repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
partition
stringclasses
1 value
tamasgal/km3pipe
km3pipe/io/evt.py
EvtPump.prepare_blobs
def prepare_blobs(self): """Populate the blobs""" self.raw_header = self.extract_header() if self.cache_enabled: self._cache_offsets()
python
def prepare_blobs(self): """Populate the blobs""" self.raw_header = self.extract_header() if self.cache_enabled: self._cache_offsets()
[ "def", "prepare_blobs", "(", "self", ")", ":", "self", ".", "raw_header", "=", "self", ".", "extract_header", "(", ")", "if", "self", ".", "cache_enabled", ":", "self", ".", "_cache_offsets", "(", ")" ]
Populate the blobs
[ "Populate", "the", "blobs" ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/io/evt.py#L163-L167
train
tamasgal/km3pipe
km3pipe/io/evt.py
EvtPump.extract_header
def extract_header(self): """Create a dictionary with the EVT header information""" self.log.info("Extracting the header") raw_header = self.raw_header = defaultdict(list) first_line = self.blob_file.readline() first_line = try_decode_string(first_line) self.blob_file.seek(0, 0) if not first_line.startswith(str('start_run')): self.log.warning("No header found.") return raw_header for line in iter(self.blob_file.readline, ''): line = try_decode_string(line) line = line.strip() try: tag, value = str(line).split(':') except ValueError: continue raw_header[tag].append(str(value).split()) if line.startswith(str('end_event:')): self._record_offset() if self._auto_parse and 'physics' in raw_header: parsers = [p[0].lower() for p in raw_header['physics']] self._register_parsers(parsers) return raw_header raise ValueError("Incomplete header, no 'end_event' tag found!")
python
def extract_header(self): """Create a dictionary with the EVT header information""" self.log.info("Extracting the header") raw_header = self.raw_header = defaultdict(list) first_line = self.blob_file.readline() first_line = try_decode_string(first_line) self.blob_file.seek(0, 0) if not first_line.startswith(str('start_run')): self.log.warning("No header found.") return raw_header for line in iter(self.blob_file.readline, ''): line = try_decode_string(line) line = line.strip() try: tag, value = str(line).split(':') except ValueError: continue raw_header[tag].append(str(value).split()) if line.startswith(str('end_event:')): self._record_offset() if self._auto_parse and 'physics' in raw_header: parsers = [p[0].lower() for p in raw_header['physics']] self._register_parsers(parsers) return raw_header raise ValueError("Incomplete header, no 'end_event' tag found!")
[ "def", "extract_header", "(", "self", ")", ":", "self", ".", "log", ".", "info", "(", "\"Extracting the header\"", ")", "raw_header", "=", "self", ".", "raw_header", "=", "defaultdict", "(", "list", ")", "first_line", "=", "self", ".", "blob_file", ".", "readline", "(", ")", "first_line", "=", "try_decode_string", "(", "first_line", ")", "self", ".", "blob_file", ".", "seek", "(", "0", ",", "0", ")", "if", "not", "first_line", ".", "startswith", "(", "str", "(", "'start_run'", ")", ")", ":", "self", ".", "log", ".", "warning", "(", "\"No header found.\"", ")", "return", "raw_header", "for", "line", "in", "iter", "(", "self", ".", "blob_file", ".", "readline", ",", "''", ")", ":", "line", "=", "try_decode_string", "(", "line", ")", "line", "=", "line", ".", "strip", "(", ")", "try", ":", "tag", ",", "value", "=", "str", "(", "line", ")", ".", "split", "(", "':'", ")", "except", "ValueError", ":", "continue", "raw_header", "[", "tag", "]", ".", "append", "(", "str", "(", "value", ")", ".", "split", "(", ")", ")", "if", "line", ".", "startswith", "(", "str", "(", "'end_event:'", ")", ")", ":", "self", ".", "_record_offset", "(", ")", "if", "self", ".", "_auto_parse", "and", "'physics'", "in", "raw_header", ":", "parsers", "=", "[", "p", "[", "0", "]", ".", "lower", "(", ")", "for", "p", "in", "raw_header", "[", "'physics'", "]", "]", "self", ".", "_register_parsers", "(", "parsers", ")", "return", "raw_header", "raise", "ValueError", "(", "\"Incomplete header, no 'end_event' tag found!\"", ")" ]
Create a dictionary with the EVT header information
[ "Create", "a", "dictionary", "with", "the", "EVT", "header", "information" ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/io/evt.py#L169-L193
train
tamasgal/km3pipe
km3pipe/io/evt.py
EvtPump.get_blob
def get_blob(self, index): """Return a blob with the event at the given index""" self.log.info("Retrieving blob #{}".format(index)) if index > len(self.event_offsets) - 1: self.log.info("Index not in cache, caching offsets") self._cache_offsets(index, verbose=False) self.blob_file.seek(self.event_offsets[index], 0) blob = self._create_blob() if blob is None: self.log.info("Empty blob created...") raise IndexError else: self.log.debug("Applying parsers...") for parser in self.parsers: parser(blob) self.log.debug("Returning the blob") return blob
python
def get_blob(self, index): """Return a blob with the event at the given index""" self.log.info("Retrieving blob #{}".format(index)) if index > len(self.event_offsets) - 1: self.log.info("Index not in cache, caching offsets") self._cache_offsets(index, verbose=False) self.blob_file.seek(self.event_offsets[index], 0) blob = self._create_blob() if blob is None: self.log.info("Empty blob created...") raise IndexError else: self.log.debug("Applying parsers...") for parser in self.parsers: parser(blob) self.log.debug("Returning the blob") return blob
[ "def", "get_blob", "(", "self", ",", "index", ")", ":", "self", ".", "log", ".", "info", "(", "\"Retrieving blob #{}\"", ".", "format", "(", "index", ")", ")", "if", "index", ">", "len", "(", "self", ".", "event_offsets", ")", "-", "1", ":", "self", ".", "log", ".", "info", "(", "\"Index not in cache, caching offsets\"", ")", "self", ".", "_cache_offsets", "(", "index", ",", "verbose", "=", "False", ")", "self", ".", "blob_file", ".", "seek", "(", "self", ".", "event_offsets", "[", "index", "]", ",", "0", ")", "blob", "=", "self", ".", "_create_blob", "(", ")", "if", "blob", "is", "None", ":", "self", ".", "log", ".", "info", "(", "\"Empty blob created...\"", ")", "raise", "IndexError", "else", ":", "self", ".", "log", ".", "debug", "(", "\"Applying parsers...\"", ")", "for", "parser", "in", "self", ".", "parsers", ":", "parser", "(", "blob", ")", "self", ".", "log", ".", "debug", "(", "\"Returning the blob\"", ")", "return", "blob" ]
Return a blob with the event at the given index
[ "Return", "a", "blob", "with", "the", "event", "at", "the", "given", "index" ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/io/evt.py#L195-L211
train
tamasgal/km3pipe
km3pipe/io/evt.py
EvtPump.process
def process(self, blob=None): """Pump the next blob to the modules""" try: blob = self.get_blob(self.index) except IndexError: self.log.info("Got an IndexError, trying the next file") if (self.basename or self.filenames) and self.file_index < self.index_stop: self.file_index += 1 self.log.info("Now at file_index={}".format(self.file_index)) self._reset() self.blob_file.close() self.log.info("Resetting blob index to 0") self.index = 0 file_index = self._get_file_index_str() if self.filenames: self.filename = self.filenames[self.file_index - 1] elif self.basename: self.filename = "{}{}{}.evt" \ .format(self.basename, file_index, self.suffix) self.log.info("Next filename: {}".format(self.filename)) self.print("Opening {0}".format(self.filename)) self.open_file(self.filename) self.prepare_blobs() try: blob = self.get_blob(self.index) except IndexError: self.log.warning( "No blob found in file {}".format(self.filename) ) else: return blob self.log.info("No files left, terminating the pipeline") raise StopIteration self.index += 1 return blob
python
def process(self, blob=None): """Pump the next blob to the modules""" try: blob = self.get_blob(self.index) except IndexError: self.log.info("Got an IndexError, trying the next file") if (self.basename or self.filenames) and self.file_index < self.index_stop: self.file_index += 1 self.log.info("Now at file_index={}".format(self.file_index)) self._reset() self.blob_file.close() self.log.info("Resetting blob index to 0") self.index = 0 file_index = self._get_file_index_str() if self.filenames: self.filename = self.filenames[self.file_index - 1] elif self.basename: self.filename = "{}{}{}.evt" \ .format(self.basename, file_index, self.suffix) self.log.info("Next filename: {}".format(self.filename)) self.print("Opening {0}".format(self.filename)) self.open_file(self.filename) self.prepare_blobs() try: blob = self.get_blob(self.index) except IndexError: self.log.warning( "No blob found in file {}".format(self.filename) ) else: return blob self.log.info("No files left, terminating the pipeline") raise StopIteration self.index += 1 return blob
[ "def", "process", "(", "self", ",", "blob", "=", "None", ")", ":", "try", ":", "blob", "=", "self", ".", "get_blob", "(", "self", ".", "index", ")", "except", "IndexError", ":", "self", ".", "log", ".", "info", "(", "\"Got an IndexError, trying the next file\"", ")", "if", "(", "self", ".", "basename", "or", "self", ".", "filenames", ")", "and", "self", ".", "file_index", "<", "self", ".", "index_stop", ":", "self", ".", "file_index", "+=", "1", "self", ".", "log", ".", "info", "(", "\"Now at file_index={}\"", ".", "format", "(", "self", ".", "file_index", ")", ")", "self", ".", "_reset", "(", ")", "self", ".", "blob_file", ".", "close", "(", ")", "self", ".", "log", ".", "info", "(", "\"Resetting blob index to 0\"", ")", "self", ".", "index", "=", "0", "file_index", "=", "self", ".", "_get_file_index_str", "(", ")", "if", "self", ".", "filenames", ":", "self", ".", "filename", "=", "self", ".", "filenames", "[", "self", ".", "file_index", "-", "1", "]", "elif", "self", ".", "basename", ":", "self", ".", "filename", "=", "\"{}{}{}.evt\"", ".", "format", "(", "self", ".", "basename", ",", "file_index", ",", "self", ".", "suffix", ")", "self", ".", "log", ".", "info", "(", "\"Next filename: {}\"", ".", "format", "(", "self", ".", "filename", ")", ")", "self", ".", "print", "(", "\"Opening {0}\"", ".", "format", "(", "self", ".", "filename", ")", ")", "self", ".", "open_file", "(", "self", ".", "filename", ")", "self", ".", "prepare_blobs", "(", ")", "try", ":", "blob", "=", "self", ".", "get_blob", "(", "self", ".", "index", ")", "except", "IndexError", ":", "self", ".", "log", ".", "warning", "(", "\"No blob found in file {}\"", ".", "format", "(", "self", ".", "filename", ")", ")", "else", ":", "return", "blob", "self", ".", "log", ".", "info", "(", "\"No files left, terminating the pipeline\"", ")", "raise", "StopIteration", "self", ".", "index", "+=", "1", "return", "blob" ]
Pump the next blob to the modules
[ "Pump", "the", "next", "blob", "to", "the", "modules" ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/io/evt.py#L213-L250
train
tamasgal/km3pipe
km3pipe/io/evt.py
EvtPump._cache_offsets
def _cache_offsets(self, up_to_index=None, verbose=True): """Cache all event offsets.""" if not up_to_index: if verbose: self.print("Caching event file offsets, this may take a bit.") self.blob_file.seek(0, 0) self.event_offsets = [] if not self.raw_header: self.event_offsets.append(0) else: self.blob_file.seek(self.event_offsets[-1], 0) for line in iter(self.blob_file.readline, ''): line = try_decode_string(line) if line.startswith('end_event:'): self._record_offset() if len(self.event_offsets) % 100 == 0: if verbose: print('.', end='') sys.stdout.flush() if up_to_index and len(self.event_offsets) >= up_to_index + 1: return self.event_offsets.pop() # get rid of the last entry if not up_to_index: self.whole_file_cached = True self.print("\n{0} events indexed.".format(len(self.event_offsets)))
python
def _cache_offsets(self, up_to_index=None, verbose=True): """Cache all event offsets.""" if not up_to_index: if verbose: self.print("Caching event file offsets, this may take a bit.") self.blob_file.seek(0, 0) self.event_offsets = [] if not self.raw_header: self.event_offsets.append(0) else: self.blob_file.seek(self.event_offsets[-1], 0) for line in iter(self.blob_file.readline, ''): line = try_decode_string(line) if line.startswith('end_event:'): self._record_offset() if len(self.event_offsets) % 100 == 0: if verbose: print('.', end='') sys.stdout.flush() if up_to_index and len(self.event_offsets) >= up_to_index + 1: return self.event_offsets.pop() # get rid of the last entry if not up_to_index: self.whole_file_cached = True self.print("\n{0} events indexed.".format(len(self.event_offsets)))
[ "def", "_cache_offsets", "(", "self", ",", "up_to_index", "=", "None", ",", "verbose", "=", "True", ")", ":", "if", "not", "up_to_index", ":", "if", "verbose", ":", "self", ".", "print", "(", "\"Caching event file offsets, this may take a bit.\"", ")", "self", ".", "blob_file", ".", "seek", "(", "0", ",", "0", ")", "self", ".", "event_offsets", "=", "[", "]", "if", "not", "self", ".", "raw_header", ":", "self", ".", "event_offsets", ".", "append", "(", "0", ")", "else", ":", "self", ".", "blob_file", ".", "seek", "(", "self", ".", "event_offsets", "[", "-", "1", "]", ",", "0", ")", "for", "line", "in", "iter", "(", "self", ".", "blob_file", ".", "readline", ",", "''", ")", ":", "line", "=", "try_decode_string", "(", "line", ")", "if", "line", ".", "startswith", "(", "'end_event:'", ")", ":", "self", ".", "_record_offset", "(", ")", "if", "len", "(", "self", ".", "event_offsets", ")", "%", "100", "==", "0", ":", "if", "verbose", ":", "print", "(", "'.'", ",", "end", "=", "''", ")", "sys", ".", "stdout", ".", "flush", "(", ")", "if", "up_to_index", "and", "len", "(", "self", ".", "event_offsets", ")", ">=", "up_to_index", "+", "1", ":", "return", "self", ".", "event_offsets", ".", "pop", "(", ")", "# get rid of the last entry", "if", "not", "up_to_index", ":", "self", ".", "whole_file_cached", "=", "True", "self", ".", "print", "(", "\"\\n{0} events indexed.\"", ".", "format", "(", "len", "(", "self", ".", "event_offsets", ")", ")", ")" ]
Cache all event offsets.
[ "Cache", "all", "event", "offsets", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/io/evt.py#L252-L276
train
tamasgal/km3pipe
km3pipe/io/evt.py
EvtPump._record_offset
def _record_offset(self): """Stores the current file pointer position""" offset = self.blob_file.tell() self.event_offsets.append(offset)
python
def _record_offset(self): """Stores the current file pointer position""" offset = self.blob_file.tell() self.event_offsets.append(offset)
[ "def", "_record_offset", "(", "self", ")", ":", "offset", "=", "self", ".", "blob_file", ".", "tell", "(", ")", "self", ".", "event_offsets", ".", "append", "(", "offset", ")" ]
Stores the current file pointer position
[ "Stores", "the", "current", "file", "pointer", "position" ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/io/evt.py#L278-L281
train
tamasgal/km3pipe
km3pipe/io/evt.py
EvtPump._create_blob
def _create_blob(self): """Parse the next event from the current file position""" blob = None for line in self.blob_file: line = try_decode_string(line) line = line.strip() if line == '': self.log.info("Ignoring empty line...") continue if line.startswith('end_event:') and blob: blob['raw_header'] = self.raw_header return blob try: tag, values = line.split(':') except ValueError: self.log.warning("Ignoring corrupt line: {}".format(line)) continue try: values = tuple(split(values.strip(), callback=float)) except ValueError: self.log.info("Empty value: {}".format(values)) if line.startswith('start_event:'): blob = Blob() blob[tag] = tuple(int(v) for v in values) continue if tag not in blob: blob[tag] = [] blob[tag].append(values)
python
def _create_blob(self): """Parse the next event from the current file position""" blob = None for line in self.blob_file: line = try_decode_string(line) line = line.strip() if line == '': self.log.info("Ignoring empty line...") continue if line.startswith('end_event:') and blob: blob['raw_header'] = self.raw_header return blob try: tag, values = line.split(':') except ValueError: self.log.warning("Ignoring corrupt line: {}".format(line)) continue try: values = tuple(split(values.strip(), callback=float)) except ValueError: self.log.info("Empty value: {}".format(values)) if line.startswith('start_event:'): blob = Blob() blob[tag] = tuple(int(v) for v in values) continue if tag not in blob: blob[tag] = [] blob[tag].append(values)
[ "def", "_create_blob", "(", "self", ")", ":", "blob", "=", "None", "for", "line", "in", "self", ".", "blob_file", ":", "line", "=", "try_decode_string", "(", "line", ")", "line", "=", "line", ".", "strip", "(", ")", "if", "line", "==", "''", ":", "self", ".", "log", ".", "info", "(", "\"Ignoring empty line...\"", ")", "continue", "if", "line", ".", "startswith", "(", "'end_event:'", ")", "and", "blob", ":", "blob", "[", "'raw_header'", "]", "=", "self", ".", "raw_header", "return", "blob", "try", ":", "tag", ",", "values", "=", "line", ".", "split", "(", "':'", ")", "except", "ValueError", ":", "self", ".", "log", ".", "warning", "(", "\"Ignoring corrupt line: {}\"", ".", "format", "(", "line", ")", ")", "continue", "try", ":", "values", "=", "tuple", "(", "split", "(", "values", ".", "strip", "(", ")", ",", "callback", "=", "float", ")", ")", "except", "ValueError", ":", "self", ".", "log", ".", "info", "(", "\"Empty value: {}\"", ".", "format", "(", "values", ")", ")", "if", "line", ".", "startswith", "(", "'start_event:'", ")", ":", "blob", "=", "Blob", "(", ")", "blob", "[", "tag", "]", "=", "tuple", "(", "int", "(", "v", ")", "for", "v", "in", "values", ")", "continue", "if", "tag", "not", "in", "blob", ":", "blob", "[", "tag", "]", "=", "[", "]", "blob", "[", "tag", "]", ".", "append", "(", "values", ")" ]
Parse the next event from the current file position
[ "Parse", "the", "next", "event", "from", "the", "current", "file", "position" ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/io/evt.py#L283-L310
train
abiiranathan/db2
db2/__main__.py
runserver
def runserver(project_name): ''' Runs a python cgi server in a subprocess. ''' DIR = os.listdir(project_name) if 'settings.py' not in DIR: raise NotImplementedError('No file called: settings.py found in %s'%project_name) CGI_BIN_FOLDER = os.path.join(project_name, 'cgi', 'cgi-bin') CGI_FOLDER = os.path.join(project_name, 'cgi') if not os.path.exists(CGI_BIN_FOLDER): os.makedirs(CGI_BIN_FOLDER) os.chdir(CGI_FOLDER) subprocess.Popen("python -m http.server --cgi 8000")
python
def runserver(project_name): ''' Runs a python cgi server in a subprocess. ''' DIR = os.listdir(project_name) if 'settings.py' not in DIR: raise NotImplementedError('No file called: settings.py found in %s'%project_name) CGI_BIN_FOLDER = os.path.join(project_name, 'cgi', 'cgi-bin') CGI_FOLDER = os.path.join(project_name, 'cgi') if not os.path.exists(CGI_BIN_FOLDER): os.makedirs(CGI_BIN_FOLDER) os.chdir(CGI_FOLDER) subprocess.Popen("python -m http.server --cgi 8000")
[ "def", "runserver", "(", "project_name", ")", ":", "DIR", "=", "os", ".", "listdir", "(", "project_name", ")", "if", "'settings.py'", "not", "in", "DIR", ":", "raise", "NotImplementedError", "(", "'No file called: settings.py found in %s'", "%", "project_name", ")", "CGI_BIN_FOLDER", "=", "os", ".", "path", ".", "join", "(", "project_name", ",", "'cgi'", ",", "'cgi-bin'", ")", "CGI_FOLDER", "=", "os", ".", "path", ".", "join", "(", "project_name", ",", "'cgi'", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "CGI_BIN_FOLDER", ")", ":", "os", ".", "makedirs", "(", "CGI_BIN_FOLDER", ")", "os", ".", "chdir", "(", "CGI_FOLDER", ")", "subprocess", ".", "Popen", "(", "\"python -m http.server --cgi 8000\"", ")" ]
Runs a python cgi server in a subprocess.
[ "Runs", "a", "python", "cgi", "server", "in", "a", "subprocess", "." ]
347319e421921517bcae7639f524c3c3eb5446e6
https://github.com/abiiranathan/db2/blob/347319e421921517bcae7639f524c3c3eb5446e6/db2/__main__.py#L44-L59
train
PrefPy/prefpy
prefpy/utilityFunction.py
UtilityFunction.getUtility
def getUtility(self, decision, sample, aggregationMode = "avg"): """ Get the utility of a given decision given a preference. :ivar list<int> decision: Contains a list of integer representations of candidates in the current decision. :ivar sample: A representation of a preference. We do not assume that it is of a certain type here and merely pass it to the getUtilities() method. ivar str aggregationMode: Identifies the aggregation mode of the utility function when the decision selects more than one candidate. If the mode is "avg," the utility will be the averge of that of each candidate. If "min," the utility will be the minimum, and if "max," the utility will xbe the maximum. By default the aggregation mode will be "avg." """ utilities = self.getUtilities(decision, sample) if aggregationMode == "avg": utility = numpy.mean(utilities) elif aggregationMode == "min": utility = min(utilities) elif aggregationMode == "max": utility = max(utilities) else: print("ERROR: aggregation mode not recognized") exit() return utility
python
def getUtility(self, decision, sample, aggregationMode = "avg"): """ Get the utility of a given decision given a preference. :ivar list<int> decision: Contains a list of integer representations of candidates in the current decision. :ivar sample: A representation of a preference. We do not assume that it is of a certain type here and merely pass it to the getUtilities() method. ivar str aggregationMode: Identifies the aggregation mode of the utility function when the decision selects more than one candidate. If the mode is "avg," the utility will be the averge of that of each candidate. If "min," the utility will be the minimum, and if "max," the utility will xbe the maximum. By default the aggregation mode will be "avg." """ utilities = self.getUtilities(decision, sample) if aggregationMode == "avg": utility = numpy.mean(utilities) elif aggregationMode == "min": utility = min(utilities) elif aggregationMode == "max": utility = max(utilities) else: print("ERROR: aggregation mode not recognized") exit() return utility
[ "def", "getUtility", "(", "self", ",", "decision", ",", "sample", ",", "aggregationMode", "=", "\"avg\"", ")", ":", "utilities", "=", "self", ".", "getUtilities", "(", "decision", ",", "sample", ")", "if", "aggregationMode", "==", "\"avg\"", ":", "utility", "=", "numpy", ".", "mean", "(", "utilities", ")", "elif", "aggregationMode", "==", "\"min\"", ":", "utility", "=", "min", "(", "utilities", ")", "elif", "aggregationMode", "==", "\"max\"", ":", "utility", "=", "max", "(", "utilities", ")", "else", ":", "print", "(", "\"ERROR: aggregation mode not recognized\"", ")", "exit", "(", ")", "return", "utility" ]
Get the utility of a given decision given a preference. :ivar list<int> decision: Contains a list of integer representations of candidates in the current decision. :ivar sample: A representation of a preference. We do not assume that it is of a certain type here and merely pass it to the getUtilities() method. ivar str aggregationMode: Identifies the aggregation mode of the utility function when the decision selects more than one candidate. If the mode is "avg," the utility will be the averge of that of each candidate. If "min," the utility will be the minimum, and if "max," the utility will xbe the maximum. By default the aggregation mode will be "avg."
[ "Get", "the", "utility", "of", "a", "given", "decision", "given", "a", "preference", "." ]
f395ba3782f05684fa5de0cece387a6da9391d02
https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/utilityFunction.py#L13-L37
train
PrefPy/prefpy
prefpy/utilityFunction.py
UtilityFunctionMallowsPosScoring.getUtilities
def getUtilities(self, decision, orderVector): """ Returns a floats that contains the utilities of every candidate in the decision. :ivar list<int> decision: Contains a list of integer representations of candidates in the current decision. :ivar list<int> orderVector: A list of integer representations for each candidate ordered from most preferred to least. """ scoringVector = self.getScoringVector(orderVector) utilities = [] for alt in decision: altPosition = orderVector.index(alt) utility = float(scoringVector[altPosition]) if self.isLoss == True: utility = -1*utility utilities.append(utility) return utilities
python
def getUtilities(self, decision, orderVector): """ Returns a floats that contains the utilities of every candidate in the decision. :ivar list<int> decision: Contains a list of integer representations of candidates in the current decision. :ivar list<int> orderVector: A list of integer representations for each candidate ordered from most preferred to least. """ scoringVector = self.getScoringVector(orderVector) utilities = [] for alt in decision: altPosition = orderVector.index(alt) utility = float(scoringVector[altPosition]) if self.isLoss == True: utility = -1*utility utilities.append(utility) return utilities
[ "def", "getUtilities", "(", "self", ",", "decision", ",", "orderVector", ")", ":", "scoringVector", "=", "self", ".", "getScoringVector", "(", "orderVector", ")", "utilities", "=", "[", "]", "for", "alt", "in", "decision", ":", "altPosition", "=", "orderVector", ".", "index", "(", "alt", ")", "utility", "=", "float", "(", "scoringVector", "[", "altPosition", "]", ")", "if", "self", ".", "isLoss", "==", "True", ":", "utility", "=", "-", "1", "*", "utility", "utilities", ".", "append", "(", "utility", ")", "return", "utilities" ]
Returns a floats that contains the utilities of every candidate in the decision. :ivar list<int> decision: Contains a list of integer representations of candidates in the current decision. :ivar list<int> orderVector: A list of integer representations for each candidate ordered from most preferred to least.
[ "Returns", "a", "floats", "that", "contains", "the", "utilities", "of", "every", "candidate", "in", "the", "decision", "." ]
f395ba3782f05684fa5de0cece387a6da9391d02
https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/utilityFunction.py#L59-L77
train
PrefPy/prefpy
prefpy/utilityFunction.py
UtilityFunctionCondorcetTopK.getUtilities
def getUtilities(self, decision, binaryRelations): """ Returns a floats that contains the utilities of every candidate in the decision. This was adapted from code written by Lirong Xia. :ivar list<int> decision: Contains a list of integer representations of candidates in the current decision. :ivar list<list,int> binaryRelations: A two-dimensional array whose number of rows and colums is equal to the number of candidates. For each pair of candidates, cand1 and cand2, binaryRelations[cand1-1][cand2-1] contains 1 if cand1 is ranked above cand2 and 0 otherwise. """ m = len(binaryRelations) utilities = [] for cand in decision: tops = [cand-1] index = 0 while index < len(tops): s = tops[index] for j in range(m): if j == s: continue if binaryRelations[j][s] > 0: if j not in tops: tops.append(j) index += 1 if len(tops) <= self.k: if self.isLoss == False: utilities.append(1.0) elif self.isLoss == True: utilities.append(-1.0) else: utilities.append(0.0) return utilities
python
def getUtilities(self, decision, binaryRelations): """ Returns a floats that contains the utilities of every candidate in the decision. This was adapted from code written by Lirong Xia. :ivar list<int> decision: Contains a list of integer representations of candidates in the current decision. :ivar list<list,int> binaryRelations: A two-dimensional array whose number of rows and colums is equal to the number of candidates. For each pair of candidates, cand1 and cand2, binaryRelations[cand1-1][cand2-1] contains 1 if cand1 is ranked above cand2 and 0 otherwise. """ m = len(binaryRelations) utilities = [] for cand in decision: tops = [cand-1] index = 0 while index < len(tops): s = tops[index] for j in range(m): if j == s: continue if binaryRelations[j][s] > 0: if j not in tops: tops.append(j) index += 1 if len(tops) <= self.k: if self.isLoss == False: utilities.append(1.0) elif self.isLoss == True: utilities.append(-1.0) else: utilities.append(0.0) return utilities
[ "def", "getUtilities", "(", "self", ",", "decision", ",", "binaryRelations", ")", ":", "m", "=", "len", "(", "binaryRelations", ")", "utilities", "=", "[", "]", "for", "cand", "in", "decision", ":", "tops", "=", "[", "cand", "-", "1", "]", "index", "=", "0", "while", "index", "<", "len", "(", "tops", ")", ":", "s", "=", "tops", "[", "index", "]", "for", "j", "in", "range", "(", "m", ")", ":", "if", "j", "==", "s", ":", "continue", "if", "binaryRelations", "[", "j", "]", "[", "s", "]", ">", "0", ":", "if", "j", "not", "in", "tops", ":", "tops", ".", "append", "(", "j", ")", "index", "+=", "1", "if", "len", "(", "tops", ")", "<=", "self", ".", "k", ":", "if", "self", ".", "isLoss", "==", "False", ":", "utilities", ".", "append", "(", "1.0", ")", "elif", "self", ".", "isLoss", "==", "True", ":", "utilities", ".", "append", "(", "-", "1.0", ")", "else", ":", "utilities", ".", "append", "(", "0.0", ")", "return", "utilities" ]
Returns a floats that contains the utilities of every candidate in the decision. This was adapted from code written by Lirong Xia. :ivar list<int> decision: Contains a list of integer representations of candidates in the current decision. :ivar list<list,int> binaryRelations: A two-dimensional array whose number of rows and colums is equal to the number of candidates. For each pair of candidates, cand1 and cand2, binaryRelations[cand1-1][cand2-1] contains 1 if cand1 is ranked above cand2 and 0 otherwise.
[ "Returns", "a", "floats", "that", "contains", "the", "utilities", "of", "every", "candidate", "in", "the", "decision", ".", "This", "was", "adapted", "from", "code", "written", "by", "Lirong", "Xia", "." ]
f395ba3782f05684fa5de0cece387a6da9391d02
https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/utilityFunction.py#L140-L174
train
tamasgal/km3pipe
km3pipe/config.py
Config.db_credentials
def db_credentials(self): """Return username and password for the KM3NeT WebDB.""" try: username = self.config.get('DB', 'username') password = self.config.get('DB', 'password') except Error: username = input("Please enter your KM3NeT DB username: ") password = getpass.getpass("Password: ") return username, password
python
def db_credentials(self): """Return username and password for the KM3NeT WebDB.""" try: username = self.config.get('DB', 'username') password = self.config.get('DB', 'password') except Error: username = input("Please enter your KM3NeT DB username: ") password = getpass.getpass("Password: ") return username, password
[ "def", "db_credentials", "(", "self", ")", ":", "try", ":", "username", "=", "self", ".", "config", ".", "get", "(", "'DB'", ",", "'username'", ")", "password", "=", "self", ".", "config", ".", "get", "(", "'DB'", ",", "'password'", ")", "except", "Error", ":", "username", "=", "input", "(", "\"Please enter your KM3NeT DB username: \"", ")", "password", "=", "getpass", ".", "getpass", "(", "\"Password: \"", ")", "return", "username", ",", "password" ]
Return username and password for the KM3NeT WebDB.
[ "Return", "username", "and", "password", "for", "the", "KM3NeT", "WebDB", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/config.py#L104-L112
train
lexibank/pylexibank
src/pylexibank/__main__.py
get_path
def get_path(src): # pragma: no cover """ Prompts the user to input a local path. :param src: github repository name :return: Absolute local path """ res = None while not res: if res is False: print(colored('You must provide a path to an existing directory!', 'red')) print('You need a local clone or release of (a fork of) ' 'https://github.com/{0}'.format(src)) res = input(colored('Local path to {0}: '.format(src), 'green', attrs=['blink'])) if res and Path(res).exists(): return Path(res).resolve() res = False
python
def get_path(src): # pragma: no cover """ Prompts the user to input a local path. :param src: github repository name :return: Absolute local path """ res = None while not res: if res is False: print(colored('You must provide a path to an existing directory!', 'red')) print('You need a local clone or release of (a fork of) ' 'https://github.com/{0}'.format(src)) res = input(colored('Local path to {0}: '.format(src), 'green', attrs=['blink'])) if res and Path(res).exists(): return Path(res).resolve() res = False
[ "def", "get_path", "(", "src", ")", ":", "# pragma: no cover", "res", "=", "None", "while", "not", "res", ":", "if", "res", "is", "False", ":", "print", "(", "colored", "(", "'You must provide a path to an existing directory!'", ",", "'red'", ")", ")", "print", "(", "'You need a local clone or release of (a fork of) '", "'https://github.com/{0}'", ".", "format", "(", "src", ")", ")", "res", "=", "input", "(", "colored", "(", "'Local path to {0}: '", ".", "format", "(", "src", ")", ",", "'green'", ",", "attrs", "=", "[", "'blink'", "]", ")", ")", "if", "res", "and", "Path", "(", "res", ")", ".", "exists", "(", ")", ":", "return", "Path", "(", "res", ")", ".", "resolve", "(", ")", "res", "=", "False" ]
Prompts the user to input a local path. :param src: github repository name :return: Absolute local path
[ "Prompts", "the", "user", "to", "input", "a", "local", "path", "." ]
c28e7f122f20de1232623dd7003cb5b01535e581
https://github.com/lexibank/pylexibank/blob/c28e7f122f20de1232623dd7003cb5b01535e581/src/pylexibank/__main__.py#L53-L69
train
IRC-SPHERE/HyperStream
hyperstream/workflow/workflow_manager.py
WorkflowManager.execute_all
def execute_all(self): """ Execute all workflows """ for workflow_id in self.workflows: if self.workflows[workflow_id].online: for interval in self.workflows[workflow_id].requested_intervals: logging.info("Executing workflow {} over interval {}".format(workflow_id, interval)) self.workflows[workflow_id].execute(interval)
python
def execute_all(self): """ Execute all workflows """ for workflow_id in self.workflows: if self.workflows[workflow_id].online: for interval in self.workflows[workflow_id].requested_intervals: logging.info("Executing workflow {} over interval {}".format(workflow_id, interval)) self.workflows[workflow_id].execute(interval)
[ "def", "execute_all", "(", "self", ")", ":", "for", "workflow_id", "in", "self", ".", "workflows", ":", "if", "self", ".", "workflows", "[", "workflow_id", "]", ".", "online", ":", "for", "interval", "in", "self", ".", "workflows", "[", "workflow_id", "]", ".", "requested_intervals", ":", "logging", ".", "info", "(", "\"Executing workflow {} over interval {}\"", ".", "format", "(", "workflow_id", ",", "interval", ")", ")", "self", ".", "workflows", "[", "workflow_id", "]", ".", "execute", "(", "interval", ")" ]
Execute all workflows
[ "Execute", "all", "workflows" ]
98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780
https://github.com/IRC-SPHERE/HyperStream/blob/98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780/hyperstream/workflow/workflow_manager.py#L350-L358
train
IRC-SPHERE/HyperStream
hyperstream/tool/tool.py
Tool.execute
def execute(self, sources, sink, interval, alignment_stream=None): """ Execute the tool over the given time interval. If an alignment stream is given, the output instances will be aligned to this stream :param sources: The source streams (possibly None) :param sink: The sink stream :param alignment_stream: The alignment stream :param interval: The time interval :type sources: list[Stream] | tuple[Stream] | None :type sink: Stream :type alignment_stream: Stream | None :type interval: TimeInterval :return: None """ if not isinstance(interval, TimeInterval): raise TypeError('Expected TimeInterval, got {}'.format(type(interval))) # logging.info(self.message(interval)) if interval.end > sink.channel.up_to_timestamp: raise StreamNotAvailableError(sink.channel.up_to_timestamp) required_intervals = TimeIntervals([interval]) - sink.calculated_intervals if not required_intervals.is_empty: document_count = 0 for interval in required_intervals: for stream_instance in self._execute( sources=sources, alignment_stream=alignment_stream, interval=interval): sink.writer(stream_instance) document_count += 1 sink.calculated_intervals += interval required_intervals = TimeIntervals([interval]) - sink.calculated_intervals if not required_intervals.is_empty: # raise ToolExecutionError(required_intervals) logging.error("{} execution error for time interval {} on stream {}".format( self.name, interval, sink)) if not document_count: logging.debug("{} did not produce any data for time interval {} on stream {}".format( self.name, interval, sink)) self.write_to_history( interval=interval, tool=self.name, document_count=document_count )
python
def execute(self, sources, sink, interval, alignment_stream=None): """ Execute the tool over the given time interval. If an alignment stream is given, the output instances will be aligned to this stream :param sources: The source streams (possibly None) :param sink: The sink stream :param alignment_stream: The alignment stream :param interval: The time interval :type sources: list[Stream] | tuple[Stream] | None :type sink: Stream :type alignment_stream: Stream | None :type interval: TimeInterval :return: None """ if not isinstance(interval, TimeInterval): raise TypeError('Expected TimeInterval, got {}'.format(type(interval))) # logging.info(self.message(interval)) if interval.end > sink.channel.up_to_timestamp: raise StreamNotAvailableError(sink.channel.up_to_timestamp) required_intervals = TimeIntervals([interval]) - sink.calculated_intervals if not required_intervals.is_empty: document_count = 0 for interval in required_intervals: for stream_instance in self._execute( sources=sources, alignment_stream=alignment_stream, interval=interval): sink.writer(stream_instance) document_count += 1 sink.calculated_intervals += interval required_intervals = TimeIntervals([interval]) - sink.calculated_intervals if not required_intervals.is_empty: # raise ToolExecutionError(required_intervals) logging.error("{} execution error for time interval {} on stream {}".format( self.name, interval, sink)) if not document_count: logging.debug("{} did not produce any data for time interval {} on stream {}".format( self.name, interval, sink)) self.write_to_history( interval=interval, tool=self.name, document_count=document_count )
[ "def", "execute", "(", "self", ",", "sources", ",", "sink", ",", "interval", ",", "alignment_stream", "=", "None", ")", ":", "if", "not", "isinstance", "(", "interval", ",", "TimeInterval", ")", ":", "raise", "TypeError", "(", "'Expected TimeInterval, got {}'", ".", "format", "(", "type", "(", "interval", ")", ")", ")", "# logging.info(self.message(interval))", "if", "interval", ".", "end", ">", "sink", ".", "channel", ".", "up_to_timestamp", ":", "raise", "StreamNotAvailableError", "(", "sink", ".", "channel", ".", "up_to_timestamp", ")", "required_intervals", "=", "TimeIntervals", "(", "[", "interval", "]", ")", "-", "sink", ".", "calculated_intervals", "if", "not", "required_intervals", ".", "is_empty", ":", "document_count", "=", "0", "for", "interval", "in", "required_intervals", ":", "for", "stream_instance", "in", "self", ".", "_execute", "(", "sources", "=", "sources", ",", "alignment_stream", "=", "alignment_stream", ",", "interval", "=", "interval", ")", ":", "sink", ".", "writer", "(", "stream_instance", ")", "document_count", "+=", "1", "sink", ".", "calculated_intervals", "+=", "interval", "required_intervals", "=", "TimeIntervals", "(", "[", "interval", "]", ")", "-", "sink", ".", "calculated_intervals", "if", "not", "required_intervals", ".", "is_empty", ":", "# raise ToolExecutionError(required_intervals)", "logging", ".", "error", "(", "\"{} execution error for time interval {} on stream {}\"", ".", "format", "(", "self", ".", "name", ",", "interval", ",", "sink", ")", ")", "if", "not", "document_count", ":", "logging", ".", "debug", "(", "\"{} did not produce any data for time interval {} on stream {}\"", ".", "format", "(", "self", ".", "name", ",", "interval", ",", "sink", ")", ")", "self", ".", "write_to_history", "(", "interval", "=", "interval", ",", "tool", "=", "self", ".", "name", ",", "document_count", "=", "document_count", ")" ]
Execute the tool over the given time interval. If an alignment stream is given, the output instances will be aligned to this stream :param sources: The source streams (possibly None) :param sink: The sink stream :param alignment_stream: The alignment stream :param interval: The time interval :type sources: list[Stream] | tuple[Stream] | None :type sink: Stream :type alignment_stream: Stream | None :type interval: TimeInterval :return: None
[ "Execute", "the", "tool", "over", "the", "given", "time", "interval", ".", "If", "an", "alignment", "stream", "is", "given", "the", "output", "instances", "will", "be", "aligned", "to", "this", "stream" ]
98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780
https://github.com/IRC-SPHERE/HyperStream/blob/98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780/hyperstream/tool/tool.py#L49-L97
train
IRC-SPHERE/HyperStream
hyperstream/channels/memory_channel.py
MemoryChannel.create_stream
def create_stream(self, stream_id, sandbox=None): """ Must be overridden by deriving classes, must create the stream according to the tool and return its unique identifier stream_id """ if stream_id in self.streams: raise StreamAlreadyExistsError("Stream with id '{}' already exists".format(stream_id)) if sandbox is not None: raise ValueError("Cannot use sandboxes with memory streams") stream = Stream(channel=self, stream_id=stream_id, calculated_intervals=None, sandbox=None) self.streams[stream_id] = stream self.data[stream_id] = StreamInstanceCollection() return stream
python
def create_stream(self, stream_id, sandbox=None): """ Must be overridden by deriving classes, must create the stream according to the tool and return its unique identifier stream_id """ if stream_id in self.streams: raise StreamAlreadyExistsError("Stream with id '{}' already exists".format(stream_id)) if sandbox is not None: raise ValueError("Cannot use sandboxes with memory streams") stream = Stream(channel=self, stream_id=stream_id, calculated_intervals=None, sandbox=None) self.streams[stream_id] = stream self.data[stream_id] = StreamInstanceCollection() return stream
[ "def", "create_stream", "(", "self", ",", "stream_id", ",", "sandbox", "=", "None", ")", ":", "if", "stream_id", "in", "self", ".", "streams", ":", "raise", "StreamAlreadyExistsError", "(", "\"Stream with id '{}' already exists\"", ".", "format", "(", "stream_id", ")", ")", "if", "sandbox", "is", "not", "None", ":", "raise", "ValueError", "(", "\"Cannot use sandboxes with memory streams\"", ")", "stream", "=", "Stream", "(", "channel", "=", "self", ",", "stream_id", "=", "stream_id", ",", "calculated_intervals", "=", "None", ",", "sandbox", "=", "None", ")", "self", ".", "streams", "[", "stream_id", "]", "=", "stream", "self", ".", "data", "[", "stream_id", "]", "=", "StreamInstanceCollection", "(", ")", "return", "stream" ]
Must be overridden by deriving classes, must create the stream according to the tool and return its unique identifier stream_id
[ "Must", "be", "overridden", "by", "deriving", "classes", "must", "create", "the", "stream", "according", "to", "the", "tool", "and", "return", "its", "unique", "identifier", "stream_id" ]
98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780
https://github.com/IRC-SPHERE/HyperStream/blob/98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780/hyperstream/channels/memory_channel.py#L44-L59
train
IRC-SPHERE/HyperStream
hyperstream/channels/memory_channel.py
MemoryChannel.purge_all
def purge_all(self, remove_definitions=False): """ Clears all streams in the channel - use with caution! :return: None """ for stream_id in list(self.streams.keys()): self.purge_stream(stream_id, remove_definition=remove_definitions)
python
def purge_all(self, remove_definitions=False): """ Clears all streams in the channel - use with caution! :return: None """ for stream_id in list(self.streams.keys()): self.purge_stream(stream_id, remove_definition=remove_definitions)
[ "def", "purge_all", "(", "self", ",", "remove_definitions", "=", "False", ")", ":", "for", "stream_id", "in", "list", "(", "self", ".", "streams", ".", "keys", "(", ")", ")", ":", "self", ".", "purge_stream", "(", "stream_id", ",", "remove_definition", "=", "remove_definitions", ")" ]
Clears all streams in the channel - use with caution! :return: None
[ "Clears", "all", "streams", "in", "the", "channel", "-", "use", "with", "caution!" ]
98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780
https://github.com/IRC-SPHERE/HyperStream/blob/98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780/hyperstream/channels/memory_channel.py#L61-L68
train
IRC-SPHERE/HyperStream
hyperstream/channels/memory_channel.py
ReadOnlyMemoryChannel.update_state
def update_state(self, up_to_timestamp): """ Call this function to ensure that the channel is up to date at the time of timestamp. I.e., all the streams that have been created before or at that timestamp are calculated exactly until up_to_timestamp. """ for stream_id in self.streams: self.streams[stream_id].calculated_intervals = TimeIntervals([(MIN_DATE, up_to_timestamp)]) self.up_to_timestamp = up_to_timestamp
python
def update_state(self, up_to_timestamp): """ Call this function to ensure that the channel is up to date at the time of timestamp. I.e., all the streams that have been created before or at that timestamp are calculated exactly until up_to_timestamp. """ for stream_id in self.streams: self.streams[stream_id].calculated_intervals = TimeIntervals([(MIN_DATE, up_to_timestamp)]) self.up_to_timestamp = up_to_timestamp
[ "def", "update_state", "(", "self", ",", "up_to_timestamp", ")", ":", "for", "stream_id", "in", "self", ".", "streams", ":", "self", ".", "streams", "[", "stream_id", "]", ".", "calculated_intervals", "=", "TimeIntervals", "(", "[", "(", "MIN_DATE", ",", "up_to_timestamp", ")", "]", ")", "self", ".", "up_to_timestamp", "=", "up_to_timestamp" ]
Call this function to ensure that the channel is up to date at the time of timestamp. I.e., all the streams that have been created before or at that timestamp are calculated exactly until up_to_timestamp.
[ "Call", "this", "function", "to", "ensure", "that", "the", "channel", "is", "up", "to", "date", "at", "the", "time", "of", "timestamp", ".", "I", ".", "e", ".", "all", "the", "streams", "that", "have", "been", "created", "before", "or", "at", "that", "timestamp", "are", "calculated", "exactly", "until", "up_to_timestamp", "." ]
98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780
https://github.com/IRC-SPHERE/HyperStream/blob/98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780/hyperstream/channels/memory_channel.py#L158-L166
train
finklabs/korg
korg/pattern.py
PatternRepo.compile_regex
def compile_regex(self, pattern, flags=0): """Compile regex from pattern and pattern_dict""" pattern_re = regex.compile('(?P<substr>%\{(?P<fullname>(?P<patname>\w+)(?::(?P<subname>\w+))?)\})') while 1: matches = [md.groupdict() for md in pattern_re.finditer(pattern)] if len(matches) == 0: break for md in matches: if md['patname'] in self.pattern_dict: if md['subname']: # TODO error if more than one occurance if '(?P<' in self.pattern_dict[md['patname']]: # this is not part of the original logstash implementation # but it might be useful to be able to replace the # group name used in the pattern repl = regex.sub('\(\?P<(\w+)>', '(?P<%s>' % md['subname'], self.pattern_dict[md['patname']], 1) else: repl = '(?P<%s>%s)' % (md['subname'], self.pattern_dict[md['patname']]) else: repl = self.pattern_dict[md['patname']] # print "Replacing %s with %s" %(md['substr'], repl) pattern = pattern.replace(md['substr'], repl) else: # print('patname not found') # maybe missing path entry or missing pattern file? return # print 'pattern: %s' % pattern return regex.compile(pattern, flags)
python
def compile_regex(self, pattern, flags=0): """Compile regex from pattern and pattern_dict""" pattern_re = regex.compile('(?P<substr>%\{(?P<fullname>(?P<patname>\w+)(?::(?P<subname>\w+))?)\})') while 1: matches = [md.groupdict() for md in pattern_re.finditer(pattern)] if len(matches) == 0: break for md in matches: if md['patname'] in self.pattern_dict: if md['subname']: # TODO error if more than one occurance if '(?P<' in self.pattern_dict[md['patname']]: # this is not part of the original logstash implementation # but it might be useful to be able to replace the # group name used in the pattern repl = regex.sub('\(\?P<(\w+)>', '(?P<%s>' % md['subname'], self.pattern_dict[md['patname']], 1) else: repl = '(?P<%s>%s)' % (md['subname'], self.pattern_dict[md['patname']]) else: repl = self.pattern_dict[md['patname']] # print "Replacing %s with %s" %(md['substr'], repl) pattern = pattern.replace(md['substr'], repl) else: # print('patname not found') # maybe missing path entry or missing pattern file? return # print 'pattern: %s' % pattern return regex.compile(pattern, flags)
[ "def", "compile_regex", "(", "self", ",", "pattern", ",", "flags", "=", "0", ")", ":", "pattern_re", "=", "regex", ".", "compile", "(", "'(?P<substr>%\\{(?P<fullname>(?P<patname>\\w+)(?::(?P<subname>\\w+))?)\\})'", ")", "while", "1", ":", "matches", "=", "[", "md", ".", "groupdict", "(", ")", "for", "md", "in", "pattern_re", ".", "finditer", "(", "pattern", ")", "]", "if", "len", "(", "matches", ")", "==", "0", ":", "break", "for", "md", "in", "matches", ":", "if", "md", "[", "'patname'", "]", "in", "self", ".", "pattern_dict", ":", "if", "md", "[", "'subname'", "]", ":", "# TODO error if more than one occurance", "if", "'(?P<'", "in", "self", ".", "pattern_dict", "[", "md", "[", "'patname'", "]", "]", ":", "# this is not part of the original logstash implementation ", "# but it might be useful to be able to replace the", "# group name used in the pattern", "repl", "=", "regex", ".", "sub", "(", "'\\(\\?P<(\\w+)>'", ",", "'(?P<%s>'", "%", "md", "[", "'subname'", "]", ",", "self", ".", "pattern_dict", "[", "md", "[", "'patname'", "]", "]", ",", "1", ")", "else", ":", "repl", "=", "'(?P<%s>%s)'", "%", "(", "md", "[", "'subname'", "]", ",", "self", ".", "pattern_dict", "[", "md", "[", "'patname'", "]", "]", ")", "else", ":", "repl", "=", "self", ".", "pattern_dict", "[", "md", "[", "'patname'", "]", "]", "# print \"Replacing %s with %s\" %(md['substr'], repl)", "pattern", "=", "pattern", ".", "replace", "(", "md", "[", "'substr'", "]", ",", "repl", ")", "else", ":", "# print('patname not found')", "# maybe missing path entry or missing pattern file?", "return", "# print 'pattern: %s' % pattern", "return", "regex", ".", "compile", "(", "pattern", ",", "flags", ")" ]
Compile regex from pattern and pattern_dict
[ "Compile", "regex", "from", "pattern", "and", "pattern_dict" ]
e931a673ce4bc79cdf26cb4f697fa23fa8a72e4f
https://github.com/finklabs/korg/blob/e931a673ce4bc79cdf26cb4f697fa23fa8a72e4f/korg/pattern.py#L27-L56
train
finklabs/korg
korg/pattern.py
PatternRepo._load_patterns
def _load_patterns(self, folders, pattern_dict=None): """Load all pattern from all the files in folders""" if pattern_dict is None: pattern_dict = {} for folder in folders: for file in os.listdir(folder): if regex.match('^[\w-]+$', file): self._load_pattern_file(os.path.join(folder, file), pattern_dict) return pattern_dict
python
def _load_patterns(self, folders, pattern_dict=None): """Load all pattern from all the files in folders""" if pattern_dict is None: pattern_dict = {} for folder in folders: for file in os.listdir(folder): if regex.match('^[\w-]+$', file): self._load_pattern_file(os.path.join(folder, file), pattern_dict) return pattern_dict
[ "def", "_load_patterns", "(", "self", ",", "folders", ",", "pattern_dict", "=", "None", ")", ":", "if", "pattern_dict", "is", "None", ":", "pattern_dict", "=", "{", "}", "for", "folder", "in", "folders", ":", "for", "file", "in", "os", ".", "listdir", "(", "folder", ")", ":", "if", "regex", ".", "match", "(", "'^[\\w-]+$'", ",", "file", ")", ":", "self", ".", "_load_pattern_file", "(", "os", ".", "path", ".", "join", "(", "folder", ",", "file", ")", ",", "pattern_dict", ")", "return", "pattern_dict" ]
Load all pattern from all the files in folders
[ "Load", "all", "pattern", "from", "all", "the", "files", "in", "folders" ]
e931a673ce4bc79cdf26cb4f697fa23fa8a72e4f
https://github.com/finklabs/korg/blob/e931a673ce4bc79cdf26cb4f697fa23fa8a72e4f/korg/pattern.py#L73-L81
train
astooke/gtimer
gtimer/public/io.py
load_pkl
def load_pkl(filenames): """ Unpickle file contents. Args: filenames (str): Can be one or a list or tuple of filenames to retrieve. Returns: Times: A single object, or from a collection of filenames, a list of Times objects. Raises: TypeError: If any loaded object is not a Times object. """ if not isinstance(filenames, (list, tuple)): filenames = [filenames] times = [] for name in filenames: name = str(name) with open(name, 'rb') as file: loaded_obj = pickle.load(file) if not isinstance(loaded_obj, Times): raise TypeError("At least one loaded object is not a Times data object.") times.append(loaded_obj) return times if len(times) > 1 else times[0]
python
def load_pkl(filenames): """ Unpickle file contents. Args: filenames (str): Can be one or a list or tuple of filenames to retrieve. Returns: Times: A single object, or from a collection of filenames, a list of Times objects. Raises: TypeError: If any loaded object is not a Times object. """ if not isinstance(filenames, (list, tuple)): filenames = [filenames] times = [] for name in filenames: name = str(name) with open(name, 'rb') as file: loaded_obj = pickle.load(file) if not isinstance(loaded_obj, Times): raise TypeError("At least one loaded object is not a Times data object.") times.append(loaded_obj) return times if len(times) > 1 else times[0]
[ "def", "load_pkl", "(", "filenames", ")", ":", "if", "not", "isinstance", "(", "filenames", ",", "(", "list", ",", "tuple", ")", ")", ":", "filenames", "=", "[", "filenames", "]", "times", "=", "[", "]", "for", "name", "in", "filenames", ":", "name", "=", "str", "(", "name", ")", "with", "open", "(", "name", ",", "'rb'", ")", "as", "file", ":", "loaded_obj", "=", "pickle", ".", "load", "(", "file", ")", "if", "not", "isinstance", "(", "loaded_obj", ",", "Times", ")", ":", "raise", "TypeError", "(", "\"At least one loaded object is not a Times data object.\"", ")", "times", ".", "append", "(", "loaded_obj", ")", "return", "times", "if", "len", "(", "times", ")", ">", "1", "else", "times", "[", "0", "]" ]
Unpickle file contents. Args: filenames (str): Can be one or a list or tuple of filenames to retrieve. Returns: Times: A single object, or from a collection of filenames, a list of Times objects. Raises: TypeError: If any loaded object is not a Times object.
[ "Unpickle", "file", "contents", "." ]
2146dab459e5d959feb291821733d3d3ba7c523c
https://github.com/astooke/gtimer/blob/2146dab459e5d959feb291821733d3d3ba7c523c/gtimer/public/io.py#L170-L193
train
dgomes/pyipma
pyipma/api.py
IPMA_API.retrieve
async def retrieve(self, url, **kwargs): """Issue API requests.""" try: async with self.websession.request('GET', url, **kwargs) as res: if res.status != 200: raise Exception("Could not retrieve information from API") if res.content_type == 'application/json': return await res.json() return await res.text() except aiohttp.ClientError as err: logging.error(err)
python
async def retrieve(self, url, **kwargs): """Issue API requests.""" try: async with self.websession.request('GET', url, **kwargs) as res: if res.status != 200: raise Exception("Could not retrieve information from API") if res.content_type == 'application/json': return await res.json() return await res.text() except aiohttp.ClientError as err: logging.error(err)
[ "async", "def", "retrieve", "(", "self", ",", "url", ",", "*", "*", "kwargs", ")", ":", "try", ":", "async", "with", "self", ".", "websession", ".", "request", "(", "'GET'", ",", "url", ",", "*", "*", "kwargs", ")", "as", "res", ":", "if", "res", ".", "status", "!=", "200", ":", "raise", "Exception", "(", "\"Could not retrieve information from API\"", ")", "if", "res", ".", "content_type", "==", "'application/json'", ":", "return", "await", "res", ".", "json", "(", ")", "return", "await", "res", ".", "text", "(", ")", "except", "aiohttp", ".", "ClientError", "as", "err", ":", "logging", ".", "error", "(", "err", ")" ]
Issue API requests.
[ "Issue", "API", "requests", "." ]
cd808abeb70dca0e336afdf55bef3f73973eaa71
https://github.com/dgomes/pyipma/blob/cd808abeb70dca0e336afdf55bef3f73973eaa71/pyipma/api.py#L22-L32
train
dgomes/pyipma
pyipma/api.py
IPMA_API._to_number
def _to_number(cls, string): """Convert string to int or float.""" try: if float(string) - int(string) == 0: return int(string) return float(string) except ValueError: try: return float(string) except ValueError: return string
python
def _to_number(cls, string): """Convert string to int or float.""" try: if float(string) - int(string) == 0: return int(string) return float(string) except ValueError: try: return float(string) except ValueError: return string
[ "def", "_to_number", "(", "cls", ",", "string", ")", ":", "try", ":", "if", "float", "(", "string", ")", "-", "int", "(", "string", ")", "==", "0", ":", "return", "int", "(", "string", ")", "return", "float", "(", "string", ")", "except", "ValueError", ":", "try", ":", "return", "float", "(", "string", ")", "except", "ValueError", ":", "return", "string" ]
Convert string to int or float.
[ "Convert", "string", "to", "int", "or", "float", "." ]
cd808abeb70dca0e336afdf55bef3f73973eaa71
https://github.com/dgomes/pyipma/blob/cd808abeb70dca0e336afdf55bef3f73973eaa71/pyipma/api.py#L35-L45
train
dgomes/pyipma
pyipma/api.py
IPMA_API.stations
async def stations(self): """Retrieve stations.""" data = await self.retrieve(API_DISTRITS) Station = namedtuple('Station', ['latitude', 'longitude', 'idAreaAviso', 'idConselho', 'idDistrito', 'idRegiao', 'globalIdLocal', 'local']) _stations = [] for station in data['data']: _station = Station( self._to_number(station['latitude']), self._to_number(station['longitude']), station['idAreaAviso'], station['idConcelho'], station['idDistrito'], station['idRegiao'], station['globalIdLocal']//100 * 100, station['local'], ) _stations.append(_station) return _stations
python
async def stations(self): """Retrieve stations.""" data = await self.retrieve(API_DISTRITS) Station = namedtuple('Station', ['latitude', 'longitude', 'idAreaAviso', 'idConselho', 'idDistrito', 'idRegiao', 'globalIdLocal', 'local']) _stations = [] for station in data['data']: _station = Station( self._to_number(station['latitude']), self._to_number(station['longitude']), station['idAreaAviso'], station['idConcelho'], station['idDistrito'], station['idRegiao'], station['globalIdLocal']//100 * 100, station['local'], ) _stations.append(_station) return _stations
[ "async", "def", "stations", "(", "self", ")", ":", "data", "=", "await", "self", ".", "retrieve", "(", "API_DISTRITS", ")", "Station", "=", "namedtuple", "(", "'Station'", ",", "[", "'latitude'", ",", "'longitude'", ",", "'idAreaAviso'", ",", "'idConselho'", ",", "'idDistrito'", ",", "'idRegiao'", ",", "'globalIdLocal'", ",", "'local'", "]", ")", "_stations", "=", "[", "]", "for", "station", "in", "data", "[", "'data'", "]", ":", "_station", "=", "Station", "(", "self", ".", "_to_number", "(", "station", "[", "'latitude'", "]", ")", ",", "self", ".", "_to_number", "(", "station", "[", "'longitude'", "]", ")", ",", "station", "[", "'idAreaAviso'", "]", ",", "station", "[", "'idConcelho'", "]", ",", "station", "[", "'idDistrito'", "]", ",", "station", "[", "'idRegiao'", "]", ",", "station", "[", "'globalIdLocal'", "]", "//", "100", "*", "100", ",", "station", "[", "'local'", "]", ",", ")", "_stations", ".", "append", "(", "_station", ")", "return", "_stations" ]
Retrieve stations.
[ "Retrieve", "stations", "." ]
cd808abeb70dca0e336afdf55bef3f73973eaa71
https://github.com/dgomes/pyipma/blob/cd808abeb70dca0e336afdf55bef3f73973eaa71/pyipma/api.py#L47-L74
train
dgomes/pyipma
pyipma/api.py
IPMA_API.weather_type_classe
async def weather_type_classe(self): """Retrieve translation for weather type.""" data = await self.retrieve(url=API_WEATHER_TYPE) self.weather_type = dict() for _type in data['data']: self.weather_type[_type['idWeatherType']] = _type['descIdWeatherTypePT'] return self.weather_type
python
async def weather_type_classe(self): """Retrieve translation for weather type.""" data = await self.retrieve(url=API_WEATHER_TYPE) self.weather_type = dict() for _type in data['data']: self.weather_type[_type['idWeatherType']] = _type['descIdWeatherTypePT'] return self.weather_type
[ "async", "def", "weather_type_classe", "(", "self", ")", ":", "data", "=", "await", "self", ".", "retrieve", "(", "url", "=", "API_WEATHER_TYPE", ")", "self", ".", "weather_type", "=", "dict", "(", ")", "for", "_type", "in", "data", "[", "'data'", "]", ":", "self", ".", "weather_type", "[", "_type", "[", "'idWeatherType'", "]", "]", "=", "_type", "[", "'descIdWeatherTypePT'", "]", "return", "self", ".", "weather_type" ]
Retrieve translation for weather type.
[ "Retrieve", "translation", "for", "weather", "type", "." ]
cd808abeb70dca0e336afdf55bef3f73973eaa71
https://github.com/dgomes/pyipma/blob/cd808abeb70dca0e336afdf55bef3f73973eaa71/pyipma/api.py#L99-L109
train
dgomes/pyipma
pyipma/api.py
IPMA_API.wind_type_classe
async def wind_type_classe(self): """Retrieve translation for wind type.""" data = await self.retrieve(url=API_WIND_TYPE) self.wind_type = dict() for _type in data['data']: self.wind_type[int(_type['classWindSpeed'])] = _type['descClassWindSpeedDailyPT'] return self.wind_type
python
async def wind_type_classe(self): """Retrieve translation for wind type.""" data = await self.retrieve(url=API_WIND_TYPE) self.wind_type = dict() for _type in data['data']: self.wind_type[int(_type['classWindSpeed'])] = _type['descClassWindSpeedDailyPT'] return self.wind_type
[ "async", "def", "wind_type_classe", "(", "self", ")", ":", "data", "=", "await", "self", ".", "retrieve", "(", "url", "=", "API_WIND_TYPE", ")", "self", ".", "wind_type", "=", "dict", "(", ")", "for", "_type", "in", "data", "[", "'data'", "]", ":", "self", ".", "wind_type", "[", "int", "(", "_type", "[", "'classWindSpeed'", "]", ")", "]", "=", "_type", "[", "'descClassWindSpeedDailyPT'", "]", "return", "self", ".", "wind_type" ]
Retrieve translation for wind type.
[ "Retrieve", "translation", "for", "wind", "type", "." ]
cd808abeb70dca0e336afdf55bef3f73973eaa71
https://github.com/dgomes/pyipma/blob/cd808abeb70dca0e336afdf55bef3f73973eaa71/pyipma/api.py#L111-L121
train
jdodds/feather
feather/dispatcher.py
Dispatcher.register
def register(self, plugin): """Add the plugin to our set of listeners for each message that it listens to, tell it to use our messages Queue for communication, and start it up. """ for listener in plugin.listeners: self.listeners[listener].add(plugin) self.plugins.add(plugin) plugin.messenger = self.messages plugin.start()
python
def register(self, plugin): """Add the plugin to our set of listeners for each message that it listens to, tell it to use our messages Queue for communication, and start it up. """ for listener in plugin.listeners: self.listeners[listener].add(plugin) self.plugins.add(plugin) plugin.messenger = self.messages plugin.start()
[ "def", "register", "(", "self", ",", "plugin", ")", ":", "for", "listener", "in", "plugin", ".", "listeners", ":", "self", ".", "listeners", "[", "listener", "]", ".", "add", "(", "plugin", ")", "self", ".", "plugins", ".", "add", "(", "plugin", ")", "plugin", ".", "messenger", "=", "self", ".", "messages", "plugin", ".", "start", "(", ")" ]
Add the plugin to our set of listeners for each message that it listens to, tell it to use our messages Queue for communication, and start it up.
[ "Add", "the", "plugin", "to", "our", "set", "of", "listeners", "for", "each", "message", "that", "it", "listens", "to", "tell", "it", "to", "use", "our", "messages", "Queue", "for", "communication", "and", "start", "it", "up", "." ]
92a9426e692b33c7fddf758df8dbc99a9a1ba8ef
https://github.com/jdodds/feather/blob/92a9426e692b33c7fddf758df8dbc99a9a1ba8ef/feather/dispatcher.py#L16-L25
train
jdodds/feather
feather/dispatcher.py
Dispatcher.start
def start(self): """Send 'APP_START' to any plugins that listen for it, and loop around waiting for messages and sending them to their listening plugins until it's time to shutdown. """ self.recieve('APP_START') self.alive = True while self.alive: message, payload = self.messages.get() if message == 'APP_STOP': for plugin in self.plugins: plugin.recieve('SHUTDOWN') self.alive = False else: self.recieve(message, payload)
python
def start(self): """Send 'APP_START' to any plugins that listen for it, and loop around waiting for messages and sending them to their listening plugins until it's time to shutdown. """ self.recieve('APP_START') self.alive = True while self.alive: message, payload = self.messages.get() if message == 'APP_STOP': for plugin in self.plugins: plugin.recieve('SHUTDOWN') self.alive = False else: self.recieve(message, payload)
[ "def", "start", "(", "self", ")", ":", "self", ".", "recieve", "(", "'APP_START'", ")", "self", ".", "alive", "=", "True", "while", "self", ".", "alive", ":", "message", ",", "payload", "=", "self", ".", "messages", ".", "get", "(", ")", "if", "message", "==", "'APP_STOP'", ":", "for", "plugin", "in", "self", ".", "plugins", ":", "plugin", ".", "recieve", "(", "'SHUTDOWN'", ")", "self", ".", "alive", "=", "False", "else", ":", "self", ".", "recieve", "(", "message", ",", "payload", ")" ]
Send 'APP_START' to any plugins that listen for it, and loop around waiting for messages and sending them to their listening plugins until it's time to shutdown.
[ "Send", "APP_START", "to", "any", "plugins", "that", "listen", "for", "it", "and", "loop", "around", "waiting", "for", "messages", "and", "sending", "them", "to", "their", "listening", "plugins", "until", "it", "s", "time", "to", "shutdown", "." ]
92a9426e692b33c7fddf758df8dbc99a9a1ba8ef
https://github.com/jdodds/feather/blob/92a9426e692b33c7fddf758df8dbc99a9a1ba8ef/feather/dispatcher.py#L27-L41
train
tamasgal/km3pipe
km3pipe/style/__init__.py
ColourCycler.choose
def choose(self, palette): """Pick a palette""" try: self._cycler = cycle(self.colours[palette]) except KeyError: raise KeyError( "Chose one of the following colour palettes: {0}".format( self.available ) )
python
def choose(self, palette): """Pick a palette""" try: self._cycler = cycle(self.colours[palette]) except KeyError: raise KeyError( "Chose one of the following colour palettes: {0}".format( self.available ) )
[ "def", "choose", "(", "self", ",", "palette", ")", ":", "try", ":", "self", ".", "_cycler", "=", "cycle", "(", "self", ".", "colours", "[", "palette", "]", ")", "except", "KeyError", ":", "raise", "KeyError", "(", "\"Chose one of the following colour palettes: {0}\"", ".", "format", "(", "self", ".", "available", ")", ")" ]
Pick a palette
[ "Pick", "a", "palette" ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/style/__init__.py#L50-L59
train
tamasgal/km3pipe
km3pipe/style/__init__.py
ColourCycler.refresh_styles
def refresh_styles(self): """Load all available styles""" import matplotlib.pyplot as plt self.colours = {} for style in plt.style.available: try: style_colours = plt.style.library[style]['axes.prop_cycle'] self.colours[style] = [c['color'] for c in list(style_colours)] except KeyError: continue self.colours['km3pipe'] = [ "#ff7869", "#4babe1", "#96ad3e", "#e4823d", "#5d72b2", "#e2a3c2", "#fd9844", "#e480e7" ]
python
def refresh_styles(self): """Load all available styles""" import matplotlib.pyplot as plt self.colours = {} for style in plt.style.available: try: style_colours = plt.style.library[style]['axes.prop_cycle'] self.colours[style] = [c['color'] for c in list(style_colours)] except KeyError: continue self.colours['km3pipe'] = [ "#ff7869", "#4babe1", "#96ad3e", "#e4823d", "#5d72b2", "#e2a3c2", "#fd9844", "#e480e7" ]
[ "def", "refresh_styles", "(", "self", ")", ":", "import", "matplotlib", ".", "pyplot", "as", "plt", "self", ".", "colours", "=", "{", "}", "for", "style", "in", "plt", ".", "style", ".", "available", ":", "try", ":", "style_colours", "=", "plt", ".", "style", ".", "library", "[", "style", "]", "[", "'axes.prop_cycle'", "]", "self", ".", "colours", "[", "style", "]", "=", "[", "c", "[", "'color'", "]", "for", "c", "in", "list", "(", "style_colours", ")", "]", "except", "KeyError", ":", "continue", "self", ".", "colours", "[", "'km3pipe'", "]", "=", "[", "\"#ff7869\"", ",", "\"#4babe1\"", ",", "\"#96ad3e\"", ",", "\"#e4823d\"", ",", "\"#5d72b2\"", ",", "\"#e2a3c2\"", ",", "\"#fd9844\"", ",", "\"#e480e7\"", "]" ]
Load all available styles
[ "Load", "all", "available", "styles" ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/style/__init__.py#L61-L76
train
dsoprea/PySchedules
pyschedules/retrieve.py
get_file_object
def get_file_object(username, password, utc_start=None, utc_stop=None): """Make the connection. Return a file-like object.""" if not utc_start: utc_start = datetime.now() if not utc_stop: utc_stop = utc_start + timedelta(days=1) logging.info("Downloading schedules for username [%s] in range [%s] to " "[%s]." % (username, utc_start, utc_stop)) replacements = {'start_time': utc_start.strftime('%Y-%m-%dT%H:%M:%SZ'), 'stop_time': utc_stop.strftime('%Y-%m-%dT%H:%M:%SZ')} soap_message_xml = (soap_message_xml_template % replacements) authinfo = urllib2.HTTPDigestAuthHandler() authinfo.add_password(realm, url, username, password) try: request = urllib2.Request(url, soap_message_xml, request_headers) response = urllib2.build_opener(authinfo).open(request) if response.headers['Content-Encoding'] == 'gzip': response = GzipStream(response) except: logging.exception("Could not acquire connection to Schedules Direct.") raise return response
python
def get_file_object(username, password, utc_start=None, utc_stop=None): """Make the connection. Return a file-like object.""" if not utc_start: utc_start = datetime.now() if not utc_stop: utc_stop = utc_start + timedelta(days=1) logging.info("Downloading schedules for username [%s] in range [%s] to " "[%s]." % (username, utc_start, utc_stop)) replacements = {'start_time': utc_start.strftime('%Y-%m-%dT%H:%M:%SZ'), 'stop_time': utc_stop.strftime('%Y-%m-%dT%H:%M:%SZ')} soap_message_xml = (soap_message_xml_template % replacements) authinfo = urllib2.HTTPDigestAuthHandler() authinfo.add_password(realm, url, username, password) try: request = urllib2.Request(url, soap_message_xml, request_headers) response = urllib2.build_opener(authinfo).open(request) if response.headers['Content-Encoding'] == 'gzip': response = GzipStream(response) except: logging.exception("Could not acquire connection to Schedules Direct.") raise return response
[ "def", "get_file_object", "(", "username", ",", "password", ",", "utc_start", "=", "None", ",", "utc_stop", "=", "None", ")", ":", "if", "not", "utc_start", ":", "utc_start", "=", "datetime", ".", "now", "(", ")", "if", "not", "utc_stop", ":", "utc_stop", "=", "utc_start", "+", "timedelta", "(", "days", "=", "1", ")", "logging", ".", "info", "(", "\"Downloading schedules for username [%s] in range [%s] to \"", "\"[%s].\"", "%", "(", "username", ",", "utc_start", ",", "utc_stop", ")", ")", "replacements", "=", "{", "'start_time'", ":", "utc_start", ".", "strftime", "(", "'%Y-%m-%dT%H:%M:%SZ'", ")", ",", "'stop_time'", ":", "utc_stop", ".", "strftime", "(", "'%Y-%m-%dT%H:%M:%SZ'", ")", "}", "soap_message_xml", "=", "(", "soap_message_xml_template", "%", "replacements", ")", "authinfo", "=", "urllib2", ".", "HTTPDigestAuthHandler", "(", ")", "authinfo", ".", "add_password", "(", "realm", ",", "url", ",", "username", ",", "password", ")", "try", ":", "request", "=", "urllib2", ".", "Request", "(", "url", ",", "soap_message_xml", ",", "request_headers", ")", "response", "=", "urllib2", ".", "build_opener", "(", "authinfo", ")", ".", "open", "(", "request", ")", "if", "response", ".", "headers", "[", "'Content-Encoding'", "]", "==", "'gzip'", ":", "response", "=", "GzipStream", "(", "response", ")", "except", ":", "logging", ".", "exception", "(", "\"Could not acquire connection to Schedules Direct.\"", ")", "raise", "return", "response" ]
Make the connection. Return a file-like object.
[ "Make", "the", "connection", ".", "Return", "a", "file", "-", "like", "object", "." ]
e5aae988fad90217f72db45f93bf69839f4d75e7
https://github.com/dsoprea/PySchedules/blob/e5aae988fad90217f72db45f93bf69839f4d75e7/pyschedules/retrieve.py#L51-L81
train
dsoprea/PySchedules
pyschedules/retrieve.py
process_file_object
def process_file_object(file_obj, importer, progress): """Parse the data using the connected file-like object.""" logging.info("Processing schedule data.") try: handler = XmlCallbacks(importer, progress) parser = sax.make_parser() parser.setContentHandler(handler) parser.setErrorHandler(handler) parser.parse(file_obj) except: logging.exception("Parse failed.") raise logging.info("Schedule data processed.")
python
def process_file_object(file_obj, importer, progress): """Parse the data using the connected file-like object.""" logging.info("Processing schedule data.") try: handler = XmlCallbacks(importer, progress) parser = sax.make_parser() parser.setContentHandler(handler) parser.setErrorHandler(handler) parser.parse(file_obj) except: logging.exception("Parse failed.") raise logging.info("Schedule data processed.")
[ "def", "process_file_object", "(", "file_obj", ",", "importer", ",", "progress", ")", ":", "logging", ".", "info", "(", "\"Processing schedule data.\"", ")", "try", ":", "handler", "=", "XmlCallbacks", "(", "importer", ",", "progress", ")", "parser", "=", "sax", ".", "make_parser", "(", ")", "parser", ".", "setContentHandler", "(", "handler", ")", "parser", ".", "setErrorHandler", "(", "handler", ")", "parser", ".", "parse", "(", "file_obj", ")", "except", ":", "logging", ".", "exception", "(", "\"Parse failed.\"", ")", "raise", "logging", ".", "info", "(", "\"Schedule data processed.\"", ")" ]
Parse the data using the connected file-like object.
[ "Parse", "the", "data", "using", "the", "connected", "file", "-", "like", "object", "." ]
e5aae988fad90217f72db45f93bf69839f4d75e7
https://github.com/dsoprea/PySchedules/blob/e5aae988fad90217f72db45f93bf69839f4d75e7/pyschedules/retrieve.py#L83-L98
train
dsoprea/PySchedules
pyschedules/retrieve.py
parse_schedules
def parse_schedules(username, password, importer, progress, utc_start=None, utc_stop=None): """A utility function to marry the connecting and reading functions.""" file_obj = get_file_object(username, password, utc_start, utc_stop) process_file_object(file_obj, importer, progress)
python
def parse_schedules(username, password, importer, progress, utc_start=None, utc_stop=None): """A utility function to marry the connecting and reading functions.""" file_obj = get_file_object(username, password, utc_start, utc_stop) process_file_object(file_obj, importer, progress)
[ "def", "parse_schedules", "(", "username", ",", "password", ",", "importer", ",", "progress", ",", "utc_start", "=", "None", ",", "utc_stop", "=", "None", ")", ":", "file_obj", "=", "get_file_object", "(", "username", ",", "password", ",", "utc_start", ",", "utc_stop", ")", "process_file_object", "(", "file_obj", ",", "importer", ",", "progress", ")" ]
A utility function to marry the connecting and reading functions.
[ "A", "utility", "function", "to", "marry", "the", "connecting", "and", "reading", "functions", "." ]
e5aae988fad90217f72db45f93bf69839f4d75e7
https://github.com/dsoprea/PySchedules/blob/e5aae988fad90217f72db45f93bf69839f4d75e7/pyschedules/retrieve.py#L100-L105
train
tamasgal/km3pipe
km3pipe/utils/km3h5concat.py
km3h5concat
def km3h5concat(input_files, output_file, n_events=None, **kwargs): """Concatenate KM3HDF5 files via pipeline.""" from km3pipe import Pipeline # noqa from km3pipe.io import HDF5Pump, HDF5Sink # noqa pipe = Pipeline() pipe.attach(HDF5Pump, filenames=input_files, **kwargs) pipe.attach(StatusBar, every=250) pipe.attach(HDF5Sink, filename=output_file, **kwargs) pipe.drain(n_events)
python
def km3h5concat(input_files, output_file, n_events=None, **kwargs): """Concatenate KM3HDF5 files via pipeline.""" from km3pipe import Pipeline # noqa from km3pipe.io import HDF5Pump, HDF5Sink # noqa pipe = Pipeline() pipe.attach(HDF5Pump, filenames=input_files, **kwargs) pipe.attach(StatusBar, every=250) pipe.attach(HDF5Sink, filename=output_file, **kwargs) pipe.drain(n_events)
[ "def", "km3h5concat", "(", "input_files", ",", "output_file", ",", "n_events", "=", "None", ",", "*", "*", "kwargs", ")", ":", "from", "km3pipe", "import", "Pipeline", "# noqa", "from", "km3pipe", ".", "io", "import", "HDF5Pump", ",", "HDF5Sink", "# noqa", "pipe", "=", "Pipeline", "(", ")", "pipe", ".", "attach", "(", "HDF5Pump", ",", "filenames", "=", "input_files", ",", "*", "*", "kwargs", ")", "pipe", ".", "attach", "(", "StatusBar", ",", "every", "=", "250", ")", "pipe", ".", "attach", "(", "HDF5Sink", ",", "filename", "=", "output_file", ",", "*", "*", "kwargs", ")", "pipe", ".", "drain", "(", "n_events", ")" ]
Concatenate KM3HDF5 files via pipeline.
[ "Concatenate", "KM3HDF5", "files", "via", "pipeline", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/utils/km3h5concat.py#L32-L41
train
tamasgal/km3pipe
km3pipe/utils/streamds.py
get_data
def get_data(stream, parameters, fmt): """Retrieve data for given stream and parameters, or None if not found""" sds = kp.db.StreamDS() if stream not in sds.streams: log.error("Stream '{}' not found in the database.".format(stream)) return params = {} if parameters: for parameter in parameters: if '=' not in parameter: log.error( "Invalid parameter syntax '{}'\n" "The correct syntax is 'parameter=value'". format(parameter) ) continue key, value = parameter.split('=') params[key] = value data = sds.get(stream, fmt, **params) if data is not None: with pd.option_context('display.max_rows', None, 'display.max_columns', None): print(data) else: sds.help(stream)
python
def get_data(stream, parameters, fmt): """Retrieve data for given stream and parameters, or None if not found""" sds = kp.db.StreamDS() if stream not in sds.streams: log.error("Stream '{}' not found in the database.".format(stream)) return params = {} if parameters: for parameter in parameters: if '=' not in parameter: log.error( "Invalid parameter syntax '{}'\n" "The correct syntax is 'parameter=value'". format(parameter) ) continue key, value = parameter.split('=') params[key] = value data = sds.get(stream, fmt, **params) if data is not None: with pd.option_context('display.max_rows', None, 'display.max_columns', None): print(data) else: sds.help(stream)
[ "def", "get_data", "(", "stream", ",", "parameters", ",", "fmt", ")", ":", "sds", "=", "kp", ".", "db", ".", "StreamDS", "(", ")", "if", "stream", "not", "in", "sds", ".", "streams", ":", "log", ".", "error", "(", "\"Stream '{}' not found in the database.\"", ".", "format", "(", "stream", ")", ")", "return", "params", "=", "{", "}", "if", "parameters", ":", "for", "parameter", "in", "parameters", ":", "if", "'='", "not", "in", "parameter", ":", "log", ".", "error", "(", "\"Invalid parameter syntax '{}'\\n\"", "\"The correct syntax is 'parameter=value'\"", ".", "format", "(", "parameter", ")", ")", "continue", "key", ",", "value", "=", "parameter", ".", "split", "(", "'='", ")", "params", "[", "key", "]", "=", "value", "data", "=", "sds", ".", "get", "(", "stream", ",", "fmt", ",", "*", "*", "params", ")", "if", "data", "is", "not", "None", ":", "with", "pd", ".", "option_context", "(", "'display.max_rows'", ",", "None", ",", "'display.max_columns'", ",", "None", ")", ":", "print", "(", "data", ")", "else", ":", "sds", ".", "help", "(", "stream", ")" ]
Retrieve data for given stream and parameters, or None if not found
[ "Retrieve", "data", "for", "given", "stream", "and", "parameters", "or", "None", "if", "not", "found" ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/utils/streamds.py#L56-L80
train
tamasgal/km3pipe
km3pipe/utils/streamds.py
available_streams
def available_streams(): """Show a short list of available streams.""" sds = kp.db.StreamDS() print("Available streams: ") print(', '.join(sorted(sds.streams)))
python
def available_streams(): """Show a short list of available streams.""" sds = kp.db.StreamDS() print("Available streams: ") print(', '.join(sorted(sds.streams)))
[ "def", "available_streams", "(", ")", ":", "sds", "=", "kp", ".", "db", ".", "StreamDS", "(", ")", "print", "(", "\"Available streams: \"", ")", "print", "(", "', '", ".", "join", "(", "sorted", "(", "sds", ".", "streams", ")", ")", ")" ]
Show a short list of available streams.
[ "Show", "a", "short", "list", "of", "available", "streams", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/utils/streamds.py#L83-L87
train
tamasgal/km3pipe
km3pipe/utils/streamds.py
upload_runsummary
def upload_runsummary(csv_filename, dryrun=False): """Reads the CSV file and uploads its contents to the runsummary table""" print("Checking '{}' for consistency.".format(csv_filename)) if not os.path.exists(csv_filename): log.critical("{} -> file not found.".format(csv_filename)) return try: df = pd.read_csv(csv_filename, sep='\t') except pd.errors.EmptyDataError as e: log.error(e) return cols = set(df.columns) if not REQUIRED_COLUMNS.issubset(cols): log.error( "Missing columns: {}.".format( ', '.join(str(c) for c in REQUIRED_COLUMNS - cols) ) ) return parameters = cols - REQUIRED_COLUMNS if len(parameters) < 1: log.error("No parameter columns found.") return if len(df) == 0: log.critical("Empty dataset.") return print( "Found data for parameters: {}.".format( ', '.join(str(c) for c in parameters) ) ) print("Converting CSV data into JSON") if dryrun: log.warn("Dryrun: adding 'TEST_' prefix to parameter names") prefix = "TEST_" else: prefix = "" data = convert_runsummary_to_json(df, prefix=prefix) print("We have {:.3f} MB to upload.".format(len(data) / 1024**2)) print("Requesting database session.") db = kp.db.DBManager() # noqa if kp.db.we_are_in_lyon(): session_cookie = "sid=_kmcprod_134.158_lyo7783844001343100343mcprod1223user" # noqa else: session_cookie = kp.config.Config().get('DB', 'session_cookie') if session_cookie is None: raise SystemExit("Could not restore DB session.") log.debug("Using the session cookie: {}".format(session_cookie)) cookie_key, sid = session_cookie.split('=') print("Uploading the data to the database.") r = requests.post( RUNSUMMARY_URL, cookies={cookie_key: sid}, files={'datafile': data} ) if r.status_code == 200: log.debug("POST request status code: {}".format(r.status_code)) print("Database response:") db_answer = json.loads(r.text) for key, value in db_answer.items(): print(" -> {}: {}".format(key, value)) if db_answer['Result'] == 'OK': print("Upload successful.") else: log.critical("Something went wrong.") else: log.error("POST request status code: {}".format(r.status_code)) log.critical("Something went wrong...") return
python
def upload_runsummary(csv_filename, dryrun=False): """Reads the CSV file and uploads its contents to the runsummary table""" print("Checking '{}' for consistency.".format(csv_filename)) if not os.path.exists(csv_filename): log.critical("{} -> file not found.".format(csv_filename)) return try: df = pd.read_csv(csv_filename, sep='\t') except pd.errors.EmptyDataError as e: log.error(e) return cols = set(df.columns) if not REQUIRED_COLUMNS.issubset(cols): log.error( "Missing columns: {}.".format( ', '.join(str(c) for c in REQUIRED_COLUMNS - cols) ) ) return parameters = cols - REQUIRED_COLUMNS if len(parameters) < 1: log.error("No parameter columns found.") return if len(df) == 0: log.critical("Empty dataset.") return print( "Found data for parameters: {}.".format( ', '.join(str(c) for c in parameters) ) ) print("Converting CSV data into JSON") if dryrun: log.warn("Dryrun: adding 'TEST_' prefix to parameter names") prefix = "TEST_" else: prefix = "" data = convert_runsummary_to_json(df, prefix=prefix) print("We have {:.3f} MB to upload.".format(len(data) / 1024**2)) print("Requesting database session.") db = kp.db.DBManager() # noqa if kp.db.we_are_in_lyon(): session_cookie = "sid=_kmcprod_134.158_lyo7783844001343100343mcprod1223user" # noqa else: session_cookie = kp.config.Config().get('DB', 'session_cookie') if session_cookie is None: raise SystemExit("Could not restore DB session.") log.debug("Using the session cookie: {}".format(session_cookie)) cookie_key, sid = session_cookie.split('=') print("Uploading the data to the database.") r = requests.post( RUNSUMMARY_URL, cookies={cookie_key: sid}, files={'datafile': data} ) if r.status_code == 200: log.debug("POST request status code: {}".format(r.status_code)) print("Database response:") db_answer = json.loads(r.text) for key, value in db_answer.items(): print(" -> {}: {}".format(key, value)) if db_answer['Result'] == 'OK': print("Upload successful.") else: log.critical("Something went wrong.") else: log.error("POST request status code: {}".format(r.status_code)) log.critical("Something went wrong...") return
[ "def", "upload_runsummary", "(", "csv_filename", ",", "dryrun", "=", "False", ")", ":", "print", "(", "\"Checking '{}' for consistency.\"", ".", "format", "(", "csv_filename", ")", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "csv_filename", ")", ":", "log", ".", "critical", "(", "\"{} -> file not found.\"", ".", "format", "(", "csv_filename", ")", ")", "return", "try", ":", "df", "=", "pd", ".", "read_csv", "(", "csv_filename", ",", "sep", "=", "'\\t'", ")", "except", "pd", ".", "errors", ".", "EmptyDataError", "as", "e", ":", "log", ".", "error", "(", "e", ")", "return", "cols", "=", "set", "(", "df", ".", "columns", ")", "if", "not", "REQUIRED_COLUMNS", ".", "issubset", "(", "cols", ")", ":", "log", ".", "error", "(", "\"Missing columns: {}.\"", ".", "format", "(", "', '", ".", "join", "(", "str", "(", "c", ")", "for", "c", "in", "REQUIRED_COLUMNS", "-", "cols", ")", ")", ")", "return", "parameters", "=", "cols", "-", "REQUIRED_COLUMNS", "if", "len", "(", "parameters", ")", "<", "1", ":", "log", ".", "error", "(", "\"No parameter columns found.\"", ")", "return", "if", "len", "(", "df", ")", "==", "0", ":", "log", ".", "critical", "(", "\"Empty dataset.\"", ")", "return", "print", "(", "\"Found data for parameters: {}.\"", ".", "format", "(", "', '", ".", "join", "(", "str", "(", "c", ")", "for", "c", "in", "parameters", ")", ")", ")", "print", "(", "\"Converting CSV data into JSON\"", ")", "if", "dryrun", ":", "log", ".", "warn", "(", "\"Dryrun: adding 'TEST_' prefix to parameter names\"", ")", "prefix", "=", "\"TEST_\"", "else", ":", "prefix", "=", "\"\"", "data", "=", "convert_runsummary_to_json", "(", "df", ",", "prefix", "=", "prefix", ")", "print", "(", "\"We have {:.3f} MB to upload.\"", ".", "format", "(", "len", "(", "data", ")", "/", "1024", "**", "2", ")", ")", "print", "(", "\"Requesting database session.\"", ")", "db", "=", "kp", ".", "db", ".", "DBManager", "(", ")", "# noqa", "if", "kp", ".", "db", ".", "we_are_in_lyon", "(", ")", ":", "session_cookie", "=", "\"sid=_kmcprod_134.158_lyo7783844001343100343mcprod1223user\"", "# noqa", "else", ":", "session_cookie", "=", "kp", ".", "config", ".", "Config", "(", ")", ".", "get", "(", "'DB'", ",", "'session_cookie'", ")", "if", "session_cookie", "is", "None", ":", "raise", "SystemExit", "(", "\"Could not restore DB session.\"", ")", "log", ".", "debug", "(", "\"Using the session cookie: {}\"", ".", "format", "(", "session_cookie", ")", ")", "cookie_key", ",", "sid", "=", "session_cookie", ".", "split", "(", "'='", ")", "print", "(", "\"Uploading the data to the database.\"", ")", "r", "=", "requests", ".", "post", "(", "RUNSUMMARY_URL", ",", "cookies", "=", "{", "cookie_key", ":", "sid", "}", ",", "files", "=", "{", "'datafile'", ":", "data", "}", ")", "if", "r", ".", "status_code", "==", "200", ":", "log", ".", "debug", "(", "\"POST request status code: {}\"", ".", "format", "(", "r", ".", "status_code", ")", ")", "print", "(", "\"Database response:\"", ")", "db_answer", "=", "json", ".", "loads", "(", "r", ".", "text", ")", "for", "key", ",", "value", "in", "db_answer", ".", "items", "(", ")", ":", "print", "(", "\" -> {}: {}\"", ".", "format", "(", "key", ",", "value", ")", ")", "if", "db_answer", "[", "'Result'", "]", "==", "'OK'", ":", "print", "(", "\"Upload successful.\"", ")", "else", ":", "log", ".", "critical", "(", "\"Something went wrong.\"", ")", "else", ":", "log", ".", "error", "(", "\"POST request status code: {}\"", ".", "format", "(", "r", ".", "status_code", ")", ")", "log", ".", "critical", "(", "\"Something went wrong...\"", ")", "return" ]
Reads the CSV file and uploads its contents to the runsummary table
[ "Reads", "the", "CSV", "file", "and", "uploads", "its", "contents", "to", "the", "runsummary", "table" ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/utils/streamds.py#L90-L162
train
tamasgal/km3pipe
km3pipe/utils/streamds.py
convert_runsummary_to_json
def convert_runsummary_to_json( df, comment='Uploaded via km3pipe.StreamDS', prefix='TEST_' ): """Convert a Pandas DataFrame with runsummary to JSON for DB upload""" data_field = [] comment += ", by {}".format(getpass.getuser()) for det_id, det_data in df.groupby('det_id'): runs_field = [] data_field.append({"DetectorId": det_id, "Runs": runs_field}) for run, run_data in det_data.groupby('run'): parameters_field = [] runs_field.append({ "Run": int(run), "Parameters": parameters_field }) parameter_dict = {} for row in run_data.itertuples(): for parameter_name in run_data.columns: if parameter_name in REQUIRED_COLUMNS: continue if parameter_name not in parameter_dict: entry = {'Name': prefix + parameter_name, 'Data': []} parameter_dict[parameter_name] = entry data_value = getattr(row, parameter_name) try: data_value = float(data_value) except ValueError as e: log.critical("Data values has to be floats!") raise ValueError(e) value = {'S': str(getattr(row, 'source')), 'D': data_value} parameter_dict[parameter_name]['Data'].append(value) for parameter_data in parameter_dict.values(): parameters_field.append(parameter_data) data_to_upload = {"Comment": comment, "Data": data_field} file_data_to_upload = json.dumps(data_to_upload) return file_data_to_upload
python
def convert_runsummary_to_json( df, comment='Uploaded via km3pipe.StreamDS', prefix='TEST_' ): """Convert a Pandas DataFrame with runsummary to JSON for DB upload""" data_field = [] comment += ", by {}".format(getpass.getuser()) for det_id, det_data in df.groupby('det_id'): runs_field = [] data_field.append({"DetectorId": det_id, "Runs": runs_field}) for run, run_data in det_data.groupby('run'): parameters_field = [] runs_field.append({ "Run": int(run), "Parameters": parameters_field }) parameter_dict = {} for row in run_data.itertuples(): for parameter_name in run_data.columns: if parameter_name in REQUIRED_COLUMNS: continue if parameter_name not in parameter_dict: entry = {'Name': prefix + parameter_name, 'Data': []} parameter_dict[parameter_name] = entry data_value = getattr(row, parameter_name) try: data_value = float(data_value) except ValueError as e: log.critical("Data values has to be floats!") raise ValueError(e) value = {'S': str(getattr(row, 'source')), 'D': data_value} parameter_dict[parameter_name]['Data'].append(value) for parameter_data in parameter_dict.values(): parameters_field.append(parameter_data) data_to_upload = {"Comment": comment, "Data": data_field} file_data_to_upload = json.dumps(data_to_upload) return file_data_to_upload
[ "def", "convert_runsummary_to_json", "(", "df", ",", "comment", "=", "'Uploaded via km3pipe.StreamDS'", ",", "prefix", "=", "'TEST_'", ")", ":", "data_field", "=", "[", "]", "comment", "+=", "\", by {}\"", ".", "format", "(", "getpass", ".", "getuser", "(", ")", ")", "for", "det_id", ",", "det_data", "in", "df", ".", "groupby", "(", "'det_id'", ")", ":", "runs_field", "=", "[", "]", "data_field", ".", "append", "(", "{", "\"DetectorId\"", ":", "det_id", ",", "\"Runs\"", ":", "runs_field", "}", ")", "for", "run", ",", "run_data", "in", "det_data", ".", "groupby", "(", "'run'", ")", ":", "parameters_field", "=", "[", "]", "runs_field", ".", "append", "(", "{", "\"Run\"", ":", "int", "(", "run", ")", ",", "\"Parameters\"", ":", "parameters_field", "}", ")", "parameter_dict", "=", "{", "}", "for", "row", "in", "run_data", ".", "itertuples", "(", ")", ":", "for", "parameter_name", "in", "run_data", ".", "columns", ":", "if", "parameter_name", "in", "REQUIRED_COLUMNS", ":", "continue", "if", "parameter_name", "not", "in", "parameter_dict", ":", "entry", "=", "{", "'Name'", ":", "prefix", "+", "parameter_name", ",", "'Data'", ":", "[", "]", "}", "parameter_dict", "[", "parameter_name", "]", "=", "entry", "data_value", "=", "getattr", "(", "row", ",", "parameter_name", ")", "try", ":", "data_value", "=", "float", "(", "data_value", ")", "except", "ValueError", "as", "e", ":", "log", ".", "critical", "(", "\"Data values has to be floats!\"", ")", "raise", "ValueError", "(", "e", ")", "value", "=", "{", "'S'", ":", "str", "(", "getattr", "(", "row", ",", "'source'", ")", ")", ",", "'D'", ":", "data_value", "}", "parameter_dict", "[", "parameter_name", "]", "[", "'Data'", "]", ".", "append", "(", "value", ")", "for", "parameter_data", "in", "parameter_dict", ".", "values", "(", ")", ":", "parameters_field", ".", "append", "(", "parameter_data", ")", "data_to_upload", "=", "{", "\"Comment\"", ":", "comment", ",", "\"Data\"", ":", "data_field", "}", "file_data_to_upload", "=", "json", ".", "dumps", "(", "data_to_upload", ")", "return", "file_data_to_upload" ]
Convert a Pandas DataFrame with runsummary to JSON for DB upload
[ "Convert", "a", "Pandas", "DataFrame", "with", "runsummary", "to", "JSON", "for", "DB", "upload" ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/utils/streamds.py#L165-L203
train
PrefPy/prefpy
prefpy/mechanismMcmcSampleGenerator.py
MechanismMcmcSampleGeneratorMallows.calcAcceptanceRatio
def calcAcceptanceRatio(self, V, W): """ Given a order vector V and a proposed order vector W, calculate the acceptance ratio for changing to W when using MCMC. ivar: dict<int,<dict,<int,int>>> wmg: A two-dimensional dictionary that associates integer representations of each pair of candidates, cand1 and cand2, with the number of times cand1 is ranked above cand2 minus the number of times cand2 is ranked above cand1. The dictionary represents a weighted majority graph for an election. :ivar float phi: A value for phi such that 0 <= phi <= 1. :ivar list<int> V: Contains integer representations of each candidate in order of their ranking in a vote, from first to last. This is the current sample. :ivar list<int> W: Contains integer representations of each candidate in order of their ranking in a vote, from first to last. This is the proposed sample. """ acceptanceRatio = 1.0 for comb in itertools.combinations(V, 2): #Check if comb[0] is ranked before comb[1] in V and W vIOverJ = 1 wIOverJ = 1 if V.index(comb[0]) > V.index(comb[1]): vIOverJ = 0 if W.index(comb[0]) > W.index(comb[1]): wIOverJ = 0 acceptanceRatio = acceptanceRatio * self.phi**(self.wmg[comb[0]][comb[1]]*(vIOverJ-wIOverJ)) return acceptanceRatio
python
def calcAcceptanceRatio(self, V, W): """ Given a order vector V and a proposed order vector W, calculate the acceptance ratio for changing to W when using MCMC. ivar: dict<int,<dict,<int,int>>> wmg: A two-dimensional dictionary that associates integer representations of each pair of candidates, cand1 and cand2, with the number of times cand1 is ranked above cand2 minus the number of times cand2 is ranked above cand1. The dictionary represents a weighted majority graph for an election. :ivar float phi: A value for phi such that 0 <= phi <= 1. :ivar list<int> V: Contains integer representations of each candidate in order of their ranking in a vote, from first to last. This is the current sample. :ivar list<int> W: Contains integer representations of each candidate in order of their ranking in a vote, from first to last. This is the proposed sample. """ acceptanceRatio = 1.0 for comb in itertools.combinations(V, 2): #Check if comb[0] is ranked before comb[1] in V and W vIOverJ = 1 wIOverJ = 1 if V.index(comb[0]) > V.index(comb[1]): vIOverJ = 0 if W.index(comb[0]) > W.index(comb[1]): wIOverJ = 0 acceptanceRatio = acceptanceRatio * self.phi**(self.wmg[comb[0]][comb[1]]*(vIOverJ-wIOverJ)) return acceptanceRatio
[ "def", "calcAcceptanceRatio", "(", "self", ",", "V", ",", "W", ")", ":", "acceptanceRatio", "=", "1.0", "for", "comb", "in", "itertools", ".", "combinations", "(", "V", ",", "2", ")", ":", "#Check if comb[0] is ranked before comb[1] in V and W", "vIOverJ", "=", "1", "wIOverJ", "=", "1", "if", "V", ".", "index", "(", "comb", "[", "0", "]", ")", ">", "V", ".", "index", "(", "comb", "[", "1", "]", ")", ":", "vIOverJ", "=", "0", "if", "W", ".", "index", "(", "comb", "[", "0", "]", ")", ">", "W", ".", "index", "(", "comb", "[", "1", "]", ")", ":", "wIOverJ", "=", "0", "acceptanceRatio", "=", "acceptanceRatio", "*", "self", ".", "phi", "**", "(", "self", ".", "wmg", "[", "comb", "[", "0", "]", "]", "[", "comb", "[", "1", "]", "]", "*", "(", "vIOverJ", "-", "wIOverJ", ")", ")", "return", "acceptanceRatio" ]
Given a order vector V and a proposed order vector W, calculate the acceptance ratio for changing to W when using MCMC. ivar: dict<int,<dict,<int,int>>> wmg: A two-dimensional dictionary that associates integer representations of each pair of candidates, cand1 and cand2, with the number of times cand1 is ranked above cand2 minus the number of times cand2 is ranked above cand1. The dictionary represents a weighted majority graph for an election. :ivar float phi: A value for phi such that 0 <= phi <= 1. :ivar list<int> V: Contains integer representations of each candidate in order of their ranking in a vote, from first to last. This is the current sample. :ivar list<int> W: Contains integer representations of each candidate in order of their ranking in a vote, from first to last. This is the proposed sample.
[ "Given", "a", "order", "vector", "V", "and", "a", "proposed", "order", "vector", "W", "calculate", "the", "acceptance", "ratio", "for", "changing", "to", "W", "when", "using", "MCMC", "." ]
f395ba3782f05684fa5de0cece387a6da9391d02
https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/mechanismMcmcSampleGenerator.py#L34-L62
train
PrefPy/prefpy
prefpy/mechanismMcmcSampleGenerator.py
MechanismMcmcSampleGeneratorMallowsAdjacentPairwiseFlip.getNextSample
def getNextSample(self, V): """ Generate the next sample by randomly flipping two adjacent candidates. :ivar list<int> V: Contains integer representations of each candidate in order of their ranking in a vote, from first to last. This is the current sample. """ # Select a random alternative in V to switch with its adacent alternatives. randPos = random.randint(0, len(V)-2) W = copy.deepcopy(V) d = V[randPos] c = V[randPos+1] W[randPos] = c W[randPos+1] = d # Check whether we should change to the new ranking. prMW = 1 prMV = 1 prob = min(1.0,(prMW/prMV)*pow(self.phi, self.wmg[d][c]))/2 if random.random() <= prob: V = W return V
python
def getNextSample(self, V): """ Generate the next sample by randomly flipping two adjacent candidates. :ivar list<int> V: Contains integer representations of each candidate in order of their ranking in a vote, from first to last. This is the current sample. """ # Select a random alternative in V to switch with its adacent alternatives. randPos = random.randint(0, len(V)-2) W = copy.deepcopy(V) d = V[randPos] c = V[randPos+1] W[randPos] = c W[randPos+1] = d # Check whether we should change to the new ranking. prMW = 1 prMV = 1 prob = min(1.0,(prMW/prMV)*pow(self.phi, self.wmg[d][c]))/2 if random.random() <= prob: V = W return V
[ "def", "getNextSample", "(", "self", ",", "V", ")", ":", "# Select a random alternative in V to switch with its adacent alternatives.", "randPos", "=", "random", ".", "randint", "(", "0", ",", "len", "(", "V", ")", "-", "2", ")", "W", "=", "copy", ".", "deepcopy", "(", "V", ")", "d", "=", "V", "[", "randPos", "]", "c", "=", "V", "[", "randPos", "+", "1", "]", "W", "[", "randPos", "]", "=", "c", "W", "[", "randPos", "+", "1", "]", "=", "d", "# Check whether we should change to the new ranking.", "prMW", "=", "1", "prMV", "=", "1", "prob", "=", "min", "(", "1.0", ",", "(", "prMW", "/", "prMV", ")", "*", "pow", "(", "self", ".", "phi", ",", "self", ".", "wmg", "[", "d", "]", "[", "c", "]", ")", ")", "/", "2", "if", "random", ".", "random", "(", ")", "<=", "prob", ":", "V", "=", "W", "return", "V" ]
Generate the next sample by randomly flipping two adjacent candidates. :ivar list<int> V: Contains integer representations of each candidate in order of their ranking in a vote, from first to last. This is the current sample.
[ "Generate", "the", "next", "sample", "by", "randomly", "flipping", "two", "adjacent", "candidates", "." ]
f395ba3782f05684fa5de0cece387a6da9391d02
https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/mechanismMcmcSampleGenerator.py#L66-L89
train
PrefPy/prefpy
prefpy/mechanismMcmcSampleGenerator.py
MechanismMcmcSampleGeneratorMallowsRandShuffle.getNextSample
def getNextSample(self, V): """ Generate the next sample by randomly shuffling candidates. :ivar list<int> V: Contains integer representations of each candidate in order of their ranking in a vote, from first to last. This is the current sample. """ positions = range(0, len(self.wmg)) randPoss = random.sample(positions, self.shuffleSize) flipSet = copy.deepcopy(randPoss) randPoss.sort() W = copy.deepcopy(V) for j in range(0, self.shuffleSize): W[randPoss[j]] = V[flipSet[j]] # Check whether we should change to the new ranking. prMW = 1.0 prMV = 1.0 acceptanceRatio = self.calcAcceptanceRatio(V, W) prob = min(1.0,(prMW/prMV)*acceptanceRatio) if random.random() <= prob: V = W return V
python
def getNextSample(self, V): """ Generate the next sample by randomly shuffling candidates. :ivar list<int> V: Contains integer representations of each candidate in order of their ranking in a vote, from first to last. This is the current sample. """ positions = range(0, len(self.wmg)) randPoss = random.sample(positions, self.shuffleSize) flipSet = copy.deepcopy(randPoss) randPoss.sort() W = copy.deepcopy(V) for j in range(0, self.shuffleSize): W[randPoss[j]] = V[flipSet[j]] # Check whether we should change to the new ranking. prMW = 1.0 prMV = 1.0 acceptanceRatio = self.calcAcceptanceRatio(V, W) prob = min(1.0,(prMW/prMV)*acceptanceRatio) if random.random() <= prob: V = W return V
[ "def", "getNextSample", "(", "self", ",", "V", ")", ":", "positions", "=", "range", "(", "0", ",", "len", "(", "self", ".", "wmg", ")", ")", "randPoss", "=", "random", ".", "sample", "(", "positions", ",", "self", ".", "shuffleSize", ")", "flipSet", "=", "copy", ".", "deepcopy", "(", "randPoss", ")", "randPoss", ".", "sort", "(", ")", "W", "=", "copy", ".", "deepcopy", "(", "V", ")", "for", "j", "in", "range", "(", "0", ",", "self", ".", "shuffleSize", ")", ":", "W", "[", "randPoss", "[", "j", "]", "]", "=", "V", "[", "flipSet", "[", "j", "]", "]", "# Check whether we should change to the new ranking.", "prMW", "=", "1.0", "prMV", "=", "1.0", "acceptanceRatio", "=", "self", ".", "calcAcceptanceRatio", "(", "V", ",", "W", ")", "prob", "=", "min", "(", "1.0", ",", "(", "prMW", "/", "prMV", ")", "*", "acceptanceRatio", ")", "if", "random", ".", "random", "(", ")", "<=", "prob", ":", "V", "=", "W", "return", "V" ]
Generate the next sample by randomly shuffling candidates. :ivar list<int> V: Contains integer representations of each candidate in order of their ranking in a vote, from first to last. This is the current sample.
[ "Generate", "the", "next", "sample", "by", "randomly", "shuffling", "candidates", "." ]
f395ba3782f05684fa5de0cece387a6da9391d02
https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/mechanismMcmcSampleGenerator.py#L98-L121
train
PrefPy/prefpy
prefpy/mechanismMcmcSampleGenerator.py
MechanismMcmcSampleGeneratorMallowsJumpingDistribution.getNextSample
def getNextSample(self, V): """ We generate a new ranking based on a Mallows-based jumping distribution. The algorithm is described in "Bayesian Ordinal Peer Grading" by Raman and Joachims. :ivar list<int> V: Contains integer representations of each candidate in order of their ranking in a vote, from first to last. """ phi = self.phi wmg = self.wmg W = [] W.append(V[0]) for j in range(2, len(V)+1): randomSelect = random.random() threshold = 0.0 denom = 1.0 for k in range(1, j): denom = denom + phi**k for k in range(1, j+1): numerator = phi**(j - k) threshold = threshold + numerator/denom if randomSelect <= threshold: W.insert(k-1,V[j-1]) break # Check whether we should change to the new ranking. acceptanceRatio = self.calcAcceptanceRatio(V, W) prob = min(1.0,acceptanceRatio) if random.random() <= prob: V = W return V
python
def getNextSample(self, V): """ We generate a new ranking based on a Mallows-based jumping distribution. The algorithm is described in "Bayesian Ordinal Peer Grading" by Raman and Joachims. :ivar list<int> V: Contains integer representations of each candidate in order of their ranking in a vote, from first to last. """ phi = self.phi wmg = self.wmg W = [] W.append(V[0]) for j in range(2, len(V)+1): randomSelect = random.random() threshold = 0.0 denom = 1.0 for k in range(1, j): denom = denom + phi**k for k in range(1, j+1): numerator = phi**(j - k) threshold = threshold + numerator/denom if randomSelect <= threshold: W.insert(k-1,V[j-1]) break # Check whether we should change to the new ranking. acceptanceRatio = self.calcAcceptanceRatio(V, W) prob = min(1.0,acceptanceRatio) if random.random() <= prob: V = W return V
[ "def", "getNextSample", "(", "self", ",", "V", ")", ":", "phi", "=", "self", ".", "phi", "wmg", "=", "self", ".", "wmg", "W", "=", "[", "]", "W", ".", "append", "(", "V", "[", "0", "]", ")", "for", "j", "in", "range", "(", "2", ",", "len", "(", "V", ")", "+", "1", ")", ":", "randomSelect", "=", "random", ".", "random", "(", ")", "threshold", "=", "0.0", "denom", "=", "1.0", "for", "k", "in", "range", "(", "1", ",", "j", ")", ":", "denom", "=", "denom", "+", "phi", "**", "k", "for", "k", "in", "range", "(", "1", ",", "j", "+", "1", ")", ":", "numerator", "=", "phi", "**", "(", "j", "-", "k", ")", "threshold", "=", "threshold", "+", "numerator", "/", "denom", "if", "randomSelect", "<=", "threshold", ":", "W", ".", "insert", "(", "k", "-", "1", ",", "V", "[", "j", "-", "1", "]", ")", "break", "# Check whether we should change to the new ranking.", "acceptanceRatio", "=", "self", ".", "calcAcceptanceRatio", "(", "V", ",", "W", ")", "prob", "=", "min", "(", "1.0", ",", "acceptanceRatio", ")", "if", "random", ".", "random", "(", ")", "<=", "prob", ":", "V", "=", "W", "return", "V" ]
We generate a new ranking based on a Mallows-based jumping distribution. The algorithm is described in "Bayesian Ordinal Peer Grading" by Raman and Joachims. :ivar list<int> V: Contains integer representations of each candidate in order of their ranking in a vote, from first to last.
[ "We", "generate", "a", "new", "ranking", "based", "on", "a", "Mallows", "-", "based", "jumping", "distribution", ".", "The", "algorithm", "is", "described", "in", "Bayesian", "Ordinal", "Peer", "Grading", "by", "Raman", "and", "Joachims", "." ]
f395ba3782f05684fa5de0cece387a6da9391d02
https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/mechanismMcmcSampleGenerator.py#L125-L157
train
PrefPy/prefpy
prefpy/mechanismMcmcSampleGenerator.py
MechanismMcmcSampleGeneratorMallowsPlakettLuce.getNextSample
def getNextSample(self, V): """ Given a ranking over the candidates, generate a new ranking by assigning each candidate at position i a Plakett-Luce weight of phi^i and draw a new ranking. :ivar list<int> V: Contains integer representations of each candidate in order of their ranking in a vote, from first to last. """ W, WProb = self.drawRankingPlakettLuce(V) VProb = self.calcProbOfVFromW(V, W) acceptanceRatio = self.calcAcceptanceRatio(V, W) prob = min(1.0, acceptanceRatio * (VProb/WProb)) if random.random() <= prob: V = W return V
python
def getNextSample(self, V): """ Given a ranking over the candidates, generate a new ranking by assigning each candidate at position i a Plakett-Luce weight of phi^i and draw a new ranking. :ivar list<int> V: Contains integer representations of each candidate in order of their ranking in a vote, from first to last. """ W, WProb = self.drawRankingPlakettLuce(V) VProb = self.calcProbOfVFromW(V, W) acceptanceRatio = self.calcAcceptanceRatio(V, W) prob = min(1.0, acceptanceRatio * (VProb/WProb)) if random.random() <= prob: V = W return V
[ "def", "getNextSample", "(", "self", ",", "V", ")", ":", "W", ",", "WProb", "=", "self", ".", "drawRankingPlakettLuce", "(", "V", ")", "VProb", "=", "self", ".", "calcProbOfVFromW", "(", "V", ",", "W", ")", "acceptanceRatio", "=", "self", ".", "calcAcceptanceRatio", "(", "V", ",", "W", ")", "prob", "=", "min", "(", "1.0", ",", "acceptanceRatio", "*", "(", "VProb", "/", "WProb", ")", ")", "if", "random", ".", "random", "(", ")", "<=", "prob", ":", "V", "=", "W", "return", "V" ]
Given a ranking over the candidates, generate a new ranking by assigning each candidate at position i a Plakett-Luce weight of phi^i and draw a new ranking. :ivar list<int> V: Contains integer representations of each candidate in order of their ranking in a vote, from first to last.
[ "Given", "a", "ranking", "over", "the", "candidates", "generate", "a", "new", "ranking", "by", "assigning", "each", "candidate", "at", "position", "i", "a", "Plakett", "-", "Luce", "weight", "of", "phi^i", "and", "draw", "a", "new", "ranking", "." ]
f395ba3782f05684fa5de0cece387a6da9391d02
https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/mechanismMcmcSampleGenerator.py#L191-L206
train
PrefPy/prefpy
prefpy/mechanismMcmcSampleGenerator.py
MechanismMcmcSampleGeneratorMallowsPlakettLuce.calcDrawingProbs
def calcDrawingProbs(self): """ Returns a vector that contains the probabily of an item being from each position. We say that every item in a order vector is drawn with weight phi^i where i is its position. """ wmg = self.wmg phi = self.phi # We say the weight of the candidate in position i is phi^i. weights = [] for i in range(0, len(wmg.keys())): weights.append(phi**i) # Calculate the probabilty that an item at each weight is drawn. totalWeight = sum(weights) for i in range(0, len(wmg.keys())): weights[i] = weights[i]/totalWeight return weights
python
def calcDrawingProbs(self): """ Returns a vector that contains the probabily of an item being from each position. We say that every item in a order vector is drawn with weight phi^i where i is its position. """ wmg = self.wmg phi = self.phi # We say the weight of the candidate in position i is phi^i. weights = [] for i in range(0, len(wmg.keys())): weights.append(phi**i) # Calculate the probabilty that an item at each weight is drawn. totalWeight = sum(weights) for i in range(0, len(wmg.keys())): weights[i] = weights[i]/totalWeight return weights
[ "def", "calcDrawingProbs", "(", "self", ")", ":", "wmg", "=", "self", ".", "wmg", "phi", "=", "self", ".", "phi", "# We say the weight of the candidate in position i is phi^i.", "weights", "=", "[", "]", "for", "i", "in", "range", "(", "0", ",", "len", "(", "wmg", ".", "keys", "(", ")", ")", ")", ":", "weights", ".", "append", "(", "phi", "**", "i", ")", "# Calculate the probabilty that an item at each weight is drawn.", "totalWeight", "=", "sum", "(", "weights", ")", "for", "i", "in", "range", "(", "0", ",", "len", "(", "wmg", ".", "keys", "(", ")", ")", ")", ":", "weights", "[", "i", "]", "=", "weights", "[", "i", "]", "/", "totalWeight", "return", "weights" ]
Returns a vector that contains the probabily of an item being from each position. We say that every item in a order vector is drawn with weight phi^i where i is its position.
[ "Returns", "a", "vector", "that", "contains", "the", "probabily", "of", "an", "item", "being", "from", "each", "position", ".", "We", "say", "that", "every", "item", "in", "a", "order", "vector", "is", "drawn", "with", "weight", "phi^i", "where", "i", "is", "its", "position", "." ]
f395ba3782f05684fa5de0cece387a6da9391d02
https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/mechanismMcmcSampleGenerator.py#L208-L227
train
PrefPy/prefpy
prefpy/mechanismMcmcSampleGenerator.py
MechanismMcmcSampleGeneratorMallowsPlakettLuce.drawRankingPlakettLuce
def drawRankingPlakettLuce(self, rankList): """ Given an order vector over the candidates, draw candidates to generate a new order vector. :ivar list<int> rankList: Contains integer representations of each candidate in order of their rank in a vote, from first to last. """ probs = self.plakettLuceProbs numCands = len(rankList) newRanking = [] remainingCands = copy.deepcopy(rankList) probsCopy = copy.deepcopy(self.plakettLuceProbs) totalProb = sum(probs) # We will use prob to iteratively calculate the probabilty that we draw the order vector # that we end up drawing. prob = 1.0 while (len(newRanking) < numCands): # We generate a random number from 0 to 1, and use it to select a candidate. rand = random.random() threshold = 0.0 for i in range(0, len(probsCopy)): threshold = threshold + probsCopy[i]/totalProb if rand <= threshold: prob = prob * probsCopy[i]/totalProb newRanking.append(remainingCands[i]) remainingCands.pop(i) totalProb = totalProb - probsCopy[i] probsCopy.pop(i) break return newRanking, prob
python
def drawRankingPlakettLuce(self, rankList): """ Given an order vector over the candidates, draw candidates to generate a new order vector. :ivar list<int> rankList: Contains integer representations of each candidate in order of their rank in a vote, from first to last. """ probs = self.plakettLuceProbs numCands = len(rankList) newRanking = [] remainingCands = copy.deepcopy(rankList) probsCopy = copy.deepcopy(self.plakettLuceProbs) totalProb = sum(probs) # We will use prob to iteratively calculate the probabilty that we draw the order vector # that we end up drawing. prob = 1.0 while (len(newRanking) < numCands): # We generate a random number from 0 to 1, and use it to select a candidate. rand = random.random() threshold = 0.0 for i in range(0, len(probsCopy)): threshold = threshold + probsCopy[i]/totalProb if rand <= threshold: prob = prob * probsCopy[i]/totalProb newRanking.append(remainingCands[i]) remainingCands.pop(i) totalProb = totalProb - probsCopy[i] probsCopy.pop(i) break return newRanking, prob
[ "def", "drawRankingPlakettLuce", "(", "self", ",", "rankList", ")", ":", "probs", "=", "self", ".", "plakettLuceProbs", "numCands", "=", "len", "(", "rankList", ")", "newRanking", "=", "[", "]", "remainingCands", "=", "copy", ".", "deepcopy", "(", "rankList", ")", "probsCopy", "=", "copy", ".", "deepcopy", "(", "self", ".", "plakettLuceProbs", ")", "totalProb", "=", "sum", "(", "probs", ")", "# We will use prob to iteratively calculate the probabilty that we draw the order vector", "# that we end up drawing.", "prob", "=", "1.0", "while", "(", "len", "(", "newRanking", ")", "<", "numCands", ")", ":", "# We generate a random number from 0 to 1, and use it to select a candidate. ", "rand", "=", "random", ".", "random", "(", ")", "threshold", "=", "0.0", "for", "i", "in", "range", "(", "0", ",", "len", "(", "probsCopy", ")", ")", ":", "threshold", "=", "threshold", "+", "probsCopy", "[", "i", "]", "/", "totalProb", "if", "rand", "<=", "threshold", ":", "prob", "=", "prob", "*", "probsCopy", "[", "i", "]", "/", "totalProb", "newRanking", ".", "append", "(", "remainingCands", "[", "i", "]", ")", "remainingCands", ".", "pop", "(", "i", ")", "totalProb", "=", "totalProb", "-", "probsCopy", "[", "i", "]", "probsCopy", ".", "pop", "(", "i", ")", "break", "return", "newRanking", ",", "prob" ]
Given an order vector over the candidates, draw candidates to generate a new order vector. :ivar list<int> rankList: Contains integer representations of each candidate in order of their rank in a vote, from first to last.
[ "Given", "an", "order", "vector", "over", "the", "candidates", "draw", "candidates", "to", "generate", "a", "new", "order", "vector", "." ]
f395ba3782f05684fa5de0cece387a6da9391d02
https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/mechanismMcmcSampleGenerator.py#L229-L263
train
PrefPy/prefpy
prefpy/mechanismMcmcSampleGenerator.py
MechanismMcmcSampleGeneratorMallowsPlakettLuce.calcProbOfVFromW
def calcProbOfVFromW(self, V, W): """ Given a order vector V and an order vector W, calculate the probability that we generate V as our next sample if our current sample was W. :ivar list<int> V: Contains integer representations of each candidate in order of their ranking in a vote, from first to last. :ivar list<int> W: Contains integer representations of each candidate in order of their ranking in a vote, from first to last. """ weights = range(0, len(V)) i = 0 for alt in W: weights[alt-1] = self.phi ** i i = i + 1 # Calculate the probability that we draw V[0], V[1], and so on from W. prob = 1.0 totalWeight = sum(weights) for alt in V: prob = prob * weights[alt-1]/totalWeight totalWeight = totalWeight - weights[alt-1] return prob
python
def calcProbOfVFromW(self, V, W): """ Given a order vector V and an order vector W, calculate the probability that we generate V as our next sample if our current sample was W. :ivar list<int> V: Contains integer representations of each candidate in order of their ranking in a vote, from first to last. :ivar list<int> W: Contains integer representations of each candidate in order of their ranking in a vote, from first to last. """ weights = range(0, len(V)) i = 0 for alt in W: weights[alt-1] = self.phi ** i i = i + 1 # Calculate the probability that we draw V[0], V[1], and so on from W. prob = 1.0 totalWeight = sum(weights) for alt in V: prob = prob * weights[alt-1]/totalWeight totalWeight = totalWeight - weights[alt-1] return prob
[ "def", "calcProbOfVFromW", "(", "self", ",", "V", ",", "W", ")", ":", "weights", "=", "range", "(", "0", ",", "len", "(", "V", ")", ")", "i", "=", "0", "for", "alt", "in", "W", ":", "weights", "[", "alt", "-", "1", "]", "=", "self", ".", "phi", "**", "i", "i", "=", "i", "+", "1", "# Calculate the probability that we draw V[0], V[1], and so on from W.", "prob", "=", "1.0", "totalWeight", "=", "sum", "(", "weights", ")", "for", "alt", "in", "V", ":", "prob", "=", "prob", "*", "weights", "[", "alt", "-", "1", "]", "/", "totalWeight", "totalWeight", "=", "totalWeight", "-", "weights", "[", "alt", "-", "1", "]", "return", "prob" ]
Given a order vector V and an order vector W, calculate the probability that we generate V as our next sample if our current sample was W. :ivar list<int> V: Contains integer representations of each candidate in order of their ranking in a vote, from first to last. :ivar list<int> W: Contains integer representations of each candidate in order of their ranking in a vote, from first to last.
[ "Given", "a", "order", "vector", "V", "and", "an", "order", "vector", "W", "calculate", "the", "probability", "that", "we", "generate", "V", "as", "our", "next", "sample", "if", "our", "current", "sample", "was", "W", "." ]
f395ba3782f05684fa5de0cece387a6da9391d02
https://github.com/PrefPy/prefpy/blob/f395ba3782f05684fa5de0cece387a6da9391d02/prefpy/mechanismMcmcSampleGenerator.py#L265-L289
train
tamasgal/km3pipe
km3pipe/io/root.py
get_hist
def get_hist(rfile, histname, get_overflow=False): """Read a 1D Histogram.""" import root_numpy as rnp rfile = open_rfile(rfile) hist = rfile[histname] xlims = np.array(list(hist.xedges())) bin_values = rnp.hist2array(hist, include_overflow=get_overflow) rfile.close() return bin_values, xlims
python
def get_hist(rfile, histname, get_overflow=False): """Read a 1D Histogram.""" import root_numpy as rnp rfile = open_rfile(rfile) hist = rfile[histname] xlims = np.array(list(hist.xedges())) bin_values = rnp.hist2array(hist, include_overflow=get_overflow) rfile.close() return bin_values, xlims
[ "def", "get_hist", "(", "rfile", ",", "histname", ",", "get_overflow", "=", "False", ")", ":", "import", "root_numpy", "as", "rnp", "rfile", "=", "open_rfile", "(", "rfile", ")", "hist", "=", "rfile", "[", "histname", "]", "xlims", "=", "np", ".", "array", "(", "list", "(", "hist", ".", "xedges", "(", ")", ")", ")", "bin_values", "=", "rnp", ".", "hist2array", "(", "hist", ",", "include_overflow", "=", "get_overflow", ")", "rfile", ".", "close", "(", ")", "return", "bin_values", ",", "xlims" ]
Read a 1D Histogram.
[ "Read", "a", "1D", "Histogram", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/io/root.py#L31-L40
train
tamasgal/km3pipe
km3pipe/io/root.py
interpol_hist2d
def interpol_hist2d(h2d, oversamp_factor=10): """Sample the interpolator of a root 2d hist. Root's hist2d has a weird internal interpolation routine, also using neighbouring bins. """ from rootpy import ROOTError xlim = h2d.bins(axis=0) ylim = h2d.bins(axis=1) xn = h2d.nbins(0) yn = h2d.nbins(1) x = np.linspace(xlim[0], xlim[1], xn * oversamp_factor) y = np.linspace(ylim[0], ylim[1], yn * oversamp_factor) mat = np.zeros((xn, yn)) for xi in range(xn): for yi in range(yn): try: mat[xi, yi] = h2d.interpolate(x[xi], y[yi]) except ROOTError: continue return mat, x, y
python
def interpol_hist2d(h2d, oversamp_factor=10): """Sample the interpolator of a root 2d hist. Root's hist2d has a weird internal interpolation routine, also using neighbouring bins. """ from rootpy import ROOTError xlim = h2d.bins(axis=0) ylim = h2d.bins(axis=1) xn = h2d.nbins(0) yn = h2d.nbins(1) x = np.linspace(xlim[0], xlim[1], xn * oversamp_factor) y = np.linspace(ylim[0], ylim[1], yn * oversamp_factor) mat = np.zeros((xn, yn)) for xi in range(xn): for yi in range(yn): try: mat[xi, yi] = h2d.interpolate(x[xi], y[yi]) except ROOTError: continue return mat, x, y
[ "def", "interpol_hist2d", "(", "h2d", ",", "oversamp_factor", "=", "10", ")", ":", "from", "rootpy", "import", "ROOTError", "xlim", "=", "h2d", ".", "bins", "(", "axis", "=", "0", ")", "ylim", "=", "h2d", ".", "bins", "(", "axis", "=", "1", ")", "xn", "=", "h2d", ".", "nbins", "(", "0", ")", "yn", "=", "h2d", ".", "nbins", "(", "1", ")", "x", "=", "np", ".", "linspace", "(", "xlim", "[", "0", "]", ",", "xlim", "[", "1", "]", ",", "xn", "*", "oversamp_factor", ")", "y", "=", "np", ".", "linspace", "(", "ylim", "[", "0", "]", ",", "ylim", "[", "1", "]", ",", "yn", "*", "oversamp_factor", ")", "mat", "=", "np", ".", "zeros", "(", "(", "xn", ",", "yn", ")", ")", "for", "xi", "in", "range", "(", "xn", ")", ":", "for", "yi", "in", "range", "(", "yn", ")", ":", "try", ":", "mat", "[", "xi", ",", "yi", "]", "=", "h2d", ".", "interpolate", "(", "x", "[", "xi", "]", ",", "y", "[", "yi", "]", ")", "except", "ROOTError", ":", "continue", "return", "mat", ",", "x", ",", "y" ]
Sample the interpolator of a root 2d hist. Root's hist2d has a weird internal interpolation routine, also using neighbouring bins.
[ "Sample", "the", "interpolator", "of", "a", "root", "2d", "hist", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/io/root.py#L70-L91
train
cprogrammer1994/GLWindow
GLWindow/__init__.py
create_window
def create_window(size=None, samples=16, *, fullscreen=False, title=None, threaded=True) -> Window: ''' Create the main window. Args: size (tuple): The width and height of the window. samples (int): The number of samples. Keyword Args: fullscreen (bool): Fullscreen? title (bool): The title of the window. threaded (bool): Threaded? Returns: Window: The main window. ''' if size is None: width, height = 1280, 720 else: width, height = size if samples < 0 or (samples & (samples - 1)) != 0: raise Exception('Invalid number of samples: %d' % samples) window = Window.__new__(Window) window.wnd = glwnd.create_window(width, height, samples, fullscreen, title, threaded) return window
python
def create_window(size=None, samples=16, *, fullscreen=False, title=None, threaded=True) -> Window: ''' Create the main window. Args: size (tuple): The width and height of the window. samples (int): The number of samples. Keyword Args: fullscreen (bool): Fullscreen? title (bool): The title of the window. threaded (bool): Threaded? Returns: Window: The main window. ''' if size is None: width, height = 1280, 720 else: width, height = size if samples < 0 or (samples & (samples - 1)) != 0: raise Exception('Invalid number of samples: %d' % samples) window = Window.__new__(Window) window.wnd = glwnd.create_window(width, height, samples, fullscreen, title, threaded) return window
[ "def", "create_window", "(", "size", "=", "None", ",", "samples", "=", "16", ",", "*", ",", "fullscreen", "=", "False", ",", "title", "=", "None", ",", "threaded", "=", "True", ")", "->", "Window", ":", "if", "size", "is", "None", ":", "width", ",", "height", "=", "1280", ",", "720", "else", ":", "width", ",", "height", "=", "size", "if", "samples", "<", "0", "or", "(", "samples", "&", "(", "samples", "-", "1", ")", ")", "!=", "0", ":", "raise", "Exception", "(", "'Invalid number of samples: %d'", "%", "samples", ")", "window", "=", "Window", ".", "__new__", "(", "Window", ")", "window", ".", "wnd", "=", "glwnd", ".", "create_window", "(", "width", ",", "height", ",", "samples", ",", "fullscreen", ",", "title", ",", "threaded", ")", "return", "window" ]
Create the main window. Args: size (tuple): The width and height of the window. samples (int): The number of samples. Keyword Args: fullscreen (bool): Fullscreen? title (bool): The title of the window. threaded (bool): Threaded? Returns: Window: The main window.
[ "Create", "the", "main", "window", "." ]
521e18fcbc15e88d3c1f3547aa313c3a07386ee5
https://github.com/cprogrammer1994/GLWindow/blob/521e18fcbc15e88d3c1f3547aa313c3a07386ee5/GLWindow/__init__.py#L307-L335
train
cprogrammer1994/GLWindow
GLWindow/__init__.py
Window.clear
def clear(self, red=0.0, green=0.0, blue=0.0, alpha=0.0) -> None: ''' Clear the window. ''' self.wnd.clear(red, green, blue, alpha)
python
def clear(self, red=0.0, green=0.0, blue=0.0, alpha=0.0) -> None: ''' Clear the window. ''' self.wnd.clear(red, green, blue, alpha)
[ "def", "clear", "(", "self", ",", "red", "=", "0.0", ",", "green", "=", "0.0", ",", "blue", "=", "0.0", ",", "alpha", "=", "0.0", ")", "->", "None", ":", "self", ".", "wnd", ".", "clear", "(", "red", ",", "green", ",", "blue", ",", "alpha", ")" ]
Clear the window.
[ "Clear", "the", "window", "." ]
521e18fcbc15e88d3c1f3547aa313c3a07386ee5
https://github.com/cprogrammer1994/GLWindow/blob/521e18fcbc15e88d3c1f3547aa313c3a07386ee5/GLWindow/__init__.py#L59-L64
train
cprogrammer1994/GLWindow
GLWindow/__init__.py
Window.windowed
def windowed(self, size) -> None: ''' Set the window to windowed mode. ''' width, height = size self.wnd.windowed(width, height)
python
def windowed(self, size) -> None: ''' Set the window to windowed mode. ''' width, height = size self.wnd.windowed(width, height)
[ "def", "windowed", "(", "self", ",", "size", ")", "->", "None", ":", "width", ",", "height", "=", "size", "self", ".", "wnd", ".", "windowed", "(", "width", ",", "height", ")" ]
Set the window to windowed mode.
[ "Set", "the", "window", "to", "windowed", "mode", "." ]
521e18fcbc15e88d3c1f3547aa313c3a07386ee5
https://github.com/cprogrammer1994/GLWindow/blob/521e18fcbc15e88d3c1f3547aa313c3a07386ee5/GLWindow/__init__.py#L73-L80
train
developmentseed/sentinel-s3
sentinel_s3/main.py
product_metadata
def product_metadata(product, dst_folder, counter=None, writers=[file_writer], geometry_check=None): """ Extract metadata for a specific product """ if not counter: counter = { 'products': 0, 'saved_tiles': 0, 'skipped_tiles': 0, 'skipped_tiles_paths': [] } s3_url = 'http://sentinel-s2-l1c.s3.amazonaws.com' product_meta_link = '{0}/{1}'.format(s3_url, product['metadata']) product_info = requests.get(product_meta_link, stream=True) product_metadata = metadata_to_dict(product_info.raw) product_metadata['product_meta_link'] = product_meta_link counter['products'] += 1 for tile in product['tiles']: tile_info = requests.get('{0}/{1}'.format(s3_url, tile)) try: metadata = tile_metadata(tile_info.json(), copy(product_metadata), geometry_check) for w in writers: w(dst_folder, metadata) logger.info('Saving to disk: %s' % metadata['tile_name']) counter['saved_tiles'] += 1 except JSONDecodeError: logger.warning('Tile: %s was not found and skipped' % tile) counter['skipped_tiles'] += 1 counter['skipped_tiles_paths'].append(tile) return counter
python
def product_metadata(product, dst_folder, counter=None, writers=[file_writer], geometry_check=None): """ Extract metadata for a specific product """ if not counter: counter = { 'products': 0, 'saved_tiles': 0, 'skipped_tiles': 0, 'skipped_tiles_paths': [] } s3_url = 'http://sentinel-s2-l1c.s3.amazonaws.com' product_meta_link = '{0}/{1}'.format(s3_url, product['metadata']) product_info = requests.get(product_meta_link, stream=True) product_metadata = metadata_to_dict(product_info.raw) product_metadata['product_meta_link'] = product_meta_link counter['products'] += 1 for tile in product['tiles']: tile_info = requests.get('{0}/{1}'.format(s3_url, tile)) try: metadata = tile_metadata(tile_info.json(), copy(product_metadata), geometry_check) for w in writers: w(dst_folder, metadata) logger.info('Saving to disk: %s' % metadata['tile_name']) counter['saved_tiles'] += 1 except JSONDecodeError: logger.warning('Tile: %s was not found and skipped' % tile) counter['skipped_tiles'] += 1 counter['skipped_tiles_paths'].append(tile) return counter
[ "def", "product_metadata", "(", "product", ",", "dst_folder", ",", "counter", "=", "None", ",", "writers", "=", "[", "file_writer", "]", ",", "geometry_check", "=", "None", ")", ":", "if", "not", "counter", ":", "counter", "=", "{", "'products'", ":", "0", ",", "'saved_tiles'", ":", "0", ",", "'skipped_tiles'", ":", "0", ",", "'skipped_tiles_paths'", ":", "[", "]", "}", "s3_url", "=", "'http://sentinel-s2-l1c.s3.amazonaws.com'", "product_meta_link", "=", "'{0}/{1}'", ".", "format", "(", "s3_url", ",", "product", "[", "'metadata'", "]", ")", "product_info", "=", "requests", ".", "get", "(", "product_meta_link", ",", "stream", "=", "True", ")", "product_metadata", "=", "metadata_to_dict", "(", "product_info", ".", "raw", ")", "product_metadata", "[", "'product_meta_link'", "]", "=", "product_meta_link", "counter", "[", "'products'", "]", "+=", "1", "for", "tile", "in", "product", "[", "'tiles'", "]", ":", "tile_info", "=", "requests", ".", "get", "(", "'{0}/{1}'", ".", "format", "(", "s3_url", ",", "tile", ")", ")", "try", ":", "metadata", "=", "tile_metadata", "(", "tile_info", ".", "json", "(", ")", ",", "copy", "(", "product_metadata", ")", ",", "geometry_check", ")", "for", "w", "in", "writers", ":", "w", "(", "dst_folder", ",", "metadata", ")", "logger", ".", "info", "(", "'Saving to disk: %s'", "%", "metadata", "[", "'tile_name'", "]", ")", "counter", "[", "'saved_tiles'", "]", "+=", "1", "except", "JSONDecodeError", ":", "logger", ".", "warning", "(", "'Tile: %s was not found and skipped'", "%", "tile", ")", "counter", "[", "'skipped_tiles'", "]", "+=", "1", "counter", "[", "'skipped_tiles_paths'", "]", ".", "append", "(", "tile", ")", "return", "counter" ]
Extract metadata for a specific product
[ "Extract", "metadata", "for", "a", "specific", "product" ]
02bf2f9cb6aff527e492b39518a54f0b4613ddda
https://github.com/developmentseed/sentinel-s3/blob/02bf2f9cb6aff527e492b39518a54f0b4613ddda/sentinel_s3/main.py#L58-L93
train
developmentseed/sentinel-s3
sentinel_s3/main.py
daily_metadata
def daily_metadata(year, month, day, dst_folder, writers=[file_writer], geometry_check=None, num_worker_threads=1): """ Extra metadata for all products in a specific date """ threaded = False counter = { 'products': 0, 'saved_tiles': 0, 'skipped_tiles': 0, 'skipped_tiles_paths': [] } if num_worker_threads > 1: threaded = True queue = Queue() # create folders year_dir = os.path.join(dst_folder, str(year)) month_dir = os.path.join(year_dir, str(month)) day_dir = os.path.join(month_dir, str(day)) product_list = get_products_metadata_path(year, month, day) logger.info('There are %s products in %s-%s-%s' % (len(list(iterkeys(product_list))), year, month, day)) for name, product in iteritems(product_list): product_dir = os.path.join(day_dir, name) if threaded: queue.put([product, product_dir, counter, writers, geometry_check]) else: counter = product_metadata(product, product_dir, counter, writers, geometry_check) if threaded: def worker(): while not queue.empty(): args = queue.get() try: product_metadata(*args) except Exception: exc = sys.exc_info() logger.error('%s tile skipped due to error: %s' % (threading.current_thread().name, exc[1].__str__())) args[2]['skipped_tiles'] += 1 queue.task_done() threads = [] for i in range(num_worker_threads): t = threading.Thread(target=worker) t.start() threads.append(t) queue.join() return counter
python
def daily_metadata(year, month, day, dst_folder, writers=[file_writer], geometry_check=None, num_worker_threads=1): """ Extra metadata for all products in a specific date """ threaded = False counter = { 'products': 0, 'saved_tiles': 0, 'skipped_tiles': 0, 'skipped_tiles_paths': [] } if num_worker_threads > 1: threaded = True queue = Queue() # create folders year_dir = os.path.join(dst_folder, str(year)) month_dir = os.path.join(year_dir, str(month)) day_dir = os.path.join(month_dir, str(day)) product_list = get_products_metadata_path(year, month, day) logger.info('There are %s products in %s-%s-%s' % (len(list(iterkeys(product_list))), year, month, day)) for name, product in iteritems(product_list): product_dir = os.path.join(day_dir, name) if threaded: queue.put([product, product_dir, counter, writers, geometry_check]) else: counter = product_metadata(product, product_dir, counter, writers, geometry_check) if threaded: def worker(): while not queue.empty(): args = queue.get() try: product_metadata(*args) except Exception: exc = sys.exc_info() logger.error('%s tile skipped due to error: %s' % (threading.current_thread().name, exc[1].__str__())) args[2]['skipped_tiles'] += 1 queue.task_done() threads = [] for i in range(num_worker_threads): t = threading.Thread(target=worker) t.start() threads.append(t) queue.join() return counter
[ "def", "daily_metadata", "(", "year", ",", "month", ",", "day", ",", "dst_folder", ",", "writers", "=", "[", "file_writer", "]", ",", "geometry_check", "=", "None", ",", "num_worker_threads", "=", "1", ")", ":", "threaded", "=", "False", "counter", "=", "{", "'products'", ":", "0", ",", "'saved_tiles'", ":", "0", ",", "'skipped_tiles'", ":", "0", ",", "'skipped_tiles_paths'", ":", "[", "]", "}", "if", "num_worker_threads", ">", "1", ":", "threaded", "=", "True", "queue", "=", "Queue", "(", ")", "# create folders", "year_dir", "=", "os", ".", "path", ".", "join", "(", "dst_folder", ",", "str", "(", "year", ")", ")", "month_dir", "=", "os", ".", "path", ".", "join", "(", "year_dir", ",", "str", "(", "month", ")", ")", "day_dir", "=", "os", ".", "path", ".", "join", "(", "month_dir", ",", "str", "(", "day", ")", ")", "product_list", "=", "get_products_metadata_path", "(", "year", ",", "month", ",", "day", ")", "logger", ".", "info", "(", "'There are %s products in %s-%s-%s'", "%", "(", "len", "(", "list", "(", "iterkeys", "(", "product_list", ")", ")", ")", ",", "year", ",", "month", ",", "day", ")", ")", "for", "name", ",", "product", "in", "iteritems", "(", "product_list", ")", ":", "product_dir", "=", "os", ".", "path", ".", "join", "(", "day_dir", ",", "name", ")", "if", "threaded", ":", "queue", ".", "put", "(", "[", "product", ",", "product_dir", ",", "counter", ",", "writers", ",", "geometry_check", "]", ")", "else", ":", "counter", "=", "product_metadata", "(", "product", ",", "product_dir", ",", "counter", ",", "writers", ",", "geometry_check", ")", "if", "threaded", ":", "def", "worker", "(", ")", ":", "while", "not", "queue", ".", "empty", "(", ")", ":", "args", "=", "queue", ".", "get", "(", ")", "try", ":", "product_metadata", "(", "*", "args", ")", "except", "Exception", ":", "exc", "=", "sys", ".", "exc_info", "(", ")", "logger", ".", "error", "(", "'%s tile skipped due to error: %s'", "%", "(", "threading", ".", "current_thread", "(", ")", ".", "name", ",", "exc", "[", "1", "]", ".", "__str__", "(", ")", ")", ")", "args", "[", "2", "]", "[", "'skipped_tiles'", "]", "+=", "1", "queue", ".", "task_done", "(", ")", "threads", "=", "[", "]", "for", "i", "in", "range", "(", "num_worker_threads", ")", ":", "t", "=", "threading", ".", "Thread", "(", "target", "=", "worker", ")", "t", ".", "start", "(", ")", "threads", ".", "append", "(", "t", ")", "queue", ".", "join", "(", ")", "return", "counter" ]
Extra metadata for all products in a specific date
[ "Extra", "metadata", "for", "all", "products", "in", "a", "specific", "date" ]
02bf2f9cb6aff527e492b39518a54f0b4613ddda
https://github.com/developmentseed/sentinel-s3/blob/02bf2f9cb6aff527e492b39518a54f0b4613ddda/sentinel_s3/main.py#L102-L158
train
developmentseed/sentinel-s3
sentinel_s3/main.py
range_metadata
def range_metadata(start, end, dst_folder, num_worker_threads=0, writers=[file_writer], geometry_check=None): """ Extra metadata for all products in a date range """ assert isinstance(start, date) assert isinstance(end, date) delta = end - start dates = [] for i in range(delta.days + 1): dates.append(start + timedelta(days=i)) days = len(dates) total_counter = { 'days': days, 'products': 0, 'saved_tiles': 0, 'skipped_tiles': 0, 'skipped_tiles_paths': [] } def update_counter(counter): for key in iterkeys(total_counter): if key in counter: total_counter[key] += counter[key] for d in dates: logger.info('Getting metadata of {0}-{1}-{2}'.format(d.year, d.month, d.day)) update_counter(daily_metadata(d.year, d.month, d.day, dst_folder, writers, geometry_check, num_worker_threads)) return total_counter
python
def range_metadata(start, end, dst_folder, num_worker_threads=0, writers=[file_writer], geometry_check=None): """ Extra metadata for all products in a date range """ assert isinstance(start, date) assert isinstance(end, date) delta = end - start dates = [] for i in range(delta.days + 1): dates.append(start + timedelta(days=i)) days = len(dates) total_counter = { 'days': days, 'products': 0, 'saved_tiles': 0, 'skipped_tiles': 0, 'skipped_tiles_paths': [] } def update_counter(counter): for key in iterkeys(total_counter): if key in counter: total_counter[key] += counter[key] for d in dates: logger.info('Getting metadata of {0}-{1}-{2}'.format(d.year, d.month, d.day)) update_counter(daily_metadata(d.year, d.month, d.day, dst_folder, writers, geometry_check, num_worker_threads)) return total_counter
[ "def", "range_metadata", "(", "start", ",", "end", ",", "dst_folder", ",", "num_worker_threads", "=", "0", ",", "writers", "=", "[", "file_writer", "]", ",", "geometry_check", "=", "None", ")", ":", "assert", "isinstance", "(", "start", ",", "date", ")", "assert", "isinstance", "(", "end", ",", "date", ")", "delta", "=", "end", "-", "start", "dates", "=", "[", "]", "for", "i", "in", "range", "(", "delta", ".", "days", "+", "1", ")", ":", "dates", ".", "append", "(", "start", "+", "timedelta", "(", "days", "=", "i", ")", ")", "days", "=", "len", "(", "dates", ")", "total_counter", "=", "{", "'days'", ":", "days", ",", "'products'", ":", "0", ",", "'saved_tiles'", ":", "0", ",", "'skipped_tiles'", ":", "0", ",", "'skipped_tiles_paths'", ":", "[", "]", "}", "def", "update_counter", "(", "counter", ")", ":", "for", "key", "in", "iterkeys", "(", "total_counter", ")", ":", "if", "key", "in", "counter", ":", "total_counter", "[", "key", "]", "+=", "counter", "[", "key", "]", "for", "d", "in", "dates", ":", "logger", ".", "info", "(", "'Getting metadata of {0}-{1}-{2}'", ".", "format", "(", "d", ".", "year", ",", "d", ".", "month", ",", "d", ".", "day", ")", ")", "update_counter", "(", "daily_metadata", "(", "d", ".", "year", ",", "d", ".", "month", ",", "d", ".", "day", ",", "dst_folder", ",", "writers", ",", "geometry_check", ",", "num_worker_threads", ")", ")", "return", "total_counter" ]
Extra metadata for all products in a date range
[ "Extra", "metadata", "for", "all", "products", "in", "a", "date", "range" ]
02bf2f9cb6aff527e492b39518a54f0b4613ddda
https://github.com/developmentseed/sentinel-s3/blob/02bf2f9cb6aff527e492b39518a54f0b4613ddda/sentinel_s3/main.py#L161-L194
train
NaPs/Kolekto
kolekto/tmdb_proxy.py
get_on_tmdb
def get_on_tmdb(uri, **kwargs): """ Get a resource on TMDB. """ kwargs['api_key'] = app.config['TMDB_API_KEY'] response = requests_session.get((TMDB_API_URL + uri).encode('utf8'), params=kwargs) response.raise_for_status() return json.loads(response.text)
python
def get_on_tmdb(uri, **kwargs): """ Get a resource on TMDB. """ kwargs['api_key'] = app.config['TMDB_API_KEY'] response = requests_session.get((TMDB_API_URL + uri).encode('utf8'), params=kwargs) response.raise_for_status() return json.loads(response.text)
[ "def", "get_on_tmdb", "(", "uri", ",", "*", "*", "kwargs", ")", ":", "kwargs", "[", "'api_key'", "]", "=", "app", ".", "config", "[", "'TMDB_API_KEY'", "]", "response", "=", "requests_session", ".", "get", "(", "(", "TMDB_API_URL", "+", "uri", ")", ".", "encode", "(", "'utf8'", ")", ",", "params", "=", "kwargs", ")", "response", ".", "raise_for_status", "(", ")", "return", "json", ".", "loads", "(", "response", ".", "text", ")" ]
Get a resource on TMDB.
[ "Get", "a", "resource", "on", "TMDB", "." ]
29c5469da8782780a06bf9a76c59414bb6fd8fe3
https://github.com/NaPs/Kolekto/blob/29c5469da8782780a06bf9a76c59414bb6fd8fe3/kolekto/tmdb_proxy.py#L40-L46
train
NaPs/Kolekto
kolekto/tmdb_proxy.py
search
def search(): """ Search a movie on TMDB. """ redis_key = 's_%s' % request.args['query'].lower() cached = redis_ro_conn.get(redis_key) if cached: return Response(cached) else: try: found = get_on_tmdb(u'/search/movie', query=request.args['query']) movies = [] for movie in found['results']: cast = get_on_tmdb(u'/movie/%s/casts' % movie['id']) year = datetime.strptime(movie['release_date'], '%Y-%m-%d').year if movie['release_date'] else None movies.append({'title': movie['original_title'], 'directors': [x['name'] for x in cast['crew'] if x['department'] == 'Directing' and x['job'] == 'Director'], 'year': year, '_tmdb_id': movie['id']}) except requests.HTTPError as err: return Response('TMDB API error: %s' % str(err), status=err.response.status_code) json_response = json.dumps({'movies': movies}) redis_conn.setex(redis_key, app.config['CACHE_TTL'], json_response) return Response(json_response)
python
def search(): """ Search a movie on TMDB. """ redis_key = 's_%s' % request.args['query'].lower() cached = redis_ro_conn.get(redis_key) if cached: return Response(cached) else: try: found = get_on_tmdb(u'/search/movie', query=request.args['query']) movies = [] for movie in found['results']: cast = get_on_tmdb(u'/movie/%s/casts' % movie['id']) year = datetime.strptime(movie['release_date'], '%Y-%m-%d').year if movie['release_date'] else None movies.append({'title': movie['original_title'], 'directors': [x['name'] for x in cast['crew'] if x['department'] == 'Directing' and x['job'] == 'Director'], 'year': year, '_tmdb_id': movie['id']}) except requests.HTTPError as err: return Response('TMDB API error: %s' % str(err), status=err.response.status_code) json_response = json.dumps({'movies': movies}) redis_conn.setex(redis_key, app.config['CACHE_TTL'], json_response) return Response(json_response)
[ "def", "search", "(", ")", ":", "redis_key", "=", "'s_%s'", "%", "request", ".", "args", "[", "'query'", "]", ".", "lower", "(", ")", "cached", "=", "redis_ro_conn", ".", "get", "(", "redis_key", ")", "if", "cached", ":", "return", "Response", "(", "cached", ")", "else", ":", "try", ":", "found", "=", "get_on_tmdb", "(", "u'/search/movie'", ",", "query", "=", "request", ".", "args", "[", "'query'", "]", ")", "movies", "=", "[", "]", "for", "movie", "in", "found", "[", "'results'", "]", ":", "cast", "=", "get_on_tmdb", "(", "u'/movie/%s/casts'", "%", "movie", "[", "'id'", "]", ")", "year", "=", "datetime", ".", "strptime", "(", "movie", "[", "'release_date'", "]", ",", "'%Y-%m-%d'", ")", ".", "year", "if", "movie", "[", "'release_date'", "]", "else", "None", "movies", ".", "append", "(", "{", "'title'", ":", "movie", "[", "'original_title'", "]", ",", "'directors'", ":", "[", "x", "[", "'name'", "]", "for", "x", "in", "cast", "[", "'crew'", "]", "if", "x", "[", "'department'", "]", "==", "'Directing'", "and", "x", "[", "'job'", "]", "==", "'Director'", "]", ",", "'year'", ":", "year", ",", "'_tmdb_id'", ":", "movie", "[", "'id'", "]", "}", ")", "except", "requests", ".", "HTTPError", "as", "err", ":", "return", "Response", "(", "'TMDB API error: %s'", "%", "str", "(", "err", ")", ",", "status", "=", "err", ".", "response", ".", "status_code", ")", "json_response", "=", "json", ".", "dumps", "(", "{", "'movies'", ":", "movies", "}", ")", "redis_conn", ".", "setex", "(", "redis_key", ",", "app", ".", "config", "[", "'CACHE_TTL'", "]", ",", "json_response", ")", "return", "Response", "(", "json_response", ")" ]
Search a movie on TMDB.
[ "Search", "a", "movie", "on", "TMDB", "." ]
29c5469da8782780a06bf9a76c59414bb6fd8fe3
https://github.com/NaPs/Kolekto/blob/29c5469da8782780a06bf9a76c59414bb6fd8fe3/kolekto/tmdb_proxy.py#L50-L72
train
NaPs/Kolekto
kolekto/tmdb_proxy.py
get_movie
def get_movie(tmdb_id): """ Get informations about a movie using its tmdb id. """ redis_key = 'm_%s' % tmdb_id cached = redis_ro_conn.get(redis_key) if cached: return Response(cached) else: try: details = get_on_tmdb(u'/movie/%d' % tmdb_id) cast = get_on_tmdb(u'/movie/%d/casts' % tmdb_id) alternative = get_on_tmdb(u'/movie/%d/alternative_titles' % tmdb_id) except requests.HTTPError as err: return Response('TMDB API error: %s' % str(err), status=err.response.status_code) movie = {'title': details['original_title'], 'score': details['popularity'], 'directors': [x['name'] for x in cast['crew'] if x['department'] == 'Directing' and x['job'] == 'Director'], 'writers': [x['name'] for x in cast['crew'] if x['department'] == 'Writing'], 'cast': [x['name'] for x in cast['cast']], 'genres': [x['name'] for x in details['genres']], 'countries': [x['name'] for x in details['production_countries']], 'tmdb_votes': int(round(details.get('vote_average', 0) * 0.5)), '_tmdb_id': tmdb_id} if details.get('release_date'): movie['year'] = datetime.strptime(details['release_date'], '%Y-%m-%d').year if details.get('belongs_to_collection'): movie['collection'] = details['belongs_to_collection']['name'] for alt in alternative['titles']: movie['title_%s' % alt['iso_3166_1'].lower()] = alt['title'] json_response = json.dumps({'movie': movie}) redis_conn.setex(redis_key, app.config['CACHE_TTL'], json_response) return Response(json_response)
python
def get_movie(tmdb_id): """ Get informations about a movie using its tmdb id. """ redis_key = 'm_%s' % tmdb_id cached = redis_ro_conn.get(redis_key) if cached: return Response(cached) else: try: details = get_on_tmdb(u'/movie/%d' % tmdb_id) cast = get_on_tmdb(u'/movie/%d/casts' % tmdb_id) alternative = get_on_tmdb(u'/movie/%d/alternative_titles' % tmdb_id) except requests.HTTPError as err: return Response('TMDB API error: %s' % str(err), status=err.response.status_code) movie = {'title': details['original_title'], 'score': details['popularity'], 'directors': [x['name'] for x in cast['crew'] if x['department'] == 'Directing' and x['job'] == 'Director'], 'writers': [x['name'] for x in cast['crew'] if x['department'] == 'Writing'], 'cast': [x['name'] for x in cast['cast']], 'genres': [x['name'] for x in details['genres']], 'countries': [x['name'] for x in details['production_countries']], 'tmdb_votes': int(round(details.get('vote_average', 0) * 0.5)), '_tmdb_id': tmdb_id} if details.get('release_date'): movie['year'] = datetime.strptime(details['release_date'], '%Y-%m-%d').year if details.get('belongs_to_collection'): movie['collection'] = details['belongs_to_collection']['name'] for alt in alternative['titles']: movie['title_%s' % alt['iso_3166_1'].lower()] = alt['title'] json_response = json.dumps({'movie': movie}) redis_conn.setex(redis_key, app.config['CACHE_TTL'], json_response) return Response(json_response)
[ "def", "get_movie", "(", "tmdb_id", ")", ":", "redis_key", "=", "'m_%s'", "%", "tmdb_id", "cached", "=", "redis_ro_conn", ".", "get", "(", "redis_key", ")", "if", "cached", ":", "return", "Response", "(", "cached", ")", "else", ":", "try", ":", "details", "=", "get_on_tmdb", "(", "u'/movie/%d'", "%", "tmdb_id", ")", "cast", "=", "get_on_tmdb", "(", "u'/movie/%d/casts'", "%", "tmdb_id", ")", "alternative", "=", "get_on_tmdb", "(", "u'/movie/%d/alternative_titles'", "%", "tmdb_id", ")", "except", "requests", ".", "HTTPError", "as", "err", ":", "return", "Response", "(", "'TMDB API error: %s'", "%", "str", "(", "err", ")", ",", "status", "=", "err", ".", "response", ".", "status_code", ")", "movie", "=", "{", "'title'", ":", "details", "[", "'original_title'", "]", ",", "'score'", ":", "details", "[", "'popularity'", "]", ",", "'directors'", ":", "[", "x", "[", "'name'", "]", "for", "x", "in", "cast", "[", "'crew'", "]", "if", "x", "[", "'department'", "]", "==", "'Directing'", "and", "x", "[", "'job'", "]", "==", "'Director'", "]", ",", "'writers'", ":", "[", "x", "[", "'name'", "]", "for", "x", "in", "cast", "[", "'crew'", "]", "if", "x", "[", "'department'", "]", "==", "'Writing'", "]", ",", "'cast'", ":", "[", "x", "[", "'name'", "]", "for", "x", "in", "cast", "[", "'cast'", "]", "]", ",", "'genres'", ":", "[", "x", "[", "'name'", "]", "for", "x", "in", "details", "[", "'genres'", "]", "]", ",", "'countries'", ":", "[", "x", "[", "'name'", "]", "for", "x", "in", "details", "[", "'production_countries'", "]", "]", ",", "'tmdb_votes'", ":", "int", "(", "round", "(", "details", ".", "get", "(", "'vote_average'", ",", "0", ")", "*", "0.5", ")", ")", ",", "'_tmdb_id'", ":", "tmdb_id", "}", "if", "details", ".", "get", "(", "'release_date'", ")", ":", "movie", "[", "'year'", "]", "=", "datetime", ".", "strptime", "(", "details", "[", "'release_date'", "]", ",", "'%Y-%m-%d'", ")", ".", "year", "if", "details", ".", "get", "(", "'belongs_to_collection'", ")", ":", "movie", "[", "'collection'", "]", "=", "details", "[", "'belongs_to_collection'", "]", "[", "'name'", "]", "for", "alt", "in", "alternative", "[", "'titles'", "]", ":", "movie", "[", "'title_%s'", "%", "alt", "[", "'iso_3166_1'", "]", ".", "lower", "(", ")", "]", "=", "alt", "[", "'title'", "]", "json_response", "=", "json", ".", "dumps", "(", "{", "'movie'", ":", "movie", "}", ")", "redis_conn", ".", "setex", "(", "redis_key", ",", "app", ".", "config", "[", "'CACHE_TTL'", "]", ",", "json_response", ")", "return", "Response", "(", "json_response", ")" ]
Get informations about a movie using its tmdb id.
[ "Get", "informations", "about", "a", "movie", "using", "its", "tmdb", "id", "." ]
29c5469da8782780a06bf9a76c59414bb6fd8fe3
https://github.com/NaPs/Kolekto/blob/29c5469da8782780a06bf9a76c59414bb6fd8fe3/kolekto/tmdb_proxy.py#L76-L107
train
LeadPages/gcloud_requests
gcloud_requests/proxy.py
RequestsProxy._handle_response_error
def _handle_response_error(self, response, retries, **kwargs): r"""Provides a way for each connection wrapper to handle error responses. Parameters: response(Response): An instance of :class:`.requests.Response`. retries(int): The number of times :meth:`.request` has been called so far. \**kwargs: The parameters with which :meth:`.request` was called. The `retries` parameter is excluded from `kwargs` intentionally. Returns: requests.Response """ error = self._convert_response_to_error(response) if error is None: return response max_retries = self._max_retries_for_error(error) if max_retries is None or retries >= max_retries: return response backoff = min(0.0625 * 2 ** retries, 1.0) self.logger.warning("Sleeping for %r before retrying failed request...", backoff) time.sleep(backoff) retries += 1 self.logger.warning("Retrying failed request. Attempt %d/%d.", retries, max_retries) return self.request(retries=retries, **kwargs)
python
def _handle_response_error(self, response, retries, **kwargs): r"""Provides a way for each connection wrapper to handle error responses. Parameters: response(Response): An instance of :class:`.requests.Response`. retries(int): The number of times :meth:`.request` has been called so far. \**kwargs: The parameters with which :meth:`.request` was called. The `retries` parameter is excluded from `kwargs` intentionally. Returns: requests.Response """ error = self._convert_response_to_error(response) if error is None: return response max_retries = self._max_retries_for_error(error) if max_retries is None or retries >= max_retries: return response backoff = min(0.0625 * 2 ** retries, 1.0) self.logger.warning("Sleeping for %r before retrying failed request...", backoff) time.sleep(backoff) retries += 1 self.logger.warning("Retrying failed request. Attempt %d/%d.", retries, max_retries) return self.request(retries=retries, **kwargs)
[ "def", "_handle_response_error", "(", "self", ",", "response", ",", "retries", ",", "*", "*", "kwargs", ")", ":", "error", "=", "self", ".", "_convert_response_to_error", "(", "response", ")", "if", "error", "is", "None", ":", "return", "response", "max_retries", "=", "self", ".", "_max_retries_for_error", "(", "error", ")", "if", "max_retries", "is", "None", "or", "retries", ">=", "max_retries", ":", "return", "response", "backoff", "=", "min", "(", "0.0625", "*", "2", "**", "retries", ",", "1.0", ")", "self", ".", "logger", ".", "warning", "(", "\"Sleeping for %r before retrying failed request...\"", ",", "backoff", ")", "time", ".", "sleep", "(", "backoff", ")", "retries", "+=", "1", "self", ".", "logger", ".", "warning", "(", "\"Retrying failed request. Attempt %d/%d.\"", ",", "retries", ",", "max_retries", ")", "return", "self", ".", "request", "(", "retries", "=", "retries", ",", "*", "*", "kwargs", ")" ]
r"""Provides a way for each connection wrapper to handle error responses. Parameters: response(Response): An instance of :class:`.requests.Response`. retries(int): The number of times :meth:`.request` has been called so far. \**kwargs: The parameters with which :meth:`.request` was called. The `retries` parameter is excluded from `kwargs` intentionally. Returns: requests.Response
[ "r", "Provides", "a", "way", "for", "each", "connection", "wrapper", "to", "handle", "error", "responses", "." ]
8933363c4e9fa1e5ec0e90d683fca8ef8a949752
https://github.com/LeadPages/gcloud_requests/blob/8933363c4e9fa1e5ec0e90d683fca8ef8a949752/gcloud_requests/proxy.py#L132-L162
train
LeadPages/gcloud_requests
gcloud_requests/proxy.py
RequestsProxy._convert_response_to_error
def _convert_response_to_error(self, response): """Subclasses may override this method in order to influence how errors are parsed from the response. Parameters: response(Response): The response object. Returns: object or None: Any object for which a max retry count can be retrieved or None if the error cannot be handled. """ content_type = response.headers.get("content-type", "") if "application/x-protobuf" in content_type: self.logger.debug("Decoding protobuf response.") data = status_pb2.Status.FromString(response.content) status = self._PB_ERROR_CODES.get(data.code) error = {"status": status} return error elif "application/json" in content_type: self.logger.debug("Decoding json response.") data = response.json() error = data.get("error") if not error or not isinstance(error, dict): self.logger.warning("Unexpected error response: %r", data) return None return error self.logger.warning("Unexpected response: %r", response.text) return None
python
def _convert_response_to_error(self, response): """Subclasses may override this method in order to influence how errors are parsed from the response. Parameters: response(Response): The response object. Returns: object or None: Any object for which a max retry count can be retrieved or None if the error cannot be handled. """ content_type = response.headers.get("content-type", "") if "application/x-protobuf" in content_type: self.logger.debug("Decoding protobuf response.") data = status_pb2.Status.FromString(response.content) status = self._PB_ERROR_CODES.get(data.code) error = {"status": status} return error elif "application/json" in content_type: self.logger.debug("Decoding json response.") data = response.json() error = data.get("error") if not error or not isinstance(error, dict): self.logger.warning("Unexpected error response: %r", data) return None return error self.logger.warning("Unexpected response: %r", response.text) return None
[ "def", "_convert_response_to_error", "(", "self", ",", "response", ")", ":", "content_type", "=", "response", ".", "headers", ".", "get", "(", "\"content-type\"", ",", "\"\"", ")", "if", "\"application/x-protobuf\"", "in", "content_type", ":", "self", ".", "logger", ".", "debug", "(", "\"Decoding protobuf response.\"", ")", "data", "=", "status_pb2", ".", "Status", ".", "FromString", "(", "response", ".", "content", ")", "status", "=", "self", ".", "_PB_ERROR_CODES", ".", "get", "(", "data", ".", "code", ")", "error", "=", "{", "\"status\"", ":", "status", "}", "return", "error", "elif", "\"application/json\"", "in", "content_type", ":", "self", ".", "logger", ".", "debug", "(", "\"Decoding json response.\"", ")", "data", "=", "response", ".", "json", "(", ")", "error", "=", "data", ".", "get", "(", "\"error\"", ")", "if", "not", "error", "or", "not", "isinstance", "(", "error", ",", "dict", ")", ":", "self", ".", "logger", ".", "warning", "(", "\"Unexpected error response: %r\"", ",", "data", ")", "return", "None", "return", "error", "self", ".", "logger", ".", "warning", "(", "\"Unexpected response: %r\"", ",", "response", ".", "text", ")", "return", "None" ]
Subclasses may override this method in order to influence how errors are parsed from the response. Parameters: response(Response): The response object. Returns: object or None: Any object for which a max retry count can be retrieved or None if the error cannot be handled.
[ "Subclasses", "may", "override", "this", "method", "in", "order", "to", "influence", "how", "errors", "are", "parsed", "from", "the", "response", "." ]
8933363c4e9fa1e5ec0e90d683fca8ef8a949752
https://github.com/LeadPages/gcloud_requests/blob/8933363c4e9fa1e5ec0e90d683fca8ef8a949752/gcloud_requests/proxy.py#L164-L193
train
NaPs/Kolekto
kolekto/pattern.py
parse_pattern
def parse_pattern(format_string, env, wrapper=lambda x, y: y): """ Parse the format_string and return prepared data according to the env. Pick each field found in the format_string from the env(ironment), apply the wrapper on each data and return a mapping between field-to-replace and values for each. """ formatter = Formatter() fields = [x[1] for x in formatter.parse(format_string) if x[1] is not None] prepared_env = {} # Create a prepared environment with only used fields, all as list: for field in fields: # Search for a movie attribute for each alternative field separated # by a pipe sign: for field_alt in (x.strip() for x in field.split('|')): # Handle default values (enclosed by quotes): if field_alt[0] in '\'"' and field_alt[-1] in '\'"': field_values = field_alt[1:-1] else: field_values = env.get(field_alt) if field_values is not None: break else: field_values = [] if not isinstance(field_values, list): field_values = [field_values] prepared_env[field] = wrapper(field_alt, field_values) return prepared_env
python
def parse_pattern(format_string, env, wrapper=lambda x, y: y): """ Parse the format_string and return prepared data according to the env. Pick each field found in the format_string from the env(ironment), apply the wrapper on each data and return a mapping between field-to-replace and values for each. """ formatter = Formatter() fields = [x[1] for x in formatter.parse(format_string) if x[1] is not None] prepared_env = {} # Create a prepared environment with only used fields, all as list: for field in fields: # Search for a movie attribute for each alternative field separated # by a pipe sign: for field_alt in (x.strip() for x in field.split('|')): # Handle default values (enclosed by quotes): if field_alt[0] in '\'"' and field_alt[-1] in '\'"': field_values = field_alt[1:-1] else: field_values = env.get(field_alt) if field_values is not None: break else: field_values = [] if not isinstance(field_values, list): field_values = [field_values] prepared_env[field] = wrapper(field_alt, field_values) return prepared_env
[ "def", "parse_pattern", "(", "format_string", ",", "env", ",", "wrapper", "=", "lambda", "x", ",", "y", ":", "y", ")", ":", "formatter", "=", "Formatter", "(", ")", "fields", "=", "[", "x", "[", "1", "]", "for", "x", "in", "formatter", ".", "parse", "(", "format_string", ")", "if", "x", "[", "1", "]", "is", "not", "None", "]", "prepared_env", "=", "{", "}", "# Create a prepared environment with only used fields, all as list:", "for", "field", "in", "fields", ":", "# Search for a movie attribute for each alternative field separated", "# by a pipe sign:", "for", "field_alt", "in", "(", "x", ".", "strip", "(", ")", "for", "x", "in", "field", ".", "split", "(", "'|'", ")", ")", ":", "# Handle default values (enclosed by quotes):", "if", "field_alt", "[", "0", "]", "in", "'\\'\"'", "and", "field_alt", "[", "-", "1", "]", "in", "'\\'\"'", ":", "field_values", "=", "field_alt", "[", "1", ":", "-", "1", "]", "else", ":", "field_values", "=", "env", ".", "get", "(", "field_alt", ")", "if", "field_values", "is", "not", "None", ":", "break", "else", ":", "field_values", "=", "[", "]", "if", "not", "isinstance", "(", "field_values", ",", "list", ")", ":", "field_values", "=", "[", "field_values", "]", "prepared_env", "[", "field", "]", "=", "wrapper", "(", "field_alt", ",", "field_values", ")", "return", "prepared_env" ]
Parse the format_string and return prepared data according to the env. Pick each field found in the format_string from the env(ironment), apply the wrapper on each data and return a mapping between field-to-replace and values for each.
[ "Parse", "the", "format_string", "and", "return", "prepared", "data", "according", "to", "the", "env", "." ]
29c5469da8782780a06bf9a76c59414bb6fd8fe3
https://github.com/NaPs/Kolekto/blob/29c5469da8782780a06bf9a76c59414bb6fd8fe3/kolekto/pattern.py#L7-L38
train
tamasgal/km3pipe
km3pipe/stats.py
perc
def perc(arr, p=95, **kwargs): """Create symmetric percentiles, with ``p`` coverage.""" offset = (100 - p) / 2 return np.percentile(arr, (offset, 100 - offset), **kwargs)
python
def perc(arr, p=95, **kwargs): """Create symmetric percentiles, with ``p`` coverage.""" offset = (100 - p) / 2 return np.percentile(arr, (offset, 100 - offset), **kwargs)
[ "def", "perc", "(", "arr", ",", "p", "=", "95", ",", "*", "*", "kwargs", ")", ":", "offset", "=", "(", "100", "-", "p", ")", "/", "2", "return", "np", ".", "percentile", "(", "arr", ",", "(", "offset", ",", "100", "-", "offset", ")", ",", "*", "*", "kwargs", ")" ]
Create symmetric percentiles, with ``p`` coverage.
[ "Create", "symmetric", "percentiles", "with", "p", "coverage", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/stats.py#L143-L146
train
tamasgal/km3pipe
km3pipe/stats.py
resample_1d
def resample_1d(arr, n_out=None, random_state=None): """Resample an array, with replacement. Parameters ========== arr: np.ndarray The array is resampled along the first axis. n_out: int, optional Number of samples to return. If not specified, return ``len(arr)`` samples. """ if random_state is None: random_state = np.random.RandomState() arr = np.atleast_1d(arr) n = len(arr) if n_out is None: n_out = n idx = random_state.randint(0, n, size=n) return arr[idx]
python
def resample_1d(arr, n_out=None, random_state=None): """Resample an array, with replacement. Parameters ========== arr: np.ndarray The array is resampled along the first axis. n_out: int, optional Number of samples to return. If not specified, return ``len(arr)`` samples. """ if random_state is None: random_state = np.random.RandomState() arr = np.atleast_1d(arr) n = len(arr) if n_out is None: n_out = n idx = random_state.randint(0, n, size=n) return arr[idx]
[ "def", "resample_1d", "(", "arr", ",", "n_out", "=", "None", ",", "random_state", "=", "None", ")", ":", "if", "random_state", "is", "None", ":", "random_state", "=", "np", ".", "random", ".", "RandomState", "(", ")", "arr", "=", "np", ".", "atleast_1d", "(", "arr", ")", "n", "=", "len", "(", "arr", ")", "if", "n_out", "is", "None", ":", "n_out", "=", "n", "idx", "=", "random_state", ".", "randint", "(", "0", ",", "n", ",", "size", "=", "n", ")", "return", "arr", "[", "idx", "]" ]
Resample an array, with replacement. Parameters ========== arr: np.ndarray The array is resampled along the first axis. n_out: int, optional Number of samples to return. If not specified, return ``len(arr)`` samples.
[ "Resample", "an", "array", "with", "replacement", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/stats.py#L149-L167
train
tamasgal/km3pipe
km3pipe/stats.py
bootstrap_params
def bootstrap_params(rv_cont, data, n_iter=5, **kwargs): """Bootstrap the fit params of a distribution. Parameters ========== rv_cont: scipy.stats.rv_continuous instance The distribution which to fit. data: array-like, 1d The data on which to fit. n_iter: int [default=10] Number of bootstrap iterations. """ fit_res = [] for _ in range(n_iter): params = rv_cont.fit(resample_1d(data, **kwargs)) fit_res.append(params) fit_res = np.array(fit_res) return fit_res
python
def bootstrap_params(rv_cont, data, n_iter=5, **kwargs): """Bootstrap the fit params of a distribution. Parameters ========== rv_cont: scipy.stats.rv_continuous instance The distribution which to fit. data: array-like, 1d The data on which to fit. n_iter: int [default=10] Number of bootstrap iterations. """ fit_res = [] for _ in range(n_iter): params = rv_cont.fit(resample_1d(data, **kwargs)) fit_res.append(params) fit_res = np.array(fit_res) return fit_res
[ "def", "bootstrap_params", "(", "rv_cont", ",", "data", ",", "n_iter", "=", "5", ",", "*", "*", "kwargs", ")", ":", "fit_res", "=", "[", "]", "for", "_", "in", "range", "(", "n_iter", ")", ":", "params", "=", "rv_cont", ".", "fit", "(", "resample_1d", "(", "data", ",", "*", "*", "kwargs", ")", ")", "fit_res", ".", "append", "(", "params", ")", "fit_res", "=", "np", ".", "array", "(", "fit_res", ")", "return", "fit_res" ]
Bootstrap the fit params of a distribution. Parameters ========== rv_cont: scipy.stats.rv_continuous instance The distribution which to fit. data: array-like, 1d The data on which to fit. n_iter: int [default=10] Number of bootstrap iterations.
[ "Bootstrap", "the", "fit", "params", "of", "a", "distribution", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/stats.py#L170-L187
train
tamasgal/km3pipe
km3pipe/stats.py
param_describe
def param_describe(params, quant=95, axis=0): """Get mean + quantile range from bootstrapped params.""" par = np.mean(params, axis=axis) lo, up = perc(quant) p_up = np.percentile(params, up, axis=axis) p_lo = np.percentile(params, lo, axis=axis) return par, p_lo, p_up
python
def param_describe(params, quant=95, axis=0): """Get mean + quantile range from bootstrapped params.""" par = np.mean(params, axis=axis) lo, up = perc(quant) p_up = np.percentile(params, up, axis=axis) p_lo = np.percentile(params, lo, axis=axis) return par, p_lo, p_up
[ "def", "param_describe", "(", "params", ",", "quant", "=", "95", ",", "axis", "=", "0", ")", ":", "par", "=", "np", ".", "mean", "(", "params", ",", "axis", "=", "axis", ")", "lo", ",", "up", "=", "perc", "(", "quant", ")", "p_up", "=", "np", ".", "percentile", "(", "params", ",", "up", ",", "axis", "=", "axis", ")", "p_lo", "=", "np", ".", "percentile", "(", "params", ",", "lo", ",", "axis", "=", "axis", ")", "return", "par", ",", "p_lo", ",", "p_up" ]
Get mean + quantile range from bootstrapped params.
[ "Get", "mean", "+", "quantile", "range", "from", "bootstrapped", "params", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/stats.py#L190-L196
train
tamasgal/km3pipe
km3pipe/stats.py
bootstrap_fit
def bootstrap_fit( rv_cont, data, n_iter=10, quant=95, print_params=True, **kwargs ): """Bootstrap a distribution fit + get confidence intervals for the params. Parameters ========== rv_cont: scipy.stats.rv_continuous instance The distribution which to fit. data: array-like, 1d The data on which to fit. n_iter: int [default=10] Number of bootstrap iterations. quant: int [default=95] percentile of the confidence limits (default is 95, i.e. 2.5%-97.5%) print_params: bool [default=True] Print a fit summary. """ fit_params = bootstrap_params(rv_cont, data, n_iter) par, lo, up = param_describe(fit_params, quant=quant) names = param_names(rv_cont) maxlen = max([len(s) for s in names]) print("--------------") print(rv_cont.name) print("--------------") for i, name in enumerate(names): print( "{nam:>{fill}}: {mean:+.3f} ∈ " "[{lo:+.3f}, {up:+.3f}] ({q}%)".format( nam=name, fill=maxlen, mean=par[i], lo=lo[i], up=up[i], q=quant ) ) out = { 'mean': par, 'lower limit': lo, 'upper limit': up, } return out
python
def bootstrap_fit( rv_cont, data, n_iter=10, quant=95, print_params=True, **kwargs ): """Bootstrap a distribution fit + get confidence intervals for the params. Parameters ========== rv_cont: scipy.stats.rv_continuous instance The distribution which to fit. data: array-like, 1d The data on which to fit. n_iter: int [default=10] Number of bootstrap iterations. quant: int [default=95] percentile of the confidence limits (default is 95, i.e. 2.5%-97.5%) print_params: bool [default=True] Print a fit summary. """ fit_params = bootstrap_params(rv_cont, data, n_iter) par, lo, up = param_describe(fit_params, quant=quant) names = param_names(rv_cont) maxlen = max([len(s) for s in names]) print("--------------") print(rv_cont.name) print("--------------") for i, name in enumerate(names): print( "{nam:>{fill}}: {mean:+.3f} ∈ " "[{lo:+.3f}, {up:+.3f}] ({q}%)".format( nam=name, fill=maxlen, mean=par[i], lo=lo[i], up=up[i], q=quant ) ) out = { 'mean': par, 'lower limit': lo, 'upper limit': up, } return out
[ "def", "bootstrap_fit", "(", "rv_cont", ",", "data", ",", "n_iter", "=", "10", ",", "quant", "=", "95", ",", "print_params", "=", "True", ",", "*", "*", "kwargs", ")", ":", "fit_params", "=", "bootstrap_params", "(", "rv_cont", ",", "data", ",", "n_iter", ")", "par", ",", "lo", ",", "up", "=", "param_describe", "(", "fit_params", ",", "quant", "=", "quant", ")", "names", "=", "param_names", "(", "rv_cont", ")", "maxlen", "=", "max", "(", "[", "len", "(", "s", ")", "for", "s", "in", "names", "]", ")", "print", "(", "\"--------------\"", ")", "print", "(", "rv_cont", ".", "name", ")", "print", "(", "\"--------------\"", ")", "for", "i", ",", "name", "in", "enumerate", "(", "names", ")", ":", "print", "(", "\"{nam:>{fill}}: {mean:+.3f} ∈ \"", "\"[{lo:+.3f}, {up:+.3f}] ({q}%)\"", ".", "format", "(", "nam", "=", "name", ",", "fill", "=", "maxlen", ",", "mean", "=", "par", "[", "i", "]", ",", "lo", "=", "lo", "[", "i", "]", ",", "up", "=", "up", "[", "i", "]", ",", "q", "=", "quant", ")", ")", "out", "=", "{", "'mean'", ":", "par", ",", "'lower limit'", ":", "lo", ",", "'upper limit'", ":", "up", ",", "}", "return", "out" ]
Bootstrap a distribution fit + get confidence intervals for the params. Parameters ========== rv_cont: scipy.stats.rv_continuous instance The distribution which to fit. data: array-like, 1d The data on which to fit. n_iter: int [default=10] Number of bootstrap iterations. quant: int [default=95] percentile of the confidence limits (default is 95, i.e. 2.5%-97.5%) print_params: bool [default=True] Print a fit summary.
[ "Bootstrap", "a", "distribution", "fit", "+", "get", "confidence", "intervals", "for", "the", "params", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/stats.py#L199-L241
train
tamasgal/km3pipe
km3pipe/stats.py
rv_kde.rvs
def rvs(self, *args, **kwargs): """Draw Random Variates. Parameters ---------- size: int, optional (default=1) random_state_: optional (default=None) """ # TODO REVERSE THIS FUCK PYTHON2 size = kwargs.pop('size', 1) random_state = kwargs.pop('size', None) # don't ask me why it uses `self._size` return self._kde.sample(n_samples=size, random_state=random_state)
python
def rvs(self, *args, **kwargs): """Draw Random Variates. Parameters ---------- size: int, optional (default=1) random_state_: optional (default=None) """ # TODO REVERSE THIS FUCK PYTHON2 size = kwargs.pop('size', 1) random_state = kwargs.pop('size', None) # don't ask me why it uses `self._size` return self._kde.sample(n_samples=size, random_state=random_state)
[ "def", "rvs", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "# TODO REVERSE THIS FUCK PYTHON2", "size", "=", "kwargs", ".", "pop", "(", "'size'", ",", "1", ")", "random_state", "=", "kwargs", ".", "pop", "(", "'size'", ",", "None", ")", "# don't ask me why it uses `self._size`", "return", "self", ".", "_kde", ".", "sample", "(", "n_samples", "=", "size", ",", "random_state", "=", "random_state", ")" ]
Draw Random Variates. Parameters ---------- size: int, optional (default=1) random_state_: optional (default=None)
[ "Draw", "Random", "Variates", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/stats.py#L99-L111
train
tamasgal/km3pipe
km3pipe/utils/i3shower2hdf5.py
main
def main(): """Entry point when running as script from commandline.""" from docopt import docopt args = docopt(__doc__) infile = args['INFILE'] outfile = args['OUTFILE'] i3extract(infile, outfile)
python
def main(): """Entry point when running as script from commandline.""" from docopt import docopt args = docopt(__doc__) infile = args['INFILE'] outfile = args['OUTFILE'] i3extract(infile, outfile)
[ "def", "main", "(", ")", ":", "from", "docopt", "import", "docopt", "args", "=", "docopt", "(", "__doc__", ")", "infile", "=", "args", "[", "'INFILE'", "]", "outfile", "=", "args", "[", "'OUTFILE'", "]", "i3extract", "(", "infile", ",", "outfile", ")" ]
Entry point when running as script from commandline.
[ "Entry", "point", "when", "running", "as", "script", "from", "commandline", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/utils/i3shower2hdf5.py#L348-L354
train
IRC-SPHERE/HyperStream
hyperstream/client.py
Client.connect
def connect(self, server_config): """Connect using the configuration given :param server_config: The server configuration """ if 'connection_string' in server_config: self.client = pymongo.MongoClient( server_config['connection_string']) self.db = self.client[server_config['db']] else: self.client = pymongo.MongoClient( server_config['host'], server_config['port'], tz_aware=self.get_config_value('tz_aware', True)) self.db = self.client[server_config['db']] if ('authentication_database' in server_config and server_config['authentication_database']): self.db.authenticate( server_config['username'], server_config['password'], source=server_config['authentication_database']) else: if 'username' in server_config: if 'password' in server_config: self.db.authenticate(server_config['username'], server_config['password']) else: self.db.authenticate(server_config['username']) # Mongo Engine connection d = dict((k, v) for k, v in server_config.items() if k not in ['modalities', 'summaries']) if 'authentication_database' in d: d['authentication_source'] = d['authentication_database'] del d['authentication_database'] self.session = connect(alias="hyperstream", **d) # TODO: This sets the default connection of mongoengine, but seems to be a bit of a hack if "default" not in connection._connections: connection._connections["default"] = connection._connections["hyperstream"] connection._connection_settings["default"] = connection._connection_settings["hyperstream"]
python
def connect(self, server_config): """Connect using the configuration given :param server_config: The server configuration """ if 'connection_string' in server_config: self.client = pymongo.MongoClient( server_config['connection_string']) self.db = self.client[server_config['db']] else: self.client = pymongo.MongoClient( server_config['host'], server_config['port'], tz_aware=self.get_config_value('tz_aware', True)) self.db = self.client[server_config['db']] if ('authentication_database' in server_config and server_config['authentication_database']): self.db.authenticate( server_config['username'], server_config['password'], source=server_config['authentication_database']) else: if 'username' in server_config: if 'password' in server_config: self.db.authenticate(server_config['username'], server_config['password']) else: self.db.authenticate(server_config['username']) # Mongo Engine connection d = dict((k, v) for k, v in server_config.items() if k not in ['modalities', 'summaries']) if 'authentication_database' in d: d['authentication_source'] = d['authentication_database'] del d['authentication_database'] self.session = connect(alias="hyperstream", **d) # TODO: This sets the default connection of mongoengine, but seems to be a bit of a hack if "default" not in connection._connections: connection._connections["default"] = connection._connections["hyperstream"] connection._connection_settings["default"] = connection._connection_settings["hyperstream"]
[ "def", "connect", "(", "self", ",", "server_config", ")", ":", "if", "'connection_string'", "in", "server_config", ":", "self", ".", "client", "=", "pymongo", ".", "MongoClient", "(", "server_config", "[", "'connection_string'", "]", ")", "self", ".", "db", "=", "self", ".", "client", "[", "server_config", "[", "'db'", "]", "]", "else", ":", "self", ".", "client", "=", "pymongo", ".", "MongoClient", "(", "server_config", "[", "'host'", "]", ",", "server_config", "[", "'port'", "]", ",", "tz_aware", "=", "self", ".", "get_config_value", "(", "'tz_aware'", ",", "True", ")", ")", "self", ".", "db", "=", "self", ".", "client", "[", "server_config", "[", "'db'", "]", "]", "if", "(", "'authentication_database'", "in", "server_config", "and", "server_config", "[", "'authentication_database'", "]", ")", ":", "self", ".", "db", ".", "authenticate", "(", "server_config", "[", "'username'", "]", ",", "server_config", "[", "'password'", "]", ",", "source", "=", "server_config", "[", "'authentication_database'", "]", ")", "else", ":", "if", "'username'", "in", "server_config", ":", "if", "'password'", "in", "server_config", ":", "self", ".", "db", ".", "authenticate", "(", "server_config", "[", "'username'", "]", ",", "server_config", "[", "'password'", "]", ")", "else", ":", "self", ".", "db", ".", "authenticate", "(", "server_config", "[", "'username'", "]", ")", "# Mongo Engine connection", "d", "=", "dict", "(", "(", "k", ",", "v", ")", "for", "k", ",", "v", "in", "server_config", ".", "items", "(", ")", "if", "k", "not", "in", "[", "'modalities'", ",", "'summaries'", "]", ")", "if", "'authentication_database'", "in", "d", ":", "d", "[", "'authentication_source'", "]", "=", "d", "[", "'authentication_database'", "]", "del", "d", "[", "'authentication_database'", "]", "self", ".", "session", "=", "connect", "(", "alias", "=", "\"hyperstream\"", ",", "*", "*", "d", ")", "# TODO: This sets the default connection of mongoengine, but seems to be a bit of a hack", "if", "\"default\"", "not", "in", "connection", ".", "_connections", ":", "connection", ".", "_connections", "[", "\"default\"", "]", "=", "connection", ".", "_connections", "[", "\"hyperstream\"", "]", "connection", ".", "_connection_settings", "[", "\"default\"", "]", "=", "connection", ".", "_connection_settings", "[", "\"hyperstream\"", "]" ]
Connect using the configuration given :param server_config: The server configuration
[ "Connect", "using", "the", "configuration", "given" ]
98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780
https://github.com/IRC-SPHERE/HyperStream/blob/98478f4d31ed938f4aa7c958ed0d4c3ffcb2e780/hyperstream/client.py#L65-L107
train
tamasgal/km3pipe
km3pipe/utils/ptconcat.py
ptconcat
def ptconcat(output_file, input_files, overwrite=False): """Concatenate HDF5 Files""" filt = tb.Filters( complevel=5, shuffle=True, fletcher32=True, complib='zlib' ) out_tabs = {} dt_file = input_files[0] log.info("Reading data struct '%s'..." % dt_file) h5struc = tb.open_file(dt_file, 'r') log.info("Opening output file '%s'..." % output_file) if overwrite: outmode = 'w' else: outmode = 'a' h5out = tb.open_file(output_file, outmode) for node in h5struc.walk_nodes('/', classname='Table'): path = node._v_pathname log.debug(path) dtype = node.dtype p, n = os.path.split(path) out_tabs[path] = h5out.create_table( p, n, description=dtype, filters=filt, createparents=True ) h5struc.close() for fname in input_files: log.info('Reading %s...' % fname) h5 = tb.open_file(fname) for path, out in out_tabs.items(): tab = h5.get_node(path) out.append(tab[:]) h5.close() h5out.close()
python
def ptconcat(output_file, input_files, overwrite=False): """Concatenate HDF5 Files""" filt = tb.Filters( complevel=5, shuffle=True, fletcher32=True, complib='zlib' ) out_tabs = {} dt_file = input_files[0] log.info("Reading data struct '%s'..." % dt_file) h5struc = tb.open_file(dt_file, 'r') log.info("Opening output file '%s'..." % output_file) if overwrite: outmode = 'w' else: outmode = 'a' h5out = tb.open_file(output_file, outmode) for node in h5struc.walk_nodes('/', classname='Table'): path = node._v_pathname log.debug(path) dtype = node.dtype p, n = os.path.split(path) out_tabs[path] = h5out.create_table( p, n, description=dtype, filters=filt, createparents=True ) h5struc.close() for fname in input_files: log.info('Reading %s...' % fname) h5 = tb.open_file(fname) for path, out in out_tabs.items(): tab = h5.get_node(path) out.append(tab[:]) h5.close() h5out.close()
[ "def", "ptconcat", "(", "output_file", ",", "input_files", ",", "overwrite", "=", "False", ")", ":", "filt", "=", "tb", ".", "Filters", "(", "complevel", "=", "5", ",", "shuffle", "=", "True", ",", "fletcher32", "=", "True", ",", "complib", "=", "'zlib'", ")", "out_tabs", "=", "{", "}", "dt_file", "=", "input_files", "[", "0", "]", "log", ".", "info", "(", "\"Reading data struct '%s'...\"", "%", "dt_file", ")", "h5struc", "=", "tb", ".", "open_file", "(", "dt_file", ",", "'r'", ")", "log", ".", "info", "(", "\"Opening output file '%s'...\"", "%", "output_file", ")", "if", "overwrite", ":", "outmode", "=", "'w'", "else", ":", "outmode", "=", "'a'", "h5out", "=", "tb", ".", "open_file", "(", "output_file", ",", "outmode", ")", "for", "node", "in", "h5struc", ".", "walk_nodes", "(", "'/'", ",", "classname", "=", "'Table'", ")", ":", "path", "=", "node", ".", "_v_pathname", "log", ".", "debug", "(", "path", ")", "dtype", "=", "node", ".", "dtype", "p", ",", "n", "=", "os", ".", "path", ".", "split", "(", "path", ")", "out_tabs", "[", "path", "]", "=", "h5out", ".", "create_table", "(", "p", ",", "n", ",", "description", "=", "dtype", ",", "filters", "=", "filt", ",", "createparents", "=", "True", ")", "h5struc", ".", "close", "(", ")", "for", "fname", "in", "input_files", ":", "log", ".", "info", "(", "'Reading %s...'", "%", "fname", ")", "h5", "=", "tb", ".", "open_file", "(", "fname", ")", "for", "path", ",", "out", "in", "out_tabs", ".", "items", "(", ")", ":", "tab", "=", "h5", ".", "get_node", "(", "path", ")", "out", ".", "append", "(", "tab", "[", ":", "]", ")", "h5", ".", "close", "(", ")", "h5out", ".", "close", "(", ")" ]
Concatenate HDF5 Files
[ "Concatenate", "HDF5", "Files" ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/utils/ptconcat.py#L36-L68
train
tamasgal/km3pipe
km3modules/k40.py
calibrate_dom
def calibrate_dom( dom_id, data, detector, livetime=None, fit_ang_dist=False, scale_mc_to_data=True, ad_fit_shape='pexp', fit_background=True, ctmin=-1. ): """Calibrate intra DOM PMT time offsets, efficiencies and sigmas Parameters ---------- dom_id: DOM ID data: dict of coincidences or root or hdf5 file detector: instance of detector class livetime: data-taking duration [s] fixed_ang_dist: fixing angular distribution e.g. for data mc comparison auto_scale: auto scales the fixed angular distribution to the data Returns ------- return_data: dictionary with fit results """ if isinstance(data, str): filename = data loaders = { '.h5': load_k40_coincidences_from_hdf5, '.root': load_k40_coincidences_from_rootfile } try: loader = loaders[os.path.splitext(filename)[1]] except KeyError: log.critical('File format not supported.') raise IOError else: data, livetime = loader(filename, dom_id) combs = np.array(list(combinations(range(31), 2))) angles = calculate_angles(detector, combs) cos_angles = np.cos(angles) angles = angles[cos_angles >= ctmin] data = data[cos_angles >= ctmin] combs = combs[cos_angles >= ctmin] try: fit_res = fit_delta_ts(data, livetime, fit_background=fit_background) rates, means, sigmas, popts, pcovs = fit_res except: return 0 rate_errors = np.array([np.diag(pc)[2] for pc in pcovs]) # mean_errors = np.array([np.diag(pc)[0] for pc in pcovs]) scale_factor = None if fit_ang_dist: fit_res = fit_angular_distribution( angles, rates, rate_errors, shape=ad_fit_shape ) fitted_rates, exp_popts, exp_pcov = fit_res else: mc_fitted_rates = exponential_polinomial(np.cos(angles), *MC_ANG_DIST) if scale_mc_to_data: scale_factor = np.mean(rates[angles < 1.5]) / \ np.mean(mc_fitted_rates[angles < 1.5]) else: scale_factor = 1. fitted_rates = mc_fitted_rates * scale_factor exp_popts = [] exp_pcov = [] print('Using angular distribution from Monte Carlo') # t0_weights = np.array([0. if a>1. else 1. for a in angles]) if not fit_background: minimize_weights = calculate_weights(fitted_rates, data) else: minimize_weights = fitted_rates opt_t0s = minimize_t0s(means, minimize_weights, combs) opt_sigmas = minimize_sigmas(sigmas, minimize_weights, combs) opt_qes = minimize_qes(fitted_rates, rates, minimize_weights, combs) corrected_means = correct_means(means, opt_t0s.x, combs) corrected_rates = correct_rates(rates, opt_qes.x, combs) rms_means, rms_corrected_means = calculate_rms_means( means, corrected_means ) rms_rates, rms_corrected_rates = calculate_rms_rates( rates, fitted_rates, corrected_rates ) cos_angles = np.cos(angles) return_data = { 'opt_t0s': opt_t0s, 'opt_qes': opt_qes, 'data': data, 'means': means, 'rates': rates, 'fitted_rates': fitted_rates, 'angles': angles, 'corrected_means': corrected_means, 'corrected_rates': corrected_rates, 'rms_means': rms_means, 'rms_corrected_means': rms_corrected_means, 'rms_rates': rms_rates, 'rms_corrected_rates': rms_corrected_rates, 'gaussian_popts': popts, 'livetime': livetime, 'exp_popts': exp_popts, 'exp_pcov': exp_pcov, 'scale_factor': scale_factor, 'opt_sigmas': opt_sigmas, 'sigmas': sigmas, 'combs': combs } return return_data
python
def calibrate_dom( dom_id, data, detector, livetime=None, fit_ang_dist=False, scale_mc_to_data=True, ad_fit_shape='pexp', fit_background=True, ctmin=-1. ): """Calibrate intra DOM PMT time offsets, efficiencies and sigmas Parameters ---------- dom_id: DOM ID data: dict of coincidences or root or hdf5 file detector: instance of detector class livetime: data-taking duration [s] fixed_ang_dist: fixing angular distribution e.g. for data mc comparison auto_scale: auto scales the fixed angular distribution to the data Returns ------- return_data: dictionary with fit results """ if isinstance(data, str): filename = data loaders = { '.h5': load_k40_coincidences_from_hdf5, '.root': load_k40_coincidences_from_rootfile } try: loader = loaders[os.path.splitext(filename)[1]] except KeyError: log.critical('File format not supported.') raise IOError else: data, livetime = loader(filename, dom_id) combs = np.array(list(combinations(range(31), 2))) angles = calculate_angles(detector, combs) cos_angles = np.cos(angles) angles = angles[cos_angles >= ctmin] data = data[cos_angles >= ctmin] combs = combs[cos_angles >= ctmin] try: fit_res = fit_delta_ts(data, livetime, fit_background=fit_background) rates, means, sigmas, popts, pcovs = fit_res except: return 0 rate_errors = np.array([np.diag(pc)[2] for pc in pcovs]) # mean_errors = np.array([np.diag(pc)[0] for pc in pcovs]) scale_factor = None if fit_ang_dist: fit_res = fit_angular_distribution( angles, rates, rate_errors, shape=ad_fit_shape ) fitted_rates, exp_popts, exp_pcov = fit_res else: mc_fitted_rates = exponential_polinomial(np.cos(angles), *MC_ANG_DIST) if scale_mc_to_data: scale_factor = np.mean(rates[angles < 1.5]) / \ np.mean(mc_fitted_rates[angles < 1.5]) else: scale_factor = 1. fitted_rates = mc_fitted_rates * scale_factor exp_popts = [] exp_pcov = [] print('Using angular distribution from Monte Carlo') # t0_weights = np.array([0. if a>1. else 1. for a in angles]) if not fit_background: minimize_weights = calculate_weights(fitted_rates, data) else: minimize_weights = fitted_rates opt_t0s = minimize_t0s(means, minimize_weights, combs) opt_sigmas = minimize_sigmas(sigmas, minimize_weights, combs) opt_qes = minimize_qes(fitted_rates, rates, minimize_weights, combs) corrected_means = correct_means(means, opt_t0s.x, combs) corrected_rates = correct_rates(rates, opt_qes.x, combs) rms_means, rms_corrected_means = calculate_rms_means( means, corrected_means ) rms_rates, rms_corrected_rates = calculate_rms_rates( rates, fitted_rates, corrected_rates ) cos_angles = np.cos(angles) return_data = { 'opt_t0s': opt_t0s, 'opt_qes': opt_qes, 'data': data, 'means': means, 'rates': rates, 'fitted_rates': fitted_rates, 'angles': angles, 'corrected_means': corrected_means, 'corrected_rates': corrected_rates, 'rms_means': rms_means, 'rms_corrected_means': rms_corrected_means, 'rms_rates': rms_rates, 'rms_corrected_rates': rms_corrected_rates, 'gaussian_popts': popts, 'livetime': livetime, 'exp_popts': exp_popts, 'exp_pcov': exp_pcov, 'scale_factor': scale_factor, 'opt_sigmas': opt_sigmas, 'sigmas': sigmas, 'combs': combs } return return_data
[ "def", "calibrate_dom", "(", "dom_id", ",", "data", ",", "detector", ",", "livetime", "=", "None", ",", "fit_ang_dist", "=", "False", ",", "scale_mc_to_data", "=", "True", ",", "ad_fit_shape", "=", "'pexp'", ",", "fit_background", "=", "True", ",", "ctmin", "=", "-", "1.", ")", ":", "if", "isinstance", "(", "data", ",", "str", ")", ":", "filename", "=", "data", "loaders", "=", "{", "'.h5'", ":", "load_k40_coincidences_from_hdf5", ",", "'.root'", ":", "load_k40_coincidences_from_rootfile", "}", "try", ":", "loader", "=", "loaders", "[", "os", ".", "path", ".", "splitext", "(", "filename", ")", "[", "1", "]", "]", "except", "KeyError", ":", "log", ".", "critical", "(", "'File format not supported.'", ")", "raise", "IOError", "else", ":", "data", ",", "livetime", "=", "loader", "(", "filename", ",", "dom_id", ")", "combs", "=", "np", ".", "array", "(", "list", "(", "combinations", "(", "range", "(", "31", ")", ",", "2", ")", ")", ")", "angles", "=", "calculate_angles", "(", "detector", ",", "combs", ")", "cos_angles", "=", "np", ".", "cos", "(", "angles", ")", "angles", "=", "angles", "[", "cos_angles", ">=", "ctmin", "]", "data", "=", "data", "[", "cos_angles", ">=", "ctmin", "]", "combs", "=", "combs", "[", "cos_angles", ">=", "ctmin", "]", "try", ":", "fit_res", "=", "fit_delta_ts", "(", "data", ",", "livetime", ",", "fit_background", "=", "fit_background", ")", "rates", ",", "means", ",", "sigmas", ",", "popts", ",", "pcovs", "=", "fit_res", "except", ":", "return", "0", "rate_errors", "=", "np", ".", "array", "(", "[", "np", ".", "diag", "(", "pc", ")", "[", "2", "]", "for", "pc", "in", "pcovs", "]", ")", "# mean_errors = np.array([np.diag(pc)[0] for pc in pcovs])", "scale_factor", "=", "None", "if", "fit_ang_dist", ":", "fit_res", "=", "fit_angular_distribution", "(", "angles", ",", "rates", ",", "rate_errors", ",", "shape", "=", "ad_fit_shape", ")", "fitted_rates", ",", "exp_popts", ",", "exp_pcov", "=", "fit_res", "else", ":", "mc_fitted_rates", "=", "exponential_polinomial", "(", "np", ".", "cos", "(", "angles", ")", ",", "*", "MC_ANG_DIST", ")", "if", "scale_mc_to_data", ":", "scale_factor", "=", "np", ".", "mean", "(", "rates", "[", "angles", "<", "1.5", "]", ")", "/", "np", ".", "mean", "(", "mc_fitted_rates", "[", "angles", "<", "1.5", "]", ")", "else", ":", "scale_factor", "=", "1.", "fitted_rates", "=", "mc_fitted_rates", "*", "scale_factor", "exp_popts", "=", "[", "]", "exp_pcov", "=", "[", "]", "print", "(", "'Using angular distribution from Monte Carlo'", ")", "# t0_weights = np.array([0. if a>1. else 1. for a in angles])", "if", "not", "fit_background", ":", "minimize_weights", "=", "calculate_weights", "(", "fitted_rates", ",", "data", ")", "else", ":", "minimize_weights", "=", "fitted_rates", "opt_t0s", "=", "minimize_t0s", "(", "means", ",", "minimize_weights", ",", "combs", ")", "opt_sigmas", "=", "minimize_sigmas", "(", "sigmas", ",", "minimize_weights", ",", "combs", ")", "opt_qes", "=", "minimize_qes", "(", "fitted_rates", ",", "rates", ",", "minimize_weights", ",", "combs", ")", "corrected_means", "=", "correct_means", "(", "means", ",", "opt_t0s", ".", "x", ",", "combs", ")", "corrected_rates", "=", "correct_rates", "(", "rates", ",", "opt_qes", ".", "x", ",", "combs", ")", "rms_means", ",", "rms_corrected_means", "=", "calculate_rms_means", "(", "means", ",", "corrected_means", ")", "rms_rates", ",", "rms_corrected_rates", "=", "calculate_rms_rates", "(", "rates", ",", "fitted_rates", ",", "corrected_rates", ")", "cos_angles", "=", "np", ".", "cos", "(", "angles", ")", "return_data", "=", "{", "'opt_t0s'", ":", "opt_t0s", ",", "'opt_qes'", ":", "opt_qes", ",", "'data'", ":", "data", ",", "'means'", ":", "means", ",", "'rates'", ":", "rates", ",", "'fitted_rates'", ":", "fitted_rates", ",", "'angles'", ":", "angles", ",", "'corrected_means'", ":", "corrected_means", ",", "'corrected_rates'", ":", "corrected_rates", ",", "'rms_means'", ":", "rms_means", ",", "'rms_corrected_means'", ":", "rms_corrected_means", ",", "'rms_rates'", ":", "rms_rates", ",", "'rms_corrected_rates'", ":", "rms_corrected_rates", ",", "'gaussian_popts'", ":", "popts", ",", "'livetime'", ":", "livetime", ",", "'exp_popts'", ":", "exp_popts", ",", "'exp_pcov'", ":", "exp_pcov", ",", "'scale_factor'", ":", "scale_factor", ",", "'opt_sigmas'", ":", "opt_sigmas", ",", "'sigmas'", ":", "sigmas", ",", "'combs'", ":", "combs", "}", "return", "return_data" ]
Calibrate intra DOM PMT time offsets, efficiencies and sigmas Parameters ---------- dom_id: DOM ID data: dict of coincidences or root or hdf5 file detector: instance of detector class livetime: data-taking duration [s] fixed_ang_dist: fixing angular distribution e.g. for data mc comparison auto_scale: auto scales the fixed angular distribution to the data Returns ------- return_data: dictionary with fit results
[ "Calibrate", "intra", "DOM", "PMT", "time", "offsets", "efficiencies", "and", "sigmas" ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3modules/k40.py#L382-L498
train
tamasgal/km3pipe
km3modules/k40.py
load_k40_coincidences_from_hdf5
def load_k40_coincidences_from_hdf5(filename, dom_id): """Load k40 coincidences from hdf5 file Parameters ---------- filename: filename of hdf5 file dom_id: DOM ID Returns ------- data: numpy array of coincidences livetime: duration of data-taking """ with h5py.File(filename, 'r') as h5f: data = h5f['/k40counts/{0}'.format(dom_id)] livetime = data.attrs['livetime'] data = np.array(data) return data, livetime
python
def load_k40_coincidences_from_hdf5(filename, dom_id): """Load k40 coincidences from hdf5 file Parameters ---------- filename: filename of hdf5 file dom_id: DOM ID Returns ------- data: numpy array of coincidences livetime: duration of data-taking """ with h5py.File(filename, 'r') as h5f: data = h5f['/k40counts/{0}'.format(dom_id)] livetime = data.attrs['livetime'] data = np.array(data) return data, livetime
[ "def", "load_k40_coincidences_from_hdf5", "(", "filename", ",", "dom_id", ")", ":", "with", "h5py", ".", "File", "(", "filename", ",", "'r'", ")", "as", "h5f", ":", "data", "=", "h5f", "[", "'/k40counts/{0}'", ".", "format", "(", "dom_id", ")", "]", "livetime", "=", "data", ".", "attrs", "[", "'livetime'", "]", "data", "=", "np", ".", "array", "(", "data", ")", "return", "data", ",", "livetime" ]
Load k40 coincidences from hdf5 file Parameters ---------- filename: filename of hdf5 file dom_id: DOM ID Returns ------- data: numpy array of coincidences livetime: duration of data-taking
[ "Load", "k40", "coincidences", "from", "hdf5", "file" ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3modules/k40.py#L507-L526
train
tamasgal/km3pipe
km3modules/k40.py
load_k40_coincidences_from_rootfile
def load_k40_coincidences_from_rootfile(filename, dom_id): """Load k40 coincidences from JMonitorK40 ROOT file Parameters ---------- filename: root file produced by JMonitorK40 dom_id: DOM ID Returns ------- data: numpy array of coincidences dom_weight: weight to apply to coincidences to get rate in Hz """ from ROOT import TFile root_file_monitor = TFile(filename, "READ") dom_name = str(dom_id) + ".2S" histo_2d_monitor = root_file_monitor.Get(dom_name) data = [] for c in range(1, histo_2d_monitor.GetNbinsX() + 1): combination = [] for b in range(1, histo_2d_monitor.GetNbinsY() + 1): combination.append(histo_2d_monitor.GetBinContent(c, b)) data.append(combination) weights = {} weights_histo = root_file_monitor.Get('weights_hist') try: for i in range(1, weights_histo.GetNbinsX() + 1): # we have to read all the entries, unfortunately weight = weights_histo.GetBinContent(i) label = weights_histo.GetXaxis().GetBinLabel(i) weights[label[3:]] = weight dom_weight = weights[str(dom_id)] except AttributeError: log.info("Weights histogram broken or not found, setting weight to 1.") dom_weight = 1. return np.array(data), dom_weight
python
def load_k40_coincidences_from_rootfile(filename, dom_id): """Load k40 coincidences from JMonitorK40 ROOT file Parameters ---------- filename: root file produced by JMonitorK40 dom_id: DOM ID Returns ------- data: numpy array of coincidences dom_weight: weight to apply to coincidences to get rate in Hz """ from ROOT import TFile root_file_monitor = TFile(filename, "READ") dom_name = str(dom_id) + ".2S" histo_2d_monitor = root_file_monitor.Get(dom_name) data = [] for c in range(1, histo_2d_monitor.GetNbinsX() + 1): combination = [] for b in range(1, histo_2d_monitor.GetNbinsY() + 1): combination.append(histo_2d_monitor.GetBinContent(c, b)) data.append(combination) weights = {} weights_histo = root_file_monitor.Get('weights_hist') try: for i in range(1, weights_histo.GetNbinsX() + 1): # we have to read all the entries, unfortunately weight = weights_histo.GetBinContent(i) label = weights_histo.GetXaxis().GetBinLabel(i) weights[label[3:]] = weight dom_weight = weights[str(dom_id)] except AttributeError: log.info("Weights histogram broken or not found, setting weight to 1.") dom_weight = 1. return np.array(data), dom_weight
[ "def", "load_k40_coincidences_from_rootfile", "(", "filename", ",", "dom_id", ")", ":", "from", "ROOT", "import", "TFile", "root_file_monitor", "=", "TFile", "(", "filename", ",", "\"READ\"", ")", "dom_name", "=", "str", "(", "dom_id", ")", "+", "\".2S\"", "histo_2d_monitor", "=", "root_file_monitor", ".", "Get", "(", "dom_name", ")", "data", "=", "[", "]", "for", "c", "in", "range", "(", "1", ",", "histo_2d_monitor", ".", "GetNbinsX", "(", ")", "+", "1", ")", ":", "combination", "=", "[", "]", "for", "b", "in", "range", "(", "1", ",", "histo_2d_monitor", ".", "GetNbinsY", "(", ")", "+", "1", ")", ":", "combination", ".", "append", "(", "histo_2d_monitor", ".", "GetBinContent", "(", "c", ",", "b", ")", ")", "data", ".", "append", "(", "combination", ")", "weights", "=", "{", "}", "weights_histo", "=", "root_file_monitor", ".", "Get", "(", "'weights_hist'", ")", "try", ":", "for", "i", "in", "range", "(", "1", ",", "weights_histo", ".", "GetNbinsX", "(", ")", "+", "1", ")", ":", "# we have to read all the entries, unfortunately", "weight", "=", "weights_histo", ".", "GetBinContent", "(", "i", ")", "label", "=", "weights_histo", ".", "GetXaxis", "(", ")", ".", "GetBinLabel", "(", "i", ")", "weights", "[", "label", "[", "3", ":", "]", "]", "=", "weight", "dom_weight", "=", "weights", "[", "str", "(", "dom_id", ")", "]", "except", "AttributeError", ":", "log", ".", "info", "(", "\"Weights histogram broken or not found, setting weight to 1.\"", ")", "dom_weight", "=", "1.", "return", "np", ".", "array", "(", "data", ")", ",", "dom_weight" ]
Load k40 coincidences from JMonitorK40 ROOT file Parameters ---------- filename: root file produced by JMonitorK40 dom_id: DOM ID Returns ------- data: numpy array of coincidences dom_weight: weight to apply to coincidences to get rate in Hz
[ "Load", "k40", "coincidences", "from", "JMonitorK40", "ROOT", "file" ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3modules/k40.py#L529-L566
train
tamasgal/km3pipe
km3modules/k40.py
calculate_angles
def calculate_angles(detector, combs): """Calculates angles between PMT combinations according to positions in detector_file Parameters ---------- detector_file: file from which to read the PMT positions (.detx) combs: pmt combinations Returns ------- angles: numpy array of angles between all PMT combinations """ angles = [] pmt_angles = detector.pmt_angles for first, second in combs: angles.append( kp.math.angle_between( np.array(pmt_angles[first]), np.array(pmt_angles[second]) ) ) return np.array(angles)
python
def calculate_angles(detector, combs): """Calculates angles between PMT combinations according to positions in detector_file Parameters ---------- detector_file: file from which to read the PMT positions (.detx) combs: pmt combinations Returns ------- angles: numpy array of angles between all PMT combinations """ angles = [] pmt_angles = detector.pmt_angles for first, second in combs: angles.append( kp.math.angle_between( np.array(pmt_angles[first]), np.array(pmt_angles[second]) ) ) return np.array(angles)
[ "def", "calculate_angles", "(", "detector", ",", "combs", ")", ":", "angles", "=", "[", "]", "pmt_angles", "=", "detector", ".", "pmt_angles", "for", "first", ",", "second", "in", "combs", ":", "angles", ".", "append", "(", "kp", ".", "math", ".", "angle_between", "(", "np", ".", "array", "(", "pmt_angles", "[", "first", "]", ")", ",", "np", ".", "array", "(", "pmt_angles", "[", "second", "]", ")", ")", ")", "return", "np", ".", "array", "(", "angles", ")" ]
Calculates angles between PMT combinations according to positions in detector_file Parameters ---------- detector_file: file from which to read the PMT positions (.detx) combs: pmt combinations Returns ------- angles: numpy array of angles between all PMT combinations
[ "Calculates", "angles", "between", "PMT", "combinations", "according", "to", "positions", "in", "detector_file" ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3modules/k40.py#L635-L657
train
tamasgal/km3pipe
km3modules/k40.py
fit_angular_distribution
def fit_angular_distribution(angles, rates, rate_errors, shape='pexp'): """Fits angular distribution of rates. Parameters ---------- rates: numpy array with rates for all PMT combinations angles: numpy array with angles for all PMT combinations shape: which function to fit; exp for exponential or pexp for exponential_polinomial Returns ------- fitted_rates: numpy array of fitted rates (fit_function(angles, popt...)) """ if shape == 'exp': fit_function = exponential # p0 = [-0.91871169, 2.72224241, -1.19065965, 1.48054122] if shape == 'pexp': fit_function = exponential_polinomial # p0 = [0.34921202, 2.8629577] cos_angles = np.cos(angles) popt, pcov = optimize.curve_fit(fit_function, cos_angles, rates) fitted_rates = fit_function(cos_angles, *popt) return fitted_rates, popt, pcov
python
def fit_angular_distribution(angles, rates, rate_errors, shape='pexp'): """Fits angular distribution of rates. Parameters ---------- rates: numpy array with rates for all PMT combinations angles: numpy array with angles for all PMT combinations shape: which function to fit; exp for exponential or pexp for exponential_polinomial Returns ------- fitted_rates: numpy array of fitted rates (fit_function(angles, popt...)) """ if shape == 'exp': fit_function = exponential # p0 = [-0.91871169, 2.72224241, -1.19065965, 1.48054122] if shape == 'pexp': fit_function = exponential_polinomial # p0 = [0.34921202, 2.8629577] cos_angles = np.cos(angles) popt, pcov = optimize.curve_fit(fit_function, cos_angles, rates) fitted_rates = fit_function(cos_angles, *popt) return fitted_rates, popt, pcov
[ "def", "fit_angular_distribution", "(", "angles", ",", "rates", ",", "rate_errors", ",", "shape", "=", "'pexp'", ")", ":", "if", "shape", "==", "'exp'", ":", "fit_function", "=", "exponential", "# p0 = [-0.91871169, 2.72224241, -1.19065965, 1.48054122]", "if", "shape", "==", "'pexp'", ":", "fit_function", "=", "exponential_polinomial", "# p0 = [0.34921202, 2.8629577]", "cos_angles", "=", "np", ".", "cos", "(", "angles", ")", "popt", ",", "pcov", "=", "optimize", ".", "curve_fit", "(", "fit_function", ",", "cos_angles", ",", "rates", ")", "fitted_rates", "=", "fit_function", "(", "cos_angles", ",", "*", "popt", ")", "return", "fitted_rates", ",", "popt", ",", "pcov" ]
Fits angular distribution of rates. Parameters ---------- rates: numpy array with rates for all PMT combinations angles: numpy array with angles for all PMT combinations shape: which function to fit; exp for exponential or pexp for exponential_polinomial Returns ------- fitted_rates: numpy array of fitted rates (fit_function(angles, popt...))
[ "Fits", "angular", "distribution", "of", "rates", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3modules/k40.py#L668-L696
train
tamasgal/km3pipe
km3modules/k40.py
minimize_t0s
def minimize_t0s(means, weights, combs): """Varies t0s to minimize the deviation of the gaussian means from zero. Parameters ---------- means: numpy array of means of all PMT combinations weights: numpy array of weights for the squared sum combs: pmt combinations to use for minimization Returns ------- opt_t0s: optimal t0 values for all PMTs """ def make_quality_function(means, weights, combs): def quality_function(t0s): sq_sum = 0 for mean, comb, weight in zip(means, combs, weights): sq_sum += ((mean - (t0s[comb[1]] - t0s[comb[0]])) * weight)**2 return sq_sum return quality_function qfunc = make_quality_function(means, weights, combs) # t0s = np.zeros(31) t0s = np.random.rand(31) bounds = [(0, 0)] + [(-10., 10.)] * 30 opt_t0s = optimize.minimize(qfunc, t0s, bounds=bounds) return opt_t0s
python
def minimize_t0s(means, weights, combs): """Varies t0s to minimize the deviation of the gaussian means from zero. Parameters ---------- means: numpy array of means of all PMT combinations weights: numpy array of weights for the squared sum combs: pmt combinations to use for minimization Returns ------- opt_t0s: optimal t0 values for all PMTs """ def make_quality_function(means, weights, combs): def quality_function(t0s): sq_sum = 0 for mean, comb, weight in zip(means, combs, weights): sq_sum += ((mean - (t0s[comb[1]] - t0s[comb[0]])) * weight)**2 return sq_sum return quality_function qfunc = make_quality_function(means, weights, combs) # t0s = np.zeros(31) t0s = np.random.rand(31) bounds = [(0, 0)] + [(-10., 10.)] * 30 opt_t0s = optimize.minimize(qfunc, t0s, bounds=bounds) return opt_t0s
[ "def", "minimize_t0s", "(", "means", ",", "weights", ",", "combs", ")", ":", "def", "make_quality_function", "(", "means", ",", "weights", ",", "combs", ")", ":", "def", "quality_function", "(", "t0s", ")", ":", "sq_sum", "=", "0", "for", "mean", ",", "comb", ",", "weight", "in", "zip", "(", "means", ",", "combs", ",", "weights", ")", ":", "sq_sum", "+=", "(", "(", "mean", "-", "(", "t0s", "[", "comb", "[", "1", "]", "]", "-", "t0s", "[", "comb", "[", "0", "]", "]", ")", ")", "*", "weight", ")", "**", "2", "return", "sq_sum", "return", "quality_function", "qfunc", "=", "make_quality_function", "(", "means", ",", "weights", ",", "combs", ")", "# t0s = np.zeros(31)", "t0s", "=", "np", ".", "random", ".", "rand", "(", "31", ")", "bounds", "=", "[", "(", "0", ",", "0", ")", "]", "+", "[", "(", "-", "10.", ",", "10.", ")", "]", "*", "30", "opt_t0s", "=", "optimize", ".", "minimize", "(", "qfunc", ",", "t0s", ",", "bounds", "=", "bounds", ")", "return", "opt_t0s" ]
Varies t0s to minimize the deviation of the gaussian means from zero. Parameters ---------- means: numpy array of means of all PMT combinations weights: numpy array of weights for the squared sum combs: pmt combinations to use for minimization Returns ------- opt_t0s: optimal t0 values for all PMTs
[ "Varies", "t0s", "to", "minimize", "the", "deviation", "of", "the", "gaussian", "means", "from", "zero", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3modules/k40.py#L699-L728
train
tamasgal/km3pipe
km3modules/k40.py
minimize_qes
def minimize_qes(fitted_rates, rates, weights, combs): """Varies QEs to minimize the deviation of the rates from the fitted_rates. Parameters ---------- fitted_rates: numpy array of fitted rates from fit_angular_distribution rates: numpy array of rates of all PMT combinations weights: numpy array of weights for the squared sum combs: pmt combinations to use for minimization Returns ------- opt_qes: optimal qe values for all PMTs """ def make_quality_function(fitted_rates, rates, weights, combs): def quality_function(qes): sq_sum = 0 for fitted_rate, comb, rate, weight \ in zip(fitted_rates, combs, rates, weights): sq_sum += ((rate / qes[comb[0]] / qes[comb[1]] - fitted_rate) * weight)**2 return sq_sum return quality_function qfunc = make_quality_function(fitted_rates, rates, weights, combs) qes = np.ones(31) bounds = [(0.1, 2.)] * 31 opt_qes = optimize.minimize(qfunc, qes, bounds=bounds) return opt_qes
python
def minimize_qes(fitted_rates, rates, weights, combs): """Varies QEs to minimize the deviation of the rates from the fitted_rates. Parameters ---------- fitted_rates: numpy array of fitted rates from fit_angular_distribution rates: numpy array of rates of all PMT combinations weights: numpy array of weights for the squared sum combs: pmt combinations to use for minimization Returns ------- opt_qes: optimal qe values for all PMTs """ def make_quality_function(fitted_rates, rates, weights, combs): def quality_function(qes): sq_sum = 0 for fitted_rate, comb, rate, weight \ in zip(fitted_rates, combs, rates, weights): sq_sum += ((rate / qes[comb[0]] / qes[comb[1]] - fitted_rate) * weight)**2 return sq_sum return quality_function qfunc = make_quality_function(fitted_rates, rates, weights, combs) qes = np.ones(31) bounds = [(0.1, 2.)] * 31 opt_qes = optimize.minimize(qfunc, qes, bounds=bounds) return opt_qes
[ "def", "minimize_qes", "(", "fitted_rates", ",", "rates", ",", "weights", ",", "combs", ")", ":", "def", "make_quality_function", "(", "fitted_rates", ",", "rates", ",", "weights", ",", "combs", ")", ":", "def", "quality_function", "(", "qes", ")", ":", "sq_sum", "=", "0", "for", "fitted_rate", ",", "comb", ",", "rate", ",", "weight", "in", "zip", "(", "fitted_rates", ",", "combs", ",", "rates", ",", "weights", ")", ":", "sq_sum", "+=", "(", "(", "rate", "/", "qes", "[", "comb", "[", "0", "]", "]", "/", "qes", "[", "comb", "[", "1", "]", "]", "-", "fitted_rate", ")", "*", "weight", ")", "**", "2", "return", "sq_sum", "return", "quality_function", "qfunc", "=", "make_quality_function", "(", "fitted_rates", ",", "rates", ",", "weights", ",", "combs", ")", "qes", "=", "np", ".", "ones", "(", "31", ")", "bounds", "=", "[", "(", "0.1", ",", "2.", ")", "]", "*", "31", "opt_qes", "=", "optimize", ".", "minimize", "(", "qfunc", ",", "qes", ",", "bounds", "=", "bounds", ")", "return", "opt_qes" ]
Varies QEs to minimize the deviation of the rates from the fitted_rates. Parameters ---------- fitted_rates: numpy array of fitted rates from fit_angular_distribution rates: numpy array of rates of all PMT combinations weights: numpy array of weights for the squared sum combs: pmt combinations to use for minimization Returns ------- opt_qes: optimal qe values for all PMTs
[ "Varies", "QEs", "to", "minimize", "the", "deviation", "of", "the", "rates", "from", "the", "fitted_rates", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3modules/k40.py#L764-L795
train
tamasgal/km3pipe
km3modules/k40.py
correct_means
def correct_means(means, opt_t0s, combs): """Applies optimal t0s to gaussians means. Should be around zero afterwards. Parameters ---------- means: numpy array of means of gaussians of all PMT combinations opt_t0s: numpy array of optimal t0 values for all PMTs combs: pmt combinations used to correct Returns ------- corrected_means: numpy array of corrected gaussian means for all PMT combs """ corrected_means = np.array([(opt_t0s[comb[1]] - opt_t0s[comb[0]]) - mean for mean, comb in zip(means, combs)]) return corrected_means
python
def correct_means(means, opt_t0s, combs): """Applies optimal t0s to gaussians means. Should be around zero afterwards. Parameters ---------- means: numpy array of means of gaussians of all PMT combinations opt_t0s: numpy array of optimal t0 values for all PMTs combs: pmt combinations used to correct Returns ------- corrected_means: numpy array of corrected gaussian means for all PMT combs """ corrected_means = np.array([(opt_t0s[comb[1]] - opt_t0s[comb[0]]) - mean for mean, comb in zip(means, combs)]) return corrected_means
[ "def", "correct_means", "(", "means", ",", "opt_t0s", ",", "combs", ")", ":", "corrected_means", "=", "np", ".", "array", "(", "[", "(", "opt_t0s", "[", "comb", "[", "1", "]", "]", "-", "opt_t0s", "[", "comb", "[", "0", "]", "]", ")", "-", "mean", "for", "mean", ",", "comb", "in", "zip", "(", "means", ",", "combs", ")", "]", ")", "return", "corrected_means" ]
Applies optimal t0s to gaussians means. Should be around zero afterwards. Parameters ---------- means: numpy array of means of gaussians of all PMT combinations opt_t0s: numpy array of optimal t0 values for all PMTs combs: pmt combinations used to correct Returns ------- corrected_means: numpy array of corrected gaussian means for all PMT combs
[ "Applies", "optimal", "t0s", "to", "gaussians", "means", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3modules/k40.py#L798-L816
train
tamasgal/km3pipe
km3modules/k40.py
correct_rates
def correct_rates(rates, opt_qes, combs): """Applies optimal qes to rates. Should be closer to fitted_rates afterwards. Parameters ---------- rates: numpy array of rates of all PMT combinations opt_qes: numpy array of optimal qe values for all PMTs combs: pmt combinations used to correct Returns ------- corrected_rates: numpy array of corrected rates for all PMT combinations """ corrected_rates = np.array([ rate / opt_qes[comb[0]] / opt_qes[comb[1]] for rate, comb in zip(rates, combs) ]) return corrected_rates
python
def correct_rates(rates, opt_qes, combs): """Applies optimal qes to rates. Should be closer to fitted_rates afterwards. Parameters ---------- rates: numpy array of rates of all PMT combinations opt_qes: numpy array of optimal qe values for all PMTs combs: pmt combinations used to correct Returns ------- corrected_rates: numpy array of corrected rates for all PMT combinations """ corrected_rates = np.array([ rate / opt_qes[comb[0]] / opt_qes[comb[1]] for rate, comb in zip(rates, combs) ]) return corrected_rates
[ "def", "correct_rates", "(", "rates", ",", "opt_qes", ",", "combs", ")", ":", "corrected_rates", "=", "np", ".", "array", "(", "[", "rate", "/", "opt_qes", "[", "comb", "[", "0", "]", "]", "/", "opt_qes", "[", "comb", "[", "1", "]", "]", "for", "rate", ",", "comb", "in", "zip", "(", "rates", ",", "combs", ")", "]", ")", "return", "corrected_rates" ]
Applies optimal qes to rates. Should be closer to fitted_rates afterwards. Parameters ---------- rates: numpy array of rates of all PMT combinations opt_qes: numpy array of optimal qe values for all PMTs combs: pmt combinations used to correct Returns ------- corrected_rates: numpy array of corrected rates for all PMT combinations
[ "Applies", "optimal", "qes", "to", "rates", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3modules/k40.py#L819-L839
train
tamasgal/km3pipe
km3modules/k40.py
calculate_rms_means
def calculate_rms_means(means, corrected_means): """Calculates RMS of means from zero before and after correction Parameters ---------- means: numpy array of means of gaussians of all PMT combinations corrected_means: numpy array of corrected gaussian means for all PMT combs Returns ------- rms_means: RMS of means from zero rms_corrected_means: RMS of corrected_means from zero """ rms_means = np.sqrt(np.mean((means - 0)**2)) rms_corrected_means = np.sqrt(np.mean((corrected_means - 0)**2)) return rms_means, rms_corrected_means
python
def calculate_rms_means(means, corrected_means): """Calculates RMS of means from zero before and after correction Parameters ---------- means: numpy array of means of gaussians of all PMT combinations corrected_means: numpy array of corrected gaussian means for all PMT combs Returns ------- rms_means: RMS of means from zero rms_corrected_means: RMS of corrected_means from zero """ rms_means = np.sqrt(np.mean((means - 0)**2)) rms_corrected_means = np.sqrt(np.mean((corrected_means - 0)**2)) return rms_means, rms_corrected_means
[ "def", "calculate_rms_means", "(", "means", ",", "corrected_means", ")", ":", "rms_means", "=", "np", ".", "sqrt", "(", "np", ".", "mean", "(", "(", "means", "-", "0", ")", "**", "2", ")", ")", "rms_corrected_means", "=", "np", ".", "sqrt", "(", "np", ".", "mean", "(", "(", "corrected_means", "-", "0", ")", "**", "2", ")", ")", "return", "rms_means", ",", "rms_corrected_means" ]
Calculates RMS of means from zero before and after correction Parameters ---------- means: numpy array of means of gaussians of all PMT combinations corrected_means: numpy array of corrected gaussian means for all PMT combs Returns ------- rms_means: RMS of means from zero rms_corrected_means: RMS of corrected_means from zero
[ "Calculates", "RMS", "of", "means", "from", "zero", "before", "and", "after", "correction" ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3modules/k40.py#L842-L857
train
tamasgal/km3pipe
km3modules/k40.py
calculate_rms_rates
def calculate_rms_rates(rates, fitted_rates, corrected_rates): """Calculates RMS of rates from fitted_rates before and after correction Parameters ---------- rates: numpy array of rates of all PMT combinations corrected_rates: numpy array of corrected rates for all PMT combinations Returns ------- rms_rates: RMS of rates from fitted_rates rms_corrected_rates: RMS of corrected_ratesrates from fitted_rates """ rms_rates = np.sqrt(np.mean((rates - fitted_rates)**2)) rms_corrected_rates = np.sqrt(np.mean((corrected_rates - fitted_rates)**2)) return rms_rates, rms_corrected_rates
python
def calculate_rms_rates(rates, fitted_rates, corrected_rates): """Calculates RMS of rates from fitted_rates before and after correction Parameters ---------- rates: numpy array of rates of all PMT combinations corrected_rates: numpy array of corrected rates for all PMT combinations Returns ------- rms_rates: RMS of rates from fitted_rates rms_corrected_rates: RMS of corrected_ratesrates from fitted_rates """ rms_rates = np.sqrt(np.mean((rates - fitted_rates)**2)) rms_corrected_rates = np.sqrt(np.mean((corrected_rates - fitted_rates)**2)) return rms_rates, rms_corrected_rates
[ "def", "calculate_rms_rates", "(", "rates", ",", "fitted_rates", ",", "corrected_rates", ")", ":", "rms_rates", "=", "np", ".", "sqrt", "(", "np", ".", "mean", "(", "(", "rates", "-", "fitted_rates", ")", "**", "2", ")", ")", "rms_corrected_rates", "=", "np", ".", "sqrt", "(", "np", ".", "mean", "(", "(", "corrected_rates", "-", "fitted_rates", ")", "**", "2", ")", ")", "return", "rms_rates", ",", "rms_corrected_rates" ]
Calculates RMS of rates from fitted_rates before and after correction Parameters ---------- rates: numpy array of rates of all PMT combinations corrected_rates: numpy array of corrected rates for all PMT combinations Returns ------- rms_rates: RMS of rates from fitted_rates rms_corrected_rates: RMS of corrected_ratesrates from fitted_rates
[ "Calculates", "RMS", "of", "rates", "from", "fitted_rates", "before", "and", "after", "correction" ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3modules/k40.py#L860-L875
train
tamasgal/km3pipe
km3modules/k40.py
add_to_twofold_matrix
def add_to_twofold_matrix(times, tdcs, mat, tmax=10): """Add counts to twofold coincidences for a given `tmax`. Parameters ---------- times: np.ndarray of hit times (int32) tdcs: np.ndarray of channel_ids (uint8) mat: ref to a np.array((465, tmax * 2 + 1)) tmax: int (time window) Returns ------- mat: coincidence matrix (np.array((465, tmax * 2 + 1))) """ h_idx = 0 # index of initial hit c_idx = 0 # index of coincident candidate hit n_hits = len(times) multiplicity = 0 while h_idx <= n_hits: c_idx = h_idx + 1 if (c_idx < n_hits) and (times[c_idx] - times[h_idx] <= tmax): multiplicity = 2 c_idx += 1 while (c_idx < n_hits) and (times[c_idx] - times[h_idx] <= tmax): c_idx += 1 multiplicity += 1 if multiplicity != 2: h_idx = c_idx continue c_idx -= 1 h_tdc = tdcs[h_idx] c_tdc = tdcs[c_idx] h_time = times[h_idx] c_time = times[c_idx] if h_tdc != c_tdc: dt = int(c_time - h_time) if h_tdc > c_tdc: mat[get_comb_index(c_tdc, h_tdc), -dt + tmax] += 1 else: mat[get_comb_index(h_tdc, c_tdc), dt + tmax] += 1 h_idx = c_idx
python
def add_to_twofold_matrix(times, tdcs, mat, tmax=10): """Add counts to twofold coincidences for a given `tmax`. Parameters ---------- times: np.ndarray of hit times (int32) tdcs: np.ndarray of channel_ids (uint8) mat: ref to a np.array((465, tmax * 2 + 1)) tmax: int (time window) Returns ------- mat: coincidence matrix (np.array((465, tmax * 2 + 1))) """ h_idx = 0 # index of initial hit c_idx = 0 # index of coincident candidate hit n_hits = len(times) multiplicity = 0 while h_idx <= n_hits: c_idx = h_idx + 1 if (c_idx < n_hits) and (times[c_idx] - times[h_idx] <= tmax): multiplicity = 2 c_idx += 1 while (c_idx < n_hits) and (times[c_idx] - times[h_idx] <= tmax): c_idx += 1 multiplicity += 1 if multiplicity != 2: h_idx = c_idx continue c_idx -= 1 h_tdc = tdcs[h_idx] c_tdc = tdcs[c_idx] h_time = times[h_idx] c_time = times[c_idx] if h_tdc != c_tdc: dt = int(c_time - h_time) if h_tdc > c_tdc: mat[get_comb_index(c_tdc, h_tdc), -dt + tmax] += 1 else: mat[get_comb_index(h_tdc, c_tdc), dt + tmax] += 1 h_idx = c_idx
[ "def", "add_to_twofold_matrix", "(", "times", ",", "tdcs", ",", "mat", ",", "tmax", "=", "10", ")", ":", "h_idx", "=", "0", "# index of initial hit", "c_idx", "=", "0", "# index of coincident candidate hit", "n_hits", "=", "len", "(", "times", ")", "multiplicity", "=", "0", "while", "h_idx", "<=", "n_hits", ":", "c_idx", "=", "h_idx", "+", "1", "if", "(", "c_idx", "<", "n_hits", ")", "and", "(", "times", "[", "c_idx", "]", "-", "times", "[", "h_idx", "]", "<=", "tmax", ")", ":", "multiplicity", "=", "2", "c_idx", "+=", "1", "while", "(", "c_idx", "<", "n_hits", ")", "and", "(", "times", "[", "c_idx", "]", "-", "times", "[", "h_idx", "]", "<=", "tmax", ")", ":", "c_idx", "+=", "1", "multiplicity", "+=", "1", "if", "multiplicity", "!=", "2", ":", "h_idx", "=", "c_idx", "continue", "c_idx", "-=", "1", "h_tdc", "=", "tdcs", "[", "h_idx", "]", "c_tdc", "=", "tdcs", "[", "c_idx", "]", "h_time", "=", "times", "[", "h_idx", "]", "c_time", "=", "times", "[", "c_idx", "]", "if", "h_tdc", "!=", "c_tdc", ":", "dt", "=", "int", "(", "c_time", "-", "h_time", ")", "if", "h_tdc", ">", "c_tdc", ":", "mat", "[", "get_comb_index", "(", "c_tdc", ",", "h_tdc", ")", ",", "-", "dt", "+", "tmax", "]", "+=", "1", "else", ":", "mat", "[", "get_comb_index", "(", "h_tdc", ",", "c_tdc", ")", ",", "dt", "+", "tmax", "]", "+=", "1", "h_idx", "=", "c_idx" ]
Add counts to twofold coincidences for a given `tmax`. Parameters ---------- times: np.ndarray of hit times (int32) tdcs: np.ndarray of channel_ids (uint8) mat: ref to a np.array((465, tmax * 2 + 1)) tmax: int (time window) Returns ------- mat: coincidence matrix (np.array((465, tmax * 2 + 1)))
[ "Add", "counts", "to", "twofold", "coincidences", "for", "a", "given", "tmax", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3modules/k40.py#L885-L926
train
tamasgal/km3pipe
km3modules/k40.py
TwofoldCounter.reset
def reset(self): """Reset coincidence counter""" self.counts = defaultdict(partial(np.zeros, (465, self.tmax * 2 + 1))) self.n_timeslices = defaultdict(int)
python
def reset(self): """Reset coincidence counter""" self.counts = defaultdict(partial(np.zeros, (465, self.tmax * 2 + 1))) self.n_timeslices = defaultdict(int)
[ "def", "reset", "(", "self", ")", ":", "self", ".", "counts", "=", "defaultdict", "(", "partial", "(", "np", ".", "zeros", ",", "(", "465", ",", "self", ".", "tmax", "*", "2", "+", "1", ")", ")", ")", "self", ".", "n_timeslices", "=", "defaultdict", "(", "int", ")" ]
Reset coincidence counter
[ "Reset", "coincidence", "counter" ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3modules/k40.py#L247-L250
train
tamasgal/km3pipe
km3modules/k40.py
TwofoldCounter.dump
def dump(self): """Write coincidence counts into a Python pickle""" self.print("Dumping data to {}".format(self.dump_filename)) pickle.dump({ 'data': self.counts, 'livetime': self.get_livetime() }, open(self.dump_filename, "wb"))
python
def dump(self): """Write coincidence counts into a Python pickle""" self.print("Dumping data to {}".format(self.dump_filename)) pickle.dump({ 'data': self.counts, 'livetime': self.get_livetime() }, open(self.dump_filename, "wb"))
[ "def", "dump", "(", "self", ")", ":", "self", ".", "print", "(", "\"Dumping data to {}\"", ".", "format", "(", "self", ".", "dump_filename", ")", ")", "pickle", ".", "dump", "(", "{", "'data'", ":", "self", ".", "counts", ",", "'livetime'", ":", "self", ".", "get_livetime", "(", ")", "}", ",", "open", "(", "self", ".", "dump_filename", ",", "\"wb\"", ")", ")" ]
Write coincidence counts into a Python pickle
[ "Write", "coincidence", "counts", "into", "a", "Python", "pickle" ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3modules/k40.py#L283-L289
train
ioos/pyoos
pyoos/parsers/ioos/one/describe_sensor.py
DescribeSensor.get_named_by_definition
def get_named_by_definition(cls, element_list, string_def): """Attempts to get an IOOS definition from a list of xml elements""" try: return next( ( st.value for st in element_list if st.definition == string_def ) ) except Exception: return None
python
def get_named_by_definition(cls, element_list, string_def): """Attempts to get an IOOS definition from a list of xml elements""" try: return next( ( st.value for st in element_list if st.definition == string_def ) ) except Exception: return None
[ "def", "get_named_by_definition", "(", "cls", ",", "element_list", ",", "string_def", ")", ":", "try", ":", "return", "next", "(", "(", "st", ".", "value", "for", "st", "in", "element_list", "if", "st", ".", "definition", "==", "string_def", ")", ")", "except", "Exception", ":", "return", "None" ]
Attempts to get an IOOS definition from a list of xml elements
[ "Attempts", "to", "get", "an", "IOOS", "definition", "from", "a", "list", "of", "xml", "elements" ]
908660385029ecd8eccda8ab3a6b20b47b915c77
https://github.com/ioos/pyoos/blob/908660385029ecd8eccda8ab3a6b20b47b915c77/pyoos/parsers/ioos/one/describe_sensor.py#L37-L48
train
ioos/pyoos
pyoos/parsers/ioos/one/describe_sensor.py
DescribeSensor.get_ioos_def
def get_ioos_def(self, ident, elem_type, ont): """Gets a definition given an identifier and where to search for it""" if elem_type == "identifier": getter_fn = self.system.get_identifiers_by_name elif elem_type == "classifier": getter_fn = self.system.get_classifiers_by_name else: raise ValueError("Unknown element type '{}'".format(elem_type)) return DescribeSensor.get_named_by_definition( getter_fn(ident), urljoin(ont, ident) )
python
def get_ioos_def(self, ident, elem_type, ont): """Gets a definition given an identifier and where to search for it""" if elem_type == "identifier": getter_fn = self.system.get_identifiers_by_name elif elem_type == "classifier": getter_fn = self.system.get_classifiers_by_name else: raise ValueError("Unknown element type '{}'".format(elem_type)) return DescribeSensor.get_named_by_definition( getter_fn(ident), urljoin(ont, ident) )
[ "def", "get_ioos_def", "(", "self", ",", "ident", ",", "elem_type", ",", "ont", ")", ":", "if", "elem_type", "==", "\"identifier\"", ":", "getter_fn", "=", "self", ".", "system", ".", "get_identifiers_by_name", "elif", "elem_type", "==", "\"classifier\"", ":", "getter_fn", "=", "self", ".", "system", ".", "get_classifiers_by_name", "else", ":", "raise", "ValueError", "(", "\"Unknown element type '{}'\"", ".", "format", "(", "elem_type", ")", ")", "return", "DescribeSensor", ".", "get_named_by_definition", "(", "getter_fn", "(", "ident", ")", ",", "urljoin", "(", "ont", ",", "ident", ")", ")" ]
Gets a definition given an identifier and where to search for it
[ "Gets", "a", "definition", "given", "an", "identifier", "and", "where", "to", "search", "for", "it" ]
908660385029ecd8eccda8ab3a6b20b47b915c77
https://github.com/ioos/pyoos/blob/908660385029ecd8eccda8ab3a6b20b47b915c77/pyoos/parsers/ioos/one/describe_sensor.py#L50-L60
train
mouse-reeve/horoscope-generator
horoscope_generator/HoroscopeGenerator.py
get_sentence
def get_sentence(start=None, depth=7): ''' follow the grammatical patterns to generate a random sentence ''' if not GRAMMAR: return 'Please set a GRAMMAR file' start = start if start else GRAMMAR.start() if isinstance(start, Nonterminal): productions = GRAMMAR.productions(start) if not depth: # time to break the cycle terminals = [p for p in productions if not isinstance(start, Nonterminal)] if len(terminals): production = terminals production = random.choice(productions) sentence = [] for piece in production.rhs(): sentence += get_sentence(start=piece, depth=depth-1) return sentence else: return [start]
python
def get_sentence(start=None, depth=7): ''' follow the grammatical patterns to generate a random sentence ''' if not GRAMMAR: return 'Please set a GRAMMAR file' start = start if start else GRAMMAR.start() if isinstance(start, Nonterminal): productions = GRAMMAR.productions(start) if not depth: # time to break the cycle terminals = [p for p in productions if not isinstance(start, Nonterminal)] if len(terminals): production = terminals production = random.choice(productions) sentence = [] for piece in production.rhs(): sentence += get_sentence(start=piece, depth=depth-1) return sentence else: return [start]
[ "def", "get_sentence", "(", "start", "=", "None", ",", "depth", "=", "7", ")", ":", "if", "not", "GRAMMAR", ":", "return", "'Please set a GRAMMAR file'", "start", "=", "start", "if", "start", "else", "GRAMMAR", ".", "start", "(", ")", "if", "isinstance", "(", "start", ",", "Nonterminal", ")", ":", "productions", "=", "GRAMMAR", ".", "productions", "(", "start", ")", "if", "not", "depth", ":", "# time to break the cycle", "terminals", "=", "[", "p", "for", "p", "in", "productions", "if", "not", "isinstance", "(", "start", ",", "Nonterminal", ")", "]", "if", "len", "(", "terminals", ")", ":", "production", "=", "terminals", "production", "=", "random", ".", "choice", "(", "productions", ")", "sentence", "=", "[", "]", "for", "piece", "in", "production", ".", "rhs", "(", ")", ":", "sentence", "+=", "get_sentence", "(", "start", "=", "piece", ",", "depth", "=", "depth", "-", "1", ")", "return", "sentence", "else", ":", "return", "[", "start", "]" ]
follow the grammatical patterns to generate a random sentence
[ "follow", "the", "grammatical", "patterns", "to", "generate", "a", "random", "sentence" ]
01acf298116745ded5819d348c28a98a7492ccf3
https://github.com/mouse-reeve/horoscope-generator/blob/01acf298116745ded5819d348c28a98a7492ccf3/horoscope_generator/HoroscopeGenerator.py#L17-L38
train
mouse-reeve/horoscope-generator
horoscope_generator/HoroscopeGenerator.py
format_sentence
def format_sentence(sentence): ''' fix display formatting of a sentence array ''' for index, word in enumerate(sentence): if word == 'a' and index + 1 < len(sentence) and \ re.match(r'^[aeiou]', sentence[index + 1]) and not \ re.match(r'^uni', sentence[index + 1]): sentence[index] = 'an' text = ' '.join(sentence) text = '%s%s' % (text[0].upper(), text[1:]) text = text.replace(' ,', ',') return '%s.' % text
python
def format_sentence(sentence): ''' fix display formatting of a sentence array ''' for index, word in enumerate(sentence): if word == 'a' and index + 1 < len(sentence) and \ re.match(r'^[aeiou]', sentence[index + 1]) and not \ re.match(r'^uni', sentence[index + 1]): sentence[index] = 'an' text = ' '.join(sentence) text = '%s%s' % (text[0].upper(), text[1:]) text = text.replace(' ,', ',') return '%s.' % text
[ "def", "format_sentence", "(", "sentence", ")", ":", "for", "index", ",", "word", "in", "enumerate", "(", "sentence", ")", ":", "if", "word", "==", "'a'", "and", "index", "+", "1", "<", "len", "(", "sentence", ")", "and", "re", ".", "match", "(", "r'^[aeiou]'", ",", "sentence", "[", "index", "+", "1", "]", ")", "and", "not", "re", ".", "match", "(", "r'^uni'", ",", "sentence", "[", "index", "+", "1", "]", ")", ":", "sentence", "[", "index", "]", "=", "'an'", "text", "=", "' '", ".", "join", "(", "sentence", ")", "text", "=", "'%s%s'", "%", "(", "text", "[", "0", "]", ".", "upper", "(", ")", ",", "text", "[", "1", ":", "]", ")", "text", "=", "text", ".", "replace", "(", "' ,'", ",", "','", ")", "return", "'%s.'", "%", "text" ]
fix display formatting of a sentence array
[ "fix", "display", "formatting", "of", "a", "sentence", "array" ]
01acf298116745ded5819d348c28a98a7492ccf3
https://github.com/mouse-reeve/horoscope-generator/blob/01acf298116745ded5819d348c28a98a7492ccf3/horoscope_generator/HoroscopeGenerator.py#L40-L50
train
dsoprea/PySchedules
pyschedules/examples/read.py
EntityTrigger.new_station
def new_station(self, _id, callSign, name, affiliate, fccChannelNumber): """Callback run for each new station""" if self.__v_station: # [Station: 11440, WFLX, WFLX, Fox Affiliate, 29] # [Station: 11836, WSCV, WSCV, TELEMUNDO (HBC) Affiliate, 51] # [Station: 11867, TBS, Turner Broadcasting System, Satellite, None] # [Station: 11869, WTCE, WTCE, Independent, 21] # [Station: 11924, WTVX, WTVX, CW Affiliate, 34] # [Station: 11991, WXEL, WXEL, PBS Affiliate, 42] # [Station: 12131, TOON, Cartoon Network, Satellite, None] # [Station: 12444, ESPN2, ESPN2, Sports Satellite, None] # [Station: 12471, WFGC, WFGC, Independent, 61] # [Station: 16046, TVNI, TV Chile Internacional, Latin American Satellite, None] # [Station: 22233, GOAC020, Government Access - GOAC020, Cablecast, None] print("[Station: %s, %s, %s, %s, %s]" % (_id, callSign, name, affiliate, fccChannelNumber))
python
def new_station(self, _id, callSign, name, affiliate, fccChannelNumber): """Callback run for each new station""" if self.__v_station: # [Station: 11440, WFLX, WFLX, Fox Affiliate, 29] # [Station: 11836, WSCV, WSCV, TELEMUNDO (HBC) Affiliate, 51] # [Station: 11867, TBS, Turner Broadcasting System, Satellite, None] # [Station: 11869, WTCE, WTCE, Independent, 21] # [Station: 11924, WTVX, WTVX, CW Affiliate, 34] # [Station: 11991, WXEL, WXEL, PBS Affiliate, 42] # [Station: 12131, TOON, Cartoon Network, Satellite, None] # [Station: 12444, ESPN2, ESPN2, Sports Satellite, None] # [Station: 12471, WFGC, WFGC, Independent, 61] # [Station: 16046, TVNI, TV Chile Internacional, Latin American Satellite, None] # [Station: 22233, GOAC020, Government Access - GOAC020, Cablecast, None] print("[Station: %s, %s, %s, %s, %s]" % (_id, callSign, name, affiliate, fccChannelNumber))
[ "def", "new_station", "(", "self", ",", "_id", ",", "callSign", ",", "name", ",", "affiliate", ",", "fccChannelNumber", ")", ":", "if", "self", ".", "__v_station", ":", "# [Station: 11440, WFLX, WFLX, Fox Affiliate, 29]", "# [Station: 11836, WSCV, WSCV, TELEMUNDO (HBC) Affiliate, 51]", "# [Station: 11867, TBS, Turner Broadcasting System, Satellite, None]", "# [Station: 11869, WTCE, WTCE, Independent, 21]", "# [Station: 11924, WTVX, WTVX, CW Affiliate, 34]", "# [Station: 11991, WXEL, WXEL, PBS Affiliate, 42]", "# [Station: 12131, TOON, Cartoon Network, Satellite, None]", "# [Station: 12444, ESPN2, ESPN2, Sports Satellite, None]", "# [Station: 12471, WFGC, WFGC, Independent, 61]", "# [Station: 16046, TVNI, TV Chile Internacional, Latin American Satellite, None]", "# [Station: 22233, GOAC020, Government Access - GOAC020, Cablecast, None]", "print", "(", "\"[Station: %s, %s, %s, %s, %s]\"", "%", "(", "_id", ",", "callSign", ",", "name", ",", "affiliate", ",", "fccChannelNumber", ")", ")" ]
Callback run for each new station
[ "Callback", "run", "for", "each", "new", "station" ]
e5aae988fad90217f72db45f93bf69839f4d75e7
https://github.com/dsoprea/PySchedules/blob/e5aae988fad90217f72db45f93bf69839f4d75e7/pyschedules/examples/read.py#L37-L53
train
dsoprea/PySchedules
pyschedules/examples/read.py
EntityTrigger.new_lineup
def new_lineup(self, name, location, device, _type, postalCode, _id): """Callback run for each new lineup""" if self.__v_lineup: # [Lineup: Comcast West Palm Beach /Palm Beach Co., West Palm Beach, Digital, CableDigital, 33436, FL09567:X] print("[Lineup: %s, %s, %s, %s, %s, %s]" % (name, location, device, _type, postalCode, _id))
python
def new_lineup(self, name, location, device, _type, postalCode, _id): """Callback run for each new lineup""" if self.__v_lineup: # [Lineup: Comcast West Palm Beach /Palm Beach Co., West Palm Beach, Digital, CableDigital, 33436, FL09567:X] print("[Lineup: %s, %s, %s, %s, %s, %s]" % (name, location, device, _type, postalCode, _id))
[ "def", "new_lineup", "(", "self", ",", "name", ",", "location", ",", "device", ",", "_type", ",", "postalCode", ",", "_id", ")", ":", "if", "self", ".", "__v_lineup", ":", "# [Lineup: Comcast West Palm Beach /Palm Beach Co., West Palm Beach, Digital, CableDigital, 33436, FL09567:X]", "print", "(", "\"[Lineup: %s, %s, %s, %s, %s, %s]\"", "%", "(", "name", ",", "location", ",", "device", ",", "_type", ",", "postalCode", ",", "_id", ")", ")" ]
Callback run for each new lineup
[ "Callback", "run", "for", "each", "new", "lineup" ]
e5aae988fad90217f72db45f93bf69839f4d75e7
https://github.com/dsoprea/PySchedules/blob/e5aae988fad90217f72db45f93bf69839f4d75e7/pyschedules/examples/read.py#L55-L61
train
dsoprea/PySchedules
pyschedules/examples/read.py
EntityTrigger.new_genre
def new_genre(self, program, genre, relevance): """Callback run for each new program genre entry""" if self.__v_genre: # [Genre: SP002709210000, Sports event, 0] # [Genre: SP002709210000, Basketball, 1] # [Genre: SP002737310000, Sports event, 0] # [Genre: SP002737310000, Basketball, 1] # [Genre: SH016761790000, News, 0] # [Genre: SH016761790000, Talk, 1] # [Genre: SH016761790000, Interview, 2] # [Genre: SH016761790000, Politics, 3] print("[Genre: %s, %s, %s]" % (program, genre, relevance))
python
def new_genre(self, program, genre, relevance): """Callback run for each new program genre entry""" if self.__v_genre: # [Genre: SP002709210000, Sports event, 0] # [Genre: SP002709210000, Basketball, 1] # [Genre: SP002737310000, Sports event, 0] # [Genre: SP002737310000, Basketball, 1] # [Genre: SH016761790000, News, 0] # [Genre: SH016761790000, Talk, 1] # [Genre: SH016761790000, Interview, 2] # [Genre: SH016761790000, Politics, 3] print("[Genre: %s, %s, %s]" % (program, genre, relevance))
[ "def", "new_genre", "(", "self", ",", "program", ",", "genre", ",", "relevance", ")", ":", "if", "self", ".", "__v_genre", ":", "# [Genre: SP002709210000, Sports event, 0]", "# [Genre: SP002709210000, Basketball, 1]", "# [Genre: SP002737310000, Sports event, 0]", "# [Genre: SP002737310000, Basketball, 1]", "# [Genre: SH016761790000, News, 0]", "# [Genre: SH016761790000, Talk, 1]", "# [Genre: SH016761790000, Interview, 2]", "# [Genre: SH016761790000, Politics, 3]", "print", "(", "\"[Genre: %s, %s, %s]\"", "%", "(", "program", ",", "genre", ",", "relevance", ")", ")" ]
Callback run for each new program genre entry
[ "Callback", "run", "for", "each", "new", "program", "genre", "entry" ]
e5aae988fad90217f72db45f93bf69839f4d75e7
https://github.com/dsoprea/PySchedules/blob/e5aae988fad90217f72db45f93bf69839f4d75e7/pyschedules/examples/read.py#L108-L120
train
tamasgal/km3pipe
km3pipe/shell.py
qsub
def qsub(script, job_name, dryrun=False, *args, **kwargs): """Submit a job via qsub.""" print("Preparing job script...") job_string = gen_job(script=script, job_name=job_name, *args, **kwargs) env = os.environ.copy() if dryrun: print( "This is a dry run! Here is the generated job file, which will " "not be submitted:" ) print(job_string) else: print("Calling qsub with the generated job script.") p = subprocess.Popen( 'qsub -V', stdin=subprocess.PIPE, env=env, shell=True ) p.communicate(input=bytes(job_string.encode('ascii')))
python
def qsub(script, job_name, dryrun=False, *args, **kwargs): """Submit a job via qsub.""" print("Preparing job script...") job_string = gen_job(script=script, job_name=job_name, *args, **kwargs) env = os.environ.copy() if dryrun: print( "This is a dry run! Here is the generated job file, which will " "not be submitted:" ) print(job_string) else: print("Calling qsub with the generated job script.") p = subprocess.Popen( 'qsub -V', stdin=subprocess.PIPE, env=env, shell=True ) p.communicate(input=bytes(job_string.encode('ascii')))
[ "def", "qsub", "(", "script", ",", "job_name", ",", "dryrun", "=", "False", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "print", "(", "\"Preparing job script...\"", ")", "job_string", "=", "gen_job", "(", "script", "=", "script", ",", "job_name", "=", "job_name", ",", "*", "args", ",", "*", "*", "kwargs", ")", "env", "=", "os", ".", "environ", ".", "copy", "(", ")", "if", "dryrun", ":", "print", "(", "\"This is a dry run! Here is the generated job file, which will \"", "\"not be submitted:\"", ")", "print", "(", "job_string", ")", "else", ":", "print", "(", "\"Calling qsub with the generated job script.\"", ")", "p", "=", "subprocess", ".", "Popen", "(", "'qsub -V'", ",", "stdin", "=", "subprocess", ".", "PIPE", ",", "env", "=", "env", ",", "shell", "=", "True", ")", "p", ".", "communicate", "(", "input", "=", "bytes", "(", "job_string", ".", "encode", "(", "'ascii'", ")", ")", ")" ]
Submit a job via qsub.
[ "Submit", "a", "job", "via", "qsub", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/shell.py#L66-L82
train
tamasgal/km3pipe
km3pipe/shell.py
gen_job
def gen_job( script, job_name, log_path='qlogs', group='km3net', platform='cl7', walltime='00:10:00', vmem='8G', fsize='8G', shell=None, email=None, send_mail='n', job_array_start=1, job_array_stop=None, job_array_step=1, irods=False, sps=True, hpss=False, xrootd=False, dcache=False, oracle=False, split_array_logs=False ): """Generate a job script.""" if shell is None: shell = os.environ['SHELL'] if email is None: email = os.environ['USER'] + '@km3net.de' if isinstance(script, Script): script = str(script) log_path = os.path.join(os.getcwd(), log_path) if job_array_stop is not None: job_array_option = "#$ -t {}-{}:{}" \ .format(job_array_start, job_array_stop, job_array_step) else: job_array_option = "#" if split_array_logs: task_name = '_$TASK_ID' else: task_name = '' job_string = JOB_TEMPLATE.format( script=script, email=email, send_mail=send_mail, log_path=log_path, job_name=job_name, group=group, walltime=walltime, vmem=vmem, fsize=fsize, irods=irods, sps=sps, hpss=hpss, xrootd=xrootd, dcache=dcache, oracle=oracle, shell=shell, platform=platform, job_array_option=job_array_option, task_name=task_name ) return job_string
python
def gen_job( script, job_name, log_path='qlogs', group='km3net', platform='cl7', walltime='00:10:00', vmem='8G', fsize='8G', shell=None, email=None, send_mail='n', job_array_start=1, job_array_stop=None, job_array_step=1, irods=False, sps=True, hpss=False, xrootd=False, dcache=False, oracle=False, split_array_logs=False ): """Generate a job script.""" if shell is None: shell = os.environ['SHELL'] if email is None: email = os.environ['USER'] + '@km3net.de' if isinstance(script, Script): script = str(script) log_path = os.path.join(os.getcwd(), log_path) if job_array_stop is not None: job_array_option = "#$ -t {}-{}:{}" \ .format(job_array_start, job_array_stop, job_array_step) else: job_array_option = "#" if split_array_logs: task_name = '_$TASK_ID' else: task_name = '' job_string = JOB_TEMPLATE.format( script=script, email=email, send_mail=send_mail, log_path=log_path, job_name=job_name, group=group, walltime=walltime, vmem=vmem, fsize=fsize, irods=irods, sps=sps, hpss=hpss, xrootd=xrootd, dcache=dcache, oracle=oracle, shell=shell, platform=platform, job_array_option=job_array_option, task_name=task_name ) return job_string
[ "def", "gen_job", "(", "script", ",", "job_name", ",", "log_path", "=", "'qlogs'", ",", "group", "=", "'km3net'", ",", "platform", "=", "'cl7'", ",", "walltime", "=", "'00:10:00'", ",", "vmem", "=", "'8G'", ",", "fsize", "=", "'8G'", ",", "shell", "=", "None", ",", "email", "=", "None", ",", "send_mail", "=", "'n'", ",", "job_array_start", "=", "1", ",", "job_array_stop", "=", "None", ",", "job_array_step", "=", "1", ",", "irods", "=", "False", ",", "sps", "=", "True", ",", "hpss", "=", "False", ",", "xrootd", "=", "False", ",", "dcache", "=", "False", ",", "oracle", "=", "False", ",", "split_array_logs", "=", "False", ")", ":", "if", "shell", "is", "None", ":", "shell", "=", "os", ".", "environ", "[", "'SHELL'", "]", "if", "email", "is", "None", ":", "email", "=", "os", ".", "environ", "[", "'USER'", "]", "+", "'@km3net.de'", "if", "isinstance", "(", "script", ",", "Script", ")", ":", "script", "=", "str", "(", "script", ")", "log_path", "=", "os", ".", "path", ".", "join", "(", "os", ".", "getcwd", "(", ")", ",", "log_path", ")", "if", "job_array_stop", "is", "not", "None", ":", "job_array_option", "=", "\"#$ -t {}-{}:{}\"", ".", "format", "(", "job_array_start", ",", "job_array_stop", ",", "job_array_step", ")", "else", ":", "job_array_option", "=", "\"#\"", "if", "split_array_logs", ":", "task_name", "=", "'_$TASK_ID'", "else", ":", "task_name", "=", "''", "job_string", "=", "JOB_TEMPLATE", ".", "format", "(", "script", "=", "script", ",", "email", "=", "email", ",", "send_mail", "=", "send_mail", ",", "log_path", "=", "log_path", ",", "job_name", "=", "job_name", ",", "group", "=", "group", ",", "walltime", "=", "walltime", ",", "vmem", "=", "vmem", ",", "fsize", "=", "fsize", ",", "irods", "=", "irods", ",", "sps", "=", "sps", ",", "hpss", "=", "hpss", ",", "xrootd", "=", "xrootd", ",", "dcache", "=", "dcache", ",", "oracle", "=", "oracle", ",", "shell", "=", "shell", ",", "platform", "=", "platform", ",", "job_array_option", "=", "job_array_option", ",", "task_name", "=", "task_name", ")", "return", "job_string" ]
Generate a job script.
[ "Generate", "a", "job", "script", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/shell.py#L85-L147
train
tamasgal/km3pipe
km3pipe/shell.py
get_jpp_env
def get_jpp_env(jpp_dir): """Return the environment dict of a loaded Jpp env. The returned env can be passed to `subprocess.Popen("J...", env=env)` to execute Jpp commands. """ env = { v[0]: ''.join(v[1:]) for v in [ l.split('=') for l in os.popen( "source {0}/setenv.sh {0} && env".format(jpp_dir) ).read().split('\n') if '=' in l ] } return env
python
def get_jpp_env(jpp_dir): """Return the environment dict of a loaded Jpp env. The returned env can be passed to `subprocess.Popen("J...", env=env)` to execute Jpp commands. """ env = { v[0]: ''.join(v[1:]) for v in [ l.split('=') for l in os.popen( "source {0}/setenv.sh {0} && env".format(jpp_dir) ).read().split('\n') if '=' in l ] } return env
[ "def", "get_jpp_env", "(", "jpp_dir", ")", ":", "env", "=", "{", "v", "[", "0", "]", ":", "''", ".", "join", "(", "v", "[", "1", ":", "]", ")", "for", "v", "in", "[", "l", ".", "split", "(", "'='", ")", "for", "l", "in", "os", ".", "popen", "(", "\"source {0}/setenv.sh {0} && env\"", ".", "format", "(", "jpp_dir", ")", ")", ".", "read", "(", ")", ".", "split", "(", "'\\n'", ")", "if", "'='", "in", "l", "]", "}", "return", "env" ]
Return the environment dict of a loaded Jpp env. The returned env can be passed to `subprocess.Popen("J...", env=env)` to execute Jpp commands.
[ "Return", "the", "environment", "dict", "of", "a", "loaded", "Jpp", "env", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/shell.py#L150-L165
train
tamasgal/km3pipe
km3pipe/shell.py
Script.iget
def iget(self, irods_path, attempts=1, pause=15): """Add an iget command to retrieve a file from iRODS. Parameters ---------- irods_path: str Filepath which should be fetched using iget attempts: int (default: 1) Number of retries, if iRODS access fails pause: int (default: 15) Pause between two access attempts in seconds """ if attempts > 1: cmd = """ for i in {{1..{0}}}; do ret=$(iget -v {1} 2>&1) echo $ret if [[ $ret == *"ERROR"* ]]; then echo "Attempt $i failed" else break fi sleep {2}s done """ cmd = lstrip(cmd) cmd = cmd.format(attempts, irods_path, pause) self.add(cmd) else: self.add('iget -v "{}"'.format(irods_path))
python
def iget(self, irods_path, attempts=1, pause=15): """Add an iget command to retrieve a file from iRODS. Parameters ---------- irods_path: str Filepath which should be fetched using iget attempts: int (default: 1) Number of retries, if iRODS access fails pause: int (default: 15) Pause between two access attempts in seconds """ if attempts > 1: cmd = """ for i in {{1..{0}}}; do ret=$(iget -v {1} 2>&1) echo $ret if [[ $ret == *"ERROR"* ]]; then echo "Attempt $i failed" else break fi sleep {2}s done """ cmd = lstrip(cmd) cmd = cmd.format(attempts, irods_path, pause) self.add(cmd) else: self.add('iget -v "{}"'.format(irods_path))
[ "def", "iget", "(", "self", ",", "irods_path", ",", "attempts", "=", "1", ",", "pause", "=", "15", ")", ":", "if", "attempts", ">", "1", ":", "cmd", "=", "\"\"\" for i in {{1..{0}}}; do\n ret=$(iget -v {1} 2>&1)\n echo $ret\n if [[ $ret == *\"ERROR\"* ]]; then\n echo \"Attempt $i failed\"\n else\n break\n fi\n sleep {2}s\n done \"\"\"", "cmd", "=", "lstrip", "(", "cmd", ")", "cmd", "=", "cmd", ".", "format", "(", "attempts", ",", "irods_path", ",", "pause", ")", "self", ".", "add", "(", "cmd", ")", "else", ":", "self", ".", "add", "(", "'iget -v \"{}\"'", ".", "format", "(", "irods_path", ")", ")" ]
Add an iget command to retrieve a file from iRODS. Parameters ---------- irods_path: str Filepath which should be fetched using iget attempts: int (default: 1) Number of retries, if iRODS access fails pause: int (default: 15) Pause between two access attempts in seconds
[ "Add", "an", "iget", "command", "to", "retrieve", "a", "file", "from", "iRODS", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/shell.py#L198-L225
train
tamasgal/km3pipe
km3pipe/shell.py
Script._add_two_argument_command
def _add_two_argument_command(self, command, arg1, arg2): """Helper function for two-argument commands""" self.lines.append("{} {} {}".format(command, arg1, arg2))
python
def _add_two_argument_command(self, command, arg1, arg2): """Helper function for two-argument commands""" self.lines.append("{} {} {}".format(command, arg1, arg2))
[ "def", "_add_two_argument_command", "(", "self", ",", "command", ",", "arg1", ",", "arg2", ")", ":", "self", ".", "lines", ".", "append", "(", "\"{} {} {}\"", ".", "format", "(", "command", ",", "arg1", ",", "arg2", ")", ")" ]
Helper function for two-argument commands
[ "Helper", "function", "for", "two", "-", "argument", "commands" ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/shell.py#L227-L229
train
dlbroadfoot/pygogogate2
pygogogate2/__init__.py
Gogogate2API.get_devices
def get_devices(self): """List all garage door devices.""" devices = self.make_request('["{username}","{password}","info","",""]'.format( username=self.username, password=self.password)) if devices != False: garage_doors = [] try: self.apicode = devices.find('apicode').text self._device_states = {} for doorNum in range(1, 4): door = devices.find('door' + str(doorNum)) doorName = door.find('name').text if doorName: dev = {'door': doorNum, 'name': doorName} for id in ['mode', 'sensor', 'status', 'sensorid', 'temperature', 'voltage', 'camera', 'events', 'permission']: item = door.find(id) if item is not None: dev[id] = item.text garage_state = door.find('status').text dev['status'] = self.DOOR_STATE[garage_state] self._device_states[doorNum] = self.DOOR_STATE[garage_state] garage_doors.append(dev) return garage_doors except TypeError as ex: print(ex) return False else: return False;
python
def get_devices(self): """List all garage door devices.""" devices = self.make_request('["{username}","{password}","info","",""]'.format( username=self.username, password=self.password)) if devices != False: garage_doors = [] try: self.apicode = devices.find('apicode').text self._device_states = {} for doorNum in range(1, 4): door = devices.find('door' + str(doorNum)) doorName = door.find('name').text if doorName: dev = {'door': doorNum, 'name': doorName} for id in ['mode', 'sensor', 'status', 'sensorid', 'temperature', 'voltage', 'camera', 'events', 'permission']: item = door.find(id) if item is not None: dev[id] = item.text garage_state = door.find('status').text dev['status'] = self.DOOR_STATE[garage_state] self._device_states[doorNum] = self.DOOR_STATE[garage_state] garage_doors.append(dev) return garage_doors except TypeError as ex: print(ex) return False else: return False;
[ "def", "get_devices", "(", "self", ")", ":", "devices", "=", "self", ".", "make_request", "(", "'[\"{username}\",\"{password}\",\"info\",\"\",\"\"]'", ".", "format", "(", "username", "=", "self", ".", "username", ",", "password", "=", "self", ".", "password", ")", ")", "if", "devices", "!=", "False", ":", "garage_doors", "=", "[", "]", "try", ":", "self", ".", "apicode", "=", "devices", ".", "find", "(", "'apicode'", ")", ".", "text", "self", ".", "_device_states", "=", "{", "}", "for", "doorNum", "in", "range", "(", "1", ",", "4", ")", ":", "door", "=", "devices", ".", "find", "(", "'door'", "+", "str", "(", "doorNum", ")", ")", "doorName", "=", "door", ".", "find", "(", "'name'", ")", ".", "text", "if", "doorName", ":", "dev", "=", "{", "'door'", ":", "doorNum", ",", "'name'", ":", "doorName", "}", "for", "id", "in", "[", "'mode'", ",", "'sensor'", ",", "'status'", ",", "'sensorid'", ",", "'temperature'", ",", "'voltage'", ",", "'camera'", ",", "'events'", ",", "'permission'", "]", ":", "item", "=", "door", ".", "find", "(", "id", ")", "if", "item", "is", "not", "None", ":", "dev", "[", "id", "]", "=", "item", ".", "text", "garage_state", "=", "door", ".", "find", "(", "'status'", ")", ".", "text", "dev", "[", "'status'", "]", "=", "self", ".", "DOOR_STATE", "[", "garage_state", "]", "self", ".", "_device_states", "[", "doorNum", "]", "=", "self", ".", "DOOR_STATE", "[", "garage_state", "]", "garage_doors", ".", "append", "(", "dev", ")", "return", "garage_doors", "except", "TypeError", "as", "ex", ":", "print", "(", "ex", ")", "return", "False", "else", ":", "return", "False" ]
List all garage door devices.
[ "List", "all", "garage", "door", "devices", "." ]
3cc0a5d9e493024eeb0c07b39b2b90f7b5b7b406
https://github.com/dlbroadfoot/pygogogate2/blob/3cc0a5d9e493024eeb0c07b39b2b90f7b5b7b406/pygogogate2/__init__.py#L70-L102
train
dlbroadfoot/pygogogate2
pygogogate2/__init__.py
Gogogate2API.get_status
def get_status(self, device_id): """List only MyQ garage door devices.""" devices = self.get_devices() if devices != False: for device in devices: if device['door'] == device_id: return device['status'] return False
python
def get_status(self, device_id): """List only MyQ garage door devices.""" devices = self.get_devices() if devices != False: for device in devices: if device['door'] == device_id: return device['status'] return False
[ "def", "get_status", "(", "self", ",", "device_id", ")", ":", "devices", "=", "self", ".", "get_devices", "(", ")", "if", "devices", "!=", "False", ":", "for", "device", "in", "devices", ":", "if", "device", "[", "'door'", "]", "==", "device_id", ":", "return", "device", "[", "'status'", "]", "return", "False" ]
List only MyQ garage door devices.
[ "List", "only", "MyQ", "garage", "door", "devices", "." ]
3cc0a5d9e493024eeb0c07b39b2b90f7b5b7b406
https://github.com/dlbroadfoot/pygogogate2/blob/3cc0a5d9e493024eeb0c07b39b2b90f7b5b7b406/pygogogate2/__init__.py#L105-L114
train
lexibank/pylexibank
src/pylexibank/transcription.py
analyze
def analyze(segments, analysis, lookup=dict(bipa={}, dolgo={})): """ Test a sequence for compatibility with CLPA and LingPy. :param analysis: Pass a `TranscriptionAnalysis` instance for cumulative reporting. """ # raise a ValueError in case of empty segments/strings if not segments: raise ValueError('Empty sequence.') # test if at least one element in `segments` has information # (helps to catch really badly formed input, such as ['\n'] if not [segment for segment in segments if segment.strip()]: raise ValueError('No information in the sequence.') # build the phonologic and sound class analyses try: bipa_analysis, sc_analysis = [], [] for s in segments: a = lookup['bipa'].get(s) if a is None: a = lookup['bipa'].setdefault(s, BIPA[s]) bipa_analysis.append(a) sc = lookup['dolgo'].get(s) if sc is None: sc = lookup['dolgo'].setdefault(s, BIPA.translate(s, DOLGO)) sc_analysis.append(sc) except: # noqa print(segments) raise # compute general errors; this loop must take place outside the # following one because the code for computing single errors (either # in `bipa_analysis` or in `soundclass_analysis`) is unnecessary # complicated for sound_bipa, sound_class in zip(bipa_analysis, sc_analysis): if isinstance(sound_bipa, pyclts.models.UnknownSound) or sound_class == '?': analysis.general_errors += 1 # iterate over the segments and analyses, updating counts of occurrences # and specific errors for segment, sound_bipa, sound_class in zip(segments, bipa_analysis, sc_analysis): # update the segment count analysis.segments.update([segment]) # add an error if we got an unknown sound, otherwise just append # the `replacements` dictionary if isinstance(sound_bipa, pyclts.models.UnknownSound): analysis.bipa_errors.add(segment) else: analysis.replacements[sound_bipa.source].add(sound_bipa.__unicode__()) # update sound class errors, if any if sound_class == '?': analysis.sclass_errors.add(segment) return segments, bipa_analysis, sc_analysis, analysis
python
def analyze(segments, analysis, lookup=dict(bipa={}, dolgo={})): """ Test a sequence for compatibility with CLPA and LingPy. :param analysis: Pass a `TranscriptionAnalysis` instance for cumulative reporting. """ # raise a ValueError in case of empty segments/strings if not segments: raise ValueError('Empty sequence.') # test if at least one element in `segments` has information # (helps to catch really badly formed input, such as ['\n'] if not [segment for segment in segments if segment.strip()]: raise ValueError('No information in the sequence.') # build the phonologic and sound class analyses try: bipa_analysis, sc_analysis = [], [] for s in segments: a = lookup['bipa'].get(s) if a is None: a = lookup['bipa'].setdefault(s, BIPA[s]) bipa_analysis.append(a) sc = lookup['dolgo'].get(s) if sc is None: sc = lookup['dolgo'].setdefault(s, BIPA.translate(s, DOLGO)) sc_analysis.append(sc) except: # noqa print(segments) raise # compute general errors; this loop must take place outside the # following one because the code for computing single errors (either # in `bipa_analysis` or in `soundclass_analysis`) is unnecessary # complicated for sound_bipa, sound_class in zip(bipa_analysis, sc_analysis): if isinstance(sound_bipa, pyclts.models.UnknownSound) or sound_class == '?': analysis.general_errors += 1 # iterate over the segments and analyses, updating counts of occurrences # and specific errors for segment, sound_bipa, sound_class in zip(segments, bipa_analysis, sc_analysis): # update the segment count analysis.segments.update([segment]) # add an error if we got an unknown sound, otherwise just append # the `replacements` dictionary if isinstance(sound_bipa, pyclts.models.UnknownSound): analysis.bipa_errors.add(segment) else: analysis.replacements[sound_bipa.source].add(sound_bipa.__unicode__()) # update sound class errors, if any if sound_class == '?': analysis.sclass_errors.add(segment) return segments, bipa_analysis, sc_analysis, analysis
[ "def", "analyze", "(", "segments", ",", "analysis", ",", "lookup", "=", "dict", "(", "bipa", "=", "{", "}", ",", "dolgo", "=", "{", "}", ")", ")", ":", "# raise a ValueError in case of empty segments/strings", "if", "not", "segments", ":", "raise", "ValueError", "(", "'Empty sequence.'", ")", "# test if at least one element in `segments` has information", "# (helps to catch really badly formed input, such as ['\\n']", "if", "not", "[", "segment", "for", "segment", "in", "segments", "if", "segment", ".", "strip", "(", ")", "]", ":", "raise", "ValueError", "(", "'No information in the sequence.'", ")", "# build the phonologic and sound class analyses", "try", ":", "bipa_analysis", ",", "sc_analysis", "=", "[", "]", ",", "[", "]", "for", "s", "in", "segments", ":", "a", "=", "lookup", "[", "'bipa'", "]", ".", "get", "(", "s", ")", "if", "a", "is", "None", ":", "a", "=", "lookup", "[", "'bipa'", "]", ".", "setdefault", "(", "s", ",", "BIPA", "[", "s", "]", ")", "bipa_analysis", ".", "append", "(", "a", ")", "sc", "=", "lookup", "[", "'dolgo'", "]", ".", "get", "(", "s", ")", "if", "sc", "is", "None", ":", "sc", "=", "lookup", "[", "'dolgo'", "]", ".", "setdefault", "(", "s", ",", "BIPA", ".", "translate", "(", "s", ",", "DOLGO", ")", ")", "sc_analysis", ".", "append", "(", "sc", ")", "except", ":", "# noqa", "print", "(", "segments", ")", "raise", "# compute general errors; this loop must take place outside the", "# following one because the code for computing single errors (either", "# in `bipa_analysis` or in `soundclass_analysis`) is unnecessary", "# complicated", "for", "sound_bipa", ",", "sound_class", "in", "zip", "(", "bipa_analysis", ",", "sc_analysis", ")", ":", "if", "isinstance", "(", "sound_bipa", ",", "pyclts", ".", "models", ".", "UnknownSound", ")", "or", "sound_class", "==", "'?'", ":", "analysis", ".", "general_errors", "+=", "1", "# iterate over the segments and analyses, updating counts of occurrences", "# and specific errors", "for", "segment", ",", "sound_bipa", ",", "sound_class", "in", "zip", "(", "segments", ",", "bipa_analysis", ",", "sc_analysis", ")", ":", "# update the segment count", "analysis", ".", "segments", ".", "update", "(", "[", "segment", "]", ")", "# add an error if we got an unknown sound, otherwise just append", "# the `replacements` dictionary", "if", "isinstance", "(", "sound_bipa", ",", "pyclts", ".", "models", ".", "UnknownSound", ")", ":", "analysis", ".", "bipa_errors", ".", "add", "(", "segment", ")", "else", ":", "analysis", ".", "replacements", "[", "sound_bipa", ".", "source", "]", ".", "add", "(", "sound_bipa", ".", "__unicode__", "(", ")", ")", "# update sound class errors, if any", "if", "sound_class", "==", "'?'", ":", "analysis", ".", "sclass_errors", ".", "add", "(", "segment", ")", "return", "segments", ",", "bipa_analysis", ",", "sc_analysis", ",", "analysis" ]
Test a sequence for compatibility with CLPA and LingPy. :param analysis: Pass a `TranscriptionAnalysis` instance for cumulative reporting.
[ "Test", "a", "sequence", "for", "compatibility", "with", "CLPA", "and", "LingPy", "." ]
c28e7f122f20de1232623dd7003cb5b01535e581
https://github.com/lexibank/pylexibank/blob/c28e7f122f20de1232623dd7003cb5b01535e581/src/pylexibank/transcription.py#L37-L94
train
tamasgal/km3pipe
km3pipe/mc.py
most_energetic
def most_energetic(df): """Grab most energetic particle from mc_tracks dataframe.""" idx = df.groupby(['event_id'])['energy'].transform(max) == df['energy'] return df[idx].reindex()
python
def most_energetic(df): """Grab most energetic particle from mc_tracks dataframe.""" idx = df.groupby(['event_id'])['energy'].transform(max) == df['energy'] return df[idx].reindex()
[ "def", "most_energetic", "(", "df", ")", ":", "idx", "=", "df", ".", "groupby", "(", "[", "'event_id'", "]", ")", "[", "'energy'", "]", ".", "transform", "(", "max", ")", "==", "df", "[", "'energy'", "]", "return", "df", "[", "idx", "]", ".", "reindex", "(", ")" ]
Grab most energetic particle from mc_tracks dataframe.
[ "Grab", "most", "energetic", "particle", "from", "mc_tracks", "dataframe", "." ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/mc.py#L101-L104
train
tamasgal/km3pipe
km3pipe/controlhost.py
Client._connect
def _connect(self): """Connect to JLigier""" log.debug("Connecting to JLigier") self.socket = socket.socket() self.socket.connect((self.host, self.port))
python
def _connect(self): """Connect to JLigier""" log.debug("Connecting to JLigier") self.socket = socket.socket() self.socket.connect((self.host, self.port))
[ "def", "_connect", "(", "self", ")", ":", "log", ".", "debug", "(", "\"Connecting to JLigier\"", ")", "self", ".", "socket", "=", "socket", ".", "socket", "(", ")", "self", ".", "socket", ".", "connect", "(", "(", "self", ".", "host", ",", "self", ".", "port", ")", ")" ]
Connect to JLigier
[ "Connect", "to", "JLigier" ]
7a9b59ac899a28775b5bdc5d391d9a5340d08040
https://github.com/tamasgal/km3pipe/blob/7a9b59ac899a28775b5bdc5d391d9a5340d08040/km3pipe/controlhost.py#L124-L128
train