repo
stringlengths 7
55
| path
stringlengths 4
127
| func_name
stringlengths 1
88
| original_string
stringlengths 75
19.8k
| language
stringclasses 1
value | code
stringlengths 75
19.8k
| code_tokens
list | docstring
stringlengths 3
17.3k
| docstring_tokens
list | sha
stringlengths 40
40
| url
stringlengths 87
242
| partition
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|
NaPs/Kolekto | kolekto/commands/importer.py | copy | def copy(tree, source_filename):
""" Copy file in tree, show a progress bar during operations,
and return the sha1 sum of copied file.
"""
#_, ext = os.path.splitext(source_filename)
filehash = sha1()
with printer.progress(os.path.getsize(source_filename)) as update:
with open(source_filename, 'rb') as fsource:
with NamedTemporaryFile(dir=os.path.join(tree, '.kolekto', 'movies'), delete=False) as fdestination:
# Copy the source into the temporary destination:
while True:
buf = fsource.read(10 * 1024)
if not buf:
break
filehash.update(buf)
fdestination.write(buf)
update(len(buf))
# Rename the file to its final name or raise an error if
# the file already exists:
dest = os.path.join(tree, '.kolekto', 'movies', filehash.hexdigest())
if os.path.exists(dest):
raise IOError('This file already exists in tree (%s)' % filehash.hexdigest())
else:
os.rename(fdestination.name, dest)
return filehash.hexdigest() | python | def copy(tree, source_filename):
""" Copy file in tree, show a progress bar during operations,
and return the sha1 sum of copied file.
"""
#_, ext = os.path.splitext(source_filename)
filehash = sha1()
with printer.progress(os.path.getsize(source_filename)) as update:
with open(source_filename, 'rb') as fsource:
with NamedTemporaryFile(dir=os.path.join(tree, '.kolekto', 'movies'), delete=False) as fdestination:
# Copy the source into the temporary destination:
while True:
buf = fsource.read(10 * 1024)
if not buf:
break
filehash.update(buf)
fdestination.write(buf)
update(len(buf))
# Rename the file to its final name or raise an error if
# the file already exists:
dest = os.path.join(tree, '.kolekto', 'movies', filehash.hexdigest())
if os.path.exists(dest):
raise IOError('This file already exists in tree (%s)' % filehash.hexdigest())
else:
os.rename(fdestination.name, dest)
return filehash.hexdigest() | [
"def",
"copy",
"(",
"tree",
",",
"source_filename",
")",
":",
"#_, ext = os.path.splitext(source_filename)",
"filehash",
"=",
"sha1",
"(",
")",
"with",
"printer",
".",
"progress",
"(",
"os",
".",
"path",
".",
"getsize",
"(",
"source_filename",
")",
")",
"as",
"update",
":",
"with",
"open",
"(",
"source_filename",
",",
"'rb'",
")",
"as",
"fsource",
":",
"with",
"NamedTemporaryFile",
"(",
"dir",
"=",
"os",
".",
"path",
".",
"join",
"(",
"tree",
",",
"'.kolekto'",
",",
"'movies'",
")",
",",
"delete",
"=",
"False",
")",
"as",
"fdestination",
":",
"# Copy the source into the temporary destination:",
"while",
"True",
":",
"buf",
"=",
"fsource",
".",
"read",
"(",
"10",
"*",
"1024",
")",
"if",
"not",
"buf",
":",
"break",
"filehash",
".",
"update",
"(",
"buf",
")",
"fdestination",
".",
"write",
"(",
"buf",
")",
"update",
"(",
"len",
"(",
"buf",
")",
")",
"# Rename the file to its final name or raise an error if",
"# the file already exists:",
"dest",
"=",
"os",
".",
"path",
".",
"join",
"(",
"tree",
",",
"'.kolekto'",
",",
"'movies'",
",",
"filehash",
".",
"hexdigest",
"(",
")",
")",
"if",
"os",
".",
"path",
".",
"exists",
"(",
"dest",
")",
":",
"raise",
"IOError",
"(",
"'This file already exists in tree (%s)'",
"%",
"filehash",
".",
"hexdigest",
"(",
")",
")",
"else",
":",
"os",
".",
"rename",
"(",
"fdestination",
".",
"name",
",",
"dest",
")",
"return",
"filehash",
".",
"hexdigest",
"(",
")"
] | Copy file in tree, show a progress bar during operations,
and return the sha1 sum of copied file. | [
"Copy",
"file",
"in",
"tree",
"show",
"a",
"progress",
"bar",
"during",
"operations",
"and",
"return",
"the",
"sha1",
"sum",
"of",
"copied",
"file",
"."
] | 29c5469da8782780a06bf9a76c59414bb6fd8fe3 | https://github.com/NaPs/Kolekto/blob/29c5469da8782780a06bf9a76c59414bb6fd8fe3/kolekto/commands/importer.py#L36-L60 | train |
NaPs/Kolekto | kolekto/commands/importer.py | list_attachments | def list_attachments(fullname):
""" List attachment for the specified fullname.
"""
parent, filename = os.path.split(fullname)
filename_without_ext, ext = os.path.splitext(filename)
attachments = []
for found_filename in os.listdir(parent):
found_filename_without_ext, _ = os.path.splitext(found_filename)
if filename_without_ext == found_filename_without_ext and found_filename != filename:
attachments.append(os.path.join(parent, found_filename))
return attachments | python | def list_attachments(fullname):
""" List attachment for the specified fullname.
"""
parent, filename = os.path.split(fullname)
filename_without_ext, ext = os.path.splitext(filename)
attachments = []
for found_filename in os.listdir(parent):
found_filename_without_ext, _ = os.path.splitext(found_filename)
if filename_without_ext == found_filename_without_ext and found_filename != filename:
attachments.append(os.path.join(parent, found_filename))
return attachments | [
"def",
"list_attachments",
"(",
"fullname",
")",
":",
"parent",
",",
"filename",
"=",
"os",
".",
"path",
".",
"split",
"(",
"fullname",
")",
"filename_without_ext",
",",
"ext",
"=",
"os",
".",
"path",
".",
"splitext",
"(",
"filename",
")",
"attachments",
"=",
"[",
"]",
"for",
"found_filename",
"in",
"os",
".",
"listdir",
"(",
"parent",
")",
":",
"found_filename_without_ext",
",",
"_",
"=",
"os",
".",
"path",
".",
"splitext",
"(",
"found_filename",
")",
"if",
"filename_without_ext",
"==",
"found_filename_without_ext",
"and",
"found_filename",
"!=",
"filename",
":",
"attachments",
".",
"append",
"(",
"os",
".",
"path",
".",
"join",
"(",
"parent",
",",
"found_filename",
")",
")",
"return",
"attachments"
] | List attachment for the specified fullname. | [
"List",
"attachment",
"for",
"the",
"specified",
"fullname",
"."
] | 29c5469da8782780a06bf9a76c59414bb6fd8fe3 | https://github.com/NaPs/Kolekto/blob/29c5469da8782780a06bf9a76c59414bb6fd8fe3/kolekto/commands/importer.py#L88-L98 | train |
IRC-SPHERE/HyperStream | hyperstream/channels/assets_channel.py | AssetsChannel.write_to_stream | def write_to_stream(self, stream_id, data, sandbox=None):
"""
Write to the stream
:param stream_id: The stream identifier
:param data: The stream instances
:param sandbox: The sandbox for this stream
:type stream_id: StreamId
:return: None
:raises: NotImplementedError
"""
if sandbox is not None:
raise NotImplementedError
if stream_id not in self.streams:
raise StreamNotFoundError("Stream with id '{}' does not exist".format(stream_id))
writer = self.get_stream_writer(self.streams[stream_id])
if isinstance(data, StreamInstance):
data = [data]
for instance in data:
if not isinstance(instance, StreamInstance):
raise ValueError("Expected StreamInstance, got {}".format(str(type(instance))))
writer(instance) | python | def write_to_stream(self, stream_id, data, sandbox=None):
"""
Write to the stream
:param stream_id: The stream identifier
:param data: The stream instances
:param sandbox: The sandbox for this stream
:type stream_id: StreamId
:return: None
:raises: NotImplementedError
"""
if sandbox is not None:
raise NotImplementedError
if stream_id not in self.streams:
raise StreamNotFoundError("Stream with id '{}' does not exist".format(stream_id))
writer = self.get_stream_writer(self.streams[stream_id])
if isinstance(data, StreamInstance):
data = [data]
for instance in data:
if not isinstance(instance, StreamInstance):
raise ValueError("Expected StreamInstance, got {}".format(str(type(instance))))
writer(instance) | [
"def",
"write_to_stream",
"(",
"self",
",",
"stream_id",
",",
"data",
",",
"sandbox",
"=",
"None",
")",
":",
"if",
"sandbox",
"is",
"not",
"None",
":",
"raise",
"NotImplementedError",
"if",
"stream_id",
"not",
"in",
"self",
".",
"streams",
":",
"raise",
"StreamNotFoundError",
"(",
"\"Stream with id '{}' does not exist\"",
".",
"format",
"(",
"stream_id",
")",
")",
"writer",
"=",
"self",
".",
"get_stream_writer",
"(",
"self",
".",
"streams",
"[",
"stream_id",
"]",
")",
"if",
"isinstance",
"(",
"data",
",",
"StreamInstance",
")",
":",
"data",
"=",
"[",
"data",
"]",
"for",
"instance",
"in",
"data",
":",
"if",
"not",
"isinstance",
"(",
"instance",
",",
"StreamInstance",
")",
":",
"raise",
"ValueError",
"(",
"\"Expected StreamInstance, got {}\"",
".",
"format",
"(",
"str",
"(",
"type",
"(",
"instance",
")",
")",
")",
")",
"writer",
"(",
"instance",
")"
] | Write to the stream
:param stream_id: The stream identifier
:param data: The stream instances
:param sandbox: The sandbox for this stream
:type stream_id: StreamId
:return: None
:raises: NotImplementedError | [
"Write",
"to",
"the",
"stream"
] | 98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780 | https://github.com/IRC-SPHERE/HyperStream/blob/98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780/hyperstream/channels/assets_channel.py#L82-L107 | train |
dsoprea/PySchedules | pyschedules/xml_callbacks.py | XmlCallbacks._startXTVDNode | def _startXTVDNode(self, name, attrs):
"""Process the start of the top-level xtvd node"""
schemaVersion = attrs.get('schemaVersion')
validFrom = self._parseDateTime(attrs.get('from'))
validTo = self._parseDateTime(attrs.get('to'))
self._progress.printMsg('Parsing version %s data from %s to %s' %
(schemaVersion,
validFrom.strftime('%Y/%m/%d'),
validTo.strftime('%Y/%m/%d'))) | python | def _startXTVDNode(self, name, attrs):
"""Process the start of the top-level xtvd node"""
schemaVersion = attrs.get('schemaVersion')
validFrom = self._parseDateTime(attrs.get('from'))
validTo = self._parseDateTime(attrs.get('to'))
self._progress.printMsg('Parsing version %s data from %s to %s' %
(schemaVersion,
validFrom.strftime('%Y/%m/%d'),
validTo.strftime('%Y/%m/%d'))) | [
"def",
"_startXTVDNode",
"(",
"self",
",",
"name",
",",
"attrs",
")",
":",
"schemaVersion",
"=",
"attrs",
".",
"get",
"(",
"'schemaVersion'",
")",
"validFrom",
"=",
"self",
".",
"_parseDateTime",
"(",
"attrs",
".",
"get",
"(",
"'from'",
")",
")",
"validTo",
"=",
"self",
".",
"_parseDateTime",
"(",
"attrs",
".",
"get",
"(",
"'to'",
")",
")",
"self",
".",
"_progress",
".",
"printMsg",
"(",
"'Parsing version %s data from %s to %s'",
"%",
"(",
"schemaVersion",
",",
"validFrom",
".",
"strftime",
"(",
"'%Y/%m/%d'",
")",
",",
"validTo",
".",
"strftime",
"(",
"'%Y/%m/%d'",
")",
")",
")"
] | Process the start of the top-level xtvd node | [
"Process",
"the",
"start",
"of",
"the",
"top",
"-",
"level",
"xtvd",
"node"
] | e5aae988fad90217f72db45f93bf69839f4d75e7 | https://github.com/dsoprea/PySchedules/blob/e5aae988fad90217f72db45f93bf69839f4d75e7/pyschedules/xml_callbacks.py#L68-L77 | train |
dsoprea/PySchedules | pyschedules/xml_callbacks.py | XmlCallbacks.startElement | def startElement(self, name, attrs):
"""Callback run at the start of each XML element"""
self._contextStack.append(self._context)
self._contentList = []
if name in self._statusDict:
self._itemTag, itemType = self._statusDict[name]
self._progress.startItem(itemType)
elif name == self._itemTag:
self._error = False
self._progress.newItem()
try:
if self._context == 'root':
if name == 'xtvd':
self._context = 'xtvd'
self._startXTVDNode(name, attrs)
elif self._context == 'xtvd':
self._context = name
elif self._context == 'stations':
self._startStationsNode(name, attrs)
elif self._context == 'lineups':
self._startLineupsNode(name, attrs)
elif self._context == 'schedules':
self._startSchedulesNode(name, attrs)
elif self._context == 'programs':
self._startProgramsNode(name, attrs)
elif self._context == 'productionCrew':
self._startProductionCrewNode(name, attrs)
elif self._context == 'genres':
self._startGenresNode(name, attrs)
except Exception, e:
self._error = True
self._progress.printMsg(str(e), error=True) | python | def startElement(self, name, attrs):
"""Callback run at the start of each XML element"""
self._contextStack.append(self._context)
self._contentList = []
if name in self._statusDict:
self._itemTag, itemType = self._statusDict[name]
self._progress.startItem(itemType)
elif name == self._itemTag:
self._error = False
self._progress.newItem()
try:
if self._context == 'root':
if name == 'xtvd':
self._context = 'xtvd'
self._startXTVDNode(name, attrs)
elif self._context == 'xtvd':
self._context = name
elif self._context == 'stations':
self._startStationsNode(name, attrs)
elif self._context == 'lineups':
self._startLineupsNode(name, attrs)
elif self._context == 'schedules':
self._startSchedulesNode(name, attrs)
elif self._context == 'programs':
self._startProgramsNode(name, attrs)
elif self._context == 'productionCrew':
self._startProductionCrewNode(name, attrs)
elif self._context == 'genres':
self._startGenresNode(name, attrs)
except Exception, e:
self._error = True
self._progress.printMsg(str(e), error=True) | [
"def",
"startElement",
"(",
"self",
",",
"name",
",",
"attrs",
")",
":",
"self",
".",
"_contextStack",
".",
"append",
"(",
"self",
".",
"_context",
")",
"self",
".",
"_contentList",
"=",
"[",
"]",
"if",
"name",
"in",
"self",
".",
"_statusDict",
":",
"self",
".",
"_itemTag",
",",
"itemType",
"=",
"self",
".",
"_statusDict",
"[",
"name",
"]",
"self",
".",
"_progress",
".",
"startItem",
"(",
"itemType",
")",
"elif",
"name",
"==",
"self",
".",
"_itemTag",
":",
"self",
".",
"_error",
"=",
"False",
"self",
".",
"_progress",
".",
"newItem",
"(",
")",
"try",
":",
"if",
"self",
".",
"_context",
"==",
"'root'",
":",
"if",
"name",
"==",
"'xtvd'",
":",
"self",
".",
"_context",
"=",
"'xtvd'",
"self",
".",
"_startXTVDNode",
"(",
"name",
",",
"attrs",
")",
"elif",
"self",
".",
"_context",
"==",
"'xtvd'",
":",
"self",
".",
"_context",
"=",
"name",
"elif",
"self",
".",
"_context",
"==",
"'stations'",
":",
"self",
".",
"_startStationsNode",
"(",
"name",
",",
"attrs",
")",
"elif",
"self",
".",
"_context",
"==",
"'lineups'",
":",
"self",
".",
"_startLineupsNode",
"(",
"name",
",",
"attrs",
")",
"elif",
"self",
".",
"_context",
"==",
"'schedules'",
":",
"self",
".",
"_startSchedulesNode",
"(",
"name",
",",
"attrs",
")",
"elif",
"self",
".",
"_context",
"==",
"'programs'",
":",
"self",
".",
"_startProgramsNode",
"(",
"name",
",",
"attrs",
")",
"elif",
"self",
".",
"_context",
"==",
"'productionCrew'",
":",
"self",
".",
"_startProductionCrewNode",
"(",
"name",
",",
"attrs",
")",
"elif",
"self",
".",
"_context",
"==",
"'genres'",
":",
"self",
".",
"_startGenresNode",
"(",
"name",
",",
"attrs",
")",
"except",
"Exception",
",",
"e",
":",
"self",
".",
"_error",
"=",
"True",
"self",
".",
"_progress",
".",
"printMsg",
"(",
"str",
"(",
"e",
")",
",",
"error",
"=",
"True",
")"
] | Callback run at the start of each XML element | [
"Callback",
"run",
"at",
"the",
"start",
"of",
"each",
"XML",
"element"
] | e5aae988fad90217f72db45f93bf69839f4d75e7 | https://github.com/dsoprea/PySchedules/blob/e5aae988fad90217f72db45f93bf69839f4d75e7/pyschedules/xml_callbacks.py#L289-L323 | train |
dsoprea/PySchedules | pyschedules/xml_callbacks.py | XmlCallbacks.endElement | def endElement(self, name):
"""Callback run at the end of each XML element"""
content = ''.join(self._contentList)
if name == 'xtvd':
self._progress.endItems()
else:
try:
if self._context == 'stations':
self._endStationsNode(name, content)
elif self._context == 'lineups':
self._endLineupsNode(name, content)
elif self._context == 'schedules':
self._endSchedulesNode(name, content)
elif self._context == 'programs':
self._endProgramsNode(name, content)
elif self._context == 'productionCrew':
self._endProductionCrewNode(name, content)
elif self._context == 'genres':
self._endGenresNode(name, content)
except Exception, e:
self._error = True
self._progress.printMsg(str(e), error=True)
self._context = self._contextStack.pop() | python | def endElement(self, name):
"""Callback run at the end of each XML element"""
content = ''.join(self._contentList)
if name == 'xtvd':
self._progress.endItems()
else:
try:
if self._context == 'stations':
self._endStationsNode(name, content)
elif self._context == 'lineups':
self._endLineupsNode(name, content)
elif self._context == 'schedules':
self._endSchedulesNode(name, content)
elif self._context == 'programs':
self._endProgramsNode(name, content)
elif self._context == 'productionCrew':
self._endProductionCrewNode(name, content)
elif self._context == 'genres':
self._endGenresNode(name, content)
except Exception, e:
self._error = True
self._progress.printMsg(str(e), error=True)
self._context = self._contextStack.pop() | [
"def",
"endElement",
"(",
"self",
",",
"name",
")",
":",
"content",
"=",
"''",
".",
"join",
"(",
"self",
".",
"_contentList",
")",
"if",
"name",
"==",
"'xtvd'",
":",
"self",
".",
"_progress",
".",
"endItems",
"(",
")",
"else",
":",
"try",
":",
"if",
"self",
".",
"_context",
"==",
"'stations'",
":",
"self",
".",
"_endStationsNode",
"(",
"name",
",",
"content",
")",
"elif",
"self",
".",
"_context",
"==",
"'lineups'",
":",
"self",
".",
"_endLineupsNode",
"(",
"name",
",",
"content",
")",
"elif",
"self",
".",
"_context",
"==",
"'schedules'",
":",
"self",
".",
"_endSchedulesNode",
"(",
"name",
",",
"content",
")",
"elif",
"self",
".",
"_context",
"==",
"'programs'",
":",
"self",
".",
"_endProgramsNode",
"(",
"name",
",",
"content",
")",
"elif",
"self",
".",
"_context",
"==",
"'productionCrew'",
":",
"self",
".",
"_endProductionCrewNode",
"(",
"name",
",",
"content",
")",
"elif",
"self",
".",
"_context",
"==",
"'genres'",
":",
"self",
".",
"_endGenresNode",
"(",
"name",
",",
"content",
")",
"except",
"Exception",
",",
"e",
":",
"self",
".",
"_error",
"=",
"True",
"self",
".",
"_progress",
".",
"printMsg",
"(",
"str",
"(",
"e",
")",
",",
"error",
"=",
"True",
")",
"self",
".",
"_context",
"=",
"self",
".",
"_contextStack",
".",
"pop",
"(",
")"
] | Callback run at the end of each XML element | [
"Callback",
"run",
"at",
"the",
"end",
"of",
"each",
"XML",
"element"
] | e5aae988fad90217f72db45f93bf69839f4d75e7 | https://github.com/dsoprea/PySchedules/blob/e5aae988fad90217f72db45f93bf69839f4d75e7/pyschedules/xml_callbacks.py#L330-L355 | train |
dsoprea/PySchedules | pyschedules/xml_callbacks.py | XmlCallbacks.error | def error(self, msg):
"""Callback run when a recoverable parsing error occurs"""
self._error = True
self._progress.printMsg('XML parse error: %s' % msg, error=True) | python | def error(self, msg):
"""Callback run when a recoverable parsing error occurs"""
self._error = True
self._progress.printMsg('XML parse error: %s' % msg, error=True) | [
"def",
"error",
"(",
"self",
",",
"msg",
")",
":",
"self",
".",
"_error",
"=",
"True",
"self",
".",
"_progress",
".",
"printMsg",
"(",
"'XML parse error: %s'",
"%",
"msg",
",",
"error",
"=",
"True",
")"
] | Callback run when a recoverable parsing error occurs | [
"Callback",
"run",
"when",
"a",
"recoverable",
"parsing",
"error",
"occurs"
] | e5aae988fad90217f72db45f93bf69839f4d75e7 | https://github.com/dsoprea/PySchedules/blob/e5aae988fad90217f72db45f93bf69839f4d75e7/pyschedules/xml_callbacks.py#L357-L361 | train |
NaPs/Kolekto | kolekto/commands/link.py | format_all | def format_all(format_string, env):
""" Format the input string using each possible combination of lists
in the provided environment. Returns a list of formated strings.
"""
prepared_env = parse_pattern(format_string, env, lambda x, y: [FormatWrapper(x, z) for z in y])
# Generate each possible combination, format the string with it and yield
# the resulting string:
for field_values in product(*prepared_env.itervalues()):
format_env = dict(izip(prepared_env.iterkeys(), field_values))
yield format_string.format(**format_env) | python | def format_all(format_string, env):
""" Format the input string using each possible combination of lists
in the provided environment. Returns a list of formated strings.
"""
prepared_env = parse_pattern(format_string, env, lambda x, y: [FormatWrapper(x, z) for z in y])
# Generate each possible combination, format the string with it and yield
# the resulting string:
for field_values in product(*prepared_env.itervalues()):
format_env = dict(izip(prepared_env.iterkeys(), field_values))
yield format_string.format(**format_env) | [
"def",
"format_all",
"(",
"format_string",
",",
"env",
")",
":",
"prepared_env",
"=",
"parse_pattern",
"(",
"format_string",
",",
"env",
",",
"lambda",
"x",
",",
"y",
":",
"[",
"FormatWrapper",
"(",
"x",
",",
"z",
")",
"for",
"z",
"in",
"y",
"]",
")",
"# Generate each possible combination, format the string with it and yield",
"# the resulting string:",
"for",
"field_values",
"in",
"product",
"(",
"*",
"prepared_env",
".",
"itervalues",
"(",
")",
")",
":",
"format_env",
"=",
"dict",
"(",
"izip",
"(",
"prepared_env",
".",
"iterkeys",
"(",
")",
",",
"field_values",
")",
")",
"yield",
"format_string",
".",
"format",
"(",
"*",
"*",
"format_env",
")"
] | Format the input string using each possible combination of lists
in the provided environment. Returns a list of formated strings. | [
"Format",
"the",
"input",
"string",
"using",
"each",
"possible",
"combination",
"of",
"lists",
"in",
"the",
"provided",
"environment",
".",
"Returns",
"a",
"list",
"of",
"formated",
"strings",
"."
] | 29c5469da8782780a06bf9a76c59414bb6fd8fe3 | https://github.com/NaPs/Kolekto/blob/29c5469da8782780a06bf9a76c59414bb6fd8fe3/kolekto/commands/link.py#L26-L36 | train |
tamasgal/km3pipe | km3pipe/utils/rba.py | RBAPrompt.preloop | def preloop(self):
"""Initialization before prompting user for commands.
Despite the claims in the Cmd documentaion, Cmd.preloop() is not a stub
"""
Cmd.preloop(self) # sets up command completion
self._hist = [] # No history yet
self._locals = {} # Initialize execution namespace for user
self._globals = {} | python | def preloop(self):
"""Initialization before prompting user for commands.
Despite the claims in the Cmd documentaion, Cmd.preloop() is not a stub
"""
Cmd.preloop(self) # sets up command completion
self._hist = [] # No history yet
self._locals = {} # Initialize execution namespace for user
self._globals = {} | [
"def",
"preloop",
"(",
"self",
")",
":",
"Cmd",
".",
"preloop",
"(",
"self",
")",
"# sets up command completion",
"self",
".",
"_hist",
"=",
"[",
"]",
"# No history yet",
"self",
".",
"_locals",
"=",
"{",
"}",
"# Initialize execution namespace for user",
"self",
".",
"_globals",
"=",
"{",
"}"
] | Initialization before prompting user for commands.
Despite the claims in the Cmd documentaion, Cmd.preloop() is not a stub | [
"Initialization",
"before",
"prompting",
"user",
"for",
"commands",
"."
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/utils/rba.py#L46-L54 | train |
IRC-SPHERE/HyperStream | hyperstream/channels/base_channel.py | BaseChannel.execute_tool | def execute_tool(self, stream, interval):
"""
Executes the stream's tool over the given time interval
:param stream: the stream reference
:param interval: the time interval
:return: None
"""
if interval.end > self.up_to_timestamp:
raise ValueError(
'The stream is not available after ' + str(self.up_to_timestamp) + ' and cannot be calculated')
required_intervals = TimeIntervals([interval]) - stream.calculated_intervals
if not required_intervals.is_empty:
for interval in required_intervals:
stream.tool.execute(stream.input_streams, stream, interval)
stream.calculated_intervals += interval
if not stream.required_intervals.is_empty:
raise RuntimeError('Tool execution did not cover the specified time interval.') | python | def execute_tool(self, stream, interval):
"""
Executes the stream's tool over the given time interval
:param stream: the stream reference
:param interval: the time interval
:return: None
"""
if interval.end > self.up_to_timestamp:
raise ValueError(
'The stream is not available after ' + str(self.up_to_timestamp) + ' and cannot be calculated')
required_intervals = TimeIntervals([interval]) - stream.calculated_intervals
if not required_intervals.is_empty:
for interval in required_intervals:
stream.tool.execute(stream.input_streams, stream, interval)
stream.calculated_intervals += interval
if not stream.required_intervals.is_empty:
raise RuntimeError('Tool execution did not cover the specified time interval.') | [
"def",
"execute_tool",
"(",
"self",
",",
"stream",
",",
"interval",
")",
":",
"if",
"interval",
".",
"end",
">",
"self",
".",
"up_to_timestamp",
":",
"raise",
"ValueError",
"(",
"'The stream is not available after '",
"+",
"str",
"(",
"self",
".",
"up_to_timestamp",
")",
"+",
"' and cannot be calculated'",
")",
"required_intervals",
"=",
"TimeIntervals",
"(",
"[",
"interval",
"]",
")",
"-",
"stream",
".",
"calculated_intervals",
"if",
"not",
"required_intervals",
".",
"is_empty",
":",
"for",
"interval",
"in",
"required_intervals",
":",
"stream",
".",
"tool",
".",
"execute",
"(",
"stream",
".",
"input_streams",
",",
"stream",
",",
"interval",
")",
"stream",
".",
"calculated_intervals",
"+=",
"interval",
"if",
"not",
"stream",
".",
"required_intervals",
".",
"is_empty",
":",
"raise",
"RuntimeError",
"(",
"'Tool execution did not cover the specified time interval.'",
")"
] | Executes the stream's tool over the given time interval
:param stream: the stream reference
:param interval: the time interval
:return: None | [
"Executes",
"the",
"stream",
"s",
"tool",
"over",
"the",
"given",
"time",
"interval"
] | 98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780 | https://github.com/IRC-SPHERE/HyperStream/blob/98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780/hyperstream/channels/base_channel.py#L46-L65 | train |
IRC-SPHERE/HyperStream | hyperstream/channels/base_channel.py | BaseChannel.get_or_create_stream | def get_or_create_stream(self, stream_id, try_create=True):
"""
Helper function to get a stream or create one if it's not already defined
:param stream_id: The stream id
:param try_create: Whether to try to create the stream if not found
:return: The stream object
"""
stream_id = get_stream_id(stream_id)
if stream_id in self.streams:
logging.debug("found {}".format(stream_id))
return self.streams[stream_id]
elif try_create:
# Try to create the stream
logging.debug("creating {}".format(stream_id))
return self.create_stream(stream_id=stream_id) | python | def get_or_create_stream(self, stream_id, try_create=True):
"""
Helper function to get a stream or create one if it's not already defined
:param stream_id: The stream id
:param try_create: Whether to try to create the stream if not found
:return: The stream object
"""
stream_id = get_stream_id(stream_id)
if stream_id in self.streams:
logging.debug("found {}".format(stream_id))
return self.streams[stream_id]
elif try_create:
# Try to create the stream
logging.debug("creating {}".format(stream_id))
return self.create_stream(stream_id=stream_id) | [
"def",
"get_or_create_stream",
"(",
"self",
",",
"stream_id",
",",
"try_create",
"=",
"True",
")",
":",
"stream_id",
"=",
"get_stream_id",
"(",
"stream_id",
")",
"if",
"stream_id",
"in",
"self",
".",
"streams",
":",
"logging",
".",
"debug",
"(",
"\"found {}\"",
".",
"format",
"(",
"stream_id",
")",
")",
"return",
"self",
".",
"streams",
"[",
"stream_id",
"]",
"elif",
"try_create",
":",
"# Try to create the stream",
"logging",
".",
"debug",
"(",
"\"creating {}\"",
".",
"format",
"(",
"stream_id",
")",
")",
"return",
"self",
".",
"create_stream",
"(",
"stream_id",
"=",
"stream_id",
")"
] | Helper function to get a stream or create one if it's not already defined
:param stream_id: The stream id
:param try_create: Whether to try to create the stream if not found
:return: The stream object | [
"Helper",
"function",
"to",
"get",
"a",
"stream",
"or",
"create",
"one",
"if",
"it",
"s",
"not",
"already",
"defined"
] | 98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780 | https://github.com/IRC-SPHERE/HyperStream/blob/98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780/hyperstream/channels/base_channel.py#L76-L91 | train |
IRC-SPHERE/HyperStream | hyperstream/channels/base_channel.py | BaseChannel.find_streams | def find_streams(self, **kwargs):
"""
Finds streams with the given meta data values. Useful for debugging purposes.
:param kwargs: The meta data as keyword arguments
:return: The streams found
"""
found = {}
if 'name' in kwargs:
name = kwargs.pop('name')
else:
name = None
for stream_id, stream in self.streams.items():
if name is not None and stream_id.name != name:
continue
d = dict(stream_id.meta_data)
if all(k in d and d[k] == str(v) for k, v in kwargs.items()):
found[stream_id] = stream
return found | python | def find_streams(self, **kwargs):
"""
Finds streams with the given meta data values. Useful for debugging purposes.
:param kwargs: The meta data as keyword arguments
:return: The streams found
"""
found = {}
if 'name' in kwargs:
name = kwargs.pop('name')
else:
name = None
for stream_id, stream in self.streams.items():
if name is not None and stream_id.name != name:
continue
d = dict(stream_id.meta_data)
if all(k in d and d[k] == str(v) for k, v in kwargs.items()):
found[stream_id] = stream
return found | [
"def",
"find_streams",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"found",
"=",
"{",
"}",
"if",
"'name'",
"in",
"kwargs",
":",
"name",
"=",
"kwargs",
".",
"pop",
"(",
"'name'",
")",
"else",
":",
"name",
"=",
"None",
"for",
"stream_id",
",",
"stream",
"in",
"self",
".",
"streams",
".",
"items",
"(",
")",
":",
"if",
"name",
"is",
"not",
"None",
"and",
"stream_id",
".",
"name",
"!=",
"name",
":",
"continue",
"d",
"=",
"dict",
"(",
"stream_id",
".",
"meta_data",
")",
"if",
"all",
"(",
"k",
"in",
"d",
"and",
"d",
"[",
"k",
"]",
"==",
"str",
"(",
"v",
")",
"for",
"k",
",",
"v",
"in",
"kwargs",
".",
"items",
"(",
")",
")",
":",
"found",
"[",
"stream_id",
"]",
"=",
"stream",
"return",
"found"
] | Finds streams with the given meta data values. Useful for debugging purposes.
:param kwargs: The meta data as keyword arguments
:return: The streams found | [
"Finds",
"streams",
"with",
"the",
"given",
"meta",
"data",
"values",
".",
"Useful",
"for",
"debugging",
"purposes",
"."
] | 98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780 | https://github.com/IRC-SPHERE/HyperStream/blob/98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780/hyperstream/channels/base_channel.py#L100-L121 | train |
IRC-SPHERE/HyperStream | hyperstream/channels/base_channel.py | BaseChannel.find_stream | def find_stream(self, **kwargs):
"""
Finds a single stream with the given meta data values. Useful for debugging purposes.
:param kwargs: The meta data as keyword arguments
:return: The stream found
"""
found = list(self.find_streams(**kwargs).values())
if not found:
raise StreamNotFoundError(kwargs)
if len(found) > 1:
raise MultipleStreamsFoundError(kwargs)
return found[0] | python | def find_stream(self, **kwargs):
"""
Finds a single stream with the given meta data values. Useful for debugging purposes.
:param kwargs: The meta data as keyword arguments
:return: The stream found
"""
found = list(self.find_streams(**kwargs).values())
if not found:
raise StreamNotFoundError(kwargs)
if len(found) > 1:
raise MultipleStreamsFoundError(kwargs)
return found[0] | [
"def",
"find_stream",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"found",
"=",
"list",
"(",
"self",
".",
"find_streams",
"(",
"*",
"*",
"kwargs",
")",
".",
"values",
"(",
")",
")",
"if",
"not",
"found",
":",
"raise",
"StreamNotFoundError",
"(",
"kwargs",
")",
"if",
"len",
"(",
"found",
")",
">",
"1",
":",
"raise",
"MultipleStreamsFoundError",
"(",
"kwargs",
")",
"return",
"found",
"[",
"0",
"]"
] | Finds a single stream with the given meta data values. Useful for debugging purposes.
:param kwargs: The meta data as keyword arguments
:return: The stream found | [
"Finds",
"a",
"single",
"stream",
"with",
"the",
"given",
"meta",
"data",
"values",
".",
"Useful",
"for",
"debugging",
"purposes",
"."
] | 98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780 | https://github.com/IRC-SPHERE/HyperStream/blob/98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780/hyperstream/channels/base_channel.py#L123-L135 | train |
tamasgal/km3pipe | km3pipe/io/daq.py | DAQPump.next_blob | def next_blob(self):
"""Get the next frame from file"""
blob_file = self.blob_file
try:
preamble = DAQPreamble(file_obj=blob_file)
except struct.error:
raise StopIteration
try:
data_type = DATA_TYPES[preamble.data_type]
except KeyError:
log.error("Unkown datatype: {0}".format(preamble.data_type))
data_type = 'Unknown'
blob = Blob()
blob[data_type] = None
blob['DAQPreamble'] = preamble
if data_type == 'DAQSummaryslice':
daq_frame = DAQSummaryslice(blob_file)
blob[data_type] = daq_frame
blob['DAQHeader'] = daq_frame.header
elif data_type == 'DAQEvent':
daq_frame = DAQEvent(blob_file)
blob[data_type] = daq_frame
blob['DAQHeader'] = daq_frame.header
else:
log.warning(
"Skipping DAQ frame with data type code '{0}'.".format(
preamble.data_type
)
)
blob_file.seek(preamble.length - DAQPreamble.size, 1)
return blob | python | def next_blob(self):
"""Get the next frame from file"""
blob_file = self.blob_file
try:
preamble = DAQPreamble(file_obj=blob_file)
except struct.error:
raise StopIteration
try:
data_type = DATA_TYPES[preamble.data_type]
except KeyError:
log.error("Unkown datatype: {0}".format(preamble.data_type))
data_type = 'Unknown'
blob = Blob()
blob[data_type] = None
blob['DAQPreamble'] = preamble
if data_type == 'DAQSummaryslice':
daq_frame = DAQSummaryslice(blob_file)
blob[data_type] = daq_frame
blob['DAQHeader'] = daq_frame.header
elif data_type == 'DAQEvent':
daq_frame = DAQEvent(blob_file)
blob[data_type] = daq_frame
blob['DAQHeader'] = daq_frame.header
else:
log.warning(
"Skipping DAQ frame with data type code '{0}'.".format(
preamble.data_type
)
)
blob_file.seek(preamble.length - DAQPreamble.size, 1)
return blob | [
"def",
"next_blob",
"(",
"self",
")",
":",
"blob_file",
"=",
"self",
".",
"blob_file",
"try",
":",
"preamble",
"=",
"DAQPreamble",
"(",
"file_obj",
"=",
"blob_file",
")",
"except",
"struct",
".",
"error",
":",
"raise",
"StopIteration",
"try",
":",
"data_type",
"=",
"DATA_TYPES",
"[",
"preamble",
".",
"data_type",
"]",
"except",
"KeyError",
":",
"log",
".",
"error",
"(",
"\"Unkown datatype: {0}\"",
".",
"format",
"(",
"preamble",
".",
"data_type",
")",
")",
"data_type",
"=",
"'Unknown'",
"blob",
"=",
"Blob",
"(",
")",
"blob",
"[",
"data_type",
"]",
"=",
"None",
"blob",
"[",
"'DAQPreamble'",
"]",
"=",
"preamble",
"if",
"data_type",
"==",
"'DAQSummaryslice'",
":",
"daq_frame",
"=",
"DAQSummaryslice",
"(",
"blob_file",
")",
"blob",
"[",
"data_type",
"]",
"=",
"daq_frame",
"blob",
"[",
"'DAQHeader'",
"]",
"=",
"daq_frame",
".",
"header",
"elif",
"data_type",
"==",
"'DAQEvent'",
":",
"daq_frame",
"=",
"DAQEvent",
"(",
"blob_file",
")",
"blob",
"[",
"data_type",
"]",
"=",
"daq_frame",
"blob",
"[",
"'DAQHeader'",
"]",
"=",
"daq_frame",
".",
"header",
"else",
":",
"log",
".",
"warning",
"(",
"\"Skipping DAQ frame with data type code '{0}'.\"",
".",
"format",
"(",
"preamble",
".",
"data_type",
")",
")",
"blob_file",
".",
"seek",
"(",
"preamble",
".",
"length",
"-",
"DAQPreamble",
".",
"size",
",",
"1",
")",
"return",
"blob"
] | Get the next frame from file | [
"Get",
"the",
"next",
"frame",
"from",
"file"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/io/daq.py#L145-L179 | train |
tamasgal/km3pipe | km3pipe/io/daq.py | DAQPump.seek_to_frame | def seek_to_frame(self, index):
"""Move file pointer to the frame with given index."""
pointer_position = self.frame_positions[index]
self.blob_file.seek(pointer_position, 0) | python | def seek_to_frame(self, index):
"""Move file pointer to the frame with given index."""
pointer_position = self.frame_positions[index]
self.blob_file.seek(pointer_position, 0) | [
"def",
"seek_to_frame",
"(",
"self",
",",
"index",
")",
":",
"pointer_position",
"=",
"self",
".",
"frame_positions",
"[",
"index",
"]",
"self",
".",
"blob_file",
".",
"seek",
"(",
"pointer_position",
",",
"0",
")"
] | Move file pointer to the frame with given index. | [
"Move",
"file",
"pointer",
"to",
"the",
"frame",
"with",
"given",
"index",
"."
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/io/daq.py#L181-L184 | train |
tamasgal/km3pipe | km3pipe/io/daq.py | DAQPreamble._parse_file | def _parse_file(self, file_obj):
"""Directly read from file handler.
Note that this will move the file pointer.
"""
byte_data = file_obj.read(self.size)
self._parse_byte_data(byte_data) | python | def _parse_file(self, file_obj):
"""Directly read from file handler.
Note that this will move the file pointer.
"""
byte_data = file_obj.read(self.size)
self._parse_byte_data(byte_data) | [
"def",
"_parse_file",
"(",
"self",
",",
"file_obj",
")",
":",
"byte_data",
"=",
"file_obj",
".",
"read",
"(",
"self",
".",
"size",
")",
"self",
".",
"_parse_byte_data",
"(",
"byte_data",
")"
] | Directly read from file handler.
Note that this will move the file pointer. | [
"Directly",
"read",
"from",
"file",
"handler",
"."
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/io/daq.py#L409-L416 | train |
tamasgal/km3pipe | km3pipe/io/daq.py | DAQSummaryslice._parse_summary_frames | def _parse_summary_frames(self, file_obj):
"""Iterate through the byte data and fill the summary_frames"""
for _ in range(self.n_summary_frames):
dom_id = unpack('<i', file_obj.read(4))[0]
dq_status = file_obj.read(4) # probably dom status? # noqa
dom_status = unpack('<iiii', file_obj.read(16))
raw_rates = unpack('b' * 31, file_obj.read(31))
pmt_rates = [self._get_rate(value) for value in raw_rates]
self.summary_frames[dom_id] = pmt_rates
self.dq_status[dom_id] = dq_status
self.dom_status[dom_id] = dom_status
self.dom_rates[dom_id] = np.sum(pmt_rates) | python | def _parse_summary_frames(self, file_obj):
"""Iterate through the byte data and fill the summary_frames"""
for _ in range(self.n_summary_frames):
dom_id = unpack('<i', file_obj.read(4))[0]
dq_status = file_obj.read(4) # probably dom status? # noqa
dom_status = unpack('<iiii', file_obj.read(16))
raw_rates = unpack('b' * 31, file_obj.read(31))
pmt_rates = [self._get_rate(value) for value in raw_rates]
self.summary_frames[dom_id] = pmt_rates
self.dq_status[dom_id] = dq_status
self.dom_status[dom_id] = dom_status
self.dom_rates[dom_id] = np.sum(pmt_rates) | [
"def",
"_parse_summary_frames",
"(",
"self",
",",
"file_obj",
")",
":",
"for",
"_",
"in",
"range",
"(",
"self",
".",
"n_summary_frames",
")",
":",
"dom_id",
"=",
"unpack",
"(",
"'<i'",
",",
"file_obj",
".",
"read",
"(",
"4",
")",
")",
"[",
"0",
"]",
"dq_status",
"=",
"file_obj",
".",
"read",
"(",
"4",
")",
"# probably dom status? # noqa",
"dom_status",
"=",
"unpack",
"(",
"'<iiii'",
",",
"file_obj",
".",
"read",
"(",
"16",
")",
")",
"raw_rates",
"=",
"unpack",
"(",
"'b'",
"*",
"31",
",",
"file_obj",
".",
"read",
"(",
"31",
")",
")",
"pmt_rates",
"=",
"[",
"self",
".",
"_get_rate",
"(",
"value",
")",
"for",
"value",
"in",
"raw_rates",
"]",
"self",
".",
"summary_frames",
"[",
"dom_id",
"]",
"=",
"pmt_rates",
"self",
".",
"dq_status",
"[",
"dom_id",
"]",
"=",
"dq_status",
"self",
".",
"dom_status",
"[",
"dom_id",
"]",
"=",
"dom_status",
"self",
".",
"dom_rates",
"[",
"dom_id",
"]",
"=",
"np",
".",
"sum",
"(",
"pmt_rates",
")"
] | Iterate through the byte data and fill the summary_frames | [
"Iterate",
"through",
"the",
"byte",
"data",
"and",
"fill",
"the",
"summary_frames"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/io/daq.py#L499-L510 | train |
tamasgal/km3pipe | km3pipe/io/daq.py | DAQSummaryslice._get_rate | def _get_rate(self, value):
"""Return the rate in Hz from the short int value"""
if value == 0:
return 0
else:
return MINIMAL_RATE_HZ * math.exp(value * self._get_factor()) | python | def _get_rate(self, value):
"""Return the rate in Hz from the short int value"""
if value == 0:
return 0
else:
return MINIMAL_RATE_HZ * math.exp(value * self._get_factor()) | [
"def",
"_get_rate",
"(",
"self",
",",
"value",
")",
":",
"if",
"value",
"==",
"0",
":",
"return",
"0",
"else",
":",
"return",
"MINIMAL_RATE_HZ",
"*",
"math",
".",
"exp",
"(",
"value",
"*",
"self",
".",
"_get_factor",
"(",
")",
")"
] | Return the rate in Hz from the short int value | [
"Return",
"the",
"rate",
"in",
"Hz",
"from",
"the",
"short",
"int",
"value"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/io/daq.py#L512-L517 | train |
tamasgal/km3pipe | km3pipe/io/daq.py | DAQEvent._parse_triggered_hits | def _parse_triggered_hits(self, file_obj):
"""Parse and store triggered hits."""
for _ in range(self.n_triggered_hits):
dom_id, pmt_id = unpack('<ib', file_obj.read(5))
tdc_time = unpack('>I', file_obj.read(4))[0]
tot = unpack('<b', file_obj.read(1))[0]
trigger_mask = unpack('<Q', file_obj.read(8))
self.triggered_hits.append(
(dom_id, pmt_id, tdc_time, tot, trigger_mask)
) | python | def _parse_triggered_hits(self, file_obj):
"""Parse and store triggered hits."""
for _ in range(self.n_triggered_hits):
dom_id, pmt_id = unpack('<ib', file_obj.read(5))
tdc_time = unpack('>I', file_obj.read(4))[0]
tot = unpack('<b', file_obj.read(1))[0]
trigger_mask = unpack('<Q', file_obj.read(8))
self.triggered_hits.append(
(dom_id, pmt_id, tdc_time, tot, trigger_mask)
) | [
"def",
"_parse_triggered_hits",
"(",
"self",
",",
"file_obj",
")",
":",
"for",
"_",
"in",
"range",
"(",
"self",
".",
"n_triggered_hits",
")",
":",
"dom_id",
",",
"pmt_id",
"=",
"unpack",
"(",
"'<ib'",
",",
"file_obj",
".",
"read",
"(",
"5",
")",
")",
"tdc_time",
"=",
"unpack",
"(",
"'>I'",
",",
"file_obj",
".",
"read",
"(",
"4",
")",
")",
"[",
"0",
"]",
"tot",
"=",
"unpack",
"(",
"'<b'",
",",
"file_obj",
".",
"read",
"(",
"1",
")",
")",
"[",
"0",
"]",
"trigger_mask",
"=",
"unpack",
"(",
"'<Q'",
",",
"file_obj",
".",
"read",
"(",
"8",
")",
")",
"self",
".",
"triggered_hits",
".",
"append",
"(",
"(",
"dom_id",
",",
"pmt_id",
",",
"tdc_time",
",",
"tot",
",",
"trigger_mask",
")",
")"
] | Parse and store triggered hits. | [
"Parse",
"and",
"store",
"triggered",
"hits",
"."
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/io/daq.py#L556-L565 | train |
tamasgal/km3pipe | km3pipe/io/daq.py | DAQEvent._parse_snapshot_hits | def _parse_snapshot_hits(self, file_obj):
"""Parse and store snapshot hits."""
for _ in range(self.n_snapshot_hits):
dom_id, pmt_id = unpack('<ib', file_obj.read(5))
tdc_time = unpack('>I', file_obj.read(4))[0]
tot = unpack('<b', file_obj.read(1))[0]
self.snapshot_hits.append((dom_id, pmt_id, tdc_time, tot)) | python | def _parse_snapshot_hits(self, file_obj):
"""Parse and store snapshot hits."""
for _ in range(self.n_snapshot_hits):
dom_id, pmt_id = unpack('<ib', file_obj.read(5))
tdc_time = unpack('>I', file_obj.read(4))[0]
tot = unpack('<b', file_obj.read(1))[0]
self.snapshot_hits.append((dom_id, pmt_id, tdc_time, tot)) | [
"def",
"_parse_snapshot_hits",
"(",
"self",
",",
"file_obj",
")",
":",
"for",
"_",
"in",
"range",
"(",
"self",
".",
"n_snapshot_hits",
")",
":",
"dom_id",
",",
"pmt_id",
"=",
"unpack",
"(",
"'<ib'",
",",
"file_obj",
".",
"read",
"(",
"5",
")",
")",
"tdc_time",
"=",
"unpack",
"(",
"'>I'",
",",
"file_obj",
".",
"read",
"(",
"4",
")",
")",
"[",
"0",
"]",
"tot",
"=",
"unpack",
"(",
"'<b'",
",",
"file_obj",
".",
"read",
"(",
"1",
")",
")",
"[",
"0",
"]",
"self",
".",
"snapshot_hits",
".",
"append",
"(",
"(",
"dom_id",
",",
"pmt_id",
",",
"tdc_time",
",",
"tot",
")",
")"
] | Parse and store snapshot hits. | [
"Parse",
"and",
"store",
"snapshot",
"hits",
"."
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/io/daq.py#L567-L573 | train |
tamasgal/km3pipe | km3pipe/utils/runtable.py | runtable | def runtable(det_id, n=5, run_range=None, compact=False, sep='\t', regex=None):
"""Print the run table of the last `n` runs for given detector"""
db = kp.db.DBManager()
df = db.run_table(det_id)
if run_range is not None:
try:
from_run, to_run = [int(r) for r in run_range.split('-')]
except ValueError:
log.critical("Please specify a valid range (e.g. 3100-3200)!")
raise SystemExit
else:
df = df[(df.RUN >= from_run) & (df.RUN <= to_run)]
if regex is not None:
try:
re.compile(regex)
except re.error:
log.error("Invalid regex!")
return
df = df[df['RUNSETUPNAME'].str.contains(regex)
| df['RUNSETUPID'].str.contains(regex)]
if n is not None:
df = df.tail(n)
if compact:
df = df[['RUN', 'DATETIME', 'RUNSETUPNAME']]
df.to_csv(sys.stdout, sep=sep) | python | def runtable(det_id, n=5, run_range=None, compact=False, sep='\t', regex=None):
"""Print the run table of the last `n` runs for given detector"""
db = kp.db.DBManager()
df = db.run_table(det_id)
if run_range is not None:
try:
from_run, to_run = [int(r) for r in run_range.split('-')]
except ValueError:
log.critical("Please specify a valid range (e.g. 3100-3200)!")
raise SystemExit
else:
df = df[(df.RUN >= from_run) & (df.RUN <= to_run)]
if regex is not None:
try:
re.compile(regex)
except re.error:
log.error("Invalid regex!")
return
df = df[df['RUNSETUPNAME'].str.contains(regex)
| df['RUNSETUPID'].str.contains(regex)]
if n is not None:
df = df.tail(n)
if compact:
df = df[['RUN', 'DATETIME', 'RUNSETUPNAME']]
df.to_csv(sys.stdout, sep=sep) | [
"def",
"runtable",
"(",
"det_id",
",",
"n",
"=",
"5",
",",
"run_range",
"=",
"None",
",",
"compact",
"=",
"False",
",",
"sep",
"=",
"'\\t'",
",",
"regex",
"=",
"None",
")",
":",
"db",
"=",
"kp",
".",
"db",
".",
"DBManager",
"(",
")",
"df",
"=",
"db",
".",
"run_table",
"(",
"det_id",
")",
"if",
"run_range",
"is",
"not",
"None",
":",
"try",
":",
"from_run",
",",
"to_run",
"=",
"[",
"int",
"(",
"r",
")",
"for",
"r",
"in",
"run_range",
".",
"split",
"(",
"'-'",
")",
"]",
"except",
"ValueError",
":",
"log",
".",
"critical",
"(",
"\"Please specify a valid range (e.g. 3100-3200)!\"",
")",
"raise",
"SystemExit",
"else",
":",
"df",
"=",
"df",
"[",
"(",
"df",
".",
"RUN",
">=",
"from_run",
")",
"&",
"(",
"df",
".",
"RUN",
"<=",
"to_run",
")",
"]",
"if",
"regex",
"is",
"not",
"None",
":",
"try",
":",
"re",
".",
"compile",
"(",
"regex",
")",
"except",
"re",
".",
"error",
":",
"log",
".",
"error",
"(",
"\"Invalid regex!\"",
")",
"return",
"df",
"=",
"df",
"[",
"df",
"[",
"'RUNSETUPNAME'",
"]",
".",
"str",
".",
"contains",
"(",
"regex",
")",
"|",
"df",
"[",
"'RUNSETUPID'",
"]",
".",
"str",
".",
"contains",
"(",
"regex",
")",
"]",
"if",
"n",
"is",
"not",
"None",
":",
"df",
"=",
"df",
".",
"tail",
"(",
"n",
")",
"if",
"compact",
":",
"df",
"=",
"df",
"[",
"[",
"'RUN'",
",",
"'DATETIME'",
",",
"'RUNSETUPNAME'",
"]",
"]",
"df",
".",
"to_csv",
"(",
"sys",
".",
"stdout",
",",
"sep",
"=",
"sep",
")"
] | Print the run table of the last `n` runs for given detector | [
"Print",
"the",
"run",
"table",
"of",
"the",
"last",
"n",
"runs",
"for",
"given",
"detector"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/utils/runtable.py#L35-L65 | train |
tamasgal/km3pipe | km3modules/ahrs.py | _extract_calibration | def _extract_calibration(xroot):
"""Extract AHRS calibration information from XML root.
Parameters
----------
xroot: XML root
Returns
-------
Aoff: numpy.array with shape(3,)
Arot: numpy.array with shape(3,3)
Hoff: numpy.array with shape(3,)
Hrot: numpy.array with shape(3,3)
"""
names = [c.text for c in xroot.findall(".//Name")]
val = [[i.text for i in c] for c in xroot.findall(".//Values")]
# The fields has to be reindeced, these are the index mappings
col_ic = [int(v) for v in val[names.index("AHRS_Matrix_Column(-)")]]
try:
row_ic = [int(v) for v in val[names.index("AHRS_Matrix_Row(-)")]]
except ValueError:
row_ic = [2, 2, 2, 1, 1, 1, 0, 0, 0]
try:
vec_ic = [int(v) for v in val[names.index("AHRS_Vector_Index(-)")]]
except ValueError:
vec_ic = [2, 1, 0]
Aoff_ix = names.index("AHRS_Acceleration_Offset(g/ms^2-)")
Arot_ix = names.index("AHRS_Acceleration_Rotation(-)")
Hrot_ix = names.index("AHRS_Magnetic_Rotation(-)")
Aoff = np.array(val[Aoff_ix])[vec_ic].astype(float)
Arot = np.array(val[Arot_ix]).reshape(3, 3)[col_ic, row_ic] \
.reshape(3, 3).astype(float)
Hrot = np.array(val[Hrot_ix]).reshape(3, 3)[col_ic, row_ic] \
.reshape(3, 3).astype(float)
Hoff = []
for q in 'XYZ':
values = []
for t in ('Min', 'Max'):
ix = names.index("AHRS_Magnetic_{}{}(G-)".format(q, t))
values.append(float(val[ix][0]))
Hoff.append(sum(values) / 2.)
Hoff = np.array(Hoff)
return Aoff, Arot, Hoff, Hrot | python | def _extract_calibration(xroot):
"""Extract AHRS calibration information from XML root.
Parameters
----------
xroot: XML root
Returns
-------
Aoff: numpy.array with shape(3,)
Arot: numpy.array with shape(3,3)
Hoff: numpy.array with shape(3,)
Hrot: numpy.array with shape(3,3)
"""
names = [c.text for c in xroot.findall(".//Name")]
val = [[i.text for i in c] for c in xroot.findall(".//Values")]
# The fields has to be reindeced, these are the index mappings
col_ic = [int(v) for v in val[names.index("AHRS_Matrix_Column(-)")]]
try:
row_ic = [int(v) for v in val[names.index("AHRS_Matrix_Row(-)")]]
except ValueError:
row_ic = [2, 2, 2, 1, 1, 1, 0, 0, 0]
try:
vec_ic = [int(v) for v in val[names.index("AHRS_Vector_Index(-)")]]
except ValueError:
vec_ic = [2, 1, 0]
Aoff_ix = names.index("AHRS_Acceleration_Offset(g/ms^2-)")
Arot_ix = names.index("AHRS_Acceleration_Rotation(-)")
Hrot_ix = names.index("AHRS_Magnetic_Rotation(-)")
Aoff = np.array(val[Aoff_ix])[vec_ic].astype(float)
Arot = np.array(val[Arot_ix]).reshape(3, 3)[col_ic, row_ic] \
.reshape(3, 3).astype(float)
Hrot = np.array(val[Hrot_ix]).reshape(3, 3)[col_ic, row_ic] \
.reshape(3, 3).astype(float)
Hoff = []
for q in 'XYZ':
values = []
for t in ('Min', 'Max'):
ix = names.index("AHRS_Magnetic_{}{}(G-)".format(q, t))
values.append(float(val[ix][0]))
Hoff.append(sum(values) / 2.)
Hoff = np.array(Hoff)
return Aoff, Arot, Hoff, Hrot | [
"def",
"_extract_calibration",
"(",
"xroot",
")",
":",
"names",
"=",
"[",
"c",
".",
"text",
"for",
"c",
"in",
"xroot",
".",
"findall",
"(",
"\".//Name\"",
")",
"]",
"val",
"=",
"[",
"[",
"i",
".",
"text",
"for",
"i",
"in",
"c",
"]",
"for",
"c",
"in",
"xroot",
".",
"findall",
"(",
"\".//Values\"",
")",
"]",
"# The fields has to be reindeced, these are the index mappings",
"col_ic",
"=",
"[",
"int",
"(",
"v",
")",
"for",
"v",
"in",
"val",
"[",
"names",
".",
"index",
"(",
"\"AHRS_Matrix_Column(-)\"",
")",
"]",
"]",
"try",
":",
"row_ic",
"=",
"[",
"int",
"(",
"v",
")",
"for",
"v",
"in",
"val",
"[",
"names",
".",
"index",
"(",
"\"AHRS_Matrix_Row(-)\"",
")",
"]",
"]",
"except",
"ValueError",
":",
"row_ic",
"=",
"[",
"2",
",",
"2",
",",
"2",
",",
"1",
",",
"1",
",",
"1",
",",
"0",
",",
"0",
",",
"0",
"]",
"try",
":",
"vec_ic",
"=",
"[",
"int",
"(",
"v",
")",
"for",
"v",
"in",
"val",
"[",
"names",
".",
"index",
"(",
"\"AHRS_Vector_Index(-)\"",
")",
"]",
"]",
"except",
"ValueError",
":",
"vec_ic",
"=",
"[",
"2",
",",
"1",
",",
"0",
"]",
"Aoff_ix",
"=",
"names",
".",
"index",
"(",
"\"AHRS_Acceleration_Offset(g/ms^2-)\"",
")",
"Arot_ix",
"=",
"names",
".",
"index",
"(",
"\"AHRS_Acceleration_Rotation(-)\"",
")",
"Hrot_ix",
"=",
"names",
".",
"index",
"(",
"\"AHRS_Magnetic_Rotation(-)\"",
")",
"Aoff",
"=",
"np",
".",
"array",
"(",
"val",
"[",
"Aoff_ix",
"]",
")",
"[",
"vec_ic",
"]",
".",
"astype",
"(",
"float",
")",
"Arot",
"=",
"np",
".",
"array",
"(",
"val",
"[",
"Arot_ix",
"]",
")",
".",
"reshape",
"(",
"3",
",",
"3",
")",
"[",
"col_ic",
",",
"row_ic",
"]",
".",
"reshape",
"(",
"3",
",",
"3",
")",
".",
"astype",
"(",
"float",
")",
"Hrot",
"=",
"np",
".",
"array",
"(",
"val",
"[",
"Hrot_ix",
"]",
")",
".",
"reshape",
"(",
"3",
",",
"3",
")",
"[",
"col_ic",
",",
"row_ic",
"]",
".",
"reshape",
"(",
"3",
",",
"3",
")",
".",
"astype",
"(",
"float",
")",
"Hoff",
"=",
"[",
"]",
"for",
"q",
"in",
"'XYZ'",
":",
"values",
"=",
"[",
"]",
"for",
"t",
"in",
"(",
"'Min'",
",",
"'Max'",
")",
":",
"ix",
"=",
"names",
".",
"index",
"(",
"\"AHRS_Magnetic_{}{}(G-)\"",
".",
"format",
"(",
"q",
",",
"t",
")",
")",
"values",
".",
"append",
"(",
"float",
"(",
"val",
"[",
"ix",
"]",
"[",
"0",
"]",
")",
")",
"Hoff",
".",
"append",
"(",
"sum",
"(",
"values",
")",
"/",
"2.",
")",
"Hoff",
"=",
"np",
".",
"array",
"(",
"Hoff",
")",
"return",
"Aoff",
",",
"Arot",
",",
"Hoff",
",",
"Hrot"
] | Extract AHRS calibration information from XML root.
Parameters
----------
xroot: XML root
Returns
-------
Aoff: numpy.array with shape(3,)
Arot: numpy.array with shape(3,3)
Hoff: numpy.array with shape(3,)
Hrot: numpy.array with shape(3,3) | [
"Extract",
"AHRS",
"calibration",
"information",
"from",
"XML",
"root",
"."
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3modules/ahrs.py#L207-L256 | train |
tamasgal/km3pipe | km3modules/ahrs.py | AHRSCalibrator.calibrate | def calibrate(self):
"""Calculate yaw, pitch and roll from the median of A and H.
After successful calibration, the `self.A` and `self.H` are reset.
DOMs with missing AHRS pre-calibration data are skipped.
Returns
-------
dict: key=dom_id, value=tuple: (timestamp, du, floor, yaw, pitch, roll)
"""
now = time.time()
dom_ids = self.A.keys()
print(
"Calibrating AHRS from median A and H for {} DOMs.".format(
len(dom_ids)
)
)
calibrations = {}
for dom_id in dom_ids:
print("Calibrating DOM ID {}".format(dom_id))
clb_upi = self.db.doms.via_dom_id(dom_id).clb_upi
ahrs_calib = get_latest_ahrs_calibration(clb_upi)
if ahrs_calib is None:
log.warning("AHRS calibration missing for '{}'".format(dom_id))
continue
du, floor, _ = self.detector.doms[dom_id]
A = np.median(self.A[dom_id], axis=0)
H = np.median(self.H[dom_id], axis=0)
cyaw, cpitch, croll = fit_ahrs(A, H, *ahrs_calib)
calibrations[dom_id] = (now, du, floor, cyaw, cpitch, croll)
self.A = defaultdict(list)
self.H = defaultdict(list)
return calibrations | python | def calibrate(self):
"""Calculate yaw, pitch and roll from the median of A and H.
After successful calibration, the `self.A` and `self.H` are reset.
DOMs with missing AHRS pre-calibration data are skipped.
Returns
-------
dict: key=dom_id, value=tuple: (timestamp, du, floor, yaw, pitch, roll)
"""
now = time.time()
dom_ids = self.A.keys()
print(
"Calibrating AHRS from median A and H for {} DOMs.".format(
len(dom_ids)
)
)
calibrations = {}
for dom_id in dom_ids:
print("Calibrating DOM ID {}".format(dom_id))
clb_upi = self.db.doms.via_dom_id(dom_id).clb_upi
ahrs_calib = get_latest_ahrs_calibration(clb_upi)
if ahrs_calib is None:
log.warning("AHRS calibration missing for '{}'".format(dom_id))
continue
du, floor, _ = self.detector.doms[dom_id]
A = np.median(self.A[dom_id], axis=0)
H = np.median(self.H[dom_id], axis=0)
cyaw, cpitch, croll = fit_ahrs(A, H, *ahrs_calib)
calibrations[dom_id] = (now, du, floor, cyaw, cpitch, croll)
self.A = defaultdict(list)
self.H = defaultdict(list)
return calibrations | [
"def",
"calibrate",
"(",
"self",
")",
":",
"now",
"=",
"time",
".",
"time",
"(",
")",
"dom_ids",
"=",
"self",
".",
"A",
".",
"keys",
"(",
")",
"print",
"(",
"\"Calibrating AHRS from median A and H for {} DOMs.\"",
".",
"format",
"(",
"len",
"(",
"dom_ids",
")",
")",
")",
"calibrations",
"=",
"{",
"}",
"for",
"dom_id",
"in",
"dom_ids",
":",
"print",
"(",
"\"Calibrating DOM ID {}\"",
".",
"format",
"(",
"dom_id",
")",
")",
"clb_upi",
"=",
"self",
".",
"db",
".",
"doms",
".",
"via_dom_id",
"(",
"dom_id",
")",
".",
"clb_upi",
"ahrs_calib",
"=",
"get_latest_ahrs_calibration",
"(",
"clb_upi",
")",
"if",
"ahrs_calib",
"is",
"None",
":",
"log",
".",
"warning",
"(",
"\"AHRS calibration missing for '{}'\"",
".",
"format",
"(",
"dom_id",
")",
")",
"continue",
"du",
",",
"floor",
",",
"_",
"=",
"self",
".",
"detector",
".",
"doms",
"[",
"dom_id",
"]",
"A",
"=",
"np",
".",
"median",
"(",
"self",
".",
"A",
"[",
"dom_id",
"]",
",",
"axis",
"=",
"0",
")",
"H",
"=",
"np",
".",
"median",
"(",
"self",
".",
"H",
"[",
"dom_id",
"]",
",",
"axis",
"=",
"0",
")",
"cyaw",
",",
"cpitch",
",",
"croll",
"=",
"fit_ahrs",
"(",
"A",
",",
"H",
",",
"*",
"ahrs_calib",
")",
"calibrations",
"[",
"dom_id",
"]",
"=",
"(",
"now",
",",
"du",
",",
"floor",
",",
"cyaw",
",",
"cpitch",
",",
"croll",
")",
"self",
".",
"A",
"=",
"defaultdict",
"(",
"list",
")",
"self",
".",
"H",
"=",
"defaultdict",
"(",
"list",
")",
"return",
"calibrations"
] | Calculate yaw, pitch and roll from the median of A and H.
After successful calibration, the `self.A` and `self.H` are reset.
DOMs with missing AHRS pre-calibration data are skipped.
Returns
-------
dict: key=dom_id, value=tuple: (timestamp, du, floor, yaw, pitch, roll) | [
"Calculate",
"yaw",
"pitch",
"and",
"roll",
"from",
"the",
"median",
"of",
"A",
"and",
"H",
"."
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3modules/ahrs.py#L75-L109 | train |
NaPs/Kolekto | kolekto/commands/stats.py | humanize_filesize | def humanize_filesize(value):
""" Return an humanized file size.
"""
value = float(value)
if value == 1:
return '1 Byte'
elif value < 1024:
return '%d Bytes' % value
elif value < 1024:
return '%dB' % value
for i, s in enumerate(SUFFIXES):
unit = 1024 ** (i + 2)
if value < unit:
return '%.1f %s' % ((1024 * value / unit), s)
return '%.1f %s' % ((1024 * value / unit), s) | python | def humanize_filesize(value):
""" Return an humanized file size.
"""
value = float(value)
if value == 1:
return '1 Byte'
elif value < 1024:
return '%d Bytes' % value
elif value < 1024:
return '%dB' % value
for i, s in enumerate(SUFFIXES):
unit = 1024 ** (i + 2)
if value < unit:
return '%.1f %s' % ((1024 * value / unit), s)
return '%.1f %s' % ((1024 * value / unit), s) | [
"def",
"humanize_filesize",
"(",
"value",
")",
":",
"value",
"=",
"float",
"(",
"value",
")",
"if",
"value",
"==",
"1",
":",
"return",
"'1 Byte'",
"elif",
"value",
"<",
"1024",
":",
"return",
"'%d Bytes'",
"%",
"value",
"elif",
"value",
"<",
"1024",
":",
"return",
"'%dB'",
"%",
"value",
"for",
"i",
",",
"s",
"in",
"enumerate",
"(",
"SUFFIXES",
")",
":",
"unit",
"=",
"1024",
"**",
"(",
"i",
"+",
"2",
")",
"if",
"value",
"<",
"unit",
":",
"return",
"'%.1f %s'",
"%",
"(",
"(",
"1024",
"*",
"value",
"/",
"unit",
")",
",",
"s",
")",
"return",
"'%.1f %s'",
"%",
"(",
"(",
"1024",
"*",
"value",
"/",
"unit",
")",
",",
"s",
")"
] | Return an humanized file size. | [
"Return",
"an",
"humanized",
"file",
"size",
"."
] | 29c5469da8782780a06bf9a76c59414bb6fd8fe3 | https://github.com/NaPs/Kolekto/blob/29c5469da8782780a06bf9a76c59414bb6fd8fe3/kolekto/commands/stats.py#L14-L31 | train |
NaPs/Kolekto | kolekto/commands/stats.py | format_top | def format_top(counter, top=3):
""" Format a top.
"""
items = islice(reversed(sorted(counter.iteritems(), key=lambda x: x[1])), 0, top)
return u'; '.join(u'{g} ({nb})'.format(g=g, nb=nb) for g, nb in items) | python | def format_top(counter, top=3):
""" Format a top.
"""
items = islice(reversed(sorted(counter.iteritems(), key=lambda x: x[1])), 0, top)
return u'; '.join(u'{g} ({nb})'.format(g=g, nb=nb) for g, nb in items) | [
"def",
"format_top",
"(",
"counter",
",",
"top",
"=",
"3",
")",
":",
"items",
"=",
"islice",
"(",
"reversed",
"(",
"sorted",
"(",
"counter",
".",
"iteritems",
"(",
")",
",",
"key",
"=",
"lambda",
"x",
":",
"x",
"[",
"1",
"]",
")",
")",
",",
"0",
",",
"top",
")",
"return",
"u'; '",
".",
"join",
"(",
"u'{g} ({nb})'",
".",
"format",
"(",
"g",
"=",
"g",
",",
"nb",
"=",
"nb",
")",
"for",
"g",
",",
"nb",
"in",
"items",
")"
] | Format a top. | [
"Format",
"a",
"top",
"."
] | 29c5469da8782780a06bf9a76c59414bb6fd8fe3 | https://github.com/NaPs/Kolekto/blob/29c5469da8782780a06bf9a76c59414bb6fd8fe3/kolekto/commands/stats.py#L34-L38 | train |
IRC-SPHERE/HyperStream | hyperstream/utils/decorators.py | check_input_stream_count | def check_input_stream_count(expected_number_of_streams):
"""
Decorator for Tool._execute that checks the number of input streams
:param expected_number_of_streams: The expected number of streams
:return: the decorator
"""
def stream_count_decorator(func):
def func_wrapper(*args, **kwargs):
self = args[0]
sources = kwargs['sources'] if 'sources' in kwargs else args[1]
if expected_number_of_streams == 0:
if sources:
raise ValueError("No input streams expected")
else:
given_number_of_streams = len(sources) if sources else 0
if given_number_of_streams != expected_number_of_streams:
raise ValueError("{} tool takes {} stream(s) as input ({} given)".format(
self.__class__.__name__, expected_number_of_streams, given_number_of_streams))
return func(*args, **kwargs)
return func_wrapper
return stream_count_decorator | python | def check_input_stream_count(expected_number_of_streams):
"""
Decorator for Tool._execute that checks the number of input streams
:param expected_number_of_streams: The expected number of streams
:return: the decorator
"""
def stream_count_decorator(func):
def func_wrapper(*args, **kwargs):
self = args[0]
sources = kwargs['sources'] if 'sources' in kwargs else args[1]
if expected_number_of_streams == 0:
if sources:
raise ValueError("No input streams expected")
else:
given_number_of_streams = len(sources) if sources else 0
if given_number_of_streams != expected_number_of_streams:
raise ValueError("{} tool takes {} stream(s) as input ({} given)".format(
self.__class__.__name__, expected_number_of_streams, given_number_of_streams))
return func(*args, **kwargs)
return func_wrapper
return stream_count_decorator | [
"def",
"check_input_stream_count",
"(",
"expected_number_of_streams",
")",
":",
"def",
"stream_count_decorator",
"(",
"func",
")",
":",
"def",
"func_wrapper",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"self",
"=",
"args",
"[",
"0",
"]",
"sources",
"=",
"kwargs",
"[",
"'sources'",
"]",
"if",
"'sources'",
"in",
"kwargs",
"else",
"args",
"[",
"1",
"]",
"if",
"expected_number_of_streams",
"==",
"0",
":",
"if",
"sources",
":",
"raise",
"ValueError",
"(",
"\"No input streams expected\"",
")",
"else",
":",
"given_number_of_streams",
"=",
"len",
"(",
"sources",
")",
"if",
"sources",
"else",
"0",
"if",
"given_number_of_streams",
"!=",
"expected_number_of_streams",
":",
"raise",
"ValueError",
"(",
"\"{} tool takes {} stream(s) as input ({} given)\"",
".",
"format",
"(",
"self",
".",
"__class__",
".",
"__name__",
",",
"expected_number_of_streams",
",",
"given_number_of_streams",
")",
")",
"return",
"func",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"return",
"func_wrapper",
"return",
"stream_count_decorator"
] | Decorator for Tool._execute that checks the number of input streams
:param expected_number_of_streams: The expected number of streams
:return: the decorator | [
"Decorator",
"for",
"Tool",
".",
"_execute",
"that",
"checks",
"the",
"number",
"of",
"input",
"streams"
] | 98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780 | https://github.com/IRC-SPHERE/HyperStream/blob/98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780/hyperstream/utils/decorators.py#L69-L93 | train |
tamasgal/km3pipe | km3pipe/utils/ligiermirror.py | main | def main():
"""The main script"""
from docopt import docopt
args = docopt(__doc__, version=kp.version)
kp.logger.set_level("km3pipe", args['-d'])
pipe = kp.Pipeline()
pipe.attach(
kp.io.ch.CHPump,
host=args['SOURCE_IP'],
port=int(args['-p']),
tags=args['-m'],
timeout=int(args['-x']),
max_queue=int(args['-s'])
)
pipe.attach(LigierSender, target_ip=args['-t'], port=int(args['-q']))
pipe.drain() | python | def main():
"""The main script"""
from docopt import docopt
args = docopt(__doc__, version=kp.version)
kp.logger.set_level("km3pipe", args['-d'])
pipe = kp.Pipeline()
pipe.attach(
kp.io.ch.CHPump,
host=args['SOURCE_IP'],
port=int(args['-p']),
tags=args['-m'],
timeout=int(args['-x']),
max_queue=int(args['-s'])
)
pipe.attach(LigierSender, target_ip=args['-t'], port=int(args['-q']))
pipe.drain() | [
"def",
"main",
"(",
")",
":",
"from",
"docopt",
"import",
"docopt",
"args",
"=",
"docopt",
"(",
"__doc__",
",",
"version",
"=",
"kp",
".",
"version",
")",
"kp",
".",
"logger",
".",
"set_level",
"(",
"\"km3pipe\"",
",",
"args",
"[",
"'-d'",
"]",
")",
"pipe",
"=",
"kp",
".",
"Pipeline",
"(",
")",
"pipe",
".",
"attach",
"(",
"kp",
".",
"io",
".",
"ch",
".",
"CHPump",
",",
"host",
"=",
"args",
"[",
"'SOURCE_IP'",
"]",
",",
"port",
"=",
"int",
"(",
"args",
"[",
"'-p'",
"]",
")",
",",
"tags",
"=",
"args",
"[",
"'-m'",
"]",
",",
"timeout",
"=",
"int",
"(",
"args",
"[",
"'-x'",
"]",
")",
",",
"max_queue",
"=",
"int",
"(",
"args",
"[",
"'-s'",
"]",
")",
")",
"pipe",
".",
"attach",
"(",
"LigierSender",
",",
"target_ip",
"=",
"args",
"[",
"'-t'",
"]",
",",
"port",
"=",
"int",
"(",
"args",
"[",
"'-q'",
"]",
")",
")",
"pipe",
".",
"drain",
"(",
")"
] | The main script | [
"The",
"main",
"script"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/utils/ligiermirror.py#L44-L61 | train |
nsfmc/swatch | swatch/__init__.py | parse | def parse(filename):
"""parses a .ase file and returns a list of colors and color groups
`swatch.parse` reads in an ase file and converts it to a list of colors and
palettes. colors are simple dicts of the form
```json
{
'name': u'color name',
'type': u'Process',
'data': {
'mode': u'RGB',
'values': [1.0, 1.0, 1.0]
}
}
```
the values provided vary between color mode. For all color modes, the
value is always a list of floats.
RGB: three floats between [0,1] corresponding to RGB.
CMYK: four floats between [0,1] inclusive, corresponding to CMYK.
Gray: one float between [0,1] with 1 being white, 0 being black.
LAB: three floats. The first L, is ranged from 0,1. Both A and B are
floats ranging from [-128.0,127.0]. I believe illustrator just crops
these to whole values, though.
Palettes (née Color Groups in Adobe Parlance) are also dicts, but they have an
attribute named `swatches` which contains a list of colors contained within
the palette.
```json
{
'name': u'accent colors',
'type': u'Color Group',
'swatches': [
{color}, {color}, ..., {color}
]
}
```
Because Adobe Illustrator lets swatches exist either inside and outside
of palettes, the output of swatch.parse is a list that may contain
swatches and palettes, i.e. [ swatch* palette* ]
Here's an example with a light grey swatch followed by a color group containing three
>>> import swatch
>>> swatch.parse("example.ase")
[{'data': {'mode': u'Gray', 'values': [0.75]},
'name': u'Light Grey',
'type': u'Process'},
{'name': u'Accent Colors',
'swatches': [{'data': {'mode': u'CMYK',
'values': [0.5279774069786072,
0.24386966228485107,
1.0,
0.04303044080734253]},
'name': u'Green',
'type': u'Process'},
{'data': {'mode': u'CMYK',
'values': [0.6261844635009766,
0.5890134572982788,
3.051804378628731e-05,
3.051804378628731e-05]},
'name': u'Violet Process Global',
'type': u'Global'},
{'data': {'mode': u'LAB', 'values': [0.6000000238418579, -35.0, -5.0]},
'name': u'Cyan Spot (global)',
'type': u'Spot'}],
'type': u'Color Group'}]
"""
with open(filename, "rb") as data:
header, v_major, v_minor, chunk_count = struct.unpack("!4sHHI", data.read(12))
assert header == b"ASEF"
assert (v_major, v_minor) == (1, 0)
return [c for c in parser.parse_chunk(data)] | python | def parse(filename):
"""parses a .ase file and returns a list of colors and color groups
`swatch.parse` reads in an ase file and converts it to a list of colors and
palettes. colors are simple dicts of the form
```json
{
'name': u'color name',
'type': u'Process',
'data': {
'mode': u'RGB',
'values': [1.0, 1.0, 1.0]
}
}
```
the values provided vary between color mode. For all color modes, the
value is always a list of floats.
RGB: three floats between [0,1] corresponding to RGB.
CMYK: four floats between [0,1] inclusive, corresponding to CMYK.
Gray: one float between [0,1] with 1 being white, 0 being black.
LAB: three floats. The first L, is ranged from 0,1. Both A and B are
floats ranging from [-128.0,127.0]. I believe illustrator just crops
these to whole values, though.
Palettes (née Color Groups in Adobe Parlance) are also dicts, but they have an
attribute named `swatches` which contains a list of colors contained within
the palette.
```json
{
'name': u'accent colors',
'type': u'Color Group',
'swatches': [
{color}, {color}, ..., {color}
]
}
```
Because Adobe Illustrator lets swatches exist either inside and outside
of palettes, the output of swatch.parse is a list that may contain
swatches and palettes, i.e. [ swatch* palette* ]
Here's an example with a light grey swatch followed by a color group containing three
>>> import swatch
>>> swatch.parse("example.ase")
[{'data': {'mode': u'Gray', 'values': [0.75]},
'name': u'Light Grey',
'type': u'Process'},
{'name': u'Accent Colors',
'swatches': [{'data': {'mode': u'CMYK',
'values': [0.5279774069786072,
0.24386966228485107,
1.0,
0.04303044080734253]},
'name': u'Green',
'type': u'Process'},
{'data': {'mode': u'CMYK',
'values': [0.6261844635009766,
0.5890134572982788,
3.051804378628731e-05,
3.051804378628731e-05]},
'name': u'Violet Process Global',
'type': u'Global'},
{'data': {'mode': u'LAB', 'values': [0.6000000238418579, -35.0, -5.0]},
'name': u'Cyan Spot (global)',
'type': u'Spot'}],
'type': u'Color Group'}]
"""
with open(filename, "rb") as data:
header, v_major, v_minor, chunk_count = struct.unpack("!4sHHI", data.read(12))
assert header == b"ASEF"
assert (v_major, v_minor) == (1, 0)
return [c for c in parser.parse_chunk(data)] | [
"def",
"parse",
"(",
"filename",
")",
":",
"with",
"open",
"(",
"filename",
",",
"\"rb\"",
")",
"as",
"data",
":",
"header",
",",
"v_major",
",",
"v_minor",
",",
"chunk_count",
"=",
"struct",
".",
"unpack",
"(",
"\"!4sHHI\"",
",",
"data",
".",
"read",
"(",
"12",
")",
")",
"assert",
"header",
"==",
"b\"ASEF\"",
"assert",
"(",
"v_major",
",",
"v_minor",
")",
"==",
"(",
"1",
",",
"0",
")",
"return",
"[",
"c",
"for",
"c",
"in",
"parser",
".",
"parse_chunk",
"(",
"data",
")",
"]"
] | parses a .ase file and returns a list of colors and color groups
`swatch.parse` reads in an ase file and converts it to a list of colors and
palettes. colors are simple dicts of the form
```json
{
'name': u'color name',
'type': u'Process',
'data': {
'mode': u'RGB',
'values': [1.0, 1.0, 1.0]
}
}
```
the values provided vary between color mode. For all color modes, the
value is always a list of floats.
RGB: three floats between [0,1] corresponding to RGB.
CMYK: four floats between [0,1] inclusive, corresponding to CMYK.
Gray: one float between [0,1] with 1 being white, 0 being black.
LAB: three floats. The first L, is ranged from 0,1. Both A and B are
floats ranging from [-128.0,127.0]. I believe illustrator just crops
these to whole values, though.
Palettes (née Color Groups in Adobe Parlance) are also dicts, but they have an
attribute named `swatches` which contains a list of colors contained within
the palette.
```json
{
'name': u'accent colors',
'type': u'Color Group',
'swatches': [
{color}, {color}, ..., {color}
]
}
```
Because Adobe Illustrator lets swatches exist either inside and outside
of palettes, the output of swatch.parse is a list that may contain
swatches and palettes, i.e. [ swatch* palette* ]
Here's an example with a light grey swatch followed by a color group containing three
>>> import swatch
>>> swatch.parse("example.ase")
[{'data': {'mode': u'Gray', 'values': [0.75]},
'name': u'Light Grey',
'type': u'Process'},
{'name': u'Accent Colors',
'swatches': [{'data': {'mode': u'CMYK',
'values': [0.5279774069786072,
0.24386966228485107,
1.0,
0.04303044080734253]},
'name': u'Green',
'type': u'Process'},
{'data': {'mode': u'CMYK',
'values': [0.6261844635009766,
0.5890134572982788,
3.051804378628731e-05,
3.051804378628731e-05]},
'name': u'Violet Process Global',
'type': u'Global'},
{'data': {'mode': u'LAB', 'values': [0.6000000238418579, -35.0, -5.0]},
'name': u'Cyan Spot (global)',
'type': u'Spot'}],
'type': u'Color Group'}] | [
"parses",
"a",
".",
"ase",
"file",
"and",
"returns",
"a",
"list",
"of",
"colors",
"and",
"color",
"groups"
] | 8654edf4f1aeef37d42211ff3fe6a3e9e4325859 | https://github.com/nsfmc/swatch/blob/8654edf4f1aeef37d42211ff3fe6a3e9e4325859/swatch/__init__.py#L27-L106 | train |
nsfmc/swatch | swatch/__init__.py | dumps | def dumps(obj):
"""converts a swatch to bytes suitable for writing"""
header = b'ASEF'
v_major, v_minor = 1, 0
chunk_count = writer.chunk_count(obj)
head = struct.pack('!4sHHI', header, v_major, v_minor, chunk_count)
body = b''.join([writer.chunk_for_object(c) for c in obj])
return head + body | python | def dumps(obj):
"""converts a swatch to bytes suitable for writing"""
header = b'ASEF'
v_major, v_minor = 1, 0
chunk_count = writer.chunk_count(obj)
head = struct.pack('!4sHHI', header, v_major, v_minor, chunk_count)
body = b''.join([writer.chunk_for_object(c) for c in obj])
return head + body | [
"def",
"dumps",
"(",
"obj",
")",
":",
"header",
"=",
"b'ASEF'",
"v_major",
",",
"v_minor",
"=",
"1",
",",
"0",
"chunk_count",
"=",
"writer",
".",
"chunk_count",
"(",
"obj",
")",
"head",
"=",
"struct",
".",
"pack",
"(",
"'!4sHHI'",
",",
"header",
",",
"v_major",
",",
"v_minor",
",",
"chunk_count",
")",
"body",
"=",
"b''",
".",
"join",
"(",
"[",
"writer",
".",
"chunk_for_object",
"(",
"c",
")",
"for",
"c",
"in",
"obj",
"]",
")",
"return",
"head",
"+",
"body"
] | converts a swatch to bytes suitable for writing | [
"converts",
"a",
"swatch",
"to",
"bytes",
"suitable",
"for",
"writing"
] | 8654edf4f1aeef37d42211ff3fe6a3e9e4325859 | https://github.com/nsfmc/swatch/blob/8654edf4f1aeef37d42211ff3fe6a3e9e4325859/swatch/__init__.py#L108-L116 | train |
PrefPy/prefpy | prefpy/preference.py | Preference.isFullPreferenceOrder | def isFullPreferenceOrder(self, candList):
"""
Returns True if the underlying weighted majority graph contains a comparision between every
pair of candidate and returns False otherwise.
:ivar list<int> candList: Contains integer representations of each candidate.
"""
# If a candidate is missing from the wmgMap or if there is a pair of candidates for which
# there is no value in the wmgMap, then the wmgMap cannot be a full preference order.
for cand1 in candList:
if cand1 not in self.wmgMap.keys():
return False
for cand2 in candList:
if cand1 == cand2:
continue
if cand2 not in self.wmgMap[cand1].keys():
return False
return True | python | def isFullPreferenceOrder(self, candList):
"""
Returns True if the underlying weighted majority graph contains a comparision between every
pair of candidate and returns False otherwise.
:ivar list<int> candList: Contains integer representations of each candidate.
"""
# If a candidate is missing from the wmgMap or if there is a pair of candidates for which
# there is no value in the wmgMap, then the wmgMap cannot be a full preference order.
for cand1 in candList:
if cand1 not in self.wmgMap.keys():
return False
for cand2 in candList:
if cand1 == cand2:
continue
if cand2 not in self.wmgMap[cand1].keys():
return False
return True | [
"def",
"isFullPreferenceOrder",
"(",
"self",
",",
"candList",
")",
":",
"# If a candidate is missing from the wmgMap or if there is a pair of candidates for which ",
"# there is no value in the wmgMap, then the wmgMap cannot be a full preference order.",
"for",
"cand1",
"in",
"candList",
":",
"if",
"cand1",
"not",
"in",
"self",
".",
"wmgMap",
".",
"keys",
"(",
")",
":",
"return",
"False",
"for",
"cand2",
"in",
"candList",
":",
"if",
"cand1",
"==",
"cand2",
":",
"continue",
"if",
"cand2",
"not",
"in",
"self",
".",
"wmgMap",
"[",
"cand1",
"]",
".",
"keys",
"(",
")",
":",
"return",
"False",
"return",
"True"
] | Returns True if the underlying weighted majority graph contains a comparision between every
pair of candidate and returns False otherwise.
:ivar list<int> candList: Contains integer representations of each candidate. | [
"Returns",
"True",
"if",
"the",
"underlying",
"weighted",
"majority",
"graph",
"contains",
"a",
"comparision",
"between",
"every",
"pair",
"of",
"candidate",
"and",
"returns",
"False",
"otherwise",
"."
] | f395ba3782f05684fa5de0cece387a6da9391d02 | https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/preference.py#L21-L39 | train |
PrefPy/prefpy | prefpy/preference.py | Preference.containsTie | def containsTie(self):
"""
Returns True if the underlying weighted majority graph contains a tie between any pair of
candidates and returns False otherwise.
"""
# If a value of 0 is present in the wmgMap, we assume that it represents a tie.
for cand in self.wmgMap.keys():
if 0 in self.wmgMap[cand].values():
return True
return False | python | def containsTie(self):
"""
Returns True if the underlying weighted majority graph contains a tie between any pair of
candidates and returns False otherwise.
"""
# If a value of 0 is present in the wmgMap, we assume that it represents a tie.
for cand in self.wmgMap.keys():
if 0 in self.wmgMap[cand].values():
return True
return False | [
"def",
"containsTie",
"(",
"self",
")",
":",
"# If a value of 0 is present in the wmgMap, we assume that it represents a tie.",
"for",
"cand",
"in",
"self",
".",
"wmgMap",
".",
"keys",
"(",
")",
":",
"if",
"0",
"in",
"self",
".",
"wmgMap",
"[",
"cand",
"]",
".",
"values",
"(",
")",
":",
"return",
"True",
"return",
"False"
] | Returns True if the underlying weighted majority graph contains a tie between any pair of
candidates and returns False otherwise. | [
"Returns",
"True",
"if",
"the",
"underlying",
"weighted",
"majority",
"graph",
"contains",
"a",
"tie",
"between",
"any",
"pair",
"of",
"candidates",
"and",
"returns",
"False",
"otherwise",
"."
] | f395ba3782f05684fa5de0cece387a6da9391d02 | https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/preference.py#L41-L51 | train |
PrefPy/prefpy | prefpy/preference.py | Preference.getIncEdgesMap | def getIncEdgesMap(self):
"""
Returns a dictionary that associates numbers of incoming edges in the weighted majority
graph with the candidates that have that number of incoming edges.
"""
# We calculate the number of incoming edges for each candidate and store it into a dictionary
# that associates the number of incoming edges with the candidates with that number.
incEdgesMap = dict()
for cand1 in self.wmgMap.keys():
incEdgesSum = 0
for cand2 in self.wmgMap[cand1].keys():
if self.wmgMap[cand1][cand2] > 0:
incEdgesSum += self.wmgMap[cand1][cand2]
# Check if this is the first candidate associated with this number of associated edges.
if incEdgesSum in incEdgesMap.keys():
incEdgesMap[incEdgesSum].append(cand1)
else:
incEdgesMap[incEdgesSum] = [cand1]
return incEdgesMap | python | def getIncEdgesMap(self):
"""
Returns a dictionary that associates numbers of incoming edges in the weighted majority
graph with the candidates that have that number of incoming edges.
"""
# We calculate the number of incoming edges for each candidate and store it into a dictionary
# that associates the number of incoming edges with the candidates with that number.
incEdgesMap = dict()
for cand1 in self.wmgMap.keys():
incEdgesSum = 0
for cand2 in self.wmgMap[cand1].keys():
if self.wmgMap[cand1][cand2] > 0:
incEdgesSum += self.wmgMap[cand1][cand2]
# Check if this is the first candidate associated with this number of associated edges.
if incEdgesSum in incEdgesMap.keys():
incEdgesMap[incEdgesSum].append(cand1)
else:
incEdgesMap[incEdgesSum] = [cand1]
return incEdgesMap | [
"def",
"getIncEdgesMap",
"(",
"self",
")",
":",
"# We calculate the number of incoming edges for each candidate and store it into a dictionary ",
"# that associates the number of incoming edges with the candidates with that number.",
"incEdgesMap",
"=",
"dict",
"(",
")",
"for",
"cand1",
"in",
"self",
".",
"wmgMap",
".",
"keys",
"(",
")",
":",
"incEdgesSum",
"=",
"0",
"for",
"cand2",
"in",
"self",
".",
"wmgMap",
"[",
"cand1",
"]",
".",
"keys",
"(",
")",
":",
"if",
"self",
".",
"wmgMap",
"[",
"cand1",
"]",
"[",
"cand2",
"]",
">",
"0",
":",
"incEdgesSum",
"+=",
"self",
".",
"wmgMap",
"[",
"cand1",
"]",
"[",
"cand2",
"]",
"# Check if this is the first candidate associated with this number of associated edges.",
"if",
"incEdgesSum",
"in",
"incEdgesMap",
".",
"keys",
"(",
")",
":",
"incEdgesMap",
"[",
"incEdgesSum",
"]",
".",
"append",
"(",
"cand1",
")",
"else",
":",
"incEdgesMap",
"[",
"incEdgesSum",
"]",
"=",
"[",
"cand1",
"]",
"return",
"incEdgesMap"
] | Returns a dictionary that associates numbers of incoming edges in the weighted majority
graph with the candidates that have that number of incoming edges. | [
"Returns",
"a",
"dictionary",
"that",
"associates",
"numbers",
"of",
"incoming",
"edges",
"in",
"the",
"weighted",
"majority",
"graph",
"with",
"the",
"candidates",
"that",
"have",
"that",
"number",
"of",
"incoming",
"edges",
"."
] | f395ba3782f05684fa5de0cece387a6da9391d02 | https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/preference.py#L53-L74 | train |
PrefPy/prefpy | prefpy/preference.py | Preference.getRankMap | def getRankMap(self):
"""
Returns a dictionary that associates the integer representation of each candidate with its
position in the ranking, starting from 1.
"""
# We sort the candidates based on the number of incoming edges they have in the graph. If
# two candidates have the same number, we assume that they are tied.
incEdgesMap = self.getIncEdgesMap()
sortedKeys = sorted(incEdgesMap.keys(), reverse = True)
rankMap = dict()
pos = 1
for key in sortedKeys:
cands = incEdgesMap[key]
for cand in cands:
rankMap[cand] = pos
pos += 1
return rankMap | python | def getRankMap(self):
"""
Returns a dictionary that associates the integer representation of each candidate with its
position in the ranking, starting from 1.
"""
# We sort the candidates based on the number of incoming edges they have in the graph. If
# two candidates have the same number, we assume that they are tied.
incEdgesMap = self.getIncEdgesMap()
sortedKeys = sorted(incEdgesMap.keys(), reverse = True)
rankMap = dict()
pos = 1
for key in sortedKeys:
cands = incEdgesMap[key]
for cand in cands:
rankMap[cand] = pos
pos += 1
return rankMap | [
"def",
"getRankMap",
"(",
"self",
")",
":",
"# We sort the candidates based on the number of incoming edges they have in the graph. If ",
"# two candidates have the same number, we assume that they are tied.",
"incEdgesMap",
"=",
"self",
".",
"getIncEdgesMap",
"(",
")",
"sortedKeys",
"=",
"sorted",
"(",
"incEdgesMap",
".",
"keys",
"(",
")",
",",
"reverse",
"=",
"True",
")",
"rankMap",
"=",
"dict",
"(",
")",
"pos",
"=",
"1",
"for",
"key",
"in",
"sortedKeys",
":",
"cands",
"=",
"incEdgesMap",
"[",
"key",
"]",
"for",
"cand",
"in",
"cands",
":",
"rankMap",
"[",
"cand",
"]",
"=",
"pos",
"pos",
"+=",
"1",
"return",
"rankMap"
] | Returns a dictionary that associates the integer representation of each candidate with its
position in the ranking, starting from 1. | [
"Returns",
"a",
"dictionary",
"that",
"associates",
"the",
"integer",
"representation",
"of",
"each",
"candidate",
"with",
"its",
"position",
"in",
"the",
"ranking",
"starting",
"from",
"1",
"."
] | f395ba3782f05684fa5de0cece387a6da9391d02 | https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/preference.py#L76-L93 | train |
PrefPy/prefpy | prefpy/preference.py | Preference.getReverseRankMap | def getReverseRankMap(self):
"""
Returns a dictionary that associates each position in the ranking with a list of integer
representations of the candidates ranked at that position.
"""
# We sort the candidates based on the number of incoming edges they have in the graph. If
# two candidates have the same number, we assume that they are tied.
incEdgesMap = self.getIncEdgesMap()
sortedKeys = sorted(incEdgesMap.keys(), reverse = True)
reverseRankMap = dict()
pos = 1
for key in sortedKeys:
cands = incEdgesMap[key]
reverseRankMap[pos] = cands
pos += 1
return reverseRankMap | python | def getReverseRankMap(self):
"""
Returns a dictionary that associates each position in the ranking with a list of integer
representations of the candidates ranked at that position.
"""
# We sort the candidates based on the number of incoming edges they have in the graph. If
# two candidates have the same number, we assume that they are tied.
incEdgesMap = self.getIncEdgesMap()
sortedKeys = sorted(incEdgesMap.keys(), reverse = True)
reverseRankMap = dict()
pos = 1
for key in sortedKeys:
cands = incEdgesMap[key]
reverseRankMap[pos] = cands
pos += 1
return reverseRankMap | [
"def",
"getReverseRankMap",
"(",
"self",
")",
":",
"# We sort the candidates based on the number of incoming edges they have in the graph. If ",
"# two candidates have the same number, we assume that they are tied.",
"incEdgesMap",
"=",
"self",
".",
"getIncEdgesMap",
"(",
")",
"sortedKeys",
"=",
"sorted",
"(",
"incEdgesMap",
".",
"keys",
"(",
")",
",",
"reverse",
"=",
"True",
")",
"reverseRankMap",
"=",
"dict",
"(",
")",
"pos",
"=",
"1",
"for",
"key",
"in",
"sortedKeys",
":",
"cands",
"=",
"incEdgesMap",
"[",
"key",
"]",
"reverseRankMap",
"[",
"pos",
"]",
"=",
"cands",
"pos",
"+=",
"1",
"return",
"reverseRankMap"
] | Returns a dictionary that associates each position in the ranking with a list of integer
representations of the candidates ranked at that position. | [
"Returns",
"a",
"dictionary",
"that",
"associates",
"each",
"position",
"in",
"the",
"ranking",
"with",
"a",
"list",
"of",
"integer",
"representations",
"of",
"the",
"candidates",
"ranked",
"at",
"that",
"position",
"."
] | f395ba3782f05684fa5de0cece387a6da9391d02 | https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/preference.py#L95-L111 | train |
IRC-SPHERE/HyperStream | hyperstream/utils/statistics/histogram.py | histogram | def histogram(a, bins):
"""
Compute the histogram of a set of data.
:param a: Input data
:param bins: int or sequence of scalars or str, optional
:type a: list | tuple
:type bins: int | list[int] | list[str]
:return:
"""
if any(map(lambda x: x < 0, diff(bins))):
raise ValueError(
'bins must increase monotonically.')
try:
sa = sorted(a)
except TypeError:
# Perhaps just a single value? Treat as a list and carry on
sa = sorted([a])
# import numpy as np
# nl = np.searchsorted(sa, bins[:-1], 'left')
# nr = np.searchsorted(sa, bins[-1], 'right')
# nn = np.r_[nl, nr]
#
# # cl = list(accumulate(Counter(map(lambda x: bisect_left(bins[:-1], x), sa)))
# # print("cl")
# # print([cl[i] for i in range(len(bins))])
# print("nl")
# print(list(nl))
# # print(Counter(map(lambda x: bisect_right([bins[-1]], x), sa)))
# print("nr")
# print([nr])
# print("nn")
# print(list(nn))
# print("hist")
# print(list(np.diff(nn)))
# print(list(np.histogram(a, bins)[0]))
nl = list(accumulate([Counter(map(lambda x: bisect_left(bins[:-1], x), sa))[i] for i in range(len(bins) - 1)]))
# print("nl")
# print(nl)
nr = Counter(map(lambda x: bisect_right([bins[1]], x), sa))[1]
# print(nl)
# print(nr)
n = list(nl) + [nr]
return diff(n), bins | python | def histogram(a, bins):
"""
Compute the histogram of a set of data.
:param a: Input data
:param bins: int or sequence of scalars or str, optional
:type a: list | tuple
:type bins: int | list[int] | list[str]
:return:
"""
if any(map(lambda x: x < 0, diff(bins))):
raise ValueError(
'bins must increase monotonically.')
try:
sa = sorted(a)
except TypeError:
# Perhaps just a single value? Treat as a list and carry on
sa = sorted([a])
# import numpy as np
# nl = np.searchsorted(sa, bins[:-1], 'left')
# nr = np.searchsorted(sa, bins[-1], 'right')
# nn = np.r_[nl, nr]
#
# # cl = list(accumulate(Counter(map(lambda x: bisect_left(bins[:-1], x), sa)))
# # print("cl")
# # print([cl[i] for i in range(len(bins))])
# print("nl")
# print(list(nl))
# # print(Counter(map(lambda x: bisect_right([bins[-1]], x), sa)))
# print("nr")
# print([nr])
# print("nn")
# print(list(nn))
# print("hist")
# print(list(np.diff(nn)))
# print(list(np.histogram(a, bins)[0]))
nl = list(accumulate([Counter(map(lambda x: bisect_left(bins[:-1], x), sa))[i] for i in range(len(bins) - 1)]))
# print("nl")
# print(nl)
nr = Counter(map(lambda x: bisect_right([bins[1]], x), sa))[1]
# print(nl)
# print(nr)
n = list(nl) + [nr]
return diff(n), bins | [
"def",
"histogram",
"(",
"a",
",",
"bins",
")",
":",
"if",
"any",
"(",
"map",
"(",
"lambda",
"x",
":",
"x",
"<",
"0",
",",
"diff",
"(",
"bins",
")",
")",
")",
":",
"raise",
"ValueError",
"(",
"'bins must increase monotonically.'",
")",
"try",
":",
"sa",
"=",
"sorted",
"(",
"a",
")",
"except",
"TypeError",
":",
"# Perhaps just a single value? Treat as a list and carry on",
"sa",
"=",
"sorted",
"(",
"[",
"a",
"]",
")",
"# import numpy as np",
"# nl = np.searchsorted(sa, bins[:-1], 'left')",
"# nr = np.searchsorted(sa, bins[-1], 'right')",
"# nn = np.r_[nl, nr]",
"#",
"# # cl = list(accumulate(Counter(map(lambda x: bisect_left(bins[:-1], x), sa)))",
"# # print(\"cl\")",
"# # print([cl[i] for i in range(len(bins))])",
"# print(\"nl\")",
"# print(list(nl))",
"# # print(Counter(map(lambda x: bisect_right([bins[-1]], x), sa)))",
"# print(\"nr\")",
"# print([nr])",
"# print(\"nn\")",
"# print(list(nn))",
"# print(\"hist\")",
"# print(list(np.diff(nn)))",
"# print(list(np.histogram(a, bins)[0]))",
"nl",
"=",
"list",
"(",
"accumulate",
"(",
"[",
"Counter",
"(",
"map",
"(",
"lambda",
"x",
":",
"bisect_left",
"(",
"bins",
"[",
":",
"-",
"1",
"]",
",",
"x",
")",
",",
"sa",
")",
")",
"[",
"i",
"]",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"bins",
")",
"-",
"1",
")",
"]",
")",
")",
"# print(\"nl\")",
"# print(nl)",
"nr",
"=",
"Counter",
"(",
"map",
"(",
"lambda",
"x",
":",
"bisect_right",
"(",
"[",
"bins",
"[",
"1",
"]",
"]",
",",
"x",
")",
",",
"sa",
")",
")",
"[",
"1",
"]",
"# print(nl)",
"# print(nr)",
"n",
"=",
"list",
"(",
"nl",
")",
"+",
"[",
"nr",
"]",
"return",
"diff",
"(",
"n",
")",
",",
"bins"
] | Compute the histogram of a set of data.
:param a: Input data
:param bins: int or sequence of scalars or str, optional
:type a: list | tuple
:type bins: int | list[int] | list[str]
:return: | [
"Compute",
"the",
"histogram",
"of",
"a",
"set",
"of",
"data",
"."
] | 98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780 | https://github.com/IRC-SPHERE/HyperStream/blob/98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780/hyperstream/utils/statistics/histogram.py#L68-L115 | train |
tamasgal/km3pipe | km3pipe/logger.py | deprecation | def deprecation(self, message, *args, **kws):
"""Show a deprecation warning."""
self._log(DEPRECATION, message, args, **kws) | python | def deprecation(self, message, *args, **kws):
"""Show a deprecation warning."""
self._log(DEPRECATION, message, args, **kws) | [
"def",
"deprecation",
"(",
"self",
",",
"message",
",",
"*",
"args",
",",
"*",
"*",
"kws",
")",
":",
"self",
".",
"_log",
"(",
"DEPRECATION",
",",
"message",
",",
"args",
",",
"*",
"*",
"kws",
")"
] | Show a deprecation warning. | [
"Show",
"a",
"deprecation",
"warning",
"."
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/logger.py#L33-L35 | train |
tamasgal/km3pipe | km3pipe/logger.py | once | def once(self, message, *args, **kws):
"""Show a message only once, determined by position in source or identifer.
This will not work in IPython or Jupyter notebooks if no identifier is
specified, since then the determined position in source contains the
execution number of the input (cell), which changes every time.
Set a unique identifier, otherwise the message will be printed every
time.
"""
# TODO: after py2 support drop, put this into
# function signature: identifier=None (between *args and **kws)
identifier = kws.pop('identifier', None)
if identifier is None:
caller = getframeinfo(stack()[1][0])
identifier = "%s:%d" % (caller.filename, caller.lineno)
if not hasattr(self, 'once_dict'):
self.once_dict = {}
if identifier in self.once_dict:
return
self.once_dict[identifier] = True
self._log(ONCE, message, args, **kws) | python | def once(self, message, *args, **kws):
"""Show a message only once, determined by position in source or identifer.
This will not work in IPython or Jupyter notebooks if no identifier is
specified, since then the determined position in source contains the
execution number of the input (cell), which changes every time.
Set a unique identifier, otherwise the message will be printed every
time.
"""
# TODO: after py2 support drop, put this into
# function signature: identifier=None (between *args and **kws)
identifier = kws.pop('identifier', None)
if identifier is None:
caller = getframeinfo(stack()[1][0])
identifier = "%s:%d" % (caller.filename, caller.lineno)
if not hasattr(self, 'once_dict'):
self.once_dict = {}
if identifier in self.once_dict:
return
self.once_dict[identifier] = True
self._log(ONCE, message, args, **kws) | [
"def",
"once",
"(",
"self",
",",
"message",
",",
"*",
"args",
",",
"*",
"*",
"kws",
")",
":",
"# TODO: after py2 support drop, put this into",
"# function signature: identifier=None (between *args and **kws)",
"identifier",
"=",
"kws",
".",
"pop",
"(",
"'identifier'",
",",
"None",
")",
"if",
"identifier",
"is",
"None",
":",
"caller",
"=",
"getframeinfo",
"(",
"stack",
"(",
")",
"[",
"1",
"]",
"[",
"0",
"]",
")",
"identifier",
"=",
"\"%s:%d\"",
"%",
"(",
"caller",
".",
"filename",
",",
"caller",
".",
"lineno",
")",
"if",
"not",
"hasattr",
"(",
"self",
",",
"'once_dict'",
")",
":",
"self",
".",
"once_dict",
"=",
"{",
"}",
"if",
"identifier",
"in",
"self",
".",
"once_dict",
":",
"return",
"self",
".",
"once_dict",
"[",
"identifier",
"]",
"=",
"True",
"self",
".",
"_log",
"(",
"ONCE",
",",
"message",
",",
"args",
",",
"*",
"*",
"kws",
")"
] | Show a message only once, determined by position in source or identifer.
This will not work in IPython or Jupyter notebooks if no identifier is
specified, since then the determined position in source contains the
execution number of the input (cell), which changes every time.
Set a unique identifier, otherwise the message will be printed every
time. | [
"Show",
"a",
"message",
"only",
"once",
"determined",
"by",
"position",
"in",
"source",
"or",
"identifer",
"."
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/logger.py#L38-L59 | train |
tamasgal/km3pipe | km3pipe/logger.py | get_logger | def get_logger(name):
"""Helper function to get a logger"""
if name in loggers:
return loggers[name]
logger = logging.getLogger(name)
logger.propagate = False
pre1, suf1 = hash_coloured_escapes(name) if supports_color() else ('', '')
pre2, suf2 = hash_coloured_escapes(name + 'salt') \
if supports_color() else ('', '')
formatter = logging.Formatter(
'%(levelname)s {}+{}+{} '
'%(name)s: %(message)s'.format(pre1, pre2, suf1)
)
ch = logging.StreamHandler()
ch.setFormatter(formatter)
logger.addHandler(ch)
loggers[name] = logger
logger.once_dict = {}
return logger | python | def get_logger(name):
"""Helper function to get a logger"""
if name in loggers:
return loggers[name]
logger = logging.getLogger(name)
logger.propagate = False
pre1, suf1 = hash_coloured_escapes(name) if supports_color() else ('', '')
pre2, suf2 = hash_coloured_escapes(name + 'salt') \
if supports_color() else ('', '')
formatter = logging.Formatter(
'%(levelname)s {}+{}+{} '
'%(name)s: %(message)s'.format(pre1, pre2, suf1)
)
ch = logging.StreamHandler()
ch.setFormatter(formatter)
logger.addHandler(ch)
loggers[name] = logger
logger.once_dict = {}
return logger | [
"def",
"get_logger",
"(",
"name",
")",
":",
"if",
"name",
"in",
"loggers",
":",
"return",
"loggers",
"[",
"name",
"]",
"logger",
"=",
"logging",
".",
"getLogger",
"(",
"name",
")",
"logger",
".",
"propagate",
"=",
"False",
"pre1",
",",
"suf1",
"=",
"hash_coloured_escapes",
"(",
"name",
")",
"if",
"supports_color",
"(",
")",
"else",
"(",
"''",
",",
"''",
")",
"pre2",
",",
"suf2",
"=",
"hash_coloured_escapes",
"(",
"name",
"+",
"'salt'",
")",
"if",
"supports_color",
"(",
")",
"else",
"(",
"''",
",",
"''",
")",
"formatter",
"=",
"logging",
".",
"Formatter",
"(",
"'%(levelname)s {}+{}+{} '",
"'%(name)s: %(message)s'",
".",
"format",
"(",
"pre1",
",",
"pre2",
",",
"suf1",
")",
")",
"ch",
"=",
"logging",
".",
"StreamHandler",
"(",
")",
"ch",
".",
"setFormatter",
"(",
"formatter",
")",
"logger",
".",
"addHandler",
"(",
"ch",
")",
"loggers",
"[",
"name",
"]",
"=",
"logger",
"logger",
".",
"once_dict",
"=",
"{",
"}",
"return",
"logger"
] | Helper function to get a logger | [
"Helper",
"function",
"to",
"get",
"a",
"logger"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/logger.py#L119-L139 | train |
tamasgal/km3pipe | km3pipe/logger.py | get_printer | def get_printer(name, color=None, ansi_code=None, force_color=False):
"""Return a function which prints a message with a coloured name prefix"""
if force_color or supports_color():
if color is None and ansi_code is None:
cpre_1, csuf_1 = hash_coloured_escapes(name)
cpre_2, csuf_2 = hash_coloured_escapes(name + 'salt')
name = cpre_1 + '+' + cpre_2 + '+' + csuf_1 + ' ' + name
else:
name = colored(name, color=color, ansi_code=ansi_code)
prefix = name + ': '
def printer(text):
print(prefix + str(text))
return printer | python | def get_printer(name, color=None, ansi_code=None, force_color=False):
"""Return a function which prints a message with a coloured name prefix"""
if force_color or supports_color():
if color is None and ansi_code is None:
cpre_1, csuf_1 = hash_coloured_escapes(name)
cpre_2, csuf_2 = hash_coloured_escapes(name + 'salt')
name = cpre_1 + '+' + cpre_2 + '+' + csuf_1 + ' ' + name
else:
name = colored(name, color=color, ansi_code=ansi_code)
prefix = name + ': '
def printer(text):
print(prefix + str(text))
return printer | [
"def",
"get_printer",
"(",
"name",
",",
"color",
"=",
"None",
",",
"ansi_code",
"=",
"None",
",",
"force_color",
"=",
"False",
")",
":",
"if",
"force_color",
"or",
"supports_color",
"(",
")",
":",
"if",
"color",
"is",
"None",
"and",
"ansi_code",
"is",
"None",
":",
"cpre_1",
",",
"csuf_1",
"=",
"hash_coloured_escapes",
"(",
"name",
")",
"cpre_2",
",",
"csuf_2",
"=",
"hash_coloured_escapes",
"(",
"name",
"+",
"'salt'",
")",
"name",
"=",
"cpre_1",
"+",
"'+'",
"+",
"cpre_2",
"+",
"'+'",
"+",
"csuf_1",
"+",
"' '",
"+",
"name",
"else",
":",
"name",
"=",
"colored",
"(",
"name",
",",
"color",
"=",
"color",
",",
"ansi_code",
"=",
"ansi_code",
")",
"prefix",
"=",
"name",
"+",
"': '",
"def",
"printer",
"(",
"text",
")",
":",
"print",
"(",
"prefix",
"+",
"str",
"(",
"text",
")",
")",
"return",
"printer"
] | Return a function which prints a message with a coloured name prefix | [
"Return",
"a",
"function",
"which",
"prints",
"a",
"message",
"with",
"a",
"coloured",
"name",
"prefix"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/logger.py#L152-L168 | train |
tamasgal/km3pipe | km3pipe/logger.py | hash_coloured | def hash_coloured(text):
"""Return a ANSI coloured text based on its hash"""
ansi_code = int(sha256(text.encode('utf-8')).hexdigest(), 16) % 230
return colored(text, ansi_code=ansi_code) | python | def hash_coloured(text):
"""Return a ANSI coloured text based on its hash"""
ansi_code = int(sha256(text.encode('utf-8')).hexdigest(), 16) % 230
return colored(text, ansi_code=ansi_code) | [
"def",
"hash_coloured",
"(",
"text",
")",
":",
"ansi_code",
"=",
"int",
"(",
"sha256",
"(",
"text",
".",
"encode",
"(",
"'utf-8'",
")",
")",
".",
"hexdigest",
"(",
")",
",",
"16",
")",
"%",
"230",
"return",
"colored",
"(",
"text",
",",
"ansi_code",
"=",
"ansi_code",
")"
] | Return a ANSI coloured text based on its hash | [
"Return",
"a",
"ANSI",
"coloured",
"text",
"based",
"on",
"its",
"hash"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/logger.py#L171-L174 | train |
tamasgal/km3pipe | km3pipe/logger.py | hash_coloured_escapes | def hash_coloured_escapes(text):
"""Return the ANSI hash colour prefix and suffix for a given text"""
ansi_code = int(sha256(text.encode('utf-8')).hexdigest(), 16) % 230
prefix, suffix = colored('SPLIT', ansi_code=ansi_code).split('SPLIT')
return prefix, suffix | python | def hash_coloured_escapes(text):
"""Return the ANSI hash colour prefix and suffix for a given text"""
ansi_code = int(sha256(text.encode('utf-8')).hexdigest(), 16) % 230
prefix, suffix = colored('SPLIT', ansi_code=ansi_code).split('SPLIT')
return prefix, suffix | [
"def",
"hash_coloured_escapes",
"(",
"text",
")",
":",
"ansi_code",
"=",
"int",
"(",
"sha256",
"(",
"text",
".",
"encode",
"(",
"'utf-8'",
")",
")",
".",
"hexdigest",
"(",
")",
",",
"16",
")",
"%",
"230",
"prefix",
",",
"suffix",
"=",
"colored",
"(",
"'SPLIT'",
",",
"ansi_code",
"=",
"ansi_code",
")",
".",
"split",
"(",
"'SPLIT'",
")",
"return",
"prefix",
",",
"suffix"
] | Return the ANSI hash colour prefix and suffix for a given text | [
"Return",
"the",
"ANSI",
"hash",
"colour",
"prefix",
"and",
"suffix",
"for",
"a",
"given",
"text"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/logger.py#L177-L181 | train |
tamasgal/km3pipe | km3pipe/time.py | tai_timestamp | def tai_timestamp():
"""Return current TAI timestamp."""
timestamp = time.time()
date = datetime.utcfromtimestamp(timestamp)
if date.year < 1972:
return timestamp
offset = 10 + timestamp
leap_seconds = [
(1972, 1, 1),
(1972, 7, 1),
(1973, 1, 1),
(1974, 1, 1),
(1975, 1, 1),
(1976, 1, 1),
(1977, 1, 1),
(1978, 1, 1),
(1979, 1, 1),
(1980, 1, 1),
(1981, 7, 1),
(1982, 7, 1),
(1983, 7, 1),
(1985, 7, 1),
(1988, 1, 1),
(1990, 1, 1),
(1991, 1, 1),
(1992, 7, 1),
(1993, 7, 1),
(1994, 7, 1),
(1996, 1, 1),
(1997, 7, 1),
(1999, 1, 1),
(2006, 1, 1),
(2009, 1, 1),
(2012, 7, 1),
(2015, 7, 1),
(2017, 1, 1),
]
for idx, leap_date in enumerate(leap_seconds):
if leap_date >= (date.year, date.month, date.day):
return idx - 1 + offset
return len(leap_seconds) - 1 + offset | python | def tai_timestamp():
"""Return current TAI timestamp."""
timestamp = time.time()
date = datetime.utcfromtimestamp(timestamp)
if date.year < 1972:
return timestamp
offset = 10 + timestamp
leap_seconds = [
(1972, 1, 1),
(1972, 7, 1),
(1973, 1, 1),
(1974, 1, 1),
(1975, 1, 1),
(1976, 1, 1),
(1977, 1, 1),
(1978, 1, 1),
(1979, 1, 1),
(1980, 1, 1),
(1981, 7, 1),
(1982, 7, 1),
(1983, 7, 1),
(1985, 7, 1),
(1988, 1, 1),
(1990, 1, 1),
(1991, 1, 1),
(1992, 7, 1),
(1993, 7, 1),
(1994, 7, 1),
(1996, 1, 1),
(1997, 7, 1),
(1999, 1, 1),
(2006, 1, 1),
(2009, 1, 1),
(2012, 7, 1),
(2015, 7, 1),
(2017, 1, 1),
]
for idx, leap_date in enumerate(leap_seconds):
if leap_date >= (date.year, date.month, date.day):
return idx - 1 + offset
return len(leap_seconds) - 1 + offset | [
"def",
"tai_timestamp",
"(",
")",
":",
"timestamp",
"=",
"time",
".",
"time",
"(",
")",
"date",
"=",
"datetime",
".",
"utcfromtimestamp",
"(",
"timestamp",
")",
"if",
"date",
".",
"year",
"<",
"1972",
":",
"return",
"timestamp",
"offset",
"=",
"10",
"+",
"timestamp",
"leap_seconds",
"=",
"[",
"(",
"1972",
",",
"1",
",",
"1",
")",
",",
"(",
"1972",
",",
"7",
",",
"1",
")",
",",
"(",
"1973",
",",
"1",
",",
"1",
")",
",",
"(",
"1974",
",",
"1",
",",
"1",
")",
",",
"(",
"1975",
",",
"1",
",",
"1",
")",
",",
"(",
"1976",
",",
"1",
",",
"1",
")",
",",
"(",
"1977",
",",
"1",
",",
"1",
")",
",",
"(",
"1978",
",",
"1",
",",
"1",
")",
",",
"(",
"1979",
",",
"1",
",",
"1",
")",
",",
"(",
"1980",
",",
"1",
",",
"1",
")",
",",
"(",
"1981",
",",
"7",
",",
"1",
")",
",",
"(",
"1982",
",",
"7",
",",
"1",
")",
",",
"(",
"1983",
",",
"7",
",",
"1",
")",
",",
"(",
"1985",
",",
"7",
",",
"1",
")",
",",
"(",
"1988",
",",
"1",
",",
"1",
")",
",",
"(",
"1990",
",",
"1",
",",
"1",
")",
",",
"(",
"1991",
",",
"1",
",",
"1",
")",
",",
"(",
"1992",
",",
"7",
",",
"1",
")",
",",
"(",
"1993",
",",
"7",
",",
"1",
")",
",",
"(",
"1994",
",",
"7",
",",
"1",
")",
",",
"(",
"1996",
",",
"1",
",",
"1",
")",
",",
"(",
"1997",
",",
"7",
",",
"1",
")",
",",
"(",
"1999",
",",
"1",
",",
"1",
")",
",",
"(",
"2006",
",",
"1",
",",
"1",
")",
",",
"(",
"2009",
",",
"1",
",",
"1",
")",
",",
"(",
"2012",
",",
"7",
",",
"1",
")",
",",
"(",
"2015",
",",
"7",
",",
"1",
")",
",",
"(",
"2017",
",",
"1",
",",
"1",
")",
",",
"]",
"for",
"idx",
",",
"leap_date",
"in",
"enumerate",
"(",
"leap_seconds",
")",
":",
"if",
"leap_date",
">=",
"(",
"date",
".",
"year",
",",
"date",
".",
"month",
",",
"date",
".",
"day",
")",
":",
"return",
"idx",
"-",
"1",
"+",
"offset",
"return",
"len",
"(",
"leap_seconds",
")",
"-",
"1",
"+",
"offset"
] | Return current TAI timestamp. | [
"Return",
"current",
"TAI",
"timestamp",
"."
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/time.py#L102-L142 | train |
tamasgal/km3pipe | km3pipe/time.py | Cuckoo.msg | def msg(self, *args, **kwargs):
"Only execute callback when interval is reached."
if self.timestamp is None or self._interval_reached():
self.callback(*args, **kwargs)
self.reset() | python | def msg(self, *args, **kwargs):
"Only execute callback when interval is reached."
if self.timestamp is None or self._interval_reached():
self.callback(*args, **kwargs)
self.reset() | [
"def",
"msg",
"(",
"self",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"self",
".",
"timestamp",
"is",
"None",
"or",
"self",
".",
"_interval_reached",
"(",
")",
":",
"self",
".",
"callback",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"self",
".",
"reset",
"(",
")"
] | Only execute callback when interval is reached. | [
"Only",
"execute",
"callback",
"when",
"interval",
"is",
"reached",
"."
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/time.py#L83-L87 | train |
thebigmunch/google-music-utils | src/google_music_utils/compare.py | _gather_field_values | def _gather_field_values(
item, *, fields=None, field_map=FIELD_MAP,
normalize_values=False, normalize_func=normalize_value):
"""Create a tuple of normalized metadata field values.
Parameter:
item (~collections.abc.Mapping, str, os.PathLike): Item dict or filepath.
fields (list): A list of fields used to compare item dicts.
field_map (~collections.abc.Mapping): A mapping field name aliases.
Default: :data:`~google_music_utils.constants.FIELD_MAP`
normalize_values (bool): Normalize metadata values to remove common differences between sources.
Default: ``False``
normalize_func (function): Function to apply to metadata values if
``normalize_values`` is ``True``.
Default: :func:`~google_music_utils.utils.normalize_value`
Returns:
tuple: Values from the given metadata fields.
"""
it = get_item_tags(item)
if fields is None:
fields = list(it.keys())
normalize = normalize_func if normalize_values else lambda x: str(x)
field_values = []
for field in fields:
field_values.append(
normalize(
list_to_single_value(
get_field(it, field, field_map=field_map)
)
)
)
return tuple(field_values) | python | def _gather_field_values(
item, *, fields=None, field_map=FIELD_MAP,
normalize_values=False, normalize_func=normalize_value):
"""Create a tuple of normalized metadata field values.
Parameter:
item (~collections.abc.Mapping, str, os.PathLike): Item dict or filepath.
fields (list): A list of fields used to compare item dicts.
field_map (~collections.abc.Mapping): A mapping field name aliases.
Default: :data:`~google_music_utils.constants.FIELD_MAP`
normalize_values (bool): Normalize metadata values to remove common differences between sources.
Default: ``False``
normalize_func (function): Function to apply to metadata values if
``normalize_values`` is ``True``.
Default: :func:`~google_music_utils.utils.normalize_value`
Returns:
tuple: Values from the given metadata fields.
"""
it = get_item_tags(item)
if fields is None:
fields = list(it.keys())
normalize = normalize_func if normalize_values else lambda x: str(x)
field_values = []
for field in fields:
field_values.append(
normalize(
list_to_single_value(
get_field(it, field, field_map=field_map)
)
)
)
return tuple(field_values) | [
"def",
"_gather_field_values",
"(",
"item",
",",
"*",
",",
"fields",
"=",
"None",
",",
"field_map",
"=",
"FIELD_MAP",
",",
"normalize_values",
"=",
"False",
",",
"normalize_func",
"=",
"normalize_value",
")",
":",
"it",
"=",
"get_item_tags",
"(",
"item",
")",
"if",
"fields",
"is",
"None",
":",
"fields",
"=",
"list",
"(",
"it",
".",
"keys",
"(",
")",
")",
"normalize",
"=",
"normalize_func",
"if",
"normalize_values",
"else",
"lambda",
"x",
":",
"str",
"(",
"x",
")",
"field_values",
"=",
"[",
"]",
"for",
"field",
"in",
"fields",
":",
"field_values",
".",
"append",
"(",
"normalize",
"(",
"list_to_single_value",
"(",
"get_field",
"(",
"it",
",",
"field",
",",
"field_map",
"=",
"field_map",
")",
")",
")",
")",
"return",
"tuple",
"(",
"field_values",
")"
] | Create a tuple of normalized metadata field values.
Parameter:
item (~collections.abc.Mapping, str, os.PathLike): Item dict or filepath.
fields (list): A list of fields used to compare item dicts.
field_map (~collections.abc.Mapping): A mapping field name aliases.
Default: :data:`~google_music_utils.constants.FIELD_MAP`
normalize_values (bool): Normalize metadata values to remove common differences between sources.
Default: ``False``
normalize_func (function): Function to apply to metadata values if
``normalize_values`` is ``True``.
Default: :func:`~google_music_utils.utils.normalize_value`
Returns:
tuple: Values from the given metadata fields. | [
"Create",
"a",
"tuple",
"of",
"normalized",
"metadata",
"field",
"values",
"."
] | 2e8873defe7d5aab7321b9d5ec8a80d72687578e | https://github.com/thebigmunch/google-music-utils/blob/2e8873defe7d5aab7321b9d5ec8a80d72687578e/src/google_music_utils/compare.py#L12-L50 | train |
thebigmunch/google-music-utils | src/google_music_utils/compare.py | find_existing_items | def find_existing_items(
src, dst, *, fields=None, field_map=None,
normalize_values=False, normalize_func=normalize_value):
"""Find items from an item collection that are in another item collection.
Parameters:
src (list): A list of item dicts or filepaths.
dst (list): A list of item dicts or filepaths.
fields (list): A list of fields used to compare item dicts.
field_map (~collections.abc.Mapping): A mapping field name aliases.
Default: :data:`~google_music_utils.constants.FIELD_MAP`
normalize_values (bool): Normalize metadata values to remove common differences between sources.
Default: ``False``
normalize_func (function): Function to apply to metadata values if
``normalize_values`` is ``True``.
Default: :func:`~google_music_utils.utils.normalize_value`
Yields:
dict: The next item from ``src`` collection in ``dst`` collection.
"""
if field_map is None:
field_map = FIELD_MAP
dst_keys = {
_gather_field_values(
dst_item, fields=fields, field_map=field_map,
normalize_values=normalize_values, normalize_func=normalize_func
) for dst_item in dst
}
for src_item in src:
if _gather_field_values(
src_item, fields=fields, field_map=field_map,
normalize_values=normalize_values, normalize_func=normalize_func
) in dst_keys:
yield src_item | python | def find_existing_items(
src, dst, *, fields=None, field_map=None,
normalize_values=False, normalize_func=normalize_value):
"""Find items from an item collection that are in another item collection.
Parameters:
src (list): A list of item dicts or filepaths.
dst (list): A list of item dicts or filepaths.
fields (list): A list of fields used to compare item dicts.
field_map (~collections.abc.Mapping): A mapping field name aliases.
Default: :data:`~google_music_utils.constants.FIELD_MAP`
normalize_values (bool): Normalize metadata values to remove common differences between sources.
Default: ``False``
normalize_func (function): Function to apply to metadata values if
``normalize_values`` is ``True``.
Default: :func:`~google_music_utils.utils.normalize_value`
Yields:
dict: The next item from ``src`` collection in ``dst`` collection.
"""
if field_map is None:
field_map = FIELD_MAP
dst_keys = {
_gather_field_values(
dst_item, fields=fields, field_map=field_map,
normalize_values=normalize_values, normalize_func=normalize_func
) for dst_item in dst
}
for src_item in src:
if _gather_field_values(
src_item, fields=fields, field_map=field_map,
normalize_values=normalize_values, normalize_func=normalize_func
) in dst_keys:
yield src_item | [
"def",
"find_existing_items",
"(",
"src",
",",
"dst",
",",
"*",
",",
"fields",
"=",
"None",
",",
"field_map",
"=",
"None",
",",
"normalize_values",
"=",
"False",
",",
"normalize_func",
"=",
"normalize_value",
")",
":",
"if",
"field_map",
"is",
"None",
":",
"field_map",
"=",
"FIELD_MAP",
"dst_keys",
"=",
"{",
"_gather_field_values",
"(",
"dst_item",
",",
"fields",
"=",
"fields",
",",
"field_map",
"=",
"field_map",
",",
"normalize_values",
"=",
"normalize_values",
",",
"normalize_func",
"=",
"normalize_func",
")",
"for",
"dst_item",
"in",
"dst",
"}",
"for",
"src_item",
"in",
"src",
":",
"if",
"_gather_field_values",
"(",
"src_item",
",",
"fields",
"=",
"fields",
",",
"field_map",
"=",
"field_map",
",",
"normalize_values",
"=",
"normalize_values",
",",
"normalize_func",
"=",
"normalize_func",
")",
"in",
"dst_keys",
":",
"yield",
"src_item"
] | Find items from an item collection that are in another item collection.
Parameters:
src (list): A list of item dicts or filepaths.
dst (list): A list of item dicts or filepaths.
fields (list): A list of fields used to compare item dicts.
field_map (~collections.abc.Mapping): A mapping field name aliases.
Default: :data:`~google_music_utils.constants.FIELD_MAP`
normalize_values (bool): Normalize metadata values to remove common differences between sources.
Default: ``False``
normalize_func (function): Function to apply to metadata values if
``normalize_values`` is ``True``.
Default: :func:`~google_music_utils.utils.normalize_value`
Yields:
dict: The next item from ``src`` collection in ``dst`` collection. | [
"Find",
"items",
"from",
"an",
"item",
"collection",
"that",
"are",
"in",
"another",
"item",
"collection",
"."
] | 2e8873defe7d5aab7321b9d5ec8a80d72687578e | https://github.com/thebigmunch/google-music-utils/blob/2e8873defe7d5aab7321b9d5ec8a80d72687578e/src/google_music_utils/compare.py#L53-L89 | train |
IRC-SPHERE/HyperStream | hyperstream/utils/hyperstream_logger.py | monitor | def monitor(self, message, *args, **kws):
"""
Define a monitoring logger that will be added to Logger
:param self: The logging object
:param message: The logging message
:param args: Positional arguments
:param kws: Keyword arguments
:return:
"""
if self.isEnabledFor(MON):
# Yes, logger takes its '*args' as 'args'.
self._log(MON, message, args, **kws) | python | def monitor(self, message, *args, **kws):
"""
Define a monitoring logger that will be added to Logger
:param self: The logging object
:param message: The logging message
:param args: Positional arguments
:param kws: Keyword arguments
:return:
"""
if self.isEnabledFor(MON):
# Yes, logger takes its '*args' as 'args'.
self._log(MON, message, args, **kws) | [
"def",
"monitor",
"(",
"self",
",",
"message",
",",
"*",
"args",
",",
"*",
"*",
"kws",
")",
":",
"if",
"self",
".",
"isEnabledFor",
"(",
"MON",
")",
":",
"# Yes, logger takes its '*args' as 'args'.",
"self",
".",
"_log",
"(",
"MON",
",",
"message",
",",
"args",
",",
"*",
"*",
"kws",
")"
] | Define a monitoring logger that will be added to Logger
:param self: The logging object
:param message: The logging message
:param args: Positional arguments
:param kws: Keyword arguments
:return: | [
"Define",
"a",
"monitoring",
"logger",
"that",
"will",
"be",
"added",
"to",
"Logger"
] | 98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780 | https://github.com/IRC-SPHERE/HyperStream/blob/98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780/hyperstream/utils/hyperstream_logger.py#L160-L172 | train |
IRC-SPHERE/HyperStream | hyperstream/utils/hyperstream_logger.py | monitor | def monitor(msg, *args, **kwargs):
"""
Log a message with severity 'MON' on the root logger.
"""
if len(logging.root.handlers) == 0:
logging.basicConfig()
logging.root.monitor(msg, *args, **kwargs) | python | def monitor(msg, *args, **kwargs):
"""
Log a message with severity 'MON' on the root logger.
"""
if len(logging.root.handlers) == 0:
logging.basicConfig()
logging.root.monitor(msg, *args, **kwargs) | [
"def",
"monitor",
"(",
"msg",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"len",
"(",
"logging",
".",
"root",
".",
"handlers",
")",
"==",
"0",
":",
"logging",
".",
"basicConfig",
"(",
")",
"logging",
".",
"root",
".",
"monitor",
"(",
"msg",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")"
] | Log a message with severity 'MON' on the root logger. | [
"Log",
"a",
"message",
"with",
"severity",
"MON",
"on",
"the",
"root",
"logger",
"."
] | 98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780 | https://github.com/IRC-SPHERE/HyperStream/blob/98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780/hyperstream/utils/hyperstream_logger.py#L178-L184 | train |
IRC-SPHERE/HyperStream | hyperstream/utils/hyperstream_logger.py | SenMLFormatter.format | def format(self, record):
"""
The formatting function
:param record: The record object
:return: The string representation of the record
"""
try:
n = record.n
except AttributeError:
n = 'default'
try:
message = record.message
except AttributeError:
message = record.msg
senml = OrderedDict(
uid="hyperstream",
bt=datetime.utcfromtimestamp(record.created).isoformat()[:-3] + 'Z',
e=[OrderedDict(n=n, v=message)]
)
formatted_json = json.dumps(senml)
return formatted_json | python | def format(self, record):
"""
The formatting function
:param record: The record object
:return: The string representation of the record
"""
try:
n = record.n
except AttributeError:
n = 'default'
try:
message = record.message
except AttributeError:
message = record.msg
senml = OrderedDict(
uid="hyperstream",
bt=datetime.utcfromtimestamp(record.created).isoformat()[:-3] + 'Z',
e=[OrderedDict(n=n, v=message)]
)
formatted_json = json.dumps(senml)
return formatted_json | [
"def",
"format",
"(",
"self",
",",
"record",
")",
":",
"try",
":",
"n",
"=",
"record",
".",
"n",
"except",
"AttributeError",
":",
"n",
"=",
"'default'",
"try",
":",
"message",
"=",
"record",
".",
"message",
"except",
"AttributeError",
":",
"message",
"=",
"record",
".",
"msg",
"senml",
"=",
"OrderedDict",
"(",
"uid",
"=",
"\"hyperstream\"",
",",
"bt",
"=",
"datetime",
".",
"utcfromtimestamp",
"(",
"record",
".",
"created",
")",
".",
"isoformat",
"(",
")",
"[",
":",
"-",
"3",
"]",
"+",
"'Z'",
",",
"e",
"=",
"[",
"OrderedDict",
"(",
"n",
"=",
"n",
",",
"v",
"=",
"message",
")",
"]",
")",
"formatted_json",
"=",
"json",
".",
"dumps",
"(",
"senml",
")",
"return",
"formatted_json"
] | The formatting function
:param record: The record object
:return: The string representation of the record | [
"The",
"formatting",
"function"
] | 98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780 | https://github.com/IRC-SPHERE/HyperStream/blob/98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780/hyperstream/utils/hyperstream_logger.py#L197-L222 | train |
wtsi-hgi/consul-lock | consullock/managers.py | ConsulLockManager.teardown | def teardown(self):
"""
Tears down the instance, removing any remaining sessions that this instance has created.
The instance must not be used after this method has been called.
"""
with self._teardown_lock:
if not self._teardown_called:
self._teardown_called = True
if len(self._acquiring_session_ids) > 0:
logger.info(
f"Destroying all sessions that have not acquired keys: {self._acquiring_session_ids}...")
for session_id in self._acquiring_session_ids:
try:
self.consul_client.session.destroy(session_id=session_id)
logger.debug(f"Destroyed: {session_id}")
except requests.exceptions.ConnectionError as e:
logger.debug(f"Exception: {e}")
logger.warning(f"Could not connect to Consul to clean up session {session_id}")
atexit.unregister(self.teardown) | python | def teardown(self):
"""
Tears down the instance, removing any remaining sessions that this instance has created.
The instance must not be used after this method has been called.
"""
with self._teardown_lock:
if not self._teardown_called:
self._teardown_called = True
if len(self._acquiring_session_ids) > 0:
logger.info(
f"Destroying all sessions that have not acquired keys: {self._acquiring_session_ids}...")
for session_id in self._acquiring_session_ids:
try:
self.consul_client.session.destroy(session_id=session_id)
logger.debug(f"Destroyed: {session_id}")
except requests.exceptions.ConnectionError as e:
logger.debug(f"Exception: {e}")
logger.warning(f"Could not connect to Consul to clean up session {session_id}")
atexit.unregister(self.teardown) | [
"def",
"teardown",
"(",
"self",
")",
":",
"with",
"self",
".",
"_teardown_lock",
":",
"if",
"not",
"self",
".",
"_teardown_called",
":",
"self",
".",
"_teardown_called",
"=",
"True",
"if",
"len",
"(",
"self",
".",
"_acquiring_session_ids",
")",
">",
"0",
":",
"logger",
".",
"info",
"(",
"f\"Destroying all sessions that have not acquired keys: {self._acquiring_session_ids}...\"",
")",
"for",
"session_id",
"in",
"self",
".",
"_acquiring_session_ids",
":",
"try",
":",
"self",
".",
"consul_client",
".",
"session",
".",
"destroy",
"(",
"session_id",
"=",
"session_id",
")",
"logger",
".",
"debug",
"(",
"f\"Destroyed: {session_id}\"",
")",
"except",
"requests",
".",
"exceptions",
".",
"ConnectionError",
"as",
"e",
":",
"logger",
".",
"debug",
"(",
"f\"Exception: {e}\"",
")",
"logger",
".",
"warning",
"(",
"f\"Could not connect to Consul to clean up session {session_id}\"",
")",
"atexit",
".",
"unregister",
"(",
"self",
".",
"teardown",
")"
] | Tears down the instance, removing any remaining sessions that this instance has created.
The instance must not be used after this method has been called. | [
"Tears",
"down",
"the",
"instance",
"removing",
"any",
"remaining",
"sessions",
"that",
"this",
"instance",
"has",
"created",
"."
] | deb07ab41dabbb49f4d0bbc062bc3b4b6e5d71b2 | https://github.com/wtsi-hgi/consul-lock/blob/deb07ab41dabbb49f4d0bbc062bc3b4b6e5d71b2/consullock/managers.py#L356-L375 | train |
tamasgal/km3pipe | km3pipe/db.py | we_are_in_lyon | def we_are_in_lyon():
"""Check if we are on a Lyon machine"""
import socket
try:
hostname = socket.gethostname()
ip = socket.gethostbyname(hostname)
except socket.gaierror:
return False
return ip.startswith("134.158.") | python | def we_are_in_lyon():
"""Check if we are on a Lyon machine"""
import socket
try:
hostname = socket.gethostname()
ip = socket.gethostbyname(hostname)
except socket.gaierror:
return False
return ip.startswith("134.158.") | [
"def",
"we_are_in_lyon",
"(",
")",
":",
"import",
"socket",
"try",
":",
"hostname",
"=",
"socket",
".",
"gethostname",
"(",
")",
"ip",
"=",
"socket",
".",
"gethostbyname",
"(",
"hostname",
")",
"except",
"socket",
".",
"gaierror",
":",
"return",
"False",
"return",
"ip",
".",
"startswith",
"(",
"\"134.158.\"",
")"
] | Check if we are on a Lyon machine | [
"Check",
"if",
"we",
"are",
"on",
"a",
"Lyon",
"machine"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L62-L70 | train |
tamasgal/km3pipe | km3pipe/db.py | read_csv | def read_csv(text, sep="\t"):
"""Create a DataFrame from CSV text"""
import pandas as pd # no top level load to make a faster import of db
return pd.read_csv(StringIO(text), sep="\t") | python | def read_csv(text, sep="\t"):
"""Create a DataFrame from CSV text"""
import pandas as pd # no top level load to make a faster import of db
return pd.read_csv(StringIO(text), sep="\t") | [
"def",
"read_csv",
"(",
"text",
",",
"sep",
"=",
"\"\\t\"",
")",
":",
"import",
"pandas",
"as",
"pd",
"# no top level load to make a faster import of db",
"return",
"pd",
".",
"read_csv",
"(",
"StringIO",
"(",
"text",
")",
",",
"sep",
"=",
"\"\\t\"",
")"
] | Create a DataFrame from CSV text | [
"Create",
"a",
"DataFrame",
"from",
"CSV",
"text"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L73-L76 | train |
tamasgal/km3pipe | km3pipe/db.py | add_datetime | def add_datetime(dataframe, timestamp_key='UNIXTIME'):
"""Add an additional DATETIME column with standar datetime format.
This currently manipulates the incoming DataFrame!
"""
def convert_data(timestamp):
return datetime.fromtimestamp(float(timestamp) / 1e3, UTC_TZ)
try:
log.debug("Adding DATETIME column to the data")
converted = dataframe[timestamp_key].apply(convert_data)
dataframe['DATETIME'] = converted
except KeyError:
log.warning("Could not add DATETIME column") | python | def add_datetime(dataframe, timestamp_key='UNIXTIME'):
"""Add an additional DATETIME column with standar datetime format.
This currently manipulates the incoming DataFrame!
"""
def convert_data(timestamp):
return datetime.fromtimestamp(float(timestamp) / 1e3, UTC_TZ)
try:
log.debug("Adding DATETIME column to the data")
converted = dataframe[timestamp_key].apply(convert_data)
dataframe['DATETIME'] = converted
except KeyError:
log.warning("Could not add DATETIME column") | [
"def",
"add_datetime",
"(",
"dataframe",
",",
"timestamp_key",
"=",
"'UNIXTIME'",
")",
":",
"def",
"convert_data",
"(",
"timestamp",
")",
":",
"return",
"datetime",
".",
"fromtimestamp",
"(",
"float",
"(",
"timestamp",
")",
"/",
"1e3",
",",
"UTC_TZ",
")",
"try",
":",
"log",
".",
"debug",
"(",
"\"Adding DATETIME column to the data\"",
")",
"converted",
"=",
"dataframe",
"[",
"timestamp_key",
"]",
".",
"apply",
"(",
"convert_data",
")",
"dataframe",
"[",
"'DATETIME'",
"]",
"=",
"converted",
"except",
"KeyError",
":",
"log",
".",
"warning",
"(",
"\"Could not add DATETIME column\"",
")"
] | Add an additional DATETIME column with standar datetime format.
This currently manipulates the incoming DataFrame! | [
"Add",
"an",
"additional",
"DATETIME",
"column",
"with",
"standar",
"datetime",
"format",
"."
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L488-L502 | train |
tamasgal/km3pipe | km3pipe/db.py | show_ahrs_calibration | def show_ahrs_calibration(clb_upi, version='3'):
"""Show AHRS calibration data for given `clb_upi`."""
db = DBManager()
ahrs_upi = clbupi2ahrsupi(clb_upi)
print("AHRS UPI: {}".format(ahrs_upi))
content = db._get_content("show_product_test.htm?upi={0}&"
"testtype=AHRS-CALIBRATION-v{1}&n=1&out=xml"
.format(ahrs_upi, version)) \
.replace('\n', '')
import xml.etree.ElementTree as ET
try:
root = ET.parse(io.StringIO(content)).getroot()
except ET.ParseError:
print("No calibration data found")
else:
for child in root:
print("{}: {}".format(child.tag, child.text))
names = [c.text for c in root.findall(".//Name")]
values = [[i.text for i in c] for c in root.findall(".//Values")]
for name, value in zip(names, values):
print("{}: {}".format(name, value)) | python | def show_ahrs_calibration(clb_upi, version='3'):
"""Show AHRS calibration data for given `clb_upi`."""
db = DBManager()
ahrs_upi = clbupi2ahrsupi(clb_upi)
print("AHRS UPI: {}".format(ahrs_upi))
content = db._get_content("show_product_test.htm?upi={0}&"
"testtype=AHRS-CALIBRATION-v{1}&n=1&out=xml"
.format(ahrs_upi, version)) \
.replace('\n', '')
import xml.etree.ElementTree as ET
try:
root = ET.parse(io.StringIO(content)).getroot()
except ET.ParseError:
print("No calibration data found")
else:
for child in root:
print("{}: {}".format(child.tag, child.text))
names = [c.text for c in root.findall(".//Name")]
values = [[i.text for i in c] for c in root.findall(".//Values")]
for name, value in zip(names, values):
print("{}: {}".format(name, value)) | [
"def",
"show_ahrs_calibration",
"(",
"clb_upi",
",",
"version",
"=",
"'3'",
")",
":",
"db",
"=",
"DBManager",
"(",
")",
"ahrs_upi",
"=",
"clbupi2ahrsupi",
"(",
"clb_upi",
")",
"print",
"(",
"\"AHRS UPI: {}\"",
".",
"format",
"(",
"ahrs_upi",
")",
")",
"content",
"=",
"db",
".",
"_get_content",
"(",
"\"show_product_test.htm?upi={0}&\"",
"\"testtype=AHRS-CALIBRATION-v{1}&n=1&out=xml\"",
".",
"format",
"(",
"ahrs_upi",
",",
"version",
")",
")",
".",
"replace",
"(",
"'\\n'",
",",
"''",
")",
"import",
"xml",
".",
"etree",
".",
"ElementTree",
"as",
"ET",
"try",
":",
"root",
"=",
"ET",
".",
"parse",
"(",
"io",
".",
"StringIO",
"(",
"content",
")",
")",
".",
"getroot",
"(",
")",
"except",
"ET",
".",
"ParseError",
":",
"print",
"(",
"\"No calibration data found\"",
")",
"else",
":",
"for",
"child",
"in",
"root",
":",
"print",
"(",
"\"{}: {}\"",
".",
"format",
"(",
"child",
".",
"tag",
",",
"child",
".",
"text",
")",
")",
"names",
"=",
"[",
"c",
".",
"text",
"for",
"c",
"in",
"root",
".",
"findall",
"(",
"\".//Name\"",
")",
"]",
"values",
"=",
"[",
"[",
"i",
".",
"text",
"for",
"i",
"in",
"c",
"]",
"for",
"c",
"in",
"root",
".",
"findall",
"(",
"\".//Values\"",
")",
"]",
"for",
"name",
",",
"value",
"in",
"zip",
"(",
"names",
",",
"values",
")",
":",
"print",
"(",
"\"{}: {}\"",
".",
"format",
"(",
"name",
",",
"value",
")",
")"
] | Show AHRS calibration data for given `clb_upi`. | [
"Show",
"AHRS",
"calibration",
"data",
"for",
"given",
"clb_upi",
"."
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L826-L848 | train |
tamasgal/km3pipe | km3pipe/db.py | DBManager._datalog | def _datalog(self, parameter, run, maxrun, det_id):
"Extract data from database"
values = {
'parameter_name': parameter,
'minrun': run,
'maxrun': maxrun,
'detid': det_id,
}
data = urlencode(values)
content = self._get_content('streamds/datalognumbers.txt?' + data)
if content.startswith('ERROR'):
log.error(content)
return None
try:
dataframe = read_csv(content)
except ValueError:
log.warning(
"Empty dataset"
) # ...probably. Waiting for more info
return make_empty_dataset()
else:
add_datetime(dataframe)
try:
self._add_converted_units(dataframe, parameter)
except KeyError:
log.warning(
"Could not add converted units for {0}".format(parameter)
)
return dataframe | python | def _datalog(self, parameter, run, maxrun, det_id):
"Extract data from database"
values = {
'parameter_name': parameter,
'minrun': run,
'maxrun': maxrun,
'detid': det_id,
}
data = urlencode(values)
content = self._get_content('streamds/datalognumbers.txt?' + data)
if content.startswith('ERROR'):
log.error(content)
return None
try:
dataframe = read_csv(content)
except ValueError:
log.warning(
"Empty dataset"
) # ...probably. Waiting for more info
return make_empty_dataset()
else:
add_datetime(dataframe)
try:
self._add_converted_units(dataframe, parameter)
except KeyError:
log.warning(
"Could not add converted units for {0}".format(parameter)
)
return dataframe | [
"def",
"_datalog",
"(",
"self",
",",
"parameter",
",",
"run",
",",
"maxrun",
",",
"det_id",
")",
":",
"values",
"=",
"{",
"'parameter_name'",
":",
"parameter",
",",
"'minrun'",
":",
"run",
",",
"'maxrun'",
":",
"maxrun",
",",
"'detid'",
":",
"det_id",
",",
"}",
"data",
"=",
"urlencode",
"(",
"values",
")",
"content",
"=",
"self",
".",
"_get_content",
"(",
"'streamds/datalognumbers.txt?'",
"+",
"data",
")",
"if",
"content",
".",
"startswith",
"(",
"'ERROR'",
")",
":",
"log",
".",
"error",
"(",
"content",
")",
"return",
"None",
"try",
":",
"dataframe",
"=",
"read_csv",
"(",
"content",
")",
"except",
"ValueError",
":",
"log",
".",
"warning",
"(",
"\"Empty dataset\"",
")",
"# ...probably. Waiting for more info",
"return",
"make_empty_dataset",
"(",
")",
"else",
":",
"add_datetime",
"(",
"dataframe",
")",
"try",
":",
"self",
".",
"_add_converted_units",
"(",
"dataframe",
",",
"parameter",
")",
"except",
"KeyError",
":",
"log",
".",
"warning",
"(",
"\"Could not add converted units for {0}\"",
".",
"format",
"(",
"parameter",
")",
")",
"return",
"dataframe"
] | Extract data from database | [
"Extract",
"data",
"from",
"database"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L134-L162 | train |
tamasgal/km3pipe | km3pipe/db.py | DBManager._add_converted_units | def _add_converted_units(self, dataframe, parameter, key='VALUE'):
"""Add an additional DATA_VALUE column with converted VALUEs"""
convert_unit = self.parameters.get_converter(parameter)
try:
log.debug("Adding unit converted DATA_VALUE to the data")
dataframe[key] = dataframe['DATA_VALUE'].apply(convert_unit)
except KeyError:
log.warning("Missing 'VALUE': no unit conversion.")
else:
dataframe.unit = self.parameters.unit(parameter) | python | def _add_converted_units(self, dataframe, parameter, key='VALUE'):
"""Add an additional DATA_VALUE column with converted VALUEs"""
convert_unit = self.parameters.get_converter(parameter)
try:
log.debug("Adding unit converted DATA_VALUE to the data")
dataframe[key] = dataframe['DATA_VALUE'].apply(convert_unit)
except KeyError:
log.warning("Missing 'VALUE': no unit conversion.")
else:
dataframe.unit = self.parameters.unit(parameter) | [
"def",
"_add_converted_units",
"(",
"self",
",",
"dataframe",
",",
"parameter",
",",
"key",
"=",
"'VALUE'",
")",
":",
"convert_unit",
"=",
"self",
".",
"parameters",
".",
"get_converter",
"(",
"parameter",
")",
"try",
":",
"log",
".",
"debug",
"(",
"\"Adding unit converted DATA_VALUE to the data\"",
")",
"dataframe",
"[",
"key",
"]",
"=",
"dataframe",
"[",
"'DATA_VALUE'",
"]",
".",
"apply",
"(",
"convert_unit",
")",
"except",
"KeyError",
":",
"log",
".",
"warning",
"(",
"\"Missing 'VALUE': no unit conversion.\"",
")",
"else",
":",
"dataframe",
".",
"unit",
"=",
"self",
".",
"parameters",
".",
"unit",
"(",
"parameter",
")"
] | Add an additional DATA_VALUE column with converted VALUEs | [
"Add",
"an",
"additional",
"DATA_VALUE",
"column",
"with",
"converted",
"VALUEs"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L178-L187 | train |
tamasgal/km3pipe | km3pipe/db.py | DBManager.to_det_id | def to_det_id(self, det_id_or_det_oid):
"""Convert det ID or OID to det ID"""
try:
int(det_id_or_det_oid)
except ValueError:
return self.get_det_id(det_id_or_det_oid)
else:
return det_id_or_det_oid | python | def to_det_id(self, det_id_or_det_oid):
"""Convert det ID or OID to det ID"""
try:
int(det_id_or_det_oid)
except ValueError:
return self.get_det_id(det_id_or_det_oid)
else:
return det_id_or_det_oid | [
"def",
"to_det_id",
"(",
"self",
",",
"det_id_or_det_oid",
")",
":",
"try",
":",
"int",
"(",
"det_id_or_det_oid",
")",
"except",
"ValueError",
":",
"return",
"self",
".",
"get_det_id",
"(",
"det_id_or_det_oid",
")",
"else",
":",
"return",
"det_id_or_det_oid"
] | Convert det ID or OID to det ID | [
"Convert",
"det",
"ID",
"or",
"OID",
"to",
"det",
"ID"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L223-L230 | train |
tamasgal/km3pipe | km3pipe/db.py | DBManager.to_det_oid | def to_det_oid(self, det_id_or_det_oid):
"""Convert det OID or ID to det OID"""
try:
int(det_id_or_det_oid)
except ValueError:
return det_id_or_det_oid
else:
return self.get_det_oid(det_id_or_det_oid) | python | def to_det_oid(self, det_id_or_det_oid):
"""Convert det OID or ID to det OID"""
try:
int(det_id_or_det_oid)
except ValueError:
return det_id_or_det_oid
else:
return self.get_det_oid(det_id_or_det_oid) | [
"def",
"to_det_oid",
"(",
"self",
",",
"det_id_or_det_oid",
")",
":",
"try",
":",
"int",
"(",
"det_id_or_det_oid",
")",
"except",
"ValueError",
":",
"return",
"det_id_or_det_oid",
"else",
":",
"return",
"self",
".",
"get_det_oid",
"(",
"det_id_or_det_oid",
")"
] | Convert det OID or ID to det OID | [
"Convert",
"det",
"OID",
"or",
"ID",
"to",
"det",
"OID"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L232-L239 | train |
tamasgal/km3pipe | km3pipe/db.py | DBManager._load_parameters | def _load_parameters(self):
"Retrieve a list of available parameters from the database"
parameters = self._get_json('allparam/s')
data = {}
for parameter in parameters: # There is a case-chaos in the DB
data[parameter['Name'].lower()] = parameter
self._parameters = ParametersContainer(data) | python | def _load_parameters(self):
"Retrieve a list of available parameters from the database"
parameters = self._get_json('allparam/s')
data = {}
for parameter in parameters: # There is a case-chaos in the DB
data[parameter['Name'].lower()] = parameter
self._parameters = ParametersContainer(data) | [
"def",
"_load_parameters",
"(",
"self",
")",
":",
"parameters",
"=",
"self",
".",
"_get_json",
"(",
"'allparam/s'",
")",
"data",
"=",
"{",
"}",
"for",
"parameter",
"in",
"parameters",
":",
"# There is a case-chaos in the DB",
"data",
"[",
"parameter",
"[",
"'Name'",
"]",
".",
"lower",
"(",
")",
"]",
"=",
"parameter",
"self",
".",
"_parameters",
"=",
"ParametersContainer",
"(",
"data",
")"
] | Retrieve a list of available parameters from the database | [
"Retrieve",
"a",
"list",
"of",
"available",
"parameters",
"from",
"the",
"database"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L248-L254 | train |
tamasgal/km3pipe | km3pipe/db.py | DBManager.trigger_setup | def trigger_setup(self, runsetup_oid):
"Retrieve the trigger setup for a given runsetup OID"
r = self._get_content(
"jsonds/rslite/s?rs_oid={}&upifilter=1.1.2.2.3/*".
format(runsetup_oid)
)
data = json.loads(r)['Data']
if not data:
log.error("Empty dataset.")
return
raw_setup = data[0]
det_id = raw_setup['DetID']
name = raw_setup['Name']
description = raw_setup['Desc']
_optical_df = raw_setup['ConfGroups'][0]
optical_df = {'Name': _optical_df['Name'], 'Desc': _optical_df['Desc']}
for param in _optical_df['Params']:
pname = self.parameters.oid2name(param['OID']).replace('DAQ_', '')
try:
dtype = float if '.' in param['Val'] else int
val = dtype(param['Val'])
except ValueError:
val = param['Val']
optical_df[pname] = val
_acoustic_df = raw_setup['ConfGroups'][1]
acoustic_df = {
'Name': _acoustic_df['Name'],
'Desc': _acoustic_df['Desc']
}
for param in _acoustic_df['Params']:
pname = self.parameters.oid2name(param['OID']).replace('DAQ_', '')
try:
dtype = float if '.' in param['Val'] else int
val = dtype(param['Val'])
except ValueError:
val = param['Val']
acoustic_df[pname] = val
return TriggerSetup(
runsetup_oid, name, det_id, description, optical_df, acoustic_df
) | python | def trigger_setup(self, runsetup_oid):
"Retrieve the trigger setup for a given runsetup OID"
r = self._get_content(
"jsonds/rslite/s?rs_oid={}&upifilter=1.1.2.2.3/*".
format(runsetup_oid)
)
data = json.loads(r)['Data']
if not data:
log.error("Empty dataset.")
return
raw_setup = data[0]
det_id = raw_setup['DetID']
name = raw_setup['Name']
description = raw_setup['Desc']
_optical_df = raw_setup['ConfGroups'][0]
optical_df = {'Name': _optical_df['Name'], 'Desc': _optical_df['Desc']}
for param in _optical_df['Params']:
pname = self.parameters.oid2name(param['OID']).replace('DAQ_', '')
try:
dtype = float if '.' in param['Val'] else int
val = dtype(param['Val'])
except ValueError:
val = param['Val']
optical_df[pname] = val
_acoustic_df = raw_setup['ConfGroups'][1]
acoustic_df = {
'Name': _acoustic_df['Name'],
'Desc': _acoustic_df['Desc']
}
for param in _acoustic_df['Params']:
pname = self.parameters.oid2name(param['OID']).replace('DAQ_', '')
try:
dtype = float if '.' in param['Val'] else int
val = dtype(param['Val'])
except ValueError:
val = param['Val']
acoustic_df[pname] = val
return TriggerSetup(
runsetup_oid, name, det_id, description, optical_df, acoustic_df
) | [
"def",
"trigger_setup",
"(",
"self",
",",
"runsetup_oid",
")",
":",
"r",
"=",
"self",
".",
"_get_content",
"(",
"\"jsonds/rslite/s?rs_oid={}&upifilter=1.1.2.2.3/*\"",
".",
"format",
"(",
"runsetup_oid",
")",
")",
"data",
"=",
"json",
".",
"loads",
"(",
"r",
")",
"[",
"'Data'",
"]",
"if",
"not",
"data",
":",
"log",
".",
"error",
"(",
"\"Empty dataset.\"",
")",
"return",
"raw_setup",
"=",
"data",
"[",
"0",
"]",
"det_id",
"=",
"raw_setup",
"[",
"'DetID'",
"]",
"name",
"=",
"raw_setup",
"[",
"'Name'",
"]",
"description",
"=",
"raw_setup",
"[",
"'Desc'",
"]",
"_optical_df",
"=",
"raw_setup",
"[",
"'ConfGroups'",
"]",
"[",
"0",
"]",
"optical_df",
"=",
"{",
"'Name'",
":",
"_optical_df",
"[",
"'Name'",
"]",
",",
"'Desc'",
":",
"_optical_df",
"[",
"'Desc'",
"]",
"}",
"for",
"param",
"in",
"_optical_df",
"[",
"'Params'",
"]",
":",
"pname",
"=",
"self",
".",
"parameters",
".",
"oid2name",
"(",
"param",
"[",
"'OID'",
"]",
")",
".",
"replace",
"(",
"'DAQ_'",
",",
"''",
")",
"try",
":",
"dtype",
"=",
"float",
"if",
"'.'",
"in",
"param",
"[",
"'Val'",
"]",
"else",
"int",
"val",
"=",
"dtype",
"(",
"param",
"[",
"'Val'",
"]",
")",
"except",
"ValueError",
":",
"val",
"=",
"param",
"[",
"'Val'",
"]",
"optical_df",
"[",
"pname",
"]",
"=",
"val",
"_acoustic_df",
"=",
"raw_setup",
"[",
"'ConfGroups'",
"]",
"[",
"1",
"]",
"acoustic_df",
"=",
"{",
"'Name'",
":",
"_acoustic_df",
"[",
"'Name'",
"]",
",",
"'Desc'",
":",
"_acoustic_df",
"[",
"'Desc'",
"]",
"}",
"for",
"param",
"in",
"_acoustic_df",
"[",
"'Params'",
"]",
":",
"pname",
"=",
"self",
".",
"parameters",
".",
"oid2name",
"(",
"param",
"[",
"'OID'",
"]",
")",
".",
"replace",
"(",
"'DAQ_'",
",",
"''",
")",
"try",
":",
"dtype",
"=",
"float",
"if",
"'.'",
"in",
"param",
"[",
"'Val'",
"]",
"else",
"int",
"val",
"=",
"dtype",
"(",
"param",
"[",
"'Val'",
"]",
")",
"except",
"ValueError",
":",
"val",
"=",
"param",
"[",
"'Val'",
"]",
"acoustic_df",
"[",
"pname",
"]",
"=",
"val",
"return",
"TriggerSetup",
"(",
"runsetup_oid",
",",
"name",
",",
"det_id",
",",
"description",
",",
"optical_df",
",",
"acoustic_df",
")"
] | Retrieve the trigger setup for a given runsetup OID | [
"Retrieve",
"the",
"trigger",
"setup",
"for",
"a",
"given",
"runsetup",
"OID"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L256-L298 | train |
tamasgal/km3pipe | km3pipe/db.py | DBManager.detx | def detx(self, det_id, t0set=None, calibration=None):
"""Retrieve the detector file for given detector id
If t0set is given, append the calibration data.
"""
url = 'detx/{0}?'.format(det_id) # '?' since it's ignored if no args
if t0set is not None:
url += '&t0set=' + t0set
if calibration is not None:
url += '&calibrid=' + calibration
detx = self._get_content(url)
return detx | python | def detx(self, det_id, t0set=None, calibration=None):
"""Retrieve the detector file for given detector id
If t0set is given, append the calibration data.
"""
url = 'detx/{0}?'.format(det_id) # '?' since it's ignored if no args
if t0set is not None:
url += '&t0set=' + t0set
if calibration is not None:
url += '&calibrid=' + calibration
detx = self._get_content(url)
return detx | [
"def",
"detx",
"(",
"self",
",",
"det_id",
",",
"t0set",
"=",
"None",
",",
"calibration",
"=",
"None",
")",
":",
"url",
"=",
"'detx/{0}?'",
".",
"format",
"(",
"det_id",
")",
"# '?' since it's ignored if no args",
"if",
"t0set",
"is",
"not",
"None",
":",
"url",
"+=",
"'&t0set='",
"+",
"t0set",
"if",
"calibration",
"is",
"not",
"None",
":",
"url",
"+=",
"'&calibrid='",
"+",
"calibration",
"detx",
"=",
"self",
".",
"_get_content",
"(",
"url",
")",
"return",
"detx"
] | Retrieve the detector file for given detector id
If t0set is given, append the calibration data. | [
"Retrieve",
"the",
"detector",
"file",
"for",
"given",
"detector",
"id"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L311-L323 | train |
tamasgal/km3pipe | km3pipe/db.py | DBManager._get_json | def _get_json(self, url):
"Get JSON-type content"
content = self._get_content('jsonds/' + url)
try:
json_content = json.loads(content.decode())
except AttributeError:
json_content = json.loads(content)
if json_content['Comment']:
log.warning(json_content['Comment'])
if json_content['Result'] != 'OK':
raise ValueError('Error while retrieving the parameter list.')
return json_content['Data'] | python | def _get_json(self, url):
"Get JSON-type content"
content = self._get_content('jsonds/' + url)
try:
json_content = json.loads(content.decode())
except AttributeError:
json_content = json.loads(content)
if json_content['Comment']:
log.warning(json_content['Comment'])
if json_content['Result'] != 'OK':
raise ValueError('Error while retrieving the parameter list.')
return json_content['Data'] | [
"def",
"_get_json",
"(",
"self",
",",
"url",
")",
":",
"content",
"=",
"self",
".",
"_get_content",
"(",
"'jsonds/'",
"+",
"url",
")",
"try",
":",
"json_content",
"=",
"json",
".",
"loads",
"(",
"content",
".",
"decode",
"(",
")",
")",
"except",
"AttributeError",
":",
"json_content",
"=",
"json",
".",
"loads",
"(",
"content",
")",
"if",
"json_content",
"[",
"'Comment'",
"]",
":",
"log",
".",
"warning",
"(",
"json_content",
"[",
"'Comment'",
"]",
")",
"if",
"json_content",
"[",
"'Result'",
"]",
"!=",
"'OK'",
":",
"raise",
"ValueError",
"(",
"'Error while retrieving the parameter list.'",
")",
"return",
"json_content",
"[",
"'Data'",
"]"
] | Get JSON-type content | [
"Get",
"JSON",
"-",
"type",
"content"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L356-L367 | train |
tamasgal/km3pipe | km3pipe/db.py | DBManager._get_content | def _get_content(self, url):
"Get HTML content"
target_url = self._db_url + '/' + unquote(url) # .encode('utf-8'))
log.debug("Opening '{0}'".format(target_url))
try:
f = self.opener.open(target_url)
except HTTPError as e:
log.error("HTTP error, your session may be expired.")
log.error(e)
if input("Request new permanent session and retry? (y/n)") in 'yY':
self.request_permanent_session()
return self._get_content(url)
else:
return None
log.debug("Accessing '{0}'".format(target_url))
try:
content = f.read()
except IncompleteRead as icread:
log.critical(
"Incomplete data received from the DB, " +
"the data could be corrupted."
)
content = icread.partial
log.debug("Got {0} bytes of data.".format(len(content)))
return content.decode('utf-8') | python | def _get_content(self, url):
"Get HTML content"
target_url = self._db_url + '/' + unquote(url) # .encode('utf-8'))
log.debug("Opening '{0}'".format(target_url))
try:
f = self.opener.open(target_url)
except HTTPError as e:
log.error("HTTP error, your session may be expired.")
log.error(e)
if input("Request new permanent session and retry? (y/n)") in 'yY':
self.request_permanent_session()
return self._get_content(url)
else:
return None
log.debug("Accessing '{0}'".format(target_url))
try:
content = f.read()
except IncompleteRead as icread:
log.critical(
"Incomplete data received from the DB, " +
"the data could be corrupted."
)
content = icread.partial
log.debug("Got {0} bytes of data.".format(len(content)))
return content.decode('utf-8') | [
"def",
"_get_content",
"(",
"self",
",",
"url",
")",
":",
"target_url",
"=",
"self",
".",
"_db_url",
"+",
"'/'",
"+",
"unquote",
"(",
"url",
")",
"# .encode('utf-8'))",
"log",
".",
"debug",
"(",
"\"Opening '{0}'\"",
".",
"format",
"(",
"target_url",
")",
")",
"try",
":",
"f",
"=",
"self",
".",
"opener",
".",
"open",
"(",
"target_url",
")",
"except",
"HTTPError",
"as",
"e",
":",
"log",
".",
"error",
"(",
"\"HTTP error, your session may be expired.\"",
")",
"log",
".",
"error",
"(",
"e",
")",
"if",
"input",
"(",
"\"Request new permanent session and retry? (y/n)\"",
")",
"in",
"'yY'",
":",
"self",
".",
"request_permanent_session",
"(",
")",
"return",
"self",
".",
"_get_content",
"(",
"url",
")",
"else",
":",
"return",
"None",
"log",
".",
"debug",
"(",
"\"Accessing '{0}'\"",
".",
"format",
"(",
"target_url",
")",
")",
"try",
":",
"content",
"=",
"f",
".",
"read",
"(",
")",
"except",
"IncompleteRead",
"as",
"icread",
":",
"log",
".",
"critical",
"(",
"\"Incomplete data received from the DB, \"",
"+",
"\"the data could be corrupted.\"",
")",
"content",
"=",
"icread",
".",
"partial",
"log",
".",
"debug",
"(",
"\"Got {0} bytes of data.\"",
".",
"format",
"(",
"len",
"(",
"content",
")",
")",
")",
"return",
"content",
".",
"decode",
"(",
"'utf-8'",
")"
] | Get HTML content | [
"Get",
"HTML",
"content"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L369-L393 | train |
tamasgal/km3pipe | km3pipe/db.py | DBManager.opener | def opener(self):
"A reusable connection manager"
if self._opener is None:
log.debug("Creating connection handler")
opener = build_opener()
if self._cookies:
log.debug("Appending cookies")
else:
log.debug("No cookies to append")
for cookie in self._cookies:
cookie_str = cookie.name + '=' + cookie.value
opener.addheaders.append(('Cookie', cookie_str))
self._opener = opener
else:
log.debug("Reusing connection manager")
return self._opener | python | def opener(self):
"A reusable connection manager"
if self._opener is None:
log.debug("Creating connection handler")
opener = build_opener()
if self._cookies:
log.debug("Appending cookies")
else:
log.debug("No cookies to append")
for cookie in self._cookies:
cookie_str = cookie.name + '=' + cookie.value
opener.addheaders.append(('Cookie', cookie_str))
self._opener = opener
else:
log.debug("Reusing connection manager")
return self._opener | [
"def",
"opener",
"(",
"self",
")",
":",
"if",
"self",
".",
"_opener",
"is",
"None",
":",
"log",
".",
"debug",
"(",
"\"Creating connection handler\"",
")",
"opener",
"=",
"build_opener",
"(",
")",
"if",
"self",
".",
"_cookies",
":",
"log",
".",
"debug",
"(",
"\"Appending cookies\"",
")",
"else",
":",
"log",
".",
"debug",
"(",
"\"No cookies to append\"",
")",
"for",
"cookie",
"in",
"self",
".",
"_cookies",
":",
"cookie_str",
"=",
"cookie",
".",
"name",
"+",
"'='",
"+",
"cookie",
".",
"value",
"opener",
".",
"addheaders",
".",
"append",
"(",
"(",
"'Cookie'",
",",
"cookie_str",
")",
")",
"self",
".",
"_opener",
"=",
"opener",
"else",
":",
"log",
".",
"debug",
"(",
"\"Reusing connection manager\"",
")",
"return",
"self",
".",
"_opener"
] | A reusable connection manager | [
"A",
"reusable",
"connection",
"manager"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L396-L411 | train |
tamasgal/km3pipe | km3pipe/db.py | DBManager.request_sid_cookie | def request_sid_cookie(self, username, password):
"""Request cookie for permanent session token."""
log.debug("Requesting SID cookie")
target_url = self._login_url + '?usr={0}&pwd={1}&persist=y'.format(
username, password
)
cookie = urlopen(target_url).read()
return cookie | python | def request_sid_cookie(self, username, password):
"""Request cookie for permanent session token."""
log.debug("Requesting SID cookie")
target_url = self._login_url + '?usr={0}&pwd={1}&persist=y'.format(
username, password
)
cookie = urlopen(target_url).read()
return cookie | [
"def",
"request_sid_cookie",
"(",
"self",
",",
"username",
",",
"password",
")",
":",
"log",
".",
"debug",
"(",
"\"Requesting SID cookie\"",
")",
"target_url",
"=",
"self",
".",
"_login_url",
"+",
"'?usr={0}&pwd={1}&persist=y'",
".",
"format",
"(",
"username",
",",
"password",
")",
"cookie",
"=",
"urlopen",
"(",
"target_url",
")",
".",
"read",
"(",
")",
"return",
"cookie"
] | Request cookie for permanent session token. | [
"Request",
"cookie",
"for",
"permanent",
"session",
"token",
"."
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L413-L420 | train |
tamasgal/km3pipe | km3pipe/db.py | DBManager.restore_session | def restore_session(self, cookie):
"""Establish databse connection using permanent session cookie"""
log.debug("Restoring session from cookie: {}".format(cookie))
opener = build_opener()
opener.addheaders.append(('Cookie', cookie))
self._opener = opener | python | def restore_session(self, cookie):
"""Establish databse connection using permanent session cookie"""
log.debug("Restoring session from cookie: {}".format(cookie))
opener = build_opener()
opener.addheaders.append(('Cookie', cookie))
self._opener = opener | [
"def",
"restore_session",
"(",
"self",
",",
"cookie",
")",
":",
"log",
".",
"debug",
"(",
"\"Restoring session from cookie: {}\"",
".",
"format",
"(",
"cookie",
")",
")",
"opener",
"=",
"build_opener",
"(",
")",
"opener",
".",
"addheaders",
".",
"append",
"(",
"(",
"'Cookie'",
",",
"cookie",
")",
")",
"self",
".",
"_opener",
"=",
"opener"
] | Establish databse connection using permanent session cookie | [
"Establish",
"databse",
"connection",
"using",
"permanent",
"session",
"cookie"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L422-L427 | train |
tamasgal/km3pipe | km3pipe/db.py | DBManager.login | def login(self, username, password):
"Login to the database and store cookies for upcoming requests."
log.debug("Logging in to the DB")
opener = self._build_opener()
values = {'usr': username, 'pwd': password}
req = self._make_request(self._login_url, values)
try:
log.debug("Sending login request")
f = opener.open(req)
except URLError as e:
log.error("Failed to connect to the database -> probably down!")
log.error("Error from database server:\n {0}".format(e))
return False
html = f.read()
failed_auth_message = 'Bad username or password'
if failed_auth_message in str(html):
log.error(failed_auth_message)
return False
return True | python | def login(self, username, password):
"Login to the database and store cookies for upcoming requests."
log.debug("Logging in to the DB")
opener = self._build_opener()
values = {'usr': username, 'pwd': password}
req = self._make_request(self._login_url, values)
try:
log.debug("Sending login request")
f = opener.open(req)
except URLError as e:
log.error("Failed to connect to the database -> probably down!")
log.error("Error from database server:\n {0}".format(e))
return False
html = f.read()
failed_auth_message = 'Bad username or password'
if failed_auth_message in str(html):
log.error(failed_auth_message)
return False
return True | [
"def",
"login",
"(",
"self",
",",
"username",
",",
"password",
")",
":",
"log",
".",
"debug",
"(",
"\"Logging in to the DB\"",
")",
"opener",
"=",
"self",
".",
"_build_opener",
"(",
")",
"values",
"=",
"{",
"'usr'",
":",
"username",
",",
"'pwd'",
":",
"password",
"}",
"req",
"=",
"self",
".",
"_make_request",
"(",
"self",
".",
"_login_url",
",",
"values",
")",
"try",
":",
"log",
".",
"debug",
"(",
"\"Sending login request\"",
")",
"f",
"=",
"opener",
".",
"open",
"(",
"req",
")",
"except",
"URLError",
"as",
"e",
":",
"log",
".",
"error",
"(",
"\"Failed to connect to the database -> probably down!\"",
")",
"log",
".",
"error",
"(",
"\"Error from database server:\\n {0}\"",
".",
"format",
"(",
"e",
")",
")",
"return",
"False",
"html",
"=",
"f",
".",
"read",
"(",
")",
"failed_auth_message",
"=",
"'Bad username or password'",
"if",
"failed_auth_message",
"in",
"str",
"(",
"html",
")",
":",
"log",
".",
"error",
"(",
"failed_auth_message",
")",
"return",
"False",
"return",
"True"
] | Login to the database and store cookies for upcoming requests. | [
"Login",
"to",
"the",
"database",
"and",
"store",
"cookies",
"for",
"upcoming",
"requests",
"."
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L449-L467 | train |
tamasgal/km3pipe | km3pipe/db.py | StreamDS._update_streams | def _update_streams(self):
"""Update the list of available straems"""
content = self._db._get_content("streamds")
self._stream_df = read_csv(content).sort_values("STREAM")
self._streams = None
for stream in self.streams:
setattr(self, stream, self.__getattr__(stream)) | python | def _update_streams(self):
"""Update the list of available straems"""
content = self._db._get_content("streamds")
self._stream_df = read_csv(content).sort_values("STREAM")
self._streams = None
for stream in self.streams:
setattr(self, stream, self.__getattr__(stream)) | [
"def",
"_update_streams",
"(",
"self",
")",
":",
"content",
"=",
"self",
".",
"_db",
".",
"_get_content",
"(",
"\"streamds\"",
")",
"self",
".",
"_stream_df",
"=",
"read_csv",
"(",
"content",
")",
".",
"sort_values",
"(",
"\"STREAM\"",
")",
"self",
".",
"_streams",
"=",
"None",
"for",
"stream",
"in",
"self",
".",
"streams",
":",
"setattr",
"(",
"self",
",",
"stream",
",",
"self",
".",
"__getattr__",
"(",
"stream",
")",
")"
] | Update the list of available straems | [
"Update",
"the",
"list",
"of",
"available",
"straems"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L517-L523 | train |
tamasgal/km3pipe | km3pipe/db.py | StreamDS.streams | def streams(self):
"""A list of available streams"""
if self._streams is None:
self._streams = list(self._stream_df["STREAM"].values)
return self._streams | python | def streams(self):
"""A list of available streams"""
if self._streams is None:
self._streams = list(self._stream_df["STREAM"].values)
return self._streams | [
"def",
"streams",
"(",
"self",
")",
":",
"if",
"self",
".",
"_streams",
"is",
"None",
":",
"self",
".",
"_streams",
"=",
"list",
"(",
"self",
".",
"_stream_df",
"[",
"\"STREAM\"",
"]",
".",
"values",
")",
"return",
"self",
".",
"_streams"
] | A list of available streams | [
"A",
"list",
"of",
"available",
"streams"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L553-L557 | train |
tamasgal/km3pipe | km3pipe/db.py | StreamDS.help | def help(self, stream):
"""Show the help for a given stream."""
if stream not in self.streams:
log.error("Stream '{}' not found in the database.".format(stream))
params = self._stream_df[self._stream_df['STREAM'] == stream].values[0]
self._print_stream_parameters(params) | python | def help(self, stream):
"""Show the help for a given stream."""
if stream not in self.streams:
log.error("Stream '{}' not found in the database.".format(stream))
params = self._stream_df[self._stream_df['STREAM'] == stream].values[0]
self._print_stream_parameters(params) | [
"def",
"help",
"(",
"self",
",",
"stream",
")",
":",
"if",
"stream",
"not",
"in",
"self",
".",
"streams",
":",
"log",
".",
"error",
"(",
"\"Stream '{}' not found in the database.\"",
".",
"format",
"(",
"stream",
")",
")",
"params",
"=",
"self",
".",
"_stream_df",
"[",
"self",
".",
"_stream_df",
"[",
"'STREAM'",
"]",
"==",
"stream",
"]",
".",
"values",
"[",
"0",
"]",
"self",
".",
"_print_stream_parameters",
"(",
"params",
")"
] | Show the help for a given stream. | [
"Show",
"the",
"help",
"for",
"a",
"given",
"stream",
"."
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L574-L579 | train |
tamasgal/km3pipe | km3pipe/db.py | StreamDS._print_stream_parameters | def _print_stream_parameters(self, values):
"""Print a coloured help for a given tuple of stream parameters."""
cprint("{0}".format(*values), "magenta", attrs=["bold"])
print("{4}".format(*values))
cprint(" available formats: {1}".format(*values), "blue")
cprint(" mandatory selectors: {2}".format(*values), "red")
cprint(" optional selectors: {3}".format(*values), "green")
print() | python | def _print_stream_parameters(self, values):
"""Print a coloured help for a given tuple of stream parameters."""
cprint("{0}".format(*values), "magenta", attrs=["bold"])
print("{4}".format(*values))
cprint(" available formats: {1}".format(*values), "blue")
cprint(" mandatory selectors: {2}".format(*values), "red")
cprint(" optional selectors: {3}".format(*values), "green")
print() | [
"def",
"_print_stream_parameters",
"(",
"self",
",",
"values",
")",
":",
"cprint",
"(",
"\"{0}\"",
".",
"format",
"(",
"*",
"values",
")",
",",
"\"magenta\"",
",",
"attrs",
"=",
"[",
"\"bold\"",
"]",
")",
"print",
"(",
"\"{4}\"",
".",
"format",
"(",
"*",
"values",
")",
")",
"cprint",
"(",
"\" available formats: {1}\"",
".",
"format",
"(",
"*",
"values",
")",
",",
"\"blue\"",
")",
"cprint",
"(",
"\" mandatory selectors: {2}\"",
".",
"format",
"(",
"*",
"values",
")",
",",
"\"red\"",
")",
"cprint",
"(",
"\" optional selectors: {3}\"",
".",
"format",
"(",
"*",
"values",
")",
",",
"\"green\"",
")",
"print",
"(",
")"
] | Print a coloured help for a given tuple of stream parameters. | [
"Print",
"a",
"coloured",
"help",
"for",
"a",
"given",
"tuple",
"of",
"stream",
"parameters",
"."
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L586-L593 | train |
tamasgal/km3pipe | km3pipe/db.py | StreamDS.get | def get(self, stream, fmt='txt', **kwargs):
"""Get the data for a given stream manually"""
sel = ''.join(["&{0}={1}".format(k, v) for (k, v) in kwargs.items()])
url = "streamds/{0}.{1}?{2}".format(stream, fmt, sel[1:])
data = self._db._get_content(url)
if not data:
log.error("No data found at URL '%s'." % url)
return
if (data.startswith("ERROR")):
log.error(data)
return
if fmt == "txt":
return read_csv(data)
return data | python | def get(self, stream, fmt='txt', **kwargs):
"""Get the data for a given stream manually"""
sel = ''.join(["&{0}={1}".format(k, v) for (k, v) in kwargs.items()])
url = "streamds/{0}.{1}?{2}".format(stream, fmt, sel[1:])
data = self._db._get_content(url)
if not data:
log.error("No data found at URL '%s'." % url)
return
if (data.startswith("ERROR")):
log.error(data)
return
if fmt == "txt":
return read_csv(data)
return data | [
"def",
"get",
"(",
"self",
",",
"stream",
",",
"fmt",
"=",
"'txt'",
",",
"*",
"*",
"kwargs",
")",
":",
"sel",
"=",
"''",
".",
"join",
"(",
"[",
"\"&{0}={1}\"",
".",
"format",
"(",
"k",
",",
"v",
")",
"for",
"(",
"k",
",",
"v",
")",
"in",
"kwargs",
".",
"items",
"(",
")",
"]",
")",
"url",
"=",
"\"streamds/{0}.{1}?{2}\"",
".",
"format",
"(",
"stream",
",",
"fmt",
",",
"sel",
"[",
"1",
":",
"]",
")",
"data",
"=",
"self",
".",
"_db",
".",
"_get_content",
"(",
"url",
")",
"if",
"not",
"data",
":",
"log",
".",
"error",
"(",
"\"No data found at URL '%s'.\"",
"%",
"url",
")",
"return",
"if",
"(",
"data",
".",
"startswith",
"(",
"\"ERROR\"",
")",
")",
":",
"log",
".",
"error",
"(",
"data",
")",
"return",
"if",
"fmt",
"==",
"\"txt\"",
":",
"return",
"read_csv",
"(",
"data",
")",
"return",
"data"
] | Get the data for a given stream manually | [
"Get",
"the",
"data",
"for",
"a",
"given",
"stream",
"manually"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L595-L608 | train |
tamasgal/km3pipe | km3pipe/db.py | ParametersContainer.get_parameter | def get_parameter(self, parameter):
"Return a dict for given parameter"
parameter = self._get_parameter_name(parameter)
return self._parameters[parameter] | python | def get_parameter(self, parameter):
"Return a dict for given parameter"
parameter = self._get_parameter_name(parameter)
return self._parameters[parameter] | [
"def",
"get_parameter",
"(",
"self",
",",
"parameter",
")",
":",
"parameter",
"=",
"self",
".",
"_get_parameter_name",
"(",
"parameter",
")",
"return",
"self",
".",
"_parameters",
"[",
"parameter",
"]"
] | Return a dict for given parameter | [
"Return",
"a",
"dict",
"for",
"given",
"parameter"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L624-L627 | train |
tamasgal/km3pipe | km3pipe/db.py | ParametersContainer.get_converter | def get_converter(self, parameter):
"""Generate unit conversion function for given parameter"""
if parameter not in self._converters:
param = self.get_parameter(parameter)
try:
scale = float(param['Scale'])
except KeyError:
scale = 1
def convert(value):
# easy_scale = float(param['EasyScale'])
# easy_scale_multiplier = float(param['EasyScaleMultiplier'])
return value * scale
return convert | python | def get_converter(self, parameter):
"""Generate unit conversion function for given parameter"""
if parameter not in self._converters:
param = self.get_parameter(parameter)
try:
scale = float(param['Scale'])
except KeyError:
scale = 1
def convert(value):
# easy_scale = float(param['EasyScale'])
# easy_scale_multiplier = float(param['EasyScaleMultiplier'])
return value * scale
return convert | [
"def",
"get_converter",
"(",
"self",
",",
"parameter",
")",
":",
"if",
"parameter",
"not",
"in",
"self",
".",
"_converters",
":",
"param",
"=",
"self",
".",
"get_parameter",
"(",
"parameter",
")",
"try",
":",
"scale",
"=",
"float",
"(",
"param",
"[",
"'Scale'",
"]",
")",
"except",
"KeyError",
":",
"scale",
"=",
"1",
"def",
"convert",
"(",
"value",
")",
":",
"# easy_scale = float(param['EasyScale'])",
"# easy_scale_multiplier = float(param['EasyScaleMultiplier'])",
"return",
"value",
"*",
"scale",
"return",
"convert"
] | Generate unit conversion function for given parameter | [
"Generate",
"unit",
"conversion",
"function",
"for",
"given",
"parameter"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L629-L643 | train |
tamasgal/km3pipe | km3pipe/db.py | ParametersContainer.unit | def unit(self, parameter):
"Get the unit for given parameter"
parameter = self._get_parameter_name(parameter).lower()
return self._parameters[parameter]['Unit'] | python | def unit(self, parameter):
"Get the unit for given parameter"
parameter = self._get_parameter_name(parameter).lower()
return self._parameters[parameter]['Unit'] | [
"def",
"unit",
"(",
"self",
",",
"parameter",
")",
":",
"parameter",
"=",
"self",
".",
"_get_parameter_name",
"(",
"parameter",
")",
".",
"lower",
"(",
")",
"return",
"self",
".",
"_parameters",
"[",
"parameter",
"]",
"[",
"'Unit'",
"]"
] | Get the unit for given parameter | [
"Get",
"the",
"unit",
"for",
"given",
"parameter"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L645-L648 | train |
tamasgal/km3pipe | km3pipe/db.py | ParametersContainer.oid2name | def oid2name(self, oid):
"Look up the parameter name for a given OID"
if not self._oid_lookup:
for name, data in self._parameters.items():
self._oid_lookup[data['OID']] = data['Name']
return self._oid_lookup[oid] | python | def oid2name(self, oid):
"Look up the parameter name for a given OID"
if not self._oid_lookup:
for name, data in self._parameters.items():
self._oid_lookup[data['OID']] = data['Name']
return self._oid_lookup[oid] | [
"def",
"oid2name",
"(",
"self",
",",
"oid",
")",
":",
"if",
"not",
"self",
".",
"_oid_lookup",
":",
"for",
"name",
",",
"data",
"in",
"self",
".",
"_parameters",
".",
"items",
"(",
")",
":",
"self",
".",
"_oid_lookup",
"[",
"data",
"[",
"'OID'",
"]",
"]",
"=",
"data",
"[",
"'Name'",
"]",
"return",
"self",
".",
"_oid_lookup",
"[",
"oid",
"]"
] | Look up the parameter name for a given OID | [
"Look",
"up",
"the",
"parameter",
"name",
"for",
"a",
"given",
"OID"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L650-L655 | train |
tamasgal/km3pipe | km3pipe/db.py | DOMContainer.via_dom_id | def via_dom_id(self, dom_id, det_id):
"""Return DOM for given dom_id"""
try:
return DOM.from_json([
d for d in self._json
if d["DOMId"] == dom_id and d["DetOID"] == det_id
][0])
except IndexError:
log.critical("No DOM found for DOM ID '{0}'".format(dom_id)) | python | def via_dom_id(self, dom_id, det_id):
"""Return DOM for given dom_id"""
try:
return DOM.from_json([
d for d in self._json
if d["DOMId"] == dom_id and d["DetOID"] == det_id
][0])
except IndexError:
log.critical("No DOM found for DOM ID '{0}'".format(dom_id)) | [
"def",
"via_dom_id",
"(",
"self",
",",
"dom_id",
",",
"det_id",
")",
":",
"try",
":",
"return",
"DOM",
".",
"from_json",
"(",
"[",
"d",
"for",
"d",
"in",
"self",
".",
"_json",
"if",
"d",
"[",
"\"DOMId\"",
"]",
"==",
"dom_id",
"and",
"d",
"[",
"\"DetOID\"",
"]",
"==",
"det_id",
"]",
"[",
"0",
"]",
")",
"except",
"IndexError",
":",
"log",
".",
"critical",
"(",
"\"No DOM found for DOM ID '{0}'\"",
".",
"format",
"(",
"dom_id",
")",
")"
] | Return DOM for given dom_id | [
"Return",
"DOM",
"for",
"given",
"dom_id"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L717-L725 | train |
tamasgal/km3pipe | km3pipe/db.py | DOMContainer.via_clb_upi | def via_clb_upi(self, clb_upi, det_id):
"""return DOM for given CLB UPI"""
try:
return DOM.from_json([
d for d in self._json
if d["CLBUPI"] == clb_upi and d["DetOID"] == det_id
][0])
except IndexError:
log.critical("No DOM found for CLB UPI '{0}'".format(clb_upi)) | python | def via_clb_upi(self, clb_upi, det_id):
"""return DOM for given CLB UPI"""
try:
return DOM.from_json([
d for d in self._json
if d["CLBUPI"] == clb_upi and d["DetOID"] == det_id
][0])
except IndexError:
log.critical("No DOM found for CLB UPI '{0}'".format(clb_upi)) | [
"def",
"via_clb_upi",
"(",
"self",
",",
"clb_upi",
",",
"det_id",
")",
":",
"try",
":",
"return",
"DOM",
".",
"from_json",
"(",
"[",
"d",
"for",
"d",
"in",
"self",
".",
"_json",
"if",
"d",
"[",
"\"CLBUPI\"",
"]",
"==",
"clb_upi",
"and",
"d",
"[",
"\"DetOID\"",
"]",
"==",
"det_id",
"]",
"[",
"0",
"]",
")",
"except",
"IndexError",
":",
"log",
".",
"critical",
"(",
"\"No DOM found for CLB UPI '{0}'\"",
".",
"format",
"(",
"clb_upi",
")",
")"
] | return DOM for given CLB UPI | [
"return",
"DOM",
"for",
"given",
"CLB",
"UPI"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L727-L735 | train |
tamasgal/km3pipe | km3pipe/db.py | CLBMap.upi | def upi(self):
"""A dict of CLBs with UPI as key"""
parameter = 'UPI'
if parameter not in self._by:
self._populate(by=parameter)
return self._by[parameter] | python | def upi(self):
"""A dict of CLBs with UPI as key"""
parameter = 'UPI'
if parameter not in self._by:
self._populate(by=parameter)
return self._by[parameter] | [
"def",
"upi",
"(",
"self",
")",
":",
"parameter",
"=",
"'UPI'",
"if",
"parameter",
"not",
"in",
"self",
".",
"_by",
":",
"self",
".",
"_populate",
"(",
"by",
"=",
"parameter",
")",
"return",
"self",
".",
"_by",
"[",
"parameter",
"]"
] | A dict of CLBs with UPI as key | [
"A",
"dict",
"of",
"CLBs",
"with",
"UPI",
"as",
"key"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L879-L884 | train |
tamasgal/km3pipe | km3pipe/db.py | CLBMap.dom_id | def dom_id(self):
"""A dict of CLBs with DOM ID as key"""
parameter = 'DOMID'
if parameter not in self._by:
self._populate(by=parameter)
return self._by[parameter] | python | def dom_id(self):
"""A dict of CLBs with DOM ID as key"""
parameter = 'DOMID'
if parameter not in self._by:
self._populate(by=parameter)
return self._by[parameter] | [
"def",
"dom_id",
"(",
"self",
")",
":",
"parameter",
"=",
"'DOMID'",
"if",
"parameter",
"not",
"in",
"self",
".",
"_by",
":",
"self",
".",
"_populate",
"(",
"by",
"=",
"parameter",
")",
"return",
"self",
".",
"_by",
"[",
"parameter",
"]"
] | A dict of CLBs with DOM ID as key | [
"A",
"dict",
"of",
"CLBs",
"with",
"DOM",
"ID",
"as",
"key"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L887-L892 | train |
tamasgal/km3pipe | km3pipe/db.py | CLBMap.base | def base(self, du):
"""Return the base CLB for a given DU"""
parameter = 'base'
if parameter not in self._by:
self._by[parameter] = {}
for clb in self.upi.values():
if clb.floor == 0:
self._by[parameter][clb.du] = clb
return self._by[parameter][du] | python | def base(self, du):
"""Return the base CLB for a given DU"""
parameter = 'base'
if parameter not in self._by:
self._by[parameter] = {}
for clb in self.upi.values():
if clb.floor == 0:
self._by[parameter][clb.du] = clb
return self._by[parameter][du] | [
"def",
"base",
"(",
"self",
",",
"du",
")",
":",
"parameter",
"=",
"'base'",
"if",
"parameter",
"not",
"in",
"self",
".",
"_by",
":",
"self",
".",
"_by",
"[",
"parameter",
"]",
"=",
"{",
"}",
"for",
"clb",
"in",
"self",
".",
"upi",
".",
"values",
"(",
")",
":",
"if",
"clb",
".",
"floor",
"==",
"0",
":",
"self",
".",
"_by",
"[",
"parameter",
"]",
"[",
"clb",
".",
"du",
"]",
"=",
"clb",
"return",
"self",
".",
"_by",
"[",
"parameter",
"]",
"[",
"du",
"]"
] | Return the base CLB for a given DU | [
"Return",
"the",
"base",
"CLB",
"for",
"a",
"given",
"DU"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/db.py#L894-L902 | train |
IRC-SPHERE/HyperStream | hyperstream/channels/database_channel.py | DatabaseChannel.get_results | def get_results(self, stream, time_interval):
"""
Get the results for a given stream
:param time_interval: The time interval
:param stream: The stream object
:return: A generator over stream instances
"""
query = stream.stream_id.as_raw()
query['datetime'] = {'$gt': time_interval.start, '$lte': time_interval.end}
with switch_db(StreamInstanceModel, 'hyperstream'):
for instance in StreamInstanceModel.objects(__raw__=query):
yield StreamInstance(timestamp=instance.datetime, value=instance.value) | python | def get_results(self, stream, time_interval):
"""
Get the results for a given stream
:param time_interval: The time interval
:param stream: The stream object
:return: A generator over stream instances
"""
query = stream.stream_id.as_raw()
query['datetime'] = {'$gt': time_interval.start, '$lte': time_interval.end}
with switch_db(StreamInstanceModel, 'hyperstream'):
for instance in StreamInstanceModel.objects(__raw__=query):
yield StreamInstance(timestamp=instance.datetime, value=instance.value) | [
"def",
"get_results",
"(",
"self",
",",
"stream",
",",
"time_interval",
")",
":",
"query",
"=",
"stream",
".",
"stream_id",
".",
"as_raw",
"(",
")",
"query",
"[",
"'datetime'",
"]",
"=",
"{",
"'$gt'",
":",
"time_interval",
".",
"start",
",",
"'$lte'",
":",
"time_interval",
".",
"end",
"}",
"with",
"switch_db",
"(",
"StreamInstanceModel",
",",
"'hyperstream'",
")",
":",
"for",
"instance",
"in",
"StreamInstanceModel",
".",
"objects",
"(",
"__raw__",
"=",
"query",
")",
":",
"yield",
"StreamInstance",
"(",
"timestamp",
"=",
"instance",
".",
"datetime",
",",
"value",
"=",
"instance",
".",
"value",
")"
] | Get the results for a given stream
:param time_interval: The time interval
:param stream: The stream object
:return: A generator over stream instances | [
"Get",
"the",
"results",
"for",
"a",
"given",
"stream"
] | 98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780 | https://github.com/IRC-SPHERE/HyperStream/blob/98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780/hyperstream/channels/database_channel.py#L57-L69 | train |
tamasgal/km3pipe | km3pipe/io/clb.py | CLBPump.seek_to_packet | def seek_to_packet(self, index):
"""Move file pointer to the packet with given index."""
pointer_position = self.packet_positions[index]
self.blob_file.seek(pointer_position, 0) | python | def seek_to_packet(self, index):
"""Move file pointer to the packet with given index."""
pointer_position = self.packet_positions[index]
self.blob_file.seek(pointer_position, 0) | [
"def",
"seek_to_packet",
"(",
"self",
",",
"index",
")",
":",
"pointer_position",
"=",
"self",
".",
"packet_positions",
"[",
"index",
"]",
"self",
".",
"blob_file",
".",
"seek",
"(",
"pointer_position",
",",
"0",
")"
] | Move file pointer to the packet with given index. | [
"Move",
"file",
"pointer",
"to",
"the",
"packet",
"with",
"given",
"index",
"."
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/io/clb.py#L59-L62 | train |
tamasgal/km3pipe | km3pipe/io/clb.py | CLBPump.next_blob | def next_blob(self):
"""Generate next blob in file"""
try:
length = struct.unpack('<i', self.blob_file.read(4))[0]
except struct.error:
raise StopIteration
header = CLBHeader(file_obj=self.blob_file)
blob = {'CLBHeader': header}
remaining_length = length - header.size
pmt_data = []
pmt_raw_data = self.blob_file.read(remaining_length)
pmt_raw_data_io = BytesIO(pmt_raw_data)
for _ in range(int(remaining_length / 6)):
channel_id, time, tot = struct.unpack(
'>cic', pmt_raw_data_io.read(6)
)
pmt_data.append(PMTData(ord(channel_id), time, ord(tot)))
blob['PMTData'] = pmt_data
blob['PMTRawData'] = pmt_raw_data
return blob | python | def next_blob(self):
"""Generate next blob in file"""
try:
length = struct.unpack('<i', self.blob_file.read(4))[0]
except struct.error:
raise StopIteration
header = CLBHeader(file_obj=self.blob_file)
blob = {'CLBHeader': header}
remaining_length = length - header.size
pmt_data = []
pmt_raw_data = self.blob_file.read(remaining_length)
pmt_raw_data_io = BytesIO(pmt_raw_data)
for _ in range(int(remaining_length / 6)):
channel_id, time, tot = struct.unpack(
'>cic', pmt_raw_data_io.read(6)
)
pmt_data.append(PMTData(ord(channel_id), time, ord(tot)))
blob['PMTData'] = pmt_data
blob['PMTRawData'] = pmt_raw_data
return blob | [
"def",
"next_blob",
"(",
"self",
")",
":",
"try",
":",
"length",
"=",
"struct",
".",
"unpack",
"(",
"'<i'",
",",
"self",
".",
"blob_file",
".",
"read",
"(",
"4",
")",
")",
"[",
"0",
"]",
"except",
"struct",
".",
"error",
":",
"raise",
"StopIteration",
"header",
"=",
"CLBHeader",
"(",
"file_obj",
"=",
"self",
".",
"blob_file",
")",
"blob",
"=",
"{",
"'CLBHeader'",
":",
"header",
"}",
"remaining_length",
"=",
"length",
"-",
"header",
".",
"size",
"pmt_data",
"=",
"[",
"]",
"pmt_raw_data",
"=",
"self",
".",
"blob_file",
".",
"read",
"(",
"remaining_length",
")",
"pmt_raw_data_io",
"=",
"BytesIO",
"(",
"pmt_raw_data",
")",
"for",
"_",
"in",
"range",
"(",
"int",
"(",
"remaining_length",
"/",
"6",
")",
")",
":",
"channel_id",
",",
"time",
",",
"tot",
"=",
"struct",
".",
"unpack",
"(",
"'>cic'",
",",
"pmt_raw_data_io",
".",
"read",
"(",
"6",
")",
")",
"pmt_data",
".",
"append",
"(",
"PMTData",
"(",
"ord",
"(",
"channel_id",
")",
",",
"time",
",",
"ord",
"(",
"tot",
")",
")",
")",
"blob",
"[",
"'PMTData'",
"]",
"=",
"pmt_data",
"blob",
"[",
"'PMTRawData'",
"]",
"=",
"pmt_raw_data",
"return",
"blob"
] | Generate next blob in file | [
"Generate",
"next",
"blob",
"in",
"file"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/io/clb.py#L64-L83 | train |
PrefPy/prefpy | prefpy/mechanism.py | getKendallTauScore | def getKendallTauScore(myResponse, otherResponse):
"""
Returns the Kendall Tau Score
"""
# variables
kt = 0
list1 = myResponse.values()
list2 = otherResponse.values()
if len(list1) <= 1:
return kt
# runs through list1
for itr1 in range(0, len(list1) - 1):
# runs through list2
for itr2 in range(itr1 + 1, len(list2)):
# checks if there is a discrepancy. If so, adds
if ((list1[itr1] > list1[itr2]
and list2[itr1] < list2[itr2])
or (list1[itr1] < list1[itr2]
and list2[itr1] > list2[itr2])):
kt += 1
# normalizes between 0 and 1
kt = (kt * 2) / (len(list1) * (len(list1) - 1))
# returns found value
return kt | python | def getKendallTauScore(myResponse, otherResponse):
"""
Returns the Kendall Tau Score
"""
# variables
kt = 0
list1 = myResponse.values()
list2 = otherResponse.values()
if len(list1) <= 1:
return kt
# runs through list1
for itr1 in range(0, len(list1) - 1):
# runs through list2
for itr2 in range(itr1 + 1, len(list2)):
# checks if there is a discrepancy. If so, adds
if ((list1[itr1] > list1[itr2]
and list2[itr1] < list2[itr2])
or (list1[itr1] < list1[itr2]
and list2[itr1] > list2[itr2])):
kt += 1
# normalizes between 0 and 1
kt = (kt * 2) / (len(list1) * (len(list1) - 1))
# returns found value
return kt | [
"def",
"getKendallTauScore",
"(",
"myResponse",
",",
"otherResponse",
")",
":",
"# variables",
"kt",
"=",
"0",
"list1",
"=",
"myResponse",
".",
"values",
"(",
")",
"list2",
"=",
"otherResponse",
".",
"values",
"(",
")",
"if",
"len",
"(",
"list1",
")",
"<=",
"1",
":",
"return",
"kt",
"# runs through list1",
"for",
"itr1",
"in",
"range",
"(",
"0",
",",
"len",
"(",
"list1",
")",
"-",
"1",
")",
":",
"# runs through list2",
"for",
"itr2",
"in",
"range",
"(",
"itr1",
"+",
"1",
",",
"len",
"(",
"list2",
")",
")",
":",
"# checks if there is a discrepancy. If so, adds",
"if",
"(",
"(",
"list1",
"[",
"itr1",
"]",
">",
"list1",
"[",
"itr2",
"]",
"and",
"list2",
"[",
"itr1",
"]",
"<",
"list2",
"[",
"itr2",
"]",
")",
"or",
"(",
"list1",
"[",
"itr1",
"]",
"<",
"list1",
"[",
"itr2",
"]",
"and",
"list2",
"[",
"itr1",
"]",
">",
"list2",
"[",
"itr2",
"]",
")",
")",
":",
"kt",
"+=",
"1",
"# normalizes between 0 and 1",
"kt",
"=",
"(",
"kt",
"*",
"2",
")",
"/",
"(",
"len",
"(",
"list1",
")",
"*",
"(",
"len",
"(",
"list1",
")",
"-",
"1",
")",
")",
"# returns found value",
"return",
"kt"
] | Returns the Kendall Tau Score | [
"Returns",
"the",
"Kendall",
"Tau",
"Score"
] | f395ba3782f05684fa5de0cece387a6da9391d02 | https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/mechanism.py#L580-L606 | train |
PrefPy/prefpy | prefpy/mechanism.py | MechanismPosScoring.getCandScoresMap | def getCandScoresMap(self, profile):
"""
Returns a dictonary that associates the integer representation of each candidate with the
score they recieved in the profile.
:ivar Profile profile: A Profile object that represents an election profile.
"""
# Currently, we expect the profile to contain complete ordering over candidates.
elecType = profile.getElecType()
if elecType != "soc" and elecType != "toc":
print("ERROR: unsupported election type")
exit()
# Initialize our dictionary so that all candidates have a score of zero.
candScoresMap = dict()
for cand in profile.candMap.keys():
candScoresMap[cand] = 0.0
rankMaps = profile.getRankMaps()
rankMapCounts = profile.getPreferenceCounts()
scoringVector = self.getScoringVector(profile)
# Go through the rankMaps of the profile and increment each candidates score appropriately.
for i in range(0, len(rankMaps)):
rankMap = rankMaps[i]
rankMapCount = rankMapCounts[i]
for cand in rankMap.keys():
candScoresMap[cand] += scoringVector[rankMap[cand] - 1] * rankMapCount
# print("candScoresMap=", candScoresMap)
return candScoresMap | python | def getCandScoresMap(self, profile):
"""
Returns a dictonary that associates the integer representation of each candidate with the
score they recieved in the profile.
:ivar Profile profile: A Profile object that represents an election profile.
"""
# Currently, we expect the profile to contain complete ordering over candidates.
elecType = profile.getElecType()
if elecType != "soc" and elecType != "toc":
print("ERROR: unsupported election type")
exit()
# Initialize our dictionary so that all candidates have a score of zero.
candScoresMap = dict()
for cand in profile.candMap.keys():
candScoresMap[cand] = 0.0
rankMaps = profile.getRankMaps()
rankMapCounts = profile.getPreferenceCounts()
scoringVector = self.getScoringVector(profile)
# Go through the rankMaps of the profile and increment each candidates score appropriately.
for i in range(0, len(rankMaps)):
rankMap = rankMaps[i]
rankMapCount = rankMapCounts[i]
for cand in rankMap.keys():
candScoresMap[cand] += scoringVector[rankMap[cand] - 1] * rankMapCount
# print("candScoresMap=", candScoresMap)
return candScoresMap | [
"def",
"getCandScoresMap",
"(",
"self",
",",
"profile",
")",
":",
"# Currently, we expect the profile to contain complete ordering over candidates.",
"elecType",
"=",
"profile",
".",
"getElecType",
"(",
")",
"if",
"elecType",
"!=",
"\"soc\"",
"and",
"elecType",
"!=",
"\"toc\"",
":",
"print",
"(",
"\"ERROR: unsupported election type\"",
")",
"exit",
"(",
")",
"# Initialize our dictionary so that all candidates have a score of zero.",
"candScoresMap",
"=",
"dict",
"(",
")",
"for",
"cand",
"in",
"profile",
".",
"candMap",
".",
"keys",
"(",
")",
":",
"candScoresMap",
"[",
"cand",
"]",
"=",
"0.0",
"rankMaps",
"=",
"profile",
".",
"getRankMaps",
"(",
")",
"rankMapCounts",
"=",
"profile",
".",
"getPreferenceCounts",
"(",
")",
"scoringVector",
"=",
"self",
".",
"getScoringVector",
"(",
"profile",
")",
"# Go through the rankMaps of the profile and increment each candidates score appropriately.",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"len",
"(",
"rankMaps",
")",
")",
":",
"rankMap",
"=",
"rankMaps",
"[",
"i",
"]",
"rankMapCount",
"=",
"rankMapCounts",
"[",
"i",
"]",
"for",
"cand",
"in",
"rankMap",
".",
"keys",
"(",
")",
":",
"candScoresMap",
"[",
"cand",
"]",
"+=",
"scoringVector",
"[",
"rankMap",
"[",
"cand",
"]",
"-",
"1",
"]",
"*",
"rankMapCount",
"# print(\"candScoresMap=\", candScoresMap)",
"return",
"candScoresMap"
] | Returns a dictonary that associates the integer representation of each candidate with the
score they recieved in the profile.
:ivar Profile profile: A Profile object that represents an election profile. | [
"Returns",
"a",
"dictonary",
"that",
"associates",
"the",
"integer",
"representation",
"of",
"each",
"candidate",
"with",
"the",
"score",
"they",
"recieved",
"in",
"the",
"profile",
"."
] | f395ba3782f05684fa5de0cece387a6da9391d02 | https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/mechanism.py#L128-L159 | train |
PrefPy/prefpy | prefpy/mechanism.py | MechanismPosScoring.getMov | def getMov(self, profile):
"""
Returns an integer that is equal to the margin of victory of the election profile.
:ivar Profile profile: A Profile object that represents an election profile.
"""
# from . import mov
import mov
return mov.MoVScoring(profile, self.getScoringVector(profile)) | python | def getMov(self, profile):
"""
Returns an integer that is equal to the margin of victory of the election profile.
:ivar Profile profile: A Profile object that represents an election profile.
"""
# from . import mov
import mov
return mov.MoVScoring(profile, self.getScoringVector(profile)) | [
"def",
"getMov",
"(",
"self",
",",
"profile",
")",
":",
"# from . import mov",
"import",
"mov",
"return",
"mov",
".",
"MoVScoring",
"(",
"profile",
",",
"self",
".",
"getScoringVector",
"(",
"profile",
")",
")"
] | Returns an integer that is equal to the margin of victory of the election profile.
:ivar Profile profile: A Profile object that represents an election profile. | [
"Returns",
"an",
"integer",
"that",
"is",
"equal",
"to",
"the",
"margin",
"of",
"victory",
"of",
"the",
"election",
"profile",
"."
] | f395ba3782f05684fa5de0cece387a6da9391d02 | https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/mechanism.py#L161-L169 | train |
PrefPy/prefpy | prefpy/mechanism.py | MechanismSimplifiedBucklin.getCandScoresMap | def getCandScoresMap(self, profile):
"""
Returns a dictionary that associates integer representations of each candidate with their
Bucklin score.
:ivar Profile profile: A Profile object that represents an election profile.
"""
# Currently, we expect the profile to contain complete ordering over candidates.
elecType = profile.getElecType()
if elecType != "soc" and elecType != "toc":
print("ERROR: unsupported profile type")
exit()
bucklinScores = dict()
rankMaps = profile.getRankMaps()
preferenceCounts = profile.getPreferenceCounts()
for cand in profile.candMap.keys():
# We keep track of the number of times a candidate is ranked in the first t positions.
numTimesRanked = 0
# We increase t in increments of 1 until we find t such that the candidate is ranked in the
# first t positions in at least half the votes.
for t in range(1, profile.numCands + 1):
for i in range(0, len(rankMaps)):
if (rankMaps[i][cand] == t):
numTimesRanked += preferenceCounts[i]
if numTimesRanked >= math.ceil(float(profile.numVoters) / 2):
bucklinScores[cand] = t
break
return bucklinScores | python | def getCandScoresMap(self, profile):
"""
Returns a dictionary that associates integer representations of each candidate with their
Bucklin score.
:ivar Profile profile: A Profile object that represents an election profile.
"""
# Currently, we expect the profile to contain complete ordering over candidates.
elecType = profile.getElecType()
if elecType != "soc" and elecType != "toc":
print("ERROR: unsupported profile type")
exit()
bucklinScores = dict()
rankMaps = profile.getRankMaps()
preferenceCounts = profile.getPreferenceCounts()
for cand in profile.candMap.keys():
# We keep track of the number of times a candidate is ranked in the first t positions.
numTimesRanked = 0
# We increase t in increments of 1 until we find t such that the candidate is ranked in the
# first t positions in at least half the votes.
for t in range(1, profile.numCands + 1):
for i in range(0, len(rankMaps)):
if (rankMaps[i][cand] == t):
numTimesRanked += preferenceCounts[i]
if numTimesRanked >= math.ceil(float(profile.numVoters) / 2):
bucklinScores[cand] = t
break
return bucklinScores | [
"def",
"getCandScoresMap",
"(",
"self",
",",
"profile",
")",
":",
"# Currently, we expect the profile to contain complete ordering over candidates.",
"elecType",
"=",
"profile",
".",
"getElecType",
"(",
")",
"if",
"elecType",
"!=",
"\"soc\"",
"and",
"elecType",
"!=",
"\"toc\"",
":",
"print",
"(",
"\"ERROR: unsupported profile type\"",
")",
"exit",
"(",
")",
"bucklinScores",
"=",
"dict",
"(",
")",
"rankMaps",
"=",
"profile",
".",
"getRankMaps",
"(",
")",
"preferenceCounts",
"=",
"profile",
".",
"getPreferenceCounts",
"(",
")",
"for",
"cand",
"in",
"profile",
".",
"candMap",
".",
"keys",
"(",
")",
":",
"# We keep track of the number of times a candidate is ranked in the first t positions.",
"numTimesRanked",
"=",
"0",
"# We increase t in increments of 1 until we find t such that the candidate is ranked in the",
"# first t positions in at least half the votes.",
"for",
"t",
"in",
"range",
"(",
"1",
",",
"profile",
".",
"numCands",
"+",
"1",
")",
":",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"len",
"(",
"rankMaps",
")",
")",
":",
"if",
"(",
"rankMaps",
"[",
"i",
"]",
"[",
"cand",
"]",
"==",
"t",
")",
":",
"numTimesRanked",
"+=",
"preferenceCounts",
"[",
"i",
"]",
"if",
"numTimesRanked",
">=",
"math",
".",
"ceil",
"(",
"float",
"(",
"profile",
".",
"numVoters",
")",
"/",
"2",
")",
":",
"bucklinScores",
"[",
"cand",
"]",
"=",
"t",
"break",
"return",
"bucklinScores"
] | Returns a dictionary that associates integer representations of each candidate with their
Bucklin score.
:ivar Profile profile: A Profile object that represents an election profile. | [
"Returns",
"a",
"dictionary",
"that",
"associates",
"integer",
"representations",
"of",
"each",
"candidate",
"with",
"their",
"Bucklin",
"score",
"."
] | f395ba3782f05684fa5de0cece387a6da9391d02 | https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/mechanism.py#L335-L367 | train |
PrefPy/prefpy | prefpy/mechanism.py | MechanismMaximin.getCandScoresMap | def getCandScoresMap(self, profile):
"""
Returns a dictionary that associates integer representations of each candidate with their
maximin score.
:ivar Profile profile: A Profile object that represents an election profile.
"""
# Currently, we expect the profile to contain complete ordering over candidates. Ties are
# allowed however.
elecType = profile.getElecType()
if elecType != "soc" and elecType != "toc":
print("ERROR: unsupported election type")
exit()
wmg = profile.getWmg()
# Initialize the maximin score for each candidate as infinity.
maximinScores = dict()
for cand in wmg.keys():
maximinScores[cand] = float("inf")
# For each pair of candidates, calculate the number of times each beats the other.
for cand1, cand2 in itertools.combinations(wmg.keys(), 2):
if cand2 in wmg[cand1].keys():
maximinScores[cand1] = min(maximinScores[cand1], wmg[cand1][cand2])
maximinScores[cand2] = min(maximinScores[cand2], wmg[cand2][cand1])
return maximinScores | python | def getCandScoresMap(self, profile):
"""
Returns a dictionary that associates integer representations of each candidate with their
maximin score.
:ivar Profile profile: A Profile object that represents an election profile.
"""
# Currently, we expect the profile to contain complete ordering over candidates. Ties are
# allowed however.
elecType = profile.getElecType()
if elecType != "soc" and elecType != "toc":
print("ERROR: unsupported election type")
exit()
wmg = profile.getWmg()
# Initialize the maximin score for each candidate as infinity.
maximinScores = dict()
for cand in wmg.keys():
maximinScores[cand] = float("inf")
# For each pair of candidates, calculate the number of times each beats the other.
for cand1, cand2 in itertools.combinations(wmg.keys(), 2):
if cand2 in wmg[cand1].keys():
maximinScores[cand1] = min(maximinScores[cand1], wmg[cand1][cand2])
maximinScores[cand2] = min(maximinScores[cand2], wmg[cand2][cand1])
return maximinScores | [
"def",
"getCandScoresMap",
"(",
"self",
",",
"profile",
")",
":",
"# Currently, we expect the profile to contain complete ordering over candidates. Ties are",
"# allowed however.",
"elecType",
"=",
"profile",
".",
"getElecType",
"(",
")",
"if",
"elecType",
"!=",
"\"soc\"",
"and",
"elecType",
"!=",
"\"toc\"",
":",
"print",
"(",
"\"ERROR: unsupported election type\"",
")",
"exit",
"(",
")",
"wmg",
"=",
"profile",
".",
"getWmg",
"(",
")",
"# Initialize the maximin score for each candidate as infinity.",
"maximinScores",
"=",
"dict",
"(",
")",
"for",
"cand",
"in",
"wmg",
".",
"keys",
"(",
")",
":",
"maximinScores",
"[",
"cand",
"]",
"=",
"float",
"(",
"\"inf\"",
")",
"# For each pair of candidates, calculate the number of times each beats the other.",
"for",
"cand1",
",",
"cand2",
"in",
"itertools",
".",
"combinations",
"(",
"wmg",
".",
"keys",
"(",
")",
",",
"2",
")",
":",
"if",
"cand2",
"in",
"wmg",
"[",
"cand1",
"]",
".",
"keys",
"(",
")",
":",
"maximinScores",
"[",
"cand1",
"]",
"=",
"min",
"(",
"maximinScores",
"[",
"cand1",
"]",
",",
"wmg",
"[",
"cand1",
"]",
"[",
"cand2",
"]",
")",
"maximinScores",
"[",
"cand2",
"]",
"=",
"min",
"(",
"maximinScores",
"[",
"cand2",
"]",
",",
"wmg",
"[",
"cand2",
"]",
"[",
"cand1",
"]",
")",
"return",
"maximinScores"
] | Returns a dictionary that associates integer representations of each candidate with their
maximin score.
:ivar Profile profile: A Profile object that represents an election profile. | [
"Returns",
"a",
"dictionary",
"that",
"associates",
"integer",
"representations",
"of",
"each",
"candidate",
"with",
"their",
"maximin",
"score",
"."
] | f395ba3782f05684fa5de0cece387a6da9391d02 | https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/mechanism.py#L436-L464 | train |
PrefPy/prefpy | prefpy/mechanism.py | MechanismSchulze.computeStrongestPaths | def computeStrongestPaths(self, profile, pairwisePreferences):
"""
Returns a two-dimensional dictionary that associates every pair of candidates, cand1 and
cand2, with the strongest path from cand1 to cand2.
:ivar Profile profile: A Profile object that represents an election profile.
:ivar dict<int,dict<int,int>> pairwisePreferences: A two-dimensional dictionary that
associates every pair of candidates, cand1 and cand2, with number of voters who prefer
cand1 to cand2.
"""
cands = profile.candMap.keys()
numCands = len(cands)
# Initialize the two-dimensional dictionary that will hold our strongest paths.
strongestPaths = dict()
for cand in cands:
strongestPaths[cand] = dict()
for i in range(1, numCands + 1):
for j in range(1, numCands + 1):
if (i == j):
continue
if pairwisePreferences[i][j] > pairwisePreferences[j][i]:
strongestPaths[i][j] = pairwisePreferences[i][j]
else:
strongestPaths[i][j] = 0
for i in range(1, numCands + 1):
for j in range(1, numCands + 1):
if (i == j):
continue
for k in range(1, numCands + 1):
if (i == k or j == k):
continue
strongestPaths[j][k] = max(strongestPaths[j][k], min(strongestPaths[j][i], strongestPaths[i][k]))
return strongestPaths | python | def computeStrongestPaths(self, profile, pairwisePreferences):
"""
Returns a two-dimensional dictionary that associates every pair of candidates, cand1 and
cand2, with the strongest path from cand1 to cand2.
:ivar Profile profile: A Profile object that represents an election profile.
:ivar dict<int,dict<int,int>> pairwisePreferences: A two-dimensional dictionary that
associates every pair of candidates, cand1 and cand2, with number of voters who prefer
cand1 to cand2.
"""
cands = profile.candMap.keys()
numCands = len(cands)
# Initialize the two-dimensional dictionary that will hold our strongest paths.
strongestPaths = dict()
for cand in cands:
strongestPaths[cand] = dict()
for i in range(1, numCands + 1):
for j in range(1, numCands + 1):
if (i == j):
continue
if pairwisePreferences[i][j] > pairwisePreferences[j][i]:
strongestPaths[i][j] = pairwisePreferences[i][j]
else:
strongestPaths[i][j] = 0
for i in range(1, numCands + 1):
for j in range(1, numCands + 1):
if (i == j):
continue
for k in range(1, numCands + 1):
if (i == k or j == k):
continue
strongestPaths[j][k] = max(strongestPaths[j][k], min(strongestPaths[j][i], strongestPaths[i][k]))
return strongestPaths | [
"def",
"computeStrongestPaths",
"(",
"self",
",",
"profile",
",",
"pairwisePreferences",
")",
":",
"cands",
"=",
"profile",
".",
"candMap",
".",
"keys",
"(",
")",
"numCands",
"=",
"len",
"(",
"cands",
")",
"# Initialize the two-dimensional dictionary that will hold our strongest paths.",
"strongestPaths",
"=",
"dict",
"(",
")",
"for",
"cand",
"in",
"cands",
":",
"strongestPaths",
"[",
"cand",
"]",
"=",
"dict",
"(",
")",
"for",
"i",
"in",
"range",
"(",
"1",
",",
"numCands",
"+",
"1",
")",
":",
"for",
"j",
"in",
"range",
"(",
"1",
",",
"numCands",
"+",
"1",
")",
":",
"if",
"(",
"i",
"==",
"j",
")",
":",
"continue",
"if",
"pairwisePreferences",
"[",
"i",
"]",
"[",
"j",
"]",
">",
"pairwisePreferences",
"[",
"j",
"]",
"[",
"i",
"]",
":",
"strongestPaths",
"[",
"i",
"]",
"[",
"j",
"]",
"=",
"pairwisePreferences",
"[",
"i",
"]",
"[",
"j",
"]",
"else",
":",
"strongestPaths",
"[",
"i",
"]",
"[",
"j",
"]",
"=",
"0",
"for",
"i",
"in",
"range",
"(",
"1",
",",
"numCands",
"+",
"1",
")",
":",
"for",
"j",
"in",
"range",
"(",
"1",
",",
"numCands",
"+",
"1",
")",
":",
"if",
"(",
"i",
"==",
"j",
")",
":",
"continue",
"for",
"k",
"in",
"range",
"(",
"1",
",",
"numCands",
"+",
"1",
")",
":",
"if",
"(",
"i",
"==",
"k",
"or",
"j",
"==",
"k",
")",
":",
"continue",
"strongestPaths",
"[",
"j",
"]",
"[",
"k",
"]",
"=",
"max",
"(",
"strongestPaths",
"[",
"j",
"]",
"[",
"k",
"]",
",",
"min",
"(",
"strongestPaths",
"[",
"j",
"]",
"[",
"i",
"]",
",",
"strongestPaths",
"[",
"i",
"]",
"[",
"k",
"]",
")",
")",
"return",
"strongestPaths"
] | Returns a two-dimensional dictionary that associates every pair of candidates, cand1 and
cand2, with the strongest path from cand1 to cand2.
:ivar Profile profile: A Profile object that represents an election profile.
:ivar dict<int,dict<int,int>> pairwisePreferences: A two-dimensional dictionary that
associates every pair of candidates, cand1 and cand2, with number of voters who prefer
cand1 to cand2. | [
"Returns",
"a",
"two",
"-",
"dimensional",
"dictionary",
"that",
"associates",
"every",
"pair",
"of",
"candidates",
"cand1",
"and",
"cand2",
"with",
"the",
"strongest",
"path",
"from",
"cand1",
"to",
"cand2",
"."
] | f395ba3782f05684fa5de0cece387a6da9391d02 | https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/mechanism.py#L475-L511 | train |
PrefPy/prefpy | prefpy/mechanism.py | MechanismSchulze.computePairwisePreferences | def computePairwisePreferences(self, profile):
"""
Returns a two-dimensional dictionary that associates every pair of candidates, cand1 and
cand2, with number of voters who prefer cand1 to cand2.
:ivar Profile profile: A Profile object that represents an election profile.
"""
cands = profile.candMap.keys()
# Initialize the two-dimensional dictionary that will hold our pairwise preferences.
pairwisePreferences = dict()
for cand in cands:
pairwisePreferences[cand] = dict()
for cand1 in cands:
for cand2 in cands:
if cand1 != cand2:
pairwisePreferences[cand1][cand2] = 0
for preference in profile.preferences:
wmgMap = preference.wmgMap
for cand1, cand2 in itertools.combinations(cands, 2):
# If either candidate was unranked, we assume that they are lower ranked than all
# ranked candidates.
if cand1 not in wmgMap.keys():
if cand2 in wmgMap.keys():
pairwisePreferences[cand2][cand1] += 1 * preference.count
elif cand2 not in wmgMap.keys():
if cand1 in wmgMap.keys():
pairwisePreferences[cand1][cand2] += 1 * preference.count
elif wmgMap[cand1][cand2] == 1:
pairwisePreferences[cand1][cand2] += 1 * preference.count
elif wmgMap[cand1][cand2] == -1:
pairwisePreferences[cand2][cand1] += 1 * preference.count
return pairwisePreferences | python | def computePairwisePreferences(self, profile):
"""
Returns a two-dimensional dictionary that associates every pair of candidates, cand1 and
cand2, with number of voters who prefer cand1 to cand2.
:ivar Profile profile: A Profile object that represents an election profile.
"""
cands = profile.candMap.keys()
# Initialize the two-dimensional dictionary that will hold our pairwise preferences.
pairwisePreferences = dict()
for cand in cands:
pairwisePreferences[cand] = dict()
for cand1 in cands:
for cand2 in cands:
if cand1 != cand2:
pairwisePreferences[cand1][cand2] = 0
for preference in profile.preferences:
wmgMap = preference.wmgMap
for cand1, cand2 in itertools.combinations(cands, 2):
# If either candidate was unranked, we assume that they are lower ranked than all
# ranked candidates.
if cand1 not in wmgMap.keys():
if cand2 in wmgMap.keys():
pairwisePreferences[cand2][cand1] += 1 * preference.count
elif cand2 not in wmgMap.keys():
if cand1 in wmgMap.keys():
pairwisePreferences[cand1][cand2] += 1 * preference.count
elif wmgMap[cand1][cand2] == 1:
pairwisePreferences[cand1][cand2] += 1 * preference.count
elif wmgMap[cand1][cand2] == -1:
pairwisePreferences[cand2][cand1] += 1 * preference.count
return pairwisePreferences | [
"def",
"computePairwisePreferences",
"(",
"self",
",",
"profile",
")",
":",
"cands",
"=",
"profile",
".",
"candMap",
".",
"keys",
"(",
")",
"# Initialize the two-dimensional dictionary that will hold our pairwise preferences.",
"pairwisePreferences",
"=",
"dict",
"(",
")",
"for",
"cand",
"in",
"cands",
":",
"pairwisePreferences",
"[",
"cand",
"]",
"=",
"dict",
"(",
")",
"for",
"cand1",
"in",
"cands",
":",
"for",
"cand2",
"in",
"cands",
":",
"if",
"cand1",
"!=",
"cand2",
":",
"pairwisePreferences",
"[",
"cand1",
"]",
"[",
"cand2",
"]",
"=",
"0",
"for",
"preference",
"in",
"profile",
".",
"preferences",
":",
"wmgMap",
"=",
"preference",
".",
"wmgMap",
"for",
"cand1",
",",
"cand2",
"in",
"itertools",
".",
"combinations",
"(",
"cands",
",",
"2",
")",
":",
"# If either candidate was unranked, we assume that they are lower ranked than all",
"# ranked candidates.",
"if",
"cand1",
"not",
"in",
"wmgMap",
".",
"keys",
"(",
")",
":",
"if",
"cand2",
"in",
"wmgMap",
".",
"keys",
"(",
")",
":",
"pairwisePreferences",
"[",
"cand2",
"]",
"[",
"cand1",
"]",
"+=",
"1",
"*",
"preference",
".",
"count",
"elif",
"cand2",
"not",
"in",
"wmgMap",
".",
"keys",
"(",
")",
":",
"if",
"cand1",
"in",
"wmgMap",
".",
"keys",
"(",
")",
":",
"pairwisePreferences",
"[",
"cand1",
"]",
"[",
"cand2",
"]",
"+=",
"1",
"*",
"preference",
".",
"count",
"elif",
"wmgMap",
"[",
"cand1",
"]",
"[",
"cand2",
"]",
"==",
"1",
":",
"pairwisePreferences",
"[",
"cand1",
"]",
"[",
"cand2",
"]",
"+=",
"1",
"*",
"preference",
".",
"count",
"elif",
"wmgMap",
"[",
"cand1",
"]",
"[",
"cand2",
"]",
"==",
"-",
"1",
":",
"pairwisePreferences",
"[",
"cand2",
"]",
"[",
"cand1",
"]",
"+=",
"1",
"*",
"preference",
".",
"count",
"return",
"pairwisePreferences"
] | Returns a two-dimensional dictionary that associates every pair of candidates, cand1 and
cand2, with number of voters who prefer cand1 to cand2.
:ivar Profile profile: A Profile object that represents an election profile. | [
"Returns",
"a",
"two",
"-",
"dimensional",
"dictionary",
"that",
"associates",
"every",
"pair",
"of",
"candidates",
"cand1",
"and",
"cand2",
"with",
"number",
"of",
"voters",
"who",
"prefer",
"cand1",
"to",
"cand2",
"."
] | f395ba3782f05684fa5de0cece387a6da9391d02 | https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/mechanism.py#L513-L550 | train |
PrefPy/prefpy | prefpy/mechanism.py | MechanismSchulze.getCandScoresMap | def getCandScoresMap(self, profile):
"""
Returns a dictionary that associates integer representations of each candidate with the
number of other candidates for which her strongest path to the other candidate is greater
than the other candidate's stronget path to her.
:ivar Profile profile: A Profile object that represents an election profile.
"""
cands = profile.candMap.keys()
pairwisePreferences = self.computePairwisePreferences(profile)
strongestPaths = self.computeStrongestPaths(profile, pairwisePreferences)
# For each candidate, determine how many times p[E,X] >= p[X,E] using a variant of the
# Floyd-Warshall algorithm.
betterCount = dict()
for cand in cands:
betterCount[cand] = 0
for cand1 in cands:
for cand2 in cands:
if cand1 == cand2:
continue
if strongestPaths[cand1][cand2] >= strongestPaths[cand2][cand1]:
betterCount[cand1] += 1
return betterCount | python | def getCandScoresMap(self, profile):
"""
Returns a dictionary that associates integer representations of each candidate with the
number of other candidates for which her strongest path to the other candidate is greater
than the other candidate's stronget path to her.
:ivar Profile profile: A Profile object that represents an election profile.
"""
cands = profile.candMap.keys()
pairwisePreferences = self.computePairwisePreferences(profile)
strongestPaths = self.computeStrongestPaths(profile, pairwisePreferences)
# For each candidate, determine how many times p[E,X] >= p[X,E] using a variant of the
# Floyd-Warshall algorithm.
betterCount = dict()
for cand in cands:
betterCount[cand] = 0
for cand1 in cands:
for cand2 in cands:
if cand1 == cand2:
continue
if strongestPaths[cand1][cand2] >= strongestPaths[cand2][cand1]:
betterCount[cand1] += 1
return betterCount | [
"def",
"getCandScoresMap",
"(",
"self",
",",
"profile",
")",
":",
"cands",
"=",
"profile",
".",
"candMap",
".",
"keys",
"(",
")",
"pairwisePreferences",
"=",
"self",
".",
"computePairwisePreferences",
"(",
"profile",
")",
"strongestPaths",
"=",
"self",
".",
"computeStrongestPaths",
"(",
"profile",
",",
"pairwisePreferences",
")",
"# For each candidate, determine how many times p[E,X] >= p[X,E] using a variant of the",
"# Floyd-Warshall algorithm.",
"betterCount",
"=",
"dict",
"(",
")",
"for",
"cand",
"in",
"cands",
":",
"betterCount",
"[",
"cand",
"]",
"=",
"0",
"for",
"cand1",
"in",
"cands",
":",
"for",
"cand2",
"in",
"cands",
":",
"if",
"cand1",
"==",
"cand2",
":",
"continue",
"if",
"strongestPaths",
"[",
"cand1",
"]",
"[",
"cand2",
"]",
">=",
"strongestPaths",
"[",
"cand2",
"]",
"[",
"cand1",
"]",
":",
"betterCount",
"[",
"cand1",
"]",
"+=",
"1",
"return",
"betterCount"
] | Returns a dictionary that associates integer representations of each candidate with the
number of other candidates for which her strongest path to the other candidate is greater
than the other candidate's stronget path to her.
:ivar Profile profile: A Profile object that represents an election profile. | [
"Returns",
"a",
"dictionary",
"that",
"associates",
"integer",
"representations",
"of",
"each",
"candidate",
"with",
"the",
"number",
"of",
"other",
"candidates",
"for",
"which",
"her",
"strongest",
"path",
"to",
"the",
"other",
"candidate",
"is",
"greater",
"than",
"the",
"other",
"candidate",
"s",
"stronget",
"path",
"to",
"her",
"."
] | f395ba3782f05684fa5de0cece387a6da9391d02 | https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/mechanism.py#L552-L577 | train |
PrefPy/prefpy | prefpy/mechanism.py | MechanismSTV.STVsocwinners | def STVsocwinners(self, profile):
"""
Returns an integer list that represents all possible winners of a profile under STV rule.
:ivar Profile profile: A Profile object that represents an election profile.
"""
ordering = profile.getOrderVectors()
prefcounts = profile.getPreferenceCounts()
m = profile.numCands
if min(ordering[0]) == 0:
startstate = set(range(m))
else:
startstate = set(range(1, m + 1))
ordering, startstate = self.preprocessing(ordering, prefcounts, m, startstate)
m_star = len(startstate)
known_winners = set()
# ----------Some statistics--------------
hashtable2 = set()
# push the node of start state into the priority queue
root = Node(value=startstate)
stackNode = []
stackNode.append(root)
while stackNode:
# ------------pop the current node-----------------
node = stackNode.pop()
# -------------------------------------------------
state = node.value.copy()
# use heuristic to delete all the candidates which satisfy the following condition
# goal state 1: if the state set contains only 1 candidate, then stop
if len(state) == 1 and list(state)[0] not in known_winners:
known_winners.add(list(state)[0])
continue
# goal state 2 (pruning): if the state set is subset of the known_winners set, then stop
if state <= known_winners:
continue
# ----------Compute plurality score for the current remaining candidates--------------
plural_score = self.get_plurality_scores3(prefcounts, ordering, state, m_star)
minscore = min(plural_score.values())
for to_be_deleted in state:
if plural_score[to_be_deleted] == minscore:
child_state = state.copy()
child_state.remove(to_be_deleted)
tpc = tuple(sorted(child_state))
if tpc in hashtable2:
continue
else:
hashtable2.add(tpc)
child_node = Node(value=child_state)
stackNode.append(child_node)
return sorted(known_winners) | python | def STVsocwinners(self, profile):
"""
Returns an integer list that represents all possible winners of a profile under STV rule.
:ivar Profile profile: A Profile object that represents an election profile.
"""
ordering = profile.getOrderVectors()
prefcounts = profile.getPreferenceCounts()
m = profile.numCands
if min(ordering[0]) == 0:
startstate = set(range(m))
else:
startstate = set(range(1, m + 1))
ordering, startstate = self.preprocessing(ordering, prefcounts, m, startstate)
m_star = len(startstate)
known_winners = set()
# ----------Some statistics--------------
hashtable2 = set()
# push the node of start state into the priority queue
root = Node(value=startstate)
stackNode = []
stackNode.append(root)
while stackNode:
# ------------pop the current node-----------------
node = stackNode.pop()
# -------------------------------------------------
state = node.value.copy()
# use heuristic to delete all the candidates which satisfy the following condition
# goal state 1: if the state set contains only 1 candidate, then stop
if len(state) == 1 and list(state)[0] not in known_winners:
known_winners.add(list(state)[0])
continue
# goal state 2 (pruning): if the state set is subset of the known_winners set, then stop
if state <= known_winners:
continue
# ----------Compute plurality score for the current remaining candidates--------------
plural_score = self.get_plurality_scores3(prefcounts, ordering, state, m_star)
minscore = min(plural_score.values())
for to_be_deleted in state:
if plural_score[to_be_deleted] == minscore:
child_state = state.copy()
child_state.remove(to_be_deleted)
tpc = tuple(sorted(child_state))
if tpc in hashtable2:
continue
else:
hashtable2.add(tpc)
child_node = Node(value=child_state)
stackNode.append(child_node)
return sorted(known_winners) | [
"def",
"STVsocwinners",
"(",
"self",
",",
"profile",
")",
":",
"ordering",
"=",
"profile",
".",
"getOrderVectors",
"(",
")",
"prefcounts",
"=",
"profile",
".",
"getPreferenceCounts",
"(",
")",
"m",
"=",
"profile",
".",
"numCands",
"if",
"min",
"(",
"ordering",
"[",
"0",
"]",
")",
"==",
"0",
":",
"startstate",
"=",
"set",
"(",
"range",
"(",
"m",
")",
")",
"else",
":",
"startstate",
"=",
"set",
"(",
"range",
"(",
"1",
",",
"m",
"+",
"1",
")",
")",
"ordering",
",",
"startstate",
"=",
"self",
".",
"preprocessing",
"(",
"ordering",
",",
"prefcounts",
",",
"m",
",",
"startstate",
")",
"m_star",
"=",
"len",
"(",
"startstate",
")",
"known_winners",
"=",
"set",
"(",
")",
"# ----------Some statistics--------------",
"hashtable2",
"=",
"set",
"(",
")",
"# push the node of start state into the priority queue",
"root",
"=",
"Node",
"(",
"value",
"=",
"startstate",
")",
"stackNode",
"=",
"[",
"]",
"stackNode",
".",
"append",
"(",
"root",
")",
"while",
"stackNode",
":",
"# ------------pop the current node-----------------",
"node",
"=",
"stackNode",
".",
"pop",
"(",
")",
"# -------------------------------------------------",
"state",
"=",
"node",
".",
"value",
".",
"copy",
"(",
")",
"# use heuristic to delete all the candidates which satisfy the following condition",
"# goal state 1: if the state set contains only 1 candidate, then stop",
"if",
"len",
"(",
"state",
")",
"==",
"1",
"and",
"list",
"(",
"state",
")",
"[",
"0",
"]",
"not",
"in",
"known_winners",
":",
"known_winners",
".",
"add",
"(",
"list",
"(",
"state",
")",
"[",
"0",
"]",
")",
"continue",
"# goal state 2 (pruning): if the state set is subset of the known_winners set, then stop",
"if",
"state",
"<=",
"known_winners",
":",
"continue",
"# ----------Compute plurality score for the current remaining candidates--------------",
"plural_score",
"=",
"self",
".",
"get_plurality_scores3",
"(",
"prefcounts",
",",
"ordering",
",",
"state",
",",
"m_star",
")",
"minscore",
"=",
"min",
"(",
"plural_score",
".",
"values",
"(",
")",
")",
"for",
"to_be_deleted",
"in",
"state",
":",
"if",
"plural_score",
"[",
"to_be_deleted",
"]",
"==",
"minscore",
":",
"child_state",
"=",
"state",
".",
"copy",
"(",
")",
"child_state",
".",
"remove",
"(",
"to_be_deleted",
")",
"tpc",
"=",
"tuple",
"(",
"sorted",
"(",
"child_state",
")",
")",
"if",
"tpc",
"in",
"hashtable2",
":",
"continue",
"else",
":",
"hashtable2",
".",
"add",
"(",
"tpc",
")",
"child_node",
"=",
"Node",
"(",
"value",
"=",
"child_state",
")",
"stackNode",
".",
"append",
"(",
"child_node",
")",
"return",
"sorted",
"(",
"known_winners",
")"
] | Returns an integer list that represents all possible winners of a profile under STV rule.
:ivar Profile profile: A Profile object that represents an election profile. | [
"Returns",
"an",
"integer",
"list",
"that",
"represents",
"all",
"possible",
"winners",
"of",
"a",
"profile",
"under",
"STV",
"rule",
"."
] | f395ba3782f05684fa5de0cece387a6da9391d02 | https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/mechanism.py#L624-L680 | train |
PrefPy/prefpy | prefpy/mechanism.py | MechanismBaldwin.baldwinsoc_winners | def baldwinsoc_winners(self, profile):
"""
Returns an integer list that represents all possible winners of a profile under baldwin rule.
:ivar Profile profile: A Profile object that represents an election profile.
"""
ordering = profile.getOrderVectors()
m = profile.numCands
prefcounts = profile.getPreferenceCounts()
if min(ordering[0]) == 0:
startstate = set(range(m))
else:
startstate = set(range(1, m + 1))
wmg = self.getWmg2(prefcounts, ordering, startstate, normalize=False)
known_winners = set()
# ----------Some statistics--------------
hashtable2 = set()
# push the node of start state into the priority queue
root = Node(value=startstate)
stackNode = []
stackNode.append(root)
while stackNode:
# ------------pop the current node-----------------
node = stackNode.pop()
# -------------------------------------------------
state = node.value.copy()
# goal state 1: if the state set contains only 1 candidate, then stop
if len(state) == 1 and list(state)[0] not in known_winners:
known_winners.add(list(state)[0])
continue
# goal state 2 (pruning): if the state set is subset of the known_winners set, then stop
if state <= known_winners:
continue
# ----------Compute plurality score for the current remaining candidates--------------
plural_score = dict()
for cand in state:
plural_score[cand] = 0
for cand1, cand2 in itertools.permutations(state, 2):
plural_score[cand1] += wmg[cand1][cand2]
# if current state satisfies one of the 3 goal state, continue to the next loop
# After using heuristics, generate children and push them into priority queue
# frontier = [val for val in known_winners if val in state] + list(set(state) - set(known_winners))
minscore = min(plural_score.values())
for to_be_deleted in state:
if plural_score[to_be_deleted] == minscore:
child_state = state.copy()
child_state.remove(to_be_deleted)
tpc = tuple(sorted(child_state))
if tpc in hashtable2:
continue
else:
hashtable2.add(tpc)
child_node = Node(value=child_state)
stackNode.append(child_node)
return sorted(known_winners) | python | def baldwinsoc_winners(self, profile):
"""
Returns an integer list that represents all possible winners of a profile under baldwin rule.
:ivar Profile profile: A Profile object that represents an election profile.
"""
ordering = profile.getOrderVectors()
m = profile.numCands
prefcounts = profile.getPreferenceCounts()
if min(ordering[0]) == 0:
startstate = set(range(m))
else:
startstate = set(range(1, m + 1))
wmg = self.getWmg2(prefcounts, ordering, startstate, normalize=False)
known_winners = set()
# ----------Some statistics--------------
hashtable2 = set()
# push the node of start state into the priority queue
root = Node(value=startstate)
stackNode = []
stackNode.append(root)
while stackNode:
# ------------pop the current node-----------------
node = stackNode.pop()
# -------------------------------------------------
state = node.value.copy()
# goal state 1: if the state set contains only 1 candidate, then stop
if len(state) == 1 and list(state)[0] not in known_winners:
known_winners.add(list(state)[0])
continue
# goal state 2 (pruning): if the state set is subset of the known_winners set, then stop
if state <= known_winners:
continue
# ----------Compute plurality score for the current remaining candidates--------------
plural_score = dict()
for cand in state:
plural_score[cand] = 0
for cand1, cand2 in itertools.permutations(state, 2):
plural_score[cand1] += wmg[cand1][cand2]
# if current state satisfies one of the 3 goal state, continue to the next loop
# After using heuristics, generate children and push them into priority queue
# frontier = [val for val in known_winners if val in state] + list(set(state) - set(known_winners))
minscore = min(plural_score.values())
for to_be_deleted in state:
if plural_score[to_be_deleted] == minscore:
child_state = state.copy()
child_state.remove(to_be_deleted)
tpc = tuple(sorted(child_state))
if tpc in hashtable2:
continue
else:
hashtable2.add(tpc)
child_node = Node(value=child_state)
stackNode.append(child_node)
return sorted(known_winners) | [
"def",
"baldwinsoc_winners",
"(",
"self",
",",
"profile",
")",
":",
"ordering",
"=",
"profile",
".",
"getOrderVectors",
"(",
")",
"m",
"=",
"profile",
".",
"numCands",
"prefcounts",
"=",
"profile",
".",
"getPreferenceCounts",
"(",
")",
"if",
"min",
"(",
"ordering",
"[",
"0",
"]",
")",
"==",
"0",
":",
"startstate",
"=",
"set",
"(",
"range",
"(",
"m",
")",
")",
"else",
":",
"startstate",
"=",
"set",
"(",
"range",
"(",
"1",
",",
"m",
"+",
"1",
")",
")",
"wmg",
"=",
"self",
".",
"getWmg2",
"(",
"prefcounts",
",",
"ordering",
",",
"startstate",
",",
"normalize",
"=",
"False",
")",
"known_winners",
"=",
"set",
"(",
")",
"# ----------Some statistics--------------",
"hashtable2",
"=",
"set",
"(",
")",
"# push the node of start state into the priority queue",
"root",
"=",
"Node",
"(",
"value",
"=",
"startstate",
")",
"stackNode",
"=",
"[",
"]",
"stackNode",
".",
"append",
"(",
"root",
")",
"while",
"stackNode",
":",
"# ------------pop the current node-----------------",
"node",
"=",
"stackNode",
".",
"pop",
"(",
")",
"# -------------------------------------------------",
"state",
"=",
"node",
".",
"value",
".",
"copy",
"(",
")",
"# goal state 1: if the state set contains only 1 candidate, then stop",
"if",
"len",
"(",
"state",
")",
"==",
"1",
"and",
"list",
"(",
"state",
")",
"[",
"0",
"]",
"not",
"in",
"known_winners",
":",
"known_winners",
".",
"add",
"(",
"list",
"(",
"state",
")",
"[",
"0",
"]",
")",
"continue",
"# goal state 2 (pruning): if the state set is subset of the known_winners set, then stop",
"if",
"state",
"<=",
"known_winners",
":",
"continue",
"# ----------Compute plurality score for the current remaining candidates--------------",
"plural_score",
"=",
"dict",
"(",
")",
"for",
"cand",
"in",
"state",
":",
"plural_score",
"[",
"cand",
"]",
"=",
"0",
"for",
"cand1",
",",
"cand2",
"in",
"itertools",
".",
"permutations",
"(",
"state",
",",
"2",
")",
":",
"plural_score",
"[",
"cand1",
"]",
"+=",
"wmg",
"[",
"cand1",
"]",
"[",
"cand2",
"]",
"# if current state satisfies one of the 3 goal state, continue to the next loop",
"# After using heuristics, generate children and push them into priority queue",
"# frontier = [val for val in known_winners if val in state] + list(set(state) - set(known_winners))",
"minscore",
"=",
"min",
"(",
"plural_score",
".",
"values",
"(",
")",
")",
"for",
"to_be_deleted",
"in",
"state",
":",
"if",
"plural_score",
"[",
"to_be_deleted",
"]",
"==",
"minscore",
":",
"child_state",
"=",
"state",
".",
"copy",
"(",
")",
"child_state",
".",
"remove",
"(",
"to_be_deleted",
")",
"tpc",
"=",
"tuple",
"(",
"sorted",
"(",
"child_state",
")",
")",
"if",
"tpc",
"in",
"hashtable2",
":",
"continue",
"else",
":",
"hashtable2",
".",
"add",
"(",
"tpc",
")",
"child_node",
"=",
"Node",
"(",
"value",
"=",
"child_state",
")",
"stackNode",
".",
"append",
"(",
"child_node",
")",
"return",
"sorted",
"(",
"known_winners",
")"
] | Returns an integer list that represents all possible winners of a profile under baldwin rule.
:ivar Profile profile: A Profile object that represents an election profile. | [
"Returns",
"an",
"integer",
"list",
"that",
"represents",
"all",
"possible",
"winners",
"of",
"a",
"profile",
"under",
"baldwin",
"rule",
"."
] | f395ba3782f05684fa5de0cece387a6da9391d02 | https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/mechanism.py#L801-L861 | train |
PrefPy/prefpy | prefpy/mechanism.py | MechanismBaldwin.getWmg2 | def getWmg2(self, prefcounts, ordering, state, normalize=False):
"""
Generate a weighted majority graph that represents the whole profile. The function will
return a two-dimensional dictionary that associates integer representations of each pair of
candidates, cand1 and cand2, with the number of times cand1 is ranked above cand2 minus the
number of times cand2 is ranked above cand1.
:ivar bool normalize: If normalize is True, the function will return a normalized graph
where each edge has been divided by the value of the largest edge.
"""
# Initialize a new dictionary for our final weighted majority graph.
wmgMap = dict()
for cand in state:
wmgMap[cand] = dict()
for cand1, cand2 in itertools.combinations(state, 2):
wmgMap[cand1][cand2] = 0
wmgMap[cand2][cand1] = 0
# Go through the wmgMaps and increment the value of each edge in our final graph with the
# edges in each of the wmgMaps. We take into account the number of times that the vote
# occured.
for i in range(0, len(prefcounts)):
for cand1, cand2 in itertools.combinations(ordering[i], 2): # --------------------------
wmgMap[cand1][cand2] += prefcounts[i]
# By default, we assume that the weighted majority graph should not be normalized. If
# desired, we normalize by dividing each edge by the value of the largest edge.
if normalize == True:
maxEdge = float('-inf')
for cand in wmgMap.keys():
maxEdge = max(maxEdge, max(wmgMap[cand].values()))
for cand1 in wmgMap.keys():
for cand2 in wmgMap[cand1].keys():
wmgMap[cand1][cand2] = float(wmgMap[cand1][cand2]) / maxEdge
return wmgMap | python | def getWmg2(self, prefcounts, ordering, state, normalize=False):
"""
Generate a weighted majority graph that represents the whole profile. The function will
return a two-dimensional dictionary that associates integer representations of each pair of
candidates, cand1 and cand2, with the number of times cand1 is ranked above cand2 minus the
number of times cand2 is ranked above cand1.
:ivar bool normalize: If normalize is True, the function will return a normalized graph
where each edge has been divided by the value of the largest edge.
"""
# Initialize a new dictionary for our final weighted majority graph.
wmgMap = dict()
for cand in state:
wmgMap[cand] = dict()
for cand1, cand2 in itertools.combinations(state, 2):
wmgMap[cand1][cand2] = 0
wmgMap[cand2][cand1] = 0
# Go through the wmgMaps and increment the value of each edge in our final graph with the
# edges in each of the wmgMaps. We take into account the number of times that the vote
# occured.
for i in range(0, len(prefcounts)):
for cand1, cand2 in itertools.combinations(ordering[i], 2): # --------------------------
wmgMap[cand1][cand2] += prefcounts[i]
# By default, we assume that the weighted majority graph should not be normalized. If
# desired, we normalize by dividing each edge by the value of the largest edge.
if normalize == True:
maxEdge = float('-inf')
for cand in wmgMap.keys():
maxEdge = max(maxEdge, max(wmgMap[cand].values()))
for cand1 in wmgMap.keys():
for cand2 in wmgMap[cand1].keys():
wmgMap[cand1][cand2] = float(wmgMap[cand1][cand2]) / maxEdge
return wmgMap | [
"def",
"getWmg2",
"(",
"self",
",",
"prefcounts",
",",
"ordering",
",",
"state",
",",
"normalize",
"=",
"False",
")",
":",
"# Initialize a new dictionary for our final weighted majority graph.",
"wmgMap",
"=",
"dict",
"(",
")",
"for",
"cand",
"in",
"state",
":",
"wmgMap",
"[",
"cand",
"]",
"=",
"dict",
"(",
")",
"for",
"cand1",
",",
"cand2",
"in",
"itertools",
".",
"combinations",
"(",
"state",
",",
"2",
")",
":",
"wmgMap",
"[",
"cand1",
"]",
"[",
"cand2",
"]",
"=",
"0",
"wmgMap",
"[",
"cand2",
"]",
"[",
"cand1",
"]",
"=",
"0",
"# Go through the wmgMaps and increment the value of each edge in our final graph with the",
"# edges in each of the wmgMaps. We take into account the number of times that the vote",
"# occured.",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"len",
"(",
"prefcounts",
")",
")",
":",
"for",
"cand1",
",",
"cand2",
"in",
"itertools",
".",
"combinations",
"(",
"ordering",
"[",
"i",
"]",
",",
"2",
")",
":",
"# --------------------------",
"wmgMap",
"[",
"cand1",
"]",
"[",
"cand2",
"]",
"+=",
"prefcounts",
"[",
"i",
"]",
"# By default, we assume that the weighted majority graph should not be normalized. If",
"# desired, we normalize by dividing each edge by the value of the largest edge.",
"if",
"normalize",
"==",
"True",
":",
"maxEdge",
"=",
"float",
"(",
"'-inf'",
")",
"for",
"cand",
"in",
"wmgMap",
".",
"keys",
"(",
")",
":",
"maxEdge",
"=",
"max",
"(",
"maxEdge",
",",
"max",
"(",
"wmgMap",
"[",
"cand",
"]",
".",
"values",
"(",
")",
")",
")",
"for",
"cand1",
"in",
"wmgMap",
".",
"keys",
"(",
")",
":",
"for",
"cand2",
"in",
"wmgMap",
"[",
"cand1",
"]",
".",
"keys",
"(",
")",
":",
"wmgMap",
"[",
"cand1",
"]",
"[",
"cand2",
"]",
"=",
"float",
"(",
"wmgMap",
"[",
"cand1",
"]",
"[",
"cand2",
"]",
")",
"/",
"maxEdge",
"return",
"wmgMap"
] | Generate a weighted majority graph that represents the whole profile. The function will
return a two-dimensional dictionary that associates integer representations of each pair of
candidates, cand1 and cand2, with the number of times cand1 is ranked above cand2 minus the
number of times cand2 is ranked above cand1.
:ivar bool normalize: If normalize is True, the function will return a normalized graph
where each edge has been divided by the value of the largest edge. | [
"Generate",
"a",
"weighted",
"majority",
"graph",
"that",
"represents",
"the",
"whole",
"profile",
".",
"The",
"function",
"will",
"return",
"a",
"two",
"-",
"dimensional",
"dictionary",
"that",
"associates",
"integer",
"representations",
"of",
"each",
"pair",
"of",
"candidates",
"cand1",
"and",
"cand2",
"with",
"the",
"number",
"of",
"times",
"cand1",
"is",
"ranked",
"above",
"cand2",
"minus",
"the",
"number",
"of",
"times",
"cand2",
"is",
"ranked",
"above",
"cand1",
"."
] | f395ba3782f05684fa5de0cece387a6da9391d02 | https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/mechanism.py#L927-L963 | train |
PrefPy/prefpy | prefpy/mechanism.py | MechanismPluralityRunOff.PluRunOff_single_winner | def PluRunOff_single_winner(self, profile):
"""
Returns a number that associates the winner of a profile under Plurality with Runoff rule.
:ivar Profile profile: A Profile object that represents an election profile.
"""
# Currently, we expect the profile to contain complete ordering over candidates. Ties are
# allowed however.
elecType = profile.getElecType()
if elecType != "soc" and elecType != "toc" and elecType != "csv":
print("ERROR: unsupported election type")
exit()
# Initialization
prefcounts = profile.getPreferenceCounts()
len_prefcounts = len(prefcounts)
rankmaps = profile.getRankMaps()
ranking = MechanismPlurality().getRanking(profile)
# 1st round: find the top 2 candidates in plurality scores
# Compute the 1st-place candidate in plurality scores
# print(ranking)
max_cand = ranking[0][0][0]
# Compute the 2nd-place candidate in plurality scores
# Automatically using tie-breaking rule--numerically increasing order
if len(ranking[0][0]) > 1:
second_max_cand = ranking[0][0][1]
else:
second_max_cand = ranking[0][1][0]
top_2 = [max_cand, second_max_cand]
# 2nd round: find the candidate with maximum plurality score
dict_top2 = {max_cand: 0, second_max_cand: 0}
for i in range(len_prefcounts):
vote_top2 = {key: value for key, value in rankmaps[i].items() if key in top_2}
top_position = min(vote_top2.values())
keys = [x for x in vote_top2.keys() if vote_top2[x] == top_position]
for key in keys:
dict_top2[key] += prefcounts[i]
# print(dict_top2)
winner = max(dict_top2.items(), key=lambda x: x[1])[0]
return winner | python | def PluRunOff_single_winner(self, profile):
"""
Returns a number that associates the winner of a profile under Plurality with Runoff rule.
:ivar Profile profile: A Profile object that represents an election profile.
"""
# Currently, we expect the profile to contain complete ordering over candidates. Ties are
# allowed however.
elecType = profile.getElecType()
if elecType != "soc" and elecType != "toc" and elecType != "csv":
print("ERROR: unsupported election type")
exit()
# Initialization
prefcounts = profile.getPreferenceCounts()
len_prefcounts = len(prefcounts)
rankmaps = profile.getRankMaps()
ranking = MechanismPlurality().getRanking(profile)
# 1st round: find the top 2 candidates in plurality scores
# Compute the 1st-place candidate in plurality scores
# print(ranking)
max_cand = ranking[0][0][0]
# Compute the 2nd-place candidate in plurality scores
# Automatically using tie-breaking rule--numerically increasing order
if len(ranking[0][0]) > 1:
second_max_cand = ranking[0][0][1]
else:
second_max_cand = ranking[0][1][0]
top_2 = [max_cand, second_max_cand]
# 2nd round: find the candidate with maximum plurality score
dict_top2 = {max_cand: 0, second_max_cand: 0}
for i in range(len_prefcounts):
vote_top2 = {key: value for key, value in rankmaps[i].items() if key in top_2}
top_position = min(vote_top2.values())
keys = [x for x in vote_top2.keys() if vote_top2[x] == top_position]
for key in keys:
dict_top2[key] += prefcounts[i]
# print(dict_top2)
winner = max(dict_top2.items(), key=lambda x: x[1])[0]
return winner | [
"def",
"PluRunOff_single_winner",
"(",
"self",
",",
"profile",
")",
":",
"# Currently, we expect the profile to contain complete ordering over candidates. Ties are",
"# allowed however.",
"elecType",
"=",
"profile",
".",
"getElecType",
"(",
")",
"if",
"elecType",
"!=",
"\"soc\"",
"and",
"elecType",
"!=",
"\"toc\"",
"and",
"elecType",
"!=",
"\"csv\"",
":",
"print",
"(",
"\"ERROR: unsupported election type\"",
")",
"exit",
"(",
")",
"# Initialization",
"prefcounts",
"=",
"profile",
".",
"getPreferenceCounts",
"(",
")",
"len_prefcounts",
"=",
"len",
"(",
"prefcounts",
")",
"rankmaps",
"=",
"profile",
".",
"getRankMaps",
"(",
")",
"ranking",
"=",
"MechanismPlurality",
"(",
")",
".",
"getRanking",
"(",
"profile",
")",
"# 1st round: find the top 2 candidates in plurality scores",
"# Compute the 1st-place candidate in plurality scores",
"# print(ranking)",
"max_cand",
"=",
"ranking",
"[",
"0",
"]",
"[",
"0",
"]",
"[",
"0",
"]",
"# Compute the 2nd-place candidate in plurality scores",
"# Automatically using tie-breaking rule--numerically increasing order",
"if",
"len",
"(",
"ranking",
"[",
"0",
"]",
"[",
"0",
"]",
")",
">",
"1",
":",
"second_max_cand",
"=",
"ranking",
"[",
"0",
"]",
"[",
"0",
"]",
"[",
"1",
"]",
"else",
":",
"second_max_cand",
"=",
"ranking",
"[",
"0",
"]",
"[",
"1",
"]",
"[",
"0",
"]",
"top_2",
"=",
"[",
"max_cand",
",",
"second_max_cand",
"]",
"# 2nd round: find the candidate with maximum plurality score",
"dict_top2",
"=",
"{",
"max_cand",
":",
"0",
",",
"second_max_cand",
":",
"0",
"}",
"for",
"i",
"in",
"range",
"(",
"len_prefcounts",
")",
":",
"vote_top2",
"=",
"{",
"key",
":",
"value",
"for",
"key",
",",
"value",
"in",
"rankmaps",
"[",
"i",
"]",
".",
"items",
"(",
")",
"if",
"key",
"in",
"top_2",
"}",
"top_position",
"=",
"min",
"(",
"vote_top2",
".",
"values",
"(",
")",
")",
"keys",
"=",
"[",
"x",
"for",
"x",
"in",
"vote_top2",
".",
"keys",
"(",
")",
"if",
"vote_top2",
"[",
"x",
"]",
"==",
"top_position",
"]",
"for",
"key",
"in",
"keys",
":",
"dict_top2",
"[",
"key",
"]",
"+=",
"prefcounts",
"[",
"i",
"]",
"# print(dict_top2)",
"winner",
"=",
"max",
"(",
"dict_top2",
".",
"items",
"(",
")",
",",
"key",
"=",
"lambda",
"x",
":",
"x",
"[",
"1",
"]",
")",
"[",
"0",
"]",
"return",
"winner"
] | Returns a number that associates the winner of a profile under Plurality with Runoff rule.
:ivar Profile profile: A Profile object that represents an election profile. | [
"Returns",
"a",
"number",
"that",
"associates",
"the",
"winner",
"of",
"a",
"profile",
"under",
"Plurality",
"with",
"Runoff",
"rule",
"."
] | f395ba3782f05684fa5de0cece387a6da9391d02 | https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/mechanism.py#L1780-L1825 | train |
PrefPy/prefpy | prefpy/mechanism.py | MechanismPluralityRunOff.PluRunOff_cowinners | def PluRunOff_cowinners(self, profile):
"""
Returns a list that associates all the winners of a profile under Plurality with Runoff rule.
:ivar Profile profile: A Profile object that represents an election profile.
"""
# Currently, we expect the profile to contain complete ordering over candidates. Ties are
# allowed however.
elecType = profile.getElecType()
if elecType != "soc" and elecType != "toc" and elecType != "csv":
print("ERROR: unsupported election type")
exit()
# Initialization
prefcounts = profile.getPreferenceCounts()
len_prefcounts = len(prefcounts)
rankmaps = profile.getRankMaps()
ranking = MechanismPlurality().getRanking(profile)
known_winners = set()
# 1st round: find the top 2 candidates in plurality scores
top_2_combinations = []
if len(ranking[0][0]) > 1:
for cand1, cand2 in itertools.combinations(ranking[0][0], 2):
top_2_combinations.append([cand1, cand2])
else:
max_cand = ranking[0][0][0]
if len(ranking[0][1]) > 1:
for second_max_cand in ranking[0][1]:
top_2_combinations.append([max_cand, second_max_cand])
else:
second_max_cand = ranking[0][1][0]
top_2_combinations.append([max_cand, second_max_cand])
# 2nd round: find the candidate with maximum plurality score
for top_2 in top_2_combinations:
dict_top2 = {top_2[0]: 0, top_2[1]: 0}
for i in range(len_prefcounts):
vote_top2 = {key: value for key, value in rankmaps[i].items() if key in top_2}
top_position = min(vote_top2.values())
keys = [x for x in vote_top2.keys() if vote_top2[x] == top_position]
for key in keys:
dict_top2[key] += prefcounts[i]
max_value = max(dict_top2.values())
winners = [y for y in dict_top2.keys() if dict_top2[y] == max_value]
known_winners = known_winners | set(winners)
return sorted(known_winners) | python | def PluRunOff_cowinners(self, profile):
"""
Returns a list that associates all the winners of a profile under Plurality with Runoff rule.
:ivar Profile profile: A Profile object that represents an election profile.
"""
# Currently, we expect the profile to contain complete ordering over candidates. Ties are
# allowed however.
elecType = profile.getElecType()
if elecType != "soc" and elecType != "toc" and elecType != "csv":
print("ERROR: unsupported election type")
exit()
# Initialization
prefcounts = profile.getPreferenceCounts()
len_prefcounts = len(prefcounts)
rankmaps = profile.getRankMaps()
ranking = MechanismPlurality().getRanking(profile)
known_winners = set()
# 1st round: find the top 2 candidates in plurality scores
top_2_combinations = []
if len(ranking[0][0]) > 1:
for cand1, cand2 in itertools.combinations(ranking[0][0], 2):
top_2_combinations.append([cand1, cand2])
else:
max_cand = ranking[0][0][0]
if len(ranking[0][1]) > 1:
for second_max_cand in ranking[0][1]:
top_2_combinations.append([max_cand, second_max_cand])
else:
second_max_cand = ranking[0][1][0]
top_2_combinations.append([max_cand, second_max_cand])
# 2nd round: find the candidate with maximum plurality score
for top_2 in top_2_combinations:
dict_top2 = {top_2[0]: 0, top_2[1]: 0}
for i in range(len_prefcounts):
vote_top2 = {key: value for key, value in rankmaps[i].items() if key in top_2}
top_position = min(vote_top2.values())
keys = [x for x in vote_top2.keys() if vote_top2[x] == top_position]
for key in keys:
dict_top2[key] += prefcounts[i]
max_value = max(dict_top2.values())
winners = [y for y in dict_top2.keys() if dict_top2[y] == max_value]
known_winners = known_winners | set(winners)
return sorted(known_winners) | [
"def",
"PluRunOff_cowinners",
"(",
"self",
",",
"profile",
")",
":",
"# Currently, we expect the profile to contain complete ordering over candidates. Ties are",
"# allowed however.",
"elecType",
"=",
"profile",
".",
"getElecType",
"(",
")",
"if",
"elecType",
"!=",
"\"soc\"",
"and",
"elecType",
"!=",
"\"toc\"",
"and",
"elecType",
"!=",
"\"csv\"",
":",
"print",
"(",
"\"ERROR: unsupported election type\"",
")",
"exit",
"(",
")",
"# Initialization",
"prefcounts",
"=",
"profile",
".",
"getPreferenceCounts",
"(",
")",
"len_prefcounts",
"=",
"len",
"(",
"prefcounts",
")",
"rankmaps",
"=",
"profile",
".",
"getRankMaps",
"(",
")",
"ranking",
"=",
"MechanismPlurality",
"(",
")",
".",
"getRanking",
"(",
"profile",
")",
"known_winners",
"=",
"set",
"(",
")",
"# 1st round: find the top 2 candidates in plurality scores",
"top_2_combinations",
"=",
"[",
"]",
"if",
"len",
"(",
"ranking",
"[",
"0",
"]",
"[",
"0",
"]",
")",
">",
"1",
":",
"for",
"cand1",
",",
"cand2",
"in",
"itertools",
".",
"combinations",
"(",
"ranking",
"[",
"0",
"]",
"[",
"0",
"]",
",",
"2",
")",
":",
"top_2_combinations",
".",
"append",
"(",
"[",
"cand1",
",",
"cand2",
"]",
")",
"else",
":",
"max_cand",
"=",
"ranking",
"[",
"0",
"]",
"[",
"0",
"]",
"[",
"0",
"]",
"if",
"len",
"(",
"ranking",
"[",
"0",
"]",
"[",
"1",
"]",
")",
">",
"1",
":",
"for",
"second_max_cand",
"in",
"ranking",
"[",
"0",
"]",
"[",
"1",
"]",
":",
"top_2_combinations",
".",
"append",
"(",
"[",
"max_cand",
",",
"second_max_cand",
"]",
")",
"else",
":",
"second_max_cand",
"=",
"ranking",
"[",
"0",
"]",
"[",
"1",
"]",
"[",
"0",
"]",
"top_2_combinations",
".",
"append",
"(",
"[",
"max_cand",
",",
"second_max_cand",
"]",
")",
"# 2nd round: find the candidate with maximum plurality score",
"for",
"top_2",
"in",
"top_2_combinations",
":",
"dict_top2",
"=",
"{",
"top_2",
"[",
"0",
"]",
":",
"0",
",",
"top_2",
"[",
"1",
"]",
":",
"0",
"}",
"for",
"i",
"in",
"range",
"(",
"len_prefcounts",
")",
":",
"vote_top2",
"=",
"{",
"key",
":",
"value",
"for",
"key",
",",
"value",
"in",
"rankmaps",
"[",
"i",
"]",
".",
"items",
"(",
")",
"if",
"key",
"in",
"top_2",
"}",
"top_position",
"=",
"min",
"(",
"vote_top2",
".",
"values",
"(",
")",
")",
"keys",
"=",
"[",
"x",
"for",
"x",
"in",
"vote_top2",
".",
"keys",
"(",
")",
"if",
"vote_top2",
"[",
"x",
"]",
"==",
"top_position",
"]",
"for",
"key",
"in",
"keys",
":",
"dict_top2",
"[",
"key",
"]",
"+=",
"prefcounts",
"[",
"i",
"]",
"max_value",
"=",
"max",
"(",
"dict_top2",
".",
"values",
"(",
")",
")",
"winners",
"=",
"[",
"y",
"for",
"y",
"in",
"dict_top2",
".",
"keys",
"(",
")",
"if",
"dict_top2",
"[",
"y",
"]",
"==",
"max_value",
"]",
"known_winners",
"=",
"known_winners",
"|",
"set",
"(",
"winners",
")",
"return",
"sorted",
"(",
"known_winners",
")"
] | Returns a list that associates all the winners of a profile under Plurality with Runoff rule.
:ivar Profile profile: A Profile object that represents an election profile. | [
"Returns",
"a",
"list",
"that",
"associates",
"all",
"the",
"winners",
"of",
"a",
"profile",
"under",
"Plurality",
"with",
"Runoff",
"rule",
"."
] | f395ba3782f05684fa5de0cece387a6da9391d02 | https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/mechanism.py#L1827-L1876 | train |
PrefPy/prefpy | prefpy/mechanism.py | MechanismSNTV.SNTV_winners | def SNTV_winners(self, profile, K):
"""
Returns a list that associates all the winners of a profile under Single non-transferable vote rule.
:ivar Profile profile: A Profile object that represents an election profile.
"""
# Currently, we expect the profile to contain complete ordering over candidates. Ties are
# allowed however.
elecType = profile.getElecType()
if elecType != "soc" and elecType != "toc" and elecType != "csv":
print("ERROR: unsupported election type")
exit()
m = profile.numCands
candScoresMap = MechanismPlurality().getCandScoresMap(profile)
if K >= m:
return list(candScoresMap.keys())
# print(candScoresMap)
sorted_items = sorted(candScoresMap.items(), key=lambda x: x[1], reverse=True)
sorted_dict = {key: value for key, value in sorted_items}
winners = list(sorted_dict.keys())[0:K]
return winners | python | def SNTV_winners(self, profile, K):
"""
Returns a list that associates all the winners of a profile under Single non-transferable vote rule.
:ivar Profile profile: A Profile object that represents an election profile.
"""
# Currently, we expect the profile to contain complete ordering over candidates. Ties are
# allowed however.
elecType = profile.getElecType()
if elecType != "soc" and elecType != "toc" and elecType != "csv":
print("ERROR: unsupported election type")
exit()
m = profile.numCands
candScoresMap = MechanismPlurality().getCandScoresMap(profile)
if K >= m:
return list(candScoresMap.keys())
# print(candScoresMap)
sorted_items = sorted(candScoresMap.items(), key=lambda x: x[1], reverse=True)
sorted_dict = {key: value for key, value in sorted_items}
winners = list(sorted_dict.keys())[0:K]
return winners | [
"def",
"SNTV_winners",
"(",
"self",
",",
"profile",
",",
"K",
")",
":",
"# Currently, we expect the profile to contain complete ordering over candidates. Ties are",
"# allowed however.",
"elecType",
"=",
"profile",
".",
"getElecType",
"(",
")",
"if",
"elecType",
"!=",
"\"soc\"",
"and",
"elecType",
"!=",
"\"toc\"",
"and",
"elecType",
"!=",
"\"csv\"",
":",
"print",
"(",
"\"ERROR: unsupported election type\"",
")",
"exit",
"(",
")",
"m",
"=",
"profile",
".",
"numCands",
"candScoresMap",
"=",
"MechanismPlurality",
"(",
")",
".",
"getCandScoresMap",
"(",
"profile",
")",
"if",
"K",
">=",
"m",
":",
"return",
"list",
"(",
"candScoresMap",
".",
"keys",
"(",
")",
")",
"# print(candScoresMap)",
"sorted_items",
"=",
"sorted",
"(",
"candScoresMap",
".",
"items",
"(",
")",
",",
"key",
"=",
"lambda",
"x",
":",
"x",
"[",
"1",
"]",
",",
"reverse",
"=",
"True",
")",
"sorted_dict",
"=",
"{",
"key",
":",
"value",
"for",
"key",
",",
"value",
"in",
"sorted_items",
"}",
"winners",
"=",
"list",
"(",
"sorted_dict",
".",
"keys",
"(",
")",
")",
"[",
"0",
":",
"K",
"]",
"return",
"winners"
] | Returns a list that associates all the winners of a profile under Single non-transferable vote rule.
:ivar Profile profile: A Profile object that represents an election profile. | [
"Returns",
"a",
"list",
"that",
"associates",
"all",
"the",
"winners",
"of",
"a",
"profile",
"under",
"Single",
"non",
"-",
"transferable",
"vote",
"rule",
"."
] | f395ba3782f05684fa5de0cece387a6da9391d02 | https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/mechanism.py#L1899-L1921 | train |
PrefPy/prefpy | prefpy/mechanism.py | MechanismBordaMean.Borda_mean_winners | def Borda_mean_winners(self, profile):
"""
Returns a list that associates all the winners of a profile under The Borda-mean rule.
:ivar Profile profile: A Profile object that represents an election profile.
"""
n_candidates = profile.numCands
prefcounts = profile.getPreferenceCounts()
len_prefcounts = len(prefcounts)
rankmaps = profile.getRankMaps()
values = zeros([len_prefcounts, n_candidates], dtype=int)
if min(list(rankmaps[0].keys())) == 0:
delta = 0
else:
delta = 1
for i in range(len_prefcounts):
for j in range(delta, n_candidates + delta):
values[i][j - delta] = rankmaps[i][j]
# print("values=", values)
mat0 = self._build_mat(values, n_candidates, prefcounts)
borda = [0 for i in range(n_candidates)]
for i in range(n_candidates):
borda[i] = sum([mat0[i, j] for j in range(n_candidates)])
borda_mean = mean(borda)
bin_winners_list = [int(borda[i] >= borda_mean) for i in range(n_candidates)]
return bin_winners_list | python | def Borda_mean_winners(self, profile):
"""
Returns a list that associates all the winners of a profile under The Borda-mean rule.
:ivar Profile profile: A Profile object that represents an election profile.
"""
n_candidates = profile.numCands
prefcounts = profile.getPreferenceCounts()
len_prefcounts = len(prefcounts)
rankmaps = profile.getRankMaps()
values = zeros([len_prefcounts, n_candidates], dtype=int)
if min(list(rankmaps[0].keys())) == 0:
delta = 0
else:
delta = 1
for i in range(len_prefcounts):
for j in range(delta, n_candidates + delta):
values[i][j - delta] = rankmaps[i][j]
# print("values=", values)
mat0 = self._build_mat(values, n_candidates, prefcounts)
borda = [0 for i in range(n_candidates)]
for i in range(n_candidates):
borda[i] = sum([mat0[i, j] for j in range(n_candidates)])
borda_mean = mean(borda)
bin_winners_list = [int(borda[i] >= borda_mean) for i in range(n_candidates)]
return bin_winners_list | [
"def",
"Borda_mean_winners",
"(",
"self",
",",
"profile",
")",
":",
"n_candidates",
"=",
"profile",
".",
"numCands",
"prefcounts",
"=",
"profile",
".",
"getPreferenceCounts",
"(",
")",
"len_prefcounts",
"=",
"len",
"(",
"prefcounts",
")",
"rankmaps",
"=",
"profile",
".",
"getRankMaps",
"(",
")",
"values",
"=",
"zeros",
"(",
"[",
"len_prefcounts",
",",
"n_candidates",
"]",
",",
"dtype",
"=",
"int",
")",
"if",
"min",
"(",
"list",
"(",
"rankmaps",
"[",
"0",
"]",
".",
"keys",
"(",
")",
")",
")",
"==",
"0",
":",
"delta",
"=",
"0",
"else",
":",
"delta",
"=",
"1",
"for",
"i",
"in",
"range",
"(",
"len_prefcounts",
")",
":",
"for",
"j",
"in",
"range",
"(",
"delta",
",",
"n_candidates",
"+",
"delta",
")",
":",
"values",
"[",
"i",
"]",
"[",
"j",
"-",
"delta",
"]",
"=",
"rankmaps",
"[",
"i",
"]",
"[",
"j",
"]",
"# print(\"values=\", values)",
"mat0",
"=",
"self",
".",
"_build_mat",
"(",
"values",
",",
"n_candidates",
",",
"prefcounts",
")",
"borda",
"=",
"[",
"0",
"for",
"i",
"in",
"range",
"(",
"n_candidates",
")",
"]",
"for",
"i",
"in",
"range",
"(",
"n_candidates",
")",
":",
"borda",
"[",
"i",
"]",
"=",
"sum",
"(",
"[",
"mat0",
"[",
"i",
",",
"j",
"]",
"for",
"j",
"in",
"range",
"(",
"n_candidates",
")",
"]",
")",
"borda_mean",
"=",
"mean",
"(",
"borda",
")",
"bin_winners_list",
"=",
"[",
"int",
"(",
"borda",
"[",
"i",
"]",
">=",
"borda_mean",
")",
"for",
"i",
"in",
"range",
"(",
"n_candidates",
")",
"]",
"return",
"bin_winners_list"
] | Returns a list that associates all the winners of a profile under The Borda-mean rule.
:ivar Profile profile: A Profile object that represents an election profile. | [
"Returns",
"a",
"list",
"that",
"associates",
"all",
"the",
"winners",
"of",
"a",
"profile",
"under",
"The",
"Borda",
"-",
"mean",
"rule",
"."
] | f395ba3782f05684fa5de0cece387a6da9391d02 | https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/mechanism.py#L2043-L2068 | train |
tamasgal/km3pipe | km3pipe/calib.py | Calibration.apply_t0 | def apply_t0(self, hits):
"""Apply only t0s"""
if HAVE_NUMBA:
apply_t0_nb(
hits.time, hits.dom_id, hits.channel_id, self._lookup_tables
)
else:
n = len(hits)
cal = np.empty(n)
lookup = self._calib_by_dom_and_channel
for i in range(n):
calib = lookup[hits['dom_id'][i]][hits['channel_id'][i]]
cal[i] = calib[6]
hits.time += cal
return hits | python | def apply_t0(self, hits):
"""Apply only t0s"""
if HAVE_NUMBA:
apply_t0_nb(
hits.time, hits.dom_id, hits.channel_id, self._lookup_tables
)
else:
n = len(hits)
cal = np.empty(n)
lookup = self._calib_by_dom_and_channel
for i in range(n):
calib = lookup[hits['dom_id'][i]][hits['channel_id'][i]]
cal[i] = calib[6]
hits.time += cal
return hits | [
"def",
"apply_t0",
"(",
"self",
",",
"hits",
")",
":",
"if",
"HAVE_NUMBA",
":",
"apply_t0_nb",
"(",
"hits",
".",
"time",
",",
"hits",
".",
"dom_id",
",",
"hits",
".",
"channel_id",
",",
"self",
".",
"_lookup_tables",
")",
"else",
":",
"n",
"=",
"len",
"(",
"hits",
")",
"cal",
"=",
"np",
".",
"empty",
"(",
"n",
")",
"lookup",
"=",
"self",
".",
"_calib_by_dom_and_channel",
"for",
"i",
"in",
"range",
"(",
"n",
")",
":",
"calib",
"=",
"lookup",
"[",
"hits",
"[",
"'dom_id'",
"]",
"[",
"i",
"]",
"]",
"[",
"hits",
"[",
"'channel_id'",
"]",
"[",
"i",
"]",
"]",
"cal",
"[",
"i",
"]",
"=",
"calib",
"[",
"6",
"]",
"hits",
".",
"time",
"+=",
"cal",
"return",
"hits"
] | Apply only t0s | [
"Apply",
"only",
"t0s"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/calib.py#L116-L130 | train |
tamasgal/km3pipe | km3pipe/io/evt.py | EvtPump._get_file_index_str | def _get_file_index_str(self):
"""Create a string out of the current file_index"""
file_index = str(self.file_index)
if self.n_digits is not None:
file_index = file_index.zfill(self.n_digits)
return file_index | python | def _get_file_index_str(self):
"""Create a string out of the current file_index"""
file_index = str(self.file_index)
if self.n_digits is not None:
file_index = file_index.zfill(self.n_digits)
return file_index | [
"def",
"_get_file_index_str",
"(",
"self",
")",
":",
"file_index",
"=",
"str",
"(",
"self",
".",
"file_index",
")",
"if",
"self",
".",
"n_digits",
"is",
"not",
"None",
":",
"file_index",
"=",
"file_index",
".",
"zfill",
"(",
"self",
".",
"n_digits",
")",
"return",
"file_index"
] | Create a string out of the current file_index | [
"Create",
"a",
"string",
"out",
"of",
"the",
"current",
"file_index"
] | 7a9b59ac899a28775b5bdc5d391d9a5340d08040 | https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/io/evt.py#L156-L161 | train |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.