repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
sequence
docstring
stringlengths
3
17.3k
docstring_tokens
sequence
sha
stringlengths
40
40
url
stringlengths
87
242
partition
stringclasses
1 value
rfk/playitagainsam
playitagainsam/util.py
forkexec_pty
def forkexec_pty(argv, env=None, size=None): """Fork a child process attached to a pty.""" child_pid, child_fd = pty.fork() if child_pid == 0: os.closerange(3, MAXFD) environ = os.environ.copy() if env is not None: environ.update(env) os.execve(argv[0], argv, environ) if size is None: try: size = get_terminal_size(1) except Exception: size = (80, 24) set_terminal_size(child_fd, size) return child_pid, child_fd
python
def forkexec_pty(argv, env=None, size=None): """Fork a child process attached to a pty.""" child_pid, child_fd = pty.fork() if child_pid == 0: os.closerange(3, MAXFD) environ = os.environ.copy() if env is not None: environ.update(env) os.execve(argv[0], argv, environ) if size is None: try: size = get_terminal_size(1) except Exception: size = (80, 24) set_terminal_size(child_fd, size) return child_pid, child_fd
[ "def", "forkexec_pty", "(", "argv", ",", "env", "=", "None", ",", "size", "=", "None", ")", ":", "child_pid", ",", "child_fd", "=", "pty", ".", "fork", "(", ")", "if", "child_pid", "==", "0", ":", "os", ".", "closerange", "(", "3", ",", "MAXFD", ")", "environ", "=", "os", ".", "environ", ".", "copy", "(", ")", "if", "env", "is", "not", "None", ":", "environ", ".", "update", "(", "env", ")", "os", ".", "execve", "(", "argv", "[", "0", "]", ",", "argv", ",", "environ", ")", "if", "size", "is", "None", ":", "try", ":", "size", "=", "get_terminal_size", "(", "1", ")", "except", "Exception", ":", "size", "=", "(", "80", ",", "24", ")", "set_terminal_size", "(", "child_fd", ",", "size", ")", "return", "child_pid", ",", "child_fd" ]
Fork a child process attached to a pty.
[ "Fork", "a", "child", "process", "attached", "to", "a", "pty", "." ]
897cc8e8ca920a4afb8597b4a345361065a3f108
https://github.com/rfk/playitagainsam/blob/897cc8e8ca920a4afb8597b4a345361065a3f108/playitagainsam/util.py#L87-L102
train
rfk/playitagainsam
playitagainsam/util.py
get_ancestor_processes
def get_ancestor_processes(): """Get a list of the executables of all ancestor processes.""" if not _ANCESTOR_PROCESSES and psutil is not None: proc = psutil.Process(os.getpid()) while proc.parent() is not None: try: _ANCESTOR_PROCESSES.append(proc.parent().exe()) proc = proc.parent() except psutil.Error: break return _ANCESTOR_PROCESSES
python
def get_ancestor_processes(): """Get a list of the executables of all ancestor processes.""" if not _ANCESTOR_PROCESSES and psutil is not None: proc = psutil.Process(os.getpid()) while proc.parent() is not None: try: _ANCESTOR_PROCESSES.append(proc.parent().exe()) proc = proc.parent() except psutil.Error: break return _ANCESTOR_PROCESSES
[ "def", "get_ancestor_processes", "(", ")", ":", "if", "not", "_ANCESTOR_PROCESSES", "and", "psutil", "is", "not", "None", ":", "proc", "=", "psutil", ".", "Process", "(", "os", ".", "getpid", "(", ")", ")", "while", "proc", ".", "parent", "(", ")", "is", "not", "None", ":", "try", ":", "_ANCESTOR_PROCESSES", ".", "append", "(", "proc", ".", "parent", "(", ")", ".", "exe", "(", ")", ")", "proc", "=", "proc", ".", "parent", "(", ")", "except", "psutil", ".", "Error", ":", "break", "return", "_ANCESTOR_PROCESSES" ]
Get a list of the executables of all ancestor processes.
[ "Get", "a", "list", "of", "the", "executables", "of", "all", "ancestor", "processes", "." ]
897cc8e8ca920a4afb8597b4a345361065a3f108
https://github.com/rfk/playitagainsam/blob/897cc8e8ca920a4afb8597b4a345361065a3f108/playitagainsam/util.py#L121-L131
train
rfk/playitagainsam
playitagainsam/util.py
get_default_shell
def get_default_shell(environ=None, fallback=_UNSPECIFIED): """Get the user's default shell program.""" if environ is None: environ = os.environ # If the option is specified in the environment, respect it. if "PIAS_OPT_SHELL" in environ: return environ["PIAS_OPT_SHELL"] # Find all candiate shell programs. shells = [] for filename in (environ.get("SHELL"), "bash", "sh"): if filename is not None: filepath = find_executable(filename, environ) if filepath is not None: shells.append(filepath) # If one of them is an ancestor process, use that. for ancestor in get_ancestor_processes(): if ancestor in shells: return ancestor # Otherwise use the first option that we found. for shell in shells: return shell # Use an explicit fallback option if given. if fallback is not _UNSPECIFIED: return fallback raise ValueError("Could not find a shell")
python
def get_default_shell(environ=None, fallback=_UNSPECIFIED): """Get the user's default shell program.""" if environ is None: environ = os.environ # If the option is specified in the environment, respect it. if "PIAS_OPT_SHELL" in environ: return environ["PIAS_OPT_SHELL"] # Find all candiate shell programs. shells = [] for filename in (environ.get("SHELL"), "bash", "sh"): if filename is not None: filepath = find_executable(filename, environ) if filepath is not None: shells.append(filepath) # If one of them is an ancestor process, use that. for ancestor in get_ancestor_processes(): if ancestor in shells: return ancestor # Otherwise use the first option that we found. for shell in shells: return shell # Use an explicit fallback option if given. if fallback is not _UNSPECIFIED: return fallback raise ValueError("Could not find a shell")
[ "def", "get_default_shell", "(", "environ", "=", "None", ",", "fallback", "=", "_UNSPECIFIED", ")", ":", "if", "environ", "is", "None", ":", "environ", "=", "os", ".", "environ", "# If the option is specified in the environment, respect it.", "if", "\"PIAS_OPT_SHELL\"", "in", "environ", ":", "return", "environ", "[", "\"PIAS_OPT_SHELL\"", "]", "# Find all candiate shell programs.", "shells", "=", "[", "]", "for", "filename", "in", "(", "environ", ".", "get", "(", "\"SHELL\"", ")", ",", "\"bash\"", ",", "\"sh\"", ")", ":", "if", "filename", "is", "not", "None", ":", "filepath", "=", "find_executable", "(", "filename", ",", "environ", ")", "if", "filepath", "is", "not", "None", ":", "shells", ".", "append", "(", "filepath", ")", "# If one of them is an ancestor process, use that.", "for", "ancestor", "in", "get_ancestor_processes", "(", ")", ":", "if", "ancestor", "in", "shells", ":", "return", "ancestor", "# Otherwise use the first option that we found.", "for", "shell", "in", "shells", ":", "return", "shell", "# Use an explicit fallback option if given.", "if", "fallback", "is", "not", "_UNSPECIFIED", ":", "return", "fallback", "raise", "ValueError", "(", "\"Could not find a shell\"", ")" ]
Get the user's default shell program.
[ "Get", "the", "user", "s", "default", "shell", "program", "." ]
897cc8e8ca920a4afb8597b4a345361065a3f108
https://github.com/rfk/playitagainsam/blob/897cc8e8ca920a4afb8597b4a345361065a3f108/playitagainsam/util.py#L134-L158
train
rfk/playitagainsam
playitagainsam/util.py
get_default_terminal
def get_default_terminal(environ=None, fallback=_UNSPECIFIED): """Get the user's default terminal program.""" if environ is None: environ = os.environ # If the option is specified in the environment, respect it. if "PIAS_OPT_TERMINAL" in environ: return environ["PIAS_OPT_TERMINAL"] # Find all candiate terminal programs. terminals = [] colorterm = environ.get("COLORTERM") for filename in (colorterm, "gnome-terminal", "konsole", "xterm"): if filename is not None: filepath = find_executable(filename, environ) if filepath is not None: terminals.append(filepath) # If one of them is an ancestor process, use that. for ancestor in get_ancestor_processes(): if ancestor in terminals: return ancestor # Otherwise use the first option that we found. for term in terminals: return term # Use an explicit fallback option if given. if fallback is not _UNSPECIFIED: return fallback raise ValueError("Could not find a terminal")
python
def get_default_terminal(environ=None, fallback=_UNSPECIFIED): """Get the user's default terminal program.""" if environ is None: environ = os.environ # If the option is specified in the environment, respect it. if "PIAS_OPT_TERMINAL" in environ: return environ["PIAS_OPT_TERMINAL"] # Find all candiate terminal programs. terminals = [] colorterm = environ.get("COLORTERM") for filename in (colorterm, "gnome-terminal", "konsole", "xterm"): if filename is not None: filepath = find_executable(filename, environ) if filepath is not None: terminals.append(filepath) # If one of them is an ancestor process, use that. for ancestor in get_ancestor_processes(): if ancestor in terminals: return ancestor # Otherwise use the first option that we found. for term in terminals: return term # Use an explicit fallback option if given. if fallback is not _UNSPECIFIED: return fallback raise ValueError("Could not find a terminal")
[ "def", "get_default_terminal", "(", "environ", "=", "None", ",", "fallback", "=", "_UNSPECIFIED", ")", ":", "if", "environ", "is", "None", ":", "environ", "=", "os", ".", "environ", "# If the option is specified in the environment, respect it.", "if", "\"PIAS_OPT_TERMINAL\"", "in", "environ", ":", "return", "environ", "[", "\"PIAS_OPT_TERMINAL\"", "]", "# Find all candiate terminal programs.", "terminals", "=", "[", "]", "colorterm", "=", "environ", ".", "get", "(", "\"COLORTERM\"", ")", "for", "filename", "in", "(", "colorterm", ",", "\"gnome-terminal\"", ",", "\"konsole\"", ",", "\"xterm\"", ")", ":", "if", "filename", "is", "not", "None", ":", "filepath", "=", "find_executable", "(", "filename", ",", "environ", ")", "if", "filepath", "is", "not", "None", ":", "terminals", ".", "append", "(", "filepath", ")", "# If one of them is an ancestor process, use that.", "for", "ancestor", "in", "get_ancestor_processes", "(", ")", ":", "if", "ancestor", "in", "terminals", ":", "return", "ancestor", "# Otherwise use the first option that we found.", "for", "term", "in", "terminals", ":", "return", "term", "# Use an explicit fallback option if given.", "if", "fallback", "is", "not", "_UNSPECIFIED", ":", "return", "fallback", "raise", "ValueError", "(", "\"Could not find a terminal\"", ")" ]
Get the user's default terminal program.
[ "Get", "the", "user", "s", "default", "terminal", "program", "." ]
897cc8e8ca920a4afb8597b4a345361065a3f108
https://github.com/rfk/playitagainsam/blob/897cc8e8ca920a4afb8597b4a345361065a3f108/playitagainsam/util.py#L161-L186
train
rfk/playitagainsam
playitagainsam/util.py
get_pias_script
def get_pias_script(environ=None): """Get the path to the playitagainsam command-line script.""" if os.path.basename(sys.argv[0]) == "pias": return sys.argv[0] filepath = find_executable("pias", environ) if filepath is not None: return filepath filepath = os.path.join(os.path.dirname(__file__), "__main__.py") # XXX TODO: check if executable if os.path.exists(filepath): return filepath raise RuntimeError("Could not locate the pias script.")
python
def get_pias_script(environ=None): """Get the path to the playitagainsam command-line script.""" if os.path.basename(sys.argv[0]) == "pias": return sys.argv[0] filepath = find_executable("pias", environ) if filepath is not None: return filepath filepath = os.path.join(os.path.dirname(__file__), "__main__.py") # XXX TODO: check if executable if os.path.exists(filepath): return filepath raise RuntimeError("Could not locate the pias script.")
[ "def", "get_pias_script", "(", "environ", "=", "None", ")", ":", "if", "os", ".", "path", ".", "basename", "(", "sys", ".", "argv", "[", "0", "]", ")", "==", "\"pias\"", ":", "return", "sys", ".", "argv", "[", "0", "]", "filepath", "=", "find_executable", "(", "\"pias\"", ",", "environ", ")", "if", "filepath", "is", "not", "None", ":", "return", "filepath", "filepath", "=", "os", ".", "path", ".", "join", "(", "os", ".", "path", ".", "dirname", "(", "__file__", ")", ",", "\"__main__.py\"", ")", "# XXX TODO: check if executable", "if", "os", ".", "path", ".", "exists", "(", "filepath", ")", ":", "return", "filepath", "raise", "RuntimeError", "(", "\"Could not locate the pias script.\"", ")" ]
Get the path to the playitagainsam command-line script.
[ "Get", "the", "path", "to", "the", "playitagainsam", "command", "-", "line", "script", "." ]
897cc8e8ca920a4afb8597b4a345361065a3f108
https://github.com/rfk/playitagainsam/blob/897cc8e8ca920a4afb8597b4a345361065a3f108/playitagainsam/util.py#L189-L200
train
ponty/eagexp
eagexp/airwires.py
airwires
def airwires(board, showgui=0): 'search for airwires in eagle board' board = Path(board).expand().abspath() file_out = tempfile.NamedTemporaryFile(suffix='.txt', delete=0) file_out.close() ulp = ulp_templ.replace('FILE_NAME', file_out.name) file_ulp = tempfile.NamedTemporaryFile(suffix='.ulp', delete=0) file_ulp.write(ulp.encode('utf-8')) file_ulp.close() commands = [ 'run ' + file_ulp.name, 'quit', ] command_eagle(board, commands=commands, showgui=showgui) n = int(Path(file_out.name).text()) Path(file_out.name).remove() Path(file_ulp.name).remove() return n
python
def airwires(board, showgui=0): 'search for airwires in eagle board' board = Path(board).expand().abspath() file_out = tempfile.NamedTemporaryFile(suffix='.txt', delete=0) file_out.close() ulp = ulp_templ.replace('FILE_NAME', file_out.name) file_ulp = tempfile.NamedTemporaryFile(suffix='.ulp', delete=0) file_ulp.write(ulp.encode('utf-8')) file_ulp.close() commands = [ 'run ' + file_ulp.name, 'quit', ] command_eagle(board, commands=commands, showgui=showgui) n = int(Path(file_out.name).text()) Path(file_out.name).remove() Path(file_ulp.name).remove() return n
[ "def", "airwires", "(", "board", ",", "showgui", "=", "0", ")", ":", "board", "=", "Path", "(", "board", ")", ".", "expand", "(", ")", ".", "abspath", "(", ")", "file_out", "=", "tempfile", ".", "NamedTemporaryFile", "(", "suffix", "=", "'.txt'", ",", "delete", "=", "0", ")", "file_out", ".", "close", "(", ")", "ulp", "=", "ulp_templ", ".", "replace", "(", "'FILE_NAME'", ",", "file_out", ".", "name", ")", "file_ulp", "=", "tempfile", ".", "NamedTemporaryFile", "(", "suffix", "=", "'.ulp'", ",", "delete", "=", "0", ")", "file_ulp", ".", "write", "(", "ulp", ".", "encode", "(", "'utf-8'", ")", ")", "file_ulp", ".", "close", "(", ")", "commands", "=", "[", "'run '", "+", "file_ulp", ".", "name", ",", "'quit'", ",", "]", "command_eagle", "(", "board", ",", "commands", "=", "commands", ",", "showgui", "=", "showgui", ")", "n", "=", "int", "(", "Path", "(", "file_out", ".", "name", ")", ".", "text", "(", ")", ")", "Path", "(", "file_out", ".", "name", ")", ".", "remove", "(", ")", "Path", "(", "file_ulp", ".", "name", ")", ".", "remove", "(", ")", "return", "n" ]
search for airwires in eagle board
[ "search", "for", "airwires", "in", "eagle", "board" ]
1dd5108c1d8112cc87d1bda64fa6c2784ccf0ff2
https://github.com/ponty/eagexp/blob/1dd5108c1d8112cc87d1bda64fa6c2784ccf0ff2/eagexp/airwires.py#L27-L51
train
SUNCAT-Center/CatHub
cathub/cathubsqlite.py
CathubSQLite._initialize
def _initialize(self, con): """Set up tables in SQL""" if self.initialized: return SQLite3Database()._initialize(con) # ASE db initialization cur = con.execute( 'SELECT COUNT(*) FROM sqlite_master WHERE name="reaction"') if cur.fetchone()[0] == 0: # no reaction table for init_command in init_commands: con.execute(init_command) # Create tables con.commit() self.initialized = True
python
def _initialize(self, con): """Set up tables in SQL""" if self.initialized: return SQLite3Database()._initialize(con) # ASE db initialization cur = con.execute( 'SELECT COUNT(*) FROM sqlite_master WHERE name="reaction"') if cur.fetchone()[0] == 0: # no reaction table for init_command in init_commands: con.execute(init_command) # Create tables con.commit() self.initialized = True
[ "def", "_initialize", "(", "self", ",", "con", ")", ":", "if", "self", ".", "initialized", ":", "return", "SQLite3Database", "(", ")", ".", "_initialize", "(", "con", ")", "# ASE db initialization", "cur", "=", "con", ".", "execute", "(", "'SELECT COUNT(*) FROM sqlite_master WHERE name=\"reaction\"'", ")", "if", "cur", ".", "fetchone", "(", ")", "[", "0", "]", "==", "0", ":", "# no reaction table", "for", "init_command", "in", "init_commands", ":", "con", ".", "execute", "(", "init_command", ")", "# Create tables", "con", ".", "commit", "(", ")", "self", ".", "initialized", "=", "True" ]
Set up tables in SQL
[ "Set", "up", "tables", "in", "SQL" ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/cathubsqlite.py#L118-L133
train
SUNCAT-Center/CatHub
cathub/cathubsqlite.py
CathubSQLite.write_publication
def write_publication(self, values): """ Write publication info to db Parameters ---------- values: dict with entries {'pub_id': str (short name for publication), 'authors': list of str () 'journal': str, 'volume': str, 'number': str, 'pages': 'str' 'year': int, 'publisher': str, 'doi': str, 'tags': list of str} """ con = self.connection or self._connect() self._initialize(con) cur = con.cursor() values = (values['pub_id'], values['title'], json.dumps(values['authors']), values['journal'], values['volume'], values['number'], values['pages'], values['year'], values['publisher'], values['doi'], json.dumps(values['tags'])) q = self.default + ',' + ', '.join('?' * len(values)) cur.execute('INSERT OR IGNORE INTO publication VALUES ({})'.format(q), values) pid = self.get_last_id(cur, table='publication') if self.connection is None: con.commit() con.close() return pid
python
def write_publication(self, values): """ Write publication info to db Parameters ---------- values: dict with entries {'pub_id': str (short name for publication), 'authors': list of str () 'journal': str, 'volume': str, 'number': str, 'pages': 'str' 'year': int, 'publisher': str, 'doi': str, 'tags': list of str} """ con = self.connection or self._connect() self._initialize(con) cur = con.cursor() values = (values['pub_id'], values['title'], json.dumps(values['authors']), values['journal'], values['volume'], values['number'], values['pages'], values['year'], values['publisher'], values['doi'], json.dumps(values['tags'])) q = self.default + ',' + ', '.join('?' * len(values)) cur.execute('INSERT OR IGNORE INTO publication VALUES ({})'.format(q), values) pid = self.get_last_id(cur, table='publication') if self.connection is None: con.commit() con.close() return pid
[ "def", "write_publication", "(", "self", ",", "values", ")", ":", "con", "=", "self", ".", "connection", "or", "self", ".", "_connect", "(", ")", "self", ".", "_initialize", "(", "con", ")", "cur", "=", "con", ".", "cursor", "(", ")", "values", "=", "(", "values", "[", "'pub_id'", "]", ",", "values", "[", "'title'", "]", ",", "json", ".", "dumps", "(", "values", "[", "'authors'", "]", ")", ",", "values", "[", "'journal'", "]", ",", "values", "[", "'volume'", "]", ",", "values", "[", "'number'", "]", ",", "values", "[", "'pages'", "]", ",", "values", "[", "'year'", "]", ",", "values", "[", "'publisher'", "]", ",", "values", "[", "'doi'", "]", ",", "json", ".", "dumps", "(", "values", "[", "'tags'", "]", ")", ")", "q", "=", "self", ".", "default", "+", "','", "+", "', '", ".", "join", "(", "'?'", "*", "len", "(", "values", ")", ")", "cur", ".", "execute", "(", "'INSERT OR IGNORE INTO publication VALUES ({})'", ".", "format", "(", "q", ")", ",", "values", ")", "pid", "=", "self", ".", "get_last_id", "(", "cur", ",", "table", "=", "'publication'", ")", "if", "self", ".", "connection", "is", "None", ":", "con", ".", "commit", "(", ")", "con", ".", "close", "(", ")", "return", "pid" ]
Write publication info to db Parameters ---------- values: dict with entries {'pub_id': str (short name for publication), 'authors': list of str () 'journal': str, 'volume': str, 'number': str, 'pages': 'str' 'year': int, 'publisher': str, 'doi': str, 'tags': list of str}
[ "Write", "publication", "info", "to", "db" ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/cathubsqlite.py#L157-L201
train
SUNCAT-Center/CatHub
cathub/cathubsqlite.py
CathubSQLite.write
def write(self, values, data=None): """ Write reaction info to db file Parameters ---------- values: dict The values dict can include: {'chemical_composition': str (chemical composition on empty slab) , 'surface_composition': str (reduced chemical composition or shortname), 'facet': str 'sites': dict adsorption sites of species. f.ex: {'OH': 'ontop', 'O': 'hollow'} 'coverages': dict coverage of adsorbates relative to the unit cell f.ex. {'OH': 0.25, 'O': 0.5}) 'reactants'/ 'products': dict keys with name of chemical species folloved by phase (gas, *) values are the prefactor in the reaction. For reaction H2Ogas -> 2Hstar + O star you would write: 'reactants': {OHstar: 1, Hstar: 2} 'products': {OHstar: 1, Hstar: 2} 'reaction_energy': float 'activation_energy': float 'dft_code': str 'dft_functional': str 'username': str 'pub_id': str Should match the pub_id of the corresponding publications } """ con = self.connection or self._connect() self._initialize(con) cur = con.cursor() pub_id = values['pub_id'] ase_ids = values['ase_ids'] energy_corrections = values['energy_corrections'] if ase_ids is not None: check_ase_ids(values, ase_ids) else: ase_ids = {} values = (values['chemical_composition'], values['surface_composition'], values['facet'], json.dumps(values['sites']), json.dumps(values['coverages']), json.dumps(values['reactants']), json.dumps(values['products']), values['reaction_energy'], values['activation_energy'], values['dft_code'], values['dft_functional'], values['username'], values['pub_id'] ) """ Write to reaction table""" q = self.default + ',' + ', '.join('?' * len(values)) cur.execute('INSERT INTO reaction VALUES ({})'.format(q), values) id = self.get_last_id(cur) reaction_structure_values = [] """ Write to publication_system and reaction_system tables""" for name, ase_id in ase_ids.items(): if name in energy_corrections: energy_correction = energy_corrections[name] else: energy_correction = 0 reaction_structure_values.append([name, energy_correction, ase_id, id]) insert_statement = """INSERT OR IGNORE INTO publication_system(ase_id, pub_id) VALUES (?, ?)""" cur.execute(insert_statement, [ase_id, pub_id]) cur.executemany('INSERT INTO reaction_system VALUES (?, ?, ?, ?)', reaction_structure_values) if self.connection is None: con.commit() con.close() return id
python
def write(self, values, data=None): """ Write reaction info to db file Parameters ---------- values: dict The values dict can include: {'chemical_composition': str (chemical composition on empty slab) , 'surface_composition': str (reduced chemical composition or shortname), 'facet': str 'sites': dict adsorption sites of species. f.ex: {'OH': 'ontop', 'O': 'hollow'} 'coverages': dict coverage of adsorbates relative to the unit cell f.ex. {'OH': 0.25, 'O': 0.5}) 'reactants'/ 'products': dict keys with name of chemical species folloved by phase (gas, *) values are the prefactor in the reaction. For reaction H2Ogas -> 2Hstar + O star you would write: 'reactants': {OHstar: 1, Hstar: 2} 'products': {OHstar: 1, Hstar: 2} 'reaction_energy': float 'activation_energy': float 'dft_code': str 'dft_functional': str 'username': str 'pub_id': str Should match the pub_id of the corresponding publications } """ con = self.connection or self._connect() self._initialize(con) cur = con.cursor() pub_id = values['pub_id'] ase_ids = values['ase_ids'] energy_corrections = values['energy_corrections'] if ase_ids is not None: check_ase_ids(values, ase_ids) else: ase_ids = {} values = (values['chemical_composition'], values['surface_composition'], values['facet'], json.dumps(values['sites']), json.dumps(values['coverages']), json.dumps(values['reactants']), json.dumps(values['products']), values['reaction_energy'], values['activation_energy'], values['dft_code'], values['dft_functional'], values['username'], values['pub_id'] ) """ Write to reaction table""" q = self.default + ',' + ', '.join('?' * len(values)) cur.execute('INSERT INTO reaction VALUES ({})'.format(q), values) id = self.get_last_id(cur) reaction_structure_values = [] """ Write to publication_system and reaction_system tables""" for name, ase_id in ase_ids.items(): if name in energy_corrections: energy_correction = energy_corrections[name] else: energy_correction = 0 reaction_structure_values.append([name, energy_correction, ase_id, id]) insert_statement = """INSERT OR IGNORE INTO publication_system(ase_id, pub_id) VALUES (?, ?)""" cur.execute(insert_statement, [ase_id, pub_id]) cur.executemany('INSERT INTO reaction_system VALUES (?, ?, ?, ?)', reaction_structure_values) if self.connection is None: con.commit() con.close() return id
[ "def", "write", "(", "self", ",", "values", ",", "data", "=", "None", ")", ":", "con", "=", "self", ".", "connection", "or", "self", ".", "_connect", "(", ")", "self", ".", "_initialize", "(", "con", ")", "cur", "=", "con", ".", "cursor", "(", ")", "pub_id", "=", "values", "[", "'pub_id'", "]", "ase_ids", "=", "values", "[", "'ase_ids'", "]", "energy_corrections", "=", "values", "[", "'energy_corrections'", "]", "if", "ase_ids", "is", "not", "None", ":", "check_ase_ids", "(", "values", ",", "ase_ids", ")", "else", ":", "ase_ids", "=", "{", "}", "values", "=", "(", "values", "[", "'chemical_composition'", "]", ",", "values", "[", "'surface_composition'", "]", ",", "values", "[", "'facet'", "]", ",", "json", ".", "dumps", "(", "values", "[", "'sites'", "]", ")", ",", "json", ".", "dumps", "(", "values", "[", "'coverages'", "]", ")", ",", "json", ".", "dumps", "(", "values", "[", "'reactants'", "]", ")", ",", "json", ".", "dumps", "(", "values", "[", "'products'", "]", ")", ",", "values", "[", "'reaction_energy'", "]", ",", "values", "[", "'activation_energy'", "]", ",", "values", "[", "'dft_code'", "]", ",", "values", "[", "'dft_functional'", "]", ",", "values", "[", "'username'", "]", ",", "values", "[", "'pub_id'", "]", ")", "\"\"\" Write to reaction table\"\"\"", "q", "=", "self", ".", "default", "+", "','", "+", "', '", ".", "join", "(", "'?'", "*", "len", "(", "values", ")", ")", "cur", ".", "execute", "(", "'INSERT INTO reaction VALUES ({})'", ".", "format", "(", "q", ")", ",", "values", ")", "id", "=", "self", ".", "get_last_id", "(", "cur", ")", "reaction_structure_values", "=", "[", "]", "\"\"\" Write to publication_system and reaction_system tables\"\"\"", "for", "name", ",", "ase_id", "in", "ase_ids", ".", "items", "(", ")", ":", "if", "name", "in", "energy_corrections", ":", "energy_correction", "=", "energy_corrections", "[", "name", "]", "else", ":", "energy_correction", "=", "0", "reaction_structure_values", ".", "append", "(", "[", "name", ",", "energy_correction", ",", "ase_id", ",", "id", "]", ")", "insert_statement", "=", "\"\"\"INSERT OR IGNORE INTO\n publication_system(ase_id, pub_id) VALUES (?, ?)\"\"\"", "cur", ".", "execute", "(", "insert_statement", ",", "[", "ase_id", ",", "pub_id", "]", ")", "cur", ".", "executemany", "(", "'INSERT INTO reaction_system VALUES (?, ?, ?, ?)'", ",", "reaction_structure_values", ")", "if", "self", ".", "connection", "is", "None", ":", "con", ".", "commit", "(", ")", "con", ".", "close", "(", ")", "return", "id" ]
Write reaction info to db file Parameters ---------- values: dict The values dict can include: {'chemical_composition': str (chemical composition on empty slab) , 'surface_composition': str (reduced chemical composition or shortname), 'facet': str 'sites': dict adsorption sites of species. f.ex: {'OH': 'ontop', 'O': 'hollow'} 'coverages': dict coverage of adsorbates relative to the unit cell f.ex. {'OH': 0.25, 'O': 0.5}) 'reactants'/ 'products': dict keys with name of chemical species folloved by phase (gas, *) values are the prefactor in the reaction. For reaction H2Ogas -> 2Hstar + O star you would write: 'reactants': {OHstar: 1, Hstar: 2} 'products': {OHstar: 1, Hstar: 2} 'reaction_energy': float 'activation_energy': float 'dft_code': str 'dft_functional': str 'username': str 'pub_id': str Should match the pub_id of the corresponding publications }
[ "Write", "reaction", "info", "to", "db", "file" ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/cathubsqlite.py#L203-L291
train
SUNCAT-Center/CatHub
cathub/cathubsqlite.py
CathubSQLite.update
def update(self, id, values, key_names='all'): """ Update reaction info for a selected row Parameters ---------- id: int row integer values: dict See write() method for details key_names: list or 'all' list with name of columns to update. Should match the keys-value pairs in values. default is 'all' """ con = self.connection or self._connect() self._initialize(con) cur = con.cursor() pub_id = values['pub_id'] ase_ids = values['ase_ids'] energy_corrections = values['energy_corrections'] if ase_ids is not None: check_ase_ids(values, ase_ids) else: ase_ids = {} key_list, value_list = get_key_value_list(key_names, values) N_keys = len(key_list) value_strlist = get_value_strlist(value_list) execute_str = ', '.join('{}={}'.format(key_list[i], value_strlist[i]) for i in range(N_keys)) update_command = 'UPDATE reaction SET {} WHERE id = {};'\ .format(execute_str, id) cur.execute(update_command) delete_command = 'DELETE from reaction_system WHERE id = {}'.format(id) cur.execute(delete_command) reaction_structure_values = [] for name, ase_id in ase_ids.items(): reaction_structure_values.append([name, energy_corrections.get(name), ase_id, id]) insert_statement = """INSERT OR IGNORE INTO publication_system(ase_id, pub_id) VALUES (?, ?)""" cur.execute(insert_statement, [ase_id, pub_id]) cur.executemany('INSERT INTO reaction_system VALUES (?, ?, ?, ?)', reaction_structure_values) if self.connection is None: con.commit() con.close() return id
python
def update(self, id, values, key_names='all'): """ Update reaction info for a selected row Parameters ---------- id: int row integer values: dict See write() method for details key_names: list or 'all' list with name of columns to update. Should match the keys-value pairs in values. default is 'all' """ con = self.connection or self._connect() self._initialize(con) cur = con.cursor() pub_id = values['pub_id'] ase_ids = values['ase_ids'] energy_corrections = values['energy_corrections'] if ase_ids is not None: check_ase_ids(values, ase_ids) else: ase_ids = {} key_list, value_list = get_key_value_list(key_names, values) N_keys = len(key_list) value_strlist = get_value_strlist(value_list) execute_str = ', '.join('{}={}'.format(key_list[i], value_strlist[i]) for i in range(N_keys)) update_command = 'UPDATE reaction SET {} WHERE id = {};'\ .format(execute_str, id) cur.execute(update_command) delete_command = 'DELETE from reaction_system WHERE id = {}'.format(id) cur.execute(delete_command) reaction_structure_values = [] for name, ase_id in ase_ids.items(): reaction_structure_values.append([name, energy_corrections.get(name), ase_id, id]) insert_statement = """INSERT OR IGNORE INTO publication_system(ase_id, pub_id) VALUES (?, ?)""" cur.execute(insert_statement, [ase_id, pub_id]) cur.executemany('INSERT INTO reaction_system VALUES (?, ?, ?, ?)', reaction_structure_values) if self.connection is None: con.commit() con.close() return id
[ "def", "update", "(", "self", ",", "id", ",", "values", ",", "key_names", "=", "'all'", ")", ":", "con", "=", "self", ".", "connection", "or", "self", ".", "_connect", "(", ")", "self", ".", "_initialize", "(", "con", ")", "cur", "=", "con", ".", "cursor", "(", ")", "pub_id", "=", "values", "[", "'pub_id'", "]", "ase_ids", "=", "values", "[", "'ase_ids'", "]", "energy_corrections", "=", "values", "[", "'energy_corrections'", "]", "if", "ase_ids", "is", "not", "None", ":", "check_ase_ids", "(", "values", ",", "ase_ids", ")", "else", ":", "ase_ids", "=", "{", "}", "key_list", ",", "value_list", "=", "get_key_value_list", "(", "key_names", ",", "values", ")", "N_keys", "=", "len", "(", "key_list", ")", "value_strlist", "=", "get_value_strlist", "(", "value_list", ")", "execute_str", "=", "', '", ".", "join", "(", "'{}={}'", ".", "format", "(", "key_list", "[", "i", "]", ",", "value_strlist", "[", "i", "]", ")", "for", "i", "in", "range", "(", "N_keys", ")", ")", "update_command", "=", "'UPDATE reaction SET {} WHERE id = {};'", ".", "format", "(", "execute_str", ",", "id", ")", "cur", ".", "execute", "(", "update_command", ")", "delete_command", "=", "'DELETE from reaction_system WHERE id = {}'", ".", "format", "(", "id", ")", "cur", ".", "execute", "(", "delete_command", ")", "reaction_structure_values", "=", "[", "]", "for", "name", ",", "ase_id", "in", "ase_ids", ".", "items", "(", ")", ":", "reaction_structure_values", ".", "append", "(", "[", "name", ",", "energy_corrections", ".", "get", "(", "name", ")", ",", "ase_id", ",", "id", "]", ")", "insert_statement", "=", "\"\"\"INSERT OR IGNORE INTO\n publication_system(ase_id, pub_id) VALUES (?, ?)\"\"\"", "cur", ".", "execute", "(", "insert_statement", ",", "[", "ase_id", ",", "pub_id", "]", ")", "cur", ".", "executemany", "(", "'INSERT INTO reaction_system VALUES (?, ?, ?, ?)'", ",", "reaction_structure_values", ")", "if", "self", ".", "connection", "is", "None", ":", "con", ".", "commit", "(", ")", "con", ".", "close", "(", ")", "return", "id" ]
Update reaction info for a selected row Parameters ---------- id: int row integer values: dict See write() method for details key_names: list or 'all' list with name of columns to update. Should match the keys-value pairs in values. default is 'all'
[ "Update", "reaction", "info", "for", "a", "selected", "row" ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/cathubsqlite.py#L293-L351
train
SUNCAT-Center/CatHub
cathub/cathubsqlite.py
CathubSQLite.get_last_id
def get_last_id(self, cur, table='reaction'): """ Get the id of the last written row in table Parameters ---------- cur: database connection().cursor() object table: str 'reaction', 'publication', 'publication_system', 'reaction_system' Returns: id """ cur.execute("SELECT seq FROM sqlite_sequence WHERE name='{0}'" .format(table)) result = cur.fetchone() if result is not None: id = result[0] else: id = 0 return id
python
def get_last_id(self, cur, table='reaction'): """ Get the id of the last written row in table Parameters ---------- cur: database connection().cursor() object table: str 'reaction', 'publication', 'publication_system', 'reaction_system' Returns: id """ cur.execute("SELECT seq FROM sqlite_sequence WHERE name='{0}'" .format(table)) result = cur.fetchone() if result is not None: id = result[0] else: id = 0 return id
[ "def", "get_last_id", "(", "self", ",", "cur", ",", "table", "=", "'reaction'", ")", ":", "cur", ".", "execute", "(", "\"SELECT seq FROM sqlite_sequence WHERE name='{0}'\"", ".", "format", "(", "table", ")", ")", "result", "=", "cur", ".", "fetchone", "(", ")", "if", "result", "is", "not", "None", ":", "id", "=", "result", "[", "0", "]", "else", ":", "id", "=", "0", "return", "id" ]
Get the id of the last written row in table Parameters ---------- cur: database connection().cursor() object table: str 'reaction', 'publication', 'publication_system', 'reaction_system' Returns: id
[ "Get", "the", "id", "of", "the", "last", "written", "row", "in", "table" ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/cathubsqlite.py#L353-L372
train
guaix-ucm/numina
numina/array/wavecalib/__main__.py
read_wv_master_from_array
def read_wv_master_from_array(master_table, lines='brightest', debugplot=0): """read arc line wavelengths from numpy array Parameters ---------- master_table : Numpy array Numpy array containing the wavelength database. lines : string Indicates which lines to read. For files with a single column or two columns this parameter is irrelevant. For files with three columns, lines='brightest' indicates that only the brightest lines are read, whereas lines='all' means that all the lines are considered. debugplot : int Determines whether intermediate computations and/or plots are displayed. The valid codes are defined in numina.array.display.pause_debugplot. Returns ------- wv_master : 1d numpy array Array with arc line wavelengths. """ # protection if lines not in ['brightest', 'all']: raise ValueError('Unexpected lines=' + str(lines)) # determine wavelengths according to the number of columns if master_table.ndim == 1: wv_master = master_table else: wv_master_all = master_table[:, 0] if master_table.shape[1] == 2: # assume old format wv_master = np.copy(wv_master_all) elif master_table.shape[1] == 3: # assume new format if lines == 'brightest': wv_flag = master_table[:, 1] wv_master = wv_master_all[np.where(wv_flag == 1)] else: wv_master = np.copy(wv_master_all) else: raise ValueError('Lines_catalog file does not have the ' 'expected number of columns') if abs(debugplot) >= 10: print("Reading master table from numpy array") print("wv_master:\n", wv_master) return wv_master
python
def read_wv_master_from_array(master_table, lines='brightest', debugplot=0): """read arc line wavelengths from numpy array Parameters ---------- master_table : Numpy array Numpy array containing the wavelength database. lines : string Indicates which lines to read. For files with a single column or two columns this parameter is irrelevant. For files with three columns, lines='brightest' indicates that only the brightest lines are read, whereas lines='all' means that all the lines are considered. debugplot : int Determines whether intermediate computations and/or plots are displayed. The valid codes are defined in numina.array.display.pause_debugplot. Returns ------- wv_master : 1d numpy array Array with arc line wavelengths. """ # protection if lines not in ['brightest', 'all']: raise ValueError('Unexpected lines=' + str(lines)) # determine wavelengths according to the number of columns if master_table.ndim == 1: wv_master = master_table else: wv_master_all = master_table[:, 0] if master_table.shape[1] == 2: # assume old format wv_master = np.copy(wv_master_all) elif master_table.shape[1] == 3: # assume new format if lines == 'brightest': wv_flag = master_table[:, 1] wv_master = wv_master_all[np.where(wv_flag == 1)] else: wv_master = np.copy(wv_master_all) else: raise ValueError('Lines_catalog file does not have the ' 'expected number of columns') if abs(debugplot) >= 10: print("Reading master table from numpy array") print("wv_master:\n", wv_master) return wv_master
[ "def", "read_wv_master_from_array", "(", "master_table", ",", "lines", "=", "'brightest'", ",", "debugplot", "=", "0", ")", ":", "# protection", "if", "lines", "not", "in", "[", "'brightest'", ",", "'all'", "]", ":", "raise", "ValueError", "(", "'Unexpected lines='", "+", "str", "(", "lines", ")", ")", "# determine wavelengths according to the number of columns", "if", "master_table", ".", "ndim", "==", "1", ":", "wv_master", "=", "master_table", "else", ":", "wv_master_all", "=", "master_table", "[", ":", ",", "0", "]", "if", "master_table", ".", "shape", "[", "1", "]", "==", "2", ":", "# assume old format", "wv_master", "=", "np", ".", "copy", "(", "wv_master_all", ")", "elif", "master_table", ".", "shape", "[", "1", "]", "==", "3", ":", "# assume new format", "if", "lines", "==", "'brightest'", ":", "wv_flag", "=", "master_table", "[", ":", ",", "1", "]", "wv_master", "=", "wv_master_all", "[", "np", ".", "where", "(", "wv_flag", "==", "1", ")", "]", "else", ":", "wv_master", "=", "np", ".", "copy", "(", "wv_master_all", ")", "else", ":", "raise", "ValueError", "(", "'Lines_catalog file does not have the '", "'expected number of columns'", ")", "if", "abs", "(", "debugplot", ")", ">=", "10", ":", "print", "(", "\"Reading master table from numpy array\"", ")", "print", "(", "\"wv_master:\\n\"", ",", "wv_master", ")", "return", "wv_master" ]
read arc line wavelengths from numpy array Parameters ---------- master_table : Numpy array Numpy array containing the wavelength database. lines : string Indicates which lines to read. For files with a single column or two columns this parameter is irrelevant. For files with three columns, lines='brightest' indicates that only the brightest lines are read, whereas lines='all' means that all the lines are considered. debugplot : int Determines whether intermediate computations and/or plots are displayed. The valid codes are defined in numina.array.display.pause_debugplot. Returns ------- wv_master : 1d numpy array Array with arc line wavelengths.
[ "read", "arc", "line", "wavelengths", "from", "numpy", "array" ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/wavecalib/__main__.py#L114-L164
train
guaix-ucm/numina
numina/array/wavecalib/__main__.py
read_wv_master_file
def read_wv_master_file(wv_master_file, lines='brightest', debugplot=0): """read arc line wavelengths from external file. Parameters ---------- wv_master_file : string File name of txt file containing the wavelength database. lines : string Indicates which lines to read. For files with a single column or two columns this parameter is irrelevant. For files with three columns, lines='brightest' indicates that only the brightest lines are read, whereas lines='all' means that all the lines are considered. debugplot : int Determines whether intermediate computations and/or plots are displayed. The valid codes are defined in numina.array.display.pause_debugplot. Returns ------- wv_master : 1d numpy array Array with arc line wavelengths. """ # protection if lines not in ['brightest', 'all']: raise ValueError('Unexpected lines=' + str(lines)) # read table from txt file master_table = np.genfromtxt(wv_master_file) wv_master = read_wv_master_from_array(master_table, lines) if abs(debugplot) >= 10: print("Reading master table: " + wv_master_file) print("wv_master:\n", wv_master) return wv_master
python
def read_wv_master_file(wv_master_file, lines='brightest', debugplot=0): """read arc line wavelengths from external file. Parameters ---------- wv_master_file : string File name of txt file containing the wavelength database. lines : string Indicates which lines to read. For files with a single column or two columns this parameter is irrelevant. For files with three columns, lines='brightest' indicates that only the brightest lines are read, whereas lines='all' means that all the lines are considered. debugplot : int Determines whether intermediate computations and/or plots are displayed. The valid codes are defined in numina.array.display.pause_debugplot. Returns ------- wv_master : 1d numpy array Array with arc line wavelengths. """ # protection if lines not in ['brightest', 'all']: raise ValueError('Unexpected lines=' + str(lines)) # read table from txt file master_table = np.genfromtxt(wv_master_file) wv_master = read_wv_master_from_array(master_table, lines) if abs(debugplot) >= 10: print("Reading master table: " + wv_master_file) print("wv_master:\n", wv_master) return wv_master
[ "def", "read_wv_master_file", "(", "wv_master_file", ",", "lines", "=", "'brightest'", ",", "debugplot", "=", "0", ")", ":", "# protection", "if", "lines", "not", "in", "[", "'brightest'", ",", "'all'", "]", ":", "raise", "ValueError", "(", "'Unexpected lines='", "+", "str", "(", "lines", ")", ")", "# read table from txt file", "master_table", "=", "np", ".", "genfromtxt", "(", "wv_master_file", ")", "wv_master", "=", "read_wv_master_from_array", "(", "master_table", ",", "lines", ")", "if", "abs", "(", "debugplot", ")", ">=", "10", ":", "print", "(", "\"Reading master table: \"", "+", "wv_master_file", ")", "print", "(", "\"wv_master:\\n\"", ",", "wv_master", ")", "return", "wv_master" ]
read arc line wavelengths from external file. Parameters ---------- wv_master_file : string File name of txt file containing the wavelength database. lines : string Indicates which lines to read. For files with a single column or two columns this parameter is irrelevant. For files with three columns, lines='brightest' indicates that only the brightest lines are read, whereas lines='all' means that all the lines are considered. debugplot : int Determines whether intermediate computations and/or plots are displayed. The valid codes are defined in numina.array.display.pause_debugplot. Returns ------- wv_master : 1d numpy array Array with arc line wavelengths.
[ "read", "arc", "line", "wavelengths", "from", "external", "file", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/wavecalib/__main__.py#L167-L205
train
guaix-ucm/numina
numina/array/wavecalib/__main__.py
wvcal_spectrum
def wvcal_spectrum(sp, fxpeaks, poly_degree_wfit, wv_master, wv_ini_search=None, wv_end_search=None, wvmin_useful=None, wvmax_useful=None, geometry=None, debugplot=0): """Execute wavelength calibration of a spectrum using fixed line peaks. Parameters ---------- sp : 1d numpy array Spectrum to be wavelength calibrated. fxpeaks : 1d numpy array Refined location of peaks in array index scale, i.e, from 0 to naxis1 - 1. The wavelength calibration is performed using these line locations. poly_degree_wfit : int Degree for wavelength calibration polynomial. wv_master : 1d numpy array Array with arc line wavelengths. wv_ini_search : float or None Minimum expected wavelength in spectrum. wv_end_search : float or None Maximum expected wavelength in spectrum. wvmin_useful : float or None If not None, this value is used to clip detected lines below it. wvmax_useful : float or None If not None, this value is used to clip detected lines above it. geometry : tuple (4 integers) or None x, y, dx, dy values employed to set the Qt backend geometry. debugplot : int Determines whether intermediate computations and/or plots are displayed. The valid codes are defined in numina.array.display.pause_debugplot. Returns ------- solution_wv : instance of SolutionArcCalibration Wavelength calibration solution. """ # check there are enough lines for fit if len(fxpeaks) <= poly_degree_wfit: print(">>> Warning: not enough lines to fit spectrum") return None # spectrum dimension naxis1 = sp.shape[0] wv_master_range = wv_master[-1] - wv_master[0] delta_wv_master_range = 0.20 * wv_master_range if wv_ini_search is None: wv_ini_search = wv_master[0] - delta_wv_master_range if wv_end_search is None: wv_end_search = wv_master[-1] + delta_wv_master_range # use channels (pixels from 1 to naxis1) xchannel = fxpeaks + 1.0 # wavelength calibration list_of_wvfeatures = arccalibration( wv_master=wv_master, xpos_arc=xchannel, naxis1_arc=naxis1, crpix1=1.0, wv_ini_search=wv_ini_search, wv_end_search=wv_end_search, wvmin_useful=wvmin_useful, wvmax_useful=wvmax_useful, error_xpos_arc=3, times_sigma_r=3.0, frac_triplets_for_sum=0.50, times_sigma_theil_sen=10.0, poly_degree_wfit=poly_degree_wfit, times_sigma_polfilt=10.0, times_sigma_cook=10.0, times_sigma_inclusion=10.0, geometry=geometry, debugplot=debugplot ) title = "Wavelength calibration" solution_wv = fit_list_of_wvfeatures( list_of_wvfeatures=list_of_wvfeatures, naxis1_arc=naxis1, crpix1=1.0, poly_degree_wfit=poly_degree_wfit, weighted=False, plot_title=title, geometry=geometry, debugplot=debugplot ) if abs(debugplot) % 10 != 0: # final plot with identified lines xplot = np.arange(1, naxis1 + 1, dtype=float) ax = ximplotxy(xplot, sp, title=title, show=False, xlabel='pixel (from 1 to NAXIS1)', ylabel='number of counts', geometry=geometry) ymin = sp.min() ymax = sp.max() dy = ymax-ymin ymin -= dy/20. ymax += dy/20. ax.set_ylim([ymin, ymax]) # plot wavelength of each identified line for feature in solution_wv.features: xpos = feature.xpos reference = feature.reference ax.text(xpos, sp[int(xpos+0.5)-1], str(reference), fontsize=8, horizontalalignment='center') # show plot print('Plot with identified lines') pause_debugplot(12, pltshow=True) # return the wavelength calibration solution return solution_wv
python
def wvcal_spectrum(sp, fxpeaks, poly_degree_wfit, wv_master, wv_ini_search=None, wv_end_search=None, wvmin_useful=None, wvmax_useful=None, geometry=None, debugplot=0): """Execute wavelength calibration of a spectrum using fixed line peaks. Parameters ---------- sp : 1d numpy array Spectrum to be wavelength calibrated. fxpeaks : 1d numpy array Refined location of peaks in array index scale, i.e, from 0 to naxis1 - 1. The wavelength calibration is performed using these line locations. poly_degree_wfit : int Degree for wavelength calibration polynomial. wv_master : 1d numpy array Array with arc line wavelengths. wv_ini_search : float or None Minimum expected wavelength in spectrum. wv_end_search : float or None Maximum expected wavelength in spectrum. wvmin_useful : float or None If not None, this value is used to clip detected lines below it. wvmax_useful : float or None If not None, this value is used to clip detected lines above it. geometry : tuple (4 integers) or None x, y, dx, dy values employed to set the Qt backend geometry. debugplot : int Determines whether intermediate computations and/or plots are displayed. The valid codes are defined in numina.array.display.pause_debugplot. Returns ------- solution_wv : instance of SolutionArcCalibration Wavelength calibration solution. """ # check there are enough lines for fit if len(fxpeaks) <= poly_degree_wfit: print(">>> Warning: not enough lines to fit spectrum") return None # spectrum dimension naxis1 = sp.shape[0] wv_master_range = wv_master[-1] - wv_master[0] delta_wv_master_range = 0.20 * wv_master_range if wv_ini_search is None: wv_ini_search = wv_master[0] - delta_wv_master_range if wv_end_search is None: wv_end_search = wv_master[-1] + delta_wv_master_range # use channels (pixels from 1 to naxis1) xchannel = fxpeaks + 1.0 # wavelength calibration list_of_wvfeatures = arccalibration( wv_master=wv_master, xpos_arc=xchannel, naxis1_arc=naxis1, crpix1=1.0, wv_ini_search=wv_ini_search, wv_end_search=wv_end_search, wvmin_useful=wvmin_useful, wvmax_useful=wvmax_useful, error_xpos_arc=3, times_sigma_r=3.0, frac_triplets_for_sum=0.50, times_sigma_theil_sen=10.0, poly_degree_wfit=poly_degree_wfit, times_sigma_polfilt=10.0, times_sigma_cook=10.0, times_sigma_inclusion=10.0, geometry=geometry, debugplot=debugplot ) title = "Wavelength calibration" solution_wv = fit_list_of_wvfeatures( list_of_wvfeatures=list_of_wvfeatures, naxis1_arc=naxis1, crpix1=1.0, poly_degree_wfit=poly_degree_wfit, weighted=False, plot_title=title, geometry=geometry, debugplot=debugplot ) if abs(debugplot) % 10 != 0: # final plot with identified lines xplot = np.arange(1, naxis1 + 1, dtype=float) ax = ximplotxy(xplot, sp, title=title, show=False, xlabel='pixel (from 1 to NAXIS1)', ylabel='number of counts', geometry=geometry) ymin = sp.min() ymax = sp.max() dy = ymax-ymin ymin -= dy/20. ymax += dy/20. ax.set_ylim([ymin, ymax]) # plot wavelength of each identified line for feature in solution_wv.features: xpos = feature.xpos reference = feature.reference ax.text(xpos, sp[int(xpos+0.5)-1], str(reference), fontsize=8, horizontalalignment='center') # show plot print('Plot with identified lines') pause_debugplot(12, pltshow=True) # return the wavelength calibration solution return solution_wv
[ "def", "wvcal_spectrum", "(", "sp", ",", "fxpeaks", ",", "poly_degree_wfit", ",", "wv_master", ",", "wv_ini_search", "=", "None", ",", "wv_end_search", "=", "None", ",", "wvmin_useful", "=", "None", ",", "wvmax_useful", "=", "None", ",", "geometry", "=", "None", ",", "debugplot", "=", "0", ")", ":", "# check there are enough lines for fit", "if", "len", "(", "fxpeaks", ")", "<=", "poly_degree_wfit", ":", "print", "(", "\">>> Warning: not enough lines to fit spectrum\"", ")", "return", "None", "# spectrum dimension", "naxis1", "=", "sp", ".", "shape", "[", "0", "]", "wv_master_range", "=", "wv_master", "[", "-", "1", "]", "-", "wv_master", "[", "0", "]", "delta_wv_master_range", "=", "0.20", "*", "wv_master_range", "if", "wv_ini_search", "is", "None", ":", "wv_ini_search", "=", "wv_master", "[", "0", "]", "-", "delta_wv_master_range", "if", "wv_end_search", "is", "None", ":", "wv_end_search", "=", "wv_master", "[", "-", "1", "]", "+", "delta_wv_master_range", "# use channels (pixels from 1 to naxis1)", "xchannel", "=", "fxpeaks", "+", "1.0", "# wavelength calibration", "list_of_wvfeatures", "=", "arccalibration", "(", "wv_master", "=", "wv_master", ",", "xpos_arc", "=", "xchannel", ",", "naxis1_arc", "=", "naxis1", ",", "crpix1", "=", "1.0", ",", "wv_ini_search", "=", "wv_ini_search", ",", "wv_end_search", "=", "wv_end_search", ",", "wvmin_useful", "=", "wvmin_useful", ",", "wvmax_useful", "=", "wvmax_useful", ",", "error_xpos_arc", "=", "3", ",", "times_sigma_r", "=", "3.0", ",", "frac_triplets_for_sum", "=", "0.50", ",", "times_sigma_theil_sen", "=", "10.0", ",", "poly_degree_wfit", "=", "poly_degree_wfit", ",", "times_sigma_polfilt", "=", "10.0", ",", "times_sigma_cook", "=", "10.0", ",", "times_sigma_inclusion", "=", "10.0", ",", "geometry", "=", "geometry", ",", "debugplot", "=", "debugplot", ")", "title", "=", "\"Wavelength calibration\"", "solution_wv", "=", "fit_list_of_wvfeatures", "(", "list_of_wvfeatures", "=", "list_of_wvfeatures", ",", "naxis1_arc", "=", "naxis1", ",", "crpix1", "=", "1.0", ",", "poly_degree_wfit", "=", "poly_degree_wfit", ",", "weighted", "=", "False", ",", "plot_title", "=", "title", ",", "geometry", "=", "geometry", ",", "debugplot", "=", "debugplot", ")", "if", "abs", "(", "debugplot", ")", "%", "10", "!=", "0", ":", "# final plot with identified lines", "xplot", "=", "np", ".", "arange", "(", "1", ",", "naxis1", "+", "1", ",", "dtype", "=", "float", ")", "ax", "=", "ximplotxy", "(", "xplot", ",", "sp", ",", "title", "=", "title", ",", "show", "=", "False", ",", "xlabel", "=", "'pixel (from 1 to NAXIS1)'", ",", "ylabel", "=", "'number of counts'", ",", "geometry", "=", "geometry", ")", "ymin", "=", "sp", ".", "min", "(", ")", "ymax", "=", "sp", ".", "max", "(", ")", "dy", "=", "ymax", "-", "ymin", "ymin", "-=", "dy", "/", "20.", "ymax", "+=", "dy", "/", "20.", "ax", ".", "set_ylim", "(", "[", "ymin", ",", "ymax", "]", ")", "# plot wavelength of each identified line", "for", "feature", "in", "solution_wv", ".", "features", ":", "xpos", "=", "feature", ".", "xpos", "reference", "=", "feature", ".", "reference", "ax", ".", "text", "(", "xpos", ",", "sp", "[", "int", "(", "xpos", "+", "0.5", ")", "-", "1", "]", ",", "str", "(", "reference", ")", ",", "fontsize", "=", "8", ",", "horizontalalignment", "=", "'center'", ")", "# show plot", "print", "(", "'Plot with identified lines'", ")", "pause_debugplot", "(", "12", ",", "pltshow", "=", "True", ")", "# return the wavelength calibration solution", "return", "solution_wv" ]
Execute wavelength calibration of a spectrum using fixed line peaks. Parameters ---------- sp : 1d numpy array Spectrum to be wavelength calibrated. fxpeaks : 1d numpy array Refined location of peaks in array index scale, i.e, from 0 to naxis1 - 1. The wavelength calibration is performed using these line locations. poly_degree_wfit : int Degree for wavelength calibration polynomial. wv_master : 1d numpy array Array with arc line wavelengths. wv_ini_search : float or None Minimum expected wavelength in spectrum. wv_end_search : float or None Maximum expected wavelength in spectrum. wvmin_useful : float or None If not None, this value is used to clip detected lines below it. wvmax_useful : float or None If not None, this value is used to clip detected lines above it. geometry : tuple (4 integers) or None x, y, dx, dy values employed to set the Qt backend geometry. debugplot : int Determines whether intermediate computations and/or plots are displayed. The valid codes are defined in numina.array.display.pause_debugplot. Returns ------- solution_wv : instance of SolutionArcCalibration Wavelength calibration solution.
[ "Execute", "wavelength", "calibration", "of", "a", "spectrum", "using", "fixed", "line", "peaks", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/wavecalib/__main__.py#L382-L499
train
chhantyal/sorl-thumbnail-async
thumbnail/__init__.py
get_thumbnail
def get_thumbnail(file_, name): """ get_thumbnail version that uses aliasses defined in THUMBNAIL_OPTIONS_DICT """ options = settings.OPTIONS_DICT[name] opt = copy(options) geometry = opt.pop('geometry') return original_get_thumbnail(file_, geometry, **opt)
python
def get_thumbnail(file_, name): """ get_thumbnail version that uses aliasses defined in THUMBNAIL_OPTIONS_DICT """ options = settings.OPTIONS_DICT[name] opt = copy(options) geometry = opt.pop('geometry') return original_get_thumbnail(file_, geometry, **opt)
[ "def", "get_thumbnail", "(", "file_", ",", "name", ")", ":", "options", "=", "settings", ".", "OPTIONS_DICT", "[", "name", "]", "opt", "=", "copy", "(", "options", ")", "geometry", "=", "opt", ".", "pop", "(", "'geometry'", ")", "return", "original_get_thumbnail", "(", "file_", ",", "geometry", ",", "*", "*", "opt", ")" ]
get_thumbnail version that uses aliasses defined in THUMBNAIL_OPTIONS_DICT
[ "get_thumbnail", "version", "that", "uses", "aliasses", "defined", "in", "THUMBNAIL_OPTIONS_DICT" ]
023d20aac79090a691d563dc26f558bb87239811
https://github.com/chhantyal/sorl-thumbnail-async/blob/023d20aac79090a691d563dc26f558bb87239811/thumbnail/__init__.py#L9-L17
train
xflr6/bitsets
bitsets/__init__.py
bitset
def bitset(name, members, base=bases.BitSet, list=False, tuple=False): """Return a new bitset class with given name and members. Args: name: Name of the class to be created. members: Hashable sequence of allowed bitset members. base: Base class to derive the returned class from. list (bool): Include a custom class for bitset lists. tuple (bool): Include a custom class for bitset tuples. Example: >>> Letters = bitset('Letters', 'abcdef', list=True, tuple=True) >>> Letters # doctest: +ELLIPSIS <class bitsets.meta.bitset('Letters', 'abcdef', 0x..., BitSet, List, Tuple)> >>> Letters('deadbeef') Letters(['a', 'b', 'd', 'e', 'f']) """ if not name: raise ValueError('empty bitset name: %r' % name) if not hasattr(members, '__getitem__') or not hasattr(members, '__len__'): raise ValueError('non-sequence bitset members: %r' % members) if not len(members): raise ValueError('less than one bitset member: %r' % (members,)) if len(set(members)) != len(members): raise ValueError('bitset members contains duplicates: %r' % (members,)) if not issubclass(base.__class__, meta.MemberBitsMeta): raise ValueError('base does not subclass bitset.bases: %r' % base) list = {False: None, True: series.List}.get(list, list) tuple = {False: None, True: series.Tuple}.get(tuple, tuple) return base._make_subclass(name, members, listcls=list, tuplecls=tuple)
python
def bitset(name, members, base=bases.BitSet, list=False, tuple=False): """Return a new bitset class with given name and members. Args: name: Name of the class to be created. members: Hashable sequence of allowed bitset members. base: Base class to derive the returned class from. list (bool): Include a custom class for bitset lists. tuple (bool): Include a custom class for bitset tuples. Example: >>> Letters = bitset('Letters', 'abcdef', list=True, tuple=True) >>> Letters # doctest: +ELLIPSIS <class bitsets.meta.bitset('Letters', 'abcdef', 0x..., BitSet, List, Tuple)> >>> Letters('deadbeef') Letters(['a', 'b', 'd', 'e', 'f']) """ if not name: raise ValueError('empty bitset name: %r' % name) if not hasattr(members, '__getitem__') or not hasattr(members, '__len__'): raise ValueError('non-sequence bitset members: %r' % members) if not len(members): raise ValueError('less than one bitset member: %r' % (members,)) if len(set(members)) != len(members): raise ValueError('bitset members contains duplicates: %r' % (members,)) if not issubclass(base.__class__, meta.MemberBitsMeta): raise ValueError('base does not subclass bitset.bases: %r' % base) list = {False: None, True: series.List}.get(list, list) tuple = {False: None, True: series.Tuple}.get(tuple, tuple) return base._make_subclass(name, members, listcls=list, tuplecls=tuple)
[ "def", "bitset", "(", "name", ",", "members", ",", "base", "=", "bases", ".", "BitSet", ",", "list", "=", "False", ",", "tuple", "=", "False", ")", ":", "if", "not", "name", ":", "raise", "ValueError", "(", "'empty bitset name: %r'", "%", "name", ")", "if", "not", "hasattr", "(", "members", ",", "'__getitem__'", ")", "or", "not", "hasattr", "(", "members", ",", "'__len__'", ")", ":", "raise", "ValueError", "(", "'non-sequence bitset members: %r'", "%", "members", ")", "if", "not", "len", "(", "members", ")", ":", "raise", "ValueError", "(", "'less than one bitset member: %r'", "%", "(", "members", ",", ")", ")", "if", "len", "(", "set", "(", "members", ")", ")", "!=", "len", "(", "members", ")", ":", "raise", "ValueError", "(", "'bitset members contains duplicates: %r'", "%", "(", "members", ",", ")", ")", "if", "not", "issubclass", "(", "base", ".", "__class__", ",", "meta", ".", "MemberBitsMeta", ")", ":", "raise", "ValueError", "(", "'base does not subclass bitset.bases: %r'", "%", "base", ")", "list", "=", "{", "False", ":", "None", ",", "True", ":", "series", ".", "List", "}", ".", "get", "(", "list", ",", "list", ")", "tuple", "=", "{", "False", ":", "None", ",", "True", ":", "series", ".", "Tuple", "}", ".", "get", "(", "tuple", ",", "tuple", ")", "return", "base", ".", "_make_subclass", "(", "name", ",", "members", ",", "listcls", "=", "list", ",", "tuplecls", "=", "tuple", ")" ]
Return a new bitset class with given name and members. Args: name: Name of the class to be created. members: Hashable sequence of allowed bitset members. base: Base class to derive the returned class from. list (bool): Include a custom class for bitset lists. tuple (bool): Include a custom class for bitset tuples. Example: >>> Letters = bitset('Letters', 'abcdef', list=True, tuple=True) >>> Letters # doctest: +ELLIPSIS <class bitsets.meta.bitset('Letters', 'abcdef', 0x..., BitSet, List, Tuple)> >>> Letters('deadbeef') Letters(['a', 'b', 'd', 'e', 'f'])
[ "Return", "a", "new", "bitset", "class", "with", "given", "name", "and", "members", "." ]
ddcfe17e7c7a11f71f1c6764b2cecf7db05d9cdf
https://github.com/xflr6/bitsets/blob/ddcfe17e7c7a11f71f1c6764b2cecf7db05d9cdf/bitsets/__init__.py#L16-L51
train
guaix-ucm/numina
numina/array/interpolation.py
SteffenInterpolator._extrapolation
def _extrapolation(self, extrapolate): """Check permited values of extrapolation.""" modes = ['extrapolate', 'raise', 'const', 'border'] if extrapolate not in modes: msg = 'invalid extrapolation mode {}'.format(extrapolate) raise ValueError(msg) if extrapolate == 'raise': self.bounds_error = True self.extrapolate = False else: self.extrapolate = True self.bounds_error = False self.extrapolate_mode = extrapolate
python
def _extrapolation(self, extrapolate): """Check permited values of extrapolation.""" modes = ['extrapolate', 'raise', 'const', 'border'] if extrapolate not in modes: msg = 'invalid extrapolation mode {}'.format(extrapolate) raise ValueError(msg) if extrapolate == 'raise': self.bounds_error = True self.extrapolate = False else: self.extrapolate = True self.bounds_error = False self.extrapolate_mode = extrapolate
[ "def", "_extrapolation", "(", "self", ",", "extrapolate", ")", ":", "modes", "=", "[", "'extrapolate'", ",", "'raise'", ",", "'const'", ",", "'border'", "]", "if", "extrapolate", "not", "in", "modes", ":", "msg", "=", "'invalid extrapolation mode {}'", ".", "format", "(", "extrapolate", ")", "raise", "ValueError", "(", "msg", ")", "if", "extrapolate", "==", "'raise'", ":", "self", ".", "bounds_error", "=", "True", "self", ".", "extrapolate", "=", "False", "else", ":", "self", ".", "extrapolate", "=", "True", "self", ".", "bounds_error", "=", "False", "self", ".", "extrapolate_mode", "=", "extrapolate" ]
Check permited values of extrapolation.
[ "Check", "permited", "values", "of", "extrapolation", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/interpolation.py#L104-L120
train
guaix-ucm/numina
numina/array/interpolation.py
SteffenInterpolator._create_h
def _create_h(x): """increase between samples""" h = np.zeros_like(x) h[:-1] = x[1:] - x[:-1] # border h[-1] = h[-2] return h
python
def _create_h(x): """increase between samples""" h = np.zeros_like(x) h[:-1] = x[1:] - x[:-1] # border h[-1] = h[-2] return h
[ "def", "_create_h", "(", "x", ")", ":", "h", "=", "np", ".", "zeros_like", "(", "x", ")", "h", "[", ":", "-", "1", "]", "=", "x", "[", "1", ":", "]", "-", "x", "[", ":", "-", "1", "]", "# border", "h", "[", "-", "1", "]", "=", "h", "[", "-", "2", "]", "return", "h" ]
increase between samples
[ "increase", "between", "samples" ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/interpolation.py#L131-L137
train
guaix-ucm/numina
numina/array/interpolation.py
SteffenInterpolator._eval
def _eval(self, v, in_bounds, der): """Eval polynomial inside bounds.""" result = np.zeros_like(v, dtype='float') x_indices = np.searchsorted(self._x, v, side='rigth') ids = x_indices[in_bounds] - 1 u = v[in_bounds] - self._x[ids] result[in_bounds] = self._poly_eval(u, ids, der) return result
python
def _eval(self, v, in_bounds, der): """Eval polynomial inside bounds.""" result = np.zeros_like(v, dtype='float') x_indices = np.searchsorted(self._x, v, side='rigth') ids = x_indices[in_bounds] - 1 u = v[in_bounds] - self._x[ids] result[in_bounds] = self._poly_eval(u, ids, der) return result
[ "def", "_eval", "(", "self", ",", "v", ",", "in_bounds", ",", "der", ")", ":", "result", "=", "np", ".", "zeros_like", "(", "v", ",", "dtype", "=", "'float'", ")", "x_indices", "=", "np", ".", "searchsorted", "(", "self", ".", "_x", ",", "v", ",", "side", "=", "'rigth'", ")", "ids", "=", "x_indices", "[", "in_bounds", "]", "-", "1", "u", "=", "v", "[", "in_bounds", "]", "-", "self", ".", "_x", "[", "ids", "]", "result", "[", "in_bounds", "]", "=", "self", ".", "_poly_eval", "(", "u", ",", "ids", ",", "der", ")", "return", "result" ]
Eval polynomial inside bounds.
[ "Eval", "polynomial", "inside", "bounds", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/interpolation.py#L146-L153
train
guaix-ucm/numina
numina/array/interpolation.py
SteffenInterpolator._extrapolate
def _extrapolate(self, result, v, below_bounds, above_bounds, der): """Extrapolate result based on extrapolation mode.""" if self.extrapolate_mode == 'const': fill_b = fill_a = self.fill_value elif self.extrapolate_mode == 'border': fill_b = self._poly_eval(0, 0, der) fill_a = self._poly_eval(0, -1, der) elif self.extrapolate_mode == 'extrapolate': u = v[above_bounds] - self._x[-2] fill_a = self._poly_eval(u, -2, der) u = v[below_bounds] - self._x[0] fill_b = self._poly_eval(u, 0, der) else: raise ValueError("extrapolation method doesn't exist") result[below_bounds] = fill_b result[above_bounds] = fill_a
python
def _extrapolate(self, result, v, below_bounds, above_bounds, der): """Extrapolate result based on extrapolation mode.""" if self.extrapolate_mode == 'const': fill_b = fill_a = self.fill_value elif self.extrapolate_mode == 'border': fill_b = self._poly_eval(0, 0, der) fill_a = self._poly_eval(0, -1, der) elif self.extrapolate_mode == 'extrapolate': u = v[above_bounds] - self._x[-2] fill_a = self._poly_eval(u, -2, der) u = v[below_bounds] - self._x[0] fill_b = self._poly_eval(u, 0, der) else: raise ValueError("extrapolation method doesn't exist") result[below_bounds] = fill_b result[above_bounds] = fill_a
[ "def", "_extrapolate", "(", "self", ",", "result", ",", "v", ",", "below_bounds", ",", "above_bounds", ",", "der", ")", ":", "if", "self", ".", "extrapolate_mode", "==", "'const'", ":", "fill_b", "=", "fill_a", "=", "self", ".", "fill_value", "elif", "self", ".", "extrapolate_mode", "==", "'border'", ":", "fill_b", "=", "self", ".", "_poly_eval", "(", "0", ",", "0", ",", "der", ")", "fill_a", "=", "self", ".", "_poly_eval", "(", "0", ",", "-", "1", ",", "der", ")", "elif", "self", ".", "extrapolate_mode", "==", "'extrapolate'", ":", "u", "=", "v", "[", "above_bounds", "]", "-", "self", ".", "_x", "[", "-", "2", "]", "fill_a", "=", "self", ".", "_poly_eval", "(", "u", ",", "-", "2", ",", "der", ")", "u", "=", "v", "[", "below_bounds", "]", "-", "self", ".", "_x", "[", "0", "]", "fill_b", "=", "self", ".", "_poly_eval", "(", "u", ",", "0", ",", "der", ")", "else", ":", "raise", "ValueError", "(", "\"extrapolation method doesn't exist\"", ")", "result", "[", "below_bounds", "]", "=", "fill_b", "result", "[", "above_bounds", "]", "=", "fill_a" ]
Extrapolate result based on extrapolation mode.
[ "Extrapolate", "result", "based", "on", "extrapolation", "mode", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/interpolation.py#L155-L171
train
guaix-ucm/numina
numina/array/interpolation.py
SteffenInterpolator._check_bounds
def _check_bounds(self, v): """Check which values are out of bounds. Raises ------ ValueError: """ below_bounds = v < self._x[0] above_bounds = v > self._x[-1] if self.bounds_error and below_bounds.any(): raise ValueError("A value in x_new is below the interpolation " "range.") if self.bounds_error and above_bounds.any(): raise ValueError("A value in x_new is above the interpolation " "range.") return below_bounds, above_bounds
python
def _check_bounds(self, v): """Check which values are out of bounds. Raises ------ ValueError: """ below_bounds = v < self._x[0] above_bounds = v > self._x[-1] if self.bounds_error and below_bounds.any(): raise ValueError("A value in x_new is below the interpolation " "range.") if self.bounds_error and above_bounds.any(): raise ValueError("A value in x_new is above the interpolation " "range.") return below_bounds, above_bounds
[ "def", "_check_bounds", "(", "self", ",", "v", ")", ":", "below_bounds", "=", "v", "<", "self", ".", "_x", "[", "0", "]", "above_bounds", "=", "v", ">", "self", ".", "_x", "[", "-", "1", "]", "if", "self", ".", "bounds_error", "and", "below_bounds", ".", "any", "(", ")", ":", "raise", "ValueError", "(", "\"A value in x_new is below the interpolation \"", "\"range.\"", ")", "if", "self", ".", "bounds_error", "and", "above_bounds", ".", "any", "(", ")", ":", "raise", "ValueError", "(", "\"A value in x_new is above the interpolation \"", "\"range.\"", ")", "return", "below_bounds", ",", "above_bounds" ]
Check which values are out of bounds. Raises ------ ValueError:
[ "Check", "which", "values", "are", "out", "of", "bounds", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/interpolation.py#L238-L256
train
guaix-ucm/numina
numina/array/wavecalib/crosscorrelation.py
filtmask
def filtmask(sp, fmin=0.02, fmax=0.15, debugplot=0): """Filter spectrum in Fourier space and apply cosine bell. Parameters ---------- sp : numpy array Spectrum to be filtered and masked. fmin : float Minimum frequency to be employed. fmax : float Maximum frequency to be employed. debugplot : int Debugging level for messages and plots. For details see 'numina.array.display.pause_debugplot.py'. Returns ------- sp_filtmask : numpy array Filtered and masked spectrum """ # Fourier filtering xf = np.fft.fftfreq(sp.size) yf = np.fft.fft(sp) if abs(debugplot) in (21, 22): iok = np.where(xf > 0) ximplotxy(xf[iok], yf[iok].real, plottype='loglog', xlabel='frequency', ylabel='power', title='before masking', debugplot=debugplot) cut = (np.abs(xf) > fmax) yf[cut] = 0.0 cut = (np.abs(xf) < fmin) yf[cut] = 0.0 if abs(debugplot) in (21, 22): iok = np.where(xf > 0) ximplotxy(xf[iok], yf[iok].real, plottype='loglog', xlabel='frequency', ylabel='power', title='after masking', debugplot=debugplot) sp_filt = np.fft.ifft(yf).real if abs(debugplot) in (21, 22): xdum = np.arange(1, sp_filt.size + 1) ximplotxy(xdum, sp_filt, title="filtered median spectrum", debugplot=debugplot) sp_filtmask = sp_filt * cosinebell(sp_filt.size, 0.1) if abs(debugplot) in (21, 22): xdum = np.arange(1, sp_filt.size + 1) ximplotxy(xdum, sp_filtmask, title="filtered and masked median spectrum", debugplot=debugplot) return sp_filtmask
python
def filtmask(sp, fmin=0.02, fmax=0.15, debugplot=0): """Filter spectrum in Fourier space and apply cosine bell. Parameters ---------- sp : numpy array Spectrum to be filtered and masked. fmin : float Minimum frequency to be employed. fmax : float Maximum frequency to be employed. debugplot : int Debugging level for messages and plots. For details see 'numina.array.display.pause_debugplot.py'. Returns ------- sp_filtmask : numpy array Filtered and masked spectrum """ # Fourier filtering xf = np.fft.fftfreq(sp.size) yf = np.fft.fft(sp) if abs(debugplot) in (21, 22): iok = np.where(xf > 0) ximplotxy(xf[iok], yf[iok].real, plottype='loglog', xlabel='frequency', ylabel='power', title='before masking', debugplot=debugplot) cut = (np.abs(xf) > fmax) yf[cut] = 0.0 cut = (np.abs(xf) < fmin) yf[cut] = 0.0 if abs(debugplot) in (21, 22): iok = np.where(xf > 0) ximplotxy(xf[iok], yf[iok].real, plottype='loglog', xlabel='frequency', ylabel='power', title='after masking', debugplot=debugplot) sp_filt = np.fft.ifft(yf).real if abs(debugplot) in (21, 22): xdum = np.arange(1, sp_filt.size + 1) ximplotxy(xdum, sp_filt, title="filtered median spectrum", debugplot=debugplot) sp_filtmask = sp_filt * cosinebell(sp_filt.size, 0.1) if abs(debugplot) in (21, 22): xdum = np.arange(1, sp_filt.size + 1) ximplotxy(xdum, sp_filtmask, title="filtered and masked median spectrum", debugplot=debugplot) return sp_filtmask
[ "def", "filtmask", "(", "sp", ",", "fmin", "=", "0.02", ",", "fmax", "=", "0.15", ",", "debugplot", "=", "0", ")", ":", "# Fourier filtering", "xf", "=", "np", ".", "fft", ".", "fftfreq", "(", "sp", ".", "size", ")", "yf", "=", "np", ".", "fft", ".", "fft", "(", "sp", ")", "if", "abs", "(", "debugplot", ")", "in", "(", "21", ",", "22", ")", ":", "iok", "=", "np", ".", "where", "(", "xf", ">", "0", ")", "ximplotxy", "(", "xf", "[", "iok", "]", ",", "yf", "[", "iok", "]", ".", "real", ",", "plottype", "=", "'loglog'", ",", "xlabel", "=", "'frequency'", ",", "ylabel", "=", "'power'", ",", "title", "=", "'before masking'", ",", "debugplot", "=", "debugplot", ")", "cut", "=", "(", "np", ".", "abs", "(", "xf", ")", ">", "fmax", ")", "yf", "[", "cut", "]", "=", "0.0", "cut", "=", "(", "np", ".", "abs", "(", "xf", ")", "<", "fmin", ")", "yf", "[", "cut", "]", "=", "0.0", "if", "abs", "(", "debugplot", ")", "in", "(", "21", ",", "22", ")", ":", "iok", "=", "np", ".", "where", "(", "xf", ">", "0", ")", "ximplotxy", "(", "xf", "[", "iok", "]", ",", "yf", "[", "iok", "]", ".", "real", ",", "plottype", "=", "'loglog'", ",", "xlabel", "=", "'frequency'", ",", "ylabel", "=", "'power'", ",", "title", "=", "'after masking'", ",", "debugplot", "=", "debugplot", ")", "sp_filt", "=", "np", ".", "fft", ".", "ifft", "(", "yf", ")", ".", "real", "if", "abs", "(", "debugplot", ")", "in", "(", "21", ",", "22", ")", ":", "xdum", "=", "np", ".", "arange", "(", "1", ",", "sp_filt", ".", "size", "+", "1", ")", "ximplotxy", "(", "xdum", ",", "sp_filt", ",", "title", "=", "\"filtered median spectrum\"", ",", "debugplot", "=", "debugplot", ")", "sp_filtmask", "=", "sp_filt", "*", "cosinebell", "(", "sp_filt", ".", "size", ",", "0.1", ")", "if", "abs", "(", "debugplot", ")", "in", "(", "21", ",", "22", ")", ":", "xdum", "=", "np", ".", "arange", "(", "1", ",", "sp_filt", ".", "size", "+", "1", ")", "ximplotxy", "(", "xdum", ",", "sp_filtmask", ",", "title", "=", "\"filtered and masked median spectrum\"", ",", "debugplot", "=", "debugplot", ")", "return", "sp_filtmask" ]
Filter spectrum in Fourier space and apply cosine bell. Parameters ---------- sp : numpy array Spectrum to be filtered and masked. fmin : float Minimum frequency to be employed. fmax : float Maximum frequency to be employed. debugplot : int Debugging level for messages and plots. For details see 'numina.array.display.pause_debugplot.py'. Returns ------- sp_filtmask : numpy array Filtered and masked spectrum
[ "Filter", "spectrum", "in", "Fourier", "space", "and", "apply", "cosine", "bell", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/wavecalib/crosscorrelation.py#L24-L80
train
guaix-ucm/numina
numina/array/wavecalib/crosscorrelation.py
cosinebell
def cosinebell(n, fraction): """Return a cosine bell spanning n pixels, masking a fraction of pixels Parameters ---------- n : int Number of pixels. fraction : float Length fraction over which the data will be masked. """ mask = np.ones(n) nmasked = int(fraction * n) for i in range(nmasked): yval = 0.5 * (1 - np.cos(np.pi * float(i) / float(nmasked))) mask[i] = yval mask[n - i - 1] = yval return mask
python
def cosinebell(n, fraction): """Return a cosine bell spanning n pixels, masking a fraction of pixels Parameters ---------- n : int Number of pixels. fraction : float Length fraction over which the data will be masked. """ mask = np.ones(n) nmasked = int(fraction * n) for i in range(nmasked): yval = 0.5 * (1 - np.cos(np.pi * float(i) / float(nmasked))) mask[i] = yval mask[n - i - 1] = yval return mask
[ "def", "cosinebell", "(", "n", ",", "fraction", ")", ":", "mask", "=", "np", ".", "ones", "(", "n", ")", "nmasked", "=", "int", "(", "fraction", "*", "n", ")", "for", "i", "in", "range", "(", "nmasked", ")", ":", "yval", "=", "0.5", "*", "(", "1", "-", "np", ".", "cos", "(", "np", ".", "pi", "*", "float", "(", "i", ")", "/", "float", "(", "nmasked", ")", ")", ")", "mask", "[", "i", "]", "=", "yval", "mask", "[", "n", "-", "i", "-", "1", "]", "=", "yval", "return", "mask" ]
Return a cosine bell spanning n pixels, masking a fraction of pixels Parameters ---------- n : int Number of pixels. fraction : float Length fraction over which the data will be masked.
[ "Return", "a", "cosine", "bell", "spanning", "n", "pixels", "masking", "a", "fraction", "of", "pixels" ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/wavecalib/crosscorrelation.py#L83-L102
train
guaix-ucm/numina
numina/array/wavecalib/crosscorrelation.py
convolve_comb_lines
def convolve_comb_lines(lines_wave, lines_flux, sigma, crpix1, crval1, cdelt1, naxis1): """Convolve a set of lines of known wavelengths and flux. Parameters ---------- lines_wave : array like Input array with wavelengths lines_flux : array like Input array with fluxes sigma : float Sigma of the broadening gaussian to be applied. crpix1 : float CRPIX1 of the desired wavelength calibration. crval1 : float CRVAL1 of the desired wavelength calibration. cdelt1 : float CDELT1 of the desired wavelength calibration. naxis1 : integer NAXIS1 of the output spectrum. Returns ------- xwave : array like Array with wavelengths for the output spectrum. spectrum : array like Array with the expected fluxes at each pixel. """ # generate wavelengths for output spectrum xwave = crval1 + (np.arange(naxis1) + 1 - crpix1) * cdelt1 # initialize output spectrum spectrum = np.zeros(naxis1) # convolve each line for wave, flux in zip(lines_wave, lines_flux): sp_tmp = gauss_box_model(x=xwave, amplitude=flux, mean=wave, stddev=sigma) spectrum += sp_tmp return xwave, spectrum
python
def convolve_comb_lines(lines_wave, lines_flux, sigma, crpix1, crval1, cdelt1, naxis1): """Convolve a set of lines of known wavelengths and flux. Parameters ---------- lines_wave : array like Input array with wavelengths lines_flux : array like Input array with fluxes sigma : float Sigma of the broadening gaussian to be applied. crpix1 : float CRPIX1 of the desired wavelength calibration. crval1 : float CRVAL1 of the desired wavelength calibration. cdelt1 : float CDELT1 of the desired wavelength calibration. naxis1 : integer NAXIS1 of the output spectrum. Returns ------- xwave : array like Array with wavelengths for the output spectrum. spectrum : array like Array with the expected fluxes at each pixel. """ # generate wavelengths for output spectrum xwave = crval1 + (np.arange(naxis1) + 1 - crpix1) * cdelt1 # initialize output spectrum spectrum = np.zeros(naxis1) # convolve each line for wave, flux in zip(lines_wave, lines_flux): sp_tmp = gauss_box_model(x=xwave, amplitude=flux, mean=wave, stddev=sigma) spectrum += sp_tmp return xwave, spectrum
[ "def", "convolve_comb_lines", "(", "lines_wave", ",", "lines_flux", ",", "sigma", ",", "crpix1", ",", "crval1", ",", "cdelt1", ",", "naxis1", ")", ":", "# generate wavelengths for output spectrum", "xwave", "=", "crval1", "+", "(", "np", ".", "arange", "(", "naxis1", ")", "+", "1", "-", "crpix1", ")", "*", "cdelt1", "# initialize output spectrum", "spectrum", "=", "np", ".", "zeros", "(", "naxis1", ")", "# convolve each line", "for", "wave", ",", "flux", "in", "zip", "(", "lines_wave", ",", "lines_flux", ")", ":", "sp_tmp", "=", "gauss_box_model", "(", "x", "=", "xwave", ",", "amplitude", "=", "flux", ",", "mean", "=", "wave", ",", "stddev", "=", "sigma", ")", "spectrum", "+=", "sp_tmp", "return", "xwave", ",", "spectrum" ]
Convolve a set of lines of known wavelengths and flux. Parameters ---------- lines_wave : array like Input array with wavelengths lines_flux : array like Input array with fluxes sigma : float Sigma of the broadening gaussian to be applied. crpix1 : float CRPIX1 of the desired wavelength calibration. crval1 : float CRVAL1 of the desired wavelength calibration. cdelt1 : float CDELT1 of the desired wavelength calibration. naxis1 : integer NAXIS1 of the output spectrum. Returns ------- xwave : array like Array with wavelengths for the output spectrum. spectrum : array like Array with the expected fluxes at each pixel.
[ "Convolve", "a", "set", "of", "lines", "of", "known", "wavelengths", "and", "flux", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/wavecalib/crosscorrelation.py#L105-L147
train
inspirehep/inspire-schemas
inspire_schemas/builders/references.py
_split_refextract_authors_str
def _split_refextract_authors_str(authors_str): """Extract author names out of refextract authors output.""" author_seq = (x.strip() for x in RE_SPLIT_AUTH.split(authors_str) if x) res = [] current = '' for author in author_seq: if not isinstance(author, six.text_type): author = six.text_type(author.decode('utf8', 'ignore')) # First clean the token. author = re.sub(r'\(|\)', '', author, re.U) # Names usually start with characters. author = re.sub(r'^[\W\d]+', '', author, re.U) # Names should end with characters or dot. author = re.sub(r'[^.\w]+$', '', author, re.U) # If we have initials join them with the previous token. if RE_INITIALS_ONLY.match(author): current += ', ' + author.strip().replace('. ', '.') else: if current: res.append(current) current = author # Add last element. if current: res.append(current) # Manual filterings that we don't want to add in regular expressions since # it would make them more complex. # * ed might sneak in # * many legacy refs look like 'X. and Somebody E.' # * might miss lowercase initials filters = [ lambda a: a == 'ed', lambda a: a.startswith(','), lambda a: len(a) == 1 ] res = [r for r in res if all(not f(r) for f in filters)] return res
python
def _split_refextract_authors_str(authors_str): """Extract author names out of refextract authors output.""" author_seq = (x.strip() for x in RE_SPLIT_AUTH.split(authors_str) if x) res = [] current = '' for author in author_seq: if not isinstance(author, six.text_type): author = six.text_type(author.decode('utf8', 'ignore')) # First clean the token. author = re.sub(r'\(|\)', '', author, re.U) # Names usually start with characters. author = re.sub(r'^[\W\d]+', '', author, re.U) # Names should end with characters or dot. author = re.sub(r'[^.\w]+$', '', author, re.U) # If we have initials join them with the previous token. if RE_INITIALS_ONLY.match(author): current += ', ' + author.strip().replace('. ', '.') else: if current: res.append(current) current = author # Add last element. if current: res.append(current) # Manual filterings that we don't want to add in regular expressions since # it would make them more complex. # * ed might sneak in # * many legacy refs look like 'X. and Somebody E.' # * might miss lowercase initials filters = [ lambda a: a == 'ed', lambda a: a.startswith(','), lambda a: len(a) == 1 ] res = [r for r in res if all(not f(r) for f in filters)] return res
[ "def", "_split_refextract_authors_str", "(", "authors_str", ")", ":", "author_seq", "=", "(", "x", ".", "strip", "(", ")", "for", "x", "in", "RE_SPLIT_AUTH", ".", "split", "(", "authors_str", ")", "if", "x", ")", "res", "=", "[", "]", "current", "=", "''", "for", "author", "in", "author_seq", ":", "if", "not", "isinstance", "(", "author", ",", "six", ".", "text_type", ")", ":", "author", "=", "six", ".", "text_type", "(", "author", ".", "decode", "(", "'utf8'", ",", "'ignore'", ")", ")", "# First clean the token.", "author", "=", "re", ".", "sub", "(", "r'\\(|\\)'", ",", "''", ",", "author", ",", "re", ".", "U", ")", "# Names usually start with characters.", "author", "=", "re", ".", "sub", "(", "r'^[\\W\\d]+'", ",", "''", ",", "author", ",", "re", ".", "U", ")", "# Names should end with characters or dot.", "author", "=", "re", ".", "sub", "(", "r'[^.\\w]+$'", ",", "''", ",", "author", ",", "re", ".", "U", ")", "# If we have initials join them with the previous token.", "if", "RE_INITIALS_ONLY", ".", "match", "(", "author", ")", ":", "current", "+=", "', '", "+", "author", ".", "strip", "(", ")", ".", "replace", "(", "'. '", ",", "'.'", ")", "else", ":", "if", "current", ":", "res", ".", "append", "(", "current", ")", "current", "=", "author", "# Add last element.", "if", "current", ":", "res", ".", "append", "(", "current", ")", "# Manual filterings that we don't want to add in regular expressions since", "# it would make them more complex.", "# * ed might sneak in", "# * many legacy refs look like 'X. and Somebody E.'", "# * might miss lowercase initials", "filters", "=", "[", "lambda", "a", ":", "a", "==", "'ed'", ",", "lambda", "a", ":", "a", ".", "startswith", "(", "','", ")", ",", "lambda", "a", ":", "len", "(", "a", ")", "==", "1", "]", "res", "=", "[", "r", "for", "r", "in", "res", "if", "all", "(", "not", "f", "(", "r", ")", "for", "f", "in", "filters", ")", "]", "return", "res" ]
Extract author names out of refextract authors output.
[ "Extract", "author", "names", "out", "of", "refextract", "authors", "output", "." ]
34bc124b62fba565b6b40d1a3c15103a23a05edb
https://github.com/inspirehep/inspire-schemas/blob/34bc124b62fba565b6b40d1a3c15103a23a05edb/inspire_schemas/builders/references.py#L57-L97
train
inspirehep/inspire-schemas
inspire_schemas/builders/references.py
ReferenceBuilder._set_publication_info_field
def _set_publication_info_field(self, field_name, value): """Put a value in the publication info of the reference.""" self._ensure_reference_field('publication_info', {}) self.obj['reference']['publication_info'][field_name] = value
python
def _set_publication_info_field(self, field_name, value): """Put a value in the publication info of the reference.""" self._ensure_reference_field('publication_info', {}) self.obj['reference']['publication_info'][field_name] = value
[ "def", "_set_publication_info_field", "(", "self", ",", "field_name", ",", "value", ")", ":", "self", ".", "_ensure_reference_field", "(", "'publication_info'", ",", "{", "}", ")", "self", ".", "obj", "[", "'reference'", "]", "[", "'publication_info'", "]", "[", "field_name", "]", "=", "value" ]
Put a value in the publication info of the reference.
[ "Put", "a", "value", "in", "the", "publication", "info", "of", "the", "reference", "." ]
34bc124b62fba565b6b40d1a3c15103a23a05edb
https://github.com/inspirehep/inspire-schemas/blob/34bc124b62fba565b6b40d1a3c15103a23a05edb/inspire_schemas/builders/references.py#L148-L151
train
inspirehep/inspire-schemas
inspire_schemas/builders/references.py
ReferenceBuilder.set_pubnote
def set_pubnote(self, pubnote): """Parse pubnote and populate correct fields.""" if 'publication_info' in self.obj.get('reference', {}): self.add_misc(u'Additional pubnote: {}'.format(pubnote)) return if self.RE_VALID_PUBNOTE.match(pubnote): pubnote = split_pubnote(pubnote) pubnote = convert_old_publication_info_to_new([pubnote])[0] self._ensure_reference_field('publication_info', pubnote) else: self.add_misc(pubnote)
python
def set_pubnote(self, pubnote): """Parse pubnote and populate correct fields.""" if 'publication_info' in self.obj.get('reference', {}): self.add_misc(u'Additional pubnote: {}'.format(pubnote)) return if self.RE_VALID_PUBNOTE.match(pubnote): pubnote = split_pubnote(pubnote) pubnote = convert_old_publication_info_to_new([pubnote])[0] self._ensure_reference_field('publication_info', pubnote) else: self.add_misc(pubnote)
[ "def", "set_pubnote", "(", "self", ",", "pubnote", ")", ":", "if", "'publication_info'", "in", "self", ".", "obj", ".", "get", "(", "'reference'", ",", "{", "}", ")", ":", "self", ".", "add_misc", "(", "u'Additional pubnote: {}'", ".", "format", "(", "pubnote", ")", ")", "return", "if", "self", ".", "RE_VALID_PUBNOTE", ".", "match", "(", "pubnote", ")", ":", "pubnote", "=", "split_pubnote", "(", "pubnote", ")", "pubnote", "=", "convert_old_publication_info_to_new", "(", "[", "pubnote", "]", ")", "[", "0", "]", "self", ".", "_ensure_reference_field", "(", "'publication_info'", ",", "pubnote", ")", "else", ":", "self", ".", "add_misc", "(", "pubnote", ")" ]
Parse pubnote and populate correct fields.
[ "Parse", "pubnote", "and", "populate", "correct", "fields", "." ]
34bc124b62fba565b6b40d1a3c15103a23a05edb
https://github.com/inspirehep/inspire-schemas/blob/34bc124b62fba565b6b40d1a3c15103a23a05edb/inspire_schemas/builders/references.py#L228-L239
train
inspirehep/inspire-schemas
inspire_schemas/builders/references.py
ReferenceBuilder._add_uid
def _add_uid(self, uid, skip_handle=False): """Add unique identifier in correct field. The ``skip_handle`` flag is used when adding a uid through the add_url function since urls can be easily confused with handle elements. """ # We might add None values from wherever. Kill them here. uid = uid or '' if is_arxiv(uid): self._ensure_reference_field('arxiv_eprint', normalize_arxiv(uid)) elif idutils.is_doi(uid): self._ensure_reference_field('dois', []) self.obj['reference']['dois'].append(idutils.normalize_doi(uid)) elif idutils.is_handle(uid) and not skip_handle: self._ensure_reference_field('persistent_identifiers', []) self.obj['reference']['persistent_identifiers'].append({ 'schema': 'HDL', 'value': idutils.normalize_handle(uid), }) elif idutils.is_urn(uid): self._ensure_reference_field('persistent_identifiers', []) self.obj['reference']['persistent_identifiers'].append({ 'schema': 'URN', 'value': uid, }) elif self.RE_VALID_CNUM.match(uid): self._ensure_reference_field('publication_info', {}) self.obj['reference']['publication_info']['cnum'] = uid elif is_cds_url(uid): self._ensure_reference_field('external_system_identifiers', []) self.obj['reference']['external_system_identifiers'].append({ 'schema': 'CDS', 'value': extract_cds_id(uid), }) elif is_ads_url(uid): self._ensure_reference_field('external_system_identifiers', []) self.obj['reference']['external_system_identifiers'].append({ 'schema': 'ADS', 'value': extract_ads_id(uid), }) else: # ``idutils.is_isbn`` is too strict in what it accepts. try: isbn = str(ISBN(uid)) self._ensure_reference_field('isbn', {}) self.obj['reference']['isbn'] = isbn except Exception: raise ValueError('Unrecognized uid type')
python
def _add_uid(self, uid, skip_handle=False): """Add unique identifier in correct field. The ``skip_handle`` flag is used when adding a uid through the add_url function since urls can be easily confused with handle elements. """ # We might add None values from wherever. Kill them here. uid = uid or '' if is_arxiv(uid): self._ensure_reference_field('arxiv_eprint', normalize_arxiv(uid)) elif idutils.is_doi(uid): self._ensure_reference_field('dois', []) self.obj['reference']['dois'].append(idutils.normalize_doi(uid)) elif idutils.is_handle(uid) and not skip_handle: self._ensure_reference_field('persistent_identifiers', []) self.obj['reference']['persistent_identifiers'].append({ 'schema': 'HDL', 'value': idutils.normalize_handle(uid), }) elif idutils.is_urn(uid): self._ensure_reference_field('persistent_identifiers', []) self.obj['reference']['persistent_identifiers'].append({ 'schema': 'URN', 'value': uid, }) elif self.RE_VALID_CNUM.match(uid): self._ensure_reference_field('publication_info', {}) self.obj['reference']['publication_info']['cnum'] = uid elif is_cds_url(uid): self._ensure_reference_field('external_system_identifiers', []) self.obj['reference']['external_system_identifiers'].append({ 'schema': 'CDS', 'value': extract_cds_id(uid), }) elif is_ads_url(uid): self._ensure_reference_field('external_system_identifiers', []) self.obj['reference']['external_system_identifiers'].append({ 'schema': 'ADS', 'value': extract_ads_id(uid), }) else: # ``idutils.is_isbn`` is too strict in what it accepts. try: isbn = str(ISBN(uid)) self._ensure_reference_field('isbn', {}) self.obj['reference']['isbn'] = isbn except Exception: raise ValueError('Unrecognized uid type')
[ "def", "_add_uid", "(", "self", ",", "uid", ",", "skip_handle", "=", "False", ")", ":", "# We might add None values from wherever. Kill them here.", "uid", "=", "uid", "or", "''", "if", "is_arxiv", "(", "uid", ")", ":", "self", ".", "_ensure_reference_field", "(", "'arxiv_eprint'", ",", "normalize_arxiv", "(", "uid", ")", ")", "elif", "idutils", ".", "is_doi", "(", "uid", ")", ":", "self", ".", "_ensure_reference_field", "(", "'dois'", ",", "[", "]", ")", "self", ".", "obj", "[", "'reference'", "]", "[", "'dois'", "]", ".", "append", "(", "idutils", ".", "normalize_doi", "(", "uid", ")", ")", "elif", "idutils", ".", "is_handle", "(", "uid", ")", "and", "not", "skip_handle", ":", "self", ".", "_ensure_reference_field", "(", "'persistent_identifiers'", ",", "[", "]", ")", "self", ".", "obj", "[", "'reference'", "]", "[", "'persistent_identifiers'", "]", ".", "append", "(", "{", "'schema'", ":", "'HDL'", ",", "'value'", ":", "idutils", ".", "normalize_handle", "(", "uid", ")", ",", "}", ")", "elif", "idutils", ".", "is_urn", "(", "uid", ")", ":", "self", ".", "_ensure_reference_field", "(", "'persistent_identifiers'", ",", "[", "]", ")", "self", ".", "obj", "[", "'reference'", "]", "[", "'persistent_identifiers'", "]", ".", "append", "(", "{", "'schema'", ":", "'URN'", ",", "'value'", ":", "uid", ",", "}", ")", "elif", "self", ".", "RE_VALID_CNUM", ".", "match", "(", "uid", ")", ":", "self", ".", "_ensure_reference_field", "(", "'publication_info'", ",", "{", "}", ")", "self", ".", "obj", "[", "'reference'", "]", "[", "'publication_info'", "]", "[", "'cnum'", "]", "=", "uid", "elif", "is_cds_url", "(", "uid", ")", ":", "self", ".", "_ensure_reference_field", "(", "'external_system_identifiers'", ",", "[", "]", ")", "self", ".", "obj", "[", "'reference'", "]", "[", "'external_system_identifiers'", "]", ".", "append", "(", "{", "'schema'", ":", "'CDS'", ",", "'value'", ":", "extract_cds_id", "(", "uid", ")", ",", "}", ")", "elif", "is_ads_url", "(", "uid", ")", ":", "self", ".", "_ensure_reference_field", "(", "'external_system_identifiers'", ",", "[", "]", ")", "self", ".", "obj", "[", "'reference'", "]", "[", "'external_system_identifiers'", "]", ".", "append", "(", "{", "'schema'", ":", "'ADS'", ",", "'value'", ":", "extract_ads_id", "(", "uid", ")", ",", "}", ")", "else", ":", "# ``idutils.is_isbn`` is too strict in what it accepts.", "try", ":", "isbn", "=", "str", "(", "ISBN", "(", "uid", ")", ")", "self", ".", "_ensure_reference_field", "(", "'isbn'", ",", "{", "}", ")", "self", ".", "obj", "[", "'reference'", "]", "[", "'isbn'", "]", "=", "isbn", "except", "Exception", ":", "raise", "ValueError", "(", "'Unrecognized uid type'", ")" ]
Add unique identifier in correct field. The ``skip_handle`` flag is used when adding a uid through the add_url function since urls can be easily confused with handle elements.
[ "Add", "unique", "identifier", "in", "correct", "field", "." ]
34bc124b62fba565b6b40d1a3c15103a23a05edb
https://github.com/inspirehep/inspire-schemas/blob/34bc124b62fba565b6b40d1a3c15103a23a05edb/inspire_schemas/builders/references.py#L271-L318
train
inspirehep/inspire-schemas
inspire_schemas/builders/references.py
ReferenceBuilder.set_page_artid
def set_page_artid(self, page_start=None, page_end=None, artid=None): """Add artid, start, end pages to publication info of a reference. Args: page_start(Optional[string]): value for the field page_start page_end(Optional[string]): value for the field page_end artid(Optional[string]): value for the field artid Raises: ValueError: when no start_page given for an end_page """ if page_end and not page_start: raise ValueError('End_page provided without start_page') self._ensure_reference_field('publication_info', {}) publication_info = self.obj['reference']['publication_info'] if page_start: publication_info['page_start'] = page_start if page_end: publication_info['page_end'] = page_end if artid: publication_info['artid'] = artid
python
def set_page_artid(self, page_start=None, page_end=None, artid=None): """Add artid, start, end pages to publication info of a reference. Args: page_start(Optional[string]): value for the field page_start page_end(Optional[string]): value for the field page_end artid(Optional[string]): value for the field artid Raises: ValueError: when no start_page given for an end_page """ if page_end and not page_start: raise ValueError('End_page provided without start_page') self._ensure_reference_field('publication_info', {}) publication_info = self.obj['reference']['publication_info'] if page_start: publication_info['page_start'] = page_start if page_end: publication_info['page_end'] = page_end if artid: publication_info['artid'] = artid
[ "def", "set_page_artid", "(", "self", ",", "page_start", "=", "None", ",", "page_end", "=", "None", ",", "artid", "=", "None", ")", ":", "if", "page_end", "and", "not", "page_start", ":", "raise", "ValueError", "(", "'End_page provided without start_page'", ")", "self", ".", "_ensure_reference_field", "(", "'publication_info'", ",", "{", "}", ")", "publication_info", "=", "self", ".", "obj", "[", "'reference'", "]", "[", "'publication_info'", "]", "if", "page_start", ":", "publication_info", "[", "'page_start'", "]", "=", "page_start", "if", "page_end", ":", "publication_info", "[", "'page_end'", "]", "=", "page_end", "if", "artid", ":", "publication_info", "[", "'artid'", "]", "=", "artid" ]
Add artid, start, end pages to publication info of a reference. Args: page_start(Optional[string]): value for the field page_start page_end(Optional[string]): value for the field page_end artid(Optional[string]): value for the field artid Raises: ValueError: when no start_page given for an end_page
[ "Add", "artid", "start", "end", "pages", "to", "publication", "info", "of", "a", "reference", "." ]
34bc124b62fba565b6b40d1a3c15103a23a05edb
https://github.com/inspirehep/inspire-schemas/blob/34bc124b62fba565b6b40d1a3c15103a23a05edb/inspire_schemas/builders/references.py#L336-L357
train
pylp/pylp
pylp/utils/glob.py
separate_globs
def separate_globs(globs): """Separate include and exclude globs.""" exclude = [] include = [] for path in globs: if path.startswith("!"): exclude.append(path[1:]) else: include.append(path) return (exclude, include)
python
def separate_globs(globs): """Separate include and exclude globs.""" exclude = [] include = [] for path in globs: if path.startswith("!"): exclude.append(path[1:]) else: include.append(path) return (exclude, include)
[ "def", "separate_globs", "(", "globs", ")", ":", "exclude", "=", "[", "]", "include", "=", "[", "]", "for", "path", "in", "globs", ":", "if", "path", ".", "startswith", "(", "\"!\"", ")", ":", "exclude", ".", "append", "(", "path", "[", "1", ":", "]", ")", "else", ":", "include", ".", "append", "(", "path", ")", "return", "(", "exclude", ",", "include", ")" ]
Separate include and exclude globs.
[ "Separate", "include", "and", "exclude", "globs", "." ]
7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4
https://github.com/pylp/pylp/blob/7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4/pylp/utils/glob.py#L15-L26
train
pylp/pylp
pylp/utils/glob.py
parse_glob
def parse_glob(path, included): """Parse a glob.""" files = glob.glob(path, recursive=True) array = [] for file in files: file = os.path.abspath(file) if file not in included: array.append(file) included += array return array
python
def parse_glob(path, included): """Parse a glob.""" files = glob.glob(path, recursive=True) array = [] for file in files: file = os.path.abspath(file) if file not in included: array.append(file) included += array return array
[ "def", "parse_glob", "(", "path", ",", "included", ")", ":", "files", "=", "glob", ".", "glob", "(", "path", ",", "recursive", "=", "True", ")", "array", "=", "[", "]", "for", "file", "in", "files", ":", "file", "=", "os", ".", "path", ".", "abspath", "(", "file", ")", "if", "file", "not", "in", "included", ":", "array", ".", "append", "(", "file", ")", "included", "+=", "array", "return", "array" ]
Parse a glob.
[ "Parse", "a", "glob", "." ]
7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4
https://github.com/pylp/pylp/blob/7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4/pylp/utils/glob.py#L30-L42
train
pylp/pylp
pylp/utils/glob.py
find_base
def find_base(path): """Find the base of a glob.""" result = _pattern.match(path) if result: base = result.group(0) else: base = "./" if base.endswith('/') or base.endswith('\\'): return os.path.abspath(base) else: return os.path.dirname(os.path.abspath(base))
python
def find_base(path): """Find the base of a glob.""" result = _pattern.match(path) if result: base = result.group(0) else: base = "./" if base.endswith('/') or base.endswith('\\'): return os.path.abspath(base) else: return os.path.dirname(os.path.abspath(base))
[ "def", "find_base", "(", "path", ")", ":", "result", "=", "_pattern", ".", "match", "(", "path", ")", "if", "result", ":", "base", "=", "result", ".", "group", "(", "0", ")", "else", ":", "base", "=", "\"./\"", "if", "base", ".", "endswith", "(", "'/'", ")", "or", "base", ".", "endswith", "(", "'\\\\'", ")", ":", "return", "os", ".", "path", ".", "abspath", "(", "base", ")", "else", ":", "return", "os", ".", "path", ".", "dirname", "(", "os", ".", "path", ".", "abspath", "(", "base", ")", ")" ]
Find the base of a glob.
[ "Find", "the", "base", "of", "a", "glob", "." ]
7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4
https://github.com/pylp/pylp/blob/7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4/pylp/utils/glob.py#L49-L61
train
guaix-ucm/numina
numina/array/wavecalib/check_wlcalib.py
fun_wv
def fun_wv(xchannel, crpix1, crval1, cdelt1): """Compute wavelengths from channels. The wavelength calibration is provided through the usual parameters CRPIX1, CRVAL1 and CDELT1. Parameters ---------- xchannel : numpy array Input channels where the wavelengths will be evaluated. crpix1: float CRPIX1 keyword. crval1: float CRVAL1 keyword. cdelt1: float CDELT1 keyword. Returns ------- wv : numpy array Computed wavelengths """ wv = crval1 + (xchannel - crpix1) * cdelt1 return wv
python
def fun_wv(xchannel, crpix1, crval1, cdelt1): """Compute wavelengths from channels. The wavelength calibration is provided through the usual parameters CRPIX1, CRVAL1 and CDELT1. Parameters ---------- xchannel : numpy array Input channels where the wavelengths will be evaluated. crpix1: float CRPIX1 keyword. crval1: float CRVAL1 keyword. cdelt1: float CDELT1 keyword. Returns ------- wv : numpy array Computed wavelengths """ wv = crval1 + (xchannel - crpix1) * cdelt1 return wv
[ "def", "fun_wv", "(", "xchannel", ",", "crpix1", ",", "crval1", ",", "cdelt1", ")", ":", "wv", "=", "crval1", "+", "(", "xchannel", "-", "crpix1", ")", "*", "cdelt1", "return", "wv" ]
Compute wavelengths from channels. The wavelength calibration is provided through the usual parameters CRPIX1, CRVAL1 and CDELT1. Parameters ---------- xchannel : numpy array Input channels where the wavelengths will be evaluated. crpix1: float CRPIX1 keyword. crval1: float CRVAL1 keyword. cdelt1: float CDELT1 keyword. Returns ------- wv : numpy array Computed wavelengths
[ "Compute", "wavelengths", "from", "channels", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/wavecalib/check_wlcalib.py#L109-L133
train
guaix-ucm/numina
numina/array/wavecalib/check_wlcalib.py
update_poly_wlcalib
def update_poly_wlcalib(coeff_ini, coeff_residuals, naxis1_ini, debugplot): """Update wavelength calibration polynomial using the residuals fit. The idea is to repeat the original fit using the information previously computed with the function check_wlcalib_sp() in this module. Parameters ---------- coeff_ini : array like (floats) Coefficients corresponding to the initial wavelength calibration. coeff_residuals: array like (floats) Coefficients corresponding to the fit performed by the function check_wlcalib_sp() in this module. naxis1_ini : int NAXIS1 in original spectrum employed to fit the initial wavelength calibration. debugplot : int Debugging level for messages and plots. For details see 'numina.array.display.pause_debugplot.py'. Returns ------- coeff_end : numpy array (floats) Updated coefficients. """ # define initial wavelength calibration polynomial (use generic # code valid for lists of numpy.arrays) coeff = [] for fdum in coeff_ini: coeff.append(fdum) poly_ini = np.polynomial.Polynomial(coeff) poldeg_wlcalib = len(coeff) - 1 # return initial polynomial when there is no need to compute an # updated version if len(coeff_residuals) == 0: return poly_ini.coef else: if np.count_nonzero(poly_ini.coef) == 0: return poly_ini.coef # define polynomial corresponding to the residuals fit carried # out by check_wlcalib_sp() coeff = [] for fdum in coeff_residuals: coeff.append(fdum) poly_residuals = np.polynomial.Polynomial(coeff) # define new points to be fitted xfit = np.zeros(naxis1_ini) yfit = np.zeros(naxis1_ini) for i in range(naxis1_ini): xfit[i] = float(i + 1) wv_tmp = poly_ini(xfit[i]) yfit[i] = wv_tmp + poly_residuals(wv_tmp) # fit to get the updated polynomial if len(xfit) > poldeg_wlcalib: poldeg_effective = poldeg_wlcalib else: poldeg_effective = len(xfit) - 1 poly_updated, ydum = polfit_residuals( x=xfit, y=yfit, deg=poldeg_effective, debugplot=debugplot ) # return coefficients of updated polynomial return poly_updated.coef
python
def update_poly_wlcalib(coeff_ini, coeff_residuals, naxis1_ini, debugplot): """Update wavelength calibration polynomial using the residuals fit. The idea is to repeat the original fit using the information previously computed with the function check_wlcalib_sp() in this module. Parameters ---------- coeff_ini : array like (floats) Coefficients corresponding to the initial wavelength calibration. coeff_residuals: array like (floats) Coefficients corresponding to the fit performed by the function check_wlcalib_sp() in this module. naxis1_ini : int NAXIS1 in original spectrum employed to fit the initial wavelength calibration. debugplot : int Debugging level for messages and plots. For details see 'numina.array.display.pause_debugplot.py'. Returns ------- coeff_end : numpy array (floats) Updated coefficients. """ # define initial wavelength calibration polynomial (use generic # code valid for lists of numpy.arrays) coeff = [] for fdum in coeff_ini: coeff.append(fdum) poly_ini = np.polynomial.Polynomial(coeff) poldeg_wlcalib = len(coeff) - 1 # return initial polynomial when there is no need to compute an # updated version if len(coeff_residuals) == 0: return poly_ini.coef else: if np.count_nonzero(poly_ini.coef) == 0: return poly_ini.coef # define polynomial corresponding to the residuals fit carried # out by check_wlcalib_sp() coeff = [] for fdum in coeff_residuals: coeff.append(fdum) poly_residuals = np.polynomial.Polynomial(coeff) # define new points to be fitted xfit = np.zeros(naxis1_ini) yfit = np.zeros(naxis1_ini) for i in range(naxis1_ini): xfit[i] = float(i + 1) wv_tmp = poly_ini(xfit[i]) yfit[i] = wv_tmp + poly_residuals(wv_tmp) # fit to get the updated polynomial if len(xfit) > poldeg_wlcalib: poldeg_effective = poldeg_wlcalib else: poldeg_effective = len(xfit) - 1 poly_updated, ydum = polfit_residuals( x=xfit, y=yfit, deg=poldeg_effective, debugplot=debugplot ) # return coefficients of updated polynomial return poly_updated.coef
[ "def", "update_poly_wlcalib", "(", "coeff_ini", ",", "coeff_residuals", ",", "naxis1_ini", ",", "debugplot", ")", ":", "# define initial wavelength calibration polynomial (use generic", "# code valid for lists of numpy.arrays)", "coeff", "=", "[", "]", "for", "fdum", "in", "coeff_ini", ":", "coeff", ".", "append", "(", "fdum", ")", "poly_ini", "=", "np", ".", "polynomial", ".", "Polynomial", "(", "coeff", ")", "poldeg_wlcalib", "=", "len", "(", "coeff", ")", "-", "1", "# return initial polynomial when there is no need to compute an", "# updated version", "if", "len", "(", "coeff_residuals", ")", "==", "0", ":", "return", "poly_ini", ".", "coef", "else", ":", "if", "np", ".", "count_nonzero", "(", "poly_ini", ".", "coef", ")", "==", "0", ":", "return", "poly_ini", ".", "coef", "# define polynomial corresponding to the residuals fit carried", "# out by check_wlcalib_sp()", "coeff", "=", "[", "]", "for", "fdum", "in", "coeff_residuals", ":", "coeff", ".", "append", "(", "fdum", ")", "poly_residuals", "=", "np", ".", "polynomial", ".", "Polynomial", "(", "coeff", ")", "# define new points to be fitted", "xfit", "=", "np", ".", "zeros", "(", "naxis1_ini", ")", "yfit", "=", "np", ".", "zeros", "(", "naxis1_ini", ")", "for", "i", "in", "range", "(", "naxis1_ini", ")", ":", "xfit", "[", "i", "]", "=", "float", "(", "i", "+", "1", ")", "wv_tmp", "=", "poly_ini", "(", "xfit", "[", "i", "]", ")", "yfit", "[", "i", "]", "=", "wv_tmp", "+", "poly_residuals", "(", "wv_tmp", ")", "# fit to get the updated polynomial", "if", "len", "(", "xfit", ")", ">", "poldeg_wlcalib", ":", "poldeg_effective", "=", "poldeg_wlcalib", "else", ":", "poldeg_effective", "=", "len", "(", "xfit", ")", "-", "1", "poly_updated", ",", "ydum", "=", "polfit_residuals", "(", "x", "=", "xfit", ",", "y", "=", "yfit", ",", "deg", "=", "poldeg_effective", ",", "debugplot", "=", "debugplot", ")", "# return coefficients of updated polynomial", "return", "poly_updated", ".", "coef" ]
Update wavelength calibration polynomial using the residuals fit. The idea is to repeat the original fit using the information previously computed with the function check_wlcalib_sp() in this module. Parameters ---------- coeff_ini : array like (floats) Coefficients corresponding to the initial wavelength calibration. coeff_residuals: array like (floats) Coefficients corresponding to the fit performed by the function check_wlcalib_sp() in this module. naxis1_ini : int NAXIS1 in original spectrum employed to fit the initial wavelength calibration. debugplot : int Debugging level for messages and plots. For details see 'numina.array.display.pause_debugplot.py'. Returns ------- coeff_end : numpy array (floats) Updated coefficients.
[ "Update", "wavelength", "calibration", "polynomial", "using", "the", "residuals", "fit", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/wavecalib/check_wlcalib.py#L620-L693
train
guaix-ucm/numina
numina/core/metarecipes.py
generate_docs
def generate_docs(klass): """Add documentation to generated classes""" import numina.types.datatype attrh = ('Attributes\n' '----------\n') doc = getattr(klass, '__doc__', None) if doc is None or doc == '': doc = "%s documentation." % klass.__name__ if len(klass.stored()): doc = doc + '\n\n' + attrh skeys = sorted(klass.stored().keys()) for key in skeys: y = klass.stored()[key] if isinstance(y, Requirement): modo = 'requirement' elif isinstance(y, Result): modo = 'product' else: modo = "" if y.type.isproduct(): tipo = y.type.__class__.__name__ elif isinstance(y.type, numina.types.datatype.PlainPythonType): tipo = y.type.internal_type.__name__ else: tipo = y.type.__class__.__name__ if y.optional: if y.default_value(): modo = "%s, optional, default=%s" % (modo, y.default) else: modo = "%s, optional" % (modo,) descript = y.description if descript: field = "%s : %s, %s\n %s\n" % (key, tipo, modo, descript) else: field = "%s : %s, %s\n" % (key, tipo, modo) doc = doc + field klass.__doc__ = doc return klass
python
def generate_docs(klass): """Add documentation to generated classes""" import numina.types.datatype attrh = ('Attributes\n' '----------\n') doc = getattr(klass, '__doc__', None) if doc is None or doc == '': doc = "%s documentation." % klass.__name__ if len(klass.stored()): doc = doc + '\n\n' + attrh skeys = sorted(klass.stored().keys()) for key in skeys: y = klass.stored()[key] if isinstance(y, Requirement): modo = 'requirement' elif isinstance(y, Result): modo = 'product' else: modo = "" if y.type.isproduct(): tipo = y.type.__class__.__name__ elif isinstance(y.type, numina.types.datatype.PlainPythonType): tipo = y.type.internal_type.__name__ else: tipo = y.type.__class__.__name__ if y.optional: if y.default_value(): modo = "%s, optional, default=%s" % (modo, y.default) else: modo = "%s, optional" % (modo,) descript = y.description if descript: field = "%s : %s, %s\n %s\n" % (key, tipo, modo, descript) else: field = "%s : %s, %s\n" % (key, tipo, modo) doc = doc + field klass.__doc__ = doc return klass
[ "def", "generate_docs", "(", "klass", ")", ":", "import", "numina", ".", "types", ".", "datatype", "attrh", "=", "(", "'Attributes\\n'", "'----------\\n'", ")", "doc", "=", "getattr", "(", "klass", ",", "'__doc__'", ",", "None", ")", "if", "doc", "is", "None", "or", "doc", "==", "''", ":", "doc", "=", "\"%s documentation.\"", "%", "klass", ".", "__name__", "if", "len", "(", "klass", ".", "stored", "(", ")", ")", ":", "doc", "=", "doc", "+", "'\\n\\n'", "+", "attrh", "skeys", "=", "sorted", "(", "klass", ".", "stored", "(", ")", ".", "keys", "(", ")", ")", "for", "key", "in", "skeys", ":", "y", "=", "klass", ".", "stored", "(", ")", "[", "key", "]", "if", "isinstance", "(", "y", ",", "Requirement", ")", ":", "modo", "=", "'requirement'", "elif", "isinstance", "(", "y", ",", "Result", ")", ":", "modo", "=", "'product'", "else", ":", "modo", "=", "\"\"", "if", "y", ".", "type", ".", "isproduct", "(", ")", ":", "tipo", "=", "y", ".", "type", ".", "__class__", ".", "__name__", "elif", "isinstance", "(", "y", ".", "type", ",", "numina", ".", "types", ".", "datatype", ".", "PlainPythonType", ")", ":", "tipo", "=", "y", ".", "type", ".", "internal_type", ".", "__name__", "else", ":", "tipo", "=", "y", ".", "type", ".", "__class__", ".", "__name__", "if", "y", ".", "optional", ":", "if", "y", ".", "default_value", "(", ")", ":", "modo", "=", "\"%s, optional, default=%s\"", "%", "(", "modo", ",", "y", ".", "default", ")", "else", ":", "modo", "=", "\"%s, optional\"", "%", "(", "modo", ",", ")", "descript", "=", "y", ".", "description", "if", "descript", ":", "field", "=", "\"%s : %s, %s\\n %s\\n\"", "%", "(", "key", ",", "tipo", ",", "modo", ",", "descript", ")", "else", ":", "field", "=", "\"%s : %s, %s\\n\"", "%", "(", "key", ",", "tipo", ",", "modo", ")", "doc", "=", "doc", "+", "field", "klass", ".", "__doc__", "=", "doc", "return", "klass" ]
Add documentation to generated classes
[ "Add", "documentation", "to", "generated", "classes" ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/core/metarecipes.py#L83-L129
train
xflr6/bitsets
bitsets/integers.py
reinverted
def reinverted(n, r): """Integer with reversed and inverted bits of n assuming bit length r. >>> reinverted(1, 6) 31 >>> [reinverted(x, 6) for x in [7, 11, 13, 14, 19, 21, 22, 25, 26, 28]] [7, 11, 19, 35, 13, 21, 37, 25, 41, 49] """ result = 0 r = 1 << (r - 1) while n: if not n & 1: result |= r r >>= 1 n >>= 1 if r: result |= (r << 1) - 1 return result
python
def reinverted(n, r): """Integer with reversed and inverted bits of n assuming bit length r. >>> reinverted(1, 6) 31 >>> [reinverted(x, 6) for x in [7, 11, 13, 14, 19, 21, 22, 25, 26, 28]] [7, 11, 19, 35, 13, 21, 37, 25, 41, 49] """ result = 0 r = 1 << (r - 1) while n: if not n & 1: result |= r r >>= 1 n >>= 1 if r: result |= (r << 1) - 1 return result
[ "def", "reinverted", "(", "n", ",", "r", ")", ":", "result", "=", "0", "r", "=", "1", "<<", "(", "r", "-", "1", ")", "while", "n", ":", "if", "not", "n", "&", "1", ":", "result", "|=", "r", "r", ">>=", "1", "n", ">>=", "1", "if", "r", ":", "result", "|=", "(", "r", "<<", "1", ")", "-", "1", "return", "result" ]
Integer with reversed and inverted bits of n assuming bit length r. >>> reinverted(1, 6) 31 >>> [reinverted(x, 6) for x in [7, 11, 13, 14, 19, 21, 22, 25, 26, 28]] [7, 11, 19, 35, 13, 21, 37, 25, 41, 49]
[ "Integer", "with", "reversed", "and", "inverted", "bits", "of", "n", "assuming", "bit", "length", "r", "." ]
ddcfe17e7c7a11f71f1c6764b2cecf7db05d9cdf
https://github.com/xflr6/bitsets/blob/ddcfe17e7c7a11f71f1c6764b2cecf7db05d9cdf/bitsets/integers.py#L35-L53
train
xflr6/bitsets
bitsets/integers.py
rank
def rank(items, sequence=string.ascii_lowercase): """Rank items from sequence in colexicographical order. >>> [rank(i) for i in ('', 'a', 'b', 'ab', 'c')] [0, 1, 2, 3, 4] >>> rank('spam') 299009 """ items = set(items) return sum(1 << i for i, s in enumerate(sequence) if s in items)
python
def rank(items, sequence=string.ascii_lowercase): """Rank items from sequence in colexicographical order. >>> [rank(i) for i in ('', 'a', 'b', 'ab', 'c')] [0, 1, 2, 3, 4] >>> rank('spam') 299009 """ items = set(items) return sum(1 << i for i, s in enumerate(sequence) if s in items)
[ "def", "rank", "(", "items", ",", "sequence", "=", "string", ".", "ascii_lowercase", ")", ":", "items", "=", "set", "(", "items", ")", "return", "sum", "(", "1", "<<", "i", "for", "i", ",", "s", "in", "enumerate", "(", "sequence", ")", "if", "s", "in", "items", ")" ]
Rank items from sequence in colexicographical order. >>> [rank(i) for i in ('', 'a', 'b', 'ab', 'c')] [0, 1, 2, 3, 4] >>> rank('spam') 299009
[ "Rank", "items", "from", "sequence", "in", "colexicographical", "order", "." ]
ddcfe17e7c7a11f71f1c6764b2cecf7db05d9cdf
https://github.com/xflr6/bitsets/blob/ddcfe17e7c7a11f71f1c6764b2cecf7db05d9cdf/bitsets/integers.py#L56-L66
train
xflr6/bitsets
bitsets/integers.py
unrank
def unrank(n, sequence=string.ascii_lowercase): """Unrank n from sequence in colexicographical order. >>> [''.join(unrank(i)) for i in range(8)] ['', 'a', 'b', 'ab', 'c', 'ac', 'bc', 'abc'] >>> unrank(299009) ['a', 'm', 'p', 's'] """ return list(map(sequence.__getitem__, indexes(n)))
python
def unrank(n, sequence=string.ascii_lowercase): """Unrank n from sequence in colexicographical order. >>> [''.join(unrank(i)) for i in range(8)] ['', 'a', 'b', 'ab', 'c', 'ac', 'bc', 'abc'] >>> unrank(299009) ['a', 'm', 'p', 's'] """ return list(map(sequence.__getitem__, indexes(n)))
[ "def", "unrank", "(", "n", ",", "sequence", "=", "string", ".", "ascii_lowercase", ")", ":", "return", "list", "(", "map", "(", "sequence", ".", "__getitem__", ",", "indexes", "(", "n", ")", ")", ")" ]
Unrank n from sequence in colexicographical order. >>> [''.join(unrank(i)) for i in range(8)] ['', 'a', 'b', 'ab', 'c', 'ac', 'bc', 'abc'] >>> unrank(299009) ['a', 'm', 'p', 's']
[ "Unrank", "n", "from", "sequence", "in", "colexicographical", "order", "." ]
ddcfe17e7c7a11f71f1c6764b2cecf7db05d9cdf
https://github.com/xflr6/bitsets/blob/ddcfe17e7c7a11f71f1c6764b2cecf7db05d9cdf/bitsets/integers.py#L69-L78
train
guaix-ucm/numina
numina/array/background.py
background_estimator
def background_estimator(bdata): """Estimate the background in a 2D array""" crowded = False std = numpy.std(bdata) std0 = std mean = bdata.mean() while True: prep = len(bdata) numpy.clip(bdata, mean - 3 * std, mean + 3 * std, out=bdata) if prep == len(bdata): if std < 0.8 * std0: crowded = True break std = numpy.std(bdata) mean = bdata.mean() if crowded: median = numpy.median(bdata) mean = bdata.mean() std = bdata.std() return 2.5 * median - 1.5 * mean, std return bdata.mean(), bdata.std()
python
def background_estimator(bdata): """Estimate the background in a 2D array""" crowded = False std = numpy.std(bdata) std0 = std mean = bdata.mean() while True: prep = len(bdata) numpy.clip(bdata, mean - 3 * std, mean + 3 * std, out=bdata) if prep == len(bdata): if std < 0.8 * std0: crowded = True break std = numpy.std(bdata) mean = bdata.mean() if crowded: median = numpy.median(bdata) mean = bdata.mean() std = bdata.std() return 2.5 * median - 1.5 * mean, std return bdata.mean(), bdata.std()
[ "def", "background_estimator", "(", "bdata", ")", ":", "crowded", "=", "False", "std", "=", "numpy", ".", "std", "(", "bdata", ")", "std0", "=", "std", "mean", "=", "bdata", ".", "mean", "(", ")", "while", "True", ":", "prep", "=", "len", "(", "bdata", ")", "numpy", ".", "clip", "(", "bdata", ",", "mean", "-", "3", "*", "std", ",", "mean", "+", "3", "*", "std", ",", "out", "=", "bdata", ")", "if", "prep", "==", "len", "(", "bdata", ")", ":", "if", "std", "<", "0.8", "*", "std0", ":", "crowded", "=", "True", "break", "std", "=", "numpy", ".", "std", "(", "bdata", ")", "mean", "=", "bdata", ".", "mean", "(", ")", "if", "crowded", ":", "median", "=", "numpy", ".", "median", "(", "bdata", ")", "mean", "=", "bdata", ".", "mean", "(", ")", "std", "=", "bdata", ".", "std", "(", ")", "return", "2.5", "*", "median", "-", "1.5", "*", "mean", ",", "std", "return", "bdata", ".", "mean", "(", ")", ",", "bdata", ".", "std", "(", ")" ]
Estimate the background in a 2D array
[ "Estimate", "the", "background", "in", "a", "2D", "array" ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/background.py#L37-L61
train
guaix-ucm/numina
numina/array/background.py
create_background_map
def create_background_map(data, bsx, bsy): """Create a background map with a given mesh size""" sx, sy = data.shape mx = sx // bsx my = sy // bsy comp = [] rms = [] # Rows sp = numpy.split(data, numpy.arange(bsx, sx, bsx), axis=0) for s in sp: # Columns rp = numpy.split(s, numpy.arange(bsy, sy, bsy), axis=1) for r in rp: b, r = background_estimator(r) comp.append(b) rms.append(r) # Reconstructed image z = numpy.array(comp) z.shape = (mx, my) # median filter ndfilter.median_filter(z, size=(3, 3), output=z) # Interpolate to the original size new = _interpolation(z, sx, sy, mx, my) # Interpolate the rms z = numpy.array(rms) z.shape = (mx, my) nrms = _interpolation(z, sx, sy, mx, my) return new, nrms
python
def create_background_map(data, bsx, bsy): """Create a background map with a given mesh size""" sx, sy = data.shape mx = sx // bsx my = sy // bsy comp = [] rms = [] # Rows sp = numpy.split(data, numpy.arange(bsx, sx, bsx), axis=0) for s in sp: # Columns rp = numpy.split(s, numpy.arange(bsy, sy, bsy), axis=1) for r in rp: b, r = background_estimator(r) comp.append(b) rms.append(r) # Reconstructed image z = numpy.array(comp) z.shape = (mx, my) # median filter ndfilter.median_filter(z, size=(3, 3), output=z) # Interpolate to the original size new = _interpolation(z, sx, sy, mx, my) # Interpolate the rms z = numpy.array(rms) z.shape = (mx, my) nrms = _interpolation(z, sx, sy, mx, my) return new, nrms
[ "def", "create_background_map", "(", "data", ",", "bsx", ",", "bsy", ")", ":", "sx", ",", "sy", "=", "data", ".", "shape", "mx", "=", "sx", "//", "bsx", "my", "=", "sy", "//", "bsy", "comp", "=", "[", "]", "rms", "=", "[", "]", "# Rows", "sp", "=", "numpy", ".", "split", "(", "data", ",", "numpy", ".", "arange", "(", "bsx", ",", "sx", ",", "bsx", ")", ",", "axis", "=", "0", ")", "for", "s", "in", "sp", ":", "# Columns", "rp", "=", "numpy", ".", "split", "(", "s", ",", "numpy", ".", "arange", "(", "bsy", ",", "sy", ",", "bsy", ")", ",", "axis", "=", "1", ")", "for", "r", "in", "rp", ":", "b", ",", "r", "=", "background_estimator", "(", "r", ")", "comp", ".", "append", "(", "b", ")", "rms", ".", "append", "(", "r", ")", "# Reconstructed image", "z", "=", "numpy", ".", "array", "(", "comp", ")", "z", ".", "shape", "=", "(", "mx", ",", "my", ")", "# median filter", "ndfilter", ".", "median_filter", "(", "z", ",", "size", "=", "(", "3", ",", "3", ")", ",", "output", "=", "z", ")", "# Interpolate to the original size", "new", "=", "_interpolation", "(", "z", ",", "sx", ",", "sy", ",", "mx", ",", "my", ")", "# Interpolate the rms", "z", "=", "numpy", ".", "array", "(", "rms", ")", "z", ".", "shape", "=", "(", "mx", ",", "my", ")", "nrms", "=", "_interpolation", "(", "z", ",", "sx", ",", "sy", ",", "mx", ",", "my", ")", "return", "new", ",", "nrms" ]
Create a background map with a given mesh size
[ "Create", "a", "background", "map", "with", "a", "given", "mesh", "size" ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/background.py#L64-L95
train
ckan/losser
losser/losser.py
_read_columns_file
def _read_columns_file(f): """Return the list of column queries read from the given JSON file. :param f: path to the file to read :type f: string :rtype: list of dicts """ try: columns = json.loads(open(f, 'r').read(), object_pairs_hook=collections.OrderedDict) except Exception as err: raise InvalidColumnsFileError( "There was an error while reading {0}: {1}".format(f, err)) # Options are not supported yet: if '__options' in columns: del columns['__options'] return columns
python
def _read_columns_file(f): """Return the list of column queries read from the given JSON file. :param f: path to the file to read :type f: string :rtype: list of dicts """ try: columns = json.loads(open(f, 'r').read(), object_pairs_hook=collections.OrderedDict) except Exception as err: raise InvalidColumnsFileError( "There was an error while reading {0}: {1}".format(f, err)) # Options are not supported yet: if '__options' in columns: del columns['__options'] return columns
[ "def", "_read_columns_file", "(", "f", ")", ":", "try", ":", "columns", "=", "json", ".", "loads", "(", "open", "(", "f", ",", "'r'", ")", ".", "read", "(", ")", ",", "object_pairs_hook", "=", "collections", ".", "OrderedDict", ")", "except", "Exception", "as", "err", ":", "raise", "InvalidColumnsFileError", "(", "\"There was an error while reading {0}: {1}\"", ".", "format", "(", "f", ",", "err", ")", ")", "# Options are not supported yet:", "if", "'__options'", "in", "columns", ":", "del", "columns", "[", "'__options'", "]", "return", "columns" ]
Return the list of column queries read from the given JSON file. :param f: path to the file to read :type f: string :rtype: list of dicts
[ "Return", "the", "list", "of", "column", "queries", "read", "from", "the", "given", "JSON", "file", "." ]
fd0832d9fa93cabe9ce9a9153dc923f2cf39cb5f
https://github.com/ckan/losser/blob/fd0832d9fa93cabe9ce9a9153dc923f2cf39cb5f/losser/losser.py#L23-L43
train
ckan/losser
losser/losser.py
_table_to_csv
def _table_to_csv(table_): """Return the given table converted to a CSV string. :param table: the table to convert :type table: list of OrderedDicts each with the same keys in the same order :rtype: UTF8-encoded, CSV-formatted string """ f = cStringIO.StringIO() try: _write_csv(f, table_) return f.getvalue() finally: f.close()
python
def _table_to_csv(table_): """Return the given table converted to a CSV string. :param table: the table to convert :type table: list of OrderedDicts each with the same keys in the same order :rtype: UTF8-encoded, CSV-formatted string """ f = cStringIO.StringIO() try: _write_csv(f, table_) return f.getvalue() finally: f.close()
[ "def", "_table_to_csv", "(", "table_", ")", ":", "f", "=", "cStringIO", ".", "StringIO", "(", ")", "try", ":", "_write_csv", "(", "f", ",", "table_", ")", "return", "f", ".", "getvalue", "(", ")", "finally", ":", "f", ".", "close", "(", ")" ]
Return the given table converted to a CSV string. :param table: the table to convert :type table: list of OrderedDicts each with the same keys in the same order :rtype: UTF8-encoded, CSV-formatted string
[ "Return", "the", "given", "table", "converted", "to", "a", "CSV", "string", "." ]
fd0832d9fa93cabe9ce9a9153dc923f2cf39cb5f
https://github.com/ckan/losser/blob/fd0832d9fa93cabe9ce9a9153dc923f2cf39cb5f/losser/losser.py#L76-L91
train
ckan/losser
losser/losser.py
table
def table(dicts, columns, csv=False, pretty=False): """Query a list of dicts with a list of queries and return a table. A "table" is a list of OrderedDicts each having the same keys in the same order. :param dicts: the list of input dicts :type dicts: list of dicts :param columns: the list of column query dicts, or the path to a JSON file containing the list of column query dicts :type columns: list of dicts, or string :param csv: return a UTF8-encoded, CSV-formatted string instead of a list of dicts :type csv: bool :rtype: list of dicts, or CSV string """ # Optionally read columns from file. if isinstance(columns, basestring): columns = _read_columns_file(columns) # Either "pattern" or "pattern_path" (but not both) is allowed in the # columns.json file, but "pattern" gets normalised to "pattern_path" here. for column in columns.values(): if "pattern" in column: assert "pattern_path" not in column, ( 'A column must have either a "pattern" or a "pattern_path"' "but not both") column["pattern_path"] = column["pattern"] del column["pattern"] table_ = [] for d in dicts: row = collections.OrderedDict() # The row we'll return in the table. for column_title, column_spec in columns.items(): if not column_spec.get('return_multiple_columns', False): row[column_title] = query(dict_=d, **column_spec) else: multiple_columns = query(dict_=d, **column_spec) for k, v in multiple_columns.items(): row[k] = v table_.append(row) if pretty: # Return a pretty-printed string (looks like a nice table when printed # to stdout). return tabulate.tabulate(table_, tablefmt="grid", headers="keys") elif csv: # Return a string of CSV-formatted text. return _table_to_csv(table_) else: # Return a list of dicts. return table_
python
def table(dicts, columns, csv=False, pretty=False): """Query a list of dicts with a list of queries and return a table. A "table" is a list of OrderedDicts each having the same keys in the same order. :param dicts: the list of input dicts :type dicts: list of dicts :param columns: the list of column query dicts, or the path to a JSON file containing the list of column query dicts :type columns: list of dicts, or string :param csv: return a UTF8-encoded, CSV-formatted string instead of a list of dicts :type csv: bool :rtype: list of dicts, or CSV string """ # Optionally read columns from file. if isinstance(columns, basestring): columns = _read_columns_file(columns) # Either "pattern" or "pattern_path" (but not both) is allowed in the # columns.json file, but "pattern" gets normalised to "pattern_path" here. for column in columns.values(): if "pattern" in column: assert "pattern_path" not in column, ( 'A column must have either a "pattern" or a "pattern_path"' "but not both") column["pattern_path"] = column["pattern"] del column["pattern"] table_ = [] for d in dicts: row = collections.OrderedDict() # The row we'll return in the table. for column_title, column_spec in columns.items(): if not column_spec.get('return_multiple_columns', False): row[column_title] = query(dict_=d, **column_spec) else: multiple_columns = query(dict_=d, **column_spec) for k, v in multiple_columns.items(): row[k] = v table_.append(row) if pretty: # Return a pretty-printed string (looks like a nice table when printed # to stdout). return tabulate.tabulate(table_, tablefmt="grid", headers="keys") elif csv: # Return a string of CSV-formatted text. return _table_to_csv(table_) else: # Return a list of dicts. return table_
[ "def", "table", "(", "dicts", ",", "columns", ",", "csv", "=", "False", ",", "pretty", "=", "False", ")", ":", "# Optionally read columns from file.", "if", "isinstance", "(", "columns", ",", "basestring", ")", ":", "columns", "=", "_read_columns_file", "(", "columns", ")", "# Either \"pattern\" or \"pattern_path\" (but not both) is allowed in the", "# columns.json file, but \"pattern\" gets normalised to \"pattern_path\" here.", "for", "column", "in", "columns", ".", "values", "(", ")", ":", "if", "\"pattern\"", "in", "column", ":", "assert", "\"pattern_path\"", "not", "in", "column", ",", "(", "'A column must have either a \"pattern\" or a \"pattern_path\"'", "\"but not both\"", ")", "column", "[", "\"pattern_path\"", "]", "=", "column", "[", "\"pattern\"", "]", "del", "column", "[", "\"pattern\"", "]", "table_", "=", "[", "]", "for", "d", "in", "dicts", ":", "row", "=", "collections", ".", "OrderedDict", "(", ")", "# The row we'll return in the table.", "for", "column_title", ",", "column_spec", "in", "columns", ".", "items", "(", ")", ":", "if", "not", "column_spec", ".", "get", "(", "'return_multiple_columns'", ",", "False", ")", ":", "row", "[", "column_title", "]", "=", "query", "(", "dict_", "=", "d", ",", "*", "*", "column_spec", ")", "else", ":", "multiple_columns", "=", "query", "(", "dict_", "=", "d", ",", "*", "*", "column_spec", ")", "for", "k", ",", "v", "in", "multiple_columns", ".", "items", "(", ")", ":", "row", "[", "k", "]", "=", "v", "table_", ".", "append", "(", "row", ")", "if", "pretty", ":", "# Return a pretty-printed string (looks like a nice table when printed", "# to stdout).", "return", "tabulate", ".", "tabulate", "(", "table_", ",", "tablefmt", "=", "\"grid\"", ",", "headers", "=", "\"keys\"", ")", "elif", "csv", ":", "# Return a string of CSV-formatted text.", "return", "_table_to_csv", "(", "table_", ")", "else", ":", "# Return a list of dicts.", "return", "table_" ]
Query a list of dicts with a list of queries and return a table. A "table" is a list of OrderedDicts each having the same keys in the same order. :param dicts: the list of input dicts :type dicts: list of dicts :param columns: the list of column query dicts, or the path to a JSON file containing the list of column query dicts :type columns: list of dicts, or string :param csv: return a UTF8-encoded, CSV-formatted string instead of a list of dicts :type csv: bool :rtype: list of dicts, or CSV string
[ "Query", "a", "list", "of", "dicts", "with", "a", "list", "of", "queries", "and", "return", "a", "table", "." ]
fd0832d9fa93cabe9ce9a9153dc923f2cf39cb5f
https://github.com/ckan/losser/blob/fd0832d9fa93cabe9ce9a9153dc923f2cf39cb5f/losser/losser.py#L94-L151
train
ckan/losser
losser/losser.py
query
def query(pattern_path, dict_, max_length=None, strip=False, case_sensitive=False, unique=False, deduplicate=False, string_transformations=None, hyperlink=False, return_multiple_columns=False): """Query the given dict with the given pattern path and return the result. The ``pattern_path`` is a either a single regular expression string or a list of regex strings that will be matched against the keys of the dict and its subdicts to find the value(s) in the dict to return. The returned result is either a single value (None, "foo", 42, False...) or (if the pattern path matched multiple values in the dict) a list of values. If the dict contains sub-lists or sub-dicts values from these will be flattened into a simple flat list to be returned. """ if string_transformations is None: string_transformations = [] if max_length: string_transformations.append(lambda x: x[:max_length]) if hyperlink: string_transformations.append( lambda x: '=HYPERLINK("{0}")'.format(x)) if isinstance(pattern_path, basestring): pattern_path = [pattern_path] # Copy the pattern_path because we're going to modify it which can be # unexpected and confusing to user code. original_pattern_path = pattern_path pattern_path = pattern_path[:] # We're going to be popping strings off the end of the pattern path # (because Python lists don't come with a convenient pop-from-front method) # so we need the list in reverse order. pattern_path.reverse() result = _process_object(pattern_path, dict_, string_transformations=string_transformations, strip=strip, case_sensitive=case_sensitive, return_multiple_columns=return_multiple_columns) if not result: return None # Empty lists finally get turned into None. elif isinstance(result, dict): return _flatten(result) elif len(result) == 1: return result[0] # One-item lists just get turned into the item. else: if unique: msg = "pattern_path: {0}\n\n".format(original_pattern_path) msg = msg + pprint.pformat(dict_) raise UniqueError(msg) if deduplicate: # Deduplicate the list while maintaining order. new_result = [] for item in result: if item not in new_result: new_result.append(item) result = new_result return result
python
def query(pattern_path, dict_, max_length=None, strip=False, case_sensitive=False, unique=False, deduplicate=False, string_transformations=None, hyperlink=False, return_multiple_columns=False): """Query the given dict with the given pattern path and return the result. The ``pattern_path`` is a either a single regular expression string or a list of regex strings that will be matched against the keys of the dict and its subdicts to find the value(s) in the dict to return. The returned result is either a single value (None, "foo", 42, False...) or (if the pattern path matched multiple values in the dict) a list of values. If the dict contains sub-lists or sub-dicts values from these will be flattened into a simple flat list to be returned. """ if string_transformations is None: string_transformations = [] if max_length: string_transformations.append(lambda x: x[:max_length]) if hyperlink: string_transformations.append( lambda x: '=HYPERLINK("{0}")'.format(x)) if isinstance(pattern_path, basestring): pattern_path = [pattern_path] # Copy the pattern_path because we're going to modify it which can be # unexpected and confusing to user code. original_pattern_path = pattern_path pattern_path = pattern_path[:] # We're going to be popping strings off the end of the pattern path # (because Python lists don't come with a convenient pop-from-front method) # so we need the list in reverse order. pattern_path.reverse() result = _process_object(pattern_path, dict_, string_transformations=string_transformations, strip=strip, case_sensitive=case_sensitive, return_multiple_columns=return_multiple_columns) if not result: return None # Empty lists finally get turned into None. elif isinstance(result, dict): return _flatten(result) elif len(result) == 1: return result[0] # One-item lists just get turned into the item. else: if unique: msg = "pattern_path: {0}\n\n".format(original_pattern_path) msg = msg + pprint.pformat(dict_) raise UniqueError(msg) if deduplicate: # Deduplicate the list while maintaining order. new_result = [] for item in result: if item not in new_result: new_result.append(item) result = new_result return result
[ "def", "query", "(", "pattern_path", ",", "dict_", ",", "max_length", "=", "None", ",", "strip", "=", "False", ",", "case_sensitive", "=", "False", ",", "unique", "=", "False", ",", "deduplicate", "=", "False", ",", "string_transformations", "=", "None", ",", "hyperlink", "=", "False", ",", "return_multiple_columns", "=", "False", ")", ":", "if", "string_transformations", "is", "None", ":", "string_transformations", "=", "[", "]", "if", "max_length", ":", "string_transformations", ".", "append", "(", "lambda", "x", ":", "x", "[", ":", "max_length", "]", ")", "if", "hyperlink", ":", "string_transformations", ".", "append", "(", "lambda", "x", ":", "'=HYPERLINK(\"{0}\")'", ".", "format", "(", "x", ")", ")", "if", "isinstance", "(", "pattern_path", ",", "basestring", ")", ":", "pattern_path", "=", "[", "pattern_path", "]", "# Copy the pattern_path because we're going to modify it which can be", "# unexpected and confusing to user code.", "original_pattern_path", "=", "pattern_path", "pattern_path", "=", "pattern_path", "[", ":", "]", "# We're going to be popping strings off the end of the pattern path", "# (because Python lists don't come with a convenient pop-from-front method)", "# so we need the list in reverse order.", "pattern_path", ".", "reverse", "(", ")", "result", "=", "_process_object", "(", "pattern_path", ",", "dict_", ",", "string_transformations", "=", "string_transformations", ",", "strip", "=", "strip", ",", "case_sensitive", "=", "case_sensitive", ",", "return_multiple_columns", "=", "return_multiple_columns", ")", "if", "not", "result", ":", "return", "None", "# Empty lists finally get turned into None.", "elif", "isinstance", "(", "result", ",", "dict", ")", ":", "return", "_flatten", "(", "result", ")", "elif", "len", "(", "result", ")", "==", "1", ":", "return", "result", "[", "0", "]", "# One-item lists just get turned into the item.", "else", ":", "if", "unique", ":", "msg", "=", "\"pattern_path: {0}\\n\\n\"", ".", "format", "(", "original_pattern_path", ")", "msg", "=", "msg", "+", "pprint", ".", "pformat", "(", "dict_", ")", "raise", "UniqueError", "(", "msg", ")", "if", "deduplicate", ":", "# Deduplicate the list while maintaining order.", "new_result", "=", "[", "]", "for", "item", "in", "result", ":", "if", "item", "not", "in", "new_result", ":", "new_result", ".", "append", "(", "item", ")", "result", "=", "new_result", "return", "result" ]
Query the given dict with the given pattern path and return the result. The ``pattern_path`` is a either a single regular expression string or a list of regex strings that will be matched against the keys of the dict and its subdicts to find the value(s) in the dict to return. The returned result is either a single value (None, "foo", 42, False...) or (if the pattern path matched multiple values in the dict) a list of values. If the dict contains sub-lists or sub-dicts values from these will be flattened into a simple flat list to be returned.
[ "Query", "the", "given", "dict", "with", "the", "given", "pattern", "path", "and", "return", "the", "result", "." ]
fd0832d9fa93cabe9ce9a9153dc923f2cf39cb5f
https://github.com/ckan/losser/blob/fd0832d9fa93cabe9ce9a9153dc923f2cf39cb5f/losser/losser.py#L154-L218
train
SUNCAT-Center/CatHub
cathub/query.py
get_reactions
def get_reactions(columns='all', n_results=20, write_db=False, **kwargs): """ Get reactions from server Give key value strings as arguments """ if write_db or columns == 'all': columns = all_columns['reactions'] queries = {} for key, value in kwargs.items(): key = map_column_names(key) if key == 'distinct': if value in [True, 'True', 'true']: queries.update({key: True}) continue if isinstance(value, int) or isinstance(value, float): queries.update({key: value}) else: queries.update({key: '{0}'.format(value)}) subtables = [] if write_db: subtables = ['reactionSystems', 'publication'] else: subtables = [] data = query(table='reactions', subtables=subtables, columns=columns, n_results=n_results, queries=queries) if not write_db: return data print('Writing result to Reactions.db') unique_ids = [] for row in data['reactions']['edges']: with CathubSQLite('Reactions.db') as db: row = row['node'] key_values = {} for key in all_columns['reactions']: v = row[key] # if isinstance(v, unicode): # v = v.encode('utf-8') try: v = json.loads(v) except BaseException: pass key_values[convert(key)] = v ase_ids = {} energy_corrections = {} for row_rs in row['reactionSystems']: if row_rs['name'] == 'N/A': continue ase_ids[row_rs['name']] = row_rs['aseId'] energy_corrections[row_rs['name']] = row_rs['energyCorrection'] if not ase_ids: ase_ids = None energy_corrections = None else: unique_ids += ase_ids.values() key_values['ase_ids'] = ase_ids key_values['energy_corrections'] = ase_ids # publications pub_key_values = {} row_p = row['publication'] for key in all_columns['publications']: pub_key_values[convert(key)] = row_p[key] db.write_publication(pub_key_values) # reactions and reaction_systems id = db.check(key_values['chemical_composition'], key_values['reaction_energy']) if id is None: id = db.write(key_values) else: db.update(id, key_values) if ase_ids is not None: # Ase structures with ase.db.connect('Reactions.db') as ase_db: con = ase_db.connection cur = con.cursor() cur.execute('SELECT unique_id from systems;') unique_ids0 = cur.fetchall() unique_ids0 = [un[0] for un in unique_ids0] unique_ids = [un for un in unique_ids if un not in unique_ids0] for unique_id in list(set(unique_ids)): # if ase_db.count('unique_id={}'.format(unique_id)) == 0: atomsrow = get_atomsrow_by_id(unique_id) ase_db.write(atomsrow) print('Writing complete!') return data
python
def get_reactions(columns='all', n_results=20, write_db=False, **kwargs): """ Get reactions from server Give key value strings as arguments """ if write_db or columns == 'all': columns = all_columns['reactions'] queries = {} for key, value in kwargs.items(): key = map_column_names(key) if key == 'distinct': if value in [True, 'True', 'true']: queries.update({key: True}) continue if isinstance(value, int) or isinstance(value, float): queries.update({key: value}) else: queries.update({key: '{0}'.format(value)}) subtables = [] if write_db: subtables = ['reactionSystems', 'publication'] else: subtables = [] data = query(table='reactions', subtables=subtables, columns=columns, n_results=n_results, queries=queries) if not write_db: return data print('Writing result to Reactions.db') unique_ids = [] for row in data['reactions']['edges']: with CathubSQLite('Reactions.db') as db: row = row['node'] key_values = {} for key in all_columns['reactions']: v = row[key] # if isinstance(v, unicode): # v = v.encode('utf-8') try: v = json.loads(v) except BaseException: pass key_values[convert(key)] = v ase_ids = {} energy_corrections = {} for row_rs in row['reactionSystems']: if row_rs['name'] == 'N/A': continue ase_ids[row_rs['name']] = row_rs['aseId'] energy_corrections[row_rs['name']] = row_rs['energyCorrection'] if not ase_ids: ase_ids = None energy_corrections = None else: unique_ids += ase_ids.values() key_values['ase_ids'] = ase_ids key_values['energy_corrections'] = ase_ids # publications pub_key_values = {} row_p = row['publication'] for key in all_columns['publications']: pub_key_values[convert(key)] = row_p[key] db.write_publication(pub_key_values) # reactions and reaction_systems id = db.check(key_values['chemical_composition'], key_values['reaction_energy']) if id is None: id = db.write(key_values) else: db.update(id, key_values) if ase_ids is not None: # Ase structures with ase.db.connect('Reactions.db') as ase_db: con = ase_db.connection cur = con.cursor() cur.execute('SELECT unique_id from systems;') unique_ids0 = cur.fetchall() unique_ids0 = [un[0] for un in unique_ids0] unique_ids = [un for un in unique_ids if un not in unique_ids0] for unique_id in list(set(unique_ids)): # if ase_db.count('unique_id={}'.format(unique_id)) == 0: atomsrow = get_atomsrow_by_id(unique_id) ase_db.write(atomsrow) print('Writing complete!') return data
[ "def", "get_reactions", "(", "columns", "=", "'all'", ",", "n_results", "=", "20", ",", "write_db", "=", "False", ",", "*", "*", "kwargs", ")", ":", "if", "write_db", "or", "columns", "==", "'all'", ":", "columns", "=", "all_columns", "[", "'reactions'", "]", "queries", "=", "{", "}", "for", "key", ",", "value", "in", "kwargs", ".", "items", "(", ")", ":", "key", "=", "map_column_names", "(", "key", ")", "if", "key", "==", "'distinct'", ":", "if", "value", "in", "[", "True", ",", "'True'", ",", "'true'", "]", ":", "queries", ".", "update", "(", "{", "key", ":", "True", "}", ")", "continue", "if", "isinstance", "(", "value", ",", "int", ")", "or", "isinstance", "(", "value", ",", "float", ")", ":", "queries", ".", "update", "(", "{", "key", ":", "value", "}", ")", "else", ":", "queries", ".", "update", "(", "{", "key", ":", "'{0}'", ".", "format", "(", "value", ")", "}", ")", "subtables", "=", "[", "]", "if", "write_db", ":", "subtables", "=", "[", "'reactionSystems'", ",", "'publication'", "]", "else", ":", "subtables", "=", "[", "]", "data", "=", "query", "(", "table", "=", "'reactions'", ",", "subtables", "=", "subtables", ",", "columns", "=", "columns", ",", "n_results", "=", "n_results", ",", "queries", "=", "queries", ")", "if", "not", "write_db", ":", "return", "data", "print", "(", "'Writing result to Reactions.db'", ")", "unique_ids", "=", "[", "]", "for", "row", "in", "data", "[", "'reactions'", "]", "[", "'edges'", "]", ":", "with", "CathubSQLite", "(", "'Reactions.db'", ")", "as", "db", ":", "row", "=", "row", "[", "'node'", "]", "key_values", "=", "{", "}", "for", "key", "in", "all_columns", "[", "'reactions'", "]", ":", "v", "=", "row", "[", "key", "]", "# if isinstance(v, unicode):", "# v = v.encode('utf-8')", "try", ":", "v", "=", "json", ".", "loads", "(", "v", ")", "except", "BaseException", ":", "pass", "key_values", "[", "convert", "(", "key", ")", "]", "=", "v", "ase_ids", "=", "{", "}", "energy_corrections", "=", "{", "}", "for", "row_rs", "in", "row", "[", "'reactionSystems'", "]", ":", "if", "row_rs", "[", "'name'", "]", "==", "'N/A'", ":", "continue", "ase_ids", "[", "row_rs", "[", "'name'", "]", "]", "=", "row_rs", "[", "'aseId'", "]", "energy_corrections", "[", "row_rs", "[", "'name'", "]", "]", "=", "row_rs", "[", "'energyCorrection'", "]", "if", "not", "ase_ids", ":", "ase_ids", "=", "None", "energy_corrections", "=", "None", "else", ":", "unique_ids", "+=", "ase_ids", ".", "values", "(", ")", "key_values", "[", "'ase_ids'", "]", "=", "ase_ids", "key_values", "[", "'energy_corrections'", "]", "=", "ase_ids", "# publications", "pub_key_values", "=", "{", "}", "row_p", "=", "row", "[", "'publication'", "]", "for", "key", "in", "all_columns", "[", "'publications'", "]", ":", "pub_key_values", "[", "convert", "(", "key", ")", "]", "=", "row_p", "[", "key", "]", "db", ".", "write_publication", "(", "pub_key_values", ")", "# reactions and reaction_systems", "id", "=", "db", ".", "check", "(", "key_values", "[", "'chemical_composition'", "]", ",", "key_values", "[", "'reaction_energy'", "]", ")", "if", "id", "is", "None", ":", "id", "=", "db", ".", "write", "(", "key_values", ")", "else", ":", "db", ".", "update", "(", "id", ",", "key_values", ")", "if", "ase_ids", "is", "not", "None", ":", "# Ase structures", "with", "ase", ".", "db", ".", "connect", "(", "'Reactions.db'", ")", "as", "ase_db", ":", "con", "=", "ase_db", ".", "connection", "cur", "=", "con", ".", "cursor", "(", ")", "cur", ".", "execute", "(", "'SELECT unique_id from systems;'", ")", "unique_ids0", "=", "cur", ".", "fetchall", "(", ")", "unique_ids0", "=", "[", "un", "[", "0", "]", "for", "un", "in", "unique_ids0", "]", "unique_ids", "=", "[", "un", "for", "un", "in", "unique_ids", "if", "un", "not", "in", "unique_ids0", "]", "for", "unique_id", "in", "list", "(", "set", "(", "unique_ids", ")", ")", ":", "# if ase_db.count('unique_id={}'.format(unique_id)) == 0:", "atomsrow", "=", "get_atomsrow_by_id", "(", "unique_id", ")", "ase_db", ".", "write", "(", "atomsrow", ")", "print", "(", "'Writing complete!'", ")", "return", "data" ]
Get reactions from server Give key value strings as arguments
[ "Get", "reactions", "from", "server" ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/query.py#L136-L231
train
guaix-ucm/numina
numina/user/baserun.py
create_recipe_file_logger
def create_recipe_file_logger(logger, logfile, logformat): """Redirect Recipe log messages to a file.""" recipe_formatter = logging.Formatter(logformat) fh = logging.FileHandler(logfile, mode='w') fh.setLevel(logging.DEBUG) fh.setFormatter(recipe_formatter) return fh
python
def create_recipe_file_logger(logger, logfile, logformat): """Redirect Recipe log messages to a file.""" recipe_formatter = logging.Formatter(logformat) fh = logging.FileHandler(logfile, mode='w') fh.setLevel(logging.DEBUG) fh.setFormatter(recipe_formatter) return fh
[ "def", "create_recipe_file_logger", "(", "logger", ",", "logfile", ",", "logformat", ")", ":", "recipe_formatter", "=", "logging", ".", "Formatter", "(", "logformat", ")", "fh", "=", "logging", ".", "FileHandler", "(", "logfile", ",", "mode", "=", "'w'", ")", "fh", ".", "setLevel", "(", "logging", ".", "DEBUG", ")", "fh", ".", "setFormatter", "(", "recipe_formatter", ")", "return", "fh" ]
Redirect Recipe log messages to a file.
[ "Redirect", "Recipe", "log", "messages", "to", "a", "file", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/user/baserun.py#L145-L151
train
guaix-ucm/numina
numina/user/baserun.py
run_recipe
def run_recipe(recipe, task, rinput, workenv, logger_control): """Recipe execution mode of numina.""" # Creating custom logger file recipe_logger = logging.getLogger(logger_control['default']) if logger_control['enabled']: logfile = os.path.join(workenv.resultsdir, logger_control['logfile']) logformat = logger_control['format'] _logger.debug('creating file logger %r from Recipe logger', logfile) fh = create_recipe_file_logger(recipe_logger, logfile, logformat) else: fh = logging.NullHandler() recipe_logger.addHandler(fh) with working_directory(workenv.workdir): try: run_recipe_timed(task, recipe, rinput) return task finally: recipe_logger.removeHandler(fh)
python
def run_recipe(recipe, task, rinput, workenv, logger_control): """Recipe execution mode of numina.""" # Creating custom logger file recipe_logger = logging.getLogger(logger_control['default']) if logger_control['enabled']: logfile = os.path.join(workenv.resultsdir, logger_control['logfile']) logformat = logger_control['format'] _logger.debug('creating file logger %r from Recipe logger', logfile) fh = create_recipe_file_logger(recipe_logger, logfile, logformat) else: fh = logging.NullHandler() recipe_logger.addHandler(fh) with working_directory(workenv.workdir): try: run_recipe_timed(task, recipe, rinput) return task finally: recipe_logger.removeHandler(fh)
[ "def", "run_recipe", "(", "recipe", ",", "task", ",", "rinput", ",", "workenv", ",", "logger_control", ")", ":", "# Creating custom logger file", "recipe_logger", "=", "logging", ".", "getLogger", "(", "logger_control", "[", "'default'", "]", ")", "if", "logger_control", "[", "'enabled'", "]", ":", "logfile", "=", "os", ".", "path", ".", "join", "(", "workenv", ".", "resultsdir", ",", "logger_control", "[", "'logfile'", "]", ")", "logformat", "=", "logger_control", "[", "'format'", "]", "_logger", ".", "debug", "(", "'creating file logger %r from Recipe logger'", ",", "logfile", ")", "fh", "=", "create_recipe_file_logger", "(", "recipe_logger", ",", "logfile", ",", "logformat", ")", "else", ":", "fh", "=", "logging", ".", "NullHandler", "(", ")", "recipe_logger", ".", "addHandler", "(", "fh", ")", "with", "working_directory", "(", "workenv", ".", "workdir", ")", ":", "try", ":", "run_recipe_timed", "(", "task", ",", "recipe", ",", "rinput", ")", "return", "task", "finally", ":", "recipe_logger", ".", "removeHandler", "(", "fh", ")" ]
Recipe execution mode of numina.
[ "Recipe", "execution", "mode", "of", "numina", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/user/baserun.py#L154-L175
train
guaix-ucm/numina
numina/user/baserun.py
run_recipe_timed
def run_recipe_timed(task, recipe, rinput): """Run the recipe and count the time it takes.""" _logger.info('running recipe') now1 = datetime.datetime.now() task.state = 1 task.time_start = now1 # result = recipe(rinput) _logger.info('result: %r', result) task.result = result # now2 = datetime.datetime.now() task.state = 2 task.time_end = now2 return task
python
def run_recipe_timed(task, recipe, rinput): """Run the recipe and count the time it takes.""" _logger.info('running recipe') now1 = datetime.datetime.now() task.state = 1 task.time_start = now1 # result = recipe(rinput) _logger.info('result: %r', result) task.result = result # now2 = datetime.datetime.now() task.state = 2 task.time_end = now2 return task
[ "def", "run_recipe_timed", "(", "task", ",", "recipe", ",", "rinput", ")", ":", "_logger", ".", "info", "(", "'running recipe'", ")", "now1", "=", "datetime", ".", "datetime", ".", "now", "(", ")", "task", ".", "state", "=", "1", "task", ".", "time_start", "=", "now1", "#", "result", "=", "recipe", "(", "rinput", ")", "_logger", ".", "info", "(", "'result: %r'", ",", "result", ")", "task", ".", "result", "=", "result", "#", "now2", "=", "datetime", ".", "datetime", ".", "now", "(", ")", "task", ".", "state", "=", "2", "task", ".", "time_end", "=", "now2", "return", "task" ]
Run the recipe and count the time it takes.
[ "Run", "the", "recipe", "and", "count", "the", "time", "it", "takes", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/user/baserun.py#L178-L192
train
kyzima-spb/flask-pony
flask_pony/__init__.py
stop_db_session
def stop_db_session(exc=None): """Stops the last db_session""" # print('==> Stop session', type(exc)) if has_db_session(): exc_type = None tb = None if exc: exc_type, exc, tb = get_exc_info(exc) db_session.__exit__(exc_type, exc, tb)
python
def stop_db_session(exc=None): """Stops the last db_session""" # print('==> Stop session', type(exc)) if has_db_session(): exc_type = None tb = None if exc: exc_type, exc, tb = get_exc_info(exc) db_session.__exit__(exc_type, exc, tb)
[ "def", "stop_db_session", "(", "exc", "=", "None", ")", ":", "# print('==> Stop session', type(exc))", "if", "has_db_session", "(", ")", ":", "exc_type", "=", "None", "tb", "=", "None", "if", "exc", ":", "exc_type", ",", "exc", ",", "tb", "=", "get_exc_info", "(", "exc", ")", "db_session", ".", "__exit__", "(", "exc_type", ",", "exc", ",", "tb", ")" ]
Stops the last db_session
[ "Stops", "the", "last", "db_session" ]
6cf28d70b7ebf415d58fa138fcc70b8dd57432c7
https://github.com/kyzima-spb/flask-pony/blob/6cf28d70b7ebf415d58fa138fcc70b8dd57432c7/flask_pony/__init__.py#L47-L58
train
pylp/pylp
pylp/lib/dest.py
get_path
def get_path(dest, file, cwd = None): """Get the writing path of a file.""" if callable(dest): return dest(file) if not cwd: cwd = file.cwd if not os.path.isabs(dest): dest = os.path.join(cwd, dest) relative = os.path.relpath(file.path, file.base) return os.path.join(dest, relative)
python
def get_path(dest, file, cwd = None): """Get the writing path of a file.""" if callable(dest): return dest(file) if not cwd: cwd = file.cwd if not os.path.isabs(dest): dest = os.path.join(cwd, dest) relative = os.path.relpath(file.path, file.base) return os.path.join(dest, relative)
[ "def", "get_path", "(", "dest", ",", "file", ",", "cwd", "=", "None", ")", ":", "if", "callable", "(", "dest", ")", ":", "return", "dest", "(", "file", ")", "if", "not", "cwd", ":", "cwd", "=", "file", ".", "cwd", "if", "not", "os", ".", "path", ".", "isabs", "(", "dest", ")", ":", "dest", "=", "os", ".", "path", ".", "join", "(", "cwd", ",", "dest", ")", "relative", "=", "os", ".", "path", ".", "relpath", "(", "file", ".", "path", ",", "file", ".", "base", ")", "return", "os", ".", "path", ".", "join", "(", "dest", ",", "relative", ")" ]
Get the writing path of a file.
[ "Get", "the", "writing", "path", "of", "a", "file", "." ]
7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4
https://github.com/pylp/pylp/blob/7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4/pylp/lib/dest.py#L23-L34
train
pylp/pylp
pylp/lib/dest.py
write_file
def write_file(path, contents): """Write contents to a local file.""" os.makedirs(os.path.dirname(path), exist_ok=True) with open(path, "w") as file: file.write(contents)
python
def write_file(path, contents): """Write contents to a local file.""" os.makedirs(os.path.dirname(path), exist_ok=True) with open(path, "w") as file: file.write(contents)
[ "def", "write_file", "(", "path", ",", "contents", ")", ":", "os", ".", "makedirs", "(", "os", ".", "path", ".", "dirname", "(", "path", ")", ",", "exist_ok", "=", "True", ")", "with", "open", "(", "path", ",", "\"w\"", ")", "as", "file", ":", "file", ".", "write", "(", "contents", ")" ]
Write contents to a local file.
[ "Write", "contents", "to", "a", "local", "file", "." ]
7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4
https://github.com/pylp/pylp/blob/7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4/pylp/lib/dest.py#L37-L41
train
SUNCAT-Center/CatHub
cathub/tools.py
get_pub_id
def get_pub_id(title, authors, year): "construct publication id" if len(title.split(' ')) > 1 \ and title.split(' ')[0].lower() in ['the', 'a']: _first_word = title.split(' ')[1].split('_')[0] else: _first_word = title.split(' ')[0].split('_')[0] pub_id = authors[0].split(',')[0].split(' ')[0] + \ _first_word + \ str(year) return pub_id
python
def get_pub_id(title, authors, year): "construct publication id" if len(title.split(' ')) > 1 \ and title.split(' ')[0].lower() in ['the', 'a']: _first_word = title.split(' ')[1].split('_')[0] else: _first_word = title.split(' ')[0].split('_')[0] pub_id = authors[0].split(',')[0].split(' ')[0] + \ _first_word + \ str(year) return pub_id
[ "def", "get_pub_id", "(", "title", ",", "authors", ",", "year", ")", ":", "if", "len", "(", "title", ".", "split", "(", "' '", ")", ")", ">", "1", "and", "title", ".", "split", "(", "' '", ")", "[", "0", "]", ".", "lower", "(", ")", "in", "[", "'the'", ",", "'a'", "]", ":", "_first_word", "=", "title", ".", "split", "(", "' '", ")", "[", "1", "]", ".", "split", "(", "'_'", ")", "[", "0", "]", "else", ":", "_first_word", "=", "title", ".", "split", "(", "' '", ")", "[", "0", "]", ".", "split", "(", "'_'", ")", "[", "0", "]", "pub_id", "=", "authors", "[", "0", "]", ".", "split", "(", "','", ")", "[", "0", "]", ".", "split", "(", "' '", ")", "[", "0", "]", "+", "_first_word", "+", "str", "(", "year", ")", "return", "pub_id" ]
construct publication id
[ "construct", "publication", "id" ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/tools.py#L4-L15
train
SUNCAT-Center/CatHub
cathub/tools.py
extract_atoms
def extract_atoms(molecule): """Return a string with all atoms in molecule""" if molecule == '': return molecule try: return float(molecule) except BaseException: pass atoms = '' if not molecule[0].isalpha(): i = 0 while not molecule[i].isalpha(): i += 1 prefactor = float(molecule[:i]) if prefactor < 0: prefactor = abs(prefactor) sign = '-' else: sign = '' molecule = molecule[i:] else: prefactor = 1 sign = '' for k in range(len(molecule)): if molecule[k].isdigit(): for j in range(int(molecule[k]) - 1): atoms += molecule[k - 1] else: atoms += molecule[k] if prefactor % 1 == 0: atoms *= int(prefactor) elif prefactor % 1 == 0.5: atoms_sort = sorted(atoms) N = len(atoms) atoms = '' for n in range(N): for m in range(int(prefactor - 0.5)): atoms += atoms_sort[n] if n % 2 == 0: atoms += atoms_sort[n] return sign + ''.join(sorted(atoms))
python
def extract_atoms(molecule): """Return a string with all atoms in molecule""" if molecule == '': return molecule try: return float(molecule) except BaseException: pass atoms = '' if not molecule[0].isalpha(): i = 0 while not molecule[i].isalpha(): i += 1 prefactor = float(molecule[:i]) if prefactor < 0: prefactor = abs(prefactor) sign = '-' else: sign = '' molecule = molecule[i:] else: prefactor = 1 sign = '' for k in range(len(molecule)): if molecule[k].isdigit(): for j in range(int(molecule[k]) - 1): atoms += molecule[k - 1] else: atoms += molecule[k] if prefactor % 1 == 0: atoms *= int(prefactor) elif prefactor % 1 == 0.5: atoms_sort = sorted(atoms) N = len(atoms) atoms = '' for n in range(N): for m in range(int(prefactor - 0.5)): atoms += atoms_sort[n] if n % 2 == 0: atoms += atoms_sort[n] return sign + ''.join(sorted(atoms))
[ "def", "extract_atoms", "(", "molecule", ")", ":", "if", "molecule", "==", "''", ":", "return", "molecule", "try", ":", "return", "float", "(", "molecule", ")", "except", "BaseException", ":", "pass", "atoms", "=", "''", "if", "not", "molecule", "[", "0", "]", ".", "isalpha", "(", ")", ":", "i", "=", "0", "while", "not", "molecule", "[", "i", "]", ".", "isalpha", "(", ")", ":", "i", "+=", "1", "prefactor", "=", "float", "(", "molecule", "[", ":", "i", "]", ")", "if", "prefactor", "<", "0", ":", "prefactor", "=", "abs", "(", "prefactor", ")", "sign", "=", "'-'", "else", ":", "sign", "=", "''", "molecule", "=", "molecule", "[", "i", ":", "]", "else", ":", "prefactor", "=", "1", "sign", "=", "''", "for", "k", "in", "range", "(", "len", "(", "molecule", ")", ")", ":", "if", "molecule", "[", "k", "]", ".", "isdigit", "(", ")", ":", "for", "j", "in", "range", "(", "int", "(", "molecule", "[", "k", "]", ")", "-", "1", ")", ":", "atoms", "+=", "molecule", "[", "k", "-", "1", "]", "else", ":", "atoms", "+=", "molecule", "[", "k", "]", "if", "prefactor", "%", "1", "==", "0", ":", "atoms", "*=", "int", "(", "prefactor", ")", "elif", "prefactor", "%", "1", "==", "0.5", ":", "atoms_sort", "=", "sorted", "(", "atoms", ")", "N", "=", "len", "(", "atoms", ")", "atoms", "=", "''", "for", "n", "in", "range", "(", "N", ")", ":", "for", "m", "in", "range", "(", "int", "(", "prefactor", "-", "0.5", ")", ")", ":", "atoms", "+=", "atoms_sort", "[", "n", "]", "if", "n", "%", "2", "==", "0", ":", "atoms", "+=", "atoms_sort", "[", "n", "]", "return", "sign", "+", "''", ".", "join", "(", "sorted", "(", "atoms", ")", ")" ]
Return a string with all atoms in molecule
[ "Return", "a", "string", "with", "all", "atoms", "in", "molecule" ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/tools.py#L18-L59
train
SUNCAT-Center/CatHub
cathub/tools.py
check_reaction
def check_reaction(reactants, products): """Check the stoichiometry and format of chemical reaction used for folder structure. list of reactants -> list of products """ reactant_list = [reactant.split('@')[0].strip( 'star').strip('gas') for reactant in reactants] product_list = [product.split('@')[0].strip( 'star').strip('gas') for product in products] reactant_atoms = [extract_atoms(reactant) for reactant in reactant_list] product_atoms = [extract_atoms(product) for product in product_list] reactants = add_atoms(reactant_atoms) products = add_atoms(product_atoms) r_stars = 0 p_stars = 0 for i, a in enumerate(reactant_atoms): if a == '' or 'star' in reactant_list[i]: r_stars += 1 elif isinstance(a, float): r_stars += a for a in product_atoms: if a == '': p_stars += 1 elif isinstance(a, float): p_stars += a assert ''.join(sorted(reactants)) == ''.join(sorted(products))
python
def check_reaction(reactants, products): """Check the stoichiometry and format of chemical reaction used for folder structure. list of reactants -> list of products """ reactant_list = [reactant.split('@')[0].strip( 'star').strip('gas') for reactant in reactants] product_list = [product.split('@')[0].strip( 'star').strip('gas') for product in products] reactant_atoms = [extract_atoms(reactant) for reactant in reactant_list] product_atoms = [extract_atoms(product) for product in product_list] reactants = add_atoms(reactant_atoms) products = add_atoms(product_atoms) r_stars = 0 p_stars = 0 for i, a in enumerate(reactant_atoms): if a == '' or 'star' in reactant_list[i]: r_stars += 1 elif isinstance(a, float): r_stars += a for a in product_atoms: if a == '': p_stars += 1 elif isinstance(a, float): p_stars += a assert ''.join(sorted(reactants)) == ''.join(sorted(products))
[ "def", "check_reaction", "(", "reactants", ",", "products", ")", ":", "reactant_list", "=", "[", "reactant", ".", "split", "(", "'@'", ")", "[", "0", "]", ".", "strip", "(", "'star'", ")", ".", "strip", "(", "'gas'", ")", "for", "reactant", "in", "reactants", "]", "product_list", "=", "[", "product", ".", "split", "(", "'@'", ")", "[", "0", "]", ".", "strip", "(", "'star'", ")", ".", "strip", "(", "'gas'", ")", "for", "product", "in", "products", "]", "reactant_atoms", "=", "[", "extract_atoms", "(", "reactant", ")", "for", "reactant", "in", "reactant_list", "]", "product_atoms", "=", "[", "extract_atoms", "(", "product", ")", "for", "product", "in", "product_list", "]", "reactants", "=", "add_atoms", "(", "reactant_atoms", ")", "products", "=", "add_atoms", "(", "product_atoms", ")", "r_stars", "=", "0", "p_stars", "=", "0", "for", "i", ",", "a", "in", "enumerate", "(", "reactant_atoms", ")", ":", "if", "a", "==", "''", "or", "'star'", "in", "reactant_list", "[", "i", "]", ":", "r_stars", "+=", "1", "elif", "isinstance", "(", "a", ",", "float", ")", ":", "r_stars", "+=", "a", "for", "a", "in", "product_atoms", ":", "if", "a", "==", "''", ":", "p_stars", "+=", "1", "elif", "isinstance", "(", "a", ",", "float", ")", ":", "p_stars", "+=", "a", "assert", "''", ".", "join", "(", "sorted", "(", "reactants", ")", ")", "==", "''", ".", "join", "(", "sorted", "(", "products", ")", ")" ]
Check the stoichiometry and format of chemical reaction used for folder structure. list of reactants -> list of products
[ "Check", "the", "stoichiometry", "and", "format", "of", "chemical", "reaction", "used", "for", "folder", "structure", ".", "list", "of", "reactants", "-", ">", "list", "of", "products" ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/tools.py#L75-L104
train
guaix-ucm/numina
numina/core/pipelineload.py
check_section
def check_section(node, section, keys=None): """Validate keys in a section""" if keys: for key in keys: if key not in node: raise ValueError('Missing key %r inside %r node' % (key, section))
python
def check_section(node, section, keys=None): """Validate keys in a section""" if keys: for key in keys: if key not in node: raise ValueError('Missing key %r inside %r node' % (key, section))
[ "def", "check_section", "(", "node", ",", "section", ",", "keys", "=", "None", ")", ":", "if", "keys", ":", "for", "key", "in", "keys", ":", "if", "key", "not", "in", "node", ":", "raise", "ValueError", "(", "'Missing key %r inside %r node'", "%", "(", "key", ",", "section", ")", ")" ]
Validate keys in a section
[ "Validate", "keys", "in", "a", "section" ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/core/pipelineload.py#L29-L34
train
guaix-ucm/numina
numina/core/pipelineload.py
drp_load
def drp_load(package, resource, confclass=None): """Load the DRPS from a resource file.""" data = pkgutil.get_data(package, resource) return drp_load_data(package, data, confclass=confclass)
python
def drp_load(package, resource, confclass=None): """Load the DRPS from a resource file.""" data = pkgutil.get_data(package, resource) return drp_load_data(package, data, confclass=confclass)
[ "def", "drp_load", "(", "package", ",", "resource", ",", "confclass", "=", "None", ")", ":", "data", "=", "pkgutil", ".", "get_data", "(", "package", ",", "resource", ")", "return", "drp_load_data", "(", "package", ",", "data", ",", "confclass", "=", "confclass", ")" ]
Load the DRPS from a resource file.
[ "Load", "the", "DRPS", "from", "a", "resource", "file", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/core/pipelineload.py#L37-L40
train
guaix-ucm/numina
numina/core/pipelineload.py
drp_load_data
def drp_load_data(package, data, confclass=None): """Load the DRPS from data.""" drpdict = yaml.safe_load(data) ins = load_instrument(package, drpdict, confclass=confclass) if ins.version == 'undefined': pkg = importlib.import_module(package) ins.version = getattr(pkg, '__version__', 'undefined') return ins
python
def drp_load_data(package, data, confclass=None): """Load the DRPS from data.""" drpdict = yaml.safe_load(data) ins = load_instrument(package, drpdict, confclass=confclass) if ins.version == 'undefined': pkg = importlib.import_module(package) ins.version = getattr(pkg, '__version__', 'undefined') return ins
[ "def", "drp_load_data", "(", "package", ",", "data", ",", "confclass", "=", "None", ")", ":", "drpdict", "=", "yaml", ".", "safe_load", "(", "data", ")", "ins", "=", "load_instrument", "(", "package", ",", "drpdict", ",", "confclass", "=", "confclass", ")", "if", "ins", ".", "version", "==", "'undefined'", ":", "pkg", "=", "importlib", ".", "import_module", "(", "package", ")", "ins", ".", "version", "=", "getattr", "(", "pkg", ",", "'__version__'", ",", "'undefined'", ")", "return", "ins" ]
Load the DRPS from data.
[ "Load", "the", "DRPS", "from", "data", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/core/pipelineload.py#L43-L50
train
guaix-ucm/numina
numina/core/pipelineload.py
load_modes
def load_modes(node): """Load all observing modes""" if isinstance(node, list): values = [load_mode(child) for child in node] keys = [mode.key for mode in values] return dict(zip(keys,values)) elif isinstance(node, dict): values = {key: load_mode(child) for key, child in node} return values else: raise NotImplementedError
python
def load_modes(node): """Load all observing modes""" if isinstance(node, list): values = [load_mode(child) for child in node] keys = [mode.key for mode in values] return dict(zip(keys,values)) elif isinstance(node, dict): values = {key: load_mode(child) for key, child in node} return values else: raise NotImplementedError
[ "def", "load_modes", "(", "node", ")", ":", "if", "isinstance", "(", "node", ",", "list", ")", ":", "values", "=", "[", "load_mode", "(", "child", ")", "for", "child", "in", "node", "]", "keys", "=", "[", "mode", ".", "key", "for", "mode", "in", "values", "]", "return", "dict", "(", "zip", "(", "keys", ",", "values", ")", ")", "elif", "isinstance", "(", "node", ",", "dict", ")", ":", "values", "=", "{", "key", ":", "load_mode", "(", "child", ")", "for", "key", ",", "child", "in", "node", "}", "return", "values", "else", ":", "raise", "NotImplementedError" ]
Load all observing modes
[ "Load", "all", "observing", "modes" ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/core/pipelineload.py#L53-L63
train
guaix-ucm/numina
numina/core/pipelineload.py
load_mode
def load_mode(node): """Load one observing mdode""" obs_mode = ObservingMode() obs_mode.__dict__.update(node) # handle validator load_mode_validator(obs_mode, node) # handle builder load_mode_builder(obs_mode, node) # handle tagger: load_mode_tagger(obs_mode, node) return obs_mode
python
def load_mode(node): """Load one observing mdode""" obs_mode = ObservingMode() obs_mode.__dict__.update(node) # handle validator load_mode_validator(obs_mode, node) # handle builder load_mode_builder(obs_mode, node) # handle tagger: load_mode_tagger(obs_mode, node) return obs_mode
[ "def", "load_mode", "(", "node", ")", ":", "obs_mode", "=", "ObservingMode", "(", ")", "obs_mode", ".", "__dict__", ".", "update", "(", "node", ")", "# handle validator", "load_mode_validator", "(", "obs_mode", ",", "node", ")", "# handle builder", "load_mode_builder", "(", "obs_mode", ",", "node", ")", "# handle tagger:", "load_mode_tagger", "(", "obs_mode", ",", "node", ")", "return", "obs_mode" ]
Load one observing mdode
[ "Load", "one", "observing", "mdode" ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/core/pipelineload.py#L65-L79
train
guaix-ucm/numina
numina/core/pipelineload.py
load_mode_tagger
def load_mode_tagger(obs_mode, node): """Load observing mode OB tagger""" # handle tagger: ntagger = node.get('tagger') if ntagger is None: pass elif isinstance(ntagger, list): def full_tagger(obsres): return get_tags_from_full_ob(obsres, reqtags=ntagger) obs_mode.tagger = full_tagger elif isinstance(ntagger, six.string_types): # load function obs_mode.tagger = import_object(ntagger) else: raise TypeError('tagger must be None, a list or a string') return obs_mode
python
def load_mode_tagger(obs_mode, node): """Load observing mode OB tagger""" # handle tagger: ntagger = node.get('tagger') if ntagger is None: pass elif isinstance(ntagger, list): def full_tagger(obsres): return get_tags_from_full_ob(obsres, reqtags=ntagger) obs_mode.tagger = full_tagger elif isinstance(ntagger, six.string_types): # load function obs_mode.tagger = import_object(ntagger) else: raise TypeError('tagger must be None, a list or a string') return obs_mode
[ "def", "load_mode_tagger", "(", "obs_mode", ",", "node", ")", ":", "# handle tagger:", "ntagger", "=", "node", ".", "get", "(", "'tagger'", ")", "if", "ntagger", "is", "None", ":", "pass", "elif", "isinstance", "(", "ntagger", ",", "list", ")", ":", "def", "full_tagger", "(", "obsres", ")", ":", "return", "get_tags_from_full_ob", "(", "obsres", ",", "reqtags", "=", "ntagger", ")", "obs_mode", ".", "tagger", "=", "full_tagger", "elif", "isinstance", "(", "ntagger", ",", "six", ".", "string_types", ")", ":", "# load function", "obs_mode", ".", "tagger", "=", "import_object", "(", "ntagger", ")", "else", ":", "raise", "TypeError", "(", "'tagger must be None, a list or a string'", ")", "return", "obs_mode" ]
Load observing mode OB tagger
[ "Load", "observing", "mode", "OB", "tagger" ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/core/pipelineload.py#L82-L102
train
guaix-ucm/numina
numina/core/pipelineload.py
load_mode_builder
def load_mode_builder(obs_mode, node): """Load observing mode OB builder""" # Check 'builder' and 'builder_options' nval1 = node.get('builder') if nval1 is not None: if isinstance(nval1, str): # override method newmethod = import_object(nval1) obs_mode.build_ob = newmethod.__get__(obs_mode) else: raise TypeError('builder must be None or a string') else: nval2 = node.get('builder_options') if nval2 is not None: if isinstance(nval2, list): for opt_dict in nval2: if 'result_of' in opt_dict: fields = opt_dict['result_of'] obs_mode.build_ob_options = ResultOf(**fields) break else: raise TypeError('builder_options must be None or a list') return obs_mode
python
def load_mode_builder(obs_mode, node): """Load observing mode OB builder""" # Check 'builder' and 'builder_options' nval1 = node.get('builder') if nval1 is not None: if isinstance(nval1, str): # override method newmethod = import_object(nval1) obs_mode.build_ob = newmethod.__get__(obs_mode) else: raise TypeError('builder must be None or a string') else: nval2 = node.get('builder_options') if nval2 is not None: if isinstance(nval2, list): for opt_dict in nval2: if 'result_of' in opt_dict: fields = opt_dict['result_of'] obs_mode.build_ob_options = ResultOf(**fields) break else: raise TypeError('builder_options must be None or a list') return obs_mode
[ "def", "load_mode_builder", "(", "obs_mode", ",", "node", ")", ":", "# Check 'builder' and 'builder_options'", "nval1", "=", "node", ".", "get", "(", "'builder'", ")", "if", "nval1", "is", "not", "None", ":", "if", "isinstance", "(", "nval1", ",", "str", ")", ":", "# override method", "newmethod", "=", "import_object", "(", "nval1", ")", "obs_mode", ".", "build_ob", "=", "newmethod", ".", "__get__", "(", "obs_mode", ")", "else", ":", "raise", "TypeError", "(", "'builder must be None or a string'", ")", "else", ":", "nval2", "=", "node", ".", "get", "(", "'builder_options'", ")", "if", "nval2", "is", "not", "None", ":", "if", "isinstance", "(", "nval2", ",", "list", ")", ":", "for", "opt_dict", "in", "nval2", ":", "if", "'result_of'", "in", "opt_dict", ":", "fields", "=", "opt_dict", "[", "'result_of'", "]", "obs_mode", ".", "build_ob_options", "=", "ResultOf", "(", "*", "*", "fields", ")", "break", "else", ":", "raise", "TypeError", "(", "'builder_options must be None or a list'", ")", "return", "obs_mode" ]
Load observing mode OB builder
[ "Load", "observing", "mode", "OB", "builder" ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/core/pipelineload.py#L105-L132
train
guaix-ucm/numina
numina/core/pipelineload.py
load_mode_validator
def load_mode_validator(obs_mode, node): """Load observing mode validator""" nval = node.get('validator') if nval is None: pass elif isinstance(nval, str): # load function obs_mode.validator = import_object(nval) else: raise TypeError('validator must be None or a string') return obs_mode
python
def load_mode_validator(obs_mode, node): """Load observing mode validator""" nval = node.get('validator') if nval is None: pass elif isinstance(nval, str): # load function obs_mode.validator = import_object(nval) else: raise TypeError('validator must be None or a string') return obs_mode
[ "def", "load_mode_validator", "(", "obs_mode", ",", "node", ")", ":", "nval", "=", "node", ".", "get", "(", "'validator'", ")", "if", "nval", "is", "None", ":", "pass", "elif", "isinstance", "(", "nval", ",", "str", ")", ":", "# load function", "obs_mode", ".", "validator", "=", "import_object", "(", "nval", ")", "else", ":", "raise", "TypeError", "(", "'validator must be None or a string'", ")", "return", "obs_mode" ]
Load observing mode validator
[ "Load", "observing", "mode", "validator" ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/core/pipelineload.py#L135-L148
train
xflr6/bitsets
bitsets/series.py
Series.frommembers
def frommembers(cls, members): """Series from iterable of member iterables.""" return cls.frombitsets(map(cls.BitSet.frommembers, members))
python
def frommembers(cls, members): """Series from iterable of member iterables.""" return cls.frombitsets(map(cls.BitSet.frommembers, members))
[ "def", "frommembers", "(", "cls", ",", "members", ")", ":", "return", "cls", ".", "frombitsets", "(", "map", "(", "cls", ".", "BitSet", ".", "frommembers", ",", "members", ")", ")" ]
Series from iterable of member iterables.
[ "Series", "from", "iterable", "of", "member", "iterables", "." ]
ddcfe17e7c7a11f71f1c6764b2cecf7db05d9cdf
https://github.com/xflr6/bitsets/blob/ddcfe17e7c7a11f71f1c6764b2cecf7db05d9cdf/bitsets/series.py#L18-L20
train
xflr6/bitsets
bitsets/series.py
Series.frombools
def frombools(cls, bools): """Series from iterable of boolean evaluable iterables.""" return cls.frombitsets(map(cls.BitSet.frombools, bools))
python
def frombools(cls, bools): """Series from iterable of boolean evaluable iterables.""" return cls.frombitsets(map(cls.BitSet.frombools, bools))
[ "def", "frombools", "(", "cls", ",", "bools", ")", ":", "return", "cls", ".", "frombitsets", "(", "map", "(", "cls", ".", "BitSet", ".", "frombools", ",", "bools", ")", ")" ]
Series from iterable of boolean evaluable iterables.
[ "Series", "from", "iterable", "of", "boolean", "evaluable", "iterables", "." ]
ddcfe17e7c7a11f71f1c6764b2cecf7db05d9cdf
https://github.com/xflr6/bitsets/blob/ddcfe17e7c7a11f71f1c6764b2cecf7db05d9cdf/bitsets/series.py#L23-L25
train
xflr6/bitsets
bitsets/series.py
Series.frombits
def frombits(cls, bits): """Series from binary string arguments.""" return cls.frombitsets(map(cls.BitSet.frombits, bits))
python
def frombits(cls, bits): """Series from binary string arguments.""" return cls.frombitsets(map(cls.BitSet.frombits, bits))
[ "def", "frombits", "(", "cls", ",", "bits", ")", ":", "return", "cls", ".", "frombitsets", "(", "map", "(", "cls", ".", "BitSet", ".", "frombits", ",", "bits", ")", ")" ]
Series from binary string arguments.
[ "Series", "from", "binary", "string", "arguments", "." ]
ddcfe17e7c7a11f71f1c6764b2cecf7db05d9cdf
https://github.com/xflr6/bitsets/blob/ddcfe17e7c7a11f71f1c6764b2cecf7db05d9cdf/bitsets/series.py#L28-L30
train
xflr6/bitsets
bitsets/series.py
Series.fromints
def fromints(cls, ints): """Series from integer rank arguments.""" return cls.frombitsets(map(cls.BitSet.fromint, ints))
python
def fromints(cls, ints): """Series from integer rank arguments.""" return cls.frombitsets(map(cls.BitSet.fromint, ints))
[ "def", "fromints", "(", "cls", ",", "ints", ")", ":", "return", "cls", ".", "frombitsets", "(", "map", "(", "cls", ".", "BitSet", ".", "fromint", ",", "ints", ")", ")" ]
Series from integer rank arguments.
[ "Series", "from", "integer", "rank", "arguments", "." ]
ddcfe17e7c7a11f71f1c6764b2cecf7db05d9cdf
https://github.com/xflr6/bitsets/blob/ddcfe17e7c7a11f71f1c6764b2cecf7db05d9cdf/bitsets/series.py#L33-L35
train
xflr6/bitsets
bitsets/series.py
Series.index_sets
def index_sets(self, as_set=False): """Return the series as list of index set tuples.""" indexes = frozenset if as_set else tuple return [indexes(b.iter_set()) for b in self]
python
def index_sets(self, as_set=False): """Return the series as list of index set tuples.""" indexes = frozenset if as_set else tuple return [indexes(b.iter_set()) for b in self]
[ "def", "index_sets", "(", "self", ",", "as_set", "=", "False", ")", ":", "indexes", "=", "frozenset", "if", "as_set", "else", "tuple", "return", "[", "indexes", "(", "b", ".", "iter_set", "(", ")", ")", "for", "b", "in", "self", "]" ]
Return the series as list of index set tuples.
[ "Return", "the", "series", "as", "list", "of", "index", "set", "tuples", "." ]
ddcfe17e7c7a11f71f1c6764b2cecf7db05d9cdf
https://github.com/xflr6/bitsets/blob/ddcfe17e7c7a11f71f1c6764b2cecf7db05d9cdf/bitsets/series.py#L57-L60
train
arkottke/pysra
pysra/output.py
append_arrays
def append_arrays(many, single): """Append an array to another padding with NaNs for constant length. Parameters ---------- many : array_like of rank (j, k) values appended to a copy of this array. This may be a 1-D or 2-D array. single : array_like of rank l values to append. This should be a 1-D array. Returns ------- append : :class:`numpy.ndarray` 2-D array with rank (j + 1, max(k, l)) with missing values padded with :class:`numpy.nan` """ assert np.ndim(single) == 1 # Check if the values need to be padded to for equal length diff = single.shape[0] - many.shape[0] if diff < 0: single = np.pad(single, (0, -diff), 'constant', constant_values=np.nan) elif diff > 0: many = np.pad(many, ((0, diff), ), 'constant', constant_values=np.nan) else: # No padding needed pass return np.c_[many, single]
python
def append_arrays(many, single): """Append an array to another padding with NaNs for constant length. Parameters ---------- many : array_like of rank (j, k) values appended to a copy of this array. This may be a 1-D or 2-D array. single : array_like of rank l values to append. This should be a 1-D array. Returns ------- append : :class:`numpy.ndarray` 2-D array with rank (j + 1, max(k, l)) with missing values padded with :class:`numpy.nan` """ assert np.ndim(single) == 1 # Check if the values need to be padded to for equal length diff = single.shape[0] - many.shape[0] if diff < 0: single = np.pad(single, (0, -diff), 'constant', constant_values=np.nan) elif diff > 0: many = np.pad(many, ((0, diff), ), 'constant', constant_values=np.nan) else: # No padding needed pass return np.c_[many, single]
[ "def", "append_arrays", "(", "many", ",", "single", ")", ":", "assert", "np", ".", "ndim", "(", "single", ")", "==", "1", "# Check if the values need to be padded to for equal length", "diff", "=", "single", ".", "shape", "[", "0", "]", "-", "many", ".", "shape", "[", "0", "]", "if", "diff", "<", "0", ":", "single", "=", "np", ".", "pad", "(", "single", ",", "(", "0", ",", "-", "diff", ")", ",", "'constant'", ",", "constant_values", "=", "np", ".", "nan", ")", "elif", "diff", ">", "0", ":", "many", "=", "np", ".", "pad", "(", "many", ",", "(", "(", "0", ",", "diff", ")", ",", ")", ",", "'constant'", ",", "constant_values", "=", "np", ".", "nan", ")", "else", ":", "# No padding needed", "pass", "return", "np", ".", "c_", "[", "many", ",", "single", "]" ]
Append an array to another padding with NaNs for constant length. Parameters ---------- many : array_like of rank (j, k) values appended to a copy of this array. This may be a 1-D or 2-D array. single : array_like of rank l values to append. This should be a 1-D array. Returns ------- append : :class:`numpy.ndarray` 2-D array with rank (j + 1, max(k, l)) with missing values padded with :class:`numpy.nan`
[ "Append", "an", "array", "to", "another", "padding", "with", "NaNs", "for", "constant", "length", "." ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/output.py#L46-L74
train
arkottke/pysra
pysra/output.py
RatioBasedOutput._get_locations
def _get_locations(self, calc): """Locate locations within the profile.""" return (self._location_in(calc.profile), self._location_out(calc.profile))
python
def _get_locations(self, calc): """Locate locations within the profile.""" return (self._location_in(calc.profile), self._location_out(calc.profile))
[ "def", "_get_locations", "(", "self", ",", "calc", ")", ":", "return", "(", "self", ".", "_location_in", "(", "calc", ".", "profile", ")", ",", "self", ".", "_location_out", "(", "calc", ".", "profile", ")", ")" ]
Locate locations within the profile.
[ "Locate", "locations", "within", "the", "profile", "." ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/output.py#L363-L366
train
guaix-ucm/numina
numina/array/wavecalib/fix_pix_borders.py
find_pix_borders
def find_pix_borders(sp, sought_value): """Find useful region of a given spectrum Detemine the useful region of a given spectrum by skipping the initial (final) pixels with values equal to 'sought_value'. Parameters ---------- sp : 1D numpy array Input spectrum. sought_value : int, float, bool Pixel value that indicate missing data in the spectrum. Returns ------- jmin, jmax : tuple (integers) Valid spectrum region (in array coordinates, from 0 to NAXIS1 - 1). If the values of all the pixels in the spectrum are equal to 'sought_value', the returned values are jmin=-1 and jmax=naxis1. """ if sp.ndim != 1: raise ValueError('Unexpected number of dimensions:', sp.ndim) naxis1 = len(sp) jborder_min = -1 jborder_max = naxis1 # only spectra with values different from 'sought_value' if not np.alltrue(sp == sought_value): # left border while True: jborder_min += 1 if sp[jborder_min] != sought_value: break # right border while True: jborder_max -= 1 if sp[jborder_max] != sought_value: break return jborder_min, jborder_max
python
def find_pix_borders(sp, sought_value): """Find useful region of a given spectrum Detemine the useful region of a given spectrum by skipping the initial (final) pixels with values equal to 'sought_value'. Parameters ---------- sp : 1D numpy array Input spectrum. sought_value : int, float, bool Pixel value that indicate missing data in the spectrum. Returns ------- jmin, jmax : tuple (integers) Valid spectrum region (in array coordinates, from 0 to NAXIS1 - 1). If the values of all the pixels in the spectrum are equal to 'sought_value', the returned values are jmin=-1 and jmax=naxis1. """ if sp.ndim != 1: raise ValueError('Unexpected number of dimensions:', sp.ndim) naxis1 = len(sp) jborder_min = -1 jborder_max = naxis1 # only spectra with values different from 'sought_value' if not np.alltrue(sp == sought_value): # left border while True: jborder_min += 1 if sp[jborder_min] != sought_value: break # right border while True: jborder_max -= 1 if sp[jborder_max] != sought_value: break return jborder_min, jborder_max
[ "def", "find_pix_borders", "(", "sp", ",", "sought_value", ")", ":", "if", "sp", ".", "ndim", "!=", "1", ":", "raise", "ValueError", "(", "'Unexpected number of dimensions:'", ",", "sp", ".", "ndim", ")", "naxis1", "=", "len", "(", "sp", ")", "jborder_min", "=", "-", "1", "jborder_max", "=", "naxis1", "# only spectra with values different from 'sought_value'", "if", "not", "np", ".", "alltrue", "(", "sp", "==", "sought_value", ")", ":", "# left border", "while", "True", ":", "jborder_min", "+=", "1", "if", "sp", "[", "jborder_min", "]", "!=", "sought_value", ":", "break", "# right border", "while", "True", ":", "jborder_max", "-=", "1", "if", "sp", "[", "jborder_max", "]", "!=", "sought_value", ":", "break", "return", "jborder_min", ",", "jborder_max" ]
Find useful region of a given spectrum Detemine the useful region of a given spectrum by skipping the initial (final) pixels with values equal to 'sought_value'. Parameters ---------- sp : 1D numpy array Input spectrum. sought_value : int, float, bool Pixel value that indicate missing data in the spectrum. Returns ------- jmin, jmax : tuple (integers) Valid spectrum region (in array coordinates, from 0 to NAXIS1 - 1). If the values of all the pixels in the spectrum are equal to 'sought_value', the returned values are jmin=-1 and jmax=naxis1.
[ "Find", "useful", "region", "of", "a", "given", "spectrum" ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/wavecalib/fix_pix_borders.py#L16-L59
train
guaix-ucm/numina
numina/array/wavecalib/fix_pix_borders.py
fix_pix_borders
def fix_pix_borders(image2d, nreplace, sought_value, replacement_value): """Replace a few pixels at the borders of each spectrum. Set to 'replacement_value' 'nreplace' pixels at the beginning (at the end) of each spectrum just after (before) the spectrum value changes from (to) 'sought_value', as seen from the image borders. Parameters ---------- image2d : numpy array Initial 2D image. nreplace : int Number of pixels to be replaced in each border. sought_value : int, float, bool Pixel value that indicates missing data in the spectrum. replacement_value : int, float, bool Pixel value to be employed in the 'nreplace' pixels. Returns ------- image2d : numpy array Final 2D image. """ # input image size naxis2, naxis1 = image2d.shape for i in range(naxis2): # only spectra with values different from 'sought_value' jborder_min, jborder_max = find_pix_borders( image2d[i, :], sought_value=sought_value ) # left border if jborder_min != -1: j1 = jborder_min j2 = min(j1 + nreplace, naxis1) image2d[i, j1:j2] = replacement_value # right border if jborder_max != naxis1: j2 = jborder_max + 1 j1 = max(j2 - nreplace, 0) image2d[i, j1:j2] = replacement_value return image2d
python
def fix_pix_borders(image2d, nreplace, sought_value, replacement_value): """Replace a few pixels at the borders of each spectrum. Set to 'replacement_value' 'nreplace' pixels at the beginning (at the end) of each spectrum just after (before) the spectrum value changes from (to) 'sought_value', as seen from the image borders. Parameters ---------- image2d : numpy array Initial 2D image. nreplace : int Number of pixels to be replaced in each border. sought_value : int, float, bool Pixel value that indicates missing data in the spectrum. replacement_value : int, float, bool Pixel value to be employed in the 'nreplace' pixels. Returns ------- image2d : numpy array Final 2D image. """ # input image size naxis2, naxis1 = image2d.shape for i in range(naxis2): # only spectra with values different from 'sought_value' jborder_min, jborder_max = find_pix_borders( image2d[i, :], sought_value=sought_value ) # left border if jborder_min != -1: j1 = jborder_min j2 = min(j1 + nreplace, naxis1) image2d[i, j1:j2] = replacement_value # right border if jborder_max != naxis1: j2 = jborder_max + 1 j1 = max(j2 - nreplace, 0) image2d[i, j1:j2] = replacement_value return image2d
[ "def", "fix_pix_borders", "(", "image2d", ",", "nreplace", ",", "sought_value", ",", "replacement_value", ")", ":", "# input image size", "naxis2", ",", "naxis1", "=", "image2d", ".", "shape", "for", "i", "in", "range", "(", "naxis2", ")", ":", "# only spectra with values different from 'sought_value'", "jborder_min", ",", "jborder_max", "=", "find_pix_borders", "(", "image2d", "[", "i", ",", ":", "]", ",", "sought_value", "=", "sought_value", ")", "# left border", "if", "jborder_min", "!=", "-", "1", ":", "j1", "=", "jborder_min", "j2", "=", "min", "(", "j1", "+", "nreplace", ",", "naxis1", ")", "image2d", "[", "i", ",", "j1", ":", "j2", "]", "=", "replacement_value", "# right border", "if", "jborder_max", "!=", "naxis1", ":", "j2", "=", "jborder_max", "+", "1", "j1", "=", "max", "(", "j2", "-", "nreplace", ",", "0", ")", "image2d", "[", "i", ",", "j1", ":", "j2", "]", "=", "replacement_value", "return", "image2d" ]
Replace a few pixels at the borders of each spectrum. Set to 'replacement_value' 'nreplace' pixels at the beginning (at the end) of each spectrum just after (before) the spectrum value changes from (to) 'sought_value', as seen from the image borders. Parameters ---------- image2d : numpy array Initial 2D image. nreplace : int Number of pixels to be replaced in each border. sought_value : int, float, bool Pixel value that indicates missing data in the spectrum. replacement_value : int, float, bool Pixel value to be employed in the 'nreplace' pixels. Returns ------- image2d : numpy array Final 2D image.
[ "Replace", "a", "few", "pixels", "at", "the", "borders", "of", "each", "spectrum", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/wavecalib/fix_pix_borders.py#L62-L108
train
guaix-ucm/numina
numina/array/wavecalib/fix_pix_borders.py
define_mask_borders
def define_mask_borders(image2d, sought_value, nadditional=0): """Generate mask avoiding undesired values at the borders. Set to True image borders with values equal to 'sought_value' Parameters ---------- image2d : numpy array Initial 2D image. sought_value : int, float, bool Pixel value that indicates missing data in the spectrum. nadditional : int Number of additional pixels to be masked at each border. Returns ------- mask2d : numpy array 2D mask. borders : list of tuples List of tuples (jmin, jmax) with the border limits (in array coordinates) found by find_pix_borders. """ # input image size naxis2, naxis1 = image2d.shape # initialize mask mask2d = np.zeros((naxis2, naxis1), dtype=bool) # initialize list to store borders borders = [] for i in range(naxis2): # only spectra with values different from 'sought_value' jborder_min, jborder_max = find_pix_borders( image2d[i, :], sought_value=sought_value ) borders.append((jborder_min, jborder_max)) if (jborder_min, jborder_max) != (-1, naxis1): if jborder_min != -1: j1 = 0 j2 = jborder_min + nadditional + 1 mask2d[i, j1:j2] = True if jborder_max != naxis1: j1 = jborder_max - nadditional j2 = naxis1 mask2d[i, j1:j2] = True return mask2d, borders
python
def define_mask_borders(image2d, sought_value, nadditional=0): """Generate mask avoiding undesired values at the borders. Set to True image borders with values equal to 'sought_value' Parameters ---------- image2d : numpy array Initial 2D image. sought_value : int, float, bool Pixel value that indicates missing data in the spectrum. nadditional : int Number of additional pixels to be masked at each border. Returns ------- mask2d : numpy array 2D mask. borders : list of tuples List of tuples (jmin, jmax) with the border limits (in array coordinates) found by find_pix_borders. """ # input image size naxis2, naxis1 = image2d.shape # initialize mask mask2d = np.zeros((naxis2, naxis1), dtype=bool) # initialize list to store borders borders = [] for i in range(naxis2): # only spectra with values different from 'sought_value' jborder_min, jborder_max = find_pix_borders( image2d[i, :], sought_value=sought_value ) borders.append((jborder_min, jborder_max)) if (jborder_min, jborder_max) != (-1, naxis1): if jborder_min != -1: j1 = 0 j2 = jborder_min + nadditional + 1 mask2d[i, j1:j2] = True if jborder_max != naxis1: j1 = jborder_max - nadditional j2 = naxis1 mask2d[i, j1:j2] = True return mask2d, borders
[ "def", "define_mask_borders", "(", "image2d", ",", "sought_value", ",", "nadditional", "=", "0", ")", ":", "# input image size", "naxis2", ",", "naxis1", "=", "image2d", ".", "shape", "# initialize mask", "mask2d", "=", "np", ".", "zeros", "(", "(", "naxis2", ",", "naxis1", ")", ",", "dtype", "=", "bool", ")", "# initialize list to store borders", "borders", "=", "[", "]", "for", "i", "in", "range", "(", "naxis2", ")", ":", "# only spectra with values different from 'sought_value'", "jborder_min", ",", "jborder_max", "=", "find_pix_borders", "(", "image2d", "[", "i", ",", ":", "]", ",", "sought_value", "=", "sought_value", ")", "borders", ".", "append", "(", "(", "jborder_min", ",", "jborder_max", ")", ")", "if", "(", "jborder_min", ",", "jborder_max", ")", "!=", "(", "-", "1", ",", "naxis1", ")", ":", "if", "jborder_min", "!=", "-", "1", ":", "j1", "=", "0", "j2", "=", "jborder_min", "+", "nadditional", "+", "1", "mask2d", "[", "i", ",", "j1", ":", "j2", "]", "=", "True", "if", "jborder_max", "!=", "naxis1", ":", "j1", "=", "jborder_max", "-", "nadditional", "j2", "=", "naxis1", "mask2d", "[", "i", ",", "j1", ":", "j2", "]", "=", "True", "return", "mask2d", ",", "borders" ]
Generate mask avoiding undesired values at the borders. Set to True image borders with values equal to 'sought_value' Parameters ---------- image2d : numpy array Initial 2D image. sought_value : int, float, bool Pixel value that indicates missing data in the spectrum. nadditional : int Number of additional pixels to be masked at each border. Returns ------- mask2d : numpy array 2D mask. borders : list of tuples List of tuples (jmin, jmax) with the border limits (in array coordinates) found by find_pix_borders.
[ "Generate", "mask", "avoiding", "undesired", "values", "at", "the", "borders", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/wavecalib/fix_pix_borders.py#L111-L161
train
guaix-ucm/numina
numina/array/wavecalib/solutionarc.py
SolutionArcCalibration.update_features
def update_features(self, poly): """Evaluate wavelength at xpos using the provided polynomial.""" for feature in self.features: feature.wavelength = poly(feature.xpos)
python
def update_features(self, poly): """Evaluate wavelength at xpos using the provided polynomial.""" for feature in self.features: feature.wavelength = poly(feature.xpos)
[ "def", "update_features", "(", "self", ",", "poly", ")", ":", "for", "feature", "in", "self", ".", "features", ":", "feature", ".", "wavelength", "=", "poly", "(", "feature", ".", "xpos", ")" ]
Evaluate wavelength at xpos using the provided polynomial.
[ "Evaluate", "wavelength", "at", "xpos", "using", "the", "provided", "polynomial", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/wavecalib/solutionarc.py#L203-L207
train
guaix-ucm/numina
numina/core/oresult.py
dataframe_from_list
def dataframe_from_list(values): """Build a DataFrame object from a list.""" if(isinstance(values, six.string_types)): return DataFrame(filename=values) elif(isinstance(values, fits.HDUList)): return DataFrame(frame=values) else: return None
python
def dataframe_from_list(values): """Build a DataFrame object from a list.""" if(isinstance(values, six.string_types)): return DataFrame(filename=values) elif(isinstance(values, fits.HDUList)): return DataFrame(frame=values) else: return None
[ "def", "dataframe_from_list", "(", "values", ")", ":", "if", "(", "isinstance", "(", "values", ",", "six", ".", "string_types", ")", ")", ":", "return", "DataFrame", "(", "filename", "=", "values", ")", "elif", "(", "isinstance", "(", "values", ",", "fits", ".", "HDUList", ")", ")", ":", "return", "DataFrame", "(", "frame", "=", "values", ")", "else", ":", "return", "None" ]
Build a DataFrame object from a list.
[ "Build", "a", "DataFrame", "object", "from", "a", "list", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/core/oresult.py#L86-L93
train
guaix-ucm/numina
numina/core/oresult.py
obsres_from_dict
def obsres_from_dict(values): """Build a ObservationResult object from a dictionary.""" obsres = ObservationResult() ikey = 'frames' # Workaround if 'images' in values: ikey = 'images' obsres.id = values.get('id', 1) obsres.mode = values['mode'] obsres.instrument = values['instrument'] obsres.configuration = values.get('configuration', 'default') obsres.pipeline = values.get('pipeline', 'default') obsres.children = values.get('children', []) obsres.parent = values.get('parent', None) obsres.results = values.get('results', {}) obsres.requirements = values.get('requirements', {}) try: obsres.frames = [dataframe_from_list(val) for val in values[ikey]] except Exception: obsres.frames = [] return obsres
python
def obsres_from_dict(values): """Build a ObservationResult object from a dictionary.""" obsres = ObservationResult() ikey = 'frames' # Workaround if 'images' in values: ikey = 'images' obsres.id = values.get('id', 1) obsres.mode = values['mode'] obsres.instrument = values['instrument'] obsres.configuration = values.get('configuration', 'default') obsres.pipeline = values.get('pipeline', 'default') obsres.children = values.get('children', []) obsres.parent = values.get('parent', None) obsres.results = values.get('results', {}) obsres.requirements = values.get('requirements', {}) try: obsres.frames = [dataframe_from_list(val) for val in values[ikey]] except Exception: obsres.frames = [] return obsres
[ "def", "obsres_from_dict", "(", "values", ")", ":", "obsres", "=", "ObservationResult", "(", ")", "ikey", "=", "'frames'", "# Workaround", "if", "'images'", "in", "values", ":", "ikey", "=", "'images'", "obsres", ".", "id", "=", "values", ".", "get", "(", "'id'", ",", "1", ")", "obsres", ".", "mode", "=", "values", "[", "'mode'", "]", "obsres", ".", "instrument", "=", "values", "[", "'instrument'", "]", "obsres", ".", "configuration", "=", "values", ".", "get", "(", "'configuration'", ",", "'default'", ")", "obsres", ".", "pipeline", "=", "values", ".", "get", "(", "'pipeline'", ",", "'default'", ")", "obsres", ".", "children", "=", "values", ".", "get", "(", "'children'", ",", "[", "]", ")", "obsres", ".", "parent", "=", "values", ".", "get", "(", "'parent'", ",", "None", ")", "obsres", ".", "results", "=", "values", ".", "get", "(", "'results'", ",", "{", "}", ")", "obsres", ".", "requirements", "=", "values", ".", "get", "(", "'requirements'", ",", "{", "}", ")", "try", ":", "obsres", ".", "frames", "=", "[", "dataframe_from_list", "(", "val", ")", "for", "val", "in", "values", "[", "ikey", "]", "]", "except", "Exception", ":", "obsres", ".", "frames", "=", "[", "]", "return", "obsres" ]
Build a ObservationResult object from a dictionary.
[ "Build", "a", "ObservationResult", "object", "from", "a", "dictionary", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/core/oresult.py#L96-L120
train
guaix-ucm/numina
numina/core/oresult.py
ObservationResult.get_sample_frame
def get_sample_frame(self): """Return first available image in observation result""" for frame in self.frames: return frame.open() for res in self.results.values(): return res.open() return None
python
def get_sample_frame(self): """Return first available image in observation result""" for frame in self.frames: return frame.open() for res in self.results.values(): return res.open() return None
[ "def", "get_sample_frame", "(", "self", ")", ":", "for", "frame", "in", "self", ".", "frames", ":", "return", "frame", ".", "open", "(", ")", "for", "res", "in", "self", ".", "results", ".", "values", "(", ")", ":", "return", "res", ".", "open", "(", ")", "return", "None" ]
Return first available image in observation result
[ "Return", "first", "available", "image", "in", "observation", "result" ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/core/oresult.py#L75-L83
train
guaix-ucm/numina
numina/array/nirproc.py
fowler_array
def fowler_array(fowlerdata, ti=0.0, ts=0.0, gain=1.0, ron=1.0, badpixels=None, dtype='float64', saturation=65631, blank=0, normalize=False): """Loop over the first axis applying Fowler processing. *fowlerdata* is assumed to be a 3D numpy.ndarray containing the result of a nIR observation in Fowler mode (Fowler and Gatley 1991). The shape of the array must be of the form 2N_p x M x N, with N_p being the number of pairs in Fowler mode. The output signal is just the mean value of the differences between the last N_p values (S_i) and the first N_p values (R-i). .. math:: S_F = \\frac{1}{N_p}\\sum\\limits_{i=0}^{N_p-1} S_i - R_i If the source has a radiance F, then the measured signal is equivalent to: .. math:: S_F = F T_I - F T_S (N_p -1) = F T_E being T_I the integration time (*ti*), the time since the first productive read to the last productive read for a given pixel and T_S the time between samples (*ts*). T_E is the time between correlated reads :math:`T_E = T_I - T_S (N_p - 1)`. The variance of the signnal is the sum of two terms, one for the readout noise: .. math:: \\mathrm{var}(S_{F1}) =\\frac{2\sigma_R^2}{N_p} and other for the photon noise: .. math:: \\mathrm{var}(S_{F2}) = F T_E - F T_S \\frac{1}{3}(N_p-\\frac{1}{N_p}) = F T_I - F T_S (\\frac{4}{3} N_p -1 - \\frac{1}{3N_p}) :param fowlerdata: Convertible to a 3D numpy.ndarray with first axis even :param ti: Integration time. :param ts: Time between samples. :param gain: Detector gain. :param ron: Detector readout noise in counts. :param badpixels: An optional MxN mask of dtype 'uint8'. :param dtype: The dtype of the float outputs. :param saturation: The saturation level of the detector. :param blank: Invalid values in output are substituted by *blank*. :returns: A tuple of (signal, variance of the signal, numper of pixels used and badpixel mask. :raises: ValueError """ import numina.array._nirproc as _nirproc if gain <= 0: raise ValueError("invalid parameter, gain <= 0.0") if ron <= 0: raise ValueError("invalid parameter, ron < 0.0") if ti < 0: raise ValueError("invalid parameter, ti < 0.0") if ts < 0: raise ValueError("invalid parameter, ts < 0.0") if saturation <= 0: raise ValueError("invalid parameter, saturation <= 0") fowlerdata = numpy.asarray(fowlerdata) if fowlerdata.ndim != 3: raise ValueError('fowlerdata must be 3D') npairs = fowlerdata.shape[0] // 2 if 2 * npairs != fowlerdata.shape[0]: raise ValueError('axis-0 in fowlerdata must be even') # change byteorder ndtype = fowlerdata.dtype.newbyteorder('=') fowlerdata = numpy.asarray(fowlerdata, dtype=ndtype) # type of the output fdtype = numpy.result_type(fowlerdata.dtype, dtype) # Type of the mask mdtype = numpy.dtype('uint8') fshape = (fowlerdata.shape[1], fowlerdata.shape[2]) if badpixels is None: badpixels = numpy.zeros(fshape, dtype=mdtype) else: if badpixels.shape != fshape: raise ValueError('shape of badpixels is not ' 'compatible with shape of fowlerdata') if badpixels.dtype != mdtype: raise ValueError('dtype of badpixels must be uint8') result = numpy.empty(fshape, dtype=fdtype) var = numpy.empty_like(result) npix = numpy.empty(fshape, dtype=mdtype) mask = badpixels.copy() _nirproc._process_fowler_intl( fowlerdata, ti, ts, gain, ron, badpixels, saturation, blank, result, var, npix, mask ) return result, var, npix, mask
python
def fowler_array(fowlerdata, ti=0.0, ts=0.0, gain=1.0, ron=1.0, badpixels=None, dtype='float64', saturation=65631, blank=0, normalize=False): """Loop over the first axis applying Fowler processing. *fowlerdata* is assumed to be a 3D numpy.ndarray containing the result of a nIR observation in Fowler mode (Fowler and Gatley 1991). The shape of the array must be of the form 2N_p x M x N, with N_p being the number of pairs in Fowler mode. The output signal is just the mean value of the differences between the last N_p values (S_i) and the first N_p values (R-i). .. math:: S_F = \\frac{1}{N_p}\\sum\\limits_{i=0}^{N_p-1} S_i - R_i If the source has a radiance F, then the measured signal is equivalent to: .. math:: S_F = F T_I - F T_S (N_p -1) = F T_E being T_I the integration time (*ti*), the time since the first productive read to the last productive read for a given pixel and T_S the time between samples (*ts*). T_E is the time between correlated reads :math:`T_E = T_I - T_S (N_p - 1)`. The variance of the signnal is the sum of two terms, one for the readout noise: .. math:: \\mathrm{var}(S_{F1}) =\\frac{2\sigma_R^2}{N_p} and other for the photon noise: .. math:: \\mathrm{var}(S_{F2}) = F T_E - F T_S \\frac{1}{3}(N_p-\\frac{1}{N_p}) = F T_I - F T_S (\\frac{4}{3} N_p -1 - \\frac{1}{3N_p}) :param fowlerdata: Convertible to a 3D numpy.ndarray with first axis even :param ti: Integration time. :param ts: Time between samples. :param gain: Detector gain. :param ron: Detector readout noise in counts. :param badpixels: An optional MxN mask of dtype 'uint8'. :param dtype: The dtype of the float outputs. :param saturation: The saturation level of the detector. :param blank: Invalid values in output are substituted by *blank*. :returns: A tuple of (signal, variance of the signal, numper of pixels used and badpixel mask. :raises: ValueError """ import numina.array._nirproc as _nirproc if gain <= 0: raise ValueError("invalid parameter, gain <= 0.0") if ron <= 0: raise ValueError("invalid parameter, ron < 0.0") if ti < 0: raise ValueError("invalid parameter, ti < 0.0") if ts < 0: raise ValueError("invalid parameter, ts < 0.0") if saturation <= 0: raise ValueError("invalid parameter, saturation <= 0") fowlerdata = numpy.asarray(fowlerdata) if fowlerdata.ndim != 3: raise ValueError('fowlerdata must be 3D') npairs = fowlerdata.shape[0] // 2 if 2 * npairs != fowlerdata.shape[0]: raise ValueError('axis-0 in fowlerdata must be even') # change byteorder ndtype = fowlerdata.dtype.newbyteorder('=') fowlerdata = numpy.asarray(fowlerdata, dtype=ndtype) # type of the output fdtype = numpy.result_type(fowlerdata.dtype, dtype) # Type of the mask mdtype = numpy.dtype('uint8') fshape = (fowlerdata.shape[1], fowlerdata.shape[2]) if badpixels is None: badpixels = numpy.zeros(fshape, dtype=mdtype) else: if badpixels.shape != fshape: raise ValueError('shape of badpixels is not ' 'compatible with shape of fowlerdata') if badpixels.dtype != mdtype: raise ValueError('dtype of badpixels must be uint8') result = numpy.empty(fshape, dtype=fdtype) var = numpy.empty_like(result) npix = numpy.empty(fshape, dtype=mdtype) mask = badpixels.copy() _nirproc._process_fowler_intl( fowlerdata, ti, ts, gain, ron, badpixels, saturation, blank, result, var, npix, mask ) return result, var, npix, mask
[ "def", "fowler_array", "(", "fowlerdata", ",", "ti", "=", "0.0", ",", "ts", "=", "0.0", ",", "gain", "=", "1.0", ",", "ron", "=", "1.0", ",", "badpixels", "=", "None", ",", "dtype", "=", "'float64'", ",", "saturation", "=", "65631", ",", "blank", "=", "0", ",", "normalize", "=", "False", ")", ":", "import", "numina", ".", "array", ".", "_nirproc", "as", "_nirproc", "if", "gain", "<=", "0", ":", "raise", "ValueError", "(", "\"invalid parameter, gain <= 0.0\"", ")", "if", "ron", "<=", "0", ":", "raise", "ValueError", "(", "\"invalid parameter, ron < 0.0\"", ")", "if", "ti", "<", "0", ":", "raise", "ValueError", "(", "\"invalid parameter, ti < 0.0\"", ")", "if", "ts", "<", "0", ":", "raise", "ValueError", "(", "\"invalid parameter, ts < 0.0\"", ")", "if", "saturation", "<=", "0", ":", "raise", "ValueError", "(", "\"invalid parameter, saturation <= 0\"", ")", "fowlerdata", "=", "numpy", ".", "asarray", "(", "fowlerdata", ")", "if", "fowlerdata", ".", "ndim", "!=", "3", ":", "raise", "ValueError", "(", "'fowlerdata must be 3D'", ")", "npairs", "=", "fowlerdata", ".", "shape", "[", "0", "]", "//", "2", "if", "2", "*", "npairs", "!=", "fowlerdata", ".", "shape", "[", "0", "]", ":", "raise", "ValueError", "(", "'axis-0 in fowlerdata must be even'", ")", "# change byteorder", "ndtype", "=", "fowlerdata", ".", "dtype", ".", "newbyteorder", "(", "'='", ")", "fowlerdata", "=", "numpy", ".", "asarray", "(", "fowlerdata", ",", "dtype", "=", "ndtype", ")", "# type of the output", "fdtype", "=", "numpy", ".", "result_type", "(", "fowlerdata", ".", "dtype", ",", "dtype", ")", "# Type of the mask", "mdtype", "=", "numpy", ".", "dtype", "(", "'uint8'", ")", "fshape", "=", "(", "fowlerdata", ".", "shape", "[", "1", "]", ",", "fowlerdata", ".", "shape", "[", "2", "]", ")", "if", "badpixels", "is", "None", ":", "badpixels", "=", "numpy", ".", "zeros", "(", "fshape", ",", "dtype", "=", "mdtype", ")", "else", ":", "if", "badpixels", ".", "shape", "!=", "fshape", ":", "raise", "ValueError", "(", "'shape of badpixels is not '", "'compatible with shape of fowlerdata'", ")", "if", "badpixels", ".", "dtype", "!=", "mdtype", ":", "raise", "ValueError", "(", "'dtype of badpixels must be uint8'", ")", "result", "=", "numpy", ".", "empty", "(", "fshape", ",", "dtype", "=", "fdtype", ")", "var", "=", "numpy", ".", "empty_like", "(", "result", ")", "npix", "=", "numpy", ".", "empty", "(", "fshape", ",", "dtype", "=", "mdtype", ")", "mask", "=", "badpixels", ".", "copy", "(", ")", "_nirproc", ".", "_process_fowler_intl", "(", "fowlerdata", ",", "ti", ",", "ts", ",", "gain", ",", "ron", ",", "badpixels", ",", "saturation", ",", "blank", ",", "result", ",", "var", ",", "npix", ",", "mask", ")", "return", "result", ",", "var", ",", "npix", ",", "mask" ]
Loop over the first axis applying Fowler processing. *fowlerdata* is assumed to be a 3D numpy.ndarray containing the result of a nIR observation in Fowler mode (Fowler and Gatley 1991). The shape of the array must be of the form 2N_p x M x N, with N_p being the number of pairs in Fowler mode. The output signal is just the mean value of the differences between the last N_p values (S_i) and the first N_p values (R-i). .. math:: S_F = \\frac{1}{N_p}\\sum\\limits_{i=0}^{N_p-1} S_i - R_i If the source has a radiance F, then the measured signal is equivalent to: .. math:: S_F = F T_I - F T_S (N_p -1) = F T_E being T_I the integration time (*ti*), the time since the first productive read to the last productive read for a given pixel and T_S the time between samples (*ts*). T_E is the time between correlated reads :math:`T_E = T_I - T_S (N_p - 1)`. The variance of the signnal is the sum of two terms, one for the readout noise: .. math:: \\mathrm{var}(S_{F1}) =\\frac{2\sigma_R^2}{N_p} and other for the photon noise: .. math:: \\mathrm{var}(S_{F2}) = F T_E - F T_S \\frac{1}{3}(N_p-\\frac{1}{N_p}) = F T_I - F T_S (\\frac{4}{3} N_p -1 - \\frac{1}{3N_p}) :param fowlerdata: Convertible to a 3D numpy.ndarray with first axis even :param ti: Integration time. :param ts: Time between samples. :param gain: Detector gain. :param ron: Detector readout noise in counts. :param badpixels: An optional MxN mask of dtype 'uint8'. :param dtype: The dtype of the float outputs. :param saturation: The saturation level of the detector. :param blank: Invalid values in output are substituted by *blank*. :returns: A tuple of (signal, variance of the signal, numper of pixels used and badpixel mask. :raises: ValueError
[ "Loop", "over", "the", "first", "axis", "applying", "Fowler", "processing", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/nirproc.py#L18-L132
train
guaix-ucm/numina
numina/array/nirproc.py
ramp_array
def ramp_array(rampdata, ti, gain=1.0, ron=1.0, badpixels=None, dtype='float64', saturation=65631, blank=0, nsig=None, normalize=False): """Loop over the first axis applying ramp processing. *rampdata* is assumed to be a 3D numpy.ndarray containing the result of a nIR observation in folow-up-the-ramp mode. The shape of the array must be of the form N_s x M x N, with N_s being the number of samples. :param fowlerdata: Convertible to a 3D numpy.ndarray :param ti: Integration time. :param gain: Detector gain. :param ron: Detector readout noise in counts. :param badpixels: An optional MxN mask of dtype 'uint8'. :param dtype: The dtype of the float outputs. :param saturation: The saturation level of the detector. :param blank: Invalid values in output are substituted by *blank*. :returns: A tuple of signal, variance of the signal, numper of pixels used and badpixel mask. :raises: ValueError """ import numina.array._nirproc as _nirproc if ti <= 0: raise ValueError("invalid parameter, ti <= 0.0") if gain <= 0: raise ValueError("invalid parameter, gain <= 0.0") if ron <= 0: raise ValueError("invalid parameter, ron < 0.0") if saturation <= 0: raise ValueError("invalid parameter, saturation <= 0") rampdata = numpy.asarray(rampdata) if rampdata.ndim != 3: raise ValueError('rampdata must be 3D') # change byteorder ndtype = rampdata.dtype.newbyteorder('=') rampdata = numpy.asarray(rampdata, dtype=ndtype) # type of the output fdtype = numpy.result_type(rampdata.dtype, dtype) # Type of the mask mdtype = numpy.dtype('uint8') fshape = (rampdata.shape[1], rampdata.shape[2]) if badpixels is None: badpixels = numpy.zeros(fshape, dtype=mdtype) else: if badpixels.shape != fshape: msg = 'shape of badpixels is not compatible with shape of rampdata' raise ValueError(msg) if badpixels.dtype != mdtype: raise ValueError('dtype of badpixels must be uint8') result = numpy.empty(fshape, dtype=fdtype) var = numpy.empty_like(result) npix = numpy.empty(fshape, dtype=mdtype) mask = badpixels.copy() _nirproc._process_ramp_intl( rampdata, ti, gain, ron, badpixels, saturation, blank, result, var, npix, mask ) return result, var, npix, mask
python
def ramp_array(rampdata, ti, gain=1.0, ron=1.0, badpixels=None, dtype='float64', saturation=65631, blank=0, nsig=None, normalize=False): """Loop over the first axis applying ramp processing. *rampdata* is assumed to be a 3D numpy.ndarray containing the result of a nIR observation in folow-up-the-ramp mode. The shape of the array must be of the form N_s x M x N, with N_s being the number of samples. :param fowlerdata: Convertible to a 3D numpy.ndarray :param ti: Integration time. :param gain: Detector gain. :param ron: Detector readout noise in counts. :param badpixels: An optional MxN mask of dtype 'uint8'. :param dtype: The dtype of the float outputs. :param saturation: The saturation level of the detector. :param blank: Invalid values in output are substituted by *blank*. :returns: A tuple of signal, variance of the signal, numper of pixels used and badpixel mask. :raises: ValueError """ import numina.array._nirproc as _nirproc if ti <= 0: raise ValueError("invalid parameter, ti <= 0.0") if gain <= 0: raise ValueError("invalid parameter, gain <= 0.0") if ron <= 0: raise ValueError("invalid parameter, ron < 0.0") if saturation <= 0: raise ValueError("invalid parameter, saturation <= 0") rampdata = numpy.asarray(rampdata) if rampdata.ndim != 3: raise ValueError('rampdata must be 3D') # change byteorder ndtype = rampdata.dtype.newbyteorder('=') rampdata = numpy.asarray(rampdata, dtype=ndtype) # type of the output fdtype = numpy.result_type(rampdata.dtype, dtype) # Type of the mask mdtype = numpy.dtype('uint8') fshape = (rampdata.shape[1], rampdata.shape[2]) if badpixels is None: badpixels = numpy.zeros(fshape, dtype=mdtype) else: if badpixels.shape != fshape: msg = 'shape of badpixels is not compatible with shape of rampdata' raise ValueError(msg) if badpixels.dtype != mdtype: raise ValueError('dtype of badpixels must be uint8') result = numpy.empty(fshape, dtype=fdtype) var = numpy.empty_like(result) npix = numpy.empty(fshape, dtype=mdtype) mask = badpixels.copy() _nirproc._process_ramp_intl( rampdata, ti, gain, ron, badpixels, saturation, blank, result, var, npix, mask ) return result, var, npix, mask
[ "def", "ramp_array", "(", "rampdata", ",", "ti", ",", "gain", "=", "1.0", ",", "ron", "=", "1.0", ",", "badpixels", "=", "None", ",", "dtype", "=", "'float64'", ",", "saturation", "=", "65631", ",", "blank", "=", "0", ",", "nsig", "=", "None", ",", "normalize", "=", "False", ")", ":", "import", "numina", ".", "array", ".", "_nirproc", "as", "_nirproc", "if", "ti", "<=", "0", ":", "raise", "ValueError", "(", "\"invalid parameter, ti <= 0.0\"", ")", "if", "gain", "<=", "0", ":", "raise", "ValueError", "(", "\"invalid parameter, gain <= 0.0\"", ")", "if", "ron", "<=", "0", ":", "raise", "ValueError", "(", "\"invalid parameter, ron < 0.0\"", ")", "if", "saturation", "<=", "0", ":", "raise", "ValueError", "(", "\"invalid parameter, saturation <= 0\"", ")", "rampdata", "=", "numpy", ".", "asarray", "(", "rampdata", ")", "if", "rampdata", ".", "ndim", "!=", "3", ":", "raise", "ValueError", "(", "'rampdata must be 3D'", ")", "# change byteorder", "ndtype", "=", "rampdata", ".", "dtype", ".", "newbyteorder", "(", "'='", ")", "rampdata", "=", "numpy", ".", "asarray", "(", "rampdata", ",", "dtype", "=", "ndtype", ")", "# type of the output", "fdtype", "=", "numpy", ".", "result_type", "(", "rampdata", ".", "dtype", ",", "dtype", ")", "# Type of the mask", "mdtype", "=", "numpy", ".", "dtype", "(", "'uint8'", ")", "fshape", "=", "(", "rampdata", ".", "shape", "[", "1", "]", ",", "rampdata", ".", "shape", "[", "2", "]", ")", "if", "badpixels", "is", "None", ":", "badpixels", "=", "numpy", ".", "zeros", "(", "fshape", ",", "dtype", "=", "mdtype", ")", "else", ":", "if", "badpixels", ".", "shape", "!=", "fshape", ":", "msg", "=", "'shape of badpixels is not compatible with shape of rampdata'", "raise", "ValueError", "(", "msg", ")", "if", "badpixels", ".", "dtype", "!=", "mdtype", ":", "raise", "ValueError", "(", "'dtype of badpixels must be uint8'", ")", "result", "=", "numpy", ".", "empty", "(", "fshape", ",", "dtype", "=", "fdtype", ")", "var", "=", "numpy", ".", "empty_like", "(", "result", ")", "npix", "=", "numpy", ".", "empty", "(", "fshape", ",", "dtype", "=", "mdtype", ")", "mask", "=", "badpixels", ".", "copy", "(", ")", "_nirproc", ".", "_process_ramp_intl", "(", "rampdata", ",", "ti", ",", "gain", ",", "ron", ",", "badpixels", ",", "saturation", ",", "blank", ",", "result", ",", "var", ",", "npix", ",", "mask", ")", "return", "result", ",", "var", ",", "npix", ",", "mask" ]
Loop over the first axis applying ramp processing. *rampdata* is assumed to be a 3D numpy.ndarray containing the result of a nIR observation in folow-up-the-ramp mode. The shape of the array must be of the form N_s x M x N, with N_s being the number of samples. :param fowlerdata: Convertible to a 3D numpy.ndarray :param ti: Integration time. :param gain: Detector gain. :param ron: Detector readout noise in counts. :param badpixels: An optional MxN mask of dtype 'uint8'. :param dtype: The dtype of the float outputs. :param saturation: The saturation level of the detector. :param blank: Invalid values in output are substituted by *blank*. :returns: A tuple of signal, variance of the signal, numper of pixels used and badpixel mask. :raises: ValueError
[ "Loop", "over", "the", "first", "axis", "applying", "ramp", "processing", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/nirproc.py#L135-L202
train
ponty/eagexp
eagexp/cmd.py
accept_freeware_license
def accept_freeware_license(): '''different Eagle versions need differnt TAB count. 6.5 -> 2 6.6 -> 3 7.4 -> 2 ''' ntab = 3 if version().startswith('6.6.') else 2 for _ in range(ntab): EasyProcess('xdotool key KP_Tab').call() time.sleep(0.5) EasyProcess('xdotool key KP_Space').call() time.sleep(0.5) # say OK to any more question EasyProcess('xdotool key KP_Space').call()
python
def accept_freeware_license(): '''different Eagle versions need differnt TAB count. 6.5 -> 2 6.6 -> 3 7.4 -> 2 ''' ntab = 3 if version().startswith('6.6.') else 2 for _ in range(ntab): EasyProcess('xdotool key KP_Tab').call() time.sleep(0.5) EasyProcess('xdotool key KP_Space').call() time.sleep(0.5) # say OK to any more question EasyProcess('xdotool key KP_Space').call()
[ "def", "accept_freeware_license", "(", ")", ":", "ntab", "=", "3", "if", "version", "(", ")", ".", "startswith", "(", "'6.6.'", ")", "else", "2", "for", "_", "in", "range", "(", "ntab", ")", ":", "EasyProcess", "(", "'xdotool key KP_Tab'", ")", ".", "call", "(", ")", "time", ".", "sleep", "(", "0.5", ")", "EasyProcess", "(", "'xdotool key KP_Space'", ")", ".", "call", "(", ")", "time", ".", "sleep", "(", "0.5", ")", "# say OK to any more question", "EasyProcess", "(", "'xdotool key KP_Space'", ")", ".", "call", "(", ")" ]
different Eagle versions need differnt TAB count. 6.5 -> 2 6.6 -> 3 7.4 -> 2
[ "different", "Eagle", "versions", "need", "differnt", "TAB", "count", ".", "6", ".", "5", "-", ">", "2", "6", ".", "6", "-", ">", "3", "7", ".", "4", "-", ">", "2" ]
1dd5108c1d8112cc87d1bda64fa6c2784ccf0ff2
https://github.com/ponty/eagexp/blob/1dd5108c1d8112cc87d1bda64fa6c2784ccf0ff2/eagexp/cmd.py#L20-L35
train
guaix-ucm/numina
numina/util/fqn.py
fully_qualified_name
def fully_qualified_name(obj, sep='.'): """Return fully qualified name from object""" if inspect.isclass(obj): return obj.__module__ + sep + obj.__name__ else: return obj.__module__ + sep + obj.__class__.__name__
python
def fully_qualified_name(obj, sep='.'): """Return fully qualified name from object""" if inspect.isclass(obj): return obj.__module__ + sep + obj.__name__ else: return obj.__module__ + sep + obj.__class__.__name__
[ "def", "fully_qualified_name", "(", "obj", ",", "sep", "=", "'.'", ")", ":", "if", "inspect", ".", "isclass", "(", "obj", ")", ":", "return", "obj", ".", "__module__", "+", "sep", "+", "obj", ".", "__name__", "else", ":", "return", "obj", ".", "__module__", "+", "sep", "+", "obj", ".", "__class__", ".", "__name__" ]
Return fully qualified name from object
[ "Return", "fully", "qualified", "name", "from", "object" ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/util/fqn.py#L16-L21
train
guaix-ucm/numina
numina/array/numsplines.py
fun_residuals
def fun_residuals(params, xnor, ynor, w, bbox, k, ext): """Compute fit residuals""" spl = LSQUnivariateSpline( x=xnor, y=ynor, t=[item.value for item in params.values()], w=w, bbox=bbox, k=k, ext=ext, check_finite=False ) return spl.get_residual()
python
def fun_residuals(params, xnor, ynor, w, bbox, k, ext): """Compute fit residuals""" spl = LSQUnivariateSpline( x=xnor, y=ynor, t=[item.value for item in params.values()], w=w, bbox=bbox, k=k, ext=ext, check_finite=False ) return spl.get_residual()
[ "def", "fun_residuals", "(", "params", ",", "xnor", ",", "ynor", ",", "w", ",", "bbox", ",", "k", ",", "ext", ")", ":", "spl", "=", "LSQUnivariateSpline", "(", "x", "=", "xnor", ",", "y", "=", "ynor", ",", "t", "=", "[", "item", ".", "value", "for", "item", "in", "params", ".", "values", "(", ")", "]", ",", "w", "=", "w", ",", "bbox", "=", "bbox", ",", "k", "=", "k", ",", "ext", "=", "ext", ",", "check_finite", "=", "False", ")", "return", "spl", ".", "get_residual", "(", ")" ]
Compute fit residuals
[ "Compute", "fit", "residuals" ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/numsplines.py#L17-L30
train
guaix-ucm/numina
numina/user/clirundal.py
parse_as_yaml
def parse_as_yaml(strdict): """Parse a dictionary of strings as if yaml reads it""" interm = "" for key, val in strdict.items(): interm = "%s: %s, %s" % (key, val, interm) fin = '{%s}' % interm return yaml.load(fin)
python
def parse_as_yaml(strdict): """Parse a dictionary of strings as if yaml reads it""" interm = "" for key, val in strdict.items(): interm = "%s: %s, %s" % (key, val, interm) fin = '{%s}' % interm return yaml.load(fin)
[ "def", "parse_as_yaml", "(", "strdict", ")", ":", "interm", "=", "\"\"", "for", "key", ",", "val", "in", "strdict", ".", "items", "(", ")", ":", "interm", "=", "\"%s: %s, %s\"", "%", "(", "key", ",", "val", ",", "interm", ")", "fin", "=", "'{%s}'", "%", "interm", "return", "yaml", ".", "load", "(", "fin", ")" ]
Parse a dictionary of strings as if yaml reads it
[ "Parse", "a", "dictionary", "of", "strings", "as", "if", "yaml", "reads", "it" ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/user/clirundal.py#L245-L252
train
SUNCAT-Center/CatHub
cathub/cli.py
folder2db
def folder2db(folder_name, debug, energy_limit, skip_folders, goto_reaction): """Read folder and collect data in local sqlite3 database""" folder_name = folder_name.rstrip('/') skip = [] for s in skip_folders.split(', '): for sk in s.split(','): skip.append(sk) pub_id = _folder2db.main(folder_name, debug, energy_limit, skip, goto_reaction) if pub_id: print('') print('') print('Ready to release the data?') print( " Send it to the Catalysis-Hub server with 'cathub db2server {folder_name}/{pub_id}.db'.".format(**locals())) print(" Then log in at www.catalysis-hub.org/upload/ to verify and release. ")
python
def folder2db(folder_name, debug, energy_limit, skip_folders, goto_reaction): """Read folder and collect data in local sqlite3 database""" folder_name = folder_name.rstrip('/') skip = [] for s in skip_folders.split(', '): for sk in s.split(','): skip.append(sk) pub_id = _folder2db.main(folder_name, debug, energy_limit, skip, goto_reaction) if pub_id: print('') print('') print('Ready to release the data?') print( " Send it to the Catalysis-Hub server with 'cathub db2server {folder_name}/{pub_id}.db'.".format(**locals())) print(" Then log in at www.catalysis-hub.org/upload/ to verify and release. ")
[ "def", "folder2db", "(", "folder_name", ",", "debug", ",", "energy_limit", ",", "skip_folders", ",", "goto_reaction", ")", ":", "folder_name", "=", "folder_name", ".", "rstrip", "(", "'/'", ")", "skip", "=", "[", "]", "for", "s", "in", "skip_folders", ".", "split", "(", "', '", ")", ":", "for", "sk", "in", "s", ".", "split", "(", "','", ")", ":", "skip", ".", "append", "(", "sk", ")", "pub_id", "=", "_folder2db", ".", "main", "(", "folder_name", ",", "debug", ",", "energy_limit", ",", "skip", ",", "goto_reaction", ")", "if", "pub_id", ":", "print", "(", "''", ")", "print", "(", "''", ")", "print", "(", "'Ready to release the data?'", ")", "print", "(", "\" Send it to the Catalysis-Hub server with 'cathub db2server {folder_name}/{pub_id}.db'.\"", ".", "format", "(", "*", "*", "locals", "(", ")", ")", ")", "print", "(", "\" Then log in at www.catalysis-hub.org/upload/ to verify and release. \"", ")" ]
Read folder and collect data in local sqlite3 database
[ "Read", "folder", "and", "collect", "data", "in", "local", "sqlite3", "database" ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/cli.py#L82-L99
train
SUNCAT-Center/CatHub
cathub/cli.py
db2server
def db2server(dbfile, block_size, dbuser, dbpassword): """Transfer data from local database to Catalysis Hub server""" _db2server.main(dbfile, write_reaction=True, write_ase=True, write_publication=True, write_reaction_system=True, block_size=block_size, start_block=0, user=dbuser, password=dbpassword)
python
def db2server(dbfile, block_size, dbuser, dbpassword): """Transfer data from local database to Catalysis Hub server""" _db2server.main(dbfile, write_reaction=True, write_ase=True, write_publication=True, write_reaction_system=True, block_size=block_size, start_block=0, user=dbuser, password=dbpassword)
[ "def", "db2server", "(", "dbfile", ",", "block_size", ",", "dbuser", ",", "dbpassword", ")", ":", "_db2server", ".", "main", "(", "dbfile", ",", "write_reaction", "=", "True", ",", "write_ase", "=", "True", ",", "write_publication", "=", "True", ",", "write_reaction_system", "=", "True", ",", "block_size", "=", "block_size", ",", "start_block", "=", "0", ",", "user", "=", "dbuser", ",", "password", "=", "dbpassword", ")" ]
Transfer data from local database to Catalysis Hub server
[ "Transfer", "data", "from", "local", "database", "to", "Catalysis", "Hub", "server" ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/cli.py#L109-L120
train
SUNCAT-Center/CatHub
cathub/cli.py
reactions
def reactions(columns, n_results, write_db, queries): """Search for reactions""" if not isinstance(queries, dict): query_dict = {} for q in queries: key, value = q.split('=') if key == 'distinct': if value in ['True', 'true']: query_dict.update({key: True}) continue try: value = int(value) query_dict.update({key: value}) except BaseException: query_dict.update({key: '{0}'.format(value)}) # Keep {0} in string.format for python2.6 compatibility if write_db and n_results > 1000: print("""Warning: You're attempting to write more than a 1000 rows with geometries. This could take some time""") data = query.get_reactions(columns=columns, n_results=n_results, write_db=write_db, **query_dict) if write_db: return table = [] headers = [] for row in data['reactions']['edges']: table += [list(row['node'].values())] headers = list(row['node'].keys()) print(tabulate(table, headers) + '\n')
python
def reactions(columns, n_results, write_db, queries): """Search for reactions""" if not isinstance(queries, dict): query_dict = {} for q in queries: key, value = q.split('=') if key == 'distinct': if value in ['True', 'true']: query_dict.update({key: True}) continue try: value = int(value) query_dict.update({key: value}) except BaseException: query_dict.update({key: '{0}'.format(value)}) # Keep {0} in string.format for python2.6 compatibility if write_db and n_results > 1000: print("""Warning: You're attempting to write more than a 1000 rows with geometries. This could take some time""") data = query.get_reactions(columns=columns, n_results=n_results, write_db=write_db, **query_dict) if write_db: return table = [] headers = [] for row in data['reactions']['edges']: table += [list(row['node'].values())] headers = list(row['node'].keys()) print(tabulate(table, headers) + '\n')
[ "def", "reactions", "(", "columns", ",", "n_results", ",", "write_db", ",", "queries", ")", ":", "if", "not", "isinstance", "(", "queries", ",", "dict", ")", ":", "query_dict", "=", "{", "}", "for", "q", "in", "queries", ":", "key", ",", "value", "=", "q", ".", "split", "(", "'='", ")", "if", "key", "==", "'distinct'", ":", "if", "value", "in", "[", "'True'", ",", "'true'", "]", ":", "query_dict", ".", "update", "(", "{", "key", ":", "True", "}", ")", "continue", "try", ":", "value", "=", "int", "(", "value", ")", "query_dict", ".", "update", "(", "{", "key", ":", "value", "}", ")", "except", "BaseException", ":", "query_dict", ".", "update", "(", "{", "key", ":", "'{0}'", ".", "format", "(", "value", ")", "}", ")", "# Keep {0} in string.format for python2.6 compatibility", "if", "write_db", "and", "n_results", ">", "1000", ":", "print", "(", "\"\"\"Warning: You're attempting to write more than a 1000 rows\n with geometries. This could take some time\"\"\"", ")", "data", "=", "query", ".", "get_reactions", "(", "columns", "=", "columns", ",", "n_results", "=", "n_results", ",", "write_db", "=", "write_db", ",", "*", "*", "query_dict", ")", "if", "write_db", ":", "return", "table", "=", "[", "]", "headers", "=", "[", "]", "for", "row", "in", "data", "[", "'reactions'", "]", "[", "'edges'", "]", ":", "table", "+=", "[", "list", "(", "row", "[", "'node'", "]", ".", "values", "(", ")", ")", "]", "headers", "=", "list", "(", "row", "[", "'node'", "]", ".", "keys", "(", ")", ")", "print", "(", "tabulate", "(", "table", ",", "headers", ")", "+", "'\\n'", ")" ]
Search for reactions
[ "Search", "for", "reactions" ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/cli.py#L171-L204
train
SUNCAT-Center/CatHub
cathub/cli.py
publications
def publications(columns, n_results, queries): """Search for publications""" if not isinstance(queries, dict): query_dict = {} for q in queries: key, value = q.split('=') if key == 'distinct': if value in ['True', 'true']: query_dict.update({key: True}) continue try: value = int(value) query_dict.update({key: value}) except BaseException: query_dict.update({key: '{0}'.format(value)}) if 'sort' not in query_dict: query_dict.update({'order': '-year'}) data = query.query(table='publications', columns=columns, n_results=n_results, queries=query_dict) table = [] headers = [] for row in data['publications']['edges']: value = list(row['node'].values()) for n, v in enumerate(value): if isinstance(v, str) and len(v) > 20: splited = v.split(' ') size = 0 sentence = '' for word in splited: if size < 20: size += len(word) sentence += ' ' + word else: sentence += '\n' + word size = 0 sentence += '\n' value[n] = sentence table += [value] headers = list(row['node'].keys()) print(tabulate(table, headers, tablefmt="grid") + '\n')
python
def publications(columns, n_results, queries): """Search for publications""" if not isinstance(queries, dict): query_dict = {} for q in queries: key, value = q.split('=') if key == 'distinct': if value in ['True', 'true']: query_dict.update({key: True}) continue try: value = int(value) query_dict.update({key: value}) except BaseException: query_dict.update({key: '{0}'.format(value)}) if 'sort' not in query_dict: query_dict.update({'order': '-year'}) data = query.query(table='publications', columns=columns, n_results=n_results, queries=query_dict) table = [] headers = [] for row in data['publications']['edges']: value = list(row['node'].values()) for n, v in enumerate(value): if isinstance(v, str) and len(v) > 20: splited = v.split(' ') size = 0 sentence = '' for word in splited: if size < 20: size += len(word) sentence += ' ' + word else: sentence += '\n' + word size = 0 sentence += '\n' value[n] = sentence table += [value] headers = list(row['node'].keys()) print(tabulate(table, headers, tablefmt="grid") + '\n')
[ "def", "publications", "(", "columns", ",", "n_results", ",", "queries", ")", ":", "if", "not", "isinstance", "(", "queries", ",", "dict", ")", ":", "query_dict", "=", "{", "}", "for", "q", "in", "queries", ":", "key", ",", "value", "=", "q", ".", "split", "(", "'='", ")", "if", "key", "==", "'distinct'", ":", "if", "value", "in", "[", "'True'", ",", "'true'", "]", ":", "query_dict", ".", "update", "(", "{", "key", ":", "True", "}", ")", "continue", "try", ":", "value", "=", "int", "(", "value", ")", "query_dict", ".", "update", "(", "{", "key", ":", "value", "}", ")", "except", "BaseException", ":", "query_dict", ".", "update", "(", "{", "key", ":", "'{0}'", ".", "format", "(", "value", ")", "}", ")", "if", "'sort'", "not", "in", "query_dict", ":", "query_dict", ".", "update", "(", "{", "'order'", ":", "'-year'", "}", ")", "data", "=", "query", ".", "query", "(", "table", "=", "'publications'", ",", "columns", "=", "columns", ",", "n_results", "=", "n_results", ",", "queries", "=", "query_dict", ")", "table", "=", "[", "]", "headers", "=", "[", "]", "for", "row", "in", "data", "[", "'publications'", "]", "[", "'edges'", "]", ":", "value", "=", "list", "(", "row", "[", "'node'", "]", ".", "values", "(", ")", ")", "for", "n", ",", "v", "in", "enumerate", "(", "value", ")", ":", "if", "isinstance", "(", "v", ",", "str", ")", "and", "len", "(", "v", ")", ">", "20", ":", "splited", "=", "v", ".", "split", "(", "' '", ")", "size", "=", "0", "sentence", "=", "''", "for", "word", "in", "splited", ":", "if", "size", "<", "20", ":", "size", "+=", "len", "(", "word", ")", "sentence", "+=", "' '", "+", "word", "else", ":", "sentence", "+=", "'\\n'", "+", "word", "size", "=", "0", "sentence", "+=", "'\\n'", "value", "[", "n", "]", "=", "sentence", "table", "+=", "[", "value", "]", "headers", "=", "list", "(", "row", "[", "'node'", "]", ".", "keys", "(", ")", ")", "print", "(", "tabulate", "(", "table", ",", "headers", ",", "tablefmt", "=", "\"grid\"", ")", "+", "'\\n'", ")" ]
Search for publications
[ "Search", "for", "publications" ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/cli.py#L223-L266
train
SUNCAT-Center/CatHub
cathub/cli.py
make_folders
def make_folders(template, custom_base): """Create a basic folder tree for dumping DFT calculcations for reaction energies. Dear all Use this command make the right structure for your folders for submitting data for Catalysis Hub's Surface Reactions. Start by creating a template file by calling: $ cathub make_folders <template_name> Then open the template and modify it to so that it contains information about your data. You will need to enter publication/dataset information, and specify the types of surfaces, facets and reactions. The 'reactions' entry should include two lists for each reaction; 'reactants' and 'products', corresponding to left- and right hand side of each chemical equation respectively. Remember to balance the equation by including a prefactor or minus sign in the name when relevant. For example: reactions: - reactants: ['CCH3star@ontop'] products: ['Cstar@hollow', 'CH3star@ontop'] - reactants: ['CH4gas', '-0.5H2gas', 'star'] products: ['CH3star'] Please include the phase of the species as an extension: 'gas' for gas phase (i.e. CH4 -> CH4gas) 'star' for empty slab or adsorbed phase. (i.e. OH -> OHstar) The site of adsorbed species is also included as an extension: '@site' (i.e. OHstar in bridge-> OHstar@bridge) Energy corrections to gas phase molecules can be included as: energy_corrections: {H2: 0.1, CH4: -0.15} Then, save the template and call: $ cathub make_folders <template_name> And folders will be created automatically. You can create several templates and call make_folders again if you, for example, are using different functionals or are doing different reactions on different surfaces. After creating your folders, add your output files from the electronic structure calculations at the positions. Accepted file formats include everything that can be read by ASE and contains the total potential energy of the calculation, such as .traj or .OUTCAR files. After dumping your files, run `cathub folder2db <your folder>` to collect the data. """ def dict_representer(dumper, data): return dumper.represent_dict(data.items()) Dumper.add_representer(collections.OrderedDict, dict_representer) if custom_base is None: custom_base = os.path.abspath(os.path.curdir) template = custom_base + '/' + template template_data = ase_tools.REACTION_TEMPLATE if not os.path.exists(template): with open(template, 'w') as outfile: outfile.write( yaml.dump( template_data, indent=4, Dumper=Dumper) + '\n') print("Created template file: {template}\n".format(**locals()) + ' Please edit it and run the script again to create your folderstructure.\n' + ' Run cathub make_folders --help for instructions') return with open(template) as infile: template_data = yaml.load(infile) title = template_data['title'] authors = template_data['authors'] journal = template_data['journal'] volume = template_data['volume'] number = template_data['number'] pages = template_data['pages'] year = template_data['year'] email = template_data['email'] publisher = template_data['publisher'] doi = template_data['doi'] dft_code = template_data['DFT_code'] dft_functionals = template_data['DFT_functionals'] reactions = template_data['reactions'] crystal_structures = template_data['crystal_structures'] bulk_compositions = template_data['bulk_compositions'] facets = template_data['facets'] energy_corrections = template_data['energy_corrections'] make_folders_template.main( title=title, authors=eval(authors) if isinstance( authors, six.string_types) else authors, journal=journal, volume=volume, number=number, pages=pages, year=year, email=email, publisher=publisher, doi=doi, DFT_code=dft_code, DFT_functionals=dft_functionals, reactions=eval(reactions) if isinstance( reactions, six.string_types) else reactions, custom_base=custom_base, bulk_compositions=bulk_compositions, crystal_structures=crystal_structures, facets=facets, energy_corrections=energy_corrections ) pub_id = tools.get_pub_id(title, authors, year) print( "Now dump your DFT output files into the folder, and run 'cathub folder2db {pub_id}'".format(**locals()))
python
def make_folders(template, custom_base): """Create a basic folder tree for dumping DFT calculcations for reaction energies. Dear all Use this command make the right structure for your folders for submitting data for Catalysis Hub's Surface Reactions. Start by creating a template file by calling: $ cathub make_folders <template_name> Then open the template and modify it to so that it contains information about your data. You will need to enter publication/dataset information, and specify the types of surfaces, facets and reactions. The 'reactions' entry should include two lists for each reaction; 'reactants' and 'products', corresponding to left- and right hand side of each chemical equation respectively. Remember to balance the equation by including a prefactor or minus sign in the name when relevant. For example: reactions: - reactants: ['CCH3star@ontop'] products: ['Cstar@hollow', 'CH3star@ontop'] - reactants: ['CH4gas', '-0.5H2gas', 'star'] products: ['CH3star'] Please include the phase of the species as an extension: 'gas' for gas phase (i.e. CH4 -> CH4gas) 'star' for empty slab or adsorbed phase. (i.e. OH -> OHstar) The site of adsorbed species is also included as an extension: '@site' (i.e. OHstar in bridge-> OHstar@bridge) Energy corrections to gas phase molecules can be included as: energy_corrections: {H2: 0.1, CH4: -0.15} Then, save the template and call: $ cathub make_folders <template_name> And folders will be created automatically. You can create several templates and call make_folders again if you, for example, are using different functionals or are doing different reactions on different surfaces. After creating your folders, add your output files from the electronic structure calculations at the positions. Accepted file formats include everything that can be read by ASE and contains the total potential energy of the calculation, such as .traj or .OUTCAR files. After dumping your files, run `cathub folder2db <your folder>` to collect the data. """ def dict_representer(dumper, data): return dumper.represent_dict(data.items()) Dumper.add_representer(collections.OrderedDict, dict_representer) if custom_base is None: custom_base = os.path.abspath(os.path.curdir) template = custom_base + '/' + template template_data = ase_tools.REACTION_TEMPLATE if not os.path.exists(template): with open(template, 'w') as outfile: outfile.write( yaml.dump( template_data, indent=4, Dumper=Dumper) + '\n') print("Created template file: {template}\n".format(**locals()) + ' Please edit it and run the script again to create your folderstructure.\n' + ' Run cathub make_folders --help for instructions') return with open(template) as infile: template_data = yaml.load(infile) title = template_data['title'] authors = template_data['authors'] journal = template_data['journal'] volume = template_data['volume'] number = template_data['number'] pages = template_data['pages'] year = template_data['year'] email = template_data['email'] publisher = template_data['publisher'] doi = template_data['doi'] dft_code = template_data['DFT_code'] dft_functionals = template_data['DFT_functionals'] reactions = template_data['reactions'] crystal_structures = template_data['crystal_structures'] bulk_compositions = template_data['bulk_compositions'] facets = template_data['facets'] energy_corrections = template_data['energy_corrections'] make_folders_template.main( title=title, authors=eval(authors) if isinstance( authors, six.string_types) else authors, journal=journal, volume=volume, number=number, pages=pages, year=year, email=email, publisher=publisher, doi=doi, DFT_code=dft_code, DFT_functionals=dft_functionals, reactions=eval(reactions) if isinstance( reactions, six.string_types) else reactions, custom_base=custom_base, bulk_compositions=bulk_compositions, crystal_structures=crystal_structures, facets=facets, energy_corrections=energy_corrections ) pub_id = tools.get_pub_id(title, authors, year) print( "Now dump your DFT output files into the folder, and run 'cathub folder2db {pub_id}'".format(**locals()))
[ "def", "make_folders", "(", "template", ",", "custom_base", ")", ":", "def", "dict_representer", "(", "dumper", ",", "data", ")", ":", "return", "dumper", ".", "represent_dict", "(", "data", ".", "items", "(", ")", ")", "Dumper", ".", "add_representer", "(", "collections", ".", "OrderedDict", ",", "dict_representer", ")", "if", "custom_base", "is", "None", ":", "custom_base", "=", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "curdir", ")", "template", "=", "custom_base", "+", "'/'", "+", "template", "template_data", "=", "ase_tools", ".", "REACTION_TEMPLATE", "if", "not", "os", ".", "path", ".", "exists", "(", "template", ")", ":", "with", "open", "(", "template", ",", "'w'", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "yaml", ".", "dump", "(", "template_data", ",", "indent", "=", "4", ",", "Dumper", "=", "Dumper", ")", "+", "'\\n'", ")", "print", "(", "\"Created template file: {template}\\n\"", ".", "format", "(", "*", "*", "locals", "(", ")", ")", "+", "' Please edit it and run the script again to create your folderstructure.\\n'", "+", "' Run cathub make_folders --help for instructions'", ")", "return", "with", "open", "(", "template", ")", "as", "infile", ":", "template_data", "=", "yaml", ".", "load", "(", "infile", ")", "title", "=", "template_data", "[", "'title'", "]", "authors", "=", "template_data", "[", "'authors'", "]", "journal", "=", "template_data", "[", "'journal'", "]", "volume", "=", "template_data", "[", "'volume'", "]", "number", "=", "template_data", "[", "'number'", "]", "pages", "=", "template_data", "[", "'pages'", "]", "year", "=", "template_data", "[", "'year'", "]", "email", "=", "template_data", "[", "'email'", "]", "publisher", "=", "template_data", "[", "'publisher'", "]", "doi", "=", "template_data", "[", "'doi'", "]", "dft_code", "=", "template_data", "[", "'DFT_code'", "]", "dft_functionals", "=", "template_data", "[", "'DFT_functionals'", "]", "reactions", "=", "template_data", "[", "'reactions'", "]", "crystal_structures", "=", "template_data", "[", "'crystal_structures'", "]", "bulk_compositions", "=", "template_data", "[", "'bulk_compositions'", "]", "facets", "=", "template_data", "[", "'facets'", "]", "energy_corrections", "=", "template_data", "[", "'energy_corrections'", "]", "make_folders_template", ".", "main", "(", "title", "=", "title", ",", "authors", "=", "eval", "(", "authors", ")", "if", "isinstance", "(", "authors", ",", "six", ".", "string_types", ")", "else", "authors", ",", "journal", "=", "journal", ",", "volume", "=", "volume", ",", "number", "=", "number", ",", "pages", "=", "pages", ",", "year", "=", "year", ",", "email", "=", "email", ",", "publisher", "=", "publisher", ",", "doi", "=", "doi", ",", "DFT_code", "=", "dft_code", ",", "DFT_functionals", "=", "dft_functionals", ",", "reactions", "=", "eval", "(", "reactions", ")", "if", "isinstance", "(", "reactions", ",", "six", ".", "string_types", ")", "else", "reactions", ",", "custom_base", "=", "custom_base", ",", "bulk_compositions", "=", "bulk_compositions", ",", "crystal_structures", "=", "crystal_structures", ",", "facets", "=", "facets", ",", "energy_corrections", "=", "energy_corrections", ")", "pub_id", "=", "tools", ".", "get_pub_id", "(", "title", ",", "authors", ",", "year", ")", "print", "(", "\"Now dump your DFT output files into the folder, and run 'cathub folder2db {pub_id}'\"", ".", "format", "(", "*", "*", "locals", "(", ")", ")", ")" ]
Create a basic folder tree for dumping DFT calculcations for reaction energies. Dear all Use this command make the right structure for your folders for submitting data for Catalysis Hub's Surface Reactions. Start by creating a template file by calling: $ cathub make_folders <template_name> Then open the template and modify it to so that it contains information about your data. You will need to enter publication/dataset information, and specify the types of surfaces, facets and reactions. The 'reactions' entry should include two lists for each reaction; 'reactants' and 'products', corresponding to left- and right hand side of each chemical equation respectively. Remember to balance the equation by including a prefactor or minus sign in the name when relevant. For example: reactions: - reactants: ['CCH3star@ontop'] products: ['Cstar@hollow', 'CH3star@ontop'] - reactants: ['CH4gas', '-0.5H2gas', 'star'] products: ['CH3star'] Please include the phase of the species as an extension: 'gas' for gas phase (i.e. CH4 -> CH4gas) 'star' for empty slab or adsorbed phase. (i.e. OH -> OHstar) The site of adsorbed species is also included as an extension: '@site' (i.e. OHstar in bridge-> OHstar@bridge) Energy corrections to gas phase molecules can be included as: energy_corrections: {H2: 0.1, CH4: -0.15} Then, save the template and call: $ cathub make_folders <template_name> And folders will be created automatically. You can create several templates and call make_folders again if you, for example, are using different functionals or are doing different reactions on different surfaces. After creating your folders, add your output files from the electronic structure calculations at the positions. Accepted file formats include everything that can be read by ASE and contains the total potential energy of the calculation, such as .traj or .OUTCAR files. After dumping your files, run `cathub folder2db <your folder>` to collect the data.
[ "Create", "a", "basic", "folder", "tree", "for", "dumping", "DFT", "calculcations", "for", "reaction", "energies", "." ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/cli.py#L274-L408
train
SUNCAT-Center/CatHub
cathub/cli.py
organize
def organize(**kwargs): """Read reactions from non-organized folder""" # do argument wrangling before turning it into an obect # since namedtuples are immutable if len(kwargs['adsorbates']) == 0: print("""Warning: no adsorbates specified, can't pick up reaction reaction energies.""") print(" Enter adsorbates like so --adsorbates CO,O,CO2") print(" [Comma-separated list without spaces.]") kwargs['adsorbates'] = list(map( lambda x: (''.join(sorted(string2symbols(x)))), kwargs['adsorbates'].split(','), )) if kwargs['energy_corrections']: e_c_dict = {} for e_c in kwargs['energy_corrections'].split(','): key, value = e_c.split('=') e_c_dict.update({key: float(value)}) kwargs['energy_corrections'] = e_c_dict options = collections.namedtuple( 'options', kwargs.keys() )(**kwargs) _organize.main(options=options)
python
def organize(**kwargs): """Read reactions from non-organized folder""" # do argument wrangling before turning it into an obect # since namedtuples are immutable if len(kwargs['adsorbates']) == 0: print("""Warning: no adsorbates specified, can't pick up reaction reaction energies.""") print(" Enter adsorbates like so --adsorbates CO,O,CO2") print(" [Comma-separated list without spaces.]") kwargs['adsorbates'] = list(map( lambda x: (''.join(sorted(string2symbols(x)))), kwargs['adsorbates'].split(','), )) if kwargs['energy_corrections']: e_c_dict = {} for e_c in kwargs['energy_corrections'].split(','): key, value = e_c.split('=') e_c_dict.update({key: float(value)}) kwargs['energy_corrections'] = e_c_dict options = collections.namedtuple( 'options', kwargs.keys() )(**kwargs) _organize.main(options=options)
[ "def", "organize", "(", "*", "*", "kwargs", ")", ":", "# do argument wrangling before turning it into an obect", "# since namedtuples are immutable", "if", "len", "(", "kwargs", "[", "'adsorbates'", "]", ")", "==", "0", ":", "print", "(", "\"\"\"Warning: no adsorbates specified,\n can't pick up reaction reaction energies.\"\"\"", ")", "print", "(", "\" Enter adsorbates like so --adsorbates CO,O,CO2\"", ")", "print", "(", "\" [Comma-separated list without spaces.]\"", ")", "kwargs", "[", "'adsorbates'", "]", "=", "list", "(", "map", "(", "lambda", "x", ":", "(", "''", ".", "join", "(", "sorted", "(", "string2symbols", "(", "x", ")", ")", ")", ")", ",", "kwargs", "[", "'adsorbates'", "]", ".", "split", "(", "','", ")", ",", ")", ")", "if", "kwargs", "[", "'energy_corrections'", "]", ":", "e_c_dict", "=", "{", "}", "for", "e_c", "in", "kwargs", "[", "'energy_corrections'", "]", ".", "split", "(", "','", ")", ":", "key", ",", "value", "=", "e_c", ".", "split", "(", "'='", ")", "e_c_dict", ".", "update", "(", "{", "key", ":", "float", "(", "value", ")", "}", ")", "kwargs", "[", "'energy_corrections'", "]", "=", "e_c_dict", "options", "=", "collections", ".", "namedtuple", "(", "'options'", ",", "kwargs", ".", "keys", "(", ")", ")", "(", "*", "*", "kwargs", ")", "_organize", ".", "main", "(", "options", "=", "options", ")" ]
Read reactions from non-organized folder
[ "Read", "reactions", "from", "non", "-", "organized", "folder" ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/cli.py#L551-L576
train
iiSeymour/game-of-life
conway/gol.py
gol.initCurses
def initCurses(self): """ Set up screen properties """ curses.noecho() curses.cbreak() curses.curs_set(0) curses.start_color() curses.use_default_colors() curses.init_pair(1, curses.COLOR_WHITE, -1) curses.init_pair(2, curses.COLOR_YELLOW, -1) curses.init_pair(3, curses.COLOR_MAGENTA, -1) curses.init_pair(4, curses.COLOR_CYAN, -1) curses.init_pair(5, curses.COLOR_GREEN, -1) curses.init_pair(6, curses.COLOR_BLUE, -1) curses.init_pair(7, curses.COLOR_RED, -1)
python
def initCurses(self): """ Set up screen properties """ curses.noecho() curses.cbreak() curses.curs_set(0) curses.start_color() curses.use_default_colors() curses.init_pair(1, curses.COLOR_WHITE, -1) curses.init_pair(2, curses.COLOR_YELLOW, -1) curses.init_pair(3, curses.COLOR_MAGENTA, -1) curses.init_pair(4, curses.COLOR_CYAN, -1) curses.init_pair(5, curses.COLOR_GREEN, -1) curses.init_pair(6, curses.COLOR_BLUE, -1) curses.init_pair(7, curses.COLOR_RED, -1)
[ "def", "initCurses", "(", "self", ")", ":", "curses", ".", "noecho", "(", ")", "curses", ".", "cbreak", "(", ")", "curses", ".", "curs_set", "(", "0", ")", "curses", ".", "start_color", "(", ")", "curses", ".", "use_default_colors", "(", ")", "curses", ".", "init_pair", "(", "1", ",", "curses", ".", "COLOR_WHITE", ",", "-", "1", ")", "curses", ".", "init_pair", "(", "2", ",", "curses", ".", "COLOR_YELLOW", ",", "-", "1", ")", "curses", ".", "init_pair", "(", "3", ",", "curses", ".", "COLOR_MAGENTA", ",", "-", "1", ")", "curses", ".", "init_pair", "(", "4", ",", "curses", ".", "COLOR_CYAN", ",", "-", "1", ")", "curses", ".", "init_pair", "(", "5", ",", "curses", ".", "COLOR_GREEN", ",", "-", "1", ")", "curses", ".", "init_pair", "(", "6", ",", "curses", ".", "COLOR_BLUE", ",", "-", "1", ")", "curses", ".", "init_pair", "(", "7", ",", "curses", ".", "COLOR_RED", ",", "-", "1", ")" ]
Set up screen properties
[ "Set", "up", "screen", "properties" ]
288bc87179ffd986ca066bcd98ea6e0951dd7970
https://github.com/iiSeymour/game-of-life/blob/288bc87179ffd986ca066bcd98ea6e0951dd7970/conway/gol.py#L81-L96
train
iiSeymour/game-of-life
conway/gol.py
gol.patchCurses
def patchCurses(self): """ Fix curses addch function for python 3.4.0 """ if (sys.version_info)[:3] == (3, 4, 0): self.addchar = lambda y, x, *args: self.win.addch(x, y, *args) else: self.addchar = self.win.addch
python
def patchCurses(self): """ Fix curses addch function for python 3.4.0 """ if (sys.version_info)[:3] == (3, 4, 0): self.addchar = lambda y, x, *args: self.win.addch(x, y, *args) else: self.addchar = self.win.addch
[ "def", "patchCurses", "(", "self", ")", ":", "if", "(", "sys", ".", "version_info", ")", "[", ":", "3", "]", "==", "(", "3", ",", "4", ",", "0", ")", ":", "self", ".", "addchar", "=", "lambda", "y", ",", "x", ",", "*", "args", ":", "self", ".", "win", ".", "addch", "(", "x", ",", "y", ",", "*", "args", ")", "else", ":", "self", ".", "addchar", "=", "self", ".", "win", ".", "addch" ]
Fix curses addch function for python 3.4.0
[ "Fix", "curses", "addch", "function", "for", "python", "3", ".", "4", ".", "0" ]
288bc87179ffd986ca066bcd98ea6e0951dd7970
https://github.com/iiSeymour/game-of-life/blob/288bc87179ffd986ca066bcd98ea6e0951dd7970/conway/gol.py#L98-L105
train
iiSeymour/game-of-life
conway/gol.py
gol.splash
def splash(self): """ Draw splash screen """ dirname = os.path.split(os.path.abspath(__file__))[0] try: splash = open(os.path.join(dirname, "splash"), "r").readlines() except IOError: return width = len(max(splash, key=len)) y = int(self.y_grid / 2) - len(splash) x = int(self.x_grid / 2) - int(width / 2) if self.x_grid > width: for i, line in enumerate(splash): self.win.addstr(y + i, x, line, curses.color_pair(5))
python
def splash(self): """ Draw splash screen """ dirname = os.path.split(os.path.abspath(__file__))[0] try: splash = open(os.path.join(dirname, "splash"), "r").readlines() except IOError: return width = len(max(splash, key=len)) y = int(self.y_grid / 2) - len(splash) x = int(self.x_grid / 2) - int(width / 2) if self.x_grid > width: for i, line in enumerate(splash): self.win.addstr(y + i, x, line, curses.color_pair(5))
[ "def", "splash", "(", "self", ")", ":", "dirname", "=", "os", ".", "path", ".", "split", "(", "os", ".", "path", ".", "abspath", "(", "__file__", ")", ")", "[", "0", "]", "try", ":", "splash", "=", "open", "(", "os", ".", "path", ".", "join", "(", "dirname", ",", "\"splash\"", ")", ",", "\"r\"", ")", ".", "readlines", "(", ")", "except", "IOError", ":", "return", "width", "=", "len", "(", "max", "(", "splash", ",", "key", "=", "len", ")", ")", "y", "=", "int", "(", "self", ".", "y_grid", "/", "2", ")", "-", "len", "(", "splash", ")", "x", "=", "int", "(", "self", ".", "x_grid", "/", "2", ")", "-", "int", "(", "width", "/", "2", ")", "if", "self", ".", "x_grid", ">", "width", ":", "for", "i", ",", "line", "in", "enumerate", "(", "splash", ")", ":", "self", ".", "win", ".", "addstr", "(", "y", "+", "i", ",", "x", ",", "line", ",", "curses", ".", "color_pair", "(", "5", ")", ")" ]
Draw splash screen
[ "Draw", "splash", "screen" ]
288bc87179ffd986ca066bcd98ea6e0951dd7970
https://github.com/iiSeymour/game-of-life/blob/288bc87179ffd986ca066bcd98ea6e0951dd7970/conway/gol.py#L110-L126
train
iiSeymour/game-of-life
conway/gol.py
gol.drawHUD
def drawHUD(self): """ Draw information on population size and current generation """ self.win.move(self.height - 2, self.x_pad) self.win.clrtoeol() self.win.box() self.addstr(2, self.x_pad + 1, "Population: %i" % len(self.grid)) self.addstr(3, self.x_pad + 1, "Generation: %s" % self.current_gen) self.addstr(3, self.x_grid - 21, "s: start p: pause") self.addstr(2, self.x_grid - 21, "r: restart q: quit")
python
def drawHUD(self): """ Draw information on population size and current generation """ self.win.move(self.height - 2, self.x_pad) self.win.clrtoeol() self.win.box() self.addstr(2, self.x_pad + 1, "Population: %i" % len(self.grid)) self.addstr(3, self.x_pad + 1, "Generation: %s" % self.current_gen) self.addstr(3, self.x_grid - 21, "s: start p: pause") self.addstr(2, self.x_grid - 21, "r: restart q: quit")
[ "def", "drawHUD", "(", "self", ")", ":", "self", ".", "win", ".", "move", "(", "self", ".", "height", "-", "2", ",", "self", ".", "x_pad", ")", "self", ".", "win", ".", "clrtoeol", "(", ")", "self", ".", "win", ".", "box", "(", ")", "self", ".", "addstr", "(", "2", ",", "self", ".", "x_pad", "+", "1", ",", "\"Population: %i\"", "%", "len", "(", "self", ".", "grid", ")", ")", "self", ".", "addstr", "(", "3", ",", "self", ".", "x_pad", "+", "1", ",", "\"Generation: %s\"", "%", "self", ".", "current_gen", ")", "self", ".", "addstr", "(", "3", ",", "self", ".", "x_grid", "-", "21", ",", "\"s: start p: pause\"", ")", "self", ".", "addstr", "(", "2", ",", "self", ".", "x_grid", "-", "21", ",", "\"r: restart q: quit\"", ")" ]
Draw information on population size and current generation
[ "Draw", "information", "on", "population", "size", "and", "current", "generation" ]
288bc87179ffd986ca066bcd98ea6e0951dd7970
https://github.com/iiSeymour/game-of-life/blob/288bc87179ffd986ca066bcd98ea6e0951dd7970/conway/gol.py#L128-L138
train
iiSeymour/game-of-life
conway/gol.py
gol.drawGrid
def drawGrid(self): """ Redraw the grid with the new generation """ for cell in self.grid: y, x = cell y += self.y_pad x += self.x_pad if self.traditional: sprite = '.' color = curses.color_pair(4) else: sprite = self.char[self.grid[cell] - 1] color = curses.color_pair(self.grid[cell]) self.addchar(y, x, sprite, color) self.win.refresh()
python
def drawGrid(self): """ Redraw the grid with the new generation """ for cell in self.grid: y, x = cell y += self.y_pad x += self.x_pad if self.traditional: sprite = '.' color = curses.color_pair(4) else: sprite = self.char[self.grid[cell] - 1] color = curses.color_pair(self.grid[cell]) self.addchar(y, x, sprite, color) self.win.refresh()
[ "def", "drawGrid", "(", "self", ")", ":", "for", "cell", "in", "self", ".", "grid", ":", "y", ",", "x", "=", "cell", "y", "+=", "self", ".", "y_pad", "x", "+=", "self", ".", "x_pad", "if", "self", ".", "traditional", ":", "sprite", "=", "'.'", "color", "=", "curses", ".", "color_pair", "(", "4", ")", "else", ":", "sprite", "=", "self", ".", "char", "[", "self", ".", "grid", "[", "cell", "]", "-", "1", "]", "color", "=", "curses", ".", "color_pair", "(", "self", ".", "grid", "[", "cell", "]", ")", "self", ".", "addchar", "(", "y", ",", "x", ",", "sprite", ",", "color", ")", "self", ".", "win", ".", "refresh", "(", ")" ]
Redraw the grid with the new generation
[ "Redraw", "the", "grid", "with", "the", "new", "generation" ]
288bc87179ffd986ca066bcd98ea6e0951dd7970
https://github.com/iiSeymour/game-of-life/blob/288bc87179ffd986ca066bcd98ea6e0951dd7970/conway/gol.py#L140-L158
train
iiSeymour/game-of-life
conway/gol.py
gol.nextGen
def nextGen(self): """ Decide the fate of the cells """ self.current_gen += 1 self.change_gen[self.current_gen % 3] = copy.copy(self.grid) grid_cp = copy.copy(self.grid) for cell in self.grid: y, x = cell y1 = (y - 1) % self.y_grid y2 = (y + 1) % self.y_grid x1 = (x - 1) % self.x_grid x2 = (x + 1) % self.x_grid n = self.countNeighbours(cell) if n < 2 or n > 3: del grid_cp[cell] self.addchar(y + self.y_pad, x + self.x_pad, ' ') else: grid_cp[cell] = min(self.grid[cell] + 1, self.color_max) for neighbour in product([y1, y, y2], [x1, x, x2]): if not self.grid.get(neighbour): if self.countNeighbours(neighbour) == 3: y, x = neighbour y = y % self.y_grid x = x % self.x_grid neighbour = y, x grid_cp[neighbour] = 1 self.grid = grid_cp
python
def nextGen(self): """ Decide the fate of the cells """ self.current_gen += 1 self.change_gen[self.current_gen % 3] = copy.copy(self.grid) grid_cp = copy.copy(self.grid) for cell in self.grid: y, x = cell y1 = (y - 1) % self.y_grid y2 = (y + 1) % self.y_grid x1 = (x - 1) % self.x_grid x2 = (x + 1) % self.x_grid n = self.countNeighbours(cell) if n < 2 or n > 3: del grid_cp[cell] self.addchar(y + self.y_pad, x + self.x_pad, ' ') else: grid_cp[cell] = min(self.grid[cell] + 1, self.color_max) for neighbour in product([y1, y, y2], [x1, x, x2]): if not self.grid.get(neighbour): if self.countNeighbours(neighbour) == 3: y, x = neighbour y = y % self.y_grid x = x % self.x_grid neighbour = y, x grid_cp[neighbour] = 1 self.grid = grid_cp
[ "def", "nextGen", "(", "self", ")", ":", "self", ".", "current_gen", "+=", "1", "self", ".", "change_gen", "[", "self", ".", "current_gen", "%", "3", "]", "=", "copy", ".", "copy", "(", "self", ".", "grid", ")", "grid_cp", "=", "copy", ".", "copy", "(", "self", ".", "grid", ")", "for", "cell", "in", "self", ".", "grid", ":", "y", ",", "x", "=", "cell", "y1", "=", "(", "y", "-", "1", ")", "%", "self", ".", "y_grid", "y2", "=", "(", "y", "+", "1", ")", "%", "self", ".", "y_grid", "x1", "=", "(", "x", "-", "1", ")", "%", "self", ".", "x_grid", "x2", "=", "(", "x", "+", "1", ")", "%", "self", ".", "x_grid", "n", "=", "self", ".", "countNeighbours", "(", "cell", ")", "if", "n", "<", "2", "or", "n", ">", "3", ":", "del", "grid_cp", "[", "cell", "]", "self", ".", "addchar", "(", "y", "+", "self", ".", "y_pad", ",", "x", "+", "self", ".", "x_pad", ",", "' '", ")", "else", ":", "grid_cp", "[", "cell", "]", "=", "min", "(", "self", ".", "grid", "[", "cell", "]", "+", "1", ",", "self", ".", "color_max", ")", "for", "neighbour", "in", "product", "(", "[", "y1", ",", "y", ",", "y2", "]", ",", "[", "x1", ",", "x", ",", "x2", "]", ")", ":", "if", "not", "self", ".", "grid", ".", "get", "(", "neighbour", ")", ":", "if", "self", ".", "countNeighbours", "(", "neighbour", ")", "==", "3", ":", "y", ",", "x", "=", "neighbour", "y", "=", "y", "%", "self", ".", "y_grid", "x", "=", "x", "%", "self", ".", "x_grid", "neighbour", "=", "y", ",", "x", "grid_cp", "[", "neighbour", "]", "=", "1", "self", ".", "grid", "=", "grid_cp" ]
Decide the fate of the cells
[ "Decide", "the", "fate", "of", "the", "cells" ]
288bc87179ffd986ca066bcd98ea6e0951dd7970
https://github.com/iiSeymour/game-of-life/blob/288bc87179ffd986ca066bcd98ea6e0951dd7970/conway/gol.py#L160-L191
train
iiSeymour/game-of-life
conway/gol.py
gol.countNeighbours
def countNeighbours(self, cell): """ Return the number active neighbours within one positions away from cell """ count = 0 y, x = cell y = y % self.y_grid x = x % self.x_grid y1 = (y - 1) % self.y_grid y2 = (y + 1) % self.y_grid x1 = (x - 1) % self.x_grid x2 = (x + 1) % self.x_grid cell = y, x for neighbour in product([y1, y, y2], [x1, x, x2]): if neighbour != cell and self.grid.get(neighbour): count += 1 return count
python
def countNeighbours(self, cell): """ Return the number active neighbours within one positions away from cell """ count = 0 y, x = cell y = y % self.y_grid x = x % self.x_grid y1 = (y - 1) % self.y_grid y2 = (y + 1) % self.y_grid x1 = (x - 1) % self.x_grid x2 = (x + 1) % self.x_grid cell = y, x for neighbour in product([y1, y, y2], [x1, x, x2]): if neighbour != cell and self.grid.get(neighbour): count += 1 return count
[ "def", "countNeighbours", "(", "self", ",", "cell", ")", ":", "count", "=", "0", "y", ",", "x", "=", "cell", "y", "=", "y", "%", "self", ".", "y_grid", "x", "=", "x", "%", "self", ".", "x_grid", "y1", "=", "(", "y", "-", "1", ")", "%", "self", ".", "y_grid", "y2", "=", "(", "y", "+", "1", ")", "%", "self", ".", "y_grid", "x1", "=", "(", "x", "-", "1", ")", "%", "self", ".", "x_grid", "x2", "=", "(", "x", "+", "1", ")", "%", "self", ".", "x_grid", "cell", "=", "y", ",", "x", "for", "neighbour", "in", "product", "(", "[", "y1", ",", "y", ",", "y2", "]", ",", "[", "x1", ",", "x", ",", "x2", "]", ")", ":", "if", "neighbour", "!=", "cell", "and", "self", ".", "grid", ".", "get", "(", "neighbour", ")", ":", "count", "+=", "1", "return", "count" ]
Return the number active neighbours within one positions away from cell
[ "Return", "the", "number", "active", "neighbours", "within", "one", "positions", "away", "from", "cell" ]
288bc87179ffd986ca066bcd98ea6e0951dd7970
https://github.com/iiSeymour/game-of-life/blob/288bc87179ffd986ca066bcd98ea6e0951dd7970/conway/gol.py#L193-L210
train
iiSeymour/game-of-life
conway/gol.py
gol.initGrid
def initGrid(self): """ Initialise the game grid """ blinker = [(4, 4), (4, 5), (4, 6)] toad = [(9, 5), (9, 6), (9, 7), (10, 4), (10, 5), (10, 6)] glider = [(4, 11), (5, 12), (6, 10), (6, 11), (6, 12)] r_pentomino = [(10, 60), (9, 61), (10, 61), (11, 61), (9, 62)] self.grid = {} if self.test: for cell in chain(blinker, toad, glider, r_pentomino): self.grid[cell] = 1 else: for _ in range(self.initsize): ry = random.randint(self.y_pad, self.y_grid - 1) rx = random.randint(self.x_pad, self.x_grid - 1) self.grid[(ry, rx)] = 1
python
def initGrid(self): """ Initialise the game grid """ blinker = [(4, 4), (4, 5), (4, 6)] toad = [(9, 5), (9, 6), (9, 7), (10, 4), (10, 5), (10, 6)] glider = [(4, 11), (5, 12), (6, 10), (6, 11), (6, 12)] r_pentomino = [(10, 60), (9, 61), (10, 61), (11, 61), (9, 62)] self.grid = {} if self.test: for cell in chain(blinker, toad, glider, r_pentomino): self.grid[cell] = 1 else: for _ in range(self.initsize): ry = random.randint(self.y_pad, self.y_grid - 1) rx = random.randint(self.x_pad, self.x_grid - 1) self.grid[(ry, rx)] = 1
[ "def", "initGrid", "(", "self", ")", ":", "blinker", "=", "[", "(", "4", ",", "4", ")", ",", "(", "4", ",", "5", ")", ",", "(", "4", ",", "6", ")", "]", "toad", "=", "[", "(", "9", ",", "5", ")", ",", "(", "9", ",", "6", ")", ",", "(", "9", ",", "7", ")", ",", "(", "10", ",", "4", ")", ",", "(", "10", ",", "5", ")", ",", "(", "10", ",", "6", ")", "]", "glider", "=", "[", "(", "4", ",", "11", ")", ",", "(", "5", ",", "12", ")", ",", "(", "6", ",", "10", ")", ",", "(", "6", ",", "11", ")", ",", "(", "6", ",", "12", ")", "]", "r_pentomino", "=", "[", "(", "10", ",", "60", ")", ",", "(", "9", ",", "61", ")", ",", "(", "10", ",", "61", ")", ",", "(", "11", ",", "61", ")", ",", "(", "9", ",", "62", ")", "]", "self", ".", "grid", "=", "{", "}", "if", "self", ".", "test", ":", "for", "cell", "in", "chain", "(", "blinker", ",", "toad", ",", "glider", ",", "r_pentomino", ")", ":", "self", ".", "grid", "[", "cell", "]", "=", "1", "else", ":", "for", "_", "in", "range", "(", "self", ".", "initsize", ")", ":", "ry", "=", "random", ".", "randint", "(", "self", ".", "y_pad", ",", "self", ".", "y_grid", "-", "1", ")", "rx", "=", "random", ".", "randint", "(", "self", ".", "x_pad", ",", "self", ".", "x_grid", "-", "1", ")", "self", ".", "grid", "[", "(", "ry", ",", "rx", ")", "]", "=", "1" ]
Initialise the game grid
[ "Initialise", "the", "game", "grid" ]
288bc87179ffd986ca066bcd98ea6e0951dd7970
https://github.com/iiSeymour/game-of-life/blob/288bc87179ffd986ca066bcd98ea6e0951dd7970/conway/gol.py#L212-L230
train
iiSeymour/game-of-life
conway/gol.py
gol.restart
def restart(self): """ Restart the game from a new generation 0 """ self.initGrid() self.win.clear() self.current_gen = 1 self.start
python
def restart(self): """ Restart the game from a new generation 0 """ self.initGrid() self.win.clear() self.current_gen = 1 self.start
[ "def", "restart", "(", "self", ")", ":", "self", ".", "initGrid", "(", ")", "self", ".", "win", ".", "clear", "(", ")", "self", ".", "current_gen", "=", "1", "self", ".", "start" ]
Restart the game from a new generation 0
[ "Restart", "the", "game", "from", "a", "new", "generation", "0" ]
288bc87179ffd986ca066bcd98ea6e0951dd7970
https://github.com/iiSeymour/game-of-life/blob/288bc87179ffd986ca066bcd98ea6e0951dd7970/conway/gol.py#L278-L285
train
iiSeymour/game-of-life
conway/gol.py
gol.end
def end(self): """ Game Finished - Restart or Quit """ if self.loop: self.restart return self.addstr(2, self.x_grid / 2 - 4, "GAMEOVER", 7) if self.hud: self.addstr(2, self.x_pad + 13, len(self.grid), 5) self.addstr(3, self.x_pad + 13, self.current_gen, 5) if self.test: exit() while self.state == 'stopped': key = self.win.getch() if key == ord('q'): exit() if key in [ord('s'), ord('r')]: self.restart
python
def end(self): """ Game Finished - Restart or Quit """ if self.loop: self.restart return self.addstr(2, self.x_grid / 2 - 4, "GAMEOVER", 7) if self.hud: self.addstr(2, self.x_pad + 13, len(self.grid), 5) self.addstr(3, self.x_pad + 13, self.current_gen, 5) if self.test: exit() while self.state == 'stopped': key = self.win.getch() if key == ord('q'): exit() if key in [ord('s'), ord('r')]: self.restart
[ "def", "end", "(", "self", ")", ":", "if", "self", ".", "loop", ":", "self", ".", "restart", "return", "self", ".", "addstr", "(", "2", ",", "self", ".", "x_grid", "/", "2", "-", "4", ",", "\"GAMEOVER\"", ",", "7", ")", "if", "self", ".", "hud", ":", "self", ".", "addstr", "(", "2", ",", "self", ".", "x_pad", "+", "13", ",", "len", "(", "self", ".", "grid", ")", ",", "5", ")", "self", ".", "addstr", "(", "3", ",", "self", ".", "x_pad", "+", "13", ",", "self", ".", "current_gen", ",", "5", ")", "if", "self", ".", "test", ":", "exit", "(", ")", "while", "self", ".", "state", "==", "'stopped'", ":", "key", "=", "self", ".", "win", ".", "getch", "(", ")", "if", "key", "==", "ord", "(", "'q'", ")", ":", "exit", "(", ")", "if", "key", "in", "[", "ord", "(", "'s'", ")", ",", "ord", "(", "'r'", ")", "]", ":", "self", ".", "restart" ]
Game Finished - Restart or Quit
[ "Game", "Finished", "-", "Restart", "or", "Quit" ]
288bc87179ffd986ca066bcd98ea6e0951dd7970
https://github.com/iiSeymour/game-of-life/blob/288bc87179ffd986ca066bcd98ea6e0951dd7970/conway/gol.py#L288-L309
train
guaix-ucm/numina
numina/array/combine.py
mean
def mean(arrays, masks=None, dtype=None, out=None, zeros=None, scales=None, weights=None): """Combine arrays using the mean, with masks and offsets. Arrays and masks are a list of array objects. All input arrays have the same shape. If present, the masks have the same shape also. The function returns an array with one more dimension than the inputs and with size (3, shape). out[0] contains the mean, out[1] the variance and out[2] the number of points used. :param arrays: a list of arrays :param masks: a list of mask arrays, True values are masked :param dtype: data type of the output :param out: optional output, with one more axis than the input arrays :return: mean, variance of the mean and number of points stored Example: >>> import numpy >>> image = numpy.array([[1., 3.], [1., -1.4]]) >>> inputs = [image, image + 1] >>> mean(inputs) array([[[ 1.5, 3.5], [ 1.5, -0.9]], <BLANKLINE> [[ 0.5, 0.5], [ 0.5, 0.5]], <BLANKLINE> [[ 2. , 2. ], [ 2. , 2. ]]]) """ return generic_combine(intl_combine.mean_method(), arrays, masks=masks, dtype=dtype, out=out, zeros=zeros, scales=scales, weights=weights)
python
def mean(arrays, masks=None, dtype=None, out=None, zeros=None, scales=None, weights=None): """Combine arrays using the mean, with masks and offsets. Arrays and masks are a list of array objects. All input arrays have the same shape. If present, the masks have the same shape also. The function returns an array with one more dimension than the inputs and with size (3, shape). out[0] contains the mean, out[1] the variance and out[2] the number of points used. :param arrays: a list of arrays :param masks: a list of mask arrays, True values are masked :param dtype: data type of the output :param out: optional output, with one more axis than the input arrays :return: mean, variance of the mean and number of points stored Example: >>> import numpy >>> image = numpy.array([[1., 3.], [1., -1.4]]) >>> inputs = [image, image + 1] >>> mean(inputs) array([[[ 1.5, 3.5], [ 1.5, -0.9]], <BLANKLINE> [[ 0.5, 0.5], [ 0.5, 0.5]], <BLANKLINE> [[ 2. , 2. ], [ 2. , 2. ]]]) """ return generic_combine(intl_combine.mean_method(), arrays, masks=masks, dtype=dtype, out=out, zeros=zeros, scales=scales, weights=weights)
[ "def", "mean", "(", "arrays", ",", "masks", "=", "None", ",", "dtype", "=", "None", ",", "out", "=", "None", ",", "zeros", "=", "None", ",", "scales", "=", "None", ",", "weights", "=", "None", ")", ":", "return", "generic_combine", "(", "intl_combine", ".", "mean_method", "(", ")", ",", "arrays", ",", "masks", "=", "masks", ",", "dtype", "=", "dtype", ",", "out", "=", "out", ",", "zeros", "=", "zeros", ",", "scales", "=", "scales", ",", "weights", "=", "weights", ")" ]
Combine arrays using the mean, with masks and offsets. Arrays and masks are a list of array objects. All input arrays have the same shape. If present, the masks have the same shape also. The function returns an array with one more dimension than the inputs and with size (3, shape). out[0] contains the mean, out[1] the variance and out[2] the number of points used. :param arrays: a list of arrays :param masks: a list of mask arrays, True values are masked :param dtype: data type of the output :param out: optional output, with one more axis than the input arrays :return: mean, variance of the mean and number of points stored Example: >>> import numpy >>> image = numpy.array([[1., 3.], [1., -1.4]]) >>> inputs = [image, image + 1] >>> mean(inputs) array([[[ 1.5, 3.5], [ 1.5, -0.9]], <BLANKLINE> [[ 0.5, 0.5], [ 0.5, 0.5]], <BLANKLINE> [[ 2. , 2. ], [ 2. , 2. ]]])
[ "Combine", "arrays", "using", "the", "mean", "with", "masks", "and", "offsets", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/combine.py#L22-L59
train
guaix-ucm/numina
numina/array/combine.py
median
def median(arrays, masks=None, dtype=None, out=None, zeros=None, scales=None, weights=None): """Combine arrays using the median, with masks. Arrays and masks are a list of array objects. All input arrays have the same shape. If present, the masks have the same shape also. The function returns an array with one more dimension than the inputs and with size (3, shape). out[0] contains the mean, out[1] the variance and out[2] the number of points used. :param arrays: a list of arrays :param masks: a list of mask arrays, True values are masked :param dtype: data type of the output :param out: optional output, with one more axis than the input arrays :return: median, variance of the median and number of points stored """ return generic_combine(intl_combine.median_method(), arrays, masks=masks, dtype=dtype, out=out, zeros=zeros, scales=scales, weights=weights)
python
def median(arrays, masks=None, dtype=None, out=None, zeros=None, scales=None, weights=None): """Combine arrays using the median, with masks. Arrays and masks are a list of array objects. All input arrays have the same shape. If present, the masks have the same shape also. The function returns an array with one more dimension than the inputs and with size (3, shape). out[0] contains the mean, out[1] the variance and out[2] the number of points used. :param arrays: a list of arrays :param masks: a list of mask arrays, True values are masked :param dtype: data type of the output :param out: optional output, with one more axis than the input arrays :return: median, variance of the median and number of points stored """ return generic_combine(intl_combine.median_method(), arrays, masks=masks, dtype=dtype, out=out, zeros=zeros, scales=scales, weights=weights)
[ "def", "median", "(", "arrays", ",", "masks", "=", "None", ",", "dtype", "=", "None", ",", "out", "=", "None", ",", "zeros", "=", "None", ",", "scales", "=", "None", ",", "weights", "=", "None", ")", ":", "return", "generic_combine", "(", "intl_combine", ".", "median_method", "(", ")", ",", "arrays", ",", "masks", "=", "masks", ",", "dtype", "=", "dtype", ",", "out", "=", "out", ",", "zeros", "=", "zeros", ",", "scales", "=", "scales", ",", "weights", "=", "weights", ")" ]
Combine arrays using the median, with masks. Arrays and masks are a list of array objects. All input arrays have the same shape. If present, the masks have the same shape also. The function returns an array with one more dimension than the inputs and with size (3, shape). out[0] contains the mean, out[1] the variance and out[2] the number of points used. :param arrays: a list of arrays :param masks: a list of mask arrays, True values are masked :param dtype: data type of the output :param out: optional output, with one more axis than the input arrays :return: median, variance of the median and number of points stored
[ "Combine", "arrays", "using", "the", "median", "with", "masks", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/combine.py#L62-L85
train