path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
code/DreamWorks_code/Shrek3_DataFrame.ipynb
###Markdown Shrek the Third DataFrameRecall from the [Analyzing White Space code](https://github.com/Data-Science-for-Linguists-2019/Animated-Movie-Gendered-Dialogue/blob/master/code/DreamWorks_code/Analyzing_White_Space.ipynb) that this movie only has three types of white space: 10, 11, or 26 spaces. This means it doesn't fit well into out streamline. Let's look at this case by itself. ###Code shrek3 = open(r'C:\Users\cassi\Desktop\Data_Science\Animated-Movie-Gendered-Dialogue\private\imsdb_raw_nov_2015\Animation\shrekthethird.txt') shrek3_script = shrek3.read() shrek3.close() import re import pandas as pd shrek3_script[:500] shrek3_script[246:300] shrek3_script = shrek3_script[246:] def white_space_count(script_name): white_space = re.findall(" {3,}", script_name) len_w_s = [len(x) for x in white_space] print(len_w_s[:100]) #print(len_w_s.index(25)) print(set(len_w_s)) for num in set(len_w_s): print(num, "white spaces appear", len_w_s.count(num), "times") white_space_count(shrek3_script) ###Output [10, 10, 10, 10, 26, 11, 11, 11, 11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 26, 11, 11, 26, 11, 10, 10, 26, 11, 10, 10, 10, 26, 11, 11, 10, 11, 26, 11, 11, 11, 10, 26, 11, 11, 10, 10, 10, 26, 11, 10, 10, 26, 26, 11, 26, 11, 10, 10, 10, 26, 11, 11, 11, 10, 26, 26, 11, 26, 11, 10, 10, 26, 11, 11, 10, 10, 10, 26, 26, 11, 10, 10, 10, 10, 10, 10, 26, 11, 11, 26, 11, 11, 10, 10, 26, 11, 10, 10, 10] 4365 {11, 25, 10, 26} 11 white spaces appear 1783 times 25 white spaces appear 1 times 10 white spaces appear 1554 times 26 white spaces appear 1028 times ###Markdown Hmmm, one random grouping of 25 white spaces.... ###Code shrek3_script[:2000] shrek3_script[4000:6000] #10 after scene header #10 between scene header descriptions #26 before prince charming #11 between all his lines #10 after his last line and new scene description begins #11 before those pesky final screening script lines #removing those final screening script lines titles = re.findall(r"\n\n {1,}Shrek the Third - Final Screening Script [0-9]+\.", shrek3_script) len(titles) shrek3_script = re.sub(r"\n\n {1,}Shrek the Third - Final Screening Script [0-9]+\.", '', shrek3_script) white_space_count(shrek3_script) 1668+1+1552+1028 ###Output _____no_output_____ ###Markdown Removing parentheticals off the bat ###Code def no_parentheses(script): new_script = re.sub(r" *\([^\)]*\)", '', script) return new_script par = re.findall(r" *\([^\)]*\)", shrek3_script) len(par) shrek3_script_2 = no_parentheses(shrek3_script) len(shrek3_script) len(shrek3_script_2) white_space_count(shrek3_script_2) 1602+1+1541+927 4249 - 4071 # I feel like this doesn't add up, but okay #since some items in par actually have multiple lone white spaces, but the new white space count isn't as low as that number #par ###Output _____no_output_____ ###Markdown Attempting to Find actual lines ###Code id_lines = re.findall(r"\n\n {25,}(\b[A-Z]['A-Z ]{1,})+\n\n", shrek3_script_2) len(id_lines) sorted(set(id_lines)) %pprint ###Output Pretty printing has been turned OFF ###Markdown Wow! This captured almost everything on the first try! The scene headers in this script aren't capitalized except for INT. or EXT., which contain punctuation (not included in my regular expression!). There is just one problem -- when Artie has an all capitalized line that extends over line breaks (which means the middle of it has no punctuation and is caught by my regular expression. This can be fixed by lowering that line (which will be done eventually anyway) ###Code new_scene = re.findall(r"\n\n {10,}(\b[A-Z]['A-Z ]{1,})+\n\n", shrek3_script_2) len(new_scene) sorted(set(new_scene)) new_scene_2 = re.findall(r"\n\n {10,}(\b[A-Z]['A-Z ]{1,})+\n\n", shrek3_script_2) len(new_scene_2) sorted(set(new_scene_2)) shrek3_script_3 = re.sub('BY A MONSTER TRYING TO RELATE TO', 'by a monster trying to relate to', shrek3_script_2) new_line = re.findall(r"\n\n {10,}(\b[A-Z]['A-Z ]{1,})+\n\n", shrek3_script_3) len(sorted(set(new_line))) shrek3_script_marked = re.sub(r"\n\n {10,}(\b[A-Z]['A-Z ]{1,})+\n\n", r"_NEWLINE_\1_", shrek3_script_3) shrek3_script_marked[:1000] cuts = re.findall(r"\n\n {10,}(\b[A-Z]['A-Z ]{1,})+:", shrek3_script_marked) len(cuts) cuts shrek_3_script_marked = re.sub(r"\n\n {10,}(\b[A-Z]['A-Z ]{1,})+:", '', shrek3_script_marked) #Now let's split it! script_lines = shrek_3_script_marked.split("_NEWLINE_") len(script_lines) script_lines = script_lines[1:] script_lines[:10] testing = script_lines[:50] testing_list = [] line_test = [] for line in testing: testing_list.extend(re.findall(r"\n\n {10}\w", line)) marker = re.sub(r"\n\n {10}\w", '_ENDLINE_', line) line_test.append(marker) keep_lines = [] for line in line_test: real_line = line.split('_ENDLINE_') keep_lines.append(real_line[0]) testing_list for line in line_test: print(line) keep_lines testing ## Seems to have worked! Let's generalize it to whole script! line_id = [] for line in script_lines: marker = re.sub(r"\n\n {10}\w", '_ENDLINE_', line) line_id.append(marker) real_script_lines = [] for line in line_id: real_line = line.split('_ENDLINE_') real_script_lines.append(real_line[0]) len(real_script_lines) #should be 871! real_script_lines[:10] real_script_lines[-10:] len(" ") real_script_lines ##removing white space ## Remember, all the white space here is 11 spaces long! white_space = [] for line in real_script_lines: white_space.extend(re.findall(r"\n\n {11}", line)) len(white_space) ###Output _____no_output_____ ###Markdown Splitting Speaker/Text and creating a dataframe ###Code speaker_text = [] for line in real_script_lines: line_no_space = re.sub(r"\n\n {11}", ' ', line) line_tup = line_no_space.split('_') line_tup[0] = line_tup[0].lower().strip() line_tup[1] = line_tup[1].lower().strip() speaker_text.append(tuple(line_tup)) len(speaker_text) speaker_text[:10] speaker_text[-10:] #We don't need "The End" speaker_text = speaker_text[:-1] speaker_text[-10:] ###Output _____no_output_____ ###Markdown Data Frame Time! ###Code shrek_the_third = pd.DataFrame(speaker_text, columns=["Speaker", "Text"]) shrek_the_third.head() shrek_the_third.to_pickle(r'..\..\..\Animated-Movie-Gendered-Dialogue\private\shrek3_lines.pkl') ###Output _____no_output_____
Big-Data-Clusters/CU6/Public/content/common/sop033-azdata-logout.ipynb
###Markdown SOP033 - azdata logout======================Use the azdata command line interface to logout of a Big Data Cluster.Steps----- Common functionsDefine helper functions used in this notebook. ###Code # Define `run` function for transient fault handling, hyperlinked suggestions, and scrolling updates on Windows import sys import os import re import json import platform import shlex import shutil import datetime from subprocess import Popen, PIPE from IPython.display import Markdown retry_hints = {} # Output in stderr known to be transient, therefore automatically retry error_hints = {} # Output in stderr where a known SOP/TSG exists which will be HINTed for further help install_hint = {} # The SOP to help install the executable if it cannot be found first_run = True rules = None debug_logging = False def run(cmd, return_output=False, no_output=False, retry_count=0, base64_decode=False, return_as_json=False): """Run shell command, stream stdout, print stderr and optionally return output NOTES: 1. Commands that need this kind of ' quoting on Windows e.g.: kubectl get nodes -o jsonpath={.items[?(@.metadata.annotations.pv-candidate=='data-pool')].metadata.name} Need to actually pass in as '"': kubectl get nodes -o jsonpath={.items[?(@.metadata.annotations.pv-candidate=='"'data-pool'"')].metadata.name} The ' quote approach, although correct when pasting into Windows cmd, will hang at the line: `iter(p.stdout.readline, b'')` The shlex.split call does the right thing for each platform, just use the '"' pattern for a ' """ MAX_RETRIES = 5 output = "" retry = False global first_run global rules if first_run: first_run = False rules = load_rules() # When running `azdata sql query` on Windows, replace any \n in """ strings, with " ", otherwise we see: # # ('HY090', '[HY090] [Microsoft][ODBC Driver Manager] Invalid string or buffer length (0) (SQLExecDirectW)') # if platform.system() == "Windows" and cmd.startswith("azdata sql query"): cmd = cmd.replace("\n", " ") # shlex.split is required on bash and for Windows paths with spaces # cmd_actual = shlex.split(cmd) # Store this (i.e. kubectl, python etc.) to support binary context aware error_hints and retries # user_provided_exe_name = cmd_actual[0].lower() # When running python, use the python in the ADS sandbox ({sys.executable}) # if cmd.startswith("python "): cmd_actual[0] = cmd_actual[0].replace("python", sys.executable) # On Mac, when ADS is not launched from terminal, LC_ALL may not be set, which causes pip installs to fail # with: # # UnicodeDecodeError: 'ascii' codec can't decode byte 0xc5 in position 4969: ordinal not in range(128) # # Setting it to a default value of "en_US.UTF-8" enables pip install to complete # if platform.system() == "Darwin" and "LC_ALL" not in os.environ: os.environ["LC_ALL"] = "en_US.UTF-8" # When running `kubectl`, if AZDATA_OPENSHIFT is set, use `oc` # if cmd.startswith("kubectl ") and "AZDATA_OPENSHIFT" in os.environ: cmd_actual[0] = cmd_actual[0].replace("kubectl", "oc") # To aid supportability, determine which binary file will actually be executed on the machine # which_binary = None # Special case for CURL on Windows. The version of CURL in Windows System32 does not work to # get JWT tokens, it returns "(56) Failure when receiving data from the peer". If another instance # of CURL exists on the machine use that one. (Unfortunately the curl.exe in System32 is almost # always the first curl.exe in the path, and it can't be uninstalled from System32, so here we # look for the 2nd installation of CURL in the path) if platform.system() == "Windows" and cmd.startswith("curl "): path = os.getenv('PATH') for p in path.split(os.path.pathsep): p = os.path.join(p, "curl.exe") if os.path.exists(p) and os.access(p, os.X_OK): if p.lower().find("system32") == -1: cmd_actual[0] = p which_binary = p break # Find the path based location (shutil.which) of the executable that will be run (and display it to aid supportability), this # seems to be required for .msi installs of azdata.cmd/az.cmd. (otherwise Popen returns FileNotFound) # # NOTE: Bash needs cmd to be the list of the space separated values hence shlex.split. # if which_binary == None: which_binary = shutil.which(cmd_actual[0]) # Display an install HINT, so the user can click on a SOP to install the missing binary # if which_binary == None: if user_provided_exe_name in install_hint and install_hint[user_provided_exe_name] is not None: display(Markdown(f'HINT: Use [{install_hint[user_provided_exe_name][0]}]({install_hint[user_provided_exe_name][1]}) to resolve this issue.')) raise FileNotFoundError(f"Executable '{cmd_actual[0]}' not found in path (where/which)") else: cmd_actual[0] = which_binary start_time = datetime.datetime.now().replace(microsecond=0) print(f"START: {cmd} @ {start_time} ({datetime.datetime.utcnow().replace(microsecond=0)} UTC)") print(f" using: {which_binary} ({platform.system()} {platform.release()} on {platform.machine()})") print(f" cwd: {os.getcwd()}") # Command-line tools such as CURL and AZDATA HDFS commands output # scrolling progress bars, which causes Jupyter to hang forever, to # workaround this, use no_output=True # # Work around a infinite hang when a notebook generates a non-zero return code, break out, and do not wait # wait = True try: if no_output: p = Popen(cmd_actual) else: p = Popen(cmd_actual, stdout=PIPE, stderr=PIPE, bufsize=1) with p.stdout: for line in iter(p.stdout.readline, b''): line = line.decode() if return_output: output = output + line else: if cmd.startswith("azdata notebook run"): # Hyperlink the .ipynb file regex = re.compile(' "(.*)"\: "(.*)"') match = regex.match(line) if match: if match.group(1).find("HTML") != -1: display(Markdown(f' - "{match.group(1)}": "{match.group(2)}"')) else: display(Markdown(f' - "{match.group(1)}": "[{match.group(2)}]({match.group(2)})"')) wait = False break # otherwise infinite hang, have not worked out why yet. else: print(line, end='') if rules is not None: apply_expert_rules(line) if wait: p.wait() except FileNotFoundError as e: if install_hint is not None: display(Markdown(f'HINT: Use {install_hint} to resolve this issue.')) raise FileNotFoundError(f"Executable '{cmd_actual[0]}' not found in path (where/which)") from e exit_code_workaround = 0 # WORKAROUND: azdata hangs on exception from notebook on p.wait() if not no_output: for line in iter(p.stderr.readline, b''): try: line_decoded = line.decode() except UnicodeDecodeError: # NOTE: Sometimes we get characters back that cannot be decoded(), e.g. # # \xa0 # # For example see this in the response from `az group create`: # # ERROR: Get Token request returned http error: 400 and server # response: {"error":"invalid_grant",# "error_description":"AADSTS700082: # The refresh token has expired due to inactivity.\xa0The token was # issued on 2018-10-25T23:35:11.9832872Z # # which generates the exception: # # UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa0 in position 179: invalid start byte # print("WARNING: Unable to decode stderr line, printing raw bytes:") print(line) line_decoded = "" pass else: # azdata emits a single empty line to stderr when doing an hdfs cp, don't # print this empty "ERR:" as it confuses. # if line_decoded == "": continue print(f"STDERR: {line_decoded}", end='') if line_decoded.startswith("An exception has occurred") or line_decoded.startswith("ERROR: An error occurred while executing the following cell"): exit_code_workaround = 1 # inject HINTs to next TSG/SOP based on output in stderr # if user_provided_exe_name in error_hints: for error_hint in error_hints[user_provided_exe_name]: if line_decoded.find(error_hint[0]) != -1: display(Markdown(f'HINT: Use [{error_hint[1]}]({error_hint[2]}) to resolve this issue.')) # apply expert rules (to run follow-on notebooks), based on output # if rules is not None: apply_expert_rules(line_decoded) # Verify if a transient error, if so automatically retry (recursive) # if user_provided_exe_name in retry_hints: for retry_hint in retry_hints[user_provided_exe_name]: if line_decoded.find(retry_hint) != -1: if retry_count < MAX_RETRIES: print(f"RETRY: {retry_count} (due to: {retry_hint})") retry_count = retry_count + 1 output = run(cmd, return_output=return_output, retry_count=retry_count) if return_output: if base64_decode: import base64 return base64.b64decode(output).decode('utf-8') else: return output elapsed = datetime.datetime.now().replace(microsecond=0) - start_time # WORKAROUND: We avoid infinite hang above in the `azdata notebook run` failure case, by inferring success (from stdout output), so # don't wait here, if success known above # if wait: if p.returncode != 0: raise SystemExit(f'Shell command:\n\n\t{cmd} ({elapsed}s elapsed)\n\nreturned non-zero exit code: {str(p.returncode)}.\n') else: if exit_code_workaround !=0 : raise SystemExit(f'Shell command:\n\n\t{cmd} ({elapsed}s elapsed)\n\nreturned non-zero exit code: {str(exit_code_workaround)}.\n') print(f'\nSUCCESS: {elapsed}s elapsed.\n') if return_output: if base64_decode: import base64 return base64.b64decode(output).decode('utf-8') else: return output def load_json(filename): """Load a json file from disk and return the contents""" with open(filename, encoding="utf8") as json_file: return json.load(json_file) def load_rules(): """Load any 'expert rules' from the metadata of this notebook (.ipynb) that should be applied to the stderr of the running executable""" # Load this notebook as json to get access to the expert rules in the notebook metadata. # try: j = load_json("sop033-azdata-logout.ipynb") except: pass # If the user has renamed the book, we can't load ourself. NOTE: Is there a way in Jupyter, to know your own filename? else: if "metadata" in j and \ "azdata" in j["metadata"] and \ "expert" in j["metadata"]["azdata"] and \ "expanded_rules" in j["metadata"]["azdata"]["expert"]: rules = j["metadata"]["azdata"]["expert"]["expanded_rules"] rules.sort() # Sort rules, so they run in priority order (the [0] element). Lowest value first. # print (f"EXPERT: There are {len(rules)} rules to evaluate.") return rules def apply_expert_rules(line): """Determine if the stderr line passed in, matches the regular expressions for any of the 'expert rules', if so inject a 'HINT' to the follow-on SOP/TSG to run""" global rules for rule in rules: notebook = rule[1] cell_type = rule[2] output_type = rule[3] # i.e. stream or error output_type_name = rule[4] # i.e. ename or name output_type_value = rule[5] # i.e. SystemExit or stdout details_name = rule[6] # i.e. evalue or text expression = rule[7].replace("\\*", "*") # Something escaped *, and put a \ in front of it! if debug_logging: print(f"EXPERT: If rule '{expression}' satisfied', run '{notebook}'.") if re.match(expression, line, re.DOTALL): if debug_logging: print("EXPERT: MATCH: name = value: '{0}' = '{1}' matched expression '{2}', therefore HINT '{4}'".format(output_type_name, output_type_value, expression, notebook)) match_found = True display(Markdown(f'HINT: Use [{notebook}]({notebook}) to resolve this issue.')) print('Common functions defined successfully.') # Hints for binary (transient fault) retry, (known) error and install guide # retry_hints = {'azdata': ['Endpoint sql-server-master does not exist', 'Endpoint livy does not exist', 'Failed to get state for cluster', 'Endpoint webhdfs does not exist', 'Adaptive Server is unavailable or does not exist', 'Error: Address already in use', 'Login timeout expired (0) (SQLDriverConnect)']} error_hints = {'azdata': [['The token is expired', 'SOP028 - azdata login', '../common/sop028-azdata-login.ipynb'], ['Reason: Unauthorized', 'SOP028 - azdata login', '../common/sop028-azdata-login.ipynb'], ['Max retries exceeded with url: /api/v1/bdc/endpoints', 'SOP028 - azdata login', '../common/sop028-azdata-login.ipynb'], ['Look at the controller logs for more details', 'TSG027 - Observe cluster deployment', '../diagnose/tsg027-observe-bdc-create.ipynb'], ['provided port is already allocated', 'TSG062 - Get tail of all previous container logs for pods in BDC namespace', '../log-files/tsg062-tail-bdc-previous-container-logs.ipynb'], ['Create cluster failed since the existing namespace', 'SOP061 - Delete a big data cluster', '../install/sop061-delete-bdc.ipynb'], ['Failed to complete kube config setup', 'TSG067 - Failed to complete kube config setup', '../repair/tsg067-failed-to-complete-kube-config-setup.ipynb'], ['Error processing command: "ApiError', 'TSG110 - Azdata returns ApiError', '../repair/tsg110-azdata-returns-apierror.ipynb'], ['Error processing command: "ControllerError', 'TSG036 - Controller logs', '../log-analyzers/tsg036-get-controller-logs.ipynb'], ['ERROR: 500', 'TSG046 - Knox gateway logs', '../log-analyzers/tsg046-get-knox-logs.ipynb'], ['Data source name not found and no default driver specified', 'SOP069 - Install ODBC for SQL Server', '../install/sop069-install-odbc-driver-for-sql-server.ipynb'], ["Can't open lib 'ODBC Driver 17 for SQL Server", 'SOP069 - Install ODBC for SQL Server', '../install/sop069-install-odbc-driver-for-sql-server.ipynb'], ['Control plane upgrade failed. Failed to upgrade controller.', 'TSG108 - View the controller upgrade config map', '../diagnose/tsg108-controller-failed-to-upgrade.ipynb'], ["[Errno 2] No such file or directory: '..\\\\", 'TSG053 - ADS Provided Books must be saved before use', '../repair/tsg053-save-book-first.ipynb'], ["NameError: name 'azdata_login_secret_name' is not defined", 'SOP013 - Create secret for azdata login (inside cluster)', '../common/sop013-create-secret-for-azdata-login.ipynb'], ['ERROR: No credentials were supplied, or the credentials were unavailable or inaccessible.', "TSG124 - 'No credentials were supplied' error from azdata login", '../repair/tsg124-no-credentials-were-supplied.ipynb']]} install_hint = {'azdata': ['SOP063 - Install azdata CLI (using package manager)', '../install/sop063-packman-install-azdata.ipynb']} ###Output _____no_output_____ ###Markdown Use azdata to log out ###Code run('azdata logout') print('Notebook execution complete.') ###Output _____no_output_____
Examples/Creator_example.ipynb
###Markdown Define model parameters ###Code mod_m1=e3d_creator.e3d_model('M1') mod_m1.assign_model_parameters(10,2,0.05,10) mod_m1.import_velocity('../Data/Antarctica_firn_vel_model.txt') mod_m1.position_receivers(3,7,dx=0.5) mod_m1.define_source(5,0.5,src_type=4,Mxx=-0.6710,Myy=0.0669,Mzz=0.6040,Mxy=0.2416,Mxz=0.4762,Myz=-0.5523) # mod_m1.define_source(5,0.5,src_type=6) ###Output _____no_output_____ ###Markdown Plot model ###Code mod_m1.plot_model() mod_m1.plot_velocity() ###Output _____no_output_____ ###Markdown Export e3d parameter file ###Code mod_m1.create_e3d_file() ###Output File created: ./M1_e3dmodel.txt
Tutorials/Lecture006_DeepQLearning_CartPole.ipynb
###Markdown [Guide To Reinforcement Learning](https://skymind.ai/wiki/deep-reinforcement-learning) Reinforcement learning (RL)Reinforcement learning (RL) is the subfield of machine learning concerned with decision making and motor control. It studies how an agent can learn how to achieve goals in a complex, uncertain environment. It’s exciting for two reasons:* RL is very general, encompassing all problems that involve making a sequence of decisions: for example, controlling a robot’s motors so that it’s able to run and jump, making business decisions like pricing and inventory management, or playing video games and board games. RL can even be applied to supervised learning problems with sequential or structured outputs.* RL algorithms have started to achieve good results in many difficult environments. RL has a long history, but until recent advances in deep learning, it required lots of problem-specific engineering. DeepMind’s Atari results, BRETT from Pieter Abbeel’s group, and AlphaGo all used deep RL algorithms which did not make too many assumptions about their environment, and thus can be applied in other settings.See: [Open AI GYM](https://gym.openai.com/)RL is a general concept that can be simply described with an agent that takes actions in an environment in order to maximize its cumulative reward. The underlying idea is very lifelike, where similarly to the humans in real life, agents in RL algorithms are incentivized with punishments for bad actions and rewards for good ones. Markov Chain![alt text](https://cdn-images-1.medium.com/max/1600/1*mPGk9WTNNvp3i4-9JFgD3w.png) State–action–reward–state–action (SARSA) is an algorithm for learning a Markov decision process policy, We start with an initial environment. It doesn’t have any associated reward yet, but it has a state (S_t).Then for each iteration, an agent takes current state (S_t), picks best (based on model prediction) action (A_t) and executes it on an environment. Subsequently, environment returns a reward (R_t+1) for a given action, a new state (S_t+1) and an information if the new state is terminal. The process repeats until termination. Deep Q-Learning (DQN)DQN is a RL technique that is aimed at choosing the best action for given circumstances (observation). Each possible action for each possible observation has its Q value, where ‘Q’ stands for a quality of a given move.But how do we end up with accurate Q values? That’s where the deep neural networks and linear algebra come in.For each state experienced by our agent, we are going to remember itdqn_solver.remember(state, action, reward, state_next, terminal)and perform an experience replay.dqn_solver.experience_replay()Experience replay is a biologically inspired process that uniformly (to reduce correlation between subsequent actions) samples experiences from the memory and for each entry updates its Q value.We are calculating the new q by taking the maximum q for a given action (predicted value of a best next state), multiplying it by the discount factor (GAMMA) and ultimately adding it to the current state reward.In other words, we are updating our Q value with the cumulative discounted future rewards.Here is a formal notation:![alt text](https://cdn-images-1.medium.com/max/1600/1*CLBIXdpk8ft0-1MFH8FwUg.png)(source: https://en.wikipedia.org/wiki/Q-learning)For those of you who wonder how such function can possibly converge, as it looks like it is trying to predict its own output (in some sense it is!), don’t worry - it’s possible and in our simple case it does.However, convergence is not always that ‘easy’ and in more complex problems there comes a need of more advanced techniques that stabilize training. These techniques are for example Double DQN’s or Dueling DQN’s, but that’s a topic for another article (stay tuned). Reinforcement Learning (DQN) tutorial=====================================Adapted from PyTorch website.**Author**: `Adam Paszke `_This tutorial shows how to use PyTorch to train a Deep Q Learning (DQN) agenton the CartPole-v0 task from the `OpenAI Gym `__.**Task**The agent has to decide between two actions - moving the cart left orright - so that the pole attached to it stays upright. You can find anofficial leaderboard with various algorithms and visualizations at the`Gym website `__.As the agent observes the current state of the environment and choosesan action, the environment *transitions* to a new state, and alsoreturns a reward that indicates the consequences of the action. In thistask, the environment terminates if the pole falls over too far.The CartPole task is designed so that the inputs to the agent are 4 realvalues representing the environment state (position, velocity, etc.).However, neural networks can solve the task purely by looking at thescene, so we'll use a patch of the screen centered on the cart as aninput. Because of this, our results aren't directly comparable to theones from the official leaderboard - our task is much harder.Unfortunately this does slow down the training, because we have torender all the frames.Strictly speaking, we will present the state as the difference betweenthe current screen patch and the previous one. This will allow the agentto take the velocity of the pole into account from one image.**Packages**First, let's import needed packages. Firstly, we need`gym `__ for the environment(Install using `pip install gym`).We'll also use the following from PyTorch:- neural networks (``torch.nn``)- optimization (``torch.optim``)- automatic differentiation (``torch.autograd``)- utilities for vision tasks (``torchvision`` - `a separate package `__). Cartpole Problem ![alt text](https://cdn-images-1.medium.com/max/1200/1*LnQ5sRu-tJmlvRWmDsdSvw.gif) ![alt text](https://cdn-images-1.medium.com/max/1200/1*jLj9SYWI7e6RElIsI3DFjg.gif)Cartpole ProblemCartpole - known also as an Inverted Pendulum is a pendulum with a center of gravity above its pivot point. It’s unstable, but can be controlled by moving the pivot point under the center of mass. The goal is to keep the cartpole balanced by applying appropriate forces to a pivot point.![alt text](https://cdn-images-1.medium.com/max/1600/1*wRLArpx5VjWZWPeyf7H8Gw.png)Violet square indicates a pivot pointRed and green arrows show possible horizontal forces that can be applied to a pivot point*A pole is attached by an un-actuated joint to a cart, which moves along a frictionless track. The system is controlled by applying a force of +1 or -1 to the cart. The pendulum starts upright, and the goal is to prevent it from falling over. A reward of +1 is provided for every timestep that the pole remains upright. The episode ends when the pole is more than 15 degrees from vertical, or the cart moves more than 2.4 units from the center.* Take a look at a video below with a real-life demonstration of a cartpole problem learning process.[Real-life application of Reinforcement Learning video](https://youtu.be/XiigTGKZfks) ImportBefore we start the tutorial, we need to install some dependencies to render and capture images from OpenAI Gym. It may take some time to set up the environment. ###Code !apt-get install cmake zlib1g-dev libjpeg-dev xvfb libav-tools xorg-dev libboost-all-dev libsdl2-dev swig python3-dev python3-future python-opengl !apt-get -qq -y install libcusparse8.0 libnvrtc8.0 libnvtoolsext1 > /dev/null !ln -snf /usr/lib/x86_64-linux-gnu/libnvrtc-builtins.so.8.0 /usr/lib/x86_64-linux-gnu/libnvrtc-builtins.so !apt-get -qq -y install xvfb freeglut3-dev ffmpeg> /dev/null !apt-get install xserver-xorg libglu1-mesa-dev mesa-common-dev libxmu-dev libxi-dev !pip3 install torch torchvision gym[all] PyOpenGL piglet pyglet pyvirtualdisplay # Start virtual display from pyvirtualdisplay import Display display = Display(visible=0, size=(1024, 768)) display.start() import os os.environ["DISPLAY"] = ":" + str(display.display) + "." + str(display.screen) %matplotlib inline import gym import math import random import numpy as np import matplotlib import matplotlib.pyplot as plt import matplotlib.animation from collections import namedtuple from itertools import count from PIL import Image import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torchvision.transforms as T from IPython.display import HTML env = gym.make('CartPole-v0').unwrapped # set up matplotlib is_ipython = 'inline' in matplotlib.get_backend() if is_ipython: from IPython import display plt.ion() # if gpu is to be used device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ###Output _____no_output_____ ###Markdown Replay Memory-------------We'll be using experience replay memory for training our DQN. It storesthe transitions that the agent observes, allowing us to reuse this datalater. By sampling from it randomly, the transitions that build up abatch are decorrelated. It has been shown that this greatly stabilizesand improves the DQN training procedure.For this, we're going to need two classses:- ``Transition`` - a named tuple representing a single transition in our environment- ``ReplayMemory`` - a cyclic buffer of bounded size that holds the transitions observed recently. It also implements a ``.sample()`` method for selecting a random batch of transitions for training. ###Code Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward')) class ReplayMemory(object): def __init__(self, capacity): self.capacity = capacity self.memory = [] self.position = 0 def push(self, *args): """Saves a transition.""" if len(self.memory) < self.capacity: self.memory.append(None) self.memory[self.position] = Transition(*args) self.position = (self.position + 1) % self.capacity def sample(self, batch_size): return random.sample(self.memory, batch_size) def __len__(self): return len(self.memory) ###Output _____no_output_____ ###Markdown Now, let's define our model. But first, let quickly recap what a DQN is.DQN algorithm-------------Our environment is deterministic, so all equations presented here arealso formulated deterministically for the sake of simplicity. In thereinforcement learning literature, they would also contain expectationsover stochastic transitions in the environment.Our aim will be to train a policy that tries to maximize the discounted,cumulative reward$R_{t_0} = \sum_{t=t_0}^{\infty} \gamma^{t - t_0} r_t$, where$R_{t_0}$ is also known as the *return*. The discount,$\gamma$, should be a constant between $0$ and $1$that ensures the sum converges. It makes rewards from the uncertain farfuture less important for our agent than the ones in the near futurethat it can be fairly confident about.The main idea behind Q-learning is that if we had a function$Q^*: State \times Action \rightarrow \mathbb{R}$, that could tellus what our return would be, if we were to take an action in a givenstate, then we could easily construct a policy that maximizes ourrewards:\begin{align}\pi^*(s) = \arg\!\max_a \ Q^*(s, a)\end{align}However, we don't know everything about the world, so we don't haveaccess to $Q^*$. But, since neural networks are universal functionapproximators, we can simply create one and train it to resemble$Q^*$.For our training update rule, we'll use a fact that every $Q$function for some policy obeys the Bellman equation:\begin{align}Q^{\pi}(s, a) = r + \gamma Q^{\pi}(s', \pi(s'))\end{align}The difference between the two sides of the equality is known as thetemporal difference error, $\delta$:\begin{align}\delta = Q(s, a) - (r + \gamma \max_a Q(s', a))\end{align}To minimise this error, we will use the `Huberloss `__. The Huber loss actslike the mean squared error when the error is small, but like the meanabsolute error when the error is large - this makes it more robust tooutliers when the estimates of $Q$ are very noisy. We calculatethis over a batch of transitions, $B$, sampled from the replaymemory:\begin{align}\mathcal{L} = \frac{1}{|B|}\sum_{(s, a, s', r) \ \in \ B} \mathcal{L}(\delta)\end{align}\begin{align}\text{where} \quad \mathcal{L}(\delta) = \begin{cases} \frac{1}{2}{\delta^2} & \text{for } |\delta| \le 1, \\ |\delta| - \frac{1}{2} & \text{otherwise.} \end{cases}\end{align} Q-networkOur model will be a convolutional neural network that takes in thedifference between the current and previous screen patches. It has twooutputs, representing $Q(s, \mathrm{left})$ and$Q(s, \mathrm{right})$ (where $s$ is the input to thenetwork). In effect, the network is trying to predict the *quality* oftaking each action given the current input. ###Code class DQN(nn.Module): def __init__(self): super(DQN, self).__init__() self.conv1 = nn.Conv2d(3, 16, kernel_size=5, stride=2) self.bn1 = nn.BatchNorm2d(16) self.conv2 = nn.Conv2d(16, 32, kernel_size=5, stride=2) self.bn2 = nn.BatchNorm2d(32) self.conv3 = nn.Conv2d(32, 32, kernel_size=5, stride=2) self.bn3 = nn.BatchNorm2d(32) self.head = nn.Linear(448, 2) def forward(self, x): x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.bn3(self.conv3(x))) return self.head(x.view(x.size(0), -1)) ###Output _____no_output_____ ###Markdown Input extractionThe code below are utilities for extracting and processing renderedimages from the environment. It uses the ``torchvision`` package, whichmakes it easy to compose image transforms. Once you run the cell it willdisplay an example patch that it extracted. ###Code resize = T.Compose([T.ToPILImage(), T.Resize(40, interpolation=Image.CUBIC), T.ToTensor()]) # This is based on the code from gym. screen_width = 600 def get_cart_location(): world_width = env.x_threshold * 2 scale = screen_width / world_width return int(env.state[0] * scale + screen_width / 2.0) # MIDDLE OF CART def get_screen(): screen = env.render(mode='rgb_array').transpose( (2, 0, 1)) # transpose into torch order (CHW) # Strip off the top and bottom of the screen screen = screen[:, 160:320] view_width = 320 cart_location = get_cart_location() if cart_location < view_width // 2: slice_range = slice(view_width) elif cart_location > (screen_width - view_width // 2): slice_range = slice(-view_width, None) else: slice_range = slice(cart_location - view_width // 2, cart_location + view_width // 2) # Strip off the edges, so that we have a square image centered on a cart screen = screen[:, :, slice_range] # Convert to float, rescare, convert to torch tensor # (this doesn't require a copy) screen = np.ascontiguousarray(screen, dtype=np.float32) / 255 screen = torch.from_numpy(screen) # Resize, and add a batch dimension (BCHW) return resize(screen).unsqueeze(0).to(device) env.reset() plt.figure() plt.imshow(get_screen().cpu().squeeze(0).permute(1, 2, 0).numpy(), interpolation='none') plt.title('Example extracted screen') plt.show() ###Output _____no_output_____ ###Markdown Training-------- Hyperparameters and utilitiesThis cell instantiates our model and its optimizer, and defines someutilities:- ``select_action`` - will select an action accordingly to an epsilon greedy policy. Simply put, we'll sometimes use our model for choosing the action, and sometimes we'll just sample one uniformly. The probability of choosing a random action will start at ``EPS_START`` and will decay exponentially towards ``EPS_END``. ``EPS_DECAY`` controls the rate of the decay.- ``plot_durations`` - a helper for plotting the durations of episodes, along with an average over the last 100 episodes (the measure used in the official evaluations). The plot will be underneath the cell containing the main training loop, and will update after every episode. ###Code BATCH_SIZE = 128 GAMMA = 0.999 EPS_START = 0.9 EPS_END = 0.05 EPS_DECAY = 200 TARGET_UPDATE = 10 policy_net = DQN().to(device) target_net = DQN().to(device) target_net.load_state_dict(policy_net.state_dict()) target_net.eval() optimizer = optim.RMSprop(policy_net.parameters()) memory = ReplayMemory(10000) steps_done = 0 def select_action(state): global steps_done sample = random.random() eps_threshold = EPS_END + (EPS_START - EPS_END) * \ math.exp(-1. * steps_done / EPS_DECAY) steps_done += 1 if sample > eps_threshold: with torch.no_grad(): return policy_net(state).max(1)[1].view(1, 1) else: return torch.tensor([[random.randrange(2)]], device=device, dtype=torch.long) episode_durations = [] def plot_durations(): plt.figure(2) plt.clf() durations_t = torch.tensor(episode_durations, dtype=torch.float) plt.title('Training...') plt.xlabel('Episode') plt.ylabel('Duration') plt.plot(durations_t.numpy()) # Take 100 episode averages and plot them too if len(durations_t) >= 100: means = durations_t.unfold(0, 100, 1).mean(1).view(-1) means = torch.cat((torch.zeros(99), means)) plt.plot(means.numpy()) plt.pause(0.001) # pause a bit so that plots are updated if is_ipython: display.clear_output(wait=True) display.display(plt.gcf()) ###Output _____no_output_____ ###Markdown Training loopFinally, the code for training our model.Here, you can find an ``optimize_model`` function that performs asingle step of the optimization. It first samples a batch, concatenatesall the tensors into a single one, computes $Q(s_t, a_t)$ and$V(s_{t+1}) = \max_a Q(s_{t+1}, a)$, and combines them into ourloss. By defition we set $V(s) = 0$ if $s$ is a terminalstate. We also use a target network to compute $V(s_{t+1})$ foradded stability. The target network has its weights kept frozen most ofthe time, but is updated with the policy network's weights every so often.This is usually a set number of steps but we shall use episodes forsimplicity. ###Code def optimize_model(): if len(memory) < BATCH_SIZE: return transitions = memory.sample(BATCH_SIZE) # Transpose the batch (see http://stackoverflow.com/a/19343/3343043 for # detailed explanation). batch = Transition(*zip(*transitions)) # Compute a mask of non-final states and concatenate the batch elements non_final_mask = torch.tensor(tuple(map(lambda s: s is not None, batch.next_state)), device=device, dtype=torch.uint8) non_final_next_states = torch.cat([s for s in batch.next_state if s is not None]) state_batch = torch.cat(batch.state) action_batch = torch.cat(batch.action) reward_batch = torch.cat(batch.reward) # Compute Q(s_t, a) - the model computes Q(s_t), then we select the # columns of actions taken state_action_values = policy_net(state_batch).gather(1, action_batch) # Compute V(s_{t+1}) for all next states. next_state_values = torch.zeros(BATCH_SIZE, device=device) next_state_values[non_final_mask] = target_net(non_final_next_states).max(1)[0].detach() # Compute the expected Q values expected_state_action_values = (next_state_values * GAMMA) + reward_batch # Compute Huber loss loss = F.smooth_l1_loss(state_action_values, expected_state_action_values.unsqueeze(1)) # Optimize the model optimizer.zero_grad() loss.backward() for param in policy_net.parameters(): param.grad.data.clamp_(-1, 1) optimizer.step() ###Output _____no_output_____ ###Markdown Below, you can find the main training loop. At the beginning we resetthe environment and initialize the ``state`` Tensor. Then, we samplean action, execute it, observe the next screen and the reward (always1), and optimize our model once. When the episode ends (our modelfails), we restart the loop.Below, `num_episodes` is set small. You should downloadthe notebook and run lot more epsiodes. ###Code num_episodes = 50 for i_episode in range(num_episodes): # Initialize the environment and state env.reset() last_screen = get_screen() current_screen = get_screen() state = current_screen - last_screen for t in count(): # Select and perform an action action = select_action(state) _, reward, done, _ = env.step(action.item()) reward = torch.tensor([reward], device=device) # Observe new state last_screen = current_screen current_screen = get_screen() if not done: next_state = current_screen - last_screen else: next_state = None # Store the transition in memory memory.push(state, action, next_state, reward) # Move to the next state state = next_state # Perform one step of the optimization (on the target network) optimize_model() if done: episode_durations.append(t + 1) plot_durations() break # Update the target network if i_episode % TARGET_UPDATE == 0: target_net.load_state_dict(policy_net.state_dict()) print('Complete') env.render() plt.show() frames = [] for i in range(3): env.reset() last_screen = get_screen() current_screen = get_screen() state = current_screen - last_screen done = False R = 0 t = 0 while not done and t < 200: frames.append(env.render(mode = 'rgb_array')) action = select_action(state) obs, r, done, _ = env.step(action.item()) R += r t += 1 if not done: next_state = current_screen - last_screen else: next_state = None state = next_state print('test episode:', i, 'R:', R) env.render() # make a video to display plt.figure(figsize=(frames[0].shape[1] / 72.0, frames[0].shape[0] / 72.0), dpi = 72) patch = plt.imshow(frames[0]) plt.axis('off') animate = lambda i: patch.set_data(frames[i]) ani = matplotlib.animation.FuncAnimation(plt.gcf(), animate, frames=len(frames), interval = 50) HTML(ani.to_jshtml()) ###Output test episode: 0 R: 9.0 test episode: 1 R: 10.0 test episode: 2 R: 9.0
NLP_Customer_Review_ML_Complete.ipynb
###Markdown ###Code import pandas as pd import nltk from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import LogisticRegression reviews = pd.read_csv('https://raw.githubusercontent.com/lucasmoratof/customers_review_project/master/reviews_for_nlp.csv', usecols=['review_comment_message', 'is_good_review']) reviews.head() ###Output _____no_output_____ ###Markdown I will try some techniques to count the number of characters and words in each review. ###Code # count the lenght of each review reviews['char_count'] = reviews['review_comment_message'].apply(len) reviews['char_count'].head() # average characters in the reviews reviews['char_count'].mean() # create a function to count the number of words in each comment def count_words(string): words = string.split() return len(words) # applying the funciton to create a new feature reviews['word_count'] = reviews['review_comment_message'].apply(count_words) # finding the average number of words in the reviews print(reviews['word_count'].mean()) ###Output 11.901374718589835 ###Markdown Some text preprocessing techiniques:- Convert words into lowercase- Removing leading and trailing whitespaces- Removing punctuation- Removing stopwords- Expanding contractions- Removing special characters (numbers, emojis, etc)**Tokenization** is the process of converting words into a numerical format, called token. We can also convert sentences and ponctuation into tokens.**Lemmatization** is the process of converting word into it's lowercase base form. ###Code # If you need to download the model (works on google colab) import spacy.cli spacy.cli.download("pt_core_news_sm") # Load the Portuguese model import spacy nlp = spacy.load("pt_core_news_sm") doc= nlp(reviews['review_comment_message'][2]) # IMPORTANT, when you pass the strings through nlp(), it performs Lemmatization by default tokens = [token.text for token in doc] lemmas= [token.lemma_ for token in doc] print(tokens, "\n", lemmas) # Stopwords stopwords = spacy.lang.pt.stop_words.STOP_WORDS no_stops= [lemma for lemma in lemmas if lemma.isalpha() and lemma not in stopwords] print(' '.join(no_stops)) # Creating a function that combines tokenization and lemmatization def preprocessing(text): doc= nlp(text) # creates the document lemmas= [token.lemma_ for doc in doc] # extracts the lemmas # time to remove stopwords (remember that we are using the Portuguese version) clean_lemmas= [lemma for lemma in lemmas if lemma.isalpha() and lemma not in stopwords] return ' '.join(clean_lemmas) ###Output _____no_output_____ ###Markdown Part of Speech - POSIt determines the meaning of each word, like proper noun, verb, etc. ###Code # load the model nlp= spacy.load('pt_core_news_sm') # create the doc doc= nlp(reviews['review_comment_message'][2]) # generate tokens and pos tags pos= [(token.text, token.pos_) for token in doc] print(pos) ###Output [('aparelho', 'NOUN'), ('eficiente', 'ADJ'), ('.', 'PUNCT'), ('no', 'ADP'), ('site', 'VERB'), ('a', 'DET'), ('marca', 'NOUN'), ('do', 'DET'), ('aparelho', 'NOUN'), ('esta', 'DET'), ('impresso', 'VERB'), ('como', 'ADP'), ('3desinfector', 'NUM'), ('e', 'PUNCT'), ('a', 'ADP'), ('o', 'DET'), ('chegar', 'VERB'), ('esta', 'DET'), ('com', 'ADP'), ('outro', 'DET'), ('nome', 'NOUN'), ('...', 'PUNCT'), ('atualizar', 'VERB'), ('com', 'ADP'), ('a', 'DET'), ('marca', 'NOUN'), ('correta', 'ADJ'), ('uma', 'DET'), ('vez', 'NOUN'), ('que', 'SCONJ'), ('é', 'VERB'), ('o', 'DET'), ('mesmo', 'DET'), ('aparelho', 'NOUN')] ###Markdown Below I will create to functions, to count the number of proper nouns and nouns, then, I will apply these function on the data separating good reviews and bad reviews. Finally, I will calculate the mean of PROPN and NOUNS on both groups and compare. ###Code # PROPN def proper_nouns(text, model=nlp): # Create doc object doc= model(text) # Generate list of POS tags pos= [token.pos_ for token in doc] return pos.count('PROPN') # NOUN def nouns(text, model=nlp): doc= nlp(text) pos= [token.pos_ for token in doc] return pos.count('NOUN') # Create two columns, witht the number of nouns and proper nouns reviews['num_propn'] = reviews['review_comment_message'].apply(proper_nouns) reviews['num_noun'] = reviews['review_comment_message'].apply(nouns) # computing the mean of proper nouns good_propn= reviews[reviews['is_good_review']== 1]['num_propn'].mean() bad_propn= reviews[reviews['is_good_review']== 0]['num_propn'].mean() # computing the mean of nouns good_noun= reviews[reviews['is_good_review']== 1]['num_noun'].mean() bad_noun= reviews[reviews['is_good_review']== 0]['num_noun'].mean() # print results to compare print("Mean number of proper nouns for good and bad reviews are %.2f and %.2f respectively"%(good_propn, bad_propn)) print("Mean number of nouns for good and bad reviews are %.2f and %.2f respectively"%(good_noun, bad_noun)) ###Output Mean number of proper nouns for good and bad reviews are 0.48 and 0.88 respectively Mean number of nouns for good and bad reviews are 2.10 and 3.63 respectively ###Markdown Named Entity RecognitionIt classifies named entities into predefined categories, like person, organization, country, etc.Uses:- Efficient search algorithms- Question answering- News article classification- Customer service ###Code # Let's practice NER nlp= spacy.load('pt_core_news_sm') text= reviews['review_comment_message'][11] doc= nlp(text) # print all named entities: for ent in doc.ents: print(ent.text, ent.label_) ###Output Comprei PER ###Markdown To find person's names, we can use the following function: ###Code def find_persons(text, model=nlp): doc= model(text) persons= [ent.text for ent in doc.ents if ent.label_== 'PERSON'] return persons ###Output _____no_output_____ ###Markdown VectorizationThe process of converting text into vectors, so it can be used in MLBag of Words is a model that do vectorization. It's important to perform text preprocessing as it leads to smaller vocabularies, and reducing the number of dimensions helps improve performance.CountVectorizer, from scikit-learn, is the tool used to perform bag of words.It needs some arguuments to pre-processing text. ###Code from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split # Create CountVectorizer object, specifying the arguments to preprocess text stop_words_port= spacy.lang.pt.stop_words.STOP_WORDS vectorizer= CountVectorizer(stop_words=stop_words_port) # Split into training and test sets X_train, X_test, y_train, y_test= train_test_split(reviews['review_comment_message'], reviews['is_good_review'], test_size=0.25, random_state=24) # Generate training Bow vectors X_train_bow= vectorizer.fit_transform(X_train) # Generate test Bow vector X_test_bow= vectorizer.transform(X_test) print(X_train_bow.shape) print(X_test_bow.shape) ###Output (31315, 13603) (10439, 13603) ###Markdown We will try the Naive Bayes classifier to this problem. ###Code # Import multinomialNB from sklearn.naive_bayes import MultinomialNB # create MultinomialNB object clf= MultinomialNB() # Train clf clf.fit(X_train_bow, y_train) # Compute accuracy on test set accuracy= clf.score(X_test_bow, y_test) print("The accuracy of the classifier is %.3f" % accuracy) # Predict the sentiment of a negative review review= "detestei o produto, nao gostei do vendedor, estou insatisfeito" prediction= clf.predict(vectorizer.transform([review]))[0] print("The sentiment predicted by the classifier is %i" % prediction) ###Output The sentiment predicted by the classifier is 0 ###Markdown On the example above, the model correct classified a bad review. Techniques to give context to a reviewn-gramsIt is a contiguous sequence of n-elements, or words, in a given document. A bag of words is n-gram model where n= 1.Example: "I love you". If n=1, we have:- "I"- "Love"- "You"If we change n to 2, we would have:- "I love"- "love you"It helps the model to undestand the relationship between the words. ###Code # To avoid the curse of dimensionality, don't use more than n=3 # We are going to compare how much it increases when we increase the n-gram vectorizer_ng1 = CountVectorizer(ngram_range=(1, 1)) ng1 = vectorizer_ng1.fit_transform(X_train) vectorizer_ng2 = CountVectorizer(ngram_range=(1, 2)) ng2 = vectorizer_ng2.fit_transform(X_train) vectorizer_ng3 = CountVectorizer(ngram_range=(1, 3)) ng3 = vectorizer_ng3.fit_transform(X_train) print("number of features by n-grams is:\n ng1= %i \n ng2= %i \n ng3= %i" % (ng1.shape[1], ng2.shape[1], ng3.shape[1])) ###Output number of features by n-grams is: ng1= 13963 ng2= 114172 ng3= 295810 ###Markdown We can see that with n=1 we have 13k features, while with n=3 it increases to 295k. ###Code # We will try the same model again, now with n-gram= 2 vectorizer_ng= CountVectorizer(stop_words=stop_words_port, ngram_range=(1,3)) X_train_bow_ng= vectorizer_ng.fit_transform(X_train) X_test_bow_ng= vectorizer_ng.transform(X_test) clf.fit(X_train_bow_ng, y_train) accuracy_ng= clf.score(X_test_bow_ng, y_test) print("The accuracy of the classifier is %.3f" % accuracy_ng) ###Output The accuracy of the classifier is 0.872 ###Markdown Term Frenquency - Inverse Document Frequency - **TF-IDF**The idea is, more frequent the word is accross all documents, plus the number of times it occurs, more weight it should have. ###Code # instead using CountVectorizer(), we will use TfadVectorizer() from scikit-learn from sklearn.feature_extraction.text import TfidfVectorizer vectorizer= TfidfVectorizer() tfidf_matrix= vectorizer.fit_transform(X_train) print(tfidf_matrix.shape) ###Output (31315, 13963) ###Markdown Cosine similarity It is the cosine distance between two vectors ###Code from sklearn.metrics.pairwise import cosine_similarity import time # record time start= time.time() # Compute cosine similarity matrix cosine_sim= cosine_similarity(tfidf_matrix, tfidf_matrix) # print the cosine similarity matrix print(cosine_sim) # Print time taken print("Time taken: %s seconds" %(time.time() - start)) # we can use linear_kernal to calculate cosine similarity. It takes less time to process and it produces the same result. from sklearn.metrics.pairwise import linear_kernel import time # record time start= time.time() # Compute cosine similarity matrix cosine_sim= linear_kernel(tfidf_matrix, tfidf_matrix) # print the cosine similarity matrix print(cosine_sim) # Print time taken print("Time taken: %s seconds" %(time.time() - start)) ###Output [[1. 0. 0.20017999 ... 0. 0. 0.11678042] [0. 1. 0. ... 0. 0.04735246 0. ] [0.20017999 0. 1. ... 0. 0. 0.58337711] ... [0. 0. 0. ... 1. 0. 0. ] [0. 0.04735246 0. ... 0. 1. 0. ] [0.11678042 0. 0.58337711 ... 0. 0. 1. ]] Time taken: 19.20054602622986 seconds ###Markdown Word embeddingsTo find similarity between words or sentences. ###Code reviews['review_comment_message'].head() # let's check how similar are the reviews # first, creat a Doc review_1_doc= nlp(reviews['review_comment_message'][1]) review_2_doc= nlp(reviews['review_comment_message'][2]) review_3_doc= nlp(reviews['review_comment_message'][3]) # Now, use the function similarity print(review_1_doc.similarity(review_2_doc)) print(review_2_doc.similarity(review_3_doc)) print(review_3_doc.similarity(review_1_doc)) # trying Multinomial Naive Bayes with Tfidf vectorization from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, confusion_matrix from sklearn.naive_bayes import MultinomialNB import time # Create CountVectorizer object, specifying the arguments to preprocess text stop_words_port= spacy.lang.pt.stop_words.STOP_WORDS vectorizer= TfidfVectorizer(stop_words=stop_words_port) # Split into training and test sets X_train, X_test, y_train, y_test= train_test_split(reviews['review_comment_message'], reviews['is_good_review'], test_size=0.25, random_state=24) start= time.time() # Generate training Bow vectors X_train_vec= vectorizer.fit_transform(X_train) # Generate test Bow vector X_test_vec= vectorizer.transform(X_test) # create MultinomialNB object clf= MultinomialNB() # Train clf clf.fit(X_train_vec, y_train) # Compute accuracy on test set accuracy= clf.score(X_test_vec, y_test) print("The accuracy of the classifier is %.3f" % accuracy) print("Time taken: %s seconds" %(time.time() - start)) import sklearn.metrics as metrics from sklearn.metrics import classification_report, confusion_matrix clf_y_pred = clf.predict(X_test_vec) print(metrics.classification_report(y_test, clf_y_pred)) ###Output _____no_output_____
notebooks/99. Journal Analysis project - Francesco.ipynb
###Markdown S2orc (exploration, clustering & visualization)------For presenting some results we need to analyze (and rapidly compare) some of the methods we used untill now in order to discriminates between paper's `field_of_study` based on their `title` and `abstract`.This notebook is an extention of some previous work done by Master's students from University of Florence (cite here). DatasetFrom each scientific paper we took the `title` and the `abstract`, as well as a property identifying the field in witch the article pertrains.The dataset (only 1000 elements) has been selected randomly from a full-version of 80M papers from different fields.The field of studies (that are called in the dataset `mag_field_of_study`) are the following:| Field of study | All papers | Full text ||----------------|------------|-----------|| Medicine | 12.8M | 1.8M || Biology | 9.6M | 1.6M || Chemistry | 8.7M | 484k || n/a | 7.7M | 583k || Engineering | 6.3M | 228k || Comp Sci | 6.0M | 580k || Physics | 4.9M | 838k || Mat Sci | 4.6M | 213k || Math | 3.9M | 669k || Psychology | 3.4M | 316k || Economics | 2.3M | 198k || Poli Sci | 1.8M | 69k || Business | 1.8M | 94k || Geology | 1.8M | 115k || Sociology | 1.6M | 93k || Geography | 1.4M | 58k || Env Sci | 766k | 52k || Art | 700k | 16k || History | 690k | 22k || Philosophy | 384k | 15k | Note for reproducibility: `data` is a `DatasetDict` object composed by `Dataset` object for every key (in `train`, `test`, `valid`):```python{ "train": Dataset, "test" : Dataset, "valid": Dataset}``` ###Code %load_ext autoreload %autoreload 2 MAIN_PATH = '/home/vivoli/Thesis' DATA_PATH = '/home/vivoli/Thesis/data' OUT_PATH = '/home/vivoli/Thesis/outputs/' ARGS_PATH = '/home/vivoli/Thesis/' # Imports from thesis.utils.general import load_dataset_wrapper from thesis.utils.parsers.args_parser import parse_args DICTIONARY_FIELD_NAMES = dict( train = ['train'], test = ['test', 'debug', 'dev'], validation = ['validation', 'valid'] ) ###Output _____no_output_____ ###Markdown Getting the dataset---In order to get the dataset we need to create a dictionary with the DatasetArguments (params) and use our "library" called `thesis`. ###Code # ------------------ # Creating Arguments # ------------------ # create arguments dictionary args = dict( # DatasetArguments model_name_or_path = "allenai/scibert_scivocab_uncased", dataset_name = "s2orc", # "keyphrase", dataset_config_name = "full", # "inspec", # TrainingArguments seed = '1234', output_dir = "/home/vivoli/Thesis/output", num_train_epochs = '1', per_device_train_batch_size = "8", # 16 and 32 end with "RuntimeError: CUDA out of memory." per_device_eval_batch_size = "8", # 16 and 32 end with "RuntimeError: CUDA out of memory." max_seq_length = '512', # S2orcArguments & KeyPhArguments dataset_path = "/home/vivoli/Thesis/data", data = "abstract", target = "title", classes = "mag_field_of_study", # "keywords", # S2orcArguments idxs = '0', zipped = 'True', mag_field_of_study = "Computer Science", keep_none_papers = 'False', keep_unused_columns = 'False', # RunArguments run_name = "scibert-s2orc", run_number = '0', run_iteration = '0', # LoggingArguments verbose = 'True', debug_log = 'True', time = 'False', callbacks = "WandbCallback,CometCallback,TensorBoardCallback", ) # save dictionary to file import json import os ARGS_FILE = 'arguments.json' with open(os.path.join(ARGS_PATH, ARGS_FILE), 'w') as fp: json.dump(args, fp) print(args) # ------------------ # Parsing the Arguments # ------------------ dataset_args, training_args, model_args, run_args, log_args, embedding_args = parse_args(['params_path', os.path.join(ARGS_PATH, ARGS_FILE)]) # ------------------ # Getting the datasets # ------------------ # Getting the load_dataset wrapper that manages huggingface dataset and the custom ones custom_load_dataset = load_dataset_wrapper() # Loading the raw data based on input (and default) values of arguments raw_datasets = custom_load_dataset(dataset_args, training_args, model_args, run_args, log_args, embedding_args) # The Datasets in the raw form can have different form of key names (depending on the configuration). # We need all datasets to contain 'train', 'test', 'validation' keys, if not we change the dictionary keys' name # based on the `names_tuple` and conseguently on `names_map`. def format_key_names(raw_datasets): # The creation of `names_map` happens to be here # For every element in the values lists, one dictionary entry is added # with (k,v): k=Value of the list, v=Key such as 'train', etc. def names_dict_generator(names_tuple: dict): names_map = dict() for key, values in names_tuple.items(): for value in values: names_map[value] = key return names_map names_map = names_dict_generator(DICTIONARY_FIELD_NAMES) split_names = raw_datasets.keys() for split_name in split_names: new_split_name = names_map.get(split_name) if split_name != new_split_name: raw_datasets[new_split_name] = raw_datasets.pop(split_name) return raw_datasets logger.info(f"Formatting DatasetDict keys") datasets = format_key_names(raw_datasets) keywords = [] keywords_info = {} for item in data: temp = item['keywords'] for keyword in temp: keyword = keyword.replace("-", "").replace(",","").replace("/", "") #mi ero scordato di togliere il trattino nel preprocessing delle keywords. Per la virgola, non è un separatore, ma è una keyword che ha la virgola, e.g. "segmentation, features and descriptions" if keyword not in keywords: keywords.append(keyword) keywords_info[keyword] = {'count': 0, 'appears_in': []} keywords_info[keyword]['count'] += 1 keywords_info[keyword]['appears_in'].append(item['filename']) print(keywords_info) #plot distribution import numpy as np import matplotlib.pyplot as plt import matplotlib.pyplot as plt; plt.rcdefaults() pos = np.arange(len(keywords)) counts = [] for kw in keywords: counts.append(keywords_info[kw]['count']) plt.figure(figsize=(10,25)) y_pos = np.arange(len(keywords)) plt.barh(y_pos, counts, alpha=0.5) plt.yticks(y_pos, keywords) plt.xlabel('Count') plt.title('Count distribution for each keyword') plt.grid() plt.show() #order by count ordered_kws = [x for _,x in sorted(zip(counts,keywords))] ordered_cts = sorted(counts) plt.figure(figsize=(5,22)) y_pos = np.arange(len(keywords)) plt.barh(y_pos, ordered_cts, alpha=0.5) plt.yticks(y_pos, ordered_kws) plt.xlabel('Count') plt.title('Count distribution for each keyword') #plt.grid() plt.show() ###Output _____no_output_____ ###Markdown Given the chart of frequency of the keywords (NOT normalized), a threshold can be set to only consider the most relevant keywords Definition of groups for the "ground truth" (?) "baseline" (?) Note: the following is arguable; in fact, the most frequent keywords are also the blandest and, maybe, less significant for a categorization. ###Code len(keywords) len(keywords)*.2 #the first 29 words make up to 20% of all the keywords sum(ordered_cts[len(ordered_cts)-43:len(ordered_cts)])/sum(ordered_cts) sum(ordered_cts[len(ordered_cts)-29:len(ordered_cts)])/sum(ordered_cts) ###Output _____no_output_____ ###Markdown 43 keywords make up roughly 80% of the total keywords count. However, for practical reasons, 29 keywords (20%) will be used, also considering how many documents have multiple keywords associated to them.This will have consequences in the choice of the number of clusters i.e. if HDBSCAN doesn't need nor wants the number of clusters to be specified, when using k-means it is mandatory for the nature of the algorithm. ###Code MOST_IMPORTANT_KW_THRESHOLD = 29 mi_keywords = ordered_kws[len(ordered_kws)-MOST_IMPORTANT_KW_THRESHOLD:len(ordered_kws)] #most important keywords mi_keywords_counts = ordered_cts[len(ordered_kws)-MOST_IMPORTANT_KW_THRESHOLD:len(ordered_kws)] plt.rc('font', size=8) plt.figure(figsize=(10,3)) y_pos = np.arange(len(mi_keywords)) plt.barh(y_pos, mi_keywords_counts, alpha=0.5) plt.yticks(y_pos, mi_keywords, ) plt.xlabel('Count') plt.title('Count distribution for each of the most important keywords') plt.grid() plt.show() mi_associations = {} #direi molto poco elegante ma okay for keyword in mi_keywords: mi_associations[keyword] = keywords_info[keyword] print(mi_associations['deeplearning']) ###Output _____no_output_____ ###Markdown ClusteringFrom here on clustering will be considered using SBERT embeddings. The variable called 'clustering_on' is used to discriminate and chose weather the embeddings are made on the abstracts or on the titles. In both cases, clustering is made through HDBSCAN and k-means (see the two subsections).WARNING: do not execute cells in random order. Some variables names are used both for the HDBSCAN clustering and for k-means; the suggestion is to execute hdbscan first, and k-means second. Otherwise, it is important to execute the definition of the functions used for both cases. Clustering with HDBSCAN ###Code !pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html !pip install hdbscan !pip install sentence-transformers !pip install umap-learn from sentence_transformers import SentenceTransformer #model_in = SentenceTransformer('distilbert-base-nli-mean-tokens') #this model is kinda bad model_in = SentenceTransformer('stsb-roberta-large') #model = SentenceTransformer('paraphrase-distilroberta-base-v1') #since the same exact thing has to be done for both abstracts and titles, i define a function def elaborate(subject = None, model = None): ''' :param str subject: can be either 'abstract' or 'title', specifies what the clustering has to be made on :param SentenceTransformer model: instanciated model of SentenceTransformer (SBERT) ''' textual_data = [] for item in data: # the condition is rather importante. In the case of abstracts, it kept clustering # (with HDBSCAN) all the error in the same cluster (which makes sense), remortion is thereby necessary if not (item[subject] == 'UNABLE TO DECODE ABSTRACT' or item[subject] == 'Unable to open the pdf' or item[subject] == ""): textual_data.append(item[subject]) print(textual_data) return textual_data, model.encode(textual_data, show_progress_bar = True) #funzione, dati dati originali e label li stampa assieme def constructDictionaryOfClusters(labels, original_data): print(labels) associative = [] #prepare dictionary for i in range(labels.max()+1): associative.append([]) #print(f"associative: {associative}") for i in range(len(original_data)): if labels[i] != -1: #in the case of HDBSCAN the labels -1 are the "outsiders" associative[labels[i]].append(original_data[i]) #print(i) for item in associative: print(len(item)) print(item) print(len(associative)) return associative #nota: l'ultimo elemento della lista è composto dagli outsiders clustering_on = "abstract" textual_data, embeddings = elaborate(clustering_on, model_in) ######################### #instanciate model embeddings = model.encode(textual_data, show_progress_bar = True) print(embeddings.shape) #here after, once calculated the embeddings (either for the abstracts or the title) the clustering is considered #first with HDBSCAN, then k-means import umap import hdbscan # first it's *better* to do dimensionality reduction, sbert returns embeddings of dimension 700+ or even 1000+ (depending on the chosen model) # clustering algorithms seem not to perform well for for big dimensions use-cases # UMAP is a popular algorithm for dimensionality reduction umap_embeddings = umap.UMAP(n_neighbors=15, n_components=5, metric='cosine').fit_transform(embeddings) cluster = hdbscan.HDBSCAN(min_cluster_size=5, metric='euclidean', cluster_selection_method='eom').fit(umap_embeddings) import pandas as pd umap_data = umap.UMAP(n_neighbors=15, n_components=2, min_dist=0.0, metric='cosine').fit_transform(umap_embeddings) result = pd.DataFrame(umap_data, columns=['x', 'y']) result['labels'] = cluster.labels_ # Visualize clusters fig, ax = plt.subplots(figsize=(10, 7)) outliers = result.loc[result.labels == -1, :] clustered = result.loc[result.labels != -1, :] plt.scatter(outliers.x, outliers.y, color='#BDBDBD', s=0.05) plt.scatter(clustered.x, clustered.y, c=clustered.labels, s=0.05, cmap='hsv_r') plt.colorbar() plt.title("Visualization of one instance of clustering through HDBSCAN") '''cluster = hdbscan.HDBSCAN(min_cluster_size=3, metric='manhattan', cluster_selection_method='eom').fit(embeddings) ''' #number of clusters print(cluster.labels_.max()) #nota: è il label più alto => #numero clusters = max()+1 clusters = constructDictionaryOfClusters(cluster.labels_, textual_data) print(len(clusters)) #really not necessary to be honest, clusters_desc = clusters.copy()[:-1] clusters_desc.sort(key = len, reverse = True) print(len(clusters)) print(len(clusters_desc)) ###Output _____no_output_____ ###Markdown Now I do sort of a matching matrix. Maybe it would be appropriate to do intersection over union for each element of the matrix? ###Code #transform clusters of titles/abstracts into clusters of ids '''clusters_of_ids = [] for item in clusters_desc: temp = [] for text in item: tmp_ids = [] for dt in data: #print(dt) tp = None if dt[clustering_on] == text: tmp_ids.append(dt['filename']) tp = dt['filename'] #print(tp) break temp.append(tp) clusters_of_ids.append(temp) #print(clusters_of_ids) ''' def transform_clusters_into_id_clusters(temp_clust_desc): id_clusters = [] for item in clusters_desc: temp = [] for text in item: tmp_ids = [] for dt in data: #print(dt) tp = None if dt[clustering_on] == text: tmp_ids.append(dt['filename']) tp = dt['filename'] #print(tp) break temp.append(tp) id_clusters.append(temp) return id_clusters clusters_of_ids = transform_clusters_into_id_clusters(clusters_desc) print(len(clusters_of_ids[0])) print(len(clusters_of_ids[-1])) #should have stored this way since the beginning, useless transformation.. new_data = {} for item in data: new_data[item['filename']] = {'title': item['title'], 'abstract': item['abstract']} #new_data mi_keywords_desc = mi_keywords.copy() mi_keywords_desc.reverse() matching_matrix = [] #for each cluster for c_item in clusters_of_ids: #for each keyword of the previously defined keywords row = [] for kwd in mi_keywords_desc: # keyword k_item appears in doc1, doc2, ... # c_item is the first set, the second set should be k_item['appears_in'] appears_in = mi_associations[kwd]['appears_in'] #the following can be replaced with whatever metric union = len(set(c_item).union(set(appears_in))) intersection = len(set(c_item).intersection(set(appears_in))) row.append(intersection/union) matching_matrix.append(row) import numpy as np np_matching_matrix = np.array(matching_matrix) #print(np_matching_matrix) mi_keywords_desc import seaborn as sn #TODO add the labels to the chart ? plt.figure(figsize=(11,8)) sn.heatmap(np_matching_matrix, annot=False, xticklabels=mi_keywords_desc) ###Output _____no_output_____ ###Markdown Clustering with K-means The reason for doing two types of clustering is that, while HDBSCAN leaves out the outsideres, k-means forces each element into a cluster. ###Code from sklearn.cluster import KMeans clustering_model = KMeans(n_clusters=29) clustering_model.fit(umap_embeddings) cluster_assignment = clustering_model.labels_ # number of clusters print(clustering_model.labels_.max()) clusters = constructDictionaryOfClusters(clustering_model.labels_, textual_data) import pandas as pd #umap_data = umap.UMAP(n_neighbors=15, n_components=2, min_dist=0.0, metric='cosine').fit_transform(umap_embeddings) result = pd.DataFrame(umap_data, columns=['x', 'y']) result['labels'] = clustering_model.labels_ # Visualize clusters fig, ax = plt.subplots(figsize=(10, 7)) outliers = result.loc[result.labels == -1, :] clustered = result.loc[result.labels != -1, :] plt.scatter(outliers.x, outliers.y, color='#BDBDBD', s=0.05) plt.scatter(clustered.x, clustered.y, c=clustered.labels, s=0.05, cmap='hsv_r') plt.colorbar() plt.title("Visualization of one instance of clustering through k-means") #really not necessary to be honest, clusters_desc = clusters.copy()[:-1] clusters_desc.sort(key = len, reverse = True) ###Output _____no_output_____ ###Markdown NOTE: from this point on, it's the same code as with HDBSCAN ###Code clusters_of_ids = transform_clusters_into_id_clusters(clusters_desc) print(len(clusters_of_ids[0])) print(len(clusters_of_ids[-1])) #should have stored this way since the beginning, useless transformation.. new_data = {} for item in data: new_data[item['filename']] = {'title': item['title'], 'abstract': item['abstract']} mi_keywords_desc = mi_keywords.copy() mi_keywords_desc.reverse() matching_matrix = [] #for each cluster for c_item in clusters_of_ids: #for each keyword of the previously defined keywords row = [] for kwd in mi_keywords_desc: # keyword k_item appears in doc1, doc2, ... # c_item is the first set, the second set should be k_item['appears_in'] appears_in = mi_associations[kwd]['appears_in'] #the following can be replaced with whatever metric union = len(set(c_item).union(set(appears_in))) intersection = len(set(c_item).intersection(set(appears_in))) row.append(intersection/union) matching_matrix.append(row) import numpy as np np_matching_matrix = np.array(matching_matrix) #print(np_matching_matrix) import seaborn as sn #TODO add the labels to the chart ? plt.figure(figsize=(11,8)) sn.heatmap(np_matching_matrix, annot=False, xticklabels=mi_keywords_desc) ###Output _____no_output_____ ###Markdown A further step: automatic keyword assignmentGiven the clusters, it's possibile tu use c-TF-IDF to infer the topic, this *could* allow for automatic labeling of a set of documents ###Code #smarter way of doing things.. import pandas as pd #for each cluster, create pandas dataframe docs_df = pd.DataFrame(textual_data, columns=["Doc"]) docs_df['Topic'] = cluster.labels_ docs_df['Doc_ID'] = range(len(docs_df)) docs_per_topic = docs_df.groupby(['Topic'], as_index = False).agg({'Doc': ' '.join}) from sklearn.feature_extraction.text import CountVectorizer #note: c-tf-idf is simply tf-idf but the measurements are made on one entire cluster def c_tf_idf(documents, m, ngram_range=(1, 1)): count = CountVectorizer(ngram_range=ngram_range, stop_words="english").fit(documents) t = count.transform(documents).toarray() w = t.sum(axis=1) tf = np.divide(t.T, w) sum_t = t.sum(axis=0) idf = np.log(np.divide(m, sum_t)).reshape(-1, 1) tf_idf = np.multiply(tf, idf) return tf_idf, count def extract_top_n_words_per_topic(tf_idf, count, docs_per_topic, n=20): words = count.get_feature_names() labels = list(docs_per_topic.Topic) tf_idf_transposed = tf_idf.T indices = tf_idf_transposed.argsort()[:, -n:] top_n_words = {label: [(words[j], tf_idf_transposed[i][j]) for j in indices[i]][::-1] for i, label in enumerate(labels)} return top_n_words def extract_topic_sizes(df): topic_sizes = (df.groupby(['Topic']) .Doc .count() .reset_index() .rename({"Topic": "Topic", "Doc": "Size"}, axis='columns') .sort_values("Size", ascending=False)) return topic_sizes tf_idf, count = c_tf_idf(docs_per_topic.Doc.values, m=len(data)) top_n_words = extract_top_n_words_per_topic(tf_idf, count, docs_per_topic, n=20) topic_sizes = extract_topic_sizes(docs_df) topic_sizes.head(10) #nota, i topic con '-1' sono quelli che hdbscan non ha clusterizzato top_n_words[0][:100] ###Output _____no_output_____
examples/Abatement/A2.ipynb
###Markdown A very simple input-displacing model We consider the simple case with:* Two technologies, using a combination of two fuels and capital in a leontief-nest.* Technology $1$ produces two goods $(u1,u2)$. Technology $2$ produces one good $(u3)$. This nest is CET (normalized).* $u1$ is used to produce a component $C1$, goods $(u2,u3)$ are combined as component $C2$. This is MNL (normalized).* Components $(C1,C2)$ are combined into one good $E$. This is CES. 1: Trees *Data file:* ###Code data_file = 'TreeData.xlsx' ###Output _____no_output_____ ###Markdown *Main tree:* ###Code nt = nesting_tree.nesting_tree(name='A1') ###Output _____no_output_____ ###Markdown *Add Trees:* ###Code nt.add_tree(data_folder+'\\'+data_file,tree_name='T_inp',**{'sheet':'T'}) nt.add_tree(data_folder+'\\'+data_file,tree_name='T_out',**{'sheet':'U', 'type_io':'output','type_f':'CET_norm'}) nt.add_tree(data_folder+'\\'+data_file,tree_name='C',**{'sheet':'C', 'type_f':'MNL'}) nt.add_tree(data_folder+'\\'+data_file,tree_name='E',**{'sheet':'E', 'type_f': 'CES_norm'}) nt.run_all() ###Output _____no_output_____ ###Markdown *Read in data on variables as well:* ###Code [DataBase.GPM_database.merge_dbs(nt.database,excel2py.xl2PM.pm_from_workbook(data_folder+'\\'+data_file,{sheet:'vars'}),'first') for sheet in ('T','U','C','E')]; ###Output _____no_output_____ ###Markdown 2: Production module ###Code gm.get('map_all') gm = Production.pr_static(nt=nt,work_folder=directory['work'],**{'data_folder':gams_folder,'name':'A1'}) gm.write_and_run(kwargs_init={'check_variables':True}) db = gm.model_instances['baseline'].out_db gm.model_instances['baseline'].modelstat,gm.model_instances['baseline'].solvestat db.get('qD').plot.bar(figsize=(4,3)); db.get('PbT').plot.bar(figsize=(4,3)); ###Output _____no_output_____
WMAP_power_spectrum_analysis_with_HealPy.ipynb
###Markdown ###Code #@title !pip install healpy !pip install astroML %matplotlib inline import numpy as np from matplotlib import pyplot as plt # warning: due to a bug in healpy, importing it before pylab can cause # a segmentation fault in some circumstances. import healpy as hp from astroML.datasets import fetch_wmap_temperatures #------------------------------------------------------------ # Fetch the data wmap_unmasked = fetch_wmap_temperatures(masked=False) wmap_masked = fetch_wmap_temperatures(masked=True) white_noise = np.ma.asarray(np.random.normal(0, 0.062, wmap_masked.shape)) #------------------------------------------------------------ # plot the unmasked map fig = plt.figure(1) hp.mollview(wmap_unmasked, min=-1, max=1, title='Unmasked map', fig=1, unit=r'$\Delta$T (mK)') #------------------------------------------------------------ # plot the masked map # filled() fills the masked regions with a null value. fig = plt.figure(2) hp.mollview(wmap_masked.filled(), title='Masked map', fig=2, unit=r'$\Delta$T (mK)') #------------------------------------------------------------ # compute and plot the power spectrum cl = hp.anafast(wmap_masked.filled(), lmax=1024) ell = np.arange(len(cl)) cl_white = hp.anafast(white_noise, lmax=1024) fig = plt.figure(3) ax = fig.add_subplot(111) ax.scatter(ell, ell * (ell + 1) * cl, s=4, c='black', lw=0, label='data') ax.scatter(ell, ell * (ell + 1) * cl_white, s=4, c='gray', lw=0, label='white noise') ax.set_xlabel(r'$\ell$') ax.set_ylabel(r'$\ell(\ell+1)C_\ell$') ax.set_title('Angular Power (not mask corrected)') ax.legend(loc='upper right') ax.grid() ax.set_xlim(0, 1100) plt.show() wmap_unmasked ###Output _____no_output_____
Auto_ViML_Demo.ipynb
###Markdown Data Sets used in this tutorial courtesy of UCI Machine Learning RepositoryCitation Request:We suggest the following pseudo-APA reference format for referring to this repository:Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. Dataset Found here: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic) ###Code import pandas as pd datapath = '../data_sets/' sep = ',' ### Download the Breast Cancer data set from: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic) df = pd.read_csv(datapath+'breast_cancer.csv',sep=sep, index_col=None) #df = pd.read_csv(datapath+'boston.csv',sep=sep, index_col=None) df = df.sample(frac=1.0, random_state=0) target = 'diagnosis' print(df.shape) df.head() num = int(0.9*df.shape[0]) train = df[:num] test = df[num:] sample_submission='' scoring_parameter = '' from autoviml.Auto_ViML import Auto_ViML #### If Boosting_Flag = True => XGBoost, Fase=>ExtraTrees, None=>Linear Model m, feats, trainm, testm = Auto_ViML(train, target, test, sample_submission, scoring_parameter=scoring_parameter, hyper_param='GS',feature_reduction=True, Boosting_Flag=None,Binning_Flag=False, Add_Poly=0, Stacking_Flag=False, Imbalanced_Flag=False, verbose=1) ###Output Train (Size: 512,32) has Single_Label with target: ['diagnosis'] " ################### Binary-Class ##################### " Shuffling the data set before training Class -> Counts -> Percent B: 322 -> 62.9% M: 190 -> 37.1% Selecting 2-Class Classifier... Using GridSearchCV for Hyper Parameter tuning... String or Multi Class target: diagnosis transformed as follows: {'B': 0, 'M': 1} Classifying variables in data set... Number of Numeric Columns = 30 Number of Integer-Categorical Columns = 0 Number of String-Categorical Columns = 0 Number of Factor-Categorical Columns = 0 Number of String-Boolean Columns = 0 Number of Numeric-Boolean Columns = 0 Number of Discrete String Columns = 0 Number of NLP String Columns = 0 Number of Date Time Columns = 0 Number of ID Columns = 1 Number of Columns to Delete = 0 31 Predictors classified... This does not include the Target column(s) 1 variables removed since they were some ID or low-information variables Test data has no missing values... Number of numeric variables = 30 Number of variables removed due to high correlation = 11 Target Ready for Modeling: diagnosis Starting Feature Engg, Extraction and Model Training for target diagnosis and 19 predictors Number of numeric variables = 19 Number of variables removed due to high correlation = 4 Adding 0 categorical variables to reduced numeric variables of 15 Selected No. of variables = 15 Finding Important Features... in 15 variables in 12 variables in 9 variables in 6 variables in 3 variables Found 15 important features Leaving Top 15 continuous variables as is... No Entropy Binning specified Rows in Train data set = 460 Features in Train data set = 15 Rows in held-out data set = 52 Finding Best Model and Hyper Parameters for Target: diagnosis... Baseline Accuracy Needed for Model = 62.89% Using Linear Model, Estimated Training time = 0.1 mins Hyper Tuned Accuracy = 95.9% Model Best Parameters = {'C': 551.0248979591837, 'class_weight': 'balanced', 'solver': 'saga'} Finding Best Threshold for Highest F1 Score... Found Optimal Threshold as 0.94 for Best F1: 1.00 Linear Model Results on Held Out Data Set: Accuracy Score = 100.0% precision recall f1-score support 0 1.00 1.00 1.00 28 1 1.00 1.00 1.00 24 micro avg 1.00 1.00 1.00 52 macro avg 1.00 1.00 1.00 52 weighted avg 1.00 1.00 1.00 52 [[28 0] [ 0 24]] Time taken for Ensembling: 0.3 seconds ######################################################## Completed Ensemble predictions on held out data ###Markdown Use this to Test Regression Problems Only import numpy as npdef rmse(results, y_cv): return np.sqrt(np.mean((results - y_cv)**2, axis=0))from autoviml.Auto_ViML import print_regression_model_statsmodelname='Linear'print(rmse(test[target].values,testm[target+'_'+modelname+'_predictions'].values))print_regression_model_stats(test[target].values,testm[target+'_'+modelname+'_predictions'].values) ###Code ######## Use this to Test Classification Problems Only #### modelname='Linear' def accu(results, y_cv): return (results==y_cv).astype(int).sum(axis=0)/(y_cv.shape[0]) from sklearn.metrics import classification_report, confusion_matrix try: print('Test results since target variable is present in test data:') modelname = 'Bagging' print(confusion_matrix(test[target].values,testm[target+'_'+modelname+'_predictions'].values)) print('\nTest Accuracy = %0.2f%%\n' %(100*accu(test[target].values, testm[target+'_'+modelname+'_predictions'].values))) print(classification_report(test[target].values,testm[target+'_'+modelname+'_predictions'].values)) except: print('No target variable present in test data. No results') ###Output Test results since target variable is present in test data: [[35 0] [ 5 17]] Test Accuracy = 91.23% precision recall f1-score support B 0.88 1.00 0.93 35 M 1.00 0.77 0.87 22 micro avg 0.91 0.91 0.91 57 macro avg 0.94 0.89 0.90 57 weighted avg 0.92 0.91 0.91 57
code/SageMaker-word2vec-kmeans.ipynb
###Markdown IntroductionWord2Vec is a popular algorithm used for generating dense vector representations of words in large corpora using unsupervised learning. The resulting vectors have been shown to capture semantic relationships between the corresponding words and are used extensively for many downstream natural language processing (NLP) tasks like sentiment analysis, named entity recognition and machine translation. SageMaker BlazingText which provides efficient implementations of Word2Vec on- single CPU instance- single instance with multiple GPUs - P2 or P3 instances- multiple CPU instances (Distributed training) In this notebook, we demonstrate how BlazingText can be used for distributed training of word2vec using multiple CPU instances. SetupLet's start by specifying:- The S3 bucket and prefix that you want to use for training and model data. This should be within the same region as the Notebook Instance, training, and hosting. If you don't specify a bucket, SageMaker SDK will create a default bucket following a pre-defined naming convention in the same region. - The IAM role ARN used to give SageMaker access to your data. It can be fetched using the **get_execution_role** method from sagemaker python SDK. ###Code import sagemaker from sagemaker import get_execution_role import boto3 import json sess = sagemaker.Session() role = get_execution_role() print(role) # This is the role that SageMaker would use to leverage AWS resources (S3, CloudWatch) on your behalf bucket = sess.default_bucket() # Replace with your own bucket name if needed print(bucket) prefix = 'sagemaker/DEMO-blazingtext-text8' #Replace with the prefix under which you want to store the data if needed ###Output _____no_output_____ ###Markdown Data IngestionNext, we download a dataset from the web on which we want to train the word vectors. BlazingText expects a single preprocessed text file with space separated tokens and each line of the file should contain a single sentence.In this example, let us train the vectors on [text8](http://mattmahoney.net/dc/textdata.html) dataset (100 MB), which is a small (already preprocessed) version of Wikipedia dump. ###Code !wget http://mattmahoney.net/dc/text8.zip -O text8.gz # Uncompressing !gzip -d text8.gz -f ###Output _____no_output_____ ###Markdown After the data downloading and uncompressing is complete, we need to upload it to S3 so that it can be consumed by SageMaker to execute training jobs. We'll use Python SDK to upload these two files to the bucket and prefix location that we have set above. ###Code train_channel = prefix + '/train' sess.upload_data(path='text8', bucket=bucket, key_prefix=train_channel) s3_train_data = 's3://{}/{}'.format(bucket, train_channel) s3_train_data ###Output _____no_output_____ ###Markdown Next we need to setup an output location at S3, where the model artifact will be dumped. These artifacts are also the output of the algorithm's training job. ###Code s3_output_location = 's3://{}/{}/output'.format(bucket, prefix) s3_output_location ###Output _____no_output_____ ###Markdown Training SetupNow that we are done with all the setup that is needed, we are ready to train our object detector. To begin, let us create a ``sageMaker.estimator.Estimator`` object. This estimator will launch the training job. ###Code region_name = boto3.Session().region_name region_name container = sagemaker.amazon.amazon_estimator.get_image_uri(region_name, "blazingtext", "latest") print('Using SageMaker BlazingText container: {} ({})'.format(container, region_name)) ###Output _____no_output_____ ###Markdown Training the BlazingText model for generating word vectors Similar to the original implementation of [Word2Vec](https://arxiv.org/pdf/1301.3781.pdf), SageMaker BlazingText provides an efficient implementation of the continuous bag-of-words (CBOW) and skip-gram architectures using Negative Sampling, on CPUs and additionally on GPU[s]. The GPU implementation uses highly optimized CUDA kernels. To learn more, please refer to [*BlazingText: Scaling and Accelerating Word2Vec using Multiple GPUs*](https://dl.acm.org/citation.cfm?doid=3146347.3146354). BlazingText also supports learning of subword embeddings with CBOW and skip-gram modes. This enables BlazingText to generate vectors for out-of-vocabulary (OOV) words, as demonstrated in this [notebook](https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/blazingtext_word2vec_subwords_text8/blazingtext_word2vec_subwords_text8.ipynb). Besides skip-gram and CBOW, SageMaker BlazingText also supports the "Batch Skipgram" mode, which uses efficient mini-batching and matrix-matrix operations ([BLAS Level 3 routines](https://software.intel.com/en-us/mkl-developer-reference-fortran-blas-level-3-routines)). This mode enables distributed word2vec training across multiple CPU nodes, allowing almost linear scale up of word2vec computation to process hundreds of millions of words per second. Please refer to [*Parallelizing Word2Vec in Shared and Distributed Memory*](https://arxiv.org/pdf/1604.04661.pdf) to learn more. BlazingText also supports a *supervised* mode for text classification. It extends the FastText text classifier to leverage GPU acceleration using custom CUDA kernels. The model can be trained on more than a billion words in a couple of minutes using a multi-core CPU or a GPU, while achieving performance on par with the state-of-the-art deep learning text classification algorithms. For more information, please refer to [algorithm documentation](https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html) or [the text classification notebook](https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/blazingtext_text_classification_dbpedia/blazingtext_text_classification_dbpedia.ipynb). To summarize, the following modes are supported by BlazingText on different types instances:| Modes | cbow (supports subwords training) | skipgram (supports subwords training) | batch_skipgram | supervised ||:----------------------: |:----: |:--------: |:--------------: | :--------------: || Single CPU instance | ✔ | ✔ | ✔ | ✔ || Single GPU instance | ✔ | ✔ | | ✔ (Instance with 1 GPU only) || Multiple CPU instances | | | ✔ | | |Now, let's define the resource configuration and hyperparameters to train word vectors on *text8* dataset, using "batch_skipgram" mode on two c4.2xlarge instances. ###Code bt_model = sagemaker.estimator.Estimator(container, role, train_instance_count=2, train_instance_type='ml.c4.2xlarge', train_volume_size = 5, train_max_run = 360000, input_mode= 'File', output_path=s3_output_location, sagemaker_session=sess) ###Output _____no_output_____ ###Markdown Please refer to [algorithm documentation](https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext_hyperparameters.html) for the complete list of hyperparameters. ###Code bt_model.set_hyperparameters(mode="skipgram", epochs=5, min_count=5, sampling_threshold=0.0001, learning_rate=0.05, window_size=5, vector_dim=10, negative_samples=5, subwords=True, # Enables learning of subword embeddings for OOV word vector generation min_char=3, # min length of char ngrams max_char=6, # max length of char ngrams batch_size=11, # = (2*window_size + 1) (Preferred. Used only if mode is batch_skipgram) evaluation=True)# Perform similarity evaluation on WS-353 dataset at the end of training ###Output _____no_output_____ ###Markdown Now that the hyper-parameters are setup, let us prepare the handshake between our data channels and the algorithm. To do this, we need to create the `sagemaker.session.s3_input` objects from our data channels. These objects are then put in a simple dictionary, which the algorithm consumes. ###Code train_data = sagemaker.session.s3_input(s3_train_data, distribution='FullyReplicated', content_type='text/plain', s3_data_type='S3Prefix') data_channels = {'train': train_data} ###Output _____no_output_____ ###Markdown We have our `Estimator` object, we have set the hyper-parameters for this object and we have our data channels linked with the algorithm. The only remaining thing to do is to train the algorithm. The following command will train the algorithm. Training the algorithm involves a few steps. Firstly, the instance that we requested while creating the `Estimator` classes is provisioned and is setup with the appropriate libraries. Then, the data from our channels are downloaded into the instance. Once this is done, the training job begins. The provisioning and data downloading will take some time, depending on the size of the data. Therefore it might be a few minutes before we start getting training logs for our training jobs. The data logs will also print out `Spearman's Rho` on some pre-selected validation datasets after the training job has executed. This metric is a proxy for the quality of the algorithm. Once the job has finished a "Job complete" message will be printed. The trained model can be found in the S3 bucket that was setup as `output_path` in the estimator. ###Code bt_model.fit(inputs=data_channels, logs=True) ###Output _____no_output_____ ###Markdown Hosting / InferenceOnce the training is done, we can deploy the trained model as an Amazon SageMaker real-time hosted endpoint. This will allow us to make predictions (or inference) from the model. Note that we don't have to host on the same type of instance that we used to train. Because instance endpoints will be up and running for long, it's advisable to choose a cheaper instance for inference. ###Code bt_endpoint = bt_model.deploy(initial_instance_count = 1,instance_type = 'ml.m4.xlarge') ###Output _____no_output_____ ###Markdown Getting vector representations for words Use JSON format for inferenceThe payload should contain a list of words with the key as "**instances**". BlazingText supports content-type `application/json`. ###Code import pandas as pd import numpy as np df = pd.read_csv('<csv file name') df.head() import nltk nltk.download('punkt') nltk.download('stopwords') nltk.download('averaged_perceptron_tagger') nltk.download('wordnet') import nltk, re from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from nltk.corpus import wordnet from nltk.stem import WordNetLemmatizer # Let's get a list of stop words from the NLTK library stop = stopwords.words('english') # These words are important for our problem. We don't want to remove them. additional_stopwords = ["a", "an", "the", "this", "that", "is", "it", "to", "and"] stop.extend(additional_stopwords) # New stop word list #stop_words = [word for word in stop if word not in excluding] # Initialize the lemmatizer wl = WordNetLemmatizer() # This is a helper function to map NTLK position tags # Full list is available here: https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html def get_wordnet_pos(tag): if tag.startswith('J'): return wordnet.ADJ elif tag.startswith('V'): return wordnet.VERB elif tag.startswith('N'): return wordnet.NOUN elif tag.startswith('R'): return wordnet.ADV else: return wordnet.NOUN def process_text_lemmitization(texts): final_text_list=[] for sent in texts: filtered_sentence=[] if not isinstance(sent,float): sent = sent.lower() # Lowercase sent = sent.strip() # Remove leading/trailing whitespace sent = re.sub('\s+', ' ', sent) # Remove extra space and tabs sent = re.compile('<.*?>').sub('', sent) # Remove HTML tags/markups: for w in word_tokenize(sent): # We are applying some custom filtering here, feel free to try different things # Check if it is not numeric and its length>2 and not in stop words if(not w.isnumeric()) and (len(w)>3) and (w not in stop): # Stem and add to filtered list filtered_sentence.append(w) lemmatized_sentence = [] # Get position tags word_pos_tags = nltk.pos_tag(filtered_sentence) # Map the position tag and lemmatize the word/token for idx, tag in enumerate(word_pos_tags): lemmatized_sentence.append(wl.lemmatize(tag[0], get_wordnet_pos(tag[1]))) lemmatized_text = " ".join(lemmatized_sentence) final_text_list.append(lemmatized_text) return final_text_list df_processed = process_text_lemmitization(df['sentence']) df_processed def get_max_word_count(sent_list): word_count_list = [] for sent in sent_list: sent_words = word_tokenize(sent) word_count = len(sent_words) word_count_list.append(word_count) return max(word_count_list) max_word_count = get_max_word_count(df_processed) max_word_count max_columns = max_word_count*10 max_columns def sentence_to_vec2(response): sentence_vec = [] test_array = np.zeros(max_columns) for vec in response: sentence_vec.extend(vec['vector']) sent_array = np.array(sentence_vec) test_array[0:sent_array.shape[0]] = sent_array return test_array def process_sent_to_vec(sent_list): sent_list_vecs = [] #print(sent_list) for sent in sent_list: #print(sent) sent_words = word_tokenize(sent) payload = {"instances" : sent_words} #print(sent_words) response = bt_endpoint.predict(json.dumps(payload)) vecs = json.loads(response) sent_vectors = sentence_to_vec2(vecs) sent_list_vecs.append(sent_vectors) return sent_list_vecs test_vec = process_sent_to_vec(df_processed) test_vec_array = np.array(test_vec) test_vec_array.shape test_vec_array train_data = test_vec_array.astype('float32') np.savetxt("kmeans_train_data.csv", train_data[0:100], delimiter=",") from sagemaker import KMeans num_clusters = 5 kmeans = KMeans(role=role, train_instance_count=1, train_instance_type='ml.c4.xlarge', output_path='s3://'+ bucket +'/sentence-similarity/', k=num_clusters) %%time kmeans.fit(kmeans.record_set(train_data)) test_channel = prefix + '/batch' sess.upload_data(path='kmeans_train_data.csv', bucket=bucket, key_prefix=test_channel) %%time kmeans_transformer = kmeans.transformer(1, 'ml.m4.xlarge') # start a transform job batch_file = 'kmeans_train_data.csv' input_location = 's3://{}/{}/batch/{}'.format(bucket, prefix, batch_file) # use input data without ID column kmeans_transformer.transform(input_location, split_type='Line') kmeans_transformer.wait() import json import io from urllib.parse import urlparse def get_csv_output_from_s3(s3uri, file_name): parsed_url = urlparse(s3uri) bucket_name = parsed_url.netloc prefix = parsed_url.path[1:] s3 = boto3.resource('s3') obj = s3.Object(bucket_name, '{}/{}'.format(prefix, file_name)) return obj.get()["Body"].read().decode('utf-8') output = get_csv_output_from_s3(kmeans_transformer.output_path, '{}.out'.format(batch_file)) output_df = pd.read_csv(io.StringIO(output), sep=",", header=None) output_df.head(8) %%time kmeans_predictor = kmeans.deploy(initial_instance_count=1, instance_type='ml.t2.medium') %%time result_kmeans=kmeans_predictor.predict(train_data[0:990]) result_kmeans cluster_labels = [r.label['closest_cluster'].float32_tensor.values[0] for r in result_kmeans] cluster_labels df_results = pd.DataFrame(columns=['student_response']) df_results['student_response'] = df_processed[0:990] df_results['cluster'] = cluster_labels df_results.head() df_results.to_csv('results_word2vec_sm.csv',index=False) pd.DataFrame(cluster_labels)[0].value_counts() import matplotlib.pyplot as plt import matplotlib import seaborn as sns matplotlib.style.use('ggplot') ax=plt.subplots(figsize=(6,3)) ax=sns.distplot(cluster_labels, kde=False) title="Histogram of Cluster Counts" ax.set_title(title, fontsize=12) plt.show() ###Output _____no_output_____ ###Markdown Evaluation Let us now download the word vectors learned by our model and visualize them using a [t-SNE](https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding) plot. ###Code s3 = boto3.resource('s3') key = bt_model.model_data[bt_model.model_data.find("/", 5)+1:] s3.Bucket(bucket).download_file(key, 'model.tar.gz') ###Output _____no_output_____ ###Markdown Uncompress `model.tar.gz` to get `vectors.txt` ###Code !tar -xvzf model.tar.gz ###Output _____no_output_____ ###Markdown If you set "evaluation" as "true" in the hyperparameters, then "eval.json" will be there in the model artifacts.The quality of trained model is evaluated on word similarity task. We use [WS-353](http://alfonseca.org/eng/research/wordsim353.html), which is one of the most popular test datasets used for this purpose. It contains word pairs together with human-assigned similarity judgments.The word representations are evaluated by ranking the pairs according to their cosine similarities, and measuring the Spearmans rank correlation coefficient with the human judgments.Let's look at the evaluation scores which are there in eval.json. For embeddings trained on the text8 dataset, scores above 0.65 are pretty good. ###Code !cat eval.json ###Output _____no_output_____ ###Markdown Now, let us do a 2D visualization of the word vectors ###Code import numpy as np from sklearn.preprocessing import normalize # Read the 400 most frequent word vectors. The vectors in the file are in descending order of frequency. num_points = 400 first_line = True index_to_word = [] with open("vectors.txt","r") as f: for line_num, line in enumerate(f): if first_line: dim = int(line.strip().split()[1]) word_vecs = np.zeros((num_points, dim), dtype=float) first_line = False continue line = line.strip() word = line.split()[0] vec = word_vecs[line_num-1] for index, vec_val in enumerate(line.split()[1:]): vec[index] = float(vec_val) index_to_word.append(word) if line_num >= num_points: break word_vecs = normalize(word_vecs, copy=False, return_norm=False) from sklearn.manifold import TSNE tsne = TSNE(perplexity=40, n_components=2, init='pca', n_iter=10000) two_d_embeddings = tsne.fit_transform(word_vecs[:num_points]) labels = index_to_word[:num_points] from matplotlib import pylab %matplotlib inline def plot(embeddings, labels): pylab.figure(figsize=(20,20)) for i, label in enumerate(labels): x, y = embeddings[i,:] pylab.scatter(x, y) pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') pylab.show() plot(two_d_embeddings, labels) ###Output _____no_output_____ ###Markdown Running the code above might generate a plot like the one below. t-SNE and Word2Vec are stochastic, so although when you run the code the plot won’t look exactly like this, you can still see clusters of similar words such as below where 'british', 'american', 'french', 'english' are near the bottom-left, and 'military', 'army' and 'forces' are all together near the bottom. ![tsne plot of embeddings](./tsne.png) Stop / Close the Endpoint (Optional)Finally, we should delete the endpoint before we close the notebook. ###Code sess.delete_endpoint(bt_endpoint.endpoint) ###Output _____no_output_____
Odomero_WT_21_174/Data Analysis-Pandas-2/Project_.ipynb
###Markdown Project : Holiday weatherThere is nothing I like better than taking a holiday. In this project I am going to use the historic weather data from the Weather Underground for London to try to predict two good weather weeks to take off as holiday. Of course the weather in the summer of 2016 may be very different to 2014 but it should give some indication of when would be a good time to take a summer break. Getting the dataWeather Underground keeps historical weather data collected in many airports around the world. Right-click on the following URL and choose 'Open Link in New Window' (or similar, depending on your browser):http://www.wunderground.com/historyWhen the new page opens start typing 'LHR' in the 'Location' input box and when the pop up menu comes up with the option 'LHR, United Kingdom' select it and then click on 'Submit'. When the next page opens with London Heathrow data, click on the 'Custom' tab and select the time period From: 1 January 2014 to: 31 December 2014 and then click on 'Get History'. The data for that year should then be displayed further down the page. You can copy each month's data directly from the browser to a text editor like Notepad or TextEdit, to obtain a single file with as many months as you wish.Weather Underground has changed in the past the way it provides data and may do so again in the future. I have therefore collated the whole 2014 data in the provided 'London_2014.csv' file which can be found in the project folder. Now load the CSV file into a dataframe making sure that any extra spaces are skipped: ###Code import warnings warnings.simplefilter('ignore', FutureWarning) import pandas as pd moscow = pd.read_csv('Moscow_SVO_2014.csv', skipinitialspace=True) ###Output _____no_output_____ ###Markdown Cleaning the dataFirst we need to clean up the data. I'm not going to make use of `'WindDirDegrees'` in my analysis, but you might in yours so we'll rename `'WindDirDegrees'` to `'WindDirDegrees'`. ###Code moscow.head() moscow = moscow.rename(columns={'WindDirDegrees<br />' : 'WindDirDegrees'}) ###Output _____no_output_____ ###Markdown remove the `` html line breaks from the values in the `'WindDirDegrees'` column. ###Code moscow['WindDirDegrees'] = moscow['WindDirDegrees'].str.rstrip('<br />') ###Output _____no_output_____ ###Markdown and change the values in the `'WindDirDegrees'` column to `float64`: ###Code moscow['WindDirDegrees'] = moscow['WindDirDegrees'].astype('float64') ###Output _____no_output_____ ###Markdown We definitely need to change the values in the `'Date'` column into values of the `datetime64` date type. ###Code moscow['Date'] = pd.to_datetime(moscow['Date']) ###Output _____no_output_____ ###Markdown We also need to change the index from the default to the `datetime64` values in the `'Date'` column so that it is easier to pull out rows between particular dates and display more meaningful graphs: ###Code moscow.index = moscow['Date'] ###Output _____no_output_____ ###Markdown Finding a summer breakAccording to meteorologists, summer extends for the whole months of June, July, and August in the northern hemisphere and the whole months of December, January, and February in the southern hemisphere. So as I'm in the northern hemisphere I'm going to create a dataframe that holds just those months using the `datetime` index, like this: ###Code from datetime import datetime summer = moscow.loc[datetime(2014,6,1) : datetime(2014,8,31)] ###Output _____no_output_____ ###Markdown I now look for the days with warm temperatures. ###Code summer[summer['Mean TemperatureC'] >= 23] ###Output _____no_output_____ ###Markdown Summer 2014 in Moscow: there are about 13 days with temperatures of 23 Celsius or higher. Best to see a graph of the temperature and look for the warmest period.So next we tell Jupyter to display any graph created inside this notebook: ###Code %matplotlib inline ###Output _____no_output_____ ###Markdown Now let's plot the `'Mean TemperatureC'` for the summer: ###Code summer['Mean TemperatureC'].plot(grid=True, figsize=(10,5)) ###Output _____no_output_____ ###Markdown Well looking at the graph the second half of July into 1st half of July looks good for mean temperatures over 22.5 degrees C so let's also put precipitation on the graph too: ###Code summer[['Mean TemperatureC', 'Precipitationmm']].plot(grid=True, figsize=(10,5)) ###Output _____no_output_____ ###Markdown The second half of July into 1st half of August is still looking good, with no heavy rain. Let's have a closer look by just plotting mean temperature and precipitation for July and August ###Code july_aug = summer.loc[datetime(2014,7,21) : datetime(2014,8,14)] july_aug[['Mean TemperatureC', 'Precipitationmm']].plot(grid=True, figsize=(10,5)) ###Output _____no_output_____
Clase1_IMDB_Limpieza_en_clase.ipynb
###Markdown IMDB MASTER DATA SCIENCE: NUCLIO PROFESOR: JOSEPH GALLART CLASE 1: EDA + Data Cleaning ###Code import pandas as pd import numpy as np import matplotlib as plt imdb = pd.read_csv("datasets/IMDB.csv", sep=";", index_col=[0]) imdb imdb.shape type(imdb.shape) imdb.info() # nos dice, por cada columna, si hay valores null -> NaN imdb.isnull().any() # para sacar las columnas con valores NaN columna_nulos = imdb.columns[imdb.isnull().any()] columna_nulos # saca por la columna "color" las value y cuantas veces aparecen imdb["color"].value_counts() # saca por la columna "director_name" las value y cuantas veces aparecen imdb["director_name"].value_counts() # sacame todas las filas donde el director_name es NaN # esto se hace para luego cambiar los valores NaN con valores "", porque el MODELO no entiende el NaN pero si el NULL imdb[imdb["director_name"].isnull()] # SLICING # cuidado con el hacer siempre copias de df pero la info punta siempre al mismo df director_nulo_mayorde140mins = imdb[ (imdb["director_name"].isnull()) & (imdb["duration"] >= 140) ] # aplicar algo al resultado imdb["gross"].describe().apply("{0:.2f}".format) imdb["gross"].min() imdb["gross"].max() imdb["gross"].mean() imdb[(imdb["gross"] > 600000000)].head(10) imdb.hist(column="gross") imdb[ (imdb["gross"] > 500000000) & (imdb["gross"] < 5600000000) ] # ver valores duplicados (cuidado: toda la fila tiene que ser duplicada, seno no sale nada) imdb.duplicated() # ver FILAS duplicadas (cuidado: todos los valores de la fila tienen que ser duplicados, seno no sale nada) # keep=False -> hace que la fila y su duplicado sean añadidos al resultado imdb[imdb.duplicated(keep=False)] ###Output _____no_output_____ ###Markdown When keep=True : only the duplicated row is sorted ( this is the setting to use when you perform the drop() ) When keep=False : both row are sorted (not only the duplicated one) ###Code # ejemplo de usar keep=False df_test = pd.DataFrame(["a","b","c","d","a","b"]) print(df_test.T) print("") #SIN keep=False -> le decimos de sacar solo las filas duplicada (solo duplicados) df_test_only_duplicate = df_test[df_test.duplicated()] print(df_test_only_duplicate.T) print("") #CON keep=False -> le decimos de sacar todas las filas de duplicado (original y duplicados) df_test_only_duplicate_ALL = df_test[df_test.duplicated(keep=False)] print(df_test_only_duplicate_ALL.T) ###Output 0 1 2 3 4 5 0 a b c d a b 4 5 0 a b 0 1 4 5 0 a b a b ###Markdown Deep copy creates new id's of every object it contains while normal copy only copies the elements from the parent and creates a new id for a variable to which it is copied to. ###Code # no queremos trabajar sobre el IMDB original, asi creamos una copia antes # creamos un nuevo DF, con nuevo ID imdb_sin_valores_duplicado = imdb.copy(deep=True) #lo que sigue es para entender lo de LAS COPIAS que hay que hacer # sacamos el ID del nuevo DF # N.B. el ID de un objeto cambia a cada EJECUCION que se realize print("id del DF imdb: " + str(id(imdb))) print("id del DF imdb_sin_valores_duplicado: " + str(id(imdb_sin_valores_duplicado))) # asi es como un preview # imdb_sin_valores_duplicado.drop_duplicates() # ---> BORRAMOS LAS FILAS DUPLICADA <--- # con inplace=True es 'real', el DF estara modificado imdb_sin_valores_duplicado.drop_duplicates(inplace=True) ###Output _____no_output_____ ###Markdown When inplace = True : the data is modified in place, which means it will return nothing and the dataframe is now updated. When inplace = False : (which is the default) then the operation is performed and it returns a copy of the object. You then need to save it to something. ###Code imdb_sin_valores_duplicado.info() # reseteamos LOS INDICES que se han visto modificado cuando hemos borrado filas # drop=True -> borrar el indice antiguo y inplace=True -> hace que sea real imdb_sin_valores_duplicado.reset_index(drop=True, inplace=True) imdb_sin_valores_duplicado.info() # BORRAMOS LA COLUMNA color (porque es irilevante) imdb_sin_valores_duplicado.drop(columns=["color"], inplace=True) # controlamos que se ha eliminada la columna color (si! ahora hay solo 12 columnas) imdb_sin_valores_duplicado.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 93 entries, 0 to 92 Data columns (total 12 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 director_name 82 non-null object 1 duration 93 non-null int64 2 gross 86 non-null float64 3 genres 92 non-null object 4 movie_title 93 non-null object 5 title_year 93 non-null int64 6 language 93 non-null object 7 country 93 non-null object 8 budget 89 non-null float64 9 imdb_score 93 non-null float64 10 actors 93 non-null object 11 movie_facebook_likes 93 non-null int64 dtypes: float64(3), int64(3), object(6) memory usage: 8.8+ KB ###Markdown rellenar los nulos ###Code # RELLENAMOS los NaN con valores "" (vacio), porque el MODELO no entiende el NaN o NULL pero si el "" (vacio) imdb_sin_valores_duplicado["director_name"].fillna("", inplace=True) # controlamos que no hay ahora valores NaN en la columna director_name imdb_sin_valores_duplicado[imdb_sin_valores_duplicado["director_name"].isnull()] # COMPROBAMOS que se han borrados, sacando el num() de los valores isnull() de la columna "director_name" imdb_sin_valores_duplicado["director_name"].isnull().sum() # los valores vacio de director_name (son 11) imdb_sin_valores_duplicado[imdb_sin_valores_duplicado["director_name"] =="" ] imdb_sin_valores_duplicado["director_name"].value_counts() # en la primera fila, el 11 == a los valores vacio de director_name imdb_sin_valores_duplicado["gross"].isnull().sum() imdb_sin_valores_duplicado[ imdb_sin_valores_duplicado["gross"].isnull() ] ###Output _____no_output_____ ###Markdown decidir como manejar los valores NaN de "gross" 1) poner a ZERO 2) poner un valor medio o mediana ###Code # calculo la media imdb_sin_valores_duplicado["gross"].mean() # asigno la media a los valores NaN de "gross" imdb_sin_valores_duplicado["gross"].fillna( imdb_sin_valores_duplicado["gross"].mean(), inplace=True ) # compruebo si hay valores NaN en "gross" imdb_sin_valores_duplicado["gross"].isnull().sum() # imdb_sin_valores_duplicado.isnull().sum() ###Output _____no_output_____ ###Markdown miramos los GENRES en el campo genres hay 4/5/6 string de generos - COMO LO MANEJAMOS ??? quieremos crear una columna por cada generos que hay y luego poner 1 si la peli es de este generos y 0 si no lo es ###Code # CREAMOS un DF con todos le genres con METODO SPLIT() ---> sirve para separar # il metodo .str() serve a trasformare il Df in serie ---> oggetto che supporta il metodo .split() lista_de_generos = imdb_sin_valores_duplicado["genres"].str.split("|", expand=True) # ATTRIBUTE EXPAND the split strings into separate columns. # If True, return DataFrame/MultiIndex expanding dimensionality ---> pandas.core.frame.DataFrame # If False, return Series/Index, containing lists of strings ---> pandas.core.series.Series lista_de_generos # RELLENAMOS los None con valores "" (vacio) porque el MODELO no entiende el NaN o NULL pero si el "" (vacio) lista_de_generos.fillna("", inplace=True) # se CREA una columna y se asigna un valor (esto lo hacemos tanta veces cuantos hay de genres) #imdb_sin_valores_duplicado["genero_1"] = lista_de_generos[0] #imdb_sin_valores_duplicado["genero_2"] = lista_de_generos[1] #imdb_sin_valores_duplicado["genero_3"] = lista_de_generos[2] #imdb_sin_valores_duplicado["genero_4"] = lista_de_generos[3] #imdb_sin_valores_duplicado["genero_5"] = lista_de_generos[4] # borrar la antigua columna "genres" del(imdb_sin_valores_duplicado["genres"]) imdb2 = imdb_sin_valores_duplicado imdb2 imdb2["duration"].hist() # tambien se puede escribir asi : imdb2.hist(column="duration") imdb2[imdb2["duration"]<=50] # hay dos valores anomalos en la duration -> lo se soluciona con un WHERE # usamos un WHERE para asignar un valor mean a cada fila de la columna duration que sea <50, si no lo es: se deja su valor # np.where( condicion, que hago si la condicion es True, que hago si la condicion es False ) imdb2["duration"]=np.where( imdb2["duration"]<=50, imdb2["duration"].mean(), imdb2["duration"] ) # esto es un Df con todos le generos lista_de_generos ###Output _____no_output_____
Son/Samir/Arranger.ipynb
###Markdown Fonction du son : Arranger ###Code Idées brouillon : arranger du son consiste à lui donner de la couleur, des sonoritées musicales. ###Output _____no_output_____
Prueba.ipynb
###Markdown Prueba para científico de datos Parte 1 - Cargar datos y estadísticas básicasEn la carpeta ```Data``` encontrará un archivo llamado ```diamonds.csv```. Este archivo contiene información de 53940 diamantes. Dentro de la información disponible, está el precio, el color, el peso, etc. Puede consultar las características completas del dataset en [este enlace](https://www.kaggle.com/shivam2503/diamonds).1. Cargue el archivo en un dataframe de pandas 2. Use los metodos que conozca para describir las propiedades básicas de los datos. ###Code # Respuesta a la parte 1 ###Output _____no_output_____ ###Markdown Parte 2 - Aprendizaje no supervisadoUsted desea encontrar estructura en los datos que le han sido dados. 1. A partir del dataframe que cargó en el primer punto, use algún algoritmo de aprendizaje no supervisado para encontrar clusters de diamantes con propiedades similares. 2. En una celda de markdown, describa una métrica/método que se pueda utilizar para evaluar la calidad de sus clusters.3. Varie $k$ (la cantidad de clusters) de 1 a 10 y grafique su métrica en función de $k$4. Qué $k$ describe mejor sus datos? ###Code # Respuesta a la parte 2 ###Output _____no_output_____ ###Markdown Parte 3 - Reducción de dimensionalidad y regresiónUsted quiere predecir el precio del diamante a partir de sus características (toda columna en el dataset que no sea el precio). Sin embargo, tiene la intuición que varias columnas son redundantes - es decir - hay columnas que no aportan información nueva. 1. Realice una reducción de dimensionalidad de los datos para evitar tener información redundante. Procure que en este nuevo espacio se explique por lo menos el 90% de la varianza de los datos.2. En una celda de markdown, describa una métrica que se pueda utilizar para evaluar la calidad de su regresión y su habilidad para explicar los datos. 3. Parta los datos en un conjunto de entrenamiento y otro de evaluación. 3. Sobre este nuevo espacio, entrene un algoritmo de regresión para predecir el precio de los diamantes sobre el conjunto de entrenamiento. Evalue su algoritmo con su métrica sobre el conjunto de test. ¿Qué tan bien le va a su algoritmo? ¿Lo llevaría a producción? ¿Por qué? ###Code # Respuesta a la parte 3 ###Output _____no_output_____ ###Markdown Parte 4 - clasificaciónEn la carpeta ```Data``` hay un archivo llamado ```emotions.csv``` que contiene informacion sobre las ondas electromagneticas emitidas por los cerebros de 2 pacientes. Hay un total de 2549 columnas con 2132 entradas. Su trabajo es predecir el estado de ánimo de la persona (la columna label): NEUTRAL, POSITIVE o NEGATIVE a partir de las otras columnas. Puede ver una descripción extensa del dataset [aquí](https://www.kaggle.com/birdy654/eeg-brainwave-dataset-feeling-emotions). Implemente el pipeline que considere necesario para llevar a cabo esta tarea. Es libre de escoger las herramientas y los métodos de clasificación que desee siempre y cuando cumpla lo siguiente:1. Implemente por lo menos 2 algoritmos de clasificación. 2. Grafique la matriz de confusión y las curvas de precisión y cobertura para cada algoritmo. Compare los resultados de sus clasificadores. 3. ¿Cuál algoritmo es mejor? 4. ¿Considera que el mejor algoritmo es suficiente para entrar a producción? ¿Por qué? ¿Por qué no? ###Code # Respuesta a la parte 4 ###Output _____no_output_____ ###Markdown Parte 5 - DespliegueDespliegue el mejor clasificador de la etapa anterior en un endpoint. El endpoint debe procesar el objeto JSON del *body* de un POST request. El formato del objeto JSON es el siguiente:```{"input":[val1,val2,val3, ... ,val2548]}```El orden de los valores corresponde al orden de las columnas del archivo `emotions.csv`. La lista tiene 2548 valores que corresponden a los 2548 que su clasificador debe tomar como input. El endpoint debe retornar un json de la siguiente forma si la petición fue exitosa: ```{"output":"clasfOutput"}```Donde "clasfOutput" corresponde a la predicción del clasificador (NEUTRAL, POSITIVE o NEGATIVE). ###Code # Respuesta a la parte 5 (url del endpoint) ###Output _____no_output_____ ###Markdown Vemos que los datos estan sobre todo a la izquierda del histograma por lo que bajaremos el theshold a un valor que los nivele, por ejemplo 0.6 ###Code def modelate_with_different_connectivity(window_size, label, connectivity_number_total, G, conn_empty_values): total_graphs_class_0, total_graphs_class_1 = [], [] for i in range(connectivity_number_total): conn = search_key(connectivity_measures, i) bands = search(connectivity_measures, conn)[1] # The threshold can be omited to use the default one graphs, _ = G.modelate(window_size = window_size, connectivity = conn, bands = bands, threshold = 0.6) conn_empty_values = test_empty(graphs, conn_empty_values, i) if(int(label)): total_graphs_class_1 = total_graphs_class_1 + list(graphs.values()) else: total_graphs_class_0 = total_graphs_class_0 + list(graphs.values()) return total_graphs_class_0, total_graphs_class_1, conn_empty_values graphs_class_0, graphs_class_1 = open_data_directories(path, window_size_class_0, window_size_class_1, con_number_total) print('\n=========================================') print('Total graphs Generated for class 0: ', len(graphs_class_0)) print('Total graphs Generated for class 1: ', len(graphs_class_1)) graphs = [graphs_class_0, graphs_class_1] #2) Visualize graphs #============================================================================================================================================================================ def visualize_graphs(graphs, selected): G = eegraph.Graph() for i in range(selected[0], selected[1]+1): G.visualize(graphs[i]) wanted = [0, 0] # Graph position visualize_graphs(graphs_class_1, wanted) #3)Histogram #============================================================================================================================================================================ def edges_histogram(graphs, label): total_edges, edges_dict = [], {} for i in range(len(graphs)): edges = [e for e in graphs[i].edges] edges_dict[str(i+1)] = len(edges) keys = edges_dict.keys() values = edges_dict.values() plt.figure(figsize=(30,15)) plt.title('Histogram: Edges per Graph. Class ' + str(label), fontsize=20) plt.hist(values, bins=max(values)+1-min(values)) plt.xlabel('Number of edges') plt.ylabel('Count') plt.bar(keys, values, align='center') plt.show() print('\n=====================================================================') for j in range(2): edges_histogram(graphs[j], j) #4)Empty graphs #============================================================================================================================================================================ def empty_graphs(graphs): empty_graphs, empty_dict = 0, {} for i in range(len(graphs)): if(nx.is_empty(graphs[i])): empty_dict[i] = True empty_graphs += 1 else: empty_dict[i] = False return empty_graphs, empty_dict print('\n=====================================================================') empty_amount, graphs_dict = [None]*2, [None]*2 for j in range(2): empty_amount[j], graphs_dict[j] = empty_graphs(graphs[j]) print('\nNumber of Empty graphs. Class ' + str(j) + ': ' , empty_amount[j]) print('Empty graphs (True).', graphs_dict[j]) #5)Erase Empty Graphs #============================================================================================================================================================================ def delete_graphs(graphs, graphs_dict): for key,value in reversed(graphs_dict.items()): if(value): print('Deleting graph in index:', str(key)) del graphs[key] return graphs print('\n=====================================================================') print('Deleting empty graphs.') for j in range(2): if (empty_amount[j]): print('\nGraphs in Class', j, ':') graphs[j] = delete_graphs(graphs[j], graphs_dict[j]) print('\nTotal graphs for class 0: ', len(graphs[0])) print('Total graphs for class 1: ', len(graphs[1])) #6)Mean value and Standard Deviation for graphs #============================================================================================================================================================================ def mean_std(graphs): edges_weights, edges_dict = [], {} for i in range(len(graphs)): edges = [d.get('weight') for e1,e2,d in graphs[i].edges(data=True)] edges_weights = edges_weights + edges print('Mean:', round(np.mean(edges_weights),5)) print('STD:', round(np.std(edges_weights),5)) print('\n=====================================================================') print('Mean values and Standar Deviation for edges in the graphs.') for j in range(2): print('\nClass', j, ':') mean_std(graphs[j]) ###Output data/0/1_presalva_2.edf 0 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/0/1_presalva_2.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 10.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2048.0), (2048.0, 2560.0), (2560.0, 3072.0), (3072.0, 3584.0), (3584.0, 4096.0), (4096.0, 4608.0), (4608.0, 5120.0), (5120.0, 5631.0)] Threshold: 0.6 Number of graphs created: 11 Empty: [0] data/0/1_presalva_3.edf 0 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/0/1_presalva_3.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 10.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2048.0), (2048.0, 2560.0), (2560.0, 3072.0), (3072.0, 3584.0), (3584.0, 4096.0), (4096.0, 4608.0), (4608.0, 5120.0), (5120.0, 5631.0)] Threshold: 0.6 Number of graphs created: 11 Empty: [0] data/0/1_presalva_1.edf 0 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/0/1_presalva_1.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 10.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2048.0), (2048.0, 2560.0), (2560.0, 3072.0), (3072.0, 3584.0), (3584.0, 4096.0), (4096.0, 4608.0), (4608.0, 5120.0), (5120.0, 5631.0)] Threshold: 0.6 Number of graphs created: 11 Empty: [0] data/0/1_presalva_4.edf 0 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/0/1_presalva_4.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 10.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2048.0), (2048.0, 2560.0), (2560.0, 3072.0), (3072.0, 3584.0), (3584.0, 4096.0), (4096.0, 4608.0), (4608.0, 5120.0), (5120.0, 5631.0)] Threshold: 0.6 Number of graphs created: 11 Empty: [0] data/0/1_presalva_13.edf 0 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/0/1_presalva_13.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 10.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2048.0), (2048.0, 2560.0), (2560.0, 3072.0), (3072.0, 3584.0), (3584.0, 4096.0), (4096.0, 4608.0), (4608.0, 5120.0), (5120.0, 5631.0)] Threshold: 0.6 Number of graphs created: 11 Empty: [0] data/0/1_presalva_12.edf 0 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/0/1_presalva_12.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 10.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2048.0), (2048.0, 2560.0), (2560.0, 3072.0), (3072.0, 3584.0), (3584.0, 4096.0), (4096.0, 4608.0), (4608.0, 5120.0), (5120.0, 5631.0)] Threshold: 0.6 Number of graphs created: 11 Empty: [0] data/0/1_presalva_5.edf 0 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/0/1_presalva_5.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 10.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2048.0), (2048.0, 2560.0), (2560.0, 3072.0), (3072.0, 3584.0), (3584.0, 4096.0), (4096.0, 4608.0), (4608.0, 5120.0), (5120.0, 5631.0)] Threshold: 0.6 Number of graphs created: 11 Empty: [0] data/0/1_presalva_7.edf 0 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/0/1_presalva_7.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 10.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2048.0), (2048.0, 2560.0), (2560.0, 3072.0), (3072.0, 3584.0), (3584.0, 4096.0), (4096.0, 4608.0), (4608.0, 5120.0), (5120.0, 5631.0)] Threshold: 0.6 Number of graphs created: 11 Empty: [0] data/0/1_presalva_10.edf 0 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/0/1_presalva_10.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 10.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2048.0), (2048.0, 2560.0), (2560.0, 3072.0), (3072.0, 3584.0), (3584.0, 4096.0), (4096.0, 4608.0), (4608.0, 5120.0), (5120.0, 5631.0)] Threshold: 0.6 Number of graphs created: 11 Empty: [0] data/0/1_presalva_11.edf 0 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/0/1_presalva_11.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 10.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2048.0), (2048.0, 2560.0), (2560.0, 3072.0), (3072.0, 3584.0), (3584.0, 4096.0), (4096.0, 4608.0), (4608.0, 5120.0), (5120.0, 5631.0)] Threshold: 0.6 Number of graphs created: 11 Empty: [0] data/0/1_presalva_6.edf 0 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/0/1_presalva_6.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 10.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2048.0), (2048.0, 2560.0), (2560.0, 3072.0), (3072.0, 3584.0), (3584.0, 4096.0), (4096.0, 4608.0), (4608.0, 5120.0), (5120.0, 5631.0)] Threshold: 0.6 Number of graphs created: 11 Empty: [0] data/0/1_presalva_8.edf 0 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/0/1_presalva_8.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 10.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2048.0), (2048.0, 2560.0), (2560.0, 3072.0), (3072.0, 3584.0), (3584.0, 4096.0), (4096.0, 4608.0), (4608.0, 5120.0), (5120.0, 5631.0)] Threshold: 0.6 Number of graphs created: 11 Empty: [0] data/0/1_presalva_9.edf 0 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/0/1_presalva_9.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 10.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2048.0), (2048.0, 2560.0), (2560.0, 3072.0), (3072.0, 3584.0), (3584.0, 4096.0), (4096.0, 4608.0), (4608.0, 5120.0), (5120.0, 5631.0)] Threshold: 0.6 Number of graphs created: 11 Empty: [0] data/1/1_espasmo_13.edf 1 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/1/1_espasmo_13.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 5.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2048.0), (2048.0, 2560.0), (2560.0, 3071.0)] Threshold: 0.6 Number of graphs created: 6 Empty: [0] data/1/1_espasmo_12.edf 1 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/1/1_espasmo_12.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 3.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2047.0)] Threshold: 0.6 Number of graphs created: 4 Empty: [0] data/1/1_espasmo_10.edf 1 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/1/1_espasmo_10.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 7.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2048.0), (2048.0, 2560.0), (2560.0, 3072.0), (3072.0, 3584.0), (3584.0, 4095.0)] Threshold: 0.6 Number of graphs created: 8 Empty: [0] data/1/1_espasmo_11.edf 1 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/1/1_espasmo_11.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 4.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2048.0), (2048.0, 2559.0)] Threshold: 0.6 Number of graphs created: 5 Empty: [0] data/1/1_espasmo_15.edf 1 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/1/1_espasmo_15.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 2.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1535.0)] Threshold: 0.6 Number of graphs created: 3 Empty: [0] data/1/1_espasmo_14.edf 1 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/1/1_espasmo_14.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 3.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2047.0)] Threshold: 0.6 Number of graphs created: 4 Empty: [0] data/1/1_espasmo_16.edf 1 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/1/1_espasmo_16.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 3.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2047.0)] Threshold: 0.6 Number of graphs created: 4 Empty: [0] data/1/1_espasmo_17.edf 1 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/1/1_espasmo_17.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 4.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2048.0), (2048.0, 2559.0)] Threshold: 0.6 Number of graphs created: 5 Empty: [0] data/1/1_espasmo_7.edf 1 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/1/1_espasmo_7.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 3.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2047.0)] Threshold: 0.6 Number of graphs created: 4 Empty: [0] data/1/1_espasmo_6.edf 1 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/1/1_espasmo_6.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 3.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2047.0)] Threshold: 0.6 Number of graphs created: 4 Empty: [0] data/1/1_espasmo_4.edf 1 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/1/1_espasmo_4.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 3.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2047.0)] Threshold: 0.6 Number of graphs created: 4 Empty: [0] data/1/1_espasmo_5.edf 1 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/1/1_espasmo_5.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 2.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1535.0)] Threshold: 0.6 Number of graphs created: 3 Empty: [0] data/1/1_espasmo_1.edf 1 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/1/1_espasmo_1.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 3.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2047.0)] Threshold: 0.6 Number of graphs created: 4 Empty: [0] data/1/1_espasmo_2.edf 1 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/1/1_espasmo_2.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 4.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2048.0), (2048.0, 2559.0)] Threshold: 0.6 Number of graphs created: 5 Empty: [0] data/1/1_espasmo_3.edf 1 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/1/1_espasmo_3.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 3.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2047.0)] Threshold: 0.6 Number of graphs created: 4 Empty: [0] data/1/1_espasmo_8.edf 1 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/1/1_espasmo_8.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 3.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2047.0)] Threshold: 0.6 Number of graphs created: 4 Empty: [0] data/1/1_espasmo_9.edf 1 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/1/1_espasmo_9.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 3.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2047.0)] Threshold: 0.6 Number of graphs created: 4 Empty: [0] data/1/1_espasmo_19.edf 1 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/1/1_espasmo_19.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 4.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2048.0), (2048.0, 2559.0)] Threshold: 0.6 Number of graphs created: 5 Empty: [0] data/1/1_espasmo_18.edf 1 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/1/1_espasmo_18.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 5.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2048.0), (2048.0, 2560.0), (2560.0, 3071.0)] Threshold: 0.6 Number of graphs created: 6 Empty: [0] data/1/1_espasmo_20.edf 1 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/1/1_espasmo_20.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 4.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2048.0), (2048.0, 2559.0)] Threshold: 0.6 Number of graphs created: 5 Empty: [0] data/1/1_espasmo_21.edf 1 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/1/1_espasmo_21.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 2.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1535.0)] Threshold: 0.6 Number of graphs created: 3 Empty: [0] data/1/1_espasmo_23.edf 1 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/1/1_espasmo_23.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 3.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2047.0)] Threshold: 0.6 Number of graphs created: 4 Empty: [0] data/1/1_espasmo_22.edf 1 Extracting EDF parameters from /Users/juanlatasareinoso/Downloads/Seminario/EEGRAPH/data/1/1_espasmo_22.edf... EDF file detected Setting channel info structure... Creating raw.info structure... EEG Information. Number of Channels: 19 Sample rate: 512.0 Hz. Duration: 4.998 seconds. Channel Names: ['EEG Fp1', 'EEG Fp2', 'EEG F4', 'EEG F3', 'EEG C3', 'EEG C4', 'EEG P4', 'EEG P3', 'EEG O2', 'EEG O1', 'EEG F8', 'EEG F7', 'EEG T4', 'EEG T3', 'EEG T6', 'EEG T5', 'EEG Pz', 'EEG Fz', 'EEG Cz'] ========================================= Model Data. Pearson_correlation_Estimator() Intervals: [(0, 512.0), (512.0, 1024.0), (1024.0, 1536.0), (1536.0, 2048.0), (2048.0, 2559.0)] Threshold: 0.6 Number of graphs created: 5 Empty: [0] ========================================= Total graphs Generated for class 0: 143 Total graphs Generated for class 1: 103 =====================================================================
notebooks/obsolete/CovidRatesByStatesMexico.ipynb
###Markdown COVID-19 Case Rates for States in Mexico[Work in progress]This notebooks uses data from [COVID-19 Mexico, Gobierno de Mexico](https://coronavirus.gob.mx/datos) ###Code import math import numpy as np import pandas as pd import datetime import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib.dates import DateFormatter from py2neo import Graph import ipywidgets as widgets pd.options.display.max_rows = None # display all rows pd.options.display.max_columns = None # display all columsns ###Output _____no_output_____ ###Markdown Connect to COVID-19-Net Knowledge Graph ###Code graph = Graph("bolt://132.249.238.185:7687", user="reader", password="demo") ###Output _____no_output_____ ###Markdown Select Metric to display ###Code metric_widget = widgets.Dropdown(options=('confirmedRate', 'deathRate'), description='Metric') display(metric_widget) metric = metric_widget.value print('Metric:', metric) # start date for time series start_date = '2020-04-01' ###Output _____no_output_____ ###Markdown Get confirmed cases and deaths for all counties in a state ###Code query = """ // get all states (admin1) in Mexico MATCH (a:Admin1)-[:IN]->(:Country{name: 'Mexico'}) // get COVID-19 cases for all states MATCH (a)<-[:REPORTED_IN]-(c:Cases{source: 'GOBMX', aggregationLevel: 'Admin1'}) WHERE c.date >= date($start_date) RETURN a.name AS name, c.date AS date, c.cases*100000.0/c.population AS confirmedRate, c.deaths*100000.0/c.population AS deathRate, c.cases AS cases, c.deaths AS deaths, c.population AS population ORDER BY c.date ASC, a.name """ df = graph.run(query, start_date=start_date).to_data_frame() df.tail(38) ###Output _____no_output_____ ###Markdown Reformat data ###Code # convert neo4j date object to datetime df['date'] = df['date'].astype(str) df['date'] = pd.to_datetime(df['date'], infer_datetime_format=False) # pivot table df_date = df.pivot(index='date', columns='name', values=metric) df_date.fillna(0, inplace=True) df_date.head() ax = df_date.plot(figsize=(16, 8), legend=False, title=f'{metric} for states in Mexico'); ax.set_xlabel('Date'); ax.set_ylabel(f'{metric} per 100,000'); ###Output _____no_output_____ ###Markdown Case rate (per 100,000) by State ###Code # dimensions for subplot layout cols = 5 rows = math.ceil(df_date.shape[1]/cols) ax = df_date.plot(subplots=True, layout=(rows,cols), sharey=True, figsize=(16, 2*rows)); ###Output _____no_output_____
Functional_Thinking/Lab/30B-numerical-and-logical-functions.ipynb
###Markdown Numerical and logical functions for working with iteratorsThese functions are always available. You don't need to import them. `any()`: checks if at least one element evaluates to `True`Without `any()`: ###Code none_true = [0, 0, 0] some_true = [0, 1, 0] all_true = [1, 1, 1] def check_any(i): for e in i: if e: return True return False check_any(none_true) ###Output _____no_output_____ ###Markdown With `any()`: ###Code any(none_true) ###Output _____no_output_____ ###Markdown An equivalent implementation using a generator expression: ###Code True in (bool(e) for e in none_true) ###Output _____no_output_____ ###Markdown `all(): checks if all elements evaluates to `True`Without `all()`: ###Code def check_all(i): for e in i: if not e: return False return True check_all(none_true) ###Output _____no_output_____ ###Markdown With `all()`: ###Code all(none_true) ###Output _____no_output_____ ###Markdown An equivalent implementation using a generator expression: ###Code False not in (bool(e) for e in none_true) ###Output _____no_output_____ ###Markdown sorted(), min(), max(), and sum() `sorted()` takes an Iterator with numeric elements, sorts it, and returns a `list`: ###Code numbers = [2, -1, 2, 4] sorted(numbers) ###Output _____no_output_____ ###Markdown Without `min()` and `max()`: ###Code sorted(numbers)[-1] ###Output _____no_output_____ ###Markdown With `min()` and `max()`: ###Code max(numbers) ###Output _____no_output_____ ###Markdown Without `sum()`: ###Code def get_sum(i): total = 0 for e in i: total += e return total get_sum(numbers) ###Output _____no_output_____ ###Markdown With `sum()`: ###Code sum(numbers) ###Output _____no_output_____
notebooks/extracting age and gender.ipynb
###Markdown In this notebook we get the age and gender based of the picture of a person.For this we consider only a subset of all images, those containing people that have a name associated with them.we do the following processing:1. get ids for photos where only one person is in the image2. get list of images associated with on person3. use py-agender to get the age and genderfinally we do some evaluation 1. get ids of photos where only one person is in the image ###Code df = pd.read_pickle('data/named_subjects.pkl') df.head() person_per_image = df.names.map(len) person_per_image.value_counts() individual_portraits = person_per_image == 1 ###Output _____no_output_____ ###Markdown How many pictures do we have of one person? ###Code individual_portraits_df = df[individual_portraits].copy() individual_portraits_df['name'] = individual_portraits_df.names.map(lambda x: x[0]) individual_portraits_df.groupby('name').id.count().sort_values() ###Output _____no_output_____ ###Markdown 49 people don't have portraits. That's okay, we focus on the people that do. ###Code unmatched_people = set([i for x in df.names.to_list() for i in x])\ .difference(set(individual_portraits_df['name'].tolist())) len(unmatched_people) ###Output _____no_output_____ ###Markdown 2. get list associated to person ###Code personal_portrait_image = individual_portraits_df.groupby('name').apply(lambda x: x.id.tolist()) personal_portrait_image = personal_portrait_image.rename('id').reset_index() personal_portrait_image agender = PyAgender() ###Output WARNING:tensorflow:From /Users/lguillain/opt/anaconda3/envs/fdh/lib/python3.7/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer. ###Markdown 3. get age-gender lables the api not only gives us an age and gender estimate, but also the rectangle pointing to the face. We keep that as it can be used for the face map ###Code def get_image(doc): url = doc+'/f1.highres.jpg' response = requests.get(url) img = Image.open(BytesIO(response.content)) img = Image.open(BytesIO(response.content)).convert('RGB') img = np.array(img) return img def get_age_gender_estimates(image_docs): i = 0 estimates = [] #handle case where for one image of personn we can't get estimates while i < len(image_docs) and len(estimates) == 0: img = get_image(image_docs[i]) retries = 0 while retries < 5 and len(estimates) == 0: estimates = agender.detect_genders_ages(img) retries += 1 i = i+1 if estimates: # use first estimate as it is most likely one result = estimates[0] result['number'] = len(estimates) result['id'] = image_docs[i-1] return result return {} if False: age_gender_lables = personal_portrait_image.id.map(get_age_gender_estimates) age_gender_lables = pd.DataFrame(age_gender_lables.tolist()) age_gender_lables['name'] = personal_portrait_image.name age_gender_lables.to_json('data/age_gender_labeles.json') age_gender_lables = pd.read_json('data/age_gender_labeles.json') true_gender = pd.read_pickle('data/bnf_table_full.pkl') len(true_gender) - len(age_gender_lables) true_gender = true_gender[['name', 'gender']] age_gender_lables = pd.merge(true_gender, age_gender_lables, on='name', suffixes=('_true', '_estimated'),how='left') age_gender_lables.gender_true.value_counts() age_gender_lables['gender_estimates_binary'] =\ age_gender_lables.loc[age_gender_lables.gender_estimated.notna(), 'gender_estimated'].map(lambda x: 'féminin' if x>.5 else 'masculin') age_gender_lables.gender_estimates_binary.isna().value_counts() age_gender_lables.gender_estimates_binary.value_counts() age_gender_lables.to_json('data/age_gender_labeles_augmented.json') ###Output _____no_output_____ ###Markdown evaluation of methodevaluation of algorithm itself is presented on wikipage of py-agender: https://github.com/yu4u/age-gender-estimation ###Code len(age_gender_lables[age_gender_lables.age.isna()]) ###Output _____no_output_____ ###Markdown can't get lables for 46 people ###Code unfound = age_gender_lables[age_gender_lables.age.isna()].name.tolist() personal_portrait_image[personal_portrait_image.name.isin(unfound)].id.map(lambda x:x[0]) ###Output _____no_output_____ ###Markdown number of faces that we got: ###Code age_gender_lables.number.value_counts() age_gender_lables.age.plot(kind='hist', bins=100) plt.title('histogram age distribution') plt.xlabel('age in years') ###Output _____no_output_____ ###Markdown mostly men ###Code age_gender_lables[age_gender_lables.gender_estimated.notna()] plt.title('histogram of gender estimates') plt.ylabel('count') age_gender_lables[(age_gender_lables.gender_true =='masculin') &\ age_gender_lables.gender_estimated.notna()].gender_estimated.plot('hist', bins=100) age_gender_lables[(age_gender_lables.gender_true !='masculin') &\ age_gender_lables.gender_estimated.notna()].gender_estimated.plot('hist', bins=100) plt.legend(['male', 'female']) ###Output /Users/lguillain/opt/anaconda3/envs/fdh/lib/python3.7/site-packages/ipykernel_launcher.py:4: FutureWarning: `Series.plot()` should not be called with positional arguments, only keyword arguments. The order of positional arguments will change in the future. Use `Series.plot(kind='hist')` instead of `Series.plot('hist',)`. after removing the cwd from sys.path. /Users/lguillain/opt/anaconda3/envs/fdh/lib/python3.7/site-packages/ipykernel_launcher.py:6: FutureWarning: `Series.plot()` should not be called with positional arguments, only keyword arguments. The order of positional arguments will change in the future. Use `Series.plot(kind='hist')` instead of `Series.plot('hist',)`. ###Markdown Clearly, given the name something went wrong ###Code CM = confusion_matrix(age_gender_lables.gender_true == 'masculin', age_gender_lables.gender_estimates_binary == 'masculin') CM TN = CM[0][0] FN = CM[1][0] TP = CM[1][1] FP = CM[0][1] FN # Sensitivity, hit rate, recall, or true positive rate TPR = TP/(TP+FN) # Specificity or true negative rate TNR = TN/(TN+FP) # Precision or positive predictive value PPV = TP/(TP+FP) # Negative predictive value NPV = TN/(TN+FN) # Fall out or false positive rate FPR = FP/(FP+TN) # False negative rate FNR = FN/(TP+FN) # False discovery rate FDR = FP/(TP+FP) # Overall accuracy ACC = (TP+TN)/(TP+FP+FN+TN) ACC ###Output _____no_output_____ ###Markdown Example of multiple matches or mismatches ###Code font = {'family': 'serif', 'color': 'yellow', 'weight': 'normal', 'size': 16, } img = get_image(age_gender_lables.id[1296]) for detect in [age_gender_lables.iloc[1296]]: gender = 'Woman' if detect['gender_estimated'] > .5 else 'Man' plt.figure(figsize=(10, 10)) plt.text(detect['left'], detect['top']-10, str(detect['age'])[:2] + ' ' + gender, fontdict=font) plt.imshow(cv2.rectangle(img, (int(detect['left']), int(detect['top'])), (int(detect['right']), int(detect['bottom'])), (255, 255, 0), 3)) ###Output _____no_output_____
_Moringa_Data_Science_Core_W8_Independent_Project_2020_07_Leah_Mbugua (1).ipynb
###Markdown Our dataset has no null values. However if we check on a single column there is a ? which should be converted to NAN value **Replace ? with NAN** ###Code # Count unique elements in each column including NaN uniqueValues = df.nunique(dropna=False) uniqueValues ###Output Count Unique values in each column including NaN status 2 age 93 sex 3 on_thyroxine 2 query_on_thyroxine 2 on_antithyroid_medication 2 thyroid_surgery 2 query_hypothyroid 2 query_hyperthyroid 2 pregnant 2 sick 2 tumor 2 lithium 2 goitre 2 TSH_measured 2 TSH 240 T3_measured 2 T3 70 TT4_measured 2 TT4 269 T4U_measured 2 T4U 159 FTI_measured 2 FTI 281 TBG_measured 2 TBG 53 dtype: int64 ###Markdown * Column sex has 3 unique values, to check we print the unique values. ###Code #For example the below column has a unique value ? which needs to be replaced df['sex'].unique() #Replace all rows with ? to nan df.replace('?',np.nan,inplace=True) df.head() #Check for missing values df.isnull().sum() #Confirm that the ? value has been replaced. df['sex'].unique() #Checking data types of our dataset df.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 3163 entries, 0 to 3162 Data columns (total 26 columns): status 3163 non-null object age 2717 non-null object sex 3090 non-null object on_thyroxine 3163 non-null object query_on_thyroxine 3163 non-null object on_antithyroid_medication 3163 non-null object thyroid_surgery 3163 non-null object query_hypothyroid 3163 non-null object query_hyperthyroid 3163 non-null object pregnant 3163 non-null object sick 3163 non-null object tumor 3163 non-null object lithium 3163 non-null object goitre 3163 non-null object TSH_measured 3163 non-null object TSH 2695 non-null object T3_measured 3163 non-null object T3 2468 non-null object TT4_measured 3163 non-null object TT4 2914 non-null object T4U_measured 3163 non-null object T4U 2915 non-null object FTI_measured 3163 non-null object FTI 2916 non-null object TBG_measured 3163 non-null object TBG 260 non-null object dtypes: object(26) memory usage: 642.6+ KB ###Markdown There are numerical variables that need to be converted to numeric type. ###Code num = ['age','TSH','T3','TT4','T4U','FTI'] num categorical= ['status','sex', 'on_thyroxine', 'query_on_thyroxine','on_antithyroid_medication', 'thyroid_surgery', 'query_hypothyroid', 'query_hyperthyroid', 'pregnant', 'sick', 'tumor', 'lithium', 'goitre','TSH_measured','T3_measured','TT4_measured', 'T4U_measured','FTI_measured','TBG_measured', 'TBG'] #convert object to numerical df[num] = df[num].apply(pd.to_numeric) df.dtypes # To confirm they have been converted,split numerical variables from categorical variables numerical_variables = [col for col in df.columns if df[col].dtypes != 'O'] numerical_variables #Get all categorical variables categorical_variables = [col for col in df.columns if df[col].dtypes == 'O'] categorical_variables #Check for missing values df.isnull().sum() #Fill missing values of numerical variables # Use simple imputer to fill missing values with the mean impute = SimpleImputer(strategy ='mean') df[numerical_variables] = impute.fit_transform(df[numerical_variables]) # Fill missing values for categorical data df['sex'].fillna(df['sex'].mode()[0], inplace=True) df['TBG'].fillna(df['TBG'].mode()[0], inplace=True) #Confirm there are no missing values df.isnull().sum() ###Output _____no_output_____ ###Markdown **Data Preprocessing** ###Code #We define x and y y = df['status'] y #Change our target values(y) to a binary y =df['status']= np.where(df['status']=='hypothyroid',0,1) print(y) df['status'].value_counts() ###Output [0 0 0 ... 1 1 1] ###Markdown * 1 means it's negative* 0 means it's hypothyroid ###Code X = df.drop(['status'], axis=1) X from sklearn.model_selection import train_test_split #Split our dataset train dataset size is 80% test datset is 20% X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) print(X_train.shape, X_test.shape) !pip install sklearn !pip install category_encoders # encode categorical variables with one-hot encoding to numeric encoder = ce.OneHotEncoder(cols=['sex','on_thyroxine','query_on_thyroxine','on_antithyroid_medication','thyroid_surgery','query_hypothyroid','query_hyperthyroid','pregnant','sick','tumor','lithium','goitre','TSH_measured','T3_measured','TT4_measured','T4U_measured','FTI_measured','TBG_measured','TBG']) X_train = encoder.fit_transform(X_train) X_test = encoder.transform(X_test) print(X_train.head(4)) #Confirm there is no nan in train dataset. np.any(np.isnan(X_train)) # Confirm there is no nan in test dataset np.any(np.isnan(X_test)) ###Output _____no_output_____ ###Markdown **Feature scaling**Feature scaling is a method used to normalize the range of independent variables or features of data. In data processing, it is also known as data normalization.We need to normalize our independent variables. We use robust scaler to do this. ###Code cols = X_train.columns scaler = RobustScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) X_train = pd.DataFrame(X_train, columns=[cols]) X_test = pd.DataFrame(X_test, columns=[cols]) ###Output _____no_output_____ ###Markdown **Random Forest Classifier model with default parameters- 10 decision trees** ###Code # Intiate the randomforestclassifier rf = RandomForestClassifier(random_state=0) # fit the model rf.fit(X_train, y_train) # Predict the Test set results y_pred = rf.predict(X_test) # Check accuracy score from sklearn.metrics import accuracy_score print('Model accuracy score with 10 decision-trees : {0:0.4f}'. format(accuracy_score(y_test, y_pred))) #Check the error rate of the model. print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) #Compute the confusion matrix to understand the actual versus predicted variables. from sklearn.metrics import confusion_matrix confusion = confusion_matrix(y_test,y_pred) confusion ###Output _____no_output_____ ###Markdown * **Findings*** Model accuracy was 98% with an error rate of 0.14. The model predicted 602 negative and 17 hypothyroid correctly* To improve the model perfomance, we increase the number of decision trees to 100, increase the max depth and reduce sample split to 20. **Random forest classifier using 100 decision trees** ###Code # Run the classifier with n_estimators = 100 rf1 = RandomForestClassifier(n_estimators=100, random_state=0,max_depth=5, min_samples_split = 20) # fit the model to the training set rf1.fit(X_train, y_train) # Predict on the test set results y_pred1 = rf1.predict(X_test) # Create a comparison frame between the actual and predicted target variable comparison_frame = pd.DataFrame({'Actual': y_test.flatten(), 'Predicted': y_pred.flatten()}) comparison_frame.describe() # Check accuracy score print('Model accuracy score with 100 decision-trees : {0:0.4f}'. format(accuracy_score(y_test, y_pred_100))) #Check the error rate using root mean squared error from sklearn import metrics print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) ###Output Root Mean Squared Error: 0.14871752967788066 ###Markdown Error rate is very low. 0.14.Shows the model is relevantly good. ###Code # Calculate a confusion matrix to identify what patients were predicted to be negative or have hypothyroid confusion = confusion_matrix(y_test,y_pred1) confusion ###Output _____no_output_____ ###Markdown * **Findings*** The model accuracy still remained the same 97% even after the number of decision trees.The error rate is very minimal : 0.14* The model predicted 602 patients were negative while in the actual they wrere negative.* The model predicted 17 patients had hypotyroid while in the actual they were.* This means the accuracy of the model is not affected by the change in decision trees.* However, we can still improve on the model using gradient boosting and see how it will perfom. **Gradient Boosting Classifier** ###Code #Intiate the gradient boosting classifier gradient = GradientBoostingClassifier(learning_rate =0.1,n_estimators=100,max_depth=3,min_samples_split=2) # defining my classifier as gradient #fit the train dataset in the classifier gradient.fit(X_train,y_train) #Making a prediction y_pred_g = gradient.predict(X_test) y_pred_g #Check the accuracy score of the gradient model print("gradient_Accuracy score is :",metrics.accuracy_score(y_test, y_pred_g)) # Calculate a confusion matrix to identify what patients were predicted to be negative or have hypothyroid confusion = confusion_matrix(y_test,y_pred_g) confusion ###Output _____no_output_____ ###Markdown * **Findings*** The accuracy score of the model increased to 98%.* The model predicted 600 patients were negative while in the actual they wrere negative.* The model predicted 23 patients had hypothyroid while in the actual they were.* In this case, we can use the gradient boosting classifier model compared to random forest as it's perfomance increased . **SVM(Support Vector Machine)** ###Code #For this, we will create svm before parameter tuning and after parameter tuning using rbf. This is because we are solving a classifier. # SVM before parameter tuning #svm = SVC(kernel = 'linear',C=1.0,gamma='auto',random_state=2) #SVM after parameter tuning. RBf is used to increase the dimension clf = SVC(kernel = 'sigmoid',C=1.0,gamma='auto',random_state=0) # fitting the train into the model #svm.fit(X_train,y_train) #svm_1.fit(X_train,y_train) clf.fit(X_train,y_train) # Now that we have trained our model, let's test how well it can predict if a patient is negattive or positive for hypothyroid #Making predictions #y_pred_svc = svm.predict(X_test) #Making predictions with parameter tuning y_pred1 = clf.predict(X_test) #Check accuracy of model before setting any parameters print("Accuracy with linear kernel:",metrics.accuracy_score(y_test, y_pred_svc)) #Accuracy score using sigmoid function print(accuracy_score(y_test,y_pred)) ###Output Accuracy with linear kernel: 0.976303317535545 0.9652448657187994
.ipynb_checkpoints/Implementation of word2vec-checkpoint.ipynb
###Markdown Implementation of word2vec on Stanford Sentiment Treebank (SST) dataset“You shall know a word by the company it keeps” (J. R. Firth) IntroductionThis notebook is a step by step guide on implementation of word2vec skipgram on Stanford Sentiment Treebank (SST) dataset, and is the solution to coding sections of [Assignment 2](http://web.stanford.edu/class/cs224n/assignments/a2.pdf) of Stanford's ["CS224n: Natural Language Processing with Deep Learning"](http://web.stanford.edu/class/cs224n/) course. Contents of this notebook are taken from the course materials. I recommend reading the original papers [1,2] and all the course materials on the word2vec (specially this [one]( http://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes01-wordvecs1.pdf) before proceeding to implementation. But if you are looking a for a shortcut, the [this link](http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/) covers all the major points in both papers. Conda environmentFirst you need to create a conda virtual environment with all the necessary packages to run the code. Run the following command from within the repo directory to create a new env named "word2vecenv": ###Code conda env create -f env.yml ###Output _____no_output_____ ###Markdown Activate the "word2vecenv" that you just created: ###Code source activate word2vecenv (or conda activate depending on your OS and anaconda version) ###Output _____no_output_____ ###Markdown Installing the IPython kernel in your env: ###Code conda install ipykernel ipython kernel install --user ###Output _____no_output_____ ###Markdown Now switch your notebook's kernel to "word2vec" env. Understanding negative sampling The original word2vec paper [1] proposed "Naive softmax loss" as objective function ($J$): $- \sum^{2m}_{j=0,j \neq m} u^T_{c-m+j}v_c + 2m \log \sum_{k=1}^{|V|} \exp(u_k^T v_c) $ in which $v_c$ is the output word vector of the center word, $u_j$ is input word vector of outside word $j$, $|V|$ is the vocabulary size and $m$ is windows size. Note that everytime we update or evaluate $J$ we need to do a summation over the entire vocabulary (sum of $|V|$ terms), whihc is in order of millions and computationally huge! That's why author of the original paper came up with the idea of "Negative sampling loss" [2] to approximate the softmax normalization term (Sigma in the abvoe equation). The idea is that rather than looping over the entire vocabulary to do the summation, we generate negative samples and use them to estimate the objective function. We will use the latter in this notebook. Consider a pair $(w, c)$ of word and context. Did this pair come from the training data? Let’s denote by $P(D = 1|w, c)$ the probability that $(w, c)$ came from the corpus data. Correspondingly, $P(D = 0|w, c)$ will be the probability that $(w, c)$ did not come from the corpus data. First, let’s model $P(D = 1|w, c)$ with the sigmoid function: $P(D = 1|w, c,\theta) = \sigma (v_c^T v_w) = \frac{1}{1+exp(-v_c^T u_w)} $ and naturally if the pair did not come from the corpus, we will have: $P(D = 0|w, c,\theta) = 1 - P(D = 0|w, c) =1 - \sigma (v_c^T v_w) = 1- \frac{1}{1+exp(-v_c^T u_w)} $ For every training step, instead of looping over the entire vocabulary, we can just sample several negative examples! We "sample" from a noise distribution ($P_n(w)$) whose probabilities match the ordering of the frequency of the vocabulary. For a given center word (vector), $v_c$, and outside (context) word, $u_o$, and $K$ negative samples, $\tilde{u}_k^T$, our objective function for Skip-gram model will be: $J_{neg-sample} (v_c,u_o,U) = -\log \sigma(u^T_{o}v_c) - \sum_{k=1}^{K} \log \sigma (-\tilde{u}^T_{k}v_c) $ in which $U$ is the matrix of outside words. We will need partial derivatives of $J_{neg-sample} (v_c,u_o,U)$ wrt to $v_c$,$u_o$ and $u_k$ to for backpropagation (try to work out these derivatives from $J_{neg-sample} (v_c,u_o,U)$): $\partial J_{neg-sample} (v_c,u_o,U) / \partial v_c = -(1 - \sigma(u^T_o v_c))u_o + \sum_{k=1}^{K} (1-\sigma(-u_k^Tv_c)) u_k$ $\partial J_{neg-sample} (v_c,u_o,U) / \partial u_o = - (1- \sigma (u_o^T v_c))v_c$ $\partial J_{neg-sample} (v_c,u_o,U) / \partial u_k = (1- \sigma (-u_k^T v_c))v_c$ We will use these derivatives to implement *negSamplingLossAndGradient* function Implementation Libraries ###Code import random import numpy as np from utils.treebank import StanfordSentiment from utils.gradcheck import gradcheck_naive from utils.utils import normalizeRows, softmax import pickle import matplotlib import matplotlib.pyplot as plt import time import glob import os.path as op # Check Python Version import sys assert sys.version_info[0] == 3 assert sys.version_info[1] >= 5 ###Output _____no_output_____ ###Markdown Run the following command line code to fetch the "Stanford Sentiment Treebank (SST): dataset: ###Code sh get_datasets.sh ###Output _____no_output_____ ###Markdown Take the data for a spin! Let's take a look at the dataset first and see what's inside! ###Code dataset.numSentences() ###Output _____no_output_____ ###Markdown There are 11855 sentences in the dataset. ###Code len(dataset.tokens()) ###Output _____no_output_____ ###Markdown and 19539 'tokens'. "dataset.tokens()" is mapping from tokens(words) to indices ###Code dataset.tokens()['python'] ###Output _____no_output_____ ###Markdown That is the index of 'python' in our dictionary! 1. Naive softmax implementation Sigmoid functionGood ol' sigmoid function which we will use to calculate the loss: ###Code def sigmoid(x): """ Arguments: x -- A scalar or numpy array. Return: s -- sigmoid(x) """ sig_x=1/(1+np.exp(-x)) return sig_x ###Output _____no_output_____ ###Markdown Negative sampler:We are going to define *getNegativeSamples* to draw random negative samples from the dataset: ###Code def getNegativeSamples(outsideWordIdx, dataset, K): """ Samples K indexes which are not the outsideWordIdx """ negSampleWordIndices = [None] * K for k in range(K): newidx = dataset.sampleTokenIdx() while newidx == outsideWordIdx: newidx = dataset.sampleTokenIdx() negSampleWordIndices[k] = newidx return negSampleWordIndices ###Output _____no_output_____ ###Markdown Negative sampling loss and gradient:We are going to use $\partial J_{neg-sample} (v_c,u_o,U) / \partial v_c$, $\partial J_{neg-sample} (v_c,u_o,U) / \partial u_o$ and $\partial J_{neg-sample} (v_c,u_o,U) / \partial u_k$ that we derived above to implement calculate the loss and gradient: ###Code def negSamplingLossAndGradient( centerWordVec, outsideWordIdx, outsideVectors, dataset, K=10 ): """ Negative sampling loss function for word2vec models """ negSampleWordIndices = getNegativeSamples(outsideWordIdx, dataset, K) indices = [outsideWordIdx] + negSampleWordIndices u_ws=outsideVectors[indices,:] u_ws[1:,:]=-u_ws[1:,:] sigmoid_uws=sigmoid([email protected](-1,1)).squeeze() loss= -np.log(sigmoid_uws).sum() gradCenterVec=(sigmoid_uws[0]-1)*u_ws[0,:] for row in range(1,u_ws.shape[0]): gradCenterVec=gradCenterVec-(1-sigmoid_uws[row])*u_ws[row,:] gradOutsideVecs=np.zeros(outsideVectors.shape) gradOutsideVecs[indices[0],:]=((sigmoid_uws[0]-1)*centerWordVec).reshape(-1,) for i,idx in enumerate(indices[1:]): gradOutsideVecs[idx,:]=gradOutsideVecs[idx,:]+((1-sigmoid_uws[i+1])*centerWordVec).reshape(-1,) return loss, gradCenterVec, gradOutsideVecs ###Output _____no_output_____ ###Markdown SkipgramGiven a minibatch including a center word and a list of outside words form the dataset, we will implement the *skipgram* function to calculate the loss and gradients: ###Code def skipgram(currentCenterWord, windowSize, outsideWords, word2Ind, centerWordVectors, outsideVectors, dataset, word2vecLossAndGradient=negSamplingLossAndGradient): """ Skip-gram model Arguments: currentCenterWord -- a string of the current center word windowSize -- integer, context window size outsideWords -- list of no more than 2*windowSize strings, the outside words word2Ind -- a dictionary that maps words to their indices in the word vector list centerWordVectors -- center word vectors (as rows) for all words in vocab (V in pdf handout) outsideVectors -- outside word vectors (as rows) for all words in vocab (U in pdf handout) word2vecLossAndGradient -- the loss and gradient function for a prediction vector given the outsideWordIdx word vectors, could be one of the two loss functions you implemented above. Return: loss -- the loss function value for the skip-gram model (J in the pdf handout) gradCenterVecs -- the gradient with respect to the center word vectors (dJ / dV in the pdf handout) gradOutsideVectors -- the gradient with respect to the outside word vectors (dJ / dU in the pdf handout) """ loss = 0.0 gradCenterVecs = np.zeros(centerWordVectors.shape) gradOutsideVectors = np.zeros(outsideVectors.shape) idx_vc=word2Ind[currentCenterWord] idx_uws=[word2Ind[outsideWord] for outsideWord in outsideWords] vc=centerWordVectors[idx_vc,:].reshape(-1,1) for idx_uw in idx_uws: loss_uw, gradCenterVec_uw, gradOutsideVecs_uw = negSamplingLossAndGradient(vc,idx_uw,outsideVectors,dataset) loss=loss+loss_uw gradCenterVecs[idx_vc,:]= gradCenterVecs[idx_vc,:] + gradCenterVec_uw.reshape(1,-1) gradOutsideVectors= gradOutsideVectors + gradOutsideVecs_uw return loss, gradCenterVecs, gradOutsideVectors ###Output _____no_output_____ ###Markdown We also define a helper function to sequentially draw samples and perform stochastic gradient decent: ###Code def word2vec_sgd_wrapper(batchsize,word2vecModel, word2Ind, wordVectors, dataset, windowSize, word2vecLossAndGradient=negSamplingLossAndGradient): loss = 0.0 grad = np.zeros(wordVectors.shape) N = wordVectors.shape[0] centerWordVectors = wordVectors[:int(N/2),:] outsideVectors = wordVectors[int(N/2):,:] for i in range(batchsize): windowSize1 = random.randint(1, windowSize) centerWord, context = dataset.getRandomContext(windowSize1) c, gin, gout = word2vecModel( centerWord, windowSize1, context, word2Ind, centerWordVectors, outsideVectors, dataset, word2vecLossAndGradient ) loss += c / batchsize grad[:int(N/2), :] += gin / batchsize grad[int(N/2):, :] += gout / batchsize return loss, grad ###Output _____no_output_____ ###Markdown Stochastic Gradient Decent:Takes a function (f) and an input vector (x0) and performs gradient decent. we also define two other functions; *save_params* to save the matrix of word vectors every $n$ iterations while training and *load_saved_params* to load saved word vectors. ###Code def save_params(iter, params): params_file = "saved_params_%d.npy" % iter np.save(params_file, params) with open("saved_state_%d.pickle" % iter, "wb") as f: pickle.dump(random.getstate(), f) def load_saved_params(): """ A helper function that loads previously saved parameters and resets iteration start. """ st = 0 for f in glob.glob("saved_params_*.npy"): iter = int(op.splitext(op.basename(f))[0].split("_")[2]) if (iter > st): st = iter if st > 0: params_file = "saved_params_%d.npy" % st state_file = "saved_state_%d.pickle" % st params = np.load(params_file) with open(state_file, "rb") as f: state = pickle.load(f) return st, params, state else: return st, None, None def sgd(f, x0, step, iterations, PRINT_EVERY=10,SAVE_PARAMS_EVERY = 5000,ANNEAL_EVERY = 20000,useSaved=False): """ Stochastic Gradient Descent Implement the stochastic gradient descent method in this function. Arguments: f -- the function to optimize, it should take a single argument and yield two outputs, a loss and the gradient with respect to the arguments x0 -- the initial point to start SGD from step -- the step size for SGD iterations -- total iterations to run SGD for postprocessing -- postprocessing function for the parameters if necessary. In the case of word2vec we will need to normalize the word vectors to have unit length. PRINT_EVERY -- specifies how many iterations to output loss Return: x -- the parameter value after SGD finishes """ if useSaved: start_iter, oldx, state = load_saved_params() if start_iter > 0: x0 = oldx step *= 0.5 ** (start_iter / ANNEAL_EVERY) if state: random.setstate(state) else: start_iter = 0 x=x0 exploss=0 for iter in range(start_iter + 1, iterations + 1): loss = None grad=0 loss,grad=f(x) x=x-step*grad if iter % PRINT_EVERY == 0: if not exploss: exploss = loss else: exploss = .95 * exploss + .05 * loss print("iter %d: %f" % (iter, exploss)) if iter % SAVE_PARAMS_EVERY == 0: save_params(iter, x) if iter % ANNEAL_EVERY == 0: step *= 0.5 return x ###Output _____no_output_____ ###Markdown Showtime: Training! ###Code random.seed(314) dataset = StanfordSentiment() tokens = dataset.tokens() nWords = len(tokens) # A 10 dimensional vector, Google's word2vec has 300 features. dimVectors = 10 # Context size: How far away from the center word look for outside words? C = 5 max_windowSize=C wordVectors = np.concatenate( ((np.random.rand(nWords, dimVectors) - 0.5) / dimVectors, np.zeros((nWords, dimVectors))), axis=0) random.seed(31415) np.random.seed(9265) startTime=time.time() batch_size=50 wordVectors = sgd( lambda vec: word2vec_sgd_wrapper(batch_size,skipgram, tokens, vec, dataset, C, negSamplingLossAndGradient), wordVectors, 0.3, 42000, PRINT_EVERY=1000,SAVE_PARAMS_EVERY = 5000,ANNEAL_EVERY = 20000,useSaved=True) endTime=time.time() print("Training time: %d minutes" %((endTime - startTime)/60)) ###Output _____no_output_____ ###Markdown ResultsI am going to use PCA to project word vectors onto 2D space and plot them: ###Code wordVectors = np.concatenate( (wordVectors[:nWords,:], wordVectors[nWords:,:]), axis=0) visualizeWords = [ "great", "cool", "brilliant", "wonderful", "well", "amazing", "worth", "sweet", "enjoyable", "boring", "bad", "dumb", "annoying", "female", "male", "queen", "king", "man", "woman", "rain", "snow", "hail", "coffee", "tea"] visualizeIdx = [tokens[word] for word in visualizeWords] visualizeVecs = wordVectors[visualizeIdx, :] temp = (visualizeVecs - np.mean(visualizeVecs, axis=0)) covariance = 1.0 / len(visualizeIdx) * temp.T.dot(temp) U,S,V = np.linalg.svd(covariance) coord = temp.dot(U[:,0:2]) %matplotlib inline plt.figure() for i in range(len(visualizeWords)): plt.text(coord[i,0], coord[i,1], visualizeWords[i], bbox=dict(facecolor='green', alpha=0.1)) plt.xlim((np.min(coord[:,0]), np.max(coord[:,0]))) plt.ylim((np.min(coord[:,1]), np.max(coord[:,1]))) plt.show() ###Output _____no_output_____
final/Task6_knn.ipynb
###Markdown KNN(K最近邻分类)算法 如果有一个数据集中,有N类数据。输入没有标分类的数据集后,我们可以将预测集中的数据,和训练集的数据相比较,提取和预测数据最相似(距离最近)的K个数据,选择这K个数据中出现次数最多的标签,作为新数据的分类。 KNN算法的思想非常简洁直观:1、计算测试数据与各个训练数据之间的距离; 2、按照距离的递增关系进行排序; 3、选取距离最小的K个点; 4、确定前K个点所在类别的出现频率; 5、返回前K个点中出现频率最高的类别作为测试数据的预测分类。 KNN算法的优点:1、简单,易于实现; 2、因为找的是最近邻的数据点,因此当某些点数量稀少时,划分越准确,适合对稀有点分类; 3、使用多分类问题。 算法实现 我们利用一个案例,按照KNN算法的思想,逐步实现算法。 KNN案例:优化约会网站的配对效果项目概述海伦使用约会网站寻找约会对象。经过一段时间之后,她发现曾交往过三种类型的人:- 1:不喜欢的人- 2:魅力一般的人- 3:极具魅力的人她希望:- 不喜欢的人则直接排除掉- 工作日与魅力一般的人约会- 周末与极具魅力的人约会现在她收集到了一些约会网站未曾记录的数据信息,这更有助于匹配对象的归类。开发流程海伦把这些约会对象的数据存放在文本文件 datingTestSet2.txt 中,总共有 1000 行。海伦约会的对象主要包含以下 3 种特征:- `Col1`:每年获得的飞行常客里程数 - `Col2`:玩视频游戏所耗时间百分比 - `Col3`:每周消费的冰淇淋公升数 文本文件数据格式如下:```python40920 8.326976 0.953952 314488 7.153469 1.673904 226052 1.441871 0.805124 175136 13.147394 0.428964 138344 1.669788 0.134296 1 读取数据 ###Code import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('datingTestSet2.txt',sep = '\t',header = None) X = np.array(data.iloc[:,:-1]) y = np.array(data.iloc[:,-1]) ###Output _____no_output_____ ###Markdown 切分数据我们可以直接调用sklearn的函数将数据集切分为训练集和测试集 ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) ###Output _____no_output_____ ###Markdown 计算测试集数据和训练集间的距离,进行分类。 我们先用最简单的思想分类:将想要预测的样本,和训练集中每个样本的特征直接相减的绝对值之和作为距离,将距离最近的训练样本的标签标记为预测样本的标签。 ###Code class KNN: def __init__(self): pass def train(self,X_train,y_train): #读取训练集 self.X_train = np.array(X_train) self.y_train = np.array(y_train) def predict(self,X_test): (m,d) = np.shape(X_test) #测试集的数量和特征数 y_pred = np.zeros((m)) #将预测的标签初始化为0 for i in range(m): distance = np.sum(np.abs(self.Xtrain - X_test[i,:]),axis = 1) #求距离的绝对之和 min_index = np.argmin(distance) #找到最近点的索引 y_pred[i] = self.y_train[min_index] #将最近点的分类给新数据标记 return y_pred ###Output _____no_output_____ ###Markdown 我们可以将这个算法称为“最近邻算法“,直接取找最近的一个数据进行分类标记,我们将这个算法扩展到K近邻算法。 可以扩展的方向:* 选择不同的距离公式* 选择不同的K值 选择不同的距离公式:上一个算法中用的距离公式为曼哈顿距离,将参数特征相减的绝对值求和,即L1距离。我们还可以用L2距离, 曼哈顿距离:$$d_1(I_1,I_2) = \sum_P|I_1^p - I_2^p|$$ 欧式距离:$$d_2(I_1,I_2) = \sum_P\sqrt{(I_1^p - I_2^p)^2}$$ 打个比方来说,当你搜索地图上的两个点,欧式距离就是将两个点用直线相连的空间距离;曼哈顿距离衡量的是你从A点开车到B点的距离,因为你不能穿过大楼和墙壁,所以衡量的是横向路线和纵向路线的的加总距离。 KNN算法中,欧式距离用的更多,因为我们一般衡量变量特征的在多维空间中的距离,这时候不需要“开车绕墙”。 如有兴趣,可自行学习其他距离公式,添加到我们后面的算法中。 选择不同的K值我们不再是选取排序后距离最近的一个训练数据打标签,而是选择距离最近的前K个训练数据,找到大多数近邻归属的类别,将预测值归为此类。 排序和计数我们可以直接调用argsort函数和Counter函数 按照以上思想,我们重新改写KNN算法: ###Code from collections import Counter class KNN: def __init__(self,k=1,metric ='euclidean'): #默认距离算法为欧式距离,默认最近邻 self.metric = metric self.k = k def train(self,X_train,y_train): self.X_train = np.array(X_train) self.y_train = np.array(y_train) def predict(self,x_test): (m,d) = np.shape(x)#测试集的数量和特征数 y_pred = np.zeros((m))#将预测的标签初始化为0 for i in range(m): if self.metric == 'manhattan': distances = np.sum(np.abs(self.X_train - X_test[i,:]),axis = 1) #曼哈顿距离 if self.metric == 'euclidean': distances = np.sqrt(np.sum(np.square(self.X_train - X_test[i,:]),axis = 1)) #欧式距离 sort = np.argsort(distances) #距离排序 top_K = [self.y_train[i] for i in sort[:self.k]] #找到K个近邻 k_counts = Counter(top_K) #对K个近邻的分类计出现频率 label = k_counts.most_common(1)[0][0] #将占大多数的那个分类标记为新数据的标签 ypred[i] = label return ypred ###Output _____no_output_____ ###Markdown *可能你会问,如果两个分类刚好数量相等怎么办?可以有多种方法进行处理,如随机分类,如比较两类的距离总长度,我们这里不做更多处理,按Counter函数默认给出的分类。* 选择K值 那么到底如何选择K值呢?我们可以选择在测试集中表现最好的K值。 本任务中我们直接调用sklearn中的kFold函数,将数据集进行k折验证,取每次验证的评分平均值作为此K值的误差评分。(这两个k表示的意思不一样,请留意) 如何定义测试结果的评分呢?可以直观地将分类正确的比例作为衡量指标。定义准确度的函数为: ###Code def score(ypred,ytest): return sum(ypred == ytest)/len(ytest) ###Output _____no_output_____ ###Markdown 将我们自己撰写的分类器中添加评分函数,这就是一个相对完整的分类器了,我们可以将他和sklearn的结果做比较 ###Code from collections import Counter class KNN: def __init__(self,k,metric ='euclidean'): pass self.metric = metric self.k = k def train(self,X,y): self.X_train = np.array(X) self.y_train = np.array(y) def predict(self,x_test): x = np.array(x_test) (m,d) = np.shape(x) ypred = np.zeros((m)) for i in range(m): if self.metric == 'manhattan': distances = np.sum(np.abs(self.X_train - x[i,:]),axis = 1) if self.metric == 'euclidean': distances = np.sqrt(np.sum(np.square(self.X_train - x[i,:]),axis = 1)) nearest = np.argsort(distances) #print(len(nearest)) top_K = [self.y_train[i] for i in nearest[:self.k]] votes = Counter(top_K) label = votes.most_common(1)[0][0] #min_index = np.argmin(distance) #ypred[i] = self.ytrain[min_index] ypred[i] = label return ypred def score(self,ypred,ytest): return sum(ypred == ytest)/len(ytest) ###Output _____no_output_____ ###Markdown 和sklearn的KNeighborsClassifier算法做比较 ###Code #数据标准化 from sklearn.preprocessing import StandardScaler ss = StandardScaler() X_ = ss.fit(X) X_std =ss.transform(X) from sklearn.model_selection import cross_val_score import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsClassifier k_range = range(1, 31) k_error = [] #循环,取k=1到k=31,查看误差效果 for k in k_range: knn = KNeighborsClassifier(n_neighbors=k) #cv参数决定数据集划分比例,这里是按照5:1划分训练集和测试集 scores = cross_val_score(knn, X_std, y, cv=5, scoring='accuracy') k_error.append(1 - scores.mean()) #画图,x轴为k值,y值为误差值 plt.plot(k_range, k_error) plt.xlabel('Value of K for KNN') plt.ylabel('Error') plt.show() ###Output _____no_output_____ ###Markdown 用我们自己撰写的K近邻算法测试数据,用同样的作图法输出每个K值的误差结果。 ###Code from sklearn.model_selection import KFold kf = KFold(n_splits=5,shuffle=False) #将数据集分为互斥的5等份,用作测试 k_errors = [] #建立初始的误差列表 for k in k_range: knn = KNN(k=k) scores = [] for train , test in kf.split(X_std,y): knn.train(X_std[train],y[train]) ypred = knn.predict(X_std[test]) score = knn.score(ypred,y[test]) scores.append(1-score) k_errors.append(np.mean(scores)) plt.plot(k_range, k_errors) plt.xlabel('Value of K for KNN') plt.ylabel('Error') plt.show() ###Output _____no_output_____ ###Markdown 观察到,算法在$k=21$的时候表现良好,取K值为21,来预测一个新数据 ###Code knn = KNN(k=21) knn.train(X_std,y) # 定义类别对应的标签 resultList = ['不喜欢的人', '魅力一般的人', '极具魅力的人'] #输入数据 ffMiles = float(input("每年获得的飞行常客里程数?")) percentTats = float(input("玩视频游戏所耗时间百分比?")) iceCream = float(input("每周消费的冰淇淋公升数?")) inArr = np.array([[ffMiles, percentTats, iceCream]]) #用之前的fit的标准化数据来转换数据 x_new = ss.transform(inArr) #预测数据 ypred = knn.predict(x_new) print("这个人属于: ", resultList[int(ypred) - 1]) ###Output 每年获得的飞行常客里程数?38300 玩视频游戏所耗时间百分比?1.6 每周消费的冰淇淋公升数?.13 这个人属于: 不喜欢的人
docs/notebooks/link_two_dataframes.ipynb
###Markdown Link two datasets IntroductionThis example shows how two datasets with data about persons can be linked. We will try to link the data based on attributes like first name, surname, sex, date of birth, place and address. The data used in this example is part of [Febrl](https://sourceforge.net/projects/febrl/) and is fictitious. First, start with importing the ``recordlinkage`` module. The submodule ``recordlinkage.datasets`` contains several datasets that can be used for testing. For this example, we use the Febrl datasets 4A and 4B. These datasets can be loaded with the function ``load_febrl4``. ###Code %precision 5 from __future__ import print_function import pandas as pd pd.set_option('precision',5) pd.options.display.max_rows = 10 import recordlinkage from recordlinkage.datasets import load_febrl4 ###Output _____no_output_____ ###Markdown The datasets are loaded with the following code. The returned datasets are of type ``pandas.DataFrame``. This makes it easy to manipulate the data if desired. For details about data manipulation with ``pandas``, see their comprehensive documentation http://pandas.pydata.org/. ###Code dfA, dfB = load_febrl4() dfA ###Output _____no_output_____ ###Markdown Make record pairs It is very intuitive to compare each record in DataFrame ``dfA`` with all records of DataFrame ``dfB``. In fact, we want to make record pairs. Each record pair should contain one record of ``dfA`` and one record of ``dfB``. This process of making record pairs is also called 'indexing'. With the ``recordlinkage`` module, indexing is easy. First, load the ``index.Index`` class and call the `.full` method. This object generates a full index on a ``.index(...)`` call. In case of deduplication of a single dataframe, one dataframe is sufficient as argument. ###Code indexer = recordlinkage.Index() indexer.full() pairs = indexer.index(dfA, dfB) ###Output WARNING:recordlinkage:indexing - performance warning - A full index can result in large number of record pairs. ###Markdown With the method ``index``, all possible (and unique) record pairs are made. The method returns a ``pandas.MultiIndex``. The number of pairs is equal to the number of records in ``dfA`` times the number of records in ``dfB``. ###Code print (len(dfA), len(dfB), len(pairs)) ###Output 5000 5000 25000000 ###Markdown Many of these record pairs do not belong to the same person. In case of one-to-one matching, the number of matches should be no more than the number of records in the smallest dataframe. In case of full indexing, ``min(len(dfA), len(N_dfB))`` is much smaller than ``len(pairs)``. The ``recordlinkage`` module has some more advanced indexing methods to reduce the number of record pairs. Obvious non-matches are left out of the index. Note that if a matching record pair is not included in the index, it can not be matched anymore. One of the most well known indexing methods is named *blocking*. This method includes only record pairs that are identical on one or more stored attributes of the person (or entity in general). The blocking method can be used in the ``recordlinkage`` module. ###Code indexer = recordlinkage.Index() indexer.block('given_name') candidate_links = indexer.index(dfA, dfB) print (len(candidate_links)) ###Output 77249 ###Markdown The argument 'given_name' is the blocking variable. This variable has to be the name of a column in ``dfA`` and ``dfB``. It is possible to parse a list of columns names to block on multiple variables. Blocking on multiple variables will reduce the number of record pairs even further. Another implemented indexing method is *Sorted Neighbourhood Indexing* (``recordlinkage.index.SortedNeighbourhood``). This method is very useful when there are many misspellings in the string were used for indexing. In fact, sorted neighbourhood indexing is a generalisation of blocking. See the documentation for details about sorted neighbourd indexing. Compare records Each record pair is a candidate match. To classify the candidate record pairs into matches and non-matches, compare the records on all attributes both records have in common. The ``recordlinkage`` module has a class named ``Compare``. This class is used to compare the records. The following code shows how to compare attributes. ###Code # This cell can take some time to compute. compare_cl = recordlinkage.Compare() compare_cl.exact('given_name', 'given_name', label='given_name') compare_cl.string('surname', 'surname', method='jarowinkler', threshold=0.85, label='surname') compare_cl.exact('date_of_birth', 'date_of_birth', label='date_of_birth') compare_cl.exact('suburb', 'suburb', label='suburb') compare_cl.exact('state', 'state', label='state') compare_cl.string('address_1', 'address_1', threshold=0.85, label='address_1') features = compare_cl.compute(candidate_links, dfA, dfB) ###Output _____no_output_____ ###Markdown The comparing of record pairs starts when the ``compute`` method is called. All attribute comparisons are stored in a DataFrame with horizontally the features and vertically the record pairs. ###Code features features.describe() ###Output _____no_output_____ ###Markdown The last step is to decide which records belong to the same person. In this example, we keep it simple: ###Code # Sum the comparison results. features.sum(axis=1).value_counts().sort_index(ascending=False) features[features.sum(axis=1) > 3] ###Output _____no_output_____ ###Markdown Full code ###Code import recordlinkage from recordlinkage.datasets import load_febrl4 dfA, dfB = load_febrl4() # Indexation step indexer = recordlinkage.Index() indexer.block('given_name') candidate_links = indexer.index(dfA, dfB) # Comparison step compare_cl = recordlinkage.Compare() compare_cl.exact('given_name', 'given_name', label='given_name') compare_cl.string('surname', 'surname', method='jarowinkler', threshold=0.85, label='surname') compare_cl.exact('date_of_birth', 'date_of_birth', label='date_of_birth') compare_cl.exact('suburb', 'suburb', label='suburb') compare_cl.exact('state', 'state', label='state') compare_cl.string('address_1', 'address_1', threshold=0.85, label='address_1') features = compare_cl.compute(candidate_links, dfA, dfB) # Classification step matches = features[features.sum(axis=1) > 3] print(len(matches)) ###Output 3241
qiskit/advanced/terra/programming_with_pulses/gathering_system_information.ipynb
###Markdown ![image.png](attachment:image.png) Obtaining information about your `backend` _Note: All the attributes of the backend are described in detail in the [Qiskit Backend Specifications](https://arxiv.org/pdf/1809.03452.pdf). This page reviews a subset of the spec._Programming a quantum computer at the microwave pulse level requires more information about the device than is required at the circuit level. A quantum circuit is built for an abstract quantum computer -- it will yield the same quantum state on any quantum computer (except for varying performance levels). A pulse schedule, on the other hand, is so specific to the device, that running one program on two different backends is not expected to have the same result, even on perfectly noiseless systems.As a basic example, imagine a drive pulse `q0_X180` calibrated on qubit 0 to enact an $X180$ pulse, which flips the state of qubit 0. If we use the samples from that pulse on qubit 1 on the same device, or qubit 0 on another device, we do not know what the resulting state will be -- but we can be pretty sure it won't be an $X180$ operation. The qubits are each unique, with various drive coupling strengths. If we have specified a frequency for the drive pulse, it's very probable that pulse would have little effect on another qubit, which has its own resonant frequency.With that, we have motivated why information from the backend may be very useful at times for building Pulse schedules. The information included in a `backend` is broken into three main parts: - **Configuration**: static backend features - **Properties**: measured and reported backend characteristics - **Defaults**: default settings for the OpenPulse-enabled backend which are each covered in the following sections. While all three of these contain interesting data for Pulse users, the defaults are _only_ provided for backends enabled with OpenPulse.The first thing you'll need to do is grab a backend to inspect. Here we use a mocked backend that contains a snapshot of data from the real OpenPulse-enabled backend. ###Code from qiskit.test.mock import FakeAlmaden backend = FakeAlmaden() ###Output _____no_output_____ ###Markdown ConfigurationThe configuration is where you'll find data about the static setup of the device, such as its name, version, the number of qubits, and the types of features it supports.Let's build a description of our backend using information from the `backend`'s config. ###Code config = backend.configuration() # Basic Features print("This backend is called {0}, and is on version {1}. It has {2} qubit{3}. It " "{4} OpenPulse programs. The basis gates supported on this device are {5}." "".format(config.backend_name, config.backend_version, config.n_qubits, '' if config.n_qubits == 1 else 's', 'supports' if config.open_pulse else 'does not support', config.basis_gates)) ###Output This backend is called fake_almaden, and is on version 1.2.4. It has 20 qubits. It supports OpenPulse programs. The basis gates supported on this device are ['u1', 'u2', 'u3', 'cx', 'id']. ###Markdown Neat! All of the above configuration is available for any backend, whether enabled with OpenPulse or not, although it is not an exhaustive list. There are additional attributes available on Pulse backends. Let's go into a bit more detail with those.The **timescale**, `dt`, is backend dependent. Think of this as the inverse sampling rate of the control rack's arbitrary waveform generators. Each sample point and duration in a Pulse `Schedule` is given in units of this timescale. ###Code config.dt # units of seconds ###Output /Users/[email protected]/code/qiskit-terra/qiskit/providers/models/backendconfiguration.py:355: UserWarning: `dt` and `dtm` now have units of seconds(s) rather than nanoseconds(ns). warnings.warn('`dt` and `dtm` now have units of seconds(s) rather ' ###Markdown The configuration also provides information that is useful for building measurements. Pulse supports three measurement levels: `0: RAW`, `1: KERNELED`, and `2: DISCRIMINATED`. The `meas_levels` attribute tells us which of those are supported by this backend. To learn how to execute programs with these different levels, see this page -- COMING SOON. ###Code config.meas_levels ###Output _____no_output_____ ###Markdown For backends which support measurement level 0, the sampling rate of the control rack's analog-to-digital converters (ADCs) also becomes relevant. The configuration also has this info, where `dtm` is the time per sample returned: ###Code config.dtm ###Output _____no_output_____ ###Markdown The measurement map, explained in detail on [this page COMING SOON], is also found here. ###Code config.meas_map ###Output _____no_output_____ ###Markdown The configuration also supplies convenient methods for getting channels for your schedule programs. For instance: ###Code config.drive(0) config.measure(0) config.acquire(0) ###Output _____no_output_____ ###Markdown It is a matter of style and personal preference whether you use `config.drive(0)` or `DriveChannel(0)`. PropertiesThe `backend` properties contain data that was measured and optionally reported by the provider. Let's see what kind of information is reported for qubit 0. ###Code props = backend.properties() def describe_qubit(qubit, properties): """Print a string describing some of reported properties of the given qubit.""" # Conversion factors from standard SI units us = 1e6 ns = 1e9 GHz = 1e-9 print("Qubit {0} has a \n" " - T1 time of {1} microseconds\n" " - T2 time of {2} microseconds\n" " - U2 gate error of {3}\n" " - U2 gate duration of {4} nanoseconds\n" " - resonant frequency of {5} GHz".format( qubit, properties.t1(qubit) * us, properties.t2(qubit) * us, properties.gate_error('u2', qubit), properties.gate_length('u2', qubit) * ns, properties.frequency(qubit) * GHz)) describe_qubit(0, props) ###Output Qubit 0 has a - T1 time of 113.3795751321217 microseconds - T2 time of 150.2847720544259 microseconds - U2 gate error of 0.0005295247303964942 - U2 gate duration of 35.555555555555564 nanoseconds - resonant frequency of 4.8572819835984875 GHz ###Markdown Properties are not guaranteed to be reported, but backends without Pulse access typically also provide this data. DefaultsUnlike the other two sections, `PulseDefaults` are only available for Pulse-enabled backends. It contains the default program settings run on the device. ###Code defaults = backend.defaults() ###Output _____no_output_____ ###Markdown Drive frequenciesDefaults contains the default frequency settings for the drive and measurement signal channels: ###Code q0_freq = defaults.qubit_freq_est[0] # Hz q0_meas_freq = defaults.meas_freq_est[0] # Hz GHz = 1e-9 print("DriveChannel(0) defaults to a modulation frequency of {} GHz.".format(q0_freq * GHz)) print("MeasureChannel(0) defaults to a modulation frequency of {} GHz.".format(q0_meas_freq * GHz)) ###Output DriveChannel(0) defaults to a modulation frequency of 4.857219891603379 GHz. MeasureChannel(0) defaults to a modulation frequency of 7.264856891000001 GHz. ###Markdown Pulse Schedule definitions for QuantumCircuit instructionsFinally, one of the most important aspects of the `backend` for `Schedule` building is the `InstructionScheduleMap`. This is a basic mapping from a circuit operation's name and qubit to the default pulse-level implementation of that instruction. ###Code inst_map = defaults.instruction_schedule_map print(inst_map) ###Output <InstructionScheduleMap(1Q instructions: q0: {'MEAS', 'x', 'u2', 'u3', 'id', 'u1'} q1: {'MEAS', 'x', 'u2', 'u3', 'id', 'u1'} q2: {'MEAS', 'x', 'u2', 'u3', 'id', 'u1'} q3: {'MEAS', 'x', 'u2', 'u3', 'id', 'u1'} q4: {'MEAS', 'x', 'u2', 'u3', 'id', 'u1'} q5: {'MEAS', 'x', 'u2', 'u3', 'id', 'u1'} q6: {'MEAS', 'x', 'u2', 'u3', 'id', 'u1'} q7: {'MEAS', 'x', 'u2', 'u3', 'id', 'u1'} q8: {'MEAS', 'x', 'u2', 'u3', 'id', 'u1'} q9: {'MEAS', 'x', 'u2', 'u3', 'id', 'u1'} q10: {'MEAS', 'x', 'u2', 'u3', 'id', 'u1'} q11: {'MEAS', 'x', 'u2', 'u3', 'id', 'u1'} q12: {'MEAS', 'x', 'u2', 'u3', 'id', 'u1'} q13: {'MEAS', 'x', 'u2', 'u3', 'id', 'u1'} q14: {'MEAS', 'x', 'u2', 'u3', 'id', 'u1'} q15: {'MEAS', 'x', 'u2', 'u3', 'id', 'u1'} q16: {'MEAS', 'x', 'u2', 'u3', 'id', 'u1'} q17: {'MEAS', 'x', 'u2', 'u3', 'id', 'u1'} q18: {'MEAS', 'x', 'u2', 'u3', 'id', 'u1'} q19: {'MEAS', 'x', 'u2', 'u3', 'id', 'u1'} Multi qubit instructions: (0, 1): {'cx'} (1, 0): {'cx'} (1, 2): {'cx'} (1, 6): {'cx'} (2, 1): {'cx'} (2, 3): {'cx'} (3, 2): {'cx'} (3, 4): {'cx'} (3, 8): {'cx'} (4, 3): {'cx'} (5, 6): {'cx'} (5, 10): {'cx'} (6, 1): {'cx'} (6, 5): {'cx'} (6, 7): {'cx'} (7, 6): {'cx'} (7, 8): {'cx'} (7, 12): {'cx'} (8, 3): {'cx'} (8, 7): {'cx'} (8, 9): {'cx'} (9, 8): {'cx'} (9, 14): {'cx'} (10, 5): {'cx'} (10, 11): {'cx'} (11, 10): {'cx'} (11, 12): {'cx'} (11, 16): {'cx'} (12, 7): {'cx'} (12, 11): {'cx'} (12, 13): {'cx'} (13, 12): {'cx'} (13, 14): {'cx'} (13, 18): {'cx'} (14, 9): {'cx'} (14, 13): {'cx'} (15, 16): {'cx'} (16, 11): {'cx'} (16, 15): {'cx'} (16, 17): {'cx'} (17, 16): {'cx'} (17, 18): {'cx'} (18, 13): {'cx'} (18, 17): {'cx'} (18, 19): {'cx'} (19, 18): {'cx'} (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19): {'measure'} )> ###Markdown Rather than build a measurement schedule from scratch, let's see what was calibrated by the backend to measure the qubits on this device: ###Code measure_schedule = inst_map.get('measure', [q for q in range(config.n_qubits)]) measure_schedule.draw() ###Output _____no_output_____ ###Markdown This can easily be appended to your own Pulse `Schedule` (`sched += inst_map.get('measure', ) << sched.duration`)!Likewise, each qubit will have a `Schedule` defined for each basis gate, and they can be appended directly to any `Schedule` you build. ###Code # You can use `has` to see if an operation is defined. Ex: Does qubit 3 have an x gate defined? inst_map.has('x', 3) # Some circuit operations take parameters. U1 takes a rotation angle: inst_map.get('u1', 0, P0=3.1415) ###Output _____no_output_____ ###Markdown While building your schedule, you can also use `inst_map.add(name, qubits, schedule)` to store useful `Schedule`s that you've made yourself. ###Code import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright ###Output _____no_output_____
04. Data Analysis/review_analysis/reviews.ipynb
###Markdown 1. Overview of the Dataframe ###Code import pandas from datetime import datetime from pytz import utc data = pandas.read_csv("reviews.csv", parse_dates= ["Timestamp"]) data.head() data.shape data.columns data.hist("Rating") ###Output _____no_output_____ ###Markdown 2. Selecting data from the dataframe Selecting a column ###Code data["Rating"] ###Output _____no_output_____ ###Markdown Selecting multiple columns ###Code data[["Course Name", "Rating"]] ###Output _____no_output_____ ###Markdown Selecting a Row ###Code data.iloc[3] ###Output _____no_output_____ ###Markdown Selecting multiple rows ###Code data.iloc[1:3] ###Output _____no_output_____ ###Markdown Selecting a Cross Section ###Code data[["Course Name", "Rating"]].iloc[1:3] ###Output _____no_output_____ ###Markdown Selecting a particular cell ###Code data["Timestamp"].iloc[2] ###Output _____no_output_____ ###Markdown 3. Filtering Data Based On Conditions One Condition ###Code data[data["Rating"] > 4] len(data[data["Rating"] > 4]) data[data["Rating"] > 4].count() ratingFiltered = data[data["Rating"] > 4] ratingFiltered["Rating"] ratingFiltered["Rating"].mean() ###Output _____no_output_____ ###Markdown Multiple conditions ###Code data[( data["Rating"] > 4 ) & (data["Course Name"] == "Python for Beginners with Examples")] dualCondition = data[( data["Rating"] > 4 ) & (data["Course Name"] == "Python for Beginners with Examples")] dualCondition["Rating"].mean() ###Output _____no_output_____ ###Markdown 4. Time Based Filtering ###Code data[ (data["Timestamp"] >= datetime(2020,7,1, tzinfo =utc)) & (data["Timestamp"] <= datetime(2020,12,31, tzinfo = utc)) ] # You need to parse the dataframe Timestamp columns as dates and interpret the datetime ranges with the same Timezone # as the Timestamps ###Output _____no_output_____ ###Markdown 5. From data to information Average of Rating of All Courses ###Code data["Rating"].mean() ###Output _____no_output_____ ###Markdown Average Rating for a particular course ###Code data[(data["Course Name"] == "Python for Beginners with Examples")]["Rating"].mean() ###Output _____no_output_____ ###Markdown Average Rating for a particular period ###Code data[ (data["Timestamp"] >= datetime(2020,7,1, tzinfo =utc)) & (data["Timestamp"] <= datetime(2020,12,31, tzinfo = utc)) ]["Rating"].mean() ###Output _____no_output_____ ###Markdown Average Rating for a particular course and period ###Code df1 = data[ (data["Timestamp"] >= datetime(2020,7,1, tzinfo =utc)) & (data["Timestamp"] <= datetime(2020,12,31, tzinfo = utc))] df1[df1["Course Name"] == "Python for Beginners with Examples"]["Rating"].mean() ###Output _____no_output_____ ###Markdown Average of Commented Ratings ###Code data[data["Comment"].isnull()]["Rating"].mean() ###Output _____no_output_____ ###Markdown Average of Commented Ratings ###Code data[data["Comment"].notnull()]["Rating"].mean() ###Output _____no_output_____ ###Markdown Number of Uncommented Ratings ###Code data[data["Comment"].isnull()]["Rating"].count() ###Output _____no_output_____ ###Markdown Number of Commented Ratings ###Code data[data["Comment"].notnull()]["Rating"].count() ###Output _____no_output_____ ###Markdown Number of Comments Containing a Certain Word ###Code data[(data["Comment"].str.contains("accent", na = False))]["Comment"].count() data[(data["Comment"].str.contains("accent", na = False))]["Rating"].mean() ###Output _____no_output_____
Analyzing_Heart_Disease.ipynb
###Markdown Analyzing Heart DiseaseHello! I'll be exploring the [heart disease dataset](https://archive.ics.uci.edu/ml/datasets/heart+Disease) provided by the University of California, Irvine. The database that this set came from contains 76 attributes, but the set itself only contains 14.AcknowledgementsCreators:Hungarian Institute of Cardiology. Budapest: Andras Janosi, M.D.University Hospital, Zurich, Switzerland: William Steinbrunn, M.D.University Hospital, Basel, Switzerland: Matthias Pfisterer, M.D.V.A. Medical Center, Long Beach and Cleveland Clinic Foundation: Robert Detrano, M.D., Ph.D.Donor:David W. Aha (aha '@' ics.uci.edu) (714) 856-8779The Attributes1. Age2. Sex1 = male0 = female3. Chest pain (CP)Value 0: asymptomaticValue 1: atypical anginaValue 2: non-anginal painValue 3: typical angina4. trestbpsResting blood pressure (in mm Hg on admission to the hospital)5. cholSerum cholestorol in mg/dl6. fbs (Fasting blood sugar)(fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)7. restecg - Resting electrocardiographic results8. thalach - Maximum heart rate achieved9. exang - Exercise induced angina (1= Yes, 0 = No)10. oldpeak - ST depression induced by exercise relative to rest11. slope - The slope of the peak exercise ST segmenti: Upslopingii: Flatiii: Downsloping12. ca (coloured arteries) - Number of major vessels (0-3) colored by flourosopy13. thal - 3 = normal; 6 = fixed defect; 7 = reversable defect14. target - 0 = Heart disease present, 1 = Heart disease absentObjective1. Find any correlations between attributes2. Find correlations between each attribute and the diagnosis of heart diseaseLet's Begin! ###Code #the usual... import numpy as np import pandas as pd import scipy.stats # Needed to compute statistics for categorical data (yep I'm using my AP Stats skills!) import matplotlib.pyplot as plt import seaborn as sns sns.set() # Making sns as default for plots data = pd.read_csv('./drive/My Drive/heart.csv') #for some reason "from google.colab import files" isn't working for me... data.head() data.shape data.isnull().sum() ###Output _____no_output_____ ###Markdown Yay! No NaN or null values!Time for Pairplot ###Code g = sns.pairplot(data) g.fig.suptitle('Pair plot', fontsize = 20) g.fig.subplots_adjust(top= 0.9); ###Output _____no_output_____ ###Markdown Correlation Matrix ###Code plt.figure(figsize=(15,10)) corrMatrix = data.corr() sns.heatmap(corrMatrix, annot=True) plt.show() ###Output _____no_output_____ ###Markdown Correlation between age and heart disease ###Code # Look into distribution by plotting a histogram plt.figure(figsize=(10,4)) plt.legend(loc='upper left') g = sns.countplot(data = data, x = 'age', hue = 'target') g.legend(title = 'Heart disease patient?', loc='center left', bbox_to_anchor=(1.25, 0.5), ncol=1) ###Output No handles with labels found to put in legend. ###Markdown Seems like heart disease patients are clustered around the ages of late 50's and 60's ###Code # Heart disease patients age_corr = ['age', 'target'] age_corr1 = data[age_corr] age_corr_y = data[age_corr1['target'] == 0].groupby(['age']).size().reset_index(name = 'count') age_corr_y.corr() # Healthy patients age_corr_n = age_corr1[age_corr1['target'] == 1].groupby(['age']).size().reset_index(name = 'count') age_corr_n.corr() ###Output _____no_output_____ ###Markdown High correlation between heart disease patients and age. It seems like age is the precursor of heart disease. Correlation between heart disease patients and sex ###Code # Look into distribution by plotting a histogram plt.figure(figsize=(10,4)) plt.legend(loc='upper left') g = sns.countplot(data = data, x = 'sex', hue = 'target') g.legend(title = 'Heart disease patient?', loc='center left', bbox_to_anchor=(1.25, 0.5), ncol=1) ###Output No handles with labels found to put in legend. ###Markdown **Where 1 is male, and 0 is female ###Code sex_corr = ['sex', 'target'] sex_corr1 = data[sex_corr] sex_corr_y = data[sex_corr1['target'] == 0].groupby(['sex']).size().reset_index(name = 'count') sex_corr_y.corr() sex_corr_n = sex_corr1[sex_corr1['target'] == 1].groupby(['sex']).size().reset_index(name = 'count') sex_corr_n.corr() ###Output _____no_output_____ ###Markdown Chi-square testSex is a categorical variable. Target, which tells us whether the patient has heart disease or not, is also a categorical variable. To compute the correlation between two categorical data, we will need to use Chi-Square test. We will be using 95% confidence interval (95% chance that the confidence interval I calculated contains the true population mean).The null hypothesis is that they are independent.The alternative hypothesis is that they are correlated in some way. ###Code cont = pd.crosstab(data["sex"],data["target"]) scipy.stats.chi2_contingency(cont) ###Output _____no_output_____ ###Markdown I performed the test and obtained a p-value < 0.05 and I can reject the hypothesis of independence. So is there truly a correlation between sex and heart disease? Well, I can't really accept this result here mainly for one reason. The data for healthy female is too low. I only have 24 female individuals that are healthy. If I were to push the number up to, let's say 94, I will get a much higher p-value. Hence, I feel that there is no point in performing a correlation analysis if the difference between the test samples are too high. Correlation between chest pain and heart disease ###Code # Chi-square test cont1 = pd.crosstab(data["cp"],data["target"]) scipy.stats.chi2_contingency(cont1) ###Output _____no_output_____ ###Markdown Seems like chest pain is correlated to heart disease. Correlation between resting blood pressure and heart disease ###Code restbp_corr = ['trestbps', 'target'] restbp_corr1 = data[restbp_corr] restbp_corr_y = restbp_corr1[restbp_corr1['target'] == 0].groupby(['trestbps']).size().reset_index(name = 'count') restbp_corr_y.corr() restbp_corr_n = restbp_corr1[restbp_corr1['target'] == 1].groupby(['trestbps']).size().reset_index(name = 'count') restbp_corr_n.corr() ###Output _____no_output_____ ###Markdown This shows that heart disease is correlated to resting blood pressure. If we look back into the Pairplot, we will see that heart disease patients have slightly higher resting blood pressure as compared to healthy patients. Correlation between serum cholesterol and heart diseaseHere, I am rounding the cholesterol value to the tenth place. If I dont do that I'll get tons of count = 1. This will affect the correlation test. ###Code # Showing number of heart disease patients based on serum cholesterol chol_corr = ['chol', 'target'] chol_corr1 = data[chol_corr] chol_corr2 = chol_corr1.copy() chol_corr2.chol = chol_corr2.chol.round(decimals=-1) chol_corr_y = chol_corr2[chol_corr2['target'] == 0].groupby(['chol']).size().reset_index(name = 'count') chol_corr_y.corr() # Showing number of healthy patients based on serum cholesterol chol_corr_n = chol_corr1[chol_corr1['target'] == 1].groupby(['chol']).size().reset_index(name = 'count') chol_corr_n.corr() ###Output _____no_output_____ ###Markdown No strong correlation between serum cholesterol and heart disease. Correlation between ECG results and heart diseaseValue 0: showing probable or definite left ventricular hypertrophy by Estes' criteriaValue 1: normalValue 2: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV) ###Code # Showing number of heart disease patients based on resting ECG results restecg_corr = ['restecg', 'target'] restecg_corr1 = data[restecg_corr] restecg_corr_y = restecg_corr1[restecg_corr1['target'] == 0].groupby(['restecg']).size().reset_index(name = 'count') restecg_corr_y # Showing number of healthy patients based on resting ECG results restecg_corr_n = restecg_corr1[restecg_corr1['target'] == 1].groupby(['restecg']).size().reset_index(name = 'count') restecg_corr_n # Chi-square test cont4 = pd.crosstab(data["restecg"],data["target"]) scipy.stats.chi2_contingency(cont4) ###Output _____no_output_____ ###Markdown I obtained a p-value of 0.00666. This shows that there is a correlation between the various types of ECG results and heart disease. I do see a huge difference normal ECG between healthy and heart disease patients. Correlation between maximum heart rate and heart disease ###Code # Showing number of heart disease patients based on maximum heart rate heartrate_corr = ['thalach', 'target'] heartrate_corr1 = data[heartrate_corr] heartrate_corr_y = heartrate_corr1[heartrate_corr1['target'] == 0].groupby(['thalach']).size().reset_index(name = 'count') heartrate_corr_y.corr() heartrate_corr_n = heartrate_corr1[heartrate_corr1['target'] == 1].groupby(['thalach']).size().reset_index(name = 'count') heartrate_corr_n.corr() ###Output _____no_output_____
labs/lab_10_Moreno.ipynb
###Markdown MAT281 - Laboratorio N°10 I.- Problema 01El **cáncer de mama** es una proliferación maligna de las células epiteliales que revisten los conductos o lobulillos mamarios. Es una enfermedad clonal; donde una célula individual producto de una serie de mutaciones somáticas o de línea germinal adquiere la capacidad de dividirse sin control ni orden, haciendo que se reproduzca hasta formar un tumor. El tumor resultante, que comienza como anomalía leve, pasa a ser grave, invade tejidos vecinos y, finalmente, se propaga a otras partes del cuerpo.El conjunto de datos se denomina `BC.csv`, el cual contine la información de distintos pacientes con tumosres (benignos o malignos) y algunas características del mismo.Las características se calculan a partir de una imagen digitalizada de un aspirado con aguja fina (FNA) de una masa mamaria. Describen las características de los núcleos celulares presentes en la imagen.Los detalles se puede encontrar en [K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34].Lo primero será cargar el conjunto de datos: ###Code import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.pipeline import make_pipeline from sklearn.datasets import load_digits from sklearn.manifold import TSNE from sklearn.decomposition import PCA from sklearn.dummy import DummyClassifier from sklearn.cluster import KMeans %matplotlib inline sns.set_palette("deep", desat=.6) sns.set(rc={'figure.figsize':(11.7,8.27)}) # cargar datos df = pd.read_csv(os.path.join("data","BC.csv"), sep=",") df['diagnosis'] = df['diagnosis'] .replace({'M':1,'B':0}) # target df.head() ###Output _____no_output_____ ###Markdown Basado en la información presentada responda las siguientes preguntas:1. Realice un análisis exploratorio del conjunto de datos.1. Normalizar las variables numéricas con el método **StandardScaler**.3. Realizar un método de reducción de dimensionalidad visto en clases.4. Aplique al menos tres modelos de clasificación distintos. Para cada uno de los modelos escogidos, realice una optimización de los hiperparámetros. además, calcule las respectivas métricas. Concluya. Análisis exploratorio del conjunto de datos: ###Code print('----------------------') print('Media de cada variable') print('----------------------') df.mean(axis=0) print('-------------------------') print('Varianza de cada variable') print('-------------------------') df.var(axis=0) df.describe() ###Output _____no_output_____ ###Markdown Veamos cuantos tumores son malignos y cuantos beningnos: ###Code B = df[df["diagnosis"]==0] M = df[df["diagnosis"]==1] B M ###Output _____no_output_____ ###Markdown Se concluye que 357 tumores son benignos (B) contra 212 malignos (M). Normalizar las variables numéricas con el método StandardScaler: ###Code scaler = StandardScaler() df[df.columns.drop(["id","diagnosis"])] = scaler.fit_transform(df[df.columns.drop(["id","diagnosis"])]) df.head() ###Output _____no_output_____ ###Markdown Realizar un método de reducción de dimensionalidad visto en clases: ###Code # Entrenamiento modelo PCA con escalado de los datos # ============================================================================== pca_pipe = make_pipeline(StandardScaler(), PCA()) pca_pipe.fit(df) # Se extrae el modelo entrenado del pipeline modelo_pca = pca_pipe.named_steps['pca'] # Se combierte el array a dataframe para añadir nombres a los ejes. pd.DataFrame( data = modelo_pca.components_, columns = df.columns, index = ['PC1', 'PC2', 'PC3', 'PC4', 'PC5', 'PC6', 'PC7', 'PC8', 'PC9', 'PC10', 'PC11', 'PC12', 'PC13', 'PC14', 'PC15', 'PC16', 'PC17', 'PC18', 'PC19', 'PC20', 'PC21', 'PC22', 'PC23', 'PC24', 'PC25', 'PC26', 'PC27', 'PC28', 'PC29', 'PC30', 'PC31', 'PC32'] ) # Heatmap componentes # ============================================================================== plt.figure(figsize=(12,14)) componentes = modelo_pca.components_ plt.imshow(componentes.T, cmap='viridis', aspect='auto') plt.yticks(range(len(df.columns)), df.columns) plt.xticks(range(len(df.columns)), np.arange(modelo_pca.n_components_) + 1) plt.grid(False) plt.colorbar(); # graficar varianza por componente percent_variance = np.round(modelo_pca.explained_variance_ratio_* 100, decimals =2) columns = ['PC1', 'PC2', 'PC3', 'PC4', 'PC5', 'PC6', 'PC7', 'PC8', 'PC9', 'PC10', 'PC11', 'PC12', 'PC13', 'PC14', 'PC15', 'PC16', 'PC17', 'PC18', 'PC19', 'PC20', 'PC21', 'PC22', 'PC23', 'PC24', 'PC25', 'PC26', 'PC27', 'PC28', 'PC29', 'PC30', 'PC31', 'PC32'] plt.figure(figsize=(20,10)) plt.bar(x= range(1,33), height=percent_variance, tick_label=columns) plt.xticks(np.arange(modelo_pca.n_components_) + 1) plt.ylabel('Componente principal') plt.xlabel('Por. varianza explicada') plt.title('Porcentaje de varianza explicada por cada componente') plt.show() # graficar varianza por la suma acumulada de los componente percent_variance_cum = np.cumsum(percent_variance) #columns = ['PC1', 'PC1+PC2', 'PC1+PC2+PC3', 'PC1+PC2+PC3+PC4',.....] plt.figure(figsize=(12,4)) plt.bar(x= range(1,33), height=percent_variance_cum, #tick_label=columns ) plt.ylabel('Percentate of Variance Explained') plt.xlabel('Principal Component Cumsum') plt.title('PCA Scree Plot') plt.show() # Proyección de las observaciones de entrenamiento # ============================================================================== proyecciones = pca_pipe.transform(X=df) proyecciones = pd.DataFrame( proyecciones, columns = ['PC1', 'PC2', 'PC3', 'PC4', 'PC5', 'PC6', 'PC7', 'PC8', 'PC9', 'PC10', 'PC11', 'PC12', 'PC13', 'PC14', 'PC15', 'PC16', 'PC17', 'PC18', 'PC19', 'PC20', 'PC21', 'PC22', 'PC23', 'PC24', 'PC25', 'PC26', 'PC27', 'PC28', 'PC29', 'PC30', 'PC31', 'PC32'], index = df.index ) proyecciones.head() ###Output _____no_output_____ ###Markdown Aplique al menos tres modelos de clasificación distintos. Para cada uno de los modelos escogidos, realice una optimización de los hiperparámetros. además, calcule las respectivas métricas. Concluya. ###Code df3 = pd.get_dummies(df) df3.head() X = np.array(df3) kmeans = KMeans(n_clusters=8,n_init=25, random_state=123) kmeans.fit(X) centroids = kmeans.cluster_centers_ # centros clusters = kmeans.labels_ # clusters # etiquetar los datos con los clusters encontrados df["cluster"] = clusters df["cluster"] = df["cluster"].astype('category') centroids_df = pd.DataFrame(centroids) centroids_df["cluster"] = [1,2,3,4,5,6,7,8] # implementación de la regla del codo Nc = [5,10,20,30,50,75,100,200,300] kmeans = [KMeans(n_clusters=i) for i in Nc] score = [kmeans[i].fit(df).inertia_ for i in range(len(kmeans))] df_Elbow = pd.DataFrame({'Number of Clusters':Nc, 'Score':score}) df_Elbow.head() # graficar los datos etiquetados con k-means fig, ax = plt.subplots(figsize=(11, 8.5)) plt.title('Elbow Curve') sns.lineplot(x="Number of Clusters", y="Score", data=df_Elbow) sns.scatterplot(x="Number of Clusters", y="Score", data=df_Elbow) plt.show() # PCA #scaler = StandardScaler() X = df.drop(columns=["id","diagnosis"]) y = df['diagnosis'] embedding = PCA(n_components=2) X_transform = embedding.fit_transform(X) df_pca = pd.DataFrame(X_transform,columns = ['Score1','Score2']) df_pca['diagnosis'] = y # Plot Digits PCA # Set style of scatterplot sns.set_context("notebook", font_scale=1.1) sns.set_style("ticks") # Create scatterplot of dataframe sns.lmplot(x='Score1', y='Score2', data=df_pca, fit_reg=False, legend=True, height=9, hue='diagnosis', scatter_kws={"s":200, "alpha":0.3}) plt.title('PCA Results: BC', weight='bold').set_fontsize('14') plt.xlabel('Prin Comp 1', weight='bold').set_fontsize('10') plt.ylabel('Prin Comp 2', weight='bold').set_fontsize('10') from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from matplotlib.colors import ListedColormap X = df_pca.drop(columns='diagnosis') y = df_pca['diagnosis'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42) h = .02 # step size in the mesh plt.figure(figsize=(12,12)) names = ["Logistic", "RBF SVM", "Decision Tree", "Random Forest" ] classifiers = [ LogisticRegression(), SVC(gamma=2, C=1), DecisionTreeClassifier(max_depth=5), RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), ] X, y = make_classification(n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1) rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape) linearly_separable = (X, y) datasets = [make_moons(noise=0.3, random_state=0), make_circles(noise=0.2, factor=0.5, random_state=1), linearly_separable ] figure = plt.figure(figsize=(27, 9)) i = 1 # iterate over datasets for ds_cnt, ds in enumerate(datasets): # preprocess dataset, split into training and test part X, y = ds X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=.4, random_state=42) x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # just plot the dataset first cm = plt.cm.RdBu cm_bright = ListedColormap(['#FF0000', '#0000FF']) ax = plt.subplot(len(datasets), len(classifiers) + 1, i) if ds_cnt == 0: ax.set_title("Input data") # Plot the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors='k') # Plot the testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6, edgecolors='k') ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) i += 1 # iterate over classifiers for name, clf in zip(names, classifiers): ax = plt.subplot(len(datasets), len(classifiers) + 1, i) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. if hasattr(clf, "decision_function"): Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) else: Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] # Put the result into a color plot Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, cmap=cm, alpha=.8) # Plot the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors='k') # Plot the testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, edgecolors='k', alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) if ds_cnt == 0: ax.set_title(name) ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'), size=15, horizontalalignment='right') i += 1 plt.tight_layout() plt.show() from metrics_classification import * class SklearnClassificationModels: def __init__(self,model,name_model): self.model = model self.name_model = name_model @staticmethod def test_train_model(X,y,n_size): X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=n_size , random_state=42) return X_train, X_test, y_train, y_test def fit_model(self,X,y,test_size): X_train, X_test, y_train, y_test = self.test_train_model(X,y,test_size ) return self.model.fit(X_train, y_train) def df_testig(self,X,y,test_size): X_train, X_test, y_train, y_test = self.test_train_model(X,y,test_size ) model_fit = self.model.fit(X_train, y_train) preds = model_fit.predict(X_test) df_temp = pd.DataFrame( { 'y':y_test, 'yhat': model_fit.predict(X_test) } ) return df_temp def metrics(self,X,y,test_size): df_temp = self.df_testig(X,y,test_size) df_metrics = summary_metrics(df_temp) df_metrics['model'] = self.name_model return df_metrics # metrics import itertools # nombre modelos names_models = ["Logistic", "RBF SVM", "Decision Tree", "Random Forest" ] # modelos classifiers = [ LogisticRegression(), SVC(gamma=2, C=1), DecisionTreeClassifier(max_depth=5), RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), ] datasets names_dataset = ['make_moons', 'make_circles', 'linearly_separable' ] X, y = make_classification(n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1) rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape) linearly_separable = (X, y) datasets = [make_moons(noise=0.3, random_state=0), make_circles(noise=0.2, factor=0.5, random_state=1), linearly_separable ] # juntar informacion list_models = list(zip(names_models,classifiers)) list_dataset = list(zip(names_dataset,datasets)) frames = [] for x in itertools.product(list_models, list_dataset): name_model = x[0][0] classifier = x[0][1] name_dataset = x[1][0] dataset = x[1][1] X = dataset[0] Y = dataset[1] fit_model = SklearnClassificationModels( classifier,name_model) df = fit_model.metrics(X,Y,0.2) df['dataset'] = name_dataset frames.append(df) # juntar resultados pd.concat(frames) ###Output _____no_output_____
python/d2l-en/mxnet/chapter_attention-mechanisms/attention-scoring-functions.ipynb
###Markdown Attention Scoring Functions:label:`sec_attention-scoring-functions`In :numref:`sec_nadaraya-watson`,we used a Gaussian kernel to modelinteractions between queries and keys.Treating the exponent of the Gaussian kernelin :eqref:`eq_nadaraya-watson-gaussian`as an *attention scoring function* (or *scoring function* for short),the results of this function wereessentially fed intoa softmax operation.As a result,we obtaineda probability distribution (attention weights)over values that are paired with keys.In the end,the output of the attention poolingis simply a weighted sum of the valuesbased on these attention weights.At a high level,we can use the above algorithmto instantiate the framework of attention mechanismsin :numref:`fig_qkv`.Denoting an attention scoring function by $a$,:numref:`fig_attention_output`illustrates how the output of attention poolingcan be computed as a weighted sum of values.Since attention weights area probability distribution,the weighted sum is essentiallya weighted average.![Computing the output of attention pooling as a weighted average of values.](../img/attention-output.svg):label:`fig_attention_output`Mathematically,suppose that we havea query $\mathbf{q} \in \mathbb{R}^q$and $m$ key-value pairs $(\mathbf{k}_1, \mathbf{v}_1), \ldots, (\mathbf{k}_m, \mathbf{v}_m)$, where any $\mathbf{k}_i \in \mathbb{R}^k$ and any $\mathbf{v}_i \in \mathbb{R}^v$.The attention pooling $f$is instantiated as a weighted sum of the values:$$f(\mathbf{q}, (\mathbf{k}_1, \mathbf{v}_1), \ldots, (\mathbf{k}_m, \mathbf{v}_m)) = \sum_{i=1}^m \alpha(\mathbf{q}, \mathbf{k}_i) \mathbf{v}_i \in \mathbb{R}^v,$$:eqlabel:`eq_attn-pooling`wherethe attention weight (scalar) for the query $\mathbf{q}$and key $\mathbf{k}_i$is computed bythe softmax operation ofan attention scoring function $a$ that maps two vectors to a scalar:$$\alpha(\mathbf{q}, \mathbf{k}_i) = \mathrm{softmax}(a(\mathbf{q}, \mathbf{k}_i)) = \frac{\exp(a(\mathbf{q}, \mathbf{k}_i))}{\sum_{j=1}^m \exp(a(\mathbf{q}, \mathbf{k}_j))} \in \mathbb{R}.$$:eqlabel:`eq_attn-scoring-alpha`As we can see,different choices of the attention scoring function $a$lead to different behaviors of attention pooling.In this section,we introduce two popular scoring functionsthat we will use to develop moresophisticated attention mechanisms later. ###Code import math from mxnet import np, npx from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() ###Output _____no_output_____ ###Markdown [**Masked Softmax Operation**]As we just mentioned,a softmax operation is used tooutput a probability distribution as attention weights.In some cases,not all the values should be fed into attention pooling.For instance,for efficient minibatch processing in :numref:`sec_machine_translation`,some text sequences are padded withspecial tokens that do not carry meaning.To get an attention poolingoveronly meaningful tokens as values,we can specify a valid sequence length (in number of tokens)to filter out those beyond this specified rangewhen computing softmax.In this way,we can implement such a *masked softmax operation*in the following `masked_softmax` function,where any value beyond the valid lengthis masked as zero. ###Code #@save def masked_softmax(X, valid_lens): """Perform softmax operation by masking elements on the last axis.""" # `X`: 3D tensor, `valid_lens`: 1D or 2D tensor if valid_lens is None: return npx.softmax(X) else: shape = X.shape if valid_lens.ndim == 1: valid_lens = valid_lens.repeat(shape[1]) else: valid_lens = valid_lens.reshape(-1) # On the last axis, replace masked elements with a very large negative # value, whose exponentiation outputs 0 X = npx.sequence_mask(X.reshape(-1, shape[-1]), valid_lens, True, value=-1e6, axis=1) return npx.softmax(X).reshape(shape) ###Output _____no_output_____ ###Markdown To [**demonstrate how this function works**],consider a minibatch of two $2 \times 4$ matrix examples,where the valid lengths for these two examplesare two and three, respectively.As a result of the masked softmax operation,values beyond the valid lengthsare all masked as zero. ###Code masked_softmax(np.random.uniform(size=(2, 2, 4)), np.array([2, 3])) ###Output _____no_output_____ ###Markdown Similarly, we can alsouse a two-dimensional tensorto specify valid lengthsfor every row in each matrix example. ###Code masked_softmax(np.random.uniform(size=(2, 2, 4)), np.array([[1, 3], [2, 4]])) ###Output _____no_output_____ ###Markdown [**Additive Attention**]:label:`subsec_additive-attention`In general,when queries and keys are vectors of different lengths,we can use additive attentionas the scoring function.Given a query $\mathbf{q} \in \mathbb{R}^q$and a key $\mathbf{k} \in \mathbb{R}^k$,the *additive attention* scoring function$$a(\mathbf q, \mathbf k) = \mathbf w_v^\top \text{tanh}(\mathbf W_q\mathbf q + \mathbf W_k \mathbf k) \in \mathbb{R},$$:eqlabel:`eq_additive-attn`wherelearnable parameters$\mathbf W_q\in\mathbb R^{h\times q}$, $\mathbf W_k\in\mathbb R^{h\times k}$, and $\mathbf w_v\in\mathbb R^{h}$.Equivalent to :eqref:`eq_additive-attn`,the query and the key are concatenatedand fed into an MLP with a single hidden layerwhose number of hidden units is $h$, a hyperparameter.By using $\tanh$ as the activation function and disablingbias terms,we implement additive attention in the following. ###Code #@save class AdditiveAttention(nn.Block): """Additive attention.""" def __init__(self, num_hiddens, dropout, **kwargs): super(AdditiveAttention, self).__init__(**kwargs) # Use `flatten=False` to only transform the last axis so that the # shapes for the other axes are kept the same self.W_k = nn.Dense(num_hiddens, use_bias=False, flatten=False) self.W_q = nn.Dense(num_hiddens, use_bias=False, flatten=False) self.w_v = nn.Dense(1, use_bias=False, flatten=False) self.dropout = nn.Dropout(dropout) def forward(self, queries, keys, values, valid_lens): queries, keys = self.W_q(queries), self.W_k(keys) # After dimension expansion, shape of `queries`: (`batch_size`, no. of # queries, 1, `num_hiddens`) and shape of `keys`: (`batch_size`, 1, # no. of key-value pairs, `num_hiddens`). Sum them up with # broadcasting features = np.expand_dims(queries, axis=2) + np.expand_dims( keys, axis=1) features = np.tanh(features) # There is only one output of `self.w_v`, so we remove the last # one-dimensional entry from the shape. Shape of `scores`: # (`batch_size`, no. of queries, no. of key-value pairs) scores = np.squeeze(self.w_v(features), axis=-1) self.attention_weights = masked_softmax(scores, valid_lens) # Shape of `values`: (`batch_size`, no. of key-value pairs, value # dimension) return npx.batch_dot(self.dropout(self.attention_weights), values) ###Output _____no_output_____ ###Markdown Let us [**demonstrate the above `AdditiveAttention` class**]with a toy example,where shapes (batch size, number of steps or sequence length in tokens, feature size)of queries, keys, and valuesare ($2$, $1$, $20$), ($2$, $10$, $2$),and ($2$, $10$, $4$), respectively.The attention pooling outputhas a shape of (batch size, number of steps for queries, feature size for values). ###Code queries, keys = np.random.normal(0, 1, (2, 1, 20)), np.ones((2, 10, 2)) # The two value matrices in the `values` minibatch are identical values = np.arange(40).reshape(1, 10, 4).repeat(2, axis=0) valid_lens = np.array([2, 6]) attention = AdditiveAttention(num_hiddens=8, dropout=0.1) attention.initialize() attention(queries, keys, values, valid_lens) ###Output _____no_output_____ ###Markdown Although additive attention contains learnable parameters,since every key is the same in this example,[**the attention weights**] are uniform,determined by the specified valid lengths. ###Code d2l.show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)), xlabel='Keys', ylabel='Queries') ###Output _____no_output_____ ###Markdown [**Scaled Dot-Product Attention**]A more computationally efficientdesign for the scoring function can besimply dot product.However,the dot product operationrequires that both the query and the keyhave the same vector length, say $d$.Assume thatall the elements of the query and the keyare independent random variableswith zero mean and unit variance.The dot product ofboth vectors has zero mean and a variance of $d$.To ensure that the variance of the dot productstill remains one regardless of vector length,the *scaled dot-product attention* scoring function$$a(\mathbf q, \mathbf k) = \mathbf{q}^\top \mathbf{k} /\sqrt{d}$$divides the dot product by $\sqrt{d}$.In practice,we often think in minibatchesfor efficiency,such as computing attentionfor$n$ queries and $m$ key-value pairs,where queries and keys are of length $d$and values are of length $v$.The scaled dot-product attentionof queries $\mathbf Q\in\mathbb R^{n\times d}$,keys $\mathbf K\in\mathbb R^{m\times d}$,and values $\mathbf V\in\mathbb R^{m\times v}$is$$ \mathrm{softmax}\left(\frac{\mathbf Q \mathbf K^\top }{\sqrt{d}}\right) \mathbf V \in \mathbb{R}^{n\times v}.$$:eqlabel:`eq_softmax_QK_V`In the following implementation of the scaled dot product attention, we use dropout for model regularization. ###Code #@save class DotProductAttention(nn.Block): """Scaled dot product attention.""" def __init__(self, dropout, **kwargs): super(DotProductAttention, self).__init__(**kwargs) self.dropout = nn.Dropout(dropout) # Shape of `queries`: (`batch_size`, no. of queries, `d`) # Shape of `keys`: (`batch_size`, no. of key-value pairs, `d`) # Shape of `values`: (`batch_size`, no. of key-value pairs, value # dimension) # Shape of `valid_lens`: (`batch_size`,) or (`batch_size`, no. of queries) def forward(self, queries, keys, values, valid_lens=None): d = queries.shape[-1] # Set `transpose_b=True` to swap the last two dimensions of `keys` scores = npx.batch_dot(queries, keys, transpose_b=True) / math.sqrt(d) self.attention_weights = masked_softmax(scores, valid_lens) return npx.batch_dot(self.dropout(self.attention_weights), values) ###Output _____no_output_____ ###Markdown To [**demonstrate the above `DotProductAttention` class**],we use the same keys, values, and valid lengths from the earlier toy examplefor additive attention.For the dot product operation,we make the feature size of queriesthe same as that of keys. ###Code queries = np.random.normal(0, 1, (2, 1, 2)) attention = DotProductAttention(dropout=0.5) attention.initialize() attention(queries, keys, values, valid_lens) ###Output _____no_output_____ ###Markdown Same as in the additive attention demonstration,since `keys` contains the same elementthat cannot be differentiated by any query,[**uniform attention weights**] are obtained. ###Code d2l.show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)), xlabel='Keys', ylabel='Queries') ###Output _____no_output_____
training-data-analyst/courses/machine_learning/deepdive2/text_classification/labs/reusable_embeddings.ipynb
###Markdown Reusable Embeddings**Learning Objectives**1. Learn how to use a pre-trained TF Hub text modules to generate sentence vectors1. Learn how to incorporate a pre-trained TF-Hub module into a Keras model1. Learn how to deploy and use a text model on CAIP IntroductionIn this notebook, we will implement text models to recognize the probable source (Github, Tech-Crunch, or The New-York Times) of the titles we have in the title dataset.First, we will load and pre-process the texts and labels so that they are suitable to be fed to sequential Keras models with first layer being TF-hub pre-trained modules. Thanks to this first layer, we won't need to tokenize and integerize the text before passing it to our models. The pre-trained layer will take care of that for us, and consume directly raw text. However, we will still have to one-hot-encode each of the 3 classes into a 3 dimensional basis vector.Then we will build, train and compare simple DNN models starting with different pre-trained TF-Hub layers. ###Code import os from google.cloud import bigquery import pandas as pd %load_ext google.cloud.bigquery ###Output _____no_output_____ ###Markdown Replace the variable values in the cell below: ###Code PROJECT = "cloud-training-demos" # Replace with your PROJECT BUCKET = PROJECT REGION = "us-central1" os.environ['PROJECT'] = PROJECT os.environ['BUCKET'] = BUCKET os.environ['REGION'] = REGION ###Output _____no_output_____ ###Markdown Create a Dataset from BigQuery Hacker news headlines are available as a BigQuery public dataset. The [dataset](https://bigquery.cloud.google.com/table/bigquery-public-data:hacker_news.stories?tab=details) contains all headlines from the sites inception in October 2006 until October 2015. Here is a sample of the dataset: ###Code %%bigquery --project $PROJECT SELECT url, title, score FROM `bigquery-public-data.hacker_news.stories` WHERE LENGTH(title) > 10 AND score > 10 AND LENGTH(url) > 0 LIMIT 10 ###Output _____no_output_____ ###Markdown Let's do some regular expression parsing in BigQuery to get the source of the newspaper article from the URL. For example, if the url is http://mobile.nytimes.com/...., I want to be left with nytimes ###Code %%bigquery --project $PROJECT SELECT ARRAY_REVERSE(SPLIT(REGEXP_EXTRACT(url, '.*://(.[^/]+)/'), '.'))[OFFSET(1)] AS source, COUNT(title) AS num_articles FROM `bigquery-public-data.hacker_news.stories` WHERE REGEXP_CONTAINS(REGEXP_EXTRACT(url, '.*://(.[^/]+)/'), '.com$') AND LENGTH(title) > 10 GROUP BY source ORDER BY num_articles DESC LIMIT 100 ###Output _____no_output_____ ###Markdown Now that we have good parsing of the URL to get the source, let's put together a dataset of source and titles. This will be our labeled dataset for machine learning. ###Code regex = '.*://(.[^/]+)/' sub_query = """ SELECT title, ARRAY_REVERSE(SPLIT(REGEXP_EXTRACT(url, '{0}'), '.'))[OFFSET(1)] AS source FROM `bigquery-public-data.hacker_news.stories` WHERE REGEXP_CONTAINS(REGEXP_EXTRACT(url, '{0}'), '.com$') AND LENGTH(title) > 10 """.format(regex) query = """ SELECT LOWER(REGEXP_REPLACE(title, '[^a-zA-Z0-9 $.-]', ' ')) AS title, source FROM ({sub_query}) WHERE (source = 'github' OR source = 'nytimes' OR source = 'techcrunch') """.format(sub_query=sub_query) print(query) ###Output _____no_output_____ ###Markdown For ML training, we usually need to split our dataset into training and evaluation datasets (and perhaps an independent test dataset if we are going to do model or feature selection based on the evaluation dataset). AutoML however figures out on its own how to create these splits, so we won't need to do that here. ###Code bq = bigquery.Client(project=PROJECT) title_dataset = bq.query(query).to_dataframe() title_dataset.head() ###Output _____no_output_____ ###Markdown AutoML for text classification requires that* the dataset be in csv form with * the first column being the texts to classify or a GCS path to the text * the last colum to be the text labelsThe dataset we pulled from BiqQuery satisfies these requirements. ###Code print("The full dataset contains {n} titles".format(n=len(title_dataset))) ###Output _____no_output_____ ###Markdown Let's make sure we have roughly the same number of labels for each of our three labels: ###Code title_dataset.source.value_counts() ###Output _____no_output_____ ###Markdown Finally we will save our data, which is currently in-memory, to disk.We will create a csv file containing the full dataset and another containing only 1000 articles for development.**Note:** It may take a long time to train AutoML on the full dataset, so we recommend to use the sample dataset for the purpose of learning the tool. ###Code DATADIR = './data/' if not os.path.exists(DATADIR): os.makedirs(DATADIR) FULL_DATASET_NAME = 'titles_full.csv' FULL_DATASET_PATH = os.path.join(DATADIR, FULL_DATASET_NAME) # Let's shuffle the data before writing it to disk. title_dataset = title_dataset.sample(n=len(title_dataset)) title_dataset.to_csv( FULL_DATASET_PATH, header=False, index=False, encoding='utf-8') ###Output _____no_output_____ ###Markdown Now let's sample 1000 articles from the full dataset and make sure we have enough examples for each label in our sample dataset (see [here](https://cloud.google.com/natural-language/automl/docs/beginners-guide) for further details on how to prepare data for AutoML). ###Code sample_title_dataset = title_dataset.sample(n=1000) sample_title_dataset.source.value_counts() ###Output _____no_output_____ ###Markdown Let's write the sample datatset to disk. ###Code SAMPLE_DATASET_NAME = 'titles_sample.csv' SAMPLE_DATASET_PATH = os.path.join(DATADIR, SAMPLE_DATASET_NAME) sample_title_dataset.to_csv( SAMPLE_DATASET_PATH, header=False, index=False, encoding='utf-8') import datetime import os import shutil import pandas as pd import tensorflow as tf from tensorflow.keras.callbacks import TensorBoard, EarlyStopping from tensorflow_hub import KerasLayer from tensorflow.keras.layers import Dense from tensorflow.keras.models import Sequential from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.utils import to_categorical print(tf.__version__) %matplotlib inline ###Output _____no_output_____ ###Markdown Let's start by specifying where the information about the trained models will be saved as well as where our dataset is located: ###Code MODEL_DIR = "./text_models" DATA_DIR = "./data" ###Output _____no_output_____ ###Markdown Loading the dataset As in the previous labs, our dataset consists of titles of articles along with the label indicating from which source these articles have been taken from (GitHub, Tech-Crunch, or the New-York Times): ###Code ls ./data/ DATASET_NAME = "titles_full.csv" TITLE_SAMPLE_PATH = os.path.join(DATA_DIR, DATASET_NAME) COLUMNS = ['title', 'source'] titles_df = pd.read_csv(TITLE_SAMPLE_PATH, header=None, names=COLUMNS) titles_df.head() ###Output _____no_output_____ ###Markdown Let's look again at the number of examples per label to make sure we have a well-balanced dataset: ###Code titles_df.source.value_counts() ###Output _____no_output_____ ###Markdown Preparing the labels In this lab, we will use pre-trained [TF-Hub embeddings modules for english](https://tfhub.dev/s?q=tf2%20embeddings%20text%20english) for the first layer of our models. One immediateadvantage of doing so is that the TF-Hub embedding module will take care for us of processing the raw text. This also means that our model will be able to consume text directly instead of sequences of integers representing the words.However, as before, we still need to preprocess the labels into one-hot-encoded vectors: ###Code CLASSES = { 'github': 0, 'nytimes': 1, 'techcrunch': 2 } N_CLASSES = len(CLASSES) def encode_labels(sources): classes = [CLASSES[source] for source in sources] one_hots = to_categorical(classes, num_classes=N_CLASSES) return one_hots encode_labels(titles_df.source[:4]) ###Output _____no_output_____ ###Markdown Preparing the train/test splits Let's split our data into train and test splits: ###Code N_TRAIN = int(len(titles_df) * 0.95) titles_train, sources_train = ( titles_df.title[:N_TRAIN], titles_df.source[:N_TRAIN]) titles_valid, sources_valid = ( titles_df.title[N_TRAIN:], titles_df.source[N_TRAIN:]) ###Output _____no_output_____ ###Markdown To be on the safe side, we verify that the train and test splitshave roughly the same number of examples per class.Since it is the case, accuracy will be a good metric to use to measurethe performance of our models. ###Code sources_train.value_counts() sources_valid.value_counts() ###Output _____no_output_____ ###Markdown Now let's create the features and labels we will feed our models with: ###Code X_train, Y_train = titles_train.values, encode_labels(sources_train) X_valid, Y_valid = titles_valid.values, encode_labels(sources_valid) X_train[:3] Y_train[:3] ###Output _____no_output_____ ###Markdown NNLM Model We will first try a word embedding pre-trained using a [Neural Probabilistic Language Model](http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf). TF-Hub has a 50-dimensional one called [nnlm-en-dim50-with-normalization](https://tfhub.dev/google/tf2-preview/nnlm-en-dim50/1), which alsonormalizes the vectors produced. Lab Task 1a: Import NNLM TF Hub module into `KerasLayer`Once loaded from its url, the TF-hub module can be used as a normal Keras layer in a sequential or functional model. Since we have enough data to fine-tune the parameters of the pre-trained embedding itself, we will set `trainable=True` in the `KerasLayer` that loads the pre-trained embedding: ###Code NNLM = "https://tfhub.dev/google/nnlm-en-dim50/2" nnlm_module = KerasLayer(# TODO) ###Output _____no_output_____ ###Markdown Note that this TF-Hub embedding produces a single 50-dimensional vector when passed a sentence: Lab Task 1b: Use module to encode a sentence string ###Code nnlm_module(tf.constant([# TODO])) ###Output _____no_output_____ ###Markdown Swivel Model Then we will try a word embedding obtained using [Swivel](https://arxiv.org/abs/1602.02215), an algorithm that essentially factorizes word co-occurrence matrices to create the words embeddings. TF-Hub hosts the pretrained [gnews-swivel-20dim-with-oov](https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim-with-oov/1) 20-dimensional Swivel module. Lab Task 1c: Import Swivel TF Hub module into `KerasLayer` ###Code SWIVEL = "https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim-with-oov/1" swivel_module = KerasLayer(# TODO) ###Output _____no_output_____ ###Markdown Similarly as the previous pre-trained embedding, it outputs a single vector when passed a sentence: Lab Task 1d: Use module to encode a sentence string ###Code swivel_module(tf.constant([# TODO])) ###Output _____no_output_____ ###Markdown Building the models Let's write a function that * takes as input an instance of a `KerasLayer` (i.e. the `swivel_module` or the `nnlm_module` we constructed above) as well as the name of the model (say `swivel` or `nnlm`)* returns a compiled Keras sequential model starting with this pre-trained TF-hub layer, adding one or more dense relu layers to it, and ending with a softmax layer giving the probability of each of the classes: Lab Task 2: Incorporate a pre-trained TF Hub module as first layer of Keras Sequential Model ###Code def build_model(hub_module, name): model = Sequential([ # TODO Dense(16, activation='relu'), Dense(N_CLASSES, activation='softmax') ], name=name) model.compile( optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'] ) return model ###Output _____no_output_____ ###Markdown Let's also wrap the training code into a `train_and_evaluate` function that * takes as input the training and validation data, as well as the compiled model itself, and the `batch_size`* trains the compiled model for 100 epochs at most, and does early-stopping when the validation loss is no longer decreasing* returns an `history` object, which will help us to plot the learning curves ###Code def train_and_evaluate(train_data, val_data, model, batch_size=5000): X_train, Y_train = train_data tf.random.set_seed(33) model_dir = os.path.join(MODEL_DIR, model.name) if tf.io.gfile.exists(model_dir): tf.io.gfile.rmtree(model_dir) history = model.fit( X_train, Y_train, epochs=100, batch_size=batch_size, validation_data=val_data, callbacks=[EarlyStopping(), TensorBoard(model_dir)], ) return history ###Output _____no_output_____ ###Markdown Training NNLM ###Code data = (X_train, Y_train) val_data = (X_valid, Y_valid) nnlm_model = build_model(nnlm_module, 'nnlm') nnlm_history = train_and_evaluate(data, val_data, nnlm_model) history = nnlm_history pd.DataFrame(history.history)[['loss', 'val_loss']].plot() pd.DataFrame(history.history)[['accuracy', 'val_accuracy']].plot() ###Output _____no_output_____ ###Markdown Training Swivel ###Code swivel_model = build_model(swivel_module, name='swivel') swivel_history = train_and_evaluate(data, val_data, swivel_model) history = swivel_history pd.DataFrame(history.history)[['loss', 'val_loss']].plot() pd.DataFrame(history.history)[['accuracy', 'val_accuracy']].plot() ###Output _____no_output_____ ###Markdown Swivel trains faster but achieves a lower validation accuracy, and requires more epochs to train on. Deploying the model The first step is to serialize one of our trained Keras model as a SavedModel: ###Code OUTPUT_DIR = "./savedmodels" shutil.rmtree(OUTPUT_DIR, ignore_errors=True) EXPORT_PATH = os.path.join(OUTPUT_DIR, 'swivel') os.environ['EXPORT_PATH'] = EXPORT_PATH shutil.rmtree(EXPORT_PATH, ignore_errors=True) tf.saved_model.save(swivel_model, EXPORT_PATH) ###Output _____no_output_____ ###Markdown Then we can deploy the model using the gcloud CLI as before: Lab Task 3a: Complete the following script to deploy the swivel model ###Code %%bash # TODO 5 MODEL_NAME=title_model VERSION_NAME=swivel if [[ $(gcloud ai-platform models list --format='value(name)' | grep $MODEL_NAME) ]]; then echo "$MODEL_NAME already exists" else echo "Creating $MODEL_NAME" gcloud ai-platform models create --region=$REGION $MODEL_NAME fi if [[ $(gcloud ai-platform versions list --model $MODEL_NAME --format='value(name)' | grep $VERSION_NAME) ]]; then echo "Deleting already existing $MODEL_NAME:$VERSION_NAME ... " echo yes | gcloud ai-platform versions delete --model=$MODEL_NAME $VERSION_NAME echo "Please run this cell again if you don't see a Creating message ... " sleep 2 fi echo "Creating $MODEL_NAME:$VERSION_NAME" gcloud ai-platform versions create $VERSION_NAME\ --model=$MODEL_NAME \ --framework=# TODO \ --python-version=# TODO \ --runtime-version=2.1 \ --origin=# TODO \ --staging-bucket=# TODO \ --machine-type n1-standard-4 \ --region=$REGION ###Output _____no_output_____ ###Markdown Before we try our deployed model, let's inspect its signature to know what to send to the deployed API: ###Code !saved_model_cli show \ --tag_set serve \ --signature_def serving_default \ --dir {EXPORT_PATH} !find {EXPORT_PATH} ###Output _____no_output_____ ###Markdown Let's go ahead and hit our model: Lab Task 3b: Create the JSON object to send a title to the API you just deployed(**Hint:** Look at the 'saved_model_cli show' command output above.) ###Code %%writefile input.json {# TODO} !gcloud ai-platform predict \ --model title_model \ --json-instances input.json \ --version swivel \ --region=$REGION ###Output _____no_output_____
notebooks/advanced/datetime.ipynb
###Markdown Table of Contents ###Code import datetime # set of objects for basic time # date, time, and date time objects # date(year, month, day) #in gregorian calendar d1 = datetime.date(2015, 1, 23) d1 d1.strftime("%A %m/%d/%y") d2 = datetime.date(2015, 1, 19) d2 d1 - d2 print(d1 - d2) (d1-d2).days # time delta objects datetime.date.today() # time object t1 = datetime.time(1, 2) # always 24hours t1 t2 = datetime.time(18) t2 t1.strftime('%I:%M %p') # difference is not supported t2 - t1 # relative times in a day, no date associated with it #datetime d1 = datetime.datetime.now() d1 d2 = datetime.datetime.now() d2 d2 - d1 datetime.datetime.strptime('1/1/15', '%m/%d/%y') #stringparsetime # %a (%A) abbrev (full) weekday name # w, weekday number (0 for sun, -- 6) # b, B abbrev (full) month name # %d day of month [01, 31] # H I, 24 hour, 12 hour clock # j day of year # m month # M minute # p AM/PM # S second # U W week number of year U sunday, M monday as first day of week # y Y year without/with century # tz ###Output _____no_output_____
docs/examples/modifying_toolbar_tools.ipynb
###Markdown Modifying Toolbar Tools ###Code import warnings import numpy as np import holoviews as hv from bokeh.models import HoverTool from holoext.xbokeh import Mod warnings.filterwarnings('ignore') # bokeh deprecation warnings hv.extension('bokeh') x = np.array([8, 4, 2, 1]) y = np.array([2, 4, 5, 9]) bar = hv.Bars((x, y)) ###Output _____no_output_____ ###Markdown Hide toolbar ###Code Mod(toolbar_location=None).apply(bar) ###Output _____no_output_____ ###Markdown Change toolbar location ###Code Mod(toolbar_location='west').apply(bar) # user forgiving parser for location ###Output _____no_output_____ ###Markdown Add the default HoloView's tools and additional ones ###Code Mod(tools=['default', 'hover', 'zoom_in']).apply(bar) ###Output _____no_output_____ ###Markdown Select specific tools delimited by comma ###Code Mod(tools='save,xwheel_zoom, ywheel_zoom, hover').apply(bar) ###Output _____no_output_____ ###Markdown Input your customized tools with the default ###Code hover_tool = HoverTool(tooltips=[('X value', '@x'), ('Y value', '@y')]) Mod(tools=['default', hover_tool]).apply(bar) ###Output _____no_output_____ ###Markdown Have hover tool but hide it in toolbar ###Code Mod(show_hover=False).apply(bar) ###Output _____no_output_____ ###Markdown Hide Bokeh logo in toolbar ###Code Mod(logo=False).apply(bar) ###Output _____no_output_____
CNN/120C5-MP2-200C3-MP2-200N-10N.ipynb
###Markdown check history lossvalidation from augmented data ###Code %matplotlib inline # %config InlineBackend.figure_format = 'svg' %load_ext autoreload %autoreload 2 import os import sys import pandas as pd import tensorflow as tf import numpy as np import datetime from keras.datasets import mnist from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.layers.convolutional import Convolution2D, MaxPooling2D from keras.utils import np_utils from keras.optimizers import Adam #import data #import importlib.util #spec = importlib.util.spec_from_file_location("data", "../mnist/data.py") #data = importlib.util.module_from_spec(spec) #spec.loader.exec_module(data) #import data ! cp ../mnist/data.py data_mnist.py ! cp ../digit_recognizer/data.py data_digit_recognizer.py import data_mnist import data_digit_recognizer DATA_ROOT = 'contest' DATA_ROOT = 'dry_run' SUBMISSION_ROOT = os.path.join(DATA_ROOT, 'submissions') if not os.path.isdir(SUBMISSION_ROOT): os.mkdir(SUBMISSION_ROOT) IMAGE_COLS = 28 IMAGE_ROWS = 28 ORIGINAL_TRAIN_SIZE = 10000 ORIGINAL_TEST_SIZE = 50000 %%time # Read contest Data original_train_id, original_train_label = data_digit_recognizer.read_mnist_id_for_contest(os.path.join(DATA_ROOT, 'train.csv')) original_train_id, original_train_image = data_digit_recognizer.read_mnist_for_contest( os.path.join(DATA_ROOT, 'train'), original_train_id) original_test_id, original_test_image = data_digit_recognizer.read_mnist_for_contest(os.path.join(DATA_ROOT, 'test')) # check data print('original_train_id:', original_train_id.shape) print('original_train_label:', original_train_label.shape) print('original_train_image:', original_train_image.shape) assert(original_train_id.shape == (ORIGINAL_TRAIN_SIZE,)) assert(original_train_label.shape == (ORIGINAL_TRAIN_SIZE,)) assert(original_train_image.shape == (ORIGINAL_TRAIN_SIZE, IMAGE_COLS*IMAGE_ROWS)) print('original_test_id:', original_test_id.shape) print('original_test_image', original_test_image.shape) assert(original_test_id.shape == (ORIGINAL_TEST_SIZE,)) assert(original_test_image.shape == (ORIGINAL_TEST_SIZE, IMAGE_COLS*IMAGE_ROWS)) for i in range(10, 10+3): data_digit_recognizer.show_digit(original_train_image[i], original_train_label[i]) data_digit_recognizer.analyze_labels(original_train_label) for i in range(10, 10+3): data_digit_recognizer.show_digit(original_test_image[i]) %%time # Read dry_run test data as validation DRY_RUN_DATA_ROOT = '../mnist/dry_run/' ! ls ../mnist/dry_run original_valid_id, original_valid_label = data_mnist.read_contest_ids(os.path.join(DRY_RUN_DATA_ROOT, 'test.csv')) original_valid_id, original_valid_image = data_mnist.read_contest_images(os.path.join(DRY_RUN_DATA_ROOT, 'test'), original_valid_id) # check data print('original_valid_id:', original_valid_id.shape) print('original_valid_image:', original_valid_image.shape) print('original_valid_label:', original_valid_label.shape) for i in range(10, 10+3): data_digit_recognizer.show_digit(original_valid_image[i], original_valid_label[i]) data_digit_recognizer.analyze_labels(original_valid_label) # preprocessing x_train = original_train_image.reshape(-1, 1, IMAGE_ROWS, IMAGE_COLS).astype('float32') / 255 y_train = np_utils.to_categorical(original_train_label, 10) x_valid = original_valid_image.reshape(-1, 1, IMAGE_ROWS, IMAGE_COLS).astype('float32') / 255 y_valid = np_utils.to_categorical(original_valid_label, 10) print('x_train shape: {}'.format(x_train.shape)) print('y_train shape: {}'.format(y_train.shape)) print('x_valid shape: {}'.format(x_valid.shape)) print('y_valid shape: {}'.format(y_valid.shape)) # model import random seed_num = 333 random.seed(seed_num) np.random.seed(seed_num) # for reproducibility model = Sequential() # Layer 1 model.add(Convolution2D(120, 5, 5, border_mode='valid', input_shape=(1, 28, 28))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) # Layer 2 model.add(Convolution2D(200, 3, 3)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) # Full connect model.add(Flatten()) model.add(Dense(200)) model.add(Activation('relu')) model.add(Dropout(0.5)) # Output model.add(Dense(10)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=1e-4)) %%time # Train BATCH_SIZE = 50 # EPOCH_COUNT = 5 EPOCH_COUNT = 30 history = model.fit(x_train, y_train, batch_size=BATCH_SIZE, nb_epoch=EPOCH_COUNT, show_accuracy=True, verbose=1, validation_data=(x_valid, y_valid)) history.history['loss'] import matplotlib.pyplot as plt x = np.arange(len(history.history['loss'])) plt.plot(x, history.history['loss']) plt.plot(x, history.history['val_loss']) plt.legend(['y = loss', 'y = val_loss'], loc='upper right') plt.show() for i in range(len(history.history['val_loss'])): if(history.history['val_loss'][i]==min(history.history['val_loss'])): print('min val_loss:{:.6f}, index:{}'.format(min(history.history['val_loss']).item(), i)) for i in range(len(history.history['loss'])): if(history.history['loss'][i]==min(history.history['loss'])): print('min loss: {:.6f}, index:{}'.format(min(history.history['loss']).item(), i)) #save model def save_keras_model(model, path): with open(path + '.json', 'w') as f: f.write(model.to_json()) model.save_weights(path+'.h5', overwrite=True) save_keras_model( model, '120C5-MP2-200C3-MP2-200N-10N-alphadog2' ) ###Output _____no_output_____
Unit04/Linear Regression_HW.ipynb
###Markdown 基礎題 - 算出斜率w與截距by = wx + b記得計算前X須符合資料格式$$[x_1, x_2, \ldots, x_{50}]$$==> $$[[x_1], [x_2], \ldots, [x_{50}]]$$ ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt x = np.array([ 0. , 0.20408163, 0.40816327, 0.6122449 , 0.81632653, 1.02040816, 1.2244898 , 1.42857143, 1.63265306, 1.83673469, 2.04081633, 2.24489796, 2.44897959, 2.65306122, 2.85714286, 3.06122449, 3.26530612, 3.46938776, 3.67346939, 3.87755102, 4.08163265, 4.28571429, 4.48979592, 4.69387755, 4.89795918, 5.10204082, 5.30612245, 5.51020408, 5.71428571, 5.91836735, 6.12244898, 6.32653061, 6.53061224, 6.73469388, 6.93877551, 7.14285714, 7.34693878, 7.55102041, 7.75510204, 7.95918367, 8.16326531, 8.36734694, 8.57142857, 8.7755102 , 8.97959184, 9.18367347, 9.3877551 , 9.59183673, 9.79591837, 10. ]) y = np.array([ 0.85848224, -0.10657947, 1.42771901, 0.53554778, 1.20216826, 1.81330509, 1.88362644, 2.23557653, 2.7384889 , 3.41174583, 4.08573636, 3.82529502, 4.39723111, 4.8852381 , 4.70092778, 4.66993962, 6.05133235, 5.44529881, 7.22571332, 6.79423911, 7.05424438, 7.00413058, 7.98149596, 7.00044008, 7.95903855, 9.96125238, 9.06040794, 9.56018295, 9.30035956, 9.26517614, 9.56401824, 10.07659844, 11.56755942, 11.38956185, 11.83586027, 12.45642786, 11.58403954, 11.60186428, 13.88486667, 13.35550112, 13.93938726, 13.31678277, 13.69551472, 14.76548676, 14.81731598, 14.9659187 , 15.19213921, 15.28195017, 15.97997265, 16.41258817]) #匯入在sklearn.linear_model套件裡面的LinearRegression模型 from sklearn.linear_model import LinearRegression #將模型工具指派給一變數做使用 LR = LinearRegression() #注意轉換x得格式1D->2D X = x.reshape(-1, 1) # print(X.shape) #將x,y資料導入LinearRegression演算法做訓練 LR.fit(X,y) #列印出訓練完成之函數的斜率與截距 print('斜率: ', LR.coef_) print('截距: ', LR.intercept_) ###Output 斜率: [1.61701852] 截距: 0.2731296894942137 ###Markdown 進階題 - 切割資料集分別做訓練與預測(訓練資料80%、測試資料20%) ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt x = np.array([ 0. , 0.20408163, 0.40816327, 0.6122449 , 0.81632653, 1.02040816, 1.2244898 , 1.42857143, 1.63265306, 1.83673469, 2.04081633, 2.24489796, 2.44897959, 2.65306122, 2.85714286, 3.06122449, 3.26530612, 3.46938776, 3.67346939, 3.87755102, 4.08163265, 4.28571429, 4.48979592, 4.69387755, 4.89795918, 5.10204082, 5.30612245, 5.51020408, 5.71428571, 5.91836735, 6.12244898, 6.32653061, 6.53061224, 6.73469388, 6.93877551, 7.14285714, 7.34693878, 7.55102041, 7.75510204, 7.95918367, 8.16326531, 8.36734694, 8.57142857, 8.7755102 , 8.97959184, 9.18367347, 9.3877551 , 9.59183673, 9.79591837, 10. ]) y = np.array([ 0.85848224, -0.10657947, 1.42771901, 0.53554778, 1.20216826, 1.81330509, 1.88362644, 2.23557653, 2.7384889 , 3.41174583, 4.08573636, 3.82529502, 4.39723111, 4.8852381 , 4.70092778, 4.66993962, 6.05133235, 5.44529881, 7.22571332, 6.79423911, 7.05424438, 7.00413058, 7.98149596, 7.00044008, 7.95903855, 9.96125238, 9.06040794, 9.56018295, 9.30035956, 9.26517614, 9.56401824, 10.07659844, 11.56755942, 11.38956185, 11.83586027, 12.45642786, 11.58403954, 11.60186428, 13.88486667, 13.35550112, 13.93938726, 13.31678277, 13.69551472, 14.76548676, 14.81731598, 14.9659187 , 15.19213921, 15.28195017, 15.97997265, 16.41258817]) #匯入在sklearn.linear_model套件裡面的LinearRegression模型 from sklearn.linear_model import LinearRegression #匯入在sklearn.model_selection套件裡面的train_test_split模組 from sklearn.model_selection import train_test_split #切割數據集(訓練資料80%、測試資料20%,設定random_state=20) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=20) #畫出訓練資料集的matplotlib圖形m plt.scatter(x_train, y_train) ###Output _____no_output_____ ###Markdown 用訓練資料來 fit 函數1. 只用訓練資料集的資料進行linear regression演算法2. 並計算出訓練階段的MSE3. 畫出目標點(藍色)與預測點(紅色)的對應圖![](images/LR_train.PNG) ###Code regr = LinearRegression() regr.fit(X_train,y_train) X_train = x_train.reshape(-1,1) Y_train = regr.predict(X_train) mse = np.sum((Y_train-y_train)**2) / len(y_train) print(mse) plt.scatter(x_train, y_train) plt.plot(x_train, Y_train, 'r') ###Output _____no_output_____ ###Markdown 將訓練出來的函數預測測試集的X值1. 使用剛剛訓練出來的模型進行測試資料集的資料預測*注意reshape使用X = 2.44897959,預測出來數值應該為 4.3025375所有測試集資料$$\widehat{y}=xw+b=w_{1}x_{1}+b$$ ###Code w = regr.coef_[0] b = regr.intercept_ print(w, b) X = 2.44897959 print(X * w + b) Y_test = regr.predict(x_test.reshape(-1, 1)) Y_test ###Output _____no_output_____ ###Markdown 2. 並計算出測試階段的MSE ###Code mse = np.sum((Y_test-y_test)**2) / len(y_test) print(mse) ###Output 0.41344072565862955 ###Markdown 3. 畫出目標點(藍色)與預測點(紅色)的對應圖![](images/LR_test.PNG) ###Code plt.scatter(x_test, y_test) print(x_test.shape, Y_test.shape) plt.scatter(x_test, Y_test, c='r') ###Output (10,) (10,)
analyze_program_lang.ipynb
###Markdown 各编程语言问题数 比较 ###Code #print(df) #print(df.loc[df.js>0]) df_lang_count = df[['answer_count', 'java','python','js','php']] df_sum = df_lang_count.sum() df_sum = pd.DataFrame({'lang': df_sum.index, 'count': df_sum.values}).loc[1:] a4_dims = (10.0, 8) fig, ax = plt.subplots(figsize=a4_dims) ax = sns.barplot(x='lang', y='count', data=df_sum, palette=None) ### 各编成语言的回答数 比较 df_melt = df[['question_id', 'answer_count', 'java','python','js','php']] df_melt = pd.melt(df_melt, id_vars=['question_id','answer_count'], value_vars=['java','python','js','php']) df_melt = df_melt.loc[df_melt.value > 0] df_melt = df_melt[['question_id','answer_count','variable']] df_lang_ans = df_melt.groupby(['variable'])['answer_count'].sum() df_lang_ans = pd.DataFrame({'lang': df_lang_ans.index, 'count': df_lang_ans.values}) df_lang_ans = df_lang_ans.sort_values(['count'], ascending=False) a4_dims = (10.0, 8) fig, ax = plt.subplots(figsize=a4_dims) ax = sns.barplot(x='lang', y='count', data=df_lang_ans, palette=None) #print(df) def most_answers_lang(lang): first = df.loc[df[lang] > 0].iloc[0] question_title = first['question_title'] question_id = first['question_id'] answer_count = first['answer_count'] question_url = 'https://www.zhihu.com/question/%s' % question_id print('%s 语言回答数最多的问题: %s\n%s\n回答数:%s' % (lang.upper(), question_title, question_url, answer_count)) most_answers_lang('java') most_answers_lang('python') most_answers_lang('js') most_answers_lang('php') ###Output PHP 语言回答数最多的问题: 零基础应该选择学习 java、php、前端 还是 python? https://www.zhihu.com/question/40801731 回答数:334
notebooks/ex_005.ipynb
###Markdown Plano de negócio - Saída: - Uma tabela com as informações dos livros- Processo: A sequência de passos organizada pela lógica de execução. - Analisar o HTML da página - Pesquisar melhor forma de realizar a extração de dados - Coleta os dados seguintes dados categoria| nome_livro|avaliação_consumidor|estoque|preço - Limpeza dos dados- Entrada: 1. Fonte de dados - Site da Book to Scrape: https://books.toscrape.com 2. Ferramentas - Python 3.8.0 - Bibliotecas de Webscrapping (BS4, Selenium) - Jupyter Notebooks (Análises e Prototipagem) 0.0 Imports ###Code import re import requests import pandas as pd import numpy as np import seaborn as sns from datetime import datetime from bs4 import BeautifulSoup from IPython.core.display import HTML from IPython.display import Image from matplotlib import pyplot as plt ###Output _____no_output_____ ###Markdown 0.1 Helpe Functions ###Code def jupyter_settings(): %matplotlib inline %pylab inline plt.style.use('bmh') plt.rcParams['figure.figsize']=[20,10] plt.rcParams['font.size']=10 display( HTML('<style>.container {width:100% !important; }</style>')) pd.options.display.max_columns = None pd.options.display.max_rows = None #pd.set_options('display.expand_frame_repr',False ) sns.set() jupyter_settings() warnings.filterwarnings ('ignore') ###Output Populating the interactive namespace from numpy and matplotlib ###Markdown 1.0 Data Collect ###Code book_title = [] book_price = [] book_stock = [] book_rating = [] book_category = [] quantidade = 0 for page in range(1,51): #Get webpage data root_url = 'https://books.toscrape.com/catalogue/' url = 'https://books.toscrape.com/catalogue/page-{}.html'.format(page) headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5),AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36'} response = requests.get(url,headers=headers) # Make Soup soup = BeautifulSoup(response.text,'html.parser') book = soup.find_all('article', class_='product_pod') for book in book: # Get Hyper Link base_url = book.h3.a['href'].strip() url = root_url + base_url page_single = requests.get(url) soup_single = BeautifulSoup(page_single.text,'html.parser') book_single = soup_single.find('article', class_='product_page') info_book = book_single.find('div', class_='product_main') #Scraping Data title = info_book.h1.get_text().strip() price = info_book.find('p', class_='price_color').get_text() stock = info_book.find('p', class_='availability').get_text().split() rating = info_book.find('p','star-rating')['class'][1].strip() category = soup_single.find('ul', class_='breadcrumb').find_all('li')[2].a.get_text() #clean data stock_clean = re.findall(r"\d+", stock)[0] #rating_clean = clean.str_to_int(rating) book_title.append(title) book_price.append(price) book_stock.append(stock_clean) book_rating.append(rating) book_category.append(category) quantidade = quantidade +1 print(quantidade) data = pd.DataFrame({'book_category': book_category, 'book_title': book_title, 'book_price': book_price, 'book_stock': book_stock, 'book_rating': book_rating}) data = data.loc[((data['book_category'] == 'Classics') | (data['book_category'] == 'Science Fiction') |(data['book_category'] == 'Humor')|(data['book_category'] == 'Business'))] from datetime import datetime #scrapy datetime data.insert(1, 'scrapy_datetime',(datetime.now().strftime('%Y-%m-%d %H:%M:%S')),allow_duplicates=False) data.head() data.to_csv('../data/dataset_v1.csv',index=False) ###Output _____no_output_____ ###Markdown 2.0 Clean Data ###Code data= pd.read_csv('../data/dataset_v1.csv') data.sample(5) ## book category data['book_category'] = data['book_category'].apply(lambda x: x.lower()) # product price data['book_price']= data['book_price'].apply(lambda x: x.replace('£','') if pd.notnull(x) else x).astype(float) # book rating data['book_rating'] = data['book_rating'].apply(lambda x: x.lower()) # book stock regex ='\W((.+?),(.+?)),' data['book_stock']= data['book_stock'].apply(lambda x: re.match(regex, x).group(1)) data['book_stock']= data['book_stock'].apply(lambda x: x.strip("'")) data['book_stock']= data['book_stock'].apply(lambda x: x.replace("'" , "").replace("," , "")) data.sample(5) data.to_csv('../data/dataset_v2.csv',index=False) ###Output _____no_output_____
modelClassifier.ipynb
###Markdown Import Library ###Code # Import General Packages import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.metrics import confusion_matrix, classification_report import pickle from pathlib import Path import warnings #warnings.filterwarnings('ignore') # import dataset df_load = pd.read_csv('https://dqlab-dataset.s3-ap-southeast-1.amazonaws.com/dqlab_telco_final.csv') # Show the shape of the dataset df_load.shape # Show top 5 records df_load.head() # Show number of unique IDs df_load.customerID.nunique() ###Output _____no_output_____ ###Markdown Exploratory Data Analysis (EDA)Dalam kasus ini, Saya diminta untuk melihat persebaran dari:- Prosentase persebaran data Churn dan tidaknya dari seluruh data- Persebarang data dari variable predictor terhadap label (Churn) ###Code # see univariate data visualization related to the percentage of churn data from customers fig = plt.figure() ax = fig.add_axes([0,0,1,1]) ax.axis('equal') labels = ['Yes','No'] churn = df_load.Churn.value_counts() ax.pie(churn, labels=labels, autopct='%.0f%%') plt.show() # choose a numeric variable predictor and make a bivariate plot, then interpret it # creating bin in chart numerical_features = ['MonthlyCharges','TotalCharges','tenure'] fig, ax = plt.subplots(1, 3, figsize=(15, 6)) # use the following code to plot two overlays of histogram per each numerical_features, # use a color of blue and orange, respectively df_load[df_load.Churn == 'No'][numerical_features].hist(bins=20, color='blue', alpha=0.5, ax=ax) df_load[df_load.Churn == 'Yes'][numerical_features].hist(bins=20, color='orange', alpha=0.5, ax=ax) plt.show() # choose a categorical predictor variable and make a bivariate plot, then interpret it fig, ax = plt.subplots(3, 3, figsize=(14, 12)) sns.set(style='darkgrid') sns.countplot(data=df_load, x='gender', hue='Churn', ax=ax[0][0]) sns.countplot(data=df_load, x='Partner', hue='Churn', ax=ax[0][1]) sns.countplot(data=df_load, x='SeniorCitizen', hue='Churn', ax=ax[0][2]) sns.countplot(data=df_load, x='PhoneService', hue='Churn', ax=ax[1][0]) sns.countplot(data=df_load, x='StreamingTV', hue='Churn', ax=ax[1][1]) sns.countplot(data=df_load, x='InternetService', hue='Churn', ax=ax[1][2]) sns.countplot(data=df_load, x='PaperlessBilling', hue='Churn', ax=ax[2][1]) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown **Conclusion**Based on the results and analysis above, it can be concluded:- At the first step, we know that the data distribution as a whole, the customer does not churn, with details on Churn as much as 26% and No Churn as much as 74%.- At the second step, we can see that for MonthlyCharges there is a tendency that the smaller the value of the monthly fees charged, the smaller the tendency to do Churn. For TotalCharges there doesn't seem to be any inclination towards Churn customers. For tenure, there is a tendency that the longer the customer subscribes, the less likely it is to churn.- At the third step, we know that there is no significant difference for people doing churn in terms of gender and telephone service (Phone Service). However, there is a tendency that people who churn are people who do not have a partner (partner: No), people whose status is a senior citizen (Senior Citizen: Yes), people who have streaming TV services (StreamingTV: Yes) , people who have Internet service (internetService: Yes) and people who have paperless bills (PaperlessBilling: Yes). Pre-Processing Data ###Code df_load.head() #Remove the unnecessary columns customerID & UpdatedAt cleaned_df = df_load.drop(['customerID','UpdatedAt'], axis=1) cleaned_df.head() cleaned_df.describe() # Encoding Data #Convert all the non-numeric columns to numerical data types for column in cleaned_df.columns: if cleaned_df[column].dtype == np.number: continue # Perform encoding for each non-numeric column cleaned_df[column] = LabelEncoder().fit_transform(cleaned_df[column]) cleaned_df.describe() # Splitting Dataset # Predictor and Target X = cleaned_df.drop('Churn', axis = 1) y = cleaned_df['Churn'] # Splitting train and test # Splitting train and test x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # Print according to the expected result print('The number of rows and columns of x_train is: ', x_train.shape, ', while the number of rows and columns of y_train is:', y_train.shape) print('\nChurn percentage in training data is:') print(y_train.value_counts(normalize=True)) print('\nThe number of rows and columns of x_test is:', x_test.shape,', while the number of rows and columns of y_test is:', y_test.shape) print('\nChurn percentage in Testing data is:') print(y_test.value_counts(normalize=True)) ###Output The number of rows and columns of x_train is: (4865, 10) , while the number of rows and columns of y_train is: (4865,) Churn percentage in training data is: 0 0.734841 1 0.265159 Name: Churn, dtype: float64 The number of rows and columns of x_test is: (2085, 10) , while the number of rows and columns of y_test is: (2085,) Churn percentage in Testing data is: 0 0.738129 1 0.261871 Name: Churn, dtype: float64 ###Markdown **Conclusion**After we analyzed it further, it turned out that there were columns that were not needed in the model, namely the customer ID number (customerID) & the data collection period (UpdatedAt), so this needs to be deleted. Then we continue to change the value of the data which is still in the form of a string into numeric through encoding, after this is done, it can be seen in the data distribution, especially the min and max columns of each variable have changed to 0 & 1. The last step is to divide the data into 2 parts for modeling purposes After it is done, it can be seen that the number of rows and columns of each data is appropriate & the percentage of the churn column is also the same as the data at the beginning, this indicates that the data is separated properly and correctly. LogisticRegression ###Code # Create a model using the LogisticRegression Algorithm warnings.filterwarnings('ignore') log_model = LogisticRegression().fit(x_train, y_train) # LogisticRegression Model log_model # Predict y_train_pred = log_model.predict(x_train) # Print classification report print(classification_report(y_train, y_train_pred)) # Form confusion matrix as a DataFrame confusion_matrix_df = pd.DataFrame((confusion_matrix(y_train, y_train_pred)), ('No churn', 'Churn'), ('No churn', 'Churn')) # Plot confusion matrix plt.figure() heatmap = sns.heatmap(confusion_matrix_df, annot=True, annot_kws={'size': 14}, fmt='d', cmap='YlGnBu') heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right', fontsize=14) heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=0, ha='right', fontsize=14) plt.title('Confusion Matrix for Training Model\n(Logistic Regression)', fontsize=18, color='darkblue') plt.ylabel('True label', fontsize=14) plt.xlabel('Predicted label', fontsize=14) plt.show() # Performance Data Testing - Displays Metrics # Predict y_test_pred = log_model.predict(x_test) # Print classification report print(classification_report(y_test, y_test_pred)) # Form confusion matrix as a DataFrame confusion_matrix_df = pd.DataFrame((confusion_matrix(y_test, y_test_pred)), ('No churn', 'Churn'), ('No churn', 'Churn')) # Plot confusion matrix plt.figure() heatmap = sns.heatmap(confusion_matrix_df, annot=True, annot_kws={'size': 14}, fmt='d', cmap='YlGnBu') heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right', fontsize=14) heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=0, ha='right', fontsize=14) plt.title('Confusion Matrix for Testing Model\n(Logistic Regression)\n', fontsize=18, color='darkblue') plt.ylabel('True label', fontsize=14) plt.xlabel('Predicted label', fontsize=14) plt.show() ###Output _____no_output_____ ###Markdown **Conclusion**From the results and analysis above, then:* From the training data, it can be seen that the model is able to predict data with an accuracy of 79%, with details of the churn guess which is actually correct, the churn guess is 636, the churn guess which is actually not churn is 3227, the churn guess which is actually correct is 654 and the churn guess that is actually correct the actual churn is 348.* From the testing data, it can be seen that the model is able to predict the data with an accuracy of 79%, with details of the churn guess which is actually true churn is 263, the non-churn guess that actually doesn't churn is 1390, the churn guess which is actually true churn is 283 and the churn guess which is actually correct actually no churn is 149. Random Forest Classifier ###Code # Create a model using RandomForestClassifier rdf_model = RandomForestClassifier().fit(x_train, y_train) rdf_model # Predict y_train_pred = rdf_model.predict(x_train) # Print classification report print(classification_report(y_train, y_train_pred)) # Form confusion matrix as a DataFrame confusion_matrix_df = pd.DataFrame((confusion_matrix(y_train, y_train_pred)), ('No churn', 'Churn'), ('No churn', 'Churn')) # Plot confusion matrix plt.figure() heatmap = sns.heatmap(confusion_matrix_df, annot=True, annot_kws={'size': 14}, fmt='d', cmap='YlGnBu') heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right', fontsize=14) heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=0, ha='right', fontsize=14) plt.title('Confusion Matrix for Training Model\n(Random Forest)', fontsize=18, color='darkblue') plt.ylabel('True label', fontsize=14) plt.xlabel('Predicted label', fontsize=14) plt.show() # Performance Data Testing - Displays Metrics # Predict y_test_pred = rdf_model.predict(x_test) # Print classification report print(classification_report(y_test, y_test_pred)) # Form confusion matrix as a DataFrame confusion_matrix_df = pd.DataFrame((confusion_matrix(y_test, y_test_pred)), ('No churn', 'Churn'), ('No churn', 'Churn')) # Plot confusion matrix plt.figure() heatmap = sns.heatmap(confusion_matrix_df, annot=True, annot_kws={'size': 14}, fmt='d', cmap='YlGnBu') heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right', fontsize=14) heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=0, ha='right', fontsize=14) plt.title('Confusion Matrix for Testing Model\n(Random Forest)\n', fontsize=18, color='darkblue') plt.ylabel('True label', fontsize=14) plt.xlabel('Predicted label', fontsize=14) plt.show() ###Output _____no_output_____ ###Markdown **Kesimpulan**Dari hasil dan analisa di atas, maka:- Jika kita menggunakan menggunakan algoritma Random Forest dengan memanggil RandomForestClassifier() dari sklearn tanpa menambahi parameter apapun, maka yang dihasilkan adalah model dengan seting default dari sklearn, untuk detilnya bisa dilihat di dokumentasinya.- Dari data training terlihat bahwasannya model mampu memprediksi data dengan menghasilkan akurasi sebesar 100%, dengan detil tebakan churn yang sebenernya benar churn adalah 1278, tebakan tidak churn yang sebenernya tidak churn adalah 3566, tebakan tidak churn yang sebenernya benar churn adalah 12 dan tebakan churn yang sebenernya tidak churn adalah 9.- Dari data testing terlihat bahwasannya model mampu memprediksi data dengan menghasilkan akurasi sebesar 78%, dengan detil tebakan churn yang sebenernya benar churn adalah 262, tebakan tidak churn yang sebenernya tidak churn adalah 1360, tebakan tidak churn yang sebenernya benar churn adalah 284 dan tebakan churn yang sebenernya tidak churn adalah 179. Gradient Boosting Classifier ###Code #Train the model gbt_model = GradientBoostingClassifier().fit(x_train, y_train) gbt_model # Predict y_train_pred = gbt_model.predict(x_train) # Print classification report print(classification_report(y_train, y_train_pred)) # Form confusion matrix as a DataFrame confusion_matrix_df = pd.DataFrame((confusion_matrix(y_train, y_train_pred)), ('No churn', 'Churn'), ('No churn', 'Churn')) # Plot confusion matrix plt.figure() heatmap = sns.heatmap(confusion_matrix_df, annot=True, annot_kws={'size': 14}, fmt='d', cmap='YlGnBu') heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right', fontsize=14) heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=0, ha='right', fontsize=14) plt.title('Confusion Matrix for Training Model\n(Gradient Boosting)', fontsize=18, color='darkblue') plt.ylabel('True label', fontsize=14) plt.xlabel('Predicted label', fontsize=14) plt.show() # Predict y_test_pred = gbt_model.predict(x_test) # Print classification report print(classification_report(y_test, y_test_pred)) # Form confusion matrix as a DataFrame confusion_matrix_df = pd.DataFrame((confusion_matrix(y_test, y_test_pred)), ('No churn', 'Churn'), ('No churn', 'Churn')) # Plot confusion matrix plt.figure() heatmap = sns.heatmap(confusion_matrix_df, annot=True, annot_kws={'size': 14}, fmt='d', cmap='YlGnBu') heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right', fontsize=14) heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=0, ha='right', fontsize=14) plt.title('Confusion Matrix for Testing Model\n(Gradient Boosting)', fontsize=18, color='darkblue') plt.ylabel('True label', fontsize=14) plt.xlabel('Predicted label', fontsize=14) plt.show() ###Output _____no_output_____ ###Markdown **Kesimpulan**Dari hasil dan analisa di atas, maka:- Jika kita menggunakan menggunakan algoritma Gradient Boosting dengan memanggil GradientBoostingClassifier() dari package sklearn tanpa menambahi parameter apapun, maka yang dihasilkan adalah model dengan seting default dari sklearn, untuk detilnya bisa dilihat di dokumentasinya.- Dari data training terlihat bahwasannya model mampu memprediksi data dengan menghasilkan akurasi sebesar 82%, dengan detil tebakan churn yang sebenernya benar churn adalah 684, tebakan tidak churn yang sebenernya tidak churn adalah 3286, tebakan tidak churn yang sebenernya benar churn adalah 606 dan tebakan churn yang sebenernya tidak churn adalah 289.- Dari data testing terlihat bahwasannya model mampu memprediksi data dengan menghasilkan akurasi sebesar 79%, dengan detil tebakan churn yang sebenernya benar churn adalah 261, tebakan tidak churn yang sebenernya tidak churn adalah 1394, tebakan tidak churn yang sebenernya benar churn adalah 285 dan tebakan churn yang sebenernya tidak churn adalah 145. ###Code # Save model pickle.dump(log_model, open('best_model_churn.pkl', 'wb')) ###Output _____no_output_____
cooker_whistle/simple_audio_mic.ipynb
###Markdown Get Audio Input ###Code # get pyaudio input device def getInputDevice(p): index = None nDevices = p.get_device_count() print('Found %d devices:' % nDevices) for i in range(nDevices): deviceInfo = p.get_device_info_by_index(i) #print(deviceInfo) devName = deviceInfo['name'] print(devName) # look for the "input" keyword # choose the first such device as input # change this loop to modify this behavior # maybe you want "mic"? if not index: if 'input' in devName.lower(): index = i # print out chosen device if index is not None: devName = p.get_device_info_by_index(index)["name"] #print("Input device chosen: %s" % devName) return index # initialize pyaudio p = pyaudio.PyAudio() getInputDevice(p) ###Output Found 8 devices: HDA NVidia: HDMI 0 (hw:0,3) HDA NVidia: HDMI 1 (hw:0,7) HD-Audio Generic: ALC887-VD Analog (hw:1,0) HD-Audio Generic: ALC887-VD Digital (hw:1,1) HD-Audio Generic: ALC887-VD Alt Analog (hw:1,2) hdmi pulse default ###Markdown Now let's try plotting 1 second of Mic Input ###Code def get_spectrogram(waveform): # Padding for files with less than 16000 samples zero_padding = tf.zeros([16000] - tf.shape(waveform), dtype=tf.float32) # Concatenate audio with padding so that all audio clips will be of the # same length waveform = tf.cast(waveform, tf.float32) equal_length = tf.concat([waveform, zero_padding], 0) spectrogram = tf.signal.stft( equal_length, frame_length=255, frame_step=128) spectrogram = tf.abs(spectrogram) return spectrogram def plot_spectrogram(spectrogram, ax): # Convert to frequencies to log scale and transpose so that the time is # represented in the x-axis (columns). log_spec = np.log(spectrogram.T) height = log_spec.shape[0] X = np.arange(16000, step=height + 1) Y = range(height) ax.pcolormesh(X, Y, log_spec) # set sample rate NSEC = 1 sampleRate = 16000 # #48000 sampleLen = NSEC*sampleRate print('opening stream...') stream = p.open(format = pyaudio.paInt16, channels = 1, rate = sampleRate, input = True, frames_per_buffer = 4096, input_device_index = -1) # read a chunk of data - discard first data = stream.read(sampleLen) print(type(data)) p.close(stream) waveform = tf.cast(tf.io.decode_raw(data, "int16"), "float32")/32768.0 print(waveform) spectrogram = get_spectrogram(waveform) #spectrogram = tf.reshape(spectrogram, (spectrogram.shape[0], spectrogram.shape[1], 1)) print(spectrogram.shape) fig, axes = plt.subplots(2, figsize=(12, 8)) timescale = np.arange(waveform.shape[0]) axes[0].plot(timescale, waveform.numpy()) axes[0].set_title('Waveform') axes[0].set_xlim([0, 16000]) axes[0].set_ylim([-1, 1]) plot_spectrogram(spectrogram.numpy(), axes[1]) axes[1].set_title('Spectrogram') plt.show() commands = ['go', 'down', 'up', 'stop', 'yes', 'left', 'right', 'no'] print(spectrogram.shape) spectrogram1= tf.reshape(spectrogram, (-1, spectrogram.shape[0], spectrogram.shape[1], 1)) print(spectrogram1.shape) prediction = model(spectrogram1) print(prediction) sm = tf.nn.softmax(prediction[0]) am = tf.math.argmax(sm) print(sm) print(commands[am]) #plt.bar(commands, tf.nn.softmax(prediction[0])) #plt.title(f'Predictions for "{commands[label[0]]}"') #plt.show() ###Output (124, 129) (1, 124, 129, 1) tf.Tensor( [[ 0.5241283 0.47888047 -1.1988008 -0.5169501 0.3624149 -0.44560105 -0.53696716 0.5674314 ]], shape=(1, 8), dtype=float32) tf.Tensor( [0.1957875 0.18712598 0.03495637 0.06912743 0.16655348 0.07423981 0.06775746 0.20445195], shape=(8,), dtype=float32) no
Data Analysis Using Python.ipynb
###Markdown Import Files ###Code import pandas as pd vanorder = pd.read_csv('vanorder.csv') vaninterest = pd.read_csv('vaninterest.csv') ###Output _____no_output_____ ###Markdown Exploratory Data Analysis ###Code vanorder.head() vaninterest.head() vanorder.describe() ###Output _____no_output_____ ###Markdown Convert date into Pandas datetime object ###Code vanorder.txCreate = pd.to_datetime(vanorder.txCreate) vaninterest.txCreate = pd.to_datetime(vaninterest.txCreate) vanorder.head() ###Output _____no_output_____ ###Markdown Q) 5 : What is the order fulfillment rate, i.e. percentage of orders that was completed ? ###Code len(vanorder[vanorder.order_status == 2])/len(vanorder) ###Output _____no_output_____ ###Markdown Order Fulfillment rate = 94% Subset Order type- A ###Code vanorderA = vanorder[vanorder.order_subset == 'A'] vaninterestA = vaninterest[vaninterest.order_subset_assigned == 'A'] ###Output _____no_output_____ ###Markdown Create a new column matchtime i.e difference of time accepted and time created ###Code vanorderA['txAccept'] = vaninterestA.txCreate vanorderA['matchtime'] = vanorderA.txAccept - vanorderA.txCreate vanorderA.head() ###Output c:\users\pramodksh\appdata\local\programs\python\python36-32\lib\site-packages\ipykernel_launcher.py:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy """Entry point for launching an IPython kernel. c:\users\pramodksh\appdata\local\programs\python\python36-32\lib\site-packages\ipykernel_launcher.py:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy ###Markdown Subset Advanced/Immediate orders ###Code van_advanced_orders = vanorderA[(vanorderA.matchtime.between('00:00:00', '01:00:00') )] van_advanced_orders = van_advanced_orders[van_advanced_orders.matchtime < '01:00:00'] van_advanced_orders.head() ###Output _____no_output_____ ###Markdown Q)6 (a) What is the average match time, by immediate/advanced orders? ###Code van_advanced_orders.matchtime.mean() ###Output _____no_output_____ ###Markdown Average matchtime is 8 Minutes 59 sec Q)6 (b) What is the median match time, by immediate/advanced orders? ###Code van_advanced_orders.matchtime.median() ###Output _____no_output_____ ###Markdown Median matchtime is 5 Minutes 06 sec (c) Which of the above one do you think provides a better representation the data, i.e. a better metric for tracking our performance in matching? Median gives a better metric because it doesn't get affected by outliers.(In this case midnight orders).However mean of binned hours would provide better insights.(Avg matchtime of morning hours,afternnon,evening and night) Export the file as a csv to prepeare dashnoard(Tableau) ###Code van_advanced_orders.to_csv('1.csv') ###Output _____no_output_____
datavisualization/data_visualization_python_2.ipynb
###Markdown Visualização de dados com Python 2 - Visualizações com mais de 2 dimensões*Cleuton Sampaio*, [**DataLearningHub**](http://datalearninghub.com)Nesta lição veremos como fornecer visualizações com mais de duas dimensões de dados. [![](../banner_livros2.png)](https://www.lcm.com.br/site/livros/busca?term=cleuton) Dispersão tridimensionalEm casos que temos três características mensuráveis e, principalmente, plotáveis (dentro da mesma escala - ou podemos ajustar a escala), é interessante ver um gráfico de dispersão para podermos avaliar visualmente a distribuição das amostras. É o que veremos com a bilbioteca Matplotlib Toolkits, em especial a MPlot3D, que tem o objeto Axes3D para geração de gráficos tridimensionais. ###Code import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d, Axes3D # Objetos que usaremos em nosso gráfico %matplotlib inline df = pd.read_csv('../datasets/evasao.csv') # Dados de evasão escolar que coletei df.head() ###Output _____no_output_____ ###Markdown Algumas explicações. Para começar, vejamos as colunas deste dataset: - "periodo": Período em que o aluno está;- "bolsa": Percentual de bolsa que o aluno recebe;- "repetiu": Quantidade de disciplinas nas quais o aluno foi reprovado;- "ematraso": Se o aluno está com mensalidades em atraso;- "disciplinas": Disciplinas que o aluno está cursando atualmente;- "desempenho": Média acadêmica até agora;- "abandonou": Se o aluno abandonou o curso depois da medição ou não.Para podermos plotar um gráfico, precisamos reduzir a quantidade de dimensões, ou seja, as características. Farei isso da maneira mais "naive" possível, selecionando três características que mais influenciaram no resultado final, ou seja o abandono do aluno (Churn). ###Code df2 = df[['periodo','repetiu','desempenho']][df.abandonou == 1] df2.head() fig = plt.figure() #ax = fig.add_subplot(111, projection='3d') ax = Axes3D(fig) # Para Matplotlib 0.99 ax.scatter(xs=df2['periodo'],ys=df2['repetiu'],zs=df2['desempenho'], c='r',s=8) ax.set_xlabel('periodo') ax.set_ylabel('repetiu') ax.set_zlabel('desempenho') plt.show() ###Output _____no_output_____ ###Markdown Simplesmente usei o Axes3D para obter um objeto gráfico tridimensional. O método "scatter" recebe três dimensões (xs, ys e zs), cada uma atribuída a uma das colunas do novo dataframe. O parâmetro "c" é a cor e o "s" é o tamanho de cada ponto. Informei os rótulos de cada eixo e pronto! Temos um gráfico 3D mostrando a distribuição espacial dos abandonos de curso, com relação às três variáveis. Podemos avaliar muito melhor a tendência de dados, se olharmos em visualizações 3D. Vejamos um exemplo sintético. Vamos gerar alguns valores 3D: ###Code import numpy as np np.random.seed(42) X = np.linspace(1.5,3.0,num=100) Y = np.array([x**4 + (np.random.rand()*6.5) for x in X]) Z = np.array([(X[i]*Y[i]) + (np.random.rand()*3.2) for i in range(0,100)]) ###Output _____no_output_____ ###Markdown Primeiramente veremos como ficaria isso em visualização 2D: ###Code fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(X, Y, c='b', s=20) ax.set_xlabel('X') ax.set_ylabel('Y') plt.show() ###Output _____no_output_____ ###Markdown Ok... Nada demais... Uma correlação não linear positiva, certo? Mas agora, vejamos isso com a matriz Z incluída: ###Code fig = plt.figure() ax = Axes3D(fig) ax.scatter(X, Y, Z, c='r',s=8) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') plt.show() ###Output _____no_output_____ ###Markdown E isso fica mais interessante quando sobrepomos uma predição sobre os dados reais. Vamos usar um Decision Tree Regressor para criar um modelo preditivo para estes dados: ###Code from sklearn.tree import DecisionTreeRegressor from sklearn.model_selection import train_test_split features = pd.DataFrame({'X':X, 'Z':Z}) labels = pd.DataFrame({'Y':Y}) X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.33, random_state=42) dtr3d = DecisionTreeRegressor(max_depth=4, random_state=42) dtr3d.fit(X_train,y_train) print('R2',dtr3d.score(X_train,y_train)) yhat3d = dtr3d.predict(X_test) fig = plt.figure() ax = ax = fig.add_subplot(111, projection='3d') ax.scatter(X, Y, Z, c='r',s=8) ax.scatter(X_test['X'], yhat3d, X_test['Z'], c='k', marker='*',s=100) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') plt.show() ###Output _____no_output_____ ###Markdown Plotamos as predições usando marker do tipo estrela. Ficou bem interessante, não? Mais de 3 dimensõesAs vezes queremos demonstrar informações com mais de 3 dimensões, mas como fazer isso? Vamos supor que queiramos também incluir o percentual de bolsa como uma variável em nosso exemplo de evasão escolar. Como faríamos?Uma abordagem possível seria manipular os markers para que representem a bolsa. Podemos usar cores, por exemplo. Vejamos, primeiramente, precisamos saber quais faixas de bolsa existem no dataset: ###Code print(df.groupby("bolsa").count()) ###Output periodo repetiu ematraso disciplinas faltas desempenho abandonou bolsa 0.00 53 53 53 53 53 53 53 0.05 50 50 50 50 50 50 50 0.10 50 50 50 50 50 50 50 0.15 50 50 50 50 50 50 50 0.20 45 45 45 45 45 45 45 0.25 52 52 52 52 52 52 52 ###Markdown Podemos criar uma tabela de cores, indexada pelo percentual de bolsa: ###Code from decimal import Decimal bolsas = {0.00: 'b',0.05: 'r', 0.10: 'g', 0.15: 'm', 0.20: 'y', 0.25: 'k'} df['cor'] = [bolsas[float(round(Decimal(codigo),2))] for codigo in df['bolsa']] df.head() ###Output _____no_output_____ ###Markdown Essa "maracutaia" merece uma explicação. Criei um dicionário indexado pelo valor da bolsa. Assim, pegamos o código da cor correspondente. Só que preciso incluir uma coluna no dataframe com esse valor, de modo a usar no gráfico. Só tem um problema: O dataset original está "sujo" (algo que acontece frequentemente) e o percentual 0.15 está como 0.1500000002. Posso retirar isso convertendo o falor de "float" para "Decimal", arredondanto e convertendo novamente em float. Quando plotarmos, vamos procurar a cor no dicionário: ###Code fig = plt.figure() #ax = fig.add_subplot(111, projection='3d') ax = Axes3D(fig) # Para Matplotlib 0.99 ax.scatter(xs=df['periodo'],ys=df['repetiu'],zs=df['desempenho'], c=df['cor'],s=50) ax.set_xlabel('periodo') ax.set_ylabel('repetiu') ax.set_zlabel('desempenho') plt.show() ###Output _____no_output_____ ###Markdown Pronto! Temos ai a cor da bola dando a quarta dimensão: O percentual de bolsa Vemos que já uma concentração de alunos com bolsa de 25% (cor preta) com poucas repetições, mas baixo desempenho, em todos os períodos. Assim como mexemos com a cor, podemos mexer com o tamanho, criando algo como um "mapa de calor". Vamos transformar essa visão em 2D, colocando o "desempenho" com tamanho diferenciado. ###Code fig, ax = plt.subplots() ax.scatter(df['periodo'],df['repetiu'], c='r',s=df['desempenho']*30) ax.set_xlabel('periodo') ax.set_ylabel('repetiu') plt.show() ###Output _____no_output_____ ###Markdown Isso nos mostra um fato curioso. Temos alunos com bom desempenho (bolas grandes) em todos os períodos, sem repetir nenhuma disciplina, que abandonaram. O que os teria feito fazer isto? Talvez sejam condições financeiras, ou insatisfação com o curso. Um fato a ser investigado, que só foi revelado graças a esta visualização. GeorreferenciamentoMuitas vezes temos datasets com informações geográficas e precisamos plotar os dados sobre um mapa. Vou mostrar aqui como fazer isso com um exemplo do dataset dos casos de Dengue de 2018 no Rio de Janeiro. Fonte: Data Rio: http://www.data.rio/datasets/fb9ede8d588f45b48b985e62c817f062_0Eu criei um dataset georreferenciado, que está na pasta desta demonstração. Ele está em formato CSV, separado por ponto e vírgula, com separador decimal em português (vírgula): ###Code df_dengue = pd.read_csv('./dengue2018.csv',decimal=',', sep=';') df_dengue.head() ###Output _____no_output_____ ###Markdown Um simples gráfico de dispersão já dá uma boa noção do problema: ###Code fig, ax = plt.subplots() ax.scatter(df_dengue['longitude'],df_dengue['latitude'], c='r',s=15) plt.show() ###Output _____no_output_____ ###Markdown Podemos colocar o tamanho do ponto proporcional à quantidade de casos, aumentando a dimensão das informações: ###Code fig, ax = plt.subplots() ax.scatter(df_dengue['longitude'],df_dengue['latitude'], c='r',s=5+df_dengue['quantidade']) plt.show() ###Output _____no_output_____ ###Markdown Podemos manipular a cor e intensidade para criar um "mapa de calor" da Dengue: ###Code def calcular_cor(valor): cor = 'r' if valor <= 10: cor = '#ffff00' elif valor <= 30: cor = '#ffbf00' elif valor <= 50: cor = '#ff8000' return cor df_dengue['cor'] = [calcular_cor(codigo) for codigo in df_dengue['quantidade']] df_dengue.head() ###Output _____no_output_____ ###Markdown E vamos ordenar para que as maiores quantidades fiquem por último: ###Code dfs = df_dengue.sort_values(['quantidade']) dfs.head() fig, ax = plt.subplots() ax.scatter(dfs['longitude'],dfs['latitude'], c=dfs['cor'],s=10+dfs['quantidade']) plt.show() ###Output _____no_output_____ ###Markdown Pronto! Um mapa de calor da Dengue em 2018. Mas está faltando algo certo? Cadê o mapa do Rio de Janeiro?Muita gente usa o **geopandas** e baixa arquivos de mapas. Eu prefiro usar o Google Maps. Ele tem uma API chamada Static Maps que permite baixar mapas. Primeiramente, vou instalar o **requests**: ###Code !pip install requests ###Output Requirement already satisfied: requests in /home/cleuton/anaconda3/lib/python3.7/site-packages (2.21.0) Requirement already satisfied: idna<2.9,>=2.5 in /home/cleuton/anaconda3/lib/python3.7/site-packages (from requests) (2.8) Requirement already satisfied: urllib3<1.25,>=1.21.1 in /home/cleuton/anaconda3/lib/python3.7/site-packages (from requests) (1.24.1) Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /home/cleuton/anaconda3/lib/python3.7/site-packages (from requests) (3.0.4) Requirement already satisfied: certifi>=2017.4.17 in /home/cleuton/anaconda3/lib/python3.7/site-packages (from requests) (2018.11.29) ###Markdown Agora, vem uma parte um pouco mais "esperta". Eu tenho as coordenadas do centro do Rio de Janeiro (centro geográfico, não o centro da cidade). Vou montar um request à API Static Map para baixar um mapa. Veja bem, você tem que cadastrar uma API Key para usar esta API. Eu omiti a minha propositalmente. Aqui você tem as instruções para isto: https://developers.google.com/maps/documentation/maps-static/get-api-key ###Code import requests latitude = -22.9137528 longitude = -43.526409 zoom = 10 size = 800 scale = 1 apikey = "**INFORME SUA API KEY**" gmapas = "https://maps.googleapis.com/maps/api/staticmap?center=" + str(latitude) + "," + str(longitude) + \ "&zoom=" + str(zoom) + \ "&scale=" + str(scale) + \ "&size=" + str(size) + "x" + str(size) + "&key=" + apikey with open('mapa.jpg', 'wb') as handle: response = requests.get(gmapas, stream=True) if not response.ok: print(response) for block in response.iter_content(1024): if not block: break handle.write(block) ###Output _____no_output_____ ###Markdown ![](./mapa.jpg) Bom, o mapa foi salvo, agora eu preciso saber as coordenadas dos limites. A API do Google só permite que você informe o centro (latitude e longitude) e as dimensões da imagem em pixels. Mas, para ajustar o mapa às coordenadas em latitudes e longitudes, é preciso saber as coordenadas do retângulo da imagem. Há vários exemplos de como calcular isso e eu uso um exemplo Javascript que converti para Python há algum tempo. Este cálculo é baseado no script de: https://jsfiddle.net/1wy1mm7L/6/ ###Code import math _C = { 'x': 128, 'y': 128 }; _J = 256 / 360; _L = 256 / (2 * math.pi); def tb(a): return 180 * a / math.pi def sb(a): return a * math.pi / 180 def bounds(a, b, c): if b != None: a = max(a,b) if c != None: a = min(a,c) return a def latlonToPt(ll): a = bounds(math.sin(sb(ll[0])), -(1 - 1E-15), 1 - 1E-15); return {'x': _C['x'] + ll[1] * _J,'y': _C['y'] + 0.5 * math.log((1 + a) / (1 - a)) * - _L} def ptToLatlon(pt): return [tb(2 * math.atan(math.exp((pt['y'] - _C['y']) / -_L)) - math.pi / 2),(pt['x'] - _C['x']) / _J] def calculateBbox(ll, zoom, sizeX, sizeY, scale): cp = latlonToPt(ll) pixelSize = math.pow(2, -(zoom + 1)); pwX = sizeX*pixelSize; pwY = sizeY*pixelSize; return {'ne': ptToLatlon({'x': cp['x'] + pwX, 'y': cp['y'] - pwY}),'sw': ptToLatlon({'x': cp['x'] - pwX, 'y': cp['y'] + pwY})} limites = calculateBbox([latitude,longitude],zoom, size, size, scale) print(limites) ###Output {'ne': [-22.406842952305475, -42.97709259375], 'sw': [-23.418774019100944, -44.07572540625]} ###Markdown A função "calculateBbox" retorna um dicionário contendo os pontos Nordeste e Sudoeste, com a latitude e longitude de cada um. Para usar isso no matplotlib, eu preciso usar o método **imshow**, só que eu preciso informar a escala, ou seja, qual é o intervalo de latitudes (vertical) e longitudes (horizontal) que o mapa representa. Assim, a plotagem de pontos ficará correta. Eu vou usar a biblioteca **mpimg** para ler o arquivo de imagem que acabei de baixar. Só que a função **imshow** usa as coordenadas no atributo **extent** na ordem: ESQUERDA, DIREITA, BAIXO, TOPO. Temos que organizar a passagem dos parâmetros para ela. ###Code import matplotlib.image as mpimg fig, ax = plt.subplots(figsize=(10, 10)) rio_mapa=mpimg.imread('./mapa.jpg') plt.imshow(rio_mapa, extent=[limites['sw'][1],limites['ne'][1],limites['sw'][0],limites['ne'][0]], alpha=1.0) ax.scatter(dfs['longitude'],dfs['latitude'], c=dfs['cor'],s=10+dfs['quantidade']) plt.ylabel("Latitude", fontsize=14) plt.xlabel("Longitude", fontsize=14) plt.show() ###Output _____no_output_____
Applied AI Study Group #4 - January 2021/Week 3/Lecture Projects/3 - Spam Text Classification Sequential.ipynb
###Markdown Spam Text ClassificationIn second week of inzva Applied AI program, we are going to create a spam text classifier using RNN's. Our data have 2 columns. The first column is the label and the second column is text message itself. We are going to create our model using following techniques- Embeddings- SimpleRNN- GRU- LSTM- Ensemble Model SimpleRNNSimple RNN layer. Nothing special. The reason it is 'Simple' because it is not GRU nor LSTM layer. You can read the documentation from https://keras.io/api/layers/recurrent_layers/simple_rnn/ LSTMhttps://keras.io/api/layers/recurrent_layers/lstm/We will use tokenization and padding to preprocess our data. We are going to create 3 different models and compare them. Libraries ###Code from keras.layers import SimpleRNN, Embedding, Dense, LSTM from keras.models import Sequential import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns; sns.set() ###Output _____no_output_____ ###Markdown Dataset ###Code !wget https://raw.githubusercontent.com/inzva/Applied-AI-Study-Group/master/Applied%20AI%20Study%20Group%20%233%20-%20June%202020/week2/SpamTextClassification/datasets_2050_3494_SPAM%20text%20message%2020170820%20-%20Data.csv data = pd.read_csv("datasets_2050_3494_SPAM text message 20170820 - Data.csv") ###Output _____no_output_____ ###Markdown Let's see the first 20 rows of our data and read the messages. What do you think, are they really look like spam messages? ###Code data.head ###Output _____no_output_____ ###Markdown Let's calculate spam and non-spam message counts. ###Code texts = [] labels = [] for i, label in enumerate(data['Category']): texts.append(data['Message'][i]) if label == 'ham': labels.append(0) else: labels.append(1) texts = np.asarray(texts) labels = np.asarray(labels) print("number of texts :" , len(texts)) print("number of labels: ", len(labels)) labels hamc= sum(labels==0) spamc=sum(labels==1) spamc /(hamc+spamc) ###Output _____no_output_____ ###Markdown Data is imbalanced. Making it even more imbalanced by removing some of the spam messages and observing the model performance would be a good exercise to explore imbalanced dataset problem in Sequential Model context. ###Code texts ###Output _____no_output_____ ###Markdown Data PreprocessingEach sentence has different lengths. We need to have sentences of the same length. Besides, we need to represent them as integers.As a concerete example, we have following sentences- 'Go until jurong point crazy'- 'any other suggestions'First we will convert the words to integers, which is a way of doing Tokenization.- [5, 10, 26, 67, 98]- [7, 74, 107]Now we have two integer vectors with different length. We need to make them have the same length. Post Padding- [5, 10, 26, 67, 98]- [7, 74, 107, 0, 0] Pre Padding- [5, 10, 26, 67, 98]- [0, 0, 7, 74, 107]But you don't have to use padding in each task. For details please refer to this link https://github.com/keras-team/keras/issues/2375 Bucketing in NLP ###Code from keras.layers import SimpleRNN, Embedding, Dense, LSTM from keras.models import Sequential from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences # number of words in our vocabulary max_features = 10000 # how many words from each document (max)? maxlen = 500 ###Output _____no_output_____ ###Markdown Train - Test SplitWe will take a simple approach and create only train and test sets. Of course having train, test and validation sets is the best practise. ###Code training_samples = int(len(labels)*0.8) training_samples validation_samples = int(5572 - training_samples) assert len(labels) == (training_samples + validation_samples), "Not equal!" print("The number of training {0}, validation {1} ".format(training_samples, validation_samples)) ###Output The number of training 4457, validation 1115 ###Markdown Tokenization ###Code tokenizer = Tokenizer() tokenizer.fit_on_texts(texts) sequences = tokenizer.texts_to_sequences(texts) word_index = tokenizer.word_index print("Found {0} unique words: ".format(len(word_index))) #data = pad_sequences(sequences, maxlen=maxlen, padding='post') data = pad_sequences(sequences, maxlen=maxlen) print(data.shape) data np.random.seed(42) # shuffle data indices = np.arange(data.shape[0]) np.random.shuffle(indices) data = data[indices] labels = labels[indices] texts_train = data[:training_samples] y_train = labels[:training_samples] texts_test = data[training_samples:] y_test = labels[training_samples:] ###Output _____no_output_____ ###Markdown Model CreationWe will create 3 different models and compare their performances. One model will use SimpleRNN layer, the other will use GRU layer and the last one will use LSTM layer. Architecture of each model is the same. We can create deeper models but we already get good results. ###Code model = Sequential() model.add(Embedding(max_features, 32)) model.add(SimpleRNN(32)) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) history_rnn = model.fit(texts_train, y_train, epochs=10, batch_size=60, validation_split=0.2) acc = history_rnn.history['acc'] val_acc = history_rnn.history['val_acc'] loss = history_rnn.history['loss'] val_loss = history_rnn.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc, '-', color='orange', label='training acc') plt.plot(epochs, val_acc, '-', color='blue', label='validation acc') plt.title('Training and validation accuracy') plt.legend() plt.show() plt.plot(epochs, loss, '-', color='orange', label='training acc') plt.plot(epochs, val_loss, '-', color='blue', label='validation acc') plt.title('Training and validation loss') plt.legend() plt.show() pred = model.predict_classes(texts_test) acc = model.evaluate(texts_test, y_test) proba_rnn = model.predict_proba(texts_test) from sklearn.metrics import confusion_matrix print("Test loss is {0:.2f} accuracy is {1:.2f} ".format(acc[0],acc[1])) print(confusion_matrix(pred, y_test)) sum(y_test==1) ###Output _____no_output_____ ###Markdown  GRU ###Code from keras.layers import GRU model = Sequential() model.add(Embedding(max_features, 32)) model.add(GRU(32)) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) history_rnn = model.fit(texts_train, y_train, epochs=10, batch_size=60, validation_split=0.2) pred = model.predict_classes(texts_test) acc = model.evaluate(texts_test, y_test) proba_gru = model.predict_proba(texts_test) from sklearn.metrics import confusion_matrix print("Test loss is {0:.2f} accuracy is {1:.2f} ".format(acc[0],acc[1])) print(confusion_matrix(pred, y_test)) ###Output _____no_output_____ ###Markdown LSTM ###Code model = Sequential() model.add(Embedding(max_features, 32)) model.add(LSTM(32)) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) history_lstm = model.fit(texts_train, y_train, epochs=10, batch_size=60, validation_split=0.2) acc = history_lstm.history['acc'] val_acc = history_lstm.history['val_acc'] loss = history_lstm.history['loss'] val_loss = history_lstm.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc, '-', color='orange', label='training acc') plt.plot(epochs, val_acc, '-', color='blue', label='validation acc') plt.title('Training and validation accuracy') plt.legend() plt.show() plt.plot(epochs, loss, '-', color='orange', label='training acc') plt.plot(epochs, val_loss, '-', color='blue', label='validation acc') plt.title('Training and validation loss') plt.legend() plt.show() pred = model.predict_classes(texts_test) acc = model.evaluate(texts_test, y_test) proba_ltsm = model.predict_proba(texts_test) from sklearn.metrics import confusion_matrix print("Test loss is {0:.2f} accuracy is {1:.2f} ".format(acc[0],acc[1])) print(confusion_matrix(pred, y_test)) ###Output _____no_output_____ ###Markdown Ensemble Model ###Code ensemble_proba = 0.25 * proba_rnn + 0.35 * proba_gru + 0.4 * proba_lstm ensemble_proba[:5] ensemble_class = np.array([1 if i >= 0.3 else 0 for i in ensemble_proba]) print(confusion_matrix(ensemble_class, y_test)) ###Output _____no_output_____
Python/_Movidius/Trainer.ipynb
###Markdown Convolutional Neural Networks & Transfer Learning For Acute Myeloid Leukemia Classification ![Convolutional Neural Networks For Acute Myeloid Leukemia Detection](../../Media/Images/banner.png) AbstractAcute Myeloid Leukemia (AML) [1] is a rare and very agressive form of Leukemia. With this type of Leukemia early dectection is crucial but as of yet there are no warning signs, there are currently no ways to screen for AML but there are symptoms that give warning [2]. This project shows how we can use transfer learning and existing image classification models to create Deep Learning Models, specifically Inception V3, that can classify positive and negative Acute Myeloid Leukemia positive and negative lymphocytes in images. Acute Myeloid Leukemia (AML)Despite being one of the most common forms of Leukemia, Acute Myeloid Leukemia (AML) is a still a relatively rare form of Leukemia that is more common in adults, but does affect children also. AML is an agressive Leukemia where white blood cells mutate, attack and replace healthy red blood cells, effectively killing them. "About 19,520 new cases of acute myeloid leukemia (AML). Most will be in adults (United States)." [6]In comparrison, there are 180,000 women a year in the United States being diagnosed with Invasive Ductal Carcinoma (IDC), a type of breast cancer which forms in the breast duct and invades the areas surrounding it [7]. Acute Lymphoblastic Leukemia Image Database for Image Processing (ALL-IDB)![Acute Lymphoblastic Leukemia Image Database for Image Processing](Media/Images/slides.png)Figure 3. Samples of augmented data generated from the Acute Lymphoblastic Leukemia Image Database for Image Processing dataset.The Acute Lymphoblastic Leukemia Image Database for Image Processing dataset is used for this project. The dataset was created by Fabio Scotti, Associate Professor Dipartimento di Informatica, Università degli Studi di Milano. Big thanks to Fabio for his research and time put in to creating the dataset and documentation, it is one of his personal projects. The Acute Myeloid Leukemia (AML) Movidius ClassifierThe AML Movidius Classifier shows how to train a Convolutional Neural Network using TensorFlow [8] and transfer learning trained on a dataset of Acute Myeloid Leukemia negative and positive images, Acute Lymphoblastic Leukemia Image Database for Image Processing [9]. The Tensorflow model is trained on the AI DevCloud [10] converted to a format compatible with the Movidius NCS by freezing the Tensorflow model and then running it through the NCSDK [11]. The model is then downloaded to an UP Squared, and then used for inference with NCSDK. Convolutional Neural Networks![Inception v3 architecture](Media/Images/CNN.jpg)Figure 1. Inception v3 architecture ([Source](https://github.com/tensorflow/models/tree/master/research/inception)).Convolutional neural networks are a type of deep learning neural network. These types of neural nets are widely used in computer vision and have pushed the capabilities of computer vision over the last few years, performing exceptionally better than older, more traditional neural networks; however, studies show that there are trade-offs related to training times and accuracy. Transfer Learning![Inception v3 model diagram](Media/Images/Transfer-Learning.jpg)Figure 2. Inception V3 Transfer Learning ([Source](https://github.com/Hvass-Labs/TensorFlow-Tutorials)).Transfer learning allows you to retrain the final layer of an existing model, resulting in a significant decrease in not only training time, but also the size of the dataset required. One of the most famous models that can be used for transfer learning is the Inception V3 model created by Google This model was trained on thousands of images from 1,001 classes on some very powerful devices. Being able to retrain the final layer means that you can maintain the knowledge that the model had learned during its original training and apply it to your smaller dataset, resulting in highly accurate classifications without the need for extensive training and computational power. Hardware & SoftwareThrough my role as an Intel® Software Innovator, I get access to the latest Intel® technologies that help enhance my projects. In this particular part of the project I Intel® technologies such as Intel® AI DevCloud for data sorting and training and UP Squared with Intel Movidius (NCS) for inference. Interactive TutorialThis Notebook serves as an interactive tutorial that helps you set up your project, sort your data and train the Convolutional Neural Network. PrerequisitesThere are a few steps you need to tae to set up your AI DevCloud project, these steps are outlined below: - Clone The Github RepoYou need to clone the Acute Myeloid Leukemia Classifiers Github repo to your development machine. To do this open up a terminal and use __git clone__ to clone to the AML Classifiers repo (__https://github.com/AMLResearchProject/AML-Classifiers.git__). Once you have cloned the repo you should nagivate to __AML-Classifiers/Python/_Movidius/__ to find the related code, notebooks and tutorials. - Gain Access To ALL-IDBYou you need to be granted access to use the Acute Lymphoblastic Leukemia Image Database for Image Processing dataset. You can find the application form and information about getting access to the dataset on [this page](https://homes.di.unimi.it/scotti/all/download) as well as information on how to contribute back to the project [here](https://homes.di.unimi.it/scotti/all/results.php). If you are not able to obtain a copy of the dataset please feel free to try this tutorial on your own dataset. - Data AugmentationAssuming you have received permission to use the Acute Lymphoblastic Leukemia Image Database for Image Processing, you should follow the related Notebook first to generate a larger training and testing dataset. Follow the AML Classifier [Data Augmentation Notebook](https://github.com/AMLResearchProject/AML-Classifiers/blob/master/Python/Augmentation.ipynb) to apply various filters to the dataset. If you have not been able to obtain a copy of the dataset please feel free to try this tutorial on your own dataset.Data augmentations included are as follows...Done:- Grayscaling- Histogram Equalization- Reflection- Gaussian Blur- RotationToDo:- Shearing- TranslationYou can follow the progress of the data augmentation system on this [Github issue](https://github.com/AMLResearchProject/AML-Classifiers/issues/1). - Upload Project To AI DevCloudNow you need to upload the related project from the repo to the AI DevCloud. The directory you need to upload is __AML-Classifiers/Python/_Movidius/__. Once you have uploaded the project structure you need to upload your augmented dataset created in the previous step. Upload your data to the __0__ and __1__ directories in the __Model/Data/__ directory, you should also remove the init files from these directories.Once you have completed the above, navigate to this Notebook and continue the tutorial there. Prepare The DatasetAssuming you have uploaded your data, you now need to sort the data ready for the training process. Data Sorting JobYou need to create a shell script (provided below) that is used to create a job for sorting your uploaded data on the AI DevCloud. Before you run the following block make sure you have followed all of the steps in __Upload Project To AI DevCloud__ above. ###Code %%writefile AML-DevCloud-Data cd $PBS_O_WORKDIR echo "* Compute server `hostname` on the AI DevCloud" echo "* Current directory ${PWD}." echo "* Compute server's CPU model and number of logical CPUs:" lscpu | grep 'Model name\\|^CPU(s)' echo "* Python version:" export PATH=/glob/intel-python/python3/bin:$PATH; which python python --version echo "* This job sorts the data for the AML Classifier on AI DevCloud" python Data.py sleep 10 echo "*Adios" # Remember to have an empty line at the end of the file; otherwise the last command will not run ###Output Writing AML-DevCloud-Data ###Markdown Check the data sorter job script was created ###Code %ls ###Output AML-DevCloud-Data Classifier.py Logs/ Model/ Trainer.ipynb Classes/ Data.py Media/ Required/ Trainer.py ###Markdown Submit the data sorter job ###Code !qsub AML-DevCloud-Data ###Output 8390.c009 ###Markdown Check the status of the job ###Code !qstat ###Output Job ID Name User Time Use S Queue ------------------------- ---------------- --------------- -------- - ----- 8389.c009 ...ub-singleuser u13339 00:00:07 R jupyterhub 8390.c009 ...DevCloud-Data u13339 0 R batch ###Markdown Get more details about the job ###Code !qstat -f 8390 ###Output qstat: Unknown Job Id Error 8390.c009 ###Markdown Check for the output files ###Code %ls ###Output AML-DevCloud-Data Classes/ Media/ Trainer.py AML-DevCloud-Data.e8390 Classifier.py Model/ AML-DevCloud-Data.o8390 Data.py Required/ AML-DevCloud-Trainer Logs/ Trainer.ipynb ###Markdown You should see similar to the below output in your .0XXXX file, you can ignore the error (.eXXXXX) file in this case unless you are having difficulties in which case this file may have important information.```>> Converting image 347/348 shard 12018-12-23 08:36:57|convertToTFRecord|INFO: class_name: 02018-12-23 08:36:57|convertToTFRecord|INFO: class_id: 0>> Converting image 348/348 shard 12018-12-23 08:36:57|convertToTFRecord|INFO: class_name: 12018-12-23 08:36:57|convertToTFRecord|INFO: class_id: 12018-12-23 08:36:57|sortData|COMPLETE: Completed sorting data!*Adios End of output for job 8390.c009 Date: Sun Dec 23 08:37:07 PST 2018``` Training job Now it is time to create your training job, the script required for this is almost identical to the above created script, all we need to do is change filename and the commandline argument. ###Code %%writefile AML-DevCloud-Trainer cd $PBS_O_WORKDIR echo "* Hello world from compute server `hostname` on the A.I. DevCloud!" echo "* The current directory is ${PWD}." echo "* Compute server's CPU model and number of logical CPUs:" lscpu | grep 'Model name\\|^CPU(s)' echo "* Python available to us:" export PATH=/glob/intel-python/python3/bin:$PATH; which python python --version echo "* This job trains the AML Classifier on the Colfax Cluster" python Trainer.py sleep 10 echo "*Adios" # Remember to have an empty line at the end of the file; otherwise the last command will not run ###Output Writing AML-DevCloud-Trainer ###Markdown Check the training job script was created Now check that the trainer job script was created successfully by executing the following block which will print out the files located in the current directory. If all was successful, you should see the file "AML-DevCloud-Trainer". You can also open this file to confirm that the contents are correct. ###Code %ls ###Output AML-DevCloud-Data Classes/ Media/ Trainer.py AML-DevCloud-Data.e8390 Classifier.py Model/ AML-DevCloud-Data.o8390 Data.py Required/ AML-DevCloud-Trainer Logs/ Trainer.ipynb ###Markdown Submit the training job script Now it is time to submit your training job script, this will queue the training script ready for execution and return your job ID. In this command we set the walltime to 24 hours, which should give our script enough time to fully complete without getting killed. ###Code !qsub -l walltime=24:00:00 AML-DevCloud-Trainer ###Output 8392.c009 ###Markdown Check the status of the job ###Code !qstat ###Output Job ID Name User Time Use S Queue ------------------------- ---------------- --------------- -------- - ----- 8389.c009 ...ub-singleuser u13339 00:00:09 R jupyterhub 8392.c009 ...Cloud-Trainer u13339 0 R batch ###Markdown Get more details about the job ###Code !qstat -f 8392 ###Output Job Id: 8392.c009 Job_Name = AML-DevCloud-Trainer Job_Owner = u13339@c009-n003 resources_used.cput = 59:36:07 resources_used.energy_used = 0 resources_used.mem = 3457704kb resources_used.vmem = 20151904kb resources_used.walltime = 02:29:48 job_state = R queue = batch server = c009 Checkpoint = u ctime = Sun Dec 23 08:39:03 2018 Error_Path = c009-n003:/home/u13339/AML-Classifier/AML-DevCloud-Trainer.e8 392 exec_host = c009-n016/0-1 Hold_Types = n Join_Path = n Keep_Files = n Mail_Points = n mtime = Sun Dec 23 08:39:04 2018 Output_Path = c009-n003:/home/u13339/AML-Classifier/AML-DevCloud-Trainer.o 8392 Priority = 0 qtime = Sun Dec 23 08:39:03 2018 Rerunable = True Resource_List.nodect = 1 Resource_List.nodes = 1:ppn=2 Resource_List.walltime = 24:00:00 session_id = 196175 Variable_List = PBS_O_QUEUE=batch,PBS_O_HOME=/home/u13339, PBS_O_LOGNAME=u13339, PBS_O_PATH=/glob/intel-python/python3/bin/:/glob/intel-python/python3 /bin/:/glob/intel-python/python2/bin/:/glob/development-tools/versions /intel-parallel-studio-2018-update3/compilers_and_libraries_2018.3.222 /linux/bin/intel64:/glob/development-tools/versions/intel-parallel-stu dio-2018-update3/compilers_and_libraries_2018.3.222/linux/mpi/intel64/ bin:/glob/intel-python/python3/bin/:/glob/intel-python/python2/bin/:/g lob/development-tools/versions/intel-parallel-studio-2018-update3/comp ilers_and_libraries_2018.3.222/linux/bin/intel64:/glob/development-too ls/versions/intel-parallel-studio-2018-update3/compilers_and_libraries _2018.3.222/linux/mpi/intel64/bin:/usr/local/sbin:/usr/local/bin:/usr/ sbin:/usr/bin:/home/u13339/.local/bin:/home/u13339/bin:/home/u13339/.l ocal/bin:/home/u13339/bin:/usr/local/bin:/bin, PBS_O_MAIL=/var/spool/mail/u13339,PBS_O_SHELL=/bin/bash, PBS_O_LANG=en_US.UTF-8, PBS_O_SUBMIT_FILTER=/usr/local/sbin/torque_submitfilter, PBS_O_WORKDIR=/home/u13339/AML-Classifier,PBS_O_HOST=c009-n003, PBS_O_SERVER=c009 euser = u13339 egroup = u13339 queue_type = E etime = Sun Dec 23 08:39:03 2018 submit_args = -l walltime=24:00:00 AML-DevCloud-Trainer start_time = Sun Dec 23 08:39:04 2018 Walltime.Remaining = 77370 start_count = 1 fault_tolerant = False job_radix = 0 submit_host = c009-n003
itng/examples/FiringRateEstimation.ipynb
###Markdown Firing Rate Estimation Estimating the firing rate in two different method.- Finding the optimum number of bins - Finding optimum bandwidth for gaussian kernel density estimation Reference: - Kernel bandwidth optimization in spike rate estimation- Hideaki Shimazaki & Shigeru Shinomoto - [Kernel Density Estimation](https://jakevdp.github.io/PythonDataScienceHandbook/05.13-kernel-density-estimation.html) - [Kernel density estimation, bandwidth selection](https://en.wikipedia.org/wiki/Kernel_density_estimationBandwidth_selection) ###Code from sklearn.neighbors import KernelDensity from sklearn.model_selection import LeaveOneOut from sklearn.model_selection import GridSearchCV import numpy as np import pylab as plt from os.path import join from itng.statistics import (sshist, optimal_bandwidth, optimal_num_bins) ###Output _____no_output_____ ###Markdown Reading spike rates: ###Code with open(join("data.txt"), "r") as f: lines = f.readlines() spike_times = [] for line in lines: line = [float(i) for i in line.split()] spike_times.extend(line) spike_times = np.asarray(spike_times) bins = optimal_num_bins(spike_times) print("The optimum number of bins : ", len(bins)) fig, ax = plt.subplots(1, figsize=(6, 4)) ax.set_xlabel('spike times (s)') ax.set_ylabel("density") ax.hist(spike_times, bins=bins, alpha=0.5, density=True); # Kernel Density Estimation # Selecting the bandwidth via cross-validation bandwidth = optimal_bandwidth(spike_times) print(bandwidth) # the spikes need to be sorted spike_times_sorted = np.sort(spike_times) # instantiate and fit the KDE model kde = KernelDensity(bandwidth=bandwidth, kernel='gaussian') kde.fit(spike_times_sorted[:, None]) # score_samples returns the log of the probability density logprob = kde.score_samples(spike_times_sorted[:, None]) # PLOT the results together fig, ax = plt.subplots(1, figsize=(6, 4)) ax.set_xlabel('spike times (s)') ax.set_ylabel("density") ax.hist(spike_times, bins=bins, alpha=0.3, density=True); ax.fill_between(spike_times_sorted, np.exp(logprob), alpha=0.3, color='gray') ax.plot(spike_times, np.exp(logprob), alpha=1, lw=2, color="k") plt.show() ###Output _____no_output_____
.ipynb_checkpoints/diabetes-checkpoint.ipynb
###Markdown Diabetes Diagnosis ###Code import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold from sklearn.utils import shuffle from sklearn.metrics import accuracy_score import expectation_reflection as ER from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt %matplotlib inline np.random.seed(1) # load data s = pd.read_csv('../diabetes_data.csv',sep= ',', header= None) s.head() ###Output _____no_output_____ ###Markdown The data contains 8 features:1) Pregnancies: Number of times pregnant2) Glucose: Plasma glucose concentration at 2 hours in an oral glucose tolerance test (GTT)3) BloodPressure: Diastolic blood pressure (mmHg)4) SkinThickness: Triceps skin fold thickness (mm)5) Insulin: 2-Hour serum insulin (mu U/ml)6) BMI: Body Mass Index (weight(kg)/(height(m))^2)7) DiabetesPedigreeFunction: Diabetes Pedigree Function8) Age: Age (years)and 1 target: 1 (positive), 0 (negative) Impute missing data ###Code # impute missing data Xy = np.loadtxt('../diabetes_data_imputed_knn3.txt').astype(float) # select features and target: X = Xy[:,:8] y = Xy[:,8] # convert 1,0 to 1,-1: y = 2*y - 1 from sklearn.utils import shuffle X, y = shuffle(X, y) from sklearn.preprocessing import MinMaxScaler X = MinMaxScaler().fit_transform(X) ###Output _____no_output_____ ###Markdown Prediction ###Code def inference(X_train,y_train,X_test,y_test,method='expectation_reflection'): if method == 'expectation_reflection': h0,w = ER.fit(X_train,y_train,niter_max=100,regu=0.01) y_pred = ER.predict(X_test,h0,w) else: if method == 'logistic_regression': model = LogisticRegression(solver='liblinear') if method == 'naive_bayes': model = GaussianNB() if method == 'random_forest': model = RandomForestClassifier(criterion = "gini", random_state = 1, max_depth=3, min_samples_leaf=5,n_estimators=100) if method == 'decision_tree': model = DecisionTreeClassifier() model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy = accuracy_score(y_test,y_pred) return accuracy def compare_inference(X,y,train_size): npred = 100 accuracy = np.zeros((len(list_methods),npred)) for ipred in range(npred): X, y = shuffle(X, y) X_train0,X_test,y_train0,y_test = train_test_split(X,y,test_size=0.2,random_state = ipred) idx_train = np.random.choice(len(y_train0),size=int(train_size*len(y)),replace=False) X_train,y_train = X_train0[idx_train],y_train0[idx_train] for i,method in enumerate(list_methods): accuracy[i,ipred] = inference(X_train,y_train,X_test,y_test,method) return accuracy.mean(axis=1),accuracy.std(axis=1) list_train_size = [0.8,0.6,0.4,0.2] list_methods=['logistic_regression','naive_bayes','random_forest','decision_tree','expectation_reflection'] acc = np.zeros((len(list_train_size),len(list_methods))) acc_std = np.zeros((len(list_train_size),len(list_methods))) for i,train_size in enumerate(list_train_size): acc[i,:],acc_std[i,:] = compare_inference(X,y,train_size) print(train_size,acc[i,:]) acc_std df = pd.DataFrame(acc,columns = list_methods) df.insert(0, "train_size",list_train_size, True) df plt.figure(figsize=(4,3)) plt.plot(list_train_size,acc[:,0],'k--',marker='o',mfc='none',label='Logistic Regression') plt.plot(list_train_size,acc[:,1],'b--',marker='s',mfc='none',label='Naive Bayes') plt.plot(list_train_size,acc[:,2],'r--',marker='^',mfc='none',label='Random Forest') plt.plot(list_train_size,acc[:,4],'k-',marker='o',label='Expectation Reflection') plt.xlabel('train size') plt.ylabel('accuracy mean') plt.legend() plt.figure(figsize=(4,3)) plt.plot(list_train_size,acc_std[:,0],'k--',marker='o',mfc='none',label='Logistic Regression') plt.plot(list_train_size,acc_std[:,1],'b--',marker='s',mfc='none',label='Naive Bayes') plt.plot(list_train_size,acc_std[:,2],'r--',marker='^',mfc='none',label='Random Forest') plt.plot(list_train_size,acc_std[:,4],'k-',marker='o',label='Expectation Reflection') plt.xlabel('train size') plt.ylabel('accuracy standard deviation') plt.legend() ###Output _____no_output_____
mod_binary_MERA.ipynb
###Markdown ###Code def define_ham(blocksize): """ Define Hamiltonian (quantum critical Ising), perform preliminary blocking of several sites into an effective site. """ # define Pauli matrices sX = np.array([[0, 1], [1, 0]], dtype=float) sZ = np.array([[1, 0], [0, -1]], dtype=float) # define Ising local Hamiltonian ham_orig = (tprod(sX, sX) - 0.5*tprod(sZ, np.eye(2)) - 0.5*tprod(np.eye(2), sZ)) # shift Hamiltonian to ensure negative defined en_shift = max(LA.eigh(ham_orig)[0]) ham_loc = ham_orig - en_shift*np.eye(4) # define block Hamiltonians d0 = 2 # initial local dim d1 = d0**blocksize # local dim after blocking if blocksize==2: ham_block = (0.5*tprod(ham_loc, np.eye(d0**2)) + 1.0*tprod(np.eye(d0**1), ham_loc, np.eye(d0**1)) + 0.5*tprod(np.eye(d0**2), ham_loc) ).reshape(d0*np.ones(8, dtype=int)) hamAB_init = ham_block.transpose(0,1,4,3,5,6,8,7 ).reshape(d1, d1, d1, d1) hamBA_init = ham_block.transpose(1,0,3,4,6,5,7,8 ).reshape(d1, d1, d1, d1) elif blocksize==3: ham_block = (1.0*tprod(np.eye(d0**1), ham_loc, np.eye(d0**3)) + 1.0*tprod(np.eye(d0**2), ham_loc, np.eye(d0**2)) + 1.0*tprod(np.eye(d0**3), ham_loc, np.eye(d0**1)) ).reshape(d0*np.ones(12, dtype=int)) hamAB_init = ham_block.transpose(0,1,2,5,4,3,6,7,8,11,10,9 ).reshape(d1, d1, d1, d1) hamBA_init = ham_block.transpose(2,1,0,3,4,5,8,7,6,9,10,11 ).reshape(d1, d1, d1, d1) elif blocksize==4: ham_block = (0.5*tprod(np.eye(d0**1), ham_loc, np.eye(d0**5)) + 1.0*tprod(np.eye(d0**2), ham_loc, np.eye(d0**4)) + 1.0*tprod(np.eye(d0**3), ham_loc, np.eye(d0**3)) + 1.0*tprod(np.eye(d0**4), ham_loc, np.eye(d0**2)) + 0.5*tprod(np.eye(d0**5), ham_loc, np.eye(d0**1)) ).reshape(d0*np.ones(16, dtype=int)) hamAB_init = ham_block.transpose(0,1,2,3,7,6,5,4,8,9,10,11,15,14,13,12 ).reshape(d1, d1, d1, d1) hamBA_init = ham_block.transpose(3,2,1,0,4,5,6,7,11,10,9,8,12,13,14,15 ).reshape(d1, d1, d1, d1) return hamAB_init, hamBA_init, en_shift def initialize(chi, chimid, hamAB_init, hamBA_init, layers): """ Initialize the MERA tensors """ # Initialize the MERA tensors d1 = hamAB_init.shape[0] iso_temp = orthogonalize(np.random.rand(d1, min(chimid, d1))) uC = [tprod(iso_temp, iso_temp, do_matricize=False)] wC = [orthogonalize(np.random.rand(d1, uC[0].shape[2], chi), partition=2)] vC = [orthogonalize(np.random.rand(d1, uC[0].shape[2], chi), partition=2)] for k in range(layers-1): iso_temp = orthogonalize(np.random.rand(chi, chimid)) uC.append(tprod(iso_temp, iso_temp, do_matricize=False)) wC.append(orthogonalize(np.random.rand(chi, chimid, chi), partition=2)) vC.append(orthogonalize(np.random.rand(chi, chimid, chi), partition=2)) # initialize density matrices and effective Hamiltonians rhoAB = [0] rhoBA = [0] hamAB = [hamAB_init] hamBA = [hamBA_init] for k in range(layers): rhoAB.append(np.eye(chi**2).reshape(chi, chi, chi, chi)) rhoBA.append(np.eye(chi**2).reshape(chi, chi, chi, chi)) hamAB.append(np.zeros((chi, chi, chi, chi))) hamBA.append(np.zeros((chi, chi, chi, chi))) return hamAB, hamBA, wC, vC, uC, rhoAB, rhoBA def define_networks(hamAB, hamBA, wC, vC, uC, rhoAB, rhoBA): """ Define and plot all principle networks """ # Define the `M` principle network connects_M = [[3,5,9], [1,5,7], [1,2,3,4], [4,6,10], [2,6,8], [7,8,9,10]] tensors_M = [vC, vC, hamBA, wC, wC, rhoAB] order_M = ncon_solver(tensors_M, connects_M)[0] dims_M = [tensor.shape for tensor in tensors_M] names_M = ['v', 'v', 'hBA', 'w', 'w', 'rhoAB'] coords_M = [(-0.5,1),(-0.5,-1), (-0.3,-0.2,0.3,0.2),(0.5,1),(0.5,-1),(0.2)] colors_M = [0,0,1,2,2,3] # Define the `L` principle network connects_L = [[3,6,13], [1,8,11], [4,5,6,7], [2,5,8,9], [1,2,3,4], [10,7,14], [10,9,12], [11,12,13,14]] tensors_L = [wC, wC, uC, uC, hamAB, vC, vC, rhoBA] order_L = ncon_solver(tensors_L, connects_L)[0] dims_L = [tensor.shape for tensor in tensors_L] names_L = ['w', 'w', 'u', 'u', 'hAB', 'v', 'v', 'rhoBA'] coords_L = [(-0.5, 1.5), (-0.5, -1.5), (-0.3,0.5,0.3,0.9), (-0.3,-0.5,0.3,-0.9), (-0.6,-0.2,-0.1,0.2), (0.5, 1.5), (0.5, -1.5), (0.2)] colors_L = [2,2,4,4,1,0,0,3] # Define the `C` principle network connects_C = [[5,6,13], [5,9,11], [3,4,6,8], [1,2,9,10], [1,2,3,4], [7,8,14], [7,10,12], [11,12,13,14]] tensors_C = [wC, wC, uC, uC, hamBA, vC, vC, rhoBA] order_C = ncon_solver(tensors_C, connects_C)[0] dims_C = [tensor.shape for tensor in tensors_C] names_C = ['w', 'w', 'u', 'u', 'hBA', 'v', 'v', 'rhoBA'] coords_C = [(-0.5, 1.5), (-0.5, -1.5), (-0.3,0.5,0.3,0.9), (-0.3,-0.5,0.3,-0.9), (-0.3,-0.2,0.3,0.2), (0.5, 1.5), (0.5, -1.5), (0.2)] colors_C = [2,2,4,4,1,0,0,3] # Define the `R` principle network connects_R = [[10,6,13], [10,8,11], [5,3,6,7], [5,1,8,9], [1,2,3,4], [4,7,14], [2,9,12], [11,12,13,14]] tensors_R = [wC, wC, uC, uC, hamAB, vC, vC, rhoBA] order_R = ncon_solver(tensors_R, connects_R)[0] dims_R = [tensor.shape for tensor in tensors_R] names_R = ['w', 'w', 'u', 'u', 'hAB', 'v', 'v', 'rhoBA'] coords_R = [(-0.5, 1.5), (-0.5, -1.5), (-0.3,0.5,0.3,0.9), (-0.3,-0.5,0.3,-0.9), (0.6,-0.2,0.1,0.2), (0.5, 1.5), (0.5, -1.5), (0.2)] colors_R = [2,2,4,4,1,0,0,3] # Plot all principle networks fig = plt.figure(figsize=(24,24)) figM = draw_network(connects_M, order=order_M, dims=dims_M, coords=coords_M, names=names_M, colors=colors_M, title='M-diagrams', draw_labels=False, show_costs=True, legend_extend=2.5, fig=fig, subplot=141, env_pad=(-0.4,-0.4)) figL = draw_network(connects_L, order=order_L, dims=dims_L, coords=coords_L, names=names_L, colors=colors_L, title='L-diagrams', draw_labels=False, show_costs=True, legend_extend=2.5, fig=fig, subplot=142, env_pad=(-0.4,-0.4)) figC = draw_network(connects_C, order=order_C, dims=dims_C, coords=coords_C, names=names_C, colors=colors_C, title='C-diagrams', draw_labels=False, show_costs=True, legend_extend=2.5, fig=fig, subplot=143, env_pad=(-0.4,-0.4)) figR = draw_network(connects_R, order=order_R, dims=dims_R, coords=coords_R, names=names_R, colors=colors_R, title='R-diagrams', draw_labels=False, show_costs=True, legend_extend=2.5, fig=fig, subplot=144, env_pad=(-0.4,-0.4)) # Store `connects` and `order` in a dict for later use network_dict = {'connects_M': connects_M, 'order_M': order_M, 'connects_L': connects_L, 'order_L': order_L, 'connects_C': connects_C, 'order_C': order_C, 'connects_R': connects_R, 'order_R': order_R,} return network_dict def lift_hamiltonian(hamAB, hamBA, w, v, u, rhoAB, rhoBA, network_dict, ref_sym=False): """ Lift the Hamiltonian through one MERA layer """ hamAB_lift = xcon([v, v, hamBA, w, w, rhoAB], network_dict['connects_M'], order=network_dict['order_M'], which_envs=5) hamBA_temp0 = xcon([w, w, u, u, hamAB, v, v, rhoBA], network_dict['connects_L'], order=network_dict['order_L'], which_envs=7) hamBA_temp1 = xcon([w, w, u, u, hamBA, v, v, rhoBA], network_dict['connects_C'], order=network_dict['order_C'], which_envs=7) if ref_sym is True: hamBA_temp2 = hamBA_temp0.transpose(1,0,3,2) else: hamBA_temp2 = xcon([w, w, u, u, hamAB, v, v, rhoBA], network_dict['connects_R'], order=network_dict['order_R'], which_envs=7) hamBA_lift = hamBA_temp0 + hamBA_temp1 + hamBA_temp2 return hamAB_lift, hamBA_lift def lower_density(hamAB, hamBA, w, v, u, rhoAB, rhoBA, network_dict, ref_sym=False): """ Lower the density matrix through one MERA layer """ rhoBA_temp0 = xcon([v, v, hamBA, w, w, rhoAB], network_dict['connects_M'], order=network_dict['order_M'], which_envs=2) rhoAB_temp0 = xcon([w, w, u, u, hamAB, v, v, rhoBA], network_dict['connects_L'], order=network_dict['order_L'], which_envs=4) rhoBA_temp1 = xcon([w, w, u, u, hamBA, v, v, rhoBA], network_dict['connects_C'], order=network_dict['order_C'], which_envs=4) if ref_sym is True: rhoAB_temp1 = rhoAB_temp0.transpose(1,0,3,2) else: rhoAB_temp1 = xcon([w, w, u, u, hamAB, v, v, rhoBA], network_dict['connects_R'], order=network_dict['order_R'], which_envs=4) rhoAB_lower = 0.5*(rhoAB_temp0 + rhoAB_temp1) rhoBA_lower = 0.5*(rhoBA_temp0 + rhoBA_temp1) return rhoAB_lower, rhoBA_lower def optimize_w(hamAB, hamBA, w, v, u, rhoAB, rhoBA, network_dict, ref_sym=False): """ Optimise the `w` isometry """ w_env0 = xcon([v, v, hamBA, w, w, rhoAB], network_dict['connects_M'], order=network_dict['order_M'], which_envs=3) if ref_sym is True: w_env1, w_env3 = xcon([w, w, u, u, hamAB, v, v, rhoBA], network_dict['connects_L'], order=network_dict['order_L'], which_envs=[0,5]) else: w_env1 = xcon([w, w, u, u, hamAB, v, v, rhoBA], network_dict['connects_L'], order=network_dict['order_L'], which_envs=0) w_env3 = xcon([w, w, u, u, hamAB, v, v, rhoBA], network_dict['connects_R'], order=network_dict['order_R'], which_envs=0) w_env2 = xcon([w, w, u, u, hamBA, v, v, rhoBA], network_dict['connects_C'], order=network_dict['order_C'], which_envs=0) w_out = orthogonalize(w_env0 + w_env1 + w_env2 + w_env3, partition=2) return w_out def optimize_v(hamAB, hamBA, w, v, u, rhoAB, rhoBA, network_dict, ref_sym=False): """ Optimise the `v` isometry """ v_env0 = xcon([v, v, hamBA, w, w, rhoAB], network_dict['connects_M'], order=network_dict['order_M'], which_envs=0) if ref_sym is True: v_env1, v_env3 = xcon([w, w, u, u, hamAB, v, v, rhoBA], network_dict['connects_L'], order=network_dict['order_L'], which_envs=[0,5]) else: v_env1 = xcon([w, w, u, u, hamAB, v, v, rhoBA], network_dict['connects_L'], order=network_dict['order_L'], which_envs=5) v_env3 = xcon([w, w, u, u, hamAB, v, v, rhoBA], network_dict['connects_R'], order=network_dict['order_R'], which_envs=5) v_env2 = xcon([w, w, u, u, hamBA, v, v, rhoBA], network_dict['connects_C'], order=network_dict['order_C'], which_envs=5) v_out = orthogonalize(v_env0 + v_env1 + v_env2 + v_env3, partition=2) return v_out def optimize_u(hamAB, hamBA, w, v, u, rhoAB, rhoBA, network_dict, ref_sym=False): """ Optimise the `u` disentangler """ u_env0 = xcon([w, w, u, u, hamAB, v, v, rhoBA], network_dict['connects_L'], order=network_dict['order_L'], which_envs=2) u_env1 = xcon([w, w, u, u, hamBA, v, v, rhoBA], network_dict['connects_C'], order=network_dict['order_C'], which_envs=2) if ref_sym is True: u_env2 = u_env0.transpose(1,0,3,2) else: u_env2 = xcon([w, w, u, u, hamAB, v, v, rhoBA], network_dict['connects_R'], order=network_dict['order_R'], which_envs=2) utot = u_env0 + u_env1 + u_env2 if ref_sym is True: utot = utot + utot.transpose(1,0,3,2) u_out = orthogonalize(utot, partition=2) return u_out ###Output _____no_output_____
notebooks/EMNIST.ipynb
###Markdown Importing packages ###Code import fedjax import jax import jax.numpy as jnp import PLM_computation import FedMix_computation from grid_search import FedMixGrid, grid_search from EMNIST_custom import emnist_load_gd_data import itertools from matplotlib import pyplot as plt import pickle ###Output _____no_output_____ ###Markdown Model setup ###Code model = fedjax.models.emnist.create_conv_model(only_digits=False) def loss(params, batch, rng): # `rng` used with `apply_for_train` to apply dropout during training. preds = model.apply_for_train(params, batch, rng) # Per example loss of shape [batch_size]. example_loss = model.train_loss(batch, preds) return jnp.mean(example_loss) def loss_for_eval(params, batch): preds = model.apply_for_eval(params, batch) example_loss = model.train_loss(batch, preds) return jnp.mean(example_loss) grad_fn = jax.jit(jax.grad(loss)) grad_fn_eval = jax.jit(jax.grad(loss_for_eval)) ###Output _____no_output_____ ###Markdown Grid search setup Constants ###Code CACHE_DIR = '../data/' NUM_CLIENTS_GRID_SEARCH = 200 TRAIN_VALIDATION_SPLIT = 0.8 NUM_CLIENTS_PER_PLM_ROUND = 5 NUM_CLIENTS_PER_FEDMIX_ROUND = 10 FEDMIX_ALGORITHM = 'adam' FEDMIX_NUM_ROUNDS = 500 PLM_NUM_EPOCHS = 100 ###Output _____no_output_____ ###Markdown Datasets and parameters ###Code train_fd, validation_fd = emnist_load_gd_data( train_val_split=TRAIN_VALIDATION_SPLIT, only_digits=False, cache_dir=CACHE_DIR ) client_ids = set([cid for cid in itertools.islice( train_fd.client_ids(), NUM_CLIENTS_GRID_SEARCH)]) train_fd = fedjax.SubsetFederatedData(train_fd, client_ids) validation_fd = fedjax.SubsetFederatedData(validation_fd, client_ids) plm_init_params = model.init(jax.random.PRNGKey(0)) plm_comp_params = PLM_computation.PLMComputationProcessParams( plm_init_params, NUM_CLIENTS_PER_PLM_ROUND) fedmix_init_params = model.init(jax.random.PRNGKey(20)) fedmix_comp_params = FedMix_computation.FedMixComputationParams( FEDMIX_ALGORITHM, fedmix_init_params, FEDMIX_NUM_ROUNDS) alpha = 0.7 ###Output _____no_output_____ ###Markdown Grid ###Code fedmix_lrs = 10**jnp.arange(-5., 0.5, 1) fedmix_batch_sizes = [20, 50, 100, 200] plm_lrs = 10**jnp.arange(-5., 0.5, 1) plm_batch_sizes = [10, 20, 50, 100] grid = FedMixGrid(fedmix_lrs, plm_lrs, fedmix_batch_sizes, plm_batch_sizes) ###Output _____no_output_____ ###Markdown Grid search ###Code SAVE_FILE = '../results/EMNIST_{}_gd.npy'.format(int(10 * alpha)) SAVE_FILE table = grid_search( train_fd, validation_fd, grad_fn, grad_fn_eval, model, alpha, plm_comp_params, fedmix_comp_params, grid, PLM_NUM_EPOCHS, NUM_CLIENTS_PER_FEDMIX_ROUND, SAVE_FILE ) best_ind = jnp.unravel_index(jnp.argmax(table), table.shape) best_ind plm_batch_size = plm_batch_sizes[best_ind[0]] plm_lr = plm_lrs[best_ind[1]] fedmix_batch_size = fedmix_batch_sizes[best_ind[2]] fedmix_lr = fedmix_lrs[best_ind[3]] ###Output _____no_output_____ ###Markdown FedMix ###Code num_rounds = 3000 ###Output _____no_output_____ ###Markdown Now we download full train and test datasets. ###Code train_fd, test_fd = fedjax.datasets.emnist.load_data(only_digits=False, cache_dir='../data/') plm_comp_hparams = PLM_computation.PLMComputationHParams(PLM_NUM_EPOCHS, plm_lr, plm_batch_size) PLM_dict = PLM_computation.plm_computation(train_fd, grad_fn, plm_comp_hparams, plm_comp_params) alpha alpha_dict = {} for cid in train_fd.client_ids(): alpha_dict[cid] = alpha len(alpha_dict) fedmix_hparams = FedMix_computation.FedMixHParams( fedmix_lr, NUM_CLIENTS_PER_FEDMIX_ROUND, fedmix_batch_size) fedmix_batch_size fedmix_comp_params = FedMix_computation.FedMixComputationParams( FEDMIX_ALGORITHM, fedmix_init_params, num_rounds) _, stats = FedMix_computation.fedmix_computation_with_statistics( train_fd, test_fd, grad_fn, grad_fn_eval, model, PLM_dict, alpha_dict, fedmix_hparams, fedmix_comp_params, 100) ###Output Round 3000 / 3000 ###Markdown FedAvg ###Code client_optimizer = fedjax.optimizers.sgd(learning_rate=10**(-1.5)) server_optimizer = fedjax.optimizers.adam( learning_rate=10**(-2.5), b1=0.9, b2=0.999, eps=10**(-4)) # Hyperparameters for client local traing dataset preparation. client_batch_hparams = fedjax.ShuffleRepeatBatchHParams(batch_size=20) algorithm = fedjax.algorithms.fed_avg.federated_averaging(grad_fn, client_optimizer, server_optimizer, client_batch_hparams) # Initialize model parameters and algorithm server state. init_params = model.init(jax.random.PRNGKey(17)) server_state = algorithm.init(init_params) train_client_sampler = fedjax.client_samplers.UniformGetClientSampler(fd=train_fd, num_clients=10, seed=0) fedavg_test_acc_progress = [] for round_num in range(1, max_rounds + 1): # Sample 10 clients per round without replacement for training. clients = train_client_sampler.sample() # Run one round of training on sampled clients. server_state, client_diagnostics = algorithm.apply(server_state, clients) print(f'[round {round_num}]', end='\r') # Optionally print client diagnostics if curious about each client's model # update's l2 norm. # print(f'[round {round_num}] client_diagnostics={client_diagnostics}') if round_num % 100 == 0: test_eval_datasets = [cds for _, cds in test_fd.clients()] test_eval_batches = fedjax.padded_batch_client_datasets(test_eval_datasets, batch_size=256) test_metrics = fedjax.evaluate_model(model, server_state.params, test_eval_batches) fedavg_test_acc_progress.append(test_metrics['accuracy']) print('Test accuracy = {}'.format(test_metrics['accuracy'])) save_file = '../results/test_acc_fedavg.pickle' with open(save_file, 'wb') as handle: pickle.dump(fedavg_test_acc_progress, handle) with open(save_file, 'rb') as handle: fedavg_test_acc_progress = pickle.load(handle) fedavg_test_acc_progress = fedavg_test_acc_progress[:30] ###Output _____no_output_____ ###Markdown Plots ###Code accs = [stat['accuracy'] for stat in stats] round_nums = jnp.linspace(100, 3000, num=30, endpoint=True) plt.plot(round_nums, accs, label='FLIX') plt.plot(round_nums, fedavg_test_acc_progress, label='FedAvg') plt.xlim(left=0) plt.ylabel('accuracy') plt.xlabel('rounds') plt.grid() plt.title('EMNIST') plt.legend() plt.tight_layout() plt.savefig('../results/plots/EMNIST_preliminary_7.pdf') ###Output _____no_output_____
Cryptography Workshops/TUDev's_Cryptography_Workshop!_Workshop_I_Substitution_Cipher_(Caesar_Cipher)_(FULL).ipynb
###Markdown **Substitution Cipher** **Is a rearrangement of the plaintext alphabet using ciphertext. The plaintext alphabet can be mapped to numbers, letters or some other unit using a fixed system.** Source: Website - [Simple Substitution Cipher](https://www.cs.uri.edu/cryptography/classicalsubstitution.htm) from the University of Rhode Island's cryptography webpage **Caesar Cipher** **Definition** **The Caesar Cipher is a Substitution Cipher and one of earliest known forms of Cryptography.** **Julius Caesar is said to have used this namesake cipher to communicate with his army. The letters in the Latin alphabet were shifted to create encrypted messages. Using the English alphabet as an example, if we shift the letters 4 places then in the Caesar Cipher the letter "e" will translate to "a". The number of shifts is also known as the cipher's key. A table of the shift can be seen below.** | Alphabet | a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z | |---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | **Caesar Cipher (4 Shifts)** | **e** | **f** | **g** | **h** | **i** | **j** | **k** | **l** | **m** | **n** | **o** | **p** | **q** | **r** | **s** | **t** | **u** | **v** | **w** | **x** | **y** | **z** | **a** | **b** | **c** | **d** | Source: Article - [Cracking the Code](https://www.cia.gov/news-information/featured-story-archive/2007-featured-story-archive/cracking-the-code.html) from the CIA's webpage **Coding a Caesar Cipher** **Let's get started!** **Caesar Cipher using Slicing** ###Code def caesar_cipher(key, message): ascii_lower = [i for i in string.ascii_lowercase] caesars_list = [i for i in string.ascii_lowercase] #shift the caesars list based on the given key caesars_list = caesars_list[key:] + caesars_list[:key] #add in spaces and punctuation so the cipher can deal with sentences caesars_list.insert((len(caesars_list)+1)," ") ascii_lower.insert((len(caesars_list)+1)," ") ascii_lower.extend([i for i in string.punctuation]) caesars_list.extend([i for i in string.punctuation]) #encode and return the encrypted message cipher = [caesars_list[ascii_lower.index(i)] for i in message] return ''.join(cipher) #testing our caesars cipher key = int(input('How many shifts do you want in your caesars cipher?\n')) message = input('What is your message?\n') caesar_message = caesar_cipher(key, message.lower()) print(caesar_message) ###Output How many shifts do you want in your caesars cipher? 4 What is your message? hello world! lipps asvph! ###Markdown **Decoding Caesar Cipher (Slicing)** ###Code def caesar_cipher_decoder(key, encrypted_message): ascii_lower = [i for i in string.ascii_lowercase] caesars_list = [i for i in string.ascii_lowercase] #shift the caesars list based on the given key caesars_list = caesars_list[key:] + caesars_list[:key] #add in spaces and punctuation so the cipher can deal with sentences caesars_list.insert((len(caesars_list)+1)," ") ascii_lower.insert((len(caesars_list)+1)," ") ascii_lower.extend([i for i in string.punctuation]) caesars_list.extend([i for i in string.punctuation]) #encode and return the encrypted message decrypted_message = [ascii_lower[caesars_list.index(i)] for i in encrypted_message] return ''.join(decrypted_message) decoder_key = int(input('How many shifts are in the caesars cipher?\n')) encrypted_message = input('What is the encrypted message?\n') decoded_message = caesar_cipher_decoder(decoder_key, encrypted_message.lower()) print(decoded_message) ###Output How many shifts are in the caesars cipher? 4 What is the encrypted message? lipps asvph! hello world! ###Markdown **Breaking a Caesar Cipher** **What if we intercepted an encrypted message that we know was encrypted using Caesars Cipher. How could we break it? Would it be easy to break?** **Slicing** ###Code intercepted_message = 'uwdm bw bpm miab ib uqlvqopb. lw vwb ow qvbw bwev, abig qv bpm apilwea.' for i in range(len(string.ascii_lowercase)): print(caesar_cipher_decoder(i, intercepted_message),"\n") ###Output uwdm bw bpm miab ib uqlvqopb. lw vwb ow qvbw bwev, abig qv bpm apilwea. tvcl av aol lhza ha tpkupnoa. kv uva nv puav avdu, zahf pu aol zohkvdz. subk zu znk kgyz gz sojtomnz. ju tuz mu otzu zuct, yzge ot znk yngjucy. rtaj yt ymj jfxy fy rnisnlmy. it sty lt nsyt ytbs, xyfd ns ymj xmfitbx. qszi xs xli iewx ex qmhrmklx. hs rsx ks mrxs xsar, wxec mr xli wlehsaw. pryh wr wkh hdvw dw plgqljkw. gr qrw jr lqwr wrzq, vwdb lq wkh vkdgrzv. oqxg vq vjg gcuv cv okfpkijv. fq pqv iq kpvq vqyp, uvca kp vjg ujcfqyu. npwf up uif fbtu bu njeojhiu. ep opu hp joup upxo, tubz jo uif tibepxt. move to the east at midnight. do not go into town, stay in the shadows. lnud sn sgd dzrs zs lhcmhfgs. cn mns fn hmsn snvm, rszx hm sgd rgzcnvr. kmtc rm rfc cyqr yr kgblgefr. bm lmr em glrm rmul, qryw gl rfc qfybmuq. jlsb ql qeb bxpq xq jfakfdeq. al klq dl fkql qltk, pqxv fk qeb pexaltp. ikra pk pda awop wp iezjecdp. zk jkp ck ejpk pksj, opwu ej pda odwzkso. hjqz oj ocz zvno vo hdyidbco. yj ijo bj dioj ojri, novt di ocz ncvyjrn. gipy ni nby yumn un gcxhcabn. xi hin ai chni niqh, mnus ch nby mbuxiqm. fhox mh max xtlm tm fbwgbzam. wh ghm zh bgmh mhpg, lmtr bg max latwhpl. egnw lg lzw wskl sl eavfayzl. vg fgl yg aflg lgof, klsq af lzw kzsvgok. dfmv kf kyv vrjk rk dzuezxyk. uf efk xf zekf kfne, jkrp ze kyv jyrufnj. celu je jxu uqij qj cytdywxj. te dej we ydje jemd, ijqo yd jxu ixqtemi. bdkt id iwt tphi pi bxscxvwi. sd cdi vd xcid idlc, hipn xc iwt hwpsdlh. acjs hc hvs sogh oh awrbwuvh. rc bch uc wbhc hckb, ghom wb hvs gvorckg. zbir gb gur rnfg ng zvqavtug. qb abg tb vagb gbja, fgnl va gur funqbjf. yahq fa ftq qmef mf yupzustf. pa zaf sa uzfa faiz, efmk uz ftq etmpaie. xzgp ez esp plde le xtoytrse. oz yze rz tyez ezhy, delj ty esp dslozhd. wyfo dy dro okcd kd wsnxsqrd. ny xyd qy sxdy dygx, cdki sx dro crknygc. vxen cx cqn njbc jc vrmwrpqc. mx wxc px rwcx cxfw, bcjh rw cqn bqjmxfb. ###Markdown **Challenge: Caesar Cipher** **How would you code a Caesar Cipher? Can you code it using an imported data structure? What about with modular arithmetic? How fast does your Caesar Cipher run when compared to the given example?** **Challenge Answer 1** **The following Caesar Cipher uses a deque to encrypt and decrypt messages.** **Caesar Cipher using Deque** ###Code #creating our caesars cipher function def caesar_cipher_deque(key, message): ascii_lower = [i for i in string.ascii_lowercase] caesars_list = deque(ascii_lower) caesars_list.rotate(-key) caesars_list.insert((len(caesars_list)+1)," ") ascii_lower.insert((len(caesars_list)+1)," ") ascii_lower.extend([i for i in string.punctuation]) caesars_list.extend([i for i in string.punctuation]) cipher = [caesars_list[ascii_lower.index(i)] for i in message] return ''.join(cipher) ###Output _____no_output_____ ###Markdown **Testing Caesar Cipher** ###Code #testing our caesars cipher key = int(input('How many shifts do you want in your caesars cipher?\n')) message = input('What is your message?\n') caesar_message = caesar_cipher_deque(key, message.lower()) print(caesar_message) ###Output How many shifts do you want in your caesars cipher? 4 What is your message? hello world! lipps asvph! ###Markdown **Decoding Caesar Cipher (Deque)** ###Code #decoding the message def caesar_deque_decoder(key, encrypted_message): ascii_lower = [i for i in string.ascii_lowercase] caesars_list = deque(ascii_lower) caesars_list.rotate(-key) caesars_list.insert((len(caesars_list)+1)," ") ascii_lower.insert((len(caesars_list)+1)," ") ascii_lower.extend([i for i in string.punctuation]) caesars_list.extend([i for i in string.punctuation]) decrypted_message = [ascii_lower[caesars_list.index(i)] for i in encrypted_message] return ''.join(decrypted_message) decoder_key = int(input('How many shifts are in the caesars cipher?\n')) encrypted_message = input('What is the encrypted message?\n') decoded_message = caesar_deque_decoder(decoder_key, encrypted_message.lower()) print(decoded_message) ###Output How many shifts are in the caesars cipher? 4 What is the encrypted message? lipps asvph! hello world! ###Markdown **Breaking a Caesar Cipher (Deque)** ###Code intercepted_message = 'uwdm bw bpm miab ib uqlvqopb. lw vwb ow qvbw bwev, abig qv bpm apilwea.' for i in range(len(string.ascii_lowercase)): print(caesar_deque_decoder(i, intercepted_message),"\n") ###Output uwdm bw bpm miab ib uqlvqopb. lw vwb ow qvbw bwev, abig qv bpm apilwea. tvcl av aol lhza ha tpkupnoa. kv uva nv puav avdu, zahf pu aol zohkvdz. subk zu znk kgyz gz sojtomnz. ju tuz mu otzu zuct, yzge ot znk yngjucy. rtaj yt ymj jfxy fy rnisnlmy. it sty lt nsyt ytbs, xyfd ns ymj xmfitbx. qszi xs xli iewx ex qmhrmklx. hs rsx ks mrxs xsar, wxec mr xli wlehsaw. pryh wr wkh hdvw dw plgqljkw. gr qrw jr lqwr wrzq, vwdb lq wkh vkdgrzv. oqxg vq vjg gcuv cv okfpkijv. fq pqv iq kpvq vqyp, uvca kp vjg ujcfqyu. npwf up uif fbtu bu njeojhiu. ep opu hp joup upxo, tubz jo uif tibepxt. move to the east at midnight. do not go into town, stay in the shadows. lnud sn sgd dzrs zs lhcmhfgs. cn mns fn hmsn snvm, rszx hm sgd rgzcnvr. kmtc rm rfc cyqr yr kgblgefr. bm lmr em glrm rmul, qryw gl rfc qfybmuq. jlsb ql qeb bxpq xq jfakfdeq. al klq dl fkql qltk, pqxv fk qeb pexaltp. ikra pk pda awop wp iezjecdp. zk jkp ck ejpk pksj, opwu ej pda odwzkso. hjqz oj ocz zvno vo hdyidbco. yj ijo bj dioj ojri, novt di ocz ncvyjrn. gipy ni nby yumn un gcxhcabn. xi hin ai chni niqh, mnus ch nby mbuxiqm. fhox mh max xtlm tm fbwgbzam. wh ghm zh bgmh mhpg, lmtr bg max latwhpl. egnw lg lzw wskl sl eavfayzl. vg fgl yg aflg lgof, klsq af lzw kzsvgok. dfmv kf kyv vrjk rk dzuezxyk. uf efk xf zekf kfne, jkrp ze kyv jyrufnj. celu je jxu uqij qj cytdywxj. te dej we ydje jemd, ijqo yd jxu ixqtemi. bdkt id iwt tphi pi bxscxvwi. sd cdi vd xcid idlc, hipn xc iwt hwpsdlh. acjs hc hvs sogh oh awrbwuvh. rc bch uc wbhc hckb, ghom wb hvs gvorckg. zbir gb gur rnfg ng zvqavtug. qb abg tb vagb gbja, fgnl va gur funqbjf. yahq fa ftq qmef mf yupzustf. pa zaf sa uzfa faiz, efmk uz ftq etmpaie. xzgp ez esp plde le xtoytrse. oz yze rz tyez ezhy, delj ty esp dslozhd. wyfo dy dro okcd kd wsnxsqrd. ny xyd qy sxdy dygx, cdki sx dro crknygc. vxen cx cqn njbc jc vrmwrpqc. mx wxc px rwcx cxfw, bcjh rw cqn bqjmxfb. ###Markdown **Challenge Answer 2** **The following Caesar Cipher uses modular arithmetic to encrypt and decrypt messages.** ###Code #see the khan academy link to learn how to use modular arithmetic when implementing caesar cipher def caesar_cipher_modulo(key, message): alphabet = dict(zip(string.ascii_lowercase, [i for i in range(len(string.ascii_lowercase))])) cipher = [] for i in message: if i.isalnum() == True: cipher.append(list(alphabet.keys())[list(alphabet.values()).index((alphabet[i] + key) % len(alphabet))]) else: cipher.append(i) return ''.join(cipher) ###Output _____no_output_____ ###Markdown **Caesar Cipher using Modular Arithmetic** ###Code #testing our caesars cipher key = int(input('How many shifts do you want in your caesars cipher?\n')) message = input('What is your message?\n') caesar_message = caesar_cipher_modulo(key, message.lower()) print(caesar_message) ###Output How many shifts do you want in your caesars cipher? 4 What is your message? hello world! lipps asvph! ###Markdown **Decoding Caesar Cipher (Modular Arithmetic)** ###Code #decoding the message def caesar_modulo_decoder(key, message): alphabet = dict(zip(string.ascii_lowercase, [i for i in range(len(string.ascii_lowercase))])) cipher = [] for i in message: if i.isalnum() == True: cipher.append(list(alphabet.keys())[list(alphabet.values()).index((alphabet[i] - key) % len(alphabet))]) else: cipher.append(i) return ''.join(cipher) decoder_key = int(input('How many shifts are in the caesars cipher?\n')) encrypted_message = input('What is the encrypted message?\n') decoded_message = caesar_modulo_decoder(decoder_key, encrypted_message.lower()) print(decoded_message) ###Output How many shifts are in the caesars cipher? 4 What is the encrypted message? lipps asvph! hello world!
Air_Quality_Index/Linear_Regression.ipynb
###Markdown Linear Regression ###Code X=data.drop(columns='PM2.5') y=data['PM2.5'] sns.heatmap(X.corr(),annot=True,cmap='RdYlGn') plt.plot() ###Output _____no_output_____ ###Markdown high Multicolinearity - drop TM,Tm,VM column ###Code # X.drop(columns=['TM','Tm','VM'],inplace=True) ###Output _____no_output_____ ###Markdown Feature Selection ###Code from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression X_train,X_test,y_train,y_test=train_test_split(X,y,train_size=0.7,random_state=0) lr=LinearRegression() lr.fit(X_train,y_train) lr.score(X_train,y_train) lr.score(X_test,y_test) pd.DataFrame(lr.coef_,X.columns,columns=['Coeficient']) y_pred=lr.predict(X_test) sns.distplot(y_pred-y_test) plt.plot() plt.scatter(y_test,y_pred) plt.plot() ###Output _____no_output_____ ###Markdown Metrics ###Code from sklearn.metrics import mean_squared_error,mean_absolute_error # MAE mean_absolute_error(y_test,y_pred) # MSE mean_squared_error(y_test,y_pred) # RMSE np.sqrt(mean_squared_error(y_test,y_pred)) ###Output _____no_output_____ ###Markdown Save Model ###Code import pickle with open('Models/Linear_Regression.pkl','wb') as f: pickle.dump(lr,f) ###Output _____no_output_____
analyses/metrics/determine_qc_metric_schema.ipynb
###Markdown Goal:Outline the process of producing shared QC metric schema that delegates to picard names when they are adequately descriptive of what they measure. The following two workflows were used to extract metrics, and files were downloaded to `picard_metric_dir` and `optimus_metric_dir`: ```https://job-manager.mint-dev.broadinstitute.org/jobs/a39b92db-bed0-40d4-83de-3ca0505dc5a8 10x v2https://job-manager.mint-dev.broadinstitute.org/jobs/b9ff68b4-2434-4909-8275-850cb84ebb13 ss2``` ###Code import os from crimson import picard ###Output _____no_output_____ ###Markdown Examine SS2 pipeline metrics outputsListed below are the file names of metrics files emitted by a smart-seq2 workflow ###Code picard_metric_dir = os.path.expanduser('~/Desktop/picard') !ls $picard_metric_dir ###Output SRR1294925_qc.alignment_summary_metrics.txt SRR1294925_qc.bait_bias_detail_metrics.txt SRR1294925_qc.bait_bias_summary_metrics.txt SRR1294925_qc.base_distribution_by_cycle_metrics.txt SRR1294925_qc.error_summary_metrics.txt SRR1294925_qc.gc_bias.detail_metrics.txt SRR1294925_qc.gc_bias.summary_metrics.txt SRR1294925_qc.pre_adapter_detail_metrics.txt SRR1294925_qc.quality_by_cycle_metrics.txt SRR1294925_qc.quality_distribution_metrics.txt ###Markdown This method parses a few of the files that are in a consistent format ###Code metric_files = [os.path.join(picard_metric_dir, f) for f in os.listdir(picard_metric_dir)] def parse_picard(metric_file): with open(metric_file, 'r') as f: json_data = picard.parse(f) metric_class_name = json_data['metrics']['class'] metrics = {} for d in json_data['metrics']['contents']: for k, v in d.items(): metrics[k] = type(v) del metrics['SAMPLE_ALIAS'], metrics['LIBRARY'] return metric_class_name, metrics ###Output _____no_output_____ ###Markdown This is a map between the metric class and the names of metrics calculated by each class, mapped to the output type. Caveat: 5 of the files don't decode. Those are printed in full below. ###Code all_metrics_and_names = {} for m in metric_files[:-2]: try: all_metrics_and_names.__setitem__(*parse_picard(m)) except: print(m) all_metrics_and_names ###Output _____no_output_____ ###Markdown Below, files that didn't convert are just printed to console to get a sense of their metric names ###Code !cat $picard_metric_dir/SRR1294925_qc.base_distribution_by_cycle_metrics.txt !cat $picard_metric_dir/SRR1294925_qc.gc_bias.summary_metrics.txt !cat $picard_metric_dir/SRR1294925_qc.gc_bias.detail_metrics.txt !cat $picard_metric_dir/SRR1294925_qc.error_summary_metrics.txt !cat $picard_metric_dir/SRR1294925_qc.quality_by_cycle_metrics.txt !cat $picard_metric_dir/SRR1294925_qc.alignment_summary_metrics.txt ###Output ## htsjdk.samtools.metrics.StringHeader # CollectMultipleMetrics INPUT=/cromwell_root/broad-dsde-mint-dev-cromwell-execution/cromwell-executions/TestSmartSeq2SingleCellPR/dbec853f-f908-44d5-abf8-c2b3e9a1c1dd/call-target_workflow/SmartSeq2SingleCell/efca6617-3b23-4620-8227-dd9484b9547f/call-HISAT2PairedEnd/SRR1294925_qc.bam ASSUME_SORTED=true OUTPUT=SRR1294925_qc METRIC_ACCUMULATION_LEVEL=[ALL_READS] FILE_EXTENSION=.txt PROGRAM=[CollectAlignmentSummaryMetrics, CollectInsertSizeMetrics, CollectGcBiasMetrics, CollectBaseDistributionByCycle, QualityScoreDistribution, MeanQualityByCycle, CollectSequencingArtifactMetrics, CollectQualityYieldMetrics] VALIDATION_STRINGENCY=SILENT REFERENCE_SEQUENCE=/cromwell_root/hca-dcp-mint-test-data/reference/GRCh38_Gencode/GRCh38.primary_assembly.genome.fa STOP_AFTER=0 INCLUDE_UNPAIRED=false VERBOSITY=INFO QUIET=false COMPRESSION_LEVEL=5 MAX_RECORDS_IN_RAM=500000 CREATE_INDEX=false CREATE_MD5_FILE=false GA4GH_CLIENT_SECRETS=client_secrets.json USE_JDK_DEFLATER=false USE_JDK_INFLATER=false ## htsjdk.samtools.metrics.StringHeader # Started on: Mon Jun 11 18:18:02 UTC 2018 ## METRICS CLASS picard.analysis.AlignmentSummaryMetrics CATEGORY TOTAL_READS PF_READS PCT_PF_READS PF_NOISE_READS PF_READS_ALIGNED PCT_PF_READS_ALIGNED PF_ALIGNED_BASES PF_HQ_ALIGNED_READS PF_HQ_ALIGNED_BASES PF_HQ_ALIGNED_Q20_BASES PF_HQ_MEDIAN_MISMATCHES PF_MISMATCH_RATE PF_HQ_ERROR_RATE PF_INDEL_RATE MEAN_READ_LENGTH READS_ALIGNED_IN_PAIRS PCT_READS_ALIGNED_IN_PAIRS PF_READS_IMPROPER_PAIRS PCT_PF_READS_IMPROPER_PAIRS BAD_CYCLES STRAND_BALANCE PCT_CHIMERAS PCT_ADAPTER SAMPLE LIBRARY READ_GROUP FIRST_OF_PAIR 708464 708464 1 0 620557 0.875919 15474854 545623 13614147 13481269 0 0.000979 0.000904 0.000052 25 569427 0.917606 57860 0.093239 0 0.50191 0.012 0.000001 SECOND_OF_PAIR 708464 708464 1 0 613894 0.866514 15296633 539174 13442337 13231754 0 0.001114 0.001002 0.000123 25 569427 0.927566 51197 0.083397 0 0.500181 0.012132 0.000001 PAIR 1416928 1416928 1 0 1234451 0.871216 30771487 1084797 27056484 26713023 0 0.001046 0.000953 0.000088 25 1138854 0.922559 109057 0.088345 0 0.50105 0.012066 0.000001 ###Markdown Optimus MetricsNow, do the same for Optimus metrics. Optimus has all of the metrics in one file, although may not have the depth of analysis that the picard ones do. We could use picard + user research to identify missing metrics and expand our complement as recommended. ###Code import pandas as pd optimus_metric_dir = os.path.expanduser('~/Desktop/optimus') print('cell metrics\n') for c in pd.read_csv(os.path.join(optimus_metric_dir, 'merged-cell-metrics.csv.gz')).columns[1:]: print(c) print('\ngene metrics\n') for c in pd.read_csv(os.path.join(optimus_metric_dir, 'merged-gene-metrics.csv.gz')).columns[1:]: print(c) ###Output cell metrics n_reads noise_reads perfect_molecule_barcodes reads_mapped_exonic reads_mapped_intronic reads_mapped_utr reads_mapped_uniquely reads_mapped_multiple duplicate_reads spliced_reads antisense_reads molecule_barcode_fraction_bases_above_30_mean molecule_barcode_fraction_bases_above_30_variance genomic_reads_fraction_bases_quality_above_30_mean genomic_reads_fraction_bases_quality_above_30_variance genomic_read_quality_mean genomic_read_quality_variance n_molecules n_fragments reads_per_molecule reads_per_fragment fragments_per_molecule fragments_with_single_read_evidence molecules_with_single_read_evidence perfect_cell_barcodes reads_mapped_intergenic reads_unmapped reads_mapped_too_many_loci cell_barcode_fraction_bases_above_30_variance cell_barcode_fraction_bases_above_30_mean n_genes genes_detected_multiple_observations gene metrics n_reads noise_reads perfect_molecule_barcodes reads_mapped_exonic reads_mapped_intronic reads_mapped_utr reads_mapped_uniquely reads_mapped_multiple duplicate_reads spliced_reads antisense_reads molecule_barcode_fraction_bases_above_30_mean molecule_barcode_fraction_bases_above_30_variance genomic_reads_fraction_bases_quality_above_30_mean genomic_reads_fraction_bases_quality_above_30_variance genomic_read_quality_mean genomic_read_quality_variance n_molecules n_fragments reads_per_molecule reads_per_fragment fragments_per_molecule fragments_with_single_read_evidence molecules_with_single_read_evidence number_cells_detected_multiple number_cells_expressing
tests_jupyter/genetic_algorithm_parameters.ipynb
###Markdown Compare the effect of crossover_thres ###Code ag.run(ngen=20,seed=2) ag.run(ngen=20,seed=2,crossover_thres=100) ###Output gen nevals pareto correlation distance 0 100 3 4.33 - 14.92 0.74 - 63.45 1 50 3 4.33 - 9.32 5.76 - 63.45 2 50 3 4.33 - 8.37 5.87 - 63.45 3 50 3 4.33 - 7.5 5.87 - 63.45 4 50 2 4.27 - 7.23 5.87 - 63.45 5 50 3 4.16 - 6.15 5.87 - 63.45 6 50 5 4.16 - 5.68 36.76 - 63.46 7 50 3 3.88 - 5.59 44.89 - 63.57 8 50 5 3.85 - 5.51 53.27 - 63.57 9 50 3 3.74 - 5.38 53.3 - 63.57 10 50 5 3.74 - 5.17 53.3 - 63.57 11 50 8 3.74 - 4.92 53.31 - 63.57 12 50 7 3.74 - 4.89 57.68 - 63.58 13 50 4 3.74 - 4.89 57.69 - 63.58 14 50 4 3.74 - 4.75 57.69 - 63.58 15 50 5 3.68 - 4.89 57.69 - 63.58 16 50 10 3.63 - 4.99 57.69 - 63.58 17 50 11 3.63 - 4.99 57.69 - 63.59 18 50 13 3.63 - 4.99 57.69 - 63.59 19 50 15 3.63 - 4.99 57.81 - 63.59 20 50 16 3.63 - 4.99 57.82 - 63.59
nlp/exercise/text-classification.ipynb
###Markdown **[Natural Language Processing Home Page](https://www.kaggle.com/learn/natural-language-processing)**--- Natural Language ClassificationYou did a great such a great job for DeFalco's restaurant in the previous exercise that the chef has hired you for a new project.The restaurant's menu includes an email address where visitors can give feedback about their food. The manager wants you to create a tool that automatically sends him all the negative reviews so he can fix them, while automatically sending all the positive reviews to the owner, so the manager can ask for a raise. You will first build a model to distinguish positive reviews from negative reviews using Yelp reviews because these reviews include a rating with each review. Your data consists of the text body of each review along with the star rating. Ratings with 1-2 stars count as "negative", and ratings with 4-5 stars are "positive". Ratings with 3 stars are "neutral" and have been dropped from the data.Let's get started. First, run the next code cell. ###Code # setup code checking from learntools.core import binder binder.bind(globals()) from learntools.nlp.ex2 import * print("Setup is completed.") ###Output Setup is completed. ###Markdown Step 1: Evaluate the ApproachIs there anything about this approach that concerns you? After you've thought about it, run the function below to see one point of view. ###Code # check your answer (run this code cell to receive credit!) step_1.solution() ###Output _____no_output_____ ###Markdown Step 2: Review Data and Create the ModelMoving forward with your plan, you'll need to load the data. Here's some basic code to load data and split it into a training and validation set. Run this code. ###Code import pandas as pd def load_data(csv_file, split=0.9): data = pd.read_csv(csv_file) # shuffle data, sampling with frac < 1, upsampling with frac > 1 train_data = data.sample(frac=1, random_state=7) texts = train_data["text"].values labels = [ {"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in train_data["sentiment"].values ] split = int(len(train_data) * split) train_labels = [{"cats": labels} for labels in labels[:split]] val_labels = [{"cats": labels} for labels in labels[split:]] return texts[:split], train_labels, texts[split:], val_labels train_texts, train_labels, val_texts, val_labels = load_data('../input/nlp-course/yelp_ratings.csv') ###Output _____no_output_____ ###Markdown You will use this training data to build a model. The code to build the model is the same as what you saw in the tutorial. So that is copied below for you.But because your data is different, there are **two lines in the modeling code cell that you'll need to change.** Can you figure out what they are? First, run the cell below to look at a couple elements from your training data. ###Code print('Texts from training data\n', '-'*10) print(train_texts[:2]) print('\n') print('Labels from training data\n', '-'*10) print(train_labels[:2]) ###Output Texts from training data ---------- ["Some of the best sushi I've ever had....and I come from the East Coast. Unreal toro, have some of it's available." "One of the best burgers I've ever had and very well priced. I got the tortilla burger and is was delicious especially with there tortilla soup!"] Labels from training data ---------- [{'cats': {'POSITIVE': True, 'NEGATIVE': False}}, {'cats': {'POSITIVE': True, 'NEGATIVE': False}}] ###Markdown Now, having seen this data, find the two lines that need to be changed. ###Code # create an empty model import spacy nlp = spacy.blank("en") # create the TextCategorizer with exclusive classes and Bag of Words (bow) architecture textcat = nlp.create_pipe( "textcat", config={ "exclusive_classes": True, "architecture": "bow" } ) # add the TextCategorizer to the empty model nlp.add_pipe(textcat) # add labels to text classifier textcat.add_label("NEGATIVE") textcat.add_label("POSITIVE") # check your answer step_2.check() # lines below will give you a hint or solution code # step_2.hint() # step_2.solution() ###Output _____no_output_____ ###Markdown Step 3: Train FunctionImplement a function `train` that updates a model with training data. Most of this is general data munging, which we've filled in for you. Just add the one line of code necessary to update your model. ###Code import random from spacy.util import minibatch nlp.begin_training() def train(model, train_data, optimizer, batch_size=8): losses = {} random.seed(1) random.shuffle(train_data) # create the batch generator batches = minibatch(train_data, size=batch_size) for batch in batches: # split batch into texts and labels texts, labels = zip(*batch) # update model with texts and labels nlp.update(texts, labels, sgd=optimizer, losses=losses) return losses # check your answer step_3.check() # lines below will give you a hint or solution code # step_3.hint() # step_3.solution() # fix seed for reproducibility spacy.util.fix_random_seed(1) random.seed(1) optimizer = nlp.begin_training() train_data = list(zip(train_texts, train_labels)) losses = train(nlp, train_data, optimizer) print(losses['textcat']) ###Output 8.185380340941789 ###Markdown We can try this slightly trained model on some example text and look at the probabilities assigned to each label. ###Code text = "This tea cup was full of holes. Do not recommend." doc = nlp(text) print(doc.cats) ###Output {'NEGATIVE': 0.7562618851661682, 'POSITIVE': 0.24373817443847656} ###Markdown These probabilities look reasonable. Now you should turn them into an actual prediction. Step 4: Making PredictionsImplement a function `predict` that uses a model to predict the sentiment of text examples. The function takes a spaCy model (with a `TextCategorizer`) and a list of texts. First, tokenize the texts using `model.tokenizer`. Then, pass those docs to the `TextCategorizer` which you can get from `model.get_pipe`. Use the `textcat.predict` method to get scores for each document, then choose the class with the highest score (probability) as the predicted class. ###Code def predict(model, texts): # Use the model's tokenizer to tokenize each input text docs = [model.tokenizer(text) for text in texts] # use textcat to get the scores for each doc textcat = model.get_pipe('textcat') scores, _ = textcat.predict(docs) # from the scores, find the class with the highest score/probability predicted_class = scores.argmax(axis=1) return predicted_class # check your answer step_4.check() # lines below will give you a hint or solution code # step_4.hint() # step_4.solution() texts = val_texts[34:38] predictions = predict(nlp, texts) for p, t in zip(predictions, texts): print(f"{textcat.labels[p]}: {t} \n") predict(nlp, texts) ###Output _____no_output_____ ###Markdown It looks like your model is working well after going through the data just once. However you need to calculate some metric for the model's performance on the hold-out validation data. Step 5: Evaluate The ModelImplement a function that evaluates a `TextCategorizer` model. This function `evaluate` takes a model along with texts and labels. It returns the accuracy of the model, which is the number of correct predictions divided by all predictions.First, use the `predict` method you wrote earlier to get the predicted class for each text in `texts`. Then, find where the predicted labels match the true "gold-standard" labels and calculate the accuracy. ###Code def evaluate(model, texts, labels): """ Returns the accuracy of a TextCategorizer model. Arguments --------- model: ScaPy model with a TextCategorizer texts: Text samples, from load_data function labels: True labels, from load_data function """ # get predictions from textcat model (using your predict method) predicted_class = predict(model, texts) # from labels, get the true class as a list of integers (POSITIVE -> 1, NEGATIVE -> 0) true_class = [int(label['cats']['POSITIVE']) for label in labels] # a boolean or int array indicating correct predictions correct_predictions = (predicted_class == true_class) # the accuracy, number of correct predictions divided by all predictions accuracy = correct_predictions.mean() return accuracy # check your answer step_5.check() # lines below will give you a hint or solution code # step_5.hint() # step_5.solution() accuracy = evaluate(nlp, val_texts, val_labels) print(f"Accuracy: {accuracy:.4f}") ###Output Accuracy: 0.9486 ###Markdown With the functions implemented, you can train and evaluate in a loop. ###Code n_iters = 5 for i in range(n_iters): losses = train(nlp, train_data, optimizer) accuracy = evaluate(nlp, val_texts, val_labels) print(f"Loss: {losses['textcat']:.3f} \t Accuracy: {accuracy:.3f}") ###Output Loss: 4.454 Accuracy: 0.945 Loss: 3.079 Accuracy: 0.946 Loss: 2.343 Accuracy: 0.945 Loss: 1.913 Accuracy: 0.943 Loss: 1.584 Accuracy: 0.945 ###Markdown Step 6: Keep ImprovingYou've built the necessary components to train a text classifier with SpaCy. What could you do further to optimize the model?Run the next line to check your answer. ###Code # check your answer (run this code cell to receive credit!) step_6.solution() ###Output _____no_output_____
modules/module10 - inferential spatial models/module10.ipynb
###Markdown Advanced Spatial Analysis Module 10: Inferential Spatial ModelingStatistical inference is the process of using a sample to *infer* the characteristics of an underlying population (from which this sample was drawn) through estimation and hypothesis testing. Contrast this with descriptive statistics, which focus simply on describing the characteristics of the sample itself.Common goals of inferential statistics include: - parameter estimation and confidence intervals - hypothesis rejection - prediction - model selectionTo conduct statistical inference, we rely on *statistical models*: sets of assumptions plus mathematical relationships between variables, producing a formal representation of some theory. We are essentially trying to explain the process underlying the generation of our data. What is the probability distribution (the probabilities of occurrence of different possible outcome values of our response variable)?**Spatial inference** introduces explicit spatial relationships into the statistical modeling framework, as both theory-driven (e.g., spatial spillovers) and data-driven (e.g., MAUP) issues could otherwise violate modeling assumptions.Schools of statistical inference: - frequentist - frequentists think of probability as proportion of times some outcome occurs (relative frequency) - given lots of repeated trials, how likely is the observed outcome? - concepts: statistical hypothesis testing, *p*-values, confidence intervals - bayesian - bayesians think of probability as amount of certainty observer has about an outcome occurring (subjective probability) - probability as a measure of how much info the observer has about the real world, updated as info changes - concepts: prior probability, likelihood, bayes' rule, posterior probability![](img/frequentists_vs_bayesians.png) ###Code import geopandas as gpd import matplotlib.pyplot as plt import numpy as np import pandas as pd import pysal as ps import seaborn as sns import statsmodels.api as sm from scipy import stats from statsmodels.stats.outliers_influence import variance_inflation_factor as vif from statsmodels.tools.tools import add_constant np.random.seed(0) %matplotlib inline # load the data tracts = gpd.read_file('data/census_tracts_data.geojson') tracts.shape # map the data tracts.plot() tracts.columns ###Output _____no_output_____ ###Markdown 1. Statistical inference: introduction 1a. Estimating population parameters ###Code # descriptive stats tracts['med_household_income'].describe() # descriptive stat: average tract-level median income tracts['med_household_income'].mean() # descriptive stat of a simple random sample n = 500 sample = tracts['med_household_income'].sample(n) sample.mean() ###Output _____no_output_____ ###Markdown How similar is our sample mean to our population mean? Is it a good estimate? ###Code # calculate confidence interval using t-distribution (bc population std dev is unknown) sample = sample.dropna() #drop nulls conf = 0.95 #confidence level df = len(sample) - 1 #degrees of freedom loc = sample.mean() #the mean scale = stats.sem(sample) #the standard error conf_lower, conf_upper = stats.t.interval(conf, df, loc=loc, scale=scale) # calculate the margin of error moe = conf_upper - sample.mean() # display confidence interval print(f'{conf_lower:0.0f} – {conf_upper:0.0f} ({conf*100:0.0f}% confidence interval)') print(f'{loc:0.0f} ± {moe:0.0f} (at {conf*100:0.0f}% confidence level)') ###Output _____no_output_____ ###Markdown We are 95% confident that this interval contains the true population parameter value. That is, if we were to repeat this process many times (sampling then computing CI), on average 95% of the CIs would contain the true population parameter value (and 5% wouldn't). ###Code # now it's your turn # try different sample sizes and alpha levels: how do these change the confidence interval's size? # now it's your turn # randomly sample 100 tract-level median home values then calculate the mean and 99% confidence interval ###Output _____no_output_____ ###Markdown 1b. *t*-tests: difference in meansIs the difference between two groups statistically significant? ###Code # choose a variable var = 'med_home_value' # create two data subsets black_tracts = tracts[tracts['pct_black'] > 50] group1 = black_tracts[var] hispanic_tracts = tracts[tracts['pct_hispanic'] > 50] group2 = hispanic_tracts[var] # what are the probability distributions of these two data sets? fig, ax = plt.subplots() ax = group1.plot.kde(ls='--', c='k', alpha=0.5, lw=2, bw_method=0.7) ax = group2.plot.kde(ls='-', c='k', alpha=0.5, lw=2, bw_method=0.7, ax=ax) ax.set_xlim(left=0) ax.set_ylim(bottom=0) plt.show() print(int(group1.mean())) print(int(group2.mean())) # calculate difference in means diff = group1.mean() - group2.mean() diff # compute the t-stat and its p-value t_statistic, p_value = stats.ttest_ind(group1, group2, equal_var=False, nan_policy='omit') p_value # is the difference in means statistically significant? alpha = 0.05 #significance level p_value < alpha # now it's your turn # what is the difference in mean tract-level median home values in majority white vs majority black tracts? # is it statistically significant? # what if you randomly sample just 25 tracts from each group: is their difference significant? ###Output _____no_output_____ ###Markdown 2. Statistical modelsIntroduction to OLS linear regression.Lots to cover in a course on regression that we must skip for today's quick overview. But in general you'd want to: - specify a model (or alternative models) based on theory - inspect candidate predictors' relationships with the response - inspect the predictors' relationships with each other (and reduce multicollinearity) - transform predictors for better linearity - identify and handle outlier observations - regression diagnostics 2a. Simple (bivariate) linear regressionOLS regression with a single predictor ###Code # choose a response variable and drop any rows in which it is null response = 'med_home_value' tracts = tracts.dropna(subset=[response]) # create design matrix containing predictors (drop nulls), and a response variable vector predictors = 'med_household_income' X = tracts[predictors].dropna() y = tracts.loc[X.index][response] # estimate a simple linear regression model with scipy m, b, r, p, se = stats.linregress(x=X, y=y) print('m={:.4f}, b={:.4f}, r^2={:.4f}, p={:.4f}'.format(m, b, r ** 2, p)) # estimate a simple linear regression model with statsmodels Xc = add_constant(X) model = sm.OLS(y, Xc) result = model.fit() print(result.summary()) ###Output _____no_output_____ ###Markdown This single predictor explains about half the variation of the response. To explain more, we need more predictors. 2b. Multiple regressionOLS regression with multiple predictors ###Code # create design matrix containing predictors (drop nulls), and a response variable vector predictors = ['med_household_income', 'pct_white'] X = tracts[predictors].dropna() y = tracts.loc[X.index][response] # estimate a linear regression model Xc = add_constant(X) model = sm.OLS(y, Xc) result = model.fit() print(result.summary()) ###Output _____no_output_____ ###Markdown statsmodels diagnostic outputWe discuss diagnostics and standardized regression in more detail below, but here's a quick summary of the output above:If we get warnings about multicollinearity, but have good VIF scores and significant variables, then check a standardized regression (below) to see if it's just scaling or the intercept/constant causing it (intercept shouldn't cause high condition number if we center/standardize our predictors). A high condition number indicates multicollinearity.Durbin-Watson tests for autocorrelation: a value around 1.5 to 2.5 is considered fine.Omnibus tests for normality of residuals: if prob < 0.05, we reject the null hypothesis that they are normally distributed (skew and kurtosis describe their distribution)Jarque-Bera tests for normality of residuals: if prob < 0.05, we reject the null hypothesis that they are normally distributed Now add in more variables... ###Code tracts.columns # create design matrix containing predictors (drop nulls), and a response variable vector predictors = ['med_household_income', 'pct_white', 'pct_single_family_home', 'pct_built_before_1940', 'med_rooms_per_home', 'pct_bachelors_degree'] X = tracts[predictors].dropna() y = tracts.loc[X.index][response] # estimate a linear regression model Xc = add_constant(X) model = sm.OLS(y, Xc) result = model.fit() print(result.summary()) # now it's your turn # try different sets of predictors to increase R-squared while keeping the total number of predictors relatively low and theoretically sound ###Output _____no_output_____ ###Markdown 2c. Standardized regression*Beta coefficients* are the estimated regression coefficients when the response and predictors are standardized so that their variances equal 1. Thus, we can interpret these coefficients as how many standard deviations the response changes for each standard deviation increase in the predictor. This tells us about "effect size": which predictors have greater effects on the response by ignoring the variables' different units/scales of measurement. However, it relies on the variables' distributions having similar shapes (otherwise the meaning of a std dev in one will differ from a std dev in another). ###Code # estimate a standardized regression model y_stdrd = pd.Series(stats.mstats.zscore(y), index=y.index, name=y.name) X_stdrd = pd.DataFrame(stats.mstats.zscore(X), index=X.index, columns=X.columns) Xc_stdrd = add_constant(X_stdrd) model_stdrd = sm.OLS(y_stdrd, Xc_stdrd) result_stdrd = model_stdrd.fit() print(result_stdrd.summary()) ###Output _____no_output_____ ###Markdown 2d. DiagnosticsLet's take a step back and think about some of the steps we might take prior to specifying the model, and then to diagnose its fit. ###Code # correlation matrix # how well are predictors correlated with response... and with each other? correlations = tracts[[response] + sorted(predictors)].corr() correlations.round(2) # visual correlation matrix via seaborn heatmap # use vmin, vmax, center to set colorbar scale properly sns.set(style='white') ax = sns.heatmap(correlations, vmin=-1, vmax=1, center=0, cmap=plt.cm.coolwarm, square=True, linewidths=1) # plot pairwise relationships with seaborn grid = sns.pairplot(tracts[[response] + sorted(predictors)], markers='.') ###Output _____no_output_____ ###Markdown **Actual vs Predicted**: how well do our model's predicted y values match up to the actual y values? Is the variance the same throughout (homoskedastic)? Point's distance from line is the residual (difference between actual value and predicted value). ###Code # plot observed (y-axis) vs fitted (x-axis) observed = model.endog #actual response fitted = result.fittedvalues #predicted response fig, ax = plt.subplots(figsize=(6, 6)) ax.scatter(x=fitted, y=observed, s=0.2) # draw a 45° y=x line ax.set_xlim((min(np.append(observed, fitted)), max(np.append(observed, fitted)))) ax.set_ylim((min(np.append(observed, fitted)), max(np.append(observed, fitted)))) ax.plot(ax.get_xlim(), ax.get_ylim(), ls='--', c='k', alpha=0.5) ax.set_xlabel('predicted values') ax.set_ylabel('actual values') plt.show() ###Output _____no_output_____ ###Markdown **Residual Plot**: plot our residuals to look for heteroskedasticity. We want this plot to resemble a random point pattern with no discernable trend. If the spread grows as you move from left to right, you are seeing heteroskedasticity. ###Code # standardized (internally studentized) residuals resids_stud = result.get_influence().resid_studentized_internal fig, ax = plt.subplots(figsize=(6, 6)) ax.scatter(x=result.fittedvalues, y=resids_stud, s=0.2) ax.axhline(y=0, ls='--', c='k', alpha=0.5) ax.set_title('residuals vs fitted plot') ax.set_xlabel('fitted values') ax.set_ylabel('standardized residuals') plt.show() ###Output _____no_output_____ ###Markdown **QQ-Plot**: are the residuals approximately normally distributed? That is, how well do they match a theoretical normal distribution. We want the points to follow the line. ###Code fig, ax = plt.subplots(figsize=(6, 6)) fig = sm.qqplot(resids_stud, line='45', ax=ax) ax.set_title('normal probability plot of the standardized residuals') plt.show() ###Output _____no_output_____ ###Markdown ^^ looks like we've got a problem with our model! Can we improve it any with a transformation? ###Code # estimate a linear regression model Xc = add_constant(X) model = sm.OLS(np.log(y), Xc) result = model.fit() #print(result.summary()) resids_stud = result.get_influence().resid_studentized_internal fig, ax = plt.subplots(figsize=(6, 6)) fig = sm.qqplot(resids_stud, line='45', ax=ax) ax.set_title('normal probability plot of the standardized residuals') plt.show() ###Output _____no_output_____ ###Markdown **Multicollinearity**: inspecting correlation among the predictors with condition number and VIF ###Code # calculate condition numbers print(np.linalg.cond(Xc)) print(np.linalg.cond(X)) print(np.linalg.cond(stats.mstats.zscore(X))) ###Output _____no_output_____ ###Markdown A high condition number indicates multicollinearity. Rule of thumb, you want this to be below ~20 (in real-world applied analyses it will often be a bit higher though). Condition number is the ratio of the largest eigenvalue in the design matrix to the smallest. In other words, the large condition number in this case results from scaling rather than from multicollinearity. If we have just one variable with units in the thousands (ie, a large eigenvalue) and add a constant with units of 1 (ie, a small eigenvalue), we'll get a large condition number as the ratio, and statsmodels warns of multicollinearity. If you standardize the design matrix, you see condition number without the scaling effects.VIF is a measure for the collinearity of one variable with all the others. As a rule of thumb, a VIF > 10 indicates strong multicollinearity. If multicollinearity is present in our regression model, the correlated predictors can have large standard errors and thus become insignificant, even though they are theoretically important. By removing redundant predictors, we'll have more sensible regression results for the ones we left in. In statsmodels, the function expects the presence of a constant in the matrix of explanatory variables. ###Code # calculate VIFs for all predictors then view head vif_values = [vif(X.values, i) for i in range(len(X.columns))] vifs = pd.Series(data=vif_values, index=X.columns).sort_values(ascending=False).head() vifs # remove the worst offender from the design matrix # ...but is this theoretically sound? highest_vif = vifs.index[0] X = X.drop(highest_vif, axis='columns') # re-calculate VIFs vif_values = [vif(X.values, i) for i in range(len(X.columns))] vifs = pd.Series(data=vif_values, index=X.columns).sort_values(ascending=False).head() vifs # estimate a linear regression model Xc = add_constant(X) model = sm.OLS(y, Xc) result = model.fit() print(result.summary()) # now it's your turn # try removing variables from the set of predictors, or transforming them, then re-calculate VIFs # can you find a set of predictors that makes good theoretical sense and has less multicollinearity? ###Output _____no_output_____ ###Markdown 3. Spatial modelsBasic types: - **Spatial heterogeneity**: account for systematic differences across space without explicitly modeling interdependency (non-spatial estimation) - spatial fixed effects (intercept varies for each spatial group) - spatial regimes (intercept and coefficients vary for each spatial group) - **Spatial dependence**: model interdependencies between observations through space - spatial lag model (spatially-lagged endogenous variable added as predictor; because of endogeneity, cannot use OLS to estimate) - spatial error model (spatial effects in error term) - spatial lag+error combo model 3a. Spatial fixed effectsUsing dummy variables representing the counties into which our observations (tracts) are nested ###Code # create a new dummy variable for each county, with 1 if tract is in this county and 0 if not for county in tracts['COUNTYFP'].unique(): new_col = f'dummy_county_{county}' tracts[new_col] = (tracts['COUNTYFP'] == county).astype(int) # remove one dummy from dummies to prevent perfect collinearity # ie, a subset of predictors sums to 1 (which full set of dummies will do) county_dummies = [f'dummy_county_{county}' for county in tracts['COUNTYFP'].unique()] county_dummies = county_dummies[1:] # create design matrix containing predictors (drop nulls), and a response variable vector predictors = ['med_household_income', 'pct_white', 'pct_single_family_home', 'pct_built_before_1940', 'med_rooms_per_home', 'pct_bachelors_degree'] X = tracts[predictors + county_dummies].dropna() y = tracts.loc[X.index][response] # estimate a linear regression model Xc = add_constant(X) model = sm.OLS(y, Xc) result = model.fit() print(result.summary()) ###Output _____no_output_____ ###Markdown 3b. Spatial regimesEach spatial regime can have different model coefficients. Here, the regimes are counties. We'll take a subset of our data (all the tracts appearing in 3 counties). This subsection just uses OLS for estimation, but you can also combine spatial regimes with spatial autogression models (the latter is introduced later). ###Code # pick 3 counties as the regimes, and only estimate a regimes model for this subset counties = tracts['COUNTYFP'].value_counts().index[:3] mask = tracts['COUNTYFP'].isin(counties) # create design matrix containing predictors (drop nulls), a response variable matrix, and a regimes vector X = tracts.loc[mask, predictors].dropna() #only take rows in the 3 counties Y = tracts.loc[X.index][[response]] #notice this is a matrix this time for pysal regimes = tracts.loc[X.index]['COUNTYFP'] #define the regimes # estimate spatial regimes model with OLS olsr = ps.model.spreg.OLS_Regimes(y=Y.values, x=X.values, regimes=regimes.values, name_regimes='county', name_x=X.columns.tolist(), name_y=response, name_ds='tracts') print(olsr.summary) ###Output _____no_output_____ ###Markdown 3c. Spatial diagnosticsSo far we've seen two spatial heterogeneity models. Now we'll explore spatial dependence, starting by using queen-contiguity spatial weights to model spatial relationships between observations and OLS to check diagnostics. ###Code # create design matrix containing predictors (drop nulls), and a response variable matrix predictors = ['med_household_income', 'pct_white', 'pct_single_family_home', 'pct_built_before_1940', 'med_rooms_per_home', 'pct_bachelors_degree'] X = tracts[predictors].dropna() Y = tracts.loc[X.index][[response]] #notice this is a matrix this time for pysal # compute spatial weights from tract geometries (but only those tracts that appear in design matrix!) W = ps.lib.weights.Queen.from_dataframe(tracts.loc[X.index]) W.transform = 'r' # compute OLS spatial diagnostics to check the nature of spatial dependence ols = ps.model.spreg.OLS(y=Y.values, x=X.values, w=W, spat_diag=True, moran=True) # calculate moran's I (for the response) and its significance mi = ps.explore.esda.Moran(y=Y, w=W, two_tailed=True) print(mi.I) print(mi.p_sim) # moran's I (for the residuals): moran's i, standardized i, p-value ols.moran_res ###Output _____no_output_____ ###Markdown Interpreting the resultsA significant Moran's *I* suggests spatial autocorrelation, but doesn't tell us which alternative specification should be used. Lagrange Multiplier (LM) diagnostics can help with that. If one LM test is significant and the other isn't, then that tells us which model specification (spatial lag vs spatial error) to use: ###Code # lagrange multiplier test for spatial lag model: stat, p ols.lm_lag # lagrange multiplier test for spatial error model: stat, p ols.lm_error ###Output _____no_output_____ ###Markdown Interpreting the resultsIf (and only if) both the LM tests produce significant statistics, try the robust versions (the nonrobust LM tests are sensitive to each other): ###Code # robust lagrange multiplier test for spatial lag model: stat, p ols.rlm_lag # robust lagrange multiplier test for spatial error model: stat, p ols.rlm_error ###Output _____no_output_____ ###Markdown So... which model specification to choose?If neither LM test is significant: use regular OLS.If only one LM test is significant: use that model spec.If both LM tests are significant: run robust versions.If only one robust LM test is significant: use that model spec.If both robust LM tests are significant (this can often happen with large sample sizes): - first consider if the initial model specification is actually a good fit - if so, use the spatial specification corresponding to the larger robust-LM statistic - or consider a combo model 3d. Spatial lag modelWhen the diagnostics indicate the presence of a spatial diffusion process.Model specification:$y = \rho W y + X \beta + u$where $y$ is a $n \times 1$ vector of observations (response), $W$ is a $n \times n$ spatial weights matrix (thus $Wy$ is the spatially-lagged response), $\rho$ is the spatial autoregressive parameter to be estimated, $X$ is a $n \times k$ matrix of observations (exogenous predictors), $\beta$ is a $k \times 1$ vector of parameters (coefficients) to be estimated, and $u$ is a $n \times 1$ vector of errors. ###Code # maximum-likelihood estimation with full matrix expression mll = ps.model.spreg.ML_Lag(y=Y.values, x=X.values, w=W, method='full', name_w='queen', name_x=X.columns.tolist(), name_y=response, name_ds='tracts') print(mll.summary) # the spatial autoregressive parameter estimate, rho mll.rho ###Output _____no_output_____ ###Markdown 3e. Spatial error modelWhen the diagnostics indicate the presence of spatial error dependence.Model specification:$y = X \beta + u$where $X$ is a $n \times k$ matrix of observations (exogenous predictors), $\beta$ is a $k \times 1$ vector of parameters (coefficients) to be estimated, and $u$ is a $n \times 1$ vector of errors. The errors $u$ follow a spatial autoregressive specification:$u = \lambda Wu + \epsilon$where $\lambda$ is a spatial autoregressive parameter to be estimated and $\epsilon$ is the vector of errors. ###Code # maximum-likelihood estimation with full matrix expression mle = ps.model.spreg.ML_Error(y=Y.values, x=X.values, w=W, method='full', name_w='queen', name_x=X.columns.tolist(), name_y=response, name_ds='tracts') print(mle.summary) # the spatial autoregressive parameter estimate, lambda mle.lam ###Output _____no_output_____ ###Markdown 3f. Spatial lag+error combo modelEstimated with GMM (generalized method of moments). Essentially a spatial error model with endogenous explanatory variables.Model specification:$y = \rho W y + X \beta + u$where $y$ is a $n \times 1$ vector of observations (response), $W$ is a $n \times n$ spatial weights matrix (thus $Wy$ is the spatially-lagged response), $\rho$ is the spatial autoregressive parameter to be estimated, $X$ is a $n \times k$ matrix of observations (exogenous predictors), $\beta$ is a $k \times 1$ vector of parameters (coefficients) to be estimated, and $u$ is a $n \times 1$ vector of errors.The errors $u$ follow a spatial autoregressive specification:$u = \lambda Wu + \epsilon$where $\lambda$ is a spatial autoregressive parameter to be estimated and $\epsilon$ is the vector of errors. ###Code gmc = ps.model.spreg.GM_Combo_Het(y=Y.values, x=X.values, w=W, name_w='queen', name_ds='tracts', name_x=X.columns.tolist(), name_y=response) print(gmc.summary) # now it's your turn # with a new set of predictors, compute spatial diagnostics and estimate a new spatial model accordingly ###Output _____no_output_____
project_mid1/project_mid1.ipynb
###Markdown ASTRO 533 - Mid Project 1**Created:** Sep. 2020 **Last Edit:** Sep. 2020 **Author:** Bill Chen **Email:** [email protected] Load packages and read data ###Code import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.colors as mcolors from astropy.table import Table as tb from astropy.coordinates import SkyCoord # High-level coordinates from astropy.coordinates import ICRS, Galactic, FK4, FK5 # Low-level frames from astropy.coordinates import Angle, Latitude, Longitude # Anglesfrom astropy.coordinates import astropy.units as u import copy plt.style.use('bill') my_YlGnBu = copy.copy(mpl.cm.get_cmap('YlGnBu')) # copy the default cmap my_YlGnBu.set_bad('w') my_magma = copy.copy(mpl.cm.get_cmap('magma')) my_magma.set_bad('k') gaiarv_cat = tb.read('../glt13.fits', format='fits') gaiarv_cat_m45 = tb.read('./glt21_m45.fits', format='fits') # gaiarv_cat_m22 = tb.read('./glt19_m22.fits', format='fits') ###Output _____no_output_____ ###Markdown Pre-parameters ###Code size_min = 0 * u.pc # in pc size_max = 100 * u.pc # in pc ###Output _____no_output_____ ###Markdown Data processing*There will be several useless warnings.* ***Ignore them!*** ###Code m45ra = 15 * (3 + (47/60) + (24/3600)) # RA = 3h 47m 24s m45dec = 24 + (7/60) + (0/3600) # Dec = 24deg 7min 0sec gaiarv_cat['d'] = 1000*u.pc*u.mas / (gaiarv_cat['parallax']) # distance in pc gaiarv_cat['absmag'] = gaiarv_cat['phot_g_mean_mag'] - 5*np.log10(gaiarv_cat['d']/10) # absolute magnitude gaiarv_cat_m45['d'] = 1000*u.pc*u.mas / (gaiarv_cat_m45['parallax']) # distance in pc gaiarv_cat_m45['absmag'] = gaiarv_cat_m45['phot_g_mean_mag'] - 5*np.log10(gaiarv_cat_m45['d']/10) # absolute magnitude # indices of neighborhood stars ind_nb_pre, = np.where((gaiarv_cat['d'] < size_max) & (gaiarv_cat['d'] > size_min)) # only for plotting ind_nb, = np.where((gaiarv_cat['d'] < size_max) & (gaiarv_cat['d'] > size_min) & (gaiarv_cat['absmag'] < 4*gaiarv_cat['bp_rp']+2) & (((gaiarv_cat['absmag'] > 15*gaiarv_cat['bp_rp']-10.5) & (gaiarv_cat['bp_rp'] < 1)) | ((gaiarv_cat['absmag'] > 2.25*gaiarv_cat['bp_rp']+2.25) & (gaiarv_cat['bp_rp'] > 1)))) print('# of pre-filter neighborhood stars:', len(ind_nb_pre)) print('# of neighborhood stars:', len(ind_nb)) # indices of m45 stars ind_m45, = np.where((abs(gaiarv_cat_m45['ra']-m45ra) < 3) & (abs(gaiarv_cat_m45['dec']-m45dec) < 3) & (abs(gaiarv_cat_m45['pmra']-20) < 5) & (abs(gaiarv_cat_m45['pmdec']+45) < 5) & (abs(gaiarv_cat_m45['parallax']-7.3) < 0.7)) print('# of m45 stars:', len(ind_m45)) ###Output c:\users\bill\appdata\local\programs\python\python36\lib\site-packages\ipykernel_launcher.py:5: RuntimeWarning: invalid value encountered in log10 """ c:\users\bill\appdata\local\programs\python\python36\lib\site-packages\ipykernel_launcher.py:8: RuntimeWarning: invalid value encountered in log10 ###Markdown CMD ###Code # plot parameters x_min, x_max = -0.2, 3 y_min, y_max = 0, 12 bins = 100 bins_m45 = 50 # plot # fig, ax = plt.subplots(figsize=(6,6)) fig, [ax1,ax2] = plt.subplots(1, 2, figsize=(12,6), sharey=True, sharex=True) fig.subplots_adjust(wspace=0) ax1.hist2d(gaiarv_cat['bp_rp'][ind_nb_pre], gaiarv_cat['absmag'][ind_nb_pre], range=[[x_min, x_max], [y_min, y_max]], bins = bins, norm=mcolors.LogNorm(), cmap=my_YlGnBu) ax1.plot([-0.2,2.5], [1.2,12], c='gray', ls='--') # y < 4x + 2 ax1.plot([0.7,1,3], [0,4.5,9], c='gray', ls='--') # y > 15x - 10.5 (x<1) 2.25x + 2.25 (x>1) ax1.fill_between([-0.2,2.5], [1.2,12], [12,12], facecolor='gray', alpha=0.1) ax1.fill_between([0.7,1,3], [0,4.5,9], [0,0,0], facecolor='gray', alpha=0.1) ax1.set_xlabel(r'$\mathrm{BP-RP}$') ax1.set_ylabel(r'$\mathrm{G}$') ax1.set_xlim(x_min, x_max) ax1.set_ylim(y_max, y_min) ax1.set_xticks([0, 1, 2, 3]) ax1.set_xticklabels([r'$0$', r'$1$', r'$2$', r'$3$']) ax1.set_yticks([0, 2, 4, 6, 8, 10, 12]) ax1.set_yticklabels([r'$0$', r'$2$', r'$4$', r'$6$', r'$8$', r'$10$', r'$12$']) ax1.text(0.96, 0.96, r'$r<%d\ \mathrm{pc}$' % size_max.value, ha='right', va='top', transform=ax1.transAxes, fontsize=18) ax2.hist2d(gaiarv_cat_m45['bp_rp'][ind_m45], gaiarv_cat_m45['absmag'][ind_m45], range=[[x_min, x_max], [y_min, y_max]], bins = bins_m45, norm=mcolors.LogNorm(), cmap=my_YlGnBu) ax2.set_xlabel(r'$\mathrm{BP-RP}$') ax2.set_ylim(y_max, y_min) ax2.text(0.96, 0.96, r'$\mathrm{M45}$' % size_max.value, ha='right', va='top', transform=ax2.transAxes, fontsize=18) plt.savefig('./figures/cmd.pdf') plt.show() ###Output _____no_output_____ ###Markdown PDMF ###Code # plot parameters x_min, x_max = -2, 12 y_min, y_max = 0, 0.4 bins = 40 bin_edges = np.linspace(x_min, x_max, bins+1) # detection limit xs = (bin_edges[1:] + bin_edges[:-1])/2 d_lim = np.clip(10**(0.2*(13 - xs) + 1), 0, 100) correct = (100 / d_lim)**3 # correction factor # main plot fig, ax = plt.subplots(figsize=(6,6)) hist_nb, bin_edges = np.histogram(gaiarv_cat['absmag'][ind_nb], bins=bin_edges) hist_m45, bin_edges = np.histogram(gaiarv_cat_m45['absmag'][ind_m45], bins=bin_edges) err_nb = np.sqrt(hist_nb) * correct err_nb = err_nb * bins / (x_max-x_min) / np.sum(hist_nb) hist_nb = hist_nb * correct hist_nb = hist_nb * bins / (x_max-x_min) / np.sum(hist_nb) err_m45 = np.sqrt(hist_m45) err_m45 = err_m45 * bins / (x_max-x_min) / np.sum(hist_m45) hist_m45 = hist_m45 * bins / (x_max-x_min) / np.sum(hist_m45) ax.errorbar(xs, hist_nb, err_nb, fmt='none', alpha=0.5, c='k', elinewidth=1, label=None) ax.errorbar(xs+0.05, hist_m45, err_m45, fmt='none', alpha=0.5, c='r', elinewidth=1, label=None) ax.scatter(xs, hist_nb, marker='^', edgecolors='k', facecolor='k', alpha=0.5, s=20, label=r'$r<100\ \mathrm{pc}$') ax.scatter(xs+0.05, hist_m45, marker='d', edgecolors='r', facecolor='r', alpha=0.5, s=20, label=r'$\mathrm{M45}$') ax.plot([-1,4,4,-1,-1], [0,0,0.04,0.04,0], c='gray', ls='--') ax.fill_between([-1,4], [0,0], [0.04,0.04], facecolor='gray', alpha=0.1) ax.set_xlabel(r'$\mathrm{G}$') ax.set_ylabel(r'$f\,(\mathrm{G})$') ax.set_xlim(x_min, x_max) ax.set_ylim(y_min, y_max) ax.set_xticks([-2, 0, 2, 4, 6, 8, 10, 12]) ax.set_xticklabels([r'$-2$', r'$0$', r'$2$', r'$4$', r'$6$', r'$8$', r'$10$', r'$12$']) ax.set_yticks([0, 0.1, 0.2, 0.3, 0.4]) ax.set_yticklabels([r'$0$', r'$0.1$', r'$0.2$', r'$0.3$', r'$0.4$']) ax.legend(loc=1) # top ticks secax = ax.twiny() secax.set_xlabel(r'$M\,/\,M_\odot$') secax.set_xlim(x_min, x_max) secax.set_xticks(-np.array([np.log10(6), np.log10(5), np.log10(4), np.log10(3), np.log10(2), np.log10(1), np.log10(0.9), np.log10(0.8), np.log10(0.7), np.log10(0.6), np.log10(0.5), np.log10(0.4), np.log10(0.3), np.log10(0.2)])*8.75+5.2) # G_sun = 5.2 secax.set_xticklabels(['', r'$5$', '', '', r'$2$', r'$1$', '', '', '', '', r'$0.5$', '', '', r'$0.2$']) # small plot ax2 = fig.add_axes([0.22,0.40,0.4,0.4]) ax2.errorbar(xs, hist_nb, err_nb, fmt='none', alpha=0.8, c='k', label=None) ax2.errorbar(xs+0.05, hist_m45, err_m45, fmt='none', alpha=0.8, c='r', label=None) ax2.scatter(xs, hist_nb, marker='^', edgecolors='k', facecolor='k', alpha=0.8, s=40, label=r'$r<100\ \mathrm{pc}$') ax2.scatter(xs+0.05, hist_m45, marker='d', edgecolors='r', facecolor='r', alpha=0.8, s=40, label=r'$\mathrm{M45}$') ax2.set_xlim(-1, 4) ax2.set_ylim(0, 0.04) ax2.set_xticks([-1, 0, 1, 2, 3, 4]) ax2.set_xticklabels([r'$-1$', r'$0$', r'$1$', r'$2$', r'$3$', r'$4$']) ax2.set_yticks([0, 0.01, 0.02, 0.03, 0.04]) ax2.set_yticklabels([r'$0$', r'$0.01$', r'$0.02$', r'$0.03$', r'$0.04$']) # top ticks secax2 = ax2.twiny() secax2.set_xlim(-2, 4) secax2.set_xticks(-np.array([np.log10(6), np.log10(5), np.log10(4), np.log10(3), np.log10(2)])*8.75+5.2) # G_sun = 5.2 secax2.set_xticklabels([r'$6$', r'$5$', r'$4$', r'$3$', r'$2$']) plt.savefig('./figures/pdmf.pdf') plt.show() ###Output _____no_output_____ ###Markdown Get MF from luminosity functions ###Code # plot parameters x_min, x_max = np.log10(0.15), np.log10(5) y_min, y_max = 0, 2 # main plot fig, ax = plt.subplots(figsize=(6,6)) # get MF from luminosity functions m_nb = 10**(-(xs[4:]-5.2)/8.75) # corresponding mass m_edges_nb = 10**(-(10**(-(bin_edges[4:]-5.2)/8.75)-5.2)/8.75) # corresponding mass lags fm_nb = hist_nb[4:] * 8.75 * 10**((xs[4:]-5.2)/8.75)/np.log(10) # pdmf fm_err_nb = err_nb[4:] * 8.75 * 10**((xs[4:]-5.2)/8.75)/np.log(10) fm_m45 = hist_m45[4:] * 8.75 * 10**((xs[4:]-5.2)/8.75)/np.log(10) # imf fm_err_m45 = err_m45[4:] * 8.75 * 10**((xs[4:]-5.2)/8.75)/np.log(10) eta = fm_nb / fm_m45 eta_err = eta * np.sqrt((fm_err_nb/fm_nb)**2 + (fm_err_m45/fm_m45)**2) ax.errorbar(np.log10(m_nb), eta, eta_err, fmt='none', alpha=0.8, c='m', elinewidth=1, label=None) ax.scatter(np.log10(m_nb), eta, marker='o', edgecolors='m', facecolor='m', alpha=0.8, s=20, label=r'$r<100\ \mathrm{pc}$') ax.axhline(1, ls='-.', c='gray') ax.set_xlabel(r'$M\,/\,M_\odot$') ax.set_ylabel(r'$\eta\,(M)$') ax.set_xlim(x_min, x_max) ax.set_ylim(y_min, y_max) ax.set_xticks(np.array([np.log10(5), np.log10(4), np.log10(3), np.log10(2), np.log10(1), np.log10(0.9), np.log10(0.8), np.log10(0.7), np.log10(0.6), np.log10(0.5), np.log10(0.4), np.log10(0.3), np.log10(0.2)])) # G_sun = 5.2 ax.set_xticklabels([r'$5$', '', '', r'$2$', r'$1$', '', '', '', '', r'$0.5$', '', '', r'$0.2$']) ax.set_yticks([0, 0.5, 1, 1.5, 2]) ax.set_yticklabels([r'$0$', r'$0.5$', r'$1$', r'$1.5$', r'$2$']) # top ticks secax = ax.twiny() secax.set_xlabel(r'$\left.T\,(M)\,\right/\,T_\odot$') secax.set_xlim(x_min, x_max) secax.set_xticks(-(np.array([-1, 0,1,2]))/2.5) # G_sun = 5.2 secax.set_xticklabels([r'$0.1$', r'$1$', r'$10$', r'$100$']) plt.show() ###Output _____no_output_____ ###Markdown Get SFH from LFs ###Code newx = (m_nb[1:] + m_nb[:-1])/2 psi_list = np.zeros([10000,len(newx)]) for i in range(10000): test_eta = np.random.normal(eta, eta_err) d_eta = (test_eta[1:] - test_eta[:-1]) / (m_nb[1:] - m_nb[:-1]) psi_list[i] = -d_eta * newx**3.5 psi = np.mean(psi_list, axis=0) psi_err = np.std(psi_list, axis=0) # plot parameters x_min, x_max = np.log10(0.15), np.log10(5) y_min, y_max = -70, 70 # main plot fig, ax = plt.subplots(figsize=(6,6)) ax.errorbar(np.log10(newx), psi, psi_err, fmt='none', alpha=0.8, c='m', elinewidth=1, label=None) ax.scatter(np.log10(newx), psi, marker='o', edgecolors='m', facecolor='m', alpha=0.8, s=20, label=r'$r<100\ \mathrm{pc}$') ax.axhline(0, ls='-.', c='gray') ax.scatter(np.log10(newx[8]), psi[8], marker='*', c='r', s=160) print('red star mass: %f M_sun' % newx[8], '; time: %f Gyr' % (10*(newx[8])**(-2.5))) ax.set_xlabel(r'$M\,/\,M_\odot$') ax.set_ylabel(r'$\psi\,(M)$') ax.set_xlim(x_min, x_max) ax.set_ylim(y_min, y_max) ax.set_xticks(np.array([np.log10(5), np.log10(4), np.log10(3), np.log10(2), np.log10(1), np.log10(0.9), np.log10(0.8), np.log10(0.7), np.log10(0.6), np.log10(0.5), np.log10(0.4), np.log10(0.3), np.log10(0.2)])) # G_sun = 5.2 ax.set_xticklabels([r'$5$', '', '', r'$2$', r'$1$', '', '', '', '', r'$0.5$', '', '', r'$0.2$']) ax.set_yticks([0]) ax.set_yticklabels([r'$0$']) # top ticks secax = ax.twiny() secax.set_xlabel(r'$\left.T\,(M)\,\right/\,T_\odot$') secax.set_xlim(x_min, x_max) secax.set_xticks(-np.array([-1, 0,1,2])/2.5) # G_sun = 5.2 secax.set_xticklabels([r'$0.1$', r'$1$', r'$10$', r'$100$']) plt.savefig('./figures/sfh.pdf') plt.show() ###Output red star mass: 2.010562 M_sun ; time: 1.744642 Gyr
Codigo/20211102Clase8.ipynb
###Markdown Introducción a AlgotradingIng. Carlos Crespo Elizondo, MSFMF-013 Análisis de InversiónClase del 26 de octubre 2021Maestría de Finanzas, Facultad de EconomíaUANL Trabajando con datos financieros > _"Claramente los datos le ganan a los algortimos. Sin datos exahustivos tiendes a obtener predicciones no-exahustivas."_ Rob Thomas (Gerente General la división Analytics Business de IBM). Tipos de información financiera (ejemplos). Datos Estructurados Datos No Estructurados Datos históricos Precios de cierre Noticias financieras Datos en tiempo real Precios bid/ask de las criptos Un tweet de Ellon Musk Tipos de archivos Hay muchos formatos de datos que provienen de fuentes externas. Durante el resto del curso trabajaremos con archivos CSV y JSON's. Archivos CSV Son archivos de texto simple, separados por comas. CSV es la abreviación de "Comma Separated Values".En la mayoría de los archivos CSV, la primer fila representa los encabezados de las columnas. Todas las filas posteriores, representan entradas de datos. En otros casos, las primeras filas representan espcificaciones del archivo en cuestión. Por lo general es una descarga manual del usuario. Archivos JSON Son archivos que guarda estructura de datos en formato JSON (JavaScript Object Notation). Es un formato utilizado para transmitir datos entre una aplicación y un servidor. Archivos CSV y Python Python tiene su propia librería para leer archivos CSV. La librería se llama `csv`. Una limitante es que no puedes cargar directamente un archivo de internet como lo hicmos con la función de Numpy `loadtxt( )`. Para poder obtener datos de internet se ocuparía otra librería como `requests` o `urlib`, haciendo la obtención de datos de internet más complicada de lo que es.Por lo anterior solo utilizaremos pandas para leer archivos csv. Importar precios de WALMEX Pasos:1. Importar datos de internet, guardarlos en un DataFrame de pandas y gurdarlo como "__*walmex*__"1. Formato del DataFrame: * Index: Columna de fechas * Fecha más antigua: Index 0 * Fecha más reciente: Index -1 * Nombre y órden de las columnas: "Apertura", "Maximo", "Minimo", "Cierre"$^+$1. Crear una columna del DataFrame con los Retornos logarítmicos de los precios de cierre diarios1. Realizar las siguientes gráficas: * Precios de cierre * Retornos diarios * Histograma de los retornos__**NOTAS:__$+$ No te recomiendo utilizar acentos al momento de definir el nombre de variables, columnas, df, etc. Lista de emisoras ac alfaa alpeka alsea amxl asurb bimboa bolsaa cemexcpo elektra femsaubd gapb gcarsoa1 gcc gmexicob grumab ienova kimbera kofubl labb livepolc1 megacpo omab orbia penoles pinfra tlevisacpo walmex Obtener datos de más acciones De la liga cambiar "walmex" por la acción de interés, por ejemplo "ac":http://bit.ly/oncedos-walmex ---> http://bit.ly/oncedos-ac Función `read_csv( )` de pandas `read_csv( )` nos permite controlar varios parámetros y termina siendo un DataFrame. La clase `DataFrame` tiene varios métodos que tienen muchos usos en el campo de las finanzas. https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html ###Code import pandas as pd import numpy as np ###Output _____no_output_____ ###Markdown 1. Importar datos de Walmex ###Code url = 'http://bit.ly/oncedos-walmex' walmex = pd.read_csv(url) walmex.head(10) ###Output _____no_output_____ ###Markdown Importar datos sin las primeras 6 líneas ###Code walmex = pd.read_csv(url, skiprows=6) walmex.head() walmex.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 2455 entries, 0 to 2454 Data columns (total 13 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Date 2455 non-null object 1 PX_LAST 2455 non-null float64 2 Change 699 non-null float64 3 % Change 699 non-null float64 4 PX_OPEN 2455 non-null float64 5 Change.1 699 non-null float64 6 % Change.1 699 non-null float64 7 PX_HIGH 2455 non-null float64 8 Change.2 699 non-null float64 9 % Change.2 699 non-null float64 10 PX_LOW 2455 non-null float64 11 Change.3 699 non-null float64 12 % Change.3 699 non-null float64 dtypes: float64(12), object(1) memory usage: 249.5+ KB ###Markdown 2. Formato del DataFrame 2.1 Index: Columna de fechas Dos opciones para cambiar la columna "*__Date__*" al index:1. Cambiar la columan "*__Date__*" a index de manera manual.2. Importar los datos espcificando que la columna "_**Date**_" es el index. Una vez ya importado el `DataFrame` ###Code walmex.set_index('Date', inplace=True) walmex.head() ###Output _____no_output_____ ###Markdown Importar datos especificando que la columan "Date" será el index ###Code walmex = pd.read_csv(url, skiprows=6, index_col=0) walmex.head() walmex.loc['04/10/2019'] walmex.iloc[0] ###Output _____no_output_____ ###Markdown 2.2 / 2.3 Orden de fechas ###Code walmex.sort_index(axis=0, inplace=True) walmex.head() walmex.head(20) walmex = pd.read_csv(url, skiprows=6, index_col=0, parse_dates=True, dayfirst=True) walmex.info() ###Output <class 'pandas.core.frame.DataFrame'> DatetimeIndex: 2455 entries, 2019-10-04 to 2010-01-04 Data columns (total 12 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 PX_LAST 2455 non-null float64 1 Change 699 non-null float64 2 % Change 699 non-null float64 3 PX_OPEN 2455 non-null float64 4 Change.1 699 non-null float64 5 % Change.1 699 non-null float64 6 PX_HIGH 2455 non-null float64 7 Change.2 699 non-null float64 8 % Change.2 699 non-null float64 9 PX_LOW 2455 non-null float64 10 Change.3 699 non-null float64 11 % Change.3 699 non-null float64 dtypes: float64(12) memory usage: 249.3 KB ###Markdown Método `sort_index( )` Atributo `parse_dates` ###Code walmex.sort_index(axis=0, inplace=True) walmex.head() walmex.tail() ###Output _____no_output_____ ###Markdown 2.4 Nombre y órden de las columnas: "Apertura", "Maximo", "Minimo", "Cierre" Cambios finales al df:1. Borrar las columnas que no utilizaremos1. Renombrar las columnas a español1. Ordenar las columnas en el formato O-H-L-C 2.4.1 Borrar columnas ###Code borrar_columnas = ['Change', '% Change','Change.1', '% Change.1','Change.2', '% Change.2','Change.3', '% Change.3'] walmex.drop(borrar_columnas, axis=1, inplace=True) walmex.head() ###Output _____no_output_____ ###Markdown 2.4.2 Renombrar columnas ###Code dicc_renombrar = {'PX_LAST':'Cierre', 'PX_OPEN':'Apertura', 'PX_HIGH':'Maximo', 'PX_LOW':'Minimo'} walmex.rename(dicc_renombrar, axis=1, inplace=True) walmex.head() ###Output _____no_output_____ ###Markdown 2.4.3 Reordenar columnas ###Code orden_columnas = ['Apertura', 'Maximo', 'Minimo', 'Cierre'] walmex.reindex(columns=orden_columnas, inplace=True) walmex.reindex(columns=orden_columnas) walmex.head() walmex = walmex.reindex(columns=orden_columnas) walmex.head() ###Output _____no_output_____ ###Markdown Volver a hacer todo en una sola celda ###Code del walmex columnas_a_importar = ['Date', 'PX_OPEN', 'PX_HIGH', 'PX_LOW', 'PX_LAST'] walmex = pd.read_csv(url, skiprows = 6, index_col = 0, parse_dates = True, dayfirst = True, usecols = columnas_a_importar) walmex.rename({'PX_LAST':'Cierre', 'PX_OPEN':'Apertura', 'PX_HIGH':'Maximo', 'PX_LOW':'Minimo'}, axis = 1, inplace = True) orden_columnas = ['Apertura', 'Maximo', 'Minimo', 'Cierre'] walmex = walmex.reindex(columns=orden_columnas) walmex.sort_index(inplace = True) walmex.head() walmex.tail() ###Output _____no_output_____ ###Markdown Crear funciones Las funciones es un bloque de código diseñado para hacer un trabajo específico. Las funciones pueden:* Recibir valores* Tener valores predeterminados *por defalut* para el caso en que no se definan valores* NO RECIBIR VALORES!* Regresar un resultado* No regresar nada ###Code a = 2 b = 3 suma1 = a+b print(suma1) i = 8 j = 10 suma2 = i+j print(suma2) y = 10 z = 20 suma_n = y + z print(suma_n) def funcion_sumar(valor_1, valor_2): suma = valor_1 + valor_2 print(suma) return suma suma_n = funcion_sumar(10, 20) suma_n suma1 = funcion_sumar(100,200) suma2 = funcion_sumar(10,40) suma3 = funcion_sumar(3,3) suma2 suma3 ###Output _____no_output_____ ###Markdown Función para importar datos archivos de Bloomberg ###Code def importar_bloomberg(accion): url = f'http://bit.ly/oncedos-{accion}' columnas_a_importar = ['Date', 'PX_OPEN', 'PX_HIGH', 'PX_LOW', 'PX_LAST'] df = pd.read_csv(url, skiprows = 6, index_col = 0, parse_dates = True, dayfirst = True, usecols = columnas_a_importar) df.rename({'PX_LAST':'Cierre', 'PX_OPEN':'Apertura', 'PX_HIGH':'Maximo', 'PX_LOW':'Minimo'}, axis = 1, inplace = True) orden_columnas = ['Apertura', 'Maximo', 'Minimo', 'Cierre'] df = df.reindex(columns=orden_columnas) df.sort_index(inplace = True) return df ac = importar_bloomberg('ac') ac.tail() alfaa = importar_bloomberg('alfaa') alfaa.head() ###Output _____no_output_____ ###Markdown Hacer librería HERRAMIENTAS FINANCIERASEsta sección lo hicimos en el archivo de python `herramientas_financieras.py` Probar librería HERRAMIENTAS FINANCIERAS en otra libretaEsta sección la hicimos en otra libreta de jupyter `20211102Clase8PruebasLibreria.ipynb` 2.3 Crear columna de retornos diarios$$RetLogaritmico = ln(Precio_n) - ln(Precio_{n-1})$$$$ =ln\frac{Precio_n}{Precio_{n-1}}$$ ###Code walmex.head() import numpy as np walmex['Ret'] = np.log(walmex['Cierre'] / walmex['Cierre'].shift(1)) walmex.head() walmex.tail() walmex.dropna(inplace=True) walmex.head() ###Output _____no_output_____ ###Markdown Retornos en la escala logarítmica ###Code walmex['Ret'].sum() ###Output _____no_output_____ ###Markdown Retornos en la escala números reales ###Code ( walmex['Cierre'].iloc[-1] - walmex['Cierre'].iloc[0] ) / walmex['Cierre'].iloc[0] np.exp(walmex['Ret'].sum()) - 1 ###Output _____no_output_____ ###Markdown 2.4 Graficar 2.4.1 Precio de cierre ###Code walmex['Cierre'].plot(figsize=(12,8), title='Precios de cierre WALMEX'); ###Output _____no_output_____ ###Markdown 2.4.2 Retornos ###Code walmex['Ret'].plot(figsize=(12,8), title='Retornos diarios WALMEX'); ###Output _____no_output_____ ###Markdown 2.4.3 Histograma ###Code walmex['Ret'].hist(figsize=(12,8), bins = 10); walmex['Ret'].plot(kind='hist', figsize=(12,8), bins=18, title='Histograma retornos Walmex'); ###Output _____no_output_____
TradingAI/AI Algorithms in Trading/Lesson 26 - Optimization with Transaction Costs /optimization_with_tcosts.ipynb
###Markdown Optimization with Transaction costsIn this lesson, we’ll show you how to incorporate transaction costs into portfolio optimization. This will give your backtest a more realistic measure of your alpha’s performance. In addition, we’ll show you some additional ways to design your optimization with efficiency in mind. This is really helpful when backtesting, because having reasonably shorter runtimes allows you to test and iterate on your alphas more quickly. ###Code import sys !{sys.executable} -m pip install -r requirements.txt import pandas as pd import numpy as np import matplotlib.pyplot as plt import pickle import gzip import bz2 from statsmodels.formula.api import ols from scipy.stats import gaussian_kde import scipy import scipy.sparse import patsy from statistics import median import datetime ###Output _____no_output_____ ###Markdown Barra dataWe’ll be using factor data that is generated by Barra. This will be good practice because Barra data is used throughout the industry. Note that we've pre-processed the raw barra data files and stored the data into pickle files. The alternative would be to load the original data, and perform the parsing each time. Since parsing and pre-processing takes time, we recommend doing the pre-processing once and saving the pre-processed data for later use in your backtest.Choose the number of years to use for the backtest. The data is available for years 2003 to 2008 inclusive. ###Code barra_dir = '../../data/project_8_barra/' !ls {barra_dir} data = {} for year in [2003]: fil = barra_dir + "pandas-frames." + str(year) + ".pickle" data.update(pickle.load( open( fil, "rb" ) )) covariance = {} for year in [2003]: fil = barra_dir + "covariance." + str(year) + ".pickle" covariance.update(pickle.load( open(fil, "rb" ) )) daily_return = {} for year in [2003, 2004]: fil = barra_dir + "price." + str(year) + ".pickle" daily_return.update(pickle.load( open(fil, "rb" ) )) ###Output _____no_output_____ ###Markdown Notice that the frames variale is a dictionary, where the keys are strings representing each business day. View the Barra dataWe'll take a look at the value stored for a single day (it's a data frame).As a general reminder of best practices, remember to check what unit of measure your data is in. In some cases, the unit of measure isn’t available in the documentation, so you’ll want to inspect the data to see what makes sense.For instance, there are volatility fields that are large enough that we can assume they are in percentage units, as opposed to decimal values. In other cases, when we look at daily volume, we may not have documentation about whether the units are in number of shares or in dollars. One way to find this out is to spot check a single stock on a single day, and cross-reference with another source, such as Bloomberg or Yahoo Finance.Remember to inspect the data before you use it, as it will help you derive more meaningful results in your portfolio optimization, and in your backtest.Remember to inspect the data before you use it, as it will help you derive more meaningful results in your portfolio optimization, and in your backtest.In the exercise, we'll re-scale the data before using it, and there will be comments to point out when we re-scale the data. So don't worry about adjusting anything here, just take a look to get familiar with the data. ###Code data.keys() data['20030102'].head() data['20030102'].shape ###Output _____no_output_____ ###Markdown FactorsNote that the data fields that start with the prefix U-S-F-A-S-T are factor exposures, one column for each factor. We will use some of these as alpha factors, and the rest as risk factors. The reason this makes sense is that, for the time periods in which we’re back-testing, some of these factors were able to produce better than average returns. Barra works with its clients (funds) and gathers information about alphas that worked in the past. These were calculated on historical data to produce the factor exposure data found in the Barra data. ![alt text](./images_optimization/barra_field_factor_exposure.png) FactorsHere's a partial list of the barra factors in our dataset and their definitions. These are collected from documentation by Barra. There are style factors and industry factors. The industry factors will be used as risk factors. You can consider using the style factors as alpha factors. Any factors not used as alpha factors can be included in the risk factors category. Style factors* beta: Describes market risk that cannot be explained by the Country factor. The Beta factor is typically the most important style factor. We calculate Beta by time-series regression of stock excess returns against the market return.* 1 day reversal* dividend yield: Describes differences in stock returns attributable to stock's historical and predicted dividend-to-price ratios.* downside risk (maximum drawdown)* earnings quality: Describes stock return differences due to the accrual components of earnings.* earnings yield: Describes return differences based on a company’s earnings relative to its price. Earnings Yield is considered by many investors to be a strong value signal. The most important descriptor in this factor is the analyst-predicted 12-month earnings-to-price ratio.* growth: Differentiates stocks based on their prospects for sales or earnings growth. The most important descriptor in this factor is the analyst predicted long-term earnings growth. Other descriptors include sales and earnings growth over the previous five years.* leverage: Describes return differences between high and low-leverage stocks. The descriptors within this style factor include market leverage, book leverage, and debt-to-assets ratio.* liquidity: Describes return differences due to relative trading activity. The descriptors for this factor are based on the fraction of total shares outstanding that trade over a recent window.* long-term reversal: Describes common variation in returns related to a long-term (five years ex. recent thirteen months) stock price behavior.* management quality* Mid capitalization: Describes non-linearity in the payoff to the Size factor across the market-cap spectrum. This factor is based on a single raw descriptor: the cube of the Size exposure. However, because this raw descriptor is highly collinear with the Size factor, it is orthogonalized with respect to Size. This procedure does not affect the fit of the model, but does mitigate the confounding effects of collinearity, while preserving an intuitive meaning for the Size factor. As described by Menchero (2010), the Mid Capitalization factor roughly captures the risk of a “barbell portfolio” that is long mid-cap stocks and short small-cap and large-cap stocks.* Momentum – Differentiates stocks based on their performance over the trailing 12 months. When computing Momentum exposures, we exclude the most recent returns in order to avoid the effects of short-term reversal. The Momentum factor is often the second strongest factor in the model, although sometimes it may surpass Beta in importance.* Profitability – Combines profitability measures that characterize efficiency of a firm's operations and total activities.* Residual Volatility – Measures the idiosyncratic volatility anomaly. It has three descriptors: (a) the volatility of daily excess returns, (b) the volatility of daily residual returns, and (c) the cumulative range of the stock over the last 12 months. Since these descriptors tend to be highly collinear with the Beta factor, the Residual Volatility factor is orthogonalized with respect to the Beta and Size factors.* seasonality* sentiment* Size – Represents a strong source of equity return covariance, and captures return differences between large-cap and small-cap stocks. We measure Size by the log of market capitalization.* Short term reversal* Value* Prospect -- is a function of skewness and maximum drawdown.* Management Quality -- is a function of the following: * Asset Growth: Annual reported company assets are regressed against time over the past five fiscal years. The slope coefficient is then divided by the average annual assets to obtain the asset growth. * Issuance Growth Annual reported company number of shares outstanding regressed against time over the past five fiscal years. The slope coefficient is then divided by the average annual number of shares outstanding. * Capital Expenditure Growth: Annual reported company capital expenditures are regressed against time over the past five fiscal years. The slope coefficient is then divided by the average annual capital expenditures to obtain the capital expenditures growth. * Capital Expenditure: The most recent capital expenditures are scaled by the average of capital expenditures over the last five fiscal years. Industry Factors* aerospace and defense* airlines* aluminum and steel* apparel* Automotive* banks* beta (market)* beverage and tobacco* biotech & life science* building products* chemicals* construction & engineering* construction & machinery* construction materials* commercial equipment* computer & electronics* commercial services* industrial conglomerates* containers (forest, paper, & packaging)* distributors* diversified financials* electrical equipment* electrical utility* food & household products & personal* food & staples retailing* gas & multi-utilities* healthcare equipment and services* health services* home building* household durables* industry machinery* non-life insurance* leisure products* leisure services* life insurance* managed healthcare* multi-utilities* oil & gas conversion* oil & gas drilling* oil & gas equipment* oil and gas export* paper* pharmaceuticals* precious metals* personal products* real estate* restaurants* road & rail* semiconductors* semiconductors equipment* software* telecommunications* transportation* wireless* SPTY\* and SPLTY\* are various industries ###Code data['20030102'].columns ###Output _____no_output_____ ###Markdown covariance of factorsLet's look at the covariance of the factors. ###Code covariance.keys() ###Output _____no_output_____ ###Markdown View the data for a single day. Notice that the factors are listed in two columns, followed by the covariance between them. We'll use this data later to create a factor covariance matrix. ###Code covariance['20030102'].head() ###Output _____no_output_____ ###Markdown Daily returns ###Code daily_return.keys() daily_return['20030102'].head() ###Output _____no_output_____ ###Markdown Add date for returnsWe'll be dealing with two different dates; to help us keep track, let's add an additional column in the daily_return dataframes that stores the date of the returns. ###Code tmp_date = '20030102' tmp = daily_return[tmp_date] tmp.head() tmp_n_rows = tmp.shape[0] pd.Series([tmp_date]*tmp_n_rows) tmp['DlyReturnDate'] = pd.Series([tmp_date]*tmp_n_rows) tmp.head() ###Output _____no_output_____ ###Markdown Quiz: add daily return date to each dataframe in daily_return dictionaryName the column `DlyReturnDate`.**Hint**: create a list containing copies of the date, then create a pandas series. ###Code for DlyReturnDate, df in daily_return.items(): # TODO n_rows = df.shape[0] df['DlyReturnDate'] = pd.Series([DlyReturnDate]*n_rows) # check results daily_return['20030102'].head() ###Output _____no_output_____ ###Markdown Adjust dates to account for trade executionThe data stored in `data` and `covariance` are used to choose the optimal portfolio, whereas the data in `daily_return` represents the the returns that the optimized portfolio would realize, but only after we've received the data, then chosen the optimal holdings, and allowed a day to trade into the optimal holdings. In other words, if we use the data from `data` and `covariance` that is collected at the end of Monday, we'll use portfolio optimization to choose the optimal holdings based on this data, perhaps after hours on Monday. Then on Tuesday, we'll have a day to execute trades to adjust the portfolio into the optimized positions. Then on Wednesday, we'll realize the returns using those optimal holdings. ###Code # Example of what we want data_date_l = sorted(data.keys()) return_date_l = sorted(daily_return.keys()) len(data_date_l) len(return_date_l) return_date_l_shifted = return_date_l[2:len(data) + 2] len(return_date_l_shifted) # data date data_date_l[0] # returns date return_date_l_shifted[0] tmp = data['20030102'].merge(daily_return['20030102'], on="Barrid") tmp.head() ###Output _____no_output_____ ###Markdown Merge data and daily returns into single dataframeUse a loop to merge the `data` and `daily_return` tables on the `barrid` column. ###Code frames ={} # TODO dlyreturn_n_days_delay = 2 # TODO date_shifts = zip( sorted(data.keys()), sorted(daily_return.keys())[dlyreturn_n_days_delay:len(data) + dlyreturn_n_days_delay]) # TODO for data_date, price_date in date_shifts: frames[price_date] = data[data_date].merge(daily_return[price_date], on='Barrid') ###Output _____no_output_____ ###Markdown Let's work with a single day's data. Later, we'll put this into a loopNotice how the keys are now dates of the returns. So the earliest date in "frames" dictionary is two business days after the earliest date in "data" dictionary. ###Code frames.keys() df = frames['20030106'] df.head() ###Output _____no_output_____ ###Markdown QuizFilter the stocks so that the estimation universe has stocks with at least 1 billion in market cap. As an aside, it doesn't make much of a difference whether we choose a ">" or ">=", since the threshold we choose is just meant to get a set of relatively liquid assets.**Hint**: use `.copy(deep=True)` to make an independent copy of the data. ###Code # TODO estu = df.loc[df.IssuerMarketCap >= 1e9].copy(deep=True) estu.head() ###Output _____no_output_____ ###Markdown For all the columns in the dataframe, the ones with the prefix "USFAST" are factors. We'll use a helper function to get the list of factors. ###Code def factors_from_names(n): return(list(filter(lambda x: "USFASTD_" in x, n))) all_factors = factors_from_names(list(df)) all_factors ###Output _____no_output_____ ###Markdown factors exposures and factor returnsRecall that a factor's factor return times its factor exposure gives the part of a stock's return that is explained by that factor.The Barra data contains the factor exposure of each factor. We'll use regression to estimate the factor returns of each factor, on each day. The observations will be the cross section of stock factor exposures, as well as the stock returns that are realized two trading days later. Recall from an earlier lesson that this is a cross-sectional regression, because it's a cross section of stocks, for a single time period.$r_{i,t} = \sum_{j=1}^{k} (\beta_{i,j,t-2} \times f_{j,t})$ where $i=1...N$ (N assets), and $j=1...k$ (k factors).In the regression, the factor exposure, $\beta_{i,j,t-2}$ is the independent variable, $r_{i,t}$ is the dependent variable, and the factor return $f_{j,t}$ is the coefficient that we'll estimate. Calculating factor returnsWe'll estimate the factor returns $f_{j,t}$ of our chosen alpha factors, using the daily returns of the stocks $r_{i,t}$, where $i=1...N$ and the factor exposure $\beta_{i,j,t-2}$ of each stock to each factor. Note that we'll use a universe of stocks where the companies have a market capitalization of at least 1 billion. The factor returns estimated would be slightly different depending on which stock universe is chosen, but choosing a market cap of 1 billion or more provides a reasonable estimate of what you'd expect to be tradable. The estimated factor returns would be fairly close to what you'd find if you used the Russell 3000 index as the stock universe. formulaWe'll use a helper function that creates a string that defines which are the independent and dependent variables for a model to use. This string is called a "formula." We'll use this in the regression, and later again when we work with matrices. ###Code def get_formula(factors, Y): L = ["0"] L.extend(factors) return Y + " ~ " + " + ".join(L) form = get_formula(all_factors, "DlyReturn") ###Output _____no_output_____ ###Markdown So, the formula is saying `DlyReturn` is the dependent variable, whereas the `USFAST...` columns are the independent variables. ###Code form ###Output _____no_output_____ ###Markdown QuizRun an ordinary least squares regression[ols documentation](https://www.statsmodels.org/dev/example_formulas.html)Here's an example of the syntax.```ols(formula='y ~ x1 + x2 + x3', data=dataframe)```Note that you're free to choose other regression models, such as ridge, lasso, or elastic net. These may give you slightly different estimations of factor returns, but shouldn't be too different from each other. ###Code # TODO model = ols(formula=form, data=estu) # TODO results = model.fit() ###Output _____no_output_____ ###Markdown Since the factor data that we're using as the independent variables are the factor exposures, the coefficients estimated by the regression are the estimated factor returns. ###Code results.params ###Output _____no_output_____ ###Markdown Quiz: winsorize daily returns before calculating factor returnsWe're going to use regression to estimate the factor returns of all the factors. To avoid using extreme values in the regression, we'll winsorize, or "clip" the returns. We can check the data distribution using a density plot.Note that [numpy.where](https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.where.html) has the form ```numpy.where(, , )``` ###Code def wins(x,wins_lower,wins_upper): #TODO clipped_upper = np.where(x >= wins_upper, wins_upper, x) clipped_both = np.where(clipped_upper <= wins_lower,wins_lower, clipped_upper) return clipped_both ###Output _____no_output_____ ###Markdown A density plot will help us visually check the effect of winsorizing returns. ###Code def density_plot(data): density = gaussian_kde(data) xs = np.linspace(np.min(data),np.max(data),200) density.covariance_factor = lambda : .25 density._compute_covariance() plt.plot(xs,density(xs)) plt.show() # distribution without winsorizing test = frames['20040102'] density_plot(test['DlyReturn']) # distribution after winsorizing test['DlyReturn_wins'] = wins(test['DlyReturn'], wins_lower=-0.1, wins_upper=0.1) density_plot(test['DlyReturn_wins']) ###Output _____no_output_____ ###Markdown QuizPut the factor returns estimation into a function, so that this can be re-used for each day's data. ###Code def estimate_factor_returns(df, wins_lower=-.25, wins_upper=0.25): ## TODO: build estimation universe based on filters estu = df.loc[df.IssuerMarketCap > 1e9].copy(deep=True) ## TODO: winsorize returns for fitting estu['DlyReturn'] = wins(estu['DlyReturn'], wins_lower, wins_upper) ## get a list of all the factors all_factors = factors_from_names(list(df)) ## define a 'formula' for the regression form = get_formula(all_factors, "DlyReturn") ## create the OLS model, passing in the formula and the estimation universe dataframe model = ols(formula=form, data=estu) ## return the estimated coefficients results = model.fit() return(results.params) ###Output _____no_output_____ ###Markdown Choose alpha factorsWe'll choose the 1 day reversal, earnings yield, value, and sentiment factors as alpha factors. We'll calculate the factor returns of these alpha factors to see how they performed. ###Code alpha_factors = ["USFASTD_1DREVRSL", "USFASTD_EARNYILD", "USFASTD_VALUE", "USFASTD_SENTMT"] print(alpha_factors) ###Output ['USFASTD_1DREVRSL', 'USFASTD_EARNYILD', 'USFASTD_VALUE', 'USFASTD_SENTMT'] ###Markdown Quiz: estimate factor returns of alpha factorsLoop through each day, and estimate the factors returns of each factor, that date, in the `frames` dictionary. This may take a minute or more to run per year of data used. ###Code facret = {} for date in frames: # TODO: store factor returns as key-value pairs in a dictionary facret[date] = estimate_factor_returns(frames[date]) type(facret['20040102']) facret['20040102'].head() ###Output _____no_output_____ ###Markdown put the factor returns into a dataframeThe pandas series are stored inside a dictionary. We'll put the factor returns into a dataframe where the rows are the dates and the columns are the factor returns (one column for each factor).First, let's get a list of dates, as Timestamp objects. We'll use [pandas.to_datetime](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html) ###Code # example of how to convert the keys of the dataframe into Timestamp objects pd.to_datetime('20040102', format='%Y%m%d') ###Output _____no_output_____ ###Markdown QuizStore the timestamp objects in a list (can use a list comprehension, or for loop). ###Code # TODO dates_unsorted = [pd.to_datetime(date, format='%Y%m%d') for date in frames.keys()] # sort the dates in ascending order my_dates = sorted(dates_unsorted) # We'll make an empty dataframe with the dates set as the row index. facret_df = pd.DataFrame(index = my_dates) facret_df.head() ###Output _____no_output_____ ###Markdown The rows are the dates. The columns will be the factor returns. To convert from Timestamp objects back into a string, we can use [Timestamp.strftime('%Y%m%d')](https://www.programiz.com/python-programming/datetime/strftime). ###Code ## example usage of Timestamp.strftime('%Y%m%d') my_dates[0].strftime('%Y%m%d') ###Output _____no_output_____ ###Markdown QuizFor each date, and for each factor return, get the value from the dictionary and put it into the dataframe.We can use [pandas.DataFrame.at¶](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.at.html), ```DataFrame.at[,] = ``` ###Code # TODO: for each date (rows), and for each factor (columns), # store factor return in the dataframe for dt in my_dates: for alp in alpha_factors: facret_df.at[dt, alp] = facret[dt.strftime('%Y%m%d')][alp] ###Output _____no_output_____ ###Markdown Portfolio optimization for a single periodWhen we get to the project, we'll want to define the portfolio optimization within a function. For now, let's walk through the steps we'll take in separate cells, so that we can see what's going on. The optimization will want to know about the prior trading day's portfolio holdings, also called holdings. The previous day's holdings will be used to estimate the size of the trades due to position changes, which in turn helps us estimate transaction costs. We'll start with an initial holding of zero for a single stock. The reason we'll use a single stock is that the estimation universe chosen on each day will include all stocks that have holdings on the previous day. So we want to keep this list small when we first start out, else we'll keep many stocks that may fall below the 1 billion market cap threshold, just because they were chosen in the initialization of the backtest.We'll want to choose a stock that is likely to satisfy the 1 billion market cap threshold on any day. So let's choose the stock with the largest market cap. ###Code # we're going to set a single barra id to have a zero portfolio holding, # so let's pick any barra id of the stock with the largest issuer market cap estu.sort_values('IssuerMarketCap',ascending=False)[['Barrid','IssuerMarketCap']].head() ###Output _____no_output_____ ###Markdown Quiz: Intialize previous holdings dataframeCreate a new dataframe and initialize it with a dictionary, where the key is "Barrid" followed by a value that is a pandas.Series containing the barra id of the largest market cap in the stock universe. Also set another key value pair to "x.opt.previous" and the value is set to a pandas.Series with the value 0. ###Code # TODO # create a dataframe of previous holdings, # initializing a single stock (barra id) to zero portfolio holding previous_holdings = pd.DataFrame(data = {"Barrid" : pd.Series( ["USA0001"]), "x.opt.previous" : pd.Series(0)}) previous_holdings ###Output _____no_output_____ ###Markdown Get a single day's data to be used for the portfolio optimization. ###Code dt = my_dates[0] date = dt.strftime('%Y%m%d') print(date) df = frames[date] df.head() ###Output 20030106 ###Markdown Let's add the previous holdings column to the dataframe ###Code ## merge previous portfolio holdings df = df.merge(previous_holdings, how = 'left', on = 'Barrid') df.head() ###Output _____no_output_____ ###Markdown Clean missing and zero values.First replace missing values with zero. ###Code def na2z(x): return(np.nan_to_num(x)) def names_numeric_columns(df): return(df.select_dtypes(include=[np.number]).columns.tolist()) def clean_nas(df): for x in names_numeric_columns(df): df[x] = na2z(df[x]) return(df) df = clean_nas(df) ###Output _____no_output_____ ###Markdown Quiz: Clean specific riskBarra calculates specific risk for each asset. If the value in the data is zero, this may be due to missing data rather than the specific risk actually being zero. So we'll set zero values to the median, to make sure our model is more realistic. ###Code # TODO: if SpecRisk is zero, set it to median df.loc[df['SpecRisk'] == 0]['SpecRisk'] = median(df['SpecRisk']) ###Output _____no_output_____ ###Markdown universeWe'll look at stocks that are 1 billion in market cap or greater. An important point here is that we'll need to account for stocks that are already in our portfolio, even if the market cap of the stock is no longer 1 billion on the current day. Quiz: think about what would happen if we had an existing position in a stock, then the market cap fell below the threshold and the stock was excluded from the stock universe. What would happen to the position on that stock? AnswerThe stock would not be included in the optimization, which means it would be given a zero position. So this effectively says to sell all holdings in the asset once it falls below the market cap threshold. That's not what we want to do. Modify the code to account for the prior day's positions. ###Code ## TODO: modify the given code to include the prior day's assets universe = df.loc[(df['IssuerMarketCap'] >= 1e9)].copy() universe.head() ###Output _____no_output_____ ###Markdown Quiz: Nothing here should be allowed to look at returns when forming the portfolio.Make this impossible by removing the Daily returns data from the dataframe. Drop the DlyReturn field from the dataframe. ###Code # TODO: drop DlyReturn column universe = df.loc[(df['IssuerMarketCap'] >= 1e9) | (abs(df['x.opt.previous']) > 0)].copy() ## this will extract all of the factors, including the alphas # list(universe) gets a list of the column names of the dataframe all_factors = factors_from_names(list(universe)) all_factors ###Output _____no_output_____ ###Markdown Alpha factorsJust a reminder that we chose four of these factors that represent previously effective alpha factors. Since these factors became well known over time, they were added to the Barra data set. For the time frame that we're running the back-test, these were effective alpha factors. ###Code alpha_factors #4 alpha factors ###Output _____no_output_____ ###Markdown Quiz: risk factorsThe risk factors we'll use are all the factors that are not alpha factors. Complete the setdiff function so that it takes a superset, a subset, and returns the difference as a set.diff= SuperSet \ Subset ###Code def setdiff(superset, subset): # TODO s = set(subset) diffset = [x for x in superset if x not in s] return(diffset) risk_factors = setdiff(all_factors, alpha_factors) # 77 risk factors len(risk_factors) ###Output _____no_output_____ ###Markdown Save initial holdings in a variable for easier access. We'll later use it in matrix multiplications, so let's convert this to a numpy array. We'll also use another variable to represent the current holdings, which are to be run through the optimizer. We'll set this to be a copy of the previous holdings. Later the optimizer will continually update this to optimize the objective function. ###Code ## initial holdings (before optimization) # optimal holding from prior day h0 = np.asarray( universe['x.opt.previous'] ) h = h0.copy() ###Output _____no_output_____ ###Markdown Matrix of Risk Factor Exposures $\textbf{B}$The dataframe contains several columns that we'll use as risk factors exposures. Extract these and put them into a matrix.The data, such as industry category, are already one-hot encoded, but if this were not the case, then using `patsy.dmatrices` would help, as this function extracts categories and performs the one-hot encoding. We'll practice using this package, as you may find it useful with future data sets. You could also store the factors in a dataframe if you prefer to avoid using patsy.dmatrices. How to use patsy.dmatricespatsy.dmatrices takes in a formula and the dataframe. The formula tells the function which columns to take. The formula will look something like this: `SpecRisk ~ 0 + USFASTD_AERODEF + USFASTD_AIRLINES + ...` where the variable to the left of the ~ is the "dependent variable" and the others to the right are the independent variables (as if we were preparing data to be fit to a model).This just means that the pasty.dmatrices function will return two matrix variables, one that contains the single column for the dependent variable `outcome`, and the independent variable columns are stored in a matrix `predictors`.The `predictors` matrix will contain the matrix of risk factors, which is what we want. We don't actually need the `outcome` matrix; it's just created because that's the way patsy.dmatrices works. ###Code # Note that we chose "SpecRisk" simply because it's not one of the USFAST factors. # it will be discarded in the next step. formula = get_formula(risk_factors, "SpecRisk") formula # the factors will be in the second returned variable (predictors) # the outcome variable contains the SpecRisk data, which we don't actually need here outcome, predictors = patsy.dmatrices(formula,universe) ###Output _____no_output_____ ###Markdown `predictors` contains the factor exposures of each asset to each factor. ###Code predictors.shape ###Output _____no_output_____ ###Markdown Factor exposure matrix $\textbf{B}$Remember, the factor exposure matrix has the exposure of each asset to each factor. Thee number of rows is number of assets, and number of columns is the number of factors. ###Code def NROW(x): return(np.shape(x)[0]) def NCOL(x): return(np.shape(x)[1]) ###Output _____no_output_____ ###Markdown QuizSet the factor exposure matrix and its transpose, using one of the outputs from calling patsy.dmatrices ###Code ## TODO: risk exposure matrix: B = predictors BT = B.transpose() k = NCOL(B) #number of factors (77) n = NROW(B) #number of assets (2000+) ###Output _____no_output_____ ###Markdown Factor covariance matrix $\textbf{F}$We can improve on the factor covariance matrix by reducing noise and also increasing computational efficiency.If we have, 70 risk factors in our risk model, then the covariance matrix of factors is a 70 by 70 square matrix. The diagonal contains the variances of each factor, while the off-diagonals contain the pairwise covariances of two different risk factors. In general, it’s good to have a healthy suspicion of correlations and covariances, and to ask if correlation data adds information or just more noise. One way to be conservative about the information in a covariance matrix is to shrink the covariances, or even reduce them to zero. In other words, we could keep just the variances along the diagonal, and set the covariances in the off-diagonals to zero. In the case where we’re using the covariance matrix in a risk factor model, there’s also some additional intuition for why we can try using just the variances, and discard the covariances. The goal of the optimizer is to reduce the portfolio’s exposure to these risk factors. So if the optimizer reduces the portfolio’s exposure to risk factor “one”, and also reduces its exposure to risk factor “two”, then it’s less important to know exactly how factor one varies with factor two.You may wonder what are the benefits of throwing away the information about the covariances. In addition to making your model more conservative, and limiting possible noise in your data, a diagonal matrix also makes matrix operations more efficient. This theme of computational efficiency is one that you’ll come across in many use cases, including backtesting. Backtesting is a computationally and time-intensive process, so the more efficient you can make it, the more quickly you can test your alphas, and iterate to make improvements. Create Factor covariance matrix $\textbf{F}$You can try getting all covariances into the matrix. Notice that we'll run into some issues where the covariance data doesn't exist.One important point to remember is that we need to order the factors in the covariance matrix F so that they match up with the order of the factors in the factor exposures matrix B.Note that covariance data is in percentage units squared, so to use decimals, so we'll rescale it to convert it to decimal. ###Code ## With all covariances def colnames(X): if(type(X) == patsy.design_info.DesignMatrix): return(X.design_info.column_names) if(type(X) == pandas.core.frame.DataFrame): return(X.columns.tolist()) return(None) ## extract a diagonal element from the factor covariance matrix def get_cov_version1(cv, factor1, factor2): try: return(cv.loc[(cv.Factor1==factor1) & (cv.Factor2==factor2),"VarCovar"].iloc[0]) except: print(f"didn't find covariance for: factor 1: {factor1} factor2: {factor2}") return 0 def diagonal_factor_cov_version1(date, B): """ Notice that we'll use the order of column names of the factor exposure matrix to set the order of factors in the factor covariance matrix """ cv = covariance[date] k = NCOL(B) Fm = np.zeros([k,k]) for i in range(0,k): for j in range(0,k): fac1 = colnames(B)[i] fac2 = colnames(B)[j] # Convert from percentage units squared to decimal Fm[i,j] = (0.01**2) * get_cov_version1(cv, fac1, fac2) return(Fm) ###Output _____no_output_____ ###Markdown Here's an example where the two factors don't have covariance data for the date selected ###Code cv = covariance['20031211'] cv.loc[(cv.Factor1=='USFASTD_AERODEF') & (cv.Factor2=='USFASTD_ALUMSTEL')] ###Output _____no_output_____ ###Markdown We can see where all the factor covariances aren't found in the data. Which date?Recall that there's a DataDate column and DlyReturnDate column in the dataframe. We're going to use a date to access the covariance data. Which date should we use? ###Code df.head() ###Output _____no_output_____ ###Markdown Answer here QuizChoose the correct date, then use the `diagonal_factor_cov_version1` to get the factor covariance matrix of that date. ###Code # TODO date = str(int(universe['DataDate'][1])) print(date, end =" ") F_version1 = diagonal_factor_cov_version1(date, B) ###Output 20030102 didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_ALUMSTEL didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_BETA didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_CHEM didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_CNSTMATL didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_CONTAINR didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_DIVYILD didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_DWNRISK didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_EARNQLTY didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_GROWTH didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_INDMOM didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_LEVERAGE didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_LIQUIDTY didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_LTREVRSL didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_MGMTQLTY didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_MIDCAP didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_MOMENTUM didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_OILGSCON didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_OILGSDRL didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_OILGSEQP didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_OILGSEXP didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_PAPER didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_PRECMTLS didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_PROFIT didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_PROSPECT didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_RESVOL didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_SEASON didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_SIZE didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_SPTYCHEM didn't find covariance for: factor 1: USFASTD_AERODEF factor2: USFASTD_STREVRSL didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_AERODEF didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_ALUMSTEL didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_BETA didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_BLDGPROD didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_CHEM didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_CNSTENG didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_CNSTMACH didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_CNSTMATL didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_COMSVCS didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_CONGLOM didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_CONTAINR didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_DIVYILD didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_DWNRISK didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_EARNQLTY didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_ELECEQP didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_GROWTH didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_INDMACH didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_INDMOM didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_LEVERAGE didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_LIQUIDTY didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_LTREVRSL didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_MGMTQLTY didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_MIDCAP didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_MOMENTUM didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_OILGSCON didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_OILGSDRL didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_OILGSEQP didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_OILGSEXP didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_PAPER didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_PRECMTLS didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_PROFIT didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_PROSPECT didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_RESVOL didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_SEASON didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_SIZE didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_SPTYCHEM didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_STREVRSL didn't find covariance for: factor 1: USFASTD_AIRLINES factor2: USFASTD_TRADECO didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_BETA didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_CHEM didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_CNSTMATL didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_CONTAINR didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_DIVYILD didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_DWNRISK didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_EARNQLTY didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_GROWTH didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_INDMOM didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_LEVERAGE didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_LIQUIDTY didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_LTREVRSL didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_MGMTQLTY didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_MIDCAP didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_MOMENTUM didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_OILGSCON didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_OILGSDRL didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_OILGSEQP didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_OILGSEXP didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_PAPER didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_PROFIT didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_PROSPECT didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_RESVOL didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_SEASON didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_SIZE didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_SPTYCHEM didn't find covariance for: factor 1: USFASTD_ALUMSTEL factor2: USFASTD_STREVRSL didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_AERODEF didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_AIRLINES didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_ALUMSTEL didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_AUTO didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_BETA didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_BLDGPROD didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_CHEM didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_CNSTENG didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_CNSTMACH didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_CNSTMATL didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_COMSVCS didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_CONGLOM didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_CONTAINR didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_DISTRIB didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_DIVYILD didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_DWNRISK didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_EARNQLTY didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_ELECEQP didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_GROWTH didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_HOMEBLDG didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_HOUSEDUR didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_INDMACH didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_INDMOM didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_LEISPROD didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_LEISSVCS didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_LEVERAGE didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_LIQUIDTY didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_LTREVRSL didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_MEDIA didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_MGMTQLTY didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_MIDCAP didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_MOMENTUM didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_OILGSCON didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_OILGSDRL didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_OILGSEQP didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_OILGSEXP didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_PAPER didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_PRECMTLS didn't find covariance for: factor 1: USFASTD_APPAREL factor2: USFASTD_PROFIT ###Markdown Quiz: Create matrix of factor variancesJust use the factor variances and set the off diagonal covariances to zero. ###Code def colnames(X): if(type(X) == patsy.design_info.DesignMatrix): return(X.design_info.column_names) if(type(X) == pandas.core.frame.DataFrame): return(X.columns.tolist()) return(None) ## extract a diagonal element from the factor covariance matrix def get_var(cv, factor): # TODO return(cv.loc[(cv.Factor1==factor) & (cv.Factor2==factor),"VarCovar"].iloc[0]) def diagonal_factor_cov(date, B): """ Notice that we'll use the order of column names of the factor exposure matrix to set the order of factors in the factor covariance matrix """ # TODO: set the variances only cv = covariance[date] k = NCOL(B) Fm = np.zeros([k,k]) for j in range(0,k): fac = colnames(B)[j] Fm[j,j] = (0.01**2) * get_var(cv, fac) return(Fm) ## factor variances # gets factor vars into diagonal matrix # takes B to know column names of B; F will be multipled by B later # F is square; so row and col names must match column names of B. F = diagonal_factor_cov(date, B) F.shape ###Output _____no_output_____ ###Markdown Note how the off diagonals are all set to zero. alpha combinationAs a simple alpha combination, combine the alphas with equal weight. In the project, you're welcome to try other ways to combine the alphas. For example, you could calculate some metric for each factor, which indicates which factor should be given more or less weight. Scale factor exposures Note that the terms that we're calculating for the objective function will be in dollar units. So the expected return $-\alpha^T h$ will be in dollar units. The $h$ vector of portfolio holdings will be in dollar units. The vector of alpha factor exposures $\alpha$ will represent the percent change expected for each stock. Based on the ranges of values in the factor exposure data, which are mostly between -5 and +5 and centered at zero, **we'll make an assumption that a factor exposure of 1 maps to 1 basis point of daily return on that stock.**So we'll convert the factor values into decimals: 1 factor exposure value $\rightarrow \frac{1}{10,000}$ in daily returns. In other words, we'll rescale the alpha factors by dividing by 10,000.This is to make the term representing the portfolio's expected return $\alpha^T h$ be scaled so that it represents dollar units. ###Code alpha_factors def model_matrix(formula, data): outcome, predictors = patsy.dmatrices(formula, data) return(predictors) ## matrix of alpha factors B_alpha = model_matrix(get_formula(alpha_factors, "SpecRisk"), data = universe) B_alpha ###Output _____no_output_____ ###Markdown QuizSum across the rows, then re-scale so that the expression $\mathbf{\alpha}^T \mathbf{h}$ is in dollar units. ###Code def rowSums(m): # TODO return(np.sum(m, axis=1)) # TODO scale = 1e-4 alpha_vec = scale * rowSums(B_alpha) #sum across rows (collapse 4 columns into one) alpha_vec.shape ###Output _____no_output_____ ###Markdown Original method of calculating common risk termRecall that the common risk term looks like this:$\textbf{h}^T\textbf{BFB}^T\textbf{h}$Where h is the vector of portfolio holdings, B is the factor exposure matrix, and F is the factor covariance matrix.We'll walk through this calculation to show how it forms an N by N matrix, which is computationally expensive, and may lead to memory overflow for large values of N. ###Code np.dot( np.dot( h.T, np.matmul( np.matmul(B,F),BT) ), h) tmp = np.matmul(B,F) tmp.shape # this makes an N by matrix (large) tmp = np.matmul(tmp,BT) tmp.shape tmp = np.matmul(h.T,tmp) tmp.shape tmp = np.dot(tmp,h) tmp.shape tmp ###Output _____no_output_____ ###Markdown Efficiently calculate common risk term (avoid N by N matrix)Calculate the portfolio risk that is attributable to the risk factors:$\mathbf{h}^T\mathbf{BFB}^T\mathbf{h}$Note that this can become computationally infeasible and/or slow. Use matrix factorization and carefully choose the order of matrix multiplications to avoid creating an N by N matrix. square root of a matrix.We can find a matrix $\mathbf{B}$ that's the matrix square root of another matrix $\mathbf{A}$, which means that if we matrix multiply $\mathbf{BB}$, we'd get back to the original matrix $\mathbf{A}$.Find $\mathbf{Q}$ such that $\mathbf{Q}^T\mathbf{Q}$ is the same as $\mathbf{BFB}^T$. Let's let $\mathbf{G}$ denote the square root of matrix $\mathbf{F}$, so that $\mathbf{GG} = \mathbf{F}$.Then the expression for the covariance matrix of assets, $\mathbf{BFB}^T$, can be written as $\mathbf{BGGB}^T$. Let's let $\mathbf{Q}=\mathbf{GB}^T$ and let $\mathbf{Q}^T=\mathbf{BG}$, which means we can rewrite $\mathbf{BGGB}^T = \mathbf{Q}^T\mathbf{Q}$, and the common risk term is $\mathbf{h}^T\mathbf{Q}^T\mathbf{Qh}$Also, note that we don't have to calculate $\mathbf{BFB}^T$ explicitly, because the actual value we wish to calculate in the objective function will apply the holdings $\mathbf{h}$ to the covariance matrix of assets. Quiz: matrix square root of FWe'll call this square root matrix $\mathbf{G}$Use [scipy.linalg.sqrtm](https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.linalg.sqrtm.html) ###Code # TODO G = scipy.linalg.sqrtm(F) G.shape ###Output _____no_output_____ ###Markdown Double check that multiplying the square root matrix to itself returns us back to the original matrix of factor variances. ###Code np.matmul(G,G) - F ###Output _____no_output_____ ###Markdown Quiz: calculate $\textbf{Q}$ and $\textbf{Q}^T$ ###Code # TODO # Q = GB' # Q should be a short and wide matrix Q = np.matmul(G, BT) Q.shape # TODO # Q' = BG # Q should be a tall and narrow matrix QT = np.matmul(B,G) QT.shape # notice we could also use the transpose of Q to get Q' QT - Q.transpose() ###Output _____no_output_____ ###Markdown Quiz: Include portfolio holdingsSo the original formula of $h^TBFB^Th$ became $h^TBGGB^Th$, where $GG = F$. And then, if we let $Q^T=BG$ and $Q = GB^T$: $h^TQ^TQh$Let $R = Q h$ and $R^T = h^T Q^T$: The risk term becomes: $R^TR$, where $R^T=h^TQ$ and $R=Q^Th$So an important point here is that we don't want to multiply $Q^TQ$ itself, because this creates the large N by N matrix. We want to multiply $h^TQ^T$ and $Qh$ separately, creating vectors of length k (k is number of risk factors). ###Code # TODO # R = Qh R = np.matmul(Q, h) R.shape # TODO # R' = Q'h' RT = np.matmul(h.T,QT) RT.shape ###Output _____no_output_____ ###Markdown Notice how we avoided creating a full N by N matrixAlso, notice that if we have Q, we can take its transpose to get $Q^T$ instead of doing the matrix multiplication. Similarly, if we have R, which is a vector, we notice that $R^TR$ is the same as taking the dot product. In other words, it's squaring each element in the vector R, and adding up all the squared values.$R^TR = \sum_{i}^{k}(r_i^2)$ Quiz: Put it all together: calculate common risk term efficiently ###Code ## TODO: common risk term in term # TODO: calculate square root of F G = scipy.linalg.sqrtm(F) # TODO: calculate Q Q = np.matmul(G, BT) # TODO: calculate R R = np.matmul(Q, h) # TODO: calculate common risk term common_risk = np.sum( R ** 2) ###Output _____no_output_____ ###Markdown Specific Risk termThe portfolio's variance that is specific to each asset is found by combining the holdings with the specific variance matrix: $h^TSh$, where $h^T$ is a 1 by N vector, S is an N by N matrix, and h is an N by 1 vector.Recall that S is a diagonal matrix, so all the off-diagonals are zero. So instead of doing the matrix multiplication, we could save computation by working with the vector containing the diagonal values.$h^TSh = \sum_i^{N}(h_i^2 \times S_i)$ because $S$ is a diagonal matrix. ###Code ## check the unit of measure of SpecRisk # Notice that these are in percent; multiply by .01 to get them back to decimals.aa universe['SpecRisk'][0:2] ###Output _____no_output_____ ###Markdown Quiz: Specific Risk termGiven specific risk (volatility), calculate specific variance. First re-scale the specific risk data so that it's in decimal instead of percent. ###Code ## TODO: specific variance : rescale it and then square to get specific variance specVar = (0.01 * universe['SpecRisk']) ** 2 # TODO: specific risk term (include holdings) spec_risk_term = np.dot(specVar**2, specVar) ###Output _____no_output_____ ###Markdown Maximize portfolio returnsSince the alpha vector $\mathbf{\alpha}$ is supposed to be indicative of future asset returns, when we look at a portfolio of assets, the weighted sum of these alphas $\mathbf{\alpha}^T \mathbf{h}$ is predictive of the portfolio's future returns. We want to maximize the portfolio's expected future returns, so we want to minimize the negative of portfolio's expected returns $-\mathbf{\alpha}^T \mathbf{h}$ ###Code ## TODO expected_return = np.dot(specVar, alpha_vec) ###Output _____no_output_____ ###Markdown Linear price impact of tradingAssume transaction cost is linearly related to the trade size as a fraction of the average daily volume. Since we won't know the actual daily volume until the day that we're executing, we want to use past data as an estimate for future daily volume. This would be kind of noisy if we simply use the prior day's daily volume, so we'd prefer a more stable estimate like a 30 day rolling average.A commonly used **estimate for linear market impact is that if a trade size is 1% of the ADV, this moves the price by 10 basis points (1/10,000).**$Trade size_{i,t}$ is the fraction of your trade relative to the average dollar volume estimated for that stock, for that day. $Trade_{i,t}$ = dollar amount to trade = $h_{t} - h_{t-1}$, which is the new holding of the asset minus the previous holding.$ADV_{i,t}$: (average dollar volume) is total dollar amount expected to be traded, based on a moving average of historical daily volume.$TradeSize_{i,t} = \frac{Trade_{i,t}}{ADV_{i,t}}$: The size of the trade relative to the estimated daily volume.$\% \Delta Price_{i,t}$ = price change due to trading, as a fraction of the original price (it's a percent change). We'll write out the ratio: change in price divided by the trade size.$ \frac{\% \Delta price_{i,t}}{TradeSize_{i,t}} = \frac{10 bps}{1\%}$ $ \frac{\% \Delta price_{i,t}}{TradeSize_{i,t}} = \frac{10/10^4}{1/100}$$ \frac{\% \Delta price_{i,t}}{TradeSize_{i,t}} = \frac{10^{-3}}{10^{-2}}$$ \frac{\% \Delta price_{i,t}}{TradeSize_{i,t}} = 10^{-1}$Now we'll move things around to solve for the change in price.$\% \Delta price_{i,t} = 10^{-1} \times TradeSize_{i,t}$We defined TradeSize to be the Trade divided by ADV.$\% \Delta price_{i,t} = 10^{-1} \times \frac{Trade_{i,t}}{ADV_{i,t}}$Note that Trade is the current position minus the prior day's position$\% \Delta price_{i,t} = 10^{-1} \times \frac{h_{i,t} - h_{i,t-1}}{ADV_{i,t}}$For convenience, we'll combine the constant $10^{-1}$ and $\frac{1}{ADV_{i}}$ and call it lambda $\lambda_{i}$$\% \Delta price_{i,t} = \lambda_{i,t} \times (h_{i,t} - h_{i,t-1})$ where $\lambda_{i,t} = 10^{-1}\times \frac{1}{ADV_{i,t}} = \frac{1}{10 \times ADV_{i,t}}$ Note that since we're dividing by $ADV_{i,t}$, we'll want to handle cases when $ADV_{i,t}$ is missing or zero. In those instances, we can set $ADV_{i,t}$ to a small positive number, such as 10,000, which, in practice assumes that the stock is illiquid.Represent the market impact as $\Delta price_{i} = \lambda_{i} (h_{i,t} - h_{i,t-1})$. $\lambda_{i}$ incorporates the $ADV_{i,t}$. Review the lessons to see how to do this.Note that since we're dividing by $ADV_{i,t}$, we'll want to handle cases when $ADV_{i,t}$ is missing or zero. In those instances, we can set $ADV_{i,t}$ to a small positive number, such as 10,000, which, in practice assumes that the stock is illiquid. QuizIf the ADV field is missing or zero, set it to 10,000. ###Code # TODO: if missing, set to 10000 universe.loc[np.isnan(universe['ADTCA_30']), 'ADTCA_30'] = 1.0e4 ## assume illiquid if no volume information # TODO: if zero, set to 10000 universe.loc[universe['ADTCA_30'] == 0, 'ADTCA_30'] = 1.0e4 ## assume illiquid if no volume information ###Output _____no_output_____ ###Markdown Quiz: calculate Lambda ###Code # TODO adv = universe['ADTCA_30'] Lambda = 0.1 / adv ###Output _____no_output_____ ###Markdown Quiz: transaction cost termTransaction cost is change in price times dollar amount traded. For a single asset "i":$tcost_{i,t} = (\% \Delta price_{i,t}) \times (DollarsTraded_{i,t})$$tcost_{i,t} = (\lambda_{i,t} \times (h_{i,t} - h_{i,t-1}) ) \times (h_{i,t} - h_{i,t-1})$Notice that we can simplify the notation so it looks like this:$tcost_{i,t} = \lambda_{i,t} \times (h_{i,t} - h_{i,t-1})^2$The transaction cost term to be minimized (for all assets) is:$tcost_{t} = \sum_i^{N} \lambda_{i,t} (h_{i,t} - h_{i,t-1})^2$ where $\lambda_{i,t} = \frac{1}{10\times ADV_{i,t}}$For matrix notation, we'll use a capital Lambda, $\Lambda_{t}$, instead of the lowercase lambda $\lambda_{i,t}$.$tcost_{t} = (\mathbf{h}_{t} - \mathbf{h}_{t-1})^T \mathbf{\Lambda}_t (\mathbf{h}_{t} - \mathbf{h}_{t-1})$Note that we'll pass in a vector of holdings as a numpy array. For practice, we'll use the h variable that is initialized to zero. ###Code # TODO tcost = np.dot( (h - h0) ** 2, Lambda) ###Output _____no_output_____ ###Markdown objective functionCombine the common risk, idiosyncratic risk, transaction costs and expected portfolio return into the objective function. Put this inside a function.Objective function is: factor risk + idiosyncratic risk - expected portfolio return + transaction costs $f(\mathbf{h}) = \frac{1}{2}\kappa \mathbf{h}_t^T\mathbf{Q}^T\mathbf{Q}\mathbf{h}_t + \frac{1}{2} \kappa \mathbf{h}_t^T \mathbf{S} \mathbf{h}_t - \mathbf{\alpha}^T \mathbf{h}_t + (\mathbf{h}_{t} - \mathbf{h}_{t-1})^T \mathbf{\Lambda} (\mathbf{h}_{t} - \mathbf{h}_{t-1})$ Risk Aversion $\kappa$The risk aversion term is set to target a particular gross market value (GMV), or to target a desired volatility. In our case, we tried a few values of the risk aversion term, ran the backtest, and calculated the GMV. Ideally, a quant who is just starting out may have a targeted GMV of 50 million. A risk aversion term of $10^{-6}$ gets the GMV to be in the tens of millions. A higher risk aversion term would decrease the GMV, and a lower risk aversion term would increase the GMV, and also the risk. Note that this isn't necessarily a linear mapping, so in practice, you'll try different values and check the results.Also, in practice, you'd normally keep the risk aversion term constant, unless your fund is accepting more investor cash, or handling redemptions. In those instances, the fund size itself changes, so the targeted GMV also changes. Therefore, we'd adjust the risk aversion term to adjust for the desired GMV. Also, note that we would keep this risk aversion term constant, and not adjust it on a daily basis. Adjusting the risk aversion term too often would result in unecessary trading that isn't informed by the alphas. QuizAn important point is to think about what matrices can be multiplied independently of the vector of asset holdings, because those can be done once outside of the objective function. The rest of the objective function that depends on the holdings vector will be evaluated inside the objective function multiple times by the optimizer, as it searches for the optimal holdings. For instance, $\mathbf{h}^T\mathbf{BFB}^T\mathbf{h}$ became $\mathbf{h}^T\mathbf{BGGB}^T\mathbf{h}$, where $\mathbf{GG} = \mathbf{F}$. And then, if we let $\mathbf{Q}^T=\mathbf{BG}$ and $\mathbf{Q} = \mathbf{GB}^T$: $\mathbf{h}^T\mathbf{Q}^T\mathbf{Qh}$Let $\mathbf{R} = \mathbf{Q h}$ and $\mathbf{R}^T = \mathbf{h}^T \mathbf{Q}^T$: The risk term becomes: $\mathbf{R}^T\mathbf{R}$, where $\mathbf{R}^T=\mathbf{h}^T\mathbf{Q}$ and $\mathbf{R}=\mathbf{Q}^T\mathbf{h}$* Can we pre-compute Q outside of the objective function? * Can we pre-compute R outside of the objective function? AnswerQ doesn't depend on h, the holdings vector, so it can be pre-computed once outside of the objective function.R is created using h, the holdings vector. This should be computed each time the objective function is called, not pre-computed beforehand. Risk Aversion parameterThe risk aversion term is set to target a particular gross market value (GMV), or to target a desired volatility. The gross market value is the dollar value of the absolute value of the long and short positions.$ GMV = \sum_i^N(|h_{i,t}|)$When we think about what it means to take more risk when investing, taking bigger bets with more money is a way to take on more risk. So the risk aversion term controls how much risk we take by controlling the dollar amount of our positions, which is the gross market value.In our case, we tried a few values of the risk aversion term, ran the backtest, and calculated the GMV. Ideally, a quant who is just starting out may have a targeted book size of 50 million. In other words, they try to keep their GMV around 50 million. A risk aversion term of $10^{-6}$ gets the GMV to be in the tens of millions. A higher risk aversion term would decrease the GMV, and a lower risk aversion term would increase the GMV, and also the risk. Note that this isn't necessarily a linear mapping, so in practice, you'll try different values and check the results.Also, in practice, you'd normally keep the risk aversion term constant, unless your fund is accepting more investor cash, or handling redemptions. In those instances, the fund size itself changes, so the targeted GMV also changes. Therefore, we'd adjust the risk aversion term to adjust for the desired GMV. Also, note that we would keep this risk aversion term constant, and not adjust it on a daily basis. Adjusting the risk aversion term too often would result in unnecessary trading that isn't informed by the alphas. ###Code ## Risk aversion risk_aversion=1.0e-6 ###Output _____no_output_____ ###Markdown Quiz: define objective functionCombine the common risk, idiosyncratic risk, transaction costs and expected portfolio return into the objective function. Put this inside a function.Objective function is: factor risk + idiosyncratic risk - expected portfolio return + transaction costs $f(\mathbf{h}) = \frac{1}{2}\kappa \mathbf{h}_t^T\mathbf{Q}^T\mathbf{Q}\mathbf{h}_t + \frac{1}{2} \kappa \mathbf{h}_t^T \mathbf{S} \mathbf{h}_t - \mathbf{\alpha}^T \mathbf{h}_t + (\mathbf{h}_{t} - \mathbf{h}_{t-1})^T \mathbf{\Lambda} (\mathbf{h}_{t} - \mathbf{h}_{t-1})$ ###Code def func(h): # TODO: define the objective function, where h is the vector of asset holdings f = 0.0 f += 0.5 * risk_aversion * np.sum( np.matmul(Q, h) ** 2 ) f += 0.5 * risk_aversion * np.dot(h ** 2, specVar) #since Specific Variance is diagonal, don't have to do matmul f -= np.dot(h, alpha_vec) f += np.dot( (h - h0) ** 2, Lambda) return(f) ###Output _____no_output_____ ###Markdown GradientBefore, when we used cvxpy, we didn't have to calculate the gradient, because the library did that for us.Objective function is: factor risk + idiosyncratic risk - expected portfolio return + transaction costs $f(\mathbf{h}) = \frac{1}{2}\kappa \mathbf{h}^T\mathbf{Q}^T\mathbf{Qh} + \frac{1}{2} \kappa \mathbf{h}^T \mathbf{S h} - \mathbf{\alpha^T h} + (\mathbf{h}_{t} - \mathbf{h}_{t-1})^T \Lambda (\mathbf{h}_{t} - \mathbf{h}_{t-1})$Let's think about the shape of the resulting gradient. The reason we're interested in calculating the derivative is so that we can tell the optimizer in which direction, and how much, it should shift the portfolio holdings in order to improve the objective function (minimize variance, minimize transaction cost, and maximize expected portfolio return). So we want to calculate a derivative for each of the N assets (about 2000+ in our defined universe). So the resulting gradient will be a row vector of length N.The gradient, or derivative of the objective function, with respect to the portfolio holdings h, is: $f'(\mathbf{h}) = \frac{1}{2}\kappa (2\mathbf{Q}^T\mathbf{Qh}) + \frac{1}{2}\kappa (2\mathbf{Sh}) - \mathbf{\alpha} + 2(\mathbf{h}_{t} - \mathbf{h}_{t-1}) \mathbf{\Lambda}$We can check that each of these terms is a row vector with one value for each asset (1 by N row vector) QuizCalculate the gradient of the common risk term:$\kappa (\mathbf{Q}^T\mathbf{Qh})$ ###Code # TODO: gradient of common risk term tmp = risk_aversion * np.matmul(QT, np.matmul(Q,h)) ###Output _____no_output_____ ###Markdown Verify that the calculation returns one value for each asset in the stock universe (about 2000+ ) ###Code tmp.shape ###Output _____no_output_____ ###Markdown QuizCalculate gradient of idiosyncratic risk term$\kappa (\mathbf{Sh})$ ###Code # TODO: idiosyncratic risk gradient tmp = risk_aversion * specVar * h tmp.shape ###Output _____no_output_____ ###Markdown QuizCalculate the gradient of the expected return$- \mathbf{\alpha} $ ###Code # TODO: expected return gradient tmp = -alpha_vec tmp.shape ###Output _____no_output_____ ###Markdown QuizCalculate the gradient of the transaction cost.$ 2(\mathbf{h}_{t} - \mathbf{h}_{t-1}) \mathbf{\Lambda}$ ###Code # transaction cost tmp = 2 * (h - h0 ) * Lambda tmp.shape ###Output _____no_output_____ ###Markdown Quiz: Define gradient functionPut this all together to define the gradient function. The optimizer will use this to make small adjustments to the portfolio holdings. gradient (slightly cleaned up)We'll simplify the expression a bit by pulling the common $\kappa$ out of the common risk and specific risk. Also, the 1/2 and 2 cancel for both risk terms.$f'(\mathbf{h}) = \frac{1}{2}\kappa (2\mathbf{Q}^T\mathbf{Qh}) + \frac{1}{2}\kappa (2\mathbf{h}^T\mathbf{S}) - \mathbf{\alpha} + 2(\mathbf{h}_{t} - \mathbf{h}_{t-1})\cdot \Lambda$becomes$f'(\mathbf{h}) = \kappa (\mathbf{Q}^T\mathbf{Qh} + \mathbf{Sh}) - \mathbf{\alpha} + 2(\mathbf{h}_{t} - \mathbf{h}_{t-1}) \mathbf{\Lambda}$ ###Code # Solution def grad(x): # TODO g = risk_aversion * (np.matmul(QT, np.matmul(Q,h)) + \ (specVar * h) ) - alpha_vec + \ 2 * (h-h0) * Lambda return(np.asarray(g)) ###Output _____no_output_____ ###Markdown OptimizerChoose an optimizer. You can read about these optimizers:* L-BFGS * Powell* Nelder-Mead* Conjugate GradientIn this [page about math optimization](http://scipy-lectures.org/advanced/mathematical_optimization/)Also read the [scipy.optimize documentation](https://docs.scipy.org/doc/scipy/reference/optimize.html)Pass in the objective function, prior day's portfolio holdings, and the gradient. ###Code # TODO optimizer_result = scipy.optimize.fmin_l_bfgs_b("""<your code here>""", """<your code here>""", fprime="""<your code here>""") h1 = optimizer_result[0] opt_portfolio = pd.DataFrame(data = {"Barrid" : universe['Barrid'], "h.opt" : h1}) opt_portfolio.head() ###Output _____no_output_____ ###Markdown risk exposuresfactor exposures times the portfolio holdings for each asset, gives the portfolio's exposure to the factors (portfolio's risk exposure).$\mathbf{B}^T\mathbf{h}$ ###Code # TODO: risk exposures risk_exposures = np.matmul("""<your code here>""", """<your code here>""") # put this into a pandas series pd.Series(risk_exposures, index = colnames(B)) ###Output _____no_output_____ ###Markdown Quiz: alpha exposuresThe portfolio's exposures to the alpha factors is equal to the matrix of alpha exposures times the portfolio holdings. We'll use the holdings returned by the optimizer.$\textbf{B}_{\alpha}^T\mathbf{h}$ ###Code # Solution: portfolio's alpha exposure alpha_exposures = np.matmul("""<your code here>""", """<your code here>""") # put into a pandas series pd.Series(alpha_exposures, index = colnames(B_alpha)) ###Output _____no_output_____
Notebooks/01-Open-loop.ipynb
###Markdown Open-loop simulations: Situation without controlIn this notebook the open-loop simulations for *A Hierarchical Approach For Splitting Truck Plattoons Near Network Discontinuities* are presented:- [Network topology](network_topology) - [Symuvia connection](symuvia_connection)- [Data examination](data_examination) Network topology![No Control](../Output/no-control.gif) Length of main road - Before merge *1000m*, merge zone *100m*, after merge *400m*Length of onramp road- Before merge *900m*, merge zone *100m* Parameters ###Code DT = 0.1 # Sample time KC = 0.16 # CAV max density KH = 0.0896 # HDV max density VF = 25.0 # Speed free flow W = 6.25 # Congestion speed E = 25.0*0.3 # Speed drop for relaxation GCAV = 1/(KC*W) # Time headway CAV GHDV = 1/(KH*W) # Time headway HDV SCAV = VF/(KC*W)+1/KC # Desired space headway CAV SHDV = VF/(KH*W)+1/KH # Desired space headway HDV dveh_twy = {'CAV': GCAV, 'HDV': GHDV} dveh_dwy = {'CAV': 1/KC, 'HDV': 1/KH} U_MAX = 1.5 # Max. Acceleration U_MIN = -1.5 # Min. Acceleration ###Output _____no_output_____ ###Markdown Symuvia connectionLibraries should be charged via `ctypes` module in python: Connection with SymuviaIn this case connect to the simulator. First define the `libSymuVia.dylib` file ###Code import os from ctypes import cdll, create_string_buffer, c_int, byref, c_bool from sqlalchemy import create_engine, MetaData from sqlalchemy import Table, Column, String, Integer, Float from sqlalchemy import insert, delete, select, case, and_ from xmltodict import parse from collections import OrderedDict, Counter import numpy as np import pandas as pd import matplotlib.pyplot as plt # Bokeh from bokeh.plotting import figure, show from bokeh.sampledata.iris import flowers from bokeh.io import output_notebook from bokeh.palettes import Viridis, Spectral11 from bokeh.plotting import figure, show, output_file from bokeh.models import Span output_notebook() # Plotly import plotly as py from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot import plotly.graph_objs as go init_notebook_mode(connected=True) import matplotlib from matplotlib import cm import ipywidgets as widgets from IPython.display import display ###Output _____no_output_____ ###Markdown Load traffic library ###Code dir_path = os.getcwd() lib_path_name = ('..','Symuvia','Contents','Frameworks','libSymuVia.dylib') full_name = os.path.join(dir_path,*lib_path_name) symuvialib = cdll.LoadLibrary(full_name) ###Output _____no_output_____ ###Markdown Load Traffic network ###Code file_path = ('..', 'Network', 'Merge_Demand_CAV.xml') file_name = os.path.join(dir_path, *file_path) m = symuvialib.SymLoadNetworkEx(file_name.encode('UTF8')) ###Output _____no_output_____ ###Markdown Define Output: DatabaseAl results are stored in the folder `Output/SymOut.sqlite`. Table for storing results:1. `traj` stores trajectories in open loop. ###Code engine_path = ('..','Output','SymOut.sqlite') engine_name = os.path.join(os.path.sep,*engine_path) engine_full_name = os.path.join(dir_path,*engine_path) engine_call = 'sqlite://'+engine_name engine = create_engine(engine_call) metadata = MetaData() try: ltbstr = 'Loaded table in: ' connection = engine.connect() traj = Table('traj', metadata, autoload=True, autoload_with=engine) stmt = delete(traj) results = connection.execute(stmt) except: ltbstr = 'Loaded table in: ' traj = Table('traj', metadata, Column('ti', Float()), Column('id', Integer()), Column('type', String(3)), Column('tron', String(10)), Column('voie', Integer()), Column('dst', Float()), Column('abs', Float()), Column('vit', Float()), Column('ldr', Integer()), Column('spc', Float()), Column('vld', Float())) metadata.create_all(engine) connection = engine.connect() finally: print(ltbstr, engine) ###Output Loaded table in: Engine(sqlite:///../Output/SymOut.sqlite) ###Markdown Symuvia parsers This functions are intended to extract particular information from `Symuvia` or to parse information from the simulator, for use within this study. 1. Pointers: Variables to request data at each time step of the simluation 2. Parsers: Data format converters 3. V2V information: Information required to deploy the control strategy ###Code # Pointers sRequest = create_string_buffer(100000) bEnd = c_int() bSecond = c_bool(True) def typedict(veh_dict): """ Converts dictionary file from xmltodict into numeric formats to be stored in a database """ data = {'id': int(veh_dict['@id']), 'type': veh_dict['@type'], 'tron': veh_dict['@tron'], 'voie': int(veh_dict['@voie']), 'dst': float(veh_dict['@dst']), 'abs': float(veh_dict['@abs']), 'vit': float(veh_dict['@vit']), } return data ###Output _____no_output_____ ###Markdown V2V informationInformation regarding V2V communicatioin is computed. In particular which is the connectivity, and states derived from this case (*spacing* , *speed leader*) in this case only a single leader is identified ###Code # Identify Leader def queueveh(dLeader, veh): """ This function creates a queue of vehicles for a particular road segment """ if veh['tron'] in dLeader.keys(): if veh['id'] not in dLeader[veh['tron']]: dLeader[veh['tron']].append(veh['id']) else: dLeader[veh['tron']] = [veh['id']] return dLeader def getlead(dLeader, veh): """ This function identifies the leader of a specific vehicle i """ idx = dLeader[veh['tron']].index(veh['id']) if idx != 0: return dLeader[veh['tron']][idx-1] else: return dLeader[veh['tron']][idx] ###Output _____no_output_____ ###Markdown Take into account that in order to finish writing of the `XML` file the kernel of the current session should be shut down. ###Code # Spacing def getspace(lTrajVeh): """ This function obtains spacing between two vehicles """ # Equilibrium det_eq_s = lambda x: SCAV if x['type']=='CAV' else SHDV try: # Case single vehicle if lTrajVeh['id'] == lTrajVeh['ldr']: return [{'spc':0.0+det_eq_s(lTrajVeh)}] else: # Last vehicle # Leader out of Network @ ti return [{'spc':None}] except (TypeError, IndexError): # Multiple veh @ ti space = [] for veh in lTrajVeh: if veh['id'] == veh['ldr']: space.append(0.0+det_eq_s(veh)) else: veh_pos = veh['abs'] ldr_id = veh['ldr'] ldr_pos = [ldr['abs'] for ldr in lTrajVeh if ldr['id']==ldr_id] if ldr_pos: space.append(ldr_pos[0]-veh_pos) else: # Leader out of Network @ ti space.append(0.0) space_dct = [{'spc': val} for val in space] return space_dct # Spacing def getleaderspeed(lTrajVeh): """ This function obtains speed from the leader. """ try: # Case single vehicle if lTrajVeh['id'] == lTrajVeh['ldr']: return [{'vld': lTrajVeh['vit']}] else: # Leader out of Network @ ti return [{'vld':None}] except (TypeError, IndexError): # Multiple veh @ ti speedldr = [] for veh in lTrajVeh: if veh['id'] == veh['ldr']: speedldr.append(veh['vit']) else: ldr_id = veh['ldr'] ldr_vit = [ldr['vit'] for ldr in lTrajVeh if ldr['id']==ldr_id] if ldr_vit: speedldr.append(ldr_vit[0]) else: speedldr.append(veh['vit']) speedldr_dct = [{'vld': val} for val in speedldr] return speedldr_dct def updatelist(lTrajVeh,lDict): """ Considering a list of dictionaries as an input the funciton updates the parameter given by lDict """ try: lTrajVeh.update(lDict[0]) except AttributeError: for d,s in zip(lTrajVeh,lDict): d.update(s) return lTrajVeh ###Output _____no_output_____ ###Markdown Launch symulation ###Code max_time = 120 progressSim = widgets.FloatProgress( value=5, min=0, max=max_time, step=0.1, description='Simulating:', bar_style='info', orientation='horizontal' ) tiVal = widgets.BoundedFloatText( value=7.5, min=0, max=max_time, step=0.1, description='Time step:', disabled=False ) %%time N = 1200 # Simulation steps # Start simulation from beginning m = symuvialib.SymLoadNetworkEx(file_name.encode('UTF8')) # Clean table stmt = delete(traj) results = connection.execute(stmt) step = iter(range(N)) stmt = insert(traj) t = [] display(progressSim) display(tiVal) #for step in steps: bSuccess = 2 while bSuccess>0: bSuccess = symuvialib.SymRunNextStepEx(sRequest, True, byref(bEnd)) try: next(step) dParsed = parse(sRequest.value.decode('UTF8')) ti = dParsed['INST']['@val'] if dParsed['INST']['TRAJS'] is None: #dummy = 1 # Guarantees correct export of XML pass #print('') #print('No vehicles in the network at time: {}'.format(ti)) else: lVehOD = dParsed['INST']['TRAJS']['TRAJ'] lTrajVeh = [] try: lTrajVeh = typedict(lVehOD) lTrajVeh['ti'] = ti dLeader = {lTrajVeh['tron']: [lTrajVeh['id']]} lTrajVeh['ldr'] = getlead(dLeader, lTrajVeh) except TypeError: # Multiple veh @ ti for i, veh in enumerate(lVehOD): TrajVeh = typedict(veh) TrajVeh['ti'] = ti dLeader = queueveh(dLeader, TrajVeh) TrajVeh['ldr'] = getlead(dLeader, TrajVeh) lTrajVeh.append(TrajVeh) lSpc = getspace(lTrajVeh) lLdrV = getleaderspeed(lTrajVeh) lTrajVeh = updatelist(lTrajVeh,lSpc) lTrajVeh = updatelist(lTrajVeh,lLdrV) results = connection.execute(stmt,lTrajVeh) # print('{} vehicles in the network at time: {}'.format(results.rowcount, ti)) t.append(ti) progressSim.value = ti tiVal.value = ti except StopIteration: print('Stop by iteration') print('Last simluation step at time: {}'.format(ti)) bSuccess = 0 except: print(i) bSuccess = symuvialib.SymRunNextStepEx(sRequest, True, byref(bEnd)) print('Return from Symuvia Empty: {}'.format(sRequest.value.decode('UTF8'))) print('Last simluation step at time: {}'.format(ti)) bSuccess = 0 ###Output _____no_output_____ ###Markdown Data examinationThis section reads results from the database and depicts plots of the open loop trajectories ###Code stmt = select([traj]) results = connection.execute(stmt).fetchall() column_names = traj.columns.keys() trajDf = pd.DataFrame(results, columns = column_names) trajDf.head() trajDf.info() vehicle_iden = trajDf['id'].unique().tolist() vehicle_type = trajDf['type'].unique().tolist() ###Output _____no_output_____ ###Markdown Visualization BokehNon interactive visualization ###Code # Colormap colormap = {'In_main': 'lightblue', 'In_onramp': 'crimson', 'Merge_zone': 'green', 'Out_main': 'gold'} colors = [colormap[x] for x in trajDf.tron] # Figure p = figure(title = "Trajectories", width=900, height=900 ) p.xaxis.axis_label = 'Time [s]' p.yaxis.axis_label = 'Position [m]' # Horizontal line hline = Span(location=0, dimension='width', line_color='darkslategrey', line_width=3) # Data p.circle(trajDf['ti'], trajDf['abs'], color = colors, size = 2) p.renderers.extend([hline]) show(p) ###Output _____no_output_____ ###Markdown Visualization PlotlyInteractive visualization (Only notebook mode) ###Code layout = go.Layout( title = 'Trajectories without Control', yaxis = dict( title = 'Position X [m]' ), xaxis = dict( title = 'Time [s]' ), width = 900, height = 900, ) def trace_position_vehicle(traj_type, v_id, vtype): """ Plot trace single vehicle """ dashtrj = {'CAV': 'solid', 'HDV': 'dot'} trace = go.Scatter( x = traj_type['ti']-20, y = traj_type['abs']-500, mode = 'lines', name = f'Vehicle {vtype} - {v_id}', line = dict( shape = 'spline', width = 1, dash = dashtrj[vtype] ) ) return trace def update_position_plot(vtype): traj_type = trajDf[trajDf.type.isin(vtype)] traj_id = traj_type.id.unique() data = [] for v in traj_id: traj_veh = traj_type[traj_type.id == v] veh_type = traj_veh.type.unique()[0] trace_i = trace_position_vehicle(traj_veh, v, veh_type) data.append(trace_i) fig = go.Figure(data = data, layout = layout) iplot(fig) veh_type_wgt = widgets.SelectMultiple( options=vehicle_type, value=vehicle_type, rows=2, description='Vehicle type', disabled=False ) widgets.interactive(update_position_plot, vtype=veh_type_wgt) #update_position_plot(veh_type_wgt.value) #non-interactive trajDf.head() trajDf['ctr']=None trajDf.to_sql(name='closed', con = engine, if_exists='replace', index=False) layout = go.Layout( title = 'Spacing without Control', yaxis = dict( title = 'Position X [m]' ), xaxis = dict( title = 'Time [s]' ), width = 900, height = 900, ) def trace_space_vehicle(traj_type, v_id, vtype): """ Plot trace single vehicle """ trace = go.Scatter( x = traj_type['ti'], y = traj_type['spc'], mode = 'lines', name = f'Vehicle {vtype} - {v_id}', line = dict( shape = 'spline', width = 1, ) ) return trace def update_space_plot(veh_id): traj_type = trajDf[trajDf.id.isin(veh_id)] traj_id = traj_type.id.unique() data = [] for v in traj_id: traj_veh = traj_type[traj_type.id == v] veh_type = traj_veh.type.unique()[0] trace_i = trace_space_vehicle(traj_veh, v, veh_type) data.append(trace_i) fig = go.Figure(data = data, layout = layout) iplot(fig) veh_id_wgt = widgets.SelectMultiple( options=vehicle_iden, value=vehicle_iden, rows=12, description='Vehicle type', disabled=False ) widgets.interactive(update_space_plot, veh_id=veh_id_wgt) #update_space_plot(veh_id_wgt.value) ###Output _____no_output_____
Notebooks/Casava Plant Disease Prediction/Cassava_Plant_Disease.ipynb
###Markdown Building the model ###Code # Loading the ResNet152 architecture with imagenet weights as base base = tf.keras.applications.ResNet152(include_top=False, weights='imagenet',input_shape=[IMG_SIZE,IMG_SIZE,3]) base.summary() model = tf.keras.Sequential() model.add(base) model.add(BatchNormalization(axis=-1)) model.add(GlobalAveragePooling2D()) model.add(Dense(5, activation='softmax')) model.compile(loss=tf.keras.losses.CategoricalCrossentropy(), optimizer=tf.keras.optimizers.Adamax(learning_rate=0.01), metrics=['acc']) model.summary() ###Output Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= resnet152 (Functional) (None, 7, 7, 2048) 58370944 _________________________________________________________________ batch_normalization (BatchNo (None, 7, 7, 2048) 8192 _________________________________________________________________ global_average_pooling2d (Gl (None, 2048) 0 _________________________________________________________________ dense (Dense) (None, 5) 10245 ================================================================= Total params: 58,389,381 Trainable params: 58,233,861 Non-trainable params: 155,520 _________________________________________________________________ ###Markdown Loading the trained model ###Code history = model.fit( train_generator, steps_per_epoch=BATCH_SIZE, epochs=20, validation_data=valid_generator, batch_size=BATCH_SIZE ) model.save('ResNet152.h5') # Loading the ResNet101 architecture with imagenet weights as base base = tf.keras.applications.ResNet101(include_top=False, weights='imagenet',input_shape=[IMG_SIZE,IMG_SIZE,3]) model = tf.keras.Sequential() model.add(base) model.add(BatchNormalization(axis=-1)) model.add(GlobalAveragePooling2D()) model.add(Dense(5, activation='softmax')) model.compile(loss=tf.keras.losses.CategoricalCrossentropy(), optimizer=tf.keras.optimizers.Adamax(learning_rate=0.01), metrics=['acc']) history = model.fit( train_generator, steps_per_epoch=BATCH_SIZE, epochs=20, validation_data=valid_generator, batch_size=BATCH_SIZE ) model.save('ResNet101.h5') # Loading the ResNet50 architecture with imagenet weights as base base = tf.keras.applications.ResNet50(include_top=False, weights='imagenet',input_shape=[IMG_SIZE,IMG_SIZE,3]) model = tf.keras.Sequential() model.add(base) model.add(BatchNormalization(axis=-1)) model.add(GlobalAveragePooling2D()) model.add(Dense(5, activation='softmax')) model.compile(loss=tf.keras.losses.CategoricalCrossentropy(), optimizer=tf.keras.optimizers.Adamax(learning_rate=0.01), metrics=['acc']) history = model.fit( train_generator, steps_per_epoch=BATCH_SIZE, epochs=20, validation_data=valid_generator, batch_size=BATCH_SIZE ) model.save('ResNet50.h5') test_img_path = data_path+"test_images/2216849948.jpg" img = cv2.imread(test_img_path) resized_img = cv2.resize(img, (IMG_SIZE, IMG_SIZE)).reshape(-1, IMG_SIZE, IMG_SIZE, 3)/255 plt.figure(figsize=(8,4)) plt.title("TEST IMAGE") plt.imshow(resized_img[0]) preds = [] ss = pd.read_csv(data_path+'sample_submission.csv') for image in ss.image_id: img = tf.keras.preprocessing.image.load_img(data_path+'test_images/' + image) img = tf.keras.preprocessing.image.img_to_array(img) img = tf.keras.preprocessing.image.smart_resize(img, (IMG_SIZE, IMG_SIZE)) img = tf.reshape(img, (-1, IMG_SIZE, IMG_SIZE, 3)) prediction = model.predict(img/255) preds.append(np.argmax(prediction)) my_submission = pd.DataFrame({'image_id': ss.image_id, 'label': preds}) my_submission.to_csv('submission.csv', index=False) # Submission file ouput print("Submission File: \n---------------\n") print(my_submission.head()) # Predicted Output ###Output _____no_output_____
models/Korean_multisentiment_classifier_KoBERT.ipynb
###Markdown ###Code # 구글 드라이브와 연동합니다 from google.colab import drive drive.mount('/content/drive') # 필요한 모듈을 설치합니다 !pip install mxnet-cu101 !pip install gluonnlp pandas tqdm !pip install sentencepiece==0.1.85 !pip install transformers==2.1.1 !pip install torch #원래 ==1.3.1 #SKT에서 공개한 KoBERT 모델을 불러옵니다 !pip install git+https://[email protected]/SKTBrain/KoBERT.git@master ###Output _____no_output_____ ###Markdown 1. 데이터 불러오기, 데이터 전처리 ###Code import pandas as pd sad = pd.read_excel('/content/drive/My Drive/data/tweet_list_슬픔 1~5000.xlsx') happy = pd.read_excel('/content/drive/My Drive/data/tweet_list_기쁨 labeling_완료.xlsx') annoy = pd.read_excel('/content/drive/My Drive/data/tweet_list_짜증_완료.xlsx') fear = pd.read_excel('/content/drive/My Drive/data/tweet_list_공포_완료.xlsx') sad2 = pd.read_csv('/content/drive/My Drive/data/추가_슬픔.csv') happy2 = pd.read_csv('/content/drive/My Drive/data/추가_기쁨.csv') annoy2 = pd.read_csv('/content/drive/My Drive/data/추가_분노.csv') fear2 = pd.read_csv('/content/drive/My Drive/data/추가_공포1.txt', encoding='utf8') sad #전처리를 위한 함수 def preprocessing(data, label): import re dt = data['raw_text'].copy() #문장만 선택 dt = dt.dropna() #결측치 제거 dt = dt.drop_duplicates() #중복 제거 sentences = dt.tolist() new_sent=[] for i in range(len(sentences)): sent = sentences[i] if type(sent) != str: # 문장 중 str 아닌 것 처리 sent = str(sent) if len(sent) < 2: continue #길이 1 이상인 것만 선택 sent = re.sub('ㅋㅋ+','ㅋㅋ',sent) sent = re.sub('ㅠㅠ+','ㅠㅠ',sent) sent = re.sub('ㅇㅇ+','ㅇㅇ',sent) sent = re.sub('ㄷㄷ+','ㄷㄷ',sent) sent = re.sub('ㅎㅎ+','ㅎㅎ',sent) sent = re.sub('ㅂㅂ+','ㅂㅂ',sent) sent = re.sub(';;;+',';;',sent) sent = re.sub('!!!+','!!',sent) sent = re.sub('~+','~',sent) sent = re.sub('[?][?][?]+','??',sent) sent = re.sub('[.][.][.]+','...',sent) sent = re.sub('[-=+,#/:$@*\"※&%ㆍ』\\‘|\(\)\[\]\<\>`\'…》]','',sent) new_sent.append(sent) dt = pd.DataFrame(pd.Series(new_sent), columns=['raw_text']) dt['emotion'] = label return dt sad = preprocessing(sad, '슬픔') sad2 = preprocessing(sad2, '슬픔') happy = preprocessing(happy, '기쁨') happy2 = preprocessing(happy2, '기쁨') annoy = preprocessing(annoy, '분노') annoy2 = preprocessing(annoy2, '분노') fear = preprocessing(fear, '공포') fear2 = preprocessing(fear2, '공포') for i in [sad, happy, annoy, fear]: print('1차 레이블 결과', i['emotion'][0],len(i)) for i in [sad2, happy2, annoy2, fear2]: print('2차 레이블 결과', i['emotion'][0],len(i)) print('최소 데이터: 공포 ', len(fear)+len(fear2)) ## 데이터 개수 확인 후 학습을 위해 각 감정별 데이터 개수를 동일하게 맞춰줍니다. sad_3 = sad[:1400] happy_3 = happy[:800] annoy_3 = annoy[:2400] # 각 감정별 키워드 데이터가 약 1000개 씩으로 이루어져 있기 때문에 마지막 키워드에 대한 데이터 1000개를 평가 데이터로 선택 sentence_train = pd.concat([sad_3, happy_3, annoy_3, fear, sad2[:-1000], annoy2[:-1000], happy2[:-1000], fear2[:-1000]], axis=0, ignore_index=True) sentence_eval = pd.concat([sad2[-1000:], annoy2[-1000:], happy2[-1000:], fear2[-1000:]], axis=0, ignore_index=True) for i in ['슬픔','기쁨','분노','공포']: print('sentence_train',i,len(sentence_train[sentence_train['emotion'] == i])) print('-------------------------') for i in ['슬픔','기쁨','분노','공포']: print('sentence_eval',i,len(sentence_eval[sentence_eval['emotion'] == i])) #모델에 입력하기 위해 형식을 맞춰줍니다 def label(x): if x=='슬픔': return 0.0 elif x=='기쁨': return 1.0 elif x=='분노': return 2.0 elif x=='공포': return 3.0 else: return x sentence_train["emotion"] = sentence_train["emotion"].apply(label) dtls = [list(sentence_train.iloc[i,:]) for i in range(len(sentence_train))] dtls[:10] #형식이 통일되었습니다 ###Output _____no_output_____ ###Markdown 2. 모델 투입 준비 ###Code import torch from torch import nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import Dataset, DataLoader import gluonnlp as nlp import numpy as np from tqdm import tqdm, tqdm_notebook from tqdm.notebook import tqdm from kobert.utils import get_tokenizer from kobert.pytorch_kobert import get_pytorch_kobert_model from transformers import AdamW from transformers.optimization import WarmupLinearSchedule ##GPU 사용 시 device = torch.device("cuda:0") bertmodel, vocab = get_pytorch_kobert_model() #koBERT의 토크나이저를 사용합니다 tokenizer = get_tokenizer() tok = nlp.data.BERTSPTokenizer(tokenizer, vocab, lower=False) class BERTDataset(Dataset): def __init__(self, dataset, sent_idx, label_idx, bert_tokenizer, max_len, pad, pair): transform = nlp.data.BERTSentenceTransform( bert_tokenizer, max_seq_length=max_len, pad=pad, pair=pair) self.sentences = [transform([i[sent_idx]]) for i in dataset] self.labels = [np.int32(i[label_idx]) for i in dataset] def __getitem__(self, i): return (self.sentences[i] + (self.labels[i], )) def __len__(self): return (len(self.labels)) class BERTClassifier(nn.Module): def __init__(self, bert, hidden_size = 768, num_classes=4, dr_rate=None, params=None): super(BERTClassifier, self).__init__() self.bert = bert self.dr_rate = dr_rate self.classifier = nn.Linear(hidden_size , num_classes) if dr_rate: self.dropout = nn.Dropout(p=dr_rate) def gen_attention_mask(self, token_ids, valid_length): attention_mask = torch.zeros_like(token_ids) for i, v in enumerate(valid_length): attention_mask[i][:v] = 1 return attention_mask.float() def forward(self, token_ids, valid_length, segment_ids): attention_mask = self.gen_attention_mask(token_ids, valid_length) _, pooler = self.bert(input_ids = token_ids, token_type_ids = segment_ids.long(), attention_mask = attention_mask.float().to(token_ids.device)) if self.dr_rate: out = self.dropout(pooler) return self.classifier(out) ###Output _____no_output_____ ###Markdown 3. 학습 ###Code ## Setting parameters max_len = 64 batch_size = 64 warmup_ratio = 0.1 num_epochs = 1 max_grad_norm = 1 log_interval = 200 learning_rate = 5e-5 # train, validation, test set을 나눠주세요 from sklearn.model_selection import train_test_split dataset_train, dataset_test = train_test_split(dtls, test_size=0.2, random_state=123) data_train = BERTDataset(dataset_train, 0, 1, tok, max_len, True, False) data_test = BERTDataset(dataset_test, 0, 1, tok, max_len, True, False) train_dataloader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, num_workers=5) test_dataloader = torch.utils.data.DataLoader(data_test, batch_size=batch_size, num_workers=5) #모델을 만들고 GPU 사용 설정을 해줍니다 model = BERTClassifier(bertmodel, dr_rate=0.5).to(device) # Prepare optimizer and schedule (linear warmup and decay) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] #옵티마이저와 손실함수 설정 optimizer = AdamW(optimizer_grouped_parameters, lr=learning_rate) loss_fn = nn.CrossEntropyLoss() t_total = len(train_dataloader) * num_epochs warmup_step = int(t_total * warmup_ratio) scheduler = WarmupLinearSchedule(optimizer, warmup_steps=warmup_step, t_total=t_total) #정확도를 계산하기 위한 함수 def calc_accuracy(X,Y): max_vals, max_indices = torch.max(X, 1) train_acc = (max_indices == Y).sum().data.cpu().numpy()/max_indices.size()[0] return train_acc #학습 과정 for e in range(num_epochs): train_acc = 0.0 test_acc = 0.0 model.train() for batch_id, (token_ids, valid_length, segment_ids, label) in enumerate(tqdm(train_dataloader)): optimizer.zero_grad() token_ids = token_ids.long().to(device) segment_ids = segment_ids.long().to(device) valid_length= valid_length label = label.long().to(device) out = model(token_ids, valid_length, segment_ids) loss = loss_fn(out, label) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule train_acc += calc_accuracy(out, label) if batch_id % log_interval == 0: print("epoch {} batch id {} loss {} train acc {}".format(e+1, batch_id+1, loss.data.cpu().numpy(), train_acc / (batch_id+1))) print("epoch {} train acc {}".format(e+1, train_acc / (batch_id+1))) model.eval() #모델 평가 부분 for batch_id, (token_ids, valid_length, segment_ids, label) in enumerate(tqdm(test_dataloader)): token_ids = token_ids.long().to(device) segment_ids = segment_ids.long().to(device) valid_length= valid_length label = label.long().to(device) out = model(token_ids, valid_length, segment_ids) test_acc += calc_accuracy(out, label) print("epoch {} test acc {}".format(e+1, test_acc / (batch_id+1))) ''' # 차후 사용을 위해 학습된 모델을 저장했습니다 torch.save(model.state_dict(), 'drive/My Drive//kobert_ending_finale.pt') ''' ###Output _____no_output_____ ###Markdown 4 평가 ###Code ################################################## # 평가용 Test_set을 모델에 입력하기 위해 형식을 맞춰줍니다 sentence_eval["emotion"] = sentence_eval["emotion"].apply(label) dtls_eval = [list(sentence_eval.iloc[i,:]) for i in range(len(sentence_eval))] data_test = BERTDataset(dtls_eval, 0, 1, tok, max_len, True, False) test_dataloader = torch.utils.data.DataLoader(data_test, batch_size=batch_size, num_workers=5) # 해당 데이터에 대해 분류를 시작합니다 model.eval() answer=[] train_acc = 0.0 test_acc = 0.0 for batch_id, (token_ids, valid_length, segment_ids, label) in enumerate(tqdm_notebook(test_dataloader)): token_ids = token_ids.long().to(device) segment_ids = segment_ids.long().to(device) valid_length= valid_length label = label.long().to(device) out = model(token_ids, valid_length, segment_ids) max_vals, max_indices = torch.max(out, 1) answer.append(max_indices.cpu().clone().numpy()) test_acc += calc_accuracy(out, label) print('정답률: ',test_acc / (batch_id+1)) # 제출 형식에 맞춰 파일을 저장해줍니다 ls = [] for i in answer: ls.extend(i) pred = pd.DataFrame(ls, columns=['Predicted']) df = pd.concat([sentence_eval['raw_text'], pred['Predicted'], sentence_eval['emotion']], axis=1) def test(x): if x==0.0: return '슬픔' elif x==1.0: return '기쁨' elif x==2.0: return '분노' elif x==3.0: return '공포' else: return x df["Predicted"] = df["Predicted"].apply(test) df["emotion"] = df["emotion"].apply(test) for i in ['슬픔','기쁨','분노','공포']: print(i, '개수', len(df[df['emotion'] == i])) print('예측 개수', len(df[df['emotion'] == i][df['Predicted'] == i])) print('정답률',len(df[df['emotion'] == i][df['Predicted'] == i])/len(df[df['emotion'] == i])) ###Output _____no_output_____
edx-stochastic-data-analysis/downloaded_files/04/.ipynb_checkpoints/Stochastic_Processes_week04_3-checkpoint.ipynb
###Markdown Stochastic Processes: Data Analysis and Computer Simulation Brownian motion 2: computer simulation -Making Animations- Note 1- In the previous plot, we wrote and used a vary simple python code to simulate the motion of Brownian particles.- Although the code is enough to produce trajectory data that can be used for later analysis, the strong graphic capability of the Jupyter notebook allows us to perform simulations with on-the-fly animations quite easily.- Today, I will show you how to take advantage of this graphics capability by modifying our previous simulation code to display the results in real time. Simulation code with on-the-fly animation Import libraries ###Code % matplotlib nbagg import numpy as np # import numpy library as np import matplotlib.pyplot as plt # import pyplot library as plt import matplotlib.mlab as mlab # import mlab module to use MATLAB commands with the same names import matplotlib.animation as animation # import animation modules from matplotlib from mpl_toolkits.mplot3d import Axes3D # import Axes3D from mpl_toolkits.mplot3d plt.style.use('ggplot') # use "ggplot" style for graphs ###Output _____no_output_____ ###Markdown Note 2- As always, we begin by importing the necessary numerical and plotting libraries.- Compared to the previous code example, we import two additional libraries, the `mlab` and `animation` modules from the `matplotlib` library. Define `init` function for `FuncAnimation` ###Code def init(): global R,V,W,Rs,Vs,Ws,time R[:,:] = 0.0 # initialize all the variables to zero V[:,:] = 0.0 # initialize all the variables to zero W[:,:] = 0.0 # initialize all the variables to zero Rs[:,:,:] = 0.0 # initialize all the variables to zero Vs[:,:,:] = 0.0 # initialize all the variables to zero Ws[:,:,:] = 0.0 # initialize all the variables to zero time[:] = 0.0 # initialize all the variables to zero title.set_text(r'') # empty title line.set_data([],[]) # set line data to show the trajectory of particle n in 2d (x,y) line.set_3d_properties([]) # add z-data separately for 3d plot particles.set_data([],[]) # set position current (x,y) position data for all particles particles.set_3d_properties([]) # add current z data of particles to get 3d plot return particles,title,line # return listed objects that will be drawn by FuncAnimation ###Output _____no_output_____ ###Markdown Note 3- For this lesson, we will perform a simulation of Brownian particles and we wish to see how their positions evolve in time. In addition, we want to visualize the trajectory of one chosen particle, to see how it moves in space.- The easiest way to animate your data in python is to use the "FuncAnimation" function provided by matplotlib.- To use this, we must define two basic functions that tell the library how to update and animate our data.- The first of these functions is "init". As its name implies, it is used to initialize the figure. - "init" will only be called once, at the beginning of the animation procedure.- It should define the different objects or "artists" that will be drawn.- Notice how we declare global variables explicitly in the function definition.- This allows us to modify variables which are declared outside of the function.- R,V,W will contain the current position,velocity and Wiener increment for each of the particles- Rs,Vs,Ws the corresponding values for all time steps- time will contain the time values.- We initialize all the variables to zero- We will define three different objects to draw, "particles", "line", and "title".- "particles" is used to display the particles as points in 3d space- "line" is used to display the trajectory of a given particle- "title" is used to display the current time- Here, the particles and line data are just empty arrays and time is set as an empty string.- These three objects will be modified later, when we call the "animate" function Define `animate` function for `FuncAnimation` ###Code def animate(i): global R,V,W,Rs,Vs,Ws,time # define global variables time[i]=i*dt # store time in each step in an array time W = std*np.random.randn(nump,dim) # generate an array of random forces accordingly to Eqs.(F10) and (F11) V = V*(1-zeta/m*dt)+W/m # update velocity via Eq.(F9) R = R+V*dt # update position via Eq.(F5) Rs[i,:,:]=R # accumulate particle positions at each step in an array Rs Vs[i,:,:]=V # accumulate particle velocitys at each step in an array Vs Ws[i,:,:]=W # accumulate random forces at each step in an array Ws title.set_text(r"t = "+str(time[i])) # set the title to display the current time line.set_data(Rs[:i+1,n,0],Rs[:i+1,n,1]) # set the line in 2D (x,y) line.set_3d_properties(Rs[:i+1,n,2]) # add z axis to set the line in 3D particles.set_data(R[:,0],R[:,1]) # set the current position of all the particles in 2d (x,y) particles.set_3d_properties(R[:,2]) # add z axis to set the particle in 3D return particles,title,line # return listed objects that will be drawn by FuncAnimation ###Output _____no_output_____ ###Markdown Note 4- The "animate" function is the main funciton used by "FuncAnimation". It is called at every step in order to update the figure and create the animation.- Thus, the animate procedure should be responsible for performing the integration in time. It udpates the positions and velocities by propagating the solution to the Langevin equation over $\Delta t$. - After the updated configuration is found, we udpate the trajectory variables Rs,Vs,and Ws.- Next, we udpate the objects in our animation.- We set the title to display the current time- We set the line, which displays the trajectory of particle n, to contain all the x,y, and z points until step i- Finally, we set the current position of all the particles to be R- It is important that animate, as well as init, return the objects that are redrawn (in this case particles, title, line)- Notice how we used "n" even though it was not declared as global, this is because we never tried to modify the value, we only read it, but never tried to write to it. Set parameters and initialize variables ###Code dim = 3 # system dimension (x,y,z) nump = 1000 # number of independent Brownian particles to simulate nums = 1024 # number of simulation steps dt = 0.05 # set time increment, \Delta t zeta = 1.0 # set friction constant, \zeta m = 1.0 # set particle mass, m kBT = 1.0 # set temperatute, k_B T std = np.sqrt(2*kBT*zeta*dt) # calculate std for \Delta W via Eq.(F11) np.random.seed(0) # initialize random number generator with a seed=0 R = np.zeros([nump,dim]) # array to store current positions and set initial condition Eq.(F12) V = np.zeros([nump,dim]) # array to store current velocities and set initial condition Eq.(F12) W = np.zeros([nump,dim]) # array to store current random forcces Rs = np.zeros([nums,nump,dim]) # array to store positions at all steps Vs = np.zeros([nums,nump,dim]) # array to store velocities at all steps Ws = np.zeros([nums,nump,dim]) # array to store random forces at all steps time = np.zeros([nums]) # an array to store time at all steps ###Output _____no_output_____ ###Markdown Note 5- Here, we define the parameters of our simulations.- We will work in 3d, with 1000 particles.- We use a time step of 0.05 and will simulate over a total of 1024 steps.- We set the friction constant, mass, and thermal energy equal to one.- We define the standard deviation of the Wiener process in order to satisfy the fluctuation dissipation theorem.- Finally, we create the necessary arrays. R,V,W will store the current position, velocity, and Wiener updates for each of the 1000 particles.- Rs,Vs,Ws will store the corresponding values for all 1024 time steps.- and the time array will contain the time value for each step Perform and animate the simulation using `FuncAnimation` ###Code fig = plt.figure(figsize=(10,10)) # set fig with its size 10 x 10 inch ax = fig.add_subplot(111,projection='3d') # creates an additional axis to the standard 2D axes box = 40 # set draw area as box^3 ax.set_xlim(-box/2,box/2) # set x-range ax.set_ylim(-box/2,box/2) # set y-range ax.set_zlim(-box/2,box/2) # set z-range ax.set_xlabel(r"x",fontsize=20) # set x-lavel ax.set_ylabel(r"y",fontsize=20) # set y-lavel ax.set_zlabel(r"z",fontsize=20) # set z-lavel ax.view_init(elev=12,azim=120) # set view point particles, = ax.plot([],[],[],'ro',ms=8,alpha=0.5) # define object particles title = ax.text(-180.,0.,250.,r'',transform=ax.transAxes,va='center') # define object title line, = ax.plot([],[],[],'b',lw=1,alpha=0.8) # define object line n = 0 # trajectry line is plotted for the n-th particle anim = animation.FuncAnimation(fig,func=animate,init_func=init, frames=nums,interval=5,blit=True,repeat=False) ## If you have ffmpeg installed on your machine ## you can save the animation by uncomment the last line ## You may install ffmpeg by typing the following command in command prompt ## conda install -c menpo ffmpeg ## # anim.save('movie.mp4',fps=50,dpi=100) ###Output _____no_output_____
week_07/Evaluating_Forecasts.ipynb
###Markdown Evaluating Forecasts ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.model_selection import TimeSeriesSplit, cross_val_score # Set figure size to (14,6) plt.rcParams['figure.figsize'] = (14,6) ###Output _____no_output_____ ###Markdown Step 1 - Load the Data ###Code flights = pd.read_csv('flights_train.csv', index_col=0, parse_dates=True) flights.head() # Inspect the size of the data flights.shape flights.describe() flights.info() ###Output _____no_output_____ ###Markdown Plot the data ###Code def plot_flights(df, title='Monthly Passenger Numbers in 1000 over Time', ylim=True): ''' Custom plotting function for plotting the flights dataset Parameters ---------- df : pd.DataFrame The data to plot. title : str The title of the plot ylim : bool Whether to fix the minimum value of y; default is True Returns ------- Plots the data ''' df.plot() plt.title(title) plt.ylabel('# of Passengers in 1000') if ylim: plt.ylim(ymin=0) plt.show() plot_flights(flights) ###Output _____no_output_____ ###Markdown Step 2 - Clean the Data - this maybe 80% of your job as a DS!!Fortunately we do not have to do that in case of the flights data. Step 3 - Extract the Timestep and the Seasonal Dummies for the whole Dataset ###Code # Create a timestep variable - if you had missing values or dirty data, then the below assumption wouldn't hold #flights['timestep'] = list(range(len(flights))) flights['timestep'] = range(len(flights)) flights.head() ###Output _____no_output_____ ###Markdown Q: Why can we use matthias suggestion of a range object instead of a list of a range object? A: A range object is a generator* A range object can create a list of numbers, but in its nascent state it isn't a list* to extract a list from a range object, you need to pull the values out of it* how do you pull values out of a range object? - you need to iterate over them ###Code iterator = iter(range(len(flights))) #we can run cell this 131 (len(flights)) times, before we hit an error next(iterator) flights.head() # Q: why does pandas accept list(range(len(flights))) or range(len(flights)) ? # A: I don't exactly know, but there'll be something like the below in pandas codebase somewhere def make_a_column(input_): if type(input_) == list: #make a column of that list elif type(input_) == range: #use a iterable on the range object, store the results in a list and proceed # Create the seasonal dummies seasonal_dummies = pd.get_dummies(flights.index.month, prefix='month', drop_first=True).set_index(flights.index) flights = flights.join(seasonal_dummies) flights.head() ###Output _____no_output_____ ###Markdown Q: what does drop_first=True do? A: lets think about 3 breakfast_drinks * coffee* tea* water ###Code df1 = pd.get_dummies(['coffee', 'tea', 'water']) df1 df2 = pd.get_dummies(['coffee', 'tea', 'water'], drop_first=True) df2.columns= ['tea', 'water_or_coffee'] df2 ###Output _____no_output_____ ###Markdown 4) Train-Test-SplitFortunately not necessary for the flights data.* How would you train-test split a time-series? would you use train_test_split in sklearn? or some other method?* you can't use a random splitter, we can time-series split, or you can do it manually 5) Model the Trend_Seasonal model ###Code # Define X and y X = flights.drop(columns=['passengers']) y = flights['passengers'] # Create and fit the model m = LinearRegression() m.fit(X, y) # Create a new column with the predictions of the trend_seasonal model flights['trend_seasonal'] = m.predict(X) flights.head() ###Output _____no_output_____ ###Markdown Plot the original data and preliminary model ###Code plot_flights(flights[['passengers', 'trend_seasonal']]) ###Output _____no_output_____ ###Markdown 6) - Extract the remainder ###Code # Fast - fourier transform - which decomposes a time-series into subcomponents # We want to extract the part of the model that the trend_seasonal is not able to explain flights['remainder'] = flights['passengers'] - flights['trend_seasonal'] plot_flights(flights['remainder'], title='Remainder after modelling trend and seasonality', ylim=False) ###Output _____no_output_____ ###Markdown 7) - Inspect the remainder to decide how many lags to includeFor now, I will include one lag only. - you might want to look autocorrelations to help you 8) - Add the lags of the remainder to the training data ###Code flights['lag1'] = flights['remainder'].shift(1) flights.dropna(inplace=True) flights.head() ###Output _____no_output_____ ###Markdown 9) Run the full model ###Code # Assign X X_full = flights.drop(columns=['passengers', 'trend_seasonal', 'remainder']) y_full = flights['passengers'] X_full.head() m_full = LinearRegression() m_full.fit(X_full, y_full) # Create a new predictions column flights['predictions_full_model'] = m_full.predict(X_full) ###Output _____no_output_____ ###Markdown 10) - Plot the prediction vs passengers for the training data ###Code plot_flights(flights[['passengers', 'trend_seasonal', 'predictions_full_model']]) ###Output _____no_output_____ ###Markdown Is this model good? 10) - Evaluate our modelWe want to understand how good our model would work on data it has not been trained on. We can get an estimate of that by using cross-validation.Cross-validation so far:- Dividing training data into subsets (folds)- in each iteration singled out one fold as validation set- trained on the remaining training data and evaluated the fit on the validation set.Cross-validation for time series:- Dividing training data into subsets (folds)- in the first iteration, use the first fold to evaluate the second fold- in the second iteration, use the first and the second fold to evaluate the third fold- ... ###Code # Create a TimeSeriesSplit object ts_split = TimeSeriesSplit(n_splits=5) ts_split.split(X_full, y_full) # Split the training data into folds for i, (train_index, validation_index) in enumerate(ts_split.split(X_full, y_full)): print(f'The training data for the {i+1}th iteration are the observations {train_index}') print(f'The validation data for the {i+1}th iteration are the observations {validation_index}') print() # Create the time series split time_series_split = ts_split.split(X_full, y_full) # Do the cross validation result = cross_val_score(estimator=m_full, X=X_full, y=y_full, cv=time_series_split) result result.mean() result_ordinary_cv = cross_val_score(estimator=m_full, X=X_full, y=y_full, cv=5) result_ordinary_cv result_ordinary_cv.mean() ###Output _____no_output_____ ###Markdown --- im talking about 2 different things when i talk about metrics* Cost function - is the fuel for gradient descent* Score on the data - how you evaluate a fitted model* Cost - MSE* Score - R^2 Evaluation Metrics Cost 1. Mean-Squared-Error (MSE)$\frac{1}{n} \sum (y_t - \hat{y_t}) ^2$ Advantages:- Is widely implemented Disadvantages:- Strong penalty on outliers - preprocess to remove outliers (what is an outlier?)- Unit hardly interpretable- Not comparable across models with different units 2. Mean Absolute Error (MAE)$\frac{1}{n} \sum |y_t - \hat{y}_t|$ Advantages:- Error is in the unit of interest- Does not overly value outliers Disadvantages:- Ranges from 0 to infinity- Not comparable across models with different units 3. Root-Mean-Squared-Error (RMSE)$\sqrt{\frac{1}{n} \sum (y_t - \hat{y_t}) ^2}$ Advantages:- Errors in the unit of interest- Does not overly value outliers Disadvantages:- Can only be compared between models whos errors are measured in the same unit 4. Mean Absolute Percent Error (MAPE)$\frac{1}{n} \sum |\frac{y_t - \hat{y}_t}{y_t}| * 100$ Advantages:- Comparable over different models Disadvantages:- Is not defined for 0 values 5. Root Mean Squared Log Error (RMSLE)$\sqrt{\frac{1}{n} \sum (log(y_t + 1) - log(\hat{y_t} + 1)) ^2}$ Advantages:- Captures relative error- Penalizes underestimation stronger than overestimation Score 6. $R^2$$1 - \frac{\sum{(y_i - \hat{y_i})^2}}{\sum{(y_i - \bar{y})^2}}$ 7. $R_{adj}^2$$1 - (1-R^2)\frac{n-1}{n-p-1} $* n = no.of data points* p = no. of features --- ###Code from sklearn.metrics import mean_squared_error, mean_squared_log_error, mean_absolute_error, r2_score #paraphased from stackoverflow1!! - link to follow def adj_r2(df, r2_score, y_test, y_pred): adj_r2 = (1 - (1 - r2_score(y_test,y_pred)) * ((df.shape[0] - 1) / (df.shape[0] - df.shape[1] - 1))) return adj_r2 mses = [] maes = [] rmse = [] mape = [] rmsle = [] r2 = [] ar2 = [] for i, (train_index, validation_index) in enumerate(ts_split.split(X_full, y_full)): model = LinearRegression() model.fit(X_full.iloc[train_index], y_full.iloc[train_index]) ypred = model.predict(X_full.iloc[validation_index]) mses.append(mean_squared_error(y_full.iloc[validation_index], ypred)) maes.append(mean_absolute_error(y_full.iloc[validation_index], ypred)) rmse.append(np.sqrt(mean_squared_error(y_full.iloc[validation_index], ypred))) mape.append(sum(abs((y_full.iloc[validation_index] - ypred) / y_full.iloc[validation_index])) * 100 / len(y_full.iloc[validation_index])) rmsle.append(np.sqrt(mean_squared_log_error(y_full.iloc[validation_index], ypred))) r2.append(r2_score(y_full.iloc[validation_index], ypred)) ar2.append(adj_r2(X_full,r2_score,y_full.iloc[validation_index], ypred)) #create a descriptive index labelling each time-series split % index = [f'{x}%' for x in range(20,120,20)] evaluations = pd.DataFrame(dict(mse=mses, mae=maes, rmse=rmse, mape=mape, rmsle=rmsle, r2=r2, adj_r2=ar2), index=index) evaluations ###Output _____no_output_____
Examples/Text_Classification_with_ArabicTransformer_with_PyTorchXLA_on_TPU_or_with_PyTorch_on_GPU.ipynb
###Markdown **Text Classification with ArabicTransformer and TPU*** First, you need to activate TPU by going to Runtime-> Change RunTime Type -> TPU .* This example was tested with HuggingFace Transformer Library version v4.11.2 . If you experience any issue roll back to this version.* This example uses PyTorchXLA, a library that allows you to use PyTorch code on TPU by having PyTorchXLA in the middle. You may experience that the pre-processing of the dataset is slow if you run the code for the first time, but this is just for the first time. If you change the batch size, the pre-processing again will be slow. So try to fix the batch size every time you do a grid search for the best hyperparameters. * In our paper, we use the original implementation of funnel transformer (PyTorch) (https://github.com/laiguokun/Funnel-Transformer) and V100 GPU, which is no longer provided for Google Colab Pro users. We will update you later on our modified code of the Funnel Transfomer library. However, in the meantime, you need to find the best hyperparameters here and dont rely in our setting in this notebook since the implementation is different from our paper. However, our current set of hyperparameters in this example is still close to what we reported in our paper. You may also get better results with our model than what we reported if you extend the grid search (:* You can easily run this code on GPU with O2 mixed precision by just changing the runtime to GPU and removing this line from fine-tuning code ```!python /content/transformers/examples/pytorch/xla_spawn.py --num_cores=8 transformers/examples/pytorch/text-classification/run_glue.py ```with ```!python transformers/examples/pytorch/text-classification/run_glue.py```* The new pytorch library >1.6 allow you to use Automatic Mixed Precision (AMP) without APEX since its part of the native PyTroch library. * This example is based on GLUE fine-tuning task example from huggingface team but it can work with any text classification task and can be used to fine-tune any Arabic Language Model that was uploaded to HuggingFace Hub here https://huggingface.co/models . A text classification task is where we have a sentence and a label like sentiment analysis tasks. You just need to name the header of first sentence that you need to classify to sentence1 and label to "label" colmun. If you want to classify two sentences, then name the first sentence as sentence1 and the other one to sentence2 .* When you use PyTorchXLA, then you should be aware the batch size will be batch_size*8 since we have 8 cores on the TPU. In this example, we choose a batch size of 4 to get the final batch size of 32.* We did not include language models that use pre-segmentation (FARASA), such as AraBERTv2, in the list of models below. You can do the pre-segmentation part from your own side using codes that AUB Mind published here https://github.com/aub-mind/arabert. Then use our code to fine-tune AraBERTv2 or similar models.* If the model scale is changed (small, base, large) or the architecture is different (Funnel, BERT, ELECTRA, ALBERT), you need to change your hyperparameters. Evaluating all models using the same hyperparameters across different scales and architectures is bad practice to report results. ###Code !git clone https://github.com/huggingface/transformers !pip3 install -e transformers !pip3 install -r transformers/examples/pytorch/text-classification/requirements.txt !pip install cloud-tpu-client==0.10 https://storage.googleapis.com/tpu-pytorch/wheels/torch_xla-1.9-cp37-cp37m-linux_x86_64.whl import pandas as pd !rm -r /content/data !mkdir -p data/raw/scarcasmv2 !mkdir -p data/scarcasmv2 !wget -O data/raw/scarcasmv2/dev.csv https://raw.githubusercontent.com/iabufarha/ArSarcasm-v2/main/ArSarcasm-v2/testing_data.csv !wget -O data/raw/scarcasmv2/train.csv https://raw.githubusercontent.com/iabufarha/ArSarcasm-v2/main/ArSarcasm-v2/training_data.csv df = pd.read_csv(r'data/raw/scarcasmv2/train.csv', header=0,escapechar='\n',usecols = [0,2],names=["sentence1", "label"]) df.to_csv('data/scarcasmv2/train.csv',index=False) df.to_csv('data/scarcasmv2/train.tsv',sep='\t',index=False) df = pd.read_csv(r'data/raw/scarcasmv2/dev.csv', header=0, escapechar='\n',usecols = [0,2],names=["sentence1", "label"]) df.to_csv('data/scarcasmv2/dev.csv',index=False) df.to_csv('data/scarcasmv2/dev.tsv',sep='\t',index=False) import pandas as pd from sklearn.metrics import f1_score,classification_report,accuracy_score def calc_scarcasm(y_pred,y_true): y_pred=pd.read_csv(y_pred, sep='\t',header=None,usecols=[1] ) y_true=pd.read_csv(y_true,usecols=[1],header=None) print("Accur Score:",accuracy_score(y_true, y_pred)*100) print("F1 PN Score:",f1_score(y_true, y_pred,labels=['NEG','POS'],average="macro")*100) print("########################### Full Report ###########################") print(classification_report(y_true, y_pred,digits=4,labels=['NEG','POS'] )) ###Output _____no_output_____ ###Markdown **ArabicTransformer Small (B4-4-4)** ###Code import os model= "sultan/ArabicTransformer-small" #@param ["sultan/ArabicTransformer-small","sultan/ArabicTransformer-intermediate","sultan/ArabicTransformer-large","aubmindlab/araelectra-base-discriminator","asafaya/bert-base-arabic","aubmindlab/bert-base-arabertv02","aubmindlab/bert-base-arabert", "aubmindlab/bert-base-arabertv01","kuisailab/albert-base-arabic","aubmindlab/bert-large-arabertv02"] task= "scarcasmv2" #@param ["scarcasmv2"] seed= "42" #@param ["42", "123", "1234","12345","666"] batch_size = 4 #@param {type:"slider", min:4, max:128, step:4} learning_rate = "3e-5"#@param ["1e-4", "3e-4", "1e-5","3e-5","5e-5","7e-5"] epochs_num = 2 #@param {type:"slider", min:1, max:50, step:1} max_seq_length= "256" #@param ["128", "256", "384","512"] os.environ['batch_size'] = str(batch_size) os.environ['learning_rate'] = str(learning_rate) os.environ['epochs_num'] = str(epochs_num) os.environ['task'] = str(task) os.environ['model'] = str(model) os.environ['max_seq_length'] = str(max_seq_length) os.environ['seed'] = str(seed) !python /content/transformers/examples/pytorch/xla_spawn.py --num_cores=8 transformers/examples/pytorch/text-classification/run_glue.py --model_name_or_path $model \ --train_file data/$task/train.csv \ --validation_file data/$task/dev.csv \ --test_file data/$task/dev.csv \ --output_dir output_dir/$task \ --overwrite_cache \ --seed $seed \ --overwrite_output_dir \ --logging_steps 1000000 \ --max_seq_length $max_seq_length \ --per_device_train_batch_size $batch_size \ --learning_rate $learning_rate \ --warmup_ratio 0.1 \ --num_train_epochs $epochs_num \ --save_steps 50000 \ --do_train \ --do_predict calc_scarcasm('/content/output_dir/scarcasmv2/predict_results_None.txt','/content/data/scarcasmv2/dev.csv') ###Output Accur Score: 69.97667444185271 F1 PN Score: 72.46443739729156 ########################### Full Report ########################### precision recall f1-score support NEG 0.7741 0.8050 0.7892 1677 POS 0.5886 0.7513 0.6600 575 micro avg 0.7191 0.7913 0.7535 2252 macro avg 0.6813 0.7782 0.7246 2252 weighted avg 0.7267 0.7913 0.7563 2252
Lab7/Lab7.ipynb
###Markdown They are not the same, which means that the approximation doesn't match the model that I've used. But it is very close since the model is a Poisson with high mean which is like a Gaussian. The approximation is for a Gaussian. ###Code mass_cut = [180, 150, 140, 135, 130] for i in mass_cut: print(f'mass cut: {i}') cut_qcd = qcd[qcd['mass'] < i] cut_higgs = higgs[higgs['mass'] < i] n_qcd = 2000/len(qcd)*len(cut_qcd) n_higgs = 50/len(higgs)*len(cut_higgs) print(f'N_qcd: {n_qcd:0.3f} N_higgs: {n_higgs:0.3f}') theory_sigma = theory(n_qcd, n_higgs) approx_sigma = approximation(n_qcd, n_higgs) print(f'theory sigma: {theory_sigma:.3f} approximate sigma: {approx_sigma:.3f}\n') keys = ['pt', 'eta', 'phi', 'mass', 'ee2', 'ee3', 'd2', 'angularity', 't1', 't2', 't3', 't21', 't32', 'KtDeltaR'] title = ['No Cut', 'Mass Cut'] normalization_higgs = 50/len(higgs) normalization_qcd = 2000/len(qcd) cut_qcd = qcd[qcd['mass']<140] cut_higgs = higgs[higgs['mass']<140] def get_ylims(y1, y2, y3, y4): all_y = np.hstack((y1, y2, y3, y4)) ymax = all_y.max()+10 ymin = all_y.min() #print(all_y) return ymax, ymin fig, ax = plt.subplots(14, 2, figsize = (20,140)) for i in range(len(keys)): #for i in range(1): hist1 = ax[i,0].hist(qcd[keys[i]], weights = np.ones(len(qcd))*normalization_qcd, bins = 50, histtype = 'step' ,label = 'QCD'); hist2 = ax[i,0].hist(higgs[keys[i]], weights = np.ones(len(higgs))*normalization_higgs, bins = hist1[1], histtype = 'step' ,label = 'Higgs'); hist3 = ax[i,1].hist(cut_qcd[keys[i]], weights = np.ones(len(cut_qcd))*normalization_qcd, bins = hist1[1], histtype = 'step' , label = 'QCD'); hist4 = ax[i,1].hist(cut_higgs[keys[i]], weights = np.ones(len(cut_higgs))*normalization_higgs, bins = hist1[1], histtype = 'step', label = 'Higgs'); #print(hist1[0], hist2[0], hist3[0], hist4[0]) ymax, ymin = get_ylims(hist1[0], hist2[0], hist3[0], hist4[0]) #print(ymin, ymax) for k in range(len(title)): ax[i,k].set_ylim(ymin, ymax) ax[i,k].set_title(title[k]) ax[i,k].set_ylabel('Normalized Counts') ax[i,k].set_xlabel(keys[i]) ax[i,k].legend() plt.show() t21_cut = [0.6, 0.5, 0.4, 0.3] for i in t21_cut: print(f't12 cut: {i}') cut2_qcd = cut_qcd[cut_qcd['t21'] < i] cut2_higgs = cut_higgs[cut_higgs['t21'] < i] n_qcd = 2000/len(qcd)*len(cut2_qcd) n_higgs = 50/len(higgs)*len(cut2_higgs) print(f'N_qcd: {n_qcd:0.3f} N_higgs: {n_higgs:0.3f}') theory_sigma = theory(n_qcd, n_higgs) approx_sigma = approximation(n_qcd, n_higgs) print(f'theory sigma: {theory_sigma:.3f} approximate sigma: {approx_sigma:.3f}\n') keys = ['pt', 'eta', 'phi', 'mass', 'ee2', 'ee3', 'd2', 'angularity', 't1', 't2', 't3', 't21', 't32', 'KtDeltaR'] #title = ['No Cut', 'Mass Cut', 't21 Cut'] title = ['Mass Cut', 't21 Cut'] normalization_higgs = 50/len(higgs) normalization_qcd = 2000/len(qcd) cut_qcd = qcd[qcd['mass']<140] cut_higgs = higgs[higgs['mass']<140] cut2_qcd = cut_qcd[cut_qcd['t21'] < 0.6] cut2_higgs = cut_higgs[cut_higgs['t21'] < 0.6] def get_ylims(y3, y4, y5, y6): all_y = np.hstack((y3, y4, y5, y6)) ymax = all_y.max()+5 ymin = all_y.min() #print(all_y) return ymax, ymin fig, ax = plt.subplots(14, 2, figsize = (20,140)) for i in range(len(keys)): #hist1 = ax[i,0].hist(qcd[keys[i]], weights = np.ones(len(qcd))*normalization_qcd, bins = 50, histtype = 'step', label = 'QCD'); #hist2 = ax[i,0].hist(higgs[keys[i]], weights = np.ones(len(higgs))*normalization_higgs, bins = hist1[1], histtype = 'step', label = 'Higgs'); hist3 = ax[i,0].hist(cut_qcd[keys[i]], weights = np.ones(len(cut_qcd))*normalization_qcd, bins = 50, histtype = 'step', label = 'QCD'); hist4 = ax[i,0].hist(cut_higgs[keys[i]], weights = np.ones(len(cut_higgs))*normalization_higgs, bins = hist3[1], histtype = 'step', label = 'Higgs'); hist5 = ax[i,1].hist(cut2_qcd[keys[i]], weights = np.ones(len(cut2_qcd))*normalization_qcd, bins = hist3[1], histtype = 'step', label = 'QCD'); hist6 = ax[i,1].hist(cut2_higgs[keys[i]], weights = np.ones(len(cut2_higgs))*normalization_higgs, bins = hist3[1], histtype = 'step', label = 'Higgs'); #ymax, ymin = get_ylims(hist1[0], hist2[0], hist3[0], hist4[0], hist5[0], hist6[0]) ymax, ymin = get_ylims(hist3[0], hist4[0], hist5[0], hist6[0]) for k in range(len(title)): ax[i,k].set_ylim(ymin, ymax) ax[i,k].set_title(title[k]) ax[i,k].set_ylabel('Normalized Counts') ax[i,k].set_xlabel(keys[i]) ax[i,k].legend() plt.show() ktdeltar_cut = [0.1, 0.2] for i in ktdeltar_cut: print(f'ktdeltar cut: {i}') cut3_qcd = cut2_qcd[cut2_qcd['KtDeltaR'] > i] cut3_higgs = cut2_higgs[cut2_higgs['KtDeltaR'] > i] n_qcd = 2000/len(qcd)*len(cut3_qcd) n_higgs = 50/len(higgs)*len(cut3_higgs) print(f'N_qcd: {n_qcd:0.3f} N_higgs: {n_higgs:0.3f}') theory_sigma = theory(n_qcd, n_higgs) approx_sigma = approximation(n_qcd, n_higgs) print(f'theory sigma: {theory_sigma:.3f} approximate sigma: {approx_sigma:.3f}\n') keys = ['pt', 'eta', 'phi', 'mass', 'ee2', 'ee3', 'd2', 'angularity', 't1', 't2', 't3', 't21', 't32', 'KtDeltaR'] title = ['Mass and t21 Cut', '+ KtDeltaR Cut'] normalization_higgs = 50/len(higgs) normalization_qcd = 2000/len(qcd) cut_qcd = qcd[qcd['mass']<140] cut_higgs = higgs[higgs['mass']<140] cut2_qcd = cut_qcd[cut_qcd['t21'] < 0.6] cut2_higgs = cut_higgs[cut_higgs['t21'] < 0.6] cut3_qcd = cut2_qcd[cut2_qcd['KtDeltaR'] > 0.2] cut3_higgs = cut2_higgs[cut2_higgs['KtDeltaR'] > 0.2] def get_ylims(y1, y2, y3, y4): all_y = np.hstack((y1, y2, y3, y4)) ymax = all_y.max()+1 ymin = all_y.min() #print(all_y) return ymax, ymin fig, ax = plt.subplots(14, 2, figsize = (20,140)) for i in range(len(keys)): hist1 = ax[i,0].hist(cut2_qcd[keys[i]], weights = np.ones(len(cut2_qcd))*normalization_qcd, bins = 50, histtype = 'step', label = 'QCD'); hist2 = ax[i,0].hist(cut2_higgs[keys[i]], weights = np.ones(len(cut2_higgs))*normalization_higgs, bins = hist1[1], histtype = 'step', label = 'Higgs'); hist3 = ax[i,1].hist(cut3_qcd[keys[i]], weights = np.ones(len(cut3_qcd))*normalization_qcd, bins = hist1[1], histtype = 'step', label = 'QCD'); hist4 = ax[i,1].hist(cut3_higgs[keys[i]], weights = np.ones(len(cut3_higgs))*normalization_higgs, bins = hist1[1], histtype = 'step', label = 'Higgs'); ymax, ymin = get_ylims(hist1[0], hist2[0], hist3[0], hist4[0]) for k in range(len(title)): ax[i,k].set_ylim(ymin, ymax) ax[i,k].set_title(title[k]) ax[i,k].set_ylabel('Normalized Counts') ax[i,k].set_xlabel(keys[i]) ax[i,k].legend() plt.show() ###Output _____no_output_____ ###Markdown Overall, I chose the cuts: mass 0.2. These cuts give a sigma of around 5. Testing out some supervised learning: ###Code keys = ['pt', 'eta', 'phi', 'mass', 'ee2', 'ee3', 'd2', 'angularity', 't1', 't2', 't3', 't21', 't32', 'KtDeltaR'] X = pd.concat([higgs, qcd], ignore_index = True) Y = np.hstack((np.ones(len(higgs)), np.zeros(len(qcd)))) print(X.shape, Y.shape) clf1 = RandomForestClassifier(n_estimators = 10) clf1 = clf1.fit(X,Y) feature_importance1 = np.vstack((keys, clf1.feature_importances_)) feature_importance1.sort(axis = 1) for i in range(len(feature_importance1[0])): print(f'{feature_importance1[0][i]}: {float(feature_importance1[1][i]):.3f}') X = pd.concat([higgs, qcd], ignore_index = True) Y = np.hstack((np.ones(len(higgs)), np.zeros(len(qcd)))) fig, ax = plt.subplots(figsize = (10,10)) ax.hist2d(X['t3'], X['t21'], bins = 50) ax.set_xlabel('t3') ax.set_ylabel('t21') plt.show() from matplotlib.colors import ListedColormap X = pd.concat([higgs.loc[:, ['t3', 't21']], qcd.loc[:,['t3', 't21']]]).to_numpy() Y = np.hstack((np.ones(len(higgs)), np.zeros(len(qcd)))) cmap = plt.cm.RdBu clf2 = RandomForestClassifier(n_estimators = 10) clf2 = clf2.fit(X,Y) #take bounds xmin, xmax = X[:, 0].min()-1, X[:, 0].max()+1 ymin, ymax = X[:, 1].min()-1, X[:, 1].max()+1 xgrid = np.arange(xmin, xmax, 0.1) ygrid = np.arange(ymin, ymax, 0.1) xx, yy = np.meshgrid(xgrid, ygrid) # make predictions for the grid Z = clf2.predict(np.c_[xx.ravel(), yy.ravel()]) # reshape the predictions back into a grid zz = Z.reshape(xx.shape) # plot the grid of x, y and z values as a surface fig, ax = plt.subplots(figsize = (10,10)) ax.contourf(xx, yy, zz, cmap = cmap) ax.scatter( X[:, 0], X[:, 1], c=Y, cmap=ListedColormap(["r", "b"]), edgecolor="k", s=20, ) ax.set_xlabel('t3') ax.set_ylabel('t21') plt.show() ###Output _____no_output_____ ###Markdown Домашняя лабораторная работа №7 по вычислительной математике Державин Андрей, Б01-909 Задача X.9.3 ![изображение.png]() ###Code import numpy as np from matplotlib import pyplot as plt ###Output _____no_output_____ ###Markdown Описание метода Имеем уравнение Рэлея:$$\frac{d^2x}{dt^2} - \mu \left( 1 - \left(\frac{dx}{dt}\right)^2\right)\frac{dx}{dt} + x = 0$$С Н.У.:$$x(0) = 0, \:\:\:\:\:\:\:\:\:\:\:\: \dot{x}(0) = 0.001$$Вводя замену $y = \frac{dx}{dt}$, перейдём к системе:$$\left\lbrace\begin{matrix} \frac{dx}{dt} &=& y\\ \frac{dy}{dt} &=& \mu \left( 1 - y^2\right)y - x\end{matrix}\right.$$С Н.У.:$$x(0) = 0, \:\:\:\:\:\:\:\:\:\:\:\: y(0) = 0.001$$Для удобства обозначим$$\overrightarrow{u} = \left[\begin{matrix} x\\y\end{matrix} \right], \:\:\:\:\:\:\:\:\:\:\:\:\overrightarrow{u_0} = \left[\begin{matrix} x(0)\\y(0)\end{matrix} \right] = \left[\begin{matrix} 0\\0.001\end{matrix} \right]$$$$f\left(\overrightarrow{u}\right) = \left[\begin{matrix}y\\\mu \left( 1 - y^2\right)y - x\end{matrix}\right]$$Тогда наша система принимает окончательный вид:$$\dot{\overrightarrow{u}} = f\left(\overrightarrow{u}\right)$$ Будем использовать метод Розенброка со следующими формулами:$$\overrightarrow{u_{n+1}} = \overrightarrow{u_{n}} + \tau \cdot\Re\left(\overrightarrow{k}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left( E - \frac{1+j}{2}\tau f_u(\overrightarrow{y_n}, t)\right) \overrightarrow{k} = f\left(\overrightarrow{y_n}, t + \frac{\tau}{2}\right)$$В силу автономности системы:$$\left( E - \frac{1+j}{2}\tau f_u(\overrightarrow{y_n})\right) \overrightarrow{k} = f(\overrightarrow{y_n})$$где $E$ - единичная матрица, $f_u$ - матрица Якоби системы Реализация ###Code # service class class Point: def __init__(self, x, y): self.x = x self.y = y def __str__(self): return f'({self.x}, {self.y})' def __repr__(self): return f'({self.x}, {self.y})' def __add__(self, other): return Point(self.x + other.x, self.y + other.y) def __sub__(self, other): return Point(self.x - other.x, self.y - other.y) def __mul__(self, num): return Point(self.x * num, self.y * num) def __div__(self, num): return Point(self.x / num, self.y / num) x0 = 0 xdot0 = 0.001 p0 = Point(x0, xdot0) c_p = Point(0, 0) mu = 1000 T_k = 10000 # конечное время def func(time, u:Point) -> Point: return Point(u.y, mu * (1 - u.y * u.y) * u.y - u.x) def jac(time, u:Point): return np.matrix([ [0, 1], [-1, mu * (1 - 3 * u.y * u.y)] ]) def Rosenbrock(t_end, p0:Point, tau): u_prev = p0 u = [u_prev] times = np.arange(0, t_end + tau, tau) for t_n in times[1:]: # matrix mat = np.identity(2) - tau * (1 + 1j) / 2 * jac(t_n, u_prev) col = func(t_n, u_prev) k = np.real(np.linalg.solve(mat, [col.x, col.y])) k = Point(k[0], k[1]) u_next = u_prev + k * tau u_prev = u_next u.append(u_next) return u, times def SolveNPrint(time, start_p:Point, center_p:Point, method, step = 1e-3): u, ts = method(time, start_p, step) u = np.array(u) - center_p plt.figure(figsize=[20, 10]) plt.title(f'Временная зависимость $x(t)$') plt.plot(ts, [i.x for i in u], 'b.') plt.xlabel('$t$', fontsize=20) plt.ylabel('$x(t)$', fontsize=20) plt.grid() plt.show() plt.figure(figsize=[20, 10]) plt.title(f'Фазовая траектория $y(x)$') plt.plot([i.x for i in u], [i.y for i in u], "b.") plt.xlabel('$x$', fontsize=20) plt.ylabel('$y$', fontsize=20) plt.grid() SolveNPrint(T_k, p0, c_p, Rosenbrock) SolveNPrint(5000, p0, c_p, Rosenbrock) ###Output _____no_output_____ ###Markdown **Table of contents*** [PCFG lib](lib) * [Span](span)* [CKY+](cky+) * [Item](item) * [Agenda](agenda) * [Inference rules](inference-rules) * [Deduction](deduction)* [PCFG recap](pcfg)* [Inside](inside) * [Semirings](semirings) **Table of Exercises*** Theory (9 points) * [Exercise 7-1](ex7-1) * [Exercise 7-2](ex7-2) * [Exercise 7-3](ex7-3) * [Exercise 7-4](ex7-4) * [Exercise 7-5](ex7-5) * Practicals (26 points) * [Exercise 7-6](ex7-6) * [Exercise 7-7](ex7-7) * [Exercise 7-8](ex7-8)* Bonus (see below for information about points) * Theory: [Exercise 7-9](ex7-9) * Practical: [Exercise 7-10](ex7-10) **General notes*** In this notebook you are expected to use $\LaTeX$* Use python3.* Use NLTK to read annotated data.* **Document your code**: TAs are more likely to understand the steps if you document them. If you don't, it's also difficult to give you partial points for exercises that are not completely correct.* This document contains 2 optional exercises worth bonus points. PCFG libWe are going to use the basic objects defined in the last lab* Symbol, Terminal, and Nonterminal* Rule, and CFGCheck the file `pcfglib.py` where you will find these definitions. ###Code from pcfglib import Symbol, Terminal, Nonterminal, Rule, CFG ###Output _____no_output_____ ###Markdown SpanFor convenience, we will define one more type of Symbol, this will be a Span. A Span is just a Nonterminal decorated with two integers which represent a half-open interval $(i, j]$, that is:* start (exclusive) of phrase* end (inclusive) of phraseIt is very easy to define such Span class by inheriting from Nonterminal. ###Code class Span(Nonterminal): def __init__(self, nonterminal: Nonterminal, start: int, end: int): """ :param nonterminal: a Nonterminal category :param start: start position of the phrase (exclusive) :param end: end position of the phrase (inclusive) """ if not isinstance(nonterminal, Nonterminal): raise ValueError('Only a Nonterminal can make a span') super(Span, self).__init__('%s:%d-%d' % (nonterminal.category, start, end)) self._base_nonterminal = nonterminal self._span = (start, end) @property def base_nonterminal(self) -> Nonterminal: """Returns the base nonterminal: the Nonterminal without span information""" return self._base_nonterminal @property def start(self): """Begin of the span (open)""" return self._span[0] @property def end(self): """End of the span (closed)""" return self._span[1] @property def span(self): """Returns _span""" return self._span ###Output _____no_output_____ ###Markdown The function definition below constructs our running example PCFG. Note that it returns both the CFG object and the cpds.As in the previous lab a collection of cpds is stored in a dictionary such that ```cpds[lhs]``` is a dictionary mapping from rules that rewrite that LHS symbol to their probability values. ###Code from collections import defaultdict def get_toy_pcfg(): # Some symbols S = Nonterminal('S') NP = Nonterminal('NP') VP = Nonterminal('VP') PP = Nonterminal('PP') NN = Nonterminal('NN') Vt = Nonterminal('Vt') Vi = Nonterminal('Vi') DT = Nonterminal('DT') IN = Nonterminal('IN') CC = Nonterminal('CC') # Grammar G = CFG(S) cpds = defaultdict(lambda: defaultdict(float)) # Phrasal rules G.add(Rule(S, [NP, VP])) cpds[S][Rule(S, [NP, VP])] = 1.0 G.add(Rule(NP, [DT, NN])) G.add(Rule(NP, [NN])) G.add(Rule(NP, [NP, PP])) G.add(Rule(NP, [NP, CC, NP])) cpds[NP][Rule(NP, [DT, NN])] = 0.4 cpds[NP][Rule(NP, [NN])] = 0.1 cpds[NP][Rule(NP, [NP, PP])] = 0.3 cpds[NP][Rule(NP, [NP, CC, NP])] = 0.2 G.add(Rule(VP, [Vt, NP])) G.add(Rule(VP, [VP, PP])) G.add(Rule(VP, [Vi])) G.add(Rule(VP, [VP, CC, VP])) cpds[VP][Rule(VP, [Vt, NP])] = 0.3 cpds[VP][Rule(VP, [VP, PP])] = 0.4 cpds[VP][Rule(VP, [Vi])] = 0.2 cpds[VP][Rule(VP, [VP, CC, VP])] = 0.1 G.add(Rule(PP, [IN, NP])) cpds[PP][Rule(PP, [IN, NP])] = 1. # Preterminal rules G.add(Rule(NN, [Terminal('dog')])) G.add(Rule(NN, [Terminal('cat')])) G.add(Rule(NN, [Terminal('man')])) G.add(Rule(NN, [Terminal('telescope')])) cpds[NN][Rule(NN, [Terminal('dog')])] = 0.3 cpds[NN][Rule(NN, [Terminal('cat')])] = 0.2 cpds[NN][Rule(NN, [Terminal('man')])] = 0.4 cpds[NN][Rule(NN, [Terminal('telescope')])] = 0.1 G.add(Rule(DT, [Terminal('the')])) G.add(Rule(DT, [Terminal('a')])) cpds[DT][Rule(DT, [Terminal('the')])] = 0.6 cpds[DT][Rule(DT, [Terminal('a')])] = 0.4 G.add(Rule(CC, [Terminal('and')])) G.add(Rule(CC, [Terminal(',')])) cpds[CC][Rule(CC, [Terminal('and')])] = 0.8 cpds[CC][Rule(CC, [Terminal(',')])] = 0.2 G.add(Rule(IN, [Terminal('with')])) G.add(Rule(IN, [Terminal('through')])) G.add(Rule(IN, [Terminal('within')])) cpds[IN][Rule(IN, [Terminal('with')])] = 0.5 cpds[IN][Rule(IN, [Terminal('through')])] = 0.3 cpds[IN][Rule(IN, [Terminal('within')])] = 0.2 G.add(Rule(Vt, [Terminal('saw')])) G.add(Rule(Vt, [Terminal('barked')])) G.add(Rule(Vt, [Terminal('meowed')])) G.add(Rule(Vt, [Terminal('moved')])) cpds[Vt][Rule(Vt, [Terminal('saw')])] = 0.4 cpds[Vt][Rule(Vt, [Terminal('barked')])] = 0.3 cpds[Vt][Rule(Vt, [Terminal('meowed')])] = 0.2 cpds[Vt][Rule(Vt, [Terminal('moved')])] = 0.1 G.add(Rule(Vi, [Terminal('barked')])) G.add(Rule(Vi, [Terminal('ran')])) G.add(Rule(Vi, [Terminal('meowed')])) cpds[Vi][Rule(Vi, [Terminal('barked')])] = 0.2 cpds[Vi][Rule(Vi, [Terminal('ran')])] = 0.7 cpds[Vi][Rule(Vi, [Terminal('meowed')])] = 0.1 return G, cpds ###Output _____no_output_____ ###Markdown Let's inspect our grammar ###Code G, cpds = get_toy_pcfg() print(G) ###Output [S] -> [NP] [VP] [NP] -> [DT] [NN] [NP] -> [NN] [NP] -> [NP] [PP] [NP] -> [NP] [CC] [NP] [PP] -> [IN] [NP] [VP] -> [Vt] [NP] [VP] -> [VP] [PP] [VP] -> [Vi] [VP] -> [VP] [CC] [VP] [CC] -> 'and' [CC] -> ',' [DT] -> 'the' [DT] -> 'a' [IN] -> 'with' [IN] -> 'through' [IN] -> 'within' [NN] -> 'dog' [NN] -> 'cat' [NN] -> 'man' [NN] -> 'telescope' [Vi] -> 'barked' [Vi] -> 'ran' [Vi] -> 'meowed' [Vt] -> 'saw' [Vt] -> 'barked' [Vt] -> 'meowed' [Vt] -> 'moved' ###Markdown as well as our cpds ###Code for lhs, cpd in cpds.items(): for rule, prob in cpd.items(): print(prob, rule) ###Output 0.4 [VP] -> [VP] [PP] 0.2 [VP] -> [Vi] 0.1 [VP] -> [VP] [CC] [VP] 0.3 [VP] -> [Vt] [NP] 0.3 [NN] -> 'dog' 0.1 [NN] -> 'telescope' 0.2 [NN] -> 'cat' 0.4 [NN] -> 'man' 0.7 [Vi] -> 'ran' 0.1 [Vi] -> 'meowed' 0.2 [Vi] -> 'barked' 1.0 [PP] -> [IN] [NP] 1.0 [S] -> [NP] [VP] 0.2 [Vt] -> 'meowed' 0.4 [Vt] -> 'saw' 0.1 [Vt] -> 'moved' 0.3 [Vt] -> 'barked' 0.4 [NP] -> [DT] [NN] 0.3 [NP] -> [NP] [PP] 0.2 [NP] -> [NP] [CC] [NP] 0.1 [NP] -> [NN] 0.2 [IN] -> 'within' 0.5 [IN] -> 'with' 0.3 [IN] -> 'through' 0.6 [DT] -> 'the' 0.4 [DT] -> 'a' 0.8 [CC] -> 'and' 0.2 [CC] -> ',' ###Markdown CKY+ In this section we will implement a generalised CKY algorithm which can deal with an arbitrary epsilon-free CFG.We will implement the parsing strategy **for you** to guarantee that it is correct. The focus of this lab is on the **inside recursion**. An extra will involve implementing a different parsing strategy, for that some of the data structures we will develop here are indeed very useful, thus take this as a learning opportunity and try to reuse some code if you decide to implement the extra.There will be nonetheless questions throught this lab, so stay tuned.Again we will use a deductive system to describe the parsing strategy:\begin{align}\text{Item} &\qquad [i, X \rightarrow \alpha_\blacksquare \, \bullet \, \beta_\square, j] \\\text{Goal} &\qquad [1, S \rightarrow \beta_\blacksquare \, \bullet, n] \\\text{Axioms} &\qquad [i, X \rightarrow \bullet \alpha_\square, i] &~\text{ for all } X \rightarrow \alpha \in \mathcal R \\\text{Scan} &\qquad \frac{[i, X \rightarrow \alpha_\blacksquare \, \bullet \, x_{j+1} \, \beta_\square, j]}{[i, X \rightarrow \alpha_\blacksquare \, x_{j+1} \bullet \, \beta_\square, j + 1]} \\\text{Complete} &\qquad \frac{[i, X \rightarrow \alpha_\blacksquare \, \bullet \, Y \, \beta_\square ,k] [k, Y \rightarrow \gamma_\blacksquare \, \bullet , j]}{[i, X \rightarrow \alpha_\blacksquare \, Y_{k,j} \, \bullet \, \beta_\square , j]}\end{align} **Exercise 7-1** **[1 point]** Explain the meaning of an item (make sure to discuss all elements in it). - An item is a representation of a segment of sentence $x_1^n = \{x_1,...,x_n\}$ which spans from $i$ to $j$- $X \rightarrow \alpha \, \beta \in \mathcal R$ corresponds to a rule - But because its general CNF $\alpha$ and $\beta$ don't correspond to one single (Non)Terminal but to subset of the RHS - $\alpha$ corresponds to the part of the RHS that has been scanned - $\beta$ corresponds to the part of the RHS that hasn't been scanned- $\blacksquare$ represents the spans of all the elements of $\alpha$ and is moved when the complete rule is used- $\bullet$ represents the position of the "word scanner" which checks whether a preterminal rule can be used that matches the next word in the sentence **Exercise 7-2** **[1 point]** Explain the goal of the program `Typo in Goal item: should i should be 0 not 1`- The goal of the program is to have scanned all words in $x_1^n$ ($\bullet$ to the right) and know for each symbol in $\beta$ what its span is ($\blacksquare$ to the right).- Goal item spans (0,n] **Exercise 7-3** **[1 point]** Explain the axioms of the program `Typo in Axiom item: should be S not X a nd i and j 0`- The axiom is the start point of where to start. **Exercise 7-4** **[1 point]** Explain SCAN (make sure to discuss all elements of the rule) **Exercise 7-5** **[1 point]** Explain the COMPLETE rule including all of its elements including the side condition. The actual **deduction** is nothing but an exhaustive enumeration of valid items.* we start from axioms* and proceed by either scanning or completing previously derived items* each such operation creates additional items* if these items were not yet discovered, they make it to what we call an **agenda*** the agenda is much like a queue of items yet to be processed* processing an item means simply giving it the chance to participate in scan and complete* we should be careful to never process an item twice under the same premises * items that are yet to be processed are called **active items*** items already processed are called **passive items*** at the end there should be no active item and many passive items* parsing is possible if we derive/prove/reach the goal item* the complete items in the passive set can be used to derive a **parse forest*** a parse forest is much like a CFG but its rules have symbols which are decorated with spans indicating how they parse the input sentence* we can use parse forests to answer questions such as: what trees can parse the sentence? And when we introduce PCFGs, we will be able to answer quetions such as: what's the best tree that parses the sentence? what's the total probability value of the sentence (once we marginalise all possible parse trees). Now we turn to implementation, which will require a few classes and data structures, but we will discuss them one by one. ItemWe have to start by turning items into code!We are using dotted rules to represent items in CKY+. A dotted rule is basically a container for * a context-free production* a list of positions already covered in the input sentence * together this represents the start and end position as well as the black squares in the item This is an item formally\begin{align}\qquad [i, X \rightarrow \alpha_\blacksquare \, \bullet \, \beta_\square, j]\end{align} and this is how we realise it in our implementation [LHS -> RHS, [i...j]]the first element of the pair is the rule `LHS -> RHS` and the second is a list of positions where the dot has been. ###Code class Item: """ A dotted rule used in CKY We store a rule and a list of positions (which we call `dots` because they indicate positions where the dots have been) We make an Item a hashable object so that we can use it in dictionaries. """ def __init__(self, rule: Rule, dots: list): if len(dots) == 0: raise ValueError('I do not accept an empty list of dots') self._rule = rule self._dots = tuple(dots) def __eq__(self, other: 'Item'): """Two items are identical if they contain the same rule and cover the same positions""" return self._rule == other._rule and self._dots == other._dots def __hash__(self): """We let python hash the two objects that represent an Item""" return hash((self._rule, self._dots)) def __str__(self): return '[{0}, {1}]'.format(self._rule, self._dots) def __repr__(self): return str(self) @property def lhs(self): return self._rule.lhs @property def rule(self): return self._rule @property def dot(self): return self._dots[-1] @property def start(self): return self._dots[0] @property def next(self): """return the symbol to the right of the dot (or None, if the item is complete)""" if self.is_complete(): return None return self._rule.rhs[len(self._dots) - 1] def state(self, i): return self._dots[i] def advance(self, dot): """return a new item with an extended sequence of dots""" return Item(self._rule, self._dots + (dot,)) def is_complete(self): """complete items are those whose dot reached the end of the RHS sequence""" return len(self._rule.rhs) + 1 == len(self._dots) ###Output _____no_output_____ ###Markdown Let's play a bit with item objects to see how they work ###Code r = Rule(Nonterminal('S'), [Nonterminal('X')]) i1 = Item(r, [0]) i2 = i1.advance(1) print(i1) print(i2) i1 != i2 i1.is_complete() i2.is_complete() i1.next i2.next ###Output _____no_output_____ ###Markdown AgendaNext we need an agenda of items. In CKY+ we have to track quite a bit of information, so we will design a more complex agenda. Because there will be a lot of functionality, we will use a class. In an agenda, some items are active, others are passive.Functionally, the active agenda is nothing but a stack or queue, whereas the passive agenda is simply a set (all items that have already been processed). However, to make our inferences run faster, we can further organise the passive items for easy/quick access within inference rules. ###Code from collections import deque, defaultdict class Agenda: """ An Agenda for CKY+. The agenda will organise a queue of active items as well as a set of passive items. This agenda is such that it does not push an item twice into the queue that is equivalent to saying that the agenda is capable of maintaining a set of already discovered items. This agenda will also organise the passive items for quick access in the COMPLETE rule. This means we will store complete and incomplete items separately and hash them by some useful criterion. A complete item essentially contributes to further advancing incomplete items. Incomplete items need to be further completed. """ def __init__(self): # we are organising active items in a stack (last in first out) self._active = deque([]) # an item should never queue twice, thus we will manage a set of items which we have already seen self._discovered = set() # Passive items may be complete # in which case they help us complete other items # and they may be incomplete # in which case we will be trying to complete them # In order to make COMPLETE inferences easier, we will separate passive items into these two groups # and we will also organise each group conveniently. # We organise incomplete items by the symbols they wait for at a certain position # that is, if the key is a pair (Y, i) # the value is a set of items of the form # [X -> alpha * Y beta, [...i]] # in other words "items waiting for a Y to project a span from i" self._incomplete = defaultdict(set) # We organise complete items by their LHS symbol spanning from a certain position # if the key is a pair (X, i) # then the value is a set of items of the form # [X -> gamma *, [i ... j]] self._complete = defaultdict(set) def __len__(self): """return the number of active items""" return len(self._active) def push(self, item: Item): """push an item into the queue of active items""" if item not in self._discovered: # if an item has been seen before, we simply ignore it self._active.append(item) self._discovered.add(item) return True return False def pop(self): """pop an active item""" if len(self._active) == 0: raise ValueError('I have no items left') return self._active.pop() def make_passive(self, item: Item): if item.is_complete(): # complete items offer a way to rewrite a certain LHS from a certain position self._complete[(item.lhs, item.start)].add(item) else: # incomplete items are waiting for the completion of the symbol to the right of the dot self._incomplete[(item.next, item.dot)].add(item) def waiting(self, symbol: Symbol, dot: int): return self._incomplete.get((symbol, dot), set()) def complete(self, lhs: Nonterminal, start: int): return self._complete.get((lhs, start), set()) def itercomplete(self): """an iterator over complete items in arbitrary order""" for items in self._complete.values(): for item in items: yield item ###Output _____no_output_____ ###Markdown Let's see how this works ###Code A = Agenda() r1 = Rule(Nonterminal('S'), [Nonterminal('S'), Nonterminal('X')]) r1 ###Output _____no_output_____ ###Markdown we can push items into the agenda ###Code A.push(Item(r1, [0])) # S -> S X, [0] (earley axiom) ###Output _____no_output_____ ###Markdown and the agenda will make sure there are no duplicates ###Code A.push(Item(r1, [0])) len(A) i1 = Item(r1, [0]) i1 A.make_passive(i1) A.push(Item(Rule(Nonterminal('S'), [Nonterminal('X')]), [0])) A.make_passive(Item(Rule(Nonterminal('S'), [Nonterminal('X')]), [0])) A.push(Item(Rule(Nonterminal('S'), [Nonterminal('X')]), [0, 1])) A.make_passive(Item(Rule(Nonterminal('S'), [Nonterminal('X')]), [0, 1])) list(A.itercomplete()) ###Output _____no_output_____ ###Markdown Inference rules Basic axiomsFor every rule X -> alpha, and every input position (i) between 0 and n-1, we have an item of the kind:\begin{equation}[i, X \rightarrow \bullet \alpha_\square, i]\end{equation}In our implementation an axiom looks like this [X -> alpha, [i]] ###Code def axioms(cfg: CFG, sentence: list): """ :params cfg: a context-free grammar (an instance of WCFG) :params sentence: the input sentence (as a list or tuple) :returns: a list of items """ items = [] for rule in cfg: for i, x in enumerate(sentence): # We will implement a tiny optimisation here # For rules that start with terminals we can use "look ahead" if isinstance(rule.rhs[0], Terminal): # this is a mechanism by which we avoid constructing items which we know cannot be scanned # that's the terminal that starts the rule does not occur in the sentence we are parsing if rule.rhs[0] == x: items.append(Item(rule, [i])) else: items.append(Item(rule, [i])) return items ###Output _____no_output_____ ###Markdown Let's have a look what type of axioms we get, note that CKY+ is very greedy. Earley parsing is an alternative strategy that's far more conservative than CKY+, for example, Earley avoids instantiating items that are not yet required and instead uses a simpler axiom (you will seee it later). ###Code sentence = [Terminal(w) for w in 'the man saw the dog with a telescope'.split()] axioms(G, sentence) ###Output _____no_output_____ ###Markdown ScanIf the dot is placed at a position just before a *terminal*, we can **scan** it provided that the terminal matches the corresponding input position.\begin{equation} \frac{[i, A \rightarrow \alpha_\blacksquare \, \bullet \, x_{j+1} \, \beta_\square, j]}{[i, A \rightarrow \alpha_\blacksquare \, x_{j+1} \bullet \, \beta_\square, j + 1]}\end{equation}In our implementation with dot lists it looks like this [X -> alpha * x beta, [i ... j]] -------------------------------------------- [X -> alpha x * beta, [i ... j] + [j + 1]] note that the `*` is simply indicating where the last dot would be. ###Code def scan(item: Item, sentence): if isinstance(item.next, Terminal): if item.dot < len(sentence) and sentence[item.dot] == item.next: return item.advance(item.dot + 1) else: return None scanned = [] for item in axioms(G, sentence): new = scan(item, sentence) if new is not None: scanned.append(new) scanned ###Output _____no_output_____ ###Markdown CompleteHere we let an active item interact with passive items:* either an active item is complete, then we try to advance incomplete passive items* or an active item is incomplete, in which case we try to advance the item itself by looking back to complete passive itemsBoth cases are covered by the inference rule\begin{align}\qquad \frac{[i, X \rightarrow \alpha_\blacksquare \, \bullet \, Y \, \beta_\square ,k] [k, Y \rightarrow \gamma_\blacksquare \, \bullet , j]}{[i, X \rightarrow \alpha_\blacksquare \, Y_{k,j} \, \bullet \, \beta_\square , j]}\end{align}In our implementation with dot lists it looks like this [X -> alpha * Y beta, [i ... k]] [Y -> gamma *, [k ... j]] ---------------------------------------------------------- [X -> alpha Y * beta, [i ... k] + [j]] ###Code def complete(item: Item, agenda: Agenda): items = [] # This has two cases # either the input item corresponds to the second antecedent in the COMPLETE inference rule # in which case the item is complete (the dot stands at the end) # or the input item corresponds to the first antecedent in the COMPLETE inference rule # in which case the item is itself incomplete # When it is *complete* we use it to advance incomplete ones. # When it is *incomplete* we check if we know a complete item that can advance it. # First we deal with the complete case if item.is_complete(): # If the item is complete, it can be used to advance incomplete items # We then look for incomplete items that are waiting for # the LHS nonterminal of our complete item # in particular, if it matches the start position of our complete item for incomplete in agenda.waiting(item.lhs, item.start): items.append(incomplete.advance(item.dot)) else: # Then we deal with the incomplete case # look for completions of item.next spanning from item.dot ends = set() for complete in agenda.complete(item.next, item.dot): ends.add(complete.dot) # advance the dot of the input item for each position that completes a span for end in ends: items.append(item.advance(end)) return items ###Output _____no_output_____ ###Markdown Forest from complete itemsEach **complete** item in the (passive) agenda can be mapped to a new CFG rule (with nonterminal symbols annotated with spans).For example, an item such as [X -> A x B *, [0,1,2,3]] results in the rule X:0-3 -> A:0-1 x B:2-3 observe how only nonterminal nodes get annotated: this helps us keep terminals and nonterminals clearly separate. ###Code def make_span(sym: Symbol, start: int, end: int): """ Helper function that returns a Span for a certain symbol. This function will only make spans out of nonterminals, terminals are return as is. :param sym: Terminal or Nonterminal symbol :param start: open begin :param end: closed end :returns: Span(sym, start, end) or sym (if Terminal) """ if isinstance(sym, Nonterminal): return Span(sym, start, end) else: return sym ###Output _____no_output_____ ###Markdown Making a forest is indeed really simple, we just need to return a new CFG with rules derived from complete items in the passive set. The rules will have their nonterminals annotated into spans. ###Code def make_forest(complete_items: list, forest_start: Nonterminal): """ Converts complete items from CKY+ into a forest, that is, a CFG whose rules have spans for nonterminals. :param complete_items: a collection of dotted items which are complete (dot at the end of the RHS) :param forest_start: the start nonterminal (a Span) of the forest """ if not isinstance(forest_start, Span): raise ValueError('The start symbol of a forest should be a span') forest = CFG(forest_start) for item in complete_items: lhs = make_span(item.lhs, item.start, item.dot) rhs = [] for i, sym in enumerate(item.rule.rhs): if isinstance(sym, Terminal): rhs.append(sym) else: rhs.append(make_span(sym, item.state(i), item.state(i + 1))) forest.add(Rule(lhs, rhs)) return forest ###Output _____no_output_____ ###Markdown DeductionStart with axioms and exhaustively apply inference rules ###Code def cky(cfg: CFG, sentence): A = Agenda() for item in axioms(cfg, sentence): A.push(item) while A: item = A.pop() # a complete item can be used to complete other items # alternatively, we may be able to advance an incomplete item # whose next symbol is a nonterminal by combining it with some passive complete item if item.is_complete() or isinstance(item.next, Nonterminal): for new in complete(item, A): A.push(new) else: # here we have a terminal ahead of the dot, thus only scan is possible new = scan(item, sentence) if new is not None: # if we managed to scan A.push(new) A.make_passive(item) forest_start = make_span(cfg.start, 0, len(sentence)) forest = make_forest(A.itercomplete(), forest_start) if forest.can_rewrite(forest_start): return forest else: return CFG(forest_start) forest = cky(G, sentence) forest.start forest.can_rewrite(forest.start) print(forest) ###Output [S:0-8] -> [NP:0-2] [VP:2-8] [NP:0-2] -> [DT:0-1] [NN:1-2] [NP:1-2] -> [NN:1-2] [NP:3-5] -> [DT:3-4] [NN:4-5] [NP:3-8] -> [NP:3-5] [PP:5-8] [NP:4-5] -> [NN:4-5] [NP:4-8] -> [NP:4-5] [PP:5-8] [NP:6-8] -> [DT:6-7] [NN:7-8] [NP:7-8] -> [NN:7-8] [PP:5-8] -> [IN:5-6] [NP:6-8] [S:0-5] -> [NP:0-2] [VP:2-5] [S:1-5] -> [NP:1-2] [VP:2-5] [S:1-8] -> [NP:1-2] [VP:2-8] [VP:2-5] -> [Vt:2-3] [NP:3-5] [VP:2-8] -> [VP:2-5] [PP:5-8] [VP:2-8] -> [Vt:2-3] [NP:3-8] [DT:0-1] -> 'the' [DT:3-4] -> 'the' [DT:6-7] -> 'a' [IN:5-6] -> 'with' [NN:1-2] -> 'man' [NN:4-5] -> 'dog' [NN:7-8] -> 'telescope' [Vt:2-3] -> 'saw' ###Markdown Note that if we modify the sentence in a way that it can't be parsed by G we will get an empty forest ###Code empty_forest = cky(G, sentence + [Terminal('!')]) empty_forest.start empty_forest.can_rewrite(empty_forest.start) ###Output _____no_output_____ ###Markdown PCFG recapA probabilistic CFG is a simple extension to CFGs where we assign a joint probability distribution over the space of context-free *derivations*. A random **derivation** $D = \langle R_1, \ldots, R_m \rangle$ is a sequence of $m$ *random rule applications*.A random rule is a pair of a random LHS nonterminal $V$ and a random RHS sequence $\beta$, where $V \rightarrow \beta$ corresponds to a valid rule in the grammar.We assume that a derivation is generated one rule at a time and each rule is generated independently. Moreover, the probability value of a rule is given by a conditional probability distribution over RHS sequences given LHS nonterminal. \begin{align}P_{D|M}(r_1^m|m) &= \prod_{i=1}^m P_R(r_i) \\ &= \prod_{i=1}^m P_{\text{RHS}|\text{LHS}}(\beta_i | v_i)\\ &= \prod_{i=1}^m \text{Cat}(\beta_i | \boldsymbol \theta^{v_i})\\ &= \prod_{i=1}^m \theta_{v_i \rightarrow \beta_i}\\\end{align}We can implement PCFGs rather easily by pairing a CFG grammar with a dictionary mapping from rules to their probabilities. But we must remember that for each given LHS symbol, the probability values of all of its rewriting rules must sum to 1.\begin{equation}\sum_{\beta} \theta_{v \rightarrow \beta} = 1\end{equation} Inside algorithmThis is the core of this lab, the inside recursion. The inside recursion (also known as **value recursion**) is incredibly general, it can be used to compute a range of interesting quantities.The formula below corresponds to the recursion:\begin{align}(1)\qquad I(v) &= \begin{cases} \bar{1} & \text{if }v \text{ is terminal and } \text{BS}(v) = \emptyset\\ \bar{0} & \text{if }v \text{ is nonterminal and } \text{BS}(v) = \emptyset \\ \displaystyle\bigoplus_{\frac{a_1 \ldots a_n}{v: \theta} \in \text{BS}(v)} \theta \otimes \bigotimes_{i=1}^n I(a_i) & \text{otherwise} \end{cases}\end{align}In this formula $\text{BS}(v)$ is the *backward-star* of the node, or the set of edges **incoming** to the node. That is, all edges (rules with spans) that have that node as an LHS symbol. There is one detail important to remember. In principle only *terminal* nodes would have an empty backward-star. But because our parsing strategy can produce some dead-end nodes (nodes that cannot be expanded) we will have some nonterminal nodes with empty backward-star. Those are special cases, which we treat specially. Essentially, we give them an inside value of $\bar 0$. SemiringsIn this formula we use generalised sum $\oplus$ and generalised product $\otimes$ which we explain below.A **semiring** is algebraic structure $\langle \mathbb K, \oplus, \otimes, \bar 0, \bar 1\rangle$ which corresponds to a set $\mathbb K$ equipped with addition $\oplus$ and multiplication $\otimes$. Real semiringFor example, the algebra you learnt at school is a semiring! The set of interest is the real line $\mathbb K = \mathbb R$.Then if we have two real numbers, $a \in \mathbb R$ and $b \in \mathbb R$, we define **sum** as\begin{equation}a \oplus b = a + b\end{equation}which is simply the standard addition.The additive identity is the value in the set that does not affect summation, we indicate it by $\bar 0$. In this case, we are talking about the real number 0:\begin{equation}a \oplus \bar 0 = a + 0 = a\end{equation}We can also define **multiplication**\begin{equation}a \otimes b = a \times b\end{equation}which is simply the standard multiplication.The multiplicative identity is the value in the set that does not affect multiplication, we indicate it by $\bar 1$. In this case, we are talking about the read number 1:\begin{equation}a \otimes \bar 1 = a \times 1 = a\end{equation} Log-Probability semiringWhen we compute a log-marginal, we are essentially using a logarithmic semiring. Then the set of interest is the set of log-probability values. Probabilities range between $0$ and $1$ and therefore log-probabilities range from $-\infty$ (which is $\log 0$) to $0$ (which is $\log 1$). We denote this set $\mathbb K = \mathbb R_{\le 0} \cup \{-\infty\}$.Then if we have two log-probability values $a \in \mathbb K$ and $b \in \mathbb K$, our sum becomes\begin{equation}a \oplus b = \log(\exp a + \exp b)\end{equation}Here we first exponentiate the values bringing them back to the real semiring (where we know how to sum), then we use the standard sum (from high school), and convert the result back to the log-probability semiring by applying $\log$ to the result.Our product becomes\begin{equation}a \otimes b = a + b\end{equation}which exploits a basic property of logarithms.Our additive identity is\begin{equation}a \oplus \bar 0 = \log (\exp a + \underbrace{\exp(-\infty)}_{0}) = \log \exp a = a\end{equation}this is the case because exponentiating an infinitely negative number converges to $0$.Finally, our multiplicative identity is\begin{equation}a \otimes \bar 1 = a \times 1 = a\end{equation}The interesting thing about semirings is that they manipulate different *types of numbers* but they are coherent with the basic axioms of math that we are used to. They help us realise that several algorithms are actually all the same, but they happen to operate under different algebraic structures (read: different definitions of what sum and multiplication are). We will define a general class for semirings and you will implement various specialisations. This class will only contain **class methods** this makes the class more or less like a package that can be used to organise coherent functions without really storing any content. ###Code class Semiring: """ This is the interface for semirings. """ @classmethod def from_real(cls, a: float): """This method takes a number in the Real semiring and converts it to the semiring of interest""" raise NotImplementedError('You need to implement this in the child class') @classmethod def to_real(cls, a: float): """This method takes a number in this semiring and converts it to the Real semiring""" raise NotImplementedError('You need to implement this in the child class') @classmethod def one(cls): """This method returns the multiplicative identity of the semiring""" raise NotImplementedError('You need to implement this in the child class') @classmethod def zero(cls): """This method returns the additive identity of the semiring""" raise NotImplementedError('You need to implement this in the child class') @classmethod def plus(cls, a, b): """ This method sums a and b (in the semiring sense) where a and b are elements already converted to the type of numbers manipulated by the semiring """ raise NotImplementedError('You need to implement this in the child class') @classmethod def times(cls, a, b): """ This method multiplies a and b (in the semiring sense) where a and b are elements already converted to the type of numbers manipulated by the semiring """ raise NotImplementedError('You need to implement this in the child class') ###Output _____no_output_____ ###Markdown We will implement for you the *Marginal semiring*, that is, the basic algebra from school. ###Code class MarginalSemiring(Semiring): @classmethod def from_real(cls, a: float): return a @classmethod def to_real(cls, a: float): return a @classmethod def one(cls): return 1. @classmethod def zero(cls): return 0. @classmethod def plus(cls, a, b): return a + b @classmethod def times(cls, a, b): return a * b MarginalSemiring.from_real(0.2) MarginalSemiring.to_real(0.5) MarginalSemiring.plus(0.1, 0.2) MarginalSemiring.times(0.2, 0.3) MarginalSemiring.one() MarginalSemiring.zero() ###Output _____no_output_____ ###Markdown and we also implement for you the *ViterbiSemiring* used to compute maximum probabilities. ###Code import numpy as np class ViterbiSemiring(Semiring): @classmethod def from_real(cls, a: float): return a @classmethod def to_real(cls, a: float): return a @classmethod def one(cls): return 1. @classmethod def zero(cls): return 0. @classmethod def plus(cls, a, b): return np.maximum(a, b) @classmethod def times(cls, a, b): return a * b ViterbiSemiring.times(0.2, 0.3) ###Output _____no_output_____ ###Markdown note how the following will pick the maximum rather than accumulate the numbers ###Code ViterbiSemiring.plus(0.1, 0.4) ###Output _____no_output_____ ###Markdown Now you implement the $\log$ variants of both semirings:**Exercise 7-6** **[6 points]** Implement LogMarginalSemiring below as a log-variant of the MarginalSemiring as well as LogViterbiSemiring as a log-variant of the ViterbiSemiring. Run examples of all methods and confirm that the quantities they compute correspond to the correct quantities when converted back to the Real semiring using `to_real`.* **[3 points]** LogMarginalSemiring* **[3 points]** LogViterbiSemiring ###Code class LogMarginalSemiring(Semiring): @classmethod def from_real(cls, a: float): return np.log(a) @classmethod def to_real(cls, a: float): return np.exp(a) @classmethod def one(cls): return 0. @classmethod def zero(cls): return -float('Inf') @classmethod def plus(cls, a, b): return np.log(np.exp(a) + np.exp(b)) @classmethod def times(cls, a, b): return a + b class LogViterbiSemiring(Semiring): @classmethod def from_real(cls, a: float): return np.log(a) @classmethod def to_real(cls, a: float): return np.exp(a) @classmethod def one(cls): return 0. @classmethod def zero(cls): return -float('Inf') @classmethod def plus(cls, a, b): return max(a, b) @classmethod def times(cls, a, b): return a + b ###Output _____no_output_____ ###Markdown Implementing the inside recursion For the inside recursion you need the weight (parameter converted to the appropriate semiring) of the rule that justifies each edge. For that we provide you with a helper function. It receives an edge (Rule with spans) and the cpds of the original grammar and returns the correct parameter. ###Code from typing import Dict def get_parameter(edge: Rule, cpds: Dict[Nonterminal, Dict[Rule, float]]): base_rhs = [node.base_nonterminal if isinstance(node, Span) else node for node in edge.rhs] base_rule = Rule(edge.lhs.base_nonterminal, base_rhs) return cpds[base_rule.lhs][base_rule] # Now if you ever need to get the parameter for a rule in the grammar you can use the function above # For example, for edge in forest: print(get_parameter(edge, cpds), edge) ###Output 1.0 [S:1-8] -> [NP:1-2] [VP:2-8] 0.5 [IN:5-6] -> 'with' 0.3 [NN:4-5] -> 'dog' 1.0 [S:0-8] -> [NP:0-2] [VP:2-8] 0.3 [VP:2-8] -> [Vt:2-3] [NP:3-8] 0.3 [NP:4-8] -> [NP:4-5] [PP:5-8] 0.6 [DT:0-1] -> 'the' 0.4 [Vt:2-3] -> 'saw' 0.4 [NP:6-8] -> [DT:6-7] [NN:7-8] 0.1 [NN:7-8] -> 'telescope' 0.4 [NP:0-2] -> [DT:0-1] [NN:1-2] 1.0 [S:1-5] -> [NP:1-2] [VP:2-5] 0.3 [NP:3-8] -> [NP:3-5] [PP:5-8] 0.1 [NP:4-5] -> [NN:4-5] 0.4 [NN:1-2] -> 'man' 0.1 [NP:7-8] -> [NN:7-8] 0.1 [NP:1-2] -> [NN:1-2] 0.4 [NP:3-5] -> [DT:3-4] [NN:4-5] 1.0 [S:0-5] -> [NP:0-2] [VP:2-5] 0.3 [VP:2-5] -> [Vt:2-3] [NP:3-5] 0.4 [VP:2-8] -> [VP:2-5] [PP:5-8] 0.6 [DT:3-4] -> 'the' 1.0 [PP:5-8] -> [IN:5-6] [NP:6-8] 0.4 [DT:6-7] -> 'a' ###Markdown **Exercise 7-7** **[15 points]** Now you should implement the inside recursion below* see below for example of inside values for a correct implementation ###Code def compute_inside_table(forest: CFG, cpds: Dict[Nonterminal, Dict[Rule, float]], semiring: Semiring): """ Computes the inside table, that is, the table that assigns an inside value to each node in the forest, where a node is a Span. For convenience, this table may also contain inside values for nodes that are not spans, such as the leaves or terminals of the forest, but then that inside should be semiring.one() Our parsing strategies sometimes create useless nodes, these are nonterminal nodes that have no way of being expanded (there are no edges incoming to those nodes, they have an empty backward-star). We consider those nodes have an inside value of semiring.zero(). This is necessary to circumvent the fact that the parsing strategy can create such useless items. :param forest: a forest as produced by CKY+ :param cpds: the cpds of the original grammar :param semiring: a choice of Semiring :return: inside table as a dictionary from a Span to an inside value (as a number in the semiring) """ inside_table = dict() # Start at S -> Find all Span(S) start_set = set() for rule in forest: if rule.lhs.base_nonterminal == Nonterminal('S'): start_set.add(rule.lhs) # print(cpds[rule.lhs.base_nonterminal]) for s in start_set: iS = inside_value(s, forest, cpds, semiring, inside_table) inside_table[s] = iS return inside_table # print(semiring.to_real(iS)) def get_bs(item: Span, forest: CFG): bs = [r for r in forest if r.lhs == item] return bs def inside_value(item: Span, forest: CFG, cpds, semiring:Semiring, inside_table): if isinstance(item, Terminal): return semiring.one() iS = semiring.zero() bs = get_bs(item, forest) if len(bs) == 0: return semiring.zero() for edge in get_bs(item, forest): theta = semiring.from_real(get_parameter(edge, cpds)) prod = semiring.one() # print(edge) for sym in edge.rhs: if sym not in inside_table: inside_table[sym] = inside_value(sym, forest, cpds, semiring, inside_table) prod = semiring.times(prod, inside_table[sym]) iS = semiring.plus(iS, semiring.times(theta, prod)) return iS s = Span(Nonterminal('DT'), 3, 4) # print(isinstance(get_bs(s, forest)[0].rhs[0], Terminal)) semiring = LogMarginalSemiring() inside_table = compute_inside_table(forest, cpds, semiring) ###Output _____no_output_____ ###Markdown Marginal probability is the inside of the GOAL item in the LogMarginalSemiring (converted back to a real number) .Here is what your result should look like```pythoninside_table = compute_inside_table(forest, cpds, LogMarginalSemiring)LogMarginalSemiring.to_real(inside_table[forest.start])4.6448640000000001e-06``` ###Code LogMarginalSemiring.to_real(inside_table[forest.start]) ###Output _____no_output_____ ###Markdown Maximum probability is the inside of the GOAL item in the LogViterbiSemiring (converted back to a real number) .Here is what your result should look like```pythonviterbi_table = compute_inside_table(forest, cpds, LogViterbiSemiring)LogViterbiSemiring.to_real(viterbi_table[forest.start])2.6542080000000048e-06``` ###Code viterbi_table = compute_inside_table(forest, cpds, LogViterbiSemiring) LogViterbiSemiring.to_real(viterbi_table[forest.start]) ###Output _____no_output_____ ###Markdown We can even define a semiring to count! Imagine that a semiring maps from the real numbers by saying that if something has non-zero probability it counts as $1$ and if it has zero probability it counts as $0$. ###Code class CountSemiring(Semiring): @classmethod def from_real(cls, a: float): """Map to 1 if a bigger than 0""" return 1. if a > 0. else 0. @classmethod def to_real(cls, a: float): return a @classmethod def one(cls): return 1. @classmethod def zero(cls): return 0. @classmethod def plus(cls, a, b): return a + b @classmethod def times(cls, a, b): return a * b ###Output _____no_output_____ ###Markdown Then we can use the inside algorithm to find the number of **derivations** in the parse forest! If your inside implementation is corret, this is what your result should look like:```pythoncount_table = compute_inside_table(forest, cpds, CountSemiring)CountSemiring.to_real(count_table[forest.start])2.0``` ###Code count_table = compute_inside_table(forest, cpds, CountSemiring) CountSemiring.to_real(count_table[forest.start]) ###Output _____no_output_____ ###Markdown Isn't this great? :D Now you are ready to compute the actual Viterbi derivation! Viterbi derivationThe Viterbi path is a top-down traversal of the forest, where each time we have to choose which rule/edge to use to expand a certain nonterminal symbol (span node), we choose the one whose inside value is maximum. But recall that the inside value associated with an *edge* must take into account the weight of the edge and the inside value of its children. Of course, all of this must happen within a maximising semiring (e.g. LogViterbiSemiring or ViterbiSemiring). \begin{align} (2) \qquad e^\star &= \arg\!\max_{e \in \text{BS(v)}} \theta \otimes \bigotimes_{i=1}^n I(a_i) \\ &~\text{where }e:=\frac{a_1, \ldots, a_n}{v}:\theta\end{align} **Exercise 7-8** **[5 points]** Implement a function that returns the Viterbi derivation (a sequence of rule applications that attains maximum probability). ###Code def viterbi_derivation(forest: CFG, cpds: Dict[Nonterminal, Dict[Rule, float]], inside_table: Dict[Symbol, float], semiring: Semiring): """ Return the derivation (and its yield) that attains maximum probability. This is a top-down traversal from the root, where for each node v that we need to expand, we solve equation (2) above. :param forest: a forest :param cpds: cpds of the original grammar :param inside_table: inside values produced with a certain maximising semiring :param semiring: a maximising semiring e.g. ViterbiSemiring or LogViterbiSemiring :returns: a tuple - first element is an ordered list of rule applications - second element is the yield of the derivation """ pass ###Output _____no_output_____ ###Markdown If your implementation is correct you should get```pythonviterbi_derivation(forest, cpds, viterbi_table, LogViterbiSemiring)(([S:0-8] -> [NP:0-2] [VP:2-8], [NP:0-2] -> [DT:0-1] [NN:1-2], [DT:0-1] -> 'the', [NN:1-2] -> 'man', [VP:2-8] -> [VP:2-5] [PP:5-8], [VP:2-5] -> [Vt:2-3] [NP:3-5], [Vt:2-3] -> 'saw', [NP:3-5] -> [DT:3-4] [NN:4-5], [DT:3-4] -> 'the', [NN:4-5] -> 'dog', [PP:5-8] -> [IN:5-6] [NP:6-8], [IN:5-6] -> 'with', [NP:6-8] -> [DT:6-7] [NN:7-8], [DT:6-7] -> 'a', [NN:7-8] -> 'telescope'), ('the', 'man', 'saw', 'the', 'dog', 'with', 'a', 'telescope'))``` You can draw trees using NLTK, here is an example, you can adjust this to visualise trees predicted by your own Viterbi derivation algorithm. ###Code from nltk.tree import Tree parse_sent = '(S (NP (DT the) (NN cat)) (VP (VBD ate) (NP (DT a) (NN cookie))))' t = Tree.fromstring(parse_sent) t ###Output _____no_output_____
.ipynb_checkpoints/Run Sims-checkpoint.ipynb
###Markdown Run a bunch of sims with the following settings:* demand is always 7 mil, no reason to change it* renewable varies from ~10% - ~70%* flexible varies from ~10% - ~50%* backup power to buy varies from 2 standard deviations to 25 standard deviations (in case model variance is also off) ###Code # still need to make a decision on the pricing points for everything, then I'm ready to run a bunch of sims and be done with # this num_runs = 10 renewable_scales = np.linspace(.1, .7, 13) flexible_scales = np.linspace(.1, .5, 9) backup_power = np.linspace(0,25, 26) # just add the desired key-value to these run params to run a sim run_params = { 'time_horizon': 730 # run for 2 years } m = miniSCOTnotebook() market_demand = 7000000 path = "./sims/renewable_scales/" for s in renewable_scales: for i in range(num_runs): print(path + "renewable_{}_{}".format(s,i)) sys.stdout = path + "renewable_{}_{}".format(s,i) run_params['renewable_scale'] = s * market_demand m.start(**run_params) m.run() sys.stdout.close() ###Output DEBUG:scse.profiles.profile:Open profile file = /home/cperreault/scse1/lib/python3.7/site-packages/scse/profiles/power_supply.json. DEBUG:scse.profiles.profile:module_name is scse.metrics.power_contract_profit DEBUG:scse.profiles.profile:module_name is scse.modules.production.renewables_firm DEBUG:scse.profiles.profile:module_name is scse.modules.production.cheap_ramp_firm DEBUG:scse.profiles.profile:module_name is scse.modules.production.expensive_ramp_firm DEBUG:scse.profiles.profile:module_name is scse.modules.demand.power_demand INFO:GP:initializing Y INFO:GP:initializing inference method INFO:GP:adding kernel and likelihood as parameters
Analysis/script_Frequency.ipynb
###Markdown Frequency To use the data transformation script `Frequency.pl`, we provide it with a single input file followed by what we want it to name the output file it creates and a channel number:`$ perl ./perl/Frequency.pl [inputFile1 inputFile2 ...] [outputFile1 outputFile2 ...] [column] [binType switch] [binValue]`The last two values have a peculiar usage compared to the other transformation scripts. Here, `binType` is a switch that can be either `0` or `1` to tell the script how you want to divide the data into bins; this choice then determines what the `binValue` parameter means. The choices are 0: Divide the data into a number of bins equal to `binValue` 1: Divide the data into bins of width `binValue` (in nanoseconds)It isn't immedately obvious what this means, though, or what the `column` parameter does. We'll try it out on the test data in the `test_data` directory. Use the UNIX shell command `$ ls test_data` to see what's there: ###Code !ls test_data ###Output 6119.2016.0104.1.test.thresh combineOut sortOut15 6148.2016.0109.0.test.thresh sortOut sortOut51 6203.2016.0104.1.test.thresh sortOut11 ###Markdown Let's start simple, using a single input file and a single output file. We'll run`$ perl ./perl/Frequency.pl test_data/6148.2016.0109.0.test.thresh test_data/freqOut01 1 1 2`to see what happens. The `binType` switch is set to the e-Lab default of `1`, "bin by fixed width," and the value of that fixed width is set to the e-Lab-default of `2`ns. Notice that we've named the output file `freqOut01`; we may have to do lots of experimentation to figure out what exactly the transformation `Frequency.pl` does, so we'll increment that number each time to keep a record of our progess. The `column` parameter is `1`.Before we begin, we'll make sure we know what the input file looks like. The UNIX `wc` (word count) utility tells us that `6148.2016.0109.0.test.thresh` has over a thousand lines: ###Code !wc -l test_data/6148.2016.0109.0.test.thresh ###Output 1003 test_data/6148.2016.0109.0.test.thresh ###Markdown (`wc` stands for "word count", and the `-l` flag means "but count lines instead of words." The first number in the output, before the filename, is the number of lines, in this case 1003) The UNIX `head` utility will show us the beginning of the file: ###Code !head -25 test_data/6148.2016.0109.0.test.thresh ###Output #$md5 #md5_hex(0) #ID.CHANNEL, Julian Day, RISING EDGE(sec), FALLING EDGE(sec), TIME OVER THRESHOLD (nanosec), RISING EDGE(INT), FALLING EDGE(INT) 6148.4 2457396 0.5006992493422453 0.5006992493424479 17.51 4326041514317000 4326041514318750 6148.3 2457396 0.5006992493422887 0.5006992493424768 16.25 4326041514317375 4326041514319000 6148.2 2457396 0.5007005963399161 0.5007005963400029 7.49 4326053152376876 4326053152377625 6148.3 2457396 0.5007005963401910 0.5007005963404514 22.49 4326053152379250 4326053152381500 6148.4 2457396 0.5007005963401765 0.5007005963404658 25.00 4326053152379125 4326053152381624 6148.1 2457396 0.5014987243978154 0.5014987243980903 23.75 4332948978797125 4332948978799500 6148.2 2457396 0.5014987243980759 0.5014987243982495 15.00 4332948978799376 4332948978800875 6148.1 2457396 0.5020062862072049 0.5020062862076967 42.49 4337334312830250 4337334312834500 6148.2 2457396 0.5020062862074218 0.5020062862076389 18.75 4337334312832125 4337334312834000 6148.2 2457396 0.5020062862076823 0.5020062862078704 16.25 4337334312834374 4337334312836000 6148.2 2457396 0.5020062862086806 0.5020062862088253 12.50 4337334312843000 4337334312844250 6148.1 2457396 0.5021121718857783 0.5021121718861401 31.26 4338249165093124 4338249165096250 6148.2 2457396 0.5021121718860532 0.5021121718865741 45.01 4338249165095500 4338249165100000 6148.3 2457396 0.5021121718866174 0.5021121718867042 7.50 4338249165100374 4338249165101124 6148.4 2457396 0.5021121718865018 0.5021121718868924 33.75 4338249165099376 4338249165102750 6148.3 2457396 0.5021781527571470 0.5021781527575087 31.25 4338819239821750 4338819239824875 6148.4 2457396 0.5021781527571325 0.5021781527574218 25.00 4338819239821625 4338819239824125 6148.1 2457396 0.5023430585295574 0.5023430585298612 26.24 4340244025695376 4340244025698000 6148.2 2457396 0.5023430585298176 0.5023430585300203 17.51 4340244025697624 4340244025699375 6148.4 2457396 0.5023430585301071 0.5023430585304110 26.25 4340244025700126 4340244025702750 6148.3 2457396 0.5023430585300781 0.5023430585305989 45.00 4340244025699875 4340244025704374 6148.2 2457396 0.5024351469382090 0.5024351469384260 18.74 4341039669546126 4341039669548000 ###Markdown Now, we'll execute`$ perl ./perl/Frequency.pl test_data/6148.2016.0109.0.test.thresh test_data/freqOut01 1 1 2`from the command line and see what changes. After doing so, we can see that `freqOut01` was created in the `test_data/` folder, so we must be on the right track: ###Code !ls test_data !wc -l test_data/freqOut01 ###Output 1 test_data/freqOut01 ###Markdown It only has one line, though! Better investigate further: ###Code !cat test_data/freqOut01 ###Output 6149.000000 1000 4 ###Markdown It turns out that `SingleChannel` has a little bit more power, though. It can actually handle multiple single channels at a time, as odd as that might sound. We'll try specifying additional channels while adding additional respective output names for them:`$ perl ./perl/SingleChannel.pl test_data/6148.2016.0109.0.test.thresh "test_data/singleChannelOut1 test_data/singleChannelOut2 test_data/singleChannelOut3 test_data/singleChannelOut4" "1 2 3 4"`(for multiple channels/outputs, we have to add quotes `"` to make sure `SingleChannel` knows which arguments are the output filenames and which are the channel numbers)If we run this from the command line, we do in fact get four separate output files: ###Code !ls -1 test_data/ ###Output 6119.2016.0104.1.test.thresh 6148.2016.0109.0.test.thresh 6203.2016.0104.1.test.thresh combineOut singleChannelOut1 singleChannelOut2 singleChannelOut3 singleChannelOut4 sortOut sortOut11 sortOut15 sortOut51 ###Markdown Out of curiosity, let's line-count them using the UNIX `wc` utility: ###Code !wc -l test_data/singleChannelOut1 !wc -l test_data/singleChannelOut2 !wc -l test_data/singleChannelOut3 !wc -l test_data/singleChannelOut4 ###Output 238 test_data/singleChannelOut4
Data-X Mindful Part2.ipynb
###Markdown Data-X Mindful Project Part 2 Data analysis and modeling ###Code import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn.metrics import classification_report from sklearn.metrics import recall_score from sklearn.metrics import precision_score from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.ensemble import * from sklearn.preprocessing import MinMaxScaler from sklearn.tree import DecisionTreeClassifier from sklearn.linear_model import LogisticRegressionCV from IPython.display import Image, display import random ###Output _____no_output_____ ###Markdown Read data files ###Code X = pd.read_csv('X_df.csv').drop('Unnamed: 0',axis=1) Y = pd.read_csv('Y_df.csv').drop('Unnamed: 0',axis=1) ###Output _____no_output_____ ###Markdown Normalization ###Code scaler = MinMaxScaler() norm_X = scaler.fit_transform(X) new_Y = Y.Depressed X_train, X_test, y_train, y_test = train_test_split(norm_X, new_Y, test_size=0.1) ###Output /Users/daveliu/.local/share/virtualenvs/daveliu-o5npLomY/lib/python3.7/site-packages/sklearn/preprocessing/data.py:323: DataConversionWarning: Data with input dtype int64 were all converted to float64 by MinMaxScaler. return self.partial_fit(X, y) ###Markdown Initial trial with different classifiers ###Code # LogisticRegressionCV clf = LogisticRegressionCV(penalty = 'l2', solver='liblinear', multi_class='ovr').fit(X_train, y_train) print(clf.score(X_train, y_train)) print(clf.score(X_test, y_test)) #y_pred_train = clf.predict(X_train) #y_pred_test = clf.predict(X_test) #clf.predict_proba(X_test) #recall_score(y_test, y_pred_test, average='micro') #precision_score(y_test, y_pred_test, average='micro') #confusion_matrix(y_train, y_pred_train) #confusion_matrix(y_test, y_pred_test) # Random Forest clf = RandomForestClassifier(n_estimators=100, max_depth=3, random_state=80) clf.fit(X_train, y_train) print(clf.score(X_train, y_train)) print(clf.score(X_test, y_test)) # Decision Tree clf = DecisionTreeClassifier(max_depth=3,max_leaf_nodes=3,min_samples_leaf=1) clf.fit(X_train, y_train) print(clf.score(X_train, y_train)) print(clf.score(X_test, y_test)) #cross_val_score(clf, X_test, y_test, cv=10) ###Output 0.7951807228915663 0.8 ###Markdown Gradient Boost ###Code ENTITY_TYPE = "Gradient Boost" clf = GradientBoostingClassifier(n_estimators=15, max_depth=5) clf.fit(X_train, y_train) print("Train: ", clf.score(X_train, y_train)) print("Test: ", clf.score(X_test, y_test)) print("Features used:", len(clf.feature_importances_)) print("-----") importance_pairs = zip(X.columns, clf.feature_importances_) sorted_importance_pairs = sorted(importance_pairs, key=lambda k: k[1], reverse=True) for k, v in sorted_importance_pairs[:20]: print(k, "\t", v, "\n") # Feature Importance feat_imp = pd.Series(clf.feature_importances_, X.columns).sort_values(ascending=False).head(20) feat_imp.plot(kind='bar', title='Feature Importances for ' + ENTITY_TYPE) plt.ylabel('Feature Importance Scores' + " (" + ENTITY_TYPE + ")") plt.tight_layout() plt.show() # Recall and Precision recall = recall_score(y_test, clf.predict(X_test)) precision = precision_score(y_test, clf.predict(X_test)) print('recall: ' + str(recall)) print('precision: ' +str(precision)) print("F1-Score: ", 2 * recall * precision / (recall + precision)) ###Output recall: 0.8 precision: 1.0 F1-Score: 0.888888888888889 ###Markdown xgboost ###Code ENTITY_TYPE = "xgboost" from xgboost import XGBClassifier import xgboost test_score = 0 precision, recall = 0,0 n = 1 for _ in range(n): X_train, X_test, y_train, y_test = train_test_split(X, new_Y, test_size=0.1) clf = XGBClassifier(estimators=20, max_depth = 5, eval_metric='aucpr') clf.fit(X_train, y_train) test_score += clf.score(X_test, y_test) recall += recall_score(y_test, clf.predict(X_test)) precision += precision_score(y_test, clf.predict(X_test)) print("Train: ", clf.score(X_train, y_train)) print("Test: ", clf.score(X_test, y_test)) print("Features used:", len(clf.feature_importances_)) print("precision: ", precision/n) print("recall: ", recall/n) print("-----") print(test_score/n) fig, ax = plt.subplots(figsize=(16,16)) xgboost.plot_importance(clf,ax=ax) plt.show() # Feature Importance importance_pairs = zip(X_train.columns, clf.feature_importances_) sorted_importance_pairs = sorted(importance_pairs, key=lambda k: k[1], reverse=True) for k, v in sorted_importance_pairs: print(k, "\t", v, "\n") feat_imp = pd.Series(clf.feature_importances_, X_train.columns).sort_values(ascending=False) plt.figure(figsize=(15,10)) feat_imp.plot(kind='bar', title='Feature Importances for ' + ENTITY_TYPE) plt.ylabel('Feature Importance Scores' + " (" + ENTITY_TYPE + ")") plt.tight_layout() plt.show() # Recall and Precision recall = recall_score(y_test, clf.predict(X_test)) precision = precision_score(y_test, clf.predict(X_test)) print('recall: ' + str(recall)) print('precision: ' +str(precision)) print("F1-Score: ", 2 * recall * precision / (recall + precision)) X_results = X.copy() X_results["results"] = clf.predict(X) # Average features X_results_avg = X_results.groupby("results").mean() X_results_avg.columns X_results_avg.loc[:,["Fruit", "Water", "F_Average", "F_None", "F_Decline", "Healthy", "Unhealthy","Dry_mouth", "Dry_skin"]] # Look at correlation between some features features = ["Fruit", "Water", "F_Average", "F_None", "F_Decline", "Healthy", "Unhealthy","Dry_mouth", "Dry_skin"] correlations = X.loc[:,features].corr() sns.heatmap(correlations) plt.show() ###Output _____no_output_____ ###Markdown Example Person ###Code example_person = X.iloc[[15],:] example_person # Get average "non-Depressed", and this example person X_results_avg.iloc[[0]].reset_index().drop("results", axis=1).append(example_person) # Get difference between average "non-Depressed" person, and this example person example_difference = X_results_avg.iloc[[1]].reset_index().drop("results", axis=1).append(example_person).diff().iloc[[1]] example_difference # Weights and difference weights_and_diff = pd.DataFrame(data=[feat_imp.values], columns=feat_imp.index).append(example_difference, sort=True) weights_and_diff weights_and_diff.iloc[0].multiply(weights_and_diff.iloc[1]).abs().sort_values(ascending=False).head(10) ###Output _____no_output_____ ###Markdown Sample output and response ###Code # Sample responses responses = { "Relaxed": "Mindfulness and meditation can really help overcome stressful times.", "Hobby": "Find time for the things that make you happy! Reading, sports, music… Having a hobby really increases your quality of life. ", "Sweat": "Do some intense exercise! Releasing some stress is always a good idea. ", "Volunteering": "Have you considered engaging in some volunteering? Even the smallest effort can have huge impact!", "SP_Late": "Watch out for your sleep habits! Having consistent sleep schedules is vital for getting a good night sleep. ", "Snack": "Stop snacking all day! Comfort food is not the answer, eat a proper meal instead – I’m sure your cooking abilities are not that bad… 😉", "Fruit": "Are you getting your daily vitamins? Fruit is a very important part of our diet, and it’s delicious! ", "Water": "Drink some more water! We are 60% made of water, don’t let that percentage drop 😉", "Lonely": "It’s normal to feel lonely sometimes, but it’s important to remember that there ARE people who care about us, and to keep in touch with them!", "F_Average": "Maybe your food choices are not completely unhealthy, but don’t you think you could do better? Food impacts our mood more than you may think!", "W_Late": "Get out of bed and take on the world! Waking up early and feeling productive is very comforting 🙂", "Anxious": "Sometimes we are overwhelmed with projects, work, tasks… However, our mindset is very important in overcoming those situations. Tell yourself it’s going to be OK, you can do it!", "Occupation": "Having an occupation makes us feel useful and is a self-esteem boost! Whether it’s your job, a class project, or housekeeping 😉", "Energized": "It is very important to feel motivated and with energy! Every morning, think about the things that make you feel happy, excited and give you energy to make it successfully through the day!", "W_Time": "Waking up on time and being prepared for all the tasks and commitments for the day is very comforting 🙂", "Talk_2F": "How many friends do you have? And how many of them have you talk to recently? Make sure to keep in touch with the people that are important to us, it really makes us happier.", "Average": "Watch out for your sleep habits! Having consistent sleep schedules, and relaxing before going to bed, is vital to get a good night sleep.", "Oil": "Stop eating oily food! Comfort food is not the answer, if you give healthy food a try I’m sure it will make you feel better 😉", "Sore": "Do some exercise! Is there a bigger feeling of accomplishment that being tired after an intense workout?", "Fried": "Stop eating fried food! Comfort food is not the answer, if you give healthy food a try I’m sure it will make you feel better 😉", "S_Late": "If only the day had more than 24 hours! However, staying up until late is not going to change that. Why don’t you try to go to sleep a little bit earlier? You’ll feel well rested the next day 😉", "Veggies": "Veggies might not be your favourite food, I get that. But how good does it make us feel when we eat healthy and clean?", "Thankful": "It is important to remember every day how lucky we are. Why don’t you try each morning to think about three things that you are grateful for?", "Excited": "It is very important to feel motivated and excited! Every morning, think about the things that make you feel happy, excited and give you energy to make it successfully through the day!", "Exercise": "Do some exercise! Releasing some stress is always a good idea.", "Family": "Becoming a teenager, moving to a different city (or country!), always makes us become less attached to our family. Call your mom more often, she’ll always be there to help you!", "Sugar": "Stop eating sugary food! Comfort food is not the answer, if you give healthy food a try I’m sure it will make you feel better 😉", "Peaceful": "Mindfulness and meditation can really help overcome stressful times.", "Vitamin": "Get some vitamins! It could really boost your defenses and make you feel better 🙂", "SP_Tired": "Watch out for your sleep habits! Having consistent sleep schedules is vital for getting a good night sleep.", "Meal": "Why don’t you eat a proper meal instead of snacking? I’m sure your cooking abilities are not that bad… 😉" } ############################## # Example Person (2nd Time) # RUN THIS CELL TO HAVE A GOOD TIME ############################## example_person = X.iloc[[random.randint(0,len(X)-1)]] if clf.predict(example_person.loc[:,:]) == 1: display(Image("bad.png")) example_diff = X_results_avg.iloc[[0]].reset_index().drop("results", axis=1).append(example_person).diff().iloc[1] weights_and_diff = pd.DataFrame(data=[feat_imp.values], columns=feat_imp.index).append(example_diff, sort=True) top_10_features = weights_and_diff.iloc[0].multiply(weights_and_diff.iloc[1]).abs().sort_values(ascending=False).head(10) i = 1 for feat in top_10_features.index: if feat in responses: print(F"{i}) {responses[feat]}") i += 1 else: display(Image("good.png")) ###Output _____no_output_____ ###Markdown Cosine Similarity Tests ###Code AVG_POS = X_results_avg.loc[1, :] AVG_NEG = X_results_avg.loc[0, :] def dot(A,B): return (sum(a*b for a,b in zip(A,B))) def cosine_similarity(a,b): return dot(a,b) / (1+( (dot(a,a) **.5) * (dot(b,b) ** .5) )) def cosine_compare_pos(row): return cosine_similarity(row, AVG_POS) def cosine_compare_neg(row): return cosine_similarity(row, AVG_NEG) def cosine_ratio_pos(row): return cosine_similarity(row, AVG_POS) / (cosine_similarity(row, AVG_NEG) + cosine_similarity(row, AVG_POS)) X_results[X_results["results"] == 0].drop("results", axis=1).apply(cosine_compare_neg, axis=1).mean() X_results[X_results["results"] == 1].drop("results", axis=1).apply(cosine_compare_pos, axis=1).mean() cosine_similarity(X.loc[10, :], AVG_NEG) / (cosine_similarity(X.loc[10, :], AVG_NEG) + cosine_similarity(X.loc[10, :], AVG_POS)) cos_sims = [] for i in range(len(X)): example_person = X.loc[i, :] pos_score = cosine_similarity(example_person, AVG_POS) / (cosine_similarity(example_person, AVG_NEG) + cosine_similarity(example_person, AVG_POS)) # print(pos_score) cos_sims.append(pos_score) import numpy as np print(F" max and min: {max(cos_sims), min(cos_sims)}") print(F" One standard deviation is: {np.sqrt(np.var(cos_sims))}") X_results[X_results["results"] == 0].drop("results", axis=1).apply(cosine_ratio_pos, axis=1).mean() X_results[X_results["results"] == 1].drop("results", axis=1).apply(cosine_ratio_pos, axis=1).mean() ###Output _____no_output_____
Notebook_Archive/FeatureConsistencyScore_2.2-PT18-GetriebeflanschBatch1-2-4.ipynb
###Markdown Insert the folder path as **input_dir** where the GAN transformed images with corresponding JSON label are located. ###Code input_dir = '/mnt/robolab/data/Bilddaten/GAN_train_data_sydavis-ai/Evaluation/BatchSize/Getriebeflansch/Batch4_joint_GF' output_dir = input_dir+'_mask' print(output_dir) !python3 labelme2voc.py $input_dir $output_dir --labels labels.txt masks_gan = output_dir+'/SegmentationObjectPNG' ###Output _____no_output_____ ###Markdown 3. GAN Image Data 3.1 Prepare Data: Create Folder with binary images ###Code def binarize(im_path, threshold=10): """Read, binarize and save images as png. Args: path: A string, path of images. """ size=1024 img = Image.open(im_path).convert('L') img = np.array(img) #print(img[210,:-50]) # störungen im Bild: #16 128 148 35 31 143 153 16 128 153 153 153 153 127 15 0 10 116 35 thresh = threshold Flansch = 89 Abdeckung = 76 Mutter =174 Wandler = 157 im_bool = img > thresh #im_bool = np.logical_or(img == Wandler, img ==4) #im_bool = img == Wandler maxval = 255 im_bin = (img > thresh) * maxval #save array to images im_save_bi = Image.fromarray(np.uint8(im_bin)) im_save_bool = Image.fromarray((im_bool)) return im_save_bool #test GAN Data masks_gan = masks_gan masks_gan_save = output_dir+'/binarized' if not os.path.exists(masks_gan_save): try: os.mkdir(masks_gan_save) except FileExistsError: print('Folder already exists') pass path = os.path.join(masks_gan, '*.png') files = list(glob.glob(path)) files.sort(reverse=True) for file in files: image= binarize(file, threshold=20) plt.imshow(image) bbox = image.getbbox() plt.title(f'Bbox: {bbox} Name: {file[-10:]}') image.save(os.path.join(masks_gan_save,file[-10:])) ###Output _____no_output_____ ###Markdown 4. Syntetic Image Masks 4.1 Prepare Data: Create Folder with binary images Operation for reading png segmentation masks from folder path, resize, convert to greyscale and save imagesin new folder ###Code masks_syn = masks_syn_1024 masks_syn_save = masks_syn+'_binarized' #test Syn Data if not os.path.exists(masks_syn_save): try: os.mkdir(masks_syn_save) except FileExistsError: print('Folder already exists') pass path = os.path.join(masks_syn, '*.png') files = list(glob.glob(path)) files.sort(reverse=True) for file in files: image = binarize(file, threshold=10) plt.imshow(image) bbox = image.getbbox() plt.title(f'Bbox: {bbox} Name: {file[-18:]}') image.save(os.path.join(masks_syn_save,file[-18:])) def loadpolygon(): return ###Output _____no_output_____ ###Markdown Since True is regarded as 1 and False is regarded as 0, when multiplied by 255 which is the Max value of uint8, True becomes 255 (white) and False becomes 0 (black) ###Code masks_syn_save_filled = masks_syn_save+'_convex' if not os.path.exists(masks_syn_save_filled): try: os.mkdir(masks_syn_save_filled) except FileExistsError: print('Folder already exists') path = os.path.join(masks_syn_save, '*.png') files = list(glob.glob(path)) files.sort(reverse=True) for file in files: image = cv2.imread(file, cv2.IMREAD_GRAYSCALE) #print(image.shape, image.dtype) contour,hierarchy = cv2.findContours(image,cv2.RETR_CCOMP,cv2.CHAIN_APPROX_SIMPLE) for cnt in contour: cv2.drawContours(image,[cnt],0,255,-1) #image = cv2.bitwise_not(image) image.dtype plt.imshow(image) #bbox = image.getbbox() plt.title(f'Bbox: {bbox} Name: {file[-18:]}') cv2.imwrite(os.path.join(masks_syn_save_filled,file[-18:]),image) def calculatescore(ground_truth, prediction_gan): """ Compute feature consitency score of two segmentation masks. IoU(A,B) = |A & B| / (| A U B|) Dice(A,B) = 2*|A & B| / (|A| + |B|) Args: y_true: true masks, one-hot encoded. y_pred: predicted masks, either softmax outputs, or one-hot encoded. metric_name: metric to be computed, either 'iou' or 'dice'. metric_type: one of 'standard' (default), 'soft', 'naive'. In the standard version, y_pred is one-hot encoded and the mean is taken only over classes that are present (in y_true or y_pred). The 'soft' version of the metrics are computed without one-hot encoding y_pred. Returns: IoU of ground truth and GAN transformed syntetic Image, as a float. Inputs are B*W*H*N tensors, with B = batch size, W = width, H = height, N = number of classes """ # check image shape to be the same assert ground_truth.shape == prediction_gan.shape, 'Input masks should be same shape, instead are {}, {}'.format(ground_truth.shape, prediction_gan.shape) #print('Ground truth shape: '+str(ground_truth.shape)) #print('Predicted GAN image shape: '+str(prediction_gan.shape)) intersection = np.logical_and(ground_truth, prediction_gan) union = np.logical_or(ground_truth, prediction_gan) mask_sum = np.sum(np.abs(union)) + np.sum(np.abs(intersection)) iou_score = np.sum(intersection) / np.sum(union) dice_score = 2*np.sum(intersection) / np.sum(mask_sum) print('IoU is: '+str(iou_score)) print('Dice/F1 Score is: '+str(dice_score)) return iou_score, dice_score ###Output _____no_output_____ ###Markdown 6. Calculate mean IoUTranslate image mask to white RGB(255,255,255), fill convex hull, and compare masks to calculate 'Feature Consistency Score' ###Code path_syn = masks_syn_save_filled path_gan = masks_gan_save print(path_gan) print(path_syn) path_syn = os.path.join(path_syn, '*.png') path_gan = os.path.join(path_gan, '*.png') files_syn = list(glob.glob(path_syn)) files_gan = list(glob.glob(path_gan)) files_syn.sort(reverse=True) files_gan.sort(reverse=True) combined_list = zip(files_syn, files_gan) z = list(combined_list) iou_list = [] dice_list = [] for syn, gan in zip(files_syn, files_gan): img_syn = np.array(Image.open(syn)) img_gan = np.array(Image.open(gan)) print(f'Image name: {syn[-9:]}') iou, dice = calculatescore(img_syn, img_gan) print('\n') iou_list.append(iou) dice_list.append(dice) mean_iou = np.mean(iou_list) mean_dice = np.mean(dice_list) print(f'Mean IoU is: {mean_iou}') print(f'{iou_list}\n') print(f'Mean Dice score is: {mean_dice}') print(dice_list) import sys base_dir = input_dir prefix = 'batch1' score_name = prefix+'_score.txt' path = os.path.join(base_dir,score_name) if not os.path.exists(path): try: os.mknod(path) except FileExistsError: print('Folder already exists') pass original_stdout = sys.stdout # Save a reference to the original standard output with open(path, 'w') as f: sys.stdout = f # Change the standard output to the file we created. iou_list = [] dice_list = [] print(f'Consistency Metrics for {prefix}:\n') for syn, gan in zip(files_syn, files_gan): img_syn = np.array(Image.open(syn)) img_gan = np.array(Image.open(gan)) print(f'Image name: {syn[-9:]}') iou, dice = calculatescore(img_syn, img_gan) print('\n') iou_list.append(iou) dice_list.append(dice) mean_iou = np.mean(iou_list) mean_dice = np.mean(dice_list) print(f'Mean IoU is: {mean_iou}') print(f'{iou_list}\n') print(f'Mean Dice score is: {mean_dice}') print(dice_list) sys.stdout = original_stdout # Reset the standard output to its original value f.close() #overlapping of 2 masks #Image.blend() ###Output _____no_output_____ ###Markdown Notebook for calculating Mask Consistency Score for GAN-transformed images ###Code from PIL import Image import cv2 from matplotlib import pyplot as plt import tensorflow as tf import glob, os import numpy as np import sys import matplotlib.image as mpimg #from keras.preprocessing.image import img_to_array, array_to_img ###Output _____no_output_____ ###Markdown 1. Resize GAN-transformed Dataset to 1024*1024 1.1 Specify Args: Directory, folder name and the new image size ###Code dir = '/mnt/robolab/data/Bilddaten/GAN_train_data_sydavis-ai/Powertrain18_all/Results/Batch2_100ep_1600trainA_256/samples_testing_Getriebehalter' ###Output _____no_output_____ ###Markdown 1.2 Create new Folder "/A2B_FID_1024" in Directory ###Code folder = 'A2B_FID' image_size = 1024 old_folder = (os.path.join(dir, folder)) new_folder = (os.path.join(dir, folder+'_'+str(image_size))) if not os.path.exists(new_folder): try: os.mkdir(new_folder) except FileExistsError: print('Folder already exists') pass print(os.path.join(old_folder)) print(os.path.join(dir, folder+'_'+str(image_size))) ###Output /mnt/robolab/data/Bilddaten/GAN_train_data_sydavis-ai/Powertrain18_all/Results/Batch2_100ep_1600trainA_256/samples_testing_Getriebehalter/A2B_FID /mnt/robolab/data/Bilddaten/GAN_train_data_sydavis-ai/Powertrain18_all/Results/Batch2_100ep_1600trainA_256/samples_testing_Getriebehalter/A2B_FID_1024 ###Markdown 1.3 Function for upsampling images of 256-256 or 512-512 to images with size 1024-1024 ###Code def resize_upsampling(old_folder, new_folder, size): dim = (size, size) for image in os.listdir(old_folder): img = cv2.imread(os.path.join(old_folder, image)) # INTER_CUBIC or INTER_LANCZOS4 img_resized = cv2.resize(img, dim, interpolation = cv2.INTER_LANCZOS4) print('Shape: '+str(img.shape)+' is now resized to: '+str(img_resized.shape)) cv2.imwrite(os.path.join(new_folder , image),img_resized) def resize_downsampling(old_folder, new_folder, size): dim = (size, size) for image in os.listdir(old_folder): img = cv2.imread(os.path.join(old_folder, image)) img_resized = cv2.resize(img, dim, interpolation = cv2.INTER_AREA) print('Shape: '+str(img.shape)+' is now resized to: '+str(img_resized.shape)) cv2.imwrite(os.path.join(new_folder , image),img_resized) ###Output _____no_output_____ ###Markdown 1.4 Run the aforementoined function ###Code resize_upsampling(old_folder, new_folder, 1024) ###Output Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) Shape: (256, 256, 3) is now resized to: (1024, 1024, 3) ###Markdown Resize the syntetic image masks to 1024-1024 ###Code dir2 = '/mnt/robolab/data/Bilddaten/GAN_train_data_sydavis-ai/Evaluation/BatchSize/Getriebeflansch' folder = 'SegmentationMasks' size = 1024 old_folder = (os.path.join(dir2, folder)) masks_syn_1024 = (os.path.join(dir2, folder+'_'+str(size))) if not os.path.exists(masks_syn_1024): try: os.mkdir(masks_syn_1024) except FileExistsError: print('Folder already exists') pass resize_downsampling(old_folder, masks_syn_1024, size) ###Output Shape: (1080, 1920, 3) is now resized to: (1024, 1024, 3) Shape: (1080, 1920, 3) is now resized to: (1024, 1024, 3) Shape: (1080, 1920, 3) is now resized to: (1024, 1024, 3) Shape: (1080, 1920, 3) is now resized to: (1024, 1024, 3) Shape: (1080, 1920, 3) is now resized to: (1024, 1024, 3) Shape: (1080, 1920, 3) is now resized to: (1024, 1024, 3) Shape: (1080, 1920, 3) is now resized to: (1024, 1024, 3) Shape: (1080, 1920, 3) is now resized to: (1024, 1024, 3) Shape: (1080, 1920, 3) is now resized to: (1024, 1024, 3) Shape: (1080, 1920, 3) is now resized to: (1024, 1024, 3) Shape: (1080, 1920, 3) is now resized to: (1024, 1024, 3) Shape: (1080, 1920, 3) is now resized to: (1024, 1024, 3) Shape: (1080, 1920, 3) is now resized to: (1024, 1024, 3) Shape: (1080, 1920, 3) is now resized to: (1024, 1024, 3) Shape: (1080, 1920, 3) is now resized to: (1024, 1024, 3) Shape: (1080, 1920, 3) is now resized to: (1024, 1024, 3) Shape: (1080, 1920, 3) is now resized to: (1024, 1024, 3) Shape: (1080, 1920, 3) is now resized to: (1024, 1024, 3) Shape: (1080, 1920, 3) is now resized to: (1024, 1024, 3) Shape: (1080, 1920, 3) is now resized to: (1024, 1024, 3) ###Markdown 2. Use the annotation Tool Labelme to create polygons for GAN Images in JSON format We than use the JSON files with polygon data to create semantic segmentation mask - no instance segmentation needed, because we do not need to differenciate between distinct features. We use the bash and python skript in this directory to do the mask translation. ###Code !ls !pwd ###Output augmentation.py data.py datasets download_dataset.sh FeatureConsistencyScore_2.0-BlattfederBatch1.ipynb FeatureConsistencyScore_2.0-BlattfederBatch2.ipynb FeatureConsistencyScore_2.0-BlattfederBatch4.ipynb FeatureConsistencyScore_2.0-EntluefterBatch1.ipynb FeatureConsistencyScore_2.0-EntluefterBatch2.ipynb FeatureConsistencyScore_2.0.ipynb FeatureConsistencyScore_2.1-EntluefterBatch4.ipynb FeatureConsistencyScore_2.1-GetriebeflanschBatch1.ipynb FeatureConsistencyScore_2.2-GetriebeflanschBatch1.ipynb FeatureConsistencyScore_2.2-GetriebeflanschBatch2.ipynb FeatureConsistencyScore_2.2-GetriebeflanschBatch4.ipynb FeatureConsistencyScore_2.2-PT18-BlattfederBatch1-2-4.ipynb FeatureConsistencyScore_2.2-PT18-EntluefterBatch1-2-4.ipynb FeatureConsistencyScore_2.2-PT18-GetriebeflanschBatch1-2-4.ipynb FeatureConsistencyScore_2.2-PT18-WandlerhalterBatch1-2-4.ipynb FeatureConsistencyScore_2.2-WandlerhalterBatch1.ipynb FeatureConsistencyScore_2.2-WandlerhalterBatch2.ipynb FeatureConsistencyScore_2.2-WandlerhalterBatch4.ipynb fid.py filename.txt imlib interpolation.py labelme2coco.py labelme2voc.py labels.txt LICENSE mask-score.ipynb module.py Notebook_Archive output path __pycache__ pylib README.md resize_images_pascalvoc test.py tf2gan tf2lib train.py /home/molu1019/workspace/CycleGAN-Tensorflow-2
notebooks/welter_issue002-01_Spot_Check_the_Pipeline_Spectra.ipynb
###Markdown Welter issue 2 Spot Check the Pipeline Spectra Notebook 01Michael Gully-Santiago Wednesday, November 25, 2015 We will make plots of the pipeline spectra. ###Code import warnings warnings.filterwarnings("ignore") import numpy as np from astropy.io import fits import matplotlib.pyplot as plt % matplotlib inline % config InlineBackend.figure_format = 'retina' import seaborn as sns sns.set_context('notebook') ###Output _____no_output_____ ###Markdown Raw standard star spectrum: `20151117/SDCH_20151117_0199.spec.fits`Read in the `.fits` files. The `.spec.` are the 1D spectra. ###Code hdu_raw = fits.open('../data/raw/LkCa4_gully/outdata/20151117/SDCH_20151117_0199.spec.fits') hdu_raw.info() ###Output Filename: ../data/raw/LkCa4_gully/outdata/20151117/SDCH_20151117_0199.spec.fits No. Name Type Cards Dimensions Format 0 PRIMARY PrimaryHDU 182 (2048, 28) float32 1 ImageHDU 87 (2048, 28) float64 ###Markdown Header/Data Unit 0 is the $N_{pix} \times N_{orders}$ **spectrum**. Header/Data Unit 1 is the $N_{pix} \times N_{orders}$ **wavelength solution**. The **metadata** about the observations are saved in the header of the spectrum. ###Code #np.array(list(hdu[0].header.keys()))[0:40] hdr = hdu_raw[0].header string = 'This spectrum is of the source {OBJECT}.\n The object type is listed as: "{OBJTYPE}".\n\ The spectra were acquired at {ACQTIME1} UTC. \n The units of the raw spectrum are {UNITS}. \n\ The exposure time was {EXPTIME} seconds. \n The airmass was {AMSTART}.' formatted_string = string.format(ACQTIME1=hdr['ACQTIME1'], UNITS=hdr['UNITS'], EXPTIME=hdr['EXPTIME'], OBJECT=hdr['OBJECT'], AMSTART=hdr['AMSTART'], OBJTYPE=hdr['OBJTYPE']) print(formatted_string) ###Output This spectrum is of the source HR 1237. The object type is listed as: "STD". The spectra were acquired at 2015-11-18-08:39:48.860 UTC. The units of the raw spectrum are ADUs. The exposure time was 120.00 seconds. The airmass was 1.0990. ###Markdown Single order plot.We'll pick a single order and make a plot. ###Code o=10 plt.plot(hdu_raw[1].data[o, :], hdu_raw[0].data[o, :]) plt.ylim(ymin=0) plt.xlabel("$\lambda$ ($\mu$m)") plt.ylabel("Raw signal (ADU)"); ###Output _____no_output_____ ###Markdown ...what we really want is the `.spec_flattened.` file. Flattened A0V Star: 20151117/SDCH_20151117_0199.spec_flattened.fits ###Code hdu_f = fits.open('../data/raw/LkCa4_gully/outdata/20151117/SDCH_20151117_0199.spec_flattened.fits') hdu_f.info() ###Output Filename: ../data/raw/LkCa4_gully/outdata/20151117/SDCH_20151117_0199.spec_flattened.fits No. Name Type Cards Dimensions Format 0 SPEC_FLATTENED PrimaryHDU 182 (2048, 28) float64 ###Markdown The header info for the flattened file is the same as the header for the raw file. ###Code #hdu_f['SPEC_FLATTENED'].header[0:10] o=10 plt.plot(hdu_raw[1].data[o, :], hdu_f[0].data[o, :]) plt.ylim(ymin=0) plt.xlabel("$\lambda$ ($\mu$m)") plt.ylabel("Normalized signal"); plt.title('{OBJECT} flattened spectrum'.format(OBJECT=hdr['OBJECT'])); ###Output _____no_output_____ ###Markdown Science data file: `SDCH_20151117_0205.spec.fits` ###Code hdu_tar = fits.open('../data/raw/LkCa4_gully/outdata/20151117/SDCH_20151117_0205.spec.fits') hdu_tar.info() hdr = hdu_tar[0].header string = 'This spectrum is of the source {OBJECT}.\n The object type is listed as: "{OBJTYPE}".\n\ The spectra were acquired at {ACQTIME1} UTC. \n The units of the raw spectrum are {UNITS}. \n\ The exposure time was {EXPTIME} seconds. \n The airmass was {AMSTART}.' formatted_string = string.format(ACQTIME1=hdr['ACQTIME1'], UNITS=hdr['UNITS'], EXPTIME=hdr['EXPTIME'], OBJECT=hdr['OBJECT'], AMSTART=hdr['AMSTART'], OBJTYPE=hdr['OBJTYPE']) print(formatted_string) o=10 plt.plot(hdu_tar[1].data[o, :], hdu_tar[0].data[o, :]) plt.ylim(ymin=0) plt.xlabel("$\lambda$ ($\mu$m)") plt.ylabel("Raw signal (ADU)"); plt.title('{OBJECT} raw spectrum'.format(OBJECT=hdr['OBJECT'])); ###Output _____no_output_____
notebooks/00 - Build reference.ipynb
###Markdown Download and extract `hg19` assembly ###Code ls -lah ../ref %%bash wget ftp://igenome:[email protected]/Homo_sapiens/UCSC/hg19/Homo_sapiens_UCSC_hg19.tar.gz \ --directory-prefix=../ref tar -xzvf ../ref/Homo_sapiens_UCSC_hg19.tar.gz -C ../ref rm ../ref/Homo_sapiens_UCSC_hg19.tar.gz ###Output Homo_sapiens/UCSC/hg19/ Homo_sapiens/UCSC/hg19/Annotation/ Homo_sapiens/UCSC/hg19/Annotation/Genes Homo_sapiens/UCSC/hg19/Annotation/README.txt Homo_sapiens/UCSC/hg19/Annotation/SmallRNA Homo_sapiens/UCSC/hg19/Annotation/Variation Homo_sapiens/UCSC/hg19/Annotation/Archives/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-08-30-21-45-18/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-08-30-21-45-18/Genes/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-08-30-21-45-18/Genes/genes.gtf Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-08-30-21-45-18/Genes/ChromInfo.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-08-30-21-45-18/Genes/refSeqSummary.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-08-30-21-45-18/Genes/cytoBand.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-08-30-21-45-18/Genes/refFlat.txt.gz Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-08-30-21-45-18/Genes/knownGene.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-08-30-21-45-18/Genes/knownToRefSeq.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-08-30-21-45-18/Genes/refGene.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-08-30-21-45-18/Genes/kgXref.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-08-30-21-45-18/README.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-08-30-21-45-18/SmallRNA/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-08-30-21-45-18/SmallRNA/precursor.fa Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-08-30-21-45-18/SmallRNA/mature.fa Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-08-30-21-45-18/Variation/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-08-30-21-45-18/Variation/snp131.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-08-30-21-45-18/Variation/snp132.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-01-27-18-25-49/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-01-27-18-25-49/Genes/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-01-27-18-25-49/Genes/genes.gtf Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-01-27-18-25-49/Genes/refMrna.fa Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-01-27-18-25-49/Genes/ChromInfo.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-01-27-18-25-49/Genes/refSeqSummary.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-01-27-18-25-49/Genes/cytoBand.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-01-27-18-25-49/Genes/refFlat.txt.gz Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-01-27-18-25-49/Genes/knownGene.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-01-27-18-25-49/Genes/knownToRefSeq.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-01-27-18-25-49/Genes/refGene.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-01-27-18-25-49/Genes/kgXref.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-01-27-18-25-49/README.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-01-27-18-25-49/SmallRNA/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-01-27-18-25-49/SmallRNA/mature.fa Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-01-27-18-25-49/SmallRNA/hairpin.fa Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-01-27-18-25-49/Variation/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-01-27-18-25-49/Variation/snp130.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-01-27-18-25-49/Variation/snp131.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2011-01-27-18-25-49/Variation/snp132.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2013-03-06-11-23-03/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2013-03-06-11-23-03/Genes/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2013-03-06-11-23-03/Genes/genes.gtf Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2013-03-06-11-23-03/Genes/ChromInfo.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2013-03-06-11-23-03/Genes/refSeqSummary.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2013-03-06-11-23-03/Genes/cytoBand.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2013-03-06-11-23-03/Genes/refFlat.txt.gz Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2013-03-06-11-23-03/Genes/knownGene.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2013-03-06-11-23-03/Genes/knownToRefSeq.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2013-03-06-11-23-03/Genes/refGene.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2013-03-06-11-23-03/Genes/kgXref.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2013-03-06-11-23-03/README.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2013-03-06-11-23-03/SmallRNA/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2013-03-06-11-23-03/SmallRNA/precursor.fa Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2013-03-06-11-23-03/SmallRNA/mature.fa Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2013-03-06-11-23-03/Variation/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2013-03-06-11-23-03/Variation/snp131.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2013-03-06-11-23-03/Variation/snp135.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2013-03-06-11-23-03/Variation/snp137.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2013-03-06-11-23-03/Variation/snp138.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2013-03-06-11-23-03/Variation/snp132.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2012-03-09-03-24-41/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2012-03-09-03-24-41/Genes/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2012-03-09-03-24-41/Genes/genes.gtf Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2012-03-09-03-24-41/Genes/ChromInfo.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2012-03-09-03-24-41/Genes/refSeqSummary.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2012-03-09-03-24-41/Genes/cytoBand.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2012-03-09-03-24-41/Genes/refFlat.txt.gz Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2012-03-09-03-24-41/Genes/knownGene.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2012-03-09-03-24-41/Genes/knownToRefSeq.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2012-03-09-03-24-41/Genes/refGene.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2012-03-09-03-24-41/Genes/kgXref.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2012-03-09-03-24-41/README.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2012-03-09-03-24-41/SmallRNA/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2012-03-09-03-24-41/SmallRNA/precursor.fa Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2012-03-09-03-24-41/SmallRNA/mature.fa Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2012-03-09-03-24-41/Variation/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2012-03-09-03-24-41/Variation/snp131.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2012-03-09-03-24-41/Variation/snp135.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2012-03-09-03-24-41/Variation/snp132.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2014-06-02-13-47-56/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2014-06-02-13-47-56/Genes/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2014-06-02-13-47-56/Genes/genes.gtf Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2014-06-02-13-47-56/Genes/refSeqSummary.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2014-06-02-13-47-56/Genes/cytoBand.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2014-06-02-13-47-56/Genes/refFlat.txt.gz Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2014-06-02-13-47-56/Genes/knownGene.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2014-06-02-13-47-56/Genes/knownToRefSeq.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2014-06-02-13-47-56/Genes/refGene.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2014-06-02-13-47-56/Genes/kgXref.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2014-06-02-13-47-56/README.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2014-06-02-13-47-56/SmallRNA/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2014-06-02-13-47-56/SmallRNA/mature.fa Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2014-06-02-13-47-56/SmallRNA/hairpin.fa Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2014-06-02-13-47-56/Variation/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2014-06-02-13-47-56/Variation/snp142.txt.idx Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2014-06-02-13-47-56/Variation/snp142.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2014-06-02-13-47-56/Variation/snp142.vcf Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2014-06-02-13-47-56/Variation/snp135.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2014-06-02-13-47-56/Variation/snp137.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2014-06-02-13-47-56/Variation/snp138.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2015-07-17-14-32-32/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2015-07-17-14-32-32/Genes/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2015-07-17-14-32-32/Genes/genes.gtf Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2015-07-17-14-32-32/Genes/refSeqSummary.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2015-07-17-14-32-32/Genes/cytoBand.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2015-07-17-14-32-32/Genes/refFlat.txt.gz Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2015-07-17-14-32-32/Genes/knownGene.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2015-07-17-14-32-32/Genes/knownToRefSeq.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2015-07-17-14-32-32/Genes/refGene.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2015-07-17-14-32-32/Genes/kgXref.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2015-07-17-14-32-32/README.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2015-07-17-14-32-32/SmallRNA/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2015-07-17-14-32-32/SmallRNA/mature.fa Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2015-07-17-14-32-32/SmallRNA/hairpin.fa Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2015-07-17-14-32-32/Variation/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2015-07-17-14-32-32/Variation/snp142.txt.idx Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2015-07-17-14-32-32/Variation/snp142.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2015-07-17-14-32-32/Variation/snp142.vcf Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2015-07-17-14-32-32/Variation/snp135.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2015-07-17-14-32-32/Variation/snp137.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2015-07-17-14-32-32/Variation/snp138.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-current Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/splice_sites_49/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/splice_sites_49/splice_sites-49.fa.2bpb Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/splice_sites_49/exon_coords.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/splice_sites_49/splice_sites-49.fa.vld Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/splice_sites_49/splice_sites-49.fa.idx Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/splice_sites_49/splice_sites-49.fa Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/genes.gtf Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/refMrna.fa Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/DATE.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/ChromInfo.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/refSeqSummary.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/cytoBand.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/refFlat.txt.gz Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/splice_sites_34/ Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/splice_sites_34/splice_sites-34.fa Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/splice_sites_34/splice_sites-34.fa.vld Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/splice_sites_34/exon_coords.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/splice_sites_34/splice_sites-34.fa.idx Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/splice_sites_34/splice_sites-34.fa.2bpb Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/refFlat.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/knownGene.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/knownToRefSeq.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/refGene.txt Homo_sapiens/UCSC/hg19/Annotation/Archives/archive-2010-09-27-22-25-17/kgXref.txt Homo_sapiens/UCSC/hg19/Sequence/ Homo_sapiens/UCSC/hg19/Sequence/Bowtie2Index/ Homo_sapiens/UCSC/hg19/Sequence/Bowtie2Index/genome.3.bt2 Homo_sapiens/UCSC/hg19/Sequence/Bowtie2Index/genome.1.bt2 Homo_sapiens/UCSC/hg19/Sequence/Bowtie2Index/genome.rev.2.bt2 Homo_sapiens/UCSC/hg19/Sequence/Bowtie2Index/genome.rev.1.bt2 Homo_sapiens/UCSC/hg19/Sequence/Bowtie2Index/genome.4.bt2 Homo_sapiens/UCSC/hg19/Sequence/Bowtie2Index/genome.fa.fai Homo_sapiens/UCSC/hg19/Sequence/Bowtie2Index/genome.2.bt2 Homo_sapiens/UCSC/hg19/Sequence/Bowtie2Index/genome.fa Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/ Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chrM.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chr20.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chr19.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chr1.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chr7.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chr16.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chrM.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chr11.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chr22.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chr14.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chr2.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chr20.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chr15.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM_profile.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chr16.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chr8.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chr1.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chr4.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chr21.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chr7.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chr13.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chrX.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chrY.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chr22.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chr4.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chr21.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chrY.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chr21.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chr9.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chr6.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chr3.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/sno.txt Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chr12.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chr13.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chr17.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chr14.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chr15.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chr9.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chr3.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chr6.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/tRNA.txt Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chr19.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chr11.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chr6.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chr18.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chr9.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chr17.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chr5.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chr18.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chr4.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chr8.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chr2.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chr2.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chr18.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chr17.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chr5.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chr8.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chr12.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chr20.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chr10.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chr19.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chr12.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chr5.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chr13.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chr1.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chr15.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chrM.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chr16.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chrX.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/miRBase/ Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/miRBase/knownMiR.gff3 Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/miRBase/mature.fa Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/miRBase/hairpin.fa Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chr10.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chrY.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chr14.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chr22.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chr7.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/FM.chr11.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/bwt.chrX.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chr3.idx Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/repeatMasker.txt Homo_sapiens/UCSC/hg19/Sequence/MDSBowtieIndex/SA.chr10.idx Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/ Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/genome.fa.amb Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/genome.fa.sa Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/version0.5.x/ Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/version0.5.x/genome.fa.amb Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/version0.5.x/genome.fa.sa Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/version0.5.x/genome.fa.bwt Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/version0.5.x/genome.fa.ann Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/version0.5.x/genome.fa.rbwt Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/version0.5.x/genome.fa.pac Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/version0.5.x/genome.fa.rpac Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/version0.5.x/genome.fa Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/version0.5.x/genome.fa.rsa Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/version0.6.0/ Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/version0.6.0/genome.fa.amb Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/version0.6.0/genome.fa.sa Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/version0.6.0/genome.fa.bwt Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/version0.6.0/genome.fa.ann Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/version0.6.0/genome.fa.pac Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/version0.6.0/genome.fa Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/genome.fa.bwt Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/genome.fa.ann Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/genome.fa.pac Homo_sapiens/UCSC/hg19/Sequence/BWAIndex/genome.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/ Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chrY.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chr21.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chr5.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chr3.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chr2.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chr6.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chr16.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chr20.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chr15.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chr12.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chrM.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chr1.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chr4.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chr9.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chr18.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chr10.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chr22.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chr14.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chrX.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chr11.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chr13.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chr19.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chr8.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chr17.fa Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chr7.fa Homo_sapiens/UCSC/hg19/Sequence/BlastDB/ Homo_sapiens/UCSC/hg19/Sequence/BlastDB/genome.fa.nhr Homo_sapiens/UCSC/hg19/Sequence/BlastDB/genome.fa.nsq Homo_sapiens/UCSC/hg19/Sequence/BlastDB/genome.fa Homo_sapiens/UCSC/hg19/Sequence/BlastDB/genome.fa.nsd Homo_sapiens/UCSC/hg19/Sequence/BlastDB/genome.fa.nsi Homo_sapiens/UCSC/hg19/Sequence/BlastDB/genome.fa.nin Homo_sapiens/UCSC/hg19/Sequence/BlastDB/genome.fa.nog Homo_sapiens/UCSC/hg19/Sequence/BowtieIndex/ Homo_sapiens/UCSC/hg19/Sequence/BowtieIndex/genome.2.ebwt Homo_sapiens/UCSC/hg19/Sequence/BowtieIndex/genome.rev.2.ebwt Homo_sapiens/UCSC/hg19/Sequence/BowtieIndex/genome.1.ebwt Homo_sapiens/UCSC/hg19/Sequence/BowtieIndex/genome.3.ebwt Homo_sapiens/UCSC/hg19/Sequence/BowtieIndex/genome.rev.1.ebwt Homo_sapiens/UCSC/hg19/Sequence/BowtieIndex/genome.fa Homo_sapiens/UCSC/hg19/Sequence/BowtieIndex/genome.4.ebwt Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/ Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/Bisulfite_Genome/ Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/Bisulfite_Genome/GA_conversion/ Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/Bisulfite_Genome/GA_conversion/BS_GA.1.bt2 Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/Bisulfite_Genome/GA_conversion/BS_GA.2.bt2 Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/Bisulfite_Genome/GA_conversion/genome_mfa.GA_conversion.fa Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/Bisulfite_Genome/GA_conversion/BS_GA.3.bt2 Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/Bisulfite_Genome/GA_conversion/BS_GA.rev.2.bt2 Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/Bisulfite_Genome/GA_conversion/BS_GA.rev.1.bt2 Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/Bisulfite_Genome/GA_conversion/BS_GA.4.bt2 Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/Bisulfite_Genome/CT_conversion/ Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/Bisulfite_Genome/CT_conversion/genome_mfa.CT_conversion.fa Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/Bisulfite_Genome/CT_conversion/BS_CT.rev.2.bt2 Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/Bisulfite_Genome/CT_conversion/BS_CT.4.bt2 Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/Bisulfite_Genome/CT_conversion/BS_CT.2.bt2 Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/Bisulfite_Genome/CT_conversion/BS_CT.rev.1.bt2 Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/Bisulfite_Genome/CT_conversion/BS_CT.3.bt2 Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/Bisulfite_Genome/CT_conversion/BS_CT.1.bt2 Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/GenomeSize.xml Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/genome.dict Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/genome.fa.fai Homo_sapiens/UCSC/hg19/Sequence/WholeGenomeFasta/genome.fa Homo_sapiens/UCSC/hg19/Sequence/AbundantSequences/ Homo_sapiens/UCSC/hg19/Sequence/AbundantSequences/polyA.fa Homo_sapiens/UCSC/hg19/Sequence/AbundantSequences/hum5SrDNA.fa Homo_sapiens/UCSC/hg19/Sequence/AbundantSequences/chrM.fa Homo_sapiens/UCSC/hg19/Sequence/AbundantSequences/polyC.fa Homo_sapiens/UCSC/hg19/Sequence/AbundantSequences/humRibosomal.fa Homo_sapiens/UCSC/hg19/Sequence/AbundantSequences/adapter_contam1.fa Homo_sapiens/UCSC/hg19/Sequence/AbundantSequences/phix.fa README.txt ###Markdown Build `GTF` dataframe from the `lncRNA` annotation file ###Code def gtf_df(filename): res = [] with open(filename, 'rt') as fi: for line in fi: fields = line.strip().split('\t') if fields[2] == 'exon': rec = {} idfields = fields[8].strip().split(';') for idfield in idfields: if idfield: key, val = idfield.split() if key == 'transcript_id' or key == 'exon_number': rec.update({key: val.strip('"')}) rec.update({'chr': fields[0], 'start': int(fields[3]), 'end': int(fields[4])}) res.append(rec) return pd.DataFrame.from_records(res) gtf = gtf_df('../ref/lncRNA.gtf') gtf ###Output _____no_output_____ ###Markdown Extract the sequence of the locus annotated in `lncRNA.gtf` plus 500 bp on each side ###Code parser = parse_fasta('../ref/Homo_sapiens/UCSC/hg19/Sequence/Chromosomes/chr2.fa') _, chr2 = next(parser) def get_seqs(rec): return chr2[rec.start:rec.end] gtf['sequence'] = gtf.apply(get_seqs, axis=1) gtf['seq_length'] = gtf['end'] - gtf['start'] gtf fa_tpl = '>{}' with open('../ref/ref_locus.fa', 'wt') as fo: header = fa_tpl.format('lnrCXCR4') fo.write('{}\n{}\n'.format(header, chr2[gtf.start.min()-500:gtf.end.max()+500])) !head ../ref/ref_locus.fa ###Output >lnrCXCR4 AGGAGTTTCCAGGTGACCCCTGGAAGTCCCAGTGCATTGCAGTCTTAGCACATTGCTCgagaaggtgagggagaagaagagagaaatgaaagaaaatttccagatgaagaaaagacaggaaagacagaggaagaaaggagggagggagattgaataaaagaaagagggagaaggtgaagaaggaaagagagagagagaATATATATAACGCTTTTAGGTGTTACCTTTGATCAGGGCGATTGACCAAGGTCAGCTTTCTTCAACGTGTATTCAGAGGAGGGCTCATGTCCTATAAGGTATTCATTGGTGTTTTACGGGGGAAATTTTTAAAAAGTGGGGCAGGGAAATCCACTGGTCCCACCCATTTGGGAAGTGTTTGgttcagcaggtttctctggtgtagctcctctcagagcctttcgtaaactggagtgcattatggagctccaagatggggccatagtatacaatttctccttacattatttTATTGAGATATTGTTTATTCAAGGACAAGCAGTCTGAGAAATGGAGTTTTTGAAATAATGATCCAGGCCTTTCCTGCAACACTGAGCTGTTTCTTTCCTTTTCTTTTTTAACCATGCAACAAAACCTTTATTAGCATTTTGAACAGGTTCAGCTATTACTGAAACTTGTAATTTCTAAACTTAAGTTGGGGCAAATGGCTATACGGCAGAGTAATGCCATCACTGGGCACTGCGAATGCAAGACTGGAGAATTAACAGCCACCCCTCAGGTGCAGGACCAGGTGCAGGGTTGACTCTTTCTGGATGTTGTAGTCAGAAAGAGTGCGGCCATCTTCCAGCTGCTTGCCTGCAAAGATGAGCCTCTGCTGGTCGGGGCTGGGGGTGGGGGGGTGCCTTCTTTATCCTGGATCTTGGCCTTCACATTTTCCATGGTGTCACTGGGCTCCACTTCCAGGGTGATGGTCTTGCCAGTCAGGGTCTTCACGAAGATCTGCATACCACCTCTCAGACACAGGACCAGGTGCAGGGTCTACTCTTTCTGGATGTTATAGTCAGAATGAGTGCAGTCATCTTCCACCTGCTTGACTGCAAAGATGAGCCTCTGCTGGTCCGGGGTAATGCCTTCCTTATCCTGGATCTTGGCCTTCACATTTTCGATGGTGTCCCTGGGCTCCACTTCAAGGGCAATGGTCTTGCTGGTAAGGGTCTTCACGAAGATCTGCATTTTGACCTGTTAGCGGATATGACGAGGCTCCGAAACACCAGTCATGTCCAGCCACAGGGACACCACCACATACTCACCCAACAAAGCCAGTCATCCCTACCACTGAGCTATTTCTATGCGAGTTCTTCCCTTGGCCCTTAAGCTGGGATAAATCCCTGTCTTCATGCAAAGTTAGAGACATGATTAGATACAAGATCTACAATATTTGTGGATAAAAACCAAACAGTTCCTTAAGAAAACTACAACTATTTTTTTTGGCTGACACCAGAGTGAAATTTCCCCCATTTATCCCCCATCAGCCTTTGGTAGGAGCACAAAAGCTACGTGGCAGGGCACATTCCAGCACCATGCCCATGACACCAACTCTCGTTCATTCATTCCTTGACGTATTTACATTCAAACTCCGTCCTCGTTTGCTGCTGTGCTGCTGGTTCTGGCTCCAAGCACttctttccttcttttttttttgagacaaagtctcgctgtcacccaggctggagtgcagtggcgtgatctcagttcactgcaacctccgcctcctgggttcaagcgattctcctgtctcagcttcccgaatagctgggagtgggccaccacacctggctaatttttgtatttttagtagagagggagccatgttagccaggctggtcttgaactcctaacctcaggtgatccacccgccttggcctcccaaagtgctgggattacaggcttgagtcatcacacctggccTCCAAGCACTTCTTACTCTGTCCTCAGACTTACGTGCTCATGCCTGACTCCCATATCTTCAAAGTTGAAAATGTTCTGATTTGTTTTCTCG ###Markdown Build `bowtie2` index for the locus reference ###Code %%bash bowtie2-build ../ref/ref_locus.fa ../ref/lncRNA_locus ###Output Settings: Output files: "../ref/lncRNA_locus.*.bt2" Line rate: 6 (line is 64 bytes) Lines per side: 1 (side is 64 bytes) Offset rate: 4 (one in 16) FTable chars: 10 Strings: unpacked Max bucket size: default Max bucket size, sqrt multiplier: default Max bucket size, len divisor: 4 Difference-cover sample period: 1024 Endianness: little Actual local endianness: little Sanity checking: disabled Assertions: disabled Random seed: 0 Sizeofs: void*:8, int:4, long:8, size_t:8 Input files DNA, FASTA: ../ref/ref_locus.fa Reading reference sizes Time reading reference sizes: 00:00:00 Calculating joined length Writing header Reserving space for joined string Joining reference sequences Time to join reference sequences: 00:00:00 bmax according to bmaxDivN setting: 509 Using parameters --bmax 382 --dcv 1024 Doing ahead-of-time memory usage test Passed! Constructing with these parameters: --bmax 382 --dcv 1024 Constructing suffix-array element generator Building DifferenceCoverSample Building sPrime Building sPrimeOrder V-Sorting samples V-Sorting samples time: 00:00:00 Allocating rank array Ranking v-sort output Ranking v-sort output time: 00:00:00 Invoking Larsson-Sadakane on ranks Invoking Larsson-Sadakane on ranks time: 00:00:00 Sanity-checking and returning Building samples Reserving space for 12 sample suffixes Generating random suffixes QSorting 12 sample offsets, eliminating duplicates QSorting sample offsets, eliminating duplicates time: 00:00:00 Multikey QSorting 12 samples (Using difference cover) Multikey QSorting samples time: 00:00:00 Calculating bucket sizes Splitting and merging Splitting and merging time: 00:00:00 Avg bucket size: 2038 (target: 381) Converting suffix-array elements to index image Allocating ftab, absorbFtab Entering Ebwt loop Getting block 1 of 1 No samples; assembling all-inclusive block Sorting block of length 2038 for bucket 1 (Using difference cover) Sorting block time: 00:00:00 Returning block of 2039 for bucket 1 Exited Ebwt loop fchr[A]: 0 fchr[C]: 507 fchr[G]: 982 fchr[T]: 1466 fchr[$]: 2038 Exiting Ebwt::buildToDisk() Returning from initFromVector Wrote 4195178 bytes to primary EBWT file: ../ref/lncRNA_locus.1.bt2 Wrote 516 bytes to secondary EBWT file: ../ref/lncRNA_locus.2.bt2 Re-opening _in1 and _in2 as input streams Returning from Ebwt constructor Headers: len: 2038 bwtLen: 2039 sz: 510 bwtSz: 510 lineRate: 6 offRate: 4 offMask: 0xfffffff0 ftabChars: 10 eftabLen: 20 eftabSz: 80 ftabLen: 1048577 ftabSz: 4194308 offsLen: 128 offsSz: 512 lineSz: 64 sideSz: 64 sideBwtSz: 48 sideBwtLen: 192 numSides: 11 numLines: 11 ebwtTotLen: 704 ebwtTotSz: 704 color: 0 reverse: 0 Total time for call to driver() for forward index: 00:00:00 Reading reference sizes Time reading reference sizes: 00:00:00 Calculating joined length Writing header Reserving space for joined string Joining reference sequences Time to join reference sequences: 00:00:00 Time to reverse reference sequence: 00:00:00 bmax according to bmaxDivN setting: 509 Using parameters --bmax 382 --dcv 1024 Doing ahead-of-time memory usage test Passed! Constructing with these parameters: --bmax 382 --dcv 1024 Constructing suffix-array element generator Building DifferenceCoverSample Building sPrime Building sPrimeOrder V-Sorting samples V-Sorting samples time: 00:00:00 Allocating rank array Ranking v-sort output Ranking v-sort output time: 00:00:00 Invoking Larsson-Sadakane on ranks Invoking Larsson-Sadakane on ranks time: 00:00:00 Sanity-checking and returning Building samples Reserving space for 12 sample suffixes Generating random suffixes QSorting 12 sample offsets, eliminating duplicates QSorting sample offsets, eliminating duplicates time: 00:00:00 Multikey QSorting 12 samples (Using difference cover) Multikey QSorting samples time: 00:00:00 Calculating bucket sizes Splitting and merging Splitting and merging time: 00:00:00 Avg bucket size: 2038 (target: 381) Converting suffix-array elements to index image Allocating ftab, absorbFtab Entering Ebwt loop Getting block 1 of 1 No samples; assembling all-inclusive block Sorting block of length 2038 for bucket 1 (Using difference cover) Sorting block time: 00:00:00 Returning block of 2039 for bucket 1 Exited Ebwt loop fchr[A]: 0 fchr[C]: 507 fchr[G]: 982 fchr[T]: 1466 fchr[$]: 2038 Exiting Ebwt::buildToDisk() Returning from initFromVector Wrote 4195178 bytes to primary EBWT file: ../ref/lncRNA_locus.rev.1.bt2 Wrote 516 bytes to secondary EBWT file: ../ref/lncRNA_locus.rev.2.bt2 Re-opening _in1 and _in2 as input streams Returning from Ebwt constructor Headers: len: 2038 bwtLen: 2039 sz: 510 bwtSz: 510 lineRate: 6 offRate: 4 offMask: 0xfffffff0 ftabChars: 10 eftabLen: 20 eftabSz: 80 ftabLen: 1048577 ftabSz: 4194308 offsLen: 128 offsSz: 512 lineSz: 64 sideSz: 64 sideBwtSz: 48 sideBwtLen: 192 numSides: 11 numLines: 11 ebwtTotLen: 704 ebwtTotSz: 704 color: 0 reverse: 1 Total time for backward call to driver() for mirror index: 00:00:00
PHYS2211.Measurement.ipynb
###Markdown PHYS 2211 - Introductory Physics Laboratory I Measurement andError Propagation Name: Tatiana Krivosheev Partners: Oleg Krivosheev Annex A ###Code import matplotlib import numpy as np import matplotlib.pyplot as plt import sympy %matplotlib inline ###Output _____no_output_____ ###Markdown Annex A - Data and Calculations 1. Rectangular Block ###Code class ListTable(list): """ Overridden list class which takes a 2-dimensional list of the form [[1,2,3],[4,5,6]], and renders an HTML Table in IPython Notebook. """ def _repr_html_(self): html = ["<table>"] for row in self: html.append("<tr>") for col in row: html.append("<td>{0}</td>".format(col)) html.append("</tr>") html.append("</table>") return ''.join(html) # plain text plt.title('alpha > beta') # math text plt.title(r'$\alpha > \beta$') from sympy import symbols, init_printing init_printing(use_latex=True) delta = symbols('delta') delta**2/3 from sympy import symbols, init_printing init_printing(use_latex=True) delta = symbols('delta') table = ListTable() table.append(['measuring device', ' ', 'delta', 'w', 'delta w', 'h', 'delta h']) table.append([' ', '(cm)', '(cm)', '(cm)','(cm)', '(cm)', '(cm)']) lr=4.9 wr=2.5 hr=1.2 lc=4.90 wc=2.54 hc=1.27 deltar=0.1 deltac=0.01 table.append(['ruler',lr, deltar, wr, deltar, hr, deltar]) table.append(['vernier caliper', lc, deltac, wc, deltac, hc, deltac]) table s(t) = \mathcal{A}\/\sin(2 \omega t) table = ListTable() table.append(['l', 'deltal', 'w', 'deltaw', 'h', 'deltah']) table.append(['(cm)', '(cm)', '(cm)','(cm)', '(cm)', '(cm)']) lr=4.9 wr=2.5 hr=1.2 lc=4.90 wc=2.54 hc=1.27 deltar=0.1 deltac=0.01 for i in range(0,len(x)): xx = x[i] yy = y[i] ttable.append([lr, deltar, wr, deltar, hr, deltar])able.append([lr, deltar, wr, deltar, hr, deltar]) table # code below demonstrates... import numpy as np x = [7,10,15,20,25,30,35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95] y= [0.228,0.298,0.441,0.568,0.697,0.826,0.956, 1.084, 1.211, 1.339,1.468, 1.599, 1.728, 1.851, 1.982, 2.115, 2.244, 2.375, 2.502] plt.scatter(x, y) plt.title('Linearity test') plt. xlabel('Length (cm)') plt. ylabel('Voltage (V)') fit = np.polyfit(x,y,1) fit_fn = np.poly1d(fit) plt.plot(x,y, 'yo', x, fit_fn(x), '--k') m,b = np.polyfit(x, y, 1) print ('m={0}'.format(m)) print ('b={0}'.format(b)) plt.show() ###Output m=0.0258164673413 b=0.0491959521619 ###Markdown 2. Wheatstone bridge measurements ###Code Rk = 3.5 # kOhms table = ListTable() table.append(['Ru', 'Ru, acc', 'L1', 'L2', 'Ru, wheatstone', 'Disc']) table.append(['(kOhms)', '(kOhms)', '(cm)', '(cm)', '(kOhms)', ' % ']) x = [0.470,0.680,1.000, 1.500] y= [0.512,0.712,1.131,1.590] z= [88.65, 84.50, 76.90, 69.80] for i in range(0,len(x)): xx = x[i] yy = y[i] zz = z[i] Rw = (100.0 - zz)/zz*Rk Disc = (Rw-yy)/yy*100.0 table.append([xx, yy, zz, 100.0-zz,Rw, Disc]) table x = [0.470,0.680,1.000, 1.500] y= [0.512,0.712,1.131,1.590] z= [88.65, 84.50, 76.90, 69.80] for i in range(0,len(x)): xx = x[i] yy = y[i] zz = z[i] Rw = (100.0 - zz)/zz*Rk Disc = (Rw-yy)/yy*100.0 plt.scatter(yy, Disc) plt.title('Discrepancy vs Resistance') plt. xlabel('Resistance (kOhms)') plt. ylabel('Discrepancy (%)') plt.show() ###Output _____no_output_____
experiment_CLEO.ipynb
###Markdown **How to save this notebook to your personal Drive**To copy this notebook to your Google Drive, go to File and select "Save a copy in Drive", where it will automatically open the copy in a new tab for you to work in. This notebook will be saved into a folder on your personal Drive called "Colab Notebooks".Still stumped? Check out this video for help What is CLEO? ###Code from IPython.display import Image Image(url='https://raw.githubusercontent.com/particle-physics-playground/playground/master/activities/images/cleo_det_proc.jpg',width=400) ###Output _____no_output_____ ###Markdown $$e^+e^- \rightarrow \chi \chi$$ The CLEO-II detector was designed to measure the properties of particles produced in the collisions of electrons and positrons supplied by CESR. The CLEO-II detector was made of many sub-detectors. When the particles are created in each electron-positron collision, they fly through these detectors and we are able to measure the direction in which all these particles went. ###Code from IPython.display import Image Image(url='https://raw.githubusercontent.com/particle-physics-playground/playground/master/activities/images/kpipi_color_enhanced-resized.png',width=400) ###Output _____no_output_____ ###Markdown Displays like the one above can be difficult to understand, but they are not what we physicists actually analyze. Instead, we use the displays to get information about the electric charge, energy, and momentum of the particles, and that is the data we use.Let's go take a look at some of that data! The first step is to import some helper functions. One is to get the collisions data out of the files, and the other is to display the particles that are produced in these collisions. ###Code ###### This cell need only be run once per session ############## ###### Make sure your runtime type is Python 3 ######### # Import h5hep from Github. This is to allow us to read these # particular files. !pip install git+https://github.com/mattbellis/h5hep.git # Import custom tools package from Github. These are some simple accessor functions # to make it easier to work with these data files. !pip install git+https://github.com/mattbellis/particle_physics_simplified.git import pps_tools as pps import h5hep ###Output _____no_output_____ ###Markdown Next, we will open the file and pull out the collision data. This will return a Python list of all the collisions in that file.You can use these data to visualize individual collisions or to perform a data analysis on all the collisions. ###Code pps.download_from_drive('small_CLEO_test_file.hdf5') infile = 'data/small_CLEO_test_file.hdf5' collisions = pps.get_collisions(infile,experiment="CLEO",verbose=False) number_of_collisions = len(collisions) print("# of electron-positron collisions: %d" % (number_of_collisions)) import matplotlib.pylab as plt ###Output _____no_output_____ ###Markdown Let's take a look at some of these collisions! ###Code pps.display_collision3D(collisions[6],experiment='CLEO') pps.display_collision3D(collisions[3],experiment='CLEO') pps.display_collision3D(collisions[6],experiment='CLEO') ###Output _____no_output_____ ###Markdown What are we looking at here?* The green lines represent the electrons colliding.* The other lines represent particles created in the collisions. The length of these lines tell us how much momentum (or energy) they have. The colors are different particles/object. * Red - pions * Orange - kaons * Blue - muons * Green - electrons * Gray - photons You can also make plots of the properties of the particles. ###Code energies = [] for collision in collisions: pions = collision['pions'] for pion in pions: energy = pion['e'] energies.append(energy) plt.figure(figsize=(4,4)) h = plt.hist(energies) plt.xlabel('Energy'),plt.ylabel('Frequency'),plt.title('Histogram of Pion Energies'); ###Output _____no_output_____
AirBNB_Tensorflow_keras.ipynb
###Markdown Build a Neural Network with Tensorflow Keras on AirBNB prices in Berlin, Germany This is a cleaned dataset that I worked with in Unit 3 of Lambda School. The unit project was to use a neural network that would be pickled into an API for a web team to utilize in a web app. Here's my version of the project: ###Code # Import tesorflow import tensorflow as tf # Imports import pandas as pd # Read in data with shape and head df = pd.read_csv('data/airbnb data cleaned.csv') print(df.shape) df.head() df = df.drop(['Unnamed: 0'], axis=1) ###Output _____no_output_____ ###Markdown Get a feel for the data: ###Code # Mean price of the rentals is $57 per night df.describe().T # Have a look at the corr table df.corr() # Visualize correlation of features to price df.corr()['price'].sort_values()[:-2].plot(kind='bar') # Distributions between 'price' and 'accommodates' sns.boxplot(x='accommodates',y='price',data=df) # Distributions between 'price' and 'bedrooms' sns.boxplot(x='bedrooms',y='price',data=df) ###Output _____no_output_____ ###Markdown Construct the model: ###Code # Train test split: from sklearn.model_selection import train_test_split X = df.drop('price', axis=1).values y = df['price'].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=42) print(X_train.shape) print(y_train.shape) print(X_test.shape) print(y_test.shape) # Scale data: from sklearn.preprocessing import MinMaxScaler # Create scaler object sc = MinMaxScaler() # Fit scaler on X_train to apply transformation on X sets sc.fit(X_train) # Transform both X X_train = sc.transform(X_train) X_test = sc.transform(X_test) # Viz of X_train[0] as scaled print(X_train[0]) X_train.shape X_test.shape # Create the Neural Network from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense,Dropout,Flatten from tensorflow.keras import metrics # Create model object model = Sequential() # Input, hidden, output layers model.add(Dense(128, activation='relu', input_shape=(28,))) model.add(Dropout(0.2)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(32, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(16, activation='relu')) model.add(Dropout(0.1)) model.add(Dense(1)) # Compile model model.compile(loss='mean_absolute_error', optimizer='adam', metrics=[metrics.mae]) # Fit model with validation data to test for overfitting model.fit(X_train,y_train, validation_data=(X_test,y_test), batch_size=128, epochs=400) ###Output Train on 17884 samples, validate on 4471 samples Epoch 1/400 17884/17884 [==============================] - 1s 65us/sample - loss: 35.0920 - mean_absolute_error: 35.0920 - val_loss: 22.4138 - val_mean_absolute_error: 22.4138 Epoch 2/400 17884/17884 [==============================] - 1s 31us/sample - loss: 22.5816 - mean_absolute_error: 22.5816 - val_loss: 19.3218 - val_mean_absolute_error: 19.3218 Epoch 3/400 17884/17884 [==============================] - 1s 30us/sample - loss: 20.8706 - mean_absolute_error: 20.8706 - val_loss: 18.7210 - val_mean_absolute_error: 18.7210 Epoch 4/400 17884/17884 [==============================] - 1s 30us/sample - loss: 20.4810 - mean_absolute_error: 20.4810 - val_loss: 18.6344 - val_mean_absolute_error: 18.6344 Epoch 5/400 17884/17884 [==============================] - 1s 30us/sample - loss: 20.2841 - mean_absolute_error: 20.2841 - val_loss: 18.9863 - val_mean_absolute_error: 18.9863 Epoch 6/400 17884/17884 [==============================] - 1s 30us/sample - loss: 20.1098 - mean_absolute_error: 20.1098 - val_loss: 18.3586 - val_mean_absolute_error: 18.3586 Epoch 7/400 17884/17884 [==============================] - 1s 30us/sample - loss: 20.0400 - mean_absolute_error: 20.0400 - val_loss: 18.5255 - val_mean_absolute_error: 18.5255 Epoch 8/400 17884/17884 [==============================] - 1s 31us/sample - loss: 19.7998 - mean_absolute_error: 19.7998 - val_loss: 18.3066 - val_mean_absolute_error: 18.3066 Epoch 9/400 17884/17884 [==============================] - 1s 35us/sample - loss: 19.8719 - mean_absolute_error: 19.8719 - val_loss: 18.5013 - val_mean_absolute_error: 18.5013 Epoch 10/400 17884/17884 [==============================] - 1s 32us/sample - loss: 19.8865 - mean_absolute_error: 19.8865 - val_loss: 18.1483 - val_mean_absolute_error: 18.1483 Epoch 11/400 17884/17884 [==============================] - 1s 31us/sample - loss: 19.8793 - mean_absolute_error: 19.8793 - val_loss: 18.1612 - val_mean_absolute_error: 18.1612 Epoch 12/400 17884/17884 [==============================] - 1s 32us/sample - loss: 19.6183 - mean_absolute_error: 19.6183 - val_loss: 18.2320 - val_mean_absolute_error: 18.2320 Epoch 13/400 17884/17884 [==============================] - 1s 31us/sample - loss: 19.7510 - mean_absolute_error: 19.7510 - val_loss: 18.0235 - val_mean_absolute_error: 18.0235 Epoch 14/400 17884/17884 [==============================] - 1s 34us/sample - loss: 19.6622 - mean_absolute_error: 19.6622 - val_loss: 18.0414 - val_mean_absolute_error: 18.0414 Epoch 15/400 17884/17884 [==============================] - 1s 33us/sample - loss: 19.6716 - mean_absolute_error: 19.6716 - val_loss: 17.8773 - val_mean_absolute_error: 17.8773 Epoch 16/400 17884/17884 [==============================] - 1s 30us/sample - loss: 19.3872 - mean_absolute_error: 19.3872 - val_loss: 17.8772 - val_mean_absolute_error: 17.8772 Epoch 17/400 17884/17884 [==============================] - 1s 30us/sample - loss: 19.4264 - mean_absolute_error: 19.4264 - val_loss: 17.8594 - val_mean_absolute_error: 17.8594 Epoch 18/400 17884/17884 [==============================] - 1s 29us/sample - loss: 19.4258 - mean_absolute_error: 19.4258 - val_loss: 17.8050 - val_mean_absolute_error: 17.8050 Epoch 19/400 17884/17884 [==============================] - 1s 29us/sample - loss: 19.1933 - mean_absolute_error: 19.1932 - val_loss: 17.7356 - val_mean_absolute_error: 17.7356 Epoch 20/400 17884/17884 [==============================] - 1s 33us/sample - loss: 19.1847 - mean_absolute_error: 19.1847 - val_loss: 17.8885 - val_mean_absolute_error: 17.8885 Epoch 21/400 17884/17884 [==============================] - 1s 31us/sample - loss: 19.0782 - mean_absolute_error: 19.0782 - val_loss: 17.8778 - val_mean_absolute_error: 17.8778 Epoch 22/400 17884/17884 [==============================] - 1s 30us/sample - loss: 19.0334 - mean_absolute_error: 19.0334 - val_loss: 17.6169 - val_mean_absolute_error: 17.6169 Epoch 23/400 17884/17884 [==============================] - 1s 34us/sample - loss: 19.0238 - mean_absolute_error: 19.0238 - val_loss: 17.8816 - val_mean_absolute_error: 17.8816 Epoch 24/400 17884/17884 [==============================] - 1s 33us/sample - loss: 18.9815 - mean_absolute_error: 18.9815 - val_loss: 17.5812 - val_mean_absolute_error: 17.5812 Epoch 25/400 17884/17884 [==============================] - 1s 30us/sample - loss: 18.8964 - mean_absolute_error: 18.8964 - val_loss: 17.5293 - val_mean_absolute_error: 17.5293 Epoch 26/400 17884/17884 [==============================] - 1s 31us/sample - loss: 18.9565 - mean_absolute_error: 18.9565 - val_loss: 17.4800 - val_mean_absolute_error: 17.4800 Epoch 27/400 17884/17884 [==============================] - 1s 32us/sample - loss: 18.9331 - mean_absolute_error: 18.9331 - val_loss: 17.4876 - val_mean_absolute_error: 17.4876 Epoch 28/400 17884/17884 [==============================] - 1s 34us/sample - loss: 18.7055 - mean_absolute_error: 18.7054 - val_loss: 17.3937 - val_mean_absolute_error: 17.3937 Epoch 29/400 17884/17884 [==============================] - 1s 37us/sample - loss: 18.7485 - mean_absolute_error: 18.7485 - val_loss: 17.3934 - val_mean_absolute_error: 17.3934 Epoch 30/400 17884/17884 [==============================] - 1s 31us/sample - loss: 18.7017 - mean_absolute_error: 18.7017 - val_loss: 17.4754 - val_mean_absolute_error: 17.4754 Epoch 31/400 17884/17884 [==============================] - 1s 31us/sample - loss: 18.6107 - mean_absolute_error: 18.6107 - val_loss: 17.4382 - val_mean_absolute_error: 17.4382 Epoch 32/400 17884/17884 [==============================] - 1s 30us/sample - loss: 18.5969 - mean_absolute_error: 18.5969 - val_loss: 17.4233 - val_mean_absolute_error: 17.4233 Epoch 33/400 17884/17884 [==============================] - 1s 30us/sample - loss: 18.6776 - mean_absolute_error: 18.6776 - val_loss: 17.2994 - val_mean_absolute_error: 17.2994 Epoch 34/400 17884/17884 [==============================] - 1s 31us/sample - loss: 18.5067 - mean_absolute_error: 18.5067 - val_loss: 17.3161 - val_mean_absolute_error: 17.3161 Epoch 35/400 17884/17884 [==============================] - 1s 32us/sample - loss: 18.4643 - mean_absolute_error: 18.4643 - val_loss: 17.3579 - val_mean_absolute_error: 17.3579 Epoch 36/400 17884/17884 [==============================] - 1s 32us/sample - loss: 18.4630 - mean_absolute_error: 18.4630 - val_loss: 17.2330 - val_mean_absolute_error: 17.2330 Epoch 37/400 17884/17884 [==============================] - 1s 31us/sample - loss: 18.3340 - mean_absolute_error: 18.3340 - val_loss: 17.3424 - val_mean_absolute_error: 17.3424 Epoch 38/400 17884/17884 [==============================] - 1s 30us/sample - loss: 18.2960 - mean_absolute_error: 18.2960 - val_loss: 17.2255 - val_mean_absolute_error: 17.2255 Epoch 39/400 17884/17884 [==============================] - 1s 31us/sample - loss: 18.2572 - mean_absolute_error: 18.2572 - val_loss: 17.2390 - val_mean_absolute_error: 17.2390 Epoch 40/400 17884/17884 [==============================] - 1s 30us/sample - loss: 18.3318 - mean_absolute_error: 18.3318 - val_loss: 17.2855 - val_mean_absolute_error: 17.2855 Epoch 41/400 17884/17884 [==============================] - 1s 33us/sample - loss: 18.2098 - mean_absolute_error: 18.2098 - val_loss: 17.5945 - val_mean_absolute_error: 17.5945 Epoch 42/400 17884/17884 [==============================] - 1s 30us/sample - loss: 18.3576 - mean_absolute_error: 18.3576 - val_loss: 17.2633 - val_mean_absolute_error: 17.2633 Epoch 43/400 17884/17884 [==============================] - 1s 30us/sample - loss: 18.2974 - mean_absolute_error: 18.2974 - val_loss: 17.3174 - val_mean_absolute_error: 17.3174 Epoch 44/400 17884/17884 [==============================] - 1s 30us/sample - loss: 18.3942 - mean_absolute_error: 18.3942 - val_loss: 17.1705 - val_mean_absolute_error: 17.1705 Epoch 45/400 17884/17884 [==============================] - 1s 30us/sample - loss: 18.1661 - mean_absolute_error: 18.1661 - val_loss: 17.2829 - val_mean_absolute_error: 17.2829 Epoch 46/400 17884/17884 [==============================] - 1s 29us/sample - loss: 18.1160 - mean_absolute_error: 18.1160 - val_loss: 17.1563 - val_mean_absolute_error: 17.1563 Epoch 47/400 ###Markdown Model Evaluations: ###Code #Here's the baseline accuracy for the model: scores = model.evaluate(X_train, y_train) print(f"{model.metrics_names[1]}: {scores[1]*100}") # Plot the model's loss to see if model is overfitting model_loss = pd.DataFrame(model.history.history) model_loss.plot() # See predictions from sklearn.metrics import mean_absolute_error predictions = model.predict(X_test) mean_absolute_error(y_test,predictions) # Random test: index = 90 X_pred = sc.transform([df.drop('price', axis=1).iloc[index]]) y_real = df.iloc[index]['price'] y_pred = model.predict([X_pred]) print(f'Prediction: ${y_pred[0][0]} | Real: ${y_real}') ###Output Prediction: $57.080543518066406 | Real: $55.0
tests/python/mnist/MnistSegDistillation.ipynb
###Markdown MNISTでセグメンテーションに挑戦 ###Code import os import shutil import random import pickle import numpy as np import matplotlib.pyplot as plt from tqdm.notebook import tqdm #from tqdm import tqdm import torch import torchvision import torchvision.transforms as transforms import binarybrain as bb print(bb.get_version_string()) #print(bb.get_device_name(0)) bb.get_device_allocated_memory_size() ###Output _____no_output_____ ###Markdown 初期設定 ###Code # configuration bb.set_device(0) net_name = 'MnistSegClassDistillation' data_path = os.path.join('./data/', net_name + '') rtl_sim_path = '../../verilog/mnist' rtl_module_name = 'MnistSegmentationAndClassification' output_velilog_file = os.path.join(data_path, net_name + '.v') sim_velilog_file = os.path.join(rtl_sim_path, rtl_module_name + '.v') bin_mode = True frame_modulation_size = 3 depth_integration_size = 1 epochs = 0 mini_batch_size = 16 ###Output _____no_output_____ ###Markdown データセット準備データセットを自作する数値が中央に来るピクセル以外も学習させる必要がるため、28x28のMNSIT画像をタイル状に並べて学習データを作る ###Code # 並べるタイル数 rows=3 cols=3 # 面積の比率で重みを作っておく if False: areas = np.zeros((11)) for img, label in dataset_train: img = img.numpy() areas[label] += np.mean(img) areas[10] += np.mean(1.0-img) areas /= len(dataset_train) wight = 1 / areas wight /= np.max(wight) def make_teacher_image(gen, rows, cols, margin=0): source_img = np.zeros((1, rows*28, cols*28), dtype=np.float32) teaching_img = np.zeros((11, rows*28, cols*28), dtype=np.float32) for row in range(rows): for col in range(cols): x = col*28 y = row*28 img, label = gen.__next__() source_img[0,y:y+28,x:x+28] = img teaching_img[label,y:y+28,x:x+28] = img teaching_img[10,y:y+28,x:x+28] = (1.0-img) teaching_img = (teaching_img > 0.5).astype(np.float32) # ランダムに反転 if random.random() > 0.5: source_img = 1.0 - source_img return source_img, teaching_img[:,margin:-margin,margin:-margin] def transform_data(dataset, n, rows, cols, margin): def data_gen(): l = len(dataset) i = 0 while True: yield dataset[i%l] i += 1 gen = data_gen() source_imgs = [] teaching_imgs = [] for _ in range(n): x, t = make_teacher_image(gen, rows, cols, margin) source_imgs.append(x) teaching_imgs.append(t) return source_imgs, teaching_imgs class MyDatasets(torch.utils.data.Dataset): def __init__(self, source_imgs, teaching_imgs, transforms=None): self.transforms = transforms self.source_imgs = source_imgs self.teaching_imgs = teaching_imgs def __len__(self): return len(self.source_imgs) def __getitem__(self, index): source_img = self.source_imgs[index] teaching_img = self.teaching_imgs[index] if self.transforms: source_img, teaching_img = self.transforms(source_img, teaching_img) return source_img, teaching_img # dataset dataset_path = './data/' dataset_train = torchvision.datasets.MNIST(root=dataset_path, train=True, transform=transforms.ToTensor(), download=True) dataset_test = torchvision.datasets.MNIST(root=dataset_path, train=False, transform=transforms.ToTensor(), download=True) dataset_fname = os.path.join(data_path, 'dataset.pickle') if os.path.exists(dataset_fname): with open(dataset_fname, 'rb') as f: source_imgs_train = pickle.load(f) teaching_imgs_train = pickle.load(f) source_imgs_test = pickle.load(f) teaching_imgs_test = pickle.load(f) else: os.makedirs(data_path, exist_ok=True) source_imgs_train, teaching_imgs_train = transform_data(dataset_train, 4096, rows, cols, 29) source_imgs_test, teaching_imgs_test = transform_data(dataset_test, 128, rows, cols, 29) with open(dataset_fname, 'wb') as f: pickle.dump(source_imgs_train, f) pickle.dump(teaching_imgs_train, f) pickle.dump(source_imgs_test, f) pickle.dump(teaching_imgs_test, f) my_dataset_train = MyDatasets(source_imgs_train, teaching_imgs_train) my_dataset_test = MyDatasets(source_imgs_test, teaching_imgs_test) loader_train = torch.utils.data.DataLoader(dataset=my_dataset_train, batch_size=mini_batch_size, shuffle=True) loader_test = torch.utils.data.DataLoader(dataset=my_dataset_test, batch_size=mini_batch_size, shuffle=False) def plt_data(x, y): plt.figure(figsize=(16,8)) plt.subplot(1,12,1) plt.imshow(x[0], 'gray') for i in range(11): plt.subplot(1,12,2+i) plt.imshow(y[i], 'gray') plt.show() plt.figure(figsize=(16,8)) for source_imgs, teaching_imgs in loader_test: print(source_imgs[0].shape) print(teaching_imgs[0].shape) for i in range(min(mini_batch_size, 10)): plt_data(source_imgs[i], teaching_imgs[i]) break def view(net, loader): num = 0; for x_imgs, t_imgs in loader: plt.figure(figsize=(16,8)) x_buf = bb.FrameBuffer.from_numpy(np.array(x_imgs).astype(np.float32)) # t0_buf = bb.FrameBuffer.from_numpy(np.array(t_imgs[:,0:10,:,:]).astype(np.float32)) # t1_buf = bb.FrameBuffer.from_numpy(np.array(1.0 - t_imgs[:,10:11,:,:]).astype(np.float32)) y0_buf, y1_buf = net.forward(x_buf, train=False) result_imgs0 = y0_buf.numpy() result_imgs1 = y1_buf.numpy() result_imgs = np.hstack((result_imgs0, result_imgs1)) plt_data(x_imgs[0], result_imgs[0]) num += 1 if num >= 2: break ###Output _____no_output_____ ###Markdown ネットワーク構築 ###Code # バイナリ時は BIT型を使えばメモリ削減可能 bin_dtype = bb.DType.BIT if bin_mode else bb.DType.FP32 def create_lut_depthwise_conv(name, output_ch, filter_size=(3, 3), padding='valid', batch_norm=True, fw_dtype=bin_dtype): """LUTのDepthwiseConv層生成""" return bb.Convolution2d( bb.Sequential([ bb.DifferentiableLut([output_ch, 1, 1], connection='depthwise', batch_norm=batch_norm, name='lut_dl_depthwise_' + name, bin_dtype=fw_dtype), ]), filter_size=filter_size, padding=padding, name='lut_conv_depthwise_' + name, fw_dtype=fw_dtype) def create_lut_conv1(name, output_ch, filter_size=(1, 1), padding='valid', connection='serial', batch_norm=True, fw_dtype=bin_dtype): """LUTのConv層生成""" return bb.Convolution2d( bb.DifferentiableLut([output_ch, 1, 1], connection=connection, batch_norm=batch_norm, name=(name + '_lut_dl'), bin_dtype=fw_dtype), filter_size=filter_size, padding=padding, name=(name + '_lut_conv'), fw_dtype=fw_dtype) def create_lut_conv2(name, output_ch, filter_size=(1, 1), padding='valid', connection='serial', batch_norm=True, fw_dtype=bin_dtype): """LUTのConv層生成""" return bb.Convolution2d( bb.Sequential([ bb.DifferentiableLut([output_ch*6, 1, 1], connection=connection, batch_norm=batch_norm, name=(name + '_lut_dl0'), bin_dtype=fw_dtype), bb.DifferentiableLut([output_ch, 1, 1], connection='serial', batch_norm=batch_norm, name=(name + '_lut_dl1'), bin_dtype=fw_dtype), ]), filter_size=filter_size, padding=padding, name=(name + '_lut_conv'), fw_dtype=fw_dtype) def create_lut_conv_mn(name, input_ch, output_ch, filter_size=(3, 3), padding='valid', batch_norm=True, fw_dtype=bin_dtype): return bb.Sequential([ create_lut_depthwise_conv(name, input_ch, filter_size=filter_size, padding=padding, fw_dtype=fw_dtype), create_lut_conv2(name, output_ch, filter_size=(1, 1), fw_dtype=fw_dtype), ]) def create_dense_affine(name, output_ch, fw_dtype=bin_dtype): """バイナリ化したDenseAffine層生成""" return bb.Sequential([ bb.DenseAffine([output_ch, 1, 1], name=(name + '_dense_affine')), bb.BatchNormalization(name=(name + '_dense_bn')), bb.Binarize(name=(name + '_dense_act'), bin_dtype=fw_dtype), ]) def create_dense_conv(name, output_ch, filter_size=(1, 1), padding='valid', fw_dtype=bin_dtype): """バイナリ化したDenseConv層生成""" return bb.Convolution2d( create_dense_affine(name, output_ch, fw_dtype), filter_size=filter_size, padding=padding, name=(name + '_dense_conv'), fw_dtype=fw_dtype) class SegmentationNetwork(bb.Sequential): """蒸留用ネットワーク""" def __init__(self): self.input_r2b = bb.RealToBinary(frame_modulation_size=frame_modulation_size, bin_dtype=bin_dtype) self.cls_b2r = bb.BinaryToReal(frame_integration_size=frame_modulation_size, bin_dtype=bin_dtype) self.seg_b2r = bb.BinaryToReal(frame_integration_size=frame_modulation_size, bin_dtype=bin_dtype) # 入力層生成 layer_name = 'input' self.input_lut = create_lut_conv1(layer_name, 36, filter_size=(3, 3), connection='random', batch_norm=True, fw_dtype=bin_dtype) self.input_dense = create_dense_conv(layer_name, 36, filter_size=(3, 3), fw_dtype=bin_dtype) self.net_input = bb.Switcher({'lut': self.input_lut, 'dense': self.input_dense}, init_model_name='dense') # Conv層生成 self.net_cnv = bb.Sequential() for i in range(28): layer_name = 'cnv%d'%(i) cnv_lut = create_lut_conv_mn(layer_name, 36, 36, filter_size=(3, 3), padding='valid', batch_norm=True, fw_dtype=bin_dtype) cnv_dense = create_dense_conv(layer_name, 36, filter_size=(3, 3), padding='valid', fw_dtype=bin_dtype) self.net_cnv.append( bb.Switcher({ 'lut': cnv_lut, 'dense': cnv_dense }, init_model_name='dense')) # classifier self.net_cls = bb.Sequential([ bb.Switcher({ 'lut': create_lut_conv2('cls0', 2*36, filter_size=(1, 1)), 'dense': create_dense_conv('cls0', 2*36, filter_size=(1, 1)), }, init_model_name='dense'), bb.Switcher({ 'lut': create_lut_conv2('cls1', 10, filter_size=(1, 1)), 'dense': create_dense_conv('cls1', 10, filter_size=(1, 1)), }, init_model_name='dense') ]) # segmentation self.net_seg = bb.Sequential([ bb.Switcher({ 'lut': create_lut_conv2('seg0', 2*36, filter_size=(1, 1)), 'dense': create_dense_conv('seg0', 2*36, filter_size=(1, 1)), }, init_model_name='dense'), bb.Switcher({ 'lut': create_lut_conv2('seg1', 1, filter_size=(1, 1)), 'dense': create_dense_conv('seg1', 1, filter_size=(1, 1)), }, init_model_name='dense') ]) super(SegmentationNetwork, self).__init__([self.net_input, self.net_cnv, self.net_cls, self.net_seg]) def set_input_shape(self, shape): shape = self.input_r2b.set_input_shape(shape) shape = self.net_input.set_input_shape(shape) shape = self.net_cnv.set_input_shape(shape) shape_cls = self.net_cls.set_input_shape(shape) self.cls_b2r.set_input_shape(shape_cls) shape_seg = self.net_seg.set_input_shape(shape) self.seg_b2r.set_input_shape(shape_seg) def forward(self, x, train): x = self.input_r2b.forward(x, train) x = self.net_input.forward(x, train) x = self.net_cnv.forward(x, train) y0 = self.net_cls.forward(x, train) y0 = self.cls_b2r.forward(y0) y1 = self.net_seg.forward(x, train) y1 = self.seg_b2r.forward(y1) return y0, y1 def backward(self, dy0, dy1): dy0 = self.cls_b2r.backward(dy0) dy0 = self.net_cls.backward(dy0) dy1 = self.seg_b2r.backward(dy1) dy1 = self.net_seg.backward(dy1) dy = self.net_cnv.backward(dy0*0.3 + dy1*0.7) dx = self.net_input.backward(dy) return dx net = SegmentationNetwork() net.send_command("switch_model dense") net.set_input_shape([1, rows*28, cols*28]) net.set_name(net_name) net.send_command("binary true") #bb.load_networks(data_path, net) bb.load_networks(data_path, net, name='dense_base') ###Output _____no_output_____ ###Markdown 学習実施学習を行います ###Code def learning(data_path, net, epochs=2): # learning loss0 = bb.LossSoftmaxCrossEntropy() loss1 = bb.LossSigmoidCrossEntropy() metrics0 = bb.MetricsCategoricalAccuracy() metrics1 = bb.MetricsBinaryCategoricalAccuracy() optimizer = bb.OptimizerAdam() optimizer.set_variables(net.get_parameters(), net.get_gradients()) for epoch in range(epochs): # learning loss0.clear() metrics0.clear() loss1.clear() metrics1.clear() with tqdm(loader_train) as tqdm_loadr: for x_imgs, t_imgs in tqdm_loadr: x_buf = bb.FrameBuffer.from_numpy(np.array(x_imgs).astype(np.float32)) t0_buf = bb.FrameBuffer.from_numpy(np.array(t_imgs[:,0:10,:,:]).astype(np.float32)) t1_buf = bb.FrameBuffer.from_numpy(1.0 - np.array(t_imgs[:,10:11,:,:]).astype(np.float32)) y0_buf, y1_buf = net.forward(x_buf, train=True) dy0_buf = loss0.calculate(y0_buf, t0_buf) dy1_buf = loss1.calculate(y1_buf, t1_buf) metrics0.calculate(y0_buf, t0_buf) metrics1.calculate(y1_buf, t1_buf) net.backward(dy0_buf, dy1_buf) optimizer.update() tqdm_loadr.set_postfix(loss0=loss0.get(), acc0=metrics0.get(), loss1=loss1.get(), acc1=metrics1.get()) # test loss0.clear() metrics0.clear() loss1.clear() metrics1.clear() for x_imgs, t_imgs in loader_test: x_buf = bb.FrameBuffer.from_numpy(np.array(x_imgs).astype(np.float32)) t0_buf = bb.FrameBuffer.from_numpy(np.array(t_imgs[:,0:10,:,:]).astype(np.float32)) t1_buf = bb.FrameBuffer.from_numpy(1.0 - np.array(t_imgs[:,10:11,:,:]).astype(np.float32)) y0_buf, y1_buf = net.forward(x_buf, train=False) loss0.calculate(y0_buf, t0_buf) loss1.calculate(y1_buf, t1_buf) metrics0.calculate(y0_buf, t0_buf) metrics1.calculate(y1_buf, t1_buf) bb.save_networks(data_path, net) print('epoch[%d] : loss0=%f acc0=%f loss1=%f acc1=%f' % (epoch, loss0.get(), metrics0.get(), loss1.get(), metrics1.get())) view(net, loader_test) def distillation_input(data_path, net, epochs=4): # learning loss = bb.LossMeanSquaredError() optimizer = bb.OptimizerAdam() net_input = net.net_input bin2real0 = bb.BinaryToReal(frame_integration_size=frame_modulation_size, bin_dtype=bin_dtype) bin2real1 = bb.BinaryToReal(frame_integration_size=frame_modulation_size, bin_dtype=bin_dtype) # LUT層をOptimizerに接続 net_input.send_command("switch_model lut") net_input.send_command('parameter_lock false') optimizer.set_variables(net_input.get_parameters(), net_input.get_gradients()) for epoch in range(epochs): # learning loss.clear() with tqdm(loader_train) as tqdm_loadr: for x_imgs, t_imgs in tqdm_loadr: x_buf = bb.FrameBuffer.from_numpy(np.array(x_imgs).astype(np.float32)) x_buf = net.input_r2b.forward(x_buf, train=False) # dense に切り替えて教師データ生成 net_input.send_command("switch_model dense") t_buf = net_input.forward(x_buf, train=False) t_buf = bin2real0.forward(t_buf, train=False) # LUTに戻して学習 net_input.send_command("switch_model lut") y_buf = net_input.forward(x_buf, train=True) y_buf = bin2real1.forward(y_buf, train=True) dy_buf = loss.calculate(y_buf, t_buf) dy_buf = bin2real1.backward(dy_buf) net_input.backward(dy_buf) optimizer.update() tqdm_loadr.set_postfix(loss=loss.get()) bb.save_networks(data_path, net) print('distillation epoch[%d] : loss=%f' % (epoch, loss.get())) def distillation_cnv(data_path, net, index, epochs=4): # learning loss = bb.LossMeanSquaredError() optimizer = bb.OptimizerAdam() cnv_layer = net.net_cnv[index] bin2real0 = bb.BinaryToReal(frame_integration_size=frame_modulation_size, bin_dtype=bin_dtype) bin2real1 = bb.BinaryToReal(frame_integration_size=frame_modulation_size, bin_dtype=bin_dtype) # LUT層をOptimizerに接続 cnv_layer.send_command("switch_model lut") cnv_layer.send_command('parameter_lock false') optimizer.set_variables(cnv_layer.get_parameters(), cnv_layer.get_gradients()) for epoch in range(epochs): # learning loss.clear() with tqdm(loader_train) as tqdm_loadr: for x_imgs, t_imgs in tqdm_loadr: # LUTに切り替えて前段計算 net.send_command("switch_model lut") x_buf = bb.FrameBuffer.from_numpy(np.array(x_imgs).astype(np.float32)) x_buf = net.input_r2b.forward(x_buf, train=False) x_buf = net.net_input.forward(x_buf, train=False) for i in range(index): x_buf = net.net_cnv[i].forward(x_buf, train=False) # dense に切り替えて教師データ生成 cnv_layer.send_command("switch_model dense") t_buf = cnv_layer.forward(x_buf, train=False) t_buf = bin2real0.forward(t_buf, train=False) # LUTに戻して学習 cnv_layer.send_command("switch_model lut") y_buf = cnv_layer.forward(x_buf, train=True) y_buf = bin2real1.forward(y_buf, train=True) dy_buf = loss.calculate(y_buf, t_buf) dy_buf = bin2real1.backward(dy_buf) cnv_layer.backward(dy_buf) optimizer.update() tqdm_loadr.set_postfix(loss=loss.get()) bb.save_networks(data_path, net) print('distillation epoch[%d] : loss=%f' % (epoch, loss.get())) # 基準となるDenseAffineで学習 if not bb.load_networks(data_path, net, name='dense_base'): learning(os.path.join(data_path, 'dense'), net, epochs=32) bb.save_networks(data_path, net, name='dense_split', write_layers=True) bb.save_networks(data_path, net, name='dense_base') bb.save_networks(data_path, net) # 入力層のLUT学習 layer_name = 'input' if not bb.load_networks(data_path, net, name=layer_name): # 蒸留 distillation_input(os.path.join(data_path, layer_name), net, epochs=4) # 全体初期化 net.send_command("switch_model dense") net.send_command('parameter_lock true') view(net, loader_test) # LUT切り替え net.net_input.send_command("switch_model lut") view(net, loader_test) # LUT個別学習 net.net_input.send_command('parameter_lock false') # learning(os.path.join(data_path, layer_name), net, epochs=2) # 蒸留で代替 # 後段含めた学習 net.send_command('parameter_lock false') learning(os.path.join(data_path, layer_name), net, epochs=2) # 保存 bb.save_networks(data_path, net, name=(layer_name + '_split'), write_layers=True) bb.save_networks(data_path, net, name=layer_name) bb.save_networks(data_path, net) # 畳み込み層のLUT学習 for i in range(0, 29): layer_name = 'cnv%d'%i print('----- %s -----'%layer_name) if not bb.load_networks(data_path, net, name=layer_name): # 蒸留 distillation_cnv(os.path.join(data_path, layer_name), net, i, epochs=2) # 全体初期化 net.send_command("switch_model dense") net.send_command('parameter_lock true') # LUT切り替え net.net_input.send_command("switch_model lut") for j in range(i+1): net.net_cnv[j].send_command("switch_model lut") view(net, loader_test) # 個別学習 net.net_cnv[i].send_command('parameter_lock false') # learning(os.path.join(data_path, layer_name), net, epochs=2) # 蒸留で代替 # 後段含めた学習 net.send_command('parameter_lock false') net.net_input.send_command("parameter_lock true") for j in range(i): net.net_cnv[j].send_command("parameter_lock true") learning(os.path.join(data_path, layer_name), net, epochs=2) # 保存 bb.save_networks(data_path, net, name=(layer_name + '_split'), write_layers=True) bb.save_networks(data_path, net, name=layer_name) bb.save_networks(data_path, net) ---------------------- bb.load_networks(data_path, net, name='cnv0') print(bb.get_device_allocated_memory_size()) gc.collect() bb.garbage_collect_device_memory() bb.get_device_allocated_memory_size() ###Output _____no_output_____
models/word_count_pipelines.ipynb
###Markdown There are different ways to clean the text. Perhaps we should consider the method we want to use: naive, tokenizer, lemmatization, or stemming? Below I have used a single case to demonstrate naive, tokenizer, lemmatizer (couldn't figure out stemmer, but will do this upcoming week. ###Code #naive pipeline def clean1(x): x=x.replace('\n\n','') # remove the line breaks x=x.lower()# lower text x = ''.join(ch for ch in x if ch not in exclude) #remove punctuation x=re.sub('[0-9]+', '', x) # remove numbers x=x.split() #split words x=[word for word in x if word not in stopwords.words('english')]#remove stopwords #x=" ".join(str(x) for x in x) # you can do this if you want to remove list structure return x #tokenizer def nlp_pipeline1(text): text=text.lower() #tokenize words for each sentence text = nltk.word_tokenize(text) text = ''.join(ch for ch in text if ch not in exclude) #remove punctuation text=re.sub('[0-9]+', '', text) text=text.split("'") #split words # remove punctuation and numbers #text = [token for token in text if token.isalpha()] #for some reason, this step was removing almost all of the words so replaced it with the above two lines # remove stopwords - be careful with this step text = [token for token in text if token not in stop_words] return text #lemmatization def nlp_lem(text): #tokenize words for each sentence text = nltk.word_tokenize(text) # pos tagger text = nltk.pos_tag(text) # lemmatizer text = [wordnet_lemmatizer.lemmatize(token.lower(),"v")if "V" in pos else wordnet_lemmatizer.lemmatize(token.lower()) for token,pos in text] # remove punctuation and numbers text = ''.join(ch for ch in text if ch not in exclude) #remove punctuation text=re.sub('[0-9]+', '', text) text=text.split("'") #split words # remove stopwords - be careful with this step text = [token for token in text if token not in stop_word_list] return text #stemming #stem_list1 = [snowball_stemmer.stem(word) for word in list1] #def nlp_stem(text): #tokenize words for each sentence #text = nltk.word_tokenize(text) # pos tagger #text = nltk.pos_tag(text) # stemmer #text = [snowball_stemmer.stem(word) for word in text] # remove punctuation and numbers #text = ''.join(ch for ch in text if ch not in exclude) #remove punctuation #text=re.sub('[0-9]+', '', text) #text=text.split("'") #split words # remove stopwords - be careful with this step #text = [token for token in text if token not in stop_word_list] #return text #random case, D4.Feb23.2001.MAJ d4feb232001maj = codecs.open("/Users/schap/Desktop/TA Data/AC/2002/1/TXT/D1.Mar26.2002.MAJ.txt", "r", "utf-8").read().strip().split() d4feb232001maj = str(d4feb232001maj) #cleaning using naive pipeline maj = clean1(d4feb232001maj) print (Counter(maj).most_common()) token_d4feb232001maj = codecs.open("/Users/schap/Desktop/TA Data/AC/2002/1/TXT/D1.Mar26.2002.MAJ.txt", "r", "utf-8").read().strip().split() token_d4feb232001maj = str(token_d4feb232001maj) #cleaning using tokenizer pipeline token_maj = nlp_pipeline1(token_d4feb232001maj) print (Counter(token_maj).most_common()) lem_d4feb232001maj = codecs.open("/Users/schap/Desktop/TA Data/AC/2002/1/TXT/D1.Mar26.2002.MAJ.txt", "r", "utf-8").read().strip().split() lem_d4feb232001maj = str(lem_d4feb232001maj) #cleaning using lemmaztizer pipeline lem_maj = nlp_lem(lem_d4feb232001maj) print (Counter(lem_maj).most_common()) ###Output [('', 177), ('§', 58), ('art', 51), ('article', 46), ('para', 40), ('radio', 39), ('created', 39), ('law', 31), ('television', 26), ('operators', 26), ('paragraph', 24), ('rta', 21), ('item', 20), ('programs', 20), ('-', 19), ('according', 19), ('activity', 19), ('constitution', 18), ('registration', 17), ('program', 17), ('cem', 16), ('constitutional', 15), ('national', 15), ('regime', 15), ('frequency', 15), ('telecommunications', 15), ('new', 14), ('terrestrial', 14), ('license', 14), ('rights', 13), ('distribution', 13), ('isa', 13), ('provisions', 12), ('protection', 12), ('petitioners', 12), ('state', 12), ('economic', 12), ('case', 11), ('amended', 11), ('court', 11), ('content', 11), ('legal', 11), ('provision', 11), ('request', 10), ('crc', 10), ('means', 10), ('must', 10), ('ofa', 10), ('act', 10), ('licenses', 10), ('regulation', 9), ('broadcasting', 9), ('technical', 9), ('use', 9), ('unconstitutional', 9), ('added', 8), ('claim', 8), ('licensing', 8), ('resource', 8), ('part', 7), ('certain', 7), ('sense', 7), ('spectrum', 7), ('also', 7), ('activities', 7), ('therefore', 7), ('scope', 7), ('requirements', 7), ('provided', 7), ('cable', 7), ('grounds', 7), ('licensed', 7), ('may', 7), ('/', 6), ('assembly', 6), ('council', 6), ('media', 6), ('within', 6), ('set', 6), ('whicha', 6), ('limited', 6), ('witha', 6), ('capital', 6), ('procedure', 6), ('related', 6), ('inequality', 6), ('terms', 6), ('sg', 5), ('mps', 5), ('texts', 5), ('persons', 5), ('term', 5), ('view', 5), ('two', 5), ('exist', 5), ('conditions', 5), ('termination', 5), ('right', 5), ('free', 5), ('satellite', 5), ('freedom', 5), ('violation', 5), ('ina', 5), ('way', 5), ('body', 5), ('powers', 5), ('decision', 5), ('digital', 5), ('instructions', 5), ('№', 4), ('promulgated', 4), ('unconstitutionality', 4), ('ministers', 4), ('bmc', 4), ('rule', 4), ('respect', 4), ('disputed', 4), ('hypothesis', 4), ('entities', 4), ('equal', 4), ('origin', 4), ('information', 4), ('country', 4), ('transitional', 4), ('consequence', 4), ('mandatory', 4), ('paragraphs', 4), ('provide', 4), ('established', 4), ('initiative', 4), ('operator', 4), ('norms', 4), ('distributed', 4), ('telecommunication', 4), ('registered', 4), ('norm', 4), ('sanctions', 4), ('restrictions', 4), ('security', 4), ('b', 4), ('c', 4), ('thus', 4), ('consumer', 4), ('bulgarian', 3), ('electronic', 3), ('wordsor', 3), ('registrations”', 3), ('or”', 3), ('fees”', 3), ('creation', 3), ('contradicts', 3), ('regulates', 3), ('different', 3), ('regimes', 3), ('differences', 3), ('one', 3), ('hand', 3), ('exercises', 3), ('sovereign', 3), ('guarantees', 3), ('nature', 3), ('public', 3), ('final', 3), ('availability', 3), ('intervention', 3), ('exercise', 3), ('asa', 3), ('difference', 3), ('nota', 3), ('however', 3), ('individual', 3), ('listed', 3), ('carrying', 3), ('introduced', 3), ('accordance', 3), ('held', 3), ('determined', 3), ('principle', 3), ('regard', 3), ('revocation', 3), ('revoked', 3), ('anda', 3), ('without', 3), ('property', 3), ('considers', 3), ('finds', 3), ('networks', 3), ('justified', 3), ('declaration', 3), ('last', 3), ('documents', 3), ('protected', 3), ('whether', 3), ('current', 3), ('consumers', 3), ('market', 3), ('rules', 3), ('regarding', 3), ('items', 3), ('opportunity', 3), ('ground', 3), ('method', 3), ('implementation', 3), ('rumen', 2), ('yankov', 2), ('members', 2), ('xxxix', 2), ('order', 2), ('amendments', 2), ('disabilities', 2), ('opinions', 2), ('wordsby', 2), ('wordsregistration', 2), ('provides', 2), ('fora', 2), ('point', 2), ('fundamental', 2), ('regardless', 2), ('interpretation', 2), ('distribute', 2), ('fact', 2), ('first', 2), ('states', 2), ('citizens', 2), ('aspect', 2), ('specifics', 2), ('functions', 2), ('carried', 2), ('regulated', 2), ('compliance', 2), ('referring', 2), ('specified', 2), ('text', 2), ('international', 2), ('direction', 2), ('conclusion', 2), ('available', 2), ('objective', 2), ('step', 2), ('towards', 2), ('deregulation', 2), ('wishing', 2), ('ona', 2), ('compared', 2), ('seek', 2), ('receive', 2), ('line', 2), ('situation', 2), ('existence', 2), ('result', 2), ('similar', 2), ('freely', 2), ('choice', 2), ('subject', 2), ('allegation', 2), ('contradiction', 2), ('analysis', 2), ('required', 2), ('standards', 2), ('newly', 2), ('regulating', 2), ('years', 2), ('copyright', 2), ('terminated', 2), ('shall', 2), ('unfounded', 2), ('imperative', 2), ('necessary', 2), ('due', 2), ('clear', 2), ('network', 2), ('via', 2), ('amount', 2), ('project', 2), ('profile', 2), ('procurement', 2), ('placed', 2), ('administrative', 2), ('broadcasters', 2), ('requirement', 2), ('construction', 2), ('framework', 2), ('zidzrt', 2), ('createda', 2), ('unified', 2), ('argued', 2), ('issuance', 2), ('specific', 2), ('value', 2), ('restrict', 2), ('judged', 2), ('legislation', 2), ('lack', 2), ('meaning', 2), ('understood', 2), ('regulatory', 2), ('declare', 2), ('possibility', 2), ('issue', 2), ('existing', 2), ('respectively', 2), ('competition', 2), ('presence', 2), ('circumstance', 2), ('present', 2), ('issues', 2), ('articles', 2), ('regulate', 2), ('violated', 2), ('deprived', 2), ('wording', 2), ('absence', 2), ('various', 2), ('omission', 2), ('consider', 2), ('quality', 2), ('give', 2), ('speech', 2), ('censorship', 2), ('comply', 2), ('include', 2), ('judgment', 1), ('sofia', 1), ('march', 1), ('judge-rapporteur', 1), ('april', 1), ('hristo', 1), ('danov', 1), ('chairman', 1), ('georgi', 1), ('markov', 1), ('dimitar', 1), ('gochev', 1), ('todor', 1), ('todorov', 1), ('nedelcho', 1), ('beronov', 1), ('stefanka', 1), ('stoyanova', 1), ('margarita', 1), ('zlatareva', 1), ('vasil', 1), ('gotsev', 1), ('lyudmil', 1), ('neykov', 1), ('rapporteur', 1), ('zhivan', 1), ('belchev', 1), ('penka', 1), ('tomcheva', 1), ('instituted', 1), ('december', 1), ('establish', 1), ('televisionzidzrt', 1), ('inconsistency', 1), ('european', 1), ('convention', 1), ('transfrontier', 1), ('bya', 1), ('ruling', 1), ('january', 1), ('allowed', 1), ('consideration', 1), ('merits', 1), ('assemblyna', 1), ('ministerscom', 1), ('mediacem', 1), ('communications', 1), ('commissioncrc', 1), ('coalitionbmc', 1), ('constituted', 1), ('stakeholders', 1), ('received', 1), ('took', 1), ('account', 1), ('followinga', 1), ('section', 1), ('iv', 1), ('human', 1), ('freedoms', 1), ('weight', 1), ('believes', 1), ('audience', 1), ('equally', 1), ('guaranteed', 1), ('transmission', 1), ('environment', 1), ('maintains', 1), ('need', 1), ('support', 1), ('legislature', 1), ('based', 1), ('level', 1), ('sufficient', 1), ('repealed', 1), ('replaced', 1), ('excluding', 1), ('nuances', 1), ('summarized', 1), ('conditioned', 1), ('field', 1), ('creates', 1), ('build', 1), ('sucha', 1), ('system', 1), ('overall', 1), ('addition', 1), ('noted', 1), ('mainly', 1), ('expressed', 1), ('social', 1), ('cultural', 1), ('political', 1), ('carry', 1), ('focus', 1), ('direct', 1), ('investments', 1), ('separate', 1), ('advertising', 1), ('interests', 1), ('producers', 1), ('represented', 1), ('kind', 1), ('directly', 1), ('indirectly', 1), ('contribute', 1), ('circulation', 1), ('commercial', 1), ('subjects', 1), ('strictly', 1), ('defined', 1), ('limits', 1), ('actta', 1), ('agreement', 1), ('party', 1), ('borne', 1), ('mind', 1), ('currently', 1), ('explicit', 1), ('secondly', 1), ('requires', 1), ('another', 1), ('violate', 1), ('agreements', 1), ('candidates', 1), ('unoccupied', 1), ('imposes', 1), ('projection', 1), ('obligation', 1), ('frequenciesdecision', 1), ('..', 1), ('code', 1), ('civil', 1), ('limitation', 1), ('et', 1), ('seq', 1), ('engage', 1), ('facilitated', 1), ('registering', 1), ('easier', 1), ('band', 1), ('frequencies', 1), ('used', 1), ('disseminate', 1), ('expanded', 1), ('constitutionally', 1), ('enshrined', 1), ('logical', 1), ('assume', 1), ('preconditions', 1), ('introduction', 1), ('creating', 1), ('correlated', 1), ('choose', 1), ('prerequisite', 1), ('participation', 1), ('buta', 1), ('made', 1), ('mode', 1), ('substantiate', 1), ('comparing', 1), ('contained', 1), ('regimesa', 1), ('brief', 1), ('relating', 1), ('paraa', 1), ('contentperforms', 1), ('deletes', 1), ('registrations', 1), ('cases', 1), ('law”', 1), ('words', 1), ('thematically', 1), ('united', 1), ('concern', 1), ('concluded', 1), ('contradict', 1), ('deadlines', 1), ('ways', 1), ('indefinite', 1), ('objectively', 1), ('determines', 1), ('manner', 1), ('second', 1), ('agreed', 1), ('foreign', 1), ('contract', 1), ('excludes', 1), ('contracts', 1), ('area', 1), ('groundswithout', 1), ('seeking', 1), ('deletion', 1), ('systematic', 1), ('lawart', 1), ('respective', 1), ('revoked”', 1), ('upon', 1), ('functional', 1), ('dependence', 1), ('types', 1), ('regards', 1), ('usinga', 1), ('deleted', 1), ('mentioned', 1), ('connection', 1), ('betweena', 1), ('ban', 1), ('or``another', 1), ('differ', 1), ('former', 1), ('sanctioned', 1), ('latter', 1), ('requested', 1), ('scheme', 1), ('ata', 1), ('disadvantage', 1), ('ones', 1), ('obviously', 1), ('legislator', 1), ('introducea', 1), ('type', 1), ('chapter', 1), ('penal', 1), ('explicitly', 1), ('regional', 1), ('local', 1), ('receivea', 1), ('dependent', 1), ('limitations', 1), ('practical', 1), ('limit', 1), ('number', 1), ('transponders', 1), ('throughout', 1), ('possible', 1), ('arrangements', 1), ('owners', 1), ('non-air', 1), ('expression', 1), ('registration”', 1), ('proving', 1), ('candidate', 1), ('operatorsa', 1), ('list', 1), ('companies', 1), ('shareholders', 1), ('partners', 1), ('justification', 1), ('applying', 1), ('applicants', 1), ('complaint', 1), ('factually', 1), ('applicant', 1), ('obtaina', 1), ('circumstances', 1), ('presentthat', 1), ('shares', 1), ('stocks', 1), ('antitrust', 1), ('submita', 1), ('lawpart', 1), ('prove', 1), ('ownership', 1), ('measures', 1), ('money', 1), ('laundering', 1), ('well', 1), ('three', 1), ('register', 1), ('submit', 1), ('categories', 1), ('establishment', 1), ('itcannot', 1), ('parties', 1), ('unforeseen', 1), ('restriction', 1), ('proportionality', 1), ('impart', 1), ('far', 1), ('things', 1), ('put', 1), ('plane', 1), ('threat', 1), ('light', 1), ('factual', 1), ('mechanisms', 1), ('users', 1), ('viewers', 1), ('listeners', 1), ('definitionscope', 1), ('program”', 1), ('regulator', 1), ('require', 1), ('region', 1), ('settlement', 1), ('already', 1), ('rural', 1), ('automatically', 1), ('acquire', 1), ('status', 1), ('programs``', 1), ('structured', 1), ('collapsing', 1), ('misinterpretation', 1), ('spatialgeographical', 1), ('rather', 1), ('substantiveprogrammatic', 1), ('refuse', 1), ('non-compliance', 1), ('concept', 1), ('irregularities', 1), ('additional', 1), ('statement', 1), ('clarified', 1), ('concerns', 1), ('official', 1), ('certificate', 1), ('hold', 1), ('six', 1), ('months', 1), ('presentation', 1), ('payment', 1), ('initial', 1), ('fee', 1), ('envisages', 1), ('nothing', 1), ('else', 1), ('usea', 1), ('re-registered', 1), ('liberal', 1), ('ultimately', 1), ('relations', 1), ('rearranged', 1), ('unconstitutionalb', 1), ('capacity', 1), ('non-state', 1), ('followed', 1), ('indeed', 1), ('holdinga', 1), ('maintenance', 1), ('interested', 1), ('person', 1), ('holda', 1), ('issuinga', 1), ('starts', 1), ('spectruma', 1), ('positive', 1), ('commission', 1), ('appliesa', 1), ('draft', 1), ('tender', 1), ('continues', 1), ('foregoing', 1), ('shows', 1), ('the``commission', 1), ('independent', 1), ('basis', 1), ('obtaininga', 1), ('furthermore', 1), ('regulatea', 1), ('issued', 1), ('refuses', 1), ('evidence', 1), ('issuea', 1), ('matter', 1), ('model', 1), ('bound', 1), ('unbound', 1), ('special', 1), ('mood', 1), ('contains', 1), ('amends', 1), ('supplements', 1), ('suspends', 1), ('terminates', 1), ('revokes', 1), ('positions', 1), ('geostationary', 1), ('orbit', 1), ('entry', 1), ('force', 1), ('andc', 1), ('dispute', 1), ('constitutionality', 1), ('so-calledtie', 1), ('licensing”', 1), ('distributors', 1), ('disadvantaged', 1), ('sectorsanalogue', 1), ('development', 1), ('blocked``crc', 1), ('opinion', 1), ('argues', 1), ('incompleteness', 1), ('opposite', 1), ('regulations', 1), ('specifically', 1), ('objection', 1), ('spheres', 1), ('could', 1), ('connected', 1), ('assessment', 1), ('expediency', 1), ('hence', 1), ('management', 1), ('analyze', 1), ('lulucf', 1), ('allegations', 1), ('suitable', 1), ('since', 1), ('protects', 1), ('offered', 1), ('goods', 1), ('services', 1), ('risks', 1), ('claimed', 1), ('considered', 1), ('preferred', 1), ('service', 1), ('gives', 1), ('discuss', 1), ('protective', 1), ('incomplete', 1), ('sphere', 1), ('life', 1), ('shortcoming', 1), ('thatcannot', 1), ('associated', 1), ('cannot', 1), ('declared', 1), ('common', 1), ('aspects', 1), ('analogue', 1), ('substantiated', 1), ('given', 1), ('areacannot', 1), ('bea', 1), ('declaring', 1), ('power', 1), ('granted', 1), ('restricts', 1), ('editorial', 1), ('independence', 1), ('violates', 1), ('equality', 1), ('claims', 1), ('opportunities', 1), ('preliminary', 1), ('schemes', 1), ('selection', 1), ('employees', 1), ('media``', 1), ('giving', 1), ('reasons', 1), ('intended', 1), ('eliminate', 1), ('operational', 1), ('supervisory', 1), ('exercising', 1), ('formulated', 1), ('determine', 1), ('contain', 1), ('create', 1), ('general', 1), ('proclaiming', 1), ('exclusion', 1), ('form', 1), ('refer', 1), ('referred', 1), ('obligations', 1), ('schedule', 1), ('achieving', 1), ('ratios', 1), ('latest', 1), ('interference', 1), ('personnel', 1), ('policy', 1), ('stated', 1), ('considerations', 1), ('resolved', 1), ('rejects', 1), ('following', 1), ('wordsthrough', 1)] ###Markdown Word Count Using all 2002 documents This is just using naive pipeline ###Code #using all decisions all2002 = codecs.open("/Users/schap/Desktop/TA Data/All Text Files Combined/ALL/all2002text.txt", "r", "utf-8").read().strip().split() all2002 = str(all2002) a2002 = clean1(all2002) print (Counter(a2002).most_common()) #using only AC all2002ac = codecs.open("/Users/schap/Desktop/TA Data/All Text Files Combined/AC/all2002AC.txt", "r", "utf-8").read().strip().split() all2002ac = str(all2002ac) a2002ac = clean1(all2002ac) print (Counter(a2002ac).most_common()) #using only dissent all2002diss = codecs.open("/Users/schap/Desktop/TA Data/All Text Files Combined/Dissent/all2002dissent.txt", "r", "utf-8").read().strip().split() all2002diss = str(all2002diss) a2002d = clean1(all2002diss) print (Counter(a2002d).most_common()) #using only majority all2002maj = codecs.open("/Users/schap/Desktop/TA Data/All Text Files Combined/Majority/all2002majority.txt", "r", "utf-8").read().strip().split() all2002maj = str(all2002maj) a2002m = clean1(all2002maj) print (Counter(a2002m).most_common()) ###Output [('article', 391), ('art', 378), ('§', 350), ('para', 350), ('law', 349), ('court', 255), ('constitution', 247), ('constitutional', 233), ('paragraph', 214), ('item', 175), ('national', 159), ('information', 151), ('jsa', 150), ('state', 140), ('right', 137), ('provision', 129), ('№', 128), ('request', 128), ('part', 121), ('assembly', 108), ('according', 108), ('rights', 106), ('legal', 106), ('security', 95), ('sg', 91), ('minister', 90), ('protection', 88), ('decision', 88), ('also', 86), ('provisions', 85), ('act', 83), ('supreme', 81), ('cipa', 80), ('case', 78), ('issue', 77), ('activity', 75), ('general', 74), ('new', 70), ('access', 70), ('promulgated', 69), ('persons', 68), ('public', 68), ('privatization', 68), ('regarding', 66), ('created', 64), ('justice', 64), ('former', 59), ('members', 55), ('bulgaria', 55), ('words', 54), ('disputed', 54), ('unconstitutional', 53), ('amends', 52), ('judicial', 52), ('judiciary', 51), ('council', 50), ('b', 50), ('order', 48), ('obligation', 46), ('procedure', 46), ('may', 46), ('republic', 46), ('prosecutors', 46), ('basic', 45), ('unconstitutionality', 44), ('cassation', 44), ('citizens', 43), ('conditions', 43), ('grounds', 43), ('rule', 42), ('therefore', 42), ('provided', 42), ('respective', 42), ('parties', 42), ('service', 42), ('radio', 41), ('documents', 41), ('cannot', 41), ('bodies', 41), ('certain', 40), ('one', 40), ('tax', 40), ('classified', 39), ('administrative', 38), ('opinion', 38), ('bulgarian', 37), ('appeal', 37), ('repealed', 36), ('creates', 36), ('related', 36), ('judges', 36), ('laws', 34), ('ministers', 33), ('cd', 33), ('disabilities', 32), ('entities', 32), ('economic', 32), ('property', 32), ('interested', 32), ('amended', 31), ('within', 31), ('regime', 31), ('final', 31), ('established', 31), ('legislator', 31), ('decisions', 31), ('work', 31), ('view', 30), ('termination', 30), ('well', 30), ('sjc', 30), ('television', 29), ('must', 29), ('activities', 29), ('provide', 29), ('principle', 29), ('opportunity', 29), ('adopted', 29), ('pcpa', 29), ('term', 28), ('content', 28), ('transitional', 28), ('accordance', 28), ('contradict', 28), ('violation', 28), ('body', 28), ('powers', 28), ('legislative', 28), ('committee', 28), ('operators', 27), ('basis', 27), ('services', 27), ('repeal', 27), ('following', 26), ('subject', 26), ('cases', 26), ('determined', 26), ('shall', 26), ('due', 26), ('cooperatives', 26), ('petitioners', 25), ('sense', 25), ('freedom', 25), ('without', 25), ('norm', 25), ('amount', 25), ('parliamentary', 25), ('mps', 24), ('claim', 24), ('interests', 24), ('international', 24), ('requirements', 24), ('rules', 24), ('committees', 24), ('control', 24), ('income', 24), ('two', 23), ('additional', 23), ('cooperative', 23), ('procedural', 23), ('acts', 23), ('investigators', 23), ('chairman', 22), ('regulation', 22), ('registration', 22), ('rta', 22), ('civil', 22), ('unfounded', 22), ('register', 22), ('specific', 22), ('sofia', 21), ('set', 21), ('programs', 21), ('means', 21), ('receive', 21), ('program', 21), ('possibility', 21), ('arbitration', 21), ('fundamental', 20), ('states', 20), ('constitutionally', 20), ('exercise', 20), ('participation', 20), ('revocation', 20), ('already', 20), ('stated', 20), ('application', 20), ('parliament', 20), ('data', 20), ('b”', 20), ('based', 19), ('made', 19), ('norms', 19), ('use', 19), ('explicitly', 19), ('whether', 19), ('considerations', 19), ('principles', 19), ('courts', 19), ('magistrates', 19), ('municipal', 19), ('arbitral', 19), ('texts', 18), ('opinions', 18), ('provides', 18), ('human', 18), ('different', 18), ('text', 18), ('however', 18), ('necessary', 18), ('tfp', 18), ('prosecutor', 18), ('amendment', 18), ('justice”', 18), ('position', 18), ('indicated', 18), ('defense', 18), ('archives', 18), ('period', 18), ('establish', 17), ('cem', 17), ('contradicts', 17), ('carried', 17), ('commercial', 17), ('held', 17), ('requirement', 17), ('force', 17), ('member', 17), ('intelligence', 17), ('interior', 17), ('lppdop', 17), ('lta', 17), ('consideration', 16), ('country', 16), ('code', 16), ('free', 16), ('years', 16), ('connection', 16), ('restrictions', 16), ('applicants', 16), ('existing', 16), ('power', 16), ('reasons', 16), ('october', 16), ('written', 16), ('office', 16), ('personal', 16), ('constituted', 15), ('hand', 15), ('first', 15), ('compliance', 15), ('frequency', 15), ('specified', 15), ('telecommunications', 15), ('contradiction', 15), ('terms', 15), ('area', 15), ('possible', 15), ('restriction', 15), ('current', 15), ('person', 15), ('articles', 15), ('violated', 15), ('violates', 15), ('adoption', 15), ('chamber', 15), ('sports', 15), ('stefanka', 14), ('commission', 14), ('account', 14), ('support', 14), ('terrestrial', 14), ('nature', 14), ('political', 14), ('regulated', 14), ('used', 14), ('seek', 14), ('existence', 14), ('license', 14), ('given', 14), ('association', 14), ('submitted', 14), ('district', 14), ('imposed', 14), ('make', 14), ('military', 14), ('proposals', 14), ('ministry', 14), ('relevant', 14), ('acquired', 14), ('june', 14), ('annulment', 14), ('privatized', 14), ('creditors', 14), ('taxes', 14), ('rumen', 13), ('yankov', 13), ('zlatareva', 13), ('vasil', 13), ('gotsev', 13), ('lyudmil', 13), ('neykov', 13), ('zhivan', 13), ('penka', 13), ('tomcheva', 13), ('media', 13), ('distribution', 13), ('point', 13), ('guaranteed', 13), ('need', 13), ('fact', 13), ('party', 13), ('another', 13), ('number', 13), ('companies', 13), ('way', 13), ('declare', 13), ('independent', 13), ('contains', 13), ('positions', 13), ('entry', 13), ('deprived', 13), ('considered', 13), ('declared', 13), ('claims', 13), ('personnel', 13), ('resolved', 13), ('practice', 13), ('change', 13), ('organization', 13), ('annual', 13), ('report', 13), ('meetings', 13), ('proceedings', 13), ('secret', 13), ('refusal', 13), ('time', 13), ('judgment', 12), ('march', 12), ('hristo', 12), ('danov', 12), ('dimitar', 12), ('gochev', 12), ('todor', 12), ('todorov', 12), ('nedelcho', 12), ('beronov', 12), ('margarita', 12), ('belchev', 12), ('european', 12), ('merits', 12), ('respect', 12), ('limited', 12), ('guarantees', 12), ('addition', 12), ('paragraphs', 12), ('scope', 12), ('contained', 12), ('mentioned', 12), ('chapter', 12), ('three', 12), ('meaning', 12), ('hold', 12), ('payment', 12), ('issues', 12), ('regulations', 12), ('give', 12), ('determine', 12), ('referred', 12), ('maintained', 12), ('interest', 12), ('follows', 12), ('would', 12), ('process', 12), ('arguments', 12), ('proposal', 12), ('refers', 12), ('rejected', 12), ('v', 12), ('attacked', 12), ('directorate', 12), ('commerce', 12), ('deductions', 12), ('agency', 12), ('award', 12), ('judgerapporteur', 11), ('stoyanova', 11), ('xxxix', 11), ('crc', 11), ('listed', 11), ('regard', 11), ('type', 11), ('list', 11), ('protected', 11), ('items', 11), ('matter', 11), ('could', 11), ('comply', 11), ('obligations', 11), ('said', 11), ('society', 11), ('temporary', 11), ('standing', 11), ('abovementioned', 11), ('investigation', 11), ('assigned', 11), ('zidzsv', 11), ('impugned', 11), ('materials', 11), ('consent', 11), ('letter', 11), ('enterprise', 11), ('revenues', 11), ('patent', 11), ('georgi', 10), ('markov', 10), ('rapporteur', 10), ('convention', 10), ('functions', 10), ('directly', 10), ('explicit', 10), ('line', 10), ('newly', 10), ('licenses', 10), ('upon', 10), ('regional', 10), ('finds', 10), ('limit', 10), ('framework', 10), ('declaration', 10), ('submit', 10), ('measures', 10), ('relations', 10), ('respectively', 10), ('supplements', 10), ('various', 10), ('implementation', 10), ('composition', 10), ('cooperation', 10), ('tfr', 10), ('affect', 10), ('accepted', 10), ('guarantee', 10), ('podns', 10), ('take', 10), ('appellate', 10), ('appointment', 10), ('administration', 10), ('staff', 10), ('absolute', 10), ('legality', 10), ('affected', 10), ('pointed', 10), ('permit', 10), ('announced', 10), ('budget', 10), ('municipalities', 10), ('gross', 10), ('instance', 10), ('allowed', 9), ('maintains', 9), ('capital', 9), ('mind', 9), ('mandatory', 9), ('conclusion', 9), ('broadcasting', 9), ('technical', 9), ('individual', 9), ('carrying', 9), ('introduced', 9), ('considers', 9), ('categories', 9), ('commissions', 9), ('special', 9), ('thus', 9), ('development', 9), ('life', 9), ('granted', 9), ('independence', 9), ('policy', 9), ('alleged', 9), ('challenged', 9), ('membership', 9), ('group', 9), ('action', 9), ('examination', 9), ('executive', 9), ('transfer', 9), ('check', 9), ('professional', 9), ('a”', 9), ('question', 9), ('category', 9), ('example', 9), ('apia', 9), ('citizen', 9), ('file', 9), ('instruction', 9), ('board', 9), ('financial', 9), ('amendments', 8), ('ruling', 8), ('added', 8), ('licensing', 8), ('freedoms', 8), ('regardless', 8), ('interpretation', 8), ('spectrum', 8), ('equal', 8), ('system', 8), ('expressed', 8), ('defined', 8), ('resource', 8), ('objective', 8), ('similar', 8), ('difference', 8), ('fees', 8), ('”', 8), ('foreign', 8), ('revoked', 8), ('expression', 8), ('present', 8), ('value', 8), ('restrict', 8), ('legislation', 8), ('official', 8), ('holding', 8), ('dispute', 8), ('ground', 8), ('consider', 8), ('preliminary', 8), ('employees', 8), ('contain', 8), ('division', 8), ('unions', 8), ('internal', 8), ('conduct', 8), ('formed', 8), ('participate', 8), ('facts', 8), ('irrelevant', 8), ('mandate', 8), ('entire', 8), ('taken', 8), ('d”', 8), ('president', 8), ('determining', 8), ('authorities', 8), ('rank', 8), ('whose', 8), ('organizations', 8), ('insofar', 8), ('apply', 8), ('disclosure', 8), ('names', 8), ('enterprises', 8), ('youth', 8), ('precautionary', 8), ('instituted', 7), ('received', 7), ('creation', 7), ('carry', 7), ('borne', 7), ('violate', 7), ('candidates', 7), ('determines', 7), ('cable', 7), ('excludes', 7), ('terminated', 7), ('licensed', 7), ('circumstances', 7), ('issuing', 7), ('applies', 7), ('regulate', 7), ('issued', 7), ('expediency', 7), ('create', 7), ('include', 7), ('rejects', 7), ('panel', 7), ('meeting', 7), ('bar', 7), ('union', 7), ('contrary', 7), ('insurance', 7), ('purpose', 7), ('initially', 7), ('precisely', 7), ('lead', 7), ('resolution', 7), ('favor', 7), ('permanent', 7), ('five', 7), ('nonparticipation', 7), ('dismissal', 7), ('mean', 7), ('actual', 7), ('although', 7), ('vote', 7), ('supplement', 7), ('files', 7), ('f', 7), ('allow', 7), ('important', 7), ('criminal', 7), ('jsaa', 7), ('court”', 7), ('contested', 7), ('scis', 7), ('included', 7), ('assess', 7), ('competence', 7), ('k', 7), ('everyone', 7), ('lists', 7), ('element', 7), ('review', 7), ('stored', 7), ('supported', 7), ('fulltime', 7), ('parttime', 7), ('methods', 7), ('receivables', 7), ('transactions', 7), ('pay', 7), ('amounts', 7), ('ofthe', 7), ('city', 7), ('regulates', 6), ('level', 6), ('sovereign', 6), ('direct', 6), ('separate', 6), ('enshrined', 6), ('initiative', 6), ('situation', 6), ('result', 6), ('introduction', 6), ('required', 6), ('concluded', 6), ('inequality', 6), ('second', 6), ('requested', 6), ('issuance', 6), ('far', 6), ('put', 6), ('lack', 6), ('definition', 6), ('substantive', 6), ('capacity', 6), ('presence', 6), ('absence', 6), ('assessment', 6), ('management', 6), ('refer', 6), ('statutes', 6), ('pursuant', 6), ('inconsistent', 6), ('significant', 6), ('natural', 6), ('including', 6), ('name', 6), ('actions', 6), ('amending', 6), ('less', 6), ('establishing', 6), ('education', 6), ('elka', 6), ('panchova', 6), ('anastasova', 6), ('siika', 6), ('nedyalkova', 6), ('dimovska', 6), ('forestry', 6), ('nadka', 6), ('radeva', 6), ('pangarova', 6), ('stella', 6), ('dimitrova', 6), ('elect', 6), ('statements', 6), ('election', 6), ('relationship', 6), ('virtue', 6), ('every', 6), ('views', 6), ('bailiffs', 6), ('sent', 6), ('offices', 6), ('presented', 6), ('inadmissible', 6), ('authority', 6), ('adopt', 6), ('perform', 6), ('government', 6), ('containing', 6), ('reference', 6), ('permission', 6), ('competent', 6), ('democratic', 6), ('performing', 6), ('armed', 6), ('forces', 6), ('collected', 6), ('covenant', 6), ('disputes', 6), ('funds', 6), ('officers', 6), ('scc', 6), ('private', 6), ('finance', 6), ('along', 6), ('page', 6), ('nonmonetary', 6), ('bmc', 5), ('regimes', 5), ('differences', 5), ('exist', 5), ('noted', 5), ('specifics', 5), ('requires', 5), ('allegation', 5), ('analysis', 5), ('relating', 5), ('concern', 5), ('satellite', 5), ('contracts', 5), ('registered', 5), ('obviously', 5), ('local', 5), ('justified', 5), ('establishment', 5), ('argued', 5), ('impart', 5), ('status', 5), ('understood', 5), ('concept', 5), ('statement', 5), ('nothing', 5), ('competition', 5), ('c', 5), ('shows', 5), ('constitutionality', 5), ('socalled', 5), ('digital', 5), ('hence', 5), ('allegations', 5), ('since', 5), ('instructions', 5), ('equality', 5), ('intended', 5), ('supervisory', 5), ('exercising', 5), ('form', 5), ('november', 5), ('fifth', 5), ('decide', 5), ('terminate', 5), ('leads', 5), ('ca', 5), ('central', 5), ('maintain', 5), ('obliged', 5), ('associations', 5), ('good', 5), ('away', 5), ('obtained', 5), ('providing', 5), ('raised', 5), ('previous', 5), ('makes', 5), ('year', 5), ('subjective', 5), ('argument', 5), ('angelova', 5), ('bankova', 5), ('september', 5), ('obstacle', 5), ('discussed', 5), ('peoples', 5), ('elected', 5), ('concerned', 5), ('groups', 5), ('even', 5), ('namely', 5), ('reports', 5), ('investigative', 5), ('appointed', 5), ('become', 5), ('irremovable', 5), ('separation', 5), ('deprives', 5), ('plovdiv', 5), ('obliges', 5), ('stipulates', 5), ('institute', 5), ('qualification', 5), ('function', 5), ('recognized', 5), ('done', 5), ('extent', 5), ('place', 5), ('etc', 5), ('crime', 5), ('elements', 5), ('incorrect', 5), ('criteria', 5), ('responsible', 5), ('prohibition', 5), ('exclude', 5), ('cited', 5), ('treaties', 5), ('league', 5), ('lppd', 5), ('repeals', 5), ('archival', 5), ('communist', 5), ('research', 5), ('revoke', 5), ('undoubtedly', 5), ('disclose', 5), ('includes', 5), ('affiliation', 5), ('past', 5), ('associates', 5), ('industry', 5), ('validity', 5), ('approval', 5), ('ububthe', 5), ('dated', 5), ('april', 4), ('december', 4), ('inconsistency', 4), ('electronic', 4), ('took', 4), ('section', 4), ('iv', 4), ('environment', 4), ('legislature', 4), ('summarized', 4), ('exercises', 4), ('field', 4), ('hypothesis', 4), ('origin', 4), ('social', 4), ('referring', 4), ('consequence', 4), ('direction', 4), ('et', 4), ('seq', 4), ('operator', 4), ('united', 4), ('deadlines', 4), ('distributed', 4), ('telecommunication', 4), ('copyright', 4), ('clear', 4), ('sanctions', 4), ('latter', 4), ('procurement', 4), ('ones', 4), ('practical', 4), ('ownership', 4), ('last', 4), ('acquire', 4), ('noncompliance', 4), ('envisages', 4), ('opposite', 4), ('spheres', 4), ('consumer', 4), ('declaring', 4), ('opportunities', 4), ('exclusion', 4), ('complaints', 4), ('declares', 4), ('interfere', 4), ('іі', 4), ('ensures', 4), ('iii', 4), ('changes', 4), ('reading', 4), ('th', 4), ('criterion', 4), ('protect', 4), ('formation', 4), ('achieve', 4), ('assigns', 4), ('permits', 4), ('takes', 4), ('rest', 4), ('selfgovernment', 4), ('vladimir', 4), ('ivanov', 4), ('dimitrov', 4), ('health', 4), ('admitted', 4), ('pursuance', 4), ('observations', 4), ('affairs', 4), ('among', 4), ('normative', 4), ('character', 4), ('ie', 4), ('legally', 4), ('full', 4), ('sessions', 4), ('plenary', 4), ('registry', 4), ('exception', 4), ('considering', 4), ('branch', 4), ('prosecution', 4), ('prepare', 4), ('summary', 4), ('forensic', 4), ('specialized', 4), ('send', 4), ('governed', 4), ('relation', 4), ('appropriate', 4), ('with”', 4), ('ordinance', 4), ('director', 4), ('chairmen', 4), ('effect', 4), ('legitimate', 4), ('enforcement', 4), ('irremovability', 4), ('committed', 4), ('judge', 4), ('authorized', 4), ('disciplinary', 4), ('ranks', 4), ('get', 4), ('transferred', 4), ('taking', 4), ('interpretative', 4), ('department', 4), ('phcip', 4), ('employment', 4), ('envisaged', 4), ('deprivation', 4), ('series', 4), ('job', 4), ('ensure', 4), ('objects', 4), ('accepts', 4), ('task', 4), ('ruled', 4), ('others', 4), ('proclaimed', 4), ('secrecy', 4), ('sources', 4), ('indicates', 4), ('goals', 4), ('endanger', 4), ('majority', 4), ('jurisdiction', 4), ('thesis', 4), ('covers', 4), ('determination', 4), ('degree', 4), ('opening', 4), ('performed', 4), ('classification', 4), ('countries', 4), ('age', 4), ('admiral', 4), ('territorial', 4), ('apart', 4), ('creditor', 4), ('diversity', 4), ('transaction', 4), ('burdens', 4), ('sports”', 4), ('deduction', 4), ('realized', 4), ('taxable', 4), ('investment', 4), ('base', 4), ('site', 4), ('awards', 4), ('tribunal', 4), ('zidzmta', 4), ('zidzrt', 3), ('na', 3), ('stakeholders', 3), ('registrations”', 3), ('or”', 3), ('believes', 3), ('sufficient', 3), ('replaced', 3), ('aspect', 3), ('subjects', 3), ('availability', 3), ('intervention', 3), ('available', 3), ('towards', 3), ('choose', 3), ('choice', 3), ('substantiate', 3), ('law”', 3), ('manner', 3), ('functional', 3), ('dependence', 3), ('placed', 3), ('introduce', 3), ('limitations', 3), ('networks', 3), ('owners', 3), ('applying', 3), ('obtain', 3), ('unified', 3), ('light', 3), ('mechanisms', 3), ('require', 3), ('consumers', 3), ('market', 3), ('regulatory', 3), ('clarified', 3), ('initial', 3), ('maintenance', 3), ('draft', 3), ('foregoing', 3), ('evidence', 3), ('bound', 3), ('specifically', 3), ('method', 3), ('protects', 3), ('quality', 3), ('claimed', 3), ('preferred', 3), ('associated', 3), ('common', 3), ('restricts', 3), ('speech', 3), ('formulated', 3), ('changed', 3), ('lc', 3), ('condition', 3), ('days', 3), ('motives', 3), ('stenographic', 3), ('session', 3), ('sitting', 3), ('forms', 3), ('serve', 3), ('nonprofit', 3), ('sanction', 3), ('fine', 3), ('statute', 3), ('decided', 3), ('occurrence', 3), ('harm', 3), ('remains', 3), ('unification', 3), ('subsequent', 3), ('find', 3), ('dismissed', 3), ('science', 3), ('released', 3), ('essentially', 3), ('agree', 3), ('auxiliary', 3), ('leaving', 3), ('despite', 3), ('sittings', 3), ('autonomy', 3), ('varna', 3), ('veliko', 3), ('tarnovo', 3), ('promotion', 3), ('heads', 3), ('orders', 3), ('appoint', 3), ('annually', 3), ('inspectorate', 3), ('longer', 3), ('excluded', 3), ('storage', 3), ('e', 3), ('experts', 3), ('third', 3), ('supervision', 3), ('accurate', 3), ('representative', 3), ('unacceptable', 3), ('training', 3), ('supplemented', 3), ('establishes', 3), ('investigator', 3), ('allows', 3), ('concerning', 3), ('depending', 3), ('reduction', 3), ('ethics', 3), ('unconstitutionally', 3), ('employees”', 3), ('bailiff', 3), ('obstacles', 3), ('turn', 3), ('still', 3), ('structure', 3), ('whole', 3), ('approved', 3), ('kept', 3), ('representing', 3), ('informed', 3), ('conformity', 3), ('archive', 3), ('helsinki', 3), ('correct', 3), ('remaining', 3), ('examined', 3), ('described', 3), ('fund', 3), ('sites', 3), ('constitute', 3), ('exercised', 3), ('main', 3), ('units', 3), ('entered', 3), ('reliability', 3), ('senior', 3), ('equated', 3), ('collaborators', 3), ('dignity', 3), ('course', 3), ('clarify', 3), ('appealed', 3), ('completion', 3), ('affects', 3), ('able', 3), ('cipaa', 3), ('separately', 3), ('known', 3), ('see', 3), ('preservation', 3), ('sentence', 3), ('p', 3), ('ideas', 3), ('і', 3), ('entirety', 3), ('circle', 3), ('checked', 3), ('disclosing', 3), ('handed', 3), ('socially', 3), ('ds', 3), ('elections', 3), ('acquainted', 3), ('exceptions', 3), ('useful', 3), ('hidden', 3), ('vat', 3), ('date', 3), ('applicable', 3), ('collateral', 3), ('operation', 3), ('annex', 3), ('rugb', 3), ('repressive', 3), ('constituting', 3), ('totalitarian', 3), ('bills', 3), ('transformation', 3), ('owned', 3), ('inviolability', 3), ('postprivatization', 3), ('outside', 3), ('approach', 3), ('single', 3), ('gazette', 3), ('economy', 3), ('business', 3), ('necessarily', 3), ('speed', 3), ('cpc', 3), ('characteristics', 3), ('collegium', 3), ('resp', 3), ('physical', 3), ('football', 3), ('athletes', 3), ('promote', 3), ('lfvs', 3), ('imc', 3), ('liabilities', 3), ('understanding', 3), ('”and', 3), ('andthe', 3), ('constitutionthe', 3), ('unfoundedthe', 3), ('promulgation', 3), ('forprivatization', 3), ('councils', 3), ('”the', 3), ('indication', 3), ('publicly', 3), ('auction', 3), ('vouchers', 3), ('ordered', 3), ('threemonth', 3), ('effective', 3), ('instances', 3), ('stage', 3), ('fees”', 2), ('distribute', 2), ('overall', 2), ('cultural', 2), ('kind', 2), ('indirectly', 2), ('contribute', 2), ('limits', 2), ('imposes', 2), ('frequencies', 2), ('step', 2), ('deregulation', 2), ('wishing', 2), ('compared', 2), ('logical', 2), ('creating', 2), ('freely', 2), ('standards', 2), ('regulating', 2), ('ways', 2), ('agreed', 2), ('seeking', 2), ('imperative', 2), ('types', 2), ('network', 2), ('ban', 2), ('via', 2), ('project', 2), ('profile', 2), ('broadcasters', 2), ('construction', 2), ('throughout', 2), ('justification', 2), ('applicant', 2), ('shares', 2), ('unforeseen', 2), ('threat', 2), ('judged', 2), ('factual', 2), ('settlement', 2), ('rather', 2), ('refuse', 2), ('concerns', 2), ('six', 2), ('months', 2), ('presentation', 2), ('fee', 2), ('else', 2), ('ultimately', 2), ('nonstate', 2), ('followed', 2), ('indeed', 2), ('circumstance', 2), ('positive', 2), ('tied', 2), ('analogue', 2), ('blocked', 2), ('argues', 2), ('wording', 2), ('connected', 2), ('omission', 2), ('suitable', 2), ('gives', 2), ('discuss', 2), ('incomplete', 2), ('sphere', 2), ('giving', 2), ('operational', 2), ('censorship', 2), ('interference', 2), ('seised', 2), ('lawful', 2), ('implements', 2), ('bring', 2), ('discussing', 2), ('diaries', 2), ('xxxviii', 2), ('voluntary', 2), ('manifestation', 2), ('satisfy', 2), ('progress', 2), ('failure', 2), ('replacement', 2), ('chosen', 2), ('remain', 2), ('cpa', 2), ('prescribed', 2), ('long', 2), ('bringing', 2), ('complied', 2), ('parts', 2), ('applied', 2), ('operate', 2), ('clearly', 2), ('balance', 2), ('expiration', 2), ('people', 2), ('beyond', 2), ('fair', 2), ('conflict', 2), ('incompatibility', 2), ('agriculture', 2), ('works', 2), ('integration', 2), ('petitions', 2), ('culture', 2), ('elects', 2), ('untenable', 2), ('stating', 2), ('deputy', 2), ('outlines', 2), ('representation', 2), ('solely', 2), ('replace', 2), ('addresses', 2), ('quota', 2), ('oblige', 2), ('conscience', 2), ('competencies', 2), ('forward', 2), ('unlikely', 2), ('deputies', 2), ('together', 2), ('plenum', 2), ('statistical', 2), ('services”', 2), ('reaching', 2), ('council”', 2), ('completely', 2), ('burgas', 2), ('attached', 2), ('increasing', 2), ('enables', 2), ('demotion', 2), ('assemblies', 2), ('authorizes', 2), ('absolutely', 2), ('movement', 2), ('examinations', 2), ('entitled', 2), ('autonomous', 2), ('uniform', 2), ('cooperate', 2), ('grand', 2), ('highest', 2), ('mediation', 2), ('keep', 2), ('appointing', 2), ('implemented', 2), ('happen', 2), ('theoretical', 2), ('lawyers', 2), ('inextricably', 2), ('linked', 2), ('sends', 2), ('coordinated', 2), ('coordination', 2), ('ii', 2), ('entrusted', 2), ('generally', 2), ('definite', 2), ('administer', 2), ('offices”', 2), ('and”', 2), ('agents', 2), ('judges”', 2), ('immunity', 2), ('contradicted', 2), ('initiate', 2), ('verify', 2), ('completing', 2), ('stability', 2), ('initially”', 2), ('demoted', 2), ('qualities', 2), ('expressly', 2), ('offenses', 2), ('liability', 2), ('length', 2), ('approve', 2), ('today', 2), ('domestic', 2), ('obvious', 2), ('dismisses', 2), ('remainder', 2), ('beginning', 2), ('discrimination', 2), ('occupation', 2), ('ratified', 2), ('infringes', 2), ('relate', 2), ('requests', 2), ('points', 2), ('contradictions', 2), ('gave', 2), ('crpd', 2), ('requiring', 2), ('challenge', 2), ('leaves', 2), ('correspond', 2), ('withdrew', 2), ('oneyear', 2), ('prevent', 2), ('confidential', 2), ('pzrzzki', 2), ('phcipc', 2), ('huge', 2), ('importance', 2), ('pzrza', 2), ('something', 2), ('withdrawal', 2), ('reluctance', 2), ('inspection', 2), ('reveal', 2), ('working', 2), ('qualifications', 2), ('arbitrary', 2), ('suspicion', 2), ('characteristic', 2), ('talking', 2), ('defend', 2), ('grant', 2), ('exhaustively', 2), ('reliability”', 2), ('terminating', 2), ('revoking', 2), ('refusing', 2), ('motivated', 2), ('open', 2), ('k”', 2), ('come', 2), ('address', 2), ('accessory', 2), ('administratively', 2), ('structures', 2), ('structural', 2), ('led', 2), ('denial', 2), ('votes', 2), ('either', 2), ('prevents', 2), ('systems', 2), ('disposition', 2), ('recognize', 2), ('procedures', 2), ('passed', 2), ('pointless', 2), ('problem', 2), ('proved', 2), ('essence', 2), ('operative', 2), ('clarification', 2), ('necessity', 2), ('hypotheses', 2), ('identify', 2), ('always', 2), ('july', 2), ('denied', 2), ('receipt', 2), ('serie', 2), ('n', 2), ('negative', 2), ('note', 2), ('deceased', 2), ('spouse', 2), ('relatives', 2), ('journalistic', 2), ('bylaw', 2), ('defining', 2), ('nevertheless', 2), ('involved', 2), ('assessing', 2), ('honor', 2), ('reputation', 2), ('e”', 2), ('initiated', 2), ('disclosed', 2), ('deviate', 2), ('event', 2), ('deprive', 2), ('collection', 2), ('benefited', 2), ('publication', 2), ('rugsh', 2), ('scheduling', 2), ('coalitions', 2), ('ask', 2), ('high', 2), ('many', 2), ('destroyed', 2), ('express', 2), ('gap', 2), ('moreover', 2), ('prepared', 2), ('marked', 2), ('processing', 2), ('individuals', 2), ('processed', 2), ('destroy', 2), ('lmi', 2), ('processes', 2), ('directorates', 2), ('proposes', 2), ('destruction', 2), ('army', 2), ('complete', 2), ('missing', 2), ('bfsa', 2), ('managing', 2), ('fixed', 2), ('meantime', 2), ('future', 2), ('thousands', 2), ('needs', 2), ('nations', 2), ('efforts', 2), ('morals', 2), ('directed', 2), ('adopting', 2), ('functioning', 2), ('early', 2), ('performance', 2), ('achieved', 2), ('zidzovsrb', 2), ('iss', 2), ('brigadier', 2), ('higher', 2), ('especially', 2), ('effectiveness', 2), ('values', 2), ('”in', 2), ('fourth', 2), ('forcible', 2), ('expropriation', 2), ('supports', 2), ('upheld', 2), ('consequences', 2), ('urgent', 2), ('obligatory', 2), ('debtors', 2), ('additionally', 2), ('writing', 2), ('conclude', 2), ('deals', 2), ('arose', 2), ('formal', 2), ('continue', 2), ('owner', 2), ('real', 2), ('deal', 2), ('presupposes', 2), ('ppc', 2), ('addressee', 2), ('company', 2), ('disposing', 2), ('minutes', 2), ('indicators', 2), ('imposing', 2), ('transfers', 2), ('paid', 2), ('tourism', 2), ('zfvs', 2), ('admission', 2), ('mmc', 2), ('children', 2), ('adolescents', 2), ('sport', 2), ('assign', 2), ('permitted', 2), ('expanding', 2), ('taxation', 2), ('prescribes', 2), ('onprivatization', 2), ('courtadministrative', 2), ('community', 2), ('toproperty', 2), ('inbulgaria', 2), ('inthe', 2), ('adopts', 2), ('specify', 2), ('tothe', 2), ('next', 2), ('withstate', 2), ('instead', 2), ('inbulgariaaccording', 2), ('submissionsopinions', 2), ('fulfillment', 2), ('privatizationtransactions', 2), ('pronounce', 2), ('justiceunder', 2), ('acquisition', 2), ('atthe', 2), ('vouchersin', 2), ('compensation', 2), ('disposal', 2), ('setting', 2), ('deadline', 2), ('stipulated', 2), ('site”', 2), ('crafts', 2), ('square', 2), ('meter', 2), ('indicator', 2), ('expected', 2), ('forth', 2), ('c”', 2), ('volume', 2), ('net', 2), ('area”', 2), ('measure', 2), ('assignment', 2), ('remarks', 2), ('threeinstance', 2), ('book', 2), ('vicious', 2), ('preserved', 2), ('undisputed', 2), ('stages', 2), ('rendered', 2), ('typical', 2), ('pr', 2), ('transfrontier', 1), ('january', 1), ('com', 1), ('communications', 1), ('coalition', 1), ('weight', 1), ('audience', 1), ('equally', 1), ('transmission', 1), ('excluding', 1), ('nuances', 1), ('conditioned', 1), ('build', 1), ('mainly', 1), ('focus', 1), ('investments', 1), ('advertising', 1), ('producers', 1), ('represented', 1), ('circulation', 1), ('strictly', 1), ('ta', 1), ('agreement', 1), ('currently', 1), ('secondly', 1), ('agreements', 1), ('unoccupied', 1), ('projection', 1), ('limitation', 1), ('engage', 1), ('facilitated', 1), ('registering', 1), ('easier', 1), ('band', 1), ('disseminate', 1), ('expanded', 1), ('assume', 1), ('preconditions', 1), ('correlated', 1), ('prerequisite', 1), ('mode', 1), ('comparing', 1), ('brief', 1), ('performs', 1), ('deletes', 1), ('registrations', 1), ('thematically', 1), ('indefinite', 1), ('objectively', 1), ('contract', 1), ('deletion', 1), ('systematic', 1), ('regards', 1), ('using', 1), ('deleted', 1), ('anothers', 1), ('differ', 1), ('sanctioned', 1), ('scheme', 1), ('disadvantage', 1), ('penal', 1), ('dependent', 1), ('transponders', 1), ('arrangements', 1), ('nonair', 1), ('registration”', 1), ('proving', 1), ('candidate', 1), ('shareholders', 1), ('partners', 1), ('complaint', 1), ('factually', 1), ('stocks', 1), ('antitrust', 1), ('prove', 1), ('money', 1), ('laundering', 1), ('proportionality', 1), ('things', 1), ('plane', 1), ('users', 1), ('viewers', 1), ('listeners', 1), ('program”', 1), ('regulator', 1), ('region', 1), ('rural', 1), ('automatically', 1), ('structured', 1), ('collapsing', 1), ('misinterpretation', 1), ('spatial', 1), ('geographical', 1), ('programmatic', 1), ('irregularities', 1), ('certificate', 1), ('reregistered', 1), ('liberal', 1), ('rearranged', 1), ('starts', 1), ('tender', 1), ('continues', 1), ('obtaining', 1), ('furthermore', 1), ('refuses', 1), ('model', 1), ('unbound', 1), ('mood', 1), ('suspends', 1), ('terminates', 1), ('revokes', 1), ('geostationary', 1), ('orbit', 1), ('licensing”', 1), ('distributors', 1), ('disadvantaged', 1), ('sectors', 1), ('crcs', 1), ('incompleteness', 1), ('objection', 1), ('analyze', 1), ('lulucf', 1), ('offered', 1), ('goods', 1), ('risks', 1), ('protective', 1), ('shortcoming', 1), ('aspects', 1), ('substantiated', 1), ('editorial', 1), ('schemes', 1), ('selection', 1), ('eliminate', 1), ('proclaiming', 1), ('schedule', 1), ('achieving', 1), ('ratios', 1), ('latest', 1), ('submitters', 1), ('tf', 1), ('reasonable', 1), ('consistent', 1), ('arise', 1), ('sanctioning', 1), ('behavior', 1), ('stimulate', 1), ('comment', 1), ('evident', 1), ('equalize', 1), ('mutual', 1), ('assistance', 1), ('bases', 1), ('outlined', 1), ('conditions”', 1), ('extends', 1), ('fit', 1), ('defective', 1), ('governing', 1), ('strengthened', 1), ('maintaining', 1), ('eg', 1), ('cooperators', 1), ('reasonably', 1), ('hinders', 1), ('merging', 1), ('stimulation', 1), ('differs', 1), ('significantly', 1), ('counterparties', 1), ('sure', 1), ('participants', 1), ('definability', 1), ('stay', 1), ('noncommencement', 1), ('culpable', 1), ('approaching', 1), ('rise', 1), ('unfair', 1), ('interpret', 1), ('combination', 1), ('filed', 1), ('sign', 1), ('framed', 1), ('binding', 1), ('releasing', 1), ('mandate”', 1), ('angelovabankova', 1), ('requesting', 1), ('reduced', 1), ('nonadmission', 1), ('left', 1), ('repression', 1), ('enjoys', 1), ('assisted', 1), ('literal', 1), ('mp', 1), ('identified', 1), ('preparing', 1), ('declarations', 1), ('reach', 1), ('linking', 1), ('group”', 1), ('leadership', 1), ('expelling', 1), ('insolvent', 1), ('convictions', 1), ('unlimited', 1), ('partycolored', 1), ('participating', 1), ('let', 1), ('alone', 1), ('logically', 1), ('competences', 1), ('exempted', 1), ('submitting', 1), ('closed', 1), ('forests', 1), ('care', 1), ('sdaa', 1), ('position”', 1), ('substantially', 1), ('eventual', 1), ('logic', 1), ('consistency', 1), ('asks', 1), ('rejecting', 1), ('comments', 1), ('developed', 1), ('extend', 1), ('summarize', 1), ('magistracy', 1), ('reduce', 1), ('dismiss', 1), ('extended', 1), ('cover', 1), ('closing', 1), ('inspections', 1), ('improve', 1), ('references', 1), ('statistics', 1), ('inclusion', 1), ('leave', 1), ('managers', 1), ('communicated', 1), ('recognizes', 1), ('legitimizes', 1), ('balancing', 1), ('coincidence', 1), ('almost', 1), ('moment', 1), ('attitude', 1), ('greater', 1), ('excessively', 1), ('increased', 1), ('particularly', 1), ('presidents', 1), ('obligatorily', 1), ('figure', 1), ('extremely', 1), ('dismissing', 1), ('center', 1), ('proclamation', 1), ('noninterference', 1), ('accountable', 1), ('absurd', 1), ('hear', 1), ('representatives', 1), ('inspect', 1), ('chief', 1), ('supervises', 1), ('methodological', 1), ('guidance', 1), ('supervise', 1), ('junior', 1), ('auspices', 1), ('helps', 1), ('conducting', 1), ('expertises', 1), ('expert', 1), ('opinion”', 1), ('authorize', 1), ('staffing', 1), ('plenums', 1), ('directors', 1), ('reflected', 1), ('raising', 1), ('resources', 1), ('destabilizing', 1), ('monitor', 1), ('observance', 1), ('waive', 1), ('accusatory', 1), ('minimum', 1), ('collect', 1), ('evaluate', 1), ('introducing', 1), ('distinction', 1), ('hierarchy', 1), ('ordinary', 1), ('managerial', 1), ('precludes', 1), ('practically', 1), ('word', 1), ('possesses', 1), ('duties”', 1), ('punishment', 1), ('magistrate', 1), ('like', 1), ('crimes', 1), ('otherwise', 1), ('entirely', 1), ('proven', 1), ('results', 1), ('spot', 1), ('experience', 1), ('с', 1), ('т', 1), ('б', 1), ('quorum', 1), ('vi', 1), ('promoted', 1), ('practices', 1), ('attestation', 1), ('chaired', 1), ('violations', 1), ('dynamics', 1), ('causes', 1), ('fight', 1), ('combating', 1), ('buildings', 1), ('complies', 1), ('assistant', 1), ('qualified', 1), ('assist', 1), ('vii', 1), ('supplementing', 1), ('clraip', 1), ('sdbdsbrugst', 1), ('enacts', 1), ('settle', 1), ('inquiries', 1), ('decree', 1), ('presidium', 1), ('izvestia', 1), ('conventions', 1), ('motivates', 1), ('repressed', 1), ('truth', 1), ('foundation', 1), ('thoroughly', 1), ('retained', 1), ('say', 1), ('anything', 1), ('detailed', 1), ('argumentation', 1), ('infringe', 1), ('rfbh', 1), ('pdpa', 1), ('nonindication', 1), ('designed', 1), ('publicity', 1), ('dictated', 1), ('mention', 1), ('stand', 1), ('occasion', 1), ('disappeared”', 1), ('analyzes', 1), ('threaten', 1), ('reapplying', 1), ('abuses', 1), ('indicating', 1), ('strategic', 1), ('secrets', 1), ('pcpcpc', 1), ('repealing', 1), ('assumed', 1), ('examine', 1), ('accordingly', 1), ('restricted', 1), ('dwell', 1), ('sdbsa', 1), ('commented', 1), ('perversely”', 1), ('fully', 1), ('duties', 1), ('particular', 1), ('inform', 1), ('document', 1), ('systematize', 1), ('ex', 1), ('officio', 1), ('array', 1), ('fulfill', 1), ('relates', 1), ('delegate', 1), ('withdrawn', 1), ('reapply', 1), ('tfpa', 1), ('judgments', 1), ('lustration', 1), ('apparatus', 1), ('zddbds', 1), ('relationships', 1), ('study', 1), ('handling', 1), ('move', 1), ('personality', 1), ('withdrawer', 1), ('impaired', 1), ('repeat', 1), ('survey', 1), ('barrier', 1), ('abuse', 1), ('nature”', 1), ('drawn', 1), ('engaged', 1), ('discriminatory', 1), ('room', 1), ('withdraw', 1), ('belongs', 1), ('по', 1), ('refused', 1), ('researched', 1), ('meet', 1), ('knowingly', 1), ('surveys', 1), ('cryptographic', 1), ('industrial', 1), ('govern', 1), ('appeal”', 1), ('appealing', 1), ('unambiguously', 1), ('nato', 1), ('constitutive', 1), ('great', 1), ('abused', 1), ('priority”', 1), ('affirm', 1), ('speak', 1), ('authoritative', 1), ('emergence', 1), ('conditional', 1), ('suspend', 1), ('authorization', 1), ('encroached', 1), ('often', 1), ('employer', 1), ('exclusively', 1), ('trial', 1), ('residence', 1), ('departure', 1), ('religion', 1), ('cast', 1), ('drawing', 1), ('universally', 1), ('doubtful', 1), ('simple', 1), ('expresses', 1), ('politically', 1), ('prescribe', 1), ('mix', 1), ('radically', 1), ('justify', 1), ('exclusive', 1), ('compliant', 1), ('thought', 1), ('draw', 1), ('verifies', 1), ('improvement', 1), ('overcome', 1), ('abolition', 1), ('decriminalization', 1), ('ignorance', 1), ('comes', 1), ('exchange', 1), ('democratically', 1), ('organized', 1), ('communication', 1), ('impossibility', 1), ('reasoning', 1), ('variety', 1), ('formulation', 1), ('leander', 1), ('gaskin', 1), ('minor', 1), ('echr', 1), ('obstructing', 1), ('wish', 1), ('la', 1), ('liberte', 1), ('de', 1), ('recevoire', 1), ('des', 1), ('informations', 1), ('…', 1), ('interdit', 1), ('emperor', 1), ('reception', 1), ('authors', 1), ('fournir', 1), ('traced', 1), ('denies', 1), ('improved', 1), ('version', 1), ('original', 1), ('kinds…', 1), ('involves', 1), ('notwithstanding', 1), ('firmly', 1), ('legislators', 1), ('preserve', 1), ('needed', 1), ('reg', 1), ('specially', 1), ('copy', 1), ('lateral', 1), ('corresponds', 1), ('sdba', 1), ('pseudonyms', 1), ('appear', 1), ('diary', 1), ('zidzddbds', 1), ('wanted', 1), ('forming', 1), ('selecting', 1), ('headed', 1), ('rfb', 1), ('discredited', 1), ('damaged', 1), ('verification', 1), ('worked', 1), ('proceedings”', 1), ('aml', 1), ('cft', 1), ('objections', 1), ('reason', 1), ('amend', 1), ('naturally', 1), ('unsettled', 1), ('irrevocable', 1), ('proclaims', 1), ('war', 1), ('martial', 1), ('emergency', 1), ('right”', 1), ('it”', 1), ('emphasized', 1), ('arises', 1), ('subsequently', 1), ('nonsocially', 1), ('traditionally', 1), ('treated', 1), ('space', 1), ('reflects', 1), ('consensus', 1), ('politicians', 1), ('administrators', 1), ('neutralize', 1), ('ensured', 1), ('informing', 1), ('produced', 1), ('search', 1), ('evaluation', 1), ('ensuring', 1), ('preparation', 1), ('internet', 1), ('improvements', 1), ('understand', 1), ('suffered', 1), ('aware', 1), ('connections', 1), ('figures', 1), ('forthcoming', 1), ('ability', 1), ('appeared', 1), ('filled', 1), ('bylaws', 1), ('seized', 1), ('receiving', 1), ('disseminating', 1), ('degrees', 1), ('calculated', 1), ('unambiguous”', 1), ('administrator', 1), ('store', 1), ('receives', 1), ('registers', 1), ('declassification', 1), ('manages', 1), ('cs', 1), ('bulk', 1), ('expired', 1), ('eternal', 1), ('manual', 1), ('ministerial', 1), ('fill', 1), ('certainty', 1), ('lci', 1), ('boards', 1), ('tangible', 1), ('assets', 1), ('subsumed', 1), ('removal', 1), ('becomes', 1), ('meaningless', 1), ('died', 1), ('played', 1), ('role', 1), ('historical', 1), ('generations', 1), ('never', 1), ('forbade', 1), ('civilized', 1), ('encroachment', 1), ('tens', 1), ('destinies', 1), ('governance', 1), ('keeping', 1), ('mass', 1), ('trace', 1), ('announce', 1), ('convening', 1), ('conference', 1), ('un', 1), ('cornerstone', 1), ('broadcast', 1), ('publish', 1), ('news', 1), ('anywhere', 1), ('key', 1), ('serious', 1), ('peace', 1), ('world', 1), ('universal', 1), ('hindrance', 1), ('frontiers', 1), ('assuming', 1), ('interpreting', 1), ('says', 1), ('guided', 1), ('brought', 1), ('text”', 1), ('pacts', 1), ('restrictive', 1), ('acsaa', 1), ('associate', 1), ('active', 1), ('invest', 1), ('beneficiaries', 1), ('preamble', 1), ('на', 1), ('seen', 1), ('none', 1), ('enumeration', 1), ('warsaw', 1), ('pact', 1), ('help', 1), ('cooperated', 1), ('tasks', 1), ('”promulgated', 1), ('canceled', 1), ('legacy', 1), ('europe', 1), ('welcomes', 1), ('scrutiny', 1), ('advises', 1), ('enable', 1), ('recommends', 1), ('johannesburg', 1), ('recommendations', 1), ('czechoslovakia', 1), ('закон', 1), ('czech', 1), ('hungary', 1), ('xxiii', 1), ('screening', 1), ('poland', 1), ('romania', 1), ('securitate', 1), ('police', 1), ('germany', 1), ('gdr', 1), ('stasi', 1), ('comparative', 1), ('advance', 1), ('sdbdsrugsh', 1), ('know', 1), ('lives', 1), ('miserable', 1), ('happy', 1), ('peaceful', 1), ('history', 1), ('properly', 1), ('characterize', 1), ('wwg', 1), ('operated', 1), ('institutions', 1), ('rhipci', 1), ('pleaded', 1), ('rejection', 1), ('colonel”', 1), ('captain', 1), ('rank”', 1), ('major', 1), ('rear', 1), ('lieutenant', 1), ('vice', 1), ('colonel', 1), ('habilitated', 1), ('occupy', 1), ('habilitation', 1), ('scientific', 1), ('doctor', 1), ('assoc', 1), ('identity', 1), ('debates', 1), ('bill', 1), ('restricting', 1), ('permissible', 1), ('stem', 1), ('ububand', 1), ('principles…', 1), ('optimally', 1), ('sovereignty', 1), ('integrity', 1), ('trend', 1), ('retirement', 1), ('grd', 1), ('inventory', 1), ('found', 1), ('favorable', 1), ('suspended', 1), ('simultaneously', 1), ('petitioner', 1), ('notified', 1), ('achieves', 1), ('investors', 1), ('satisfaction', 1), ('adequate', 1), ('missed', 1), ('privilege', 1), ('unfavorable', 1), ('material', 1), ('notification', 1), ('constitutes', 1), ('comparison', 1), ('resurrect', 1), ('incorporated', 1), ('challenging', 1), ('decisive', 1), ('lose', 1), ('sixmonth', 1), ('month', 1), ('enters', 1), ('signs', 1), ('reform', 1), ('called', 1), ('decrees', 1), ('dedicated', 1), ('detail', 1), ('prospective', 1), ('buyers', 1), ('addressed', 1), ('secure', 1), ('discredit', 1), ('anyone', 1), ('derived', 1), ('objectives', 1), ('indefinitely', 1), ('prescription', 1), ('several', 1), ('effects', 1), ('notifies', 1), ('purchase', 1), ('candidatebuyers', 1), ('price', 1), ('optimal', 1), ('stable', 1), ('guaranteeing', 1), ('inaction', 1), ('loses', 1), ('incentive', 1), ('loss', 1), ('passive', 1), ('preserving', 1), ('specificity', 1), ('efficient', 1), ('qualitatively', 1), ('characterized', 1), ('flexible', 1), ('efficiency', 1), ('nuanced', 1), ('priority', 1), ('contradicting', 1), ('areas', 1), ('caused', 1), ('notify', 1), ('prejudice', 1), ('conversely', 1), ('external', 1), ('bond', 1), ('theory', 1), ('remuneration', 1), ('refutes', 1), ('inviolable', 1), ('disagreement', 1), ('disregard', 1), ('preclusive', 1), ('duration', 1), ('precise', 1), ('ongoing', 1), ('lifethreatening', 1), ('lcs', 1), ('lfsa', 1), ('andsuppl', 1), ('departments', 1), ('possibilities', 1), ('supplementation', 1), ('generals', 1), ('clubs', 1), ('ububpublic', 1), ('obliging', 1), ('percent', 1), ('executed', 1), ('derive', 1), ('financing', 1), ('indisputable', 1), ('burden', 1), ('statutory', 1), ('concepts', 1), ('represents', 1), ('allocation', 1), ('unilaterally', 1), ('range', 1), ('monetary', 1), ('commands', 1), ('tourism”', 1), ('objectified', 1), ('compulsory', 1), ('fvs', 1), ('suppl', 1), ('solution', 1), ('stoyanovapromulgated', 1), ('composed', 1), ('georgimarkov', 1), ('stoyanovamargarita', 1), ('belchevpenka', 1), ('tomchevawith', 1), ('secretaryprotocol', 1), ('galina', 1), ('dobreva', 1), ('indoorshearing', 1), ('reported', 1), ('byjudge', 1), ('stoyanovathe', 1), ('peoplerepresentatives', 1), ('assemblythe', 1), ('shes', 1), ('himchallenged', 1), ('regardingtheir', 1), ('provisionsby', 1), ('underessence', 1), ('constitutedthe', 1), ('justiceprivatization', 1), ('bulgariawithin', 1), ('caseinterested', 1), ('courtthe', 1), ('assessed', 1), ('considerationscontained', 1), ('therein', 1), ('ruleconsider', 1), ('followingunder', 1), ('pcpaaccording', 1), ('contesting', 1), ('propertyrestricts', 1), ('ininterest', 1), ('ofprivate', 1), ('propertythe', 1), ('pcpaannouncement', 1), ('bya', 1), ('onlyof', 1), ('localselfgovernment', 1), ('enterprisepromulgated', 1), ('becausethe', 1), ('themselvesto', 1), ('actually', 1), ('restrictthe', 1), ('ownershipthe', 1), ('declaringmunicipal', 1), ('councilsthe', 1), ('coverthe', 1), ('asannounced', 1), ('municipalthe', 1), ('yesthe', 1), ('constitutionaccording', 1), ('saleof', 1), ('haveadministrative', 1), ('availableintroduced', 1), ('zpsk', 1), ('true', 1), ('liststhe', 1), ('ofan', 1), ('initiating', 1), ('thereinproperty', 1), ('typethe', 1), ('incapital', 1), ('pcpaof', 1), ('providespossibility', 1), ('selfdetermination', 1), ('bymunicipal', 1), ('theythey', 1), ('willbe', 1), ('indicate', 1), ('liststo', 1), ('andthey', 1), ('announcement', 1), ('artthe', 1), ('making', 1), ('directionallows', 1), ('isnecessary', 1), ('notit', 1), ('yesassess', 1), ('propertyyou', 1), ('infringing', 1), ('dispose', 1), ('owntheir', 1), ('infringement', 1), ('existof', 1), ('provisionsthe', 1), ('fromwhich', 1), ('thatthe', 1), ('toits', 1), ('contentsaccording', 1), ('formedcompanies', 1), ('municipalparticipation', 1), ('thatnamely', 1), ('legislativeresolution', 1), ('notthe', 1), ('privatizationof', 1), ('participationin', 1), ('incontradiction', 1), ('protecting', 1), ('harmsthe', 1), ('themopportunity', 1), ('manage', 1), ('communityunder', 1), ('pcpathe', 1), ('ofchange', 1), ('conditionsof', 1), ('forconsequence', 1), ('favoring', 1), ('buyers”', 1), ('putting', 1), ('inprivileged', 1), ('ministerof', 1), ('”to', 1), ('worded', 1), ('preciselyand', 1), ('wellthe', 1), ('bodiesannounce', 1), ('changing', 1), ('contentsthat', 1), ('presupposesopportunity', 1), ('occur', 1), ('contradictthe', 1), ('whichour', 1), ('allcitizens', 1), ('activitythe', 1), ('casethe', 1), ('artprivatization', 1), ('inevitably', 1), ('accompanied', 1), ('certainpractice', 1), ('tovarious', 1), ('certainprovisions', 1), ('whatever', 1), ('reasonshowever', 1), ('driven', 1), ('itfull', 1), ('correspondence', 1), ('respectivelegal', 1), ('othertherefore', 1), ('inherently', 1), ('lawand', 1), ('depend', 1), ('legislationpermission', 1), ('ofprivatization', 1), ('throughit', 1), ('ofbusiness', 1), ('entitiesassuming', 1), ('toannounce', 1), ('groundsundoubtedly', 1), ('hisimplementation', 1), ('acceptance', 1), ('arbitraryunmotivated', 1), ('ensuresconditions', 1), ('acquaintance', 1), ('partiesthat', 1), ('andart', 1), ('conductingprivatization', 1), ('lawunder', 1), ('pcpawith', 1), ('authorityof', 1), ('underlegality', 1), ('powersunder', 1), ('lawaccording', 1), ('isunreasonable', 1), ('thatwhat', 1), ('forlegality', 1), ('obstruct', 1), ('path', 1), ('partarticle', 1), ('whichaccording', 1), ('agencyone', 1), ('areconcluded', 1), ('valueexceeds', 1), ('million', 1), ('levs', 1), ('regulationsthe', 1), ('compliancewith', 1), ('strategies', 1), ('isnotes', 1), ('reviewof', 1), ('poweris', 1), ('forcarrying', 1), ('normatively', 1), ('totransfer', 1), ('onescompanies', 1), ('except', 1), ('theseproperty', 1), ('findapplication', 1), ('sharesthe', 1), ('asways', 1), ('requirementarising', 1), ('approvalon', 1), ('forthere', 1), ('requirementconversely', 1), ('introductionit', 1), ('lawthe', 1), ('viewthe', 1), ('exceptthe', 1), ('exerciseof', 1), ('noresolves', 1), ('excludejudicial', 1), ('herewhy', 1), ('courtsthe', 1), ('pcpathese', 1), ('containbinding', 1), ('pwhich', 1), ('eligible', 1), ('commercialcompanies', 1), ('ministerboard', 1), ('ofequality', 1), ('encroaches', 1), ('onprivate', 1), ('patrimony', 1), ('tookwhereasthe', 1), ('issuedunder', 1), ('andmunicipal', 1), ('norefers', 1), ('ofa', 1), ('paymentsuch', 1), ('revokednonmonetary', 1), ('examplelisted', 1), ('voucherscompensation', 1), ('housing', 1), ('longtermbonds', 1), ('debt', 1), ('normativethe', 1), ('paymentsfunds', 1), ('theirsregime', 1), ('conditionsfor', 1), ('validitywhen', 1), ('lapsed', 1), ('changesthe', 1), ('paymentthe', 1), ('unequal', 1), ('individualtypes', 1), ('inequalitybetween', 1), ('nottransferred', 1), ('bythem', 1), ('providestheir', 1), ('wishnecessary', 1), ('introducingthe', 1), ('compulsorily', 1), ('prior', 1), ('faircompensation', 1), ('expropriatedtherefore', 1), ('welltaking', 1), ('constitutionhas', 1), ('followsrejects', 1), ('narodnoassembly', 1), ('oflaw', 1), ('post', 1), ('concerningtheir', 1), ('provisionsjudgment', 1), ('pita', 1), ('alleges', 1), ('expressing', 1), ('inadmissibly', 1), ('audit', 1), ('debtor', 1), ('estimated', 1), ('scale', 1), ('fairness', 1), ('relative', 1), ('arguing', 1), ('defines', 1), ('letters', 1), ('l”', 1), ('m”', 1), ('x”', 1), ('щ”', 1), ('ю”', 1), ('size', 1), ('adds', 1), ('bgn', 1), ('per', 1), ('categorization', 1), ('object', 1), ('settlements', 1), ('zones', 1), ('jobs', 1), ('intensity', 1), ('presumed', 1), ('precondition', 1), ('turnover', 1), ('lower', 1), ('really', 1), ('sita', 1), ('cc', 1), ('interpreted', 1), ('object”', 1), ('amlta', 1), ('conditionality', 1), ('ibaa', 1), ('define', 1), ('unity', 1), ('predictability', 1), ('determinations', 1), ('directions', 1), ('claim”', 1), ('entitles', 1), ('null', 1), ('void', 1), ('filing', 1), ('sixth', 1), ('enter', 1), ('suspension', 1), ('execution', 1), ('overturns', 1), ('return', 1), ('hearing', 1), ('allegedly', 1), ('singleinstance', 1), ('nongovernmental', 1), ('institution', 1), ('reversal', 1), ('brings', 1), ('closer', 1), ('contrast', 1), ('principled', 1), ('predominant', 1), ('ububsuch', 1), ('discipline', 1), ('emphasizes', 1), ('assigning', 1), ('expands', 1), ('ubub', 1), ('show', 1), ('unanimity', 1), ('accepting', 1), ('rationalization', 1), ('stabilization', 1), ('discussion', 1), ('met', 1), ('listing', 1), ('settled', 1), ('hardly', 1), ('doubt', 1), ('prevailing', 1), ('triinstance', 1), ('imperatives', 1), ('disputable', 1), ('connect', 1), ('cassation”', 1), ('controlrevocation', 1), ('convincing', 1), ('entering', 1), ('details', 1), ('judiciary”', 1), ('process”', 1), ('insignificant', 1), ('retrial', 1), ('confirms', 1), ('realization', 1), ('annuls', 1), ('essential', 1), ('courts”', 1), ('delegated', 1), ('follow', 1), ('prohibited', 1), ('resolves', 1), ('jurisdictional', 1), ('resolve', 1), ('ububcourt', 1), ('annul', 1), ('unfinished', 1), ('weeks', 1), ('predestines', 1), ('fate', 1), ('inherent', 1), ('annulling', 1), ('option', 1), ('enactment', 1), ('duly', 1), ('pending', 1), ('cancels', 1), ('measures”', 1), ('xa', 1)]
machine_learning/gan/wgan/tf_wgan/tf_wgan_module.ipynb
###Markdown README.md ###Code %%writefile README.md Implementation of [Wasserstein GAN](https://arxiv.org/abs/1701.07875). ###Output _____no_output_____ ###Markdown print_object.py ###Code %%writefile wgan_module/trainer/print_object.py def print_obj(function_name, object_name, object_value): """Prints enclosing function, object name, and object value. Args: function_name: str, name of function. object_name: str, name of object. object_value: object, value of passed object. """ # pass print("{}: {} = {}".format(function_name, object_name, object_value)) ###Output _____no_output_____ ###Markdown image_utils.py ###Code %%writefile wgan_module/trainer/image_utils.py import tensorflow as tf from .print_object import print_obj def preprocess_image(image, params): """Preprocess image tensor. Args: image: tensor, input image with shape [cur_batch_size, height, width, depth]. params: dict, user passed parameters. Returns: Preprocessed image tensor with shape [cur_batch_size, height, width, depth]. """ func_name = "preprocess_image" # Convert from [0, 255] -> [-1.0, 1.0] floats. image = tf.cast(x=image, dtype=tf.float32) * (2. / 255) - 1.0 print_obj(func_name, "image", image) return image def resize_fake_images(fake_images, params): """Resizes fake images to match real image sizes. Args: fake_images: tensor, fake images from generator. params: dict, user passed parameters. Returns: Resized image tensor. """ func_name = "resize_real_image" print_obj("\n" + func_name, "fake_images", fake_images) # Resize fake images to match real image sizes. resized_fake_images = tf.image.resize( images=fake_images, size=[params["height"], params["width"]], method="nearest", name="resized_fake_images" ) print_obj(func_name, "resized_fake_images", resized_fake_images) return resized_fake_images ###Output _____no_output_____ ###Markdown input.py ###Code %%writefile wgan_module/trainer/input.py import tensorflow as tf from . import image_utils from .print_object import print_obj def decode_example(protos, params): """Decodes TFRecord file into tensors. Given protobufs, decode into image and label tensors. Args: protos: protobufs from TFRecord file. params: dict, user passed parameters. Returns: Image and label tensors. """ func_name = "decode_example" # Create feature schema map for protos. features = { "image_raw": tf.FixedLenFeature(shape=[], dtype=tf.string), "label": tf.FixedLenFeature(shape=[], dtype=tf.int64) } # Parse features from tf.Example. parsed_features = tf.parse_single_example( serialized=protos, features=features ) print_obj("\n" + func_name, "features", features) # Convert from a scalar string tensor (whose single string has # length height * width * depth) to a uint8 tensor with shape # [height * width * depth]. image = tf.decode_raw( input_bytes=parsed_features["image_raw"], out_type=tf.uint8 ) print_obj(func_name, "image", image) # Reshape flattened image back into normal dimensions. image = tf.reshape( tensor=image, shape=[params["height"], params["width"], params["depth"]] ) print_obj(func_name, "image", image) # Preprocess image. image = image_utils.preprocess_image(image=image, params=params) print_obj(func_name, "image", image) # Convert label from a scalar uint8 tensor to an int32 scalar. label = tf.cast(x=parsed_features["label"], dtype=tf.int32) print_obj(func_name, "label", label) return {"image": image}, label def read_dataset(filename, mode, batch_size, params): """Reads TF Record data using tf.data, doing necessary preprocessing. Given filename, mode, batch size, and other parameters, read TF Record dataset using Dataset API, apply necessary preprocessing, and return an input function to the Estimator API. Args: filename: str, file pattern that to read into our tf.data dataset. mode: The estimator ModeKeys. Can be TRAIN or EVAL. batch_size: int, number of examples per batch. params: dict, dictionary of user passed parameters. Returns: An input function. """ def _input_fn(): """Wrapper input function used by Estimator API to get data tensors. Returns: Batched dataset object of dictionary of feature tensors and label tensor. """ # Create list of files that match pattern. file_list = tf.gfile.Glob(filename=filename) # Create dataset from file list. if params["input_fn_autotune"]: dataset = tf.data.TFRecordDataset( filenames=file_list, num_parallel_reads=tf.contrib.data.AUTOTUNE ) else: dataset = tf.data.TFRecordDataset(filenames=file_list) # Shuffle and repeat if training with fused op. if mode == tf.estimator.ModeKeys.TRAIN: dataset = dataset.apply( tf.contrib.data.shuffle_and_repeat( buffer_size=50 * batch_size, count=None # indefinitely ) ) # Decode CSV file into a features dictionary of tensors, then batch. if params["input_fn_autotune"]: dataset = dataset.apply( tf.contrib.data.map_and_batch( map_func=lambda x: decode_example( protos=x, params=params ), batch_size=batch_size, num_parallel_calls=tf.contrib.data.AUTOTUNE ) ) else: dataset = dataset.apply( tf.contrib.data.map_and_batch( map_func=lambda x: decode_example( protos=x, params=params ), batch_size=batch_size ) ) # Prefetch data to improve latency. if params["input_fn_autotune"]: dataset = dataset.prefetch(buffer_size=tf.contrib.data.AUTOTUNE) else: dataset = dataset.prefetch(buffer_size=1) # Create a iterator, then get batch of features from example queue. batched_dataset = dataset.make_one_shot_iterator().get_next() return batched_dataset return _input_fn ###Output _____no_output_____ ###Markdown generator.py ###Code %%writefile wgan_module/trainer/generator.py import tensorflow as tf from .print_object import print_obj class Generator(object): """Generator that takes latent vector input and outputs image. Fields: name: str, name of `Generator`. kernel_regularizer: `l1_l2_regularizer` object, regularizar for kernel variables. bias_regularizer: `l1_l2_regularizer` object, regularizar for bias variables. """ def __init__(self, kernel_regularizer, bias_regularizer, name): """Instantiates and builds generator network. Args: kernel_regularizer: `l1_l2_regularizer` object, regularizar for kernel variables. bias_regularizer: `l1_l2_regularizer` object, regularizar for bias variables. name: str, name of generator. """ # Set name of generator. self.name = name # Regularizer for kernel weights. self.kernel_regularizer = kernel_regularizer # Regularizer for bias weights. self.bias_regularizer = bias_regularizer def get_fake_images(self, Z, mode, params): """Creates generator network and returns generated images. Args: Z: tensor, latent vectors of shape [cur_batch_size, latent_size]. mode: tf.estimator.ModeKeys with values of either TRAIN, EVAL, or PREDICT. params: dict, user passed parameters. Returns: Generated image tensor of shape [cur_batch_size, height, width, depth]. """ func_name = "get_fake_images" print_obj("\n" + func_name, "Z", Z) # Dictionary containing possible final activations. final_activation_dict = { "sigmoid": tf.nn.sigmoid, "relu": tf.nn.relu, "tanh": tf.nn.tanh } with tf.variable_scope("generator", reuse=tf.AUTO_REUSE): # Project latent vectors. projection_height = params["generator_projection_dims"][0] projection_width = params["generator_projection_dims"][1] projection_depth = params["generator_projection_dims"][2] # shape = ( # cur_batch_size, # projection_height * projection_width * projection_depth # ) projection = tf.layers.dense( inputs=Z, units=projection_height * projection_width * projection_depth, activation=None, kernel_regularizer=self.kernel_regularizer, bias_regularizer=self.bias_regularizer, name="projection_dense_layer" ) print_obj(func_name, "projection", projection) projection_leaky_relu = tf.nn.leaky_relu( features=projection, alpha=params["generator_leaky_relu_alpha"], name="projection_leaky_relu" ) print_obj( func_name, "projection_leaky_relu", projection_leaky_relu ) # Add batch normalization to keep the inputs from blowing up. # shape = ( # cur_batch_size, # projection_height * projection_width * projection_depth # ) projection_batch_norm = tf.layers.batch_normalization( inputs=projection_leaky_relu, training=(mode == tf.estimator.ModeKeys.TRAIN), name="projection_batch_norm" ) print_obj( func_name, "projection_batch_norm", projection_batch_norm ) # Reshape projection into "image". # shape = ( # cur_batch_size, # projection_height, # projection_width, # projection_depth # ) network = tf.reshape( tensor=projection_batch_norm, shape=[ -1, projection_height, projection_width, projection_depth ], name="projection_reshaped" ) print_obj(func_name, "network", network) # Iteratively build upsampling layers. for i in range(len(params["generator_num_filters"])): # Add conv transpose layers with given params per layer. # shape = ( # cur_batch_size, # generator_kernel_sizes[i - 1] * generator_strides[i], # generator_kernel_sizes[i - 1] * generator_strides[i], # generator_num_filters[i] # ) network = tf.layers.conv2d_transpose( inputs=network, filters=params["generator_num_filters"][i], kernel_size=params["generator_kernel_sizes"][i], strides=params["generator_strides"][i], padding="same", activation=None, kernel_regularizer=self.kernel_regularizer, bias_regularizer=self.bias_regularizer, name="layers_conv2d_tranpose_{}".format(i) ) print_obj(func_name, "network", network) network = tf.nn.leaky_relu( features=network, alpha=params["generator_leaky_relu_alpha"], name="leaky_relu_{}".format(i) ) print_obj(func_name, "network", network) # Add batch normalization to keep the inputs from blowing up. network = tf.layers.batch_normalization( inputs=network, training=(mode == tf.estimator.ModeKeys.TRAIN), name="layers_batch_norm_{}".format(i) ) print_obj(func_name, "network", network) # Final conv2d transpose layer for image output. # shape = (cur_batch_size, height, width, depth) fake_images = tf.layers.conv2d_transpose( inputs=network, filters=params["generator_final_num_filters"], kernel_size=params["generator_final_kernel_size"], strides=params["generator_final_stride"], padding="same", activation=final_activation_dict.get( params["generator_final_activation"].lower(), None ), kernel_regularizer=self.kernel_regularizer, bias_regularizer=self.bias_regularizer, name="layers_conv2d_tranpose_fake_images" ) print_obj(func_name, "fake_images", fake_images) return fake_images def get_generator_loss(self, fake_logits): """Gets generator loss. Args: fake_logits: tensor, shape of [cur_batch_size, 1]. Returns: Tensor of generator's total loss of shape []. """ func_name = "get_generator_loss" # Calculate base generator loss. generator_loss = -tf.reduce_mean( input_tensor=fake_logits, name="generator_loss" ) print_obj("\n" + func_name, "generator_loss", generator_loss) # Get regularization losses. generator_reg_loss = tf.losses.get_regularization_loss( scope="generator", name="generator_reg_loss" ) print_obj(func_name, "generator_reg_loss", generator_reg_loss) # Combine losses for total losses. generator_total_loss = tf.math.add( x=generator_loss, y=generator_reg_loss, name="generator_total_loss" ) print_obj(func_name, "generator_total_loss", generator_total_loss) # Add summaries for TensorBoard. tf.summary.scalar( name="generator_loss", tensor=generator_loss, family="losses" ) tf.summary.scalar( name="generator_reg_loss", tensor=generator_reg_loss, family="losses" ) tf.summary.scalar( name="generator_total_loss", tensor=generator_total_loss, family="total_losses" ) return generator_total_loss ###Output _____no_output_____ ###Markdown critic.py ###Code %%writefile wgan_module/trainer/critic.py import tensorflow as tf from .print_object import print_obj class Critic(object): """Critic that takes image input and outputs logits. Fields: name: str, name of `Critic`. kernel_regularizer: `l1_l2_regularizer` object, regularizar for kernel variables. bias_regularizer: `l1_l2_regularizer` object, regularizar for bias variables. """ def __init__(self, kernel_regularizer, bias_regularizer, name): """Instantiates and builds critic network. Args: kernel_regularizer: `l1_l2_regularizer` object, regularizar for kernel variables. bias_regularizer: `l1_l2_regularizer` object, regularizar for bias variables. name: str, name of critic. """ # Set name of critic. self.name = name # Regularizer for kernel weights. self.kernel_regularizer = kernel_regularizer # Regularizer for bias weights. self.bias_regularizer = bias_regularizer def get_critic_logits(self, X, params): """Creates critic network and returns logits. Args: X: tensor, image tensors of shape [cur_batch_size, height, width, depth]. params: dict, user passed parameters. Returns: Logits tensor of shape [cur_batch_size, 1]. """ func_name = "get_critic_logits" # Create the input layer to our CNN. # shape = (cur_batch_size, height * width * depth) network = X print_obj("\n" + func_name, "network", network) with tf.variable_scope("critic", reuse=tf.AUTO_REUSE): # Iteratively build downsampling layers. for i in range(len(params["critic_num_filters"])): # Add convolutional layers with given params per layer. # shape = ( # cur_batch_size, # critic_kernel_sizes[i - 1] / critic_strides[i], # critic_kernel_sizes[i - 1] / critic_strides[i], # critic_num_filters[i] # ) network = tf.layers.conv2d( inputs=network, filters=params["critic_num_filters"][i], kernel_size=params["critic_kernel_sizes"][i], strides=params["critic_strides"][i], padding="same", activation=None, kernel_regularizer=self.kernel_regularizer, bias_regularizer=self.bias_regularizer, name="layers_conv2d_{}".format(i) ) print_obj(func_name, "network", network) network = tf.nn.leaky_relu( features=network, alpha=params["critic_leaky_relu_alpha"], name="leaky_relu_{}".format(i) ) print_obj(func_name, "network", network) # Add some dropout for better regularization and stability. network = tf.layers.dropout( inputs=network, rate=params["critic_dropout_rates"][i], name="layers_dropout_{}".format(i) ) print_obj(func_name, "network", network) # Flatten network output. # shape = ( # cur_batch_size, # (critic_kernel_sizes[-2] / critic_strides[-1]) ** 2 * critic_num_filters[-1] # ) network_flat = tf.layers.Flatten()(inputs=network) print_obj(func_name, "network_flat", network_flat) # Final linear layer for logits. # shape = (cur_batch_size, 1) logits = tf.layers.dense( inputs=network_flat, units=1, activation=None, kernel_regularizer=self.kernel_regularizer, bias_regularizer=self.bias_regularizer, name="layers_dense_logits" ) print_obj(func_name, "logits", logits) return logits def get_critic_loss(self, fake_logits, real_logits): """Gets critic loss. Args: fake_logits: tensor, shape of [cur_batch_size, 1]. real_logits: tensor, shape of [cur_batch_size, 1]. Returns: Tensor of critic's total loss of shape []. """ func_name = "get_critic_loss" # Calculate base critic loss. critic_real_loss = tf.reduce_mean( input_tensor=real_logits, name="critic_real_loss" ) print_obj("\n" + func_name, "critic_real_loss", critic_real_loss) critic_fake_loss = tf.reduce_mean( input_tensor=fake_logits, name="critic_fake_loss" ) print_obj( func_name, "critic_fake_loss", critic_fake_loss ) critic_loss = tf.subtract( x=critic_fake_loss, y=critic_real_loss, name="critic_loss" ) print_obj(func_name, "critic_loss", critic_loss) # Get regularization losses. critic_reg_loss = tf.losses.get_regularization_loss( scope="critic", name="critic_reg_loss" ) print_obj(func_name, "critic_reg_loss", critic_reg_loss) # Combine losses for total losses. critic_total_loss = tf.math.add( x=critic_loss, y=critic_reg_loss, name="critic_total_loss" ) print_obj(func_name, "critic_total_loss", critic_total_loss) # Add summaries for TensorBoard. tf.summary.scalar( name="critic_real_loss", tensor=critic_real_loss, family="losses" ) tf.summary.scalar( name="critic_fake_loss", tensor=critic_fake_loss, family="losses" ) tf.summary.scalar( name="critic_loss", tensor=critic_loss, family="losses" ) tf.summary.scalar( name="critic_reg_loss", tensor=critic_reg_loss, family="losses" ) tf.summary.scalar( name="critic_total_loss", tensor=critic_total_loss, family="total_losses" ) return critic_total_loss ###Output _____no_output_____ ###Markdown train_and_eval.py ###Code %%writefile wgan_module/trainer/train_and_eval.py import tensorflow as tf from . import image_utils from .print_object import print_obj def get_logits_and_losses(features, generator, critic, mode, params): """Gets logits and losses for both train and eval modes. Args: features: dict, feature tensors from input function. generator: instance of generator.`Generator`. critic: instance of critic.`Critic`. mode: tf.estimator.ModeKeys with values of either TRAIN or EVAL. params: dict, user passed parameters. Returns: Real and fake logits and generator and critic losses. """ func_name = "get_logits_and_losses" # Extract real images from features dictionary. real_images = features["image"] print_obj("\n" + func_name, "real_images", real_images) # Get dynamic batch size in case of partial batch. cur_batch_size = tf.shape( input=real_images, out_type=tf.int32, name="{}_cur_batch_size".format(func_name) )[0] # Create random noise latent vector for each batch example. Z = tf.random.normal( shape=[cur_batch_size, params["latent_size"]], mean=0.0, stddev=1.0, dtype=tf.float32 ) print_obj(func_name, "Z", Z) # Get generated image from generator network from gaussian noise. print("\nCall generator with Z = {}.".format(Z)) fake_images = generator.get_fake_images(Z=Z, mode=mode, params=params) # Resize fake images to match real image sizes. fake_images = image_utils.resize_fake_images(fake_images, params) print_obj(func_name, "fake_images", fake_images) # Add summaries for TensorBoard. tf.summary.image( name="fake_images", tensor=tf.reshape( tensor=fake_images, shape=[-1, params["height"], params["width"], params["depth"]] ), max_outputs=5, ) # Get fake logits from critic using generator's output image. print("\nCall critic with fake_images = {}.".format(fake_images)) fake_logits = critic.get_critic_logits( X=fake_images, params=params ) # Get real logits from critic using real image. print( "\nCall critic with real_images = {}.".format(real_images) ) real_logits = critic.get_critic_logits( X=real_images, params=params ) # Get generator total loss. generator_total_loss = generator.get_generator_loss( fake_logits=fake_logits ) # Get critic total loss. critic_total_loss = critic.get_critic_loss( fake_logits=fake_logits, real_logits=real_logits ) return (real_logits, fake_logits, generator_total_loss, critic_total_loss) ###Output _____no_output_____ ###Markdown train.py ###Code %%writefile wgan_module/trainer/train.py import tensorflow as tf from .print_object import print_obj def get_variables_and_gradients(loss, scope): """Gets variables and their gradients wrt. loss. Args: loss: tensor, shape of []. scope: str, the network's name to find its variables to train. Returns: Lists of variables and their gradients. """ func_name = "get_variables_and_gradients" # Get trainable variables. variables = tf.trainable_variables(scope=scope) print_obj("\n{}_{}".format(func_name, scope), "variables", variables) # Get gradients. gradients = tf.gradients( ys=loss, xs=variables, name="{}_gradients".format(scope) ) print_obj("\n{}_{}".format(func_name, scope), "gradients", gradients) # Add variable names back in for identification. gradients = [ tf.identity( input=g, name="{}_{}_gradients".format(func_name, v.name[:-2]) ) if tf.is_tensor(x=g) else g for g, v in zip(gradients, variables) ] print_obj("\n{}_{}".format(func_name, scope), "gradients", gradients) return variables, gradients def create_variable_and_gradient_histogram_summaries(loss_dict, params): """Creates variable and gradient histogram summaries. Args: loss_dict: dict, keys are scopes and values are scalar loss tensors for each network kind. params: dict, user passed parameters. """ for scope, loss in loss_dict.items(): # Get variables and their gradients wrt. loss. variables, gradients = get_variables_and_gradients(loss, scope) # Add summaries for TensorBoard. for g, v in zip(gradients, variables): tf.summary.histogram( name="{}".format(v.name[:-2]), values=v, family="{}_variables".format(scope) ) if tf.is_tensor(x=g): tf.summary.histogram( name="{}".format(v.name[:-2]), values=g, family="{}_gradients".format(scope) ) def train_network(loss, global_step, params, scope): """Trains network and returns loss and train op. Args: loss: tensor, shape of []. global_step: tensor, the current training step or batch in the training loop. params: dict, user passed parameters. scope: str, the variables that to train. Returns: Loss tensor and training op. """ func_name = "train_network" print_obj("\n" + func_name, "scope", scope) # Create optimizer map. optimizers = { "Adam": tf.train.AdamOptimizer, "Adadelta": tf.train.AdadeltaOptimizer, "AdagradDA": tf.train.AdagradDAOptimizer, "Adagrad": tf.train.AdagradOptimizer, "Ftrl": tf.train.FtrlOptimizer, "GradientDescent": tf.train.GradientDescentOptimizer, "Momentum": tf.train.MomentumOptimizer, "ProximalAdagrad": tf.train.ProximalAdagradOptimizer, "ProximalGradientDescent": tf.train.ProximalGradientDescentOptimizer, "RMSProp": tf.train.RMSPropOptimizer } # Get optimizer and instantiate it. if params["{}_optimizer".format(scope)] == "Adam": optimizer = optimizers[params["{}_optimizer".format(scope)]]( learning_rate=params["{}_learning_rate".format(scope)], beta1=params["{}_adam_beta1".format(scope)], beta2=params["{}_adam_beta2".format(scope)], epsilon=params["{}_adam_epsilon".format(scope)], name="{}_{}_optimizer".format( scope, params["{}_optimizer".format(scope)].lower() ) ) elif params["{}_optimizer".format(scope)] == "RMSProp": optimizer = optimizers[params["{}_optimizer".format(scope)]]( learning_rate=params["{}_learning_rate".format(scope)], decay=params["{}_rmsprop_decay".format(scope)], momentum=params["{}_rmsprop_momentum".format(scope)], epsilon=params["{}_rmsprop_epsilon".format(scope)], name="{}_{}_optimizer".format( scope, params["{}_optimizer".format(scope)].lower() ) ) else: optimizer = optimizers[params["{}_optimizer".format(scope)]]( learning_rate=params["{}_learning_rate".format(scope)], name="{}_{}_optimizer".format( scope, params["{}_optimizer".format(scope)].lower() ) ) print_obj("{}_{}".format(func_name, scope), "optimizer", optimizer) # Get gradients. gradients = tf.gradients( ys=loss, xs=tf.trainable_variables(scope=scope), name="{}_gradients".format(scope) ) print_obj("\n{}_{}".format(func_name, scope), "gradients", gradients) # Clip gradients. if params["{}_clip_gradients".format(scope)]: gradients, _ = tf.clip_by_global_norm( t_list=gradients, clip_norm=params["{}_clip_gradients".format(scope)], name="{}_clip_by_global_norm_gradients".format(scope) ) print_obj("\n{}_{}".format(func_name, scope), "gradients", gradients) # Zip back together gradients and variables. grads_and_vars = zip(gradients, tf.trainable_variables(scope=scope)) print_obj( "{}_{}".format(func_name, scope), "grads_and_vars", grads_and_vars ) # Create train op by applying gradients to variables and incrementing # global step. train_op = optimizer.apply_gradients( grads_and_vars=grads_and_vars, global_step=global_step, name="{}_apply_gradients".format(scope) ) # Clip weights. if params["{}_clip_weights".format(scope)]: with tf.control_dependencies(control_inputs=[train_op]): clip_value_min = params["{}_clip_weights".format(scope)][0] clip_value_max = params["{}_clip_weights".format(scope)][1] train_op = tf.group( [ tf.assign( ref=v, value=tf.clip_by_value( t=v, clip_value_min=clip_value_min, clip_value_max=clip_value_max ) ) for v in tf.trainable_variables(scope=scope) ], name="{}_clip_by_value_weights".format(scope) ) return loss, train_op def get_loss_and_train_op( generator_total_loss, critic_total_loss, params): """Gets loss and train op for train mode. Args: generator_total_loss: tensor, scalar total loss of generator. critic_total_loss: tensor, scalar total loss of critic. params: dict, user passed parameters. Returns: Loss scalar tensor and train_op to be used by the EstimatorSpec. """ func_name = "get_loss_and_train_op" # Get global step. global_step = tf.train.get_or_create_global_step() # Determine if it is time to train generator or critic. cycle_step = tf.mod( x=global_step, y=tf.cast( x=tf.add( x=params["critic_train_steps"], y=params["generator_train_steps"] ), dtype=tf.int64 ), name="{}_cycle_step".format(func_name) ) # Create choose critic condition. condition = tf.less( x=cycle_step, y=params["critic_train_steps"] ) # Needed for batch normalization, but has no effect otherwise. update_ops = tf.get_collection(key=tf.GraphKeys.UPDATE_OPS) # Ensure update ops get updated. with tf.control_dependencies(control_inputs=update_ops): # Conditionally choose to train generator or critic subgraph. loss, train_op = tf.cond( pred=condition, true_fn=lambda: train_network( loss=critic_total_loss, global_step=global_step, params=params, scope="critic" ), false_fn=lambda: train_network( loss=generator_total_loss, global_step=global_step, params=params, scope="generator" ) ) return loss, train_op ###Output _____no_output_____ ###Markdown eval_metrics.py ###Code %%writefile wgan_module/trainer/eval_metrics.py import tensorflow as tf from .print_object import print_obj def get_eval_metric_ops(fake_logits, real_logits, params): """Gets eval metric ops. Args: fake_logits: tensor, shape of [cur_batch_size, 1] that came from critic having processed generator's output image. real_logits: tensor, shape of [cur_batch_size, 1] that came from critic having processed real image. params: dict, user passed parameters. Returns: Dictionary of eval metric ops. """ func_name = "get_eval_metric_ops" # Concatenate critic logits and labels. critic_logits = tf.concat( values=[real_logits, fake_logits], axis=0, name="critic_concat_logits" ) print_obj("\n" + func_name, "critic_logits", critic_logits) critic_labels = tf.concat( values=[ tf.ones_like(tensor=real_logits), tf.zeros_like(tensor=fake_logits) ], axis=0, name="critic_concat_labels" ) print_obj(func_name, "critic_labels", critic_labels) # Calculate critic probabilities. critic_probabilities = tf.nn.sigmoid( x=critic_logits, name="critic_probabilities" ) print_obj( func_name, "critic_probabilities", critic_probabilities ) # Create eval metric ops dictionary. eval_metric_ops = { "accuracy": tf.metrics.accuracy( labels=critic_labels, predictions=critic_probabilities, name="critic_accuracy" ), "precision": tf.metrics.precision( labels=critic_labels, predictions=critic_probabilities, name="critic_precision" ), "recall": tf.metrics.recall( labels=critic_labels, predictions=critic_probabilities, name="critic_recall" ), "auc_roc": tf.metrics.auc( labels=critic_labels, predictions=critic_probabilities, num_thresholds=200, curve="ROC", name="critic_auc_roc" ), "auc_pr": tf.metrics.auc( labels=critic_labels, predictions=critic_probabilities, num_thresholds=200, curve="PR", name="critic_auc_pr" ) } print_obj(func_name, "eval_metric_ops", eval_metric_ops) return eval_metric_ops ###Output _____no_output_____ ###Markdown predict.py ###Code %%writefile wgan_module/trainer/predict.py import tensorflow as tf from . import image_utils from .print_object import print_obj def get_predictions_and_export_outputs(features, generator, params): """Gets predictions and serving export outputs. Args: features: dict, feature tensors from serving input function. generator: instance of `Generator`. params: dict, user passed parameters. Returns: Predictions dictionary and export outputs dictionary. """ func_name = "get_predictions_and_export_outputs" # Extract given latent vectors from features dictionary. Z = features["Z"] print_obj("\n" + func_name, "Z", Z) # Get generated images from generator using latent vector. generated_images = generator.get_fake_images( Z=Z, mode=tf.estimator.ModeKeys.PREDICT, params=params ) print_obj(func_name, "generated_images", generated_images) # Resize generated images to match real image sizes. generated_images = image_utils.resize_fake_images( fake_images=generated_images, params=params ) print_obj(func_name, "generated_images", generated_images) # Create predictions dictionary. predictions_dict = { "generated_images": generated_images } print_obj(func_name, "predictions_dict", predictions_dict) # Create export outputs. export_outputs = { "predict_export_outputs": tf.estimator.export.PredictOutput( outputs=predictions_dict) } print_obj(func_name, "export_outputs", export_outputs) return predictions_dict, export_outputs ###Output _____no_output_____ ###Markdown wgan.py ###Code %%writefile wgan_module/trainer/wgan.py import tensorflow as tf from . import critic from . import eval_metrics from . import generator from . import predict from . import train from . import train_and_eval from .print_object import print_obj def wgan_model(features, labels, mode, params): """Wasserstein GAN custom Estimator model function. Args: features: dict, keys are feature names and values are feature tensors. labels: tensor, label data. mode: tf.estimator.ModeKeys with values of either TRAIN, EVAL, or PREDICT. params: dict, user passed parameters. Returns: Instance of `tf.estimator.EstimatorSpec` class. """ func_name = "wgan_model" print_obj("\n" + func_name, "features", features) print_obj(func_name, "labels", labels) print_obj(func_name, "mode", mode) print_obj(func_name, "params", params) # Loss function, training/eval ops, etc. predictions_dict = None loss = None train_op = None eval_metric_ops = None export_outputs = None # Instantiate generator. wgan_generator = generator.Generator( kernel_regularizer=tf.contrib.layers.l1_l2_regularizer( scale_l1=params["generator_l1_regularization_scale"], scale_l2=params["generator_l2_regularization_scale"] ), bias_regularizer=None, name="generator" ) # Instantiate critic. wgan_critic = critic.Critic( kernel_regularizer=tf.contrib.layers.l1_l2_regularizer( scale_l1=params["critic_l1_regularization_scale"], scale_l2=params["critic_l2_regularization_scale"] ), bias_regularizer=None, name="critic" ) if mode == tf.estimator.ModeKeys.PREDICT: # Get predictions and export outputs. (predictions_dict, export_outputs) = predict.get_predictions_and_export_outputs( features=features, generator=wgan_generator, params=params ) else: # Get logits and losses from networks for train and eval modes. (real_logits, fake_logits, generator_total_loss, critic_total_loss) = train_and_eval.get_logits_and_losses( features=features, generator=wgan_generator, critic=wgan_critic, mode=mode, params=params ) if mode == tf.estimator.ModeKeys.TRAIN: # Create variable and gradient histogram summaries. train.create_variable_and_gradient_histogram_summaries( loss_dict={ "generator": generator_total_loss, "critic": critic_total_loss }, params=params ) # Get loss and train op for EstimatorSpec. loss, train_op = train.get_loss_and_train_op( generator_total_loss=generator_total_loss, critic_total_loss=critic_total_loss, params=params ) else: # Set eval loss. loss = critic_total_loss # Get eval metrics. eval_metric_ops = eval_metrics.get_eval_metric_ops( real_logits=real_logits, fake_logits=fake_logits, params=params ) # Return EstimatorSpec return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions_dict, loss=loss, train_op=train_op, eval_metric_ops=eval_metric_ops, export_outputs=export_outputs ) ###Output _____no_output_____ ###Markdown serving.py ###Code %%writefile wgan_module/trainer/serving.py import tensorflow as tf from .print_object import print_obj def serving_input_fn(params): """Serving input function. Args: params: dict, user passed parameters. Returns: ServingInputReceiver object containing features and receiver tensors. """ func_name = "serving_input_fn" # Create placeholders to accept data sent to the model at serving time. # shape = (batch_size,) feature_placeholders = { "Z": tf.placeholder( dtype=tf.float32, shape=[None, params["latent_size"]], name="serving_input_placeholder_Z" ) } print_obj("\n" + func_name, "feature_placeholders", feature_placeholders) # Create clones of the feature placeholder tensors so that the SavedModel # SignatureDef will point to the placeholder. features = { key: tf.identity( input=value, name="{}_identity_placeholder_{}".format(func_name, key) ) for key, value in feature_placeholders.items() } print_obj(func_name, "features", features) return tf.estimator.export.ServingInputReceiver( features=features, receiver_tensors=feature_placeholders ) ###Output _____no_output_____ ###Markdown model.py ###Code %%writefile wgan_module/trainer/model.py import tensorflow as tf from . import input from . import serving from . import wgan from .print_object import print_obj def train_and_evaluate(args): """Trains and evaluates custom Estimator model. Args: args: dict, user passed parameters. Returns: `Estimator` object. """ func_name = "train_and_evaluate" print_obj("\n" + func_name, "args", args) # Ensure filewriter cache is clear for TensorBoard events file. tf.summary.FileWriterCache.clear() # Set logging to be level of INFO. tf.logging.set_verbosity(tf.logging.INFO) # Create a RunConfig for Estimator. config = tf.estimator.RunConfig( model_dir=args["output_dir"], save_summary_steps=args["save_summary_steps"], save_checkpoints_steps=args["save_checkpoints_steps"], keep_checkpoint_max=args["keep_checkpoint_max"] ) # Create our custom estimator using our model function. estimator = tf.estimator.Estimator( model_fn=wgan.wgan_model, model_dir=args["output_dir"], config=config, params=args ) # Create train spec to read in our training data. train_spec = tf.estimator.TrainSpec( input_fn=input.read_dataset( filename=args["train_file_pattern"], mode=tf.estimator.ModeKeys.TRAIN, batch_size=args["train_batch_size"], params=args ), max_steps=args["train_steps"] ) # Create exporter to save out the complete model to disk. exporter = tf.estimator.LatestExporter( name="exporter", serving_input_receiver_fn=lambda: serving.serving_input_fn(args) ) # Create eval spec to read in our validation data and export our model. eval_spec = tf.estimator.EvalSpec( input_fn=input.read_dataset( filename=args["eval_file_pattern"], mode=tf.estimator.ModeKeys.EVAL, batch_size=args["eval_batch_size"], params=args ), steps=args["eval_steps"], start_delay_secs=args["start_delay_secs"], throttle_secs=args["throttle_secs"], exporters=exporter ) # Create train and evaluate loop to train and evaluate our estimator. tf.estimator.train_and_evaluate( estimator=estimator, train_spec=train_spec, eval_spec=eval_spec) return estimator ###Output _____no_output_____ ###Markdown task.py ###Code %%writefile wgan_module/trainer/task.py import argparse import json import os from . import model def convert_string_to_bool(string): """Converts string to bool. Args: string: str, string to convert. Returns: Boolean conversion of string. """ return False if string.lower() == "false" else True def convert_string_to_none_or_float(string): """Converts string to None or float. Args: string: str, string to convert. Returns: None or float conversion of string. """ return None if string.lower() == "none" else float(string) def convert_string_to_none_or_int(string): """Converts string to None or int. Args: string: str, string to convert. Returns: None or int conversion of string. """ return None if string.lower() == "none" else int(string) def convert_string_to_list_of_ints(string, sep): """Converts string to list of ints. Args: string: str, string to convert. sep: str, separator string. Returns: List of ints conversion of string. """ if not string: return [] return [int(x) for x in string.split(sep)] def convert_string_to_list_of_floats(string, sep): """Converts string to list of floats. Args: string: str, string to convert. sep: str, separator string. Returns: List of floats conversion of string. """ if not string: return [] return [float(x) for x in string.split(sep)] if __name__ == "__main__": parser = argparse.ArgumentParser() # File arguments. parser.add_argument( "--train_file_pattern", help="GCS location to read training data.", required=True ) parser.add_argument( "--eval_file_pattern", help="GCS location to read evaluation data.", required=True ) parser.add_argument( "--output_dir", help="GCS location to write checkpoints and export models.", required=True ) parser.add_argument( "--job-dir", help="This model ignores this field, but it is required by gcloud.", default="junk" ) # Training parameters. parser.add_argument( "--train_batch_size", help="Number of examples in training batch.", type=int, default=32 ) parser.add_argument( "--train_steps", help="Number of steps to train for.", type=int, default=100 ) parser.add_argument( "--save_summary_steps", help="How many steps to train before saving a summary.", type=int, default=100 ) parser.add_argument( "--save_checkpoints_steps", help="How many steps to train before saving a checkpoint.", type=int, default=100 ) parser.add_argument( "--keep_checkpoint_max", help="Max number of checkpoints to keep.", type=int, default=100 ) parser.add_argument( "--input_fn_autotune", help="Whether to autotune input function performance.", type=str, default="True" ) # Eval parameters. parser.add_argument( "--eval_batch_size", help="Number of examples in evaluation batch.", type=int, default=32 ) parser.add_argument( "--eval_steps", help="Number of steps to evaluate for.", type=str, default="None" ) parser.add_argument( "--start_delay_secs", help="Number of seconds to wait before first evaluation.", type=int, default=60 ) parser.add_argument( "--throttle_secs", help="Number of seconds to wait between evaluations.", type=int, default=120 ) # Image parameters. parser.add_argument( "--height", help="Height of image.", type=int, default=32 ) parser.add_argument( "--width", help="Width of image.", type=int, default=32 ) parser.add_argument( "--depth", help="Depth of image.", type=int, default=3 ) # Generator parameters. parser.add_argument( "--latent_size", help="The latent size of the noise vector.", type=int, default=3 ) parser.add_argument( "--generator_projection_dims", help="The 3D dimensions to project latent noise vector into.", type=str, default="8,8,256" ) parser.add_argument( "--generator_num_filters", help="Number of filters for generator conv layers.", type=str, default="128, 64" ) parser.add_argument( "--generator_kernel_sizes", help="Kernel sizes for generator conv layers.", type=str, default="5,5" ) parser.add_argument( "--generator_strides", help="Strides for generator conv layers.", type=str, default="1,2" ) parser.add_argument( "--generator_final_num_filters", help="Number of filters for final generator conv layer.", type=int, default=3 ) parser.add_argument( "--generator_final_kernel_size", help="Kernel sizes for final generator conv layer.", type=int, default=5 ) parser.add_argument( "--generator_final_stride", help="Strides for final generator conv layer.", type=int, default=2 ) parser.add_argument( "--generator_leaky_relu_alpha", help="The amount of leakyness of generator's leaky relus.", type=float, default=0.2 ) parser.add_argument( "--generator_final_activation", help="The final activation function of generator.", type=str, default="None" ) parser.add_argument( "--generator_l1_regularization_scale", help="Scale factor for L1 regularization for generator.", type=float, default=0.0 ) parser.add_argument( "--generator_l2_regularization_scale", help="Scale factor for L2 regularization for generator.", type=float, default=0.0 ) parser.add_argument( "--generator_optimizer", help="Name of optimizer to use for generator.", type=str, default="Adam" ) parser.add_argument( "--generator_learning_rate", help="How quickly we train our model by scaling the gradient for generator.", type=float, default=0.1 ) parser.add_argument( "--generator_adam_beta1", help="Adam optimizer's beta1 hyperparameter for first moment.", type=float, default=0.9 ) parser.add_argument( "--generator_adam_beta2", help="Adam optimizer's beta2 hyperparameter for second moment.", type=float, default=0.999 ) parser.add_argument( "--generator_adam_epsilon", help="Adam optimizer's epsilon hyperparameter for numerical stability.", type=float, default=1e-8 ) parser.add_argument( "--generator_rmsprop_decay", help="RMSProp optimizer's decay hyperparameter for discounting factor for the history/coming gradient.", type=float, default=0.9 ) parser.add_argument( "--generator_rmsprop_momentum", help="RMSProp optimizer's momentum hyperparameter for first moment.", type=float, default=0.999 ) parser.add_argument( "--generator_rmsprop_epsilon", help="RMSProp optimizer's epsilon hyperparameter for numerical stability.", type=float, default=1e-8 ) parser.add_argument( "--generator_clip_gradients", help="Global clipping to prevent gradient norm to exceed this value for generator.", type=str, default="None" ) parser.add_argument( "--generator_clip_weights", help="Clip weights within this range for generator.", type=str, default="None" ) parser.add_argument( "--generator_train_steps", help="Number of steps to train generator for per cycle.", type=int, default=100 ) # Critic parameters. parser.add_argument( "--critic_num_filters", help="Number of filters for critic conv layers.", type=str, default="64, 128" ) parser.add_argument( "--critic_kernel_sizes", help="Kernel sizes for critic conv layers.", type=str, default="5,5" ) parser.add_argument( "--critic_strides", help="Strides for critic conv layers.", type=str, default="1,2" ) parser.add_argument( "--critic_dropout_rates", help="Dropout rates for critic dropout layers.", type=str, default="0.3,0.3" ) parser.add_argument( "--critic_leaky_relu_alpha", help="The amount of leakyness of critic's leaky relus.", type=float, default=0.2 ) parser.add_argument( "--critic_l1_regularization_scale", help="Scale factor for L1 regularization for critic.", type=float, default=0.0 ) parser.add_argument( "--critic_l2_regularization_scale", help="Scale factor for L2 regularization for critic.", type=float, default=0.0 ) parser.add_argument( "--critic_optimizer", help="Name of optimizer to use for critic.", type=str, default="Adam" ) parser.add_argument( "--critic_learning_rate", help="How quickly we train our model by scaling the gradient for critic.", type=float, default=0.1 ) parser.add_argument( "--critic_adam_beta1", help="Adam optimizer's beta1 hyperparameter for first moment.", type=float, default=0.9 ) parser.add_argument( "--critic_adam_beta2", help="Adam optimizer's beta2 hyperparameter for second moment.", type=float, default=0.999 ) parser.add_argument( "--critic_adam_epsilon", help="Adam optimizer's epsilon hyperparameter for numerical stability.", type=float, default=1e-8 ) parser.add_argument( "--critic_rmsprop_decay", help="RMSProp optimizer's decay hyperparameter for discounting factor for the history/coming gradient.", type=float, default=0.9 ) parser.add_argument( "--critic_rmsprop_momentum", help="RMSProp optimizer's momentum hyperparameter for first moment.", type=float, default=0.999 ) parser.add_argument( "--critic_rmsprop_epsilon", help="RMSProp optimizer's epsilon hyperparameter for numerical stability.", type=float, default=1e-8 ) parser.add_argument( "--critic_clip_gradients", help="Global clipping to prevent gradient norm to exceed this value for critic.", type=str, default="None" ) parser.add_argument( "--critic_clip_weights", help="Clip weights within this range for critic.", type=str, default="None" ) parser.add_argument( "--critic_train_steps", help="Number of steps to train critic for per cycle.", type=int, default=100 ) # Parse all arguments. args = parser.parse_args() arguments = args.__dict__ # Unused args provided by service. arguments.pop("job_dir", None) arguments.pop("job-dir", None) # Fix input_fn_autotune. arguments["input_fn_autotune"] = convert_string_to_bool( string=arguments["input_fn_autotune"] ) # Fix eval steps. arguments["eval_steps"] = convert_string_to_none_or_int( string=arguments["eval_steps"]) # Fix generator_projection_dims. arguments["generator_projection_dims"] = convert_string_to_list_of_ints( string=arguments["generator_projection_dims"], sep="," ) # Fix num_filters. arguments["generator_num_filters"] = convert_string_to_list_of_ints( string=arguments["generator_num_filters"], sep="," ) arguments["critic_num_filters"] = convert_string_to_list_of_ints( string=arguments["critic_num_filters"], sep="," ) # Fix kernel_sizes. arguments["generator_kernel_sizes"] = convert_string_to_list_of_ints( string=arguments["generator_kernel_sizes"], sep="," ) arguments["critic_kernel_sizes"] = convert_string_to_list_of_ints( string=arguments["critic_kernel_sizes"], sep="," ) # Fix strides. arguments["generator_strides"] = convert_string_to_list_of_ints( string=arguments["generator_strides"], sep="," ) arguments["critic_strides"] = convert_string_to_list_of_ints( string=arguments["critic_strides"], sep="," ) # Fix critic_dropout_rates. arguments["critic_dropout_rates"] = convert_string_to_list_of_floats( string=arguments["critic_dropout_rates"], sep="," ) # Fix clip_gradients. arguments["generator_clip_gradients"] = convert_string_to_none_or_float( string=arguments["generator_clip_gradients"] ) arguments["critic_clip_gradients"] = convert_string_to_none_or_float( string=arguments["critic_clip_gradients"] ) # Fix clip_weights. arguments["generator_clip_weights"] = convert_string_to_list_of_floats( string=arguments["generator_clip_weights"], sep="," ) arguments["critic_clip_weights"] = convert_string_to_list_of_floats( string=arguments["critic_clip_weights"], sep="," ) # Append trial_id to path if we are doing hptuning. # This code can be removed if you are not using hyperparameter tuning. arguments["output_dir"] = os.path.join( arguments["output_dir"], json.loads( os.environ.get( "TF_CONFIG", "{}" ) ).get("task", {}).get("trial", "")) # Run the training job. model.train_and_evaluate(arguments) ###Output _____no_output_____
posts/developing-a-hierarchical-bayesian-linear-regression-model.ipynb
###Markdown In an earlier [post](), I explained how to apply a Bayesian linear regression model to retrievI use the historically accurate dataset behind the development of NASA OBPG's chlorophyll algorithms. ###Code import pandas as pd import matplotlib.pyplot as pl from sklearn.linear_model import LinearRegression import re import os import numpy as np import seaborn as sb from mpl_toolkits.basemap import Basemap import pymc3 as pm import warnings from cmocean import cm warnings.filterwarnings('ignore') % matplotlib inline def ParseTextFile(textFileHandle, topickle=False, convert2DateTime=False, **kwargs): """ * topickle: pickle resulting DataFrame if True * convert2DateTime: join date/time columns and convert entries to datetime objects * kwargs: pkl_fname: pickle file name to save DataFrame by, if topickle=True """ # Pre-compute some regex columns = re.compile('^/fields=(.+)') # to get field/column names units = re.compile('^/units=(.+)') # to get units -- optional endHeader = re.compile('^/end_header') # to know when to start storing data # Set some milestones noFields = True getData = False # loop through the text data for line in textFileHandle: if noFields: fieldStr = columns.findall(line) if len(fieldStr)>0: noFields = False fieldList = fieldStr[0].split(',') dataDict = dict.fromkeys(fieldList) continue # nothing left to do with this line, keep looping if not getData: if endHeader.match(line): # end of header reached, start acquiring data getData = True else: dataList = line.split(',') for field,datum in zip(fieldList, dataList): if not dataDict[field]: dataDict[field] = [] dataDict[field].append(datum) df = pd.DataFrame(dataDict, columns=fieldList) if convert2DateTime: datetimelabels=['year', 'month', 'day', 'hour', 'minute', 'second'] df['Datetime']= pd.to_datetime(df[datetimelabels], format='%Y-%m-%dT%H:%M:%S') df.drop(datetimelabels, axis=1, inplace=True) if topickle: fname=kwargs.pop('pkl_fname', 'dfNomad2.pkl') df.to_pickle(fname) return df def FindNaNs(df): for col in df.columns: sn = np.where(df[col].values=='NaN', True, False).sum() s9 = np.where('-999' in df[col].values, True, False).sum() print("%s: %d NaNs & %d -999s" % (col, sn, s9)) def FitPoly(X,y, order=4, lin=False): """ Numpy regression. Returns coeffs. kwargs: lin: specifies whether data is log transformed. Data is log transformed if not.""" if lin: X = np.log10(X) y = np.log10(y) coeffs = np.polyfit(X,y,deg=order) return coeffs with open('/accounts/ekarakoy/DATA/ocprep_v4_iop.txt') as fdata: df = ParseTextFile(fdata, topickle=True, convert2DateTime=True, pkl_fname=os.path.join(savDir, 'JeremyOCx_data')) df.info() # skipping output which shows a lot of unnecessary features for this exercise ###Output _____no_output_____ ###Markdown Select features I want for this modeling bit. ###Code basicCols = ['cruise', 'lat', 'lon', 'type', 'chl', 'Datetime'] IwantCols = basicCols + [col for col in df.columns if 'rrs' in col] dfRrs = df[IwantCols] swflbls = ['rrs411','rrs443','rrs489','rrs510','rrs555','rrs670'] swfCols = basicCols + swflbls dfSwf = dfRrs[swfCols] savDir = '/accounts/ekarakoy/DEV-ALL/BLOGS/DataScienceCorner/posts/bayesianChl_stuff/' df.to_pickle(os.path.join(savDir, 'dfOcPrepHistoric.pkl')) dfRrs.to_pickle(os.path.join(savDir, 'dfOcPrepRrs.pkl')) del df, dfRrs dfSwf.info() # skipping the output which shows that most columns are object type... FindNaNs(dfSwf) dfSwf.replace(to_replace='NaN',value=np.NaN,inplace=True) dfSwf.dropna(inplace=True) numCols = ['chl','lat','lon','rrs411','rrs443','rrs489','rrs510','rrs555','rrs670'] dfSwf[numCols] = dfSwf[numCols].apply(pd.to_numeric) dfSwf.info() dfSwf['maxBlue'] = dfSwf[['rrs443', 'rrs489', 'rrs510']].max(axis=1) dfSwf['OCxRatio'] = dfSwf.maxBlue/dfSwf.rrs555 dfLogOCx = pd.DataFrame(columns = ['OCxRatio','chl','type','cruise']) dfLogOCx.OCxRatio = np.log10(dfSwf.OCxRatio) dfLogOCx.chl = np.log10(dfSwf.chl) dfLogOCx[['type','cruise']] = dfSwf[['type','cruise']] dfSwf.to_pickle(os.path.join(savDir, 'dfSwf')) dfLogOCx.to_pickle(os.path.join(savDir, 'dfLogOCx')) sb.set(font_scale=1.5) g = sb.PairGrid(dfLogOCx, hue='type', vars=['chl','OCxRatio'], size=5, palette=sb.color_palette("cubehelix",2)) g = g.map_upper(pl.scatter, alpha=0.5, edgecolor='k',linewidth=2) g = g.map_diag(sb.kdeplot, lw=3) g = g.map_lower(sb.kdeplot,cmap="Reds_d") g.add_legend(); f,ax2 = pl.subplots(ncols=2, figsize=(14,6)) sb.violinplot(x='OCxRatio',y='type',data=dfLogOCx, hue='type', ax=ax2[0]) sb.violinplot(x='chl', y='type', data=dfLogOCx, hue='type', ax=ax2[1]); ax2[0].legend().set_visible(False) ax2[1].legend().set_visible(False) dfSwf.type.unique() ###Output _____no_output_____ ###Markdown Pooled bayesian model: ###Code logChlObs = dfLogOCx.chl.values logOCxRatio = dfLogOCx.OCxRatio.values OC4v6_coeffs = {'a0': 0.3272, 'a1': -2.9940, 'a2': 2.7218, 'a3': -1.2259, 'a4': -0.5683} with pm.Model() as pooled_model: a0 = pm.Normal('a0', mu=OC4v6_coeffs['a0'], sd=10) a1 = pm.Normal('a1', mu=OC4v6_coeffs['a1'], sd=10) a2 = pm.Normal('a2', mu=OC4v6_coeffs['a2'], sd=10) a3 = pm.Normal('a3', mu=OC4v6_coeffs['a3'], sd=10) a4 = pm.Normal('a4', mu=OC4v6_coeffs['a4'], sd=10) epsilon = pm.Uniform('epsilon', lower=0, upper=10) mu = a0 + a1 * logOCxRatio + a2 * logOCxRatio**2 + a3 *\ logOCxRatio**3 + a4 * logOCxRatio**4 logChlPred = pm.Normal('chlPred', mu=mu, sd=epsilon, observed=logChlObs) start = pm.find_MAP() step = pm.NUTS(scaling=start) traceOCx_pooled = pm.sample(10000, step=step, start=start) chainOCx_pooled = traceOCx_pooled[1000:] varnames=['a%d' %d for d in range(5)] + ['epsilon'] #refvals = [chainOCx_pooles['a%d'] % d for d in arange(5)] #refval = {'a%d' % d: rv for d,rv in zip(range(5), chainOCx_pooled['a%d'] )} pm.traceplot(chainOCx_pooled,varnames=varnames, grid=True); cfs = FitPoly(logOCxRatio,logChlObs) {'a%d' %d:rv for d,rv in zip(range(5),cfs[::-1])} OC4v6_coeffs refvals = [chainOCx_pooled['a%d'% d].mean() for d in range(5)] # bayes means with OC4_v6 mean normal priors refvals # bayes means with 0-mean normal priors refvals ###Output _____no_output_____
How to BRUTE-FORCE a Hash function.ipynb
###Markdown How to BRUTE-FORCE a Hash function *Md. Abrar Jahin* 2nd year, Khulna University of Engineering and TechnologyTo be a good Hash Function H(x), where y is the Hash value:1. H must be efficient to compute2. H must be deterministic3. y must be random looking4. H must be resistant to forgery * It should be very time consuming to find collisions * y should depend in every bit of the origin Using the standard library hashlib module I computed the MD5, SHA1 and SHA256 (that's SHA2 with a hash size of n=256 ) of the string "Hello, world!" ###Code import hashlib md=hashlib.md5() md.update(b"Hello, world!") sha1=hashlib.sha1() sha1.update(b"Hello, world!") sha2= hashlib.sha256() sha2.update(b"Hello, world!") print(md.hexdigest()) print(sha1.hexdigest()) print(sha2.hexdigest()) ###Output 6cd3556deb0da54bca060b4c39479839 943a702d06f34599aee1f8da8ef9f7296031d699 315f5bdb76d078c43b8ac0064e4a0164612b1fce77c869345bfc94c75894edd3 ###Markdown I implemented a hash function `simple_hash` that given a string `s`, computes its hash as follows: it starts with r = 7, and for every character in the string, multiplies r by 31, adds that character to r, and keeps everything modulo 216 . ###Code def simple_hash(s): r = 7 for c in s: r = (r * 31 + ord(c)) % 2**16 return r ###Output _____no_output_____ ###Markdown I'll now Brute-force the hash function that I've just written in the above cell!I've implemented a function `crack` that given a string s, loops until it finds a different string that collides with it, and returns the different string. ###Code import random import string def get_random_string(length): letters = string.ascii_lowercase return ''.join(random.choice(letters) for i in range(length)) def crack(s): hash1=simple_hash(s) for i in range(10*2**16): s2 = get_random_string(4) # log(2^16)/log(26) ~ 4 if simple_hash(s2)==hash1: break # print(i) return s2 # return s2 such that s != s2 and simple_hash(s) == simple_hash(s2) print(crack('hello')) ###Output myph ###Markdown The function `weak_md5` is a "weaker" version of MD5, using only the first 5 bytes of the MD5 hash. This means its hashing size is n=40 and it can be brute forced rather easily.I implemented a function `find_collisions` that loops over all the possible strings until it finds an arbitrary collision - that is, two different strings whose hash is the same - and returns them (as a tuple). ###Code import hashlib import itertools from itertools import product import string def weak_md5(s): return hashlib.md5(s).digest()[:5] def find_collisions(): chars = string.ascii_letters + '1234567890' d = {} for i in range(40): generator = itertools.product(chars, repeat = i) for password in generator: password = ''.join(password) h1 = weak_md5(password.encode('utf-8')) if h1 not in d: d[h1] = password else: return (password, d[h1]) # return (s1, s2) such that s1 != s2 and weak_md5(s1) == weak_md5(s2) ###Output _____no_output_____ ###Markdown To see how hard it is to brute force a real hash function, I tried running the function that I wrote in the previous cell, but using the full MD5. ###Code import hashlib def md5(s): return hashlib.md5(s).digest() def find_collisions(): chars = string.ascii_letters + '1234567890' d = {} for i in range(40): generator = itertools.product(chars, repeat = i) for password in generator: password = ''.join(password) h1 = weak_md5(password.encode('utf-8')) if h1 not in d: d[h1] = password else: return (password, d[h1]) ###Output _____no_output_____
Notebooks/Distribution of predictions.ipynb
###Markdown Distribution of predictionsRight now, sums are generated by randomly sampling `n_terms` numbers in the range \[0, `n_digits`\]. the problem with this is that sums summing "around the middle" occur most often. For example, if `n_digits=2` and `n_terms=2`, then sums are from 0+0 to 99+99, giving a range of 0 to 198. Thus sums summing to the midpoint of 99 occur the most often, and very few training examples are generated for sums summing to the lower or higher end. So the point of this notebook is to write functions that can generate a uniform distribution of sums with respect to the sum. ###Code import numpy as np from matplotlib import pyplot as plt import random ###Output _____no_output_____ ###Markdown Baseline ###Code def generate_sample(n_terms, n_digits): x = [np.random.randint(10 ** n_digits - 1) for _ in range(n_terms)] y = np.sum(x) return x, y sums = [] x_s = [] for _ in range(10**5): x, y = generate_sample(3, 2) x_s.extend(x) sums.append(y) plt.figure(figsize=(12, 8)) plt.hist(sums, bins=100); plt.figure(figsize=(12, 8)) plt.hist(x_s, bins=100); ###Output _____no_output_____ ###Markdown Uniform sampling ###Code def generate_uniform_sample(n_terms, n_digits, y): x = [] while len(x) < n_terms - 1: y_upper_bound = y - np.sum(x) n_digits_upper_bound = 10 ** n_digits - 1 upper_bound = min([y_upper_bound, n_digits_upper_bound]) if upper_bound > 0: x.append(np.random.randint(upper_bound+1)) else: x.append(0) x.append(y - np.sum(x)) random.shuffle(x) return x, y def uniform_samples(n_terms, n_digits): max_sum = (10**n_digits - 1) * n_terms possible_sums = range(max_sum + 1) sums = [] x_s = [] for _ in range(10**5): x, y = generate_uniform_sample(n_terms, n_digits, np.random.choice(possible_sums)) sums.append(y) x_s.extend(x) return x_s, sums x_s, sums = uniform_samples(n_terms=2, n_digits=2) plt.figure(figsize=(12, 8)) plt.hist(sums, bins=100); plt.figure(figsize=(12, 8)) plt.hist(x_s, bins=100); ###Output _____no_output_____
notebooks/OrphanedBlocks.ipynb
###Markdown Orphaned Blocks AnalyzerChart the distribution of orphaned blocks, show top winners and losers. ###Code import glob import json from pandas import DataFrame from pandas import json_normalize import pandas import requests # Load blocks from disk into dataframe def load_blocks_from_disk(path_to_blocks="./archive-blocks/"): block_files = glob.glob(path_to_blocks + "*.json") blocks = [] for file in block_files: with open(file) as fp: blocks.append(json.load(fp)) return blocks blocks_query = ''' query BlocksQuery { blocks(limit: 4000) { protocolState { consensusState { slot blockHeight blockchainLength } } canonical creator stateHash receivedTime dateTime } } ''' def load_blocks_from_block_explorer(url="https://graphql.minaexplorer.com/", limit=100): r = requests.post(url, json={'query': blocks_query}) payload = json.loads(r.text) blocks = payload["data"]["blocks"] cleaned = [] for block in blocks: cleaned.append({ "slot": block["protocolState"]["consensusState"]["slot"], "blockHeight": block["protocolState"]["consensusState"]["blockHeight"], "canonical": block["canonical"], "creator": block["creator"], "stateHash": block["stateHash"], "receivedTime": block["receivedTime"], "dateTime": block["dateTime"], }) return cleaned blocks = load_blocks_from_block_explorer() print(len(blocks)) df = DataFrame(blocks) display(df) vc = df["slot"].value_counts().reset_index(name="count") pandas.set_option('display.max_rows', 500) pandas.set_option('display.max_columns', 500) pandas.set_option('display.width', 1000) vc fullSlots = df.slot.unique() handicap = 1000 nFullSlots = len(df.slot.unique()) max_slot = 4324 # max_slot - (count of unique slots) = nEmptySlots emptySlots = max_slot - nFullSlots - handicap ratioEmpty = emptySlots/(max_slot-handicap) print(f"Total Slots: {max_slot}") print(f"Slot Handicap: {handicap}") print(f"Filled Slots: {nFullSlots}") print(f"Empty Slots: {emptySlots}") print(f"Ratio Empty: {ratioEmpty}") import plotly.express as px fig = px.bar(vc, x="index", y="count") fig.show() ###Output _____no_output_____
Pretrain/pretrain.ipynb
###Markdown Creation of the environment ###Code %tensorflow_version 2.x !pip3 install --upgrade pip #!pip install -qU t5 !pip3 install git+https://github.com/google-research/text-to-text-transfer-transformer.git #extra_id_x support import functools import os import time import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) import tensorflow.compat.v1 as tf import tensorflow_datasets as tfds import t5 #Set the base dir(Google cloud bucket) BASE_DIR = "gs://bucket_code_completion" if not BASE_DIR or BASE_DIR == "gs://": raise ValueError("You must enter a BASE_DIR.") ON_CLOUD = True if ON_CLOUD: import tensorflow_gcs_config from google.colab import auth # Set credentials for GCS reading/writing from Colab and TPU. TPU_TOPOLOGY = "2x2" try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() # TPU detection TPU_ADDRESS = tpu.get_master() print('Running on TPU:', TPU_ADDRESS) except ValueError: raise BaseException('ERROR: Not connected to a TPU runtime; please see the previous cell in this notebook for instructions!') auth.authenticate_user() tf.config.experimental_connect_to_host(TPU_ADDRESS) tensorflow_gcs_config.configure_gcs_from_colab_auth() tf.disable_v2_behavior() # Improve logging. from contextlib import contextmanager import logging as py_logging if ON_CLOUD: tf.get_logger().propagate = False py_logging.root.setLevel('INFO') @contextmanager def tf_verbosity_level(level): og_level = tf.logging.get_verbosity() tf.logging.set_verbosity(level) yield tf.logging.set_verbosity(og_level) ###Output Collecting pip [?25l Downloading https://files.pythonhosted.org/packages/de/47/58b9f3e6f611dfd17fb8bd9ed3e6f93b7ee662fb85bdfee3565e8979ddf7/pip-21.0-py3-none-any.whl (1.5MB)  |████████████████████████████████| 1.5MB 6.9MB/s [?25hInstalling collected packages: pip Found existing installation: pip 19.3.1 Uninstalling pip-19.3.1: Successfully uninstalled pip-19.3.1 Successfully installed pip-21.0 Collecting git+https://github.com/google-research/text-to-text-transfer-transformer.git Cloning https://github.com/google-research/text-to-text-transfer-transformer.git to /tmp/pip-req-build-paaxxk36 Running command git clone -q https://github.com/google-research/text-to-text-transfer-transformer.git /tmp/pip-req-build-paaxxk36 Requirement already satisfied: absl-py in /usr/local/lib/python3.6/dist-packages (from t5==0.8.1) (0.10.0) Requirement already satisfied: babel in /usr/local/lib/python3.6/dist-packages (from t5==0.8.1) (2.9.0) Requirement already satisfied: gin-config in /usr/local/lib/python3.6/dist-packages (from t5==0.8.1) (0.4.0) Collecting mesh-tensorflow[transformer]>=0.1.13 Downloading mesh_tensorflow-0.1.18-py3-none-any.whl (361 kB)  |████████████████████████████████| 361 kB 6.7 MB/s [?25hRequirement already satisfied: nltk in /usr/local/lib/python3.6/dist-packages (from t5==0.8.1) (3.2.5) Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from t5==0.8.1) (1.19.5) Requirement already satisfied: pandas in /usr/local/lib/python3.6/dist-packages (from t5==0.8.1) (1.1.5) Collecting rouge-score Downloading rouge_score-0.0.4-py2.py3-none-any.whl (22 kB) Collecting sacrebleu Downloading sacrebleu-1.5.0-py3-none-any.whl (65 kB)  |████████████████████████████████| 65 kB 3.7 MB/s [?25hRequirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from t5==0.8.1) (0.22.2.post1) Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from t5==0.8.1) (1.4.1) Collecting sentencepiece Downloading sentencepiece-0.1.95-cp36-cp36m-manylinux2014_x86_64.whl (1.2 MB)  |████████████████████████████████| 1.2 MB 18.2 MB/s [?25hRequirement already satisfied: six>=1.14 in /usr/local/lib/python3.6/dist-packages (from t5==0.8.1) (1.15.0) Collecting tensorflow-text Downloading tensorflow_text-2.4.3-cp36-cp36m-manylinux1_x86_64.whl (3.4 MB)  |████████████████████████████████| 3.4 MB 28.1 MB/s [?25hCollecting tfds-nightly Downloading tfds_nightly-4.2.0.dev202101280107-py3-none-any.whl (3.8 MB)  |████████████████████████████████| 3.8 MB 74.2 MB/s [?25hRequirement already satisfied: torch in /usr/local/lib/python3.6/dist-packages (from t5==0.8.1) (1.7.0+cu101) Collecting transformers>=2.7.0 Downloading transformers-4.2.2-py3-none-any.whl (1.8 MB)  |████████████████████████████████| 1.8 MB 90.4 MB/s [?25hRequirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from mesh-tensorflow[transformer]>=0.1.13->t5==0.8.1) (0.16.0) Requirement already satisfied: tensorflow-datasets in /usr/local/lib/python3.6/dist-packages (from mesh-tensorflow[transformer]>=0.1.13->t5==0.8.1) (4.0.1) Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.6/dist-packages (from transformers>=2.7.0->t5==0.8.1) (4.41.1) Requirement already satisfied: dataclasses in /usr/local/lib/python3.6/dist-packages (from transformers>=2.7.0->t5==0.8.1) (0.8) Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.6/dist-packages (from transformers>=2.7.0->t5==0.8.1) (3.4.0) Requirement already satisfied: filelock in /usr/local/lib/python3.6/dist-packages (from transformers>=2.7.0->t5==0.8.1) (3.0.12) Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.6/dist-packages (from transformers>=2.7.0->t5==0.8.1) (2019.12.20) Requirement already satisfied: packaging in /usr/local/lib/python3.6/dist-packages (from transformers>=2.7.0->t5==0.8.1) (20.8) Collecting sacremoses Downloading sacremoses-0.0.43.tar.gz (883 kB)  |████████████████████████████████| 883 kB 77.6 MB/s [?25hRequirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from transformers>=2.7.0->t5==0.8.1) (2.23.0) Collecting tokenizers==0.9.4 Downloading tokenizers-0.9.4-cp36-cp36m-manylinux2010_x86_64.whl (2.9 MB)  |████████████████████████████████| 2.9 MB 86.0 MB/s [?25hRequirement already satisfied: pytz>=2015.7 in /usr/local/lib/python3.6/dist-packages (from babel->t5==0.8.1) (2018.9) Requirement already satisfied: typing-extensions>=3.6.4 in /usr/local/lib/python3.6/dist-packages (from importlib-metadata->transformers>=2.7.0->t5==0.8.1) (3.7.4.3) Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.6/dist-packages (from importlib-metadata->transformers>=2.7.0->t5==0.8.1) (3.4.0) Requirement already satisfied: pyparsing>=2.0.2 in /usr/local/lib/python3.6/dist-packages (from packaging->transformers>=2.7.0->t5==0.8.1) (2.4.7) Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.6/dist-packages (from pandas->t5==0.8.1) (2.8.1) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->transformers>=2.7.0->t5==0.8.1) (2.10) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->transformers>=2.7.0->t5==0.8.1) (2020.12.5) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->transformers>=2.7.0->t5==0.8.1) (3.0.4) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->transformers>=2.7.0->t5==0.8.1) (1.24.3) Collecting portalocker Downloading portalocker-2.1.0-py2.py3-none-any.whl (13 kB) Requirement already satisfied: click in /usr/local/lib/python3.6/dist-packages (from sacremoses->transformers>=2.7.0->t5==0.8.1) (7.1.2) Requirement already satisfied: joblib in /usr/local/lib/python3.6/dist-packages (from sacremoses->transformers>=2.7.0->t5==0.8.1) (1.0.0) Requirement already satisfied: tensorflow-metadata in /usr/local/lib/python3.6/dist-packages (from tensorflow-datasets->mesh-tensorflow[transformer]>=0.1.13->t5==0.8.1) (0.27.0) Requirement already satisfied: promise in /usr/local/lib/python3.6/dist-packages (from tensorflow-datasets->mesh-tensorflow[transformer]>=0.1.13->t5==0.8.1) (2.3) Requirement already satisfied: attrs>=18.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow-datasets->mesh-tensorflow[transformer]>=0.1.13->t5==0.8.1) (20.3.0) Requirement already satisfied: importlib-resources in /usr/local/lib/python3.6/dist-packages (from tensorflow-datasets->mesh-tensorflow[transformer]>=0.1.13->t5==0.8.1) (5.1.0) Requirement already satisfied: protobuf>=3.6.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow-datasets->mesh-tensorflow[transformer]>=0.1.13->t5==0.8.1) (3.12.4) Requirement already satisfied: dill in /usr/local/lib/python3.6/dist-packages (from tensorflow-datasets->mesh-tensorflow[transformer]>=0.1.13->t5==0.8.1) (0.3.3) Requirement already satisfied: termcolor in /usr/local/lib/python3.6/dist-packages (from tensorflow-datasets->mesh-tensorflow[transformer]>=0.1.13->t5==0.8.1) (1.1.0) Requirement already satisfied: dm-tree in /usr/local/lib/python3.6/dist-packages (from tensorflow-datasets->mesh-tensorflow[transformer]>=0.1.13->t5==0.8.1) (0.1.5) Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from protobuf>=3.6.1->tensorflow-datasets->mesh-tensorflow[transformer]>=0.1.13->t5==0.8.1) (51.3.3) Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow-metadata->tensorflow-datasets->mesh-tensorflow[transformer]>=0.1.13->t5==0.8.1) (1.52.0) Requirement already satisfied: tensorflow-hub>=0.8.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow-text->t5==0.8.1) (0.11.0) Requirement already satisfied: tensorflow<2.5,>=2.4.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow-text->t5==0.8.1) (2.4.1) Requirement already satisfied: tensorboard~=2.4 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.5,>=2.4.0->tensorflow-text->t5==0.8.1) (2.4.1) Requirement already satisfied: grpcio~=1.32.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.5,>=2.4.0->tensorflow-text->t5==0.8.1) (1.32.0) Requirement already satisfied: wheel~=0.35 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.5,>=2.4.0->tensorflow-text->t5==0.8.1) (0.36.2) Requirement already satisfied: flatbuffers~=1.12.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.5,>=2.4.0->tensorflow-text->t5==0.8.1) (1.12) Requirement already satisfied: keras-preprocessing~=1.1.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.5,>=2.4.0->tensorflow-text->t5==0.8.1) (1.1.2) Requirement already satisfied: opt-einsum~=3.3.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.5,>=2.4.0->tensorflow-text->t5==0.8.1) (3.3.0) Requirement already satisfied: tensorflow-estimator<2.5.0,>=2.4.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.5,>=2.4.0->tensorflow-text->t5==0.8.1) (2.4.0) Requirement already satisfied: h5py~=2.10.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.5,>=2.4.0->tensorflow-text->t5==0.8.1) (2.10.0) Requirement already satisfied: astunparse~=1.6.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.5,>=2.4.0->tensorflow-text->t5==0.8.1) (1.6.3) Requirement already satisfied: google-pasta~=0.2 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.5,>=2.4.0->tensorflow-text->t5==0.8.1) (0.2.0) Requirement already satisfied: gast==0.3.3 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.5,>=2.4.0->tensorflow-text->t5==0.8.1) (0.3.3) Requirement already satisfied: wrapt~=1.12.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow<2.5,>=2.4.0->tensorflow-text->t5==0.8.1) (1.12.1) Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard~=2.4->tensorflow<2.5,>=2.4.0->tensorflow-text->t5==0.8.1) (3.3.3) Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard~=2.4->tensorflow<2.5,>=2.4.0->tensorflow-text->t5==0.8.1) (1.0.1) Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.6/dist-packages (from tensorboard~=2.4->tensorflow<2.5,>=2.4.0->tensorflow-text->t5==0.8.1) (0.4.2) Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.6/dist-packages (from tensorboard~=2.4->tensorflow<2.5,>=2.4.0->tensorflow-text->t5==0.8.1) (1.17.2) Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorboard~=2.4->tensorflow<2.5,>=2.4.0->tensorflow-text->t5==0.8.1) (1.8.0) Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard~=2.4->tensorflow<2.5,>=2.4.0->tensorflow-text->t5==0.8.1) (4.7) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard~=2.4->tensorflow<2.5,>=2.4.0->tensorflow-text->t5==0.8.1) (4.2.1) Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tensorboard~=2.4->tensorflow<2.5,>=2.4.0->tensorflow-text->t5==0.8.1) (0.2.8) Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard~=2.4->tensorflow<2.5,>=2.4.0->tensorflow-text->t5==0.8.1) (1.3.0) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.6/dist-packages (from pyasn1-modules>=0.2.1->google-auth<2,>=1.6.3->tensorboard~=2.4->tensorflow<2.5,>=2.4.0->tensorflow-text->t5==0.8.1) (0.4.8) Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.6/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard~=2.4->tensorflow<2.5,>=2.4.0->tensorflow-text->t5==0.8.1) (3.1.0) Building wheels for collected packages: t5, sacremoses Building wheel for t5 (setup.py) ... [?25l[?25hdone Created wheel for t5: filename=t5-0.8.1-py3-none-any.whl size=219997 sha256=a2d8b5da8014968b2541565069260658b0545c00e8e4fb9fd48b026ec9c30c80 Stored in directory: /tmp/pip-ephem-wheel-cache-0_isxo0a/wheels/aa/e1/a1/847d16e451940b1fe89940aa88875c96ae2f7cc63e509e9226 Building wheel for sacremoses (setup.py) ... [?25l[?25hdone Created wheel for sacremoses: filename=sacremoses-0.0.43-py3-none-any.whl size=893258 sha256=1e7ab957dc7fc3f191b19d8fae8dfa26f0d8b1d070a14fb46fa7d405ac07cc74 Stored in directory: /root/.cache/pip/wheels/49/25/98/cdea9c79b2d9a22ccc59540b1784b67f06b633378e97f58da2 Successfully built t5 sacremoses Installing collected packages: tokenizers, sacremoses, portalocker, mesh-tensorflow, transformers, tfds-nightly, tensorflow-text, sentencepiece, sacrebleu, rouge-score, t5 Successfully installed mesh-tensorflow-0.1.18 portalocker-2.1.0 rouge-score-0.0.4 sacrebleu-1.5.0 sacremoses-0.0.43 sentencepiece-0.1.95 t5-0.8.1 tensorflow-text-2.4.3 tfds-nightly-4.2.0.dev202101280107 tokenizers-0.9.4 transformers-4.2.2 Running on TPU: grpc://10.108.201.82:8470 WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/compat/v2_compat.py:96: disable_resource_variables (from tensorflow.python.ops.variable_scope) is deprecated and will be removed in a future version. Instructions for updating: non-resource variables are not supported in the long term ###Markdown Path to csv fileThis variable contains the path to the tsv file for training loaded on the bucket. Please be sure to insert the correct path ###Code nq_tsv_path = { "train":'gs://bucket_code_completion/T5_extension/data/code.tsv', "validation":'gs://bucket_code_completion/T5_extension/data/code.tsv', } ###Output _____no_output_____ ###Markdown Preprocess of the datasetIn this step we preprocess the dataset. You have to change the path to vocab files (*vocab_model_path* and *vocab_path*) ###Code from t5.data import postprocessors as t5_postprocessors from t5.seqio import Feature,SentencePieceVocabulary # # Set the path of sentencepiece model and vocab files vocab_model_path = 'gs://bucket_code_completion/T5_extension/code.model' vocab_path = 'gs://bucket_code_completion/T5_extension/code.vocab' TaskRegistry = t5.data.TaskRegistry TfdsTask = t5.data.TfdsTask def get_default_vocabulary(): return SentencePieceVocabulary(vocab_model_path, 100) DEFAULT_OUTPUT_FEATURES = { "inputs": Feature( vocabulary=get_default_vocabulary(), add_eos=True, required=False), "targets": Feature( vocabulary=get_default_vocabulary(), add_eos=True) } def nq_dataset_fn(split, shuffle_files=True): # We only have one file for each split. del shuffle_files # Load lines from the text file as examples. ds = tf.data.TextLineDataset(nq_tsv_path[split]) ds = ds.map( functools.partial(tf.io.decode_csv, record_defaults=["string","string"], field_delim="\t", use_quote_delim=False), num_parallel_calls=tf.data.experimental.AUTOTUNE) ds = ds.map(lambda *ex: dict(zip(["input", "output"], ex))) return ds print("A few raw train examples...") for ex in tfds.as_numpy(nq_dataset_fn("train").take(5)): print(ex) def preprocessing(ds): def to_inputs_and_targets(ex): inputs = tf.strings.join([ ex['input']], separator=' ') class_label = tf.strings.join([ex['output']], separator=' ') return {'inputs': inputs, 'targets': class_label } return ds.map(to_inputs_and_targets, num_parallel_calls=tf.data.experimental.AUTOTUNE) #Create a new training task t5.data.TaskRegistry.remove('pretraining') t5.data.TaskRegistry.add( "pretraining", dataset_fn=nq_dataset_fn, splits=["train", "validation"], text_preprocessor=[preprocessing], output_features = DEFAULT_OUTPUT_FEATURES, metric_fns=[t5.evaluation.metrics.accuracy], ) nq_task = t5.data.TaskRegistry.get("pretraining") ds = nq_task.get_dataset(split="train", sequence_length={"inputs": 256, "targets": 256}) print("A few preprocessed training examples...") for ex in tfds.as_numpy(ds.take(5)): print(ex) ###Output /usr/local/lib/python3.6/dist-packages/t5/seqio/preprocessors.py:65: UserWarning: Creating resources inside a function passed to Dataset.map() is not supported. Create each resource outside the function, and capture it inside the function to use it. _tokenize, num_parallel_calls=tf.data.experimental.AUTOTUNE) ###Markdown Pretraining of the modelYou can pretrain the model running the following two cells. Please set the correct path of the variable *MODEL_DIR* (the path to save the pretrained model in) and *PATH_GIN_FILE* (the gin file configuration for the pre-training) ###Code from mesh_tensorflow.transformer.learning_rate_schedules import learning_rate_schedule_noam #See https://github.com/google-research/text-to-text-transfer-transformer if you want to scale up the model MODEL_SIZE = "small" MODEL_DIR = 'gs://bucket_code_completion/T5_extension/pretrained_with_masking' model_parallelism, train_batch_size, keep_checkpoint_max = { "small": (1, 256, 16), "base": (2, 128, 8), "large": (8, 64, 4), "3B": (8, 16, 1), "11B": (8, 16, 1)}[MODEL_SIZE] tf.io.gfile.makedirs(MODEL_DIR) model = t5.models.MtfModel( model_dir=MODEL_DIR, tpu=TPU_ADDRESS, tpu_topology=TPU_TOPOLOGY, model_parallelism=model_parallelism, batch_size=train_batch_size, sequence_length={"inputs": 256, "targets": 256}, learning_rate_schedule = learning_rate_schedule_noam, save_checkpoints_steps=5000, keep_checkpoint_max=keep_checkpoint_max if ON_CLOUD else None ) PATH_GIN_FILE = 'gs://bucket_code_completion/T5_extension/pretrain_config/operative_config.gin' import gin with gin.unlock_config(): gin.parse_config_file(PATH_GIN_FILE) TRAIN_STEPS = 200000 model.train("pretraining", steps=TRAIN_STEPS) ###Output _____no_output_____
st_dfb_tests_8s_hmdd.ipynb
###Markdown ###Code #@title # Clone the repository and upgrade Keras {display-mode: "form"} !git clone https://github.com/iamsoroush/DeepEEGAbstractor.git !pip install --upgrade keras !rm -r DeepEEGAbstractor #@title # Imports {display-mode: "form"} import os import pickle import sys sys.path.append('DeepEEGAbstractor') import numpy as np from src.helpers import CrossValidator from src.models import DeepEEGAbstractor from src.dataset import DataLoader, Splitter, FixedLenGenerator from google.colab import drive drive.mount('/content/gdrive') #@title # Set data path {display-mode: "form"} #@markdown --- #@markdown Type in the folder in your google drive that contains numpy _data_ folder: parent_dir = 'soroush'#@param {type:"string"} gdrive_path = os.path.abspath(os.path.join('gdrive/My Drive', parent_dir)) data_dir = os.path.join(gdrive_path, 'data') cv_results_dir = os.path.join(gdrive_path, 'cross_validation') if not os.path.exists(cv_results_dir): os.mkdir(cv_results_dir) print('Data directory: ', data_dir) print('Cross validation results dir: ', cv_results_dir) #@title ## Set Parameters batch_size = 80 epochs = 100 k = 10 t = 10 instance_duration = 8 instance_overlap = 2 sampling_rate = 256 n_channels = 20 task = 'hmdd' data_mode = 'cross_subject' #@title ## DeepEEGAbstractor -Default params model_name = 'Deep-EEG-Abstractor' train_generator = FixedLenGenerator(batch_size=batch_size, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=True) test_generator = FixedLenGenerator(batch_size=8, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=False) params = {'task': task, 'data_mode': data_mode, 'main_res_dir': cv_results_dir, 'model_name': model_name, 'epochs': epochs, 'train_generator': train_generator, 'test_generator': test_generator, 't': t, 'k': k, 'channel_drop': True} validator = CrossValidator(**params) dataloader = DataLoader(data_dir, task, data_mode, sampling_rate, instance_duration, instance_overlap) data, labels = dataloader.load_data() input_shape = (sampling_rate * instance_duration, n_channels) model_obj = DeepEEGAbstractor(input_shape, model_name=model_name) scores = validator.do_cv(model_obj, data, labels) #@title ## DeepEEGAbstractor - Without WN model_name = 'Deep-EEG-Abstractor-NoWN' train_generator = FixedLenGenerator(batch_size=batch_size, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=True) test_generator = FixedLenGenerator(batch_size=8, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=False) params = {'task': task, 'data_mode': data_mode, 'main_res_dir': cv_results_dir, 'model_name': model_name, 'epochs': epochs, 'train_generator': train_generator, 'test_generator': test_generator, 't': t, 'k': k, 'channel_drop': True} validator = CrossValidator(**params) dataloader = DataLoader(data_dir, task, data_mode, sampling_rate, instance_duration, instance_overlap) data, labels = dataloader.load_data() input_shape = (sampling_rate * instance_duration, n_channels) model_obj = DeepEEGAbstractor(input_shape, model_name=model_name, weight_norm=False) scores = validator.do_cv(model_obj, data, labels) #@title ## DeepEEGAbstractor - BatchNormalization model_name = 'Deep-EEG-Abstractor-BN' train_generator = FixedLenGenerator(batch_size=batch_size, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=True) test_generator = FixedLenGenerator(batch_size=8, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=False) params = {'task': task, 'data_mode': data_mode, 'main_res_dir': cv_results_dir, 'model_name': model_name, 'epochs': epochs, 'train_generator': train_generator, 'test_generator': test_generator, 't': t, 'k': k, 'channel_drop': True} validator = CrossValidator(**params) dataloader = DataLoader(data_dir, task, data_mode, sampling_rate, instance_duration, instance_overlap) data, labels = dataloader.load_data() input_shape = (sampling_rate * instance_duration, n_channels) model_obj = DeepEEGAbstractor(input_shape, model_name=model_name, normalization='batch') scores = validator.do_cv(model_obj, data, labels) #@title ## DeepEEGAbstractor - InstanceNormalization model_name = 'Deep-EEG-Abstractor-IN' train_generator = FixedLenGenerator(batch_size=batch_size, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=True) test_generator = FixedLenGenerator(batch_size=8, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=False) params = {'task': task, 'data_mode': data_mode, 'main_res_dir': cv_results_dir, 'model_name': model_name, 'epochs': epochs, 'train_generator': train_generator, 'test_generator': test_generator, 't': t, 'k': k, 'channel_drop': True} validator = CrossValidator(**params) dataloader = DataLoader(data_dir, task, data_mode, sampling_rate, instance_duration, instance_overlap) data, labels = dataloader.load_data() input_shape = (sampling_rate * instance_duration, n_channels) model_obj = DeepEEGAbstractor(input_shape, model_name=model_name, normalization='instance') scores = validator.do_cv(model_obj, data, labels) #@title ## DeepEEGAbstractor - Deeper model_name = 'Deep-EEG-Abstractor-Deeper' train_generator = FixedLenGenerator(batch_size=batch_size, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=True) test_generator = FixedLenGenerator(batch_size=8, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=False) params = {'task': task, 'data_mode': data_mode, 'main_res_dir': cv_results_dir, 'model_name': model_name, 'epochs': epochs, 'train_generator': train_generator, 'test_generator': test_generator, 't': t, 'k': k, 'channel_drop': True} validator = CrossValidator(**params) dataloader = DataLoader(data_dir, task, data_mode, sampling_rate, instance_duration, instance_overlap) data, labels = dataloader.load_data() input_shape = (sampling_rate * instance_duration, n_channels) model_obj = DeepEEGAbstractor(input_shape, model_name=model_name, n_kernels=(6, 6, 6, 4, 4)) scores = validator.do_cv(model_obj, data, labels) #@title ## DeepEEGAbstractor - Wider model_name = 'Deep-EEG-Abstractor-Wider' train_generator = FixedLenGenerator(batch_size=batch_size, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=True) test_generator = FixedLenGenerator(batch_size=8, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=False) params = {'task': task, 'data_mode': data_mode, 'main_res_dir': cv_results_dir, 'model_name': model_name, 'epochs': epochs, 'train_generator': train_generator, 'test_generator': test_generator, 't': t, 'k': k, 'channel_drop': True} validator = CrossValidator(**params) dataloader = DataLoader(data_dir, task, data_mode, sampling_rate, instance_duration, instance_overlap) data, labels = dataloader.load_data() input_shape = (sampling_rate * instance_duration, n_channels) model_obj = DeepEEGAbstractor(input_shape, model_name=model_name, n_kernels=(6, 6, 8, 10)) scores = validator.do_cv(model_obj, data, labels) #@title ## DeepEEGAbstractor - Attv1 model_name = 'Deep-EEG-Abstractor-Attv1' train_generator = FixedLenGenerator(batch_size=batch_size, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=True) test_generator = FixedLenGenerator(batch_size=8, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=False) params = {'task': task, 'data_mode': data_mode, 'main_res_dir': cv_results_dir, 'model_name': model_name, 'epochs': epochs, 'train_generator': train_generator, 'test_generator': test_generator, 't': t, 'k': k, 'channel_drop': True} validator = CrossValidator(**params) dataloader = DataLoader(data_dir, task, data_mode, sampling_rate, instance_duration, instance_overlap) data, labels = dataloader.load_data() input_shape = (sampling_rate * instance_duration, n_channels) model_obj = DeepEEGAbstractor(input_shape, model_name=model_name, attention='v1') scores = validator.do_cv(model_obj, data, labels) #@title ## DeepEEGAbstractor - Attv2 model_name = 'Deep-EEG-Abstractor-Attv2' train_generator = FixedLenGenerator(batch_size=batch_size, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=True) test_generator = FixedLenGenerator(batch_size=8, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=False) params = {'task': task, 'data_mode': data_mode, 'main_res_dir': cv_results_dir, 'model_name': model_name, 'epochs': epochs, 'train_generator': train_generator, 'test_generator': test_generator, 't': t, 'k': k, 'channel_drop': True} validator = CrossValidator(**params) dataloader = DataLoader(data_dir, task, data_mode, sampling_rate, instance_duration, instance_overlap) data, labels = dataloader.load_data() input_shape = (sampling_rate * instance_duration, n_channels) model_obj = DeepEEGAbstractor(input_shape, model_name=model_name, attention='v2') scores = validator.do_cv(model_obj, data, labels) #@title ## DeepEEGAbstractor - Attv3 model_name = 'Deep-EEG-Abstractor-Attv3' train_generator = FixedLenGenerator(batch_size=batch_size, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=True) test_generator = FixedLenGenerator(batch_size=8, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=False) params = {'task': task, 'data_mode': data_mode, 'main_res_dir': cv_results_dir, 'model_name': model_name, 'epochs': epochs, 'train_generator': train_generator, 'test_generator': test_generator, 't': t, 'k': k, 'channel_drop': True} validator = CrossValidator(**params) dataloader = DataLoader(data_dir, task, data_mode, sampling_rate, instance_duration, instance_overlap) data, labels = dataloader.load_data() input_shape = (sampling_rate * instance_duration, n_channels) model_obj = DeepEEGAbstractor(input_shape, model_name=model_name, attention='v3') scores = validator.do_cv(model_obj, data, labels) #@title ## DeepEEGAbstractor - HDropout model_name = 'Deep-EEG-Abstractor-HDropout' train_generator = FixedLenGenerator(batch_size=batch_size, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=True) test_generator = FixedLenGenerator(batch_size=8, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=False) params = {'task': task, 'data_mode': data_mode, 'main_res_dir': cv_results_dir, 'model_name': model_name, 'epochs': epochs, 'train_generator': train_generator, 'test_generator': test_generator, 't': t, 'k': k, 'channel_drop': True} validator = CrossValidator(**params) dataloader = DataLoader(data_dir, task, data_mode, sampling_rate, instance_duration, instance_overlap) data, labels = dataloader.load_data() input_shape = (sampling_rate * instance_duration, n_channels) model_obj = DeepEEGAbstractor(input_shape, model_name=model_name, spatial_dropout_rate=0.2, dropout_rate=0.5) scores = validator.do_cv(model_obj, data, labels) #@title ## DeepEEGAbstractor - InputDropout model_name = 'Deep-EEG-Abstractor-InputDropout' train_generator = FixedLenGenerator(batch_size=batch_size, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=True) test_generator = FixedLenGenerator(batch_size=8, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=False) params = {'task': task, 'data_mode': data_mode, 'main_res_dir': cv_results_dir, 'model_name': model_name, 'epochs': epochs, 'train_generator': train_generator, 'test_generator': test_generator, 't': t, 'k': k, 'channel_drop': True} validator = CrossValidator(**params) dataloader = DataLoader(data_dir, task, data_mode, sampling_rate, instance_duration, instance_overlap) data, labels = dataloader.load_data() input_shape = (sampling_rate * instance_duration, n_channels) model_obj = DeepEEGAbstractor(input_shape, model_name=model_name, input_dropout=True) scores = validator.do_cv(model_obj, data, labels) ###Output _____no_output_____
kaala-mark2.ipynb
###Markdown Features/Attributes1. Rainfall2. Temperature3. Vegetation4. Potential evapotranspiration5. Length of growing period as a function of rainfall.6. Soil storage7. Soil scape8. Soil type 9. Current season 10. Companion crops 11. Time for plant to growSource: [How to determine the kinds of crops suitable to different types of soil? - ResearchGate](https://www.researchgate.net/post/How_to_determine_the_kinds_of_crops_suitable_to_different_types_of_soil) Classes/Labels/CropsCEREALS1. Rice 2. Jowar (Cholam) 3. Bajra (Cumbu) 4. Ragi PULSES9. Bengalgram 10. Redgram Source: [Season and Crop Report of Tamil Nadu](http://www.tn.gov.in/crop/AreaProduction.htm)which gives us 6 classes. ###Code import numpy as np import pandas as pd from sklearn.datasets import make_classification X, y = make_classification(n_samples=(24*60*60*7), n_features=11, n_classes=6,n_informative=5, random_state=42) pd.Series(y).value_counts() X.shape df = pd.DataFrame(X) df['class'] = y df.head() df.shape df.to_csv('kaala-init.csv', header=None, index=False) ###Output _____no_output_____ ###Markdown Building the model. ###Code # helper tools from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score ###Output _____no_output_____ ###Markdown Applying PCA ###Code from sklearn.decomposition import PCA pca = PCA(n_components=5) pca.fit(X) X_dash = pca.transform(X) X_train, X_test, y_train, y_test = train_test_split(X_dash, y, test_size=0.2, random_state=69) from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier(n_neighbors = 9) model.fit(X_train, y_train) y_pred = model.predict(X_test) print (accuracy_score(y_test, y_pred)) seed = np.random.randint(0, 1000) seed X_test[seed] print(model.predict_proba(X_test[seed].reshape(1, -1))) from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier(n_neighbors = 30) model.fit(X_train, y_train) y_pred = model.predict(X_test) print (accuracy_score(y_test, y_pred)) print(model.predict_proba(X_test[seed].reshape(1, -1))) ###Output [[ 0. 0.96666667 0. 0. 0. 0.03333333]] ###Markdown Now testing with random sample from the dataframe ###Code df.iloc[[seed]] # selects random observation from the df pca.transform(df.iloc[[seed], :-1]) # passing only the features of random observation to the PCA to reduce it to 5 componenets print(model.predict_proba(pca.transform(df.iloc[[seed], :-1]))) ###Output [[ 0. 0.03333333 0. 0. 0.96666667 0. ]]
MeanVarianceCorrelation.ipynb
###Markdown Expectations of test functionsThe expected value of a function $\phi(X): \mathcal{X} \rightarrow \mathcal{R}$ is defined as$$E[\phi(X)] = \int \phi(X) p(X) dx$$* Data distribution: $p(X)$* Test function: $\phi(X)$Intuitively, this is the average value that the function $\phi$ take when given random inputs $X$ with a distribution of $p(X)$. Some test functions are special Mean$\phi(X) = X$$$E[X] = \int p(X) X dx = \int X \mu(dx)$$ Variance$\phi(X) = (X - E[X])^2$$$Var[X] = E[(X - E[X])^2] = \int p(X) (X - E[X])^2 dx$$ CovarianceData distribution: $p(X, Y)$$$\phi = (X-E[X])(Y - E[Y])$$$$Cov[X,Y] = E[(X-E[X])(Y - E[Y])]$$ Correlation Coefficient$$\rho(X,Y) = \frac{Cov[X,Y]}{\sqrt{Var[X]Var[Y]}}$$$$-1 \leq \rho\leq 1$$ Emprical distributionsSuppose we are given a dataset $X = \{x_1, x_2, \dots, x_N\}$$$\tilde{p}(x) = \frac{1}{N}\sum_{i=1}^N \delta(x - x_i)$$ Emprical bivariate distributionDataset of pairs $X = \{(x_1,y_1), (x_2,y_2), \dots, (x_N, y_N)\}$$$\tilde{p}(x, y) = \frac{1}{N}\sum_{i=1}^N \delta(x - x_i)\delta(y - y_i)$$ Sample average and sample varianceCompute expectations with respect to the emprical distribution$$E[x] = \int x \tilde{p}(x) dx = \int x \frac{1}{N}\sum_{i=1}^N \delta(x - x_i) dx = \frac{1}{N}\sum_{i=1}^N x_i \equiv s_1/N$$$$Var[x] = \int (x-E[x])^2 \tilde{p}(x) dx = E[x^2] - m^2 = \frac{1}{N}\sum_{i=1}^N x^2_i - \frac{1}{N^2}s_1^2 \equiv\frac{1}{N}s_2 - \frac{1}{N^2}s_1^2$$Here, $s_1 = \sum_{i=1}^N x_i$ and $s_2 = \sum_{i=1}^N x_i^2$ are known as the first and second (sample) moments, respectively. Generative models A generative model is a computational procedure with random inputs that describes how to simulate a dataset $X$. The model defines a joint distribution of the variables of the dataset and possibly additional hidden (unobserved) variables and parameters $H$ to aid the data generation mechanism, denoted as $p(X, H)$.A new terminology for a generative model is a _probabilistic program_.Given a generative model and a dataset, the posterior distribution over the hidden variables can be computed via Bayesian inference $P(H|X)$. The hidden variables and parameters provide explanations for the observed data. Generative Model Example\begin{eqnarray}w & \sim & \mathcal{U}(0,1) \\u & = & \cos(2\pi w) \end{eqnarray} ###Code %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np N = 50 u = np.cos(2*np.pi*np.random.rand(N)) plt.figure(figsize=(6,2)) plt.plot(u, np.zeros_like(u), 'o') plt.show() N = 500 u = np.cos(2*np.pi*np.random.rand(N)) plt.figure(figsize=(6,2)) plt.hist(u, bins=30) plt.show() ###Output _____no_output_____ ###Markdown Generative Model Example \begin{eqnarray}w & \sim & \mathcal{U}(0,1) \\u & = & \cos(2\pi w) \\e & \sim & \mathcal{N}\left(0, (\sigma u)^2 \left(\begin{array}{cc} 1 & 0\\ 0 & 1\\\end{array}\right) \right) \\x & \sim & \left(\begin{array}{c} \theta_1 \\ \theta_2 \end{array} \right)u + e\end{eqnarray} ###Code %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np N = 100 sigma = 0.8 theta = np.mat([3,-1]).T u = np.cos(2*np.pi*np.random.rand(1,N)) X = theta*u X = X + sigma*u*np.random.randn(X.shape[0],X.shape[1]) plt.figure(figsize=(6,6)) plt.plot(X[0,:],X[1,:],'k.') plt.show() import seaborn as sns import pandas as pd sns.set(color_codes=True) plt.figure(figsize=(5,5)) df = pd.DataFrame(X.T, columns=['x','y']) sns.jointplot(x="x", y="y", data=df); plt.show() ###Output _____no_output_____ ###Markdown Generative Model Example\begin{eqnarray}w & \sim & \mathcal{U}(w; 0,2\pi) \\\epsilon & \sim & \mathcal{N}(\epsilon; 0, I) \\u & = & \left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right) + \left(\begin{array}{cc} s_1 & 0 \\ 0& s_2 \end{array}\right) \left(\begin{array}{c} \cos(w) \\ \sin(w) \end{array}\right) + \left(\begin{array}{cc} \sigma_1 & 0 \\ 0& \sigma_2 \end{array}\right) \left(\begin{array}{c} \epsilon_1 \\ \epsilon_2 \end{array}\right)\end{eqnarray} ###Code %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np N = 100 sigma_1 = 0.1 sigma_2 = 0.0 mu_1 = 5 mu_2 = 5 s_1 = 1 s_2 = 3 w = 2*np.pi*np.random.rand(1,N) u1 = mu_1 + s_1*np.cos(w) + sigma_1*np.random.randn(1,N) u2 = mu_2 + s_2*np.sin(w) + sigma_2*np.random.randn(1,N) plt.figure(figsize=(6,6)) plt.plot(u1, u2,'k.') plt.axis('equal') plt.show() for i in range(N): print('%3.3f %3.3f' % (u1[0,i],u2[0,i] )) ###Output _____no_output_____ ###Markdown Generative Model Example\begin{eqnarray}w & \sim & \mathcal{U}(0,1) \\u & = & 2 w - 1 \\x|u & \sim & \mathcal{N}\left(x; u^2, r \right) \end{eqnarray} ###Code %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np N = 100 r = 0.01 u = 2*np.random.randn(1,N)-1 x = u**2 + np.sqrt(r)*np.random.randn(1,N) plt.figure(figsize=(6,6)) plt.plot(u,x,'k.') plt.xlabel('u') plt.ylabel('x') plt.show() ###Output _____no_output_____ ###Markdown Generative Model Example (Principal Components Analysis)$h \in \mathbb{R}^{D_h}$, $x \in \mathbb{R}^{D_x}$, $A \in \mathbb{R}^{{D_x}\times {D_h}}$, $r\in \mathbb{R}^+$\begin{eqnarray}h & \sim & {\mathcal N}(h; 0, I) \\x|h & \sim & {\mathcal N}(x; A h, rI)\end{eqnarray} ###Code %matplotlib inline from IPython.display import display, Math, Latex import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np from notes_utilities import pnorm_ball_points from notes_utilities import mat2latex import pandas as pd import seaborn as sns # Number of points N = 30 # Parameters A = np.mat('[3;-1]') r = 0.1 Dh = 1 Dx = 2 h = np.random.randn(Dh, N) y = A*h + np.sqrt(r)*np.random.randn(Dx, N) #sns.jointplot(x=y[0,:], y=y[1,:]); plt.figure(figsize=(5,5)) plt.scatter(y[0,:],y[1,:]) plt.xlabel('y_0') plt.ylabel('y_1') plt.show() ###Output _____no_output_____ ###Markdown ExampleGenerate a data set as follows\begin{eqnarray}x & \sim & {\mathcal N}(x; 0, 1) \\y|x & \sim & {\mathcal N}(a x, R)\end{eqnarray}How is this model related to the PCA? ###Code %matplotlib inline from IPython.display import display, Math, Latex import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np from notes_utilities import pnorm_ball_points from notes_utilities import mat2latex import pandas as pd #import seaborn as sns #sns.set(color_codes=True) # Number of points N = 10 # Parameters a = -0.8 R = 0.1 x = np.random.randn(N) y = a*x + np.sqrt(R)*np.random.randn(N) sns.jointplot(x=x, y=y); ###Output _____no_output_____ ###Markdown We can work out the joint distribution as:\begin{eqnarray}\left(\begin{array}{c} x \\ y \end{array}\right) \sim\mathcal{N}\left( \left(\begin{array}{c} 0 \\ 0 \end{array}\right) , \left(\begin{array}{cc} 1 & a\\ a & a^2 + R \end{array}\right)\right)\end{eqnarray} ###Code %matplotlib inline from IPython.display import display, Math, Latex import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np from notes_utilities import pnorm_ball_points from notes_utilities import mat2latex import pandas as pd #import seaborn as sns #sns.set(color_codes=True) # Number of points N = 10 # Parameters a = -0.8 R = 0.1 # Theoretical Covariance Cov = np.mat([[1,a],[a, a**2+R]]) x = np.random.randn(N) y = a*x + np.sqrt(R)*np.random.randn(N) np.set_printoptions(precision=4) X = np.c_[x,y].T N = X.shape[1] print('True Covariance') display(Math(r'\mu='+mat2latex(np.mat('[0;0]')))) display(Math(r'\Sigma='+mat2latex(Cov))) print('The ML Estimates from Data') mean_est = np.mean(X,axis=1,keepdims=True) cov_est = np.cov(X,bias=True) display(Math(r'\bar{m}='+mat2latex(mean_est))) display(Math(r'\bar{S}='+mat2latex(cov_est))) print('The estimate when we assume that we know the true mean') cov2_est = X.dot(X.T)/N display(Math(r'\bar{\Sigma}='+mat2latex(cov2_est))) plt.figure(figsize=(8,8)) plt.plot(x, y, '.') ax = plt.gca() ax.axis('equal') ax.set_xlabel('x') ax.set_ylabel('y') # True mean and Covariance dx,dy = pnorm_ball_points(3*np.linalg.cholesky(Cov)) ln = plt.Line2D(dx,dy, color='r') ln.set_label('True') ax.add_line(ln) ln = plt.Line2D([0],[0], color='r', marker='o') ax.add_line(ln) dx,dy = pnorm_ball_points(3*np.linalg.cholesky(Cov), mu=mean_est) ln = plt.Line2D(dx,dy, color='b') ln.set_label('ML Estimate') ax.add_line(ln) ln = plt.Line2D(mean_est[0],mean_est[1], color='b', marker='o') ax.add_line(ln) # Estimate conditioned on knowing the true mean dx,dy = pnorm_ball_points(3*np.linalg.cholesky(cov2_est)) ln = plt.Line2D(dx,dy, color='g') ln.set_label('Conditioned on true mean') ax.add_line(ln) ln = plt.Line2D([0],[0], color='g', marker='o') ax.add_line(ln) Lim = 6 ax.set_ylim([-Lim,Lim]) ax.set_xlim([-Lim,Lim]) ax.legend() plt.title('Covariance Matrix Estimates') plt.show() ###Output True Covariance ###Markdown Frequentist approach to statistics* Assume there is a true parameter that we don't know. For example the covariance $\Sigma$* Construct an estimator (=a function that spits out a parameter value given data)$$\bar{\Sigma} = X^\top X/N$$* (Conceptually) sample new random dataset from the same distribution for $i=1\dots K$$$X^{(i)} \sim p(X)$$* Study the distribution of the estimator -- the output of the estimator is random as input data is random$$\bar{\Sigma}^{(i)} = {X^{(i)}}^\top X^{(i)}/N$$ ###Code EPOCH = 20 fig = plt.figure(figsize=(6,6)) ax = fig.gca() Lim = 6 ax.set_ylim([-Lim,Lim]) ax.set_xlim([-Lim,Lim]) for i in range(EPOCH): x = np.random.randn(N) y = a*x + np.sqrt(R)*np.random.randn(N) X = np.c_[x,y].T cov2_est = X.dot(X.T)/N dx,dy = pnorm_ball_points(3*np.linalg.cholesky(cov2_est)) ln = plt.Line2D(dx,dy, color='g') ax.add_line(ln) dx,dy = pnorm_ball_points(3*np.linalg.cholesky(Cov)) ln = plt.Line2D(dx,dy, color='r', linewidth=3) ax.add_line(ln) plt.show() ###Output _____no_output_____ ###Markdown Every green ellipse corresponds to an estimated covariance $\Sigma^{(i)}$ from each new dataset $X^{(i)}$ sampled from the data distribution. The picture suggests that the true covariance could be somehow obtained as the average ellipse.An estimator is called unbiased, if the true parameter is exactly the expected value of the estimator. Otherwise, the estimator is called biased.The variance of the estimator is the amount of fluctuation around the mean. Ideally, we wish it to be small, in fact zero. However, obtaining a zero variance turns out to be impossible when the bias is zero. The variance is always greater or equal to a positive quantity called the Cramer-Rao bound. BootstrapIn practice, we have only a single dataset, so we need to approximate the data distribution $p(X)$. The effect of sampling new datasets can be done by sampling data points with replacement. This procedure is known as the bootstrap.Below, we use a dataset of $M+N$ ###Code EPOCH = 100 M = N x = np.random.randn(N+M) y = a*x + np.sqrt(R)*np.random.randn(N+M) fig = plt.figure(figsize=(6,6)) ax = fig.gca() Lim = 6 ax.set_ylim([-Lim,Lim]) ax.set_xlim([-Lim,Lim]) for i in range(EPOCH): idx = np.random.permutation(N+M) X = np.c_[x[idx[0:N]],y[idx[0:N]]].T cov2_est = X.dot(X.T)/N dx,dy = pnorm_ball_points(3*np.linalg.cholesky(cov2_est)) ln = plt.Line2D(dx,dy, color='g') ax.add_line(ln) dx,dy = pnorm_ball_points(3*np.linalg.cholesky(Cov)) ln = plt.Line2D(dx,dy, color='r', linewidth=3) ax.add_line(ln) plt.show() ###Output _____no_output_____ ###Markdown Bayesian approach to statistics- Assume there is only one dataset $X$ -- namely only the one that we have observed- Postulate a prior for the parameter $p(\Sigma)$- Compute the posterior $p(\Sigma|X)$ ###Code EPOCH = 20 fig = plt.figure(figsize=(6,6)) ax = fig.gca() Lim = 6 ax.set_ylim([-Lim,Lim]) ax.set_xlim([-Lim,Lim]) x = np.random.randn(N) y = a*x + np.sqrt(R)*np.random.randn(N) X = np.c_[x,y].T cov2_est = X.dot(X.T)/N W = np.linalg.cholesky(cov2_est) plt.plot(x,y,'.') for i in range(EPOCH): U = W.dot(np.random.randn(2,N)) S = U.dot(U.T)/N dx,dy = pnorm_ball_points(3*np.linalg.cholesky(S)) ln = plt.Line2D(dx,dy, color='k') ax.add_line(ln) dx,dy = pnorm_ball_points(3*np.linalg.cholesky(Cov)) ln = plt.Line2D(dx,dy, color='r', linewidth=3) ax.add_line(ln) plt.show() from notes_utilities import mat2latex print(mat2latex(np.mat([[1,0],[0,1]]))) ###Output \left(\begin{array}{cc} 1 & 0\\ 0 & 1\\\end{array}\right)
personal/Lele/analysis notebooks/analysis_durations.ipynb
###Markdown first analysis if you think that there should be more things to analize deeper or if anything isn't clear just let me know. if you also found out something usefull that is not listed here, add it ###Code import numpy as np import os import pandas as pd from scipy.sparse import * from tqdm import tqdm pl = pd.read_csv("../../../dataset/playlists.csv", sep='\t') pl.head() pl2 = pl[['pid','num_tracks','duration_ms']] pl_np = np.squeeze(pl2.as_matrix()) import plotly.plotly as py import matplotlib.pyplot as plt import seaborn as sns # import matplotlib and allow it to plot inline %matplotlib inline # seaborn can generate several warnings, we ignore them import warnings warnings.filterwarnings("ignore") sns.set(style="white", color_codes=True) sns.set_context(rc={"font.family":'sans',"font.size":20,"axes.titlesize":4,"axes.labelsize":24}) num_playlists = [0] *251 duration_playlists = [None] *251 for i in range(251): num_playlists[i] = len( pl2.loc[pl2['num_tracks'] == i]) duration_playlists[i] = pl2.loc[pl2['num_tracks'] == i]['duration_ms'].as_matrix().copy() if num_playlists[i]!=len(duration_playlists[i]): print("error") duration_playlists var1 = list() mean1 = list() std1 = list() for i in range(len(num_playlists)): var1.append( np.var(durate_playlists[i]/i) ) mean1.append( np.mean(durate_playlists[i]/i) ) std1.append( np.std(durate_playlists[i]/i) ) var2 = list() mean2 = list() std2 = list() duration_in_minutes = durate_playlists.copy() for i in range(len(num_playlists)): duration_in_minutes[i] = durate_playlists[i]/1000/60/i var2.append( np.var(duration_in_minutes[i])) mean2.append(np.mean(duration_in_minutes[i])) std2.append(np.std(duration_in_minutes[i])) ###Output _____no_output_____ ###Markdown graphs of duration mean / variance / standard deviation ###Code import matplotlib.pyplot as plt plt.figure(dpi=130) plt.plot(mean2) plt.ylabel('mean dur in minutes') plt.show() import matplotlib.pyplot as plt plt.figure(dpi=130) plt.plot(var2) plt.ylabel('var dur (mins)') plt.show() np.argmax(var1[5:251]) var1[211] import matplotlib.pyplot as plt plt.figure(dpi=130) plt.plot(std2) plt.ylabel('std') plt.show() ###Output _____no_output_____ ###Markdown seems like there are a lot of jazz lovers with 211 songs in their playlists. we might check if those are strange playlists. i tried a little but it seemed there isn't anything strange. check the playlists with 211 elements ###Code durations_211 = sorted( np.array( pl2.loc[pl2['num_tracks'] == 211]['duration_ms']) /211/60/1000) plt.hist(durations_211) durations_50 = sorted( np.array( pl2.loc[pl2['num_tracks'] == 99]['duration_ms']) /211/60/1000) plt.hist(durations_50) pl3 = pl[['pid','num_tracks','duration_ms']] pl3.head() pl3.loc[pl3['num_tracks'] == 211].sort_values('duration_ms') pid_d = pl3.loc[pl3['num_tracks'] == 211].duration_ms pid = pl3.loc[pl3['num_tracks'] == 211].pid pid_dur = pid_d.apply( lambda x : x/211/1000/60) long_211_pls = pd.DataFrame([pid,pid_dur ] ).T.sort_values('duration_ms') long_211_pls.head() long_211_pls.describe() ###Output _____no_output_____
notebooks/Ch07 - Text Document Categorization/20_newsgrp_cnn_model.ipynb
###Markdown Load Data Sets for 20 News Group ###Code dataset = Loader.load_20newsgroup_data(subset='train') corpus, labels = dataset.data, dataset.target corpus, labels = remove_empty_docs(corpus, labels) test_dataset = Loader.load_20newsgroup_data(subset='test') test_corpus, test_labels = test_dataset.data, test_dataset.target test_corpus, test_labels = remove_empty_docs(test_corpus, test_labels) ###Output _____no_output_____ ###Markdown Mapping 20 Groups to 6 High level Categories ###Code six_groups = { 'comp.graphics':0,'comp.os.ms-windows.misc':0,'comp.sys.ibm.pc.hardware':0, 'comp.sys.mac.hardware':0, 'comp.windows.x':0, 'rec.autos':1, 'rec.motorcycles':1, 'rec.sport.baseball':1, 'rec.sport.hockey':1, 'sci.crypt':2, 'sci.electronics':2,'sci.med':2, 'sci.space':2, 'misc.forsale':3, 'talk.politics.misc':4, 'talk.politics.guns':4, 'talk.politics.mideast':4, 'talk.religion.misc':5, 'alt.atheism':5, 'soc.religion.christian':5 } map_20_2_6 = [six_groups[dataset.target_names[i]] for i in range(20)] labels = [six_groups[dataset.target_names[i]] for i in labels] test_labels = [six_groups[dataset.target_names[i]] for i in test_labels] ###Output _____no_output_____ ###Markdown Pre-process Text to convert it to word index sequences ###Code Preprocess.MIN_WD_COUNT=5 preprocessor = Preprocess(corpus=corpus) corpus_to_seq = preprocessor.fit() test_corpus_to_seq = preprocessor.transform(test_corpus) ###Output _____no_output_____ ###Markdown Initialize Embeddings ###Code glove=GloVe(50) initial_embeddings = glove.get_embedding(preprocessor.word_index) ###Output _____no_output_____ ###Markdown Build Model ###Code newsgrp_model = DocumentModel(vocab_size=preprocessor.get_vocab_size(), sent_k_maxpool = 5, sent_filters = 20, word_kernel_size = 5, word_index = preprocessor.word_index, num_sentences=Preprocess.NUM_SENTENCES, embedding_weights=initial_embeddings, conv_activation = 'relu', train_embedding = True, learn_word_conv = True, learn_sent_conv = True, sent_dropout = 0.4, hidden_dims=64, input_dropout=0.2, hidden_gaussian_noise_sd=0.5, final_layer_kernel_regularizer=0.1, num_hidden_layers=2, num_units_final_layer=6) ###Output _____no_output_____ ###Markdown Save model parameters ###Code train_params = TrainingParameters('6_newsgrp_largeclass', model_file_path = config.MODEL_DIR+ '/20newsgroup/model_6_01.hdf5', model_hyper_parameters = config.MODEL_DIR+ '/20newsgroup/model_6_01.json', model_train_parameters = config.MODEL_DIR+ '/20newsgroup/model_6_01_meta.json', num_epochs=20, batch_size = 128, validation_split=.10, learning_rate=0.01) train_params.save() newsgrp_model._save_model(train_params.model_hyper_parameters) ###Output _____no_output_____ ###Markdown Compile and run model ###Code newsgrp_model._model.compile(loss="categorical_crossentropy", optimizer=train_params.optimizer, metrics=["accuracy"]) checkpointer = ModelCheckpoint(filepath=train_params.model_file_path, verbose=1, save_best_only=True, save_weights_only=True) early_stop = EarlyStopping(patience=2) x_train = np.array(corpus_to_seq) y_train = to_categorical(np.array(labels)) x_test = np.array(test_corpus_to_seq) y_test = to_categorical(np.array(test_labels)) #Set LR K.set_value(newsgrp_model.get_classification_model().optimizer.lr, train_params.learning_rate) newsgrp_model.get_classification_model().fit(x_train, y_train, batch_size=train_params.batch_size, epochs=train_params.num_epochs, verbose=2, validation_split=train_params.validation_split, callbacks=[checkpointer,early_stop]) newsgrp_model.get_classification_model().evaluate( x_test, y_test, verbose=2) preds = newsgrp_model.get_classification_model().predict(x_test) preds_test = np.argmax(preds, axis=1) ###Output _____no_output_____ ###Markdown Evaluate Model Accuracy ###Code from sklearn.metrics import classification_report,accuracy_score,confusion_matrix print(classification_report(test_labels, preds_test)) print(confusion_matrix(test_labels, preds_test)) print(accuracy_score(test_labels, preds_test)) ###Output _____no_output_____ ###Markdown Visualization: Document Embeddings with tsne - what the model learned ###Code from utils import scatter_plot doc_embeddings = newsgrp_model.get_document_model().predict(x_test) print(doc_embeddings.shape) doc_proj = TSNE(n_components=2, random_state=42, ).fit_transform(doc_embeddings) f, ax, sc, txts = scatter_plot(doc_proj, np.array(test_labels)) f.savefig('nws_grp_embd.png') ###Output _____no_output_____
Drafts/Schedule.ipynb
###Markdown (As of September 3rd, this is just for organization and not at all complete or accurate.) Week 0Thursday:* Basic navigation in the Jupyter notebook. Code cells vs markdown cells.* Importing external libraries.* Some basic data structures: range, lists, tuples, sets, numpy arrays. What are some similarities and differences?* Two basic NumPy commands: arange and linspace.* Timing in Jupyter.Friday:* Practice reading error messages and documentation.* for loops and if statements. Importance of indentation.* Iterators, Iterable via error messages* NumPy arrays* Slicing and indexing Week 1Topics:* more data types: int, str, float, Boolean* Introduce iterable, hashable, mutable, immutable via error messages and documentation.* Documentation (the difference between extend and append, sorted, range, np.zeros, np.empty, difference between keyword arguments and positional arguments.)* while loops* Dictionaries* Counters, dictionaries* list comprehension* Writing a function: square root, prime numbers, modular arithmetic* Introduction to Jupyter Notebooks, lists and things similar to lists.* Introduction to Jupyter Notebooks/Anaconda/Spyder/Terminal* Comparison to Matlab and Mathematica* for loops/while loops/if statements* Lists* Prime numbers* Reading documentation: sorted, range, np.zeros, np.empty, difference between keyword arguments and positional arguments.* Every built-in function in Python* Loading external libraries* Introduction to NumPy* Dictionaries* Counting in Python* Probability simulation* Image processing with Pillow and NumPy Question 3:Complete the following code so that the function `my_positive_root(x)` returns a value of y such that $|y - \sqrt[3]{x}| \leq .001.$ You are not allowed to import any libraries. You are only allowed to use integer exponents, like `a**3`, not `a**(1/3)`. You should assume $x > 0$.def my_positive_root(x): a = 0 while ???: a = a + .001 return ???Question 4:Write a new function, `my_cube_root(x)`, that also works for negative values of x. Use an `if` statement and your function from up above. You should literally be typing `my_positive_root`; do not copy and paste your code. ###Code def replace_elts(A): m,n = A.shape for i in range(m): for j in range(n): if A[i,j] < 10: A[i,j] = -2 return A ###Output _____no_output_____
06.time-series-anomaly-detection-ecg.ipynb
###Markdown Time Series Anomaly Detection using LSTM Autoencoders with PyTorch in Python ###Code !nvidia-smi !pip install -qq arff2pandas !pip install -q -U watermark !pip install -qq -U pandas %reload_ext watermark %watermark -v -p numpy,pandas,torch,arff2pandas import torch import copy import numpy as np import pandas as pd import seaborn as sns from pylab import rcParams import matplotlib.pyplot as plt from matplotlib import rc from sklearn.model_selection import train_test_split from torch import nn, optim import torch.nn.functional as F from arff2pandas import a2p %matplotlib inline %config InlineBackend.figure_format='retina' sns.set(style='whitegrid', palette='muted', font_scale=1.2) HAPPY_COLORS_PALETTE = ["#01BEFE", "#FFDD00", "#FF7D00", "#FF006D", "#ADFF02", "#8F00FF"] sns.set_palette(sns.color_palette(HAPPY_COLORS_PALETTE)) rcParams['figure.figsize'] = 12, 8 RANDOM_SEED = 42 np.random.seed(RANDOM_SEED) torch.manual_seed(RANDOM_SEED) ###Output _____no_output_____ ###Markdown In this tutorial, you'll learn how to detect anomalies in Time Series data using an LSTM Autoencoder. You're going to use real-world ECG data from a single patient with heart disease to detect abnormal hearbeats.- [Read the tutorial](https://www.curiousily.com/posts/time-series-anomaly-detection-using-lstm-autoencoder-with-pytorch-in-python/)- [Run the notebook in your browser (Google Colab)](https://colab.research.google.com/drive/1_J2MrBSvsJfOcVmYAN2-WSp36BtsFZCa)- [Read the Getting Things Done with Pytorch book](https://github.com/curiousily/Getting-Things-Done-with-Pytorch)By the end of this tutorial, you'll learn how to:- Prepare a dataset for Anomaly Detection from Time Series Data- Build an LSTM Autoencoder with PyTorch- Train and evaluate your model- Choose a threshold for anomaly detection- Classify unseen examples as normal or anomaly DataThe [dataset](http://timeseriesclassification.com/description.php?Dataset=ECG5000) contains 5,000 Time Series examples (obtained with ECG) with 140 timesteps. Each sequence corresponds to a single heartbeat from a single patient with congestive heart failure.> An electrocardiogram (ECG or EKG) is a test that checks how your heart is functioning by measuring the electrical activity of the heart. With each heart beat, an electrical impulse (or wave) travels through your heart. This wave causes the muscle to squeeze and pump blood from the heart. [Source](https://www.heartandstroke.ca/heart/tests/electrocardiogram)We have 5 types of hearbeats (classes):- Normal (N) - R-on-T Premature Ventricular Contraction (R-on-T PVC)- Premature Ventricular Contraction (PVC)- Supra-ventricular Premature or Ectopic Beat (SP or EB) - Unclassified Beat (UB).> Assuming a healthy heart and a typical rate of 70 to 75 beats per minute, each cardiac cycle, or heartbeat, takes about 0.8 seconds to complete the cycle.Frequency: 60–100 per minute (Humans)Duration: 0.6–1 second (Humans) [Source](https://en.wikipedia.org/wiki/Cardiac_cycle)The dataset is available on my Google Drive. Let's get it: ###Code !gdown --id 16MIleqoIr1vYxlGk4GKnGmrsCPuWkkpT !unzip -qq ECG5000.zip device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ###Output _____no_output_____ ###Markdown The data comes in multiple formats. We'll load the `arff` files into Pandas data frames: ###Code with open('ECG5000_TRAIN.arff') as f: train = a2p.load(f) with open('ECG5000_TEST.arff') as f: test = a2p.load(f) ###Output _____no_output_____ ###Markdown We'll combine the training and test data into a single data frame. This will give us more data to train our Autoencoder. We'll also shuffle it: ###Code df = train.append(test) df = df.sample(frac=1.0) df.shape df.head() ###Output _____no_output_____ ###Markdown We have 5,000 examples. Each row represents a single heartbeat record. Let's name the possible classes: ###Code CLASS_NORMAL = 1 class_names = ['Normal','R on T','PVC','SP','UB'] ###Output _____no_output_____ ###Markdown Next, we'll rename the last column to `target`, so its easier to reference it: ###Code new_columns = list(df.columns) new_columns[-1] = 'target' df.columns = new_columns ###Output _____no_output_____ ###Markdown Exploratory Data AnalysisLet's check how many examples for each heartbeat class do we have: ###Code df.target.value_counts() ###Output _____no_output_____ ###Markdown Let's plot the results: ###Code ax = sns.countplot(df.target) ax.set_xticklabels(class_names); ###Output _____no_output_____ ###Markdown The normal class, has by far, the most examples. This is great because we'll use it to train our model.Let's have a look at an averaged (smoothed out with one standard deviation on top and bottom of it) Time Series for each class: ###Code def plot_time_series_class(data, class_name, ax, n_steps=10): time_series_df = pd.DataFrame(data) smooth_path = time_series_df.rolling(n_steps).mean() path_deviation = 2 * time_series_df.rolling(n_steps).std() under_line = (smooth_path - path_deviation)[0] over_line = (smooth_path + path_deviation)[0] ax.plot(smooth_path, linewidth=2) ax.fill_between( path_deviation.index, under_line, over_line, alpha=.125 ) ax.set_title(class_name) classes = df.target.unique() fig, axs = plt.subplots( nrows=len(classes) // 3 + 1, ncols=3, sharey=True, figsize=(14, 8) ) for i, cls in enumerate(classes): ax = axs.flat[i] data = df[df.target == cls] \ .drop(labels='target', axis=1) \ .mean(axis=0) \ .to_numpy() plot_time_series_class(data, class_names[i], ax) fig.delaxes(axs.flat[-1]) fig.tight_layout(); ###Output _____no_output_____ ###Markdown It is very good that the normal class has a distinctly different pattern than all other classes. Maybe our model will be able to detect anomalies? LSTM AutoencoderThe [Autoencoder's](https://en.wikipedia.org/wiki/Autoencoder) job is to get some input data, pass it through the model, and obtain a reconstruction of the input. The reconstruction should match the input as much as possible. The trick is to use a small number of parameters, so your model learns a compressed representation of the data.In a sense, Autoencoders try to learn only the most important features (compressed version) of the data. Here, we'll have a look at how to feed Time Series data to an Autoencoder. We'll use a couple of LSTM layers (hence the LSTM Autoencoder) to capture the temporal dependencies of the data.To classify a sequence as normal or an anomaly, we'll pick a threshold above which a heartbeat is considered abnormal. Reconstruction LossWhen training an Autoencoder, the objective is to reconstruct the input as best as possible. This is done by minimizing a loss function (just like in supervised learning). This function is known as *reconstruction loss*. Cross-entropy loss and Mean squared error are common examples. Anomaly Detection in ECG DataWe'll use normal heartbeats as training data for our model and record the *reconstruction loss*. But first, we need to prepare the data: Data PreprocessingLet's get all normal heartbeats and drop the target (class) column: ###Code normal_df = df[df.target == str(CLASS_NORMAL)].drop(labels='target', axis=1) normal_df.shape ###Output _____no_output_____ ###Markdown We'll merge all other classes and mark them as anomalies: ###Code anomaly_df = df[df.target != str(CLASS_NORMAL)].drop(labels='target', axis=1) anomaly_df.shape ###Output _____no_output_____ ###Markdown We'll split the normal examples into train, validation and test sets: ###Code train_df, val_df = train_test_split( normal_df, test_size=0.15, random_state=RANDOM_SEED ) val_df, test_df = train_test_split( val_df, test_size=0.33, random_state=RANDOM_SEED ) ###Output _____no_output_____ ###Markdown We need to convert our examples into tensors, so we can use them to train our Autoencoder. Let's write a helper function for that: ###Code def create_dataset(df): sequences = df.astype(np.float32).to_numpy().tolist() dataset = [torch.tensor(s).unsqueeze(1).float() for s in sequences] n_seq, seq_len, n_features = torch.stack(dataset).shape return dataset, seq_len, n_features ###Output _____no_output_____ ###Markdown Each Time Series will be converted to a 2D Tensor in the shape *sequence length* x *number of features* (140x1 in our case).Let's create some datasets: ###Code train_dataset, seq_len, n_features = create_dataset(train_df) val_dataset, _, _ = create_dataset(val_df) test_normal_dataset, _, _ = create_dataset(test_df) test_anomaly_dataset, _, _ = create_dataset(anomaly_df) ###Output _____no_output_____ ###Markdown LSTM Autoencoder![Autoencoder](https://lilianweng.github.io/lil-log/assets/images/autoencoder-architecture.png)*Sample Autoencoder Architecture [Image Source](https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html)* The general Autoencoder architecture consists of two components. An *Encoder* that compresses the input and a *Decoder* that tries to reconstruct it.We'll use the LSTM Autoencoder from this [GitHub repo](https://github.com/shobrook/sequitur) with some small tweaks. Our model's job is to reconstruct Time Series data. Let's start with the *Encoder*: ###Code class Encoder(nn.Module): def __init__(self, seq_len, n_features, embedding_dim=64): super(Encoder, self).__init__() self.seq_len, self.n_features = seq_len, n_features self.embedding_dim, self.hidden_dim = embedding_dim, 2 * embedding_dim self.rnn1 = nn.LSTM( input_size=n_features, hidden_size=self.hidden_dim, num_layers=1, batch_first=True ) self.rnn2 = nn.LSTM( input_size=self.hidden_dim, hidden_size=embedding_dim, num_layers=1, batch_first=True ) def forward(self, x): x = x.reshape((1, self.seq_len, self.n_features)) x, (_, _) = self.rnn1(x) x, (hidden_n, _) = self.rnn2(x) return hidden_n.reshape((self.n_features, self.embedding_dim)) ###Output _____no_output_____ ###Markdown The *Encoder* uses two LSTM layers to compress the Time Series data input.Next, we'll decode the compressed representation using a *Decoder*: ###Code class Decoder(nn.Module): def __init__(self, seq_len, input_dim=64, n_features=1): super(Decoder, self).__init__() self.seq_len, self.input_dim = seq_len, input_dim self.hidden_dim, self.n_features = 2 * input_dim, n_features self.rnn1 = nn.LSTM( input_size=input_dim, hidden_size=input_dim, num_layers=1, batch_first=True ) self.rnn2 = nn.LSTM( input_size=input_dim, hidden_size=self.hidden_dim, num_layers=1, batch_first=True ) self.output_layer = nn.Linear(self.hidden_dim, n_features) def forward(self, x): x = x.repeat(self.seq_len, self.n_features) x = x.reshape((self.n_features, self.seq_len, self.input_dim)) x, (hidden_n, cell_n) = self.rnn1(x) x, (hidden_n, cell_n) = self.rnn2(x) x = x.reshape((self.seq_len, self.hidden_dim)) return self.output_layer(x) ###Output _____no_output_____ ###Markdown Our Decoder contains two LSTM layers and an output layer that gives the final reconstruction.Time to wrap everything into an easy to use module: ###Code class RecurrentAutoencoder(nn.Module): def __init__(self, seq_len, n_features, embedding_dim=64): super(RecurrentAutoencoder, self).__init__() self.encoder = Encoder(seq_len, n_features, embedding_dim).to(device) self.decoder = Decoder(seq_len, embedding_dim, n_features).to(device) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x ###Output _____no_output_____ ###Markdown Our Autoencoder passes the input through the Encoder and Decoder. Let's create an instance of it: ###Code model = RecurrentAutoencoder(seq_len, n_features, 128) model = model.to(device) ###Output _____no_output_____ ###Markdown TrainingLet's write a helper function for our training process: ###Code def train_model(model, train_dataset, val_dataset, n_epochs): optimizer = torch.optim.Adam(model.parameters(), lr=1e-3) criterion = nn.L1Loss(reduction='sum').to(device) history = dict(train=[], val=[]) best_model_wts = copy.deepcopy(model.state_dict()) best_loss = 10000.0 for epoch in range(1, n_epochs + 1): model = model.train() train_losses = [] for seq_true in train_dataset: optimizer.zero_grad() seq_true = seq_true.to(device) seq_pred = model(seq_true) loss = criterion(seq_pred, seq_true) loss.backward() optimizer.step() train_losses.append(loss.item()) val_losses = [] model = model.eval() with torch.no_grad(): for seq_true in val_dataset: seq_true = seq_true.to(device) seq_pred = model(seq_true) loss = criterion(seq_pred, seq_true) val_losses.append(loss.item()) train_loss = np.mean(train_losses) val_loss = np.mean(val_losses) history['train'].append(train_loss) history['val'].append(val_loss) if val_loss < best_loss: best_loss = val_loss best_model_wts = copy.deepcopy(model.state_dict()) print(f'Epoch {epoch}: train loss {train_loss} val loss {val_loss}') model.load_state_dict(best_model_wts) return model.eval(), history ###Output _____no_output_____ ###Markdown At each epoch, the training process feeds our model with all training examples and evaluates the performance on the validation set. Note that we're using a batch size of 1 (our model sees only 1 sequence at a time). We also record the training and validation set losses during the process.Note that we're minimizing the [L1Loss](https://pytorch.org/docs/stable/nn.htmll1loss), which measures the MAE (mean absolute error). Why? The reconstructions seem to be better than with MSE (mean squared error).We'll get the version of the model with the smallest validation error. Let's do some training: ###Code model, history = train_model( model, train_dataset, val_dataset, n_epochs=150 ) ax = plt.figure().gca() ax.plot(history['train']) ax.plot(history['val']) plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['train', 'test']) plt.title('Loss over training epochs') plt.show(); ###Output _____no_output_____ ###Markdown Our model converged quite well. Seems like we might've needed a larger validation set to smoothen the results, but that'll do for now. Saving the modelLet's store the model for later use: ###Code MODEL_PATH = 'model.pth' torch.save(model, MODEL_PATH) ###Output _____no_output_____ ###Markdown Uncomment the next lines, if you want to download and load the pre-trained model: ###Code # !gdown --id 1jEYx5wGsb7Ix8cZAw3l5p5pOwHs3_I9A # model = torch.load('model.pth') # model = model.to(device) ###Output _____no_output_____ ###Markdown Choosing a thresholdWith our model at hand, we can have a look at the reconstruction error on the training set. Let's start by writing a helper function to get predictions from our model: ###Code def predict(model, dataset): predictions, losses = [], [] criterion = nn.L1Loss(reduction='sum').to(device) with torch.no_grad(): model = model.eval() for seq_true in dataset: seq_true = seq_true.to(device) seq_pred = model(seq_true) loss = criterion(seq_pred, seq_true) predictions.append(seq_pred.cpu().numpy().flatten()) losses.append(loss.item()) return predictions, losses ###Output _____no_output_____ ###Markdown Our function goes through each example in the dataset and records the predictions and losses. Let's get the losses and have a look at them: ###Code _, losses = predict(model, train_dataset) sns.distplot(losses, bins=50, kde=True); THRESHOLD = 26 ###Output _____no_output_____ ###Markdown EvaluationUsing the threshold, we can turn the problem into a simple binary classification task:- If the reconstruction loss for an example is below the threshold, we'll classify it as a *normal* heartbeat- Alternatively, if the loss is higher than the threshold, we'll classify it as an anomaly Normal hearbeatsLet's check how well our model does on normal heartbeats. We'll use the normal heartbeats from the test set (our model haven't seen those): ###Code predictions, pred_losses = predict(model, test_normal_dataset) sns.distplot(pred_losses, bins=50, kde=True); ###Output _____no_output_____ ###Markdown We'll count the correct predictions: ###Code correct = sum(l <= THRESHOLD for l in pred_losses) print(f'Correct normal predictions: {correct}/{len(test_normal_dataset)}') ###Output Correct normal predictions: 142/145 ###Markdown Anomalies We'll do the same with the anomaly examples, but their number is much higher. We'll get a subset that has the same size as the normal heartbeats: ###Code anomaly_dataset = test_anomaly_dataset[:len(test_normal_dataset)] ###Output _____no_output_____ ###Markdown Now we can take the predictions of our model for the subset of anomalies: ###Code predictions, pred_losses = predict(model, anomaly_dataset) sns.distplot(pred_losses, bins=50, kde=True); ###Output _____no_output_____ ###Markdown Finally, we can count the number of examples above the threshold (considered as anomalies): ###Code correct = sum(l > THRESHOLD for l in pred_losses) print(f'Correct anomaly predictions: {correct}/{len(anomaly_dataset)}') ###Output Correct anomaly predictions: 142/145 ###Markdown We have very good results. In the real world, you can tweak the threshold depending on what kind of errors you want to tolerate. In this case, you might want to have more false positives (normal heartbeats considered as anomalies) than false negatives (anomalies considered as normal). Looking at ExamplesWe can overlay the real and reconstructed Time Series values to see how close they are. We'll do it for some normal and anomaly cases: ###Code def plot_prediction(data, model, title, ax): predictions, pred_losses = predict(model, [data]) ax.plot(data, label='true') ax.plot(predictions[0], label='reconstructed') ax.set_title(f'{title} (loss: {np.around(pred_losses[0], 2)})') ax.legend() fig, axs = plt.subplots( nrows=2, ncols=6, sharey=True, sharex=True, figsize=(22, 8) ) for i, data in enumerate(test_normal_dataset[:6]): plot_prediction(data, model, title='Normal', ax=axs[0, i]) for i, data in enumerate(test_anomaly_dataset[:6]): plot_prediction(data, model, title='Anomaly', ax=axs[1, i]) fig.tight_layout(); ###Output _____no_output_____
Data Visualization with Python/DV0101EN-1-1-1-Introduction-to-Matplotlib-and-Line-Plots-py-v2.0.ipynb
###Markdown Introduction to Matplotlib and Line Plots IntroductionThe aim of these labs is to introduce you to data visualization with Python as concrete and as consistent as possible. Speaking of consistency, because there is no *best* data visualization library avaiblable for Python - up to creating these labs - we have to introduce different libraries and show their benefits when we are discussing new visualization concepts. Doing so, we hope to make students well-rounded with visualization libraries and concepts so that they are able to judge and decide on the best visualitzation technique and tool for a given problem _and_ audience.Please make sure that you have completed the prerequisites for this course, namely **Python for Data Science** and **Data Analysis with Python**, which are part of this specialization. **Note**: The majority of the plots and visualizations will be generated using data stored in *pandas* dataframes. Therefore, in this lab, we provide a brief crash course on *pandas*. However, if you are interested in learning more about the *pandas* library, detailed description and explanation of how to use it and how to clean, munge, and process data stored in a *pandas* dataframe are provided in our course **Data Analysis with Python**, which is also part of this specialization. ------------ Table of Contents1. [Exploring Datasets with *pandas*](0)1.1 [The Dataset: Immigration to Canada from 1980 to 2013](2)1.2 [*pandas* Basics](4) 1.3 [*pandas* Intermediate: Indexing and Selection](6) 2. [Visualizing Data using Matplotlib](8) 2.1 [Matplotlib: Standard Python Visualization Library](10) 3. [Line Plots](12) Exploring Datasets with *pandas* *pandas* is an essential data analysis toolkit for Python. From their [website](http://pandas.pydata.org/):>*pandas* is a Python package providing fast, flexible, and expressive data structures designed to make working with “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, **real world** data analysis in Python.The course heavily relies on *pandas* for data wrangling, analysis, and visualization. We encourage you to spend some time and familizare yourself with the *pandas* API Reference: http://pandas.pydata.org/pandas-docs/stable/api.html. The Dataset: Immigration to Canada from 1980 to 2013 Dataset Source: [International migration flows to and from selected countries - The 2015 revision](http://www.un.org/en/development/desa/population/migration/data/empirical2/migrationflows.shtml).The dataset contains annual data on the flows of international immigrants as recorded by the countries of destination. The data presents both inflows and outflows according to the place of birth, citizenship or place of previous / next residence both for foreigners and nationals. The current version presents data pertaining to 45 countries.In this lab, we will focus on the Canadian immigration data.For sake of simplicity, Canada's immigration data has been extracted and uploaded to one of IBM servers. You can fetch the data from [here](https://ibm.box.com/shared/static/lw190pt9zpy5bd1ptyg2aw15awomz9pu.xlsx).--- *pandas* Basics The first thing we'll do is import two key data analysis modules: *pandas* and **Numpy**. ###Code import numpy as np # useful for many scientific computing in Python import pandas as pd # primary data structure library ###Output _____no_output_____ ###Markdown Let's download and import our primary Canadian Immigration dataset using *pandas* `read_excel()` method. Normally, before we can do that, we would need to download a module which *pandas* requires to read in excel files. This module is **xlrd**. For your convenience, we have pre-installed this module, so you would not have to worry about that. Otherwise, you would need to run the following line of code to install the **xlrd** module:```!conda install -c anaconda xlrd --yes``` ###Code !conda install -c anaconda xlrd --yes ###Output Solving environment: done ==> WARNING: A newer version of conda exists. <== current version: 4.5.11 latest version: 4.7.12 Please update conda by running $ conda update -n base -c defaults conda ## Package Plan ## environment location: /home/jupyterlab/conda/envs/python added / updated specs: - xlrd The following packages will be downloaded: package | build ---------------------------|----------------- openssl-1.1.1 | h7b6447c_0 5.0 MB anaconda certifi-2019.9.11 | py36_0 154 KB anaconda xlrd-1.2.0 | py36_0 188 KB anaconda ------------------------------------------------------------ Total: 5.4 MB The following packages will be UPDATED: certifi: 2019.6.16-py36_1 conda-forge --> 2019.9.11-py36_0 anaconda openssl: 1.1.1c-h516909a_0 conda-forge --> 1.1.1-h7b6447c_0 anaconda xlrd: 1.1.0-py37_1 --> 1.2.0-py36_0 anaconda Downloading and Extracting Packages openssl-1.1.1 | 5.0 MB | ##################################### | 100% certifi-2019.9.11 | 154 KB | ##################################### | 100% xlrd-1.2.0 | 188 KB | ##################################### | 100% Preparing transaction: done Verifying transaction: done Executing transaction: done ###Markdown Now we are ready to read in our data. ###Code df_can = pd.read_excel('https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/DV0101EN/labs/Data_Files/Canada.xlsx', sheet_name='Canada by Citizenship', skiprows=range(20), skipfooter=2) print ('Data read into a pandas dataframe!') ###Output Data read into a pandas dataframe! ###Markdown Let's view the top 5 rows of the dataset using the `head()` function. ###Code df_can.head() # tip: You can specify the number of rows you'd like to see as follows: df_can.head(10) ###Output _____no_output_____ ###Markdown We can also veiw the bottom 5 rows of the dataset using the `tail()` function. ###Code df_can.tail() ###Output _____no_output_____ ###Markdown When analyzing a dataset, it's always a good idea to start by getting basic information about your dataframe. We can do this by using the `info()` method. ###Code df_can.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 195 entries, 0 to 194 Data columns (total 43 columns): Type 195 non-null object Coverage 195 non-null object OdName 195 non-null object AREA 195 non-null int64 AreaName 195 non-null object REG 195 non-null int64 RegName 195 non-null object DEV 195 non-null int64 DevName 195 non-null object 1980 195 non-null int64 1981 195 non-null int64 1982 195 non-null int64 1983 195 non-null int64 1984 195 non-null int64 1985 195 non-null int64 1986 195 non-null int64 1987 195 non-null int64 1988 195 non-null int64 1989 195 non-null int64 1990 195 non-null int64 1991 195 non-null int64 1992 195 non-null int64 1993 195 non-null int64 1994 195 non-null int64 1995 195 non-null int64 1996 195 non-null int64 1997 195 non-null int64 1998 195 non-null int64 1999 195 non-null int64 2000 195 non-null int64 2001 195 non-null int64 2002 195 non-null int64 2003 195 non-null int64 2004 195 non-null int64 2005 195 non-null int64 2006 195 non-null int64 2007 195 non-null int64 2008 195 non-null int64 2009 195 non-null int64 2010 195 non-null int64 2011 195 non-null int64 2012 195 non-null int64 2013 195 non-null int64 dtypes: int64(37), object(6) memory usage: 65.6+ KB ###Markdown To get the list of column headers we can call upon the dataframe's `.columns` parameter. ###Code df_can.columns.values ###Output _____no_output_____ ###Markdown Similarly, to get the list of indicies we use the `.index` parameter. ###Code df_can.index.values ###Output _____no_output_____ ###Markdown Note: The default type of index and columns is NOT list. ###Code print(type(df_can.columns)) print(type(df_can.index)) ###Output <class 'pandas.core.indexes.base.Index'> <class 'pandas.core.indexes.range.RangeIndex'> ###Markdown To get the index and columns as lists, we can use the `tolist()` method. ###Code df_can.columns.tolist() df_can.index.tolist() print (type(df_can.columns.tolist())) print (type(df_can.index.tolist())) ###Output <class 'list'> <class 'list'> ###Markdown To view the dimensions of the dataframe, we use the `.shape` parameter. ###Code # size of dataframe (rows, columns) df_can.shape ###Output _____no_output_____ ###Markdown Note: The main types stored in *pandas* objects are *float*, *int*, *bool*, *datetime64[ns]* and *datetime64[ns, tz] (in >= 0.17.0)*, *timedelta[ns]*, *category (in >= 0.15.0)*, and *object* (string). In addition these dtypes have item sizes, e.g. int64 and int32. Let's clean the data set to remove a few unnecessary columns. We can use *pandas* `drop()` method as follows: ###Code # in pandas axis=0 represents rows (default) and axis=1 represents columns. df_can.drop(['AREA','REG','DEV','Type','Coverage'], axis=1, inplace=True) df_can.head(2) ###Output _____no_output_____ ###Markdown Let's rename the columns so that they make sense. We can use `rename()` method by passing in a dictionary of old and new names as follows: ###Code df_can.rename(columns={'OdName':'Country', 'AreaName':'Continent', 'RegName':'Region'}, inplace=True) df_can.columns ###Output _____no_output_____ ###Markdown We will also add a 'Total' column that sums up the total immigrants by country over the entire period 1980 - 2013, as follows: ###Code df_can['Total'] = df_can.sum(axis=1) ###Output _____no_output_____ ###Markdown We can check to see how many null objects we have in the dataset as follows: ###Code df_can.isnull().sum() ###Output _____no_output_____ ###Markdown Finally, let's view a quick summary of each column in our dataframe using the `describe()` method. ###Code df_can.describe() ###Output _____no_output_____ ###Markdown --- *pandas* Intermediate: Indexing and Selection (slicing) Select Column**There are two ways to filter on a column name:**Method 1: Quick and easy, but only works if the column name does NOT have spaces or special characters.```python df.column_name (returns series)```Method 2: More robust, and can filter on multiple columns.```python df['column'] (returns series)``````python df[['column 1', 'column 2']] (returns dataframe)```--- Example: Let's try filtering on the list of countries ('Country'). ###Code df_can.Country # returns a series ###Output _____no_output_____ ###Markdown Let's try filtering on the list of countries ('OdName') and the data for years: 1980 - 1985. ###Code df_can[['Country', 1980, 1981, 1982, 1983, 1984, 1985]] # returns a dataframe # notice that 'Country' is string, and the years are integers. # for the sake of consistency, we will convert all column names to string later on. ###Output _____no_output_____ ###Markdown Select RowThere are main 3 ways to select rows:```python df.loc[label] filters by the labels of the index/column df.iloc[index] filters by the positions of the index/column``` Before we proceed, notice that the defaul index of the dataset is a numeric range from 0 to 194. This makes it very difficult to do a query by a specific country. For example to search for data on Japan, we need to know the corressponding index value.This can be fixed very easily by setting the 'Country' column as the index using `set_index()` method. ###Code df_can.set_index('Country', inplace=True) # tip: The opposite of set is reset. So to reset the index, we can use df_can.reset_index() df_can.head(3) # optional: to remove the name of the index df_can.index.name = None ###Output _____no_output_____ ###Markdown Example: Let's view the number of immigrants from Japan (row 87) for the following scenarios: 1. The full row data (all columns) 2. For year 2013 3. For years 1980 to 1985 ###Code # 1. the full row data (all columns) print(df_can.loc['Japan']) # alternate methods print(df_can.iloc[87]) print(df_can[df_can.index == 'Japan'].T.squeeze()) # 2. for year 2013 print(df_can.loc['Japan', 2013]) # alternate method print(df_can.iloc[87, 36]) # year 2013 is the last column, with a positional index of 36 # 3. for years 1980 to 1985 print(df_can.loc['Japan', [1980, 1981, 1982, 1983, 1984, 1984]]) print(df_can.iloc[87, [3, 4, 5, 6, 7, 8]]) ###Output 1980 701 1981 756 1982 598 1983 309 1984 246 1984 246 Name: Japan, dtype: object 1980 701 1981 756 1982 598 1983 309 1984 246 1985 198 Name: Japan, dtype: object ###Markdown Column names that are integers (such as the years) might introduce some confusion. For example, when we are referencing the year 2013, one might confuse that when the 2013th positional index. To avoid this ambuigity, let's convert the column names into strings: '1980' to '2013'. ###Code df_can.columns = list(map(str, df_can.columns)) # [print (type(x)) for x in df_can.columns.values] #<-- uncomment to check type of column headers ###Output _____no_output_____ ###Markdown Since we converted the years to string, let's declare a variable that will allow us to easily call upon the full range of years: ###Code # useful for plotting later on years = list(map(str, range(1980, 2014))) years ###Output _____no_output_____ ###Markdown Filtering based on a criteriaTo filter the dataframe based on a condition, we simply pass the condition as a boolean vector. For example, Let's filter the dataframe to show the data on Asian countries (AreaName = Asia). ###Code # 1. create the condition boolean series condition = df_can['Continent'] == 'Asia' print(condition) # 2. pass this condition into the dataFrame df_can[condition] # we can pass mutliple criteria in the same line. # let's filter for AreaNAme = Asia and RegName = Southern Asia df_can[(df_can['Continent']=='Asia') & (df_can['Region']=='Southern Asia')] # note: When using 'and' and 'or' operators, pandas requires we use '&' and '|' instead of 'and' and 'or' # don't forget to enclose the two conditions in parentheses ###Output _____no_output_____ ###Markdown Before we proceed: let's review the changes we have made to our dataframe. ###Code print('data dimensions:', df_can.shape) print(df_can.columns) df_can.head(2) ###Output data dimensions: (195, 38) Index(['Continent', 'Region', 'DevName', '1980', '1981', '1982', '1983', '1984', '1985', '1986', '1987', '1988', '1989', '1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997', '1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013', 'Total'], dtype='object') ###Markdown --- Visualizing Data using Matplotlib Matplotlib: Standard Python Visualization LibraryThe primary plotting library we will explore in the course is [Matplotlib](http://matplotlib.org/). As mentioned on their website: >Matplotlib is a Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms. Matplotlib can be used in Python scripts, the Python and IPython shell, the jupyter notebook, web application servers, and four graphical user interface toolkits.If you are aspiring to create impactful visualization with python, Matplotlib is an essential tool to have at your disposal. Matplotlib.PyplotOne of the core aspects of Matplotlib is `matplotlib.pyplot`. It is Matplotlib's scripting layer which we studied in details in the videos about Matplotlib. Recall that it is a collection of command style functions that make Matplotlib work like MATLAB. Each `pyplot` function makes some change to a figure: e.g., creates a figure, creates a plotting area in a figure, plots some lines in a plotting area, decorates the plot with labels, etc. In this lab, we will work with the scripting layer to learn how to generate line plots. In future labs, we will get to work with the Artist layer as well to experiment first hand how it differs from the scripting layer. Let's start by importing `Matplotlib` and `Matplotlib.pyplot` as follows: ###Code # we are using the inline backend %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown *optional: check if Matplotlib is loaded. ###Code print ('Matplotlib version: ', mpl.__version__) # >= 2.0.0 ###Output Matplotlib version: 3.1.1 ###Markdown *optional: apply a style to Matplotlib. ###Code print(plt.style.available) mpl.style.use(['ggplot']) # optional: for ggplot-like style ###Output ['Solarize_Light2', '_classic_test', 'bmh', 'classic', 'dark_background', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn-bright', 'seaborn-colorblind', 'seaborn-dark-palette', 'seaborn-dark', 'seaborn-darkgrid', 'seaborn-deep', 'seaborn-muted', 'seaborn-notebook', 'seaborn-paper', 'seaborn-pastel', 'seaborn-poster', 'seaborn-talk', 'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 'seaborn', 'tableau-colorblind10'] ###Markdown Plotting in *pandas*Fortunately, pandas has a built-in implementation of Matplotlib that we can use. Plotting in *pandas* is as simple as appending a `.plot()` method to a series or dataframe.Documentation:- [Plotting with Series](http://pandas.pydata.org/pandas-docs/stable/api.htmlplotting)- [Plotting with Dataframes](http://pandas.pydata.org/pandas-docs/stable/api.htmlapi-dataframe-plotting) Line Pots (Series/Dataframe) **What is a line plot and why use it?**A line chart or line plot is a type of plot which displays information as a series of data points called 'markers' connected by straight line segments. It is a basic type of chart common in many fields.Use line plot when you have a continuous data set. These are best suited for trend-based visualizations of data over a period of time. **Let's start with a case study:**In 2010, Haiti suffered a catastrophic magnitude 7.0 earthquake. The quake caused widespread devastation and loss of life and aout three million people were affected by this natural disaster. As part of Canada's humanitarian effort, the Government of Canada stepped up its effort in accepting refugees from Haiti. We can quickly visualize this effort using a `Line` plot:**Question:** Plot a line graph of immigration from Haiti using `df.plot()`. First, we will extract the data series for Haiti. ###Code haiti = df_can.loc['Haiti', years] # passing in years 1980 - 2013 to exclude the 'total' column haiti.head() ###Output _____no_output_____ ###Markdown Next, we will plot a line plot by appending `.plot()` to the `haiti` dataframe. ###Code mpl.style.use(['seaborn-bright']) haiti.plot() ###Output _____no_output_____ ###Markdown *pandas* automatically populated the x-axis with the index values (years), and the y-axis with the column values (population). However, notice how the years were not displayed because they are of type *string*. Therefore, let's change the type of the index values to *integer* for plotting.Also, let's label the x and y axis using `plt.title()`, `plt.ylabel()`, and `plt.xlabel()` as follows: ###Code haiti.index = haiti.index.map(int) # let's change the index values of Haiti to type integer for plotting haiti.plot(kind='line') plt.title('Immigration from Haiti') plt.ylabel('Number of immigrants') plt.xlabel('Years') plt.show() # need this line to show the updates made to the figure ###Output _____no_output_____ ###Markdown We can clearly notice how number of immigrants from Haiti spiked up from 2010 as Canada stepped up its efforts to accept refugees from Haiti. Let's annotate this spike in the plot by using the `plt.text()` method. ###Code haiti.plot(kind='line') plt.title('Immigration from Haiti') plt.ylabel('Number of Immigrants') plt.xlabel('Years') # annotate the 2010 Earthquake. # syntax: plt.text(x, y, label) plt.text(2000, 6000, '2010 Earthquake') # see note below plt.show() ###Output _____no_output_____ ###Markdown With just a few lines of code, you were able to quickly identify and visualize the spike in immigration!Quick note on x and y values in `plt.text(x, y, label)`: Since the x-axis (years) is type 'integer', we specified x as a year. The y axis (number of immigrants) is type 'integer', so we can just specify the value y = 6000. ```python plt.text(2000, 6000, '2010 Earthquake') years stored as type int``` If the years were stored as type 'string', we would need to specify x as the index position of the year. Eg 20th index is year 2000 since it is the 20th year with a base year of 1980.```python plt.text(20, 6000, '2010 Earthquake') years stored as type int``` We will cover advanced annotation methods in later modules. We can easily add more countries to line plot to make meaningful comparisons immigration from different countries. **Question:** Let's compare the number of immigrants from India and China from 1980 to 2013. Step 1: Get the data set for China and India, and display dataframe. ###Code ### type your answer here india_china = df_can.loc[['India','China'],years] print(india.head()) ###Output 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 ... \ India 8880 8670 8147 7338 5704 4211 7150 10189 11522 10343 ... China 5123 6682 3308 1863 1527 1816 1960 2643 2758 4323 ... 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 India 28235 36210 33848 28742 28261 29456 34235 27509 30933 33087 China 36619 42584 33518 27642 30037 29622 30391 28502 33024 34129 [2 rows x 34 columns] ###Markdown Double-click __here__ for the solution.<!-- The correct answer is:df_CI = df_can.loc[['India', 'China'], years]df_CI.head()--> Step 2: Plot graph. We will explicitly specify line plot by passing in `kind` parameter to `plot()`. ###Code ### type your answer here india_china.plot(kind='line') ###Output _____no_output_____ ###Markdown Double-click __here__ for the solution.<!-- The correct answer is:df_CI.plot(kind='line')--> That doesn't look right...Recall that *pandas* plots the indices on the x-axis and the columns as individual lines on the y-axis. Since `df_CI` is a dataframe with the `country` as the index and `years` as the columns, we must first transpose the dataframe using `transpose()` method to swap the row and columns. ###Code df_CI = india_china df_CI = df_CI.transpose() df_CI.head() ###Output _____no_output_____ ###Markdown *pandas* will auomatically graph the two countries on the same graph. Go ahead and plot the new transposed dataframe. Make sure to add a title to the plot and label the axes. ###Code ### type your answer here df_CI.plot(kind='line') plt.xlabel('Years') plt.ylabel('Number of Immigrants') plt.show() ###Output _____no_output_____ ###Markdown Double-click __here__ for the solution.<!-- The correct answer is:df_CI.index = df_CI.index.map(int) let's change the index values of df_CI to type integer for plottingdf_CI.plot(kind='line')--><!--plt.title('Immigrants from China and India')plt.ylabel('Number of Immigrants')plt.xlabel('Years')--><!--plt.show()--> From the above plot, we can observe that the China and India have very similar immigration trends through the years. *Note*: How come we didn't need to transpose Haiti's dataframe before plotting (like we did for df_CI)?That's because `haiti` is a series as opposed to a dataframe, and has the years as its indices as shown below. ```pythonprint(type(haiti))print(haiti.head(5))```>class 'pandas.core.series.Series' >1980 1666 >1981 3692 >1982 3498 >1983 2860 >1984 1418 >Name: Haiti, dtype: int64 Line plot is a handy tool to display several dependent variables against one independent variable. However, it is recommended that no more than 5-10 lines on a single graph; any more than that and it becomes difficult to interpret. **Question:** Compare the trend of top 5 countries that contributed the most to immigration to Canada. ###Code ### type your answer here df_top_total = df_can[['Total']].sort_values('Total',ascending=False).index df_top_total = df_can.loc[df_top_total[0:5],years].transpose() df_top_total.plot(kind='line') plt.title('Top 5 countries that contributed to immigration in Canada') plt.xlabel('Years') plt.ylabel('Number of immigrants') plt.show() ###Output _____no_output_____
cs109_hw5_submission.ipynb
###Markdown CS 109A/STAT 121A/AC 209A/CSCI E-109A: Homework 5 Logistic Regression and PCA **Harvard University****Fall 2017****Instructors**: Pavlos Protopapas, Kevin Rader, Rahul Dave, Margo Levine--- INSTRUCTIONS- To submit your assignment follow the instructions given in canvas.- Restart the kernel and run the whole notebook again before you submit. - Do not include your name(s) in the notebook if you are submitting as a group. - If you submit individually and you have worked with someone, please include the name of your [one] partner below. --- Your partner's name (if you submit separately):Enrollment Status (109A, 121A, 209A, or E109A): 109A Import libraries: ###Code import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt import statsmodels.api as sm from statsmodels.api import OLS from sklearn.decomposition import PCA from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegressionCV from sklearn.utils import resample from sklearn.model_selection import cross_val_score from sklearn.metrics import accuracy_score %matplotlib inline ###Output _____no_output_____ ###Markdown Cancer Classification from Gene ExpressionsIn this homework assignment, we will build a classification model to distinguish between two related classes of cancer, acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), using gene expression measurements. The data set is provided in the file `dataset_hw5.csv`. Each row in this file corresponds to a tumor tissue sample from a patient with one of the two forms of Leukemia. The first column contains the cancer type, with 0 indicating the ALL class and 1 indicating the AML class. Columns 2-7130 contain expression levels of 7129 genes recorded from each tissue sample. In the following parts, we will use logistic regression to build a classification model for this data set. We will also use principal components analysis (PCA) to visualize the data and to reduce its dimensions. Part (a): Data Exploration1. First step is to split the observations into an approximate 50-50 train-test split. Below is some code to do this for you (we want to make sure everyone has the same splits).2. Take a peak at your training set: you should notice the severe differences in the measurements from one gene to the next (some are negative, some hover around zero, and some are well into the thousands). To account for these differences in scale and variability, normalize each predictor to vary between 0 and 1.3. Notice that the results training set contains more predictors than observations. Do you foresee a problem in fitting a classification model to such a data set?4. A convenient tool to visualize the gene expression data is a heat map. Arrange the rows of the training set so that the 'AML' rows are grouped together and the 'ALL' rows are together. Generate a heat map of the data with expression values from the following genes: `D49818_at`, `M23161_at`, `hum_alu_at`, `AFFX-PheX-5_at`, `M15990_at`. By observing the heat map, comment on which of these genes are useful in discriminating between the two classes.5. We can also visualize this data set in two dimensions using PCA. Find the top two principal components for the gene expression data. Generate a scatter plot using these principal components, highlighting the AML and ALL points in different colors. How well do the top two principal components discriminate between the two classes? ###Code # train test split! np.random.seed(9001) df = pd.read_csv('dataset_hw5.csv') msk = np.random.rand(len(df)) < 0.5 data_train = df[msk] data_test = df[~msk] ###Output _____no_output_____ ###Markdown In this section I standardize the training data first by doing scaler.fit(xtrain), I then transform both the train and the test with this to ensure I do not allow test information to leak into training and to make sure training rules are being applied to the test set. I opt for standardization because some gene expressions have outliers and these may be significant in later stages of the modeling (normalizing may scale down my predictors to very small numbers if I have large outliers) ###Code # scaling entire dataset/train and test from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() newXtrain = pd.DataFrame.copy(data_train.loc[:,data_train.columns!='Cancer_type']) scaler.fit(newXtrain) Xtrain_scaled = pd.DataFrame(scaler.transform(newXtrain), columns=newXtrain.columns) Xtrain_scaled=Xtrain_scaled.set_index(data_train.index) Xtrain_scaled['Cancer_type'] = pd.DataFrame.copy(data_train['Cancer_type']) newXtest = pd.DataFrame.copy(data_test.loc[:,data_test.columns!='Cancer_type']) Xtest_scaled = pd.DataFrame(scaler.transform(newXtest), columns=newXtest.columns) Xtest_scaled=Xtest_scaled.set_index(data_test.index) Xtest_scaled['Cancer_type'] = pd.DataFrame.copy(data_test['Cancer_type']) # plot heatmap using seaborn (much easier) import seaborn as sns zz = Xtrain_scaled.sort_values(by='Cancer_type', ascending=0) fig, ax = plt.subplots(figsize=(5,10)) ax = sns.heatmap(zz[['D49818_at','M23161_at', 'hum_alu_at', 'AFFX-PheX-5_at', 'M15990_at']],cmap ='viridis') ax.set_yticklabels(reversed(zz[['Cancer_type']].values[:,0])) plt.title('Gene Expression Heatmap against ALL Response') plt.ylabel('Actual Response (ALL=1, AML =0)') # PCA section from sklearn.decomposition import PCA pca = PCA(n_components = 2) respca = pca.fit_transform(zz.drop('Cancer_type',axis =1)) respca = pd.DataFrame(respca, columns = ['pca1','pca2']) respca['Cancer_type'] = zz[['Cancer_type']].values sns.lmplot(x = 'pca1',y='pca2',data = respca,hue = 'Cancer_type',fit_reg = False,size = 10) ###Output _____no_output_____ ###Markdown Q- Notice that the results training set contains more predictors than observations. Do you foresee a problem in fitting a classification model to such a data set?A- Yes, high probability of over fitting our data (hence high likelihood of large variance e.g. low test score and high training score where score refers to (1-misclassification rate)) Q- A convenient tool to visualize the gene expression data is a heat map. Arrange the rows of the training set so that the 'AML' rows are grouped together and the 'ALL' rows are together. Generate a heat map of the data with expression values from the following genes: D49818_at, M23161_at, hum_alu_at, AFFX-PheX-5_at, M15990_at. By observing the heat map, comment on which of these genes are useful in discriminating between the two classes. A- Out of interest, I ran the model using standardization and normalization and the only core difference between these models was the heatmap generated in this section. Therefore, it depends on the way you standardize/normalize data. When you $\textbf{normalize}$ the data 'M15990_at' and 'M23161_at' are dark almost everywhere so we do not think these two can be good predictors. The others don't seem to have clear demarcations but AFXX seems to be relatively good with darker regions with zeros and lighter with 1's.- When we $\textbf{standardize}$, M23161_at gives us lighter yellows for 0 and darker colors for 1's meaning this could be a good predictor. - Why this difference you ask? Well, we get this difference because when we scale with min max, we really are scaling by outliers in our data therefore, many of the points are being divided by these outliers. For the rest of the problem I have used standardization. Q- How do top 2 PCA components discriminate between 2 classesA- Top 2 pca components can discriminate a decent number of types. For example, in the lower left half (so low pca1 and pca2 values) we tend to get green dots and hence ALL. In the region to the top right of this, we generally get most of the blue dots with some level of misclassification. Therefore, 2 pca components aren't bad at prediction. We will see in a later section that this is quite true. Part (b): Linear Regression vs. Logistic RegressionBegin by analyzing the differences between using linear regression and logistic regression for classification. For this part, you shall work with a single gene predictor: `M23161_at`.1. Fit a simple linear regression model to the training set using the single gene predictor `D29963_at`. We could interpret the scores predicted by regression model interpreted for a patient as an estimate of the probability that the patient has the `ALL` type cancer (class 1). Is there a problem with this interpretation?2. The fitted linear regression model can be converted to a classification model (i.e. a model that predicts one of two binary labels 0 or 1) by classifying patients with predicted score greater than 0.5 into the `ALL` type (class 1), and the others into the `AML` type (class 0). Evaluate the classification accuracy (1 - misclassification rate) of the obtained classification model on both the training and test sets.3. Next, fit a simple logistic regression model to the training set. How does the training and test calssification accuracy of this model compare with the linear regression model? Remember, you need to set the regularization parameter for sklearn's logistic regression function to be a very large value in order not to regularize (use 'C=100000').4. Plot the quantitative output from linear regression model and the probabilistic output from the logistic regression model (on the training set points) as a function of the gene predictor. Also, display the true binary response for the training set points in the same plot.Based on these plots, does one of the models appear better suited for binary classification than the other? Explain. ###Code # part 1 # extract train and test response ytrain = Xtrain_scaled[['Cancer_type']].values ytest = Xtest_scaled[['Cancer_type']].values # fit a linear regression linreg = LinearRegression(fit_intercept = True) linreg.fit(Xtrain_scaled[['D29963_at']],ytrain) ypred = linreg.predict(Xtrain_scaled[['D29963_at']]) df = pd.DataFrame(np.c_[ypred,ytrain], columns = ['predicted%of1','actual']) df.T # use values as %'s and cast to 1's and 0's with 0.5 ypred = ypred[:,0] ypred[ypred>0.5] = 1 ypred[ypred<=0.5] = 0 print('Train Classification accuracy (linear) =%s' %(1-np.sum(abs(ypred-ytrain[:,0]))/len(ypred))) ypred = linreg.predict(Xtest_scaled[['D29963_at']]) ypred = ypred[:,0] ypred[ypred>0.5] = 1 ypred[ypred<=0.5] = 0 print('Test Classification accuracy (linear) =%s' %(1-np.sum(abs(ypred-ytest[:,0]))/len(ypred))) # fit logistic regression to gene expre d29963 logreg = LogisticRegression(fit_intercept = True, C = 100000) logreg.fit(Xtrain_scaled[['D29963_at']],np.ravel(ytrain)) ypred = logreg.predict(Xtrain_scaled[['D29963_at']]) print('Train Classification accuracy (logistic) =%s' %(1-np.sum(abs(ypred-ytrain[:,0]))/len(ypred))) ypred = logreg.predict(Xtest_scaled[['D29963_at']]) print('Test Classification accuracy (logistic) =%s' %(1-np.sum(abs(ypred-ytest[:,0]))/len(ypred))) # plot probabilities of log and linear regression with True response xvals = Xtrain_scaled[['D29963_at']] ypredlin = linreg.predict(Xtrain_scaled[['D29963_at']]) ypredlog = logreg.predict_proba(Xtrain_scaled[['D29963_at']]) ytrue = Xtrain_scaled[['Cancer_type']] plt.figure(figsize=(10,10)) plt.scatter(xvals,ytrue,label = 'true', c = 'b',alpha = 0.3) plt.scatter(xvals,ypredlin,label = 'lin',c = 'r',alpha = 0.5) plt.scatter(xvals,ypredlog[:,1],label = 'log',c='g',alpha = 0.6) plt.xlabel('D29963_at expression') plt.ylabel('probability of being ALL') plt.legend() ###Output _____no_output_____ ###Markdown Q- Fit a simple linear regression model to the training set using the single gene predictor D29963_at. We could interpret the scores predicted by regression model interpreted for a patient as an estimate of the probability that the patient has the ALL type cancer (class 1). Is there a problem with this interpretation?A- Our model is not restricted in any way to be between 0 and 1, we could have negative predictions or predictions greater than 1 which are obviously not probabilities so while this interpretation allows us to classify we may not generate probabilities. Furthermore, if we had more classification regions, then our predictions can definitely not be interpreted in this way since our response could be in any range (depending on values of response variables).Q- How does the training and test calssification accuracy of this model compare with the linear regression model?A- We can see from the results above that both models generate the same train and test scores. At first instance this seems odd since we were introduced with the notion that logistic regression is a classifier (and should do better) but when we dig deeper we can see that because the gene expression values aren't highly spread (e.g low expression values don't lead to 0's while high expression values don't lead to 1's) these two methods are comparable. A great source explaining the similarities can be found here: https://statisticalhorizons.com/linear-vs-logistic . Essentially, linear regression can often times do just as well if the probabilities don't have much spread and hence the log odds are linear.Q- Based on these plots, does one of the models appear better suited for binary classification than the other? Explain.A- In the center we can see there is similar performance but at the extrema, it depends so from this particular example neither model is 'better' at first glance. However, if the expression values were more spread out, logistic regression would be better since it can do better at boundaries if there is enough spread in expression. This goes back to the discussion listed in the answer to the previous question. Part (c): Multiple Logistic Regression1. Next, fit a multiple logistic regression model with all the gene predictors from the data set. How does the classification accuracy of this model compare with the models fitted in Part (b) with a single gene (on both the training and test sets)? 2. "Use the `visualize_prob` from `HW5_functions.py` to visualize the probabilties predicted by the fitted multiple logistic regression model on both the training and test data sets. The function creates a visualization that places the data points on a vertical line based on the predicted probabilities, with the `ALL` and `AML` classes shown in different colors, and with the 0.5 threshold highlighted using a dotted horizontal line. Is there a difference in the spread of probabilities in the training and test plots? Are there data points for which the predicted probability is close to 0.5? If so, what can you say about these points?" ###Code # fit to all predictors colz = Xtrain_scaled.columns[:-1] xtrain = Xtrain_scaled[colz] xtest = Xtest_scaled[colz] multilr = LogisticRegression(fit_intercept = True,C = 10**6) multilr.fit(xtrain,np.ravel(ytrain)) ypred = multilr.predict(xtrain) print('Train Classification accuracy (logistic) =%s' %(1-np.sum(abs(ypred-ytrain[:,0]))/len(ypred))) ypred = multilr.predict(xtest) print('Test Classification accuracy (logistic) =%s' %(1-np.sum(abs(ypred-ytest[:,0]))/len(ypred))) #-------- visualize_prob # A function to visualize the probabilities predicted by a Logistic Regression model # Input: # model (Logistic regression model) # x (n x d array of predictors in training data) # y (n x 1 array of response variable vals in training data: 0 or 1) # ax (an axis object to generate the plot) def visualize_prob(model, x, y, ax): # Use the model to predict probabilities for y_pred = model.predict_proba(x) # Separate the predictions on the label 1 and label 0 points ypos = y_pred[y==1] yneg = y_pred[y==0] # Count the number of label 1 and label 0 points npos = ypos.shape[0] nneg = yneg.shape[0] # Plot the probabilities on a vertical line at x = 0, # with the positive points in blue and negative points in red pos_handle = ax.plot(np.zeros((npos,1)), ypos[:,1], 'bo', label = 'ALL') neg_handle = ax.plot(np.zeros((nneg,1)), yneg[:,1], 'ro', label = 'AML') # Line to mark prob 0.5 ax.axhline(y = 0.5, color = 'k', linestyle = '--') # Add y-label and legend, do not display x-axis, set y-axis limit ax.set_ylabel('Probability of ALL class') ax.legend(loc = 'best') ax.get_xaxis().set_visible(False) ax.set_ylim([0,1]) fig,ax = plt.subplots(1,2,figsize=(14,7)) visualize_prob(multilr,xtrain,np.ravel(ytrain),ax[0]) ax[0].set_title('Training Classification') visualize_prob(multilr,xtest,np.ravel(ytest),ax[1]) ax[1].set_title('Test Classification') ###Output _____no_output_____ ###Markdown Q- Next, fit a multiple logistic regression model with all the gene predictors from the data set. How does the classification accuracy of this model compare with the models fitted in Part (b) with a single gene (on both the training and test sets)?A- Classification accuracy on both training and test set improves with classification on the training set moving to 100% accuracy (indicative of some level of overfitting). The test score improves from 0.829 to 0.97 suggesting that the increase in feature space adds some more complexity and improves our test score.Q- "Use the visualize_prob from HW5_functions.py to visualize the probabilties predicted by the fitted multiple logistic regression model on both the training and test data sets. The function creates a visualization that places the data points on a vertical line based on the predicted probabilities, with the ALL and AML classes shown in different colors, and with the 0.5 threshold highlighted using a dotted horizontal line. Is there a difference in the spread of probabilities in the training and test plots? Are there data points for which the predicted probability is close to 0.5? If so, what can you say about these points?"A- There is a difference in the spread of probabilities of training and test. In the test we can see a wider range of probabilities since our model is over fitting and is not handling 'unseen' data as well as the training. We can also see some misclassification due to this as we can see some values which are truly ALL being predicted with probabilities less than 0.5.There aren't any points close to 0.5 using standardization but when I ran this with normalization I did find some points close to 0.5. In that case it seems like those points have an equal likelihood of being classed into AML or ALL even though they are distinctly one type. Therefore, we may want to consider how we could potentially change this probability if we cared about increased accuracy of ALL vs AML for example. Part (d): Analyzing Significance of CoefficientsHow many of the coefficients estimated by the multiple logistic regression in the previous problem are significantly different from zero at a *significance level of 95%*? Hint: To answer this question, use *bootstrapping* with 100 boostrap samples/iterations. ###Code coefsig =[] def sample(x, y, k): n = x.shape[0] # No. of training points # Choose random indices of size 'k' subset_ind = np.random.choice(np.arange(n), k) # Get predictors and reponses with the indices x_subset = x[subset_ind, :] y_subset = y[subset_ind] return (x_subset, y_subset) multilr = LogisticRegression(fit_intercept = True,C = 10**6) from random import randint for i in range(100): xx, yy = sample(xtrain.values,ytrain,32) multilr.fit(xx,np.ravel(yy)) coefsig.append(multilr.coef_) coefsig = np.array(coefsig) avgcoef = np.mean(coefsig,axis = 0)[0,:] stdcoef = np.std(coefsig,axis = 0)[0,:] z2 = avgcoef-2*stdcoef z1 = avgcoef+2*stdcoef print('Number of Statistically significant values:%s' %(np.shape(z2[z2>0])[0] + np.shape(z1[z1<0])[0])) ###Output Number of Statistically significant values:1717 ###Markdown - In running the bootstrapping scheme we make no assumptions about our data, however it is possible that there is correlation between our data. So in many cases a t-test is not identical to a 95% confidence interval from bootstrapping. However, for the purpose of this problem we assume we can use this method. Therefore we bootstrap 100 times, take the mean and look at 2 standard deviations, if the value zero appears then the coefficient is not statistically significant. What we find is that 1100 coefficients are statistically significant at this confidence level. If I normalize the data in step 1, I find that number of significant coefficients is 1690. This already can be used to help us narrow down our feature space. Part (e): Dimensionality Reduction using PCAA reasonable approach to reduce the dimensionality of the data is to use PCA and fit a logistic regression model on the first set of principal components contributing to 90% of the variance in the predictors.1. How do the classification accuracy values on both the training and tests sets compare with the models fitted in Parts (c) and (d)? 2. Re-fit a logistic regression model using 5-fold cross-validation to choose the number of principal components, and comment on whether you get better test performance than the model fitted above (explain your observations). 3. Use the code provided in Part (c) to visualize the probabilities predicted by the fitted models on both the training and test sets. How does the spread of probabilities in these plots compare to those for the models in Part (c) and (d)? ###Code pcavar = [] i = 1 while True: pca = PCA(n_components = i) pca.fit(xtrain) pcavar.append(pca.explained_variance_ratio_.sum()) if (pca.explained_variance_ratio_.sum()) >= 0.9: break i+=1 plt.figure(figsize=(10,8)) plt.plot(np.arange(1,25,1),pcavar) plt.title('#PCA components vs total variance') plt.ylabel('Variance') plt.xlabel('# of PCA components') ###Output _____no_output_____ ###Markdown I choose 24 pca compoonents since it contributes to 91% of the variance ###Code multilr = LogisticRegression(fit_intercept = True, C = 10**6) pca = PCA(n_components = 24) pca.fit(xtrain) xpca = pca.transform(xtrain) xtst = pca.transform(xtest) multilr.fit(xpca,np.ravel(ytrain)) ypred = multilr.predict(xpca) print('Train Classification accuracy (logistic) =%s' %(1-np.sum(abs(ypred-ytrain[:,0]))/len(ypred))) ypred = multilr.predict(xtst) print('Test Classification accuracy (logistic) =%s' %(1-np.sum(abs(ypred-ytest[:,0]))/len(ypred))) fig,ax = plt.subplots(1,2,figsize=(14,7)) visualize_prob(multilr,xpca,np.ravel(ytrain),ax[0]) ax[0].set_title('Training Classification') visualize_prob(multilr,xtst,np.ravel(ytest),ax[1]) ax[1].set_title('Test Classification') lrcv = LogisticRegressionCV(Cs = [10**8],fit_intercept = True,cv = 5) scores = [] stds = [] for i in range(23): lrcv.fit(xpca[:,0:i+1],np.ravel(ytrain)) scores.append(lrcv.scores_) scores = np.array(scores) lrcv_means = [np.mean(scores[i][1]) for i in range(23)] stds = [np.std(scores[i][1]) for i in range(23)] xx = np.arange(1,24,1) plt.figure(figsize=(12,10)) plt.title('cross validation score vs # of PCA components') plt.errorbar(xx,lrcv_means,yerr = stds,marker='o',linestyle=None) np.argmax(lrcv_means) +1 ###Output _____no_output_____ ###Markdown 4 features yield the highest training accuracy ###Code multilr = LogisticRegression(fit_intercept = True, C = 10**6) multilr.fit(xpca[:,0:4],np.ravel(ytrain)) ypred = multilr.predict(xpca[:,0:4]) print('Train Classification accuracy (logistic) =%s' %(1-np.sum(abs(ypred-ytrain[:,0]))/len(ypred))) ypred = multilr.predict(xtst[:,0:4]) print('Test Classification accuracy (logistic) =%s' %(1-np.sum(abs(ypred-ytest[:,0]))/len(ypred))) fig,ax = plt.subplots(1,2,figsize=(14,7)) visualize_prob(multilr,xpca[:,0:4],np.ravel(ytrain),ax[0]) ax[0].set_title('Training Classification') visualize_prob(multilr,xtst[:,0:4],np.ravel(ytest),ax[1]) ax[1].set_title('Test Classification') ###Output _____no_output_____
D60_PCA 觀察_使用手寫辨識資料集/Day_060_PCA.ipynb
###Markdown 使用手寫辨識資料集, 觀察 PCA 算法 [教學目標]- 以 PCA + 邏輯斯迴歸判斷手寫辨識資料集, 觀察不同 component 下正確率的變化- 因為非監督模型的效果, 較難以簡單的範例看出來 所以非監督偶數日提供的範例與作業, 主要目的在於觀察非監督模型的效果, 同學只要能感受到模型效果即可, 不用執著於搞懂程式的每一個部分 [範例重點]- 以手寫辨識資料集, 觀察 PCA 算法取不同 component 時, PCA 解釋度與分類正確率如何變化 (In[5], Out[5]) ###Code # 載入套件 import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn import datasets from sklearn.decomposition import PCA from sklearn.linear_model import SGDClassifier from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV import warnings warnings.filterwarnings("ignore") # 定義 PCA 與隨後的邏輯斯迴歸函數 logistic = SGDClassifier(loss='log', penalty='l2', max_iter=10000, tol=1e-5, random_state=0) pca = PCA() pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)]) # 載入手寫數字辨識集 digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target # 先執行 GridSearchCV 跑出最佳參數 param_grid = { 'pca__n_components': [4, 10, 20, 30, 40, 50, 64], 'logistic__alpha': np.logspace(-4, 4, 5), } search = GridSearchCV(pipe, param_grid, iid=False, cv=5, return_train_score=False) search.fit(X_digits, y_digits) print("Best parameter (CV score=%0.3f):" % search.best_score_) print(search.best_params_) # 繪製不同 components 的 PCA 解釋度 pca.fit(X_digits) fig, (ax0, ax1) = plt.subplots(nrows=2, sharex=True, figsize=(6, 6)) ax0.plot(pca.explained_variance_ratio_, linewidth=2) ax0.set_ylabel('PCA explained variance') ax0.axvline(search.best_estimator_.named_steps['pca'].n_components, linestyle=':', label='n_components chosen') ax0.legend(prop=dict(size=12)) # 繪製不同採樣點的分類正確率 results = pd.DataFrame(search.cv_results_) components_col = 'param_pca__n_components' best_clfs = results.groupby(components_col).apply(lambda g: g.nlargest(1, 'mean_test_score')) best_clfs.plot(x=components_col, y='mean_test_score', yerr='std_test_score', legend=False, ax=ax1) ax1.set_ylabel('Classification accuracy (val)') ax1.set_xlabel('n_components') plt.tight_layout() plt.show() ###Output _____no_output_____
module1-regression-1/Day 21 Notes of Linear Regression.ipynb
###Markdown Lambda School Data Science*Unit 2, Sprint 1, Module 1*--- Regression 1- Begin with baselines for regression- Use scikit-learn to fit a linear regression- Explain the coefficients from a linear regression Brandon Rohrer wrote a good blog post, [“What questions can machine learning answer?”](https://brohrer.github.io/five_questions_data_science_answers.html)We’ll focus on two of these questions in Unit 2. These are both types of “supervised learning.”- “How Much / How Many?” (Regression)- “Is this A or B?” (Classification)This unit, you’ll build supervised learning models with “tabular data” (data in tables, like spreadsheets). Including, but not limited to:- Predict New York City real estate prices <-- **Today, we'll start this!**- Predict which water pumps in Tanzania need repairs- Choose your own labeled, tabular dataset, train a predictive model, and publish a blog post or web app with visualizations to explain your model! SetupRun the code cell below. You can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab.Libraries:- ipywidgets- pandas- plotly- scikit-learnIf your **Plotly** visualizations aren't working:- You must have JavaScript enabled in your browser- You probably want to use Chrome or Firefox- You may need to turn off ad blockers- [If you're using Jupyter Lab locally, you need to install some "extensions"](https://plot.ly/python/getting-started/jupyterlab-support-python-35) ###Code import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Applied-Modeling/master/data/' # If you're working locally: # else: # DATA_PATH = '../data/' # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') ###Output _____no_output_____ ###Markdown Begin with baselines for regression Overview Predict how much a NYC condo costs 🏠💸Regression models output continuous numbers, so we can use regression to answer questions like "How much?" or "How many?" Often, the question is "How much will this cost? How many dollars?" For example, here's a fun YouTube video, which we'll use as our scenario for this lesson:[Amateurs & Experts Guess How Much a NYC Condo With a Private Terrace Costs](https://www.youtube.com/watch?v=JQCctBOgH9I)> Real Estate Agent Leonard Steinberg just sold a pre-war condo in New York City's Tribeca neighborhood. We challenged three people - an apartment renter, an apartment owner and a real estate expert - to try to guess how much the apartment sold for. Leonard reveals more and more details to them as they refine their guesses. The condo from the video is **1,497 square feet**, built in 1852, and is in a desirable neighborhood. According to the real estate agent, _"Tribeca is known to be one of the most expensive ZIP codes in all of the United States of America."_How can we guess what this condo sold for? Let's look at 3 methods:1. Heuristics2. Descriptive Statistics3. Predictive Model Follow Along 1. HeuristicsHeuristics are "rules of thumb" that people use to make decisions and judgments. The video participants discussed their heuristics: **Participant 1**, Chinwe, is a real estate amateur. She rents her apartment in New York City. Her first guess was `8 million, and her final guess was 15 million.[She said](https://youtu.be/JQCctBOgH9I?t=465), _"People just go crazy for numbers like 1852. You say **'pre-war'** to anyone in New York City, they will literally sell a kidney. They will just give you their children."_ **Participant 3**, Pam, is an expert. She runs a real estate blog. Her first guess was 1.55 million, and her final guess was 2.2 million.[She explained](https://youtu.be/JQCctBOgH9I?t=280) her first guess: _"I went with a number that I think is kind of the going rate in the location, and that's **a thousand bucks a square foot.**"_ **Participant 2**, Mubeen, is between the others in his expertise level. He owns his apartment in New York City. His first guess was 1.7 million, and his final guess was also 2.2 million. 2. Descriptive Statistics We can use data to try to do better than these heuristics. How much have other Tribeca condos sold for?Let's answer this question with a relevant dataset, containing most of the single residential unit, elevator apartment condos sold in Tribeca, from January through April 2019.We can get descriptive statistics for the dataset's `SALE_PRICE` column.How many condo sales are in this dataset? What was the average sale price? The median? Minimum? Maximum? ###Code import pandas as pd df = pd.read_csv(DATA_PATH+'condos/tribeca.csv') pd.options.display.float_format = '{:,.0f}'.format df['SALE_PRICE'].describe() ###Output _____no_output_____ ###Markdown On average, condos in Tribeca have sold for \$3.9 million. So that could be a reasonable first guess.In fact, here's the interesting thing: **we could use this one number as a "prediction", if we didn't have any data except for sales price...** Imagine we didn't have any any other information about condos, then what would you tell somebody? If you had some sales prices like this but you didn't have any of these other columns. If somebody asked you, "How much do you think a condo in Tribeca costs?"You could say, "Well, I've got 90 sales prices here, and I see that on average they cost \$3.9 million."So we do this all the time in the real world. We use descriptive statistics for prediction. And that's not wrong or bad, in fact **that's where you should start. This is called the _mean baseline_.** **Baseline** is an overloaded term, with multiple meanings:1. [**The score you'd get by guessing**](https://twitter.com/koehrsen_will/status/1088863527778111488)2. [**Fast, first models that beat guessing**](https://blog.insightdatascience.com/always-start-with-a-stupid-model-no-exceptions-3a22314b9aaa) 3. **Complete, tuned "simpler" model** (Simpler mathematically, computationally. Or less work for you, the data scientist.)4. **Minimum performance that "matters"** to go to production and benefit your employer and the people you serve.5. **Human-level performance** Baseline type 1 is what we're doing now.(Linear models can be great for 2, 3, 4, and [sometimes even 5 too!](http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.188.5825)) ---Let's go back to our mean baseline for Tribeca condos. If we just guessed that every Tribeca condo sold for \$3.9 million, how far off would we be, on average? ###Code guess = df['SALE_PRICE'].mean() errors = guess - df['SALE_PRICE'] errors mean_absolute_error = errors.abs().mean() print(f'If we just guessed every Tribeca condo sold for ${guess:,.0f},') print(f'we would be off by ${mean_absolute_error:,.0f} on average.') ###Output If we just guessed every Tribeca condo sold for $3,928,736, we would be off by $2,783,380 on average. ###Markdown That sounds like a lot of error! But fortunately, we can do better than this first baseline — we can use more data. For example, the condo's size.Could sale price be **dependent** on square feet? To explore this relationship, let's make a scatterplot, using [Plotly Express](https://plot.ly/python/plotly-express/): ###Code import plotly.express as px px.scatter(df, x='GROSS_SQUARE_FEET', y='SALE_PRICE') ###Output _____no_output_____ ###Markdown 3. Predictive ModelTo go from a _descriptive_ [scatterplot](https://www.plotly.express/plotly_express/plotly_express.scatter) to a _predictive_ regression, just add a _line of best fit:_ ###Code px.scatter(df, x='GROSS_SQUARE_FEET', y='SALE_PRICE', trendline='ols') df['GROSS_SQUARE_FEET'].describe() ###Output _____no_output_____ ###Markdown Roll over the Plotly regression line to see its equation and predictions for sale price, dependent on gross square feet.Linear Regression helps us **interpolate.** For example, in this dataset, there's a gap between 4016 sq ft and 4663 sq ft. There were no 4300 sq ft condos sold, but what price would you predict, using this line of best fit?Linear Regression also helps us **extrapolate.** For example, in this dataset, there were no 6000 sq ft condos sold, but what price would you predict? The line of best fit tries to summarize the relationship between our x variable and y variable in a way that enables us to use the equation for that line to make predictions. **Synonyms for "y variable"**- **Dependent Variable**- Response Variable- Outcome Variable - Predicted Variable- Measured Variable- Explained Variable- **Label**- **Target** **Synonyms for "x variable"**- **Independent Variable**- Explanatory Variable- Regressor- Covariate- Correlate- **Feature** The bolded terminology will be used most often by your instructors this unit. ChallengeIn your assignment, you will practice how to begin with baselines for regression, using a new dataset! Use scikit-learn to fit a linear regression Overview We can use visualization libraries to do simple linear regression ("simple" means there's only one independent variable). But during this unit, we'll usually use the scikit-learn library for predictive models, and we'll usually have multiple independent variables. In [_Python Data Science Handbook,_ Chapter 5.2: Introducing Scikit-Learn](https://jakevdp.github.io/PythonDataScienceHandbook/05.02-introducing-scikit-learn.htmlBasics-of-the-API), Jake VanderPlas explains **how to structure your data** for scikit-learn:> The best way to think about data within Scikit-Learn is in terms of tables of data. >> ![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.02-samples-features.png)>>The features matrix is often stored in a variable named `X`. The features matrix is assumed to be two-dimensional, with shape `[n_samples, n_features]`, and is most often contained in a NumPy array or a Pandas `DataFrame`.>>We also generally work with a label or target array, which by convention we will usually call `y`. The target array is usually one dimensional, with length `n_samples`, and is generally contained in a NumPy array or Pandas `Series`. The target array may have continuous numerical values, or discrete classes/labels. >>The target array is the quantity we want to _predict from the data:_ in statistical terms, it is the dependent variable. VanderPlas also lists a **5 step process** for scikit-learn's "Estimator API":> Every machine learning algorithm in Scikit-Learn is implemented via the Estimator API, which provides a consistent interface for a wide range of machine learning applications.>> Most commonly, the steps in using the Scikit-Learn estimator API are as follows:>> 1. Choose a class of model by importing the appropriate estimator class from Scikit-Learn.> 2. Choose model hyperparameters by instantiating this class with desired values.> 3. Arrange data into a features matrix and target vector following the discussion above.> 4. Fit the model to your data by calling the `fit()` method of the model instance.> 5. Apply the Model to new data: For supervised learning, often we predict labels for unknown data using the `predict()` method.Let's try it! Follow AlongFollow the 5 step process, and refer to [Scikit-Learn LinearRegression documentation](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html). ###Code # 1. Import the appropriate estimator class from Scikit-Learn from sklearn.linear_model import LinearRegression # 2. Instantiate this class model = LinearRegression() # 3. Arrange X features matrix & y target vector features = ['GROSS_SQUARE_FEET'] target = ['SALE_PRICE'] x_train = df[features] y_train = df[target] x_train y_train # 4. Fit the model model.fit(x_train, y_train) # 5. Apply the model to new data square_feet = 1497 x_test = [[ square_feet ]] y_pred = model.predict(x_test) y_pred # x_test = [ [400], # [1400], # [2400] ] # y_pred = model.predict(x_test) # y_pred ###Output _____no_output_____ ###Markdown So, we used scikit-learn to fit a linear regression, and predicted the sales price for a 1,497 square foot Tribeca condo, like the one from the video.Now, what did that condo actually sell for? ___The final answer is revealed in [the video at 12:28](https://youtu.be/JQCctBOgH9I?t=748)!___ ###Code y_test = [2800000] ###Output _____no_output_____ ###Markdown What was the error for our prediction, versus the video participants?Let's use [scikit-learn's mean absolute error function](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html). ###Code chinwe_final_guess = [15000000] mubeen_final_guess = [2200000] pam_final_guess = [2200000] from sklearn.metrics import mean_absolute_error mae = mean_absolute_error(y_test, y_pred) print ("Our model's error", mae) y_pred ###Output _____no_output_____ ###Markdown This [diagram](https://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/tutorial/text_analytics/general_concepts.htmlsupervised-learning-model-fit-x-y) shows what we just did! Don't worry about understanding it all now. But can you start to match some of these boxes/arrows to the corresponding lines of code from above? Here's [another diagram](https://livebook.manning.com/book/deep-learning-with-python/chapter-1/), which shows how machine learning is a "new programming paradigm":> A machine learning system is "trained" rather than explicitly programmed. It is presented with many "examples" relevant to a task, and it finds statistical structure in these examples which eventually allows the system to come up with rules for automating the task. —[Francois Chollet](https://livebook.manning.com/book/deep-learning-with-python/chapter-1/) Wait, are we saying that *linear regression* could be considered a *machine learning algorithm*? Maybe it depends? What do you think? We'll discuss throughout this unit. ChallengeIn your assignment, you will use scikit-learn for linear regression with one feature. For a stretch goal, you can do linear regression with two or more features. Explain the coefficients from a linear regression OverviewWhat pattern did the model "learn", about the relationship between square feet & price? Follow Along To help answer this question, we'll look at the `coef_` and `intercept_` attributes of the `LinearRegression` object. (Again, [here's the documentation](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html).) ###Code model.coef_ model.intercept_ ###Output _____no_output_____ ###Markdown We can repeatedly apply the model to new/unknown data, and explain the coefficient: ###Code def predict(square_feet): y_pred = model.predict([[square_feet]]) estimate = y_pred[0] coefficient = model.coef_[0] print (int(estimate), "is our estimated price for", int(square_feet), "square foot condo in Tribeca.") print(predict(1497)) # What does the model predict for low square footage? print(predict(500)) # For high square footage? print(predict(10000)) ###Output 29259112 is our estimated price for 10000 square foot condo in Tribeca. None
examples/rbm_optimization.ipynb
###Markdown The setup Define a graph to run QAOA on: ###Code G = nx.random_regular_graph(d=3, n=12, seed=12345) nx.draw_kamada_kawai(G, node_color='gold', node_size=500) ###Output _____no_output_____ ###Markdown For $p>1$, provided we have a small graph, we can find optimal angles exactly: ###Code qaoa = QAOA(G, p=2) %%time angles, costs = qaoa.optimize(init=[np.pi/8, np.pi/8, -np.pi/8, -np.pi/8], tol=1e-4) fig, ax = plt.subplots(figsize=[8,5]) ax.plot(costs) ax.set_xlabel('Iteration step', fontsize=20) ax.set_ylabel(r'$\langle \mathcal{C} \rangle $', fontsize=30) gammas, betas = np.split(angles, 2) gammas[0] # \gamma _1 gammas[1] # \gamma _2 betas[0] # \beta _1 betas[1] # \beta _2 ###Output _____no_output_____ ###Markdown Initialize an RBM ansatz with $N=12$ visible units, the same number as the underlying graph ###Code logpsi = RBM(12) ###Output _____no_output_____ ###Markdown Exactly apply $U_C (\gamma _1) = \exp \left( -i \gamma _1 \sum _{\langle i, j \rangle } Z_i Z_j \right)$ ###Code logpsi.UC(G, gamma=gammas[0], mask=False) ###Output _____no_output_____ ###Markdown The process introduced a number of hidden units $n_h$ that's equal to the number of edges in the graph. (Plus 1 that was there by default when we initialized the RBM.)We can look at the numbers: ###Code logpsi.nv, logpsi.nh logpsi.alpha # = logpsi.nh / logpsi.nv ###Output _____no_output_____ ###Markdown The first optimization Now, initialize the optimizer and approximately apply $U_B (\beta _1) = \exp \left( -i \beta _1 \sum _i X_i \right)$ ###Code optim = Optimizer(logpsi, n_steps=800, n_chains=4, warmup=800, step=12) %%time for n in range(len(G)): params, history = optim.sr_rx(n=n, beta=betas[0], resample_phi=3, verbose=True) optim.machine.params = params print(f'Done with qubit #{n+1}, reached fidelity {history[-1]}') logpsi.params = params ###Output _____no_output_____ ###Markdown It's a good check to compare exact fidelities at this point: ###Code psi_exact = QAOA(G, p=1).simulate(gammas[0], betas[0]).final_state_vector psi_rbm = logpsi.get_state_vector(normalized=True) exact_fidelity(psi_exact, psi_rbm) ###Output _____no_output_____ ###Markdown Next, apply$$U_C (\gamma _2) = \exp \left( -i \gamma _2 \sum _{\langle i, j \rangle } Z_i Z_j \right)$$ ###Code logpsi.UC(G, gamma=gammas[1]) optim.machine = logpsi ###Output _____no_output_____ ###Markdown However, this doubled the number of hidden units: ###Code logpsi.alpha ###Output _____no_output_____ ###Markdown The compression step We can keep the number of hidden units under control as we go to higher values of $p$ by performing a compression step, as described in the paper.Essentially, we define a smaller RBM with `RBM.alpha = 1.5` (the previous value or any we choose to compress to). Then, we optimize parameters of the new RBM to describe the same quantum state as the larger one, obtaining a compressed representaion of$$ \vert \psi \rangle = U_C (\gamma _2) \; U_B (\beta _1) \; U_C(\gamma _1) \; \vert + \rangle $$ A heuristically good choice for initial RBM parameters are those values that exactly describe the following quantum state:$$ \vert \psi _\text{init} \rangle = U_C \left( \frac{\gamma_1 + \gamma _2}{2} \right) \; \vert + \rangle $$ ###Code aux = RBM(len(G)) aux.UC(G, (gammas[0] + gammas[1])/2) init_params = aux.params ###Output _____no_output_____ ###Markdown Now, perform the compression: ###Code %%time params, history = optim.sr_compress(init=init_params, resample_phi=2, verbose=True) ###Output Iteration 34 | Fidelity = 0.9950 | lr = 0.100 | Diff mean fidelity = 0.0061196 CPU times: user 21.6 s, sys: 1.39 s, total: 23 s Wall time: 13.5 s ###Markdown Let's plot the fidelity as a function of compression optimizer step: ###Code fig, ax = plt.subplots(figsize=[8,5]) ax.plot(history) ax.set_xlabel('Iteration step', fontsize=30) ax.set_ylabel('Fidelity', fontsize=30) ###Output _____no_output_____ ###Markdown Estimated fidelity reached: ###Code history[-1] logpsi = RBM(12, (len(params) - 12)//(12+1)) logpsi.params = params logpsi.alpha ###Output _____no_output_____ ###Markdown Finally, we can apply $U_B (\beta _2) = \exp \left( -i \beta _2 \sum _i X_i \right)$ ###Code optim.machine = logpsi ###Output _____no_output_____ ###Markdown The second optimization ###Code %%time for n in range(len(G)): params, history = optim.sr_rx(n=n, beta=betas[1], resample_phi=3, verbose=True) optim.machine.params = params print(f'Done with qubit #{n+1}, reached fidelity {history[-1]}') ###Output Done with qubit #1, reached fidelity 0.9936483423240047 Done with qubit #2, reached fidelity 0.9945939003403254 Iteration 33 | Fidelity = 0.9952 | lr = 0.100 | Diff mean fidelity = 0.0023351 Done with qubit #3, reached fidelity 0.9929582465250073 Done with qubit #4, reached fidelity 0.9973711526104884 Iteration 33 | Fidelity = 0.9950 | lr = 0.100 | Diff mean fidelity = 0.0009768 Done with qubit #5, reached fidelity 0.9950055465841054 Iteration 31 | Fidelity = 0.9949 | lr = 0.100 | Diff mean fidelity = 0.0005597 Done with qubit #6, reached fidelity 0.994948074500038 Iteration 32 | Fidelity = 0.9940 | lr = 0.100 | Diff mean fidelity = 0.0004904 Done with qubit #7, reached fidelity 0.993982373382955 Done with qubit #8, reached fidelity 0.9927259787261872 Done with qubit #9, reached fidelity 0.9917465266431491 Done with qubit #10, reached fidelity 0.9851735331537615 Done with qubit #11, reached fidelity 0.9965867032532723 Done with qubit #12, reached fidelity 0.9897891989809056 CPU times: user 2min 34s, sys: 9.88 s, total: 2min 44s Wall time: 1min 44s ###Markdown And, compare the final output fidelity at $p=2$: ###Code logpsi.params = params psi_exact = QAOA(G, p=2).simulate(gammas, betas).final_state_vector psi_rbm = logpsi.get_state_vector(normalized=True) exact_fidelity(psi_exact, psi_rbm) ###Output _____no_output_____
notebooks/coco_keypoints.ipynb
###Markdown COCO Keypoints Simple example on how to parse keypoints for the coco annotation format. For demonstration purposes we will be using the samples present on the repo instead of the full COCO dataset. ###Code from icevision.all import * data_dir = Path('/home/lgvaz/git/icevision/samples') class_map = ClassMap(['person']) parser = parsers.COCOKeyPointsParser(annotations_filepath=data_dir/'keypoints_annotations.json', img_dir=data_dir/'images') records = parser.parse(data_splitter=SingleSplitSplitter())[0] record = records[1] show_record(record, figsize=(10,10), class_map=class_map) test_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(512), tfms.A.Normalize()]) test_ds = Dataset(records, test_tfms) show_sample(test_ds[0], figsize=(10,10), display_bbox=False) ###Output _____no_output_____
doc/notebook/02_1_amazonreview_multiclass_classification_sparse.ipynb
###Markdown 1. DescriptionSentiment classification using Amazon review dataset (multi class classification).Dataset can be downloaded from https://s3.amazonaws.com/amazon-reviews-pds/tsv/amazon_reviews_us_Books_v1_02.tsv.gzThe consumer reviews serve as feedback for businesses in terms of performance, product quality, and consumer service. An online review typically consists of free-form text and a star rating out of 5. The problem of predicting a user’s star rating for a product, given the user’s text review for that product is lately become a popular, albeit hard, problem in machine learning. Using this dataset, we train a classifier to predict product rating based on the review text.Predicting the ratings based on the text is particulary difficult tasks. The primary reason for the difficulty is that two person can provide different ratings for writing similar reviews. As the scale for ratings increases (scale of 5 to scale of 10), the tasks become increasingly difficult. 2. Data PreprocessingFor amazon review classification we will perform some data preparation and data cleaning steps. We will generate feature vectors using sklearn TF-IDF for review text. ###Code import os import pandas as pd from collections import OrderedDict def create_embed(x_train, x_test): from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer count_vect = CountVectorizer() x_train_counts = count_vect.fit_transform(x_train) x_test_counts = count_vect.transform(x_test) tfidf_transformer = TfidfTransformer() x_train_tfidf = tfidf_transformer.fit_transform(x_train_counts) x_test_tfidf = tfidf_transformer.transform(x_test_counts) return x_train_tfidf, x_test_tfidf def preprocess_data(fname): df = pd.read_csv(fname, sep='\t', error_bad_lines=False) df = df[["review_body", "star_rating"]] df = df.dropna().drop_duplicates().sample(frac=1) # why sampling? print("Dataset contains {} reviews".format(df.shape[0])) rating_categories = df["star_rating"].value_counts() from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(df["review_body"], df["star_rating"], random_state = 42) x_train, x_test = create_embed(x_train, x_test) return x_train, x_test, y_train, y_test, rating_categories #---- Data Preparation ---- # Please uncomment the below lines to download and unzip the dataset. #!wget -N https://s3.amazonaws.com/amazon-reviews-pds/tsv/amazon_reviews_us_Books_v1_02.tsv.gz #!gunzip amazon_reviews_us_Books_v1_02.tsv.gz #!mv amazon_reviews_us_Books_v1_02.tsv datasets DATA_FILE = "datasets/amazon_reviews_us_Books_v1_02.tsv/amazon_reviews_us_Books_v1_02.tsv" x_train, x_test, y_train, y_test, rating_categories = preprocess_data(DATA_FILE) print("shape of train data: {}".format(x_train.shape)) print("shape of test data: {}".format(x_test.shape)) # Label distribution summary ax = rating_categories.plot(kind='bar', title='Label Distribution').\ set(xlabel="Rating Id's", ylabel="No. of reviewes") ###Output _____no_output_____ ###Markdown 3. Algorithm Evaluation ###Code import time from sklearn import metrics train_time = [] test_time = [] accuracy = [] precision = [] recall = [] f1 = [] estimator_name = [] def evaluate(estimator, estimator_nm, x_train, y_train, x_test, y_test): estimator_name.append(estimator_nm) start_time = time.time() estimator.fit(x_train, y_train) train_time.append(round(time.time() - start_time, 4)) start_time = time.time() pred_y = estimator.predict(x_test) test_time.append(round(time.time() - start_time, 4)) accuracy.append(metrics.accuracy_score(y_test, pred_y)) precision.append(metrics.precision_score(y_test, pred_y, average='macro')) recall.append(metrics.recall_score(y_test, pred_y, average='macro')) f1.append(metrics.f1_score(y_test, pred_y, average='macro')) target_names = ['rating 1.0', 'rating 2.0', 'rating 3.0', 'rating 4.0', 'rating 5.0'] return metrics.classification_report(y_test, pred_y, target_names=target_names) ###Output _____no_output_____ ###Markdown 3.1 Multinomial LogisticRegression ###Code #1. Demo: Multinomial LogisticRegression import frovedis TARGET = "multinomial_logistic_regression" from frovedis.exrpc.server import FrovedisServer FrovedisServer.initialize("mpirun -np 8 " + os.environ["FROVEDIS_SERVER"]) from frovedis.mllib.linear_model import LogisticRegression as frovLogisticRegression f_est = frovLogisticRegression(max_iter=3100, penalty='none', \ lr_rate=0.001, tol=1e-8) E_NM = TARGET + "_frovedis_" + frovedis.__version__ f_report = evaluate(f_est, E_NM, \ x_train, y_train, x_test, y_test) f_est.release() FrovedisServer.shut_down() import sklearn from sklearn.linear_model import LogisticRegression as skLogisticRegression s_est = skLogisticRegression(max_iter = 3100, penalty='none', \ tol = 1e-8, n_jobs = 12) E_NM = TARGET + "_sklearn_" + sklearn.__version__ s_report = evaluate(s_est, E_NM, \ x_train, y_train, x_test, y_test) # LogisticRegression: Precision, Recall and F1 score for each class print("Frovedis LogisticRegression metrices: ") print(f_report) print("Sklearn LogisticRegression metrices: ") print(s_report) ###Output /opt/nec/nosupport/frovedis/x86/lib/python/frovedis/mllib/linear_model.py:108: UserWarning: fit: multinomial classification problem is detected... switching solver to 'sag'. "detected... switching solver to 'sag'.\n") /home/adityaw/virt1/lib64/python3.6/site-packages/sklearn/metrics/_classification.py:1245: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /home/adityaw/virt1/lib64/python3.6/site-packages/sklearn/metrics/_classification.py:1245: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /home/adityaw/virt1/lib64/python3.6/site-packages/sklearn/metrics/_classification.py:1245: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) /home/adityaw/virt1/lib64/python3.6/site-packages/sklearn/metrics/_classification.py:1245: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result)) ###Markdown 3.2 MultinomialNB ###Code #2. Demo: MultinomialNB import frovedis TARGET = "multinomial_naive_bayes" from frovedis.exrpc.server import FrovedisServer FrovedisServer.initialize("mpirun -np 8 " + os.environ["FROVEDIS_SERVER"]) from frovedis.mllib.naive_bayes import MultinomialNB as fMNB f_est = fMNB() E_NM = TARGET + "_frovedis_" + frovedis.__version__ f_report = evaluate(f_est, E_NM, \ x_train, y_train, x_test, y_test) f_est.release() FrovedisServer.shut_down() import sklearn from sklearn.naive_bayes import MultinomialNB as sMNB s_est = sMNB() E_NM = TARGET + "_sklearn_" + sklearn.__version__ s_report = evaluate(s_est, E_NM, \ x_train, y_train, x_test, y_test) # MultinomialNB: Precision, Recall and F1 score for each class print("Frovedis MultinomialNB metrices: ") print(f_report) print("Sklearn MultinomialNB metrices: ") print(s_report) ###Output Frovedis MultinomialNB metrices: precision recall f1-score support rating 1.0 0.85 0.01 0.01 59054 rating 2.0 0.00 0.00 0.00 41208 rating 3.0 0.14 0.00 0.00 61924 rating 4.0 0.31 0.00 0.00 145240 rating 5.0 0.60 1.00 0.75 460417 accuracy 0.60 767843 macro avg 0.38 0.20 0.15 767843 weighted avg 0.49 0.60 0.45 767843 Sklearn MultinomialNB metrices: precision recall f1-score support rating 1.0 0.85 0.01 0.01 59054 rating 2.0 0.00 0.00 0.00 41208 rating 3.0 0.14 0.00 0.00 61924 rating 4.0 0.31 0.00 0.00 145240 rating 5.0 0.60 1.00 0.75 460417 accuracy 0.60 767843 macro avg 0.38 0.20 0.15 767843 weighted avg 0.49 0.60 0.45 767843 ###Markdown 3.3 Bernoulli Naive Bayes ###Code # Demo: Bernoulli Naive Bayes import frovedis TARGET = "bernoulli_naive_bayes" from frovedis.exrpc.server import FrovedisServer FrovedisServer.initialize("mpirun -np 8 " + os.environ["FROVEDIS_SERVER"]) from frovedis.mllib.naive_bayes import BernoulliNB as frovNB f_est = frovNB(alpha=1.0) E_NM = TARGET + "_frovedis_" + frovedis.__version__ f_report = evaluate(f_est, E_NM, \ x_train, y_train, x_test, y_test) f_est.release() FrovedisServer.shut_down() import sklearn from sklearn.naive_bayes import BernoulliNB as skNB s_est = skNB(alpha=1.0) E_NM = TARGET + "_sklearn_" + sklearn.__version__ s_report = evaluate(s_est, E_NM, \ x_train, y_train, x_test, y_test) # Precision, Recall and F1 score for each class print("Frovedis Bernoulli Naive Bayes metrices: ") print(f_report) print("Sklearn Bernoulli Naive Bayes metrices: ") print(s_report) ###Output Frovedis Bernoulli Naive Bayes metrices: precision recall f1-score support rating 1.0 0.53 0.41 0.46 59054 rating 2.0 0.30 0.09 0.13 41208 rating 3.0 0.22 0.27 0.25 61924 rating 4.0 0.29 0.26 0.28 145240 rating 5.0 0.70 0.77 0.73 460417 accuracy 0.57 767843 macro avg 0.41 0.36 0.37 767843 weighted avg 0.55 0.57 0.55 767843 Sklearn Bernoulli Naive Bayes metrices: precision recall f1-score support rating 1.0 0.53 0.41 0.46 59054 rating 2.0 0.30 0.09 0.13 41208 rating 3.0 0.22 0.27 0.25 61924 rating 4.0 0.29 0.26 0.28 145240 rating 5.0 0.70 0.77 0.73 460417 accuracy 0.57 767843 macro avg 0.41 0.36 0.37 767843 weighted avg 0.55 0.57 0.55 767843 ###Markdown 4. Performance summary ###Code summary = pd.DataFrame(OrderedDict({ "estimator": estimator_name, "train time": train_time, "test time": test_time, "accuracy": accuracy, "precision": precision, "recall": recall, "f1-score": f1 })) summary ###Output _____no_output_____
Week 2/Non-negative least squares.ipynb
###Markdown In this module, we fit a linear model with positive constraints on the regression coefficients and compare the estimated coefficients to a classic linear regression. ###Code !pip install -U scikit-learn import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import r2_score ###Output _____no_output_____ ###Markdown Generate some random data ###Code np.random.seed(42) n_samples, n_features = 200, 50 X = np.random.randn(n_samples, n_features) true_coef = 3 * np.random.randn(n_features) # Threshold coefficients to render them non-negative true_coef[true_coef < 0] = 0 y = np.dot(X, true_coef) # Add some noise y += 5 * np.random.normal(size=(n_samples,)) ###Output _____no_output_____ ###Markdown Split the data in train set and test set ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5) ###Output _____no_output_____ ###Markdown Fit the Non-Negative least squares. ###Code from sklearn.linear_model import LinearRegression reg_nnls = LinearRegression(positive=True) y_pred_nnls = reg_nnls.fit(X_train, y_train).predict(X_test) r2_score_nnls = r2_score(y_test, y_pred_nnls) print("NNLS R2 score", r2_score_nnls) ###Output NNLS R2 score 0.8225220806196525 ###Markdown Fit an OLS. ###Code reg_ols = LinearRegression() y_pred_ols = reg_ols.fit(X_train, y_train).predict(X_test) r2_score_ols = r2_score(y_test, y_pred_ols) print("OLS R2 score", r2_score_ols) ###Output OLS R2 score 0.7436926291700348 ###Markdown Comparing the regression coefficients between OLS and NNLS, we can observe they are highly correlated (the dashed line is the identity relation), but the non-negative constraint shrinks some to 0. The Non-Negative Least squares inherently yield sparse results. ###Code fig, ax = plt.subplots() ax.plot(reg_ols.coef_, reg_nnls.coef_, linewidth=0, marker=".") low_x, high_x = ax.get_xlim() low_y, high_y = ax.get_ylim() low = max(low_x, low_y) high = min(high_x, high_y) ax.plot([low, high], [low, high], ls="--", c=".3", alpha=0.5) ax.set_xlabel("OLS regression coefficients", fontweight="bold") ax.set_ylabel("NNLS regression coefficients", fontweight="bold") ###Output _____no_output_____
Chapter06/CHapter6_QDraw_TF2_alpha.ipynb
###Markdown Acquire The Data ###Code batch_size = 128 img_rows, img_cols = 28, 28 # image dims #load npy arrays data_path = "data_files/" # folder for image files for (dirpath, dirnames, filenames) in walk(data_path): pass # file names accumulate in list 'filenames' print(filenames) num_images = 1000000 ### was 100000, reduce this number if memory issues. num_files = len(filenames) # *** we have 10 files *** images_per_category = num_images//num_files seed = np.random.randint(1, 10e7) i=0 print(images_per_category) for file in filenames: file_path = data_path + file x = np.load(file_path) x = x.astype('float32') ##normalise images x /= 255.0 y = [i] * len(x) # create numeric label for this image x = x[:images_per_category] # get our sample of images y = y[:images_per_category] # get our sample of labels if i == 0: x_all = x y_all = y else: x_all = np.concatenate((x,x_all), axis=0) y_all = np.concatenate((y,y_all), axis=0) i += 1 #split data arrays into train and test segments x_train, x_test, y_train, y_test = train_test_split(x_all, y_all, test_size=0.2, random_state=42) x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) y_train = tf.keras.utils.to_categorical(y_train, num_files) y_test = tf.keras.utils.to_categorical(y_test, num_files) print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') x_train, x_valid, y_train, y_valid = train_test_split(x_train, y_train, test_size=0.1, random_state=42) ###Output x_train shape: (800000, 28, 28, 1) 800000 train samples 200000 test samples ###Markdown Create the model ###Code model = tf.keras.Sequential() model.add(tf.keras.layers.Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) model.add(tf.keras.layers.Dropout(0.25)) model.add(tf.keras.layers.Conv2D(64, (3, 3), activation='relu')) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) model.add(tf.keras.layers.Dropout(0.25)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(128, activation='relu')) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(num_files, activation='softmax')) print("Compiling...........") model.compile(loss=tf.keras.losses.categorical_crossentropy, optimizer=tf.keras.optimizers.Adadelta(), metrics=['accuracy']) ###Output _____no_output_____ ###Markdown Train the model ###Code epochs=1 # for testing, for training use 25 callbacks=[tf.keras.callbacks.TensorBoard(log_dir = "./tb_log_dir", histogram_freq = 0)] model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, callbacks=callbacks, verbose=1, validation_data=(x_valid, y_valid)) score = model.evaluate(x_test, y_test, verbose=1) print('Test loss:', score[0]) print('Test accuracy:', score[1]) ###Output 200000/200000 [==============================] - 10s 50us/sample - loss: 2.0684 - accuracy: 0.3971 Test loss: 2.068418756465912 Test accuracy: 0.39709 ###Markdown Test The Model ###Code #_test import os labels = [os.path.splitext(file)[0] for file in filenames] print(labels) print("\nFor each pair in the following, the first label is predicted, second is actual\n") for i in range(20): t = np.random.randint(len(x_test) ) x1= x_test[t] x1 = x1.reshape(1,28,28,1) p = model.predict(x1) print("-------------------------") print(labels[np.argmax(p)]) print(labels[np.argmax(y_test[t])]) print("-------------------------") ###Output ['broom', 'aircraft_carrier', 'alarm_clock', 'ant', 'cell_phone', 'baseball', 'asparagus', 'dolphin', 'crocodile', 'bee'] For each pair in the following, the first label is predicted, second is actual ------------------------- cell_phone alarm_clock ------------------------- ------------------------- baseball baseball ------------------------- ------------------------- asparagus broom ------------------------- ------------------------- bee cell_phone ------------------------- ------------------------- bee bee ------------------------- ------------------------- alarm_clock cell_phone ------------------------- ------------------------- cell_phone cell_phone ------------------------- ------------------------- asparagus broom ------------------------- ------------------------- cell_phone baseball ------------------------- ------------------------- aircraft_carrier aircraft_carrier ------------------------- ------------------------- cell_phone cell_phone ------------------------- ------------------------- aircraft_carrier crocodile ------------------------- ------------------------- aircraft_carrier aircraft_carrier ------------------------- ------------------------- aircraft_carrier ant ------------------------- ------------------------- cell_phone bee ------------------------- ------------------------- baseball baseball ------------------------- ------------------------- cell_phone baseball ------------------------- ------------------------- aircraft_carrier ant ------------------------- ------------------------- alarm_clock dolphin ------------------------- ------------------------- bee dolphin ------------------------- ###Markdown Save, Reload and Retest the Model ###Code model.save("./QDrawModel.h5") del model from tensorflow.keras.models import load_model import numpy as np model = load_model('./QDrawModel.h5') model.summary() print("For each pair, first is predicted, second is actual") for i in range(20): t = np.random.randint(len(x_test)) x1= x_test[t] x1 = x1.reshape(1,28,28,1) p = model.predict(x1) print("-------------------------") print(labels[np.argmax(p)]) print(labels[np.argmax(y_test[t])]) print("-------------------------") ###Output For each pair, first is predicted, second is actual ------------------------- broom broom ------------------------- ------------------------- cell_phone alarm_clock ------------------------- ------------------------- crocodile dolphin ------------------------- ------------------------- alarm_clock alarm_clock ------------------------- ------------------------- cell_phone aircraft_carrier ------------------------- ------------------------- bee crocodile ------------------------- ------------------------- cell_phone alarm_clock ------------------------- ------------------------- cell_phone cell_phone ------------------------- ------------------------- bee crocodile ------------------------- ------------------------- cell_phone asparagus ------------------------- ------------------------- broom broom ------------------------- ------------------------- cell_phone alarm_clock ------------------------- ------------------------- aircraft_carrier crocodile ------------------------- ------------------------- aircraft_carrier aircraft_carrier ------------------------- ------------------------- aircraft_carrier dolphin ------------------------- ------------------------- cell_phone cell_phone ------------------------- ------------------------- broom broom ------------------------- ------------------------- bee ant ------------------------- ------------------------- aircraft_carrier dolphin ------------------------- ------------------------- cell_phone cell_phone -------------------------
foreign_languages/Sara_danish.ipynb
###Markdown Exploring Foreign LanguagesSo far, we have been learning about general ways to explore texts through manipulating strings and regular expressions. Today, we will be focusing on what we can do when texts are in languages other than English. This will just be an introduction to some of the many different modules that can be used for these tasks. The goal is to learn some tools, including Polyglot and translation, that can be jumping off points to see what you may or may not need going forward. Lesson Outline:- Q&A about what we've gone over so far- Examples (with Sara's data)- Practice! InstallationsUncomment and run the cell below! ###Code #!pip install translation #!pip install py-translate #!pip install morfessor #!pip install polyglot #!pip install pycld2 #!brew install intltool icu4c gettext #!brew link icu4c gettext --force #!CFLAGS=-I/usr/local/opt/icu4c/include LDFLAGS=-L/usr/local/opt/icu4c/lib pip3 install pyicu ###Output _____no_output_____ ###Markdown Importing Text ###Code import codecs with codecs.open('Skyggebilleder af en Reise til Harzen.txt', 'r', encoding='utf-8', errors='ignore') as f: read_text = f.read() read_text # pulling out a subsection of text for our examples text_snippet = read_text[20000:23000] ###Output _____no_output_____ ###Markdown Translating TextThere are many different ways that you could go about translating text within Python, but one of the easiest is the package `translation`. `translation` makes use of existing online translators. The module used to include a method for Google Translate, but the site no longer allows easy access. Bing is probably the most useful method for it.**Pros:*** Easy to set up* Runs quickly**Cons:*** Not always accurate* Internet connection needed* Language limitationsThe documentation (or lack there of): https://pypi.python.org/pypi/translation ###Code import translation translation.bing(text_snippet, dst = 'en') ###Output _____no_output_____ ###Markdown Other alternatives for translating your text include:* `py-translate` * Makes use of Google Translate * Often return errors / gets blocked * Can be used from the command line * Documentation: https://pypi.python.org/pypi/py-translate* API calls to Google Translate * Takes a little more set-up * Can be customized a little bit more * Can translate a LOT of text ###Code # using py-translate from translate import translator # calling tranlator function, telling it that the translator('da', 'en',text_snippet[:200]) ###Output _____no_output_____ ###Markdown PolyglotPolyglot is "a natural language pipeline that supports massive multilingual applications," in other words, it does a lot of stuff. It is a sort of one-stop-shop for many different functions that you may want to apply to you text, and supports many different languages. We are going to run through some of its functionalities.Docs: http://polyglot.readthedocs.io/en/latest/ Language Detection ###Code from polyglot.detect import Detector # create a detector object that contains read_text # and assigning it to DETECTED detected = Detector(read_text) # the .language method will return the language the most of # the text is made up of and the system is confident about print(detected.language) # sometimes there will be multiple languages within # the text, and you will want to see all of them for language in detected.languages: print(language) # if you try to pass in a string that is too short # for the system to get a good read on, it will throw # an error, alerting you to this fact Detector("4") # we can override that with the optional argument 'quiet=True' print(Detector("4", quiet=True)) # here are all of the languages supported for language detection from polyglot.utils import pretty_list print(pretty_list(Detector.supported_languages())) ###Output _____no_output_____ ###Markdown TokenizationSimilar to what we saw with NLTK, Polyglot can break our text up into words and sentences. Polyglot has the advantage of spanning multiple languages, and thus is more likely to identify proper breakpoint in languages other than English. ###Code from polyglot.text import Text # creating a Text object that analyzes our text_snippet text = Text(text_snippet) # Text also has a language instance variable print(text.language) # here, we are looking at text_snippet tokenized into words text.words # now we are looking at text_snippet broken down into sentences text.sentences ###Output _____no_output_____ ###Markdown Side Notes: Important Package InformationNot all of the packages are downloaded for all functionalities for all languages in Polyglot. Instead of forcing you to download a lot of files in the beginning, the creators decided that it would be better for language extensions to be downloaded on an 'as-necessary' basis. You will occassionaly be told that you're lacking a package, and you will need to download it. You can either do that with the built-in downloader, or from the command line. ###Code # staying within python from polyglot.downloader import downloader downloader.download("embeddings2.en") # alternate command line method !polyglot download embeddings2.da pos2.da ###Output _____no_output_____ ###Markdown Also, if you're working with a language and want to know what Polyglot lets you do with a language, it provides a `supported_tasks` method. ###Code # tasks available for english downloader.supported_tasks(lang="en") # tasks available for danish downloader.supported_tasks(lang="da") ###Output _____no_output_____ ###Markdown Part of Speech TaggingPolyglot supports POS tagging for several languages. ###Code # languages that polyglot supports for part of speech tagging print(downloader.supported_languages_table("pos2")) text.pos_tags ###Output _____no_output_____ ###Markdown Named Entity RecognitionPolyglot can tag names and groups them into three main categories:* Locations (Tag: I-LOC): cities, countries, regions, continents, neighborhoods, administrative divisions ...* Organizations (Tag: I-ORG): sports teams, newspapers, banks, universities, schools, non-profits, companies, ...* Persons (Tag: I-PER): politicians, scientists, artists, atheletes ... ###Code # languages that polyglot supports for part of speech tagging print(downloader.supported_languages_table("ner2", 3)) #!polyglot download ner2.da text.entities ###Output _____no_output_____ ###Markdown Other Features of Polyglot* Nearest Neighbors -- http://polyglot.readthedocs.io/en/latest/Embeddings.html* Morpheme Generation -- http://polyglot.readthedocs.io/en/latest/MorphologicalAnalysis.html* Sentiment Analysis -- http://polyglot.readthedocs.io/en/latest/Sentiment.html* Transliteration -- http://polyglot.readthedocs.io/en/latest/Transliteration.html Code Summary: Translation:* `translation.bing(your_string, dst = 'en')` Polyglot:* `.language`* `.languages`* `.language`* `.words`* `.sentences`* `.pos_tags`* `.entities` Extra ###Code # importing some more packages from datascience import * %matplotlib inline import seaborn as sns # analyzing our text with a Polyglot Text object whole_text = Text(read_text) # the language of our text print(whole_text.language) # getting the part of speech tags for our corpus print(whole_text.pos_tags) words_and_poss = list(whole_text.pos_tags) # putting those word / part of speech pairs into a table wrd = Table(['Word', 'Part of Speech']).with_rows(words_and_poss) # grouping those by part of speech to get the most commonly occuring parts of speech df = wrd.group('Part of Speech').sort('count', descending=True).to_df() df # plotting the counts for each part of speech using seaborn sns.barplot(x='Part of Speech', y='count', data=df) # getting the most popular word for each part of speech type wrd_counts = wrd.group('Word').join('Word', wrd).sort('count', descending=True) wrd_counts.group(2, lambda x: x.item(0)).show(16) # thats not very informative, so lets pull out the stop words # using a list from http://snowball.tartarus.org/algorithms/danish/stop.txt danish_stop_words = """og, i, jeg, det, at, en, den, til, er, som, på, de, med, han, af, for, ikke, der, var, mig, sig, men, et, har, om, vi, min, havde, ham, hun, nu, over, da, fra, du, ud, sin, dem, os, op, man, hans, hvor, eller, hvad, skal, selv, her, alle, vil, blev, kunne, ind, når, være, dog, noget, ville, jo, deres, efter, ned, skulle, denne, end, dette, mit, også, under, have, dig, anden, hende, mine, alt, meget, sit, sine, vor, mod, disse, hvis, din, nogle, hos, blive, mange, ad, bliver, hendes, været, thi, jer, sådan""" splt = danish_stop_words.split(',\n') print(splt) # determining which rows we need to change not_in_stop_words = [x not in danish_stop_words for x in wrd_counts['Word']] # most common words for each part of speech no longer including the stop words wrd_counts.where(not_in_stop_words).group(2, lambda x: x.item(0)).show(16) # retrieving all of the named entities that Polyglot detected ner = str(whole_text.entities).split('I-')[1:] ner[:5] # splitting up the type and the name split_type = [x.split('([') for x in ner] split_type[:5] # making a table out of that entities = Table(['Type', 'Name']).with_rows(split_type) entities # how many of each type of entity there are entities.group('Type') # finding the most commonly occuring entities entities.group('Name').sort('count', descending=True) # possibly the most common names of people entities.where('Type', 'PER').group('Name').sort('count', True) ###Output _____no_output_____
Question Classifier.ipynb
###Markdown As can be observed, the train set consists of some duplicate question (81 to be exact). The number of unique Coarse:Fine classes is 50 whereas entries corresponding to 42 are present in the test set. The number of fine classes overall is 47 whereas entries corresponding to 39 are present in test. ###Code from sklearn.preprocessing import LabelEncoder le = LabelEncoder() le.fit(pd.Series(train.QType.tolist() + test.QType.tolist()).values) train['QType'] = le.transform(train.QType.values) test['QType'] = le.transform(test.QType.values) le2 = LabelEncoder() le2.fit(pd.Series(train['QType-Coarse'].tolist() + test['QType-Coarse'].tolist()).values) train['QType-Coarse'] = le2.transform(train['QType-Coarse'].values) test['QType-Coarse'] = le2.transform(test['QType-Coarse'].values) le3 = LabelEncoder() le3.fit(pd.Series(train['QType-Fine'].tolist() + test['QType-Fine'].tolist()).values) train['QType-Fine'] = le3.transform(train['QType-Fine'].values) test['QType-Fine'] = le3.transform(test['QType-Fine'].values) train.head() all_corpus = pd.Series(train.Question.tolist() + test.Question.tolist()).astype(str) ###Output _____no_output_____ ###Markdown Obtaining Dotwords.Also, performing text cleaning and pre-processing in the next two blocks ###Code nltk.download('stopwords') nltk.download('wordnet') from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer from nltk.stem.snowball import SnowballStemmer from nltk.stem.wordnet import WordNetLemmatizer # dot_words = [] # for row in all_corpus: # for word in row.split(): # if '.' in word and len(word)>2: # dot_words.append(word) def text_clean(corpus, keep_list): ''' Purpose : Function to keep only alphabets, digits and certain words (punctuations, qmarks, tabs etc. removed) Input : Takes a text corpus, 'corpus' to be cleaned along with a list of words, 'keep_list', which have to be retained even after the cleaning process Output : Returns the cleaned text corpus ''' cleaned_corpus = pd.Series() for row in corpus: qs = [] for word in row.split(): if word not in keep_list: p1 = re.sub(pattern='[^a-zA-Z0-9]',repl=' ',string=word) p1 = p1.lower() qs.append(p1) else : qs.append(word) cleaned_corpus = cleaned_corpus.append(pd.Series(' '.join(qs))) return cleaned_corpus def preprocess(corpus, keep_list, cleaning = True, stemming = False, stem_type = None, lemmatization = False, remove_stopwords = True): ''' Purpose : Function to perform all pre-processing tasks (cleaning, stemming, lemmatization, stopwords removal etc.) Input : 'corpus' - Text corpus on which pre-processing tasks will be performed 'keep_list' - List of words to be retained during cleaning process 'cleaning', 'stemming', 'lemmatization', 'remove_stopwords' - Boolean variables indicating whether a particular task should be performed or not 'stem_type' - Choose between Porter stemmer or Snowball(Porter2) stemmer. Default is "None", which corresponds to Porter Stemmer. 'snowball' corresponds to Snowball Stemmer Note : Either stemming or lemmatization should be used. There's no benefit of using both of them together Output : Returns the processed text corpus ''' if cleaning == True: corpus = text_clean(corpus, keep_list) if remove_stopwords == True: wh_words = ['who', 'what', 'when', 'why', 'how', 'which', 'where', 'whom'] stop = set(stopwords.words('english')) for word in wh_words: stop.remove(word) corpus = [[x for x in x.split() if x not in stop] for x in corpus] else : corpus = [[x for x in x.split()] for x in corpus] if lemmatization == True: lem = WordNetLemmatizer() corpus = [[lem.lemmatize(x, pos = 'v') for x in x] for x in corpus] if stemming == True: if stem_type == 'snowball': stemmer = SnowballStemmer(language = 'english') corpus = [[stemmer.stem(x) for x in x] for x in corpus] else : stemmer = PorterStemmer() corpus = [[stemmer.stem(x) for x in x] for x in corpus] corpus = [' '.join(x) for x in corpus] return corpus common_dot_words = ['U.S.', 'St.', 'Mr.', 'Mrs.', 'D.C.'] all_corpus = preprocess(all_corpus, keep_list = common_dot_words, remove_stopwords = True) ###Output _____no_output_____ ###Markdown Splitting the preprocessed combined corpus again into train and test set ###Code train_corpus = all_corpus[0:train.shape[0]] test_corpus = all_corpus[train.shape[0]:] ###Output _____no_output_____ ###Markdown Loading the English model for Spacy.NLTK version for the same performs too slowly, hence opting for Spacy. ###Code nlp = spacy.load('en') ###Output _____no_output_____ ###Markdown Obtaining Features from Train Data, which would be fed to CountVectorizerCreating list of Named Entitites, Lemmas, POS Tags, Syntactic Dependency Relation and Orthographic Features using shape.Later, these would be used as features for our model. ###Code all_ner = [] all_lemma = [] all_tag = [] all_dep = [] all_shape = [] for row in train_corpus: doc = nlp(row) present_lemma = [] present_tag = [] present_dep = [] present_shape = [] present_ner = [] #print(row) for token in doc: present_lemma.append(token.lemma_) present_tag.append(token.tag_) #print(present_tag) present_dep.append(token.dep_) present_shape.append(token.shape_) all_lemma.append(" ".join(present_lemma)) all_tag.append(" ".join(present_tag)) all_dep.append(" ".join(present_dep)) all_shape.append(" ".join(present_shape)) for ent in doc.ents: present_ner.append(ent.label_) all_ner.append(" ".join(present_ner)) ###Output _____no_output_____ ###Markdown Converting the attributes obtained above into vectors using CountVectorizer. ###Code count_vec_ner = CountVectorizer(ngram_range=(1, 2)).fit(all_ner) ner_ft = count_vec_ner.transform(all_ner) count_vec_lemma = CountVectorizer(ngram_range=(1, 2)).fit(all_lemma) lemma_ft = count_vec_lemma.transform(all_lemma) count_vec_tag = CountVectorizer(ngram_range=(1, 2)).fit(all_tag) tag_ft = count_vec_tag.transform(all_tag) count_vec_dep = CountVectorizer(ngram_range=(1, 2)).fit(all_dep) dep_ft = count_vec_dep.transform(all_dep) count_vec_shape = CountVectorizer(ngram_range=(1, 2)).fit(all_shape) shape_ft = count_vec_shape.transform(all_shape) ###Output _____no_output_____ ###Markdown Combining the features obtained into 1 matrix ###Code #x_all_ft_train = hstack([ner_ft, lemma_ft, tag_ft, dep_ft, shape_ft]) x_all_ft_train = hstack([ner_ft, lemma_ft, tag_ft]) x_all_ft_train ###Output _____no_output_____ ###Markdown Converting from COOrdinate format to Compressed Sparse Row format for easier mathematical computations. ###Code x_all_ft_train = x_all_ft_train.tocsr() x_all_ft_train ###Output _____no_output_____ ###Markdown Now we will obtain the Feature vectors for the test set using the CountVectorizers Obtained from the Training Corpus ###Code all_test_ner = [] all_test_lemma = [] all_test_tag = [] all_test_dep = [] all_test_shape = [] for row in test_corpus: doc = nlp(row) present_lemma = [] present_tag = [] present_dep = [] present_shape = [] present_ner = [] #print(row) for token in doc: present_lemma.append(token.lemma_) present_tag.append(token.tag_) #print(present_tag) present_dep.append(token.dep_) present_shape.append(token.shape_) all_test_lemma.append(" ".join(present_lemma)) all_test_tag.append(" ".join(present_tag)) all_test_dep.append(" ".join(present_dep)) all_test_shape.append(" ".join(present_shape)) for ent in doc.ents: present_ner.append(ent.label_) all_test_ner.append(" ".join(present_ner)) ner_test_ft = count_vec_ner.transform(all_test_ner) lemma_test_ft = count_vec_lemma.transform(all_test_lemma) tag_test_ft = count_vec_tag.transform(all_test_tag) dep_test_ft = count_vec_dep.transform(all_test_dep) shape_test_ft = count_vec_shape.transform(all_test_shape) #x_all_ft_test = hstack([ner_test_ft, lemma_test_ft, tag_test_ft, dep_test_ft, shape_test_ft]) x_all_ft_test = hstack([ner_test_ft, lemma_test_ft, tag_test_ft]) x_all_ft_test x_all_ft_test = x_all_ft_test.tocsr() x_all_ft_test ###Output _____no_output_____ ###Markdown Model TrainingLiterature study over the years has shown Linear SVM performs best in this Use Case. ###Code model = svm.LinearSVC() ###Output _____no_output_____ ###Markdown First Modelling for Coarse Classes ###Code model.fit(x_all_ft_train, train['QType-Coarse'].values) ###Output _____no_output_____ ###Markdown Model Evaluation ###Code preds = model.predict(x_all_ft_test) preds accuracy_score(test['QType-Coarse'].values, preds) ###Output _____no_output_____ ###Markdown Glad to announce, Feature Engineering has enabled us to achieve an Accuracy of 88.2% on the validation set.The obtained accuracy is way higher than the 73% accuracy obtained without feature engineering Next, we will obtain accuracies for Coarse:Fine combinations ###Code model.fit(x_all_ft_train, train['QType'].values) preds = model.predict(x_all_ft_test) accuracy_score(test['QType'].values, preds) ###Output _____no_output_____ ###Markdown Woah, up to 81.4% accuracy from 68% obtained earlier when modelled without Feature Engineering. Finally, we would evaluate our performance for the fine classes ###Code model.fit(x_all_ft_train, train['QType-Fine'].values) preds = model.predict(x_all_ft_test) accuracy_score(test['QType-Fine'].values, preds) ###Output _____no_output_____
notebooks/compare_ddpg.ipynb
###Markdown Set things up ###Code import numpy as np import tensorflow as tf from nn_policy import FeedForwardCritic from nn_policy import FeedForwardPolicy from rllab.envs.mujoco.half_cheetah_env import HalfCheetahEnv from rllab.exploration_strategies.ou_strategy import OUStrategy from sandbox.rocky.tf.algos.ddpg import DDPG as ShaneDDPG from sandbox.rocky.tf.envs.base import TfEnv from sandbox.rocky.tf.policies.deterministic_mlp_policy import \ DeterministicMLPPolicy from sandbox.rocky.tf.q_functions.continuous_mlp_q_function import \ ContinuousMLPQFunction from ddpg import DDPG as MyDDPG from testing_utils import are_np_arrays_equal env = TfEnv(HalfCheetahEnv()) action_dim = env.action_dim obs_dim = env.observation_space.low.shape[0] batch_size = 2 rewards = np.random.rand(batch_size) terminals = (np.random.rand(batch_size) > 0.5).astype(np.int) obs = np.random.rand(batch_size, obs_dim) actions = np.random.rand(batch_size, action_dim) next_obs = np.random.rand(batch_size, obs_dim) ddpg_params = dict( batch_size=64, n_epochs=0, epoch_length=0, eval_samples=0, discount=0.99, qf_learning_rate=1e-3, policy_learning_rate=1e-4, soft_target_tau=0.001, replay_pool_size=1000000, min_pool_size=1000, scale_reward=0.1, ) discount = ddpg_params['discount'] print(rewards) print(terminals) print(obs) print(actions) print(next_obs) ###Output [ 0.15005835 0.81457649] [0 1] [[ 0.43511439 0.21486068 0.43619294 0.66923761 0.20440605 0.82207058 0.83291033 0.72373561 0.89668103 0.67410786 0.80799981 0.64763201 0.01083204 0.4382325 0.93362274 0.55795521 0.63737658 0.7260999 0.9175968 0.17842764] [ 0.41534872 0.5935848 0.63982088 0.23709139 0.9229585 0.80080515 0.99038569 0.92861875 0.28002253 0.97068026 0.24973167 0.93388785 0.99066874 0.4360376 0.57956691 0.67015587 0.19678966 0.18611555 0.22873158 0.39150123]] [[ 0.04384032 0.64044176 0.06986806 0.99731914 0.78400959 0.12711896] [ 0.90925847 0.96190726 0.1259375 0.01973137 0.47221903 0.60472708]] [[ 0.29052842 0.92648082 0.00907505 0.4897972 0.45359199 0.36603501 0.26034967 0.76724245 0.64317068 0.36499064 0.72187408 0.24276138 0.22878558 0.8248953 0.64472811 0.08181222 0.31025709 0.35683179 0.68326028 0.1779539 ] [ 0.93819824 0.93290809 0.15855846 0.27508406 0.55827918 0.51646106 0.30439037 0.35100247 0.65420072 0.16924955 0.09570054 0.53530208 0.23401812 0.57407776 0.31642575 0.36555799 0.50138211 0.34332719 0.62882041 0.24917595]] ###Markdown Create my stuff ###Code sess_me = tf.Session() with sess_me.as_default(): es = OUStrategy(env_spec=env.spec) ddpg_params['Q_weight_decay'] = 0. qf_params = dict( embedded_hidden_sizes=(100, ), observation_hidden_sizes=(100, ), hidden_nonlinearity=tf.nn.relu, ) policy_params = dict( observation_hidden_sizes=(100, 100), hidden_nonlinearity=tf.nn.relu, output_nonlinearity=tf.nn.tanh, ) qf = FeedForwardCritic( "critic", env.observation_space.flat_dim, env.action_space.flat_dim, **qf_params ) policy = FeedForwardPolicy( "actor", env.observation_space.flat_dim, env.action_space.flat_dim, **policy_params ) my_algo = MyDDPG( env, es, policy, qf, **ddpg_params ) my_policy = my_algo.actor my_qf = my_algo.critic my_target_policy = my_algo.target_actor my_target_qf = my_algo.target_critic ###Output _____no_output_____ ###Markdown Set up Shane ###Code sess_shane = tf.Session() with sess_shane.as_default(): es = OUStrategy(env_spec=env.spec) policy = DeterministicMLPPolicy( name="init_policy", env_spec=env.spec, hidden_sizes=(100, 100), hidden_nonlinearity=tf.nn.relu, output_nonlinearity=tf.nn.tanh, ) qf = ContinuousMLPQFunction( name="qf", env_spec=env.spec, hidden_sizes=(100, 100), ) ddpg_params.pop('Q_weight_decay') shane_algo = ShaneDDPG( env, policy, qf, es, **ddpg_params ) sess_shane.run(tf.initialize_all_variables()) shane_algo.init_opt() # This initializes the optimizer parameters sess_shane.run(tf.initialize_all_variables()) f_train_policy = shane_algo.opt_info['f_train_policy'] f_train_qf = shane_algo.opt_info['f_train_qf'] shane_target_qf = shane_algo.opt_info["target_qf"] shane_target_policy = shane_algo.opt_info["target_policy"] shane_policy = shane_algo.policy shane_qf = shane_algo.qf ###Output _____no_output_____ ###Markdown Measure stuff from Shane's algo ###Code with sess_shane.as_default(): shane_policy_param_values = shane_policy.flat_to_params( shane_policy.get_param_values() ) shane_qf_param_values = shane_qf.flat_to_params( shane_qf.get_param_values() ) # TODO(vpong): why are these two necessary? shane_target_policy.set_param_values(shane_policy.get_param_values()) shane_target_qf.set_param_values(shane_qf.get_param_values()) shane_actions, _ = shane_policy.get_actions(obs) shane_qf_out = shane_qf.get_qval(obs, actions) shane_next_actions, _ = shane_target_policy.get_actions(next_obs) shane_next_target_qf_values = shane_target_qf.get_qval(next_obs, shane_next_actions) shane_ys = rewards + (1. - terminals) * discount * shane_next_target_qf_values ###Output _____no_output_____ ###Markdown Copy things to my algo ###Code with sess_me.as_default(): my_policy.set_param_values(shane_policy_param_values) my_target_policy.set_param_values(shane_policy_param_values) my_qf.set_param_values(shane_qf_param_values) my_target_qf.set_param_values(shane_qf_param_values) ###Output _____no_output_____ ###Markdown Measure stuff from my algo ###Code feed_dict = my_algo._update_feed_dict(rewards, terminals, obs, actions, next_obs) my_actions = sess_me.run( my_policy.output, feed_dict=feed_dict ) my_qf_out = sess_me.run( my_qf.output, feed_dict=feed_dict ).flatten() my_next_actions = sess_me.run( my_target_policy.output, feed_dict=feed_dict ) my_next_target_qf_values = sess_me.run( my_algo.target_critic.output, feed_dict=feed_dict).flatten() my_ys = sess_me.run(my_algo.ys, feed_dict=feed_dict).flatten() my_policy_loss = sess_me.run( my_algo.actor_surrogate_loss, feed_dict=feed_dict) my_qf_loss = sess_me.run( my_algo.critic_loss, feed_dict=feed_dict) ###Output _____no_output_____ ###Markdown Check that Shane and my params stayed the same ###Code shane_policy = shane_algo.policy shane_qf = shane_algo.qf with sess_shane.as_default(): shane_policy_param_values_new = shane_policy.flat_to_params( shane_policy.get_param_values() ) shane_qf_param_values_new = shane_qf.flat_to_params( shane_qf.get_param_values() ) shane_target_policy_param_values_new = shane_target_policy.flat_to_params( shane_target_policy.get_param_values() ) shane_target_qf_param_values_new = shane_target_qf.flat_to_params( shane_target_qf.get_param_values() ) my_policy_params_values_new = my_algo.actor.get_param_values() my_qf_params_values_new = my_algo.critic.get_param_values() my_target_policy_params_values_new = my_algo.target_actor.get_param_values() my_target_qf_params_values_new = my_algo.target_critic.get_param_values() print(all((a==b).all() for a, b in zip(shane_policy_param_values, shane_policy_param_values_new))) print(all((a==b).all() for a, b in zip(shane_policy_param_values, my_policy_params_values_new))) print(all((a==b).all() for a, b in zip(shane_policy_param_values, shane_target_policy_param_values_new))) print(all((a==b).all() for a, b in zip(shane_policy_param_values, my_target_policy_params_values_new))) print(all((a==b).all() for a, b in zip(shane_qf_param_values, shane_qf_param_values_new))) print(all((a==b).all() for a, b in zip(shane_qf_param_values, my_qf_params_values_new))) print(all((a==b).all() for a, b in zip(shane_qf_param_values, shane_target_qf_param_values_new))) print(all((a==b).all() for a, b in zip(shane_qf_param_values, my_target_qf_params_values_new))) ###Output True True True True True True True True ###Markdown Check critic outputs are the same ###Code W1, b1, W2, b2, W3, b3 = shane_qf_param_values output = np.matmul(obs, W1) + b1 output = np.maximum(output, 0) output = np.hstack((output, actions)) output = np.matmul(output, W2) + b2 output = np.maximum(output, 0) output = np.matmul(output, W3) + b3 expected_qf_out = output.flatten() print(my_qf_out) print(shane_qf_out) print(expected_qf_out) ###Output [-0.07917806 0.00283957] [-0.07917806 0.00283957] [-0.07917813 0.00283952] ###Markdown Check actor outputs are the same ###Code W1, b1, W2, b2, W3, b3 = shane_policy_param_values output = np.matmul(obs, W1) + b1 output = np.maximum(output, 0) output = np.matmul(output, W2) + b2 output = np.maximum(output, 0) output = np.matmul(output, W3) + b3 expected_action = output print(my_actions) print(shane_actions) print(expected_action) ###Output [[-0.20947778 0.04484395 0.08546824 0.01056851 0.00029767 0.0958475 ] [ 0.01458523 -0.0430692 0.10159081 -0.15388419 -0.06008253 0.18279688]] [[-0.20947778 0.04484395 0.08546824 0.01056851 0.00029767 0.0958475 ] [ 0.01458523 -0.0430692 0.10159081 -0.15388419 -0.06008253 0.18279688]] [[-0.21262505 0.04487398 0.0856773 0.01056885 0.00029774 0.09614267] [ 0.01458626 -0.04309584 0.10194247 -0.15511645 -0.06015505 0.18487474]] ###Markdown Check that next action outputs are the same ###Code W1, b1, W2, b2, W3, b3 = shane_policy_param_values output = np.matmul(next_obs, W1) + b1 output = np.maximum(output, 0) output = np.matmul(output, W2) + b2 output = np.maximum(output, 0) output = np.matmul(output, W3) + b3 expected_next_action = output print(my_next_actions) print(shane_next_actions) print(expected_next_action) ###Output [[-0.086945 -0.01997953 0.02840678 0.09882895 0.02658396 0.11652762] [ 0.01991368 -0.0152898 0.01624201 0.11547601 -0.00939338 0.18017189]] [[-0.086945 -0.01997953 0.02840678 0.09882895 0.02658396 0.11652762] [ 0.01991368 -0.0152898 0.01624201 0.11547601 -0.00939338 0.18017189]] [[-0.08716509 -0.01998221 0.02841444 0.09915265 0.02659021 0.11705939] [ 0.0199163 -0.015291 0.01624345 0.1159935 -0.00939367 0.18216033]] ###Markdown Check next critic outputs are the same ###Code W1, b1, W2, b2, W3, b3 = shane_qf_param_values output = np.matmul(next_obs, W1) + b1 output = np.maximum(output, 0) output = np.hstack((output, expected_next_action)) output = np.matmul(output, W2) + b2 output = np.maximum(output, 0) output = np.matmul(output, W3) + b3 expected_target_qf_values = output.flatten() print(shane_next_target_qf_values) print(my_next_target_qf_values) print(expected_target_qf_values) my_expected_ys = rewards + (1. - terminals) * discount * my_next_target_qf_values shane_expected_ys = rewards + (1. - terminals) * discount * shane_next_target_qf_values expected_ys = rewards + (1. - terminals) * discount * expected_target_qf_values print(shane_ys) print(shane_expected_ys) print(my_ys) print(my_expected_ys) print(expected_ys) ###Output [ 0.11367485 0.81457649] [ 0.11367485 0.81457649] [ 0.11367485 0.81457651] [ 0.11367485 0.81457649] [ 0.11369999 0.81457649] ###Markdown Check losses are the sameOnly do this once since it changes the params! ###Code with sess_shane.as_default(): shane_policy_loss, _ = f_train_policy(obs) shane_qf_loss, qval, _ = f_train_qf(shane_ys, obs, actions) print(my_policy_loss) print(shane_policy_loss) print(shane_qf_loss) print(my_qf_loss) sess.close() ###Output _____no_output_____
Week_1/Assignment5_Boston_Marathon.ipynb
###Markdown ###Code !git clone https://github.com/llimllib/bostonmarathon ###Output fatal: destination path 'bostonmarathon' already exists and is not an empty directory. ###Markdown Import library ###Code # libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib import seaborn as sns import pickle # kmean and elbow curve from sklearn.cluster import KMeans from yellowbrick.cluster import KElbowVisualizer # min-max scaler from sklearn.preprocessing import MinMaxScaler plt.rcParams['figure.figsize'] = (15, 5) df_org = pd.read_csv('/content/bostonmarathon/results/2014/results.csv') ###Output _____no_output_____ ###Markdown Phase 1: Build Unsupervise model Create dataframe that included general features ###Code df = df_org[['name','gender','age','state','country','city']] df df.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 31984 entries, 0 to 31983 Data columns (total 6 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 name 31984 non-null object 1 gender 31984 non-null object 2 age 31984 non-null int64 3 state 29408 non-null object 4 country 31984 non-null object 5 city 31983 non-null object dtypes: int64(1), object(5) memory usage: 1.5+ MB ###Markdown Check null values ###Code null_percent = pd.DataFrame(df.isnull().sum() / len(df), columns=['null_percent']) null_percent ###Output _____no_output_____ ###Markdown We remove features that have threshold > 0.3 ###Code temp = [] for feature in null_percent.iterrows(): if float(feature[1]) > 0.3: temp.append(feature[0]) temp ###Output _____no_output_____ ###Markdown We don't have any features out of our criteria ###Code df = df.dropna() ###Output _____no_output_____ ###Markdown check distinct of features ###Code temp = [df.name, df.state, df.country, df.city] for i in temp: temp2 = len(i.unique()) / len(i) print(temp2) ###Output 0.9979597388465724 0.002312295973884657 6.800870511425463e-05 0.1587323177366703 ###Markdown we remove feature `name` since it have to many distinct (99%)Its not good for unsupervise model ###Code df = df.drop('name',axis=1)#.reset_index(drop=True) df ###Output _____no_output_____ ###Markdown find oulier ###Code df2 = df.copy() ###Output _____no_output_____ ###Markdown change `gender`, `state`, `country`, `city` to category values ###Code df2['gender'] = df.gender.astype('category').cat.codes df2['state'] = df.state.astype('category').cat.codes df2['country'] = df.country.astype('category').cat.codes df2['city'] = df.city.astype('category').cat.codes df2 ###Output _____no_output_____ ###Markdown find ouliers ###Code Q1 = df2.quantile(0.25) Q3 = df2.quantile(0.75) IQR = Q3 - Q1 print(IQR) count_outlier = [] for i in range(len(IQR)): index = df2[(df2[IQR.index[i]] < (Q1[i] - 1.5 * IQR[i])) | (df2[IQR.index[i]] > (Q3[i] + 1.5 * IQR[i]))].index count_outlier.append(len(index)) percent = [] for count in count_outlier: percent.append(100*(count/(df2.shape[0]))) outlier = pd.DataFrame({'count': count_outlier, 'percent':percent}, index=IQR.index) outlier ###Output _____no_output_____ ###Markdown we can't remove outliers of `country`, since this feature just contain USA and Canada, so that these 2175 ouliers is Canada, if we remove, this feature will be uselessWe just remove outliers of `age` ###Code IQR.index[1] index = list(df2[(df2[IQR.index[1]] < (Q1[1] - 1.5 * IQR[1])) | (df2[IQR.index[1]] > (Q3[1] + 1.5 * IQR[1]))].index) #drop indexes of df_train and df_supervise df.drop(index,inplace=True) ###Output _____no_output_____ ###Markdown final `df` ###Code df ###Output _____no_output_____ ###Markdown milestone `df3` ###Code df3 = df.copy() df3 ###Output _____no_output_____ ###Markdown create onehotencoding features for `gender` and `country` ###Code df_gender = pd.get_dummies(df3.gender, prefix='gender') df_country = pd.get_dummies(df3.country, prefix='country') df_gender df3 = df3.join([df_gender, df_country]).drop(['gender','country'],axis=1) df3['state'] = df3.state.astype('category').cat.codes df3['city'] = df3.city.astype('category').cat.codes df3 df3.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 29378 entries, 9 to 31983 Data columns (total 7 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 age 29378 non-null int64 1 state 29378 non-null int8 2 city 29378 non-null int16 3 gender_F 29378 non-null uint8 4 gender_M 29378 non-null uint8 5 country_CAN 29378 non-null uint8 6 country_USA 29378 non-null uint8 dtypes: int16(1), int64(1), int8(1), uint8(4) memory usage: 1.9 MB ###Markdown check distribution and normalization ###Code def histplot(data, nums_feature): ''' data: dataframe nums_feature: number of features (must be even) ''' w = int(np.ceil(nums_feature / 2)) fig,ax = plt.subplots(w, 2, figsize=(14,12)) i=0 try: for x in range(w): for y in range(2): sns.histplot(data[data.columns[i]], kde=True, ax=ax[x,y]) i += 1 except IndexError: pass plt.tight_layout() plt.show() histplot(df3, np.ceil(len(df3.columns))) ###Output _____no_output_____ ###Markdown milestone `df_final` ###Code df_final = df3.copy() ###Output _____no_output_____ ###Markdown minmaxtransform for `age`, `state`, `city` ###Code df_final[['age','state','city']] = MinMaxScaler(feature_range= (0,1)).fit_transform(df3[['age','state','city']]) df_final Nc = range(1, 20) kmeans = [KMeans(n_clusters=i) for i in Nc] kmeans score = [kmeans[i].fit(df_final).score(df_final) for i in range(len(kmeans))] score #Opposite of the value of X on the K-means objective. plt.plot(Nc,score) plt.xlabel('Number of Clusters') plt.ylabel('Score') plt.title('Elbow Curve') ###Output _____no_output_____ ###Markdown base on chart, we will choose custer = 3 `clusters` = 3 ###Code cluster_model = KMeans(n_clusters=3).fit(df_final) cluster_model.labels_ df['cluster'] = cluster_model.labels_ df ###Output _____no_output_____ ###Markdown check_insight ###Code def check_insight(data): columns = ['country','gender','state','city'] fig, ax = plt.subplots(4, figsize=(18,35)) j=0 for i in columns: temp = data[i].reset_index().drop(['unique','top'], axis=1) df_temp = temp.melt('cluster', var_name='cols', value_name='samples') #plot sns.barplot(data=df_temp, y='samples', x='cluster',hue='cols', ci="sd", palette="Blues_d",errwidth=0.3, alpha=0.4, ax=ax[j],).set_title(str('{}'.format(i)).upper()) j+=1 insight = df.groupby('cluster')[['country','gender','state','city']].describe() insight check_insight(insight) ###Output _____no_output_____ ###Markdown We can see that in feature `country` and `gender`, numbers of most-appear feature is a same with total samples in specific clusters.Check with dataframe `insight` , we can see that:1. cluster 0 only inclue `gender` = Female, and `country` = USA2. cluster 2 only inclue `gender` = Male, and `country` = USAThis will reduce the important of other features like `state` or `city` `n_clusters` = 8 ###Code cluster_model = KMeans(n_clusters=8).fit(df_final) cluster_model.labels_ df['cluster'] = cluster_model.labels_ insight = df.groupby('cluster')[['country','gender','state','city']].describe() insight check_insight(insight) ###Output _____no_output_____ ###Markdown We have the same result, so we bet that changing algorithms might solve this problem save model We will save model that clusters = 3 ###Code pickle.dump(cluster_model, open("/content/drive/MyDrive/CBD_Robotic/boston_marathon/cluster_model.pkl", "wb")) # cd /content/drive/MyDrive/CBD_Robotic/boston_marathon # cat model_requirements.txt ###Output /content/drive/MyDrive/CBD_Robotic/boston_marathon ###Markdown Phase 2: Using Unsupervise model to boston marathon project Load model & Import libraries ###Code # libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib import seaborn as sns import pickle # kmean and elbow curve from sklearn.cluster import KMeans from yellowbrick.cluster import KElbowVisualizer # min-max scaler from sklearn.preprocessing import MinMaxScaler ###Output /usr/local/lib/python3.6/dist-packages/sklearn/utils/deprecation.py:144: FutureWarning: The sklearn.metrics.classification module is deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.metrics. Anything that cannot be imported from sklearn.metrics is now part of the private API. warnings.warn(message, FutureWarning) ###Markdown The data for predict cluster must follow feature's order like this:`gender`: onehotencode to Male and Female`country`: onehotencode to USA and CAN`age`, `state` and `city` in range(0,1) ![image.png]() ###Code model = pickle.load(open("/content/drive/MyDrive/CBD_Robotic/boston_marathon/cluster_model.pkl", "rb")) ###Output _____no_output_____ ###Markdown Boston Marathon Project ###Code !git clone https://github.com/llimllib/bostonmarathon plt.rcParams['figure.figsize'] = (15, 5) df = pd.read_csv('/content/bostonmarathon/results/2014/results.csv') df ###Output _____no_output_____ ###Markdown Check null values ###Code null_percent = pd.DataFrame(df.isnull().sum() / len(df), columns=['null_percent']) null_percent ###Output _____no_output_____ ###Markdown We remove features that have threshold > 0.3 ###Code temp = [] for feature in null_percent.iterrows(): if float(feature[1]) > 0.3: temp.append(feature[0]) temp ###Output _____no_output_____ ###Markdown We don't have any features out of our criteria ###Code df = df.drop(temp, axis=1) df = df.dropna() df = df.reset_index(drop=True) df ###Output _____no_output_____ ###Markdown replace weird values and convert some features to numeric We can see some weird values in `10k`, `20k`, etc... ###Code df['10k'][2828] ###Output _____no_output_____ ###Markdown remove and convert ###Code temp = ['5k','10k','20k','25k','30k','35k','40k','half'] for i in temp: #drop weird values df.drop(df[df[i] == '-'].index, inplace=True) #covert object type to numeric df[i] = pd.to_numeric(df[i]) df df.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 29103 entries, 0 to 29407 Data columns (total 20 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 10k 29103 non-null float64 1 name 29103 non-null object 2 division 29103 non-null int64 3 25k 29103 non-null float64 4 gender 29103 non-null object 5 age 29103 non-null int64 6 official 29103 non-null float64 7 bib 29103 non-null object 8 genderdiv 29103 non-null int64 9 35k 29103 non-null float64 10 overall 29103 non-null int64 11 pace 29103 non-null float64 12 state 29103 non-null object 13 30k 29103 non-null float64 14 5k 29103 non-null float64 15 half 29103 non-null float64 16 20k 29103 non-null float64 17 country 29103 non-null object 18 city 29103 non-null object 19 40k 29103 non-null float64 dtypes: float64(10), int64(4), object(6) memory usage: 4.7+ MB ###Markdown plot some insight ###Code df df['official'].groupby(pd.cut(df['age'], range(15,90,5))).aggregate(np.average).plot(kind="bar", title="Average time by age group") ###Output _____no_output_____ ###Markdown We can see that the the age range that have greatest time is from 20 to 40after that, the time spend is higher per higher age ###Code df['official'].groupby(pd.cut(df['age'], range(15,90,5))).aggregate(len).plot(kind="bar", title="# of runners by age group") ###Output _____no_output_____ ###Markdown The numbers of age from 15 to 20, and from above 65 is really fewit maybe occur outliers find outliers ###Code df2 = df.copy() df2 df_temp = df2.drop(['name','gender','bib','country'], axis=1) #convert categories df_temp['state'] = df_temp.state.astype('category').cat.codes df_temp['city'] = df_temp.city.astype('category').cat.codes df_temp #find IQR Q1 = df_temp.quantile(0.25) Q3 = df_temp.quantile(0.75) IQR = Q3 - Q1 print(IQR) #find ouliers count_outlier = [] for i in range(len(IQR)): index = df_temp[(df_temp[IQR.index[i]] < (Q1[i] - 1.5 * IQR[i])) | (df_temp[IQR.index[i]] > (Q3[i] + 1.5 * IQR[i]))].index count_outlier.append(len(index)) percent = [] for count in count_outlier: percent.append(100*(count/(df_temp.shape[0]))) #ouliers outlier = pd.DataFrame({'count': count_outlier, 'percent':percent}, index=IQR.index) outlier for i in range(len(IQR)): index = list(df_temp[(df_temp[IQR.index[i]] < (Q1[i] - 1.5 * IQR[i])) | (df_temp[IQR.index[i]] > (Q3[i] + 1.5 * IQR[i]))].index) df_temp.drop(index, inplace=True) df_temp ###Output _____no_output_____ ###Markdown milestone `df3` ###Code df3 = df2.drop(index=df2.drop(index=df_temp.index).index).reset_index(drop=True) df3 ###Output _____no_output_____ ###Markdown divide into train and supervise dataset ###Code df_train = df3[['name','gender','age','country','city','state']] df_train df_supervise = df3.drop(df_train.columns, axis=1) df_supervise ###Output _____no_output_____ ###Markdown create onehot dataset for `gender` and `country` ###Code df_gender = pd.get_dummies(df_train.gender, prefix='gender') df_country = pd.get_dummies(df_train.country, prefix='country') df_gender ###Output _____no_output_____ ###Markdown Join onehot features to `df_train` ###Code df_train = df_train.join([df_gender, df_country]).drop(['gender','country'],axis=1) df_train['state'] = df_train.state.astype('category').cat.codes df_train['city'] = df_train.city.astype('category').cat.codes #drop `name` df_train = df_train.drop(['name'],axis=1) df_train ###Output _____no_output_____ ###Markdown apply MinMaxScaler to `age`, `state`, `city` ###Code df_train[['age','state','city']] = MinMaxScaler(feature_range= (0,1)).fit_transform(df_train[['age','state','city']]) df_train ###Output _____no_output_____ ###Markdown Predict clusters Recall that: ![image.png]() We can see that the order is not correct, so that we should reorder columns: ###Code df_train2 = df_train.reindex(columns=['age','state','city','gender_F','gender_M','country_CAN','country_USA']) df_train2 ###Output _____no_output_____ ###Markdown Everythings is ok now and be ready to predict ###Code predict = model.predict(df_train2) ###Output _____no_output_____ ###Markdown milestone `df4` ###Code df4 = df3.copy() df4['cluster'] = predict df4 ###Output _____no_output_____ ###Markdown create `percent_cluster` and add it to `df4` ###Code temp = df4.cluster.value_counts(normalize=True) * 100 percent_cluster = temp.to_frame().reset_index() percent_cluster.rename(columns={"cluster": "percent_cluster"}, inplace=True) percent_cluster df4 = pd.merge(df4, percent_cluster, left_on='cluster', right_on='index', how='left').drop(['index'], axis=1) df4 ###Output _____no_output_____ ###Markdown analyse supervise data We add `age`, `cluster`, `percent_cluster` to `df_supervise` ###Code df_supervise[['age','cluster','percent_cluster']] = df4[['age','cluster','percent_cluster']] #remove `bib` df_supervise.drop(['bib'], axis=1, inplace=True) df_supervise df_supervise.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 27361 entries, 0 to 27360 Data columns (total 16 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 10k 27361 non-null float64 1 division 27361 non-null int64 2 25k 27361 non-null float64 3 official 27361 non-null float64 4 genderdiv 27361 non-null int64 5 35k 27361 non-null float64 6 overall 27361 non-null int64 7 pace 27361 non-null float64 8 30k 27361 non-null float64 9 5k 27361 non-null float64 10 half 27361 non-null float64 11 20k 27361 non-null float64 12 40k 27361 non-null float64 13 age 27361 non-null int64 14 cluster 27361 non-null int32 15 percent_cluster 27361 non-null float64 dtypes: float64(11), int32(1), int64(4) memory usage: 3.2 MB ###Markdown group columns by cluster and calculate mean of all columns ###Code df_bycluster = df_supervise.groupby("cluster").mean() df_bycluster = df_bycluster.reset_index() #fill color for values cm = sns.light_palette("green", as_cmap=True) df_bycluster2 = df_bycluster.style.background_gradient(cmap=cm) df_bycluster2 ###Output _____no_output_____ ###Markdown We see that cluster 0 usually have higher time to finish race, but `age` in this cluser is lowest (mean = 39,8)cluster 1 and cluster 2 doesn't have too much difference in time finish in all race, most of features of cluster 2 is a bit higher, contrast with `age` ###Code def barplot(data, nums_feature): ''' data: dataframe nums_feature: number of features (must be even) ''' w = int(np.ceil(nums_feature / 2)) fig,ax = plt.subplots(w, 2, figsize=(14,20)) i=1 try: for x in range(w): for y in range(2): sns.barplot(data=data, x='cluster', y=data[data.columns[i]] , ci="sd", palette="dark", alpha=0.4, ax=ax[x,y]) i += 1 except IndexError: pass plt.tight_layout() plt.show() barplot(df_bycluster, np.ceil(len(df_bycluster.columns))) ###Output _____no_output_____ ###Markdown check_insight ###Code def check_insight(data): columns = ['country','gender','state','city'] fig, ax = plt.subplots(4, figsize=(18,35)) j=0 for i in columns: temp = data[i].reset_index().drop(['unique','top'], axis=1) df_temp = temp.melt('cluster', var_name='cols', value_name='samples') #plot sns.barplot(data=df_temp, y='samples', x='cluster',hue='cols', ci="sd", palette="Blues_d",errwidth=0.3, alpha=0.4, ax=ax[j],).set_title(str('{}'.format(i)).upper()) j+=1 insight = df4.groupby('cluster')[['country','gender','state','city']].describe() insight check_insight(insight) ###Output _____no_output_____ ###Markdown We can see that in feature `country` and `gender`, numbers of most-appear feature is a same with total samples in specific clusters.Check with dataframe `insight` , we can see that:1. cluster 0 only inclue `gender` = Female, and `country` = USA2. cluster 2 only inclue `gender` = Male, and `country` = USAThis will reduce the important of other features like `state` or `city` Use for prediction We have enough ingredients to predict many infomations about person relate to marathon Assume that we have this data about person: ###Code df_person_info = df4[['name','gender','age','country','city','state']] df_person_info ###Output _____no_output_____ ###Markdown After using model `cluster_model`, We will have a data that labeled: ###Code df_person_info[['cluster','percent_cluster']] = df4[['cluster','percent_cluster']] df_person_info ###Output _____no_output_____ ###Markdown Recall that we have `df_bycluster2` that included mean values of all supervise features: ###Code df_bycluster2 ###Output _____no_output_____ ###Markdown Finally, we join each other by `cluster`: ###Code df_bycluster.rename(columns={'age' : 'age_avg'}, inplace=True) df_final = pd.merge(df_person_info, df_bycluster.drop('percent_cluster',axis=1), left_on='cluster', right_on='cluster', how='left') df_final ###Output _____no_output_____
Transfer learning cats and dogs.ipynb
###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. Train in a remote VM (MLC managed DSVM)* Create Workspace* Create Experiment* Upload data to a blob in workspace* Configure ACI run config* Submit the experiment in ACI* Register the retrained model PrerequisitesMake sure you go through the [00. Installation and Configuration](00.configuration.ipynb) Notebook first if you haven't. Install Azure ML SDK* !pip install azureml-core* !pip install azureml-contrib-iot* !pip install azure-mgmt-containerregistry Check the conda environmentMake sure you have started the notebook from the correct conda environment ###Code import os print(os.__file__) # Check core SDK version number import azureml.core as azcore print("SDK version:", azcore.VERSION) ###Output SDK version: 1.0.2 ###Markdown Initialize WorkspaceInitialize a workspace object from persisted configuration. ###Code from azureml.core import Workspace ws = Workspace.from_config('./aml_config/config.json') print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\n') ###Output Found the config file in: /home/arun/Documents/tensorflow-for-poets-2/aml_config/config.json peabody peabody eastus 54646fde-e2bd-4f13-bb8a-2eb1174d1240 ###Markdown Create Experiment**Experiment** is a logical container in an Azure ML Workspace. It hosts run records which can include run metrics and output artifacts from your experiments. ###Code experiment_name = 'cats_dogs' from azureml.core import Experiment exp = Experiment(workspace = ws, name = experiment_name) ###Output _____no_output_____ ###Markdown Upload data files into datastoreRegister your existing azure storage as a new datastore with the workspace. The datastore should be backed by the Azure blob storage account. We can use it to transfer data from local to the cloud, and access it from the compute target. ###Code from azureml.core.datastore import Datastore ds = Datastore.register_azure_blob_container(workspace=ws, datastore_name='mycatdog', container_name='cat-dog', account_name='mytraindata', account_key='TPYHA0FQYymwr0it/Vubn/aAC8hYcuGNrp6TmicH9JidTI1PnwYeL9DZ51UnF5xN8oW26+eAWUnQOLkURa++Ig==', create_if_not_exists=False) data_path = "training_images" # This is the path to the folder in the blob container. Set this to None to get all the contents. print(ds.name, ds.datastore_type, ds.account_name, ds.container_name) ###Output mycatdog AzureBlob mytraindata cat-dog ###Markdown Configure for using ACILinux-based ACI is available in `West US`, `East US`, `West Europe`, `North Europe`, `West US 2`, `Southeast Asia`, `Australia East`, `East US 2`, and `Central US` regions. See details [here](https://docs.microsoft.com/en-us/azure/container-instances/container-instances-quotasregion-availability). Create a `DataReferenceConfiguration` object to inform the system what data folder to download to the copmute target. ###Code from azureml.core.runconfig import DataReferenceConfiguration dr = DataReferenceConfiguration(datastore_name=ds.name, path_on_datastore=data_path, mode='download', # download files from datastore to compute target overwrite=True) ###Output _____no_output_____ ###Markdown Set the system to build a conda environment based on the run configuration. Once the environment is built, and if you don't change your dependencies, it will be reused in subsequent runs. ###Code from azureml.core.compute import ComputeTarget, AmlCompute from azureml.core.compute_target import ComputeTargetException # choose a name for your cluster cluster_name = "cpucluster3" try: compute_target = ComputeTarget(workspace=ws, name=cluster_name) print('Found existing compute target.') except ComputeTargetException: print('Creating a new compute target...') compute_config = AmlCompute.provisioning_configuration(vm_size='Standard_D3', max_nodes=2) # create the cluster compute_target = ComputeTarget.create(ws, cluster_name, compute_config) compute_target.wait_for_completion(show_output=True) # Use the 'status' property to get a detailed status for the current AmlCompute. print(compute_target.status.serialize()) from azureml.core.runconfig import RunConfiguration, DEFAULT_CPU_IMAGE from azureml.core.conda_dependencies import CondaDependencies # create a new runconfig object run_config = RunConfiguration(framework = "python") # Set compute target run_config.target = compute_target.name # set the data reference of the run configuration run_config.data_references = {ds.name: dr} # enable Docker run_config.environment.docker.enabled = True # set Docker base image to the default CPU-based image run_config.environment.docker.base_image = DEFAULT_CPU_IMAGE # use conda_dependencies.yml to create a conda environment in the Docker image for execution run_config.environment.python.user_managed_dependencies = False # auto-prepare the Docker image when used for execution (if it is not already prepared) run_config.auto_prepare_environment = True # specify CondaDependencies obj run_config.environment.python.conda_dependencies = CondaDependencies.create(conda_packages=['tensorflow==1.8.0']) ###Output _____no_output_____ ###Markdown Submit the ExperimentSubmit script to run in the Docker image in the remote VM. If you run this for the first time, the system will download the base image, layer in packages specified in the `conda_dependencies.yml` file on top of the base image, create a container and then execute the script in the container. ###Code from azureml.core import Run from azureml.core import ScriptRunConfig src = ScriptRunConfig(source_directory = './scripts', script = 'retrain.py', run_config = run_config, # pass the datastore reference as a parameter to the training script arguments=['--image_dir', str(ds.as_download()), '--architecture', 'mobilenet_1.0_224', '--output_graph', 'outputs/retrained_graph.pb', '--output_labels', 'outputs/output_labels.txt', '--model_download_url', 'https://raw.githubusercontent.com/rakelkar/models/master/model_output/', '--model_file_name', 'imagenet_2_frozen.pb' ]) run = exp.submit(config=src) ###Output _____no_output_____ ###Markdown View run history details ###Code run run.wait_for_completion(show_output=True) ###Output RunId: cats_dogs_1547169681085 Streaming azureml-logs/60_control_log.txt ========================================= Streaming log file azureml-logs/60_control_log.txt Streaming log file azureml-logs/80_driver_log.txt Streaming azureml-logs/80_driver_log.txt ======================================== https://raw.githubusercontent.com/rakelkar/models/master/model_output/mobilenet_v1_1.0_224_frozen.tgz /tmp/imagenet /tmp/imagenet/mobilenet_v1_1.0_224_frozen.tgz >> Downloading mobilenet_v1_1.0_224_frozen.tgz 0.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 0.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 0.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 0.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 0.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 0.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 0.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 0.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 0.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 0.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 0.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 0.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 0.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 0.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 0.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 0.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 0.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 0.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 0.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 1.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 1.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 1.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 1.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 1.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 1.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 1.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 1.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 1.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 1.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 1.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 1.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 1.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 1.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 1.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 1.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 1.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 1.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 1.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 2.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 2.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 2.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 2.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 2.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 2.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 2.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 2.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 2.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 2.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 2.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 2.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 2.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 2.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 2.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 2.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 2.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 2.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 2.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 3.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 3.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 3.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 3.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 3.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 3.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 3.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 3.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 3.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 3.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 3.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 3.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 3.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 3.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 3.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 3.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 3.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 3.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 3.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 4.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 4.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 4.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 4.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 4.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 4.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 4.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 4.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 4.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 4.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 4.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 4.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 4.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 4.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 4.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 4.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 4.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 4.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 4.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 5.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 5.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 5.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 5.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 5.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 5.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 5.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 5.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 5.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 5.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 5.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 5.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 5.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 5.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 5.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 5.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 5.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 5.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 5.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 5.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 6.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 6.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 6.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 6.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 6.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 6.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 6.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 6.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 6.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 6.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 6.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 6.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 6.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 6.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 6.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 6.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 6.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 6.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 6.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 7.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 7.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 7.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 7.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 7.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 7.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 7.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 7.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 7.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 7.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 7.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 7.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 7.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 7.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 7.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 7.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 7.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 7.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 7.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 8.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 8.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 8.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 8.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 8.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 8.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 8.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 8.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 8.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 8.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 8.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 8.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 8.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 8.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 8.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 8.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 8.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 8.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 8.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 9.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 9.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 9.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 9.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 9.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 9.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 9.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 9.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 9.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 9.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 9.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 9.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 9.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 9.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 9.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 9.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 9.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 9.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 9.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 10.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 10.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 10.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 10.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 10.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 10.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 10.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 10.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 10.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 10.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 10.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 10.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 10.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 10.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 10.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 10.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 10.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 10.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 10.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 10.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 11.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 11.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 11.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 11.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 11.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 11.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 11.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 11.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 11.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 11.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 11.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 11.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 11.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 11.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 11.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 11.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 11.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 11.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 11.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 12.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 12.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 12.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 12.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 12.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 12.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 12.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 12.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 12.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 12.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 12.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 12.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 12.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 12.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 12.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 12.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 12.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 12.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 12.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 13.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 13.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 13.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 13.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 13.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 13.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 13.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 13.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 13.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 13.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 13.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 13.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 13.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 13.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 13.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 13.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 13.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 13.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 13.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 14.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 14.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 14.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 14.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 14.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 14.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 14.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 14.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 14.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 14.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 14.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 14.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 14.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 14.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 14.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 14.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 14.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 14.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 14.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 15.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 15.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 15.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 15.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 15.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 15.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 15.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 15.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 15.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 15.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 15.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 15.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 15.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 15.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 15.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 15.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 15.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 15.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 15.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 15.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 16.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 16.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 16.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 16.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 16.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 16.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 16.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 16.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 16.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 16.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 16.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 16.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 16.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 16.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 16.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 16.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 16.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 16.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 16.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 17.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 17.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 17.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 17.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 17.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 17.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 17.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 17.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 17.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 17.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 17.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 17.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 17.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 17.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 17.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 17.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 17.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 17.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 17.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 18.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 18.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 18.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 18.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 18.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 18.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 18.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 18.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 18.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 18.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 18.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 18.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 18.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 18.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 18.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 18.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 18.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 18.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 18.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 19.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 19.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 19.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 19.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 19.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 19.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 19.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 19.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 19.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 19.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 19.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 19.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 19.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 19.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 19.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 19.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 19.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 19.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 19.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 20.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 20.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 20.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 20.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 20.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 20.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 20.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 20.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 20.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 20.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 20.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 20.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 20.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 20.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 20.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 20.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 20.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 20.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 20.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 20.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 21.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 21.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 21.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 21.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 21.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 21.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 21.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 21.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 21.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 21.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 21.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 21.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 21.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 21.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 21.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 21.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 21.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 21.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 21.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 22.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 22.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 22.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 22.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 22.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 22.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 22.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 22.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 22.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 22.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 22.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 22.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 22.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 22.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 22.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 22.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 22.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 22.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 22.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 23.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 23.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 23.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 23.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 23.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 23.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 23.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 23.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 23.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 23.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 23.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 23.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 23.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 23.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 23.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 23.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 23.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 23.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 23.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 24.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 24.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 24.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 24.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 24.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 24.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 24.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 24.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 24.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 24.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 24.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 24.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 24.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 24.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 24.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 24.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 24.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 24.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 24.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 25.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 25.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 25.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 25.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 25.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 25.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 25.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 25.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 25.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 25.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 25.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 25.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 25.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 25.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 25.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 25.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 25.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 25.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 25.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 26.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 26.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 26.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 26.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 26.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 26.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 26.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 26.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 26.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 26.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 26.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 26.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 26.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 26.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 26.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 26.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 26.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 26.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 26.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 26.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 27.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 27.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 27.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 27.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 27.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 27.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 27.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 27.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 27.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 27.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 27.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 27.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 27.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 27.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 27.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 27.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 27.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 27.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 27.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 28.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 28.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 28.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 28.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 28.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 28.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 28.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 28.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 28.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 28.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 28.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 28.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 28.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 28.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 28.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 28.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 28.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 28.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 28.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 29.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 29.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 29.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 29.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 29.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 29.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 29.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 29.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 29.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 29.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 29.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 29.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 29.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 29.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 29.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 29.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 29.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 29.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 29.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 30.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 30.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 30.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 30.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 30.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 30.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 30.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 30.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 30.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 30.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 30.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 30.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 30.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 30.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 30.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 30.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 30.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 30.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 30.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 31.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 31.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 31.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 31.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 31.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 31.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 31.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 31.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 31.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 31.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 31.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 31.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 31.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 31.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 31.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 31.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 31.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 31.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 31.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 31.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 32.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 32.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 32.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 32.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 32.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 32.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 32.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 32.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 32.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 32.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 32.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 32.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 32.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 32.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 32.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 32.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 32.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 32.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 32.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 33.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 33.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 33.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 33.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 33.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 33.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 33.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 33.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 33.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 33.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 33.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 33.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 33.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 33.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 33.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 33.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 33.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 33.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 33.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 34.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 34.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 34.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 34.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 34.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 34.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 34.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 34.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 34.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 34.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 34.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 34.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 34.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 34.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 34.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 34.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 34.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 34.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 34.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 35.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 35.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 35.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 35.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 35.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 35.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 35.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 35.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 35.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 35.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 35.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 35.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 35.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 35.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 35.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 35.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 35.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 35.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 35.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 36.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 36.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 36.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 36.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 36.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 36.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 36.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 36.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 36.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 36.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 36.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 36.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 36.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 36.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 36.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 36.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 36.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 36.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 36.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 36.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 37.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 37.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 37.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 37.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 37.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 37.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 37.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 37.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 37.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 37.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 37.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 37.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 37.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 37.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 37.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 37.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 37.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 37.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 37.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 38.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 38.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 38.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 38.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 38.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 38.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 38.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 38.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 38.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 38.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 38.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 38.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 38.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 38.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 38.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 38.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 38.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 38.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 38.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 39.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 39.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 39.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 39.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 39.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 39.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 39.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 39.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 39.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 39.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 39.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 39.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 39.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 39.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 39.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 39.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 39.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 39.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 39.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 40.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 40.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 40.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 40.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 40.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 40.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 40.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 40.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 40.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 40.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 40.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 40.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 40.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 40.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 40.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 40.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 40.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 40.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 40.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 41.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 41.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 41.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 41.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 41.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 41.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 41.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 41.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 41.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 41.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 41.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 41.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 41.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 41.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 41.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 41.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 41.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 41.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 41.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 41.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 42.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 42.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 42.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 42.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 42.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 42.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 42.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 42.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 42.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 42.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 42.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 42.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 42.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 42.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 42.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 42.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 42.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 42.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 42.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 43.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 43.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 43.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 43.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 43.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 43.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 43.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 43.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 43.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 43.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 43.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 43.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 43.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 43.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 43.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 43.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 43.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 43.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 43.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 44.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 44.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 44.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 44.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 44.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 44.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 44.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 44.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 44.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 44.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 44.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 44.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 44.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 44.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 44.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 44.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 44.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 44.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 44.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 45.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 45.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 45.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 45.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 45.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 45.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 45.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 45.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 45.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 45.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 45.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 45.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 45.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 45.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 45.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 45.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 45.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 45.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 45.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 46.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 46.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 46.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 46.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 46.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 46.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 46.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 46.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 46.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 46.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 46.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 46.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 46.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 46.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 46.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 46.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 46.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 46.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 46.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 47.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 47.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 47.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 47.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 47.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 47.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 47.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 47.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 47.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 47.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 47.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 47.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 47.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 47.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 47.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 47.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 47.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 47.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 47.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 47.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 48.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 48.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 48.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 48.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 48.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 48.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 48.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 48.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 48.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 48.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 48.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 48.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 48.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 48.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 48.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 48.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 48.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 48.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 48.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 49.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 49.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 49.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 49.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 49.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 49.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 49.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 49.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 49.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 49.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 49.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 49.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 49.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 49.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 49.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 49.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 49.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 49.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 49.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 50.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 50.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 50.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 50.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 50.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 50.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 50.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 50.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 50.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 50.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 50.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 50.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 50.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 50.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 50.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 50.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 50.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 50.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 50.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 51.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 51.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 51.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 51.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 51.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 51.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 51.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 51.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 51.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 51.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 51.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 51.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 51.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 51.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 51.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 51.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 51.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 51.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 51.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 52.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 52.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 52.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 52.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 52.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 52.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 52.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 52.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 52.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 52.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 52.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 52.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 52.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 52.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 52.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 52.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 52.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 52.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 52.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 52.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 53.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 53.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 53.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 53.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 53.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 53.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 53.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 53.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 53.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 53.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 53.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 53.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 53.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 53.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 53.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 53.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 53.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 53.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 53.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 54.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 54.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 54.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 54.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 54.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 54.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 54.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 54.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 54.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 54.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 54.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 54.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 54.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 54.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 54.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 54.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 54.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 54.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 54.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 55.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 55.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 55.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 55.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 55.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 55.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 55.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 55.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 55.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 55.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 55.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 55.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 55.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 55.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 55.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 55.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 55.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 55.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 55.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 56.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 56.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 56.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 56.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 56.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 56.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 56.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 56.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 56.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 56.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 56.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 56.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 56.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 56.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 56.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 56.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 56.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 56.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 56.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 57.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 57.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 57.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 57.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 57.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 57.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 57.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 57.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 57.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 57.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 57.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 57.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 57.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 57.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 57.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 57.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 57.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 57.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 57.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 57.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 58.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 58.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 58.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 58.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 58.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 58.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 58.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 58.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 58.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 58.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 58.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 58.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 58.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 58.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 58.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 58.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 58.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 58.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 58.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 59.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 59.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 59.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 59.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 59.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 59.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 59.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 59.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 59.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 59.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 59.5% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 59.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 59.6% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 59.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 59.7% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 59.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 59.8% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 59.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 59.9% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 60.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 60.0% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 60.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 60.1% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 60.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 60.2% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 60.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 60.3% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 60.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 60.4% >> Downloading mobilenet_v1_1.0_224_frozen.tgz 60.5% ###Markdown Register the Model ###Code from azureml.core.model import Model model = run.register_model(model_name = experiment_name, model_path = 'outputs/') print(model.name, model.url, model.version, model.id, model.created_time) ###Output _____no_output_____ ###Markdown Convert Model ###Code from azureml.contrib.iot.model_converters import SnpeConverter # submit a compile request compile_request = SnpeConverter.convert_tf_model( ws, source_model=model, input_node="input", input_dims="1,224,224,3", outputs_nodes = ["final_result"], allow_unconsumed_nodes = True) print(compile_request._operation_id) # wait for the request to complete compile_request.wait_for_completion(show_output=True) # get the compiled model compiled_model = compile_request.result print(compiled_model.name, compiled_model.url, compiled_model.version, compiled_model.id, compiled_model.created_time) compiled_model.download(target_dir="./converted/", exist_ok=True) ###Output _____no_output_____ ###Markdown Create Docker Image Show the sample application file ###Code with open('./main.py', 'r') as f: print(f.read()) from azureml.core.image import Image from azureml.contrib.iot import IotContainerImage image_config = IotContainerImage.image_configuration( architecture="arm32v7", execution_script="main.py", dependencies=["cameraapi.py","iot.py","ipcprovider.py","utility.py"], docker_file="Dockerfile", tags = ["mobilenet"], description = "MobileNet based demo module") image = Image.create(name = "peabodymobilenet", # this is the model object models = [compiled_model], image_config = image_config, workspace = ws) image.wait_for_creation(show_output = True) ###Output _____no_output_____ ###Markdown Enter your container registry credentials List the image to get URI ###Code container_reg = ws.get_details()["containerRegistry"] reg_name=container_reg.split("/")[-1] resource_group_name = ws.resource_group container_url = "\"" + image.image_location + "\"," subscription_id = ws.subscription_id print('{}'.format(image.image_location)) print('{}'.format(reg_name)) print('{}'.format(subscription_id)) from azure.mgmt.containerregistry import ContainerRegistryManagementClient from azure.mgmt import containerregistry client = ContainerRegistryManagementClient(ws._auth,subscription_id) result= client.registries.list_credentials(resource_group_name, reg_name, custom_headers=None, raw=False) username = result.username password = result.passwords[0].value ###Output _____no_output_____ ###Markdown Build your Deployment.json file ###Code %%writefile ./deploymentpb.json { "modulesContent": { "$edgeAgent": { "properties.desired": { "schemaVersion": "1.0", "runtime": { "type": "docker", "settings": { "minDockerVersion": "v1.25", "loggingOptions": "", "registryCredentials": { #Automatically adding your acr details acr_details = "\"" + reg_name +"\": {\n\t\t\t\"username\": \""+ username + "\",\n\t\t\t" + "\"password\":\"" + password + "\",\n\t\t\t" + "\"address\":\"" + reg_name + ".azurecr.io\"" + ",\n\t\t}" print('{}'.format(acr_details)) %store acr_details >> deploymentpb.json %%writefile -a ./deploymentpb.json } } }, "systemModules": { "edgeAgent": { "type": "docker", "settings": { "image": "mcr.microsoft.com/azureiotedge-agent:1.0", "createOptions": "{}", "env": { "UpstreamProtocol": { "value": "MQTT" } } } }, "edgeHub": { "type": "docker", "status": "running", "restartPolicy": "always", "settings": { "image": "mcr.microsoft.com/azureiotedge-hub:1.0", "createOptions": "{\"User\":\"root\",\"HostConfig\":{\"PortBindings\":{\"5671/tcp\":[{\"HostPort\":\"5671\"}], \"8883/tcp\":[{\"HostPort\":\"8883\"}],\"443/tcp\":[{\"HostPort\":\"443\"}]}}}", "env": { "UpstreamProtocol": { "value": "MQTT " } } } } }, "modules": { "VisionSampleModule": { "version": "1.0", "type": "docker", "status": "running", "restartPolicy": "always", "settings": { "image": #adding your container URL %store container_url >> deploymentpb.json %%writefile -a ./deploymentpb.json "createOptions": "{\"HostConfig\":{\"Binds\":[\"/data/misc/camera:/app/vam_model_folder\"],\"NetworkMode\":\"host\"},\"NetworkingConfig\":{\"EndpointsConfig\":{\"host\":{}}}}" } } } } }, "$edgeHub": { "properties.desired": { "schemaVersion": "1.0", "routes": { "route": "FROM /messages/* INTO $upstream" }, "storeAndForwardConfiguration": { "timeToLiveSecs": 7200 } } } } } ###Output _____no_output_____ ###Markdown Deploy image as an IoT module Set subscription to the same as your workspace ###Code %%writefile ./setsub az account set --subscription iot_sub=ws.subscription_id %store iot_sub >> setsub !sh setsub print ('{}'.format(iot_sub)) ###Output _____no_output_____ ###Markdown Provision Azure IoT Hub ###Code #RG and location to create hub iot_rg="vaidk_"+resource_group_name iot_location=ws.get_details()["location"] #temp to delete iot_location="eastus2" iot_hub_name="iothub-"+ ws.get_details()["name"] iot_device_id="vadik_"+ ws.get_details()["name"] iot_deployment_id="dpl"+ "cstmvaidk" print('{}'.format(iot_hub_name)) %%writefile ./create #Command to create hub and device # Adding Intialization steps regcommand="\n echo Installing Extension ... \naz extension add --name azure-cli-iot-ext \n"+ "\n echo CREATING RG "+iot_rg+"... \naz group create --name "+ iot_rg +" --location "+ iot_location+ "\n" +"\n echo CREATING HUB "+iot_hub_name+"... \naz iot hub create --name "+ iot_hub_name + " --resource-group "+ iot_rg +" --sku S1" #print('{}'.format(regcommand)) %store regcommand >> create ###Output _____no_output_____ ###Markdown Create Identity for your device ###Code #Adding Device ID create_device="\n echo CREATING DEVICE ID "+iot_device_id+"... \n az iot hub device-identity create --device-id "+ iot_device_id + " --hub-name " + iot_hub_name +" --edge-enabled" #print('{}'.format(create_device)) %store create_device >> create #Create command and vonfigure device !sh create ###Output _____no_output_____ ###Markdown Create Deployment ###Code %%writefile ./deploy #Command to create hub and device #Add deployment command deploy_device="\necho DELETING "+iot_deployment_id+" ... \naz iot edge deployment delete --deployment-id \"" + iot_deployment_id +"\" --hub-name \"" + iot_hub_name +"\"\necho DEPLOYING "+iot_deployment_id+" ... \naz iot edge deployment create --deployment-id \"" + iot_deployment_id + "\" --content \"deploymentpb.json\" --hub-name \"" + iot_hub_name +"\" --target-condition \"deviceId='"+iot_device_id+"'\" --priority 1" print('{}'.format(deploy_device)) %store deploy_device >> deploy #run deployment to stage all work for when the model is ready !sh deploy ###Output _____no_output_____ ###Markdown Use this conenction string on your camera to Initialize it ###Code %%writefile ./showdetails #Command to create hub and device #Add deployment command get_string="\n echo THIS IS YOUR CONNECTION STRING ... \naz iot hub device-identity show-connection-string --device-id \"" + iot_device_id + "\" --hub-name \"" + iot_hub_name+"\"" #print('{}'.format(get_string)) %store get_string >> showdetails !sh showdetails ###Output _____no_output_____
udacity/data-scientist-nanodegree/sparkify/.ipynb_checkpoints/final-model-checkpoint.ipynb
###Markdown Final modelTrain the best model on the bigger dataset and evaluate once more. ###Code # Imports import findspark findspark.init() findspark.find() import pyspark # Imports for creating spark session from pyspark import SparkContext, SparkConf from pyspark.sql import SparkSession conf = pyspark.SparkConf().setAppName('sparkify-capstone-model').setMaster('local') sc = pyspark.SparkContext(conf=conf) spark = SparkSession(sc) # Imports for modelling, tuning and evaluation from pyspark.ml.classification import GBTClassifier from pyspark.ml.evaluation import BinaryClassificationEvaluator, MulticlassClassificationEvaluator from pyspark.ml.tuning import TrainValidationSplit, ParamGridBuilder # Imports for visualization and output import matplotlib.pyplot as plt from IPython.display import HTML, display # Read in dataset conf.set("spark.driver.maxResultSize", "0") path = "out/features.parquet" df = spark.read.parquet(path) def createSubset(df, factor): """ INPUT: df: The dataset to split factor: How much of the dataset to return OUTPUT: df_subset: The split subset """ df_subset, df_dummy = df.randomSplit([factor, 1 - factor]) return df_subset def printConfusionMatrix(tp, fp, tn, fn): """ Simple function to output a confusion matrix from f/t/n/p values as html table. INPUT: data: The array to print as table OUTPUT: Prints the array as html table. """ html = "<table><tr><td></td><td>Act. True</td><td>False</td></tr>" html += "<tr><td>Pred. Pos.</td><td>{}</td><td>{}</td></tr>".format(tp, fp) html += "<tr><td>Negative</td><td>{}</td><td>{}</td></tr>".format(fn, tn) html += "</table>" display(HTML(html)) def showEvaluationMetrics(predictions): """ Calculate and print the some evaluation metrics for the passed predictions. INPUT: predictions: The predictions to evaluate and print OUTPUT: Just prints the evaluation metrics """ # Calculate true, false positives and negatives to calculate further metrics later: tp = predictions[(predictions.churn == 1) & (predictions.prediction == 1)].count() tn = predictions[(predictions.churn == 0) & (predictions.prediction == 0)].count() fp = predictions[(predictions.churn == 0) & (predictions.prediction == 1)].count() fn = predictions[(predictions.churn == 1) & (predictions.prediction == 0)].count() printConfusionMatrix(tp, fp, tn, fn) # Calculate and print metrics f1 = MulticlassClassificationEvaluator(labelCol = "churn", metricName = "f1") \ .evaluate(predictions) accuracy = float((tp + tn) / (tp + tn + fp + fn)) recall = float(tp / (tp + fn)) precision = float(tp / (tp + fp)) print("F1: ", f1) print("Accuracy: ", accuracy) print("Recall: ", recall) print("Precision: ", precision) def printAUC(predictions, labelCol = "churn"): """ Print the area under curve for the predictions. INPUT: predictions: The predictions to get and print the AUC for OUTPU: Prints the AUC """ print("Area under curve: ", BinaryClassificationEvaluator(labelCol = labelCol).evaluate(predictions)) def undersampleNegatives(df, ratio, labelCol = "churn"): """ Undersample the negatives (0's) in the given dataframe by ratio. NOTE: The "selection" method here is of course very crude and in a real version should be randomized and shuffled. INPUT: df: dataframe to undersample negatives from ratio: Undersampling ratio labelCol: LAbel column name in the input dataframe OUTPUT: A new dataframe with negatives undersampled by ratio """ zeros = df.filter(df[labelCol] == 0) ones = df.filter(df[labelCol] == 1) zeros = createSubset(zeros, ratio) return zeros.union(ones) def gbtPredictions(df_train, df_test, maxIter = 10, labelCol = "churn", featuresCol = "features"): """ Fit, evaluate and show results for GBTClassifier INPUT: df_train: The training data set. df_test: The testing data set. maxIter: Number of maximum iterations in the gradeint boost. labelCol: The label column name, "churn" by default. featuresCol: The label column name, "features" by default. OUTPUT: predictions: The model's predictions """ # Fit and train model gbt = GBTClassifier(labelCol = labelCol, featuresCol = featuresCol, maxIter = maxIter).fit(df_train) return gbt.transform(df_test) df_train, df_test = df.randomSplit([0.9, 0.1]) gbt = GBTClassifier(labelCol = "churn", featuresCol = "features", maxIter = 120, maxDepth = 5).fit(undersampleNegatives(df_train, .7)) predictions = gbt.transform(df_test) showEvaluationMetrics(predictions) printAUC(predictions) gbt.save("out/model") # Output the notebook to an html file from subprocess import call call(['python', '-m', 'nbconvert', 'final-model.ipynb']) ###Output _____no_output_____
Kaggle/iWildCam 2020/iwildcam_2020_demo_kernel.ipynb
###Markdown ###Code # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import matplotlib.pyplot as plt from PIL import Image, ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import json import os from IPython.display import FileLink # for dirname, _, filenames in os.walk('/kaggle/input'): # for filename in filenames: # print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. with open('/kaggle/input/iwildcam-2020-fgvc7/iwildcam2020_train_annotations.json') as f: train_data = json.load(f) with open('/kaggle/input/iwildcam-2020-fgvc7/iwildcam2020_test_information.json') as f: test_data = json.load(f) train_data.keys() train = pd.DataFrame(train_data['annotations']) train.head() train.rename(columns={'count': 'cnt'}, inplace=True) train[train.cnt > 1].describe() train.describe() train_img = pd.DataFrame(train_data['images']) indices1 = [] indices2 = [] indices1.append( train[ train['image_id'] == '896c1198-21bc-11ea-a13a-137349068a90' ].index ) indices1.append( train[ train['image_id'] == '8792549a-21bc-11ea-a13a-137349068a90' ].index ) indices1.append( train[ train['image_id'] == '87022118-21bc-11ea-a13a-137349068a90' ].index ) indices1.append( train[ train['image_id'] == '98a295ba-21bc-11ea-a13a-137349068a90' ].index ) indices2.append( train_img[ train_img['id'] == '896c1198-21bc-11ea-a13a-137349068a90' ].index ) indices2.append( train_img[ train_img['id'] == '8792549a-21bc-11ea-a13a-137349068a90' ].index ) indices2.append( train_img[ train_img['id'] == '87022118-21bc-11ea-a13a-137349068a90' ].index ) indices2.append( train_img[ train_img['id'] == '98a295ba-21bc-11ea-a13a-137349068a90' ].index ) for _id in train_img[train_img['location'] == 537]['id'].values: indices1.append( train[ train['image_id'] == _id ].index ) indices2.append(train_img[ train_img['id'] == _id ].index) for the_index in indices1: train = train.drop(train.index[the_index]) for the_index in indices2: train_img = train_img.drop(train_img.index[the_index]) train_img.head() fig = plt.figure(figsize=(19, 4)) ax = sns.distplot(train['category_id']) plt.title('distribution of number of data per category') fig = plt.figure(figsize=(30, 4)) ax = sns.barplot(x="category_id", y="cnt",data=train) plt.title('distribution of count per id') fig = plt.figure(figsize=(30, 4)) ax = sns.countplot(train_img['location']) plt.title('distribution of number of animals by location') labels_month = sorted(list(set(train_img['datetime'].map(lambda str: str[5:7])))) # fig, ax = plt.subplots(1,2, figsize=(20,7) plt.title('Count of train data per month') ax = sns.countplot(train_img['datetime'].map(lambda str: str[5:7] ), order=labels_month) ax.set(xlabel='Month', ylabel='count') # ax.set(ylim=(0,55000)) train_img.describe() train.describe() train_img = train_img train = train train_img['category'] = train['category_id'] train_img.drop(train_img.columns.difference(['file_name','category']), 1, inplace=True) train_img['category'] = train_img['category'].apply(str) train_img.head() train_img[ train_img['file_name'] == '883572ba-21bc-11ea-a13a-137349068a90.jpg' ].index train_img.drop(123658,inplace=True) train_img.drop(123651,inplace=True) train_img.drop(123653,inplace=True) # !pip install tensorflow-gpu==1.14.0 # !pip install keras==2.2.4 import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras import Model from tensorflow.keras.preprocessing.image import ImageDataGenerator import pickle import numpy as np import pandas as pd import matplotlib.pyplot as plt import cv2 from sklearn.model_selection import train_test_split # import pickle import dill from tqdm import tqdm from os import makedirs from os.path import expanduser, exists, join train_datagen = ImageDataGenerator( rescale=1./255, horizontal_flip = True, zoom_range = 0.3, width_shift_range = 0.3, height_shift_range=0.3, rotation_range = 40, shear_range = 0.3, channel_shift_range=150.0, fill_mode='nearest', brightness_range=(0.2, 0.9) ) # (max_rotate=20, max_zoom=1.3, max_lighting=0.4, max_warp=0.4, # p_affine=1., p_lighting=1. train_generator = train_datagen.flow_from_dataframe( dataframe=train_img[90000:120000], directory='/kaggle/input/iwildcam-2020-fgvc7/train', x_col="file_name", y_col="category", target_size=(150,150), batch_size=256, classes = train_img['category'].unique().tolist(), class_mode='categorical') labels = (train_generator.class_indices) labels = dict((v,k) for k,v in labels.items()) print(labels) # cache_dir = expanduser(join('~', '.keras')) # if not exists(cache_dir): # makedirs(cache_dir) # models_dir = join(cache_dir, 'models') # if not exists(models_dir): # makedirs(models_dir) # !cp ../input/keras-pretrained-models/*notop* ~/.keras/models/ # !cp ../input/keras-pretrained-models/imagenet_class_index.json ~/.keras/models/ # !cp ../input/keras-pretrained-models/resnet50* ~/.keras/models/ !ls ../input/keras-pretrained-models/ # !git clone https://github.com/qubvel/efficientnet.git # import efficientnet.efficientnet.tfkeras as efn from tensorflow.keras.applications import inception_v3 from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense,Flatten,Dropout,BatchNormalization, GlobalAveragePooling2D from tensorflow.keras.optimizers import Adam pre_trained_model = tf.keras.applications.InceptionV3(include_top=False,input_shape = (150, 150, 3), weights='../input/keras-pretrained-models/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5') # pre_trained_model = efn.EfficientNetB7(weights='imagenet', include_top=False, pooling='avg', input_shape=(96, 96, 3)) for layer in pre_trained_model.layers: layer.trainable = False # x = pre_trained_model.output # predictions = Dense(573, activation="softmax")(x) # model = Model(inputs=pre_trained_model.input, outputs=predictions) model = Sequential() # first (and only) set of FC => RELU layers model.add(Flatten()) model.add(Dense(1024, activation='relu')) model.add(Dropout(0.3)) model.add(BatchNormalization()) model.add(Dense(512, activation='relu')) model.add(Dropout(0.3)) model.add(BatchNormalization()) model.add(Dense(216,activation='softmax')) pretrainedInput = pre_trained_model.input pretrainedOutput = pre_trained_model.output output = model(pretrainedOutput) model = Model(pretrainedInput, output) model.compile(Adam(), loss='categorical_crossentropy', metrics=['accuracy']) model.summary() history = new_model.fit_generator( train_generator, steps_per_epoch=train_generator.n//train_generator.batch_size+1, epochs=5, shuffle = True, verbose = 1) import matplotlib.pyplot as plt acc = history.history['accuracy'] loss = history.history['loss'] epochs = range(len(acc)) plt.plot(epochs, acc, 'r', label='Training accuracy') plt.title('Training accuracy vs epochs') plt.legend(loc=0) plt.figure() plt.show() new_model.save('Modeln.h5') FileLink('Modeln.h5') test = pd.DataFrame(test_data['images']) test.head() test.describe() test_data.keys() test_datagen = ImageDataGenerator(rescale = 1./255.) test_generator = test_datagen.flow_from_dataframe( dataframe=test, directory='/kaggle/input/iwildcam-2020-fgvc7/test', x_col="file_name", target_size=(150, 150), batch_size=64,class_mode=None) new_model = tf.keras.models.load_model('/kaggle/input/model-1/Modeln.h5') preds = new_model.predict_generator(test_generator, steps=test_generator.n//test_generator.batch_size+1, verbose=1) predicted_class_indices=np.argmax(preds,axis=1) labels = (train_generator.class_indices) labels = dict((v,k) for k,v in labels.items()) predictions = [labels[k] for k in predicted_class_indices] Id=test.id results=pd.DataFrame({"Id":Id, "Category":predictions}) submission = pd.read_csv('/kaggle/input/iwildcam-2020-fgvc7/sample_submission.csv') submission = submission.drop(['Category'], axis=1) submission = submission.merge(results, on='Id') submission.to_csv('modeln.csv', index=False) FileLink('modeln.csv') # results.to_csv("results.csv",index=False) ###Output _____no_output_____
eopf-notebooks/eopf_product_data_structure/EOPF_S2_MSI_v1.2.ipynb
###Markdown EOPF S3 OLCI L1 Product Data Structure Proposal ###Code import os import xarray as xr import glob import rasterio from IPython.core.display import HTML import glob import re from utils import display from EOProductDataStructure import EOProductBuilder, EOVariableBuilder, EOGroupBuilder from lxml import etree variable_chunks = { 'B01': 192, 'B02': 1024, 'B03': 1024, 'B04': 1024, 'B05': 640, 'B06': 640, 'B07': 640, 'B08': 640, 'B8A': 640, 'B09': 192, 'B10': 192, 'B11': 640, 'B12': 640, 'TCI': 256 } def get_jp2_ds(path_to_product, glob_patterns, var_pattern, resolution): variables = {} coordinates = {} attributes = {} for glob_pattern in glob_patterns: files = glob.glob(path_to_product + '/' + glob_pattern) for file in files: var = re.match(var_pattern, file[file.rfind('/')+1:]).group(1) chunks = variable_chunks[var] ds1 = xr.open_dataset(file, chunks=chunks, engine='rasterio', mask_and_scale=False) if var == 'TCI': variables['red'] = ds1.get('band_data')[0].drop('band') variables['green'] = ds1.get('band_data')[1].drop('band') variables['blue'] = ds1.get('band_data')[2].drop('band') else: variables[var] = ds1.get('band_data')[0].drop('band') for attr in ds1.attrs: if attr not in attributes: attributes[attr] = ds1.attrs[attr] ds = xr.Dataset(data_vars=variables, coords=coordinates, attrs=attributes).rename({'x': 'x_'+resolution, 'y': 'y_'+resolution}).drop(['spatial_ref', 'x_'+resolution, 'y_'+resolution]) return ds def get_coord_ds(path_to_product, glob_patterns, resolutions): variables = {} coordinates = {} attributes = {} for glob_pattern, resolution in zip(glob_patterns, resolutions): files = glob.glob(path_to_product + '/' + glob_pattern) for file in files: ds1 = xr.open_dataset(file, engine='rasterio', mask_and_scale=False).rename({'x': 'x_'+resolution, 'y': 'y_'+resolution}) variables['x_' + resolution] = ds1['x_' + resolution] variables['y_' + resolution] = ds1['y_' + resolution] if 'spatial_ref' in ds1 and 'spatial_ref' not in variables: variables['spatial_ref'] = ds1['spatial_ref'] for attr in ds1.attrs: if attr not in attributes: attributes[attr] = ds1.attrs[attr] ds = xr.Dataset(data_vars=variables, coords=coordinates, attrs=attributes) return ds band_names = ['B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B8A', 'B09', 'B10', 'B11', 'B12'] def get_values(dom, xpath): list = dom.xpath(xpath, namespaces={'n1': 'https://psd-14.sentinel2.eo.esa.int/PSD/S2_PDI_Level-1C_Tile_Metadata.xsd'}) array = [[float(i) for i in x.text.split()] for x in list] da = xr.DataArray(array, dims=['y_tiepoints', 'x_tiepoints']) return da def get_shape(dom, xpath): list = dom.xpath(xpath, namespaces={'n1': 'https://psd-14.sentinel2.eo.esa.int/PSD/S2_PDI_Level-1C_Tile_Metadata.xsd'}) return [len(list), len(list[0].text.split())] def parse_xml(path_to_product, glob_pattern): path = glob.glob(path_to_product + '/' + glob_pattern)[0] dom = etree.parse(path) return dom def get_angles_ds(path_to_product, glob_pattern): dom = parse_xml(path_to_product, glob_pattern) sza = get_values(dom, 'n1:Geometric_Info/Tile_Angles/Sun_Angles_Grid/Zenith/Values_List/VALUES') saa = get_values(dom, 'n1:Geometric_Info/Tile_Angles/Sun_Angles_Grid/Azimuth/Values_List/VALUES') bands = {'sza': sza, 'saa': saa} for band_id in range(13): for detector_id in range(1,7): vza = get_values(dom, 'n1:Geometric_Info/Tile_Angles/Viewing_Incidence_Angles_Grids[@bandId="{}" and @detectorId="{}"]/Zenith/Values_List/VALUES' .format(band_id, detector_id)) vaa = get_values(dom, 'n1:Geometric_Info/Tile_Angles/Viewing_Incidence_Angles_Grids[@bandId="{}" and @detectorId="{}"]/Azimuth/Values_List/VALUES' .format(band_id, detector_id)) bands['vza_{}_{}'.format(band_names[band_id], detector_id)] = vza bands['vaa_{}_{}'.format(band_names[band_id], detector_id)] = vaa ds = xr.Dataset(bands) return ds def get_tiepoints_ds(path_to_product, glob_pattern): dom = parse_xml(path_to_product, glob_pattern) shape_y_x = get_shape(dom, 'n1:Geometric_Info/Tile_Angles/Sun_Angles_Grid/Zenith/Values_List/VALUES') ymax = float(dom.xpath('n1:Geometric_Info/Tile_Geocoding/Geoposition[@resolution="10"]/ULY', namespaces={'n1': 'https://psd-14.sentinel2.eo.esa.int/PSD/S2_PDI_Level-1C_Tile_Metadata.xsd'})[0].text) xmin = float(dom.xpath('n1:Geometric_Info/Tile_Geocoding/Geoposition[@resolution="10"]/ULX', namespaces={'n1': 'https://psd-14.sentinel2.eo.esa.int/PSD/S2_PDI_Level-1C_Tile_Metadata.xsd'})[0].text) ystep = float(dom.xpath('n1:Geometric_Info/Tile_Angles/Sun_Angles_Grid/Zenith/ROW_STEP', namespaces={'n1': 'https://psd-14.sentinel2.eo.esa.int/PSD/S2_PDI_Level-1C_Tile_Metadata.xsd'})[0].text) xstep = float(dom.xpath('n1:Geometric_Info/Tile_Angles/Sun_Angles_Grid/Zenith/COL_STEP', namespaces={'n1': 'https://psd-14.sentinel2.eo.esa.int/PSD/S2_PDI_Level-1C_Tile_Metadata.xsd'})[0].text) y = [ymax - i * ystep - ystep / 2 for i in range(shape_y_x[0])] x = [xmin + i * xstep + xstep / 2 for i in range(shape_y_x[1])] ds = xr.Dataset({'y_tiepoints': y, 'x_tiepoints': x}) return ds path_to_product = glob.glob("data/S2?_MSIL1C*.SAFE")[0] # Groups definition groups = {} groups['coordinates'] = get_coord_ds(path_to_product, ["GRANULE/*/IMG_DATA/*_%s.jp2" % r for r in ['B02','B05','B01']], ['10m', '20m', '60m']) # extensional coordinates, metric and geographic groups['tiepoints'] = get_tiepoints_ds(path_to_product, "GRANULE/*/MTD_TL.xml") #groups['crs'] = get_crs_ds(path_to_product, [""]) # utm zone, geographic footprint, metric corners, metric resolutions, parameters to feed proj groups['measurements_10m'] = get_jp2_ds(path_to_product,["GRANULE/*/IMG_DATA/*_%s.jp2" % r for r in ['B02','B03','B04','B08']], '.*_(...).jp2', '10m') groups['measurements_20m'] = get_jp2_ds(path_to_product,["GRANULE/*/IMG_DATA/*_%s.jp2" % r for r in ['B05','B06','B07','B8A','B11','B12']], '.*_(...).jp2', '20m') groups['measurements_60m'] = get_jp2_ds(path_to_product,["GRANULE/*/IMG_DATA/*_%s.jp2" % r for r in ['B01','B09','B10']], '.*_(...).jp2', '60m') groups['quicklook_tci'] = get_jp2_ds(path_to_product,["GRANULE/*/IMG_DATA/*_%s.jp2" % r for r in ['TCI']], '.*_(...).jp2', '10m') groups['geometry'] = get_angles_ds(path_to_product,"GRANULE/*/MTD_TL.xml") # angles on tiepoint raster #groups['instrument'] = get_xml_ds(path_to_product,["MTD_MSIL1C.xml"]) # band characteristics, gains #groups['meteo'] = get_ds(path_to_product,["tie_meteo"]) # Create a new EOProduct instance product_name = os.path.basename("S2_MSIL1C") product = EOProductBuilder("S2_MSIL1C") # do the same work as before product.metadatas = ["MTD_MSIL1C.xml"] # ==================== Product groups setting ======================== for group_name, ds in groups.items(): group = EOGroupBuilder(group_name) group.attrs["description"] = f"{group_name} Data Group" group.dims = ds.dims for v, var in ds.variables.items(): variable = EOVariableBuilder(v, default_attrs = False) variable.dtype = var.dtype variable.dimensions = var.dims variable.attrs = var.attrs group.variables.append(variable) product.groups.append(group) product.attrs['metadata_files'] = '[xfdumanfist.xml]' print("inputs read") display(product.compute()) ###Output _____no_output_____