id
int64
393k
2.82B
repo
stringclasses
68 values
title
stringlengths
1
936
body
stringlengths
0
256k
labels
stringlengths
2
508
priority
stringclasses
3 values
severity
stringclasses
3 values
2,791,073,206
pytorch
`torch.export` for Yolo Pose fails
### 🐛 Describe the bug I get an error when I try to export the Yolo-Pose model with `strict=True` The error goes away with `strict=False` `pip install ultralytics` ``` from ultralytics import YOLO import torch from torch.export import export pose_model = YOLO("yolo11n-pose.pt") # Load model pose_model.model.eval() inputs = torch.rand((1,3,640,640)) exported_program: torch.export.ExportedProgram= export(pose_model.model, args=(inputs,)) ``` Error Logs ``` Traceback (most recent call last): File "/home/agunapal/export_games/pose/pose_export.py", line 7, in <module> exported_program: torch.export.ExportedProgram= export(pose_model.model, args=(inputs,)) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/export/__init__.py", line 368, in export return _export( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/export/_trace.py", line 1031, in wrapper raise e File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/export/_trace.py", line 1004, in wrapper ep = fn(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/export/exported_program.py", line 122, in wrapper return fn(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/export/_trace.py", line 1957, in _export export_artifact = export_func( # type: ignore[operator] File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/export/_trace.py", line 1251, in _strict_export return _strict_export_lower_to_aten_ir( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/export/_trace.py", line 1279, in _strict_export_lower_to_aten_ir gm_torch_level = _export_to_torch_ir( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/export/_trace.py", line 660, in _export_to_torch_ir gm_torch_level, _ = torch._dynamo.export( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 1539, in inner result_traced = opt_f(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1740, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1751, in _call_impl return forward_call(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 556, in _fn return fn(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1740, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1751, in _call_impl return forward_call(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 1395, in __call__ return self._torchdynamo_orig_callable( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 545, in __call__ return _compile( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 1027, in _compile raise InternalTorchDynamoError( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 977, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 706, in compile_inner return _compile_inner(code, one_graph, hooks, transform) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_utils_internal.py", line 95, in wrapper_function return function(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 741, in _compile_inner out_code = transform_code_object(code, transform) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1348, in transform_code_object transformations(instructions, code_options) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 229, in _fn return fn(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 658, in transform tracer.run() File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2912, in run super().run() File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1120, in run while self.step(): File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1032, in step self.dispatch_table[inst.opcode](self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 640, in wrapper return inner_fn(self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1816, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 967, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 410, in call_function return super().call_function(tx, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 349, in call_function return super().call_function(tx, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 125, in call_function return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 973, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3127, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3255, in inline_call_ tracer.run() File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1120, in run while self.step(): File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1032, in step self.dispatch_table[inst.opcode](self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 640, in wrapper return inner_fn(self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1738, in CALL_FUNCTION self.call_function(fn, args, {}) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 967, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 410, in call_function return super().call_function(tx, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 349, in call_function return super().call_function(tx, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 125, in call_function return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 973, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3127, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3255, in inline_call_ tracer.run() File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1120, in run while self.step(): File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1032, in step self.dispatch_table[inst.opcode](self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 640, in wrapper return inner_fn(self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1738, in CALL_FUNCTION self.call_function(fn, args, {}) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 967, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/nn_module.py", line 442, in call_function return tx.inline_user_function_return( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 973, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3127, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3255, in inline_call_ tracer.run() File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1120, in run while self.step(): File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1032, in step self.dispatch_table[inst.opcode](self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 640, in wrapper return inner_fn(self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1816, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 967, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 410, in call_function return super().call_function(tx, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 349, in call_function return super().call_function(tx, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 125, in call_function return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 973, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3127, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3255, in inline_call_ tracer.run() File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1120, in run while self.step(): File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1032, in step self.dispatch_table[inst.opcode](self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 640, in wrapper return inner_fn(self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1738, in CALL_FUNCTION self.call_function(fn, args, {}) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 967, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 349, in call_function return super().call_function(tx, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 125, in call_function return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 973, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3127, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3255, in inline_call_ tracer.run() File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1120, in run while self.step(): File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1032, in step self.dispatch_table[inst.opcode](self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 640, in wrapper return inner_fn(self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1738, in CALL_FUNCTION self.call_function(fn, args, {}) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 967, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 410, in call_function return super().call_function(tx, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 349, in call_function return super().call_function(tx, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 125, in call_function return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 973, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3127, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3255, in inline_call_ tracer.run() File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1120, in run while self.step(): File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1032, in step self.dispatch_table[inst.opcode](self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 640, in wrapper return inner_fn(self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1738, in CALL_FUNCTION self.call_function(fn, args, {}) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 967, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 349, in call_function return super().call_function(tx, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 125, in call_function return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 973, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3127, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3255, in inline_call_ tracer.run() File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1120, in run while self.step(): File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1032, in step self.dispatch_table[inst.opcode](self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 640, in wrapper return inner_fn(self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1828, in CALL_FUNCTION_KW self.call_function(fn, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 967, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/torch.py", line 953, in call_function tensor_variable = wrap_fx_proxy( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 2108, in wrap_fx_proxy return wrap_fx_proxy_cls(target_cls=TensorVariable, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 2174, in wrap_fx_proxy_cls return _wrap_fx_proxy( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 2272, in _wrap_fx_proxy return handle_traced_output( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 2291, in handle_traced_output set_example_value(proxy.node, example_value) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1640, in set_example_value if symbol_to_path := torch.fx.experimental.symbolic_shapes.compute_unbacked_bindings( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py", line 999, in compute_unbacked_bindings raise PendingUnbackedSymbolNotFound( torch._dynamo.exc.InternalTorchDynamoError: PendingUnbackedSymbolNotFound: Pending unbacked symbols {zuf0} not in returned outputs FakeTensor(..., size=(6400, 1)) ((1, 1), 0). Did you accidentally call new_dynamic_size() or item() more times than you needed to in your fake implementation? For more help, see https://docs.google.com/document/d/1RWrH-3wLEpzR9kCS6gGBNen_-Fs-8PVbWWFE5AcgeWE/edit from user code: File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/ultralytics/nn/tasks.py", line 112, in forward return self.predict(x, *args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/ultralytics/nn/tasks.py", line 130, in predict return self._predict_once(x, profile, visualize, embed) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/ultralytics/nn/tasks.py", line 151, in _predict_once x = m(x) # run File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1751, in _call_impl return forward_call(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/ultralytics/nn/modules/head.py", line 240, in forward x = Detect.forward(self, x) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/ultralytics/nn/modules/head.py", line 72, in forward y = self._inference(x) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/ultralytics/nn/modules/head.py", line 105, in _inference self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5)) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/ultralytics/utils/tal.py", line 314, in make_anchors stride_tensor.append(torch.full((h * w, 1), stride, dtype=dtype, device=device)) ``` ### Versions ``` Collecting environment information... PyTorch version: 2.6.0.dev20241112+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A OS: CentOS Stream 9 (x86_64) GCC version: (GCC) 11.5.0 20240719 (Red Hat 11.5.0-2) Clang version: Could not collect CMake version: version 3.26.5 Libc version: glibc-2.34 Python version: 3.10.0 (default, Mar 3 2022, 09:58:08) [GCC 7.5.0] (64-bit runtime) Python platform: Linux-5.12.0-0_fbk16_zion_7661_geb00762ce6d2-x86_64-with-glibc2.34 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA PG509-210 GPU 1: NVIDIA PG509-210 GPU 2: NVIDIA PG509-210 GPU 3: NVIDIA PG509-210 GPU 4: NVIDIA PG509-210 GPU 5: NVIDIA PG509-210 GPU 6: NVIDIA PG509-210 GPU 7: NVIDIA PG509-210 Nvidia driver version: 525.105.17 cuDNN version: Probably one of the following: /usr/lib64/libcudnn.so.8.8.0 /usr/lib64/libcudnn.so.9.1.0 /usr/lib64/libcudnn_adv.so.9.1.0 /usr/lib64/libcudnn_adv_infer.so.8.8.0 /usr/lib64/libcudnn_adv_train.so.8.8.0 /usr/lib64/libcudnn_cnn.so.9.1.0 /usr/lib64/libcudnn_cnn_infer.so.8.8.0 /usr/lib64/libcudnn_cnn_train.so.8.8.0 /usr/lib64/libcudnn_engines_precompiled.so.9.1.0 /usr/lib64/libcudnn_engines_runtime_compiled.so.9.1.0 /usr/lib64/libcudnn_graph.so.9.1.0 /usr/lib64/libcudnn_heuristic.so.9.1.0 /usr/lib64/libcudnn_ops.so.9.1.0 /usr/lib64/libcudnn_ops_infer.so.8.8.0 /usr/lib64/libcudnn_ops_train.so.8.8.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 192 On-line CPU(s) list: 0-191 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8339HC CPU @ 1.80GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 4 Stepping: 11 Frequency boost: enabled CPU(s) scaling MHz: 100% CPU max MHz: 1801.0000 CPU min MHz: 800.0000 BogoMIPS: 3600.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req pku ospke avx512_vnni md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 3 MiB (96 instances) L1i cache: 3 MiB (96 instances) L2 cache: 96 MiB (96 instances) L3 cache: 132 MiB (4 instances) NUMA node(s): 4 NUMA node0 CPU(s): 0-23,96-119 NUMA node1 CPU(s): 24-47,120-143 NUMA node2 CPU(s): 48-71,144-167 NUMA node3 CPU(s): 72-95,168-191 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.0.2 [pip3] nvidia-cublas-cu12==12.1.3.1 [pip3] nvidia-cuda-cupti-cu12==12.1.105 [pip3] nvidia-cuda-nvrtc-cu12==12.1.105 [pip3] nvidia-cuda-runtime-cu12==12.1.105 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.0.2.54 [pip3] nvidia-curand-cu12==10.3.2.106 [pip3] nvidia-cusolver-cu12==11.4.5.107 [pip3] nvidia-cusparse-cu12==12.1.0.106 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.1.105 [pip3] nvidia-nvtx-cu12==12.1.105 [pip3] pytorch-triton==3.1.0+cf34004b8a [pip3] torch==2.6.0.dev20241112+cu121 [pip3] torchaudio==2.5.0.dev20241112+cu121 [pip3] torchvision==0.20.0.dev20241112+cu121 [conda] numpy 2.0.2 pypi_0 pypi [conda] nvidia-cublas-cu12 12.1.3.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.0.2.54 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.2.106 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.4.5.107 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.1.0.106 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.1.105 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.1.105 pypi_0 pypi [conda] pytorch-triton 3.1.0+cf34004b8a pypi_0 pypi [conda] torch 2.6.0.dev20241112+cu121 pypi_0 pypi [conda] torchaudio 2.5.0.dev20241112+cu121 pypi_0 pypi [conda] torchvision 0.20.0.dev20241112+cu121 pypi_0 pypi ``` cc @chauhang @penguinwu @ezyang @bobrenjc93 @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4
oncall: pt2,module: dynamic shapes,module: dynamo,oncall: export
low
Critical
2,791,078,474
yt-dlp
Unable to download the video the error message goes like Unable to extract flashvars - Failed to parse JSON
### DO NOT REMOVE OR SKIP THE ISSUE TEMPLATE - [X] I understand that I will be **blocked** if I *intentionally* remove or skip any mandatory\* field ### Checklist - [X] I'm reporting that yt-dlp is broken on a **supported** site - [X] I've verified that I have **updated yt-dlp to nightly or master** ([update instructions](https://github.com/yt-dlp/yt-dlp#update-channels)) - [X] I've checked that all provided URLs are playable in a browser with the same IP and same login details - [X] I've checked that all URLs and arguments with special characters are [properly quoted or escaped](https://github.com/yt-dlp/yt-dlp/wiki/FAQ#video-url-contains-an-ampersand--and-im-getting-some-strange-output-1-2839-or-v-is-not-recognized-as-an-internal-or-external-command) - [X] I've searched [known issues](https://github.com/yt-dlp/yt-dlp/issues/3766) and the [bugtracker](https://github.com/yt-dlp/yt-dlp/issues?q=) for similar issues **including closed ones**. DO NOT post duplicates - [X] I've read the [guidelines for opening an issue](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#opening-an-issue) - [X] I've read about [sharing account credentials](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#are-you-willing-to-share-account-details-if-needed) and I'm willing to share it if required ### Region _No response_ ### Provide a description that is worded well enough to be understood Unable to extract flashvars - Failed to parse JSON (caused by JSONDecodeError('Expecting \',\' delimiter in \'eywords=" + "current\': line 33 column 83 (char 6760)')); please report this issue on https://github.com/yt-dlp/yt-dlp/issues?q= , filling out the appropriate issue template. Version: Latest version: [email protected] from yt-dlp/yt-dlp-nightly-builds Command: yt-dlp -f bestvideo+bestaudio/best --merge-output-format mkv --user-agent "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/109.0" --referer "https://www.youtube.com" --add-header "Accept-Language: en-US,en;q=0.9" --add-header "DNT: 1" --add-header "Connection: keep-alive" --no-check-certificate --cookies-from-browser firefox --extractor-args "generic:impersonate" --download-archive "C:\Users\rajesh\user0\OK\Scripts\Downloder\Logs\yt-dlp - logs.txt" --progress --console-title --ignore-errors --no-warnings -o "%(title)s.%(ext)s" --exec "echo {} >> C:\Users\rajesh\user0\OK\Scripts\Downloder\Logs\yt-dlp - logs.txt" --download-sections "*00:00-" "https://zbporn.com/videos/639682/hot-indian-girl-gives-a-nice-blowjob-to-a-big-dick/" ### Provide verbose output that clearly demonstrates the problem - [X] Run **your** yt-dlp command with **-vU** flag added (`yt-dlp -vU <your command line>`) - [ ] If using API, add `'verbose': True` to `YoutubeDL` params instead - [X] Copy the WHOLE output (starting with `[debug] Command-line config`) and insert it below ### Complete Verbose Output ```shell [debug] Command-line config: ['-f', 'bestvideo+bestaudio/best', '--merge-output-format', 'mkv', '--user-agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/109.0', '--referer', 'https://www.youtube.com', '--add-header', 'Accept-Language: en-US,en;q=0.9', '--add-header', 'DNT: 1', '--add-header', 'Connection: keep-alive', '--no-check-certificate', '--cookies-from-browser', 'firefox', '--extractor-args', 'generic:impersonate', '--download-archive', 'C:\\Users\\rajesh\\user0\\OK\\Scripts\\Downloder\\Logs\\yt-dlp - logs.txt', '--progress', '--console-title', '--ignore-errors', '--no-warnings', '-o', '%(title)s.%(ext)s', '--exec', 'echo {} >> C:\\Users\\rajesh\\user0\\OK\\Scripts\\Downloder\\Logs\\yt-dlp - logs.txt', '--download-sections', '*00:00-', 'https://zbporn.com/videos/639682/hot-indian-girl-gives-a-nice-blowjob-to-a-big-dick/', '-vU'] [debug] Encodings: locale cp1252, fs utf-8, pref cp1252, out utf-8, error utf-8, screen utf-8 [debug] yt-dlp version [email protected] from yt-dlp/yt-dlp-nightly-builds [dade5e35c] (win_exe) [debug] Python 3.10.11 (CPython AMD64 64bit) - Windows-10-10.0.26100-SP0 (OpenSSL 1.1.1t 7 Feb 2023) [debug] exe versions: ffmpeg n7.1-152-gd72536008a-20250113 (setts), ffprobe n7.1-152-gd72536008a-20250113 [debug] Optional libraries: Cryptodome-3.21.0, brotli-1.1.0, certifi-2024.12.14, curl_cffi-0.5.10, mutagen-1.47.0, requests-2.32.3, sqlite3-3.40.1, urllib3-2.3.0, websockets-14.1 [debug] Proxy map: {} Extracting cookies from firefox [debug] Extracting cookies from: "C:\Users\rajesh\AppData\Roaming\Mozilla\Firefox\Profiles\k777fhsd.default-release-1731233125162\cookies.sqlite" Extracted 848 cookies from firefox [debug] Request Handlers: urllib, requests, websockets, curl_cffi [debug] Loaded 1837 extractors [debug] Loading archive file 'C:\\Users\\rajesh\\user0\\OK\\Scripts\\Downloder\\Logs\\yt-dlp - logs.txt' [debug] Fetching release info: https://api.github.com/repos/yt-dlp/yt-dlp-nightly-builds/releases/latest Latest version: [email protected] from yt-dlp/yt-dlp-nightly-builds yt-dlp is up to date ([email protected] from yt-dlp/yt-dlp-nightly-builds) [generic] Extracting URL: https://zbporn.com/videos/639682/hot-indian-girl-gives-a-nice-blowjob-to-a-big-dick/ [generic] hot-indian-girl-gives-a-nice-blowjob-to-a-big-dick: Downloading webpage [generic] hot-indian-girl-gives-a-nice-blowjob-to-a-big-dick: Extracting information [debug] Looking for embeds [debug] Identified a KVS Player ERROR: [generic] hot-indian-girl-gives-a-nice-blowjob-to-a-big-dick: Unable to extract flashvars - Failed to parse JSON (caused by JSONDecodeError('Expecting \',\' delimiter in \'eywords=" + "current\': line 33 column 83 (char 6760)')); please report this issue on https://github.com/yt-dlp/yt-dlp/issues?q= , filling out the appropriate issue template. Confirm you are on the latest version using yt-dlp -U File "yt_dlp\extractor\common.py", line 742, in extract File "yt_dlp\extractor\generic.py", line 2548, in _real_extract File "yt_dlp\extractor\generic.py", line 2677, in _extract_embeds File "yt_dlp\extractor\generic.py", line 2294, in _extract_kvs File "yt_dlp\extractor\common.py", line 1371, in _search_json File "yt_dlp\utils\_utils.py", line 564, in decode File "json\decoder.py", line 353, in raw_decode json.decoder.JSONDecodeError: Expecting ',' delimiter: line 33 column 83 (char 6760) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "yt_dlp\extractor\common.py", line 1091, in _parse_json File "json\__init__.py", line 359, in loads File "yt_dlp\utils\_utils.py", line 573, in decode json.decoder.JSONDecodeError: Expecting ',' delimiter in 'eywords=" + "current': line 33 column 83 (char 6760) ```
NSFW,site-bug,triage
low
Critical
2,791,101,473
PowerToys
FanzyZones keeps swapping external monitors
### Microsoft PowerToys version 0.86.0 ### Installation method Microsoft Store ### Running as admin Yes ### Area(s) with issue? FancyZones ### Steps to reproduce I love FancyZones and rely on it daily. Lately I've noticed an issue where FancyZones swaps the layouts on my two external monitors. This swapping happens randomly on boot, resuming from sleep, or when connecting to my dock. This doesn't happen every time, but it's frequent enough that it happens multiple times per week. Unfortunately, this has happened with two different docks and multiple computers. **Repro steps:** 1. Connect a Surface Dock v2 or Plugable Thunderbolt 4 dock to two 27” Dell UltraSharp monitors (U2717D) 2. Connect a Surface Laptop 5 to the Surface or Plugtable docks or an ASUS ProArt P16 to the Plugable dock 3. Set the PC to output the display to external monitors only 4. Restart the computer, wake it up from sleep, or disconnect/reconnect from the dock ### ✔️ Expected Behavior FancyZones should remember which layout is on the left and right external displays ### ❌ Actual Behavior FancyZones usually remembers which layout is on the left and right displays, but sometimes they are randomly swapped so the left layout is on the right monitor and the right layout is on the left monitor. This layout seems to persist across restarts until FancyZones swaps the layouts back. The only solution is to change my FancyZones layouts to be the ones I want. ### Other Software _No response_
Issue-Bug,Needs-Triage
low
Minor
2,791,152,837
PowerToys
Please prevent cmd PATH override
### Description of the new feature / enhancement When I type `>cmd` I expect it to open the normal `cmd`, with the `PATH` system variable I have meticulously extended myself. Instead power toys overrides `PATH`, and that removes some of my custom paths and all paths to disks other than `C:`. ### Scenario when this would be used? I have vscode and a bunch of `.code-workspace` files for it. They are spread accross folders so I wrote a small batch script in `C:\Scripts`. I have setup `PATH` so when I open `cmd` and type `wsp myproject` it will run the batch file and look for a workspace with that name. ### Supporting information I have extended both the system-wide and user-based `PATH`. PowerToys overrides `PATH`, try running `echo %PATH%` in a normal command line and in one opened from the app. P.s. couldn't call it a bug really, maybe it's intentional, but it's certainly unexpected and annoying.
Needs-Triage
low
Critical
2,791,154,632
flutter
`Container` can lose its child's state
### Use case The `Container` widget changes the tree hierarchy when its arguments change. This causes its child will lose its state if it doesn't have a global key. Example by @justinmc: https://dartpad.dev/?id=bd243d23a7fd661563519c3eebece032 ### Proposal If possible, we should fix `Container` such that updating its configuration doesn't cause its child to lose state. If not possible, we should update `Container`'s docs to explain this problem and how to use a global key to workaround it.
framework,P2,team-framework,triaged-framework
low
Minor
2,791,191,768
vscode
Filter bar in Log file open in editor
I love this filter: ![image](https://github.com/user-attachments/assets/51b59870-55f7-42a2-8c12-5b8caba7cfe4) Can I also have in the editor itself somewhere? ![image](https://github.com/user-attachments/assets/ce4622a2-1b4c-4a05-80c8-3b5e83e452d6) Usecase: I want to filter down to only events I care about, but compare an old log file to a new log file.
feature-request,output
low
Minor
2,791,234,339
pytorch
Interaction between torch._dynamo.disable and fullgraph=True
### 🚀 The feature, motivation and pitch We're encouraging people to use fullgraph=True to better identify graph breaks. At the same time, we're empowering users to use escape hatches like torch._dynamo.disable. These two work against each other, and the best workaround I can think of is to ask users to stop fullgraping and to use some other tool to inspect their graph breaks e.g. tlparse, graph count, TORCH_LOGS. We should consider special casing torch._dynamo.disable so that it does not raise errors with fullgraph=True. This could be controlled by a flag, but I think it can be the default enablement experience. ### Alternatives _No response_ ### Additional context _No response_ cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
triaged,oncall: pt2,module: dynamo
low
Critical
2,791,238,002
PowerToys
FancyZones with Citrix Receivers is not working.
### Microsoft PowerToys version 0.87.1 ### Installation method Microsoft Store ### Running as admin No ### Area(s) with issue? FancyZones ### Steps to reproduce I am trying to utilize FancyZones to pin my applications in a 3x3 grid. The applications in question are Citrix environments and they do not snap to the grid nor do they resize. I saw some comments from 2021 and 2022 that suggested this could be fixed using the Citrix Workplace settings to adjust for High DPI scaling, but unfortunately that does not do anything for me. Are there any other suggestions for issues with Citrix? Thanks! ### ✔️ Expected Behavior Citrix applications to snap to 3x3 grid in the same way that the web browser panes do. ### ❌ Actual Behavior Citrix panes do not align in the grid where they are positioned, do not resize, and do not stay within their snapped grids (they aren't snapping in at all so I guess that's part of the reason?). ### Other Software Citrix workspace envrionments (Epic).
Issue-Bug,Needs-Triage
low
Minor
2,791,281,160
godot
Script reference is broken when script is moved in FileSystem dock
### Tested versions 4.4 beta1 Didn't test other versions, but probably a regression. ### System information W10 ### Issue description When you have a script opened and then you move it to another directory, the script reference in the editor is broken. The internal path does not update, so re-focusing editor causes errors about missing file and trying to save the file will have no effect. ### Steps to reproduce 1. Open a script file in script editor 2. In FileSystem dock, move the file to another directory 3. Open the moved file in external editor 4. In Godot, modify and save the still opened script 5. See in external editor that changes are not saved Alternatively: 3. Unfocus and focus the editor 4. Error in output ### Minimal reproduction project (MRP) N/A
bug,topic:editor,regression
low
Critical
2,791,292,409
pytorch
UserWarning: cuDNN SDPA backward got grad_output.strides() != output.strides()
### 🐛 Describe the bug I'm getting this warning when using TRainer and FSDP to pre-train Llama3.1-8b. `UserWarning: cuDNN SDPA backward got grad_output.strides() != output.strides()` This might introduce overhead in the training processes. I have tried to disable the backend with: ``` import os os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "0" from torch.nn.attention import SDPBackend torch.backends.cuda.sdp_kernel = SDPBackend.FLASH_ATTENTION ``` However, the HF Trainer ignores these settings and continues using SDPA. Here is the full script: ``` import datasets import torch import time from torch.utils.data import DataLoader, Dataset from transformers import ( AutoTokenizer, AutoModelForCausalLM, TrainingArguments, TrainerCallback, Trainer, set_seed, DataCollatorWithPadding, ) from transformers.integrations import TensorBoardCallback import GPUtil, psutil from torch.utils.tensorboard import SummaryWriter # Explicitly disable cuDNN SDPA to avoid stride mismatch warnings import os os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "0" # Set Flash Attention as the preferred backend from torch.nn.attention import SDPBackend torch.backends.cuda.sdp_kernel = SDPBackend.FLASH_ATTENTION # Model and dataset configuration LLM_MODEL = "meta-llama/Meta-Llama-3.1-8B" DATASET_PATH = "../data-prep/data_files/llama31_tokenized_docs_full_dataset.parquet" OUTPUT_DIR = "./llama3_8b_ddp_pretraining" set_seed(42) # Load model and tokenizer model_name = LLM_MODEL model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", trust_remote_code=True, torch_dtype=torch.bfloat16, ) model.config.use_cache = False tokenizer = AutoTokenizer.from_pretrained(model_name) # Ensure pad token is set for the tokenizer if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token # Custom dataset class with contiguous tensors class CustomDataset(Dataset): def __init__(self, dataset_name, tokenizer, split="train", max_tokens=None, max_length=512): self.dataset = datasets.load_dataset( "parquet", data_files=dataset_name, split=split ) if max_tokens is not None: self.dataset = self.dataset.filter(lambda x: x["num_tokens"] <= max_tokens) self.tokenizer = tokenizer self.max_length = max_length def __len__(self): return len(self.dataset) def __getitem__(self, idx): input_ids = self.dataset[idx]["input_ids"] if len(input_ids) > self.max_length: input_ids = input_ids[:self.max_length] attention_mask = [1] * len(input_ids) padding_length = self.max_length - len(input_ids) if padding_length > 0: input_ids += [self.tokenizer.pad_token_id] * padding_length attention_mask += [0] * padding_length # Ensure tensors are contiguous input_ids = torch.tensor(input_ids, dtype=torch.long).contiguous() attention_mask = torch.tensor(attention_mask, dtype=torch.long).contiguous() labels = input_ids.clone().contiguous() return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels} # Initialize dataset and data collator train_dataset = CustomDataset( dataset_name=DATASET_PATH, tokenizer=tokenizer, split="train", max_tokens=512, max_length=512, ) print(f"Training dataset size is: {len(train_dataset.dataset)} samples") data_collator = DataCollatorWithPadding(tokenizer=tokenizer) # Training arguments training_args = TrainingArguments( output_dir=OUTPUT_DIR, optim="adamw_torch", num_train_epochs=1, per_device_train_batch_size=64, gradient_accumulation_steps=8, learning_rate=3e-5, weight_decay=0.01, warmup_steps=10, lr_scheduler_type="cosine", gradient_checkpointing=True, dataloader_num_workers=8, bf16=True, logging_steps=10, report_to="tensorboard", save_strategy="epoch", save_total_limit=2, ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator, ) trainer.train() ``` ### Versions ``` NVIDIA (PyTorch container) Release 24.12 (build 126674149) Using CUDA 12.6 driver version 560.35.05 with kernel driver version 550.127.08 pytorch-triton 3.0.0+72734f086 torch 2.6.0a0+df5bbc09d1.nv24.12 torch-tb-profiler 0.4.3 torch_tensorrt 2.6.0a0 torchprofile 0.0.4 torchvision 0.20.0a0 transformers 4.48.0 accelerate 1.2.1 ``` cc @csarofeen @ptrblck @xwang233 @eqy
module: cudnn,triaged,module: sdpa
low
Critical
2,791,303,487
flutter
Cocoon backfiller could take advantage of idle bots
Noticed while investigating [#161674](https://github.com/flutter/flutter/issues/161674#issuecomment-2594184332): The backfiller only runs one builder for each 'task'. If you look at some of the [bot lists](https://chromium-swarm.appspot.com/botlist?c=id&c=task&c=os&c=status&d=asc&f=pool%3Aluci.flutter.prod&k=pool&s=id); we should be utilizing them more - e.g. right now we have 364 idle. If I look at some of the bot utilizations, they appear to be <33% walltime.
team-infra
low
Minor
2,791,325,709
PowerToys
[Settings] ImageResizer new preset does not use correct custom dimensions
### Microsoft PowerToys version 0.87 ### Installation method PowerToys auto-update ### Running as admin No ### Area(s) with issue? Settings ### Steps to reproduce 1. Open the Settings application and navigate to the ImageResizer page 2. Click the Add new size button 3. Note the dimensions of the new preset ### ✔️ Expected Behavior The dimensions should match the custom size defaults from the `ImageresizerCustomSize` settings property: 1024 x 640. (See the `ImageResizerProperties` class.) ### ❌ Actual Behavior The dimensions repeat the existing Small preset width and height: 854 x 480. ### Other Software _No response_
Issue-Bug,Resolution-Fix Committed,Product-Image Resizer
low
Minor
2,791,356,691
ollama
Ollama not respecting structured outputs with some ordering of refs
### What is the issue? The following program fails, but should work. Changing the `schema = ...` line to use `schema_works`, which is a slightly different schema, works. The two schemas should parse the same JSON - the only difference is the ordering in `"$defs"`. I also have examples of pydantic-generated schemas which fail because of this bug. It looks like the `json_schema_to_grammar` implementation has a "binding problem", that is it binds a def in `_refs` before visiting it, expecting a `"input#...` prefix, and consequently generates an incorrect grammar. ```python from ollama import chat import json from jsonschema import validate, ValidationError # # Schema originally generated by pydantic. Depending # on the alphabetical order of the names of the classes, # both failing and working schemas can be generated. # This is the smallest example I could find, and # I'm using client version is 0.5.5. # # The *only* difference is the order of "C" and "A" in "$defs", # This should not make any difference: both are supposed to be the # same schema. schema_fails = { "$defs": { "C": { "properties": {"payload": {"$ref": "#/$defs/A"}}, "required": ["payload"], "title": "C", "type": "object", }, "A": { "properties": {"payload": {"$ref": "#/$defs/E"}}, "required": ["payload"], "title": "A", "type": "object", }, "E": {"type": "boolean"}, }, "properties": {"payload": {"$ref": "#/$defs/C"}}, "required": ["payload"], "title": "B", "type": "object", } schema_works = { "$defs": { "A": { "properties": {"payload": {"$ref": "#/$defs/E"}}, "required": ["payload"], "title": "A", "type": "object", }, "C": { "properties": {"payload": {"$ref": "#/$defs/A"}}, "required": ["payload"], "title": "C", "type": "object", }, "E": {"type": "boolean"}, }, "properties": {"payload": {"$ref": "#/$defs/C"}}, "required": ["payload"], "title": "B", "type": "object", } schema = schema_fails # or schema_works # schema_fails generates {"payload": {"payload": {"payload": {"payload": "true"}}}} # schema_works generates {"payload": {"payload": {"payload": true}}} response = chat( model="mistral-nemo:latest", messages=[ { "role": "user", "content": "I want to choose true, inside A, inside C, inside B", } ], format=schema, options={"temperature": 0}, # Make responses more deterministic ) valid_json = json.loads(response.message.content) print(json.dumps(valid_json)) validate(instance=valid_json, schema=schema) print("validates!") ``` ### OS macOS ### GPU Apple ### CPU Apple ### Ollama version 0.5.5
bug
low
Critical
2,791,392,630
pytorch
DISABLED test_distributed_checkpoint_state_dict_type1_cuda (__main__.TestDistributedCheckpointCUDA)
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_distributed_checkpoint_state_dict_type1_cuda&suite=TestDistributedCheckpointCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35670700293). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 4 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_distributed_checkpoint_state_dict_type1_cuda` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 597, in wrapper self._join_processes(fn) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 837, in _join_processes self._check_return_codes(elapsed_time) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 886, in _check_return_codes raise RuntimeError(error) RuntimeError: Process 1 exited with error code 10 and exception: Traceback (most recent call last): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 726, in run_test getattr(self, test_name)() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 599, in wrapper fn() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3128, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3128, in wrapper method(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 485, in instantiated_test raise rte File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_device_type.py", line 465, in instantiated_test result = test(self, **param_kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_distributed.py", line 199, in wrapper return func(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/distributed/checkpoint_utils.py", line 44, in wrapper func(self, *args, **kwargs) File "/var/lib/jenkins/workspace/test/distributed/fsdp/test_distributed_checkpoint.py", line 67, in test_distributed_checkpoint state_dict = model.state_dict() File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 2204, in state_dict module.state_dict( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 2204, in state_dict module.state_dict( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 2204, in state_dict module.state_dict( [Previous line repeated 1 more time] File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/nn/modules/module.py", line 2210, in state_dict hook_result = hook(self, destination, prefix, local_metadata) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context return func(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/distributed/fsdp/_state_dict_utils.py", line 714, in _post_state_dict_hook processed_state_dict = _post_state_dict_hook_fn[fsdp_state._state_dict_type]( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/distributed/fsdp/_state_dict_utils.py", line 432, in _local_post_state_dict_hook sharded_tensor = init_from_local_shards( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/__init__.py", line 407, in init_from_local_shards return ShardedTensor._init_from_local_shards( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/distributed/_shard/sharded_tensor/api.py", line 753, in _init_from_local_shards dist.all_gather_object( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 81, in wrapper return func(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 3037, in all_gather_object input_tensor.resize_(max_object_size) torch.OutOfMemoryError: CUDA out of memory. Tried to allocate more than 1EB memory. Exception raised from allocate at /var/lib/jenkins/workspace/c10/cuda/CUDACachingAllocator.cpp:3623 (most recent call first): C++ CapturedTraceback: #4 std::_Function_handler<std::shared_ptr<c10::LazyValue<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > const> (), c10::SetStackTraceFetcher(std::function<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > ()>)::{lambda()#1}>::_M_invoke(std::_Any_data const&) from Logging.cpp:0 #5 c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) from ??:0 #6 c10::cuda::CUDACachingAllocator::Native::NativeCachingAllocator::allocate(unsigned long) from :0 #7 at::native::resize_bytes_cuda(c10::StorageImpl*, unsigned long) from ??:0 #8 at::native::resize_cuda_(at::Tensor const&, c10::ArrayRef<long>, std::optional<c10::MemoryFormat>) from ??:0 #9 at::_ops::resize_::redispatch(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, std::optional<c10::MemoryFormat>) from ??:0 #10 torch::ADInplaceOrView::resize_(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, std::optional<c10::MemoryFormat>) from VariableTypeManual.cpp:0 #11 at::_ops::resize_::redispatch(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, std::optional<c10::MemoryFormat>) from ??:0 #12 torch::autograd::VariableType::(anonymous namespace)::resize_(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, std::optional<c10::MemoryFormat>) from VariableTypeManual.cpp:0 #13 at::_ops::resize_::call(at::Tensor const&, c10::ArrayRef<c10::SymInt>, std::optional<c10::MemoryFormat>) from ??:0 #14 torch::autograd::THPVariable_resize_(_object*, _object*, _object*) from python_variable_methods.cpp:0 #15 method_vectorcall_VARARGS_KEYWORDS from :0 #16 _PyEval_EvalFrameDefault from ??:0 #17 _PyFunction_Vectorcall from ??:0 #18 PyObject_Call from ??:0 #19 _PyEval_EvalFrameDefault from ??:0 #20 _PyFunction_Vectorcall from ??:0 #21 _PyEval_EvalFrameDefault from ??:0 #22 method_vectorcall from :0 #23 PyObject_Call from ??:0 #24 _PyEval_EvalFrameDefault from ??:0 #25 _PyFunction_Vectorcall from ??:0 #26 _PyEval_EvalFrameDefault from ??:0 #27 _PyFunction_Vectorcall from ??:0 #28 _PyEval_EvalFrameDefault from ??:0 #29 _PyFunction_Vectorcall from ??:0 #30 _PyEval_EvalFrameDefault from ??:0 #31 _PyFunction_Vectorcall from ??:0 #32 _PyEval_EvalFrameDefault from ??:0 #33 method_vectorcall from :0 #34 _PyEval_EvalFrameDefault from ??:0 #35 method_vectorcall from :0 #36 _PyEval_EvalFrameDefault from ??:0 #37 method_vectorcall from :0 #38 _PyEval_EvalFrameDefault from ??:0 #39 method_vectorcall from :0 #40 _PyEval_EvalFrameDefault from ??:0 #41 method_vectorcall from :0 #42 _PyEval_EvalFrameDefault from ??:0 #43 _PyFunction_Vectorcall from ??:0 #44 PyObject_Call from ??:0 #45 _PyEval_EvalFrameDefault from ??:0 #46 _PyFunction_Vectorcall from ??:0 #47 PyObject_Call from ??:0 #48 _PyEval_EvalFrameDefault from ??:0 #49 _PyFunction_Vectorcall from ??:0 #50 PyObject_Call from ??:0 #51 _PyEval_EvalFrameDefault from ??:0 #52 method_vectorcall from :0 #53 _PyEval_EvalFrameDefault from ??:0 #54 method_vectorcall from :0 #55 _PyEval_EvalFrameDefault from ??:0 #56 method_vectorcall from :0 #57 _PyEval_EvalFrameDefault from ??:0 #58 method_vectorcall from :0 #59 _PyEval_EvalFrameDefault from ??:0 #60 _PyFunction_Vectorcall from ??:0 #61 _PyEval_EvalFrameDefault from ??:0 #62 method_vectorcall from :0 #63 PyObject_Call from ??:0 #64 _PyEval_EvalFrameDefault from ??:0 #65 _PyFunction_Vectorcall from ??:0 #66 _PyEval_EvalFrameDefault from ??:0 #67 _PyFunction_Vectorcall from ??:0 #68 _PyEval_EvalFrameDefault from ??:0 #69 _PyFunction_Vectorcall from ??:0 #70 _PyEval_EvalFrameDefault from ??:0 #71 _PyFunction_Vectorcall from ??:0 #72 _PyEval_EvalFrameDefault from ??:0 #73 _PyEval_Vector from :0 #74 PyEval_EvalCode from ??:0 #75 run_eval_code_obj from :0 #76 run_mod from :0 #77 PyRun_StringFlags.localalias from :0 #78 PyRun_SimpleStringFlags.localalias from :0 #79 Py_RunMain.localalias from :0 #80 Py_BytesMain from ??:0 #81 __libc_start_main from ??:0 #82 _start from ??:0 To execute this test, run the following from the base repo dir: python test/distributed/fsdp/test_distributed_checkpoint.py TestDistributedCheckpointCUDA.test_distributed_checkpoint_state_dict_type1_cuda This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `distributed/fsdp/test_distributed_checkpoint.py` cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o @clee2000 @wdvr
oncall: distributed,module: flaky-tests,skipped
low
Critical
2,791,392,684
pytorch
DISABLED test_aoti_eager_cache_hit_dynamic_shapes_cuda (__main__.DynamicShapesGPUTests)
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_aoti_eager_cache_hit_dynamic_shapes_cuda&suite=DynamicShapesGPUTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35679665075). Over the past 3 hours, it has been determined flaky in 6 workflow(s) with 6 failures and 6 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_aoti_eager_cache_hit_dynamic_shapes_cuda` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor.py", line 1071, in test_aoti_eager_cache_hit res_value = getattr(torch.ops.aten, op_name)(input_tensor) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 1158, in __call__ return self._op(*args, **(kwargs or {})) RuntimeError: aot_compile_function.ptr() != nullptr && aot_compile_function.ptr() != Py_None INTERNAL ASSERT FAILED at "/var/lib/jenkins/workspace/torch/csrc/inductor/aoti_eager/kernel_holder.cpp":507, please report a bug to PyTorch. Failed to import - torch._inductor.aoti_eager.aoti_compile_with_persistent_cache To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_torchinductor_dynamic_shapes.py DynamicShapesGPUTests.test_aoti_eager_cache_hit_dynamic_shapes_cuda This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_dynamic_shapes.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
module: rocm,triaged,module: flaky-tests,skipped,oncall: pt2,module: inductor
low
Critical
2,791,393,380
pytorch
DISABLED test_repeat_graph_capture_cublas_workspace_memory (__main__.TestCuda)
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_repeat_graph_capture_cublas_workspace_memory&suite=TestCuda&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35670628070). Over the past 3 hours, it has been determined flaky in 5 workflow(s) with 6 failures and 5 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_repeat_graph_capture_cublas_workspace_memory` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/test_cuda.py", line 2048, in test_repeat_graph_capture_cublas_workspace_memory self.assertFalse(used_gb_before + 0.1 < used_gb_after) File "/opt/conda/envs/py_3.10/lib/python3.10/unittest/case.py", line 681, in assertFalse raise self.failureException(msg) AssertionError: True is not false To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/test_cuda.py TestCuda.test_repeat_graph_capture_cublas_workspace_memory This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `test_cuda.py` cc @ptrblck @msaroufim @eqy @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr
module: cuda,module: rocm,triaged,module: flaky-tests,skipped
low
Critical
2,791,393,381
pytorch
DISABLED test_aoti_eager_support_str_dynamic_shapes_cuda (__main__.DynamicShapesGPUTests)
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_aoti_eager_support_str_dynamic_shapes_cuda&suite=DynamicShapesGPUTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35679665765). Over the past 3 hours, it has been determined flaky in 7 workflow(s) with 7 failures and 7 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_aoti_eager_support_str_dynamic_shapes_cuda` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor.py", line 1023, in test_aoti_eager_support_str res_value = getattr(torch.ops.aten, op_name)( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_ops.py", line 1158, in __call__ return self._op(*args, **(kwargs or {})) RuntimeError: create_func_( &container_handle_, num_models, device_str.c_str(), cubin_dir.empty() ? nullptr : cubin_dir.c_str()) API call failed at /var/lib/jenkins/workspace/torch/csrc/inductor/aoti_runner/model_container_runner.cpp, line 81 To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_torchinductor_dynamic_shapes.py DynamicShapesGPUTests.test_aoti_eager_support_str_dynamic_shapes_cuda This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_dynamic_shapes.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
module: rocm,triaged,module: flaky-tests,skipped,oncall: pt2,module: inductor
low
Critical
2,791,393,383
pytorch
DISABLED test_aoti_eager_dtype_device_layout_dynamic_shapes_cuda (__main__.DynamicShapesCodegenGPUTests)
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_aoti_eager_dtype_device_layout_dynamic_shapes_cuda&suite=DynamicShapesCodegenGPUTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35679666011). Over the past 3 hours, it has been determined flaky in 9 workflow(s) with 9 failures and 9 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_aoti_eager_dtype_device_layout_dynamic_shapes_cuda` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor.py", line 925, in test_aoti_eager_dtype_device_layout res = torch.tril_indices( RuntimeError: create_func_( &container_handle_, num_models, device_str.c_str(), cubin_dir.empty() ? nullptr : cubin_dir.c_str()) API call failed at /var/lib/jenkins/workspace/torch/csrc/inductor/aoti_runner/model_container_runner.cpp, line 81 To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_torchinductor_codegen_dynamic_shapes.py DynamicShapesCodegenGPUTests.test_aoti_eager_dtype_device_layout_dynamic_shapes_cuda This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_codegen_dynamic_shapes.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
module: rocm,triaged,module: flaky-tests,skipped,oncall: pt2,module: inductor
low
Critical
2,791,400,689
next.js
Nextjs 15.1 not saving Static Content on Redis on build time using instrumentation using @neshca/cache-handler
### Link to the code that reproduces this issue https://codesandbox.io/p/devbox/priceless-hill-52c3m3 ### To Reproduce 1. Update url from cache-handler with your Redis instance 2. yarn install 3. yarn build 4. Verify that no key exists for /index in Redis 5. yarn start 6. Verify that no key exists for /index in Redis, but /xpto in Redis exists 7. Go to the browser and open => http://localhost:3000/ 8. Verify that /index key exists in Redis ### Current vs. Expected behavior I was expecting to have /index and /xpto after yarn build. I don't have anything being saved. I was expecting to have /index also after yarn start. I only have /xpto being saved. ### Provide environment information ```bash Operating System: Platform: win32 Arch: x64 Version: Windows 10 Enterprise Available memory (MB): 32401 Available CPU cores: 12 Binaries: Node: 22.4.1 npm: 10.9.0 Yarn: 1.22.22 pnpm: N/A Relevant Packages: next: 15.1.4 // Latest available version is detected (15.1.4). eslint-config-next: N/A react: 19.0.0 react-dom: 19.0.0 typescript: N/A Next.js Config: output: standalone ``` ### Which area(s) are affected? (Select all that apply) Instrumentation ### Which stage(s) are affected? (Select all that apply) next build (local), next start (local) ### Additional context I was expecting to use instrumentation implementation and have Redis cache being populated with pre-rendered pages on build time, but it's only happening on start time. Besides that, I am unable to save the pre-rendered page if my page is on the root of the app, meaning app/page.tsx. This issue happens both in 15.1 and 14.2.17 next versions.
Instrumentation
low
Minor
2,791,406,661
flutter
use Gradle's Kotlin DSL in plugin templates
### Use case This request builds on #151166 to ask that templates for _plugins_ also create `build.gradle.kts` for Android. Using Flutter 3.27.2, `flutter create --template plugin --platforms android` produces Android code with Groovy Gradle files. See https://github.com/flutter/flutter/tree/3.27.2/packages/flutter_tools/templates/plugin/android-kotlin.tmpl . ### Proposal See above.
c: new feature,platform-android,tool,t: gradle,c: proposal,P2,a: plugins,team-android,triaged-android
low
Minor
2,791,421,759
PowerToys
make toped windows more obvious
### Description of the new feature / enhancement please add a sign or pattern on the "always on top" windows (maybe at the left of the minimize?), the frame is too Inconspicuous I do know the frame can be bolded, but some background or windows is dark, which means I couldn't see if the window is on top. ### Scenario when this would be used? window on top ### Supporting information _No response_
Needs-Triage
low
Minor
2,791,465,075
pytorch
Add API to detect if activation checkpointing is enabled in the current region or not
### 🚀 The feature, motivation and pitch I've been developing an experimental feature for torchao and doing a [PoC integration](https://github.com/pytorch/torchtitan/pull/778) in torchtitan. The implementation is based on custom Triton kernels, and we need to execute different kernels at different points in forward/backward depending on if AC is enabled or not. At a high level: - If activation checkpointing is enabled, we may want to optimize for peak memory usage and not precompute + save certain tensors for backward. - If activation checkpointing is not enabled, we may want to optimize for throughput and precompute some tensors for backward pass during the forward pass, if there is a way to do efficiently. After searching for a way to do this online, and then checking with @soulitzer, I found that pytorch currently provides no API to detect if the current region is using activation checkpointing or not. This would be a very useful feature for use cases like the one above. ### Alternatives As an alternative/workaround, I implemented an explicit flag in my prototype code to indicate if we should optimize for peak memory usage in this particular FP8 linear layer or not, and [execute kernels conditionally based on that flag](https://github.com/pytorch/ao/blob/5e59b510b97d5a1cd08da59b1f6b2df6a1d8cdfd/torchao/prototype/float8nocompile/float8nocompile_linear.py#L72). However, this is somewhat of a hack and hurts composability with AC. It relies on the user remembering to set this flag if they are using AC in this layer, and requires the user to implement [helper functions](https://github.com/pytorch/torchtitan/pull/778/files#diff-7792012777a5a91b75304ed92ff6414b2f414e1a92a20c7ce9f64b54fb3c7d4bR112-R119) for more advanced AC strategies like selective per layer AC. ### Additional context _No response_ cc @soulitzer
module: checkpoint,triaged
low
Minor
2,791,543,482
vscode
GitHub - why there is an open github menu? i do not deploy my repo to github
版本: 1.97.0-insider 提交: c799d209cd4846a2a822b55dbf2ca21893008faa 日期: 2025-01-15T23:09:30.246Z 浏览器: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Code-Insiders/1.97.0-insider Chrome/128.0.6613.186 Electron/32.2.7 Safari/537.36 ![Image](https://github.com/user-attachments/assets/9a152fc8-66bc-4137-8b0d-c7221bb65ada)
github
low
Minor
2,791,574,555
pytorch
Error loading "torch\lib\aoti_custom_ops.dll" or one of its dependencies, when importing Torch, when building from Source on Windows 11 with cuDNN.
### 🐛 Describe the bug Hi there, thanks for the great work. When I build from source on Windows 11, CUDA 12.6, VS 2022, and specifying to use cuDNN (either 9.5.1 or 9.6.0), it gives this next error ``` >> import torch Traceback (most recent call last): File "<stdin>", line 1, in <module> File "<frozen importlib._bootstrap>", line 1360, in _find_and_load File "<frozen importlib._bootstrap>", line 1331, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 935, in _load_unlocked File "<frozen importlib._bootstrap_external>", line 999, in exec_module File "<frozen importlib._bootstrap>", line 488, in _call_with_frames_removed File "C:\Users\User\Desktop\pytorch_compile\pytorch\Miniconda3\Lib\site-packages\torch\__init__.py", line 274, in <module> _load_dll_libraries() File "C:\Users\User\Desktop\pytorch_compile\pytorch\Miniconda3\Lib\site-packages\torch\__init__.py", line 270, in _load_dll_libraries raise err OSError: [WinError 126] No se puede encontrar el módulo especificado. Error loading "C:\Users\Pancho\Desktop\pytorch_compile\pytorch\Miniconda3\Lib\site-packages\torch\lib\aoti_custom_ops.dll" or one of its dependencies. ``` Dependencies doesn't say that a .DLL is missing ![Image](https://github.com/user-attachments/assets/e6f41e03-452b-46ce-b8af-97dda23b0b72) And procmon shows ![Image](https://github.com/user-attachments/assets/9ac5ed5b-5eca-4dd7-abf0-9b190e253c6d) I did have to set on the CMake file: ``` set(CUDNN_LIBRARY_PATH "C:/Program Files/NVIDIA/CUDNN/v9.6/lib/12.6/x64/cudnn64_9.lib") set(CUDNN_INCLUDE_PATH "C:/Program Files/NVIDIA/CUDNN/v9.6/include/12.6") ``` Else it wouldn't detect it, even if having those env variables set on the Path. Related https://github.com/pytorch/pytorch/issues/114054 Paths are [Paths.txt](https://github.com/user-attachments/files/18432859/Paths.txt) Cmake config is [CMakeCache.txt](https://github.com/user-attachments/files/18432788/CMakeCache.txt) When not setting up cuDNN, torch works abeit very slowly for image diffusion pipelines. Commit used was 834086c, and used mostly the `.\.ci\pytorch\win-test-helpers\build_pytorch.bat` file. ### Versions Not applicable (can't import torch) cc @malfet @seemethere @peterjc123 @mszhanyi @skyline75489 @nbcsm @iremyux @Blackhex
module: build,module: windows,triaged
low
Critical
2,791,584,852
pytorch
[inductor][cpu]amp fp16 llama dynamic shape cpp wrapper performance regression in 2025-01-07 nightly release
### 🐛 Describe the bug <p>amp fp16 dynamic shape cpp wrapper</p><table border="1" class="dataframe table"> <thead> <tr style="text-align: right;"> <th>suite</th> <th>name</th> <th>thread</th> <th>batch_size_new</th> <th>speed_up_new</th> <th>inductor_new</th> <th>eager_new</th> <th>compilation_latency_new</th> <th>batch_size_old</th> <th>speed_up_old</th> <th>inductor_old</th> <th>eager_old</th> <th>compilation_latency_old</th> <th>Ratio Speedup(New/old)</th> <th>Eager Ratio(old/new)</th> <th>Inductor Ratio(old/new)</th> <th>Compilation_latency_Ratio(old/new)</th> </tr> </thead> <tbody> <tr> <td>torchbench</td> <td>llama</td> <td>multiple</td> <td>32</td> <td>2.211985</td> <td>0.021930711999999998</td> <td>0.048510405983319994</td> <td>39.177836</td> <td>32</td> <td>2.507979</td> <td>0.018847622</td> <td>0.04726944017593801</td> <td>41.306366</td> <td>0.88</td> <td>0.97</td> <td>0.86</td> <td>1.05</td> </tr> <tr> <td>torchbench</td> <td>llama</td> <td>single</td> <td>1</td> <td>3.950647</td> <td>0.01318508</td> <td>0.05208959674676</td> <td>37.938252</td> <td>1</td> <td>4.542274</td> <td>0.011483397</td> <td>0.05216073562477799</td> <td>40.390422</td> <td>0.87</td> <td>1.0</td> <td>0.87</td> <td>1.06</td> </tr> </tbody> </table> the last good commit: e88d06f54eeb80669a8a97322cf55c4da0519f08 ``` /workspace/pytorch# bash inductor_single_run.sh multiple inference performance torchbench llama amp_fp16 first dynamic cpp Testing with dynamic shapes. Testing with cpp wrapper. Testing with inductor. multi-threads testing.... loading model: 0it [00:00, ?it/s] cpu eval llama running benchmark: 100%|███████████████████████████████████████████████████████████████████| 50/50 [00:03<00:00, 14.90it/s] 2.818x WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] dev,name,batch_size,speedup,abs_latency,compilation_latency,compression_ratio,eager_peak_mem,dynamo_peak_mem,calls_captured,unique_graphs,graph_breaks,unique_graph_breaks,autograd_captures,autograd_compiles,cudagraph_skips cpu,llama,32,2.817930,19.087040,33.137240,0.947519,340.724531,359.596442,531,1,0,0,0,0,0 ``` the bad commit: b5b419d6276e5f0a9df623b45e9fb478f93ecc4b ``` /workspace/pytorch# bash inductor_single_run.sh multiple inference performance torchbench llama amp_fp16 first dynamic cpp running benchmark: 100%|███████████████████████████████████████████████████████████████████| 50/50 [00:03<00:00, 13.42it/s] 2.532x WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] dev,name,batch_size,speedup,abs_latency,compilation_latency,compression_ratio,eager_peak_mem,dynamo_peak_mem,calls_captured,unique_graphs,graph_breaks,unique_graph_breaks,autograd_captures,autograd_compiles,cudagraph_skips cpu,llama,32,2.532279,22.605699,37.389425,0.928050,340.260454,366.640333,531,1,0,0,0,0,0 ``` ### Versions </table><p>SW info</p><table border="1" class="dataframe table"> <thead> <tr style="text-align: right;"> <th>name</th> <th>target_branch</th> <th>target_commit</th> <th>refer_branch</th> <th>refer_commit</th> </tr> </thead> <tbody> <tr> <td>torchbench</td> <td>main</td> <td>766a5e3a</td> <td>main</td> <td>766a5e3a</td> </tr> <tr> <td>torch</td> <td>main</td> <td>f2d6cfa6775601df5a038f7a4d0b37da75a53ed9</td> <td>main</td> <td>cf0b72c4ab960a847758132cc501cf793926e070</td> </tr> <tr> <td>torchvision</td> <td>main</td> <td>0.19.0a0+d23a6e1</td> <td>main</td> <td>0.19.0a0+d23a6e1</td> </tr> <tr> <td>torchtext</td> <td>main</td> <td>0.16.0a0+b0ebddc</td> <td>main</td> <td>0.16.0a0+b0ebddc</td> </tr> <tr> <td>torchaudio</td> <td>main</td> <td>2.6.0a0+b6d4675</td> <td>main</td> <td>2.6.0a0+b6d4675</td> </tr> <tr> <td>torchdata</td> <td>main</td> <td>0.7.0a0+11bb5b8</td> <td>main</td> <td>0.7.0a0+11bb5b8</td> </tr> <tr> <td>dynamo_benchmarks</td> <td>main</td> <td>nightly</td> <td>main</td> <td>nightly</td> </tr> </tbody> </table> </table> Repro: [inductor_single_run.sh](https://github.com/chuanqi129/inductor-tools/blob//main/scripts/modelbench/inductor_single_run.sh) bash inductor_single_run.sh multiple inference performance torchbench llama amp_fp16 first dynamic cpp Suspected guilty commit: b5b419d6276e5f0a9df623b45e9fb478f93ecc4b [torchbench-llama-inference-amp_fp16-dynamic-cpp-multiple-performance-drop_guilty_commit.log](https://github.com/user-attachments/files/18432852/torchbench-llama-inference-amp_fp16-dynamic-cpp-multiple-performance-drop_guilty_commit.log) cc @chauhang @penguinwu @chuanqi129 @CaoE
oncall: pt2,oncall: cpu inductor
low
Critical
2,791,598,472
ollama
Multiple goroutines writing to the same file at once likely corrupts downloads
### What is the issue? I'm getting a lot of digest errors on windows when downloading new models. Models bigger than 10gb often take multiple tries, for models > 15gb it's nearly impossible to download them. I think the culprit is likely to be this code: https://github.com/ollama/ollama/blob/93a8daf285af45ed71544e79aae0cb15245e75f4/server/download.go#L271-L301 I don't think concurrent writes to the same file are safe (at least on windows), even with offsets. I think each goroutine should get its own part file which are then merged in the end. ### OS Windows ### GPU AMD ### CPU AMD ### Ollama version 0.5.6
bug
low
Critical
2,791,613,224
node
Add CBOR support
### What is the problem this feature will solve? CBOR is an alternative to JSON. Due to its binary format and rich data type support, it is ideally suited for machine-to-machine data interchange. ### What is the feature you are proposing to solve the problem? I'm proposing a "CBOR" counterpart to the "JSON" object. In similarity to "JSON", a single object should suffice. https://github.com/cyberphone/CBOR.js#cborjs ### What alternatives have you considered? _No response_
feature request
low
Minor
2,791,616,648
node
Mixing with `stdin` and `stderr stdout` about readable or writable in Child process spawn API options.stdio doc
page link: https://nodejs.org/api/child_process.html#optionsstdio When descripting the available value of Stream Object, threre are some wrong notes: 1. "While it is technically possible to pass stdin as a writable or stdout/stderr as readable, it is not recommended." Maybe the actual meaning is "While it is technically possible to pass stdin as a readable or stdout/stderr as writable, it is not recommended." 2. "e.g., passing a readable stream where a writable stream is expected" This is my screenshot: ![Image](https://github.com/user-attachments/assets/877c1736-f502-4004-b6b3-11da6de36cd5)
child_process,doc
low
Minor
2,791,622,922
pytorch
DISABLED test_run_decompositions_map_handle_to_new_nodes (__main__.TestNumericDebugger)
Platforms: mac, macos This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_run_decompositions_map_handle_to_new_nodes&suite=TestNumericDebugger&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35684218376). Over the past 3 hours, it has been determined flaky in 8 workflow(s) with 16 failures and 8 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_run_decompositions_map_handle_to_new_nodes` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_quantization.py` cc @jerryzh168 @jianyuh @raghuramank100 @jamesr66a @vkuzo @jgong5 @Xia-Weiwen @leslie-fang-intel @msaroufim @clee2000 @wdvr @malfet @albanD
oncall: quantization,triaged,module: flaky-tests,module: macos,skipped
low
Critical
2,791,622,966
pytorch
DISABLED test_pt2_traceable_aot_eager_cpu_float8_e5m2 (__main__.TestFloat8DtypeCPUOnlyCPU)
Platforms: asan, linux, mac, macos This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_pt2_traceable_aot_eager_cpu_float8_e5m2&suite=TestFloat8DtypeCPUOnlyCPU&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35681075767). Over the past 3 hours, it has been determined flaky in 5 workflow(s) with 10 failures and 5 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_pt2_traceable_aot_eager_cpu_float8_e5m2` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_quantization.py` cc @jerryzh168 @jianyuh @raghuramank100 @jamesr66a @vkuzo @jgong5 @Xia-Weiwen @leslie-fang-intel @msaroufim @clee2000 @wdvr
oncall: quantization,module: flaky-tests,skipped
low
Critical
2,791,623,013
pytorch
DISABLED test_compile_forward_select_cuda_float32 (__main__.TestNestedTensorOpInfoCUDA)
Platforms: linux, rocm, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_compile_forward_select_cuda_float32&suite=TestNestedTensorOpInfoCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35686125481). Over the past 3 hours, it has been determined flaky in 20 workflow(s) with 0 failures and 20 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_compile_forward_select_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_nestedtensor.py` cc @clee2000 @wdvr @cpuhrsch @jbschlosser @bhosmer @drisspg @soulitzer @davidberard98 @YuqingJ
triaged,module: flaky-tests,module: nestedtensor,skipped
low
Critical
2,791,623,115
pytorch
DISABLED test_compile_forward_clone_cpu_float32 (__main__.TestNestedTensorOpInfoCPU)
Platforms: asan, linux, mac, macos, win, windows This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_compile_forward_clone_cpu_float32&suite=TestNestedTensorOpInfoCPU&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35684033086). Over the past 3 hours, it has been determined flaky in 43 workflow(s) with 0 failures and 43 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_compile_forward_clone_cpu_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_nestedtensor.py` cc @clee2000 @wdvr @cpuhrsch @jbschlosser @bhosmer @drisspg @soulitzer @davidberard98 @YuqingJ
triaged,module: flaky-tests,module: nestedtensor,skipped
low
Critical
2,791,625,992
pytorch
[inductor][cpu]float32 dynamic shape maml_omniglot performance regression in 2025-01-13 nightly release
### 🐛 Describe the bug <p>dynamic shape default wrapper</p><table border="1" class="dataframe table"> <thead> <tr style="text-align: right;"> <th>suite</th> <th>name</th> <th>thread</th> <th>batch_size_new</th> <th>speed_up_new</th> <th>inductor_new</th> <th>eager_new</th> <th>compilation_latency_new</th> <th>batch_size_old</th> <th>speed_up_old</th> <th>inductor_old</th> <th>eager_old</th> <th>compilation_latency_old</th> <th>Ratio Speedup(New/old)</th> <th>Eager Ratio(old/new)</th> <th>Inductor Ratio(old/new)</th> <th>Compilation_latency_Ratio(old/new)</th> </tr> </thead> <tbody> <tr> <td>torchbench</td> <td>maml_omniglot</td> <td>single</td> <td>5</td> <td>1.991409</td> <td>0.0011490320000000001</td> <td>0.0022881926660880004</td> <td>9.557705</td> <td>5</td> <td>2.569708</td> <td>0.000891765</td> <td>0.00229157565462</td> <td>9.459977</td> <td>0.77</td> <td>1.0</td> <td>0.78</td> <td>0.99</td> </tr> </tbody> </table> <p>dynamic shape cpp wrapper</p><table border="1" class="dataframe table"> <thead> <tr style="text-align: right;"> <th>suite</th> <th>name</th> <th>thread</th> <th>batch_size_new</th> <th>speed_up_new</th> <th>inductor_new</th> <th>eager_new</th> <th>compilation_latency_new</th> <th>batch_size_old</th> <th>speed_up_old</th> <th>inductor_old</th> <th>eager_old</th> <th>compilation_latency_old</th> <th>Ratio Speedup(New/old)</th> <th>Eager Ratio(old/new)</th> <th>Inductor Ratio(old/new)</th> <th>Compilation_latency_Ratio(old/new)</th> </tr> </thead> <tbody> <tr> <td>torchbench</td> <td>maml_omniglot</td> <td>single</td> <td>5</td> <td>2.090643</td> <td>0.001101955</td> <td>0.002303794507065</td> <td>6.568006</td> <td>5</td> <td>2.732528</td> <td>0.000844825</td> <td>0.0023085079675999997</td> <td>6.547288</td> <td>0.77</td> <td>1.0</td> <td>0.77</td> <td>1.0</td> </tr> </tbody> </table> the last good commit: f8fcb9e7d38b82844d72ae32c27d1592db27a8e2 ``` /workspace/pytorch# bash inductor_single_run.sh single inference performance torchbench maml_omniglot float32 first dynamic Testing with dynamic shapes. Testing with inductor. single-thread testing.... loading model: 0it [00:00, ?it/s] cpu eval maml_omniglot running benchmark: 100%|██████████████████████████████████████████████████████████████████| 50/50 [00:00<00:00, 249.55it/s] 1.778x WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] dev,name,batch_size,speedup,abs_latency,compilation_latency,compression_ratio,eager_peak_mem,dynamo_peak_mem,calls_captured,unique_graphs,graph_breaks,unique_graph_breaks,autograd_captures,autograd_compiles,cudagraph_skips cpu,maml_omniglot,5,1.777746,1.250640,27.412123,0.846500,47.260877,55.830938,14,1,0,0,0,0,1 ``` the bad commit: 28b4992e7a60bb3fbb07c591099fa810557b4e57 ``` /workspace/pytorch# bash inductor_single_run.sh single inference performance torchbench maml_omniglot float32 first dynamic Testing with dynamic shapes. Testing with inductor. single-thread testing.... loading model: 0it [00:00, ?it/s] cpu eval maml_omniglot running benchmark: 100%|██████████████████████████████████████████████████████████████████| 50/50 [00:00<00:00, 224.95it/s] 1.434x WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] dev,name,batch_size,speedup,abs_latency,compilation_latency,compression_ratio,eager_peak_mem,dynamo_peak_mem,calls_captured,unique_graphs,graph_breaks,unique_graph_breaks,autograd_captures,autograd_compiles,cudagraph_skips cpu,maml_omniglot,5,1.433554,1.590300,30.843010,0.770410,47.418573,61.549773,14,1,0,0,0,0,1 ``` ### Versions </table><p>SW info</p><table border="1" class="dataframe table"> <thead> <tr style="text-align: right;"> <th>name</th> <th>target_branch</th> <th>target_commit</th> <th>refer_branch</th> <th>refer_commit</th> </tr> </thead> <tbody> <tr> <td>torchbench</td> <td>main</td> <td>766a5e3a</td> <td>main</td> <td>766a5e3a</td> </tr> <tr> <td>torch</td> <td>main</td> <td>e0f67405a154e7f9ce1ca9533cbc1d156fe075d7</td> <td>main</td> <td>f2d6cfa6775601df5a038f7a4d0b37da75a53ed9</td> </tr> <tr> <td>torchvision</td> <td>main</td> <td>0.19.0a0+d23a6e1</td> <td>main</td> <td>0.19.0a0+d23a6e1</td> </tr> <tr> <td>torchtext</td> <td>main</td> <td>0.16.0a0+b0ebddc</td> <td>main</td> <td>0.16.0a0+b0ebddc</td> </tr> <tr> <td>torchaudio</td> <td>main</td> <td>2.6.0a0+b6d4675</td> <td>main</td> <td>2.6.0a0+b6d4675</td> </tr> <tr> <td>torchdata</td> <td>main</td> <td>0.7.1a0+0790338</td> <td>main</td> <td>0.7.1a0+0790338</td> </tr> <tr> <td>dynamo_benchmarks</td> <td>main</td> <td>nightly</td> <td>main</td> <td>nightly</td> </tr> </tbody> </table> </table> Repro: [inductor_single_run.sh](https://github.com/chuanqi129/inductor-tools/blob//main/scripts/modelbench/inductor_single_run.sh) bash inductor_single_run.sh single inference performance torchbench maml_omniglot float32 first dynamic Suspected guilty commit: 28b4992e7a60bb3fbb07c591099fa810557b4e57 [torchbench-maml_omniglot-inference-float32-dynamic-default-single-performance-drop_guilty_commit.log](https://github.com/user-attachments/files/18433106/torchbench-maml_omniglot-inference-float32-dynamic-default-single-performance-drop_guilty_commit.log) cc @chauhang @penguinwu @chuanqi129
oncall: pt2,oncall: cpu inductor
low
Critical
2,791,632,725
flutter
[Proposal] Add official resource hash and js sharding for Flutter web, and reduce application size
### Use case Flutter web products are generally larger than native web products, which results in a slow opening speed of the website. Although CDN acceleration is enabled, it is still not ideal. ### Proposal Add official resource hash and js sharding for Flutter web, and reduce application size
c: new feature,a: size,platform-web,c: proposal,team-web
low
Major
2,791,657,081
deno
Wrong path when using HTTP proxy in Node API `http`
Version: Deno 2.1.5 TLDR: when `http.request`'s opinions include proxy settings and `options.path` is a full URL (e.g., `http://httpbin.org/200`), the website that proxy server accesses should be `http://httpbin.org/200`, but in Deno it is `http://httpbin.org/http://httpbin.org/200`. POC: ```js import axios from "axios"; const instance = axios.create({ baseURL: "http://httpbin.org/", proxy: { protocol: "http", host: "127.0.0.1", port: 8892, }, }); try { const resp = await instance.get("/get"); console.log("success", resp.config); } catch (e) { console.log(e); } ``` For convenience, I use Axios as demo, and related code is [here](https://github.com/axios/axios/blob/bad6d8b97b52c0c15311c92dd596fc0bff122651/lib/adapters/http.js#L464C11-L464C28). When I add a patch `options.path = new URL(options.path).pathname;`, it becomes correct. This demo requires a http proxy running at port 8892 (such as Fiddler or mitmproxy). In Node.JS, it can get `http://httpbin.org/get` correctly. In Deno, it gets a 404, while Fiddler shows it is requesting `http://httpbin.org/http://httpbin.org/get`
node compat
low
Minor
2,791,680,095
electron
When using BrowserWindow to load a URL in Electron 33.2.1 and performing video encoding/decoding with WebCodec on the page, I encountered an issue where the GPU memory usage is unstable. The issue manifests differently on different GPU configurations:
### Preflight Checklist - [x] I have read the [Contributing Guidelines](https://github.com/electron/electron/blob/main/CONTRIBUTING.md) for this project. - [x] I agree to follow the [Code of Conduct](https://github.com/electron/electron/blob/main/CODE_OF_CONDUCT.md) that this project adheres to. - [x] I have searched the [issue tracker](https://www.github.com/electron/electron/issues) for a bug report that matches the one I want to file, without success. ### Electron Version 33.2.1 ### What operating system(s) are you using? Windows ### Operating System Version window11 ### What arch are you using? x64 ### Last Known Working Electron version _No response_ ### Expected Behavior When using BrowserWindow to load a URL in Electron 33.2.1 and performing video encoding/decoding with WebCodec on the page, I encountered an issue where the GPU memory usage is unstable. The issue manifests differently on different GPU configurations: Intel(R) Iris(R) Xe Graphics: In Windows Task Manager, the GPU memory usage fluctuates significantly and eventually fills up. This results in video stuttering, black screens, and other issues on the page. ![Image](https://github.com/user-attachments/assets/2eddd457-9755-4729-ab99-e757dd366ad5) NVIDIA GeForce GTX 1050 Ti: In Windows Task Manager, the GPU memory usage remains stable, with minimal fluctuations. The video plays smoothly on the page without stuttering or black screens. I have already added some parameters when starting Electron, but there has been no noticeable improvement. ![Image](https://github.com/user-attachments/assets/f6e38134-f480-4a22-a33a-38986f4996fe) ``` app.commandLine.appendSwitch('use-gl', 'angle'); app.commandLine.appendSwitch('use-angle', 'gl-egl'); app.commandLine.appendSwitch('enable-features', 'VaapiVideoDecoder'); app.commandLine.appendSwitch('enable-features', 'PlatformAudioEncoder'); ``` ### Actual Behavior Is it possible to add configuration or startup parameters that can stabilize the GPU memory usage on Intel(R) Iris(R) Xe Graphics, similar to how it behaves on the NVIDIA GeForce GTX 1050 Ti, to prevent video playback issues such as stuttering and black screens? ### Testcase Gist URL _No response_ ### Additional Information _No response_
platform/windows,bug :beetle:,blocked/need-repro,33-x-y
low
Critical
2,791,685,474
vscode
Need case sensitive instance window switching
<!-- ⚠️⚠️ Do Not Delete This! bug_report_template ⚠️⚠️ --> <!-- Please read our Rules of Conduct: https://opensource.microsoft.com/codeofconduct/ --> <!-- 🕮 Read our guide about submitting issues: https://github.com/microsoft/vscode/wiki/Submitting-Bugs-and-Suggestions --> <!-- 🔎 Search existing issues to avoid creating duplicates. --> <!-- 🧪 Test using the latest Insiders build to see if your issue has already been fixed: https://code.visualstudio.com/insiders/ --> <!-- 💡 Instead of creating your report here, use 'Report Issue' from the 'Help' menu in VS Code to pre-fill useful information. --> <!-- 🔧 Launch with `code --disable-extensions` to check. --> Does this issue occur when all extensions are disabled?: Yes <!-- 🪓 If you answered No above, use 'Help: Start Extension Bisect' from Command Palette to try to identify the cause. --> <!-- 📣 Issues caused by an extension need to be reported directly to the extension publisher. The 'Help > Report Issue' dialog can assist with this. --> - VS Code Version: 1.96.3 - OS Version: macOS 15.2 Steps to Reproduce: 1. Remote SSH to a linux server which supports case-sensitive file paths 2. Create and open a remote folder named `~/Workspaces/Project1` 3. Create and open a remote folder named `~/Workspaces/project1`, then VSCode switch to `Project1` instead of opening a new window for `project1`. In this case, I think it should open a new window for `project1` rather than regarding it as the same with `Project1`. Not sure if this happens locally on a linux system.
feature-request,remote,ssh
low
Critical
2,791,731,891
pytorch
[RFC] Add CPP INT8 SDPA Template for Inductor CPU
### 🚀 The feature, motivation and pitch ## Motivation PyTorch Template is now a common method to implement the target kernel with high flexibility. We are considering to implement the Int8 SDPA CPU kernel by using template in PyTorch. With the method, the kernel code is generated from the corresponding template during compiling, and no explicit new OP needs to be added. In the future, by taking advantage of the template, it would also be more flexible to tune the optimized kernel with different parallel strategies or block sizes through benchmarking. This RFC proposes the approaches to implement the template-based method. ## Approaches We propose a template-based method to implement the Int8 SDPA CPU kernel. Here are the design for the main components. ### Pattern Match During the post grad fusion pass, we register a lowering pattern for Int8 SDPA. If the corresponding pattern hits, it can be replaced by `int8_sdpa_lowering` lowering function, which then further lowerings into the template. ### CPP INT8 SDPA Template We create a CPP Int8 SDPA template `CppInt8SdpaTemplate` by inheriting the CPP flex attention template `CppFlexAttentionTemplate`. We tend to reuse the common parts in flex attention template as much as possible. Note that the CPP Int8 SDPA template does not need the modification-related inputs or member functions, as Int8 SDPA only needs the default one, simply adding the attention mask, for now. #### Inputs - Besides the SDPA typical inputs like query/key/value, extra zero points and scales need to be added for the quantization case. - The `score_mod` and `mask_mod` are not needed. #### Member functions - The functions `add_choices` and `render` are overridden to support the int8 specific case. - A new function `select_strategy` is added to generate the kernel with various parallel loop strategies or block sizes, according to the heuristic method given device info and input shapes. - The modification-related functions like `apply_score_mod` are not needed. #### Template codes - Reuses the common codes in flex attention one. - Adds more specific functions for data type int8, such as compensation functions. ### Alternatives _No response_ ### Additional context _No response_ cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
triaged,oncall: pt2,module: inductor
low
Minor
2,791,764,232
react-native
Dynamic styles with StyleSheet get an type error?
### Description It's work with this approach: ```js import React from 'react'; import { StyleSheet, Text, View, } from 'react-native'; function App(): React.JSX.Element { return ( <View style={styles.dynamicStyle(100)} > <Text>Hello</Text> </View> ); } const styles = StyleSheet.create({ dynamicStyle: (value: number) => ({ height: value, }), }); export default App; ``` I got this TypeScript error ``` This expression is not callable. No constituent of type 'ViewStyle | TextStyle | ImageStyle' is callable ``` ### Steps to reproduce 1. Git clone https://github.com/tiavina-mika/dynamic-styling-types-issue 2. run `npm install` 3. Open `App.tsx` file 4. See the error in the editor ### React Native Version 0.76.6 ### Affected Platforms Runtime - Web, Runtime - Android, Runtime - iOS, Runtime - Desktop, Build - MacOS, Build - Windows, Build - Linux ### Output of `npx react-native info` ```text System: OS: Windows 10 10.0.19045 CPU: (8) x64 Intel(R) Core(TM) i7-4710HQ CPU @ 2.50GHz Memory: 6.80 GB / 15.95 GB Binaries: Node: version: 20.16.0 path: C:\Program Files\nodejs\node.EXE Yarn: version: 1.22.22 path: C:\Program Files\nodejs\yarn.CMD npm: version: 10.8.1 path: C:\Program Files\nodejs\npm.CMD Watchman: version: 20210110.135312.0 path: C:\ProgramData\chocolatey\bin\watchman.EXE SDKs: Android SDK: Not Found Windows SDK: Not Found IDEs: Android Studio: Version 2020.3.0.0 AI-203.7717.56.2031.7935034 Visual Studio: Not Found Languages: Java: version: 1.8.0-262 path: /c/Program Files/OpenJDK/jdk-8.0.262.10-hotspot/bin/javac Ruby: Not Found npmPackages: "@react-native-community/cli": installed: 15.0.1 wanted: 15.0.1 react: installed: 18.3.1 wanted: 18.3.1 react-native: installed: 0.76.6 wanted: 0.76.6 react-native-windows: Not Found npmGlobalPackages: "*react-native*": Not Found Android: hermesEnabled: true new ``` ### Stacktrace or Logs ```text [{ "resource": "/E:Demos/dynamic-styling-types-issue/ReproducerApp/App.tsx", "owner": "typescript", "code": "2349", "severity": 8, "message": "This expression is not callable.\n No constituent of type 'ViewStyle | TextStyle | ImageStyle' is callable.", "source": "ts", "startLineNumber": 11, "startColumn": 23, "endLineNumber": 11, "endColumn": 35 },{ "resource": "/E:/Demos/dynamic-styling-types-issue/ReproducerApp/App.tsx", "owner": "typescript", "code": "2322", "severity": 8, "message": "Type '(value: number) => { height: number; }' is not assignable to type 'ViewStyle | TextStyle | ImageStyle'.", "source": "ts", "startLineNumber": 19, "startColumn": 17, "endLineNumber": 21, "endColumn": 5, "relatedInformation": [ { "startLineNumber": 19, "startColumn": 17, "endLineNumber": 21, "endColumn": 5, "message": "Did you mean to call this expression?", "resource": "/E:dynamic-styling-types-issue/ReproducerApp/App.tsx" } ] }] ``` ### Reproducer https://github.com/tiavina-mika/dynamic-styling-types-issue ### Screenshots and Videos ![Image](https://github.com/user-attachments/assets/16017179-7ef5-4b33-b238-2ed38e1e49a8)
Needs: Author Feedback
low
Critical
2,791,764,759
ant-design
tabs组件当type不为默认值line时,拖拽移动卡顿
### Reproduction link [https://ant-design.antgroup.com/components/tabs-cn#tabs-demo-custom-tab-bar-node](https://ant-design.antgroup.com/components/tabs-cn#tabs-demo-custom-tab-bar-node) ### Steps to reproduce https://ant-design.antgroup.com/components/tabs-cn#tabs-demo-custom-tab-bar-node 官方拖拽demo,只需要增加type不为line,即可复现 ### What is expected? 拖拽没有延迟感 ### What is actually happening? 拖拽没有延迟感 | Environment | Info | | --- | --- | | antd | 5.23.1 | | React | react | | System | mac | | Browser | 谷歌 | <!-- generated by ant-design-issue-helper. DO NOT REMOVE -->
unconfirmed
low
Minor
2,791,767,013
ui
[feat]: Date Picker not have flexible like HTML Date Picker
### Feature description They are unable to select different years or months, which is complex; this feature must be added. ### Affected component/components Date Picker ### Additional Context N/A ### Before submitting - [X] I've made research efforts and searched the documentation - [X] I've searched for existing issues and PRs
area: request
low
Minor
2,791,768,149
deno
Bug(deno): astro build error - Buffer is not defined
Version: Deno 2.1.4 --- I'm using the **deno** runtime with starlight, and _after upgrading_ to **astro 5** I've started getting build errors when using **starlight-openapi**. ``` 16:26:50 ▶ starlight-openapi/components/Route.astro 16:26:50 ├─ /api/pokeapi/index.htmlBuffer is not defined ``` ### To Reproduce 1. clone https://github.com/Indyandie/lucero/tree/build-bug-2025-01-03 1. run `deno install --allow-scripts` 1. run `deno task build` ### System Info - NixOS - deno 2.1.4 - astro 5.1.7 Related: https://github.com/HiDeoo/starlight-openapi/issues/61
needs investigation,node compat
low
Critical
2,791,823,016
react
Issue while migrating from 18.2.0 to 19.0.0
I am migrating React 18.2.0 to 19.0.0. I first updated it to 18.3.1 as it was recommended and faced no issues on UI so far. I updated all the required dependencies and installed react and react-dom 19.0.0. but when I am trying to proceed next with migration recipe. I am facing below error. My proxies are properly set as I am able to install all the other packages from NPM. ``$ npx codemod@latest react/19/migration-recipe ✖ Fetching "react/19/migration-recipe"... Error while fetching codemod react/19/migration-recipe: AxiosError: Request failed with status code 407`` How can I fix this ?
React 19
medium
Critical
2,791,837,465
pytorch
DISABLED test_aoti_eager_support_out_dynamic_shapes_cuda (__main__.DynamicShapesCodegenGPUTests)
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_aoti_eager_support_out_dynamic_shapes_cuda&suite=DynamicShapesCodegenGPUTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35694427297). Over the past 3 hours, it has been determined flaky in 7 workflow(s) with 7 failures and 7 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_aoti_eager_support_out_dynamic_shapes_cuda` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor.py", line 975, in test_aoti_eager_support_out res_tensor = torch.clamp( RuntimeError: create_func_( &container_handle_, num_models, device_str.c_str(), cubin_dir.empty() ? nullptr : cubin_dir.c_str()) API call failed at /var/lib/jenkins/workspace/torch/csrc/inductor/aoti_runner/model_container_runner.cpp, line 81 To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_torchinductor_codegen_dynamic_shapes.py DynamicShapesCodegenGPUTests.test_aoti_eager_support_out_dynamic_shapes_cuda This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_codegen_dynamic_shapes.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
module: rocm,triaged,module: flaky-tests,skipped,oncall: pt2,module: inductor
low
Critical
2,791,837,550
pytorch
DISABLED test_dropout_dynamic_shapes_cuda (__main__.DynamicShapesGPUTests)
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_dropout_dynamic_shapes_cuda&suite=DynamicShapesGPUTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35694427782). Over the past 3 hours, it has been determined flaky in 7 workflow(s) with 7 failures and 7 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_dropout_dynamic_shapes_cuda` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor.py", line 8288, in test_dropout result1 = fn1(x) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 576, in _fn return fn(*args, **kwargs) File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor.py", line 8283, in fn1 @torch.compile(backend="inductor") File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 755, in _fn return fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1211, in forward return compiled_fn(full_args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 322, in runtime_wrapper all_outs = call_func_at_runtime_with_args( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/utils.py", line 126, in call_func_at_runtime_with_args out = normalize_as_list(f(args)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 671, in inner_fn outs = compiled_fn(args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 489, in wrapper return compiled_fn(runtime_args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/output_code.py", line 464, in __call__ return self.current_callable(inputs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1228, in run return compiled_fn(new_inputs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py", line 397, in deferred_cudagraphify fn, out = cudagraphify(model, inputs, new_static_input_idxs, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py", line 427, in cudagraphify return manager.add_function( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py", line 2255, in add_function return fn, fn(inputs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py", line 1949, in run out = self._run(new_inputs, function_id) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py", line 2057, in _run out = self.run_eager(new_inputs, function_id) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py", line 2221, in run_eager return node.run(new_inputs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py", line 635, in run check_memory_pool(self.device_index, self.cuda_graphs_pool, refs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py", line 1754, in check_memory_pool if torch._C._cuda_checkPoolLiveAllocations(device, pool_id, unique_storages): MemoryError: std::bad_alloc To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_torchinductor_dynamic_shapes.py DynamicShapesGPUTests.test_dropout_dynamic_shapes_cuda This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_dynamic_shapes.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
module: rocm,triaged,module: flaky-tests,skipped,oncall: pt2,module: inductor
low
Critical
2,791,837,624
pytorch
DISABLED test_config_option_dont_assume_alignment_cudagraphs_dynamic_shapes_cuda (__main__.DynamicShapesGPUTests)
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_config_option_dont_assume_alignment_cudagraphs_dynamic_shapes_cuda&suite=DynamicShapesGPUTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35693621761). Over the past 3 hours, it has been determined flaky in 6 workflow(s) with 6 failures and 6 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_config_option_dont_assume_alignment_cudagraphs_dynamic_shapes_cuda` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor.py", line 11166, in test_config_option_dont_assume_alignment_cudagraphs res = fn_c(inp) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 576, in _fn return fn(*args, **kwargs) File "/var/lib/jenkins/pytorch/test/inductor/test_torchinductor.py", line 11143, in fn def fn(x): File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 755, in _fn return fn(*args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1211, in forward return compiled_fn(full_args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 309, in runtime_wrapper all_outs = call_func_at_runtime_with_args( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/utils.py", line 126, in call_func_at_runtime_with_args out = normalize_as_list(f(args)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/utils.py", line 100, in g return f(*args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/autograd/function.py", line 575, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 1823, in forward fw_outs = call_func_at_runtime_with_args( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/utils.py", line 126, in call_func_at_runtime_with_args out = normalize_as_list(f(args)) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 489, in wrapper return compiled_fn(runtime_args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_functorch/_aot_autograd/runtime_wrappers.py", line 671, in inner_fn outs = compiled_fn(args) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/output_code.py", line 464, in __call__ return self.current_callable(inputs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1228, in run return compiled_fn(new_inputs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py", line 397, in deferred_cudagraphify fn, out = cudagraphify(model, inputs, new_static_input_idxs, *args, **kwargs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py", line 427, in cudagraphify return manager.add_function( File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py", line 2255, in add_function return fn, fn(inputs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py", line 1949, in run out = self._run(new_inputs, function_id) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py", line 2057, in _run out = self.run_eager(new_inputs, function_id) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py", line 2221, in run_eager return node.run(new_inputs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py", line 635, in run check_memory_pool(self.device_index, self.cuda_graphs_pool, refs) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/_inductor/cudagraph_trees.py", line 1754, in check_memory_pool if torch._C._cuda_checkPoolLiveAllocations(device, pool_id, unique_storages): MemoryError: std::bad_alloc To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/inductor/test_torchinductor_dynamic_shapes.py DynamicShapesGPUTests.test_config_option_dont_assume_alignment_cudagraphs_dynamic_shapes_cuda This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `inductor/test_torchinductor_dynamic_shapes.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
module: rocm,triaged,module: flaky-tests,skipped,oncall: pt2,module: inductor
low
Critical
2,791,840,158
PowerToys
未能初始化插件:Everything
### Microsoft PowerToys version 0.86.0 ### Installation method PowerToys auto-update ### Running as admin Yes ### Area(s) with issue? PowerToys Run ### Steps to reproduce [PowerToysReport_2025-01-16-14-24-13.zip](https://github.com/user-attachments/files/18434511/PowerToysReport_2025-01-16-14-24-13.zip) ### ✔️ Expected Behavior _No response_ ### ❌ Actual Behavior _No response_ ### Other Software _No response_
Issue-Bug,Needs-Triage
low
Minor
2,791,878,408
flutter
onPopInvokedWithResult is not working as expected.
### Steps to reproduce onPopInvokedWithResult behavior is different in android and IOS. after closing dilaog its not working like android ### Expected results unxpactedly pop is perform in ios after closing dilaog. flutter 3.24.0 ### Actual results onPopInvokedWithResult should work same as android ### Code sample <details open><summary>Code sample</summary> ```dart [Paste your code here] ``` </details> ### Screenshots or Video <details open> <summary>Screenshots / Video demonstration</summary> [Upload media here] </details> ### Logs <details open><summary>Logs</summary> ```console [Paste your logs here] ``` </details> ### Flutter Doctor output <details open><summary>Doctor output</summary> ```console [Paste your output here] ``` </details>
waiting for customer response,in triage
low
Minor
2,791,900,647
rust
ICE: `InvalidProgram(Layout(SizeOverflow`
<!-- ICE: Rustc ./a.rs '-Zmir-opt-level=5 -Zvalidate-mir -ooutputfile -Zdump-mir-dir=dir' 'thread 'rustc' panicked at compiler/rustc_const_eval/src/const_eval/valtrees.rs:375:77: 'called `Result::unwrap()` on an `Err` value: InvalidProgram(Layout(SizeOverflow([u8; 13554212585355425205_usize])))'', 'thread 'rustc' panicked at compiler/rustc_const_eval/src/const_eval/valtrees.rs:375:77: 'called `Result::unwrap()` on an `Err` value: InvalidProgram(Layout(SizeOverflow([u8; 13554212585355425205_usize])))'' File: /tmp/im/a.rs --> auto-reduced (treereduce-rust): ````rust //@compile-flags: -Zmir-opt-level=5 -Zvalidate-mir fn function_with_bytes<const BYTES: &'static [u8; 0xc7b889180b67b07d_bc1a3c88783d35b5_u128]>( ) -> &'static [u8] { BYTES } fn main() { function_with_bytes::<b"aa">() == &[]; } ```` original: ````rust fn function_with_bytes<const BYTES: &'static [u8; 0xc7b889180b67b07d_bc1a3c88783d35b5_u128]>() -> &'static [u8] { BYTES } fn main() { function_with_bytes::<b"aa">() == &[]; } ```` Version information ```` rustc 1.86.0-nightly (5cd16b7f2 2025-01-16) binary: rustc commit-hash: 5cd16b7f2bc3624f2d658aa87151279878d2652a commit-date: 2025-01-16 host: x86_64-unknown-linux-gnu release: 1.86.0-nightly LLVM version: 19.1.6 ```` Possibly related line of code: https://github.com/rust-lang/rust/blob/5cd16b7f2bc3624f2d658aa87151279878d2652a/compiler/rustc_const_eval/src/const_eval/valtrees.rs#L369-L381 Command: `/home/matthias/.rustup/toolchains/master/bin/rustc -Zmir-opt-level=5 -Zvalidate-mir` <details><summary><strong>Program output</strong></summary> <p> ``` error: `&'static [u8; 13554212585355425205]` is forbidden as the type of a const generic parameter --> /tmp/icemaker_global_tempdir.FIw1XfCIbDrc/rustc_testrunner_tmpdir_reporting.ijfwCzlkhntL/mvce.rs:1:37 | 1 | fn function_with_bytes<const BYTES: &'static [u8; 0xc7b889180b67b07d_bc1a3c88783d35b5_u128]>( | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | = note: the only supported types are integers, `bool`, and `char` help: add `#![feature(adt_const_params)]` to the crate attributes to enable more complex and user defined types | 1 + #![feature(adt_const_params)] | help: add `#![feature(unsized_const_params)]` to the crate attributes to enable references to implement the `ConstParamTy` trait | 1 + #![feature(unsized_const_params)] | error[E0308]: mismatched types --> /tmp/icemaker_global_tempdir.FIw1XfCIbDrc/rustc_testrunner_tmpdir_reporting.ijfwCzlkhntL/mvce.rs:1:51 | 1 | fn function_with_bytes<const BYTES: &'static [u8; 0xc7b889180b67b07d_bc1a3c88783d35b5_u128]>( | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ expected `usize`, found `u128` | help: change the type of the numeric literal from `u128` to `usize` | 1 | fn function_with_bytes<const BYTES: &'static [u8; 0xc7b889180b67b07d_bc1a3c88783d35b5_usize]>( | ~~~~~ error[E0308]: mismatched types --> /tmp/icemaker_global_tempdir.FIw1XfCIbDrc/rustc_testrunner_tmpdir_reporting.ijfwCzlkhntL/mvce.rs:7:27 | 7 | function_with_bytes::<b"aa">() == &[]; | ^^^^^ expected an array with a size of 13554212585355425205, found one with a size of 2 thread 'rustc' panicked at compiler/rustc_const_eval/src/const_eval/valtrees.rs:375:77: called `Result::unwrap()` on an `Err` value: InvalidProgram(Layout(SizeOverflow([u8; 13554212585355425205_usize]))) stack backtrace: 0: 0x7e0bedef66aa - <std::sys::backtrace::BacktraceLock::print::DisplayBacktrace as core::fmt::Display>::fmt::h0e5f1585bfffb19f 1: 0x7e0bee612da6 - core::fmt::write::hb4406e0cc18cab0a 2: 0x7e0bef57f451 - std::io::Write::write_fmt::hbfb92718103b7507 3: 0x7e0bedef6502 - std::sys::backtrace::BacktraceLock::print::he782f6d80c255a43 4: 0x7e0bedef8982 - std::panicking::default_hook::{{closure}}::h7927be4c4a7836a0 5: 0x7e0bedef880a - std::panicking::default_hook::hce8a4e7a77e5c861 6: 0x7e0bed059a3b - std[5eed3342ae415129]::panicking::update_hook::<alloc[d9cc840343b62059]::boxed::Box<rustc_driver_impl[d6b89c31630ac8e2]::install_ice_hook::{closure#1}>>::{closure#0} 7: 0x7e0bedef9503 - std::panicking::rust_panic_with_hook::hc6e72cdac3b94dca 8: 0x7e0bedef91fa - std::panicking::begin_panic_handler::{{closure}}::h7f7a407352c9fced 9: 0x7e0bedef6b89 - std::sys::backtrace::__rust_end_short_backtrace::h7f36a8d1fa9d1d9e 10: 0x7e0bedef8ebd - rust_begin_unwind 11: 0x7e0beaba6950 - core::panicking::panic_fmt::hca9dd5375a399d1d 12: 0x7e0beb0ce966 - core::result::unwrap_failed::hb1947dc54d635233 13: 0x7e0beee8b97f - rustc_const_eval[d8aeece37abbbffc]::const_eval::valtrees::valtree_to_ref 14: 0x7e0bef1630f9 - rustc_const_eval[d8aeece37abbbffc]::const_eval::valtrees::valtree_to_const_value 15: 0x7e0bef162eb6 - <rustc_const_eval[d8aeece37abbbffc]::provide::{closure#1} as core[ced015e6fc2a4da0]::ops::function::FnOnce<(rustc_middle[7623bb75c8b82ad6]::ty::context::TyCtxt, (rustc_middle[7623bb75c8b82ad6]::ty::Ty, rustc_middle[7623bb75c8b82ad6]::ty::consts::valtree::ValTree))>>::call_once 16: 0x7e0bef162e72 - rustc_query_impl[22732cf2fa73812a]::plumbing::__rust_begin_short_backtrace::<rustc_query_impl[22732cf2fa73812a]::query_impl::valtree_to_const_val::dynamic_query::{closure#2}::{closure#0}, rustc_middle[7623bb75c8b82ad6]::query::erase::Erased<[u8; 24usize]>> 17: 0x7e0bef162e3b - <rustc_query_impl[22732cf2fa73812a]::query_impl::valtree_to_const_val::dynamic_query::{closure#2} as core[ced015e6fc2a4da0]::ops::function::FnOnce<(rustc_middle[7623bb75c8b82ad6]::ty::context::TyCtxt, (rustc_middle[7623bb75c8b82ad6]::ty::Ty, rustc_middle[7623bb75c8b82ad6]::ty::consts::valtree::ValTree))>>::call_once 18: 0x7e0bef162009 - rustc_query_system[ce3a0679b26f255f]::query::plumbing::try_execute_query::<rustc_query_impl[22732cf2fa73812a]::DynamicConfig<rustc_query_system[ce3a0679b26f255f]::query::caches::DefaultCache<(rustc_middle[7623bb75c8b82ad6]::ty::Ty, rustc_middle[7623bb75c8b82ad6]::ty::consts::valtree::ValTree), rustc_middle[7623bb75c8b82ad6]::query::erase::Erased<[u8; 24usize]>>, false, false, false>, rustc_query_impl[22732cf2fa73812a]::plumbing::QueryCtxt, false> 19: 0x7e0bef161d45 - rustc_query_impl[22732cf2fa73812a]::query_impl::valtree_to_const_val::get_query_non_incr::__rust_end_short_backtrace 20: 0x7e0bef127767 - <rustc_mir_transform[1ba400a67d95abf]::gvn::VnState>::insert 21: 0x7e0bef11e34b - <rustc_mir_transform[1ba400a67d95abf]::gvn::VnState>::simplify_operand 22: 0x7e0bef11fe90 - <rustc_mir_transform[1ba400a67d95abf]::gvn::VnState>::simplify_rvalue 23: 0x7e0bec203dd6 - <rustc_mir_transform[1ba400a67d95abf]::gvn::GVN as rustc_mir_transform[1ba400a67d95abf]::pass_manager::MirPass>::run_pass 24: 0x7e0bee6046f3 - rustc_mir_transform[1ba400a67d95abf]::pass_manager::run_passes_inner 25: 0x7e0bee731b74 - rustc_mir_transform[1ba400a67d95abf]::optimized_mir 26: 0x7e0bee73141d - rustc_query_impl[22732cf2fa73812a]::plumbing::__rust_begin_short_backtrace::<rustc_query_impl[22732cf2fa73812a]::query_impl::optimized_mir::dynamic_query::{closure#2}::{closure#0}, rustc_middle[7623bb75c8b82ad6]::query::erase::Erased<[u8; 8usize]>> 27: 0x7e0bee8d30df - rustc_query_system[ce3a0679b26f255f]::query::plumbing::try_execute_query::<rustc_query_impl[22732cf2fa73812a]::DynamicConfig<rustc_query_system[ce3a0679b26f255f]::query::caches::DefIdCache<rustc_middle[7623bb75c8b82ad6]::query::erase::Erased<[u8; 8usize]>>, false, false, false>, rustc_query_impl[22732cf2fa73812a]::plumbing::QueryCtxt, false> 28: 0x7e0bee8d24f3 - rustc_query_impl[22732cf2fa73812a]::query_impl::optimized_mir::get_query_non_incr::__rust_end_short_backtrace 29: 0x7e0beb71a024 - <rustc_middle[7623bb75c8b82ad6]::ty::context::TyCtxt>::instance_mir 30: 0x7e0bee917792 - rustc_interface[8d12bef601c5487]::passes::run_required_analyses 31: 0x7e0bef57ac5e - rustc_interface[8d12bef601c5487]::passes::analysis 32: 0x7e0bef57ac2f - rustc_query_impl[22732cf2fa73812a]::plumbing::__rust_begin_short_backtrace::<rustc_query_impl[22732cf2fa73812a]::query_impl::analysis::dynamic_query::{closure#2}::{closure#0}, rustc_middle[7623bb75c8b82ad6]::query::erase::Erased<[u8; 0usize]>> 33: 0x7e0bef5dc2d5 - rustc_query_system[ce3a0679b26f255f]::query::plumbing::try_execute_query::<rustc_query_impl[22732cf2fa73812a]::DynamicConfig<rustc_query_system[ce3a0679b26f255f]::query::caches::SingleCache<rustc_middle[7623bb75c8b82ad6]::query::erase::Erased<[u8; 0usize]>>, false, false, false>, rustc_query_impl[22732cf2fa73812a]::plumbing::QueryCtxt, false> 34: 0x7e0bef5dc00e - rustc_query_impl[22732cf2fa73812a]::query_impl::analysis::get_query_non_incr::__rust_end_short_backtrace 35: 0x7e0bef637fa9 - rustc_interface[8d12bef601c5487]::passes::create_and_enter_global_ctxt::<core[ced015e6fc2a4da0]::option::Option<rustc_interface[8d12bef601c5487]::queries::Linker>, rustc_driver_impl[d6b89c31630ac8e2]::run_compiler::{closure#0}::{closure#2}>::{closure#2}::{closure#0} 36: 0x7e0bef62b1d6 - rustc_interface[8d12bef601c5487]::interface::run_compiler::<(), rustc_driver_impl[d6b89c31630ac8e2]::run_compiler::{closure#0}>::{closure#1} 37: 0x7e0bef479ec7 - std[5eed3342ae415129]::sys::backtrace::__rust_begin_short_backtrace::<rustc_interface[8d12bef601c5487]::util::run_in_thread_with_globals<rustc_interface[8d12bef601c5487]::util::run_in_thread_pool_with_globals<rustc_interface[8d12bef601c5487]::interface::run_compiler<(), rustc_driver_impl[d6b89c31630ac8e2]::run_compiler::{closure#0}>::{closure#1}, ()>::{closure#0}, ()>::{closure#0}::{closure#0}, ()> 38: 0x7e0bef479b99 - <<std[5eed3342ae415129]::thread::Builder>::spawn_unchecked_<rustc_interface[8d12bef601c5487]::util::run_in_thread_with_globals<rustc_interface[8d12bef601c5487]::util::run_in_thread_pool_with_globals<rustc_interface[8d12bef601c5487]::interface::run_compiler<(), rustc_driver_impl[d6b89c31630ac8e2]::run_compiler::{closure#0}>::{closure#1}, ()>::{closure#0}, ()>::{closure#0}::{closure#0}, ()>::{closure#1} as core[ced015e6fc2a4da0]::ops::function::FnOnce<()>>::call_once::{shim:vtable#0} 39: 0x7e0bef47932f - std::sys::pal::unix::thread::Thread::new::thread_start::h6a23afa4b51367f7 40: 0x7e0be98a339d - <unknown> 41: 0x7e0be992849c - <unknown> 42: 0x0 - <unknown> error: the compiler unexpectedly panicked. this is a bug. note: we would appreciate a bug report: https://github.com/rust-lang/rust/issues/new?labels=C-bug%2C+I-ICE%2C+T-compiler&template=ice.md note: please make sure that you have updated to the latest nightly note: rustc 1.86.0-nightly (5cd16b7f2 2025-01-16) running on x86_64-unknown-linux-gnu note: compiler flags: -Z mir-opt-level=5 -Z validate-mir -Z dump-mir-dir=dir query stack during panic: #0 [valtree_to_const_val] converting type-level constant value to mir constant value #1 [optimized_mir] optimizing MIR for `main` #2 [analysis] running analysis passes on this crate end of query stack error: aborting due to 3 previous errors For more information about this error, try `rustc --explain E0308`. ``` </p> </details> <!-- query stack: #0 [valtree_to_const_val] converting type-level constant value to mir constant value #1 [optimized_mir] optimizing MIR for `main` #2 [analysis] running analysis passes on this crate -->
I-ICE,T-compiler,C-bug,needs-triage
low
Critical
2,791,904,332
vscode
Missing padding to the last element in the installed extensions
Missing padding to the last element in the installed extensions see the highlighted item scroll is at the bottom but the settings and trust icons are getting a slightly overlapped over the border of the element and looks like last element missed the padding ![Image](https://github.com/user-attachments/assets/fd50ed7b-0020-4d40-8597-eb867c85a220) //edit I think the item is getting overlapped over the 'Recommended' submenu ![Image](https://github.com/user-attachments/assets/eff21dd4-0701-44d5-921f-1b83ef397282) ![Image](https://github.com/user-attachments/assets/c9ff1410-25ed-40e8-94b3-b9f21f4a95c4) cc @sandy081 Version: 1.96.3 (user setup) Commit: 91fbdddc47bc9c09064bf7acf133d22631cbf083 Date: 2025-01-09T18:14:09.060Z Electron: 32.2.6 ElectronBuildId: 10629634 Chromium: 128.0.6613.186 Node.js: 20.18.1 V8: 12.8.374.38-electron.0 OS: Windows_NT x64 10.0.22621
polish,extensions
low
Minor
2,791,909,989
PowerToys
Powertoys setting did not show after installation
### Microsoft PowerToys version v0.87.1 ### Installation method GitHub ### Running as admin Yes ### Area(s) with issue? General ### Steps to reproduce I tried installed and reinstalled Powertoys by Github and Store, also running it as administrator. The icon shows on the icon tray but I can only hover on it to see its version but left mouse click, double click, drag or right mouse click did not work. I also tried to restart my pc but it did not work either. Another issue is when I tried to open the Powertoys app via start menu but nothing happened and my keyboard input become laggy in all apps (delay 3s) for about 1 minute. ### ✔️ Expected Behavior The Powertoys app show and I can modify its setting ### ❌ Actual Behavior Nothing has shown up and it made my keyboard input laggy ### Other Software _No response_
Issue-Bug,Needs-Triage
low
Major
2,791,925,497
tensorflow
tf.config.LogicalDeviceConfiguration() not able to set the memory limit but tf.config.experimental.VirtualDeviceConfiguration() is able to
### Issue type Bug ### Have you reproduced the bug with TensorFlow Nightly? No ### Source source ### TensorFlow version 2.17.0 ### Custom code Yes ### OS platform and distribution Ubuntu 22.04.4 LTS ### Mobile device _No response_ ### Python version 3.10.12 ### Bazel version _No response_ ### GCC/compiler version _No response_ ### CUDA/cuDNN version 12.2 ### GPU model and memory RTX A5000 24Gb ### Current behavior? I was trying to set the memory limit of 10Gb on the virtual device using tf.config.LogicalDeviceConfiguration(), but when I trained the model it was taking way more than 10Gb of memory. Eventually I was able to set the memory limit using tf.config.experimental.VirtualDeviceConfiguration() but I'm not sure why ### Standalone code to reproduce the issue ```shell # this was not able to set the memory limit gpus = tf.config.list_physical_devices('GPU') if gpus: try: tf.config.set_visible_devices(gpus[0], 'GPU') tf.config.set_logical_device_configuration(gpus[0], [tf.config.LogicalDeviceConfiguration(memory_limit=10*1024)]) logical_gpus = tf.config.list_logical_devices('GPU') except RuntimeError as e: print(e) # this was able to set the memory limit gpus = tf.config.list_physical_devices('GPU') if gpus: try: tf.config.experimental.set_virtual_device_configuration( gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=10*1024)] ) except RuntimeError as e: print(e) ``` ### Relevant log output ```shell ```
stat:awaiting response,type:bug,2.17
medium
Critical
2,791,928,844
flutter
error
### Steps to reproduce The following assertion was thrown during a platform message callback: ``` A KeyDownEvent is dispatched, but the state shows that the physical key is already pressed. If this occurs in real application, please report this bug to Flutter. If this occurs in unit tests, please ensure that simulated events follow Flutter's event model as documented in `HardwareKeyboard`. This was the event: KeyDownEvent#25b14(physicalKey: PhysicalKeyboardKey#ea6e1(usbHidUsage: "0x000700e0", debugName: "Control Left"), logicalKey: LogicalKeyboardKey#30261(keyId: "0x1100000000", keyLabel: "", debugName: "Key with ID 0x01100000000"), character: null, timeStamp: 0:03:15.533244) 'package:flutter/src/services/hardware_keyboard.dart': Failed assertion: line 505 pos 16: '!_pressedKeys.containsKey(event.physicalKey)' ``` error.Log when i use flutter_pickers alway show this error ,please help me to reslove this bug ### Expected results show normal log and never show this ### Actual results show normal log and never show this ### Code sample <details open><summary>Code sample</summary> ```dart [Paste your code here] void _selectBirthday(BuildContext context) { // FocusScope.of(context).unfocus(); Pickers.showDatePicker( context, onConfirm: (PDuration p) { DateTime selectedDate = DateTime(p.year!, p.month!, p.day!); setState(() { _selectedBirthday = selectedDate; _birthdayString = formatDate(_selectedBirthday); }); }, mode: DateMode.YMD, suffix: Suffix(years: '年', month: '月', days: '日'), selectDate: PDuration(year: _selectedBirthday.year, month: _selectedBirthday.month, day: _selectedBirthday.day), pickerStyle: DefaultPickerStyle(), ); } ``` </details> ### Screenshots or Video <details open> <summary>Screenshots / Video demonstration</summary> [Upload media here] </details> ### Logs <details open><summary>Logs</summary> ```console [Paste your logs here] Either the assertion indicates an error in the framework itself, or we should provide substantially more information in this error message to help you determine and fix the underlying cause. In either case, please report this assertion by filing a bug on GitHub: https://github.com/flutter/flutter/issues/new?template=2_bug.yml When the exception was thrown, this was the stack: #2 HardwareKeyboard._assertEventIsRegular.<anonymous closure> (package:flutter/src/services/hardware_keyboard.dart:505:16) #3 HardwareKeyboard._assertEventIsRegular (package:flutter/src/services/hardware_keyboard.dart:520:6) #4 HardwareKeyboard.handleKeyEvent (package:flutter/src/services/hardware_keyboard.dart:643:5) #5 KeyEventManager.handleRawKeyMessage (package:flutter/src/services/hardware_keyboard.dart:1164:37) #6 BasicMessageChannel.setMessageHandler.<anonymous closure> (package:flutter/src/services/platform_channel.dart:235:49) #7 _DefaultBinaryMessenger.setMessageHandler.<anonymous closure> (package:flutter/src/services/binding.dart:581:35) #8 _invoke2 (dart:ui/hooks.dart:344:13) #9 _ChannelCallbackRecord.invoke (dart:ui/channel_buffers.dart:45:5) #10 _Channel.push (dart:ui/channel_buffers.dart:135:31) #11 ChannelBuffers.push (dart:ui/channel_buffers.dart:343:17) #12 PlatformDispatcher._dispatchPlatformMessage (dart:ui/platform_dispatcher.dart:750:22) #13 _dispatchPlatformMessage (dart:ui/hooks.dart:257:31) (elided 2 frames from class _AssertionError) ``` </details> ### Flutter Doctor output <details open><summary>Doctor output</summary> ```console [Paste your output here] ``` </details>
waiting for customer response,in triage
low
Critical
2,791,976,002
PowerToys
Mouse Without Borders no longer works since a Windows update
### Microsoft PowerToys version 0.87.1 ### Installation method Microsoft Store ### Running as admin No ### Area(s) with issue? Mouse Without Borders ### Steps to reproduce After installing the updates below, the "Mouse Without Borders" function can no longer establish the connection between two computers. I made a new key without success. Windows 11 entreprise 23H2 : 2025-01 Mise à jour cumulative pour Windows 11 Version 23H2 pour les systèmes x64 (KB5050021) 2025-01 Mise à jour cumulative pour .NET Framework 3.5 pour et 4.8.1 pour Windows 11, version 23H2 pour les systèmes x64 (KB5049624) Mise à jour de la configuration de Windows (KB5035942) ### ✔️ Expected Behavior _No response_ ### ❌ Actual Behavior _No response_ ### Other Software _No response_
Issue-Bug,Needs-Triage
low
Minor
2,791,979,110
flutter
When running the official Flutter demo on Windows, no components are displayed. However, it can be displayed normally on Chrome.
### Steps to reproduce <!-- Uploading "image.png"... --> ### Actual results running the official Flutter demo on Windows, no components are displayed. However, it can be displayed normally on Chrome. ### Logs <details open> <summary>Logs</summary> ```console <!-- Paste your logs here --> ``` </details> ### Flutter Doctor output <details open> <summary>Doctor output</summary> ```console <!-- Paste your output here --> ``` </details>
waiting for customer response,in triage
low
Minor
2,791,982,267
ant-design
tabs有莫名其妙的蓝框
### Reproduction link [https://ant-design.antgroup.com/components/tabs-cn](https://ant-design.antgroup.com/components/tabs-cn) ### Steps to reproduce 就在官方文档tabs的页面,随便点几个tab切换一下,然后浏览器直接切换别的页面(不是跳转),然后就会出现蓝框 ### What is expected? 没有蓝框 ### What is actually happening? 有蓝框 | Environment | Info | | --- | --- | | antd | 5.23.1 | | React | 18.3.1 | | System | windos | | Browser | edge | <!-- generated by ant-design-issue-helper. DO NOT REMOVE -->
⌨️ Accessibility
low
Major
2,792,016,034
tauri
[bug] Backend Crashes when inside of GitHub Codespace
### Describe the bug When trying to run an application inside of GitHub Codespaces, the front end works fine with the port forward, however, because of the headless version, GTK/Tao crashes. I was wondering if there is a way to fix this? ### Reproduction 1. Open a repository in the GitHub Codespace 2. Run either `cargo tauri dev` or `npm run tauri dev` and see the backend crash ### Expected behavior To leave the front end (Vite) working as usual, and leave the backend GTK initialisation to if there is a found display. ### Full `tauri info` output ```text [✔] Environment - OS: Ubuntu 22.4.0 x86_64 (X64) (Unknown DE on Unknown Session) ✔ webkit2gtk-4.1: 2.46.5 ✔ rsvg2: 2.52.5 ✔ rustc: 1.84.0 (9fc6b4312 2025-01-07) ✔ cargo: 1.84.0 (66221abde 2024-11-19) ✔ rustup: 1.27.1 (54dd3d00f 2024-04-24) ✔ Rust toolchain: stable-x86_64-unknown-linux-gnu (environment override by RUSTUP_TOOLCHAIN) - node: 23.6.0 - npm: 10.9.2 [-] Packages - tauri 🦀: 2.2.2 - tauri-build 🦀: 2.0.5 - wry 🦀: 0.48.1 - tao 🦀: 0.31.1 - tauri-cli 🦀: 2.2.4 - @tauri-apps/api : 2.2.0 - @tauri-apps/cli : 2.2.4 [-] Plugins - tauri-plugin-opener 🦀: 2.2.4 - @tauri-apps/plugin-opener : 2.2.4 [-] App - build-type: bundle - CSP: unset - frontendDist: ../dist - devUrl: http://localhost:1420/ - framework: Vue.js - bundler: Vite ``` ### Stack trace ```text thread 'main' panicked at /home/vscode/.cargo/registry/src/index.crates.io-6f17d22bba15001f/tao-0.31.1/src/platform_impl/linux/event_loop.rs:212:53: Failed to initialize gtk backend!: BoolError { message: "Failed to initialize GTK", filename: "/home/vscode/.cargo/registry/src/index.crates.io-6f17d22bba15001f/gtk-0.18.2/src/rt.rs", function: "gtk::rt::init", line: 141 } note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace ``` ### Additional context Just so you know, Im not quite sure if this is a Tauri issue or a Tao issue for the window initialisation.
type: bug,status: needs triage
low
Critical
2,792,017,531
godot
Mutable properties of `Resource` reference declared as `const` are not read correctly in 4.3 and later
### Tested versions - Reproducible in: v4.4.dev7.mono.official [46c8f8c5c], v4.3.stable.mono.official [77dcf97d8] - Not reproducible in: v4.2.2.stable.mono.official [15073afe3] ### System information Godot v4.3.stable.mono - Windows 10.0.22631 - GLES3 (Compatibility) - NVIDIA GeForce RTX 4080 (NVIDIA; 32.0.15.6636) - AMD Ryzen 9 7950X3D 16-Core Processor (32 Threads) ### Issue description I have a custom resource like this: ```gdscript class_name TestResource extends Resource var _value:Vector3 var value:Vector3: get: return _value func update(value:Vector3): _value = value ``` Now I create such a resource using _Create_ > _New Resource ..._ > _TestResource_ and I name the file `my_test_resource.tres`. Now in a script I load this resource and call the `update` function: ```gdscript extends Node var _test_resource:TestResource func _ready(): _test_resource = load("res://my_test_resource.tres") func _process(delta): # call the update function every frame _test_resource.update(Vector3(Engine.get_process_frames(), 0, 0)) ``` Finally in a second script, I also load this resource and try to read back the updates: ```gdscript extends Node2D # load as a constant const my_resource_const:TestResource = preload("res://my_test_resource.tres") # load the same resource as a variable var my_resource_var:TestResource = preload("res://my_test_resource.tres") func _process(delta: float) -> void: print("Const: ", my_resource_const.value, " Var: ", my_resource_var.value) ``` I would expect the print to show the same values for `my_resource_const.value` and `my_resource_var.value` because both references point to the exact same resource object (and they in fact do, they have the same object ID). In Godot 4.2 this works fine. ![Image](https://github.com/user-attachments/assets/214277ec-8c8d-47b1-bc4c-0b415c461c15) However in Godot 4.3 or later the `my_resource_const.value` always prints `(0,0,0)` while the `my_resource_var.value` prints the up-to-date value: ![Image](https://github.com/user-attachments/assets/22db5293-c467-4e3d-bfb8-cd40b515e50f) My hypothesis is that this is caused by some kind of optimization that incorrectly caches the result of the call to the `value` property when the reference is declared as `const` ([here maybe?](https://github.com/godotengine/godot/blob/0726d3c7d5125d1a72ec318a2ec4ff11f9f7f8bb/modules/gdscript/gdscript_analyzer.cpp#L1996)). It is the same underlying object in both cases and the property value is actually changed (otherwise the reference delcared as `var` wouldn't update either). ### Steps to reproduce Open the attached example project in Godot 4.2, open `const_vs_var.tscn` and run the scene. You should see the expected output. Now open the same project in Godot 4.3 or 4.4dev7 and run the scene again. You should see that in these version the `value` property of the variable declared as `const` does not read the updated value correctly. ### Minimal reproduction project (MRP) [const_vs_var.zip](https://github.com/user-attachments/files/18435803/const_vs_var.zip)
bug,topic:gdscript
low
Minor
2,792,085,879
flutter
_debugRelayoutBoundaryAlreadyMarkedNeedsLayout() is not true with StatefulShellRoute
### Steps to reproduce 1. Launch the code sample in debug mode. 2. Tap "Go to Screen A" right away. There is a 3 seconds timer in the background, the button has to be tapped during this time frame. 3. The timer triggers rebuild of ScreenB while it exists in the background StatefulShellBranch. 4. ScreenB gets a new child widget after the build. ### Expected results The app keeps running normally. ### Actual results The app crashes. ### Code sample Flutter 3.27.2 go_router 14.6.3 <details open><summary>Code sample</summary> ```dart import 'dart:async'; import 'package:flutter/material.dart'; import 'package:go_router/go_router.dart'; void main() { runApp(const MyApp()); } class MyApp extends StatelessWidget { const MyApp({super.key}); @override Widget build(BuildContext context) { return MaterialApp.router( routerConfig: GoRouter( initialLocation: '/b/2', routes: [ StatefulShellRoute.indexedStack( branches: [ StatefulShellBranch(routes: [ GoRoute( path: '/a', builder: (context, state) => const ScreenA(), ), ]), StatefulShellBranch(routes: [ GoRoute( path: '/b', builder: (context, state) => const ScreenB(), routes: [ GoRoute( path: '2', builder: (context, state) => const ScreenB2(), ), ], ), ]), ], builder: (context, state, navigationShell) => navigationShell, ), ], ), ); } } class ScreenA extends StatelessWidget { const ScreenA({super.key}); @override Widget build(BuildContext context) { return const Scaffold(body: Text("Screen A")); } } class ScreenB extends StatefulWidget { const ScreenB({super.key}); @override State<ScreenB> createState() => _ScreenBState(); } class _ScreenBState extends State<ScreenB> { Timer? _timer; bool _showNewChild = false; @override void initState() { super.initState(); // Use a timer to trigger a rebuild. _timer = Timer(const Duration(seconds: 3), () { print("Trigger"); setState(() { _showNewChild = true; }); }); } @override void dispose() { _timer?.cancel(); super.dispose(); } @override Widget build(BuildContext context) { return Scaffold( body: Column( children: [ const Text("Screen B"), // Appearance of this widget triggers the crash. if (_showNewChild) const Text("New Child"), ], ), ); } } class ScreenB2 extends StatelessWidget { const ScreenB2({super.key}); @override Widget build(BuildContext context) { return Scaffold( body: Column( children: [ const Text("Screen B/2"), FilledButton( onPressed: () { context.go("/a"); }, child: const Text("Go to Screen A"), ), ], ), ); } } ``` </details> ### Screenshots or Video ### Logs <details open><summary>Logs</summary> ```console Trigger ══╡ EXCEPTION CAUGHT BY WIDGETS LIBRARY ╞═══════════════════════════════════════════════════════════ The following assertion was thrown building Text("New Child", dependencies: [DefaultSelectionStyle, DefaultTextStyle, MediaQuery]): Assertion failed: file:///home/oleg/flutter/flutter/packages/flutter/lib/src/rendering/object.dart:2329:14 _debugRelayoutBoundaryAlreadyMarkedNeedsLayout() is not true The relevant error-causing widget was: Text Text:file:///home/oleg/Projects/test_flutter_crash/lib/main.dart:92:36 When the exception was thrown, this was the stack: dart-sdk/lib/_internal/js_dev_runtime/private/ddc_runtime/errors.dart 288:3 throw_ dart-sdk/lib/_internal/js_dev_runtime/private/profile.dart 110:39 assertFailed packages/flutter/src/rendering/object.dart 2329:14 markNeedsLayout packages/flutter/src/rendering/box.dart 2669:11 markNeedsLayout packages/flutter/src/rendering/object.dart 1855:5 adoptChild packages/flutter/src/rendering/object.dart 4355:5 insert packages/flutter/src/widgets/framework.dart 6988:17 insertRenderObjectChild packages/flutter/src/widgets/framework.dart 6746:35 attachRenderObject packages/flutter/src/widgets/framework.dart 6611:5 mount packages/flutter/src/widgets/framework.dart 7056:11 mount packages/flutter/src/widgets/framework.dart 4480:15 inflateWidget packages/flutter/src/widgets/framework.dart 3963:18 updateChild packages/flutter/src/widgets/framework.dart 5656:16 performRebuild packages/flutter/src/widgets/framework.dart 5347:7 rebuild packages/flutter/src/widgets/framework.dart 5613:5 [_firstBuild] packages/flutter/src/widgets/framework.dart 5607:5 mount packages/flutter/src/widgets/framework.dart 4480:15 inflateWidget packages/flutter/src/widgets/framework.dart 7049:36 inflateWidget packages/flutter/src/widgets/framework.dart 3963:18 updateChild packages/flutter/src/widgets/framework.dart 4150:32 updateChildren packages/flutter/src/widgets/framework.dart 7074:17 update packages/flutter/src/widgets/framework.dart 3941:14 updateChild packages/flutter/src/widgets/framework.dart 5656:16 performRebuild packages/flutter/src/widgets/framework.dart 5347:7 rebuild packages/flutter/src/widgets/framework.dart 5707:5 update <...> ``` </details> ### Flutter Doctor output <details open><summary>Doctor output</summary> ```console [✓] Flutter (Channel stable, 3.27.2, on Ubuntu 22.04.2 LTS 5.19.0-41-generic, locale ru_RU.UTF-8) • Flutter version 3.27.2 on channel stable at /home/oleg/flutter/flutter • Upstream repository https://github.com/flutter/flutter.git • Framework revision 68415ad1d9 (3 дня назад), 2025-01-13 10:22:03 -0800 • Engine revision e672b006cb • Dart version 3.6.1 • DevTools version 2.40.2 [✓] Android toolchain - develop for Android devices (Android SDK version 35.0.0) • Android SDK at /home/oleg/Android/Sdk • Platform android-35, build-tools 35.0.0 • Java binary at: /usr/lib/jvm/java-18-openjdk-amd64/bin/java • Java version OpenJDK Runtime Environment (build 18.0.2-ea+9-Ubuntu-222.04) • All Android licenses accepted. [✓] Chrome - develop for the web • Chrome at google-chrome [✗] Linux toolchain - develop for Linux desktop • Ubuntu clang version 14.0.0-1ubuntu1.1 • cmake version 3.22.1 • ninja version 1.10.1 • pkg-config version 0.29.2 ✗ GTK 3.0 development libraries are required for Linux development. They are likely available from your distribution (e.g.: apt install libgtk-3-dev) [✓] Android Studio (version 2024.2) • Android Studio at /home/oleg/Apps/android-studio • Flutter plugin can be installed from: 🔨 https://plugins.jetbrains.com/plugin/9212-flutter • Dart plugin can be installed from: 🔨 https://plugins.jetbrains.com/plugin/6351-dart • Java version OpenJDK Runtime Environment (build 21.0.3+-12282718-b509.11) [✓] VS Code (version 1.93.1) • VS Code at /usr/share/code • Flutter extension version 3.102.0 [✓] Connected device (2 available) • Linux (desktop) • linux • linux-x64 • Ubuntu 22.04.2 LTS 5.19.0-41-generic • Chrome (web) • chrome • web-javascript • Google Chrome 129.0.6668.70 [✓] Network resources • All expected network resources are available. ! Doctor found issues in 1 category. ``` </details>
package,a: error message,has reproducible steps,p: go_router,team-framework,found in release: 3.27,found in release: 3.28
low
Critical
2,792,087,118
vscode
Add a removal option to Compound Log menu
Type: <b>Feature Request</b> Trying out the new Compound Log feature, I added one and then looked for a removal option: ![Image](https://github.com/user-attachments/assets/c63907dc-57fe-44d3-ad34-dddc88354388) Found it on Command Palette, but maybe it also belongs on the log's menu. ![Image](https://github.com/user-attachments/assets/99c3c01f-c8a9-46d8-8d24-5d02a7452742) VS Code version: Code - Insiders 1.97.0-insider (31188fed068c5c724d73a1956c846401d4d7b01d, 2025-01-16T05:07:10.789Z) OS version: Windows_NT x64 10.0.26100 Modes: <!-- generated by issue reporter -->
feature-request,output
low
Minor
2,792,091,978
opencv
Can not build on MacOS
### System Information OpenCV Version: 4.10.0 Platform: MacOS 14 Compiler: Xcode 15.4 Python Version: 3.11 ### Detailed description When building OpenCV from source with the given setup the build will fail with the following error: ``` /Users/runner/work/Proxy-PDF-Maker/Proxy-PDF-Maker/.conan_home/p/b/opencc537d20d0094d/b/src/modules/gapi/src/compiler/gislandmodel.hpp:166:24: error: field has incomplete type 'std::exception_ptr' std::exception_ptr eptr; ^ /Applications/Xcode_15.4.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX14.5.sdk/usr/include/c++/v1/__exception/operations.h:36:33: note: forward declaration of 'std::exception_ptr' class _LIBCPP_EXPORTED_FROM_ABI exception_ptr; ^ In file included from /Users/runner/work/Proxy-PDF-Maker/Proxy-PDF-Maker/.conan_home/p/b/opencc537d20d0094d/b/src/modules/gapi/src/api/gbackend.cpp:14: In file included from /Users/runner/work/Proxy-PDF-Maker/Proxy-PDF-Maker/.conan_home/p/b/opencc537d20d0094d/b/src/modules/gapi/src/api/gbackend_priv.hpp:21: In file included from /Users/runner/work/Proxy-PDF-Maker/Proxy-PDF-Maker/.conan_home/p/b/opencc537d20d0094d/b/src/modules/gapi/src/compiler/gmodel.hpp:32: /Users/runner/work/Proxy-PDF-Maker/Proxy-PDF-Maker/.conan_home/p/b/opencc537d20d0094d/b/src/modules/gapi/src/compiler/gislandmodel.hpp:178:61: error: initialization of incomplete type 'const std::exception_ptr' virtual void post(GRunArgP&&, const std::exception_ptr& = {}) = 0; // Release the object back to the framework (mark available) ^ /Applications/Xcode_15.4.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX14.5.sdk/usr/include/c++/v1/__exception/operations.h:36:33: note: forward declaration of 'std::exception_ptr' class _LIBCPP_EXPORTED_FROM_ABI exception_ptr; ^ /Users/runner/work/Proxy-PDF-Maker/Proxy-PDF-Maker/.conan_home/p/b/opencc537d20d0094d/b/src/modules/gapi/src/compiler/gislandmodel.hpp:178:61: note: passing argument to parameter here virtual void post(GRunArgP&&, const std::exception_ptr& = {}) = 0; // Release the object back to the framework (mark available) ``` Highligh here is ``` error: field has incomplete type 'std::exception_ptr' ``` which appears due to a missing `#include <exception>`. ### Steps to reproduce Run the following commands to build OpenCV: ```sh cmake .. -G "Ninja" -DCMAKE_C_COMPILER=cc -DCMAKE_CXX_COMPILER=c++ -DCMAKE_BUILD_TYPE="Release" cmake --build . ``` See also a build in Github Actions CI failing here: https://github.com/Malacath-92/Proxy-PDF-Maker/actions/runs/12786776491/job/35644533639 This build uses conan as a package manager, but it essentially executes the above commands during resolution of dependencies. ### Issue submission checklist - [x] I report the issue, it's not a question - [x] I checked the problem with documentation, FAQ, open issues, forum.opencv.org, Stack Overflow, etc and have not found any solution - [x] I updated to the latest OpenCV version and the issue is still there - [x] There is reproducer code and related data files (videos, images, onnx, etc)
bug,category: build/install,platform: ios/osx
low
Critical
2,792,105,255
ollama
support ReaderLM-v2
https://huggingface.co/jinaai/ReaderLM-v2 ReaderLM-v2 is specialized for tasks involving HTML parsing, transformation, and text extraction.
model request
low
Major
2,792,111,527
next.js
Extended Set Methods (like union()) Not Included in Default Polyfills Despite Documentation
### Link to the code that reproduces this issue https://github.com/nikolay-gipp-sibe/next-set-polyfill-issue ### To Reproduce 1. Create a new Next.js project using create-next-app ``` npx create-next-app@latest ``` 2. Create a new component file (e.g. `app/test/page.tsx`) with the following content: ```typescript 'use client'; import { ReactElement } from 'react'; // Without this import, union() doesn't work // import 'core-js/features/set' export function TestSetUnion(): ReactElement { const set: Set<unknown> = new Set([1, 2, 3]).union(new Set([1, 2])); return <div>Test Set Union {set.size}</div>; } ``` 3. Open the page in **Chrome 103** 4. Observe the error: `TypeError: a.union is not a function` 5. Add the polyfill import manually: ```typescript import 'core-js/features/set' ``` 6. Refresh the page - now it works correctly ### Current vs. Expected behavior ### Current Behavior When using Set's extended methods like `union()` without manual polyfill import, the application throws `TypeError: a.union is not a function` in Chrome 103, despite Next.js documentation stating that Set polyfills are included by default. ### Expected Behavior Since Next.js documentation and source code (https://github.com/vercel/next.js/blob/canary/packages/next-polyfill-nomodule/src/index.js) include `import 'core-js/features/set'`, all Set methods including extended ones like `union()` should work without requiring manual polyfill imports. ### Provide environment information ```bash Operating System: Platform: win32 Arch: x64 Version: Windows 10 Pro Available memory (MB): 65389 Available CPU cores: 16 Binaries: Node: 22.13.0 npm: 10.8.2 Yarn: 1.22.19 pnpm: 9.15.4 Relevant Packages: next: 15.1.4 // Latest available version is detected (15.1.4). eslint-config-next: N/A react: 18.3.1 react-dom: 18.3.1 typescript: 5.4.5 Next.js Config: output: N/A ``` ### Which area(s) are affected? (Select all that apply) Documentation, Developer Experience, Runtime, Performance ### Which stage(s) are affected? (Select all that apply) next dev (local), Vercel (Deployed), Other (Deployed), next start (local) ### Additional context ### Additional Context This issue affects older browsers like Chrome 103. From [Next.js documentation](https://nextjs.org/docs/architecture/supported-browsers#polyfills): > We inject widely used polyfills, including: > If any of your dependencies include these polyfills, they'll be eliminated automatically from the production build to avoid duplication. And in [polyfill source code](https://github.com/vercel/next.js/blob/canary/packages/next-polyfill-nomodule/src/index.js): ```javascript import 'core-js/features/set' ``` The key points: - The extended Set methods like `union()` work fine in server components - But in client components, you get a TypeError unless you manually add import 'core-js/features/set' to the client component - This creates confusing behavior when moving components from server to client rendering
Performance,Runtime
low
Critical
2,792,117,280
pytorch
[torch.export] _insert_copy_for_mutations can't generate proper copy nodes for pure inplace ops
### 🐛 Describe the bug I am using the simplest `nn.Relu(inpleace=True)` to make a call to torch.export, and the following error occurs: ``` RuntimeError: Could not find input in either buffer or input nodes ``` My test code is as follows: ``` def ori_test(): x = torch.rand(2,3) m = torch.nn.ReLU(inplace=True).eval() m = torch.export.export(m, (x,)) mm = m.module() # error occurs ``` After debugging, I realised that the root cause was that `torch.export.export` was modifying the graph in a way that didn't strictly correspond to the rules in `class Graph`. The generated graph is as follows: ``` graph(): %arg0_1 : [num_users=1] = placeholder[target=arg0_1] %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%arg0_1,), kwargs = {}) return (relu, relu) ``` It's ok. However, in `placeholder_naming_pass`, it get original args name "input" in aten and modified the structure of the graph into this ``` graph(): %input : [num_users=1] = placeholder[target=input] %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%input,), kwargs = {}) return (relu, relu) ``` **str "input" is confilicted with `builtins.__dict__`**. Thus, when it comes into `_unlift_exported_program_lifted_states`, it calls "copy.deepcopy", which is a method of `Graph`. In the process of copying, `_is_illegal_name` checks for naming conflicts, resulting in the diagram being modified as follows: ``` graph(): %input_1 : [num_users=1] = placeholder[target=input] %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%input_1,), kwargs = {}) return (relu, relu) ``` **This ultimately causes `_insert_copy_for_mutations` to fail to insert the copy node properly due to `input_name_to_node` mismatch.** If possible, I think the same appropriate check should be added to `placeholder_naming_pass` to avoid this, although it may not be fully consistent with the naming in the original function. Can any of the team members give some advice? ### Versions Collecting environment information... PyTorch version: 2.5.1+cpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 Clang version: Could not collect CMake version: version 3.28.4 Libc version: glibc-2.31 Python version: 3.11.11 (main, Dec 11 2024, 16:28:39) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.4.0-200-generic-x86_64-with-glibc2.31 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 48 bits virtual CPU(s): 96 On-line CPU(s) list: 0-95 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Platinum 8369HB CPU @ 3.30GHz Stepping: 11 CPU MHz: 3800.073 CPU max MHz: 4200.0000 CPU min MHz: 1200.0000 BogoMIPS: 6600.06 Hypervisor vendor: KVM Virtualization type: full L1d cache: 1.5 MiB L1i cache: 1.5 MiB L2 cache: 48 MiB L3 cache: 66 MiB NUMA node0 CPU(s): 0-47 NUMA node1 CPU(s): 48-95 Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status Vulnerability Itlb multihit: KVM: Vulnerable Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Retbleed: Vulnerable Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Retpoline Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_bf16 ida arat avx512_vnni Versions of relevant libraries: [pip3] intel_extension_for_pytorch==2.5.0 [pip3] numpy==1.26.3 [pip3] torch==2.5.1+cpu [pip3] torchaudio==2.5.1+cpu [pip3] torchvision==0.20.1+cpu [conda] intel-extension-for-pytorch 2.5.0 pypi_0 pypi [conda] mkl-include 2025.0.1 pypi_0 pypi [conda] mkl-static 2025.0.1 pypi_0 pypi [conda] numpy 1.26.3 pypi_0 pypi [conda] torch 2.5.1+cpu pypi_0 pypi [conda] torchaudio 2.5.1+cpu pypi_0 pypi [conda] torchvision 0.20.1+cpu pypi_0 pypi cc @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4
oncall: pt2,oncall: export
low
Critical
2,792,148,404
vscode
Copilot
Type: <b>Bug</b> I am unable to sign in to Copilot through GitHub. After clicking "Sign in to use Copilot for free," it does not redirect to the browser for signing in. I reinstalled the program, but I am facing the same issue on both my laptop and desktop. VS Code version: Code 1.96.3 (91fbdddc47bc9c09064bf7acf133d22631cbf083, 2025-01-09T18:14:09.060Z) OS version: Windows_NT x64 10.0.26100 Modes: <details> <summary>System Info</summary> |Item|Value| |---|---| |CPUs|12th Gen Intel(R) Core(TM) i5-12400F (12 x 2496)| |GPU Status|2d_canvas: enabled<br>canvas_oop_rasterization: enabled_on<br>direct_rendering_display_compositor: disabled_off_ok<br>gpu_compositing: enabled<br>multiple_raster_threads: enabled_on<br>opengl: enabled_on<br>rasterization: enabled<br>raw_draw: disabled_off_ok<br>skia_graphite: disabled_off<br>video_decode: enabled<br>video_encode: enabled<br>vulkan: disabled_off<br>webgl: enabled<br>webgl2: enabled<br>webgpu: enabled<br>webnn: disabled_off| |Load (avg)|undefined| |Memory (System)|15.84GB (6.34GB free)| |Process Argv|--enable-proposed-api genuitecllc.codetogether --crash-reporter-id 66af26af-5f43-4771-934f-eb9230d74b88| |Screen Reader|no| |VM|0%| </details>Extensions: none<details> <summary>A/B Experiments</summary> ``` vsliv368cf:30146710 vspor879:30202332 vspor708:30202333 vspor363:30204092 vscod805cf:30301675 binariesv615:30325510 vsaa593cf:30376535 py29gd2263:31024239 c4g48928:30535728 azure-dev_surveyone:30548225 a9j8j154:30646983 962ge761:30959799 pythonnoceb:30805159 pythonmypyd1:30879173 h48ei257:31000450 pythontbext0:30879054 cppperfnew:31000557 dsvsc020:30976470 pythonait:31006305 dsvsc021:30996838 dvdeprecation:31068756 dwnewjupyter:31046869 nativerepl2:31139839 pythonrstrctxt:31112756 nativeloc1:31192215 cf971741:31144450 iacca1:31171482 notype1cf:31157160 5fd0e150:31155592 dwcopilot:31170013 stablechunks:31184530 6074i472:31201624 dwoutputs:31217127 ``` </details> <!-- generated by issue reporter -->
info-needed
low
Critical
2,792,151,584
langchain
OBSFileLoader.load() didn't seperate file content as expect
### Checked other resources - [x] I added a very descriptive title to this issue. - [x] I searched the LangChain documentation with the integrated search. - [x] I used the GitHub search to find a similar question and didn't find it. - [x] I am sure that this is a bug in LangChain rather than my code. - [x] The bug is not resolved by updating to the latest stable version of LangChain (or the specific integration package). ### Example Code ```python from obs import ObsClient from langchain_community.document_loaders import OBSFileLoader client = ObsClient(access_key_id=ak, secret_access_key=sk, server=server) obs = OBSFileLoader(bucket,key_name,client,endpoint) obs.load() #[Document(metadata={'source': 'whole content of in `key_name` file')] ``` ### Error Message and Stack Trace (if applicable) _No response_ ### Description * I expect to see [Document(metadata={'source': 'segment 1'),Document(metadata={'source': 'segment ')...] * Instead, [Document(metadata={'source': 'whole content of file')] ### System Info System Information ------------------ > OS: Windows > OS Version: 10.0.19045 > Python Version: 3.11.11 | packaged by conda-forge | (main, Dec 5 2024, 14:06:23) [MSC v.1942 64 bit (AMD64)] Package Information ------------------- > langchain_core: 0.3.29 > langchain: 0.3.14 > langchain_community: 0.3.14 > langsmith: 0.2.10 > langchain_huggingface: 0.1.2 > langchain_milvus: 0.1.8 > langchain_openai: 0.3.0 > langchain_text_splitters: 0.3.5 Optional packages not installed ------------------------------- > langserve Other Dependencies ------------------ > aiohttp: 3.11.11 > async-timeout: Installed. No version info available. > dataclasses-json: 0.6.7 > httpx: 0.28.1 > httpx-sse: 0.4.0 > huggingface-hub: 0.27.1 > jsonpatch: 1.33 > langsmith-pyo3: Installed. No version info available. > numpy: 1.26.4 > openai: 1.59.7 > orjson: 3.10.13 > packaging: 24.2 > pydantic: 2.10.4 > pydantic-settings: 2.7.1 > pymilvus: 2.5.3 > PyYAML: 6.0.2 > requests: 2.32.3 > requests-toolbelt: 1.0.0 > sentence-transformers: 3.3.1 > SQLAlchemy: 2.0.36 > tenacity: 9.0.0 > tiktoken: 0.8.0 > tokenizers: 0.21.0 > transformers: 4.47.1 > typing-extensions: 4.12.2 > zstandard: Installed. No version info available.
🤖:bug
low
Critical
2,792,165,905
flutter
flutter: PlatformException(channel-error, Unable to establish connection on channel: "dev.flutter.pigeon.shared_preferences_foundation.UserDefaultsApi.set"., null, null)
### Steps to reproduce when i save data from background mode it works incorrect ### Expected results should save data ### Actual results flutter: PlatformException(channel-error, Unable to establish connection on channel: "dev.flutter.pigeon.shared_preferences_foundation.UserDefaultsApi.set"., null, null) ### Code sample <details open><summary>Code sample</summary> ```dart @pragma('vm:entry-point') void callbackDispatcher() async { .... StorageService.setStringList(key, data); ..... } ``` </details> ### Screenshots or Video <details open> <summary>Screenshots / Video demonstration</summary> ![Image](https://github.com/user-attachments/assets/d5015350-65aa-4478-a5ef-fbc6ce2e5bf7) </details> ### Logs <details open><summary>Logs</summary> ```console flutter: PlatformException(channel-error, Unable to establish connection on channel: "dev.flutter.pigeon.shared_preferences_foundation.UserDefaultsApi.set"., null, null) [zoneID] l:37.39195948,-122.16790371 [triggerTime] 2025-01-16 14:23:27.371285 [triggerType] dwell ``` </details> ### Flutter Doctor output <details open><summary>Doctor output</summary> ```console flutter doctor Doctor summary (to see all details, run flutter doctor -v): [✓] Flutter (Channel stable, 3.27.1, on macOS 15.0.1 24A348 darwin-arm64, locale en-UZ) [✓] Android toolchain - develop for Android devices (Android SDK version 35.0.0) [✓] Xcode - develop for iOS and macOS (Xcode 16.1) [✓] Chrome - develop for the web [✓] Android Studio (version 2024.1) [✓] Connected device (5 available) [✓] Network resources • No issues found! ``` </details>
waiting for customer response,in triage
low
Critical
2,792,177,857
vscode
Git - Source control icon blinks every few seconds if "Autofetch period"
<!-- ⚠️⚠️ Do Not Delete This! bug_report_template ⚠️⚠️ --> <!-- Please read our Rules of Conduct: https://opensource.microsoft.com/codeofconduct/ --> <!-- 🕮 Read our guide about submitting issues: https://github.com/microsoft/vscode/wiki/Submitting-Bugs-and-Suggestions --> <!-- 🔎 Search existing issues to avoid creating duplicates. --> <!-- 🧪 Test using the latest Insiders build to see if your issue has already been fixed: https://code.visualstudio.com/insiders/ --> <!-- 💡 Instead of creating your report here, use 'Report Issue' from the 'Help' menu in VS Code to pre-fill useful information. --> <!-- 🔧 Launch with `code --disable-extensions` to check. --> Does this issue occur when all extensions are disabled?: Yes <!-- 🪓 If you answered No above, use 'Help: Start Extension Bisect' from Command Palette to try to identify the cause. --> <!-- 📣 Issues caused by an extension need to be reported directly to the extension publisher. The 'Help > Report Issue' dialog can assist with this. --> - VS Code Version: 1.97.0-insider (user setup) Commit: 31188fed068c5c724d73a1956c846401d4d7b01d Date: 2025-01-16T05:07:10.789Z Electron: 32.2.7 ElectronBuildId: 10660205 Chromium: 128.0.6613.186 Node.js: 20.18.1 V8: 12.8.374.38-electron.0 OS: Windows_NT x64 10.0.26100 - OS Version: Windows 11 Steps to Reproduce: 1. Set `Git: Autofetch` to `true` 2. Set `Git: Autofetch period` to `1` 3. Click on `Source Control` icon 4. Click on any entry on Source Control Graph 5. Look at the Source control icon It blinks every few seconds. It doesn't blink until entry on Source Control Graph is clicked. https://github.com/user-attachments/assets/2206b7f0-4adf-451d-9cce-edda0a0f9bc3 It's similar to https://github.com/microsoft/vscode/issues/219877 but with additional steps to reproduce.
bug,git
low
Critical
2,792,186,646
pytorch
ModuleNotFoundError: No module named 'torch.privateuseone'
### 🐛 Describe the bug When I add Backend::PrivateUse1, it throws an error ModuleNotFoundError: No module named 'torch.privateuseone' import torch a = torch.ones((3,3), device="privateuseone") std::vector<std::pair<Backend, ScalarType>> all_declared_types() { std::vector<std::pair<Backend, ScalarType>> ret; // NOTE: Do not add more types here. This list controls the creation // of legacy tensor types e.g. torch.cuda.FloatTensor which are // maintained for backwards-compatibility only. auto backends = { Backend::PrivateUse1, Backend::CPU, Backend::CUDA, Backend::SparseCPU, Backend::SparseCUDA}; ![Image](https://github.com/user-attachments/assets/f0d7cdd7-ff05-4625-9f9a-244a4ca04fd4) ### Versions PyTorch version: 2.5.0a0+gita8d6afb Is debug build: True CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.31.2 Libc version: glibc-2.35 Python version: 3.10.16 (main, Dec 11 2024, 16:24:50) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-125-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.4.131 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 Nvidia driver version: 550.120 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 96 On-line CPU(s) list: 0-95 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 2 Stepping: 7 CPU max MHz: 4000.0000 CPU min MHz: 1200.0000 BogoMIPS: 6000.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 1.5 MiB (48 instances) L1i cache: 1.5 MiB (48 instances) L2 cache: 48 MiB (48 instances) L3 cache: 71.5 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-23,48-71 NUMA node1 CPU(s): 24-47,72-95 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] numpy==2.2.1 [pip3] optree==0.13.1 [pip3] torch==2.5.0a0+gita8d6afb [conda] magma-cuda121 2.6.1 1 pytorch [conda] mkl-include 2025.0.1 pypi_0 pypi [conda] mkl-static 2025.0.1 pypi_0 pypi [conda] numpy 2.2.1 pypi_0 pypi [conda] optree 0.13.1 pypi_0 pypi [conda] torch 2.5.0a0+gita8d6afb dev_0 <develop> cc @jbschlosser @NmomoN @mengpenghui @fwenguang @cdzhan @1274085042 @PHLens
module: cpp,triaged,module: PrivateUse1
medium
Critical
2,792,216,095
tauri
[feat] frontend: dynamic resize, based on content
### Describe the problem If you want to have dynamic sized window, so based on the content, it's quite difficult to achieve this. It would be nice, if there would be a easy to make this possible. ### Describe the solution you'd like It would be nice, if you could build windows with a settings like `.fit_size_to_content()` ``` tauri::WebviewWindowBuilder::new( app, WINDOW_LABEL, tauri::WebviewUrl::App("/dashboard".into()), ) .title("Motion Minute - Actionbar") .center() .fit_size_to_content() .build()?; ``` ### Alternatives considered My current workaround for my Svelte project is to have a AutoSize component: ``` <script lang="ts"> import {onMount, onDestroy, tick} from 'svelte'; import {getCurrentWindow, PhysicalSize} from '@tauri-apps/api/window'; import {type} from "@tauri-apps/plugin-os" import type { Snippet } from 'svelte'; import {debug} from "@tauri-apps/plugin-log"; interface Props { ready: boolean; children: Snippet; [key: string]: unknown; } let {ready = true, children, ...rest}: Props = $props(); let container: HTMLDivElement | null = $state(null); async function resizeWindow() { const currentWindow = getCurrentWindow(); await debug("resizeWindow called"); if (container && ready) { await tick(); let rect = container.getBoundingClientRect() const factor = window.devicePixelRatio; const width: number = Math.ceil(rect.width * factor); const height: number = Math.ceil(rect.height * factor); let topPadding = await currentWindow.isDecorated() && type() === 'macos' ? 55 : 0 let size = new PhysicalSize(width, height + topPadding); let current = await currentWindow.outerSize() await debug(`size before ${current.width}x${current.height}`) await debug(`size after ${width}x${height + topPadding}`) await currentWindow.setSize(size); await tick(); await currentWindow.center(); await currentWindow.show(); await currentWindow.setFocus(); } } let observer: ResizeObserver; onMount(async () => { observer = new ResizeObserver(async () => { await resizeWindow(); }); if (container) observer.observe(container); }); onDestroy(() => { debug("unmount observer"); if (observer) observer.disconnect(); }); </script> <div {...rest} bind:this={container}> {@render children?.()} </div> ``` This seems to work, but not always. Maybe there exist a better workaround for this. ### Additional context _No response_
type: feature request
low
Critical
2,792,222,252
vscode
Extension is not able install and the setting is also opening
Type: <b>Performance Issue</b> The editor could not be opened due to an unexpected error: Expected ',' or ']' after array element in JSON at position 658 (line 1 column 659) this error is coming and extensions are not able to install VS Code version: Code 1.96.3 (91fbdddc47bc9c09064bf7acf133d22631cbf083, 2025-01-09T18:14:09.060Z) OS version: Windows_NT x64 10.0.22631 Modes: <details> <summary>System Info</summary> |Item|Value| |---|---| |CPUs|11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz (8 x 2803)| |GPU Status|2d_canvas: enabled<br>canvas_oop_rasterization: enabled_on<br>direct_rendering_display_compositor: disabled_off_ok<br>gpu_compositing: enabled<br>multiple_raster_threads: enabled_on<br>opengl: enabled_on<br>rasterization: enabled<br>raw_draw: disabled_off_ok<br>skia_graphite: disabled_off<br>video_decode: enabled<br>video_encode: enabled<br>vulkan: disabled_off<br>webgl: enabled<br>webgl2: enabled<br>webgpu: enabled<br>webnn: disabled_off| |Load (avg)|undefined| |Memory (System)|15.70GB (4.05GB free)| |Process Argv|--crash-reporter-id ec32a57b-c3c3-4165-946c-f2776b93e079| |Screen Reader|no| |VM|0%| </details><details> <summary>Process Info</summary> ``` CPU % Mem MB PID Process 0 125 3300 code main 0 46 15820 utility-network-service 0 167 20592 window [1] (Untitled-1 - Visual Studio Code) 0 153 22220 gpu-process 0 110 22468 shared-process 0 87 23788 fileWatcher [1] 0 32 24100 crashpad-handler 0 120 24208 extensionHost [1] ``` </details> <details> <summary>Workspace Info</summary> ``` ; ``` </details> Extensions: none<details> <summary>A/B Experiments</summary> ``` vsliv368cf:30146710 vspor879:30202332 vspor708:30202333 vspor363:30204092 vscod805cf:30301675 binariesv615:30325510 vsaa593:30376534 py29gd2263:31024239 c4g48928:30535728 azure-dev_surveyone:30548225 962ge761:30959799 pythonnoceb:30805159 pythonmypyd1:30879173 h48ei257:31000450 pythontbext0:30879054 cppperfnew:31000557 dsvsc020:30976470 pythonait:31006305 dsvsc021:30996838 dvdeprecation:31068756 dwnewjupytercf:31046870 nativerepl2:31139839 pythonrstrctxt:31112756 nativeloc2:31192216 cf971741:31144450 iacca1:31171482 notype1:31157159 5fd0e150:31155592 dwcopilot:31170013 stablechunks:31184530 6074i472:31201624 dwoutputs:31217127 ``` </details> <!-- generated by issue reporter -->
info-needed
low
Critical
2,792,236,879
kubernetes
[Flaking Test] ServiceAccounts ServiceAccountIssuerDiscovery should support OIDC discovery of service account issuer
### Which jobs are flaking? master-informing: - capz-windows-master ### Which tests are flaking? Kubernetes e2e suite.[It] [sig-auth] ServiceAccounts ServiceAccountIssuerDiscovery should support OIDC discovery of service account issuer [Conformance] ### Since when has it been flaking? [16/01/2025, 07:01:18](https://prow.k8s.io/view/gs/kubernetes-ci-logs/logs/ci-kubernetes-e2e-capz-master-windows/1879619842433093632) [16/01/2025, 05:56:18](https://prow.k8s.io/view/gs/kubernetes-ci-logs/logs/ci-kubernetes-e2e-capz-master-windows-2025/1879603486019031040) [15/01/2025, 18:05:20](https://prow.k8s.io/view/gs/kubernetes-ci-logs/logs/e2e-kops-aws-cni-kindnet/1879424553755611136) [15/01/2025, 10:05:20](https://prow.k8s.io/view/gs/kubernetes-ci-logs/logs/e2e-kops-aws-cni-kindnet/1879303756760223744) ### Testgrid link https://testgrid.k8s.io/sig-release-master-informing#capz-windows-master ### Reason for failure (if possible) ``` { failed [FAILED] Told to stop trying after 12.737s. pod "oidc-discovery-validator" failed with status: <v1.PodStatus>: conditions: - lastProbeTime: null lastTransitionTime: "2025-01-15T20:20:07Z" status: "False" type: PodReadyToStartContainers - lastProbeTime: null lastTransitionTime: "2025-01-15T20:19:56Z" status: "True" type: Initialized - lastProbeTime: null lastTransitionTime: "2025-01-15T20:20:05Z" reason: PodFailed status: "False" type: Ready - lastProbeTime: null lastTransitionTime: "2025-01-15T20:20:05Z" reason: PodFailed status: "False" type: ContainersReady - lastProbeTime: null lastTransitionTime: "2025-01-15T20:19:56Z" status: "True" type: PodScheduled containerStatuses: - containerID: containerd://b0b674fd3e410884b4a9353dc6d3f9f2b91057586cdefc335e9cc1394a855d31 image: registry.k8s.io/e2e-test-images/agnhost:2.53 imageID: registry.k8s.io/e2e-test-images/agnhost@sha256:99c6b4bb4a1e1df3f0b3752168c89358794d02258ebebc26bf21c29399011a85 lastState: {} ``` ### Anything else we need to know? N/A ### Relevant SIG(s) /sig auth
kind/flake,sig/auth,sig/windows,needs-triage
low
Critical
2,792,285,764
vscode
Color of tab name for modified file reverts to default color if a problem is detected
- VS Code Version: 1.96.3 - OS Version: Windows 11 Steps to Reproduce: 1. With VSCode and GitLens enabled, open a project linked to a git repository 2. Modify a file locally. The tab name should appear in orange: ![Image](https://github.com/user-attachments/assets/7339d2a1-8410-4186-b621-44ff09e03ef4) 3. Generate a warning in the file, such as an unused function. The tab name reverts to default color: ![Image](https://github.com/user-attachments/assets/2f802d42-a2c2-4a75-995a-a384844b9139) Expected behavior: The tab name should stay in orange as long as it's modified locally.
bug,workbench-tabs
low
Minor
2,792,306,559
ollama
ollama create fails for GGUF files with unaligned tensors
### What is the issue? ``` $ ollama show --modelfile minicpm-v > Modelfile $ ollama create minicpm-v:test gathering model components copying file sha256:262843d4806aeb402336980badd414a72576b20b1e5d537647da15f16c4a4df0 100% copying file sha256:f8a805e9e62085805c69c427287acefc284932eb4abfe6e1b1ce431d27e2f4e0 100% parsing GGUF Error: invalid file magic ``` The tensors in some GGUF files are not aligned with `general.alignment` and when imported, the alignment bytes at the end of the file are treated as the start of a new GGUF, resulting in a failed `file magic` match. ### OS Linux ### GPU Nvidia ### CPU Intel ### Ollama version 0.5.6
bug
low
Critical
2,792,311,648
tensorflow
Issues on trying to compile TensorFlow C API for JETSON AGX Xavier using Bazel
On my JETSON AGX Xavier, with: cuda: 11.4.315 cuDNN: 8.6.0 tensorrt: 8.5.2.2 jetpack: 5.1.3 python3 -c “import tensorflow as tf; print(‘TensorFlow version:’, tf.version)” TensorFlow version: 2.11.0 I can’t compile tf with bazel ( bazel --version: bazel 5.3.0 ) , error: ~/tensorflow$ bazel build --config=opt --config=cuda //tensorflow:libtensorflow.so Starting local Bazel server and connecting to it… WARNING: The following configs were expanded more than once: [cuda]. For repeatable flags, repeats are counted twice and may lead to unexpected behavior. INFO: Reading ‘startup’ options from /home/redans/tensorflow/.bazelrc: --windows_enable_symlinks INFO: Options provided by the client: Inherited ‘common’ options: --isatty=1 --terminal_columns=237 INFO: Reading rc options for ‘build’ from /home/redans/tensorflow/.bazelrc: Inherited ‘common’ options: --experimental_repo_remote_exec INFO: Reading rc options for ‘build’ from /home/redans/tensorflow/.bazelrc: ‘build’ options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --features=-force_no_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --experimental_cc_shared_library --experimental_link_static_libraries_once=false --incompatible_enforce_config_setting_visibility INFO: Reading rc options for ‘build’ from /home/redans/tensorflow/.tf_configure.bazelrc: ‘build’ options: --action_env PYTHON_BIN_PATH=/usr/bin/python3.9 --action_env PYTHON_LIB_PATH=/usr/local/lib/python3.9/dist-packages --python_path=/usr/bin/python3.9 --action_env PYTHONPATH=/usr/local/lib/python3.9/dist-packages:/usr/local/lib/python3.9/dist-packages:/home/redans/ros2_ws/install/yolov8_ros/lib/python3.9/site-packages:/home/redans/ros2_ws/install/yolov8_msgs/lib/python3.9/site-packages:/home/redans/ros2_ws/install/realsense2_camera_msgs/lib/python3.9/site-packages:/opt/ros/humble/lib/python3.9/site-packages --action_env LD_LIBRARY_PATH=/usr/local/cuda-11.4/lib64:/home/redans/local/lib/python3.8/dist-packages/tensorflow:/home/redans/ros2_ws/install/yolov8_msgs/lib:/home/redans/ros2_ws/install/realsense2_camera/lib:/home/redans/ros2_ws/install/realsense2_camera_msgs/lib:/opt/ros/humble/opt/rviz_ogre_vendor/lib:/opt/ros/humble/lib/aarch64-linux-gnu:/opt/ros/humble/lib:/usr/local/cuda-11.4/lib64: --action_env GCC_HOST_COMPILER_PATH=/usr/bin/aarch64-linux-gnu-gcc-9 --config=cuda INFO: Found applicable config definition build:short_logs in file /home/redans/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING INFO: Found applicable config definition build:v2 in file /home/redans/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1 INFO: Found applicable config definition build:cuda in file /home/redans/tensorflow/.bazelrc: --repo_env TF_NEED_CUDA=1 --crosstool_top=@local_config_cuda//crosstool:toolchain --@local_config_cuda//:enable_cuda --repo_env=HERMETIC_CUDA_VERSION=12.5.1 --repo_env=HERMETIC_CUDNN_VERSION=9.3.0 --@local_config_cuda//cuda:include_cuda_libs=true INFO: Found applicable config definition build:cuda in file /home/redans/tensorflow/.tf_configure.bazelrc: --repo_env HERMETIC_CUDA_COMPUTE_CAPABILITIES=7.2 INFO: Found applicable config definition build:opt in file /home/redans/tensorflow/.tf_configure.bazelrc: --copt=-Wno-sign-compare --host_copt=-Wno-sign-compare INFO: Found applicable config definition build:cuda in file /home/redans/tensorflow/.bazelrc: --repo_env TF_NEED_CUDA=1 --crosstool_top=@local_config_cuda//crosstool:toolchain --@local_config_cuda//:enable_cuda --repo_env=HERMETIC_CUDA_VERSION=12.5.1 --repo_env=HERMETIC_CUDNN_VERSION=9.3.0 --@local_config_cuda//cuda:include_cuda_libs=true INFO: Found applicable config definition build:cuda in file /home/redans/tensorflow/.tf_configure.bazelrc: --repo_env HERMETIC_CUDA_COMPUTE_CAPABILITIES=7.2 INFO: Found applicable config definition build:linux in file /home/redans/tensorflow/.bazelrc: --host_copt=-w --copt=-Wno-all --copt=-Wno-extra --copt=-Wno-deprecated --copt=-Wno-deprecated-declarations --copt=-Wno-ignored-attributes --copt=-Wno-array-bounds --copt=-Wunused-result --copt=-Werror=unused-result --copt=-Wswitch --copt=-Werror=switch --define=PREFIX=/usr --define=LIBDIR=$(PREFIX)/lib --define=INCLUDEDIR=$(PREFIX)/include --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 --config=dynamic_kernels --experimental_guard_against_concurrent_changes INFO: Found applicable config definition build:dynamic_kernels in file /home/redans/tensorflow/.bazelrc: --define=dynamic_loaded_kernels=true --copt=-DAUTOLOAD_DYNAMIC_KERNELS ERROR: Traceback (most recent call last): File “/home/redans/.cache/bazel/_bazel_redans/e3bb405f92452fe8b27464d0b3fdd1a7/external/rules_python/python/versions.bzl”, line 734, column 32, in PLATFORMS = _generate_platforms() File “/home/redans/.cache/bazel/_bazel_redans/e3bb405f92452fe8b27464d0b3fdd1a7/external/rules_python/python/versions.bzl”, line 723, column 15, in _generate_platforms } | v.flag_values, Error: unsupported binary operation: dict | dict INFO: Found applicable config definition build:cuda in file /home/redans/tensorflow/.bazelrc: --repo_env TF_NEED_CUDA=1 --crosstool_top=@local_config_cuda//crosstool:toolchain --@local_config_cuda//:enable_cuda --repo_env=HERMETIC_CUDA_VERSION=12.5.1 --repo_env=HERMETIC_CUDNN_VERSION=9.3.0 --@local_config_cuda//cuda:include_cuda_libs=true INFO: Found applicable config definition build:cuda in file /home/redans/tensorflow/.bazelrc: --repo_env TF_NEED_CUDA=1 --crosstool_top=@local_config_cuda//crosstool:toolchain --@local_config_cuda//:enable_cuda --repo_env=HERMETIC_CUDA_VERSION=12.5.1 --repo_env=HERMETIC_CUDNN_VERSION=9.3.0 --@local_config_cuda//cuda:include_cuda_libs=true WARNING: The following configs were expanded more than once: [cuda]. For repeatable flags, repeats are counted twice and may lead to unexpected behavior. ERROR: @local_config_cuda//:enable_cuda :: Error loading option @local_config_cuda//:enable_cuda: error loading package ‘’: at /home/redans/.cache/bazel/_bazel_redans/e3bb405f92452fe8b27464d0b3fdd1a7/external/local_tsl/third_party/py/python_init_repositories.bzl:3:6: at /home/redans/.cache/bazel/_bazel_redans/e3bb405f92452fe8b27464d0b3fdd1a7/external/rules_python/python/repositories.bzl:24:6: at /home/redans/.cache/bazel/_bazel_redans/e3bb405f92452fe8b27464d0b3fdd1a7/external/rules_python/python/private/python_register_multi_toolchains.bzl:22:6: initialization of module ‘python/versions.bzl’ failed Do you have any suggestions?
stat:awaiting response,type:build/install,subtype:bazel,TF 2.11
medium
Critical
2,792,324,297
flutter
Text cut off when wrapping text with specific font size in Opacity or ShaderMask on Android
### Steps to reproduce Run the code sample on Android Simulator Pixel 8 API 34. ### Expected results Text wrapped in `Opacity` and `ShaderMask` shut not be cut off on top and bottom. ### Actual results Text wrapped in `Opacity` and `ShaderMask` gets cut off on top and bottom. Same results when running natively on Pixel 7 & other Android devices. The cut-off is gone, when font size gets set to 48 or bigger. Noticed similar effects in a production app on Android and also Web, when using the Inter variable font (https://rsms.me/inter/). Similar to: https://github.com/flutter/flutter/issues/96322 ### Code sample <details open><summary>Code sample</summary> ```dart import 'package:flutter/material.dart'; void main() => runApp(MyApp()); class MyApp extends StatelessWidget { @override Widget build(BuildContext context) { final style = TextStyle(fontSize: 47); return MaterialApp( home: Scaffold( body: Center( child: Row( mainAxisAlignment: MainAxisAlignment.center, crossAxisAlignment: CrossAxisAlignment.center, children: [ ShaderMask( shaderCallback: (bounds) { return LinearGradient( colors: [ Colors.black, Colors.red, ], ).createShader(bounds); }, blendMode: BlendMode.srcIn, child: Text("g", style: style), ), Opacity( opacity: 0.9, child: Text("g", style: style), ), Text("g", style: style) ], ), ), ), ); } } ``` </details> ### Screenshots or Video <details open> <summary>Screenshots / Video demonstration</summary> <img width="142" alt="Image" src="https://github.com/user-attachments/assets/696856b0-09bf-4e63-b7a6-4aecec8060a0" /> </details> ### Flutter Doctor output <details open><summary>Doctor output</summary> ```console [!] Flutter (Channel stable, 3.27.2, on macOS 15.1.1 24B91 darwin-arm64, locale en-DE) • Flutter version 3.27.2 on channel stable at /Users/tobias/dev/tools/flutter ! Warning: `flutter` on your path resolves to /Users/tobias/Dev/tools/flutter/bin/flutter, which is not inside your current Flutter SDK checkout at /Users/tobias/dev/tools/flutter. Consider adding /Users/tobias/dev/tools/flutter/bin to the front of your path. ! Warning: `dart` on your path resolves to /opt/homebrew/Cellar/dart/3.5.4/libexec/bin/dart, which is not inside your current Flutter SDK checkout at /Users/tobias/dev/tools/flutter. Consider adding /Users/tobias/dev/tools/flutter/bin to the front of your path. • Upstream repository https://github.com/flutter/flutter.git • Framework revision 68415ad1d9 (3 days ago), 2025-01-13 10:22:03 -0800 • Engine revision e672b006cb • Dart version 3.6.1 • DevTools version 2.40.2 • If those were intentional, you can disregard the above warnings; however it is recommended to use "git" directly to perform update checks and upgrades. [✓] Android toolchain - develop for Android devices (Android SDK version 35.0.1) • Android SDK at /Users/tobias/Library/Android/sdk • Platform android-35, build-tools 35.0.1 • ANDROID_HOME = /Users/tobias/Library/Android/sdk • Java binary at: /Users/tobias/Applications/Android Studio.app/Contents/jbr/Contents/Home/bin/java • Java version OpenJDK Runtime Environment (build 21.0.4+-12422083-b607.1) • All Android licenses accepted. [✓] Xcode - develop for iOS and macOS (Xcode 16.2) • Xcode at /Applications/Xcode.app/Contents/Developer • Build 16C5032a • CocoaPods version 1.14.3 [✓] Chrome - develop for the web • Chrome at /Applications/Google Chrome.app/Contents/MacOS/Google Chrome [✓] Android Studio (version 2024.2) • Android Studio at /Users/tobias/Applications/Android Studio.app/Contents • Flutter plugin can be installed from: 🔨 https://plugins.jetbrains.com/plugin/9212-flutter • Dart plugin can be installed from: 🔨 https://plugins.jetbrains.com/plugin/6351-dart • Java version OpenJDK Runtime Environment (build 21.0.4+-12422083-b607.1) [✓] IntelliJ IDEA Ultimate Edition (version 2024.3.1.1) • IntelliJ at /Users/tobias/Applications/IntelliJ IDEA Ultimate.app • Flutter plugin version 83.0.4 • Dart plugin version 243.23177 [✓] VS Code (version 1.96.3) • VS Code at /Applications/Visual Studio Code.app/Contents • Flutter extension can be installed from: 🔨 https://marketplace.visualstudio.com/items?itemName=Dart-Code.flutter [✓] Connected device (5 available) • CUBOT X18 Plus (mobile) • S590W8040202841 • android-arm64 • Android 8.0.0 (API 26) • sdk gphone64 arm64 (mobile) • emulator-5554 • android-arm64 • Android 14 (API 34) (emulator) • macOS (desktop) • macos • darwin-arm64 • macOS 15.1.1 24B91 darwin-arm64 • Mac Designed for iPad (desktop) • mac-designed-for-ipad • darwin • macOS 15.1.1 24B91 darwin-arm64 • Chrome (web) • chrome • web-javascript • Google Chrome 131.0.6778.265 ! Error: Browsing on the local area network for iPad von Florian. Ensure the device is unlocked and attached with a cable or associated with the same local area network as this Mac. The device must be opted into Developer Mode to connect wirelessly. (code -27) ! Error: Browsing on the local area network for MamaHandy. Ensure the device is unlocked and attached with a cable or associated with the same local area network as this Mac. The device must be opted into Developer Mode to connect wirelessly. (code -27) [✓] Network resources • All expected network resources are available. ! Doctor found issues in 1 category. ``` </details>
a: quality,a: typography,has reproducible steps,P2,e: impeller,team-engine,triaged-engine,found in release: 3.27,found in release: 3.28
low
Critical
2,792,333,404
react-native
React Native - LayoutAnimation - border radius issue (black background on IOS)
### Description A parent view has style={{ overflow: 'hidden', borderTopRightRadius: 25 }} Inside the parent a child view is rendered with a LayoutAnimation. The surface which is hidden behind the rounded corners has a black background color during the LayoutAnimation for a second (Im using react-native version 0.72.1 ### Steps to reproduce on LayoutAnimation ### React Native Version 0.72.1 ### Affected Platforms Runtime - iOS ### Output of `npx react-native info` ```text none ``` ### Stacktrace or Logs ```text none ``` ### Reproducer none ### Screenshots and Videos _No response_
Platform: iOS,API: LayoutAnimation,Needs: Author Feedback,Needs: Repro,Type: Unsupported Version
low
Major
2,792,336,253
ollama
model wanted in ollama please:Qwen2.5-Math-PRM-7B
model wanted in ollama please:Qwen2.5-Math-PRM-7B
model request
low
Minor
2,792,346,592
vscode
Save before format on save
<!-- ⚠️⚠️ Do Not Delete This! feature_request_template ⚠️⚠️ --> <!-- Please read our Rules of Conduct: https://opensource.microsoft.com/codeofconduct/ --> <!-- Please search existing issues to avoid creating duplicates. --> <!-- Describe the feature you'd like. --> ## Problem The "format on save" feature (`"editor.formatOnSave": true`) waits until the formatter has formatted the file before saving it. If the formatter is slow, this can take quite some time. This creates multiple problems: * There is a delay before the `Saving '[...]': Running Code Actions and Formatters...` message is displayed in the status bar and the `Running '[...]' Formatter` notification is shown, presumably to avoid cluttering the UI in case of a slow computer or disk, which is a valid goal. However, it feels unresponsive because I'm never sure when hitting <kbd>Ctrl</kbd>+<kbd>S</kbd> whether it registered my keystroke or whether it's just waiting for the formatter. Often, I find myself hitting <kbd>Ctrl</kbd>+<kbd>S</kbd> multiple times just to be sure. * The formatting/saving seems to be aborted when I do something in VS Code after hitting <kbd>Ctrl</kbd>+<kbd>S</kbd>. Even the smallest actions abort it: * Clicking somewhere in the active editor. * Pressing an arrow key. * Changing the active editor tab. * You can easily overlook the indicators (e.g., in the editor tab bar) that the file hasn't been saved yet. I regularly run commands in a terminal that depend on the file to be saved (e.g., running tests), and often I get errors because it hasn't been saved. The second and third point imply that I as the user have to wait and can't do anything, not even in VS Code (because it would abort the process), until formatting is complete. My formatter takes more than 10 seconds. ## Proposal Saving and formatting should not be aborted when doing virtually anything in the editor after triggering the save. ## Additional Information * The third point of the problem section and the proposal is the same as #112585, but that issue has been closed without explanation. * Fixing the second point of the problem section has originally been part of this issue and is now #238052.
feature-request,formatting
low
Critical
2,792,347,420
ui
[bug]:
### Describe the bug The Date picker component has a latency or .... emm a state issue ### Affected component/components Date Picker ### How to reproduce 1. Create a Date Picker 2. then Send the prop (date prop) ### Codesandbox/StackBlitz link _No response_ ### Logs ```bash ``` ### System Info ```bash Browsers ``` ### Before submitting - [x] I've made research efforts and searched the documentation - [x] I've searched for existing issues
bug
low
Critical
2,792,348,737
PowerToys
Version: 0.87.1.0 OS Version: Microsoft Windows NT 10.0.22631.0 IntPtr Length: 8 x64: True Date: 16-01-2025 16:05:24
### Microsoft PowerToys version 0.87.1.0 ### Installation method WinGet ### Running as admin Yes ### Area(s) with issue? PowerToys Run ### Steps to reproduce [2025-01-16.txt](https://github.com/user-attachments/files/18437724/2025-01-16.txt) ### ✔️ Expected Behavior _No response_ ### ❌ Actual Behavior _No response_ ### Other Software _No response_
Issue-Bug,Needs-Triage
low
Minor
2,792,363,148
electron
Crash when navigating in will-frame-navigate
### Preflight Checklist - [x] I have read the [Contributing Guidelines](https://github.com/electron/electron/blob/main/CONTRIBUTING.md) for this project. - [x] I agree to follow the [Code of Conduct](https://github.com/electron/electron/blob/main/CODE_OF_CONDUCT.md) that this project adheres to. - [x] I have searched the [issue tracker](https://www.github.com/electron/electron/issues) for a bug report that matches the one I want to file, without success. ### Electron Version 34.0.0 ### What operating system(s) are you using? Windows ### Operating System Version Windows 10 ### What arch are you using? x64 ### Last Known Working Electron version _No response_ ### Expected Behavior No crash ### Actual Behavior crash (see gist) ### Testcase Gist URL https://gist.github.com/t57ser/0317dfb8c3d0ce3b0c7c1a81048f4f61 ### Additional Information _No response_
platform/windows,bug :beetle:,status/confirmed,has-repro-gist,34-x-y
low
Critical
2,792,369,041
svelte
`$state` mutation callback
## TL;DR Reacting to deep state changes in external (`.svelte.js`) modules is complicated - the function cannot know if it's running from a component context (can use `$effect`) or not, for example, to create global state (has to create its own `$effect.root`, and worry about the cleanup). Additionally, effects are not synchronous, making certain patterns impossible. The alternative is custom set/update functions, which can become complicated with deep/nested properties, and cannot take advantage of all of the goodies `$state` proxies offer, like reactive array pushes. The proposal is to allow being notified of changes to a single owned `$state` using a callback: ```js const myState = $state({ ... }, { // function definition is of course up to discussion onchange(newValue) { // do stuff with newValue synchronously } }) ``` ## Introduction To explain this problem, I will use the example of implementing a local storage-synced state/store. You can also see the full discussion that lead to this in #14978, in fact, this whole proposal is "borrowed" from Rich's [idea](https://github.com/sveltejs/svelte/issues/14978#issuecomment-2591177993). Replacing stores with state generally works great, except when working with functions that are meant to work both globally, and scoped to components. For the local storage-synced store, let's consider a few simple goals: 1) **Synchronous** - `$store = "new value"; expect(localStorage.getItem(key)).toEqual("new value")` 2) **Easy to use/no API for nested properties** - `$store.nested.prop = ...` is detected 3) **React to cross-tab changes**, but only when subscribed to The goals (1) and (2) are built-in by stores, which is why many Svelte 4 users have come to take them for granted. More specifically, doing `$store.a.b = 123` calls `store.update((value) => { value.a.b = 123; return value })`. This removes the need to manually call the update function, although at a cost: this is very unintuitive for new users, and doesn't work with functions like `Array.push`. Goal (3) can be achieved with the `StartStopNotifier` interface, and a implementation might look something like this: ```js function localStorageStore(key, initialValue) { const store = writable(initialValue, (set) => { const callback = (event) => set(...) window.addEventListener("storage", callback) return () => window.removeEventListener("storage", callback) }); return { subscribe: store.subscribe, set(value) { localStorage store.setItem(key, value) }, // update() omitted } } ``` Not very complicated once you understand the store contract, and works both globally and in components, since there the code is plain JS. ## The problem Now, let's try to achieve the same with the new state/runes. Once again, we want the solution to work both globally (i.e. we can declare a global top-level `localStorageState` instance), but also use it in components, and we want to achieve our three existing goals. To achieve goal (1), we simply use a set function, or a setter for a `current` property. To achieve goal (2), the compiler doesn't "help" us anymore, instead we could use an effect. However, as effects are not synchronous, this conflicts with goal (1). Goal (3) is a little trickier to implement, as we need to use both `createSubscriber` and `$effect.tracking`, but achievable nonetheless. Let's consider a simple implementation that does not implement goal (2): ```js function localStorageState(key, initialValue) { let state = $state(initialValue) const subscribe = createSubscriber(() => { const callback = (event) => (state = ...) window.addEventListener("storage", callback) return () => window.removeEventListener("storage", callback) }); return { get current() { if ($effect.tracking()) { subscribe() return state } else { // if there are no subscribers, state might be out of sync with localStorage return localStorage.getItem(key) } }, set current(value) { localStorage.setItem(key, value) state = value } } } ``` This _works_, but it is rather cumbersome to use with nested props, as `state.current.nested = 123` will not trigger our custom getter, while it will trigger reactive updates due to the `$state` proxy. Instead, we can use `$state.raw` to discourage this, and then do `state.current = { ...state.current, nested: 123 }` to perform an update. This can become more complicated for more nested properties, and neat new stuff that runes allow, like arrays and custom classes, possibly even requiring an external package like `deepmerge` to handle the update. We can give up goal (1) to try and fix this: ```js $effect(() => { localStorage.setItem(key, JSON.stringify(value)) }) ``` ...however this will fail with `effect_orphan` when used globally. We can fix this by wrapping the effect in an `$effect.tracking`, but then we'd have to worry about the clean-up. All in all, implementing certain complex patterns with state, which include reacting to deep state changes, requires convoluted `$effect.root`s or unsynchronous updates. ## The solution `$state` knows best - it creates a deep proxy that does a lot of stuff - proxifying new values when they are added, remembering who owns what... and by doing all that it also knows _when_ the state itself is changed, even by nested properties. Why wouldn't it share that information with us? ```js $state(value, { onchange() { ... } } ``` This would solve every single problem in the example above: synchronously setting the local storage, not having to worry about `$effect.root` and its cleanup, and so it would work identically globally or in components: ```js function localStorageState(key, initialValue) { const state = $state(initialValue, { onchange(newValue) { localStorage.setItem(key, newValue) } }) const subscribe = createSubscriber(() => { const callback = (event) => (state = ...) window.addEventListener("storage", callback) return () => window.removeEventListener("storage", callback) }); return { get current() { if ($effect.tracking()) { subscribe() return state } else { return localStorage.getItem(key) } }, set current(value) { state = value } } } ``` ## Importance would make my life easier
feature request,runes
low
Minor
2,792,380,355
flutter
[url_launcher]: launchUrl with custom schema doesn't trigger the respective external application on Non-Safari browsers
Edit: Happens in iOS. Can't reproduce on Android ### Steps to reproduce Setup a simple flutter web app which has CTA that triggers launchUrl with a custom schema. The app that uses the custom schema is launched when the same action is done through safari but not in other browsers such as Chrome, Edge ### Expected results Launch the Application ### Actual results Nothing happens. the browser tab has a launching animation but nothing actual happens. ### Code sample ``` import 'package:flutter/gestures.dart'; import 'package:flutter/material.dart'; import 'package:url_launcher/url_launcher.dart'; void main() { runApp(UnSupportedApp()); } class UnSupportedApp extends StatelessWidget { const UnSupportedApp({super.key}); @override Widget build(BuildContext context) { return MaterialApp( home: Scaffold( body: Center( child: Text.rich( TextSpan( text: 'If you have already downloaded the app, ', children: [ TextSpan( text: 'click here to redirect to app', recognizer: TapGestureRecognizer() ..onTap = () { final customUri = Uri( // Replace with your schema and host scheme: "****", host: "****", path: "/", ); print(customUri.toString()); launchUrl( customUri, mode: LaunchMode.externalApplication, ); }, style: Theme.of(context) .textTheme .bodyMedium ?.copyWith(color: Colors.blue), ), ], style: Theme.of(context).textTheme.bodyMedium, ), ), )), ); } } ``` ### Screenshots or Video <details open> <summary>Screenshots / Video demonstration</summary> https://private-user-images.githubusercontent.com/45146774/374948689-0fe00bcc-57e7-4f46-b922-027c1228f546.MP4?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzcwMjQ4MjcsIm5iZiI6MTczNzAyNDUyNywicGF0aCI6Ii80NTE0Njc3NC8zNzQ5NDg2ODktMGZlMDBiY2MtNTdlNy00ZjQ2LWI5MjItMDI3YzEyMjhmNTQ2Lk1QND9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAxMTYlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMTE2VDEwNDg0N1omWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWJiZDNlN2I4YmU5OWZlN2VkODUwZTRiNTUwMmRmNjY2MWEwYjE0MjQ1MzQwZmUzNmQwNGMzZTE0NGQ1OTc2YTgmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.v24U-Fkkjn8B9vgwUojbOo14JF_5uDuig-0xND9Oj8k </details> ### Logs <details open><summary>Logs</summary> ```console [Paste your logs here] ``` </details> ### Flutter Doctor output [✓] Flutter (Channel stable, 3.22.1, on macOS 15.0 24A335 darwin-arm64, locale en-US) [✓] Android toolchain - develop for Android devices (Android SDK version 34.0.0) [✓] Xcode - develop for iOS and macOS (Xcode 16.0) [✓] Chrome - develop for the web [✓] Android Studio (version 2022.2) [✓] IntelliJ IDEA Ultimate Edition (version 2024.1.3) [✓] VS Code (version 1.93.1)
in triage
low
Major
2,792,381,979
excalidraw
Rendering issue on Excalidraw Plus on Windows
I had no problem before leaving on vacation, and when I came back I lost my texts : ![Image](https://github.com/user-attachments/assets/f13279a3-bb49-4c1d-a20f-b9fbb8f8161d) When I focus on the text I can see it correctly : ![Image](https://github.com/user-attachments/assets/f9cb3739-791c-4843-8dd1-2a967aa30833) If I try to copy text inside, then go to vscode, paste it, it's just standard text. If I copy it from VScode and paste it back in excalidraw, it still bugs. Any idea on how I can fix this ? Pretty problematic since I designed my whole DB inside of it 😅 EDIT : When I zoom in it tends to change the visual, until a big zoom where I can see corectly things .... Strange EDIT 2 : It seems to happen on Zen Browser (using Firefox), but works correctly on Chrome
bug,firefox,Text rendering
low
Critical
2,792,398,271
vscode
NativeEditContext advertises focus for off-dom editor
I have a situation in which I have a blinking cursor in an editor but it doesn't accept backspace, e.g the `deleteLeft` command isn't executed. I was able to debug this and I can see that the wrong editor is selected and that happens because an off-dom editor is saying it has focus. <img width="1484" alt="Screenshot 2025-01-16 at 11 57 53" src="https://github.com/user-attachments/assets/dda0e8dc-25a5-4b26-8d80-605d8fcaaba7" />
important
low
Critical
2,792,400,759
flutter
[Web][Canvaskit] APNG does not play on Flutter 3.27+
### Steps to reproduce The animation does not play when using CachedNetworkImage to display APNG, as shown in the following sample code. ### Expected results APNG images play when displaying them with CachedNetworkImage. ### Actual results Cannot play APNG on Web, in Flutter 3.27.2. As far as I have researched, it plays in these condition: - Using Image.network instead of CachedNetworkImage. - on platforms other than the web (e.g., MacOS). - build with --web-renderer html. - on a previous Flutter SDK version (3.24.5). ### Code sample <details open><summary>Code sample</summary> ```dart ... CachedNetworkImage( imageUrl: 'some_apng_url.png' ) ... ``` </details> ### Screenshots or Video <details open> <summary>Screenshots / Video demonstration</summary> [Upload media here] </details> ### Logs <details open><summary>Logs</summary> ```console [Paste your logs here] ``` </details> ### Flutter Doctor output <details open><summary>Doctor output</summary> ```console [✓] Flutter (Channel stable, 3.27.2, on macOS 15.1.1 24B91 darwin-arm64, locale ja-JP) • Flutter version 3.27.2 on channel stable at /Users/harukaoki/development/flutter • Upstream repository https://github.com/flutter/flutter.git • Framework revision 68415ad1d9 (3 days ago), 2025-01-13 10:22:03 -0800 • Engine revision e672b006cb • Dart version 3.6.1 • DevTools version 2.40.2 [✓] Android toolchain - develop for Android devices (Android SDK version 33.0.1) • Android SDK at /Users/harukaoki/Library/Android/sdk • Platform android-35, build-tools 33.0.1 • Java binary at: /Applications/Android Studio.app/Contents/jbr/Contents/Home/bin/java • Java version OpenJDK Runtime Environment (build 17.0.10+0-17.0.10b1087.21-11609105) • All Android licenses accepted. [✓] Xcode - develop for iOS and macOS (Xcode 16.2) • Xcode at /Applications/Xcode.app/Contents/Developer • Build 16C5032a • CocoaPods version 1.16.2 [✓] Chrome - develop for the web • Chrome at /Applications/Google Chrome.app/Contents/MacOS/Google Chrome [✓] Android Studio (version 2024.1) • Android Studio at /Applications/Android Studio.app/Contents • Flutter plugin can be installed from: 🔨 https://plugins.jetbrains.com/plugin/9212-flutter • Dart plugin can be installed from: 🔨 https://plugins.jetbrains.com/plugin/6351-dart • Java version OpenJDK Runtime Environment (build 17.0.10+0-17.0.10b1087.21-11609105) [✓] VS Code (version 1.96.3) • VS Code at /Applications/Visual Studio Code.app/Contents • Flutter extension version 3.102.0 [✓] Connected device (4 available) • iPhone (8) (mobile) • 00008020-001124CE3CE9002E • ios • iOS 18.1.1 22B91 • macOS (desktop) • macos • darwin-arm64 • macOS 15.1.1 24B91 darwin-arm64 • Mac Designed for iPad (desktop) • mac-designed-for-ipad • darwin • macOS 15.1.1 24B91 darwin-arm64 • Chrome (web) • chrome • web-javascript • Google Chrome 132.0.6834.83 [✓] Network resources • All expected network resources are available. • No issues found! ``` </details>
c: regression,engine,platform-web,a: images,e: web_canvaskit,has reproducible steps,team-web,found in release: 3.27,found in release: 3.28
low
Minor
2,792,411,383
vscode
Right click on problems tab: "Fix with AI Chat"
<!-- Please search existing issues to avoid creating duplicates --> <!-- Please test using the latest insiders build to make sure your issue has not already been implemented: https://code.visualstudio.com/insiders/ --> <!-- Describe the feature you'd like. --> https://x.com/waderyan_/status/1864388066988970224 ![Image](https://github.com/user-attachments/assets/3e862d95-9a78-425a-818f-33e3575ba8bd)
feature-request,error-list
low
Minor
2,792,415,398
pytorch
Memory-efficient attention is not selected if inputs's ndim != 4
### 🐛 Describe the bug ```python from contextlib import nullcontext import torch import torch.nn.functional as F from torch.nn.attention import SDPBackend, sdpa_kernel # shape used in FLUX's VAE seq_len = 128 * 128 head_dim = 512 # ctx = sdpa_kernel([SDPBackend.EFFICIENT_ATTENTION]) ctx = nullcontext() torch.cuda.reset_peak_memory_stats() shape = (1, 1, 1, seq_len, head_dim) q, k, v = [torch.randn(shape, dtype=torch.bfloat16, device="cuda") for _ in range(3)] with ctx: F.scaled_dot_product_attention(q, k, v) print(f"{shape}: {torch.cuda.max_memory_allocated() / 1e9:.2f} GB") torch.cuda.reset_peak_memory_stats() shape = (1, 1, seq_len, head_dim) q, k, v = [torch.randn(shape, dtype=torch.bfloat16, device="cuda") for _ in range(3)] with ctx: F.scaled_dot_product_attention(q, k, v) print(f"{shape}: {torch.cuda.max_memory_allocated() / 1e9:.2f} GB") torch.cuda.reset_peak_memory_stats() shape = (1, seq_len, head_dim) q, k, v = [torch.randn(shape, dtype=torch.bfloat16, device="cuda") for _ in range(3)] with ctx: F.scaled_dot_product_attention(q, k, v) print(f"{shape}: {torch.cuda.max_memory_allocated() / 1e9:.2f} GB") torch.cuda.reset_peak_memory_stats() shape = (seq_len, head_dim) q, k, v = [torch.randn(shape, dtype=torch.bfloat16, device="cuda") for _ in range(3)] with ctx: F.scaled_dot_product_attention(q, k, v) print(f"{shape}: {torch.cuda.max_memory_allocated() / 1e9:.2f} GB") ``` ``` (1, 1, 1, 16384, 512): 2.61 GB (1, 1, 16384, 512): 0.11 GB (1, 16384, 512): 2.61 GB (16384, 512): 2.61 GB ``` If I use `ctx = sdpa_kernel([SDPBackend.EFFICIENT_ATTENTION])`, only the ones where `ndim == 4` will not error out. **Expected behavior**: memory-efficient attention should be selected. Possibly related: #127523 (but I don't use attention mask here) cc: @drisspg ### Versions torch==2.7.0.dev20250105+cu126 cc @chauhang @penguinwu @zou3519 @bdhirsh @yf225 @Chillee @drisspg @yanboliang @BoyuanFeng
triaged,module: sdpa
low
Critical
2,792,418,084
flutter
[go_router] Implement the method `goBranchPath` for StatefulNavigationShell similar to `go`
### Use case Our application can create a bottom navigation bar dynamically so we need to declare all possible routes in `GoRouter` config. And so the sequence of navigation destinations inside the `NavigationBar` can be diffrent then one declrared in `branches` of `StatefulShellRoute`. But the method `goBranch` allows to switch to route by `index` of initially declared routes. Below the sample where 4 routes are declared in router config but the sequence is not `1,2,3,4` but `1,2,4`. So when user taps on `page4` he is redirected to `/path3` what is wrong for our business logic. I tried to workaround using the `context.go` method but now I lost a stateful functionality. <details> <summary>Sampe</summary> ```dart import 'package:flutter/material.dart'; import 'package:go_router/go_router.dart'; void main() { runApp(const MainApp()); } class MainApp extends StatelessWidget { const MainApp({super.key}); @override Widget build(BuildContext context) { return MaterialApp.router( routerConfig: _router, ); } } final branch1 = GlobalKey<NavigatorState>(); final branch2 = GlobalKey<NavigatorState>(); final branch3 = GlobalKey<NavigatorState>(); final branch4 = GlobalKey<NavigatorState>(); final _router = GoRouter( debugLogDiagnostics: true, initialLocation: '/page1', routes: [ StatefulShellRoute.indexedStack( branches: [ StatefulShellBranch( navigatorKey: branch1, routes: [ GoRoute( path: '/page1', builder: (context, state) => const Text('page 1'), ), ], ), StatefulShellBranch( navigatorKey: branch2, routes: [ GoRoute( path: '/page2', builder: (context, state) => const Text('page 2'), ), ], ), StatefulShellBranch( navigatorKey: branch3, routes: [ GoRoute( path: '/page3', builder: (context, state) => const Text('page 3'), ), ], ), StatefulShellBranch( navigatorKey: branch4, routes: [ GoRoute( path: '/page4', builder: (context, state) => const Text('page 4'), ), ], ), ], builder: (context, state, navigationShell) { return Home(child: navigationShell); }, ), ], ); class Home extends StatelessWidget { const Home({super.key, required this.child}); final StatefulNavigationShell child; @override Widget build(BuildContext context) { return Scaffold( body: SafeArea( child: Center( child: child, ), ), bottomNavigationBar: NavigationBar( destinations: const [ NavigationDestination( icon: Icon(Icons.access_alarm), label: 'page1', ), NavigationDestination( icon: Icon(Icons.access_alarm), label: 'page2', ), NavigationDestination( icon: Icon(Icons.access_alarm), label: 'page4', ), ], selectedIndex: child.currentIndex, onDestinationSelected: (index) { child.goBranch(index, initialLocation: index == child.currentIndex); }, ), ); } } ``` </details> ### Proposal The proposal is to create some method like `goBranchPath`. ```dart void goBranchPath(String location, {bool initialLocation = false}) { // find the required index of the branch which use [location] // use default functionaluty } ```
c: new feature,package,c: proposal,P3,p: go_router,team-go_router,triaged-go_router
low
Critical
2,792,423,432
rust
Sendable type cannot be sent between threads safely
I tried this code: ```rust use std::rc::Rc; struct Unsendable(Rc<()>); struct Sendable<T>(T); unsafe impl<T> Send for Sendable<T> {} impl<T> Sendable<T> { #[inline(always)] fn into_inner(self) -> T { self.0 } } fn main() { tokio::task::spawn({ let foo = Unsendable(Rc::new(())); let foo = Sendable(foo); async move { let Sendable(foo) = foo; // let foo = foo.into_inner(); } }); } ``` If I replace line `let Sendable(foo) = foo;` with `let foo = foo.into_inner();` the error disappears. I create bigger example, without tokio. [Rust Playground](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=f13884acdd320f8b218853a7249d28f2) I expected to see successful compilation Instead I got `error[E0277]: Rc<()> cannot be sent between threads safely`
C-enhancement,D-confusing
low
Critical
2,792,448,520
flutter
Add Kurdish Sorani (ckb) as an Officially Supported Language for Flutter Localizations
### Use case Kurdish Sorani (ckb) is widely spoken by millions of people, and adding it as a supported language in Flutter’s localization system would enable better accessibility for developers and end-users in this region. This would provide native language support for apps built with Flutter, ensuring inclusivity and a more localized experience. My previous pull request ([PR #160925](https://github.com/flutter/flutter/pull/160925)) included full Kurdish Sorani translations for Material, Cupertino, and Widgets frameworks, along with support for RTL text and Kurdish numerals. However, it was recommended that Kurdish Sorani translations should be managed through the localization console and vendor team. ### Proposal I suggest adding Kurdish Sorani (ckb) to Flutter’s officially supported languages in the localization console. The following steps could help with this integration: 1. Include Kurdish Sorani in the list of supported languages for the localization system. 2. Use the translations I provided in [PR #160925](https://github.com/flutter/flutter/pull/160925) as the starting point. 3. Our community of Kurdish Flutter developers can work with the vendor team to ensure accurate and complete integration of the translations. ### Benefits: • Expand Flutter’s reach to a new user base. • Improves app usability and accessibility for Kurdish-speaking users. • Strengthens Flutter’s commitment to inclusivity and localization.
c: new feature,framework,a: internationalization,c: proposal,team-framework
low
Minor
2,792,450,524
neovim
Avoid external processing of a certain buffer/window
### Problem It is currently not possible to ignore the `TextChanged`, `BufModified`, `CursorMoved`, `WinResized` and `WinScrolled` events for a certain buffer/window, even for the "owner" of that object. These events are processed once per event loop iteration, rather than when a change happens, so the usual `:set ei+=all -> do something -> :set ei-=all` pattern doesn't work. That pattern does work for other events and processing done by the owner, but it may be desirable to be able to ignore autocommands triggered by external processing as well. - An option focused solution be a local `'eventignore'`, with the caveat being that it applies to the window itself and its buffer. A global + buffer + window ( + tab)-local `'eventignore'` seems more appropriate, but we currently lack the ability for such an option (could be resolved by https://github.com/neovim/neovim/issues/29314). - A namespace focused solution could be the ability to set a namespace for a buffer/window, in which case we only process autocommands belonging to that namespace (currently still augroups). (This concept could also be used to prevent deletion of windows/buffers when not inside a ui_attach callback for that namespace. Currently the namespace needs to always check that its buffers/windows still exist.) - A more window focused solution could be some API to mark a window (and its buffer) to not be affected by autocommands (nvim_open_win() flag; we already have a boolean `noautocmd` for opening the window, could promote it to also accept a string `"always"` to ignore events persistently, or even the same format as `'eventignore'`, though at that point I think we should just go with the window-local option route). What also should be considered is e.g. [command-preview](https://github.com/neovim/neovim/pull/28856) > In the spirit of playing nice with external UIs, I think there needs to be a way to mark windows as ignored by command preview (if there isn't already), or maybe just have a class of window/buffer option combinations that should be ignored by command preview (e.g. nomodifiable+bufhidden=hide+buftype=nofile+is a floating window+...)? Could probably recognize `"cmdpreview"` as a pseudo event to ignore in a window-local `'eventignore'`. Related: https://github.com/neovim/neovim/pull/27855#issuecomment-2585221113 Any thoughts @justinmk?
enhancement,ui-extensibility,events,options
low
Minor
2,792,505,437
godot
2D Tilemap coordinates disappear when on "Terrains" Mode
### Tested versions Tested Version: v4.3.stable.official [77dcf97d8] ### System information Windows 10 ### Issue description On the editor, when using the tilemap in "Tiles" mode, you can see your tile coords in the lower left corner. If you switch to "Terrains" mode when you no longer see the tilemap coordinates where your cursor is. ![Image](https://github.com/user-attachments/assets/a106c545-8cdb-4533-9145-b19886f177a3) ### Steps to reproduce Create a new 2D TilemapLayer. Hover over the field, you can see your coords in the lower left of the game field. Switch to Terrains, coords disappear. ### Minimal reproduction project (MRP) N/A
enhancement,topic:editor,topic:2d
low
Minor
2,792,524,580
godot
Vulkan graphics pipelines use excessive amount of memory on Galaxy S23
### Tested versions - Reproducible in: 4.4.dev7, master starting from 98deb2a0005cf654e667679cd72904d9b5d4c734 - Not reproducible in: 4.3.stable ### System information Samsung Galaxy S23 Ultra, Android 14, Vulkan (Mobile), Adreno 740 ### Issue description After trying to update our project to Godot 4.4 we found that it crashes while loading on my Android phone. The profiler showed that graphics memory was exceeding 4GB before the app closes while the game running on Godot 4.3 only uses around 800mb of graphics memory. I have bisected everything between 4.3 and 4.4 and traced the problem to https://github.com/godotengine/godot/pull/90400 getting merged. Here is a memory report generated by RenderingDevice.get_driver_and_device_memory_report from a version of our game with lots of content removed so it starts at all: ``` Total Driver Memory:76.373 MB Total Driver Num Allocations: 51018 Total Device Memory:3755.699 MB Total Device Num Allocations: 854 Memory use by object type (CSV format): Category; Driver memory in MB; Driver Allocation Count; Device memory in MB; UNKNOWN;0.0;0;0.0;0 INSTANCE;19.86637;1520;0.0;0 PHYSICAL_DEVICE;0.0;0;0.0;0 DEVICE;0.136612;580;0.247704;42 QUEUE;0.0;0;27.88282;11 SEMAPHORE;0.00267;10;0.0;0 COMMAND_BUFFER;0.0;0;1.484375;101 FENCE;0.001068;4;0.0;0 DEVICE_MEMORY;0.0;0;1056.0;8 BUFFER;10.4068;25260;0.0;0 IMAGE;1.001448;1756;0.181641;1 EVENT;0.0;0;0.0;0 QUERY_POOL;0.001633;6;0.007828;2 BUFFER_VIEW;0.000992;1;0.0;0 IMAGE_VIEW;0.836527;857;0.0;0 SHADER_MODULE;29.46983;1736;0.0;0 PIPELINE_CACHE;4.005884;286;0.0;0 PIPELINE_LAYOUT;1.361336;936;0.0;0 RENDER_PASS;0.018356;189;0.0;0 PIPELINE;2.593163;3315;2668.945;607 DESCRIPTOR_SET_LAYOUT;3.279724;8207;0.0;0 SAMPLER;0.01339;39;0.0;0 DESCRIPTOR_POOL;1.765778;1800;0.800781;46 DESCRIPTOR_SET;0.0;0;0.0;0 FRAMEBUFFER;1.206264;538;0.1492;36 COMMAND_POOL;0.403104;3976;0.0;0 DESCRIPTOR_UPDATE_TEMPLATE_KHR;0.0;0;0.0;0 SURFACE_KHR;0.000031;1;0.0;0 SWAPCHAIN_KHR;0.002022;1;0.0;0 DEBUG_UTILS_MESSENGER_EXT;0.0;0;0.0;0 DEBUG_REPORT_CALLBACK_EXT;0.0;0;0.0;0 ACCELERATION_STRUCTURE;0.0;0;0.0;0 VMA_BUFFER_OR_IMAGE;0.0;0;0.0;0 ``` You can see that device memory for pipelines is 2668.945mb. The same line in Godot 4.3 (and 4.4 before https://github.com/godotengine/godot/pull/90400 got merged) shows a little over 1mb. I modified my engine build to log every allocation related to pipeline objects and found that it allocates a block of 24mb for some of the pipelines. Adding up those 24mb allocations gives me pretty much exactly the excess amount of memory use compared to without that PR I suspect that it is related to the Ubershader that is used while the optimized pipeline is compiled. A hacky attempt to disable the feature by preventing the "define UBERSHADER" in the shader from being set resulted in the weird allocations disappearing. But I am not that familiar with the code yet and I am also running out of time that I can invest in this problem so hopefully someone here can find a proper workaround. The attached MRP contains just a camera looking at a single cube and a script to print the memory report. On my device this already uses 72mb for pipelines. Strangely on a Oneplus 6 it was only 6.6mb and on a Oneplus 8 it uses 12.6mb for pipelines which still seems excessive compared to 1mb but apparently this depends heavily on hardware or driver version. I could not test yet how this scales with the real project on those other devices. I understand that this is likely related to a driver issue that we can't fix but maybe it can be mitigated somehow? If not maybe ubershaders can be deactivated depending on hardware or a project setting? ### Steps to reproduce 1. Open the attached project 2. Enable Deploy with Remote Debug 3. Deploy to Android device 4. Observe the logged memory report ### Minimal reproduction project (MRP) [pipeline_memory_mrp.zip](https://github.com/user-attachments/files/18437403/pipeline_memory_mrp.zip)
bug,platform:android,topic:rendering,topic:porting,crash,regression
low
Critical
2,792,530,396
react-native
Image nested In Text with lineHeight specified overflows container
### Description An `<Image>` nested within `<Text>` with a `lineHeight` specified causes the image to overflow the parent container. Workarounds attempted: - Specifying a fixed height on the image - Wrapping the image in a `<View>` with a fixed `height` and/or `lineHeight` - Wrapping the Image in another `<Text>` with a fixed `height` and/or `lineHeight` - Wrapping the image in another `<Text>` with lineHeight set to `undefined` or `null` Expected behaviour: To be able to nest images in Text with a non-default lineHeight. (Please let me know if any more details are required for this issue. Thanks!) ### Steps to reproduce Please see [expo snack](https://snack.expo.dev/@tomkelsey/image-nested-in-text-lineheight-bug). Code below: ``` export default function App() { return ( <View style={styles.container}> <View style={styles.box}> <Text style={styles.text}> Hello <Image style={styles.image} source={require('./assets/snack-icon.png')} /> </Text> </View> </View> ); } const styles = StyleSheet.create({ container: { flex: 1, justifyContent: 'center', backgroundColor: '#ecf0f1', padding: 8, }, box: { backgroundColor: 'red', }, text: { backgroundColor: 'blue', // lineHeight: 20, }, image: { height: 300, } }); ``` ### React Native Version 0.76.0 ### Affected Platforms Runtime - iOS, Runtime - Android ### Output of `npx react-native info` ```text Please see expo snack. ``` ### Stacktrace or Logs ```text N/A ``` ### Reproducer https://snack.expo.dev/@tomkelsey/image-nested-in-text-lineheight-bug Alternative reproducer: https://github.com/OzymandiasTheGreat/rn-view-in-text-bug ### Screenshots and Videos **Without lineHeight specified:** <img width="421" alt="Image" src="https://github.com/user-attachments/assets/886f3be0-5b50-4444-8964-71fdc32544f6" /> **With lineHeight specified:** <img width="411" alt="Image" src="https://github.com/user-attachments/assets/07670c1b-dd28-464a-965d-d1b432669b5a" />
Issue: Author Provided Repro,Component: View,Component: Image
low
Critical
2,792,537,803
pytorch
CUDAGraph outputs will be overwritten by a subsequent run?
### 🐛 Describe the bug Hello, I have some doubts about the following cudagraph case. I submitted another issue, #144386 ``` import torch def test_cuda_graph_output_overwritten(): class MLP(torch.nn.Module): def __init__(self): super().__init__() self.ln = torch.nn.LayerNorm(6) def forward(self, input): ln = self.ln(input) return ln model = MLP().cuda() compiled_model = torch.compile(mode="reduce-overhead")(model) compiled_model(torch.randn([2, 6], device="cuda")) @torch.compile(mode="reduce-overhead") def my_model(x): y = torch.matmul(x, x) return y x = torch.randn(10, 10, device="cuda") y1 = my_model(x) y2 = my_model(x) print(y1) # RuntimeError: Error: accessing tensor output of CUDAGraphs that has been overwritten by a subsequent run. test_cuda_graph_output_overwritten() ``` It was updated just the other day by the following PR ``` https://github.com/pytorch/pytorch/pull/144793/files ``` It was a successful case, and the error displayed on the doc cannot be reproduced. What I want to know is whether the CUDAGraph output will be overwritten by subsequent runs. I found that the doc did not match the actual test results. I don't know if the doc was written wrong or the test case was designed incorrectly. cc @ptrblck @msaroufim @eqy @mcarilli @ezyang @eellison @penguinwu @BoyuanFeng @chauhang @Edenzzzz ### Versions torch 2.4.1 NVIDIA-SMI 560.35.05 Driver Version: 560.35.05 CUDA Version: 12.6
module: cuda,triaged,module: cuda graphs,oncall: pt2
low
Critical
2,792,549,703
opencv
SimpleBlobDetector option to get thresholds included in final location
### Describe the feature and motivation Let's say the blob detector had a minimum threshold of 10 and maximum of 200, which were the threshold values where there was a valid blob that contributed to the final decision? ### Additional context _No response_
feature
low
Minor
2,792,582,833
flutter
[ios][add2app] `Flutter.podspec` is missing after running `flutter build ios-framework`
### Steps to reproduce I'm following Add to app guideline for iOS, the last option[Use frameworks and CocoaPods](https://docs.flutter.dev/add-to-app/ios/project-setup#89-tab-panel) After I run command `flutter build ios-framework`, all frameworks are exported successfully, but in step `Add Flutter engine to your Podfile`, docs stated that I need to update Podfile with : ``` pod 'Flutter', :podspec => '/path/to/MyApp/Flutter/[build mode]/Flutter.podspec' ``` I looked for `Flutter.podspec` in all 3 build modes: Debug, Profile and Release but could not see it. This seems to be happened in the past with https://github.com/flutter/flutter/issues/55095? ### Expected results `Flutter.podspec` should be exported as mentioned in the docs ### Actual results `Flutter.podspec` is missing ### Code sample https://github.com/huycozy/reproduce_issue_ios_native_addtoapp_optionC ### Screenshots or Video <details open> <summary>Screenshots / Video demonstration</summary> [Upload media here] </details> ### Logs <details open><summary>Logs</summary> ```console [Paste your logs here] ``` </details> ### Flutter Doctor output <details open> <summary>flutter doctor -v (stable and master)</summary> ```console [✓] Flutter (Channel stable, 3.27.2, on macOS 15.2 24C101 darwin-x64, locale en-VN) • Flutter version 3.27.2 on channel stable at /Users/huynq/Documents/GitHub/flutter • Upstream repository https://github.com/flutter/flutter.git • Framework revision 68415ad1d9 (9 hours ago), 2025-01-13 10:22:03 -0800 • Engine revision e672b006cb • Dart version 3.6.1 • DevTools version 2.40.2 [✓] Android toolchain - develop for Android devices (Android SDK version 35.0.0) • Android SDK at /Users/huynq/Library/Android/sdk • Platform android-35, build-tools 35.0.0 • ANDROID_SDK_ROOT = /Users/huynq/Library/Android/sdk • Java binary at: /Applications/Android Studio.app/Contents/jbr/Contents/Home/bin/java • Java version OpenJDK Runtime Environment (build 21.0.4+-12422083-b607.1) • All Android licenses accepted. [✓] Xcode - develop for iOS and macOS (Xcode 16.2) • Xcode at /Applications/Xcode.app/Contents/Developer • Build 16C5032a • CocoaPods version 1.16.2 [✓] Chrome - develop for the web • Chrome at /Applications/Google Chrome.app/Contents/MacOS/Google Chrome [✓] Android Studio (version 2024.2) • Android Studio at /Applications/Android Studio.app/Contents • Flutter plugin can be installed from: 🔨 https://plugins.jetbrains.com/plugin/9212-flutter • Dart plugin can be installed from: 🔨 https://plugins.jetbrains.com/plugin/6351-dart • android-studio-dir = /Applications/Android Studio.app • Java version OpenJDK Runtime Environment (build 21.0.4+-12422083-b607.1) [✓] IntelliJ IDEA Community Edition (version 2024.2.3) • IntelliJ at /Applications/IntelliJ IDEA CE.app • Flutter plugin version 81.1.3 • Dart plugin version 242.22855.32 [✓] VS Code (version 1.96.2) • VS Code at /Applications/Visual Studio Code.app/Contents • Flutter extension version 3.102.0 [✓] Connected device (3 available) • Pixel 7 (mobile) • 2B171FDH20084L • android-arm64 • Android 15 (API 35) • macOS (desktop) • macos • darwin-x64 • macOS 15.2 24C101 darwin-x64 • Chrome (web) • chrome • web-javascript • Google Chrome 131.0.6778.265 [✓] Network resources • All expected network resources are available. • No issues found! ``` ```console [!] Flutter (Channel master, 3.28.0-2.0.pre.38724, on macOS 15.2 24C101 darwin-x64, locale en-VN) [4.2s] • Flutter version 3.28.0-2.0.pre.38724 on channel master at /Users/huynq/Documents/GitHub/flutter_master ! Warning: `flutter` on your path resolves to /Users/huynq/Documents/GitHub/flutter/bin/flutter, which is not inside your current Flutter SDK checkout at /Users/huynq/Documents/GitHub/flutter_master. Consider adding /Users/huynq/Documents/GitHub/flutter_master/bin to the front of your path. ! Warning: `dart` on your path resolves to /Users/huynq/Documents/GitHub/flutter/bin/dart, which is not inside your current Flutter SDK checkout at /Users/huynq/Documents/GitHub/flutter_master. Consider adding /Users/huynq/Documents/GitHub/flutter_master/bin to the front of your path. • Upstream repository https://github.com/flutter/flutter.git • Framework revision 1b0441c18a (2 hours ago), 2025-01-13 17:29:08 -0800 • Engine revision 1b0441c18a • Dart version 3.7.0 (build 3.7.0-312.0.dev) • DevTools version 2.42.0 • If those were intentional, you can disregard the above warnings; however it is recommended to use "git" directly to perform update checks and upgrades. [✓] Android toolchain - develop for Android devices (Android SDK version 35.0.0) [5.7s] • Android SDK at /Users/huynq/Library/Android/sdk • Platform android-35, build-tools 35.0.0 • ANDROID_SDK_ROOT = /Users/huynq/Library/Android/sdk • Java binary at: /Applications/Android Studio.app/Contents/jbr/Contents/Home/bin/java This JDK is specified in your Flutter configuration. To change the current JDK, run: `flutter config --jdk-dir="path/to/jdk"`. • Java version OpenJDK Runtime Environment (build 21.0.4+-12422083-b607.1) • All Android licenses accepted. [✓] Xcode - develop for iOS and macOS (Xcode 16.2) [2.6s] • Xcode at /Applications/Xcode.app/Contents/Developer • Build 16C5032a • CocoaPods version 1.16.2 [✓] Chrome - develop for the web [259ms] • Chrome at /Applications/Google Chrome.app/Contents/MacOS/Google Chrome [✓] Android Studio (version 2024.2) [257ms] • Android Studio at /Applications/Android Studio.app/Contents • Flutter plugin can be installed from: 🔨 https://plugins.jetbrains.com/plugin/9212-flutter • Dart plugin can be installed from: 🔨 https://plugins.jetbrains.com/plugin/6351-dart • android-studio-dir = /Applications/Android Studio.app • Java version OpenJDK Runtime Environment (build 21.0.4+-12422083-b607.1) [✓] IntelliJ IDEA Community Edition (version 2024.2.3) [248ms] • IntelliJ at /Applications/IntelliJ IDEA CE.app • Flutter plugin version 81.1.3 • Dart plugin version 242.22855.32 [✓] VS Code (version 1.96.2) [30ms] • VS Code at /Applications/Visual Studio Code.app/Contents • Flutter extension version 3.102.0 [✓] Connected device (3 available) [7.7s] • Pixel 7 (mobile) • 2B171FDH20084L • android-arm64 • Android 15 (API 35) • macOS (desktop) • macos • darwin-x64 • macOS 15.2 24C101 darwin-x64 • Chrome (web) • chrome • web-javascript • Google Chrome 131.0.6778.265 [✓] Network resources [509ms] • All expected network resources are available. ! Doctor found issues in 1 category. ``` </details>
platform-ios,tool,a: existing-apps,t: xcode,has reproducible steps,P2,team-ios,triaged-ios,found in release: 3.27,found in release: 3.28
low
Critical
2,792,663,145
pytorch
DISABLED test_run_decompositions_same_handle_id (__main__.TestNumericDebugger)
Platforms: mac, macos This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_run_decompositions_same_handle_id&suite=TestNumericDebugger&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35698516196). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 6 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_run_decompositions_same_handle_id` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_quantization.py` ConnectionTimeoutError: Connect timeout for 5000ms, GET https://raw.githubusercontent.com/pytorch/pytorch/main/test/test_quantization.py -2 (connected: false, keepalive socket: false, socketHandledRequests: 1, socketHandledResponses: 0) headers: {} cc @jerryzh168 @jianyuh @raghuramank100 @jamesr66a @vkuzo @jgong5 @Xia-Weiwen @leslie-fang-intel @msaroufim @clee2000 @wdvr @malfet @albanD
oncall: quantization,triaged,module: flaky-tests,module: macos,skipped
low
Critical