captured at one-minute intervals. Daily weather dataset instead contained processed and well curated data. The data is in the file **minute_weather.csv**, which is a comma-separated file.As with the daily weather data, this data comes from a weather station located in San Diego, California. The weather station is equipped with sensors that capture weather-related measurements such as air temperature, air pressure, and relative humidity. Data was collected for a period of three years, from September 2011 to September 2014, to ensure that sufficient data for different seasons and weather conditions is captured.Each row in **minute_weather.csv** contains weather data captured for a one-minute interval. Each row, or sample, consists of the following variables:* **rowID:** unique number for each row (*Unit: NA*)* **hpwren_timestamp:** timestamp of measure (*Unit: year-month-day hour:minute:second*)* **air_pressure:** air pressure measured at the timestamp (*Unit: hectopascals*)* **air_temp:** air temperature measure at the timestamp (*Unit: degrees Fahrenheit*)* **avg_wind_direction:** wind direction averaged over the minute before the timestamp (*Unit: degrees, with 0 means coming from the North, and increasing clockwise*)* **avg_wind_speed:** wind speed averaged over the minute before the timestamp (*Unit: meters per second*)* **max_wind_direction:** highest wind direction in the minute before the timestamp (*Unit: degrees, with 0 being North and increasing clockwise*)* **max_wind_speed:** highest wind speed in the minute before the timestamp (*Unit: meters per second*)* **min_wind_direction:** smallest wind direction in the minute before the timestamp (*Unit: degrees, with 0 being North and inceasing clockwise*)* **min_wind_speed:** smallest wind speed in the minute before the timestamp (*Unit: meters per second*)* **rain_accumulation:** amount of accumulated rain measured at the timestamp (*Unit: millimeters*)* **rain_duration:** length of time rain has fallen as measured at the timestamp (*Unit: seconds*)* **relative_humidity:** relative humidity measured at the timestamp (*Unit: percent*) ###Code data = pd.read_csv('./weather/minute_weather.csv') data.head() # check missing data total = data.isnull().sum().sort_values(ascending=False) percent = (data.isnull().sum()/data.isnull().count()*100).sort_values(ascending=False) dataMissing = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) dataMissing.head(15) data.shape ###Output _____no_output_____ ###Markdown Data SamplingGet every 10th row ###Code dfTen = data[data['rowID'] % 10 == 0] dfTen.shape dfTen.head() ###Output _____no_output_____ ###Markdown Statistics ###Code dfTen.describe().transpose() dfTen[dfTen['rain_accumulation'] == 0].shape dfTen[dfTen['rain_duration'] == 0].shape ###Output _____no_output_____ ###Markdown Dropping all the rows with empty rain_duration and rain_accumulation ###Code del dfTen['rain_accumulation'] del dfTen['rain_duration'] print('Rows before: ' + str(dfTen.shape[0])) dfTen = dfTen.dropna() print('Rows after: ' + str(dfTen.shape[0])) ###Output Rows before: 158726 Rows after: 158680 ###Markdown **Lost 0.3% of dataframe** ###Code dfTen.columns ###Output _____no_output_____ ###Markdown Select features of interest for clustering ###Code features = ['air_pressure', 'air_temp', 'avg_wind_direction', 'avg_wind_speed', 'max_wind_direction', 'max_wind_speed', 'relative_humidity' ] df = dfTen[features] df.head() ###Output _____no_output_____ ###Markdown Scaling the features using StandardScaler ###Code X = StandardScaler().fit_transform(df) X ###Output _____no_output_____ ###Markdown The Elbow Method ###Code def elbowMethod(data,maxK): distortions = [] K = range(1,maxK) for k in K: model = KMeans(n_clusters=k).fit(data) model.fit(data) distortions.append(sum(np.min(cdist(data,model.cluster_centers_,'euclidean'),axis=1)) / data.shape[0]) plt.plot(K,distortions,'bx-') plt.xlabel('k') plt.ylabel('Distortion') plt.title('The Elbow Method showing the optimal k') plt.show() elbowMethod(X,20) ###Output _____no_output_____ ###Markdown **k = 5 seems to be a good choice** Using k-Means Clustering **For k = 12** ###Code kmeans12 = KMeans(n_clusters = 12) model12 = kmeans12.fit(X) centers12 = model12.cluster_centers_ print('model\n',model12) ###Output model KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300, n_clusters=12, n_init=10, n_jobs=1, precompute_distances='auto', random_state=None, tol=0.0001, verbose=0) ###Markdown **For k = 5** ###Code kmeans5 = KMeans(n_clusters = 5) model5 = kmeans5.fit(X) centers5 = model5.cluster_centers_ print('model\n',model5) ###Output model KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300, n_clusters=5, n_init=10, n_jobs=1, precompute_distances='auto', random_state=None, tol=0.0001, verbose=0) ###Markdown Plots ###Code # Function that creates a DataFrame with a column for Cluster Number def pd_centers(features,centers): colNames = list(features) colNames.append('prediction') Z = [np.append(A,index) for index,A in enumerate(centers)] P = pd.DataFrame(Z,columns=colNames) P['prediction'] = P['prediction'].astype(int) return P # Function that creates Parallel Plots def parallel_plot(data,k): myColors = list(islice(cycle(['b','r','g','y','k']), None, len(data))) plt.figure(figsize=(10,5)).gca().axes.set_ylim([-3,+3]) parallel_coordinates(data,'prediction',color = myColors,marker='o') plt.title('For k = ' + str(k)) plot5 = pd_centers(features, centers5) plot12 = pd_centers(features, centers12) ###Output _____no_output_____ ###Markdown Dry Days ###Code parallel_plot(plot5[plot5['relative_humidity'] < -0.5],5) parallel_plot(plot12[plot12['relative_humidity'] < -0.5],12) ###Output _____no_output_____ ###Markdown Warm Days ###Code parallel_plot(plot5[plot5['air_temp'] > 0.5],5) parallel_plot(plot12[plot12['air_temp'] > 0.5],12) ###Output _____no_output_____ ###Markdown Cool Days ###Code parallel_plot(plot5[(plot5['relative_humidity'] > 0.5) & (plot5['air_temp'] < 0.5)],5) parallel_plot(plot12[(plot12['relative_humidity'] > 0.5) & (plot12['air_temp'] < 0.5)],12) ###Output _____no_output_____
08_numpy_practice.ipynb
###Markdown Practice on Numpy and PandasHere are some task for you, to refresh what you saw in the notebooks before.It will help you strengthen the **learning objectives** from the notebook before. You should be able to- create numpy arrays- manipulate them with basic mathematics operators- extract rows, columns and items by indexing- use aggregation methods (like sum, min, max, std) on numpy arrays**Part 1**: Creating numpy arrays.- Please create a numpy array from the list:```Pythonmy_list = [1, 2, 5, 6, 8]````- Please create a numpy array containing the values from 1 to 10.- Please create a numpy array from 0 to 5 cwith a stepsize of 0.2- Create a numpy array with the shape 2,3 with random values ###Code #1 import numpy as np my_list_1 = np.arange(1,11) my_list_1 #2 my_list_2 = np.arange(0,5, 0.2) my_list_2 #3 my_list_3 = np.random.rand(2,3) my_list_3 ###Output _____no_output_____ ###Markdown **Part 2**: Manipulate numpy arrays.1. Please create a numpy array with (1, 3, '4', 7, 12, '0'). Define the content as integer.2. Check the data type of the objects and the shape of the array3. Update the 4th value to 30.4. Reshape the array to a 2x3 matrix.5. Please add 8 to the first row and 12 to the second row.6. Mulitply the first column with 2, the second with 3 and the third with 4.7. Please summ up all numbers in the first row, and all numbers in the second row.8. Similarly, search for the largest number for each column.9. Extract the number in the second column and the first row.10. Check at which index the value is exactly 48. ###Code #1 my_list_4 = np.array([1, 3, '4', 7, 12, '0'], np.int32) my_list_4 #2 print(type(my_list_4)) print(my_list_4.shape) #3 my_list_4 = np.where(my_list_4 == 4, 30, my_list_4) my_list_4 #4 my_list_4 = np.array(my_list_4).reshape(2, 3) print(my_list_4) #5 my_list_4 = my_list_4 + [[8], [12]] my_list_4 #6 my_list_4 = my_list_4 * [2, 3, 4] my_list_4 #7 my_list_4 .sum(axis=1) #8 my_list_4.max(axis=0) #9 my_list_4[:1, 1] #10 print(np.where(my_list_4 == 48)) ###Output (array([1]), array([2]))
getting_started/notebooks_managed_domains/Building_Your_First_Recommender_Video_On_Demand.ipynb
###Markdown Building Your First Video On Demand RecommenderThis notebook will walk you through the steps to build a Domain dataset group and arecommender that returns movie recommendations based on data collected from the movielens data set. The goal is to recommend movies that are relevant based on a particular user.The data comes from the [MovieLens project](https://grouplens.org/datasets/movielens/). Follow the link to learn more about the data and potential uses. How to Use the NotebookThe code is broken up into cells like the one below. There's a triangular Run button at the top of this page that you can click to execute each cell and move onto the next, or you can press `Shift` + `Enter` while in the cell to execute it and move onto the next one.As a cell is executing you'll notice a line to the side showcase an `*` while the cell is running or it will update to a number to indicate the last cell that completed executing after it has finished exectuting all the code within a cell.Simply follow the instructions below and execute the cells to get started with Amazon Personalize using case optimized recommenders. ImportsPython ships with a broad collection of libraries and we need to import those as well as the ones installed to help us like [boto3](https://aws.amazon.com/sdk-for-python/) (AWS SDK for python) and [Pandas](https://pandas.pydata.org/)/[Numpy](https://numpy.org/) which are core data science tools. ###Code # Imports import boto3 import json import numpy as np import pandas as pd import time import datetime ###Output _____no_output_____ ###Markdown Next you will want to validate that your environment can communicate successfully with Amazon Personalize, the lines below do just that. ###Code # Configure the SDK to Personalize: personalize = boto3.client('personalize') personalize_runtime = boto3.client('personalize-runtime') ###Output _____no_output_____ ###Markdown Configure the dataData is imported into Amazon Personalize through Amazon S3, below we will specify a bucket that you have created within AWS for the purposes of this exercise.Below you will update the `bucket` variable to instead be set to the value that you created earlier in the CloudFormation steps, this should be in a text file from your earlier work. the `filename` does not need to be changed. Specify a Bucket and Data Output LocationUpdate the `bucket` name to a unique name. ###Code bucket_name = "CHANGE_BUCKET_NAME" # replace with the name of your S3 bucket filename = "movie-lens-100k.csv" ###Output _____no_output_____ ###Markdown Download, Prepare, and Upload Training DataAt present you do not have the MovieLens data loaded locally yet for examination, execute the lines below to download the latest copy and to examine it quickly. Download and Explore the Dataset ###Code !wget -N https://files.grouplens.org/datasets/movielens/ml-latest-small.zip !unzip -o ml-latest-small.zip !ls ml-latest-small !pygmentize ml-latest-small/README.txt interactions_data = pd.read_csv('./ml-latest-small/ratings.csv') pd.set_option('display.max_rows', 5) interactions_data interactions_data.info() ###Output _____no_output_____ ###Markdown Prepare the Data Interactions DataAs you can see the data contains a UserID, ItemID, Rating, and Timestamp.We are now going to remove the items with low rankings, and remove the Rating column before we build our model.We are also adding the column EVENT_TYPE to all interactions. ###Code interactions_data = interactions_data[interactions_data['rating'] > 3] # Keep only movies rated higher than 3 out of 5. interactions_data = interactions_data[['userId', 'movieId', 'timestamp']] interactions_data.rename(columns = {'userId':'USER_ID', 'movieId':'ITEM_ID', 'timestamp':'TIMESTAMP'}, inplace = True) interactions_data['EVENT_TYPE']='watch' #Adding an EVENT_TYPE column that has the event type "watched" for all movies interactions_data.head() ###Output _____no_output_____ ###Markdown Item MetadataOpen the item data file and take a look at the first rows. ###Code items_data = pd.read_csv('./ml-latest-small/movies.csv') items_data.head(5) items_data.info() items_data['year'] = items_data['title'].str.extract('.*\((.*)\).*',expand = False) items_data.head(5) ###Output _____no_output_____ ###Markdown Selecting a modern date as the creation timestamp for this example because the actual creation timestamp is unknown. In your use-case, please provide the appropriate creation timestamp. ###Code ts= datetime.datetime(2022, 1, 1, 0, 0).strftime('%s') print(ts) items_data["CREATION_TIMESTAMP"] = ts items_data # removing the title items_data.drop(columns="title", inplace = True) # renaming the columns to match schema items_data.rename(columns = { 'movieId':'ITEM_ID', 'genres':'GENRES', 'year':'YEAR'}, inplace = True) items_data ###Output _____no_output_____ ###Markdown User MetadataThe dataset doe not have any user metadata so we will create an fake metadata field. ###Code # get user ids from the interaction dataset user_ids = interactions_data['USER_ID'].unique() user_data = pd.DataFrame() user_data["USER_ID"]=user_ids user_data ###Output _____no_output_____ ###Markdown Adding MetadataThe current dataset does not contain additiona user information. For this example, we'll randomly assign a gender to the users with equal probablity of male and female. ###Code possible_genders = ['female', 'male'] random = np.random.choice(possible_genders, len(user_data.index), p=[0.5, 0.5]) user_data["GENDER"] = random user_data ###Output _____no_output_____ ###Markdown Configure an S3 bucket and an IAM roleSo far, we have downloaded, manipulated, and saved the data onto the Amazon EBS instance attached to instance running this Jupyter notebook. However, Amazon Personalize will need an S3 bucket to act as the source of your data, as well as IAM roles for accessing that bucket. Let's set all of that up.The Amazon S3 bucket needs to be in the same region as the Amazon Personalize resources we have been creating so far. Simply define the region as a string below. ###Code region = "eu-west-1" #Specify the region where your bucket will be domiciled s3 = boto3.client('s3') account_id = boto3.client('sts').get_caller_identity().get('Account') bucket_name = account_id + "-" + region + "-" + "personalizemanagedretailers" print('bucket_name:', bucket_name) try: if region == "us-east-1": s3.create_bucket(Bucket=bucket_name) else: s3.create_bucket( Bucket=bucket_name, CreateBucketConfiguration={'LocationConstraint': region} ) except: print("Bucket already exists. Using bucket", bucket_name) ###Output _____no_output_____ ###Markdown Upload data to S3Now that your Amazon S3 bucket has been created, upload the CSV file of our user-item-interaction data. ###Code interactions_filename = "interactions.csv" interactions_data.to_csv(interactions_filename, index=False) boto3.Session().resource('s3').Bucket(bucket_name).Object(interactions_filename).upload_file(interactions_filename) items_filename = "items.csv" items_data.to_csv(items_filename, index=False) boto3.Session().resource('s3').Bucket(bucket_name).Object(items_filename).upload_file(items_filename) user_filename = "users.csv" user_data.to_csv(user_filename, index=False) boto3.Session().resource('s3').Bucket(bucket_name).Object(user_filename).upload_file(user_filename) ###Output _____no_output_____ ###Markdown Set the S3 bucket policyAmazon Personalize needs to be able to read the contents of your S3 bucket. So add a bucket policy which allows that.Note: Make sure the role you are using to run the code in this notebook has the necessary permissions to modify the S3 bucket policy. ###Code s3 = boto3.client("s3") policy = { "Version": "2012-10-17", "Id": "PersonalizeS3BucketAccessPolicy", "Statement": [ { "Sid": "PersonalizeS3BucketAccessPolicy", "Effect": "Allow", "Principal": { "Service": "personalize.amazonaws.com" }, "Action": [ "s3:GetObject", "s3:ListBucket" ], "Resource": [ "arn:aws:s3:::{}".format(bucket_name), "arn:aws:s3:::{}/*".format(bucket_name) ] } ] } s3.put_bucket_policy(Bucket=bucket_name, Policy=json.dumps(policy)) ###Output _____no_output_____ ###Markdown Create and Wait for Dataset GroupThe largest grouping in Personalize is a Dataset Group, this will isolate your data, event trackers, solutions, and campaigns. Grouping things together that share a common collection of data. Feel free to alter the name below if you'd like. Create Dataset Group ###Code response = personalize.create_dataset_group( name='personalize-video-on-demand', domain='VIDEO_ON_DEMAND' ) dataset_group_arn = response['datasetGroupArn'] print(json.dumps(response, indent=2)) ###Output _____no_output_____ ###Markdown Wait for Dataset Group to Have ACTIVE StatusBefore we can use the Dataset Group in any items below it must be active, execute the cell below and wait for it to show active. ###Code max_time = time.time() + 3*60*60 # 3 hours while time.time() < max_time: describe_dataset_group_response = personalize.describe_dataset_group( datasetGroupArn = dataset_group_arn ) status = describe_dataset_group_response["datasetGroup"]["status"] print("DatasetGroup: {}".format(status)) if status == "ACTIVE" or status == "CREATE FAILED": break time.sleep(60) ###Output _____no_output_____ ###Markdown Create Interactions SchemaA core component of how Personalize understands your data comes from the Schema that is defined below. This configuration tells the service how to digest the data provided via your CSV file. Note the columns and types align to what was in the file you created above. ###Code schema = { "type": "record", "name": "Interactions", "namespace": "com.amazonaws.personalize.schema", "fields": [ { "name": "USER_ID", "type": "string" }, { "name": "ITEM_ID", "type": "string" }, { "name": "EVENT_TYPE", "type": "string" }, { "name": "TIMESTAMP", "type": "long" } ], "version": "1.0" } create_interactions_schema_response = personalize.create_schema( name='personalize-demo-interactions-schema', schema=json.dumps(schema), domain='VIDEO_ON_DEMAND' ) interactions_schema_arn = create_interactions_schema_response['schemaArn'] print(json.dumps(create_interactions_schema_response, indent=2)) ###Output _____no_output_____ ###Markdown Create Items (movies) schema ###Code schema = { "type": "record", "name": "Items", "namespace": "com.amazonaws.personalize.schema", "fields": [ { "name": "ITEM_ID", "type": "string" }, { "name": "GENRES", "type": [ "string" ], "categorical": True }, { "name": "CREATION_TIMESTAMP", "type": "long" } ], "version": "1.0" } create_items_schema_response = personalize.create_schema( name='personalize-demo-items-schema', schema=json.dumps(schema), domain='VIDEO_ON_DEMAND' ) items_schema_arn = create_items_schema_response['schemaArn'] print(json.dumps(create_items_schema_response, indent=2)) ###Output _____no_output_____ ###Markdown Create Users schema ###Code schema = { "type": "record", "name": "Users", "namespace": "com.amazonaws.personalize.schema", "fields": [ { "name": "USER_ID", "type": "string" }, { "name": "GENDER", "type": "string", "categorical": True } ], "version": "1.0" } create_users_schema_response = personalize.create_schema( name='personalize-demo-users-schema', schema=json.dumps(schema), domain='VIDEO_ON_DEMAND' ) users_schema_arn = create_users_schema_response['schemaArn'] print(json.dumps(create_users_schema_response, indent=2)) ###Output _____no_output_____ ###Markdown Create DatasetsAfter the group, the next thing to create is the actual datasets. Create Interactions Dataset ###Code dataset_type = "INTERACTIONS" create_dataset_response = personalize.create_dataset( name = "personalize-demo-interactions", datasetType = dataset_type, datasetGroupArn = dataset_group_arn, schemaArn = interactions_schema_arn ) interactions_dataset_arn = create_dataset_response['datasetArn'] print(json.dumps(create_dataset_response, indent=2)) ###Output _____no_output_____ ###Markdown Create Items Dataset ###Code dataset_type = "ITEMS" create_dataset_response = personalize.create_dataset( name = "personalize-demo-items", datasetType = dataset_type, datasetGroupArn = dataset_group_arn, schemaArn = items_schema_arn ) items_dataset_arn = create_dataset_response['datasetArn'] print(json.dumps(create_dataset_response, indent=2)) ###Output _____no_output_____ ###Markdown Create Users Dataset ###Code dataset_type = "USERS" create_dataset_response = personalize.create_dataset( name = "personalize-demo-users", datasetType = dataset_type, datasetGroupArn = dataset_group_arn, schemaArn = users_schema_arn ) users_dataset_arn = create_dataset_response['datasetArn'] print(json.dumps(create_dataset_response, indent=2)) ###Output _____no_output_____ ###Markdown Create Personalize RoleAlso Amazon Personalize needs the ability to assume Roles in AWS in order to have the permissions to execute certain tasks, the lines below grant that.Note: Make sure the role you are using to run the code in this notebook has the necessary permissions to create a role. ###Code iam = boto3.client("iam") role_name = "PersonalizeRoleDemoRecommender" assume_role_policy_document = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": { "Service": "personalize.amazonaws.com" }, "Action": "sts:AssumeRole" } ] } create_role_response = iam.create_role( RoleName = role_name, AssumeRolePolicyDocument = json.dumps(assume_role_policy_document) ) # AmazonPersonalizeFullAccess provides access to any S3 bucket with a name that includes "personalize" or "Personalize" # if you would like to use a bucket with a different name, please consider creating and attaching a new policy # that provides read access to your bucket or attaching the AmazonS3ReadOnlyAccess policy to the role policy_arn = "arn:aws:iam::aws:policy/service-role/AmazonPersonalizeFullAccess" iam.attach_role_policy( RoleName = role_name, PolicyArn = policy_arn ) # Now add S3 support iam.attach_role_policy( PolicyArn='arn:aws:iam::aws:policy/AmazonS3FullAccess', RoleName=role_name ) time.sleep(60) # wait for a minute to allow IAM role policy attachment to propagate role_arn = create_role_response["Role"]["Arn"] print(role_arn) ###Output _____no_output_____ ###Markdown Import the dataEarlier you created the DatasetGroup and Dataset to house your information, now you will execute an import job that will load the data from S3 into Amazon Personalize for usage building your model. Create Interactions Dataset Import Job ###Code create_interactions_dataset_import_job_response = personalize.create_dataset_import_job( jobName = "personalize-demo-import-interactions", datasetArn = interactions_dataset_arn, dataSource = { "dataLocation": "s3://{}/{}".format(bucket_name, interactions_filename) }, roleArn = role_arn ) dataset_interactions_import_job_arn = create_interactions_dataset_import_job_response['datasetImportJobArn'] print(json.dumps(create_interactions_dataset_import_job_response, indent=2)) ###Output _____no_output_____ ###Markdown Create Items Dataset Import Job ###Code create_items_dataset_import_job_response = personalize.create_dataset_import_job( jobName = "personalize-demo-import-items", datasetArn = items_dataset_arn, dataSource = { "dataLocation": "s3://{}/{}".format(bucket_name, items_filename) }, roleArn = role_arn ) dataset_items_import_job_arn = create_items_dataset_import_job_response['datasetImportJobArn'] print(json.dumps(create_items_dataset_import_job_response, indent=2)) ###Output _____no_output_____ ###Markdown Create Users Dataset Import Job ###Code create_users_dataset_import_job_response = personalize.create_dataset_import_job( jobName = "personalize-demo-import-users", datasetArn = users_dataset_arn, dataSource = { "dataLocation": "s3://{}/{}".format(bucket_name, user_filename) }, roleArn = role_arn ) dataset_users_import_job_arn = create_users_dataset_import_job_response['datasetImportJobArn'] print(json.dumps(create_users_dataset_import_job_response, indent=2)) ###Output _____no_output_____ ###Markdown Wait for Dataset Import Job to Have ACTIVE StatusIt can take a while before the import job completes, please wait until you see that it is active below. ###Code max_time = time.time() + 3*60*60 # 3 hours while time.time() < max_time: describe_dataset_import_job_response = personalize.describe_dataset_import_job( datasetImportJobArn = dataset_interactions_import_job_arn ) status = describe_dataset_import_job_response["datasetImportJob"]['status'] print("DatasetImportJob: {}".format(status)) if status == "ACTIVE" or status == "CREATE FAILED": break time.sleep(60) max_time = time.time() + 3*60*60 # 3 hours while time.time() < max_time: describe_dataset_import_job_response = personalize.describe_dataset_import_job( datasetImportJobArn = dataset_items_import_job_arn ) status = describe_dataset_import_job_response["datasetImportJob"]['status'] print("DatasetImportJob: {}".format(status)) if status == "ACTIVE" or status == "CREATE FAILED": break time.sleep(60) max_time = time.time() + 3*60*60 # 3 hours while time.time() < max_time: describe_dataset_import_job_response = personalize.describe_dataset_import_job( datasetImportJobArn = dataset_users_import_job_arn ) status = describe_dataset_import_job_response["datasetImportJob"]['status'] print("DatasetImportJob: {}".format(status)) if status == "ACTIVE" or status == "CREATE FAILED": break time.sleep(60) ###Output _____no_output_____ ###Markdown Choose a recommender use casesEach domain has different use cases. When you create a recommender you create it for a specific use case, and each use case has different requirements for getting recommendations. ###Code available_recipes = personalize.list_recipes(domain='VIDEO_ON_DEMAND') # See a list of recommenders for the domain. print (available_recipes["recipes"]) ###Output _____no_output_____ ###Markdown We are going to create a recommender of the type "More like X". This type of recommender offers recommendations for videos that are similar to a video a user watched. With this use case, Amazon Personalize automatically filters videos the user watched based on the userId specified in the `get_recommendations` call. For better performance, record Click events in addition to the required Watch events. ###Code create_recommender_response = personalize.create_recommender( name = 'because_you_watched_x', recipeArn = 'arn:aws:personalize:::recipe/aws-vod-more-like-x', datasetGroupArn = dataset_group_arn ) recommender_you_watched_x_arn = create_recommender_response["recommenderArn"] print (json.dumps(create_recommender_response)) ###Output _____no_output_____ ###Markdown We are going to create a second recommender of the type "Top picks for you". This type of recommender offers personalized streaming content recommendations for a user that you specify. With this use case, Amazon Personalize automatically filters videos the user watched based on the userId that you specify and `Watch` events.[More use cases per domain](https://docs.aws.amazon.com/personalize/latest/dg/domain-use-cases.html) ###Code create_recommender_response = personalize.create_recommender( name = 'top_picks_for_you', recipeArn = 'arn:aws:personalize:::recipe/aws-vod-top-picks', datasetGroupArn = dataset_group_arn ) recommender_top_picks_arn = create_recommender_response["recommenderArn"] print (json.dumps(create_recommender_response)) ###Output _____no_output_____ ###Markdown We wait until the recomenders have finished creating and have status `ACTIVE`. We check periodically on the status of the recommender ###Code max_time = time.time() + 10*60*60 # 10 hours while time.time() < max_time: version_response = personalize.describe_recommender( recommenderArn = recommender_you_watched_x_arn ) status = version_response["recommender"]["status"] if status == "ACTIVE": print("Build succeeded for {}".format(recommender_you_watched_x_arn)) elif status == "CREATE FAILED": print("Build failed for {}".format(recommender_you_watched_x_arn)) if status == "ACTIVE": break else: print("The solution build is still in progress") time.sleep(60) while time.time() < max_time: version_response = personalize.describe_recommender( recommenderArn = recommender_top_picks_arn ) status = version_response["recommender"]["status"] if status == "ACTIVE": print("Build succeeded for {}".format(recommender_top_picks_arn)) elif status == "CREATE FAILED": print("Build failed for {}".format(recommender_top_picks_arn)) if status == "ACTIVE": break else: print("The solution build is still in progress") time.sleep(60) ###Output _____no_output_____ ###Markdown Getting recommendations with a recommenderNow that the recommenders have been trained, lets have a look at the recommendations we can get for our users! ###Code # reading the original data in order to have a dataframe that has both movie_ids # and the corresponding titles to make out recommendations easier to read. items_df = pd.read_csv('./ml-latest-small/movies.csv') items_df.sample(10) def get_movie_by_id(movie_id, movie_df): """ This takes in an movie_id from a recommendation in string format, converts it to an int, and then does a lookup in a specified dataframe. A really broad try/except clause was added in case anything goes wrong. Feel free to add more debugging or filtering here to improve results if you hit an error. """ try: return movie_df.loc[movie_df["movieId"]==int(movie_id)]['title'].values[0] except: print (movie_id) return "Error obtaining title" ###Output _____no_output_____ ###Markdown Let us get some 'Because you Watched X' recommendations: ###Code # First pick a user test_user_id = "1" # Select a random item test_item_id = "59315" #Iron Man 59315 # Get recommendations for the user for this item get_recommendations_response = personalize_runtime.get_recommendations( recommenderArn = recommender_you_watched_x_arn, userId = test_user_id, itemId = test_item_id, numResults = 20 ) # Build a new dataframe for the recommendations item_list = get_recommendations_response['itemList'] recommendation_list = [] for item in item_list: movie = get_movie_by_id(item['itemId'], items_df) recommendation_list.append(movie) user_recommendations_df = pd.DataFrame(recommendation_list, columns = [get_movie_by_id(test_item_id, items_df)]) pd.options.display.max_rows =20 display(user_recommendations_df) ###Output _____no_output_____ ###Markdown Get recommendations from the recommender returning "Top picks for you": Adding the user's metadata to our sample user, you can use this type of metadata to get insights on your users. ###Code users_data_df = pd.read_csv('./users.csv') def get_gender_by_id(user_id, user_df): """ This takes in a user_id and then does a lookup in a specified dataframe. A really broad try/except clause was added in case anything goes wrong. Feel free to add more debugging or filtering here to improve results if you hit an error. """ return user_df.loc[user_df["USER_ID"]==int(user_id)]['GENDER'].values[0] try: return user_df.loc[user_df["USER_ID"]==int(user_id)]['GENDER'].values[0] except: print (user_id) return "Error obtaining title" # First pick a user test_user_id = "111" # samples users: 55, 75, 76, 111 # Get recommendations for the user get_recommendations_response = personalize_runtime.get_recommendations( recommenderArn = recommender_top_picks_arn, userId = test_user_id, numResults = 20 ) # Build a new dataframe for the recommendations item_list = get_recommendations_response['itemList'] recommendation_list = [] for item in item_list: movie = get_movie_by_id(item['itemId'], items_df) recommendation_list.append(movie) column_name = test_user_id+" ("+get_gender_by_id(test_user_id, users_data_df)+")" user_recommendations_df = pd.DataFrame(recommendation_list, columns = [column_name]) pd.options.display.max_rows =20 display(user_recommendations_df) ###Output _____no_output_____ ###Markdown ReviewUsing the codes above you have successfully trained a deep learning model to generate movie recommendations based on prior user behavior. You have created two recommenders for two foundational use cases. Going forward, you can adapt this code to create other recommenders. Notes for the Next Notebook:There are a few values you will need for the next notebook, execute the cell below to store them so they can be used in the `Clean_Up_Resources.ipynb` notebook.This will overwite any data stored for those variables and set them to the values specified in this notebook. ###Code # store for cleanup %store dataset_group_arn %store role_name %store interactions_schema_arn %store items_schema_arn %store users_schema_arn %store region ###Output _____no_output_____
Learning+Misc/Quantum-Katas/tutorials/ComplexArithmetic/.ipynb_checkpoints/ComplexArithmetic-checkpoint.ipynb
###Markdown Complex ArithmeticThis is a tutorial designed to introduce you to complex arithmetic.This topic isn't particularly expansive, but it's important to understand it to be able to work with quantum computing.This tutorial covers the following topics:* Imaginary and complex numbers* Basic complex arithmetic* Complex plane* Modulus operator* Imaginary exponents* Polar representationIf you need to look up some formulas quickly, you can find them in [this cheatsheet](https://github.com/microsoft/QuantumKatas/blob/master/quickref/qsharp-quick-reference.pdf).If you are curious to learn more, you can find more information at [Wikipedia](https://en.wikipedia.org/wiki/Complex_number). This notebook has several tasks that require you to write Python code to test your understanding of the concepts. If you are not familiar with Python, [here](https://docs.python.org/3/tutorial/index.html) is a good introductory tutorial for it. Let's start by importing some useful mathematical functions and constants, and setting up a few things necessary for testing the exercises. **Do not skip this step**.Click the cell with code below this block of text and press `Ctrl+Enter` (`⌘+Enter` on Mac). ###Code # Run this cell using Ctrl+Enter (⌘+Enter on Mac). from testing import exercise from typing import Tuple import math Complex = Tuple[float, float] Polar = Tuple[float, float] ###Output Success! ###Markdown Algebraic Perspective Imaginary numbersFor some purposes, real numbers aren't enough. Probably the most famous example is this equation:$$x^{2} = -1$$which has no solution for $x$ among real numbers. If, however, we abandon that constraint, we can do something interesting - we can define our own number. Let's say there exists some number that solves that equation. Let's call that number $i$.$$i^{2} = -1$$As we said before, $i$ can't be a real number. In that case, we'll call it an **imaginary unit**. However, there is no reason for us to define it as acting any different from any other number, other than the fact that $i^2 = -1$:$$i + i = 2i \\i - i = 0 \\-1 \cdot i = -i \\(-i)^{2} = -1$$We'll call the number $i$ and its real multiples **imaginary numbers**.> A good video introduction on imaginary numbers can be found [here](https://youtu.be/SP-YJe7Vldo). Exercise 1: Powers of $i$.**Input:** An even integer $n$.**Goal:** Return the $n$th power of $i$, or $i^n$.> Fill in the missing code (denoted by `...`) and run the cell below to test your work. ###Code @exercise def imaginary_power(n : int) -> int: # If n is divisible by 4 if n % 4 == 0: return 1 else: return -1 ###Output Success! ###Markdown *Can't come up with a solution? See the explained solution in the [Complex Arithmetic Workbook](./Workbook_ComplexArithmetic.ipynbExercise-1:-Powers-of-$i$.).* Complex NumbersAdding imaginary numbers to each other is quite simple, but what happens when we add a real number to an imaginary number? The result of that addition will be partly real and partly imaginary, otherwise known as a **complex number**. A complex number is simply the real part and the imaginary part being treated as a single number. Complex numbers are generally written as the sum of their two parts: $a + bi$, where both $a$ and $b$ are real numbers. For example, $3 + 4i$, or $-5 - 7i$ are valid complex numbers. Note that purely real or purely imaginary numbers can also be written as complex numbers: $2$ is $2 + 0i$, and $-3i$ is $0 - 3i$.When performing operations on complex numbers, it is often helpful to treat them as polynomials in terms of $i$. Exercise 2: Complex addition.**Inputs:**1. A complex number $x = a + bi$, represented as a tuple `(a, b)`.2. A complex number $y = c + di$, represented as a tuple `(c, d)`.**Goal:** Return the sum of these two numbers $x + y = z = g + hi$, represented as a tuple `(g, h)`.> A tuple is a pair of numbers.> You can make a tuple by putting two numbers in parentheses like this: `(3, 4)`.> * You can access the $n$th element of tuple `x` like so: `x[n]`> * For this tutorial, complex numbers are represented as tuples where the first element is the real part, and the second element is the real coefficient of the imaginary part> * For example, $1 + 2i$ would be represented by a tuple `(1, 2)`, and $7 - 5i$ would be represented by `(7, -5)`.>> You can find more details about Python's tuple data type in the [official documentation](https://docs.python.org/3/library/stdtypes.htmltuples). Need a hint? Click here Remember, adding complex numbers is just like adding polynomials. Add components of the same type - add the real part to the real part, add the complex part to the complex part. A video explanation can be found here. ###Code @exercise def complex_add(x : Complex, y : Complex) -> Complex: # You can extract elements from a tuple like this a = x[0] b = x[1] c = y[0] d = y[1] # This creates a new variable and stores the real component into it real = a + c # Replace the ... with code to calculate the imaginary component imaginary = b+d # You can create a tuple like this ans = (real, imaginary) return ans ###Output Success! ###Markdown *Can't come up with a solution? See the explained solution in the [Complex Arithmetic Workbook](./Workbook_ComplexArithmetic.ipynbExercise-2:-Complex-addition.).* Exercise 3: Complex multiplication.**Inputs:**1. A complex number $x = a + bi$, represented as a tuple `(a, b)`.2. A complex number $y = c + di$, represented as a tuple `(c, d)`.**Goal:** Return the product of these two numbers $x \cdot y = z = g + hi$, represented as a tuple `(g, h)`. Need a hint? Click here Remember, multiplying complex numbers is just like multiplying polynomials. Distribute one of the complex numbers: $$(a + bi)(c + di) = a(c + di) + bi(c + di)$$Then multiply through, and group the real and imaginary terms together. A video explanation can be found here. ###Code @exercise def complex_mult(x : Complex, y : Complex) -> Complex: # Fill in your own code return (x[0]*y[0] - x[1]*y[1], x[0]*y[1]+x[1]*y[0]) ###Output Success! ###Markdown *Can't come up with a solution? See the explained solution in the [Complex Arithmetic Workbook](./Workbook_ComplexArithmetic.ipynbExercise-3:-Complex-multiplication.).* Complex ConjugateBefore we discuss any other complex operations, we have to cover the **complex conjugate**. The conjugate is a simple operation: given a complex number $x = a + bi$, its complex conjugate is $\overline{x} = a - bi$.The conjugate allows us to do some interesting things. The first and probably most important is multiplying a complex number by its conjugate:$$x \cdot \overline{x} = (a + bi)(a - bi)$$Notice that the second expression is a difference of squares:$$(a + bi)(a - bi) = a^2 - (bi)^2 = a^2 - b^2i^2 = a^2 + b^2$$This means that a complex number multiplied by its conjugate always produces a non-negative real number.Another property of the conjugate is that it distributes over both complex addition and complex multiplication:$$\overline{x + y} = \overline{x} + \overline{y} \\\overline{x \cdot y} = \overline{x} \cdot \overline{y}$$ Exercise 4: Complex conjugate.**Input:** A complex number $x = a + bi$, represented as a tuple `(a, b)`.**Goal:** Return $\overline{x} = g + hi$, the complex conjugate of $x$, represented as a tuple `(g, h)`. Need a hint? Click here A video expanation can be found here. ###Code @exercise def conjugate(x : Complex) -> Complex: return (x[0], -x[1]) ###Output Success! ###Markdown *Can't come up with a solution? See the explained solution in the [Complex Arithmetic Workbook](./Workbook_ComplexArithmetic.ipynbExercise-4:-Complex-conjugate.).* Complex DivisionThe next use for the conjugate is complex division. Let's take two complex numbers: $x = a + bi$ and $y = c + di \neq 0$ (not even complex numbers let you divide by $0$). What does $\frac{x}{y}$ mean?Let's expand $x$ and $y$ into their component forms:$$\frac{x}{y} = \frac{a + bi}{c + di}$$Unfortunately, it isn't very clear what it means to divide by a complex number. We need some way to move either all real parts or all imaginary parts into the numerator. And thanks to the conjugate, we can do just that. Using the fact that any number (except $0$) divided by itself equals $1$, and any number multiplied by $1$ equals itself, we get:$$\frac{x}{y} = \frac{x}{y} \cdot 1 = \frac{x}{y} \cdot \frac{\overline{y}}{\overline{y}} = \frac{x\overline{y}}{y\overline{y}} = \frac{(a + bi)(c - di)}{(c + di)(c - di)} = \frac{(a + bi)(c - di)}{c^2 + d^2}$$By doing this, we re-wrote our division problem to have a complex multiplication expression in the numerator, and a real number in the denominator. We already know how to multiply complex numbers, and dividing a complex number by a real number is as simple as dividing both parts of the complex number separately:$$\frac{a + bi}{r} = \frac{a}{r} + \frac{b}{r}i$$ Exercise 5: Complex division.**Inputs:**1. A complex number $x = a + bi$, represented as a tuple `(a, b)`.2. A complex number $y = c + di \neq 0$, represented as a tuple `(c, d)`.**Goal:** Return the result of the division $\frac{x}{y} = \frac{a + bi}{c + di} = g + hi$, represented as a tuple `(g, h)`. Need a hint? Click here A video explanation can be found here. ###Code @exercise def complex_div(x : Complex, y : Complex) -> Complex: numer = complex_mult(x, (y[0], -y[1])) denom = (y[0]**2 + y[1]**2) return (numer[0]/denom, numer[1]/denom) ###Output Success! ###Markdown *Can't come up with a solution? See the explained solution in the [Complex Arithmetic Workbook](./Workbook_ComplexArithmetic.ipynbExercise-5:-Complex-division.).* Geometric Perspective The Complex PlaneYou may recall that real numbers can be represented geometrically using the [number line](https://en.wikipedia.org/wiki/Number_line) - a line on which each point represents a real number. We can extend this representation to include imaginary and complex numbers, which gives rise to an entirely different number line: the imaginary number line, which only intersects with the real number line at $0$.A complex number has two components - a real component and an imaginary component. As you no doubt noticed from the exercises, these can be represented by two real numbers - the real component, and the real coefficient of the imaginary component. This allows us to map complex numbers onto a two-dimensional plane - the **complex plane**. The most common mapping is the obvious one: $a + bi$ can be represented by the point $(a, b)$ in the **Cartesian coordinate system**.![Complex Plane Explanation](img/complex_plane.png)This mapping allows us to apply complex arithmetic to geometry, and, more importantly, apply geometric concepts to complex numbers. Many properties of complex numbers become easier to understand when viewed through a geometric lens. ModulusOne such property is the **modulus** operator. This operator generalizes the **absolute value** operator on real numbers to the complex plane. Just like the absolute value of a number is its distance from $0$, the modulus of a complex number is its distance from $0 + 0i$. Using the distance formula, if $x = a + bi$, then:$$|x| = \sqrt{a^2 + b^2}$$There is also a slightly different, but algebraically equivalent definition:$$|x| = \sqrt{x \cdot \overline{x}}$$Like the conjugate, the modulus distributes over multiplication.$$|x \cdot y| = |x| \cdot |y|$$Unlike the conjugate, however, the modulus doesn't distribute over addition. Instead, the interaction of the two comes from the triangle inequality:$$|x + y| \leq |x| + |y|$$ Exercise 6: Modulus.**Input:** A complex number $x = a + bi$, represented as a tuple `(a, b)`.**Goal:** Return the modulus of this number, $|x|$.> Python's exponentiation operator is `**`, so $2^3$ is `2 ** 3` in Python.>> You will probably need some mathematical functions to solve the next few tasks. They are available in Python's math library. You can find the full list and detailed information in the [official documentation](https://docs.python.org/3/library/math.html). Need a hint? Click here In particular, you might be interested in Python's square root function. A video explanation can be found here. ###Code @exercise def modulus(x : Complex) -> float: return (x[0]**2 + x[1]**2)**0.5 ###Output Success! ###Markdown *Can't come up with a solution? See the explained solution in the [Complex Arithmetic Workbook](./Workbook_ComplexArithmetic.ipynbExercise-6:-Modulus.).* Imaginary ExponentsThe next complex operation we're going to need is exponentiation. Raising an imaginary number to an integer power is a fairly simple task, but raising a number to an imaginary power, or raising an imaginary (or complex) number to a real power isn't quite as simple.Let's start with raising real numbers to imaginary powers. Specifically, let's start with a rather special real number - Euler's constant, $e$:$$e^{i\theta} = \cos \theta + i\sin \theta$$(Here and later in this tutorial $\theta$ is measured in radians.)Explaining why that happens is somewhat beyond the scope of this tutorial, as it requires some calculus, so we won't do that here. If you are curious, you can see [this video](https://youtu.be/v0YEaeIClKY) for a beautiful intuitive explanation, or [the Wikipedia article](https://en.wikipedia.org/wiki/Euler%27s_formulaProofs) for a more mathematically rigorous proof.Here are some examples of this formula in action:$$e^{i\pi/4} = \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \\e^{i\pi/2} = i \\e^{i\pi} = -1 \\e^{2i\pi} = 1$$> One interesting consequence of this is Euler's Identity:>> $$e^{i\pi} + 1 = 0$$>> While this doesn't have any notable uses, it is still an interesting identity to consider, as it combines 5 fundamental constants of algebra into one expression.We can also calculate complex powers of $e$ as follows:$$e^{a + bi} = e^a \cdot e^{bi}$$Finally, using logarithms to express the base of the exponent as $r = e^{\ln r}$, we can use this to find complex powers of any positive real number. Exercise 7: Complex exponents.**Input:** A complex number $x = a + bi$, represented as a tuple `(a, b)`.**Goal:** Return the complex number $e^x = e^{a + bi} = g + hi$, represented as a tuple `(g, h)`.> Euler's constant $e$ is available in the [math library](https://docs.python.org/3/library/math.htmlmath.e),> as are [Python's trigonometric functions](https://docs.python.org/3/library/math.htmltrigonometric-functions). ###Code @exercise def complex_exp(x : Complex) -> Complex: n = math.e**(x[0]) return (n*math.cos(x[1]), n*math.sin(x[1])) ###Output Success! ###Markdown *Can't come up with a solution? See the explained solution in the [Complex Arithmetic Workbook](./Workbook_ComplexArithmetic.ipynbExercise-7:-Complex-exponents.).* Exercise 8*: Complex powers of real numbers.**Inputs:**1. A non-negative real number $r$.2. A complex number $x = a + bi$, represented as a tuple `(a, b)`.**Goal:** Return the complex number $r^x = r^{a + bi} = g + hi$, represented as a tuple `(g, h)`.> Remember, you can use functions you have defined previously Need a hint? Click here You can use the fact that $r = e^{\ln r}$ to convert exponent bases. Remember though, $\ln r$ is only defined for positive numbers - make sure to check for $r = 0$ separately! ###Code @exercise def complex_exp_real(r : float, x : Complex) -> Complex: if r == 0: return (0, 0) import numpy as np n = r**x[0] return (n*np.cos(x[1]*np.log(r)), n*np.sin(x[1]*np.log(r))) ###Output Success! ###Markdown Can't come up with a solution? See the explained solution in the [Complex Arithmetic Workbook](./Workbook_ComplexArithmetic.ipynbExercise-8*:-Complex-powers-of-real-numbers.). Polar coordinatesConsider the expression $e^{i\theta} = \cos\theta + i\sin\theta$. Notice that if we map this number onto the complex plane, it will land on a **unit circle** arount $0 + 0i$. This means that its modulus is always $1$. You can also verify this algebraically: $\cos^2\theta + \sin^2\theta = 1$.Using this fact we can represent complex numbers using **polar coordinates**. In a polar coordinate system, a point is represented by two numbers: its direction from origin, represented by an angle from the $x$ axis, and how far away it is in that direction.Another way to think about this is that we're taking a point that is $1$ unit away (which is on the unit circle) in the specified direction, and multiplying it by the desired distance. And to get the point on the unit circle, we can use $e^{i\theta}$.A complex number of the format $r \cdot e^{i\theta}$ will be represented by a point which is $r$ units away from the origin, in the direction specified by the angle $\theta$.![Polar Coordinates Visual Explanation](img/complex_polar.png)Sometimes $\theta$ will be referred to as the number's **phase**. Exercise 9: Cartesian to polar conversion.**Input:** A complex number $x = a + bi$, represented as a tuple `(a, b)`.**Goal:** Return the polar representation of $x = re^{i\theta}$, i.e., the distance from origin $r$ and phase $\theta$ as a tuple `(r, θ)`.* $r$ should be non-negative: $r \geq 0$* $\theta$ should be between $-\pi$ and $\pi$: $-\pi < \theta \leq \pi$ Need a hint? Click here Python has a separate function for calculating $\theta$ for this purpose. A video explanation can be found here. ###Code @exercise def polar_convert(x : Complex) -> Polar: r = (x[0]**2 + x[1]**2)**0.5 if r == 0: return (0, 0) theta = math.acos(x[0]/r) - 0*math.pi if x[1] < 0: return (r, -theta) return (r, theta) ###Output Success! ###Markdown *Can't come up with a solution? See the explained solution in the [Complex Arithmetic Workbook](./Workbook_ComplexArithmetic.ipynbExercise-9:-Cartesian-to-polar-conversion.).* Exercise 10: Polar to Cartesian conversion.**Input:** A complex number $x = re^{i\theta}$, represented in polar form as a tuple `(r, θ)`.**Goal:** Return the Cartesian representation of $x = a + bi$, represented as a tuple `(a, b)`. ###Code @exercise def cartesian_convert(x : Polar) -> Complex: return (x[0]*math.cos(x[1]), x[0]*math.sin(x[1])) ###Output Success! ###Markdown *Can't come up with a solution? See the explained solution in the [Complex Arithmetic Workbook](./Workbook_ComplexArithmetic.ipynbExercise-10:-Polar-to-Cartesian-conversion.).* Exercise 11: Polar multiplication.**Inputs:**1. A complex number $x = r_{1}e^{i\theta_1}$ represented in polar form as a tuple `(r1, θ1)`.2. A complex number $y = r_{2}e^{i\theta_2}$ represented in polar form as a tuple `(r2, θ2)`.**Goal:** Return the result of the multiplication $x \cdot y = z = r_3e^{i\theta_3}$, represented in polar form as a tuple `(r3, θ3)`.* $r_3$ should be non-negative: $r_3 \geq 0$* $\theta_3$ should be between $-\pi$ and $\pi$: $-\pi < \theta_3 \leq \pi$* Try to avoid converting the numbers into Cartesian form. Need a hint? Click here Remember, a number written in polar form already involves multiplication. What is $r_1e^{i\theta_1} \cdot r_2e^{i\theta_2}$? Need another hint? Click here Is your θ not coming out correctly? Remember you might have to check your boundaries and adjust it to be in the range requested. ###Code @exercise def polar_mult(x : Polar, y : Polar) -> Polar: if x[1]+y[1] > math.pi: return (x[0]*y[0], -2*math.pi + x[1]+y[1]) if x[1]+y[1] < -math.pi: return (x[0]*y[0], 2*math.pi + x[1]+y[1]) else: return (x[0]*y[0], x[1]+y[1]) ###Output Success! ###Markdown *Can't come up with a solution? See the explained solution in the [Complex Arithmetic Workbook](./Workbook_ComplexArithmetic.ipynbExercise-11:-Polar-multiplication.).* Exercise 12**: Arbitrary complex exponents.You now know enough about complex numbers to figure out how to raise a complex number to a complex power.**Inputs:**1. A complex number $x = a + bi$, represented as a tuple `(a, b)`.2. A complex number $y = c + di$, represented as a tuple `(c, d)`.**Goal:** Return the result of raising $x$ to the power of $y$: $x^y = (a + bi)^{c + di} = z = g + hi$, represented as a tuple `(g, h)`. Need a hint? Click here Convert $x$ to polar form, and raise the result to the power of $y$. ###Code @exercise def complex_exp_arbitrary(x : Complex, y : Complex) -> Complex: (a, b) = x (c, d) = y # Convert x to polar form r = math.sqrt(a ** 2 + b ** 2) theta = math.atan2(b, a) # Special case for r = 0 if (r == 0): return (0, 0) lnr = math.log(r) exponent = math.exp(lnr * c - d * theta) real = exponent * (math.cos(lnr * d + theta * c )) imaginary = exponent * (math.sin(lnr * d + theta * c)) return (real, imaginary) ###Output _____no_output_____
Number-Plate-Detection.ipynb
###Markdown Numberplate Detection using OPenCV- Project as a Part of Learning OpenCV and is used to Develop Further- Anyone can contribute to this project and use this project as well Install the Dependencies ###Code !pip install easyocr !pip install imutils import cv2 from matplotlib import pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown Reading in Image, Grayscale and Blur ###Code img = cv2.imread('image4.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) plt.imshow(cv2.cvtColor(gray, cv2.COLOR_BGR2RGB)) plt.show() ###Output _____no_output_____ ###Markdown Applying filter and find edges for localization - Maximum the number plates are written in white FLAT surfaces in the car. Sp, Making Greyscale and identifying the edges is very helpful to recognise the text in NumberPlate. ###Code bfilter = cv2.bilateralFilter(gray, 11, 17, 17) #Noise reduction edged = cv2.Canny(bfilter, 30, 200) #Edge detection plt.imshow(cv2.cvtColor(edged, cv2.COLOR_BGR2RGB)) plt.show() ###Output _____no_output_____ ###Markdown Finding Contours and Apply Mask ###Code import imutils keypoints = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contours = imutils.grab_contours(keypoints) contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10] location = None for contour in contours: approx = cv2.approxPolyDP(contour, 10, True) if len(approx) == 4: location = approx break location mask = np.zeros(gray.shape, np.uint8) new_image = cv2.drawContours(mask, [location], 0,255, -1) new_image = cv2.bitwise_and(img, img, mask=mask) plt.imshow(cv2.cvtColor(new_image, cv2.COLOR_BGR2RGB)) (x,y) = np.where(mask==255) (x1, y1) = (np.min(x), np.min(y)) (x2, y2) = (np.max(x), np.max(y)) cropped_image = gray[x1:x2+1, y1:y2+1] plt.imshow(cv2.cvtColor(cropped_image, cv2.COLOR_BGR2RGB)) plt.show() ###Output _____no_output_____ ###Markdown Using Easy OCR To Read Text ###Code import easyocr reader = easyocr.Reader(['en']) result = reader.readtext(cropped_image) result ###Output _____no_output_____ ###Markdown Rendering the Result ###Code text = result[0][-2] font = cv2.FONT_HERSHEY_SIMPLEX res = cv2.putText(img, text=text, org=(approx[0][0][0], approx[1][0][1]+60), fontFace=font, fontScale=1, color=(0,255,0), thickness=2, lineType=cv2.LINE_AA) res = cv2.rectangle(img, tuple(approx[0][0]), tuple(approx[2][0]), (0,255,0),3) plt.imshow(cv2.cvtColor(res, cv2.COLOR_BGR2RGB)) plt.show() ###Output _____no_output_____
scraping/daumNews_scrap_baseline.ipynb
###Markdown Import Package ###Code import csv from socket import MSG_MCAST from urllib.parse import quote, quote_plus import requests from bs4 import BeautifulSoup import pandas as pd import re ###Output _____no_output_____ ###Markdown 날짜 지정 ###Code strDate = '20200901' # 시작 날짜 endDate = '20200930' # 종료 날짜 ###Output _____no_output_____ ###Markdown CSV 저장 ###Code filename = f"daum_news_{strDate}-{endDate}.csv" f = open(filename, "w", encoding="utf-8-sig", newline="") writer = csv.writer(f) ###Output _____no_output_____ ###Markdown 유저 에이전트 지정 > [WhatismyUserAgent(ctrl+🖱 후 확인)](https://www.whatismybrowser.com/detect/what-is-my-user-agent) ###Code headers = {"User-Agent" : "개인 유저 에이전트"} ###Output _____no_output_____ ###Markdown 반복문에 들어갈 날짜 지정 ###Code dt_index = pd.date_range(start=strDate, end=endDate) dt_list = dt_index.strftime("%Y%m%d").tolist() ###Output _____no_output_____ ###Markdown 스크래핑 시작 ###Code for i in dt_list: print('날짜',i) page_url = f"https://news.daum.net/breakingnews/?page=10000&regDate={i}" page =requests.get(page_url, headers=headers) page_soup = BeautifulSoup(page.text, "lxml") last_page = page_soup.find("em", attrs="num_page").get_text() lastPage_num = re.sub(r'[^0-9]','',last_page) # print(lastPage_num) for j in range(1, int(lastPage_num)+1): main_url = f"https://news.daum.net/breakingnews/?page={j}&regDate={i}" # url 입력 res = requests.get(main_url, headers=headers) if res.status_code == 200: print(i, int(lastPage_num), '중' ,j,'page',round(j/int(lastPage_num)*100, 2),'%', main_url, 'status:',res.status_code) soup = BeautifulSoup(res.text, "lxml") # soup으로 저장 main = soup.find("ul", attrs={"class":"list_news2 list_allnews"}) news = main.find_all("strong", attrs={"class":"tit_thumb"}) cnt = 0 for new in news: urls = new.select_one("a")["href"]# 페이지에 나와있는 뉴스 URL 변수 입력 # print(urls) result = requests.get(urls, headers=headers) # request 로 다시 개별 뉴스 접속 if result.status_code == 200: news_soup = BeautifulSoup(result.text, "lxml") # 뉴스 제목, 발행시간, 기사본문 저장 title = news_soup.find("h3", attrs={"tit_view"}).get_text().strip() pubdate = news_soup.find("span", attrs={"num_date"}).get_text().strip() text = news_soup.find("div", attrs={"news_view"}).get_text().strip() cnt += 1 # print(j,'of',cnt,'번째 기사') # print(i,j,'of',cnt,'번째 기사', urls,'status:', result.status_code) writer.writerow([cnt, title, pubdate, urls, text]) else: print(i,j,'of',cnt,'번째 기사','error_code :',result.status_code, urls) pass else: print(i,'page : ',j,'error_code :',res.status_code, main_url) pass ###Output _____no_output_____
notebooks/dominate_builder.ipynb
###Markdown Resources for building my website.- [w3scools](https://www.w3schools.com/)- [w3schools on Bootstrap 4](https://www.w3schools.com/bootstrap4/default.asp)- [dominate docs](https://github.com/Knio/dominate/)- [draperjames.github.io](https://draperjames.github.io/)- [github projects through the API](https://api.github.com/users/draperjames/repos?per_page=100)- [nbviewer rendering of this page from the live github repo](http://nbviewer.jupyter.org/github/draperjames/draperjames.github.io/blob/master/dominate_builder.ipynb) ###Code from dominate import tags # Set the title of the site. title = tags.title("James Draper : Computational Biologist") # Generate the metadata. meta_data = [title] meta_data += [tags.meta(charset="utf-8")] meta_data += [tags.meta(name="viewport", content="width=device-width, initial-scale=1")] # Bootstrap CSS CDN css = [tags.link(rel="stylesheet", href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css")] # JQuery CDN js = [tags.script(src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js")] # Pooper CDN js = [tags.script(src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.12.9/umd/popper.min.js")] # BootStrapJS CDN js += [tags.script(src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/js/bootstrap.min.js")] extenal_code = css + js # Build the HTML head head = tags.head(meta_data+extenal_code) # Create a jumbtron wrapper function # FIXME: Remove this for readibility @tags.div(cls='jumbotron text-center') def jumbotron_center(title=None, subtitle=None, **kwargs): tags.h1('{}'.format(title)) if subtitle is not None: tags.p(subtitle) projects = dict() projects["guipyter"] = "https://draperjames.github.io/guipyter/" projects["pandomics"] = "https://draperjames.github.io/pandomics/" projects["notebook for build this page"] = "http://nbviewer.jupyter.org/github/draperjames/draperjames.github.io/blob/master/dominate_builder.ipynb" lnk_list = [] for k,v in projects.items(): lnk = tags.a(k, href=v) lnk_list += [lnk, tags.br()] # Container content added. container = tags.div(tags.h3("My OSS Projects"), tags.p(lnk_list), cls="col-sm-4") container = tags.div(container, cls="container") # Build the body. body = [] body += [jumbotron_center(title="James Draper", subtitle="Computational Biologist")] body += [container] body = tags.body(body) # body.render() page = tags.html(head, body) def make_page(file_path=None, page=None): with open(file_path,"w") as f: f.write(page.render()) # Overwrite index.html with the generated page. make_page("index.html", page) ###Output _____no_output_____ ###Markdown --- On going development--- Investigating the github API.- https://developer.github.com/v3/repos/- https://api.github.com/users/draperjames/repos?per_page=100 ###Code import time import json import pandas as pd from urllib import request github_api = "https://api.github.com/users/draperjames/repos?per_page=100" # Request to github API page = request.urlopen(github_api) # Format the JSON content. jpage = json.load(page) # Make into DataFrame for handling and data reduction. jdf = pd.DataFrame(jpage) jdfs = jdf[["name", "pushed_at", "updated_at", "created_at", "size", "fork", "forks_count"]] # Format the dates as datetime objects. dt_format = pd.DataFrame([pd.to_datetime(jdfs.pushed_at), pd.to_datetime(jdfs.updated_at), pd.to_datetime(jdfs.created_at)]).T jdfs = pd.concat([jdfs["name"], dt_format, jdfs.iloc[:, 4:]], axis=1) # Just my repos jdfs.loc[~jdfs.fork] ###Output _____no_output_____ ###Markdown Creating a projects heatmap- [Styling pandas DataFrame](https://pandas.pydata.org/pandas-docs/stable/style.html) ###Code time.mktime(jdfs.pushed_at[0].timetuple()) # Convert all of the pushed_at dates to time pt = jdfs.pushed_at.apply(lambda x: time.mktime(x.timetuple())) # Normalizing to the earliest date. npt = pt - pt.min() list(filter(lambda x:"commit" in x, jdf.columns)) jdf.git_commits_url[10] import guipyter guipyter.notebook_tools.notebook_current_convert("html") ###Output This notebook has been saved. Converted notebook.
code/ch6-aggregating-grouping-merging/1-Aggregating-Grouping-Example.ipynb
###Markdown Examples of aggregating and grouping data ###Code import pandas as pd from pathlib import Path input_file = Path.cwd() / 'data' / 'raw' / 'sample_sales.xlsx' df = pd.read_excel(input_file) df.head() df['price'].agg(['mean', 'std', 'min', 'max']) df.agg(['mean', 'max']) agg_cols = {'quantity': 'sum', 'price': ['mean', 'std'], 'invoice': 'count', 'extended amount': 'sum'} df.agg(agg_cols).fillna(0) df.groupby(['product']).sum() df.groupby(['product'])['quantity'].sum() prod_cols = {'quantity': 'sum'} df.groupby(['product']).agg(prod_cols) prod_cols = {'quantity': ['sum', 'mean', 'std', 'max']} df.groupby(['product']).agg(prod_cols) df.groupby(['company', 'product']).agg(prod_cols).fillna(0) df.groupby(['company', 'product']).agg(prod_cols).reset_index() df.groupby(['company']).agg(invoice_total=('invoice', 'count'), max_purchase=('extended amount', 'max')) df.groupby(['company']).agg({'invoice': 'count', 'extended amount': 'max'}) ###Output _____no_output_____ ###Markdown Pivot table and crosstab ###Code pd.pivot_table(df, index=['company'], columns=['product'], values=['extended amount'], aggfunc='sum', margins=True, fill_value=0) pd.pivot_table(df, index=['company'], columns=['product'], values=['extended amount'], aggfunc=['sum', 'mean', 'max'], margins=True, fill_value=0) pd.pivot_table(df, index=['company', 'product'], values=['extended amount'], aggfunc=['sum'], margins=True, fill_value=0) pd.crosstab(df['company'], df['product']) pd.crosstab(df['company'], df['product'], values=df['extended amount'], aggfunc='sum', normalize='index') ###Output _____no_output_____
HW2/HW2 - 1 .ipynb
###Markdown Name: Yan Sun PID: A53240727 1.The code currently does not perform any train/test splits. Split the data into training, validation, andtest sets, via 1/3, 1/3, 1/3 splits. Use the first third, second third, and last third of the data (respectively).After training on the training set, report the accuracy of the classi er on the validation and test sets (1mark). ###Code import numpy import urllib import scipy.optimize import random from math import exp from math import log def parseData(fname): for l in urllib.urlopen(fname): yield eval(l) print("Reading data...") data = list(parseData("file:beer_50000.json")) print("done") def feature(datum): feat = [1, datum['review/taste'], datum['review/appearance'], \ datum['review/aroma'], datum['review/palate'], \ datum['review/overall']] return feat X = [feature(d) for d in data] y = [d['beer/ABV'] >= 6.5 for d in data] def inner(x,y): return sum([x[i]*y[i] for i in range(len(x))]) def sigmoid(x): return 1.0 / (1 + exp(-x)) length = int(len(data)/3) X_train = X[:length] y_train = y[:length] X_validation = X[length:2*length] y_validation = y[length:2*length] X_test = X[2*length:] y_test = y[2*length:] ################################################## # Logistic regression by gradient ascent # ################################################## # NEGATIVE Log-likelihood def f(theta, X, y, lam): loglikelihood = 0 for i in range(len(X)): logit = inner(X[i], theta) loglikelihood -= log(1 + exp(-logit)) if not y[i]: loglikelihood -= logit for k in range(len(theta)): loglikelihood -= lam * theta[k]*theta[k] # for debugging # print("ll =" + str(loglikelihood)) return -loglikelihood # NEGATIVE Derivative of log-likelihood def fprime(theta, X, y, lam): dl = [0]*len(theta) for i in range(len(X)): logit = inner(X[i], theta) for k in range(len(theta)): dl[k] += X[i][k] * (1 - sigmoid(logit)) if not y[i]: dl[k] -= X[i][k] for k in range(len(theta)): dl[k] -= lam*2*theta[k] return numpy.array([-x for x in dl]) ################################################## # Train # ################################################## def train(lam): theta,_,_ = scipy.optimize.fmin_l_bfgs_b(f, [0]*len(X[0]), \ fprime, pgtol = 10, args = (X_train, y_train, lam)) return theta X_data = [X_train, X_validation, X_test] y_data = [y_train, y_validation, y_test] symbol = ['train', 'valid', 'test'] print 'λ\tDataset\t\tTruePositive\tFalsePositive\tTrueNegative\tFalseNegative\tAccuracy\tBER' lam = 1.0 theta = train(lam) #print theta for i in range(3): def TP(theta): scores = [inner(theta,x) for x in X_data[i]] predictions = [s > 0 for s in scores] correct = [((a==1) and (b==1)) for (a,b) in zip(predictions,y_data[i])] tp = sum(correct) * 1.0 return tp def TN(theta): scores = [inner(theta,x) for x in X_data[i]] predictions = [s > 0 for s in scores] correct = [((a==0) and (b==0)) for (a,b) in zip(predictions,y_data[i])] tn = sum(correct) * 1.0 return tn def FP(theta): scores = [inner(theta,x) for x in X_data[i]] predictions = [s > 0 for s in scores] correct = [((a==1) and (b==0)) for (a,b) in zip(predictions,y_data[i])] fp = sum(correct) * 1.0 return fp def FN(theta): scores = [inner(theta,x) for x in X_data[i]] predictions = [s > 0 for s in scores] correct = [((a==0) and (b==1)) for (a,b) in zip(predictions,y_data[i])] fn = sum(correct) * 1.0 return fn if i == 1 or i == 2 : tp = TP(theta) fp = FP(theta) tn = TN(theta) fn = FN(theta) TPR = tp / (tp + fn) TNR = tn / (tn + fp) BER = 1 - 0.5 * (TPR + TNR) accuracy = (tp+tn)/(tp+tn+fp+fn) print str(lam)+'\t'+symbol[i]+'\t\t'+str(tp)+'\t\t'+str(fp)+'\t\t'+str(tn)+'\t\t'+\ str(fn)+'\t\t'+str(accuracy)+'\t'+str(BER) # X_data, y_data can be changed to train, validation or test data def TP(theta): scores = [inner(theta,x) for x in X_data[i]] predictions = [s > 0 for s in scores] correct = [((a==1) and (b==1)) for (a,b) in zip(predictions,y_data[i])] tp = sum(correct) * 1.0 return tp def TN(theta): scores = [inner(theta,x) for x in X_data[i]] predictions = [s > 0 for s in scores] correct = [((a==0) and (b==0)) for (a,b) in zip(predictions,y_data[i])] tn = sum(correct) * 1.0 return tn def FP(theta): scores = [inner(theta,x) for x in X_data[i]] predictions = [s > 0 for s in scores] correct = [((a==1) and (b==0)) for (a,b) in zip(predictions,y_data[i])] fp = sum(correct) * 1.0 return fp def FN(theta): scores = [inner(theta,x) for x in X_data[i]] predictions = [s > 0 for s in scores] correct = [((a==0) and (b==1)) for (a,b) in zip(predictions,y_data[i])] fn = sum(correct) * 1.0 return fn tp = TP(theta) fp = FP(theta) tn = TN(theta) fn = FN(theta) TPR = tp / (tp + fn) TNR = tn / (tn + fp) BER = 1 - 0.5 * (TPR + TNR) accuracy = (tp+tn)/(tp+tn+fp+fn) ###Output _____no_output_____
BO_trials/BO_log_scale.ipynb
###Markdown Bayesian Optimisation Verification ###Code import numpy as np import pandas as pd from matplotlib import pyplot as plt from matplotlib.colors import LogNorm from scipy.interpolate import interp1d from scipy import interpolate from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF, WhiteKernel from scipy import stats from scipy.stats import norm from sklearn.metrics.pairwise import euclidean_distances from scipy.spatial.distance import cdist from scipy.optimize import fsolve import math def warn(*args, **kwargs): pass import warnings warnings.warn = warn ###Output _____no_output_____ ###Markdown Trial on TiOx/SiOxTempeature vs. S10_HF ###Code #import normal data sheet at 85 C (time:0~5000s) address = 'data/degradation.xlsx' x_normal = [] y_normal = [] df = pd.read_excel(address,sheet_name = 'normal data',usecols = [0],names = None,nrows = 5000) df_85 = df.values.tolist() df = pd.read_excel(address,sheet_name = 'normal data',usecols = [3],names = None,nrows = 5000) df_85L = df.values.tolist() #import smooth data sheet at 85 C (time:0~5000s) address = 'data/degradation.xlsx' df = pd.read_excel(address,sheet_name = 'smooth data',usecols = [0],names = None,nrows = 5000) df_85s = df.values.tolist() df = pd.read_excel(address,sheet_name = 'smooth data',usecols = [3],names = None,nrows = 5000) df_85Ls = df.values.tolist() #import normal data sheet at 120 C (time:0~5000s) address = 'data/degradation.xlsx' x_normal = [] y_normal = [] df = pd.read_excel(address,sheet_name = 'normal data',usecols = [0],names = None,nrows = 5000) df_120 = df.values.tolist() df = pd.read_excel(address,sheet_name = 'normal data',usecols = [3],names = None,nrows = 5000) df_120L = df.values.tolist() #import smooth data sheet at 120 C (time:0~5000s) address = 'data/degradation.xlsx' df = pd.read_excel(address,sheet_name = 'smooth data',usecols = [0],names = None,nrows = 5000) df_120s = df.values.tolist() df = pd.read_excel(address,sheet_name = 'smooth data',usecols = [3],names = None,nrows = 5000) df_120Ls = df.values.tolist() # randomly select 7 points from normal data x_normal = np.array(df_120).T y_normal = np.array(df_li_L).T x_normal = x_normal.reshape((5000)) y_normal = y_normal.reshape((5000)) def plot (X,X_,y_mean,y,y_cov,gp,kernel): #plot function plt.figure() plt.plot(X_, y_mean, 'k', lw=3, zorder=9) plt.fill_between(X_, y_mean - np.sqrt(np.diag(y_cov)),y_mean + np.sqrt(np.diag(y_cov)),alpha=0.5, color='k') plt.scatter(X[:, 0], y, c='r', s=50, zorder=10, edgecolors=(0, 0, 0)) plt.tick_params(axis='y', colors = 'white') plt.tick_params(axis='x', colors = 'white') plt.ylabel('Lifetime',color = 'white') plt.xlabel('Time',color = 'white') plt.tight_layout() # Preparing training set # For log scaled plot x_loop = np.array([1,10,32,100,316,1000,3162]) X = x_normal[x_loop].reshape(x_loop.size) y = y_normal[x_loop] X = X.reshape(x_loop.size,1) X = np.log10(X) MAX_x_value = np.log10(5000) X_ = np.linspace(0,MAX_x_value, 5000) # Kernel setting length_scale_bounds_MAX = 0.5 length_scale_bounds_MIN = 1e-4 for length_scale_bounds_MAX in (0.3,0.5,0.7): kernel = 1.0 * RBF(length_scale=20,length_scale_bounds=(length_scale_bounds_MIN, length_scale_bounds_MAX)) + WhiteKernel(noise_level=0.00000001) gp = GaussianProcessRegressor(kernel=kernel,alpha=0.0).fit(X, y) y_mean, y_cov = gp.predict(X_[:, np.newaxis], return_cov=True) plot (X,X_,y_mean,y,y_cov,gp,kernel) # Find the minimum value in the bound # 5000 * 5000 # Find minimum value in the last row as the minimum value for the bound def ucb(X , gp, dim, delta): """ Calculates the GP-UCB acquisition function values Inputs: gp: The Gaussian process, also contains all data x:The point at which to evaluate the acquisition function Output: acq_value: The value of the aquisition function at point x """ mean, var = gp.predict(X[:, np.newaxis], return_cov=True) #var.flags['WRITEABLE']=True #var[var<1e-10]=0 mean = np.atleast_2d(mean).T var = np.atleast_2d(var).T beta = 2*np.log(np.power(5000,2.1)*np.square(math.pi)/(3*delta)) return mean - np.sqrt(beta)* np.sqrt(np.diag(var)) acp_value = ucb(X_, gp, 0.1, 5) X_min = np.argmin(acp_value[-1]) print(acp_value[-1,X_min]) print(np.argmin(acp_value[-1])) print(min(acp_value[-1])) # Preparing training set x_loop = np.array([1,10,32,100,316,1000,3162]) X = x_normal[x_loop].reshape(x_loop.size) y = y_normal[x_loop] X = X.reshape(x_loop.size,1) X = np.log10(X) MAX_x_value = np.log10(5000) X_ = np.linspace(0,MAX_x_value, 5000) # Kernel setting length_scale_bounds_MAX = 0.4 length_scale_bounds_MIN = 1e-4 kernel = 1.0 * RBF(length_scale=20,length_scale_bounds=(length_scale_bounds_MIN, length_scale_bounds_MAX)) + WhiteKernel(noise_level=0.0001) gp = GaussianProcessRegressor(kernel=kernel,alpha=0.0).fit(X, y) y_mean, y_cov = gp.predict(X_[:, np.newaxis], return_cov=True) acp_value = ucb(X_, gp, 0.1, 5) ucb_y_min = acp_value[-1] print (min(ucb_y_min)) X_min = np.argmin(acp_value[-1]) print(acp_value[-1,X_min]) print(np.argmin(acp_value[-1])) print(min(acp_value[-1])) plt.figure() plt.plot(X_, y_mean, 'k', lw=3, zorder=9) plt.plot(X_, ucb_y_min, 'x', lw=3, zorder=9) # plt.fill_between(X_, y_mean, ucb_y_min,alpha=0.5, color='k') plt.scatter(X[:, 0], y, c='r', s=50, zorder=10, edgecolors=(0, 0, 0)) plt.tick_params(axis='y', colors = 'white') plt.tick_params(axis='x', colors = 'white') plt.ylabel('Lifetime',color = 'white') plt.xlabel('Time',color = 'white') plt.tight_layout() acp_value = ucb(X_, gp, 0.1, 5) X_min = np.argmin(acp_value[-1]) print(acp_value[-1,X_min]) print(np.argmin(acp_value[-1])) print(min(acp_value[-1])) # Iterate i times with mins value point of each ucb bound # Initiate with 7 data points, apply log transformation to them x_loop = np.array([1,10,32,100,316,1000,3162]) X = x_normal[x_loop].reshape(x_loop.size) Y = y_normal[x_loop] X = X.reshape(x_loop.size,1) X = np.log10(X) MAX_x_value = np.log10(5000) X_ = np.linspace(0,MAX_x_value, 5000) # Kernel setting length_scale_bounds_MAX = 0.5 length_scale_bounds_MIN = 1e-4 kernel = 1.0 * RBF(length_scale=20,length_scale_bounds=(length_scale_bounds_MIN, length_scale_bounds_MAX)) + WhiteKernel(noise_level=0.0001) gp = GaussianProcessRegressor(kernel=kernel,alpha=0.0).fit(X, Y) y_mean, y_cov = gp.predict(X_[:, np.newaxis], return_cov=True) acp_value = ucb(X_, gp, 0.1, 5) ucb_y_min = acp_value[-1] plt.figure() plt.plot(X_, y_mean, 'k', lw=3, zorder=9) plt.fill_between(X_, y_mean, ucb_y_min,alpha=0.5, color='k') plt.scatter(X[:, 0], Y, c='r', s=50, zorder=10, edgecolors=(0, 0, 0)) plt.tick_params(axis='y', colors = 'white') plt.tick_params(axis='x', colors = 'white') plt.ylabel('Lifetime',color = 'white') plt.xlabel('Time',color = 'white') plt.tight_layout() # Change i to set extra data points i=0 while i < 5 : acp_value = ucb(X_, gp, 0.1, 5) ucb_y_min = acp_value[-1] index = np.argmin(acp_value[-1]) print(acp_value[-1,X_min]) print(min(acp_value[-1])) # Protection to stop equal x value while index in x_loop: index = index - 50 x_loop = np.append(x_loop, index) x_loop = np.sort(x_loop) print (x_loop) X = x_normal[x_loop].reshape(x_loop.size) Y = y_normal[x_loop] X = X.reshape(x_loop.size,1) X = np.log10(X) gp = GaussianProcessRegressor(kernel=kernel,alpha=0.0).fit(X, Y) plt.plot(X_, y_mean, 'k', lw=3, zorder=9) plt.fill_between(X_, y_mean, ucb_y_min,alpha=0.5, color='k') plt.scatter(X[:, 0], Y, c='r', s=50, zorder=10, edgecolors=(0, 0, 0)) plt.tick_params(axis='y', colors = 'white') plt.tick_params(axis='x', colors = 'white') plt.ylabel('Lifetime',color = 'white') plt.xlabel('Time',color = 'white') plt.title('cycle %d'%(i), color = 'white') plt.tight_layout() plt.show() i+=1 print('X:', X, '\nY:', Y) s = interpolate.InterpolatedUnivariateSpline(x_loop,Y) x_uni = np.arange(0,5000,1) y_uni = s(x_uni) # Plot figure plt.plot(df_120s,df_120Ls,'-',color = 'gray') plt.plot(x_uni,y_uni,'-',color = 'red') plt.plot(x_loop, Y,'x',color = 'black') plt.tick_params(axis='y', colors = 'white') plt.tick_params(axis='x', colors = 'white') plt.ylabel('Lifetime',color = 'white') plt.xlabel('Time',color = 'white') plt.title('cycle %d'%(i+1), color = 'white') plt.show() ###Output -1.0178925921332458 -1.0178925921332458 [ 1 10 32 100 316 618 1000 3162]
Pre-processamento.ipynb
###Markdown Pré-processamento de texto e divisão de dados de treino e teste Imports ###Code import pandas as pd import numpy as np from sklearn.naive_bayes import MultinomialNB from matplotlib import pyplot as plt from sklearn.preprocessing import LabelEncoder, MinMaxScaler from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import f1_score from sklearn.pipeline import make_pipeline from sklearn import metrics from sklearn.model_selection import train_test_split, StratifiedKFold, GridSearchCV from sklearn.linear_model import LogisticRegression ###Output _____no_output_____ ###Markdown Imports pré-processamento ###Code import re import nltk import matplotlib.pyplot as plt from nltk.stem import SnowballStemmer nltk.download('stopwords') from sklearn import preprocessing, decomposition, model_selection, metrics, pipeline from sklearn.cluster import KMeans from sklearn.feature_extraction.text import TfidfVectorizer from nltk.corpus import stopwords ###Output [nltk_data] Downloading package stopwords to [nltk_data] C:\Users\Felipe\AppData\Roaming\nltk_data... [nltk_data] Package stopwords is already up-to-date! ###Markdown Carregando os dados ###Code df = pd.read_csv('./data/imdb-reviews-pt-br.csv') ###Output _____no_output_____ ###Markdown Manipulação dos dados ###Code del df['id'] del df['text_en'] df_transformed = df.copy() df_transformed.sentiment = df_transformed['sentiment'].map({'pos': 1, 'neg': 0}) def corrigir_nomes(nome): nome = nome.replace(r'[,;&!?/.:]', ' ').replace('(\\d|\\W)+|\w*\d\w*', ' ').replace(';', ' ').replace(':', ' ').replace(',', ' ').replace('"', ' ').replace('ç', 'c').replace('é', 'e').replace('ç', 'c').replace('ã', 'a').replace('ê', 'e').replace('í', 'i').replace('á', 'a').replace('ó', 'o').replace('ú', 'u').replace('â', 'a').replace('ô', 'o').replace(' o ', ' ').replace(' a ', ' ').replace(' os ', ' ').replace(' as ', ' ').replace(' um ', ' ').replace(' uma ', ' ').replace(' uns ', ' ').replace(' umas ', ' ').replace(' ao ', ' ').replace(' aos ', ' ').replace(' à ', ' ').replace(' às ', ' ').replace(' da ', ' ').replace(' das ', ' ').replace(' do ', ' ').replace(' dos ', ' ').replace(' na ', ' ').replace(' nas ', ' ').replace(' no ', ' ').replace(' num ', ' ').replace(' numas ', ' ') return nome df_transformed['text_pt'] = df_transformed['text_pt'].apply(corrigir_nomes) df_transformed['text_pt'] = df_transformed['text_pt'].dropna() df_transformed['text_pt'] = df_transformed['text_pt'].str.lower() e_words = df_transformed['text_pt'] sbs = SnowballStemmer("portuguese") for w in e_words: rootWord = sbs.stem(w) df_transformed['text_pt_without_stemming'] = df_transformed['text_pt'].apply(lambda x: ' '.join([word for word in x.split() if word not in (rootWord)])) df_transformed.head() stop_words = set(stopwords.words("portuguese")) print(len(stop_words)) df_transformed.colums = ['text_pt'] df_transformed['text_pt_without_stopwords'] = df_transformed['text_pt'].apply(lambda x: ' '.join([word for word in x.split() if word not in (stop_words)])) df_transformed.head() ###Output c:\users\felipe\anaconda3\envs\checklist3\lib\site-packages\ipykernel_launcher.py:1: UserWarning: Pandas doesn't allow columns to be created via a new attribute name - see https://pandas.pydata.org/pandas-docs/stable/indexing.html#attribute-access """Entry point for launching an IPython kernel. ###Markdown Divisão treino e teste ###Code df_train, df_test = train_test_split( df_transformed, test_size = 0.3, random_state = 42 ) ###Output _____no_output_____ ###Markdown Salvando dados de test e train ###Code df_train.to_csv('./data_train_test/df_train_imbd.csv') df_test.to_csv('./data_train_test/df_test_imbd.csv') ###Output _____no_output_____ ###Markdown Lendo dados de test e train ###Code df_train = pd.read_csv('./data_train_test/df_train_imbd.csv') df_test = pd.read_csv('./data_train_test/df_test_imbd.csv') ###Output _____no_output_____
examproject/Group DYE Code - Examproject final.ipynb
###Markdown 1. Human capital accumulation Consider a worker living in **two periods**, $t \in \{1,2\}$. In each period she decides whether to **work ($l_t = 1$) or not ($l_t = 0$)**. She can *not* borrow or save and thus **consumes all of her income** in each period. If she **works** her **consumption** becomes:$$c_t = w h_t l_t\,\,\text{if}\,\,l_t=1$$where $w$ is **the wage rate** and $h_t$ is her **human capital**. If she does **not work** her consumption becomes:$$c_t = b\,\,\text{if}\,\,l_t=0$$where $b$ is the **unemployment benefits**. Her **utility of consumption** is: $$ \frac{c_t^{1-\rho}}{1-\rho} $$Her **disutility of working** is:$$ \gamma l_t $$ From period 1 to period 2, she **accumulates human capital** according to:$$ h_2 = h_1 + l_1 + \begin{cases}0 & \text{with prob. }0.5 \\\Delta & \text{with prob. }0.5 \end{cases} \\$$where $\Delta$ is a **stochastic experience gain**. In the **second period** the worker thus solves:$$\begin{eqnarray*}v_{2}(h_{2}) & = &\max_{l_{2}} \frac{c_2^{1-\rho}}{1-\rho} - \gamma l_2\\ & \text{s.t.} & \\c_{2}& = & w h_2 l_2 \\l_{2}& \in &\{0,1\}\end{eqnarray*}$$ In the **first period** the worker thus solves:$$\begin{eqnarray*}v_{1}(h_{1}) &=& \max_{l_{1}} \frac{c_1^{1-\rho}}{1-\rho} - \gamma l_1 + \beta\mathbb{E}_{1}\left[v_2(h_2)\right]\\ & \text{s.t.} & \\c_1 &=& w h_1 l_1 \\h_2 &=& h_1 + l_1 + \begin{cases}0 & \text{with prob. }0.5\\\Delta & \text{with prob. }0.5 \end{cases}\\l_{1} &\in& \{0,1\}\\\end{eqnarray*}$$where $\beta$ is the **discount factor** and $\mathbb{E}_{1}\left[v_2(h_2)\right]$ is the **expected value of living in period two**. The **parameters** of the model are: ###Code rho = 2 beta = 0.96 gamma = 0.1 w = 2 b = 1 Delta = 0.1 ###Output _____no_output_____ ###Markdown The **relevant levels of human capital** are: ###Code h_vec = np.linspace(0.1,1.5,100) # Define Labor as boolean l = [0,1] ###Output _____no_output_____ ###Markdown Question 1.1:*Solve the model in period 2 and illustrate the solution (including labor supply as a function of human capital).* ###Code # i. Define utility in second period def v2(l, h): # a. Define c if l == 0: c = b else: c = w*h*l # b. Define utility in second period utility = c**(1-rho)/(1-rho) - gamma*l return utility # ii. Define function to solve for utility and labour for each level of human capital def solve(period): # a. Define period and utility if period == 2: utility = v2 elif period == 1: utility = v1 # b. Define empty grids for h, v and l h_vec = np.linspace(0.1,1.5,100) v_vec = np.empty(100) l_vec = np.empty(100) # c. Solve for each h2 for i,h in enumerate(h_vec): # d. Individual will only work if utillity when working > utility when not working v_vec[i] = max(utility(l[0],h), utility(l[1],h)) l_vec[i] = utility(l[0],h) < utility(l[1],h) # e. Return values if period == 2: v2_vec = v_vec l2_vec = l_vec return h_vec, v2_vec, l2_vec if period == 1: v1_vec = v_vec l1_vec = l_vec return h_vec, v1_vec, l1_vec # iii. Extract solved values for period 2 h_vec,v2_vec,l2_vec = solve(2) # iiii. Define fucntion that plots utility and labor function for a given period def plot(period): # a. Period if period == 1: l_vec = l1_vec v_vec = v1_vec elif period == 2: l_vec = l2_vec v_vec = v2_vec # b. Set approprate style plt.style.use("bmh") # c. Define axis and plots fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4)) ax1.plot(h_vec,l_vec) ax1.set_xlabel("$h_{}$".format(period)) ax1.set_ylabel('$l_{}$'.format(period)) ax1.set_title('$h_{}$ as a function of $l_{}$'.format(period, period)) ax2.plot(h_vec,v_vec) ax2.set_xlabel('$h_{}$'.format(period)) ax2.set_ylabel('$v_{}$'.format(period)) ax2.set_title('$V_{}(h_{})$'.format(period, period)) # d. Define cut-off point for which the individual will choose to work (l=1) cut_off = h_vec[np.where(l_vec==1)[0][0]] # e. Plot vertical line at cutoff point and make adjustments plt.axvline(x=cut_off, linestyle="--", ymin=0, ymax=0.85) plt.subplots_adjust(bottom=0.15, wspace=.25) plt.show() # iiiii. Call plots for period 2 plot(2) # iiiiii. Define function that calculates the condition for l = 1 def cutoff(period): if period == 1: l_vec = l1_vec elif period == 2: l_vec = l2_vec cutoff = round(h_vec[np.where(l_vec==1)[0][0]], 2) print("l = 1 in period {}, if and only if h ≥ {}".format(period, cutoff)) # iiiiiii. Condition for l=1, in period 2 cutoff(2) ###Output l = 1 in period 2, if and only if h ≥ 0.57 ###Markdown Question 1.2:*Solve the model in period 1 and illustrate the solution (including labor supply as a function of human capital).* ###Code # i. interpolar, to be used for calculation of v2 v2_intpol = interpolate.RegularGridInterpolator((h_vec,), v2_vec, bounds_error=False,fill_value=None) # ii. Define utility for period 1 def v1(l1, h1, intpol = v2_intpol): # a. Calculate expected value of 2, given v2 with and without stochastic gain exp_v2 = 0.5*(v2_intpol([h1 + l1])[0] + v2_intpol([h1 + l1 + Delta])[0]) # b. Define c if l1 == 0: c = b else: c = w*h1*l1 # c. Define Utility utility = c**(1-rho)/(1-rho) - gamma*l1 + beta*exp_v2 return utility # iii. Extract solved values for period 1 h_vec,v1_vec,l1_vec = solve(1) # iiii. Call plots for period 1 plot(1) # iiiii. Condition for l=1, in period 2 cutoff(1) ###Output l = 1 in period 1, if and only if h ≥ 0.35 ###Markdown Question 1.3:*Will the worker never work if her potential wage income is lower than the unemployment benefits she can get? Explain and illustrate why or why not.* If the petential wage income for the worker is lower than the employment benefits she receives, b, then the worker will never chose to work, as she could receive the benefit of not working instead. This is especially true due to the disutility associated with working, $-\gamma l_2$. Thus the worker would never work. 2. AS-AD model Consider the following **AS-AD model**. The **goods market equilibrium** is given by$$ y_{t} = -\alpha r_{t} + v_{t} $$where $y_{t}$ is the **output gap**, $r_{t}$ is the **ex ante real interest** and $v_{t}$ is a **demand disturbance**. The central bank's **Taylor rule** is$$ i_{t} = \pi_{t+1}^{e} + h \pi_{t} + b y_{t}$$where $i_{t}$ is the **nominal interest rate**, $\pi_{t}$ is the **inflation gap**, and $\pi_{t+1}^{e}$ is the **expected inflation gap**. The **ex ante real interest rate** is given by $$ r_{t} = i_{t} - \pi_{t+1}^{e} $$ Together, the above implies that the **AD-curve** is$$ \pi_{t} = \frac{1}{h\alpha}\left[v_{t} - (1+b\alpha)y_{t}\right]$$ Further, assume that the **short-run supply curve (SRAS)** is given by$$ \pi_{t} = \pi_{t}^{e} + \gamma y_{t} + s_{t}$$where $s_t$ is a **supply disturbance**. **Inflation expectations are adaptive** and given by$$ \pi_{t}^{e} = \phi\pi_{t-1}^{e} + (1-\phi)\pi_{t-1}$$ Together, this implies that the **SRAS-curve** can also be written as$$ \pi_{t} = \pi_{t-1} + \gamma y_{t} - \phi\gamma y_{t-1} + s_{t} - \phi s_{t-1} $$ The **parameters** of the model are: ###Code par = {} par['alpha'] = 5.76 par['h'] = 0.5 par['b'] = 0.5 par['phi'] = 0 par['gamma'] = 0.075 #Define variables # Define variables and parameters alpha = sm.symbols("alpha") b = sm.symbols("b") gamma = sm.symbols("gamma") h = sm.symbols("h") phi = sm.symbols("phi") pi = sm.symbols("pi_t") pit = sm.symbols("pi_t-1") pi_opt = sm.symbols("pi^opt") s = sm.symbols("s_t") st = sm.symbols("s_t-1") v = sm.symbols("v_t") y = sm.symbols("y_t") yt = sm.symbols("y_t-1") y_opt = sm.symbols("y^opt") ###Output _____no_output_____ ###Markdown Question 2.1:*Use the ``sympy`` module to solve for the equilibrium values of output, $y_t$, and inflation, $\pi_t$, (where AD = SRAS) given the parameters ($\alpha$, $h$, $b$, $\alpha$, $\gamma$) and $y_{t-1}$ , $\pi_{t-1}$, $v_t$, $s_t$, and $s_{t-1}$.* ###Code # i. Define agregate demand (AD) and aggregate supply (AS) ad = sm.Function("ad") sras = sm.Function("sras") ad_func = 1/(h*alpha)*(v-(1+b*alpha)*y) sras_func = pit + gamma*y - phi*gamma*yt + s - phi*st ad = sm.Eq(pi, ad_func) sras = sm.Eq(pi, sras_func) ###Output _____no_output_____ ###Markdown We can now solve for $\pi^{opt}$ and $y^{opt}$ and the result is as follows ###Code # ii. Solving the with the first order condition foc = sm.solve([ad, sras], [y, pi]) # iii. Y in equilibrium y_foc = sm.Eq(y_opt, foc[y]) y_foc # iiii. Pi in equilibrium pi_foc = sm.Eq(pi_opt, foc[pi]) pi_foc ###Output _____no_output_____ ###Markdown 3. Exchange economy Consider an **exchange economy** with1. 3 goods, $(x_1,x_2,x_3)$2. $N$ consumers indexed by \\( j \in \{1,2,\dots,N\} \\)3. Preferences are Cobb-Douglas with log-normally distributed coefficients $$ \begin{eqnarray*} u^{j}(x_{1},x_{2},x_{3}) &=& \left(x_{1}^{\beta_{1}^{j}}x_{2}^{\beta_{2}^{j}}x_{3}^{\beta_{3}^{j}}\right)^{\gamma}\\ & & \,\,\,\beta_{i}^{j}=\frac{\alpha_{i}^{j}}{\alpha_{1}^{j}+\alpha_{2}^{j}+\alpha_{3}^{j}} \\ & & \,\,\,\boldsymbol{\alpha}^{j}=(\alpha_{1}^{j},\alpha_{2}^{j},\alpha_{3}^{j}) \\ & & \,\,\,\log(\boldsymbol{\alpha}^j) \sim \mathcal{N}(\mu,\Sigma) \\ \end{eqnarray*} $$4. Endowments are exponentially distributed,$$\begin{eqnarray*}\boldsymbol{e}^{j} &=& (e_{1}^{j},e_{2}^{j},e_{3}^{j}) \\ & & e_i^j \sim f, f(z;\zeta) = 1/\zeta \exp(-z/\zeta)\end{eqnarray*}$$ Let $p_3 = 1$ be the **numeraire**. The implied **demand functions** are:$$\begin{eqnarray*}x_{i}^{\star j}(p_{1},p_{2},\boldsymbol{e}^{j})&=&\beta^{j}_i\frac{I^j}{p_{i}} \\\end{eqnarray*}$$where consumer $j$'s income is$$I^j = p_1 e_1^j + p_2 e_2^j +p_3 e_3^j$$ The **parameters** and **random preferences and endowments** are given by: ###Code # a. parameters N = 50000 mu = np.array([3,2,1]) Sigma = np.array([[0.25, 0, 0], [0, 0.25, 0], [0, 0, 0.25]]) gamma = 0.8 zeta = 1 # b. random draws seed = 1986 np.random.seed(seed) # preferences alphas = np.exp(np.random.multivariate_normal(mu, Sigma, size=N)) betas = alphas/np.reshape(np.sum(alphas,axis=1),(N,1)) # endowments e1 = np.random.exponential(zeta,size=N) e2 = np.random.exponential(zeta,size=N) e3 = np.random.exponential(zeta,size=N) ###Output _____no_output_____ ###Markdown Question 3.1:*Plot the histograms of the budget shares for each good across agents.* ###Code # i. Creating a list for our betas as b1, b2, b3 b1 = betas[:,0] """ The above creates a list of the variable beta """ b2 = betas[:,1] b3 = betas[:,2] # ii. Plotting b1, b2, b3 fig=plt.figure(figsize=(20,10)) """ Initializing the figure and the size of it """ for i in [1,2,3]: """ Looping over i to create a plot for each beta """ ax = fig.add_subplot(1,3,i) ax.hist(globals()['b%s' % i],bins=100); ax.set_xlabel('b%s' % i) ax.set_ylabel('Consumers') ax.set_title('Good '+str(i)) fig.tight_layout() ###Output _____no_output_____ ###Markdown Consider the **excess demand functions:**$$ z_i(p_1,p_2) = \sum_{j=1}^N x_{i}^{\star j}(p_{1},p_{2},\boldsymbol{e}^{j}) - e_i^j$$ Question 3.2:*Plot the excess demand functions.* ###Code # i. Creating the demand function for each good def demand_1(p1,p2,e1,e2,e3,betas): """ Defining af function to calculate the demand for good 1 """ I = e1*p1 + e2*p2 + e3 """ Defining income as specified in the assignment """ return b1*I/p1 def demand_2(p1,p2,e1,e2,e3,betas): I = e1*p1 + e2*p2 + e3 return b2*I/p2 def demand_3(p1,p2,e1,e2,e3,betas): I = e1*p1 + e2*p2 + e3 return b3*I # ii. Creating excess demand function def excess_demand_1(p1,p2,e1,e2,e3,betas): """ Defining the excess function """ excess_1 = np.sum(demand_1(p1,p2,e1,e2,e3,betas)) - np.sum(e1) """ excess = demand - supply """ return excess_1 def excess_demand_2(p1,p2,e1,e2,e3,betas): excess_2 = np.sum(demand_2(p1,p2,e1,e2,e3,betas)) - np.sum(e2) return excess_2 def excess_demand_3(p1,p2,e1,e2,e3,betas): excess_3 = np.sum(demand_3(p1,p2,e1,e2,e3,betas)) - np.sum(e3) return excess_3 # iii.Plotting the excess demand function p1_ = np.linspace(0.3,30,300) p2_ = np.linspace(0.3,30,300) """ Creating price vectors to be used for excess demand plot """ p1_grid,p2_grid = np.meshgrid(p1_,p2_,indexing='ij') """ Creating a grid for p1 and p2 """ excess_1_grid = np.empty((300,300)) """ Excess demand grid for plots """ excess_2_grid = np.empty((300,300)) excess_3_grid = np.empty((300,300)) for i,p1 in enumerate(p1_): for j,p2 in enumerate(p2_): """ Looping over both price sets to get excess demands for each good """ excess_1_grid[i,j] = excess_demand_1(p1,p2,e1,e2,e3,betas) excess_2_grid[i,j] = excess_demand_2(p1,p2,e1,e2,e3,betas) excess_3_grid[i,j] = excess_demand_3(p1,p2,e1,e2,e3,betas) fig = plt.figure(figsize=(20,10)) ax = fig.add_subplot(1,2,1, projection='3d') ax.plot_surface(p1_grid, p2_grid, excess_1_grid) ax.invert_xaxis() ax.set_title('Excess demand - good 1') ax.set_xlabel("p1") ax.set_ylabel("p2") fig = plt.figure(figsize=(20,10)) ax = fig.add_subplot(1,2,2, projection='3d') ax.plot_surface(p1_grid, p2_grid, excess_2_grid) ax.invert_xaxis() ax.set_title('Excess demand - good 2') ax.set_xlabel("p1") ax.set_ylabel("p2") plt.show() ###Output _____no_output_____ ###Markdown Quesiton 3.3:*Find the Walras-equilibrium prices, $(p_1,p_2)$, where both excess demands are (approximately) zero, e.g. by using the following tâtonnement process:**1. Guess on $p_1 > 0$, $p_2 > 0$ and choose tolerance $\epsilon > 0$ and adjustment aggressivity parameter, $\kappa > 0$.**2. Calculate $z_1(p_1,p_2)$ and $z_2(p_1,p_2)$.**3. If $|z_1| < \epsilon$ and $|z_2| < \epsilon$ then stop.**4. Else set $p_1 = p_1 + \kappa \frac{z_1}{N}$ and $p_2 = p_2 + \kappa \frac{z_2}{N}$ and return to step 2.* ###Code # i. Defining the Walras equilibrium function def Walras_equilibrium(betas, p1, p2, e1, e2, e3, kappa=0.5, eps=1e-8, maxiter=50000): t = 0 while True: # a. step 1: excess demand X1 = excess_demand_1(p1,p2,e1,e2,e3,betas) X2 = excess_demand_2(p1,p2,e1,e2,e3,betas) # b. step 2: stop if np.abs(X1) < eps and np.abs(X2) < eps or t >= maxiter: print(f'{t:3d}: p1 = {p1:12.8f} -> excess demand -> {X1:14.8f}') print(f'{t:3d}: p2 = {p2:12.8f} -> excess demand -> {X2:14.8f}') break # c. step 3: update prices p1 = p1 + kappa*X1/betas.size p2 = p2 + kappa*X2/betas.size # d. step 4: return if t < 5 or t%2500 == 0: print(f'{t:3d}: p1 = {p1:12.8f} -> excess demand -> {X1:14.8f}') print(f'{t:3d}: p2 = {p2:12.8f} -> excess demand -> {X2:14.8f}') elif t == 5: print(" ...") t += 1 return p1, p2 # ii. Setting initial values to find equilibrium price p1 = 1.4 p2 = 1 kappa = 0.1 eps = 1e-8 # iii. Using our function from part i. and initial values from part ii. to find equlibrium prices p1_eq,p2_eq = Walras_equilibrium(betas,p1,p2,e1,e2,e3,kappa=kappa,eps=eps) print("Equilibrium prices (p1,p2) = (6.49, 2.61)") ###Output 0: p1 = 1.41865154 -> excess demand -> 27977.31151752 0: p2 = 0.99608594 -> excess demand -> -5871.09387963 1: p1 = 1.43684279 -> excess demand -> 27286.87384056 1: p2 = 0.99241373 -> excess demand -> -5508.31164171 2: p1 = 1.45459877 -> excess demand -> 26633.97026830 2: p2 = 0.98897615 -> excess demand -> -5156.36947140 3: p1 = 1.47194254 -> excess demand -> 26015.65971241 3: p2 = 0.98576609 -> excess demand -> -4815.08645945 4: p1 = 1.48889542 -> excess demand -> 25429.30968444 4: p2 = 0.98277657 -> excess demand -> -4484.28325466 ... 2500: p1 = 5.93849485 -> excess demand -> 550.18919081 2500: p2 = 2.41083774 -> excess demand -> 205.44544903 5000: p1 = 6.37746401 -> excess demand -> 104.64732030 5000: p2 = 2.57468743 -> excess demand -> 39.04621324 7500: p1 = 6.46580779 -> excess demand -> 22.23130435 7500: p2 = 2.60764817 -> excess demand -> 8.29385995 10000: p1 = 6.48477769 -> excess demand -> 4.82462641 10000: p2 = 2.61472520 -> excess demand -> 1.79987803 12500: p1 = 6.48890390 -> excess demand -> 1.05180255 12500: p2 = 2.61626452 -> excess demand -> 0.39238367 15000: p1 = 6.48980388 -> excess demand -> 0.22952650 15000: p2 = 2.61660027 -> excess demand -> 0.08562665 17500: p1 = 6.49000030 -> excess demand -> 0.05009851 17500: p2 = 2.61667354 -> excess demand -> 0.01868963 20000: p1 = 6.49004317 -> excess demand -> 0.01093546 20000: p2 = 2.61668953 -> excess demand -> 0.00407956 22500: p1 = 6.49005253 -> excess demand -> 0.00238701 22500: p2 = 2.61669303 -> excess demand -> 0.00089049 25000: p1 = 6.49005458 -> excess demand -> 0.00052104 25000: p2 = 2.61669379 -> excess demand -> 0.00019438 27500: p1 = 6.49005502 -> excess demand -> 0.00011373 27500: p2 = 2.61669395 -> excess demand -> 0.00004243 30000: p1 = 6.49005512 -> excess demand -> 0.00002483 30000: p2 = 2.61669399 -> excess demand -> 0.00000926 32500: p1 = 6.49005514 -> excess demand -> 0.00000542 32500: p2 = 2.61669400 -> excess demand -> 0.00000202 35000: p1 = 6.49005514 -> excess demand -> 0.00000118 35000: p2 = 2.61669400 -> excess demand -> 0.00000044 37500: p1 = 6.49005515 -> excess demand -> 0.00000026 37500: p2 = 2.61669400 -> excess demand -> 0.00000010 40000: p1 = 6.49005515 -> excess demand -> 0.00000006 40000: p2 = 2.61669400 -> excess demand -> 0.00000002 42500: p1 = 6.49005515 -> excess demand -> 0.00000001 42500: p2 = 2.61669400 -> excess demand -> 0.00000000 42841: p1 = 6.49005515 -> excess demand -> 0.00000001 42841: p2 = 2.61669400 -> excess demand -> 0.00000000 Equilibrium prices (p1,p2) = (6.49, 2.61) ###Markdown Question 3.4:*Plot the distribution of utility in the Walras-equilibrium and calculate its mean and variance. ###Code # i. Defining the utility function as u_func def u_func(p1,p2,e1,e2,e3,betas,gamma): """ Creating the utility function """ I = p1*e1 + p2*e2 + e3 demand1 = b1*I/p1 demand2 = b2*I/p2 demand3 = b3*I """ Setting up inputs for the calculating utility """ u = (demand1**b1 + demand2**b2 + demand3**b3)**gamma return u # ii. Create a vector of utilities u_vec = u_func(p1_eq, p2_eq, e1,e2,e3, betas,gamma) # iii. Plot the utility fig=plt.figure(figsize=(15,10)) plt.hist(u_vec,bins=100); plt.xlabel("Utility") plt.ylabel('Consumers') plt.title("Utility distribution") # iiii. Calculate and print mean and variance of the utility u_mean = np.mean(u_vec) u_variance = np.var(u_vec) """ Using the build-in numpy functions to calculate the mean and the variance """ print(f"Mean: {u_mean: .3f} and Variance: {u_variance: .3f}") ###Output Mean: 2.376 and Variance: 0.208
Lab4_MongoDB/COMP6235 MongoDB Tutorial 1819.ipynb
###Markdown Introduction Using JupyterJupyter is a front end to the [IPython](https://ipython.org) interactive shell, and offers IDE like features. It is separated into two main types of cell: [Markdown](https://en.wikipedia.org/wiki/Markdown) cells (such as this one) which allows markdown or HTML code to be written, and code cells like the next one which can be run in real time.To execute code in a cell, press `Crtl` + `Enter`, click on the `[ > ]Run` button in the main menu, or press `Shift` + `Enter` if you wish to execute the code and then move on to a new cell (creating it if it does not already exist). SetupMongoDB is a NoSQL database, which has a core API in JavaScript, and a series of other APIs in different languages. The one we are going to use is the Python API, [PyMongo](https://api.mongodb.com/python/current/). MongoDB instance on your VM is already started by default.PyMongo is a package that contains tools to work with MongoDB from Python. We have installed it in the VM provided to you. This imports the `MongoClient` class from the pymongo module, which we will use to deal with all our connections from. We're connecting to our localhost, which is listening on port 27017. There are more options, the documentation for the formatting of the connection string is at https://docs.mongodb.com/manual/reference/connection-string/. ###Code from pymongo import MongoClient client = MongoClient('mongodb://localhost:27017') ###Output _____no_output_____ ###Markdown If you do not get any errors, you have confirmed PyMongo library has been successfully installed&configured in the VM. We will now check to see whether the connection is correct. The following code calls a function which returns a list of all current databases. If your Mongo instance is still empty, it should be something like `['admin', 'local']`. ###Code client.list_database_names() ###Output _____no_output_____ ###Markdown Next, we are going to create a database object `db`, which is a property of the `client` object. MongoDB is schemaless, and so accessing a database like this will create the database if it does not already exist.A database can be accessed by using "dot" notation (i.e., `client.dbname`), or dictionary notation (i.e., `client['dbname']`). This also applies to making collectionsCreate a database called `test` in a variable called `db`. Using that variable, create a collection called `test_collection` with a variable called `collection` as follows. Run the code in the following cell (there should not be any output) ###Code # Create database and collection objects for convenience db = client.test collection = db.test_collection ###Output _____no_output_____ ###Markdown Using MongoDB Inserting dataMongoDB data is stored as BSON (binary JSON), which is essentially JSON with some additional optimisations, so the way to insert data is as a JSON object. For Python, you can use a `dict` or a `list` for this, and then call either `insert_one` or `insert_many` on the collection. ###Code # Create an object and insert into the `test_collection` single_obj = {'name': 'Amber', 'star_sign': 'Capricorn', 'favourite_song': 'The Load-Out'} collection.insert_one(single_obj) single_obj_2 = {'name': 'Huw', 'star_sign': 'Libra', 'favourite_song': 'The masses against the classes'} collection.insert_one(single_obj_2) single_obj_3 = {'name': 'Robert', 'star_sign': 'Leo', 'favourite_song': 'Bad day'} collection.insert_one(single_obj_3) ###Output _____no_output_____ ###Markdown We will look at querying data in more detail below, but for now, to see whether the object got successfully inserted into the collection, run the code below. This will always return the first instance which matches the query. You will notice that even though we didn't specify `_id` one got added already. This is a unique identifier for the document in the collection ###Code collection.find_one() # returns a single document matching the query condition collection.find_one({'name':'Robert'}) ###Output _____no_output_____ ###Markdown Remember, for MongoDB, you do not have to specify a schema or create a collection, it will be created automatically. You don't need to keep to the same layout, but can have entirely different objects. Consider the following: ###Code from datetime import datetime obj1 = {'Meaning of life': 42} obj2 = {'ABC': 'DEF', 'time': datetime.now()} collection.insert_one(obj1) collection.insert_one(obj2) ###Output _____no_output_____ ###Markdown We can also use the `insert_many`, which accepts a list of dicts. In the cell below, create a list of dicts called `many_objects`, and call the `insert_many` function. The code below that will iterate over all the documents in the database. ###Code # YOUR CODE HERE collection.insert_many([{"age":x} for x in range(20,30)]) #See what has been inserted into the collection for doc in collection.find(): print(doc) ###Output {u'favourite_song': u'The Load-Out', u'_id': ObjectId('5c0843e65ccae901c5ffb8c9'), u'name': u'Amber', u'star_sign': u'Capricorn'} {u'favourite_song': u'The masses against the classes', u'_id': ObjectId('5c0843e65ccae901c5ffb8ca'), u'name': u'Huw', u'star_sign': u'Libra'} {u'favourite_song': u'Bad day', u'_id': ObjectId('5c0843e65ccae901c5ffb8cb'), u'name': u'Robert', u'star_sign': u'Leo'} {u'Meaning of life': 42, u'_id': ObjectId('5c0843ed5ccae901c5ffb8cc')} {u'_id': ObjectId('5c0843ed5ccae901c5ffb8cd'), u'ABC': u'DEF', u'time': datetime.datetime(2018, 12, 5, 21, 32, 29, 444000)} {u'age': 20, u'_id': ObjectId('5c0844065ccae901c5ffb8ce')} {u'age': 21, u'_id': ObjectId('5c0844065ccae901c5ffb8cf')} {u'age': 22, u'_id': ObjectId('5c0844065ccae901c5ffb8d0')} {u'age': 23, u'_id': ObjectId('5c0844065ccae901c5ffb8d1')} {u'age': 24, u'_id': ObjectId('5c0844065ccae901c5ffb8d2')} {u'age': 25, u'_id': ObjectId('5c0844065ccae901c5ffb8d3')} {u'age': 26, u'_id': ObjectId('5c0844065ccae901c5ffb8d4')} {u'age': 27, u'_id': ObjectId('5c0844065ccae901c5ffb8d5')} {u'age': 28, u'_id': ObjectId('5c0844065ccae901c5ffb8d6')} {u'age': 29, u'_id': ObjectId('5c0844065ccae901c5ffb8d7')} ###Markdown Importing and querying dataFor this part of the exercise, we will use a sample dataset provided by Mongo for a documentation tutorial. The following cell runs the `mongoimport` command, which is a Unix command which comes with Mongo for importing data. We will need to run a bash command in the next cell first. This uses the Jupyter \"magics\", and requires that the first line include `%%bash`. The code does the following:- Download the JSON file from the url, and save as ./primer-dataset.json- Import into the `test` database into the collection `restaurants` whilst dropping any collection which already exists from the file ./primer-dataset.json- Deletes the file. Click on the following cell, and execute it: ###Code %%bash # Use wget to download the data wget https://raw.githubusercontent.com/mongodb/docs-assets/primer-dataset/primer-dataset.json # mongoimport is the Mongo command to import data. # It specifies the database, collection and format, and import file # --drop means it's going to drop any collection with the same name which already exists mongoimport --db test --collection restaurants --drop --file ./primer-dataset.json # Delete the JSON file we just downloaded rm ./primer-dataset.json ###Output --2018-12-05 21:33:28-- https://raw.githubusercontent.com/mongodb/docs-assets/primer-dataset/primer-dataset.json Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.16.133 Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.16.133|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 11874761 (11M) [text/plain] Saving to: ‘primer-dataset.json’ 0K .......... .......... .......... .......... .......... 0% 14.8K 12m59s 50K .......... .......... .......... .......... .......... 0% 23.7K 10m30s 100K .......... .......... .......... .......... .......... 1% 41.1K 8m31s 150K .......... .......... .......... .......... .......... 1% 31.4K 7m52s 200K .......... .......... .......... .......... .......... 2% 398K 6m22s 250K .......... .......... .......... .......... .......... 2% 31.7K 6m16s 300K .......... .......... .......... .......... .......... 3% 22.2K 6m33s 350K .......... .......... .......... .......... .......... 3% 180K 5m50s 400K .......... .......... .......... .......... .......... 3% 826K 5m11s 450K .......... .......... .......... .......... .......... 4% 258K 4m43s 500K .......... .......... .......... .......... .......... 4% 339K 4m19s 550K .......... .......... .......... .......... .......... 5% 284K 4m0s 600K .......... .......... .......... .......... .......... 5% 285K 3m43s 650K .......... .......... .......... .......... .......... 6% 157K 3m31s 700K .......... .......... .......... .......... .......... 6% 273K 3m19s 750K .......... .......... .......... .......... .......... 6% 24.4K 3m34s 800K .......... .......... .......... .......... .......... 7% 1.56M 3m20s 850K .......... .......... .......... .......... .......... 7% 3.53M 3m9s 900K .......... .......... .......... .......... .......... 8% 1.28M 2m58s 950K .......... .......... .......... .......... .......... 8% 566K 2m49s 1000K .......... .......... .......... .......... .......... 9% 1.85M 2m41s 1050K .......... .......... .......... .......... .......... 9% 971K 2m33s 1100K .......... .......... .......... .......... .......... 9% 473K 2m27s 1150K .......... .......... .......... .......... .......... 10% 1.81M 2m20s 1200K .......... .......... .......... .......... .......... 10% 1.98M 2m14s 1250K .......... .......... .......... .......... .......... 11% 3.94M 2m9s 1300K .......... .......... .......... .......... .......... 11% 1.78M 2m3s 1350K .......... .......... .......... .......... .......... 12% 3.07M 1m59s 1400K .......... .......... .......... .......... .......... 12% 2.15M 1m54s 1450K .......... .......... .......... .......... .......... 12% 1.69M 1m50s 1500K .......... .......... .......... .......... .......... 13% 1.81M 1m46s 1550K .......... .......... .......... .......... .......... 13% 3.66M 1m42s 1600K .......... .......... .......... .......... .......... 14% 2.14M 99s 1650K .......... .......... .......... .......... .......... 14% 560K 96s 1700K .......... .......... .......... .......... .......... 15% 503K 93s 1750K .......... .......... .......... .......... .......... 15% 836K 91s 1800K .......... .......... .......... .......... .......... 15% 1.96M 88s 1850K .......... .......... .......... .......... .......... 16% 2.63M 85s 1900K .......... .......... .......... .......... .......... 16% 1.37M 83s 1950K .......... .......... .......... .......... .......... 17% 607K 81s 2000K .......... .......... .......... .......... .......... 17% 1.04M 78s 2050K .......... .......... .......... .......... .......... 18% 444K 77s 2100K .......... .......... .......... .......... .......... 18% 528K 75s 2150K .......... .......... .......... .......... .......... 18% 185K 74s 2200K .......... .......... .......... .......... .......... 19% 487K 72s 2250K .......... .......... .......... .......... .......... 19% 35.4K 76s 2300K .......... .......... .......... .......... .......... 20% 301K 75s 2350K .......... .......... .......... .......... .......... 20% 254K 74s 2400K .......... .......... .......... .......... .......... 21% 891K 72s 2450K .......... .......... .......... .......... .......... 21% 753K 70s 2500K .......... .......... .......... .......... .......... 21% 36.2K 73s 2550K .......... .......... .......... .......... .......... 22% 650K 72s 2600K .......... .......... .......... .......... .......... 22% 1.03M 70s 2650K .......... .......... .......... .......... .......... 23% 2.50M 69s 2700K .......... .......... .......... .......... .......... 23% 549K 67s 2750K .......... .......... .......... .......... .......... 24% 164K 67s 2800K .......... .......... .......... .......... .......... 24% 24.8K 71s 2850K .......... .......... .......... .......... .......... 25% 2.14M 70s 2900K .......... .......... .......... .......... .......... 25% 4.48M 68s 2950K .......... .......... .......... .......... .......... 25% 490K 67s 3000K .......... .......... .......... .......... .......... 26% 8.43M 66s 3050K .......... .......... .......... .......... .......... 26% 11.6M 64s 3100K .......... .......... .......... .......... .......... 27% 220K 63s 3150K .......... .......... .......... .......... .......... 27% 1.84M 62s 3200K .......... .......... .......... .......... .......... 28% 6.68M 61s 3250K .......... .......... .......... .......... .......... 28% 10.7M 60s 3300K .......... .......... .......... .......... .......... 28% 384K 59s 3350K .......... .......... .......... .......... .......... 29% 7.07M 57s 3400K .......... .......... .......... .......... .......... 29% 460K 56s 3450K .......... .......... .......... .......... .......... 30% 469K 56s 3500K .......... .......... .......... .......... .......... 30% 480K 55s 3550K .......... .......... .......... .......... .......... 31% 14.9M 54s 3600K .......... .......... .......... .......... .......... 31% 16.6M 53s 3650K .......... .......... .......... .......... .......... 31% 80.6K 53s 3700K .......... .......... .......... .......... .......... 32% 62.1K 53s 3750K .......... .......... .......... .......... .......... 32% 1.46M 53s 3800K .......... .......... .......... .......... .......... 33% 574K 52s 3850K .......... .......... .......... .......... .......... 33% 12.7M 51s 3900K .......... .......... .......... .......... .......... 34% 14.0M 50s 3950K .......... .......... .......... .......... .......... 34% 16.9M 49s 4000K .......... .......... .......... .......... .......... 34% 16.5M 48s 4050K .......... .......... .......... .......... .......... 35% 24.2M 47s 4100K .......... .......... .......... .......... .......... 35% 235K 46s 4150K .......... .......... .......... .......... .......... 36% 341K 46s 4200K .......... .......... .......... .......... .......... 36% 16.8K 50s 4250K .......... .......... .......... .......... .......... 37% 719K 49s 4300K .......... .......... .......... .......... .......... 37% 13.2M 48s 4350K .......... .......... .......... .......... .......... 37% 18.5M 48s 4400K .......... .......... .......... .......... .......... 38% 24.6M 47s 4450K .......... .......... .......... .......... .......... 38% 58.9K 47s 4500K .......... .......... .......... .......... .......... 39% 7.14M 46s 4550K .......... .......... .......... .......... .......... 39% 10.2M 46s 4600K .......... .......... .......... .......... .......... 40% 10.8M 45s 4650K .......... .......... .......... .......... .......... 40% 14.1M 44s 4700K .......... .......... .......... .......... .......... 40% 73.3K 44s 4750K .......... .......... .......... .......... .......... 41% 12.6M 43s 4800K .......... .......... .......... .......... .......... 41% 12.8M 43s 4850K .......... .......... .......... .......... .......... 42% 17.2M 42s 4900K .......... .......... .......... .......... .......... 42% 21.0M 41s 4950K .......... .......... .......... .......... .......... 43% 26.2M 40s 5000K .......... .......... .......... .......... .......... 43% 32.3M 40s 5050K .......... .......... .......... .......... .......... 43% 25.4M 39s 5100K .......... .......... .......... .......... .......... 44% 25.8M 38s 5150K .......... .......... .......... .......... .......... 44% 25.2M 38s 5200K .......... .......... .......... .......... .......... 45% 913K 37s 5250K .......... .......... .......... .......... .......... 45% 673K 37s 5300K .......... .......... .......... .......... .......... 46% 455K 36s 5350K .......... .......... .......... .......... .......... 46% 1.55M 36s 5400K .......... .......... .......... .......... .......... 46% 417K 35s 5450K .......... .......... .......... .......... .......... 47% 458K 35s 5500K .......... .......... .......... .......... .......... 47% 751K 34s 5550K .......... .......... .......... .......... .......... 48% 1.86M 33s 5600K .......... .......... .......... .......... .......... 48% 990K 33s 5650K .......... .......... .......... .......... .......... 49% 197K 33s 5700K .......... .......... .......... .......... .......... 49% 105K 33s 5750K .......... .......... .......... .......... .......... 50% 615K 32s 5800K .......... .......... .......... .......... .......... 50% 79.0K 32s 5850K .......... .......... .......... .......... .......... 50% 471K 32s 5900K .......... .......... .......... .......... .......... 51% 537K 31s 5950K .......... .......... .......... .......... .......... 51% 437K 31s 6000K .......... .......... .......... .......... .......... 52% 266K 31s 6050K .......... .......... .......... .......... .......... 52% 1.84M 30s 6100K .......... .......... .......... .......... .......... 53% 144K 30s 6150K .......... .......... .......... .......... .......... 53% 1.03M 29s 6200K .......... .......... .......... .......... .......... 53% 1.81M 29s 6250K .......... .......... .......... .......... .......... 54% 262K 29s 6300K .......... .......... .......... .......... .......... 54% 125K 28s 6350K .......... .......... .......... .......... .......... 55% 302K 28s 6400K .......... .......... .......... .......... .......... 55% 3.01M 28s 6450K .......... .......... .......... .......... .......... 56% 170K 27s 6500K .......... .......... .......... .......... .......... 56% 2.25M 27s 6550K .......... .......... .......... .......... .......... 56% 45.9K 27s 6600K .......... .......... .......... .......... .......... 57% 656K 27s 6650K .......... .......... .......... .......... .......... 57% 4.04M 26s 6700K .......... .......... .......... .......... .......... 58% 8.58M 26s 6750K .......... .......... .......... .......... .......... 58% 8.38M 25s 6800K .......... .......... .......... .......... .......... 59% 11.6M 25s 6850K .......... .......... .......... .......... .......... 59% 11.3M 25s 6900K .......... .......... .......... .......... .......... 59% 15.4M 24s 6950K .......... .......... .......... .......... .......... 60% 18.6M 24s 7000K .......... .......... .......... .......... .......... 60% 27.5M 23s 7050K .......... .......... .......... .......... .......... 61% 17.9M 23s 7100K .......... .......... .......... .......... .......... 61% 23.6M 22s 7150K .......... .......... .......... .......... .......... 62% 392K 22s 7200K .......... .......... .......... .......... .......... 62% 364K 22s 7250K .......... .......... .......... .......... .......... 62% 720K 21s 7300K .......... .......... .......... .......... .......... 63% 85.3K 21s 7350K .......... .......... .......... .......... .......... 63% 296K 21s 7400K .......... .......... .......... .......... .......... 64% 374K 21s 7450K .......... .......... .......... .......... .......... 64% 490K 20s 7500K .......... .......... .......... .......... .......... 65% 336K 20s 7550K .......... .......... .......... .......... .......... 65% 730K 20s 7600K .......... .......... .......... .......... .......... 65% 228K 19s 7650K .......... .......... .......... .......... .......... 66% 232K 19s 7700K .......... .......... .......... .......... .......... 66% 66.2K 19s 7750K .......... .......... .......... .......... .......... 67% 1006K 19s 7800K .......... .......... .......... .......... .......... 67% 115K 19s 7850K .......... .......... .......... .......... .......... 68% 576K 18s 7900K .......... .......... .......... .......... .......... 68% 1.72M 18s 7950K .......... .......... .......... .......... .......... 68% 394K 18s 8000K .......... .......... .......... .......... .......... 69% 328K 17s 8050K .......... .......... .......... .......... .......... 69% 193K 17s 8100K .......... .......... .......... .......... .......... 70% 112K 17s 8150K .......... .......... .......... .......... .......... 70% 312K 17s 8200K .......... .......... .......... .......... .......... 71% 307K 16s 8250K .......... .......... .......... .......... .......... 71% 102K 16s 8300K .......... .......... .......... .......... .......... 72% 119K 16s 8350K .......... .......... .......... .......... .......... 72% 248K 16s 8400K .......... .......... .......... .......... .......... 72% 929K 16s 8450K .......... .......... .......... .......... .......... 73% 87.4K 15s 8500K .......... .......... .......... .......... .......... 73% 312K 15s 8550K .......... .......... .......... .......... .......... 74% 123K 15s 8600K .......... .......... .......... .......... .......... 74% 283K 15s 8650K .......... .......... .......... .......... .......... 75% 120K 15s 8700K .......... .......... .......... .......... .......... 75% 51.1K 14s 8750K .......... .......... .......... .......... .......... 75% 1.22M 14s 8800K .......... .......... .......... .......... .......... 76% 485K 14s 8850K .......... .......... .......... .......... .......... 76% 240K 14s 8900K .......... .......... .......... .......... .......... 77% 148K 13s 8950K .......... .......... .......... .......... .......... 77% 188K 13s 9000K .......... .......... .......... .......... .......... 78% 61.4K 13s 9050K .......... .......... .......... .......... .......... 78% 108K 13s 9100K .......... .......... .......... .......... .......... 78% 26.2K 13s 9150K .......... .......... .......... .......... .......... 79% 728K 13s 9200K .......... .......... .......... .......... .......... 79% 33.3K 13s 9250K .......... .......... .......... .......... .......... 80% 58.8K 13s 9300K .......... .......... .......... .......... .......... 80% 569K 12s 9350K .......... .......... .......... .......... .......... 81% 398K 12s 9400K .......... .......... .......... .......... .......... 81% 3.09M 12s 9450K .......... .......... .......... .......... .......... 81% 2.02M 11s 9500K .......... .......... .......... .......... .......... 82% 1.04M 11s 9550K .......... .......... .......... .......... .......... 82% 910K 11s 9600K .......... .......... .......... .......... .......... 83% 165K 10s 9650K .......... .......... .......... .......... .......... 83% 188K 10s 9700K .......... .......... .......... .......... .......... 84% 465K 10s 9750K .......... .......... .......... .......... .......... 84% 534K 10s 9800K .......... .......... .......... .......... .......... 84% 232K 9s 9850K .......... .......... .......... .......... .......... 85% 210K 9s 9900K .......... .......... .......... .......... .......... 85% 198K 9s 9950K .......... .......... .......... .......... .......... 86% 111K 9s 10000K .......... .......... .......... .......... .......... 86% 679K 8s 10050K .......... .......... .......... .......... .......... 87% 253K 8s 10100K .......... .......... .......... .......... .......... 87% 66.8K 8s 10150K .......... .......... .......... .......... .......... 87% 17.2K 8s 10200K .......... .......... .......... .......... .......... 88% 414K 8s 10250K .......... .......... .......... .......... .......... 88% 135K 7s 10300K .......... .......... .......... .......... .......... 89% 301K 7s 10350K .......... .......... .......... .......... .......... 89% 20.0K 7s 10400K .......... .......... .......... .......... .......... 90% 19.3M 7s 10450K .......... .......... .......... .......... .......... 90% 9.21M 6s 10500K .......... .......... .......... .......... .......... 90% 15.6M 6s 10550K .......... .......... .......... .......... .......... 91% 14.5M 6s 10600K .......... .......... .......... .......... .......... 91% 13.6M 5s 10650K .......... .......... .......... .......... .......... 92% 12.0M 5s 10700K .......... .......... .......... .......... .......... 92% 16.7M 5s 10750K .......... .......... .......... .......... .......... 93% 23.3M 4s 10800K .......... .......... .......... .......... .......... 93% 19.6M 4s 10850K .......... .......... .......... .......... .......... 93% 15.2M 4s 10900K .......... .......... .......... .......... .......... 94% 29.5M 4s 10950K .......... .......... .......... .......... .......... 94% 32.1M 3s 11000K .......... .......... .......... .......... .......... 95% 27.5M 3s 11050K .......... .......... .......... .......... .......... 95% 22.5M 3s 11100K .......... .......... .......... .......... .......... 96% 28.8M 2s 11150K .......... .......... .......... .......... .......... 96% 30.9M 2s 11200K .......... .......... .......... .......... .......... 97% 24.2M 2s 11250K .......... .......... .......... .......... .......... 97% 17.7M 2s 11300K .......... .......... .......... .......... .......... 97% 22.3M 1s 11350K .......... .......... .......... .......... .......... 98% 25.6M 1s 11400K .......... .......... .......... .......... .......... 98% 31.1M 1s 11450K .......... .......... .......... .......... .......... 99% 20.4M 1s 11500K .......... .......... .......... .......... .......... 99% 31.2M 0s 11550K .......... .......... .......... .......... ...... 100% 2.31M=61s 2018-12-05 21:34:34 (192 KB/s) - ‘primer-dataset.json’ saved [11874761/11874761] 2018-12-05T21:34:35.010+0000 connected to: localhost 2018-12-05T21:34:35.010+0000 dropping: test.restaurants 2018-12-05T21:34:37.969+0000 imported 25359 documents ###Markdown Change the variable `collection` to refer to the new collection `restaurants`, and inspect the general format of the data by adding the code below to find the first record of the collection: ###Code # YOUR CODE HERE collection = db.restaurants collection.find_one() ###Output _____no_output_____ ###Markdown We saw the [`collection.find()`](https://api.mongodb.com/python/current/api/pymongo/collection.htmlpymongo.collection.Collection.find) function earlier to return all the documents we inserted into our `test` collection. Without any arguments, `find()` will return a cursor of all the available documents from in the collection. To refine queries, however, the search can be filtered by the addition of a first parameter.The `filter` parameter is a dict, which searches for the documents where `key` = `value` where the dict is of the form `{key: value}`. For example, to find all bakeries in the city, we would do the following query: **WARNING** Unlike the Mongo command line interface, if you try and print the output of a `find()` query, it will continue to output all results until it has finished. This can cause the browser to crash, particularly if it is a particularly large query set.Using `find().count()` is a useful way of checking how many a result will return, and `find_one()` to see the general structure of a result. If you use `find()`, make sure you either include the `limit` argument, or have a counter or other condition to break out of your printing loop! ###Code collection.find({'cuisine': 'Bakery'}).limit(5) ###Output _____no_output_____ ###Markdown Noted, count() is deprecated in the MongoDb drivers compatible with the 4.0features, as a result, we should use countDocuments() in the following exercises. (for more information, check https://docs.mongodb.com/manual/reference/method/db.collection.count/ and http://api.mongodb.com/python/current/changelog.html) ###Code collection.count_documents({'cuisine': 'Bakery'}) ###Output _____no_output_____ ###Markdown A filter can have as many conditions as you like, and will assume that you are using an AND condition, unless you specify otherwise (as below). In the cell below, write a query to return the number/count of all the establishments with a cuisine of `Hamburgers` in the borough of Manhattan. ###Code # YOUR CODE HERE # All establishments with: # * a cuisine of 'Hamburgers' # * in the borough of 'Manhattan collection.count_documents({'cuisine': 'Hamburgers', 'borough': 'Manhattan'}) collection.distinct('cuisine') collection.distinct('coord') collection.find({'street': 'Morris Park Ave'}) collection.count_documents({'street': "Morris"+"\000"+"Park"+"\000"+"Ave"}) from pprint import pprint cursor=collection.find({'street': 'Morris Park Ave'}) for c in cursor: pprint(c) collection.count_documents({'borough':'Bronx'}) ###Output _____no_output_____ ###Markdown Sub-documentsA valid JSON style "document" can have another JSON document inside it. To access these, we use the "dot" notation to access them. For example, to get all the restaurants in a certain zipcode, you would run code as follows: ###Code from pprint import pprint cursor = collection.find({'address.zipcode': '10462'}, limit=5) for c in cursor: pprint(c) ###Output _____no_output_____ ###Markdown OperatorsMongoDB has a series of [operators](https://docs.mongodb.com/manual/reference/operator/query/) which allow us to do more sophisticated filters on our queries. There are too many to go into individually, but we will look at a few important ones. The specific syntax varies depending on the operator, so it isn't possible to give a general rule, but we will go over a few examples here. Make sure you check the [documentation](https://docs.mongodb.com/manual/reference/operator/query/) for use on each one. [\$or](https://docs.mongodb.com/manual/reference/operator/query/or/op._S_or)Performs a logical **OR** operation on all the key/value pairs in a list, as in the code below: ###Code filter = {"$or": [{"cuisine": "Polynesian"}, {"cuisine": "Hawaiian"}]} for f in collection.find(filter): pprint(f) ###Output _____no_output_____ ###Markdown [`$regex`](https://docs.mongodb.com/manual/reference/operator/query/regex/op._S_regex)The `$regex` operator searches for a regular expression on a particular field. Within the filter field, the named field (a key) takes a dict as a value. For example, to search for all restaurants which start with the word "Pretzel" in the title you can do the following: ###Code filter = {"name": {"$regex": '^Pretzel'}} collection.count_documents(filter) ###Output _____no_output_____ ###Markdown There are other ways to use regular expressions in PyMongo, you can use the [`re`](https://docs.python.org/3/library/re.html) module in Python. In Mongo itself, you can use the following syntax: The simplest is to enclose the regular expression inside `/` characters, as in `{"name": /^Pretzel/}`, but that doesn't work properly in PyMongo.Using the `$regex` operator, find all restaurants which end in "Bar" in the borough of Brooklyn.HINT: The regex character for the end of a string is `$` ###Code # YOUR CODE HERE ###Output _____no_output_____ ###Markdown [`$gt`](https://docs.mongodb.com/manual/reference/operator/query/gt/op._S_gt)The `$gt` operator is a comparison between two values where one is greater than the other. For example, consider this code which finds restaurants which have had a score of more than 15: ###Code filter = {'grades.score': {'$gt': 12}} collection.count_documents(filter) ###Output _____no_output_____ ###Markdown Using one of the other comparison operators, find all restaurants which had a grade awarded on the 15 December 2012. You'll need to create a [`datetime`](https://docs.python.org/2/library/datetime.htmldatetime-objects) object in Python. ###Code # YOUR CODE HERE ###Output _____no_output_____ ###Markdown Organising outputSo far, we have seen the two of the arguments in the `find()` and related functions. The `filter` which allows us to select the criteria for documents in the collection, and the `limit` to limit the amount of results. You should read the documentation fully about the function in your own time, but for now, we will go over two other arguments which are for organising output: field selection, and sorting.The field selection or `projection` argument is the argument after the \[optional\] filter, and is either:* A list of fields to include (plus \_id)* A dict of fields with True/False to includeFor example, to display only the name of the restaurant: ###Code filter = {'cuisine': 'Brazilian'} fields = {'_id': False, 'name': True} collection.find_one(filter, fields) ###Output _____no_output_____ ###Markdown The sort argument is a dict object of field names as keys, and directions. This can be done either as a named parameter when calling `find()`, or as a function in its own right [`sort()`](https://api.mongodb.com/python/current/api/pymongo/cursor.htmlpymongo.cursor.Cursor.sort)For example, to sort in alphabetical order, consider the following code: ###Code import pymongo # The ASCENDING and DESCENDING constants have values of 1 (ASCENDING) and -1 (DESCENDING) sort = [('name', pymongo.ASCENDING)] for d in collection.find(filter, projection=fields, sort=sort): pprint(d) ###Output _____no_output_____ ###Markdown MongoDB Aggregation FrameworkThe most common usage for the aggregation framework is to perform group operations such as sum, count or average. The framework works as a pipeline, with a series of different stages where the data are transformed in each one.At its simplest, this can be used to obtain output like min, max, count, avg on a collection as follows: ###Code group = { '$group': { '_id': None, 'size': {'$sum': 1}, 'min': {'$min': '$restaurant_id'}, 'max': {'$max': '$restaurant_id'} } } cursor = collection.aggregate([group]) for c in cursor: print(c) ###Output _____no_output_____ ###Markdown Note that it has an `$_id: None` key/value pair in it. It is compulsory for a `$group` pipeline to have one, and it indicates what it is grouping by. In this case, we haven't grouped it at all, however it can also be used for more complex output where documents are grouped according to a field. Aggregation exampleConsider this example, of finding the breakdown of how many of each type of restaurant there is in the Bronx. We would need to go through the following stages:- Identify restaurants which are in the Bronx- Group the restaurants by type to get the count- Sort the results in a sensible wayThe code to perform this query is below: ###Code # Restrict the results to only establishments in the Bronx. # '$match' indicates the stage in the pipeline, and the dictionary is the same as using with find() match = { "$match": {"borough": "Bronx"} } # $group indicates the stage in the pipeline # _id is the field to perform the operation on (like SQL GROUP BY) # count is the name of the field that the result will be in # $sum is the counting operation, and the value 1 is how many to count each time group = { '$group': {'_id': '$cuisine', 'count': {'$sum': 1}} } # $sort indicates the position in the pipeline # count is the field to sort by, and -1 means to sort in descending order sort = { '$sort': {'count': pymongo.DESCENDING} } cursor = collection.aggregate([match, group, sort]) for c in cursor: print(c) ###Output _____no_output_____ ###Markdown This is a simple query, which shows some of the basic stages of the aggregation pipeline. It can be improved as follows:* We can change the name of the `_id` in the output back to `cuisine` using the `$project` stage* We can change the order of the output to be sorted in alphabetical order as well* We can limit the results to include results only with a count of 20 or moreImplement those stages in the cell below ###Code # YOUR CODE HERE pipeline = [match, group] #More code here... cursor = collection.aggregate(pipeline) for c in cursor: print(c) # YOUR CODE HERE FOR sort pipeline.append(sort) cursor = collection.aggregate(pipeline) for c in cursor: pprint(c) # YOUR CODE HERE FOR `count` > 20 cursor = collection.aggregate(pipeline) for c in cursor: pprint(c) ###Output _____no_output_____ ###Markdown ChallengeHow would you work out the percentage of each type of cuisine out of all selected restaurants? ###Code # YOUR CODE HERE... ###Output _____no_output_____
ML_HW#3/Question8.ipynb
###Markdown Dataset prepratation ###Code from PIL import Image def rgb_mean(name, label): image = Image.open(name) rChannel = 0 bChannel = 0 gChannel = 0 count = 0 for x in range(image.width): for y in range(image.height): count += 1 rChannel += image.getpixel((x,y))[0] bChannel += image.getpixel((x,y))[2] rChannel = rChannel / count bChannel = bChannel / count return { "red": rChannel, "blue": bChannel, "label": label } PATH = './Q9_Dataset/Images/' dataset = [rgb_mean(PATH + f"c{i}.jpg", 0) for i in range(1, 66)] dataset.extend(rgb_mean(PATH + f"m{i}.jpg", 1) for i in range(1, 58)) import pandas as pd dataset = pd.DataFrame(dataset) dataset.head() X, y = dataset.drop(columns=["label"]), dataset["label"] X_chelsea = dataset[dataset['label'] == 0].drop(columns=["label"]) X_manchester = dataset[dataset['label'] == 1].drop(columns=["label"]) X_chelsea.head() X_manchester.head() ###Output _____no_output_____ ###Markdown Training Guassian Mixture Models ###Code from sklearn.mixture import GaussianMixture GMM_chelsea = GaussianMixture(n_components=2) GMM_chelsea.fit(X_chelsea) from sklearn.mixture import GaussianMixture GMM_manchester = GaussianMixture(n_components=2) GMM_manchester.fit(X_manchester) import numpy as np from matplotlib.patches import Ellipse def draw_ellipse(position, covariance, ax=None, **kwargs): ax = ax or plt.gca() if covariance.shape == (2, 2): U, s, Vt = np.linalg.svd(covariance) angle = np.degrees(np.arctan2(U[1, 0], U[0, 0])) width, height = 2 * np.sqrt(s) else: angle = 0 width, height = 2 * np.sqrt(covariance) for nsig in range(1, 4): ax.add_patch(Ellipse(position, nsig * width, nsig * height, angle, **kwargs)) import matplotlib.pyplot as plt ax = plt.gca() ax.scatter(X.iloc[:, 0], X.iloc[:, 1], c=y, s=40, cmap='viridis') w_factor_chelsea = 0.2 / GMM_chelsea.weights_.max() w_factor_manchester = 0.2 / GMM_manchester.weights_.max() for pos, covar, w in zip(GMM_chelsea.means_, GMM_chelsea.covariances_, GMM_chelsea.weights_): draw_ellipse(pos, covar, alpha=w * w_factor_chelsea) for pos, covar, w in zip(GMM_manchester.means_, GMM_manchester.covariances_, GMM_manchester.weights_): draw_ellipse(pos, covar, alpha=w * w_factor_manchester) n_components = np.arange(1, 31) BIC = np.zeros(n_components.shape) AIC = np.zeros(n_components.shape) for i, n in enumerate(n_components): GMM = GaussianMixture(n_components=n) GMM.fit(X_chelsea) AIC[i] = GMM.aic(X_chelsea) BIC[i] = GMM.bic(X_chelsea) plt.plot(n_components, AIC, 'b', label='aic') plt.plot(n_components, BIC, 'r', label='bic') plt.title("Chelsea") plt.legend() plt.show() n_components = np.arange(1, 31) BIC = np.zeros(n_components.shape) AIC = np.zeros(n_components.shape) for i, n in enumerate(n_components): GMM = GaussianMixture(n_components=n) GMM.fit(X_manchester) AIC[i] = GMM.aic(X_manchester) BIC[i] = GMM.bic(X_manchester) plt.plot(n_components, AIC, 'b', label='aic') plt.plot(n_components, BIC, 'r', label='bic') plt.title("Manchester") plt.legend() plt.show() values = (np.array(AIC) + np.array(BIC)) / 2 index_min = np.argmin(values) print(index_min) ###Output 27
examples/notebooks/append_bands_example.ipynb
###Markdown In this example we initially create a single band image, then append two more. ###Code # data dimensions dims = (1000, 1000) # random data data = numpy.random.ranf(dims) dtype = data.dtype.name # define a single output band and add other bands later kwargs = {'width': dims[1], 'height': dims[0], 'count': 1, 'compression': 4, 'chunks': (100, 100), 'blocksize': 100, 'dtype': dtype} with kea.open('append-bands-example.kea', 'w', **kwargs) as src: src.write(data, 1) # random data data = numpy.random.ranf(dims) # add a new band to contain the segments data src.add_image_band(dtype=dtype, chunks=kwargs['chunks'], blocksize=kwargs['blocksize'], compression=6, band_name='Add One') # write the data src.write(data, 2) # random data data = numpy.random.ranf(dims) # add a new band to contain the segments data src.add_image_band(dtype=dtype, chunks=kwargs['chunks'], blocksize=kwargs['blocksize'], compression=1, band_name='Then Another') # write the data src.write(data, 3) ###Output _____no_output_____
L3/L3-A00354777.ipynb
###Markdown **Development Exercises – L3** **Created by Ramses Alexander Coraspe Valdez** **Created on March 2, 2020** **Right - Bicep**> **Right** - Are the results right?> **B** - are all the boundary conditions correct?> **I** - can you check the inverse relationships?> **C** - can you cross-check results using other means?> **E** - can you force error conditions to happen?> **P** - are performance characteristics within bounds? 16. Given the math.ceil function- Define a set of unit test cases that exercise the function 17. Given the math.factorial function- Define a set of test cases that exercise the function 18. Given the math.pow function- Define a set of test cases that exercise the function 20. Implement a class that manages a directory that is saved in a text file. The data saved includes:- a. Name- b. Email- c. Age- d. Country of OriginThe class should have capabilities to:- Add new record- Delete a record- Look for a record by mail and age- List on screen all records ###Code import math import unittest import csv class directory: def __init__(self, n, e, a, c): self.Name= n self.Email = e self.Age = a self.Country= c class ManageDirectory: def __init__(self, filename): self.myList = []; self.myFile= filename; def load_from_file(self): li = []; with open(self.myFile) as f: reader = csv.reader(f) data = [r for r in reader] data.pop(0); for r in data: li.append(directory(r[0], r[1], r[2], r[3])); self.myList = li; def saveToCSVFile(self): with open(self.myFile,'w',newline='') as csvfile: writer = csv.writer(csvfile) writer.writerow(['Name', 'Email', 'Age', 'Country']) for r in self.myList: writer.writerow([r.Name, r.Email, r.Age, r.Country]) def add(self, e): if e is None: return False try: self.myList.append(e); li.saveToCSVFile(); return True except: return False def remove(self, i): if (i<=1): return False try: self.myList.pop(i-1); li.saveToCSVFile(); return True except: return False def lookBy_email_age(self, e, a): match=[]; for r in self.myList: if((e in r.Email) and (a== r.Age)): match.append(r) return match; def show_list(self): return self.myList; li = ManageDirectory('test.csv'); ##if the file already contains data you can use this method ####################### li.load_from_file(); ####################### # If there is no data in the file or it does not exist you can add records to the file in this way li.add(directory("Ram1", "[email protected]", "3", "Mexico")); li.add(directory("Ram2", "[email protected]", "2", "Mexico")); li.add(directory("Ram3", "[email protected]", "7", "Mexico")); li.add(directory("Ram4", "[email protected]", "5", "Mexico")); li.add(directory("Ram", "[email protected]", "5", "Mexico")); l= li.show_list() for row in l: print(row.Name, row.Email, row.Age, row.Country) print("----------Removing record 1--------------------") li.remove(1) l= li.show_list() for row in l: print(row.Name, row.Email, row.Age, row.Country) print("----------Searching record by email and age--------------------") res= li.lookBy_email_age('[email protected]', '5') for row in res: print(row.Name, row.Email, row.Age, row.Country) print("----------Showing all the records--------------------") l= li.show_list() for row in l: print(row.Name, row.Email, row.Age, row.Country) class My_tests(unittest.TestCase): li = ManageDirectory('test.csv'); def test_ceil_positive(self): res= math.ceil(2.25); self.assertEqual(3, res); def test_ceil_negative(self): res= math.ceil(-2.25); self.assertEqual(-2, res); def test_factorial_zero(self): res = math.factorial(0) self.assertEqual(1, res) def test_factorial(self): res = math.factorial(5) self.assertEqual(120, res) def test_pow(self): res = math.pow(2,2) self.assertEqual(4, res) def test_adding_record(self): res= li.add(directory('testname','[email protected]','20','Mex')); self.assertTrue(res); def test_adding_record2(self): res= li.add(directory('testname2','[email protected]','25','USA')); self.assertTrue(res); def test_adding_record3(self): res= li.add(directory('testname3','[email protected]','22','Arg')); self.assertTrue(res); def test_adding_record_fail(self): res= li.add(None); self.assertFalse(res); def test_removing_record(self): res= li.remove(2) self.assertTrue(res); def test_removing_record_fail(self): res= li.remove(0) self.assertFalse(res); def test_searching_record(self): res= li.lookBy_email_age('[email protected]', '22') self.assertEqual(True, len(res)>0) def test_searching_no_record(self): res= li.lookBy_email_age('[email protected]', '22') self.assertEqual(False, len(res)>0) if __name__ == '__main__': unittest.main(argv=['first-arg-is-ignored'], exit=False) ###Output ............. ---------------------------------------------------------------------- Ran 13 tests in 0.016s OK
Automate_Mouse_Events_using_pynput.ipynb
###Markdown Automate Mouse Events using pynput Explained in Minutes 8 - ASA Learning ###Code # Import pynput from pynput.mouse import Button, Controller, Listener asa_mouse= Controller() # Get the current mouse position (x,y) asa_mouse.position # Move to your desired position using (x,y) asa_mouse.position = (100,1100) # Move mouse by pixels asa_mouse.move(100,-100) # Press and Release asa_mouse.press(Button.right) asa_mouse.release(Button.right) # Perform Mouse clicks asa_mouse.click(Button.left,1) # Make your mouse click at desired position asa_mouse.position = (561,521) asa_mouse.click(Button.left,1) # Funtion to get the position and button def on_click(x,y,button,pressed): if pressed: print("Clicked at", x,",", y, button, pressed) listener.stop() # listens to your mouse clicks with Listener (on_click=on_click) as listener: listener.join() ###Output Clicked at 565 , 521 Button.left True
ParmiSomigliAdUnSempliceEsempio.ipynb
###Markdown Esistono molti modi diversi di approcciarsi alla risoluzione di un problema. In base alla propria astuzia, alle proprie conoscenze algoritmiche, matematiche, statistiche, al proprio buonsenso, è possibile elaborare strategie sempre più raffinate. Oggi invece siamo pigri. Supponiamo di essere in assoluto il più pigro studente che sia mai esistito. E supponiamo che il problema che dobbiamo risolvere sia imparare un frammento dell’Amleto di Shakespeare. Il frammento in questione è una semplice frase di Amleto:Parmi somigli ad una donnolaDato che siamo mostruosamente pigri siamo stati affiancati ad un insegnante, profumatamente pagato per aiutarci a svolgere il nostro compito ma purtroppo altrettanto pigro.Sforzarsi di imparare la frase che ci è stata assegnata è fuori questione. Perché non cominciare provando a buttare là frasi a caso e vedere come va? Alla fine se delle scimmie che premono tasti a caso su una macchina da scrivere possono riscrivere tutte le opere di Shakespeare perché non possiamo farcela noi con una sola frase?Una normale persona probabilmente metterebbe insieme delle parole che l’autore potrebbe aver usato ma non vogliamo dare alle scimmie nostre rivali alcun handicap e quindi cominciamo a dire lettere a caso.Nello specifico selezioniamo un numero di lettere casuali, pari alla lunghezza della frase che vogliamo imparare e lo proponiamo al nostro insegnante, il quale, pigro quanto noi, si limita a dirci quante lettere abbiamo azzeccato.Quello che facciamo in pratica è: ###Code import random import string def random_char(): return random.choice(string.ascii_lowercase + ' ') def genera_frase(): return [random_char() for n in range(0,len(amleto))] amleto = list('parmi somigli ad una donnola') print("target= '"+''.join(amleto)+"'") frase = genera_frase() print(str(frase)+" = '"+''.join(frase)+"'") ###Output target= 'parmi somigli ad una donnola' ['c', 'f', 'x', 'x', 'z', 'g', 'w', 'y', 'i', 'u', 't', ' ', 'o', 'c', 'h', 'o', 'k', 'p', 'a', 'i', 'y', 'i', 'y', 'r', 'g', 'x', 's', 'm'] = 'cfxxzgwyiut ochokpaiyiyrgxsm' ###Markdown E poi proporre la nostra frase all’insegnante il quale si limita a: ###Code def valuta( candidato ): azzeccate = 0 for (lettera1, lettera2) in zip(candidato, amleto): if lettera1 == lettera2: azzeccate = azzeccate + 1 return azzeccate risposta = valuta(frase) print(risposta) ###Output 0 ###Markdown Ben presto ci accorgiamo di quanta pazienza devono avere le scimmie, dopo 100000 tentativi (saremo pur pigri ma anche molto tenaci) abbiamo azzeccato appena 8 lettere su 28:“vfgoyflcmorpiisd untmsonqcji”“parmi somigli ad una donnola”Un risultato non proprio stellare.Abbiamo 28 lettere da azzeccare, per ognuna abbiamo 27 scelte ('abcdefghijklmnopqrstuvwxyz '), il che vuol dire che la nostra probabilità di azzeccare tirando a caso è una su $27^{28}$ cioè circa:0.00000000000000000000000000000000000000008Mentre proponiamo la 1000001-esima frase pensiamo tra noi che sarebbe bello non dover ricominciare da capo ogni volta, che magari ora che abbiamo una frase con 8 lettere corrette sarebbe bello poter migliorarla invece di buttarla via e ricominciare. Se solo il nostro insegnante fosse così gentile da dirci quali sono le lettere che abbiamo azzeccato oltre che quante, finiremmo in un attimo.Vabbè, cerchiamo comunque di provarci, invece di buttare via la nostra frase ogni volta proviamo a tenerla e cambiare una lettera cercando di ottenere risultati sempre migliori: ###Code def altera(vecchia_frase): posizione_da_cambiare = random.choice(range(0,len(vecchia_frase))) lettera_da_cambiare = vecchia_frase[posizione_da_cambiare] alternative = (string.ascii_lowercase + ' ').replace(lettera_da_cambiare,'') nuova_frase = list(vecchia_frase) nuova_frase[posizione_da_cambiare] = random.choice(alternative) return nuova_frase i=0 miglior_frase = [random_char() for n in range(0,len(amleto))] miglior_risultato = valuta(miglior_frase) while(miglior_risultato < len(amleto)): frase = altera(miglior_frase) risposta = valuta(frase) i = i+1 if risposta > miglior_risultato: miglior_risultato = risposta miglior_frase = frase print(str(i)+':\t"'+''.join(miglior_frase)+'"\t'+str(miglior_risultato)) ###Output 38: "ixblkmshfresrvycedrmvdr rgnj" 2 71: "ixblkmshfresrvycedravdr rgnj" 3 99: "ixblkmshfresrvycednavdr rgnj" 4 140: "ixblkmshfrgsrvycednavdr rgnj" 5 143: "ixblkmshfrglrvycednavdr rgnj" 6 169: "ixblk shfrglrvycednavdr rgnj" 7 207: "ixblk shfrglr ycednavdr rgnj" 8 292: "iablk shfrglr ycednavdr rgnj" 9 370: "iablk shmrglr ycednavdr rgnj" 10 421: "iablk shmrglr ycednavdr ngnj" 11 488: "iablk shmiglr ycednavdr ngnj" 12 509: "iablk shmiglr ycednavdr nglj" 13 590: "pablk shmiglr ycednavdr nglj" 14 650: "pablk shmiglr yceunavdr nglj" 15 738: "pablk shmiglr yceunavdrnnglj" 16 796: "pablk somiglr yceunavdrnnglj" 17 815: "pablk somiglr yceunavdonnglj" 18 893: "parlk somiglr yceunavdonnglj" 19 1033: "parlk somiglr yceunavdonngla" 20 1237: "parlk somiglr yceuna donngla" 21 1280: "parlk somigli yceuna donngla" 22 1297: "parmk somigli yceuna donngla" 23 1358: "parmk somigli aceuna donngla" 24 1712: "parmk somigli ac una donngla" 25 1982: "parmk somigli ad una donngla" 26 2466: "parmk somigli ad una donnola" 27 2476: "parmi somigli ad una donnola" 28 ###Markdown Con questa semplice modifica siamo in grado di imparare la frase corretta in appena qualche migliaio di tentativi.Circa tremila tentativi è decisamente un risultato molto migliore di prima! Certo che però provarle una alla volta è un po’ noioso, perché non proviamo invece a proporne di più allo stesso tempo? Proviamo a proporne 100 in un colpo solo: ###Code def migliore(candidati): ordinati = sorted(candidati,key=lambda tup: tup[1], reverse=True) return ordinati[0] def genera_candidati(num_candidati): candidati = [] for i in range(0,num_candidati): tmp_frase = genera_frase() tmp_risposta = valuta(tmp_frase) candidati.append((tmp_frase,tmp_risposta)) return candidati candidati = genera_candidati(100) i=0 miglior_frase, miglior_risultato = migliore(candidati) while(miglior_risultato < len(amleto)): i = i+1 for n in range(0,len(candidati)): frase,risposta = candidati[n] nuova_frase = altera(frase) nuova_risposta = valuta(nuova_frase) if nuova_risposta > risposta: candidati[n] = (nuova_frase,nuova_risposta) if nuova_risposta > miglior_risultato: miglior_risultato = nuova_risposta miglior_frase = nuova_frase print(str(i)+':\t"'+''.join(miglior_frase)+'"\t'+str(miglior_risultato)) ###Output 15: "xorsdpsecxrln cpduuqbzqnhfie" 6 42: "xorsdpsocxrln cpduuqbzqnhfie" 7 65: "xorsdpsocxrln cp uuqbzqnhfie" 8 72: "xorsdpsocirln cp uuqbzqnhfie" 9 83: "xorsdpsocirln cp uuq zqnhfie" 10 107: "xorsdpsocirln cp uuq zqnhfle" 11 129: "xorsdpsocirln cp uua zqnhfle" 12 175: "xorsipsocirln cp uua zqnhfle" 13 204: "xorsipsocirln cp uua zqnnfle" 14 258: "xorsipsocirln cp uua zqnnole" 15 261: "xorsipsocigln cp uua zqnnole" 16 320: "porsipsocigln cp uua zqnnole" 17 429: "pavyi smmigli gs orj gonnoba" 18 438: "pavyi smmigli gs ora gonnoba" 19 439: "pavyi smmigli gs ura gonnoba" 20 566: "pavyi smmigli gs ura gonnola" 21 567: "paryi smmigli gs ura gonnola" 22 710: "padmi somrgli sm una donnnla" 23 754: "parjv somigli ao una dondola" 24 835: "padmi somigli sd una donnnla" 25 999: "padmi somigli sd una donnola" 26 1122: "par i somigli ad una donnola" 27 1400: "parmi somigli ad una donnola" 28 ###Markdown Wow ora sono riuscito a scendere attorno al migliaio, ma ho davvero guadagnato qualcosa in termini di numero di tentativi necessari? Alla fine ora faccio 100 tentativi alla volta, perchè non ci metto 100 volte meno? In effetti è sleale contare il numero di volte che passo i miei tentativi all’insegnante, dovrei contare invece quante volte l’insegnante valuta i miei tentativi!Vediamo un po’: ###Code def valuta( candidato ): global valutazioni valutazioni = valutazioni + 1 azzeccate = 0 for (lettera1, lettera2) in zip(candidato, amleto): if lettera1 == lettera2: azzeccate = azzeccate + 1 return azzeccate def prova_piu_frasi_insieme(num_frasi): global valutazioni valutazioni = 0 i=0 candidati = genera_candidati(num_frasi) miglior_frase, miglior_risultato = migliore(candidati) while(miglior_risultato < len(amleto)): i = i+1 for n in range(0,len(candidati)): frase,risposta = candidati[n] nuova_frase = altera(frase) nuova_risposta = valuta(nuova_frase) if nuova_risposta > risposta: candidati[n] = (nuova_frase,nuova_risposta) if nuova_risposta > miglior_risultato: miglior_risultato = nuova_risposta miglior_frase = nuova_frase print(str(i)+':\t"'+''.join(miglior_frase)+'"\t'+str(miglior_risultato)) print('Valutazioni totali: '+str(valutazioni)) prova_piu_frasi_insieme(100) ###Output 4: "ahmliqwqfiwdbpjvbunu hier va" 6 9: "arrso vyrghrpuntumta econolx" 7 10: "arrso vyrggrpuntumta econolx" 8 36: "arrso vyrggrpuatumta econolx" 9 69: "arrso vyrggrpuat mta econolx" 10 103: "arrso vyrggrpuad mta econolx" 11 150: "lsx i zflpgfuxme nnajdennola" 12 177: "psx i zflpgfuxme nnajdennola" 13 180: "psx i zflpgfuxmd nnajdennola" 14 270: "pzmmu soliglmpcg unqwxopnoha" 15 300: "pbrmgtsofeglcba anc ronno a" 16 349: "pbrmgtsofeglcba anc donno a" 17 366: "paoii svmiwbxbat uns doncola" 18 387: "paoii svmiwbxbat una doncola" 19 388: "paoii svmiwbx at una doncola" 20 419: "paoii svmiwbx at una donnola" 21 430: "paoii svmiwbi at una donnola" 22 577: "phrmi lomigle ad una sonlola" 23 654: "paomi svmigbi at una donnola" 24 820: "phrmi somigle ad una donlola" 25 958: "varmi somigli adluna donnola" 26 965: "varmi somigli ad una donnola" 27 1141: "parmi somigli ad una donnola" 28 Valutazioni totali: 114200 ###Markdown Diamine! Sì, è vero che ci metto circa un terzo delle iterazioni adesso ma quel poveretto del mio insegnante deve valutare uno sproposito di tentativi in più! circa 130000! Mentre prima quando gli proponevo una frase alla volta ne bastavano circa 3000. E dal momento che devo aspettare che lui abbia finito prima di poter provare nuove frasi mi sto tirando la zappa sui piedi!Inoltre cos’è questo macello nei miei tentativi inziali?Come possono cambiare così tanto l’uno dall’altro? Io modifico solo una lettera per volta! Aspetta… ah già, dal momento che ho molte frasi contemporaneamente può essere che alcune di loro abbiano trovato alcune lettere corrette ma che siano state battute in velocità da altre alcune iterazioni dopo. Alla fine mi curo solo di chi è il miglior candidato, se per caso qualche suo rivale riesce a trovare anche solo una lettera in più il mio povero campione viene gettato nel dimenticatoio. Ma perchè sul finale le cose sembrano molto più “uniformi” come me le aspettavo?Mmmm… potrebbe essere che all’inizio fosse facile migliorare il proprio risultato dato che la maggior parte delle lettere erano sbagliate. Sul finale invece solo una o due lettere sono sbagliate quindi è difficile progredire, bisogna sia avere la fortuna di azzeccare la posizione giusta che la lettera mancante!Forse è meglio se do un occhio a cosa succede alle mie frasi oltre che al campione: ###Code import pprint pp = pprint.PrettyPrinter() def stampa_candidati(candidati): # candidati -> array di char, li trasformo in stringhe con ''.join(...) # [' ', 'x', 'p', 'l', 'f', … ,'d', 'z', 'h', 'f'] -> ' xplfrvvjjvnmzkovohltroudzhf' stringhe_e_valori = list(map(lambda x : (''.join(x[0]),x[1]), candidati)) # per comodità ordino le stringhe in base al numero di lettere corrette, decrescente stringhe_ordinate = sorted(stringhe_e_valori,key=lambda tup: tup[1], reverse=True) pp.pprint(stringhe_ordinate) stampa_candidati(genera_candidati(10)) ###Output [('xktlybaunjdoptpnkanfavqepofo', 2), ('upimoitniasy stjxduttgqiidpl', 1), ('nzcwjefayqbknovijemanawszint', 1), ('rqusswassibffzvjhdw enipiv p', 1), ('zsqilwb jamhibkslzaefzpkeeoc', 1), ('hqxmlcvvthuwjcwsxhiqgp tixif', 1), ('s bccheqrzmsjopfvtglhmzkwhlu', 1), ('zmlkolrgesdgyywjkrdldosse dw', 0), ('xzijjgdzxmudsdusfgpilbgvfmaw', 0), ('qyqlyvydapsfahrjsvmybpfhaw l', 0)] ###Markdown Proviamo a vedere cosa succede ai nostri candidati quando ne considero 10 alla volta: ###Code def prova_piu_frasi_insieme(num_frasi): global valutazioni valutazioni = 0 i=0 candidati = genera_candidati(num_frasi) miglior_frase, miglior_risultato = migliore(candidati) while(miglior_risultato < len(amleto)): i = i+1 for n in range(0,len(candidati)): frase,risposta = candidati[n] nuova_frase = altera(frase) nuova_risposta = valuta(nuova_frase) if nuova_risposta > risposta: candidati[n] = (nuova_frase,nuova_risposta) if nuova_risposta > miglior_risultato: miglior_risultato = nuova_risposta miglior_frase = nuova_frase print(str(i)+':\t"'+''.join(miglior_frase)+'"\t'+str(miglior_risultato)) stampa_candidati(candidati) print('Valutazioni totali: '+str(valutazioni)) prova_piu_frasi_insieme(10) ###Output 3: "vaolovbodpnei vcjiijidcfaqib" 5 [('vaolovbodpnei vcjiijidcfaqib', 5), (' pbczuemtkksjcvfwrvy kglalp', 2), ('bsdhrasaupoifdqpdwzr qnlczjl', 2), ('eocfi cznxdvexgbi lvscaaiqoq', 2), ('jkoamjeqgmfunjo cjnplagmyhq', 1), ('wmikitkmpkyyjsbtanmibpmgtqrk', 1), ('ogvktuph njgqftydseeawlnuhew', 1), ('kqwmzlaeuyrvhyhwgebte cmx gg', 1), ('tzwolmzhojqcpljqwpgkncfww dq', 0), ('ymkbbiewpulzfs jwfpskmtpiznu', 0)] 32: "varlovbodpnei vcjiijidcfaqib" 6 [('varlovbodpnei vcjiijidcfaqib', 6), (' pbmzuemtkksjcvfwrvy knlalp', 4), ('pqwmzlaeuyrlhyhwgebte cmx gg', 3), ('bsdhrasaupgifdqpdwzr qnlczjl', 3), ('jkoamjeqgmfun o cjnplagmyhq', 2), ('wmikitkmpiyyjsbtanmibpmgtqrk', 2), ('ogvktuph njgqftydseeawonuhew', 2), ('eocfi cznxdvexgbi lvscaaiqoq', 2), ('ymrbbiewpulzfs jwfpskmtpiznu', 1), ('tzwolmzhojqcpljqwpgkncfww dq', 0)] 40: "varlovbodpnei vcjiijidcfaqlb" 7 [('varlovbodpnei vcjiijidcfaqlb', 7), (' pbmzuemtkksjcvfwrvy knlalp', 4), ('pgvktuph njgqftydseeawonuhew', 3), ('pqwmzlaeuyrlhyhwgebte cmx gg', 3), ('bsdhrasaupgifdqpdwzr qnlczjl', 3), ('eocfi cznxdvexgbi nvscaaiqoq', 3), ('jkoamjeqgmfun o cjnplagmyhq', 2), ('wmikitkmpiyyjsbtanmibpmgtqrk', 2), ('ymrbbiewpulzfs jwfps mtpiznu', 2), ('tzwolmzhojqcpljqwpgkncfww dq', 0)] 43: "varlovbodpnei vcjiijidcfnqlb" 8 [('varlovbodpnei vcjiijidcfnqlb', 8), (' pbmzuemtkksjcvfwrvy knlalp', 4), ('pgvktuph njgqftydseeawonuhew', 3), ('pqwmzlaeuyrlhyhwgebte cmx gg', 3), ('bsdhrasaupgifdqpdwzr qnlczjl', 3), ('eocfi cznxdvexgbi nvscaaiqoq', 3), ('jkoamjeqgmfun o cjnplagmyhq', 2), ('wmikitkmpiyyjsbtanmibpmgtqrk', 2), ('ymrbbiewpulzfs jwfps mtpiznu', 2), ('tzwolmzhojqcpljqwpgkncfww dq', 0)] 75: "varlovbodpnei vc iijidcfnqlb" 9 [('varlovbodpnei vc iijidcfnqlb', 9), ('pqwmzlaeuyrlhyhwgente cmxogg', 5), ('wmikitkmpiyyisbtannibpmgtqrk', 4), ('pgvktuph njgqftydseeawonuoew', 4), (' pbmzuemtkksjcvfwrvy knlalp', 4), ('bsdhrasaupgifdqddwzr qnlczjl', 4), ('eocfi cznxdvixgbi nvscaaiqoq', 4), ('yarbbiewpulzfs jwfps mtpiznu', 3), ('jkoamjeqgmfun o cjnplagmyhq', 2), ('tzwolmzhojqcpljqwpgkncfww dq', 0)] 86: "varlovbodpnei vc iijidcfnolb" 10 [('varlovbodpnei vc iijidcfnolb', 10), ('pqwmzlseuyrlhyhwgente cmxogg', 6), (' pbmzuemtkksj vfwrvy knlalp', 5), ('wmikitkmpiyyisbtannibpmgtqrk', 4), ('pgvktuph njgqftydseeawonuoew', 4), ('bsdhrasaupgifdqddwzr qnlczjl', 4), ('eocfi cznxdvixgbi nvscaaiqoq', 4), ('yarbbiewpulzfs jwfps mtpiznu', 3), ('jkoamjeqgmfun o cjnplagmyhq', 2), ('tzwolmzhojqcpljqwpgkncfww dq', 0)] 89: "varlovbodinei vc iijidcfnolb" 11 [('varlovbodinei vc iijidcfnolb', 11), ('pqwmzlseuyrlhyhwgente cmxogg', 6), ('wmikitkmpiyyisbtannibpogtqrk', 5), (' pbmzuemtkksj vfwrvy knlalp', 5), ('bsdhrasampgifdqddwzr qnlczjl', 5), ('pgvktuph njgqftydseeawonuoew', 4), ('eocfi cznxdvixgbi nvscaaiqoq', 4), ('yarbbiewpulzfs jwfps mtpiznu', 3), ('jkoamjeqgmfun o cjnplagmyhq', 2), ('tzwolmzhojqcpljqwpgkncfwn dq', 1)] 129: "varlovbodinei vc iiaidcfnolb" 12 [('varlovbodinei vc iiaidcfnolb', 12), ('pqwmzlseuyrlhyhwgente cmxogg', 6), ('eocfi cznxdlixgbiunvscaaiqoq', 6), ('wmikitkmpiyyisbtannibpogtqrk', 5), ('pgvkiuph njgqftydseeawonuoew', 5), (' pbmzuemtkksj vfwrvy knlalp', 5), ('bsdhrasampgifdqddwzr qnlczjl', 5), ('jkoamjeqgmfun o cnnplagmyhq', 3), ('yarbbiewpulzfs jwfps mtpiznu', 3), ('tzwolmzhojqcpljqwpgkncfwn dq', 1)] 164: "varlovbodigei vc iiaidcfnolb" 13 [('varlovbodigei vc iiaidcfnolb', 13), ('wmikitkmpigyisbtannibpogtqrk', 6), ('pqwmzlseuyrlhyhwgente cmxogg', 6), ('bsdhrasampgifdqddwnr qnlczjl', 6), ('eocfi cznxdlixgbiunvscaaiqoq', 6), ('pgvkiuph njgqftydseeawonuoew', 5), (' pbmzuemtkksj vfwrvy knlalp', 5), ('jkoamjeqgmfun o cnnplagmyhq', 3), ('pzwolmzhojqcpljqwpgancfwn dq', 3), ('yarbbiewpulzfs jwfps mtpiznu', 3)] 165: "varlovbodigei vd iiaidcfnolb" 14 [('varlovbodigei vd iiaidcfnolb', 14), ('wmikitkmpigyisbtannibpogtqrk', 6), ('pqwmzlseuyrlhyhwgente cmxogg', 6), ('bsdhrasampgifdqddwnr qnlczjl', 6), ('eocfi cznxdlixgbiunvscaaiqoq', 6), ('pgvkiuph njgqftydseeawonuoew', 5), (' pbmzuemtkksj vfwrvy knlalp', 5), ('jkoamjeqgmfun o cnnplagmyhq', 3), ('pzwolmzhojqcpljqwpgancfwn dq', 3), ('yarbbiewpulzfs jwfps mtpiznu', 3)] 205: "parlovbodigei vd iiaidcfnolb" 15 [('parlovbodigei vd iiaidcfnolb', 15), ('pgrki ph njgqftydseeawonuoew', 7), (' pbmz emtkksj vfwrvy knlala', 7), ('eocfi cznxdlixgbiunv caaiqoq', 7), ('jkoamjeqgifui o unnplagmyhq', 6), ('wmikitkmpigyisbtannibpogtqrk', 6), ('pqwmzlseuyrlhyhwgente cmxogg', 6), ('bsdhrasampgifdqddwnr qnlczjl', 6), ('yarbbiswpulzfsajwfps mtpiznu', 5), ('pzwolmzhmjqcpljqwpgancfwn dq', 4)] 235: "parlovbodigei ad iiaidcfnolb" 16 [('parlovbodigei ad iiaidcfnolb', 16), ('jkoamjeqgigui od unnplagmyhq', 8), ('eorfi cznxdlixgbiunv caaiqoq', 8), ('wmrkitkmpigyisbtannibpogtqrk', 7), ('pgrki ph njgqftydseeawonuoew', 7), (' pbmz emtkksj vfwrvy knlala', 7), ('yarbbiswpulzfsadwfps mtpizlu', 7), ('bsdhrasampgifdqddwnr dnlczjl', 7), ('pzwolmzhmiqcpljqwpga cfwn dq', 6), ('pqwmzlseuyrlhyhwgente cmxogg', 6)] 351: "parlovbodigei ad iiaidcfnola" 17 [('parlovbodigei ad iiaidcfnola', 17), ('jkramjsqgigui od unnplonmyha', 13), ('yarbb swpigzfsad fns mtpizlu', 12), (' pbmz emtigsj vdwrvy knnala', 11), ('pzwol zomiqcpljd pga cfwnodq', 11), ('bsdhiasamigifdqddunr dnlczjl', 10), ('eormi cznxdlixgb unv caaiqoq', 10), ('wmrmitkmpigyisbtannibpogtork', 9), ('pqwmzlseuyrlhyhwgent cmnolg', 9), ('pgrki phmnjgqftydseeawonuoew', 8)] 448: "parlovbodigei ad inaidcfnola" 18 [('parlovbodigei ad inaidcfnola', 18), ('jkramjsqgigli od unnplonmoha', 15), ('parol zomiqcp jd pga cfwnolq', 15), ('badhi samiglfdqddunr dnlnzll', 15), ('yarbb swpigzfsad fns dtpizlu', 13), (' pbmz smtigsj vdwrvy knnala', 12), ('wmrmitkmpigyisbtannibdognork', 11), ('eormi conxdlixgb unv caaiqoq', 11), ('pgrmi phmnjgqftydseeawonuoew', 9), ('pqwmzlseuyrlhyhwgent cmnolg', 9)] 490: "parlo bodigei ad inaidcfnola" 19 [('parlo bodigei ad inaidcfnola', 19), ('jkramjsqgigli od unn lonmola', 17), ('parol zomiqlp jd pga cfwnola', 17), ('badhi samiglfdqddunr dnlnzll', 15), ('pmrmitkopigyisbtannibdognork', 13), (' pbmi smtigsj vdwrvy knnala', 13), ('yarbb swpigzfsad fns dtpizlu', 13), ('eormi conxdlixab unv caaiqoq', 12), ('pgrmi phmnjgqftydsee wonuoew', 10), ('pqwmilseuyrlhyhwgent cmnolg', 10)] 527: "parlo sodigei ad inaidcfnola" 20 [('parlo sodigei ad inaidcfnola', 20), ('parml somiqlp jd pga cfwnola', 19), ('pkramjsqgigli od unn lonmola', 18), ('badhi samiglfdqddunr dnlnzll', 15), ('yarbb swmigzfsad fns dtpizlu', 14), ('pmrmitkopigyisbtannibdognork', 13), (' pbmi smtigsj vdwrvy knnala', 13), ('eormi conxdli ab unv caaiqoq', 13), ('pqwmilsemyrlhyhwgent cmnolg', 11), ('pgrmi phmnjgqftydsee wonuoew', 10)] 597: "parli sodigei ad inaidcfnola" 21 [('parli sodigei ad inaidcfnola', 21), ('pkramjsogigli od unn lonnola', 20), ('parml somiqlp ad pga cfwnola', 20), ('yarbb swmigzfsad fns dtniola', 17), ('badhi samiglfdqddunr dnlnzll', 15), ('pmrmitkopigyisbtanni dognork', 14), ('eormi conxdli ab unv caaiooq', 14), (' pbmi smtigsj vdwrvy knnala', 13), ('pawmilsemyrlhyhwgent dcmnolg', 13), ('pgrmi phmnjgqftydsee wonuolw', 11)] 712: "pkrmmjsogigli od una lonnola" 22 [('pkrmmjsogigli od una lonnola', 22), ('parml somiqlp ad pna cfwnola', 21), ('parli sodigei ad inaidcfnola', 21), ('yarmb swmigzisad fna dtniola', 20), ('badhi somiglfdqddunr dnnnzll', 17), ('pmrmi kopigyisbdanni dognork', 16), ('parmilsemyrlh hdgent dcmnolg', 16), ('eormi sonxdli ab unv daaiooq', 16), ('pgrmi phmnjgqfty uee wonuola', 14), (' abmi smtigsj vdwrvy knnala', 14)] 753: "parli somigei ad inaidofnola" 23 [('parli somigei ad inaidofnola', 23), ('pkrmmjsogigli od una lonnola', 22), ('parml somiqlp ad pna cfwnola', 21), ('yarmb swmigzisad fna dtnnola', 21), ('badhi somiglfdqddunr dnnnzla', 18), ('pmrmi kopigyisbdanni donnork', 17), ('parmilsemyrlh adgent dcmnolg', 17), ('eormi sonxdli ab unv daaiooq', 16), ('pgrmi phmnjgifty uee wonuola', 15), (' abmi smtigsj vdwrvy knnala', 14)] 783: "parli somigei ad inaidonnola" 24 [('parli somigei ad inaidonnola', 24), ('pkrmijsogigli od una lonnola', 23), ('parml somiqli ad pna dfwnola', 23), ('yarmb swmigzisad fna dtnnola', 21), ('padhi somiglfdqddunr dnnnzla', 19), ('pmrmi kopigyisbdanni donnork', 17), ('parmilsemyrlh adgent dcmnolg', 17), ('pgrmi phmnjgifty uea wonuola', 16), ('eormi sonxdli ab unv daaiooq', 16), (' abmi smtigsj vdwuvy knnala', 15)] 952: "parml somigli ad una dfwnola" 25 [('parml somigli ad una dfwnola', 25), ('pkrmijsogigli od una donnola', 24), ('parli somigei ad inaidonnola', 24), ('parmb swmigzisad fna dtnnola', 22), ('padhi somiglfdqdduna donnzla', 21), ('parmilsemyrlh ad ent domnolg', 19), ('eormi somxgli ab unv daaiolq', 19), ('parmi pomnjgifty uea wonuola', 18), (' abmi sotigsj vdwuvy donnala', 18), ('pmrmi kopigyisbdanni donnork', 17)] 1096: "pkrmijsomigli ad una donnola" 26 [('pkrmijsomigli ad una donnola', 26), ('parml somigli ad una dfwnola', 25), ('parli somigei ad unaidonnola', 25), ('parmb swmigzi ad fna dtnnola', 23), ('parmilsemirli ad ent donnola', 23), ('padhi somiglfdqd una donnzla', 22), ('parmi pomijgi td uea wonuola', 21), ('eormi somigli ab una daaiolq', 21), (' armi sotigsj vdwuny donnala', 20), ('pmrmi sopigyisbdanna donnork', 19)] 1256: "pkrmi somigli ad una donnola" 27 [('pkrmi somigli ad una donnola', 27), ('parmi somiglj ad uny donnala', 25), ('parml somigli ad una dfwnola', 25), ('parli somigei ad unaidonnola', 25), ('parmi somiglfdqd una donnzla', 24), ('parmb swmigzi ad fna dtnnola', 23), ('parmilsemirli ad ent donnola', 23), ('parmi pomiggi td uea wonuola', 22), ('eormi somigli ab una daaiola', 22), ('pmrmi sopigyisbd nna donnora', 21)] 1560: "parmi somigli ad una donnola" 28 [('parmi somigli ad una donnola', 28), ('pkrmi somigli ad una donnola', 27), ('parmi somiglj ad uny donnola', 26), ('parmi somigli ad una dfwnola', 26), ('parmi somiglidqd una donnzla', 25), ('parmi pomiggi td una wonnola', 24), ('parmb swmigzi ad fna donnola', 24), ('parmilsemirli ad ena donnola', 24), ('eormi somigli ad una daniola', 24), ('pmrmi sopigyisbd nna donnora', 21)] Valutazioni totali: 15610 ###Markdown Eh sì è come pensavo, quello che era il mio campione ha fallito a trovare un miglioramento e quindi un suo rivale è passato in vantaggio!Ma perchè devono competere tra di loro! Io voglio solo trovare la frase che vuole l’insegnante, se collaborassero sarebbe molto più semplice...Posso far si che condividano le parti corrette che ognuno di loro ha trovato? Diamine se solo sapessi quali sono! Maledetto insegnante che mi dici solo quante lettere azzecco.Mmmm e se facessi mescolare tra di loro le varie frasi sperando che mettano insieme le parti corrette che hanno trovato? Potrei prendere due frasi a caso e costruirne una nuova prendendo lettere da una o l’altra. Sì, sembra una buona idea, alla fine se entrambe le frasi hanno trovato una lettera giusta non importa da chi pesco, la nuova frase avrà senz’altro quella lettera, almeno posso star tranquillo che non rovinerò le soluzioni che trovano! ###Code def mescola(frase1, frase2): nuova_frase = [] for i in range(0,len(frase1[0])): if random.random() > 0.5: nuova_frase.append(frase1[0][i]) else: nuova_frase.append(frase2[0][i]) return (nuova_frase,valuta(nuova_frase)) test_frase1 , test_frase2 = genera_frase(), genera_frase() print('frase1: "'+''.join(test_frase1)+'"') print('frase2: "'+''.join(test_frase2)+'"') print('mix: "'+''.join(mescola((test_frase1,1),(test_frase2,1))[0])+'"') ###Output frase1: "pbvywapkfeq mwmnzfzhsmbleabw" frase2: "wwayxzhgbsc oglqnaavj sov ax" mix: "pwayxzhgfsc mgmqnaavj bovaax" ###Markdown Ok, ma chi mescolo tra loro? Argh…Uff,riflettiamo, senz’altro voglio la frase migliore, alla fine è quella con più lettere giuste, ma con chi potrei mescolarla? La seconda migliore? E se frasi meno “buone” avessero comunque trovato parti che alla migliore mancano? Facciamo così le scelgo a caso, ma do priorità a quelle con valori più alti. Si, mi sembra sensato, ma come faccio a farlo? T_TMmmm.... è come se volessi girare una roulette, dove chi ha un fitness più elevato ha più “spicchi” proviamo a fare uno schizzo:Mmm una frase che ha 24 di valore, merita 24 spicchi, mentre una che ha 20 ne riceverà solo 20, quindi il totale degli spicchi è la somma di tutti i valori. ###Code def genera_ruota(candidati): totale = 0 ruota = [] for frase,valore in candidati: totale = totale + valore ruota.append((totale,frase,valore)) return ruota def gira_ruota(wheel): totale = wheel[-1][0] pick = totale * random.random() for (parziale,candidato,valore) in wheel: if parziale >= pick: return (candidato,valore) return wheel[-1][1:] candidati = genera_candidati(10) wheel = genera_ruota(candidati) pretty_wheel = list(map(lambda x:(x[0],''.join(x[1]),x[2]),wheel)) pp.pprint(pretty_wheel) print("migliore='"+''.join(migliore(candidati)[0])+"'") def prova_piu_frasi_e_mescola(num_frasi): global valutazioni valutazioni = 0 i=0 candidati = genera_candidati(num_frasi) miglior_frase, miglior_risultato = migliore(candidati) while(miglior_risultato < len(amleto)): i = i+1 ruota = genera_ruota(candidati) nuovi_candidati = [] for n in range(0,len(candidati)): minitorneo = [gira_ruota(ruota),gira_ruota(ruota)] nuova_frase = altera(mescola(minitorneo[0],minitorneo[1])[0]) nuova_risposta = valuta(nuova_frase) minitorneo.append((nuova_frase,nuova_risposta)) vincitore,valore_vincitore = migliore(minitorneo) nuovi_candidati.append((vincitore,valore_vincitore)) if valore_vincitore > miglior_risultato: miglior_risultato = valore_vincitore miglior_frase = vincitore print(str(i)+':\t"'+''.join(miglior_frase)+'"\t'+str(miglior_risultato)) stampa_candidati(candidati) candidati = nuovi_candidati print('valutazioni: '+str(valutazioni)) prova_piu_frasi_e_mescola(10) ###Output 1: " jrirs odnngkae poatblnssll" 6 [('ujcdtqkomrrjouzoc kae orootb', 5), ('fwlmzamow kcshywssga mjtmhrz', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('yjrhknf ywnzgqse poutvqnsvll', 4), ('r ycfj orsfmglkuysxaho sngnj', 3), ('rliqgpxfbvbg eyxksarkxmnnoht', 3), ('uoghodvxysdvt gmyqpuptsnvmlj', 3), ('vhrvdkmkyidjiupasamlgyfwvvgz', 3), ('ryewyoktojzcg jqgwzmffonmpzc', 3), ('idlhgjenmiyqzhomrgxhgduzlrts', 3), ('pziqcidf yyambkdeuwqnozkqajp', 3), (' uamrs jodcnqkasachavblmcsdd', 3), ('xsylozeoypfqtupzkfnpbagztqil', 2), ('hdabh qzksnlbndkhagvppzsiptt', 2), ('raofobtqgyswetwiyneguyjenjui', 2), ('fhqpwkvzzbdnnjejwjnp bqqsgo ', 2), ('fooxkmlybjulepvlwsasphomcwyq', 2), ('zsknpqmteicrxnlmazyw vglhbyl', 2), ('hlqarnsskfayzdalffchlpvvmpni', 2), ('ekhdejydpsfii pbfazporjramt ', 2), ('kcnjcarmxtlhgsoueyxgydztcplu', 2), ('zzlvnmpjrtkaoqsoacnopdqjdxay', 2), ('ofsnmhbpivyosinaqcxljjaknon ', 2), ('xipvzubyjtegldvbiuey tzvzlod', 2), ('pznkrucyqevegxyaluevnqkiphwp', 2), ('j gwtjkmrxohsgjfufrq zybrkd', 2), ('yyorymhxutxprmn uixvgnxrzeu', 2), ('nyjzgpsjgwyxhqbue hedwk asr', 2), ('tzpzpzoclfylrehhbgmlj hqzqca', 2), ('sssnlugnqipdmfvuqeqvjumzmslo', 2), ('nyetntfgrqzrszfkluuz tbkgfzy', 2), ('idzbccogmcrqrlpexavaqticfgws', 2), ('dupmxfzxbkcbahfnavnkbbbwvzzy', 2), ('c wubvhohlnpgfovoijbzadgn fq', 2), ('lqu rfnpyeagcrsfkstn k eida', 1), ('fpfcgckzboxo irkaofblhfcfhh', 1), ('oiqpohiakbnty y oaxpbssop vj', 1), ('sl yllqiwczbzduwmwti qsecjpd', 1), ('vzwmrdzuczwnxjqrttksggiscyzm', 1), ('cmvomqwytnjrumpwgynxoebptyyh', 1), ('kozaorufcyzwxtyyiuiznjfcdiys', 1), ('lsjzbnrevrkvhdde foyybguhfdm', 1), ('nmdeku uqnptbwatyxgxztgjyaop', 1), ('iduxfwrhpogtelzfzwhbcjnkbcse', 1), ('gbdabkexhgwxdyzmzwu jfodsgbg', 1), ('trooqvvrokgsvkobcjzsmgnxl ed', 1), ('wxiiin qqbsxoqkkpjrfehuspjgn', 1), ('wzwxujmtiwusiisosia l ayrqcf', 1), ('tkrkwvgivpozplxcxolxkcsgqqdc', 1), ('phxigurqqqthqxpuxlhujgyrrxdt', 1), ('olrr fxjwvjqcyywfvrycggxgyat', 1), ('wlibyqqfdlablmbmmvnzrmujvjvl', 1), ('aaezutyaqotednyaxfobrf ucnyn', 1), ('lgbdqmnhjv cvhqkpm ofcwuopia', 1), ('zevxemrvpoctndslrcgbeo nhrmk', 1), ('cwpfayxsdfdxxzagufpinuyvtunu', 1), ('ugxysxbnngbotszxcqdoblxxpoil', 1), ('bxzlzqqairmfaanubvpzehtnahyl', 1), ('zegyoqjvmddbhplcxdllqfcuuifp', 1), ('hxxtniuiptuwdeozmz fideeaitp', 1), ('qglcxadmmnmduiparlf yefcdqyu', 1), ('xhngdryqziseadzgycbmtpyvrgjm', 1), ('sd yu mxdv goewkutqpvchg jue', 1), ('pdxnymkbb dqnlfveebddagxztzm', 1), ('idqoqmmalrkalbvfyxl rcsqnzjf', 1), ('ycmklrycghovdmozkjibqajlexsb', 0), ('kbwisfciajohpdsrcmbrxwusacgd', 0), ('hbdruivfhkhnxeffjlcjfkklddwo', 0), ('nccrsmilgtvcrdrrreadckplwwji', 0), ('ayc cbpesbjqupjunhghqkfr cge', 0), ('x afoxbqjnybyfbccckbgqtoyjvm', 0), ('hiduavargjvmklztftwsuwatmpos', 0), ('ulereudkodzdpgo uqcitemyonph', 0), ('fjccltytqainhi qywfdsbxmo zh', 0), ('uevcjqeqapwjrprxphh lpzpcl o', 0), ('tqvqmxwhtks gmjvsdtergqzjttr', 0), ('ivmfwilkoayoqptslfedxrgzmuef', 0), ('nqpqnzqbzohgtgkbkoopetlxv kf', 0), ('esjsxnevgpxphtpxcyutgcwmzjyq', 0), ('ifvyagzroah epfqljlwltfsucwg', 0), ('jwptqgx ytypezcqiptyhsvprkqu', 0), (' cuwnrjxstzbryoyzgyocilmridv', 0), ('luhkruthk dzfinwppefgtaivudv', 0), ('ubfrduknprftsptost mrhikfpur', 0), ('ednzewkuytohueuhkcrsukitabor', 0), (' loibyedzzcrymyxniqlacrbtnpx', 0), ('blljcwxddxbjjqcnbvgjqgsfo qm', 0), ('vbzywaapacpmqwnbtcpjyxcuwzzc', 0), ('tncgkhegnwhraairnwscyvjjxjqh', 0), ('ivpvglkbvqooroqzqhljkiqbbaat', 0), ('wsybfmi gycjsuk pps vxyelcwe', 0), (' mawkpxbzub lwruzxkigfkgvzcj', 0), ('lsznwerbkwdfenyzigccspfcjbbg', 0), ('lwmsdfveaxumvxmcgbypxcsc zpo', 0), ('hgxbzvtbxkugwaweiqidxcquhsei', 0), ('uwmobeucoqtxbmnjbeqyznpyjmao', 0), ('epdbyllsrhxtpujowzc gqsfgkdj', 0), ('sjljjyrghqc zggsklm yqadqwu ', 0), ('dnzoasbeekktouxpuof gxcwoqwg', 0), ('uyzkghi hzcuncdjxqaeygh mmtu', 0)] 2: " hlibs opphikee pnabbynsolc" 7 [(' jrirs odnngkae poatblnssll', 6), ('ujcdtqkomrrjouzoc kae orootb', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('khrvbjmkyidjiwpa enlbycwxvgz', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('fwlmzamow kcshywssga mjtmhrz', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('yjrhknf ywnzgqse poutvqnsvll', 4), ('yjrhknf ywnzgqse poutvqnsvll', 4), ('soghoivxpsuvd omyq fpdsnamlp', 4), ('yjrhknf ywnzgqse poutvqnsvll', 4), ('vhrvdzmcyidjiuhasarlg hwzqca', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('yjrhknf ywnzgqse poutvqnsvll', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('yjrhknf ywnzgqse poutvqnsvll', 4), ('fwlmzamow kcshywssga mjtmhrz', 4), ('iziqcwdh ygtmbadzuhbconkqaje', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('fwlmzamow kcshywssga mjtmhrz', 4), ('yjrhknf ywnzgqse poutvqnsvll', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('fwlmzamow kcshywssga mjtmhrz', 4), ('pzo cmhfutxpmmnd uixngnkraeu', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('yjrhknf ywnzgqse poutvqnsvll', 4), ('yjrhknf ywnzgqse poutvqnsvll', 4), ('fwlmzamow kcshywssga mjtmhrz', 4), ('r tcmj orvfmglkaqsxajj snonj', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('rzpcpz orsflgehlbgxajo szqna', 4), (' uamrs jodcnqkasachavblmcsdd', 3), ('vhrvdkmkyidjiupasamlgyfwvvgz', 3), ('caooobwqgyswetpegynxuebpnjuh', 3), ('vhrvdkmkyidjiupasamlgyfwvvgz', 3), ('uoghodvxysdvt gmyqpuptsnvmlj', 3), ('r ycfj orsfmglkuysxaho sngnj', 3), ('idlhgjenmiyqzhomrgxhgduzlrts', 3), ('ryewyoktojzcg jqgwzmffonmpzc', 3), ('dxpmifwxqbsxohknpvnkebbsvjzn', 3), ('uoghodvxysdvt gmyqpuptsnvmlj', 3), ('hzjkgusjgeyxhqbaeu vedwkphwr', 3), ('idlhgjenmiyqzhomrgxhgduzlrts', 3), ('idlhgjenmiyqzhomrgxhgduzlrts', 3), (' uamrs jodcnqkasachavblmcsdd', 3), ('aalzumpartkakqyaxfnbrd jcnan', 3), ('vhrvdkmkyidjiupasamlgyfwvvgz', 3), ('pziqcidf yyambkdeuwqnozkqajp', 3), ('oyqpnhfakqzts f luxz tsopyvy', 3), ('uoghodvxysdvt gmyqpuptsnvmlj', 3), ('fooxkmlybjulepvlwsasphomcwyq', 2), ('nyjzgpsjgwyxhqbue hedwk asr', 2), ('nyetntfgrqzrszfkluuz tbkgfzy', 2), ('xsylozeoypfqtupzkfnpbagztqil', 2), ('idzbccogmcrqrlpexavaqticfgws', 2), ('nyetntfgrqzrszfkluuz tbkgfzy', 2), ('xsylozeoypfqtupzkfnpbagztqil', 2), ('c wubvhohlnpgfovoijbzadgn fq', 2), ('nyjzgpsjgwyxhqbue hedwk asr', 2), ('kcnjcarmxtlhgsoueyxgydztcplu', 2), ('nyetntfgrqzrszfkluuz tbkgfzy', 2), ('kcnjcarmxtlhgsoueyxgydztcplu', 2), ('j gwtjkmrxohsgjfufrq zybrkd', 2), ('nyetntfgrqzrszfkluuz tbkgfzy', 2), ('hlqarnsskfayzdalffchlpvvmpni', 2), ('nyetntfgrqzrszfkluuz tbkgfzy', 2), ('xipvzubyjtegldvbiuey tzvzlod', 2), ('idzbccogmcrqrlpexavaqticfgws', 2), ('xsylozeoypfqtupzkfnpbagztqil', 2), ('dupmxfzxbkcbahfnavnkbbbwvzzy', 2), ('yyorymhxutxprmn uixvgnxrzeu', 2), ('hdabh qzksnlbndkhagvppzsiptt', 2), ('kcnjcarmxtlhgsoueyxgydztcplu', 2), ('raofobtqgyswetwiyneguyjenjui', 2), ('hdabh qzksnlbndkhagvppzsiptt', 2), ('tzpzpzoclfylrehhbgmlj hqzqca', 2), ('xipvzubyjtegldvbiuey tzvzlod', 2), ('raofobtqgyswetwiyneguyjenjui', 2), ('dupmxfzxbkcbahfnavnkbbbwvzzy', 2), ('dupmxfzxbkcbahfnavnkbbbwvzzy', 2), ('zzlvnmpjrtkaoqsoacnopdqjdxay', 2), ('zsknpqmteicrxnlmazyw vglhbyl', 2), ('xipvzubyjtegldvbiuey tzvzlod', 2), ('ofsnmhbpivyosinaqcxljjaknon ', 2), ('xsylozeoypfqtupzkfnpbagztqil', 2), ('kcnjcarmxtlhgsoueyxgydztcplu', 2), ('hdabh qzksnlbndkhagvppzsiptt', 2), ('qelcxadvmoctndsarlf eh ndryk', 2), ('lgbdqmnhjv cvhqkpm ofcwuopia', 1), ('kozaorufcyzwxtyyiuiznjfcdiys', 1), ('vzwmrdzuczwnxjqrttksggiscyzm', 1), ('phxigurqqqthqxpuxlhujgyrrxdt', 1), ('xhngdryqziseadzgycbmtpyvrgjm', 1)] 3: " jmdbq omppjikeo pnab orsolb" 9 [(' hlibs opphikee pnabbynsolc', 7), ('yqrmknfjodcngqae phuvblncvll', 6), (' jrirs odnngkae poatblnssll', 6), ('vorvoivkyidji pasqmuptfnvvlz', 6), ('ujcdqnfomrrjguzocpouevonoolb', 6), ('ujctbjkbmyrjiweq enae yrooxb', 6), (' jrirs odnngkae poatblnssll', 6), ('bjgdoikomruvd zmc kfe oraolb', 6), ('kjlttjeo yrjineo nue orootb', 6), ('ujodkqfoywrjgqzoc oae onsoll', 6), ('ujcdtqkomrrjouzoc kae orootb', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('fwjmza ow kxshywssga dwkmarz', 5), ('oyltnhfakypti fqlenz ayopoxo', 5), ('yjrhbnf ywnhgwee pnutvynxklc', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('khrvbjmkyidjiwpa enlbycwxvgz', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('tzozcmhfltxlrmhd umxngnkzdea', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('yjshknv ysuvg om q utdqnsvlp', 5), ('vhrhanmcyidjguse aolt hwzvla', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('fogmzdmowsdct myqgaptstvhlz', 5), ('y rhkjfoysfzglseysoato nkvlj', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('khrvbjmkyidjiwpa enlbycwxvgz', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('hjrbknqzkpnlbqse pgutvznspll', 5), ('yjrhknf ywnzgqse poutvqnsvll', 4), ('fwlmzamow kcshywssga mjtmhrz', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('fwlmzamow kcshywssga mjtmhrz', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('yjrhknf ywnzgqse poutvqnsvll', 4), ('iziqcwdh ygtmbadzuhbconkqaje', 4), ('yjrhknf ywnzgqse poutvqnsvll', 4), ('fwlmzamow kcshywssga mjtmhrz', 4), ('r tcmj orvfmglkaqsxajj snonj', 4), ('yjrhknf ywnzgqse poutvqnsvll', 4), ('fwlmzamow kcshywssga mjtmhrz', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('rzpcpz orsflgehlbgxajo szqna', 4), ('yjrhknf ywnzgqse poutvqnsvll', 4), ('vhrvdzmcyidjiuhasarlg hwzqca', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('yjrhknf ywnzgqse poutvqnsvll', 4), ('yjrhknf ywnzgqse poutvqnsvll', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('r tcmj orvfmglkaqsxajj snonj', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('fwlmzamow kcshywssga mjtmhrz', 4), ('yjrhknf ywnzgqse poutvqnsvll', 4), ('yjrhknf ywnzgqse poutvqnsvll', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('fwlmzamow kcshywssga mjtmhrz', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('yjrhknf ywnzgqse poutvqnsvll', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('yjrhknf ywnzgqse poutvqnsvll', 4), ('usylodeoypfvtugmkfnupdsntmil', 4), ('yjrhknf ywnzgqse poutvqnsvll', 4), ('rzpcpz orsflgehlbgxajo szqna', 4), ('vhrzgpskywyxiupasakhedfwvagz', 4), ('vhrvdzmcyidjiuhasarlg hwzqca', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('fwlmzamow kcshywssga mjtmhrz', 4), ('iziqcwdh ygtmbadzuhbconkqaje', 4), ('yjrhknf ywnzgqse poutvqnsvll', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('rzpcpz orsflgehlbgxajo szqna', 4), ('khltbjev yphiweq enubayxxoxc', 4), ('uoghodvxysdvt gmyqpuptsnvmlj', 3), ('uoghodvxysdvt gmyqpuptsnvmlj', 3), ('xsybozooypfqrupekanaqaicfqxl', 3), ('r ycfj orsfmglkuysxaho sngnj', 3), ('vhrvdkmkyidjiupasamlgyfwvvgz', 3), ('ryewyoktojzcg jqgwzmffonmpzc', 3), ('idlhgjenmiyqzhomrgxhgduzlrts', 3), ('uoghodvxysdvt gmyqpuptsnvmlj', 3), ('tlpzrzscsfalzdalfgmllphqzqci', 3), ('xipvzubyjtegldvbiuey tzvzlod', 2), ('hdabh qzksnlbndkhagvppzsiptt', 2), ('hlqarnsskfayzdalffchlpvvmpni', 2), ('qelcxadvmoctndsarlf eh ndryk', 2), ('yyorymhxutxprmn uixvgnxrzeu', 2), ('zzlvnmpjrtkaoqsoacnopdqjdxay', 2)] 5: "yjstwnvoywrvi eo q atdonsolb" 10 [(' jmdbq omppjikeo pnab orsolb', 9), (' hldrs omdnhi aec natb nsslc', 9), (' jmdbq omppjikeo pnab orsolb', 9), ('qjlqcqdo rgjouao unab orootc', 9), ('kjrtknfv rrjiwzq enueyonxoll', 8), ('bjltojeomyuviwzn nfeaorxolc', 8), ('ujcmpqkomrrjnuhl gxae oyoqla', 8), ('bjltojeomyuviwzn nfeaorxolc', 8), ('ujctktfoywrjiqeocenae onsolb', 8), (' hlibs opphikee pnabbynsolc', 7), ('bjgdrskomdnnd adc oftblnaslb', 7), (' hlibs opphikee pnabbynsolc', 7), ('rzpmpz orsflgqhl gxavo yzqla', 7), (' hlibs opphikee pnabbynsolc', 7), ('ujshknkomsujg om aedopovtb', 7), ('vjrhoiv yidzi se poqtvqnvvll', 7), ('ujrhknfoyrrjgqzf pouevonooll', 7), ('uhcdtqmokirjouza naeyowoogb', 7), ('vjrhoiv yidzi se poqtvqnvvll', 7), (' hlibs opphikee pnabbynsolc', 7), ('yorvonvkyidni sa poutvqnvvlz', 7), (' hlibs opphikee pnabbynsolc', 7), ('ujodkqkomwrjgqzoc kae onoolb', 7), ('bjgdrskomdnnd adc oftblnaslb', 7), ('ujrhknfoyrrjgqzf pouevonooll', 7), (' hlibs opphikee pnabbynsolc', 7), ('uhcvwqmomrdjiupo ekabyorootz', 7), ('ujcmzakom rlouzoc kaemorootb', 7), ('hjrdh fzmrrloudk nve yrxplb', 7), ('bjgdrskomdnnd adc oftblnaslb', 7), ('ujshknkomsujg om aedopovtb', 7), ('bjgdrskomdnnd adc oftblnaslb', 7), ('ujcttqkbmrrjiuzq nab orooxb', 7), ('ujrhknfoyrrjgqzf pouevonooll', 7), ('vjrhoiv yidzi se poqtvqnvvll', 7), ('ujrhknfoyrrjgqzf pouevonooll', 7), ('vjrhoiv yidzi se poqtvqnvvll', 7), (' hlibs opphikee pnabbynsolc', 7), ('i tqtqkomwfxgladquhae oroajb', 7), ('ujrdtq omynnokae kaeblrosll', 7), ('kjlttjeo yrjineo nue orootb', 6), ('vhrvcz c ydjmuaq unbbahdxaca', 6), (' jrirs odnngkae poatblnssll', 6), ('hjrhh fzysnlbndk anvppysxplq', 6), ('ujimzakom kjouzoc ka motohtz', 6), ('ujldtqmom rlshzos ka otmhrz', 6), ('ujcttqeom yjoueoc na yrooxz', 6), ('kjlttjeo yrjineo nue orootb', 6), ('khcvbjkomidjiwpo klo owovtz', 6), ('yqrmknfjodcngqae phuvblncvll', 6), ('fhlmzjeowypcihew sgu mjxdoxc', 6), (' jrirs odnngkae poatblnssll', 6), ('kjlttjeo yrjineo nue orootb', 6), ('yqrmknfjodcngqae phuvblncvll', 6), ('ujlmtamomrkjohyosska mttmorb', 6), ('ujcqcqkomygjobzokuhac oroatb', 6), ('ujimzakom kjouzoc ka motohtz', 6), ('ujctbjkbmyrjiweq enae yrooxb', 6), ('kjlttjeo yrjineo nue orootb', 6), (' jrirs odnngkae poatblnssll', 6), ('ujchknf mrnzoqgecpkaevonsolb', 6), (' jrirs odnngkae poatblnssll', 6), ('ujldtqmom rlshzos ka otmhrz', 6), ('vorvoivkyidji pasqmuptfnvvlz', 6), (' jrirs odnngkae poatblnssll', 6), ('yqrmknfjodcngqae phuvblncvll', 6), ('ujodkqfoywrjgqzoc oae onsoll', 6), ('yqrmknfjodcngqae phuvblncvll', 6), ('yjchknkomsmvguoo qkutdqroolb', 6), (' jrirs odnngkae poatblnssll', 6), ('ujodkqfoywrjgqzoc oae onsoll', 6), ('fhlmzamoy dlihpassnl mctmvgz', 6), ('yqrmknfjodcngqae phuvblncvll', 6), (' jrirs odnngkae poatblnssll', 6), ('yqrmknfjodcngqae phuvblncvll', 6), ('kjlttjeo yrjineo nue orootb', 6), ('yqrmknfjodcngqae phuvblncvll', 6), ('khrvbjmkyidjiwpa enlbycwxvgz', 5), ('yhrhbjfvywnziweq eoubaynsvlq', 5), ('khrvbjmkyidjiwpa enlbycwxvgz', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('khrvbjmkyidjiwpa enlbycwxvgz', 5), ('yhrhbjfvywnziweq eoubaynsvlq', 5), ('yhrhbjfvywnziweq eoubaynsvlq', 5), ('oyltnhfakypti fqlenz ayopoxo', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('khltzaeow zcsheq snu aytmoxz', 5), ('yjrhbnf ywnhgwee pnutvynxklc', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('khrvbjmkyidjiwpa enlbycwxvgz', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('yjshknv ysuvg om q utdqnsvlp', 5), ('ujcdtqkomrrjouzoc kae orootb', 5), ('khltzaeow zcsheq snu aytmoxz', 5), ('yjrhbnf ywnhgwee pnutvynxklc', 5)] 6: " jlmpq omqrhi ae gnatbonsqla" 13 [('yjstwnvoywrvi eo q atdonsolb', 10), (' hshkskompfji om abdopsolb', 10), (' hldrs omdnhi aec natb nsslc', 9), (' jmdbq omppjikeo pnab orsolb', 9), (' jmdbq omppjikeo pnab orsolb', 9), ('ujrhoivoyixji ze pouevqnooll', 9), ('ujrhoivomikzi om qevqnovll', 9), ('ojrdtqfomrrjgqao kav lnoolb', 9), (' hldrs omdnhi aec natb nsslc', 9), ('qjlqcqdo rgjouao unab orootc', 9), (' hldrs omdnhi aec natb nsslc', 9), (' hldrs omdnhi aec natb nsslc', 9), (' jmdbq omppjikeo pnab orsolb', 9), (' hldrs omdnhi aec natb nsslc', 9), (' jmdbq omppjikeo pnab orsolb', 9), (' jmdbq omppjikeo pnab orsolb', 9), ('ujctktfoywrjiqeocenae onsolb', 8), ('ujcmpqkomrrjnuhl gxae oyoqla', 8), ('kjrtknfv rrjiwzq enueyonxoll', 8), ('kjrtknfv rrjiwzq enueyonxoll', 8), ('yjrhbn cyydjguae unttaynxkla', 8), ('bgrdbskomwnni aqceoubbynaslq', 8), ('ujctktfoywrjiqeocenae onsolb', 8), ('uqrmknfoydrngqaf phuvyonovll', 8), ('hjlmt fzmskjohdx ska mtsxolb', 8), ('kjrtknfv rrjiwzq enueyonxoll', 8), ('kjrtknfv rrjiwzq enueyonxoll', 8), ('bjltojeomyuviwzn nfeaorxolc', 8), ('hjrdh fzmrrloudk nae yrxplb', 8), ('hjrmh fzmdrnoqak nuvblrxplh', 8), ('ujlmkakomsulghpa snl fotovgz', 8), ('uhcmzqkom rlcuzac naemowootb', 8), ('yjshbnk mwnhg gm natdopovlb', 8), ('bjltojeomyuviwzn nfeaorxolc', 8), ('uhsmbamoopkhokyo sna bttmolc', 8), ('ftlmbjmoyipcihea enl yjwdoxc', 8), ('ujcmpqkomrrjnuhl gxae oyoqla', 8), ('uhcvwqmomrdjiupo ekabyorootz', 7), ('ujrhknfoyrrjgqzf pouevonooll', 7), ('i tqtqkomwfxgladquhae oroajb', 7), (' hlibs opphikee pnabbynsolc', 7), ('vhlvtzeo zdjiueq unub hdoota', 7), ('ujrhknfoyrrjgqzf pouevonooll', 7), ('bjgdrskomdnnd adc oftblnaslb', 7), ('ujshknkomsujg om aedopovtb', 7), ('bjgdrskomdnnd adc oftblnaslb', 7), (' jrirs omrrjlkzec katbonssll', 7), ('ujodkqkomwrjgqzoc kae onoolb', 7), (' hlibs opphikee pnabbynsolc', 7), ('ujrhknfoyrrjgqzf pouevonooll', 7), ('ujrdtq omynnokae kaeblrosll', 7), ('ujshknkomsujg om aedopovtb', 7), ('bjgdrskomdnnd adc oftblnaslb', 7), ('ujrdtq omynnokae kaeblrosll', 7), ('i tqtqkomwfxgladquhae oroajb', 7), ('kjrvb mzysnliwpa enlppcsuplq', 7), ('bjgdrskomdnnd adc oftblnaslb', 7), ('bjgdrskomdnnd adc oftblnaslb', 7), ('vjrhoiv yidzi se poqtvqnvvll', 7), ('ujrdtq omynnokae kaeblrosll', 7), ('yjshknk mruvo om atdorovlb', 7), ('vjrhoiv yidzi se poqtvqnvvll', 7), ('bjgdrskomdnnd adc oftblnaslb', 7), ('yorvonvkyidni sa poutvqnvvlz', 7), (' hlibs opphikee pnabbynsolc', 7), (' hlibs opphikee pnabbynsolc', 7), (' hlibs opphikee pnabbynsolc', 7), ('ujcttqkbmrrjiuzq nab orooxb', 7), ('hjrdh fzmrrloudk nve yrxplb', 7), ('yarirs odcngqae phatblnssll', 7), ('bjgdrskomdnnd adc oftblnaslb', 7), (' hlibs opphikee pnabbynsolc', 7), (' hlibs opphikee pnabbynsolc', 7), ('ujodkqkomwrjgqzoc kae onoolb', 7), ('ujrhknfoyrrjgqzf pouevonooll', 7), ('uhcvwqmomrdjiupo ekabyorootz', 7), ('ujcttqkbmrrjiuzq nab orooxb', 7), ('ujchknf mrnzoqgecpkaevonsolb', 6), ('kjlttjeo yrjineo nue orootb', 6), (' jrirs odnngkae poatblnssll', 6), ('ujimzakom kjouzoc ka motohtz', 6), ('yjchknkomsmvguoo qkutdqroolb', 6), ('ujchknf mrnzoqgecpkaevonsolb', 6), ('kjlttjeo yrjineo nue orootb', 6), ('yqrmknfjodcngqae phuvblncvll', 6), ('hjrhh fzysnlbndk anvppysxplq', 6), ('kjlttjeo yrjineo nue orootb', 6), (' jrirs odnngkae poatblnssll', 6), (' jrirs odnngkae poatblnssll', 6), ('kjlttjeo yrjineo nue orootb', 6), ('ujcqcqkomygjobzokuhac oroatb', 6), ('ujimzakom kjouzoc ka motohtz', 6), ('yqrmknfjodcngqae phuvblncvll', 6), ('kjlttjeo yrjineo nue orootb', 6), ('yqrmknfjodcngqae phuvblncvll', 6), ('kjlttjeo yrjineo nue orootb', 6), ('kjlttjeo yrjineo nue orootb', 6), ('ujodkqfoywrjgqzoc oae onsoll', 6), ('yhrhbjfvywnziweq eoubaynsvlq', 5), ('yhrhbjfvywnziweq eoubaynsvlq', 5)] 11: "hhlmt eomsrlg tdcunfb onoola" 14 [(' jlmpq omqrhi ae gnatbonsqla', 13), ('hhlmt eomskji dwcunabm nsola', 13), ('uhrhbokomrnhg ao natdonooll', 13), ('hhlmt eomskji dwcunabm nsola', 13), ('hhlmt eomskji dwcunabm nsola', 13), ('uhrhbokomrnhg ao natdonooll', 13), ('hhlmt eomskji dwcunabm nsola', 13), ('uhrhbokomrnhg ao natdonooll', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('ujtvoevomiwni ad u ae onvalb', 13), ('hhlmt eomskji dwcunabm nsola', 13), ('hhlmt eomskji dwcunabm nsola', 13), (' hrdts omdrhi ae unat nsolo', 13), (' qsmoikomikzi adcpnatbqnoolc', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('ujrubqkomrphg em pnatdonooll', 12), ('ujrhra omikli pe nh v nsvlc', 12), ('ojrdtnfomrrjiqaq anav onoolb', 12), (' hrdrs omdnhigad natvqnoolc', 12), ('vjrvoqvo iwni sq uoae hnvola', 12), ('qjrhcivoyykji ao unpeaonxvla', 12), ('ohldrqkomdnhg am pnatdonsolc', 12), ('ujrubqkomrphg em pnatdonooll', 12), ('qjrhkqvomigui se uoabvopvotl', 12), ('vjmvlseomdnhikaq umat onsola', 12), ('ujrdksqomdgjigod unabvqpoolc', 12), ('ohldrqkomdnhg am pnatdonsolc', 12), ('qjrdtq omydhgkao unatbonxkla', 12), ('ohldrqkomdnhg am pnatdonsolc', 12), ('qjrhcivoyykji ao unpeaonxvla', 12), ('qjrhcivoyykji ao unpeaonxvla', 12), ('vjmvlseomdnhikaq umat onsola', 12), ('vjrvoqvo iwni sq uoae hnvola', 12), ('ujldenvomdzlgqad na voroolc', 12), ('ujrubqkomrphg em pnatdonooll', 12), ('uvrdtafomprlihae p ab onsolc', 12), ('ohldrqkomdnhg am pnatdonsolc', 12), ('vjmvlseomdnhikaq umat onsola', 12), ('bjrdcskomdnni ad nab qpoolc', 12), ('qjlqkskomikji ol unabhoroold', 12), ('ujrhtqfqmpnziqam pnatdonooll', 12), ('brgdbidomigzifodcpnae onooll', 12), ('vjrvoqvo iwni sq uoae hnvola', 12), ('ujrhra omikli pe nh v nsvlc', 12), ('u reonvomrrji zd knae orooll', 12), ('vjmvlseomdnhikaq umat onsola', 12), ('ujrdvsvomdnndgad nabvqnoolc', 11), (' jritq omjpjikeo pnabbonsolg', 11), ('ujrdvsvomdnndgad nabvqnoolc', 11), ('ujrdvsvomdnndgad nabvqnoolc', 11), (' hlmr omsnjihax naub sxolc', 11), (' qrmoskomdcnd adcpoatbbnaolc', 11), ('qjsqkskomegji om unab opootc', 11), ('qjsqkskomegji om unab opootc', 11), ('bjgdtifomirziqao kqbbonoola', 11), ('qjsqkskomegji om unab opootc', 11), ('ujrdvsvomdnndgad nabvqnoolc', 11), (' hlmr omsnjihax naub sxolc', 11), ('qjsqkskomegji om unab opootc', 11), (' jritq omjpjikeo pnabbonsolg', 11), ('vjrhlqvo zdti se unae onowll', 11), ('uhrdrafomiklihaec atoonsvlc', 11), ('ujrdvsvomdnndgad nabvqnoolc', 11), ('qjrqcn oyydjguao unaraonxkla', 11), ('qjrqcn oyydjguao unaraonxkla', 11), ('ujlmenfomwrlgqzdrunf orooll', 11), ('bjldcikomikzi al nqb oroold', 11), ('qjsqkskomegji om unab opootc', 11), ('bjldcikomikzi al nqb oroold', 11), ('ujlmenfomwrlgqzdrunf orooll', 11), (' hlmr omsnjihax naub sxolc', 11), ('ujlmenfomwrlgqzdrunf orooll', 11), ('qjsqkskomegji om unab opootc', 11), ('vhldrreomppjikao unab nsolb', 11), ('ujlmenfomwrlgqzdrunf orooll', 11), (' jrhoqvomidhg ae naqvlnvwll', 11), ('ujlmenfomwrlgqzdrunf orooll', 11), ('uhrdrafomiklihaec atoonsvlc', 11), ('ujrdvsvomdnndgad nabvqnoolc', 11), ('usthrnvomwkxi ae nue onoolb', 11), ('qjrqcn oyydjguao unaraonxkla', 11), ('bjldcikomikzi al nqb oroold', 11), (' jrdrivomikzi oez natbqnoslc', 10), ('ujrhoafomiklihpq u vokovll', 10), ('ujrhoafomiklihpq u vokovll', 10), ('vjrhoqvomidni se oaevlnvwll', 10), (' ordbs mpphikee pnab onvols', 10), ('vhldrzeomddhi aecunab nsata', 10), ('ujrhoafomiklihpq u vokovll', 10), (' jrdtqfomprziqao pkab orsolb', 10), ('brgdkikomikzi odc qebonooll', 10), ('vjrhoqvomidni se oaevlnvwll', 10), ('ujrhrngomrrji ze nue noolc', 10), (' jrdtqfomprziqao pkab orsolb', 10), (' ordbs mpphikee pnab onvols', 10), ('vjmvlqeo zpjikeq unab oroola', 10), ('brgdkikomikzi odc qebonooll', 10), (' ordbs mpphikee pnab onvols', 10)] 12: "phrurq omsnhi ad unatxonooll" 16 [('hhlmt eomsrlg tdcunfb onoola', 14), (' ksmoieomipji aqcpnab onoola', 14), ('uhrdtsvomunni ad unabvqnsolo', 14), (' hlmr omsnhi adcunatx noolc', 14), ('uhrmbo omrnhi ac natdosxoll', 14), ('hhlmt eomskji dwcunabm nsola', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('hhlmt eomskji dwcunabm nsola', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('ujrhtqfqminei ae natdonvwll', 13), ('oyldcikomdnhi al pnatdonoolc', 13), ('hhlmt eomskji dwcunabm nsola', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), (' qsmoikomikzi adcpnatbqnoolc', 13), ('ojrdbifomir ifod anae onoolb', 13), (' jrdbivomigzi ndcpnaebonosll', 13), ('uhrhbokomrnhg ao natdonooll', 13), ('hhlmt eomskji dwcunabm nsola', 13), (' qsmoikomikzi adcpnatbqnoolc', 13), ('hhlmt eomskji dwcunabm nsola', 13), ('ujtvoevomiwni ad u ae onvalb', 13), ('hhlmt eomskji dwcunabm nsola', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('uhrhbokomrnhg ao natdonooll', 13), ('uhrhbokomrnhg ao natdonooll', 13), ('uhrhbokomrnhg ao natdonooll', 13), ('hhlmt eomskji dwcunabm nsola', 13), ('uhrhbokomrnhg ao natdonooll', 13), ('hhlmt eomskji dwcunabm nsola', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('uhrhbokomrnhg ao natdonooll', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('ohldcqqominhi am pnatdoroold', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('ujrhtqfqmpnziqam pnatdonooll', 12), ('ohldrqkomdnhg am pnatdonsolc', 12), ('vjrvoqvo iwni sq uoae hnvola', 12), ('bjrdcskomdnni ad nab qpoolc', 12), ('ujlmenfomiklghpd nu jorooll', 12), (' orqbskomeghi o pnab onvots', 12), ('bjgdts omiphikae pnabbonotla', 12), ('ujrhra omikli pe nh v nsvlc', 12), ('ujrubqkomrphg em pnatdonooll', 12), (' hrdrs omdnhigad natvqnoolc', 12), ('ohldrqkomdnhg am pnatdonsolc', 12), ('ujrhra omikli pe nh v nsvlc', 12), ('bjrdcskomdnni ad nab qpoolc', 12), ('qjrdtq omydhgkao unatbonxkla', 12), ('vjmvlseomdnhikaq umat onsola', 12), ('qjrhkqvomigui se uoabvopvotl', 12), ('u reonvomrrji zd knae orooll', 12), ('ujrhtqfqmpnziqam pnatdonooll', 12), ('bjrdcskomdnni ad nab qpoolc', 12), ('vjmvlseomdnhikaq umat onsola', 12), ('ujrubqkomrphg em pnatdonooll', 12), ('ohldrqkomdnhg am pnatdonsolc', 12), ('ujrubqkomrphg em pnatdonooll', 12), ('ojrdtnfomrrjiqaq anav onoolb', 12), ('ujldenvomdzlgqad na voroolc', 12), ('qjlqkskomikji ol unabhoroold', 12), ('bjrdcskomdnni ad nab qpoolc', 12), ('qjrhkqvomigui se uoabvopvotl', 12), ('vjrvoqvo iwni sq uoae hnvola', 12), ('ujrubqkomrphg em pnatdonooll', 12), ('qjrhkqvomigui se uoabvopvotl', 12), ('ujldenvomdzlgqad na voroolc', 12), ('uvrdtafomprlihae p ab onsolc', 12), ('qjrhkqvomigui se uoabvopvotl', 12), ('ojrdtnfomrrjiqaq anav onoolb', 12), ('vjmvlseomdnhikaq umat onsola', 12), ('vjrvoqvo iwni sq uoae hnvola', 12), ('qjsdkseomegjikoo unabdonootc', 12), ('ujrdksqomdgjigod unabvqpoolc', 12), ('ojrdtnfomrrjiqaq anav onoolb', 12), ('ujrhtqfqmpnziqam pnatdonooll', 12), ('uhrdraftmiklihadrunf oorsvll', 12), ('vjmvlseomdnhikaq umat onsola', 12), ('qjrhcivoyykji ao unpeaonxvla', 12), ('ujrhra omikli pe nh v nsvlc', 12), ('qjrqcn oyydjguao unaraonxkla', 11), ('bjgdtifomirziqao kqbbonoola', 11), ('bjldcikomikzi al nqb oroold', 11), ('ujlmenfomwrlgqzdrunf orooll', 11), ('ujlmenfomwrlgqzdrunf orooll', 11), ('ujrdvsvomdnndgad nabvqnoolc', 11), ('qjrqcn oyydjguao unaraonxkla', 11), (' qrmoskomdcnd adcpoatbbnaolc', 11), (' hlmr omsnjihax naub sxolc', 11), ('bordcsk mpphi od ab onvols', 11), ('qjsqkskomegji om unab opootc', 11), (' qrmoskomdcnd adcpoatbbnaolc', 11), ('qjsqkskomegji om unab opootc', 11), ('ujlmenfomwrlgqzdrunf orooll', 11), ('uhrdrafomiklihaec atoonsvlc', 11), ('ujrdvsvomdnndgad nabvqnoolc', 11), ('ujrdvsvomdnndgad nabvqnoolc', 11), ('qjrqcn oyydjguao unaraonxkla', 11), (' jritq omjpjikeo pnabbonsolg', 11), ('qjrqcn oyydjguao unaraonxkla', 11)] 13: "uhrmtovomunhi ad una vonsoll" 17 [('phrurq omsnhi ad unatxonooll', 16), ('qwrqonvoyiwji ao unar onxola', 15), ('ujrxtqkominei ad natdqnvoll', 15), ('uhrmb eomsnhg adcunabdunooll', 15), ('uhrdtsvomunni ad unabvqnsolo', 14), ('uhrdtsvomunni ad unabvqnsolo', 14), (' ksmoieomipji aqcpnab onoola', 14), ('bhrmc komsnji dw unabm nsqla', 14), ('hhlmt eomsrlg tdcunfb onoola', 14), ('uhrmbo omrnhi ac natdosxoll', 14), (' hlmr omsnhi adcunatx noolc', 14), ('hhlmt eomsrlg tdcunfb onoola', 14), ('ujrubnkomwplg ed unr onooll', 14), ('hhlmt eomsrlg tdcunfb onoola', 14), ('ujrdtseomprlihaq u al onsola', 14), (' hlmr omsnhi adcunatx noolc', 14), (' ksmoieomipji aqcpnab onoola', 14), ('uhrdtsvomunni ad unabvqnsolo', 14), (' ksmoieomipji aqcpnab onoola', 14), ('hhlmo vomikni awcu aemovvola', 14), ('ujrdkseomdgjikao unabvonootc', 13), ('bjrdcskomenni ad nab qnoolc', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('ujrhtqfqminei ae natdonvwll', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('uhrhbokomrnhg ao natdonooll', 13), ('ujrhtqfqminei ae natdonvwll', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), (' qsmoikomikzi adcpnatbqnoolc', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('hhlmt eomskji dwcunabm nsola', 13), ('hhlmt eomskji dwcunabm nsola', 13), ('uhrhbokomrnhg ao natdonooll', 13), ('hhlmt eomskji dwcunabm nsola', 13), ('uhrhrafqmikzihad unftdorsol ', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('hhlmt eomskji dwcunabm nsola', 13), ('uhrhbokomrnhg ao natdonooll', 13), ('ujrhtqfqminei ae natdonvwll', 13), ('ojrdbifomir ifod anae onoolb', 13), ('qjrheqvomggui sd unabvopvotc', 13), (' jrdbivomigzi ndcpnaebonosll', 13), (' qsmoikomikzi adcpnatbqnoolc', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('hhlmt eomskji dwcunabm nsola', 13), ('ohldcqqominhi am pnatdoroold', 13), ('hhlmt eomskji dwcunabm nsola', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('hhlmt eomskji dwcunabm nsola', 13), ('uhrhbokomrnhg ao natdonooll', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('ujtvoevomiwni ad u ae onvalb', 13), ('uhrhbokomrnhg ao natdonooll', 13), ('ojrdbifomir ifod anae onoolb', 13), ('hhlmt eomskji dwcunabm nsola', 13), ('ojrdbifomir ifod anae onoolb', 13), ('uhrhbokomrnhg ao natdonooll', 13), ('uhrhbokomrnhg ao natdonooll', 13), ('ohldcqqominhi am pnatdoroold', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('ojrheifoywrjiqzd unp onxola', 13), ('mjrubqkomrpng ed pnabdonoolc', 13), ('ojrdbifomir ifod anae onoolb', 13), ('uhrhbokomrnhg ao natdonooll', 13), ('bjrdcskomdnni ad nab qpoolc', 12), ('ojrdtnfomrrjiqaq anav onoolb', 12), ('ujldenvomdzlgqad na voroolc', 12), ('bjgdts omiphikae pnabbonotla', 12), ('qjlqkskomikji ol unabhoroold', 12), ('ujrubqkomrphg em pnatdonooll', 12), ('ujrubqkomrphg em pnatdonooll', 12), ('bjrdcskomdnni ad nab qpoolc', 12), ('vjrvoqvo iwni sq uoae hnvola', 12), (' hrdrs omdnhigad natvqnoolc', 12), ('vjrvoqvo iwni sq uoae hnvola', 12), ('ohldrqkomdnhg am pnatdonsolc', 12), ('ojrdtnfomrrjiqaq anav onoolb', 12), ('ujldenvomdzlgqad na voroolc', 12), ('ohldrqkomdnhg am pnatdonsolc', 12), ('qjrhcivoyykji ao unpeaonxvla', 12), ('ojrdtnfomrrjiqaq anav onoolb', 12), ('ujrhtqfqmpnziqam pnatdonooll', 12), ('ujrhtqfqmpnziqam pnatdonooll', 12), ('ohldrqkomdnhg am pnatdonsolc', 12), ('bjrdcskomdnni ad nab qpoolc', 12), ('uhrdraftmiklihadrunf oorsvll', 12), ('qjrhkqvomigui se uoabvopvotl', 12), ('ujrhtqfqmpnziqam pnatdonooll', 12), ('vjmvlseomdnhikaq umat onsola', 12), ('vjrvoqvo iwni sq uoae hnvola', 12), ('vjmvlseomdnhikaq umat onsola', 12), (' hrdrs omdnhigad natvqnoolc', 12), ('ujrhra omikli pe nh v nsvlc', 12), ('qjsdkseomegjikoo unabdonootc', 12), ('qjrqcn oyydjguao unaraonxkla', 11), ('qjsqkskomegji om unab opootc', 11), ('ujrdvsvomdnndgad nabvqnoolc', 11)] 14: "ujrmt omirli ad unab onsola" 20 [('uhrmtovomunhi ad una vonsoll', 17), ('omrmt fomirli odcunab onoolb', 17), ('utrmpqeomprli aq u at onsola', 16), ('okrdiieomip i od anab onoola', 16), ('uhrdtivomunni ad unabasnxola', 15), ('ujrxtqkominei ad natdqnvoll', 15), ('qjsdkinomigji aocunabdonoolc', 15), ('ujrxtqkominei ad natdqnvoll', 15), ('ujrxtqkominei ad natdqnvoll', 15), ('ujrxtqkominei ad natdqnvoll', 15), ('uhrmb eomsnhg adcunabdunooll', 15), ('utrdtieomipjihaq unal onoola', 15), ('uhsmbtkomiphi aq natdonooll', 15), ('qwrqonvoyiwji ao unar onxola', 15), ('uhszbskomegji am unatdopoolc', 14), ('ujrubnkomwplg ed unr onooll', 14), (' hlmr omsnhi adcunatx noolc', 14), ('hhlmt eomsrlg tdcunfb onoola', 14), ('hhlmt eomsrlg tdcunfb onoola', 14), ('bhrmc komsnji dw unabm nsqla', 14), ('vjlmps omqrhi aq unatxonsqla', 14), ('ohrhb komdnhg ao natdonoolc', 14), ('hhrhe eoywrji zd unab onxolt', 14), ('uhrdtsvomunni ad unabvqnsolo', 14), ('vjlmpqeomqnhi ad umatbonsqla', 14), ('ujrdtseomprlihaq u al onsola', 14), ('hhlmt eomsrlg tdcunfb onoola', 14), (' ksmoieomipji aqcpnab onoola', 14), (' ksmoieomipji aqcpnab onoola', 14), ('fjrhpqfqmqrzi am pnatdonsola', 14), ('bhrmc komsnji dw unabm nsqla', 14), ('qjrdcqvomgghi sd unmtdopvolc', 14), ('hhlmt eomsrlg tdcunfb onoola', 14), ('hhlmtbkomdkji dw unabd nsola', 14), ('hhlmt eomsrlg tdcunfb onoola', 14), (' jlmp omskhi ae unabmznsqla', 14), ('uhrdtsvomunni ad unabvqnsolo', 14), (' jrhrq omikli pe gna boysvla', 14), (' jlmcs omerhi ae gnaz onoola', 14), ('hhlmt eomsrlg tdcunfb onoola', 14), ('uhrdtsvomunni ad unabvqnsolo', 14), (' ksmoieomipji aqcpnab onoola', 14), ('uhrdtsvomunni ad unabvqnsolo', 14), ('uhrmbo omrnhi ac natdosxoll', 14), ('hhlmt eomsrlg tdcunfb onoola', 14), ('uhrhbokomrnhg ao natdonooll', 13), ('hhlmt eomskji dwcunabm nsola', 13), ('ojrdbifomir ifod anae onoolb', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('hhlmt eomskji dwcunabm nsola', 13), ('uhrhbokomrnhg ao natdonooll', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('ojrdbifomir ifod anae onoolb', 13), ('ojrheifoywrjiqzd unp onxola', 13), ('uhrhbokomrnhg ao natdonooll', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('ojrdbifomir ifod anae onoolb', 13), ('uhrhbokomrnhg ao natdonooll', 13), ('ohldcqqominhi am pnatdoroold', 13), ('uhrhbokomrnhg ao natdonooll', 13), ('ohldcqqominhi am pnatdoroold', 13), ('uhrhbokomrnhg ao natdonooll', 13), ('bjrdcskomenni ad nab qnoolc', 13), ('ojrheifoywrjiqzd unp onxola', 13), ('ujrdkseomdgjikao unabvonootc', 13), ('ujrhtqfqminei ae natdonvwll', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('ujrdtseompgziqam pnabdojoolc', 13), (' qsmoikomikzi adcpnatbqnoolc', 13), ('qjrdtnvomyrji ao anasaonovla', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('uhrhbokomrnhg ao natdonooll', 13), ('uhrhbokomrnhg ao natdonooll', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('bjrdcskomenni ad nab qnoolc', 13), ('ujrhtqfqminei ae natdonvwll', 13), ('ujrhtqfqminei ae natdonvwll', 13), ('uhrhbokomrnhg ao natdonooll', 13), ('uhrhbokomrnhg ao natdonooll', 13), ('hhlmt eomskji dwcunabm nsola', 13), ('uhrhbokomrnhg ao natdonooll', 13), ('uhrhbokomrnhg ao natdonooll', 13), ('hhlmt eomskji dwcunabm nsola', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('uhrhbokomrnhg ao natdonooll', 13), ('ojrdbifomir ifod anae onoolb', 13), ('ojrdbifomir ifod anae onoolb', 13), ('uhrhbokomrnhg ao natdonooll', 13), (' jlmpq omqrhi ae gnatbonsqla', 13), ('bjrdcskomdnni ad nab qpoolc', 12), (' hrdrs omdnhigad natvqnoolc', 12), ('ujldenvomdzlgqad na voroolc', 12), ('bjrdcskomdnni ad nab qpoolc', 12), ('bjgdts omiphikae pnabbonotla', 12), ('ujrubqkomrphg em pnatdonooll', 12), ('ojrdtnfomrrjiqaq anav onoolb', 12),
examples/dask.ipynb
###Markdown Working with IPython and dask.distributed[dask.distributed](https://distributed.readthedocs.io) is a cool library for doing distributed execution. You should check it out, if you haven't already.Assuming you already have an IPython cluster running: ###Code import ipyparallel as ipp rc = ipp.Client() rc.ids ###Output _____no_output_____ ###Markdown You can turn your IPython cluster into a distributed cluster by calling `Client.become_dask()`: ###Code executor = rc.become_dask(ncores=1) executor ###Output _____no_output_____ ###Markdown This will:1. start a Scheduler on the Hub2. start a Worker on each engine3. return an Executor, the distributed client APIBy default, distributed Workers will use threads to run on all cores of a machine. In this case, since I already have one *engine* per core,I tell distributed to run one core per Worker with `ncores=1`.We can now use our IPython cluster with distributed: ###Code from distributed import progress def square(x): return x ** 2 def neg(x): return -x A = executor.map(square, range(1000)) B = executor.map(neg, A) total = executor.submit(sum, B) progress(total) total.result() ###Output _____no_output_____ ###Markdown I could also let distributed do its multithreading thing, and run one multi-threaded Worker per engine.First, I need to get a mapping of one engine per host: ###Code import socket engine_hosts = rc[:].apply_async(socket.gethostname).get_dict() engine_hosts ###Output _____no_output_____ ###Markdown I can reverse this mapping, to get a list of engines on each host: ###Code host_engines = {} for engine_id, host in engine_hosts.items(): if host not in host_engines: host_engines[host] = [] host_engines[host].append(engine_id) host_engines ###Output _____no_output_____ ###Markdown Now I can get one engine per host: ###Code one_engine_per_host = [ engines[0] for engines in host_engines.values()] one_engine_per_host ###Output _____no_output_____ ###Markdown *Here's a concise, but more opaque version that does the same thing:* ###Code one_engine_per_host = list({host:eid for eid,host in engine_hosts.items()}.values()) one_engine_per_host ###Output _____no_output_____ ###Markdown I can now stop the first distributed cluster, and start a new one on just these engines, letting distributed allocate threads: ###Code rc.stop_distributed() executor = rc.become_dask(one_engine_per_host) executor ###Output tornado.application - ERROR - Exception in callback <bound method Client._heartbeat of <Client: scheduler='tcp://192.168.1.19:63890' processes=24 cores=24>> Traceback (most recent call last): File "C:\Users\tedal\Anaconda3\lib\site-packages\tornado\ioloop.py", line 1229, in _run return self.callback() File "C:\Users\tedal\Anaconda3\lib\site-packages\distributed\client.py", line 900, in _heartbeat self.scheduler_comm.send({'op': 'heartbeat-client'}) File "C:\Users\tedal\Anaconda3\lib\site-packages\distributed\batched.py", line 117, in send raise CommClosedError distributed.comm.core.CommClosedError tornado.application - ERROR - Exception in callback <bound method Client._heartbeat of <Client: scheduler='tcp://192.168.1.19:63890' processes=24 cores=24>> Traceback (most recent call last): File "C:\Users\tedal\Anaconda3\lib\site-packages\tornado\ioloop.py", line 1229, in _run return self.callback() File "C:\Users\tedal\Anaconda3\lib\site-packages\distributed\client.py", line 900, in _heartbeat self.scheduler_comm.send({'op': 'heartbeat-client'}) File "C:\Users\tedal\Anaconda3\lib\site-packages\distributed\batched.py", line 117, in send raise CommClosedError distributed.comm.core.CommClosedError tornado.application - ERROR - Exception in callback <bound method Client._heartbeat of <Client: scheduler='tcp://192.168.1.19:63890' processes=24 cores=24>> Traceback (most recent call last): File "C:\Users\tedal\Anaconda3\lib\site-packages\tornado\ioloop.py", line 1229, in _run return self.callback() File "C:\Users\tedal\Anaconda3\lib\site-packages\distributed\client.py", line 900, in _heartbeat self.scheduler_comm.send({'op': 'heartbeat-client'}) File "C:\Users\tedal\Anaconda3\lib\site-packages\distributed\batched.py", line 117, in send raise CommClosedError distributed.comm.core.CommClosedError tornado.application - ERROR - Exception in callback <bound method Client._heartbeat of <Client: scheduler='tcp://192.168.1.19:63890' processes=24 cores=24>> Traceback (most recent call last): File "C:\Users\tedal\Anaconda3\lib\site-packages\tornado\ioloop.py", line 1229, in _run return self.callback() File "C:\Users\tedal\Anaconda3\lib\site-packages\distributed\client.py", line 900, in _heartbeat self.scheduler_comm.send({'op': 'heartbeat-client'}) File "C:\Users\tedal\Anaconda3\lib\site-packages\distributed\batched.py", line 117, in send raise CommClosedError distributed.comm.core.CommClosedError distributed.batched - INFO - Batched Comm Closed: in <closed TCP>: Stream is closed tornado.application - ERROR - Exception in callback <bound method Client._heartbeat of <Client: scheduler='tcp://192.168.1.19:63890' processes=24 cores=24>> Traceback (most recent call last): File "C:\Users\tedal\Anaconda3\lib\site-packages\tornado\ioloop.py", line 1229, in _run return self.callback() File "C:\Users\tedal\Anaconda3\lib\site-packages\distributed\client.py", line 900, in _heartbeat self.scheduler_comm.send({'op': 'heartbeat-client'}) File "C:\Users\tedal\Anaconda3\lib\site-packages\distributed\batched.py", line 117, in send raise CommClosedError distributed.comm.core.CommClosedError ###Markdown And submit the same tasks again: ###Code A = executor.map(square, range(100)) B = executor.map(neg, A) total = executor.submit(sum, B) progress(total) ###Output _____no_output_____ ###Markdown Debugging distributed with IPython ###Code rc.stop_distributed() executor = rc.become_dask(one_engine_per_host) executor ###Output tornado.application - ERROR - Exception in callback <bound method Client._heartbeat of <Client: scheduler='tcp://192.168.1.19:50390' processes=1 cores=1>> Traceback (most recent call last): File "C:\Users\tedal\Anaconda3\lib\site-packages\tornado\ioloop.py", line 1229, in _run return self.callback() File "C:\Users\tedal\Anaconda3\lib\site-packages\distributed\client.py", line 900, in _heartbeat self.scheduler_comm.send({'op': 'heartbeat-client'}) File "C:\Users\tedal\Anaconda3\lib\site-packages\distributed\batched.py", line 117, in send raise CommClosedError distributed.comm.core.CommClosedError ###Markdown Let's set the %px magics to only run on our one engine per host: ###Code view = rc[one_engine_per_host] view.block = True view.activate() ###Output _____no_output_____ ###Markdown Let's submit some work that's going to fail somewhere in the middle: ###Code from IPython.display import display from distributed import progress def shift5(x): return x - 5 def inverse(x): return 1 / x shifted = executor.map(shift5, range(1, 10)) inverted = executor.map(inverse, shifted) total = executor.submit(sum, inverted) display(progress(total)) total.result() ###Output _____no_output_____ ###Markdown We can see which task failed: ###Code [ f for f in inverted if f.status == 'error' ] ###Output _____no_output_____ ###Markdown When IPython starts a worker on each engine,it stores it in the `distributed_worker` variable in the engine's namespace.This lets us query the worker interactively.We can check out the current data resident on each worker: ###Code %%px dask_worker.data ###Output _____no_output_____
week03_functions/seminar/seminar03.ipynb
###Markdown Seminar 03 - Functions form submissions with other solution attempts (access by @phystech.edu email):https://docs.google.com/spreadsheets/d/1cV-s5hKuQAAtk1jNDMiaTUvjjBZH_yohHJU05PKWYxw Task 1return min and max argument (or keyword argument)if 1 argument passed and it is iterable, return min and max of this argument ###Code # decision from seminar def minmax(*args, **kwargs): if len(args) == 1 and not kwargs and hasattr(args[0], '__iter__'): # isinstance([], list) return min(args[0]), max(args[0]) else: all_values = [*args, *(kwargs.values())] return min(all_values), max(all_values) # correct decision that works for minmax(a=[1, 2, 3]) def minmax(*args, **kwargs): all_values = [*args, *(kwargs.values())] if len(all_values) == 1 and hasattr(all_values[0], '__iter__'): collection = all_values[0] else: collection = all_values return min(collection), max(collection) minmax(1, a=4, b=5, c=6) [ minmax([1, 2, 3]) == (1, 3), minmax(1, 2, 3) == (1, 3), minmax(1, 2, 3, a=4, b=5, c=6) == (1, 6), minmax(1, a=4, b=5, c=6) == (1, 6), minmax(1) == (1, 1), minmax(a=[1, 2, 3]) == (1, 3), ] min([1, 2, 3], 1) # raise error ###Output _____no_output_____ ###Markdown Packing & unpacking refresh ###Code def pack_args(*args, **kwargs): return args, kwargs pack_args(1, 2, 3, a=4, b=5, c=6) def pack_args_2(x, y, *args, a=None, **kwargs): return args, kwargs pack_args_2(1, 2, 3, a=4, b=5, c=6) ###Output _____no_output_____ ###Markdown Task 2return 3 minimal elements from given collection ###Code from typing import Iterable def min3(a: Iterable): a = a.copy() # not to change given collection return a.pop(a.index(min(a))), a.pop(a.index(min(a))), a.pop(a.index(min(a))) min3([1, 1, 1, 1]) [ min3([5, 4, 3, 2, 1]) == (1, 2, 3), min3([1, 1, 2, 3]) == (1, 1, 2), min3([1, 1, 1, 1]) == (1, 1, 1), ] a = [5, 4, 3, 2, 1] min3(a) a # should be [5, 4, 3, 2, 1] ###Output _____no_output_____ ###Markdown Task 3Create a decorator to print function name and its arguments (including kwargs) before the call and print function result after call ###Code import functools def log(func): @functools.wraps(func) def wrapper(*args, **kwargs): name = func.__name__ print(f'{name} function was called with {args} {kwargs}') res = func(*args, **kwargs) print(f'result is {res}') return res return wrapper @log def foo(bar): pass foo(1) # 'foo' function was called with args=(1,), kwargs={} # 'foo' result is None @log def pack_args(*args, **kwargs): return args, kwargs print(pack_args.__name__) pack_args(1, 2, 3, a=4, b=5, c=6) ###Output pack_args function was called with (1, 2, 3) {'a': 4, 'b': 5, 'c': 6} result is ((1, 2, 3), {'a': 4, 'b': 5, 'c': 6}) ###Markdown Function is object in Python ###Code def foo(bar): pass print(type(foo)) print(dir(type(foo))) ###Output ['__annotations__', '__call__', '__class__', '__closure__', '__code__', '__defaults__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__get__', '__getattribute__', '__globals__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__kwdefaults__', '__le__', '__lt__', '__module__', '__name__', '__ne__', '__new__', '__qualname__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__']
Didattica/RudimentiPython.ipynb
###Markdown Rudimenti di Python per Laboratorio IIn questa lezione sono forniti alcuni rudimenti di python che permettono di svolgere semplici operazioni di analisi dei dati. Non viene data alcuna introduzione al linguaggio di programmazione e molte definizioni saranno *operative*, cioè volte ad esemplificare come si può svolgere uno dei compiti richiesti utilizzando python come strumento piuttosto che capire come effettivamente funziona il linguaggio. 0 Installazione di Python[Python](https://www.python.org) è facilmente installabile su qualsiasi sistema operativo se non vi è già presente (OSX, Linux). 0.1 Installazione più Semplice (Windows, OSX, Linux)Il modo più semplice di utilizzare Python e numerosi pacchetti per l'analisi dei dati è installare [Anaconda Individual Edition](https://www.anaconda.com/products/individual). A seguito dell'installazione e dell'avvio del programma si possono scegliere varie suite di programmazione, come [Spyder](https://www.spyder-ide.org), [Jupyter](https://jupyter.org), o un semplice terminale si apre una shell di comando che può essere utilizzata per inserire i comandi da eseguire.Il mio suggerimento è di creare un [Jupyter Notebook](https://jupyter.org/try) per ciascuna delle esperienze che verranno effettuate. 0.2 Installazione per espertiQualora siate esperti nell'utilizzo del terminale, potreste installare una versione più "leggera" di python includendo solo le librerie suggerite per effettuare le analisi di questo laboratorio.Su sistemi **Windows** l'installazione di python più semplice è sempre quella con Anaconda. Per OSX e Linux, si può ricorrere ad un gestore di pacchetti come [Homebrew](https://brew.sh) per installare python (v3). Generalmente python è già installato nel sistema. Talvolta può accadere che la versione di python del sistema sia **python 2**, mentre quella più recente è la versione **3**. Si può verificare la presenza nel sistema di python3 digitando al prompt ```$ python3```a seguito del quale dovrebbe apparire qualcosa di simile```Python 3.9.0 (default, Dec 6 2020, 19:27:10) [Clang 12.0.0 (clang-1200.0.32.27)] on darwinType "help", "copyright", "credits" or "license" for more information.>>> ```Nel caso python3 non sia installato si può utilizzare **brew** per installarlo:```$ brew install python3```Una volta verificato che nel sistema è presente python3, la cosa più semplice è creare un ambiente virtuale contenente il software che vogliamo utilizzare (*jupyter*, *numpy*, *scipy*, *matplotlib*).```$ python3 -m venv laboratorioI$ source laboratorioI/bin/activate$ python -m pip install --upgrade pip$ export PKGS=(numpy scipy jupyter matplotlib)$ for PKG in $PKGS; do pip install $PKG; done$ deactivate```Questi comandi creano un ambiente virtuale di python3 con i pacchetti *numpy*, *scipy*, *jupyter* e *matplotlib* (e le loro dipendenze).Per attivare l'ambiente virtuale, basta aprire un terminale e avviare il comando `activate` presente in `laboratorioI/bin` (come fatto per installare i pacchetti).Per verificare che l'installazione sia andata a buon fine```laboratorioI $ python>>> import scipy>>>```Se il terminale non dà errori è tutto in ordine. Per uscire dalla shell di python si utilizzi la combinazione di tasti `CTRL-D` o si invii il comando `exit`.Per aprire una finestra del browser con jupyter notebook, basta inviare il seguente comando da shell```laboratorioI $ jupyter notebook```e si aprirà una pagina simile a questa.Il vantaggio di utilizzare *jupyter notebook* è che si possono alternare celle di testo a celle di codice eseguibile direttamente cliccando ###Code import numpy as np np.sqrt(2) ###Output _____no_output_____ ###Markdown 1 Utilizzo di BaseUna cella di comando può essere utilizzata per effettuare alcune operazioni di base, come operazioni aritmetiche o di definizione di variabili ###Code 2+3 a= 6 a = 4+5 ###Output _____no_output_____ ###Markdown Per stampare il valore di una variabile in un dato momento si può utilizzare il comando `print` ###Code print(a) print('a = {}'.format(a)) print("a = {}".format(a)) ###Output _____no_output_____ ###Markdown per maggiori dettagli sull'utilizzo della funzione `format` si può consultare la [documentazione](https://docs.python.org/3.4/library/string.htmlformatspec).È importante osservare che nel notebook le celle possono non essere eseguite in maniera sequenziale per cui talvolta può capitare di compiere errori di cambiamenti di valore di una variabile o non definizione della stessa, per cui si consiglia di cliccare su `Kernel->Restart & Run All` nella barra degli strumenti quando si abbia qualche dubbio. 1.1 Tipi di VariabileIn python (e nei linguaggi di programmazione in generale) le variabili possono essere di diversi tipi: - intere `int` - a virgola mobile `float` - stringhe `str` - booleane `bool`A seconda di come una variabile è definita il linguaggio di programmazione istruisce il calcolatore su quali sono le operazioni possibili.In python non c'è bisogno di informare il linguaggio del tipo di variabile, in quanto è in grado di determinarlo in fase di assegnazione del valore. ###Code a = 1 b = 1.2 c = 'a' d = True print('a = {} è {}'.format(a,type(a)))# la funzione type restituisce il tipo di variabile print('b = {} è {}'.format(b,type(b))) print('c = {} è {}'.format(c,type(c))) print('d = {} è {}'.format(d,type(d))) ###Output _____no_output_____ ###Markdown 1.2 Vettori (Liste) e DizionariPython permette di definire delle variabile vettore, cioè delle variabili che contengono una lista di valori, variabili o oggetti.Possono essere omogenee ###Code A = [1,2,3] print(A) ###Output _____no_output_____ ###Markdown o eterogenee, cioè composte da elementi di tipo diverso ###Code B = [1,2.3,'a',A] print(B) ###Output _____no_output_____ ###Markdown Gli elementi di un vettore possono essere richiamati specificando la posizione dell'elemento nel vettore (partendo da 0) ###Code B[0] ###Output _____no_output_____ ###Markdown Un particolare tipo di lista è il *dizionario*, cioè una lista nella quale ad ogni elemento ne è associato un altro ###Code D={'a':1, 'b': 2.0, 1: 3} print(D) ###Output _____no_output_____ ###Markdown Per richiamare un elemento del dizionario si utilizza una sintassi simile a quella delle liste, dove si evidenzia però l'importanza dell'associazione tra i due elementi ###Code print(D['a']) print(D[1]) ###Output _____no_output_____ ###Markdown Per conoscere gli elementi che è possibile cercare nel dizionario si usa il comando `keys()` (la dimensione di un vettore è invece data dal comando `len()` ###Code print(D.keys()) print(len(B)) ###Output _____no_output_____ ###Markdown 1.3 Funzioni e LibrerieIl vantaggio di utilizzare python per il calcolo scientifico è che possiede molte librerie di funzioni scritte e verificate dalla comunità, per cui non si corre il rischio di "reinventare la ruota" ogni qual volta sia necessario scrivere una funzione per svolgere una determinata operazione. Ad esempio la libreria [numpy](https://numpy.org) contiene varie funzioni matematiche di utilizzo comune scritte con una sintassi che permette un'efficiente operazione tra vettori. ###Code import numpy as np print(np.sqrt(3)) print(np.sqrt(np.array([1,2,3]))) np.sqrt(np.array([1,2,3])) print('{:.20f}'.format(np.sqrt(3))) ###Output _____no_output_____ ###Markdown Nel primo caso ho inserito come argomento della funzione `np.sqrt` un numero `int` e la funzione ha restituito un `float`. Nel secondo caso ho fornito un `numpy.array` ed ho ottenuto un altro vettore con i risultati dell'operazione per ciascun elemento del primo.Si osservi come il *modulo* `numpy` venga caricato tramite la funzione di python `import` e le venga dato il nome `np` per brevità. Dopo questo comando ogni funzione contenuta nel modulo `numpy` può essere chiamata utilizzando la sintassi `modulo.funzione()`.Ovviamente non è necessario rinominare i moduli in fase di caricamento. ###Code import scipy type(scipy) ###Output _____no_output_____ ###Markdown Per definire una funzione, si utilizza il comando `def` ###Code def func(x): y = x*x # notare l'indentazione return y ###Output _____no_output_____ ###Markdown si noti l'indentazione, è una caratteristica fondamentale del linguaggio e serve per separare i blocchi di codice che devono essere eseguiti in una funzione o in un ciclo ###Code z = func(4) print(z) ###Output _____no_output_____ ###Markdown Si osservi che la variabile `x` è passata alla funzione in modo agnostico, cioè python non si preoccupa che l'operazione che vogliamo eseguire su di essa sia valida. Questo ha grandi vantaggi, ad esempio permette di utilizzare la stessa funzione con un argomento del tutto diverso, ad esempio un vettore numpy: ###Code y = func(np.array([1,2,3])) print(y) print(type(y)) ###Output _____no_output_____ ###Markdown Ma può anche condurre ad errori nel caso venga utilizzata in modo non corretto, ad esempio se utilizzassimo come argomento una stringa ###Code #y = func('a') ###Output _____no_output_____ ###Markdown Furtunatamente in questo caso il calcolatore ci ha fornito un messaggio di errore abbastanza chiaro, ma talvolta ciò non avviene e si rischia di introdurre un *bug* nel sistema. 1.4 Cicli *for* e *while*Nella programmazione è utile poter eseguire delle operazioni ripetute con pochi comandi. Per questo si utilizzano i cicli *for* e *while*.Il primo permette di variare una variabile in un intervallo dato ed eseguire delle operazioni in un blocco di comandi ###Code for i in [0,1,2]: print(i) t = 0 for i in range(4): # range(n) è una funzione utile per definire un vettore di interi tra 0 e n-1 t += i print('i = {}, t = {}'.format(i,t)) print(t) for i in ['a',1,3.3]: print(i) ###Output _____no_output_____ ###Markdown *while* invece esegue un blocco di comandi finché una condizione non è soddisfatta ###Code t = 4 while t>0: t = t-1 print(t) ###Output _____no_output_____ ###Markdown 1.5 Esempio Pratico: MediaDefiniamo una funzione che calcoli la media degli elementi di un vettore ###Code def media(x): m = 0 for i in x: m += i # += incrementa la variabile somma di i m /= len(x) # /= divide la variabile m per len(x) return m media([1,2,3,1,2,4,2]) ###Output _____no_output_____ ###Markdown **Esercizio**: Scrivere una funzione che calcola la deviazione standard degli elementi di un vettore 2 Operazioni Utili per il LaboratorioQueste lezioni non possono coprire tutti i dettagli di un linguaggio di programmazione così complesso, per cui a seguito dei rudimenti, tratteremo alcuni argomenti specifici di utilità per le esperienze di laboratorio- Disegno di dati e funzioni su un grafico- Interpolazione- Disegno della retta di interpolazione sul grafico- Calcolo del $\chi^2$ 2.1 Disegno dei dati e funzioni su un graficoPer disegnare i dati su un grafico si può utilizzare la libreria [matplotlib](https://matplotlib.org). In essa sono presenti funzioni per costruire istogrammi e disegnare funzioni. 2.1.1 IstogrammiSupponiamo di voler disegnare un istogramma a partire dalle seguenti misure| | | | | | | --- | --- | --- | --- | --- | | 3.10 | 2.99 | 2.93 | 3.12 | 3.04 | | 2.97 | 2.87 | 2.78 | 3.09 | 3.19 | | 3.03 | 3.11 | 2.87 | 2.98 | 2.89 | | 2.99 | 2.89 | 2.91 | 3.03 | 3.05 |Per prima cosa costruiamo un vettore con le misure ###Code x = np.array([3.10,2.99,2.93,3.12,3.04, 2.97,2.87,2.78,3.09,3.19, 3.03,3.11,2.87,2.98,2.89, 2.99,2.89,2.91,3.03,3.05]) ###Output _____no_output_____ ###Markdown Quindi carichiamo il modulo `pyplot` dal modulo `matplotlib` e lo chiamiamo `plt` per brevità. In questo modulo è presente la funzione [`hist`](https://matplotlib.org/3.3.3/api/_as_gen/matplotlib.pyplot.hist.html) che permette di disegnare un istogramma ###Code from matplotlib import pyplot as plt plt.hist(x) ###Output _____no_output_____ ###Markdown Di base, la funzione disegna raccoglie gli elementi del vettore in un istogramma con 10 intervalli equipollenti, si può scegliere di utilizzare meno intervalli aggiungendo l'argomento `bins` ###Code plt.hist(x,bins=5) ###Output _____no_output_____ ###Markdown O addirittura definire intervalli di ampiezza diversa... ###Code plt.hist(x,bins=[2.7,2.9,3,3.2]) ###Output _____no_output_____ ###Markdown Supponiamo che i dati siano distribuiti secondo una distribuzione di Gauss, possiamo calcolarne la media e la deviazione standard scrivendo una funzione oppure utilizzando quelle fornite da `numpy` ###Code def media(x): m = 0 for i in x: m += i # += incrementa la variabile somma di i m /= len(x) # len() restituisce il numero di elementi del vettore e /= divide la variabile m per len(x) return m print(media(x)) print(np.mean(x)) print('x = {0:.2f} ± {1:.2f}'.format(np.mean(x),np.std(x))) print('x = {m:.2f} ± {s:.2f}'.format(m=np.mean(x),s=np.std(x))) # ulteriore esempio di formattazione, si noti la possibilità di scegliere la posizione delle variabili nella stampa ###Output _____no_output_____ ###Markdown Come atteso, la funzione da noi definita e la funzione di `numpy` forniscono lo stesso risultato.Nell'ultima stampa si è utilizzata anche la funzione `numpy.std` per calcolare la deviazione standard dei dati nel vettore.Tutto ciò che segue il carattere `` nella linea è un commento: viene ignorato dal calcolatore, ma è utile al programmatore.**Esercizio**: Confrontare il risultato della funzione che calcola la deviazione standard definita al punto 1.5 con l'analoga funzione `numpy.std` Sovrapposizione di una funzione al graficoPer disegnare la distribuzione di Gauss corrispondente ai dati nel vettore `x` si può utilizzare la funzione `pyplot.plt` unita alla definizione della funzione da disegnare. Per semplicità costruiamo l'istogramma delle frequenze, così da non dover cambiare la noramlizzazione della funzione di Gauss. ###Code # Definisco la funzione def gaus(x,m,s): h = 1./s/np.sqrt(2) z = x-m return np.exp(-np.power(h*z, 2.)) *h / np.sqrt(np.pi) # Definisco il numero degli intervalli, minimo, massimo e disegno l'istogramma num_bins = 5 xmin, xmax = np.floor(10.*min(x))/10, np.ceil(10.*max(x))/10 # scelgo minimo e massimo arrotondando (oss: floor e ceil restituiscono un intero, io voglio arrotondare a 0.1, da cui la moltiplicazione e divisione per 10) plt.hist(x, num_bins, range = [xmin, xmax], alpha=0.5, density=True, label='data') # Abbellimento del grafico xt = [round(xmin+0.1*i,1) for i in range(num_bins+1)] # abbellimento del grafico: scelgo i punti dove disegnare gli intervalli plt.xticks(xt, [str(i) for i in xt]) # scrivo le tacchette sull'asse x plt.xlabel('$x_k$ (mm)') # titolo asse x plt.ylabel('Densità di Frequenza') # titolo asse y # Disegno la funzione mean, sigma = np.mean(x),np.std(x) # calcolo media e deviazione standard t = np.linspace(xmin,xmax) # questa funzione definisce un vettore ad alta densità per calcolare la funzione da disegnare lungo l'asse x plt.plot(t,gaus(t,mean, sigma),label=r"$G(x;\mu,\sigma)$") plt.legend() # aggiungo una legenda ###Output _____no_output_____ ###Markdown Disegno di un grafico con barre di erroreNella maggior parte delle esperienze, sarete chiamati a disegnare dei grafici con barre di errore per rappresentare i risultati delle misure. Suppongo di aver misurato il tempo di discesa di un carrellino al variare dell'angolo di inclinazione di un piano inclinato e di aver ottenuto i seguenti risultati| $\frac{1}{\sin\alpha}$ | $t^2$ $(s^2)$ ||---|---|| 2.00 | 0.18 ± 0.15 || 2.37 | 0.22 ± 0.15 || 2.92 | 0.36 ± 0.15 || 3.86 | 0.44 ± 0.15 || 5.76 | 0.66 ± 0.15 || 11.47 | 1.12 ± 0.15 |Si creano dei vettori con i valori ottenuti: ###Code X = np.array([11.47, 5.76, 3.86, 2.92, 2.37, 2.0]) Y = np.array([1.12, 0.66, 0.44, 0.36, 0.22, 0.18]) sy = 0.15 sY = np.array(sy*np.ones(len(Y))) ###Output _____no_output_____ ###Markdown Quindi si può utilizzare la funzione `pyplot.errorbar` per disegnare il grafico dei valori `Y` corrispondenti a `X` con la barra di errore simmetrica `sY` (ovviamente i vettori devono avere la stessa dimensione perché la funzione dia un risultato) ###Code plt.errorbar(X,Y,sY, fmt='o', ls='none', label='data') # abbellimenti plt.xlim(left=0) plt.ylim(bottom=0) plt.text(max(X), -0.1*(max(Y)-min(Y)+2*max(sY)), r'$\frac{1}{\sin\alpha}$') plt.text(-0.2*(max(X)-min(X)), max(Y)+max(sY), r'$t^2 (s^2)$') plt.legend() ###Output _____no_output_____ ###Markdown 2.2 Effettuare un'interpolazioneLa cosa più semplice per effettuare un'interpolazione è scrivere le funzioni necessarie a partire dalle formule discusse a lezione. In questo esempio si utilizza una retta passante per l'origine $y = kx$:$$k = \frac{\sum_{i=1}^N x_iy_i}{\sum_{i=1}^N x^2_i} \qquad \sigma_k^2 = \frac{\sigma_y^2}{\sum_{i=1}^N x^2_i}$$Si può scrivere una funzione che calcoli $k$ e $\sigma_k$ a partire dai vettori `X`, `Y` e l'incertezza `sy` oppure eseguire le operazioni richieste in una cella (il vantaggio della funzione è che può essere riutilizzata per vari set di dati senza dover ricopiare le operazioni di volta in volta). ###Code def InterpolazioneLineareOrigine(x,y,sy): ''' Dati due vettori di pari dimensione x, y e l'incertezza sy si può interpolare la retta passante per l'origine con il metodo dei minimi quadrati ''' # controllo che x e y abbiano pari dimensione diversa da 0 if len(x) != len(y) or len(x) == 0: print('I dati inseriti non sono validi') return 0 if sy ==0 : print("L'incertezza non può essere 0") return 0 # calcolo le sommatorie sumxy = 0 sumx2 = 0 for i in range(len(x)): # range(n) = [0,1,2,..,n-1] sumxy += x[i]*y[i] sumx2 += x[i]*x[i] k = sumxy/sumx2 sk = sy/np.sqrt(sumx2) return (k,sk) ###Output _____no_output_____ ###Markdown **Esercizio**: si scriva una funzione per effettuare l'interpolazione di una retta generica**Esercizio**: si scriva una funzione per effettuare l'interpolazione di una retta generica con incertezze variabiliProcedo all'interpolazione. ###Code res = InterpolazioneLineareOrigine(X,Y,sy) print(res) print('k = {:.2f} ± {:.2f}'.format(res[0],res[1])) ###Output _____no_output_____ ###Markdown 2.3 Disegno della retta interpolata sui datiDisegno la retta interpolata sui dati, similmente a quanto fatto quando è stata disegnata la funzione di Gauss ###Code # Definisco la funzione che voglio disegnare def line(x,m,q=0): y = m*x+q return y # Disegno il grafico con barre di errore plt.errorbar(X,Y,sY, fmt='o', ls='none', label='data') # abbellimenti plt.xlim(left=0) plt.ylim(bottom=0) plt.text(max(X), -0.1*(max(Y)-min(Y)+2*max(sY)), r'$\frac{1}{\sin\alpha}$') plt.text(-0.2*(max(X)-min(X)), max(Y)+max(sY), r'$t^2 (s^2)$') # Disegno la funzione xmin, xmax = 0, max(X)+0.1*(max(X)-min(X)) t = np.linspace(xmin,xmax) # questa funzione definisce un vettore ad alta densità per calcolare la funzione da disegnare lungo l'asse x plt.plot(t,line(t,res[0]),label=r"$y = {:.2f}x$".format(res[0])) plt.legend() # aggiungo una legenda ###Output _____no_output_____ ###Markdown 2.4 Calcolo del $\chi^2$Per calcolare il $\chi^2$ si può di nuovo scrivere una funzione (o eseguire le operazioni in una cella):$$\chi^2_0 = \sum_{i=1}^N \left(\frac{y_i - k x_i}{\sigma_{y_i}}\right)^2= \frac{\sum_{i=1}^N \left(y_i - k x_i\right)^2}{\sigma_{y}^2}$$ ###Code def chisq(y,e,sy): ''' y: vettore delle misure e: vettore dei valori attesi per i valori di x considerati sy: incertezza sulle misure ''' if len(y)!=len(e) or len(y) == 0: print('I dati inseriti non sono validi') return 0 if sy ==0 : print('L\'incertezza non può essere 0') return 0 c2 = 0 for i in range(len(y)): c2 = c2 + (y[i]-e[i])*(y[i]-e[i]) c2 /= sy*sy return c2 chi2v = chisq(Y,line(X,res[0]),sy) print('chi2 = {:.2f}'.format(chi2v)) ###Output _____no_output_____ ###Markdown Il test del $\chi^2$ si può effettuare calcolando il numero di gradi di libertà del problema (n-1 in questo caso) e utilizzando la *classe* `chi2` del *modulo* `scipy.stats` che permette di calcolare la funzione cumulativa (`cdf`) della distribuzione del $\chi^2$ con *d* gradi di libertà fino ad un dato valore (`chi2v` nel nostro caso)$$P_0 = P(\chi^2 \geq \chi^2_0) = \int_{\chi^2_0}^{+\infty}f(\chi^2;d)\mathrm{d}\chi^2 = 1- \int_{0}^{\chi^2_0}f(\chi^2;d)\mathrm{d}\chi^2$$ ###Code from scipy.stats import chi2 d = len(Y)-1 pchi2 = 1-chi2.cdf(chi2v,d) print('P(chi2) = {:.1f}%'.format(100.*pchi2)) ###Output _____no_output_____
0-Beginning.ipynb
###Markdown [![Azure Notebooks](https://notebooks.azure.com/launch.png)](https://notebooks.azure.com/import/gh/Alireza-Akhavan/class.vision) مشاهده محل مفسر در کامپیوتر شما ###Code import sys print(sys.executable) ###Output C:\Users\A s u s\Anaconda3\envs\virtual_platform\python.exe ###Markdown مشاهده پوشه کار یا working directory پروژه ###Code import os print(os.getcwd()) ###Output E:\my cources\Vision\notebook ###Markdown آزمایش import کتابخانه های نصب شده نباید خطایی مشاهده شود. ###Code import cv2 import numpy as np import matplotlib ###Output _____no_output_____ ###Markdown مشاهده نسخه OpenCV ###Code print (cv2.__version__) ###Output 3.1.0
Basic Federated Classifier.ipynb
###Markdown Basic federated classifier with TensorFlow The code in this notebook is copyright 2018 coMind. Licensed under the Apache License, Version 2.0; you may not use this code except in compliance with the License. You may obtain a copy of the License.Join the conversation at Slack.This a series of three tutorials you are in the last one: * [Basic Classifier](https://github.com/coMindOrg/federated-averaging-tutorials/blob/master/Basic%20Classifier.ipynb)* [Basic Distributed Classifier](https://github.com/coMindOrg/federated-averaging-tutorials/blob/master/Basic%20Distributed%20Classifier.ipynb)* [Basic Federated Classifier](https://github.com/coMindOrg/federated-averaging-tutorials/blob/master/Basic%20Federated%20Classifier.ipynb)In this tutorial we will see how to train a model using federated averaging.To begin a brief explanation of what it means to train using federated averaging with respect to training using a SyncReplicasOptimizer.In the previous tutorial, we explained that with SyncReplicasOptimizer each worker generated a gradient for its weights and wrote it to the parameter server. The chief read those gradients (including its own), it averaged them and updated the shared model.This time each worker will be updating its weights locally, as if it were the only one training. Every certain number of steps it will send its weights (not the gradients, but the weights themselves) to the parameter server. The chief will read the weights from there, it will average and write them again to the parameter server so that all the workers can overwrite theirs. The entire first part of the code is the same as the distributed classifier tutorial.Two differences only:- This time we also import __federated_average_optimizer__, the library with which we can federalize learning.- On the other hand we define the variable __INTERVAL_STEPS__. Every how many steps we will perform the average of the weights. Put another way, how many steps will each worker make in local before writing their weights in the parameter server and overwriting them with the average that the chief has made. ###Code # TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import os import numpy as np from time import time import matplotlib.pyplot as plt import federated_averaging_optimizer flags = tf.app.flags flags.DEFINE_integer("task_index", None, "Worker task index, should be >= 0. task_index=0 is " "the master worker task that performs the variable " "initialization ") flags.DEFINE_string("ps_hosts", "localhost:2222", "Comma-separated list of hostname:port pairs") flags.DEFINE_string("worker_hosts", "localhost:2223,localhost:2224", "Comma-separated list of hostname:port pairs") flags.DEFINE_string("job_name", None, "job name: worker or ps") BATCH_SIZE = 32 EPOCHS = 5 INTERVAL_STEPS = 10 FLAGS = flags.FLAGS if FLAGS.job_name is None or FLAGS.job_name == "": raise ValueError("Must specify an explicit `job_name`") if FLAGS.task_index is None or FLAGS.task_index == "": raise ValueError("Must specify an explicit `task_index`") if FLAGS.task_index == 0: print('--- GPU Disabled ---') os.environ['CUDA_VISIBLE_DEVICES'] = '' #Construct the cluster and start the server ps_spec = FLAGS.ps_hosts.split(",") worker_spec = FLAGS.worker_hosts.split(",") # Get the number of workers. num_workers = len(worker_spec) print('{} workers defined'.format(num_workers)) cluster = tf.train.ClusterSpec({"ps": ps_spec, "worker": worker_spec}) server = tf.train.Server(cluster, job_name=FLAGS.job_name, task_index=FLAGS.task_index) if FLAGS.job_name == "ps": print('--- Parameter Server Ready ---') server.join() fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() print('Data loaded') class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] train_images = np.split(train_images, num_workers)[FLAGS.task_index] train_labels = np.split(train_labels, num_workers)[FLAGS.task_index] print('Local dataset size: {}'.format(train_images.shape[0])) train_images = train_images / 255.0 test_images = test_images / 255.0 is_chief = (FLAGS.task_index == 0) checkpoint_dir='logs_dir/federated_worker_{}/{}'.format(FLAGS.task_index, time()) print('Checkpoint directory: ' + checkpoint_dir) worker_device = "/job:worker/task:%d" % FLAGS.task_index print('Worker device: ' + worker_device + ' - is_chief: {}'.format(is_chief)) ###Output _____no_output_____ ###Markdown Here we begin the definition of the graph in the same way as it was done in the basic classifier, we explicitly place every operation in the local worker. The rest is fairly standard until we reach the definition of the optimizer. ###Code with tf.device(worker_device) global_step = tf.train.get_or_create_global_step() with tf.name_scope('dataset'), tf.device('/cpu:0'): images_placeholder = tf.placeholder(train_images.dtype, [None, train_images.shape[1], train_images.shape[2]], name='images_placeholder') labels_placeholder = tf.placeholder(train_labels.dtype, [None], name='labels_placeholder') batch_size = tf.placeholder(tf.int64, name='batch_size') shuffle_size = tf.placeholder(tf.int64, name='shuffle_size') dataset = tf.data.Dataset.from_tensor_slices((images_placeholder, labels_placeholder)) dataset = dataset.shuffle(shuffle_size, reshuffle_each_iteration=True) dataset = dataset.repeat(EPOCHS) dataset = dataset.batch(batch_size) iterator = tf.data.Iterator.from_structure(dataset.output_types, dataset.output_shapes) dataset_init_op = iterator.make_initializer(dataset, name='dataset_init') X, y = iterator.get_next() flatten_layer = tf.layers.flatten(X, name='flatten') dense_layer = tf.layers.dense(flatten_layer, 128, activation=tf.nn.relu, name='relu') predictions = tf.layers.dense(dense_layer, 10, activation=tf.nn.softmax, name='softmax') summary_averages = tf.train.ExponentialMovingAverage(0.9) with tf.name_scope('loss'): loss = tf.reduce_mean(keras.losses.sparse_categorical_crossentropy(y, predictions)) loss_averages_op = summary_averages.apply([loss]) tf.summary.scalar('cross_entropy', summary_averages.average(loss)) with tf.name_scope('accuracy'): with tf.name_scope('correct_prediction'): correct_prediction = tf.equal(tf.argmax(predictions, 1), tf.cast(y, tf.int64)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name='accuracy_metric') accuracy_averages_op = summary_averages.apply([accuracy]) tf.summary.scalar('accuracy', summary_averages.average(accuracy)) ###Output _____no_output_____ ###Markdown We used the __replica_device_setter__ in the distributed learning to automatically choose in which device to place each defined op. Here we create it just to pass it as an argument to the custom optimizer that we have created to contain the logic of the federated averaging.This custom optimizer will use the __replica_device_setter__ to place a copy of each trainable variable in the ps, this new variables will store the averaged values of all the local models.Once this optimizer has been defined, we create the training operation and a, in the same way as we did with SyncReplicasOptimizer, a hook that will run inside the MonitoredTrainingSession, which handles the initialization. ###Code with tf.name_scope('train'): device_setter = tf.train.replica_device_setter(worker_device=worker_device, cluster=cluster) optimizer = federated_averaging_optimizer.FederatedAveragingOptimizer(tf.train.AdamOptimizer(np.sqrt(num_workers) * 0.001), replicas_to_aggregate=num_workers, interval_steps=INTERVAL_STEPS, is_chief=is_chief, device_setter=device_setter) with tf.control_dependencies([loss_averages_op, accuracy_averages_op]): train_op = optimizer.minimize(loss, global_step=global_step) model_average_hook = optimizer.make_session_run_hook() ###Output _____no_output_____ ###Markdown We keep defining our hooks as usual. ###Code n_batches = int(train_images.shape[0] / BATCH_SIZE) last_step = int(n_batches * EPOCHS) print('Graph definition finished') sess_config = tf.ConfigProto( allow_soft_placement=True, log_device_placement=False, operation_timeout_in_ms=20000, device_filters=["/job:ps", "/job:worker/task:%d" % FLAGS.task_index]) print('Training {} batches...'.format(last_step)) class _LoggerHook(tf.train.SessionRunHook): def begin(self): self._total_loss = 0 self._total_acc = 0 def before_run(self, run_context): return tf.train.SessionRunArgs([loss, accuracy, global_step]) def after_run(self, run_context, run_values): loss_value, acc_value, step_value = run_values.results self._total_loss += loss_value self._total_acc += acc_value if (step_value + 1) % n_batches == 0 and not step_value == 0: print("Epoch {}/{} - loss: {:.4f} - acc: {:.4f}".format(int(step_value / n_batches) + 1, EPOCHS, self._total_loss / n_batches, self._total_acc / n_batches)) self._total_loss = 0 self._total_acc = 0 class _InitHook(tf.train.SessionRunHook): def after_create_session(self, session, coord): session.run(dataset_init_op, feed_dict={images_placeholder: train_images, labels_placeholder: train_labels, batch_size: BATCH_SIZE, shuffle_size: train_images.shape[0]}) ###Output _____no_output_____ ###Markdown The shared variables generated within the custom optimizer get their initialized value from their corresponding trainable variables in the local worker. Therefore their initialization ops will be unavailable out of this session even if we try to restore a saved checkpoint.We need to define a custom saver which ignores this shared variables. In this case, we only save the trainable_variables . ###Code class _SaverHook(tf.train.SessionRunHook): def begin(self): self._saver = tf.train.Saver(tf.trainable_variables()) def before_run(self, run_context): return tf.train.SessionRunArgs(global_step) def after_run(self, run_context, run_values): step_value = run_values.results if step_value % n_batches == 0 and not step_value == 0: self._saver.save(run_context.session, checkpoint_dir+'/model.ckpt', step_value) def end(self, session): self._saver.save(session, checkpoint_dir+'/model.ckpt', session.run(global_step)) ###Output _____no_output_____ ###Markdown The execution of the training session is standard. Notice the new hooks that we have added to the hook lists.WARNING! Do not define a chief worker. We need each worker to initialize their local session and train on its own! ###Code with tf.name_scope('monitored_session'): with tf.train.MonitoredTrainingSession( master=server.target, checkpoint_dir=checkpoint_dir, hooks=[_LoggerHook(), _InitHook(), _SaverHook(), model_average_hook], config=sess_config, stop_grace_period_secs=10, save_checkpoint_secs=None) as mon_sess: while not mon_sess.should_stop(): mon_sess.run(train_op) ###Output _____no_output_____ ###Markdown Finally, we evaluate the model. ###Code if is_chief: print('--- Begin Evaluation ---') tf.reset_default_graph() with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(checkpoint_dir) saver = tf.train.import_meta_graph(ckpt.model_checkpoint_path + '.meta', clear_devices=True) saver.restore(sess, ckpt.model_checkpoint_path) print('Model restored') graph = tf.get_default_graph() images_placeholder = graph.get_tensor_by_name('dataset/images_placeholder:0') labels_placeholder = graph.get_tensor_by_name('dataset/labels_placeholder:0') batch_size = graph.get_tensor_by_name('dataset/batch_size:0') accuracy = graph.get_tensor_by_name('accuracy/accuracy_metric:0') predictions = graph.get_tensor_by_name('softmax/BiasAdd:0') dataset_init_op = graph.get_operation_by_name('dataset/dataset_init') sess.run(dataset_init_op, feed_dict={images_placeholder: test_images, labels_placeholder: test_labels, batch_size: test_images.shape[0], shuffle_size: 1}) print('Test accuracy: {:4f}'.format(sess.run(accuracy))) predicted = sess.run(predictions) # Plot the first 25 test images, their predicted label, and the true label # Color correct predictions in green, incorrect predictions in red plt.figure(figsize=(10, 10)) for i in range(25): plt.subplot(5, 5, i + 1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(test_images[i], cmap=plt.cm.binary) predicted_label = np.argmax(predicted[i]) true_label = test_labels[i] if predicted_label == true_label: color = 'green' else: color = 'red' plt.xlabel("{} ({})".format(class_names[predicted_label], class_names[true_label]), color=color) plt.show(True) ###Output _____no_output_____ ###Markdown Basic federated classifier with TensorFlow The code in this notebook is copyright 2018 coMind. Licensed under the Apache License, Version 2.0; you may not use this code except in compliance with the License. You may obtain a copy of the License.Join the conversation at Slack.This a series of three tutorials you are in the last one: * [Basic Classifier](https://github.com/coMindOrg/federated-averaging-tutorials/blob/master/Basic%20Classifier.ipynb)* [Basic Distributed Classifier](https://github.com/coMindOrg/federated-averaging-tutorials/blob/master/Basic%20Distributed%20Classifier.ipynb)* [Basic Federated Classifier](https://github.com/coMindOrg/federated-averaging-tutorials/blob/master/Basic%20Federated%20Classifier.ipynb)In this tutorial we will see how to train a model using federated averaging.To begin a brief explanation of what it means to train using federated averaging with respect to training using a SyncReplicasOptimizer.In the previous tutorial, we explained that with SyncReplicasOptimizer each worker generated a gradient for its weights and wrote it to the parameter server. The chief read those gradients (including its own), it averaged them and updated the shared model.This time each worker will be updating its weights locally, as if it were the only one training. Every certain number of steps it will send its weights (not the gradients, but the weights themselves) to the parameter server. The chief will read the weights from there, it will average and write them again to the parameter server so that all the workers can overwrite theirs. The entire first part of the code is the same as the distributed classifier tutorial.Two differences only:- This time we also import __federated_average_optimizer__, the library with which we can federalize learning.- On the other hand we define the variable __INTERVAL_STEPS__. Every how many steps we will perform the average of the weights. Put another way, how many steps will each worker make in local before writing their weights in the parameter server and overwriting them with the average that the chief has made. ###Code # TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import os import numpy as np from time import time import matplotlib.pyplot as plt import federated_averaging_optimizer flags = tf.app.flags flags.DEFINE_integer("task_index", None, "Worker task index, should be >= 0. task_index=0 is " "the master worker task that performs the variable " "initialization ") flags.DEFINE_string("ps_hosts", "localhost:2222", "Comma-separated list of hostname:port pairs") flags.DEFINE_string("worker_hosts", "localhost:2223,localhost:2224", "Comma-separated list of hostname:port pairs") flags.DEFINE_string("job_name", None, "job name: worker or ps") BATCH_SIZE = 32 EPOCHS = 5 INTERVAL_STEPS = 10 FLAGS = flags.FLAGS if FLAGS.job_name is None or FLAGS.job_name == "": raise ValueError("Must specify an explicit `job_name`") if FLAGS.task_index is None or FLAGS.task_index == "": raise ValueError("Must specify an explicit `task_index`") if FLAGS.task_index == 0: print('--- GPU Disabled ---') os.environ['CUDA_VISIBLE_DEVICES'] = '' #Construct the cluster and start the server ps_spec = FLAGS.ps_hosts.split(",") worker_spec = FLAGS.worker_hosts.split(",") # Get the number of workers. num_workers = len(worker_spec) print('{} workers defined'.format(num_workers)) cluster = tf.train.ClusterSpec({"ps": ps_spec, "worker": worker_spec}) server = tf.train.Server(cluster, job_name=FLAGS.job_name, task_index=FLAGS.task_index) if FLAGS.job_name == "ps": print('--- Parameter Server Ready ---') server.join() fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() print('Data loaded') class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] train_images = np.split(train_images, num_workers)[FLAGS.task_index] train_labels = np.split(train_labels, num_workers)[FLAGS.task_index] print('Local dataset size: {}'.format(train_images.shape[0])) train_images = train_images / 255.0 test_images = test_images / 255.0 is_chief = (FLAGS.task_index == 0) checkpoint_dir='logs_dir/federated_worker_{}/{}'.format(FLAGS.task_index, time()) print('Checkpoint directory: ' + checkpoint_dir) worker_device = "/job:worker/task:%d" % FLAGS.task_index print('Worker device: ' + worker_device + ' - is_chief: {}'.format(is_chief)) ###Output _____no_output_____ ###Markdown Here we begin the definition of the graph in the same way as it was done in the basic classifier, we explicitly place every operation in the local worker. The rest is fairly standard until we reach the definition of the optimizer. ###Code with tf.device(worker_device) global_step = tf.train.get_or_create_global_step() with tf.name_scope('dataset'), tf.device('/cpu:0'): images_placeholder = tf.placeholder(train_images.dtype, [None, train_images.shape[1], train_images.shape[2]], name='images_placeholder') labels_placeholder = tf.placeholder(train_labels.dtype, [None], name='labels_placeholder') batch_size = tf.placeholder(tf.int64, name='batch_size') shuffle_size = tf.placeholder(tf.int64, name='shuffle_size') dataset = tf.data.Dataset.from_tensor_slices((images_placeholder, labels_placeholder)) dataset = dataset.shuffle(shuffle_size, reshuffle_each_iteration=True) dataset = dataset.repeat(EPOCHS) dataset = dataset.batch(batch_size) iterator = tf.data.Iterator.from_structure(dataset.output_types, dataset.output_shapes) dataset_init_op = iterator.make_initializer(dataset, name='dataset_init') X, y = iterator.get_next() flatten_layer = tf.layers.flatten(X, name='flatten') dense_layer = tf.layers.dense(flatten_layer, 128, activation=tf.nn.relu, name='relu') predictions = tf.layers.dense(dense_layer, 10, activation=tf.nn.softmax, name='softmax') summary_averages = tf.train.ExponentialMovingAverage(0.9) with tf.name_scope('loss'): loss = tf.reduce_mean(keras.losses.sparse_categorical_crossentropy(y, predictions)) loss_averages_op = summary_averages.apply([loss]) tf.summary.scalar('cross_entropy', summary_averages.average(loss)) with tf.name_scope('accuracy'): with tf.name_scope('correct_prediction'): correct_prediction = tf.equal(tf.argmax(predictions, 1), tf.cast(y, tf.int64)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name='accuracy_metric') accuracy_averages_op = summary_averages.apply([accuracy]) tf.summary.scalar('accuracy', summary_averages.average(accuracy)) ###Output _____no_output_____ ###Markdown We used the __replica_device_setter__ in the distributed learning to automatically choose in which device to place each defined op. Here we create it just to pass it as an argument to the custom optimizer that we have created to contain the logic of the federated averaging.This custom optimizer will use the __replica_device_setter__ to place a copy of each trainable variable in the ps, this new variables will store the averaged values of all the local models.Once this optimizer has been defined, we create the training operation and a, in the same way as we did with SyncReplicasOptimizer, a hook that will run inside the MonitoredTrainingSession, which handles the initialization. ###Code with tf.name_scope('train'): device_setter = tf.train.replica_device_setter(worker_device=worker_device, cluster=cluster) optimizer = federated_averaging_optimizer.FederatedAveragingOptimizer( tf.train.AdamOptimizer(np.sqrt(num_workers) * 0.001), replicas_to_aggregate=num_workers, interval_steps=INTERVAL_STEPS, is_chief=is_chief, device_setter=device_setter) with tf.control_dependencies([loss_averages_op, accuracy_averages_op]): train_op = optimizer.minimize(loss, global_step=global_step) model_average_hook = optimizer.make_session_run_hook() ###Output _____no_output_____ ###Markdown We keep defining our hooks as usual. ###Code n_batches = int(train_images.shape[0] / BATCH_SIZE) last_step = int(n_batches * EPOCHS) print('Graph definition finished') sess_config = tf.ConfigProto( allow_soft_placement=True, log_device_placement=False, operation_timeout_in_ms=20000, device_filters=["/job:ps", "/job:worker/task:%d" % FLAGS.task_index]) print('Training {} batches...'.format(last_step)) class _LoggerHook(tf.train.SessionRunHook): def begin(self): self._total_loss = 0 self._total_acc = 0 def before_run(self, run_context): return tf.train.SessionRunArgs([loss, accuracy, global_step]) def after_run(self, run_context, run_values): loss_value, acc_value, step_value = run_values.results self._total_loss += loss_value self._total_acc += acc_value if (step_value + 1) % n_batches == 0 and not step_value == 0: print("Epoch {}/{} - loss: {:.4f} - acc: {:.4f}".format( int(step_value / n_batches) + 1, EPOCHS, self._total_loss / n_batches, self._total_acc / n_batches)) self._total_loss = 0 self._total_acc = 0 class _InitHook(tf.train.SessionRunHook): def after_create_session(self, session, coord): session.run(dataset_init_op, feed_dict={ images_placeholder: train_images, labels_placeholder: train_labels, batch_size: BATCH_SIZE, shuffle_size: train_images.shape[0]}) ###Output _____no_output_____ ###Markdown The shared variables generated within the custom optimizer get their initialized value from their corresponding trainable variables in the local worker. Therefore their initialization ops will be unavailable out of this session even if we try to restore a saved checkpoint.We need to define a custom saver which ignores this shared variables. In this case, we only save the trainable_variables . ###Code class _SaverHook(tf.train.SessionRunHook): def begin(self): self._saver = tf.train.Saver(tf.trainable_variables()) def before_run(self, run_context): return tf.train.SessionRunArgs(global_step) def after_run(self, run_context, run_values): step_value = run_values.results if step_value % n_batches == 0 and not step_value == 0: self._saver.save(run_context.session, checkpoint_dir+'/model.ckpt', step_value) def end(self, session): self._saver.save(session, checkpoint_dir+'/model.ckpt', session.run(global_step)) ###Output _____no_output_____ ###Markdown The execution of the training session is standard. Notice the new hooks that we have added to the hook lists.WARNING! Do not define a chief worker. We need each worker to initialize their local session and train on its own! ###Code with tf.name_scope('monitored_session'): with tf.train.MonitoredTrainingSession( master=server.target, checkpoint_dir=checkpoint_dir, hooks=[_LoggerHook(), _InitHook(), _SaverHook(), model_average_hook], config=sess_config, stop_grace_period_secs=10, save_checkpoint_secs=None) as mon_sess: while not mon_sess.should_stop(): mon_sess.run(train_op) ###Output _____no_output_____ ###Markdown Finally, we evaluate the model. ###Code if is_chief: print('--- Begin Evaluation ---') tf.reset_default_graph() with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(checkpoint_dir) saver = tf.train.import_meta_graph(ckpt.model_checkpoint_path + '.meta', clear_devices=True) saver.restore(sess, ckpt.model_checkpoint_path) print('Model restored') graph = tf.get_default_graph() images_placeholder = graph.get_tensor_by_name('dataset/images_placeholder:0') labels_placeholder = graph.get_tensor_by_name('dataset/labels_placeholder:0') batch_size = graph.get_tensor_by_name('dataset/batch_size:0') accuracy = graph.get_tensor_by_name('accuracy/accuracy_metric:0') predictions = graph.get_tensor_by_name('softmax/BiasAdd:0') dataset_init_op = graph.get_operation_by_name('dataset/dataset_init') sess.run(dataset_init_op, feed_dict={ images_placeholder: test_images, labels_placeholder: test_labels, batch_size: test_images.shape[0], shuffle_size: 1}) print('Test accuracy: {:4f}'.format(sess.run(accuracy))) predicted = sess.run(predictions) # Plot the first 25 test images, their predicted label, and the true label # Color correct predictions in green, incorrect predictions in red plt.figure(figsize=(10, 10)) for i in range(25): plt.subplot(5, 5, i + 1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(test_images[i], cmap=plt.cm.binary) predicted_label = np.argmax(predicted[i]) true_label = test_labels[i] if predicted_label == true_label: color = 'green' else: color = 'red' plt.xlabel("{} ({})".format(class_names[predicted_label], class_names[true_label]), color=color) plt.show(True) ###Output _____no_output_____
notebooks/125_chapter4_fig.4.40.ipynb
###Markdown Plot fig 4.40 - now unusedTheme Song: BubblesArtist: Biffy ClyroAlbum: Only RevolutionsReleased: 2009This is the difference between RCPs and SSPs for ERF. ###Code import matplotlib.pyplot as pl import numpy as np import pandas as pd pl.rcParams['figure.figsize'] = (18/2.54, 9/2.54) pl.rcParams['font.size'] = 9 pl.rcParams['font.family'] = 'Arial' pl.rcParams['ytick.direction'] = 'out' pl.rcParams['ytick.minor.visible'] = True pl.rcParams['ytick.major.right'] = True pl.rcParams['ytick.right'] = True pl.rcParams['xtick.major.bottom'] = False pl.rcParams['axes.spines.bottom'] = False pl.rcParams['axes.spines.top'] = False erf = {} scenarios = ['ssp126', 'ssp245', 'ssp585', 'rcp26', 'rcp45', 'rcp85'] for scenario in scenarios: path = '../data_output/' + scenario[:3].upper() + 's/' erf[scenario] = pd.read_csv(path + 'ERF_%s_1750-2500.csv' % scenario, index_col=0) erf[scenario]['wmghg'] = erf[scenario]['co2'] + erf[scenario]['ch4'] + erf[scenario]['n2o'] + erf[scenario]['other_wmghg'] erf[scenario]['aerosol'] = erf[scenario]['aerosol-radiation_interactions'] + erf[scenario]['aerosol-cloud_interactions'] colors_ssp = { 'co2' : '#7f0089', 'wmghg' : '#7000c0', 'aerosol': '#66665f', 'total_anthropogenic': '#24937e' } colors_rcp = { 'co2' : '#f457ff', 'wmghg' : '#d08fff', 'aerosol': '#ccccc7', 'total_anthropogenic': '#9ce7d9' } labels = { 'co2': 'Carbon dioxide', 'wmghg': 'Greenhouse gases', 'aerosol': 'Aerosols', 'total_anthropogenic': 'Total' } sspid = { '26' : '1', '45' : '2', '85' : '5' } fig, ax = pl.subplots(1, 3) for iforc, forc in enumerate(['26', '45', '85']): real_name = forc[0] + '.' + forc[1] for ispec, specie in enumerate(['co2', 'wmghg', 'aerosol', 'total_anthropogenic']): ax[iforc].bar( ispec+0.3, erf['ssp'+sspid[forc]+forc].loc[2100,specie], width=0.4, color=colors_ssp[specie], label=(labels[specie] if iforc==0 else '') ) ax[iforc].bar( ispec+0.7, erf['rcp'+forc].loc[2100,specie], width=0.4, color=colors_rcp[specie], label=('2100' if (iforc==1 and ispec==3) else '') ) ax[iforc].bar(ispec+0.3, erf['ssp'+sspid[forc]+forc].loc[2050,specie], width=0.4, color='None', hatch='/', lw=1, edgecolor='k') ax[iforc].bar( ispec+0.7, erf['rcp'+forc].loc[2050,specie], width=0.4, color='None', hatch='/', lw=1, edgecolor='k', label=('2050' if (iforc==1 and ispec==3) else '') ) ax[iforc].text(ispec+0.3, -2.2, 'SSP', ha='center', va='bottom', rotation=90) ax[iforc].text(ispec+0.7, -2.2, 'RCP', ha='center', va='bottom', rotation=90) ax[iforc].axhline(0, ls=':', color='k', lw=0.5) ax[iforc].set_ylim(-2.2, 12) ax[iforc].text(2, 11.4, '('+chr(iforc+97)+') SSP'+sspid[forc]+'-'+real_name+'/RCP'+real_name, ha='center', va='bottom') ax[0].set_ylabel('W m$^{-2}$') ax[1].set_yticklabels([]) ax[2].set_yticklabels([]) ax[0].legend(loc='upper left', bbox_to_anchor=[0,0.9]) ax[1].legend(loc='upper left', bbox_to_anchor=[0,0.9]) subplots_center = 0.5 * (ax[1].get_position().x0 + ax[1].get_position().x1) pl.figtext(subplots_center, 0.95, 'Effective radiative forcing in SSP and RCP scenarios', ha='center', va='bottom', fontsize=11) fig.tight_layout(rect=[0,0,1,0.97]) pl.savefig('../figures/fig4.40.png', dpi=300) pl.savefig('../figures/fig4.40.pdf') ###Output _____no_output_____
notebooks/.ipynb_checkpoints/WSTA_N6_probabilistic_parsing-checkpoint.ipynb
###Markdown Probabilistic CFG parsing This notebook demonstrates the process behind parsing with a probabilistic (weighted) context free grammar. The algorithm here is based on the CYK algorithm for PCFG parsing, as described in Figure 14.3 J&M2 and presented in the lecture. Note that NLTK implements a few probabilistic parsing methods internally, which are a little different to the algorithm presented in the lecture but are an excellent resource (see pointer at the bottom). ###Code import nltk import nltk.grammar from collections import defaultdict from IPython.core.display import display, HTML ###Output _____no_output_____ ###Markdown As a warm-up let's start by creating a standard (unweighted) CFG grammar and parse a simple sentence. ###Code groucho_grammar = nltk.CFG.fromstring(""" S -> NP VP PP -> P NP NP -> Det N | Det N PP | 'I' VP -> V NP | VP PP Det -> 'a' | 'an' | 'my' | 'the' N -> 'elephant' | 'pajamas' | 'shot' V -> 'shot' P -> 'in' """) ###Output _____no_output_____ ###Markdown Our sentence is chosen to be ambiguous, note that there are two ways in which the following can be parsed. ###Code sent = ['I', 'shot', 'an', 'elephant', 'in', 'my', 'pajamas'] parser = nltk.ChartParser(groucho_grammar) trees = list(parser.parse(sent)) print(len(trees)) print(trees[0]) print(trees[1]) ###Output 2 (S (NP I) (VP (VP (V shot) (NP (Det an) (N elephant))) (PP (P in) (NP (Det my) (N pajamas))))) (S (NP I) (VP (V shot) (NP (Det an) (N elephant) (PP (P in) (NP (Det my) (N pajamas)))))) ###Markdown These trees can be visualised in a more comprehensible way ###Code trees[0] ###Output _____no_output_____ ###Markdown If you get a lot of warnings in the above, and no pretty tree, then that means you're missing the *ghostview* library. It comes standard with linux and mac, I think, but you may need to install it yourself on windows. You can obtain a copy of the GPL binary [from the ghostview website](http://www.ghostscript.com/download/gsdnld.html). If you're on a locked-down machine, and can't install, you may want to view the tree as follows: ###Code # ASCII art trees[0].pretty_print() # launches a popup window trees[0].draw() ###Output _____no_output_____ ###Markdown And here's the other tree ###Code trees[1] ###Output _____no_output_____ ###Markdown Now we will move to a PCFG, where each rule has a weight denoted by a bracket [number] after each production. Here's a fairly simple (different) grammar, which we will use to develop and demonstrate the CYK parsing algorithm. ###Code toy_pcfg2 = nltk.grammar.PCFG.fromstring(""" S -> NP VP [1.0] VP -> V NP [.59] VP -> V [.40] VP -> VP PP [.01] NP -> Det N [.41] NP -> Name [.28] NP -> NP PP [.31] PP -> P NP [1.0] V -> 'saw' [.21] V -> 'ate' [.51] V -> 'ran' [.28] N -> 'boy' [.11] N -> 'cookie' [.12] N -> 'table' [.13] N -> 'telescope' [.14] N -> 'hill' [.5] Name -> 'Jack' [.52] Name -> 'Bob' [.48] P -> 'with' [.61] P -> 'under' [.39] Det -> 'the' [.41] Det -> 'a' [.31] Det -> 'my' [.28] """) ###Output _____no_output_____ ###Markdown First we need to check that the grammar is in Chomsky normal form (CNF), as this is a condition for using the CYK parsing algorithm. Recall that CNF means that all rules are either X -> A B or X -> 'word', where capitals denote non-terminal symbols. ###Code print(toy_pcfg2.is_chomsky_normal_form()) print(toy_pcfg2.is_flexible_chomsky_normal_form()) ###Output False True ###Markdown Nope. This is because of the unary productions X -> Y. Note that these can cause problems, especially when there is a loop (NP -> PP -> NP ...). This means the grammar can produce infinitely deep trees, and generally makes the algorithm more complex, as we would have to reduce the grammar to CNF by solving the total probability over any length chain. Note that as the probability of each production is bounded, $0 \le p \le 1$, long chains tend to be increasingly improbable. However note that our grammar has no unary cycles, so we can ignore this problem. *Do you have any ideas on how this might be handled properly, in general?* We can interact with the grammar in several ways. Have a little play below, e.g., to lookup a production and query its attributes. ###Code p = toy_pcfg2.productions(rhs='saw')[0] print(p.prob()) print(p.lhs()) q = toy_pcfg2.productions(rhs=p.lhs()) print(q) ###Output 0.21 V [VP -> V NP [0.59], VP -> V [0.4]] ###Markdown Now for the CYK parsing algorithm. This operates by incrementally constructing a *chart (table)* using dynamic programming. The chart stores the partial results thus far, which encodes the best scoring tree structure for substrings of the input sentence. These partial results are extended incrementally to find the best scoring structure for the whole sentence.Recall that a sentence is indexed by the spaces between words, e.g., 0 this 1 is 2 an 3 example 4 such that words or strings of words can be represented as a pair of [start, end] indices. E.g., [2,3] = an; [1,4] = is an example. Each element in the chart is indexed as: table[i, j][non-terminal] which stores a probability for parsing the string [i, j]. The CYK algorithm builds these from smaller units by searching for all i < k < j and all productions such that previous analyses that cover [i,k] and [k,j] might be combined using a binary production to cover [i,j]. For this to be valid, the symbols for the two spans must match the RHS of a production in the grammar, and the resulting non-terminal is the LHS of the production. You'll need to read J&M2 and the lecture slides for more details, or tinker with the code below to understand the process. (E.g., by adding a display call into the j loop.) ###Code def parse_CYK(words, grammar): table = defaultdict(dict) back = defaultdict(dict) # righter-most index j for j in range(1, len(words)+1): # insert token preterminal rewrites, POS -> 'word' token = words[j-1] for prod in grammar.productions(rhs=token): if len(prod.rhs()) == 1: table[j-1,j][prod.lhs()] = prod.prob() # deal with pesky unary productions changes = True cell = table[j-1,j] while changes: # repeat this loop until no rule changes; will infinitely # loop for grammars with a unary cycle changes = False for non_term in list(cell.keys()): prob = cell[non_term] for prod in grammar.productions(rhs=non_term): if len(prod.rhs()) == 1: unary_prob = prod.prob() * prob if unary_prob > cell.get(prod.lhs(), 0): cell[prod.lhs()] = unary_prob back[j-1,j][prod.lhs()] = (None, prod) changes = True # now look for larger productions that span [i, j] # allowing i to move leftward over the input for i in range(j-2, -1, -1): cell = table[i,j] # k is the split point, i < k < j for k in range(i+1, j): # find chart cells based on the split point left_cell = table[i,k] right_cell = table[k,j] # find binary productions which handle a valid symbol A from left cell, X -> A B for left_nt, left_prob in left_cell.items(): for prod in grammar.productions(rhs=left_nt): if len(prod.rhs()) == 2: # check if the left and right cells have a valid parse right_prob = right_cell.get(prod.rhs()[1]) if left_prob != None and right_prob != None: # score the partial parse prob = prod.prob() * left_prob * right_prob if prob > cell.get(prod.lhs(), 0.0): # if it exceeds the current best analysis, update the cell cell[prod.lhs()] = prob # and store a record of how we got here back[i,j][prod.lhs()] = (k, prod) # display the table and back pointers display_CYK_chart(words, table, back) # have to build the tree from the back pointers return build_tree(words, back, grammar.start(), i=0, j=len(words)) ###Output _____no_output_____ ###Markdown We now need to write the remaining functions. First creating the tree from the back-pointers, which operates recursively starting at the word sentence headed by the start symbol 'S' (i.e., cell [0, length, S]). Then it follows the back pointers to find where the span was split and what the child symbols were. ###Code def build_tree(words, back, symbol, i, j): backpointer = back[i, j].get(symbol) if backpointer == None: # X -> 'word' production assert j == i+1 return nltk.tree.Tree(symbol, [words[i]]) else: k, prod = back[i, j][symbol] if k != None: # X -> A B binary production left_subtree = build_tree(words, back, prod.rhs()[0], i=i, j=k) right_subtree = build_tree(words, back, prod.rhs()[1], i=k, j=j) return nltk.tree.Tree(symbol, [left_subtree, right_subtree]) else: # X -> A unary production subtree = build_tree(words, back, prod.rhs()[0], i=i, j=j) return nltk.tree.Tree(symbol, [subtree]) ###Output _____no_output_____ ###Markdown And some pretty printing code to view the chart. ###Code def display_CYK_chart(words, table, back): length = len(words) html = '' html += '<tr>' for i in range(length): html += '<td><i>%s<i></td>' % words[i] html += '</tr>' for i in range(length): html += '<tr>' for j in range(1, length+1): if j <= i: html += '<td>' else: html += "<td bgcolor='lightcyan'>" html += '[%d,%d]' % (i,j) for symbol, prob in table.get((i,j), {}).items(): html += '<br><b>%s</b> [%.5f]' % (str(symbol), prob) b = back[i,j].get(symbol) if b != None: html += '<br>&nbsp; (k=%s, %s)' % (b[0], str(b[1])) html += '</td>' html += '</tr>' display(HTML(html)) ###Output _____no_output_____ ###Markdown Finally we are ready to parse! Let's set it loose on a simple sentence. ###Code parse_CYK('Jack saw Bob with my cookie'.split(), toy_pcfg2) ###Output _____no_output_____ ###Markdown Finally, feel free to investage NLTK's grammar and parsing algorithms. These live in `nltk.grammar`, `nltk.tree` and `nltk.parse`. Here's a good entry point: ###Code import nltk.grammar nltk.grammar.pcfg_demo() ###Output A PCFG production: NP -> NP PP [0.25] pcfg_prod.lhs() => NP pcfg_prod.rhs() => (NP, PP) pcfg_prod.prob() => 0.25 A PCFG grammar: <Grammar with 23 productions> grammar.start() => S grammar.productions() => [S -> NP VP [1.0], VP -> V NP [0.59], VP -> V [0.4], VP -> VP PP [0.01], NP -> Det N [0.41], NP -> Name [0.28], NP -> NP PP [0.31], PP -> P NP [1.0], V -> 'saw' [0.21], V -> 'ate' [0.51], V -> 'ran' [0.28], N -> 'boy' [0.11], N -> 'cookie' [0.12], N -> 'table' [0.13], N -> 'telescope' [0.14], N -> 'hill' [0.5], Name -> 'Jack' [0.52], Name -> 'Bob' [0.48], P -> 'with' [0.61], P -> 'under' [0.39], Det -> 'the' [0.41], Det -> 'a' [0.31], Det -> 'my' [0.28]] Induce PCFG grammar from treebank data: Grammar with 53 productions (start state = S) JJ -> 'nonexecutive' [0.5] NP -> CD NNS [0.125] NP-SBJ -> NNP NNP [0.5] NP-SBJ -> NP NP-SBJ|<,-ADJP> [0.5] NNP -> 'Mr.' [0.125] NNS -> 'years' [1.0] NP -> DT NP|<JJ-NN> [0.125] NP-SBJ|<,-ADJP> -> , NP-SBJ|<ADJP-,> [1.0] NP|<JJ-NN> -> JJ NN [1.0] NN -> 'director' [0.25] NN -> 'group' [0.25] NNP -> 'Dutch' [0.125] CD -> '61' [0.5] . -> '.' [1.0] PP-CLR -> IN NP [1.0] IN -> 'as' [0.5] NNP -> 'N.V.' [0.125] , -> ',' [1.0] NP-TMP -> NNP CD [1.0] NP -> NN [0.125] VBG -> 'publishing' [1.0] NNP -> 'Elsevier' [0.125] MD -> 'will' [1.0] NP -> NNP NNP [0.25] VB -> 'join' [1.0] PP -> IN NP [1.0] VP|<NP-PP-CLR> -> NP VP|<PP-CLR-NP-TMP> [1.0] DT -> 'a' [0.333333] NP|<,-NP> -> , NP [1.0] CD -> '29' [0.5] NP-PRD -> NP PP [1.0] ADJP -> NP JJ [1.0] VP -> VB VP|<NP-PP-CLR> [0.333333] VP -> MD VP [0.333333] NP|<VBG-NN> -> VBG NN [1.0] S -> NP-SBJ S|<VP-.> [1.0] NNP -> 'Pierre' [0.125] NNP -> 'Nov.' [0.125] VBZ -> 'is' [1.0] NP-SBJ|<ADJP-,> -> ADJP , [1.0] NP -> NP NP|<,-NP> [0.125] NN -> 'board' [0.25] VP|<PP-CLR-NP-TMP> -> PP-CLR NP-TMP [1.0] VP -> VBZ NP-PRD [0.333333] S|<VP-.> -> VP . [1.0] IN -> 'of' [0.5] NNP -> 'Vinken' [0.25] NP|<NNP-VBG> -> NNP NP|<VBG-NN> [1.0] JJ -> 'old' [0.5] DT -> 'the' [0.666667] NP -> DT NP|<NNP-VBG> [0.125] NP -> DT NN [0.125] NN -> 'chairman' [0.25] Parse sentence using induced grammar: ['Pierre', 'Vinken', ',', '61', 'years', 'old', ',', 'will', 'join', 'the', 'board', 'as', 'a', 'nonexecutive', 'director', 'Nov.', '29', '.'] |[-] . . . . . . . . . . . . . . . . .| [0:1] 'Pierre' [1.0] |. [-] . . . . . . . . . . . . . . . .| [1:2] 'Vinken' [1.0] |. . [-] . . . . . . . . . . . . . . .| [2:3] ',' [1.0] |. . . [-] . . . . . . . . . . . . . .| [3:4] '61' [1.0] |. . . . [-] . . . . . . . . . . . . .| [4:5] 'years' [1.0] |. . . . . [-] . . . . . . . . . . . .| [5:6] 'old' [1.0] |. . . . . . [-] . . . . . . . . . . .| [6:7] ',' [1.0] |. . . . . . . [-] . . . . . . . . . .| [7:8] 'will' [1.0] |. . . . . . . . [-] . . . . . . . . .| [8:9] 'join' [1.0] |. . . . . . . . . [-] . . . . . . . .| [9:10] 'the' [1.0] |. . . . . . . . . . [-] . . . . . . .| [10:11] 'board' [1.0] |. . . . . . . . . . . [-] . . . . . .| [11:12] 'as' [1.0] |. . . . . . . . . . . . [-] . . . . .| [12:13] 'a' [1.0] |. . . . . . . . . . . . . [-] . . . .| [13:14] 'nonexecutive' [1.0] |. . . . . . . . . . . . . . [-] . . .| [14:15] 'director' [1.0] |. . . . . . . . . . . . . . . [-] . .| [15:16] 'Nov.' [1.0] |. . . . . . . . . . . . . . . . [-] .| [16:17] '29' [1.0] |. . . . . . . . . . . . . . . . . [-]| [17:18] '.' [1.0] |. . . . . . . . . . . . . . . . . [-]| [17:18] '.' [1.0] |. . . . . . . . . . . . . . . . . [-]| [17:18] . -> '.' * [1.0] |. . . . . . . . . . . . . . . . . > .| [17:17] . -> * '.' [1.0] |. . . . . . . . . . . . . . . . [-] .| [16:17] '29' [1.0] |. . . . . . . . . . . . . . . [-] . .| [15:16] 'Nov.' [1.0] |. . . . . . . . . . . . . . [-] . . .| [14:15] 'director' [1.0] |. . . . . . . . . . . . . [-] . . . .| [13:14] 'nonexecutive' [1.0] |. . . . . . . . . . . . [-] . . . . .| [12:13] 'a' [1.0] |. . . . . . . . . . . [-] . . . . . .| [11:12] 'as' [1.0] |. . . . . . . . . . [-] . . . . . . .| [10:11] 'board' [1.0] |. . . . . . . . . [-] . . . . . . . .| [9:10] 'the' [1.0] |. . . . . . . . [-] . . . . . . . . .| [8:9] 'join' [1.0] |. . . . . . . . [-] . . . . . . . . .| [8:9] VB -> 'join' * [1.0] |. . . . . . . . > . . . . . . . . . .| [8:8] VB -> * 'join' [1.0] |. . . . . . . [-] . . . . . . . . . .| [7:8] 'will' [1.0] |. . . . . . . [-] . . . . . . . . . .| [7:8] MD -> 'will' * [1.0] |. . . . . . . > . . . . . . . . . . .| [7:7] MD -> * 'will' [1.0] |. . . . . . [-] . . . . . . . . . . .| [6:7] ',' [1.0] |. . . . . . [-] . . . . . . . . . . .| [6:7] , -> ',' * [1.0] |. . . . . . [-> . . . . . . . . . . .| [6:7] NP|<,-NP> -> , * NP [1.0] |. . . . . . [-> . . . . . . . . . . .| [6:7] NP-SBJ|<,-ADJP> -> , * NP-SBJ|<ADJP-,> [1.0] |. . . . . . > . . . . . . . . . . . .| [6:6] NP|<,-NP> -> * , NP [1.0] |. . . . . . > . . . . . . . . . . . .| [6:6] NP-SBJ|<,-ADJP> -> * , NP-SBJ|<ADJP-,> [1.0] |. . . . . . > . . . . . . . . . . . .| [6:6] , -> * ',' [1.0] |. . . . . [-] . . . . . . . . . . . .| [5:6] 'old' [1.0] |. . . . [-] . . . . . . . . . . . . .| [4:5] 'years' [1.0] |. . . . [-] . . . . . . . . . . . . .| [4:5] NNS -> 'years' * [1.0] |. . . . > . . . . . . . . . . . . . .| [4:4] NNS -> * 'years' [1.0] |. . . [-] . . . . . . . . . . . . . .| [3:4] '61' [1.0] |. . [-] . . . . . . . . . . . . . . .| [2:3] ',' [1.0] |. . [-] . . . . . . . . . . . . . . .| [2:3] , -> ',' * [1.0] |. . [-> . . . . . . . . . . . . . . .| [2:3] NP|<,-NP> -> , * NP [1.0] |. . [-> . . . . . . . . . . . . . . .| [2:3] NP-SBJ|<,-ADJP> -> , * NP-SBJ|<ADJP-,> [1.0] |. . > . . . . . . . . . . . . . . . .| [2:2] NP|<,-NP> -> * , NP [1.0] |. . > . . . . . . . . . . . . . . . .| [2:2] NP-SBJ|<,-ADJP> -> * , NP-SBJ|<ADJP-,> [1.0] |. . > . . . . . . . . . . . . . . . .| [2:2] , -> * ',' [1.0] |. [-] . . . . . . . . . . . . . . . .| [1:2] 'Vinken' [1.0] |[-] . . . . . . . . . . . . . . . . .| [0:1] 'Pierre' [1.0] |. . . . . . . . . [-] . . . . . . . .| [9:10] DT -> 'the' * [0.6666666666666666] |. . . . . . . . . > . . . . . . . . .| [9:9] DT -> * 'the' [0.6666666666666666] |. . . [-] . . . . . . . . . . . . . .| [3:4] CD -> '61' * [0.5] |. . . > . . . . . . . . . . . . . . .| [3:3] CD -> * '61' [0.5] |. . . . . [-] . . . . . . . . . . . .| [5:6] JJ -> 'old' * [0.5] |. . . . . > . . . . . . . . . . . . .| [5:5] NP|<JJ-NN> -> * JJ NN [1.0] |. . . . . [-> . . . . . . . . . . . .| [5:6] NP|<JJ-NN> -> JJ * NN [0.5] |. . . . . > . . . . . . . . . . . . .| [5:5] JJ -> * 'old' [0.5] |. . . . . . . . . . . [-] . . . . . .| [11:12] IN -> 'as' * [0.5] |. . . . . . . . . . . > . . . . . . .| [11:11] PP -> * IN NP [1.0] |. . . . . . . . . . . > . . . . . . .| [11:11] PP-CLR -> * IN NP [1.0] |. . . . . . . . . . . [-> . . . . . .| [11:12] PP -> IN * NP [0.5] |. . . . . . . . . . . [-> . . . . . .| [11:12] PP-CLR -> IN * NP [0.5] |. . . . . . . . . . . > . . . . . . .| [11:11] IN -> * 'as' [0.5] |. . . . . . . . . . . . . [-] . . . .| [13:14] JJ -> 'nonexecutive' * [0.5] |. . . . . . . . . . . . . > . . . . .| [13:13] NP|<JJ-NN> -> * JJ NN [1.0] |. . . . . . . . . . . . . [-> . . . .| [13:14] NP|<JJ-NN> -> JJ * NN [0.5] |. . . . . . . . . . . . . > . . . . .| [13:13] JJ -> * 'nonexecutive' [0.5] |. . . . . . . . . . . . . . . . [-] .| [16:17] CD -> '29' * [0.5] |. . . . . . . . . . . . . . . . > . .| [16:16] CD -> * '29' [0.5] |. . . . . . . [-> . . . . . . . . . .| [7:8] VP -> MD * VP [0.3333333333333333] |. . . . . . . > . . . . . . . . . . .| [7:7] VP -> * MD VP [0.3333333333333333] |. . . . . . . . [-> . . . . . . . . .| [8:9] VP -> VB * VP|<NP-PP-CLR> [0.3333333333333333] |. . . . . . . . > . . . . . . . . . .| [8:8] VP -> * VB VP|<NP-PP-CLR> [0.3333333333333333] |. . . . . . . . . . . . [-] . . . . .| [12:13] DT -> 'a' * [0.3333333333333333] |. . . . . . . . . . . . > . . . . . .| [12:12] DT -> * 'a' [0.3333333333333333] |. [-] . . . . . . . . . . . . . . . .| [1:2] NNP -> 'Vinken' * [0.25] |. > . . . . . . . . . . . . . . . . .| [1:1] NP|<NNP-VBG> -> * NNP NP|<VBG-NN> [1.0] |. > . . . . . . . . . . . . . . . . .| [1:1] NP-TMP -> * NNP CD [1.0] |. > . . . . . . . . . . . . . . . . .| [1:1] NP-SBJ -> * NNP NNP [0.5] |. [-> . . . . . . . . . . . . . . . .| [1:2] NP|<NNP-VBG> -> NNP * NP|<VBG-NN> [0.25] |. [-> . . . . . . . . . . . . . . . .| [1:2] NP-TMP -> NNP * CD [0.25] |. > . . . . . . . . . . . . . . . . .| [1:1] NP -> * NNP NNP [0.25] |. > . . . . . . . . . . . . . . . . .| [1:1] NNP -> * 'Vinken' [0.25] |. . . . . . . . . . [-] . . . . . . .| [10:11] NN -> 'board' * [0.25] |. . . . . . . . . . > . . . . . . . .| [10:10] NN -> * 'board' [0.25] |. . . . . . . . . . . . . . [-] . . .| [14:15] NN -> 'director' * [0.25] |. . . . . . . . . . . . . . > . . . .| [14:14] NN -> * 'director' [0.25] |. . . . . . . . . . . . . . > . . . .| [14:14] NP -> * NN [0.125] |. . . . . . . . . . > . . . . . . . .| [10:10] NP -> * NN [0.125] |. [-> . . . . . . . . . . . . . . . .| [1:2] NP-SBJ -> NNP * NNP [0.125] |. . . . . . . . . . . . > . . . . . .| [12:12] NP -> * DT NN [0.125] |. . . . . . . . . . . . > . . . . . .| [12:12] NP -> * DT NP|<NNP-VBG> [0.125] |. . . . . . . . . . . . > . . . . . .| [12:12] NP -> * DT NP|<JJ-NN> [0.125] |. . . . . . . . . . . . . . . . > . .| [16:16] NP -> * CD NNS [0.125] |. . . . . . . . . . . . . [---] . . .| [13:15] NP|<JJ-NN> -> JJ NN * [0.125] |. . . > . . . . . . . . . . . . . . .| [3:3] NP -> * CD NNS [0.125] |. . . . . . . . . > . . . . . . . . .| [9:9] NP -> * DT NN [0.125] |. . . . . . . . . > . . . . . . . . .| [9:9] NP -> * DT NP|<NNP-VBG> [0.125] |. . . . . . . . . > . . . . . . . . .| [9:9] NP -> * DT NP|<JJ-NN> [0.125] |[-] . . . . . . . . . . . . . . . . .| [0:1] NNP -> 'Pierre' * [0.125] |> . . . . . . . . . . . . . . . . . .| [0:0] NP|<NNP-VBG> -> * NNP NP|<VBG-NN> [1.0] |> . . . . . . . . . . . . . . . . . .| [0:0] NP-TMP -> * NNP CD [1.0] |> . . . . . . . . . . . . . . . . . .| [0:0] NP-SBJ -> * NNP NNP [0.5] |> . . . . . . . . . . . . . . . . . .| [0:0] NP -> * NNP NNP [0.25] |[-> . . . . . . . . . . . . . . . . .| [0:1] NP|<NNP-VBG> -> NNP * NP|<VBG-NN> [0.125] |[-> . . . . . . . . . . . . . . . . .| [0:1] NP-TMP -> NNP * CD [0.125] |> . . . . . . . . . . . . . . . . . .| [0:0] NNP -> * 'Pierre' [0.125] |. . . . . . . . . . . . . . . [-] . .| [15:16] NNP -> 'Nov.' * [0.125] |. . . . . . . . . . . . . . . > . . .| [15:15] NP|<NNP-VBG> -> * NNP NP|<VBG-NN> [1.0] |. . . . . . . . . . . . . . . > . . .| [15:15] NP-TMP -> * NNP CD [1.0] |. . . . . . . . . . . . . . . > . . .| [15:15] NP-SBJ -> * NNP NNP [0.5] |. . . . . . . . . . . . . . . > . . .| [15:15] NP -> * NNP NNP [0.25] |. . . . . . . . . . . . . . . [-> . .| [15:16] NP|<NNP-VBG> -> NNP * NP|<VBG-NN> [0.125] |. . . . . . . . . . . . . . . [-> . .| [15:16] NP-TMP -> NNP * CD [0.125] |. . . . . . . . . . . . . . . > . . .| [15:15] NNP -> * 'Nov.' [0.125] |. . . . . . . . . [-> . . . . . . . .| [9:10] NP -> DT * NN [0.08333333333333333] |. . . . . . . . . [-> . . . . . . . .| [9:10] NP -> DT * NP|<NNP-VBG> [0.08333333333333333] |. . . . . . . . . [-> . . . . . . . .| [9:10] NP -> DT * NP|<JJ-NN> [0.08333333333333333] |. . . . . . . . . . . . . . . [---] .| [15:17] NP-TMP -> NNP CD * [0.0625] |. . . . . . . . . . . . . . . [-> . .| [15:16] NP-SBJ -> NNP * NNP [0.0625] |[-> . . . . . . . . . . . . . . . . .| [0:1] NP-SBJ -> NNP * NNP [0.0625] |. [-> . . . . . . . . . . . . . . . .| [1:2] NP -> NNP * NNP [0.0625] |. . . . . . . . . . . . . . . . [-> .| [16:17] NP -> CD * NNS [0.0625] |. . . [-> . . . . . . . . . . . . . .| [3:4] NP -> CD * NNS [0.0625] |. . . [---] . . . . . . . . . . . . .| [3:5] NP -> CD NNS * [0.0625] |. . . > . . . . . . . . . . . . . . .| [3:3] ADJP -> * NP JJ [1.0] |. . . > . . . . . . . . . . . . . . .| [3:3] NP-PRD -> * NP PP [1.0] |. . . > . . . . . . . . . . . . . . .| [3:3] VP|<NP-PP-CLR> -> * NP VP|<PP-CLR-NP-TMP> [1.0] |. . . > . . . . . . . . . . . . . . .| [3:3] NP-SBJ -> * NP NP-SBJ|<,-ADJP> [0.5] |. . . > . . . . . . . . . . . . . . .| [3:3] NP -> * NP NP|<,-NP> [0.125] |. . . [---> . . . . . . . . . . . . .| [3:5] ADJP -> NP * JJ [0.0625] |. . . [---> . . . . . . . . . . . . .| [3:5] NP-PRD -> NP * PP [0.0625] |. . . [---> . . . . . . . . . . . . .| [3:5] VP|<NP-PP-CLR> -> NP * VP|<PP-CLR-NP-TMP> [0.0625] |. . [-----] . . . . . . . . . . . . .| [2:5] NP|<,-NP> -> , NP * [0.0625] |. . . . . . . . . . . . [-> . . . . .| [12:13] NP -> DT * NN [0.041666666666666664] |. . . . . . . . . . . . [-> . . . . .| [12:13] NP -> DT * NP|<NNP-VBG> [0.041666666666666664] |. . . . . . . . . . . . [-> . . . . .| [12:13] NP -> DT * NP|<JJ-NN> [0.041666666666666664] |. . . [-----] . . . . . . . . . . . .| [3:6] ADJP -> NP JJ * [0.03125] |. . . > . . . . . . . . . . . . . . .| [3:3] NP-SBJ|<ADJP-,> -> * ADJP , [1.0] |. . . [-----> . . . . . . . . . . . .| [3:6] NP-SBJ|<ADJP-,> -> ADJP * , [0.03125] |. . . [-------] . . . . . . . . . . .| [3:7] NP-SBJ|<ADJP-,> -> ADJP , * [0.03125] |. . [---------] . . . . . . . . . . .| [2:7] NP-SBJ|<,-ADJP> -> , NP-SBJ|<ADJP-,> * [0.03125] |. . . [---> . . . . . . . . . . . . .| [3:5] NP-SBJ -> NP * NP-SBJ|<,-ADJP> [0.03125] |. . . . . . . . . . . . . . . [-> . .| [15:16] NP -> NNP * NNP [0.03125] |[-> . . . . . . . . . . . . . . . . .| [0:1] NP -> NNP * NNP [0.03125] |. . . . . . . . . . . . . . [-] . . .| [14:15] NP -> NN * [0.03125] |. . . . . . . . . . . . . . > . . . .| [14:14] ADJP -> * NP JJ [1.0] |. . . . . . . . . . . . . . > . . . .| [14:14] NP-PRD -> * NP PP [1.0] |. . . . . . . . . . . . . . > . . . .| [14:14] VP|<NP-PP-CLR> -> * NP VP|<PP-CLR-NP-TMP> [1.0] |. . . . . . . . . . . . . . > . . . .| [14:14] NP-SBJ -> * NP NP-SBJ|<,-ADJP> [0.5] |. . . . . . . . . . . . . . > . . . .| [14:14] NP -> * NP NP|<,-NP> [0.125] |. . . . . . . . . . . . . . [-> . . .| [14:15] ADJP -> NP * JJ [0.03125] |. . . . . . . . . . . . . . [-> . . .| [14:15] NP-PRD -> NP * PP [0.03125] |. . . . . . . . . . . . . . [-> . . .| [14:15] VP|<NP-PP-CLR> -> NP * VP|<PP-CLR-NP-TMP> [0.03125] |. . . . . . . . . . [-] . . . . . . .| [10:11] NP -> NN * [0.03125] |. . . . . . . . . . > . . . . . . . .| [10:10] ADJP -> * NP JJ [1.0] |. . . . . . . . . . > . . . . . . . .| [10:10] NP-PRD -> * NP PP [1.0] |. . . . . . . . . . > . . . . . . . .| [10:10] VP|<NP-PP-CLR> -> * NP VP|<PP-CLR-NP-TMP> [1.0] |. . . . . . . . . . > . . . . . . . .| [10:10] NP-SBJ -> * NP NP-SBJ|<,-ADJP> [0.5] |. . . . . . . . . . > . . . . . . . .| [10:10] NP -> * NP NP|<,-NP> [0.125] |. . . . . . . . . . [-> . . . . . . .| [10:11] ADJP -> NP * JJ [0.03125] |. . . . . . . . . . [-> . . . . . . .| [10:11] NP-PRD -> NP * PP [0.03125] |. . . . . . . . . . [-> . . . . . . .| [10:11] VP|<NP-PP-CLR> -> NP * VP|<PP-CLR-NP-TMP> [0.03125] |. . . . . . . . . [---] . . . . . . .| [9:11] NP -> DT NN * [0.020833333333333332] |. . . . . . . . . > . . . . . . . . .| [9:9] ADJP -> * NP JJ [1.0] |. . . . . . . . . > . . . . . . . . .| [9:9] NP-PRD -> * NP PP [1.0] |. . . . . . . . . > . . . . . . . . .| [9:9] VP|<NP-PP-CLR> -> * NP VP|<PP-CLR-NP-TMP> [1.0] |. . . . . . . . . > . . . . . . . . .| [9:9] NP-SBJ -> * NP NP-SBJ|<,-ADJP> [0.5] |. . . . . . . . . > . . . . . . . . .| [9:9] NP -> * NP NP|<,-NP> [0.125] |. . . . . . . . . [---> . . . . . . .| [9:11] ADJP -> NP * JJ [0.020833333333333332] |. . . . . . . . . [---> . . . . . . .| [9:11] NP-PRD -> NP * PP [0.020833333333333332] |. . . . . . . . . [---> . . . . . . .| [9:11] VP|<NP-PP-CLR> -> NP * VP|<PP-CLR-NP-TMP> [0.020833333333333332] |. . . . . . . . . . [-> . . . . . . .| [10:11] NP-SBJ -> NP * NP-SBJ|<,-ADJP> [0.015625] |. . . . . . . . . . . . . . [-> . . .| [14:15] NP-SBJ -> NP * NP-SBJ|<,-ADJP> [0.015625] |[---] . . . . . . . . . . . . . . . .| [0:2] NP-SBJ -> NNP NNP * [0.015625] |> . . . . . . . . . . . . . . . . . .| [0:0] S -> * NP-SBJ S|<VP-.> [1.0] |[---> . . . . . . . . . . . . . . . .| [0:2] S -> NP-SBJ * S|<VP-.> [0.015625] |. . . . . . . . . [---> . . . . . . .| [9:11] NP-SBJ -> NP * NP-SBJ|<,-ADJP> [0.010416666666666666] |[---] . . . . . . . . . . . . . . . .| [0:2] NP -> NNP NNP * [0.0078125] |> . . . . . . . . . . . . . . . . . .| [0:0] ADJP -> * NP JJ [1.0] |> . . . . . . . . . . . . . . . . . .| [0:0] NP-PRD -> * NP PP [1.0] |> . . . . . . . . . . . . . . . . . .| [0:0] VP|<NP-PP-CLR> -> * NP VP|<PP-CLR-NP-TMP> [1.0] |> . . . . . . . . . . . . . . . . . .| [0:0] NP-SBJ -> * NP NP-SBJ|<,-ADJP> [0.5] |> . . . . . . . . . . . . . . . . . .| [0:0] NP -> * NP NP|<,-NP> [0.125] |[---> . . . . . . . . . . . . . . . .| [0:2] ADJP -> NP * JJ [0.0078125] |[---> . . . . . . . . . . . . . . . .| [0:2] NP-PRD -> NP * PP [0.0078125] |[---> . . . . . . . . . . . . . . . .| [0:2] VP|<NP-PP-CLR> -> NP * VP|<PP-CLR-NP-TMP> [0.0078125] |. . . [---> . . . . . . . . . . . . .| [3:5] NP -> NP * NP|<,-NP> [0.0078125] |. . . . . . . . . . . . [-----] . . .| [12:15] NP -> DT NP|<JJ-NN> * [0.005208333333333333] |. . . . . . . . . . . . > . . . . . .| [12:12] ADJP -> * NP JJ [1.0] |. . . . . . . . . . . . > . . . . . .| [12:12] NP-PRD -> * NP PP [1.0] |. . . . . . . . . . . . > . . . . . .| [12:12] VP|<NP-PP-CLR> -> * NP VP|<PP-CLR-NP-TMP> [1.0] |. . . . . . . . . . . . > . . . . . .| [12:12] NP-SBJ -> * NP NP-SBJ|<,-ADJP> [0.5] |. . . . . . . . . . . . > . . . . . .| [12:12] NP -> * NP NP|<,-NP> [0.125] |. . . . . . . . . . . . [-----> . . .| [12:15] ADJP -> NP * JJ [0.005208333333333333] |. . . . . . . . . . . . [-----> . . .| [12:15] NP-PRD -> NP * PP [0.005208333333333333] |. . . . . . . . . . . . [-----> . . .| [12:15] VP|<NP-PP-CLR> -> NP * VP|<PP-CLR-NP-TMP> [0.005208333333333333] |[---> . . . . . . . . . . . . . . . .| [0:2] NP-SBJ -> NP * NP-SBJ|<,-ADJP> [0.00390625] |. . . . . . . . . . [-> . . . . . . .| [10:11] NP -> NP * NP|<,-NP> [0.00390625] |. . . . . . . . . . . . . . [-> . . .| [14:15] NP -> NP * NP|<,-NP> [0.00390625] |. . . . . . . . . . . . [-----> . . .| [12:15] NP-SBJ -> NP * NP-SBJ|<,-ADJP> [0.0026041666666666665] |. . . . . . . . . . . [-------] . . .| [11:15] PP -> IN NP * [0.0026041666666666665] |. . . . . . . . . . . [-------] . . .| [11:15] PP-CLR -> IN NP * [0.0026041666666666665] |. . . . . . . . . . . > . . . . . . .| [11:11] VP|<PP-CLR-NP-TMP> -> * PP-CLR NP-TMP [1.0] |. . . . . . . . . . . [-------> . . .| [11:15] VP|<PP-CLR-NP-TMP> -> PP-CLR * NP-TMP [0.0026041666666666665] |. . . . . . . . . [---> . . . . . . .| [9:11] NP -> NP * NP|<,-NP> [0.0026041666666666665] |[---> . . . . . . . . . . . . . . . .| [0:2] NP -> NP * NP|<,-NP> [0.0009765625] |. . . . . . . . . . . . [-----> . . .| [12:15] NP -> NP * NP|<,-NP> [0.0006510416666666666] |. . . . . . . . . . . [-----------] .| [11:17] VP|<PP-CLR-NP-TMP> -> PP-CLR NP-TMP * [0.00016276041666666666] |[-------------] . . . . . . . . . . .| [0:7] NP-SBJ -> NP NP-SBJ|<,-ADJP> * [0.0001220703125] |[-------------> . . . . . . . . . . .| [0:7] S -> NP-SBJ * S|<VP-.> [0.0001220703125] |. . . . . . . . . . [---------] . . .| [10:15] NP-PRD -> NP PP * [8.138020833333333e-05] |[---------] . . . . . . . . . . . . .| [0:5] NP -> NP NP|<,-NP> * [6.103515625e-05] |[---------> . . . . . . . . . . . . .| [0:5] ADJP -> NP * JJ [6.103515625e-05] |[---------> . . . . . . . . . . . . .| [0:5] NP-PRD -> NP * PP [6.103515625e-05] |[---------> . . . . . . . . . . . . .| [0:5] VP|<NP-PP-CLR> -> NP * VP|<PP-CLR-NP-TMP> [6.103515625e-05] |. . . . . . . . . [-----------] . . .| [9:15] NP-PRD -> NP PP * [5.425347222222222e-05] |[-----------] . . . . . . . . . . . .| [0:6] ADJP -> NP JJ * [3.0517578125e-05] |> . . . . . . . . . . . . . . . . . .| [0:0] NP-SBJ|<ADJP-,> -> * ADJP , [1.0] |[-----------> . . . . . . . . . . . .| [0:6] NP-SBJ|<ADJP-,> -> ADJP * , [3.0517578125e-05] |[-------------] . . . . . . . . . . .| [0:7] NP-SBJ|<ADJP-,> -> ADJP , * [3.0517578125e-05] |[---------> . . . . . . . . . . . . .| [0:5] NP-SBJ -> NP * NP-SBJ|<,-ADJP> [3.0517578125e-05] |[---------> . . . . . . . . . . . . .| [0:5] NP -> NP * NP|<,-NP> [7.62939453125e-06] |. . . . . . . . . . [-------------] .| [10:17] VP|<NP-PP-CLR> -> NP VP|<PP-CLR-NP-TMP> * [5.086263020833333e-06] |. . . . . . . . . [---------------] .| [9:17] VP|<NP-PP-CLR> -> NP VP|<PP-CLR-NP-TMP> * [3.3908420138888887e-06] |. . . . . . . . [-----------------] .| [8:17] VP -> VB VP|<NP-PP-CLR> * [1.1302806712962962e-06] |. . . . . . . . > . . . . . . . . . .| [8:8] S|<VP-.> -> * VP . [1.0] |. . . . . . . . [-----------------> .| [8:17] S|<VP-.> -> VP * . [1.1302806712962962e-06] |. . . . . . . . [-------------------]| [8:18] S|<VP-.> -> VP . * [1.1302806712962962e-06] |. . . . . . . [-------------------] .| [7:17] VP -> MD VP * [3.767602237654321e-07] |. . . . . . . > . . . . . . . . . . .| [7:7] S|<VP-.> -> * VP . [1.0] |. . . . . . . [-------------------> .| [7:17] S|<VP-.> -> VP * . [3.767602237654321e-07] |. . . . . . . [---------------------]| [7:18] S|<VP-.> -> VP . * [3.767602237654321e-07] |[===================================]| [0:18] S -> NP-SBJ S|<VP-.> * [4.599123825261622e-11] (S (NP-SBJ (NP (NNP Pierre) (NNP Vinken)) (NP-SBJ|<,-ADJP> (, ,) (NP-SBJ|<ADJP-,> (ADJP (NP (CD 61) (NNS years)) (JJ old)) (, ,)))) (S|<VP-.> (VP (MD will) (VP (VB join) (VP|<NP-PP-CLR> (NP (DT the) (NN board)) (VP|<PP-CLR-NP-TMP> (PP-CLR (IN as) (NP (DT a) (NP|<JJ-NN> (JJ nonexecutive) (NN director)))) (NP-TMP (NNP Nov.) (CD 29)))))) (. .))) (p=4.59912e-11)
categorical-features/sklearn-onehot-encoding-mixedtype-df.ipynb
###Markdown OneHot Encoding in Scikit-Learn with DataFrames of Mixed Column Types Some Toydata - Imagine we have some dataset that consists of both numerical and categorical features.- And we just want to convert the categorical features into a onehot encoding (while leaving the numerical features untouched) ###Code import pandas as pd feature_1 = [ 1.1, 2.1, 3.1, 4.2, 5.1, 6.1, 7.1, 8.1, 1.2, 2.1, 3.1, 4.1 ] feature_2 = [ 'b', 'b', 'b', 'b', 'a', 'a', 'a', 'a', 'c', 'c', 'c', 'c' ] df = pd.DataFrame({'numerical': feature_1, 'categorical': feature_2}) df ###Output _____no_output_____ ###Markdown Onehot Encoding - We can use e.g., scikit-learn's [OneHotEncoder](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html) to expand the categorical column into onehot-encoded ones- By default, the `OneHotEncoder` will expand all columns into categorical ones (this includes the numerical ones), which is not what we want if we have mixed-type datasets- We can use the [ColumnTransformer](https://scikit-learn.org/stable/modules/generated/sklearn.compose.ColumnTransformer.html) to select specific columns we want to transform, though ###Code import sklearn from sklearn.compose import ColumnTransformer from sklearn.pipeline import make_pipeline from sklearn.preprocessing import OneHotEncoder ohe = OneHotEncoder(sparse=False, drop='first', dtype='float') categorical_features = ['categorical'] col_transformer = ColumnTransformer( transformers=[ ('cat', ohe, categorical_features)], # include the numerical column(s) via passthrough: remainder='passthrough' ) col_transformer.fit(df) X_t = col_transformer.transform(df) X_t %load_ext watermark %watermark --iversions ###Output pandas : 1.4.0 sklearn: 1.0.2
notebooks/30-PRMT-1985--a-high-proportion-of-pending-transfers-are-caused-by-a-small-group-of-practices.ipynb
###Markdown PRMT-1985 [HYPOTHESIS] A high proportion of pending transfers are caused by a small group of practices HypothesisWe believe that a large proportion of pending transfers are caused by a small group of practices receiving, regardless of the sending supplier. We will know this to be true when we can see that the same practices causing a high number of EMIS-EMIS pending transfers are the same as those causing TPP-EMIS or Vision-EMIS, (and the same would occur for each supplier as a receiver) Import and setup Data ###Code import matplotlib.pyplot as plt import pandas as pd import numpy as np # Using data generated from branch PRMT-1742-duplicates-analysis. # This is needed to correctly handle duplicates. # Once the upstream pipeline has a fix for duplicate EHRs, then we can go back to using the main output. transfer_file_location = "s3://prm-gp2gp-data-sandbox-dev/transfers-duplicates-hypothesis/" transfer_files = [ "9-2020-transfers.parquet", "10-2020-transfers.parquet", "11-2020-transfers.parquet", "12-2020-transfers.parquet", "1-2021-transfers.parquet", "2-2021-transfers.parquet" ] transfer_input_files = [transfer_file_location + f for f in transfer_files] transfers_raw = pd.concat(( pd.read_parquet(f) for f in transfer_input_files )) # In the data from the PRMT-1742-duplicates-analysis branch, these columns have been added , but contain only empty values. transfers_raw = transfers_raw.drop(["sending_supplier", "requesting_supplier"], axis=1) # Given the findings in PRMT-1742 - many duplicate EHR errors are misclassified, the below reclassifies the relevant data has_at_least_one_successful_integration_code = lambda errors: any((np.isnan(e) or e==15 for e in errors)) successful_transfers_bool = transfers_raw['request_completed_ack_codes'].apply(has_at_least_one_successful_integration_code) transfers = transfers_raw.copy() transfers.loc[successful_transfers_bool, "status"] = "INTEGRATED" # Correctly interpret certail sender errors as failed. # This is explained in PRMT-1974. Eventaully this will be fixed upstream in the pipeline. pending_sender_error_codes=[6,7,10,24,30,23,14,99] transfers_with_pending_sender_code_bool=transfers['sender_error_code'].isin(pending_sender_error_codes) transfers_with_pending_with_error_bool=transfers['status']=='PENDING_WITH_ERROR' transfers_which_need_pending_to_failure_change_bool=transfers_with_pending_sender_code_bool & transfers_with_pending_with_error_bool transfers.loc[transfers_which_need_pending_to_failure_change_bool,'status']='FAILED' # Add integrated Late status eight_days_in_seconds=8*24*60*60 transfers_after_sla_bool=transfers['sla_duration']>eight_days_in_seconds transfers_with_integrated_bool=transfers['status']=='INTEGRATED' transfers_integrated_late_bool=transfers_after_sla_bool & transfers_with_integrated_bool transfers.loc[transfers_integrated_late_bool,'status']='INTEGRATED LATE' # If the record integrated after 28 days, change the status back to pending. # This is to handle each month consistentently and to always reflect a transfers status 28 days after it was made. # TBD how this is handled upstream in the pipeline twenty_eight_days_in_seconds=28*24*60*60 transfers_after_month_bool=transfers['sla_duration']>twenty_eight_days_in_seconds transfers_pending_at_month_bool=transfers_after_month_bool & transfers_integrated_late_bool transfers.loc[transfers_pending_at_month_bool,'status']='PENDING' transfers_with_early_error_bool=(~transfers.loc[:,'sender_error_code'].isna()) |(~transfers.loc[:,'intermediate_error_codes'].apply(len)>0) transfers.loc[transfers_with_early_error_bool & transfers_pending_at_month_bool,'status']='PENDING_WITH_ERROR' # Supplier name mapping supplier_renaming = { "EGTON MEDICAL INFORMATION SYSTEMS LTD (EMIS)":"EMIS", "IN PRACTICE SYSTEMS LTD":"Vision", "MICROTEST LTD":"Microtest", "THE PHOENIX PARTNERSHIP":"TPP", None: "Unknown" } asid_lookup_file = "s3://prm-gp2gp-data-sandbox-dev/asid-lookup/asidLookup-Mar-2021.csv.gz" asid_lookup = pd.read_csv(asid_lookup_file) lookup = asid_lookup[["ASID", "MName", "NACS","OrgName"]] transfers = transfers.merge(lookup, left_on='requesting_practice_asid',right_on='ASID',how='left') transfers = transfers.rename({'MName': 'requesting_supplier', 'ASID': 'requesting_supplier_asid', 'NACS': 'requesting_ods_code'}, axis=1) transfers = transfers.merge(lookup, left_on='sending_practice_asid',right_on='ASID',how='left') transfers = transfers.rename({'MName': 'sending_supplier', 'ASID': 'sending_supplier_asid', 'NACS': 'sending_ods_code'}, axis=1) transfers["sending_supplier"] = transfers["sending_supplier"].replace(supplier_renaming.keys(), supplier_renaming.values()) transfers["requesting_supplier"] = transfers["requesting_supplier"].replace(supplier_renaming.keys(), supplier_renaming.values()) # For each requesting practice, what is the proportion in each status? status_counts=transfers.pivot_table(index='requesting_practice_asid',columns='status',values='conversation_id',aggfunc='count').fillna(0) status_counts_percentage=status_counts.div(status_counts.sum(axis=1),axis=0).multiply(100).round(2) status_counts_percentage=status_counts_percentage[['INTEGRATED','INTEGRATED LATE','PENDING','PENDING_WITH_ERROR','FAILED']] status_counts_percentage.columns=status_counts_percentage.columns.str.title().str.replace("_"," ") + ' %' status_counts_percentage.head() transfers_reduced_columns = transfers[["requesting_practice_asid","requesting_supplier","sending_supplier", "status"]].copy() is_pending_transfers = transfers["status"] == "PENDING" transfers_reduced_columns["is_pending"] = is_pending_transfers transfers_reduced_columns = transfers_reduced_columns.drop("status", axis=1) transfers_reduced_columns.head() ###Output _____no_output_____ ###Markdown For all Pending, what is the distribution by number of Practices ###Code def transfers_quantile_status_table(transfers_df,status,quantiles=5): practice_status_table=pd.pivot_table(transfers_df,index='requesting_practice_asid',columns='status',values='conversation_id',aggfunc='count').fillna(0) practice_status_table['TOTAL']=practice_status_table.sum(axis=1) practice_profile_data=practice_status_table.sort_values(by=status,ascending=False) cumulative_percentage=practice_profile_data[status].cumsum()/practice_profile_data[status].sum() practice_profile_data['Percentile Group']=(100/quantiles)*np.ceil(cumulative_percentage*quantiles) practice_profile_data=practice_profile_data.groupby('Percentile Group').agg({status:'sum','TOTAL':'sum','INTEGRATED':'count'}).astype(int) practice_profile_data=practice_profile_data.rename({status:'Total ' + status,'TOTAL':'Total Transfers','INTEGRATED':'Total Practices'},axis=1) practice_profile_data_percentages=(100*practice_profile_data/practice_profile_data.sum()).round(2) practice_profile_data_percentages.columns= "% " + practice_profile_data_percentages.columns return pd.concat([practice_profile_data,practice_profile_data_percentages],axis=1) transfers_quantile_status_table(transfers,"PENDING") practice_status_table=pd.pivot_table(transfers,index='requesting_practice_asid',columns='status',values='conversation_id',aggfunc='count').fillna(0).sort_values(by="PENDING",ascending=False) ax=practice_status_table['PENDING'].cumsum().reset_index(drop=True).plot(figsize=(8,5)) ax.set_ylabel('Number of Pending without error Transfers') ax.set_xlabel('Number of GP Practices') ax.set_title('Cumulative graph of total pending transfers for GP Practices') plt.gcf().savefig('Cumulative_pending_transfers.jpg') ###Output _____no_output_____ ###Markdown For practices of each Supplier, does their "policy" towards pending transfers differ by the supplier they are requesting from? ###Code suppliers_to_investigate = ["EMIS", "TPP", "Vision"] pending_by_supplier_pathway=transfers_reduced_columns.pivot_table(index='requesting_supplier',columns='sending_supplier',values='is_pending',aggfunc='mean').multiply(100).round(2) pending_by_supplier_pathway=pending_by_supplier_pathway.loc[suppliers_to_investigate,suppliers_to_investigate] pending_by_supplier_pathway ###Output _____no_output_____ ###Markdown Correlations of volume pending ###Code pending_transfers_supplier_pathways_pivot = pd.pivot_table(transfers_reduced_columns, index=["requesting_supplier", "requesting_practice_asid"], columns="sending_supplier", values="is_pending", aggfunc="sum").fillna(0) pending_transfers_as_list = [pending_transfers_supplier_pathways_pivot.loc[supplier].corr().stack().rename(supplier) for supplier in suppliers_to_investigate] pending_transfers_volume_between_suppliers_correlation = pd.concat(pending_transfers_as_list, axis=1) pending_transfers_volume_between_suppliers_correlation.loc[[("EMIS", "TPP"), ("EMIS", "Vision"), ("TPP", "Vision")]].round(2) ###Output _____no_output_____ ###Markdown Correlations of % pending ###Code pending_transfers_supplier_pathways_pivot = pd.pivot_table(transfers_reduced_columns, index=["requesting_supplier", "requesting_practice_asid"], columns="sending_supplier", values="is_pending", aggfunc="mean").fillna(0) pending_transfers_as_list = [pending_transfers_supplier_pathways_pivot.loc[supplier].corr().stack().rename(supplier) for supplier in suppliers_to_investigate] pending_transfers_percentage_between_suppliers_correlation = pd.concat(pending_transfers_as_list, axis=1) pending_transfers_percentage_between_suppliers_correlation.loc[[("EMIS", "TPP"), ("EMIS", "Vision"), ("TPP", "Vision")]].round(2) ###Output _____no_output_____ ###Markdown Create frame of all practices ranked by pendingOutput to Excel ###Code # Total volume Pending by practice pending_transfers_supplier_pathways_pivot = pd.pivot_table(transfers_reduced_columns, index=["requesting_supplier", "requesting_practice_asid"], columns="sending_supplier", values="is_pending", aggfunc="sum").fillna(0) pending_transfers_for_supplier_pathways = pending_transfers_supplier_pathways_pivot.copy().astype(int) pending_transfers_for_supplier_pathways = pending_transfers_for_supplier_pathways.loc[:, ["EMIS","TPP","Vision","Microtest","Unknown"]] pending_transfers_for_supplier_pathways.insert(0, "Total Pending Transfers", pending_transfers_for_supplier_pathways.sum(axis=1)) # Percentage Pending by practice pending_transfers_supplier_pathways_pivot_percentage = pd.pivot_table(transfers_reduced_columns, index=["requesting_supplier", "requesting_practice_asid"], columns="sending_supplier", values="is_pending", aggfunc="mean").fillna(0) pending_transfers_supplier_pathways_percentage = pending_transfers_supplier_pathways_pivot_percentage.copy().round(4).multiply(100) pending_transfers_supplier_pathways_percentage = pending_transfers_supplier_pathways_percentage.loc[:, ["EMIS","TPP","Vision","Microtest","Unknown"]] pending_transfers_supplier_pathways_percentage.columns = pending_transfers_supplier_pathways_percentage.columns + " %" # Join the two and clean up and re-organise the frame complete_pending_transfers_for_supplier_pathways = pd.concat([pending_transfers_for_supplier_pathways, pending_transfers_supplier_pathways_percentage], axis=1) complete_pending_transfers_for_supplier_pathways = complete_pending_transfers_for_supplier_pathways.sort_values(by="Total Pending Transfers", ascending=False) complete_pending_transfers_for_supplier_pathways = asid_lookup[["ASID", "PostCode", "OrgName"]].merge(complete_pending_transfers_for_supplier_pathways.reset_index(), right_on="requesting_practice_asid", left_on="ASID", how="right") complete_pending_transfers_for_supplier_pathways=complete_pending_transfers_for_supplier_pathways.drop('requesting_practice_asid',axis=1).set_index(['requesting_supplier','ASID'])#.insert(0,"Supplier",supplier) # Add in the % in each status for each supplier complete_pending_transfers_for_supplier_pathways=complete_pending_transfers_for_supplier_pathways.reset_index().merge(status_counts_percentage,left_on='ASID',right_index=True,how='left').set_index(['requesting_supplier','ASID']) # Save to Excel complete_pending_transfers_for_supplier_pathways.reset_index().to_excel('PRMT-1985 Pending Transfers all practices.xlsx') complete_pending_transfers_for_supplier_pathways.loc['Vision'].head(20) # View Emis practices complete_pending_transfers_for_supplier_pathways.loc["EMIS"].head(10) gants_hill = (transfers["requesting_practice_asid"] == "926102461049") & (transfers["status"] == "PENDING") & (transfers["sending_supplier"] == "Vision") gants_hill = transfers.loc[gants_hill] #gants_hill.head(20) ###Output _____no_output_____
jypeter/CharClassificationDM.ipynb
###Markdown Character Classification - Data MiningSimple UI for creating data for character classification ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import cv2 # Import Widgets from ipywidgets import Button, Text, HBox, VBox from IPython.display import display, clear_output # Timestamp import time # For transforming letters encoding (removing accents) import unicodedata as ud # Creating folders import os # Import costume functions, corresponding to notebooks from ocr import page, words, charSeg from ocr.normalization import imageNorm # Helper functions - ploting and resizing from ocr.helpers import implt, resize, ratio ###Output _____no_output_____ ###Markdown Global variables ###Code IMG = "text" ###Output _____no_output_____ ###Markdown Load image ###Code image = cv2.cvtColor(cv2.imread("data/pagedet/%s.jpg" % IMG), cv2.COLOR_BGR2RGB) implt(image) # Crop image and get bounding boxes crop = page.detection(image) implt(crop) bBoxes = words.detection(crop) ###Output _____no_output_____ ###Markdown Simple UI using widgets ###Code class Cycler: """ Cycle through the chars, save data """ height = 60 def __init__(self, image, boxes, idx): self.boxes = boxes # Array of bounding boxes self.image = image # Whole image self.index = idx # Index of current bounding box self.charIdx = 0 # Position po slider self.actual = image # Current image of word self.char = None # Actual char image self.nextImg() def save(self, sender, val=1): """ Saving current char into dataset Saving the letter both in EN and CZ dataset """ letter = sender.value sender.value = "" if self.char is None: self.nextChar() else: if len(letter) == 1: # Remove accents for EN dataset letterEN = ud.normalize('NFKD', letter)[0] # Saving both into cz and en dataset dirCZ = "data/charclas/cz/" + letter dirEN = "data/charclas/en/" + letterEN # Create dir if it doesn't exist os.makedirs(dirCZ, exist_ok=True) os.makedirs(dirEN, exist_ok=True) # Save the letter cv2.imwrite("%s/%s.jpg" % (dirCZ, time.time()), self.char) cv2.imwrite("%s/%s.jpg" % (dirEN, time.time()), self.char) self.nextChar() else: print("Enter single letter.") def nextChar(self, b=None): """ Ploting next char from the word """ # Clearing jupyter output for new image clear_output() idx = self.charIdx gaps = self.gaps if idx < len(gaps) - 1: # Cutting char image - for save function self.char = self.actual[0:self.height, gaps[idx]:gaps[idx+1]] implt(self.char, 'gray') self.charIdx += 1 else: self.nextImg() def nextImg(self, b=None): """ Getting next image from the array """ clear_output() self.char = None self.charIdx = 0 if self.index < len(self.boxes): b = self.boxes[self.index] x1, y1, x2, y2 = b # Cuting out the word image and resizing to standard height img = self.image[y1:y2, x1:x2] img = resize(img, self.height, True) implt(img, t='Index: ' + str(self.index)) self.index += 1 self.actual = imageNorm(img, self.height) self.gaps = charSeg.segmentation(self.actual, debug=True) return 0 else: print("END") return -1 # Last index LAST_INDEX = 2 # Class cycling through text positions cycler = Cycler(crop, bBoxes, LAST_INDEX) # Create GUI tSaver = Text(description="Save Char") bNex = Button(description="Next Char") bNexi = Button(description="Next Image") tSaver.on_submit(cycler.save) bNex.on_click(cycler.nextChar) bNexi.on_click(cycler.nextImg) VBox([tSaver, HBox([bNexi, bNex])]) ### RULES FOR CREATING DATASET ### # # Label every possible letter, skip wrong det # Differentiate between uppercase and lowercase # Use all czech letters except CH # If threre is image without char put 0 # ################################### ### Space for Notes ### # # Creat dataset paper # ####################### ###Output _____no_output_____
Climate Exploration and App/climate_starter.ipynb
###Markdown Reflect Tables into SQLAlchemy ORM ###Code # Python SQL toolkit and Object Relational Mapper import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func, inspect # create engine to hawaii.sqlite engine = create_engine("sqlite:///../Resources/hawaii.sqlite") # reflect an existing database into a new model Base = automap_base() # reflect the tables Base.prepare(engine, reflect=True) # View all of the classes that automap found Base.classes.keys() # Save references to each table Measurement = Base.classes.measurement Station = Base.classes.station # Create inspector inspector = inspect(engine) # Inspect columns for Measurement columns = inspector.get_columns('Measurement') for column in columns: print(column['name'],column['type']) # Inspect columns for Station columns = inspector.get_columns('Station') for column in columns: print(column['name'],column['type']) # Create our session (link) from Python to the DB session = Session(engine) ###Output _____no_output_____ ###Markdown Exploratory Precipitation Analysis ###Code # Find the most recent date in the data set. most_recent_date = session.query(Measurement.date)[-1] most_recent_date[0] # Convert most_recent_date to be used for datatime year = int(most_recent_date[0][:4]) month = int(most_recent_date[0][5:7]) day = int(most_recent_date[0][8:]) # Design a query to retrieve the last 12 months of precipitation data and plot the results. # Starting from the most recent data point in the database. recent_date = dt.date(year, month, day) # Calculate the date one year from the last date in data set. query_date_1year = recent_date - dt.timedelta(days=365) # Perform a query to retrieve the data and precipitation scores prcp_data = session.query(Measurement.date, Measurement.prcp).filter(Measurement.date >= query_date_1year).all() # Save the query results as a Pandas DataFrame and set the index to the date column prcp_df = pd.DataFrame(prcp_data, columns=['Date','Precipitation']).set_index('Date') # Sort the dataframe by date prcp_df_sort = prcp_df.sort_values(by=['Date']) # Use Pandas Plotting with Matplotlib to plot the data prcp_df_sort.plot(grid = True, ylabel= "Precitipation", title= f"Precipitation from {query_date_1year} to {most_recent_date[0]}", figsize = (10,5)) plt.tight_layout() plt.savefig(f"../Images/Precipitation from {query_date_1year} to {most_recent_date[0]}.png") plt.show() # Use Pandas to calcualte the summary statistics for the precipitation data summary_statistics = prcp_df_sort.describe() summary_statistics ###Output _____no_output_____ ###Markdown Exploratory Station Analysis ###Code # Design a query to calculate the total number stations in the dataset total_station = session.query(Station).group_by(Station.station).count() print(f"Total stations in the dataset: {total_station}") # Design a query to find the most active stations (i.e. what stations have the most rows?) # List the stations and the counts in descending order. active_stations = session.query(Measurement.station, func.count(Measurement.station)).\ group_by(Measurement.station).\ order_by(func.count(Measurement.station).desc()).all() active_stations # Using the most active station id from the previous query, calculate the lowest, highest, and average temperature. most_active_stations = active_stations[0][0] prcp_most_active_stats = session.query(func.min(Measurement.tobs), func.max(Measurement.tobs), func.avg(Measurement.tobs)).\ filter(Measurement.station == most_active_stations).all() print(f"Precipiation Statistics from the most active Station in Hawaii:\n\nLowest:\t {prcp_most_active_stats[0][0]}\n\ Max: \t {prcp_most_active_stats[0][1]}\nAverage: {round(prcp_most_active_stats[0][2],2)}") # Using the most active station id # Query the last 12 months of temperature observation data for this station tmp_data = session.query(Measurement.date, Measurement.tobs).filter(Measurement.date >= query_date_1year).\ filter(Measurement.station == most_active_stations).all() # Save the query results as a Pandas DataFrame and set the index to the date column tmp_df = pd.DataFrame(tmp_data, columns=['Date','Temperature']).set_index('Date') # Plot the DataFrame as a histogram tmp_df.plot(kind='hist', bins = 12, title = f"Temperature Frequency from {query_date_1year} to {most_recent_date[0]}", figsize = (10,5)) plt.xlabel('Temperature') plt.tight_layout() plt.savefig(f"../Images/Temperature Frequency from {query_date_1year} to {most_recent_date[0]}.png") plt.show() ###Output _____no_output_____ ###Markdown Close session ###Code # Close Session session.close() ###Output _____no_output_____
extras/003-DataFrame-For-DS.ipynb
###Markdown DataFrames For DataScientists1. SparkContext()1. Read/Write1. Convert1. Columns & Rows1. DataFrame : RDD-like Operations1. DataFrame : Action1. DataFrame : Scientific Functions1. DataFrame : Statistical Functions1. DataFrame : Aggregate Functions1. DataFrame : na1. DataFrame : Joins, Set Operations1. DataFrame : Tables & SQL 1. SparkContext() ###Code import datetime from pytz import timezone print "Last run @%s" % (datetime.datetime.now(timezone('US/Pacific'))) from pyspark.context import SparkContext print "Running Spark Version %s" % (sc.version) from pyspark.conf import SparkConf conf = SparkConf() print conf.toDebugString() sqlCxt = pyspark.sql.SQLContext(sc) ###Output _____no_output_____ ###Markdown 2. Read/Write ###Code from pyspark.sql import SQLContext sqlContext = SQLContext(sc) df = sqlContext.read.format('com.databricks.spark.csv').options(header='true').load('spark-csv/cars.csv') df.coalesce(1).select('year', 'model').write.format('com.databricks.spark.csv').save('newcars.csv') df.show() df_cars = sqlContext.read.format('com.databricks.spark.csv').options(header='true').load('car-data/car-milage.csv') df_cars_x = sqlContext.read.load('cars_1.parquet') df_cars_x.dtypes df_cars.show(40) df_cars.describe().show() df_cars.describe(["mpg",'hp']).show() df_cars.groupby("automatic").avg("mpg") df_cars.na.drop('any').count() df_cars.count() df_cars.dtypes df_2 = df_cars.select(df_cars.mpg.cast("double").alias('mpg'),df_cars.torque.cast("double").alias('torque'), df_cars.automatic.cast("integer").alias('automatic')) df_2.show(40) df_2.dtypes df_2.describe().show() ###Output +-------+-----------------+-----------------+-------------------+ |summary| mpg| torque| automatic| +-------+-----------------+-----------------+-------------------+ | count| 32| 30| 32| | mean| 20.223125| 217.9| 0.71875| | stddev|6.318289089312789|83.06970483918289|0.45680340939917435| | min| 11.2| 81.0| 0| | max| 36.5| 366.0| 1| +-------+-----------------+-----------------+-------------------+ ###Markdown 9. DataFrame : Aggregate Functions ###Code df_2.groupby("automatic").avg("mpg","torque").show() df_2.groupBy().avg("mpg","torque").show() df_2.agg({"*":"count"}).show() import pyspark.sql.functions as F df_2.agg(F.min(df_2.mpg)).show() import pyspark.sql.functions as F df_2.agg(F.mean(df_2.mpg)).show() gdf_2 = df_2.groupBy("automatic") gdf_2.agg({'mpg':'min'}).collect() gdf_2.agg({'mpg':'min'}).show() df_cars_1 = df_cars.select(df_cars.mpg.cast("double").alias('mpg'), df_cars.displacement.cast("double").alias('displacement'), df_cars.hp.cast("integer").alias('hp'), df_cars.torque.cast("integer").alias('torque'), df_cars.CRatio.cast("float").alias('CRatio'), df_cars.RARatio.cast("float").alias('RARatio'), df_cars.CarbBarrells.cast("integer").alias('CarbBarrells'), df_cars.NoOfSpeed.cast("integer").alias('NoOfSpeed'), df_cars.length.cast("float").alias('length'), df_cars.width.cast("float").alias('width'), df_cars.weight.cast("integer").alias('weight'), df_cars.automatic.cast("integer").alias('automatic')) gdf_3 = df_cars_1.groupBy("automatic") gdf_3.agg({'mpg':'mean'}).show() df_cars_1.avg("mpg","torque").show() df_cars_1.groupBy().avg("mpg","torque").show() df_cars_1.groupby("automatic").avg("mpg","torque").show() df_cars_1.groupby("automatic").avg("mpg","torque","hp","weight").show() df_cars_1.printSchema() df_cars_1.show(5) df_cars_1.describe().show() df_cars_1.groupBy().agg({"mpg":"mean"}).show() df_cars_1.show(40) ###Output +-----+------------+---+------+------+-------+------------+---------+------+-----+------+---------+ | mpg|displacement| hp|torque|CRatio|RARatio|CarbBarrells|NoOfSpeed|length|width|weight|automatic| +-----+------------+---+------+------+-------+------------+---------+------+-----+------+---------+ | 18.9| 350.0|165| 260| 8.0| 2.56| 4| 3| 200.3| 69.9| 3910| 1| | 17.0| 350.0|170| 275| 8.5| 2.56| 4| 3| 199.6| 72.9| 3860| 1| | 20.0| 250.0|105| 185| 8.25| 2.73| 1| 3| 196.7| 72.2| 3510| 1| |18.25| 351.0|143| 255| 8.0| 3.0| 2| 3| 199.9| 74.0| 3890| 1| |20.07| 225.0| 95| 170| 8.4| 2.76| 1| 3| 194.1| 71.8| 3365| 0| | 11.2| 440.0|215| 330| 8.2| 2.88| 4| 3| 184.5| 69.0| 4215| 1| |22.12| 231.0|110| 175| 8.0| 2.56| 2| 3| 179.3| 65.4| 3020| 1| |21.47| 262.0|110| 200| 8.5| 2.56| 2| 3| 179.3| 65.4| 3180| 1| | 34.7| 89.7| 70| 81| 8.2| 3.9| 2| 4| 155.7| 64.0| 1905| 0| | 30.4| 96.9| 75| 83| 9.0| 4.3| 2| 5| 165.2| 65.0| 2320| 0| | 16.5| 350.0|155| 250| 8.5| 3.08| 4| 3| 195.4| 74.4| 3885| 1| | 36.5| 85.3| 80| 83| 8.5| 3.89| 2| 4| 160.6| 62.2| 2009| 0| | 21.5| 171.0|109| 146| 8.2| 3.22| 2| 4| 170.4| 66.9| 2655| 0| | 19.7| 258.0|110| 195| 8.0| 3.08| 1| 3| 171.5| 77.0| 3375| 1| | 20.3| 140.0| 83| 109| 8.4| 3.4| 2| 4| 168.8| 69.4| 2700| 0| | 17.8| 302.0|129| 220| 8.0| 3.0| 2| 3| 199.9| 74.0| 3890| 1| |14.39| 500.0|190| 360| 8.5| 2.73| 4| 3| 224.1| 79.8| 5290| 1| |14.89| 440.0|215| 330| 8.2| 2.71| 4| 3| 231.0| 79.7| 5185| 1| | 17.8| 350.0|155| 250| 8.5| 3.08| 4| 3| 196.7| 72.2| 3910| 1| |16.41| 318.0|145| 255| 8.5| 2.45| 2| 3| 197.6| 71.0| 3660| 1| |23.54| 231.0|110| 175| 8.0| 2.56| 2| 3| 179.3| 65.4| 3050| 1| |21.47| 360.0|180| 290| 8.4| 2.45| 2| 3| 214.2| 76.3| 4250| 1| |16.59| 400.0|185| null| 7.6| 3.08| 4| 3| 196.0| 73.0| 3850| 1| | 31.9| 96.9| 75| 83| 9.0| 4.3| 2| 5| 165.2| 61.8| 2275| 0| | 29.4| 140.0| 86| null| 8.0| 2.92| 2| 4| 176.4| 65.4| 2150| 0| |13.27| 460.0|223| 366| 8.0| 3.0| 4| 3| 228.0| 79.8| 5430| 1| | 23.9| 133.6| 96| 120| 8.4| 3.91| 2| 5| 171.5| 63.4| 2535| 0| |19.73| 318.0|140| 255| 8.5| 2.71| 2| 3| 215.3| 76.3| 4370| 1| | 13.9| 351.0|148| 243| 8.0| 3.25| 2| 3| 215.5| 78.5| 4540| 1| |13.27| 351.0|148| 243| 8.0| 3.26| 2| 3| 216.1| 78.5| 4715| 1| |13.77| 360.0|195| 295| 8.25| 3.15| 4| 3| 209.3| 77.4| 4215| 1| | 16.5| 360.0|165| 255| 8.5| 2.73| 4| 3| 185.2| 69.0| 3660| 1| +-----+------------+---+------+------+-------+------------+---------+------+-----+------+---------+ ###Markdown 8. DataFrame : Statistical Functions ###Code df_cars_1.corr('hp','weight') df_cars_1.corr('RARatio','width') df_cars_1.crosstab('automatic','NoOfSpeed').show() df_cars_1.crosstab('NoOfSpeed','CarbBarrells').show() df_cars_1.crosstab('automatic','CarbBarrells').show() ###Output +----------------------+---+---+---+ |automatic_CarbBarrells| 1| 2| 4| +----------------------+---+---+---+ | 1| 2| 10| 11| | 0| 1| 8| 0| +----------------------+---+---+---+ ###Markdown 10. DataFrame : na ###Code # We can see if a column has null values df_cars_1.select(df_cars_1.torque.isNull()).show() # We can filter null and non null rows df_cars_1.filter(df_cars_1.torque.isNull()).show(40) # You can also use isNotNull df_cars_1.na.drop().count() df_cars_1.fillna(9999).show(50) # This is not what we will do normally. Just to show the effect of fillna # you can use df_cars_1.na.fill(9999) # Let us try the interesting when syntax on the HP column # 0-100=1,101-200=2,201-300=3,others=4 df_cars_1.select(df_cars_1.hp, F.when(df_cars_1.hp <= 100, 1).when(df_cars_1.hp <= 200, 2) .when(df_cars_1.hp <= 300, 3).otherwise(4).alias("hpCode")).show(40) df_cars_1.dtypes df_cars_1.groupBy('CarbBarrells').count().show() # If file exists, will give error # java.lang.RuntimeException: path file:.. /cars_1.parquet already exists. # df_cars_1.repartition(1).write.save("cars_1.parquet", format="parquet") # No error even if the file exists df_cars_1.repartition(1).write.mode("overwrite").format("parquet").save("cars_1.parquet") # Use repartition if you want all data in one (or more) file # Appends to existing file df_cars_1.repartition(1).write.mode("append").format("parquet").save("cars_1_a.parquet") # Even with repartition, you will see more files as it is append df_append = sqlContext.load("cars_1_a.parquet") # sqlContext.load is deprecated df_append.count() #eventhough parquet is the default format, explicit format("parquet") is clearer df_append = sqlContext.read.format("parquet").load("cars_1_a.parquet") df_append.count() # for reading parquet files read.parquet is more elegant df_append = sqlContext.read.parquet("cars_1_a.parquet") df_append.count() # Let us read another file df_orders = sqlContext.read.format('com.databricks.spark.csv').options(header='true').load('NW/NW-Orders.csv') df_orders.head() df_orders.dtypes from pyspark.sql.types import StringType, IntegerType,DateType getYear = F.udf(lambda s: s[-2:], StringType()) #IntegerType()) from datetime import datetime convertToDate = F.udf(lambda s: datetime.strptime(s, '%m/%d/%y'),DateType()) # You could register the function for sql as follows. We won't use this here sqlContext.registerFunction("getYear", lambda s: s[-2:]) # let us add an year column df_orders.select(df_orders['OrderID'], df_orders['CustomerID'], df_orders['EmpliyeeID'], df_orders['OrderDate'], df_orders['ShipCuntry'].alias('ShipCountry'), getYear(df_orders['OrderDate'])).show() # let us add an year column # Need alias df_orders_1 = df_orders.select(df_orders['OrderID'], df_orders['CustomerID'], df_orders['EmpliyeeID'], convertToDate(df_orders['OrderDate']).alias('OrderDate'), df_orders['ShipCuntry'].alias('ShipCountry'), getYear(df_orders['OrderDate']).alias('Year')) # df_orders_1 = df_orders_x.withColumn('Year',getYear(df_orders_x['OrderDate'])) # doesn't work. Gives error df_orders_1.show(1) df_orders_1.dtypes df_orders_1.show() df_orders_1.where(df_orders_1['ShipCountry'] == 'France').show() df_orders_1.groupBy("CustomerID","Year").count().orderBy('count',ascending=False).show() df_orders_1.groupBy("CustomerID","Year").count().orderBy('count',ascending=False).show() # save by partition (year) df_orders_1.write.mode("overwrite").partitionBy("Year").format("parquet").save("orders_1.parquet") # load defaults to parquet df_orders_2 = sqlContext.read.parquet("orders_1.parquet") df_orders_2.explain(True) df_orders_3 = df_orders_2.filter(df_orders_2.Year=='96') df_orders_3.explain(True) df_orders_3.count() df_orders_3.explain(True) df_orders_2.count() df_orders_1.printSchema() ###Output root |-- OrderID: string (nullable = true) |-- CustomerID: string (nullable = true) |-- EmpliyeeID: string (nullable = true) |-- OrderDate: date (nullable = true) |-- ShipCountry: string (nullable = true) |-- Year: string (nullable = true) ###Markdown 7. DataFrame : Scientific Functions ###Code # import pyspark.sql.Row df = sc.parallelize([10,100,1000]).map(lambda x: {"num":x}).toDF() df.show() import pyspark.sql.functions as F df.select(F.log(df.num)).show() df.select(F.log10(df.num)).show() df = sc.parallelize([0,10,100,1000]).map(lambda x: {"num":x}).toDF() df.show() df.select(F.log(df.num)).show() df.select(F.log1p(df.num)).show() df_cars_1.select(df_cars_1['CarbBarrells'], F.sqrt(df_cars_1['mpg'])).show() df = sc.parallelize([(3,4),(5,12),(7,24),(9,40),(11,60),(13,84)]).map(lambda x: {"a":x[0],"b":x[1]}).toDF() df.show() df.select(df['a'],df['b'],F.hypot(df['a'],df['b']).alias('hypot')).show() ###Output +---+---+-----+ | a| b|hypot| +---+---+-----+ | 3| 4| 5.0| | 5| 12| 13.0| | 7| 24| 25.0| | 9| 40| 41.0| | 11| 60| 61.0| | 13| 84| 85.0| +---+---+-----+ ###Markdown 11. DataFrame : Joins, Set Operations ###Code df_a = sc.parallelize( [{"X1":"A","X2":1},{"X1":"B","X2":2},{"X1":"C","X2":3}] ).toDF() df_b = sc.parallelize( [{"X1":"A","X3":True},{"X1":"B","X3":False},{"X1":"D","X3":True}] ).toDF() df_a.show() df_b.show() df_a.join(df_b, df_a['X1'] == df_b['X1'], 'inner')\ .select(df_a['X1'].alias('X1-a'),df_b['X1'].alias('X1-b'),'X2','X3').show() df_a.join(df_b, df_a['X1'] == df_b['X1'], 'outer')\ .select(df_a['X1'].alias('X1-a'),df_b['X1'].alias('X1-b'),'X2','X3').show() # same as 'full' or 'fullouter' # Spark doesn't merge the key columns and so need to alias the column names to distinguih between the columns df_a.join(df_b, df_a['X1'] == df_b['X1'], 'left_outer')\ .select(df_a['X1'].alias('X1-a'),df_b['X1'].alias('X1-b'),'X2','X3').show() # same as 'left' df_a.join(df_b, df_a['X1'] == df_b['X1'], 'right_outer')\ .select(df_a['X1'].alias('X1-a'),df_b['X1'].alias('X1-b'),'X2','X3').show() # same as 'right' df_a.join(df_b, df_a['X1'] == df_b['X1'], 'right')\ .select(df_a['X1'].alias('X1-a'),df_b['X1'].alias('X1-b'),'X2','X3').show() df_a.join(df_b, df_a['X1'] == df_b['X1'], 'full')\ .select(df_a['X1'].alias('X1-a'),df_b['X1'].alias('X1-b'),'X2','X3').show()# same as 'fullouter' df_a.join(df_b, df_a['X1'] == df_b['X1'], 'leftsemi').show() # same as semijoin #.select(df_a['X1'].alias('X1-a'),df_b['X1'].alias('X1-b'),'X2','X3').show() #anti-join = df.subtract('leftsemi') df_a.subtract(df_a.join(df_b, df_a['X1'] == df_b['X1'], 'leftsemi')).show() #.select(df_a['X1'].alias('X1-a'),df_b['X1'].alias('X1-b'),'X2','X3').show() c = [{"X1":"A","X2":1},{"X1":"B","X2":2},{"X1":"C","X2":3}] d = [{"X1":"A","X2":1},{"X1":"B","X2":2},{"X1":"D","X2":4}] df_c = sc.parallelize(c).toDF() df_d = sc.parallelize(d).toDF() df_c.show() df_d.show() df_c.intersect(df_d).show() df_c.subtract(df_d).show() df_d.subtract(df_c).show() e = [{"X1":"A","X2":1},{"X1":"B","X2":2},{"X1":"C","X2":3}] f = [{"X1":"D","X2":4},{"X1":"E","X2":5},{"X1":"F","X2":6}] df_e = sc.parallelize(e).toDF() df_f = sc.parallelize(f).toDF() df_e.unionAll(df_f).show() # df_a.join(df_b, df_a['X1'] == df_b['X1'], 'semijoin')\ # .select(df_a['X1'].alias('X1-a'),df_b['X1'].alias('X1-b'),'X2','X3').show() # Gives error Unsupported join type 'semijoin'. # Supported join types include: 'inner', 'outer', 'full', 'fullouter', 'leftouter', 'left', 'rightouter', # 'right', 'leftsemi' ###Output _____no_output_____ ###Markdown 12. DataFrame : Tables & SQL ###Code # SQL on tables df_a.registerTempTable("tableA") sqlContext.sql("select * from tableA").show() df_b.registerTempTable("tableB") sqlContext.sql("select * from tableB").show() sqlContext.sql("select * from tableA JOIN tableB on tableA.X1 = tableB.X1").show() sqlContext.sql("select * from tableA LEFT JOIN tableB on tableA.X1 = tableB.X1").show() sqlContext.sql("select * from tableA FULL JOIN tableB on tableA.X1 = tableB.X1").show() ###Output +----+----+----+-----+ | X1| X2| X1| X3| +----+----+----+-----+ | A| 1| A| true| | B| 2| B|false| | C| 3|null| null| |null|null| D| true| +----+----+----+-----+
Toronto_Neighborhood_Clustering.ipynb
###Markdown Note : this notebook contains the week 3 project assignment of the course 'Applied Data Science Capstone' Coursera 1.Scraping the Dataset of Toronto Neighborhood The dataset of the Toronto neighborhood is not available in csv form for manipulation, therefore its data should be scraped from wikipedia here is the technique with step by step guide of how to scrap the data.The Beautiful Soup package is used for scraping the data. Before getting start lets download the following libraries ###Code from bs4 import BeautifulSoup # for scraping data from wikipedia import requests #calling request to url import pandas as pd # handling data frame import numpy as np import json pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) import geocoder # getting latitude and longitude from geopy.geocoders import Nominatim from pandas.io.json import json_normalize import matplotlib.cm as cm # ploting graphs import matplotlib.colors as colors from sklearn.cluster import KMeans #for implementing kmeans algorithm import folium # ploting map ###Output _____no_output_____ ###Markdown Getting the request and parsing List of postal codes of Canada: M - Wikipedia document.documentElement.className="client-js";RLCONF={"wgBreakFrames":!1,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"XpVnAwpAAEYAAEsuV0QAAADD","wgCSPNonce":!1,"wgCanonica ###Code url='https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M' source=requests.get(url).text soup=BeautifulSoup(source,'lxml') ###Output _____no_output_____ ###Markdown If you carefully inspect the HTML script all the table contents i.e. postalcode,borough and neighborhood of the toronto which we intend to extract is under class Wikitable . ###Code my_table=soup.find('table',{'class':'wikitable'})#find the class where required data is place ###Output _____no_output_____ ###Markdown Now after examing the data we sure our required data lies in a step from 'tbody','tr' to the element of 'td'.Creating a list for storing our data. ###Code data=[] table_body=my_table.find('tbody') sub_table=table_body.find_all('tr') for row in sub_table: sub=row.find_all('td') # data resides in the element of td sub=[ele.text.strip() for ele in sub] data.append(sub) ###Output _____no_output_____ ###Markdown Transform the data into Pandas dataframe From the links, we have to extract our required data which is postalcode,borough and neighborhood.Now Convert the following data into Pandas DataFrame to work in python. ###Code arr=np.array(data) arr_refine=[x for x in arr if x] #removing the empty list postal_code=[index[0] for index in arr_refine] #getting the postalcode borough=[index[1] for index in arr_refine] #getting the borough neighbor=[index[2] for index in arr_refine] #getting the neighorhood df = pd.DataFrame(list(zip(postal_code,borough,neighbor)), #creating a table of following columns columns =['Postal Code','Borough','Neighborhood']) df_refine=df[df.Borough !='Not assigned'].reset_index(drop=True) # as required ignore the Not assigned cells toronto_data=df_refine.apply(lambda x: x.str.replace('/',',')) #as required add comma toronto_data.head() ###Output _____no_output_____ ###Markdown For calculating row lenght of our data ###Code toronto_data.shape[0] ###Output _____no_output_____ ###Markdown 2. Adding the Location(Latitude & Longitude) in Dataset Here the csv file data set location is used you can get it from Link :http://cocl.us/Geospatial_data ###Code location=pd.read_csv('Geospatial_Coordinates.csv') toronto_data_location=pd.merge(toronto_data,location, on=['Postal Code']) #Alert on merging columns name should be same toronto_data_location ###Output _____no_output_____ ###Markdown 3. Implement the Clustering In this section explore the neighborhood of Toronto using foursquare api and implementing the kmeans algorithm for clustering. Setting up Foursquare API ###Code CLIENT_ID='R2R05S3T5J04JUU4YNXM5KEELQIH23P3X4131WIP2FPSXWBO' CLIENT_SECRET='2JHRTJ4IG2AFO4HS3KJLZCAHV5EGIZF1ZBVT55T33IBQOCVG' VERSION='20180604' radius=500 LIMIT=50 ###Output _____no_output_____ ###Markdown Defining the latitude and longitude for api setup ###Code address = 'Toronto' geolocator = Nominatim(user_agent="to_explorer") location = geolocator.geocode(address) latitude = location.latitude longitude = location.longitude print('Latitude {},Longitude{}'.format(latitude,longitude)) n_name=toronto_data_location.loc[0,'Neighborhood'] n_lat=toronto_data_location.loc[0,'Latitude'] n_lng=toronto_data_location.loc[0,'Longitude'] ###Output _____no_output_____ ###Markdown Here create a function for getting call request to api and tranform the result data into clean pandas dataframe ###Code def NearVenues(n_name, n_lat, n_lng): venues_list=[] for name, lat, lng in zip(n_name, n_lat, n_lng): print(name) url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format( CLIENT_ID, CLIENT_SECRET, VERSION, lat, lng, radius, LIMIT) results = requests.get(url).json()["response"]['groups'][0]['items'] venues_list.append([( name, lat, lng, v['venue']['name'], v['venue']['location']['lat'], v['venue']['location']['lng'], v['venue']['categories'][0]['name']) for v in results]) nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in venue_list]) nearby_venues.columns = ['Neighborhood', 'Neighborhood Latitude', 'Neighborhood Longitude', 'Venue', 'Venue Latitude', 'Venue Longitude', 'Venue Category'] return(nearby_venues) ###Output _____no_output_____ ###Markdown Remember this cell will take some time .First it print all names of neighborhood to completely give the latitude and longitude of all the borough to api. Calling NearVenues function ###Code toronto_venues = NearVenues(n_name=toronto_data_location['Neighborhood'], n_lat=toronto_data_location['Latitude'], n_lng=toronto_data_location['Longitude'] ) toronto_venues.head() ###Output _____no_output_____ ###Markdown Analysis the neighborhood venues ###Code For manipulating the data we need to deal with numerical form therefore,get_dummies convert categorical data into numbers. toronto_refine = pd.get_dummies(toronto_venues[['Venue Category']], prefix="", prefix_sep="") toronto_refine['Neighborhood'] = toronto_venues['Neighborhood'] fixed_columns = [toronto_refine.columns[-1]] + list(toronto_refine.columns[:-1]) toronto_refine = toronto_refine[fixed_columns] toronto_refine.head() toronto_group = toronto_refine.groupby('Neighborhood').mean().reset_index() # taking out mean ###Output _____no_output_____ ###Markdown Here created a new data frame that display the top 10 venues for each neighbor ###Code top_venues = 10 indicators = ['st', 'nd', 'rd'] columns = ['Neighborhood'] for ind in np.arange(top_venues): try: columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind])) except: columns.append('{}th Most Common Venue'.format(ind+1)) neighborhoods_venues_sorted = pd.DataFrame(columns=columns) neighborhoods_venues_sorted['Neighborhood'] = toronto_group['Neighborhood'] for ind in np.arange(toronto_group.shape[0]): neighborhoods_venues_sorted.iloc[ind, 1:] = return_most_common_venues(toronto_group.iloc[ind, :], top_venues) neighborhoods_venues_sorted.head() ###Output _____no_output_____ ###Markdown Clustering the Neighborhood Used the sklearn kmeans library to perform the kmeans algorithm ###Code kclusters = 5 manhattan_grouped_clustering = toronto_group.drop('Neighborhood', 1) kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(manhattan_grouped_clustering) kmeans.labels_[0:10] ###Output _____no_output_____ ###Markdown Here created a new data frame that cluster and add top 10 venues for each neighborhood ###Code neighborhoods_venues_sorted.insert(0,'Cluster Labels', kmeans.labels_, allow_duplicates = False) toronto_merged = toronto_data_location toronto_merged = toronto_merged.join(neighborhoods_venues_sorted.set_index('Neighborhood'), on='Neighborhood') toronto_merged.head() ###Output _____no_output_____ ###Markdown Visualizing data in graphical form using matplot and folium libraries ###Code map_clusters = folium.Map(location=[latitude, longitude], zoom_start=11) x = np.arange(kclusters) ys = [i + x + (i*x)**2 for i in range(kclusters)] colors_array = cm.rainbow(np.linspace(0, 1, len(ys))) rainbow = [colors.rgb2hex(i) for i in colors_array] markers_colors = [] for lat, lon, poi, cluster in zip(toronto_merged['Latitude'], toronto_merged['Longitude'], toronto_merged['Neighborhood'], toronto_merged['Cluster Labels']): label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=True) folium.CircleMarker( [lat, lon], radius=5, popup=label, color=rainbow[cluster-1], fill=True, fill_color=rainbow[cluster-1], fill_opacity=0.7).add_to(map_clusters) map_clusters ###Output _____no_output_____
examples/02_creating_community_datasets.ipynb
###Markdown Working with `Community`s the `Community` object is geosnap's central data structure. A `Community` is a dataset that stores information about a collection of neighborhoods over several time periods, including each neighborhood's physical, socioeconomic, and demographic attributes and its demarcated boundaries. Under the hood, each `Community` is simply a long-form geopandas geodataframe with some associated metadata. If you're working with built-in data, you instantiate a `Community` by choosing the constructor for your dataset and passing either a boundary (geodataframe) or a selection filter that defines the study area. The selection filter can be either a `GeoDataFrame` boundary or a set of [FIPS](https://www.policymap.com/2012/08/tips-on-fips-a-quick-guide-to-geographic-place-codes-part-iii/) codes. Boundary queries are often more convenient but they are more expensive to compute and will take longer to construct. When constructing `Community`s from fips codes, the constructor has arguments for state, county, msa, or list of any arbitrary fips codes. If more than one of these arguments is passed, geosnap will use the union. This means that each level of the hierarchy is available for convenience but you are free to mix and match msas, states, counties, and even single tracts to create your study region of choice If you're working with your own data, you instantiate a `Community` by passing a list of geodataframes (or a single long-form). ###Code from geosnap import Community ###Output _____no_output_____ ###Markdown Create a `Community` from built-in census data The quickest and easiest method for getting started is to instantiate a Community using the built-in census data. To do so, you use the `Community.from_census` constructor: ###Code # this will create a new community using data from Washington DC (which is fips code 11) dc = Community.from_census(state_fips='11') ###Output _____no_output_____ ###Markdown Note that when using `Community.from_census`, the resulting community has *unharmonized* tract boundaries, meaning that the tracts are different for each decade To access the underlying data from a `Community`, simply call its `gdf` attribute which returns a geodataframe ###Code dc.gdf.head() # create a little helper function for plotting a time-series import matplotlib.pyplot as plt def plot(community, column): fig, axs = plt.subplots(1,3, figsize=(15,5)) axs=axs.flatten() community.gdf[community.gdf.year==1990].dropna(subset=[column]).plot(column=column, scheme='quantiles', cmap='Blues', k=6, ax=axs[0]) axs[0].axis('off') axs[0].set_title('1990') community.gdf[community.gdf.year==2000].dropna(subset=[column]).plot(column=column, scheme='quantiles', cmap='Blues', k=6, ax=axs[1]) axs[1].axis('off') axs[1].set_title('2000') community.gdf[community.gdf.year==2010].dropna(subset=[column]).plot(column=column, scheme='quantiles', cmap='Blues', k=6, ax=axs[2]) axs[2].axis('off') axs[2].set_title('2010') plot(dc, 'p_nonhisp_white_persons') ###Output _____no_output_____ ###Markdown Create a `Community` from Longitudinal Employment-Household Dynamics You can also create a `Community` from block-level LEHD census data. Unlike the decennial census, LEHD data are annual and contain information about the "workplace area characteristics" ("wac") and "residence area characteristics" ("rac") of employees. "wac" datasets contain information about where employees work, while "rac" datasets contiain information about where they live. Apart from information about the race, skill level, and income of emmployees in eaech census block, LEHD data also count the number of workers in each NAICS 2-digit industry category.If you use the `Community.from_lodes` constructor, you can collect data from 2000 to 2015 ###Code delaware = Community.from_lodes(state_fips='10', years=[2014, 2015]) delaware.gdf.head() delaware.gdf[delaware.gdf.year==2015].plot(column='total_employees', scheme='quantiles', k=9) ###Output _____no_output_____ ###Markdown Create a `Community` from a longitudinal database To instantiate a `Community` from a longitudinal database, you must first register the database with geosnap using either `store_ltdb` or `store_ncdb`. Once the data are available in datasets, you can call `Community.from_ltdb` and `Community.from_ncdb` LTDB using fips codes I don't know the Riverside MSA fips code by heart, so I'll slice through the `msas` dataframe in the data store to find it ###Code from geosnap import datasets datasets.msas()[datasets.msas().name.str.startswith('Riverside')] riverside = Community.from_ltdb(msa_fips='40140') plot(riverside, 'p_poverty_rate') ###Output _____no_output_____ ###Markdown Instead of passing a fips code, I could use the `boundary` argument to pass the riverside MSA as a geodataframe. This is more computationally expensive because it requires geometric operations, but is more flexible because it allows you to create communities that don't nest into fips hierarchies (like zip codes, census designated places, or non-US data) NCDB Using a boundary ###Code # grab the boundary for Sacramento from libpysal's built-in examples import geopandas as gpd from libpysal.examples import load_example sac = load_example("Sacramento1") sac = gpd.read_file(sac.get_path("sacramentot2.shp")) sacramento = Community.from_ncdb(boundary=sac) plot(sacramento, 'median_household_income') ###Output _____no_output_____ ###Markdown Create a `Community` from a list of geodataframes If you are working outside the US, or if you have data that aren't included in geosnap (like census blocks or zip codes) then you can still create a community using the `Community.from_geodataframes` constructor, which allows you to pass a list of geodataframes that will be concatenated into the single long-form gdf structure that geosnap's analytics expect.This constructor is typically used in cases where a researcher has several shapefiles for a study area, each of which pertainin to a different time period. In such a case, the user would read each shapefile into a geodataframe and ensure that each has a "time" column that will differentiate each time period from one another in the long-form structure (e.g. if each shapefile is a different decade, then the 1990 shapefile should have a column called "year" in which every observation has a value of 1990). Then, these geodataframes simply need to be passed in a list to the `from_geodataframes` constructor Here, I'll use `cenpy` to grap population data from two different ACS vintages and combine them into a single community ###Code from cenpy.products import ACS chi13 = ACS(2013).from_place('chicago', variables='B00001_001E') chi13['year'] = 2013 chi17 = ACS(2017).from_place('chicago', variables='B00001_001E') chi17['year'] = 2017 chicago = Community.from_geodataframes([chi13, chi17]) fig, axs = plt.subplots(1,2, figsize=(12,5)) chicago.gdf[chicago.gdf.year==2013].dropna(subset=['B00001_001E']).plot(column='B00001_001E', cmap='Greens', scheme='quantiles', k=6, ax=axs[0]) axs[0].axis('off') axs[0].set_title('2013') chicago.gdf[chicago.gdf.year==2017].dropna(subset=['B00001_001E']).plot(column='B00001_001E', cmap='Greens', scheme='quantiles', k=6, ax=axs[1]) axs[1].axis('off') axs[1].set_title('2017') ###Output _____no_output_____
notebooks/S10C_Monte_Carlo_Integration.ipynb
###Markdown Numerical Evaluation of Integrals ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown Integration problems are common in statistics whenever we are dealing with continuous distributions. For example the expectation of a function is an integration problem$$E[f(x)] = \int{f(x) \, p(x) \, dx}$$In Bayesian statistics, we need to solve the integration problem for the marginal likelihood or evidence$$p(X \mid \alpha) = \int{p(X \mid \theta) \, p(\theta \mid \alpha) d\theta}$$where $\alpha$ is a hyperparameter and $p(X \mid \alpha)$ appears in the denominator of Bayes theorem$$p(\theta | X) = \frac{p(X \mid \theta) \, p(\theta \mid \alpha)}{p(X \mid \alpha)}$$In general, there is no closed form solution to these integrals, and we have to approximate them numerically. The first step is to check if there is some **reparameterization** that will simplify the problem. Then, the general approaches to solving integration problems are1. Numerical quadrature2. Importance sampling, adaptive importance sampling and variance reduction techniques (Monte Carlo swindles)3. Markov Chain Monte Carlo4. Asymptotic approximations (Laplace method and its modern version in variational inference)This lecture will review the concepts for quadrature and Monte Carlo integration. Quadrature----You may recall from Calculus that integrals can be numerically evaluated using quadrature methods such as Trapezoid and Simpson's's rules. This is easy to do in Python, but has the drawback of the complexity growing as $O(n^d)$ where $d$ is the dimensionality of the data, and hence infeasible once $d$ grows beyond a modest number. Integrating functions ###Code from scipy.integrate import quad def f(x): return x * np.cos(71*x) + np.sin(13*x) x = np.linspace(0, 1, 100) plt.plot(x, f(x)) pass ###Output _____no_output_____ ###Markdown Exact solution ###Code from sympy import sin, cos, symbols, integrate x = symbols('x') integrate(x * cos(71*x) + sin(13*x), (x, 0,1)).evalf(6) ###Output _____no_output_____ ###Markdown Using quadrature ###Code y, err = quad(f, 0, 1.0) y ###Output _____no_output_____ ###Markdown Multiple integrationFollowing the `scipy.integrate` [documentation](http://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html), we integrate$$I=\int_{y=0}^{1/2}\int_{x=0}^{1-2y} x y \, dx\, dy$$ ###Code x, y = symbols('x y') integrate(x*y, (x, 0, 1-2*y), (y, 0, 0.5)) from scipy.integrate import nquad def f(x, y): return x*y def bounds_y(): return [0, 0.5] def bounds_x(y): return [0, 1-2*y] y, err = nquad(f, [bounds_x, bounds_y]) y ###Output _____no_output_____ ###Markdown Monte Carlo integrationThe basic idea of Monte Carlo integration is very simple and only requires elementary statistics. Suppose we want to find the value of $$I = \int_a^b f(x) dx$$in some region with volume $V$. Monte Carlo integration estimates this integral by estimating the fraction of random points that fall below $f(x)$ multiplied by $V$. In a statistical context, we use Monte Carlo integration to estimate the expectation$$E[g(X)] = \int_X g(x) p(x) dx$$with$$\bar{g_n} = \frac{1}{n} \sum_{i=1}^n g(x_i)$$where $x_i \sim p$ is a draw from the density $p$.We can estimate the Monte Carlo variance of the approximation as$$v_n = \frac{1}{n^2} \sum_{o=1}^n (g(x_i) - \bar{g_n})^2)$$Also, from the Central Limit Theorem,$$\frac{\bar{g_n} - E[g(X)]}{\sqrt{v_n}} \sim \mathcal{N}(0, 1)$$The convergence of Monte Carlo integration is $\mathcal{0}(n^{1/2})$ and independent of the dimensionality. Hence Monte Carlo integration generally beats numerical integration for moderate- and high-dimensional integration since numerical integration (quadrature) converges as $\mathcal{0}(n^{d})$. Even for low dimensional problems, Monte Carlo integration may have an advantage when the volume to be integrated is concentrated in a very small region and we can use information from the distribution to draw samples more often in the region of importance.An elementary, readable description of Monte Carlo integration and variance reduction techniques can be found [here](https://www.cs.dartmouth.edu/~wjarosz/publications/dissertation/appendixA.pdf). Intuition behind Monte Carlo integration We want to find some integral $$I = \int{f(x)} \, dx$$Consider the expectation of a function $g(x)$ with respect to some distribution $p(x)$. By definition, we have$$E[g(x)] = \int{g(x) \, p(x) \, dx}$$If we choose $g(x) = f(x)/p(x)$, then we have$$\begin{align}E[g(x)] &= \int{\frac{f(x}{p(x)} \, p(x) \, dx} \\&= \int{f(x) dx} \\&= I\end{align}$$By the law of large numbers, the average converges on the expectation, so we have$$I \approx \bar{g_n} = \frac{1}{n} \sum_{i=1}^n g(x_i)$$If $f(x)$ is a proper integral (i.e. bounded), and $p(x)$ is the uniform distribution, then $g(x) = f(x)$ and this is known as ordinary Monte Carlo. If the integral of $f(x)$ is improper, then we need to use another distribution with the same support as $f(x)$. ###Code from scipy import stats x = np.linspace(-3,3,100) dist = stats.norm(0,1) a = -2 b = 0 plt.plot(x, dist.pdf(x)) plt.fill_between(np.linspace(a,b,100), dist.pdf(np.linspace(a,b,100)), alpha=0.5) plt.text(b+0.1, 0.1, 'p=%.4f' % (dist.cdf(b) - dist.cdf(a)), fontsize=14) pass ###Output _____no_output_____ ###Markdown Using quadrature ###Code y, err = quad(dist.pdf, a, b) y ###Output _____no_output_____ ###Markdown Simple Monte Carlo integration If we can sample directly from the target distribution $N(0,1)$ ###Code n = 10000 x = dist.rvs(n) np.sum((a < x) & (x < b))/n ###Output _____no_output_____ ###Markdown If we cannot sample directly from the target distribution $N(0,1)$ but can evaluate it at any point. Recall that $g(x) = \frac{f(x)}{p(x)}$. Since $p(x)$ is $U(a, b)$, $p(x) = \frac{1}{b-a}$. So we want to calculate$$\frac{1}{n} \sum_{i=1}^n (b-a) f(x)$$ ###Code n = 10000 x = np.random.uniform(a, b, n) np.mean((b-a)*dist.pdf(x)) ###Output _____no_output_____ ###Markdown Intuition for error rateWe will just work this out for a proper integral $f(x)$ defined in the unit cube and bounded by $|f(x)| \le 1$. Draw a random uniform vector $x$ in the unit cube. Then$$\begin{align}E[f(x_i)] &= \int{f(x) p(x) dx} = I \\\text{Var}[f(x_i)] &= \int{(f(x_i) - I )^2 p(x) \, dx} \\&= \int{f(x)^2 \, p(x) \, dx} - 2I \int(f(x) \, p(x) \, dx + I^2 \int{p(x) \, dx} \\&= \int{f(x)^2 \, p(x) \, dx} + I^2 \\& \le \int{f(x)^2 \, p(x) \, dx} \\& \le \int{p(x) \, dx} = 1\end{align}$$Now consider summing over many such IID draws $S_n = f(x_1) + f(x_2) + \cdots + f(x_n)$, \ldots, x_n$. We have$$\begin{align}E[S_n] &= nI \\\text{Var}[S_n] & \le n\end{align}$$and as expected, we see that $I \approx S_n/n$. From Chebyshev's inequality,$$\begin{align}P \left( \left| \frac{s_n}{n} - I \right| \ge \epsilon \right) &= P \left( \left| s_n - nI \right| \ge n \epsilon \right) & \le \frac{\text{Var}[s_n]}{n^2 \epsilon^2} & \le\frac{1}{n \epsilon^2} = \delta\end{align}$$Suppose we want 1% accuracy and 99% confidence - i.e. set $\epsilon = \delta = 0.01$. The above inequality tells us that we can achieve this with just $n = 1/(\delta \epsilon^2) = 1,000,000$ samples, regardless of the data dimensionality. ExampleWe want to estimate the following integral $\int_0^1 e^x dx$. ###Code x = np.linspace(0, 1, 100) plt.plot(x, np.exp(x)) plt.xlim([0,1]) plt.ylim([0, np.exp(1)]) pass ###Output _____no_output_____ ###Markdown Analytic solution ###Code from sympy import symbols, integrate, exp x = symbols('x') expr = integrate(exp(x), (x,0,1)) expr.evalf() ###Output _____no_output_____ ###Markdown Using quadrature ###Code from scipy import integrate y, err = integrate.quad(exp, 0, 1) y ###Output _____no_output_____ ###Markdown Monte Carlo integration ###Code for n in 10**np.array([1,2,3,4,5,6,7,8]): x = np.random.uniform(0, 1, n) sol = np.mean(np.exp(x)) print('%10d %.6f' % (n, sol)) ###Output 10 2.016472 100 1.717020 1000 1.709350 10000 1.719758 100000 1.716437 1000000 1.717601 10000000 1.718240 100000000 1.718152 ###Markdown Monitoring variance in Monte Carlo integrationWe are often interested in knowing how many iterations it takes for Monte Carlo integration to "converge". To do this, we would like some estimate of the variance, and it is useful to inspect such plots. One simple way to get confidence intervals for the plot of Monte Carlo estimate against number of iterations is simply to do many such simulations.For the example, we will try to estimate the function (again)$$f(x) = x \cos 71 x + \sin 13x, \ \ 0 \le x \le 1$$ ###Code def f(x): return x * np.cos(71*x) + np.sin(13*x) x = np.linspace(0, 1, 100) plt.plot(x, f(x)) pass ###Output _____no_output_____ ###Markdown Single MC integration estimate ###Code n = 100 x = f(np.random.random(n)) y = 1.0/n * np.sum(x) y ###Output _____no_output_____ ###Markdown Using multiple independent sequences to monitor convergenceWe vary the sample size from 1 to 100 and calculate the value of $y = \sum{x}/n$ for 1000 replicates. We then plot the 2.5th and 97.5th percentile of the 1000 values of $y$ to see how the variation in $y$ changes with sample size. The blue lines indicate the 2.5th and 97.5th percentiles, and the red line a sample path. ###Code n = 100 reps = 1000 x = f(np.random.random((n, reps))) y = 1/np.arange(1, n+1)[:, None] * np.cumsum(x, axis=0) upper, lower = np.percentile(y, [2.5, 97.5], axis=1) plt.plot(np.arange(1, n+1), y, c='grey', alpha=0.02) plt.plot(np.arange(1, n+1), y[:, 0], c='red', linewidth=1); plt.plot(np.arange(1, n+1), upper, 'b', np.arange(1, n+1), lower, 'b') pass ###Output _____no_output_____ ###Markdown Using bootstrap to monitor convergenceIf it is too expensive to do 1000 replicates, we can use a bootstrap instead. ###Code xb = np.random.choice(x[:,0], (n, reps), replace=True) yb = 1/np.arange(1, n+1)[:, None] * np.cumsum(xb, axis=0) upper, lower = np.percentile(yb, [2.5, 97.5], axis=1) plt.plot(np.arange(1, n+1)[:, None], yb, c='grey', alpha=0.02) plt.plot(np.arange(1, n+1), yb[:, 0], c='red', linewidth=1) plt.plot(np.arange(1, n+1), upper, 'b', np.arange(1, n+1), lower, 'b') pass ###Output _____no_output_____ ###Markdown Variance ReductionWith independent samples, the variance of the Monte Carlo estimate is $$\begin{align}\text{Var}[\bar{g_n}] &= \text{Var} \left[ \frac{1}{N}\sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)} \right] \\&= \frac{1}{N^2} \sum_{i=1}^{N} \text{Var} \left[ \frac{f(x_i)}{p(x_i)} \right] \\&= \frac{1}{N^2} \sum_{i=1}^{N} \text{Var}[Y_i] \\&= \frac{1}{N} \text{Var}[Y_i]\end{align}$$where $Y_i = f(x_i)/p(x_i)$. In general, we want to make $\text{Var}[\bar{g_n}]$ as small as possible for the same number of samples. There are several variance reduction techniques (also colorfully known as Monte Carlo swindles) that have been described - we illustrate the change of variables and importance sampling techniques here. Change of variablesThe Cauchy distribution is given by $$f(x) = \frac{1}{\pi (1 + x^2)}, \ \ -\infty \lt x \lt \infty $$Suppose we want to integrate the tail probability $P(X > 3)$ using Monte Carlo. One way to do this is to draw many samples form a Cauchy distribution, and count how many of them are greater than 3, but this is extremely inefficient. Only 10% of samples will be used ###Code import scipy.stats as stats h_true = 1 - stats.cauchy().cdf(3) h_true n = 100 x = stats.cauchy().rvs(n) h_mc = 1.0/n * np.sum(x > 3) h_mc, np.abs(h_mc - h_true)/h_true ###Output _____no_output_____ ###Markdown A change of variables lets us use 100% of drawsWe are trying to estimate the quantity$$\int_3^\infty \frac{1}{\pi (1 + x^2)} dx$$Using the substitution $y = 3/x$ (and a little algebra), we get$$\int_0^1 \frac{3}{\pi(9 + y^2)} dy$$Hence, a much more efficient MC estimator is $$\frac{1}{n} \sum_{i=1}^n \frac{3}{\pi(9 + y_i^2)}$$where $y_i \sim \mathcal{U}(0, 1)$. ###Code y = stats.uniform().rvs(n) h_cv = 1.0/n * np.sum(3.0/(np.pi * (9 + y**2))) h_cv, np.abs(h_cv - h_true)/h_true ###Output _____no_output_____ ###Markdown Importance samplingSuppose we want to evaluate$$I = \int{h(x)\,p(x) \, dx}$$where $h(x)$ is some function and $p(x)$ is the PDF of $y$. If it is hard to sample directly from $p$, we can introduce a new density function $q(x)$ that is easy to sample from, and write$$I = \int{h(x)\, p(x)\, dx} = \int{h(x)\, \frac{p(x)}{q(x)} \, q(x) \, dx}$$In other words, we sample from $h(y)$ where $y \sim q$ and weight it by the likelihood ratio $\frac{p(y)}{q(y)}$, estimating the integral as$$\frac{1}{n}\sum_{i=1}^n \frac{p(y_i)}{q(y_i)} h(y_i)$$Sometimes, even if we can sample from $p$ directly, it is more efficient to use another distribution. ExampleSuppose we want to estimate the tail probability of $\mathcal{N}(0, 1)$ for $P(X > 5)$. Regular MC integration using samples from $\mathcal{N}(0, 1)$ is hopeless since nearly all samples will be rejected. However, we can use the exponential density truncated at 5 as the importance function and use importance sampling. Note that $h$ here is simply the identify function. ###Code x = np.linspace(4, 10, 100) plt.plot(x, stats.expon(5).pdf(x)) plt.plot(x, stats.norm().pdf(x)) pass ###Output _____no_output_____ ###Markdown Expected answerWe expect about 3 draws out of 10,000,000 from $\mathcal{N}(0, 1)$ to have a value greater than 5. Hence simply sampling from $\mathcal{N}(0, 1)$ is hopelessly inefficient for Monte Carlo integration. ###Code %precision 10 v_true = 1 - stats.norm().cdf(5) v_true ###Output _____no_output_____ ###Markdown Using direct Monte Carlo integration ###Code n = 10000 y = stats.norm().rvs(n) v_mc = 1.0/n * np.sum(y > 5) # estimate and relative error v_mc, np.abs(v_mc - v_true)/v_true ###Output _____no_output_____ ###Markdown Using importance sampling ###Code n = 10000 y = stats.expon(loc=5).rvs(n) v_is = 1.0/n * np.sum(stats.norm().pdf(y)/stats.expon(loc=5).pdf(y)) # estimate and relative error v_is, np.abs(v_is- v_true)/v_true ###Output _____no_output_____
intermediate/Deque.ipynb
###Markdown A **deque**, also known as **a double-ended queue**, is an ordered collection of items similar to the queue. It has two ends, a front and a rear, and the items remain positioned in the collection. What makes a deque different is the unrestrictive nature of adding and removing items. New items can be added at either the front or the rear. Likewise, existing items can be removed from either end. In a sense, this hybrid linear structure provides all the capabilities of stacks and queues in a single data structure. Figure 1 shows a deque of Python data objects. ###Code class Deque: def __init__(self): self.items = [] def isEmpty(self): return self.items == [] def addFront(self, item): self.items.append(item) def addRear(self, item): self.items.insert(0,item) def removeFront(self): return self.items.pop() def removeRear(self): return self.items.pop(0) def size(self): return len(self.items) d=Deque() print(f"is empty?: {d.isEmpty()}") print(f"size: {d.size()}") d.addRear(4) print(f"size: {d.size()}") d.addRear('dog') print(f"size: {d.size()}") d.addFront('cat') print(f"size: {d.size()}") d.addFront(True) print(f"is empty?: {d.isEmpty()}") print(f"size: {d.size()}") d.addRear(8.4) print(f"size: {d.size()}") print(d.removeRear()) print(f"size: {d.size()}") print(d.removeFront()) print(f"size: {d.size()}") ###Output is empty?: True size: 0 size: 1 size: 2 size: 3 is empty?: False size: 4 size: 5 8.4 size: 4 True size: 3
Tipos_de_distribuciones.ipynb
###Markdown Estadística con Python GitHub repository: https://github.com/jorgemauricio/python_statistics Instructor: Jorge Mauricio Tipo de distribuciones ###Code # librerías %matplotlib inline import numpy as np import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Distribución Uniforme ###Code valores = np.random.uniform(-100.0, 100.0, 100000) plt.hist(valores, 50) plt.show() ###Output _____no_output_____ ###Markdown Normal o Gausiana ###Code # librerías from scipy.stats import norm import matplotlib.pyplot as plt x = np.arange(-3, 3, 0.001) plt.plot(x, norm.pdf(x)) ###Output _____no_output_____ ###Markdown Generar algunos numeros aleatoriamente con una distribución normal, * "mu" es la media deseada y * "sigma" es la desviación estandar ###Code mu = 5.0 sigma = 2.0 valores = np.random.normal(mu, sigma, 10000) plt.hist(valores, 50) plt.show() ###Output _____no_output_____ ###Markdown Exponential PDF / "Power Law" ###Code from scipy.stats import expon import matplotlib.pyplot as plt x = np.arange(0, 10, 0.001) plt.plot(x, expon.pdf(x)) ###Output _____no_output_____ ###Markdown Binomial Probability Mass Function ###Code from scipy.stats import binom import matplotlib.pyplot as plt n, p = 10, 0.5 x = np.arange(0, 10, 0.001) plt.plot(x, binom.pmf(x, n, p)) ###Output _____no_output_____ ###Markdown Poisson Probability Mass FunctionEjemplo, el portal del LNMySR tiene al día 250 visitas, Cual es la probabilidad de tener 300 visitas? ###Code from scipy.stats import poisson import matplotlib.pyplot as plt mu = 250 x = np.arange(150, 350, 0.5) plt.plot(x, poisson.pmf(x, mu)) ###Output _____no_output_____
models/deprecated/3-2 (1). VGG16 Triplet KNN Model.ipynb
###Markdown Data Information ###Code train_df = pd.read_csv('./data/triplet/train.csv') val_df = pd.read_csv('./data/triplet/validation.csv') test_df = pd.read_csv('./data/triplet/test.csv') print('Train:\t\t', train_df.shape) print('Validation:\t', val_df.shape) print('Test:\t\t', test_df.shape) print('\nTrain Landmarks:\t', len(train_df['landmark_id'].unique())) print('Validation Landmarks:\t', len(val_df['landmark_id'].unique())) print('Test Landmarks:\t\t', len(test_df['landmark_id'].unique())) train_df.head() ###Output _____no_output_____ ###Markdown Load Features and Labels ###Code # Already normalized train_feature = np.load('./data/triplet/train_triplet_vgg16(1)_features.npy') val_feature = np.load('./data/triplet/validation_triplet_vgg16(1)_features.npy') test_feature = np.load('./data/triplet/test_triplet_vgg16(1)_features.npy') train_df = pd.read_csv('./data/triplet/train.csv') val_df = pd.read_csv('./data/triplet/validation.csv') test_df = pd.read_csv('./data/triplet/test.csv') print('Train:\t\t', train_feature.shape, train_df.shape) print('Validation:\t', val_feature.shape, val_df.shape) print('Test:\t\t', test_feature.shape, test_df.shape) # Helper function def accuracy(true_label, prediction, top=1): """ function to calculate the prediction accuracy """ prediction = prediction[:, :top] count = 0 for i in range(len(true_label)): if true_label[i] in prediction[i]: count += 1 return count / len(true_label) ###Output _____no_output_____ ###Markdown Implement KNN Model ###Code # Merge train and validation features train_val_feature = np.concatenate((train_feature, val_feature), axis=0) train_val_df = pd.concat((train_df, val_df), axis=0) train_val_df = train_val_df.reset_index(drop=True) # Implement KNN model knn = NearestNeighbors(n_neighbors=50, algorithm='auto', leaf_size=30, metric='minkowski', p=2, n_jobs=-1) knn.fit(train_val_feature) # Search the first 50 neighbors distance, neighbor_index = knn.kneighbors(test_feature, return_distance=True) # Save the results np.save('./result/knn_triplet_vgg16(1)_distance.npy', distance) np.save('./result/knn_triplet_vgg16(1)_neighbor.npy', neighbor_index) ###Output _____no_output_____ ###Markdown Search Neighbors ###Code knn_distance = np.load('./result/knn_triplet_vgg16(1)_distance.npy') knn_neighbor = np.load('./result/knn_triplet_vgg16(1)_neighbor.npy') # Get the first 50 neighbors predictions = [] for neighbors in knn_neighbor: predictions.append(train_val_df.loc[neighbors]['landmark_id'].values) predictions = np.array(predictions) np.save('./result/knn_triplet_vgg16(1)_test_prediction.npy', predictions) ###Output _____no_output_____ ###Markdown Compute Accuracy ###Code print('Top 1 accuracy:\t', accuracy(test_df['landmark_id'].values, predictions, top=1)) print('Top 5 accuracy:\t', accuracy(test_df['landmark_id'].values, predictions, top=5)) print('Top 10 accuracy:\t', accuracy(test_df['landmark_id'].values, predictions, top=10)) print('Top 20 accuracy:\t', accuracy(test_df['landmark_id'].values, predictions, top=20)) knn_acc = [] for i in range(1, 51): tmp_acc = accuracy(test_df['landmark_id'].values, predictions, top=i) knn_acc.append(tmp_acc) np.save('./result/knn_triplet_vgg16(1)_accuracy.npy', knn_acc) ###Output _____no_output_____
python/signal/py-signal.ipynb
###Markdown Signal信号(signal)-- 进程之间通讯的方式,是一种软件中断。一个进程一旦接收到信号就会打断原来的程序执行流程来处理信号。 信号类型: SIGHUP 1 A 终端挂起或者控制进程终止 SIGINT 2 A 键盘中断(如break键被按下) SIGQUIT 3 C 键盘的退出键被按下 SIGILL 4 C 非法指令 SIGABRT 6 C 由abort(3)发出的退出指令 SIGFPE 8 C 浮点异常 SIGKILL 9 AEF Kill信号 SIGSEGV 11 C 无效的内存引用 SIGPIPE 13 A 管道破裂: 写一个没有读端口的管道 SIGALRM 14 A 由alarm(2)发出的信号 SIGTERM 15 A 终止信号 SIGUSR1 30,10,16 A 用户自定义信号1 SIGUSR2 31,12,17 A 用户自定义信号2 SIGCHLD 20,17,18 B 子进程结束信号 SIGCONT 19,18,25 进程继续(曾被停止的进程) SIGSTOP 17,19,23 DEF 终止进程 SIGTSTP 18,20,24 D 控制终端(tty)上按下停止键 SIGTTIN 21,21,26 D 后台进程企图从控制终端读 SIGTTOU 22,22,27 D 后台进程企图从控制终端写 ###Code #!/usr/bin/env python3 import sys import time import signal def sigint_handler(signum, frame): print("signal handler") sys.exit() if 'name' == 'main': signal.signal(signal.SIGINT, sigint_handler) signal.signal(signal.SIGTERM, sigint_handler) signal.signal(signal.SIGHUP, sigint_handler) while (True): print("Signal test") time.sleep(1) ###Output _____no_output_____
CNN_PartB_(xception).ipynb
###Markdown ###Code from google.colab import drive drive.mount('/content/drive') zip_path = "drive/MyDrive/nature_12K.zip" !cp "{zip_path}" . !unzip -q nature_12K.zip import os import glob import numpy as np import tensorflow as tf from tensorflow import keras from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential, Model from tensorflow.keras.optimizers import Adam from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Dropout, BatchNormalization !pip install wandb import wandb from keras.callbacks import EarlyStopping, ModelCheckpoint from wandb.keras import WandbCallback from keras.utils.vis_utils import plot_model from PIL import Image %matplotlib inline %config InlineBackend.figure_format = 'svg' import matplotlib.pyplot as plt import matplotlib.image as mpimg data_dir = "inaturalist_12K" #data_augmentation = True def data_preparation(data_dir , data_augmentation = True , batch_size = 250): train_dir = os.path.join(data_dir, "train") test_dir = os.path.join(data_dir, "val") if data_augmentation == True: train_datagen = ImageDataGenerator(rescale=1./255, height_shift_range=0.2, width_shift_range=0.2, horizontal_flip=True, zoom_range=0.2, fill_mode="nearest", validation_split = 0.1) else: train_datagen = ImageDataGenerator(rescale=1./255 ,validation_split = 0.1) test_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory( train_dir, target_size=(224, 224), shuffle=True, color_mode="rgb", batch_size=batch_size, class_mode='categorical', subset = "training") val_generator = train_datagen.flow_from_directory( train_dir, target_size=(224, 224), shuffle=True, color_mode="rgb", batch_size=batch_size, class_mode='categorical', subset = "validation") test_generator = test_datagen.flow_from_directory(test_dir, target_size=(224, 224), batch_size=batch_size) return train_generator , val_generator, test_generator def pretrain_model(pretrained_model_name, dropout, dense_layer, pre_layer_train=None): ''' define a keras sequential model based on a pre-trained model intended to be fine tuned ''' shape = (224 ,224, 3) # add a pretrained model without the top dense layer if pretrained_model_name == 'ResNet50': pretrained_model = tf.keras.applications.ResNet50(include_top=False,input_shape=shape, weights='imagenet') elif pretrained_model_name == 'InceptionResNetV2': pretrained_model = tf.keras.applications.InceptionResNetV2(include_top=False,input_shape= shape, weights='imagenet') elif pretrained_model_name == 'InceptionV3': pretrained_model = tf.keras.applications.InceptionV3(include_top=False,input_shape= shape, weights='imagenet') elif pretrained_model_name == 'Xception': pretrained_model = tf.keras.applications.Xception(include_top=False,input_shape= shape, weights='imagenet') else: raise Exception('no pretrained model given') #freeze all layers for layer in pretrained_model.layers: layer.trainable=False #setting top layers as trainable if pre_layer_train: for layer in pretrained_model.layers[-pre_layer_train:]: layer.trainable=True model = tf.keras.models.Sequential() model.add(pretrained_model) #adding pretrained model model.add(Flatten()) # The flatten layer model.add(Dense(dense_layer, activation= 'relu'))#adding a dense layer model.add(Dropout(dropout)) # For dropout model.add(Dense(10, activation="softmax"))#softmax layer return model pre_train_model = "InceptionV3" #you can change model for wandb sweeps def train(): # Default values for hyper-parameters config_defaults = { "data_augmentation": True, "batch_size": 250, "dropout": 0.1, "dense_layer": 256, "learning_rate": 0.0001, "epochs": 5, "pre_layer_train": None, } # Initialize a new wandb run wandb.init(config=config_defaults) # Config is a variable that holds and saves hyperparameters and inputs config = wandb.config # Local variables, values obtained from wandb config data_augmentation = config.data_augmentation batch_size = config.batch_size dropout = config.dropout dense_layer = config.dense_layer learning_rate = config.learning_rate epochs = config.epochs pre_layer_train = config.pre_layer_train # Display the hyperparameters run_name = "pre_train_mdl_{}_aug_{}_bs_{}_ep_{}_dropout_{}_dense_{}".format(pre_train_model, data_augmentation, batch_size,epochs, dropout, dense_layer) print(run_name) # Create the data generators train_generator , val_generator, test_generator = data_preparation(data_dir , data_augmentation = True , batch_size = 250) # Define the model model = pretrain_model(pretrained_model_name = pre_train_model, dropout = dropout, dense_layer = dense_layer, pre_layer_train=pre_layer_train) #model = define_model(pretrained_model_name=pre_train_model, activation_function_dense=activation_function_dense, fc_layer=fc_layer, dropout=dropout, pre_layer_train=pre_layer_train) print(model.count_params()) model.compile(optimizer=Adam(learning_rate = learning_rate), loss = 'categorical_crossentropy', metrics = ['accuracy']) # Early Stopping callback earlyStopping = EarlyStopping(monitor='val_loss', patience=10, verbose=0, mode='min') # To save the model with best validation accuracy checkpoint = ModelCheckpoint('best_model.h5', monitor='val_accuracy', mode='max', verbose=0, save_best_only=True) history = model.fit(train_generator, steps_per_epoch = train_generator.n//train_generator.batch_size, validation_data = val_generator, validation_steps = val_generator.n//val_generator.batch_size, epochs=epochs, verbose = 2, callbacks=[WandbCallback(), earlyStopping, checkpoint]) plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('Model accuracy') plt.ylabel('Accuracy') plt.xlabel('Epochs') plt.legend(['Train', 'Validation'], loc='upper left') plt.show() plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epochs') plt.legend(['Train', 'Validation'], loc='upper left') plt.show() # Meaningful name for the run wandb.run.name = run_name wandb.run.save() wandb.run.finish() return history # Sweep configuration sweep_config = { "name": "CNN_part B", "metric": { "name":"val_accuracy", "goal": "maximize" }, "method": "bayes", "parameters": { "data_augmentation": { "values": [True, False] }, "batch_size": { "values": [128, 256] }, "learning_rate": { "values": [0.001, 0.0001] }, "epochs": { "values": [5, 10] }, "dropout": { "values": [0, 0.2, 0.1] }, "dense_layer": { "values": [128, 256, 512] }, "pre_layer_train": { "values": [None, 10, 20] } } } # Generates a sweep id sweep_id = wandb.sweep(sweep_config, entity="moni6264", project="part_b_xception") wandb.agent(sweep_id, train, count=3) ###Output _____no_output_____
Aula_06_DetectorCaracteristicas.ipynb
###Markdown Detectores de CaracterísticasNesse tutorial veremos como utilizar alguns detectores de características no OpenCV. Começaremos com a importação de bibliotecas e leitura da imagem. Utilizaremos a seguinte [imagem](https://drive.google.com/file/d/1Nvpch-60Wre4TyoQWS-HjYP40cglj-Sj/view?usp=sharing). A imagem precisará estar em escala de cinza e no formato `float32`. ###Code from google.colab import drive drive.mount('/content/drive') import cv2 as cv import numpy as np from matplotlib import pyplot as plt image = cv.imread("/content/drive/MyDrive/ColabFiles/chessboard.png") gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) gray = np.float32(gray) %matplotlib inline plt.imshow(gray, cmap='gray', vmin=0, vmax=255) plt.xticks([]), plt.yticks([]) plt.show() ###Output _____no_output_____ ###Markdown 1 - Detector de HarrisO OpenCV possui o método `cornerHarris` que permite utilizar o detector de Harris. O método possui os seguintes parâmetros:* A imagem de origem* O tamanho da vizinhança para considerar na detecção (tamanho do *patch*)* O tamanho do *kernel* para estimativa do gradiente pelo filtro de Sobel* A constante do detector de Harris ($α$ na fórmula dos slides)* O método de tratamento de borda (padding) (opcional, por default é por espelhamento)Método retorna uma imagem com o valor da função de resposta para cada pixel. ###Code harris = cv.cornerHarris(gray,2,3,0.04) #Dilatação na imagem para facilitar a visualização dos pontos harris = cv.dilate(harris,None) #marcação dos pontos sobre a imagem original image[harris > 0.05*harris.max()] = [0,0,255] plt.imshow(image) plt.xticks([]), plt.yticks([]) plt.show() ###Output _____no_output_____ ###Markdown 2 - Detector de Shi-TomasiO detector de Shi-Tomasi (menor autovalor) pode ser utilizado pelo método `goodFeaturesToTrack`, o qual necessita dos seguintes parâmetros:* A imagem de origem (8-bit ou float32)* O número máximo de pontos retornados. Se o valor for $\leq 0$ não há limite para o máximo de pontos retornados* O nível de qualidade que será multiplicado pelo valor de qualidade do melhor ponto obtido. Todos os pontos com qualidade inferior a esse produto serão rejeitados* Distância Euclidiana mínima entre pontos retornados* A região de interesse onde os pontos devem ser detectados (opcional, por *default* é a imagem toda* Tamanho do *kernel* para cálculo dos gradientes (opcional, por *default* é 3)* Uma *flag* que quando verdadeira permite utilizar o detector de Harris (opcional, por default é falsa)* A constante do detector de Harris ($α$ na fórmula dos slides. Opcional, por *default* é 0.04)Método retorna um vetor de pontos. A imagem utilizada pode ser encontrada [aqui](https://drive.google.com/file/d/1hMrd5_vXvyUMBuM6w5LqGlcnhM1Hs-b5/view?usp=sharing). ###Code image = cv.imread("/content/drive/MyDrive/ColabFiles/blox.jpg") gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) corners = cv.goodFeaturesToTrack(gray,30,0.01,10) corners = np.int0(corners) #desenha círculos nos corners for i in corners: x,y = i.ravel() cv.circle(image,(x,y),3,255,-1) plt.imshow(image) plt.xticks([]), plt.yticks([]) plt.show() ###Output _____no_output_____ ###Markdown 3 - Exercícios1. Varie os parâmetros do detector de Harris e analise os resultados ###Code image = cv.imread("/content/drive/MyDrive/ColabFiles/chessboard.png") gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) gray = np.float32(gray) harris = cv.cornerHarris(gray,5,1,0.04) #Dilatação na imagem para facilitar a visualização dos pontos harris = cv.dilate(harris,None) #marcação dos pontos sobre a imagem original image[harris > 0.05*harris.max()] = [0,0,255] plt.imshow(image) plt.xticks([]), plt.yticks([]) plt.show() ###Output _____no_output_____ ###Markdown 2. Utilize o método `goodFeaturesToTrack` para aplicar o detector de Harris. ###Code image = cv.imread("/content/drive/MyDrive/ColabFiles/blox.jpg") gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) corners = cv.goodFeaturesToTrack(gray,30,0.01,10, useHarrisDetector = True) corners = np.int0(corners) #desenha círculos nos corners for i in corners: x,y = i.ravel() cv.circle(image,(x,y),3,255,-1) plt.imshow(image) plt.xticks([]), plt.yticks([]) plt.show() ###Output _____no_output_____ ###Markdown 3. Pesquise e teste outros métodos de detecção de *features* no OpenCV. [Canny](https://docs.opencv.org/4.x/dd/d1a/group__imgproc__feature.htmlga1d6bb77486c8f92d79c8793ad995d541) ###Code image = cv.imread("/content/drive/MyDrive/ColabFiles/blox.jpg") gray= cv.cvtColor(image,cv.COLOR_BGR2GRAY) print("0.5, 0.2") banana = cv.Canny(image, 0.5, 0.2) plt.imshow(banana) plt.xticks([]), plt.yticks([]) plt.show() print("1, 255") banana = cv.Canny(image, 1, 255) plt.imshow(banana) plt.xticks([]), plt.yticks([]) plt.show() print("apertureSize = 3") banana = cv.Canny(image, 1, 255, apertureSize = 3) plt.imshow(banana) plt.xticks([]), plt.yticks([]) plt.show() print("L2gradient = True") banana = cv.Canny(image, 1, 255, apertureSize = 3, L2gradient = True) plt.imshow(banana) plt.xticks([]), plt.yticks([]) plt.show() ###Output 0.5, 0.2 ###Markdown [Fast](https://docs.opencv.org/3.4/df/d0c/tutorial_py_fast.html) ###Code image = cv.imread("/content/drive/MyDrive/ColabFiles/blox.jpg") gray = cv.cvtColor(image,cv.COLOR_BGR2GRAY) fast = cv.FastFeatureDetector_create() kp = fast.detect(gray,None) gray2 = cv.drawKeypoints(gray, kp, None, color=(255,0,0)) plt.imshow(gray2) plt.xticks([]), plt.yticks([]) plt.show() print("Disable nonmaxSuppression") fast.setNonmaxSuppression(0) kp = fast.detect(image, None) img3 = cv.drawKeypoints(img, kp, None, color=(255,0,0)) plt.imshow(img3) plt.xticks([]), plt.yticks([]) plt.show() ###Output _____no_output_____ ###Markdown [Surf e sift](https://stackoverflow.com/questions/37984709/how-to-use-surf-in-python) ###Code img = cv.imread("/content/drive/MyDrive/ColabFiles/blox.jpg") gray = cv.cvtColor(image,cv.COLOR_BGR2GRAY) kaze = cv.KAZE_create(1) (kps, descs) = kaze.detectAndCompute(gray, None) img_1 = cv.drawKeypoints(img, kps, None, color=(0,255,0), flags=0) plt.imshow(img_1) plt.xticks([]), plt.yticks([]) plt.show() img = cv.imread("/content/drive/MyDrive/ColabFiles/blox.jpg") gray = cv.cvtColor(image,cv.COLOR_BGR2GRAY) akaze = cv.AKAZE_create() (kps, descs) = akaze.detectAndCompute(gray, None) img_1 = cv.drawKeypoints(img, kps, None, color=(0,255,0), flags=0) plt.imshow(img_1) plt.xticks([]), plt.yticks([]) plt.show() img = cv.imread("/content/drive/MyDrive/ColabFiles/blox.jpg") gray = cv.cvtColor(image,cv.COLOR_BGR2GRAY) brisk = cv.BRISK_create() (kps, descs) = brisk.detectAndCompute(gray, None) img_1 = cv.drawKeypoints(img, kps, None, color=(0,255,0), flags=0) plt.imshow(img_1) plt.xticks([]), plt.yticks([]) plt.show() ###Output _____no_output_____ ###Markdown [BRIEF](https://docs.opencv.org/3.4/dc/d7d/tutorial_py_brief.html) ###Code img = cv.imread("/content/drive/MyDrive/ColabFiles/blox.jpg") gray = cv.cvtColor(image,cv.COLOR_BGR2GRAY) # Initiate FAST detector star = cv.xfeatures2d.StarDetector_create() # Initiate BRIEF extractor brief = cv.xfeatures2d.BriefDescriptorExtractor_create() # find the keypoints with STAR kps = star.detect(img,None) # compute the descriptors with BRIEF kps, des = brief.compute(img, kps) img_1 = cv.drawKeypoints(img, kps, None, color=(0,255,0), flags=0) plt.imshow(img_1) plt.xticks([]), plt.yticks([]) plt.show() ###Output _____no_output_____ ###Markdown [ORB](https://docs.opencv.org/3.4/d1/d89/tutorial_py_orb.html) ###Code img = cv.imread("/content/drive/MyDrive/ColabFiles/blox.jpg") gray = cv.cvtColor(image,cv.COLOR_BGR2GRAY) # Initiate ORB detector orb = cv.ORB_create() # find the keypoints with ORB kps = orb.detect(img,None) # compute the descriptors with ORB kps, des = orb.compute(img, kps) img_1 = cv.drawKeypoints(img, kps, None, color=(0,255,0), flags=0) plt.imshow(img_1) plt.xticks([]), plt.yticks([]) plt.show() ###Output _____no_output_____
model-development - 1.ipynb
###Markdown Model Development In this project, we use a database that contains information about used cars. The objective of this project is to develop a model and try to predict the price value for a car. We also try different models and compare it's result to see which model fits the best and predicts accurately. ###Code %pip install sklearn import pandas as pd import numpy as np import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Load the data and store it in dataframe `df`: ###Code # path of data path = 'https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DA0101EN-SkillsNetwork/labs/Data%20files/automobileEDA.csv' df = pd.read_csv(path) df.head() #Lets use linear regression to predict the price of cars from sklearn.linear_model import LinearRegression lm = LinearRegression() lm #Using highway mpg to predict the price of cars X = df[['highway-mpg']] Y = df['price'] lm.fit(X,Y) #Predicted price values Yhat=lm.predict(X) Yhat[0:5] #The intercept and coeffecient of the linear function used to predict the price print(lm.intercept_) print(lm.coef_) # Similarily we predict price using engine size data and compare the values lm1 = LinearRegression() lm1 X = df[['engine-size']] Y=df[['price']] lm1.fit(X,Y) lm1 y=lm1.predict(X) y[0:5] #Similarily, the slope and intercept are: print(lm1.intercept_) print(lm1.coef_) #We previously determined the factors that have a strong effect on the price of the car #Instead of predicting price value with a single predictor variable we use multiple linear regression model to predict the price using multiple variables Z = df[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']] lm.fit(Z, df['price']) print(lm.intercept_) print(lm.coef_) y=lm.predict(Z) y[0:5] #To choose the best model, lets visualise and choose the best one import seaborn as sns %matplotlib inline ###Output _____no_output_____ ###Markdown Let's visualize **highway-mpg** as potential predictor variable of price: ###Code #Let's visualize highway-mpg as potential predictor variable of price: plt.figure(figsize=(12, 10)) sns.regplot(x="highway-mpg", y="price", data=df) plt.ylim(0,) ###Output _____no_output_____ ###Markdown We can see from this plot that price is negatively correlated to highway-mpg since the regression slope is negative. ###Code #Let's compare the above plot with that of rpm plt.figure(figsize=(12, 10)) sns.regplot(x="peak-rpm", y="price", data=df) plt.ylim(0,) ###Output _____no_output_____ ###Markdown Comparing the regression plot of "peak-rpm" and "highway-mpg", we see that the points for "highway-mpg" are much closer to the generated line and, on average, decrease. The points for "peak-rpm" have more spread around the predicted line and it is much harder to determine if the points are decreasing or increasing as the "peak-rpm" increases. ###Code width = 12 height = 10 plt.figure(figsize=(width, height)) sns.residplot(df['highway-mpg'], df['price']) plt.show() ###Output C:\Users\LENOVO\anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn( ###Markdown We can see from this residual plot that the residuals are not randomly spread around the x-axis, leading us to believe that maybe a non-linear model is more appropriate for this data. ###Code #To visualise the multiple linear regression model we use the distribution plot since neither scatter or residual plots are viable plt.figure(figsize=(12, 10)) ax1 = sns.distplot(df['price'], hist=False, color="r", label="Actual Value") sns.distplot(y, hist=False, color="b", label="Fitted Values", ax=ax1) plt.title('Actual vs Fitted Values for Price') plt.xlabel('Price (in dollars)') plt.ylabel('Proportion of Cars') plt.show() plt.close() ###Output C:\Users\LENOVO\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots). warnings.warn(msg, FutureWarning) C:\Users\LENOVO\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots). warnings.warn(msg, FutureWarning) ###Markdown We can see that the fitted values are reasonably close to the actual values since the two distributions overlap a bit. However, there is definitely some room for improvement. ###Code #Trying out a polynomial modelto see if highway-mpg gives a better result compared to linear model #Defining a function to plot the visualisation def PlotPolly(model, independent_variable, dependent_variabble, Name): x_new = np.linspace(15, 55, 100) y_new = model(x_new) plt.plot(independent_variable, dependent_variabble, '.', x_new, y_new, '-') plt.title('Polynomial Fit with Matplotlib for Price ~ Length') ax = plt.gca() ax.set_facecolor((0.898, 0.898, 0.898)) fig = plt.gcf() plt.xlabel(Name) plt.ylabel('Price of Cars') plt.show() plt.close() x = df['highway-mpg'] y = df['price'] ###Output _____no_output_____ ###Markdown Let's fit the polynomial using the function polyfit, then use the function poly1d to display the polynomial function. ###Code #Trying out a polynomial of the 3rd order f = np.polyfit(x, y, 3) p = np.poly1d(f) print(p) ###Output 3 2 -1.557 x + 204.8 x - 8965 x + 1.379e+05 ###Markdown Let's plot the function: ###Code PlotPolly(p, x, y, 'highway-mpg') ###Output _____no_output_____ ###Markdown We can already see from plotting that this polynomial model performs better than the linear model. This is because the generated polynomial function "hits" more of the data points. Model 1: Simple Linear Regression ###Code #To better identify which model gives us the best prediction of the price value we can use the R^2 and Mean squared error method #We test the single linear regression model first lm.fit(X, Y) print('The R-square is: ', lm.score(X, Y)) #To get the mean squared error we import the following module from sklearn.metrics import mean_squared_error Yhat=lm.predict(X) print('The output of the first four predicted value is: ', Yhat[0:4]) mse = mean_squared_error(df['price'], Yhat) print('The mean square error of price and predicted value is: ', mse) ###Output The output of the first four predicted value is: [[13728.4631336 ] [13728.4631336 ] [17399.38347881] [10224.40280408]] The mean square error of price and predicted value is: 15021126.02517414 ###Markdown Model 2: Multiple Linear Regression Let's calculate the R^2: ###Code #Secondly, we test the multiple linear regression model lm.fit(Z, df['price']) print('The R-square is: ', lm.score(Z, df['price'])) Y_predict_multifit = lm.predict(Z) print('The mean square error of price and predicted value using multifit is: ', \ mean_squared_error(df['price'], Y_predict_multifit)) ###Output The mean square error of price and predicted value using multifit is: 11980366.87072649 ###Markdown Model 3: Polynomial Fit Let's calculate the R^2. Let’s import the function r2\_score from the module metrics as we are using a different function. ###Code #Thirdly, we will test the Polynomial regression model to see if its a better fit from sklearn.metrics import r2_score r_squared = r2_score(y, p(x)) print('The R-square value is: ', r_squared) ###Output The R-square value is: 0.674194666390652 ###Markdown We can also calculate the MSE: ###Code mean_squared_error(df['price'], p(x)) ###Output _____no_output_____ ###Markdown Determining the Best Model Fit Now that we have visualized the different models, and generated the R-squared and MSE values for the fits, we determine a good model fit by comparing it's R-squared value and MSE value.Let's take a look at the values for the different models.Simple Linear Regression: Using Highway-mpg as a Predictor Variable of Price. R-squared: 0.7609686443622008 MSE: 1.5 ×10^7Multiple Linear Regression: Using Horsepower, Curb-weight, Engine-size, and Highway-mpg as Predictor Variables of Price. R-squared: 0.8093562806577457 MSE: 1.2 ×10^7Polynomial Fit: Using Highway-mpg as a Predictor Variable of Price. R-squared: 0.674194666390652 MSE: 2.05 x 10^7 Simple Linear Regression Model (SLR) vs Multiple Linear Regression Model (MLR) Usually, the more variables you have, the better your model is at predicting, but this is not always true. Sometimes you may not have enough data, you may run into numerical problems, or many of the variables may not be useful and even act as noise. As a result, you should always check the MSE and R^2.In order to compare the results of the MLR vs SLR models, we look at a combination of both the R-squared and MSE to make the best conclusion about the fit of the model. MSE: The MSE of SLR is 1.5 x10^7 while MLR has an MSE of 1.2 x10^7. The MSE of MLR is smaller. R-squared: In this case, we can also see that there is a big difference between the R-squared of the SLR and the R-squared of the MLR. The R-squared for the SLR is small compared to the R-squared for the MLR .This R-squared in combination with the MSE show that MLR seems like the better model fit in this case compared to SLR. Simple Linear Model (SLR) vs. Polynomial Fit MSE: We can see that Polynomial Fit brought up the MSE, since this MSE is much bigger than the one from the SLR. R-squared: The R-squared for the Polynomial Fit is smaller than the R-squared for the SLR, so the Polynomial Fit also brought down the R-squared quite a bit.Since the Polynomial Fit resulted in a higher MSE and a lower R-squared, so we can conclude that this was a poorly fit model than the simple linear regression for predicting "price" with "highway-mpg" as a predictor variable. Multiple Linear Regression (MLR) vs. Polynomial Fit MSE: The MSE for the MLR is smaller than the MSE for the Polynomial Fit. R-squared: The R-squared for the MLR is also much larger than for the Polynomial Fit. Conclusion Comparing these three models, we conclude that the MLR model is the best model to be able to predict price from our dataset. This result makes sense since we have 27 variables in total and we know that more than one of those variables are potential predictors of the final car price. Training and Testing the Model We developed different models previously and compared them to find the model best suited to predict the price value from our dataset. In this section, we will train and test those models to make better predictions. ###Code path = 'https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DA0101EN-SkillsNetwork/labs/Data%20files/module_5_auto.csv' df = pd.read_csv(path) df.to_csv('module_5_auto.csv') #Get all numerica data df=df._get_numeric_data() df.head() #We define the following functions to plot the necessary graphs required def DistributionPlot(RedFunction, BlueFunction, RedName, BlueName, Title): width = 12 height = 10 plt.figure(figsize=(width, height)) ax1 = sns.distplot(RedFunction, hist=False, color="r", label=RedName) ax2 = sns.distplot(BlueFunction, hist=False, color="b", label=BlueName, ax=ax1) plt.title(Title) plt.xlabel('Price (in dollars)') plt.ylabel('Proportion of Cars') plt.show() plt.close() def PollyPlot(xtrain, xtest, y_train, y_test, lr,poly_transform): width = 12 height = 10 plt.figure(figsize=(width, height)) xmax=max([xtrain.values.max(), xtest.values.max()]) xmin=min([xtrain.values.min(), xtest.values.min()]) x=np.arange(xmin, xmax, 0.1) plt.plot(xtrain, y_train, 'ro', label='Training Data') plt.plot(xtest, y_test, 'go', label='Test Data') plt.plot(x, lr.predict(poly_transform.fit_transform(x.reshape(-1, 1))), label='Predicted Function') plt.ylim([-10000, 60000]) plt.ylabel('Price') plt.legend() y_data = df['price'] #Dropping price data in dataframe x_data: x_data=df.drop('price',axis=1) #Now, we randomly split our data into training and testing data using the function train_test_split. from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=0.10, random_state=1) print("number of test samples :", x_test.shape[0]) print("number of training samples:",x_train.shape[0]) #Let's import LinearRegression from the module linear_model. from sklearn.linear_model import LinearRegression lre=LinearRegression() lre.fit(x_train[['horsepower']], y_train) #Fitting the model lre.score(x_test[['horsepower']], y_test) lre.score(x_train[['horsepower']], y_train) #We can see the R^2 is much smaller using the test data compared to the training data. #Using cross_val_predict to predict the output from sklearn.model_selection import cross_val_predict yhat = cross_val_predict(lre,x_data[['horsepower']], y_data,cv=4) yhat[0:5] ###Output _____no_output_____ ###Markdown Model Selection ###Code #Let's create Multiple Linear Regression objects and train the model using 'horsepower', 'curb-weight', 'engine-size' and 'highway-mpg' as features. lr = LinearRegression() lr.fit(x_train[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']], y_train) #Prediction using training data: yhat_train = lr.predict(x_train[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']]) yhat_train[0:5] #Prediction using test data: yhat_test = lr.predict(x_test[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']]) yhat_test[0:5] ###Output _____no_output_____ ###Markdown Let's perform some model evaluation using our training and testing data separately. First, we import the seaborn and matplotlib library for plotting. ###Code #Let's evaluate the models created above import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns #Let's examine the distribution of the predicted values of the training data: Title = 'Distribution Plot of Predicted Value Using Training Data vs Training Data Distribution' DistributionPlot(y_train, yhat_train, "Actual Values (Train)", "Predicted Values (Train)", Title) ###Output C:\Users\LENOVO\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots). warnings.warn(msg, FutureWarning) C:\Users\LENOVO\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots). warnings.warn(msg, FutureWarning) ###Markdown Figure 1: Plot of predicted values using the training data compared to the actual values of the training data. ###Code #Let's examine the distribution of the predicted values of the test data: Title='Distribution Plot of Predicted Value Using Test Data vs Data Distribution of Test Data' DistributionPlot(y_test,yhat_test,"Actual Values (Test)","Predicted Values (Test)",Title) ###Output C:\Users\LENOVO\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots). warnings.warn(msg, FutureWarning) C:\Users\LENOVO\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots). warnings.warn(msg, FutureWarning) ###Markdown Figure 2: Plot of predicted value using the test data compared to the actual values of the test data.Comparing Figure 1 and Figure 2, it is evident that the distribution of the test data in Figure 1 is much better at fitting the data. This difference in Figure 2 is apparent in the range of 5000 to 15,000. This is where the shape of the distribution is extremely different. Let's see if polynomial regression also exhibits a drop in the prediction accuracy when analysing the test dataset. ###Code from sklearn.preprocessing import PolynomialFeatures x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=0.45, random_state=0) pr = PolynomialFeatures(degree=5) x_train_pr = pr.fit_transform(x_train[['horsepower']]) x_test_pr = pr.fit_transform(x_test[['horsepower']]) pr poly = LinearRegression() poly.fit(x_train_pr, y_train) yhat = poly.predict(x_test_pr) yhat[0:5] #We will use the function "PollyPlot" that we defined at the beginning PollyPlot(x_train[['horsepower']], x_test[['horsepower']], y_train, y_test, poly,pr) ###Output _____no_output_____ ###Markdown Figure 3: A polynomial regression model where red dots represent training data, green dots represent test data, and the blue line represents the model prediction.We see that the estimated function appears to track the data but around 200 horsepower, the function begins to diverge from the data points. ###Code #R^2 of the training data: poly.score(x_train_pr, y_train) #R^2 of the test data: poly.score(x_test_pr, y_test) ###Output _____no_output_____ ###Markdown We see the R^2 for the training data is 0.5567 while the R^2 on the test data was -29.87. The lower the R^2, the worse the model. A negative R^2 is a sign of overfitting. ###Code #Let's see how the R^2 changes on the test data for different order polynomials and then plot the results: Rsqu_test = [] order = [1, 2, 3, 4] for n in order: pr = PolynomialFeatures(degree=n) x_train_pr = pr.fit_transform(x_train[['horsepower']]) x_test_pr = pr.fit_transform(x_test[['horsepower']]) lr.fit(x_train_pr, y_train) Rsqu_test.append(lr.score(x_test_pr, y_test)) plt.plot(order, Rsqu_test) plt.xlabel('order') plt.ylabel('R^2') plt.title('R^2 Using Test Data') plt.text(3, 0.74, 'Maximum R^2 ') ###Output _____no_output_____
other scripts/fabio_notebook.ipynb
###Markdown Preprocessing ###Code tracks['track_id_tmp'] = tracks['track_id'] tracks['track_id'] = tracks.index playlists['playlist_id_tmp'] = playlists['playlist_id'] playlists['playlist_id'] = playlists.index train['playlist_id_tmp'] = train['playlist_id'] train['track_id_tmp'] = train['track_id'] track_to_num = pd.Series(tracks.index) track_to_num.index = tracks['track_id_tmp'] playlist_to_num = pd.Series(playlists.index) playlist_to_num.index = playlists['playlist_id_tmp'] num_to_tracks = pd.Series(tracks['track_id_tmp']) train['track_id'] = train['track_id'].apply(lambda x : track_to_num[x]) train['playlist_id'] = train['playlist_id'].apply(lambda x : playlist_to_num[x]) tracks.tags = tracks.tags.apply(lambda s: np.array(eval(s), dtype=int)) playlists.title = playlists.title.apply(lambda s: np.array(eval(s), dtype=int)) tracks.loc[0].tags playlists.head() train.head() track_to_num.head() playlist_to_num[:5] num_to_tracks[:5] target_playlists['playlist_id_tmp'] = target_playlists['playlist_id'] target_playlists['playlist_id'] = target_playlists['playlist_id'].apply(lambda x : playlist_to_num[x]) target_tracks['track_id_tmp'] = target_tracks['track_id'] target_tracks['track_id'] = target_tracks['track_id'].apply(lambda x : track_to_num[x]) target_tracks.head() target_playlists.head() playlist_tracks = pd.DataFrame(train['playlist_id'].drop_duplicates()) playlist_tracks.index = train['playlist_id'].unique() playlist_tracks['track_ids'] = train.groupby('playlist_id').apply(lambda x : x['track_id'].values) playlist_tracks = playlist_tracks.sort_values('playlist_id') playlist_tracks.head() track_playlists = pd.DataFrame(train['track_id'].drop_duplicates()) track_playlists.index = train['track_id'].unique() track_playlists['playlist_ids'] = train.groupby('track_id').apply(lambda x : x['playlist_id'].values) track_playlists = track_playlists.sort_values('track_id') track_playlists.head() def transform_album_1(alb): ar = eval(alb) if len(ar) == 0 or (len(ar) > 0 and ar[0] == None): ar = [-1] return ar[0] def transform_album_2(alb): global next_album_id if alb == -1: alb = next_album_id next_album_id += 1 return alb tracks.album = tracks.album.apply(lambda alb: transform_album_1(alb)) last_album = tracks.album.max() next_album_id = last_album + 1 tracks.album = tracks.album.apply(lambda alb: transform_album_2(alb)) ###Output _____no_output_____ ###Markdown Clean data URM and SVD decomposition ###Code # User Rating Matrix URM def get_URM(tracks, playlists, playlist_tracks, track_playlists, normalized=False): URM = lil_matrix((len(playlists), len(tracks))) num_playlists = len(playlist_tracks) i = 0 for row in track_playlists.itertuples(): track_id = row.track_id #row.playlist_ids.sort() nq = len(row.playlist_ids) for pl_id in row.playlist_ids: URM[pl_id,track_id] = math.log((num_playlists - nq + 0.5)/(nq + 0.5)) if normalized else 1 if i % 1000 == 0: print(i) i += 1 return URM %%time URM = get_URM(tracks, playlists, playlist_tracks, track_playlists, normalized=True) URM = URM.tocsc() %%time U, S, V = svds(URM, k=200) S = np.diag(S) M2 = np.dot(S, V) ###Output _____no_output_____ ###Markdown Normalized:k = 50 -> 0.012786324786324807k = 200 -> 0.024994972347913386k = 500 -> 0.0353849999999999 Tags ###Code # Count distinct tags tag_tracks = {} for row in tracks.itertuples(): for tag in row.tags: if tag in tag_tracks: tag_tracks[tag].append(row.track_id) else: tag_tracks[tag] = [row.track_id] # Item Tag Matrix ITM def get_ITM(tracks, tag_tracks, normalized=False): unique_tags = list(tag_tracks.keys()) ITM = lil_matrix((len(tracks), max(unique_tags)+1)) ITM_count = lil_matrix((len(tracks), max(unique_tags)+1)) num_tracks = len(tracks) i = 0 for tag,track_ids in tag_tracks.items(): #row.playlist_ids.sort() nq = len(track_ids) for track_id in track_ids: ITM[track_id,tag] = math.log((num_tracks - nq + 0.5)/(nq + 0.5)) if normalized else 1 ITM_count[track_id,tag] = 1 if i % 1000 == 0: print(i) i += 1 return ITM ITM = get_ITM(tracks, tag_tracks, normalized=True) """def create_row(row_num, tags_concatenated): tags_concatenated.sort() d = np.array([]) r = np.array([]) c = np.array([]) for i,tag in enumerate(tags_concatenated): if i > 0 and tags_concatenated[i-1] == tags_concatenated[i]: d[-1] += 1 else: d = np.append(d,1) r = np.append(r,row_num) c = np.append(c,tags_concatenated[i]) return d, (r, c) """ # User Tag Matrix UTM def get_UTM(tracks, playlist_tracks, tag_tracks, OKAPI_K=1.7, OKAPI_B=0.75): unique_tags = list(tag_tracks.keys()) i = 0 """ d = np.array([]) r = np.array([]) c = np.array([]) for row in playlist_tracks.itertuples(): pl_id = row.playlist_id tags_concatenated = np.array([]) for tr_id in row.track_ids: tags = tracks.loc[tr_id].tags tags_concatenated = np.concatenate((tags_concatenated, tags)) d1, (r1, c1) = create_row(row.playlist_id, tags_concatenated) d = np.concatenate((d, d1)) r = np.concatenate((r, r1)) c = np.concatenate((c, c1)) i += 1 if i % 1000 == 0: print(i) UTM = coo_matrix(d, (r, c)) """ UTM = lil_matrix((max(playlists.playlist_id)+1, max(unique_tags)+1)) for row in playlist_tracks.itertuples(): pl_id = row.playlist_id for tr_id in row.track_ids: for tag in tracks.loc[tr_id].tags: UTM[pl_id,tag] += 1 i += 1 if i % 1000 == 0: print(i) avg_document_length = sum(list(map(lambda l: sum(l), UTM.data)))/len(UTM.data) i = 0 for row in playlist_tracks.itertuples(): pl_id = row.playlist_id tags = UTM.rows[pl_id] data = UTM.data[pl_id] for tag in tags: fq = UTM[pl_id,tag] UTM[pl_id,tag] = (fq*(OKAPI_K+1))/(fq + OKAPI_K*(1 - OKAPI_B + OKAPI_B * sum(data) / avg_document_length)) i += 1 if i % 1000 == 0: print(i) return UTM UTM = get_UTM(tracks, playlist_tracks, tag_tracks) UTM_csc = UTM.tocsc() ITM_csr_transpose = ITM.tocsr().transpose() ###Output _____no_output_____ ###Markdown Artists ###Code unique_artists = tracks.artist_id.unique() # Item Artist Matrix def get_IAM(tracks, target_tracks, normalized=False): unique_artists = tracks.artist_id.unique() IAM = lil_matrix((len(tracks), max(unique_artists)+1)) tracks_filtered = tracks[tracks.track_id.isin(target_tracks.track_id)] num_tracks = len(tracks) i = 0 for row in tracks_filtered.itertuples(): nq = 1 IAM[row.track_id,row.artist_id] = math.log((num_tracks - nq + 0.5)/(nq + 0.5)) if normalized else 1 if i % 1000 == 0: print(i) i += 1 return IAM IAM = get_IAM(tracks, target_tracks, normalized=True) # User Artist Matrix UAM def get_UAM(tracks, playlist_tracks, target_playlists, OKAPI_K=1.7, OKAPI_B=0.75): unique_artists = tracks.artist_id.unique() playlist_tracks_filtered = playlist_tracks[playlist_tracks.playlist_id.isin(target_playlists.playlist_id)] i = 0 UAM = lil_matrix((max(playlists.playlist_id)+1, max(unique_artists)+1)) for row in playlist_tracks_filtered.itertuples(): pl_id = row.playlist_id for tr_id in row.track_ids: UAM[pl_id,tracks.loc[tr_id].artist_id] += 1 i += 1 if i % 1000 == 0: print(i) avg_document_length = functools.reduce(lambda acc,tr_ids: acc + len(tr_ids), playlist_tracks.track_ids, 0) / len(playlist_tracks) #avg_document_length = sum(list(map(lambda l: sum(l), UAM.data)))/len(UAM.data) i = 0 for row in playlist_tracks_filtered.itertuples(): pl_id = row.playlist_id artists = UAM.rows[pl_id] data = UAM.data[pl_id] for artist in artists: fq = UAM[pl_id,artist] UAM[pl_id,artist] = (fq*(OKAPI_K+1))/(fq + OKAPI_K*(1 - OKAPI_B + OKAPI_B * sum(data) / avg_document_length)) i += 1 if i % 1000 == 0: print(i) return UAM UAM = get_UAM(tracks, playlist_tracks, target_playlists, OKAPI_K=1.7, OKAPI_B=0.75) UAM_csc = UAM.tocsc() IAM_csr_transpose = IAM.tocsr().transpose() ###Output _____no_output_____ ###Markdown Albums ###Code unique_albums = tracks.album.unique() unique_albums # Item Album Matrix IAM_album def get_IAM_album(tracks, target_tracks, normalized=False): unique_albums = tracks.album.unique() IAM_album = lil_matrix((len(tracks), max(unique_albums)+1)) tracks_filtered = tracks[tracks.track_id.isin(target_tracks.track_id)] num_tracks = len(tracks) i = 0 for row in tracks_filtered.itertuples(): nq = 1 IAM_album[row.track_id,row.album] = math.log((num_tracks - nq + 0.5)/(nq + 0.5)) if normalized else 1 if i % 1000 == 0: print(i) i += 1 return IAM_album IAM_album = get_IAM_album(tracks, target_tracks, normalized=True) # User Album Matrix UAM_album def get_UAM_album(tracks, playlist_tracks, target_playlists, OKAPI_K=1.7, OKAPI_B=0.75): unique_albums = tracks.album.unique() playlist_tracks_filtered = playlist_tracks[playlist_tracks.playlist_id.isin(target_playlists.playlist_id)] i = 0 UAM_album = lil_matrix((max(playlists.playlist_id)+1, max(unique_albums)+1)) for row in playlist_tracks_filtered.itertuples(): pl_id = row.playlist_id for tr_id in row.track_ids: UAM_album[pl_id,tracks.loc[tr_id].album] += 1 i += 1 if i % 1000 == 0: print(i) avg_document_length = functools.reduce(lambda acc,tr_ids: acc + len(tr_ids), playlist_tracks.track_ids, 0) / len(playlist_tracks) #avg_document_length = sum(list(map(lambda l: sum(l), UAM_album.data)))/len(UAM_album.data) i = 0 for row in playlist_tracks_filtered.itertuples(): pl_id = row.playlist_id albums = UAM_album.rows[pl_id] data = UAM_album.data[pl_id] for album in albums: fq = UAM_album[pl_id,album] UAM_album[pl_id,album] = (fq*(OKAPI_K+1))/(fq + OKAPI_K*(1 - OKAPI_B + OKAPI_B * sum(data) / avg_document_length)) i += 1 if i % 1000 == 0: print(i) return UAM_album UAM_album = get_UAM_album(tracks, playlist_tracks, target_playlists, OKAPI_K=1.7, OKAPI_B=0.75) UAM_album_csc = UAM_album.tocsc() IAM_album_csr_transpose = IAM_album.tocsr().transpose() ###Output _____no_output_____ ###Markdown Playlist titles ###Code def from_num_to_id(df, row_num, column = 'track_id'): """ df must have a 'track_id' column """ return df.iloc[row_num][column] def from_id_to_num(df, tr_id, column='track_id'): """ df must have a 'track_id' column """ return np.where(df[column].values == tr_id)[0][0] # Count distinct title tokens token_playlists = {} for row in playlists.itertuples(): for token in row.title: if token in token_playlists: token_playlists[token].append(row.playlist_id) else: token_playlists[token] = [row.playlist_id] token_playlists_filtered = {} for row in playlists[playlists.playlist_id.isin(target_playlists.playlist_id)].itertuples(): for token in row.title: if token in token_playlists_filtered: token_playlists_filtered[token].append(row.playlist_id) else: token_playlists_filtered[token] = [row.playlist_id] # User Title Matrix UTM_title def get_UTM_title(playlists, target_playlists, token_playlists, token_playlists_filtered, normalized=False): unique_tokens = list(token_playlists.keys()) UTM_title = lil_matrix((len(target_playlists), max(unique_tokens)+1)) playlists_filtered = playlists[playlists.playlist_id.isin(target_playlists.playlist_id)] num_playlists = len(playlists) i = 0 for token,playlist_ids in token_playlists_filtered.items(): nq = len(token_playlists[token]) for playlist_id in playlist_ids: UTM_title[from_id_to_num(target_playlists, playlist_id, column='playlist_id'),token] = math.log((num_playlists - nq + 0.5)/(nq + 0.5)) if normalized else 1 if i % 1000 == 0: print(i) i += 1 return UTM_title UTM_title = get_UTM_title(playlists, target_playlists, token_playlists, token_playlists_filtered, normalized=True) UTM_title UTM_title = UTM_title.tocsr() UTM_title_transpose = UTM_title.transpose().tocsc() PS_title = np.dot(UTM_title, UTM_title_transpose) PS_title = PS_title.todense() PS_title.max() # User Rating Matrix URM def get_URM_target(tracks, playlists, playlist_tracks, track_playlists, target_playlists, target_tracks, normalized=False): URM = lil_matrix((len(target_playlists), len(target_tracks))) num_playlists = len(playlist_tracks) i = 0 for row in track_playlists[track_playlists.track_id.isin(target_tracks.track_id)].itertuples(): track_id = row.track_id #row.playlist_ids.sort() nq = len(row.playlist_ids) for pl_id in row.playlist_ids: if pl_id in target_playlists.playlist_id: URM[from_id_to_num(target_playlists, pl_id, column='playlist_id'),from_id_to_num(target_tracks, track_id, column='track_id')] = math.log((num_playlists - nq + 0.5)/(nq + 0.5)) if normalized else 1 if i % 1000 == 0: print(i) i += 1 return URM URM_target = get_URM_target(tracks, playlists, playlist_tracks, track_playlists, target_playlists, target_tracks, normalized=False) URM_target URM_target = URM_target.tocsc() PS_title_csr = csr_matrix(PS_title) PS_title_csr np.array(np.dot(PS_title_csr[0], URM_target).todense())[0] ###Output _____no_output_____ ###Markdown Duration ###Code def get_avg_duration(tr_ids): sum_durations = 0 tracks_to_count = 0 for tr_id in tr_ids: tr_dur = tracks.loc[tr_id].duration if tr_dur >= 0: sum_durations += tr_dur tracks_to_count += 1 return 0 if tracks_to_count == 0 else sum_durations/tracks_to_count MAX_DURATION = 400 tracks.duration = tracks.duration.apply(lambda dur: dur/1000) # to seconds tracks.duration = tracks.duration.apply(lambda dur: min(dur, MAX_DURATION)) # clamp playlist_tracks["avg_duration"] = playlist_tracks.track_ids.apply(lambda tr_ids: get_avg_duration(tr_ids)) DURATION_K = 400 ###Output _____no_output_____ ###Markdown Playcount ###Code def get_avg_playcount(tr_ids): sum_playcounts = 0 tracks_to_count = 0 for tr_id in tr_ids: tr_plc = tracks.loc[tr_id].playcount if tr_plc >= 0: sum_playcounts += tr_plc tracks_to_count += 1 return 0 if tracks_to_count == 0 else sum_playcounts/tracks_to_count playlist_tracks["avg_playcount"] = playlist_tracks.track_ids.apply(lambda tr_ids: get_avg_playcount(tr_ids)) playlist_tracks.avg_playcount[:20] PLAYCOUNT_K = 2500 ###Output _____no_output_____ ###Markdown Predictions ###Code ALPHA = 1 BETA = 0.9 GAMMA = 0.5 def make_predictions(test=None, compute_MAP=False): predictions = pd.DataFrame(target_playlists) predictions.index = target_playlists['playlist_id'] predictions['track_ids'] = [np.array([]) for i in range(len(predictions))] ttracks = set(target_tracks['track_id'].values) test_good = get_playlist_track_list2(test) test_good.index = test_good.playlist_id.apply(lambda pl_id: playlist_to_num[pl_id]) counter = 0 mean_ap = 0 for _,row in target_playlists.iterrows(): # Compute predictions for current playlist pred = [] pl_id = row['playlist_id'] pl_tracks = set(playlist_tracks.loc[pl_id]['track_ids']) simil = ALPHA * np.array(np.dot(UAM_album_csc[pl_id,:], IAM_album_csr_transpose).todense())[0] simil += BETA * np.array(np.dot(UAM_csc[pl_id,:], IAM_csr_transpose).todense())[0] #simil = np.array(np.dot(UAM_csc[pl_id,:], IAM_csr_transpose).todense())[0] #simil = np.array(np.dot(PS_title_csr[from_id_to_num(target_playlists, pl_id, column='playlist_id'),:], URM_target).todense())[0] simil += GAMMA * np.array(np.dot(UTM_csc[pl_id,:], ITM_csr_transpose).todense())[0] #simil += DELTA * np.dot(U[pl_id,:], M2) #simil = np.exp(-(np.abs(playlist_tracks.loc[pl_id].avg_duration - tracks.duration))/DURATION_K) #simil = np.exp(-(np.abs(playlist_tracks.loc[pl_id].avg_playcount - tracks.playcount))/PLAYCOUNT_K).dropna() sorted_ind = simil.argsort() i = len(sorted_ind) - 1 c = 0 while i > 0 and c < 5: #tr = from_num_to_id(target_tracks, sorted_ind[i], column='track_id') tr = sorted_ind[i] if (tr in ttracks) and (tr not in pl_tracks): pred.append(num_to_tracks[tr]) c+=1 i-=1 predictions.loc[row['playlist_id']] = predictions.loc[row['playlist_id']].set_value('track_ids', np.array(pred)) # Update MAP if compute_MAP: correct = 0 ap = 0 for it, t in enumerate(pred): if t in test_good.loc[pl_id]['track_ids']: correct += 1 ap += correct / (it+1) ap /= len(pred) mean_ap += ap counter += 1 if counter % 1000 == 0: print(counter) if compute_MAP: print(mean_ap / counter) predictions['playlist_id'] = predictions['playlist_id_tmp'] return predictions #%%time predictions = make_predictions(test=test, compute_MAP=True) ###Output 1000 0.07674666666666677 2000 0.07922166666666648 3000 0.07679333333333296 ###Markdown single ones:albums: 0.063artists: 0.054tags: 0.041URM: 0.035 with k = 400duration: 0.0002playcount: 0.0004playlist title similarity * URM not normalized: 0.004albums + artists:BETA = 0.5: 0.074BETA = 0.75: 0.074BETA = 0.9: 0.075BETA = 1: 0.075Chosen BETA: 0.9albums + artists + tags:GAMMA = 0.8: 0.076GAMMA = 0.6: ###Code list(map(lambda l: sum(l)/len(l) if len(l)>0 else 0, IAM_album.data[:100])) ###Output _____no_output_____ ###Markdown SVD supervised ###Code def from_num_to_id(df, row_num, column = 'track_id'): """ df must have a 'track_id' column """ return df.iloc[row_num][column] def from_id_to_num(df, tr_id, column='track_id'): """ df must have a 'track_id' column """ return np.where(df[column].values == tr_id)[0][0] def build_id_to_num_map(df, column): a = pd.Series(np.arange(len(df))) a.index = df[column] return a def build_num_to_id_map(df, column): a = pd.Series(df[column]) a.index = np.arange(len(df)) return a N_FEATURES = 5 N_EPOCHS = 5 userValue = np.zeros((URM.shape[0], N_FEATURES)) userValue += 0.1 itemValue = np.zeros((N_FEATURES,URM.shape[1])) itemValue += 0.1 def predictRating(user, item, features): return np.dot(userValue[user,:features+1], itemValue[:features+1,item]) lrate = 0.01 K = 0.02 def train_user(user, item, rating, feature): err = (rating - predictRating(user, item, feature)) userValue[user,feature] += lrate * (err * itemValue[feature,item] - K*userValue[user,feature]) itemValue[feature,item] += lrate * (err * userValue[user,feature] - K*itemValue[feature, item]) URM = URM.tocoo() %%time for f in range(N_FEATURES): for i in range(N_EPOCHS): print("training feature {0}, stage {1}".format(f, i)) for r,c in zip(URM.row, URM.col): train_user(r, c, 1, f) userValue itemValue sum((URM[r,c] - predictRating(r,c,N_FEATURES-1))**2 for r,c in zip(URM.row, URM.col)) ###Output _____no_output_____
prophet_prediction_usa.ipynb
###Markdown ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns data=pd.read_csv("/content/usa_formatted.csv") data.info() data['Last Update'] = pd.to_datetime(data['Last Update']) usa=data[data['Country']=='US'] mchina=data[data['Country']=='Mainland China'] mchina=data[data['Country']=='China'] mchina.sort_values(['Last Update']) hk=data[data['Country']=='Hong Kong'] hkgrouped_country=data.groupby("Country")[['Confirmed', 'Deaths', 'Recovered']] grouped_country=data.groupby("Country")[['Confirmed', 'Deaths', 'Recovered']] china=data[(data['Country']=='China') |( data['Country']=='Mainland China')|( data['Country']=='Hong Kong')] china['Country'].replace('Mainland China','Chinese Sub',inplace=True) china['Country'].replace('Hong Kong','Chinese Sub',inplace=True) !pip install prophet from fbprophet import Prophet usa.columns=['ds','y','Deaths','Recovered'] usa=usa.drop(columns=['Recovered','Deaths']) m = Prophet() m.fit(chinese) future = m.make_future_dataframe(periods=7,include_history=True) future.tail() forecast = m.predict(future) forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail() m.plot_components(forecast) res=m.predict(future) res res.iloc[10] res.iloc[10] res.iloc[11] m = Prophet() m.fit(chinese) res=m.predict(future) m.plot(res) from fbprophet.plot import add_changepoints_to_plot fig = m.plot(forecast) a = add_changepoints_to_plot(fig.gca(), m, forecast) m = Prophet(changepoint_prior_scale=0.5) forecast = m.fit(chinese).predict(future) fig = m.plot(forecast) m = Prophet(changepoint_prior_scale=0.001) forecast = m.fit(chinese).predict(future) fig = m.plot(forecast) ###Output INFO:fbprophet:Disabling yearly seasonality. Run prophet with yearly_seasonality=True to override this. INFO:fbprophet:Disabling weekly seasonality. Run prophet with weekly_seasonality=True to override this. INFO:fbprophet:n_changepoints greater than number of observations.Using 7. ###Markdown Uncertainty in the trendThe biggest source of uncertainty in the forecast is the potential for future trend changes. The time series we have seen already in this documentation show clear trend changes in the history. It’s impossible to know for sure, so we do the most reasonable thing we can, and we assume that the future will see similar trend changes as the history. In particular, we assume that the average frequency and magnitude of trend changes in the future will be the same as that which we observe in the history. We project these trend changes forward and by computing their distribution we obtain uncertainty intervals. ###Code forecast = Prophet(interval_width=0.95).fit(chinese).predict(future) ###Output INFO:fbprophet:Disabling yearly seasonality. Run prophet with yearly_seasonality=True to override this. INFO:fbprophet:Disabling weekly seasonality. Run prophet with weekly_seasonality=True to override this. INFO:fbprophet:n_changepoints greater than number of observations.Using 7. ###Markdown Uncertainty in seasonality with full Bayesian sampling ###Code m = Prophet(mcmc_samples=300) forecast = m.fit(chinese).predict(future) fig = m.plot_components(forecast) m.predictive_samples(future) ###Output _____no_output_____ ###Markdown Fourier Order for SeasonalitiesSeasonalities are estimated using a partial Fourier sum;see also:Forecasting at scale;partial Fourier sum can approximate an aribtrary periodic signal. The number of terms in the partial sum (the order) is a parameter that determines how quickly the seasonality can change. ###Code from fbprophet.plot import plot_yearly m = Prophet(yearly_seasonality=20).fit(chinese) a = plot_yearly(m) ###Output INFO:fbprophet:Disabling weekly seasonality. Run prophet with weekly_seasonality=True to override this. INFO:fbprophet:n_changepoints greater than number of observations.Using 7. ###Markdown Specifying Custom SeasonalitiesAs an example, here we fit the data but replace the weekly seasonality with monthly seasonality. The monthly seasonality then will appear in the components plot: ###Code m = Prophet(weekly_seasonality=False) m.add_seasonality(name='monthly', period=30.5, fourier_order=5) forecast = m.fit(chinese).predict(future) fig = m.plot_components(forecast) ###Output INFO:fbprophet:Disabling yearly seasonality. Run prophet with yearly_seasonality=True to override this. INFO:fbprophet:n_changepoints greater than number of observations.Using 7. ###Markdown Sub-daily data ###Code m = Prophet(changepoint_prior_scale=0.01).fit(chinese) future = m.make_future_dataframe(periods=50, freq='H') fcst = m.predict(future) fig = m.plot(fcst) fig = m.plot_components(fcst) ###Output _____no_output_____ ###Markdown Monthly dataWe can use Prophet to fit monthly data. However, the underlying model is continuous-time, which means that you can get strange results if you fit the model to monthly data and then ask for daily forecasts.This is the same issue from above where the dataset has regular gaps. When we fit the yearly seasonality, it only has data for the first of each month and the seasonality components for the remaining days are unidentifiable and overfit. This can be clearly seen by doing MCMC to see uncertainty in the seasonality: ###Code m = Prophet(seasonality_mode='multiplicative').fit(chinese) future = m.make_future_dataframe(periods=3652) fcst = m.predict(future) fig = m.plot(fcst) m = Prophet(seasonality_mode='multiplicative', mcmc_samples=300).fit(chinese) fcst = m.predict(future) fig = m.plot_components(fcst) ###Output INFO:fbprophet:Disabling yearly seasonality. Run prophet with yearly_seasonality=True to override this. INFO:fbprophet:Disabling weekly seasonality. Run prophet with weekly_seasonality=True to override this. INFO:fbprophet:n_changepoints greater than number of observations.Using 7. WARNING:pystan:Rhat above 1.1 or below 0.9 indicates that the chains very likely have not mixed WARNING:pystan:244 of 600 iterations ended with a divergence (40.7 %). WARNING:pystan:Try running with adapt_delta larger than 0.8 to remove the divergences. WARNING:pystan:236 of 600 iterations saturated the maximum tree depth of 10 (39.3 %) WARNING:pystan:Run again with max_treedepth larger than 10 to avoid saturation ###Markdown This is the same issue from above where the dataset has regular gaps. When we fit the yearly seasonality, it only has data for the first of each month and the seasonality components for the remaining days are unidentifiable and overfit. This can be clearly seen by doing MCMC to see uncertainty in the seasonality: ###Code m = Prophet(seasonality_mode='multiplicative', mcmc_samples=300).fit(chinese) fcst = m.predict(future) fig = m.plot_components(fcst) ###Output INFO:fbprophet:Disabling yearly seasonality. Run prophet with yearly_seasonality=True to override this. INFO:fbprophet:Disabling weekly seasonality. Run prophet with weekly_seasonality=True to override this. INFO:fbprophet:n_changepoints greater than number of observations.Using 7. WARNING:pystan:Rhat above 1.1 or below 0.9 indicates that the chains very likely have not mixed WARNING:pystan:133 of 600 iterations ended with a divergence (22.2 %). WARNING:pystan:Try running with adapt_delta larger than 0.8 to remove the divergences. WARNING:pystan:297 of 600 iterations saturated the maximum tree depth of 10 (49.5 %) WARNING:pystan:Run again with max_treedepth larger than 10 to avoid saturation ###Markdown The seasonality has low uncertainty at the start of each month where there are data points, but has very high posterior variance in between. ###Code future = m.make_future_dataframe(periods=5, freq='D') fcst = m.predict(future) fig = m.plot(fcst) ###Output _____no_output_____ ###Markdown Diagnostics and Cross-Validation Prophet includes functionality for time series cross validation to measure forecast error using historical data. This is done by selecting cutoff points in the history, and for each of them fitting the model using data only up to that cutoff point. We can then compare the forecasted values to the actual values. ###Code from fbprophet.diagnostics import cross_validation df_cv = cross_validation(m, initial='8 days', period='1 days', horizon = '1 days') df_cv.head() ###Output _____no_output_____
07_train/ml-containers/03_Run_ML_Training_SageMaker.ipynb
###Markdown Fine-Tuning a BERT Model and Create a Text ClassifierWe have already performed the Feature Engineering to create BERT embeddings from the `reviews_body` text using the pre-trained BERT model, and split the dataset into train, validation and test files. To optimize for Tensorflow training, we saved the files in TFRecord format. Now, let’s fine-tune the BERT model to our Customer Reviews Dataset and add a new classification layer to predict the `star_rating` for a given `review_body`.![BERT Training](img/bert_training.png)As mentioned earlier, BERT’s attention mechanism is called a Transformer. This is, not coincidentally, the name of the popular BERT Python library, “Transformers,” maintained by a company called [HuggingFace](https://github.com/huggingface/transformers). We will use a variant of BERT called [DistilBert](https://arxiv.org/pdf/1910.01108.pdf) which requires less memory and compute, but maintains very good accuracy on our dataset. DEMO 3: Run Model Training on Amazon SageMakerAmazon SageMaker is a fully managed service that provides every developer and data scientist with the ability to build, train, and deploy machine learning (ML) models quickly. SageMaker removes the heavy lifting from each step of the machine learning process to make it easier to develop high quality models. ###Code !pip install -q sagemaker==2.16.3 import boto3 import sagemaker session = sagemaker.Session() bucket = session.default_bucket() role = sagemaker.get_execution_role() region = boto3.Session().region_name ###Output _____no_output_____ ###Markdown Specify the Dataset in S3We are using the train, validation, and test splits created in the previous section. ###Code processed_train_data_s3_uri = "s3://fsx-container-demo/input/data/train" !aws s3 ls $processed_train_data_s3_uri/ processed_validation_data_s3_uri = "s3://fsx-container-demo/input/data/validation" !aws s3 ls $processed_validation_data_s3_uri/ processed_test_data_s3_uri = "s3://fsx-container-demo/input/data/test" !aws s3 ls $processed_test_data_s3_uri/ ###Output _____no_output_____ ###Markdown Specify S3 `Distribution Strategy` ###Code from sagemaker.inputs import TrainingInput s3_input_train_data = TrainingInput(s3_data=processed_train_data_s3_uri, distribution="ShardedByS3Key") s3_input_validation_data = TrainingInput(s3_data=processed_validation_data_s3_uri, distribution="ShardedByS3Key") s3_input_test_data = TrainingInput(s3_data=processed_test_data_s3_uri, distribution="ShardedByS3Key") print(s3_input_train_data.config) print(s3_input_validation_data.config) print(s3_input_test_data.config) ###Output _____no_output_____ ###Markdown Setup Hyper-Parameters for Classification Layer ###Code epochs = 3 learning_rate = 0.00001 epsilon = 0.00000001 train_batch_size = 128 validation_batch_size = 64 test_batch_size = 64 train_steps_per_epoch = 100 validation_steps = 10 test_steps = 10 use_xla = True use_amp = True max_seq_length = 64 freeze_bert_layer = True run_validation = True run_test = True run_sample_predictions = True ###Output _____no_output_____ ###Markdown Setup Metrics To Track Model PerformanceThese sample log lines...```45/50 [=====>..] - ETA: 3s - loss: 0.425 - accuracy: 0.88150/50 [=======>] - ETA: 0s - val_loss: 0.407 - val_accuracy: 0.885```...will produce the following 4 metrics in CloudWatch:`loss` = 0.425`accuracy` = 0.881`val_loss` = 0.407`val_accuracy` = 0.885 ###Code metrics_definitions = [ {"Name": "train:loss", "Regex": "loss: ([0-9\\.]+)"}, {"Name": "train:accuracy", "Regex": "accuracy: ([0-9\\.]+)"}, {"Name": "validation:loss", "Regex": "val_loss: ([0-9\\.]+)"}, {"Name": "validation:accuracy", "Regex": "val_accuracy: ([0-9\\.]+)"}, ] ###Output _____no_output_____ ###Markdown Setup Our BERT + TensorFlow Script to Run on SageMakerPrepare our TensorFlow model to run on the managed SageMaker service ###Code !pygmentize ./code/train.py from sagemaker.tensorflow import TensorFlow estimator = TensorFlow( entry_point="train.py", source_dir="code", role=role, instance_count=1, instance_type="ml.c5.9xlarge", use_spot_instances=True, max_run=3600, max_wait=3600, volume_size=1024, py_version="py3", framework_version="2.1.0", hyperparameters={ "epochs": epochs, "learning_rate": learning_rate, "epsilon": epsilon, "train_batch_size": train_batch_size, "validation_batch_size": validation_batch_size, "test_batch_size": test_batch_size, "train_steps_per_epoch": train_steps_per_epoch, "validation_steps": validation_steps, "test_steps": test_steps, "use_xla": use_xla, "use_amp": use_amp, "max_seq_length": max_seq_length, "freeze_bert_layer": freeze_bert_layer, "run_validation": run_validation, "run_test": run_test, "run_sample_predictions": run_sample_predictions, }, input_mode="Pipe", metric_definitions=metrics_definitions, ) ###Output _____no_output_____ ###Markdown Train the Model on SageMaker ###Code estimator.fit( inputs={"train": s3_input_train_data, "validation": s3_input_validation_data, "test": s3_input_test_data}, wait=False, ) training_job_name = estimator.latest_training_job.name print("Training Job Name: {}".format(training_job_name)) from IPython.core.display import display, HTML display( HTML( '<b>Review <a target="blank" href="https://console.aws.amazon.com/sagemaker/home?region={}#/jobs/{}">Training Job</a> After About 5 Minutes</b>'.format( region, training_job_name ) ) ) from IPython.core.display import display, HTML display( HTML( '<b>Review <a target="blank" href="https://console.aws.amazon.com/cloudwatch/home?region={}#logStream:group=/aws/sagemaker/TrainingJobs;prefix={};streamFilter=typeLogStreamPrefix">CloudWatch Logs</a> After About 5 Minutes</b>'.format( region, training_job_name ) ) ) from IPython.core.display import display, HTML display( HTML( '<b>Review <a target="blank" href="https://s3.console.aws.amazon.com/s3/buckets/{}/{}/?region={}&tab=overview">S3 Output Data</a> After The Training Job Has Completed</b>'.format( bucket, training_job_name, region ) ) ) %%time estimator.latest_training_job.wait(logs=False) ###Output _____no_output_____ ###Markdown Wait Until the ^^ Training Job ^^ Completes Above! ###Code !aws s3 ls s3://$bucket/$training_job_name/output/ ###Output _____no_output_____
Week 5/Week5-Visualization/05b_Exploring Indicator's Across Countries.ipynb
###Markdown World Development Indicators Exploring Data Visualization Using Matplotlib ###Code import pandas as pd import numpy as np import random import matplotlib.pyplot as plt data = pd.read_csv('Indicators.csv') data.shape countries = data['CountryName'].unique().tolist() indicators = data['IndicatorName'].unique().tolist() ###Output _____no_output_____ ###Markdown This is a really large dataset, at least in terms of the number of rows. But with 6 columns, what does this hold? ###Code data.head(2) ###Output _____no_output_____ ###Markdown Looks like it has different indicators for different countries with the year and value of the indicator. We already saw how the USA's per-capita CO2 production related to other countries, let's see if we can find some more indicators in common between countries. To have some fun, we've picked countries randomly but then stored our random results so you can rerun it with the same answers. ###Code # Filter 1 # Picks years of choice yearsFilter = [2010, 2011, 2012, 2013, 2014] # Filter 2 # Pick 2 countries randomly countryFilter = random.sample(countries, 2) countryFilter # Filter 3 # Pick 1 Indicator randomly indicatorsFilter = random.sample(indicators, 1) indicatorsFilter ###Output _____no_output_____ ###Markdown Problem: We're missing data. Not all countries have all indicators for all yearsTo solve this, we'll need to find two countries and two indicators for which we have data over this time range. ###Code filterMesh = (data['CountryName'] == countryFilter[0]) & (data['IndicatorName'].isin(indicatorsFilter)) & (data['Year'].isin(yearsFilter)) country1_data = data.loc[filterMesh] len(country1_data) filterMesh = (data['CountryName'] == countryFilter[1]) & (data['IndicatorName'].isin(indicatorsFilter)) & (data['Year'].isin(yearsFilter)) country2_data = data.loc[filterMesh] len(country2_data) ###Output _____no_output_____ ###Markdown So let's pick indicators and countries which have data over this time rangeThe code below will randomly pick countries and indicators until it finds two countries who have data for an indicator over this time frame. We used it to produce the fixed values you see later, feel free to play with this yourself! ###Code filteredData1 = [] filteredData2 = [] ''' Plot: countryFilter: pick two countries, indicatorsFilter: pick an indicator, yearsFilter: plot for years in yearsFilter ''' # problem - not all countries have all indicators so if you go to visualize, it'll have missing data. # randomly picking two indicators and countries, do these countries have valid data over those years. # brings up the discussion of missing data/ missing fields # until we find full data while(len(filteredData1) < len(yearsFilter)-1): # pick new indicator indicatorsFilter = random.sample(indicators, 1) countryFilter = random.sample(countries, 2) # how many rows are there that have this country name, this indicator, and this year. Mesh gives bool vector filterMesh = (data['CountryName'] == countryFilter[0]) & (data['IndicatorName'].isin(indicatorsFilter)) & (data['Year'].isin(yearsFilter)) # which rows have this condition to be true? filteredData1 = data.loc[filterMesh] filteredData1 = filteredData1[['CountryName','IndicatorName','Year','Value']] # need to print this only when our while condition is true if(len(filteredData1) < len(yearsFilter)-1): print('Skipping ... %s since very few rows (%d) found' % (indicatorsFilter, len(filteredData1))) # What did we pick eventually ? indicatorsFilter len(filteredData1) ''' Country 2 ''' while(len(filteredData2) < len(filteredData1)-1): filterMesh = (data['CountryName'] == countryFilter[1]) & (data['IndicatorName'].isin(indicatorsFilter)) & (data['Year'].isin(yearsFilter)) filteredData2 = data.loc[filterMesh] filteredData2 = filteredData2[['CountryName','IndicatorName','Year','Value']] #pick new indicator old = countryFilter[1] countryFilter[1] = random.sample(countries, 1)[0] if(len(filteredData2) < len(filteredData1)-1): print('Skipping ... %s, since very few rows (%d) found' % (old, len(filteredData2))) if len(filteredData1) < len(filteredData2): small = len(filteredData1) else: small = len(filteredData2) filteredData1=filteredData1[0:small] filteredData2=filteredData2[0:small] filteredData1 filteredData2 ###Output _____no_output_____ ###Markdown Matplotlib: Additional Examples Example: Scatter PlotNow that we have the data for two countries for the same indicators, let's plot them using a scatterplot. ###Code %matplotlib inline import matplotlib.pyplot as plt fig, axis = plt.subplots() # Grid lines, Xticks, Xlabel, Ylabel axis.yaxis.grid(True) axis.set_title(indicatorsFilter[0],fontsize=10) axis.set_xlabel(filteredData1['CountryName'].iloc[0],fontsize=10) axis.set_ylabel(filteredData2['CountryName'].iloc[0],fontsize=10) X = filteredData1['Value'] Y = filteredData2['Value'] axis.scatter(X, Y) ###Output _____no_output_____ ###Markdown Example: Line PlotHere we'll plot the indicator over time for each country. ###Code import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(20, 10)) ax.set_ylim(min(0,filteredData1['Value'].min()), 2*filteredData1['Value'].max()) ax.set_title('Indicator Name : ' + indicatorsFilter[0]) ax.plot(filteredData1['Year'], filteredData1['Value'] , 'r--', label=filteredData1['CountryName'].unique()) # Add the legend legend = plt.legend(loc = 'upper center', shadow=True, prop={'weight':'roman','size':'xx-large'}) # Rectangle around the legend frame = legend.get_frame() frame.set_facecolor('.95') plt.show() ###Output _____no_output_____ ###Markdown Let's plot country 2 ###Code import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(20, 10)) # Adjust the lower and upper limit to bring the graph at center ax.set_ylim(min(0,filteredData2['Value'].min()), 2*filteredData2['Value'].max()) ax.set_title('Indicator Name : ' + indicatorsFilter[0]) ax.plot(filteredData2['Year'], filteredData2['Value'] , label=filteredData2['CountryName'].unique(), color="purple", lw=1, ls='-', marker='s', markersize=20, markerfacecolor="yellow", markeredgewidth=4, markeredgecolor="blue") # Add the legend legend = plt.legend(loc = 'upper left', shadow=True, prop={'weight':'roman','size':'xx-large'}) # Rectangle around the legend frame = legend.get_frame() frame.set_facecolor('.95') plt.show() ###Output _____no_output_____ ###Markdown Example (random datasets) ###Code from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm import matplotlib.pyplot as plt import numpy as np countof_angles = 36 countof_radii = 8 # array - radii array_rad = np.linspace(0.125, 1.0, countof_radii) # array - angles array_ang = np.linspace(0, 2*np.pi, countof_angles, endpoint=False) # repeat all angles per radius array_ang = np.repeat(array_ang[...,np.newaxis], countof_radii, axis=1) # from polar (radii, angles) coords to cartesian (x, y) coords x = np.append(0, (array_rad*np.cos(array_ang)).flatten()) y = np.append(0, (array_rad*np.sin(array_ang)).flatten()) # saddle shaped surface z = np.sin(-x*y) fig = plt.figure(figsize=(20,10)) ax = fig.gca(projection='3d') ax.plot_trisurf(x, y, z, cmap=cm.autumn, linewidth=0.2) plt.show() fig.savefig("vis_3d.png") ###Output _____no_output_____ ###Markdown Example (random dataset) ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt n_points = 200 radius = 2 * np.random.rand(n_points) angles = 2 * (np.pi) * np.random.rand(n_points) area = 400 * (radius**2) * np.random.rand(n_points) colors = angles fig = plt.figure(figsize=(20,10)) ax = plt.subplot(111, polar=True) c = plt.scatter(angles, radius, c=colors, s=area, cmap=plt.cm.hsv) c.set_alpha(1.95) plt.show() fig.savefig("vis_bubbleplot.png") ###Output _____no_output_____ ###Markdown Example 4: Box Plots (random datasets) ###Code np.random.seed(452) # Three ararys of 100 points each A1 = np.random.normal(0, 1, 100) A2 = np.random.normal(0, 2, 100) A3 = np.random.normal(0, 1.5, 100) # Concatenate the three arrays data = [ A1, A2, A3 ] fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(20, 10)) # Box plot: Notch Shape bplot1 = axes[1].boxplot(data, notch=True, vert=True, # vertical aligmnent patch_artist=True) # color # Box plot: Rectangular bplot2 = axes[0].boxplot(data, vert=True, # vertical aligmnent patch_artist=True) # color colors = ['tomato', 'darkorchid', 'lime'] # more colors here: http://matplotlib.org/examples/color/named_colors.html for bplot in (bplot1, bplot2): for patch, color in zip(bplot['boxes'], colors): patch.set_facecolor(color) # Grid lines, Xticks, Xlabel, Ylabel for axis in axes: axis.yaxis.grid(True) axis.set_xticks([y for y in range(len(data))], ) axis.set_xlabel('Sample X-Label',fontsize=20) axis.set_ylabel('Sample Y-Label',fontsize=20) # Xtick labels plt.setp(axes, xticks=[y for y in range(len(data))], xticklabels=['X1', 'X2', 'X3']) plt.show() fig.savefig("vis_boxplot.png") ###Output _____no_output_____
Functional_Thinking/Lab/28F-collections.ipynb
###Markdown `collections.namedtuple``namedtuple()` is a factory function; that is, it generates a class, and not an instance of a class (an object).So there are two steps:1. First, use `namedtuple()` to generate a `class`2. And then create an instance of this `class` ###Code from collections import namedtuple Person = namedtuple('Person', ['name', 'age']) jay_z = Person(name='Sean Carter', age=47) print('%s is %s years old' % (jay_z.name, jay_z.age)) ###Output Sean Carter is 47 years old ###Markdown `collections.OrderedDict`If your code requires that the order of elements in a `dict` is preserved, use `OrderedDict`—even if your version of Python (e.g. CPython 3.6) already does this!Otherwise, `OrderedDict` behaves exactly like a regular `dict`. ###Code from collections import OrderedDict d = OrderedDict([ ('Lizard', 'Reptile'), ('Whale', 'Mammal') ]) for species, class_ in d.items(): print('%s is a %s' % (species, class_)) ###Output Lizard is a Reptile Whale is a Mammal ###Markdown collections.defaultdictUse `defaultdict` if you want non-existing keys to return a default value, rather than raise a `KeyError`.Otherwise, `OrderedDict` behaves exactly like a regular `dict`. ###Code from collections import defaultdict favorite_programming_languages = { 'Claire' : 'Assembler', 'John' : 'Ruby', 'Sarah' : 'JavaScript' } d = defaultdict(lambda: 'Python') d.update(favorite_programming_languages) print(d['John']) ###Output Ruby
JupyterNotebooks/Part 4 - Stacked Ensemble.ipynb
###Markdown Voting Classifier Ensemble ###Code X=df[['didPurchase','rating']] y=df['doRecommend'] clf1 = LogisticRegression(random_state=1) clf2 = RandomForestClassifier(random_state=1) clf3 = GaussianNB() clf4 = KNeighborsClassifier(n_neighbors=10) eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3),('knn',clf4)], voting='hard') X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=None) eclf.fit(X_train, y_train) eclf.score( X_test, y_test) ###Output _____no_output_____ ###Markdown Voting classifier gives an accuracy of 95% ###Code for clf, label in zip([clf1, clf2, clf3,clf4, eclf], ['Logistic Regression', 'Random Forest', 'naive Bayes', 'KNN','Ensemble']): scores = cross_val_score(clf, X, y, cv=20, scoring='accuracy') print("Accuracy: %0.3f (+/- %0.3f) [%s]" % (scores.mean(), scores.std(), label)) ###Output Accuracy: 0.944 (+/- 0.035) [Logistic Regression] Accuracy: 0.954 (+/- 0.029) [Random Forest] Accuracy: 0.948 (+/- 0.036) [naive Bayes] Accuracy: 0.947 (+/- 0.037) [KNN] Accuracy: 0.946 (+/- 0.037) [Ensemble] ###Markdown *** Staked Ensemble ###Code training, valid, ytraining, yvalid = train_test_split(X_train, y_train, test_size=0.3, random_state=0) clf2.fit(training,ytraining) clf4.fit(training,ytraining) preds1=clf2.predict(valid) preds2=clf4.predict(valid) test_preds1=clf2.predict(X_test) test_preds2=clf4.predict(X_test) stacked_predictions=np.column_stack((preds1,preds2)) stacked_test_predictions=np.column_stack((test_preds1,test_preds2)) meta_model=LinearRegression() meta_model.fit(stacked_predictions,yvalid) final_predictions=meta_model.predict(stacked_test_predictions) count=[]; y_list=y_test.tolist() for i in range(len(y_list)): if (y_list[i]==np.round(final_predictions[i])): count.append("Correct") else: count.append("Incorrect") import seaborn as sns sns.countplot(x=count) accuracy_score(y_test,np.round(final_predictions)) ###Output _____no_output_____ ###Markdown *** Stacked Ensemble with Cross validation ###Code def fit_stack(clf, training, valid, ytraining,X_test,stacked_predictions,stacked_test_predictions): clf.fit(training,ytraining) preds=clf.predict(valid) test_preds=clf.predict(X_test) stacked_predictions=np.append(stacked_predictions,preds) stacked_test_predictions=np.append(stacked_test_predictions,test_preds) return {'pred':stacked_predictions,'test':stacked_test_predictions} def stacked(): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=None) training, valid, ytraining, yvalid = train_test_split(X_train, y_train, test_size=0.3, random_state=None) #kf = RepeatedKFold(n_splits=5, n_repeats=5, random_state=None) #for train_index, test_index in kf.split(X): # training, valid = X.iloc[train_index], X.iloc[test_index] # ytraining, yvalid = y.iloc[train_index], y.iloc[test_index] clf2.fit(training,ytraining) clf4.fit(training,ytraining) preds1=clf2.predict(valid) preds2=clf4.predict(valid) test_preds1=clf2.predict(X_test) test_preds2=clf4.predict(X_test) stacked_predictions=np.column_stack((preds1,preds2)) stacked_test_predictions=np.column_stack((test_preds1,test_preds2)) #print(stacked_predictions.shape) #print(stacked_test_predictions.shape) meta_model=KNeighborsClassifier(n_neighbors=10) meta_model.fit(stacked_predictions,yvalid) final_predictions=meta_model.predict(stacked_test_predictions) return accuracy_score(y_test,final_predictions) accuracies=[] for i in range(10): accuracies.append(stacked()) print("%0.3f" % accuracies[i]) print(accuracies) mean_acc=sum(accuracies) / float(len(accuracies)) print("Mean %0.3f" % mean_acc) ###Output 0.957 0.954 0.956 0.958 0.957 0.958 0.954 0.957 0.957 0.932 [0.9566217548471903, 0.9542744472090512, 0.9563400779306136, 0.9580301394300738, 0.9567156471527158, 0.9575606779024459, 0.953898877986949, 0.9569973240692925, 0.9566217548471903, 0.9318341861884418] Mean 0.954 ###Markdown Repeated KFold with X and y ###Code accuracies=[] def stacked2(): from sklearn.metrics import accuracy_score #X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=None) #training, valid, ytraining, yvalid = train_test_split(X_train, y_train, test_size=0.3, random_state=None) kf = RepeatedKFold(n_splits=5, n_repeats=2, random_state=None) for train_index, test_index in kf.split(X): X_train, X_test = X.iloc[train_index], X.iloc[test_index] y_train, y_test = y.iloc[train_index], y.iloc[test_index] training, valid, ytraining, yvalid = train_test_split(X_train, y_train, test_size=0.3, random_state=None) stacked_predictions=[] stacked_test_predictions=[] result=fit_stack(clf2, training, valid, ytraining,X_test,stacked_predictions,stacked_test_predictions) stacked_predictions=result['pred'] stacked_test_predictions=result['test'] result=fit_stack(clf4, training, valid, ytraining,X_test,stacked_predictions,stacked_test_predictions) stacked_predictions=result['pred'] stacked_test_predictions=result['test'] result=fit_stack(clf3, training, valid, ytraining,X_test,stacked_predictions,stacked_test_predictions) stacked_predictions=result['pred'] stacked_test_predictions=result['test'] meta_model=KNeighborsClassifier(n_neighbors=10) meta_model.fit(stacked_predictions.reshape(-1,3),yvalid) final_predictions=meta_model.predict(stacked_test_predictions.reshape(-1,3)) acc=accuracy_score(y_test,final_predictions) accuracies.append(acc) print(accuracies) mean_acc=sum(accuracies) / float(len(accuracies)) print("Mean %0.3f" % mean_acc) stacked2() ###Output [0.9321174565171467, 0.9322582916696007, 0.9308499401450602, 0.9314788732394366, 0.9322535211267605, 0.9307795225688332, 0.9312724456024224, 0.9318357862122386, 0.9361267605633803, 0.928943661971831] Mean 0.932 ###Markdown Repeated KFold with X_train and y_train ###Code accuracies=[] def stacked1(): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=None) kf = RepeatedKFold(n_splits=5, n_repeats=1, random_state=None) for train_index, test_index in kf.split(X_train): training, valid = X_train.iloc[train_index], X_train.iloc[test_index] ytraining, yvalid = y_train.iloc[train_index], y_train.iloc[test_index] stacked_predictions=[] stacked_test_predictions=[] result=fit_stack(clf2, training, valid, ytraining,X_test,stacked_predictions,stacked_test_predictions) stacked_predictions=result['pred'] stacked_test_predictions=result['test'] result=fit_stack(clf4, training, valid, ytraining,X_test,stacked_predictions,stacked_test_predictions) stacked_predictions=result['pred'] stacked_test_predictions=result['test'] result=fit_stack(clf3, training, valid, ytraining,X_test,stacked_predictions,stacked_test_predictions) stacked_predictions=result['pred'] stacked_test_predictions=result['test'] meta_model=KNeighborsClassifier(n_neighbors=10) meta_model.fit(stacked_predictions.reshape(-1,3),yvalid) final_predictions=meta_model.predict(stacked_test_predictions.reshape(-1,3)) acc=accuracy_score(y_test,final_predictions) accuracies.append(acc) print(accuracies) mean_acc=sum(accuracies) / float(len(accuracies)) print("Mean %0.3f" % mean_acc) stacked1() ###Output [0.932021970799493, 0.932021970799493, 0.932021970799493, 0.932021970799493, 0.932021970799493] Mean 0.932
Chinese_rationality_analasis/chinese_sentiment_analysis.ipynb
###Markdown Tutorial for Chinese Sentiment analysis with hotel review data DependenciesPython 3.5, numpy, pickle, keras, tensorflow, [jieba](https://github.com/fxsjy/jieba) Optional for plottingpylab, scipy ###Code from os import listdir from os.path import isfile, join import jieba import codecs from langconv import * # convert Traditional Chinese characters to Simplified Chinese characters import pickle import random from keras.models import Sequential from keras.layers.embeddings import Embedding from keras.layers.recurrent import GRU from keras.preprocessing.text import Tokenizer from keras.layers.core import Dense from keras.utils import to_categorical from keras.preprocessing.sequence import pad_sequences from keras.callbacks import TensorBoard ###Output _____no_output_____ ###Markdown Helper function to pickle and load stuff ###Code def __pickleStuff(filename, stuff): save_stuff = open(filename, "wb") pickle.dump(stuff, save_stuff) save_stuff.close() def __loadStuff(filename): saved_stuff = open(filename,"rb") stuff = pickle.load(saved_stuff) saved_stuff.close() return stuff ###Output _____no_output_____ ###Markdown Get lists of files, positive and negative files ###Code dataBaseDirPos = "./data/ChnSentiCorp_htl_ba_6000/pos/" dataBaseDirNeg = "./data/ChnSentiCorp_htl_ba_6000/neg/" positiveFiles = [dataBaseDirPos + f for f in listdir(dataBaseDirPos) if isfile(join(dataBaseDirPos, f))] negativeFiles = [dataBaseDirNeg + f for f in listdir(dataBaseDirNeg) if isfile(join(dataBaseDirNeg, f))] ###Output _____no_output_____ ###Markdown Show length of samples ###Code print(len(positiveFiles)) print(len(negativeFiles)) ###Output 2916 3000 ###Markdown Have a look at what's in a file(one hotel review) ###Code filename = positiveFiles[0] with codecs.open(filename, "r", encoding="gb2312") as doc_file: text=doc_file.read() print(text) ###Output 如果是我一个人再到东莞出差的话,我还会住在东莞宾馆,但是如果我和我的老板一起来东莞的话,可能会住到索菲特去。 我喜欢东莞宾馆的环境和它的几个餐厅,身处闹市但是却很安静,很舒服,宾馆的服务也很到位。 对于普通的商务旅行者来说,东莞宾馆的标准间是最物超所值的。 ###Markdown Test removing stop wordsDemo what it looks like to tokenize the sentence and remove stop words. ###Code filename = positiveFiles[110] with codecs.open(filename, "r", encoding="gb2312") as doc_file: text=doc_file.read() text = text.replace("\n", "") text = text.replace("\r", "") print("==Orginal==:\n\r{}".format(text)) stopwords = [ line.rstrip() for line in codecs.open('./data/chinese_stop_words.txt',"r", encoding="utf-8") ] seg_list = jieba.cut(text, cut_all=False) final =[] seg_list = list(seg_list) for seg in seg_list: if seg not in stopwords: final.append(seg) print("==Tokenized==\tToken count:{}\n\r{}".format(len(seg_list)," ".join(seg_list))) print("==Stop Words Removed==\tToken count:{}\n\r{}".format(len(final)," ".join(final))) ###Output ==Orginal==: 别墅型的酒店,非常特别,离海边很近.消费很平价 ==Tokenized== Token count:15 别墅 型 的 酒店 , 非常 特别 , 离 海边 很近 . 消费 很 平价 ==Stop Words Removed== Token count:8 别墅 型 酒店 特别 海边 很近 消费 平价 ###Markdown Prepare "doucments", a list of tuplesSome files contain abnormal encoding characters which encoding GB2312 will complain about. Solution: read as bytes then decode as GB2312 line by line, skip lines with abnormal encodings. We also convert any traditional Chinese characters to simplified Chinese characters. ###Code documents = [] for filename in positiveFiles: text = "" with codecs.open(filename, "rb") as doc_file: for line in doc_file: try: line = line.decode("GB2312") except: continue text+=Converter('zh-hans').convert(line)# Convert from traditional to simplified Chinese text = text.replace("\n", "") text = text.replace("\r", "") documents.append((text, "pos")) for filename in negativeFiles: text = "" with codecs.open(filename, "rb") as doc_file: for line in doc_file: try: line = line.decode("GB2312") except: continue text+=Converter('zh-hans').convert(line)# Convert from traditional to simplified Chinese text = text.replace("\n", "") text = text.replace("\r", "") documents.append((text, "neg")) ###Output _____no_output_____ ###Markdown Optional step to save/load the documents as pickle file ###Code # Uncomment those two lines to save/load the documents for later use since the step above takes a while # __pickleStuff("./data/chinese_sentiment_corpus.p", documents) # documents = __loadStuff("./data/chinese_sentiment_corpus.p") print(len(documents)) print(documents[4000]) ###Output 5916 ('优点;有电梯(4层开封宾馆连电梯都没有),晚上好像没有小姐电话骚扰(开封宾馆骚扰到最后干脆和按摩小姐电话聊天起来了)缺点;房间象招待所,设备老化,能算3星?价格偏高,性价比不好!门口乱哄哄的,感觉不好!', 'neg') ###Markdown shuffle the data ###Code random.shuffle(documents) ###Output _____no_output_____ ###Markdown Prepare the input and output for the modelEach input (hotel review) will be a list of tokens, output will be one token("pos" or "neg"). The stopwords are not removed here since the dataset is relative small and removing the stop words are not saving much traing time. ###Code # Tokenize only totalX = [] totalY = [str(doc[1]) for doc in documents] for doc in documents: seg_list = jieba.cut(doc[0], cut_all=False) seg_list = list(seg_list) totalX.append(seg_list) #Switch to below code to experiment with removing stop words # Tokenize and remove stop words # totalX = [] # totalY = [str(doc[1]) for doc in documents] # stopwords = [ line.rstrip() for line in codecs.open('./data/chinese_stop_words.txt',"r", encoding="utf-8") ] # for doc in documents: # seg_list = jieba.cut(doc[0], cut_all=False) # seg_list = list(seg_list) # Uncomment below code to experiment with removing stop words # final =[] # for seg in seg_list: # if seg not in stopwords: # final.append(seg) # totalX.append(final) ###Output _____no_output_____ ###Markdown Visualize distribution of sentence lengthDecide the max input sequence, here we cover up to 60% sentences. The longer input sequence, the more training time will take, but could improve prediction accuracy. ###Code import numpy as np import scipy.stats as stats import pylab as pl h = sorted([len(sentence) for sentence in totalX]) maxLength = h[int(len(h) * 0.60)] print("Max length is: ",h[len(h)-1]) print("60% cover length up to: ",maxLength) h = h[:5000] fit = stats.norm.pdf(h, np.mean(h), np.std(h)) #this is a fitting indeed pl.plot(h,fit,'-o') pl.hist(h,normed=True) #use this to draw histogram of your data pl.show() ###Output Max length is: 1804 60% cover length up to: 68 ###Markdown Words to number tokens, paddingPad input sequence to max input length if it is shorterSave the input tokenizer, since we need to use the same tokenizer for our new predition data. ###Code totalX = [" ".join(wordslist) for wordslist in totalX] # Keras Tokenizer expect the words tokens to be seperated by space input_tokenizer = Tokenizer(30000) # Initial vocab size input_tokenizer.fit_on_texts(totalX) vocab_size = len(input_tokenizer.word_index) + 1 print("input vocab_size:",vocab_size) totalX = np.array(pad_sequences(input_tokenizer.texts_to_sequences(totalX), maxlen=maxLength)) __pickleStuff("./data/input_tokenizer_chinese.p", input_tokenizer) ###Output input vocab_size: 22123 ###Markdown Output, array of 0s and 1s ###Code target_tokenizer = Tokenizer(3) target_tokenizer.fit_on_texts(totalY) print("output vocab_size:",len(target_tokenizer.word_index) + 1) totalY = np.array(target_tokenizer.texts_to_sequences(totalY)) -1 totalY = totalY.reshape(totalY.shape[0]) totalY[40:50] ###Output _____no_output_____ ###Markdown Turn output 0s and 1s to categories(one-hot vectors) ###Code totalY = to_categorical(totalY, num_classes=2) totalY[40:50] output_dimen = totalY.shape[1] # which is 2 ###Output _____no_output_____ ###Markdown Save meta data for later preditionmaxLength: the input sequence lengthvocab_size: Input vocab sizeoutput_dimen: which is 2 in this example (pos or neg)sentiment_tag: either ["neg","pos"] or ["pos","neg"] matching the target tokenizer ###Code target_reverse_word_index = {v: k for k, v in list(target_tokenizer.word_index.items())} sentiment_tag = [target_reverse_word_index[1],target_reverse_word_index[2]] metaData = {"maxLength":maxLength,"vocab_size":vocab_size,"output_dimen":output_dimen,"sentiment_tag":sentiment_tag} __pickleStuff("./data/meta_sentiment_chinese.p", metaData) ###Output _____no_output_____ ###Markdown Build the Model, train and save itThe training data is logged to Tensorboard, we can look at it by cd into directory "./Graph/sentiment_chinese" and run"python -m tensorflow.tensorboard --logdir=." ###Code embedding_dim = 256 model = Sequential() model.add(Embedding(vocab_size, embedding_dim,input_length = maxLength)) # Each input would have a size of (maxLength x 256) and each of these 256 sized vectors are fed into the GRU layer one at a time. # All the intermediate outputs are collected and then passed on to the second GRU layer. model.add(GRU(256, dropout=0.9, return_sequences=True)) # Using the intermediate outputs, we pass them to another GRU layer and collect the final output only this time model.add(GRU(256, dropout=0.9)) # The output is then sent to a fully connected layer that would give us our final output_dim classes model.add(Dense(output_dimen, activation='softmax')) # We use the adam optimizer instead of standard SGD since it converges much faster tbCallBack = TensorBoard(log_dir='./Graph/sentiment_chinese', histogram_freq=0, write_graph=True, write_images=True) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() model.fit(totalX, totalY, validation_split=0.1, batch_size=32, epochs=20, verbose=1, callbacks=[tbCallBack]) model.save('./data/sentiment_chinese_model.HDF5') print("Saved model!") ###Output _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= embedding_1 (Embedding) (None, 68, 256) 5663488 _________________________________________________________________ gru_1 (GRU) (None, 68, 256) 393984 _________________________________________________________________ gru_2 (GRU) (None, 256) 393984 _________________________________________________________________ dense_1 (Dense) (None, 2) 514 ================================================================= Total params: 6,451,970 Trainable params: 6,451,970 Non-trainable params: 0 _________________________________________________________________ Train on 5324 samples, validate on 592 samples Epoch 1/20 5324/5324 [==============================] - 49s 9ms/step - loss: 0.6808 - acc: 0.5640 - val_loss: 0.5026 - val_acc: 0.7770 Epoch 2/20 5324/5324 [==============================] - 49s 9ms/step - loss: 0.5421 - acc: 0.7483 - val_loss: 0.4294 - val_acc: 0.8074 Epoch 3/20 5324/5324 [==============================] - 48s 9ms/step - loss: 0.4263 - acc: 0.8276 - val_loss: 0.4619 - val_acc: 0.8041 Epoch 4/20 5324/5324 [==============================] - 49s 9ms/step - loss: 0.3507 - acc: 0.8650 - val_loss: 0.3194 - val_acc: 0.8834 Epoch 5/20 5324/5324 [==============================] - 49s 9ms/step - loss: 0.2998 - acc: 0.8866 - val_loss: 0.2837 - val_acc: 0.8936 Epoch 6/20 5324/5324 [==============================] - 49s 9ms/step - loss: 0.2695 - acc: 0.9006 - val_loss: 0.2839 - val_acc: 0.8986 Epoch 7/20 5324/5324 [==============================] - 49s 9ms/step - loss: 0.2174 - acc: 0.9222 - val_loss: 0.2801 - val_acc: 0.8936 Epoch 8/20 5324/5324 [==============================] - 49s 9ms/step - loss: 0.1895 - acc: 0.9324 - val_loss: 0.2746 - val_acc: 0.8986 Epoch 9/20 5324/5324 [==============================] - 49s 9ms/step - loss: 0.1660 - acc: 0.9369 - val_loss: 0.2981 - val_acc: 0.8885 Epoch 10/20 5324/5324 [==============================] - 49s 9ms/step - loss: 0.1526 - acc: 0.9429 - val_loss: 0.3024 - val_acc: 0.9003 Epoch 11/20 5324/5324 [==============================] - 49s 9ms/step - loss: 0.1259 - acc: 0.9551 - val_loss: 0.3632 - val_acc: 0.9003 Epoch 12/20 5324/5324 [==============================] - 49s 9ms/step - loss: 0.1337 - acc: 0.9482 - val_loss: 0.3948 - val_acc: 0.8986 Epoch 13/20 5324/5324 [==============================] - 49s 9ms/step - loss: 0.1133 - acc: 0.9591 - val_loss: 0.3517 - val_acc: 0.8868 Epoch 14/20 5324/5324 [==============================] - 49s 9ms/step - loss: 0.0905 - acc: 0.9634 - val_loss: 0.3895 - val_acc: 0.8632 Epoch 15/20 5324/5324 [==============================] - 49s 9ms/step - loss: 0.0990 - acc: 0.9637 - val_loss: 0.3961 - val_acc: 0.8801 Epoch 16/20 5324/5324 [==============================] - 49s 9ms/step - loss: 0.0929 - acc: 0.9624 - val_loss: 0.3559 - val_acc: 0.8970 Epoch 17/20 5324/5324 [==============================] - 49s 9ms/step - loss: 0.0962 - acc: 0.9649 - val_loss: 0.4281 - val_acc: 0.8885 Epoch 18/20 5324/5324 [==============================] - 49s 9ms/step - loss: 0.0849 - acc: 0.9651 - val_loss: 0.4243 - val_acc: 0.8953 Epoch 19/20 5324/5324 [==============================] - 49s 9ms/step - loss: 0.0747 - acc: 0.9694 - val_loss: 0.4803 - val_acc: 0.8902 Epoch 20/20 5324/5324 [==============================] - 49s 9ms/step - loss: 0.0768 - acc: 0.9692 - val_loss: 0.4465 - val_acc: 0.9020 Saved model! ###Markdown Below are prediction codeFunction to load the meta data and the model we just trained. ###Code model = None sentiment_tag = None maxLength = None def loadModel(): global model, sentiment_tag, maxLength metaData = __loadStuff("./data/meta_sentiment_chinese.p") maxLength = metaData.get("maxLength") vocab_size = metaData.get("vocab_size") output_dimen = metaData.get("output_dimen") sentiment_tag = metaData.get("sentiment_tag") embedding_dim = 256 if model is None: model = Sequential() model.add(Embedding(vocab_size, embedding_dim, input_length=maxLength)) # Each input would have a size of (maxLength x 256) and each of these 256 sized vectors are fed into the GRU layer one at a time. # All the intermediate outputs are collected and then passed on to the second GRU layer. model.add(GRU(256, dropout=0.9, return_sequences=True)) # Using the intermediate outputs, we pass them to another GRU layer and collect the final output only this time model.add(GRU(256, dropout=0.9)) # The output is then sent to a fully connected layer that would give us our final output_dim classes model.add(Dense(output_dimen, activation='softmax')) # We use the adam optimizer instead of standard SGD since it converges much faster model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.load_weights('./data/sentiment_chinese_model.HDF5') model.summary() print("Model weights loaded!") ###Output _____no_output_____ ###Markdown Functions to convert sentence to model input, and predict result ###Code def findFeatures(text): text=Converter('zh-hans').convert(text) text = text.replace("\n", "") text = text.replace("\r", "") seg_list = jieba.cut(text, cut_all=False) seg_list = list(seg_list) text = " ".join(seg_list) textArray = [text] input_tokenizer_load = __loadStuff("./data/input_tokenizer_chinese.p") textArray = np.array(pad_sequences(input_tokenizer_load.texts_to_sequences(textArray), maxlen=maxLength)) return textArray def predictResult(text): if model is None: print("Please run \"loadModel\" first.") return None features = findFeatures(text) predicted = model.predict(features)[0] # we have only one sentence to predict, so take index 0 predicted = np.array(predicted) probab = predicted.max() predition = sentiment_tag[predicted.argmax()] return predition, probab ###Output _____no_output_____ ###Markdown Calling the load model function ###Code loadModel() ###Output _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= embedding_3 (Embedding) (None, 68, 256) 5663488 _________________________________________________________________ gru_5 (GRU) (None, 68, 256) 393984 _________________________________________________________________ gru_6 (GRU) (None, 256) 393984 _________________________________________________________________ dense_3 (Dense) (None, 2) 514 ================================================================= Total params: 6,451,970 Trainable params: 6,451,970 Non-trainable params: 0 _________________________________________________________________ Model weights loaded! ###Markdown Try some new comments, feel free to try your ownThe result tuple consists the predicted result and likehood. ###Code predictResult("还好,床很大而且很干净,前台很友好,很满意,下次还来。") predictResult("床上有污渍,房间太挤不透气,空调不怎么好用。") predictResult("房间有点小但是设备还齐全,没有异味。") predictResult("房间还算干净,一般般吧,短住还凑合。") predictResult("开始不太满意,前台好说话换了一间,房间很干净没有异味。") predictResult("你是个SB") ###Output _____no_output_____
tf_keras/hyperparameter_tuning.ipynb
###Markdown Using CallbacksCallbacks are an integral part of Keras. Callbacks are used to get performance information, log progress, halt in the event of errors, tune parameters, save model state (in case of crash, etc.), finish training once loss is minimized. The list goes on.Callbacks can be passed to fit, evaluate and predict methods of keras.Model. GoalsThe overarching goal is to learn to use callbacks for some typical tasks. These include:- Reporting about training progress.- Stoping once training no longer reduces loss.- Tuning hyperparameters.- Implementing adaptive learning rate decay.- Finding an optimal batch-size for training.- Putting some of this into ```my_keras_utils.py``` so that they can be easily called and reused. What's Here?I continue working with MNIST data, which I began working with in [my first Keras models](first_model.ipynb). My **concrete objective** is to tune a model that does well on Kaggle: 97th percentile? That's tough, but I think I can make it work. ###Code import numpy as np from datetime import datetime, time, timedelta import pandas as pd import tensorflow as tf import kerastuner as kt from tensorflow import keras from tensorflow.keras import layers import matplotlib.pyplot as plt import my_keras_utils as my_utils tf.__version__ tf.config.experimental.list_physical_devices('GPU') ## Load our data. ## Since the load process is a little slow, the try-except allows us to re-run all ## cells without having to wait. try: ## Raises NameError and loads data if X_train is not defined. X_train.shape except NameError: ((X_train, y_train), (X_dev, y_dev), (X_test, y_test)) = my_utils.load_kaggle_mnist() X_train.shape X_dev.shape ## Let's use the dropout model from my first_model notebook. inputs = keras.Input(shape=(784)) x = layers.experimental.preprocessing.Rescaling(1./255)(inputs) x = layers.Dropout(rate = .05)(x) x = layers.Dense(100, activation='relu',)(x) x = layers.Dropout(rate = .15)(x) x = layers.Dense(100, activation='relu',)(x) x = layers.Dropout(rate = .15)(x) outputs = layers.Dense(10, activation='softmax')(x) model_dropout = keras.Model(inputs=inputs, outputs=outputs, name='Dropout') model_dropout.summary() optimizer = keras.optimizers.Adam(.001) model_dropout.compile(optimizer=optimizer, loss="sparse_categorical_crossentropy", metrics=[keras.metrics.SparseCategoricalAccuracy(name="acc")] ) init_weights = model_dropout.get_weights() early_stopping = keras.callbacks.EarlyStopping( monitor='loss', patience = 10, restore_best_weights = True) adaptive_lr = keras.callbacks.ReduceLROnPlateau( monitor='loss', patience= 4, cooldown= 8, factor=0.3,) progress_update = my_utils.TimedProgressUpdate(1) callbacks = [progress_update, early_stopping] epochs = 0 initial_epoch = 0 batch_size = 128 if True: ## reinitialize model_dropout.set_weights(init_weights) increment_epochs = 50 epochs += increment_epochs history1 = model_dropout.fit(X_train, y_train, epochs=epochs, initial_epoch = initial_epoch, batch_size=batch_size, validation_data=(X_dev, y_dev), callbacks = [progress_update], verbose = 0) initial_epoch += increment_epochs if True: ## reinitialize model_dropout.set_weights(init_weights) increment_epochs = 50 epochs += increment_epochs history2 = model_dropout.fit(X_train, y_train, epochs=epochs, initial_epoch = initial_epoch, batch_size=batch_size, validation_data=(X_dev, y_dev), callbacks = [adaptive_lr], verbose =0) initial_epoch += increment_epochs def overlay_histories(histories, metric): fig, ax = plt.subplots() n = 0 for h in histories: x = range(0,len(h.history[metric])) y = np.array(h.history[metric]) label = 'history_' + str(n) ax.plot(x,y, label=label) n += 1 ax.legend() overlay_histories([history1, history2], 'val_loss') ###Output _____no_output_____ ###Markdown TuningTime to work with Keras Tuner. Read the DocsReading the documentation was really helpful. Note that the search function _will_ use callbacks. So, instead of worrying about the ```max_epochs```, you can (if you have the resources and time--which _is_ a resource) just add a realistic ```EarlyStopping``` callback. Below, I use this to stop if training loss is not decreasing. ###Code def model_builder(hp): ## Define the parameter search space. hp_dropout_x1 = hp.Float('rate1', min_value = .05, max_value = .5, step=.01) hp_dropout_w1 = hp.Float('rate2', min_value = .05, max_value = .5, step=.01) hp_dropout_w2 = hp.Float('rate3', min_value = .05, max_value = .5, step=.01) hp_l1_units = hp.Int('l1_units', min_value = 20, max_value = 200, step = 20) hp_l2_units = hp.Int('l2_units', min_value = 20, max_value = 200, step = 20) ## ### I need to learn about the options here. 'Choice' means "here are your choices" ## ### 'Int' is a different option that searches an integer range by steps. inputs = keras.Input(shape=(784)) x = layers.experimental.preprocessing.Rescaling(1./255)(inputs) x = layers.Dropout(rate = hp_dropout_x1)(x) x = layers.Dense(hp_l1_units, activation='relu',)(x) x = layers.Dropout(rate = hp_dropout_w1)(x) x = layers.Dense(hp_l2_units, activation='relu',)(x) x = layers.Dropout(rate = hp_dropout_w2)(x) outputs = layers.Dense(10, activation='softmax')(x) model = keras.Model(inputs=inputs, outputs=outputs) model.compile(optimizer = keras.optimizers.Adam(.003), loss = "sparse_categorical_crossentropy", metrics=[keras.metrics.SparseCategoricalAccuracy(name="acc")] ) return model tuner = kt.Hyperband(model_builder, objective = 'val_loss', max_epochs = 120, hyperband_iterations = 2, factor = 3, directory = 'ignored/kt_trials', project_name = 'dropout_mnist', ) tuner.search_space_summary() ## prevent bloated ipython output during training. clear_output = my_utils.ClearTrainingOutput() timed_update = my_utils.TimedProgressUpdate(3) ## stop when training loss is not happening. train_loss_stopping = keras.callbacks.EarlyStopping(monitor='loss', patience = 10, restore_best_weights = False ) adaptive_lr = keras.callbacks.ReduceLROnPlateau( monitor='loss', patience= 4, cooldown= 8, min_lr=.0003, factor=0.334,) tuner_callbacks = [adaptive_lr, train_loss_stopping, timed_update] start = datetime.now() tuner.search(X_train, y_train, epochs=120, batch_size=128, validation_data=(X_dev, y_dev), callbacks = tuner_callbacks, verbose = 0 ) tuner.results_summary() ###Output _____no_output_____ ###Markdown Ran the Hyperband, with the following params:```tuner = kt.Hyperband(model_builder, objective = 'val_loss', max_epochs = 200, hyperband_iterations = 10, factor = 3, directory = 'ignored/kt_trials', project_name = 'dropout_mnist') tuner.search(X_train, y_train, epochs=50, batch_size=128, validation_data=(X_dev, y_dev), callbacks = tuner_callbacks, )```Which involved way too many iterations. I didn't notice the hyperband_iterations param (10!). os.path.normpathPer [Issue 198](https://github.com/keras-team/keras-tuner/issues/198) you may need to add os.path.normpath() to the directory keyword arg in Windows and the path to the logs needs to be short. (E.g., you won't be able to use my_trials/this_type_of_trial/this_trial--too long. Try mt/t/this). ###Code def rand_search_model_builder(hp): ## Define the hyperparameter search space. hp_dropout_x1 = hp.Float('rate1', min_value = .1, max_value = .4, step=.01) hp_dropout_w1 = hp.Float('rate2', min_value = .05, max_value = .4, step=.01) hp_dropout_w2 = hp.Float('rate3', min_value = .05, max_value = .4, step=.01) # Define the hypermodel inputs = keras.Input(shape=(784)) x = layers.experimental.preprocessing.Rescaling(1./255)(inputs) x = layers.Dropout(rate = hp_dropout_x1)(x) x = layers.Dense(100, activation='relu',)(x) x = layers.Dropout(rate = hp_dropout_w1)(x) x = layers.Dense(100, activation='relu',)(x) x = layers.Dropout(rate = hp_dropout_w2)(x) outputs = layers.Dense(10, activation='softmax')(x) model = keras.Model(inputs=inputs, outputs=outputs) model.compile(optimizer = keras.optimizers.Adam(.003), loss = "sparse_categorical_crossentropy", metrics=[keras.metrics.SparseCategoricalAccuracy(name="acc")] ) return model #kt.tuners.RandomSearch? rand_tuner = kt.tuners.RandomSearch(rand_search_model_builder, objective = 'val_loss', max_trials = 25, executions_per_trial=1, directory = os.path.normpath('ignored/mnist'), project_name = 'rs') rand_tuner.search_space_summary() adaptive_lr = keras.callbacks.ReduceLROnPlateau( monitor='loss', patience= 4, cooldown= 8, min_lr=.0003, factor=0.334,) progress_update = my_utils.TimedProgressUpdate(2) rand_tuner.search(X_train, y_train, epochs=120, batch_size=128, validation_data=(X_dev, y_dev), callbacks = [adaptive_lr, progress_update, #clear_output ], verbose = 0 ) def rand_search_model_builder_2(hp): ## Define the hyperparameter search space. hp_dropout_x1 = hp.Float('rate1', min_value = .27, max_value = .38, step=.001) hp_dropout_w1 = hp.Float('rate2', min_value = .05, max_value = .15, step=.001) hp_dropout_w2 = hp.Float('rate3', min_value = .11, max_value = .21, step=.001) # Define the hypermodel inputs = keras.Input(shape=(784)) x = layers.experimental.preprocessing.Rescaling(1./255)(inputs) x = layers.Dropout(rate = hp_dropout_x1)(x) x = layers.Dense(100, activation='relu',)(x) x = layers.Dropout(rate = hp_dropout_w1)(x) x = layers.Dense(100, activation='relu',)(x) x = layers.Dropout(rate = hp_dropout_w2)(x) outputs = layers.Dense(10, activation='softmax')(x) model = keras.Model(inputs=inputs, outputs=outputs) model.compile(optimizer = keras.optimizers.Adam(.003), loss = "sparse_categorical_crossentropy", metrics=[keras.metrics.SparseCategoricalAccuracy(name="acc")] ) return model #kt.tuners.RandomSearch? new_tuner = kt.tuners.RandomSearch(rand_search_model_builder_2, objective = 'val_loss', max_trials = 25, executions_per_trial=1, directory = os.path.normpath('ignored/mnist'), project_name = 'rs_2') new_tuner.search_space_summary() adaptive_lr = keras.callbacks.ReduceLROnPlateau( monitor='loss', patience= 4, cooldown= 8, min_lr=.0003, factor=0.334,) progress_update = my_utils.TimedProgressUpdate(.5) new_tuner.search(X_train, y_train, epochs=1, batch_size=128, validation_data=(X_dev, y_dev), callbacks = [adaptive_lr, progress_update, #clear_output ], verbose = 0 ) ###Output INFO:tensorflow:Reloading Oracle from existing project ignored\mnist\rs_2\oracle.json INFO:tensorflow:Reloading Tuner from ignored\mnist\rs_2\tuner0.json ###Markdown A dubious fist runI ran a random_search, lr = .001 and a 0-.5 range on the params; 50 epochs, 2 executions per trial. The results were okay, but it seemed like the number of epochs was too few. Also, the max_trials was too big. At least on the Surface, it took three minutes per trial. Ouch. 5 hours later... I ran a second timeThis a second time. This time with more epochs (120), but 1 execution per trial and a slightly different band of paramters. There was a clear stand outTrial ID: 39f9768e653c7179ddb0917bd84a4b9d|-Score: 0.05155862867832184|-Best step: 0Hyperparameters:|-rate1: 0.32999999999999985|-rate2: 0.1|-rate3: 0.16000000000000003 ###Code new_tuner.results_summary() ###Output _____no_output_____ ###Markdown Baysian TuningLet's see how well the Baysian Optimizer does with the rand_search_builder. ###Code bayesian_tuner = kt.tuners.BayesianOptimization( rand_search_model_builder, objective='val_loss', max_trials = 25, directory = os.path.normpath('ignored/mnist'), project_name = 'bayes' ) bayesian_tuner.search(X_train, y_train, epochs=120, batch_size=128, validation_data=(X_dev, y_dev), callbacks = [adaptive_lr, progress_update, clear_output ], verbose = 0 ) bayesian_tuner.results_summary() ###Output _____no_output_____ ###Markdown Let's put it all together. The Bayesian tuner got pretty bad results compared with the other two. I'm not really sure what happened, except that it didn't seem exploratory enough. I should probably figure out how to get better Bayesian results.But for now, we have several high scoring models. Let's extract three and cross validate. ###Code best = rand_tuner.get_best_models()[0] config = best.get_config() model_1 = best.from_config(config) config temp = rand_tuner.get_best_models(num_models=2) model_2 = temp[0].from_config(temp[0].get_config()) model_3 = temp[1].from_config(temp[1].get_config()) def cross_validate(model, X, y, val_size = 2000, folds = 3): init_weights = model.get_weights() results = [] for fold in range(folds): X_val = X[fold*val_size:(fold+1)*val_size,:] X_train = np.concatenate((X[0:fold*val_size,:],X[(fold+1)*val_size:,:])) y_val = y[fold*val_size:(fold+1)*val_size] y_train = np.concatenate((y[0:fold*val_size],y[(fold+1)*val_size:])) history = model.fit(X_train, y_train, epochs=200, batch_size=128, validation_data=(X_val, y_val), callbacks = [adaptive_lr, progress_update, clear_output ], verbose = 0) model.set_weights(init_weights) results.append(history) return results results = [] for model in [model_1, model_2, model_3]: model.compile(optimizer = keras.optimizers.Adam(.003), loss = "sparse_categorical_crossentropy", metrics=[keras.metrics.SparseCategoricalAccuracy(name="acc")] ) histories = cross_validate(model, X_train, y_train) results.append(histories) for e in results[0]: print(e.history['val_loss'][-1]) for e in results[1]: print(e.history['val_loss'][-1]) for e in results[2]: print(e.history['val_loss'][-1]) ## Reset all the weights. model_1.compile(optimizer = keras.optimizers.Adam(.003), loss = "sparse_categorical_crossentropy", metrics=[keras.metrics.SparseCategoricalAccuracy(name="acc")] ) ## Save so I can move to another computer model_1.save('MNIST_model.hdf5') model_2.save("mnist_2.hdf5") model_3.save("mnist_3.hdf5") model_1.fit(X_train, y_train, epochs=200, batch_size=128, validation_data=(X_dev, y_dev), callbacks = [adaptive_lr, progress_update, clear_output ], verbose = 2) model_1.save('MNIST_model.hdf5') ###Output Begin training of functional_1 at 08:45:50. Progress updates every 120.0 seconds. Epoch 1/200 297/297 - 1s - loss: 0.0311 - acc: 0.9896 - val_loss: 0.0906 - val_acc: 0.9785 Epoch 2/200 297/297 - 1s - loss: 0.0333 - acc: 0.9886 - val_loss: 0.0886 - val_acc: 0.9805 Epoch 3/200 297/297 - 1s - loss: 0.0343 - acc: 0.9886 - val_loss: 0.0873 - val_acc: 0.9815 Epoch 4/200 297/297 - 1s - loss: 0.0322 - acc: 0.9896 - val_loss: 0.0871 - val_acc: 0.9785 Epoch 5/200 297/297 - 1s - loss: 0.0342 - acc: 0.9884 - val_loss: 0.0875 - val_acc: 0.9800 Epoch 6/200 297/297 - 1s - loss: 0.0372 - acc: 0.9881 - val_loss: 0.0890 - val_acc: 0.9790 Epoch 7/200 297/297 - 1s - loss: 0.0342 - acc: 0.9890 - val_loss: 0.0885 - val_acc: 0.9795 Epoch 8/200 297/297 - 1s - loss: 0.0313 - acc: 0.9896 - val_loss: 0.0891 - val_acc: 0.9800 Epoch 9/200 297/297 - 1s - loss: 0.0318 - acc: 0.9886 - val_loss: 0.0875 - val_acc: 0.9800 Epoch 10/200 297/297 - 1s - loss: 0.0335 - acc: 0.9891 - val_loss: 0.0853 - val_acc: 0.9810 Epoch 11/200 297/297 - 1s - loss: 0.0321 - acc: 0.9896 - val_loss: 0.0863 - val_acc: 0.9805 Epoch 12/200 297/297 - 1s - loss: 0.0333 - acc: 0.9892 - val_loss: 0.0905 - val_acc: 0.9795 Epoch 13/200 297/297 - 1s - loss: 0.0333 - acc: 0.9890 - val_loss: 0.0915 - val_acc: 0.9805 Epoch 14/200 297/297 - 1s - loss: 0.0329 - acc: 0.9887 - val_loss: 0.0879 - val_acc: 0.9805 Epoch 15/200 297/297 - 1s - loss: 0.0325 - acc: 0.9888 - val_loss: 0.0895 - val_acc: 0.9815 Epoch 16/200 297/297 - 1s - loss: 0.0311 - acc: 0.9898 - val_loss: 0.0910 - val_acc: 0.9795 Epoch 17/200 297/297 - 1s - loss: 0.0326 - acc: 0.9892 - val_loss: 0.0876 - val_acc: 0.9805 Epoch 18/200 297/297 - 1s - loss: 0.0333 - acc: 0.9892 - val_loss: 0.0893 - val_acc: 0.9810 Epoch 19/200 297/297 - 1s - loss: 0.0340 - acc: 0.9886 - val_loss: 0.0900 - val_acc: 0.9810 Epoch 20/200 297/297 - 1s - loss: 0.0307 - acc: 0.9898 - val_loss: 0.0900 - val_acc: 0.9810 Epoch 21/200 297/297 - 1s - loss: 0.0325 - acc: 0.9888 - val_loss: 0.0899 - val_acc: 0.9795 Epoch 22/200 297/297 - 1s - loss: 0.0339 - acc: 0.9896 - val_loss: 0.0901 - val_acc: 0.9795 Epoch 23/200 297/297 - 1s - loss: 0.0319 - acc: 0.9897 - val_loss: 0.0877 - val_acc: 0.9795 Epoch 24/200 297/297 - 1s - loss: 0.0331 - acc: 0.9892 - val_loss: 0.0890 - val_acc: 0.9800 Epoch 25/200 297/297 - 1s - loss: 0.0320 - acc: 0.9893 - val_loss: 0.0889 - val_acc: 0.9800 Epoch 26/200 297/297 - 1s - loss: 0.0318 - acc: 0.9891 - val_loss: 0.0898 - val_acc: 0.9810 Epoch 27/200 297/297 - 1s - loss: 0.0313 - acc: 0.9891 - val_loss: 0.0890 - val_acc: 0.9805 Epoch 28/200 297/297 - 1s - loss: 0.0322 - acc: 0.9900 - val_loss: 0.0885 - val_acc: 0.9820 Epoch 29/200 297/297 - 1s - loss: 0.0322 - acc: 0.9893 - val_loss: 0.0905 - val_acc: 0.9795 Epoch 30/200 297/297 - 1s - loss: 0.0321 - acc: 0.9898 - val_loss: 0.0896 - val_acc: 0.9815 Epoch 31/200 297/297 - 1s - loss: 0.0331 - acc: 0.9890 - val_loss: 0.0904 - val_acc: 0.9820 Epoch 32/200 297/297 - 1s - loss: 0.0324 - acc: 0.9895 - val_loss: 0.0885 - val_acc: 0.9815 Epoch 33/200 297/297 - 1s - loss: 0.0308 - acc: 0.9899 - val_loss: 0.0912 - val_acc: 0.9800 Epoch 34/200 297/297 - 1s - loss: 0.0320 - acc: 0.9893 - val_loss: 0.0872 - val_acc: 0.9800 Epoch 35/200 297/297 - 1s - loss: 0.0307 - acc: 0.9897 - val_loss: 0.0880 - val_acc: 0.9830 Epoch 36/200 297/297 - 1s - loss: 0.0292 - acc: 0.9904 - val_loss: 0.0896 - val_acc: 0.9805 Epoch 37/200 297/297 - 1s - loss: 0.0321 - acc: 0.9895 - val_loss: 0.0934 - val_acc: 0.9790 Epoch 38/200 297/297 - 1s - loss: 0.0303 - acc: 0.9899 - val_loss: 0.0944 - val_acc: 0.9795 Epoch 39/200 297/297 - 1s - loss: 0.0304 - acc: 0.9902 - val_loss: 0.0933 - val_acc: 0.9810 Epoch 40/200 297/297 - 1s - loss: 0.0280 - acc: 0.9904 - val_loss: 0.0949 - val_acc: 0.9795 Epoch 41/200 297/297 - 1s - loss: 0.0325 - acc: 0.9893 - val_loss: 0.0923 - val_acc: 0.9800 Epoch 42/200 297/297 - 1s - loss: 0.0344 - acc: 0.9893 - val_loss: 0.0921 - val_acc: 0.9790 Epoch 43/200 297/297 - 1s - loss: 0.0307 - acc: 0.9896 - val_loss: 0.0918 - val_acc: 0.9810 Epoch 44/200 297/297 - 1s - loss: 0.0330 - acc: 0.9893 - val_loss: 0.0892 - val_acc: 0.9805 Epoch 45/200 297/297 - 1s - loss: 0.0328 - acc: 0.9899 - val_loss: 0.0878 - val_acc: 0.9815 Epoch 46/200 297/297 - 1s - loss: 0.0307 - acc: 0.9896 - val_loss: 0.0903 - val_acc: 0.9820 Epoch 47/200 297/297 - 1s - loss: 0.0311 - acc: 0.9899 - val_loss: 0.0914 - val_acc: 0.9820 Epoch 48/200 297/297 - 1s - loss: 0.0307 - acc: 0.9897 - val_loss: 0.0898 - val_acc: 0.9820 Epoch 49/200 297/297 - 1s - loss: 0.0293 - acc: 0.9910 - val_loss: 0.0878 - val_acc: 0.9820 Epoch 50/200 297/297 - 1s - loss: 0.0321 - acc: 0.9898 - val_loss: 0.0878 - val_acc: 0.9825 Epoch 51/200 297/297 - 1s - loss: 0.0320 - acc: 0.9898 - val_loss: 0.0900 - val_acc: 0.9815 Epoch 52/200 297/297 - 1s - loss: 0.0293 - acc: 0.9903 - val_loss: 0.0918 - val_acc: 0.9800 Epoch 53/200 297/297 - 1s - loss: 0.0332 - acc: 0.9895 - val_loss: 0.0920 - val_acc: 0.9800 Epoch 54/200 297/297 - 1s - loss: 0.0346 - acc: 0.9889 - val_loss: 0.0902 - val_acc: 0.9815 Epoch 55/200 297/297 - 1s - loss: 0.0319 - acc: 0.9895 - val_loss: 0.0911 - val_acc: 0.9815 Epoch 56/200 297/297 - 1s - loss: 0.0314 - acc: 0.9902 - val_loss: 0.0926 - val_acc: 0.9815 Epoch 57/200 297/297 - 1s - loss: 0.0311 - acc: 0.9900 - val_loss: 0.0895 - val_acc: 0.9820 Epoch 58/200 297/297 - 1s - loss: 0.0296 - acc: 0.9900 - val_loss: 0.0924 - val_acc: 0.9805 Epoch 59/200 297/297 - 1s - loss: 0.0300 - acc: 0.9903 - val_loss: 0.0923 - val_acc: 0.9815 Epoch 60/200 297/297 - 1s - loss: 0.0309 - acc: 0.9901 - val_loss: 0.0920 - val_acc: 0.9820 Epoch 61/200 297/297 - 1s - loss: 0.0301 - acc: 0.9899 - val_loss: 0.0906 - val_acc: 0.9805 Epoch 62/200 297/297 - 1s - loss: 0.0315 - acc: 0.9892 - val_loss: 0.0871 - val_acc: 0.9820 Epoch 63/200 297/297 - 1s - loss: 0.0317 - acc: 0.9898 - val_loss: 0.0927 - val_acc: 0.9805 Epoch 64/200 297/297 - 1s - loss: 0.0314 - acc: 0.9894 - val_loss: 0.0931 - val_acc: 0.9810 Epoch 65/200 297/297 - 1s - loss: 0.0306 - acc: 0.9896 - val_loss: 0.0933 - val_acc: 0.9795 Epoch 66/200 297/297 - 1s - loss: 0.0315 - acc: 0.9898 - val_loss: 0.0921 - val_acc: 0.9805 Epoch 67/200 297/297 - 1s - loss: 0.0308 - acc: 0.9904 - val_loss: 0.0910 - val_acc: 0.9820 Epoch 68/200 297/297 - 1s - loss: 0.0313 - acc: 0.9898 - val_loss: 0.0928 - val_acc: 0.9820 Epoch 69/200 297/297 - 1s - loss: 0.0300 - acc: 0.9905 - val_loss: 0.0899 - val_acc: 0.9820 Epoch 70/200 297/297 - 1s - loss: 0.0287 - acc: 0.9901 - val_loss: 0.0928 - val_acc: 0.9815 Epoch 71/200 297/297 - 1s - loss: 0.0328 - acc: 0.9898 - val_loss: 0.0917 - val_acc: 0.9800 Epoch 72/200 297/297 - 1s - loss: 0.0306 - acc: 0.9893 - val_loss: 0.0894 - val_acc: 0.9825 Epoch 73/200 297/297 - 1s - loss: 0.0302 - acc: 0.9898 - val_loss: 0.0926 - val_acc: 0.9825 Epoch 74/200 297/297 - 1s - loss: 0.0328 - acc: 0.9892 - val_loss: 0.0921 - val_acc: 0.9815 Epoch 75/200 297/297 - 1s - loss: 0.0316 - acc: 0.9893 - val_loss: 0.0917 - val_acc: 0.9815 Epoch 76/200 297/297 - 1s - loss: 0.0300 - acc: 0.9903 - val_loss: 0.0961 - val_acc: 0.9805 Epoch 77/200 297/297 - 1s - loss: 0.0287 - acc: 0.9902 - val_loss: 0.0956 - val_acc: 0.9805 Epoch 78/200 297/297 - 1s - loss: 0.0326 - acc: 0.9893 - val_loss: 0.0901 - val_acc: 0.9815 Epoch 79/200 297/297 - 1s - loss: 0.0337 - acc: 0.9888 - val_loss: 0.0907 - val_acc: 0.9815 Epoch 80/200 297/297 - 1s - loss: 0.0283 - acc: 0.9908 - val_loss: 0.0917 - val_acc: 0.9825 Epoch 81/200 297/297 - 1s - loss: 0.0320 - acc: 0.9899 - val_loss: 0.0906 - val_acc: 0.9810 Epoch 82/200 297/297 - 1s - loss: 0.0300 - acc: 0.9903 - val_loss: 0.0910 - val_acc: 0.9820 Epoch 83/200 297/297 - 1s - loss: 0.0304 - acc: 0.9899 - val_loss: 0.0917 - val_acc: 0.9820 Epoch 84/200 297/297 - 1s - loss: 0.0311 - acc: 0.9896 - val_loss: 0.0905 - val_acc: 0.9820 Epoch 85/200 297/297 - 1s - loss: 0.0318 - acc: 0.9902 - val_loss: 0.0908 - val_acc: 0.9830 Epoch 86/200 297/297 - 1s - loss: 0.0307 - acc: 0.9893 - val_loss: 0.0927 - val_acc: 0.9815 Epoch 87/200 297/297 - 1s - loss: 0.0305 - acc: 0.9894 - val_loss: 0.0944 - val_acc: 0.9810 Epoch 88/200 297/297 - 1s - loss: 0.0294 - acc: 0.9904 - val_loss: 0.0908 - val_acc: 0.9810 Epoch 89/200 297/297 - 1s - loss: 0.0290 - acc: 0.9911 - val_loss: 0.0904 - val_acc: 0.9820 Epoch 90/200 297/297 - 1s - loss: 0.0288 - acc: 0.9904 - val_loss: 0.0945 - val_acc: 0.9820 Epoch 91/200 297/297 - 1s - loss: 0.0308 - acc: 0.9894 - val_loss: 0.0965 - val_acc: 0.9820 Epoch 92/200 297/297 - 1s - loss: 0.0315 - acc: 0.9892 - val_loss: 0.0963 - val_acc: 0.9805 Epoch 93/200 297/297 - 1s - loss: 0.0322 - acc: 0.9894 - val_loss: 0.0949 - val_acc: 0.9815 Epoch 94/200 297/297 - 1s - loss: 0.0293 - acc: 0.9900 - val_loss: 0.0918 - val_acc: 0.9810 Epoch 95/200 297/297 - 1s - loss: 0.0318 - acc: 0.9894 - val_loss: 0.0892 - val_acc: 0.9835 Epoch 96/200 297/297 - 1s - loss: 0.0300 - acc: 0.9896 - val_loss: 0.0900 - val_acc: 0.9825 Epoch 97/200 297/297 - 1s - loss: 0.0315 - acc: 0.9897 - val_loss: 0.0915 - val_acc: 0.9805 Epoch 98/200 297/297 - 1s - loss: 0.0283 - acc: 0.9903 - val_loss: 0.0893 - val_acc: 0.9810 Epoch 99/200 297/297 - 1s - loss: 0.0303 - acc: 0.9897 - val_loss: 0.0917 - val_acc: 0.9820 Epoch 100/200 297/297 - 1s - loss: 0.0281 - acc: 0.9902 - val_loss: 0.0908 - val_acc: 0.9820 Epoch 101/200 297/297 - 1s - loss: 0.0300 - acc: 0.9900 - val_loss: 0.0903 - val_acc: 0.9830 Epoch 102/200 297/297 - 1s - loss: 0.0303 - acc: 0.9904 - val_loss: 0.0920 - val_acc: 0.9810 Epoch 103/200 297/297 - 1s - loss: 0.0282 - acc: 0.9910 - val_loss: 0.0894 - val_acc: 0.9820 Epoch 104/200 297/297 - 1s - loss: 0.0295 - acc: 0.9905 - val_loss: 0.0907 - val_acc: 0.9825 Epoch 105/200 297/297 - 1s - loss: 0.0324 - acc: 0.9892 - val_loss: 0.0903 - val_acc: 0.9825 Epoch 106/200 297/297 - 1s - loss: 0.0308 - acc: 0.9900 - val_loss: 0.0919 - val_acc: 0.9820 Epoch 107/200 297/297 - 1s - loss: 0.0321 - acc: 0.9898 - val_loss: 0.0911 - val_acc: 0.9845 Epoch 108/200 297/297 - 1s - loss: 0.0300 - acc: 0.9897 - val_loss: 0.0932 - val_acc: 0.9825 Epoch 109/200 297/297 - 1s - loss: 0.0309 - acc: 0.9895 - val_loss: 0.0920 - val_acc: 0.9825 Epoch 110/200 297/297 - 1s - loss: 0.0290 - acc: 0.9903 - val_loss: 0.0931 - val_acc: 0.9800 Epoch 111/200 297/297 - 1s - loss: 0.0294 - acc: 0.9897 - val_loss: 0.0961 - val_acc: 0.9800 Epoch 112/200 297/297 - 1s - loss: 0.0310 - acc: 0.9900 - val_loss: 0.0947 - val_acc: 0.9820 Epoch 113/200 297/297 - 1s - loss: 0.0316 - acc: 0.9897 - val_loss: 0.0924 - val_acc: 0.9810 Epoch 114/200 297/297 - 1s - loss: 0.0298 - acc: 0.9904 - val_loss: 0.0947 - val_acc: 0.9815 Epoch 115/200 297/297 - 1s - loss: 0.0269 - acc: 0.9906 - val_loss: 0.0936 - val_acc: 0.9815 Epoch 116/200 297/297 - 1s - loss: 0.0312 - acc: 0.9897 - val_loss: 0.0935 - val_acc: 0.9810 Epoch 117/200 297/297 - 1s - loss: 0.0295 - acc: 0.9903 - val_loss: 0.0939 - val_acc: 0.9810 Epoch 118/200 297/297 - 1s - loss: 0.0286 - acc: 0.9905 - val_loss: 0.0908 - val_acc: 0.9820 Epoch 119/200 297/297 - 1s - loss: 0.0309 - acc: 0.9901 - val_loss: 0.0928 - val_acc: 0.9815 Epoch 120/200 297/297 - 1s - loss: 0.0320 - acc: 0.9894 - val_loss: 0.0935 - val_acc: 0.9795 Epoch 121/200 297/297 - 1s - loss: 0.0306 - acc: 0.9901 - val_loss: 0.0951 - val_acc: 0.9805 Epoch 122/200 297/297 - 1s - loss: 0.0290 - acc: 0.9908 - val_loss: 0.0912 - val_acc: 0.9810 Epoch 123/200 297/297 - 1s - loss: 0.0275 - acc: 0.9911 - val_loss: 0.0899 - val_acc: 0.9810 Epoch 124/200 297/297 - 1s - loss: 0.0294 - acc: 0.9903 - val_loss: 0.0887 - val_acc: 0.9815 Epoch 125/200 297/297 - 1s - loss: 0.0299 - acc: 0.9901 - val_loss: 0.0901 - val_acc: 0.9810 Epoch 126/200 297/297 - 1s - loss: 0.0296 - acc: 0.9902 - val_loss: 0.0891 - val_acc: 0.9820 Epoch 127/200 297/297 - 1s - loss: 0.0306 - acc: 0.9900 - val_loss: 0.0858 - val_acc: 0.9815 Epoch 128/200 297/297 - 1s - loss: 0.0300 - acc: 0.9894 - val_loss: 0.0921 - val_acc: 0.9815 Epoch 129/200 297/297 - 1s - loss: 0.0266 - acc: 0.9909 - val_loss: 0.0940 - val_acc: 0.9805 Epoch 130/200 297/297 - 1s - loss: 0.0314 - acc: 0.9901 - val_loss: 0.0979 - val_acc: 0.9795 Epoch 131/200 297/297 - 1s - loss: 0.0293 - acc: 0.9908 - val_loss: 0.0941 - val_acc: 0.9810 Epoch 132/200 297/297 - 1s - loss: 0.0285 - acc: 0.9908 - val_loss: 0.0961 - val_acc: 0.9810 Epoch 133/200 297/297 - 1s - loss: 0.0289 - acc: 0.9902 - val_loss: 0.0923 - val_acc: 0.9820 Epoch 134/200 297/297 - 1s - loss: 0.0303 - acc: 0.9900 - val_loss: 0.0927 - val_acc: 0.9820 Epoch 135/200 297/297 - 1s - loss: 0.0303 - acc: 0.9905 - val_loss: 0.0913 - val_acc: 0.9825 Epoch 136/200 297/297 - 1s - loss: 0.0314 - acc: 0.9899 - val_loss: 0.0934 - val_acc: 0.9815 Epoch 137/200 297/297 - 1s - loss: 0.0302 - acc: 0.9897 - val_loss: 0.0885 - val_acc: 0.9825 Epoch 138/200 297/297 - 1s - loss: 0.0282 - acc: 0.9908 - val_loss: 0.0898 - val_acc: 0.9805 Epoch 139/200 297/297 - 1s - loss: 0.0291 - acc: 0.9901 - val_loss: 0.0901 - val_acc: 0.9800 Epoch 140/200 297/297 - 1s - loss: 0.0290 - acc: 0.9904 - val_loss: 0.0928 - val_acc: 0.9805 Epoch 141/200 297/297 - 1s - loss: 0.0279 - acc: 0.9905 - val_loss: 0.0933 - val_acc: 0.9795 Epoch 142/200 297/297 - 1s - loss: 0.0306 - acc: 0.9899 - val_loss: 0.0924 - val_acc: 0.9790 Epoch 143/200 297/297 - 1s - loss: 0.0281 - acc: 0.9910 - val_loss: 0.0878 - val_acc: 0.9800 Epoch 144/200 297/297 - 1s - loss: 0.0280 - acc: 0.9908 - val_loss: 0.0903 - val_acc: 0.9805 Epoch 145/200 297/297 - 1s - loss: 0.0280 - acc: 0.9906 - val_loss: 0.0898 - val_acc: 0.9815 Epoch 146/200 297/297 - 1s - loss: 0.0285 - acc: 0.9903 - val_loss: 0.0914 - val_acc: 0.9820 Epoch 147/200 297/297 - 1s - loss: 0.0301 - acc: 0.9900 - val_loss: 0.0926 - val_acc: 0.9820 Epoch 148/200 297/297 - 1s - loss: 0.0304 - acc: 0.9899 - val_loss: 0.0925 - val_acc: 0.9820 Epoch 149/200 297/297 - 1s - loss: 0.0298 - acc: 0.9894 - val_loss: 0.0933 - val_acc: 0.9800 Epoch 150/200 297/297 - 1s - loss: 0.0262 - acc: 0.9911 - val_loss: 0.0947 - val_acc: 0.9820 Epoch 151/200 297/297 - 1s - loss: 0.0299 - acc: 0.9902 - val_loss: 0.0944 - val_acc: 0.9805 Epoch 152/200 297/297 - 1s - loss: 0.0292 - acc: 0.9907 - val_loss: 0.0943 - val_acc: 0.9805 Epoch 153/200 297/297 - 1s - loss: 0.0294 - acc: 0.9905 - val_loss: 0.0920 - val_acc: 0.9795 Epoch 154/200 297/297 - 1s - loss: 0.0268 - acc: 0.9913 - val_loss: 0.0934 - val_acc: 0.9805 Epoch 155/200 297/297 - 1s - loss: 0.0273 - acc: 0.9906 - val_loss: 0.0972 - val_acc: 0.9810 Epoch 156/200 297/297 - 1s - loss: 0.0274 - acc: 0.9909 - val_loss: 0.0978 - val_acc: 0.9820 Epoch 157/200 297/297 - 1s - loss: 0.0305 - acc: 0.9902 - val_loss: 0.0968 - val_acc: 0.9800 Epoch 158/200 297/297 - 1s - loss: 0.0276 - acc: 0.9914 - val_loss: 0.0931 - val_acc: 0.9805 Epoch 159/200 297/297 - 1s - loss: 0.0288 - acc: 0.9901 - val_loss: 0.0925 - val_acc: 0.9820 Epoch 160/200 297/297 - 1s - loss: 0.0266 - acc: 0.9913 - val_loss: 0.0926 - val_acc: 0.9815 Epoch 161/200 297/297 - 1s - loss: 0.0285 - acc: 0.9908 - val_loss: 0.0922 - val_acc: 0.9820 Epoch 162/200 297/297 - 1s - loss: 0.0286 - acc: 0.9904 - val_loss: 0.0913 - val_acc: 0.9825 Epoch 163/200 297/297 - 1s - loss: 0.0292 - acc: 0.9903 - val_loss: 0.0915 - val_acc: 0.9820 Epoch 164/200 297/297 - 1s - loss: 0.0299 - acc: 0.9908 - val_loss: 0.0925 - val_acc: 0.9820 Epoch 165/200
docs/notebooks/Recovering weak signals.ipynb
###Markdown Recovering weak signals ###Code import numpy as np import corner import pandas as pd import matplotlib.pyplot as plt import exoplanet as xo import pymc3 as pm import lightkurve as lk %config IPython.matplotlib.backend = "retina" from matplotlib import rcParams rcParams["figure.dpi"] = 150 rcParams["savefig.dpi"] = 150 ###Output _____no_output_____ ###Markdown Sometimes a signal is too weak to be obvious in the `first_look`. There are a few ways to dig deeper. One of those is the time delay periodogram module, which essentially brute forces a model for a range of orbital periods. The likelihood of the model can then be plotted against the orbital periods, and should peak at the correct value. Let's try this out for a short period binary, KIC~6780873 ###Code lc = lk.search_lightcurvefile('KIC 6780873', mission='Kepler').download_all().PDCSAP_FLUX.stitch().remove_nans() lc.plot(); from maelstrom import Maelstrom ms = Maelstrom(lc.time, lc.flux, max_peaks=2, fmin=10) ms.first_look(segment_size=5); ###Output _____no_output_____ ###Markdown It does look like there's something there.. but it's hard to tell. Let's create the periodogram searcher: ###Code pg = ms.period_search() ###Output _____no_output_____ ###Markdown We'll search between 5 and 15 days ###Code periods = np.linspace(5,15,100) res = pg.fit(periods) pg.diagnose(); ###Output _____no_output_____ ###Markdown Cool, there's a peak at the orbital period of ~9 days! This is almost exactly where we know it to be. The contents of the pg.fit results are a list of optimisation dict results. If we want to make these plots manually, we can do the following: ###Code ys = np.array([[r[0] for r in row] for row in res]) sm = np.sum(ys, axis=0) plt.plot(periods, sm) period = periods[np.argmax(sm)] plt.xlabel('Period [day]') plt.ylabel('Model likelihood') print(f"Expected orbital period at {period:.2f} days") ###Output Expected orbital period at 9.14 days
malaria_cell_images.ipynb
###Markdown Malaria Cell InfectionThis notebook is used in the National Institute of Health (NIH) Malaria DatasetURL to the used dataset on Kaggle: https://www.kaggle.com/iarunava/cell-images-for-detecting-malaria Getting the datasetsThis will extract the data from `./drive/My Drive/malaria-cell-images.zip`. Before running this cell, save the dataset to your drive's using the `malaria-cell-images-to-drive` notebook ###Code # Skip copy and unzip if the extracted directory exists ![ -d './cell_images' ] || cp './drive/My Drive/malaria-cell-images.zip' './' ![ -d './cell_images' ] || unzip './malaria-cell-images.zip' > /dev/null !find './cell_images' -type f -name '*.db' -delete ###Output _____no_output_____ ###Markdown Some information about the images ###Code !echo "NUMBER OF POSITIVE IMAGES: $(find ./cell_images/Parasitized -type f | wc -l)" !echo "NUMBER OF NEGATIVE IMAGES: $(find ./cell_images/Uninfected -type f | wc -l)" !echo " TOTAL: $(find ./cell_images -type f | wc -l)" ###Output NUMBER OF POSITIVE IMAGES: 13779 NUMBER OF NEGATIVE IMAGES: 13779 TOTAL: 27558 ###Markdown Importing the modules ###Code !pip install pytorch-ignite import math import os import shutil import matplotlib.pyplot as plt import numpy as np from sklearn.model_selection import train_test_split from tabulate import tabulate from ignite.engine import Events, create_supervised_trainer, create_supervised_evaluator from ignite.metrics import Accuracy, Loss, RunningAverage, ConfusionMatrix from ignite.handlers import ModelCheckpoint, EarlyStopping import torch from torch import optim, nn import torch.nn.functional as F from torch.utils.data.sampler import RandomSampler, SubsetRandomSampler from torchsummary import summary from torchvision import datasets, models, transforms ###Output _____no_output_____ ###Markdown Splitting the datasetSince we'll not be doing model finetuning, the dataset will be split into *training*, with 80% of the dataset, and *test*, with the remaining 20%. ###Code def split_images(imgs_root_path, splits_root_path): if os.path.exists(splits_root_path): shutil.rmtree(splits_root_path) os.makedirs(splits_root_path) fnames_map = dict() img_classes = os.listdir(imgs_root_path) datasets = ['train', 'test'] for img_class in img_classes: img_class_root_path = os.path.join(imgs_root_path, img_class) fnames = os.listdir(img_class_root_path) (train_fnames, test_fnames) = train_test_split( fnames, train_size=0.8, shuffle=True) fnames_map[('train', img_class)] = train_fnames fnames_map[('test', img_class)] = test_fnames for ((dset, img_class), fnames) in fnames_map.items(): for fname in fnames: src_img_path = os.path.join(imgs_root_path, img_class, fname) dst_img_path = os.path.join(splits_root_path, dset, img_class, fname) if not os.path.exists(os.path.dirname(dst_img_path)): os.makedirs(os.path.dirname(dst_img_path)) shutil.copy(src_img_path, dst_img_path) table_headers = datasets table_data = list() for c in img_classes: row = [c] for d in datasets: abs_freq = len(fnames_map[(d, c)]) row.append(abs_freq) table_data.append(row) print('SPLITS ABS. FREQUENCY') print(tabulate(tabular_data=table_data, headers=table_headers, tablefmt='github')) %%time split_images('./cell_images', 'datasets') ###Output SPLITS ABS. FREQUENCY | | train | test | |-------------|---------|--------| | Parasitized | 11023 | 2756 | | Uninfected | 11023 | 2756 | CPU times: user 1.5 s, sys: 2.68 s, total: 4.18 s Wall time: 4.93 s ###Markdown Helper functions Defining the data loaders function ###Code def create_transforms(img_res): train_transforms = transforms.Compose( [ transforms.Resize(IMG_RES), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.RandomRotation(45), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ] ) eval_transforms = transforms.Compose( [ transforms.Resize(IMG_RES), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ] ) return (train_transforms, eval_transforms) def create_data_loaders(img_res): (train_transforms, eval_transforms) = create_transforms(img_res) train_dataset = datasets.ImageFolder('./datasets/train', transform=train_transforms) test_dataset = datasets.ImageFolder('./datasets/test', transform=eval_transforms) train_sampler = RandomSampler(train_dataset) test_sampler = RandomSampler(test_dataset) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=BATCH_SIZE, sampler=train_sampler, num_workers=NUM_WORKERS ) test_loader = torch.utils.data.DataLoader( test_dataset, batch_size=BATCH_SIZE, sampler=test_sampler, num_workers=NUM_WORKERS ) return (train_loader, test_loader) ###Output _____no_output_____ ###Markdown Defining the training, validation and test procedure ###Code def create_training_procedure(model, optimizer, criterion, device, train_loader, test_loader): trainer = create_supervised_trainer(model, optimizer, criterion, device=device) metrics = { 'Accuracy': Accuracy(), 'Loss': Loss(criterion) } evaluator = create_supervised_evaluator(model, metrics=metrics, device=device) train_history = {'accuracy': list(), 'loss': list()} test_history = {'accuracy': list(), 'loss': list()} last_epoch = list() RunningAverage(output_transform=lambda x: x).attach(trainer, 'loss') # The commented lines below add early stopping but for the purposes of this notebook # we won't be using it # def score_function(engine): # val_loss = engine.state.metrics['Loss'] # return -val_loss # handler = EarlyStopping(patience=10, score_function=score_function, trainer=trainer) # evaluator.add_event_handler(Events.COMPLETED, handler) def get_acc_and_loss(data_loader): evaluator.run(data_loader) metrics = evaluator.state.metrics accuracy = metrics['Accuracy'] * 100 loss = metrics['Loss'] return (accuracy, loss) @trainer.on(Events.EPOCH_COMPLETED) def log_epoch_results(trainer): (train_acc, train_loss) = get_acc_and_loss(train_loader) train_history['accuracy'].append(train_acc) train_history['loss'].append(train_loss) (test_acc, test_loss) = get_acc_and_loss(test_loader) test_history['accuracy'].append(test_acc) test_history['loss'].append(test_loss) print( f'Epoch: {trainer.state.epoch:>2},', f'Train Avg. Acc.: {train_acc:.2f},', f'Train Avg. Loss: {train_loss:.2f} -', f'Test Avg. Acc.: {test_acc:.2f},', f'Test Avg. Loss: {test_loss:.2f}' ) checkpointer = ModelCheckpoint( './saved_models', 'baseline-cnn', n_saved=2, create_dir=True, save_as_state_dict=True, require_empty=False) _ = trainer.add_event_handler( Events.EPOCH_COMPLETED, checkpointer, {'baseline-cnn': model}) return (trainer, train_history, test_history) ###Output _____no_output_____ ###Markdown Defining the experiment plots ###Code def display_results(train_history, test_history, title): plt.plot(train_history['accuracy'],label="Training Accuracy") plt.plot(test_history['accuracy'],label="Test Accuracy") plt.xlabel('No. of Epochs') plt.ylabel('Accuracy') plt.legend(frameon=False) plt.title(title) plt.show() plt.plot(train_history['loss'],label="Training Loss") plt.plot(test_history['loss'],label="Test Loss") plt.xlabel('No. of Epochs') plt.ylabel('Loss') plt.legend(frameon=False) plt.title(title) plt.show() ###Output _____no_output_____ ###Markdown Defining the calculation of convolution shape propagationUsing these helpers to calculate how the image shrinks through the convolutional layers ###Code def filter_shape(width, kernel_size, padding=1, stride=1): div = width + (2 * padding) - kernel_size return math.floor(div / stride) + 1 def conv(width, kernel_size, padding=1, stride=1): return filter_shape(width, kernel_size, padding=padding, stride=stride) def pool(width, pool_size, stride=2): return filter_shape(width, kernel_size=pool_size, padding=0, stride=stride) ###Output _____no_output_____ ###Markdown Defining a rapid shape mismatch testWe'll run forward propagation on a single batch to check for input shape mismatch between the convolutional and fully-connected layers ###Code def test_forward_prop(model, train_loader, device): """ A simple shape mismatch test for the forward propagation """ (data, target) = next(iter(train_loader)) (data, target) = (data.to(device), target.to(device)) logits = model(data) (batch_size, num_classes) = logits.shape print(f'NO SHAPE MISMATCH ERRORS IT SEEMS...') print(f'BATCH SIZE: {batch_size}, NUM. CLASSES: {num_classes}') ###Output _____no_output_____ ###Markdown Experiment - Baseline CNNURL: https://www.kaggle.com/pradheeprio/malaria-cell-image-detection-using-cnn-acc-95 Configuring the parameters ###Code DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' print(f'DEVICE USED: {DEVICE}') RANDOM_SEED = 42 BATCH_SIZE = 64 NUM_EPOCHS = 30 LEARNING_RATE = 0.001 IMG_RES = (68, 68) NUM_WORKERS = 2 NUM_CLASSES = 2 _ = torch.manual_seed(RANDOM_SEED) ###Output DEVICE USED: cuda ###Markdown Creating the train and test data loaders ###Code (train_loader, test_loader) = create_data_loaders(IMG_RES) ###Output _____no_output_____ ###Markdown Implementing the model ###Code w = IMG_RES[0] print(f'INPUT WIDTH: {w}', end='\n\n') w = conv(width=w, kernel_size=3, padding=0, stride=1) print(f'C1: {w}, in_ch: 3, out_ch: 16') w = pool(width=w, pool_size=2) print(f'P1: {w}', end='\n\n') w = conv(width=w, kernel_size=3, padding=0, stride=1) print(f'C2: {w}, in_ch: 16, out_ch: 64') w = pool(width=w, pool_size=2) print(f'P2: {w}', end='\n\n') print(f'FLAT SHAPE: {w * w * 64}') class BaselineCNN(nn.Module): def __init__(self, num_classes): super().__init__() self.conv_block1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=0), nn.ReLU(), nn.MaxPool2d(kernel_size=2), nn.Dropout2d(p=0.2) ) self.conv_block2 = nn.Sequential( nn.Conv2d(in_channels=16, out_channels=64, kernel_size=3, stride=1, padding=0), nn.ReLU(), nn.MaxPool2d(kernel_size=2), nn.Dropout2d(p=0.3) ) self.dense_block = nn.Sequential( nn.Linear(in_features=15 * 15 * 64, out_features=64), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(in_features=64, out_features=num_classes) ) def forward(self, X): out = X out = self.conv_block1(out) out = self.conv_block2(out) out = torch.flatten(out, 1) out = self.dense_block(out) return out ###Output _____no_output_____ ###Markdown Testing the propagation with a single batch ###Code DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' print(f'DEVICE USED: {DEVICE}') model = BaselineCNN(num_classes=2).to(DEVICE) test_forward_prop(model, train_loader, DEVICE) ###Output DEVICE USED: cuda NO SHAPE MISMATCH ERRORS IT SEEMS... BATCH SIZE: 64, NUM. CLASSES: 2 ###Markdown Printing the model's summary ###Code model = BaselineCNN(num_classes=2).to(DEVICE) summary(model, input_size=(3, 68, 68)) ###Output ---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [-1, 16, 66, 66] 448 ReLU-2 [-1, 16, 66, 66] 0 MaxPool2d-3 [-1, 16, 33, 33] 0 Dropout2d-4 [-1, 16, 33, 33] 0 Conv2d-5 [-1, 64, 31, 31] 9,280 ReLU-6 [-1, 64, 31, 31] 0 MaxPool2d-7 [-1, 64, 15, 15] 0 Dropout2d-8 [-1, 64, 15, 15] 0 Linear-9 [-1, 64] 921,664 ReLU-10 [-1, 64] 0 Dropout-11 [-1, 64] 0 Linear-12 [-1, 2] 130 ================================================================ Total params: 931,522 Trainable params: 931,522 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 0.05 Forward/backward pass size (MB): 2.49 Params size (MB): 3.55 Estimated Total Size (MB): 6.10 ---------------------------------------------------------------- ###Markdown Running the experimentThe model will be trained with three values of learning rate 0.001, 0.055, and 0.01. ###Code %%time model_name = 'Baseline CNN' model = BaselineCNN(num_classes=NUM_CLASSES).to(DEVICE) optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) criterion = nn.CrossEntropyLoss() (trainer, train_history, test_history) = create_training_procedure( model, optimizer, criterion, DEVICE, train_loader, test_loader) print(f'# MODEL: {model_name}, LR: {lr}') state = trainer.run(train_loader, max_epochs=NUM_EPOCHS) display_results(train_history, test_history, f'{model_name} - lr: {lr}') ###Output # MODEL: Baseline CNN, LR: 0.001 Epoch: 1, Train Avg. Acc.: 91.79, Train Avg. Loss: 0.24 - Test Avg. Acc.: 92.63, Test Avg. Loss: 0.23 Epoch: 2, Train Avg. Acc.: 93.96, Train Avg. Loss: 0.18 - Test Avg. Acc.: 94.56, Test Avg. Loss: 0.17 Epoch: 3, Train Avg. Acc.: 95.03, Train Avg. Loss: 0.16 - Test Avg. Acc.: 95.46, Test Avg. Loss: 0.15 Epoch: 4, Train Avg. Acc.: 95.30, Train Avg. Loss: 0.15 - Test Avg. Acc.: 95.41, Test Avg. Loss: 0.14 Epoch: 5, Train Avg. Acc.: 95.42, Train Avg. Loss: 0.14 - Test Avg. Acc.: 95.59, Test Avg. Loss: 0.13 Epoch: 6, Train Avg. Acc.: 95.46, Train Avg. Loss: 0.14 - Test Avg. Acc.: 95.68, Test Avg. Loss: 0.13 Epoch: 7, Train Avg. Acc.: 95.34, Train Avg. Loss: 0.14 - Test Avg. Acc.: 95.32, Test Avg. Loss: 0.14 Epoch: 8, Train Avg. Acc.: 95.54, Train Avg. Loss: 0.13 - Test Avg. Acc.: 95.74, Test Avg. Loss: 0.13 Epoch: 9, Train Avg. Acc.: 95.46, Train Avg. Loss: 0.14 - Test Avg. Acc.: 95.41, Test Avg. Loss: 0.13 Epoch: 10, Train Avg. Acc.: 95.32, Train Avg. Loss: 0.14 - Test Avg. Acc.: 95.45, Test Avg. Loss: 0.13 Epoch: 11, Train Avg. Acc.: 95.55, Train Avg. Loss: 0.13 - Test Avg. Acc.: 95.54, Test Avg. Loss: 0.13 Epoch: 12, Train Avg. Acc.: 95.60, Train Avg. Loss: 0.13 - Test Avg. Acc.: 95.61, Test Avg. Loss: 0.13 Epoch: 13, Train Avg. Acc.: 95.55, Train Avg. Loss: 0.13 - Test Avg. Acc.: 95.65, Test Avg. Loss: 0.12 Epoch: 14, Train Avg. Acc.: 95.63, Train Avg. Loss: 0.13 - Test Avg. Acc.: 95.61, Test Avg. Loss: 0.13 Epoch: 15, Train Avg. Acc.: 95.56, Train Avg. Loss: 0.13 - Test Avg. Acc.: 95.77, Test Avg. Loss: 0.13 Epoch: 16, Train Avg. Acc.: 95.69, Train Avg. Loss: 0.13 - Test Avg. Acc.: 95.81, Test Avg. Loss: 0.12 Epoch: 17, Train Avg. Acc.: 95.48, Train Avg. Loss: 0.13 - Test Avg. Acc.: 95.39, Test Avg. Loss: 0.13 Epoch: 18, Train Avg. Acc.: 95.69, Train Avg. Loss: 0.13 - Test Avg. Acc.: 95.75, Test Avg. Loss: 0.13 Epoch: 19, Train Avg. Acc.: 95.77, Train Avg. Loss: 0.12 - Test Avg. Acc.: 95.79, Test Avg. Loss: 0.12 Epoch: 20, Train Avg. Acc.: 95.74, Train Avg. Loss: 0.13 - Test Avg. Acc.: 95.74, Test Avg. Loss: 0.12 Epoch: 21, Train Avg. Acc.: 95.75, Train Avg. Loss: 0.13 - Test Avg. Acc.: 95.72, Test Avg. Loss: 0.12 Epoch: 22, Train Avg. Acc.: 95.83, Train Avg. Loss: 0.12 - Test Avg. Acc.: 95.79, Test Avg. Loss: 0.12 Epoch: 23, Train Avg. Acc.: 95.83, Train Avg. Loss: 0.13 - Test Avg. Acc.: 95.72, Test Avg. Loss: 0.12 Epoch: 24, Train Avg. Acc.: 95.91, Train Avg. Loss: 0.12 - Test Avg. Acc.: 95.75, Test Avg. Loss: 0.12 Epoch: 25, Train Avg. Acc.: 95.85, Train Avg. Loss: 0.12 - Test Avg. Acc.: 95.92, Test Avg. Loss: 0.12 Epoch: 26, Train Avg. Acc.: 95.80, Train Avg. Loss: 0.12 - Test Avg. Acc.: 95.90, Test Avg. Loss: 0.12 Epoch: 27, Train Avg. Acc.: 95.77, Train Avg. Loss: 0.12 - Test Avg. Acc.: 95.85, Test Avg. Loss: 0.12 Epoch: 28, Train Avg. Acc.: 95.81, Train Avg. Loss: 0.12 - Test Avg. Acc.: 95.74, Test Avg. Loss: 0.12 Epoch: 29, Train Avg. Acc.: 95.78, Train Avg. Loss: 0.12 - Test Avg. Acc.: 95.70, Test Avg. Loss: 0.12 Epoch: 30, Train Avg. Acc.: 95.71, Train Avg. Loss: 0.12 - Test Avg. Acc.: 95.85, Test Avg. Loss: 0.12 ###Markdown Experiment - LeNet-5URL: https://towardsdatascience.com/implementing-yann-lecuns-lenet-5-in-pytorch-5e05a0911320 Configuring the Parameters ###Code DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' print(f'DEVICE USED: {DEVICE}') RANDOM_SEED = 42 BATCH_SIZE = 64 NUM_EPOCHS = 30 LEARNING_RATE = 0.001 IMG_RES = (32, 32) NUM_WORKERS = 2 NUM_CLASSES = 2 _ = torch.manual_seed(RANDOM_SEED) ###Output DEVICE USED: cuda ###Markdown Creating the train and test data loaders ###Code (train_loader, test_loader) = create_data_loaders(IMG_RES) ###Output _____no_output_____ ###Markdown Implementing the model ###Code w = IMG_RES[0] print(f'INPUT WIDTH: {w}', end='\n\n') w = conv(width=w, kernel_size=5, padding=0, stride=1) print(f'C1: {w}, in_ch: 3, out_ch: 6') w = pool(width=w, pool_size=2) print(f'P1: {w}', end='\n\n') w = conv(width=w, kernel_size=5, padding=0, stride=1) print(f'C2: {w}, in_ch: 6, out_ch: 16') w = pool(width=w, pool_size=2) print(f'P2: {w}', end='\n\n') w = conv(width=w, kernel_size=5, padding=0, stride=1) print(f'C3: {w}, in_ch: 16, out_ch: 120') print(f'FLATTENED SHAPE: {w * w * 120}') class LeNet5(nn.Module): def __init__(self, num_classes): super().__init__() self.conv_block1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5, stride=1, padding=0), nn.Tanh(), nn.AvgPool2d(kernel_size=2) ) self.conv_block2 = nn.Sequential( nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0), nn.Tanh(), nn.AvgPool2d(kernel_size=2) ) self.conv_block3 = nn.Sequential( nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5, stride=1, padding=0), nn.Tanh() ) self.dense_block = nn.Sequential( nn.Linear(in_features=1 * 1 * 120, out_features=84), nn.Tanh(), nn.Linear(in_features=84, out_features=num_classes) ) def forward(self, X): out = X out = self.conv_block1(out) out = self.conv_block2(out) out = self.conv_block3(out) out = torch.flatten(out, 1) out = self.dense_block(out) return out ###Output _____no_output_____ ###Markdown Testing the propagation with a single batch ###Code DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' print(f'DEVICE USED: {DEVICE}') model = LeNet5(num_classes=2).to(DEVICE) test_forward_prop(model, train_loader, DEVICE) ###Output DEVICE USED: cuda NO SHAPE MISMATCH ERRORS IT SEEMS... BATCH SIZE: 64, NUM. CLASSES: 2 ###Markdown Printing the model's summary ###Code model = LeNet5(num_classes=2).to(DEVICE) summary(model, input_size=(3, 32, 32)) ###Output ---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [-1, 6, 28, 28] 456 Tanh-2 [-1, 6, 28, 28] 0 AvgPool2d-3 [-1, 6, 14, 14] 0 Conv2d-4 [-1, 16, 10, 10] 2,416 Tanh-5 [-1, 16, 10, 10] 0 AvgPool2d-6 [-1, 16, 5, 5] 0 Conv2d-7 [-1, 120, 1, 1] 48,120 Tanh-8 [-1, 120, 1, 1] 0 Linear-9 [-1, 84] 10,164 Tanh-10 [-1, 84] 0 Linear-11 [-1, 2] 170 ================================================================ Total params: 61,326 Trainable params: 61,326 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 0.01 Forward/backward pass size (MB): 0.11 Params size (MB): 0.23 Estimated Total Size (MB): 0.36 ---------------------------------------------------------------- ###Markdown Running the experimentThe model will be trained with three values of learning rate 0.001, 0.055, and 0.01. ###Code %%time model_name = 'LeNet-5' model = LeNet5(num_classes=NUM_CLASSES).to(DEVICE) optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) criterion = nn.CrossEntropyLoss() (trainer, train_history, test_history) = create_training_procedure( model, optimizer, criterion, DEVICE, train_loader, test_loader) print(f'# MODEL: {model_name}, LR: {lr}') state = trainer.run(train_loader, max_epochs=NUM_EPOCHS) display_results(train_history, test_history, f'{model_name} - lr: {lr}') ###Output # MODEL: LeNet-5, LR: 0.001 Epoch: 1, Train Avg. Acc.: 67.85, Train Avg. Loss: 0.60 - Test Avg. Acc.: 67.13, Test Avg. Loss: 0.61 Epoch: 2, Train Avg. Acc.: 70.43, Train Avg. Loss: 0.58 - Test Avg. Acc.: 69.58, Test Avg. Loss: 0.58 Epoch: 3, Train Avg. Acc.: 70.55, Train Avg. Loss: 0.56 - Test Avg. Acc.: 70.28, Test Avg. Loss: 0.57 Epoch: 4, Train Avg. Acc.: 73.08, Train Avg. Loss: 0.54 - Test Avg. Acc.: 72.70, Test Avg. Loss: 0.55 Epoch: 5, Train Avg. Acc.: 79.79, Train Avg. Loss: 0.44 - Test Avg. Acc.: 78.86, Test Avg. Loss: 0.45 Epoch: 6, Train Avg. Acc.: 84.31, Train Avg. Loss: 0.36 - Test Avg. Acc.: 84.02, Test Avg. Loss: 0.36 Epoch: 7, Train Avg. Acc.: 84.04, Train Avg. Loss: 0.37 - Test Avg. Acc.: 82.51, Test Avg. Loss: 0.38 Epoch: 8, Train Avg. Acc.: 86.48, Train Avg. Loss: 0.31 - Test Avg. Acc.: 85.96, Test Avg. Loss: 0.32 Epoch: 9, Train Avg. Acc.: 88.03, Train Avg. Loss: 0.29 - Test Avg. Acc.: 87.34, Test Avg. Loss: 0.30 Epoch: 10, Train Avg. Acc.: 88.03, Train Avg. Loss: 0.29 - Test Avg. Acc.: 88.13, Test Avg. Loss: 0.30 Epoch: 11, Train Avg. Acc.: 89.19, Train Avg. Loss: 0.26 - Test Avg. Acc.: 88.68, Test Avg. Loss: 0.27 Epoch: 12, Train Avg. Acc.: 87.39, Train Avg. Loss: 0.30 - Test Avg. Acc.: 87.65, Test Avg. Loss: 0.31 Epoch: 13, Train Avg. Acc.: 89.53, Train Avg. Loss: 0.25 - Test Avg. Acc.: 89.50, Test Avg. Loss: 0.26 Epoch: 14, Train Avg. Acc.: 89.76, Train Avg. Loss: 0.25 - Test Avg. Acc.: 89.57, Test Avg. Loss: 0.26 Epoch: 15, Train Avg. Acc.: 89.93, Train Avg. Loss: 0.24 - Test Avg. Acc.: 89.91, Test Avg. Loss: 0.25 Epoch: 16, Train Avg. Acc.: 91.01, Train Avg. Loss: 0.23 - Test Avg. Acc.: 90.42, Test Avg. Loss: 0.24 Epoch: 17, Train Avg. Acc.: 90.79, Train Avg. Loss: 0.22 - Test Avg. Acc.: 91.11, Test Avg. Loss: 0.23 Epoch: 18, Train Avg. Acc.: 90.38, Train Avg. Loss: 0.24 - Test Avg. Acc.: 90.55, Test Avg. Loss: 0.25 Epoch: 19, Train Avg. Acc.: 91.00, Train Avg. Loss: 0.22 - Test Avg. Acc.: 91.04, Test Avg. Loss: 0.23 Epoch: 20, Train Avg. Acc.: 90.93, Train Avg. Loss: 0.23 - Test Avg. Acc.: 91.22, Test Avg. Loss: 0.24 Epoch: 21, Train Avg. Acc.: 91.57, Train Avg. Loss: 0.21 - Test Avg. Acc.: 91.42, Test Avg. Loss: 0.22 Epoch: 22, Train Avg. Acc.: 91.54, Train Avg. Loss: 0.21 - Test Avg. Acc.: 91.22, Test Avg. Loss: 0.22 Epoch: 23, Train Avg. Acc.: 91.86, Train Avg. Loss: 0.20 - Test Avg. Acc.: 92.04, Test Avg. Loss: 0.21 Epoch: 24, Train Avg. Acc.: 92.07, Train Avg. Loss: 0.20 - Test Avg. Acc.: 91.98, Test Avg. Loss: 0.21 Epoch: 25, Train Avg. Acc.: 92.14, Train Avg. Loss: 0.20 - Test Avg. Acc.: 92.27, Test Avg. Loss: 0.21 Epoch: 26, Train Avg. Acc.: 92.71, Train Avg. Loss: 0.19 - Test Avg. Acc.: 92.67, Test Avg. Loss: 0.19 Epoch: 27, Train Avg. Acc.: 92.43, Train Avg. Loss: 0.19 - Test Avg. Acc.: 92.20, Test Avg. Loss: 0.20 Epoch: 28, Train Avg. Acc.: 92.88, Train Avg. Loss: 0.18 - Test Avg. Acc.: 92.67, Test Avg. Loss: 0.20 Epoch: 29, Train Avg. Acc.: 92.70, Train Avg. Loss: 0.18 - Test Avg. Acc.: 92.36, Test Avg. Loss: 0.20 Epoch: 30, Train Avg. Acc.: 92.60, Train Avg. Loss: 0.19 - Test Avg. Acc.: 92.49, Test Avg. Loss: 0.19 ###Markdown Experiment - ResNet18 Configuring the parameters ###Code DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' print(f'DEVICE USED: {DEVICE}') RANDOM_SEED = 42 BATCH_SIZE = 64 NUM_EPOCHS = 30 LEARNING_RATE = 0.001 IMG_RES = (244, 244) NUM_WORKERS = 2 NUM_CLASSES = 2 _ = torch.manual_seed(RANDOM_SEED) ###Output DEVICE USED: cuda ###Markdown Creating the train and test data loaders ###Code (train_loader, test_loader) = create_data_loaders(IMG_RES) ###Output _____no_output_____ ###Markdown Printing the model's summary ###Code model = models.resnet18(pretrained=False, num_classes=2).to(DEVICE) summary(model, input_size=(3, 224, 224)) ###Output ---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [-1, 64, 112, 112] 9,408 BatchNorm2d-2 [-1, 64, 112, 112] 128 ReLU-3 [-1, 64, 112, 112] 0 MaxPool2d-4 [-1, 64, 56, 56] 0 Conv2d-5 [-1, 64, 56, 56] 36,864 BatchNorm2d-6 [-1, 64, 56, 56] 128 ReLU-7 [-1, 64, 56, 56] 0 Conv2d-8 [-1, 64, 56, 56] 36,864 BatchNorm2d-9 [-1, 64, 56, 56] 128 ReLU-10 [-1, 64, 56, 56] 0 BasicBlock-11 [-1, 64, 56, 56] 0 Conv2d-12 [-1, 64, 56, 56] 36,864 BatchNorm2d-13 [-1, 64, 56, 56] 128 ReLU-14 [-1, 64, 56, 56] 0 Conv2d-15 [-1, 64, 56, 56] 36,864 BatchNorm2d-16 [-1, 64, 56, 56] 128 ReLU-17 [-1, 64, 56, 56] 0 BasicBlock-18 [-1, 64, 56, 56] 0 Conv2d-19 [-1, 128, 28, 28] 73,728 BatchNorm2d-20 [-1, 128, 28, 28] 256 ReLU-21 [-1, 128, 28, 28] 0 Conv2d-22 [-1, 128, 28, 28] 147,456 BatchNorm2d-23 [-1, 128, 28, 28] 256 Conv2d-24 [-1, 128, 28, 28] 8,192 BatchNorm2d-25 [-1, 128, 28, 28] 256 ReLU-26 [-1, 128, 28, 28] 0 BasicBlock-27 [-1, 128, 28, 28] 0 Conv2d-28 [-1, 128, 28, 28] 147,456 BatchNorm2d-29 [-1, 128, 28, 28] 256 ReLU-30 [-1, 128, 28, 28] 0 Conv2d-31 [-1, 128, 28, 28] 147,456 BatchNorm2d-32 [-1, 128, 28, 28] 256 ReLU-33 [-1, 128, 28, 28] 0 BasicBlock-34 [-1, 128, 28, 28] 0 Conv2d-35 [-1, 256, 14, 14] 294,912 BatchNorm2d-36 [-1, 256, 14, 14] 512 ReLU-37 [-1, 256, 14, 14] 0 Conv2d-38 [-1, 256, 14, 14] 589,824 BatchNorm2d-39 [-1, 256, 14, 14] 512 Conv2d-40 [-1, 256, 14, 14] 32,768 BatchNorm2d-41 [-1, 256, 14, 14] 512 ReLU-42 [-1, 256, 14, 14] 0 BasicBlock-43 [-1, 256, 14, 14] 0 Conv2d-44 [-1, 256, 14, 14] 589,824 BatchNorm2d-45 [-1, 256, 14, 14] 512 ReLU-46 [-1, 256, 14, 14] 0 Conv2d-47 [-1, 256, 14, 14] 589,824 BatchNorm2d-48 [-1, 256, 14, 14] 512 ReLU-49 [-1, 256, 14, 14] 0 BasicBlock-50 [-1, 256, 14, 14] 0 Conv2d-51 [-1, 512, 7, 7] 1,179,648 BatchNorm2d-52 [-1, 512, 7, 7] 1,024 ReLU-53 [-1, 512, 7, 7] 0 Conv2d-54 [-1, 512, 7, 7] 2,359,296 BatchNorm2d-55 [-1, 512, 7, 7] 1,024 Conv2d-56 [-1, 512, 7, 7] 131,072 BatchNorm2d-57 [-1, 512, 7, 7] 1,024 ReLU-58 [-1, 512, 7, 7] 0 BasicBlock-59 [-1, 512, 7, 7] 0 Conv2d-60 [-1, 512, 7, 7] 2,359,296 BatchNorm2d-61 [-1, 512, 7, 7] 1,024 ReLU-62 [-1, 512, 7, 7] 0 Conv2d-63 [-1, 512, 7, 7] 2,359,296 BatchNorm2d-64 [-1, 512, 7, 7] 1,024 ReLU-65 [-1, 512, 7, 7] 0 BasicBlock-66 [-1, 512, 7, 7] 0 AdaptiveAvgPool2d-67 [-1, 512, 1, 1] 0 Linear-68 [-1, 2] 1,026 ================================================================ Total params: 11,177,538 Trainable params: 11,177,538 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 0.57 Forward/backward pass size (MB): 62.79 Params size (MB): 42.64 Estimated Total Size (MB): 106.00 ---------------------------------------------------------------- ###Markdown Running the experimentThe model will be trained with three values of learning rate 0.001, 0.055, and 0.01. ###Code %%time model_name = 'ResNet18' model = models.resnet18(pretrained=False, num_classes=NUM_CLASSES).to(DEVICE) optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) criterion = nn.CrossEntropyLoss() (trainer, train_history, test_history) = create_training_procedure( model, optimizer, criterion, DEVICE, train_loader, test_loader) print(f'# MODEL: {model_name}, LR: {lr}') state = trainer.run(train_loader, max_epochs=NUM_EPOCHS) display_results(train_history, test_history, f'{model_name} - lr: {lr}') ###Output # MODEL: ResNet18, LR: 0.001 Epoch: 1, Train Avg. Acc.: 95.53, Train Avg. Loss: 0.14 - Test Avg. Acc.: 95.74, Test Avg. Loss: 0.14 Epoch: 2, Train Avg. Acc.: 94.22, Train Avg. Loss: 0.17 - Test Avg. Acc.: 94.90, Test Avg. Loss: 0.15 Epoch: 3, Train Avg. Acc.: 95.80, Train Avg. Loss: 0.13 - Test Avg. Acc.: 96.28, Test Avg. Loss: 0.13 Epoch: 4, Train Avg. Acc.: 95.70, Train Avg. Loss: 0.14 - Test Avg. Acc.: 95.90, Test Avg. Loss: 0.14 Epoch: 5, Train Avg. Acc.: 95.64, Train Avg. Loss: 0.13 - Test Avg. Acc.: 96.39, Test Avg. Loss: 0.11 Epoch: 6, Train Avg. Acc.: 94.96, Train Avg. Loss: 0.14 - Test Avg. Acc.: 95.48, Test Avg. Loss: 0.13 Epoch: 7, Train Avg. Acc.: 96.20, Train Avg. Loss: 0.12 - Test Avg. Acc.: 96.59, Test Avg. Loss: 0.11 Epoch: 8, Train Avg. Acc.: 95.77, Train Avg. Loss: 0.12 - Test Avg. Acc.: 95.86, Test Avg. Loss: 0.12 Epoch: 9, Train Avg. Acc.: 96.11, Train Avg. Loss: 0.12 - Test Avg. Acc.: 96.39, Test Avg. Loss: 0.12 Epoch: 10, Train Avg. Acc.: 96.16, Train Avg. Loss: 0.13 - Test Avg. Acc.: 96.48, Test Avg. Loss: 0.12 Epoch: 11, Train Avg. Acc.: 96.20, Train Avg. Loss: 0.11 - Test Avg. Acc.: 96.34, Test Avg. Loss: 0.11 Epoch: 12, Train Avg. Acc.: 96.49, Train Avg. Loss: 0.10 - Test Avg. Acc.: 96.53, Test Avg. Loss: 0.10 Epoch: 13, Train Avg. Acc.: 96.06, Train Avg. Loss: 0.11 - Test Avg. Acc.: 96.26, Test Avg. Loss: 0.11 Epoch: 14, Train Avg. Acc.: 96.67, Train Avg. Loss: 0.10 - Test Avg. Acc.: 96.86, Test Avg. Loss: 0.10 Epoch: 15, Train Avg. Acc.: 96.38, Train Avg. Loss: 0.11 - Test Avg. Acc.: 96.75, Test Avg. Loss: 0.10 Epoch: 16, Train Avg. Acc.: 96.43, Train Avg. Loss: 0.10 - Test Avg. Acc.: 96.55, Test Avg. Loss: 0.10 Epoch: 17, Train Avg. Acc.: 96.52, Train Avg. Loss: 0.10 - Test Avg. Acc.: 96.57, Test Avg. Loss: 0.10 Epoch: 18, Train Avg. Acc.: 95.07, Train Avg. Loss: 0.13 - Test Avg. Acc.: 95.30, Test Avg. Loss: 0.12 Epoch: 19, Train Avg. Acc.: 96.84, Train Avg. Loss: 0.09 - Test Avg. Acc.: 96.88, Test Avg. Loss: 0.09 Epoch: 20, Train Avg. Acc.: 96.82, Train Avg. Loss: 0.09 - Test Avg. Acc.: 96.90, Test Avg. Loss: 0.09 Epoch: 21, Train Avg. Acc.: 96.81, Train Avg. Loss: 0.09 - Test Avg. Acc.: 97.10, Test Avg. Loss: 0.09 Epoch: 22, Train Avg. Acc.: 96.69, Train Avg. Loss: 0.09 - Test Avg. Acc.: 96.68, Test Avg. Loss: 0.09 Epoch: 23, Train Avg. Acc.: 96.87, Train Avg. Loss: 0.09 - Test Avg. Acc.: 96.93, Test Avg. Loss: 0.09 Epoch: 24, Train Avg. Acc.: 96.92, Train Avg. Loss: 0.09 - Test Avg. Acc.: 97.01, Test Avg. Loss: 0.08 Epoch: 25, Train Avg. Acc.: 97.09, Train Avg. Loss: 0.08 - Test Avg. Acc.: 96.95, Test Avg. Loss: 0.09 Epoch: 26, Train Avg. Acc.: 97.00, Train Avg. Loss: 0.08 - Test Avg. Acc.: 97.24, Test Avg. Loss: 0.08 Epoch: 27, Train Avg. Acc.: 97.02, Train Avg. Loss: 0.08 - Test Avg. Acc.: 96.84, Test Avg. Loss: 0.08 Epoch: 28, Train Avg. Acc.: 97.28, Train Avg. Loss: 0.08 - Test Avg. Acc.: 97.26, Test Avg. Loss: 0.08 Epoch: 29, Train Avg. Acc.: 97.28, Train Avg. Loss: 0.08 - Test Avg. Acc.: 97.21, Test Avg. Loss: 0.08 Epoch: 30, Train Avg. Acc.: 97.54, Train Avg. Loss: 0.07 - Test Avg. Acc.: 97.17, Test Avg. Loss: 0.08
notebooks/PrepareRecs/CombineSignals.ipynb
###Markdown Ensemble signals into a linear model ###Code def get_deltas(sources): deltas = [] for source_filename in sources: delta = pickle.load(open(source_filename, "rb")) source = source_filename.split(".")[0].split("_")[0] delta = delta.rename({x: x + f"_{source}" for x in delta.columns}, axis=1) deltas.append(delta) return pd.concat(deltas, axis=1) def clean_data(df): # fill missing data with reasonable defaults delta_sources = [x.split("_")[-1] for x in df.columns if "delta_var" in x] for source in delta_sources: df.loc[lambda x: x[f"delta_var_{source}"] == np.inf, f"delta_{source}"] = np.nan df.loc[ lambda x: x[f"delta_var_{source}"] == np.inf, f"delta_var_{source}" ] = np.nan df[f"delta_{source}"] = df[f"delta_{source}"].fillna(0) df[f"delta_var_{source}"] = df[f"delta_var_{source}"].fillna(df[f"delta_var_{source}"].quantile(0.8)) return df if cross_validate: train_df = get_deltas([f"{x}_loocv.pkl" for x in delta_sources]) else: train_df = get_deltas([f"{x}.pkl" for x in delta_sources]) delta_corrs = train_df[[f"delta_{source}" for source in delta_sources]].corr() labelled_data = pickle.load(open("user_anime_list.pkl", "rb")) labelled_data = clean_data(labelled_data.merge(train_df, on="anime_id", how="left")) # get model delta_cols = [f"delta_{source}" for source in delta_sources] formula = "score ~ " + " + ".join(delta_cols) model = lm(formula, labelled_data) print(model.summary()) df = clean_data(get_deltas([f"{x}.pkl" for x in delta_sources])) blp = pickle.load(open("baseline_predictor.pkl", "rb")) df["blp"] = blp["blp"] df["score"] = model.predict(df) + df["blp"] df["delta"] = df["score"] - df["blp"] valid_baseline = ~df['blp'].isna() df = df.loc[valid_baseline] ###Output _____no_output_____ ###Markdown Compute Confidence Intervals ###Code for _ in range(renormalize_variance_iters): for source in delta_sources: seen_shows = pickle.load(open("user_anime_list.pkl", "rb")) seen_shows = seen_shows.set_index("anime_id") seen_shows["delta"] = df[f"delta_{source}"] single_delta_model = lm("score ~ delta + 0", seen_shows) seen_shows["pred_score"] = single_delta_model.predict(df) seen_shows["pred_std"] = np.sqrt( (df[f"delta_var_{source}"] + df[f"delta_{source}"] ** 2) * ( single_delta_model.bse["delta"] ** 2 + single_delta_model.params["delta"] ** 2 ) - (df[f"delta_{source}"] ** 2 * single_delta_model.params["delta"] ** 2) ) seen_shows = seen_shows.loc[lambda x: x["pred_std"] < np.inf] std_mult = ( (seen_shows["pred_score"] - seen_shows["score"]) / seen_shows["pred_std"] ).std() df[f"delta_var_{source}"] *= std_mult ** 2 # compute error bars model_vars = pd.DataFrame() for col in delta_cols: source = col.split("_")[1] model_vars[f"model_delta_var_{source}"] = ( (df[f"delta_var_{source}"] + df[f"delta_{source}"] ** 2) * (model.bse[f"delta_{source}"] ** 2 + model.params[f"delta_{source}"] ** 2) ) - df[f"delta_{source}"] ** 2 * model.params[f"delta_{source}"] ** 2 model_stds = np.sqrt(model_vars) delta_corrs = delta_corrs.loc[lambda x: (x.index.isin(delta_cols)), delta_cols] delta_variance = np.sum( (model_stds.values @ delta_corrs.values) * model_stds.values, axis=1 ) intercept_variance = 0 if "Intercept" in model.bse: intercept_variance = model.bse["Intercept"] ** 2 df["std"] = np.sqrt(delta_variance + intercept_variance) for _ in range(renormalize_variance_iters): seen_shows = pickle.load(open("user_anime_list.pkl", "rb")) seen_shows = seen_shows.set_index("anime_id") seen_shows["score"] += df["blp"] seen_shows["pred_score"] = df[f"score"] seen_shows["pred_std"] = df["std"] std_mult = ( (seen_shows["pred_score"] - seen_shows["score"]) / seen_shows["pred_std"] ).std() df["std"] *= std_mult zscore = st.norm.ppf(1 - (1 - confidence_interval) / 2) df["score_lower_bound"] = df["score"] - df["std"] * zscore df["score_upper_bound"] = df["score"] + df["std"] * zscore ###Output _____no_output_____ ###Markdown Display Recommendations ###Code anime = pd.read_csv("../../cleaned_data/anime.csv") anime = anime[["anime_id", "title", "medium", "genres"]] df = df.merge(anime, on="anime_id").set_index("anime_id") # reorder the columns cols = [ "title", "medium", "score", "score_lower_bound", "score_upper_bound", "delta", "std", ] + delta_cols df = df[cols + [x for x in df.columns if x not in cols]] related_series = pickle.load(open("../../processed_data/strict_relations_anime_graph.pkl", "rb")) df = df.merge(related_series, on="anime_id").set_index("anime_id") new_recs = df.loc[lambda x: ~x.index.isin(labelled_data.anime_id) & (x["medium"] == "tv")] epsilon = 1e-6 min_bound = epsilon if "Intercept" in model.params: min_bound += model.params["Intercept"] df.loc[lambda x: x["delta"] > min_bound].sort_values( by="score_lower_bound", ascending=False )[:20] new_recs.loc[lambda x: (x["delta"] > min_bound)].sort_values( by="score_lower_bound", ascending=False ).groupby("series_id").first().sort_values(by="score_lower_bound", ascending=False)[:50] # Inreased serendipity! new_recs.loc[lambda x: (x["delta_user"] > 0)].sort_values( by="score_lower_bound", ascending=False ).groupby("series_id").first().sort_values(by="score_lower_bound", ascending=False)[:50] ###Output _____no_output_____
Machine Learning & Data Science Masterclass - JP/18-Naive-Bayes-and-NLP/01-Text-Classification - Flight tweets.ipynb
###Markdown NLP and Supervised Learning - Flight Tweets Sentiment Classification Classification of Text Data The DataSource: https://www.kaggle.com/crowdflower/twitter-airline-sentiment?select=Tweets.csvThis data originally came from Crowdflower's Data for Everyone library.As the original source says,A sentiment analysis job about the problems of each major U.S. airline. Twitter data was scraped from February of 2015 and contributors were asked to first classify positive, negative, and neutral tweets, followed by categorizing negative reasons (such as "late flight" or "rude service"). Goal: Create a Machine Learning Algorithm that can predict if a tweet is positive, neutral, or negative. In the future we could use such an algorithm to automatically read and flag tweets for an airline for a customer service agent to reach out to contact. Business Usecase: + As these data are already labled like which words are negative, positive and netural. So we can utiized those information to create classification model that takes in raw text data and report back the tweet sentiment.+ In this way, in the future when the model detect negative tweets, we can alert customer service and CS can reach out to the customer. There is no need for human staff to go through all the tweets. ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns df = pd.read_csv('../Data/airline_tweets.csv') df.head() ###Output _____no_output_____ ###Markdown EDA ###Code df.info() df['airline_sentiment'].value_counts() sns.countplot(data=df, x='airline_sentiment'); ###Output _____no_output_____ ###Markdown For our problem, we want to catch `negative` so that it can be handled properly. So if model confuse between `neutral` and `postive`, it doesn't really matter. And the problem is more like binary classification rather than multi-classification.But in real world use case can be different and customer service may reach out to positive customers too. It is all based on requirements. ###Code plt.figure(figsize=(10,8)) sns.countplot(data=df, x='negativereason'); plt.xticks(rotation=90); plt.figure(dpi=150) sns.countplot(data=df, x='airline', hue='airline_sentiment'); ###Output _____no_output_____ ###Markdown ------- Features and LabelFor this, we want to get the raw data text for the analysis. ###Code data = df[['airline_sentiment','text']] data X = data['text'] y = data['airline_sentiment'] ###Output _____no_output_____ ###Markdown ----- Train test split ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=101) ###Output _____no_output_____ ###Markdown ----- Vectorization ###Code from sklearn.feature_extraction.text import TfidfVectorizer tfidf = TfidfVectorizer(stop_words = 'english') X_train_tfidf = tfidf.fit_transform(X_train) X_test_tfidf = tfidf.transform(X_test) X_train_tfidf ###Output _____no_output_____ ###Markdown **DO NOT USE .todense() for such a large sparse matrix!!!** ------ Model Comparisons - Naive Bayes,LogisticRegression, LinearSVC Naive Bayes ###Code from sklearn.naive_bayes import MultinomialNB nb = MultinomialNB() nb.fit(X_train_tfidf, y_train) ###Output _____no_output_____ ###Markdown Logistic Regression ###Code from sklearn.linear_model import LogisticRegression log_model = LogisticRegression(max_iter=1000) log_model.fit(X_train_tfidf, y_train) ###Output _____no_output_____ ###Markdown SVM ###Code from sklearn.svm import SVC, LinearSVC rbf_svc = SVC() rbf_svc.fit(X_train_tfidf, y_train) linear_svc = LinearSVC() linear_svc.fit(X_train_tfidf, y_train) ###Output _____no_output_____ ###Markdown ------- Performance Evaluation ###Code from sklearn.metrics import classification_report, plot_confusion_matrix # custom function def report(model): pred = model.predict(X_test_tfidf) print(classification_report(y_test, pred)) plot_confusion_matrix(model, X_test_tfidf, y_test) report(nb) report(log_model) report(rbf_svc) report(linear_svc) ###Output precision recall f1-score support negative 0.82 0.89 0.86 1817 neutral 0.59 0.52 0.55 628 positive 0.76 0.64 0.69 483 accuracy 0.77 2928 macro avg 0.73 0.68 0.70 2928 weighted avg 0.76 0.77 0.77 2928 ###Markdown --------- Finalizing a PipeLine for Deployment on New TweetsIf we were satisfied with a model's performance, we should set up a pipeline that can take in a tweet directly. ###Code from sklearn.pipeline import Pipeline pipe = Pipeline([ ('tfidf', TfidfVectorizer()), ('scv', LinearSVC()), ]) # fit on entire data pipe.fit(X, y) new_tweet = ['I did enjoy the flight'] pipe.predict(new_tweet) new_tweet = ['I did take from NY to LA'] pipe.predict(new_tweet) new_tweet = ['it just ok flight'] pipe.predict(new_tweet) new_tweet = ['so so flight'] pipe.predict(new_tweet) ###Output _____no_output_____
EDA/COVID Data Explore 13.ipynb
###Markdown Goal: I want to calculate mortality rates by ethnicity and then compare this to the correlation between overall mortality and several sociodemographic factors. ###Code df = pd.read_csv('COVID_Cases_Restricted_Detailed_10312020.csv') df.head() #Drop 'Missing' and 'Unknown' from death_yn so that there are only cases where death = Yes or No. Drop 'Unknown' cases from race_ethnicity df_oct = df[(df.death_yn != 'Missing') & (df.death_yn != 'Unknown') & (df.race_ethnicity_combined != 'Unknown')] df_oct['race_ethnicity_combined'].value_counts() #Abbreviate ethnicity_race names for simplicity df_oct = df_oct.replace({'race_ethnicity_combined' : { 'White, Non-Hispanic' : 'W', 'Hispanic/Latino' : 'H/L', 'Black, Non-Hispanic' : 'B', 'Multiple/Other, Non-Hispanic ' : 'M/O', 'Asian, Non-Hispanic' : 'A', 'American Indian/Alaska Native, Non-Hispanic' : 'AI/AN', 'Native Hawaiian/Other Pacific Islander, Non-Hispanic' : 'NH/OPI'}}) df_oct['race_ethnicity_combined'].value_counts() #Determine % Mortality Rate by Ethnicity W = df_oct[df_oct.race_ethnicity_combined == "W"] W_Mortality_Rate = float(len(W[W.death_yn == 'Yes'])) / len(W) H = df_oct[df_oct.race_ethnicity_combined == "H/L"] H_Mortality_Rate = float(len(H[H.death_yn == 'Yes'])) / len(H) B = df_oct[df_oct.race_ethnicity_combined == "B"] B_Mortality_Rate = float(len(B[B.death_yn == 'Yes'])) / len(B) M = df_oct[df_oct.race_ethnicity_combined == "M/O"] M_Mortality_Rate = float(len(M[M.death_yn == 'Yes'])) / len(M) A = df_oct[df_oct.race_ethnicity_combined == "A"] A_Mortality_Rate = float(len(A[A.death_yn == 'Yes'])) / len(A) AI = df_oct[df_oct.race_ethnicity_combined == "AI/AN"] AI_Mortality_Rate = float(len(AI[AI.death_yn == 'Yes'])) / len(AI) NH = df_oct[df_oct.race_ethnicity_combined == "NH/OPI"] NH_Mortality_Rate = float(len(NH[NH.death_yn == 'Yes'])) / len(NH) df_Mrate = pd.DataFrame([('W', W_Mortality_Rate*100), ('H/L', H_Mortality_Rate*100), ('B', B_Mortality_Rate*100), ('M/O', M_Mortality_Rate*100), ('A' , A_Mortality_Rate*100), ('AI/AN', AI_Mortality_Rate*100), ('NH/OPI', NH_Mortality_Rate*100)], columns=['Ethnicity', '% Mortality Rate']) df_Mrate ###Output _____no_output_____ ###Markdown Next step is to attach select sociodemographic factors to the CDC data so that the correlation with mortality can easily be calculated. The FIPS will be used to add the information by county. ###Code df_oct.rename(columns={"county_fips_code": "FIPS"}, inplace=True) print(df_oct.columns) #Load the table with sociodemographic data by county and rename the columns I want to use for better readability df_health = pd.read_excel('Health Factors by County 2020 County Health Rankings Rows.xls', sheet_name='Ranked Measure Data') df_health.rename(columns={'Adult obesity - % Adults with Obesity':'% Obesity' , 'Adult smoking - % Smokers':'% Smokers', 'Physical inactivity - % Physically Inactive':'% Phys. Inactive', 'Uninsured - % Uninsured': '% Uninsured', 'High school graduation - High School Graduation Rate':'% High School', 'Some college - % Some College':'% Some College', 'Unemployment - % Unemployed':'% Unemployed'}, inplace=True) pd.set_option('display.max_columns', None) df_health.head(3) #Add the renamed columns on to the CDC data set based on the FIPS df_oct = pd.merge(df_oct, df_health[['FIPS','% Obesity','% Smokers','% Phys. Inactive','% Uninsured','% High School','% Some College','% Unemployed']], on='FIPS', how='left') df_oct.head(3) #Map death_yn to numeric binaries df_oct['death_yn'] = df_oct['death_yn'].map({'No': 0,'Yes': 1}) df_oct.head(100) from scipy import stats #df_oct.dtypes #uniqueValues = df_oct['% High School'].unique() #print(uniqueValues) #Drop nan values from added columns df_oct.dropna(subset = ['% Obesity', '% Smokers', '% Phys. Inactive','% Uninsured', '% High School','% Some College','% Unemployed'], inplace=True) #Calculate regression between death_yn and socioeconomic factors lin_reg1 = stats.linregress(x=df_oct["death_yn"], y=df_oct["% Obesity"]) lin_reg2 = stats.linregress(x=df_oct["death_yn"], y=df_oct["% Smokers"]) lin_reg3 = stats.linregress(x=df_oct["death_yn"], y=df_oct["% Phys. Inactive"]) lin_reg4 = stats.linregress(x=df_oct["death_yn"], y=df_oct["% Uninsured"]) lin_reg5 = stats.linregress(x=df_oct["death_yn"], y=df_oct["% High School"]) lin_reg6 = stats.linregress(x=df_oct["death_yn"], y=df_oct["% Some College"]) lin_reg7 = stats.linregress(x=df_oct["death_yn"], y=df_oct["% Unemployed"]) print(lin_reg1[2],";",lin_reg2[2],";",lin_reg3[2],";",lin_reg4[2],";",lin_reg5[2],";",lin_reg6[2],";",lin_reg7[2]) ###Output -0.08459854226592793 ; -0.06398524017613383 ; 0.014410677238303301 ; -0.0713606770161389 ; -0.049987534422671315 ; 0.025242602884312675 ; 0.0473538502896234
image_classification/image_classification_cnn.ipynb
###Markdown Comments about Assignment 1 Adriano Mundo 10524163 , Mario Sacaj 10521887Assignment 1 for the ANN2DL course was to participate a competition on kaggle with the objective to develop a Neural Network Architecture for Image Classification.We, as showed us in the practice classes, developed a Convolutional Neural Network for the classification task.We started with the architecture provided by the professor trying to understand what every piece of code do, then we re-elaborate our architecture, and instead of using the class structure, we decided to use the Sequential architecture, so it was easier to test, adding and removing new layers of the network. In order to divide our training set in train and validation we used the ImageDataGenerator combined with the SEED to make the experiment reproducible with a 80/20 split. Then, we started experimenting with data augmentation in order to improve the network. Analysing our image set we noticed that image are larger than what we expect, so we increased the image shape, and because of our limited amounts of data, we played with the ImageDataGenerator to increase our train dataset, for example adding rotation, width and heigh shift range, brightness range, etc. In order to deal with overfitting, between the two Dense Layer we added a Dropout with 0.5 as a parameter.Then we trained our network using relu as activation function for all the network expect the last layer were we used softmax. The metric, as stated by the task was accuracy, while loss function and optimzer are respectively categorical cross entropy and adam. We obtained a 64% of accuracy, we did other experiments and research and we can say that it's possible to reach about a maxium of 70% accuracy with these kind of architecture trying to tune again the parameter to find the match. We decided to not use Transfer Learning because it is very easy to conquer this task using a pre-trained network, vgg to obtain an accuracy of more or less 100%. We, as reported in the task assignment ,tried to understand the concepts, what does it make sense to do and what does not make sense without thinking about obtaining the best result because it was very easy to implement that kind of architecture. ###Code import os import tensorflow as tf import numpy as np from keras.preprocessing.image import ImageDataGenerator from datetime import datetime import json # this let the experiment to be reproducible SEED = 1234 tf.random.set_seed(1234) cwd = os.getcwd() #Dataset directory dataset_dir = "/kaggle/input/ann-and-dl-image-classification/Classification_Dataset" #Model weights filepath (set to None if you wanna train your model from scratch) WEIGHTS = '/kaggle/input/model4me/model.h5' weights = None #Create Dataset_split.json for competition purposes (set to None if you don't want to create it) dataset_info = None #Definition of results writedown function def create_csv(results, results_dir=''): csv_fname = 'results_' csv_fname += datetime.now().strftime('%b%d_%H-%M-%S') + '.csv' with open(os.path.join(results_dir, csv_fname), 'w') as f: f.write('Id,Category\n') for key, value in results.items(): f.write(key + ',' + str(value) + '\n') # batch size bs = 8 # img shape img_h = 320 img_w = 320 # ImageDataGenerator # ------------------------------------------------------- # data augmentation to improve performances apply_data_augmentation = True # create training/validation ImageDataGenerator object if apply_data_augmentation: train_data_gen = ImageDataGenerator(rotation_range=20, width_shift_range=20, height_shift_range=20, zoom_range=0.3, horizontal_flip=True, vertical_flip=False, brightness_range = [0.5, 1.5], fill_mode='constant', cval=0, rescale=1./255, validation_split = 0.2) else: train_data_gen = ImageDataGenerator(rescale=1./255, validation_split=0.2) # create testing ImageDataGenerator object test_data_gen = ImageDataGenerator(rescale=1./255) # ------------------------------------------------------- # list of classes num_classes = 20 decide_class_indices = True if decide_class_indices: classes = ['owl', # 0 'galaxy', # 1 'lightning', # 2 'wine-bottle', # 3 't-shirt', # 4 'waterfall', # 5 'sword', # 6 'school-bus', # 7 'calculator', # 8 'sheet-music', # 9 'airplanes', # 10 'lightbulb', # 11 'skyscraper', # 12 'mountain-bike', # 13 'fireworks', # 14 'computer-monitor', # 15 'bear', # 16 'grand-piano', # 17 'kangaroo', # 18 'laptop'] # 19 else: classes = None # Generators training_dir = os.path.join(dataset_dir, 'training') train_gen = train_data_gen.flow_from_directory(training_dir, batch_size=bs, color_mode='rgb', classes=classes, target_size=(img_h, img_w), class_mode='categorical', shuffle=True, seed=SEED, subset='training') valid_gen = train_data_gen.flow_from_directory(training_dir, color_mode='rgb', batch_size=bs, classes=classes, target_size=(img_h, img_w), class_mode='categorical', shuffle=False, seed=SEED, subset='validation') test_gen = test_data_gen.flow_from_directory(dataset_dir, classes=['test'], color_mode='rgb', target_size=(img_h, img_w), class_mode=None, shuffle=False, seed=SEED) # ------------------------------------------------------- # Create Dataset objects # ------------------------------------------------------- # training and repeat #train_dataset = tf.data.Dataset.from_generator(lambda: train_gen, # output_types=(tf.float32, tf.float32), # output_shapes=([None, img_h, img_w, 3], [None, num_classes])) #train_dataset = train_dataset.repeat() # validation and repeat #valid_dataset = tf.data.Dataset.from_generator(lambda: valid_gen, #output_types=(tf.float32, tf.float32), #output_shapes=([None, img_h, img_w, 3], [None, num_classes])) #valid_dataset = valid_dataset.repeat() # ------------------------------------------------------- # Neural Network Architecture with Sequential model model = tf.keras.Sequential() model.add(tf.keras.layers.Conv2D(filters=8,kernel_size=(3, 3),strides=(1, 1), padding='same', activation = 'relu', input_shape=(img_h, img_w, 3))) model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) model.add(tf.keras.layers.Conv2D(filters=16,kernel_size=(3, 3),strides=(1, 1),padding='same', activation = 'relu')) model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) model.add(tf.keras.layers.Conv2D(filters=32,kernel_size=(3, 3),strides=(1, 1),padding='same', activation = 'relu')) model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) model.add(tf.keras.layers.Conv2D(filters=64,kernel_size=(3, 3),strides=(1, 1),padding='same', activation = 'relu')) model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) model.add(tf.keras.layers.Conv2D(filters=128,kernel_size=(3, 3),strides=(1, 1),padding='same', activation = 'relu')) model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(units=512, activation = 'relu')) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(units=num_classes, activation='softmax')) # Optimization parameters # ------------------------------------------------------- # loss loss = tf.keras.losses.CategoricalCrossentropy() # learning rate lr = 1e-3 optimizer = tf.keras.optimizers.Adam(learning_rate=lr) # validation metrics metrics = ['accuracy'] # compile Model model.compile(optimizer=optimizer, loss=loss, metrics=metrics) # ------------------------------------------------------- # Optional model_weights loading from file if weights is not None: model.load_weights(weights) # Training if weights is None: #Training with callbacks #------------------------------------------------------- callbacks = [] # Early Stopping early_stop = True if early_stop: es_callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=10) #, restore_best_weights=True) callbacks.append(es_callback) model.fit_generator(train_gen, steps_per_epoch=len(train_gen), epochs=100, callbacks=callbacks, validation_data=valid_gen, validation_steps=len(valid_gen)) #Compute Predictions test_gen.reset() preds = model.predict_generator(test_gen) preds_cls_idx = preds.argmax(axis=-1) # Write down results file image_filenames = test_gen.filenames image_filenames results = {} for i in range(len(image_filenames)): results[(image_filenames[i][5:])] = preds_cls_idx[i] create_csv(results) # Create dictionary for the .json file if dataset_info is not None: from collections import defaultdict train_dict = defaultdict(list) for train_image in train_gen.filenames: clss = train_image.split('/') key = clss[0] val = clss[1] train_dict[key].append(val) valid_dict = defaultdict(list) for valid_image in valid_gen.filenames: clss = valid_image.split('/') key = clss[0] val = clss[1] valid_dict[key].append(val) master_dict = {} master_dict['training'] = train_dict master_dict['validation'] = valid_dict with open('dataset_split.json', 'w') as json_file: json.dump(master_dict, json_file) ###Output _____no_output_____
docs/source/user_guide/clean/clean_au_tfn.ipynb
###Markdown Australian Tax File Numbers Introduction The function `clean_au_tfn()` cleans a column containing Australian Tax File Numbers (TFN) strings, and standardizes them in a given format. The function `validate_au_tfn()` validates either a single TFN strings, a column of TFN strings or a DataFrame of TFN strings, returning `True` if the value is valid, and `False` otherwise. TFN strings can be converted to the following formats via the `output_format` parameter:* `compact`: only number strings without any seperators or whitespace, like "123456782"* `standard`: TFN strings with proper whitespace in the proper places, like "123 456 782"Invalid parsing is handled with the `errors` parameter:* `coerce` (default): invalid parsing will be set to NaN* `ignore`: invalid parsing will return the input* `raise`: invalid parsing will raise an exceptionThe following sections demonstrate the functionality of `clean_au_tfn()` and `validate_au_tfn()`. An example dataset containing TFN strings ###Code import pandas as pd import numpy as np df = pd.DataFrame( { "tfn": [ "123 456 782", "999 999 999", "123456782", "51 824 753 556", "hello", np.nan, "NULL" ], "address": [ "123 Pine Ave.", "main st", "1234 west main heights 57033", "apt 1 789 s maple rd manhattan", "robie house, 789 north main street", "(staples center) 1111 S Figueroa St, Los Angeles", "hello", ] } ) df ###Output _____no_output_____ ###Markdown 1. Default `clean_au_tfn`By default, `clean_au_tfn` will clean tfn strings and output them in the standard format with proper separators. ###Code from dataprep.clean import clean_au_tfn clean_au_tfn(df, column = "tfn") ###Output _____no_output_____ ###Markdown 2. Output formats This section demonstrates the output parameter. `standard` (default) ###Code clean_au_tfn(df, column = "tfn", output_format="standard") ###Output _____no_output_____ ###Markdown `compact` ###Code clean_au_tfn(df, column = "tfn", output_format="compact") ###Output _____no_output_____ ###Markdown 3. `inplace` parameterThis deletes the given column from the returned DataFrame. A new column containing cleaned TFN strings is added with a title in the format `"{original title}_clean"`. ###Code clean_au_tfn(df, column="tfn", inplace=True) ###Output _____no_output_____ ###Markdown 4. `errors` parameter `coerce` (default) ###Code clean_au_tfn(df, "tfn", errors="coerce") ###Output _____no_output_____ ###Markdown `ignore` ###Code clean_au_tfn(df, "tfn", errors="ignore") ###Output _____no_output_____ ###Markdown 4. `validate_au_tfn()` `validate_au_tfn()` returns `True` when the input is a valid TFN. Otherwise it returns `False`.The input of `validate_au_tfn()` can be a string, a Pandas DataSeries, a Dask DataSeries, a Pandas DataFrame and a dask DataFrame.When the input is a string, a Pandas DataSeries or a Dask DataSeries, user doesn't need to specify a column name to be validated. When the input is a Pandas DataFrame or a dask DataFrame, user can both specify or not specify a column name to be validated. If user specify the column name, `validate_au_tfn()` only returns the validation result for the specified column. If user doesn't specify the column name, `validate_au_tfn()` returns the validation result for the whole DataFrame. ###Code from dataprep.clean import validate_au_tfn print(validate_au_tfn("123 456 782")) print(validate_au_tfn("99 999 999")) print(validate_au_tfn("123456782")) print(validate_au_tfn("51 824 753 556")) print(validate_au_tfn("hello")) print(validate_au_tfn(np.nan)) print(validate_au_tfn("NULL")) ###Output _____no_output_____ ###Markdown Series ###Code validate_au_tfn(df["tfn"]) ###Output _____no_output_____ ###Markdown DataFrame + Specify Column ###Code validate_au_tfn(df, column="tfn") ###Output _____no_output_____ ###Markdown Only DataFrame ###Code validate_au_tfn(df) ###Output _____no_output_____
nb/prior_correct/mock_sfh_data.ipynb
###Markdown Mock SFH dataIn this notebook, I will generate mock data that I will use to demonstrate the prior correction method. The mock data will be generated using FSPS with $M_*=10^{10}M_\odot$, $Z = 0.02$, and with the following different SFHs: 1. constant2. falling3. rising4. burst5. quench ###Code import os import numpy as np import fsps from astropy.cosmology import Planck13 # --- plotting --- from matplotlib import gridspec import matplotlib as mpl import matplotlib.pyplot as plt mpl.rcParams['text.usetex'] = True mpl.rcParams['font.family'] = 'serif' mpl.rcParams['axes.linewidth'] = 1.5 mpl.rcParams['axes.xmargin'] = 1 mpl.rcParams['xtick.labelsize'] = 'x-large' mpl.rcParams['xtick.major.size'] = 5 mpl.rcParams['xtick.major.width'] = 1.5 mpl.rcParams['ytick.labelsize'] = 'x-large' mpl.rcParams['ytick.major.size'] = 5 mpl.rcParams['ytick.major.width'] = 1.5 mpl.rcParams['legend.frameon'] = False tage = Planck13.age(0.).value # Gyr age of z=0 galaxy ###Output _____no_output_____ ###Markdown get SFHs ###Code nlb = 1000 # look back time bins tlb = np.linspace(0, tage, nlb) # look back time # delta t bin widths dt = np.zeros(nlb) dt[1:-1] = 0.5 * (np.diff(tlb)[1:] + np.diff(tlb)[:-1]) dt[0] = 0.5 * (tlb[1] - tlb[0]) dt[-1] = 0.5 * (tlb[-1] - tlb[-2]) sfh_constant = np.ones(nlb)/np.trapz(np.ones(nlb), tlb) sfh_falling = np.exp((tlb-tage)/1.4)/np.trapz(np.exp((tlb-tage)/1.4), tlb) sfh_rising = np.exp((tage-tlb)/3.4)/np.trapz(np.exp((tage -tlb)/3.4), tlb) sfh_burst = 0.8*(np.ones(nlb)/np.trapz(np.ones(nlb), tlb)) + 0.2 * (np.exp(-0.5*(tlb - 0.5)**2/0.2**2)/np.trapz(np.exp(-0.5*(tlb - 0.5)**2/0.2**2), tlb)) sfh_quench = np.concatenate([0.02*np.ones(nlb)[tlb < 1], np.ones(nlb)[tlb >= 1]])/np.trapz(np.concatenate([0.02*np.ones(nlb)[tlb < 1], np.ones(nlb)[tlb >= 1]]), tlb) sfhs = [sfh_constant, sfh_falling, sfh_rising, sfh_burst, sfh_quench] lbls = ['constant', 'falling', 'rising', 'burst', 'quench'] # check that the SFH are normalized properly for sfh in sfhs: assert np.isclose(np.trapz(sfh, tlb), 1.) fig = plt.figure(figsize=(6,20)) for i, sfh, lbl in zip(range(5), sfhs, lbls): sub = fig.add_subplot(5,1,i+1) sub.plot(tlb, sfh, c='C0', label=lbl) sub.set_xlim(0, tage) if i == 2: sub.set_ylabel(r'SFH/$M_{\rm formed}$ [${\rm yr}^-1$]', fontsize=25) sub.set_ylim(0, 0.7) sub.text(0.5, 0.65, lbl, ha='left', va='top', fontsize=25) sub.set_xlabel(r'$t_{\rm lookback}$ [Gyr]', fontsize=25) ###Output _____no_output_____ ###Markdown construct SEDs using `fsps`First, initiate a `fsps.StellarPopulation` object ###Code ssp = fsps.StellarPopulation( zcontinuous=1, # interpolate metallicities sfh=0, # tabulated SFH dust_type=2, # calzetti(2000) imf_type=1) # chabrier IMF def build_SED(sfh): ''' construct SED given tabulated SFH using FSPS. All SEDs have Z = Zsol and dust2 = ''' mtot = 0. for i, tage in enumerate(tlb): m = dt[i] * sfh[i] # mass formed in this bin if m == 0 and i != 0: continue ssp.params['logzsol'] = 0 ssp.params['dust2'] = 0.3 # tau_V (but Conroy defines tau differently than standard methods) wave_rest, lum_i = ssp.get_spectrum( tage=np.clip(tage, 1e-8, None), peraa=True) # in units of Lsun/AA # note that this spectrum is normalized such that the total formed # mass = 1 Msun if i == 0: lum_ssp = np.zeros(len(wave_rest)) lum_ssp += m * lum_i mtot += m assert np.isclose(mtot, 1.) lum_ssp *= 10**10 # 10^10 Msun return wave_rest, lum_ssp sed_constant = build_SED(sfh_constant) sed_falling = build_SED(sfh_falling) sed_rising = build_SED(sfh_rising) sed_burst = build_SED(sfh_burst) sed_quench = build_SED(sfh_quench) seds = [sed_constant, sed_falling, sed_rising, sed_burst, sed_quench] fig = plt.figure(figsize=(15,20)) gs = gridspec.GridSpec(5, 2, width_ratios=[1,3]) for i, sfh, sed, lbl in zip(range(5), sfhs, seds, lbls): sub = plt.subplot(gs[i,0]) sub.plot(tlb, sfh, c='C%i' % i, label=lbl) if i == 4: sub.set_xlabel(r'$t_{\rm lookback}$ [Gyr]', fontsize=25) sub.set_xlim(0, tage) if i == 2: sub.set_ylabel(r'SFH/$M_{\rm formed}$ [${\rm yr}^-1$]', fontsize=25) sub.set_ylim(0, 0.7) sub.text(0.5, 0.65, lbl, ha='left', va='top', fontsize=25) sub = plt.subplot(gs[i,1]) sub.plot(sed[0], sed[1], c='C%i' % i, label=lbl) sub.set_xlim(2e3, 1e4) sub.set_ylim(0, 3e6) if i == 4: sub.set_xlabel('wavelength', fontsize=25) if i == 2: sub.set_ylabel(r'flux [$L_\odot/\AA$]', fontsize=25) ###Output _____no_output_____ ###Markdown save SFH, wavelengths, SEDs to file ###Code np.save('/Users/chahah/data/provabgs/prior_correct/t.lookback.npy', tlb) np.save('/Users/chahah/data/provabgs/prior_correct/wave.fsps.npy', sed_constant[0]) for i, sfh, sed, lbl in zip(range(5), sfhs, seds, lbls): np.save('/Users/chahah/data/provabgs/prior_correct/sfh.%s.npy' % lbl, sfh) np.save('/Users/chahah/data/provabgs/prior_correct/sed.%s.npy' % lbl, sed[1]) ###Output _____no_output_____
Machine_Learning_In_Cyber_Security/Binary_Classifier_poisoning_attack.ipynb
###Markdown In this example , i will add malicious nodes to substantially change the prediction graph of the ml model ###Code from sklearn.datasets import make_classification from sklearn.neural_network import MLPClassifier # creating a random dataset for a binary classifier X , y = make_classification(n_samples=500 , n_features=2,n_informative=2,n_redundant=0,weights=[.5,.5],random_state=30) ## now creating the classifier for maintaining the required features # and fitting half data for the traning and other half of testing clf = MLPClassifier(max_iter = 1000 , random_state = 123).fit(X[:250],y[:250]) import numpy as np # now creating a visualization of classifier decision function to analyse the working # creating a random mesh grid xx , yy = np.mgrid[-3:3:.01 , -3:3:.01] grid = np.c_[xx.ravel() , yy.ravel()] probs = clf.predict_proba(grid)[:,1].reshape(xx.shape) # now generating the countour plot import matplotlib.pyplot as plt f , ax = plt.subplots(figsize=(12, 9)) # Plot the contour background contour = ax.contourf(xx, yy, probs, 25, cmap="RdBu", vmin=0, vmax=1) ax_c = f.colorbar(contour) ax_c.set_label("$P(y = 1)$") ax_c.set_ticks([0, .25, .5, .75, 1]) # Plot the test set (latter half of X and y) ax.scatter(X[250:,0], X[250:, 1], c=y[250:], s=50, cmap="RdBu", vmin=-.2, vmax=1.2, edgecolor="white", linewidth=1) ax.set(aspect="equal", xlim=(-3, 3), ylim=(-3, 3)) ###Output _____no_output_____ ###Markdown now we try to do come malicious tricks by entering the malicious nodes and then finding the effect. ###Code # now defining a function to declare the decision function def plot_decision_boundary(X_orig, y_orig, probs_orig, chaff_X=None, chaff_y=None, probs_poisoned=None): f , ax = plt.subplots(figsize=(12, 9)) ax.scatter(X_orig[250:,0], X_orig[250:, 1], c=y_orig[250:], s=50, cmap="gray", edgecolor="black", linewidth=1) # checking wether any list is generated corrected or not. if all([(chaff_X is not None), (chaff_y is not None), (probs_poisoned is not None)]): ax.scatter(chaff_X[:,0], chaff_X[:, 1], c=chaff_y, s=50, cmap="gray", marker="*", edgecolor="black", linewidth=1) ax.contour(xx, yy, probs_orig, levels=[.5], cmap="gray", vmin=0, vmax=.8) ax.contour(xx, yy, probs_poisoned, levels=[.5], cmap="gray") else: ax.contour(xx, yy, probs_orig, levels=[.5], cmap="gray") ax.set(aspect="equal", xlim=(-3, 3), ylim=(-3, 3)) # adding selected chaff nodes ( called in scientific articles) num_chaff = 100 chaff_X = np.array([np.linspace(-2, -1 , num_chaff), np.linspace(0.1, 0.1, num_chaff)]).T chaff_y = np.ones(num_chaff) # finding normal plots plot_decision_boundary(X, y, probs) # now again traning the model with the info from the clf.partial_fit(chaff_X, chaff_y) probs_poisoned = clf.predict_proba(grid)[:, 1].reshape(xx.shape) plot_decision_boundary(X, y, probs, chaff_X, chaff_y, probs_poisoned) # now changing the number of malicious values and then plotting the graph , # we can ascertain the effect of changing of decision boundary. ## the end #### ###Output _____no_output_____
data_preprocessing_feature_scaling.ipynb
###Markdown Feature Scaling ###Code #Importing packages import numpy as np import pandas as pd dataset = pd.read_csv('/Users/swaruptripathy/Desktop/Data Science and AI/datasets/purchase_salary.csv') dataset.head() dataset.shape X = dataset.iloc[:,2:4] X.head() #Feature Scaling from sklearn.preprocessing import StandardScaler sc = StandardScaler() std_X = sc.fit_transform(X) std_X[0:5] help(StandardScaler) from sklearn.preprocessing import MinMaxScaler MinMaxScalerX = MinMaxScaler() MN_X = MinMaxScalerX.fit_transform(X) MN_X[0:5] ###Output _____no_output_____
Week_2_Multiple_Regression/assign-1_sklearn_mulp_regre.ipynb
###Markdown Regression Week 2: Multiple Regression (Interpretation) In this notebook, we will use data on house sales in King County, Seatle to predict prices using multiple regression. The goal of this notebook is to explore multiple regression and feature engineering. You will:* Use DataFrames to do some feature engineering* Use sklearn to compute the regression weights (coefficients/parameters)* Given the regression weights, predictors and outcome write a function to compute the Residual Sum of Squares (RSS)* Look at coefficients and interpret their meanings* Evaluate multiple models via RSS Importing Libraries ###Code import os import zipfile import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns sns.set_style('darkgrid') %matplotlib inline ###Output _____no_output_____ ###Markdown Unzipping files with house sales dataDataset is from house sales in King County, the region where the city of Seattle, WA is located. ###Code # Put files in current direction into a list files_list = [f for f in os.listdir('.') if os.path.isfile(f)] # Filenames of unzipped files unzip_files = ['kc_house_train_data.csv','kc_house_test_data.csv', 'kc_house_data.csv'] # If upzipped file not in files_list, unzip the file for filename in unzip_files: if filename not in files_list: zip_file = filename + '.zip' unzipping = zipfile.ZipFile(zip_file) unzipping.extractall() unzipping.close ###Output _____no_output_____ ###Markdown Loading Sales data, Sales Training data, and Sales Test data ###Code # Dictionary with the correct dtypes for the DataFrame columns dtype_dict = {'bathrooms':float, 'waterfront':int, 'sqft_above':int, 'sqft_living15':float, 'grade':int, 'yr_renovated':int, 'price':float, 'bedrooms':float, 'zipcode':str, 'long':float, 'sqft_lot15':float, 'sqft_living':float, 'floors':str, 'condition':int, 'lat':float, 'date':str, 'sqft_basement':int, 'yr_built':int, 'id':str, 'sqft_lot':int, 'view':int} # Loading sales data, sales training data, and test_data into DataFrames sales = pd.read_csv('kc_house_data.csv', dtype = dtype_dict) train_data = pd.read_csv('kc_house_train_data.csv', dtype = dtype_dict) test_data = pd.read_csv('kc_house_test_data.csv', dtype = dtype_dict) # Looking at head of training data DataFrame train_data.head() ###Output _____no_output_____ ###Markdown Learning a multiple regression model Now, learn a multiple regression model predicting 'price' based on the following features:example_features = ['sqft_living', 'bedrooms', 'bathrooms'] on training data. First, let's plot the data for these features. ###Code plt.figure(figsize=(8,6)) plt.plot(train_data['sqft_living'], train_data['price'],'.') plt.xlabel('Living Area (ft^2)', fontsize=16) plt.ylabel('House Price ($)', fontsize=16) plt.show() plt.figure(figsize=(12,8)) plt.subplot(1, 2, 1) plt.plot(train_data['bedrooms'], train_data['price'],'.') plt.xlabel('# Bedrooms', fontsize=16) plt.ylabel('House Price ($)', fontsize=16) plt.subplot(1, 2, 2) plt.plot(train_data['bathrooms'], train_data['price'],'.') plt.xlabel('# Bathrooms', fontsize=16) plt.ylabel('House Price ($)', fontsize=16) plt.show() ###Output _____no_output_____ ###Markdown Now, creating a list of the features we are interested in, the feature matrix, and the output vector. ###Code example_features = ['sqft_living', 'bedrooms', 'bathrooms'] X_multi_lin_reg = train_data[example_features] y_multi_lin_reg = train_data['price'] ###Output _____no_output_____ ###Markdown Creating a Linear Regression Object for Sklearn library and using the feature matrix and output vector to perform linear regression. ###Code example_model = LinearRegression() example_model.fit(X_multi_lin_reg, y_multi_lin_reg) ###Output _____no_output_____ ###Markdown Now that we have fitted the model we can extract the regression weights (coefficients): ###Code # printing the intercept and coefficients print example_model.intercept_ print example_model.coef_ # Putting the intercept and weights from the multiple linear regression into a Series example_weight_summary = pd.Series( [example_model.intercept_] + list(example_model.coef_), index = ['intercept'] + example_features ) print example_weight_summary ###Output intercept 87912.865815 sqft_living 315.406691 bedrooms -65081.887116 bathrooms 6942.165986 dtype: float64 ###Markdown Making PredictionsRecall that once a model is built we can use the .predict() function to find the predicted values for data we pass. For example using the example model above: ###Code example_predictions = example_model.predict(X_multi_lin_reg) print example_predictions[0] # should be close to 271789.505878 ###Output 271789.26538 ###Markdown Compute RSS Now that we can make predictions given the model, let's write a function to compute the RSS of the model. ###Code def get_residual_sum_of_squares(model, data, outcome): # - data holds the data points with the features (columns) we are interested in performing a linear regression fit # - model holds the linear regression model obtained from fitting to the data # - outcome is the y, the observed house price for each data point # By using the model and applying predict on the data, we return a numpy array which holds # the predicted outcome (house price) from the linear regression model model_predictions = model.predict(data) # Computing the residuals between the predicted house price and the actual house price for each data point residuals = outcome - model_predictions # To get RSS, square the residuals and add them up RSS = sum(residuals*residuals) return(RSS) ###Output _____no_output_____ ###Markdown Create some new features Although we often think of multiple regression as including multiple different features (e.g. of bedrooms, squarefeet, and of bathrooms), we can also consider transformations of existing features e.g. the log of the squarefeet or even "interaction" features such as the product of bedrooms and bathrooms. Create the following 4 new features as column in both TEST and TRAIN data:* bedrooms_squared = bedrooms\*bedrooms* bed_bath_rooms = bedrooms\*bathrooms* log_sqft_living = log(sqft_living)* lat_plus_long = lat + long ###Code # Creating new 'bedrooms_squared' feature train_data['bedrooms_squared'] = train_data['bedrooms']*train_data['bedrooms'] test_data['bedrooms_squared'] = test_data['bedrooms']*test_data['bedrooms'] # Creating new 'bed_bath_rooms' feature train_data['bed_bath_rooms'] = train_data['bedrooms']*train_data['bathrooms'] test_data['bed_bath_rooms'] = test_data['bedrooms']*test_data['bathrooms'] # Creating new 'log_sqft_living' feature train_data['log_sqft_living'] = np.log(train_data['sqft_living']) test_data['log_sqft_living'] = np.log(test_data['sqft_living']) # Creating new 'lat_plus_long' feature train_data['lat_plus_long'] = train_data['lat'] + train_data['long'] test_data['lat_plus_long'] = test_data['lat'] + test_data['long'] # Displaying head of train_data DataFrame and test_data DataFrame to verify that new features are present train_data.head() test_data.head() ###Output _____no_output_____ ###Markdown * Squaring bedrooms will increase the separation between not many bedrooms (e.g. 1) and lots of bedrooms (e.g. 4) since 1^2 = 1 but 4^2 = 16. Consequently this feature will mostly affect houses with many bedrooms.* bedrooms times bathrooms gives what's called an "interaction" feature. It is large when *both* of them are large.* Taking the log of squarefeet has the effect of bringing large values closer together and spreading out small values.* Adding latitude to longitude is totally non-sensical but we will do it anyway (you'll see why) **Quiz Question: What is the mean (arithmetic average) value of your 4 new features on TEST data? (round to 2 digits)** ###Code print "Mean of Test data 'bedrooms_squared' feature: %.2f " % np.mean(test_data['bedrooms_squared'].values) print "Mean of Test data 'bed_bath_rooms' feature: %.2f " % np.mean(test_data['bed_bath_rooms'].values) print "Mean of Test data 'log_sqft_living' feature: %.2f " % np.mean(test_data['log_sqft_living'].values) print "Mean of Test data 'lat_plus_long' feature: %.2f " % np.mean(test_data['lat_plus_long'].values) ###Output Mean of Test data 'bedrooms_squared' feature: 12.45 Mean of Test data 'bed_bath_rooms' feature: 7.50 Mean of Test data 'log_sqft_living' feature: 7.55 Mean of Test data 'lat_plus_long' feature: -74.65 ###Markdown Learning Multiple Models Now we will learn the weights for three (nested) models for predicting house prices. The first model will have the fewest features the second model will add one more feature and the third will add a few more:* Model 1: squarefeet, bedrooms, bathrooms, latitude & longitude* Model 2: add bedrooms\*bathrooms* Model 3: Add log squarefeet, bedrooms squared, and the (nonsensical) latitude + longitude ###Code model_1_features = ['sqft_living', 'bedrooms', 'bathrooms', 'lat', 'long'] model_2_features = model_1_features + ['bed_bath_rooms'] model_3_features = model_2_features + ['bedrooms_squared', 'log_sqft_living', 'lat_plus_long'] ###Output _____no_output_____ ###Markdown Now that you have the features, learn the weights for the three different models for predicting target = 'price' and look at the value of the weights/coefficients: ###Code # Creating a LinearRegression Object for Model 1 and learning the multiple linear regression model model_1 = LinearRegression() model_1.fit(train_data[model_1_features], train_data['price']) # Creating a LinearRegression Object for Model 2 and learning the multiple linear regression model model_2 = LinearRegression() model_2.fit(train_data[model_2_features], train_data['price']) # Creating a LinearRegression Object for Model 3 and learning the multiple linear regression model model_3 = LinearRegression() model_3.fit(train_data[model_3_features], train_data['price']) ###Output _____no_output_____ ###Markdown ** Now, Examine/extract each model's coefficients: ** ###Code # Putting the Model 1 intercept and weights from the multiple linear regression for the 3 models into a Series model_1_summary = pd.Series( [model_1.intercept_] + list(model_1.coef_), index = ['intercept'] + model_1_features , name='Model 1 Coefficients' ) print model_1_summary # Putting the Model 2 intercept and weights from the multiple linear regression for the 3 models into a Series model_2_summary = pd.Series( [model_2.intercept_] + list(model_2.coef_), index = ['intercept'] + model_2_features , name='Model 2 Coefficients' ) print model_2_summary # Putting the Model 3 intercept and weights from the multiple linear regression for the 3 models into a Series model_3_summary = pd.Series( [model_3.intercept_] + list(model_3.coef_), index = ['intercept'] + model_3_features , name='Model 3 Coefficients' ) print model_3_summary ###Output intercept -62036084.986098 sqft_living 529.422820 bedrooms 34514.229578 bathrooms 67060.781319 lat 534085.610867 long -406750.710861 bed_bath_rooms -8570.504395 bedrooms_squared -6788.586670 log_sqft_living -561831.484076 lat_plus_long 127334.900006 Name: Model 3 Coefficients, dtype: float64 ###Markdown **Quiz Question: What is the sign (positive or negative) for the coefficient/weight for 'bathrooms' in model 1?** ###Code print "Positive: ", model_1_summary['bathrooms'] ###Output Positive: 15706.7420827 ###Markdown **Quiz Question: What is the sign (positive or negative) for the coefficient/weight for 'bathrooms' in model 2?** ###Code print "Negative: ", model_2_summary['bathrooms'] ###Output Negative: -71461.3082928 ###Markdown Think about what this means: In model 2, the new 'bed_bath_rooms' feature causes the house price to be over-estimated. Thus, the 'bathrooms' turns to negative to better agree with the observed values for the house prices. Comparing multiple modelsNow that you've learned three models and extracted the model weights we want to evaluate which model is best. First use your functions from earlier to compute the RSS on TRAINING Data for each of the three models. ###Code # Compute the RSS on TRAINING data for each of the three models and record the values: rss_model_1_train = get_residual_sum_of_squares(model_1, train_data[model_1_features], train_data['price']) rss_model_2_train = get_residual_sum_of_squares(model_2, train_data[model_2_features], train_data['price']) rss_model_3_train = get_residual_sum_of_squares(model_3, train_data[model_3_features], train_data['price']) print "RSS for Model 1 Training Data: ", rss_model_1_train print "RSS for Model 2 Training Data: ", rss_model_2_train print "RSS for Model 3 Training Data: ", rss_model_3_train ###Output RSS for Model 1 Training Data: 9.6787996305e+14 RSS for Model 2 Training Data: 9.58419635074e+14 RSS for Model 3 Training Data: 9.0343645505e+14 ###Markdown **Quiz Question: Which model (1, 2 or 3) has lowest RSS on TRAINING Data?** Is this what you expected? Model 3 has the lowest RSS on the Training Data. This is expected since Model 3 has the most features. Now compute the RSS on on TEST data for each of the three models. ###Code # Compute the RSS on TESTING data for each of the three models and record the values: rss_model_1_test = get_residual_sum_of_squares(model_1, test_data[model_1_features], test_data['price']) rss_model_2_test = get_residual_sum_of_squares(model_2, test_data[model_2_features], test_data['price']) rss_model_3_test = get_residual_sum_of_squares(model_3, test_data[model_3_features], test_data['price']) print "RSS for Model 1 Test Data: ", rss_model_1_test print "RSS for Model 2 Test Data: ", rss_model_2_test print "RSS for Model 3 T Data: ", rss_model_3_test ###Output RSS for Model 1 Test Data: 2.25500469795e+14 RSS for Model 2 Test Data: 2.23377462976e+14 RSS for Model 3 T Data: 2.59236319207e+14
notebooks/03f - Exploratory Data Analysis WW2 - EDA-Airplanes.ipynb
###Markdown Exploratory Data Analysis in Action - EDA: Airplanes In this section we explore the [_Arial Bombing Data Set_](https://www.kaggle.com/usaf/world-war-ii) and apply techniques referred to as __Exploratory Data Analysis__. **Import statements** ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline ###Output _____no_output_____ ###Markdown **Global settings** ###Code pd.options.display.max_rows = 999 pd.options.display.max_columns = 100 #pd.set_option('display.max_colwidth', -1) plt.rcParams["figure.figsize"] = [15,6] ###Output _____no_output_____ ###Markdown **Load data set** ###Code import pickle gdf_europe = pickle.load( open( "../datasets/gdf_europe.p", "rb" ) ) europe = pickle.load(open( "../datasets/europe.p", "rb" ) ) germany = pickle.load(open("../datasets/germany.p", "rb")) gdf_germany = pickle.load(open("../datasets/gdf_germany.p", "rb")) ###Output _____no_output_____ ###Markdown Research questions __@Airplanes__- Q1: Which type of airplane types was mostly engaged over?- Q2: At what height do airplanes operate? At what height to the 10 most common airplane types operate?- Q3: Which type of airplane carried the heaviest bombs? Which were the 10 most dangerous airplane types with respect to carried explosives?- Q4: Which Allied Force uses which airplane when and where? ###Code df_airpl = gdf_europe.copy() df_airpl.columns ###Output _____no_output_____ ###Markdown > **Q1: Which type of airplane is mostly engaged?** ###Code ## your code here ###Output _____no_output_____ ###Markdown > **Q2: At what height do airplanes operate? At what height to the 10 most common airplane types operate?** ###Code ## your code here ###Output _____no_output_____ ###Markdown > **Q3: Which type of airplane carried the heaviest bombs? Which were the 10 most dangerous airplane types with respect to carried explosives?** ###Code ## your code here ###Output _____no_output_____ ###Markdown > **Q4: Which Allied Force uses which airplane when and where?** _This question is for sure a huge one. We suggest to write a function (or script) that plots for each year the Allied attacks over Europe for any specified airplane type._ ###Code df_airpl['Aircraft Series'].unique() ## your code here ###Output _____no_output_____ ###Markdown _Note: If you struggle you mak take a look at our implementation for this problem. Uncomment and run the cell below and apply the_ `plot_airplane_type_over_europe` _function._ ###Code # %load ../src/_solutions/eda_airplanes_q4.py # plot_airplane_type_over_europe(df_airpl, airplane="B17", kdp=False); ###Output _____no_output_____
notebooks/semisupervised/MNIST/learned-metric/not-augmented-Y/mnist-aug-64ex-learned-nothresh-Y-not-augmented.ipynb
###Markdown Choose GPU ###Code %env CUDA_DEVICE_ORDER=PCI_BUS_ID %env CUDA_VISIBLE_DEVICES=3 import tensorflow as tf gpu_devices = tf.config.experimental.list_physical_devices('GPU') if len(gpu_devices)>0: tf.config.experimental.set_memory_growth(gpu_devices[0], True) print(gpu_devices) tf.keras.backend.clear_session() ###Output [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')] ###Markdown Load packages ###Code import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from tqdm.autonotebook import tqdm from IPython import display import pandas as pd import umap import copy import os, tempfile import tensorflow_addons as tfa import pickle ###Output /mnt/cube/tsainbur/conda_envs/tpy3/lib/python3.6/site-packages/tqdm/autonotebook/__init__.py:14: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console) " (e.g. in jupyter console)", TqdmExperimentalWarning) ###Markdown parameters ###Code dataset = "mnist" labels_per_class = 64 # 'full' n_latent_dims = 1024 confidence_threshold = 0.0 # minimum confidence to include in UMAP graph for learned metric learned_metric = True # whether to use a learned metric, or Euclidean distance between datapoints augmented = False # min_dist= 0.001 # min_dist parameter for UMAP negative_sample_rate = 5 # how many negative samples per positive sample batch_size = 128 # batch size optimizer = tf.keras.optimizers.Adam(1e-3) # the optimizer to train optimizer = tfa.optimizers.MovingAverage(optimizer) label_smoothing = 0.2 # how much label smoothing to apply to categorical crossentropy max_umap_iterations = 500 # how many times, maximum, to recompute UMAP max_epochs_per_graph = 10 # how many epochs maximum each graph trains for (without early stopping) graph_patience = 10 # how many times without improvement to train a new graph min_graph_delta = 0.0025 # minimum improvement on validation acc to consider an improvement for training from datetime import datetime datestring = datetime.now().strftime("%Y_%m_%d_%H_%M_%S_%f") datestring = ( str(dataset) + "_" + str(confidence_threshold) + "_" + str(labels_per_class) + "____" + datestring + '_umap_augmented' ) print(datestring) ###Output mnist_0.0_64____2020_08_24_16_51_16_969542_umap_augmented ###Markdown Load dataset ###Code from tfumap.semisupervised_keras import load_dataset ( X_train, X_test, X_labeled, Y_labeled, Y_masked, X_valid, Y_train, Y_test, Y_valid, Y_valid_one_hot, Y_labeled_one_hot, num_classes, dims ) = load_dataset(dataset, labels_per_class) ###Output _____no_output_____ ###Markdown load architecture ###Code from tfumap.semisupervised_keras import load_architecture encoder, classifier, embedder = load_architecture(dataset, n_latent_dims) ###Output _____no_output_____ ###Markdown load pretrained weights ###Code from tfumap.semisupervised_keras import load_pretrained_weights encoder, classifier = load_pretrained_weights(dataset, augmented, labels_per_class, encoder, classifier) ###Output WARNING: Logging before flag parsing goes to stderr. W0824 16:51:21.219846 139678025615104 base.py:272] Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program. Two checkpoint references resolved to different objects (<tensorflow_addons.layers.wrappers.WeightNormalization object at 0x7f084ed0dda0> and <tensorflow.python.keras.layers.advanced_activations.LeakyReLU object at 0x7f084edcfda0>). W0824 16:51:21.222154 139678025615104 base.py:272] Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program. Two checkpoint references resolved to different objects (<tensorflow_addons.layers.wrappers.WeightNormalization object at 0x7f084edcc198> and <tensorflow.python.keras.layers.advanced_activations.LeakyReLU object at 0x7f084ed9ae10>). W0824 16:51:21.334750 139678025615104 base.py:272] Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program. Two checkpoint references resolved to different objects (<tensorflow_addons.layers.wrappers.WeightNormalization object at 0x7f084eac8198> and <tensorflow.python.keras.layers.normalization_v2.BatchNormalization object at 0x7f084eafc438>). W0824 16:51:21.339720 139678025615104 base.py:272] Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program. Two checkpoint references resolved to different objects (<tensorflow.python.keras.layers.normalization_v2.BatchNormalization object at 0x7f084eafc438> and <tensorflow.python.keras.layers.advanced_activations.LeakyReLU object at 0x7f084f0b1390>). W0824 16:51:21.346334 139678025615104 base.py:272] Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program. Two checkpoint references resolved to different objects (<tensorflow_addons.layers.wrappers.WeightNormalization object at 0x7f084eca8f60> and <tensorflow.python.keras.layers.normalization_v2.BatchNormalization object at 0x7f084eca8978>). W0824 16:51:21.351073 139678025615104 base.py:272] Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program. Two checkpoint references resolved to different objects (<tensorflow.python.keras.layers.normalization_v2.BatchNormalization object at 0x7f084eca8978> and <tensorflow.python.keras.layers.advanced_activations.LeakyReLU object at 0x7f084eca8828>). W0824 16:51:21.357711 139678025615104 base.py:272] Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program. Two checkpoint references resolved to different objects (<tensorflow_addons.layers.wrappers.WeightNormalization object at 0x7f084eb34f98> and <tensorflow.python.keras.layers.normalization_v2.BatchNormalization object at 0x7f084f0ab278>). W0824 16:51:21.362348 139678025615104 base.py:272] Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program. Two checkpoint references resolved to different objects (<tensorflow.python.keras.layers.normalization_v2.BatchNormalization object at 0x7f084f0ab278> and <tensorflow.python.keras.layers.advanced_activations.LeakyReLU object at 0x7f084f0ab400>). W0824 16:51:21.381991 139678025615104 base.py:272] Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program. Two checkpoint references resolved to different objects (<tensorflow_addons.layers.wrappers.WeightNormalization object at 0x7f084e996668> and <tensorflow.python.keras.layers.normalization_v2.BatchNormalization object at 0x7f084e9965c0>). W0824 16:51:21.389613 139678025615104 base.py:272] Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program. Two checkpoint references resolved to different objects (<tensorflow.python.keras.layers.normalization_v2.BatchNormalization object at 0x7f084e9965c0> and <tensorflow.python.keras.layers.advanced_activations.LeakyReLU object at 0x7f084e996f98>). W0824 16:51:21.400824 139678025615104 base.py:272] Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program. Two checkpoint references resolved to different objects (<tensorflow_addons.layers.wrappers.WeightNormalization object at 0x7f084eeb5710> and <tensorflow.python.keras.layers.normalization_v2.BatchNormalization object at 0x7f084eeb5cc0>). W0824 16:51:21.407382 139678025615104 base.py:272] Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program. Two checkpoint references resolved to different objects (<tensorflow.python.keras.layers.normalization_v2.BatchNormalization object at 0x7f084eeb5cc0> and <tensorflow.python.keras.layers.advanced_activations.LeakyReLU object at 0x7f084eeb5f60>). W0824 16:51:21.414678 139678025615104 base.py:272] Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program. Two checkpoint references resolved to different objects (<tensorflow_addons.layers.wrappers.WeightNormalization object at 0x7f084ee51a58> and <tensorflow.python.keras.layers.normalization_v2.BatchNormalization object at 0x7f084ee51cf8>). W0824 16:51:21.419428 139678025615104 base.py:272] Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program. Two checkpoint references resolved to different objects (<tensorflow.python.keras.layers.normalization_v2.BatchNormalization object at 0x7f084ee51cf8> and <tensorflow.python.keras.layers.advanced_activations.LeakyReLU object at 0x7f084ee51f98>). W0824 16:51:21.431040 139678025615104 base.py:272] Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program. Two checkpoint references resolved to different objects (<tensorflow_addons.layers.wrappers.WeightNormalization object at 0x7f084f367198> and <tensorflow.python.keras.layers.normalization_v2.BatchNormalization object at 0x7f084f3677b8>). W0824 16:51:21.435521 139678025615104 base.py:272] Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program. Two checkpoint references resolved to different objects (<tensorflow.python.keras.layers.normalization_v2.BatchNormalization object at 0x7f084f3677b8> and <tensorflow.python.keras.layers.advanced_activations.LeakyReLU object at 0x7f084f3679e8>). ###Markdown compute pretrained accuracy ###Code # test current acc pretrained_predictions = classifier.predict(encoder.predict(X_test, verbose=True), verbose=True) pretrained_predictions = np.argmax(pretrained_predictions, axis=1) pretrained_acc = np.mean(pretrained_predictions == Y_test) print('pretrained acc: {}'.format(pretrained_acc)) ###Output 313/313 [==============================] - 2s 7ms/step 313/313 [==============================] - 0s 1ms/step pretrained acc: 0.9787 ###Markdown get a, b parameters for embeddings ###Code from tfumap.semisupervised_keras import find_a_b a_param, b_param = find_a_b(min_dist=min_dist) ###Output _____no_output_____ ###Markdown build network ###Code from tfumap.semisupervised_keras import build_model model = build_model( batch_size=batch_size, a_param=a_param, b_param=b_param, dims=dims, encoder=encoder, classifier=classifier, negative_sample_rate=negative_sample_rate, optimizer=optimizer, label_smoothing=label_smoothing, embedder = embedder, ) ###Output _____no_output_____ ###Markdown build labeled iterator ###Code from tfumap.semisupervised_keras import build_labeled_iterator labeled_dataset = build_labeled_iterator(X_labeled, Y_labeled_one_hot, augmented, dims) ###Output _____no_output_____ ###Markdown training ###Code from livelossplot import PlotLossesKerasTF from tfumap.semisupervised_keras import get_edge_dataset from tfumap.semisupervised_keras import zip_datasets ###Output _____no_output_____ ###Markdown callbacks ###Code # plot losses callback groups = {'acccuracy': ['classifier_accuracy', 'val_classifier_accuracy'], 'loss': ['classifier_loss', 'val_classifier_loss']} plotlosses = PlotLossesKerasTF(groups=groups) history_list = [] current_validation_acc = 0 batches_per_epoch = np.floor(len(X_train)/batch_size).astype(int) epochs_since_last_improvement = 0 current_umap_iterations = 0 current_epoch = 0 from tfumap.paths import MODEL_DIR, ensure_dir save_folder = MODEL_DIR / 'semisupervised-keras' / dataset / str(labels_per_class) / datestring ensure_dir(save_folder / 'test_loss.npy') for cui in tqdm(np.arange(current_epoch, max_umap_iterations)): if len(history_list) > graph_patience+1: previous_history = [np.mean(i.history['val_classifier_accuracy']) for i in history_list] best_of_patience = np.max(previous_history[-graph_patience:]) best_of_previous = np.max(previous_history[:-graph_patience]) if (best_of_previous + min_graph_delta) > best_of_patience: print('Early stopping') break # make dataset edge_dataset = get_edge_dataset( model, augmented, classifier, encoder, X_train, Y_masked, batch_size, confidence_threshold, labeled_dataset, dims, learned_metric = learned_metric ) # zip dataset zipped_ds = zip_datasets(labeled_dataset, edge_dataset, batch_size) # train dataset history = model.fit( zipped_ds, epochs= current_epoch + max_epochs_per_graph, initial_epoch = current_epoch, validation_data=( (X_valid, tf.zeros_like(X_valid), tf.zeros_like(X_valid)), {"classifier": Y_valid_one_hot}, ), callbacks = [plotlosses], max_queue_size = 100, steps_per_epoch = batches_per_epoch, #verbose=0 ) current_epoch+=len(history.history['loss']) history_list.append(history) # save score class_pred = classifier.predict(encoder.predict(X_test)) class_acc = np.mean(np.argmax(class_pred, axis=1) == Y_test) np.save(save_folder / 'test_loss.npy', (np.nan, class_acc)) # save weights encoder.save_weights((save_folder / "encoder").as_posix()) classifier.save_weights((save_folder / "classifier").as_posix()) # save history with open(save_folder / 'history.pickle', 'wb') as file_pi: pickle.dump([i.history for i in history_list], file_pi) current_umap_iterations += 1 if len(history_list) > graph_patience+1: previous_history = [np.mean(i.history['val_classifier_accuracy']) for i in history_list] best_of_patience = np.max(previous_history[-graph_patience:]) best_of_previous = np.max(previous_history[:-graph_patience]) if (best_of_previous + min_graph_delta) > best_of_patience: print('Early stopping') #break plt.plot(previous_history) ###Output _____no_output_____ ###Markdown save embedding ###Code z = encoder.predict(X_train) reducer = umap.UMAP(verbose=True) embedding = reducer.fit_transform(z.reshape(len(z), np.product(np.shape(z)[1:]))) plt.scatter(embedding[:, 0], embedding[:, 1], c=Y_train.flatten(), s= 1, alpha = 0.1, cmap = plt.cm.tab10) np.save(save_folder / 'train_embedding.npy', embedding) ###Output _____no_output_____
.ipynb_checkpoints/Calculo_emisiones-checkpoint.ipynb
###Markdown Modulo 2En este notebook se realiza el calculo de las emisiones.Se utilizan los VKT desde el programa de Nicolásy se multiplican por los factores de emisión obtenidos por COPERT5.5 ###Code import pandas as pd pd.options.mode.chained_assignment = None # default='warn' import numpy as np df = pd.read_excel("Modulo 2/VKT.xlsx", index_col=None) EF = pd.read_excel("EF.xlsx", index_col=None) df_2 = df.iloc[:,2:] df_2.drop("2013", inplace=True, axis=1) df_2 EF_CO = EF.iloc[:,1:-10][EF["Pollutant"]=="CO"] EF_CH4 = EF.iloc[:,1:-10][EF["Pollutant"]=="CH4"] EF_NOx = EF.iloc[:,1:-10][EF["Pollutant"]=="NOx"] EF_CO2 = EF.iloc[:,1:-10][EF["Pollutant"]=="CO2"] EF_SOx = EF.iloc[:,1:-10][EF["Pollutant"]=="SOx"] EF_PM = EF.iloc[:,1:-10][EF["Pollutant"]=="PM Exhaust"] EF_CO merge(df, left_on=["Modo", "Motorizacion", "Norma"], right_on=["Segment","Fuel","Euro Standard"], how="left") dfm = df_2.merge(EF_CO, left_on=["Región", "Ámbito", "Categoría", "Motorizacion", "Norma"], right_on=["Region", "Ambito", "Modo", "Motorizacion", "Norma"], how="left") dfm.columns dfm ###Output _____no_output_____
04 Python Teil 2/04 Funktionenneu.ipynb
###Markdown FunktionenFunktionen sind zusammengefasste Codeblöcke. Mittels Funktionen können wir es vermeiden, mehrmals verwendete Codeblöcke zu wiederholen. Wir definieren stattdessen einmal eine Funktion, die diese Codeblöcke enthält und brauchen an weiteren Stellen nur noch (kurz) die Funktion aufzurufen, ohne die in ihr enthaltenen Codezeilen zu kopieren. Eine Funktion definieren und aufrufenWir haben schon einige Funktionen kennengelernt, die uns Python zur Verfügung stellt. Die Funktion, die wir bislang wohl am häufigsten verwendet haben, ist die print-Funktion: ###Code print("HALLO WELT") ###Output HALLO WELT ###Markdown P.S. Eine Übersicht über Funktionen in Python findest du hier: https://docs.python.org/3/library/functions.html Weitere Funktionen in Python Auch die len-Funktion für Listen kennst du schon. :-) ###Code print(len(["Hallo", "Welt"])) ###Output 2 ###Markdown Du kannst die len-Funktion auch auf Strings anwenden. ###Code print(len("Hallo")) def multi_print(): print("Hallo Welt!") print("Hallo Welt!") ###Output _____no_output_____ ###Markdown Wenn wir eine eigene Funktion verwenden wollen, müssen wir sie zuerst definieren. Eine solche Funktionsdefinition hat die allgemeine Syntax:**def Funktionname():**&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; **Code** Um eine Funktion auszuführen, die definiert wurde, schreiben wir: **Funktionname()** ###Code multi_print() ###Output Hallo Welt! Hallo Welt! ###Markdown Funktionen mit einem ArgumentMan kann Funktionen ein **Argument** übergeben, d. h. einen Wert, von dem der Code innerhalb der Funktion abhängt:**def Funktionsname(Argument):**&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; **Code, in dem mit dem spezifischen Argument gearbeitet wird** ###Code def multi_print2(name): print(name) print(name) multi_print2("HALLO") multi_print2("WELT") ###Output HALLO HALLO WELT WELT ###Markdown Funktionen mit mehreren ArgumentenEine Funktion darf auch mehrere Argumente enthalten:**def Funktionenname(Argument1, Argument2, ...):**&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; **Code, in dem mit Argument1, Argument2,... gearbeitet wird** ###Code def multi_print(name, count): for i in range(0, count): print(name) multi_print("Hallo!", 5) ###Output Hallo! Hallo! Hallo! Hallo! Hallo! ###Markdown Du kannst dir einen solchen Parameter als eine zu einer Funktion gehörige Variable vorstellen. Vermeide es, einen Funktionsparameter wie eine bereits bestehende Variable zu benennen - Verwirrungsgefahr! Funktionen und Gültigkeit von Variablen ###Code name = "MARS" planet = "MARS" def hallo(name): print("Hallo" + name) hallo("Plotti") print(name) ###Output MARS HalloPlotti MARS ###Markdown Du siehst, dass der Wert der Variable _name_ keinen Einfluss auf das Argument _name_ der Funktion hat! Die Variable _name_ außerhalb der Funktion ist also eine andere Variable als die Variable _name_ innerhalb der Funktion. Daher Achtung: Das macht den Code unübersichtlich! ÜbungSchreibe eine Funktion, die den Gesamtpreis der Produkte im Warenkorb berechnet!Vervollständige die Funktion list_sum(), der als Parameter eine Liste mit den Preisen übergeben wird. Die Funktion soll dann die Summe der Zahlen aus der Liste ausgeben. ###Code cart_prices = [20, 3.5, 6.49, 8.99, 9.99, 14.98] def list_sum(preisliste): sum = 0 # hier kommt dein Code hin for preis in preisliste: sum = sum + preis print("Der Gesamtpreis ist: " + str(sum)) list_sum(cart_prices) ###Output Der Gesamtpreis ist: 63.95 ###Markdown Funktionen in FunktionenFunktionen können auch ineinander geschachtelt werden: ###Code def mutti_print(): print("Hallo Mutti") mutti_print() def multi_print(text,anzahl): for i in range(0,anzahl): print(text) multi_print("plotti",5) def multi_print(text,anzahl): for i in range(0,anzahl): print(text) def super_begruessung(): multi_print("Hallo!", 3) multi_print("Welt!", 3) super_begruessung() ###Output Hallo! Hallo! Hallo! Welt! Welt! Welt! ###Markdown Übung - schreibt eine funktion halo_mutti: sie gibt "hallo mutti" aus- schreibt eine funktion vallo_vatti: sie gibt "hallo vatti " aus- schreibt eine funktion hallo_familie: sie ruft die funktion hallo_mutti und hallo_vatti auf. ###Code hallo_mutti() def hallo_mutti(begruessung): #ändern print(begruessung + " mutti") #ändern def hallo_vatti(begruessung): #ändern print(begruessung + " vatti") #ändern def family_print(begruessung): hallo_mutti(begruessung) #ändern hallo_vatti(begruessung) #ändern #Aufrufen family_print("Ciao") #ausgabe soll sein: #Ciao mutti #Ciao vatti def hallo_mutti(begruessung): #ändern print(begruessung + " mutti") #ändern hallo_mutti("hi") ###Output hi mutti ###Markdown Einen Wert zurückgebenBislang führen wir mit Funktionen einen Codeblock aus, der von Argumenten abhängen kann. Funktionen können aber auch mittels des Befehls **return** Werte zurückgeben. ###Code def return_element(name): x = name + " Nase" return x a = return_element("Hi") print(a) ###Output Hi Nase ###Markdown Solche Funktionen mit return können wir dann wie Variablen behandeln: ###Code def return_with_exclamation(name): return name + "!" a = return_with_exclamation("Hi") if a == "Hi!": print("Right!") else: print("Wrong.") def maximum(a, b): if a < b: return b else: return a result = maximum(10, 14) print(result) ###Output 14 ###Markdown ÜbungIn Amerika ist es üblich Trinkgeld zu geben. Du möchtest eine Funktion schreiben der du den Preis des Essens eingibst (price), die erhöhung in % (percent) und eine Tabelle erhälst die dir zeigt wieviel Trinkgeld du geben kannst. Ein Beispiel:tipp_generator(10,0.05) sollte ausgeben:* Preis des Essens: 10 dollar* Mit 5% Trinkgeld: 10,5 dollar* Mit 10% Trinkgeld: 11 dollar * Mit 15% Trinkgeld: 11,5 dollar ###Code def print_percentages(price,percent,multiplikator): print("Mit "+ str(percent*multiplikator*100) + "% ist der Preis: " + str(price*(1+percent*multiplikator))) def tipp_generator(price,percent): print("Preis des Essens:" + str(price)) for i in range(1,4): print_percentages(price,percent,i) tipp_generator(10,0.1) ###Output Preis des Essens:10 Mit 10.0% ist der Preis: 11.0 Mit 20.0% ist der Preis: 12.0 Mit 30.000000000000004% ist der Preis: 13.0 ###Markdown Funktionen vs. Methoden FunktionenBei ihrem Aufruf stehen Funktionen "für sich" und das, worauf sie sich beziehen steht ggf. als Argument in den Klammern hinter ihnen: ###Code liste = [1, 2, 3] print(liste) print(len(liste)) ###Output 3 ###Markdown MethodenDaneben kennen wir aber auch schon Befehle, die mit einem Punkt an Objekte angehängt werden. Eine Liste ist ein solches **Objekt**. Jedes Objekt hat Methoden, auf die wir zurückgreifen können. Diese Methoden können wir aber nicht auf ein Objekt eines anderen Typs anwenden (meistens zumindest).Schauen wir uns einige nützliche Methoden des Listen-Objektes an. Zwei kennst du ja schon gut: ###Code # ein Element anhängen liste.append(4) print(liste) # ein Element an einem bestimmten Index entfernen liste.pop(2) ###Output _____no_output_____ ###Markdown Übung Python objekte haben oft schon von "Haus aus" methoden die sehr praktisch sind. Finde für Listen heraus: - Wie kann man die Elemente einer Liste umdrehen? - Wie kann man rausfinden an welcher Stelle "Max" steht? - Wie kann ich "Max" von der Liste entfernen? ###Code liste = ["Max", "Moritz", "Klara", "Elena"] ###Output _____no_output_____
comorbidity.ipynb
###Markdown COVID-19 OPEN RESEARCH DATASET ###Code import os import json import pandas as pd %cd '/home/myilmaz/devel/covid551982_1475446_bundle_archive/' ###Output /home/myilmaz/devel/covid551982_1475446_bundle_archive ###Markdown Papers researching chronic kidney disease as a comorbidity risk ###Code kags=pd.DataFrame(None) for i in os.listdir('Kaggle/target_tables/8_risk_factors/'): kag=pd.read_csv('Kaggle/target_tables/8_risk_factors/'+i) kags=kags.append(kag) kags.head() %ls document_parses keep=['Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study','Psychiatric Predictors of COVID-19 Outcomes in a Skilled Nursing Facility Cohort','COVID-19 in Iran, a comprehensive investigation from exposure to treatment outcomes'] arts=set(kags['Study'])-set(keep) os.path.getsize('document_parses/pdf_json')/1000000 docs=[] alltext=[] for i in os.listdir('document_parses/pdf_json'): save=0 savee=0 with open('document_parses/pdf_json/'+i) as json_file: data = json.load(json_file) if data['metadata']['title'] in list(arts): print(data['metadata']['title']) doc=[] text='' for c,j in enumerate(data['body_text']): row=[i,data['metadata']['title'],data['body_text'][c]['section'],data['body_text'][c]['text']] doc.append(row) text+=data['body_text'][c]['text'] if doc not in docs: docs.append(doc) alltext.append(text) else: pass jsons=[j[0] for i in docs for j in i] titles=[j[1] for i in docs for j in i] sections=[j[2] for i in docs for j in i] text=[j[1]+'. '+j[2]+'. '+j[3] for i in docs for j in i] creats=pd.DataFrame(None,columns=['jsons','titles','sections','text']) creats=pd.DataFrame(None,columns=['jsons','titles','sections','text']) creats.jsons=jsons creats.titles=titles creats.sections=sections creats.text=text docs=creats.copy(deep=True) docs.drop_duplicates(keep='first',inplace=True) # NUMBER OF UNIQUE DOCUMENTS IN THE DATA SET docs['jsons'].nunique() docs.to_csv('comorbids.csv') docs=pd.read_csv('comorbids.csv') import numpy as np np.min([len(i) for i in alltext]) np.max([len(i) for i in alltext]) print('Average document length is {} words'.format(np.mean([len(i) for i in alltext]))) ###Output Average document length is 16896.051020408162 words ###Markdown Use pretrained NER model to find Problems, Tests, and Treatments ###Code import os import pyspark.sql.functions as F from pyspark.sql.functions import monotonically_increasing_id import json import os from pyspark.ml import Pipeline from pyspark.sql import SparkSession from sparknlp.annotator import * from sparknlp.base import * # Install pyspark ! pip install --ignore-installed -q pyspark==2.4.4 # Install Spark NLP ! pip install --ignore-installed -q spark-nlp==2.5 import sparknlp print (sparknlp.version()) import json import os from pyspark.ml import Pipeline from pyspark.sql import SparkSession from sparknlp.annotator import * from sparknlp.base import * from pyspark.sql.functions import monotonically_increasing_id import pyspark.sql.functions as F import pyspark.sql.types as t spark=sparknlp.start() docs.fillna('',inplace=True) docs.head(1) sparkdocs=spark.createDataFrame(docs).toDF('index','docid','title','section','sectionNo','text') document_assembler = DocumentAssembler() \ .setInputCol("text")\ .setOutputCol('document') sentence_detector = SentenceDetector() \ .setInputCols(["document"]) \ .setOutputCol("sentence") tokenizer = Tokenizer() \ .setInputCols(["sentence"]) \ .setOutputCol("token") word_embeddings = WordEmbeddingsModel.load("/home/myilmaz/cache_pretrained/embeddings_clinical_en_2.4.0_2.4_1580237286004")\ .setInputCols(["sentence", "token"])\ .setOutputCol("embeddings") clinical_ner = NerDLModel.load('/home/myilmaz/cache_pretrained/ner_clinical_en_2.4.0_2.4_1580237286004') \ .setInputCols(["sentence", "token", "embeddings"]) \ .setOutputCol("ner") ner_converter = NerConverter() \ .setInputCols(["sentence", "token", "ner"]) \ .setOutputCol("ner_chunk") nlpPipeline = Pipeline(stages=[document_assembler,sentence_detector,tokenizer, word_embeddings, clinical_ner,ner_converter ]) empty_data = spark.createDataFrame([[""]]).toDF("text") model = nlpPipeline.fit(empty_data) results=model.transform(sparkdocs) results.columns exploded = results.select('docid','section','sectionNo',F.explode(F.arrays_zip('token.metadata','token.result','ner.result')).alias("cols")) \ .select('docid','section',F.expr("cols['0'].sentence").alias("sentid"), F.col('cols.1').alias("token"),F.col('cols.2').alias("label")) ###Output _____no_output_____ ###Markdown Save annotated documents for further analysis ###Code exploded.write.option("header", "true").csv("comorbids2.csv") os.listdir('comorbids2.csv')[0] import pyspark.sql.types as t myschema = t.StructType( [ t.StructField('docid', t.StringType(), True), t.StructField('section', t.StringType(), True), t.StructField('sentid', t.IntegerType(), True), t.StructField('token', t.StringType(), True), t.StructField('label', t.StringType(), True) ] ) csvs=os.listdir('comorbids2.csv') big=pd.DataFrame(None) for i in csvs: dfs=spark.read.csv('comorbids2.csv/'+i,sep=',',schema=myschema,header=True) one=dfs.toPandas() big=big.append(one) big.head() import numpy as np tokens=[] savei='' save=0 for i,j in zip(big.token,big.label): if j.split('-')[0]!='I': if save<0: tokens[save]=savei tokens.append(np.nan) savei=i save=0 continue else: tokens.append(savei) savei=i save=0 continue elif j.split('-')[0]=='I': savei+=' '+i save-=1 tokens.append(np.nan) else: tokens.append(np.nan) if save<0: tokens[save]=savei tokens.append(np.nan) else: tokens.append(savei) tokens=tokens[1:] big['chunks']=tokens bigdf=big[big['chunks'].notnull()] bigdf=bigdf[bigdf['label']!='O'] bigdf['chunks'].value_counts() ###Output _____no_output_____ ###Markdown Prep for visualizations ###Code problems=bigdf[bigdf['label']=='B-PROBLEM'] tests=bigdf[bigdf['label']=='B-TEST'] #len(problems[problems['chunks']=='proteinuria']) probhist=pd.DataFrame(problems['chunks'].value_counts()) probhist=probhist.rename(columns={'chunks':'counts'}) probhist2=probhist.iloc[0:100] testhist=pd.DataFrame(tests['chunks'].value_counts()) testhist=testhist.rename(columns={'chunks':'counts'}) testhist2=testhist.iloc[0:100] ###Output _____no_output_____ ###Markdown Look at most frequent "Test" entities ###Code testhist2.head(40) import matplotlib.pyplot as plt import seaborn as sns fig, ax = plt.subplots(figsize =(24,12)) chart=sns.barplot(testhist2.index,testhist2['counts']) chart.set_xticklabels(testhist2.index,rotation=90) plt.title('Test Entities',fontsize=18) plt.show() ###Output _____no_output_____ ###Markdown The pretrained model is returning a lot of false positive for Test entities, but you can still see that kidney related tests such as "creatinine" are well represented in the dataset. Look at most frequent "Problem" entities ###Code probhist2.head(40) import seaborn as sns import seaborn as sns fig, ax = plt.subplots(figsize =(24,12)) chart=sns.barplot(probhist2.index,probhist2['counts']) chart.set_xticklabels(probhist2.index,rotation=90) plt.title('Problem Entities',fontsize=18) plt.show() ###Output _____no_output_____ ###Markdown You can see that kidney related problems such as "AKI" are well represented in the dataset. Find 'Test' entities near the most frequent kidney related 'Problem' entity ###Code problems=pd.DataFrame(problems).reset_index(drop=True) problems['sectionid']=problems.docid+'-'+problems.section tests=pd.DataFrame(tests).reset_index(drop=True) tests['sectionid']=tests.docid+'-'+tests.section akis=pd.DataFrame(problems[problems['chunks']=='AKI']).reset_index(drop=True) a=list(set(akis['sectionid'])) akitest=tests[tests['sectionid'].isin(a)] akicount=pd.DataFrame(akitest.groupby(['chunks'])['label'].count()).reset_index() akicount=akicount.sort_values(by='label',ascending=False).reset_index(drop=True) akicount.columns=['chunk','counts'] akicount import seaborn as sns import seaborn as sns fig, ax = plt.subplots(figsize =(24,12)) chart= sns.barplot(akicount['chunk'][0:50],akicount['counts'][0:50]) chart.set_xticklabels(akicount.chunk,rotation=90) plt.title("Clinical Tests Near 'AKI'",fontsize=20) plt.show() ###Output _____no_output_____ ###Markdown Our clinical tests NER is returning a lot of false positives but we still see that creatinine, CRP, and PCR tests are well represented in the dataset, appearing in the same section as "AKI". This tells me the information is probably not historical and I will have measurements that I can use for predictions as well as terms to use for topic modelling and text classification. Find 'Problem' entities near the most frequent kidney related 'Test' entity ###Code creatins=pd.DataFrame(tests[tests['chunks']=='creatinine']).reset_index(drop=True) b=list(set(creatins['sectionid'])) creatprob=problems[problems['sectionid'].isin(b)] creatcount=pd.DataFrame(creatprob.groupby(['chunks'])['label'].count()).reset_index() creatcount=creatcount.sort_values(by='label',ascending=False).reset_index(drop=True) creatcount.columns=['chunk','counts'] creatcount creatcounts=creatcount.iloc[0:50] import seaborn as sns import seaborn as sns fig, ax = plt.subplots(figsize =(24,12)) chart= sns.barplot(creatcounts.chunk,creatcounts['counts']) chart.set_xticklabels(creatcounts.chunk,rotation=90) plt.title("Patient Problems Near 'Creatinine' Test",fontsize=20) plt.show() ###Output _____no_output_____ ###Markdown AKI, hypertension, diabetes, and acute kidney injury are all well represented in the dataset, appearing in the same section as "creatinine" tests. This tells me the information is probably not historical and I will have measurements that I can use for predictions as well as terms to use for topic modelling and text classification. Frequency of 'patient' mentions in documents ###Code patient=pd.DataFrame(big[(big['token'].str.lower()=='patient')|(big['token'].str.lower()=='patients')]).reset_index(drop=True) patients=patient.groupby(['docid'])['token'].count() patients=patients.reset_index() patients=patients.rename(columns={'token':'counts'}) len(patients) sns.boxplot(patients['counts']) plt.title('Frequency of Patient Mentions in 1568 Documents',fontsize=14) ###Output _____no_output_____ ###Markdown Frequency of 'case report' mentions in documents ###Code case=pd.DataFrame(big[(big['section'].str.lower()=='case report')|(big['section']=='case study')|(big['chunks'].str.lower()=='case report')|(big['chunks'].str.lower()=='case study')|(big['section'].str.lower()=='case reports')|(big['section']=='case studies')|(big['chunks'].str.lower()=='case reports')|(big['chunks'].str.lower()=='case studies')]).reset_index(drop=True) cases=case.groupby(['docid'])['section'].count() cases=cases.reset_index() cases=cases.rename(columns={'section':'counts'}) len(cases) sns.boxplot(cases['counts']) plt.title('Frequency of Case Report/Study Mentions in 78 Documents',fontsize=14) ###Output _____no_output_____ ###Markdown 78 documents refer to case reports a median of about 550 times (The average document length is about 30,000 words.) I think I will have enough patient data to attempt some predictions. ###Code artlist=kag['Study'] pres=[] doc=[] for i in os.listdir('document_parses/pdf_json'): with open('document_parses/pdf_json/'+i) as json_file: data = json.load(json_file) if data['metadata']['title'] in list(artlist): for c,j in enumerate(data['body_text']): row=[i,data['metadata']['title'],data['body_text'][c]['section'],data['body_text'][c]['text']] doc.append(row) pres.append(doc) jsons=[j[0] for i in pres for j in i] titles=[j[1] for i in pres for j in i] sections=[j[2].lower() for i in pres for j in i] text=[j[1].lower()+'. '+j[2].lower()+'. '+j[3].lower() for i in pres for j in i] pres2=pd.DataFrame(None,columns=['jsons','titles','sections','text']) pres2['jsons']=jsons pres2['titles']=titles pres2['section']=sections pres2['text']=text pres2.head(1) case=pd.DataFrame(pres2[(pd.Series(pres2['section']).str.contains('case report'))|(pd.Series(pres2['section']).str.contains('case study'))|(pd.Series(pres2['text']).str.contains('case report'))|(pd.Series(pres2['text']).str.contains('case study'))|(pd.Series(pres2['section']).str.contains('case reports'))|(pd.Series(pres2['section']).str.contains('case studies'))|(pd.Series(pres2['text']).str.contains('case reports'))|(pd.Series(pres2['text']).str.contains('case studies'))]).reset_index(drop=True) case.head() len(case) case['jsons'].nunique() case['titles'].value_counts() ###Output _____no_output_____
LS_DS_123_Lecture.ipynb
###Markdown Lambda School Data Science Module 123 Introduction to Bayesian Inference[XKCD 1132](https://www.xkcd.com/1132/) Bayes vs. Frequentist inference| Bayes | Frequentist ||:---|:---||uses probabilities for both hypotheses and data|never uses or gives the probability of a hypothesis (no prior or posterior).||depends on the prior and likelihood of observed data.|depends on the likelihood P(D | H)) for both observed and unobserved data.||requires one to know or construct a ‘subjective prior’.|does not require a prior.||dominated statistical practice before the 20th century.|dominated statistical practice during the 20th century.|https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-spring-2014/readings/MIT18_05S14_Reading20.pdf Cookie Challengehttps://www.greenteapress.com/thinkbayes/thinkbayes.pdfpage20 Suppose there are two bowls of cookies. * Bowl 1 contains 30 vanilla cookies and 10 chocolate cookies. * Bowl 2 contains 20 vanilla cookies and 20 chocolate cookies. What is the probability of randomly drawing a vanilla cookie? ###Code # independent probability of getting a vanilla cookie vanilla = 30+20 choco = 10+20 cookies=vanilla+choco p_V=vanilla/cookies print(p_V) ###Output 0.625 ###Markdown Given that I pick from bowl 1, what is the probability of randomly drawing a vanilla cookie? `p(vanilla|Bowl 1)` ###Code # conditional probability p_B1=1 # prior p_VB1= 30/40 print(p_VB1) ###Output 0.75 ###Markdown Now suppose you choose one of the bowls at random and, without looking, select a cookie at random. The cookie is vanilla. What is the probability that it came from Bowl 1? `p(Bowl 1|vanilla)` ###Code # conditional probability p_B1= .5 # independent probability of bowl 1 p_VB1=.75 # cond prob p_V = 50/80 # indep prob of vanilla p_B1V = (p_B1*p_VB1)/p_V print(p_B1V) # confirm what we did (.5*.75)/(50/80) ###Output _____no_output_____ ###Markdown **Bayes' theorem:**$$p(H|D) = \frac{p(H) * p(D|H)}{p(D)}$$* H is the **hypothesis** * D is the observed **data** * p(H) is the probability of the hypothesis before we see the data, called the prior probability, or just **prior**. * p(D) is the **marginal probability**, likelihood considered independently * p(D|H) is the probability of the data under the hypothesis, called the **conditional probability**. * p(H|D) is what we want to compute, the probability of the hypothesis after we see the data, called the **posterior** probability. $$posterior = \frac{prior * conditional}{marginal}$$ The Monty Hall Challengehttps://math.ucsd.edu/~crypto/Monty/monty.html ###Code # Let's recreate the game with code. import random def lets_make_a_deal(initial, secondary): doors=['a','b','c'] second_choices=['KEEP', 'SWITCH'] car = random.choice(doors) if initial== car and secondary=='KEEP': result=1 elif initial!=car and secondary == 'SWITCH': result=1 else: result=0 # print(f'Car was behind door {car}. You initially picked {initial} and then you decided to {secondary}. Points={result}') return result # try it out! lets_make_a_deal('c', 'SWITCH') # Choose a door (A, B, C,) and a choice (KEEP, SWITCH) # Play the game 10,000 times. Which strategy is better? (Note: comment out the 'print'!) wins = 0 doors=['a', 'b', 'c'] for x in range(0,10000): points=lets_make_a_deal(random.choice(doors), 'SWITCH') wins=wins+points print('total points if switch:', wins) # Play the game 10,000 times. Which strategy is better? (Note: comment out the 'print'!) wins = 0 doors=['a', 'b', 'c'] for x in range(0,10000): points=lets_make_a_deal(random.choice(doors), 'KEEP') wins=wins+points print('total points if KEEP:', wins) ###Output total points if KEEP: 3317 ###Markdown Suppose you pick door A. The host opens door B to reveal a goat. Should you switch to door C? * prior probability = 1/3* marginal probability = 1/2 * conditional probability = (1/2 * 1/3) + ( 0 * 1/3) + ( 1 * 1/3) = 1/2 ###Code # define your prior, marginal, and conditional probabilities prior=.33 marginal=.5 conditional=(.5*.33)+(0*.33)+(1*.33) # P(car is A | choice is A) = (marginal * prior) / conditional posterior = (prior * conditional)/marginal print(posterior) # P(car is C | choice is A) = 1-P(car is A | choice is A) round(1-posterior,3) ###Output _____no_output_____ ###Markdown If we pick a door and then switch after seeing another door opens, the probability of selecting the right door increases from 1/3 to 2/3. It is, based on this information, always in our best interest to switch. Bayes' Theorem and the Bayesian mindset The Law of Total ProbabilityBy definition, the total probability of all outcomes (events) of some variable (event space) $A$ is 1. That is:$$P(A) = \sum_n P(A_n) = 1$$The law of total probability takes this further, considering two variables ($A$ and $B$) and relating their marginal probabilities and their conditional probabilities. * marginal probabilities (their likelihoods considered independently, without reference to one another)* conditional probabilities (their likelihoods considered jointly) A marginal probability is simply notated as e.g. $P(A)$, while a conditional probability is notated $P(A|B)$, which reads "probability of $A$ *given* $B$".The law of total probability states:$$P(A) = \sum_n P(A | B_n) P(B_n)$$In words - the total probability of $A$ is equal to the sum of the conditional probability of $A$ on any given event $B_n$ times the probability of that event $B_n$, and summed over all possible events in $B$. The Law of Conditional ProbabilityWhat's the probability of something conditioned on something else? To determine this we have to go back to set theory and think about the intersection of sets:The formula for actual calculation:$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$![Visualization of set intersection](https://upload.wikimedia.org/wikipedia/commons/9/99/Venn0001.svg)Think of the overall rectangle as the whole probability space, $A$ as the left circle, $B$ as the right circle, and their intersection as the red area. Try to visualize the ratio being described in the above formula, and how it is different from just the $P(A)$ (not conditioned on $B$).We can see how this relates back to the law of total probability - multiply both sides by $P(B)$ and you get $P(A|B)P(B) = P(A \cap B)$ - replaced back into the law of total probability we get $P(A) = \sum_n P(A \cap B_n)$.This may not seem like an improvement at first, but try to relate it back to the above picture - if you think of sets as physical objects, we're saying that the total probability of $A$ given $B$ is all the little pieces of it intersected with $B$, added together. The conditional probability is then just that again, but divided by the probability of $B$ itself happening in the first place. Bayes Theorem$$P(A|B) = \frac{P(B|A)* P(A)}{P(B)}$$In words - the probability of $A$ conditioned on $B$ is the probability of $B$ conditioned on $A$, times the probability of $A$ and divided by the probability of $B$. Using Bayes Theorem Iteratively (repeated testing)There are many ways to apply Bayes' theorem, such as drug tests. You may think that a drug test that is 100% accurate for true positives (detecting somebody who is a user) is pretty good, but what if it also has 1% false positive rate (indicating somebody is a user when they're not)? And furthermore, the rate of drug use in the population at large (and thus our prior belief) is 1/200.What is the likelihood somebody really is a user if they test positive? Some may guess it's 99% - the difference between the true positives and the false positives. But we have a prior belief of the background/true rate of drug use. Sounds like a job for Bayes' theorem!![Bayes Theorem Drug Test Example](https://wikimedia.org/api/rest_v1/media/math/render/svg/95c6524a3736c43e4bae139713f3df2392e6eda9)In other words, the likelihood that somebody is a user given they tested positive on a drug test is only 33.2% - probably much lower than you'd guess. This is why, in practice, it's important to use repeated testing to confirm. If we have the same individual who tested positive the first time take the drug test a second time then the posterior probability from our the first test becomes our new prior during the second application. What is the probability that a person is a drug user after two positive drug tests in a row?Bayes' theorem has been relevant in court cases where proper consideration of evidence was important. Whether it's a drug test, breathalyzer, pregnancy test, doctor's diagnosis, or neutrino detector, we have to take into account **both** the false positive rate and our prior probability in order to calculate the correct conditional probability. * P(+|User) = 1 - True Positive Rate* P(User) = 1/200 Prior probability* P(+|Non-user) = False Positive rateYou only need the above three numbers in order to calculate bayes rule ###Code # prior belief P_user=1/200 # complement of the prior belief P_non_user=1-P_user # true positive rate P_pos_given_user= 1 # false positive rate P_pos_given_nonuser=.01 # My first iteration of Bayes Rule (Bayes Theorem) numerator = P_pos_given_user*P_user denom = (P_pos_given_user * P_user) + (P_pos_given_nonuser*P_non_user) posterior1=numerator/denom print(posterior1) # We have the same person take the drug test again, and they test positive again # Now what is the likelihood that they are a drug user? # The posterior probability from the first test becomes our prior for the second iteration. P_user=posterior1 P_nonuser=1-P_user # run Bayes theorem numerator = P_pos_given_user*P_user denom = (P_pos_given_user * P_user) + (P_pos_given_nonuser*P_non_user) posterior2=numerator/denom print(posterior2) # Now the third test P_user=posterior2 P_nonuser=1-P_user # run Bayes theorem numerator = P_pos_given_user*P_user denom = (P_pos_given_user * P_user) + (P_pos_given_nonuser*P_non_user) posterior3=numerator/denom print(posterior3) # Fourth test P_user=posterior3 P_nonuser=1-P_user # run Bayes theorem numerator = P_pos_given_user*P_user denom = (P_pos_given_user * P_user) + (P_pos_given_nonuser*P_non_user) posterior4=numerator/denom print(posterior4) # Turn all of that into a function def prob_drug_use(prior, fpr, tpr, num_tests): posterior=prior for test in range(0, num_tests): # prior belief P_user=posterior # complement of the prior belief P_non_user=1-P_user # true positive rate P_pos_given_user= 1 # false positive rate P_pos_given_nonuser=.01 # theorem numerator = P_pos_given_user*P_user denom = (P_pos_given_user * P_user) + (P_pos_given_nonuser*P_non_user) posterior=numerator/denom return posterior # try it out prob_drug_use(1/200, .01, 1, 1 ) ###Output _____no_output_____ ###Markdown Calculating Bayesian Confidence ###Code https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bayes_mvs.html ###Output _____no_output_____ ###Markdown Example 1. Using random number generator ###Code # import scipy and numpy from scipy import stats import numpy as np # Set Random Seed for Reproducibility np.random.seed(seed=42) coinflips =np.random.binomial(n=1, p=.5, size=100) print(coinflips[:10]) # FREQUENTIST APPROACH # calculate a 95% confidence interval on either side of this. coinflips.mean() ci_freq=stats.t.interval(0.95, # confidence level (alpha) len(coinflips), # length of sample loc=np.mean(coinflips), # sample mean scale = stats.sem(coinflips) # std error of the mean ) print(ci_freq) # BAYESIAN APPROACH ci_bayes=stats.bayes_mvs(coinflips, alpha=.95)[0][1] print(ci_bayes) import seaborn as sns import matplotlib.pyplot as plt # plot on graph with kernel density estimate sns.kdeplot(coinflips); plt.axvline(x=ci_freq[0], color='red'); plt.axvline(x=ci_freq[1], color='red'); plt.axvline(x=ci_bayes[0], color='green'); plt.axvline(x=ci_bayes[1], color='green'); plt.axvline(x=np.mean(coinflips), color='k'); plt.xlim(.3703, .3705); ###Output _____no_output_____ ###Markdown Example 2. Using pandas dataframe ###Code # read in the adult workforce dataset url='https://raw.githubusercontent.com/ryanleeallred/datasets/master/adult.csv' import pandas as pd df = pd.read_csv(url, na_values='?') df.head(3) # mean age samp_mean=df['age'].mean() # FREQUENTIST APPROACH # calculate a 95% confidence interval on either side of this. ci_freq=stats.t.interval(0.95, # confidence level (alpha) df.shape[0], # length of sample loc=samp_mean, # sample mean scale = stats.sem(df['age']) # std error of the mean ) print(ci_freq) # BAYESIAN APPROACH ci_bayes=stats.bayes_mvs(df['age'], alpha=.95)[0][1] print(ci_bayes) # plot on graph with kernel density estimate sns.kdeplot(df['age']); plt.axvline(x=ci_freq[0], color='red'); plt.axvline(x=ci_freq[1], color='red'); plt.axvline(x=ci_bayes[0], color='green'); plt.axvline(x=ci_bayes[1], color='green'); plt.axvline(x=samp_mean, color='k'); plt.xlim(38, 39); ###Output _____no_output_____ ###Markdown Pregnancy Test Example The **prior** is our belief in the model given no additional information. This model could be as simple as a statistic, such as the mean we're measuring, or a complex regression. The **conditional probability** is the probability of the data we observed occurring given the model. The **marginal probability** of the data is the probability that our data are observed regardless of what model we choose or believe in. You divide the likelihood by this value to ensure that we are only talking about our model within the context of the data occurring. Imagine that we have a suspicion that someone is pregnant. We might use a pregnancy test to determine whether or not that's the case. Consider the following:1) Our hypothesis, $H$, is that this person is pregnant. 2) A positive result on the pregnancy test is denoted as $D$. 3) We'll consider some "information" about the world: $p(H) = 0.125$ **prior**: on average, 12.5 percent of women are pregnant (not accurate, but useful for our purposes here). **marginal**: $p(D) = 0.14$ — Fourteen percent of people who take the pregnancy test come back with a positive result. **likelihood**: $p(D|H) = 0.85$ — The likelihood states, "How likely would we get data that look like this if our hypothesis was true?" In other words, how accurate is our test? **Estimate how likely it is that a woman who got a positive result is actually be pregnant using Bayes' theorem.** We've got a decent chance of the results being accurate, but not 100 percent — that means that our posterior probability of somebody being pregnant, ($H=1$), given the data that we've seen (a positive result on the test) is 0.759 percent. ###Code # Define a function for bayes' theorem, assuming you know the conditional, prior, and marginal probabilities. def bayes(conditional, prior, marginal): return (conditional*prior)/marginal posterior = bayes(.85, .125, .14) print(posterior) ###Output 0.7589285714285713
blink/baselines/TF-IDF+SVM.ipynb
###Markdown Using processed data ###Code with open('./data/processed/dictionary.pickle','rb') as f: dictionary = pickle.load(f) article_df = pd.DataFrame.from_dict(dictionary) def return_list_of_dict(filename): train=[] with open('./data/processed/'+filename,'r') as f: for line in f: train.append(json.loads(line)) return train train = return_list_of_dict('train.jsonl') val = return_list_of_dict('valid.jsonl') test = return_list_of_dict('test.jsonl') train_df = pd.DataFrame.from_dict(train) val_df = pd.DataFrame.from_dict(val) test_df = pd.DataFrame.from_dict(test) train_df.head() X_train = train_df['mention'] X_val = val_df['mention'] X_test = test_df['mention'] X_train = preprocess(X_train) X_test = preprocess(X_test) X_val = preprocess(X_val) y_train = train_df['label_id'] y_val = val_df['label_id'] y_test = test_df['label_id'] # Doing PCA here using truncated SVD as PCA does not work for sparse matrices vectorizer, X_train_tf_idf_vector = get_tf_idf_vector(X_train) #truncatedSVD, X_train_svd = truncated_svd_on_tf_idf_vector(X_train_tf_idf_vector) X_val_tf_idf_vector = get_tf_idf_vector_test(X_val,vectorizer) #X_val_svd = truncated_svd_on_tf_idf_vector_test(X_val_tf_idf_vector,truncatedSVD) X_test_tf_idf_vector = get_tf_idf_vector_test(X_test,vectorizer) #X_test_svd = truncated_svd_on_tf_idf_vector_test(X_test_tf_idf_vector, truncatedSVD) # Training SVM clf = make_pipeline(StandardScaler(with_mean=False), SVC(gamma='auto',class_weight='balanced')) clf.fit(X_train_tf_idf_vector, y_train) #clf = make_pipeline(StandardScaler(), SVC(gamma='auto'),class_weight='balanced') #clf.fit(X_train_svd, y_train) sum(y_test_pred==y_test)/y_test.shape[0]*100 correct=[] incorrect=[] for i in range(len(y_test)): if y_test[i]==y_test_pred[i]: correct.append(y_test[i]) else: incorrect.append([y_test[i],y_test_pred[i]]) correct= pd.DataFrame(correc) y_test_pred_df=pd.DataFrame(np.array(y_test), columns=['true']) y_test_pred_df['pred']=np.array(y_test_pred) y_test_pred_df.to_csv('TFIDF_SVM_Predictions.csv') y_test_pred_df = pd.read_csv('TFIDF_SVM_Predictions.csv',index_col=0) y_test_pred_df len(y_test_pred_df[y_test_pred_df['pred']==155]) y_test_correct = y_test_pred_df[y_test_pred_df['true']==y_test_pred_df['pred']] y_test_correct.head() y_test_incorrect = y_test_pred_df[y_test_pred_df['true']!=y_test_pred_df['pred']] y_test_incorrect.head() len(y_test_correct[]) len(y_test_correct[y_test_correct['pred']==155]) len(y_test_incorrect) len(y_test_incorrect[y_test_incorrect['pred']==155]) len(y_test_pred_df[y_test_pred_df['true']==155]) with open('./data/processed/dictionary.pickle','rb') as f: dictionary = pickle.load(f) article_df = pd.DataFrame.from_dict(dictionary) y_test_correct=y_test_correct.merge(article_df,left_on='true', right_on='cui') y_test_correct y_test_incorrect=y_test_incorrect.merge(article_df,left_on='true', right_on='cui') y_test_incorrect=y_test_incorrect.merge(article_df,left_on='pred', right_on='cui') y_test_incorrect.head() y_test_incorrect = y_test_incorrect.rename(columns={"description_x":"true_description","summary_x":"true_summary","description_y":"pred_description","summary_y":"pred_summary","title_x":"true_title","title_y":"pred_title"}) y_test_incorrect.head() y_test_incorrect.to_csv('TF-IDF_SVM_CorrectPredictions.csv') y_test_correct.to_csv('TF-IDF_SVM_IncorrectPredictions.csv') len(y_test_correct) y_test_pred_df = pd.read_csv('TFIDF_SVM_Predictions.csv') f1_score(y_test_pred_df['true'],y_test_pred_df['pred'], average='macro') f1_score(y_test_pred_df['true'],y_test_pred_df['pred'], average='micro') ###Output _____no_output_____
_notebooks/2021_12_31_New_York_City_Taxi_Trip_Duration.ipynb
###Markdown "New York City Taxi Trip Durationd"> "[Kaggle]"- toc:true- branch: master- badges: true- comments: true- author: Hamel Husain & Jeremy Howard- categories: [Colab, Kaggle Code Review] https://www.kaggle.com/sheriytm/brewed-tpot-for-nyc-with-love-lb0-37 1.Library & Data Load ###Code from google.colab import drive drive.mount('/content/drive') !cp /content/drive/MyDrive/Kaggle/kaggle.json /root/.kaggle/ #!kaggle competitions list !kaggle competitions download -c nyc-taxi-trip-duration !unzip "/content/train.zip" -d "/content" !unzip "/content/test.zip" -d "/content" !unzip "/content/sample_submission.zip" -d "/content" !pip install haversine !pip install tpot # Import libraries import os mingw_path = 'g:/mingw64/bin' os.environ['PATH'] = mingw_path + ';' + os.environ['PATH'] import xgboost as xgb import numpy as np import os import pandas as pd import matplotlib.pyplot as plt import seaborn as sns color = sns.color_palette() %matplotlib inline from haversine import haversine import datetime as dt from subprocess import check_output import warnings warnings.filterwarnings('ignore') os.listdir() trainDF = pd.read_csv('train.csv', nrows=50000) # Load testing data as test testDF = pd.read_csv('test.csv') # Print size as well as the top 5 observation of training dataset print('Size of the training set is: {} rows and {} columns'.format(*trainDF.shape)) print ("\n", trainDF.head(5)) trainDF.describe() print("Train shape : ", trainDF.shape) print("Test shape : ", testDF.shape) dtypeDF = trainDF.dtypes.reset_index() dtypeDF.columns = ["Count", "Column Type"] dtypeDF.groupby("Column Type").aggregate('count').reset_index() ###Output _____no_output_____ ###Markdown Plot the trip duration ###Code plt.figure(figsize=(8,6)) plt.scatter(range(trainDF.shape[0]), np.sort(trainDF.trip_duration.values)) plt.xlabel('index', fontsize=12) plt.ylabel('trip duration', fontsize=12) plt.show() th = trainDF.trip_duration.quantile(0.99) tempDF = trainDF tempDF = tempDF[tempDF['trip_duration'] < th] plt.figure(figsize=(8,6)) plt.scatter(range(tempDF.shape[0]), np.sort(tempDF.trip_duration.values)) plt.xlabel('index', fontsize=12) plt.ylabel('trip duration', fontsize=12) plt.show() del tempDF ###Output _____no_output_____ ###Markdown Lets remove the outliers from the train data target ###Code trainDF = trainDF[trainDF['trip_duration'] < th] ###Output _____no_output_____ ###Markdown Number of variables with missing values ###Code variables_missing_value = trainDF.isnull().sum() variables_missing_value variables_missing_value = testDF.isnull().sum() variables_missing_value ###Output _____no_output_____ ###Markdown 2. Data 전처리 ###Code from sklearn.decomposition import PCA from sklearn.cluster import MiniBatchKMeans t0 = dt.datetime.now() train = trainDF test = testDF #pickup, dropoff datetime 변환 # 탑승한 날짜 변수 추가 # train 에 check_trip_duration: 탑승시각-하차시각 변수 추가 #주성분분석을 통해 변수 추가 train['pickup_datetime'] = pd.to_datetime(train.pickup_datetime) test['pickup_datetime'] = pd.to_datetime(test.pickup_datetime) train.loc[:, 'pickup_date'] = train['pickup_datetime'].dt.date test.loc[:, 'pickup_date'] = test['pickup_datetime'].dt.date train['dropoff_datetime'] = pd.to_datetime(train.dropoff_datetime) train['store_and_fwd_flag'] = 1 * (train.store_and_fwd_flag.values == 'Y') test['store_and_fwd_flag'] = 1 * (test.store_and_fwd_flag.values == 'Y') train['check_trip_duration'] = (train['dropoff_datetime'] - train['pickup_datetime']).map(lambda x: x.total_seconds()) duration_difference = train[np.abs(train['check_trip_duration'].values - train['trip_duration'].values) > 1] print('Trip_duration and datetimes are ok.') if len(duration_difference[['pickup_datetime', 'dropoff_datetime', 'trip_duration', 'check_trip_duration']]) == 0 else print('Ooops.') train['trip_duration'].describe() train['log_trip_duration'] = np.log(train['trip_duration'].values + 1) # Feature Extraction coords = np.vstack((train[['pickup_latitude', 'pickup_longitude']].values, train[['dropoff_latitude', 'dropoff_longitude']].values, test[['pickup_latitude', 'pickup_longitude']].values, test[['dropoff_latitude', 'dropoff_longitude']].values)) pca = PCA().fit(coords) train['pickup_pca0'] = pca.transform(train[['pickup_latitude', 'pickup_longitude']])[:, 0] train['pickup_pca1'] = pca.transform(train[['pickup_latitude', 'pickup_longitude']])[:, 1] train['dropoff_pca0'] = pca.transform(train[['dropoff_latitude', 'dropoff_longitude']])[:, 0] train['dropoff_pca1'] = pca.transform(train[['dropoff_latitude', 'dropoff_longitude']])[:, 1] test['pickup_pca0'] = pca.transform(test[['pickup_latitude', 'pickup_longitude']])[:, 0] test['pickup_pca1'] = pca.transform(test[['pickup_latitude', 'pickup_longitude']])[:, 1] test['dropoff_pca0'] = pca.transform(test[['dropoff_latitude', 'dropoff_longitude']])[:, 0] test['dropoff_pca1'] = pca.transform(test[['dropoff_latitude', 'dropoff_longitude']])[:, 1] ###Output Trip_duration and datetimes are ok. ###Markdown ![캡처.JPG]() Distance탄 위치의 거리 + 직선거리, 맨해튼거리 ###Code def haversine_array(lat1, lng1, lat2, lng2): lat1, lng1, lat2, lng2 = map(np.radians, (lat1, lng1, lat2, lng2)) AVG_EARTH_RADIUS = 6371 # in km lat = lat2 - lat1 lng = lng2 - lng1 d = np.sin(lat * 0.5) ** 2 + np.cos(lat1) * np.cos(lat2) * np.sin(lng * 0.5) ** 2 h = 2 * AVG_EARTH_RADIUS * np.arcsin(np.sqrt(d)) return h def dummy_manhattan_distance(lat1, lng1, lat2, lng2): a = haversine_array(lat1, lng1, lat1, lng2) b = haversine_array(lat1, lng1, lat2, lng1) return a + b def bearing_array(lat1, lng1, lat2, lng2): AVG_EARTH_RADIUS = 6371 # in km lng_delta_rad = np.radians(lng2 - lng1) lat1, lng1, lat2, lng2 = map(np.radians, (lat1, lng1, lat2, lng2)) y = np.sin(lng_delta_rad) * np.cos(lat2) x = np.cos(lat1) * np.sin(lat2) - np.sin(lat1) * np.cos(lat2) * np.cos(lng_delta_rad) return np.degrees(np.arctan2(y, x)) train.loc[:, 'distance_haversine'] = haversine_array(train['pickup_latitude'].values, train['pickup_longitude'].values, train['dropoff_latitude'].values, train['dropoff_longitude'].values) train.loc[:, 'distance_dummy_manhattan'] = dummy_manhattan_distance(train['pickup_latitude'].values, train['pickup_longitude'].values, train['dropoff_latitude'].values, train['dropoff_longitude'].values) train.loc[:, 'direction'] = bearing_array(train['pickup_latitude'].values, train['pickup_longitude'].values, train['dropoff_latitude'].values, train['dropoff_longitude'].values) train.loc[:, 'pca_manhattan'] = np.abs(train['dropoff_pca1'] - train['pickup_pca1']) + np.abs(train['dropoff_pca0'] - train['pickup_pca0']) test.loc[:, 'distance_haversine'] = haversine_array(test['pickup_latitude'].values, test['pickup_longitude'].values, test['dropoff_latitude'].values, test['dropoff_longitude'].values) test.loc[:, 'distance_dummy_manhattan'] = dummy_manhattan_distance(test['pickup_latitude'].values, test['pickup_longitude'].values, test['dropoff_latitude'].values, test['dropoff_longitude'].values) test.loc[:, 'direction'] = bearing_array(test['pickup_latitude'].values, test['pickup_longitude'].values, test['dropoff_latitude'].values, test['dropoff_longitude'].values) test.loc[:, 'pca_manhattan'] = np.abs(test['dropoff_pca1'] - test['pickup_pca1']) + np.abs(test['dropoff_pca0'] - test['pickup_pca0']) train.loc[:, 'center_latitude'] = (train['pickup_latitude'].values + train['dropoff_latitude'].values) / 2 train.loc[:, 'center_longitude'] = (train['pickup_longitude'].values + train['dropoff_longitude'].values) / 2 test.loc[:, 'center_latitude'] = (test['pickup_latitude'].values + test['dropoff_latitude'].values) / 2 test.loc[:, 'center_longitude'] = (test['pickup_longitude'].values + test['dropoff_longitude'].values) / 2 # Datetime features #요일 #1년중 몇째주인지 # 일주일을 시간으로계산 train.loc[:, 'pickup_weekday'] = train['pickup_datetime'].dt.weekday train.loc[:, 'pickup_hour_weekofyear'] = train['pickup_datetime'].dt.weekofyear train.loc[:, 'pickup_hour'] = train['pickup_datetime'].dt.hour train.loc[:, 'pickup_minute'] = train['pickup_datetime'].dt.minute train.loc[:, 'pickup_dt'] = (train['pickup_datetime'] - train['pickup_datetime'].min()).dt.total_seconds() train.loc[:, 'pickup_week_hour'] = train['pickup_weekday'] * 24 + train['pickup_hour'] test.loc[:, 'pickup_weekday'] = test['pickup_datetime'].dt.weekday test.loc[:, 'pickup_hour_weekofyear'] = test['pickup_datetime'].dt.weekofyear test.loc[:, 'pickup_hour'] = test['pickup_datetime'].dt.hour test.loc[:, 'pickup_minute'] = test['pickup_datetime'].dt.minute test.loc[:, 'pickup_dt'] = (test['pickup_datetime'] - train['pickup_datetime'].min()).dt.total_seconds() test.loc[:, 'pickup_week_hour'] = test['pickup_weekday'] * 24 + test['pickup_hour'] train.loc[:,'week_delta'] = train['pickup_datetime'].dt.weekday + \ ((train['pickup_datetime'].dt.hour + (train['pickup_datetime'].dt.minute / 60.0)) / 24.0) test.loc[:,'week_delta'] = test['pickup_datetime'].dt.weekday + \ ((test['pickup_datetime'].dt.hour + (test['pickup_datetime'].dt.minute / 60.0)) / 24.0) # Make time features cyclic train.loc[:,'week_delta_sin'] = np.sin((train['week_delta'] / 7) * np.pi)**2 train.loc[:,'hour_sin'] = np.sin((train['pickup_hour'] / 24) * np.pi)**2 test.loc[:,'week_delta_sin'] = np.sin((test['week_delta'] / 7) * np.pi)**2 test.loc[:,'hour_sin'] = np.sin((test['pickup_hour'] / 24) * np.pi)**2 # Speed train.loc[:, 'avg_speed_h'] = 1000 * train['distance_haversine'] / train['trip_duration'] train.loc[:, 'avg_speed_m'] = 1000 * train['distance_dummy_manhattan'] / train['trip_duration'] train.loc[:, 'pickup_lat_bin'] = np.round(train['pickup_latitude'], 3) train.loc[:, 'pickup_long_bin'] = np.round(train['pickup_longitude'], 3) # Average speed for regions gby_cols = ['pickup_lat_bin', 'pickup_long_bin'] coord_speed = train.groupby(gby_cols).mean()[['avg_speed_h']].reset_index() coord_count = train.groupby(gby_cols).count()[['id']].reset_index() coord_stats = pd.merge(coord_speed, coord_count, on=gby_cols) coord_stats = coord_stats[coord_stats['id'] > 100] train.loc[:, 'pickup_lat_bin'] = np.round(train['pickup_latitude'], 2) train.loc[:, 'pickup_long_bin'] = np.round(train['pickup_longitude'], 2) train.loc[:, 'center_lat_bin'] = np.round(train['center_latitude'], 2) train.loc[:, 'center_long_bin'] = np.round(train['center_longitude'], 2) train.loc[:, 'pickup_dt_bin'] = (train['pickup_dt'] // (3 * 3600)) test.loc[:, 'pickup_lat_bin'] = np.round(test['pickup_latitude'], 2) test.loc[:, 'pickup_long_bin'] = np.round(test['pickup_longitude'], 2) test.loc[:, 'center_lat_bin'] = np.round(test['center_latitude'], 2) test.loc[:, 'center_long_bin'] = np.round(test['center_longitude'], 2) test.loc[:, 'pickup_dt_bin'] = (test['pickup_dt'] // (3 * 3600)) ###Output _____no_output_____ ###Markdown Clustering ###Code sample_ind = np.random.permutation(len(coords))[:500000] kmeans = MiniBatchKMeans(n_clusters=100, batch_size=10000).fit(coords[sample_ind]) train.loc[:, 'pickup_cluster'] = kmeans.predict(train[['pickup_latitude', 'pickup_longitude']]) train.loc[:, 'dropoff_cluster'] = kmeans.predict(train[['dropoff_latitude', 'dropoff_longitude']]) test.loc[:, 'pickup_cluster'] = kmeans.predict(test[['pickup_latitude', 'pickup_longitude']]) test.loc[:, 'dropoff_cluster'] = kmeans.predict(test[['dropoff_latitude', 'dropoff_longitude']]) t1 = dt.datetime.now() print('Time till clustering: %i seconds' % (t1 - t0).seconds) # Temporal and geospatial aggregation for gby_col in ['pickup_hour', 'pickup_date', 'pickup_dt_bin', 'pickup_week_hour', 'pickup_cluster', 'dropoff_cluster']: gby = train.groupby(gby_col).mean()[['avg_speed_h', 'avg_speed_m', 'log_trip_duration']] gby.columns = ['%s_gby_%s' % (col, gby_col) for col in gby.columns] train = pd.merge(train, gby, how='left', left_on=gby_col, right_index=True) test = pd.merge(test, gby, how='left', left_on=gby_col, right_index=True) for gby_cols in [['center_lat_bin', 'center_long_bin'], ['pickup_hour', 'center_lat_bin', 'center_long_bin'], ['pickup_hour', 'pickup_cluster'], ['pickup_hour', 'dropoff_cluster'], ['pickup_cluster', 'dropoff_cluster']]: coord_speed = train.groupby(gby_cols).mean()[['avg_speed_h']].reset_index() coord_count = train.groupby(gby_cols).count()[['id']].reset_index() coord_stats = pd.merge(coord_speed, coord_count, on=gby_cols) coord_stats = coord_stats[coord_stats['id'] > 100] coord_stats.columns = gby_cols + ['avg_speed_h_%s' % '_'.join(gby_cols), 'cnt_%s' % '_'.join(gby_cols)] train = pd.merge(train, coord_stats, how='left', on=gby_cols) test = pd.merge(test, coord_stats, how='left', on=gby_cols) group_freq = '60min' df_all = pd.concat((train, test))[['id', 'pickup_datetime', 'pickup_cluster', 'dropoff_cluster']] train.loc[:, 'pickup_datetime_group'] = train['pickup_datetime'].dt.round(group_freq) test.loc[:, 'pickup_datetime_group'] = test['pickup_datetime'].dt.round(group_freq) # Count trips over 60min df_counts = df_all.set_index('pickup_datetime')[['id']].sort_index() df_counts['count_60min'] = df_counts.isnull().rolling(group_freq).count()['id'] train = train.merge(df_counts, on='id', how='left') test = test.merge(df_counts, on='id', how='left') feature_names = list(train.columns) print(np.setdiff1d(train.columns, test.columns)) do_not_use_for_training = ['id', 'log_trip_duration', 'pickup_datetime', 'dropoff_datetime', 'trip_duration', 'check_trip_duration', 'pickup_date', 'avg_speed_h', 'avg_speed_m', 'pickup_lat_bin', 'pickup_long_bin', 'center_lat_bin', 'center_long_bin', 'pickup_dt_bin', 'pickup_datetime_group'] feature_names = [f for f in train.columns if f not in do_not_use_for_training] # print(feature_names) print('We have %i features.' % len(feature_names)) train[feature_names].count() #ytrain = np.log(train['trip_duration'].values + 1) #ytrain = train[train['trip_duration'].notnull()]['trip_duration_log'].values t1 = dt.datetime.now() print('Feature extraction time: %i seconds' % (t1 - t0).seconds) feature_stats = pd.DataFrame({'feature': feature_names}) feature_stats.loc[:, 'train_mean'] = np.nanmean(train[feature_names].values, axis=0).round(4) feature_stats.loc[:, 'test_mean'] = np.nanmean(test[feature_names].values, axis=0).round(4) feature_stats.loc[:, 'train_std'] = np.nanstd(train[feature_names].values, axis=0).round(4) feature_stats.loc[:, 'test_std'] = np.nanstd(test[feature_names].values, axis=0).round(4) feature_stats.loc[:, 'train_nan'] = np.mean(np.isnan(train[feature_names].values), axis=0).round(3) feature_stats.loc[:, 'test_nan'] = np.mean(np.isnan(test[feature_names].values), axis=0).round(3) feature_stats.loc[:, 'train_test_mean_diff'] = np.abs(feature_stats['train_mean'] - feature_stats['test_mean']) / np.abs(feature_stats['train_std'] + feature_stats['test_std']) * 2 feature_stats.loc[:, 'train_test_nan_diff'] = np.abs(feature_stats['train_nan'] - feature_stats['test_nan']) feature_stats = feature_stats.sort_values(by='train_test_mean_diff') feature_stats[['feature', 'train_test_mean_diff']].tail() ###Output _____no_output_____ ###Markdown 3. 모델링 TPOT를 Data Science Assistant로 생각해 보십시오. TPOT는 유전 프로그래밍을 사용하여 기계 학습 파이프라인을 최적화하는 Python Automated Machine Learning 도구이다.TPOT는 Scikit-learn을 기반으로 만들어졌으므로 TPOT가 생성하는 모든 코드가 익숙해 보일 것입니다. 여러분이 공상 학습에 익숙하다면, 어쨌든요.TPOT는 아직 개발 중이므로 정기적으로 이 저장소를 확인하여 업데이트를 받으시기 바랍니다. ###Code from tpot import TPOTRegressor auto_classifier = TPOTRegressor(generations=3, population_size=9, verbosity=2) from sklearn.model_selection import train_test_split # K Fold Cross Validation from sklearn.model_selection import KFold X = train[feature_names].values y = np.log(train['trip_duration'].values + 1) kf = KFold(n_splits=10) kf.get_n_splits(X) print(kf) KFold(n_splits=10, random_state=None, shuffle=False) for train_index, test_index in kf.split(X): print("TRAIN:", train_index, "TEST:", test_index) X_train, X_valid = X[train_index], X[test_index] y_train, y_valid = y[train_index], y[test_index] auto_classifier.fit(X_train, y_train) # Now do the prediction test_result = auto_classifier.predict(test[feature_names].values) sub = pd.DataFrame() sub['id'] = test['id'] sub['trip_duration'] = np.exp(test_result) sub.to_csv('NYCTaxi_TpotModels.csv', index=False) !kaggle competitions submit -c nyc-taxi-trip-duration -f NYCTaxi_TpotModels.csv -m "_1" ###Output Successfully submitted to New York City Taxi Trip Duration
building-analytics/.ipynb_checkpoints/test_clean_data-checkpoint.ipynb
###Markdown Test TU_Util() ###Code import matplotlib from matplotlib import style %matplotlib inline style.use('ggplot') # This is to import custom-made modules # This can be removed after making these modules a real library import os, sys lib_path = os.path.abspath(os.path.join('..', 'building-analytics')) # relative path of the source code in Box Folder sys.path.append(lib_path) from TS_Util_Clean_Data import * # inputs fileName = "test_marco.csv" # replace with other files used folder = "../test1" ## call script # instantiate class TSU = TS_Util() # load data data= TSU.load_TS(fileName, folder) data.head() data= TSU.remove_start_NaN(data) data.head() # clean start-end data= TSU.remove_end_NaN(data) data.tail() TSU._find_missing(data).head() TSU.display_missing(data, how="all") TSU.count_missing(data, how="number") TSU.remove_missing(data,how="any").head() TSU._find_outOfBound(data, 10, 300).head() TSU.display_outOfBound(data, 10, 300) TSU.count_outOfBound(data, 10, 300) TSU.remove_outOfBound(data, 10, 350) TSU.display_outliers(data,method="std",coeff=2, window=10) TSU.display_outliers(data,method="rstd",coeff=1, window=10) TSU.display_outliers(data,method="rmedian",coeff=1, window=10) TSU.display_outliers(data,method="iqr",coeff=1, window=10) TSU.display_outliers(data,method="qtl",coeff=1, window=10) ###Output _____no_output_____
charts/5-Past_Rating_Square_area_chart.ipynb
###Markdown Table of Contents1&nbsp;&nbsp;Plot square areas 5 - Past rating | Number of companies in line with B2DS scenario ###Code import numpy as np import plotly.graph_objects as go width_all = np.sqrt(96) width_all width_B2DS = np.sqrt(11) width_B2DS ###Output _____no_output_____ ###Markdown Plot square areas ###Code square_All = go.Bar( x=[width_all/2], y=[10], width=[width_all], # customize width here customdata = ['There are 96 companies in the sample.'], hovertemplate="%{customdata}", #hovertext=['There are 96 companies in the sample.'], name='All companies', marker_color='#BFBFBD' ) square_B2DS = go.Bar( x=[width_all-width_B2DS/2], y=[width_B2DS], width=[width_B2DS], # customize width here customdata = ['Only 11 companies have reduced their CO2 emissions and are in line with the B2DS scenario from the IEA.'], hovertemplate="%{customdata}", #hovertext=['There are 96 companies in the sample.'], name='Companies with high CO2 reductions', marker_color= "#FF5748"#"#1A2E40" ) fig = go.Figure(data=[square_All,square_B2DS]) fig.update_layout(barmode='group') fig.update_xaxes(range=[0, 10]) fig.update_yaxes(range=[0, 10]) fig.update_xaxes(showline=False, showticklabels=False) fig.update_yaxes(showline=False, showticklabels=False) fig['layout'].update( #title = overall_title, template = "simple_white", showlegend=False, hovermode='closest' ); fig.update_yaxes( scaleanchor = "x", scaleratio = 1, ) fig.show() ###Output _____no_output_____
Code/Skewed_data.ipynb
###Markdown Processing for skewed dataFeature Selection via Shapley ValuesTraining Decision Tree ClassifierTraining Vanilla NNTraining Multiple experts systems Processing for data after outlier removal and ImputationFeature Selection via Shapley ValuesTraining Decision Tree ClassifierTraining Vanilla NNTraining Multiple experts systems ###Code from google.colab import drive drive.mount('/content/drive') %cd /content/drive/MyDrive !pip install shap import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import MinMaxScaler from mpl_toolkits.mplot3d import Axes3D from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split import collections from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.metrics import classification_report from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from xgboost.sklearn import XGBRegressor from sklearn.ensemble import GradientBoostingClassifier from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn import tree from sklearn.ensemble import RandomForestRegressor from xgboost import XGBClassifier from sklearn.tree import DecisionTreeClassifier import shap from sklearn.metrics import mean_squared_error %matplotlib inline # import os # os.listdir() df=pd.read_csv('complete_data.csv') df.head() #SHAPLEY y=df['output_nonad'] X=df.drop('output_nonad', 1) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.25, random_state=42) shap.initjs() xgb_model = XGBRegressor(n_estimators=1000, max_depth=10, learning_rate=0.001, random_state=0) xgb_model.fit(X_train, y_train) y_predict = xgb_model.predict(X_test) mean_squared_error(y_test, y_predict)**(0.5) explainer = shap.TreeExplainer(xgb_model) shap_values = explainer(X_train) print(shap_values) shap.plots.bar(shap_values,max_display=16) cols=['width','ancurl*com','url*ads','height','ancurl*click','aratio','url*ad','ancurl*http+www','alt*click','alt*here+for','ancurl*ad','url*afn.org','alt*to','url*images+home','url*doubleclick.net','output_nonad'] cols_X=['width','ancurl*com','url*ads','height','ancurl*click','aratio','url*ad','ancurl*http+www','alt*click','alt*here+for','ancurl*ad','url*afn.org','alt*to','url*images+home','url*doubleclick.net'] datapd=df[['width','url*ads','height','ancurl*click','aratio','url*ad','ancurl*http+www','alt*here+for','ancurl*ad','url*afn.org','alt*to','url*images+home','output_nonad']] # fig,ax=plt.subplots(nrows=1,ncols=3) # fig.set_figheight(5) # fig.set_figwidth(25) # sns.distplot(datapd['aratio'],ax=ax[0]) # sns.distplot(datapd['height'],ax=ax[1]) # sns.distplot(datapd['width'],ax=ax[2]) columns_for_visualization = list() columns_for_visualization=cols_X corr=datapd[columns_for_visualization].corr() fig, ax = plt.subplots(figsize=(15,15)) sns.heatmap(corr,annot=True,linewidths=.5, ax=ax) da=datapd.values X=da[:,:-1] y=da[:,-1] xtrain,xtest,ytrain,ytest=train_test_split(X,y,test_size=0.30,random_state=80) def fit_models(classifiers,xtrain,ytrain): """This function fit multiple models by sklearn and return the dictionary with values as objects of models""" models=collections.OrderedDict() for constructor in classifiers: obj=constructor() obj.fit(xtrain,ytrain) models[str(constructor).split(':')[0]]=obj return models def classification_multi_report(ytest,models_array): """This function generate classification accuracy report for given input model objects""" for i in models_array: print('__________________________________________________') print('the model - '+str(i)) print(classification_report(ytest,models_array[i].predict(xtest))) def cross_Fucntion(models,cv): """This function return cross validated accuray and the variance of given input model obejects""" accuracy={} for model in models: cross_val_array=cross_val_score(models[model],xtrain,ytrain,scoring='accuracy',cv=cv) accuracy[model]=[np.mean(cross_val_array),np.std(cross_val_array)] return accuracy def multi_grid_search(param_grid_array,estimator_list,x,y): """This function calculate the grid search parameters and accuracy for given input modles and return dictionary with each tupple containing accuracy and best parameters""" d={} count=0 for i in estimator_list: gc=GridSearchCV(estimator=estimator_list[i],param_grid=param_grid_array[count],scoring ='accuracy',cv=5).fit(x,y) d[i]=(gc.best_params_,gc.best_score_) count+=1 return d ###Output _____no_output_____ ###Markdown Classification Report>The classification report visualizer displays the precision, recall, F1, and support scores for the model. ... Visual classification reports are used to compare classification models to select models that are “redder”, e.g. have stronger classification metrics or that are more balanced. ###Code classifiers=[ SVC,KNeighborsClassifier, RandomForestClassifier, GradientBoostingClassifier,LogisticRegression,XGBClassifier,DecisionTreeClassifier] # classifiers=[DecisionTreeClassifier] model_list=fit_models(classifiers,xtrain,ytrain) classification_multi_report(ytest,model_list) obj=cross_Fucntion(model_list,cv=20) for model in obj: print('the model -'+str(model)+'has \n || crosss validated accuracy as -> '+str(obj[model][0])+' | variance - '+str(obj[model][1])+' ||' ) print('______________________________________________________________________________________________________________') param_grid_svm=[ { 'kernel':['linear'],'random_state':[0] }, { 'kernel':['rbf'],'random_state':[0] }, { 'kernel':['poly'],'degree':[1,2,3,4],'random_state':[0] } ] param_grid_knn=[ { 'n_neighbors':[1,5,11,15,20,25], 'p':[2] } ] param_grid_nb=[ {} ] #RandomF SVC,KNeighborsClassifier, RandomForestClassifier, GradientBoostingClassifier,LogisticRegressio,XGB param_grid_rf=[ { 'n_estimators': np.arange(100, 1000, 100), # 'max_depth' : np.arange(5, 100,5) } ] param_grid_xgb=[ { 'n_estimators': np.arange(100,500, 100) } ] param_grid_lr=[ {} ] param_grid_xgbx=[ { 'n_estimators': np.arange(100,500, 100) } ] param_grid_array=[param_grid_svm,param_grid_knn,param_grid_rf,param_grid_xgb,param_grid_lr,param_grid_xgbx] multi_grid_search(param_grid_array,model_list,xtrain,ytrain) ###Output _____no_output_____ ###Markdown Fitting model with best hyperparmater and cv score ###Code classifier=RandomForestClassifier(n_estimators=800) classifier.fit(xtrain,ytrain) sns.heatmap(pd.crosstab(ytest,classifier.predict(xtest)),cmap='coolwarm') plt.xlabel('predicted') plt.ylabel('actual') plt.show() #custom NN from keras.models import Sequential from keras.layers import Dense, Dropout from keras.optimizers import RMSprop,Adam print(X.shape) X_train1, X_test, y_train1, y_test = train_test_split(X, y, test_size=0.2, random_state=1) X_train, X_val, y_train, y_val = train_test_split(X_train1, y_train1, test_size=0.125, random_state=1) model=Sequential() model.add(Dense(25,activation='relu',input_shape=(15,),kernel_initializer='he_normal')) model.add(Dense(20,activation='sigmoid')) # model.add(Dense(20,activation='sigmoid')) # model.add(Dropout(0.2)) # model.add(Dense(20,activation='sigmoid')) # model.add(Dropout(0.2)) # model.add(Dense(15,activation='sigmoid')) model.add(Dense(5,activation='sigmoid')) # model.add(Dropout(0.2)) # model.add(Dropout(0.2)) # model.add(Dropout(0.2)) # model.add(Dense(90,activation='relu')) # model.add(Dropout(0.2)) # model.add(Dense(60,activation='relu')) # model.add(Dropout(0.2)) # model.add(Dense(30,activation='relu')) # model.add(Dropout(0.2)) model.add(Dense(1,activation='sigmoid')) # model.add(DropOut(0.2)) model.summary() print(X_train.shape) model.compile(loss='binary_crossentropy', optimizer=Adam(), metrics=['accuracy','AUC']) class_w={0.0:8,1.0:1} history = model.fit(X_train1, y_train1,class_weight=class_w, batch_size=32, epochs=100, verbose=1, validation_data=(X_val, y_val)) score = model.evaluate(X_test,y_test, verbose=0) print(score) print('Test accuracy:', score[1]) model.save('model_weights_Skewed_2.h5') %cd /content/drive/MyDrive import numpy as np import tensorflow as tf import tensorflow.keras.backend as K from tensorflow import keras from tensorflow.keras import layers import pandas as pd from sklearn.model_selection import train_test_split synth_df=pd.read_csv('complete_data.csv') X=synth_df.values[:,:-1] y=synth_df.values[:,-1] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.20, random_state=42) geo_X_train=X_train[:,0:4] geo_X_test=X_test[:,0:4] url_X_train=X_train[:,4:461] url_X_test=X_test[:,4:461] origurl_X_train=X_train[:,461:956] origurl_X_test=X_test[:,461:956] ancurl_X_train=X_train[:,956:1428] ancurl_X_test=X_test[:,956:1428] alt_X_train=X_train[:,1428:1539] alt_X_test=X_test[:,1428:1539] cap_X_train=X_train[:,1539:1558] cap_X_test=X_test[:,1539:1558] geo_input=keras.Input(shape=(4,),name='geo') # geo_x=layers.Dense(16,activation='sigmoid')(geo_input) geo_x=layers.Dense(8,activation='sigmoid')(geo_input) geo_output=layers.Dense(1,activation='sigmoid')(geo_x) url_input=keras.Input(shape=(457,),name='url') # url_x=layers.Dense(256,activation='sigmoid')(url_input) url_x=layers.Dense(20,activation='sigmoid')(url_input) url_output=layers.Dense(1,activation='sigmoid')(url_x) origurl_input=keras.Input(shape=(495,),name='origurl') # origurl_x=layers.Dense(256,activation='sigmoid')(origurl_input) origurl_x=layers.Dense(20,activation='sigmoid')(origurl_input) origurl_output=layers.Dense(1,activation='sigmoid')(origurl_x) ancurl_input=keras.Input(shape=(472,),name='ancurl') # ancurl_x=layers.Dense(256,activation='sigmoid')(ancurl_input) ancurl_x=layers.Dense(20,activation='sigmoid')(ancurl_input) ancurl_output=layers.Dense(1,activation='sigmoid')(ancurl_x) alt_input=keras.Input(shape=(111,),name='alt') # alt_x=layers.Dense(64,activation='sigmoid')(alt_input) alt_x=layers.Dense(20,activation='sigmoid')(alt_input) alt_output=layers.Dense(1,activation='sigmoid')(alt_x) cap_input=keras.Input(shape=(19,),name='cap') # cap_x=layers.Dense(16,activation='sigmoid')(cap_input) cap_x=layers.Dense(8,activation='sigmoid')(cap_input) cap_output=layers.Dense(1,activation='sigmoid')(cap_x) xf1=layers.concatenate([geo_output,url_output,origurl_output,ancurl_output,alt_output,cap_output]) # xf1=layers.Dense(4,activation='sigmoid')(xf1) result=layers.Dense(1, name="ad/nonad")(xf1) model=keras.Model(inputs=[geo_input,url_input,origurl_input,ancurl_input,alt_input,cap_input],outputs=[result]) keras.utils.plot_model(model, "multiModal_skewed_3.png", show_shapes=True) model.summary() model.compile( optimizer=keras.optimizers.RMSprop(1e-3), loss=[ keras.losses.BinaryCrossentropy(from_logits=True), # keras.losses.CategoricalCrossentropy(from_logits=True), ], metrics=['accuracy'], ) s='geo_X_test' print(s.replace("geo","geo"),",") print(s.replace("geo","url"),",",) print(s.replace("geo","origurl"),",",) print(s.replace("geo","ancurl"),",",) print(s.replace("geo","alt"),",",) print(s.replace("geo","cap"),"",) model.fit( {"geo": geo_X_train, "url": url_X_train , "origurl": origurl_X_train , "ancurl": ancurl_X_train , "alt": alt_X_train , "cap": cap_X_train }, {"ad/nonad": y_train}, epochs=200, batch_size=64, validation_split=0.125, verbose=1, ) test_score= model.predict([geo_X_test , url_X_test , origurl_X_test , ancurl_X_test , alt_X_test , cap_X_test ]) def custom_f1(y_true, y_pred): tn=0 tp=0 fn=0 fp=0 for i in range(656): # print(y_true[i][0],) if y_true[i][0]==0 and y_pred[i][0]==0: tn+=1 if y_true[i][0]==0 and y_pred[i][0]==1: fp+=1 if y_true[i][0]==1 and y_pred[i][0]==0: fn+=1 if y_true[i][0]==1 and y_pred[i][0]==1: tp+=1 print(tn,tp,fn,fp) precision=tp/(tp+fp) recall=tp/(tp+tn) print(recall) print(precision) print((tp+tn)/(tp+tn+fp+fn)) return 2*((precision*recall)/(precision+recall)) print(custom_f1(y_test,test_score)) for i in range(len(test_score)): if test_score[i]>=0: test_score[i]=1 else: test_score[i]=0 model.save('multimodal_skewed_6grps.h5') y_test=np.reshape(y_test,(656,1)) %cd /content/drive/MyDrive import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers import pandas as pd from sklearn.model_selection import train_test_split synth_df=pd.read_csv('complete_data.csv') X=synth_df.values[:,:-1] y=synth_df.values[:,-1] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.20, random_state=42) geo_X_train=X_train[:,0:4] geo_X_test=X_test[:,0:4] url_X_train=X_train[:,4:1428] url_X_test=X_test[:,4:1428] alt_X_train=X_train[:,1428:1558] alt_X_test=X_test[:,1428:1558] geo_input=keras.Input(shape=(4,),name='geo') # geo_x=layers.Dense(16,activation='sigmoid')(geo_input) geo_x=layers.Dense(8,activation='sigmoid')(geo_input) geo_output=layers.Dense(1,activation='sigmoid')(geo_x) url_input=keras.Input(shape=(1424,),name='url') url_x=layers.Dense(320,activation='sigmoid')(url_input) url_x=layers.Dense(64,activation='sigmoid')(url_x) url_output=layers.Dense(1,activation='sigmoid')(url_x) alt_input=keras.Input(shape=(130,),name='alt') alt_x=layers.Dense(64,activation='sigmoid')(alt_input) alt_x=layers.Dense(20,activation='sigmoid')(alt_x) alt_output=layers.Dense(1,activation='sigmoid')(alt_x) xf1=layers.concatenate([geo_output,url_output,alt_output]) xf1=layers.Dense(2,activation='sigmoid')(xf1) result=layers.Dense(1, name="ad/nonad")(xf1) model=keras.Model(inputs=[geo_input,url_input,alt_input],outputs=[result]) keras.utils.plot_model(model, "multi_modal_skewed_2.png", show_shapes=True) model.compile( optimizer=keras.optimizers.RMSprop(1e-3), loss=[ keras.losses.BinaryCrossentropy(from_logits=True), # keras.losses.CategoricalCrossentropy(from_logits=True), ], metrics=['accuracy'], ) model.fit( {"geo": geo_X_train, "url": url_X_train , "alt": alt_X_train , }, {"ad/nonad": y_train}, epochs=400, batch_size=64, validation_split=0.125, verbose=2, ) test_score= model.evaluate([geo_X_test , url_X_test , alt_X_test ],y_test,verbose=2) y_pred= model.predict([geo_X_test , url_X_test , alt_X_test ]) for i in range(len(y_pred)): if y_pred[i][0]>=0: y_pred[i]=1 else: y_pred[i]=0 def custom_f1(y_true, y_pred): tn=0 tp=0 fn=0 fp=0 for i in range(656): print(y_pred[i],) if y_true[i]==0 and y_pred[i]==0: tn+=1 if y_true[i]==0 and y_pred[i]==1: fp+=1 if y_true[i]==1 and y_pred[i]==0: fn+=1 if y_true[i]==1 and y_pred[i]==1: tp+=1 print(tn,tp,fn,fp) precision=tp/(tp+fp) recall=tp/(tp+tn) print(recall) print(precision) print((tp+tn)/(tp+tn+fp+fn)) return 2*((precision*recall)/(precision+recall)) print(custom_f1(y_test,y_pred)) model.save('skewed_multi_2.h5') ###Output _____no_output_____
Data_Science_Projects/LinearRegression/Linear Regression Project.ipynb
###Markdown Linear Regression ProjectThe company is trying to decide whether to focus their efforts on their mobile app experience or their website. Imports** Importing pandas, numpy, matplotlib,and seaborn. Then setting %matplotlib inline.** ###Code import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown Get the DataI'll work with the Ecommerce Customers csv file from the company. It has Customer info, suchas Email, Address, and their color Avatar. Then it also has numerical value columns:* Avg. Session Length: Average session of in-store style advice sessions.* Time on App: Average time spent on App in minutes* Time on Website: Average time spent on Website in minutes* Length of Membership: How many years the customer has been a member. ** Read in the Ecommerce Customers csv file as a DataFrame called customers.** ###Code customers = pd.read_csv('Ecommerce Customers') ###Output _____no_output_____ ###Markdown **Checking the head of customers, and checking out its info() and describe() methods.** ###Code customers.head() customers.describe() customers.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 500 entries, 0 to 499 Data columns (total 8 columns): Email 500 non-null object Address 500 non-null object Avatar 500 non-null object Avg. Session Length 500 non-null float64 Time on App 500 non-null float64 Time on Website 500 non-null float64 Length of Membership 500 non-null float64 Yearly Amount Spent 500 non-null float64 dtypes: float64(5), object(3) memory usage: 31.3+ KB ###Markdown Exploratory Data Analysis**Let's explore the data!**For the rest of the exercise I'll only be using the numerical data of the csv file.___**Using seaborn to create a jointplot to compare the Time on Website and Yearly Amount Spent columns.** ###Code sns.set_palette("GnBu_d") sns.set_style('whitegrid') sns.jointplot(x = 'Time on Website', y = 'Yearly Amount Spent', data = customers) ###Output _____no_output_____ ###Markdown **Time on App column instead** ###Code sns.jointplot(x = 'Time on App', y = 'Yearly Amount Spent', data = customers) ###Output _____no_output_____ ###Markdown ** Using jointplot to create a 2D hex bin plot comparing Time on App and Length of Membership.** ###Code sns.jointplot(x = 'Time on App', y = 'Length of Membership', data = customers, kind = 'hex') ###Output _____no_output_____ ###Markdown **Let's explore these types of relationships across the entire data set.** ###Code sns.pairplot(data = customers) ###Output _____no_output_____ ###Markdown **Based off this plot what looks to be the most correlated feature with Yearly Amount Spent.** ###Code customers.corr() ###Output _____no_output_____ ###Markdown **Creating a linear model plot (using seaborn's lmplot) of Yearly Amount Spent vs. Length of Membership.** ###Code sns.lmplot(x = 'Length of Membership', y = 'Yearly Amount Spent', data = customers) ###Output _____no_output_____ ###Markdown Training and Testing DataNow that I've explored the data a bit, let's go ahead and split the data into training and testing sets.** Setting a variable X equal to the numerical features of the customers and a variable y equal to the "Yearly Amount Spent" column. ** ###Code customers.columns X = customers[['Avg. Session Length', 'Time on App', 'Time on Website', 'Length of Membership']] y = customers['Yearly Amount Spent'] ###Output _____no_output_____ ###Markdown ** Using model_selection.train_test_split from sklearn to split the data into training and testing sets. Setting test_size=0.3 and random_state=101** ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 101) ###Output _____no_output_____ ###Markdown Training the ModelNow its time to train the model on the training data!** Importing LinearRegression from sklearn.linear_model ** ###Code from sklearn.linear_model import LinearRegression ###Output _____no_output_____ ###Markdown **Creating an instance of a LinearRegression() model named lm.** ###Code lm = LinearRegression() ###Output _____no_output_____ ###Markdown ** Training/fiting lm on the training data.** ###Code lm.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown **Printing out the coefficients of the model** ###Code lm.coef_ ###Output _____no_output_____ ###Markdown Predicting Test DataNow that I have fit the model, let's evaluate its performance by predicting off the test values!** Using lm.predict() to predict off the X_test set of the data.** ###Code prediction = lm.predict(X_test) ###Output _____no_output_____ ###Markdown ** Creating a scatterplot of the real test values versus the predicted values. ** ###Code plt.scatter(y_test, prediction) plt.xlabel('Y Test (True Values)') plt.ylabel('Predicted Values') ###Output _____no_output_____ ###Markdown Evaluating the ModelLet's evaluate the model performance by calculating the residual sum of squares and the explained variance score (R^2).** Calculating the Mean Absolute Error, Mean Squared Error, and the Root Mean Squared Error. Refer to the lecture or to Wikipedia for the formulas** ###Code from sklearn import metrics print('MAE:', metrics.mean_absolute_error(y_test, prediction)) print('MSE:', metrics.mean_squared_error(y_test, prediction)) print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, prediction))) metrics.explained_variance_score(y_test, prediction) ###Output _____no_output_____ ###Markdown ResidualsExploring the residuals to make sure everything was okay with the data. **Ploting a histogram of the residuals and make sure it looks normally distributed. Using seaborn distplot.** ###Code sns.distplot(y_test - prediction, bins = 50) ###Output _____no_output_____ ###Markdown Interpreting the coefficients.** Recreating the dataframe below. ** ###Code cdf = pd.DataFrame(lm.coef_, index = X.columns, columns = ['Coeff']) cdf ###Output _____no_output_____
PySpark_Excercise.ipynb
###Markdown 1. Setup ###Code !pip install -r requirements.txt ###Output Requirement already satisfied: absl-py==0.9.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 1)) (0.9.0) Requirement already satisfied: appdirs==1.4.4 in c:\users\anany\appdata\roaming\python\python37\site-packages (from -r requirements.txt (line 2)) (1.4.4) Requirement already satisfied: astor==0.8.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 3)) (0.8.0) Requirement already satisfied: backcall==0.2.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 4)) (0.2.0) Requirement already satisfied: beautifulsoup4==4.9.1 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 5)) (4.9.1) Requirement already satisfied: blinker==1.4 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 6)) (1.4) Requirement already satisfied: brotlipy==0.7.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 7)) (0.7.0) Requirement already satisfied: bs4==0.0.1 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 8)) (0.0.1) Requirement already satisfied: cachetools@ file:///tmp/build/80754af9/cachetools_1596822027882/work from file:///tmp/build/80754af9/cachetools_1596822027882/work in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 9)) (4.1.1) Requirement already satisfied: certifi==2020.6.20 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 10)) (2020.6.20) Requirement already satisfied: cffi==1.14.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 11)) (1.14.0) Requirement already satisfied: chardet==3.0.4 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 12)) (3.0.4) Requirement already satisfied: click==7.1.2 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 13)) (7.1.2) Requirement already satisfied: colorama==0.4.3 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 14)) (0.4.3) Requirement already satisfied: cryptography==2.9.2 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 15)) (2.9.2) Requirement already satisfied: cycler==0.10.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 16)) (0.10.0) Requirement already satisfied: decorator==4.4.2 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 17)) (4.4.2) Requirement already satisfied: distlib==0.3.0 in c:\users\anany\appdata\roaming\python\python37\site-packages (from -r requirements.txt (line 18)) (0.3.0) Requirement already satisfied: filelock==3.0.12 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 19)) (3.0.12) Requirement already satisfied: gast==0.2.2 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 20)) (0.2.2) Requirement already satisfied: google-auth@ file:///tmp/build/80754af9/google-auth_1596863485713/work from file:///tmp/build/80754af9/google-auth_1596863485713/work in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 21)) (1.20.1) Requirement already satisfied: google-auth-oauthlib==0.4.1 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 22)) (0.4.1) Requirement already satisfied: google-pasta==0.2.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 23)) (0.2.0) Requirement already satisfied: grpcio==1.27.2 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 24)) (1.27.2) Requirement already satisfied: h5py==2.10.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 25)) (2.10.0) Requirement already satisfied: idna@ file:///tmp/build/80754af9/idna_1593446292537/work from file:///tmp/build/80754af9/idna_1593446292537/work in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 26)) (2.10) Requirement already satisfied: importlib-metadata==1.7.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 27)) (1.7.0) Requirement already satisfied: ipython@ file:///C:/ci/ipython_1596868620883/work from file:///C:/ci/ipython_1596868620883/work in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 28)) (7.17.0) Requirement already satisfied: ipython-genutils==0.2.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 29)) (0.2.0) Requirement already satisfied: jedi@ file:///C:/ci/jedi_1596472767194/work from file:///C:/ci/jedi_1596472767194/work in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 30)) (0.17.2) Requirement already satisfied: joblib@ file:///tmp/build/80754af9/joblib_1594236160679/work from file:///tmp/build/80754af9/joblib_1594236160679/work in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 31)) (0.16.0) Requirement already satisfied: Keras-Applications@ file:///tmp/build/80754af9/keras-applications_1594366238411/work from file:///tmp/build/80754af9/keras-applications_1594366238411/work in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 32)) (1.0.8) Requirement already satisfied: Keras-Preprocessing==1.1.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 33)) (1.1.0) Requirement already satisfied: kiwisolver==1.2.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 34)) (1.2.0) Requirement already satisfied: Markdown==3.1.1 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 35)) (3.1.1) Requirement already satisfied: matplotlib@ file:///C:/ci/matplotlib-base_1592846084747/work from file:///C:/ci/matplotlib-base_1592846084747/work in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 36)) (3.2.2) Requirement already satisfied: mkl-fft==1.0.14 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 37)) (1.0.14) Requirement already satisfied: mkl-random==1.0.4 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 38)) (1.0.4) Requirement already satisfied: mkl-service==2.3.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 39)) (2.3.0) Requirement already satisfied: numpy==1.17.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 40)) (1.17.0) Requirement already satisfied: oauthlib==3.1.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 41)) (3.1.0) Requirement already satisfied: opt-einsum==3.1.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 42)) (3.1.0) Requirement already satisfied: pandas@ file:///C:/ci/pandas_1596824386248/work from file:///C:/ci/pandas_1596824386248/work in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 43)) (1.1.0) Requirement already satisfied: parso==0.7.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 44)) (0.7.0) Requirement already satisfied: pickleshare@ file:///C:/ci/pickleshare_1594374056827/work from file:///C:/ci/pickleshare_1594374056827/work in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 45)) (0.7.5) Requirement already satisfied: prompt-toolkit==3.0.5 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 46)) (3.0.5) Requirement already satisfied: protobuf==3.11.2 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 47)) (3.11.2) Requirement already satisfied: py4j@ file:///tmp/build/80754af9/py4j_1593437928427/work from file:///tmp/build/80754af9/py4j_1593437928427/work in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 48)) (0.10.9) Requirement already satisfied: pyarrow==0.15.1 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 49)) (0.15.1) Requirement already satisfied: pyasn1==0.4.8 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 50)) (0.4.8) Requirement already satisfied: pyasn1-modules==0.2.7 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 51)) (0.2.7) Requirement already satisfied: pycparser@ file:///tmp/build/80754af9/pycparser_1594388511720/work from file:///tmp/build/80754af9/pycparser_1594388511720/work in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 52)) (2.20) Requirement already satisfied: Pygments==2.6.1 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 53)) (2.6.1) Requirement already satisfied: PyJWT==1.7.1 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 54)) (1.7.1) Requirement already satisfied: pyOpenSSL@ file:///tmp/build/80754af9/pyopenssl_1594392929924/work from file:///tmp/build/80754af9/pyopenssl_1594392929924/work in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 55)) (19.1.0) Requirement already satisfied: pyparsing==2.4.7 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 56)) (2.4.7) Requirement already satisfied: pyreadline==2.1 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 57)) (2.1) Requirement already satisfied: PySocks@ file:///C:/ci/pysocks_1594394709107/work from file:///C:/ci/pysocks_1594394709107/work in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 58)) (1.7.1) Requirement already satisfied: pyspark@ file:///tmp/build/80754af9/pyspark_1593438048599/work from file:///tmp/build/80754af9/pyspark_1593438048599/work in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 59)) (3.0.0) Requirement already satisfied: python-dateutil==2.8.1 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 60)) (2.8.1) Requirement already satisfied: pytz==2020.1 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 61)) (2020.1) Requirement already satisfied: requests@ file:///tmp/build/80754af9/requests_1592841827918/work from file:///tmp/build/80754af9/requests_1592841827918/work in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 62)) (2.24.0) Requirement already satisfied: requests-oauthlib==1.3.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 63)) (1.3.0) Requirement already satisfied: rsa@ file:///tmp/build/80754af9/rsa_1596998415516/work from file:///tmp/build/80754af9/rsa_1596998415516/work in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 64)) (4.6) Requirement already satisfied: scikit-learn==0.23.2 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 65)) (0.23.2) Requirement already satisfied: scipy==1.5.2 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 66)) (1.5.2) Requirement already satisfied: six==1.15.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 67)) (1.15.0) Requirement already satisfied: soupsieve==2.0.1 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 68)) (2.0.1) Requirement already satisfied: tensorboard==2.2.1 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 69)) (2.2.1) Requirement already satisfied: tensorboard-plugin-wit==1.6.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 70)) (1.6.0) Requirement already satisfied: tensorflow==2.1.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 71)) (2.1.0) Requirement already satisfied: tensorflow-estimator==2.1.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 72)) (2.1.0) Requirement already satisfied: termcolor==1.1.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 73)) (1.1.0) Requirement already satisfied: threadpoolctl@ file:///tmp/tmp9twdgx9k/threadpoolctl-2.1.0-py3-none-any.whl from file:///tmp/tmp9twdgx9k/threadpoolctl-2.1.0-py3-none-any.whl in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 74)) (2.1.0) Requirement already satisfied: tornado==6.0.4 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 75)) (6.0.4) Requirement already satisfied: traitlets==4.3.3 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 76)) (4.3.3) Requirement already satisfied: urllib3@ file:///tmp/build/80754af9/urllib3_1597086586889/work from file:///tmp/build/80754af9/urllib3_1597086586889/work in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 77)) (1.25.10) Requirement already satisfied: virtualenv==20.0.20 in c:\users\anany\appdata\roaming\python\python37\site-packages (from -r requirements.txt (line 78)) (20.0.20) Requirement already satisfied: wcwidth@ file:///tmp/build/80754af9/wcwidth_1593447189090/work from file:///tmp/build/80754af9/wcwidth_1593447189090/work in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 79)) (0.2.5) Requirement already satisfied: Werkzeug==0.16.1 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 80)) (0.16.1) Requirement already satisfied: win-inet-pton==1.1.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 81)) (1.1.0) Requirement already satisfied: wincertstore==0.2 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 82)) (0.2) Requirement already satisfied: wrapt==1.12.1 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 83)) (1.12.1) Requirement already satisfied: xgboost==1.1.1 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 84)) (1.1.1) Requirement already satisfied: zipp==3.1.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from -r requirements.txt (line 85)) (3.1.0) Requirement already satisfied: setuptools>=40.3.0 in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from google-auth@ file:///tmp/build/80754af9/google-auth_1596863485713/work->-r requirements.txt (line 21)) (49.3.1.post20200810) Requirement already satisfied: wheel>=0.26; python_version >= "3" in c:\programdata\anaconda3\envs\zeta_pyspark\lib\site-packages (from tensorboard==2.2.1->-r requirements.txt (line 69)) (0.34.2) ###Markdown 1.1 Imports ###Code # my gereneral imports import os import wget import pandas as pd import matplotlib.pyplot as plt import numpy as np from IPython.display import display import time # url data reader imports from bs4 import BeautifulSoup import requests # pyspark imports from pyspark import SparkContext, SparkConf from pyspark.sql import SQLContext, SparkSession from pyspark.sql.types import StructType, StructField, DoubleType, IntegerType, StringType from pyspark.sql import SparkSession from pyspark.ml.feature import StringIndexer, OneHotEncoder, MinMaxScaler, VectorAssembler from pyspark.ml.classification import GBTClassifier from pyspark.ml import Pipeline from pyspark.ml.evaluation import BinaryClassificationEvaluator, MulticlassClassificationEvaluator %matplotlib inline PROJECT_ROOT_DIR = "." PROJECT = "Income" DATA_PATH = os.path.join(PROJECT_ROOT_DIR, "data", PROJECT) os.makedirs(DATA_PATH, exist_ok=True) OUT_PATH = os.path.join(PROJECT_ROOT_DIR, "output", PROJECT) os.makedirs(OUT_PATH, exist_ok=True) t0 = time.time() ###Output _____no_output_____ ###Markdown Q1. PySpark Assessment 1.1 Setup a local environment to run PySpark Create Spark session ###Code sc = SparkContext.getOrCreate(SparkConf().setMaster("local[*]")) spark = SparkSession \ .builder \ .getOrCreate() ###Output _____no_output_____ ###Markdown 1.2 Downloading data ###Code url = "http://archive.ics.uci.edu/ml/machine-learning-databases/census-income-mld/" ext = 'gz' def list_files(url, ext=''): page = requests.get(url).text # print(page) soup = BeautifulSoup(page, 'html.parser') return [url + node.get('href') for node in soup.find_all('a') if node.get('href').endswith(ext)] for fileurl in list_files(url, ext): # print(fileurl) filename = fileurl.split('/')[-1] # print(filename) wget.download(fileurl, out=os.path.join(DATA_PATH, filename)) os.listdir('data') ###Output _____no_output_____ ###Markdown 1.2.1 Read the data ###Code df = ( spark.read.format("csv").\ options(header='false', inferSchema='True').\ load(os.path.join(DATA_PATH, 'census-income.data.gz')) ) df.show(1) ###Output +---+----------------+---+---+--------------------+---+----------------+--------+--------------------+----------------+------+----------+-------+----------------+----------------+-------------------+----+----+----+---------+----------------+----------------+--------------------+--------------------+-------+----+----+----+--------------------+----+----+----------------+--------------+--------------+--------------+--------------------+----+----------------+----+----+----+---------+ |_c0| _c1|_c2|_c3| _c4|_c5| _c6| _c7| _c8| _c9| _c10| _c11| _c12| _c13| _c14| _c15|_c16|_c17|_c18| _c19| _c20| _c21| _c22| _c23| _c24|_c25|_c26|_c27| _c28|_c29|_c30| _c31| _c32| _c33| _c34| _c35|_c36| _c37|_c38|_c39|_c40| _c41| +---+----------------+---+---+--------------------+---+----------------+--------+--------------------+----------------+------+----------+-------+----------------+----------------+-------------------+----+----+----+---------+----------------+----------------+--------------------+--------------------+-------+----+----+----+--------------------+----+----+----------------+--------------+--------------+--------------+--------------------+----+----------------+----+----+----+---------+ | 73| Not in universe|0.0|0.0| High school grad...|0.0| Not in universe| Widowed| Not in universe ...| Not in universe| White| All other| Female| Not in universe| Not in universe| Not in labor force| 0.0| 0.0| 0.0| Nonfiler| Not in universe| Not in universe| Other Rel 18+ ev...| Other relative o...|1700.09| ?| ?| ?| Not in universe ...| ?| 0.0| Not in universe| United-States| United-States| United-States| Native- Born in ...| 0.0| Not in universe| 2.0| 0.0|95.0| - 50000.| +---+----------------+---+---+--------------------+---+----------------+--------+--------------------+----------------+------+----------+-------+----------------+----------------+-------------------+----+----+----+---------+----------------+----------------+--------------------+--------------------+-------+----+----+----+--------------------+----+----+----------------+--------------+--------------+--------------+--------------------+----+----------------+----+----+----+---------+ only showing top 1 row ###Markdown 1.2.2. Make correct column names I could not find where to get column names easily...The `census-income.names` file reports that there should be 40 columns (0-39) and we have 42 (0-41).The first column is clearly the age.The last column in the dataset is a dummy variable for income below or above 50 000.The second-to-last column is clearly the year.Therefore, there must be an extra column in among `_c1`--`_c39` that is not listed in the `census-income.names` file... I was able to identify that variable by comparing the variables descriptions and the column values in the cell output above.**This might not be possible if you have hundreds or thousands of features.**The 'extra' column is `_c24` which is continuous. I suspect it is an income variable.I made a dictionary below for the correct column names. ###Code correct_columns = { "_c0": "age", "_c1": "class_of_worker", "_c2": "detailed_industry_recode", "_c3": "detailed_occupation_recode", "_c4": "education", "_c5": "wage_per_hour", "_c6": "enroll_in_edu_inst_last_wk", "_c7": "marital_stat", "_c8": "major_industry_code", "_c9": "major_occupation_code", "_c10": "race", "_c11": "hispanic_origin", "_c12": "sex", "_c13": "member_of_a_labor_union", "_c14": "reason_for_unemployment", "_c15": "full_or_part_time_employment_stat", "_c16": "capital_gains", "_c17": "capital_losses", "_c18": "dividends_from_stocks", "_c19": "tax_filer_stat", "_c20": "region_of_previous_residence", "_c21": "state_of_previous_residence", "_c22": "detailed_household_and_family_stat", "_c23": "detailed_household_summary_in_household", "_c24": "UNKNOWN_VARIABLE", "_c25": "migration_code-change_in_msa", "_c26": "migration_code-change_in_reg", "_c27": "migration_code-move_within_reg", "_c28": "live_in_this_house_1_year_ago", "_c29": "migration_prev_res_in_sunbelt", "_c30": "num_persons_worked_for_employer", "_c31": "family_members_under_18", "_c32": "country_of_birth_father", "_c33": "country_of_birth_mother", "_c34": "country_of_birth_self", "_c35": "citizenship", "_c36": "own_business_or_self_employed", "_c37": "fill_inc_questionnaire_for_veterans_admin", "_c38": "veterans_benefits", "_c39": "weeks_worked_in_year", "_c40": "year", "_c41": "income_binary", } my_cols = [val for val in correct_columns.values()] df = ( spark.read.format("csv").\ options(header='false', inferSchema='True').\ load(os.path.join(DATA_PATH, 'census-income.data.gz')).\ toDF(*my_cols) ) ###Output _____no_output_____ ###Markdown 1.3 Print the data Schema, Summary, of columns and of rows Print schema ###Code df.printSchema() ###Output root |-- age: integer (nullable = true) |-- class_of_worker: string (nullable = true) |-- detailed_industry_recode: double (nullable = true) |-- detailed_occupation_recode: double (nullable = true) |-- education: string (nullable = true) |-- wage_per_hour: double (nullable = true) |-- enroll_in_edu_inst_last_wk: string (nullable = true) |-- marital_stat: string (nullable = true) |-- major_industry_code: string (nullable = true) |-- major_occupation_code: string (nullable = true) |-- race: string (nullable = true) |-- hispanic_origin: string (nullable = true) |-- sex: string (nullable = true) |-- member_of_a_labor_union: string (nullable = true) |-- reason_for_unemployment: string (nullable = true) |-- full_or_part_time_employment_stat: string (nullable = true) |-- capital_gains: double (nullable = true) |-- capital_losses: double (nullable = true) |-- dividends_from_stocks: double (nullable = true) |-- tax_filer_stat: string (nullable = true) |-- region_of_previous_residence: string (nullable = true) |-- state_of_previous_residence: string (nullable = true) |-- detailed_household_and_family_stat: string (nullable = true) |-- detailed_household_summary_in_household: string (nullable = true) |-- UNKNOWN_VARIABLE: double (nullable = true) |-- migration_code-change_in_msa: string (nullable = true) |-- migration_code-change_in_reg: string (nullable = true) |-- migration_code-move_within_reg: string (nullable = true) |-- live_in_this_house_1_year_ago: string (nullable = true) |-- migration_prev_res_in_sunbelt: string (nullable = true) |-- num_persons_worked_for_employer: double (nullable = true) |-- family_members_under_18: string (nullable = true) |-- country_of_birth_father: string (nullable = true) |-- country_of_birth_mother: string (nullable = true) |-- country_of_birth_self: string (nullable = true) |-- citizenship: string (nullable = true) |-- own_business_or_self_employed: double (nullable = true) |-- fill_inc_questionnaire_for_veterans_admin: string (nullable = true) |-- veterans_benefits: double (nullable = true) |-- weeks_worked_in_year: double (nullable = true) |-- year: double (nullable = true) |-- income_binary: string (nullable = true) ###Markdown Print summary ###Code df.summary() ###Output _____no_output_____ ###Markdown Print of rows ###Code print(f"Number of rows: {df.count()}") ###Output Number of rows: 199523 ###Markdown Print of columns ###Code print(f"Number of columns: {len(df.columns)}") ###Output Number of columns: 42 ###Markdown 1.4 Print a table that shows distinct values of all columns **WARNING:** *This task as it is written in the doc file seems rather strange as we have continuous variables.* ###Code df.columns tab_distinct = [] for c in df.columns: tab_distinct.append([i[c] for i in df.select(c).distinct().collect()]) df_distinct = pd.DataFrame(tab_distinct).transpose().dropna(axis=0, how='all') df_distinct.columns = df.columns display(df_distinct) df_distinct.iloc[99799] ###Output _____no_output_____ ###Markdown Let's get rid of those continuous variables and reproduce our table. ###Code df.dtypes tab_distinct = [] selected_cols = [] for c_type in df.dtypes: if c_type[1] == 'double': continue c = c_type[0] selected_cols.append(c) tab_distinct.append([i[c] for i in df.select(c).distinct().collect()]) df_distinct = pd.DataFrame(tab_distinct).transpose().dropna(axis=0, how='all') df_distinct.columns = selected_cols display(df_distinct) df_distinct.iloc[90] ###Output _____no_output_____ ###Markdown If we also drop integers, we can get a nice table. ###Code tab_distinct = [] selected_cols = [] for c_type in df.dtypes: if ('double' in c_type[1] or 'int' in c_type[1]): continue c = c_type[0] selected_cols.append(c) tab_distinct.append([i[c] for i in df.select(c).distinct().collect()]) df_distinct = pd.DataFrame(tab_distinct).transpose().dropna(axis=0, how='all') df_distinct.columns = selected_cols display(df_distinct) df_distinct.iloc[50] ###Output _____no_output_____ ###Markdown 1.5 Make exploratory data analysis and visualize your findings from data I prefer using pandas. ###Code pd_df = df.toPandas() pd_df['income_binary'].unique() pd_df.iloc[np.where(pd_df['income_binary']==' - 50000.')]['UNKNOWN_VARIABLE'].mean() pd_df.iloc[np.where(pd_df['income_binary']==' 50000+.')]['UNKNOWN_VARIABLE'].mean() ###Output _____no_output_____ ###Markdown Hm, `UNKNOWN_VARIABLE` does not seem to be an income variable... I was going to plot several graphs of income versus some typical characteristics from Labor Economics (e.g. Mincer Equation), but it seems that the data does not have the continuous income variable. So, I decided to make several plots to see if the two groups (above 50k / below 50k) can be visually separated depending on age, wage, capital gains and losses, and dividents. ###Code pd_df.iloc[0] ###Output _____no_output_____ ###Markdown 1.5.1 Continuous Variables ###Code fig = plt.figure(figsize=(16,12)) ax = plt.subplot(2, 2, 1) for label, pdf in pd_df.groupby(by='income_binary'): pdf = pdf.iloc[np.where(pdf['wage_per_hour']!=0)] plt.scatter(x=pdf['age'], y=pdf['wage_per_hour'], label=label) plt.legend(loc=1) plt.yscale('symlog') plt.xlabel("Age, y") plt.ylabel("Wage/hour") ax = plt.subplot(2, 2, 2) for label, pdf in pd_df.groupby(by='income_binary'): # exclude observations with zeros in any of the variables pdf = pdf.iloc[np.where(pdf['wage_per_hour'].mul(pdf['weeks_worked_in_year'])!=0)] plt.scatter(x=pdf['weeks_worked_in_year'], y=pdf['wage_per_hour'], label=label) plt.legend(loc=1) plt.yscale('log') plt.xlabel("Weeks worked in a year") plt.ylabel("Wage/hour") ax = plt.subplot(2, 2, 3) for label, pdf in pd_df.groupby(by='income_binary'): # exclude observations with zeros in any of the variables pdf = pdf.iloc[np.where(pdf['capital_gains'].mul(pdf['dividends_from_stocks'], fill_value=0)!=0.)] plt.scatter(x=pdf['capital_gains'], y=pdf['dividends_from_stocks'], label=label) plt.legend(loc=1) plt.yscale('symlog') plt.xscale('symlog') plt.xlabel("Capital gains") plt.ylabel("Dividends from stocks") ax = plt.subplot(2, 2, 4) for label, pdf in pd_df.groupby(by='income_binary'): # exclude observations with zeros in any of the variables pdf = pdf.iloc[np.where(pdf['capital_losses'].mul(pdf['dividends_from_stocks'], fill_value=0)!=0.)] plt.scatter(x=pdf['capital_losses'], y=pdf['dividends_from_stocks'], label=label) plt.legend(loc=1) plt.yscale('symlog') plt.xscale('symlog') plt.xlabel("Capital losses") plt.ylabel("Dividends from stocks") ###Output _____no_output_____ ###Markdown It seems that from continuous variables the following ones have highest potential in explaining classification above/below 50k.First, is total capital - as we can see from two graphs at the bottom* large capital gains, and* large capital losses,both seem to positively correlate with being classified 'above 50k'.Among working population, the proportion of those classified 'above 50k' is highest among those who work full-time (52 weeks/year). 1.5.2 Discreet Variables I might check discreet variables later, after proper feature engineering (e.g., decoding string variables into categorical numeric). 1.6 Binary Target Variable Already exists: `income_binary` in the data we loaded (`df`). Later, I will transform it into a numerical binary variable. 1.7 Most Promising Features I already showed above that among continuous variables, most promising are capital gains (and losses, too, as they both are good proxies for total capital) and working weeks (those who work 52 weeks/year have the highest share of those classified 'above 50k'). For other features, according to Labor Economics (Mincer Equation), the most influential features for working individuals are:* characteristics that determine human capital: - education, - age (inversed U-shape), - occupation, - employment status (full-time or partial employment, self-employed),* and the set of individual characteristics that affect personal tastes : - gender and ethnicity (due to various kinds of discrimination / selection effects), and - geographic location (state) and migration status. 1.8 When should the raw model dataset be randomly distributed to Train/Test? Clearly, the data set should be split into tran/dev/test sets **before** any feature engineering. This ensures we do not overfit on the test data because we selected features on the data that already includes the test set. This allows us to be sure that when we deploy model into production, our model performance indicators are as close to the values we are going to see in production, because our model was trained (including the selection of the features) without using the test set. 1.9 Feature Engineering 1.9.1 Encode strings into numerical variables ###Code str_cols = [c_type[0] for c_type in df.dtypes if 'str' in c_type[1]] str_cols indexed = df # make a copy of `df` # in case I want to use SQL queries for feature engineering without One-Hot encoded variables indexed.createOrReplaceTempView("indexed") cat_cols = [] for str_ in str_cols: cat_ = 'catIndex_' + str_ indexer = StringIndexer(inputCol=str_, outputCol=cat_) indexed = indexer.fit(indexed).transform(indexed) cat_cols.append(cat_) # indexed.show(1) ###Output _____no_output_____ ###Markdown Let's make a list of indexers to later feed it into a pipeline ###Code indexers = [StringIndexer(inputCol=str_, outputCol='catIndex_' + str_) for str_ in str_cols] ###Output _____no_output_____ ###Markdown PySpark 3.0 allows you to transform multiple columns at a time. ###Code cat_cols = ['catIndex_' + str_ for str_ in str_cols] spark3_indexer = StringIndexer(inputCols=str_cols, outputCols=cat_cols) ###Output _____no_output_____ ###Markdown 1.9.2 One-Hot Encoding ###Code vec_cols = ['catVec_' + str_ for str_ in str_cols] encoder = OneHotEncoder(inputCols=cat_cols, outputCols=vec_cols) model = encoder.fit(indexed) encoded = model.transform(indexed) # encoded.show(1) ###Output _____no_output_____ ###Markdown 1.9.3 Assembling into Vectors ###Code numeric_features = [col[0] for col in encoded.dtypes if 'string' not in col[1] and 'income_binary' not in col[1]] assembler = VectorAssembler( inputCols=numeric_features, outputCol="features") output = assembler.transform(encoded) # output.show(1) ###Output _____no_output_____ ###Markdown I want to use SQL queries for later analysis ###Code output.createOrReplaceTempView("output") spark.sql("SELECT catIndex_income_binary, count(catIndex_income_binary) from output group by catIndex_income_binary").show() ###Output +----------------------+-----------------------------+ |catIndex_income_binary|count(catIndex_income_binary)| +----------------------+-----------------------------+ | 0.0| 187141| | 1.0| 12382| +----------------------+-----------------------------+ ###Markdown 1.9.4 Normalization I want to use `MinMaxScaler` for all variables (both continuous and dummy variables) to lie between 0 and 1 ###Code mmscaler = MinMaxScaler(inputCol="features", outputCol="scaled_features") ###Output _____no_output_____ ###Markdown 1.10 Choose a ML Algorithm I want to use Gradient-Boosted Tree Classifier. Main advantages:* high accuracy;* flexible;* works great with categorical and numerical values. ###Code classifier = GBTClassifier(labelCol='catIndex_income_binary', featuresCol="scaled_features", ) ###Output _____no_output_____ ###Markdown 1.10.2 Create a Pipeline ###Code gbt_pipeline = Pipeline(stages=[spark3_indexer, encoder, assembler, mmscaler, classifier]) ###Output _____no_output_____ ###Markdown 1.10.3 Feed All the Data ###Code gbt_model = gbt_pipeline.fit(df) prediction = gbt_model.transform(df) prediction.select("prediction", "catIndex_income_binary", "scaled_features").show(5) ###Output +----------+----------------------+--------------------+ |prediction|catIndex_income_binary| scaled_features| +----------+----------------------+--------------------+ | 0.0| 0.0|(411,[0,7,10,12,1...| | 0.0| 0.0|(411,[0,1,2,7,8,1...| | 0.0| 0.0|(411,[0,7,10,12,1...| | 0.0| 0.0|(411,[0,7,14,28,2...| | 0.0| 0.0|(411,[0,7,14,28,2...| +----------+----------------------+--------------------+ only showing top 5 rows ###Markdown 1.11 Model Performance Measurements 1.11.1 Train Data Area under ROC ###Code evaluator = BinaryClassificationEvaluator(rawPredictionCol="rawPrediction", labelCol='catIndex_income_binary') evaluator.evaluate(prediction) ###Output _____no_output_____ ###Markdown 1.11 Test data ###Code df_test = ( spark.read.format("csv").\ options(header='false', inferSchema='True').\ load(os.path.join(DATA_PATH, 'census-income.test.gz')).\ toDF(*my_cols) ) ###Output _____no_output_____ ###Markdown Sanity check ###Code df_test.createOrReplaceTempView("df_test") spark.sql("SELECT income_binary, count(income_binary) from df_test group by income_binary").show() test_prediction = gbt_model.transform(df_test) evaluator.evaluate(test_prediction) ###Output _____no_output_____ ###Markdown I am quite satisfied with the result. 1.12 Steps Taken to Avoid Model Overfitting None. It is possible to reduce number of iterations and penalize tree size to prevent overfitting. In theory, with other classification methods, I would use L1 or L2 regularization, depending on whether we want to select only features that best explain the results or we want to use as many features as possible just to avoid high variance problem. For neural nets I would use dropout. 1.13 What changes do you propose to make this modeling process more effective, if you are to train this in a cluster with 1,000 nodes, 300 million rows and 5,000 features in AWS? 1. I would probably not use Pandas for visualization.2. Perhaps, I would consider adding ETL stage, to store data in `parquet` format.3. Spark is created to be scalable, so no changes are needed in the training/prediction part. *MAYBE*, the initialization would be different - to run it on a cluster.I never worked with AWS, so I don't know what else is needed. In Watson Studio (the only cloud service that I am familiar with) all you need is to select an appropriate environment - that's it. ###Code spark.stop() print(f"Elapsed time: {time.time() - t0}s") sc.stop() ###Output _____no_output_____
workshops/Medical_Imaging_AI/spleen_segmentation_3d_tutorial.ipynb
###Markdown Spleen 3D segmentation with MONAIThis tutorial shows how to integrate MONAI into an existing PyTorch medical DL program.And easily use below features:1. Transforms for dictionary format data.1. Load Nifti image with metadata.1. Add channel dim to the data if no channel dimension.1. Scale medical image intensity with expected range.1. Crop out a batch of balanced images based on positive / negative label ratio.1. Cache IO and transforms to accelerate training and validation.1. 3D UNet model, Dice loss function, Mean Dice metric for 3D segmentation task.1. Sliding window inference method.1. Deterministic training for reproducibility.The Spleen dataset can be downloaded from http://medicaldecathlon.com/.![spleen](http://medicaldecathlon.com/img/spleen0.png)Target: Spleen Modality: CT Size: 61 3D volumes (41 Training + 20 Testing) Source: Memorial Sloan Kettering Cancer Center Challenge: Large ranging foreground size Setup environment !pip uninstall -y monai monai-weekly ###Code !pip install -q "monai[nibabel, skimage, pillow, tensorboard, gdown, ignite, torchvision, itk, tqdm, lmdb, psutil, openslide]==0.7.0" #!pip list | grep monai #!python -c "import monai" || pip install -q "monai-weekly[gdown, nibabel, tqdm]" !python -c "import matplotlib" || pip install -q matplotlib # !pip install -q pytorch-lightning==1.4.0 %matplotlib inline ###Output _____no_output_____ ###Markdown Setup imports ###Code from monai.utils import first, set_determinism from monai.transforms import ( AsDiscrete, AsDiscreted, EnsureChannelFirstd, Compose, CropForegroundd, LoadImaged, Orientationd, RandCropByPosNegLabeld, ScaleIntensityRanged, Spacingd, EnsureTyped, EnsureType, Invertd, ) from monai.handlers.utils import from_engine from monai.networks.nets import UNet from monai.networks.layers import Norm from monai.metrics import DiceMetric from monai.losses import DiceLoss from monai.inferers import sliding_window_inference from monai.data import CacheDataset, DataLoader, Dataset, decollate_batch from monai.config import print_config from monai.apps import download_and_extract import torch import matplotlib.pyplot as plt import tempfile import shutil import os import glob ###Output _____no_output_____ ###Markdown Setup data directoryYou can specify a directory with the `MONAI_DATA_DIRECTORY` environment variable. This allows you to save results and reuse downloads. If not specified a temporary directory will be used. ###Code import pathlib, os, glob model_dir = "10.192.21.7/models" ## a folder to keep all the models pathlib.Path(model_dir).mkdir(parents=True, exist_ok=True) # make sure that the folder is empty files = glob.glob(model_dir + "/*") for f in files: os.remove(f) directory = "10.192.21.7/datasets" ## input data folder root_dir = tempfile.mkdtemp() if directory is None else directory data_dir = os.path.join(root_dir, "Task09_Spleen") ###Output _____no_output_____ ###Markdown Download datasetDownloads and extracts the dataset. The dataset comes from http://medicaldecathlon.com/. ###Code resource = "https://msd-for-monai.s3-us-west-2.amazonaws.com/Task09_Spleen.tar" md5 = "410d4a301da4e5b2f6f86ec3ddba524e" compressed_file = os.path.join(root_dir, "Task09_Spleen.tar") if not os.path.exists(data_dir): download_and_extract(resource, compressed_file, root_dir, md5) ###Output _____no_output_____ ###Markdown Set MSD Spleen dataset path ###Code train_images = sorted(glob.glob(os.path.join(data_dir, "imagesTr", "*.nii.gz"))) train_labels = sorted(glob.glob(os.path.join(data_dir, "labelsTr", "*.nii.gz"))) data_dicts = [ {"image": image_name, "label": label_name} for image_name, label_name in zip(train_images, train_labels) ] train_files, val_files = ( data_dicts[:-9], data_dicts[-9:], ) ## keep the last 9 files as validation files ###Output _____no_output_____ ###Markdown Set deterministic training for reproducibility ###Code set_determinism(seed=0) ###Output _____no_output_____ ###Markdown Setup transforms for training and validationHere we use several transforms to augment the dataset:1. `LoadImaged` loads the spleen CT images and labels from NIfTI format files.1. `AddChanneld` as the original data doesn't have channel dim, add 1 dim to construct "channel first" shape.1. `Spacingd` adjusts the spacing by `pixdim=(1.5, 1.5, 2.)` based on the affine matrix.1. `Orientationd` unifies the data orientation based on the affine matrix.1. `ScaleIntensityRanged` extracts intensity range [-57, 164] and scales to [0, 1].1. `CropForegroundd` removes all zero borders to focus on the valid body area of the images and labels.1. `RandCropByPosNegLabeld` randomly crop patch samples from big image based on pos / neg ratio. The image centers of negative samples must be in valid body area.1. `RandAffined` efficiently performs `rotate`, `scale`, `shear`, `translate`, etc. together based on PyTorch affine transform.1. `EnsureTyped` converts the numpy array to PyTorch Tensor for further steps. ###Code train_transforms = Compose( [ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), Spacingd( keys=["image", "label"], pixdim=(1.5, 1.5, 2.0), mode=("bilinear", "nearest"), ), Orientationd(keys=["image", "label"], axcodes="RAS"), ScaleIntensityRanged( keys=["image"], a_min=-57, a_max=164, b_min=0.0, b_max=1.0, clip=True, ), CropForegroundd(keys=["image", "label"], source_key="image"), RandCropByPosNegLabeld( keys=["image", "label"], label_key="label", spatial_size=(96, 96, 96), pos=1, neg=1, num_samples=4, image_key="image", image_threshold=0, ), # user can also add other random transforms # RandAffined( # keys=['image', 'label'], # mode=('bilinear', 'nearest'), # prob=1.0, spatial_size=(96, 96, 96), # rotate_range=(0, 0, np.pi/15), # scale_range=(0.1, 0.1, 0.1)), EnsureTyped(keys=["image", "label"]), ] ) val_transforms = Compose( [ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), Spacingd( keys=["image", "label"], pixdim=(1.5, 1.5, 2.0), mode=("bilinear", "nearest"), ), Orientationd(keys=["image", "label"], axcodes="RAS"), ScaleIntensityRanged( keys=["image"], a_min=-57, a_max=164, b_min=0.0, b_max=1.0, clip=True, ), CropForegroundd(keys=["image", "label"], source_key="image"), EnsureTyped(keys=["image", "label"]), ] ) ###Output _____no_output_____ ###Markdown Check transforms in DataLoader ###Code check_ds = Dataset(data=val_files, transform=val_transforms) check_loader = DataLoader(check_ds, batch_size=1) check_data = first(check_loader) image, label = (check_data["image"][0][0], check_data["label"][0][0]) print(f"image shape: {image.shape}, label shape: {label.shape}") # plot the slice [:, :, 80] plt.figure("check", (12, 6)) plt.subplot(1, 2, 1) plt.title("image") plt.imshow(image[:, :, 80], cmap="gray") plt.subplot(1, 2, 2) plt.title("label") plt.imshow(label[:, :, 80]) plt.show() ###Output _____no_output_____ ###Markdown Define CacheDataset and DataLoader for training and validationHere we use CacheDataset to accelerate training and validation process, it's 10x faster than the regular Dataset. To achieve best performance, set `cache_rate=1.0` to cache all the data, if memory is not enough, set lower value. Users can also set `cache_num` instead of `cache_rate`, will use the minimum value of the 2 settings. And set `num_workers` to enable multi-threads during caching. If want to to try the regular Dataset, just change to use the commented code below. ###Code train_ds = CacheDataset( data=train_files, transform=train_transforms, cache_rate=1, num_workers=0 ) # train_ds = monai.data.Dataset(data=train_files, transform=train_transforms) # use batch_size=2 to load images and use RandCropByPosNegLabeld # to generate 2 x 4 images for network training train_loader = DataLoader(train_ds, batch_size=2, shuffle=True, num_workers=0) val_ds = CacheDataset( data=val_files, transform=val_transforms, cache_rate=1.0, num_workers=0 ) # val_ds = Dataset(data=val_files, transform=val_transforms) val_loader = DataLoader(val_ds, batch_size=1, num_workers=0) ###Output _____no_output_____ ###Markdown !top Create Model, Loss, Optimizer ###Code # standard PyTorch program style: create UNet, DiceLoss and Adam optimizer device = torch.device("cuda:0") model = UNet( spatial_dims=3, in_channels=1, out_channels=2, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, norm=Norm.BATCH, ).to(device) loss_function = DiceLoss(to_onehot_y=True, softmax=True) optimizer = torch.optim.Adam(model.parameters(), 1e-4) dice_metric = DiceMetric(include_background=False, reduction="mean") ###Output _____no_output_____ ###Markdown Execute a typical PyTorch training process ###Code %%time max_epochs = 20 # 600 val_interval = 2 best_metric = -1 best_metric_epoch = -1 epoch_loss_values = [] metric_values = [] post_pred = Compose( [EnsureType(), AsDiscrete(argmax=True, to_onehot=True, num_classes=2)] ) post_label = Compose([EnsureType(), AsDiscrete(to_onehot=True, num_classes=2)]) for epoch in range(max_epochs): print("-" * 10) print(f"epoch {epoch + 1}/{max_epochs}") model.train() epoch_loss = 0 step = 0 for batch_data in train_loader: step += 1 inputs, labels = ( batch_data["image"].to(device), batch_data["label"].to(device), ) optimizer.zero_grad() outputs = model(inputs) loss = loss_function(outputs, labels) loss.backward() optimizer.step() epoch_loss += loss.item() print( f"{step}/{len(train_ds) // train_loader.batch_size}, " f"train_loss: {loss.item():.4f}" ) epoch_loss /= step epoch_loss_values.append(epoch_loss) print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}") if (epoch + 1) % val_interval == 0: model.eval() with torch.no_grad(): for val_data in val_loader: val_inputs, val_labels = ( val_data["image"].to(device), val_data["label"].to(device), ) roi_size = (160, 160, 160) sw_batch_size = 4 val_outputs = sliding_window_inference( val_inputs, roi_size, sw_batch_size, model ) val_outputs = [post_pred(i) for i in decollate_batch(val_outputs)] val_labels = [post_label(i) for i in decollate_batch(val_labels)] # compute metric for current iteration dice_metric(y_pred=val_outputs, y=val_labels) # aggregate the final mean dice result metric = dice_metric.aggregate().item() # reset the status for next validation round dice_metric.reset() metric_values.append(metric) if metric > best_metric: best_metric = metric best_metric_epoch = epoch + 1 torch.save(model.state_dict(), model_dir + "/best_metric_model.pth") print("saved new best metric model") print( f"current epoch: {epoch + 1} current mean dice: {metric:.4f}" f"\nbest mean dice: {best_metric:.4f} " f"at epoch: {best_metric_epoch}" ) print( f"train completed, best_metric: {best_metric:.4f} " f"at epoch: {best_metric_epoch}" ) ###Output _____no_output_____ ###Markdown Plot the loss and metric ###Code plt.figure("train", (12, 6)) plt.subplot(1, 2, 1) plt.title("Epoch Average Loss") x = [i + 1 for i in range(len(epoch_loss_values))] y = epoch_loss_values plt.xlabel("epoch") plt.plot(x, y) plt.subplot(1, 2, 2) plt.title("Val Mean Dice") x = [val_interval * (i + 1) for i in range(len(metric_values))] y = metric_values plt.xlabel("epoch") plt.plot(x, y) plt.show() ###Output _____no_output_____ ###Markdown Check best model output with the input image and label ###Code model.load_state_dict(torch.load(model_dir + "/best_metric_model.pth")) model.eval() with torch.no_grad(): for i, val_data in enumerate(val_loader): roi_size = (160, 160, 160) sw_batch_size = 4 val_outputs = sliding_window_inference( val_data["image"].to(device), roi_size, sw_batch_size, model ) # plot the slice [:, :, 80] plt.figure("check", (18, 6)) plt.subplot(1, 3, 1) plt.title(f"image {i}") plt.imshow(val_data["image"][0, 0, :, :, 80], cmap="gray") plt.subplot(1, 3, 2) plt.title(f"label {i}") plt.imshow(val_data["label"][0, 0, :, :, 80]) plt.subplot(1, 3, 3) plt.title(f"output {i}") plt.imshow(torch.argmax(val_outputs, dim=1).detach().cpu()[0, :, :, 80]) plt.show() if i == 2: break ###Output _____no_output_____ ###Markdown Evaluation on original image spacings ###Code val_org_transforms = Compose( [ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), Spacingd(keys=["image"], pixdim=(1.5, 1.5, 2.0), mode="bilinear"), Orientationd(keys=["image"], axcodes="RAS"), ScaleIntensityRanged( keys=["image"], a_min=-57, a_max=164, b_min=0.0, b_max=1.0, clip=True, ), CropForegroundd(keys=["image"], source_key="image"), EnsureTyped(keys=["image", "label"]), ] ) val_org_ds = Dataset(data=val_files, transform=val_org_transforms) val_org_loader = DataLoader(val_org_ds, batch_size=1, num_workers=4) post_transforms = Compose( [ EnsureTyped(keys="pred"), Invertd( keys="pred", transform=val_org_transforms, orig_keys="image", meta_keys="pred_meta_dict", orig_meta_keys="image_meta_dict", meta_key_postfix="meta_dict", nearest_interp=False, to_tensor=True, ), AsDiscreted(keys="pred", argmax=True, to_onehot=True, num_classes=2), AsDiscreted(keys="label", to_onehot=True, num_classes=2), ] ) ###Output _____no_output_____ ###Markdown Cleanup data directoryRemove directory if a temporary was used. ###Code if directory is None: shutil.rmtree(root_dir) ###Output _____no_output_____
notebooks/minimalAnalysis_HPDSinputFormat.ipynb
###Markdown Test using fake data following HPDS format- Age general distribution- Age distribution by sex- Comorbidities per dayShiny App demo: https://avillachlab.shinyapps.io/demo/ ###Code #load the libraries library( "ggplot2" ) library( "plyr" ) library( "plotly" ) ##### file modified inputPath <- "./" inputFile <- "Zak_table_modified.txt" # read the file and rename columns dataInput <- read.delim( paste0( inputPath, inputFile ), header = FALSE, sep = "\t", colClasses = "character") colnames(dataInput) <- c("PATIENT_NUM", "CONCEPT_PATH", "NVAL_NUM", "TVAL_CHAR", "START_DATE", "AGE", "SEX") #for the diagnostic, we select the last item in the concept path dataInput$DIAGNOSE <- sapply(strsplit( as.character(dataInput$CONCEPT_PATH), "[\\]"),function(x)x[length(x)]) #we create one subset of the data for the diagnosis analysis dataSelection <- dataInput[, c("PATIENT_NUM", "DIAGNOSE", "START_DATE")] dataSelection$START_DATE <- as.Date(dataSelection$START_DATE, format = "%d-%b-%y") head( dataSelection ) #we create one subset of the data for the general demographic analysis demogData <- dataInput[ , c("PATIENT_NUM", "AGE", "SEX")] demogData <- demogData[ ! duplicated( demogData ), ] head(demogData) demogData$AGE <- as.numeric( demogData$AGE ) demogData$SEX <- as.factor( demogData$SEX ) ###Output _____no_output_____ ###Markdown Boxplot for the age distribution by sex ###Code ageBP <- ggplot(demogData, aes(x=SEX, y=AGE, fill=SEX))+ geom_boxplot() ageBP + scale_fill_discrete(name="Sex", breaks=c("F", "M"), labels=c("Female", "Male")) ###Output _____no_output_____ ###Markdown Age distribution- General age distribution- Age distribution according to the sex of the patient ###Code #general barplot ggplot(demogData, aes(x=AGE)) + geom_bar() min(demogData$AGE) max(demogData$AGE) #estimate the mean age for males and females mu <- ddply(demogData, "SEX", summarise, grp.mean=mean(AGE)) #histogram showing age according to sex ggplot2::ggplot(demogData, aes(x=AGE, fill=SEX, color=SEX)) + geom_histogram(position="identity", alpha = 0.5) + geom_vline(data=mu, aes(xintercept=grp.mean, color=SEX), linetype="dashed") ###Output _____no_output_____ ###Markdown Prepare the data to estimate the comorbidities per day ###Code head(dataSelection) output <- data.frame() for( i in 1:length(unique( dataSelection$PATIENT_NUM))){ selection <- dataSelection[ dataSelection$PATIENT_NUM == unique(dataSelection$PATIENT_NUM)[i], ] selection <- selection[ order( selection$START_DATE , decreasing = TRUE), ] for( j in 1:nrow(selection)){ if( j == 1){ selection$DAY[j] <- paste0("DAY ", j) }else{ selection$DAY[j] <- paste0("DAY ", as.numeric(gsub("DAY ", "", selection$DAY[j-1])) + as.numeric(selection$START_DATE[j-1] - selection$START_DATE[j]) ) } } output <- rbind(output, selection) } head(output) toplot <- as.data.frame( table( paste0( output$DIAGNOSE, "-", output$DAY))) toplot$Prev <- (toplot$Freq/length(unique(output$PATIENT_NUM))) toplot$DIAG <- sapply(strsplit( as.character(toplot$Var1), "-"), '[', 1) toplot$DAY <- sapply(strsplit( as.character(toplot$Var1), "-"), '[', 2) #barplot p <- ggplot(data=toplot, aes(x=DAY, y=Freq, fill=DIAG)) + geom_bar(stat="identity", color="black", position=position_dodge())+ theme(legend.position="bottom", legend.direction = "vertical") p #htmp htmp <- ggplot(toplot, aes(DAY, DIAG )) + geom_tile(aes(fill = Freq), color = "white") + scale_fill_gradient(low = "white", high = "steelblue") + theme(legend.title = element_text(size = 10), legend.text = element_text(size = 12), plot.title = element_text(size=16), axis.title=element_text(size=14,face="bold"), axis.text.x = element_text(angle = 90, hjust = 1)) + labs(fill = "Comorbidity frequency") htmp #alternatives using plotly # library(plotly) # toplot <- as.data.frame( table( paste0( output$DIAGNOSE, "-", output$DAY))) # toplot$Prev <- (toplot$Freq/length(unique(output$PATIENT_NUM))) # toplot$DIAG <- sapply(strsplit( as.character(toplot$Var1), "-"), '[', 1) # toplot$DAY <- sapply(strsplit( as.character(toplot$Var1), "-"), '[', 2) # p <- ggplot(data=toplot, aes(x=DAY, y=Freq, fill=DIAG)) + # geom_bar(stat="identity", color="black", position=position_dodge())+ # theme_minimal()+ theme(legend.position="bottom") # p # # plotly( p ) # # # htmp <- ggplot(toplot, aes(DAY, DIAG )) + # geom_tile(aes(fill = Freq), color = "white") + # scale_fill_gradient(low = "white", high = "steelblue") + # theme(legend.title = element_text(size = 10), # legend.text = element_text(size = 12), # plot.title = element_text(size=16), # axis.title=element_text(size=14,face="bold"), # axis.text.x = element_text(angle = 90, hjust = 1)) + # labs(fill = "Comorbidity frequency") # # htmp # # fig <- plot_ly( # x = toplot$DAY, y = toplot$DIAG, # z = toplot$Freq, type = "heatmap" # ) #inputPath <- "./" #inputFile <- "Zak_table.txt" #library(plotly) #theme_set(theme_bw()) #dataInput <- read.delim( paste0( inputPath, inputFile ), header = FALSE, sep = "\t", colClasses = "character") #colnames(dataInput) <- c("PATIENT_NUM", "CONCEPT_PATH", "NVAL_NUM", "TVAL_CHAR", "START_DATE") #dataInput$DIAGNOSE <- sapply(strsplit( as.character(dataInput$CONCEPT_PATH), "[\\]"),function(x)x[length(x)]) #dataSelection <- dataInput[, c("PATIENT_NUM", "DIAGNOSE", "START_DATE")] #dataSelection$START_DATE <- as.Date(dataSelection$START_DATE, format = "%d-%b-%y") #head(dataSelection) #output <- data.frame() #for( i in 1:length(unique( dataSelection$PATIENT_NUM))){ # selection <- dataSelection[ dataSelection$PATIENT_NUM == unique(dataSelection$PATIENT_NUM)[i], ] # selection <- selection[ order( selection$START_DATE , decreasing = TRUE), ] # for( j in 1:nrow(selection)){ # if( j == 1){ # selection$DAY[j] <- paste0("DAY ", j) # }else{ # selection$DAY[j] <- paste0("DAY ", as.numeric(gsub("DAY ", "", selection$DAY[j-1])) + as.numeric(selection$START_DATE[j-1] - selection$START_DATE[j]) ) # } # } # output <- rbind(output, selection) #} # Simulate COVID status #covid_stat_df <- data.frame(PATIENT_NUM = unique(dataSelection$PATIENT_NUM), # covid_status = sample(c("Y", "N"), # size = length(unique(dataSelection$PATIENT_NUM)), # replace = T) ) #output <- merge(output, covid_stat_df) #head(output) # toplot <- as.data.frame( table( paste0( output$DIAGNOSE, "-", output$DAY))) # toplot$Prev <- (toplot$Freq/length(unique(output$PATIENT_NUM))) # toplot$DIAG <- sapply(strsplit( as.character(toplot$Var1), "-"), '[', 1) # toplot$DAY <- sapply(strsplit( as.character(toplot$Var1), "-"), '[', 2) #p <- ggplot(data=toplot, aes(x=DAY, y=Freq, fill=DIAG)) + # geom_bar(stat="identity", color="black", position=position_dodge())+ # theme(legend.position="bottom", # legend.direction = "vertical") #p #plotly( p ) #htmp <- ggplot(toplot, aes(DAY, DIAG )) + # geom_tile(aes(fill = Freq), color = "white") + # scale_fill_gradient(low = "white", high = "steelblue") + # theme_bw() + # theme(legend.title = element_text(size = 10), # legend.text = element_text(size = 12), # plot.title = element_text(size=16), # axis.title=element_text(size=14,face="bold"), # axis.text.x = element_text(angle = 90, hjust = 1)) + # labs(fill = "Comorbidity frequency") #htmp #fig <- plot_ly( # x = toplot$DAY, y = toplot$DIAG, # z = toplot$Freq, type = "heatmap" # ) ###Output _____no_output_____
notebook/Deterministic-Chain-Example.ipynb
###Markdown Determinstic Chain ExampleSelf-contained example of the $\eta$-return mixture for prediction in a determinstic chain ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns ###Output _____no_output_____ ###Markdown Set up Environment MRP ###Code class LinearChainMRP: def __init__(self, n_states=8): self.n_states = n_states self.state = 0 def step(self): reward = 0.0 done = False if self.state == (self.n_states-1): done = True reward = 1.0 else: self.state += 1 return self.state, reward, done def reset(self): self.state = 0 return self.state ###Output _____no_output_____ ###Markdown Learners ###Code def np_one_hot(dim, idx): """Create a one-hot vector""" vec = np.zeros(dim) vec[idx] = 1.0 return vec class ValueFunctionBase: def __init__(self, n_states=8, gamma=0.99, lr=0.1): self.n_states = n_states self.prev_state = None self.gamma = gamma self.lr = lr def begin_episode(self, state): self.prev_state = state def step(self, state, reward, done): pass class MFValue(ValueFunctionBase): def __init__(self, n_states=8, gamma=0.99, lr=0.1): super().__init__(n_states, gamma, lr) self.theta = np.zeros(n_states) def step(self, state, reward, done): # Target and update prev_target = reward + ((1 - done) * self.gamma * self.theta[state]) theta_delta = prev_target - self.theta[self.prev_state] self.theta[self.prev_state] += self.lr * theta_delta # Continue self.prev_state = state class SFValue(ValueFunctionBase): def __init__(self, n_states=8, gamma=0.99, lr=0.1): super().__init__(n_states, gamma, lr) self.psi = np.identity(n_states) self.w = np.zeros(n_states) self.theta = np.zeros(n_states) # dummy variable to be combined def step(self, state, reward, done): # SR lesarning prev_phi = np_one_hot(self.n_states, self.prev_state) target = prev_phi + ((1 - done) * self.gamma * self.psi[state]) sf_delta = target - self.psi[self.prev_state] self.psi[self.prev_state] += self.lr * sf_delta # Reward learning r_delta = reward - self.w[self.prev_state] self.w[self.prev_state] += self.lr * r_delta self.theta = self.psi @ self.w # Continue self.prev_state = state class LambdaValue(ValueFunctionBase): def __init__(self, n_states=8, gamma=0.99, lr=0.1, lamb=0.0): super().__init__(n_states, gamma, lr) self.lamb = lamb self.theta = np.zeros(n_states) self.psi = np.identity(n_states) self.w = np.zeros(n_states) def step(self, state, reward, done): # SR lesarning prev_phi = np_one_hot(self.n_states, self.prev_state) target = prev_phi + ((1 - done) * self.gamma * self.lamb * self.psi[state]) sf_delta = target - self.psi[self.prev_state] self.psi[self.prev_state] += self.lr * sf_delta # Reward learning r_delta = reward - self.w[self.prev_state] self.w[self.prev_state] += self.lr * r_delta # Value learning v_vec = self.psi @ ( ((1-self.lamb) * self.theta) + (self.lamb * self.w) ) v_target = reward + ((1-done) * self.gamma * v_vec[state]) v_delta = v_target - self.theta[self.prev_state] self.theta[self.prev_state] += self.lr * v_delta # Continue self.prev_state = state ###Output _____no_output_____ ###Markdown Trainer ###Code def train_value(env, learner, num_episodes=3): """ Method to run a learner in an environment """ out_dict = { 'theta': [], 'psi': [], 'w': [], } for episode_idx in range(num_episodes): s = env.reset() learner.begin_episode(s) done = False while not done: s, reward, done = env.step() learner.step(s, reward, done) # store if hasattr(learner, 'theta'): out_dict['theta'].append(np.copy(learner.theta)) if hasattr(learner, 'psi'): out_dict['psi'].append(np.copy(learner.psi)) if hasattr(learner, 'w'): out_dict['w'].append(np.copy(learner.w)) return out_dict ###Output _____no_output_____ ###Markdown Experiment Run experiment ###Code Num_states = 16 Num_episodes = 20 Gamma = 0.9999 Lr = 1.0 def run_experiment(): sf_lambda = 0.5 # Agent learners learner_dict = { 'mf': MFValue(n_states=Num_states, gamma=Gamma, lr=Lr), 'sf': SFValue(n_states=Num_states, gamma=Gamma, lr=Lr), 'lvf_2': LambdaValue(n_states=Num_states, gamma=Gamma, lr=Lr, lamb=0.2), 'lvf_5': LambdaValue(n_states=Num_states, gamma=Gamma, lr=Lr, lamb=0.5), 'lvf_7': LambdaValue(n_states=Num_states, gamma=Gamma, lr=Lr, lamb=0.7), 'lvf_9': LambdaValue(n_states=Num_states, gamma=Gamma, lr=Lr, lamb=0.9), } # Environment env = LinearChainMRP(n_states=Num_states) # Train data_dict = {} for k in learner_dict: cur_learner = learner_dict[k] cur_out = train_value(env, cur_learner, num_episodes=Num_episodes) data_dict[k] = cur_out print(k, data_dict[k].keys()) return data_dict exp_dict = run_experiment() ###Output mf dict_keys(['theta', 'psi', 'w']) sf dict_keys(['theta', 'psi', 'w']) lvf_2 dict_keys(['theta', 'psi', 'w']) lvf_5 dict_keys(['theta', 'psi', 'w']) lvf_7 dict_keys(['theta', 'psi', 'w']) lvf_9 dict_keys(['theta', 'psi', 'w']) ###Markdown Visualize ###Code from mpl_toolkits.axes_grid1 import make_axes_locatable def script_plt_all_thetas(in_dict): only_include = ['mf', 'lvf_7', 'sf'] title_list = ['$\eta$ = 0', '$\eta$ = 0.7', '$\eta$ = 1.0'] plt.figure(figsize=((10, 2.8))) subplt_counter = 1 fig, axes = plt.subplots(nrows=1, ncols=len(only_include)) for idx, ax in enumerate(axes.flat): cur_ax_key = only_include[idx] im = ax.imshow(in_dict[cur_ax_key]['theta'], cmap='magma', vmin=0.0, vmax=1.0) print(cur_ax_key) ax.title.set_text(title_list[idx]) if subplt_counter == 1: ax.set_ylabel('Episodes') cur_yticks = np.arange(Num_episodes, step=4) ax.set_yticks(cur_yticks) else: ax.set_ylabel('') ax.set_yticks([]) ax.set_xlabel('States') subplt_counter += 1 fig.subplots_adjust(right=0.8) #cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7]) cbar_ax = fig.add_axes([ax.get_position().x1+0.01,ax.get_position().y0,0.02,ax.get_position().height]) fig.colorbar(im, cax=cbar_ax) return fig plt.rc('text', usetex=True) plt.rc('font', **{'family': 'serif', 'serif': ['Times'], 'size': 15}) cur_prop_fig = script_plt_all_thetas(exp_dict) # cur_prop_fig.savefig('./path_out_chain.pdf', bbox_inches="tight") sns.color_palette("colorblind", 10) def script_plt_all_errors(in_dict): ag_k_list = ['mf', 'lvf_7', 'sf'] # learner keys ag_k_float_lambda = [0.0, 0.7, 1.0] # NOTE: correspond to above # Make true value vector true_v = np.zeros(Num_states) true_v[-1] = 1.0 for i in reversed(range((Num_states-1))): true_v[i] = Gamma * true_v[i+1] # Colors c10pal = sns.color_palette("colorblind", 10) cmapping_keylist = [0.0, 0.3, 0.5, 0.7, 0.9, 0.99, 1.0] cmapping_colidxs = [7, 1, 2, 3, 4, 6, 9] cmapping = {cmapping_keylist[i]: cmapping_colidxs[i] for i in range(len(cmapping_keylist))} # Plot error plt.figure(figsize=(3.8,2.8)) lege_list = [] for i, ag_k in enumerate(ag_k_list): delta_vec = in_dict[ag_k]['theta'] - true_v err = np.linalg.norm(delta_vec, ord=np.inf, axis=1) # Current lambda and color cur_lamb = ag_k_float_lambda[i] cur_col = c10pal[cmapping[cur_lamb]] # plt.plot(err, color=cur_col) print(ag_k, cur_lamb) lege_list.append(ag_k) # plt.title('Inf Norm Error') lege_list = ['$\eta$ = 0 (MF)', '$\eta$ = 0.7', '$\eta$ = 1 (full SF)'] plt.legend(lege_list, loc='lower left', fontsize=13) plt.ylabel('max\{abs state error\}') plt.xlabel('Episodes') cur_xticks = np.arange(Num_episodes, step=4) plt.xticks(cur_xticks, cur_xticks) plt.rc('text', usetex=True) plt.rc('font', **{'family': 'serif', 'serif': ['Times'], 'size': 15}) script_plt_all_errors(exp_dict) # plt.savefig('./path_out.pgf', bbox_inches="tight") def script_get_vectors(in_dict, epis_idx): param_k_list = ['theta', 'w', 'psi'] # parameters to see ag_k_list = ['mf', 'sf', 'lvf_7'] # learner keys for ag_k in in_dict: # Check if ag_k not in ag_k_list: continue for param_k in param_k_list: # Check if not param_k in in_dict[ag_k]: continue if len(in_dict[ag_k][param_k]) == 0: continue # Get the parameters cur_param = in_dict[ag_k][param_k] cur_epis_param = cur_param[epis_idx] if len(np.shape(cur_epis_param)) == 1: cur_epis_param = np.expand_dims( cur_epis_param, 0) elif len(np.shape(cur_epis_param)) == 2: cur_epis_param = cur_epis_param[0:1, :] else: raise Exception('This is unexpected') info_str = f'Agent: {ag_k}, Param: {param_k}' if param_k == 'theta': info_str += f', {cur_epis_param[0,0]}' print(info_str) plt.figure(figsize=(3,2)) plt.imshow(cur_epis_param, cmap='cividis', vmin=0.0, vmax=1.0) plt.xticks([]) plt.yticks([]) plt.show() script_get_vectors(exp_dict, 16) ###Output Agent: mf, Param: theta, 0.9985010495451367 ###Markdown $\phi (S = 0)$ without SF ###Code def script_plt_phi_s0(): phi_s0 = np.zeros((1, Num_states)) phi_s0[0,0] = 1.0 plt.figure(figsize=(3,2)) plt.imshow(phi_s0, cmap='cividis', vmin=0.0, vmax=1.0) plt.xticks([]) plt.yticks([]) plt.show() script_plt_phi_s0() def script_plt_zero(): phi_s0 = np.zeros((1, Num_states)) plt.figure(figsize=(3,2)) plt.imshow(phi_s0, cmap='cividis', vmin=0.0, vmax=1.0) plt.xticks([]) plt.yticks([]) plt.show() script_plt_zero() ###Output _____no_output_____
notebooks/DataTypes.ipynb
###Markdown Programming and Database Fundamentals for Data Scientists - EAS503 Dealing with data types`Python` has five standard Data Types:- Numbers- String- List- Tuple- DictionaryPython sets the variable type based on the value that is assigned to it. Python will change the variable type if the variable value is set to another value. For example: ###Code height = 10.4 print(type(height)) height = 'tall' print(type(height)) ###Output <class 'float'> <class 'str'> ###Markdown `Python` also allows operations on some types of variables with different data types. However, for others, trying to operate between two data types might lead to an error. For example: ###Code height = 10.2 tall = True s = '4.3' height + tall # Strongly typed language height + s ###Output _____no_output_____ ###Markdown Numbers ###Code var = 382 ###Output _____no_output_____ ###Markdown Most of the time using the standard Python number type is fine. Python will automatically convert a number from one type to another if it needs. But, under certain circumstances that a specific number type is needed (ie. complex, hexidecimal), the format can be forced into a format by using additional syntax in the table below:| Type | Format | Description ||---------|----------------|-------------|| int |a = 10 |Signed Integer|| float |a = 45.67 |(.) Floating point real values|| complex |a = 3.14J |(J) Contains integer in the range 0 to 255.| Most of the time Python will do variable conversion automatically. You can also use Python conversion functions (int(), long(), float(), complex()) to convert data from one type to another. IntegersIn `Python` (3), the largest allowed integer is not pre-determined, but depends on the available memory. ###Code x = 9999999999999999999999999999999999999999999999999999 print(x) print(type(x)) ###Output 9999999999999999999999999999999999999999999999999999 <class 'int'> ###Markdown FloatThe `float` type designates a number with a decimal point. In **scientific notation**, one can use the character `e` or `E` to denote a floating point number. ###Code a = 4.2 print(type(a)) a = 2e3 print(a) print(type(a)) a = 4.2e-2 print(a) print(type(a)) ###Output 0.042 <class 'float'> ###Markdown _Storage_: A `float` is stored in a `double-precision` format (64 bits). Typically, the largest size floating point number is approximately $1.8 \times 10^{308}$. Smallest floating point number that one can use is approximately $5.0 \times 10^{-324}$. ###Code largefloat = 1.79e308 print(largefloat) largefloat = 1.8e308 print(largefloat) smallfloat = 5.0e-324 print(smallfloat) smallfloat = 1e-325 print(smallfloat) import sys aint = 1000 print(sys.getsizeof(aint)) afloat = 2.3707969876878768e-10 print(sys.getsizeof(afloat)) ###Output 28 24 ###Markdown **Quick question** - Why bother with `int` at all? Why not use `float` for representing all numbers._Answer_ - Using `int` is more efficient, both in terms of storage and computation.In general, floating point arithmetic is much more expensive than integer. Moreover, `float` is actually an approximation while `int` is exact. ###Code # using int a = 1000000000000000000000000000 print(a == a+1) # using float a = 1000000000000000000000000000.0 print(a == a+1) ###Output True ###Markdown Sequence data structures in PythonWhile basic data types allow you to create one variable at a time, in most practical applications (especially for data science), one needs to manipulate a large collection of variables. Clearly, creating one variable for each data element is very inefficient. All modern programming languages, including `Python`, allows for creation of data types that are collections of variables. Two broad categories of such collections are defined in `Python` - sequences and non-sequences.Python defines several sequence data structures. While each data structure has its own characteristics, they all satisfy a core set of operations, that includes:|Operation| Description||------|------||`len(s)`| **Finding length**||`s1 + s2`| **Concatenation**||`s*4`| **Repetition**|| `x in s`| **Membership**||`for x in` s| **Iteration**| Python ListsOne of the most versatile data types in `Python`. ###Code l = ['red','blue','green'] print(l) print(type(l)) print(len(l)) ## python indexing starts from 0 print(l[0]) print(l[1]) ###Output red blue ###Markdown `Python` lists also support reverse indexing, by using a negative index. ###Code print(l[-2]) print(l[len(l)-1]) ###Output _____no_output_____ ###Markdown A `list` can contain any type of data type and allows for a mix of data types. ###Code l = [3,4,'garfield','chester',4.3] print(l) l1 = ['3', 4, 'five', [4.4, 2.3]] print(l1) ###Output ['3', 4, 'five', [4.4, 2.3]] ###Markdown ConcatenationThe operator `+` concatenates two lists and returns the concatenated list. ###Code print(l + l1) ###Output [3, 4, 'garfield', 'chester', 4.3, '3', 4, 'five', [4.4, 2.3]] ###Markdown Append ###Code l.extend(l1) print(l) l.append(98) print(l) ###Output [3, 4, 'garfield', 'chester', 4.3, '3', 4, 'five', [4.4, 2.3], 98] ###Markdown Indexing ###Code l = [7,4,3,9,8,5,6,3,1,3] l[:] l[::-1] l l[::-1] l. l.reverse() print(l) ###Output [3, 1, 3, 6, 5, 8, 9, 3, 4, 7] ###Markdown A third option for indexing allows us to choose the step size for the slicing. ###Code # pick every second element print(l[::2]) # print every third element within a range print(l[2:18:3]) # reverse a list print(l[::-1]) ###Output _____no_output_____ ###Markdown Replication ###Code # replicating lists print([1/6]*9) print(['a']*8) ###Output [0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666] ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a'] ###Markdown Iteration ```for varname in somelist:``` ###Code a = [0,1,2,3,4,5,6,7,8,9] for i in a: print(i) print(i*4) for i in range(10): a[i] = 2*a[i] print(a) def fun(x): return 7*x # a pythonic way b = [fun(i) for i in a] print(b) ###Output _____no_output_____ ###Markdown Memory storage of listsWhile `Python` gives us a simplified view of a `list`, the actual memory representation of a `list` is not as simple. A `list` consists of a main **pointer** (an address pointing to a memory location, typically uses 8 bytes in a 64 bit computer) which references to other pointers, which in turn point to the actual data items. Consider an empty `list`: ###Code import sys l = [] print(sys.getsizeof(l)) biglist = [4,5,8,9] a = [biglist] b = [biglist] print(a) print(b) biglist[0] = 'number' print(biglist) b[0].append('anothernumber') print(biglist) a = [8,3,2,4] b = a # memory reference print(a) print(b) a[2] = -1 print(b) c = a.copy() a[1] = 400 print(c) ###Output [8, 3, -1, 4] ###Markdown An empty `list` takes 64 bytes, this is for the meta data information (overhead). Now consider the size of the `list` after adding data. ###Code l = [] print(sys.getsizeof(l)) l = ['v'] print(sys.getsizeof(l)) l = ['v','a'] print(sys.getsizeof(l)) l = ['v','a','r'] print(sys.getsizeof(l)) l = ['v','a','r','un'] print(sys.getsizeof(l)) l = ['v','a','r','un','This is a long string'] print(sys.getsizeof(l)) l = ['v','a','r','un','This is a long string',[8,16,24]] print(sys.getsizeof(l)) ###Output 64 72 80 88 96 104 112 ###Markdown Note that, regardless of what was actually added, the size of the `list` grows by 8 bytes with the number of elements, where each memory location uses up 8 bytes.This also reveals a shortcoming of the `getsizeof()` function. It only provides a "shallow" size of a collection, i.e., size of the head and the memory locations for the actual data. Copying a list variableSince a list does not directly contain the data, assigning another variable name to an existing list does not quite have the "desired" copying effect. ###Code l = [4,5,21,12] l1 = l print(l) print(l1) l[2] = 12 print(l) print(l1) ###Output _____no_output_____ ###Markdown Looks like the list pointed to by `l1` has also changed! This is because the statement `l1 = l` does not create a new list. It just creates a new binding between the target (`l1`) and the actual list object. An explicit `copy()` is needed to create a new copy. ###Code l1 = l.copy() l[0] = -23 print(l) print(l1) l = ['b','u','f',[2,3,4]] l1 = ['f','a','l','o'] l2 = l + l1 print(l2) l[3][0] = -4 print(l) print(l2) ###Output _____no_output_____ ###Markdown List functions modify the original listThis is true for `append`, `extend`, `pop`, `insert`, and other supported functions for the `list` class. ###Code print(l) l.append(4) print(l) l2 = l + l1 ###Output _____no_output_____ ###Markdown However, binary operators such as `+` and `*` do no modify the existing object and return a new one. ###Code print(l + [3,4,2]) print(l) ###Output _____no_output_____ ###Markdown Understanding performance of python lists ###Code # create a long list l = [] i = 0 for i in range(10000000): l.append(i) i = i + 1 print(l) del(l[1]) print(l) l.remove(1) print(l) ###Output ['b', 'f', [2, 3, 4]] ###Markdown Access performanceWe first want to figure out how quickly can we access a particular value within a `list`. **lambda** functions - As an additional topic, we will also learn how to create quick, one-time functions in `Python` using the `lambda` keyword. We will refer to such functions as `lambda` functions. Basic syntax for a `lambda` function is:```lambda arguments : expression```The function can take any number of arguments as input (a comma separated "list"). But it can only have a single expression, whose value is returned as the return value of this function.For example: ###Code double = lambda x: 2*x print(double(4)) add = lambda x,y: x + y print(add(8,12)) exponent = lambda x,y=10: pow(y,x) print(exponent(2)) print(exponent(2,4)) ###Output 8 20 100 16 ###Markdown Difference between `lambda` and `def`:There are two ways to create a function. Both have almost the same effect, but with some minor differences:1. `lambda` functions can have limited capabilities since all the logic has to be squeezed into a single expression2. `lambda` functions can be defined in places where `def` functions cannot be defined. This benefit will become apparent when we talk about "functional programming", e.g., `map`, `reduce` and `filter`.Anyways, getting back to studying the performance of lists. ###Code list_access = lambda l,pos: l[pos] timeit list_access(l,0) l = list(range(1000000)) timeit list_access(l,0) timeit list_access(l,500000) ###Output 100 ns ± 0.529 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each) ###Markdown Looks like the access time is independent of where we want to access the data from._Next question is: does it depend on the size of the string?_ ###Code l1 = l[0:1000] timeit list_access(l1,0) l1 = l[0:10000] timeit list_access(l1,0) ###Output 103 ns ± 1.07 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each) ###Markdown In general, one can say that list access takes $O(1)$ (or constant) time. >The $O()$ or the `big-oh` notation is used in computer science to denote the worst case complexity (in terms of memory or speed) of an algorithm.>If an algorithm has $O(1)$ time complexity, it means that the time taken to run the algorithm, is a constant factor, and does not depend on the input size. Typically, this is the fastest algorithm you can design.>If an algorithm has $O(n)$ time complexity, where $n$ is the size of the input, it means that in worst case the algorithm will take $c\times n$ time, where $c$ is a constant factor. This means that the time taken by the algorithm grows linearly with the size of the input. This is also considered as an efficient algorithm.>However, a $O(n^2)$ algorithm is typically considered to be inefficient, since the time grows quadratically with the size of the data. Such (and higher complexity) algorithms should be avoided. >But for many problems, one might not find algorithms that are linear or sub-linear. For instance, the best sorting algorithm is $O(n\log{n})$. The best algorithm for multiplying two matrices is $O(n^{2.8})$ (the _Strassen_ algorithm).Coming back to lists. Let us now study the performance of list deletion. ###Code # create a long list l = [] i = 0 for i in range(10000000): l.append(i) i = i + 1 timeit del l[0] # create a long list l = [] i = 0 for i in range(10000000): l.append(i) i = i + 1 timeit del l[5000000] # create a long list l = [] i = 0 for i in range(10000000): l.append(i) i = i + 1 timeit del l[9000000] ###Output 357 µs ± 12.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) ###Markdown What we observe above is that the time taken to delete a value from a `list` depends on the location from where we want to delete the item. In fact, deleting elements towards the beginning of the list is significantly slower than deleting elements from the beginning of the list. Strings ###Code # creating a new string s1 = 'This is great' s2 = "This is even greater" s3 = '''This is the greatest''' s4 = """This is also equally good""" ss = '''This is a string with multiple lines This is the second line of the string''' print(ss) ss = "My string has a \"quote\"" print(ss) print(s1) print(s2) print(s3) print(s4) # we typically reserve three quotes for multi-line strings s5 = 'This is a multi line string. where we need multiple lines.' s5 = '''This is a multi line string. where we need multiple lines.''' print(s5) s5 = """This is also a multi line string. This uses double quotes""" print(s5) l = [3,4,5] print(l) l[2] = 9 print(l) s1[0] = 'G' ###Output _____no_output_____ ###Markdown ImmutabilityA general concept. Objects of certain type in Python are immutable whereas others a mutable. ###Code # for instance, lists l = ['t','h','i','s'] print(l) l[3] = 4 print(l) l = ['1','2','3',4] #for i in range(len(l)): # l[i] = int(l[i]) l = [int(i) for i in l] # now consider, strings s = 'this' print(s) s[3] = 'n' s = 'this' s+=s s = s + s print(s) # del will not work with strings, either del(s[4]) s = ['this','is','a','list'] s*4 s = 'this' for x in s: print(x) # you can, however, delete an entire string object s = 'this' print(s) del s print(s) ###Output _____no_output_____ ###Markdown Accessing `str` elementsSimilar operations as for `list` ###Code s = 'time flies liKe an arrow, fruit flies like a banana' print(s[0:2]) print(s[::-1]) print(s[0:9:2]) t = s[::-1] print(t) # getting length of a string - using in-built Python function print(len(s)) s1 = '' print(len(s1)) # some useful methods defined for str print(s.capitalize()) print(s.casefold()) print(s.count('e')) print(s.center(30)) print(len(s.center(30))) # Concatenating multiple strings - using the + operation t = 'fruit flies like a banana' print(s+t) print(s.casefold()+', '+t) ###Output _____no_output_____ ###Markdown Searching within a stringTwo methods are provided, `find` and `index`, both return the starting index of a substring. However, `index` throws an exception if the substring is not found. `find` returns -1. Both allow specifying start and end index to do the search. ###Code print(s) # searching in a string print(s.find('flies')) print(s.find('fly')) print(s.index('flies')) print(s.index('fly')) print(s.find('li',10)) ###Output _____no_output_____ ###Markdown Regular Expressions in `Python`Regular expressions are used to identify whether a pattern exists in a given sequence of characters (string) or not. They help in manipulating textual data, which is often a pre-requisite for data science projects that involve text mining. For example:> Consider the problem of parsing a text file for user information. For example, you might be interested in checking if each line in a file is of following format or not:```firstname lastname phonenumber emailaddress```or```firstname phonenumber emailaddress```where _firstname_ and _lastname_ are plain strings of alphabets with first letter in upper case, _phonenumber_ is of format (xxx) xxx-xxxx (x - a digit), and _emailaddress_ is of the format [email protected]. Let the file contain following lines:```Varun Chandola (716) 645-4747 [email protected] Simpson (800) 555-7666 homer@simpsonBart (800) 111-7452 [email protected] potter (111) 222-3333 [email protected] 777 (777) 777-7777 [email protected]```You need to create a code that returns `True` if the line matches the above specified pattern and `False` otherwise.There is a first principle way of writing this. But you will soon realize that code will fast become cumbersome, error-prone, and large; in other words **plain ugly!!!*.Fortunately, the theoretical Computer Science community offers the notion of __regular expressions__ to find an easy solution to this problem. In `Python`, regular expressions are supported by the `re` module. ###Code import re ###Output _____no_output_____ ###Markdown Basic Patterns: Ordinary CharactersOrdinary characters are the simplest regular expressions. They match themselves exactly and do not have a special meaning in their regular expression syntax.Examples are 'A', 'a', 'X', '5'.Ordinary characters can be used to perform simple exact matches: ###Code def re_match(pattern,query): if re.match(pattern,query): print("A Match!!!") else: print("Not a match!!!") pattern=r'V' query='Varun' re_match(pattern,query) s = r'This is a string.\n This is second line.' print(s) ###Output This is a string.\n This is second line. ###Markdown The _pattern_ contains the string pattern that we are trying to find. As a general practice we add a `r` character at the beginning of the string, that indicates that it is a raw string. While in the above example, the pattern is just a literal string, in general it can be much more flexible and will be referred to as a __regular expression__ or a __regex__.> Both strings and regular expressions often contain the _backslash_ (`\`) character to indicate special treatment of a character. For example, one can denote a new line character using `\n`. By using a _raw string_, we are telling the `re` module to not process the backslash in the pattern string before actually passing it to the function. ###Code print(r'Var\nun') ###Output _____no_output_____ ###Markdown The `match()` function returns a match object if the pattern is contained in the query string, and `None` otherwise. While here we are using it to just check if the query contains the pattern, we can use the same returned object (in case of a match) for more detailed output. More on this later. ###Code re_match(r'V','Chandola, Varun') ###Output Not a match!!! ###Markdown `Python` offers two different primitive operations based on regular expressions: `re.match()` checks for a match only at the beginning of the string, while `re.search()` checks for a match anywhere in the string ###Code def re_search(pattern,query): if re.search(pattern,query): print("A Match!!!") else: print("Not a match!!!") re_search(r'V','Chandola, Varun') re_search(r'@', '[email protected]') re_search(r'\d$','4I am 4 twenty four4') re_search(r'^.','9 am 4 twenty four') re_match(r'[^\w]','%%&*%*&%^*&%^') ###Output A Match!!! ###Markdown Wild Card Characters: Special CharactersSpecial characters are characters which do not match themselves as seen but actually have a special meaning when used in a regular expression.The most common wildcards are:Wild Card | Meaning | Effect----------|---------|-------------`.` | A period| Matches any single character except newline character.`\w`|Lowercase w| Matches any single letter, digit or underscore.`\W`|Uppercase w| Matches any character not part of \w (lowercase w).`\s`|Lowercase s| Matches a single whitespace character like: space, newline, tab, return.`\S`|Uppercase s| Matches any character not part of \s (lowercase s).`\t`|Lowercase t|Matches tab.`\n`|Lowercase n|Matches newline.`\r`|Lowercase r|Matches return.`\d`|Lowercase d|Matches decimal digit 0-9.`^` |Caret| Matches a pattern at the start of the string.`$`|Dollar|Matches a pattern at the end of string.`[abc]`| Or|Matches a or b or c.`[a-zA-Z0-9]`|Or|Matches any letter from (a to z) or (A to Z) or (0 to 9).`[^a]`|Else|Matches any number except for `a``\A`|Uppercase letter|Matches only at the start of the string.`\b`|Lowercase letter|Matches only the beginning or end of the word.`\`|Backslash|If the character following the backslash is a recognized escape character, then the special meaning of the term is taken. For example, `\n` is considered as newline. However, if the character following the `\` is not a recognized escape character, then the `\` is treated like any other character and passed through ###Code re_search(r'.','Anything goes') re_search(r'\w','%@#@$##$') re_search(r'\w','[email protected]') re_search(r'\W','%@#@$##$') re_search(r'\W','vsdfscom') re_search(r'\s','Varun Chandola') re_search(r'\s','VarunChandola') re_search(r'\S','VarunChandola') re_search(r'\t','Varun\tChandola') re_search(r'\t','Varun Chandola') re_search(r'\d','716-232-2323') re_search(r'\d','[email protected]') ###Output _____no_output_____ ###Markdown Searching for patterns in the beginning or end using `^` and `$` ###Code re_search(r'^\d','4chan') re_search(r'^\d','whois4chan') re_search(r'^Var','Varun Chandola') re_search(r'^Var','I am Varun Chandola') re_search(r'\d$','chan4') re_search(r'\d$','whois4chan') re_search(r'ola$','Varun Chandola') re_search(r'ola$','I am Chandola, Varun') ###Output _____no_output_____ ###Markdown Searching for one of the possible patterns ###Code re_search(r'[VvCc]','Varun') re_search(r'[VvCc]','varun') re_search(r'[VvCc]','Chandola') re_search(r'[VvCc]','James Bond') ###Output A Match!!! A Match!!! A Match!!! Not a match!!! ###Markdown Specifying ranges ###Code re_search(r'[a-fA-F0-9]','a quick brown fox') re_search(r'[a-fA-F0-9]','Stump') re_search(r'[^a]','aaaaaa') re_search(r'[^a]','This contains aaaaa') ###Output Not a match!!! A Match!!! ###Markdown Now we can start combinging different wild cards to create more expressive regexes. ###Code re_search(r'[VvCc]','Name is Varun') re_search(r'^[VvCc]','I am Varun') ###Output _____no_output_____ ###Markdown RepetitionsFinding repetitive patterns is a necessity in regular expression matching. For example, you might be interested in checking if a string consists of only digits between 0 and 4. This can be handled using one of the following repetition special characters:Character|Effect---------|------`+`|Check for **one or more** characters to its left`*`|Checks for **zero or more** characters to its left`?`|Checks for **exactly zero or one character** to its left{x}|Checks for **exactly x times** repeat occurence of a character to its left{x,}|Checks for **at least x times** repeat occurence of a character to its left{x,y}|Checks for **at least x and not more than y times** repeat occurence of a character to its left ###Code re_search(r'Varun+Chandola','VarunChandola') re_search(r'Varun+Chandola','Varun Chandola') re_search(r'Varun+Chandola','VarunnnnnnnnChandola') re_search(r'Varun+Chandola','VaruChandola') re_search(r'Varun+Chandola','My name is VarunnnnnnChandola') re_search(r'\d+8{3}\d+','238882324532') '\s' re_search(r'Varun\s?Chandola','Varun Chandolaishere') re_search(r'Varun?Chandola','VarunnChandola is here') re_search(r'\d{10,11}','My number is 166454747') # a phone number matcher # (716) 645-4747 re_search(r'\(\d{3}\)\s\d{3}-\d{4}','716-645-4747') # a more relaxed phone number matcher regex = r'(\d{1}\s)?\(\d{3}\)\s\d{3}-\d{4}' re_search(regex,'1 (800) 444-4444') re_search(regex,'(716) 645-4747') re_search(regex,'1 800 645-4777') re_search(regex,' (800) 645-4777') regex = r'(ACGT)+' reout = re.search(regex,'uuuACGTACGTACGTACGTnnn') reout.group(1) ###Output _____no_output_____ ###Markdown GroupsWe have been using the `re.search` and `re.match` functions to check if a pattern exists in a string or not. However, we can do much more than that.For example, if we want to check for multiple patterns within a string, then we can use the _grouping_ feature of regular expressions. Let us consider a code to extract the various components of an email address:```[email protected]```We can divide a regex into individual parts using parentheses. Each part is known as a _group_. The `re.search` and `re.match` can then return the groups for us to further process. ###Code regex = r'.+@.+\..+' reout = re.search(regex,'[email protected]') print(reout.groups()) regex = r'(.+)@(.+)\.(.+)' reout = re.findall(regex,'[email protected] [email protected] [email protected]') #parts = reout.group(3) #print(type(parts)) #print(parts) reout reout.groups() reout.groups() ###Output _____no_output_____ ###Markdown You can also access the groups using the `group()` function. ###Code # this gives the whole matched text reout.group() reout.group(1) ###Output _____no_output_____ ###Markdown Greedy vs. non-greedy matching By default, the normal behavior of a wild card within a regular expression is to match the entire string. But sometimes, for several reasons, you might want to just match the first occurence. This can be done by adding a `?` qualifier (also known as the *non-greedy modifier*) after the wildcard part. ###Code heading = '<h1>TITLE</h1>' re.search(r'<.*>',heading).group() heading = '<h1>TITLE</h1>' re.search(r'<.*?>',heading).group() ###Output _____no_output_____ ###Markdown `re` moduleWe have already seen how `re.search()` and `re.match()` work in a vanilla form. But they offer much more. Additionally, the `re` module supports many more functionalities.- `re.search(pattern,string, flags=0)` - Scan through the given string/sequence looking for the first location where the regular expression produces a match. It returns a corresponding match object if found, else returns `None` if no position in the string matches the pattern.- `re.match(pattern,string, flags=0)` - Returns a corresponding match object if zero or more characters at the beginning of string match the pattern. Else it returns `None`, if the string does not match the given pattern.- `re.findall(pattern,string, flags=0)` - Finds all the possible matches in the entire sequence and returns them as a list of strings. Each returned string represents one match. ###Code text = '''<tag1>This is the body of the first tag</tag1> <tag2>This is the body of the second tag</tag2> <tag3>This is the body of the third tag</tag3> ''' reout = re.findall(r'(<.*>)(.*)(<.*>)',text) reout[0] strs = re.findall(r'<.*>',text) print(strs[0]) reout = re.search(r'(<.*>)(.*)(<.*>)',strs[0]) reout.group(2) ###Output <tag1>This is the body of the first tag</tag1> ###Markdown - `sub(pattern, repl, string, count=0, flags=0)`This is the substitute function. It returns the string obtained by replacing or substituting the leftmost non-overlapping occurrences of pattern in string by the replacement repl. If the pattern is not found then the string is returned unchanged. ###Code email_address = 'Please contact us at: [email protected]' new_email_address = re.sub(r'([\w\.-]+)@([\w\.-]+)', r'[email protected]', email_address) print(new_email_address) regex = 'very complicated pattern ' re.search(regex,'lsdfhslkdhfks') re.search(regex,'sdfnlskdhflkshdflk') pattern = re.compile(regex) pattern.search('slkdjflsdjfl') pattern.search('slkdjflsdjlf') pattern.search('pyoyoqijoioe') ###Output _____no_output_____ ###Markdown `re.compile()`Compiles a regular expression pattern into a regular expression object. When you need to use an expression several times in a single program, using the `compile()` function to save the resulting regular expression object for reuse is more efficient. This is because the compiled versions of the most recent patterns passed to `compile()` and the module-level matching functions are cached. ###Code regex = r'(.*)@(.*)\.(.*)' pattern = re.compile(regex) pattern.search('[email protected]').groups() pattern.search('[email protected]').groups() ###Output _____no_output_____ ###Markdown A small parsing exerciseExtract all URLs within an html page. ###Code f = open('people.html') txt = f.read() f.close() txt regex = r'<img.*src=(\".*\")>(.*)(</img>)' #regex = r'<a.*href=(\".*\")>(.*)(</a>)' pattern = re.compile(regex) res = pattern.findall(txt) for r in res: print(r[0]) ###Output "img/chandola.png" "img/suchismit.jpg" "img/ducthanh.jpg" "img/jialiang.png" "img/niyaziso.jpg" "img/arshad.jpg" "img/yanboguo.png" "img/unknown.jpg" ###Markdown An expression's behavior can be modified by specifying a flags value. You can add flag as an extra argument to the various functions. Some of the flags used are: IGNORECASE, DOTALL, MULTILINE, VERBOSE, etc. TuplesAnother immutable data structure that can be used to define an arbitrary sequence of objects ###Code t = (3,5,2.1,2.7,"yes",[3,2,4]) print(type(t)) # accessing elements is very similar to list print(t[0:2]) print(t[::-1]) # immutable del(t[2]) t[2] = 8 t = 4,3,5,2 print(type(t)) # you can modify a mutable object (such as a list) del(t[-1][0]) print(t) # direct assignment between two tuples a,b,c,d = 3,4,5,2 def func(a,b): return a+b,a-b,a*b,a/b sm,dif,prod,div = func(4,5) t = 1,2,3,4 print(type(t)) t[0] = 4 codes = [234,137,471,286] names = ['erie','ramsey','clinton','niagara'] # give me the name of the county with code 471 i = codes.index(471) print(names[i]) codenames = [(234,'erie'),(137,'ramsey')] ###Output _____no_output_____ ###Markdown DictionariesOnly built in data structure to create **maps**, a collection of `key-value` pairs.Dictionaries are:- Mutable- Unordered- Indexed (for fast lookups)Highly useful in almost every application, where quick access to different types of data is needed. ###Code # creating an empty dictionary d = {} print(type(d)) # creating a dictionary with values d = {'k1': 6, 'k2': 8, 'k3':12, (4,4,3,2): {}} print(d) d['k6'] # accessing the value for a given key print(d['k1']) print(d.get('k1')) # get number of key value pairs in the dictionary len(d) # adding values to a dictionary d = {} d["k1"] = 6 d["k2"] = 8 d["k4"] = 9 d["k3"] = 12 d["k2"] = 19 print(d) keys = d.keys() tuple(keys) # accessing keys and values keys = d.keys() values = d.values() print(keys) print(values) l_keys = list(keys) print(l_keys) l_values = list(values) print(l_values) # iterating over dictionary for k in d.keys(): print(str(k)+": "+str(d[k])) # simultaneously iterating over keys and values for k,v in d.items(): print(str(k)+": "+str(v)) # checking for a key in dictionary print('k4' in d) print('k9' in d) # accessing non-existent key value a = d['k9'] # can use any immutable object as a key d[9] = 49 print(d) d[('n1',4,5)] = 56 print(d) # but not a mutable object d[[6,4,5]] = 63 # value can be of any type (mutable or immutable) d[7] = d print(d) ###Output {'k1': 6, 'k2': 19, 'k4': 9, 'k3': 12, 9: 49, ('n1', 4, 5): 56, 7: {...}} ###Markdown Hash Based IndexingPython dictionaries are implemented as a _hash table_. Each `key` is hashed using a hash-function (see `hash()` for a similar function in `Python`). The hash allows you to directly access the location containing the `value` in $O(1)$ time. ###Code # All immutables types are hashable print(hash(1)) print(hash('Varun')) print(hash(('varun','anynumber'))) print(hash(('Varun','anynumber'))) help(hash) # All mutable types are not print(hash(['varun',10])) ###Output _____no_output_____ ###Markdown The "hashability" property determines if a type maybe used as a `key` in a dictionary. Clearly, a mutable type cannot be used as a key because its hash value can change over the course of the program. Why use Dictionaries?_Example_: Consider an application that requires the geographical coordinates for a US County name. We will build two mini applications: one that relies on lists, and one that uses dictionaries **Solution 1** Using list of tuples ###Code import csv #we are going to use the csv module available in Python to read a csv file def listcreate(): # reading the csv file with county data data = [] # the open command uses the iso-8859-1 encoding instead of the usual utf-8 because the file contains accented characters f = open('./us_counties.csv',encoding='iso-8859-1') #with open('./us_counties.csv',encoding='utf-8') as f: reader = csv.reader(f) next(reader) # skip the header using the in-built function next which just skips one entry in an iterator for row in reader: #row will be a list consisting of all the tokens in a given row of the file name = row[3] lat = float(row[10]) lon = float(row[11]) data.append((name,lat,lon)) f.close() return data timeit listcreate() data = listcreate() ###Output _____no_output_____ ###Markdown Now let us say, we need the coordinates of a given county ###Code countyname = 'Ponce Municipio' # only way to find the coordinates will be to iterate through data for d in data: if d[0] == countyname: print(d) break ###Output ('Ponce Municipio', 18.001717, -66.606662) ###Markdown **Solution 1 (a)** Using separate lists ###Code def listcreate2(): # reading the csv file with county data names = [] coordinates = [] # the open command uses the iso-8859-1 encoding instead of the usual utf-8 because the file contains accented characters with open('./us_counties.csv',encoding='iso-8859-1') as f: #with open('./us_counties.csv',encoding='utf-8') as f: reader = csv.reader(f) next(reader) # skip the header using the in-built function next which just skips one entry in an iterator for row in reader: #row will be a list consisting of all the tokens in a given row of the file name = row[3] lat = float(row[10]) lon = float(row[11]) names.append(name) coordinates.append((lat,lon)) return names,coordinates names,coordinates = listcreate2() countyname = 'Ponce Municipio' i = names.index(countyname) print(coordinates[i]) ###Output (18.001717, -66.606662) ###Markdown **Solution 2** Using dictionary ###Code def dictcreate(): # reading the csv file with county data coordinateMap = {} #initializing an empty dictionary # the open command uses the iso-8859-1 encoding instead of the usual utf-8 because the file contains accented characters with open('./us_counties.csv',encoding='iso-8859-1') as f: #with open('./us_counties.csv',encoding='utf-8') as f: reader = csv.reader(f) next(reader) # skip the header using the in-built function next which just skips one entry in an iterator for row in reader: #row will be a list consisting of all the tokens in a given row of the file name = row[3] lat = float(row[10]) lon = float(row[11]) coordinateMap[name] = (lat,lon) return coordinateMap coordinateMap = dictcreate() countyname = 'Ponce Municipio' print(coordinateMap[countyname]) ###Output (18.001717, -66.606662) ###Markdown Which approach is better? Clearly solution 1 requires extra lines for accessing data. Solution 1a is shorter, however, requires two lookups, first the index of the name in the names list and then getting the corresponding coordinate entry.Which one is faster? Let us first investigate the creation of the data structures. ###Code timeit listcreate() timeit dictcreate() ###Output 6.95 ms ± 37.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) ###Markdown Both seem to be equal. In fact, creating lists might be faster than the dictionary. How about accessing? ###Code countyname = 'Ponce Municipio' def listaccess(names,coordinates,countyname): i = names.index(countyname) c = coordinates[i] return c timeit listaccess(names,coordinates,countyname) def dictaccess(coordinateMap,countyname): c = coordinateMap[countyname] return c timeit dictaccess(coordinateMap,countyname) ###Output 121 ns ± 2.06 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each) ###Markdown Aha! It appears that using a `dict` is much better than using `list` in terms of accessing relevant values Space requirementOf course, another issue is the space needed to store each of the representations in the memory. Clearly, the `dict` data structure would be larger as it requires storing the hash values as well as the original data. ###Code import sys print(sys.getsizeof(coordinateMap)) print(sys.getsizeof(coordinates)+sys.getsizeof(names)) ###Output 73824 53472 ###Markdown Note on order of keysThe keys are unordered collections. Which means that when you iterate over them, you might not get the same order as how they were added to the dictionary. This is differen from a `list`.You can use the inbuilt function `sorted()` to sort the keys. ###Code d = {'key1': -9, 'key2': 'value2','key0': 'value0','key9': 2,'key7': 'value7'} for k in d.keys(): print(k+":"+str(d[k])) for k in sorted(d.keys()): print(k+":"+str(d[k])) ###Output key0:value0 key1:-9 key2:value2 key7:value7 key9:2 ###Markdown Sets`Set` is an unordered collection with no duplicate elements. Basic uses include membership testing and eliminating duplicate entries. Set objects also support mathematical operations like union, intersection, difference, and symmetric difference.Curly braces or the `set()` function can be used to create sets. Note: to create an empty set you have to use set(), not {}; the latter creates an empty dictionary. ###Code s = set({3,5,6,3,'sdf'}) print(type(s)) print(s) s = set({}) print(s) s = set({4,5}) print(type(s)) print(s) s = {4,5} print(type(s)) print(s) ###Output _____no_output_____ ###Markdown You can convert any other Python collection to set using the `set()` function. ###Code s = set([3,6,2,1,3,45,6,3,2,1]) print(type(s)) print(s) s = set({'s':1,'t':2}) print(type(s)) print(s) s = set((4,3,'f')) print(type(s)) print(s) s1 = set(['apples','oranges','bananas']) s2 = set(['pineapples','avocados','mangoes','apples','bananas']) print(list(s1.intersection(s2))) print(s1.union(s2)) print(s1.difference(s2)) ###Output _____no_output_____
notebooks/ImagePatches.ipynb
###Markdown Image PatchesIn this module, we will explore the topology of different collections of image patches capturing line segments, which, as we will show using persistent homology and projective coordinates, concentrate on the projective plane $RP^2$. Each image patch is a square $d \times d$ region of pixels. Each pixel can be thought of as a dimension, so each patch lives in $\mathbb{R}^{d \times d}$, and a collection of patches can be thought of as a Euclidean point cloud in $\mathbb{R}^{d \times d}$First, we perform all of the necessary library imports. ###Code import numpy as np %matplotlib notebook import matplotlib.pyplot as plt from matplotlib.offsetbox import OffsetImage, AnnotationBbox from ripser import ripser from persim import plot_diagrams as plot_dgms from dreimac import ProjectiveCoords, get_stereo_proj_codim1 import warnings warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown We now define a few functions which will help us to sample patches from an image and to plot a collection of patches ###Code def getPatches(I, dim): """ Given an image I, return all of the dim x dim patches in I :param I: An M x N image :param d: The dimension of the square patches :returns P: An (M-d+1)x(N-d+1)x(d^2) array of all patches """ #http://stackoverflow.com/questions/13682604/slicing-a-numpy-image-array-into-blocks shape = np.array(I.shape*2) strides = np.array(I.strides*2) W = np.asarray(dim) shape[I.ndim:] = W shape[:I.ndim] -= W - 1 if np.any(shape < 1): raise ValueError('Window size %i is too large for image'%dim) P = np.lib.stride_tricks.as_strided(I, shape=shape, strides=strides) P = np.reshape(P, [P.shape[0]*P.shape[1], dim*dim]) return P def imscatter(X, P, dim, zoom=1): """ Plot patches in specified locations in R2 Parameters ---------- X : ndarray (N, 2) The positions of each patch in R2 P : ndarray (N, dim*dim) An array of all of the patches dim : int The dimension of each patch """ #https://stackoverflow.com/questions/22566284/matplotlib-how-to-plot-images-instead-of-points ax = plt.gca() for i in range(P.shape[0]): patch = np.reshape(P[i, :], (dim, dim)) x, y = X[i, :] im = OffsetImage(patch, zoom=zoom, cmap = 'gray') ab = AnnotationBbox(im, (x, y), xycoords='data', frameon=False) ax.add_artist(ab) ax.update_datalim(X) ax.autoscale() ax.set_xticks([]) ax.set_yticks([]) def plotPatches(P, zoom = 1): """ Plot patches in a best fitting rectangular grid """ N = P.shape[0] d = int(np.sqrt(P.shape[1])) dgrid = int(np.ceil(np.sqrt(N))) ex = np.arange(dgrid) x, y = np.meshgrid(ex, ex) X = np.zeros((N, 2)) X[:, 0] = x.flatten()[0:N] X[:, 1] = y.flatten()[0:N] imscatter(X, P, d, zoom) ###Output _____no_output_____ ###Markdown Finally, we add a furthest points subsampling function which will help us to subsample image patches when displaying them ###Code def getCSM(X, Y): """ Return the Euclidean cross-similarity matrix between the M points in the Mxd matrix X and the N points in the Nxd matrix Y. :param X: An Mxd matrix holding the coordinates of M points :param Y: An Nxd matrix holding the coordinates of N points :return D: An MxN Euclidean cross-similarity matrix """ C = np.sum(X**2, 1)[:, None] + np.sum(Y**2, 1)[None, :] - 2*X.dot(Y.T) C[C < 0] = 0 return np.sqrt(C) def getGreedyPerm(X, M, Verbose = False): """ Purpose: Naive O(NM) algorithm to do the greedy permutation :param X: Nxd array of Euclidean points :param M: Number of points in returned permutation :returns: (permutation (N-length array of indices), \ lambdas (N-length array of insertion radii)) """ #By default, takes the first point in the list to be the #first point in the permutation, but could be random perm = np.zeros(M, dtype=np.int64) lambdas = np.zeros(M) ds = getCSM(X[0, :][None, :], X).flatten() for i in range(1, M): idx = np.argmax(ds) perm[i] = idx lambdas[i] = ds[idx] ds = np.minimum(ds, getCSM(X[idx, :][None, :], X).flatten()) if Verbose: interval = int(0.05*M) if i%interval == 0: print("Greedy perm %i%s done..."%(int(100.0*i/float(M)), "%")) Y = X[perm, :] return {'Y':Y, 'perm':perm, 'lambdas':lambdas} ###Output _____no_output_____ ###Markdown Oriented Line SegmentsWe now examine the collection of patches which hold oriented, slightly blurry line segments that are varying distances from the center of the patch. First, let's start by setting up the patches. Below, the "dim" variable sets the patch resolution, and the "sigma" variable sets the blurriness (a larger sigma means blurrier line segments). ###Code def getLinePatches(dim, NAngles, NOffsets, sigma): """ Sample a set of line segments, as witnessed by square patches Parameters ---------- dim: int Patches will be dim x dim NAngles: int Number of angles to sweep between 0 and pi NOffsets: int Number of offsets to sweep from the origin to the edge of the patch sigma: float The blur parameter. Higher sigma is more blur """ N = NAngles*NOffsets P = np.zeros((N, dim*dim)) thetas = np.linspace(0, np.pi, NAngles+1)[0:NAngles] #ps = np.linspace(-0.5*np.sqrt(2), 0.5*np.sqrt(2), NOffsets) ps = np.linspace(-1, 1, NOffsets) idx = 0 [Y, X] = np.meshgrid(np.linspace(-0.5, 0.5, dim), np.linspace(-0.5, 0.5, dim)) for i in range(NAngles): c = np.cos(thetas[i]) s = np.sin(thetas[i]) for j in range(NOffsets): patch = X*c + Y*s + ps[j] patch = np.exp(-patch**2/sigma**2) P[idx, :] = patch.flatten() idx += 1 return P P = getLinePatches(dim=10, NAngles = 16, NOffsets = 16, sigma=0.25) plt.figure(figsize=(8, 8)) plotPatches(P, zoom=2) ax = plt.gca() ax.set_facecolor((0.7, 0.7, 0.7)) plt.show() ###Output _____no_output_____ ###Markdown Now let's compute persistence diagrams for this collection of patches. This time, we will compute with both $\mathbb{Z}/2$ coefficients and $\mathbb{Z}/3$ coefficients up to H2. ###Code dgmsz2 = ripser(P, coeff=2, maxdim=2)['dgms'] dgmsz3 = ripser(P, coeff=3, maxdim=2)['dgms'] plt.figure(figsize=(8, 4)) plt.subplot(121) plot_dgms(dgmsz2) plt.title("$\mathbb{Z}/2$") plt.subplot(122) plot_dgms(dgmsz3) plt.title("$\mathbb{Z}/3$") plt.show() ###Output _____no_output_____ ###Markdown Notice how there is one higher persistence dot both for H1 and H2, which both go away when switching to $\mathbb{Z} / 3\mathbb{Z}$. This is the signature of the projective plane! To verify this, we will now look at these patches using "projective coordinates" (finding a map to $RP^2$). ###Code def plotProjBoundary(): t = np.linspace(0, 2*np.pi, 200) plt.plot(np.cos(t), np.sin(t), 'c') plt.axis('equal') ax = plt.gca() ax.arrow(-0.1, 1, 0.001, 0, head_width = 0.15, head_length = 0.2, fc = 'c', ec = 'c', width = 0) ax.arrow(0.1, -1, -0.001, 0, head_width = 0.15, head_length = 0.2, fc = 'c', ec = 'c', width = 0) ax.set_facecolor((0.35, 0.35, 0.35)) P = getLinePatches(dim=10, NAngles = 200, NOffsets = 200, sigma=0.25) proj = ProjectiveCoords(P, n_landmarks=100) h1 = proj.dgms_[1] # Find the index with greatest persistence in H1 and use # the cocycle corresponding to that idx = np.argmax(h1[:, 1]-h1[:, 0]) print("Max persistence index {}, peristence {}".format(idx, h1[idx, 1]-h1[idx, 0])) res = proj.get_coordinates(proj_dim=2, perc=0.9, cocycle_idx=[idx]) X = res['X'] idx = getGreedyPerm(X, 400)['perm'] SFinal = get_stereo_proj_codim1(X[idx, :]) P = P[idx, :] plt.figure(figsize=(8, 8)) imscatter(SFinal, P, 10) plotProjBoundary() plt.show() ###Output Max persistence index 0, peristence 2.4123587608337402
Seaborn Study/sources/6 热图HEATMAPPLOT.ipynb
###Markdown 6 热图Heatmapplot热图是指通过将矩阵单个的值表示为颜色的图形表示。热力图显示数值数据的一般视图非常有用,制作热图很简单,且不需要提取特定数据点。在seaborn中使用heatmap函数绘制热力图,此外我们也使用clustermap函数绘制树状图与热图。该章节主要内容有:1. 基础热图绘制 Basic Heatmap plot2. 热图外观设定 Customize seaborn heatmap3. 热图上使用标准化 Use normalization on heatmap4. 树状图与热图 Dendrogram with heatmap ###Code # library 导入库 import seaborn as sns import pandas as pd import numpy as np # jupyter notebook显示多行输出 from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = 'all' ###Output _____no_output_____ ###Markdown 1. 基础热图绘制 Basic Heatmap plot+ 普通热图 Basic Heatmap+ 相关矩阵热图 Correlation matrix+ 相关矩阵半热图 an half heatmap of correlation matrix+ 多数据热力图制作 Basic Heatmap of long format data ###Code # 普通热图 Basic Heatmap # Create a dataset (fake) 制作5行5列的矩阵 df = pd.DataFrame(np.random.random((5,5)), columns=["a","b","c","d","e"]) # 显示数据 df # Default heatmap: just a visualization of this square matrix 默认热力图 p1 = sns.heatmap(df) # 相关矩阵热图 Correlation matrix # 一个常见的任务是检查某些变量是否相关可以轻松计算每对变量之间的相关性,并将其绘制为热图,发现哪个变量彼此相关。 # Create a dataset (fake) 创建数据 df = pd.DataFrame(np.random.random((100,5)), columns=["a","b","c","d","e"]) df.head() # Calculate correlation between each pair of variable 计算相关系数 corr_matrix=df.corr() # 显示相关系数结果 corr_matrix # plot it 绘图 cmap设定颜色版 sns.heatmap(corr_matrix, cmap='PuOr') # 相关矩阵半热图 an half heatmap of correlation matrix # Create a dataset (fake) 建立数据 df = pd.DataFrame(np.random.random((100,5)), columns=["a","b","c","d","e"]) # Calculate correlation between each pair of variable 计算相关系数 corr_matrix=df.corr() # Can be great to plot only a half matrix 创建一个corr_matrix等大的O矩阵 mask = np.zeros_like(corr_matrix) # np.triu_indices_from(mask)返回矩阵上三角形的索引 indices=np.triu_indices_from(mask) # 显示索引结果 indices mask[np.triu_indices_from(mask)] = True with sns.axes_style("white"): # mask设置具有缺失值的单元格将自动被屏蔽;square使每个单元格为正方形 p2 = sns.heatmap(corr_matrix, mask=mask, square=True) # 多数据热力图制作 Basic Heatmap of long format data # 创建两个函数列表 people=np.repeat(("A","B","C","D","E"),5) feature=list(range(1,6))*5 value=np.random.random(25) # 创建表格 df=pd.DataFrame({'feature': feature, 'people': people, 'value': value }) # plot it 创建透视表 df_wide=df.pivot_table( index='people', columns='feature', values='value' ) p2=sns.heatmap( df_wide, square=True) ###Output _____no_output_____ ###Markdown 2. 热图外观设定 Customize seaborn heatmap+ 单元格值的显示 Annotate each cell with value+ 自定义网格线 Custom grid lines+ 轴的显示 Remove X or Y labels+ 标签隐藏 Hide a few axis labels to avoid overlapping+ 颜色条坐标显示范围设置 Coordinate range setting of color bar ###Code # Create a dataset (fake) df = pd.DataFrame(np.random.random((10,10)), columns=["a","b","c","d","e","f","g","h","i","j"]) # annot_kws设置各个单元格中的值,size设定大小 sns.heatmap(df, annot=True, annot_kws={"size": 7}); # 自定义网格线 Custom grid lines sns.heatmap(df, linewidths=2, linecolor='yellow'); # 轴的显示 Remove X or Y labels # 由xticklables和yticklabels控制坐标轴,cbar控制颜色条的显示 sns.heatmap(df, yticklabels=False, cbar=False); # 标签隐藏 Hide a few axis labels to avoid overlapping # xticklabels表示标签index为该值倍数时显示 sns.heatmap(df, xticklabels=3); # 颜色条坐标显示范围设置 Coordinate range setting of color bar sns.heatmap(df, vmin=0, vmax=0.5); ###Output _____no_output_____ ###Markdown 3. 热图上使用标准化 Use normalization on heatmap+ 列的规范化 Column normalization+ 行的规范化 Row normalization ###Code # 列的规范化 Column normalization # 有时矩阵某一列值远远高于其他列的值,导致整体热图各点颜色趋于两级,需要对列的数据进行规范化的 # Create a dataframe where the average value of the second column is higher: df = pd.DataFrame(np.random.randn(10,10) * 4 + 3) # 使得第一列数据明显大于其他列 df[1]=df[1]+40 # If we do a heatmap, we just observe that a column as higher values than others: 没有规范化的热力图 sns.heatmap(df, cmap='viridis'); # Now if we normalize it by column 规范化列 df_norm_col=(df-df.mean())/df.std() sns.heatmap(df_norm_col, cmap='viridis'); # 行的规范化 Row normalization # 列的规范化相同的原理适用于行规范化。 # Create a dataframe where the average value of the second row is higher df = pd.DataFrame(np.random.randn(10,10) * 4 + 3) df.iloc[2]=df.iloc[2]+40 # If we do a heatmap, we just observe that a row has higher values than others: 第2行的数据明显大于其他行 sns.heatmap(df, cmap='viridis'); # 1: substract mean 行的规范化 df_norm_row=df.sub(df.mean(axis=1), axis=0) # 2: divide by standard dev df_norm_row=df_norm_row.div( df.std(axis=1), axis=0 ) # And see the result sns.heatmap(df_norm_row, cmap='viridis'); ###Output _____no_output_____ ###Markdown 4. 树状图与热图 Dendrogram with heatmap+ 基础树状图与热图绘制 Dendrogram with heat map and coloured leaves+ 树形图与热图规范化 normalize of Dendrogram with heatmap+ 树形图与热图距离参数设定 distance of Dendrogram with + 树形图与热图聚类方法参数设定 cluster method of Dendrogram with heatmap+ 图像颜色设定 Change color palette + 离群值设置 outliers set 树状图就是层次聚类的表现形式。层次聚类的合并算法通过计算两类数据点间的相似性,对所有数据点中最为相似的两个数据点进行组合,并反复迭代这一过程。简单的说层次聚类的合并算法是通过计算每一个类别的数据点与所有数据点之间的距离来确定它们之间的相似性,距离越小,相似度越高。并将距离最近的两个数据点或类别进行组合,生成聚类树。在树状图中通过线条连接表示两类数据的距离。 ###Code # 基础树状图与热图绘制 Dendrogram with heat map and coloured leaves from matplotlib import pyplot as plt import pandas as pd # 使用mtcars数据集,通过一些数字变量提供几辆汽车的性能参数。 # Data set mtcars数据集 下载 url = 'https://python-graph-gallery.com/wp-content/uploads/mtcars.csv' df = pd.read_csv(url) df = df.set_index('model') # 横轴为汽车性能参数,纵轴为汽车型号 df.head() # Prepare a vector of color mapped to the 'cyl' column # 设定发动机汽缸数6,4,,8指示不同的颜色 my_palette = dict(zip(df.cyl.unique(), ["orange","yellow","brown"])) my_palette # 列出不同汽车的发动机汽缸数 row_colors = df.cyl.map(my_palette) row_colors # metric数据度量方法, method计算聚类的方法 # standard_scale标准维度(0:行或1:列即每行或每列的含义,减去最小值并将每个维度除以其最大值) sns.clustermap(df, metric="correlation", method="single", cmap="Blues", standard_scale=1, row_colors=row_colors) # 树形图与热图规范化 normalize of Dendrogram with heatmap # Standardize or Normalize every column in the figure # Standardize 标准化 sns.clustermap(df, standard_scale=1) # Normalize 正则化 sns.clustermap(df, z_score=1) # 树形图与热图距离参数设定 distance of Dendrogram with heatmap # 相似性 sns.clustermap(df, metric="correlation", standard_scale=1) # 欧几里得距离 sns.clustermap(df, metric="euclidean", standard_scale=1) # 树形图与热图聚类方法参数设定 cluster method of Dendrogram with heatmap # single-linkage算法 sns.clustermap(df, metric="euclidean", standard_scale=1, method="single") # 聚类分析法ward,推荐使用 sns.clustermap(df, metric="euclidean", standard_scale=1, method="ward") # 图像颜色设定 Change color palette sns.clustermap(df, metric="euclidean", standard_scale=1, method="ward", cmap="mako") sns.clustermap(df, metric="euclidean", standard_scale=1, method="ward", cmap="viridis") # 离群值设置 outliers set # Ignore outliers # Let's create an outlier in the dataset, 添加离群值 df.iloc[15,5] = 1000 # use the outlier detection 计算时忽略离群值 sns.clustermap(df, robust=True) # do not use it 不忽略离群值 sns.clustermap(df, robust=False) ###Output _____no_output_____
src/Feature Engineering.ipynb
###Markdown Power of Feature EngineeringCompare the performance of logistic regression to a DNN Classifier on a non-linear dataset. This is to show that similar accuracy, to the DNN, can be acheived by using logistic regression with transformations of the data. Prepare Data ###Code import numpy as np import pandas as pd n_points = 2000 age = np.round(np.linspace(18,60,n_points),2) #age of employee np.random.shuffle(age) performance = np.linspace(-10,10,n_points) #performance score of employee np.random.shuffle(performance) noise = np.random.randn(n_points) g = (0.5 * age) +2*(performance) + age**2 + 1000*age/performance -10000 + 1000*noise y = [1 if y>=0 else 0 for y in g] data = pd.DataFrame(data={'age':age,'performance':performance,'y':y}) print(sum(y)) data.head() #data.to_csv('/Users/conorosully/Documents/git/deep-learning/data/performance.csv') data = pd.read_csv('/Users/conorosully/Documents/git/deep-learning/data/performance.csv') sum(data['y']) import matplotlib.pyplot as plt %matplotlib inline plt.subplots(nrows=1, ncols=1,figsize=(15,10)) plt.scatter('age','performance',c='#ff2121',s=50,edgecolors='#000000',data=data[data.y == 1]) plt.scatter('age','performance',c='#2176ff',s=50,edgecolors='#000000',data=data[data.y == 0]) plt.ylabel("Performance Score",size=20) plt.xlabel('Age',size=20) plt.yticks(size=12) plt.xticks(size=12) plt.legend(['Promoted','Not Promoted'],loc =2,prop={"size":20}) plt.savefig('/Users/conorosully/Documents/git/deep-learning/figures/article_feature_eng/figure1.png',format='png') ###Output _____no_output_____ ###Markdown Logistic Regression ###Code from sklearn.model_selection import train_test_split import sklearn.metrics as metric import statsmodels.api as sm x = data[['age','performance']] y = data['y'] x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3, random_state = 101) model = sm.Logit(y_train,x_train).fit() #fit logistic regression model predictions = np.around(model.predict(x_test)) accuracy = metric.accuracy_score(y_test,predictions) print(round(accuracy*100,2)) n_points = 1000000 #use many point to visualise decision boundry age_db = np.linspace(18,60,n_points) np.random.shuffle(age_db) performance_db= np.linspace(-10,10,n_points) np.random.shuffle(performance_db) data_db = pd.DataFrame({'age':age_db,'performance':performance_db}) #make predictions on the decision boundry points predictions = model.predict(data_db) y_db = [round(p) for p in predictions] data_db['y'] = y_db fig, ax = plt.subplots( nrows=1, ncols=1,figsize=(15,10)) #Plot decision boundry plt.scatter('age','performance',c='#ffbdbd',s=1,data=data_db[data_db.y == 1]) plt.scatter('age','performance',c='#b0c4ff',s=1,data=data_db[data_db.y == 0]) #Plot employee data points plt.scatter('age','performance',c='#ff2121',s=50,edgecolors='#000000',data=data[data.y == 1]) plt.scatter('age','performance',c='#2176ff',s=50,edgecolors='#000000',data=data[data.y == 0]) plt.ylabel("Performance Score",size=20) plt.xlabel('Age',size=20) plt.yticks(size=12) plt.xticks(size=12) plt.savefig('/Users/conorosully/Documents/git/deep-learning/figures/article_feature_eng/figure2.png',format='png') ###Output _____no_output_____ ###Markdown Add transformations and interactions ###Code data['age_sqrd'] = age**2 data['age_perf_ratio'] = age/performance x = data[['age','performance','age_sqrd','age_perf_ratio']] y = data['y'] x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3, random_state = 101) model = sm.Logit(y_train,x_train).fit(disp=0) #fit new logistic regression model predictions = np.around(model.predict(x_test)) accuracy_score(y_test,predictions) #Update decision boundry points data_db.drop('y',axis=1,inplace=True) data_db['age_sqrd'] = data_db['age']**2 data_db['age_perf_ratio'] = data_db['age']/data_db['performance'] #make predictions on the decision boundry points predictions = model.predict(data_db) y_db = [round(p) for p in predictions] data_db['y'] = y_db fig, ax = plt.subplots( nrows=1, ncols=1,figsize=(15,10)) #Plot decision boundry plt.scatter('age','performance',c='#ffbdbd',s=1,data=data_db[data_db.y == 1]) plt.scatter('age','performance',c='#b0c4ff',s=1,data=data_db[data_db.y == 0]) #Plot employee data points plt.scatter('age','performance',c='#ff2121',s=50,edgecolors='#000000',data=data[data.y == 1]) plt.scatter('age','performance',c='#2176ff',s=50,edgecolors='#000000',data=data[data.y == 0]) plt.ylabel("Performance Score",size=20) plt.xlabel('Age',size=20) plt.yticks(size=12) plt.xticks(size=12) plt.savefig('/Users/conorosully/Documents/git/deep-learning/figures/article_feature_eng/figureFinal.png',format='png') ###Output _____no_output_____ ###Markdown DNN Classifier ###Code x = data[['age','performance']] y = data['y'] x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3, random_state = 101) from keras.models import Sequential from keras.layers import Dense model = Sequential() model.add(Dense(12, input_dim=2, activation='relu')) model.add(Dense(8, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(x_train, y_train, epochs=100, batch_size=10) #fit ANN accuracy = model.evaluate(x_test, y_test) print(round(accuracy[1]*100,2)) #make predictions on the decision boundry points predictions = model.predict(data_db[['age','performance']]) y_db = np.around(predictions ) data_db['y'] = y_db fig, ax = plt.subplots( nrows=1, ncols=1,figsize=(15,10)) #Plot decision boundry plt.scatter('age','performance',c='#ffbdbd',s=1,data=data_db[data_db.y == 1]) plt.scatter('age','performance',c='#b0c4ff',s=1,data=data_db[data_db.y == 0]) #Plot employee data points plt.scatter('age','performance',c='#ff2121',s=50,edgecolors='#000000',data=data[data.y == 1]) plt.scatter('age','performance',c='#2176ff',s=50,edgecolors='#000000',data=data[data.y == 0]) plt.ylabel("Performance Score",size=20) plt.xlabel('Age',size=20) plt.yticks(size=12) plt.xticks(size=12) plt.savefig('/Users/conorosully/Documents/git/deep-learning/figures/article_feature_eng/figure_ann.png',format='png') ###Output _____no_output_____
Data/Code/genre_split_test.ipynb
###Markdown Data cleaning: IMDB- title.crewThe following codes merges director names in imdb.name.basics and director ids in imdb.title.crew Name of clean datasets: "df_directors_wide" and "df_directors_long" ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline ###Output _____no_output_____ ###Markdown Step 1: Clearning imdb.title.crew ###Code # Read original data df_title_crew = pd.read_csv('Data/zippedData/imdb.title.crew.csv.gz') df_title_crew.info() df_title_crew.sample(5) # Make a copy of the original dataset df_crew= df_title_crew.copy() # Delete 'writers' df_crew.drop(['writers'], axis=1, inplace=True) # Drop missing values in 'directors' df_crew.dropna(axis=0, subset=['directors'], inplace=True) # Drop duplicate in 'tconst', film id df_crew.drop_duplicates(subset='tconst', inplace=True) df_crew.head() # Count how many directors in each cell. # Create a new data frame with split directors columns directors = df_crew['directors'].str.split(',', expand =True) directors.info() # Most films has only one or two directors. # For this project, drop films with 4 or more directors # Drop films with 4 or more directors # Step 1 - split directors into director1, director2, director3, director4 # 'director4' has 4th and above directors df_crew[['director1', 'director2', 'director3', 'director4']] = df_crew['directors'].str.split(',', n=3, expand =True) # Step 2 - drop rows which 'director4' is not null. df_crew.dropna(axis=0, subset=['director4']) # Step 3 - drop 'directors' and 'director4' columns. df_crew.drop(['directors', 'director4'], axis=1, inplace=True) df_crew.sample(20) ###Output _____no_output_____ ###Markdown Step 2: Clearning imdb.name.basics ###Code df_name = pd.read_csv('Data/zippedData/imdb.name.basics.csv.gz') df_name.info() df_name.sample(5) # Keep 'nconst', 'primary_name' df_name2 = df_name[['nconst', 'primary_name' ]] df_name2 ###Output _____no_output_____ ###Markdown Step 3: Merge director ids (in df_crew) and director names (in df_name2) ###Code # Merge names of directors for director1, and rename it director_name1 df_merge1 = df_crew.merge(df_name2, how='left', left_on='director1', right_on='nconst' ) # Rename df_merge1.rename(columns={'primary_name':'director_name1'}, inplace=True) # drop keys df_merge1.drop(axis=1, columns='nconst', inplace=True) df_merge1.head(2) # Merge names of directors for director2, and rename it director_name2 df_merge2 = df_merge1.merge(df_name2, how='left', left_on='director2', right_on='nconst' ) # Rename df_merge2.rename(columns={'primary_name':'director_name2'}, inplace=True) # drop keys df_merge2.drop(axis=1, columns='nconst', inplace=True) df_merge2.head(2) # Merge names of directors for director3, and rename it director_name3 df_merge3 = df_merge2.merge(df_name2, how='left', left_on='director2', right_on='nconst' ) # Rename df_merge3.rename(columns={'primary_name':'director_name3'}, inplace=True) # drop keys df_merge3.drop(axis=1, columns='nconst', inplace=True) df_merge3.head(2) ###Output _____no_output_____ ###Markdown Clean dataset in a wide format ###Code df_directors_wide = df_merge3 df_directors_wide.head(3) ###Output _____no_output_____ ###Markdown Reshape from wide to long format ###Code ## reshape wide to long format df_directors_long = pd.wide_to_long(df_directors_wide, ["director", "director_name"], i='tconst', j='n_th_director' ) # Drop NaN in 'director' df_directors_long.dropna(axis=0, subset=['director'], inplace=True) df_directors_long.reset_index(inplace=True) # Delete 'n_th_director' df_directors_long.drop('n_th_director', axis=1, inplace=True) ###Output _____no_output_____ ###Markdown Clean dataset in a long format ###Code df_directors_long.head() #number of films shot by directors df_directors_long['director_name'].value_counts()[:20] ###Output _____no_output_____ ###Markdown Merging mdb.title.ratings ###Code df_title_rating = pd.read_csv('Data/zippedData/imdb.title.ratings.csv.gz') df_title_rating.info() # drop 'numvotes' df_title_rating.drop(axis=1, columns = 'numvotes', inplace=True) # Merge imdb.title.ratings and emiko's df_directors_wide df_directors_ratings = df_title_rating.merge(df_directors_wide, how='inner', on='tconst' ) df_directors_ratings.head(3) ###Output _____no_output_____ ###Markdown Merge Piotr data to df_directors_ratings ###Code df_title_basic = pd.read_csv('Data/zippedData/imdb.title.basics.csv.gz') df_title_basic.info() df_title_basic df_title_basic.dropna(inplace = True) df_title_basic df_year = df_title_basic[df_title_basic["start_year"] >= 2010] df_year = df_title_basic[df_title_basic["start_year"] <= 2021] df_year["start_year"].value_counts() df_year.drop("primary_title", axis=1, inplace=True) df_year # Merge piotr's df_year and emiko's df_directors_wide df_imdb = df_year.merge(df_directors_ratings, how='inner', on='tconst' ) df_imdb.head() df_imdb.info() df_num = pd.read_csv('Data/zippedData/tn.movie_budgets.csv.gz') df_num.info() def data_cleaning_money(column_name): df_num[column_name] = df_num[column_name].str.replace('$', '').str.replace(',', '').astype(float) data_cleaning_money('production_budget') data_cleaning_money('domestic_gross') data_cleaning_money('worldwide_gross') df_num['release_date'] = pd.to_datetime(df_num['release_date']) df_num_cleaned = df_num.drop(columns = 'id') df_num_good = df_num_cleaned[df_num_cleaned['domestic_gross'] != 0.0] df_num_good = df_num_good[df_num_good['worldwide_gross'] != 0.0] df_num_good = df_num_good[df_num_good['production_budget'] != 0.0] df_num_good = df_num_good[df_num_good['domestic_gross'] != df_num_good['worldwide_gross']] df_num_good['ROI'] = (df_num_good['worldwide_gross'] - df_num_good['production_budget']) / df_num_good['production_budget'] df_num_final = df_num_good.sort_values(by = 'ROI', ascending = False) df_num_final.drop(df_num_final[df_num_final['release_date'] < pd.Timestamp(2010, 1, 1)].index, inplace = True) df_num_final['profit'] = (df_num_final['worldwide_gross'] - df_num_final['production_budget']) df_num_final['month'] = df_num_final['release_date'].dt.month df_num_final df_merge = df_num_final.merge(df_imdb, how = 'inner', left_on = 'movie', right_on = 'original_title') df_merge df_merge.drop('original_title', axis = 1, inplace = True) df_dubplicates = df_merge[df_merge.duplicated('movie')] df_dubplicates df_merge.drop_duplicates(subset = ['movie'], inplace = True) df.assign(Book=df.Book.str.split(",")) df_split = df_merge.assign(Genre = df_merge.genres.str.split(',')).explode('Genre') df_split.head() df_split df_genre_test = df_split.groupby(by='Genre').count().reset_index() df_genre_test df_genre_test.plot.bar(x='Genre', y='ROI', figsize=(10,5), fontsize=12, legend=False) plt.title('ROI by Genre', fontsize=20) plt.xlabel('Genre', fontsize=16) plt.ylabel('ROI (mean)', fontsize=16) df_merge['genres'].value_counts()[:20] df_merge.drop('director1', axis = 1, inplace = True) df_merge.drop('director2', axis = 1, inplace = True) df_merge.drop('director3', axis = 1, inplace = True) df_merge.drop('tconst', axis = 1, inplace = True) # Step 1 - split genres into genre1 and genre2. df_merge[['genre1', 'genre2']] = df_merge['genres'].str.split(',', n=1, expand =True) df_merge.head() df_merge.drop('genres', axis=1, inplace=True) import datetime import calendar datetime.datetime.now() df_merge['month_name'] = df_merge['month'].apply(lambda x: calendar.month_name[x]) df_merge.head() df_merge['month'].value_counts() df_test = df_merge.groupby(by='genre1').mean() df_test df_test.reset_index(inplace=True) fig_genre_budget, ax = plt.subplots() plt.bar(df_test['genre1'], df_test['production_budget']) plt.xticks(rotation = 90); df_test.plot.scatter('genre1' , 'profit') df_merge.groupby(by='month').mean().reset_index() df_merge_month = df_merge.groupby(by='month_name').mean().reset_index() df_merge_month = df_merge_month.sort_values(by = 'month') df_merge_month fig_month, ax = plt.subplots(figsize = (10,5)) import seaborn as sns sns.set_style('darkgrid') ax.bar(df_merge_month['month_name'], df_merge_month['ROI']) plt.xticks(rotation = 90); plt.title('Seasonality') plt.xlabel('Release Month') plt.ylabel('Average ROI') plt.savefig('Images/Seasonality.png', bbox_inches = 'tight'); df_merge.head() fig_runtime, ax = plt.subplots() sns.set_style('darkgrid') ax.scatter(df_merge['runtime_minutes'], df_merge['ROI']) df_merge.sort_values(by = 'worldwide_gross', ascending = False).head(20) df_merge_dir = df_merge.groupby(by='director_name1').sum().reset_index() df_merge_dir.sort_values(by = 'profit', ascending = False).head(20) ###Output _____no_output_____
Exercise 2/T3_probability.ipynb
###Markdown Exercise 2 - Probability**R code presented in this excercise is not required on homeworks or exams, its only to show what is possible in R an to complement the excercise with nice graphs.** Adéla Vrtková, Michal Béreš, Martina Litschmannová In this exercise, we will go through an introduction to probability. We assume you are familiar with the terms: **definition of probability, conditional probability, total probability theorem, Bayes' theorem**. Auxiliary functions Total probability $P(A)=\sum_{i=1}^{n}P(B_i)P(A|B_i)$ ###Code # probability calculation P(A) - total probability theorem total_probability = function(P_B, P_AB) { # we consider P_B as a vector of values P(B_i) and P_AB as a vector of values P(A|B_i) P_A = 0 for (i in 1:length(P_B)) { P_A = P_A + P_B[i]*P_AB[i] } return(P_A) } ###Output _____no_output_____ ###Markdown Bayes' theorem $P(B_k|A)=\frac{P(B_k)P(A|B_k)}{\sum_{i=1}^{n}P(B_i)P(A|B_i)}$ ###Code # calculation of conditional probability P(B_k|A) - Bayes' theorem bayes = function(P_B, P_AB, k) { # we consider P_B as a vector of values P(B_i), P_AB as a vector of values P(A|B_i) and k as and index in P(B_k|A) P_A = total_probability(P_B, P_AB) P_BkA = P_B[k]*P_AB[k]/P_A return(P_BkA) } ###Output _____no_output_____ ###Markdown **We will add functions from the last exercise for computing combinatorial selections, they are in the combinatorics script.R** ###Code source('combinatorics.R') ###Output _____no_output_____ ###Markdown Examples Example 1. Determine the probability that a number greater than 14 will fall on a 20-wall fair dice roll. ###Code omega = 1:20 A = c(15,16,17,18,19,20) # probability as a proportion favorable to all length(A)/length(omega) ###Output _____no_output_____ ###Markdown Example 2. Determine the probability that a number greater than 14 will fall on a 20-wall dice roll, if you know that even numbers fall twice as often as odd numbers. ###Code p_odd = 1/(20+10) p_even = 2*p_odd probability = c(p_odd, p_even, p_odd, p_even, p_odd, p_even, p_odd, p_even, p_odd, p_even, p_odd, p_even, p_odd, p_even, p_odd, p_even, p_odd, p_even, p_odd, p_even) probability # probability is sum(probability[15:20]) ###Output _____no_output_____ ###Markdown Example 3. Determine the probability that you will guess exactly 4 numbers in the lottery.(6 numbers out of 49 are drawn) ###Code (combinations(6,4)*combinations(43,2))/combinations(49,6) ###Output _____no_output_____ ###Markdown Example 4. From the alphabetical list of students enrolled in the exercise, the teacher selects the first 12 and offers them a bet: “If each of you was born in a different zodiac sign, I will give each of you CZK 100. However, if there are at least two students among you who were born in the same sign, each of you will give me 100 CZK. ”Is it worthwhile for students to accept a bet? How likely are students to win? ###Code permutation(12)/r_permutation_repetition(12,12) ###Output _____no_output_____ ###Markdown Example 5. Calculate the probability that an electric current will flow from point 1 to point 2 if part of the el. circuit, including the probability of failure of individual components is indicated in the following figure.(The failures of the individual components are independent of each other.) ![Image.png](attachment:image.png) ###Code # divided into blocks I=(A, B) and II=(C, D, E) PI = 1 - (1 - 0.1)*(1 - 0.3) PI PII = 0.2*0.3*0.2 PII # result (1 - PI)*(1-PII) ###Output _____no_output_____ ###Markdown Example 6. The patient is suspected of having one of four mutually exclusive diseases - N1, N2, N3, N4 with a probability of occurrence of P(N1)=0.1; P(N2)=0.2; P(N3)=0.4; P(N4)=0.3. Laboratory test A is positive in the case of the first disease in 50% of cases, in the second disease in 75% of cases, in the third disease in 15% of cases and in the fourth in 20% of cases. What is the probability that the result of the laboratory test will be positive? ###Code # total probability theorem P_N = c(0.1,0.2,0.4,0.3) # P(N1), P(N2),... P_PN = c(0.5,0.75,0.15,0.2) # P(P|N1), P(P|N2),... P_P = total_probability(P_B = P_N, P_AB = P_PN) # P(P) P_P ###Output _____no_output_____ ###Markdown Example 7. Telegraphic characters consist of "dot" and "comma" signals. It is statistically found that 25% of "dot" messages and 20% of "comma" signals are distorted. It is also known that signals are used in a 3: 2 ratio. Determine the probability that the signal was received correctly if a "dot" signal was received. ###Code # Bayes' theorem P_O = c(0.6, 0.4) # P(O.), P(O-) P_PO = c(0.75, 0.2) # P(P.|O.), P(P.|O-) bayes(P_B = P_O, P_AB = P_PO, k = 1) # k=1 because correctly=O. ###Output _____no_output_____ ###Markdown Example 8. 85% of green taxis and 15% of blue taxis run in one city. The witness of the traffic accident testified that the accident was caused by the driver of the blue taxi, who then left. Tests carried out under similar lighting conditions showed that the witness identified the color of the taxi well in 80% of cases and was wrong in 20% of cases. - What is the probability that the culprit of the accident actually drove a blue taxi? - Subsequently, another independent witness was found who also claims that the taxi was blue. What is the probability that the culprit of the accident actually drove a blue taxi now? - Does the probability that the perpetrator of the accident actually drove a blue taxi affect whether the two witnesses mentioned above testified gradually or simultaneously? ###Code # a) again Bayes' theorem P_B = c(0.85, 0.15) # P(Z), P(M) P_SB = c(0.20, 0.80) # P(SM|Z), P(SM|M) bayes(P_B = P_B, P_AB = P_SB, k = 2) # blue is second # b) first option - second pass through Bayes P_M = bayes(P_B = P_B, P_AB = P_SB, k = 2) P_B = c(1 - P_M, P_M) # P(Z), P(M) P_SB = c(0.20, 0.80) # P(S2M|Z), P(S2M|M) bayes(P_B = P_B, P_AB = P_SB, k = 2) # c) or answered at once P_B = c(0.85, 0.15) # P(Z), P(M) P_SB = c(0.20^2, 0.80^2) # P(S1M & S2M|Z), P(S1M & S2M|M) bayes(P_B = P_B, P_AB = P_SB, k = 2) ###Output _____no_output_____ ###Markdown Example 9. We need to find out the answer to a sensitive question. How to estimate what percentage of respondents will answer YES to the question and at the same time guarantee complete anonymity to all respondents? One of the solutions is the so-called double-anonymous survey:We will let the respondents throw the coin A and the coin B. - Those who got head on coin A will write the answer(YES/NO) to the sensitive question on teir card. - Those who got tail on coin A will write YES = if coin B landed on head or NO = if coin B landed on tail. How do we determine the proportion of students who answered YES to a sensitive question?Assume that respondents were asked if they were cheating on an exam. From the questionnaires, it was found that 120 respondents answered "YES" and 200 respondents answered "NO". What percentage of students cheated at the exam? ###Code # total probability theorem # P(YES)=P(A_YES) * P(YES|A_YES) + P(A_NO) * P(B_YES|A_NO) # equation 120/320=0.5 * x + 0.5 * 0.5 (120/320-0.5^2)/0.5 ###Output _____no_output_____
LinearAlgebra/commonMethods.ipynb
###Markdown This is my notebook following the instructions from:https://web.stanford.edu/class/cs231a/section/section1.pdf ###Code v = np.array([[1], [2], [3]]) v.shape v + v v1 = np.array([1, 2, 3]) v2 = np.array([4, 5, 6]) v3 = np.array([7, 8, 9]) M = np.vstack([v1, v2, v3]) print (M) # Dot multiplication print(M.dot(v)) # Transposing the Dot Product print (v.T.dot(v)) # Elementwise Multiplication np.multiply(M,v) # Transposing print (M.T) print (M.T.shape, v.T.shape) # Taking a Determinant and it's inverse i_m = np.array([[3,0,2], [2,0,-2],[0,1,1]]) print (np.linalg.inv(i_m)) # If determinant is = 0 matrix is not invertible print (np.linalg.det(i_m)) # Eignvalues and Eignvectors eigvals, eigvecs = np.linalg.eig(M) print (eigvals) U, S, Vtranspose = np.linalg.svd(i_m) U S Vtranspose ###Output _____no_output_____
jupyter_notebooks/optimization/trust_region.ipynb
###Markdown Cauchy point ###Code fig, ax = plt.subplots(figsize=(9, 9)) T0 = np.linspace(-3.2, 4.8, 100) T1 = np.linspace(-4, 4, 100) T0, T1 = np.meshgrid(T0, T1) # pairwise combinations of theta values Z = rosen([T0, T1]) # Rosenbrock function contour_levels = np.concatenate([np.array([3, 10, 30, 100, 200, 300, 500]), np.arange(1000, 79000, 1000)]) contour_plot = ax.contour(T0, T1, Z, levels=contour_levels, cmap='coolwarm', alpha=0.5) # contour plot of Rosenbrock function init_point = np.array((3, -1)) # center of the initial trust region init_radius = 1. phis = np.arange(0, 6.28, 0.01) # angles for coordinate evaluations circle_coords = (np.cos(phis)*init_radius+init_point[0], np.sin(phis)*init_radius+init_point[1]) ax.plot(*circle_coords, color='saddlebrown') # trust region ax.scatter(*init_point, color='black') # center of the trust region ax.text(init_point[0]+0.1, init_point[1]+0.1, '$x_o$', fontsize=19) # here goes Cauchy point algorithm def is_pos_def(x): '''Check if a matrix is positive definite''' return np.all(np.linalg.eigvals(x) > 0) def cauchy_point(init_point: np.ndarray, init_radius: float, ) -> np.ndarray: x = init_point radius = init_radius n_iter = 0 gain = 999 while n_iter <= 5 and gain > 0.001: n_iter += 1 f = rosen(x) f_derivative = rosen_der(x) f_hessian = rosen_hess(x) f_derivative_norm = np.linalg.norm(f_derivative) p_s = -radius*f_derivative/f_derivative_norm if is_pos_def(f_hessian): tau = f_derivative_norm**3/(radius*(f_derivative @ f_hessian @ f_derivative)) if tau > 1: tau = 1 else: tau = 1 p_c = p_s*tau phi_new = rosen(x) + np.dot(f_derivative, p_c) + (p_c @ f_hessian @ p_c)/2 # modeled new point value of a function x_new = x + p_c f_new = rosen(x_new) # actial new point value of a function rho = (f - f_new)/(f - phi_new) # rate between actual and modeled reduction if rho < 0.25: radius = 0.25*np.linalg.norm(p_c) x_new = x elif rho > 0.75: radius = min(2*radius, 1.1) ax.plot(*zip(x, x_new)) # plot vector of change ax.scatter(*x_new, color='dimgrey', alpha=0.8) # center of new trust region draw_trust_region = plt.Circle((x_new[0], x_new[1]), radius=radius, fill=False, alpha=0.6) # contours of trust region ax.add_artist(draw_trust_region) x = x_new gain = f - rosen(x_new) return x cauchy_point(np.array([3, -1]), 1) plt.savefig('../../assets/images/optimization/cauchy_point.png', bbox_inches='tight'); ###Output _____no_output_____ ###Markdown Dogleg ###Code fig, ax = plt.subplots(figsize=(10.5, 9)) ax.set_xlim(-1.5, 2) ax.set_ylim(-1.5, 1.5) trust_region_dogleg = plt.Circle((0, 0), radius=1, fill=False) ax.add_artist(trust_region_dogleg) ax.scatter(0, 0, color='black', zorder=20, alpha=0.4) ax.text(-0.1, 0.1, '$x_o$', fontsize=16) ax.quiver([0, 0, 0.7, 0], # x origin [0, 0, 0.3, 0], # y origin [1.5, 0.7, 0.8, 0.997], # x vector [-0.3, 0.3, -0.6, 0.077], # y vector color=['peru', 'olive', 'lightgrey', 'navy'], linewidth=0.6, angles='xy', scale_units='xy', scale=1, headwidth=2.4) ax.text(0.25, 0.2, '$p^C$', fontsize=17) ax.text(0.65, -0.36, '$p^b$', fontsize=17) ax.text(0.65, 0.1, '$p^d$', fontsize=17) ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) plt.savefig('../../assets/images/optimization/dogleg.png', bbox_inches='tight'); pB = np.array([1.5, -0.3]) pU = np.array([0.7, 0.3]) pB_pU = pB - pU dot_pB_pU = np.dot(pB_pU, pB_pU) dot_pU = np.dot(pU, pU) dot_pU_pB_pU = np.dot(pU, pB_pU) fact = dot_pU_pB_pU**2 - dot_pB_pU * (dot_pU - trust_radius**2) tau = (-dot_pU_pB_pU + np.sqrt(fact)) / dot_pB_pU #print(pU + tau * pB_pU) ###Output _____no_output_____
indexing_demo.ipynb
###Markdown ###Code import reprlib from collections import defaultdict from indexing import Preprocessor,Indexer import re # for testing doc_map = defaultdict() import jsonlines def clean_str(text) : text = (text.encode('ascii', 'ignore')).decode("utf-8") text = re.sub("&.*?;", "", text) text = re.sub("[\]\|\[\@\,\$\%\*\&\\\(\)\":]", "", text) text = re.sub("-", " ", text) text = re.sub("\.+", "", text) text = re.sub("^\s+","" ,text) text = re.sub("\.+", "", text) text = text.lower() return text def document_generator(file): with jsonlines.open(file) as reader: for doc_id, obj in enumerate(reader): item = {'doc_id': doc_id, 'url': obj['url'], 'title': clean_str(obj['title']), 'desc': clean_str(obj['desc'])} yield item p = Preprocessor() indexer = Indexer(p) inverted = {} for doc in document_generator("crawlers/stack/data/solr.jsonl"): doc_id = doc['doc_id'] # index both title and description text = doc['title'] + " " +doc['desc'] doc_map[doc_id] = (doc['url'], text) doc_index = indexer.inverted_index(text) indexer.inverted_index_add(inverted,doc_id=doc_id,doc_index=doc_index) # Print Inverted-Index (3 rows) i = 0 for word, doc_locations in inverted.items(): print(word, reprlib.repr(doc_locations)) i += 1 if i > 3: break ###Output instal {0: [7, 72, 130, 261, 532, 816, ...], 115: [1911, 2734], 188: [831, 1578], 829: [6270, 11787], ...} uniti {0: [15, 80, 99, 115, 178, 380, ...], 158: [5019], 365: [7622], 473: [3916], ...} use {0: [28, 1049, 1343, 1611, 1759, 1880, ...], 1: [1041], 2: [112, 241, 377, 776, 812, 823, ...], 3: [1692, 3680, 3940], ...} ubuntu {0: [34, 599, 624, 944, 1254], 1408: [1420, 3081], 1444: [2089, 4014, 6279], 1476: [5540, 7515], ...} ###Markdown Sample querying ###Code # Search something and print results queries = ['dolby', 'vim emacs', 'github week'] for query in queries: tokenized_query = ' '.join(p.tokenize_string(query)) result_docs = indexer.search(inverted, tokenized_query) print(f"Search for '{query}': doc_ids={result_docs}") for _, word in p.word_index(tokenized_query): def extract_text(doc_id, position): return doc_map[doc_id][1][position:position+50].replace("\n", ' ') for doc_id in result_docs: for position in inverted[word][doc_id]: print( f"\t - {extract_text(doc_id, position)}..." f"\n\t -->{doc_map[doc_id][0]}" f"\n" ) print("\n") ###Output Search for 'dolby': doc_ids={11074} - dolby digital expires at midnight ... -->/r/programming/comments/60b7kv/the_last_patent_on_ac3_dolby_digital_expires_at/ Search for 'vim emacs': doc_ids={3942, 2058, 2672, 3315, 3732, 4221, 1431, 2587, 2877} - vim running inside gnome terminal showing the diff... -->https://askubuntu.com/questions/48299/what-ides-are-available-for-ubuntu - vim splits or extra tabs you like to install it in... -->https://askubuntu.com/questions/48299/what-ides-are-available-for-ubuntu - vim emacs nano gedit kate to name a few enable res... -->https://askubuntu.com/questions/68918/how-do-i-restrict-my-kids-computing-time - vim or emacs to write c code just try this on you... -->https://askubuntu.com/questions/61408/what-is-a-command-to-compile-and-run-c-programs - vim is amazing! vim is a highly configurable text ... -->https://askubuntu.com/questions/10998/what-developer-text-editors-are-available-for-ubuntu - vim is a highly configurable text editor built to ... -->https://askubuntu.com/questions/10998/what-developer-text-editors-are-available-for-ubuntu - vim was originally released for the amiga vim has ... -->https://askubuntu.com/questions/10998/what-developer-text-editors-are-available-for-ubuntu - vim has since been developed to be supporting ma... -->https://askubuntu.com/questions/10998/what-developer-text-editors-are-available-for-ubuntu - vim is free and open source software and is releas... -->https://askubuntu.com/questions/10998/what-developer-text-editors-are-available-for-ubuntu - vim text editor dpkg apt less vim style keys and s... -->https://askubuntu.com/questions/162075/my-computer-boots-to-a-black-screen-what-options-do-i-have-to-fix-it - vim style keys and searching like man and grep i'm... -->https://askubuntu.com/questions/162075/my-computer-boots-to-a-black-screen-what-options-do-i-have-to-fix-it - vim or pico/nano or check your email in mutt or pi... -->https://askubuntu.com/questions/162075/my-computer-boots-to-a-black-screen-what-options-do-i-have-to-fix-it - vim users like i that prefers to do everything wit... -->https://stackoverflow.com/questions/161813/how-to-resolve-merge-conflicts-in-git - vim called once installed you can run to check... -->https://stackoverflow.com/questions/161813/how-to-resolve-merge-conflicts-in-git - vim ~/profile in file put my_env_var=value save w... -->https://stackoverflow.com/questions/135688/setting-environment-variables-on-os-x - vim it gives you all the tools you need to do mass... -->https://askubuntu.com/questions/10607/how-can-i-rename-many-files-at-once - vim or emacs in a python ide or wingide which is a... -->https://askubuntu.com/questions/6588/is-there-a-visual-studio-style-tool-ide - emacs but for command line programming it is a kil... -->https://askubuntu.com/questions/48299/what-ides-are-available-for-ubuntu - emacs nano gedit kate to name a few enable restric... -->https://askubuntu.com/questions/68918/how-do-i-restrict-my-kids-computing-time - emacs to write c code just try this on your termi... -->https://askubuntu.com/questions/61408/what-is-a-command-to-compile-and-run-c-programs - emacs it has a solid python mode you don't need an... -->https://askubuntu.com/questions/10998/what-developer-text-editors-are-available-for-ubuntu - emacs tutorial it should be easily accessible from... -->https://askubuntu.com/questions/10998/what-developer-text-editors-are-available-for-ubuntu - emacs vim or pico/nano or check your email in mutt... -->https://askubuntu.com/questions/162075/my-computer-boots-to-a-black-screen-what-options-do-i-have-to-fix-it - emacs type this will open three buffers mine their... -->https://stackoverflow.com/questions/161813/how-to-resolve-merge-conflicts-in-git - emacs asks you if you want to save this buffer yes... -->https://stackoverflow.com/questions/161813/how-to-resolve-merge-conflicts-in-git - emacs lisp function although one can of course use... -->https://stackoverflow.com/questions/135688/setting-environment-variables-on-os-x - emacs lisp function note this solution is an amal... -->https://stackoverflow.com/questions/135688/setting-environment-variables-on-os-x - emacs i think nothing beats dired for this task ev... -->https://askubuntu.com/questions/10607/how-can-i-rename-many-files-at-once - emacs that often you may find dired a handy tool s... -->https://askubuntu.com/questions/10607/how-can-i-rename-many-files-at-once - emacs dired mode for a directory now enter edit di... -->https://askubuntu.com/questions/10607/how-can-i-rename-many-files-at-once - emacs uses a different syntax than pcre for exampl... -->https://askubuntu.com/questions/10607/how-can-i-rename-many-files-at-once - emacs in a python ide or wingide which is a commer... -->https://askubuntu.com/questions/6588/is-there-a-visual-studio-style-tool-ide Search for 'github week': doc_ids={4710, 9863, 2058, 5835, 3850, 10127, 2511, 4498, 4221, 3286, 2268, 3741} - github repo another option you can try is it's ... -->https://stackoverflow.com/questions/292926/robust-and-mature-html-parser-for-php - github protest over chinese tech companies' 996 cu... -->/r/programming/comments/b799yb/github_protest_over_chinese_tech_companies_996/ - github at the following location this is how to i... -->https://askubuntu.com/questions/68918/how-do-i-restrict-my-kids-computing-time - github repo i didn't know what that compile line m... -->https://stackoverflow.com/questions/38922754/how-to-use-threetenabp-in-android-project - github has an api and today i learned that sourcef... -->https://askubuntu.com/questions/1056077/how-to-install-latest-hplip-on-my-ubuntu-to-support-my-hp-printer-and-or-scanner - github ... -->/r/programming/comments/henwet/the_uk_gov_just_spent_118_million_on_a_covid/ - github repo that houses the sources for the packag... -->https://askubuntu.com/questions/548003/how-do-i-install-the-firefox-developer-edition - github i found the this library makes it very s... -->https://stackoverflow.com/questions/2900023/change-app-language-programmatically-in-android - github page the localizationactivity extends appco... -->https://stackoverflow.com/questions/2900023/change-app-language-programmatically-in-android - github for practical tutorial check i've success... -->https://stackoverflow.com/questions/161813/how-to-resolve-merge-conflicts-in-git - github's native tool explains in detail but the b... -->https://stackoverflow.com/questions/161813/how-to-resolve-merge-conflicts-in-git - github repository named there is a branch ca... -->https://askubuntu.com/questions/922085/i-need-rules-to-drop-some-malicious-apache-connections - github here are over viewed few ways involved into... -->https://askubuntu.com/questions/922085/i-need-rules-to-drop-some-malicious-apache-connections - github which satisfies the likes of errors generat... -->https://askubuntu.com/questions/432542/is-ffmpeg-missing-from-the-official-repositories-in-14-04 - github and extract it in a directory of your choic... -->https://askubuntu.com/questions/775579/recovering-broken-or-deleted-ntfs-partitions - week the pyquery parsing broke and the regex still... -->https://stackoverflow.com/questions/292926/robust-and-mature-html-parser-for-php - week ago i created a library named which allows ... -->https://stackoverflow.com/questions/292926/robust-and-mature-html-parser-for-php - week chinese tech companies really make their empl... -->/r/programming/comments/b799yb/github_protest_over_chinese_tech_companies_996/ - week using the following abbreviations be careful ... -->https://askubuntu.com/questions/68918/how-do-i-restrict-my-kids-computing-time - week finally change the field used by the login ac... -->https://askubuntu.com/questions/68918/how-do-i-restrict-my-kids-computing-time - weeks ago when i started learning android i would ... -->https://stackoverflow.com/questions/38922754/how-to-use-threetenabp-in-android-project - weeks ago the latest hplip driver version availabl... -->https://askubuntu.com/questions/1056077/how-to-install-latest-hplip-on-my-ubuntu-to-support-my-hp-printer-and-or-scanner - week project thats failed to deliver heres the git... -->/r/programming/comments/henwet/the_uk_gov_just_spent_118_million_on_a_covid/ - weeks before they reach the main firefox release c... -->https://askubuntu.com/questions/548003/how-do-i-install-the-firefox-developer-edition - weeks after they have stabilized in nightly builds... -->https://askubuntu.com/questions/548003/how-do-i-install-the-firefox-developer-edition - weeks the new way to do this is now using the met... -->https://stackoverflow.com/questions/2900023/change-app-language-programmatically-in-android - week period you may choose to merge/rebase on that... -->https://stackoverflow.com/questions/161813/how-to-resolve-merge-conflicts-in-git - week that way if you do find merge/rebase conflict... -->https://stackoverflow.com/questions/161813/how-to-resolve-merge-conflicts-in-git - weeks to merge everything together in one big lump... -->https://stackoverflow.com/questions/161813/how-to-resolve-merge-conflicts-in-git - week according to i created a github repos... -->https://askubuntu.com/questions/922085/i-need-rules-to-drop-some-malicious-apache-connections - weeks we will announce here when is stable and... -->https://askubuntu.com/questions/432542/is-ffmpeg-missing-from-the-official-repositories-in-14-04 - weeks to install newest version ffmpeg 2811 this v... -->https://askubuntu.com/questions/432542/is-ffmpeg-missing-from-the-official-repositories-in-14-04 - weeks ago i had a problem with my pc that my broth... -->https://askubuntu.com/questions/775579/recovering-broken-or-deleted-ntfs-partitions
homeworks/08_homework/ORF307_HW8.ipynb
###Markdown ORF307 Homework 8 {-} Due: Friday, April 30, 2021 9:00 pm ET- Please export your code with output as pdf.- If there is any additional answers, please combine them as **ONE** pdf file before submitting to the Gradescope. Q1 A small integer programming problem {-} Consider the following integer programming problem:$$\begin{array}{ll}\mbox{minimize} & -x_1 - 2x_2\\\mbox{subject to} &-3x_1 + 4x_2 \le 4\\&3x_1 + 2x_2 \le 11\\&2x_1 - x_2 \le 5\\&x_1, x_2 \ge 0\\&x_1, x_2 \in \mathbf{Z}.\end{array}$$Use a figure to answer the following questions:1. What is the optimal cost of the linear programming relaxation? What is the optimal cost of the integer programming problem?2. What is the convex hull of the set of all solutions to the integer programming problem?3. Solve the problem by branch and bound. You can solve the linear programming relaxations graphically. Show the resulting tree. \newpage Q2 Sudoku {-}Sudoku is a popular puzzle game. You have probably already seen it. The goal is to fill a 9-by-9 grid with integers from 1 to 9 so that each integer appears only once in each row, in each column and in each 3-by-3 subblock. The grid is partially populated with clues and your task is to fill in the rest of the grid. ![A Sudoku Instance](sudoku.png) Formulate the Sudoku problem as an integer linear program. Q3 Planning to move {-} It is the end of the semester and you might be planning to change accommodation. Moving is complicated and you want to use some integer programming tricks to make your life easier. You rented a truck with capacity $Q$ and you bought $m$ boxes. Each box $i$ has size $b_i$ for $i=1,\dots,m$. You have $n$ items to move of size $a_j$ for $j=1,\dots,n$. 1. Formulate your packing problem as an integer programming problem to determine if your move is doable with the truck and the boxes you have.2. Given the data below, is your move feasible? If so, what is the minimum number of boxes you need to use? Answer using a solver such as `GLPK_MI` or `GUROBI`. *Note*. If you find that `GLPK_MI` is taking too long to return a solution, please run it with the `tm_lim=30000` option which sets the time limit to 30 seconds: `problem.solve(solver=cp.GLPK_MI, tm_lim=30000)`. For this problem, the solution returned after 30 seconds is already optimal. ###Code import numpy as np n = 30 # Number of items m = 10 # Number of boxes Q = 100 # Truck capacity # Item sizes a = np.array([4, 3, 1, 2, 2, 5, 4, 2, 4, 2, 4, 1, 5, 2, 1, 3, 5, 3, 3, 3, 4, 5, 5, 2, 3, 3, 3, 2, 2, 2]) # Box sizes b = np.array([7, 19, 10, 14, 10, 12, 13, 10, 15, 14]) ###Output _____no_output_____
talks/uc2017/ArcGIS Python API - Advanced Scripting/features/helper.ipynb
###Markdown turn back new york ###Code fl0 = flc.layers[0] fl0 fset = fl0.query() feats = fset.features fset.df ny_feature = [f for f in feats if f.attributes['name']=='New York City'][0] ny_feature.attributes import copy ny_edit = copy.deepcopy(ny_feature) ny_edit.attributes['name'] = 'New York' update_result = fl0.edit_features(updates=[ny_edit]) update_result ###Output _____no_output_____ ###Markdown turn off edit capability ###Code flc.manager.update_definition({'capabilities':'Query'}) flc.properties.capabilities ###Output _____no_output_____
Exercises/Exercise-7-Dictionary_and_Set.ipynb
###Markdown Exercise 7Related Notes:- Fundamentals_3 Data Structures- Fundamentals_4 FunctionsFor questions 7.1, 7.2 and 7.6, you are to implement both :- an **iterative version**, and - a **recursive version** of the function specified.Please decide on your own function name. Exercise 7.1Write a function that takes in a positive integer, $n$, and returns `True` if $n$ is a prime number and `False` if it's not.**Example Interaction**>```>your_function(7)>True>your_function(9)>False>``` ###Code #YOUR CODE HERE ###Output _____no_output_____ ###Markdown Exercise 7.2Write a function that takes in a positive integer $n$, and prints outs the digits in English word form. For example, when given as input: `3214`, the function should print: `three two one four` in one line.**Example Interaction**>```>your_function(3214)>three two one four>``` ###Code #YOUR CODE HERE ###Output _____no_output_____ ###Markdown Exercise 7.3There are 5 usernames with their respective password. * user1: password1* user2: password2* user3: password3Implement a script such that:1. Use a suitable data structure to store usernames and passwords,2. User enters username and password3. Check user username and password * If username does not exists, print "User not found" * if username exists, but password doesn't match, print "Wrong password" * If both username and password match, print "You are in"**Example Interaction**>```>Enter username: user10>Enter password: pass10>User not found>>Enter username: user1>Enter password: pass1>Wrong password>>Enter username: user1>Enter password: password1>You are in>``` ###Code #YOUR CODE HERE ###Output _____no_output_____ ###Markdown Exercise 7.4The winning number of Toto this week is `7, 20, 29, 41, 47, 49`. Implement a script to help user check result. * Define a function `match_count(win_nums, your_nums)` which returns the number of matched numbers. It takes in 2 lists as parameters, `win_nums` and `your_num`. The `winning_nums` contains winnning numbers, and `your_nums` contains number enters by user.* Ask user to input a list of numbers separated by space ` `.You probably need to use the `str.split()` method for this question. Use `help(str.split)` or search online. **Example Interaction**>```>Enter your Toto numbers separated by space: >1 7 20 29 41 47 49 50>Count of matched numbers: 6>``` ###Code #YOUR CODE HERE ###Output _____no_output_____ ###Markdown Exercise 7.5 Greatest Common DivisorLet $a$ be an integer. A **divisor** of $a$, also called a **factor** of $a$ is an integer $r$ such that there exists an integer $m$ such that $mr=a$. For example, if $a=20$, then $2$ and $5$ are both divisors of $a$ as $2\times 10=20$ and $5 \times 4=20$.Write a function that takes in a positive integer $n$, and return a list of all positive integers that is the divisor of $n$.**Example Interaction**>```>your_function(20)>[1,2,4,5,10,20]>```Let $a$ and $b$ be positive integers. A **common divisor** of $a$ and $b$ is a positive integer $r$ such that there exists positive integers $m_1,m_2$ such that $a=m_1*r$ and $b=m_2*r$. The highest of such integer is called the **greatest of common divisor of $a$ and $b$**, denoted as $\gcd(a,b)$.Using the function you have defined previously, Write a function `gcd` that takes in 2 positive integer $a$ and $b$, and return the greatest common divisor of $a$ and $b$. **Example Interaction**>```>gcd(4,10)>2>``` ###Code #YOUR CODE HERE ###Output _____no_output_____ ###Markdown Exercise 7.6 Euclidean AlgorithmA more efficient method to compute the greatest common divisor of two integers $a$ and $b$ is by using the Euclidean algorithm. It is based on the principle that the greatest common divisor of two numbers does not change if the larger number is replaced by its difference with the smaller number. For example,$$\begin{align*}\gcd(252,105)&=21\\ &=\gcd(252-2(105)=42,105)\\&=\gcd(42,105-2(42)=21)\\&=\gcd(42,21)\end{align*}$$In particular, assume $a>b$, then by Division Algorithm, there exists $q\in \mathbb{Z}$ such that $a=qb+r$, where $0\leq r<b$. Then, $$\begin{align*}\gcd(a,b)&=\gcd(a-qb,b)\\&=\gcd(r,b).\end{align*}$$Write a function that takes in 2 positive integer $a$ and $b$, and return the greatest common divisor of $a$ and $b$.**Example Interaction**>```>your_function(4,10)>2>``` ###Code #YOUR CODE HERE ###Output _____no_output_____ ###Markdown Exercise 7.7Write a function that takes in a list of positive integers, $N$, and returns the greatest common divisor (i.e., the highest common factor) of all integers in $N$. ###Code #YOUR CODE HERE ###Output _____no_output_____
matplotlib/gallery_jupyter/lines_bars_and_markers/multicolored_line.ipynb
###Markdown Multicolored linesThis example shows how to make a multi-colored line. In this example, the lineis colored based on its derivative. ###Code import numpy as np import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from matplotlib.colors import ListedColormap, BoundaryNorm x = np.linspace(0, 3 * np.pi, 500) y = np.sin(x) dydx = np.cos(0.5 * (x[:-1] + x[1:])) # first derivative # Create a set of line segments so that we can color them individually # This creates the points as a N x 1 x 2 array so that we can stack points # together easily to get the segments. The segments array for line collection # needs to be (numlines) x (points per line) x 2 (for x and y) points = np.array([x, y]).T.reshape(-1, 1, 2) segments = np.concatenate([points[:-1], points[1:]], axis=1) fig, axs = plt.subplots(2, 1, sharex=True, sharey=True) # Create a continuous norm to map from data points to colors norm = plt.Normalize(dydx.min(), dydx.max()) lc = LineCollection(segments, cmap='viridis', norm=norm) # Set the values used for colormapping lc.set_array(dydx) lc.set_linewidth(2) line = axs[0].add_collection(lc) fig.colorbar(line, ax=axs[0]) # Use a boundary norm instead cmap = ListedColormap(['r', 'g', 'b']) norm = BoundaryNorm([-1, -0.5, 0.5, 1], cmap.N) lc = LineCollection(segments, cmap=cmap, norm=norm) lc.set_array(dydx) lc.set_linewidth(2) line = axs[1].add_collection(lc) fig.colorbar(line, ax=axs[1]) axs[0].set_xlim(x.min(), x.max()) axs[0].set_ylim(-1.1, 1.1) plt.show() ###Output _____no_output_____
articles/what-are-the-implications-of-decarbonisation-for-inequality/parser.ipynb
###Markdown Fig 1 ###Code df = pd.read_excel( "raw/Econ_observatory_figures_(2).xlsx", sheet_name="Sheet2", usecols="A:H" ) df["Unnamed: 0"] = df["Unnamed: 0"].ffill() df.columns = ["cat", "subcat", "neg", "o", "pos", "hi", "hi_dis", "total"] df = df.set_index(["cat", "subcat"])[["neg", "o", "pos", "total"]].stack().reset_index() df.columns = ["cat", "subcat", "a", "value"] f = "fig1_outcomes" f1 = eco_git_path + f + ".csv" df.to_csv("data/" + f + ".csv") f += local_suffix open("visualisation/" + f + ".html", "w").write( vega_embed.replace( "JSON_PATH", f1.replace("/data/", "/visualisation/").replace(".csv", ".json") ) ) if LOCAL: f1 = df readme = "### " + f + '\n!["' + f + '"](visualisation/' + f + '.png "' + f + '")\n\n' df.head() base = ( alt.Chart(f1) .encode( x=alt.X( "cat:N", sort=[], axis=alt.Axis( grid=False, titleAlign="center", titleAnchor="middle", labelAlign="left", title="", titleY=-15, titleX=207, labelFontSize=11, labelPadding=-10, labelColor=scale_lightness(colors["eco-gray"], 2), labelFontWeight='bold', titleColor=colors["eco-gray"], tickColor=colors["eco-gray"], domainColor=colors["eco-gray"], tickCount=10, orient="bottom", labelAngle=-90, zindex=10, labelLimit=1000, ), ) ) .transform_filter('datum.subcat=="Distributional outcomes"') ) bars = ( base.mark_bar(opacity=0.8) .encode( y=alt.Y( "value:Q", stack=True, sort=["neg", "m", "pos"], axis=alt.Axis( grid=False, title="% of total evaluations", titleX=-5, titleY=-5, titleBaseline="bottom", titleAngle=0, format=".0%", titleAlign="left", labelColor=colors["eco-gray"], titleColor=colors["eco-gray"], tickColor=colors["eco-gray"], domainColor=colors["eco-gray"], ), ), order=alt.Order("a:N", sort="ascending"), color=alt.Color( "a:N", legend=None, scale=alt.Scale( range=[colors["eco-dot"], colors["eco-gray"], colors["eco-light-blue"]] ), ), ) .transform_filter('datum.a!="total"') ) line = ( base.mark_line(color=colors["eco-turquiose"]) .encode( y=alt.Y( "value:Q", stack=True, sort=["neg", "m", "pos"], axis=alt.Axis( grid=True, gridColor=colors["eco-gray"], gridOpacity=0.1, title="Number of total evaluations", titleX=5, titleY=13, titleBaseline="bottom", titleAngle=0, titleAlign="left", labelColor=colors["eco-gray"], titleColor=colors["eco-gray"], tickColor=colors["eco-gray"], domainColor=colors["eco-gray"], ), ), x=alt.X( "cat:N", axis=alt.Axis( grid=True, title="", labelFontSize=0, gridColor=colors["eco-gray"], gridOpacity=0.1, tickColor=scale_lightness(colors["eco-gray"], 10), domain=False, orient="top", ), ), ) .transform_filter('datum.a=="total"') ) points = line.mark_point(color=colors["eco-turquiose"], fill=colors["eco-turquiose"]) title = alt.TitleParams( "Percentage of impacts on distributional outcomes by policy instrument type", subtitle=["positive impacts (blue), no impact (grey), negative impacts (red)"], anchor="start", align="left", dx=5, dy=-5, fontSize=12, subtitleFontSize=11, subtitleFontStyle="italic", ) labels1 = ( alt.Chart( pd.DataFrame( [ {"x": " ", "y": 0.1, "t": "negative"}, ] ) ) .mark_text(angle=270, color=colors["eco-dot"]) .encode( x=alt.X("x:N", sort=[]), y=alt.Y("y:Q", sort=[], stack=False), text="t:N", ) ) labels2 = ( alt.Chart( pd.DataFrame( [ {"x": " ", "y": 0.3, "t": "neutral"}, ] ) ) .mark_text(angle=270, color=colors["eco-gray"]) .encode( x=alt.X("x:N", sort=[]), y=alt.Y("y:Q", sort=[], stack=False), text="t:N", ) ) labels3 = ( alt.Chart( pd.DataFrame( [ {"x": " ", "y": 0.5, "t": "positive"}, ] ) ) .mark_text(angle=270, color=colors["eco-light-blue"]) .encode( x=alt.X("x:N", sort=[]), y=alt.Y("y:Q", sort=[], stack=False), text="t:N", ) ) labels0 = ( alt.Chart( pd.DataFrame( [ {"x": " ", "y": 0.5, "t": ""}, ] ) ) .mark_text(angle=270) .encode( x=alt.X("x:N", sort=[]), y=alt.Y("y:Q", sort=[], stack=False), text="t:N", ) ) layer1 = ( alt.vconcat( (bars + labels1 + labels2 + labels3).properties(height=250, width=400), (line + points + labels0).properties(height=80, width=400), spacing=5, ) .configure_view(stroke=None) .properties(title=title) ) layer1.save("visualisation/" + f + ".json") layer1.save("visualisation/" + f + ".png",scale_factor=2.0) layer1.save("visualisation/" + f + ".svg") open("README.md", "w").write(readme) layer1 theme = "_dark" line.encoding.x.axis.tickColor=colors["eco-background"] bars.encoding.x.axis.labelColor=scale_lightness(colors["eco-gray"], 1.6) layer1 = ( alt.vconcat( (bars + labels1 + labels2 + labels3).properties(height=250, width=400), (line + points + labels0).properties(height=80, width=400), spacing=5, ) .configure_view(stroke=None) .properties(title=title) ) layer1 = layer1.configure_axisYQuantitative(labelFontSize=12) layer1 = layer1.configure_axisXQuantitative(labelFontSize=12) layer1.config.font="Georgia" layer1.config.background=colors["eco-background"] layer1.config.view.stroke=None layer1.title.fontSize = 14 layer1.title.subtitleFontSize = 12 layer1.title.dy -= 2 layer1.title.color = colors["eco-dot"] layer1.title.subtitleColor = colors["eco-dot"] layer1.save("visualisation/" + f + theme + ".json") layer1.save("visualisation/" + f + theme + ".png",scale_factor=2.0) layer1.save("visualisation/" + f + theme + ".svg") readme = re.sub(f, f + theme, readme) open("README.md", "a").write(readme) layer1 ###Output WARN Domains that should be unioned has conflicting sort properties. Sort will be set to true. WARN Domains that should be unioned has conflicting sort properties. Sort will be set to true. WARN Domains that should be unioned has conflicting sort properties. Sort will be set to true. WARN Domains that should be unioned has conflicting sort properties. Sort will be set to true. ###Markdown Fig 2 ###Code # polar chart df = pd.read_excel( "raw/Econ_observatory_figures_(2).xlsx", sheet_name="Sheet2", usecols="A:H" ) df["Unnamed: 0"] = df["Unnamed: 0"].ffill() df.columns = ["cat", "subcat", "neg", "o", "pos", "hi", "hi_dis", "total"] df = df.set_index(["cat", "subcat"])[["hi"]].stack().reset_index() df.columns = ["cat", "subcat", "a", "value"] df=df.drop('a',axis=1) df['one']=1 f = "fig2_polar" f2 = eco_git_path + f + ".csv" df.to_csv("data/" + f + ".csv") ###Output _____no_output_____
Communication _Infrastructure/BCID.ipynb
###Markdown Introduction : Business Communication Infrastructure Discovery ###Code # Date of creation : 17 july 2021 # Version : 1.0 # Description : This notebook helps in discovery of infrastructure which help in business communication ###Output _____no_output_____ ###Markdown Importing packages ###Code # Importing packages import os ###Output _____no_output_____ ###Markdown Getting the location of working directory ###Code # Getting the location of working directory def current_directory_location(): cwd=os.getcwd() print("Location of current directory : ", cwd) current_directory_location() ###Output Location of current directory : /root/Desktop/offensivenotebook/Business Communication Infrastructure Discovery ###Markdown Making directory name results to save the result ###Code # Making directory name results def directory_results(): try: os.mkdir("Results") except Exception as e: print(e) directory_results() ###Output [Errno 17] File exists: 'Results' ###Markdown Tools ###Code Citrix Outlook 365 VPN Portal attack tools MX Records tools Lync & Skype Exchange services tool Mxtoolbox Lyncsmash ruler ###Output _____no_output_____
chapter/machine_learning/python_machine_learning_modules.ipynb
###Markdown Python provides many bindings for machine learning libraries, somespecialized for technologies such as neural networks, and othersgeared towards novice users. For our discussion, we focus on thepowerful and popular Scikit-learn module. Scikit-learn isdistinguished by its consistent and sensible API, its wealth ofmachine learning algorithms, its clear documentation, and its readilyavailable datasets that make it easy to follow along with the onlinedocumentation. Like Pandas, Scikit-learn relies on Numpy for numericalarrays. Since its release in 2007, Scikit-learn has become the mostwidely-used, general-purpose, open-source machine learning modulesthat is popular in both industry and academia. As with all of thePython modules we use, Scikit-learn is available on all the majorplatforms.To get started, let's revisit the familiar ground of linear regression usingScikit-learn. First, let's create some data. ###Code %matplotlib inline import numpy as np from matplotlib.pylab import subplots from sklearn.linear_model import LinearRegression X = np.arange(10) # create some data Y = X+np.random.randn(10) # linear with noise ###Output _____no_output_____ ###Markdown We next import and create an instance of the `LinearRegression`class from Scikit-learn. ###Code from sklearn.linear_model import LinearRegression lr=LinearRegression() # create model ###Output _____no_output_____ ###Markdown Scikit-learn has a wonderfully consistent API. AllScikit-learn objects use the `fit` method to compute model parametersand the `predict` method to evaluate the model. For the`LinearRegression` instance, the `fit` method computes thecoefficients of the linear fit. This method requires a matrix ofinputs where the rows are the samples and the columns are thefeatures. The *target* of the regression are the `Y` values, whichmust be correspondingly shaped, as in the following, ###Code X,Y = X.reshape((-1,1)), Y.reshape((-1,1)) lr.fit(X,Y) lr.coef_ ###Output _____no_output_____ ###Markdown **Programming Tip.**The negative one in the `reshape((-1,1))` call above is for the trulylazy. Using a negative one tells Numpy to figure out what thatdimension should be given the other dimension and number of arrayelements. the `coef_` property of the linear regression object showsthe estimated parameters for the fit. The convention is to denoteestimated parameters with a trailing underscore. The model has a`score` method that computes the $R^2$ value for the regression.Recall from our statistics chapter ([ch:stats:sec:reg](ch:stats:sec:reg)) that the$R^2$ value is an indicator of the quality of the fit and variesbetween zero (bad fit) and one (perfect fit). ###Code lr.score(X,Y) ###Output _____no_output_____ ###Markdown Now, that we have this fitted, we can evaluatethe fit using the `predict` method, ###Code xi = np.linspace(0,10,15) # more points to draw xi = xi.reshape((-1,1)) # reshape as columns yp = lr.predict(xi) ###Output _____no_output_____ ###Markdown The resulting fit is shown in [Figure](fig:python_machine_learning_modules_002) ###Code fig,ax=subplots() _=ax.plot(xi,yp,'-k',lw=3) _=ax.plot(X,Y,'o',ms=20,color='gray') _=ax.tick_params(labelsize='x-large') _=ax.set_xlabel('$X$') _=ax.set_ylabel('$Y$') fig.tight_layout() fig.savefig('fig-machine_learning/python_machine_learning_modules_002.pdf') ###Output _____no_output_____ ###Markdown -->The Scikit-learn module can easily perform basic linear regression. The circles show the training data and the fitted line is shown in black.**Multilinear Regression.** The Scikit-learn module easily extendslinear regression to multiple dimensions. For example, formulti-linear regression, $$y = \alpha_0 + \alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n$$ The problem is to find all of the $\alpha$ terms given thetraining set $\left\{x_1,x_2,\ldots,x_n,y\right\}$. We can create anotherexample data set and see how this works, ###Code X=np.random.randint(20,size=(10,2)) Y=X.dot([1,3])+1 + np.random.randn(X.shape[0])*20 ym=Y/Y.max() # scale for marker size fig,ax=subplots() _=ax.scatter(X[:,0],X[:,1],ym*400,color='gray',alpha=.7,label=r'$Y=f(X_1,X_2)$') _=ax.set_xlabel(r'$X_1$',fontsize=22) _=ax.set_ylabel(r'$X_2$',fontsize=22) _=ax.set_title('Two dimensional regression',fontsize=20) _=ax.legend(loc=4,fontsize=22) fig.tight_layout() fig.savefig('fig-machine_learning/python_machine_learning_modules_003.png') ###Output _____no_output_____ ###Markdown -->Scikit-learn can easily perform multi-linear regression. The size of the circles indicate the value of the two-dimensional function of $(X_1,X_2)$. [Figure](fig:python_machine_learning_modules_003) shows thetwo dimensional regression example, where the size of the circles isproportional to the targetted $Y$ value. Note that we salted the outputwith random noise just to keep things interesting. Nonetheless, theinterface with Scikit-learn is the same, ###Code lr=LinearRegression() lr.fit(X,Y) print(lr.coef_) ###Output [0.42919895 0.70632676] ###Markdown The `coef_` variable now has two terms in it,corresponding to the two input dimensions. Note that the constantoffset is already built-in and is an option on the `LinearRegression`constructor. [Figure](fig:python_machine_learning_modules_004) showshow the regression performs. ###Code _=lr.fit(X,Y) yp=lr.predict(X) ypm=yp/yp.max() # scale for marker size _=ax.scatter(X[:,0],X[:,1],ypm*400,marker='x',color='k',lw=2,alpha=.7,label=r'$\hat{Y}$') _=ax.legend(loc=0,fontsize=22) _=fig.canvas.draw() fig.savefig('fig-machine_learning/python_machine_learning_modules_004.png') ###Output _____no_output_____ ###Markdown -->The predicted data is plotted in black. It overlays the training data, indicating a good fit.**Polynomial Regression.** We can extend this to include polynomialregression by using the `PolynomialFeatures` in the `preprocessing`sub-module. To keep it simple, let's go back to our one-dimensionalexample. First, let's create some synthetic data, ###Code from sklearn.preprocessing import PolynomialFeatures X = np.arange(10).reshape(-1,1) # create some data Y = X+X**2+X**3+ np.random.randn(*X.shape)*80 ###Output _____no_output_____ ###Markdown Next, we have to create a transformationfrom `X` to a polynomial of `X`, ###Code qfit = PolynomialFeatures(degree=2) # quadratic Xq = qfit.fit_transform(X) print(Xq) ###Output [[ 1. 0. 0.] [ 1. 1. 1.] [ 1. 2. 4.] [ 1. 3. 9.] [ 1. 4. 16.] [ 1. 5. 25.] [ 1. 6. 36.] [ 1. 7. 49.] [ 1. 8. 64.] [ 1. 9. 81.]] ###Markdown Note there is an automatic constant term in the output $0^{th}$column where `fit_transform` has mapped the single-column input into a set ofcolumns representing the individual polynomial terms. The middle column hasthe linear term, and the last has the quadratic term. With these polynomialfeatures stacked as columns of `Xq`, all we have to do is `fit` and `predict`again. The following draws a comparison between the linear regression and thequadratic regression (see [Figure](fig:python_machine_learning_modules_005)), ###Code lr=LinearRegression() # create linear model qr=LinearRegression() # create quadratic model lr.fit(X,Y) # fit linear model qr.fit(Xq,Y) # fit quadratic model lp = lr.predict(xi) qp = qr.predict(qfit.fit_transform(xi)) ###Output _____no_output_____ ###Markdown -->The title shows the $R^2$ score for the linear and quadratic rogressions. ###Code fig,ax=subplots() _=ax.plot(xi,lp,'--k',lw=3,label='linear fit') _=ax.plot(xi,qp,'-k',lw=3,label='quadratic fit') _=ax.plot(X.flat,Y.flat,'o',color='gray',ms=10,label='training data') _=ax.legend(loc=0) _=ax.set_title('quad R2={:.3}; linear R2={:.3}'.format(lr.score(X,Y),qr.score(Xq,Y))) _=ax.set_xlabel('$X$',fontsize=22) _=ax.set_ylabel(r'$X+X^2+X^3+\epsilon$',fontsize=22) fig.savefig('fig-machine_learning/python_machine_learning_modules_005.png') ###Output _____no_output_____
examples/Python usage examples.ipynb
###Markdown Import itab module ###Code import itab ###Output _____no_output_____ ###Markdown Simple example The data file looks like this: ###Code %%bash head -n +4 simple.itab.tsv tail -n +5 simple.itab.tsv | csvlook -t ###Output # # Simple example file # ## schema=./simple.itab.schema.tsv |----------------------+---------+---------| | DATE | INTEGER | FLOAT | |----------------------+---------+---------| | 2015-05-22 10:39:27 | 23 | 3.4 | | avui | 22.3 | 3.4e10 | | 2015/05/22 10:39:27 | 4 | 2.4 | | 2012-05-22 10:45:22 | 12 | 2.5 | |----------------------+---------+---------| ###Markdown The schema data file looks like this: ###Code %%bash head -n +3 simple.itab.schema.tsv tail -n +4 simple.itab.schema.tsv | csvlook -t ###Output # # This is a simple example of an iTab schema file. # |----------+------------------------------+----------------| | header | reader | validator | |----------+------------------------------+----------------| | DATE | date(x, '%Y-%m-%d %H:%M:%S') | x.month == 5 | | INTEGER | int(x) | x > 10 | | FLOAT | float(x) | 2.3 < x < 2.6 | |----------+------------------------------+----------------| ###Markdown Basic reader that returns each row as a list of parsed cell values ###Code reader = itab.reader('simple.itab.tsv') for row, errors in reader: if len(errors) > 0: print("\nLine {}. ERRORS: \n\t{}".format(reader.line_num, '\n\t'.join(errors))) else: print("\nLine {}. VALUES: \n\t{}".format(reader.line_num, '\t'.join(["{}".format(c) for c in row]))) ###Output Line 6. ERRORS: Validation error at line 6 column 2: FLOAT. [value:'3.4' validator:'2.3 < x < 2.6'] Line 7. ERRORS: Reading error at line 7 column 1: DATE. [value:'avui' reader:'date(x, '%Y-%m-%d %H:%M:%S')'] Reading error at line 7 column 2: INTEGER. [value:'22.3' reader:'int(x)'] Validation error at line 7 column 2: FLOAT. [value:'3.4e10' validator:'2.3 < x < 2.6'] Line 8. ERRORS: Reading error at line 8 column 1: DATE. [value:'2015/05/22 10:39:27' reader:'date(x, '%Y-%m-%d %H:%M:%S')'] Validation error at line 8 column 1: INTEGER. [value:'4' validator:'x > 10'] Line 9. VALUES: 2012-05-22 10:45:22 12 2.5 ###Markdown Reader that reaturns each row as a dictionary ###Code reader = itab.DictReader('simple.itab.tsv') for row, errors in reader: if len(errors) == 0: print("\nLine {}. VALUES: \n\t{}".format(reader.line_num, row)) ###Output Line 9. VALUES: {'FLOAT': 2.5, 'DATE': datetime.datetime(2012, 5, 22, 10, 45, 22), 'INTEGER': 12} ###Markdown Pass the schema as a python dictionary ###Code reader = itab.DictReader('simple.itab.tsv', schema={'fields': {'INTEGER': {'reader': 'int(x)'}}}) for row, errors in reader: if len(errors) == 0: print("\nLine {}. VALUES: \n\t{}".format(reader.line_num, row)) ###Output WARNING:root:Unknown header 'DATE' WARNING:root:Unknown header 'FLOAT' ###Markdown Advance example The schema file looks like this: ###Code %%bash head -n +3 mutations.itab.schema.tsv tail -n +4 mutations.itab.schema.tsv | csvlook -t ###Output # # Mutations file schema # |-------------+----------------+----------------------------------------------------| | header | reader | validator | |-------------+----------------+----------------------------------------------------| | CHROMOSOME | str(x).upper() | x in ([str(c) for c in range(1,23)] + ['X', 'Y']) | | POSITION | int(x) | x > 0 | | REF | str(x).upper() | x in "ACTG" | | ALT | str(x).upper() | x in "ACTG" | | SAMPLE | str(x) | match("^CGP_donor_[0-9]{7}$", x) | | TYPE | str(x).lower() | x in ['subs'] | |-------------+----------------+----------------------------------------------------| ###Markdown And the data file is a standard TSV file without any metadata: ###Code %%bash head mutations.itab.tsv | csvlook -t ###Output |-------------+----------+-----+-----+-------------------+-------| | CHROMOSOME | POSITION | REF | ALT | SAMPLE | TYPE | |-------------+----------+-----+-----+-------------------+-------| | 1 | 99150 | T | A | CGP_donor_1397260 | subs | | 1 | 231793 | A | G | CGP_donor_1337223 | subs | | 1 | 404447 | C | T | CGP_donor_1337236 | subs | | 1 | 559388 | G | T | CGP_donor_1397282 | subs | | 1 | 585741 | G | T | CGP_donor_1353434 | subs | | 1 | 661926 | G | A | CGP_donor_1163904 | subs | | 1 | 717900 | T | C | CGP_donor_1234124 | subs | | 1 | 718896 | T | A | CGP_donor_1186990 | subs | | 1 | 753461 | C | T | CGP_donor_1397086 | subs | |-------------+----------+-----+-----+-------------------+-------| ###Markdown In this example the tabbulated file is a normal tsv file without any metadata. For this reason we have to provide a valid schema file path or URL when we open the reader. And we will load the result as a pandas dataframe. ###Code import pandas as pd def load_mutations(file): reader = itab.DictReader(file, schema='mutations.itab.schema.tsv') for ix, (row, errors) in enumerate(reader, start=1): if len(errors) > 0: # Manage here the errors of parsing and validation print("\nLine {}. ERRORS: \n {}".format(reader.line_num, '\n\t'.join(errors))) continue yield row data = pd.DataFrame.from_dict(load_mutations('mutations.itab.tsv')) data.head() data.dtypes ###Output _____no_output_____
src/Tile-Coding/Tile_Coding.ipynb
###Markdown Tile Coding---Tile coding is an innovative way of discretizing a continuous space that enables better generalization compared to a single grid-based approach. The fundamental idea is to create several overlapping grids or _tilings_; then for any given sample value, you need only check which tiles it lies in. You can then encode the original continuous value by a vector of integer indices or bits that identifies each activated tile. 1. Import the Necessary Packages ###Code # Import common libraries import sys import gym import numpy as np import matplotlib.pyplot as plt import pandas as pd # Set plotting options %matplotlib inline plt.style.use('ggplot') np.set_printoptions(precision=3, linewidth=120) ###Output _____no_output_____ ###Markdown 2. Specify the Environment, and Explore the State and Action SpacesWe'll use [OpenAI Gym](https://gym.openai.com/) environments to test and develop our algorithms. These simulate a variety of classic as well as contemporary reinforcement learning tasks. Let's begin with an environment that has a continuous state space, but a discrete action space. ###Code # Create an environment env = gym.make('Acrobot-v1') env.seed(505); # Explore state (observation) space print("State space:", env.observation_space) print("- low:", env.observation_space.low) print("- high:", env.observation_space.high) # Explore action space print("Action space:", env.action_space) ###Output _____no_output_____ ###Markdown Note that the state space is multi-dimensional, with most dimensions ranging from -1 to 1 (positions of the two joints), while the final two dimensions have a larger range. How do we discretize such a space using tiles? 3. TilingLet's first design a way to create a single tiling for a given state space. This is very similar to a uniform grid! The only difference is that you should include an offset for each dimension that shifts the split points.For instance, if `low = [-1.0, -5.0]`, `high = [1.0, 5.0]`, `bins = (10, 10)`, and `offsets = (-0.1, 0.5)`, then return a list of 2 NumPy arrays (2 dimensions) each containing the following split points (9 split points per dimension):```[array([-0.9, -0.7, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7]), array([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5])]```Notice how the split points for the first dimension are offset by `-0.1`, and for the second dimension are offset by `+0.5`. This might mean that some of our tiles, especially along the perimeter, are partially outside the valid state space, but that is unavoidable and harmless. ###Code def create_tiling_grid(low, high, bins=(10, 10), offsets=(0.0, 0.0)): """Define a uniformly-spaced grid that can be used for tile-coding a space. Parameters ---------- low : array_like Lower bounds for each dimension of the continuous space. high : array_like Upper bounds for each dimension of the continuous space. bins : tuple Number of bins or tiles along each corresponding dimension. offsets : tuple Split points for each dimension should be offset by these values. Returns ------- grid : list of array_like A list of arrays containing split points for each dimension. """ # TODO: Implement this grid = [np.linspace(low[dim],high[dim],bins[dim] + 1)[1:-1] + offsets[dim] for dim in range(len(bins))] # grid = [grid[i][1:] if offsets[i] < 0 else grid[i][0:-1] for i in range(len(bins))] return grid low = [-1.0, -5.0] high = [1.0, 5.0] create_tiling_grid(low, high, bins=(10, 10), offsets=(-0.1, 0.5)) # [test] ###Output _____no_output_____ ###Markdown You can now use this function to define a set of tilings that are a little offset from each other. ###Code def create_tilings(low, high, tiling_specs): """Define multiple tilings using the provided specifications. Parameters ---------- low : array_like Lower bounds for each dimension of the continuous space. high : array_like Upper bounds for each dimension of the continuous space. tiling_specs : list of tuples A sequence of (bins, offsets) to be passed to create_tiling_grid(). Returns ------- tilings : list A list of tilings (grids), each produced by create_tiling_grid(). """ # TODO: Implement this tilings = [create_tiling_grid(low,high,bins,offsets) for bins,offsets in tiling_specs] return tilings # Tiling specs: [(<bins>, <offsets>), ...] tiling_specs = [((10, 10), (-0.066, -0.33)), ((10, 10), (0.0, 0.0)), ((10, 10), (0.066, 0.33))] tilings = create_tilings(low, high, tiling_specs) ###Output _____no_output_____ ###Markdown It may be hard to gauge whether you are getting desired results or not. So let's try to visualize these tilings. ###Code from matplotlib.lines import Line2D def visualize_tilings(tilings): """Plot each tiling as a grid.""" prop_cycle = plt.rcParams['axes.prop_cycle'] colors = prop_cycle.by_key()['color'] linestyles = ['-', '--', ':'] legend_lines = [] fig, ax = plt.subplots(figsize=(10, 10)) for i, grid in enumerate(tilings): for x in grid[0]: l = ax.axvline(x=x, color=colors[i % len(colors)], linestyle=linestyles[i % len(linestyles)], label=i) for y in grid[1]: l = ax.axhline(y=y, color=colors[i % len(colors)], linestyle=linestyles[i % len(linestyles)]) legend_lines.append(l) ax.grid('off') ax.legend(legend_lines, ["Tiling #{}".format(t) for t in range(len(legend_lines))], facecolor='white', framealpha=0.9) ax.set_title("Tilings") return ax # return Axis object to draw on later, if needed visualize_tilings(tilings); ###Output _____no_output_____ ###Markdown Great! Now that we have a way to generate these tilings, we can next write our encoding function that will convert any given continuous state value to a discrete vector. 4. Tile EncodingImplement the following to produce a vector that contains the indices for each tile that the input state value belongs to. The shape of the vector can be the same as the arrangment of tiles you have, or it can be ultimately flattened for convenience.You can use the same `discretize()` function here from grid-based discretization, and simply call it for each tiling. ###Code def discretize(sample, grid): """Discretize a sample as per given grid. Parameters ---------- sample : array_like A single sample from the (original) continuous space. grid : list of array_like A list of arrays containing split points for each dimension. Returns ------- discretized_sample : array_like A sequence of integers with the same number of dimensions as sample. """ # TODO: Implement this discretized_sample = tuple(np.digitize(s,g) for s,g in zip(sample,grid)) return discretized_sample def tile_encode(sample, tilings, flatten=False): """Encode given sample using tile-coding. Parameters ---------- sample : array_like A single sample from the (original) continuous space. tilings : list A list of tilings (grids), each produced by create_tiling_grid(). flatten : bool If true, flatten the resulting binary arrays into a single long vector. Returns ------- encoded_sample : list or array_like A list of binary vectors, one for each tiling, or flattened into one. """ # TODO: Implement this encoded_sample = [discretize(sample,grid) for grid in tilings] return np.concatenate(encoded_sample) if flatten else encoded_sample # Test with some sample values samples = [(-1.2 , -5.1 ), (-0.75, 3.25), (-0.5 , 0.0 ), ( 0.25, -1.9 ), ( 0.15, -1.75), ( 0.75, 2.5 ), ( 0.7 , -3.7 ), ( 1.0 , 5.0 )] encoded_samples = [tile_encode(sample, tilings) for sample in samples] print("\nSamples:", repr(samples), sep="\n") print("\nEncoded samples:", repr(encoded_samples), sep="\n") ###Output _____no_output_____ ###Markdown Note that we did not flatten the encoding above, which is why each sample's representation is a pair of indices for each tiling. This makes it easy to visualize it using the tilings. ###Code from matplotlib.patches import Rectangle def visualize_encoded_samples(samples, encoded_samples, tilings, low=None, high=None): """Visualize samples by activating the respective tiles.""" samples = np.array(samples) # for ease of indexing # Show tiling grids ax = visualize_tilings(tilings) # If bounds (low, high) are specified, use them to set axis limits if low is not None and high is not None: ax.set_xlim(low[0], high[0]) ax.set_ylim(low[1], high[1]) else: # Pre-render (invisible) samples to automatically set reasonable axis limits, and use them as (low, high) ax.plot(samples[:, 0], samples[:, 1], 'o', alpha=0.0) low = [ax.get_xlim()[0], ax.get_ylim()[0]] high = [ax.get_xlim()[1], ax.get_ylim()[1]] # Map each encoded sample (which is really a list of indices) to the corresponding tiles it belongs to tilings_extended = [np.hstack((np.array([low]).T, grid, np.array([high]).T)) for grid in tilings] # add low and high ends tile_centers = [(grid_extended[:, 1:] + grid_extended[:, :-1]) / 2 for grid_extended in tilings_extended] # compute center of each tile tile_toplefts = [grid_extended[:, :-1] for grid_extended in tilings_extended] # compute topleft of each tile tile_bottomrights = [grid_extended[:, 1:] for grid_extended in tilings_extended] # compute bottomright of each tile prop_cycle = plt.rcParams['axes.prop_cycle'] colors = prop_cycle.by_key()['color'] for sample, encoded_sample in zip(samples, encoded_samples): for i, tile in enumerate(encoded_sample): # Shade the entire tile with a rectangle topleft = tile_toplefts[i][0][tile[0]], tile_toplefts[i][1][tile[1]] bottomright = tile_bottomrights[i][0][tile[0]], tile_bottomrights[i][1][tile[1]] ax.add_patch(Rectangle(topleft, bottomright[0] - topleft[0], bottomright[1] - topleft[1], color=colors[i], alpha=0.33)) # In case sample is outside tile bounds, it may not have been highlighted properly if any(sample < topleft) or any(sample > bottomright): # So plot a point in the center of the tile and draw a connecting line cx, cy = tile_centers[i][0][tile[0]], tile_centers[i][1][tile[1]] ax.add_line(Line2D([sample[0], cx], [sample[1], cy], color=colors[i])) ax.plot(cx, cy, 's', color=colors[i]) # Finally, plot original samples ax.plot(samples[:, 0], samples[:, 1], 'o', color='r') ax.margins(x=0, y=0) # remove unnecessary margins ax.set_title("Tile-encoded samples") return ax visualize_encoded_samples(samples, encoded_samples, tilings); ###Output _____no_output_____ ###Markdown Inspect the results and make sure you understand how the corresponding tiles are being chosen. Note that some samples may have one or more tiles in common. 5. Q-Table with Tile CodingThe next step is to design a special Q-table that is able to utilize this tile coding scheme. It should have the same kind of interface as a regular table, i.e. given a `` pair, it should return a ``. Similarly, it should also allow you to update the `` for a given `` pair (note that this should update all the tiles that `` belongs to).The `` supplied here is assumed to be from the original continuous state space, and `` is discrete (and integer index). The Q-table should internally convert the `` to its tile-coded representation when required. ###Code class QTable: """Simple Q-table.""" def __init__(self, state_size, action_size): """Initialize Q-table. Parameters ---------- state_size : tuple Number of discrete values along each dimension of state space. action_size : int Number of discrete actions in action space. """ self.state_size = state_size self.action_size = action_size # TODO: Create Q-table, initialize all Q-values to zero # Note: If state_size = (9, 9), action_size = 2, q_table.shape should be (9, 9, 2) self.q_table = np.zeros(shape=self.state_size+(self.action_size,)) print("QTable(): size =", self.q_table.shape) class TiledQTable: """Composite Q-table with an internal tile coding scheme.""" def __init__(self, low, high, tiling_specs, action_size): """Create tilings and initialize internal Q-table(s). Parameters ---------- low : array_like Lower bounds for each dimension of state space. high : array_like Upper bounds for each dimension of state space. tiling_specs : list of tuples A sequence of (bins, offsets) to be passed to create_tilings() along with low, high. action_size : int Number of discrete actions in action space. """ self.tilings = create_tilings(low, high, tiling_specs) self.state_sizes = [tuple(len(splits)+1 for splits in tiling_grid) for tiling_grid in self.tilings] self.action_size = action_size self.q_tables = [QTable(state_size, self.action_size) for state_size in self.state_sizes] print("TiledQTable(): no. of internal tables = ", len(self.q_tables)) def get(self, state, action): """Get Q-value for given <state, action> pair. Parameters ---------- state : array_like Vector representing the state in the original continuous space. action : int Index of desired action. Returns ------- value : float Q-value of given <state, action> pair, averaged from all internal Q-tables. """ # TODO: Encode state to get tile indices encoded_state = tile_encode(state,self.tilings) # TODO: Retrieve q-value for each tiling, and return their average value = 0.0 for idx,q_table in zip(encoded_state,self.q_tables): value += q_table.q_table[tuple(idx+(action,))] value /= len(self.tilings) return value def update(self, state, action, value, alpha=0.1): """Soft-update Q-value for given <state, action> pair to value. Instead of overwriting Q(state, action) with value, perform soft-update: Q(state, action) = alpha * value + (1.0 - alpha) * Q(state, action) Parameters ---------- state : array_like Vector representing the state in the original continuous space. action : int Index of desired action. value : float Desired Q-value for <state, action> pair. alpha : float Update factor to perform soft-update, in [0.0, 1.0] range. """ # TODO: Encode state to get tile indices encoded_state = tile_encode(state,self.tilings) # TODO: Update q-value for each tiling by update factor alpha for idx,q_table in zip(encoded_state,self.q_tables): q_table.q_table[tuple(idx+(action,))] += alpha*(value-q_table.q_table[tuple(idx+(action,))]) # Test with a sample Q-table tq = TiledQTable(low, high, tiling_specs, 2) s1 = 3; s2 = 4; a = 0; q = 1.0 print("[GET] Q({}, {}) = {}".format(samples[s1], a, tq.get(samples[s1], a))) # check value at sample = s1, action = a print("[UPDATE] Q({}, {}) = {}".format(samples[s2], a, q)); tq.update(samples[s2], a, q) # update value for sample with some common tile(s) print("[GET] Q({}, {}) = {}".format(samples[s1], a, tq.get(samples[s1], a))) # check value again, should be slightly updated ###Output _____no_output_____ ###Markdown If you update the q-value for a particular state (say, `(0.25, -1.91)`) and action (say, `0`), then you should notice the q-value of a nearby state (e.g. `(0.15, -1.75)` and same action) has changed as well! This is how tile-coding is able to generalize values across the state space better than a single uniform grid. 6. Implement a Q-Learning Agent using Tile-CodingNow it's your turn to apply this discretization technique to design and test a complete learning agent! ###Code class QLearningAgent: """Q-Learning agent that can act on a continuous state space by discretizing it.""" def __init__(self, env, tq, alpha=0.02, gamma=0.99, epsilon=1.0, epsilon_decay_rate=0.9995, min_epsilon=.01, seed=0): """Initialize variables, create grid for discretization.""" # Environment info self.env = env self.tq = tq self.state_sizes = tq.state_sizes # list of state sizes for each tiling self.action_size = self.env.action_space.n # 1-dimensional discrete action space self.seed = np.random.seed(seed) print("Environment:", self.env) print("State space sizes:", self.state_sizes) print("Action space size:", self.action_size) # Learning parameters self.alpha = alpha # learning rate self.gamma = gamma # discount factor self.epsilon = self.initial_epsilon = epsilon # initial exploration rate self.epsilon_decay_rate = epsilon_decay_rate # how quickly should we decrease epsilon self.min_epsilon = min_epsilon def reset_episode(self, state): """Reset variables for a new episode.""" # Gradually decrease exploration rate self.epsilon *= self.epsilon_decay_rate self.epsilon = max(self.epsilon, self.min_epsilon) self.last_state = state Q_s = [self.tq.get(state, action) for action in range(self.action_size)] self.last_action = np.argmax(Q_s) return self.last_action def reset_exploration(self, epsilon=None): """Reset exploration rate used when training.""" self.epsilon = epsilon if epsilon is not None else self.initial_epsilon def act(self, state, reward=None, done=None, mode='train'): """Pick next action and update internal Q table (when mode != 'test').""" Q_s = [self.tq.get(state, action) for action in range(self.action_size)] # Pick the best action from Q table greedy_action = np.argmax(Q_s) if mode == 'test': # Test mode: Simply produce an action action = greedy_action else: # Train mode (default): Update Q table, pick next action # Note: We update the Q table entry for the *last* (state, action) pair with current state, reward value = reward + self.gamma * max(Q_s) self.tq.update(self.last_state, self.last_action, value, self.alpha) # Exploration vs. exploitation do_exploration = np.random.uniform(0, 1) < self.epsilon if do_exploration: # Pick a random action action = np.random.randint(0, self.action_size) else: # Pick the greedy action action = greedy_action # Roll over current state, action for next step self.last_state = state self.last_action = action return action n_bins = 5 bins = tuple([n_bins]*env.observation_space.shape[0]) offset_pos = (env.observation_space.high - env.observation_space.low)/(3*n_bins) tiling_specs = [(bins, -offset_pos), (bins, tuple([0.0]*env.observation_space.shape[0])), (bins, offset_pos)] tq = TiledQTable(env.observation_space.low, env.observation_space.high, tiling_specs, env.action_space.n) agent = QLearningAgent(env, tq) def run(agent, env, num_episodes=10000, mode='train',max_step = 1000): """Run agent in given reinforcement learning environment and return scores.""" scores = [] max_avg_score = -np.inf for i_episode in range(1, num_episodes+1): # Initialize episode state = env.reset() action = agent.reset_episode(state) total_reward = 0 done = False # Roll out if max_step != None: # Roll out for max_step steps for i in range(max_step): state, reward, _ , __ = env.step(action) total_reward += reward action = agent.act(state, reward, done, mode) else: # Roll out steps until done while not done: state, reward, done, _ = env.step(action) total_reward += reward action = agent.act(state, reward, done, mode) # Save final score scores.append(total_reward) # Print episode stats if mode == 'train': if len(scores) > 100: avg_score = np.mean(scores[-100:]) if avg_score > max_avg_score: max_avg_score = avg_score if i_episode % 100 == 0: print("\rEpisode {}/{} | Max Average Score: {}".format(i_episode, num_episodes, max_avg_score), end="") sys.stdout.flush() return scores scores = run(agent, env) def plot_scores(scores, rolling_window=100): """Plot scores and optional rolling mean using specified window.""" plt.plot(scores); plt.title("Scores"); rolling_mean = pd.Series(scores).rolling(rolling_window).mean() plt.plot(rolling_mean); return rolling_mean rolling_mean = plot_scores(scores) ###Output _____no_output_____
notebooks/Map Outlist Rs's onto BGC2 Cats.ipynb
###Markdown Going to Map Rs's onto BGC2 Cats. ###Code from os.path import join from csv import DictReader, DictWriter fieldnames = '#ID DescID M200b Vmax Vrms R200b Rs Np X Y Z VX VY VZ Parent_ID'.split(' ') ###Output _____no_output_____ ###Markdown missed_keys = dict()for cosmo_idx in xrange(40): halodir = '/u/ki/swmclau2/des/NewAemulusBoxes/Box%03d/halos/m200b/'%cosmo_idx halodir = '/home/users/swmclau2/scratch/NewTrainingBoxes/Box%03d/halos/m200b/'%cosmo_idx halodir = '/home/users/swmclau2/scratch/TrainingBoxes/Box000/halos/m200b/' halodir = '/home/users/swmclau2/scratch/TestBoxes/TestBox000-000/halos/m200b/' for snapshot_idx in xrange(10): outlist_fname = join(halodir, "out_%d.list"%snapshot_idx) bgc2list_fname = join(halodir, "outbgc2_%d.list"%snapshot_idx) bgc2list_fname2 = join(halodir, "outbgc2_rs_%d.list"%snapshot_idx) print cosmo_idx, snapshot_idx outlist_rs = dict() with open(outlist_fname) as csvfile: reader = DictReader(filter(lambda row: row[0]!='' or row[:3]=='ID', csvfile), delimiter = ' ') for row in reader: outlist_rs[row['ID']] = row['Rs'] with open(bgc2list_fname) as oldfile, open(bgc2list_fname2, 'w') as newfile: reader = DictReader(filter(lambda row: row[0]!='' or row[:3]=='ID', oldfile), delimiter = ' ') writer = DictWriter(newfile, fieldnames, delimiter = ' ') writer.writeheader() for row in reader: try: row['Rs'] = outlist_rs[row['ID']] except KeyError: missed_keys[cosmo_idx] = row['ID'] writer.writerow(row) break ###Code missed_keys = dict() cosmo_idx = 0 halodir = '/u/ki/swmclau2/des/NewAemulusBoxes/Box%03d/halos/m200b/'%cosmo_idx #halodir = '/home/users/swmclau2/scratch/NewTrainingBoxes/Box%03d/halos/m200b/'%cosmo_idx #halodir = '/home/users/swmclau2/scratch/TrainingBoxes/Box000/halos/m200b/' #halodir = '/home/users/swmclau2/scratch/TestBoxes/TestBox000-000/halos/m200b/' #for snapshot_idx in xrange(10): snapshot_idx = 2 outlist_fname = join(halodir, "out_%d.list"%snapshot_idx) bgc2list_fname = join(halodir, "outbgc2_%d.list"%snapshot_idx) bgc2list_fname2 = join(halodir, "outbgc2_rs_%d.list"%snapshot_idx) print (cosmo_idx, snapshot_idx), outlist_idxs = set() with open(outlist_fname) as csvfile: reader = DictReader(filter(lambda row: row[0]!='#' or row[:3]=='#ID', csvfile), delimiter = ' ') for row in reader: #outlist_rs[row['#ID']] = row['Rs'] outlist_idxs.add(int(row['#ID'])) bgc2_idxs = set() with open(bgc2list_fname) as oldfile, open(bgc2list_fname2, 'r') as newfile: reader = DictReader(filter(lambda row: row[0]!='#' or row[:3]=='#ID', newfile), delimiter = ' ') #writer = DictWriter(newfile, fieldnames, delimiter = ' ') #writer.writeheader() for row in reader: bgc2_idxs.add(int(row['#ID']) ) #try: # row['Rs'] = outlist_rs[row['#ID']] #except KeyError: # missed_keys[cosmo_idx] = row['#ID'] #writer.writerow(row) print len(bgc2_idxs - outlist_idxs), len(outlist_idxs - bgc2_idxs) print bgc2_idxs - outlist_idxs ###Output set([8836805, 8836806, 8836807, 8836808, 8836809, 8836810, 8836811, 8836812, 8836813, 8836814, 8836815, 8836816, 8836817, 8836818, 8836819, 8836820, 8836821, 8836822, 8836823, 8836824, 8836825, 8836826, 8836827, 8836828, 8836829, 8836830, 8836831, 8836832, 8836833, 8836834, 8836835, 8836836, 8836837, 8836838, 8836839, 8836840, 8836841, 8836842, 8836843, 8836844, 8836845, 8836846, 8836847, 8836848, 8836849, 8836850, 8836851, 8836852, 8836853, 8836854]) ###Markdown (0, 0) 0 0(0, 1) 528 0(0, 2) 50 0(0, 3) 2 0(0, 4) 0 639(0, 5) 0 794(0, 6) 39 0(0, 7) 2 0(0, 8) 0 617(0, 9) 0 636 ###Code bgc2list_rs = dict() bgc2_zero_rs = set() with open(bgc2list_fname2) as csvfile: reader = DictReader(filter(lambda row: row[0]!='#' or row[:3]=='#ID', csvfile), delimiter = ' ') for row in reader: bgc2list_rs[int(row['#ID'])] = float(row['Rs']) if float(row['Rs']) <= 0: bgc2_zero_rs.add(int(row['#ID']) ) #print row print len(zero_rs) outlist_rs = dict() outlist_zero_rs = set() with open(outlist_fname) as csvfile: reader = DictReader(filter(lambda row: row[0]!='#' or row[:3]=='#ID', csvfile), delimiter = ' ') for row in reader: outlist_rs[int(row['#ID'])] = float(row['Rs']) if float(row['Rs']) <= 0: outlist_zero_rs.add(int(row['#ID']) ) #print row print len(zero_rs) ###Output 31219 ###Markdown rs_file_keys = set(outlist_rs.keys()) ###Code outlist_counter = 0 bgc2_counter = 0 for key in outlist_zero_rs: if key in outlist_idxs: outlist_counter+=1 if key in bgc2_idxs: bgc2_counter+=1 print outlist_counter, bgc2_counter print_counter = 0 for idx, rs in outlist_rs.iteritems(): if rs == 0: print idx, print_counter+=1 if print_counter > 50: break outlist_counter = 0 bgc2_counter = 0 for key in bgc2_zero_rs: if key in outlist_idxs: outlist_counter+=1 if key in bgc2_idxs: bgc2_counter+=1 print outlist_counter, bgc2_counter for key in zero_rs outlist_rs.values() import numpy as np rs_arr = np.array(list(outlist_rs.itervalues())).astype(float) from matplotlib import pyplot as plt %matplotlib inline n_zero_rs = np.sum(rs_arr == 0) print n_zero_rs, n_zero_rs*1.0/rs_arr.shape[0] plt.hist(rs_arr) ###Output _____no_output_____
Project_5 - Implement Route Planner/project_notebook.ipynb
###Markdown Implementing a Route PlannerIn this project you will use A\* search to implement a "Google-maps" style route planning algorithm. The Map ###Code # Run this cell first! from helpers import Map, load_map_10, load_map_40, show_map import math %load_ext autoreload %autoreload 2 ###Output The autoreload extension is already loaded. To reload it, use: %reload_ext autoreload ###Markdown Map Basics ###Code map_10 = load_map_10() show_map(map_10) ###Output _____no_output_____ ###Markdown The map above (run the code cell if you don't see it) shows a disconnected network of 10 intersections. The two intersections on the left are connected to each other but they are not connected to the rest of the road network. This map is quite literal in its expression of distance and connectivity. On the graph above, the edge between 2 nodes(intersections) represents a literal straight road not just an abstract connection of 2 cities.These `Map` objects have two properties you will want to use to implement A\* search: `intersections` and `roads`**Intersections**The `intersections` are represented as a dictionary. In this example, there are 10 intersections, each identified by an x,y coordinate. The coordinates are listed below. You can hover over each dot in the map above to see the intersection number. ###Code map_10.intersections ###Output _____no_output_____ ###Markdown **Roads**The `roads` property is a list where `roads[i]` contains a list of the intersections that intersection `i` connects to. ###Code # this shows that intersection 0 connects to intersections 7, 6, and 5 map_10.roads[0] # This shows the full connectivity of the map map_10.roads # map_40 is a bigger map than map_10 map_40 = load_map_40() show_map(map_40) ###Output _____no_output_____ ###Markdown Advanced VisualizationsThe map above shows a network of roads which spans 40 different intersections (labeled 0 through 39). The `show_map` function which generated this map also takes a few optional parameters which might be useful for visualizing the output of the search algorithm you will write.* `start` - The "start" node for the search algorithm.* `goal` - The "goal" node.* `path` - An array of integers which corresponds to a valid sequence of intersection visits on the map. ###Code # run this code, note the effect of including the optional # parameters in the function call. show_map(map_40, start=5, goal=34, path=[5,16,37,12,34]) ###Output _____no_output_____ ###Markdown The Algorithm Writing your algorithmThe algorithm written will be responsible for generating a `path` like the one passed into `show_map` above. In fact, when called with the same map, start and goal, as above you algorithm should produce the path `[5, 16, 37, 12, 34]`. However you must complete several methods before it will work.```bash> PathPlanner(map_40, 5, 34).path[5, 16, 37, 12, 34]``` Your TurnImplement the following functions to get your search algorithm running smoothly! Data StructuresThe next few functions requre you to decide on data structures to use - lists, sets, dictionaries, etc. Make sure to think about what would work most efficiently for each of these. Some can be returned as just an empty data structure (see `create_closedSet()` for an example), while others should be initialized with one or more values within. ###Code # Do not change this cell # When you write your methods correctly this cell will execute # without problems class PathPlanner(): """Construct a PathPlanner Object""" def __init__(self, M, start=None, goal=None): """ """ self.map = M self.start= start self.goal = goal self.closedSet = self.create_closedSet() if goal != None and start != None else None self.openSet = self.create_openSet() if goal != None and start != None else None self.cameFrom = self.create_cameFrom() if goal != None and start != None else None self.gScore = self.create_gScore() if goal != None and start != None else None self.fScore = self.create_fScore() if goal != None and start != None else None self.path = self.run_search() if self.map and self.start != None and self.goal != None else None def reconstruct_path(self, current): """ Reconstructs path after search """ total_path = [current] while current in self.cameFrom.keys(): current = self.cameFrom[current] total_path.append(current) return total_path def _reset(self): """Private method used to reset the closedSet, openSet, cameFrom, gScore, fScore, and path attributes""" self.closedSet = None self.openSet = None self.cameFrom = None self.gScore = None self.fScore = None self.path = self.run_search() if self.map and self.start and self.goal else None def run_search(self): """ """ if self.map == None: raise(ValueError, "Must create map before running search. Try running PathPlanner.set_map(start_node)") if self.goal == None: raise(ValueError, "Must create goal node before running search. Try running PathPlanner.set_goal(start_node)") if self.start == None: raise(ValueError, "Must create start node before running search. Try running PathPlanner.set_start(start_node)") self.closedSet = self.closedSet if self.closedSet != None else self.create_closedSet() self.openSet = self.openSet if self.openSet != None else self.create_openSet() self.cameFrom = self.cameFrom if self.cameFrom != None else self.create_cameFrom() self.gScore = self.gScore if self.gScore != None else self.create_gScore() self.fScore = self.fScore if self.fScore != None else self.create_fScore() while not self.is_open_empty(): current = self.get_current_node() if current == self.goal: self.path = [x for x in reversed(self.reconstruct_path(current))] return self.path else: self.openSet.remove(current) self.closedSet.add(current) print("openSet: ", self.openSet) for neighbor in self.get_neighbors(current): if neighbor in self.closedSet: continue # Ignore the neighbor which is already evaluated. if not neighbor in self.openSet: # Discover a new node self.openSet.add(neighbor) # The distance from start to a neighbor #the "dist_between" function may vary as per the solution requirements. if self.get_tentative_gScore(current, neighbor) >= self.get_gScore(neighbor): continue # This is not a better path. # This path is the best until now. Record it! self.record_best_path_to(current, neighbor) print("No Path Found") self.path = None return False def create_closedSet(self): """ Creates and returns a data structure suitable to hold the set of nodes already evaluated""" # EXAMPLE: return a data structure suitable to hold the set of nodes already evaluated return set() def create_openSet(self): """ Creates and returns a data structure suitable to hold the set of currently discovered nodes that are not evaluated yet. Initially, only the start node is known.""" if self.start == None: raise(ValueError, "Must create start node before creating an open set. Try running PathPlanner.set_start(start_node)") return set([self.start]) # TODO: return a data structure suitable to hold the set of currently discovered nodes # that are not evaluated yet. Make sure to include the start node. def create_cameFrom(self): """Creates and returns a data structure that shows which node can most efficiently be reached from another, for each node.""" # TODO: return a data structure that shows which node can most efficiently be reached from another, # for each node. if self.start == None: raise(ValueError, "Must create start node before creating an cameFrom dictionary. Try running PathPlanner.set_start(start_node)") return dict() def create_gScore(self): """Creates and returns a data structure that holds the cost of getting from the start node to that node, for each node. The cost of going from start to start is zero.""" newGScore = { key: math.inf for key in self.map.intersections } # Init dict with infinity for each node newGScore[self.start] = 0 # Start node gScore is zero return newGScore def create_fScore(self): """Creates and returns a data structure that holds the total cost of getting from the start node to the goal by passing by that node, for each node. That value is partly known, partly heuristic. For the first node, that value is completely heuristic.""" # TODO: return a data structure that holds the total cost of getting from the start node to the goal # by passing by that node, for each node. That value is partly known, partly heuristic. # For the first node, that value is completely heuristic. The rest of the node's value should be # set to infinity. newFScore = dict({ key: math.inf for key in self.map.intersections }) newFScore[self.start] = self.heuristic_cost_estimate(self.start) return newFScore ###Output _____no_output_____ ###Markdown Set certain variablesThe below functions help set certain variables if they weren't a part of initializating our `PathPlanner` class, or if they need to be changed for anothe reason. ###Code def set_map(self, M): """Method used to set map attribute """ self._reset(self) self.start = None self.goal = None self.map = M def set_start(self, start): """Method used to set start attribute """ self._reset(self) self.goal = None self.start = start ###Output _____no_output_____ ###Markdown PathPlanner classThe below class is already partly implemented for you - you will implement additional functions that will also get included within this class further below.Let's very briefly walk through each part below.`__init__` - We initialize our path planner with a map, M, and typically a start and goal node. If either of these are `None`, the rest of the variables here are also set to none. If you don't have both a start and a goal, there's no path to plan! The rest of these variables come from functions you will soon implement. - `closedSet` includes any explored/visited nodes. - `openSet` are any nodes on our frontier for potential future exploration. - `cameFrom` will hold the previous node that best reaches a given node- `gScore` is the `g` in our `f = g + h` equation, or the actual cost to reach our current node- `fScore` is the combination of `g` and `h`, i.e. the `gScore` plus a heuristic; total cost to reach the goal- `path` comes from the `run_search` function, which is already built for you.`reconstruct_path` - This function just rebuilds the path after search is run, going from the goal node backwards using each node's `cameFrom` information.`_reset` - Resets *most* of our initialized variables for PathPlanner. This *does not* reset the map, start or goal variables, for reasons which you may notice later, depending on your implementation.`run_search` - This does a lot of the legwork to run search once you've implemented everything else below. First, it checks whether the map, goal and start have been added to the class. Then, it will also check if the other variables, other than `path` are initialized (note that these are only needed to be re-run if the goal or start were not originally given when initializing the class, based on what we discussed above for `__init__`.From here, we use a function you will implement, `is_open_empty`, to check that there are still nodes to explore (you'll need to make sure to feed `openSet` the start node to make sure the algorithm doesn't immediately think there is nothing to open!). If we're at our goal, we reconstruct the path. If not, we move our current node from the frontier (`openSet`) and into explored (`closedSet`). Then, we check out the neighbors of the current node, check out their costs, and plan our next move.This is the main idea behind A*, but none of it is going to work until you implement all the relevant parts, which will be included below after the class code. ###Code def set_goal(self, goal): """Method used to set goal attribute """ self._reset(self) self.goal = goal ###Output _____no_output_____ ###Markdown Get node informationThe below functions concern grabbing certain node information. In `is_open_empty`, you are checking whether there are still nodes on the frontier to explore. In `get_current_node()`, you'll want to come up with a way to find the lowest `fScore` of the nodes on the frontier. In `get_neighbors`, you'll need to gather information from the map to find the neighbors of the current node. ###Code def is_open_empty(self): """returns True if the open set is empty. False otherwise. """ return self.openSet == None or len(self.openSet) < 1 def get_current_node(self): """ Returns the node in the open set with the lowest value of f(node).""" smallestFScoreNode = None smallestFScore = 0 for node in self.openSet: if smallestFScoreNode == None: # First node always has the smallest distance smallestFScoreNode = node smallestFScore = self.calculate_fscore(node) else: newFScore = self.calculate_fscore(node) if newFScore < smallestFScore: # Found a smallest FScore-Node smallestFScore = newFScore smallestFScoreNode = node return smallestFScoreNode # get index of lowest entry and return node based on the info def get_neighbors(self, node): """Returns the neighbors of a node""" return self.map.roads[node] ###Output _____no_output_____ ###Markdown Scores and CostsBelow, you'll get into the main part of the calculation for determining the best path - calculating the various parts of the `fScore`. ###Code def get_gScore(self, node): """Returns the g Score of a node""" return self.gScore[node] # Return gScore which was saved in gScore (dict) earlier def distance(self, node_1, node_2): """ Computes the Euclidean L2 Distance""" # Simple Pythagoras => a2 + b2 = c2 node1 = self.map.intersections[node_1] # get Node 1 to access x,y easier node2 = self.map.intersections[node_2] # get Node 2 to access x,y easier # Calculate distance (Euclidean L2 Distance) between both given nodes using pythagoras return math.sqrt(((node2[0] - node1[0]) ** 2) + ((node2[1] - node1[1]) ** 2)) def get_tentative_gScore(self, current, neighbor): """Returns the tentative g Score of a node""" # TODO: Return the g Score of the current node # plus distance from the current node to it's neighbors return self.gScore[current] + self.distance(current, neighbor) def heuristic_cost_estimate(self, node): """ Returns the heuristic cost estimate of a node """ # in this case: heuristic is the Euclidean L2 distance from the node to the goal return self.distance(node, self.goal) def calculate_fscore(self, node): """Calculate the f score of a node. """ # TODO: Calculate and returns the f score of a node. # REMEMBER F = G + H return self.heuristic_cost_estimate(node) + self.gScore[node] ###Output _____no_output_____ ###Markdown Recording the best pathNow that you've implemented the various functions on scoring, you can record the best path to a given neighbor node from the current node! ###Code def record_best_path_to(self, current, neighbor): """Record the best path to a node """ # TODO: Record the best path to a node, by updating cameFrom, gScore, and fScore self.cameFrom[neighbor] = current # save previous node for path-finding later self.gScore[neighbor] = self.get_tentative_gScore(current, neighbor) # set neighbors gScore self.fScore[neighbor] = self.calculate_fscore(neighbor) # set neighbors fScore ###Output _____no_output_____ ###Markdown Associating your functions with the `PathPlanner` classTo check your implementations, we want to associate all of the above functions back to the `PathPlanner` class. Python makes this easy using the dot notation (i.e. `PathPlanner.myFunction`), and setting them equal to your function implementations. Run the below code cell for this to occur.*Note*: If you need to make further updates to your functions above, you'll need to re-run this code cell to associate the newly updated function back with the `PathPlanner` class again! ###Code # Associates implemented functions with PathPlanner class PathPlanner.create_closedSet = create_closedSet PathPlanner.create_openSet = create_openSet PathPlanner.create_cameFrom = create_cameFrom PathPlanner.create_gScore = create_gScore PathPlanner.create_fScore = create_fScore PathPlanner.set_map = set_map PathPlanner.set_start = set_start PathPlanner.set_goal = set_goal PathPlanner.is_open_empty = is_open_empty PathPlanner.get_current_node = get_current_node PathPlanner.get_neighbors = get_neighbors PathPlanner.get_gScore = get_gScore PathPlanner.distance = distance PathPlanner.get_tentative_gScore = get_tentative_gScore PathPlanner.heuristic_cost_estimate = heuristic_cost_estimate PathPlanner.calculate_fscore = calculate_fscore PathPlanner.record_best_path_to = record_best_path_to ###Output _____no_output_____ ###Markdown Preliminary TestThe below is the first test case, just based off of one set of inputs. If some of the functions above aren't implemented yet, or are implemented incorrectly, you likely will get an error from running this cell. Try debugging the error to help you figure out what needs further revision! ###Code planner = PathPlanner(map_40, 5, 34) show_map(map_40, start=5, goal=34, path=planner.path) path = planner.path if path == [5, 16, 37, 12, 34]: print("great! Your code works for these inputs!") else: print("something is off, your code produced the following:") print(path) ###Output openSet: set() openSet: {32, 14} openSet: {32, 14, 30} openSet: {32, 14, 22, 29, 30} ###Markdown VisualizeOnce the above code worked for you, let's visualize the results of your algorithm! ###Code # Visualize your the result of the above test! You can also change start and goal here to check other paths start = 5 goal = 34 show_map(map_40, start=start, goal=goal, path=PathPlanner(map_40, start, goal).path) ###Output openSet: set() openSet: {32, 14} openSet: {32, 14, 30} openSet: {32, 14, 22, 29, 30} ###Markdown Testing your CodeIf the code below produces no errors, your algorithm is behaving correctly. You are almost ready to submit! Before you submit, go through the following submission checklist:**Submission Checklist**1. Does my code pass all tests?2. Does my code implement `A*` search and not some other search algorithm?3. Do I use an **admissible heuristic** to direct search efforts towards the goal?4. Do I use data structures which avoid unnecessarily slow lookups?When you can answer "yes" to all of these questions, and also have answered the written questions below, submit by pressing the Submit button in the lower right! ###Code from test import test test(PathPlanner) ###Output openSet: set() openSet: {32, 14} openSet: {32, 14, 30} openSet: {32, 14, 22, 29, 30} openSet: set() openSet: {30, 14} openSet: {14} openSet: {16} openSet: {5} openSet: {5} openSet: {5, 22, 29} openSet: {17, 5, 22, 28, 29, 31} openSet: {0, 5, 22, 25, 26, 28, 29, 31} openSet: {0, 1, 5, 15, 18, 22, 25, 26, 28, 29, 31} All tests pass! Congratulations!
data_ml/notebooks/PreparePodCastDataset.ipynb
###Markdown Fetch Annotated data from Blob ###Code # TODO: automate this part as well annotations_dir = "../data/AnnotationRound2/OS_7_05_2019_Curated_chunked_annotations" positives_dir = "../data/AnnotationRound2/OS_7_05_2019_Curated_chunked" negatives_dir = "../data/AnnotationRound2/OS_7_05_2019_Curated_chunked_negatives" target_data_dir = "../data/DataArchives/Round2_OS_07_05" ###Output _____no_output_____ ###Markdown Parse and make dataset ###Code # annotations, positive wavs, negative wavs, target directory # parse JSON annotations to TSV, add annotations for negative chunks # (optional) merge with a previous dataset # (optional) split a held-out dev set np.random.seed(10) df, wavfile_map = src.datautils.make_dataset(annotations_dir, positives_dir, negatives_dir, target_data_dir, data_source="Orcasound_PodCast_Round2", location="orcasound_lab") df.head() # inspect a few random annotations row = df.iloc[np.random.randint(len(df))]; print(row) af = src.dataloader.AudioFile(Path(positives_dir)/row["wav_filename"], src.params.SAMPLE_RATE) start_idx = int(row["start_time_s"]*src.params.SAMPLE_RATE) end_idx = int(start_idx + row["duration_s"]*src.params.SAMPLE_RATE) _ = plt.imshow(af.get_window(start_idx, end_idx).T) ###Output wav_filename 1562344334_0005.wav start_time_s 21.3991 duration_s 2.60547 location orcasound_lab date 2019-07-05 data_source Orcasound_PodCast_Round2 data_source_id 1562344334 Name: 344, dtype: object ###Markdown Load with Dataloader and add mean, invstd ###Code wav_dataset = src.dataloader.AudioFileDataset(Path(target_data_dir)/"wav",Path(target_data_dir)/"train.tsv") num_windows = len(wav_dataset); num_hrs = num_windows*src.params.WINDOW_S/3600 print("Dataset size: {} windows, {} hrs".format(num_windows, num_hrs)) labels = [l[2] for l in wav_dataset.windows] _ = sns.countplot(labels) src.datautils.compute_dataset_stats(target_data_dir, wav_dataset) ###Output 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1539/1539 [00:06<00:00, 227.38it/s] 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1539/1539 [00:06<00:00, 230.20it/s]
01_data-types.ipynb
###Markdown Data Types in Python [**Reference**](https://realpython.com/python-data-types/) Types in Python* Numbers: integers (`int`), floating-point numbers [real numbers] (`float`), complex numbers (`complex`) * `float` * Decimal notation: `400`, `-400` * Scientific notation * `4e2`, `4e+2` * `4e-2`* Characters: strings (`str`) * Double qoutes (`" "`), single quotes (`' '`) * Escape sequences in strings * `\'`, `\"`, `\\`, `\n` * `format()` * Raw strings (`r' '`, `R' '`) * Triple-quoted strings (`''' '''`)* Boolean: {`True`,`False`} (`bool`)* Null: `NoneType`_Strictly speaking, in Python, there are only class types. The `int` class, `float` class, `str` class, and so on._ ###Code type(1) 4e+34 type(1.0) type(1.) type(0.1) type(.1) type(1+2j) type(1.1-2.5j) type(j) type(1j) type('a') type('string') type(True) type(False) type(None) ###Output _____no_output_____
Ten_Problems/Problem_07.ipynb
###Markdown Diffusion with Chemical Reaction in a One-Dimensional SlabThis is the seventh problem of the famous set of [Ten Problems in Chemical Engineering](https://www.polymath-software.com/ASEE/Tenprobs.pdf). Here, the goal is to solve second order ordinary differential equations with two point boundary conditionsJacob Albrecht, 2019 Problem SetupFor a first order irreversible reaction ($A \rightarrow B$) occuring in a 1D domain, the concentration of species $A$ is governed by the differential equation:$$\frac{d^2C_A}{dz^2} = \frac{k}{D_{AB}}C_A$$at location $z = 0$, the boundary condition is:$$C_A = C_{A0}$$at the other edge of the domain, $z = L$, the condition is:$$\frac{dC_A}{dz} = 0$$ Problem Tasksa)Numerically solve the differential equation with the boundary conditions with $C_{A0} = 0.2 kg\cdot mol/m^3$$k = 10^{-3} s^{-1}$$D_{AB} = 1.2\cdot10^{-9} m^2/s$ $L = 10^{-3} m$ This solution should utilize an ODE solver with a shooting technique and employ Newton’s method or some other technique for converging on the boundary condition.b) Compare the concentration profiles over the thickness as predicted by the numerical solution of (a) with the analytical solution of the differential equation. Solutions Solution to part a)Rewriting the second-order differential equation and boundary conditions as a set of first-order equations will allow for the use of the scipy integration functions, following [the approach here](https://polymath-software.com/ASEE/Matlab/Matlab.pdf).$$y_2 = \frac{dC_A}{dz}$$At $z = 0$, $y_2$ will have an unknown value $\alpha$. Define new quantities $y_3$ and $y_4$ to incorporate the boundary conditions and to solve for $\alpha$ by the shooting technique$$y_3 = \frac{\partial C_A}{\partial \alpha}$$$$y_4 = \frac{dy_3}{dz}$$$$\frac{dy_4}{dz} = \frac{ky_3}{D_{AB}}$$The initial conditions for $C_A$, $y_2$, $y_3$, and $y_4$ are $C_{A0}$, $\alpha$, $0$, and $1$, respectively ###Code import numpy as np from scipy.optimize import newton from scipy.integrate import solve_ivp import matplotlib.pyplot as plt %matplotlib inline # define function for solving the expanded ode: def odefun(t,y): dy = np.zeros(4) dy[0] = y[1] dy[1] = k*y[0]/Dab dy[2] = y[3] dy[3] = k*y[2]/Dab return(dy) # define function for optimizing α def objfun(alpha): y0 = np.array([CA0,alpha,0,1]) sol = solve_ivp(odefun,tspan,y0) err = sol.y[1,-1]/sol.y[3,-1] return(err) # define constants: L=1e-3 CA0 = 0.2 k = 1e-2 Dab = 1.210e-9 alpha=0 # set integration range: tspan = [0,L] # run optimization opt_α = newton(objfun,alpha) # use optimal α to calculate profile: y0 = np.array([CA0,opt_α,0,1]) t_eval = np.linspace(0,L,num=25) numerical_sol = solve_ivp(odefun,tspan,y0,t_eval=t_eval) err = numerical_sol.y[1,-1]/numerical_sol.y[3,-1] print('Optimal \u03B1: {:.4}'.format(opt_α)) # unicode is ok with python print('Final error: {:.2}'.format(err)) plt.plot(numerical_sol.t,numerical_sol.y[0,:],'o') plt.xlabel('z') plt.ylabel('$C_A$'); ###Output _____no_output_____ ###Markdown Solution to part b)Instead of using the analytical expression given in the problem statement, we will use `sympy` to calculate the analytical solution from the differential equation and boundary conditions. ###Code from sympy import symbols, Function, Eq, dsolve, Derivative, lambdify k, D_AB, z, L, C_A0 = symbols('k D_AB z L C_A0') C = Function('C') deq = Eq(Derivative(C(z),(z,2))-k/D_AB*C(z)) ###Output _____no_output_____ ###Markdown Inspect the differential equation from sympy: ###Code deq ###Output _____no_output_____ ###Markdown Solve the differential equation with the boundary conditions and view the output: ###Code analytical_sol = dsolve(deq,ics={C(0):C_A0, Derivative(C(L),L):0}) analytical_sol ###Output _____no_output_____ ###Markdown Substitute in the constant values from the problem statement: ###Code C = analytical_sol.subs({C_A0:0.2,L:1e-3,D_AB:1.210e-9,k:1e-2}) C # convert the sympy expression to numpy for plotting lam_C = lambdify(z,C.rhs, 'numpy') lam_z = np.linspace(0,1e-3,num=100) plt.plot(lam_z,lam_C(lam_z),label= 'Analytical') plt.scatter(numerical_sol.t,numerical_sol.y[0,:],facecolors='none',edgecolors='b',label='Numeric') plt.xlabel('z') plt.ylabel('$C_A$') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown The analytical and numeric solutions match perfectly. Calculus FTW. Reference“The Use of Mathematical Software packages in Chemical Engineering”, Michael B. Cutlip, John J. Hwalek, Eric H.Nuttal, Mordechai Shacham, Workshop Material from Session 12, Chemical Engineering Summer School, Snowbird,Utah, Aug., 1997. ###Code %load_ext watermark %watermark -v -p scipy,matplotlib,numpy,sympy ###Output CPython 3.7.3 IPython 7.6.1 scipy 1.3.0 matplotlib 3.1.0 numpy 1.16.4 sympy 1.4
baseline_lstm_medium.ipynb
###Markdown ###Code import pandas as pd import numpy as np from keras.models import Sequential from keras.layers import Dense, Dropout, LSTM from keras.optimizers import Adam from sklearn.preprocessing import StandardScaler from datetime import datetime,timedelta import datetime data = pd.read_excel('/content/Event.xlsx') df_medium = data[['Date','MEDIUM']] df_medium.head() med_data = df_medium['MEDIUM'].values med_data_copy = med_data.copy() med_for_scale = med_data.reshape(-1,1) scaler = StandardScaler() scaler = scaler.fit(med_for_scale) df_med = scaler.transform(med_for_scale) df_med Train = [] Test = [] n_future = 1 n_past = 40 for i in range(n_past,len(df_med),n_future+1): Train.append(df_med[i-n_past:i,0:df_med.shape[1]]) Test.append(df_med[i + n_future - 1:i + n_future,0]) Train,Test = np.array(Train),np.array(Test) ''' size = len(df_med) training_size = int(size - (0.8*size)) x_train,y_train = Train[:training_size],Train[training_size:] x_test,y_test = Test[:training_size],Test[training_size:] ''' #Building the model model = Sequential() model.add(LSTM(64,activation = 'relu',input_shape = (Train.shape[1],Train.shape[2]),return_sequences=True)) model.add(LSTM(32,activation='relu',return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM(16,activation='relu')) model.add(Dropout(0.2)) model.add(Dense(Test.shape[1])) model.compile(optimizer='adam',loss = 'mse') model.summary() history = model.fit(Train,Test,epochs=15,batch_size=16,validation_split=0.25,verbose=2) model.save('baseline.h5') import matplotlib.pyplot as plt plt.plot(history.history['loss'],label = 'training_loss') plt.plot(history.history['val_loss'],label = 'validation_loss') plt.legend() train_data_dates = df_medium['Date'] n_future = 40 forecast_period_dates = pd.date_range(list(train_data_dates)[-1],periods=n_future,freq='1d').tolist() forecast = model.predict(Train[-n_future:]) forecast_dates = [] for i in forecast_period_dates: forecast_dates.append(i.date()) y_pred = scaler.inverse_transform(forecast) y_pred dates = pd.DataFrame(forecast_dates,columns=['Date']) predi = pd.DataFrame(y_pred,columns=['Medium']) predi['Medium'] = (predi['Medium']).astype(int) med_predicted = pd.concat([dates,predi],axis = 1) med_predicted.head() med_predicted.to_excel('baseline_lstm.xlsx') ###Output _____no_output_____