id
int64
393k
2.82B
repo
stringclasses
68 values
title
stringlengths
1
936
body
stringlengths
0
256k
โŒ€
labels
stringlengths
2
508
priority
stringclasses
3 values
severity
stringclasses
3 values
2,789,625,977
pytorch
torch.nn.functional.scaled_dot_product_attention is_causal fails for kv-cache case (sequential and further parallel attention)
### ๐Ÿš€ The feature, motivation and pitch **Behaviour found for torch version 2.2.2** It would be great if scaled_dot_product_attention could be (easily) used for the case of sequential token generation when a kv-cache is present. However, currently when is_causal is set and a single query vector is put in, the function only compares against the earliest k and v resulting in repeatedly producing the same vector in sequential token generation. More generally, in cases where further parallel attention is required - even when already a kv-cache has been generated - I found the correct attention matrix difficult to generate. The code I converged to is `mask = torch.tril(torch.ones(w, w, dtype=torch.bool))[-h:, :]` with w = sequence length of KV-cache h = sequence length of queries since a lower-triangular attention mask is required which is all-true for the case of a single query vector. Is this indeed the intended way to use scaled_dot_product_attention or am I doing something dumb? ### Alternatives for is_causal=True, I propose to use the attention mask generated by the code above (plus some unsqueezing for broadcasting). ### Additional context Behaviour found for torch version 2.2.2
triaged,module: sdpa
low
Minor
2,789,626,231
kubernetes
kube-proxy --cleanup issues
1. We don't actually document `kube-proxy --cleanup` anywhere. 2. It could probably do a _slightly_ better job than it actually does (eg, https://github.com/kubernetes/kubeadm/issues/3133#issuecomment-2592104802)
sig/network,triage/accepted
low
Minor
2,789,629,529
next.js
Client-side navigation error with rewrites and catch-all routes
### Link to the code that reproduces this issue repository: https://github.com/klaasman/nextjs-rewrite-catchall-conflict preview deployment: https://nextjs-rewrite-catchall-conflict.vercel.app/ ### To Reproduce A routing precedence issue arises when URL rewrites conflict with catch-all routes during client-side navigation, but only when middleware exists AND the catch-all route has `fallback: false` AND the resource served by the proxied host returns a 2xx response. To reproduce, either [clone the repository](https://github.com/klaasman/nextjs-rewrite-catchall-conflict) and run it, or open the preview deployment at https://nextjs-rewrite-catchall-conflict.vercel.app, or follow the steps below: 1. Create a Next.js project (using pages-router, didn't test with app router) 2. Add a `middleware.ts` file (can be an empty function). 2. Add a catch-all route file `pages/[...segments].tsx` where `getStaticPaths` is configured with `fallback: false`. 3. Set up `next.config.js` rewrite rule to proxy incoming requests (using `fallback` rewrites) 4. Ensure the proxied endpoint (e.g., httpstat.us/200) returns a 2xx status code. 5. Navigate to `/200` using client-side navigation (via Link component). ### Current vs. Expected behavior **Current behavior:** During client-side navigation, the catch-all route takes precedence over the configured rewrite when the proxied endpoint returns a 2xx response. This results in incorrect routing behavior. (see [preview-deployment](https://nextjs-rewrite-catchall-conflict.vercel.app/)) **Expected behavior:** The client-side navigation should follow the rewrite rule, correctly routing to the proxied endpoint regardless of the 2xx response. The catch-all route should not interfere with the rewrite when the endpoint returns a successful response. ### Provide environment information ```bash Operating System: Platform: darwin Arch: arm64 Version: Darwin Kernel Version 23.6.0: Mon Jul 29 21:14:30 PDT 2024; root:xnu-10063.141.2~1/RELEASE_ARM64_T6000 Available memory (MB): 32768 Available CPU cores: 10 Binaries: Node: 22.12.0 npm: 10.9.0 Yarn: 1.22.19 pnpm: 9.14.2 Relevant Packages: next: 15.2.0-canary.11 // Latest available version is detected (15.2.0-canary.11). eslint-config-next: N/A react: 19.0.0 react-dom: 19.0.0 typescript: 5.7.3 Next.js Config: output: N/A ``` ### Which area(s) are affected? (Select all that apply) Middleware, Pages Router, Navigation ### Which stage(s) are affected? (Select all that apply) next dev (local), next start (local), Vercel (Deployed) ### Additional context _No response_
Middleware,Navigation,Pages Router
low
Critical
2,789,700,016
ollama
most powerful model with 4m context MiniMax-Text-01
https://huggingface.co/MiniMaxAI/MiniMax-Text-01 https://x.com/MiniMax__AI/status/1879226391352549451
model request
low
Major
2,789,709,557
vscode
Firefox on iOS: Cannot type in editor after changing focus
<!-- โš ๏ธโš ๏ธ Do Not Delete This! bug_report_template โš ๏ธโš ๏ธ --> <!-- Please read our Rules of Conduct: https://opensource.microsoft.com/codeofconduct/ --> <!-- ๐Ÿ•ฎ Read our guide about submitting issues: https://github.com/microsoft/vscode/wiki/Submitting-Bugs-and-Suggestions --> <!-- ๐Ÿ”Ž Search existing issues to avoid creating duplicates. --> <!-- ๐Ÿงช Test using the latest Insiders build to see if your issue has already been fixed: https://code.visualstudio.com/insiders/ --> <!-- ๐Ÿ’ก Instead of creating your report here, use 'Report Issue' from the 'Help' menu in VS Code to pre-fill useful information. --> <!-- ๐Ÿ”ง Launch with `code --disable-extensions` to check. --> Does this issue occur when all extensions are disabled?: Yes/No <!-- ๐Ÿช“ If you answered No above, use 'Help: Start Extension Bisect' from Command Palette to try to identify the cause. --> <!-- ๐Ÿ“ฃ Issues caused by an extension need to be reported directly to the extension publisher. The 'Help > Report Issue' dialog can assist with this. --> In Firefox on iOS (iPad Pro 12.9 Gen4) I am unable to type in the editor or terminal windows (whichever I last used) after switching focus to another application and then back to Firefox. Clicking (touching) another pane, e.g. if I was in the editor changing to the terminal and back, resolves the issue. - VS Code Version: GitHub Codespaces - OS Version: iOS 18 Steps to Reproduce: 1. Open a GitHub Codespace in Firefox on iOS. 2. Open an editor window to a file. 3. Change to another application. 4. Change back to Firefox. 5. No keyboard input works in the editor. 6. Select a different pane (e.g. explorer, terminal). 7. Select the editor. 8. The keyboard works normally. **Additional Context** This is not limited to GitHub Codespaces. The default in-place editor on github.com experiences the same issue. The issue occurs both with and without the Magic Keyboard attached. Being on iOS there are no plugins in Firefox. Safe Browsing is FF is set to `Strict`.
firefox,editor-edit-context
low
Critical
2,789,714,297
pytorch
Torch compile cache
### ๐Ÿ› Describe the bug Hi, I'm setting the following values TORCHINDUCTOR_FX_GRAPH_CACHE TORCHINDUCTOR_CACHE_DIR I see the cache folder is populated by 3.8G. I'm creating a tar archive to place the cache on another instance, with same H100 and untar on the other instance. But compile time shows the cache has not been used. If I'm setting the variables on two instances that share the same network drive, compile on one, then run on the other one, I see that the compile time is still very high, like the cache has not been taken into account. What are the signatures of the cache elements? If I know better what triggers the cache retrieval, I might find a configuration where I can reuse the cache between instances. Thanks for your help! ### Versions torch @ https://download.pytorch.org/whl/nightly/cu124/torch-2.6.0.dev20240918%2Bcu124-cp311-cp311-linux_x86_64.whl torchaudio @ https://download.pytorch.org/whl/nightly/cu124/torchaudio-2.5.0.dev20240918%2Bcu124-cp311-cp311-linux_x86_64.whl torchvision @ https://download.pytorch.org/whl/nightly/cu124/torchvision-0.20.0.dev20240918%2Bcu124-cp311-cp311-linux_x86_64.whl pytorch_triton @ https://download.pytorch.org/whl/nightly/pytorch_triton-3.1.0%2B5fe38ffd73-cp311-cp311-linux_x86_64.whl cc @chauhang @penguinwu
triaged,oncall: pt2
low
Critical
2,789,742,411
flutter
[ERROR:flutter/runtime/dart_vm_initializer.cc(40)] Unhandled Exception: PlatformException(channel-error, Unable to establish connection on channel: "dev.flutter.pigeon.shared_preferences_foundation.LegacyUserDefaultsApi.getAll"., null, null)
### Steps to reproduce [ERROR:flutter/runtime/dart_vm_initializer.cc(40)] Unhandled Exception: PlatformException(channel-error, Unable to establish connection on channel: "dev.flutter.pigeon.shared_preferences_foundation.LegacyUserDefaultsApi.getAll"., null, null) ### Expected results [ERROR:flutter/runtime/dart_vm_initializer.cc(40)] Unhandled Exception: PlatformException(channel-error, Unable to establish connection on channel: "dev.flutter.pigeon.shared_preferences_foundation.LegacyUserDefaultsApi.getAll"., null, null) ### Actual results [ERROR:flutter/runtime/dart_vm_initializer.cc(40)] Unhandled Exception: PlatformException(channel-error, Unable to establish connection on channel: "dev.flutter.pigeon.shared_preferences_foundation.LegacyUserDefaultsApi.getAll"., null, null) ### Code sample <details open><summary>Code sample</summary> ```dart await SharedPreferences.getInstance(); ``` </details> ### Screenshots or Video <details open> <summary>Screenshots / Video demonstration</summary> <img width="1347" alt="Image" src="https://github.com/user-attachments/assets/413713cb-d5d0-4e9a-9faa-572efb9a4631" /> </details> ### Logs <details open><summary>Logs</summary> ```console h List all available interactive commands. d Detach (terminate "flutter run" but leave application running). c Clear the screen q Quit (terminate the application on the device). A Dart VM Service on 15 pro max 17.0 is available at: http://127.0.0.1:59532/h7t2NlTl1Ww=/ The Flutter DevTools debugger and profiler on 15 pro max 17.0 is available at: http://127.0.0.1:9101?uri=http://127.0.0.1:59532/h7t2NlTl1Ww=/ Performing hot restart... Restarted application in 575ms. [ERROR:flutter/runtime/dart_vm_initializer.cc(40)] Unhandled Exception: PlatformException(channel-error, Unable to establish connection on channel: "dev.flutter.pigeon.shared_preferences_foundation.LegacyUserDefaultsApi.getAll"., null, null) ``` </details> ### Flutter Doctor output <details open><summary>Doctor output</summary> ```console h List all available interactive commands. d Detach (terminate "flutter run" but leave application running). c Clear the screen q Quit (terminate the application on the device). A Dart VM Service on 15 pro max 17.0 is available at: http://127.0.0.1:59532/h7t2NlTl1Ww=/ The Flutter DevTools debugger and profiler on 15 pro max 17.0 is available at: http://127.0.0.1:9101?uri=http://127.0.0.1:59532/h7t2NlTl1Ww=/ Performing hot restart... Restarted application in 575ms. [ERROR:flutter/runtime/dart_vm_initializer.cc(40)] Unhandled Exception: PlatformException(channel-error, Unable to establish connection on channel: "dev.flutter.pigeon.shared_preferences_foundation.LegacyUserDefaultsApi.getAll"., null, null) ``` </details>
waiting for customer response,in triage
low
Critical
2,789,742,478
terminal
BringWindowToTop doesn't set active tab
### Description of the new feature Currently, BringWindowToTop only brings the terminal window to the foreground; however, it does not activate the correct tab. In certain scenarios, the user's focus is not restored to the intended location if the active tab isn't the one that initiated the BringWindowToTop call. Using the information from [this StackOverflow post](https://stackoverflow.com/a/59659421/3594197), I created a [functional example](https://github.com/zacuke/start-shim). The example demonstrates BringWindowToTop being used to ensure the user focus returns to the correct command line. A current workaround for this limitation is to avoid using tabs altogether and stick with individual console windows instead. As a side note, it would be nice if the built-in windows `start` command also had a `/refocus` option, so the functional example I created wouldn't be necessary. We could alias `start /wait /refocus myapp $*` to achieve this workflow behavior. ### Proposed technical implementation details If BringWindowToTop() can't be hooked to automatically switch to the active tab, is there an alternative approach to programmatically identify the correct tab using some sort of ID or identifier, and then invoke a function to set that tab as active? I see a possible way of doing it on line 940 in src/cascadia/TerminalControl/HwndTerminal.cpp `void __stdcall TerminalSetFocus(void* terminal)` but it doesn't seem to me that is exposed as a public API. Which leads me to this ``` /// This class is only left public since xaml cannot work with internal classes. /// </remarks> public class TerminalContainer : HwndHost { ... private IntPtr TerminalContainer_MessageHook(IntPtr hwnd, int msg, IntPtr wParam, IntPtr lParam, ref bool handled) { if (hwnd == this.hwnd) { switch ((NativeMethods.WindowMessage)msg) { case NativeMethods.WindowMessage.WM_SETFOCUS: NativeMethods.TerminalSetFocus(this.terminal); ``` I can imagine trying to send the terminal host process some kind of IPC message which would trigger the TerminalSetFocus allowing us to call BringWindowToTop as well as this additional trick to bring the correct tab up too. But ideally, the host process detects BringWindowToTop() and also brings the tab to top.
Issue-Feature,Product-Conpty,Area-Windowing
low
Minor
2,789,781,950
vscode
Dragging does not work in a VSCode extension WebView
<!-- โš ๏ธโš ๏ธ Do Not Delete This! bug_report_template โš ๏ธโš ๏ธ --> <!-- Please read our Rules of Conduct: https://opensource.microsoft.com/codeofconduct/ --> <!-- ๐Ÿ•ฎ Read our guide about submitting issues: https://github.com/microsoft/vscode/wiki/Submitting-Bugs-and-Suggestions --> <!-- ๐Ÿ”Ž Search existing issues to avoid creating duplicates. --> <!-- ๐Ÿงช Test using the latest Insiders build to see if your issue has already been fixed: https://code.visualstudio.com/insiders/ --> <!-- ๐Ÿ’ก Instead of creating your report here, use 'Report Issue' from the 'Help' menu in VS Code to pre-fill useful information. --> <!-- ๐Ÿ”ง Launch with `code --disable-extensions` to check. --> Does this issue occur when all extensions are disabled?: Yes <!-- ๐Ÿช“ If you answered No above, use 'Help: Start Extension Bisect' from Command Palette to try to identify the cause. --> <!-- ๐Ÿ“ฃ Issues caused by an extension need to be reported directly to the extension publisher. The 'Help > Report Issue' dialog can assist with this. --> - VS Code Version: Version: 1.96.3 (user setup) Commit: 91fbdddc47bc9c09064bf7acf133d22631cbf083 Date: 2025-01-09T18:14:09.060Z Electron: 32.2.6 ElectronBuildId: 10629634 Chromium: 128.0.6613.186 Node.js: 20.18.1 V8: 12.8.374.38-electron.0 - OS Version: Windows 11 Professional x64 22631.4602 Steps to Reproduce: 1. Clone https://github.com/wchengk09/vscode-webview-dragging-does-not-work 2. Open it in VSCode 3. Press `F5` to run the extension I want to create a WebView to add files by dragging it from the explorer to the WebView. But when I drag a file, VSCode will open it in a new editor, and the dragging event will not be caught. I also tried dragging files from the Windows explorer, and the result is the same. I even tried pressing `shift` when dragging the file, but I still cannot catch the event. I found some similar issues, such as #182449 and #218626, but none of them helped me. Here is a video: https://github.com/user-attachments/assets/acaf2051-4162-42bc-b7c6-d3101df17f31
bug,webview
low
Critical
2,789,801,882
neovim
Capability to show diagnostics as markdown
### Problem I was working on pretty typescript error message formatter for float. While it's somewhat better than the default output it would be nice to have markdown syntax highlighting for diagnostics as well. I did some digging and found out that we are using same function Neovim using for LSP `hover` in diagnostics except we have `syntax=plaintext` hard coded here. https://github.com/s1n7ax/neovim/blob/a78eddd54112033eea0212865efd2f75cc59fc93/runtime/lua/vim/diagnostic.lua?plain=1#L1977 ## Before ![Image](https://github.com/user-attachments/assets/cb90b490-3e16-4a55-87f8-1e98e4a411a4) ## After ![Image](https://github.com/user-attachments/assets/a1666cda-891d-44b0-836a-4c18527fd0fb) I would like to implement this feature. My plan is to add `syntax` field to `vim.diagnostic.Opts.Float`. possible values would be either `markdown` or `plaintext`. Additionally we might need to disable default highlights that's added line by line https://github.com/s1n7ax/neovim/blob/a78eddd54112033eea0212865efd2f75cc59fc93/runtime/lua/vim/diagnostic.lua?plain=1#L1986 ### Expected behavior When syntax is set to markdown, diagnostics markdown syntax highlighting should be used
enhancement,lsp,diagnostic
low
Critical
2,789,812,889
PowerToys
Image resizer incorrectly calculates missing dimension in fit mode
### Microsoft PowerToys version 0.87.1 ### Installation method WinGet ### Running as admin No ### Area(s) with issue? Image Resizer ### Steps to reproduce Take this image as input. ![Image](https://github.com/user-attachments/assets/506b5a4d-e2a9-4f86-9058-70b10c2d7fec) The dimensions are 2040 x 1530 pixels. Now resize it. ![Image](https://github.com/user-attachments/assets/c8480f98-8291-41dc-877b-14d0cf64763f) ### โœ”๏ธ Expected Behavior Resulting dimension should be 1000 pixels x whatever number of pixels is necessary to keep the ratio. ### โŒ Actual Behavior Here is the resulting image. ![Image](https://github.com/user-attachments/assets/62ef377a-588d-4d04-af6a-5d6242fcab26) The dimensions are 853 x 640 pixels. ### Other Software None.
Issue-Bug,Needs-Triage
low
Minor
2,789,819,980
opencv
threshold API : query threshold only, and masks
### Describe the feature and motivation Currently (OpenCV 4.11), `cv::threshold()` supports auto-threshold binarizations OTSU and TRIANGLE and returns the computed threshold value. It's a pity that there is no API to only query that auto-threshold without actually performing the thresholding. To avoid adding an API for that and do not duplicate any code, a very easy fix would be to add some flag ~`cv::THRESH_DISABLE`~ `cv::THRESH_DRYRUN` specifically for that purpose. However, `cv::threshold()` also has a big limitation : it does not support masking. I would like to add such a `cv::thresholdWithMask()` (or a `cv::threshold()` overload with additional mask parameter). But if this new API is created, ~`cv::THRESH_DISABLE`~ `cv::THRESH_DRYRUN` could be irrelevant, replaced by a boolean parameter of the new function. - would a PR `cv::thresholdWithMask()` (or `cv::threshold()` overload) be accepted or is there a reason why thresholding does not support masking ? - which is better, `cv::thresholdWithMask()` or `cv::threshold()` overload ? - is the flag ~`cv::THRESH_DISABLE`~ `cv::THRESH_DRYRUN` a better idea than some `cv::getThresholdAutoValue()` ? - is the flag ~`cv::THRESH_DISABLE`~ `cv::THRESH_DRYRUN` a better idea than some specific boolean input parameter ?
feature,category: imgproc
low
Minor
2,789,828,631
yt-dlp
Cannot download on Patreon with --cookies-from-browser
### DO NOT REMOVE OR SKIP THE ISSUE TEMPLATE - [X] I understand that I will be **blocked** if I *intentionally* remove or skip any mandatory\* field ### Checklist - [X] I'm reporting that yt-dlp is broken on a **supported** site - [X] I've verified that I have **updated yt-dlp to nightly or master** ([update instructions](https://github.com/yt-dlp/yt-dlp#update-channels)) - [X] I've checked that all provided URLs are playable in a browser with the same IP and same login details - [X] I've checked that all URLs and arguments with special characters are [properly quoted or escaped](https://github.com/yt-dlp/yt-dlp/wiki/FAQ#video-url-contains-an-ampersand--and-im-getting-some-strange-output-1-2839-or-v-is-not-recognized-as-an-internal-or-external-command) - [X] I've searched [known issues](https://github.com/yt-dlp/yt-dlp/issues/3766) and the [bugtracker](https://github.com/yt-dlp/yt-dlp/issues?q=) for similar issues **including closed ones**. DO NOT post duplicates - [X] I've read the [guidelines for opening an issue](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#opening-an-issue) - [X] I've read about [sharing account credentials](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#are-you-willing-to-share-account-details-if-needed) and I'm willing to share it if required ### Region France ### Provide a description that is worded well enough to be understood Hi everyone, and thank you for the software, Since the last few weeks, I cannot download no more on Patreon, it used to work. I have update to the last stable version: ### Provide verbose output that clearly demonstrates the problem - [X] Run **your** yt-dlp command with **-vU** flag added (`yt-dlp -vU <your command line>`) - [x] If using API, add `'verbose': True` to `YoutubeDL` params instead - [X] Copy the WHOLE output (starting with `[debug] Command-line config`) and insert it below ### Complete Verbose Output ```shell [debug] Command-line config: ['-vU', '--cookies-from-browser', 'firefox', 'https://www.patreon.com/posts/four-ways-to-118220732'] [debug] Encodings: locale UTF-8, fs utf-8, pref UTF-8, out utf-8, error utf-8, screen utf-8 [debug] yt-dlp version [email protected] from yt-dlp/yt-dlp [dade5e35c] (zip) [debug] Python 3.12.8 (CPython x86_64 64bit) - Linux-6.12.6-100.fc40.x86_64-x86_64-with-glibc2.39 (OpenSSL 3.2.2 4 Jun 2024, glibc 2.39) [debug] exe versions: ffmpeg 6.1.2 (setts), ffprobe 6.1.2 [debug] Optional libraries: Cryptodome-3.21.0, brotli-1.1.0, certifi-2023.05.07, mutagen-1.47.0, requests-2.31.0, sqlite3-3.45.1, urllib3-1.26.20, websockets-12.0 [debug] Proxy map: {} Extracting cookies from firefox [debug] Extracting cookies from: "/home/kevin/.mozilla/firefox/meicwcva.default-release-3-1699360557147/cookies.sqlite" Extracted 602 cookies from firefox [debug] Request Handlers: urllib [debug] Loaded 1837 extractors [debug] Fetching release info: https://api.github.com/repos/yt-dlp/yt-dlp/releases/latest Latest version: [email protected] from yt-dlp/yt-dlp yt-dlp is up to date ([email protected] from yt-dlp/yt-dlp) [patreon] Extracting URL: https://www.patreon.com/posts/four-ways-to-118220732 [patreon] 118220732: Downloading API JSON ERROR: [patreon] 118220732: Unable to download JSON metadata: HTTP Error 403: Forbidden (caused by <HTTPError 403: Forbidden>) File "/mnt/rip/Rip/./yt-dlp/yt_dlp/extractor/common.py", line 742, in extract ie_result = self._real_extract(url) ^^^^^^^^^^^^^^^^^^^^^^^ File "/mnt/rip/Rip/./yt-dlp/yt_dlp/extractor/patreon.py", line 281, in _real_extract post = self._call_api( ^^^^^^^^^^^^^^^ File "/mnt/rip/Rip/./yt-dlp/yt_dlp/extractor/patreon.py", line 43, in _call_api return self._download_json( ^^^^^^^^^^^^^^^^^^^^ File "/mnt/rip/Rip/./yt-dlp/yt_dlp/extractor/common.py", line 1152, in download_content res = getattr(self, download_handle.__name__)(url_or_request, video_id, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/mnt/rip/Rip/./yt-dlp/yt_dlp/extractor/common.py", line 1112, in download_handle res = self._download_webpage_handle( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/mnt/rip/Rip/./yt-dlp/yt_dlp/extractor/common.py", line 962, in _download_webpage_handle urlh = self._request_webpage(url_or_request, video_id, note, errnote, fatal, data=data, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/mnt/rip/Rip/./yt-dlp/yt_dlp/extractor/common.py", line 911, in _request_webpage raise ExtractorError(errmsg, cause=err) File "/mnt/rip/Rip/./yt-dlp/yt_dlp/networking/_urllib.py", line 398, in _send res = opener.open(urllib_req, timeout=self._calculate_timeout(request)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib64/python3.12/urllib/request.py", line 521, in open response = meth(req, response) ^^^^^^^^^^^^^^^^^^^ File "/usr/lib64/python3.12/urllib/request.py", line 630, in http_response response = self.parent.error( ^^^^^^^^^^^^^^^^^^ File "/usr/lib64/python3.12/urllib/request.py", line 559, in error return self._call_chain(*args) ^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib64/python3.12/urllib/request.py", line 492, in _call_chain result = func(*args) ^^^^^^^^^^^ File "/usr/lib64/python3.12/urllib/request.py", line 639, in http_error_default raise HTTPError(req.full_url, code, msg, hdrs, fp) urllib.error.HTTPError: HTTP Error 403: Forbidden The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/mnt/rip/Rip/./yt-dlp/yt_dlp/extractor/common.py", line 898, in _request_webpage return self._downloader.urlopen(self._create_request(url_or_request, data, headers, query, extensions)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/mnt/rip/Rip/./yt-dlp/yt_dlp/YoutubeDL.py", line 4175, in urlopen return self._request_director.send(req) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/mnt/rip/Rip/./yt-dlp/yt_dlp/networking/common.py", line 117, in send response = handler.send(request) ^^^^^^^^^^^^^^^^^^^^^ File "/mnt/rip/Rip/./yt-dlp/yt_dlp/networking/_helper.py", line 208, in wrapper return func(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/mnt/rip/Rip/./yt-dlp/yt_dlp/networking/common.py", line 340, in send return self._send(request) ^^^^^^^^^^^^^^^^^^^ File "/mnt/rip/Rip/./yt-dlp/yt_dlp/networking/_urllib.py", line 403, in _send raise HTTPError(UrllibResponseAdapter(e.fp), redirect_loop='redirect error' in str(e)) from e yt_dlp.networking.exceptions.HTTPError: HTTP Error 403: Forbidden ```
account-needed,site-bug,triage,can-share-account
low
Critical
2,789,830,741
pytorch
Region check for in-place read and write does not always work
### ๐Ÿ› Describe the bug Hello! If I try to read and write from and to the same locations along the first axis of a tensor, I get a RuntimeError, which is expected: ```python >>> arr = torch.arange(9).reshape(3, 3) >>> arr[1:, :] = arr[:-1, :] --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) Cell In[25], line 1 ----> 1 arr[1:, :] = arr[:-1, :] 2 arr RuntimeError: unsupported operation: some elements of the input tensor and the written-to tensor refer to a single memory location. Please clone() the tensor before performing the operation. ``` However, if I do the same on the second axis, there is no error, but (for me) unexpected behaviour: ```python >>> arr = torch.arange(9).reshape(3, 3) >>> arr[:, 1:] = arr[:, :-1] >>> arr tensor([[0, 0, 0], [3, 3, 3], [6, 6, 6]]) ``` The expected behaviour would be what happens on the GPU (and also for numpy arrays): ```python >>> arr = torch.arange(9).reshape(3, 3).cuda() >>> arr[:, 1:] = arr[:, :-1] >>> arr tensor([[0, 0, 1], [3, 3, 4], [6, 6, 7]], device='cuda:0') ``` I'm not sure if this is actually a bug or just something to be aware of, but I would at least expect CPU and GPU operations to behave the same. How does the check work that results in the RuntimeError in the first case? Is it too expensive to make work for arbitrary slices? Thanks! ### Versions Tested torch versions up to 2.4.0
triaged,module: partial aliasing
low
Critical
2,789,836,169
deno
Support Custom Signal Listeners or a Global `afterAll` Hook in `deno test`
## Description It appears that when defining tests with `Deno.test()` and running them using `deno test`, adding custom signal listeners (e.g. `Deno.addSignalListener`) does not work as expected. The `deno test` runner seems to ignore these listeners, as the signals are only handled internally within the test runner's Rust implementation. In my use case, I am building a test wrapper that awaits a global asynchronous teardown function during a final test step. While this works well during normal test execution, I want the teardown function to be triggered even when the test suite exits unexpectedly, such as when a `SIGINT` or `SIGTERM` signal is received. Here is a simplified example: ```ts Deno.addSignalListener("SIGINT", () => { console.log("Initiating cleanup before exiting..."); // Perform teardown actions, then exit }); // Calls Deno.test() internally and registers teardown logic within a test-step await runTestSuiteAndRegisterTests(); ``` However, when running the test suite with `deno test`, the signal listener is never triggered. Instead, the `deno test` runner uses its own signal handler and outputs the following when interrupted: ``` SIGINT The following tests were pending: run mytopleveltest => ./packages/mypackage/src/runner.ts:42:42 ``` This behavior prevents custom signal listeners from being used to handle cleanup tasks or shutdown hooks effectively. ## Feature Request To make `deno test` more flexible and customizable for advanced test scenarios, I propose one of the following enhancements: 1. **Support for Custom Signal Listeners**: - Allow users to register their own signal listeners (`Deno.addSignalListener`) in addition to the test runner's default handlers. - This would enable users to handle signals like `SIGINT` or `SIGTERM` and execute custom logic, such as cleanup functions, before the process exits. 2. **A Global `afterAll` Hook**: - Introduce a global `afterAll` hook that is executed after all tests complete, regardless of how the test suite terminates (e.g., normal exit or signal interruption). - The `afterAll` hook would allow users to register teardown logic that ensures proper cleanup before the process exits. - the hook should allow passing in synchronous functions as well as asynchronous functions that will be awaited ## Expected Behavior - If a `Deno.addSignalListener` is registered, the test runner should invoke the user's listener(s) in addition to its own internal signal handling. - Alternatively, a global `afterAll` hook would provide a standardized way to execute cleanup logic at the end of the test suite, regardless of how the suite terminates. ## Use Case This feature would enable advanced test suite behaviors, such as: - Cleaning up global resources (e.g. databases, external services, or temporary files) when the suite exits. - Ensuring all test lifecycle hooks (setup, execution, teardown) are handled gracefully, even in interrupted scenarios. ## Current Behavior Currently, `deno test`: - Ignores user-defined signal listeners and only uses its internal Rust signal handling. - Outputs pending tests on signal interruption but does not allow for custom cleanup logic to run. ## Conclusion Adding support for custom signal listeners or a global `afterAll` hook would greatly enhance the flexibility and usability of the `deno test` runner, especially for users with complex test suite requirements. Thank you for considering this feature request! I'm happy to provide further details or examples if needed.
testing
low
Minor
2,789,866,244
rust
`-C split-debuginfo={off,packed,unpacked}` is (effectively) untested on windows-msvc and windows-gnu (well, windows generally)
`tests/run-make/split-debuginfo` has this: https://github.com/rust-lang/rust/blob/2776bdfe423c9fdfcd6313d678f0852ea26f1309/tests/run-make/split-debuginfo/Makefile#L34-L38 Which lumps windows-msvc and windows-gnu together, and also doesn't test anything on windows altogether. Noticed while working on porting `split-debuginfo` to rmake.rs. If this is tested somewhere else, well, it's clearly not in this run-make test.
A-testsuite,A-debuginfo,E-hard,T-compiler,O-windows-gnu,O-windows-msvc,C-bug,A-run-make
low
Critical
2,789,885,203
PowerToys
Exclusion list for 'Move newly created windows to their last known zone'
### Description of the new feature / enhancement I generally love the 'Move newly created windows to their last known zone' feature, but it breaks Edge's own attempt to place its windows to monitors they were last on. After starting edge, it first positions windows well and then PowerToys move it to a single zone. I wouldn't like to exclude edge completely as I like the snap feature that works well. ### Scenario when this would be used? Described above. ### Supporting information _No response_
Needs-Triage
low
Minor
2,789,934,113
kubernetes
persistentVolumeReclaimPolicy: Recycle is said deprecated but still used in PV example
Recycle reclaim policy is deprecated: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#recycle https://github.com/kubernetes/kubernetes/pull/59063 https://groups.google.com/g/kubernetes-dev/c/uexugCza84I Primary example to showcase a PV is using `persistentVolumeReclaimPolicy: Recycle`: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistent-volumes
sig/docs,needs-triage
low
Minor
2,789,947,937
transformers
Add support for MiniMax-Text-01 and MiniMax-VL-01 from MiniMaxAI
### Model description MiniMaxAI has just released two new models for text generation. While the code and weights have been made publicly available, the code requires significant formatting and cleaning to align with the standards of the Hugging Face Transformers library. The models are: **MiniMax-Text-01** MiniMax-Text-01 is a powerful language model with 456 billion total parameters, of which 45.9 billion are activated per token. To better unlock the long context capabilities of the model, MiniMax-Text-01 adopts a hybrid architecture that combines Lightning Attention, Softmax Attention and Mixture-of-Experts (MoE). Leveraging advanced parallel strategies and innovative compute-communication overlap methodsโ€”such as Linear Attention Sequence Parallelism Plus (LASP+), varlen ring attention, Expert Tensor Parallel (ETP), etc., MiniMax-Text-01's training context length is extended to 1 million tokens, and it can handle a context of up to 4 million tokens during the inference. On various academic benchmarks, MiniMax-Text-01 also demonstrates the performance of a top-tier model. **MiniMax-VL-01** It adopts the โ€œViT-MLP-LLMโ€ framework, which is a commonly used technique in the field of multimodal large language models. The model is initialized and trained with three key parts: a 303-million-parameter Vision Transformer (ViT) for visual encoding, a randomly initialized two-layer MLP projector for image adaptation, and the MiniMax-Text-01 as the base LLM. MiniMax-VL-01 has a notable dynamic resolution feature. Input images are resized per a pre-set grid, with resolutions from 336ร—336 to 2016ร—2016, keeping a 336ร—336 thumbnail. The resized images are split into non-overlapping patches of the same size. These patches and the thumbnail are encoded separately and then combined for a full image representation. The training data for MiniMax-VL-01 consists of caption, description, and instruction data. The Vision Transformer (ViT) is trained on 694 million image-caption pairs from scratch. Across four distinct stages of the training pipeline, a total of 512 billion tokens are processed, leveraging this vast amount of data to endow the model with strong capabilities. Finally, MiniMax-VL-01 has reached top-level performance on multimodal leaderboards, demonstrating its edge and dependability in complex multimodal tasks. ### Open source status - [x] The model implementation is available - [x] The model weights are available ### Provide useful links for the implementation - Research Paper: https://arxiv.org/abs/2501.08313 - Authors: [MiniMax](https://arxiv.org/search/cs?searchtype=author&query=MiniMax), [Aonian Li](https://arxiv.org/search/cs?searchtype=author&query=Li,+A), [Bangwei Gong](https://arxiv.org/search/cs?searchtype=author&query=Gong,+B), et al. - Implementation - [MiniMaxAI/MiniMax-Text-01](https://huggingface.co/MiniMaxAI/MiniMax-Text-01/tree/main) - [MiniMaxAI/MiniMax-VL-01](https://huggingface.co/MiniMaxAI/MiniMax-VL-01/tree/main) - Models Weights - [MiniMaxAI/MiniMax-Text-01](https://huggingface.co/MiniMaxAI/MiniMax-Text-01) - [MiniMaxAI/MiniMax-VL-01](https://huggingface.co/MiniMaxAI/MiniMax-VL-01)
New model
low
Major
2,789,974,579
TypeScript
Accessing protected computed property does not produce a compiler error
### ๐Ÿ”Ž Search Terms protected computed no error bug ### ๐Ÿ•— Version & Regression Information This is the behavior in every version I tried (v3.3.3333, v4.0.5, v5.7.3), and I reviewed the FAQ for entries about **Common "Bugs" That Aren't Bugs** ### โฏ Playground Link https://tsplay.dev/wjdn7m ### ๐Ÿ’ป Code ```ts declare class Foo { protected readonly baz = 42 } declare class Bar { readonly foo: Foo } declare const bar: Bar // @ts-expect-error console.log(bar.foo["baz"].toFixed(2)) ``` ### ๐Ÿ™ Actual behavior - (without `// @ts-expect-error`): No errors - (with `// @ts-expect-error`): Compiler error `Unused '@ts-expect-error' directive` ### ๐Ÿ™‚ Expected behavior - (without `// @ts-expect-error`): Compiler error `Property [โ€ฆ] is protected and only accessible within class 'Foo' and its subclasses` - (with `// @ts-expect-error`): No errors ### Additional information about the issue _No response_
Suggestion,Awaiting More Feedback
low
Critical
2,789,992,508
tensorflow
Windows libtensorflow size increased 4x with 2.17
### Issue type Build/Install ### Have you reproduced the bug with TensorFlow Nightly? No ### Source binary ### TensorFlow version 2.17+ ### Custom code No ### OS platform and distribution Windows x86_64 ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current behavior? Libtensorflow.dll for windows was 238MB with 2.16.2, is 909MB with 2.17.0, and is 931MB with 2.18.0. At the same time the linux versions haven't changed significantly. I would not expect the tensorflow binaries on windows to be over twice the size of linux, nor for the size to increase so much without any notice in the release notes. I've tried to look through the bazel configs but there's nothing obvious to me which would cause this! ### 2.16.2 versions_2.16.2_libtensorflow-cpu-windows-x86_64 238MB versions_2.16.2_libtensorflow-cpu-linux-x86_64 422MB ### 2.17.0 versions_2.17.0_libtensorflow-cpu-windows-x86_64 909MB versions_2.17.0_libtensorflow-cpu-linux-x86_64 412MB ### 2.18.0 versions_2.18.0_libtensorflow-cpu-windows-x86_64 931MB ### Standalone code to reproduce the issue ```shell Libtensorflow is provided by google via the GCS buckets documented here https://www.tensorflow.org/install/lang_c ``` ### Relevant log output ```shell ```
type:build/install,subtype:windows,2.17
medium
Critical
2,789,993,956
flutter
[flutter_adaptive_scaffold] allow users to specify navigation rail padding with AdaptiveScaffold
### Use case The current implementation of AdapativeScaffold supplies the default 8 dp padding which is undesirable in some layouts, such as when there is an `AppBar` in the body of a given page. I would like to have control over the padding and be able to override it manually. <img width="202" alt="Image" src="https://github.com/user-attachments/assets/4ace5aab-8146-43d5-a379-980f3078e837" /> ### Proposal Include a `navigationRailPadding` property in the constructor for `AdaptiveScaffold` that allows you to override the default padding for the navigation rail.
framework,package,c: proposal,team-ecosystem,P2,p: flutter_adaptive_scaffold,triaged-ecosystem
low
Minor
2,790,025,830
tensorflow
TensorRT ( C++ ) inference strange behavior on Jetson AGX Xavier
I developed 2 distinct models, for 2 use cases, to analyzed some vibration patterns: one of them when system is turn on and second when system is shut down (so there are no any vibration detected ) The entire training process uses TensorFlow 2.7.0 (an auto encoder in python) to create .h5 models, which are converted to .onnx models files and then to .engine files for the Jetson platform (Jetson AGX Xavier CUDA ). Jetson AGX Xavier specs: cuda: 11.4.315 cuDNN: 8.6.0 tensorRT: 8.5.2.2 jetpack: 5.1.3 python3 -c "import tensorflow as tf; print('TensorFlow version:', tf.__version__)" TensorFlow version: 2.11.0 Auto encoder trainig script in python ( sample) : ``` input_img = tf.keras.layers.Input(shape=(2000, lines)) # Encoder x = tf.keras.layers.Conv1D(12, 128, padding='same')(input_img) x = tf.keras.layers.MaxPooling1D(4)(x) # Downsample: 2000 -> 500 x = tf.keras.layers.Conv1D(12, 64, padding='same')(x) x = tf.keras.layers.MaxPooling1D(2)(x) # Downsample: 500 -> 250 x = tf.keras.layers.Conv1D(12, 16, padding='same')(x) x = tf.keras.layers.MaxPooling1D(2)(x) # Downsample: 250 -> 125 # Bottleneck x = tf.keras.layers.Flatten()(x) x = tf.keras.layers.Dense(self.__config['MODEL']['ENCODED_STATE_SIZE'])(x) # Decoder x = tf.keras.layers.Dense(125 * 12)(x) # Expand to match last encoder feature size x = tf.keras.layers.Reshape((125, 12))(x) x = tf.keras.layers.UpSampling1D(2)(x) # Upsample: 125 -> 250 x = tf.keras.layers.Conv1D(12, 16, padding='same')(x) x = tf.keras.layers.UpSampling1D(2)(x) # Upsample: 250 -> 500 x = tf.keras.layers.Conv1D(12, 64, padding='same')(x) x = tf.keras.layers.UpSampling1D(4)(x) # Upsample: 500 -> 2000 x = tf.keras.layers.Conv1D(lines, 128, padding='same')(x) # Correct Final Layer # Model definition self.__model = tf.keras.models.Model(input_img, x) ``` It doesn't matter which model I use, inference result values are the SAME, exactly the same values, as if the neural network learned nothing...... You can see below 2 comparative charts with the inference values ![Image](https://github.com/user-attachments/assets/e91356e3-0e4c-44c0-83e7-b336d601f5e2) Don't assume that the data might be corrupted, I have collected enough data to train for both cases and I've checked their validity The confusing part is that inference works in python, using TensorFlow 2.7.0 with GPU, an Ubuntu Focal x86_64...I mean, I saw different values between 2 charts In Jetson I've made a py script to convert .h5 model file into .onnx and then into .engine format: ``` import tf2onnx import tensorflow as tf import argparse import subprocess def convert_h5_to_onnx(h5_model_path, onnx_model_path): print("Converting .h5 model to ONNX...") model = tf.keras.models.load_model(h5_model_path) model_proto, _ = tf2onnx.convert.from_keras(model, opset=13) with open(onnx_model_path, "wb") as f: f.write(model_proto.SerializeToString()) print(f"ONNX model saved at {onnx_model_path}") def convert_onnx_to_trt(onnx_model_path, engine_model_path, trt_precision_mode): print("Converting ONNX model to TensorRT Engine...") fp_precision_flag = '--fp16' if trt_precision_mode.upper() == 'FP16' else '' trtexec_path = "/usr/src/tensorrt/bin/trtexec" command = f"{trtexec_path} --onnx={onnx_model_path} --saveEngine={engine_model_path} {fp_precision_flag}" process = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if process.returncode != 0: print(f"Error in converting to TensorRT engine:\n{process.stderr.decode('utf-8')}") else: print(f"TensorRT engine saved at {engine_model_path}") # Main if __name__ == "__main__": parser = argparse.ArgumentParser(description="Convert a .h5 model to ONNX and TensorRT engine format") parser.add_argument("--h5_model_path", type=str, required=True, help="Path to the .h5 model file") parser.add_argument("--onnx_model_path", type=str, required=True, help="Path to save the converted ONNX model") parser.add_argument("--engine_model_path", type=str, required=True, help="Path to save the converted TensorRT engine") parser.add_argument("--trt_precision_mode", type=str, choices=['FP32', 'FP16'], default="FP16", help="Precision mode for TensorRT engine (FP32 or FP16)") args = parser.parse_args() convert_h5_to_onnx(args.h5_model_path, args.onnx_model_path) convert_onnx_to_trt(args.onnx_model_path, args.engine_model_path, args.trt_precision_mode) ``` "RunInference" is my C/C++ inference function using TensorRT ( as input data , I used FFT s of the raw values ) ``` void RunInference(ICudaEngine* engine, IExecutionContext* context, int input_index, int output_index, kiss_fft_cpx* x_fft, kiss_fft_cpx* y_fft, kiss_fft_cpx* z_fft, float* predicted_output, int g_code, const char* clientName) { int batchSize = 1; int input_size = batchSize * 2000 * 3 * sizeof(float); // [1, 2000, 3] int output_size = batchSize * 3 * sizeof(float); // [1, 3] // Prepare normalized input data and set DC component to zero float input_data[2000 * 3]; const int MN = 4000; for (int i = 0; i < 2000; i++) { input_data[i * 3 + 0] = sqrt(x_fft[i].r * x_fft[i].r + x_fft[i].i * x_fft[i].i) / MN; input_data[i * 3 + 1] = sqrt(y_fft[i].r * y_fft[i].r + y_fft[i].i * y_fft[i].i) / MN; input_data[i * 3 + 2] = sqrt(z_fft[i].r * z_fft[i].r + z_fft[i].i * z_fft[i].i) / MN; } // Set DC component to zero input_data[0] = 0; // X-axis input_data[1] = 0; // Y-axis input_data[2] = 0; // Z-axis ////Allocate GPU buffers for input and output void* buffers[2]; write_log(LOG_DEBUG, "RunInference for '%s' - input_index = %d, output_index = %d", clientName, input_index, output_index); if (cudaMalloc(&buffers[input_index], input_size) != cudaSuccess) { write_log(LOG_ERROR, "RunInference for '%s' - Failed to allocate memory for input buffer", clientName); return; } if (cudaMalloc(&buffers[output_index], output_size) != cudaSuccess) { write_log(LOG_ERROR, "RunInference for '%s' - Failed to allocate memory for output buffer", clientName); cudaFree(buffers[input_index]); return; } if (cudaMemset(buffers[input_index], 0, input_size) != cudaSuccess) { write_log(LOG_ERROR, "RunInference for '%s' - Failed to memset input buffer to zero", clientName); return; } if (cudaMemset(buffers[output_index], 0, output_size) != cudaSuccess) { write_log(LOG_ERROR, "RunInference for '%s' - Failed to memset output buffer to zero", clientName); return; } /////////////////// // Copy the input data to the GPU cudaMemcpy(buffers[input_index], input_data, input_size, cudaMemcpyHostToDevice); // Launch inference cudaStream_t stream; cudaStreamCreate(&stream); context->enqueueV2(buffers, stream, nullptr); cudaStreamSynchronize(stream); // Copy the output data from GPU to CPU cudaMemcpy(predicted_output, buffers[output_index], output_size, cudaMemcpyDeviceToHost); // Free GPU memory cudaFree(buffers[input_index]); cudaFree(buffers[output_index]); cudaStreamDestroy(stream); } ``` This is how I load one model in app and how I call inference function: ``` IRuntime* runtime = createInferRuntime(gLogger); if (!runtime) { write_log(LOG_ERROR, "client_handler: Failed to create runtime for client %s", client.ClientName); return (void*)-1; } std::vector<char> engine_data = loadEngine(client.ModelPath, client.ClientName); ICudaEngine* engine = runtime->deserializeCudaEngine(engine_data.data(), engine_data.size(), nullptr); if (!engine) { write_log(LOG_ERROR, "client_handler: Failed to create engine for thread %s", client.ClientName); return (void*)-1; } IExecutionContext* context = engine->createExecutionContext(); if (!context) { write_log(LOG_ERROR, "client_handler: Failed to create execution context for thread %s", client.ClientName); engine->destroy(); return (void*)-1; } int input_index = engine->getBindingIndex(client.ModelInputBindingName) ;//get from config file int output_index = engine->getBindingIndex(client.ModelOutputBindingName); //get from config file RunInference(engine, context, input_index, output_index, x_fft, y_fft, z_fft, predicted_output, client.G_code, client.ClientName); // Synchronize the GPU to ensure all operations are completed cudaDeviceSynchronize(); // Check for CUDA errors after synchronization cudaError_t err = cudaGetLastError(); if (err != cudaSuccess) { write_log(LOG_ERROR, "CUDA error after synchronization in thread '%s': %s", client.ClientName, cudaGetErrorString(err)); } else { write_log(LOG_INFO, "GPU synchronized successfully for thread '%s'", client.ClientName); } context->destroy(); engine->destroy(); runtime->destroy(); ``` I want to point out that the vibrations are detected by the application, but I donโ€™t understand why the range of values doesnโ€™t change depending on the trained model from the two scenarios. I suspect the problem might be with the model conversion or the inference process / function in TensorRT using C/C++. Do you have any suggestions?
stat:awaiting response,TF 2.11
medium
Critical
2,790,039,794
PowerToys
(Mouse) back/forward button support
### Description of the new feature / enhancement Ability to use the back/forward button e.g. mouse buttons in the PowerToys app ### Scenario when this would be used? Switch back to the dashboard when visiting a module's settings and the back button was clicked ### Supporting information _No response_
Needs-Triage
low
Minor
2,790,055,265
rust
Tracking issue for release notes of #135536: Add more impls of PartialEq and PartialOrd for strings
This issue tracks the release notes text for #135536. ### Steps - [x] Proposed text is drafted by PR author (or team) making the noteworthy change. - [x] Issue is nominated for release team review of clarity for wider audience. - [ ] Release team includes text in release notes/blog posts. ### Release notes text The responsible team for the underlying change should edit this section to replace the automatically generated link with a succinct description of what changed, drawing upon text proposed by the author (either in discussion or through direct editing). ````markdown # Libraries - [Add more impls of `PartialEq` and `PartialOrd` for strings and different levels of references](https://github.com/rust-lang/rust/pull/135536). These impls make more cases of comparisons work, and provide more robustness against future inference issues when adding more impls in the future. ```` ### Release blog section If the change is notable enough for inclusion in the blog post, the responsible team should add content to this section. *Otherwise leave it empty.* ````markdown ```` cc @joshtriplett -- origin issue/PR authors and assignees for starting to draft text
T-libs-api,relnotes,needs-triage,I-release-nominated,relnotes-tracking-issue
low
Minor
2,790,057,913
neovim
reframe :help "Run with g==" hints as codelenses
# Problem Currently the "Run with ..." pseudo-codelenses in `:help` buffers don't have an interface for enabling/disabling them. # Proposal _Originally posted by @mfussenegger in https://github.com/neovim/neovim/issues/31947#issuecomment-2592420466_ > Conceptually the "Run with ..." virtual-text is similar to either LSP inlay hints or codelens, both can have a executable command. (we currently don't support that for inlay-hints, but for codelens we have `vim.lsp.codelens.run`. Some servers provide exactly this type of code lens for test cases (Run Test | Debug Test) > > This has me wonder if we either: > > - Could have a vim.lsp.server for vim help files, and provide the info as codelens and make it executable via `codelens.run()` > - Have a codelens abstraction sitting between virtual-text/lines and LSP > > > This would give users a more consistent interface and user experience in that if it looks like a code-lens it acts like a code lens. Same keymaps, same options to enable/disable.
enhancement,plugin,runtime,lsp
low
Critical
2,790,066,491
flutter
can't move/reuse widget in differenct place of widget tree.
### Steps to reproduce I saved a widget tree for reusing, like the following ```dart class StageState extends State<Stage> implements Show<Stage> { int idx = 0; Key key = unique_key(); Widget win = primary_ui(); @override void show(int n) { idx = n; setState(() {}); } Widget build(BuildContext context) { if (idx == 0) { var stack = Stack(key: key, children: <Widget>[ ExcludeFocus(child: IgnorePointer(ignoring: true, child: win)), Align(child: login_view()) ]); return Expanded( key: key, child: stack, ); } else { return Expanded(key: key, child: win); } } } ``` But flutter don't allow me to do so ### Expected results I can reuse the widget, because all the widget is saved, and the widget is normal in users sense, the internal state conflict should be resolved in framework. ### Actual results ```console The following assertion was thrown building Expanded(flex: 1): 'package:flutter/src/widgets/framework.dart': Failed assertion: line 5730 pos 12: 'state._element == null': is not true. Either the assertion indicates an error in the framework itself, or we should provide substantially more information in this error message to help you determine and fix the underlying cause. In either case, please report this assertion by filing a bug on GitHub: https://github.com/flutter/flutter/issues/new?template=2_bug.yml The relevant error-causing widget was: Expanded Expanded:file:///home/zylthinking/code/flt/lib/stage.dart:80:7 When the exception was thrown, this was the stack: #2 new StatefulElement (package:flutter/src/widgets/framework.dart:5730:12) #3 StatefulWidget.createElement (package:flutter/src/widgets/framework.dart:777:38) ... Normal element mounting (4 frames) #7 Element.inflateWidget (package:flutter/src/widgets/framework.dart:4480:16) #8 MultiChildRenderObjectElement.inflateWidget (package:flutter/src/widgets/framework.dart:7049:36) #9 MultiChildRenderObjectElement.mount (package:flutter/src/widgets/framework.dart:7061:32) ... Normal element mounting (7 frames) #16 Element.inflateWidget (package:flutter/src/widgets/framework.dart:4480:16) #17 MultiChildRenderObjectElement.inflateWidget (package:flutter/src/widgets/framework.dart:7049:36) #18 MultiChildRenderObjectElement.mount (package:flutter/src/widgets/framework.dart:7061:32) ... Normal element mounting (13 frames) #31 Element.inflateWidget (package:flutter/src/widgets/framework.dart:4480:16) #32 MultiChildRenderObjectElement.inflateWidget (package:flutter/src/widgets/framework.dart:7049:36) #33 MultiChildRenderObjectElement.mount (package:flutter/src/widgets/framework.dart:7061:32) #34 Element.inflateWidget (package:flutter/src/widgets/framework.dart:4480:16) #35 Element.updateChild (package:flutter/src/widgets/framework.dart:3957:20) #36 ComponentElement.performRebuild (package:flutter/src/widgets/framework.dart:5656:16) #37 Element.rebuild (package:flutter/src/widgets/framework.dart:5347:7) #38 ProxyElement.update (package:flutter/src/widgets/framework.dart:5960:5) #39 Element.updateChild (package:flutter/src/widgets/framework.dart:3941:15) #40 ComponentElement.performRebuild (package:flutter/src/widgets/framework.dart:5656:16) #41 StatefulElement.performRebuild (package:flutter/src/widgets/framework.dart:5794:11) #42 Element.rebuild (package:flutter/src/widgets/framework.dart:5347:7) #43 BuildScope._tryRebuild (package:flutter/src/widgets/framework.dart:2694:15) #44 BuildScope._flushDirtyElements (package:flutter/src/widgets/framework.dart:2753:11) #45 BuildOwner.buildScope (package:flutter/src/widgets/framework.dart:3048:18) #46 WidgetsBinding.drawFrame (package:flutter/src/widgets/binding.dart:1176:21) #47 RendererBinding._handlePersistentFrameCallback (package:flutter/src/rendering/binding.dart:475:5) #48 SchedulerBinding._invokeFrameCallback (package:flutter/src/scheduler/binding.dart:1397:15) #49 SchedulerBinding.handleDrawFrame (package:flutter/src/scheduler/binding.dart:1318:9) #50 SchedulerBinding._handleDrawFrame (package:flutter/src/scheduler/binding.dart:1176:5) #51 _invoke (dart:ui/hooks.dart:312:13) #52 PlatformDispatcher._drawFrame (dart:ui/platform_dispatcher.dart:427:5) #53 _drawFrame (dart:ui/hooks.dart:283:31) (elided 2 frames from class _AssertionError) ``` ### Code sample <details open><summary>Code sample</summary> ```dart [Paste your code here] ``` </details> ### Screenshots or Video <details open> <summary>Screenshots / Video demonstration</summary> [Upload media here] </details> ### Logs <details open><summary>Logs</summary> ```console [Paste your logs here] ``` </details> ### Flutter Doctor output <details open><summary>Doctor output</summary> ```console [Paste your output here] ``` </details>
waiting for customer response,in triage
low
Critical
2,790,067,302
vscode
Vscode crash on arch linux after saving file
<!-- โš ๏ธโš ๏ธ Do Not Delete This! bug_report_template โš ๏ธโš ๏ธ --> <!-- Please read our Rules of Conduct: https://opensource.microsoft.com/codeofconduct/ --> <!-- ๐Ÿ•ฎ Read our guide about submitting issues: https://github.com/microsoft/vscode/wiki/Submitting-Bugs-and-Suggestions --> <!-- ๐Ÿ”Ž Search existing issues to avoid creating duplicates. --> <!-- ๐Ÿงช Test using the latest Insiders build to see if your issue has already been fixed: https://code.visualstudio.com/insiders/ --> <!-- ๐Ÿ’ก Instead of creating your report here, use 'Report Issue' from the 'Help' menu in VS Code to pre-fill useful information. --> <!-- ๐Ÿ”ง Launch with `code --disable-extensions` to check. --> Does this issue occur when all extensions are disabled?: Yes/No <!-- ๐Ÿช“ If you answered No above, use 'Help: Start Extension Bisect' from Command Palette to try to identify the cause. --> <!-- ๐Ÿ“ฃ Issues caused by an extension need to be reported directly to the extension publisher. The 'Help > Report Issue' dialog can assist with this. --> - VS Code Version: 1.96.3-1 - OS Version: Arch linux 6.12.8-arch1-1 Steps to Reproduce: 1. Open vscode 2. Open 2 files 3. Change some line and save the file 4. Crash Logs: [log.txt](https://github.com/user-attachments/files/18426266/log.txt)
info-needed
low
Critical
2,790,074,914
tauri
[bug] window.outer_position() always zero on Linux
### Describe the bug I'm trying to debug why the window state plugin is restoring size but not position, and have discovered that both `window.outer_position()` and `window.inner_position()` return `(0,0)` on Ubuntu 24.04. ### Reproduction Here's the basic debug code I have in `run()` ```rust // Save window state on exit match event { RunEvent::WindowEvent{ event: WindowEvent::CloseRequested{..} | WindowEvent::Moved(_), label, .. } => { let windows = app_handle.webview_windows(); let window = windows.get(&label).unwrap(); debug!("INNER SIZE {:?}", window.inner_size()); debug!("OUTER POSITION {:?}", window.outer_position()); if let Err(e) = app_handle.save_window_state(StateFlags::all()) { warn!("Failed to save window state {e:?}"); }; }, _ => {} }; ``` ### Expected behavior Linux should be able to get window positions ### Full `tauri info` output ```text [โœ”] Environment - OS: Ubuntu 24.4.0 x86_64 (X64) (ubuntu on wayland) โœ” webkit2gtk-4.1: 2.46.5 โœ” rsvg2: 2.58.0 โœ” rustc: 1.84.0 (9fc6b4312 2025-01-07) โœ” cargo: 1.84.0 (66221abde 2024-11-19) โœ” rustup: 1.27.1 (54dd3d00f 2024-04-24) โœ” Rust toolchain: stable-x86_64-unknown-linux-gnu (default) - node: 18.19.1 - npm: 9.2.0 [-] Packages - tauri ๐Ÿฆ€: 2.2.0 - tauri-build ๐Ÿฆ€: 2.0.4 - wry ๐Ÿฆ€: 0.48.0 - tao ๐Ÿฆ€: 0.31.1 - @tauri-apps/api ๎œ˜: 2.0.2 (outdated, latest: 2.2.0) - @tauri-apps/cli ๎œ˜: 2.2.2 (outdated, latest: 2.2.4) [-] Plugins - tauri-plugin-log ๐Ÿฆ€: 2.2.0 - @tauri-apps/plugin-log ๎œ˜: 2.0.0 (outdated, latest: 2.2.0) - tauri-plugin-fs ๐Ÿฆ€: 2.2.0 - @tauri-apps/plugin-fs ๎œ˜: 2.0.0 (outdated, latest: 2.2.0) - tauri-plugin-window-state ๐Ÿฆ€: 2.2.0 - @tauri-apps/plugin-window-state ๎œ˜: not installed! - tauri-plugin-single-instance ๐Ÿฆ€: 2.2.0 - @tauri-apps/plugin-single-instance ๎œ˜: not installed! - tauri-plugin-os ๐Ÿฆ€: 2.2.0 - @tauri-apps/plugin-os ๎œ˜: 2.0.0 (outdated, latest: 2.2.0) - tauri-plugin-shell ๐Ÿฆ€: 2.2.0 - @tauri-apps/plugin-shell ๎œ˜: 2.0.0 (outdated, latest: 2.2.0) - tauri-plugin-updater ๐Ÿฆ€: 2.3.0 - @tauri-apps/plugin-updater ๎œ˜: not installed! - tauri-plugin-dialog ๐Ÿฆ€: 2.2.0 - @tauri-apps/plugin-dialog ๎œ˜: 2.0.0 (outdated, latest: 2.2.0) [-] App - build-type: bundle - CSP: unset - frontendDist: ../dist - devUrl: http://localhost:1420/ - framework: React ``` ### Stack trace _No response_ ### Additional context ChatGPT suggests this could have something to do with Wayland's coordinate system ๐Ÿคท๐Ÿผโ€โ™‚๏ธ
type: documentation
low
Critical
2,790,109,834
tensorflow
How can I compile TensorFlowLite for Swift without Bitcode?"
Hello! I would like to use TensorFlowLite Swift without Bitcode, as Apple has discontinued the use of Bitcode. I am using version 2.17.0 available on CocoaPods, but the binaries already come with Bitcode. How can I resolve this? And does TensorFlowLite Swift have a version available that does not require Rosetta to run on ARM architectures? Thank you
stat:awaiting response,type:support,comp:lite,iOS
medium
Minor
2,790,113,787
rust
Compiler error while compiling the k256 library
The compiler error is caused by the line `self.0.sign_digest(Digest::new_with_prefix(digest_bytes))` and `self.0.sign_digest(Digest::new())` (commented out in the provided code for testing). <!-- Thank you for finding an Internal Compiler Error! ๐ŸงŠ If possible, try to provide a minimal verifiable example. You can read "Rust Bug Minimization Patterns" for how to create smaller examples. http://blog.pnkfx.org/blog/2019/11/18/rust-bug-minimization-patterns/ --> ### Code ```Rust use k256::ecdsa::{Signature, SigningKey, signature::{DigestSigner, DigestVerifier}}; use sha3::{Digest, Keccak256}; struct SignatureECDSA(SigningKey); impl SignatureECDSA { pub fn generate() -> Self { Self(SigningKey::random(&mut rand::thread_rng())) } pub fn new(signing_key: SigningKey) -> Self { Self(signing_key) } pub fn sign(&self, digest_bytes: &[u8; 32]) -> Signature { // self.0.sign_digest(Digest::new()) self.0.sign_digest(Digest::new_with_prefix(digest_bytes)) } } ``` ### Meta <!-- If you're using the stable version of the compiler, you should also check if the bug also exists in the beta or nightly versions. --> `rustc --version --verbose`: ``` rustc 1.84.0 (9fc6b4312 2025-01-07) binary: rustc commit-hash: 9fc6b43126469e3858e2fe86cafb4f0fd5068869 commit-date: 2025-01-07 host: aarch64-apple-darwin release: 1.84.0 LLVM version: 19.1.5 ``` ### Error output ``` thread 'rustc' panicked at compiler/rustc_trait_selection/src/error_reporting/traits/fulfillment_errors.rs:1824:44: called `Option::unwrap()` on a `None` value stack backtrace: 0: 0x10e8b50c8 - <std::sys::backtrace::BacktraceLock::print::DisplayBacktrace as core::fmt::Display>::fmt::hadba1856081fe8dc 1: 0x10bae7760 - core::fmt::write::h5358bd20891469bc 2: 0x10e8a9370 - std::io::Write::write_fmt::hbf0611cc5d72cc91 3: 0x10e8b4f88 - std::sys::backtrace::BacktraceLock::print::he2302a8c253c9a13 4: 0x10e8b7464 - std::panicking::default_hook::{{closure}}::hec1f77a77d7e7ffc 5: 0x10e8b72ac - std::panicking::default_hook::hdd59ab537dd27efb 6: 0x10c6f99a4 - <alloc[2c4d29f23d41489e]::boxed::Box<rustc_driver_impl[fde3e58afcc15f53]::install_ice_hook::{closure#0}> as core[9d7f355b91206121]::ops::function::Fn<(&dyn for<'a, 'b> core[9d7f355b91206121]::ops::function::Fn<(&'a std[73d933f036ca7723]::panic::PanicHookInfo<'b>,), Output = ()> + core[9d7f355b91206121]::marker::Sync + core[9d7f355b91206121]::marker::Send, &std[73d933f036ca7723]::panic::PanicHookInfo)>>::call 7: 0x10e8b7d30 - std::panicking::rust_panic_with_hook::h533a16f5f89e4278 8: 0x10e8b7944 - std::panicking::begin_panic_handler::{{closure}}::h168c3a4362c8e4df 9: 0x10e8b5570 - std::sys::backtrace::__rust_end_short_backtrace::h601e3529ca2053df 10: 0x10e8b7630 - _rust_begin_unwind 11: 0x110f9a66c - core::panicking::panic_fmt::ha0f8363f677e0181 12: 0x110f9a6dc - core::panicking::panic::hdb1c1abf01ff1978 13: 0x110f9a604 - core::option::unwrap_failed::hb903c8fd63cd2e84 14: 0x10e41966c - <rustc_trait_selection[89a651589df3a14e]::error_reporting::TypeErrCtxt>::report_similar_impl_candidates 15: 0x10e43d8d8 - <rustc_trait_selection[89a651589df3a14e]::error_reporting::TypeErrCtxt>::report_fulfillment_errors 16: 0x10cc7150c - <rustc_hir_typeck[986b14b3a50cff68]::fn_ctxt::FnCtxt>::report_ambiguity_errors 17: 0x10ce2f990 - rustc_hir_typeck[986b14b3a50cff68]::typeck 18: 0x10ddf1910 - rustc_query_impl[145af9e7c4635083]::plumbing::__rust_begin_short_backtrace::<rustc_query_impl[145af9e7c4635083]::query_impl::typeck::dynamic_query::{closure#2}::{closure#0}, rustc_middle[e034b0937dcee594]::query::erase::Erased<[u8; 8usize]>> 19: 0x10de4ff1c - <rustc_query_impl[145af9e7c4635083]::query_impl::typeck::dynamic_query::{closure#2} as core[9d7f355b91206121]::ops::function::FnOnce<(rustc_middle[e034b0937dcee594]::ty::context::TyCtxt, rustc_span[23ddc3a9082bdf6f]::def_id::LocalDefId)>>::call_once 20: 0x10dd94afc - rustc_query_system[2ae06c999199ab2d]::query::plumbing::try_execute_query::<rustc_query_impl[145af9e7c4635083]::DynamicConfig<rustc_data_structures[8a142a31ce6323d3]::vec_cache::VecCache<rustc_span[23ddc3a9082bdf6f]::def_id::LocalDefId, rustc_middle[e034b0937dcee594]::query::erase::Erased<[u8; 8usize]>, rustc_query_system[2ae06c999199ab2d]::dep_graph::graph::DepNodeIndex>, false, false, false>, rustc_query_impl[145af9e7c4635083]::plumbing::QueryCtxt, true> 21: 0x10df25d84 - rustc_query_impl[145af9e7c4635083]::query_impl::typeck::get_query_incr::__rust_end_short_backtrace 22: 0x10ca14820 - <rustc_middle[e034b0937dcee594]::hir::map::Map>::par_body_owners::<rustc_hir_analysis[c404e5c07f76cdb8]::check_crate::{closure#4}>::{closure#0} 23: 0x10c9fe2d0 - <rustc_data_structures[8a142a31ce6323d3]::sync::parallel::ParallelGuard>::run::<(), rustc_data_structures[8a142a31ce6323d3]::sync::parallel::par_for_each_in<&rustc_span[23ddc3a9082bdf6f]::def_id::LocalDefId, &[rustc_span[23ddc3a9082bdf6f]::def_id::LocalDefId], <rustc_middle[e034b0937dcee594]::hir::map::Map>::par_body_owners<rustc_hir_analysis[c404e5c07f76cdb8]::check_crate::{closure#4}>::{closure#0}>::{closure#0}::{closure#1}::{closure#0}> 24: 0x10ca65d34 - rustc_hir_analysis[c404e5c07f76cdb8]::check_crate 25: 0x10d090718 - rustc_interface[11fadb382dc0a35f]::passes::analysis 26: 0x10ddf19b0 - rustc_query_impl[145af9e7c4635083]::plumbing::__rust_begin_short_backtrace::<rustc_query_impl[145af9e7c4635083]::query_impl::analysis::dynamic_query::{closure#2}::{closure#0}, rustc_middle[e034b0937dcee594]::query::erase::Erased<[u8; 1usize]>> 27: 0x10de503c4 - <rustc_query_impl[145af9e7c4635083]::query_impl::analysis::dynamic_query::{closure#2} as core[9d7f355b91206121]::ops::function::FnOnce<(rustc_middle[e034b0937dcee594]::ty::context::TyCtxt, ())>>::call_once 28: 0x10dd00068 - rustc_query_system[2ae06c999199ab2d]::query::plumbing::try_execute_query::<rustc_query_impl[145af9e7c4635083]::DynamicConfig<rustc_query_system[2ae06c999199ab2d]::query::caches::SingleCache<rustc_middle[e034b0937dcee594]::query::erase::Erased<[u8; 1usize]>>, false, false, false>, rustc_query_impl[145af9e7c4635083]::plumbing::QueryCtxt, true> 29: 0x10df13d40 - rustc_query_impl[145af9e7c4635083]::query_impl::analysis::get_query_incr::__rust_end_short_backtrace 30: 0x10c71bb08 - <rustc_middle[e034b0937dcee594]::ty::context::GlobalCtxt>::enter::<rustc_driver_impl[fde3e58afcc15f53]::run_compiler::{closure#0}::{closure#1}::{closure#6}, core[9d7f355b91206121]::result::Result<(), rustc_span[23ddc3a9082bdf6f]::ErrorGuaranteed>> 31: 0x10c6b77f4 - <rustc_interface[11fadb382dc0a35f]::interface::Compiler>::enter::<rustc_driver_impl[fde3e58afcc15f53]::run_compiler::{closure#0}::{closure#1}, core[9d7f355b91206121]::result::Result<core[9d7f355b91206121]::option::Option<rustc_interface[11fadb382dc0a35f]::queries::Linker>, rustc_span[23ddc3a9082bdf6f]::ErrorGuaranteed>> 32: 0x10c6eca24 - rustc_span[23ddc3a9082bdf6f]::create_session_globals_then::<core[9d7f355b91206121]::result::Result<(), rustc_span[23ddc3a9082bdf6f]::ErrorGuaranteed>, rustc_interface[11fadb382dc0a35f]::util::run_in_thread_with_globals<rustc_interface[11fadb382dc0a35f]::util::run_in_thread_pool_with_globals<rustc_interface[11fadb382dc0a35f]::interface::run_compiler<core[9d7f355b91206121]::result::Result<(), rustc_span[23ddc3a9082bdf6f]::ErrorGuaranteed>, rustc_driver_impl[fde3e58afcc15f53]::run_compiler::{closure#0}>::{closure#1}, core[9d7f355b91206121]::result::Result<(), rustc_span[23ddc3a9082bdf6f]::ErrorGuaranteed>>::{closure#0}, core[9d7f355b91206121]::result::Result<(), rustc_span[23ddc3a9082bdf6f]::ErrorGuaranteed>>::{closure#0}::{closure#0}::{closure#0}> 33: 0x10c6e1c50 - std[73d933f036ca7723]::sys::backtrace::__rust_begin_short_backtrace::<rustc_interface[11fadb382dc0a35f]::util::run_in_thread_with_globals<rustc_interface[11fadb382dc0a35f]::util::run_in_thread_pool_with_globals<rustc_interface[11fadb382dc0a35f]::interface::run_compiler<core[9d7f355b91206121]::result::Result<(), rustc_span[23ddc3a9082bdf6f]::ErrorGuaranteed>, rustc_driver_impl[fde3e58afcc15f53]::run_compiler::{closure#0}>::{closure#1}, core[9d7f355b91206121]::result::Result<(), rustc_span[23ddc3a9082bdf6f]::ErrorGuaranteed>>::{closure#0}, core[9d7f355b91206121]::result::Result<(), rustc_span[23ddc3a9082bdf6f]::ErrorGuaranteed>>::{closure#0}::{closure#0}, core[9d7f355b91206121]::result::Result<(), rustc_span[23ddc3a9082bdf6f]::ErrorGuaranteed>> 34: 0x10c6e5050 - <<std[73d933f036ca7723]::thread::Builder>::spawn_unchecked_<rustc_interface[11fadb382dc0a35f]::util::run_in_thread_with_globals<rustc_interface[11fadb382dc0a35f]::util::run_in_thread_pool_with_globals<rustc_interface[11fadb382dc0a35f]::interface::run_compiler<core[9d7f355b91206121]::result::Result<(), rustc_span[23ddc3a9082bdf6f]::ErrorGuaranteed>, rustc_driver_impl[fde3e58afcc15f53]::run_compiler::{closure#0}>::{closure#1}, core[9d7f355b91206121]::result::Result<(), rustc_span[23ddc3a9082bdf6f]::ErrorGuaranteed>>::{closure#0}, core[9d7f355b91206121]::result::Result<(), rustc_span[23ddc3a9082bdf6f]::ErrorGuaranteed>>::{closure#0}::{closure#0}, core[9d7f355b91206121]::result::Result<(), rustc_span[23ddc3a9082bdf6f]::ErrorGuaranteed>>::{closure#1} as core[9d7f355b91206121]::ops::function::FnOnce<()>>::call_once::{shim:vtable#0} 35: 0x10e8c1df0 - std::sys::pal::unix::thread::Thread::new::thread_start::ha1530855ce6ee203 36: 0x1970ac2e4 - __pthread_deallocate error: the compiler unexpectedly panicked. this is a bug. note: we would appreciate a bug report: https://github.com/rust-lang/rust/issues/new?labels=C-bug%2C+I-ICE%2C+T-compiler&template=ice.md note: rustc 1.84.0 (9fc6b4312 2025-01-07) running on aarch64-apple-darwin note: compiler flags: --crate-type lib -C embed-bitcode=no -C debuginfo=2 -C split-debuginfo=unpacked -C incremental=[REDACTED] note: some of the compiler flags provided by cargo are hidden query stack during panic: #0 [typeck] type-checking `cryptography::ecdsa::<impl at core/src/cryptography/ecdsa.rs:6:1: 6:20>::sign` #1 [analysis] running analysis passes on this crate end of query stack warning: `pod-core` (lib) generated 2 warnings (run `cargo fix --lib -p pod-core` to apply 2 suggestions) error: could not compile `pod-core` (lib); 2 warnings emitted Caused by: process didn't exit successfully: `/Users/justinaszaliaduonis/.rustup/toolchains/stable-aarch64-apple-darwin/bin/rustc --crate-name pod_core --edition=2021 core/src/lib.rs --error-format=json --json=diagnostic-rendered-ansi,artifacts,future-incompat --diagnostic-width=176 --crate-type lib --emit=dep-info,metadata,link -C embed-bitcode=no -C debuginfo=2 -C split-debuginfo=unpacked --check-cfg 'cfg(docsrs)' --check-cfg 'cfg(feature, values())' -C metadata=5dfa7fc097c045d7 -C extra-filename=-5dfa7fc097c045d7 --out-dir /Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps -C incremental=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/incremental -L dependency=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps --extern alloy_consensus=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/liballoy_consensus-575f2a9d311403a6.rmeta --extern alloy_network=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/liballoy_network-aed7f31b4108e763.rmeta --extern alloy_primitives=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/liballoy_primitives-da31089a68d4daa1.rmeta --extern alloy_rpc_types=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/liballoy_rpc_types-4bab661dd9076f22.rmeta --extern alloy_signer=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/liballoy_signer-ff3e5ef0d362441c.rmeta --extern alloy_signer_local=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/liballoy_signer_local-fd08fbd5b331cc96.rmeta --extern alloy_sol_types=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/liballoy_sol_types-676c006ac9658dd0.rmeta --extern anyhow=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libanyhow-d3b278b560b571e1.rmeta --extern async_trait=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libasync_trait-66317e4e1eeea339.dylib --extern backoff=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libbackoff-6ddb2a2229dc28fd.rmeta --extern bincode=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libbincode-4440fd910e2e7173.rmeta --extern bitvec=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libbitvec-be496b0820bccfde.rmeta --extern bls_signatures=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libbls_signatures-37a0cf3cfafa8253.rmeta --extern bytes=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libbytes-1c7495fed026ffe0.rmeta --extern colored=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libcolored-59cd1b7b79d6571a.rmeta --extern const_format=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libconst_format-1cd57abea4a99a5b.rmeta --extern ecdsa=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libecdsa-c69e5b95dc948354.rmeta --extern ssz=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libssz-422185e560af5475.rmeta --extern fern=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libfern-cf5b1308e4b3af0c.rmeta --extern futures=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libfutures-b3d9a5aeb30388c1.rmeta --extern hex=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libhex-fbd2faa49cb32b1e.rmeta --extern humantime=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libhumantime-509cc6eee85d09b1.rmeta --extern itertools=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libitertools-f870de18c4a1367b.rmeta --extern jsonrpc_core=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libjsonrpc_core-803238207c194eec.rmeta --extern jsonrpc_http_server=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libjsonrpc_http_server-543e3a3d1dfd60ed.rmeta --extern k256=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libk256-d361e2837e756c80.rmeta --extern log=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/liblog-772705a0b3e0ca9f.rmeta --extern rand=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/librand-ba188ab9ae3b1888.rmeta --extern rand_core=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/librand_core-d435e3cd28922f58.rmeta --extern rocksdb=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/librocksdb-4fcf09b511b9fad9.rmeta --extern serde=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libserde-1a42ab868aa043c4.rmeta --extern serde_hex=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libserde_hex-fba37cffb63ebba3.rmeta --extern serde_json=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libserde_json-ffc6474a53afc502.rmeta --extern sha3=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libsha3-052f69e42719b731.rmeta --extern subtle=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libsubtle-aab122e52ebab310.rmeta --extern sylow=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libsylow-5c9faa6001270801.rmeta --extern tokio=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libtokio-7121a589b609e181.rmeta --extern tokio_stream=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libtokio_stream-7ce4f25a2d11acc6.rmeta --extern tokio_util=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libtokio_util-7d4599cbd6e3d102.rmeta --extern toml=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libtoml-c9134db262540f71.rmeta -L native=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/build/librocksdb-sys-35b1810c411157e3/out -L native=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/build/librocksdb-sys-35b1810c411157e3/out -L native=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/build/bzip2-sys-bdc90ecee50f6211/out/lib -L native=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/build/libz-sys-cbe9e5a544ab1b8e/out/lib -L native=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/build/libz-sys-cbe9e5a544ab1b8e/out/lib -L native=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/build/lz4-sys-1fb1cd34b7227341/out -L native=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/build/zstd-sys-474b81cc591b6cf4/out` (exit status: 101) ``` <!-- Include a backtrace in the code block by setting `RUST_BACKTRACE=1` in your environment. E.g. `RUST_BACKTRACE=1 cargo build`. --> <details><summary><strong>Backtrace</strong></summary> <p> ``` thread 'rustc' panicked at compiler/rustc_trait_selection/src/error_reporting/traits/fulfillment_errors.rs:1824:44: called `Option::unwrap()` on a `None` value stack backtrace: 0: _rust_begin_unwind 1: core::panicking::panic_fmt 2: core::panicking::panic 3: core::option::unwrap_failed 4: <rustc_trait_selection::error_reporting::TypeErrCtxt>::report_similar_impl_candidates 5: <rustc_trait_selection::error_reporting::TypeErrCtxt>::report_fulfillment_errors 6: <rustc_hir_typeck::fn_ctxt::FnCtxt>::report_ambiguity_errors 7: rustc_hir_typeck::typeck [... omitted 2 frames ...] 8: <rustc_middle::hir::map::Map>::par_body_owners::<rustc_hir_analysis::check_crate::{closure#4}>::{closure#0} 9: <rustc_data_structures::sync::parallel::ParallelGuard>::run::<(), rustc_data_structures::sync::parallel::par_for_each_in<&rustc_span::def_id::LocalDefId, &[rustc_span::def_id::LocalDefId], <rustc_middle::hir::map::Map>::par_body_owners<rustc_hir_analysis::check_crate::{closure#4}>::{closure#0}>::{closure#0}::{closure#1}::{closure#0}> 10: rustc_hir_analysis::check_crate 11: rustc_interface::passes::analysis [... omitted 2 frames ...] 12: <rustc_middle::ty::context::GlobalCtxt>::enter::<rustc_driver_impl::run_compiler::{closure#0}::{closure#1}::{closure#6}, core::result::Result<(), rustc_span::ErrorGuaranteed>> 13: <rustc_interface::interface::Compiler>::enter::<rustc_driver_impl::run_compiler::{closure#0}::{closure#1}, core::result::Result<core::option::Option<rustc_interface::queries::Linker>, rustc_span::ErrorGuaranteed>> 14: rustc_span::create_session_globals_then::<core::result::Result<(), rustc_span::ErrorGuaranteed>, rustc_interface::util::run_in_thread_with_globals<rustc_interface::util::run_in_thread_pool_with_globals<rustc_interface::interface::run_compiler<core::result::Result<(), rustc_span::ErrorGuaranteed>, rustc_driver_impl::run_compiler::{closure#0}>::{closure#1}, core::result::Result<(), rustc_span::ErrorGuaranteed>>::{closure#0}, core::result::Result<(), rustc_span::ErrorGuaranteed>>::{closure#0}::{closure#0}::{closure#0}> note: Some details are omitted, run with `RUST_BACKTRACE=full` for a verbose backtrace. error: the compiler unexpectedly panicked. this is a bug. note: we would appreciate a bug report: https://github.com/rust-lang/rust/issues/new?labels=C-bug%2C+I-ICE%2C+T-compiler&template=ice.md note: rustc 1.84.0 (9fc6b4312 2025-01-07) running on aarch64-apple-darwin note: compiler flags: --crate-type lib -C embed-bitcode=no -C debuginfo=2 -C split-debuginfo=unpacked -C incremental=[REDACTED] note: some of the compiler flags provided by cargo are hidden query stack during panic: #0 [typeck] type-checking `cryptography::ecdsa::<impl at core/src/cryptography/ecdsa.rs:6:1: 6:20>::sign` #1 [analysis] running analysis passes on this crate end of query stack warning: `pod-core` (lib) generated 2 warnings (run `cargo fix --lib -p pod-core` to apply 2 suggestions) error: could not compile `pod-core` (lib); 2 warnings emitted Caused by: process didn't exit successfully: `/Users/justinaszaliaduonis/.rustup/toolchains/stable-aarch64-apple-darwin/bin/rustc --crate-name pod_core --edition=2021 core/src/lib.rs --error-format=json --json=diagnostic-rendered-ansi,artifacts,future-incompat --diagnostic-width=176 --crate-type lib --emit=dep-info,metadata,link -C embed-bitcode=no -C debuginfo=2 -C split-debuginfo=unpacked --check-cfg 'cfg(docsrs)' --check-cfg 'cfg(feature, values())' -C metadata=5dfa7fc097c045d7 -C extra-filename=-5dfa7fc097c045d7 --out-dir /Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps -C incremental=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/incremental -L dependency=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps --extern alloy_consensus=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/liballoy_consensus-575f2a9d311403a6.rmeta --extern alloy_network=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/liballoy_network-aed7f31b4108e763.rmeta --extern alloy_primitives=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/liballoy_primitives-da31089a68d4daa1.rmeta --extern alloy_rpc_types=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/liballoy_rpc_types-4bab661dd9076f22.rmeta --extern alloy_signer=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/liballoy_signer-ff3e5ef0d362441c.rmeta --extern alloy_signer_local=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/liballoy_signer_local-fd08fbd5b331cc96.rmeta --extern alloy_sol_types=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/liballoy_sol_types-676c006ac9658dd0.rmeta --extern anyhow=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libanyhow-d3b278b560b571e1.rmeta --extern async_trait=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libasync_trait-66317e4e1eeea339.dylib --extern backoff=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libbackoff-6ddb2a2229dc28fd.rmeta --extern bincode=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libbincode-4440fd910e2e7173.rmeta --extern bitvec=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libbitvec-be496b0820bccfde.rmeta --extern bls_signatures=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libbls_signatures-37a0cf3cfafa8253.rmeta --extern bytes=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libbytes-1c7495fed026ffe0.rmeta --extern colored=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libcolored-59cd1b7b79d6571a.rmeta --extern const_format=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libconst_format-1cd57abea4a99a5b.rmeta --extern ecdsa=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libecdsa-c69e5b95dc948354.rmeta --extern ssz=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libssz-422185e560af5475.rmeta --extern fern=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libfern-cf5b1308e4b3af0c.rmeta --extern futures=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libfutures-b3d9a5aeb30388c1.rmeta --extern hex=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libhex-fbd2faa49cb32b1e.rmeta --extern humantime=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libhumantime-509cc6eee85d09b1.rmeta --extern itertools=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libitertools-f870de18c4a1367b.rmeta --extern jsonrpc_core=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libjsonrpc_core-803238207c194eec.rmeta --extern jsonrpc_http_server=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libjsonrpc_http_server-543e3a3d1dfd60ed.rmeta --extern k256=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libk256-d361e2837e756c80.rmeta --extern log=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/liblog-772705a0b3e0ca9f.rmeta --extern rand=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/librand-ba188ab9ae3b1888.rmeta --extern rand_core=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/librand_core-d435e3cd28922f58.rmeta --extern rocksdb=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/librocksdb-4fcf09b511b9fad9.rmeta --extern serde=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libserde-1a42ab868aa043c4.rmeta --extern serde_hex=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libserde_hex-fba37cffb63ebba3.rmeta --extern serde_json=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libserde_json-ffc6474a53afc502.rmeta --extern sha3=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libsha3-052f69e42719b731.rmeta --extern subtle=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libsubtle-aab122e52ebab310.rmeta --extern sylow=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libsylow-5c9faa6001270801.rmeta --extern tokio=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libtokio-7121a589b609e181.rmeta --extern tokio_stream=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libtokio_stream-7ce4f25a2d11acc6.rmeta --extern tokio_util=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libtokio_util-7d4599cbd6e3d102.rmeta --extern toml=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/deps/libtoml-c9134db262540f71.rmeta -L native=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/build/librocksdb-sys-35b1810c411157e3/out -L native=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/build/librocksdb-sys-35b1810c411157e3/out -L native=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/build/bzip2-sys-bdc90ecee50f6211/out/lib -L native=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/build/libz-sys-cbe9e5a544ab1b8e/out/lib -L native=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/build/libz-sys-cbe9e5a544ab1b8e/out/lib -L native=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/build/lz4-sys-1fb1cd34b7227341/out -L native=/Users/justinaszaliaduonis/Desktop/POD/pod-core/target/debug/build/zstd-sys-474b81cc591b6cf4/out` (exit status: 101) ``` </p> </details>
I-ICE,T-compiler,C-bug,needs-triage
low
Critical
2,790,126,754
godot
Dragging Editor to another screen breaks editor
### Tested versions Godot v4.3.stable.official [77dcf97d8] Related issue: #17699 ### System information MacOS 14.6.1 - Processor: 2.3 GHz 8-Core Intel Core i9 - Graphics: AMD Radeon Pro 5500M 8GB ### Issue description When having the Godot editor open on mac and dragging it to another screen, the editor completely breaks. I can resize the window, but nothing adjusts in the window and I cannot click on anything. I tend to like to have my code in nvim on my main screen and have the editor on the smaller screen. In this case, I am using my iPad Pro as a second screen, so they are both hi-rez, but different resolutions. Mac Display: 16-inch (3072 x 1920) iPad Pro Display: 12.9-inch (2732 x 2048) <img width="1290" alt="Image" src="https://github.com/user-attachments/assets/d4308c63-bc25-4ed5-bf36-85a96b491c23" /> ### Steps to reproduce Open a project and drag the editor to another window. It will be broken, as in you cannot click on anything other than resizing and dragging the window. If you drag it back to the original window and resize, it will work again. ### Minimal reproduction project (MRP) No project needed
bug,topic:editor,crash
low
Critical
2,790,169,407
transformers
Mismatch between `_convert_token_to_id_with_added_voc` and `encode` for Llama-3.2 tokenizer
### System Info - `transformers` version: 4.47.1 - Platform: macOS-13.6.3-arm64-arm-64bit - Python version: 3.12.0 - Huggingface_hub version: 0.25.2 - Safetensors version: 0.5.1 - Accelerate version: 1.2.1 - Accelerate config: not found - PyTorch version (GPU?): 2.5.1 (False) - Tensorflow version (GPU?): not installed (NA) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using distributed or parallel set-up in script?: N/A ### Who can help? @ArthurZucker and @itazap - thanks! ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...) - [x] My own task or dataset (give details below) ### Reproduction Simple reproducible example: ```{python} from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B") print(tokenizer._convert_token_to_id_with_added_voc("\n") is None) print(tokenizer.encode("\n")) print(repr(tokenizer.decode(198))) ``` should give ```{python} True [128000, 198] # 12800 is just the added beginning of text token '\n' ``` with `encode` and `decode` we get `\n` has id 198 and both directions work, but `tokenizer._convert_token_to_id_with_added_voc("\n")` returns `None`. Thanks in advance! ### Expected behavior `_convert_token_to_id_with_added_voc` should ideally process tokens the same way as `encode` and `decode`
Usage,bug
low
Minor
2,790,203,893
transformers
AttributeError in automatic_speech_recognition.py when return_segments and return_timestamps are both True
### System Info - `transformers` version: 4.48.0 - Platform: macOS-15.2-arm64-arm-64bit - Python version: 3.12.3 - Huggingface_hub version: 0.27.1 - Safetensors version: 0.4.5 - Accelerate version: 1.1.1 - Accelerate config: not found - PyTorch version (GPU?): 2.3.0 (False) - Tensorflow version (GPU?): not installed (NA) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using distributed or parallel set-up in script?: No ### Who can help? _No response_ ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [x] An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...) - [ ] My own task or dataset (give details below) ### Reproduction 1. With Whisper long-form automatic speech recognition, set return_segments=True and return_timestamps=True. 2. AttributeError: 'dict' object has no attribute 'dtype' in `automatic_speech_recognition.py:postprocess` line 579 in postprocess ` if self.framework == "pt" and outputs[key].dtype in (torch.bfloat16, torch.float16):` is expecting outputs['tokens'] to be a tensor. In the case return_segments is true, outputs['tokens'] is not a tensor, but rather a dict with keys ['sequences', 'segments']. The block of code at line 526 is accounting for this case when return_timestamps = "word" but not accounting for it when return_timestamps = True ### Expected behavior I would expect the code in around 526 to do some format changing similar to what it does when return_timestamps = "word". For what it's worth, setting return_timestamps to "word" is not a usable work-around because that causes output_attentions to get set to True, which is incompatible with SPDA
bug
low
Critical
2,790,209,100
pytorch
FUNC_INLINELIST doesn't exist
probably just obsolete comment: https://github.com/pytorch/pytorch/blob/7c52c97a65f58e1de2967509ab732e20f468dae8/torch/_dynamo/trace_rules.py#L3176 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @chauhang @amjames
triaged,oncall: pt2,module: dynamo
low
Minor
2,790,221,284
langchain
Question: chidlren's key is covered by the parent's same key
for cls in [None, *self.__class__.mro()]: values of the same key in children will be covered by the parent's same key. It is intendedly designed or a bug? I think it's not reasonable.
๐Ÿค–:bug
low
Critical
2,790,226,489
vscode
Duplicate + icon for both "stage line(s)" and "add comment" is not ideal
<!-- โš ๏ธโš ๏ธ Do Not Delete This! feature_request_template โš ๏ธโš ๏ธ --> <!-- Please read our Rules of Conduct: https://opensource.microsoft.com/codeofconduct/ --> <!-- Please search existing issues to avoid creating duplicates. --> <!-- Describe the feature you'd like. --> As you can see, when being in diff mode, both "stage line(s)" and "add comment" buttons are represented by a plus button. This can be confusing and lead to frustration when clicking the wrong button a couple times a day. Could you maybe change the comment button to a speech bubble icon or the like? ![Image](https://github.com/user-attachments/assets/0c510419-a327-4916-8ea8-02b305c414b8)
triage-needed,stale
low
Minor
2,790,247,484
deno
Warning Message for Lifecycle Scripts Only Appears When Running `deno task`
When I ran `deno install --allow-scripts`, I didn't see any warning messages. However, when I ran `deno task setup`, which included the same script, I received a warning about npm lifecycle scripts not being executed. ### Steps to Reproduce 1. Create a `deno.json` file with the following content: ```json { "lock": false, "nodeModulesDir": "auto", "tasks": { "setup": "deno install --allow-scripts", }, "imports": { "astro": "npm:[email protected]", } } ``` 2. Run `deno install --allow-scripts` in terminal. (No warning appeared.) 3. Delete the `node_modules` directory. 4. Run `deno task setup`. (A warning appeared.) ```ansi qz@localhost:/tmp/astro-deno> deno task setup Warning The following packages contained npm lifecycle scripts (preinstall/install/postinstall) that were not executed: โ” โ”€ npm:[email protected] โ”ƒ โ” โ”€ This may cause the packages to not work correctly. โ”–โ”€ To run lifecycle scripts, use the `--allow-scripts` flag with `deno install`: deno install --allow-scripts=npm:[email protected] Task setup deno install --allow-scripts ``` ### Expected Behavior I expected to see no warning for both `deno install --allow-scripts` and `deno task setup`, since the `--allow-scripts` flag was used. ### Actual Behavior No warning appeared during `deno install`, but a warning appeared during `deno task setup`. ### Environment Version: Deno 2.1.5 (stable, release, x86_64-unknown-linux-gnu) v8 13.0.245.12-rusty typescript 5.6.2
needs investigation,task runner
low
Minor
2,790,248,843
rust
Integer `to_string` is slow
On my machine, the following code runs in 3 seconds in stable version, release build: ```rust // (EDIT: made it compile) fn main() { for i in 0..100000000u32 { let s = i.to_string(); assert!(s.len() > 0); } } ``` whereas the C++ counterpart runs in 1.2 seconds with `-O2`: ```cpp #include <string> #include <cassert> int main() { for(unsigned int i=0; i<100000000; i++){ std::string s = std::to_string(i); assert(s.size() > 0); } } ``` I've found that most of the time loss comes from passing `&str` through a formatter instead of directly `memcpy`ing; replacing `to_string` with [_fmt](https://doc.rust-lang.org/src/core/fmt/num.rs.html#241) with `.to_owned()` at the end speeds it up to around 1.6s.
A-fmt,C-optimization
low
Major
2,790,254,149
go
cmd/go: go get fails against GerritHub server
### Go version go version devel go1.24-368a9ec998 Tue Jan 14 14:54:07 2025 -0800 linux/arm64 ### Output of `go env` in your module/workspace: ```shell AR='ar' CC='gcc' CGO_CFLAGS='-O2 -g' CGO_CPPFLAGS='' CGO_CXXFLAGS='-O2 -g' CGO_ENABLED='1' CGO_FFLAGS='-O2 -g' CGO_LDFLAGS='-O2 -g' CXX='g++' GCCGO='gccgo' GO111MODULE='' GOARCH='arm64' GOARM64='v8.0' GOAUTH='netrc' GOBIN='' GOCACHE='/home/myitcv/.cache/go-build' GOCACHEPROG='' GODEBUG='' GOENV='/no-home/.config/go/env' GOEXE='' GOEXPERIMENT='' GOFIPS140='off' GOFLAGS='' GOGCCFLAGS='-fPIC -pthread -Wl,--no-gc-sections -fmessage-length=0 -ffile-prefix-map=$WORK/.tmp/go-build1451863026=/tmp/go-build -gno-record-gcc-switches' GOHOSTARCH='arm64' GOHOSTOS='linux' GOINSECURE='' GOMOD='/dev/null' GOMODCACHE='/home/myitcv/gostuff/pkg/mod' GONOPROXY='' GONOSUMDB='' GOOS='linux' GOPATH='/home/myitcv/gostuff' GOPRIVATE='' GOPROXY='https://proxy.golang.org,direct' GOROOT='/home/myitcv/dev/go' GOSUMDB='sum.golang.org' GOTELEMETRY='local' GOTELEMETRYDIR='/no-home/.config/go/telemetry' GOTMPDIR='' GOTOOLCHAIN='auto' GOTOOLDIR='/home/myitcv/dev/go/pkg/tool/linux_arm64' GOVCS='' GOVERSION='devel go1.24-368a9ec998 Tue Jan 14 14:54:07 2025 -0800' GOWORK='' PKG_CONFIG='pkg-config' ``` ### What did you do? Testscript repro: ``` env GOPRIVATE=cuelang.org/go go mod init mod.example go get cuelang.org/go@master ``` ### What did you see happen? ``` > env GOPRIVATE=cuelang.org/go > go mod init mod.example [stderr] go: creating new go.mod: module mod.example > go get cuelang.org/go@master [stderr] go: cuelang.org/go@master: git fetch --unshallow -f origin in /home/myitcv/gostuff/pkg/mod/cache/vcs/d82383d43199d57840995f1c0a94e81eee5ed02e43dbba4468223292497673e2: exit status 1: error: Could not read b5e1647ec470060133fd6f7f1913fd1c65f5f75c fatal: Failed to traverse parents of commit 74a0c9d01e05b13cb15fa77371bbfb4461eccdff error: remote did not send all necessary objects [exit status 1] FAIL: /tmp/testscript1710667514/repro.txtar/script.txtar:3: unexpected go command failure ``` ### What did you expect to see? Passing test. Also relevant: ``` $ git --version git version 2.48.1.2.g757161efcc ``` Raising this on the back of seeing #71261 and the fix from @rsc which appears to be somewhat related. Note that the server here is GerritHub.io. Per https://issues.gerritcodereview.com/issues/384756627 it might be a server issue. But per #71261 I guess it might be a client expectation issue.
NeedsInvestigation,GoCommand,BugReport
low
Critical
2,790,257,436
kubernetes
Update secret and then upgrade the pod, Sometimes pod will get the old value of secret
### What happened? Mount the secret to the specified directory in the pod. The startup script of pod will read the value of secret. Our program will update the secret and then upgrade the pod. Sometimes the pod read the old value of secret, after container restart it will read the new value of secret. We use WatchChangeDetectionStrategy, Looks like there's a problem with the kubelet cache update. ### What did you expect to happen? The newly created pod immediately detects the secret cache update in kubelet. ### How can we reproduce it (as minimally and precisely as possible)? The probability of the problem is very low, we only encountered it twice in total. I suspect that limiting the CPU resources of the apiserver process and triggering a large number of pods(pods in same node and use same secret) to rebuild may increase the probability of this problem. I am trying to reproduce this problem in this way. ### Anything else we need to know? I'm having problems probably due to pkg/kubelet/util/manager/watch_based_manager.go method _AddReference_ and _DeleteReference_. I think all the secrets used by new pods should be created with a new list-watch listener instead of reusing the ones already created. From the perspective of method implementation, if multiple pods use the same secret and are on the same node, this situation may occur. ### Kubernetes version <details> 1.25.3 </details> ### Cloud provider <details> </details> ### OS version <details> ```console # On Linux: $ cat /etc/os-release # paste output here $ uname -a # paste output here # On Windows: C:\> wmic os get Caption, Version, BuildNumber, OSArchitecture # paste output here ``` </details> ### Install tools <details> </details> ### Container runtime (CRI) and version (if applicable) <details> </details> ### Related plugins (CNI, CSI, ...) and versions (if applicable) <details> </details>
kind/bug,priority/backlog,area/kubelet,sig/node,triage/accepted
low
Major
2,790,258,344
go
proposal: cmd/go: allow setting runtime godebugs in go.mod / go:debug directives
### Proposal Details Now `asyncpreemptoff=1` cannot be specified by `//go:debug`: ``` examples\test\main.go:1:1: invalid //go:debug: unknown //go:debug setting "asyncpreemptoff" ``` However, there are many situations where disabling async preemption is required as a workaround to make applications work correctly: * https://github.com/golang/go/issues/36981 * https://github.com/golang/go/issues/48059 * https://github.com/golang/go/issues/57442 * https://github.com/golang/go/issues/64781 * https://github.com/golang/go/issues/68485 * https://github.com/golang/go/issues/71242 * https://github.com/hashicorp/terraform/issues/27350 I propose to enable to specify `asyncpreemptoff=1` as `//go:debug` and `godebug` section in go.mod. Note that it is still possible to specify it by `-ldflags="-X=runtime.godebugDefault=asyncpreemptoff=1"`, but this is pretty hacky.
Proposal,ToolProposal
low
Critical
2,790,260,166
transformers
Regression - Phi3 has graph breaks in 4.48 but not in 4.47.1
### System Info - `transformers` version: 4.48.0 - Platform: Linux-6.8.0-48 - Python version: 3.12.3 - Huggingface_hub version: 0.27.1 - Safetensors version: 0.5.2 - Accelerate version: 1.2.1 - Accelerate config: not found - PyTorch version (GPU?): 2.6.0 - Tensorflow version (GPU?): not installed (NA) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using distributed or parallel set-up in script?: No - Using GPU in script?: No - GPU type: NVIDIA RTX 6000 Ada Generation ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...) - [ ] My own task or dataset (give details below) ### Reproduction ```python import torch from transformers import AutoConfig, AutoModelForCausalLM cfg = AutoConfig.from_pretrained("microsoft/Phi-3-mini-128k-instruct") cfg.num_hidden_layers = 2 with torch.device("cuda"): m = AutoModelForCausalLM.from_config(cfg) def backend(gm, sample_args): # gm.print_readable() print("SUBGRAPH") return gm m.model = torch.compile(m.model, backend=backend) input_ids = torch.randint(0, 100, (1, 4096), device="cuda") m(input_ids) ``` For 4.48, we see 4 subgraphs while with previous 4.47.1 we see only 1 subgraph. Running with `TORCH_LOGS="graph_breaks"` prints ```python V0115 16:09:58.933000 510381 torch/_dynamo/symbolic_convert.py:444] [1/0] [__graph_breaks] Graph break (details suppressed) in user code at /usr/local/lib/python3.12/dist-packages/transformers/models/phi3/modeling_phi3.py:386 V0115 16:09:58.933000 510381 torch/_dynamo/symbolic_convert.py:444] [1/0] [__graph_breaks] Reason: Unsupported: Dynamic control flow is not supported at the moment. Please use functorch.experimental.control_flow.cond to explicitly capture the control flow. For more information about this error, see: https://pytorch.org/docs/main/generated/exportdb/index.html#cond-operands V0115 16:09:58.945000 510381 torch/_dynamo/symbolic_convert.py:444] [2/0] [__graph_breaks] Graph break (details suppressed) in user code at /usr/local/lib/python3.12/dist-packages/transformers/models/phi3/modeling_phi3.py:386 V0115 16:09:58.945000 510381 torch/_dynamo/symbolic_convert.py:444] [2/0] [__graph_breaks] Reason: Data-dependent jump ``` ### Expected behavior Should have a single subgraph ideally like before.
bug
low
Critical
2,790,291,794
flutter
Misconfigured android engine test "Invalid shard: android_engine_tests"
I am seeing failures that look like misconfiguration. https://logs.chromium.org/logs/flutter/buildbucket/cr-buildbucket/8725700029924606593/+/u/run_test.dart_for_android_engine_tests_shard_and_subshard_None/stdout ``` Invalid shard: android_engine_tests The available shards are: add_to_app_life_cycle_tests, build_tests, framework_coverage, framework_tests, tool_tests, web_tool_tests, tool_integration_tests, android_preview_tool_integration_tests, android_java11_tool_integration_tests, tool_host_cross_arch_tests, web_tests, web_canvaskit_tests, web_skwasm_tests, web_long_running_tests, flutter_driver_android, flutter_plugins, skp_generator, customer_testing, analyze, fuchsia_precache, snippets, docs, verify_binaries_codesigned, test_harness_tests ``` https://chat.google.com/room/AAAAK4LG52w/aYB-Xd3HXrc/aYB-Xd3HXrc?cls=10
platform-android,t: flutter driver,team-infra,P1,android-testing
medium
Critical
2,790,292,902
electron
Backdrop filters no longer function/apply between View's
### Preflight Checklist - [x] I have read the [Contributing Guidelines](https://github.com/electron/electron/blob/main/CONTRIBUTING.md) for this project. - [x] I agree to follow the [Code of Conduct](https://github.com/electron/electron/blob/main/CODE_OF_CONDUCT.md) that this project adheres to. - [x] I have searched the [issue tracker](https://www.github.com/electron/electron/issues) for a bug report that matches the one I want to file, without success. ### Electron Version 34.0.0 ### What operating system(s) are you using? Other Linux ### Operating System Version 6.12.8 ### What arch are you using? x64 ### Last Known Working Electron version 34.0.0-beta.3 ### Expected Behavior If 2 views or more are on top of each other, and the top one has a backdrop filter or similar, then the view below it should be taken into account, as shown in a screenshot from pre-v34.0.0: ![Image](https://github.com/user-attachments/assets/c4ebf3ca-2ee8-47fe-bb2f-bb16cf4aa993) ### Actual Behavior The backdrop filter does not take the view below it into account, as shown in a screenshot post-v34.0.0 (happens on latest nightly as well): ![Image](https://github.com/user-attachments/assets/dbf6e8a6-9de8-4ce2-8186-eb860c660a9a) ### Testcase Gist URL https://gist.github.com/KiruPoruno/7ba1d4ba3fbf2f4f1878a335801f75f7 ### Additional Information From my testing this started happening after v34.0.0-beta.3, didn't test nightly versions for more specificity, but hope that info helps.
platform/windows,platform/linux,bug :beetle:,has-repro-gist,34-x-y
low
Critical
2,790,302,622
deno
Support sending OTEL data over a unix socket or printed to stdout.
It would be nice to be able to your the collected opentelemetry data to either STDOUT or a unix socket. Might be helpful with local development, or in certain contexts where it would be helpful to skip the networking stack.
otel
low
Minor
2,790,332,270
pytorch
FlexAttention errors with certain functions and half precision in score_mod
### ๐Ÿ› Describe the bug Using certain functions in `score_mod` as part of FlexAttention error when using float16 or bfloat16. This is on nightly, to reproduce: ```python import torch from torch.nn.attention.flex_attention import flex_attention flex_attention = torch.compile(flex_attention, dynamic=False) q = torch.randn((1, 1, 128, 16), dtype=torch.float16, device="cuda") k = torch.randn((1, 1, 128, 16), dtype=torch.float16, device="cuda") v = torch.randn((1, 1, 128, 16), dtype=torch.float16, device="cuda") mass = torch.ones((1), dtype=torch.float16, device="cuda") def score_mod(score, b, h, q_idx, kv_idx): return score + torch.log(mass[0]) out = flex_attention(q, k, v, score_mod=score_mod) # fails ``` Using `torch.log(mass[0].to(torch.float32))` succeeds. I believe it's because the lowering from `torch.log` to Triton isn't converting to `tl.float32` before the log call, which Triton needs (and hence the same error occurs when using some other operations, like `sin`, `cos`, etc), since the error contains: ``` ValueError: Expected dtype ['fp32', 'fp64'] but got fp16 The above exception was the direct cause of the following exception: triton.compiler.errors.CompilationError: at 50:11: # ~~~~~~~~~~~~~~~~~~~ Apply score modification ~~~~~~~~~~~~~~~~~~~ if CHECK_BLOCK_BOUNDARY: # If this is the last block of a non divisible seqlen, we still need to load [BLOCK_M, BLOCK_N] elements, # which is larger than the actual number of elements. To avoid access memory out of bound, # we need to mask out the elements that are out of Q_LEN & KV_LEN. m = offs_m % Q_LEN n = offs_n % KV_LEN else: m = offs_m n = offs_n tmp0 = tl_math.log(tl.load(in_ptr8 + 0)) ``` I did have a look into it, and while there is a decorator on log here: https://github.com/pytorch/pytorch/blob/main/torch/_inductor/codegen/triton.py#L1218, the arguments provided from the lowering process are just the string `'tl.load(in_ptr8 + 0)'` rather than a CSEVariable and hence don't get upcast: https://github.com/pytorch/pytorch/blob/main/torch/_inductor/codegen/triton.py#L763 <details> <summary>Full error</summary> ``` InductorError: SubprocException: An exception occurred in a subprocess: Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/triton/language/core.py", line 35, in wrapper return fn(*args, **kwargs) File "/usr/local/lib/python3.10/dist-packages/triton/language/math.py", line 26, in check raise ValueError(f"Expected dtype {dtypes} but got {arg.type.scalar.name}") ValueError: Expected dtype ['fp32', 'fp64'] but got fp16 The above exception was the direct cause of the following exception: triton.compiler.errors.CompilationError: at 50:11: # ~~~~~~~~~~~~~~~~~~~ Apply score modification ~~~~~~~~~~~~~~~~~~~ if CHECK_BLOCK_BOUNDARY: # If this is the last block of a non divisible seqlen, we still need to load [BLOCK_M, BLOCK_N] elements, # which is larger than the actual number of elements. To avoid access memory out of bound, # we need to mask out the elements that are out of Q_LEN & KV_LEN. m = offs_m % Q_LEN n = offs_n % KV_LEN else: m = offs_m n = offs_n tmp0 = tl_math.log(tl.load(in_ptr8 + 0)) ^ The above exception was the direct cause of the following exception: triton.compiler.errors.CompilationError: at 44:28: SPARSE_KV_MULTIPLE: tl.constexpr = (SPARSE_KV_BLOCK_SIZE // BLOCK_N) RCP_LN2: tl.constexpr = 1.44269504 if PRESCALE_QK: q = (q * SM_SCALE * RCP_LN2).to(MATMUL_PRECISION) # loop over k, v and update accumulator until block_n_end for start_n in range(block_n_start, block_n_end): if IS_DIVISIBLE: acc, l_i, m_i = forward_block_mn( ^ The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/torch/_inductor/compile_worker/subproc_pool.py", line 337, in do_job result = job() File "/usr/local/lib/python3.10/dist-packages/torch/_inductor/runtime/compile_tasks.py", line 74, in _worker_compile_triton load_kernel().precompile(warm_cache_only=True) File "/usr/local/lib/python3.10/dist-packages/torch/_inductor/runtime/triton_heuristics.py", line 262, in precompile compiled_binary, launcher = self._precompile_config( File "/usr/local/lib/python3.10/dist-packages/torch/_inductor/runtime/triton_heuristics.py", line 449, in _precompile_config binary = triton.compile(*compile_args, **compile_kwargs) File "/usr/local/lib/python3.10/dist-packages/triton/compiler/compiler.py", line 273, in compile module = src.make_ir(options, codegen_fns, module_map, context) File "/usr/local/lib/python3.10/dist-packages/triton/compiler/compiler.py", line 100, in make_ir return ast_to_ttir(self.fn, self, context=context, options=options, codegen_fns=codegen_fns, triton.compiler.errors.CompilationError: at 158:20: ) V_block_ptr = tl.make_block_ptr( base=V, shape=(KV_LEN, V_HEAD_DIM), strides=(stride_vn, stride_vk), offsets=(kv_start, 0), block_shape=(BLOCK_N, V_HEAD_DIM), order=(1, 0) ) offs_n = kv_start + tl.arange(0, BLOCK_N) acc, l_i, m_i = forward_inner( ^ Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information You can suppress this exception and fall back to eager by setting: import torch._dynamo torch._dynamo.config.suppress_errors = True ``` </details> ### Versions Collecting environment information... PyTorch version: 2.7.0.dev20250115+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.3 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.31.2 Libc version: glibc-2.35 Python version: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.1.85+-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.2.140 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-SXM4-40GB Nvidia driver version: 535.104.05 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.6 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.6 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.6 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.6 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.6 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.6 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.6 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 12 On-line CPU(s) list: 0-11 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) CPU @ 2.20GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 6 Socket(s): 1 Stepping: 7 BogoMIPS: 4400.39 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities Hypervisor vendor: KVM Virtualization type: full L1d cache: 192 KiB (6 instances) L1i cache: 192 KiB (6 instances) L2 cache: 6 MiB (6 instances) L3 cache: 38.5 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-11 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Vulnerable Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable; IBPB: disabled; STIBP: disabled; PBRSB-eIBRS: Vulnerable; BHI: Vulnerable (Syscall hardening enabled) Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Vulnerable Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] nvtx==0.2.10 [pip3] optree==0.13.1 [pip3] pynvjitlink-cu12==0.4.0 [pip3] pytorch-triton==3.2.0+git0d4682f0 [pip3] torch==2.7.0.dev20250115+cu124 [pip3] torchaudio==2.5.1+cu121 [pip3] torchsummary==1.5.1 [pip3] torchvision==0.20.1+cu121 [conda] Could not collect cc @chauhang @penguinwu @zou3519 @ydwu4 @bdhirsh @yf225 @Chillee @drisspg @yanboliang @BoyuanFeng
triaged,oncall: pt2,module: flex attention
low
Critical
2,790,332,401
vscode
fallo
Type: <b>Bug</b> crear nuevo perfil VS Code version: Code 1.96.2 (fabdb6a30b49f79a7aba0f2ad9df9b399473380f, 2024-12-19T10:22:47.216Z) OS version: Windows_NT x64 10.0.19045 Modes: <details> <summary>System Info</summary> |Item|Value| |---|---| |CPUs|12th Gen Intel(R) Core(TM) i7-1255U (12 x 2611)| |GPU Status|2d_canvas: enabled<br>canvas_oop_rasterization: enabled_on<br>direct_rendering_display_compositor: disabled_off_ok<br>gpu_compositing: enabled<br>multiple_raster_threads: enabled_on<br>opengl: enabled_on<br>rasterization: enabled<br>raw_draw: disabled_off_ok<br>skia_graphite: disabled_off<br>video_decode: enabled<br>video_encode: enabled<br>vulkan: disabled_off<br>webgl: enabled<br>webgl2: enabled<br>webgpu: enabled<br>webnn: disabled_off| |Load (avg)|undefined| |Memory (System)|15.64GB (4.75GB free)| |Process Argv|| |Screen Reader|no| |VM|0%| </details><details><summary>Extensions (24)</summary> Extension|Author (truncated)|Version ---|---|--- ng-template|Ang|19.0.3 vscode-eslint|dba|3.0.10 EditorConfig|Edi|0.16.4 prettier-vscode|esb|11.0.0 svg|joc|1.5.4 vscode-language-pack-es|MS-|1.96.2024121109 sqltools|mtx|0.28.3 reload|nat|0.0.7 java|red|1.38.0 vscode-xml|red|0.27.2 errorlens|use|3.22.0 intellicode-api-usage-examples|Vis|0.2.9 vscodeintellicode|Vis|1.3.2 vscode-boot-dev-pack|vmw|0.2.1 vscode-spring-boot|vmw|1.59.0 vscode-gradle|vsc|3.16.4 vscode-java-debug|vsc|0.58.1 vscode-java-dependency|vsc|0.24.1 vscode-java-pack|vsc|0.29.0 vscode-java-test|vsc|0.43.0 vscode-maven|vsc|0.44.0 vscode-spring-boot-dashboard|vsc|0.14.0 vscode-spring-initializr|vsc|0.11.2 console-ninja|Wal|1.0.377 (1 theme extensions excluded) </details> <!-- generated by issue reporter -->
info-needed
low
Critical
2,790,356,929
terminal
Cannot unbind key through null id
### Windows Terminal version 1.21.3231.0 ### Windows build number 10.0.26100.2894 ### Other Software _No response_ ### Steps to reproduce I am trying to unbind ctrl-h. I am following the steps from https://learn.microsoft.com/en-us/windows/terminal/customize-settings/actions#unbind-keys-disable-keybindings In this case, I copy the section about setting the id to null: ``` { "id" : null, "keys" : ["ctrl+h"] } ``` I put this in the settings.json file. Here is what that part of my file looks like now: ``` { "$help": "https://aka.ms/terminal-documentation", "$schema": "https://aka.ms/terminal-profiles-schema", "actions": [ { "command": "unbound", "keys": "ctrl+v" }, { "command": "unbound", "keys": "ctrl+c" }, { "command": { "action": "copy", "singleLine": false }, "id": "User.copy.644BA8F2" }, { "command": "paste", "id": "User.paste", "keys": "ctrl+shift+v" }, { "command": { "action": "splitPane", "split": "auto", "splitMode": "duplicate" }, "id": "User.splitPane.A6751878", "keys": "alt+shift+d" }, { "command": "find", "id": "User.find", "keys": "ctrl+shift+f" }, { "id" : null, "keys" : ["ctrl+h"] } ], "copyFormatting": "none", "copyOnSelect": false, "defaultProfile": "{d8e96812-b789-5068-a5ae-10b2fb53e95f}", "newTabMenu": [ { "type": "remainingProfiles" } ], "profiles": { "defaults": { "cursorShape": "filledBox", "experimental.rightClickContextMenu": true, "font": { "size": 10 }, "showMarksOnScrollbar": true }, "list": [ { "commandline": "%SystemRoot%\\System32\\WindowsPowerShell\\v1.0\\powershell.exe", "guid": "{61c54bbd-c2c6-5271-96e7-009a87ff44bf}", "hidden": false, "name": "Windows PowerShell" }, { "commandline": "%SystemRoot%\\System32\\cmd.exe", "guid": "{0caa0dad-35be-5f56-a8ff-afceeeaa6101}", "hidden": false, "name": "Command Prompt" }, { "guid": "{b453ae62-4e3d-5e58-b989-0a998ec441b8}", "hidden": false, "name": "Azure Cloud Shell", "source": "Windows.Terminal.Azure" }, { "colorScheme": "Tango Dark", "cursorShape": "filledBox", "font": { "size": 11 }, "guid": "{d8e96812-b789-5068-a5ae-10b2fb53e95f}", "hidden": false, "name": "Ubuntu 24.04.1 LTS", "source": "CanonicalGroupLimited.Ubuntu24.04LTS_79rhkp1fndgsc" }, { "guid": "{963ff2f7-6aed-5ce3-9d91-90d99571f53a}", "hidden": true, "name": "Ubuntu-24.04", "source": "Windows.Terminal.Wsl" } ] }, "schemes": [], "themes": [] } ``` ### Expected Behavior I expect it to at least load the settings file. Ideally, it should unbind ctrl-h from WSL and the command prompt. Since I am copying directly from the windows documents, I expect this to work. ### Actual Behavior I get an error: ![Image](https://github.com/user-attachments/assets/910792b9-3c4c-40b3-a84a-504620a375ce) As you can see, it does not like the `null` and says it expects a string.
Issue-Bug,Area-Settings,Product-Terminal
low
Critical
2,790,364,778
neovim
boolean in vim.lsp.Config to determine if a language server should be enabled.
### Problem I'd like to disable some language servers based on what the path / cwd is. For example, I don't want to run [harper-ls](https://github.com/Automattic/harper) if the path is outside of my development paths. eg: Don't run on public cloned trees. I was thinking something like a `enabled = function(...):boolean` or similar. I'm aware that I can have this logic around where I call `vim.lsp.enable()`, but having it in the LS definition table feels cleaner. I can create a PR if this is a feature that would be accepted. Thanks. Related: https://github.com/neovim/neovim/issues/31762 ### Expected behavior Have the ability to enable/disable a language server from the `vim.lsp.Config` table.
enhancement,lsp
low
Major
2,790,379,899
svelte
Wrong "Unused CSS selector" in slotted content
### Describe the bug CSS `:has` selector is incorrectly reported as unused in slotted content. ### Reproduction [https://svelte.dev/playground/f4f152811664414b927a42289c904a52?version=5.18.0](https://svelte.dev/playground/f4f152811664414b927a42289c904a52?version=5.18.0) ### Logs ```shell ``` ### System Info ```shell System: OS: Windows 11 10.0.22631 CPU: (16) x64 13th Gen Intel(R) Core(TM) i5-1350P Memory: 15.85 GB / 31.69 GB Binaries: Node: 20.11.0 - C:\Program Files\nodejs\node.EXE npm: 10.2.5 - C:\Program Files\nodejs\npm.CMD pnpm: 9.15.2 - ~\AppData\Local\pnpm\pnpm.CMD Browsers: Internet Explorer: 11.0.22621.3527 npmPackages: svelte: ^5.18.0 => 5.18.0 ``` ### Severity blocking an upgrade
css
low
Critical
2,790,423,672
pytorch
[dynamo] Model `__dict__` with `ConstDictVariable` rather than `GetAttrVariable`
This tracks (1) from https://github.com/pytorch/pytorch/pull/144419#pullrequestreview-2541259169. It'll lead to removal of duplicated logic for dictionary object handling below, and make it easier to reason about `__dict__` in general. https://github.com/pytorch/pytorch/blob/d85ae4be734cfd53f5b893240894381ac65fe8b4/torch/_dynamo/variables/misc.py#L1027-L1074 cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
triaged,oncall: pt2,module: dynamo
low
Minor
2,790,425,283
pytorch
[dynamo] Support mutation on type objects
This tracks (2) from https://github.com/pytorch/pytorch/pull/144419#issuecomment-2583533712. Repro: ```python @torch.compile(backend="eager", fullgraph=True) def f(x): Foo.a = 1 return x + 1 f(torch.ones(1)) # File ".../torch/_dynamo/symbolic_convert.py", line 1843, in STORE_ATTR # BuiltinVariable(setattr).call_function( # File ".../torch/_dynamo/variables/builtin.py", line 1003, in call_function # return handler(tx, args, kwargs) # ^^^^^^^^^^^^^^^^^^^^^^^^^ # File ".../torch/_dynamo/variables/builtin.py", line 845, in builtin_dispatch # unimplemented(error_msg) # File ".../torch/_dynamo/exc.py", line 356, in unimplemented # raise Unsupported(msg, case_name=case_name) #torch._dynamo.exc.Unsupported: builtin: setattr [<class 'torch._dynamo.variables.user_defined.UserDefinedClassVariable'>, <class 'torch._dynamo.variables.constant.ConstantVariable'>, <class 'torch._dynamo.variables.constant.ConstantVariable'>] False ``` We _might_ also want to support mutation on `__dict__` object as a result, although that could be subsumed by #144873. cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames
triaged,oncall: pt2,module: dynamo
low
Critical
2,790,430,483
vscode
Terminal suggest: support absolute paths well on Windows
Some test cases: - `cd |` should show `C:\`, `D:\`, etc., whatever drives are available - `cd C:\|` should show dirs in `C:\` with same prefix (eg. `C:\Windows`) - `cd :|` should show all drives (should get for free with first test case)
feature-request,windows,terminal-suggest
low
Minor
2,790,433,050
tensorflow
Failed to load native TensorFlow Lite methods
Hi, I'm trying to use tensorflow lite version 2.15.0 to run my tflite model and I'm getting an error when initializing the interpreter. I'm adding the tensor flow libraries in the gradle file `implementation('org.tensorflow:tensorflow-lite') { version { strictly("2.15.0") } }` Code: ``` isLibraryLoaded = false private fun initInterpreter(): Interpreter? { val tfliteOptions = Interpreter.Options() tfliteOptions.setNumThreads(2) if (!isLibraryLoaded) { System.loadLibrary("tensorflowlite_jni") ARLog.d("OmniSenseMLDepthImageProcessor","Tensor flow lite Library load successful") isLibraryLoaded = true } return try { Log.d("InterpreterDelegate", "Thread id getInterpreter == ${Thread.currentThread().name}") val interpreter = org.tensorflow.lite.Interpreter(loadModelFile(resolveModelFilePath()), tfliteOptions) Log.d("InterpreterDelegate", "Interpreter initialized successfully") return interpreter } catch (e: Exception) { Log.e("InterpreterDelegate", "Error: Could not initialize $tfLiteModel interpreter!: ${e.message}") e.printStackTrace() null } } ``` TFLite version: 2.15.0 Device: Samsung S20 Error: ``` E FATAL EXCEPTION: pool-140-thread-1 Process: com.amazon.mShop.android.shopping, PID: 14755 java.lang.UnsatisfiedLinkError: Failed to load native TensorFlow Lite methods. Check that the correct native libraries are present, and, if using a custom native library, have been properly loaded via System.loadLibrary(): java.lang.UnsatisfiedLinkError: dlopen failed: library "libtensorflowlite_jni_gms_client.so" not found at org.tensorflow.lite.TensorFlowLite.init(TensorFlowLite.java:137) at org.tensorflow.lite.NativeInterpreterWrapper.<init>(NativeInterpreterWrapper.java:62) at org.tensorflow.lite.NativeInterpreterWrapperExperimental.<init>(NativeInterpreterWrapperExperimental.java:36) at org.tensorflow.lite.Interpreter.<init>(Interpreter.java:232) at com.a9.fez.tflite.TFLiteInterpreterDelegate.initInterpreter(TFLiteInterpreterDelegate.kt:50) at com.a9.fez.tflite.TFLiteInterpreterDelegate.getValue(TFLiteInterpreterDelegate.kt:29) Caused by: java.lang.UnsatisfiedLinkError: No implementation found for void org.tensorflow.lite.TensorFlowLite.nativeDoNothing() (tried Java_org_tensorflow_lite_TensorFlowLite_nativeDoNothing and Java_org_tensorflow_lite_TensorFlowLite_nativeDoNothing__) - is the library loaded, e.g. System.loadLibrary? at org.tensorflow.lite.TensorFlowLite.nativeDoNothing(Native Method) at org.tensorflow.lite.TensorFlowLite.init(TensorFlowLite.java:132) ... 14 more ```
stat:awaiting response,type:support,comp:lite,TF 2.15
medium
Critical
2,790,443,660
pytorch
[Monitoring] Display on HUD the information about runners that failed to be created (which cause jobs to queue)
## Context When job queuing for a significant period of time, it'll usually be for one of the following reasons: - The desired machine is out of stock. We'll retry creating that instance until it becomes available - There's a bug preventing that runner type from coming online, or perhaps even being provisioned - Some other AWS issue that prevented the runner from being provisioned ## The Ask This has two parts: Data Export and Visualization ### Data Export Update the autoscaler lambdas to export the following data to ClickHouse: - When instances are provisioned successfully - When instances fail to get provisioned, along with their error codes - Number of instances currently being retried ### Visualization Add a new charts to HUD to show the number of runners of each type that have been provisioned, the number that failed (along with the reason), and the number currently waiting to be retried. This could end up looking similar to the internal charts we have at https://fburl.com/unidash/z3wfjdwv. Why do we need new charts if similar data is already available internally? Because the internal charts cannot capture stats about the LF fleet, and we want to be able to track service health across both the Meta and LF fleets. cc @seemethere @malfet @pytorch/pytorch-dev-infra
module: ci,triaged
low
Critical
2,790,444,887
tensorflow
target //tensorflow/compiler/mlir/lite:tensorflow_lite_quantize fail to build
### Issue type Build/Install ### Have you reproduced the bug with TensorFlow Nightly? No ### Source source ### TensorFlow version tf 2.19 ### Custom code No ### OS platform and distribution Linux Debian 6.1.119-1 (2024-11-22) x86_64 x86_64 x86_64 GNU/Linux ### Mobile device _No response_ ### Python version 3.10 ### Bazel version bazel 6.5.0 ### GCC/compiler version gcc version 13.1.0 ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current behavior? ### Background I follow the guidance here to run unit test locally. I use a google cloud compute engine. [gcc version 13.1.0](https://github.com/tensorflow/tensorflow/blob/master/CONTRIBUTING.md#running-unit-tests) I run the follow command to docker image tensorflow/build:2.19-python3.10. docker run -it -v $PWD:/tmp -w /tmp tensorflow/build:2.19-python3.10 bash -c "bazel build --experimental_action_cache_store_output_metadata --disk_cache=~/.cache/bazel --jobs=3 --config=linux //tensorflow/compiler/mlir/lite:tensorflow_lite_quantize" ### The build failed and the error message is: /usr/include/c++/13/bits/unique_ptr.h:1070:30: error: call of overloaded 'DefaultQuantParamsPass(const mlir::TFL::DefaultQuantParamsPassOptions&)' is ambiguous 1070 | { return unique_ptr<_Tp>(new _Tp(std::forward<_Args>(__args)...)); } | ### The full debug message is: ERROR: /tmp/tensorflow/compiler/mlir/lite/BUILD:1295:11: Compiling tensorflow/compiler/mlir/lite/transforms/default_quant_params.cc failed: (Exit 1): gcc failed: error executing command (from target //tensorflow/compiler/mlir/lite:tensorflow_lite_quantize) /usr/bin/gcc -U_FORTIFY_SOURCE -fstack-protector -Wall -Wunused-but-set-parameter -Wno-free-nonheap-object -fno-omit-frame-pointer -g0 -O2 '-D_FORTIFY_SOURCE=1' -DNDEBUG -ffunction-sections ... (remaining 235 arguments skipped) In file included from /usr/include/c++/13/memory:78, from tensorflow/compiler/mlir/lite/transforms/default_quant_params.cc:16: /usr/include/c++/13/bits/unique_ptr.h: In instantiation of 'std::__detail::__unique_ptr_t<_Tp> std::make_unique(_Args&& ...) [with _Tp = mlir::TFL::{anonymous}::DefaultQuantParamsPass; _Args = {const mlir::TFL::DefaultQuantParamsPassOptions&}; __detail::__unique_ptr_t<_Tp> = __detail::__unique_ptr_tmlir::TFL::{anonymous}::DefaultQuantParamsPass]': tensorflow/compiler/mlir/lite/transforms/default_quant_params.cc:249:50: required from here /usr/include/c++/13/bits/unique_ptr.h:1070:30: error: call of overloaded 'DefaultQuantParamsPass(const mlir::TFL::DefaultQuantParamsPassOptions&)' is ambiguous 1070 | { return unique_ptr<_Tp>(new _Tp(std::forward<_Args>(__args)...)); } | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In file included from tensorflow/compiler/mlir/lite/transforms/default_quant_params.cc:52: bazel-out/k8-opt/bin/tensorflow/compiler/mlir/lite/transforms/passes.h.inc:162:3: note: candidate: 'mlir::TFL::{anonymous}::impl::DefaultQuantParamsPassBase::DefaultQuantParamsPassBase(mlir::TFL::DefaultQuantParamsPassOptions) [with DerivedT = mlir::TFL::{anonymous}::DefaultQuantParamsPass]' 162 | DefaultQuantParamsPassBase(DefaultQuantParamsPassOptions options) : DefaultQuantParamsPassBase() { | ^~~~~~~~~~~~~~~~~~~~~~~~~~ tensorflow/compiler/mlir/lite/transforms/default_quant_params.cc:57:37: note: inherited here 57 | using DefaultQuantParamsPassBase::DefaultQuantParamsPassBase; | ^~~~~~~~~~~~~~~~~~~~~~~~~~ tensorflow/compiler/mlir/lite/transforms/default_quant_params.cc:66:12: note: candidate: 'mlir::TFL::{anonymous}::DefaultQuantParamsPass::DefaultQuantParamsPass(const mlir::TFL::DefaultQuantParamsPassOptions&)' 66 | explicit DefaultQuantParamsPass( | ^~~~~~~~~~~~~~~~~~~~~~ tensorflow/compiler/mlir/lite/transforms/default_quant_params.cc:54:7: note: candidate: 'mlir::TFL::{anonymous}::DefaultQuantParamsPass::DefaultQuantParamsPass(const mlir::TFL::{anonymous}::DefaultQuantParamsPass&)' 54 | class DefaultQuantParamsPass | ^~~~~~~~~~~~~~~~~~~~~~ tensorflow/compiler/mlir/lite/transforms/default_quant_params.cc:54:7: note: candidate: 'mlir::TFL::{anonymous}::DefaultQuantParamsPass::DefaultQuantParamsPass(mlir::TFL::{anonymous}::DefaultQuantParamsPass&&)' (deleted) Target //tensorflow/compiler/mlir/lite:tensorflow_lite_quantize failed to build Use --verbose_failures to see the command lines of failed build steps. INFO: Elapsed time: 407.917s, Critical Path: 206.23s INFO: 43 processes: 7 internal, 36 local. FAILED: Build did NOT complete successfully ### Standalone code to reproduce the issue ```shell I run the follow command to docker image tensorflow/build:2.19-python3.10. docker run -it -v $PWD:/tmp -w /tmp tensorflow/build:2.19-python3.10 bash -c "bazel build --experimental_action_cache_store_output_metadata --disk_cache=~/.cache/bazel --jobs=3 --config=linux //tensorflow/compiler/mlir/lite:tensorflow_lite_quantize" ### The build failed and the error message is: /usr/include/c++/13/bits/unique_ptr.h:1070:30: error: call of overloaded 'DefaultQuantParamsPass(const mlir::TFL::DefaultQuantParamsPassOptions&)' is ambiguous 1070 | { return unique_ptr<_Tp>(new _Tp(std::forward<_Args>(__args)...)); } | ``` ### Relevant log output ```shell ```
type:build/install,comp:lite,TF 2.18
low
Critical
2,790,449,454
kubernetes
Document why kernel tunable `kernel/panic` needs to be set to 10
### What would you like to be added? Running kubelet on a system without this tunable is unsupported and causes kubelet to terminate. It's fine to set this and be done with it, but I can't figure out why? Looking through the code/github, it seems that this pull request from @brendandburns first added this sysctl and requirement: https://github.com/kubernetes/kubernetes/pull/17202/ ``` [Refactor an interface for style](https://github.com/kubernetes/kubernetes/pull/17202/commits/fb576f30c8381aa30067e261c5af37adbcdfc3df) ``` Nothing in the commit or PR seems to indicate why this was added, and I don't seem to find anything in the project since that explains why this is enforced. Is there something relevant to `kubelet` that happens in that timeframe? ### Why is this needed? Hard requirement of specific kernel configuration, but nothing apparent in the project seems to explain why.
sig/node,kind/feature,sig/docs,needs-triage
low
Minor
2,790,459,222
rust
Type inference failure: Unable to infer closure parameter type
I tried this code: ```rust fn test_map_err() { let mut m = None; let a: i32; let c = m.map_or(a, |v| v.min(a)); } ``` I expected to see this happen: The compiler should be able to infer the type of the closure parameter v and compile the code successfully. Instead, this happened: The compiler failed to infer the type and produced the following error: ![Image](https://github.com/user-attachments/assets/7d9e1606-4ba4-4f04-9322-8da70ec19244) ### Meta > i have already try nightly version compiler, and meet the same behavior `rustc --version --verbose`: ``` rustc 1.84.0 (9fc6b4312 2025-01-07) binary: rustc commit-hash: 9fc6b43126469e3858e2fe86cafb4f0fd5068869 commit-date: 2025-01-07 host: x86_64-unknown-linux-gnu release: 1.84.0 LLVM version: 19.1.5 ```
C-discussion
low
Critical
2,790,478,990
flutter
[Impeller] error running Emulator binary 35.3.11.0 on Linux host.
### Steps to reproduce Upgrading flutter and everything (dart, android tools and images, IDE, ide plugins, building new emulator AVDs, etc) else from a 4mo old working setup. now builds fail (even on a newly created project) with: > `E/flutter ( 3868): [ERROR:flutter/impeller/renderer/backend/vulkan/allocator_vk.cc(522)] Break on 'ImpellerValidationBreak' to inspect point of failure: Unable to allocate a device buffer: ErrorFeatureNotPresent` ### Expected results Run newly created application on emulator ### Actual results I can see the application open (white screen, flutter logo on center) and then immediately close. ### Code sample <details open><summary>Code sample</summary> (literally the sample code from a new project) ```dart import 'package:flutter/material.dart'; import 'package:flutter/material.dart'; import 'package:flutter/rendering.dart'; void main() { runApp(const MyApp()); } class MyApp extends StatelessWidget { const MyApp({super.key}); // This widget is the root of your application. @override Widget build(BuildContext context) { return MaterialApp( title: 'Flutter Demo', theme: ThemeData( // This is the theme of your application. // // TRY THIS: Try running your application with "flutter run". You'll see // the application has a purple toolbar. Then, without quitting the app, // try changing the seedColor in the colorScheme below to Colors.green // and then invoke "hot reload" (save your changes or press the "hot // reload" button in a Flutter-supported IDE, or press "r" if you used // the command line to start the app). // // Notice that the counter didn't reset back to zero; the application // state is not lost during the reload. To reset the state, use hot // restart instead. // // This works for code too, not just values: Most code changes can be // tested with just a hot reload. colorScheme: ColorScheme.fromSeed(seedColor: Colors.deepPurple), useMaterial3: true, ), home: const MyHomePage(title: 'Flutter Demo Home Page'), ); } } class MyHomePage extends StatefulWidget { const MyHomePage({super.key, required this.title}); // This widget is the home page of your application. It is stateful, meaning // that it has a State object (defined below) that contains fields that affect // how it looks. // This class is the configuration for the state. It holds the values (in this // case the title) provided by the parent (in this case the App widget) and // used by the build method of the State. Fields in a Widget subclass are // always marked "final". final String title; @override State<MyHomePage> createState() => _MyHomePageState(); } class _MyHomePageState extends State<MyHomePage> { int _counter = 0; void _incrementCounter() { setState(() { // This call to setState tells the Flutter framework that something has // changed in this State, which causes it to rerun the build method below // so that the display can reflect the updated values. If we changed // _counter without calling setState(), then the build method would not be // called again, and so nothing would appear to happen. _counter++; }); } @override Widget build(BuildContext context) { // This method is rerun every time setState is called, for instance as done // by the _incrementCounter method above. // // The Flutter framework has been optimized to make rerunning build methods // fast, so that you can just rebuild anything that needs updating rather // than having to individually change instances of widgets. return Scaffold( appBar: AppBar( // TRY THIS: Try changing the color here to a specific color (to // Colors.amber, perhaps?) and trigger a hot reload to see the AppBar // change color while the other colors stay the same. backgroundColor: Theme.of(context).colorScheme.inversePrimary, // Here we take the value from the MyHomePage object that was created by // the App.build method, and use it to set our appbar title. title: Text(widget.title), ), body: Center( // Center is a layout widget. It takes a single child and positions it // in the middle of the parent. child: Column( // Column is also a layout widget. It takes a list of children and // arranges them vertically. By default, it sizes itself to fit its // children horizontally, and tries to be as tall as its parent. // // Column has various properties to control how it sizes itself and // how it positions its children. Here we use mainAxisAlignment to // center the children vertically; the main axis here is the vertical // axis because Columns are vertical (the cross axis would be // horizontal). // // TRY THIS: Invoke "debug painting" (choose the "Toggle Debug Paint" // action in the IDE, or press "p" in the console), to see the // wireframe for each widget. mainAxisAlignment: MainAxisAlignment.center, children: <Widget>[ const Text( 'You have pushed the button this many times:', ), Text( '$_counter', style: Theme.of(context).textTheme.headlineMedium, ), ], ), ), floatingActionButton: FloatingActionButton( onPressed: _incrementCounter, tooltip: 'Increment', child: const Icon(Icons.add), ), // This trailing comma makes auto-formatting nicer for build methods. ); } } ``` </details> ### Screenshots or Video <details open> <summary>Screenshots / Video demonstration</summary> https://github.com/user-attachments/assets/4b2dd36e-2df3-46a6-8fcc-97b8a76f331b </details> ### Logs <details open><summary>Logs</summary> ```console Launching lib/main.dart on sdk gphone16k x86 64 in debug mode... Running Gradle task 'assembleDebug'... โœ“ Built build/app/outputs/flutter-apk/app-debug.apk Installing build/app/outputs/flutter-apk/app-debug.apk... I/flutter ( 3868): [IMPORTANT:flutter/shell/platform/android/android_context_vk_impeller.cc(60)] Using the Impeller rendering backend (Vulkan). E/flutter ( 3868): [ERROR:flutter/impeller/renderer/backend/vulkan/allocator_vk.cc(522)] Break on 'ImpellerValidationBreak' to inspect point of failure: Unable to allocate a device buffer: ErrorFeatureNotPresent F/flutter ( 3868): [FATAL:flutter/impeller/core/host_buffer.cc(33)] Check failed: device_buffer. Failed to allocate device buffer. Error connecting to the service protocol: failed to connect to http://127.0.0.1:34567/GVyrjALKCqY=/ DartDevelopmentServiceException: WebSocketChannelException: HttpException: Connection closed before full header was received, uri = http://127.0.0.1:34567/GVyrjALKCqY=/ws ``` </details> ### Flutter Doctor output <details open><summary>Doctor output</summary> ```console $ flutter doctor -v [โœ“] Flutter (Channel stable, 3.27.2, on Arch Linux 6.12.9-arch1-1, locale en_US.UTF-8) Flutter version 3.27.2 on channel stable at /opt/flutter Upstream repository https://github.com/flutter/flutter.git Framework revision 68415ad1d9 (2 days ago), 2025-01-13 10:22:03 -0800 Engine revision e672b006cb Dart version 3.6.1 DevTools version 2.40.2 [โœ“] Android toolchain - develop for Android devices (Android SDK version 35.0.0) Android SDK at /home/gcb/Android/Sdk Platform android-35, build-tools 35.0.0 Java binary at: /home/gcb/JAVA_HOME/bin/java Java version OpenJDK Runtime Environment (build 21.0.5+11) All Android licenses accepted. [โœ—] Chrome - develop for the web (Cannot find Chrome executable at google-chrome) ! Cannot find Chrome. Try setting CHROME_EXECUTABLE to a Chrome executable. [โœ—] Linux toolchain - develop for Linux desktop clang version 19.1.6 โœ— CMake is required for Linux development. It is likely available from your distribution (e.g.: apt install cmake), or can be downloaded from https://cmake.org/download/ โœ— ninja is required for Linux development. It is likely available from your distribution (e.g.: apt install ninja-build), or can be downloaded from https://github.com/ninja-build/ninja/releases pkg-config version 2.3.0 [!] Android Studio (not installed) Android Studio not found; download from https://developer.android.com/studio/index.html (or visit https://flutter.dev/to/linux-android-setup for detailed instructions). [โœ“] IntelliJ IDEA Community Edition (version 2024.3) IntelliJ at /usr/share/idea Flutter plugin version 83.0.4 Dart plugin can be installed from: ๐Ÿ”จ https://plugins.jetbrains.com/plugin/6351-dart [โœ“] Connected device (2 available) sdk gphone16k x86 64 (mobile) emulator-5554 android-x64 Android 15 (API 35) (emulator) Linux (desktop) linux linux-x64 Arch Linux 6.12.9-arch1-1 [โœ“] Network resources All expected network resources are available ``` (Some doctor check for intellij plugin is broken. This seat does have the dart plugin) </details>
P3,e: impeller,team-engine,triaged-engine
low
Critical
2,790,479,205
vscode
Terminal suggest: Handle paths on git bash
Git Bash uses special paths that map to Windows ones and then strictly uses the `/` separator: ![Image](https://github.com/user-attachments/assets/77f844a4-0dc8-4d40-ac8c-2afb133487b2) We should support these well.
feature-request,windows,terminal-shell-git-bash
low
Minor
2,790,482,192
rust
Single use lifetimes lint suggests using unstable feature on stable
### Code [playground link](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=c63ad1a23efb14d71f23d0255132631c) ```Rust #[allow(dead_code)] #[warn(single_use_lifetimes)] fn foo<'a>(_items: impl IntoIterator<Item = &'a i64>) -> Vec<f64> { vec![] } ``` ### Current output ```Shell warning: lifetime parameter `'a` only used once --> src/lib.rs:3:8 | 3 | fn foo<'a>(_items: impl IntoIterator<Item = &'a i64>) -> Vec<f64> { | ^^ this lifetime... -- ...is used only here | note: the lint level is defined here --> src/lib.rs:2:8 | 2 | #[warn(single_use_lifetimes)] | ^^^^^^^^^^^^^^^^^^^^ help: elide the single-use lifetime | 3 - fn foo<'a>(_items: impl IntoIterator<Item = &'a i64>) -> Vec<f64> { 3 + fn foo(_items: impl IntoIterator<Item = &i64>) -> Vec<f64> { ``` ### Desired output ```Shell No warning ``` ### Rationale and extra context The feature required to elide the single use lifetime is unstable ### Rust Version ```Shell $ rustc --version --verbose rustc 1.84.0 (9fc6b4312 2025-01-07) binary: rustc commit-hash: 9fc6b43126469e3858e2fe86cafb4f0fd5068869 commit-date: 2025-01-07 host: x86_64-unknown-linux-gnu release: 1.84.0 LLVM version: 19.1.5 ``` and ``` $ rustc --version --verbose rustc 1.82.0 (f6e511eec 2024-10-15) binary: rustc commit-hash: f6e511eec7342f59a25f7c0534f1dbea00d01b14 commit-date: 2024-10-15 host: x86_64-unknown-linux-gnu release: 1.82.0 LLVM version: 19.1.1 ```
A-lints,A-diagnostics,T-compiler,L-false-positive
low
Critical
2,790,503,850
next.js
Parallel routes do not apply individual `loading.tsx` when used with nested routes
### Link to the code that reproduces this issue https://codesandbox.io/p/github/jrhackett/app-router-test/main?import=true ### To Reproduce 1. Start application in CodeSandbox 2. Click on "Broken subpath example" link 3. Note that the loading state for the "Slot" is showing "Loading Dashboard..." and not "Loading Slot..." ### Current vs. Expected behavior The linked application in CodeSandbox has an example application with a route for `/broken/sub` that has a layout defined to display a parallel route called `@slot` and the `children` of the layout. The slot and the nested path both have their own `loading.tsx` files. The file structure is: <img width="122" alt="Image" src="https://github.com/user-attachments/assets/09800db8-14c0-4fdb-8b62-fdf6e98ff12c" /> ### **Current behavior** The nested path's `loading.tsx` gets applied as expected but the slot's does not. The slot, instead, gets the parent directory's (`dashboard`) `loading.tsx` file. <img width="542" alt="Image" src="https://github.com/user-attachments/assets/cf8ae6a4-be78-4536-a4df-ecee97b170cc" /> ### **Expected behavior** The loading state for `@slot` should display `Loading Slot...` instead of `Loading Dashboard...`. ### Provide environment information ```bash Operating System: Platform: linux Arch: x64 Version: #1 SMP PREEMPT_DYNAMIC Sun Aug 6 20:05:33 UTC 2023 Available memory (MB): 4102 Available CPU cores: 2 Binaries: Node: 20.12.1 npm: 10.5.0 Yarn: 1.22.19 pnpm: 8.15.6 Relevant Packages: next: 15.1.4 // Latest available version is detected (15.1.4). eslint-config-next: 15.1.4 react: 19.0.0 react-dom: 19.0.0 typescript: 5.7.3 Next.js Config: output: N/A ``` ### Which area(s) are affected? (Select all that apply) Parallel & Intercepting Routes ### Which stage(s) are affected? (Select all that apply) next dev (local), Vercel (Deployed), next start (local), next build (local) ### Additional context I've also tested this against `[email protected]` and the behavior is the same.
Parallel & Intercepting Routes
low
Critical
2,790,505,616
tauri
[bug] Generated Kotlin Code Returns Nullable Strings in WryActivity.kt (Tauri 2.0)
### Describe the bug Hi Tauri Team, While using Tauri 2.0 for Android development, the generated WryActivity.kt file produces a compile-time error: -------------------------------------------------------------------- Return type mismatch: expected 'kotlin.String', actual 'kotlin.String?' -------------------------------------------------------------------- Specifically, the getAppUrl() and getAppAssetPath() methods return 'kotlin.String?' instead of 'kotlin.String', causing the Android build to fail. Previously, in Tauri 1 we could set "nullableReturnTypes": false in tauri.conf.json to fix this, but Tauri 2.0 no longer supports that configuration. ### Reproduction Create a Tauri 2.0 project with Android support Run tauri android init and tauri android dev Observe the Kotlin compile error in WryActivity.kt ### Expected behavior The generated methods should match their expected return types (non-null String) or provide a config to control nullability. ### Full `tauri info` output ```text > [email protected] tauri C:\Users\19542\Documents\GitHub\Kiosk-Tizen-V2\odin > tauri "info" WARNING: no lock files found, defaulting to npm [โœ”] Environment - OS: Windows 10.0.26100 x86_64 (X64) โœ” WebView2: 131.0.2903.112 โœ” MSVC: Visual Studio Build Tools 2019 โœ” rustc: 1.84.0 (9fc6b4312 2025-01-07) โœ” cargo: 1.84.0 (66221abde 2024-11-19) โœ” rustup: 1.27.1 (54dd3d00f 2024-04-24) โœ” Rust toolchain: stable-x86_64-pc-windows-msvc (default) - node: 20.11.0 - pnpm: 8.15.9 - npm: 10.4.0 [-] Packages - tauri ๐Ÿฆ€: 2.2.2 - tauri-build ๐Ÿฆ€: 2.0.5 - wry ๐Ÿฆ€: 0.48.1 - tao ๐Ÿฆ€: 0.31.1 - @tauri-apps/api ๎œ˜: 2.0.1 (outdated, latest: 2.2.0) - @tauri-apps/cli ๎œ˜: 2.0.0-rc.18 (outdated, latest: 2.2.4) [-] Plugins - tauri-plugin-shell ๐Ÿฆ€: 2.2.0 - @tauri-apps/plugin-shell ๎œ˜: 2.2.0 - tauri-plugin-localhost ๐Ÿฆ€: 2.2.0 - @tauri-apps/plugin-localhost ๎œ˜: not installed! - tauri-plugin-fs ๐Ÿฆ€: 2.2.0 - @tauri-apps/plugin-fs ๎œ˜: 2.2.0 - tauri-plugin-http ๐Ÿฆ€: 2.2.0 - @tauri-apps/plugin-http ๎œ˜: 2.2.0 [-] App - build-type: bundle - CSP: unset - frontendDist: ../dist - devUrl: http://localhost:3000/ - framework: Svelte - bundler: Vite ``` ### Stack trace ```text PS C:\Users\19542\Documents\GitHub\Kiosk-Tizen-V2\odin\src-tauri> pnpm tauri android dev > [email protected] tauri C:\Users\19542\Documents\GitHub\Kiosk-Tizen-V2\odin > tauri "android" "dev" Info Detected connected device: Pixel_9_API_35 (sdk_gphone64_x86_64) with target "x86_64-linux-android" Running BeforeDevCommand (`pnpm -w dev`) > [email protected] dev C:\Users\19542\Documents\GitHub\Kiosk-Tizen-V2 > pnpm -C tizen-spa dev --config vite-web.config.js --mode mineremote --host > [email protected] dev C:\Users\19542\Documents\GitHub\Kiosk-Tizen-V2\tizen-spa > vite "--config" "vite-web.config.js" "--mode" "mineremote" "--host" VITE v4.4.9 ready in 1558 ms โžœ Local: http://localhost:3000/ โžœ Network: http://10.0.0.150:3000/ warning: `odin` (lib) generated 23 warnings (run `cargo fix --lib -p odin` to apply 15 suggestions) Finished `dev` profile [unoptimized + debuginfo] target(s) in 6.53s Info symlinking lib "C:\\Users\\19542\\Documents\\GitHub\\Kiosk-Tizen-V2\\odin\\src-tauri\\target\\x86_64-linux-android\\debug\\libnext_gen_android_lib.so" in jniLibs dir "C:\\Users\\19542\\Documents\\GitHub\\Kiosk-Tizen-V2\\odin\\src-tauri\\gen/android\\app/src/main/jniLibs/x86_64" Info "C:\\Users\\19542\\Documents\\GitHub\\Kiosk-Tizen-V2\\odin\\src-tauri\\target\\x86_64-linux-android\\debug\\libnext_gen_android_lib.so" requires shared lib "libandroid.so" Info "C:\\Users\\19542\\Documents\\GitHub\\Kiosk-Tizen-V2\\odin\\src-tauri\\target\\x86_64-linux-android\\debug\\libnext_gen_android_lib.so" requires shared lib "libdl.so" Info "C:\\Users\\19542\\Documents\\GitHub\\Kiosk-Tizen-V2\\odin\\src-tauri\\target\\x86_64-linux-android\\debug\\libnext_gen_android_lib.so" requires shared lib "liblog.so" Info "C:\\Users\\19542\\Documents\\GitHub\\Kiosk-Tizen-V2\\odin\\src-tauri\\target\\x86_64-linux-android\\debug\\libnext_gen_android_lib.so" requires shared lib "libm.so" Info "C:\\Users\\19542\\Documents\\GitHub\\Kiosk-Tizen-V2\\odin\\src-tauri\\target\\x86_64-linux-android\\debug\\libnext_gen_android_lib.so" requires shared lib "libc.so" Info symlink at "C:\\Users\\19542\\Documents\\GitHub\\Kiosk-Tizen-V2\\odin\\src-tauri\\gen/android\\app/src/main/jniLibs/arm64-v8a\\libnext_gen_android_lib.so" points to "C:\\Users\\19542\\Documents\\GitHub\\Kiosk-Tizen-V2\\odin\\src-tauri\\target\\aarch64-linux-android\\debug\\libnext_gen_android_lib.so" Info symlink at "C:\\Users\\19542\\Documents\\GitHub\\Kiosk-Tizen-V2\\odin\\src-tauri\\gen/android\\app/src/main/jniLibs/x86_64\\libnext_gen_android_lib.so" points to "C:\\Users\\19542\\Documents\\GitHub\\Kiosk-Tizen-V2\\odin\\src-tauri\\target\\x86_64-linux-android\\debug\\libnext_gen_android_lib.so" > [email protected] tauri C:\Users\19542\Documents\GitHub\Kiosk-Tizen-V2\odin > tauri "android" "android-studio-script" "--target" "x86_64" e: file:///C:/Users/19542/Documents/GitHub/Kiosk-Tizen-V2/odin/src-tauri/gen/android/app/src/main/java/com/grubbrr/kiosk/generated/WryActivity.kt:43:24 Return type mismatch: expected 'kotlin.String', actual 'kotlin.String?'. e: file:///C:/Users/19542/Documents/GitHub/Kiosk-Tizen-V2/odin/src-tauri/gen/android/app/src/main/java/com/grubbrr/kiosk/generated/WryActivity.kt:51:24 Return type mismatch: expected 'kotlin.String', actual 'kotlin.String?'. <==========---> 80% EXECUTING [1s] > IDLE Info Forwarding port 3000 with adb Info tcp:3000 already forwarded to Pixel_9_API_35 FAILURE: Build failed with an exception. * What went wrong: Execution failed for task ':app:compileX86_64DebugKotlin'. > A failure occurred while executing org.jetbrains.kotlin.compilerRunner.GradleCompilerRunnerWithWorkers$GradleKotlinCompilerWorkAction > Compilation error. See log for more details * Try: > Run with --stacktrace option to get the stack trace. > Run with --info or --debug option to get more log output. > Run with --scan to get full insights. > Get more help at https://help.gradle.org. BUILD FAILED in 9s โ€‰ELIFECYCLEโ€‰ Command failed with exit code 4294967295. โ€‰ELIFECYCLEโ€‰ Command failed with exit code 4294967295. Failed to assemble APK: command ["C:\\Users\\19542\\Documents\\GitHub\\Kiosk-Tizen-V2\\odin\\src-tauri\\gen/android\\gradlew.bat", "--project-dir", "C:\\Users\\19542\\Documents\\GitHub\\Kiosk-Tizen-V2\\odin\\src-tauri\\gen/android"] exited with code 1: command ["C:\\Users\\19542\\Documents\\GitHub\\Kiosk-Tizen-V2\\odin\\src-tauri\\gen/android\\gradlew.bat", "--project-dir", "C:\\Users\\19542\\Documents\\GitHub\\Kiosk-Tizen-V2\\odin\\src-tauri\\gen/android"] exited with code 1 Error Failed to assemble APK: command ["C:\\Users\\19542\\Documents\\GitHub\\Kiosk-Tizen-V2\\odin\\src-tauri\\gen/android\\gradlew.bat", "--project-dir", "C:\\Users\\19542\\Documents\\GitHub\\Kiosk-Tizen-V2\\odin\\src-tauri\\gen/android"] exited with code 1: command ["C:\\Users\\19542\\Documents\\GitHub\\Kiosk-Tizen-V2\\odin\\src-tauri\\gen/android\\gradlew.bat", "--project-dir", "C:\\Users\\19542\\Documents\\GitHub\\Kiosk-Tizen-V2\\odin\\src-tauri\\gen/android"] exited with code 1 โ€‰ELIFECYCLEโ€‰ Command failed with exit code 1. ``` ### Additional context _No response_
type: bug,status: needs triage,platform: Android
low
Critical
2,790,532,890
pytorch
FlexAttention Compilation Uses Non-Standard Invocation Of Inductor Ops
### ๐Ÿ› Describe the bug `Modification Wrapper` uses a non-standard way of invoking inductor operators. In https://github.com/pytorch/pytorch/blob/d065e8a9de7d6b91bd18286bf45e5094f1278f9f/torch/_inductor/select_algorithm.py#L623-L634 it passes string arguments to `subgraph.data.inner_fn(())` instead of `CSEVariable`. This makes the typing incorrect throughout codegen, and prevents relying on the properties of CSEVariable. I recently adding tracking of Dtypes to every intermediary in inductor codegen and enabled tests in opinfos. I would like to rely on them in codegen bc it enables: - [Deletion of 7 ops from the inductor opset](https://github.com/pytorch/pytorch/blob/069419569d01c168952dc80bcc61bcb81a2bf3de/torch/_inductor/ops_handler.py#L719-L744) - [Some codegen cleanups](https://github.com/pytorch/pytorch/blob/069419569d01c168952dc80bcc61bcb81a2bf3de/torch/_inductor/codegen/triton.py#L1374) Dtype tracking is also being used today for both MTIA for low-precision, and prologue fusion low-precision (neither of which interaction with flex attention today). I suspect this is also related to this error: https://github.com/pytorch/pytorch/issues/144869 When this is fixed we should be able to remove this special casing https://github.com/pytorch/pytorch/blob/069419569d01c168952dc80bcc61bcb81a2bf3de/torch/_inductor/dtype_propagation.py#L69. cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @aakhundov @zou3519 @ydwu4 @bdhirsh @Chillee @drisspg @yanboliang @BoyuanFeng ### Versions on master
triaged,oncall: pt2,module: inductor,module: higher order operators,module: pt2-dispatcher,module: flex attention
low
Critical
2,790,556,856
godot
Incorrect behaviour using `draw_list_begin_for_screen`
### Tested versions - v4.4.dev.custom_build [1fa1f5c75] - v4.4.dev7.official [46c8f8c5c] ### System information Godot v4.4.dev (1fa1f5c75) - macOS Sequoia (15.2.0) - Multi-window, 2 monitors - Metal (Forward+) - integrated Apple M1 Max (Apple7) - Apple M1 Max (10 threads) ### Issue description The `draw_list_begin_for_screen` API renders to the previous frame buffer. The symptoms are most visible when targeting Metal, as the previous frame buffer is unavailable, so the logs are filled with errors. The issue is 1. The script calls `draw_list_begin_for_screen`, which finds the frame buffer for the screen: https://github.com/godotengine/godot/blob/62ea2f76b46ff825ecf4f497aa0a2eaac6c88da9/servers/rendering/rendering_device.cpp#L4210 2. when Godot blits the render targets to the screen, it calls `screen_prepare_for_drawing`: https://github.com/godotengine/godot/blob/e88e30c273fe7e8eb2e5eab13098132efdebc0f3/servers/rendering/renderer_rd/renderer_compositor_rd.cpp#L39-L40 which happens _after_ any calls made by GDScript, and this call erases that frame buffer to acquire the next: https://github.com/godotengine/godot/blob/62ea2f76b46ff825ecf4f497aa0a2eaac6c88da9/servers/rendering/rendering_device.cpp#L4094-L4095 So the call to `draw_list_begin_for_screen` in GDScript is targeting the prior, invalid frame buffer. ### Steps to reproduce Run one of the example projects, which uses the `draw_list_begin_for_screen` API. ### Minimal reproduction project (MRP) - https://github.com/thimenesup/GodotIndirectDrawExample - https://github.com/thimenesup/GodotBufferAddressExample
bug,topic:rendering
low
Critical
2,790,565,456
godot
Light behaves unexpectedly when using a screen-space material
### Tested versions - Reproducible on v4.3.stable.mono.official [77dcf97d8] ### System information Godot v4.3.stable.mono - EndeavourOS #1 SMP PREEMPT_DYNAMIC Fri, 27 Dec 2024 14:24:37 +0000 - Wayland - Vulkan (Forward+) - dedicated AMD Radeon RX 7800 XT (RADV NAVI32) - AMD Ryzen 5 3600 6-Core Processor (12 Threads) ### Issue description When assigning the albedo as the screen color for a mesh through the "Next Pass" or "Material Overlay" properties, it causes light to behave weirdly with the Forward+ renderer. In the case of regular lights, it seems to intensify the attenuation of the light while darkening non-lit parts (it's a bit hard to tell exactly what happens). For negative lights, it causes sufficiently bright spots to "wrap around" into being fully lit (white) rather than dark. Worth noting is that with the Compatibility renderer, the issue is not present for negative lights (regular lights still exhibit very similar "intensifying"). No shader, regular lights: ![Image](https://github.com/user-attachments/assets/680e7cd1-15a0-4c80-b697-5e4acb792cd4) Shader present, regular lights: ![Image](https://github.com/user-attachments/assets/522dcb57-8502-4fb9-8f17-364bf63092db) No shader, negative lights: ![Image](https://github.com/user-attachments/assets/19e8dd9c-5842-4467-b2ec-b2ac7f571690) Shader present, negative lights: ![Image](https://github.com/user-attachments/assets/7f28b1bb-1ec2-41ee-9b39-b94a23a5699b) While the shader code is in the MRP, I'll paste it here since it's so tiny: ```glsl shader_type spatial; uniform sampler2D SCREEN_TEXTURE: hint_screen_texture, filter_linear; void fragment() { vec3 screen_color = textureLod(SCREEN_TEXTURE, SCREEN_UV, 0.0).rgb; ALBEDO = screen_color; } ``` ### Steps to reproduce 1. Add a shader that assigns the screen color to albedo as the Material Overlay or Next pass of any mesh 2. Add some lights 3. Observe unexpected light behavior ### Minimal reproduction project (MRP) [light-screen-texture-demo.zip](https://github.com/user-attachments/files/18428830/light-screen-texture-demo.zip)
bug,topic:rendering,confirmed
low
Minor
2,790,573,055
PowerToys
dashboard keeps popping up
### Microsoft PowerToys version 0.87.1 ### Installation method Microsoft Store ### Running as admin No ### Area(s) with issue? General ### Steps to reproduce just started powertoys manually. after a while the full powertoys dashboard window pops up on my screen. close it with x. after a while it pops up again. rinse & repeat. i might have interacted with the quick access & more panels ### โœ”๏ธ Expected Behavior dashboard should never pop up ### โŒ Actual Behavior dashboard keeps popping up ### Other Software _No response_
Issue-Bug,Needs-Triage
low
Minor
2,790,582,524
next.js
Unexpected Behavior using "after" in middleware
### Link to the code that reproduces this issue https://github.com/willwill96/nextjs-after-function-repro ### To Reproduce 1. Start the application 2. Fetch `http://localhost:3000` through preferred method 3. Observe Logs for the following - Middleware Timing - Start {time} - Middleware Timing - End {time} - Page Timing - Start {time} - Page Timing - End {time} ### Current vs. Expected behavior Current Behavior: `after` blocks within middleware functions are executed before page render begins Expected Behavior: [From the docs](https://nextjs.org/docs/app/api-reference/functions/after) > after allows you to schedule work to be executed after a response (or prerender) is finished. Based on this, I expect `after` blocks within middleware functions to be executed after page render is finished. ### Provide environment information ```bash Operating System: Platform: linux Arch: x64 Version: #1 SMP Tue Nov 5 00:21:55 UTC 2024 Available memory (MB): 47749 Available CPU cores: 16 Binaries: Node: 22.12.0 npm: 10.9.0 Yarn: 1.22.22 pnpm: N/A Relevant Packages: next: 15.1.4 // Latest available version is detected (15.1.4). eslint-config-next: 15.1.4 react: 19.0.0 react-dom: 19.0.0 typescript: 5.7.3 Next.js Config: output: N/A ``` ### Which area(s) are affected? (Select all that apply) Middleware ### Which stage(s) are affected? (Select all that apply) next dev (local), next start (local), next build (local) ### Additional context Example Application Output: ``` Middleware Timing - Start 14041.842787 Middleware Timing - End 14042.483035 Page Timing - Start 14060.135459 GET / 200 in 27ms Page Timing - End 14069.832975 ``` Relevant code: - [src/middleware.ts](https://github.com/willwill96/nextjs-after-function-repro/blob/master/src/middleware.ts) ```ts import { after, NextRequest, NextResponse } from "next/server"; export async function middleware(req: NextRequest) { if (req.url === 'http://localhost:3000/') { console.log("Middleware Timing - Start", performance.now()) after(()=>{ console.log("Middleware Timing - End", performance.now()) }) } return NextResponse.next() } ``` - [src/app/page.tsx](https://github.com/willwill96/nextjs-after-function-repro/blob/master/src/app/page.tsx#L5-L8) ```tsx import { after } from "next/server"; export default function Home() { console.log("Page Timing - Start", performance.now()) after(()=>{ console.log("Page Timing - End", performance.now()) }) return ( <div className..... ); } ```
Middleware
low
Major
2,790,589,350
flutter
Cupertino Sheet should bounce slightly when overdragged upwards
On a native iOS sheet, when you drag it above it's max height, it will move up slightly. Then on gesture release it will snap back in to place. Currently in Flutter it will only drag downwards, then stop at max height when dragged back up again. Native: https://github.com/user-attachments/assets/745c0c46-7a28-41bb-9265-1b92353a0f9b
a: fidelity,f: cupertino,P2,team-design,triaged-design
low
Minor
2,790,600,707
flutter
Cupertino Sheet should have drag to dismiss and nested scrolling work together
On native iOS, when you have a sheet open with scrollable content, if you start scrolling, it will scroll normally. But then when you drag downwards, once you reach the top of the scrollable content, the sheet starts it's drag to dismiss gesture. Then if you drag back up again, once the the sheet reaches it's original height, the nested scroll starts back up again. https://github.com/user-attachments/assets/72082b7b-414e-4093-a02a-27b8d2188dd3 In Flutter currently we can either give the nested scroll or the drag to dismiss gesture priority. And we can't switch back and forth between either animations on one drag event.
a: fidelity,f: scrolling,f: cupertino,P2,team-design,triaged-design
low
Minor
2,790,618,232
flutter
Change SystemUiOverlayStyle gradually
On native iOS, there is the ability to change the brightness of the system overlay gradually, set to an animation. For example, this happens while the sheet widget is opening. The system overlay (with the time, battery indicator, etc) at the top of the screen changes gradually from dark to light text. https://github.com/user-attachments/assets/2372e736-75ae-4b6e-8a7f-5b43c874e472 Currently if the Flutter framework we are only able to change it suddenly with the `SystemChrome.setSystemUIOverlayStyle` API.
c: new feature,a: fidelity,f: cupertino,P2,team-ios,triaged-ios
low
Minor
2,790,632,088
kubernetes
Remove the MD5 hash function for FIPS compliance
### What would you like to be added? For now, there seems to be a hardcoded usage of MD5 in the [source code](https://github.com/kubernetes/kubernetes/blob/master/pkg/api/v1/endpoints/util.go#L157), which is not FIPS compliant, and there is no configurable way to avoid it by declaring to use other hash functions like SHA256. When using the K8S with FIPS-compliant Go, `panic: openssl: unsupported hash function: 2` error is expected. It would be great if the default hash function can be changed to a FIPS-compliant one, like SHA256. Or making it configurable via config files or something, that would be even better. ### Why is this needed? This matters to people who need FIPS-compliant K8S clusters, and there is no obvious workaround at the moment.
sig/network,kind/feature,triage/accepted
low
Critical
2,790,647,291
flutter
[a11y] hotkey widget should have correct semantics
When using https://api.flutter.dev/flutter/widgets/Shortcuts-class.html, the loading spinner should have following role | OS | role | |--------|--------| | web |- | | ios | - | | macos | - | | windows | ROLE_SYSTEM_HOTKEYFIELD | | android | - |
P3,team-accessibility,triaged-accessibility
low
Minor
2,790,657,942
flutter
[a11y][two_dimensional_scrollables] Tree view is missing semantics role
https://github.com/flutter/packages/tree/main/packages/two_dimensional_scrollables/lib/src/tree_view For Tree | OS | role | |--------|--------| | web | tree | | ios | - | | macos | NSAccessibilityOutlineRole | | windows | ROLE_SYSTEM_OUTLINE | | android | - | for Tree item | OS | role | |--------|--------| | web | treeitem | | ios | - | | macos | NSAccessibilityRowRole, NSAccessibilityOutlineRowSubrole | | windows | ROLE_SYSTEM_OUTLINEBUTTON or ROLE_SYSTEM_OUTLINEITEM | | android | - |
P3,team-accessibility,triaged-accessibility
low
Minor
2,790,671,585
PowerToys
Preview not working
### Microsoft PowerToys version latest ### Installation method GitHub ### Running as admin Yes ### Area(s) with issue? General ### Steps to reproduce try to peek a wav file ### โœ”๏ธ Expected Behavior working for wav files ### โŒ Actual Behavior not working for wav files ### Other Software _No response_
Issue-Bug,Needs-Triage
low
Minor
2,790,700,049
godot
Scene lighting is bugged on integrated graphics
### Tested versions Reproducible in: - v4.2.2.stable.official [15073afe3] - v4.3.stable.official [77dcf97d8] - v4.4.dev7.mono.official [46c8f8c5c] ### System information Godot v4.3.stable - Windows 10.0.22631 - Vulkan (Forward+) - integrated Intel(R) Iris(R) Xe Graphics (Intel Corporation; 31.0.101.5186) - 12th Gen Intel(R) Core(TM) i7-1255U (12 Threads) ### Issue description I am working on a 3D game with a team and noticed the lighting does not work properly, but on only my computer. Meshes are way too bright and "glowy", and performance is noticeably reduced. My other team members had no lighting issues on their systems, which included: - M4 Mac Mini Base Model - Xubuntu 24.04.1 LTS OpenGL API 4.6 Mesa 24.0.9-0ubuntu0.1 - Compatibility - Using Device: AMD - AMD Radeon Vega 3 Graphics (radeonsi, raven2, LLVM 17.0.6, DRM 3.57, 6.8.0-51-generic) AMD Ryzen 3 3200U with Radeon Vega Mobile Gfx How the lighting looks on the 2 systems mentioned above (and what it should look like): ![Image](https://github.com/user-attachments/assets/99b40807-7446-45f7-88d4-feffa7992da2) The bugged lighting on my system: ![Image](https://github.com/user-attachments/assets/7a465cc0-105b-4e20-b840-04263c3e6275) The issue seems to be related to SDFGI, since the lighting looks normal after disabling it: ![Image](https://github.com/user-attachments/assets/bd264ba1-1e4a-43ec-9c81-f49d1ce6a96d) I'm aware that SDFGI is not recommended for integrated graphics, but the extra glow coming from meshes looks unintended and more than just a performance issue. I've also included more information about my system and hardware here: https://gist.github.com/donodj/18ff377a020a7e0708b39156b8c34a0d ### Steps to reproduce 1. Create a new godot project on a computer with Intel(R) Iris(R) Xe Graphics (or possibly any integrated GPU) and make a new scene 2. Add any MeshInstance3D with the material.tres material from the MRP 3. Add the WorldEnvironment and DirectionalLight3D from the bugged_environment.tscn scene in the MRP 4. The mesh should now appear "glowy" from the lighting in the scene ### Minimal reproduction project (MRP) [godot-lighting-bug-main.zip](https://github.com/user-attachments/files/18428768/godot-lighting-bug-main.zip) Contains a scene showing the bugged lighting and a scene with Godot's default lighting (which has no problems)
bug,topic:rendering,topic:3d
low
Critical
2,790,703,156
PowerToys
Mouse Without Borders broken?
### Microsoft PowerToys version 0.87.1 ### Installation method PowerToys auto-update ### Running as admin Yes ### Area(s) with issue? Mouse Without Borders ### Steps to reproduce Not sure how to reproduce this, but my systems that only yesterday used to connect just fine on Mouse Without Borders now seem unable to do so. They're still on the same LAN, and even when I "Refresh connections", all that I see is yellow, orange and blue borders around the machine representations under Device layout. <!-- Failed to upload "PowerToysReport_2025-01-15-11-41-03.zip" --> [Not sure why the upload keeps failing] ### โœ”๏ธ Expected Behavior The systems should continue connecting as they did before. ### โŒ Actual Behavior They don't connect anymore. ### Other Software _No response_
Issue-Bug,Needs-Triage
low
Critical
2,790,755,538
godot
source_color not working properly
### Tested versions tested in 4.3 and 4.4 dev builds ### System information Godot v4.3.stable - Windows 10.0.19045 - Vulkan (Forward+) - dedicated NVIDIA GeForce GTX 960 (NVIDIA; 32.0.15.6636) - Intel(R) Core(TM) i5-6600K CPU @ 3.50GHz (4 Threads) ### Issue description Instantiating a new `ShaderMaterial` results in the default uniform values marked `source_color` to skip the sRGB-to-linear transform. - If the same scene is saved and reloaded, the correct color is rendered. - If the uniform parameter is set in the inspector or by `set_shader_parameter()`, the correct color is rendered. Workaround: manually set the uniform to it's own default after instantiating. ```gdscript material.set_shader_parameter(p_name, RenderingServer.shader_get_parameter_default(material.shader.get_rid(), p_name)) ``` ### Steps to reproduce - Create a MeshInstance3D of a plane - Assign a new ShaderMaterial - Assign a shader that displays a uniform vec3 of source_color ``` shader_type spatial; render_mode unshaded; uniform vec3 test_color: source_color = vec3(0.2, 0.5, 0.2); void fragment() { ALBEDO = test_color; } ``` Note that the color looks washed out. Save the scene and reload, it now looks correct. ### Minimal reproduction project (MRP) ![Image](https://github.com/user-attachments/assets/8638e43c-16a6-4858-b7a4-9b90e9c650b5) [source_color_bug.tscn.zip](https://github.com/user-attachments/files/18429610/source_color_bug.tscn.zip)
bug,needs testing,topic:shaders
low
Critical
2,790,770,595
flutter
[Proposal] TabBar - allow disabled tabs
### Use case It would be nice to have a disabled tab feature ### Proposal Let's have a disabled tab functionality
c: new feature,framework,f: material design,c: proposal,P2,team-design,triaged-design
low
Minor
2,790,776,665
flutter
TabBar - spacing
### Use case Current `labelPadding` adds padding but it does not allow to set spacing Also `labelPadding` is a part of active area, it would be nice to have spacing non tapable ### Proposal Same as Row has which were added in 3.27
waiting for customer response,in triage
low
Minor
2,790,866,668
pytorch
TIMM cudagraphs_freezing inference regression
https://hud.pytorch.org/benchmark/timm_models/inductor_with_cudagraphs_freezing?dashboard=torchinductor&startTime=Mon,%2016%20Dec%202024%2020:49:27%20GMT&stopTime=Wed,%2015%20Jan%202025%2020:49:27%20GMT&granularity=day&mode=inference&model=lcnet_050&dtype=bfloat16&deviceName=cuda%20(a100)&lBranch=main&lCommit=1dab79470dbecef79ba4c7d4308d8a181091e58e&rBranch=main&rCommit=297ce776363cc4802fa74d210fced2b4128960d5 This model used to pass sometime in the last year but is now failing with an accuracy issue cc @ezyang @gchanan @kadeng @msaroufim @mcarilli @eellison @penguinwu @BoyuanFeng @chauhang
high priority,triaged,module: cuda graphs,oncall: pt2,pt2-pass-rate-regression
low
Minor
2,790,938,801
deno
JSDoc inline import with Deno LSP does not find or apply types from npm package
Version: Deno 2.1.3-1 on Arch Linux, kernel 6.6.63-1-lts When using the Deno LSP (tested in both VSCode with Deno for VSCode v3.43.2 and neovim with coc-deno 3.15.0), JSDoc imports from npm packages are not working. In the same project before initializing the Deno LSP, everything is found and functional with tsserver. Steps to reproduce, in a new folder: ```bash deno init deno add npm:pg deno add npm:@types/pg touch index.js ``` This results in this deno.json: ```json { "tasks": { "dev": "deno run --watch main.ts" }, "imports": { "@std/assert": "jsr:@std/assert@1", "@types/pg": "npm:@types/pg@^8.11.10", "pg": "npm:pg@^8.13.1" } } ``` In index.js: ```javascript /** * @param {import('pg').} */ ``` Removing the . after import('pg') and placing it back causes tsserver to give all types from @types/pg. Nothing happens with the Deno LSP. The same exact thing can be seen with ```javascript /** * @param {import('pg').Pool} pool */ const example = (pool) => { pool // Remove and type pool to see the intellisense } ``` With the Deno LSP, the type for pool is: ``` (parameter) pool: any @param - pool ``` With tsserver, the type is: ``` (parameter) pool: Pool @param pool ``` --- # Deno Language Server Status ## Workspace Settings ```json { "enable": true, "disablePaths": [], "enablePaths": null, "cache": null, "cacheOnSave": true, "certificateStores": null, "config": null, "importMap": null, "codeLens": { "implementations": false, "references": false, "referencesAllFunctions": false, "test": true }, "internalDebug": false, "internalInspect": false, "logFile": false, "lint": true, "documentPreloadLimit": 1000, "suggest": { "imports": { "autoDiscover": true, "hosts": { "https://deno.land": true } } }, "testing": { "args": [ "--allow-all", "--no-check" ] }, "tlsCertificate": null, "unsafelyIgnoreCertificateErrors": null, "unstable": [], "javascript": { "inlayHints": { "parameterNames": { "enabled": "none", "suppressWhenArgumentMatchesName": true }, "parameterTypes": { "enabled": false }, "variableTypes": { "enabled": false, "suppressWhenTypeMatchesName": true }, "propertyDeclarationTypes": { "enabled": false }, "functionLikeReturnTypes": { "enabled": false }, "enumMemberValues": { "enabled": false } }, "preferences": { "importModuleSpecifier": "shortest", "jsxAttributeCompletionStyle": "auto", "autoImportFileExcludePatterns": [], "useAliasesForRenames": true, "quoteStyle": "auto", "preferTypeOnlyAutoImports": false }, "suggest": { "completeFunctionCalls": true, "includeAutomaticOptionalChainCompletions": true, "includeCompletionsForImportStatements": true, "names": true, "paths": true, "autoImports": true, "enabled": true, "classMemberSnippets": { "enabled": true }, "objectLiteralMethodSnippets": { "enabled": true } }, "updateImportsOnFileMove": { "enabled": "prompt" } }, "typescript": { "inlayHints": { "parameterNames": { "enabled": "none", "suppressWhenArgumentMatchesName": true }, "parameterTypes": { "enabled": false }, "variableTypes": { "enabled": false, "suppressWhenTypeMatchesName": true }, "propertyDeclarationTypes": { "enabled": false }, "functionLikeReturnTypes": { "enabled": false }, "enumMemberValues": { "enabled": false } }, "preferences": { "importModuleSpecifier": "shortest", "jsxAttributeCompletionStyle": "auto", "autoImportFileExcludePatterns": [], "useAliasesForRenames": true, "quoteStyle": "auto", "preferTypeOnlyAutoImports": false }, "suggest": { "completeFunctionCalls": true, "includeAutomaticOptionalChainCompletions": true, "includeCompletionsForImportStatements": true, "names": true, "paths": true, "autoImports": true, "enabled": true, "classMemberSnippets": { "enabled": true }, "objectLiteralMethodSnippets": { "enabled": true } }, "updateImportsOnFileMove": { "enabled": "prompt" } } } ``` ## Workspace Details - <details><summary>Documents in memory: 39</summary> - file:///home/myuser/Desktop/denoexample/.vim/coc-settings.json - file:///home/myuser/Desktop/denoexample/.vscode/settings.json - file:///home/myuser/Desktop/denoexample/deno.json - file:///home/myuser/Desktop/denoexample/index.js - file:///home/myuser/Desktop/denoexample/main.ts - file:///home/myuser/Desktop/denoexample/main_test.ts - https://jsr.io/@std/assert/1.0.10/almost_equals.ts - https://jsr.io/@std/assert/1.0.10/array_includes.ts - https://jsr.io/@std/assert/1.0.10/assert.ts - https://jsr.io/@std/assert/1.0.10/assertion_error.ts - https://jsr.io/@std/assert/1.0.10/equal.ts - https://jsr.io/@std/assert/1.0.10/equals.ts - https://jsr.io/@std/assert/1.0.10/exists.ts - https://jsr.io/@std/assert/1.0.10/fail.ts - https://jsr.io/@std/assert/1.0.10/false.ts - https://jsr.io/@std/assert/1.0.10/greater.ts - https://jsr.io/@std/assert/1.0.10/greater_or_equal.ts - https://jsr.io/@std/assert/1.0.10/instance_of.ts - https://jsr.io/@std/assert/1.0.10/is_error.ts - https://jsr.io/@std/assert/1.0.10/less.ts - https://jsr.io/@std/assert/1.0.10/less_or_equal.ts - https://jsr.io/@std/assert/1.0.10/match.ts - https://jsr.io/@std/assert/1.0.10/mod.ts - https://jsr.io/@std/assert/1.0.10/not_equals.ts - https://jsr.io/@std/assert/1.0.10/not_instance_of.ts - https://jsr.io/@std/assert/1.0.10/not_match.ts - https://jsr.io/@std/assert/1.0.10/not_strict_equals.ts - https://jsr.io/@std/assert/1.0.10/object_match.ts - https://jsr.io/@std/assert/1.0.10/rejects.ts - https://jsr.io/@std/assert/1.0.10/strict_equals.ts - https://jsr.io/@std/assert/1.0.10/string_includes.ts - https://jsr.io/@std/assert/1.0.10/throws.ts - https://jsr.io/@std/assert/1.0.10/unimplemented.ts - https://jsr.io/@std/assert/1.0.10/unreachable.ts - https://jsr.io/@std/internal/1.0.5/build_message.ts - https://jsr.io/@std/internal/1.0.5/diff.ts - https://jsr.io/@std/internal/1.0.5/diff_str.ts - https://jsr.io/@std/internal/1.0.5/format.ts - https://jsr.io/@std/internal/1.0.5/styles.ts </details> - <details><summary>Performance measures: 169</summary> - lsp.update_diagnostics_ts (210.96ms) - tsc.host.$getDiagnostics (210.764ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0.002ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0ms) - tsc.op.op_is_node_file (0.001ms) - tsc.op.op_is_node_file (0.012ms) - tsc.op.op_load (0.016ms) - tsc.op.op_resolve (0.014ms) - tsc.op.op_load (0.012ms) - tsc.op.op_resolve (0.016ms) - tsc.op.op_load (0.013ms) - tsc.op.op_resolve (0.013ms) - tsc.op.op_load (0.013ms) - tsc.op.op_resolve (0.013ms) - tsc.op.op_load (0.013ms) - tsc.op.op_resolve (0.023ms) - tsc.op.op_load (0.017ms) - tsc.op.op_resolve (0.013ms) - tsc.op.op_load (0.015ms) - tsc.op.op_resolve (0.065ms) - tsc.op.op_load (0.013ms) - tsc.op.op_resolve (0.019ms) - tsc.op.op_load (0.013ms) - tsc.op.op_resolve (0.027ms) - tsc.op.op_load (0.015ms) - tsc.op.op_resolve (0.034ms) - tsc.op.op_load (0.013ms) - tsc.op.op_resolve (0.015ms) - tsc.op.op_load (0.012ms) - tsc.op.op_resolve (0.015ms) - tsc.op.op_load (0.011ms) - tsc.op.op_resolve (0.028ms) - tsc.op.op_load (0.013ms) - tsc.op.op_resolve (0.034ms) - tsc.op.op_load (0.012ms) - tsc.op.op_resolve (0.023ms) - tsc.op.op_load (0.02ms) - tsc.op.op_resolve (0.025ms) - tsc.op.op_load (0.014ms) - tsc.op.op_resolve (0.035ms) - tsc.op.op_load (0.013ms) - tsc.op.op_resolve (0.013ms) - tsc.op.op_load (0.012ms) - tsc.op.op_resolve (0.025ms) - tsc.op.op_load (0.012ms) - tsc.op.op_resolve (0.035ms) - tsc.op.op_load (0.013ms) - tsc.op.op_resolve (0.014ms) - tsc.op.op_load (0.013ms) - tsc.op.op_resolve (0.015ms) - tsc.op.op_load (0.015ms) - tsc.op.op_resolve (0.033ms) - tsc.op.op_load (0.017ms) - tsc.op.op_resolve (0.046ms) - tsc.op.op_load (0.021ms) - tsc.op.op_load (0.023ms) - tsc.op.op_load (0.014ms) - tsc.op.op_resolve (0.344ms) - tsc.op.op_load (0.021ms) - tsc.op.op_resolve (1.347ms) - tsc.op.op_load (0.022ms) - tsc.op.op_load (0.039ms) - tsc.op.op_load (0.016ms) - tsc.op.op_resolve (0.287ms) - tsc.op.op_load (0.021ms) - tsc.op.op_load (0.012ms) - tsc.op.op_resolve (0.025ms) - tsc.op.op_load (0.025ms) - tsc.op.op_resolve (5.378ms) - tsc.op.op_load (0.016ms) - tsc.op.op_resolve (1.668ms) - tsc.op.op_load (0.028ms) - tsc.op.op_resolve (0.17ms) - tsc.op.op_load (0.02ms) - tsc.op.op_script_names (0.026ms) - lsp.update_diagnostics_lint (0.6ms) - lsp.update_diagnostics_deps (0.197ms) - lsp.did_open (0.604ms) - lsp.update_cache (0.001ms) - lsp.update_global_cache (1.718ms) - lsp.initialize (63.442ms) - tsc.request.$getAssets (6.621ms) - tsc.host.$getAssets (5.017ms) - tsc.request.$getSupportedCodeFixes (54.092ms) - tsc.host.$getSupportedCodeFixes (0.318ms) </details> ## Performance (last 3 000 entries) |Name|Count|Duration| |---|---|---| |lsp.did_open|1|0.604ms| |lsp.initialize|1|63.442ms| |lsp.update_cache|1|0.001ms| |lsp.update_diagnostics_deps|1|0.197ms| |lsp.update_diagnostics_lint|1|0.6ms| |lsp.update_diagnostics_ts|1|210.96ms| |lsp.update_global_cache|1|1.718ms| |tsc.host.$getAssets|1|5.017ms| |tsc.host.$getDiagnostics|1|210.764ms| |tsc.host.$getSupportedCodeFixes|1|0.318ms| |tsc.op.op_is_node_file|88|0.001ms| |tsc.op.op_load|37|0.016ms| |tsc.op.op_resolve|31|0.316ms| |tsc.op.op_script_names|1|0.026ms| |tsc.request.$getAssets|1|6.621ms| |tsc.request.$getSupportedCodeFixes|1|54.092ms| ## Performance (total) |Name|Count|Duration| |---|---|---| |lsp.did_open|1|0.604ms| |lsp.initialize|1|63.442ms| |lsp.update_cache|1|0.001ms| |lsp.update_diagnostics_deps|1|0.197ms| |lsp.update_diagnostics_lint|1|0.600ms| |lsp.update_diagnostics_ts|1|210.960ms| |lsp.update_global_cache|1|1.718ms| |lsp.virtual_text_document|1|0.000ms| |tsc.host.$getAssets|1|5.017ms| |tsc.host.$getDiagnostics|1|210.764ms| |tsc.host.$getSupportedCodeFixes|1|0.318ms| |tsc.op.op_is_node_file|88|0.039ms| |tsc.op.op_load|37|0.608ms| |tsc.op.op_resolve|31|9.812ms| |tsc.op.op_script_names|1|0.026ms| |tsc.request.$getAssets|1|6.621ms| |tsc.request.$getSupportedCodeFixes|1|54.092ms|
needs investigation,lsp
low
Critical
2,790,950,274
go
x/tools/gopls: record telemetry for which settings are used
We want to use telemetry to answer questions about which settings are being customized by our users. This signal can be useful in a number of ways, for example to prioritize improvements to various optional features, suggest that certain configuration can be deprecated, or indicate that certain optional features are not working well (if they are frequently disabled). A few considerations: - For some settings, we just want to record whether they are used (e.g. "buildFlags"). - For other settings, we want to bucket the actual setting values (e.g. "staticcheck:true") - For yet other settings, there are logical sub-settings which may themselves have logical bucketing (e.g. "analyses/deprecated:false"). - Some settings can be set in multiple ways (usually in a transitional period when an old setting name is deprecated). Therefore, this instrumentation will necessarily be customized to each individual setting. The following schema seems pretty natural: `gopls/setting/<setting>[/<subsetting>][:buckets]` For example, given the following configuration ```json { "buildFlags": ["-tags=mytag"], "staticcheck": true, "analyses": { "deprecated": false, } } ``` we'd record the following counts: ``` gopls/setting/buildFlags gopls/setting/staticcheck:true gopls/setting/analyses/deprecated:false ``` Notably, we only record the settings that are actually explicitly set by the user. We don't record the effective values of all settings. I briefly considered recording the effective values of each setting, but that is a lossy projection: it loses information about which settings are actually being explicitly set, and we may want to see when users are customizing a setting, _even if they are customizing it to the default value_. This issue tracks only the addition of this instrumentation. Separate telemetry proposals must be filed for any collection of this data from users who have opted in to telemetry. CC @adonovan
gopls,Tools
low
Minor
2,790,973,837
pytorch
Ways the HUD compilers dashboard could be better
I got here because I'm trying to answer the question of "which compiler benchmarks regressed in the past year?" I've spent a couple of hours on the HUD dashboard page, and I still haven't figured this out yet. Here's some of the gripes that I ran into while trying to answer this question. 1) The page seems to refresh itself every couple of minutes. This disrupts the train of thought. Also, I am not sure if the settings change when it refreshes. 2) The passrate chart and the graphs don't have all of the data. In particular, the passrate chart doesn't contain the max_autotune configs. I don't know how to actually click into the max_autotune data. ![Image](https://github.com/user-attachments/assets/f66889a3-8349-4725-b477-d8039d4cf8be) 3) https://github.com/pytorch/test-infra/issues/6173 4) There's one passrate chart but there are 3 passrate graphs. Scrolling between the graphs is kind of annoying 5) The graphs have so many series that some of them are hidden. Might be nicer to increase the height? ![Image](https://github.com/user-attachments/assets/ad10f73d-ab84-486f-989c-70f34bc86022) 6) It's not clear to me how to hack on these charts. Using our internal tools (like scuba and unidash), it's easy (and well-known) on how to look up information. Hypothesis: If we feed the data to internal sources and use internal tooling as the UXs, then we would be more productive than trying to roll our own UX. cc @ZainRizvi @kit1980 @huydhn @clee2000
triaged,enhancement,module: devx
low
Minor
2,790,993,484
pytorch
TorchBench mobilenet_v2 cudagraphs_freezing inference regression
https://hud.pytorch.org/benchmark/torchbench/inductor_with_cudagraphs_freezing?dashboard=torchinductor&startTime=Fri,%2019%20Jul%202024%2020:38:32%20GMT&stopTime=Wed,%2015%20Jan%202025%2021:38:32%20GMT&granularity=week&mode=inference&model=mobilenet_v2&dtype=bfloat16&deviceName=cuda%20(a100)&lBranch=main&lCommit=2ed4d65af0a1993c0df7b081f4088d0f3614283e&rBranch=main&rCommit=a8319698b3ba7c858fa3e4f3aac88d3fe9dc00d1 Regressed sometime in August cc @ezyang @gchanan @kadeng @msaroufim @mcarilli @eellison @penguinwu @BoyuanFeng @chauhang
high priority,triaged,module: cuda graphs,oncall: pt2,pt2-pass-rate-regression
low
Minor
2,791,002,020
go
x/tools/gopls: show underlying type on hover over alias
### gopls version golang.org/x/tools/gopls v0.17.1 ### go env ```shell n/a ``` ### What did you do? Note: this is a feature request Given ```go // This is a dog. type Dog struct { Name string `json:"name"` Age int `json:"age"` } type Hound = Dog // A Puppy is a Dog with an age less than 2. type Puppy = Dog ``` I hovered over `Hound` and `Puppy` ### What did you see happen? The hover message reads ```go type Hound = Dog ``` and respectively ```go type Puppy = Dog A puppy is a dog with an age less than 2. ``` ### What did you expect to see? ``` type Hound = Dog This is a dog. type Dog struct { Name string `json:"name"` Age int `json:"age"` } ``` and respectively ``` type Puppy = Dog A puppy is a dog with an age less than 2. type Dog struct { Name string `json:"name"` Age int `json:"age"` } ``` I like the semantic that docstrings are inherited if, and only if, the alias provides no docstring of its own. ### Editor and settings n/a ### Logs n/a
help wanted,FeatureRequest,gopls,Tools
low
Major
2,791,016,854
pytorch
TIMM Training cudagraphs poolformer_m36 regression
Used to pass, now "eager_two_runs_differ". This probably just needs some tolerance adjustments https://hud.pytorch.org/benchmark/timm_models/inductor_with_cudagraphs?dashboard=torchinductor&startTime=Fri,%2019%20Jul%202024%2020:48:05%20GMT&stopTime=Wed,%2015%20Jan%202025%2021:48:05%20GMT&granularity=week&mode=training&model=poolformer_m36&dtype=amp&deviceName=cuda%20(a100)&lBranch=main&lCommit=1dab79470dbecef79ba4c7d4308d8a181091e58e&rBranch=main&rCommit=a8319698b3ba7c858fa3e4f3aac88d3fe9dc00d1 cc @ezyang @gchanan @kadeng @msaroufim @mcarilli @eellison @penguinwu @BoyuanFeng @chauhang
high priority,triaged,module: cuda graphs,oncall: pt2,pt2-pass-rate-regression
low
Minor
2,791,020,695
pytorch
DISABLED test_mismatched_global_state (__main__.GraphRegionTrackerTests)
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_mismatched_global_state&suite=GraphRegionTrackerTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35666846912). Over the past 3 hours, it has been determined flaky in 9 workflow(s) with 18 failures and 9 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_mismatched_global_state` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `dynamo/test_graph_region_tracker.py` ConnectionTimeoutError: Connect timeout for 5000ms, GET https://raw.githubusercontent.com/pytorch/pytorch/main/test/dynamo/test_graph_region_tracker.py -2 (connected: false, keepalive socket: false, socketHandledRequests: 1, socketHandledResponses: 0) headers: {} cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr
module: rocm,triaged,module: flaky-tests,skipped
low
Critical
2,791,020,723
pytorch
DISABLED test_recompile_on_global_state_change_dynamic_shapes (__main__.DynamicShapesMiscTests)
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_recompile_on_global_state_change_dynamic_shapes&suite=DynamicShapesMiscTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35670761806). Over the past 3 hours, it has been determined flaky in 9 workflow(s) with 18 failures and 9 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_recompile_on_global_state_change_dynamic_shapes` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/dynamo/test_misc.py", line 7855, in test_recompile_on_global_state_change assert read_state() == new_state AssertionError ``` </details> Test file path: `dynamo/test_dynamic_shapes.py` ConnectionTimeoutError: Connect timeout for 5000ms, GET https://raw.githubusercontent.com/pytorch/pytorch/main/test/dynamo/test_dynamic_shapes.py -2 (connected: false, keepalive socket: false, socketHandledRequests: 1, socketHandledResponses: 0) headers: {} cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr
module: rocm,triaged,module: flaky-tests,skipped
low
Critical
2,791,020,811
pytorch
DISABLED test_recompile_on_global_state_change (__main__.MiscTests)
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_recompile_on_global_state_change&suite=MiscTests&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35668591743). Over the past 3 hours, it has been determined flaky in 9 workflow(s) with 18 failures and 9 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_recompile_on_global_state_change` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/dynamo/test_misc.py", line 7855, in test_recompile_on_global_state_change assert read_state() == new_state AssertionError ``` </details> Test file path: `dynamo/test_misc.py` ConnectionTimeoutError: Connect timeout for 5000ms, GET https://raw.githubusercontent.com/pytorch/pytorch/main/test/dynamo/test_misc.py -2 (connected: false, keepalive socket: false, socketHandledRequests: 1, socketHandledResponses: 0) headers: {} cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr
module: rocm,triaged,module: flaky-tests,skipped
low
Critical
2,791,020,866
pytorch
DISABLED test_re_export_preserve_handle (__main__.TestNumericDebugger)
Platforms: mac, macos This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_re_export_preserve_handle&suite=TestNumericDebugger&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35666010341). Over the past 3 hours, it has been determined flaky in 5 workflow(s) with 10 failures and 5 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_re_export_preserve_handle` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_quantization.py` ConnectionTimeoutError: Connect timeout for 5000ms, GET https://raw.githubusercontent.com/pytorch/pytorch/main/test/test_quantization.py -2 (connected: false, keepalive socket: false, socketHandledRequests: 1, socketHandledResponses: 0) headers: {} cc @clee2000 @wdvr @malfet @albanD
triaged,module: flaky-tests,module: macos,skipped
low
Critical
2,791,020,926
pytorch
DISABLED test_compile_forward_clone_cuda_float32 (__main__.TestNestedTensorOpInfoCUDA)
Platforms: linux, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_compile_forward_clone_cuda_float32&suite=TestNestedTensorOpInfoCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35670326638). Over the past 3 hours, it has been determined flaky in 17 workflow(s) with 0 failures and 17 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_compile_forward_clone_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_nestedtensor.py` ConnectionTimeoutError: Connect timeout for 5000ms, GET https://raw.githubusercontent.com/pytorch/pytorch/main/test/test_nestedtensor.py -2 (connected: false, keepalive socket: false, socketHandledRequests: 1, socketHandledResponses: 0) headers: {} cc @clee2000 @wdvr @cpuhrsch @jbschlosser @bhosmer @drisspg @soulitzer @davidberard98 @YuqingJ
triaged,module: flaky-tests,module: nestedtensor,skipped,module: unknown
low
Critical
2,791,021,309
pytorch
DISABLED test_compile_forward_chunk_cuda_float32 (__main__.TestNestedTensorOpInfoCUDA)
Platforms: linux, rocm, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_compile_forward_chunk_cuda_float32&suite=TestNestedTensorOpInfoCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35667819694). Over the past 3 hours, it has been determined flaky in 26 workflow(s) with 2 failures and 26 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_compile_forward_chunk_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_nestedtensor.py` ConnectionTimeoutError: Connect timeout for 5000ms, GET https://raw.githubusercontent.com/pytorch/pytorch/main/test/test_nestedtensor.py -2 (connected: false, keepalive socket: false, socketHandledRequests: 1, socketHandledResponses: 0) headers: {} cc @clee2000 @wdvr @cpuhrsch @jbschlosser @bhosmer @drisspg @soulitzer @davidberard98 @YuqingJ
triaged,module: flaky-tests,module: nestedtensor,skipped,module: unknown
low
Critical
2,791,021,375
pytorch
DISABLED test_compile_forward_select_cpu_float32 (__main__.TestNestedTensorOpInfoCPU)
Platforms: asan, linux, mac, macos, win, windows This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_compile_forward_select_cpu_float32&suite=TestNestedTensorOpInfoCPU&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35668072388). Over the past 3 hours, it has been determined flaky in 8 workflow(s) with 0 failures and 8 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_compile_forward_select_cpu_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_nestedtensor.py` ConnectionTimeoutError: Connect timeout for 5000ms, GET https://raw.githubusercontent.com/pytorch/pytorch/main/test/test_nestedtensor.py -2 (connected: false, keepalive socket: false, socketHandledRequests: 1, socketHandledResponses: 0) headers: {} cc @clee2000 @wdvr
triaged,module: flaky-tests,module: nestedtensor,skipped,module: unknown
low
Critical
2,791,021,454
pytorch
DISABLED test_channel_group_quantization (__main__.TestQuantizePT2EAffineQuantization)
Platforms: asan, linux, mac, macos This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_channel_group_quantization&suite=TestQuantizePT2EAffineQuantization&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35666010341). Over the past 3 hours, it has been determined flaky in 13 workflow(s) with 26 failures and 13 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_channel_group_quantization` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/Users/ec2-user/runner/_work/pytorch/pytorch/test/quantization/pt2e/test_quantize_pt2e.py", line 2487, in test_channel_group_quantization from torch.ao.quantization.pt2e._affine_quantization import ( File "/Users/ec2-user/runner/_work/_temp/conda_environment_12793413718/lib/python3.9/site-packages/torch/ao/quantization/pt2e/_affine_quantization.py", line 189, in <module> register_custom_op = _register_custom_op(quant_lib) File "/Users/ec2-user/runner/_work/_temp/conda_environment_12793413718/lib/python3.9/site-packages/torch/ao/quantization/pt2e/_affine_quantization.py", line 161, in _register_custom_op from torch._inductor.decomposition import register_decomposition File "/Users/ec2-user/runner/_work/_temp/conda_environment_12793413718/lib/python3.9/site-packages/torch/_inductor/decomposition.py", line 98, in <module> decompositions = {**core_aten_decompositions(), **inductor_decompositions} TypeError: 'CustomDecompTable' object is not a mapping To execute this test, run the following from the base repo dir: python test/quantization/pt2e/test_quantize_pt2e.py TestQuantizePT2EAffineQuantization.test_channel_group_quantization This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `test_quantization.py` ConnectionTimeoutError: Connect timeout for 5000ms, GET https://raw.githubusercontent.com/pytorch/pytorch/main/test/test_quantization.py -2 (connected: false, keepalive socket: false, socketHandledRequests: 1, socketHandledResponses: 0) headers: {} cc @jerryzh168 @jianyuh @raghuramank100 @jamesr66a @vkuzo @jgong5 @Xia-Weiwen @leslie-fang-intel @msaroufim @clee2000 @wdvr
oncall: quantization,module: flaky-tests,skipped,module: unknown
low
Critical
2,791,021,533
pytorch
DISABLED test_pt2_traceable_aot_eager_cpu_float8_e4m3fn (__main__.TestFloat8DtypeCPUOnlyCPU)
Platforms: linux, mac, macos This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_pt2_traceable_aot_eager_cpu_float8_e4m3fn&suite=TestFloat8DtypeCPUOnlyCPU&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35666300791). Over the past 3 hours, it has been determined flaky in 24 workflow(s) with 48 failures and 24 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_pt2_traceable_aot_eager_cpu_float8_e4m3fn` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_quantization.py` ConnectionTimeoutError: Connect timeout for 5000ms, GET https://raw.githubusercontent.com/pytorch/pytorch/main/test/test_quantization.py -2 (connected: false, keepalive socket: false, socketHandledRequests: 1, socketHandledResponses: 0) headers: {} cc @jerryzh168 @jianyuh @raghuramank100 @jamesr66a @vkuzo @jgong5 @Xia-Weiwen @leslie-fang-intel @msaroufim @clee2000 @wdvr
oncall: quantization,module: flaky-tests,skipped,module: unknown
low
Critical
2,791,021,623
pytorch
DISABLED test_compile_forward_chunk_cpu_float32 (__main__.TestNestedTensorOpInfoCPU)
Platforms: asan, linux, mac, macos, win, windows This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_compile_forward_chunk_cpu_float32&suite=TestNestedTensorOpInfoCPU&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/35668603559). Over the past 3 hours, it has been determined flaky in 58 workflow(s) with 0 failures and 58 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_compile_forward_chunk_cpu_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_nestedtensor.py` ConnectionTimeoutError: Connect timeout for 5000ms, GET https://raw.githubusercontent.com/pytorch/pytorch/main/test/test_nestedtensor.py -2 (connected: false, keepalive socket: false, socketHandledRequests: 1, socketHandledResponses: 0) headers: {} cc @clee2000 @wdvr @cpuhrsch @jbschlosser @bhosmer @drisspg @soulitzer @davidberard98 @YuqingJ
triaged,module: flaky-tests,module: nestedtensor,skipped,module: unknown
low
Critical
2,791,039,981
go
proposal: testing: store test artifacts
This is an offshoot of #43936. Some tests produce output files which the user may want to examine. For example, a test might produce files which are compared to some reference. If the comparison fails, the user will want to examine the generated files. Or a test might produce a packet capture or similar trace which can be used to debug failures. We call these output files "test artifacts". This is a proposal to add support for storing test artifacts to the testing package. We add a new method to testing.TB: ``` package testing // OutputDir returns a directory for the test to store output files in. // When the -outputdir flag is provided, this directory will be located // under that directory. Otherwise, OutputDir returns a temporary directory // which is removed after the test completes. // // Each test or subtest has a unique artifact directory. // Repeated calls to OutputDir in the same test or subtest return the same directory. // Subtest outputs are not located under the parent test's output directory. func (t *testing.T) OutputDir() string ``` The -outputdir flag already exists, and is currently used to specify a location to put output files from profiling. We're adding an additional meaning to it here: It's now where all your saved test outputs go. When -outputdir is specified, the first call to OutputDir in a test or subtest will emit a line to the test output consisting of "=== ARTIFACTS ", the test name, and the test artifact directory, separated by spaces: ``` === ARTIFACTS TestName/subtest_name /path/to/root/artifact/dir/TestName__subtest_name ``` When -json is specified, this will appear as an entry with an Action of "artifacts", the usual Time, Package, and Test keys, and a "Path" key containing the artifact directory: ``` {"Time":"2025-01-15T13:39:27.75235-08:00","Action":"artifacts","Package":"path","Test":"TestName","Path":"/path/to/root/artifact/dir/TestName"} ``` That's the proposal. A few points on the design: * I'm reusing the existing -outputdir flag, on the theory that output files from profiling are just another test artifact. If we don't like that reuse, then we could add a new -artifactdir flag and rename TB.OutputDir to TB.ArtifactDir for consistency. * The test output uses the word "ARTIFACTS" because the JSON already has "output" events. * TB.OutputDir returns a directory, same as TB.TempDir. This seems simpler than asking the testing package to copy files around. * TB.OutputDir returns a directory even if we aren't saving artifacts so test behavior doesn't change depending on the presence or absence of the -outputdir flag. In simple interactive use, users can pass -outputdir to store test artifacts when debugging a failing test. Test frameworks that collect artifacts can arrange to pass -outputdir to the tests they run and collect any artifacts after the fact. As a concrete use case, within Google our testing infrastructure sets an environment variable to the location of a directory. Tests can write files into this directory, and those files will be stored and associated with the test run. If we implement this proposal, we can arrange for the test infrastructure to also pass this directory as an -outputdir flag, and any test using TB.OutputDir will automatically use the right location.
Proposal,LibraryProposal
medium
Critical
2,791,045,826
pytorch
torch.export fails for whisper tiny
### ๐Ÿ› Describe the bug Trying to export whisper model. Getting an error when I run with `strict=True` The model exports when I used `strict=False` Is this a valid Dynamo related issue which is addressed by non-strict mode? ``` import torch from transformers import WhisperProcessor, WhisperForConditionalGeneration from datasets import load_dataset # load model and processor model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny") input_features = torch.randn(1,80, 3000) attention_mask = torch.ones(1, 3000) decoder_input_ids = torch.tensor([[1, 1, 1 , 1]]) * model.config.decoder_start_token_id model.eval() exported_program: torch.export.ExportedProgram= torch.export.export(model, args=(input_features, attention_mask, decoder_input_ids,), strict=True) ``` Errors Logs ``` File "/home/agunapal/export_games/asr_1.py", line 16, in <module> exported_program: torch.export.ExportedProgram= torch.export.export(model, args=(input_features, attention_mask, decoder_input_ids,), strict=True) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/export/__init__.py", line 368, in export return _export( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/export/_trace.py", line 1031, in wrapper raise e File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/export/_trace.py", line 1004, in wrapper ep = fn(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/export/exported_program.py", line 122, in wrapper return fn(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/export/_trace.py", line 1957, in _export export_artifact = export_func( # type: ignore[operator] File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/export/_trace.py", line 1251, in _strict_export return _strict_export_lower_to_aten_ir( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/export/_trace.py", line 1279, in _strict_export_lower_to_aten_ir gm_torch_level = _export_to_torch_ir( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/export/_trace.py", line 660, in _export_to_torch_ir gm_torch_level, _ = torch._dynamo.export( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 1539, in inner result_traced = opt_f(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1740, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1751, in _call_impl return forward_call(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 556, in _fn return fn(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1740, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1751, in _call_impl return forward_call(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 1395, in __call__ return self._torchdynamo_orig_callable( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 545, in __call__ return _compile( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 1027, in _compile raise InternalTorchDynamoError( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 977, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 706, in compile_inner return _compile_inner(code, one_graph, hooks, transform) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_utils_internal.py", line 95, in wrapper_function return function(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 741, in _compile_inner out_code = transform_code_object(code, transform) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1348, in transform_code_object transformations(instructions, code_options) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 229, in _fn return fn(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 658, in transform tracer.run() File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2912, in run super().run() File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1120, in run while self.step(): File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1032, in step self.dispatch_table[inst.opcode](self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 640, in wrapper return inner_fn(self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1816, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 967, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/nn_module.py", line 442, in call_function return tx.inline_user_function_return( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 973, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3127, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3255, in inline_call_ tracer.run() File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1120, in run while self.step(): File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1032, in step self.dispatch_table[inst.opcode](self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 640, in wrapper return inner_fn(self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1816, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 967, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 410, in call_function return super().call_function(tx, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 349, in call_function return super().call_function(tx, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 125, in call_function return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 973, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3127, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3255, in inline_call_ tracer.run() File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1120, in run while self.step(): File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1032, in step self.dispatch_table[inst.opcode](self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 640, in wrapper return inner_fn(self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1828, in CALL_FUNCTION_KW self.call_function(fn, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 967, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/nn_module.py", line 442, in call_function return tx.inline_user_function_return( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 973, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3127, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3255, in inline_call_ tracer.run() File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1120, in run while self.step(): File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1032, in step self.dispatch_table[inst.opcode](self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 640, in wrapper return inner_fn(self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1816, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 967, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 410, in call_function return super().call_function(tx, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 349, in call_function return super().call_function(tx, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 125, in call_function return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 973, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3127, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3255, in inline_call_ tracer.run() File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1120, in run while self.step(): File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1032, in step self.dispatch_table[inst.opcode](self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 640, in wrapper return inner_fn(self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1828, in CALL_FUNCTION_KW self.call_function(fn, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 967, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/nn_module.py", line 442, in call_function return tx.inline_user_function_return( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 973, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3127, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3255, in inline_call_ tracer.run() File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1120, in run while self.step(): File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1032, in step self.dispatch_table[inst.opcode](self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 640, in wrapper return inner_fn(self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1816, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 967, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 410, in call_function return super().call_function(tx, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 349, in call_function return super().call_function(tx, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 125, in call_function return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 973, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3127, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3255, in inline_call_ tracer.run() File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1120, in run while self.step(): File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1032, in step self.dispatch_table[inst.opcode](self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 640, in wrapper return inner_fn(self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1828, in CALL_FUNCTION_KW self.call_function(fn, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 967, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/nn_module.py", line 442, in call_function return tx.inline_user_function_return( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 973, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3127, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3255, in inline_call_ tracer.run() File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1120, in run while self.step(): File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1032, in step self.dispatch_table[inst.opcode](self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 640, in wrapper return inner_fn(self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1816, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 967, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 410, in call_function return super().call_function(tx, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 349, in call_function return super().call_function(tx, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py", line 125, in call_function return tx.inline_user_function_return(self, [*self.self_args(), *args], kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 973, in inline_user_function_return return InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3127, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 3255, in inline_call_ tracer.run() File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1120, in run while self.step(): File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1032, in step self.dispatch_table[inst.opcode](self, inst) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 547, in inner if truth_fn(mod): File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/transformers/cache_utils.py", line 406, in __len__ return len(self.key_cache) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1935, in __getattr__ raise AttributeError( torch._dynamo.exc.InternalTorchDynamoError: AttributeError: 'DynamicCache' object has no attribute 'key_cache' from user code: File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/transformers/models/whisper/modeling_whisper.py", line 1767, in forward outputs = self.model( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1751, in _call_impl return forward_call(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/transformers/models/whisper/modeling_whisper.py", line 1634, in forward decoder_outputs = self.decoder( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1751, in _call_impl return forward_call(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/transformers/models/whisper/modeling_whisper.py", line 1324, in forward layer_outputs = decoder_layer( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1751, in _call_impl return forward_call(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/transformers/models/whisper/modeling_whisper.py", line 732, in forward hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1751, in _call_impl return forward_call(*args, **kwargs) File "/home/agunapal/anaconda3/envs/export/lib/python3.10/site-packages/transformers/models/whisper/modeling_whisper.py", line 520, in forward if is_cross_attention and past_key_value and is_updated: Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information ``` ### Versions ``` Collecting environment information... PyTorch version: 2.6.0.dev20241112+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A OS: CentOS Stream 9 (x86_64) GCC version: (GCC) 11.5.0 20240719 (Red Hat 11.5.0-2) Clang version: Could not collect CMake version: version 3.26.5 Libc version: glibc-2.34 Python version: 3.10.0 (default, Mar 3 2022, 09:58:08) [GCC 7.5.0] (64-bit runtime) Python platform: Linux-5.12.0-0_fbk16_zion_7661_geb00762ce6d2-x86_64-with-glibc2.34 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA PG509-210 GPU 1: NVIDIA PG509-210 GPU 2: NVIDIA PG509-210 GPU 3: NVIDIA PG509-210 GPU 4: NVIDIA PG509-210 GPU 5: NVIDIA PG509-210 GPU 6: NVIDIA PG509-210 GPU 7: NVIDIA PG509-210 Nvidia driver version: 525.105.17 cuDNN version: Probably one of the following: /usr/lib64/libcudnn.so.8.8.0 /usr/lib64/libcudnn.so.9.1.0 /usr/lib64/libcudnn_adv.so.9.1.0 /usr/lib64/libcudnn_adv_infer.so.8.8.0 /usr/lib64/libcudnn_adv_train.so.8.8.0 /usr/lib64/libcudnn_cnn.so.9.1.0 /usr/lib64/libcudnn_cnn_infer.so.8.8.0 /usr/lib64/libcudnn_cnn_train.so.8.8.0 /usr/lib64/libcudnn_engines_precompiled.so.9.1.0 /usr/lib64/libcudnn_engines_runtime_compiled.so.9.1.0 /usr/lib64/libcudnn_graph.so.9.1.0 /usr/lib64/libcudnn_heuristic.so.9.1.0 /usr/lib64/libcudnn_ops.so.9.1.0 /usr/lib64/libcudnn_ops_infer.so.8.8.0 /usr/lib64/libcudnn_ops_train.so.8.8.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 192 On-line CPU(s) list: 0-191 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8339HC CPU @ 1.80GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 4 Stepping: 11 Frequency boost: enabled CPU(s) scaling MHz: 100% CPU max MHz: 1801.0000 CPU min MHz: 800.0000 BogoMIPS: 3600.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req pku ospke avx512_vnni md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 3 MiB (96 instances) L1i cache: 3 MiB (96 instances) L2 cache: 96 MiB (96 instances) L3 cache: 132 MiB (4 instances) NUMA node(s): 4 NUMA node0 CPU(s): 0-23,96-119 NUMA node1 CPU(s): 24-47,120-143 NUMA node2 CPU(s): 48-71,144-167 NUMA node3 CPU(s): 72-95,168-191 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.0.2 [pip3] nvidia-cublas-cu12==12.1.3.1 [pip3] nvidia-cuda-cupti-cu12==12.1.105 [pip3] nvidia-cuda-nvrtc-cu12==12.1.105 [pip3] nvidia-cuda-runtime-cu12==12.1.105 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.0.2.54 [pip3] nvidia-curand-cu12==10.3.2.106 [pip3] nvidia-cusolver-cu12==11.4.5.107 [pip3] nvidia-cusparse-cu12==12.1.0.106 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.1.105 [pip3] nvidia-nvtx-cu12==12.1.105 [pip3] pytorch-triton==3.1.0+cf34004b8a [pip3] torch==2.6.0.dev20241112+cu121 [pip3] torchaudio==2.5.0.dev20241112+cu121 [pip3] torchvision==0.20.0.dev20241112+cu121 [conda] numpy 2.0.2 pypi_0 pypi [conda] nvidia-cublas-cu12 12.1.3.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.0.2.54 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.2.106 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.4.5.107 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.1.0.106 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.1.105 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.1.105 pypi_0 pypi [conda] pytorch-triton 3.1.0+cf34004b8a pypi_0 pypi [conda] torch 2.6.0.dev20241112+cu121 pypi_0 pypi [conda] torchaudio 2.5.0.dev20241112+cu121 pypi_0 pypi [conda] torchvision 0.20.0.dev20241112+cu121 pypi_0 pypi ``` cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @kadeng @amjames @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4
oncall: pt2,module: dynamo,oncall: export
low
Critical