repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
sequence
docstring
stringlengths
3
17.3k
docstring_tokens
sequence
sha
stringlengths
40
40
url
stringlengths
87
242
partition
stringclasses
1 value
pylp/pylp
pylp/utils/paths.py
make_readable_path
def make_readable_path(path): """Make a path more "readable""" home = os.path.expanduser("~") if path.startswith(home): path = "~" + path[len(home):] return path
python
def make_readable_path(path): """Make a path more "readable""" home = os.path.expanduser("~") if path.startswith(home): path = "~" + path[len(home):] return path
[ "def", "make_readable_path", "(", "path", ")", ":", "home", "=", "os", ".", "path", ".", "expanduser", "(", "\"~\"", ")", "if", "path", ".", "startswith", "(", "home", ")", ":", "path", "=", "\"~\"", "+", "path", "[", "len", "(", "home", ")", ":", "]", "return", "path" ]
Make a path more "readable
[ "Make", "a", "path", "more", "readable" ]
7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4
https://github.com/pylp/pylp/blob/7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4/pylp/utils/paths.py#L13-L19
train
xflr6/bitsets
bitsets/combos.py
shortlex
def shortlex(start, other, excludestart=False): """Yield all unions of start with other in shortlex order. >>> ['{:03b}'.format(s) for s in shortlex(0, [0b100, 0b010, 0b001])] ['000', '100', '010', '001', '110', '101', '011', '111'] >>> ', '.join(''.join(sorted(s)) ... for s in shortlex(set(), [{'a'}, {'b'}, {'c'}, {'d'}])) ', a, b, c, d, ab, ac, ad, bc, bd, cd, abc, abd, acd, bcd, abcd' >>> assert list(shortlex(set(), [{1}, {2}], excludestart=True)) == \ [{1}, {2}, {1, 2}] """ if not excludestart: yield start queue = collections.deque([(start, other)]) while queue: current, other = queue.popleft() while other: first, other = other[0], other[1:] result = current | first yield result if other: queue.append((result, other))
python
def shortlex(start, other, excludestart=False): """Yield all unions of start with other in shortlex order. >>> ['{:03b}'.format(s) for s in shortlex(0, [0b100, 0b010, 0b001])] ['000', '100', '010', '001', '110', '101', '011', '111'] >>> ', '.join(''.join(sorted(s)) ... for s in shortlex(set(), [{'a'}, {'b'}, {'c'}, {'d'}])) ', a, b, c, d, ab, ac, ad, bc, bd, cd, abc, abd, acd, bcd, abcd' >>> assert list(shortlex(set(), [{1}, {2}], excludestart=True)) == \ [{1}, {2}, {1, 2}] """ if not excludestart: yield start queue = collections.deque([(start, other)]) while queue: current, other = queue.popleft() while other: first, other = other[0], other[1:] result = current | first yield result if other: queue.append((result, other))
[ "def", "shortlex", "(", "start", ",", "other", ",", "excludestart", "=", "False", ")", ":", "if", "not", "excludestart", ":", "yield", "start", "queue", "=", "collections", ".", "deque", "(", "[", "(", "start", ",", "other", ")", "]", ")", "while", "queue", ":", "current", ",", "other", "=", "queue", ".", "popleft", "(", ")", "while", "other", ":", "first", ",", "other", "=", "other", "[", "0", "]", ",", "other", "[", "1", ":", "]", "result", "=", "current", "|", "first", "yield", "result", "if", "other", ":", "queue", ".", "append", "(", "(", "result", ",", "other", ")", ")" ]
Yield all unions of start with other in shortlex order. >>> ['{:03b}'.format(s) for s in shortlex(0, [0b100, 0b010, 0b001])] ['000', '100', '010', '001', '110', '101', '011', '111'] >>> ', '.join(''.join(sorted(s)) ... for s in shortlex(set(), [{'a'}, {'b'}, {'c'}, {'d'}])) ', a, b, c, d, ab, ac, ad, bc, bd, cd, abc, abd, acd, bcd, abcd' >>> assert list(shortlex(set(), [{1}, {2}], excludestart=True)) == \ [{1}, {2}, {1, 2}]
[ "Yield", "all", "unions", "of", "start", "with", "other", "in", "shortlex", "order", "." ]
ddcfe17e7c7a11f71f1c6764b2cecf7db05d9cdf
https://github.com/xflr6/bitsets/blob/ddcfe17e7c7a11f71f1c6764b2cecf7db05d9cdf/bitsets/combos.py#L10-L38
train
xflr6/bitsets
bitsets/combos.py
reverse_shortlex
def reverse_shortlex(end, other, excludeend=False): """Yield all intersections of end with other in reverse shortlex order. >>> ['{:03b}'.format(s) for s in reverse_shortlex(0b111, [0b011, 0b101, 0b110])] ['111', '011', '101', '110', '001', '010', '100', '000'] >>> ', '.join(''.join(sorted(s)) ... for s in reverse_shortlex({'a', 'b', 'c', 'd'}, ... [{'b', 'c', 'd'}, {'a', 'c', 'd'}, {'a', 'b', 'd'}, {'a', 'b', 'c'}])) 'abcd, bcd, acd, abd, abc, cd, bd, bc, ad, ac, ab, d, c, b, a, ' >>> assert list(reverse_shortlex({1, 2}, [{1}, {2}], excludeend=True)) == \ [{1}, {2}, set()] """ if not excludeend: yield end queue = collections.deque([(end, other)]) while queue: current, other = queue.popleft() while other: first, other = other[0], other[1:] result = current & first yield result if other: queue.append((result, other))
python
def reverse_shortlex(end, other, excludeend=False): """Yield all intersections of end with other in reverse shortlex order. >>> ['{:03b}'.format(s) for s in reverse_shortlex(0b111, [0b011, 0b101, 0b110])] ['111', '011', '101', '110', '001', '010', '100', '000'] >>> ', '.join(''.join(sorted(s)) ... for s in reverse_shortlex({'a', 'b', 'c', 'd'}, ... [{'b', 'c', 'd'}, {'a', 'c', 'd'}, {'a', 'b', 'd'}, {'a', 'b', 'c'}])) 'abcd, bcd, acd, abd, abc, cd, bd, bc, ad, ac, ab, d, c, b, a, ' >>> assert list(reverse_shortlex({1, 2}, [{1}, {2}], excludeend=True)) == \ [{1}, {2}, set()] """ if not excludeend: yield end queue = collections.deque([(end, other)]) while queue: current, other = queue.popleft() while other: first, other = other[0], other[1:] result = current & first yield result if other: queue.append((result, other))
[ "def", "reverse_shortlex", "(", "end", ",", "other", ",", "excludeend", "=", "False", ")", ":", "if", "not", "excludeend", ":", "yield", "end", "queue", "=", "collections", ".", "deque", "(", "[", "(", "end", ",", "other", ")", "]", ")", "while", "queue", ":", "current", ",", "other", "=", "queue", ".", "popleft", "(", ")", "while", "other", ":", "first", ",", "other", "=", "other", "[", "0", "]", ",", "other", "[", "1", ":", "]", "result", "=", "current", "&", "first", "yield", "result", "if", "other", ":", "queue", ".", "append", "(", "(", "result", ",", "other", ")", ")" ]
Yield all intersections of end with other in reverse shortlex order. >>> ['{:03b}'.format(s) for s in reverse_shortlex(0b111, [0b011, 0b101, 0b110])] ['111', '011', '101', '110', '001', '010', '100', '000'] >>> ', '.join(''.join(sorted(s)) ... for s in reverse_shortlex({'a', 'b', 'c', 'd'}, ... [{'b', 'c', 'd'}, {'a', 'c', 'd'}, {'a', 'b', 'd'}, {'a', 'b', 'c'}])) 'abcd, bcd, acd, abd, abc, cd, bd, bc, ad, ac, ab, d, c, b, a, ' >>> assert list(reverse_shortlex({1, 2}, [{1}, {2}], excludeend=True)) == \ [{1}, {2}, set()]
[ "Yield", "all", "intersections", "of", "end", "with", "other", "in", "reverse", "shortlex", "order", "." ]
ddcfe17e7c7a11f71f1c6764b2cecf7db05d9cdf
https://github.com/xflr6/bitsets/blob/ddcfe17e7c7a11f71f1c6764b2cecf7db05d9cdf/bitsets/combos.py#L41-L70
train
druids/django-chamber
chamber/models/fields.py
RestrictedFileFieldMixin.generate_filename
def generate_filename(self, instance, filename): """ removes UTF chars from filename """ from unidecode import unidecode return super().generate_filename(instance, unidecode(force_text(filename)))
python
def generate_filename(self, instance, filename): """ removes UTF chars from filename """ from unidecode import unidecode return super().generate_filename(instance, unidecode(force_text(filename)))
[ "def", "generate_filename", "(", "self", ",", "instance", ",", "filename", ")", ":", "from", "unidecode", "import", "unidecode", "return", "super", "(", ")", ".", "generate_filename", "(", "instance", ",", "unidecode", "(", "force_text", "(", "filename", ")", ")", ")" ]
removes UTF chars from filename
[ "removes", "UTF", "chars", "from", "filename" ]
eef4169923557e96877a664fa254e8c0814f3f23
https://github.com/druids/django-chamber/blob/eef4169923557e96877a664fa254e8c0814f3f23/chamber/models/fields.py#L69-L75
train
PaulMcMillan/tasa
tasa/store.py
Queue.next
def next(self): """ Retrieve the next item in the queue. Returns deserialized value, or None if there were no entries in the Queue. """ if self.blocking >= 0: # returns queue name and item, we just need item res = self.redis.blpop([self.name], timeout=self.blocking) if res: res = res[1] else: res = self.redis.lpop(self.name) value = self.deserialize(res) logger.debug('Popped from "%s": %s', self.name, repr(value)) return value
python
def next(self): """ Retrieve the next item in the queue. Returns deserialized value, or None if there were no entries in the Queue. """ if self.blocking >= 0: # returns queue name and item, we just need item res = self.redis.blpop([self.name], timeout=self.blocking) if res: res = res[1] else: res = self.redis.lpop(self.name) value = self.deserialize(res) logger.debug('Popped from "%s": %s', self.name, repr(value)) return value
[ "def", "next", "(", "self", ")", ":", "if", "self", ".", "blocking", ">=", "0", ":", "# returns queue name and item, we just need item", "res", "=", "self", ".", "redis", ".", "blpop", "(", "[", "self", ".", "name", "]", ",", "timeout", "=", "self", ".", "blocking", ")", "if", "res", ":", "res", "=", "res", "[", "1", "]", "else", ":", "res", "=", "self", ".", "redis", ".", "lpop", "(", "self", ".", "name", ")", "value", "=", "self", ".", "deserialize", "(", "res", ")", "logger", ".", "debug", "(", "'Popped from \"%s\": %s'", ",", "self", ".", "name", ",", "repr", "(", "value", ")", ")", "return", "value" ]
Retrieve the next item in the queue. Returns deserialized value, or None if there were no entries in the Queue.
[ "Retrieve", "the", "next", "item", "in", "the", "queue", "." ]
fd548d97fd08e61c0e71296b08ffedb7d949e06a
https://github.com/PaulMcMillan/tasa/blob/fd548d97fd08e61c0e71296b08ffedb7d949e06a/tasa/store.py#L58-L73
train
PaulMcMillan/tasa
tasa/store.py
Queue.send
def send(self, *args): """ Send a value to this LIFO Queue. Provided argument is serialized and pushed out. Don't send None. """ # this and the serializer could use some streamlining if None in args: raise TypeError('None is not a valid queue item.') serialized_values = [self.serialize(value) for value in args] logger.debug('Sending to "%s": %s', self.name, serialized_values) return self.redis.rpush(self.name, *serialized_values)
python
def send(self, *args): """ Send a value to this LIFO Queue. Provided argument is serialized and pushed out. Don't send None. """ # this and the serializer could use some streamlining if None in args: raise TypeError('None is not a valid queue item.') serialized_values = [self.serialize(value) for value in args] logger.debug('Sending to "%s": %s', self.name, serialized_values) return self.redis.rpush(self.name, *serialized_values)
[ "def", "send", "(", "self", ",", "*", "args", ")", ":", "# this and the serializer could use some streamlining", "if", "None", "in", "args", ":", "raise", "TypeError", "(", "'None is not a valid queue item.'", ")", "serialized_values", "=", "[", "self", ".", "serialize", "(", "value", ")", "for", "value", "in", "args", "]", "logger", ".", "debug", "(", "'Sending to \"%s\": %s'", ",", "self", ".", "name", ",", "serialized_values", ")", "return", "self", ".", "redis", ".", "rpush", "(", "self", ".", "name", ",", "*", "serialized_values", ")" ]
Send a value to this LIFO Queue. Provided argument is serialized and pushed out. Don't send None.
[ "Send", "a", "value", "to", "this", "LIFO", "Queue", "." ]
fd548d97fd08e61c0e71296b08ffedb7d949e06a
https://github.com/PaulMcMillan/tasa/blob/fd548d97fd08e61c0e71296b08ffedb7d949e06a/tasa/store.py#L75-L85
train
PaulMcMillan/tasa
tasa/store.py
Queue.clear
def clear(self): """ Clear any existing values from this queue. """ logger.debug('Clearing queue: "%s"', self.name) return self.redis.delete(self.name)
python
def clear(self): """ Clear any existing values from this queue. """ logger.debug('Clearing queue: "%s"', self.name) return self.redis.delete(self.name)
[ "def", "clear", "(", "self", ")", ":", "logger", ".", "debug", "(", "'Clearing queue: \"%s\"'", ",", "self", ".", "name", ")", "return", "self", ".", "redis", ".", "delete", "(", "self", ".", "name", ")" ]
Clear any existing values from this queue.
[ "Clear", "any", "existing", "values", "from", "this", "queue", "." ]
fd548d97fd08e61c0e71296b08ffedb7d949e06a
https://github.com/PaulMcMillan/tasa/blob/fd548d97fd08e61c0e71296b08ffedb7d949e06a/tasa/store.py#L99-L102
train
PierreRust/apigpio
apigpio/apigpio.py
u2i
def u2i(uint32): """ Converts a 32 bit unsigned number to signed. uint32:= an unsigned 32 bit number ... print(u2i(4294967272)) -24 print(u2i(37)) 37 ... """ mask = (2 ** 32) - 1 if uint32 & (1 << 31): v = uint32 | ~mask else: v = uint32 & mask return v
python
def u2i(uint32): """ Converts a 32 bit unsigned number to signed. uint32:= an unsigned 32 bit number ... print(u2i(4294967272)) -24 print(u2i(37)) 37 ... """ mask = (2 ** 32) - 1 if uint32 & (1 << 31): v = uint32 | ~mask else: v = uint32 & mask return v
[ "def", "u2i", "(", "uint32", ")", ":", "mask", "=", "(", "2", "**", "32", ")", "-", "1", "if", "uint32", "&", "(", "1", "<<", "31", ")", ":", "v", "=", "uint32", "|", "~", "mask", "else", ":", "v", "=", "uint32", "&", "mask", "return", "v" ]
Converts a 32 bit unsigned number to signed. uint32:= an unsigned 32 bit number ... print(u2i(4294967272)) -24 print(u2i(37)) 37 ...
[ "Converts", "a", "32", "bit", "unsigned", "number", "to", "signed", "." ]
2b969f40e06219b43a43498d8baf87f5935ceab2
https://github.com/PierreRust/apigpio/blob/2b969f40e06219b43a43498d8baf87f5935ceab2/apigpio/apigpio.py#L301-L319
train
PierreRust/apigpio
apigpio/apigpio.py
_u2i
def _u2i(uint32): """ Converts a 32 bit unsigned number to signed. If the number is negative it indicates an error. On error a pigpio exception will be raised if exceptions is True. """ v = u2i(uint32) if v < 0: if exceptions: raise ApigpioError(error_text(v)) return v
python
def _u2i(uint32): """ Converts a 32 bit unsigned number to signed. If the number is negative it indicates an error. On error a pigpio exception will be raised if exceptions is True. """ v = u2i(uint32) if v < 0: if exceptions: raise ApigpioError(error_text(v)) return v
[ "def", "_u2i", "(", "uint32", ")", ":", "v", "=", "u2i", "(", "uint32", ")", "if", "v", "<", "0", ":", "if", "exceptions", ":", "raise", "ApigpioError", "(", "error_text", "(", "v", ")", ")", "return", "v" ]
Converts a 32 bit unsigned number to signed. If the number is negative it indicates an error. On error a pigpio exception will be raised if exceptions is True.
[ "Converts", "a", "32", "bit", "unsigned", "number", "to", "signed", ".", "If", "the", "number", "is", "negative", "it", "indicates", "an", "error", ".", "On", "error", "a", "pigpio", "exception", "will", "be", "raised", "if", "exceptions", "is", "True", "." ]
2b969f40e06219b43a43498d8baf87f5935ceab2
https://github.com/PierreRust/apigpio/blob/2b969f40e06219b43a43498d8baf87f5935ceab2/apigpio/apigpio.py#L322-L332
train
PierreRust/apigpio
apigpio/apigpio.py
_callback_handler.append
def append(self, cb): """Adds a callback.""" self.callbacks.append(cb.callb) self.monitor = self.monitor | cb.callb.bit yield from self.pi._pigpio_aio_command(_PI_CMD_NB, self.handle, self.monitor)
python
def append(self, cb): """Adds a callback.""" self.callbacks.append(cb.callb) self.monitor = self.monitor | cb.callb.bit yield from self.pi._pigpio_aio_command(_PI_CMD_NB, self.handle, self.monitor)
[ "def", "append", "(", "self", ",", "cb", ")", ":", "self", ".", "callbacks", ".", "append", "(", "cb", ".", "callb", ")", "self", ".", "monitor", "=", "self", ".", "monitor", "|", "cb", ".", "callb", ".", "bit", "yield", "from", "self", ".", "pi", ".", "_pigpio_aio_command", "(", "_PI_CMD_NB", ",", "self", ".", "handle", ",", "self", ".", "monitor", ")" ]
Adds a callback.
[ "Adds", "a", "callback", "." ]
2b969f40e06219b43a43498d8baf87f5935ceab2
https://github.com/PierreRust/apigpio/blob/2b969f40e06219b43a43498d8baf87f5935ceab2/apigpio/apigpio.py#L450-L456
train
PierreRust/apigpio
apigpio/apigpio.py
_callback_handler.remove
def remove(self, cb): """Removes a callback.""" if cb in self.callbacks: self.callbacks.remove(cb) new_monitor = 0 for c in self.callbacks: new_monitor |= c.bit if new_monitor != self.monitor: self.monitor = new_monitor yield from self.pi._pigpio_aio_command( _PI_CMD_NB, self.handle, self.monitor)
python
def remove(self, cb): """Removes a callback.""" if cb in self.callbacks: self.callbacks.remove(cb) new_monitor = 0 for c in self.callbacks: new_monitor |= c.bit if new_monitor != self.monitor: self.monitor = new_monitor yield from self.pi._pigpio_aio_command( _PI_CMD_NB, self.handle, self.monitor)
[ "def", "remove", "(", "self", ",", "cb", ")", ":", "if", "cb", "in", "self", ".", "callbacks", ":", "self", ".", "callbacks", ".", "remove", "(", "cb", ")", "new_monitor", "=", "0", "for", "c", "in", "self", ".", "callbacks", ":", "new_monitor", "|=", "c", ".", "bit", "if", "new_monitor", "!=", "self", ".", "monitor", ":", "self", ".", "monitor", "=", "new_monitor", "yield", "from", "self", ".", "pi", ".", "_pigpio_aio_command", "(", "_PI_CMD_NB", ",", "self", ".", "handle", ",", "self", ".", "monitor", ")" ]
Removes a callback.
[ "Removes", "a", "callback", "." ]
2b969f40e06219b43a43498d8baf87f5935ceab2
https://github.com/PierreRust/apigpio/blob/2b969f40e06219b43a43498d8baf87f5935ceab2/apigpio/apigpio.py#L459-L469
train
PierreRust/apigpio
apigpio/apigpio.py
Pi._pigpio_aio_command
def _pigpio_aio_command(self, cmd, p1, p2,): """ Runs a pigpio socket command. sl:= command socket and lock. cmd:= the command to be executed. p1:= command parameter 1 (if applicable). p2:= command parameter 2 (if applicable). """ with (yield from self._lock): data = struct.pack('IIII', cmd, p1, p2, 0) self._loop.sock_sendall(self.s, data) response = yield from self._loop.sock_recv(self.s, 16) _, res = struct.unpack('12sI', response) return res
python
def _pigpio_aio_command(self, cmd, p1, p2,): """ Runs a pigpio socket command. sl:= command socket and lock. cmd:= the command to be executed. p1:= command parameter 1 (if applicable). p2:= command parameter 2 (if applicable). """ with (yield from self._lock): data = struct.pack('IIII', cmd, p1, p2, 0) self._loop.sock_sendall(self.s, data) response = yield from self._loop.sock_recv(self.s, 16) _, res = struct.unpack('12sI', response) return res
[ "def", "_pigpio_aio_command", "(", "self", ",", "cmd", ",", "p1", ",", "p2", ",", ")", ":", "with", "(", "yield", "from", "self", ".", "_lock", ")", ":", "data", "=", "struct", ".", "pack", "(", "'IIII'", ",", "cmd", ",", "p1", ",", "p2", ",", "0", ")", "self", ".", "_loop", ".", "sock_sendall", "(", "self", ".", "s", ",", "data", ")", "response", "=", "yield", "from", "self", ".", "_loop", ".", "sock_recv", "(", "self", ".", "s", ",", "16", ")", "_", ",", "res", "=", "struct", ".", "unpack", "(", "'12sI'", ",", "response", ")", "return", "res" ]
Runs a pigpio socket command. sl:= command socket and lock. cmd:= the command to be executed. p1:= command parameter 1 (if applicable). p2:= command parameter 2 (if applicable).
[ "Runs", "a", "pigpio", "socket", "command", "." ]
2b969f40e06219b43a43498d8baf87f5935ceab2
https://github.com/PierreRust/apigpio/blob/2b969f40e06219b43a43498d8baf87f5935ceab2/apigpio/apigpio.py#L518-L532
train
PierreRust/apigpio
apigpio/apigpio.py
Pi._pigpio_aio_command_ext
def _pigpio_aio_command_ext(self, cmd, p1, p2, p3, extents, rl=True): """ Runs an extended pigpio socket command. sl:= command socket and lock. cmd:= the command to be executed. p1:= command parameter 1 (if applicable). p2:= command parameter 2 (if applicable). p3:= total size in bytes of following extents extents:= additional data blocks """ with (yield from self._lock): ext = bytearray(struct.pack('IIII', cmd, p1, p2, p3)) for x in extents: if isinstance(x, str): ext.extend(_b(x)) else: ext.extend(x) self._loop.sock_sendall(self.s, ext) response = yield from self._loop.sock_recv(self.s, 16) _, res = struct.unpack('12sI', response) return res
python
def _pigpio_aio_command_ext(self, cmd, p1, p2, p3, extents, rl=True): """ Runs an extended pigpio socket command. sl:= command socket and lock. cmd:= the command to be executed. p1:= command parameter 1 (if applicable). p2:= command parameter 2 (if applicable). p3:= total size in bytes of following extents extents:= additional data blocks """ with (yield from self._lock): ext = bytearray(struct.pack('IIII', cmd, p1, p2, p3)) for x in extents: if isinstance(x, str): ext.extend(_b(x)) else: ext.extend(x) self._loop.sock_sendall(self.s, ext) response = yield from self._loop.sock_recv(self.s, 16) _, res = struct.unpack('12sI', response) return res
[ "def", "_pigpio_aio_command_ext", "(", "self", ",", "cmd", ",", "p1", ",", "p2", ",", "p3", ",", "extents", ",", "rl", "=", "True", ")", ":", "with", "(", "yield", "from", "self", ".", "_lock", ")", ":", "ext", "=", "bytearray", "(", "struct", ".", "pack", "(", "'IIII'", ",", "cmd", ",", "p1", ",", "p2", ",", "p3", ")", ")", "for", "x", "in", "extents", ":", "if", "isinstance", "(", "x", ",", "str", ")", ":", "ext", ".", "extend", "(", "_b", "(", "x", ")", ")", "else", ":", "ext", ".", "extend", "(", "x", ")", "self", ".", "_loop", ".", "sock_sendall", "(", "self", ".", "s", ",", "ext", ")", "response", "=", "yield", "from", "self", ".", "_loop", ".", "sock_recv", "(", "self", ".", "s", ",", "16", ")", "_", ",", "res", "=", "struct", ".", "unpack", "(", "'12sI'", ",", "response", ")", "return", "res" ]
Runs an extended pigpio socket command. sl:= command socket and lock. cmd:= the command to be executed. p1:= command parameter 1 (if applicable). p2:= command parameter 2 (if applicable). p3:= total size in bytes of following extents extents:= additional data blocks
[ "Runs", "an", "extended", "pigpio", "socket", "command", "." ]
2b969f40e06219b43a43498d8baf87f5935ceab2
https://github.com/PierreRust/apigpio/blob/2b969f40e06219b43a43498d8baf87f5935ceab2/apigpio/apigpio.py#L535-L556
train
PierreRust/apigpio
apigpio/apigpio.py
Pi.store_script
def store_script(self, script): """ Store a script for later execution. script:= the script text as a series of bytes. Returns a >=0 script id if OK. ... sid = pi.store_script( b'tag 0 w 22 1 mils 100 w 22 0 mils 100 dcr p0 jp 0') ... """ if len(script): res = yield from self._pigpio_aio_command_ext(_PI_CMD_PROC, 0, 0, len(script), [script]) return _u2i(res) else: return 0
python
def store_script(self, script): """ Store a script for later execution. script:= the script text as a series of bytes. Returns a >=0 script id if OK. ... sid = pi.store_script( b'tag 0 w 22 1 mils 100 w 22 0 mils 100 dcr p0 jp 0') ... """ if len(script): res = yield from self._pigpio_aio_command_ext(_PI_CMD_PROC, 0, 0, len(script), [script]) return _u2i(res) else: return 0
[ "def", "store_script", "(", "self", ",", "script", ")", ":", "if", "len", "(", "script", ")", ":", "res", "=", "yield", "from", "self", ".", "_pigpio_aio_command_ext", "(", "_PI_CMD_PROC", ",", "0", ",", "0", ",", "len", "(", "script", ")", ",", "[", "script", "]", ")", "return", "_u2i", "(", "res", ")", "else", ":", "return", "0" ]
Store a script for later execution. script:= the script text as a series of bytes. Returns a >=0 script id if OK. ... sid = pi.store_script( b'tag 0 w 22 1 mils 100 w 22 0 mils 100 dcr p0 jp 0') ...
[ "Store", "a", "script", "for", "later", "execution", "." ]
2b969f40e06219b43a43498d8baf87f5935ceab2
https://github.com/PierreRust/apigpio/blob/2b969f40e06219b43a43498d8baf87f5935ceab2/apigpio/apigpio.py#L603-L622
train
PierreRust/apigpio
apigpio/apigpio.py
Pi.run_script
def run_script(self, script_id, params=None): """ Runs a stored script. script_id:= id of stored script. params:= up to 10 parameters required by the script. ... s = pi.run_script(sid, [par1, par2]) s = pi.run_script(sid) s = pi.run_script(sid, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) ... """ # I p1 script id # I p2 0 # I p3 params * 4 (0-10 params) # (optional) extension # I[] params if params is not None: ext = bytearray() for p in params: ext.extend(struct.pack("I", p)) nump = len(params) extents = [ext] else: nump = 0 extents = [] res = yield from self._pigpio_aio_command_ext(_PI_CMD_PROCR, script_id, 0, nump * 4, extents) return _u2i(res)
python
def run_script(self, script_id, params=None): """ Runs a stored script. script_id:= id of stored script. params:= up to 10 parameters required by the script. ... s = pi.run_script(sid, [par1, par2]) s = pi.run_script(sid) s = pi.run_script(sid, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) ... """ # I p1 script id # I p2 0 # I p3 params * 4 (0-10 params) # (optional) extension # I[] params if params is not None: ext = bytearray() for p in params: ext.extend(struct.pack("I", p)) nump = len(params) extents = [ext] else: nump = 0 extents = [] res = yield from self._pigpio_aio_command_ext(_PI_CMD_PROCR, script_id, 0, nump * 4, extents) return _u2i(res)
[ "def", "run_script", "(", "self", ",", "script_id", ",", "params", "=", "None", ")", ":", "# I p1 script id", "# I p2 0", "# I p3 params * 4 (0-10 params)", "# (optional) extension", "# I[] params", "if", "params", "is", "not", "None", ":", "ext", "=", "bytearray", "(", ")", "for", "p", "in", "params", ":", "ext", ".", "extend", "(", "struct", ".", "pack", "(", "\"I\"", ",", "p", ")", ")", "nump", "=", "len", "(", "params", ")", "extents", "=", "[", "ext", "]", "else", ":", "nump", "=", "0", "extents", "=", "[", "]", "res", "=", "yield", "from", "self", ".", "_pigpio_aio_command_ext", "(", "_PI_CMD_PROCR", ",", "script_id", ",", "0", ",", "nump", "*", "4", ",", "extents", ")", "return", "_u2i", "(", "res", ")" ]
Runs a stored script. script_id:= id of stored script. params:= up to 10 parameters required by the script. ... s = pi.run_script(sid, [par1, par2]) s = pi.run_script(sid) s = pi.run_script(sid, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) ...
[ "Runs", "a", "stored", "script", "." ]
2b969f40e06219b43a43498d8baf87f5935ceab2
https://github.com/PierreRust/apigpio/blob/2b969f40e06219b43a43498d8baf87f5935ceab2/apigpio/apigpio.py#L625-L656
train
PierreRust/apigpio
apigpio/apigpio.py
Pi.script_status
def script_status(self, script_id): """ Returns the run status of a stored script as well as the current values of parameters 0 to 9. script_id:= id of stored script. The run status may be . . PI_SCRIPT_INITING PI_SCRIPT_HALTED PI_SCRIPT_RUNNING PI_SCRIPT_WAITING PI_SCRIPT_FAILED . . The return value is a tuple of run status and a list of the 10 parameters. On error the run status will be negative and the parameter list will be empty. ... (s, pars) = pi.script_status(sid) ... """ res = yield from self._pigpio_aio_command(_PI_CMD_PROCP, script_id, 0) bytes = u2i(res) if bytes > 0: # Fixme : this sould be the same a _rxbuf # data = self._rxbuf(bytes) data = yield from self._loop.sock_recv(self.s, bytes) while len(data) < bytes: b = yield from self._loop.sock_recv(self.s, bytes-len(data)) data.extend(b) pars = struct.unpack('11i', _str(data)) status = pars[0] params = pars[1:] else: status = bytes params = () return status, params
python
def script_status(self, script_id): """ Returns the run status of a stored script as well as the current values of parameters 0 to 9. script_id:= id of stored script. The run status may be . . PI_SCRIPT_INITING PI_SCRIPT_HALTED PI_SCRIPT_RUNNING PI_SCRIPT_WAITING PI_SCRIPT_FAILED . . The return value is a tuple of run status and a list of the 10 parameters. On error the run status will be negative and the parameter list will be empty. ... (s, pars) = pi.script_status(sid) ... """ res = yield from self._pigpio_aio_command(_PI_CMD_PROCP, script_id, 0) bytes = u2i(res) if bytes > 0: # Fixme : this sould be the same a _rxbuf # data = self._rxbuf(bytes) data = yield from self._loop.sock_recv(self.s, bytes) while len(data) < bytes: b = yield from self._loop.sock_recv(self.s, bytes-len(data)) data.extend(b) pars = struct.unpack('11i', _str(data)) status = pars[0] params = pars[1:] else: status = bytes params = () return status, params
[ "def", "script_status", "(", "self", ",", "script_id", ")", ":", "res", "=", "yield", "from", "self", ".", "_pigpio_aio_command", "(", "_PI_CMD_PROCP", ",", "script_id", ",", "0", ")", "bytes", "=", "u2i", "(", "res", ")", "if", "bytes", ">", "0", ":", "# Fixme : this sould be the same a _rxbuf", "# data = self._rxbuf(bytes)", "data", "=", "yield", "from", "self", ".", "_loop", ".", "sock_recv", "(", "self", ".", "s", ",", "bytes", ")", "while", "len", "(", "data", ")", "<", "bytes", ":", "b", "=", "yield", "from", "self", ".", "_loop", ".", "sock_recv", "(", "self", ".", "s", ",", "bytes", "-", "len", "(", "data", ")", ")", "data", ".", "extend", "(", "b", ")", "pars", "=", "struct", ".", "unpack", "(", "'11i'", ",", "_str", "(", "data", ")", ")", "status", "=", "pars", "[", "0", "]", "params", "=", "pars", "[", "1", ":", "]", "else", ":", "status", "=", "bytes", "params", "=", "(", ")", "return", "status", ",", "params" ]
Returns the run status of a stored script as well as the current values of parameters 0 to 9. script_id:= id of stored script. The run status may be . . PI_SCRIPT_INITING PI_SCRIPT_HALTED PI_SCRIPT_RUNNING PI_SCRIPT_WAITING PI_SCRIPT_FAILED . . The return value is a tuple of run status and a list of the 10 parameters. On error the run status will be negative and the parameter list will be empty. ... (s, pars) = pi.script_status(sid) ...
[ "Returns", "the", "run", "status", "of", "a", "stored", "script", "as", "well", "as", "the", "current", "values", "of", "parameters", "0", "to", "9", "." ]
2b969f40e06219b43a43498d8baf87f5935ceab2
https://github.com/PierreRust/apigpio/blob/2b969f40e06219b43a43498d8baf87f5935ceab2/apigpio/apigpio.py#L659-L702
train
PierreRust/apigpio
apigpio/apigpio.py
Pi.stop_script
def stop_script(self, script_id): """ Stops a running script. script_id:= id of stored script. ... status = pi.stop_script(sid) ... """ res = yield from self._pigpio_aio_command(_PI_CMD_PROCS, script_id, 0) return _u2i(res)
python
def stop_script(self, script_id): """ Stops a running script. script_id:= id of stored script. ... status = pi.stop_script(sid) ... """ res = yield from self._pigpio_aio_command(_PI_CMD_PROCS, script_id, 0) return _u2i(res)
[ "def", "stop_script", "(", "self", ",", "script_id", ")", ":", "res", "=", "yield", "from", "self", ".", "_pigpio_aio_command", "(", "_PI_CMD_PROCS", ",", "script_id", ",", "0", ")", "return", "_u2i", "(", "res", ")" ]
Stops a running script. script_id:= id of stored script. ... status = pi.stop_script(sid) ...
[ "Stops", "a", "running", "script", "." ]
2b969f40e06219b43a43498d8baf87f5935ceab2
https://github.com/PierreRust/apigpio/blob/2b969f40e06219b43a43498d8baf87f5935ceab2/apigpio/apigpio.py#L705-L716
train
PierreRust/apigpio
apigpio/apigpio.py
Pi.delete_script
def delete_script(self, script_id): """ Deletes a stored script. script_id:= id of stored script. ... status = pi.delete_script(sid) ... """ res = yield from self._pigpio_aio_command(_PI_CMD_PROCD, script_id, 0) return _u2i(res)
python
def delete_script(self, script_id): """ Deletes a stored script. script_id:= id of stored script. ... status = pi.delete_script(sid) ... """ res = yield from self._pigpio_aio_command(_PI_CMD_PROCD, script_id, 0) return _u2i(res)
[ "def", "delete_script", "(", "self", ",", "script_id", ")", ":", "res", "=", "yield", "from", "self", ".", "_pigpio_aio_command", "(", "_PI_CMD_PROCD", ",", "script_id", ",", "0", ")", "return", "_u2i", "(", "res", ")" ]
Deletes a stored script. script_id:= id of stored script. ... status = pi.delete_script(sid) ...
[ "Deletes", "a", "stored", "script", "." ]
2b969f40e06219b43a43498d8baf87f5935ceab2
https://github.com/PierreRust/apigpio/blob/2b969f40e06219b43a43498d8baf87f5935ceab2/apigpio/apigpio.py#L719-L730
train
PierreRust/apigpio
apigpio/apigpio.py
Pi.clear_bank_1
def clear_bank_1(self, bits): """ Clears gpios 0-31 if the corresponding bit in bits is set. bits:= a 32 bit mask with 1 set if the corresponding gpio is to be cleared. A returned status of PI_SOME_PERMITTED indicates that the user is not allowed to write to one or more of the gpios. ... pi.clear_bank_1(int("111110010000",2)) ... """ res = yield from self._pigpio_aio_command(_PI_CMD_BC1, bits, 0) return _u2i(res)
python
def clear_bank_1(self, bits): """ Clears gpios 0-31 if the corresponding bit in bits is set. bits:= a 32 bit mask with 1 set if the corresponding gpio is to be cleared. A returned status of PI_SOME_PERMITTED indicates that the user is not allowed to write to one or more of the gpios. ... pi.clear_bank_1(int("111110010000",2)) ... """ res = yield from self._pigpio_aio_command(_PI_CMD_BC1, bits, 0) return _u2i(res)
[ "def", "clear_bank_1", "(", "self", ",", "bits", ")", ":", "res", "=", "yield", "from", "self", ".", "_pigpio_aio_command", "(", "_PI_CMD_BC1", ",", "bits", ",", "0", ")", "return", "_u2i", "(", "res", ")" ]
Clears gpios 0-31 if the corresponding bit in bits is set. bits:= a 32 bit mask with 1 set if the corresponding gpio is to be cleared. A returned status of PI_SOME_PERMITTED indicates that the user is not allowed to write to one or more of the gpios. ... pi.clear_bank_1(int("111110010000",2)) ...
[ "Clears", "gpios", "0", "-", "31", "if", "the", "corresponding", "bit", "in", "bits", "is", "set", "." ]
2b969f40e06219b43a43498d8baf87f5935ceab2
https://github.com/PierreRust/apigpio/blob/2b969f40e06219b43a43498d8baf87f5935ceab2/apigpio/apigpio.py#L749-L764
train
PierreRust/apigpio
apigpio/apigpio.py
Pi.set_bank_1
def set_bank_1(self, bits): """ Sets gpios 0-31 if the corresponding bit in bits is set. bits:= a 32 bit mask with 1 set if the corresponding gpio is to be set. A returned status of PI_SOME_PERMITTED indicates that the user is not allowed to write to one or more of the gpios. ... pi.set_bank_1(int("111110010000",2)) ... """ res = yield from self._pigpio_aio_command(_PI_CMD_BS1, bits, 0) return _u2i(res)
python
def set_bank_1(self, bits): """ Sets gpios 0-31 if the corresponding bit in bits is set. bits:= a 32 bit mask with 1 set if the corresponding gpio is to be set. A returned status of PI_SOME_PERMITTED indicates that the user is not allowed to write to one or more of the gpios. ... pi.set_bank_1(int("111110010000",2)) ... """ res = yield from self._pigpio_aio_command(_PI_CMD_BS1, bits, 0) return _u2i(res)
[ "def", "set_bank_1", "(", "self", ",", "bits", ")", ":", "res", "=", "yield", "from", "self", ".", "_pigpio_aio_command", "(", "_PI_CMD_BS1", ",", "bits", ",", "0", ")", "return", "_u2i", "(", "res", ")" ]
Sets gpios 0-31 if the corresponding bit in bits is set. bits:= a 32 bit mask with 1 set if the corresponding gpio is to be set. A returned status of PI_SOME_PERMITTED indicates that the user is not allowed to write to one or more of the gpios. ... pi.set_bank_1(int("111110010000",2)) ...
[ "Sets", "gpios", "0", "-", "31", "if", "the", "corresponding", "bit", "in", "bits", "is", "set", "." ]
2b969f40e06219b43a43498d8baf87f5935ceab2
https://github.com/PierreRust/apigpio/blob/2b969f40e06219b43a43498d8baf87f5935ceab2/apigpio/apigpio.py#L767-L782
train
PierreRust/apigpio
apigpio/apigpio.py
Pi.set_mode
def set_mode(self, gpio, mode): """ Sets the gpio mode. gpio:= 0-53. mode:= INPUT, OUTPUT, ALT0, ALT1, ALT2, ALT3, ALT4, ALT5. ... pi.set_mode( 4, apigpio.INPUT) # gpio 4 as input pi.set_mode(17, apigpio.OUTPUT) # gpio 17 as output pi.set_mode(24, apigpio.ALT2) # gpio 24 as ALT2 ... """ res = yield from self._pigpio_aio_command(_PI_CMD_MODES, gpio, mode) return _u2i(res)
python
def set_mode(self, gpio, mode): """ Sets the gpio mode. gpio:= 0-53. mode:= INPUT, OUTPUT, ALT0, ALT1, ALT2, ALT3, ALT4, ALT5. ... pi.set_mode( 4, apigpio.INPUT) # gpio 4 as input pi.set_mode(17, apigpio.OUTPUT) # gpio 17 as output pi.set_mode(24, apigpio.ALT2) # gpio 24 as ALT2 ... """ res = yield from self._pigpio_aio_command(_PI_CMD_MODES, gpio, mode) return _u2i(res)
[ "def", "set_mode", "(", "self", ",", "gpio", ",", "mode", ")", ":", "res", "=", "yield", "from", "self", ".", "_pigpio_aio_command", "(", "_PI_CMD_MODES", ",", "gpio", ",", "mode", ")", "return", "_u2i", "(", "res", ")" ]
Sets the gpio mode. gpio:= 0-53. mode:= INPUT, OUTPUT, ALT0, ALT1, ALT2, ALT3, ALT4, ALT5. ... pi.set_mode( 4, apigpio.INPUT) # gpio 4 as input pi.set_mode(17, apigpio.OUTPUT) # gpio 17 as output pi.set_mode(24, apigpio.ALT2) # gpio 24 as ALT2 ...
[ "Sets", "the", "gpio", "mode", "." ]
2b969f40e06219b43a43498d8baf87f5935ceab2
https://github.com/PierreRust/apigpio/blob/2b969f40e06219b43a43498d8baf87f5935ceab2/apigpio/apigpio.py#L785-L799
train
PierreRust/apigpio
apigpio/apigpio.py
Pi.get_mode
def get_mode(self, gpio): """ Returns the gpio mode. gpio:= 0-53. Returns a value as follows . . 0 = INPUT 1 = OUTPUT 2 = ALT5 3 = ALT4 4 = ALT0 5 = ALT1 6 = ALT2 7 = ALT3 . . ... print(pi.get_mode(0)) 4 ... """ res = yield from self._pigpio_aio_command(_PI_CMD_MODEG, gpio, 0) return _u2i(res)
python
def get_mode(self, gpio): """ Returns the gpio mode. gpio:= 0-53. Returns a value as follows . . 0 = INPUT 1 = OUTPUT 2 = ALT5 3 = ALT4 4 = ALT0 5 = ALT1 6 = ALT2 7 = ALT3 . . ... print(pi.get_mode(0)) 4 ... """ res = yield from self._pigpio_aio_command(_PI_CMD_MODEG, gpio, 0) return _u2i(res)
[ "def", "get_mode", "(", "self", ",", "gpio", ")", ":", "res", "=", "yield", "from", "self", ".", "_pigpio_aio_command", "(", "_PI_CMD_MODEG", ",", "gpio", ",", "0", ")", "return", "_u2i", "(", "res", ")" ]
Returns the gpio mode. gpio:= 0-53. Returns a value as follows . . 0 = INPUT 1 = OUTPUT 2 = ALT5 3 = ALT4 4 = ALT0 5 = ALT1 6 = ALT2 7 = ALT3 . . ... print(pi.get_mode(0)) 4 ...
[ "Returns", "the", "gpio", "mode", "." ]
2b969f40e06219b43a43498d8baf87f5935ceab2
https://github.com/PierreRust/apigpio/blob/2b969f40e06219b43a43498d8baf87f5935ceab2/apigpio/apigpio.py#L817-L842
train
PierreRust/apigpio
apigpio/apigpio.py
Pi.write
def write(self, gpio, level): """ Sets the gpio level. gpio:= 0-53. level:= 0, 1. If PWM or servo pulses are active on the gpio they are switched off. ... pi.set_mode(17, pigpio.OUTPUT) pi.write(17,0) print(pi.read(17)) 0 pi.write(17,1) print(pi.read(17)) 1 ... """ res = yield from self._pigpio_aio_command(_PI_CMD_WRITE, gpio, level) return _u2i(res)
python
def write(self, gpio, level): """ Sets the gpio level. gpio:= 0-53. level:= 0, 1. If PWM or servo pulses are active on the gpio they are switched off. ... pi.set_mode(17, pigpio.OUTPUT) pi.write(17,0) print(pi.read(17)) 0 pi.write(17,1) print(pi.read(17)) 1 ... """ res = yield from self._pigpio_aio_command(_PI_CMD_WRITE, gpio, level) return _u2i(res)
[ "def", "write", "(", "self", ",", "gpio", ",", "level", ")", ":", "res", "=", "yield", "from", "self", ".", "_pigpio_aio_command", "(", "_PI_CMD_WRITE", ",", "gpio", ",", "level", ")", "return", "_u2i", "(", "res", ")" ]
Sets the gpio level. gpio:= 0-53. level:= 0, 1. If PWM or servo pulses are active on the gpio they are switched off. ... pi.set_mode(17, pigpio.OUTPUT) pi.write(17,0) print(pi.read(17)) 0 pi.write(17,1) print(pi.read(17)) 1 ...
[ "Sets", "the", "gpio", "level", "." ]
2b969f40e06219b43a43498d8baf87f5935ceab2
https://github.com/PierreRust/apigpio/blob/2b969f40e06219b43a43498d8baf87f5935ceab2/apigpio/apigpio.py#L845-L868
train
kyzima-spb/flask-pony
flask_pony/utils.py
camelcase2list
def camelcase2list(s, lower=False): """Converts a camelcase string to a list.""" s = re.findall(r'([A-Z][a-z0-9]+)', s) return [w.lower() for w in s] if lower else s
python
def camelcase2list(s, lower=False): """Converts a camelcase string to a list.""" s = re.findall(r'([A-Z][a-z0-9]+)', s) return [w.lower() for w in s] if lower else s
[ "def", "camelcase2list", "(", "s", ",", "lower", "=", "False", ")", ":", "s", "=", "re", ".", "findall", "(", "r'([A-Z][a-z0-9]+)'", ",", "s", ")", "return", "[", "w", ".", "lower", "(", ")", "for", "w", "in", "s", "]", "if", "lower", "else", "s" ]
Converts a camelcase string to a list.
[ "Converts", "a", "camelcase", "string", "to", "a", "list", "." ]
6cf28d70b7ebf415d58fa138fcc70b8dd57432c7
https://github.com/kyzima-spb/flask-pony/blob/6cf28d70b7ebf415d58fa138fcc70b8dd57432c7/flask_pony/utils.py#L27-L30
train
kyzima-spb/flask-pony
flask_pony/utils.py
get_route_param_names
def get_route_param_names(endpoint): """Returns parameter names from the route.""" try: g = current_app.url_map.iter_rules(endpoint) return next(g).arguments except KeyError: return {}
python
def get_route_param_names(endpoint): """Returns parameter names from the route.""" try: g = current_app.url_map.iter_rules(endpoint) return next(g).arguments except KeyError: return {}
[ "def", "get_route_param_names", "(", "endpoint", ")", ":", "try", ":", "g", "=", "current_app", ".", "url_map", ".", "iter_rules", "(", "endpoint", ")", "return", "next", "(", "g", ")", ".", "arguments", "except", "KeyError", ":", "return", "{", "}" ]
Returns parameter names from the route.
[ "Returns", "parameter", "names", "from", "the", "route", "." ]
6cf28d70b7ebf415d58fa138fcc70b8dd57432c7
https://github.com/kyzima-spb/flask-pony/blob/6cf28d70b7ebf415d58fa138fcc70b8dd57432c7/flask_pony/utils.py#L33-L39
train
guaix-ucm/numina
numina/types/structured.py
BaseStructuredCalibration.update_meta_info
def update_meta_info(self): """Extract metadata from myself""" result = super(BaseStructuredCalibration, self).update_meta_info() result['instrument'] = self.instrument result['uuid'] = self.uuid result['tags'] = self.tags result['type'] = self.name() minfo = self.meta_info try: result['mode'] = minfo['mode_name'] origin = minfo['origin'] date_obs = origin['date_obs'] except KeyError: origin = {} date_obs = "1970-01-01T00:00:00.00" result['observation_date'] = conv.convert_date(date_obs) result['origin'] = origin return result
python
def update_meta_info(self): """Extract metadata from myself""" result = super(BaseStructuredCalibration, self).update_meta_info() result['instrument'] = self.instrument result['uuid'] = self.uuid result['tags'] = self.tags result['type'] = self.name() minfo = self.meta_info try: result['mode'] = minfo['mode_name'] origin = minfo['origin'] date_obs = origin['date_obs'] except KeyError: origin = {} date_obs = "1970-01-01T00:00:00.00" result['observation_date'] = conv.convert_date(date_obs) result['origin'] = origin return result
[ "def", "update_meta_info", "(", "self", ")", ":", "result", "=", "super", "(", "BaseStructuredCalibration", ",", "self", ")", ".", "update_meta_info", "(", ")", "result", "[", "'instrument'", "]", "=", "self", ".", "instrument", "result", "[", "'uuid'", "]", "=", "self", ".", "uuid", "result", "[", "'tags'", "]", "=", "self", ".", "tags", "result", "[", "'type'", "]", "=", "self", ".", "name", "(", ")", "minfo", "=", "self", ".", "meta_info", "try", ":", "result", "[", "'mode'", "]", "=", "minfo", "[", "'mode_name'", "]", "origin", "=", "minfo", "[", "'origin'", "]", "date_obs", "=", "origin", "[", "'date_obs'", "]", "except", "KeyError", ":", "origin", "=", "{", "}", "date_obs", "=", "\"1970-01-01T00:00:00.00\"", "result", "[", "'observation_date'", "]", "=", "conv", ".", "convert_date", "(", "date_obs", ")", "result", "[", "'origin'", "]", "=", "origin", "return", "result" ]
Extract metadata from myself
[ "Extract", "metadata", "from", "myself" ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/types/structured.py#L197-L218
train
jtambasco/gnuplotpy
gnuplotpy/gnuplot.py
gnuplot
def gnuplot(script_name, args_dict={}, data=[], silent=True): ''' Call a Gnuplot script, passing it arguments and datasets. Args: scipt_name(str): The name of the Gnuplot script. args_dict(dict): A dictionary of parameters to pass to the script. The `key` is the name of the variable that the `item` will be passed to the Gnuplot script with. data(list): A list of lists containing lists to be plotted. The lists can be accessed by plotting the variable `data` in the Gnuplot script. The first list in the list of lists corresponds to the first column in data, and so on. silent (bool): `True` if Gnuplot stdout should be silenced, `False` if not. Returns: str: The Gnuplot command used to call the script. ''' gnuplot_command = 'gnuplot' if data: assert 'data' not in args_dict, \ 'Can\'t use \'data\' variable twice.' data_temp = _GnuplotDataTemp(*data) args_dict['data'] = data_temp.name if args_dict: gnuplot_command += ' -e "' for arg in args_dict.items(): gnuplot_command += arg[0] + '=' if isinstance(arg[1], str): gnuplot_command += '\'' + arg[1] + '\'' elif isinstance(arg[1], bool): if arg[1] is True: gnuplot_command += '1' else: gnuplot_command += '0' elif hasattr(arg[1], '__iter__'): gnuplot_command += '\'' + ' '.join([str(v) for v in arg[1]]) + '\'' else: gnuplot_command += str(arg[1]) gnuplot_command += '; ' gnuplot_command = gnuplot_command[:-1] gnuplot_command += '"' gnuplot_command += ' ' + script_name if silent: gnuplot_command += ' > /dev/null 2>&1' os.system(gnuplot_command) return gnuplot_command
python
def gnuplot(script_name, args_dict={}, data=[], silent=True): ''' Call a Gnuplot script, passing it arguments and datasets. Args: scipt_name(str): The name of the Gnuplot script. args_dict(dict): A dictionary of parameters to pass to the script. The `key` is the name of the variable that the `item` will be passed to the Gnuplot script with. data(list): A list of lists containing lists to be plotted. The lists can be accessed by plotting the variable `data` in the Gnuplot script. The first list in the list of lists corresponds to the first column in data, and so on. silent (bool): `True` if Gnuplot stdout should be silenced, `False` if not. Returns: str: The Gnuplot command used to call the script. ''' gnuplot_command = 'gnuplot' if data: assert 'data' not in args_dict, \ 'Can\'t use \'data\' variable twice.' data_temp = _GnuplotDataTemp(*data) args_dict['data'] = data_temp.name if args_dict: gnuplot_command += ' -e "' for arg in args_dict.items(): gnuplot_command += arg[0] + '=' if isinstance(arg[1], str): gnuplot_command += '\'' + arg[1] + '\'' elif isinstance(arg[1], bool): if arg[1] is True: gnuplot_command += '1' else: gnuplot_command += '0' elif hasattr(arg[1], '__iter__'): gnuplot_command += '\'' + ' '.join([str(v) for v in arg[1]]) + '\'' else: gnuplot_command += str(arg[1]) gnuplot_command += '; ' gnuplot_command = gnuplot_command[:-1] gnuplot_command += '"' gnuplot_command += ' ' + script_name if silent: gnuplot_command += ' > /dev/null 2>&1' os.system(gnuplot_command) return gnuplot_command
[ "def", "gnuplot", "(", "script_name", ",", "args_dict", "=", "{", "}", ",", "data", "=", "[", "]", ",", "silent", "=", "True", ")", ":", "gnuplot_command", "=", "'gnuplot'", "if", "data", ":", "assert", "'data'", "not", "in", "args_dict", ",", "'Can\\'t use \\'data\\' variable twice.'", "data_temp", "=", "_GnuplotDataTemp", "(", "*", "data", ")", "args_dict", "[", "'data'", "]", "=", "data_temp", ".", "name", "if", "args_dict", ":", "gnuplot_command", "+=", "' -e \"'", "for", "arg", "in", "args_dict", ".", "items", "(", ")", ":", "gnuplot_command", "+=", "arg", "[", "0", "]", "+", "'='", "if", "isinstance", "(", "arg", "[", "1", "]", ",", "str", ")", ":", "gnuplot_command", "+=", "'\\''", "+", "arg", "[", "1", "]", "+", "'\\''", "elif", "isinstance", "(", "arg", "[", "1", "]", ",", "bool", ")", ":", "if", "arg", "[", "1", "]", "is", "True", ":", "gnuplot_command", "+=", "'1'", "else", ":", "gnuplot_command", "+=", "'0'", "elif", "hasattr", "(", "arg", "[", "1", "]", ",", "'__iter__'", ")", ":", "gnuplot_command", "+=", "'\\''", "+", "' '", ".", "join", "(", "[", "str", "(", "v", ")", "for", "v", "in", "arg", "[", "1", "]", "]", ")", "+", "'\\''", "else", ":", "gnuplot_command", "+=", "str", "(", "arg", "[", "1", "]", ")", "gnuplot_command", "+=", "'; '", "gnuplot_command", "=", "gnuplot_command", "[", ":", "-", "1", "]", "gnuplot_command", "+=", "'\"'", "gnuplot_command", "+=", "' '", "+", "script_name", "if", "silent", ":", "gnuplot_command", "+=", "' > /dev/null 2>&1'", "os", ".", "system", "(", "gnuplot_command", ")", "return", "gnuplot_command" ]
Call a Gnuplot script, passing it arguments and datasets. Args: scipt_name(str): The name of the Gnuplot script. args_dict(dict): A dictionary of parameters to pass to the script. The `key` is the name of the variable that the `item` will be passed to the Gnuplot script with. data(list): A list of lists containing lists to be plotted. The lists can be accessed by plotting the variable `data` in the Gnuplot script. The first list in the list of lists corresponds to the first column in data, and so on. silent (bool): `True` if Gnuplot stdout should be silenced, `False` if not. Returns: str: The Gnuplot command used to call the script.
[ "Call", "a", "Gnuplot", "script", "passing", "it", "arguments", "and", "datasets", "." ]
0e67fa0b839f94981f8e18dfd42c30f98b68f500
https://github.com/jtambasco/gnuplotpy/blob/0e67fa0b839f94981f8e18dfd42c30f98b68f500/gnuplotpy/gnuplot.py#L39-L96
train
jtambasco/gnuplotpy
gnuplotpy/gnuplot.py
gnuplot_2d
def gnuplot_2d(x, y, filename, title='', x_label='', y_label=''): ''' Function to produce a general 2D plot. Args: x (list): x points. y (list): y points. filename (str): Filename of the output image. title (str): Title of the plot. Default is '' (no title). x_label (str): x-axis label. y_label (str): y-axis label. ''' _, ext = os.path.splitext(filename) if ext != '.png': filename += '.png' gnuplot_cmds = \ ''' set datafile separator "," set term pngcairo size 30cm,25cm set out filename unset key set border lw 1.5 set grid lt -1 lc rgb "gray80" set title title set xlabel x_label set ylabel y_label plot filename_data u 1:2 w lp pt 6 ps 0.5 ''' scr = _GnuplotScriptTemp(gnuplot_cmds) data = _GnuplotDataTemp(x, y) args_dict = { 'filename': filename, 'filename_data': data.name, 'title': title, 'x_label': x_label, 'y_label': y_label } gnuplot(scr.name, args_dict)
python
def gnuplot_2d(x, y, filename, title='', x_label='', y_label=''): ''' Function to produce a general 2D plot. Args: x (list): x points. y (list): y points. filename (str): Filename of the output image. title (str): Title of the plot. Default is '' (no title). x_label (str): x-axis label. y_label (str): y-axis label. ''' _, ext = os.path.splitext(filename) if ext != '.png': filename += '.png' gnuplot_cmds = \ ''' set datafile separator "," set term pngcairo size 30cm,25cm set out filename unset key set border lw 1.5 set grid lt -1 lc rgb "gray80" set title title set xlabel x_label set ylabel y_label plot filename_data u 1:2 w lp pt 6 ps 0.5 ''' scr = _GnuplotScriptTemp(gnuplot_cmds) data = _GnuplotDataTemp(x, y) args_dict = { 'filename': filename, 'filename_data': data.name, 'title': title, 'x_label': x_label, 'y_label': y_label } gnuplot(scr.name, args_dict)
[ "def", "gnuplot_2d", "(", "x", ",", "y", ",", "filename", ",", "title", "=", "''", ",", "x_label", "=", "''", ",", "y_label", "=", "''", ")", ":", "_", ",", "ext", "=", "os", ".", "path", ".", "splitext", "(", "filename", ")", "if", "ext", "!=", "'.png'", ":", "filename", "+=", "'.png'", "gnuplot_cmds", "=", "'''\n set datafile separator \",\"\n set term pngcairo size 30cm,25cm\n set out filename\n\n unset key\n set border lw 1.5\n set grid lt -1 lc rgb \"gray80\"\n\n set title title\n set xlabel x_label\n set ylabel y_label\n\n plot filename_data u 1:2 w lp pt 6 ps 0.5\n '''", "scr", "=", "_GnuplotScriptTemp", "(", "gnuplot_cmds", ")", "data", "=", "_GnuplotDataTemp", "(", "x", ",", "y", ")", "args_dict", "=", "{", "'filename'", ":", "filename", ",", "'filename_data'", ":", "data", ".", "name", ",", "'title'", ":", "title", ",", "'x_label'", ":", "x_label", ",", "'y_label'", ":", "y_label", "}", "gnuplot", "(", "scr", ".", "name", ",", "args_dict", ")" ]
Function to produce a general 2D plot. Args: x (list): x points. y (list): y points. filename (str): Filename of the output image. title (str): Title of the plot. Default is '' (no title). x_label (str): x-axis label. y_label (str): y-axis label.
[ "Function", "to", "produce", "a", "general", "2D", "plot", "." ]
0e67fa0b839f94981f8e18dfd42c30f98b68f500
https://github.com/jtambasco/gnuplotpy/blob/0e67fa0b839f94981f8e18dfd42c30f98b68f500/gnuplotpy/gnuplot.py#L98-L140
train
jtambasco/gnuplotpy
gnuplotpy/gnuplot.py
gnuplot_3d_matrix
def gnuplot_3d_matrix(z_matrix, filename, title='', x_label='', y_label=''): ''' Function to produce a general 3D plot from a 2D matrix. Args: z_matrix (list): 2D matrix. filename (str): Filename of the output image. title (str): Title of the plot. Default is '' (no title). x_label (str): x-axis label. y_label (str): y-axis label. ''' _, ext = os.path.splitext(filename) if ext != '.png': filename += '.png' gnuplot_cmds = \ ''' set datafile separator "," set term pngcairo size 30cm,25cm set out filename unset key set border lw 1.5 set view map set title title set xlabel x_label set ylabel y_label splot filename_data matrix w pm3d ''' scr = _GnuplotScriptTemp(gnuplot_cmds) data = _GnuplotDataZMatrixTemp(z_matrix) args_dict = { 'filename': filename, 'filename_data': data.name, 'title': title, 'x_label': x_label, 'y_label': y_label } gnuplot(scr.name, args_dict)
python
def gnuplot_3d_matrix(z_matrix, filename, title='', x_label='', y_label=''): ''' Function to produce a general 3D plot from a 2D matrix. Args: z_matrix (list): 2D matrix. filename (str): Filename of the output image. title (str): Title of the plot. Default is '' (no title). x_label (str): x-axis label. y_label (str): y-axis label. ''' _, ext = os.path.splitext(filename) if ext != '.png': filename += '.png' gnuplot_cmds = \ ''' set datafile separator "," set term pngcairo size 30cm,25cm set out filename unset key set border lw 1.5 set view map set title title set xlabel x_label set ylabel y_label splot filename_data matrix w pm3d ''' scr = _GnuplotScriptTemp(gnuplot_cmds) data = _GnuplotDataZMatrixTemp(z_matrix) args_dict = { 'filename': filename, 'filename_data': data.name, 'title': title, 'x_label': x_label, 'y_label': y_label } gnuplot(scr.name, args_dict)
[ "def", "gnuplot_3d_matrix", "(", "z_matrix", ",", "filename", ",", "title", "=", "''", ",", "x_label", "=", "''", ",", "y_label", "=", "''", ")", ":", "_", ",", "ext", "=", "os", ".", "path", ".", "splitext", "(", "filename", ")", "if", "ext", "!=", "'.png'", ":", "filename", "+=", "'.png'", "gnuplot_cmds", "=", "'''\n set datafile separator \",\"\n set term pngcairo size 30cm,25cm\n set out filename\n\n unset key\n set border lw 1.5\n set view map\n\n set title title\n set xlabel x_label\n set ylabel y_label\n\n splot filename_data matrix w pm3d\n '''", "scr", "=", "_GnuplotScriptTemp", "(", "gnuplot_cmds", ")", "data", "=", "_GnuplotDataZMatrixTemp", "(", "z_matrix", ")", "args_dict", "=", "{", "'filename'", ":", "filename", ",", "'filename_data'", ":", "data", ".", "name", ",", "'title'", ":", "title", ",", "'x_label'", ":", "x_label", ",", "'y_label'", ":", "y_label", "}", "gnuplot", "(", "scr", ".", "name", ",", "args_dict", ")" ]
Function to produce a general 3D plot from a 2D matrix. Args: z_matrix (list): 2D matrix. filename (str): Filename of the output image. title (str): Title of the plot. Default is '' (no title). x_label (str): x-axis label. y_label (str): y-axis label.
[ "Function", "to", "produce", "a", "general", "3D", "plot", "from", "a", "2D", "matrix", "." ]
0e67fa0b839f94981f8e18dfd42c30f98b68f500
https://github.com/jtambasco/gnuplotpy/blob/0e67fa0b839f94981f8e18dfd42c30f98b68f500/gnuplotpy/gnuplot.py#L190-L231
train
SUNCAT-Center/CatHub
cathub/folderreader.py
FolderReader.read
def read(self, skip=[], goto_metal=None, goto_reaction=None): """ Get reactions from folders. Parameters ---------- skip: list of str list of folders not to read goto_reaction: str Skip ahead to this metal goto_reaction: Skip ahead to this reacion """ if len(skip) > 0: for skip_f in skip: self.omit_folders.append(skip_f) """ If publication level is input""" if os.path.isfile(self.data_base + '/publication.txt'): self.user_base_level -= 1 self.stdout.write('---------------------- \n') self.stdout.write('Starting folderreader! \n') self.stdout.write('---------------------- \n') found_reaction = False for root, dirs, files in os.walk(self.user_base): for omit_folder in self.omit_folders: # user specified omit_folder if omit_folder in dirs: dirs.remove(omit_folder) level = len(root.split("/")) - self.user_base_level if level == self.pub_level: self.read_pub(root) if level == self.DFT_level: self.DFT_code = os.path.basename(root) if level == self.XC_level: self.DFT_functional = os.path.basename(root) self.gas_folder = root + '/gas/' self.read_gas() if level == self.reference_level: if 'gas' in os.path.basename(root): continue if goto_metal is not None: if os.path.basename(root) == goto_metal: goto_metal = None else: dirs[:] = [] # don't read any sub_dirs continue self.read_bulk(root) if level == self.slab_level: self.read_slab(root) if level == self.reaction_level: if goto_reaction is not None: if os.path.basename(root) == goto_reaction: goto_reaction = None else: dirs[:] = [] # don't read any sub_dirs continue self.read_reaction(root) if level == self.final_level: self.root = root self.read_energies(root) if self.key_value_pairs_reaction is not None: yield self.key_value_pairs_reaction
python
def read(self, skip=[], goto_metal=None, goto_reaction=None): """ Get reactions from folders. Parameters ---------- skip: list of str list of folders not to read goto_reaction: str Skip ahead to this metal goto_reaction: Skip ahead to this reacion """ if len(skip) > 0: for skip_f in skip: self.omit_folders.append(skip_f) """ If publication level is input""" if os.path.isfile(self.data_base + '/publication.txt'): self.user_base_level -= 1 self.stdout.write('---------------------- \n') self.stdout.write('Starting folderreader! \n') self.stdout.write('---------------------- \n') found_reaction = False for root, dirs, files in os.walk(self.user_base): for omit_folder in self.omit_folders: # user specified omit_folder if omit_folder in dirs: dirs.remove(omit_folder) level = len(root.split("/")) - self.user_base_level if level == self.pub_level: self.read_pub(root) if level == self.DFT_level: self.DFT_code = os.path.basename(root) if level == self.XC_level: self.DFT_functional = os.path.basename(root) self.gas_folder = root + '/gas/' self.read_gas() if level == self.reference_level: if 'gas' in os.path.basename(root): continue if goto_metal is not None: if os.path.basename(root) == goto_metal: goto_metal = None else: dirs[:] = [] # don't read any sub_dirs continue self.read_bulk(root) if level == self.slab_level: self.read_slab(root) if level == self.reaction_level: if goto_reaction is not None: if os.path.basename(root) == goto_reaction: goto_reaction = None else: dirs[:] = [] # don't read any sub_dirs continue self.read_reaction(root) if level == self.final_level: self.root = root self.read_energies(root) if self.key_value_pairs_reaction is not None: yield self.key_value_pairs_reaction
[ "def", "read", "(", "self", ",", "skip", "=", "[", "]", ",", "goto_metal", "=", "None", ",", "goto_reaction", "=", "None", ")", ":", "if", "len", "(", "skip", ")", ">", "0", ":", "for", "skip_f", "in", "skip", ":", "self", ".", "omit_folders", ".", "append", "(", "skip_f", ")", "\"\"\" If publication level is input\"\"\"", "if", "os", ".", "path", ".", "isfile", "(", "self", ".", "data_base", "+", "'/publication.txt'", ")", ":", "self", ".", "user_base_level", "-=", "1", "self", ".", "stdout", ".", "write", "(", "'---------------------- \\n'", ")", "self", ".", "stdout", ".", "write", "(", "'Starting folderreader! \\n'", ")", "self", ".", "stdout", ".", "write", "(", "'---------------------- \\n'", ")", "found_reaction", "=", "False", "for", "root", ",", "dirs", ",", "files", "in", "os", ".", "walk", "(", "self", ".", "user_base", ")", ":", "for", "omit_folder", "in", "self", ".", "omit_folders", ":", "# user specified omit_folder", "if", "omit_folder", "in", "dirs", ":", "dirs", ".", "remove", "(", "omit_folder", ")", "level", "=", "len", "(", "root", ".", "split", "(", "\"/\"", ")", ")", "-", "self", ".", "user_base_level", "if", "level", "==", "self", ".", "pub_level", ":", "self", ".", "read_pub", "(", "root", ")", "if", "level", "==", "self", ".", "DFT_level", ":", "self", ".", "DFT_code", "=", "os", ".", "path", ".", "basename", "(", "root", ")", "if", "level", "==", "self", ".", "XC_level", ":", "self", ".", "DFT_functional", "=", "os", ".", "path", ".", "basename", "(", "root", ")", "self", ".", "gas_folder", "=", "root", "+", "'/gas/'", "self", ".", "read_gas", "(", ")", "if", "level", "==", "self", ".", "reference_level", ":", "if", "'gas'", "in", "os", ".", "path", ".", "basename", "(", "root", ")", ":", "continue", "if", "goto_metal", "is", "not", "None", ":", "if", "os", ".", "path", ".", "basename", "(", "root", ")", "==", "goto_metal", ":", "goto_metal", "=", "None", "else", ":", "dirs", "[", ":", "]", "=", "[", "]", "# don't read any sub_dirs", "continue", "self", ".", "read_bulk", "(", "root", ")", "if", "level", "==", "self", ".", "slab_level", ":", "self", ".", "read_slab", "(", "root", ")", "if", "level", "==", "self", ".", "reaction_level", ":", "if", "goto_reaction", "is", "not", "None", ":", "if", "os", ".", "path", ".", "basename", "(", "root", ")", "==", "goto_reaction", ":", "goto_reaction", "=", "None", "else", ":", "dirs", "[", ":", "]", "=", "[", "]", "# don't read any sub_dirs", "continue", "self", ".", "read_reaction", "(", "root", ")", "if", "level", "==", "self", ".", "final_level", ":", "self", ".", "root", "=", "root", "self", ".", "read_energies", "(", "root", ")", "if", "self", ".", "key_value_pairs_reaction", "is", "not", "None", ":", "yield", "self", ".", "key_value_pairs_reaction" ]
Get reactions from folders. Parameters ---------- skip: list of str list of folders not to read goto_reaction: str Skip ahead to this metal goto_reaction: Skip ahead to this reacion
[ "Get", "reactions", "from", "folders", "." ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/folderreader.py#L79-L150
train
guaix-ucm/numina
numina/array/utils.py
slice_create
def slice_create(center, block, start=0, stop=None): '''Return an slice with a symmetric region around center.''' do = coor_to_pix_1d(center - block) up = coor_to_pix_1d(center + block) l = max(start, do) if stop is not None: h = min(up + 1, stop) else: h = up + 1 return slice(l, h, 1)
python
def slice_create(center, block, start=0, stop=None): '''Return an slice with a symmetric region around center.''' do = coor_to_pix_1d(center - block) up = coor_to_pix_1d(center + block) l = max(start, do) if stop is not None: h = min(up + 1, stop) else: h = up + 1 return slice(l, h, 1)
[ "def", "slice_create", "(", "center", ",", "block", ",", "start", "=", "0", ",", "stop", "=", "None", ")", ":", "do", "=", "coor_to_pix_1d", "(", "center", "-", "block", ")", "up", "=", "coor_to_pix_1d", "(", "center", "+", "block", ")", "l", "=", "max", "(", "start", ",", "do", ")", "if", "stop", "is", "not", "None", ":", "h", "=", "min", "(", "up", "+", "1", ",", "stop", ")", "else", ":", "h", "=", "up", "+", "1", "return", "slice", "(", "l", ",", "h", ",", "1", ")" ]
Return an slice with a symmetric region around center.
[ "Return", "an", "slice", "with", "a", "symmetric", "region", "around", "center", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/utils.py#L40-L53
train
guaix-ucm/numina
numina/array/utils.py
image_box
def image_box(center, shape, box): '''Create a region of size box, around a center in a image of shape.''' return tuple(slice_create(c, b, stop=s) for c, s, b in zip(center, shape, box))
python
def image_box(center, shape, box): '''Create a region of size box, around a center in a image of shape.''' return tuple(slice_create(c, b, stop=s) for c, s, b in zip(center, shape, box))
[ "def", "image_box", "(", "center", ",", "shape", ",", "box", ")", ":", "return", "tuple", "(", "slice_create", "(", "c", ",", "b", ",", "stop", "=", "s", ")", "for", "c", ",", "s", ",", "b", "in", "zip", "(", "center", ",", "shape", ",", "box", ")", ")" ]
Create a region of size box, around a center in a image of shape.
[ "Create", "a", "region", "of", "size", "box", "around", "a", "center", "in", "a", "image", "of", "shape", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/utils.py#L56-L59
train
guaix-ucm/numina
numina/array/utils.py
expand_region
def expand_region(tuple_of_s, a, b, start=0, stop=None): '''Apply expend_slice on a tuple of slices''' return tuple(expand_slice(s, a, b, start=start, stop=stop) for s in tuple_of_s)
python
def expand_region(tuple_of_s, a, b, start=0, stop=None): '''Apply expend_slice on a tuple of slices''' return tuple(expand_slice(s, a, b, start=start, stop=stop) for s in tuple_of_s)
[ "def", "expand_region", "(", "tuple_of_s", ",", "a", ",", "b", ",", "start", "=", "0", ",", "stop", "=", "None", ")", ":", "return", "tuple", "(", "expand_slice", "(", "s", ",", "a", ",", "b", ",", "start", "=", "start", ",", "stop", "=", "stop", ")", "for", "s", "in", "tuple_of_s", ")" ]
Apply expend_slice on a tuple of slices
[ "Apply", "expend_slice", "on", "a", "tuple", "of", "slices" ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/utils.py#L81-L84
train
guaix-ucm/numina
numina/user/helpers.py
BaseWorkEnvironment.adapt_obsres
def adapt_obsres(self, obsres): """Adapt obsres after file copy""" _logger.debug('adapt observation result for work dir') for f in obsres.images: # Remove path components f.filename = os.path.basename(f.filename) return obsres
python
def adapt_obsres(self, obsres): """Adapt obsres after file copy""" _logger.debug('adapt observation result for work dir') for f in obsres.images: # Remove path components f.filename = os.path.basename(f.filename) return obsres
[ "def", "adapt_obsres", "(", "self", ",", "obsres", ")", ":", "_logger", ".", "debug", "(", "'adapt observation result for work dir'", ")", "for", "f", "in", "obsres", ".", "images", ":", "# Remove path components", "f", ".", "filename", "=", "os", ".", "path", ".", "basename", "(", "f", ".", "filename", ")", "return", "obsres" ]
Adapt obsres after file copy
[ "Adapt", "obsres", "after", "file", "copy" ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/user/helpers.py#L326-L333
train
guaix-ucm/numina
numina/user/helpers.py
DiskStorageBase.store
def store(self, completed_task, resultsdir): """Store the values of the completed task.""" with working_directory(resultsdir): _logger.info('storing result') return completed_task.store(self)
python
def store(self, completed_task, resultsdir): """Store the values of the completed task.""" with working_directory(resultsdir): _logger.info('storing result') return completed_task.store(self)
[ "def", "store", "(", "self", ",", "completed_task", ",", "resultsdir", ")", ":", "with", "working_directory", "(", "resultsdir", ")", ":", "_logger", ".", "info", "(", "'storing result'", ")", "return", "completed_task", ".", "store", "(", "self", ")" ]
Store the values of the completed task.
[ "Store", "the", "values", "of", "the", "completed", "task", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/user/helpers.py#L396-L401
train
guaix-ucm/numina
numina/types/datatype.py
DataType.validate
def validate(self, obj): """Validate convertibility to internal representation Returns ------- bool True if 'obj' matches the data type Raises ------- ValidationError If the validation fails """ if not isinstance(obj, self.internal_type): raise ValidationError(obj, self.internal_type) return True
python
def validate(self, obj): """Validate convertibility to internal representation Returns ------- bool True if 'obj' matches the data type Raises ------- ValidationError If the validation fails """ if not isinstance(obj, self.internal_type): raise ValidationError(obj, self.internal_type) return True
[ "def", "validate", "(", "self", ",", "obj", ")", ":", "if", "not", "isinstance", "(", "obj", ",", "self", ".", "internal_type", ")", ":", "raise", "ValidationError", "(", "obj", ",", "self", ".", "internal_type", ")", "return", "True" ]
Validate convertibility to internal representation Returns ------- bool True if 'obj' matches the data type Raises ------- ValidationError If the validation fails
[ "Validate", "convertibility", "to", "internal", "representation" ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/types/datatype.py#L50-L66
train
SUNCAT-Center/CatHub
cathub/postgresql.py
CathubPostgreSQL.delete_user
def delete_user(self, user): """ Delete user and all data""" assert self.user == 'catroot' or self.user == 'postgres' assert not user == 'public' con = self.connection or self._connect() cur = con.cursor() cur.execute('DROP SCHEMA {user} CASCADE;'.format(user=user)) cur.execute('REVOKE USAGE ON SCHEMA public FROM {user};' .format(user=user)) cur.execute( 'REVOKE SELECT ON ALL TABLES IN SCHEMA public FROM {user};' .format(user=user)) cur.execute( 'DROP ROLE {user};'.format(user=user)) self.stdout.write( 'REMOVED USER {user}\n'.format(user=user)) if self.connection is None: con.commit() con.close() return self
python
def delete_user(self, user): """ Delete user and all data""" assert self.user == 'catroot' or self.user == 'postgres' assert not user == 'public' con = self.connection or self._connect() cur = con.cursor() cur.execute('DROP SCHEMA {user} CASCADE;'.format(user=user)) cur.execute('REVOKE USAGE ON SCHEMA public FROM {user};' .format(user=user)) cur.execute( 'REVOKE SELECT ON ALL TABLES IN SCHEMA public FROM {user};' .format(user=user)) cur.execute( 'DROP ROLE {user};'.format(user=user)) self.stdout.write( 'REMOVED USER {user}\n'.format(user=user)) if self.connection is None: con.commit() con.close() return self
[ "def", "delete_user", "(", "self", ",", "user", ")", ":", "assert", "self", ".", "user", "==", "'catroot'", "or", "self", ".", "user", "==", "'postgres'", "assert", "not", "user", "==", "'public'", "con", "=", "self", ".", "connection", "or", "self", ".", "_connect", "(", ")", "cur", "=", "con", ".", "cursor", "(", ")", "cur", ".", "execute", "(", "'DROP SCHEMA {user} CASCADE;'", ".", "format", "(", "user", "=", "user", ")", ")", "cur", ".", "execute", "(", "'REVOKE USAGE ON SCHEMA public FROM {user};'", ".", "format", "(", "user", "=", "user", ")", ")", "cur", ".", "execute", "(", "'REVOKE SELECT ON ALL TABLES IN SCHEMA public FROM {user};'", ".", "format", "(", "user", "=", "user", ")", ")", "cur", ".", "execute", "(", "'DROP ROLE {user};'", ".", "format", "(", "user", "=", "user", ")", ")", "self", ".", "stdout", ".", "write", "(", "'REMOVED USER {user}\\n'", ".", "format", "(", "user", "=", "user", ")", ")", "if", "self", ".", "connection", "is", "None", ":", "con", ".", "commit", "(", ")", "con", ".", "close", "(", ")", "return", "self" ]
Delete user and all data
[ "Delete", "user", "and", "all", "data" ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/postgresql.py#L320-L341
train
SUNCAT-Center/CatHub
cathub/postgresql.py
CathubPostgreSQL.truncate_schema
def truncate_schema(self): """ Will delete all data in schema. Only for test use!""" assert self.server == 'localhost' con = self.connection or self._connect() self._initialize(con) cur = con.cursor() cur.execute('DELETE FROM publication;') cur.execute('TRUNCATE systems CASCADE;') con.commit() con.close() return
python
def truncate_schema(self): """ Will delete all data in schema. Only for test use!""" assert self.server == 'localhost' con = self.connection or self._connect() self._initialize(con) cur = con.cursor() cur.execute('DELETE FROM publication;') cur.execute('TRUNCATE systems CASCADE;') con.commit() con.close() return
[ "def", "truncate_schema", "(", "self", ")", ":", "assert", "self", ".", "server", "==", "'localhost'", "con", "=", "self", ".", "connection", "or", "self", ".", "_connect", "(", ")", "self", ".", "_initialize", "(", "con", ")", "cur", "=", "con", ".", "cursor", "(", ")", "cur", ".", "execute", "(", "'DELETE FROM publication;'", ")", "cur", ".", "execute", "(", "'TRUNCATE systems CASCADE;'", ")", "con", ".", "commit", "(", ")", "con", ".", "close", "(", ")", "return" ]
Will delete all data in schema. Only for test use!
[ "Will", "delete", "all", "data", "in", "schema", ".", "Only", "for", "test", "use!" ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/postgresql.py#L772-L786
train
druids/django-chamber
chamber/commands/__init__.py
ProgressBarStream.write
def write(self, *args, **kwargs): """ Call the stream's write method without linebreaks at line endings. """ return self.stream.write(ending="", *args, **kwargs)
python
def write(self, *args, **kwargs): """ Call the stream's write method without linebreaks at line endings. """ return self.stream.write(ending="", *args, **kwargs)
[ "def", "write", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "self", ".", "stream", ".", "write", "(", "ending", "=", "\"\"", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
Call the stream's write method without linebreaks at line endings.
[ "Call", "the", "stream", "s", "write", "method", "without", "linebreaks", "at", "line", "endings", "." ]
eef4169923557e96877a664fa254e8c0814f3f23
https://github.com/druids/django-chamber/blob/eef4169923557e96877a664fa254e8c0814f3f23/chamber/commands/__init__.py#L19-L23
train
arkottke/pysra
pysra/site.py
NonlinearProperty._update
def _update(self): """Initialize the 1D interpolation.""" if self.strains.size and self.strains.size == self.values.size: x = np.log(self.strains) y = self.values if x.size < 4: self._interpolater = interp1d( x, y, 'linear', bounds_error=False, fill_value=(y[0], y[-1])) else: self._interpolater = interp1d( x, y, 'cubic', bounds_error=False, fill_value=(y[0], y[-1]))
python
def _update(self): """Initialize the 1D interpolation.""" if self.strains.size and self.strains.size == self.values.size: x = np.log(self.strains) y = self.values if x.size < 4: self._interpolater = interp1d( x, y, 'linear', bounds_error=False, fill_value=(y[0], y[-1])) else: self._interpolater = interp1d( x, y, 'cubic', bounds_error=False, fill_value=(y[0], y[-1]))
[ "def", "_update", "(", "self", ")", ":", "if", "self", ".", "strains", ".", "size", "and", "self", ".", "strains", ".", "size", "==", "self", ".", "values", ".", "size", ":", "x", "=", "np", ".", "log", "(", "self", ".", "strains", ")", "y", "=", "self", ".", "values", "if", "x", ".", "size", "<", "4", ":", "self", ".", "_interpolater", "=", "interp1d", "(", "x", ",", "y", ",", "'linear'", ",", "bounds_error", "=", "False", ",", "fill_value", "=", "(", "y", "[", "0", "]", ",", "y", "[", "-", "1", "]", ")", ")", "else", ":", "self", ".", "_interpolater", "=", "interp1d", "(", "x", ",", "y", ",", "'cubic'", ",", "bounds_error", "=", "False", ",", "fill_value", "=", "(", "y", "[", "0", "]", ",", "y", "[", "-", "1", "]", ")", ")" ]
Initialize the 1D interpolation.
[ "Initialize", "the", "1D", "interpolation", "." ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/site.py#L129-L149
train
arkottke/pysra
pysra/site.py
SoilType.is_nonlinear
def is_nonlinear(self): """If nonlinear properties are specified.""" return any( isinstance(p, NonlinearProperty) for p in [self.mod_reduc, self.damping])
python
def is_nonlinear(self): """If nonlinear properties are specified.""" return any( isinstance(p, NonlinearProperty) for p in [self.mod_reduc, self.damping])
[ "def", "is_nonlinear", "(", "self", ")", ":", "return", "any", "(", "isinstance", "(", "p", ",", "NonlinearProperty", ")", "for", "p", "in", "[", "self", ".", "mod_reduc", ",", "self", ".", "damping", "]", ")" ]
If nonlinear properties are specified.
[ "If", "nonlinear", "properties", "are", "specified", "." ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/site.py#L194-L198
train
arkottke/pysra
pysra/site.py
IterativeValue.relative_error
def relative_error(self): """The relative error, in percent, between the two iterations. """ if self.previous is not None: # FIXME # Use the maximum strain value -- this is important for error # calculation with frequency dependent properties # prev = np.max(self.previous) # value = np.max(self.value) try: err = 100. * np.max((self.previous - self.value) / self.value) except ZeroDivisionError: err = np.inf else: err = 0 return err
python
def relative_error(self): """The relative error, in percent, between the two iterations. """ if self.previous is not None: # FIXME # Use the maximum strain value -- this is important for error # calculation with frequency dependent properties # prev = np.max(self.previous) # value = np.max(self.value) try: err = 100. * np.max((self.previous - self.value) / self.value) except ZeroDivisionError: err = np.inf else: err = 0 return err
[ "def", "relative_error", "(", "self", ")", ":", "if", "self", ".", "previous", "is", "not", "None", ":", "# FIXME", "# Use the maximum strain value -- this is important for error", "# calculation with frequency dependent properties", "# prev = np.max(self.previous)", "# value = np.max(self.value)", "try", ":", "err", "=", "100.", "*", "np", ".", "max", "(", "(", "self", ".", "previous", "-", "self", ".", "value", ")", "/", "self", ".", "value", ")", "except", "ZeroDivisionError", ":", "err", "=", "np", ".", "inf", "else", ":", "err", "=", "0", "return", "err" ]
The relative error, in percent, between the two iterations.
[ "The", "relative", "error", "in", "percent", "between", "the", "two", "iterations", "." ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/site.py#L563-L578
train
arkottke/pysra
pysra/site.py
Layer.duplicate
def duplicate(cls, other): """Create a copy of the layer.""" return cls(other.soil_type, other.thickness, other.shear_vel)
python
def duplicate(cls, other): """Create a copy of the layer.""" return cls(other.soil_type, other.thickness, other.shear_vel)
[ "def", "duplicate", "(", "cls", ",", "other", ")", ":", "return", "cls", "(", "other", ".", "soil_type", ",", "other", ".", "thickness", ",", "other", ".", "shear_vel", ")" ]
Create a copy of the layer.
[ "Create", "a", "copy", "of", "the", "layer", "." ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/site.py#L630-L632
train
arkottke/pysra
pysra/site.py
Layer.damping
def damping(self): """Strain-compatible damping.""" try: value = self._damping.value except AttributeError: value = self._damping return value
python
def damping(self): """Strain-compatible damping.""" try: value = self._damping.value except AttributeError: value = self._damping return value
[ "def", "damping", "(", "self", ")", ":", "try", ":", "value", "=", "self", ".", "_damping", ".", "value", "except", "AttributeError", ":", "value", "=", "self", ".", "_damping", "return", "value" ]
Strain-compatible damping.
[ "Strain", "-", "compatible", "damping", "." ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/site.py#L640-L646
train
arkottke/pysra
pysra/site.py
Profile.auto_discretize
def auto_discretize(self, max_freq=50., wave_frac=0.2): """Subdivide the layers to capture strain variation. Parameters ---------- max_freq: float Maximum frequency of interest [Hz]. wave_frac: float Fraction of wavelength required. Typically 1/3 to 1/5. Returns ------- profile: Profile A new profile with modified layer thicknesses """ layers = [] for l in self: if l.soil_type.is_nonlinear: opt_thickness = l.shear_vel / max_freq * wave_frac count = np.ceil(l.thickness / opt_thickness).astype(int) thickness = l.thickness / count for _ in range(count): layers.append(Layer(l.soil_type, thickness, l.shear_vel)) else: layers.append(l) return Profile(layers, wt_depth=self.wt_depth)
python
def auto_discretize(self, max_freq=50., wave_frac=0.2): """Subdivide the layers to capture strain variation. Parameters ---------- max_freq: float Maximum frequency of interest [Hz]. wave_frac: float Fraction of wavelength required. Typically 1/3 to 1/5. Returns ------- profile: Profile A new profile with modified layer thicknesses """ layers = [] for l in self: if l.soil_type.is_nonlinear: opt_thickness = l.shear_vel / max_freq * wave_frac count = np.ceil(l.thickness / opt_thickness).astype(int) thickness = l.thickness / count for _ in range(count): layers.append(Layer(l.soil_type, thickness, l.shear_vel)) else: layers.append(l) return Profile(layers, wt_depth=self.wt_depth)
[ "def", "auto_discretize", "(", "self", ",", "max_freq", "=", "50.", ",", "wave_frac", "=", "0.2", ")", ":", "layers", "=", "[", "]", "for", "l", "in", "self", ":", "if", "l", ".", "soil_type", ".", "is_nonlinear", ":", "opt_thickness", "=", "l", ".", "shear_vel", "/", "max_freq", "*", "wave_frac", "count", "=", "np", ".", "ceil", "(", "l", ".", "thickness", "/", "opt_thickness", ")", ".", "astype", "(", "int", ")", "thickness", "=", "l", ".", "thickness", "/", "count", "for", "_", "in", "range", "(", "count", ")", ":", "layers", ".", "append", "(", "Layer", "(", "l", ".", "soil_type", ",", "thickness", ",", "l", ".", "shear_vel", ")", ")", "else", ":", "layers", ".", "append", "(", "l", ")", "return", "Profile", "(", "layers", ",", "wt_depth", "=", "self", ".", "wt_depth", ")" ]
Subdivide the layers to capture strain variation. Parameters ---------- max_freq: float Maximum frequency of interest [Hz]. wave_frac: float Fraction of wavelength required. Typically 1/3 to 1/5. Returns ------- profile: Profile A new profile with modified layer thicknesses
[ "Subdivide", "the", "layers", "to", "capture", "strain", "variation", "." ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/site.py#L866-L892
train
arkottke/pysra
pysra/site.py
Profile.location
def location(self, wave_field, depth=None, index=None): """Create a Location for a specific depth. Parameters ---------- wave_field: str Wave field. See :class:`Location` for possible values. depth: float, optional Depth corresponding to the :class`Location` of interest. If provided, then index is ignored. index: int, optional Index corresponding to layer of interest in :class:`Profile`. If provided, then depth is ignored and location is provided a top of layer. Returns ------- Location Corresponding :class:`Location` object. """ if not isinstance(wave_field, WaveField): wave_field = WaveField[wave_field] if index is None and depth is not None: for i, layer in enumerate(self[:-1]): if layer.depth <= depth < layer.depth_base: depth_within = depth - layer.depth break else: # Bedrock i = len(self) - 1 layer = self[-1] depth_within = 0 elif index is not None and depth is None: layer = self[index] i = self.index(layer) depth_within = 0 else: raise NotImplementedError return Location(i, layer, wave_field, depth_within)
python
def location(self, wave_field, depth=None, index=None): """Create a Location for a specific depth. Parameters ---------- wave_field: str Wave field. See :class:`Location` for possible values. depth: float, optional Depth corresponding to the :class`Location` of interest. If provided, then index is ignored. index: int, optional Index corresponding to layer of interest in :class:`Profile`. If provided, then depth is ignored and location is provided a top of layer. Returns ------- Location Corresponding :class:`Location` object. """ if not isinstance(wave_field, WaveField): wave_field = WaveField[wave_field] if index is None and depth is not None: for i, layer in enumerate(self[:-1]): if layer.depth <= depth < layer.depth_base: depth_within = depth - layer.depth break else: # Bedrock i = len(self) - 1 layer = self[-1] depth_within = 0 elif index is not None and depth is None: layer = self[index] i = self.index(layer) depth_within = 0 else: raise NotImplementedError return Location(i, layer, wave_field, depth_within)
[ "def", "location", "(", "self", ",", "wave_field", ",", "depth", "=", "None", ",", "index", "=", "None", ")", ":", "if", "not", "isinstance", "(", "wave_field", ",", "WaveField", ")", ":", "wave_field", "=", "WaveField", "[", "wave_field", "]", "if", "index", "is", "None", "and", "depth", "is", "not", "None", ":", "for", "i", ",", "layer", "in", "enumerate", "(", "self", "[", ":", "-", "1", "]", ")", ":", "if", "layer", ".", "depth", "<=", "depth", "<", "layer", ".", "depth_base", ":", "depth_within", "=", "depth", "-", "layer", ".", "depth", "break", "else", ":", "# Bedrock", "i", "=", "len", "(", "self", ")", "-", "1", "layer", "=", "self", "[", "-", "1", "]", "depth_within", "=", "0", "elif", "index", "is", "not", "None", "and", "depth", "is", "None", ":", "layer", "=", "self", "[", "index", "]", "i", "=", "self", ".", "index", "(", "layer", ")", "depth_within", "=", "0", "else", ":", "raise", "NotImplementedError", "return", "Location", "(", "i", ",", "layer", ",", "wave_field", ",", "depth_within", ")" ]
Create a Location for a specific depth. Parameters ---------- wave_field: str Wave field. See :class:`Location` for possible values. depth: float, optional Depth corresponding to the :class`Location` of interest. If provided, then index is ignored. index: int, optional Index corresponding to layer of interest in :class:`Profile`. If provided, then depth is ignored and location is provided a top of layer. Returns ------- Location Corresponding :class:`Location` object.
[ "Create", "a", "Location", "for", "a", "specific", "depth", "." ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/site.py#L910-L950
train
arkottke/pysra
pysra/site.py
Profile.time_average_vel
def time_average_vel(self, depth): """Calculate the time-average velocity. Parameters ---------- depth: float Depth over which the average velocity is computed. Returns ------- avg_vel: float Time averaged velocity. """ depths = [l.depth for l in self] # Final layer is infinite and is treated separately travel_times = [0] + [l.travel_time for l in self[:-1]] # If needed, add the final layer to the required depth if depths[-1] < depth: depths.append(depth) travel_times.append((depth - self[-1].depth) / self[-1].shear_vel) total_travel_times = np.cumsum(travel_times) # Interpolate the travel time to the depth of interest avg_shear_vel = depth / np.interp(depth, depths, total_travel_times) return avg_shear_vel
python
def time_average_vel(self, depth): """Calculate the time-average velocity. Parameters ---------- depth: float Depth over which the average velocity is computed. Returns ------- avg_vel: float Time averaged velocity. """ depths = [l.depth for l in self] # Final layer is infinite and is treated separately travel_times = [0] + [l.travel_time for l in self[:-1]] # If needed, add the final layer to the required depth if depths[-1] < depth: depths.append(depth) travel_times.append((depth - self[-1].depth) / self[-1].shear_vel) total_travel_times = np.cumsum(travel_times) # Interpolate the travel time to the depth of interest avg_shear_vel = depth / np.interp(depth, depths, total_travel_times) return avg_shear_vel
[ "def", "time_average_vel", "(", "self", ",", "depth", ")", ":", "depths", "=", "[", "l", ".", "depth", "for", "l", "in", "self", "]", "# Final layer is infinite and is treated separately", "travel_times", "=", "[", "0", "]", "+", "[", "l", ".", "travel_time", "for", "l", "in", "self", "[", ":", "-", "1", "]", "]", "# If needed, add the final layer to the required depth", "if", "depths", "[", "-", "1", "]", "<", "depth", ":", "depths", ".", "append", "(", "depth", ")", "travel_times", ".", "append", "(", "(", "depth", "-", "self", "[", "-", "1", "]", ".", "depth", ")", "/", "self", "[", "-", "1", "]", ".", "shear_vel", ")", "total_travel_times", "=", "np", ".", "cumsum", "(", "travel_times", ")", "# Interpolate the travel time to the depth of interest", "avg_shear_vel", "=", "depth", "/", "np", ".", "interp", "(", "depth", ",", "depths", ",", "total_travel_times", ")", "return", "avg_shear_vel" ]
Calculate the time-average velocity. Parameters ---------- depth: float Depth over which the average velocity is computed. Returns ------- avg_vel: float Time averaged velocity.
[ "Calculate", "the", "time", "-", "average", "velocity", "." ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/site.py#L952-L976
train
arkottke/pysra
pysra/site.py
Profile.simplified_rayliegh_vel
def simplified_rayliegh_vel(self): """Simplified Rayliegh velocity of the site. This follows the simplifications proposed by Urzua et al. (2017) Returns ------- rayleigh_vel : float Equivalent shear-wave velocity. """ # FIXME: What if last layer has no thickness? thicks = np.array([l.thickness for l in self]) depths_mid = np.array([l.depth_mid for l in self]) shear_vels = np.array([l.shear_vel for l in self]) mode_incr = depths_mid * thicks / shear_vels ** 2 # Mode shape is computed as the sumation from the base of # the profile. Need to append a 0 for the roll performed in the next # step shape = np.r_[np.cumsum(mode_incr[::-1])[::-1], 0] freq_fund = np.sqrt(4 * np.sum( thicks * depths_mid ** 2 / shear_vels ** 2 ) / np.sum( thicks * # Roll is used to offset the mode_shape so that the sum # can be calculated for two adjacent layers np.sum(np.c_[shape, np.roll(shape, -1)], axis=1)[:-1] ** 2)) period_fun = 2 * np.pi / freq_fund rayleigh_vel = 4 * thicks.sum() / period_fun return rayleigh_vel
python
def simplified_rayliegh_vel(self): """Simplified Rayliegh velocity of the site. This follows the simplifications proposed by Urzua et al. (2017) Returns ------- rayleigh_vel : float Equivalent shear-wave velocity. """ # FIXME: What if last layer has no thickness? thicks = np.array([l.thickness for l in self]) depths_mid = np.array([l.depth_mid for l in self]) shear_vels = np.array([l.shear_vel for l in self]) mode_incr = depths_mid * thicks / shear_vels ** 2 # Mode shape is computed as the sumation from the base of # the profile. Need to append a 0 for the roll performed in the next # step shape = np.r_[np.cumsum(mode_incr[::-1])[::-1], 0] freq_fund = np.sqrt(4 * np.sum( thicks * depths_mid ** 2 / shear_vels ** 2 ) / np.sum( thicks * # Roll is used to offset the mode_shape so that the sum # can be calculated for two adjacent layers np.sum(np.c_[shape, np.roll(shape, -1)], axis=1)[:-1] ** 2)) period_fun = 2 * np.pi / freq_fund rayleigh_vel = 4 * thicks.sum() / period_fun return rayleigh_vel
[ "def", "simplified_rayliegh_vel", "(", "self", ")", ":", "# FIXME: What if last layer has no thickness?", "thicks", "=", "np", ".", "array", "(", "[", "l", ".", "thickness", "for", "l", "in", "self", "]", ")", "depths_mid", "=", "np", ".", "array", "(", "[", "l", ".", "depth_mid", "for", "l", "in", "self", "]", ")", "shear_vels", "=", "np", ".", "array", "(", "[", "l", ".", "shear_vel", "for", "l", "in", "self", "]", ")", "mode_incr", "=", "depths_mid", "*", "thicks", "/", "shear_vels", "**", "2", "# Mode shape is computed as the sumation from the base of", "# the profile. Need to append a 0 for the roll performed in the next", "# step", "shape", "=", "np", ".", "r_", "[", "np", ".", "cumsum", "(", "mode_incr", "[", ":", ":", "-", "1", "]", ")", "[", ":", ":", "-", "1", "]", ",", "0", "]", "freq_fund", "=", "np", ".", "sqrt", "(", "4", "*", "np", ".", "sum", "(", "thicks", "*", "depths_mid", "**", "2", "/", "shear_vels", "**", "2", ")", "/", "np", ".", "sum", "(", "thicks", "*", "# Roll is used to offset the mode_shape so that the sum", "# can be calculated for two adjacent layers", "np", ".", "sum", "(", "np", ".", "c_", "[", "shape", ",", "np", ".", "roll", "(", "shape", ",", "-", "1", ")", "]", ",", "axis", "=", "1", ")", "[", ":", "-", "1", "]", "**", "2", ")", ")", "period_fun", "=", "2", "*", "np", ".", "pi", "/", "freq_fund", "rayleigh_vel", "=", "4", "*", "thicks", ".", "sum", "(", ")", "/", "period_fun", "return", "rayleigh_vel" ]
Simplified Rayliegh velocity of the site. This follows the simplifications proposed by Urzua et al. (2017) Returns ------- rayleigh_vel : float Equivalent shear-wave velocity.
[ "Simplified", "Rayliegh", "velocity", "of", "the", "site", "." ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/site.py#L978-L1008
train
arkottke/pysra
pysra/variation.py
ToroThicknessVariation.iter_thickness
def iter_thickness(self, depth_total): """Iterate over the varied thicknesses. The layering is generated using a non-homogenous Poisson process. The following routine is used to generate the layering. The rate function, :math:`\lambda(t)`, is integrated from 0 to t to generate cumulative rate function, :math:`\Lambda(t)`. This function is then inverted producing :math:`\Lambda^{-1}(t)`. Random variables are produced using the a exponential random variation with :math:`\mu = 1` and converted to the nonhomogenous variables using the inverted function. Parameters ---------- depth_total: float Total depth generated. Last thickness is truncated to achieve this depth. Yields ------ float Varied thickness. """ total = 0 depth_prev = 0 while depth_prev < depth_total: # Add a random exponential increment total += np.random.exponential(1.0) # Convert between x and depth using the inverse of \Lambda(t) depth = np.power( (self.c_2 * total) / self.c_3 + total / self.c_3 + np.power( self.c_1, self.c_2 + 1), 1 / (self.c_2 + 1)) - self.c_1 thickness = depth - depth_prev if depth > depth_total: thickness = (depth_total - depth_prev) depth = depth_prev + thickness depth_mid = (depth_prev + depth) / 2 yield thickness, depth_mid depth_prev = depth
python
def iter_thickness(self, depth_total): """Iterate over the varied thicknesses. The layering is generated using a non-homogenous Poisson process. The following routine is used to generate the layering. The rate function, :math:`\lambda(t)`, is integrated from 0 to t to generate cumulative rate function, :math:`\Lambda(t)`. This function is then inverted producing :math:`\Lambda^{-1}(t)`. Random variables are produced using the a exponential random variation with :math:`\mu = 1` and converted to the nonhomogenous variables using the inverted function. Parameters ---------- depth_total: float Total depth generated. Last thickness is truncated to achieve this depth. Yields ------ float Varied thickness. """ total = 0 depth_prev = 0 while depth_prev < depth_total: # Add a random exponential increment total += np.random.exponential(1.0) # Convert between x and depth using the inverse of \Lambda(t) depth = np.power( (self.c_2 * total) / self.c_3 + total / self.c_3 + np.power( self.c_1, self.c_2 + 1), 1 / (self.c_2 + 1)) - self.c_1 thickness = depth - depth_prev if depth > depth_total: thickness = (depth_total - depth_prev) depth = depth_prev + thickness depth_mid = (depth_prev + depth) / 2 yield thickness, depth_mid depth_prev = depth
[ "def", "iter_thickness", "(", "self", ",", "depth_total", ")", ":", "total", "=", "0", "depth_prev", "=", "0", "while", "depth_prev", "<", "depth_total", ":", "# Add a random exponential increment", "total", "+=", "np", ".", "random", ".", "exponential", "(", "1.0", ")", "# Convert between x and depth using the inverse of \\Lambda(t)", "depth", "=", "np", ".", "power", "(", "(", "self", ".", "c_2", "*", "total", ")", "/", "self", ".", "c_3", "+", "total", "/", "self", ".", "c_3", "+", "np", ".", "power", "(", "self", ".", "c_1", ",", "self", ".", "c_2", "+", "1", ")", ",", "1", "/", "(", "self", ".", "c_2", "+", "1", ")", ")", "-", "self", ".", "c_1", "thickness", "=", "depth", "-", "depth_prev", "if", "depth", ">", "depth_total", ":", "thickness", "=", "(", "depth_total", "-", "depth_prev", ")", "depth", "=", "depth_prev", "+", "thickness", "depth_mid", "=", "(", "depth_prev", "+", "depth", ")", "/", "2", "yield", "thickness", ",", "depth_mid", "depth_prev", "=", "depth" ]
Iterate over the varied thicknesses. The layering is generated using a non-homogenous Poisson process. The following routine is used to generate the layering. The rate function, :math:`\lambda(t)`, is integrated from 0 to t to generate cumulative rate function, :math:`\Lambda(t)`. This function is then inverted producing :math:`\Lambda^{-1}(t)`. Random variables are produced using the a exponential random variation with :math:`\mu = 1` and converted to the nonhomogenous variables using the inverted function. Parameters ---------- depth_total: float Total depth generated. Last thickness is truncated to achieve this depth. Yields ------ float Varied thickness.
[ "Iterate", "over", "the", "varied", "thicknesses", "." ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/variation.py#L149-L194
train
arkottke/pysra
pysra/variation.py
VelocityVariation._calc_covar_matrix
def _calc_covar_matrix(self, profile): """Calculate the covariance matrix. Parameters ---------- profile : site.Profile Input site profile Yields ------ covar : `class`:numpy.array Covariance matrix """ corr = self._calc_corr(profile) std = self._calc_ln_std(profile) # Modify the standard deviation by the truncated norm scale std *= randnorm.scale var = std ** 2 covar = corr * std[:-1] * std[1:] # Main diagonal is the variance mat = diags([covar, var, covar], [-1, 0, 1]).toarray() return mat
python
def _calc_covar_matrix(self, profile): """Calculate the covariance matrix. Parameters ---------- profile : site.Profile Input site profile Yields ------ covar : `class`:numpy.array Covariance matrix """ corr = self._calc_corr(profile) std = self._calc_ln_std(profile) # Modify the standard deviation by the truncated norm scale std *= randnorm.scale var = std ** 2 covar = corr * std[:-1] * std[1:] # Main diagonal is the variance mat = diags([covar, var, covar], [-1, 0, 1]).toarray() return mat
[ "def", "_calc_covar_matrix", "(", "self", ",", "profile", ")", ":", "corr", "=", "self", ".", "_calc_corr", "(", "profile", ")", "std", "=", "self", ".", "_calc_ln_std", "(", "profile", ")", "# Modify the standard deviation by the truncated norm scale", "std", "*=", "randnorm", ".", "scale", "var", "=", "std", "**", "2", "covar", "=", "corr", "*", "std", "[", ":", "-", "1", "]", "*", "std", "[", "1", ":", "]", "# Main diagonal is the variance", "mat", "=", "diags", "(", "[", "covar", ",", "var", ",", "covar", "]", ",", "[", "-", "1", ",", "0", ",", "1", "]", ")", ".", "toarray", "(", ")", "return", "mat" ]
Calculate the covariance matrix. Parameters ---------- profile : site.Profile Input site profile Yields ------ covar : `class`:numpy.array Covariance matrix
[ "Calculate", "the", "covariance", "matrix", "." ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/variation.py#L265-L289
train
arkottke/pysra
pysra/variation.py
ToroVelocityVariation._calc_corr
def _calc_corr(self, profile): """Compute the adjacent-layer correlations Parameters ---------- profile : :class:`site.Profile` Input site profile Yields ------ corr : :class:`numpy.array` Adjacent-layer correlations """ depth = np.array([l.depth_mid for l in profile[:-1]]) thick = np.diff(depth) depth = depth[1:] # Depth dependent correlation corr_depth = (self.rho_200 * np.power( (depth + self.rho_0) / (200 + self.rho_0), self.b)) corr_depth[depth > 200] = self.rho_200 # Thickness dependent correlation corr_thick = self.rho_0 * np.exp(-thick / self.delta) # Final correlation # Correlation coefficient corr = (1 - corr_depth) * corr_thick + corr_depth # Bedrock is perfectly correlated with layer above it corr = np.r_[corr, 1] return corr
python
def _calc_corr(self, profile): """Compute the adjacent-layer correlations Parameters ---------- profile : :class:`site.Profile` Input site profile Yields ------ corr : :class:`numpy.array` Adjacent-layer correlations """ depth = np.array([l.depth_mid for l in profile[:-1]]) thick = np.diff(depth) depth = depth[1:] # Depth dependent correlation corr_depth = (self.rho_200 * np.power( (depth + self.rho_0) / (200 + self.rho_0), self.b)) corr_depth[depth > 200] = self.rho_200 # Thickness dependent correlation corr_thick = self.rho_0 * np.exp(-thick / self.delta) # Final correlation # Correlation coefficient corr = (1 - corr_depth) * corr_thick + corr_depth # Bedrock is perfectly correlated with layer above it corr = np.r_[corr, 1] return corr
[ "def", "_calc_corr", "(", "self", ",", "profile", ")", ":", "depth", "=", "np", ".", "array", "(", "[", "l", ".", "depth_mid", "for", "l", "in", "profile", "[", ":", "-", "1", "]", "]", ")", "thick", "=", "np", ".", "diff", "(", "depth", ")", "depth", "=", "depth", "[", "1", ":", "]", "# Depth dependent correlation", "corr_depth", "=", "(", "self", ".", "rho_200", "*", "np", ".", "power", "(", "(", "depth", "+", "self", ".", "rho_0", ")", "/", "(", "200", "+", "self", ".", "rho_0", ")", ",", "self", ".", "b", ")", ")", "corr_depth", "[", "depth", ">", "200", "]", "=", "self", ".", "rho_200", "# Thickness dependent correlation", "corr_thick", "=", "self", ".", "rho_0", "*", "np", ".", "exp", "(", "-", "thick", "/", "self", ".", "delta", ")", "# Final correlation", "# Correlation coefficient", "corr", "=", "(", "1", "-", "corr_depth", ")", "*", "corr_thick", "+", "corr_depth", "# Bedrock is perfectly correlated with layer above it", "corr", "=", "np", ".", "r_", "[", "corr", ",", "1", "]", "return", "corr" ]
Compute the adjacent-layer correlations Parameters ---------- profile : :class:`site.Profile` Input site profile Yields ------ corr : :class:`numpy.array` Adjacent-layer correlations
[ "Compute", "the", "adjacent", "-", "layer", "correlations" ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/variation.py#L419-L451
train
arkottke/pysra
pysra/variation.py
ToroVelocityVariation.generic_model
def generic_model(cls, site_class, **kwds): """Use generic model parameters based on site class. Parameters ---------- site_class: str Site classification. Possible options are: * Geomatrix AB * Geomatrix CD * USGS AB * USGS CD * USGS A * USGS B * USGS C * USGS D See the report for definitions of the Geomatrix site classication. USGS site classification is based on :math:`V_{s30}`: =========== ===================== Site Class :math:`V_{s30}` (m/s) =========== ===================== A >750 m/s B 360 to 750 m/s C 180 to 360 m/s D <180 m/s =========== ===================== Returns ------- ToroVelocityVariation Initialized :class:`ToroVelocityVariation` with generic parameters. """ p = dict(cls.PARAMS[site_class]) p.update(kwds) return cls(**p)
python
def generic_model(cls, site_class, **kwds): """Use generic model parameters based on site class. Parameters ---------- site_class: str Site classification. Possible options are: * Geomatrix AB * Geomatrix CD * USGS AB * USGS CD * USGS A * USGS B * USGS C * USGS D See the report for definitions of the Geomatrix site classication. USGS site classification is based on :math:`V_{s30}`: =========== ===================== Site Class :math:`V_{s30}` (m/s) =========== ===================== A >750 m/s B 360 to 750 m/s C 180 to 360 m/s D <180 m/s =========== ===================== Returns ------- ToroVelocityVariation Initialized :class:`ToroVelocityVariation` with generic parameters. """ p = dict(cls.PARAMS[site_class]) p.update(kwds) return cls(**p)
[ "def", "generic_model", "(", "cls", ",", "site_class", ",", "*", "*", "kwds", ")", ":", "p", "=", "dict", "(", "cls", ".", "PARAMS", "[", "site_class", "]", ")", "p", ".", "update", "(", "kwds", ")", "return", "cls", "(", "*", "*", "p", ")" ]
Use generic model parameters based on site class. Parameters ---------- site_class: str Site classification. Possible options are: * Geomatrix AB * Geomatrix CD * USGS AB * USGS CD * USGS A * USGS B * USGS C * USGS D See the report for definitions of the Geomatrix site classication. USGS site classification is based on :math:`V_{s30}`: =========== ===================== Site Class :math:`V_{s30}` (m/s) =========== ===================== A >750 m/s B 360 to 750 m/s C 180 to 360 m/s D <180 m/s =========== ===================== Returns ------- ToroVelocityVariation Initialized :class:`ToroVelocityVariation` with generic parameters.
[ "Use", "generic", "model", "parameters", "based", "on", "site", "class", "." ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/variation.py#L486-L521
train
arkottke/pysra
pysra/variation.py
DarendeliVariation.calc_std_damping
def calc_std_damping(damping): """Calculate the standard deviation as a function of damping in decimal. Equation 7.30 from Darendeli (2001). Parameters ---------- damping : array_like Material damping values in decimal. Returns ------- std : :class:`numpy.ndarray` Standard deviation. """ damping = np.asarray(damping).astype(float) std = (np.exp(-5) + np.exp(-0.25) * np.sqrt(100 * damping)) / 100. return std
python
def calc_std_damping(damping): """Calculate the standard deviation as a function of damping in decimal. Equation 7.30 from Darendeli (2001). Parameters ---------- damping : array_like Material damping values in decimal. Returns ------- std : :class:`numpy.ndarray` Standard deviation. """ damping = np.asarray(damping).astype(float) std = (np.exp(-5) + np.exp(-0.25) * np.sqrt(100 * damping)) / 100. return std
[ "def", "calc_std_damping", "(", "damping", ")", ":", "damping", "=", "np", ".", "asarray", "(", "damping", ")", ".", "astype", "(", "float", ")", "std", "=", "(", "np", ".", "exp", "(", "-", "5", ")", "+", "np", ".", "exp", "(", "-", "0.25", ")", "*", "np", ".", "sqrt", "(", "100", "*", "damping", ")", ")", "/", "100.", "return", "std" ]
Calculate the standard deviation as a function of damping in decimal. Equation 7.30 from Darendeli (2001). Parameters ---------- damping : array_like Material damping values in decimal. Returns ------- std : :class:`numpy.ndarray` Standard deviation.
[ "Calculate", "the", "standard", "deviation", "as", "a", "function", "of", "damping", "in", "decimal", "." ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/variation.py#L615-L632
train
inspirehep/inspire-schemas
inspire_schemas/builders/authors.py
AuthorBuilder._append_to
def _append_to(self, field, element): """Append the ``element`` to the ``field`` of the record. This method is smart: it does nothing if ``element`` is empty and creates ``field`` if it does not exit yet. Args: :param field: the name of the field of the record to append to :type field: string :param element: the element to append """ if element not in EMPTIES: self.obj.setdefault(field, []) self.obj.get(field).append(element)
python
def _append_to(self, field, element): """Append the ``element`` to the ``field`` of the record. This method is smart: it does nothing if ``element`` is empty and creates ``field`` if it does not exit yet. Args: :param field: the name of the field of the record to append to :type field: string :param element: the element to append """ if element not in EMPTIES: self.obj.setdefault(field, []) self.obj.get(field).append(element)
[ "def", "_append_to", "(", "self", ",", "field", ",", "element", ")", ":", "if", "element", "not", "in", "EMPTIES", ":", "self", ".", "obj", ".", "setdefault", "(", "field", ",", "[", "]", ")", "self", ".", "obj", ".", "get", "(", "field", ")", ".", "append", "(", "element", ")" ]
Append the ``element`` to the ``field`` of the record. This method is smart: it does nothing if ``element`` is empty and creates ``field`` if it does not exit yet. Args: :param field: the name of the field of the record to append to :type field: string :param element: the element to append
[ "Append", "the", "element", "to", "the", "field", "of", "the", "record", "." ]
34bc124b62fba565b6b40d1a3c15103a23a05edb
https://github.com/inspirehep/inspire-schemas/blob/34bc124b62fba565b6b40d1a3c15103a23a05edb/inspire_schemas/builders/authors.py#L64-L77
train
inspirehep/inspire-schemas
inspire_schemas/builders/authors.py
AuthorBuilder.add_name_variant
def add_name_variant(self, name): """Add name variant. Args: :param name: name variant for the current author. :type name: string """ self._ensure_field('name', {}) self.obj['name'].setdefault('name_variants', []).append(name)
python
def add_name_variant(self, name): """Add name variant. Args: :param name: name variant for the current author. :type name: string """ self._ensure_field('name', {}) self.obj['name'].setdefault('name_variants', []).append(name)
[ "def", "add_name_variant", "(", "self", ",", "name", ")", ":", "self", ".", "_ensure_field", "(", "'name'", ",", "{", "}", ")", "self", ".", "obj", "[", "'name'", "]", ".", "setdefault", "(", "'name_variants'", ",", "[", "]", ")", ".", "append", "(", "name", ")" ]
Add name variant. Args: :param name: name variant for the current author. :type name: string
[ "Add", "name", "variant", "." ]
34bc124b62fba565b6b40d1a3c15103a23a05edb
https://github.com/inspirehep/inspire-schemas/blob/34bc124b62fba565b6b40d1a3c15103a23a05edb/inspire_schemas/builders/authors.py#L102-L110
train
inspirehep/inspire-schemas
inspire_schemas/builders/authors.py
AuthorBuilder.add_native_name
def add_native_name(self, name): """Add native name. Args: :param name: native name for the current author. :type name: string """ self._ensure_field('name', {}) self.obj['name'].setdefault('native_names', []).append(name)
python
def add_native_name(self, name): """Add native name. Args: :param name: native name for the current author. :type name: string """ self._ensure_field('name', {}) self.obj['name'].setdefault('native_names', []).append(name)
[ "def", "add_native_name", "(", "self", ",", "name", ")", ":", "self", ".", "_ensure_field", "(", "'name'", ",", "{", "}", ")", "self", ".", "obj", "[", "'name'", "]", ".", "setdefault", "(", "'native_names'", ",", "[", "]", ")", ".", "append", "(", "name", ")" ]
Add native name. Args: :param name: native name for the current author. :type name: string
[ "Add", "native", "name", "." ]
34bc124b62fba565b6b40d1a3c15103a23a05edb
https://github.com/inspirehep/inspire-schemas/blob/34bc124b62fba565b6b40d1a3c15103a23a05edb/inspire_schemas/builders/authors.py#L113-L121
train
inspirehep/inspire-schemas
inspire_schemas/builders/authors.py
AuthorBuilder.add_previous_name
def add_previous_name(self, name): """Add previous name. Args: :param name: previous name for the current author. :type name: string """ self._ensure_field('name', {}) self.obj['name'].setdefault('previous_names', []).append(name)
python
def add_previous_name(self, name): """Add previous name. Args: :param name: previous name for the current author. :type name: string """ self._ensure_field('name', {}) self.obj['name'].setdefault('previous_names', []).append(name)
[ "def", "add_previous_name", "(", "self", ",", "name", ")", ":", "self", ".", "_ensure_field", "(", "'name'", ",", "{", "}", ")", "self", ".", "obj", "[", "'name'", "]", ".", "setdefault", "(", "'previous_names'", ",", "[", "]", ")", ".", "append", "(", "name", ")" ]
Add previous name. Args: :param name: previous name for the current author. :type name: string
[ "Add", "previous", "name", "." ]
34bc124b62fba565b6b40d1a3c15103a23a05edb
https://github.com/inspirehep/inspire-schemas/blob/34bc124b62fba565b6b40d1a3c15103a23a05edb/inspire_schemas/builders/authors.py#L124-L132
train
inspirehep/inspire-schemas
inspire_schemas/builders/authors.py
AuthorBuilder.add_email_address
def add_email_address(self, email, hidden=None): """Add email address. Args: :param email: email of the author. :type email: string :param hidden: if email is public or not. :type hidden: boolean """ existing_emails = get_value(self.obj, 'email_addresses', []) found_email = next( (existing_email for existing_email in existing_emails if existing_email.get('value') == email), None ) if found_email is None: new_email = {'value': email} if hidden is not None: new_email['hidden'] = hidden self._append_to('email_addresses', new_email) elif hidden is not None: found_email['hidden'] = hidden
python
def add_email_address(self, email, hidden=None): """Add email address. Args: :param email: email of the author. :type email: string :param hidden: if email is public or not. :type hidden: boolean """ existing_emails = get_value(self.obj, 'email_addresses', []) found_email = next( (existing_email for existing_email in existing_emails if existing_email.get('value') == email), None ) if found_email is None: new_email = {'value': email} if hidden is not None: new_email['hidden'] = hidden self._append_to('email_addresses', new_email) elif hidden is not None: found_email['hidden'] = hidden
[ "def", "add_email_address", "(", "self", ",", "email", ",", "hidden", "=", "None", ")", ":", "existing_emails", "=", "get_value", "(", "self", ".", "obj", ",", "'email_addresses'", ",", "[", "]", ")", "found_email", "=", "next", "(", "(", "existing_email", "for", "existing_email", "in", "existing_emails", "if", "existing_email", ".", "get", "(", "'value'", ")", "==", "email", ")", ",", "None", ")", "if", "found_email", "is", "None", ":", "new_email", "=", "{", "'value'", ":", "email", "}", "if", "hidden", "is", "not", "None", ":", "new_email", "[", "'hidden'", "]", "=", "hidden", "self", ".", "_append_to", "(", "'email_addresses'", ",", "new_email", ")", "elif", "hidden", "is", "not", "None", ":", "found_email", "[", "'hidden'", "]", "=", "hidden" ]
Add email address. Args: :param email: email of the author. :type email: string :param hidden: if email is public or not. :type hidden: boolean
[ "Add", "email", "address", "." ]
34bc124b62fba565b6b40d1a3c15103a23a05edb
https://github.com/inspirehep/inspire-schemas/blob/34bc124b62fba565b6b40d1a3c15103a23a05edb/inspire_schemas/builders/authors.py#L135-L156
train
inspirehep/inspire-schemas
inspire_schemas/builders/authors.py
AuthorBuilder.add_url
def add_url(self, url, description=None): """Add a personal website. Args: :param url: url to the person's website. :type url: string :param description: short description of the website. :type description: string """ url = { 'value': url, } if description: url['description'] = description self._append_to('urls', url)
python
def add_url(self, url, description=None): """Add a personal website. Args: :param url: url to the person's website. :type url: string :param description: short description of the website. :type description: string """ url = { 'value': url, } if description: url['description'] = description self._append_to('urls', url)
[ "def", "add_url", "(", "self", ",", "url", ",", "description", "=", "None", ")", ":", "url", "=", "{", "'value'", ":", "url", ",", "}", "if", "description", ":", "url", "[", "'description'", "]", "=", "description", "self", ".", "_append_to", "(", "'urls'", ",", "url", ")" ]
Add a personal website. Args: :param url: url to the person's website. :type url: string :param description: short description of the website. :type description: string
[ "Add", "a", "personal", "website", "." ]
34bc124b62fba565b6b40d1a3c15103a23a05edb
https://github.com/inspirehep/inspire-schemas/blob/34bc124b62fba565b6b40d1a3c15103a23a05edb/inspire_schemas/builders/authors.py#L169-L184
train
inspirehep/inspire-schemas
inspire_schemas/builders/authors.py
AuthorBuilder.add_project
def add_project(self, name, record=None, start_date=None, end_date=None, curated=False, current=False): """Add an experiment that the person worked on. Args: :param name: name of the experiment. :type name: string :param start_date: the date when the person started working on the experiment. :type start_date: string :param end_date: the date when the person stopped working on the experiment. :type end_date: string :param record: URI for the experiment record. :type record: string :param curated: if the experiment has been curated i.e. has been verified. :type curated: boolean :param current: if the person is currently working on this experiment. :type current: boolean """ new_experiment = {} new_experiment['name'] = name if start_date: new_experiment['start_date'] = normalize_date(start_date) if end_date: new_experiment['end_date'] = normalize_date(end_date) if record: new_experiment['record'] = record new_experiment['curated_relation'] = curated new_experiment['current'] = current self._append_to('project_membership', new_experiment) self.obj['project_membership'].sort(key=self._get_work_priority_tuple, reverse=True)
python
def add_project(self, name, record=None, start_date=None, end_date=None, curated=False, current=False): """Add an experiment that the person worked on. Args: :param name: name of the experiment. :type name: string :param start_date: the date when the person started working on the experiment. :type start_date: string :param end_date: the date when the person stopped working on the experiment. :type end_date: string :param record: URI for the experiment record. :type record: string :param curated: if the experiment has been curated i.e. has been verified. :type curated: boolean :param current: if the person is currently working on this experiment. :type current: boolean """ new_experiment = {} new_experiment['name'] = name if start_date: new_experiment['start_date'] = normalize_date(start_date) if end_date: new_experiment['end_date'] = normalize_date(end_date) if record: new_experiment['record'] = record new_experiment['curated_relation'] = curated new_experiment['current'] = current self._append_to('project_membership', new_experiment) self.obj['project_membership'].sort(key=self._get_work_priority_tuple, reverse=True)
[ "def", "add_project", "(", "self", ",", "name", ",", "record", "=", "None", ",", "start_date", "=", "None", ",", "end_date", "=", "None", ",", "curated", "=", "False", ",", "current", "=", "False", ")", ":", "new_experiment", "=", "{", "}", "new_experiment", "[", "'name'", "]", "=", "name", "if", "start_date", ":", "new_experiment", "[", "'start_date'", "]", "=", "normalize_date", "(", "start_date", ")", "if", "end_date", ":", "new_experiment", "[", "'end_date'", "]", "=", "normalize_date", "(", "end_date", ")", "if", "record", ":", "new_experiment", "[", "'record'", "]", "=", "record", "new_experiment", "[", "'curated_relation'", "]", "=", "curated", "new_experiment", "[", "'current'", "]", "=", "current", "self", ".", "_append_to", "(", "'project_membership'", ",", "new_experiment", ")", "self", ".", "obj", "[", "'project_membership'", "]", ".", "sort", "(", "key", "=", "self", ".", "_get_work_priority_tuple", ",", "reverse", "=", "True", ")" ]
Add an experiment that the person worked on. Args: :param name: name of the experiment. :type name: string :param start_date: the date when the person started working on the experiment. :type start_date: string :param end_date: the date when the person stopped working on the experiment. :type end_date: string :param record: URI for the experiment record. :type record: string :param curated: if the experiment has been curated i.e. has been verified. :type curated: boolean :param current: if the person is currently working on this experiment. :type current: boolean
[ "Add", "an", "experiment", "that", "the", "person", "worked", "on", "." ]
34bc124b62fba565b6b40d1a3c15103a23a05edb
https://github.com/inspirehep/inspire-schemas/blob/34bc124b62fba565b6b40d1a3c15103a23a05edb/inspire_schemas/builders/authors.py#L306-L339
train
inspirehep/inspire-schemas
inspire_schemas/builders/authors.py
AuthorBuilder.add_advisor
def add_advisor(self, name, ids=None, degree_type=None, record=None, curated=False): """Add an advisor. Args: :param name: full name of the advisor. :type name: string :param ids: list with the IDs of the advisor. :type ids: list :param degree_type: one of the allowed types of degree the advisor helped with. :type degree_type: string :param record: URI for the advisor. :type record: string :param curated: if the advisor relation has been curated i.e. has been verified. :type curated: boolean """ new_advisor = {} new_advisor['name'] = normalize_name(name) if ids: new_advisor['ids'] = force_list(ids) if degree_type: new_advisor['degree_type'] = degree_type if record: new_advisor['record'] = record new_advisor['curated_relation'] = curated self._append_to('advisors', new_advisor)
python
def add_advisor(self, name, ids=None, degree_type=None, record=None, curated=False): """Add an advisor. Args: :param name: full name of the advisor. :type name: string :param ids: list with the IDs of the advisor. :type ids: list :param degree_type: one of the allowed types of degree the advisor helped with. :type degree_type: string :param record: URI for the advisor. :type record: string :param curated: if the advisor relation has been curated i.e. has been verified. :type curated: boolean """ new_advisor = {} new_advisor['name'] = normalize_name(name) if ids: new_advisor['ids'] = force_list(ids) if degree_type: new_advisor['degree_type'] = degree_type if record: new_advisor['record'] = record new_advisor['curated_relation'] = curated self._append_to('advisors', new_advisor)
[ "def", "add_advisor", "(", "self", ",", "name", ",", "ids", "=", "None", ",", "degree_type", "=", "None", ",", "record", "=", "None", ",", "curated", "=", "False", ")", ":", "new_advisor", "=", "{", "}", "new_advisor", "[", "'name'", "]", "=", "normalize_name", "(", "name", ")", "if", "ids", ":", "new_advisor", "[", "'ids'", "]", "=", "force_list", "(", "ids", ")", "if", "degree_type", ":", "new_advisor", "[", "'degree_type'", "]", "=", "degree_type", "if", "record", ":", "new_advisor", "[", "'record'", "]", "=", "record", "new_advisor", "[", "'curated_relation'", "]", "=", "curated", "self", ".", "_append_to", "(", "'advisors'", ",", "new_advisor", ")" ]
Add an advisor. Args: :param name: full name of the advisor. :type name: string :param ids: list with the IDs of the advisor. :type ids: list :param degree_type: one of the allowed types of degree the advisor helped with. :type degree_type: string :param record: URI for the advisor. :type record: string :param curated: if the advisor relation has been curated i.e. has been verified. :type curated: boolean
[ "Add", "an", "advisor", "." ]
34bc124b62fba565b6b40d1a3c15103a23a05edb
https://github.com/inspirehep/inspire-schemas/blob/34bc124b62fba565b6b40d1a3c15103a23a05edb/inspire_schemas/builders/authors.py#L350-L378
train
inspirehep/inspire-schemas
inspire_schemas/builders/authors.py
AuthorBuilder.add_private_note
def add_private_note(self, note, source=None): """Add a private note. Args: :param comment: comment about the author. :type comment: string :param source: the source of the comment. :type source: string """ note = { 'value': note, } if source: note['source'] = source self._append_to('_private_notes', note)
python
def add_private_note(self, note, source=None): """Add a private note. Args: :param comment: comment about the author. :type comment: string :param source: the source of the comment. :type source: string """ note = { 'value': note, } if source: note['source'] = source self._append_to('_private_notes', note)
[ "def", "add_private_note", "(", "self", ",", "note", ",", "source", "=", "None", ")", ":", "note", "=", "{", "'value'", ":", "note", ",", "}", "if", "source", ":", "note", "[", "'source'", "]", "=", "source", "self", ".", "_append_to", "(", "'_private_notes'", ",", "note", ")" ]
Add a private note. Args: :param comment: comment about the author. :type comment: string :param source: the source of the comment. :type source: string
[ "Add", "a", "private", "note", "." ]
34bc124b62fba565b6b40d1a3c15103a23a05edb
https://github.com/inspirehep/inspire-schemas/blob/34bc124b62fba565b6b40d1a3c15103a23a05edb/inspire_schemas/builders/authors.py#L381-L396
train
guaix-ucm/numina
numina/array/imsurfit.py
_compute_value
def _compute_value(power, wg): """Return the weight corresponding to single power.""" if power not in wg: p1, p2 = power # y power if p1 == 0: yy = wg[(0, -1)] wg[power] = numpy.power(yy, p2 / 2).sum() / len(yy) # x power else: xx = wg[(-1, 0)] wg[power] = numpy.power(xx, p1 / 2).sum() / len(xx) return wg[power]
python
def _compute_value(power, wg): """Return the weight corresponding to single power.""" if power not in wg: p1, p2 = power # y power if p1 == 0: yy = wg[(0, -1)] wg[power] = numpy.power(yy, p2 / 2).sum() / len(yy) # x power else: xx = wg[(-1, 0)] wg[power] = numpy.power(xx, p1 / 2).sum() / len(xx) return wg[power]
[ "def", "_compute_value", "(", "power", ",", "wg", ")", ":", "if", "power", "not", "in", "wg", ":", "p1", ",", "p2", "=", "power", "# y power", "if", "p1", "==", "0", ":", "yy", "=", "wg", "[", "(", "0", ",", "-", "1", ")", "]", "wg", "[", "power", "]", "=", "numpy", ".", "power", "(", "yy", ",", "p2", "/", "2", ")", ".", "sum", "(", ")", "/", "len", "(", "yy", ")", "# x power", "else", ":", "xx", "=", "wg", "[", "(", "-", "1", ",", "0", ")", "]", "wg", "[", "power", "]", "=", "numpy", ".", "power", "(", "xx", ",", "p1", "/", "2", ")", ".", "sum", "(", ")", "/", "len", "(", "xx", ")", "return", "wg", "[", "power", "]" ]
Return the weight corresponding to single power.
[ "Return", "the", "weight", "corresponding", "to", "single", "power", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/imsurfit.py#L25-L37
train
guaix-ucm/numina
numina/array/imsurfit.py
_compute_weight
def _compute_weight(powers, wg): """Return the weight corresponding to given powers.""" # split pow1 = (powers[0], 0) pow2 = (0, powers[1]) cal1 = _compute_value(pow1, wg) cal2 = _compute_value(pow2, wg) return cal1 * cal2
python
def _compute_weight(powers, wg): """Return the weight corresponding to given powers.""" # split pow1 = (powers[0], 0) pow2 = (0, powers[1]) cal1 = _compute_value(pow1, wg) cal2 = _compute_value(pow2, wg) return cal1 * cal2
[ "def", "_compute_weight", "(", "powers", ",", "wg", ")", ":", "# split", "pow1", "=", "(", "powers", "[", "0", "]", ",", "0", ")", "pow2", "=", "(", "0", ",", "powers", "[", "1", "]", ")", "cal1", "=", "_compute_value", "(", "pow1", ",", "wg", ")", "cal2", "=", "_compute_value", "(", "pow2", ",", "wg", ")", "return", "cal1", "*", "cal2" ]
Return the weight corresponding to given powers.
[ "Return", "the", "weight", "corresponding", "to", "given", "powers", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/imsurfit.py#L40-L49
train
guaix-ucm/numina
numina/array/imsurfit.py
imsurfit
def imsurfit(data, order, output_fit=False): """Fit a bidimensional polynomial to an image. :param data: a bidimensional array :param integer order: order of the polynomial :param bool output_fit: return the fitted image :returns: a tuple with an array with the coefficients of the polynomial terms >>> import numpy >>> xx, yy = numpy.mgrid[-1:1:100j,-1:1:100j] >>> z = 456.0 + 0.3 * xx - 0.9* yy >>> imsurfit(z, order=1) #doctest: +NORMALIZE_WHITESPACE (array([ 4.56000000e+02, 3.00000000e-01, -9.00000000e-01]),) """ # we create a grid with the same number of points # between -1 and 1 c0 = complex(0, data.shape[0]) c1 = complex(0, data.shape[1]) xx, yy = numpy.ogrid[-1:1:c0, -1:1:c1] ncoeff = (order + 1) * (order + 2) // 2 powerlist = list(_powers(order)) # Array with ncoff x,y moments of the data bb = numpy.zeros(ncoeff) # Moments for idx, powers in enumerate(powerlist): p1, p2 = powers bb[idx] = (data * xx ** p1 * yy ** p2).sum() / data.size # Now computing aa matrix # it contains \sum x^a y^b # most of the terms are zero # only those with a and b even remain # aa is symmetric x = xx[:, 0] y = yy[0] # weights are stored so we compute them only once wg = {(0, 0): 1, (-1, 0): x**2, (0, -1): y**2} # wg[(2,0)] = wg[(-1,0)].sum() / len(x) # wg[(0,2)] = wg[(0,-1)].sum() / len(y) aa = numpy.zeros((ncoeff, ncoeff)) for j, ci in enumerate(powerlist): for i, ri in enumerate(powerlist[j:]): p1 = ci[0] + ri[0] p2 = ci[1] + ri[1] if p1 % 2 == 0 and p2 % 2 == 0: # val = (x ** p1).sum() / len(x) * (y ** p2).sum() / len(y) val = _compute_weight((p1, p2), wg) aa[j, i+j] = val # Making symmetric the array aa += numpy.triu(aa, k=1).T polycoeff = numpy.linalg.solve(aa, bb) if output_fit: index = 0 result = 0 for o in range(order + 1): for b in range(o + 1): a = o - b result += polycoeff[index] * (xx ** a) * (yy ** b) index += 1 return polycoeff, result return (polycoeff,)
python
def imsurfit(data, order, output_fit=False): """Fit a bidimensional polynomial to an image. :param data: a bidimensional array :param integer order: order of the polynomial :param bool output_fit: return the fitted image :returns: a tuple with an array with the coefficients of the polynomial terms >>> import numpy >>> xx, yy = numpy.mgrid[-1:1:100j,-1:1:100j] >>> z = 456.0 + 0.3 * xx - 0.9* yy >>> imsurfit(z, order=1) #doctest: +NORMALIZE_WHITESPACE (array([ 4.56000000e+02, 3.00000000e-01, -9.00000000e-01]),) """ # we create a grid with the same number of points # between -1 and 1 c0 = complex(0, data.shape[0]) c1 = complex(0, data.shape[1]) xx, yy = numpy.ogrid[-1:1:c0, -1:1:c1] ncoeff = (order + 1) * (order + 2) // 2 powerlist = list(_powers(order)) # Array with ncoff x,y moments of the data bb = numpy.zeros(ncoeff) # Moments for idx, powers in enumerate(powerlist): p1, p2 = powers bb[idx] = (data * xx ** p1 * yy ** p2).sum() / data.size # Now computing aa matrix # it contains \sum x^a y^b # most of the terms are zero # only those with a and b even remain # aa is symmetric x = xx[:, 0] y = yy[0] # weights are stored so we compute them only once wg = {(0, 0): 1, (-1, 0): x**2, (0, -1): y**2} # wg[(2,0)] = wg[(-1,0)].sum() / len(x) # wg[(0,2)] = wg[(0,-1)].sum() / len(y) aa = numpy.zeros((ncoeff, ncoeff)) for j, ci in enumerate(powerlist): for i, ri in enumerate(powerlist[j:]): p1 = ci[0] + ri[0] p2 = ci[1] + ri[1] if p1 % 2 == 0 and p2 % 2 == 0: # val = (x ** p1).sum() / len(x) * (y ** p2).sum() / len(y) val = _compute_weight((p1, p2), wg) aa[j, i+j] = val # Making symmetric the array aa += numpy.triu(aa, k=1).T polycoeff = numpy.linalg.solve(aa, bb) if output_fit: index = 0 result = 0 for o in range(order + 1): for b in range(o + 1): a = o - b result += polycoeff[index] * (xx ** a) * (yy ** b) index += 1 return polycoeff, result return (polycoeff,)
[ "def", "imsurfit", "(", "data", ",", "order", ",", "output_fit", "=", "False", ")", ":", "# we create a grid with the same number of points", "# between -1 and 1", "c0", "=", "complex", "(", "0", ",", "data", ".", "shape", "[", "0", "]", ")", "c1", "=", "complex", "(", "0", ",", "data", ".", "shape", "[", "1", "]", ")", "xx", ",", "yy", "=", "numpy", ".", "ogrid", "[", "-", "1", ":", "1", ":", "c0", ",", "-", "1", ":", "1", ":", "c1", "]", "ncoeff", "=", "(", "order", "+", "1", ")", "*", "(", "order", "+", "2", ")", "//", "2", "powerlist", "=", "list", "(", "_powers", "(", "order", ")", ")", "# Array with ncoff x,y moments of the data", "bb", "=", "numpy", ".", "zeros", "(", "ncoeff", ")", "# Moments", "for", "idx", ",", "powers", "in", "enumerate", "(", "powerlist", ")", ":", "p1", ",", "p2", "=", "powers", "bb", "[", "idx", "]", "=", "(", "data", "*", "xx", "**", "p1", "*", "yy", "**", "p2", ")", ".", "sum", "(", ")", "/", "data", ".", "size", "# Now computing aa matrix", "# it contains \\sum x^a y^b", "# most of the terms are zero", "# only those with a and b even remain", "# aa is symmetric", "x", "=", "xx", "[", ":", ",", "0", "]", "y", "=", "yy", "[", "0", "]", "# weights are stored so we compute them only once", "wg", "=", "{", "(", "0", ",", "0", ")", ":", "1", ",", "(", "-", "1", ",", "0", ")", ":", "x", "**", "2", ",", "(", "0", ",", "-", "1", ")", ":", "y", "**", "2", "}", "# wg[(2,0)] = wg[(-1,0)].sum() / len(x)", "# wg[(0,2)] = wg[(0,-1)].sum() / len(y)", "aa", "=", "numpy", ".", "zeros", "(", "(", "ncoeff", ",", "ncoeff", ")", ")", "for", "j", ",", "ci", "in", "enumerate", "(", "powerlist", ")", ":", "for", "i", ",", "ri", "in", "enumerate", "(", "powerlist", "[", "j", ":", "]", ")", ":", "p1", "=", "ci", "[", "0", "]", "+", "ri", "[", "0", "]", "p2", "=", "ci", "[", "1", "]", "+", "ri", "[", "1", "]", "if", "p1", "%", "2", "==", "0", "and", "p2", "%", "2", "==", "0", ":", "# val = (x ** p1).sum() / len(x) * (y ** p2).sum() / len(y)", "val", "=", "_compute_weight", "(", "(", "p1", ",", "p2", ")", ",", "wg", ")", "aa", "[", "j", ",", "i", "+", "j", "]", "=", "val", "# Making symmetric the array", "aa", "+=", "numpy", ".", "triu", "(", "aa", ",", "k", "=", "1", ")", ".", "T", "polycoeff", "=", "numpy", ".", "linalg", ".", "solve", "(", "aa", ",", "bb", ")", "if", "output_fit", ":", "index", "=", "0", "result", "=", "0", "for", "o", "in", "range", "(", "order", "+", "1", ")", ":", "for", "b", "in", "range", "(", "o", "+", "1", ")", ":", "a", "=", "o", "-", "b", "result", "+=", "polycoeff", "[", "index", "]", "*", "(", "xx", "**", "a", ")", "*", "(", "yy", "**", "b", ")", "index", "+=", "1", "return", "polycoeff", ",", "result", "return", "(", "polycoeff", ",", ")" ]
Fit a bidimensional polynomial to an image. :param data: a bidimensional array :param integer order: order of the polynomial :param bool output_fit: return the fitted image :returns: a tuple with an array with the coefficients of the polynomial terms >>> import numpy >>> xx, yy = numpy.mgrid[-1:1:100j,-1:1:100j] >>> z = 456.0 + 0.3 * xx - 0.9* yy >>> imsurfit(z, order=1) #doctest: +NORMALIZE_WHITESPACE (array([ 4.56000000e+02, 3.00000000e-01, -9.00000000e-01]),)
[ "Fit", "a", "bidimensional", "polynomial", "to", "an", "image", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/imsurfit.py#L52-L125
train
pvizeli/yahooweather
yahooweather.py
_yql_query
def _yql_query(yql): """Fetch data from Yahoo! Return a dict if successfull or None.""" url = _YAHOO_BASE_URL.format(urlencode({'q': yql})) # send request _LOGGER.debug("Send request to url: %s", url) try: request = urlopen(url) rawData = request.read() # parse jason data = json.loads(rawData.decode("utf-8")) _LOGGER.debug("Query data from yahoo: %s", str(data)) return data.get("query", {}).get("results", {}) except (urllib.error.HTTPError, urllib.error.URLError): _LOGGER.info("Can't fetch data from Yahoo!") return None
python
def _yql_query(yql): """Fetch data from Yahoo! Return a dict if successfull or None.""" url = _YAHOO_BASE_URL.format(urlencode({'q': yql})) # send request _LOGGER.debug("Send request to url: %s", url) try: request = urlopen(url) rawData = request.read() # parse jason data = json.loads(rawData.decode("utf-8")) _LOGGER.debug("Query data from yahoo: %s", str(data)) return data.get("query", {}).get("results", {}) except (urllib.error.HTTPError, urllib.error.URLError): _LOGGER.info("Can't fetch data from Yahoo!") return None
[ "def", "_yql_query", "(", "yql", ")", ":", "url", "=", "_YAHOO_BASE_URL", ".", "format", "(", "urlencode", "(", "{", "'q'", ":", "yql", "}", ")", ")", "# send request", "_LOGGER", ".", "debug", "(", "\"Send request to url: %s\"", ",", "url", ")", "try", ":", "request", "=", "urlopen", "(", "url", ")", "rawData", "=", "request", ".", "read", "(", ")", "# parse jason", "data", "=", "json", ".", "loads", "(", "rawData", ".", "decode", "(", "\"utf-8\"", ")", ")", "_LOGGER", ".", "debug", "(", "\"Query data from yahoo: %s\"", ",", "str", "(", "data", ")", ")", "return", "data", ".", "get", "(", "\"query\"", ",", "{", "}", ")", ".", "get", "(", "\"results\"", ",", "{", "}", ")", "except", "(", "urllib", ".", "error", ".", "HTTPError", ",", "urllib", ".", "error", ".", "URLError", ")", ":", "_LOGGER", ".", "info", "(", "\"Can't fetch data from Yahoo!\"", ")", "return", "None" ]
Fetch data from Yahoo! Return a dict if successfull or None.
[ "Fetch", "data", "from", "Yahoo!", "Return", "a", "dict", "if", "successfull", "or", "None", "." ]
42e59510fc20b84afc8efadfbc3a30c15675b327
https://github.com/pvizeli/yahooweather/blob/42e59510fc20b84afc8efadfbc3a30c15675b327/yahooweather.py#L22-L41
train
pvizeli/yahooweather
yahooweather.py
get_woeid
def get_woeid(lat, lon): """Ask Yahoo! who is the woeid from GPS position.""" yql = _YQL_WOEID.format(lat, lon) # send request tmpData = _yql_query(yql) if tmpData is None: _LOGGER.error("No woid is received!") return None # found woid? return tmpData.get("place", {}).get("woeid", None)
python
def get_woeid(lat, lon): """Ask Yahoo! who is the woeid from GPS position.""" yql = _YQL_WOEID.format(lat, lon) # send request tmpData = _yql_query(yql) if tmpData is None: _LOGGER.error("No woid is received!") return None # found woid? return tmpData.get("place", {}).get("woeid", None)
[ "def", "get_woeid", "(", "lat", ",", "lon", ")", ":", "yql", "=", "_YQL_WOEID", ".", "format", "(", "lat", ",", "lon", ")", "# send request", "tmpData", "=", "_yql_query", "(", "yql", ")", "if", "tmpData", "is", "None", ":", "_LOGGER", ".", "error", "(", "\"No woid is received!\"", ")", "return", "None", "# found woid?", "return", "tmpData", ".", "get", "(", "\"place\"", ",", "{", "}", ")", ".", "get", "(", "\"woeid\"", ",", "None", ")" ]
Ask Yahoo! who is the woeid from GPS position.
[ "Ask", "Yahoo!", "who", "is", "the", "woeid", "from", "GPS", "position", "." ]
42e59510fc20b84afc8efadfbc3a30c15675b327
https://github.com/pvizeli/yahooweather/blob/42e59510fc20b84afc8efadfbc3a30c15675b327/yahooweather.py#L44-L56
train
pvizeli/yahooweather
yahooweather.py
YahooWeather.updateWeather
def updateWeather(self): """Fetch weather data from Yahoo! True if success.""" yql = _YQL_WEATHER.format(self._woeid, self._unit) # send request tmpData = _yql_query(yql) # data exists if tmpData is not None and "channel" in tmpData: self._data = tmpData["channel"] return True _LOGGER.error("Fetch no weather data Yahoo!") self._data = {} return False
python
def updateWeather(self): """Fetch weather data from Yahoo! True if success.""" yql = _YQL_WEATHER.format(self._woeid, self._unit) # send request tmpData = _yql_query(yql) # data exists if tmpData is not None and "channel" in tmpData: self._data = tmpData["channel"] return True _LOGGER.error("Fetch no weather data Yahoo!") self._data = {} return False
[ "def", "updateWeather", "(", "self", ")", ":", "yql", "=", "_YQL_WEATHER", ".", "format", "(", "self", ".", "_woeid", ",", "self", ".", "_unit", ")", "# send request", "tmpData", "=", "_yql_query", "(", "yql", ")", "# data exists", "if", "tmpData", "is", "not", "None", "and", "\"channel\"", "in", "tmpData", ":", "self", ".", "_data", "=", "tmpData", "[", "\"channel\"", "]", "return", "True", "_LOGGER", ".", "error", "(", "\"Fetch no weather data Yahoo!\"", ")", "self", ".", "_data", "=", "{", "}", "return", "False" ]
Fetch weather data from Yahoo! True if success.
[ "Fetch", "weather", "data", "from", "Yahoo!", "True", "if", "success", "." ]
42e59510fc20b84afc8efadfbc3a30c15675b327
https://github.com/pvizeli/yahooweather/blob/42e59510fc20b84afc8efadfbc3a30c15675b327/yahooweather.py#L68-L82
train
SUNCAT-Center/CatHub
cathub/ase_tools/__init__.py
get_energies
def get_energies(atoms_list): """ Potential energy for a list of atoms objects""" if len(atoms_list) == 1: return atoms_list[0].get_potential_energy() elif len(atoms_list) > 1: energies = [] for atoms in atoms_list: energies.append(atoms.get_potential_energy()) return energies
python
def get_energies(atoms_list): """ Potential energy for a list of atoms objects""" if len(atoms_list) == 1: return atoms_list[0].get_potential_energy() elif len(atoms_list) > 1: energies = [] for atoms in atoms_list: energies.append(atoms.get_potential_energy()) return energies
[ "def", "get_energies", "(", "atoms_list", ")", ":", "if", "len", "(", "atoms_list", ")", "==", "1", ":", "return", "atoms_list", "[", "0", "]", ".", "get_potential_energy", "(", ")", "elif", "len", "(", "atoms_list", ")", ">", "1", ":", "energies", "=", "[", "]", "for", "atoms", "in", "atoms_list", ":", "energies", ".", "append", "(", "atoms", ".", "get_potential_energy", "(", ")", ")", "return", "energies" ]
Potential energy for a list of atoms objects
[ "Potential", "energy", "for", "a", "list", "of", "atoms", "objects" ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/ase_tools/__init__.py#L174-L182
train
SUNCAT-Center/CatHub
cathub/ase_tools/__init__.py
check_in_ase
def check_in_ase(atoms, ase_db, energy=None): """Check if entry is allready in ASE db""" db_ase = ase.db.connect(ase_db) if energy is None: energy = atoms.get_potential_energy() formula = get_chemical_formula(atoms) rows = db_ase.select(energy=energy) n = 0 ids = [] for row in rows: if formula == row.formula: n += 1 ids.append(row.id) if n > 0: id = ids[0] unique_id = db_ase.get(id)['unique_id'] return id, unique_id else: return None, None
python
def check_in_ase(atoms, ase_db, energy=None): """Check if entry is allready in ASE db""" db_ase = ase.db.connect(ase_db) if energy is None: energy = atoms.get_potential_energy() formula = get_chemical_formula(atoms) rows = db_ase.select(energy=energy) n = 0 ids = [] for row in rows: if formula == row.formula: n += 1 ids.append(row.id) if n > 0: id = ids[0] unique_id = db_ase.get(id)['unique_id'] return id, unique_id else: return None, None
[ "def", "check_in_ase", "(", "atoms", ",", "ase_db", ",", "energy", "=", "None", ")", ":", "db_ase", "=", "ase", ".", "db", ".", "connect", "(", "ase_db", ")", "if", "energy", "is", "None", ":", "energy", "=", "atoms", ".", "get_potential_energy", "(", ")", "formula", "=", "get_chemical_formula", "(", "atoms", ")", "rows", "=", "db_ase", ".", "select", "(", "energy", "=", "energy", ")", "n", "=", "0", "ids", "=", "[", "]", "for", "row", "in", "rows", ":", "if", "formula", "==", "row", ".", "formula", ":", "n", "+=", "1", "ids", ".", "append", "(", "row", ".", "id", ")", "if", "n", ">", "0", ":", "id", "=", "ids", "[", "0", "]", "unique_id", "=", "db_ase", ".", "get", "(", "id", ")", "[", "'unique_id'", "]", "return", "id", ",", "unique_id", "else", ":", "return", "None", ",", "None" ]
Check if entry is allready in ASE db
[ "Check", "if", "entry", "is", "allready", "in", "ASE", "db" ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/ase_tools/__init__.py#L322-L341
train
pylp/pylp
pylp/lib/tasks.py
task
def task(name, deps = None, fn = None): """Define a new task.""" if callable(deps): fn = deps deps = None if not deps and not fn: logger.log(logger.red("The task '%s' is empty" % name)) else: tasks[name] = [fn, deps]
python
def task(name, deps = None, fn = None): """Define a new task.""" if callable(deps): fn = deps deps = None if not deps and not fn: logger.log(logger.red("The task '%s' is empty" % name)) else: tasks[name] = [fn, deps]
[ "def", "task", "(", "name", ",", "deps", "=", "None", ",", "fn", "=", "None", ")", ":", "if", "callable", "(", "deps", ")", ":", "fn", "=", "deps", "deps", "=", "None", "if", "not", "deps", "and", "not", "fn", ":", "logger", ".", "log", "(", "logger", ".", "red", "(", "\"The task '%s' is empty\"", "%", "name", ")", ")", "else", ":", "tasks", "[", "name", "]", "=", "[", "fn", ",", "deps", "]" ]
Define a new task.
[ "Define", "a", "new", "task", "." ]
7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4
https://github.com/pylp/pylp/blob/7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4/pylp/lib/tasks.py#L18-L27
train
guaix-ucm/numina
numina/modeling/sumofgauss.py
sum_of_gaussian_factory
def sum_of_gaussian_factory(N): """Return a model of the sum of N Gaussians and a constant background.""" name = "SumNGauss%d" % N attr = {} # parameters for i in range(N): key = "amplitude_%d" % i attr[key] = Parameter(key) key = "center_%d" % i attr[key] = Parameter(key) key = "stddev_%d" % i attr[key] = Parameter(key) attr['background'] = Parameter('background', default=0.0) def fit_eval(self, x, *args): result = x * 0 + args[-1] for i in range(N): result += args[3 * i] * \ np.exp(- 0.5 * (x - args[3 * i + 1]) ** 2 / args[3 * i + 2] ** 2) return result attr['evaluate'] = fit_eval def deriv(self, x, *args): d_result = np.ones(((3 * N + 1), len(x))) for i in range(N): d_result[3 * i] = (np.exp(-0.5 / args[3 * i + 2] ** 2 * (x - args[3 * i + 1]) ** 2)) d_result[3 * i + 1] = args[3 * i] * d_result[3 * i] * \ (x - args[3 * i + 1]) / args[3 * i + 2] ** 2 d_result[3 * i + 2] = args[3 * i] * d_result[3 * i] * \ (x - args[3 * i + 1]) ** 2 / args[3 * i + 2] ** 3 return d_result attr['fit_deriv'] = deriv klass = type(name, (Fittable1DModel, ), attr) return klass
python
def sum_of_gaussian_factory(N): """Return a model of the sum of N Gaussians and a constant background.""" name = "SumNGauss%d" % N attr = {} # parameters for i in range(N): key = "amplitude_%d" % i attr[key] = Parameter(key) key = "center_%d" % i attr[key] = Parameter(key) key = "stddev_%d" % i attr[key] = Parameter(key) attr['background'] = Parameter('background', default=0.0) def fit_eval(self, x, *args): result = x * 0 + args[-1] for i in range(N): result += args[3 * i] * \ np.exp(- 0.5 * (x - args[3 * i + 1]) ** 2 / args[3 * i + 2] ** 2) return result attr['evaluate'] = fit_eval def deriv(self, x, *args): d_result = np.ones(((3 * N + 1), len(x))) for i in range(N): d_result[3 * i] = (np.exp(-0.5 / args[3 * i + 2] ** 2 * (x - args[3 * i + 1]) ** 2)) d_result[3 * i + 1] = args[3 * i] * d_result[3 * i] * \ (x - args[3 * i + 1]) / args[3 * i + 2] ** 2 d_result[3 * i + 2] = args[3 * i] * d_result[3 * i] * \ (x - args[3 * i + 1]) ** 2 / args[3 * i + 2] ** 3 return d_result attr['fit_deriv'] = deriv klass = type(name, (Fittable1DModel, ), attr) return klass
[ "def", "sum_of_gaussian_factory", "(", "N", ")", ":", "name", "=", "\"SumNGauss%d\"", "%", "N", "attr", "=", "{", "}", "# parameters", "for", "i", "in", "range", "(", "N", ")", ":", "key", "=", "\"amplitude_%d\"", "%", "i", "attr", "[", "key", "]", "=", "Parameter", "(", "key", ")", "key", "=", "\"center_%d\"", "%", "i", "attr", "[", "key", "]", "=", "Parameter", "(", "key", ")", "key", "=", "\"stddev_%d\"", "%", "i", "attr", "[", "key", "]", "=", "Parameter", "(", "key", ")", "attr", "[", "'background'", "]", "=", "Parameter", "(", "'background'", ",", "default", "=", "0.0", ")", "def", "fit_eval", "(", "self", ",", "x", ",", "*", "args", ")", ":", "result", "=", "x", "*", "0", "+", "args", "[", "-", "1", "]", "for", "i", "in", "range", "(", "N", ")", ":", "result", "+=", "args", "[", "3", "*", "i", "]", "*", "np", ".", "exp", "(", "-", "0.5", "*", "(", "x", "-", "args", "[", "3", "*", "i", "+", "1", "]", ")", "**", "2", "/", "args", "[", "3", "*", "i", "+", "2", "]", "**", "2", ")", "return", "result", "attr", "[", "'evaluate'", "]", "=", "fit_eval", "def", "deriv", "(", "self", ",", "x", ",", "*", "args", ")", ":", "d_result", "=", "np", ".", "ones", "(", "(", "(", "3", "*", "N", "+", "1", ")", ",", "len", "(", "x", ")", ")", ")", "for", "i", "in", "range", "(", "N", ")", ":", "d_result", "[", "3", "*", "i", "]", "=", "(", "np", ".", "exp", "(", "-", "0.5", "/", "args", "[", "3", "*", "i", "+", "2", "]", "**", "2", "*", "(", "x", "-", "args", "[", "3", "*", "i", "+", "1", "]", ")", "**", "2", ")", ")", "d_result", "[", "3", "*", "i", "+", "1", "]", "=", "args", "[", "3", "*", "i", "]", "*", "d_result", "[", "3", "*", "i", "]", "*", "(", "x", "-", "args", "[", "3", "*", "i", "+", "1", "]", ")", "/", "args", "[", "3", "*", "i", "+", "2", "]", "**", "2", "d_result", "[", "3", "*", "i", "+", "2", "]", "=", "args", "[", "3", "*", "i", "]", "*", "d_result", "[", "3", "*", "i", "]", "*", "(", "x", "-", "args", "[", "3", "*", "i", "+", "1", "]", ")", "**", "2", "/", "args", "[", "3", "*", "i", "+", "2", "]", "**", "3", "return", "d_result", "attr", "[", "'fit_deriv'", "]", "=", "deriv", "klass", "=", "type", "(", "name", ",", "(", "Fittable1DModel", ",", ")", ",", "attr", ")", "return", "klass" ]
Return a model of the sum of N Gaussians and a constant background.
[ "Return", "a", "model", "of", "the", "sum", "of", "N", "Gaussians", "and", "a", "constant", "background", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/modeling/sumofgauss.py#L14-L56
train
PierreRust/apigpio
apigpio/utils.py
Debounce
def Debounce(threshold=100): """ Simple debouncing decorator for apigpio callbacks. Example: `@Debouncer() def my_cb(gpio, level, tick) print('gpio cb: {} {} {}'.format(gpio, level, tick)) ` The threshold can be given to the decorator as an argument (in millisec). This decorator can be used both on function and object's methods. Warning: as the debouncer uses the tick from pigpio, which wraps around after approximately 1 hour 12 minutes, you could theoretically miss one call if your callback is called twice with that interval. """ threshold *= 1000 max_tick = 0xFFFFFFFF class _decorated(object): def __init__(self, pigpio_cb): self._fn = pigpio_cb self.last = 0 self.is_method = False def __call__(self, *args, **kwargs): if self.is_method: tick = args[3] else: tick = args[2] if self.last > tick: delay = max_tick-self.last + tick else: delay = tick - self.last if delay > threshold: self._fn(*args, **kwargs) print('call passed by debouncer {} {} {}' .format(tick, self.last, threshold)) self.last = tick else: print('call filtered out by debouncer {} {} {}' .format(tick, self.last, threshold)) def __get__(self, instance, type=None): # with is called when an instance of `_decorated` is used as a class # attribute, which is the case when decorating a method in a class self.is_method = True return functools.partial(self, instance) return _decorated
python
def Debounce(threshold=100): """ Simple debouncing decorator for apigpio callbacks. Example: `@Debouncer() def my_cb(gpio, level, tick) print('gpio cb: {} {} {}'.format(gpio, level, tick)) ` The threshold can be given to the decorator as an argument (in millisec). This decorator can be used both on function and object's methods. Warning: as the debouncer uses the tick from pigpio, which wraps around after approximately 1 hour 12 minutes, you could theoretically miss one call if your callback is called twice with that interval. """ threshold *= 1000 max_tick = 0xFFFFFFFF class _decorated(object): def __init__(self, pigpio_cb): self._fn = pigpio_cb self.last = 0 self.is_method = False def __call__(self, *args, **kwargs): if self.is_method: tick = args[3] else: tick = args[2] if self.last > tick: delay = max_tick-self.last + tick else: delay = tick - self.last if delay > threshold: self._fn(*args, **kwargs) print('call passed by debouncer {} {} {}' .format(tick, self.last, threshold)) self.last = tick else: print('call filtered out by debouncer {} {} {}' .format(tick, self.last, threshold)) def __get__(self, instance, type=None): # with is called when an instance of `_decorated` is used as a class # attribute, which is the case when decorating a method in a class self.is_method = True return functools.partial(self, instance) return _decorated
[ "def", "Debounce", "(", "threshold", "=", "100", ")", ":", "threshold", "*=", "1000", "max_tick", "=", "0xFFFFFFFF", "class", "_decorated", "(", "object", ")", ":", "def", "__init__", "(", "self", ",", "pigpio_cb", ")", ":", "self", ".", "_fn", "=", "pigpio_cb", "self", ".", "last", "=", "0", "self", ".", "is_method", "=", "False", "def", "__call__", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "self", ".", "is_method", ":", "tick", "=", "args", "[", "3", "]", "else", ":", "tick", "=", "args", "[", "2", "]", "if", "self", ".", "last", ">", "tick", ":", "delay", "=", "max_tick", "-", "self", ".", "last", "+", "tick", "else", ":", "delay", "=", "tick", "-", "self", ".", "last", "if", "delay", ">", "threshold", ":", "self", ".", "_fn", "(", "*", "args", ",", "*", "*", "kwargs", ")", "print", "(", "'call passed by debouncer {} {} {}'", ".", "format", "(", "tick", ",", "self", ".", "last", ",", "threshold", ")", ")", "self", ".", "last", "=", "tick", "else", ":", "print", "(", "'call filtered out by debouncer {} {} {}'", ".", "format", "(", "tick", ",", "self", ".", "last", ",", "threshold", ")", ")", "def", "__get__", "(", "self", ",", "instance", ",", "type", "=", "None", ")", ":", "# with is called when an instance of `_decorated` is used as a class", "# attribute, which is the case when decorating a method in a class", "self", ".", "is_method", "=", "True", "return", "functools", ".", "partial", "(", "self", ",", "instance", ")", "return", "_decorated" ]
Simple debouncing decorator for apigpio callbacks. Example: `@Debouncer() def my_cb(gpio, level, tick) print('gpio cb: {} {} {}'.format(gpio, level, tick)) ` The threshold can be given to the decorator as an argument (in millisec). This decorator can be used both on function and object's methods. Warning: as the debouncer uses the tick from pigpio, which wraps around after approximately 1 hour 12 minutes, you could theoretically miss one call if your callback is called twice with that interval.
[ "Simple", "debouncing", "decorator", "for", "apigpio", "callbacks", "." ]
2b969f40e06219b43a43498d8baf87f5935ceab2
https://github.com/PierreRust/apigpio/blob/2b969f40e06219b43a43498d8baf87f5935ceab2/apigpio/utils.py#L4-L56
train
morepath/more.jwtauth
more/jwtauth/refresh.py
verify_refresh_request
def verify_refresh_request(request): """ Wrapper around JWTIdentityPolicy.verify_refresh which verify if the request to refresh the token is valid. If valid it returns the userid which can be used to create to create an updated identity with ``remember_identity``. Otherwise it raises an exception based on InvalidTokenError. :param request: request object :type request: :class:`morepath.Request` :returns: userid :raises: InvalidTokenError, ExpiredSignatureError, DecodeError, MissingRequiredClaimError """ jwtauth_settings = request.app.settings.jwtauth.__dict__.copy() identity_policy = JWTIdentityPolicy(**jwtauth_settings) return identity_policy.verify_refresh(request)
python
def verify_refresh_request(request): """ Wrapper around JWTIdentityPolicy.verify_refresh which verify if the request to refresh the token is valid. If valid it returns the userid which can be used to create to create an updated identity with ``remember_identity``. Otherwise it raises an exception based on InvalidTokenError. :param request: request object :type request: :class:`morepath.Request` :returns: userid :raises: InvalidTokenError, ExpiredSignatureError, DecodeError, MissingRequiredClaimError """ jwtauth_settings = request.app.settings.jwtauth.__dict__.copy() identity_policy = JWTIdentityPolicy(**jwtauth_settings) return identity_policy.verify_refresh(request)
[ "def", "verify_refresh_request", "(", "request", ")", ":", "jwtauth_settings", "=", "request", ".", "app", ".", "settings", ".", "jwtauth", ".", "__dict__", ".", "copy", "(", ")", "identity_policy", "=", "JWTIdentityPolicy", "(", "*", "*", "jwtauth_settings", ")", "return", "identity_policy", ".", "verify_refresh", "(", "request", ")" ]
Wrapper around JWTIdentityPolicy.verify_refresh which verify if the request to refresh the token is valid. If valid it returns the userid which can be used to create to create an updated identity with ``remember_identity``. Otherwise it raises an exception based on InvalidTokenError. :param request: request object :type request: :class:`morepath.Request` :returns: userid :raises: InvalidTokenError, ExpiredSignatureError, DecodeError, MissingRequiredClaimError
[ "Wrapper", "around", "JWTIdentityPolicy", ".", "verify_refresh", "which", "verify", "if", "the", "request", "to", "refresh", "the", "token", "is", "valid", ".", "If", "valid", "it", "returns", "the", "userid", "which", "can", "be", "used", "to", "create", "to", "create", "an", "updated", "identity", "with", "remember_identity", ".", "Otherwise", "it", "raises", "an", "exception", "based", "on", "InvalidTokenError", "." ]
1c3c5731612069a092e44cf612641c05edf1f083
https://github.com/morepath/more.jwtauth/blob/1c3c5731612069a092e44cf612641c05edf1f083/more/jwtauth/refresh.py#L4-L21
train
guaix-ucm/numina
numina/array/peaks/detrend.py
detrend
def detrend(arr, x=None, deg=5, tol=1e-3, maxloop=10): """Compute a baseline trend of a signal""" xx = numpy.arange(len(arr)) if x is None else x base = arr.copy() trend = base pol = numpy.ones((deg + 1,)) for _ in range(maxloop): pol_new = numpy.polyfit(xx, base, deg) pol_norm = numpy.linalg.norm(pol) diff_pol_norm = numpy.linalg.norm(pol - pol_new) if diff_pol_norm / pol_norm < tol: break pol = pol_new trend = numpy.polyval(pol, xx) base = numpy.minimum(base, trend) return trend
python
def detrend(arr, x=None, deg=5, tol=1e-3, maxloop=10): """Compute a baseline trend of a signal""" xx = numpy.arange(len(arr)) if x is None else x base = arr.copy() trend = base pol = numpy.ones((deg + 1,)) for _ in range(maxloop): pol_new = numpy.polyfit(xx, base, deg) pol_norm = numpy.linalg.norm(pol) diff_pol_norm = numpy.linalg.norm(pol - pol_new) if diff_pol_norm / pol_norm < tol: break pol = pol_new trend = numpy.polyval(pol, xx) base = numpy.minimum(base, trend) return trend
[ "def", "detrend", "(", "arr", ",", "x", "=", "None", ",", "deg", "=", "5", ",", "tol", "=", "1e-3", ",", "maxloop", "=", "10", ")", ":", "xx", "=", "numpy", ".", "arange", "(", "len", "(", "arr", ")", ")", "if", "x", "is", "None", "else", "x", "base", "=", "arr", ".", "copy", "(", ")", "trend", "=", "base", "pol", "=", "numpy", ".", "ones", "(", "(", "deg", "+", "1", ",", ")", ")", "for", "_", "in", "range", "(", "maxloop", ")", ":", "pol_new", "=", "numpy", ".", "polyfit", "(", "xx", ",", "base", ",", "deg", ")", "pol_norm", "=", "numpy", ".", "linalg", ".", "norm", "(", "pol", ")", "diff_pol_norm", "=", "numpy", ".", "linalg", ".", "norm", "(", "pol", "-", "pol_new", ")", "if", "diff_pol_norm", "/", "pol_norm", "<", "tol", ":", "break", "pol", "=", "pol_new", "trend", "=", "numpy", ".", "polyval", "(", "pol", ",", "xx", ")", "base", "=", "numpy", ".", "minimum", "(", "base", ",", "trend", ")", "return", "trend" ]
Compute a baseline trend of a signal
[ "Compute", "a", "baseline", "trend", "of", "a", "signal" ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/peaks/detrend.py#L13-L29
train
arkottke/pysra
pysra/motion.py
TimeSeriesMotion.calc_osc_accels
def calc_osc_accels(self, osc_freqs, osc_damping=0.05, tf=None): """Compute the pseudo-acceleration spectral response of an oscillator with a specific frequency and damping. Parameters ---------- osc_freq : float Frequency of the oscillator (Hz). osc_damping : float Fractional damping of the oscillator (dec). For example, 0.05 for a damping ratio of 5%. tf : array_like, optional Transfer function to be applied to motion prior calculation of the oscillator response. Returns ------- spec_accels : :class:`numpy.ndarray` Peak pseudo-spectral acceleration of the oscillator """ if tf is None: tf = np.ones_like(self.freqs) else: tf = np.asarray(tf).astype(complex) resp = np.array([ self.calc_peak(tf * self._calc_sdof_tf(of, osc_damping)) for of in osc_freqs ]) return resp
python
def calc_osc_accels(self, osc_freqs, osc_damping=0.05, tf=None): """Compute the pseudo-acceleration spectral response of an oscillator with a specific frequency and damping. Parameters ---------- osc_freq : float Frequency of the oscillator (Hz). osc_damping : float Fractional damping of the oscillator (dec). For example, 0.05 for a damping ratio of 5%. tf : array_like, optional Transfer function to be applied to motion prior calculation of the oscillator response. Returns ------- spec_accels : :class:`numpy.ndarray` Peak pseudo-spectral acceleration of the oscillator """ if tf is None: tf = np.ones_like(self.freqs) else: tf = np.asarray(tf).astype(complex) resp = np.array([ self.calc_peak(tf * self._calc_sdof_tf(of, osc_damping)) for of in osc_freqs ]) return resp
[ "def", "calc_osc_accels", "(", "self", ",", "osc_freqs", ",", "osc_damping", "=", "0.05", ",", "tf", "=", "None", ")", ":", "if", "tf", "is", "None", ":", "tf", "=", "np", ".", "ones_like", "(", "self", ".", "freqs", ")", "else", ":", "tf", "=", "np", ".", "asarray", "(", "tf", ")", ".", "astype", "(", "complex", ")", "resp", "=", "np", ".", "array", "(", "[", "self", ".", "calc_peak", "(", "tf", "*", "self", ".", "_calc_sdof_tf", "(", "of", ",", "osc_damping", ")", ")", "for", "of", "in", "osc_freqs", "]", ")", "return", "resp" ]
Compute the pseudo-acceleration spectral response of an oscillator with a specific frequency and damping. Parameters ---------- osc_freq : float Frequency of the oscillator (Hz). osc_damping : float Fractional damping of the oscillator (dec). For example, 0.05 for a damping ratio of 5%. tf : array_like, optional Transfer function to be applied to motion prior calculation of the oscillator response. Returns ------- spec_accels : :class:`numpy.ndarray` Peak pseudo-spectral acceleration of the oscillator
[ "Compute", "the", "pseudo", "-", "acceleration", "spectral", "response", "of", "an", "oscillator", "with", "a", "specific", "frequency", "and", "damping", "." ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/motion.py#L141-L170
train
arkottke/pysra
pysra/motion.py
TimeSeriesMotion._calc_fourier_spectrum
def _calc_fourier_spectrum(self, fa_length=None): """Compute the Fourier Amplitude Spectrum of the time series.""" if fa_length is None: # Use the next power of 2 for the length n = 1 while n < self.accels.size: n <<= 1 else: n = fa_length self._fourier_amps = np.fft.rfft(self._accels, n) freq_step = 1. / (2 * self._time_step * (n / 2)) self._freqs = freq_step * np.arange(1 + n / 2)
python
def _calc_fourier_spectrum(self, fa_length=None): """Compute the Fourier Amplitude Spectrum of the time series.""" if fa_length is None: # Use the next power of 2 for the length n = 1 while n < self.accels.size: n <<= 1 else: n = fa_length self._fourier_amps = np.fft.rfft(self._accels, n) freq_step = 1. / (2 * self._time_step * (n / 2)) self._freqs = freq_step * np.arange(1 + n / 2)
[ "def", "_calc_fourier_spectrum", "(", "self", ",", "fa_length", "=", "None", ")", ":", "if", "fa_length", "is", "None", ":", "# Use the next power of 2 for the length", "n", "=", "1", "while", "n", "<", "self", ".", "accels", ".", "size", ":", "n", "<<=", "1", "else", ":", "n", "=", "fa_length", "self", ".", "_fourier_amps", "=", "np", ".", "fft", ".", "rfft", "(", "self", ".", "_accels", ",", "n", ")", "freq_step", "=", "1.", "/", "(", "2", "*", "self", ".", "_time_step", "*", "(", "n", "/", "2", ")", ")", "self", ".", "_freqs", "=", "freq_step", "*", "np", ".", "arange", "(", "1", "+", "n", "/", "2", ")" ]
Compute the Fourier Amplitude Spectrum of the time series.
[ "Compute", "the", "Fourier", "Amplitude", "Spectrum", "of", "the", "time", "series", "." ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/motion.py#L172-L186
train
arkottke/pysra
pysra/motion.py
TimeSeriesMotion._calc_sdof_tf
def _calc_sdof_tf(self, osc_freq, damping=0.05): """Compute the transfer function for a single-degree-of-freedom oscillator. The transfer function computes the pseudo-spectral acceleration. Parameters ---------- osc_freq : float natural frequency of the oscillator [Hz] damping : float, optional damping ratio of the oscillator in decimal. Default value is 0.05, or 5%. Returns ------- tf : :class:`numpy.ndarray` Complex-valued transfer function with length equal to `self.freq`. """ return (-osc_freq ** 2. / (np.square(self.freqs) - np.square(osc_freq) - 2.j * damping * osc_freq * self.freqs))
python
def _calc_sdof_tf(self, osc_freq, damping=0.05): """Compute the transfer function for a single-degree-of-freedom oscillator. The transfer function computes the pseudo-spectral acceleration. Parameters ---------- osc_freq : float natural frequency of the oscillator [Hz] damping : float, optional damping ratio of the oscillator in decimal. Default value is 0.05, or 5%. Returns ------- tf : :class:`numpy.ndarray` Complex-valued transfer function with length equal to `self.freq`. """ return (-osc_freq ** 2. / (np.square(self.freqs) - np.square(osc_freq) - 2.j * damping * osc_freq * self.freqs))
[ "def", "_calc_sdof_tf", "(", "self", ",", "osc_freq", ",", "damping", "=", "0.05", ")", ":", "return", "(", "-", "osc_freq", "**", "2.", "/", "(", "np", ".", "square", "(", "self", ".", "freqs", ")", "-", "np", ".", "square", "(", "osc_freq", ")", "-", "2.j", "*", "damping", "*", "osc_freq", "*", "self", ".", "freqs", ")", ")" ]
Compute the transfer function for a single-degree-of-freedom oscillator. The transfer function computes the pseudo-spectral acceleration. Parameters ---------- osc_freq : float natural frequency of the oscillator [Hz] damping : float, optional damping ratio of the oscillator in decimal. Default value is 0.05, or 5%. Returns ------- tf : :class:`numpy.ndarray` Complex-valued transfer function with length equal to `self.freq`.
[ "Compute", "the", "transfer", "function", "for", "a", "single", "-", "degree", "-", "of", "-", "freedom", "oscillator", "." ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/motion.py#L188-L208
train
arkottke/pysra
pysra/motion.py
TimeSeriesMotion.load_at2_file
def load_at2_file(cls, filename): """Read an AT2 formatted time series. Parameters ---------- filename: str Filename to open. """ with open(filename) as fp: next(fp) description = next(fp).strip() next(fp) parts = next(fp).split() time_step = float(parts[1]) accels = [float(p) for l in fp for p in l.split()] return cls(filename, description, time_step, accels)
python
def load_at2_file(cls, filename): """Read an AT2 formatted time series. Parameters ---------- filename: str Filename to open. """ with open(filename) as fp: next(fp) description = next(fp).strip() next(fp) parts = next(fp).split() time_step = float(parts[1]) accels = [float(p) for l in fp for p in l.split()] return cls(filename, description, time_step, accels)
[ "def", "load_at2_file", "(", "cls", ",", "filename", ")", ":", "with", "open", "(", "filename", ")", "as", "fp", ":", "next", "(", "fp", ")", "description", "=", "next", "(", "fp", ")", ".", "strip", "(", ")", "next", "(", "fp", ")", "parts", "=", "next", "(", "fp", ")", ".", "split", "(", ")", "time_step", "=", "float", "(", "parts", "[", "1", "]", ")", "accels", "=", "[", "float", "(", "p", ")", "for", "l", "in", "fp", "for", "p", "in", "l", ".", "split", "(", ")", "]", "return", "cls", "(", "filename", ",", "description", ",", "time_step", ",", "accels", ")" ]
Read an AT2 formatted time series. Parameters ---------- filename: str Filename to open.
[ "Read", "an", "AT2", "formatted", "time", "series", "." ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/motion.py#L211-L229
train
arkottke/pysra
pysra/motion.py
TimeSeriesMotion.load_smc_file
def load_smc_file(cls, filename): """Read an SMC formatted time series. Format of the time series is provided by: https://escweb.wr.usgs.gov/nsmp-data/smcfmt.html Parameters ---------- filename: str Filename to open. """ from .tools import parse_fixed_width with open(filename) as fp: lines = list(fp) # 11 lines of strings lines_str = [lines.pop(0) for _ in range(11)] if lines_str[0].strip() != '2 CORRECTED ACCELEROGRAM': raise RuntimeWarning("Loading uncorrected SMC file.") m = re.search('station =(.+)component=(.+)', lines_str[5]) description = '; '.join([g.strip() for g in m.groups()]) # 6 lines of (8i10) formatted integers values_int = parse_fixed_width(48 * [(10, int)], [lines.pop(0) for _ in range(6)]) count_comment = values_int[15] count = values_int[16] # 10 lines of (5e15.7) formatted floats values_float = parse_fixed_width(50 * [(15, float)], [lines.pop(0) for _ in range(10)]) time_step = 1 / values_float[1] # Skip comments lines = lines[count_comment:] accels = np.array(parse_fixed_width(count * [ (10, float), ], lines)) return TimeSeriesMotion(filename, description, time_step, accels)
python
def load_smc_file(cls, filename): """Read an SMC formatted time series. Format of the time series is provided by: https://escweb.wr.usgs.gov/nsmp-data/smcfmt.html Parameters ---------- filename: str Filename to open. """ from .tools import parse_fixed_width with open(filename) as fp: lines = list(fp) # 11 lines of strings lines_str = [lines.pop(0) for _ in range(11)] if lines_str[0].strip() != '2 CORRECTED ACCELEROGRAM': raise RuntimeWarning("Loading uncorrected SMC file.") m = re.search('station =(.+)component=(.+)', lines_str[5]) description = '; '.join([g.strip() for g in m.groups()]) # 6 lines of (8i10) formatted integers values_int = parse_fixed_width(48 * [(10, int)], [lines.pop(0) for _ in range(6)]) count_comment = values_int[15] count = values_int[16] # 10 lines of (5e15.7) formatted floats values_float = parse_fixed_width(50 * [(15, float)], [lines.pop(0) for _ in range(10)]) time_step = 1 / values_float[1] # Skip comments lines = lines[count_comment:] accels = np.array(parse_fixed_width(count * [ (10, float), ], lines)) return TimeSeriesMotion(filename, description, time_step, accels)
[ "def", "load_smc_file", "(", "cls", ",", "filename", ")", ":", "from", ".", "tools", "import", "parse_fixed_width", "with", "open", "(", "filename", ")", "as", "fp", ":", "lines", "=", "list", "(", "fp", ")", "# 11 lines of strings", "lines_str", "=", "[", "lines", ".", "pop", "(", "0", ")", "for", "_", "in", "range", "(", "11", ")", "]", "if", "lines_str", "[", "0", "]", ".", "strip", "(", ")", "!=", "'2 CORRECTED ACCELEROGRAM'", ":", "raise", "RuntimeWarning", "(", "\"Loading uncorrected SMC file.\"", ")", "m", "=", "re", ".", "search", "(", "'station =(.+)component=(.+)'", ",", "lines_str", "[", "5", "]", ")", "description", "=", "'; '", ".", "join", "(", "[", "g", ".", "strip", "(", ")", "for", "g", "in", "m", ".", "groups", "(", ")", "]", ")", "# 6 lines of (8i10) formatted integers", "values_int", "=", "parse_fixed_width", "(", "48", "*", "[", "(", "10", ",", "int", ")", "]", ",", "[", "lines", ".", "pop", "(", "0", ")", "for", "_", "in", "range", "(", "6", ")", "]", ")", "count_comment", "=", "values_int", "[", "15", "]", "count", "=", "values_int", "[", "16", "]", "# 10 lines of (5e15.7) formatted floats", "values_float", "=", "parse_fixed_width", "(", "50", "*", "[", "(", "15", ",", "float", ")", "]", ",", "[", "lines", ".", "pop", "(", "0", ")", "for", "_", "in", "range", "(", "10", ")", "]", ")", "time_step", "=", "1", "/", "values_float", "[", "1", "]", "# Skip comments", "lines", "=", "lines", "[", "count_comment", ":", "]", "accels", "=", "np", ".", "array", "(", "parse_fixed_width", "(", "count", "*", "[", "(", "10", ",", "float", ")", ",", "]", ",", "lines", ")", ")", "return", "TimeSeriesMotion", "(", "filename", ",", "description", ",", "time_step", ",", "accels", ")" ]
Read an SMC formatted time series. Format of the time series is provided by: https://escweb.wr.usgs.gov/nsmp-data/smcfmt.html Parameters ---------- filename: str Filename to open.
[ "Read", "an", "SMC", "formatted", "time", "series", "." ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/motion.py#L232-L276
train
SUNCAT-Center/CatHub
cathub/classification.py
SiteClassification.get_info
def get_info(self): """Return surface reconstruction as well as primary and secondary adsorption site labels""" reconstructed = self.is_reconstructed() site, site_type = self.get_site() return reconstructed, site, site_type
python
def get_info(self): """Return surface reconstruction as well as primary and secondary adsorption site labels""" reconstructed = self.is_reconstructed() site, site_type = self.get_site() return reconstructed, site, site_type
[ "def", "get_info", "(", "self", ")", ":", "reconstructed", "=", "self", ".", "is_reconstructed", "(", ")", "site", ",", "site_type", "=", "self", ".", "get_site", "(", ")", "return", "reconstructed", ",", "site", ",", "site_type" ]
Return surface reconstruction as well as primary and secondary adsorption site labels
[ "Return", "surface", "reconstruction", "as", "well", "as", "primary", "and", "secondary", "adsorption", "site", "labels" ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/classification.py#L48-L56
train
SUNCAT-Center/CatHub
cathub/classification.py
SiteClassification.check_dissociated
def check_dissociated(self, cutoff=1.2): """Check if adsorbate dissociates""" dissociated = False if not len(self.B) > self.nslab + 1: # only one adsorbate return dissociated adsatoms = [atom for atom in self.B[self.nslab:]] ads0, ads1 = set(atom.symbol for atom in adsatoms) bond_dist = get_ads_dist(self.B, ads0, ads1) Cradii = [cradii[atom.number] for atom in [ase.Atom(ads0), ase.Atom(ads1)]] bond_dist0 = sum(Cradii) if bond_dist > cutoff * bond_dist0: print('DISSOCIATED: {} Ang > 1.2 * {} Ang' .format(bond_dist, bond_dist0)) dissociated = True return dissociated
python
def check_dissociated(self, cutoff=1.2): """Check if adsorbate dissociates""" dissociated = False if not len(self.B) > self.nslab + 1: # only one adsorbate return dissociated adsatoms = [atom for atom in self.B[self.nslab:]] ads0, ads1 = set(atom.symbol for atom in adsatoms) bond_dist = get_ads_dist(self.B, ads0, ads1) Cradii = [cradii[atom.number] for atom in [ase.Atom(ads0), ase.Atom(ads1)]] bond_dist0 = sum(Cradii) if bond_dist > cutoff * bond_dist0: print('DISSOCIATED: {} Ang > 1.2 * {} Ang' .format(bond_dist, bond_dist0)) dissociated = True return dissociated
[ "def", "check_dissociated", "(", "self", ",", "cutoff", "=", "1.2", ")", ":", "dissociated", "=", "False", "if", "not", "len", "(", "self", ".", "B", ")", ">", "self", ".", "nslab", "+", "1", ":", "# only one adsorbate", "return", "dissociated", "adsatoms", "=", "[", "atom", "for", "atom", "in", "self", ".", "B", "[", "self", ".", "nslab", ":", "]", "]", "ads0", ",", "ads1", "=", "set", "(", "atom", ".", "symbol", "for", "atom", "in", "adsatoms", ")", "bond_dist", "=", "get_ads_dist", "(", "self", ".", "B", ",", "ads0", ",", "ads1", ")", "Cradii", "=", "[", "cradii", "[", "atom", ".", "number", "]", "for", "atom", "in", "[", "ase", ".", "Atom", "(", "ads0", ")", ",", "ase", ".", "Atom", "(", "ads1", ")", "]", "]", "bond_dist0", "=", "sum", "(", "Cradii", ")", "if", "bond_dist", ">", "cutoff", "*", "bond_dist0", ":", "print", "(", "'DISSOCIATED: {} Ang > 1.2 * {} Ang'", ".", "format", "(", "bond_dist", ",", "bond_dist0", ")", ")", "dissociated", "=", "True", "return", "dissociated" ]
Check if adsorbate dissociates
[ "Check", "if", "adsorbate", "dissociates" ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/classification.py#L58-L77
train
SUNCAT-Center/CatHub
cathub/classification.py
SiteClassification.is_reconstructed
def is_reconstructed(self, xy_cutoff=0.3, z_cutoff=0.4): """Compare initial and final slab configuration to determine if slab reconstructs during relaxation xy_cutoff: Allowed xy-movement is determined from the covalent radii as: xy_cutoff * np.mean(cradii) z_cutoff: Allowed z-movement is determined as z_cutoff * cradii_i """ assert self.A, \ 'Initial slab geometry needed to classify reconstruction' # remove adsorbate A = self.A[:-1].copy() B = self.B[:-1].copy() # Order wrt x-positions x_indices = np.argsort(A.positions[:, 0]) A = A[x_indices] B = B[x_indices] a = A.positions b = B.positions allowed_z_movement = z_cutoff * cradii[A.get_atomic_numbers()] allowed_xy_movement = \ xy_cutoff * np.mean(cradii[A.get_atomic_numbers()]) D, D_len = get_distances(p1=a, p2=b, cell=A.cell, pbc=True) d_xy = np.linalg.norm(np.diagonal(D)[:2], axis=0) d_z = np.diagonal(D)[2:][0] cond1 = np.all(d_xy < allowed_xy_movement) cond2 = np.all([d_z[i] < allowed_z_movement[i] for i in range(len(a))]) if cond1 and cond2: # not reconstructed return False else: return True
python
def is_reconstructed(self, xy_cutoff=0.3, z_cutoff=0.4): """Compare initial and final slab configuration to determine if slab reconstructs during relaxation xy_cutoff: Allowed xy-movement is determined from the covalent radii as: xy_cutoff * np.mean(cradii) z_cutoff: Allowed z-movement is determined as z_cutoff * cradii_i """ assert self.A, \ 'Initial slab geometry needed to classify reconstruction' # remove adsorbate A = self.A[:-1].copy() B = self.B[:-1].copy() # Order wrt x-positions x_indices = np.argsort(A.positions[:, 0]) A = A[x_indices] B = B[x_indices] a = A.positions b = B.positions allowed_z_movement = z_cutoff * cradii[A.get_atomic_numbers()] allowed_xy_movement = \ xy_cutoff * np.mean(cradii[A.get_atomic_numbers()]) D, D_len = get_distances(p1=a, p2=b, cell=A.cell, pbc=True) d_xy = np.linalg.norm(np.diagonal(D)[:2], axis=0) d_z = np.diagonal(D)[2:][0] cond1 = np.all(d_xy < allowed_xy_movement) cond2 = np.all([d_z[i] < allowed_z_movement[i] for i in range(len(a))]) if cond1 and cond2: # not reconstructed return False else: return True
[ "def", "is_reconstructed", "(", "self", ",", "xy_cutoff", "=", "0.3", ",", "z_cutoff", "=", "0.4", ")", ":", "assert", "self", ".", "A", ",", "'Initial slab geometry needed to classify reconstruction'", "# remove adsorbate", "A", "=", "self", ".", "A", "[", ":", "-", "1", "]", ".", "copy", "(", ")", "B", "=", "self", ".", "B", "[", ":", "-", "1", "]", ".", "copy", "(", ")", "# Order wrt x-positions", "x_indices", "=", "np", ".", "argsort", "(", "A", ".", "positions", "[", ":", ",", "0", "]", ")", "A", "=", "A", "[", "x_indices", "]", "B", "=", "B", "[", "x_indices", "]", "a", "=", "A", ".", "positions", "b", "=", "B", ".", "positions", "allowed_z_movement", "=", "z_cutoff", "*", "cradii", "[", "A", ".", "get_atomic_numbers", "(", ")", "]", "allowed_xy_movement", "=", "xy_cutoff", "*", "np", ".", "mean", "(", "cradii", "[", "A", ".", "get_atomic_numbers", "(", ")", "]", ")", "D", ",", "D_len", "=", "get_distances", "(", "p1", "=", "a", ",", "p2", "=", "b", ",", "cell", "=", "A", ".", "cell", ",", "pbc", "=", "True", ")", "d_xy", "=", "np", ".", "linalg", ".", "norm", "(", "np", ".", "diagonal", "(", "D", ")", "[", ":", "2", "]", ",", "axis", "=", "0", ")", "d_z", "=", "np", ".", "diagonal", "(", "D", ")", "[", "2", ":", "]", "[", "0", "]", "cond1", "=", "np", ".", "all", "(", "d_xy", "<", "allowed_xy_movement", ")", "cond2", "=", "np", ".", "all", "(", "[", "d_z", "[", "i", "]", "<", "allowed_z_movement", "[", "i", "]", "for", "i", "in", "range", "(", "len", "(", "a", ")", ")", "]", ")", "if", "cond1", "and", "cond2", ":", "# not reconstructed", "return", "False", "else", ":", "return", "True" ]
Compare initial and final slab configuration to determine if slab reconstructs during relaxation xy_cutoff: Allowed xy-movement is determined from the covalent radii as: xy_cutoff * np.mean(cradii) z_cutoff: Allowed z-movement is determined as z_cutoff * cradii_i
[ "Compare", "initial", "and", "final", "slab", "configuration", "to", "determine", "if", "slab", "reconstructs", "during", "relaxation" ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/classification.py#L105-L145
train
SUNCAT-Center/CatHub
cathub/classification.py
SiteClassification.get_under_bridge
def get_under_bridge(self): """Return element closest to the adsorbate in the subsurface layer""" C0 = self.B[-1:] * (3, 3, 1) ads_pos = C0.positions[4] C = self.get_subsurface_layer() * (3, 3, 1) dis = self.B.cell[0][0] * 2 ret = None for ele in C: new_dis = np.linalg.norm(ads_pos - ele.position) if new_dis < dis: dis = new_dis ret = ele.symbol return ret
python
def get_under_bridge(self): """Return element closest to the adsorbate in the subsurface layer""" C0 = self.B[-1:] * (3, 3, 1) ads_pos = C0.positions[4] C = self.get_subsurface_layer() * (3, 3, 1) dis = self.B.cell[0][0] * 2 ret = None for ele in C: new_dis = np.linalg.norm(ads_pos - ele.position) if new_dis < dis: dis = new_dis ret = ele.symbol return ret
[ "def", "get_under_bridge", "(", "self", ")", ":", "C0", "=", "self", ".", "B", "[", "-", "1", ":", "]", "*", "(", "3", ",", "3", ",", "1", ")", "ads_pos", "=", "C0", ".", "positions", "[", "4", "]", "C", "=", "self", ".", "get_subsurface_layer", "(", ")", "*", "(", "3", ",", "3", ",", "1", ")", "dis", "=", "self", ".", "B", ".", "cell", "[", "0", "]", "[", "0", "]", "*", "2", "ret", "=", "None", "for", "ele", "in", "C", ":", "new_dis", "=", "np", ".", "linalg", ".", "norm", "(", "ads_pos", "-", "ele", ".", "position", ")", "if", "new_dis", "<", "dis", ":", "dis", "=", "new_dis", "ret", "=", "ele", ".", "symbol", "return", "ret" ]
Return element closest to the adsorbate in the subsurface layer
[ "Return", "element", "closest", "to", "the", "adsorbate", "in", "the", "subsurface", "layer" ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/classification.py#L260-L276
train
SUNCAT-Center/CatHub
cathub/classification.py
SiteClassification.get_under_hollow
def get_under_hollow(self): """ Return HCP if an atom is present below the adsorbate in the subsurface layer and FCC if not""" C0 = self.B[-1:] * (3, 3, 1) ads_pos = C0.positions[4] C = self.get_subsurface_layer() * (3, 3, 1) ret = 'FCC' if np.any([np.linalg.norm(ads_pos[:2] - ele.position[:2]) < 0.5 * cradii[ele.number] for ele in C]): ret = 'HCP' return ret
python
def get_under_hollow(self): """ Return HCP if an atom is present below the adsorbate in the subsurface layer and FCC if not""" C0 = self.B[-1:] * (3, 3, 1) ads_pos = C0.positions[4] C = self.get_subsurface_layer() * (3, 3, 1) ret = 'FCC' if np.any([np.linalg.norm(ads_pos[:2] - ele.position[:2]) < 0.5 * cradii[ele.number] for ele in C]): ret = 'HCP' return ret
[ "def", "get_under_hollow", "(", "self", ")", ":", "C0", "=", "self", ".", "B", "[", "-", "1", ":", "]", "*", "(", "3", ",", "3", ",", "1", ")", "ads_pos", "=", "C0", ".", "positions", "[", "4", "]", "C", "=", "self", ".", "get_subsurface_layer", "(", ")", "*", "(", "3", ",", "3", ",", "1", ")", "ret", "=", "'FCC'", "if", "np", ".", "any", "(", "[", "np", ".", "linalg", ".", "norm", "(", "ads_pos", "[", ":", "2", "]", "-", "ele", ".", "position", "[", ":", "2", "]", ")", "<", "0.5", "*", "cradii", "[", "ele", ".", "number", "]", "for", "ele", "in", "C", "]", ")", ":", "ret", "=", "'HCP'", "return", "ret" ]
Return HCP if an atom is present below the adsorbate in the subsurface layer and FCC if not
[ "Return", "HCP", "if", "an", "atom", "is", "present", "below", "the", "adsorbate", "in", "the", "subsurface", "layer", "and", "FCC", "if", "not" ]
324625d1d8e740673f139658b2de4c9e1059739e
https://github.com/SUNCAT-Center/CatHub/blob/324625d1d8e740673f139658b2de4c9e1059739e/cathub/classification.py#L278-L291
train
guaix-ucm/numina
numina/array/distortion.py
fmap
def fmap(order, aij, bij, x, y): """Evaluate the 2D polynomial transformation. u = sum[i=0:order]( sum[j=0:j]( a_ij * x**(i - j) * y**j )) v = sum[i=0:order]( sum[j=0:j]( b_ij * x**(i - j) * y**j )) Parameters ---------- order : int Order of the polynomial transformation. aij : numpy array Polynomial coefficents corresponding to a_ij. bij : numpy array Polynomial coefficents corresponding to b_ij. x : numpy array or float X coordinate values where the transformation is computed. Note that these values correspond to array indices. y : numpy array or float Y coordinate values where the transformation is computed. Note that these values correspond to array indices. Returns ------- u : numpy array or float U coordinate values. v : numpy array or float V coordinate values. """ u = np.zeros_like(x) v = np.zeros_like(y) k = 0 for i in range(order + 1): for j in range(i + 1): u += aij[k] * (x ** (i - j)) * (y ** j) v += bij[k] * (x ** (i - j)) * (y ** j) k += 1 return u, v
python
def fmap(order, aij, bij, x, y): """Evaluate the 2D polynomial transformation. u = sum[i=0:order]( sum[j=0:j]( a_ij * x**(i - j) * y**j )) v = sum[i=0:order]( sum[j=0:j]( b_ij * x**(i - j) * y**j )) Parameters ---------- order : int Order of the polynomial transformation. aij : numpy array Polynomial coefficents corresponding to a_ij. bij : numpy array Polynomial coefficents corresponding to b_ij. x : numpy array or float X coordinate values where the transformation is computed. Note that these values correspond to array indices. y : numpy array or float Y coordinate values where the transformation is computed. Note that these values correspond to array indices. Returns ------- u : numpy array or float U coordinate values. v : numpy array or float V coordinate values. """ u = np.zeros_like(x) v = np.zeros_like(y) k = 0 for i in range(order + 1): for j in range(i + 1): u += aij[k] * (x ** (i - j)) * (y ** j) v += bij[k] * (x ** (i - j)) * (y ** j) k += 1 return u, v
[ "def", "fmap", "(", "order", ",", "aij", ",", "bij", ",", "x", ",", "y", ")", ":", "u", "=", "np", ".", "zeros_like", "(", "x", ")", "v", "=", "np", ".", "zeros_like", "(", "y", ")", "k", "=", "0", "for", "i", "in", "range", "(", "order", "+", "1", ")", ":", "for", "j", "in", "range", "(", "i", "+", "1", ")", ":", "u", "+=", "aij", "[", "k", "]", "*", "(", "x", "**", "(", "i", "-", "j", ")", ")", "*", "(", "y", "**", "j", ")", "v", "+=", "bij", "[", "k", "]", "*", "(", "x", "**", "(", "i", "-", "j", ")", ")", "*", "(", "y", "**", "j", ")", "k", "+=", "1", "return", "u", ",", "v" ]
Evaluate the 2D polynomial transformation. u = sum[i=0:order]( sum[j=0:j]( a_ij * x**(i - j) * y**j )) v = sum[i=0:order]( sum[j=0:j]( b_ij * x**(i - j) * y**j )) Parameters ---------- order : int Order of the polynomial transformation. aij : numpy array Polynomial coefficents corresponding to a_ij. bij : numpy array Polynomial coefficents corresponding to b_ij. x : numpy array or float X coordinate values where the transformation is computed. Note that these values correspond to array indices. y : numpy array or float Y coordinate values where the transformation is computed. Note that these values correspond to array indices. Returns ------- u : numpy array or float U coordinate values. v : numpy array or float V coordinate values.
[ "Evaluate", "the", "2D", "polynomial", "transformation", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/distortion.py#L184-L224
train
guaix-ucm/numina
numina/array/distortion.py
ncoef_fmap
def ncoef_fmap(order): """Expected number of coefficients in a 2D transformation of a given order. Parameters ---------- order : int Order of the 2D polynomial transformation. Returns ------- ncoef : int Expected number of coefficients. """ ncoef = 0 for i in range(order + 1): for j in range(i + 1): ncoef += 1 return ncoef
python
def ncoef_fmap(order): """Expected number of coefficients in a 2D transformation of a given order. Parameters ---------- order : int Order of the 2D polynomial transformation. Returns ------- ncoef : int Expected number of coefficients. """ ncoef = 0 for i in range(order + 1): for j in range(i + 1): ncoef += 1 return ncoef
[ "def", "ncoef_fmap", "(", "order", ")", ":", "ncoef", "=", "0", "for", "i", "in", "range", "(", "order", "+", "1", ")", ":", "for", "j", "in", "range", "(", "i", "+", "1", ")", ":", "ncoef", "+=", "1", "return", "ncoef" ]
Expected number of coefficients in a 2D transformation of a given order. Parameters ---------- order : int Order of the 2D polynomial transformation. Returns ------- ncoef : int Expected number of coefficients.
[ "Expected", "number", "of", "coefficients", "in", "a", "2D", "transformation", "of", "a", "given", "order", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/distortion.py#L227-L246
train
guaix-ucm/numina
numina/array/distortion.py
order_fmap
def order_fmap(ncoef): """Compute order corresponding to a given number of coefficients. Parameters ---------- ncoef : int Number of coefficients. Returns ------- order : int Order corresponding to the provided number of coefficients. """ loop = True order = 1 while loop: loop = not (ncoef == ncoef_fmap(order)) if loop: order += 1 if order > NMAX_ORDER: print('No. of coefficients: ', ncoef) raise ValueError("order > " + str(NMAX_ORDER) + " not implemented") return order
python
def order_fmap(ncoef): """Compute order corresponding to a given number of coefficients. Parameters ---------- ncoef : int Number of coefficients. Returns ------- order : int Order corresponding to the provided number of coefficients. """ loop = True order = 1 while loop: loop = not (ncoef == ncoef_fmap(order)) if loop: order += 1 if order > NMAX_ORDER: print('No. of coefficients: ', ncoef) raise ValueError("order > " + str(NMAX_ORDER) + " not implemented") return order
[ "def", "order_fmap", "(", "ncoef", ")", ":", "loop", "=", "True", "order", "=", "1", "while", "loop", ":", "loop", "=", "not", "(", "ncoef", "==", "ncoef_fmap", "(", "order", ")", ")", "if", "loop", ":", "order", "+=", "1", "if", "order", ">", "NMAX_ORDER", ":", "print", "(", "'No. of coefficients: '", ",", "ncoef", ")", "raise", "ValueError", "(", "\"order > \"", "+", "str", "(", "NMAX_ORDER", ")", "+", "\" not implemented\"", ")", "return", "order" ]
Compute order corresponding to a given number of coefficients. Parameters ---------- ncoef : int Number of coefficients. Returns ------- order : int Order corresponding to the provided number of coefficients.
[ "Compute", "order", "corresponding", "to", "a", "given", "number", "of", "coefficients", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/array/distortion.py#L249-L274
train
kyzima-spb/flask-pony
flask_pony/views.py
BaseView.get_template_name
def get_template_name(self): """ Returns the name of the template. If the template_name property is not set, the value will be generated automatically based on the class name. Example: >>> class MyEntityAction(BaseView): pass >>> view = MyEntityAction() >>> view.get_template_name() "my_entity/action.html" """ if self.template_name is None: name = camelcase2list(self.__class__.__name__) name = '{}/{}.html'.format(name.pop(0), '_'.join(name)) self.template_name = name.lower() return self.template_name
python
def get_template_name(self): """ Returns the name of the template. If the template_name property is not set, the value will be generated automatically based on the class name. Example: >>> class MyEntityAction(BaseView): pass >>> view = MyEntityAction() >>> view.get_template_name() "my_entity/action.html" """ if self.template_name is None: name = camelcase2list(self.__class__.__name__) name = '{}/{}.html'.format(name.pop(0), '_'.join(name)) self.template_name = name.lower() return self.template_name
[ "def", "get_template_name", "(", "self", ")", ":", "if", "self", ".", "template_name", "is", "None", ":", "name", "=", "camelcase2list", "(", "self", ".", "__class__", ".", "__name__", ")", "name", "=", "'{}/{}.html'", ".", "format", "(", "name", ".", "pop", "(", "0", ")", ",", "'_'", ".", "join", "(", "name", ")", ")", "self", ".", "template_name", "=", "name", ".", "lower", "(", ")", "return", "self", ".", "template_name" ]
Returns the name of the template. If the template_name property is not set, the value will be generated automatically based on the class name. Example: >>> class MyEntityAction(BaseView): pass >>> view = MyEntityAction() >>> view.get_template_name() "my_entity/action.html"
[ "Returns", "the", "name", "of", "the", "template", "." ]
6cf28d70b7ebf415d58fa138fcc70b8dd57432c7
https://github.com/kyzima-spb/flask-pony/blob/6cf28d70b7ebf415d58fa138fcc70b8dd57432c7/flask_pony/views.py#L131-L148
train
pylp/pylp
pylp/lib/stream.py
Stream.append_file
def append_file(self, file): """Append a new file in the stream.""" self.files.append(file) if self.transformer: future = asyncio.ensure_future(self.transformer.transform(file)) future.add_done_callback(self.handle_transform)
python
def append_file(self, file): """Append a new file in the stream.""" self.files.append(file) if self.transformer: future = asyncio.ensure_future(self.transformer.transform(file)) future.add_done_callback(self.handle_transform)
[ "def", "append_file", "(", "self", ",", "file", ")", ":", "self", ".", "files", ".", "append", "(", "file", ")", "if", "self", ".", "transformer", ":", "future", "=", "asyncio", ".", "ensure_future", "(", "self", ".", "transformer", ".", "transform", "(", "file", ")", ")", "future", ".", "add_done_callback", "(", "self", ".", "handle_transform", ")" ]
Append a new file in the stream.
[ "Append", "a", "new", "file", "in", "the", "stream", "." ]
7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4
https://github.com/pylp/pylp/blob/7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4/pylp/lib/stream.py#L33-L39
train
pylp/pylp
pylp/lib/stream.py
Stream.flush_if_ended
def flush_if_ended(self): """Call 'flush' function if all files have been transformed.""" if self.ended and self.next and len(self.files) == self.transformed: future = asyncio.ensure_future(self.transformer.flush()) future.add_done_callback(lambda x: self.next.end_of_stream())
python
def flush_if_ended(self): """Call 'flush' function if all files have been transformed.""" if self.ended and self.next and len(self.files) == self.transformed: future = asyncio.ensure_future(self.transformer.flush()) future.add_done_callback(lambda x: self.next.end_of_stream())
[ "def", "flush_if_ended", "(", "self", ")", ":", "if", "self", ".", "ended", "and", "self", ".", "next", "and", "len", "(", "self", ".", "files", ")", "==", "self", ".", "transformed", ":", "future", "=", "asyncio", ".", "ensure_future", "(", "self", ".", "transformer", ".", "flush", "(", ")", ")", "future", ".", "add_done_callback", "(", "lambda", "x", ":", "self", ".", "next", ".", "end_of_stream", "(", ")", ")" ]
Call 'flush' function if all files have been transformed.
[ "Call", "flush", "function", "if", "all", "files", "have", "been", "transformed", "." ]
7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4
https://github.com/pylp/pylp/blob/7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4/pylp/lib/stream.py#L42-L46
train
pylp/pylp
pylp/lib/stream.py
Stream.handle_transform
def handle_transform(self, task): """Handle a 'transform' callback.""" self.transformed += 1 file = task.result() if file: self.next.append_file(file) self.flush_if_ended()
python
def handle_transform(self, task): """Handle a 'transform' callback.""" self.transformed += 1 file = task.result() if file: self.next.append_file(file) self.flush_if_ended()
[ "def", "handle_transform", "(", "self", ",", "task", ")", ":", "self", ".", "transformed", "+=", "1", "file", "=", "task", ".", "result", "(", ")", "if", "file", ":", "self", ".", "next", ".", "append_file", "(", "file", ")", "self", ".", "flush_if_ended", "(", ")" ]
Handle a 'transform' callback.
[ "Handle", "a", "transform", "callback", "." ]
7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4
https://github.com/pylp/pylp/blob/7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4/pylp/lib/stream.py#L49-L57
train
pylp/pylp
pylp/lib/stream.py
Stream.pipe
def pipe(self, transformer): """Pipe this stream to another.""" if self.next: return stream = Stream() self.next = stream stream.prev = self self.transformer = transformer transformer.stream = self transformer.piped() for file in self.files: future = asyncio.ensure_future(self.transformer.transform(file)) future.add_done_callback(self.handle_transform) self.onpiped.set_result(None) self.flush_if_ended() return stream
python
def pipe(self, transformer): """Pipe this stream to another.""" if self.next: return stream = Stream() self.next = stream stream.prev = self self.transformer = transformer transformer.stream = self transformer.piped() for file in self.files: future = asyncio.ensure_future(self.transformer.transform(file)) future.add_done_callback(self.handle_transform) self.onpiped.set_result(None) self.flush_if_ended() return stream
[ "def", "pipe", "(", "self", ",", "transformer", ")", ":", "if", "self", ".", "next", ":", "return", "stream", "=", "Stream", "(", ")", "self", ".", "next", "=", "stream", "stream", ".", "prev", "=", "self", "self", ".", "transformer", "=", "transformer", "transformer", ".", "stream", "=", "self", "transformer", ".", "piped", "(", ")", "for", "file", "in", "self", ".", "files", ":", "future", "=", "asyncio", ".", "ensure_future", "(", "self", ".", "transformer", ".", "transform", "(", "file", ")", ")", "future", ".", "add_done_callback", "(", "self", ".", "handle_transform", ")", "self", ".", "onpiped", ".", "set_result", "(", "None", ")", "self", ".", "flush_if_ended", "(", ")", "return", "stream" ]
Pipe this stream to another.
[ "Pipe", "this", "stream", "to", "another", "." ]
7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4
https://github.com/pylp/pylp/blob/7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4/pylp/lib/stream.py#L66-L86
train
pylp/pylp
pylp/utils/pipes.py
pipes
def pipes(stream, *transformers): """Pipe several transformers end to end.""" for transformer in transformers: stream = stream.pipe(transformer) return stream
python
def pipes(stream, *transformers): """Pipe several transformers end to end.""" for transformer in transformers: stream = stream.pipe(transformer) return stream
[ "def", "pipes", "(", "stream", ",", "*", "transformers", ")", ":", "for", "transformer", "in", "transformers", ":", "stream", "=", "stream", ".", "pipe", "(", "transformer", ")", "return", "stream" ]
Pipe several transformers end to end.
[ "Pipe", "several", "transformers", "end", "to", "end", "." ]
7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4
https://github.com/pylp/pylp/blob/7ebaa55fbaf61cb8175f211dd41ef2928c22d4d4/pylp/utils/pipes.py#L11-L15
train
guaix-ucm/numina
numina/core/dataholders.py
Parameter.convert
def convert(self, val): """Convert input values to type values.""" pre = super(Parameter, self).convert(val) if self.custom_validator is not None: post = self.custom_validator(pre) else: post = pre return post
python
def convert(self, val): """Convert input values to type values.""" pre = super(Parameter, self).convert(val) if self.custom_validator is not None: post = self.custom_validator(pre) else: post = pre return post
[ "def", "convert", "(", "self", ",", "val", ")", ":", "pre", "=", "super", "(", "Parameter", ",", "self", ")", ".", "convert", "(", "val", ")", "if", "self", ".", "custom_validator", "is", "not", "None", ":", "post", "=", "self", ".", "custom_validator", "(", "pre", ")", "else", ":", "post", "=", "pre", "return", "post" ]
Convert input values to type values.
[ "Convert", "input", "values", "to", "type", "values", "." ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/core/dataholders.py#L342-L350
train
guaix-ucm/numina
numina/core/dataholders.py
Parameter.validate
def validate(self, val): """Validate values according to the requirement""" if self.validation: self.type.validate(val) if self.custom_validator is not None: self.custom_validator(val) return True
python
def validate(self, val): """Validate values according to the requirement""" if self.validation: self.type.validate(val) if self.custom_validator is not None: self.custom_validator(val) return True
[ "def", "validate", "(", "self", ",", "val", ")", ":", "if", "self", ".", "validation", ":", "self", ".", "type", ".", "validate", "(", "val", ")", "if", "self", ".", "custom_validator", "is", "not", "None", ":", "self", ".", "custom_validator", "(", "val", ")", "return", "True" ]
Validate values according to the requirement
[ "Validate", "values", "according", "to", "the", "requirement" ]
6c829495df8937f77c2de9383c1038ffb3e713e3
https://github.com/guaix-ucm/numina/blob/6c829495df8937f77c2de9383c1038ffb3e713e3/numina/core/dataholders.py#L352-L360
train
kyzima-spb/flask-pony
flask_pony/decorators.py
route
def route(obj, rule, *args, **kwargs): """Decorator for the View classes.""" def decorator(cls): endpoint = kwargs.get('endpoint', camel_to_snake(cls.__name__)) kwargs['view_func'] = cls.as_view(endpoint) obj.add_url_rule(rule, *args, **kwargs) return cls return decorator
python
def route(obj, rule, *args, **kwargs): """Decorator for the View classes.""" def decorator(cls): endpoint = kwargs.get('endpoint', camel_to_snake(cls.__name__)) kwargs['view_func'] = cls.as_view(endpoint) obj.add_url_rule(rule, *args, **kwargs) return cls return decorator
[ "def", "route", "(", "obj", ",", "rule", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "def", "decorator", "(", "cls", ")", ":", "endpoint", "=", "kwargs", ".", "get", "(", "'endpoint'", ",", "camel_to_snake", "(", "cls", ".", "__name__", ")", ")", "kwargs", "[", "'view_func'", "]", "=", "cls", ".", "as_view", "(", "endpoint", ")", "obj", ".", "add_url_rule", "(", "rule", ",", "*", "args", ",", "*", "*", "kwargs", ")", "return", "cls", "return", "decorator" ]
Decorator for the View classes.
[ "Decorator", "for", "the", "View", "classes", "." ]
6cf28d70b7ebf415d58fa138fcc70b8dd57432c7
https://github.com/kyzima-spb/flask-pony/blob/6cf28d70b7ebf415d58fa138fcc70b8dd57432c7/flask_pony/decorators.py#L20-L27
train
arkottke/pysra
pysra/propagation.py
QuarterWaveLenCalculator.fit
def fit(self, target_type, target, adjust_thickness=False, adjust_site_atten=False, adjust_source_vel=False): """ Fit to a target crustal amplification or site term. The fitting process adjusts the velocity, site attenuation, and layer thickness (if enabled) to fit a target values. The frequency range is specified by the input motion. Parameters ---------- target_type: str Options are 'crustal_amp' to only fit to the crustal amplification, or 'site_term' to fit both the velocity and the site attenuation parameter. target: `array_like` Target values. adjust_thickness: bool (optional) If the thickness of the layers is adjusted as well, default: False. adjust_site_atten: bool (optional) If the site attenuation is adjusted as well, default: False. adjust_source_vel: bool (optional) If the source velocity should be adjusted, default: False. Returns ------- profile: `pyrsa.site.Profile` profile optimized to fit a target amplification. """ density = self.profile.density nl = len(density) # Slowness bounds slowness = self.profile.slowness thickness = self.profile.thickness site_atten = self._site_atten # Slowness initial = slowness bounds = 1 / np.tile((4000, 100), (nl, 1)) if not adjust_source_vel: bounds[-1] = (initial[-1], initial[-1]) # Thickness bounds if adjust_thickness: bounds = np.r_[bounds, [[t / 2, 2 * t] for t in thickness]] initial = np.r_[initial, thickness] # Site attenuation bounds if adjust_site_atten: bounds = np.r_[bounds, [[0.0001, 0.200]]] initial = np.r_[initial, self.site_atten] def calc_rmse(this, that): return np.mean(((this - that) / that) ** 2) def err(x): _slowness = x[0:nl] if adjust_thickness: _thickness = x[nl:(2 * nl)] else: _thickness = thickness if adjust_site_atten: self._site_atten = x[-1] crustal_amp, site_term = self._calc_amp(density, _thickness, _slowness) calc = crustal_amp if target_type == 'crustal_amp' else site_term err = 10 * calc_rmse(target, calc) # Prefer the original values so add the difference to the error err += calc_rmse(slowness, _slowness) if adjust_thickness: err += calc_rmse(thickness, _thickness) if adjust_site_atten: err += calc_rmse(self._site_atten, site_atten) return err res = minimize(err, initial, method='L-BFGS-B', bounds=bounds) slowness = res.x[0:nl] if adjust_thickness: thickness = res.x[nl:(2 * nl)] profile = Profile([ Layer(l.soil_type, t, 1 / s) for l, t, s in zip(self.profile, thickness, slowness) ], self.profile.wt_depth) # Update the calculated amplificaiton return (self.motion, profile, self.loc_input)
python
def fit(self, target_type, target, adjust_thickness=False, adjust_site_atten=False, adjust_source_vel=False): """ Fit to a target crustal amplification or site term. The fitting process adjusts the velocity, site attenuation, and layer thickness (if enabled) to fit a target values. The frequency range is specified by the input motion. Parameters ---------- target_type: str Options are 'crustal_amp' to only fit to the crustal amplification, or 'site_term' to fit both the velocity and the site attenuation parameter. target: `array_like` Target values. adjust_thickness: bool (optional) If the thickness of the layers is adjusted as well, default: False. adjust_site_atten: bool (optional) If the site attenuation is adjusted as well, default: False. adjust_source_vel: bool (optional) If the source velocity should be adjusted, default: False. Returns ------- profile: `pyrsa.site.Profile` profile optimized to fit a target amplification. """ density = self.profile.density nl = len(density) # Slowness bounds slowness = self.profile.slowness thickness = self.profile.thickness site_atten = self._site_atten # Slowness initial = slowness bounds = 1 / np.tile((4000, 100), (nl, 1)) if not adjust_source_vel: bounds[-1] = (initial[-1], initial[-1]) # Thickness bounds if adjust_thickness: bounds = np.r_[bounds, [[t / 2, 2 * t] for t in thickness]] initial = np.r_[initial, thickness] # Site attenuation bounds if adjust_site_atten: bounds = np.r_[bounds, [[0.0001, 0.200]]] initial = np.r_[initial, self.site_atten] def calc_rmse(this, that): return np.mean(((this - that) / that) ** 2) def err(x): _slowness = x[0:nl] if adjust_thickness: _thickness = x[nl:(2 * nl)] else: _thickness = thickness if adjust_site_atten: self._site_atten = x[-1] crustal_amp, site_term = self._calc_amp(density, _thickness, _slowness) calc = crustal_amp if target_type == 'crustal_amp' else site_term err = 10 * calc_rmse(target, calc) # Prefer the original values so add the difference to the error err += calc_rmse(slowness, _slowness) if adjust_thickness: err += calc_rmse(thickness, _thickness) if adjust_site_atten: err += calc_rmse(self._site_atten, site_atten) return err res = minimize(err, initial, method='L-BFGS-B', bounds=bounds) slowness = res.x[0:nl] if adjust_thickness: thickness = res.x[nl:(2 * nl)] profile = Profile([ Layer(l.soil_type, t, 1 / s) for l, t, s in zip(self.profile, thickness, slowness) ], self.profile.wt_depth) # Update the calculated amplificaiton return (self.motion, profile, self.loc_input)
[ "def", "fit", "(", "self", ",", "target_type", ",", "target", ",", "adjust_thickness", "=", "False", ",", "adjust_site_atten", "=", "False", ",", "adjust_source_vel", "=", "False", ")", ":", "density", "=", "self", ".", "profile", ".", "density", "nl", "=", "len", "(", "density", ")", "# Slowness bounds", "slowness", "=", "self", ".", "profile", ".", "slowness", "thickness", "=", "self", ".", "profile", ".", "thickness", "site_atten", "=", "self", ".", "_site_atten", "# Slowness", "initial", "=", "slowness", "bounds", "=", "1", "/", "np", ".", "tile", "(", "(", "4000", ",", "100", ")", ",", "(", "nl", ",", "1", ")", ")", "if", "not", "adjust_source_vel", ":", "bounds", "[", "-", "1", "]", "=", "(", "initial", "[", "-", "1", "]", ",", "initial", "[", "-", "1", "]", ")", "# Thickness bounds", "if", "adjust_thickness", ":", "bounds", "=", "np", ".", "r_", "[", "bounds", ",", "[", "[", "t", "/", "2", ",", "2", "*", "t", "]", "for", "t", "in", "thickness", "]", "]", "initial", "=", "np", ".", "r_", "[", "initial", ",", "thickness", "]", "# Site attenuation bounds", "if", "adjust_site_atten", ":", "bounds", "=", "np", ".", "r_", "[", "bounds", ",", "[", "[", "0.0001", ",", "0.200", "]", "]", "]", "initial", "=", "np", ".", "r_", "[", "initial", ",", "self", ".", "site_atten", "]", "def", "calc_rmse", "(", "this", ",", "that", ")", ":", "return", "np", ".", "mean", "(", "(", "(", "this", "-", "that", ")", "/", "that", ")", "**", "2", ")", "def", "err", "(", "x", ")", ":", "_slowness", "=", "x", "[", "0", ":", "nl", "]", "if", "adjust_thickness", ":", "_thickness", "=", "x", "[", "nl", ":", "(", "2", "*", "nl", ")", "]", "else", ":", "_thickness", "=", "thickness", "if", "adjust_site_atten", ":", "self", ".", "_site_atten", "=", "x", "[", "-", "1", "]", "crustal_amp", ",", "site_term", "=", "self", ".", "_calc_amp", "(", "density", ",", "_thickness", ",", "_slowness", ")", "calc", "=", "crustal_amp", "if", "target_type", "==", "'crustal_amp'", "else", "site_term", "err", "=", "10", "*", "calc_rmse", "(", "target", ",", "calc", ")", "# Prefer the original values so add the difference to the error", "err", "+=", "calc_rmse", "(", "slowness", ",", "_slowness", ")", "if", "adjust_thickness", ":", "err", "+=", "calc_rmse", "(", "thickness", ",", "_thickness", ")", "if", "adjust_site_atten", ":", "err", "+=", "calc_rmse", "(", "self", ".", "_site_atten", ",", "site_atten", ")", "return", "err", "res", "=", "minimize", "(", "err", ",", "initial", ",", "method", "=", "'L-BFGS-B'", ",", "bounds", "=", "bounds", ")", "slowness", "=", "res", ".", "x", "[", "0", ":", "nl", "]", "if", "adjust_thickness", ":", "thickness", "=", "res", ".", "x", "[", "nl", ":", "(", "2", "*", "nl", ")", "]", "profile", "=", "Profile", "(", "[", "Layer", "(", "l", ".", "soil_type", ",", "t", ",", "1", "/", "s", ")", "for", "l", ",", "t", ",", "s", "in", "zip", "(", "self", ".", "profile", ",", "thickness", ",", "slowness", ")", "]", ",", "self", ".", "profile", ".", "wt_depth", ")", "# Update the calculated amplificaiton", "return", "(", "self", ".", "motion", ",", "profile", ",", "self", ".", "loc_input", ")" ]
Fit to a target crustal amplification or site term. The fitting process adjusts the velocity, site attenuation, and layer thickness (if enabled) to fit a target values. The frequency range is specified by the input motion. Parameters ---------- target_type: str Options are 'crustal_amp' to only fit to the crustal amplification, or 'site_term' to fit both the velocity and the site attenuation parameter. target: `array_like` Target values. adjust_thickness: bool (optional) If the thickness of the layers is adjusted as well, default: False. adjust_site_atten: bool (optional) If the site attenuation is adjusted as well, default: False. adjust_source_vel: bool (optional) If the source velocity should be adjusted, default: False. Returns ------- profile: `pyrsa.site.Profile` profile optimized to fit a target amplification.
[ "Fit", "to", "a", "target", "crustal", "amplification", "or", "site", "term", "." ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/propagation.py#L153-L247
train
arkottke/pysra
pysra/propagation.py
LinearElasticCalculator.wave_at_location
def wave_at_location(self, l): """Compute the wave field at specific location. Parameters ---------- l : site.Location :class:`site.Location` of the input Returns ------- `np.ndarray` Amplitude and phase of waves """ cterm = 1j * self._wave_nums[l.index] * l.depth_within if l.wave_field == WaveField.within: return (self._waves_a[l.index] * np.exp(cterm) + self._waves_b[l.index] * np.exp(-cterm)) elif l.wave_field == WaveField.outcrop: return 2 * self._waves_a[l.index] * np.exp(cterm) elif l.wave_field == WaveField.incoming_only: return self._waves_a[l.index] * np.exp(cterm) else: raise NotImplementedError
python
def wave_at_location(self, l): """Compute the wave field at specific location. Parameters ---------- l : site.Location :class:`site.Location` of the input Returns ------- `np.ndarray` Amplitude and phase of waves """ cterm = 1j * self._wave_nums[l.index] * l.depth_within if l.wave_field == WaveField.within: return (self._waves_a[l.index] * np.exp(cterm) + self._waves_b[l.index] * np.exp(-cterm)) elif l.wave_field == WaveField.outcrop: return 2 * self._waves_a[l.index] * np.exp(cterm) elif l.wave_field == WaveField.incoming_only: return self._waves_a[l.index] * np.exp(cterm) else: raise NotImplementedError
[ "def", "wave_at_location", "(", "self", ",", "l", ")", ":", "cterm", "=", "1j", "*", "self", ".", "_wave_nums", "[", "l", ".", "index", "]", "*", "l", ".", "depth_within", "if", "l", ".", "wave_field", "==", "WaveField", ".", "within", ":", "return", "(", "self", ".", "_waves_a", "[", "l", ".", "index", "]", "*", "np", ".", "exp", "(", "cterm", ")", "+", "self", ".", "_waves_b", "[", "l", ".", "index", "]", "*", "np", ".", "exp", "(", "-", "cterm", ")", ")", "elif", "l", ".", "wave_field", "==", "WaveField", ".", "outcrop", ":", "return", "2", "*", "self", ".", "_waves_a", "[", "l", ".", "index", "]", "*", "np", ".", "exp", "(", "cterm", ")", "elif", "l", ".", "wave_field", "==", "WaveField", ".", "incoming_only", ":", "return", "self", ".", "_waves_a", "[", "l", ".", "index", "]", "*", "np", ".", "exp", "(", "cterm", ")", "else", ":", "raise", "NotImplementedError" ]
Compute the wave field at specific location. Parameters ---------- l : site.Location :class:`site.Location` of the input Returns ------- `np.ndarray` Amplitude and phase of waves
[ "Compute", "the", "wave", "field", "at", "specific", "location", "." ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/propagation.py#L340-L363
train
arkottke/pysra
pysra/propagation.py
LinearElasticCalculator.calc_accel_tf
def calc_accel_tf(self, lin, lout): """Compute the acceleration transfer function. Parameters ---------- lin : :class:`~site.Location` Location of input lout : :class:`~site.Location` Location of output. Note that this would typically be midheight of the layer. """ tf = self.wave_at_location(lout) / self.wave_at_location(lin) return tf
python
def calc_accel_tf(self, lin, lout): """Compute the acceleration transfer function. Parameters ---------- lin : :class:`~site.Location` Location of input lout : :class:`~site.Location` Location of output. Note that this would typically be midheight of the layer. """ tf = self.wave_at_location(lout) / self.wave_at_location(lin) return tf
[ "def", "calc_accel_tf", "(", "self", ",", "lin", ",", "lout", ")", ":", "tf", "=", "self", ".", "wave_at_location", "(", "lout", ")", "/", "self", ".", "wave_at_location", "(", "lin", ")", "return", "tf" ]
Compute the acceleration transfer function. Parameters ---------- lin : :class:`~site.Location` Location of input lout : :class:`~site.Location` Location of output. Note that this would typically be midheight of the layer.
[ "Compute", "the", "acceleration", "transfer", "function", "." ]
c72fd389d6c15203c0c00728ac00f101bae6369d
https://github.com/arkottke/pysra/blob/c72fd389d6c15203c0c00728ac00f101bae6369d/pysra/propagation.py#L365-L378
train