repo
stringlengths 7
55
| path
stringlengths 4
127
| func_name
stringlengths 1
88
| original_string
stringlengths 75
19.8k
| language
stringclasses 1
value | code
stringlengths 75
19.8k
| code_tokens
list | docstring
stringlengths 3
17.3k
| docstring_tokens
list | sha
stringlengths 40
40
| url
stringlengths 87
242
| partition
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|
JawboneHealth/jhhalchemy | jhhalchemy/model/__init__.py | Base.read_by | def read_by(cls, removed=False, **kwargs):
"""
filter_by query helper that handles soft delete logic. If your query conditions require expressions, use read.
:param removed: whether to include soft-deleted rows
:param kwargs: where clause mappings to pass to filter_by
:return: row object generator
"""
if not removed:
kwargs['time_removed'] = 0
return cls.query.filter_by(**kwargs) | python | def read_by(cls, removed=False, **kwargs):
"""
filter_by query helper that handles soft delete logic. If your query conditions require expressions, use read.
:param removed: whether to include soft-deleted rows
:param kwargs: where clause mappings to pass to filter_by
:return: row object generator
"""
if not removed:
kwargs['time_removed'] = 0
return cls.query.filter_by(**kwargs) | [
"def",
"read_by",
"(",
"cls",
",",
"removed",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"not",
"removed",
":",
"kwargs",
"[",
"'time_removed'",
"]",
"=",
"0",
"return",
"cls",
".",
"query",
".",
"filter_by",
"(",
"*",
"*",
"kwargs",
")"
]
| filter_by query helper that handles soft delete logic. If your query conditions require expressions, use read.
:param removed: whether to include soft-deleted rows
:param kwargs: where clause mappings to pass to filter_by
:return: row object generator | [
"filter_by",
"query",
"helper",
"that",
"handles",
"soft",
"delete",
"logic",
".",
"If",
"your",
"query",
"conditions",
"require",
"expressions",
"use",
"read",
"."
]
| ca0011d644e404561a142c9d7f0a8a569f1f4f27 | https://github.com/JawboneHealth/jhhalchemy/blob/ca0011d644e404561a142c9d7f0a8a569f1f4f27/jhhalchemy/model/__init__.py#L45-L55 | train |
JawboneHealth/jhhalchemy | jhhalchemy/model/__init__.py | Base.read | def read(cls, *criteria, **kwargs):
"""
filter query helper that handles soft delete logic. If your query conditions do not require expressions,
consider using read_by.
:param criteria: where clause conditions
:param kwargs: set removed=True if you want soft-deleted rows
:return: row object generator
"""
if not kwargs.get('removed', False):
return cls.query.filter(cls.time_removed == 0, *criteria)
return cls.query.filter(*criteria) | python | def read(cls, *criteria, **kwargs):
"""
filter query helper that handles soft delete logic. If your query conditions do not require expressions,
consider using read_by.
:param criteria: where clause conditions
:param kwargs: set removed=True if you want soft-deleted rows
:return: row object generator
"""
if not kwargs.get('removed', False):
return cls.query.filter(cls.time_removed == 0, *criteria)
return cls.query.filter(*criteria) | [
"def",
"read",
"(",
"cls",
",",
"*",
"criteria",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"not",
"kwargs",
".",
"get",
"(",
"'removed'",
",",
"False",
")",
":",
"return",
"cls",
".",
"query",
".",
"filter",
"(",
"cls",
".",
"time_removed",
"==",
"0",
",",
"*",
"criteria",
")",
"return",
"cls",
".",
"query",
".",
"filter",
"(",
"*",
"criteria",
")"
]
| filter query helper that handles soft delete logic. If your query conditions do not require expressions,
consider using read_by.
:param criteria: where clause conditions
:param kwargs: set removed=True if you want soft-deleted rows
:return: row object generator | [
"filter",
"query",
"helper",
"that",
"handles",
"soft",
"delete",
"logic",
".",
"If",
"your",
"query",
"conditions",
"do",
"not",
"require",
"expressions",
"consider",
"using",
"read_by",
"."
]
| ca0011d644e404561a142c9d7f0a8a569f1f4f27 | https://github.com/JawboneHealth/jhhalchemy/blob/ca0011d644e404561a142c9d7f0a8a569f1f4f27/jhhalchemy/model/__init__.py#L58-L69 | train |
JawboneHealth/jhhalchemy | jhhalchemy/model/__init__.py | Base.delete | def delete(self, session, commit=True, soft=True):
"""
Delete a row from the DB.
:param session: flask_sqlalchemy session object
:param commit: whether to issue the commit
:param soft: whether this is a soft delete (i.e., update time_removed)
"""
if soft:
self.time_removed = sqlalchemy.func.unix_timestamp()
else:
session.delete(self)
if commit:
session.commit() | python | def delete(self, session, commit=True, soft=True):
"""
Delete a row from the DB.
:param session: flask_sqlalchemy session object
:param commit: whether to issue the commit
:param soft: whether this is a soft delete (i.e., update time_removed)
"""
if soft:
self.time_removed = sqlalchemy.func.unix_timestamp()
else:
session.delete(self)
if commit:
session.commit() | [
"def",
"delete",
"(",
"self",
",",
"session",
",",
"commit",
"=",
"True",
",",
"soft",
"=",
"True",
")",
":",
"if",
"soft",
":",
"self",
".",
"time_removed",
"=",
"sqlalchemy",
".",
"func",
".",
"unix_timestamp",
"(",
")",
"else",
":",
"session",
".",
"delete",
"(",
"self",
")",
"if",
"commit",
":",
"session",
".",
"commit",
"(",
")"
]
| Delete a row from the DB.
:param session: flask_sqlalchemy session object
:param commit: whether to issue the commit
:param soft: whether this is a soft delete (i.e., update time_removed) | [
"Delete",
"a",
"row",
"from",
"the",
"DB",
"."
]
| ca0011d644e404561a142c9d7f0a8a569f1f4f27 | https://github.com/JawboneHealth/jhhalchemy/blob/ca0011d644e404561a142c9d7f0a8a569f1f4f27/jhhalchemy/model/__init__.py#L71-L85 | train |
gebn/wood | wood/entities.py | Entity.walk_paths | def walk_paths(self,
base: Optional[pathlib.PurePath] = pathlib.PurePath()) \
-> Iterator[pathlib.PurePath]:
"""
Recursively traverse all paths inside this entity, including the entity
itself.
:param base: The base path to prepend to the entity name.
:return: An iterator of paths.
"""
raise NotImplementedError() | python | def walk_paths(self,
base: Optional[pathlib.PurePath] = pathlib.PurePath()) \
-> Iterator[pathlib.PurePath]:
"""
Recursively traverse all paths inside this entity, including the entity
itself.
:param base: The base path to prepend to the entity name.
:return: An iterator of paths.
"""
raise NotImplementedError() | [
"def",
"walk_paths",
"(",
"self",
",",
"base",
":",
"Optional",
"[",
"pathlib",
".",
"PurePath",
"]",
"=",
"pathlib",
".",
"PurePath",
"(",
")",
")",
"->",
"Iterator",
"[",
"pathlib",
".",
"PurePath",
"]",
":",
"raise",
"NotImplementedError",
"(",
")"
]
| Recursively traverse all paths inside this entity, including the entity
itself.
:param base: The base path to prepend to the entity name.
:return: An iterator of paths. | [
"Recursively",
"traverse",
"all",
"paths",
"inside",
"this",
"entity",
"including",
"the",
"entity",
"itself",
"."
]
| efc71879890dbd2f2d7a0b1a65ed22a0843139dd | https://github.com/gebn/wood/blob/efc71879890dbd2f2d7a0b1a65ed22a0843139dd/wood/entities.py#L27-L37 | train |
gebn/wood | wood/entities.py | Entity._walk_paths | def _walk_paths(self, base: pathlib.PurePath) \
-> Iterator[pathlib.PurePath]:
"""
Internal helper for walking paths. This is required to exclude the name
of the root entity from the walk.
:param base: The base path to prepend to the entity name.
:return: An iterator of paths.
"""
return self.walk_paths(base) | python | def _walk_paths(self, base: pathlib.PurePath) \
-> Iterator[pathlib.PurePath]:
"""
Internal helper for walking paths. This is required to exclude the name
of the root entity from the walk.
:param base: The base path to prepend to the entity name.
:return: An iterator of paths.
"""
return self.walk_paths(base) | [
"def",
"_walk_paths",
"(",
"self",
",",
"base",
":",
"pathlib",
".",
"PurePath",
")",
"->",
"Iterator",
"[",
"pathlib",
".",
"PurePath",
"]",
":",
"return",
"self",
".",
"walk_paths",
"(",
"base",
")"
]
| Internal helper for walking paths. This is required to exclude the name
of the root entity from the walk.
:param base: The base path to prepend to the entity name.
:return: An iterator of paths. | [
"Internal",
"helper",
"for",
"walking",
"paths",
".",
"This",
"is",
"required",
"to",
"exclude",
"the",
"name",
"of",
"the",
"root",
"entity",
"from",
"the",
"walk",
"."
]
| efc71879890dbd2f2d7a0b1a65ed22a0843139dd | https://github.com/gebn/wood/blob/efc71879890dbd2f2d7a0b1a65ed22a0843139dd/wood/entities.py#L39-L48 | train |
gebn/wood | wood/entities.py | Entity.from_path | def from_path(cls, path: pathlib.Path) -> 'Entity':
"""
Create an entity from a local path.
:param path: The path to the entity, either a file or directory.
:return: An entity instance representing the path.
"""
if path.is_file():
return File.from_path(path)
return Directory.from_path(path) | python | def from_path(cls, path: pathlib.Path) -> 'Entity':
"""
Create an entity from a local path.
:param path: The path to the entity, either a file or directory.
:return: An entity instance representing the path.
"""
if path.is_file():
return File.from_path(path)
return Directory.from_path(path) | [
"def",
"from_path",
"(",
"cls",
",",
"path",
":",
"pathlib",
".",
"Path",
")",
"->",
"'Entity'",
":",
"if",
"path",
".",
"is_file",
"(",
")",
":",
"return",
"File",
".",
"from_path",
"(",
"path",
")",
"return",
"Directory",
".",
"from_path",
"(",
"path",
")"
]
| Create an entity from a local path.
:param path: The path to the entity, either a file or directory.
:return: An entity instance representing the path. | [
"Create",
"an",
"entity",
"from",
"a",
"local",
"path",
"."
]
| efc71879890dbd2f2d7a0b1a65ed22a0843139dd | https://github.com/gebn/wood/blob/efc71879890dbd2f2d7a0b1a65ed22a0843139dd/wood/entities.py#L61-L70 | train |
gebn/wood | wood/entities.py | File._md5 | def _md5(path: pathlib.PurePath):
"""
Calculate the MD5 checksum of a file.
:param path: The path of the file whose checksum to calculate.
:return: The lowercase hex representation of the file's MD5
checksum, exactly 32 chars long.
"""
hash_ = hashlib.md5()
with open(path, 'rb') as f:
for chunk in iter(lambda: f.read(4096), b''):
hash_.update(chunk)
return hash_.hexdigest() | python | def _md5(path: pathlib.PurePath):
"""
Calculate the MD5 checksum of a file.
:param path: The path of the file whose checksum to calculate.
:return: The lowercase hex representation of the file's MD5
checksum, exactly 32 chars long.
"""
hash_ = hashlib.md5()
with open(path, 'rb') as f:
for chunk in iter(lambda: f.read(4096), b''):
hash_.update(chunk)
return hash_.hexdigest() | [
"def",
"_md5",
"(",
"path",
":",
"pathlib",
".",
"PurePath",
")",
":",
"hash_",
"=",
"hashlib",
".",
"md5",
"(",
")",
"with",
"open",
"(",
"path",
",",
"'rb'",
")",
"as",
"f",
":",
"for",
"chunk",
"in",
"iter",
"(",
"lambda",
":",
"f",
".",
"read",
"(",
"4096",
")",
",",
"b''",
")",
":",
"hash_",
".",
"update",
"(",
"chunk",
")",
"return",
"hash_",
".",
"hexdigest",
"(",
")"
]
| Calculate the MD5 checksum of a file.
:param path: The path of the file whose checksum to calculate.
:return: The lowercase hex representation of the file's MD5
checksum, exactly 32 chars long. | [
"Calculate",
"the",
"MD5",
"checksum",
"of",
"a",
"file",
"."
]
| efc71879890dbd2f2d7a0b1a65ed22a0843139dd | https://github.com/gebn/wood/blob/efc71879890dbd2f2d7a0b1a65ed22a0843139dd/wood/entities.py#L119-L131 | train |
gebn/wood | wood/entities.py | File.from_path | def from_path(cls, path: pathlib.Path) -> 'File':
"""
Create a file entity from a file path.
:param path: The path of the file.
:return: A file entity instance representing the file.
:raises ValueError: If the path does not point to a file.
"""
if not path.is_file():
raise ValueError('Path does not point to a file')
return File(path.name, path.stat().st_size, cls._md5(path)) | python | def from_path(cls, path: pathlib.Path) -> 'File':
"""
Create a file entity from a file path.
:param path: The path of the file.
:return: A file entity instance representing the file.
:raises ValueError: If the path does not point to a file.
"""
if not path.is_file():
raise ValueError('Path does not point to a file')
return File(path.name, path.stat().st_size, cls._md5(path)) | [
"def",
"from_path",
"(",
"cls",
",",
"path",
":",
"pathlib",
".",
"Path",
")",
"->",
"'File'",
":",
"if",
"not",
"path",
".",
"is_file",
"(",
")",
":",
"raise",
"ValueError",
"(",
"'Path does not point to a file'",
")",
"return",
"File",
"(",
"path",
".",
"name",
",",
"path",
".",
"stat",
"(",
")",
".",
"st_size",
",",
"cls",
".",
"_md5",
"(",
"path",
")",
")"
]
| Create a file entity from a file path.
:param path: The path of the file.
:return: A file entity instance representing the file.
:raises ValueError: If the path does not point to a file. | [
"Create",
"a",
"file",
"entity",
"from",
"a",
"file",
"path",
"."
]
| efc71879890dbd2f2d7a0b1a65ed22a0843139dd | https://github.com/gebn/wood/blob/efc71879890dbd2f2d7a0b1a65ed22a0843139dd/wood/entities.py#L134-L144 | train |
gebn/wood | wood/entities.py | Directory.from_path | def from_path(cls, path: pathlib.Path) -> 'Directory':
"""
Create a directory entity from a directory path.
:param path: The path of the directory.
:return: A directory entity instance representing the directory.
:raises ValueError: If the path does not point to a directory.
"""
if not path.is_dir():
raise ValueError('Path does not point to a directory')
return Directory(path.name, {entity.name: Entity.from_path(entity)
for entity in path.iterdir()}) | python | def from_path(cls, path: pathlib.Path) -> 'Directory':
"""
Create a directory entity from a directory path.
:param path: The path of the directory.
:return: A directory entity instance representing the directory.
:raises ValueError: If the path does not point to a directory.
"""
if not path.is_dir():
raise ValueError('Path does not point to a directory')
return Directory(path.name, {entity.name: Entity.from_path(entity)
for entity in path.iterdir()}) | [
"def",
"from_path",
"(",
"cls",
",",
"path",
":",
"pathlib",
".",
"Path",
")",
"->",
"'Directory'",
":",
"if",
"not",
"path",
".",
"is_dir",
"(",
")",
":",
"raise",
"ValueError",
"(",
"'Path does not point to a directory'",
")",
"return",
"Directory",
"(",
"path",
".",
"name",
",",
"{",
"entity",
".",
"name",
":",
"Entity",
".",
"from_path",
"(",
"entity",
")",
"for",
"entity",
"in",
"path",
".",
"iterdir",
"(",
")",
"}",
")"
]
| Create a directory entity from a directory path.
:param path: The path of the directory.
:return: A directory entity instance representing the directory.
:raises ValueError: If the path does not point to a directory. | [
"Create",
"a",
"directory",
"entity",
"from",
"a",
"directory",
"path",
"."
]
| efc71879890dbd2f2d7a0b1a65ed22a0843139dd | https://github.com/gebn/wood/blob/efc71879890dbd2f2d7a0b1a65ed22a0843139dd/wood/entities.py#L186-L197 | train |
rhayes777/PyAutoFit | autofit/optimize/grid_search.py | GridSearchResult.best_result | def best_result(self):
"""
The best result of the grid search. That is, the result output by the non linear search that had the highest
maximum figure of merit.
Returns
-------
best_result: Result
"""
best_result = None
for result in self.results:
if best_result is None or result.figure_of_merit > best_result.figure_of_merit:
best_result = result
return best_result | python | def best_result(self):
"""
The best result of the grid search. That is, the result output by the non linear search that had the highest
maximum figure of merit.
Returns
-------
best_result: Result
"""
best_result = None
for result in self.results:
if best_result is None or result.figure_of_merit > best_result.figure_of_merit:
best_result = result
return best_result | [
"def",
"best_result",
"(",
"self",
")",
":",
"best_result",
"=",
"None",
"for",
"result",
"in",
"self",
".",
"results",
":",
"if",
"best_result",
"is",
"None",
"or",
"result",
".",
"figure_of_merit",
">",
"best_result",
".",
"figure_of_merit",
":",
"best_result",
"=",
"result",
"return",
"best_result"
]
| The best result of the grid search. That is, the result output by the non linear search that had the highest
maximum figure of merit.
Returns
-------
best_result: Result | [
"The",
"best",
"result",
"of",
"the",
"grid",
"search",
".",
"That",
"is",
"the",
"result",
"output",
"by",
"the",
"non",
"linear",
"search",
"that",
"had",
"the",
"highest",
"maximum",
"figure",
"of",
"merit",
"."
]
| a9e6144abb08edfc6a6906c4030d7119bf8d3e14 | https://github.com/rhayes777/PyAutoFit/blob/a9e6144abb08edfc6a6906c4030d7119bf8d3e14/autofit/optimize/grid_search.py#L36-L49 | train |
rhayes777/PyAutoFit | autofit/optimize/grid_search.py | GridSearch.make_lists | def make_lists(self, grid_priors):
"""
Produces a list of lists of floats, where each list of floats represents the values in each dimension for one
step of the grid search.
Parameters
----------
grid_priors: [p.Prior]
A list of priors that are to be searched using the grid search.
Returns
-------
lists: [[float]]
"""
return optimizer.make_lists(len(grid_priors), step_size=self.hyper_step_size, centre_steps=False) | python | def make_lists(self, grid_priors):
"""
Produces a list of lists of floats, where each list of floats represents the values in each dimension for one
step of the grid search.
Parameters
----------
grid_priors: [p.Prior]
A list of priors that are to be searched using the grid search.
Returns
-------
lists: [[float]]
"""
return optimizer.make_lists(len(grid_priors), step_size=self.hyper_step_size, centre_steps=False) | [
"def",
"make_lists",
"(",
"self",
",",
"grid_priors",
")",
":",
"return",
"optimizer",
".",
"make_lists",
"(",
"len",
"(",
"grid_priors",
")",
",",
"step_size",
"=",
"self",
".",
"hyper_step_size",
",",
"centre_steps",
"=",
"False",
")"
]
| Produces a list of lists of floats, where each list of floats represents the values in each dimension for one
step of the grid search.
Parameters
----------
grid_priors: [p.Prior]
A list of priors that are to be searched using the grid search.
Returns
-------
lists: [[float]] | [
"Produces",
"a",
"list",
"of",
"lists",
"of",
"floats",
"where",
"each",
"list",
"of",
"floats",
"represents",
"the",
"values",
"in",
"each",
"dimension",
"for",
"one",
"step",
"of",
"the",
"grid",
"search",
"."
]
| a9e6144abb08edfc6a6906c4030d7119bf8d3e14 | https://github.com/rhayes777/PyAutoFit/blob/a9e6144abb08edfc6a6906c4030d7119bf8d3e14/autofit/optimize/grid_search.py#L147-L161 | train |
rhayes777/PyAutoFit | autofit/optimize/grid_search.py | GridSearch.fit | def fit(self, analysis, grid_priors):
"""
Fit an analysis with a set of grid priors. The grid priors are priors associated with the model mapper
of this instance that are replaced by uniform priors for each step of the grid search.
Parameters
----------
analysis: non_linear.Analysis
An analysis used to determine the fitness of a given model instance
grid_priors: [p.Prior]
A list of priors to be substituted for uniform priors across the grid.
Returns
-------
result: GridSearchResult
An object that comprises the results from each individual fit
"""
grid_priors = list(set(grid_priors))
results = []
lists = self.make_lists(grid_priors)
results_list = [list(map(self.variable.name_for_prior, grid_priors)) + ["figure_of_merit"]]
def write_results():
with open("{}/results".format(self.phase_output_path), "w+") as f:
f.write("\n".join(map(lambda ls: ", ".join(
map(lambda value: "{:.2f}".format(value) if isinstance(value, float) else str(value), ls)),
results_list)))
for values in lists:
arguments = self.make_arguments(values, grid_priors)
model_mapper = self.variable.mapper_from_partial_prior_arguments(arguments)
labels = []
for prior in arguments.values():
labels.append(
"{}_{:.2f}_{:.2f}".format(model_mapper.name_for_prior(prior), prior.lower_limit, prior.upper_limit))
name_path = "{}{}/{}".format(self.phase_name, self.phase_tag, "_".join(labels))
optimizer_instance = self.optimizer_instance(model_mapper, name_path)
optimizer_instance.constant = self.constant
result = optimizer_instance.fit(analysis)
results.append(result)
results_list.append([*[prior.lower_limit for prior in arguments.values()], result.figure_of_merit])
write_results()
return GridSearchResult(results, lists) | python | def fit(self, analysis, grid_priors):
"""
Fit an analysis with a set of grid priors. The grid priors are priors associated with the model mapper
of this instance that are replaced by uniform priors for each step of the grid search.
Parameters
----------
analysis: non_linear.Analysis
An analysis used to determine the fitness of a given model instance
grid_priors: [p.Prior]
A list of priors to be substituted for uniform priors across the grid.
Returns
-------
result: GridSearchResult
An object that comprises the results from each individual fit
"""
grid_priors = list(set(grid_priors))
results = []
lists = self.make_lists(grid_priors)
results_list = [list(map(self.variable.name_for_prior, grid_priors)) + ["figure_of_merit"]]
def write_results():
with open("{}/results".format(self.phase_output_path), "w+") as f:
f.write("\n".join(map(lambda ls: ", ".join(
map(lambda value: "{:.2f}".format(value) if isinstance(value, float) else str(value), ls)),
results_list)))
for values in lists:
arguments = self.make_arguments(values, grid_priors)
model_mapper = self.variable.mapper_from_partial_prior_arguments(arguments)
labels = []
for prior in arguments.values():
labels.append(
"{}_{:.2f}_{:.2f}".format(model_mapper.name_for_prior(prior), prior.lower_limit, prior.upper_limit))
name_path = "{}{}/{}".format(self.phase_name, self.phase_tag, "_".join(labels))
optimizer_instance = self.optimizer_instance(model_mapper, name_path)
optimizer_instance.constant = self.constant
result = optimizer_instance.fit(analysis)
results.append(result)
results_list.append([*[prior.lower_limit for prior in arguments.values()], result.figure_of_merit])
write_results()
return GridSearchResult(results, lists) | [
"def",
"fit",
"(",
"self",
",",
"analysis",
",",
"grid_priors",
")",
":",
"grid_priors",
"=",
"list",
"(",
"set",
"(",
"grid_priors",
")",
")",
"results",
"=",
"[",
"]",
"lists",
"=",
"self",
".",
"make_lists",
"(",
"grid_priors",
")",
"results_list",
"=",
"[",
"list",
"(",
"map",
"(",
"self",
".",
"variable",
".",
"name_for_prior",
",",
"grid_priors",
")",
")",
"+",
"[",
"\"figure_of_merit\"",
"]",
"]",
"def",
"write_results",
"(",
")",
":",
"with",
"open",
"(",
"\"{}/results\"",
".",
"format",
"(",
"self",
".",
"phase_output_path",
")",
",",
"\"w+\"",
")",
"as",
"f",
":",
"f",
".",
"write",
"(",
"\"\\n\"",
".",
"join",
"(",
"map",
"(",
"lambda",
"ls",
":",
"\", \"",
".",
"join",
"(",
"map",
"(",
"lambda",
"value",
":",
"\"{:.2f}\"",
".",
"format",
"(",
"value",
")",
"if",
"isinstance",
"(",
"value",
",",
"float",
")",
"else",
"str",
"(",
"value",
")",
",",
"ls",
")",
")",
",",
"results_list",
")",
")",
")",
"for",
"values",
"in",
"lists",
":",
"arguments",
"=",
"self",
".",
"make_arguments",
"(",
"values",
",",
"grid_priors",
")",
"model_mapper",
"=",
"self",
".",
"variable",
".",
"mapper_from_partial_prior_arguments",
"(",
"arguments",
")",
"labels",
"=",
"[",
"]",
"for",
"prior",
"in",
"arguments",
".",
"values",
"(",
")",
":",
"labels",
".",
"append",
"(",
"\"{}_{:.2f}_{:.2f}\"",
".",
"format",
"(",
"model_mapper",
".",
"name_for_prior",
"(",
"prior",
")",
",",
"prior",
".",
"lower_limit",
",",
"prior",
".",
"upper_limit",
")",
")",
"name_path",
"=",
"\"{}{}/{}\"",
".",
"format",
"(",
"self",
".",
"phase_name",
",",
"self",
".",
"phase_tag",
",",
"\"_\"",
".",
"join",
"(",
"labels",
")",
")",
"optimizer_instance",
"=",
"self",
".",
"optimizer_instance",
"(",
"model_mapper",
",",
"name_path",
")",
"optimizer_instance",
".",
"constant",
"=",
"self",
".",
"constant",
"result",
"=",
"optimizer_instance",
".",
"fit",
"(",
"analysis",
")",
"results",
".",
"append",
"(",
"result",
")",
"results_list",
".",
"append",
"(",
"[",
"*",
"[",
"prior",
".",
"lower_limit",
"for",
"prior",
"in",
"arguments",
".",
"values",
"(",
")",
"]",
",",
"result",
".",
"figure_of_merit",
"]",
")",
"write_results",
"(",
")",
"return",
"GridSearchResult",
"(",
"results",
",",
"lists",
")"
]
| Fit an analysis with a set of grid priors. The grid priors are priors associated with the model mapper
of this instance that are replaced by uniform priors for each step of the grid search.
Parameters
----------
analysis: non_linear.Analysis
An analysis used to determine the fitness of a given model instance
grid_priors: [p.Prior]
A list of priors to be substituted for uniform priors across the grid.
Returns
-------
result: GridSearchResult
An object that comprises the results from each individual fit | [
"Fit",
"an",
"analysis",
"with",
"a",
"set",
"of",
"grid",
"priors",
".",
"The",
"grid",
"priors",
"are",
"priors",
"associated",
"with",
"the",
"model",
"mapper",
"of",
"this",
"instance",
"that",
"are",
"replaced",
"by",
"uniform",
"priors",
"for",
"each",
"step",
"of",
"the",
"grid",
"search",
"."
]
| a9e6144abb08edfc6a6906c4030d7119bf8d3e14 | https://github.com/rhayes777/PyAutoFit/blob/a9e6144abb08edfc6a6906c4030d7119bf8d3e14/autofit/optimize/grid_search.py#L181-L229 | train |
Nic30/hwtGraph | hwtGraph/elk/fromHwt/resolveSharedConnections.py | portTryReduce | def portTryReduce(root: LNode, port: LPort):
"""
Check if majority of children is connected to same port
if it is the case reduce children and connect this port instead children
:note: use reduceUselessAssignments, extractSplits, flattenTrees before this function
to maximize it's effect
"""
if not port.children:
return
for p in port.children:
portTryReduce(root, p)
target_nodes = {}
ch_cnt = countDirectlyConnected(port, target_nodes)
if not target_nodes:
# disconnected port
return
new_target, children_edge_to_destroy = max(target_nodes.items(),
key=lambda x: len(x[1]))
cnt = len(children_edge_to_destroy)
if cnt < ch_cnt / 2 or cnt == 1 and ch_cnt == 2:
# too small to few shared connection to reduce
return
children_to_destroy = set()
on_target_children_to_destroy = set()
for child, edge in children_edge_to_destroy:
if child.direction == PortType.OUTPUT:
target_ch = edge.dsts
elif child.direction == PortType.INPUT:
target_ch = edge.srcs
else:
raise ValueError(child.direction)
if len(target_ch) != 1:
raise NotImplementedError("multiple connected nodes", target_ch)
target_ch = target_ch[0]
try:
assert target_ch.parent is new_target, (
target_ch,
target_ch.parent,
new_target)
except AssertionError:
print('Wrong target:\n', edge.src, "\n", edge.dst,
"\n", target_ch.parent, "\n", new_target)
raise
if child.direction == PortType.OUTPUT:
edge.removeTarget(target_ch)
elif child.direction == PortType.INPUT:
edge.removeTarget(child)
if not edge.srcs or not edge.dsts:
edge.remove()
if not target_ch.incomingEdges and not target_ch.outgoingEdges:
# disconnect selected children from this port and target
on_target_children_to_destroy.add(target_ch)
if not child.incomingEdges and not child.outgoingEdges:
children_to_destroy.add(child)
# destroy children of new target and this port if possible
port.children = [
ch for ch in port.children if ch not in children_to_destroy]
new_target.children = [
ch for ch in new_target.children if ch not in on_target_children_to_destroy]
# connect this port to new target as it was connected by children before
# [TODO] names for new edges
if port.direction == PortType.OUTPUT:
root.addEdge(port, new_target)
elif port.direction == PortType.INPUT:
root.addEdge(new_target, port)
else:
raise NotImplementedError(port.direction) | python | def portTryReduce(root: LNode, port: LPort):
"""
Check if majority of children is connected to same port
if it is the case reduce children and connect this port instead children
:note: use reduceUselessAssignments, extractSplits, flattenTrees before this function
to maximize it's effect
"""
if not port.children:
return
for p in port.children:
portTryReduce(root, p)
target_nodes = {}
ch_cnt = countDirectlyConnected(port, target_nodes)
if not target_nodes:
# disconnected port
return
new_target, children_edge_to_destroy = max(target_nodes.items(),
key=lambda x: len(x[1]))
cnt = len(children_edge_to_destroy)
if cnt < ch_cnt / 2 or cnt == 1 and ch_cnt == 2:
# too small to few shared connection to reduce
return
children_to_destroy = set()
on_target_children_to_destroy = set()
for child, edge in children_edge_to_destroy:
if child.direction == PortType.OUTPUT:
target_ch = edge.dsts
elif child.direction == PortType.INPUT:
target_ch = edge.srcs
else:
raise ValueError(child.direction)
if len(target_ch) != 1:
raise NotImplementedError("multiple connected nodes", target_ch)
target_ch = target_ch[0]
try:
assert target_ch.parent is new_target, (
target_ch,
target_ch.parent,
new_target)
except AssertionError:
print('Wrong target:\n', edge.src, "\n", edge.dst,
"\n", target_ch.parent, "\n", new_target)
raise
if child.direction == PortType.OUTPUT:
edge.removeTarget(target_ch)
elif child.direction == PortType.INPUT:
edge.removeTarget(child)
if not edge.srcs or not edge.dsts:
edge.remove()
if not target_ch.incomingEdges and not target_ch.outgoingEdges:
# disconnect selected children from this port and target
on_target_children_to_destroy.add(target_ch)
if not child.incomingEdges and not child.outgoingEdges:
children_to_destroy.add(child)
# destroy children of new target and this port if possible
port.children = [
ch for ch in port.children if ch not in children_to_destroy]
new_target.children = [
ch for ch in new_target.children if ch not in on_target_children_to_destroy]
# connect this port to new target as it was connected by children before
# [TODO] names for new edges
if port.direction == PortType.OUTPUT:
root.addEdge(port, new_target)
elif port.direction == PortType.INPUT:
root.addEdge(new_target, port)
else:
raise NotImplementedError(port.direction) | [
"def",
"portTryReduce",
"(",
"root",
":",
"LNode",
",",
"port",
":",
"LPort",
")",
":",
"if",
"not",
"port",
".",
"children",
":",
"return",
"for",
"p",
"in",
"port",
".",
"children",
":",
"portTryReduce",
"(",
"root",
",",
"p",
")",
"target_nodes",
"=",
"{",
"}",
"ch_cnt",
"=",
"countDirectlyConnected",
"(",
"port",
",",
"target_nodes",
")",
"if",
"not",
"target_nodes",
":",
"# disconnected port",
"return",
"new_target",
",",
"children_edge_to_destroy",
"=",
"max",
"(",
"target_nodes",
".",
"items",
"(",
")",
",",
"key",
"=",
"lambda",
"x",
":",
"len",
"(",
"x",
"[",
"1",
"]",
")",
")",
"cnt",
"=",
"len",
"(",
"children_edge_to_destroy",
")",
"if",
"cnt",
"<",
"ch_cnt",
"/",
"2",
"or",
"cnt",
"==",
"1",
"and",
"ch_cnt",
"==",
"2",
":",
"# too small to few shared connection to reduce",
"return",
"children_to_destroy",
"=",
"set",
"(",
")",
"on_target_children_to_destroy",
"=",
"set",
"(",
")",
"for",
"child",
",",
"edge",
"in",
"children_edge_to_destroy",
":",
"if",
"child",
".",
"direction",
"==",
"PortType",
".",
"OUTPUT",
":",
"target_ch",
"=",
"edge",
".",
"dsts",
"elif",
"child",
".",
"direction",
"==",
"PortType",
".",
"INPUT",
":",
"target_ch",
"=",
"edge",
".",
"srcs",
"else",
":",
"raise",
"ValueError",
"(",
"child",
".",
"direction",
")",
"if",
"len",
"(",
"target_ch",
")",
"!=",
"1",
":",
"raise",
"NotImplementedError",
"(",
"\"multiple connected nodes\"",
",",
"target_ch",
")",
"target_ch",
"=",
"target_ch",
"[",
"0",
"]",
"try",
":",
"assert",
"target_ch",
".",
"parent",
"is",
"new_target",
",",
"(",
"target_ch",
",",
"target_ch",
".",
"parent",
",",
"new_target",
")",
"except",
"AssertionError",
":",
"print",
"(",
"'Wrong target:\\n'",
",",
"edge",
".",
"src",
",",
"\"\\n\"",
",",
"edge",
".",
"dst",
",",
"\"\\n\"",
",",
"target_ch",
".",
"parent",
",",
"\"\\n\"",
",",
"new_target",
")",
"raise",
"if",
"child",
".",
"direction",
"==",
"PortType",
".",
"OUTPUT",
":",
"edge",
".",
"removeTarget",
"(",
"target_ch",
")",
"elif",
"child",
".",
"direction",
"==",
"PortType",
".",
"INPUT",
":",
"edge",
".",
"removeTarget",
"(",
"child",
")",
"if",
"not",
"edge",
".",
"srcs",
"or",
"not",
"edge",
".",
"dsts",
":",
"edge",
".",
"remove",
"(",
")",
"if",
"not",
"target_ch",
".",
"incomingEdges",
"and",
"not",
"target_ch",
".",
"outgoingEdges",
":",
"# disconnect selected children from this port and target",
"on_target_children_to_destroy",
".",
"add",
"(",
"target_ch",
")",
"if",
"not",
"child",
".",
"incomingEdges",
"and",
"not",
"child",
".",
"outgoingEdges",
":",
"children_to_destroy",
".",
"add",
"(",
"child",
")",
"# destroy children of new target and this port if possible",
"port",
".",
"children",
"=",
"[",
"ch",
"for",
"ch",
"in",
"port",
".",
"children",
"if",
"ch",
"not",
"in",
"children_to_destroy",
"]",
"new_target",
".",
"children",
"=",
"[",
"ch",
"for",
"ch",
"in",
"new_target",
".",
"children",
"if",
"ch",
"not",
"in",
"on_target_children_to_destroy",
"]",
"# connect this port to new target as it was connected by children before",
"# [TODO] names for new edges",
"if",
"port",
".",
"direction",
"==",
"PortType",
".",
"OUTPUT",
":",
"root",
".",
"addEdge",
"(",
"port",
",",
"new_target",
")",
"elif",
"port",
".",
"direction",
"==",
"PortType",
".",
"INPUT",
":",
"root",
".",
"addEdge",
"(",
"new_target",
",",
"port",
")",
"else",
":",
"raise",
"NotImplementedError",
"(",
"port",
".",
"direction",
")"
]
| Check if majority of children is connected to same port
if it is the case reduce children and connect this port instead children
:note: use reduceUselessAssignments, extractSplits, flattenTrees before this function
to maximize it's effect | [
"Check",
"if",
"majority",
"of",
"children",
"is",
"connected",
"to",
"same",
"port",
"if",
"it",
"is",
"the",
"case",
"reduce",
"children",
"and",
"connect",
"this",
"port",
"instead",
"children"
]
| 6b7d4fdd759f263a0fdd2736f02f123e44e4354f | https://github.com/Nic30/hwtGraph/blob/6b7d4fdd759f263a0fdd2736f02f123e44e4354f/hwtGraph/elk/fromHwt/resolveSharedConnections.py#L6-L84 | train |
Nic30/hwtGraph | hwtGraph/elk/fromHwt/resolveSharedConnections.py | resolveSharedConnections | def resolveSharedConnections(root: LNode):
"""
Walk all ports on all nodes and group subinterface connections
to only parent interface connection if it is possible
"""
for ch in root.children:
resolveSharedConnections(ch)
for ch in root.children:
for p in ch.iterPorts():
portTryReduce(root, p) | python | def resolveSharedConnections(root: LNode):
"""
Walk all ports on all nodes and group subinterface connections
to only parent interface connection if it is possible
"""
for ch in root.children:
resolveSharedConnections(ch)
for ch in root.children:
for p in ch.iterPorts():
portTryReduce(root, p) | [
"def",
"resolveSharedConnections",
"(",
"root",
":",
"LNode",
")",
":",
"for",
"ch",
"in",
"root",
".",
"children",
":",
"resolveSharedConnections",
"(",
"ch",
")",
"for",
"ch",
"in",
"root",
".",
"children",
":",
"for",
"p",
"in",
"ch",
".",
"iterPorts",
"(",
")",
":",
"portTryReduce",
"(",
"root",
",",
"p",
")"
]
| Walk all ports on all nodes and group subinterface connections
to only parent interface connection if it is possible | [
"Walk",
"all",
"ports",
"on",
"all",
"nodes",
"and",
"group",
"subinterface",
"connections",
"to",
"only",
"parent",
"interface",
"connection",
"if",
"it",
"is",
"possible"
]
| 6b7d4fdd759f263a0fdd2736f02f123e44e4354f | https://github.com/Nic30/hwtGraph/blob/6b7d4fdd759f263a0fdd2736f02f123e44e4354f/hwtGraph/elk/fromHwt/resolveSharedConnections.py#L87-L97 | train |
Nic30/hwtGraph | hwtGraph/elk/fromHwt/resolveSharedConnections.py | countDirectlyConnected | def countDirectlyConnected(port: LPort, result: dict) -> int:
"""
Count how many ports are directly connected to other nodes
:return: cumulative sum of port counts
"""
inEdges = port.incomingEdges
outEdges = port.outgoingEdges
if port.children:
ch_cnt = 0
# try:
# assert not inEdges, (port, port.children, inEdges)
# assert not outEdges, (port, port.children, outEdges)
# except AssertionError:
# raise
for ch in port.children:
ch_cnt += countDirectlyConnected(ch, result)
return ch_cnt
elif not inEdges and not outEdges:
# this port is not connected, just check if it expected state
if port.direction == PortType.INPUT:
if port.originObj is not None:
assert not port.originObj.src.drivers, port.originObj
else:
print("Warning", port, "not connected")
return 0
else:
connectedElemCnt = 0
for e in inEdges:
connectedElemCnt += len(e.srcs)
if connectedElemCnt > 1:
return 0
for e in outEdges:
connectedElemCnt += len(e.dsts)
if connectedElemCnt > 1:
return 0
if connectedElemCnt != 1:
return 0
if inEdges:
e = inEdges[0]
else:
e = outEdges[0]
# if is connected to different port
if e.srcs[0].name != e.dsts[0].name:
return 0
if e.srcs[0] is port:
p = e.dsts[0].parent
else:
# (can be hyperedge and then this does not have to be)
# assert e.dsts[0] is port, (e, port)
p = e.srcs[0].parent
# if is part of interface which can be reduced
if not isinstance(p, LNode):
connections = result.get(p, [])
connections.append((port, e))
result[p] = connections
return 1 | python | def countDirectlyConnected(port: LPort, result: dict) -> int:
"""
Count how many ports are directly connected to other nodes
:return: cumulative sum of port counts
"""
inEdges = port.incomingEdges
outEdges = port.outgoingEdges
if port.children:
ch_cnt = 0
# try:
# assert not inEdges, (port, port.children, inEdges)
# assert not outEdges, (port, port.children, outEdges)
# except AssertionError:
# raise
for ch in port.children:
ch_cnt += countDirectlyConnected(ch, result)
return ch_cnt
elif not inEdges and not outEdges:
# this port is not connected, just check if it expected state
if port.direction == PortType.INPUT:
if port.originObj is not None:
assert not port.originObj.src.drivers, port.originObj
else:
print("Warning", port, "not connected")
return 0
else:
connectedElemCnt = 0
for e in inEdges:
connectedElemCnt += len(e.srcs)
if connectedElemCnt > 1:
return 0
for e in outEdges:
connectedElemCnt += len(e.dsts)
if connectedElemCnt > 1:
return 0
if connectedElemCnt != 1:
return 0
if inEdges:
e = inEdges[0]
else:
e = outEdges[0]
# if is connected to different port
if e.srcs[0].name != e.dsts[0].name:
return 0
if e.srcs[0] is port:
p = e.dsts[0].parent
else:
# (can be hyperedge and then this does not have to be)
# assert e.dsts[0] is port, (e, port)
p = e.srcs[0].parent
# if is part of interface which can be reduced
if not isinstance(p, LNode):
connections = result.get(p, [])
connections.append((port, e))
result[p] = connections
return 1 | [
"def",
"countDirectlyConnected",
"(",
"port",
":",
"LPort",
",",
"result",
":",
"dict",
")",
"->",
"int",
":",
"inEdges",
"=",
"port",
".",
"incomingEdges",
"outEdges",
"=",
"port",
".",
"outgoingEdges",
"if",
"port",
".",
"children",
":",
"ch_cnt",
"=",
"0",
"# try:",
"# assert not inEdges, (port, port.children, inEdges)",
"# assert not outEdges, (port, port.children, outEdges)",
"# except AssertionError:",
"# raise",
"for",
"ch",
"in",
"port",
".",
"children",
":",
"ch_cnt",
"+=",
"countDirectlyConnected",
"(",
"ch",
",",
"result",
")",
"return",
"ch_cnt",
"elif",
"not",
"inEdges",
"and",
"not",
"outEdges",
":",
"# this port is not connected, just check if it expected state",
"if",
"port",
".",
"direction",
"==",
"PortType",
".",
"INPUT",
":",
"if",
"port",
".",
"originObj",
"is",
"not",
"None",
":",
"assert",
"not",
"port",
".",
"originObj",
".",
"src",
".",
"drivers",
",",
"port",
".",
"originObj",
"else",
":",
"print",
"(",
"\"Warning\"",
",",
"port",
",",
"\"not connected\"",
")",
"return",
"0",
"else",
":",
"connectedElemCnt",
"=",
"0",
"for",
"e",
"in",
"inEdges",
":",
"connectedElemCnt",
"+=",
"len",
"(",
"e",
".",
"srcs",
")",
"if",
"connectedElemCnt",
">",
"1",
":",
"return",
"0",
"for",
"e",
"in",
"outEdges",
":",
"connectedElemCnt",
"+=",
"len",
"(",
"e",
".",
"dsts",
")",
"if",
"connectedElemCnt",
">",
"1",
":",
"return",
"0",
"if",
"connectedElemCnt",
"!=",
"1",
":",
"return",
"0",
"if",
"inEdges",
":",
"e",
"=",
"inEdges",
"[",
"0",
"]",
"else",
":",
"e",
"=",
"outEdges",
"[",
"0",
"]",
"# if is connected to different port",
"if",
"e",
".",
"srcs",
"[",
"0",
"]",
".",
"name",
"!=",
"e",
".",
"dsts",
"[",
"0",
"]",
".",
"name",
":",
"return",
"0",
"if",
"e",
".",
"srcs",
"[",
"0",
"]",
"is",
"port",
":",
"p",
"=",
"e",
".",
"dsts",
"[",
"0",
"]",
".",
"parent",
"else",
":",
"# (can be hyperedge and then this does not have to be)",
"# assert e.dsts[0] is port, (e, port)",
"p",
"=",
"e",
".",
"srcs",
"[",
"0",
"]",
".",
"parent",
"# if is part of interface which can be reduced",
"if",
"not",
"isinstance",
"(",
"p",
",",
"LNode",
")",
":",
"connections",
"=",
"result",
".",
"get",
"(",
"p",
",",
"[",
"]",
")",
"connections",
".",
"append",
"(",
"(",
"port",
",",
"e",
")",
")",
"result",
"[",
"p",
"]",
"=",
"connections",
"return",
"1"
]
| Count how many ports are directly connected to other nodes
:return: cumulative sum of port counts | [
"Count",
"how",
"many",
"ports",
"are",
"directly",
"connected",
"to",
"other",
"nodes"
]
| 6b7d4fdd759f263a0fdd2736f02f123e44e4354f | https://github.com/Nic30/hwtGraph/blob/6b7d4fdd759f263a0fdd2736f02f123e44e4354f/hwtGraph/elk/fromHwt/resolveSharedConnections.py#L110-L176 | train |
redhat-openstack/python-tripleo-helper | tripleohelper/ovb_baremetal.py | Baremetal.deploy | def deploy(self, image_name, ip, flavor='m1.small'):
"""Create the node.
This method should only be called by the BaremetalFactory.
"""
body_value = {
"port": {
"admin_state_up": True,
"name": self.name + '_provision',
"network_id": os_utils.get_network_id(self.nova_api, 'provision_bob'),
'fixed_ips': [{'ip_address': ip}]}}
response = self.neutron.create_port(body=body_value)
self._provision_port_id = response['port']['id']
self.mac = response['port']['mac_address']
image_id_to_boot_from = os_utils.get_image_id(self.nova_api, image_name)
flavor_id = os_utils.get_flavor_id(self.nova_api, flavor)
# TODO(Gonéri): We don't need keypair for the BM nodes
keypair_id = os_utils.get_keypair_id(self.nova_api, self._keypair)
# Ensure with get DHCP lease on the provision network first
nics = [{'port-id': self._provision_port_id}]
self._os_instance = os_provisioner.build_openstack_instance(
self.nova_api,
self.name,
image_id_to_boot_from,
flavor_id,
keypair_id,
nics)
if not self._os_instance:
LOG.error("deployment has failed")
raise Exception()
os_provisioner.add_provision_security_group(self.nova_api)
os_utils.add_security_groups(self._os_instance, ['provision'])
os_utils.add_security_groups(self._os_instance, self._security_groups)
LOG.info("add security groups '%s'" % self._security_groups)
LOG.info("instance '%s' ready to use" % self.name)
# the instance should be off for Ironic
self._os_instance.stop() | python | def deploy(self, image_name, ip, flavor='m1.small'):
"""Create the node.
This method should only be called by the BaremetalFactory.
"""
body_value = {
"port": {
"admin_state_up": True,
"name": self.name + '_provision',
"network_id": os_utils.get_network_id(self.nova_api, 'provision_bob'),
'fixed_ips': [{'ip_address': ip}]}}
response = self.neutron.create_port(body=body_value)
self._provision_port_id = response['port']['id']
self.mac = response['port']['mac_address']
image_id_to_boot_from = os_utils.get_image_id(self.nova_api, image_name)
flavor_id = os_utils.get_flavor_id(self.nova_api, flavor)
# TODO(Gonéri): We don't need keypair for the BM nodes
keypair_id = os_utils.get_keypair_id(self.nova_api, self._keypair)
# Ensure with get DHCP lease on the provision network first
nics = [{'port-id': self._provision_port_id}]
self._os_instance = os_provisioner.build_openstack_instance(
self.nova_api,
self.name,
image_id_to_boot_from,
flavor_id,
keypair_id,
nics)
if not self._os_instance:
LOG.error("deployment has failed")
raise Exception()
os_provisioner.add_provision_security_group(self.nova_api)
os_utils.add_security_groups(self._os_instance, ['provision'])
os_utils.add_security_groups(self._os_instance, self._security_groups)
LOG.info("add security groups '%s'" % self._security_groups)
LOG.info("instance '%s' ready to use" % self.name)
# the instance should be off for Ironic
self._os_instance.stop() | [
"def",
"deploy",
"(",
"self",
",",
"image_name",
",",
"ip",
",",
"flavor",
"=",
"'m1.small'",
")",
":",
"body_value",
"=",
"{",
"\"port\"",
":",
"{",
"\"admin_state_up\"",
":",
"True",
",",
"\"name\"",
":",
"self",
".",
"name",
"+",
"'_provision'",
",",
"\"network_id\"",
":",
"os_utils",
".",
"get_network_id",
"(",
"self",
".",
"nova_api",
",",
"'provision_bob'",
")",
",",
"'fixed_ips'",
":",
"[",
"{",
"'ip_address'",
":",
"ip",
"}",
"]",
"}",
"}",
"response",
"=",
"self",
".",
"neutron",
".",
"create_port",
"(",
"body",
"=",
"body_value",
")",
"self",
".",
"_provision_port_id",
"=",
"response",
"[",
"'port'",
"]",
"[",
"'id'",
"]",
"self",
".",
"mac",
"=",
"response",
"[",
"'port'",
"]",
"[",
"'mac_address'",
"]",
"image_id_to_boot_from",
"=",
"os_utils",
".",
"get_image_id",
"(",
"self",
".",
"nova_api",
",",
"image_name",
")",
"flavor_id",
"=",
"os_utils",
".",
"get_flavor_id",
"(",
"self",
".",
"nova_api",
",",
"flavor",
")",
"# TODO(Gonéri): We don't need keypair for the BM nodes",
"keypair_id",
"=",
"os_utils",
".",
"get_keypair_id",
"(",
"self",
".",
"nova_api",
",",
"self",
".",
"_keypair",
")",
"# Ensure with get DHCP lease on the provision network first",
"nics",
"=",
"[",
"{",
"'port-id'",
":",
"self",
".",
"_provision_port_id",
"}",
"]",
"self",
".",
"_os_instance",
"=",
"os_provisioner",
".",
"build_openstack_instance",
"(",
"self",
".",
"nova_api",
",",
"self",
".",
"name",
",",
"image_id_to_boot_from",
",",
"flavor_id",
",",
"keypair_id",
",",
"nics",
")",
"if",
"not",
"self",
".",
"_os_instance",
":",
"LOG",
".",
"error",
"(",
"\"deployment has failed\"",
")",
"raise",
"Exception",
"(",
")",
"os_provisioner",
".",
"add_provision_security_group",
"(",
"self",
".",
"nova_api",
")",
"os_utils",
".",
"add_security_groups",
"(",
"self",
".",
"_os_instance",
",",
"[",
"'provision'",
"]",
")",
"os_utils",
".",
"add_security_groups",
"(",
"self",
".",
"_os_instance",
",",
"self",
".",
"_security_groups",
")",
"LOG",
".",
"info",
"(",
"\"add security groups '%s'\"",
"%",
"self",
".",
"_security_groups",
")",
"LOG",
".",
"info",
"(",
"\"instance '%s' ready to use\"",
"%",
"self",
".",
"name",
")",
"# the instance should be off for Ironic",
"self",
".",
"_os_instance",
".",
"stop",
"(",
")"
]
| Create the node.
This method should only be called by the BaremetalFactory. | [
"Create",
"the",
"node",
"."
]
| bfa165538335edb1088170c7a92f097167225c81 | https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/ovb_baremetal.py#L47-L88 | train |
redhat-openstack/python-tripleo-helper | tripleohelper/ovb_baremetal.py | Baremetal.pxe_netboot | def pxe_netboot(self, filename):
"""Specify which file ipxe should load during the netboot."""
new_port = {
'extra_dhcp_opts': [
{'opt_name': 'bootfile-name', 'opt_value': 'http://192.0.2.240:8088/' + filename, 'ip_version': 4, },
{'opt_name': 'tftp-server', 'opt_value': '192.0.2.240', 'ip_version': '4'},
{'opt_name': 'server-ip-address', 'opt_value': '192.0.2.240', 'ip_version': '4'}
]
}
self.neutron.update_port(self._provision_port_id, {'port': new_port}) | python | def pxe_netboot(self, filename):
"""Specify which file ipxe should load during the netboot."""
new_port = {
'extra_dhcp_opts': [
{'opt_name': 'bootfile-name', 'opt_value': 'http://192.0.2.240:8088/' + filename, 'ip_version': 4, },
{'opt_name': 'tftp-server', 'opt_value': '192.0.2.240', 'ip_version': '4'},
{'opt_name': 'server-ip-address', 'opt_value': '192.0.2.240', 'ip_version': '4'}
]
}
self.neutron.update_port(self._provision_port_id, {'port': new_port}) | [
"def",
"pxe_netboot",
"(",
"self",
",",
"filename",
")",
":",
"new_port",
"=",
"{",
"'extra_dhcp_opts'",
":",
"[",
"{",
"'opt_name'",
":",
"'bootfile-name'",
",",
"'opt_value'",
":",
"'http://192.0.2.240:8088/'",
"+",
"filename",
",",
"'ip_version'",
":",
"4",
",",
"}",
",",
"{",
"'opt_name'",
":",
"'tftp-server'",
",",
"'opt_value'",
":",
"'192.0.2.240'",
",",
"'ip_version'",
":",
"'4'",
"}",
",",
"{",
"'opt_name'",
":",
"'server-ip-address'",
",",
"'opt_value'",
":",
"'192.0.2.240'",
",",
"'ip_version'",
":",
"'4'",
"}",
"]",
"}",
"self",
".",
"neutron",
".",
"update_port",
"(",
"self",
".",
"_provision_port_id",
",",
"{",
"'port'",
":",
"new_port",
"}",
")"
]
| Specify which file ipxe should load during the netboot. | [
"Specify",
"which",
"file",
"ipxe",
"should",
"load",
"during",
"the",
"netboot",
"."
]
| bfa165538335edb1088170c7a92f097167225c81 | https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/ovb_baremetal.py#L94-L103 | train |
redhat-openstack/python-tripleo-helper | tripleohelper/ovb_baremetal.py | BaremetalFactory.initialize | def initialize(self, size=2):
"""Populate the node poll.
:param size: the number of node to create.
"""
# The IP should be in this range, this is the default DHCP range used by the introspection.
# inspection_iprange = 192.0.2.100,192.0.2.120
for i in range(0, size):
self.nodes.append(
Baremetal(
self.nova_api,
self.neutron,
self._keypair,
self._key_filename,
self._security_groups,
name='baremetal_%d' % i))
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
for bm_node in self.nodes:
future = executor.submit(
bm_node.deploy,
'ipxe.usb',
'192.0.2.%d' % self._idx,
flavor='m1.large')
self._idx += 1
bm_node._future = future
for bm_node in self.nodes:
bm_node._future.result()
pm_addr = self.bmc.register_host(bm_node.name)
self.instackenv.append({
"pm_type": "pxe_ipmitool",
"mac": [bm_node.mac],
# TODO(Gonéri): We should get these informations from the baremetal node's flavor
"cpu": "4",
"memory": "8196",
"disk": "80",
"arch": "x86_64",
"pm_user": "admin",
"pm_password": "password",
"pm_addr": pm_addr
})
self.bmc.ssh_pool.stop_all() | python | def initialize(self, size=2):
"""Populate the node poll.
:param size: the number of node to create.
"""
# The IP should be in this range, this is the default DHCP range used by the introspection.
# inspection_iprange = 192.0.2.100,192.0.2.120
for i in range(0, size):
self.nodes.append(
Baremetal(
self.nova_api,
self.neutron,
self._keypair,
self._key_filename,
self._security_groups,
name='baremetal_%d' % i))
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
for bm_node in self.nodes:
future = executor.submit(
bm_node.deploy,
'ipxe.usb',
'192.0.2.%d' % self._idx,
flavor='m1.large')
self._idx += 1
bm_node._future = future
for bm_node in self.nodes:
bm_node._future.result()
pm_addr = self.bmc.register_host(bm_node.name)
self.instackenv.append({
"pm_type": "pxe_ipmitool",
"mac": [bm_node.mac],
# TODO(Gonéri): We should get these informations from the baremetal node's flavor
"cpu": "4",
"memory": "8196",
"disk": "80",
"arch": "x86_64",
"pm_user": "admin",
"pm_password": "password",
"pm_addr": pm_addr
})
self.bmc.ssh_pool.stop_all() | [
"def",
"initialize",
"(",
"self",
",",
"size",
"=",
"2",
")",
":",
"# The IP should be in this range, this is the default DHCP range used by the introspection.",
"# inspection_iprange = 192.0.2.100,192.0.2.120",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"size",
")",
":",
"self",
".",
"nodes",
".",
"append",
"(",
"Baremetal",
"(",
"self",
".",
"nova_api",
",",
"self",
".",
"neutron",
",",
"self",
".",
"_keypair",
",",
"self",
".",
"_key_filename",
",",
"self",
".",
"_security_groups",
",",
"name",
"=",
"'baremetal_%d'",
"%",
"i",
")",
")",
"with",
"concurrent",
".",
"futures",
".",
"ThreadPoolExecutor",
"(",
"max_workers",
"=",
"5",
")",
"as",
"executor",
":",
"for",
"bm_node",
"in",
"self",
".",
"nodes",
":",
"future",
"=",
"executor",
".",
"submit",
"(",
"bm_node",
".",
"deploy",
",",
"'ipxe.usb'",
",",
"'192.0.2.%d'",
"%",
"self",
".",
"_idx",
",",
"flavor",
"=",
"'m1.large'",
")",
"self",
".",
"_idx",
"+=",
"1",
"bm_node",
".",
"_future",
"=",
"future",
"for",
"bm_node",
"in",
"self",
".",
"nodes",
":",
"bm_node",
".",
"_future",
".",
"result",
"(",
")",
"pm_addr",
"=",
"self",
".",
"bmc",
".",
"register_host",
"(",
"bm_node",
".",
"name",
")",
"self",
".",
"instackenv",
".",
"append",
"(",
"{",
"\"pm_type\"",
":",
"\"pxe_ipmitool\"",
",",
"\"mac\"",
":",
"[",
"bm_node",
".",
"mac",
"]",
",",
"# TODO(Gonéri): We should get these informations from the baremetal node's flavor",
"\"cpu\"",
":",
"\"4\"",
",",
"\"memory\"",
":",
"\"8196\"",
",",
"\"disk\"",
":",
"\"80\"",
",",
"\"arch\"",
":",
"\"x86_64\"",
",",
"\"pm_user\"",
":",
"\"admin\"",
",",
"\"pm_password\"",
":",
"\"password\"",
",",
"\"pm_addr\"",
":",
"pm_addr",
"}",
")",
"self",
".",
"bmc",
".",
"ssh_pool",
".",
"stop_all",
"(",
")"
]
| Populate the node poll.
:param size: the number of node to create. | [
"Populate",
"the",
"node",
"poll",
"."
]
| bfa165538335edb1088170c7a92f097167225c81 | https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/ovb_baremetal.py#L141-L181 | train |
redhat-openstack/python-tripleo-helper | tripleohelper/ovb_baremetal.py | BaremetalFactory.create_bmc | def create_bmc(self, os_username, os_password, os_project_id, os_auth_url):
"""Deploy the BMC machine.
This machine hosts the ipmi servers, each ipmi server is associated to a baremetal
node and has its own IP.
"""
bmc = ovb_bmc.OvbBmc(
nova_api=self.nova_api,
neutron=self.neutron,
keypair=self._keypair,
key_filename=self._key_filename,
security_groups=self._security_groups,
image_name='Fedora 23 x86_64',
ip='192.0.2.254',
os_username=os_username,
os_password=os_password,
os_project_id=os_project_id,
os_auth_url=os_auth_url)
return bmc | python | def create_bmc(self, os_username, os_password, os_project_id, os_auth_url):
"""Deploy the BMC machine.
This machine hosts the ipmi servers, each ipmi server is associated to a baremetal
node and has its own IP.
"""
bmc = ovb_bmc.OvbBmc(
nova_api=self.nova_api,
neutron=self.neutron,
keypair=self._keypair,
key_filename=self._key_filename,
security_groups=self._security_groups,
image_name='Fedora 23 x86_64',
ip='192.0.2.254',
os_username=os_username,
os_password=os_password,
os_project_id=os_project_id,
os_auth_url=os_auth_url)
return bmc | [
"def",
"create_bmc",
"(",
"self",
",",
"os_username",
",",
"os_password",
",",
"os_project_id",
",",
"os_auth_url",
")",
":",
"bmc",
"=",
"ovb_bmc",
".",
"OvbBmc",
"(",
"nova_api",
"=",
"self",
".",
"nova_api",
",",
"neutron",
"=",
"self",
".",
"neutron",
",",
"keypair",
"=",
"self",
".",
"_keypair",
",",
"key_filename",
"=",
"self",
".",
"_key_filename",
",",
"security_groups",
"=",
"self",
".",
"_security_groups",
",",
"image_name",
"=",
"'Fedora 23 x86_64'",
",",
"ip",
"=",
"'192.0.2.254'",
",",
"os_username",
"=",
"os_username",
",",
"os_password",
"=",
"os_password",
",",
"os_project_id",
"=",
"os_project_id",
",",
"os_auth_url",
"=",
"os_auth_url",
")",
"return",
"bmc"
]
| Deploy the BMC machine.
This machine hosts the ipmi servers, each ipmi server is associated to a baremetal
node and has its own IP. | [
"Deploy",
"the",
"BMC",
"machine",
"."
]
| bfa165538335edb1088170c7a92f097167225c81 | https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/ovb_baremetal.py#L213-L231 | train |
unt-libraries/pyuntl | pyuntl/untldoc.py | untlxml2py | def untlxml2py(untl_filename):
"""Parse a UNTL XML file object into a pyuntl element tree.
You can also pass this a string as file input like so:
import StringIO
untlxml2py(StringIO.StringIO(untl_string))
"""
# Create a stack to hold parents.
parent_stack = []
# Use iterparse to open the file and loop through elements.
for event, element in iterparse(untl_filename, events=('start', 'end')):
if NAMESPACE_REGEX.search(element.tag, 0):
element_tag = NAMESPACE_REGEX.search(element.tag, 0).group(1)
else:
element_tag = element.tag
# Process the element if it exists in UNTL.
if element_tag in PYUNTL_DISPATCH:
# If it is the element's opening tag,
# add it to the parent stack.
if event == 'start':
parent_stack.append(PYUNTL_DISPATCH[element_tag]())
# If it is the element's closing tag,
# remove element from stack. Add qualifier and content.
elif event == 'end':
child = parent_stack.pop()
if element.text is not None:
content = element.text.strip()
if content != '':
child.set_content(element.text)
if element.get('qualifier', False):
child.set_qualifier(element.get('qualifier'))
# Add the element to its parent.
if len(parent_stack) > 0:
parent_stack[-1].add_child(child)
# If it doesn't have a parent, it is the root element,
# so return it.
else:
return child
else:
raise PyuntlException(
'Element "%s" not in UNTL dispatch.' % (element_tag)
) | python | def untlxml2py(untl_filename):
"""Parse a UNTL XML file object into a pyuntl element tree.
You can also pass this a string as file input like so:
import StringIO
untlxml2py(StringIO.StringIO(untl_string))
"""
# Create a stack to hold parents.
parent_stack = []
# Use iterparse to open the file and loop through elements.
for event, element in iterparse(untl_filename, events=('start', 'end')):
if NAMESPACE_REGEX.search(element.tag, 0):
element_tag = NAMESPACE_REGEX.search(element.tag, 0).group(1)
else:
element_tag = element.tag
# Process the element if it exists in UNTL.
if element_tag in PYUNTL_DISPATCH:
# If it is the element's opening tag,
# add it to the parent stack.
if event == 'start':
parent_stack.append(PYUNTL_DISPATCH[element_tag]())
# If it is the element's closing tag,
# remove element from stack. Add qualifier and content.
elif event == 'end':
child = parent_stack.pop()
if element.text is not None:
content = element.text.strip()
if content != '':
child.set_content(element.text)
if element.get('qualifier', False):
child.set_qualifier(element.get('qualifier'))
# Add the element to its parent.
if len(parent_stack) > 0:
parent_stack[-1].add_child(child)
# If it doesn't have a parent, it is the root element,
# so return it.
else:
return child
else:
raise PyuntlException(
'Element "%s" not in UNTL dispatch.' % (element_tag)
) | [
"def",
"untlxml2py",
"(",
"untl_filename",
")",
":",
"# Create a stack to hold parents.",
"parent_stack",
"=",
"[",
"]",
"# Use iterparse to open the file and loop through elements.",
"for",
"event",
",",
"element",
"in",
"iterparse",
"(",
"untl_filename",
",",
"events",
"=",
"(",
"'start'",
",",
"'end'",
")",
")",
":",
"if",
"NAMESPACE_REGEX",
".",
"search",
"(",
"element",
".",
"tag",
",",
"0",
")",
":",
"element_tag",
"=",
"NAMESPACE_REGEX",
".",
"search",
"(",
"element",
".",
"tag",
",",
"0",
")",
".",
"group",
"(",
"1",
")",
"else",
":",
"element_tag",
"=",
"element",
".",
"tag",
"# Process the element if it exists in UNTL.",
"if",
"element_tag",
"in",
"PYUNTL_DISPATCH",
":",
"# If it is the element's opening tag,",
"# add it to the parent stack.",
"if",
"event",
"==",
"'start'",
":",
"parent_stack",
".",
"append",
"(",
"PYUNTL_DISPATCH",
"[",
"element_tag",
"]",
"(",
")",
")",
"# If it is the element's closing tag,",
"# remove element from stack. Add qualifier and content.",
"elif",
"event",
"==",
"'end'",
":",
"child",
"=",
"parent_stack",
".",
"pop",
"(",
")",
"if",
"element",
".",
"text",
"is",
"not",
"None",
":",
"content",
"=",
"element",
".",
"text",
".",
"strip",
"(",
")",
"if",
"content",
"!=",
"''",
":",
"child",
".",
"set_content",
"(",
"element",
".",
"text",
")",
"if",
"element",
".",
"get",
"(",
"'qualifier'",
",",
"False",
")",
":",
"child",
".",
"set_qualifier",
"(",
"element",
".",
"get",
"(",
"'qualifier'",
")",
")",
"# Add the element to its parent.",
"if",
"len",
"(",
"parent_stack",
")",
">",
"0",
":",
"parent_stack",
"[",
"-",
"1",
"]",
".",
"add_child",
"(",
"child",
")",
"# If it doesn't have a parent, it is the root element,",
"# so return it.",
"else",
":",
"return",
"child",
"else",
":",
"raise",
"PyuntlException",
"(",
"'Element \"%s\" not in UNTL dispatch.'",
"%",
"(",
"element_tag",
")",
")"
]
| Parse a UNTL XML file object into a pyuntl element tree.
You can also pass this a string as file input like so:
import StringIO
untlxml2py(StringIO.StringIO(untl_string)) | [
"Parse",
"a",
"UNTL",
"XML",
"file",
"object",
"into",
"a",
"pyuntl",
"element",
"tree",
"."
]
| f92413302897dab948aac18ee9e482ace0187bd4 | https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untldoc.py#L45-L87 | train |
unt-libraries/pyuntl | pyuntl/untldoc.py | untldict2py | def untldict2py(untl_dict):
"""Convert a UNTL dictionary into a Python object."""
# Create the root element.
untl_root = PYUNTL_DISPATCH['metadata']()
untl_py_list = []
for element_name, element_list in untl_dict.items():
# Loop through the element dictionaries in the element list.
for element_dict in element_list:
qualifier = element_dict.get('qualifier', None)
content = element_dict.get('content', None)
child_list = []
# Handle content that is children elements.
if isinstance(content, dict):
for key, value in content.items():
child_list.append(
PYUNTL_DISPATCH[key](content=value),
)
# Create the UNTL element that will have children elements
# added to it.
if qualifier is not None:
untl_element = PYUNTL_DISPATCH[element_name](
qualifier=qualifier
)
else:
untl_element = PYUNTL_DISPATCH[element_name]()
# Add the element's children to the element.
for child in child_list:
untl_element.add_child(child)
# If not child element, create the element and
# add qualifier and content as available.
elif content is not None and qualifier is not None:
untl_element = PYUNTL_DISPATCH[element_name](
qualifier=qualifier,
content=content,
)
elif qualifier is not None:
untl_element = PYUNTL_DISPATCH[element_name](
qualifier=qualifier,
)
elif content is not None:
untl_element = PYUNTL_DISPATCH[element_name](
content=content,
)
# Create element that only has children.
elif len(child_list) > 0:
untl_element = PYUNTL_DISPATCH[element_name]()
# Add the UNTL element to the Python element list.
untl_py_list.append(untl_element)
# Add the UNTL elements to the root element.
for untl_element in untl_py_list:
untl_root.add_child(untl_element)
return untl_root | python | def untldict2py(untl_dict):
"""Convert a UNTL dictionary into a Python object."""
# Create the root element.
untl_root = PYUNTL_DISPATCH['metadata']()
untl_py_list = []
for element_name, element_list in untl_dict.items():
# Loop through the element dictionaries in the element list.
for element_dict in element_list:
qualifier = element_dict.get('qualifier', None)
content = element_dict.get('content', None)
child_list = []
# Handle content that is children elements.
if isinstance(content, dict):
for key, value in content.items():
child_list.append(
PYUNTL_DISPATCH[key](content=value),
)
# Create the UNTL element that will have children elements
# added to it.
if qualifier is not None:
untl_element = PYUNTL_DISPATCH[element_name](
qualifier=qualifier
)
else:
untl_element = PYUNTL_DISPATCH[element_name]()
# Add the element's children to the element.
for child in child_list:
untl_element.add_child(child)
# If not child element, create the element and
# add qualifier and content as available.
elif content is not None and qualifier is not None:
untl_element = PYUNTL_DISPATCH[element_name](
qualifier=qualifier,
content=content,
)
elif qualifier is not None:
untl_element = PYUNTL_DISPATCH[element_name](
qualifier=qualifier,
)
elif content is not None:
untl_element = PYUNTL_DISPATCH[element_name](
content=content,
)
# Create element that only has children.
elif len(child_list) > 0:
untl_element = PYUNTL_DISPATCH[element_name]()
# Add the UNTL element to the Python element list.
untl_py_list.append(untl_element)
# Add the UNTL elements to the root element.
for untl_element in untl_py_list:
untl_root.add_child(untl_element)
return untl_root | [
"def",
"untldict2py",
"(",
"untl_dict",
")",
":",
"# Create the root element.",
"untl_root",
"=",
"PYUNTL_DISPATCH",
"[",
"'metadata'",
"]",
"(",
")",
"untl_py_list",
"=",
"[",
"]",
"for",
"element_name",
",",
"element_list",
"in",
"untl_dict",
".",
"items",
"(",
")",
":",
"# Loop through the element dictionaries in the element list.",
"for",
"element_dict",
"in",
"element_list",
":",
"qualifier",
"=",
"element_dict",
".",
"get",
"(",
"'qualifier'",
",",
"None",
")",
"content",
"=",
"element_dict",
".",
"get",
"(",
"'content'",
",",
"None",
")",
"child_list",
"=",
"[",
"]",
"# Handle content that is children elements.",
"if",
"isinstance",
"(",
"content",
",",
"dict",
")",
":",
"for",
"key",
",",
"value",
"in",
"content",
".",
"items",
"(",
")",
":",
"child_list",
".",
"append",
"(",
"PYUNTL_DISPATCH",
"[",
"key",
"]",
"(",
"content",
"=",
"value",
")",
",",
")",
"# Create the UNTL element that will have children elements",
"# added to it.",
"if",
"qualifier",
"is",
"not",
"None",
":",
"untl_element",
"=",
"PYUNTL_DISPATCH",
"[",
"element_name",
"]",
"(",
"qualifier",
"=",
"qualifier",
")",
"else",
":",
"untl_element",
"=",
"PYUNTL_DISPATCH",
"[",
"element_name",
"]",
"(",
")",
"# Add the element's children to the element.",
"for",
"child",
"in",
"child_list",
":",
"untl_element",
".",
"add_child",
"(",
"child",
")",
"# If not child element, create the element and",
"# add qualifier and content as available.",
"elif",
"content",
"is",
"not",
"None",
"and",
"qualifier",
"is",
"not",
"None",
":",
"untl_element",
"=",
"PYUNTL_DISPATCH",
"[",
"element_name",
"]",
"(",
"qualifier",
"=",
"qualifier",
",",
"content",
"=",
"content",
",",
")",
"elif",
"qualifier",
"is",
"not",
"None",
":",
"untl_element",
"=",
"PYUNTL_DISPATCH",
"[",
"element_name",
"]",
"(",
"qualifier",
"=",
"qualifier",
",",
")",
"elif",
"content",
"is",
"not",
"None",
":",
"untl_element",
"=",
"PYUNTL_DISPATCH",
"[",
"element_name",
"]",
"(",
"content",
"=",
"content",
",",
")",
"# Create element that only has children.",
"elif",
"len",
"(",
"child_list",
")",
">",
"0",
":",
"untl_element",
"=",
"PYUNTL_DISPATCH",
"[",
"element_name",
"]",
"(",
")",
"# Add the UNTL element to the Python element list.",
"untl_py_list",
".",
"append",
"(",
"untl_element",
")",
"# Add the UNTL elements to the root element.",
"for",
"untl_element",
"in",
"untl_py_list",
":",
"untl_root",
".",
"add_child",
"(",
"untl_element",
")",
"return",
"untl_root"
]
| Convert a UNTL dictionary into a Python object. | [
"Convert",
"a",
"UNTL",
"dictionary",
"into",
"a",
"Python",
"object",
"."
]
| f92413302897dab948aac18ee9e482ace0187bd4 | https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untldoc.py#L121-L172 | train |
unt-libraries/pyuntl | pyuntl/untldoc.py | post2pydict | def post2pydict(post, ignore_list):
"""Convert the UNTL posted data to a Python dictionary."""
root_element = PYUNTL_DISPATCH['metadata']()
untl_form_dict = {}
# Turn the posted data into usable data
# (otherwise the value lists get messed up).
form_post = dict(post.copy())
# Loop through all the field lists.
for key, value_list in form_post.items():
if key not in ignore_list:
# Split the key into the element_tag (ex. title)
# and element attribute (ex. qualifier, content).
(element_tag, element_attribute) = key.split('-', 1)
if element_tag not in untl_form_dict:
untl_form_dict[element_tag] = ()
# Add the value list to the dictionary.
untl_form_dict[element_tag] += (element_attribute, value_list),
for element_tag, attribute_tuple in untl_form_dict.items():
# Get the count of attributes/content in the element tuple.
attribute_count = len(attribute_tuple)
# Get the count of the first attribute's values.
value_count = len(attribute_tuple[0][1])
# Check to see that all attribute/content values align numerically.
for i in range(0, attribute_count):
if not len(attribute_tuple[i][1]) == value_count:
raise PyuntlException('Field values did not match up '
'numerically for %s' % (element_tag))
# Create a value loop to get all values from the tuple.
for i in range(0, value_count):
untl_element = None
content = ''
qualifier = ''
child_list = []
# Loop through the attributes.
# attribute_tuple[j][0] represents the attribute/content name.
# attribute_tuple[j][1][i] represents the
# current attribute/content value.
for j in range(0, attribute_count):
if attribute_tuple[j][0] == 'content':
content = unicode(attribute_tuple[j][1][i])
elif attribute_tuple[j][0] == 'qualifier':
qualifier = attribute_tuple[j][1][i]
# Create a child UNTL element from the data.
else:
# If the child has content, append it to the child list.
if attribute_tuple[j][1][i] != '':
child_tag = attribute_tuple[j][0]
# Check if the child is the attribute of the element.
if child_tag in PARENT_FORM:
qualifier = attribute_tuple[j][1][i]
# Else, the child is a normal child of the element.
else:
child_list.append(
PYUNTL_DISPATCH[attribute_tuple[j][0]](
content=attribute_tuple[j][1][i]
)
)
# Create the UNTL element.
if content != '' and qualifier != '':
untl_element = PYUNTL_DISPATCH[element_tag](content=content,
qualifier=qualifier)
elif content != '':
untl_element = PYUNTL_DISPATCH[element_tag](content=content)
elif qualifier != '':
untl_element = PYUNTL_DISPATCH[element_tag](qualifier=qualifier)
# This element only has children elements.
elif len(child_list) > 0:
untl_element = PYUNTL_DISPATCH[element_tag]()
# If the element has children, add them.
if len(child_list) > 0 and untl_element is not None:
for child in child_list:
untl_element.add_child(child)
# Add the UNTL element to the root element.
if untl_element is not None:
root_element.add_child(untl_element)
return root_element.create_element_dict() | python | def post2pydict(post, ignore_list):
"""Convert the UNTL posted data to a Python dictionary."""
root_element = PYUNTL_DISPATCH['metadata']()
untl_form_dict = {}
# Turn the posted data into usable data
# (otherwise the value lists get messed up).
form_post = dict(post.copy())
# Loop through all the field lists.
for key, value_list in form_post.items():
if key not in ignore_list:
# Split the key into the element_tag (ex. title)
# and element attribute (ex. qualifier, content).
(element_tag, element_attribute) = key.split('-', 1)
if element_tag not in untl_form_dict:
untl_form_dict[element_tag] = ()
# Add the value list to the dictionary.
untl_form_dict[element_tag] += (element_attribute, value_list),
for element_tag, attribute_tuple in untl_form_dict.items():
# Get the count of attributes/content in the element tuple.
attribute_count = len(attribute_tuple)
# Get the count of the first attribute's values.
value_count = len(attribute_tuple[0][1])
# Check to see that all attribute/content values align numerically.
for i in range(0, attribute_count):
if not len(attribute_tuple[i][1]) == value_count:
raise PyuntlException('Field values did not match up '
'numerically for %s' % (element_tag))
# Create a value loop to get all values from the tuple.
for i in range(0, value_count):
untl_element = None
content = ''
qualifier = ''
child_list = []
# Loop through the attributes.
# attribute_tuple[j][0] represents the attribute/content name.
# attribute_tuple[j][1][i] represents the
# current attribute/content value.
for j in range(0, attribute_count):
if attribute_tuple[j][0] == 'content':
content = unicode(attribute_tuple[j][1][i])
elif attribute_tuple[j][0] == 'qualifier':
qualifier = attribute_tuple[j][1][i]
# Create a child UNTL element from the data.
else:
# If the child has content, append it to the child list.
if attribute_tuple[j][1][i] != '':
child_tag = attribute_tuple[j][0]
# Check if the child is the attribute of the element.
if child_tag in PARENT_FORM:
qualifier = attribute_tuple[j][1][i]
# Else, the child is a normal child of the element.
else:
child_list.append(
PYUNTL_DISPATCH[attribute_tuple[j][0]](
content=attribute_tuple[j][1][i]
)
)
# Create the UNTL element.
if content != '' and qualifier != '':
untl_element = PYUNTL_DISPATCH[element_tag](content=content,
qualifier=qualifier)
elif content != '':
untl_element = PYUNTL_DISPATCH[element_tag](content=content)
elif qualifier != '':
untl_element = PYUNTL_DISPATCH[element_tag](qualifier=qualifier)
# This element only has children elements.
elif len(child_list) > 0:
untl_element = PYUNTL_DISPATCH[element_tag]()
# If the element has children, add them.
if len(child_list) > 0 and untl_element is not None:
for child in child_list:
untl_element.add_child(child)
# Add the UNTL element to the root element.
if untl_element is not None:
root_element.add_child(untl_element)
return root_element.create_element_dict() | [
"def",
"post2pydict",
"(",
"post",
",",
"ignore_list",
")",
":",
"root_element",
"=",
"PYUNTL_DISPATCH",
"[",
"'metadata'",
"]",
"(",
")",
"untl_form_dict",
"=",
"{",
"}",
"# Turn the posted data into usable data",
"# (otherwise the value lists get messed up).",
"form_post",
"=",
"dict",
"(",
"post",
".",
"copy",
"(",
")",
")",
"# Loop through all the field lists.",
"for",
"key",
",",
"value_list",
"in",
"form_post",
".",
"items",
"(",
")",
":",
"if",
"key",
"not",
"in",
"ignore_list",
":",
"# Split the key into the element_tag (ex. title)",
"# and element attribute (ex. qualifier, content).",
"(",
"element_tag",
",",
"element_attribute",
")",
"=",
"key",
".",
"split",
"(",
"'-'",
",",
"1",
")",
"if",
"element_tag",
"not",
"in",
"untl_form_dict",
":",
"untl_form_dict",
"[",
"element_tag",
"]",
"=",
"(",
")",
"# Add the value list to the dictionary.",
"untl_form_dict",
"[",
"element_tag",
"]",
"+=",
"(",
"element_attribute",
",",
"value_list",
")",
",",
"for",
"element_tag",
",",
"attribute_tuple",
"in",
"untl_form_dict",
".",
"items",
"(",
")",
":",
"# Get the count of attributes/content in the element tuple.",
"attribute_count",
"=",
"len",
"(",
"attribute_tuple",
")",
"# Get the count of the first attribute's values.",
"value_count",
"=",
"len",
"(",
"attribute_tuple",
"[",
"0",
"]",
"[",
"1",
"]",
")",
"# Check to see that all attribute/content values align numerically.",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"attribute_count",
")",
":",
"if",
"not",
"len",
"(",
"attribute_tuple",
"[",
"i",
"]",
"[",
"1",
"]",
")",
"==",
"value_count",
":",
"raise",
"PyuntlException",
"(",
"'Field values did not match up '",
"'numerically for %s'",
"%",
"(",
"element_tag",
")",
")",
"# Create a value loop to get all values from the tuple.",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"value_count",
")",
":",
"untl_element",
"=",
"None",
"content",
"=",
"''",
"qualifier",
"=",
"''",
"child_list",
"=",
"[",
"]",
"# Loop through the attributes.",
"# attribute_tuple[j][0] represents the attribute/content name.",
"# attribute_tuple[j][1][i] represents the",
"# current attribute/content value.",
"for",
"j",
"in",
"range",
"(",
"0",
",",
"attribute_count",
")",
":",
"if",
"attribute_tuple",
"[",
"j",
"]",
"[",
"0",
"]",
"==",
"'content'",
":",
"content",
"=",
"unicode",
"(",
"attribute_tuple",
"[",
"j",
"]",
"[",
"1",
"]",
"[",
"i",
"]",
")",
"elif",
"attribute_tuple",
"[",
"j",
"]",
"[",
"0",
"]",
"==",
"'qualifier'",
":",
"qualifier",
"=",
"attribute_tuple",
"[",
"j",
"]",
"[",
"1",
"]",
"[",
"i",
"]",
"# Create a child UNTL element from the data.",
"else",
":",
"# If the child has content, append it to the child list.",
"if",
"attribute_tuple",
"[",
"j",
"]",
"[",
"1",
"]",
"[",
"i",
"]",
"!=",
"''",
":",
"child_tag",
"=",
"attribute_tuple",
"[",
"j",
"]",
"[",
"0",
"]",
"# Check if the child is the attribute of the element.",
"if",
"child_tag",
"in",
"PARENT_FORM",
":",
"qualifier",
"=",
"attribute_tuple",
"[",
"j",
"]",
"[",
"1",
"]",
"[",
"i",
"]",
"# Else, the child is a normal child of the element.",
"else",
":",
"child_list",
".",
"append",
"(",
"PYUNTL_DISPATCH",
"[",
"attribute_tuple",
"[",
"j",
"]",
"[",
"0",
"]",
"]",
"(",
"content",
"=",
"attribute_tuple",
"[",
"j",
"]",
"[",
"1",
"]",
"[",
"i",
"]",
")",
")",
"# Create the UNTL element.",
"if",
"content",
"!=",
"''",
"and",
"qualifier",
"!=",
"''",
":",
"untl_element",
"=",
"PYUNTL_DISPATCH",
"[",
"element_tag",
"]",
"(",
"content",
"=",
"content",
",",
"qualifier",
"=",
"qualifier",
")",
"elif",
"content",
"!=",
"''",
":",
"untl_element",
"=",
"PYUNTL_DISPATCH",
"[",
"element_tag",
"]",
"(",
"content",
"=",
"content",
")",
"elif",
"qualifier",
"!=",
"''",
":",
"untl_element",
"=",
"PYUNTL_DISPATCH",
"[",
"element_tag",
"]",
"(",
"qualifier",
"=",
"qualifier",
")",
"# This element only has children elements.",
"elif",
"len",
"(",
"child_list",
")",
">",
"0",
":",
"untl_element",
"=",
"PYUNTL_DISPATCH",
"[",
"element_tag",
"]",
"(",
")",
"# If the element has children, add them.",
"if",
"len",
"(",
"child_list",
")",
">",
"0",
"and",
"untl_element",
"is",
"not",
"None",
":",
"for",
"child",
"in",
"child_list",
":",
"untl_element",
".",
"add_child",
"(",
"child",
")",
"# Add the UNTL element to the root element.",
"if",
"untl_element",
"is",
"not",
"None",
":",
"root_element",
".",
"add_child",
"(",
"untl_element",
")",
"return",
"root_element",
".",
"create_element_dict",
"(",
")"
]
| Convert the UNTL posted data to a Python dictionary. | [
"Convert",
"the",
"UNTL",
"posted",
"data",
"to",
"a",
"Python",
"dictionary",
"."
]
| f92413302897dab948aac18ee9e482ace0187bd4 | https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untldoc.py#L175-L251 | train |
unt-libraries/pyuntl | pyuntl/untldoc.py | untlpy2dcpy | def untlpy2dcpy(untl_elements, **kwargs):
"""Convert the UNTL elements structure into a DC structure.
kwargs can be passed to the function for certain effects:
ark: Takes an ark string and creates an identifier element out of it.
domain_name: Takes a domain string and creates an ark URL from it
(ark and domain_name must be passed together to work properly).
resolve_values: Converts abbreviated content into resolved vocabulary
labels.
resolve_urls: Converts abbreviated content into resolved vocabulary
URLs.
verbose_vocabularies: Uses the verbose vocabularies passed to the
function instead of this function being required to retrieve them.
# Create a DC Python object from a UNTL XML file.
from pyuntl.untldoc import untlxml2py
untl_elements = untlxml2py(untl_filename) # Or pass a file-like object.
# OR Create a DC Python object from a UNTL dictionary.
from pyuntl.untldoc import untldict2py
untl_elements = untldict2py(untl_dict)
# Convert to UNTL Python object to DC Python object.
dc_elements = untlpy2dcpy(untl_elements)
dc_dict = dcpy2dict(dc_elements)
# Output DC in a specified string format.
from pyuntl.untldoc
import generate_dc_xml, generate_dc_json, generate_dc_txt
# Create a DC XML string.
generate_dc_xml(dc_dict)
# Create a DC JSON string.
generate_dc_json(dc_dict)
# Create a DC text string.
generate_dc_txt(dc_dict)
"""
sDate = None
eDate = None
ark = kwargs.get('ark', None)
domain_name = kwargs.get('domain_name', None)
scheme = kwargs.get('scheme', 'http')
resolve_values = kwargs.get('resolve_values', None)
resolve_urls = kwargs.get('resolve_urls', None)
verbose_vocabularies = kwargs.get('verbose_vocabularies', None)
# If either resolvers were requested, get the vocabulary data.
if resolve_values or resolve_urls:
if verbose_vocabularies:
# If the vocabularies were passed to the function, use them.
vocab_data = verbose_vocabularies
else:
# Otherwise, retrieve them using the pyuntl method.
vocab_data = retrieve_vocab()
else:
vocab_data = None
# Create the DC parent element.
dc_root = DC_CONVERSION_DISPATCH['dc']()
for element in untl_elements.children:
# Check if the UNTL element should be converted to DC.
if element.tag in DC_CONVERSION_DISPATCH:
# Check if the element has its content stored in children nodes.
if element.children:
dc_element = DC_CONVERSION_DISPATCH[element.tag](
qualifier=element.qualifier,
children=element.children,
resolve_values=resolve_values,
resolve_urls=resolve_urls,
vocab_data=vocab_data,
)
# It is a normal element.
else:
dc_element = DC_CONVERSION_DISPATCH[element.tag](
qualifier=element.qualifier,
content=element.content,
resolve_values=resolve_values,
resolve_urls=resolve_urls,
vocab_data=vocab_data,
)
if element.tag == 'coverage':
# Handle start and end dates.
if element.qualifier == 'sDate':
sDate = dc_element
elif element.qualifier == 'eDate':
eDate = dc_element
# Otherwise, add the coverage element to the structure.
else:
dc_root.add_child(dc_element)
# Add non coverage DC element to the structure.
elif dc_element:
dc_root.add_child(dc_element)
# If the domain and ark were specified
# try to turn them into indentifier elements.
if ark and domain_name:
# Create and add the permalink identifier.
permalink_identifier = DC_CONVERSION_DISPATCH['identifier'](
qualifier='permalink',
domain_name=domain_name,
ark=ark,
scheme=scheme
)
dc_root.add_child(permalink_identifier)
# Create and add the ark identifier.
ark_identifier = DC_CONVERSION_DISPATCH['identifier'](
qualifier='ark',
content=ark,
)
dc_root.add_child(ark_identifier)
if sDate and eDate:
# If a start and end date exist, combine them into one element.
dc_element = DC_CONVERSION_DISPATCH['coverage'](
content='%s-%s' % (sDate.content, eDate.content),
)
dc_root.add_child(dc_element)
elif sDate:
dc_root.add_child(sDate)
elif eDate:
dc_root.add_child(eDate)
return dc_root | python | def untlpy2dcpy(untl_elements, **kwargs):
"""Convert the UNTL elements structure into a DC structure.
kwargs can be passed to the function for certain effects:
ark: Takes an ark string and creates an identifier element out of it.
domain_name: Takes a domain string and creates an ark URL from it
(ark and domain_name must be passed together to work properly).
resolve_values: Converts abbreviated content into resolved vocabulary
labels.
resolve_urls: Converts abbreviated content into resolved vocabulary
URLs.
verbose_vocabularies: Uses the verbose vocabularies passed to the
function instead of this function being required to retrieve them.
# Create a DC Python object from a UNTL XML file.
from pyuntl.untldoc import untlxml2py
untl_elements = untlxml2py(untl_filename) # Or pass a file-like object.
# OR Create a DC Python object from a UNTL dictionary.
from pyuntl.untldoc import untldict2py
untl_elements = untldict2py(untl_dict)
# Convert to UNTL Python object to DC Python object.
dc_elements = untlpy2dcpy(untl_elements)
dc_dict = dcpy2dict(dc_elements)
# Output DC in a specified string format.
from pyuntl.untldoc
import generate_dc_xml, generate_dc_json, generate_dc_txt
# Create a DC XML string.
generate_dc_xml(dc_dict)
# Create a DC JSON string.
generate_dc_json(dc_dict)
# Create a DC text string.
generate_dc_txt(dc_dict)
"""
sDate = None
eDate = None
ark = kwargs.get('ark', None)
domain_name = kwargs.get('domain_name', None)
scheme = kwargs.get('scheme', 'http')
resolve_values = kwargs.get('resolve_values', None)
resolve_urls = kwargs.get('resolve_urls', None)
verbose_vocabularies = kwargs.get('verbose_vocabularies', None)
# If either resolvers were requested, get the vocabulary data.
if resolve_values or resolve_urls:
if verbose_vocabularies:
# If the vocabularies were passed to the function, use them.
vocab_data = verbose_vocabularies
else:
# Otherwise, retrieve them using the pyuntl method.
vocab_data = retrieve_vocab()
else:
vocab_data = None
# Create the DC parent element.
dc_root = DC_CONVERSION_DISPATCH['dc']()
for element in untl_elements.children:
# Check if the UNTL element should be converted to DC.
if element.tag in DC_CONVERSION_DISPATCH:
# Check if the element has its content stored in children nodes.
if element.children:
dc_element = DC_CONVERSION_DISPATCH[element.tag](
qualifier=element.qualifier,
children=element.children,
resolve_values=resolve_values,
resolve_urls=resolve_urls,
vocab_data=vocab_data,
)
# It is a normal element.
else:
dc_element = DC_CONVERSION_DISPATCH[element.tag](
qualifier=element.qualifier,
content=element.content,
resolve_values=resolve_values,
resolve_urls=resolve_urls,
vocab_data=vocab_data,
)
if element.tag == 'coverage':
# Handle start and end dates.
if element.qualifier == 'sDate':
sDate = dc_element
elif element.qualifier == 'eDate':
eDate = dc_element
# Otherwise, add the coverage element to the structure.
else:
dc_root.add_child(dc_element)
# Add non coverage DC element to the structure.
elif dc_element:
dc_root.add_child(dc_element)
# If the domain and ark were specified
# try to turn them into indentifier elements.
if ark and domain_name:
# Create and add the permalink identifier.
permalink_identifier = DC_CONVERSION_DISPATCH['identifier'](
qualifier='permalink',
domain_name=domain_name,
ark=ark,
scheme=scheme
)
dc_root.add_child(permalink_identifier)
# Create and add the ark identifier.
ark_identifier = DC_CONVERSION_DISPATCH['identifier'](
qualifier='ark',
content=ark,
)
dc_root.add_child(ark_identifier)
if sDate and eDate:
# If a start and end date exist, combine them into one element.
dc_element = DC_CONVERSION_DISPATCH['coverage'](
content='%s-%s' % (sDate.content, eDate.content),
)
dc_root.add_child(dc_element)
elif sDate:
dc_root.add_child(sDate)
elif eDate:
dc_root.add_child(eDate)
return dc_root | [
"def",
"untlpy2dcpy",
"(",
"untl_elements",
",",
"*",
"*",
"kwargs",
")",
":",
"sDate",
"=",
"None",
"eDate",
"=",
"None",
"ark",
"=",
"kwargs",
".",
"get",
"(",
"'ark'",
",",
"None",
")",
"domain_name",
"=",
"kwargs",
".",
"get",
"(",
"'domain_name'",
",",
"None",
")",
"scheme",
"=",
"kwargs",
".",
"get",
"(",
"'scheme'",
",",
"'http'",
")",
"resolve_values",
"=",
"kwargs",
".",
"get",
"(",
"'resolve_values'",
",",
"None",
")",
"resolve_urls",
"=",
"kwargs",
".",
"get",
"(",
"'resolve_urls'",
",",
"None",
")",
"verbose_vocabularies",
"=",
"kwargs",
".",
"get",
"(",
"'verbose_vocabularies'",
",",
"None",
")",
"# If either resolvers were requested, get the vocabulary data.",
"if",
"resolve_values",
"or",
"resolve_urls",
":",
"if",
"verbose_vocabularies",
":",
"# If the vocabularies were passed to the function, use them.",
"vocab_data",
"=",
"verbose_vocabularies",
"else",
":",
"# Otherwise, retrieve them using the pyuntl method.",
"vocab_data",
"=",
"retrieve_vocab",
"(",
")",
"else",
":",
"vocab_data",
"=",
"None",
"# Create the DC parent element.",
"dc_root",
"=",
"DC_CONVERSION_DISPATCH",
"[",
"'dc'",
"]",
"(",
")",
"for",
"element",
"in",
"untl_elements",
".",
"children",
":",
"# Check if the UNTL element should be converted to DC.",
"if",
"element",
".",
"tag",
"in",
"DC_CONVERSION_DISPATCH",
":",
"# Check if the element has its content stored in children nodes.",
"if",
"element",
".",
"children",
":",
"dc_element",
"=",
"DC_CONVERSION_DISPATCH",
"[",
"element",
".",
"tag",
"]",
"(",
"qualifier",
"=",
"element",
".",
"qualifier",
",",
"children",
"=",
"element",
".",
"children",
",",
"resolve_values",
"=",
"resolve_values",
",",
"resolve_urls",
"=",
"resolve_urls",
",",
"vocab_data",
"=",
"vocab_data",
",",
")",
"# It is a normal element.",
"else",
":",
"dc_element",
"=",
"DC_CONVERSION_DISPATCH",
"[",
"element",
".",
"tag",
"]",
"(",
"qualifier",
"=",
"element",
".",
"qualifier",
",",
"content",
"=",
"element",
".",
"content",
",",
"resolve_values",
"=",
"resolve_values",
",",
"resolve_urls",
"=",
"resolve_urls",
",",
"vocab_data",
"=",
"vocab_data",
",",
")",
"if",
"element",
".",
"tag",
"==",
"'coverage'",
":",
"# Handle start and end dates.",
"if",
"element",
".",
"qualifier",
"==",
"'sDate'",
":",
"sDate",
"=",
"dc_element",
"elif",
"element",
".",
"qualifier",
"==",
"'eDate'",
":",
"eDate",
"=",
"dc_element",
"# Otherwise, add the coverage element to the structure.",
"else",
":",
"dc_root",
".",
"add_child",
"(",
"dc_element",
")",
"# Add non coverage DC element to the structure.",
"elif",
"dc_element",
":",
"dc_root",
".",
"add_child",
"(",
"dc_element",
")",
"# If the domain and ark were specified",
"# try to turn them into indentifier elements.",
"if",
"ark",
"and",
"domain_name",
":",
"# Create and add the permalink identifier.",
"permalink_identifier",
"=",
"DC_CONVERSION_DISPATCH",
"[",
"'identifier'",
"]",
"(",
"qualifier",
"=",
"'permalink'",
",",
"domain_name",
"=",
"domain_name",
",",
"ark",
"=",
"ark",
",",
"scheme",
"=",
"scheme",
")",
"dc_root",
".",
"add_child",
"(",
"permalink_identifier",
")",
"# Create and add the ark identifier.",
"ark_identifier",
"=",
"DC_CONVERSION_DISPATCH",
"[",
"'identifier'",
"]",
"(",
"qualifier",
"=",
"'ark'",
",",
"content",
"=",
"ark",
",",
")",
"dc_root",
".",
"add_child",
"(",
"ark_identifier",
")",
"if",
"sDate",
"and",
"eDate",
":",
"# If a start and end date exist, combine them into one element.",
"dc_element",
"=",
"DC_CONVERSION_DISPATCH",
"[",
"'coverage'",
"]",
"(",
"content",
"=",
"'%s-%s'",
"%",
"(",
"sDate",
".",
"content",
",",
"eDate",
".",
"content",
")",
",",
")",
"dc_root",
".",
"add_child",
"(",
"dc_element",
")",
"elif",
"sDate",
":",
"dc_root",
".",
"add_child",
"(",
"sDate",
")",
"elif",
"eDate",
":",
"dc_root",
".",
"add_child",
"(",
"eDate",
")",
"return",
"dc_root"
]
| Convert the UNTL elements structure into a DC structure.
kwargs can be passed to the function for certain effects:
ark: Takes an ark string and creates an identifier element out of it.
domain_name: Takes a domain string and creates an ark URL from it
(ark and domain_name must be passed together to work properly).
resolve_values: Converts abbreviated content into resolved vocabulary
labels.
resolve_urls: Converts abbreviated content into resolved vocabulary
URLs.
verbose_vocabularies: Uses the verbose vocabularies passed to the
function instead of this function being required to retrieve them.
# Create a DC Python object from a UNTL XML file.
from pyuntl.untldoc import untlxml2py
untl_elements = untlxml2py(untl_filename) # Or pass a file-like object.
# OR Create a DC Python object from a UNTL dictionary.
from pyuntl.untldoc import untldict2py
untl_elements = untldict2py(untl_dict)
# Convert to UNTL Python object to DC Python object.
dc_elements = untlpy2dcpy(untl_elements)
dc_dict = dcpy2dict(dc_elements)
# Output DC in a specified string format.
from pyuntl.untldoc
import generate_dc_xml, generate_dc_json, generate_dc_txt
# Create a DC XML string.
generate_dc_xml(dc_dict)
# Create a DC JSON string.
generate_dc_json(dc_dict)
# Create a DC text string.
generate_dc_txt(dc_dict) | [
"Convert",
"the",
"UNTL",
"elements",
"structure",
"into",
"a",
"DC",
"structure",
"."
]
| f92413302897dab948aac18ee9e482ace0187bd4 | https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untldoc.py#L254-L372 | train |
unt-libraries/pyuntl | pyuntl/untldoc.py | untlpy2highwirepy | def untlpy2highwirepy(untl_elements, **kwargs):
"""Convert a UNTL Python object to a highwire Python object."""
highwire_list = []
title = None
publisher = None
creation = None
escape = kwargs.get('escape', False)
for element in untl_elements.children:
# If the UNTL element should be converted to highwire,
# create highwire element.
if element.tag in HIGHWIRE_CONVERSION_DISPATCH:
highwire_element = HIGHWIRE_CONVERSION_DISPATCH[element.tag](
qualifier=element.qualifier,
content=element.content,
children=element.children,
escape=escape,
)
if highwire_element:
if element.tag == 'title':
if element.qualifier != 'officialtitle' and not title:
title = highwire_element
elif element.qualifier == 'officialtitle':
title = highwire_element
elif element.tag == 'publisher':
if not publisher:
# This is the first publisher element.
publisher = highwire_element
highwire_list.append(publisher)
elif element.tag == 'date':
# If a creation date hasn't been found yet,
# verify this date is acceptable.
if not creation and element.qualifier == 'creation':
if highwire_element.content:
creation = highwire_element
if creation:
highwire_list.append(creation)
# Otherwise, add the element to the list if it has content.
elif highwire_element.content:
highwire_list.append(highwire_element)
# If the title was found, add it to the list.
if title:
highwire_list.append(title)
return highwire_list | python | def untlpy2highwirepy(untl_elements, **kwargs):
"""Convert a UNTL Python object to a highwire Python object."""
highwire_list = []
title = None
publisher = None
creation = None
escape = kwargs.get('escape', False)
for element in untl_elements.children:
# If the UNTL element should be converted to highwire,
# create highwire element.
if element.tag in HIGHWIRE_CONVERSION_DISPATCH:
highwire_element = HIGHWIRE_CONVERSION_DISPATCH[element.tag](
qualifier=element.qualifier,
content=element.content,
children=element.children,
escape=escape,
)
if highwire_element:
if element.tag == 'title':
if element.qualifier != 'officialtitle' and not title:
title = highwire_element
elif element.qualifier == 'officialtitle':
title = highwire_element
elif element.tag == 'publisher':
if not publisher:
# This is the first publisher element.
publisher = highwire_element
highwire_list.append(publisher)
elif element.tag == 'date':
# If a creation date hasn't been found yet,
# verify this date is acceptable.
if not creation and element.qualifier == 'creation':
if highwire_element.content:
creation = highwire_element
if creation:
highwire_list.append(creation)
# Otherwise, add the element to the list if it has content.
elif highwire_element.content:
highwire_list.append(highwire_element)
# If the title was found, add it to the list.
if title:
highwire_list.append(title)
return highwire_list | [
"def",
"untlpy2highwirepy",
"(",
"untl_elements",
",",
"*",
"*",
"kwargs",
")",
":",
"highwire_list",
"=",
"[",
"]",
"title",
"=",
"None",
"publisher",
"=",
"None",
"creation",
"=",
"None",
"escape",
"=",
"kwargs",
".",
"get",
"(",
"'escape'",
",",
"False",
")",
"for",
"element",
"in",
"untl_elements",
".",
"children",
":",
"# If the UNTL element should be converted to highwire,",
"# create highwire element.",
"if",
"element",
".",
"tag",
"in",
"HIGHWIRE_CONVERSION_DISPATCH",
":",
"highwire_element",
"=",
"HIGHWIRE_CONVERSION_DISPATCH",
"[",
"element",
".",
"tag",
"]",
"(",
"qualifier",
"=",
"element",
".",
"qualifier",
",",
"content",
"=",
"element",
".",
"content",
",",
"children",
"=",
"element",
".",
"children",
",",
"escape",
"=",
"escape",
",",
")",
"if",
"highwire_element",
":",
"if",
"element",
".",
"tag",
"==",
"'title'",
":",
"if",
"element",
".",
"qualifier",
"!=",
"'officialtitle'",
"and",
"not",
"title",
":",
"title",
"=",
"highwire_element",
"elif",
"element",
".",
"qualifier",
"==",
"'officialtitle'",
":",
"title",
"=",
"highwire_element",
"elif",
"element",
".",
"tag",
"==",
"'publisher'",
":",
"if",
"not",
"publisher",
":",
"# This is the first publisher element.",
"publisher",
"=",
"highwire_element",
"highwire_list",
".",
"append",
"(",
"publisher",
")",
"elif",
"element",
".",
"tag",
"==",
"'date'",
":",
"# If a creation date hasn't been found yet,",
"# verify this date is acceptable.",
"if",
"not",
"creation",
"and",
"element",
".",
"qualifier",
"==",
"'creation'",
":",
"if",
"highwire_element",
".",
"content",
":",
"creation",
"=",
"highwire_element",
"if",
"creation",
":",
"highwire_list",
".",
"append",
"(",
"creation",
")",
"# Otherwise, add the element to the list if it has content.",
"elif",
"highwire_element",
".",
"content",
":",
"highwire_list",
".",
"append",
"(",
"highwire_element",
")",
"# If the title was found, add it to the list.",
"if",
"title",
":",
"highwire_list",
".",
"append",
"(",
"title",
")",
"return",
"highwire_list"
]
| Convert a UNTL Python object to a highwire Python object. | [
"Convert",
"a",
"UNTL",
"Python",
"object",
"to",
"a",
"highwire",
"Python",
"object",
"."
]
| f92413302897dab948aac18ee9e482ace0187bd4 | https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untldoc.py#L375-L417 | train |
unt-libraries/pyuntl | pyuntl/untldoc.py | untlpydict2dcformatteddict | def untlpydict2dcformatteddict(untl_dict, **kwargs):
"""Convert a UNTL data dictionary to a formatted DC data dictionary."""
ark = kwargs.get('ark', None)
domain_name = kwargs.get('domain_name', None)
scheme = kwargs.get('scheme', 'http')
resolve_values = kwargs.get('resolve_values', None)
resolve_urls = kwargs.get('resolve_urls', None)
verbose_vocabularies = kwargs.get('verbose_vocabularies', None)
# Get the UNTL object.
untl_py = untldict2py(untl_dict)
# Convert it to a DC object.
dc_py = untlpy2dcpy(
untl_py,
ark=ark,
domain_name=domain_name,
resolve_values=resolve_values,
resolve_urls=resolve_urls,
verbose_vocabularies=verbose_vocabularies,
scheme=scheme
)
# Return a formatted DC dictionary.
return dcpy2formatteddcdict(dc_py) | python | def untlpydict2dcformatteddict(untl_dict, **kwargs):
"""Convert a UNTL data dictionary to a formatted DC data dictionary."""
ark = kwargs.get('ark', None)
domain_name = kwargs.get('domain_name', None)
scheme = kwargs.get('scheme', 'http')
resolve_values = kwargs.get('resolve_values', None)
resolve_urls = kwargs.get('resolve_urls', None)
verbose_vocabularies = kwargs.get('verbose_vocabularies', None)
# Get the UNTL object.
untl_py = untldict2py(untl_dict)
# Convert it to a DC object.
dc_py = untlpy2dcpy(
untl_py,
ark=ark,
domain_name=domain_name,
resolve_values=resolve_values,
resolve_urls=resolve_urls,
verbose_vocabularies=verbose_vocabularies,
scheme=scheme
)
# Return a formatted DC dictionary.
return dcpy2formatteddcdict(dc_py) | [
"def",
"untlpydict2dcformatteddict",
"(",
"untl_dict",
",",
"*",
"*",
"kwargs",
")",
":",
"ark",
"=",
"kwargs",
".",
"get",
"(",
"'ark'",
",",
"None",
")",
"domain_name",
"=",
"kwargs",
".",
"get",
"(",
"'domain_name'",
",",
"None",
")",
"scheme",
"=",
"kwargs",
".",
"get",
"(",
"'scheme'",
",",
"'http'",
")",
"resolve_values",
"=",
"kwargs",
".",
"get",
"(",
"'resolve_values'",
",",
"None",
")",
"resolve_urls",
"=",
"kwargs",
".",
"get",
"(",
"'resolve_urls'",
",",
"None",
")",
"verbose_vocabularies",
"=",
"kwargs",
".",
"get",
"(",
"'verbose_vocabularies'",
",",
"None",
")",
"# Get the UNTL object.",
"untl_py",
"=",
"untldict2py",
"(",
"untl_dict",
")",
"# Convert it to a DC object.",
"dc_py",
"=",
"untlpy2dcpy",
"(",
"untl_py",
",",
"ark",
"=",
"ark",
",",
"domain_name",
"=",
"domain_name",
",",
"resolve_values",
"=",
"resolve_values",
",",
"resolve_urls",
"=",
"resolve_urls",
",",
"verbose_vocabularies",
"=",
"verbose_vocabularies",
",",
"scheme",
"=",
"scheme",
")",
"# Return a formatted DC dictionary.",
"return",
"dcpy2formatteddcdict",
"(",
"dc_py",
")"
]
| Convert a UNTL data dictionary to a formatted DC data dictionary. | [
"Convert",
"a",
"UNTL",
"data",
"dictionary",
"to",
"a",
"formatted",
"DC",
"data",
"dictionary",
"."
]
| f92413302897dab948aac18ee9e482ace0187bd4 | https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untldoc.py#L420-L441 | train |
unt-libraries/pyuntl | pyuntl/untldoc.py | formatted_dc_dict | def formatted_dc_dict(dc_dict):
"""Change the formatting of the DC data dictionary.
Change the passed in DC data dictionary into a dictionary
with a list of values for each element.
i.e. {'publisher': ['someone', 'someone else'], 'title': ['a title'],}
"""
for key, element_list in dc_dict.items():
new_element_list = []
# Add the content for each element to the new element list.
for element in element_list:
new_element_list.append(element['content'])
dc_dict[key] = new_element_list
return dc_dict | python | def formatted_dc_dict(dc_dict):
"""Change the formatting of the DC data dictionary.
Change the passed in DC data dictionary into a dictionary
with a list of values for each element.
i.e. {'publisher': ['someone', 'someone else'], 'title': ['a title'],}
"""
for key, element_list in dc_dict.items():
new_element_list = []
# Add the content for each element to the new element list.
for element in element_list:
new_element_list.append(element['content'])
dc_dict[key] = new_element_list
return dc_dict | [
"def",
"formatted_dc_dict",
"(",
"dc_dict",
")",
":",
"for",
"key",
",",
"element_list",
"in",
"dc_dict",
".",
"items",
"(",
")",
":",
"new_element_list",
"=",
"[",
"]",
"# Add the content for each element to the new element list.",
"for",
"element",
"in",
"element_list",
":",
"new_element_list",
".",
"append",
"(",
"element",
"[",
"'content'",
"]",
")",
"dc_dict",
"[",
"key",
"]",
"=",
"new_element_list",
"return",
"dc_dict"
]
| Change the formatting of the DC data dictionary.
Change the passed in DC data dictionary into a dictionary
with a list of values for each element.
i.e. {'publisher': ['someone', 'someone else'], 'title': ['a title'],} | [
"Change",
"the",
"formatting",
"of",
"the",
"DC",
"data",
"dictionary",
"."
]
| f92413302897dab948aac18ee9e482ace0187bd4 | https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untldoc.py#L457-L470 | train |
unt-libraries/pyuntl | pyuntl/untldoc.py | generate_dc_xml | def generate_dc_xml(dc_dict):
"""Generate a DC XML string."""
# Define the root namespace.
root_namespace = '{%s}' % DC_NAMESPACES['oai_dc']
# Set the elements namespace URL.
elements_namespace = '{%s}' % DC_NAMESPACES['dc']
schema_location = ('http://www.openarchives.org/OAI/2.0/oai_dc/ '
'http://www.openarchives.org/OAI/2.0/oai_dc.xsd')
root_attributes = {
'{%s}schemaLocation' % XSI: schema_location,
}
# Return the DC XML string.
return pydict2xmlstring(
dc_dict,
ordering=DC_ORDER,
root_label='dc',
root_namespace=root_namespace,
elements_namespace=elements_namespace,
namespace_map=DC_NAMESPACES,
root_attributes=root_attributes,
) | python | def generate_dc_xml(dc_dict):
"""Generate a DC XML string."""
# Define the root namespace.
root_namespace = '{%s}' % DC_NAMESPACES['oai_dc']
# Set the elements namespace URL.
elements_namespace = '{%s}' % DC_NAMESPACES['dc']
schema_location = ('http://www.openarchives.org/OAI/2.0/oai_dc/ '
'http://www.openarchives.org/OAI/2.0/oai_dc.xsd')
root_attributes = {
'{%s}schemaLocation' % XSI: schema_location,
}
# Return the DC XML string.
return pydict2xmlstring(
dc_dict,
ordering=DC_ORDER,
root_label='dc',
root_namespace=root_namespace,
elements_namespace=elements_namespace,
namespace_map=DC_NAMESPACES,
root_attributes=root_attributes,
) | [
"def",
"generate_dc_xml",
"(",
"dc_dict",
")",
":",
"# Define the root namespace.",
"root_namespace",
"=",
"'{%s}'",
"%",
"DC_NAMESPACES",
"[",
"'oai_dc'",
"]",
"# Set the elements namespace URL.",
"elements_namespace",
"=",
"'{%s}'",
"%",
"DC_NAMESPACES",
"[",
"'dc'",
"]",
"schema_location",
"=",
"(",
"'http://www.openarchives.org/OAI/2.0/oai_dc/ '",
"'http://www.openarchives.org/OAI/2.0/oai_dc.xsd'",
")",
"root_attributes",
"=",
"{",
"'{%s}schemaLocation'",
"%",
"XSI",
":",
"schema_location",
",",
"}",
"# Return the DC XML string.",
"return",
"pydict2xmlstring",
"(",
"dc_dict",
",",
"ordering",
"=",
"DC_ORDER",
",",
"root_label",
"=",
"'dc'",
",",
"root_namespace",
"=",
"root_namespace",
",",
"elements_namespace",
"=",
"elements_namespace",
",",
"namespace_map",
"=",
"DC_NAMESPACES",
",",
"root_attributes",
"=",
"root_attributes",
",",
")"
]
| Generate a DC XML string. | [
"Generate",
"a",
"DC",
"XML",
"string",
"."
]
| f92413302897dab948aac18ee9e482ace0187bd4 | https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untldoc.py#L473-L493 | train |
unt-libraries/pyuntl | pyuntl/untldoc.py | generate_dc_json | def generate_dc_json(dc_dict):
"""Generate DC JSON data.
Returns data as a JSON formatted string.
"""
formatted_dict = formatted_dc_dict(dc_dict)
return json.dumps(formatted_dict, sort_keys=True, indent=4) | python | def generate_dc_json(dc_dict):
"""Generate DC JSON data.
Returns data as a JSON formatted string.
"""
formatted_dict = formatted_dc_dict(dc_dict)
return json.dumps(formatted_dict, sort_keys=True, indent=4) | [
"def",
"generate_dc_json",
"(",
"dc_dict",
")",
":",
"formatted_dict",
"=",
"formatted_dc_dict",
"(",
"dc_dict",
")",
"return",
"json",
".",
"dumps",
"(",
"formatted_dict",
",",
"sort_keys",
"=",
"True",
",",
"indent",
"=",
"4",
")"
]
| Generate DC JSON data.
Returns data as a JSON formatted string. | [
"Generate",
"DC",
"JSON",
"data",
"."
]
| f92413302897dab948aac18ee9e482ace0187bd4 | https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untldoc.py#L496-L502 | train |
unt-libraries/pyuntl | pyuntl/untldoc.py | highwirepy2dict | def highwirepy2dict(highwire_elements):
"""Convert a list of highwire elements into a dictionary.
The dictionary returned contains the elements in the
UNTL dict format.
"""
highwire_dict = {}
# Make a list of content dictionaries for each element name.
for element in highwire_elements:
if element.name not in highwire_dict:
highwire_dict[element.name] = []
highwire_dict[element.name].append({'content': element.content})
return highwire_dict | python | def highwirepy2dict(highwire_elements):
"""Convert a list of highwire elements into a dictionary.
The dictionary returned contains the elements in the
UNTL dict format.
"""
highwire_dict = {}
# Make a list of content dictionaries for each element name.
for element in highwire_elements:
if element.name not in highwire_dict:
highwire_dict[element.name] = []
highwire_dict[element.name].append({'content': element.content})
return highwire_dict | [
"def",
"highwirepy2dict",
"(",
"highwire_elements",
")",
":",
"highwire_dict",
"=",
"{",
"}",
"# Make a list of content dictionaries for each element name.",
"for",
"element",
"in",
"highwire_elements",
":",
"if",
"element",
".",
"name",
"not",
"in",
"highwire_dict",
":",
"highwire_dict",
"[",
"element",
".",
"name",
"]",
"=",
"[",
"]",
"highwire_dict",
"[",
"element",
".",
"name",
"]",
".",
"append",
"(",
"{",
"'content'",
":",
"element",
".",
"content",
"}",
")",
"return",
"highwire_dict"
]
| Convert a list of highwire elements into a dictionary.
The dictionary returned contains the elements in the
UNTL dict format. | [
"Convert",
"a",
"list",
"of",
"highwire",
"elements",
"into",
"a",
"dictionary",
"."
]
| f92413302897dab948aac18ee9e482ace0187bd4 | https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untldoc.py#L510-L522 | train |
unt-libraries/pyuntl | pyuntl/untldoc.py | generate_highwire_json | def generate_highwire_json(highwire_elements):
"""Convert highwire elements into a JSON structure.
Returns data as a JSON formatted string.
"""
highwire_dict = highwirepy2dict(highwire_elements)
return json.dumps(highwire_dict, sort_keys=True, indent=4) | python | def generate_highwire_json(highwire_elements):
"""Convert highwire elements into a JSON structure.
Returns data as a JSON formatted string.
"""
highwire_dict = highwirepy2dict(highwire_elements)
return json.dumps(highwire_dict, sort_keys=True, indent=4) | [
"def",
"generate_highwire_json",
"(",
"highwire_elements",
")",
":",
"highwire_dict",
"=",
"highwirepy2dict",
"(",
"highwire_elements",
")",
"return",
"json",
".",
"dumps",
"(",
"highwire_dict",
",",
"sort_keys",
"=",
"True",
",",
"indent",
"=",
"4",
")"
]
| Convert highwire elements into a JSON structure.
Returns data as a JSON formatted string. | [
"Convert",
"highwire",
"elements",
"into",
"a",
"JSON",
"structure",
"."
]
| f92413302897dab948aac18ee9e482ace0187bd4 | https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untldoc.py#L530-L536 | train |
unt-libraries/pyuntl | pyuntl/untldoc.py | dcdict2rdfpy | def dcdict2rdfpy(dc_dict):
"""Convert a DC dictionary into an RDF Python object."""
ark_prefix = 'ark: ark:'
uri = URIRef('')
# Create the RDF Python object.
rdf_py = ConjunctiveGraph()
# Set DC namespace definition.
DC = Namespace('http://purl.org/dc/elements/1.1/')
# Get the ark for the subject URI from the ark identifier.
for element_value in dc_dict['identifier']:
if element_value['content'].startswith(ark_prefix):
uri = URIRef(
element_value['content'].replace(
ark_prefix, 'info:ark'
)
)
# Bind the prefix/namespace pair.
rdf_py.bind('dc', DC)
# Get the values for each element in the ordered DC elements.
for element_name in DC_ORDER:
element_value_list = dc_dict.get(element_name, [])
# Add the values to the RDF object.
for element_value in element_value_list:
# Handle URL values differently.
if ('http' in element_value['content'] and ' ' not in element_value['content']):
rdf_py.add((
uri,
DC[element_name],
URIRef(element_value['content'])
))
else:
rdf_py.add((
uri,
DC[element_name],
Literal(element_value['content'])
))
return rdf_py | python | def dcdict2rdfpy(dc_dict):
"""Convert a DC dictionary into an RDF Python object."""
ark_prefix = 'ark: ark:'
uri = URIRef('')
# Create the RDF Python object.
rdf_py = ConjunctiveGraph()
# Set DC namespace definition.
DC = Namespace('http://purl.org/dc/elements/1.1/')
# Get the ark for the subject URI from the ark identifier.
for element_value in dc_dict['identifier']:
if element_value['content'].startswith(ark_prefix):
uri = URIRef(
element_value['content'].replace(
ark_prefix, 'info:ark'
)
)
# Bind the prefix/namespace pair.
rdf_py.bind('dc', DC)
# Get the values for each element in the ordered DC elements.
for element_name in DC_ORDER:
element_value_list = dc_dict.get(element_name, [])
# Add the values to the RDF object.
for element_value in element_value_list:
# Handle URL values differently.
if ('http' in element_value['content'] and ' ' not in element_value['content']):
rdf_py.add((
uri,
DC[element_name],
URIRef(element_value['content'])
))
else:
rdf_py.add((
uri,
DC[element_name],
Literal(element_value['content'])
))
return rdf_py | [
"def",
"dcdict2rdfpy",
"(",
"dc_dict",
")",
":",
"ark_prefix",
"=",
"'ark: ark:'",
"uri",
"=",
"URIRef",
"(",
"''",
")",
"# Create the RDF Python object.",
"rdf_py",
"=",
"ConjunctiveGraph",
"(",
")",
"# Set DC namespace definition.",
"DC",
"=",
"Namespace",
"(",
"'http://purl.org/dc/elements/1.1/'",
")",
"# Get the ark for the subject URI from the ark identifier.",
"for",
"element_value",
"in",
"dc_dict",
"[",
"'identifier'",
"]",
":",
"if",
"element_value",
"[",
"'content'",
"]",
".",
"startswith",
"(",
"ark_prefix",
")",
":",
"uri",
"=",
"URIRef",
"(",
"element_value",
"[",
"'content'",
"]",
".",
"replace",
"(",
"ark_prefix",
",",
"'info:ark'",
")",
")",
"# Bind the prefix/namespace pair.",
"rdf_py",
".",
"bind",
"(",
"'dc'",
",",
"DC",
")",
"# Get the values for each element in the ordered DC elements.",
"for",
"element_name",
"in",
"DC_ORDER",
":",
"element_value_list",
"=",
"dc_dict",
".",
"get",
"(",
"element_name",
",",
"[",
"]",
")",
"# Add the values to the RDF object.",
"for",
"element_value",
"in",
"element_value_list",
":",
"# Handle URL values differently.",
"if",
"(",
"'http'",
"in",
"element_value",
"[",
"'content'",
"]",
"and",
"' '",
"not",
"in",
"element_value",
"[",
"'content'",
"]",
")",
":",
"rdf_py",
".",
"add",
"(",
"(",
"uri",
",",
"DC",
"[",
"element_name",
"]",
",",
"URIRef",
"(",
"element_value",
"[",
"'content'",
"]",
")",
")",
")",
"else",
":",
"rdf_py",
".",
"add",
"(",
"(",
"uri",
",",
"DC",
"[",
"element_name",
"]",
",",
"Literal",
"(",
"element_value",
"[",
"'content'",
"]",
")",
")",
")",
"return",
"rdf_py"
]
| Convert a DC dictionary into an RDF Python object. | [
"Convert",
"a",
"DC",
"dictionary",
"into",
"an",
"RDF",
"Python",
"object",
"."
]
| f92413302897dab948aac18ee9e482ace0187bd4 | https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untldoc.py#L545-L581 | train |
unt-libraries/pyuntl | pyuntl/untldoc.py | add_empty_fields | def add_empty_fields(untl_dict):
"""Add empty values if UNTL fields don't have values."""
# Iterate the ordered UNTL XML element list to determine
# which elements are missing from the untl_dict.
for element in UNTL_XML_ORDER:
if element not in untl_dict:
# Try to create an element with content and qualifier.
try:
py_object = PYUNTL_DISPATCH[element](
content='',
qualifier='',
)
except:
# Try to create an element with content.
try:
py_object = PYUNTL_DISPATCH[element](content='')
except:
# Try to create an element without content.
try:
py_object = PYUNTL_DISPATCH[element]()
except:
raise PyuntlException(
'Could not add empty element field.'
)
else:
untl_dict[element] = [{'content': {}}]
else:
# Handle element without children.
if not py_object.contained_children:
untl_dict[element] = [{'content': ''}]
else:
untl_dict[element] = [{'content': {}}]
else:
# Handle element without children.
if not py_object.contained_children:
untl_dict[element] = [{'content': '', 'qualifier': ''}]
else:
untl_dict[element] = [{'content': {}, 'qualifier': ''}]
# Add empty contained children.
for child in py_object.contained_children:
untl_dict[element][0].setdefault('content', {})
untl_dict[element][0]['content'][child] = ''
return untl_dict | python | def add_empty_fields(untl_dict):
"""Add empty values if UNTL fields don't have values."""
# Iterate the ordered UNTL XML element list to determine
# which elements are missing from the untl_dict.
for element in UNTL_XML_ORDER:
if element not in untl_dict:
# Try to create an element with content and qualifier.
try:
py_object = PYUNTL_DISPATCH[element](
content='',
qualifier='',
)
except:
# Try to create an element with content.
try:
py_object = PYUNTL_DISPATCH[element](content='')
except:
# Try to create an element without content.
try:
py_object = PYUNTL_DISPATCH[element]()
except:
raise PyuntlException(
'Could not add empty element field.'
)
else:
untl_dict[element] = [{'content': {}}]
else:
# Handle element without children.
if not py_object.contained_children:
untl_dict[element] = [{'content': ''}]
else:
untl_dict[element] = [{'content': {}}]
else:
# Handle element without children.
if not py_object.contained_children:
untl_dict[element] = [{'content': '', 'qualifier': ''}]
else:
untl_dict[element] = [{'content': {}, 'qualifier': ''}]
# Add empty contained children.
for child in py_object.contained_children:
untl_dict[element][0].setdefault('content', {})
untl_dict[element][0]['content'][child] = ''
return untl_dict | [
"def",
"add_empty_fields",
"(",
"untl_dict",
")",
":",
"# Iterate the ordered UNTL XML element list to determine",
"# which elements are missing from the untl_dict.",
"for",
"element",
"in",
"UNTL_XML_ORDER",
":",
"if",
"element",
"not",
"in",
"untl_dict",
":",
"# Try to create an element with content and qualifier.",
"try",
":",
"py_object",
"=",
"PYUNTL_DISPATCH",
"[",
"element",
"]",
"(",
"content",
"=",
"''",
",",
"qualifier",
"=",
"''",
",",
")",
"except",
":",
"# Try to create an element with content.",
"try",
":",
"py_object",
"=",
"PYUNTL_DISPATCH",
"[",
"element",
"]",
"(",
"content",
"=",
"''",
")",
"except",
":",
"# Try to create an element without content.",
"try",
":",
"py_object",
"=",
"PYUNTL_DISPATCH",
"[",
"element",
"]",
"(",
")",
"except",
":",
"raise",
"PyuntlException",
"(",
"'Could not add empty element field.'",
")",
"else",
":",
"untl_dict",
"[",
"element",
"]",
"=",
"[",
"{",
"'content'",
":",
"{",
"}",
"}",
"]",
"else",
":",
"# Handle element without children.",
"if",
"not",
"py_object",
".",
"contained_children",
":",
"untl_dict",
"[",
"element",
"]",
"=",
"[",
"{",
"'content'",
":",
"''",
"}",
"]",
"else",
":",
"untl_dict",
"[",
"element",
"]",
"=",
"[",
"{",
"'content'",
":",
"{",
"}",
"}",
"]",
"else",
":",
"# Handle element without children.",
"if",
"not",
"py_object",
".",
"contained_children",
":",
"untl_dict",
"[",
"element",
"]",
"=",
"[",
"{",
"'content'",
":",
"''",
",",
"'qualifier'",
":",
"''",
"}",
"]",
"else",
":",
"untl_dict",
"[",
"element",
"]",
"=",
"[",
"{",
"'content'",
":",
"{",
"}",
",",
"'qualifier'",
":",
"''",
"}",
"]",
"# Add empty contained children.",
"for",
"child",
"in",
"py_object",
".",
"contained_children",
":",
"untl_dict",
"[",
"element",
"]",
"[",
"0",
"]",
".",
"setdefault",
"(",
"'content'",
",",
"{",
"}",
")",
"untl_dict",
"[",
"element",
"]",
"[",
"0",
"]",
"[",
"'content'",
"]",
"[",
"child",
"]",
"=",
"''",
"return",
"untl_dict"
]
| Add empty values if UNTL fields don't have values. | [
"Add",
"empty",
"values",
"if",
"UNTL",
"fields",
"don",
"t",
"have",
"values",
"."
]
| f92413302897dab948aac18ee9e482ace0187bd4 | https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untldoc.py#L606-L648 | train |
unt-libraries/pyuntl | pyuntl/untldoc.py | add_empty_etd_ms_fields | def add_empty_etd_ms_fields(etd_ms_dict):
"""Add empty values for ETD_MS fields that don't have values."""
# Determine which ETD MS elements are missing from the etd_ms_dict.
for element in ETD_MS_ORDER:
if element not in etd_ms_dict:
# Try to create an element with content and qualifier.
try:
py_object = ETD_MS_CONVERSION_DISPATCH[element](
content='',
qualifier='',
)
except:
# Try to create an element with content.
try:
py_object = ETD_MS_CONVERSION_DISPATCH[element](content='')
except:
# Try to create an element without content.
try:
py_object = ETD_MS_CONVERSION_DISPATCH[element]()
except:
raise PyuntlException(
'Could not add empty element field.'
)
else:
etd_ms_dict[element] = [{'content': {}}]
else:
# Handle element without children.
if not py_object.contained_children:
etd_ms_dict[element] = [{'content': ''}]
else:
etd_ms_dict[element] = [{'content': {}}]
else:
# Handle element without children.
if py_object:
if not py_object.contained_children:
etd_ms_dict[element] = [{'content': '',
'qualifier': ''}]
else:
etd_ms_dict[element] = [{'content': {},
'qualifier': ''}]
# Add empty contained children.
if py_object:
for child in py_object.contained_children:
etd_ms_dict[element][0].setdefault('content', {})
etd_ms_dict[element][0]['content'][child] = ''
return etd_ms_dict | python | def add_empty_etd_ms_fields(etd_ms_dict):
"""Add empty values for ETD_MS fields that don't have values."""
# Determine which ETD MS elements are missing from the etd_ms_dict.
for element in ETD_MS_ORDER:
if element not in etd_ms_dict:
# Try to create an element with content and qualifier.
try:
py_object = ETD_MS_CONVERSION_DISPATCH[element](
content='',
qualifier='',
)
except:
# Try to create an element with content.
try:
py_object = ETD_MS_CONVERSION_DISPATCH[element](content='')
except:
# Try to create an element without content.
try:
py_object = ETD_MS_CONVERSION_DISPATCH[element]()
except:
raise PyuntlException(
'Could not add empty element field.'
)
else:
etd_ms_dict[element] = [{'content': {}}]
else:
# Handle element without children.
if not py_object.contained_children:
etd_ms_dict[element] = [{'content': ''}]
else:
etd_ms_dict[element] = [{'content': {}}]
else:
# Handle element without children.
if py_object:
if not py_object.contained_children:
etd_ms_dict[element] = [{'content': '',
'qualifier': ''}]
else:
etd_ms_dict[element] = [{'content': {},
'qualifier': ''}]
# Add empty contained children.
if py_object:
for child in py_object.contained_children:
etd_ms_dict[element][0].setdefault('content', {})
etd_ms_dict[element][0]['content'][child] = ''
return etd_ms_dict | [
"def",
"add_empty_etd_ms_fields",
"(",
"etd_ms_dict",
")",
":",
"# Determine which ETD MS elements are missing from the etd_ms_dict.",
"for",
"element",
"in",
"ETD_MS_ORDER",
":",
"if",
"element",
"not",
"in",
"etd_ms_dict",
":",
"# Try to create an element with content and qualifier.",
"try",
":",
"py_object",
"=",
"ETD_MS_CONVERSION_DISPATCH",
"[",
"element",
"]",
"(",
"content",
"=",
"''",
",",
"qualifier",
"=",
"''",
",",
")",
"except",
":",
"# Try to create an element with content.",
"try",
":",
"py_object",
"=",
"ETD_MS_CONVERSION_DISPATCH",
"[",
"element",
"]",
"(",
"content",
"=",
"''",
")",
"except",
":",
"# Try to create an element without content.",
"try",
":",
"py_object",
"=",
"ETD_MS_CONVERSION_DISPATCH",
"[",
"element",
"]",
"(",
")",
"except",
":",
"raise",
"PyuntlException",
"(",
"'Could not add empty element field.'",
")",
"else",
":",
"etd_ms_dict",
"[",
"element",
"]",
"=",
"[",
"{",
"'content'",
":",
"{",
"}",
"}",
"]",
"else",
":",
"# Handle element without children.",
"if",
"not",
"py_object",
".",
"contained_children",
":",
"etd_ms_dict",
"[",
"element",
"]",
"=",
"[",
"{",
"'content'",
":",
"''",
"}",
"]",
"else",
":",
"etd_ms_dict",
"[",
"element",
"]",
"=",
"[",
"{",
"'content'",
":",
"{",
"}",
"}",
"]",
"else",
":",
"# Handle element without children.",
"if",
"py_object",
":",
"if",
"not",
"py_object",
".",
"contained_children",
":",
"etd_ms_dict",
"[",
"element",
"]",
"=",
"[",
"{",
"'content'",
":",
"''",
",",
"'qualifier'",
":",
"''",
"}",
"]",
"else",
":",
"etd_ms_dict",
"[",
"element",
"]",
"=",
"[",
"{",
"'content'",
":",
"{",
"}",
",",
"'qualifier'",
":",
"''",
"}",
"]",
"# Add empty contained children.",
"if",
"py_object",
":",
"for",
"child",
"in",
"py_object",
".",
"contained_children",
":",
"etd_ms_dict",
"[",
"element",
"]",
"[",
"0",
"]",
".",
"setdefault",
"(",
"'content'",
",",
"{",
"}",
")",
"etd_ms_dict",
"[",
"element",
"]",
"[",
"0",
"]",
"[",
"'content'",
"]",
"[",
"child",
"]",
"=",
"''",
"return",
"etd_ms_dict"
]
| Add empty values for ETD_MS fields that don't have values. | [
"Add",
"empty",
"values",
"for",
"ETD_MS",
"fields",
"that",
"don",
"t",
"have",
"values",
"."
]
| f92413302897dab948aac18ee9e482ace0187bd4 | https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untldoc.py#L651-L696 | train |
unt-libraries/pyuntl | pyuntl/untldoc.py | find_untl_errors | def find_untl_errors(untl_dict, **kwargs):
"""Add empty required qualifiers to create valid UNTL."""
fix_errors = kwargs.get('fix_errors', False)
error_dict = {}
# Loop through all elements that require qualifiers.
for element_name in REQUIRES_QUALIFIER:
# Loop through the existing elements that require qualifers.
for element in untl_dict.get(element_name, []):
error_dict[element_name] = 'no_qualifier'
# If it should be fixed, set an empty qualifier
# if it doesn't have one.
if fix_errors:
element.setdefault('qualifier', '')
# Combine the error dict and UNTL dict into a dict.
found_data = {
'untl_dict': untl_dict,
'error_dict': error_dict,
}
return found_data | python | def find_untl_errors(untl_dict, **kwargs):
"""Add empty required qualifiers to create valid UNTL."""
fix_errors = kwargs.get('fix_errors', False)
error_dict = {}
# Loop through all elements that require qualifiers.
for element_name in REQUIRES_QUALIFIER:
# Loop through the existing elements that require qualifers.
for element in untl_dict.get(element_name, []):
error_dict[element_name] = 'no_qualifier'
# If it should be fixed, set an empty qualifier
# if it doesn't have one.
if fix_errors:
element.setdefault('qualifier', '')
# Combine the error dict and UNTL dict into a dict.
found_data = {
'untl_dict': untl_dict,
'error_dict': error_dict,
}
return found_data | [
"def",
"find_untl_errors",
"(",
"untl_dict",
",",
"*",
"*",
"kwargs",
")",
":",
"fix_errors",
"=",
"kwargs",
".",
"get",
"(",
"'fix_errors'",
",",
"False",
")",
"error_dict",
"=",
"{",
"}",
"# Loop through all elements that require qualifiers.",
"for",
"element_name",
"in",
"REQUIRES_QUALIFIER",
":",
"# Loop through the existing elements that require qualifers.",
"for",
"element",
"in",
"untl_dict",
".",
"get",
"(",
"element_name",
",",
"[",
"]",
")",
":",
"error_dict",
"[",
"element_name",
"]",
"=",
"'no_qualifier'",
"# If it should be fixed, set an empty qualifier",
"# if it doesn't have one.",
"if",
"fix_errors",
":",
"element",
".",
"setdefault",
"(",
"'qualifier'",
",",
"''",
")",
"# Combine the error dict and UNTL dict into a dict.",
"found_data",
"=",
"{",
"'untl_dict'",
":",
"untl_dict",
",",
"'error_dict'",
":",
"error_dict",
",",
"}",
"return",
"found_data"
]
| Add empty required qualifiers to create valid UNTL. | [
"Add",
"empty",
"required",
"qualifiers",
"to",
"create",
"valid",
"UNTL",
"."
]
| f92413302897dab948aac18ee9e482ace0187bd4 | https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untldoc.py#L699-L717 | train |
unt-libraries/pyuntl | pyuntl/untldoc.py | untlpy2etd_ms | def untlpy2etd_ms(untl_elements, **kwargs):
"""Convert the UNTL elements structure into an ETD_MS structure.
kwargs can be passed to the function for certain effects.
"""
degree_children = {}
date_exists = False
seen_creation = False
# Make the root element.
etd_ms_root = ETD_MS_CONVERSION_DISPATCH['thesis']()
for element in untl_elements.children:
etd_ms_element = None
# Convert the UNTL element to etd_ms where applicable.
if element.tag in ETD_MS_CONVERSION_DISPATCH:
# Create the etd_ms_element if the element's content
# is stored in children nodes.
if element.children:
etd_ms_element = ETD_MS_CONVERSION_DISPATCH[element.tag](
qualifier=element.qualifier,
children=element.children,
)
# If we hit a degree element, make just that one.
elif element.tag == 'degree':
# Make a dict of the degree children information.
if element.qualifier in ['name',
'level',
'discipline',
'grantor']:
degree_children[element.qualifier] = element.content
# For date elements, limit to first instance of creation date.
elif element.tag == 'date':
if element.qualifier == 'creation':
# If the root already has a date, delete the child.
for child in etd_ms_root.children:
if child.tag == 'date':
del child
if not seen_creation:
date_exists = False
seen_creation = True
if not date_exists:
# Create the etd_ms element.
etd_ms_element = ETD_MS_CONVERSION_DISPATCH[element.tag](
qualifier=element.qualifier,
content=element.content,
)
date_exists = True
# It is a normal element.
elif element.tag not in ['date', 'degree']:
# Create the etd_ms_element.
etd_ms_element = ETD_MS_CONVERSION_DISPATCH[element.tag](
qualifier=element.qualifier,
content=element.content,
)
# Add the element to the structure if the element exists.
if etd_ms_element:
etd_ms_root.add_child(etd_ms_element)
if element.tag == 'meta':
# Initialize ark to False because it may not exist yet.
ark = False
# Iterate through children and look for ark.
for i in etd_ms_root.children:
if i.tag == 'identifier' and i.content.startswith(
'http://digital.library.unt.edu/'
):
ark = True
# If the ark doesn't yet exist, try and create it.
if not ark:
# Reset for future tests.
ark = False
if element.qualifier == 'ark':
ark = element.content
if ark is not None:
# Create the ark identifier element and add it.
ark_identifier = ETD_MS_CONVERSION_DISPATCH['identifier'](
ark=ark,
)
etd_ms_root.add_child(ark_identifier)
# If children exist for the degree, make a degree element.
if degree_children:
degree_element = ETD_MS_CONVERSION_DISPATCH['degree']()
# When we have all the elements stored, add the children to the
# degree node.
degree_child_element = None
for k, v in degree_children.iteritems():
# Create the individual classes for degrees.
degree_child_element = ETD_MS_DEGREE_DISPATCH[k](
content=v,
)
# If the keys in degree_children are valid,
# add it to the child.
if degree_child_element:
degree_element.add_child(degree_child_element)
etd_ms_root.add_child(degree_element)
return etd_ms_root | python | def untlpy2etd_ms(untl_elements, **kwargs):
"""Convert the UNTL elements structure into an ETD_MS structure.
kwargs can be passed to the function for certain effects.
"""
degree_children = {}
date_exists = False
seen_creation = False
# Make the root element.
etd_ms_root = ETD_MS_CONVERSION_DISPATCH['thesis']()
for element in untl_elements.children:
etd_ms_element = None
# Convert the UNTL element to etd_ms where applicable.
if element.tag in ETD_MS_CONVERSION_DISPATCH:
# Create the etd_ms_element if the element's content
# is stored in children nodes.
if element.children:
etd_ms_element = ETD_MS_CONVERSION_DISPATCH[element.tag](
qualifier=element.qualifier,
children=element.children,
)
# If we hit a degree element, make just that one.
elif element.tag == 'degree':
# Make a dict of the degree children information.
if element.qualifier in ['name',
'level',
'discipline',
'grantor']:
degree_children[element.qualifier] = element.content
# For date elements, limit to first instance of creation date.
elif element.tag == 'date':
if element.qualifier == 'creation':
# If the root already has a date, delete the child.
for child in etd_ms_root.children:
if child.tag == 'date':
del child
if not seen_creation:
date_exists = False
seen_creation = True
if not date_exists:
# Create the etd_ms element.
etd_ms_element = ETD_MS_CONVERSION_DISPATCH[element.tag](
qualifier=element.qualifier,
content=element.content,
)
date_exists = True
# It is a normal element.
elif element.tag not in ['date', 'degree']:
# Create the etd_ms_element.
etd_ms_element = ETD_MS_CONVERSION_DISPATCH[element.tag](
qualifier=element.qualifier,
content=element.content,
)
# Add the element to the structure if the element exists.
if etd_ms_element:
etd_ms_root.add_child(etd_ms_element)
if element.tag == 'meta':
# Initialize ark to False because it may not exist yet.
ark = False
# Iterate through children and look for ark.
for i in etd_ms_root.children:
if i.tag == 'identifier' and i.content.startswith(
'http://digital.library.unt.edu/'
):
ark = True
# If the ark doesn't yet exist, try and create it.
if not ark:
# Reset for future tests.
ark = False
if element.qualifier == 'ark':
ark = element.content
if ark is not None:
# Create the ark identifier element and add it.
ark_identifier = ETD_MS_CONVERSION_DISPATCH['identifier'](
ark=ark,
)
etd_ms_root.add_child(ark_identifier)
# If children exist for the degree, make a degree element.
if degree_children:
degree_element = ETD_MS_CONVERSION_DISPATCH['degree']()
# When we have all the elements stored, add the children to the
# degree node.
degree_child_element = None
for k, v in degree_children.iteritems():
# Create the individual classes for degrees.
degree_child_element = ETD_MS_DEGREE_DISPATCH[k](
content=v,
)
# If the keys in degree_children are valid,
# add it to the child.
if degree_child_element:
degree_element.add_child(degree_child_element)
etd_ms_root.add_child(degree_element)
return etd_ms_root | [
"def",
"untlpy2etd_ms",
"(",
"untl_elements",
",",
"*",
"*",
"kwargs",
")",
":",
"degree_children",
"=",
"{",
"}",
"date_exists",
"=",
"False",
"seen_creation",
"=",
"False",
"# Make the root element.",
"etd_ms_root",
"=",
"ETD_MS_CONVERSION_DISPATCH",
"[",
"'thesis'",
"]",
"(",
")",
"for",
"element",
"in",
"untl_elements",
".",
"children",
":",
"etd_ms_element",
"=",
"None",
"# Convert the UNTL element to etd_ms where applicable.",
"if",
"element",
".",
"tag",
"in",
"ETD_MS_CONVERSION_DISPATCH",
":",
"# Create the etd_ms_element if the element's content",
"# is stored in children nodes.",
"if",
"element",
".",
"children",
":",
"etd_ms_element",
"=",
"ETD_MS_CONVERSION_DISPATCH",
"[",
"element",
".",
"tag",
"]",
"(",
"qualifier",
"=",
"element",
".",
"qualifier",
",",
"children",
"=",
"element",
".",
"children",
",",
")",
"# If we hit a degree element, make just that one.",
"elif",
"element",
".",
"tag",
"==",
"'degree'",
":",
"# Make a dict of the degree children information.",
"if",
"element",
".",
"qualifier",
"in",
"[",
"'name'",
",",
"'level'",
",",
"'discipline'",
",",
"'grantor'",
"]",
":",
"degree_children",
"[",
"element",
".",
"qualifier",
"]",
"=",
"element",
".",
"content",
"# For date elements, limit to first instance of creation date.",
"elif",
"element",
".",
"tag",
"==",
"'date'",
":",
"if",
"element",
".",
"qualifier",
"==",
"'creation'",
":",
"# If the root already has a date, delete the child.",
"for",
"child",
"in",
"etd_ms_root",
".",
"children",
":",
"if",
"child",
".",
"tag",
"==",
"'date'",
":",
"del",
"child",
"if",
"not",
"seen_creation",
":",
"date_exists",
"=",
"False",
"seen_creation",
"=",
"True",
"if",
"not",
"date_exists",
":",
"# Create the etd_ms element.",
"etd_ms_element",
"=",
"ETD_MS_CONVERSION_DISPATCH",
"[",
"element",
".",
"tag",
"]",
"(",
"qualifier",
"=",
"element",
".",
"qualifier",
",",
"content",
"=",
"element",
".",
"content",
",",
")",
"date_exists",
"=",
"True",
"# It is a normal element.",
"elif",
"element",
".",
"tag",
"not",
"in",
"[",
"'date'",
",",
"'degree'",
"]",
":",
"# Create the etd_ms_element.",
"etd_ms_element",
"=",
"ETD_MS_CONVERSION_DISPATCH",
"[",
"element",
".",
"tag",
"]",
"(",
"qualifier",
"=",
"element",
".",
"qualifier",
",",
"content",
"=",
"element",
".",
"content",
",",
")",
"# Add the element to the structure if the element exists.",
"if",
"etd_ms_element",
":",
"etd_ms_root",
".",
"add_child",
"(",
"etd_ms_element",
")",
"if",
"element",
".",
"tag",
"==",
"'meta'",
":",
"# Initialize ark to False because it may not exist yet.",
"ark",
"=",
"False",
"# Iterate through children and look for ark.",
"for",
"i",
"in",
"etd_ms_root",
".",
"children",
":",
"if",
"i",
".",
"tag",
"==",
"'identifier'",
"and",
"i",
".",
"content",
".",
"startswith",
"(",
"'http://digital.library.unt.edu/'",
")",
":",
"ark",
"=",
"True",
"# If the ark doesn't yet exist, try and create it.",
"if",
"not",
"ark",
":",
"# Reset for future tests.",
"ark",
"=",
"False",
"if",
"element",
".",
"qualifier",
"==",
"'ark'",
":",
"ark",
"=",
"element",
".",
"content",
"if",
"ark",
"is",
"not",
"None",
":",
"# Create the ark identifier element and add it.",
"ark_identifier",
"=",
"ETD_MS_CONVERSION_DISPATCH",
"[",
"'identifier'",
"]",
"(",
"ark",
"=",
"ark",
",",
")",
"etd_ms_root",
".",
"add_child",
"(",
"ark_identifier",
")",
"# If children exist for the degree, make a degree element.",
"if",
"degree_children",
":",
"degree_element",
"=",
"ETD_MS_CONVERSION_DISPATCH",
"[",
"'degree'",
"]",
"(",
")",
"# When we have all the elements stored, add the children to the",
"# degree node.",
"degree_child_element",
"=",
"None",
"for",
"k",
",",
"v",
"in",
"degree_children",
".",
"iteritems",
"(",
")",
":",
"# Create the individual classes for degrees.",
"degree_child_element",
"=",
"ETD_MS_DEGREE_DISPATCH",
"[",
"k",
"]",
"(",
"content",
"=",
"v",
",",
")",
"# If the keys in degree_children are valid,",
"# add it to the child.",
"if",
"degree_child_element",
":",
"degree_element",
".",
"add_child",
"(",
"degree_child_element",
")",
"etd_ms_root",
".",
"add_child",
"(",
"degree_element",
")",
"return",
"etd_ms_root"
]
| Convert the UNTL elements structure into an ETD_MS structure.
kwargs can be passed to the function for certain effects. | [
"Convert",
"the",
"UNTL",
"elements",
"structure",
"into",
"an",
"ETD_MS",
"structure",
"."
]
| f92413302897dab948aac18ee9e482ace0187bd4 | https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untldoc.py#L720-L813 | train |
unt-libraries/pyuntl | pyuntl/untldoc.py | etd_ms_dict2xmlfile | def etd_ms_dict2xmlfile(filename, metadata_dict):
"""Create an ETD MS XML file."""
try:
f = open(filename, 'w')
f.write(generate_etd_ms_xml(metadata_dict).encode("utf-8"))
f.close()
except:
raise MetadataGeneratorException(
'Failed to create an XML file. Filename: %s' % (filename)
) | python | def etd_ms_dict2xmlfile(filename, metadata_dict):
"""Create an ETD MS XML file."""
try:
f = open(filename, 'w')
f.write(generate_etd_ms_xml(metadata_dict).encode("utf-8"))
f.close()
except:
raise MetadataGeneratorException(
'Failed to create an XML file. Filename: %s' % (filename)
) | [
"def",
"etd_ms_dict2xmlfile",
"(",
"filename",
",",
"metadata_dict",
")",
":",
"try",
":",
"f",
"=",
"open",
"(",
"filename",
",",
"'w'",
")",
"f",
".",
"write",
"(",
"generate_etd_ms_xml",
"(",
"metadata_dict",
")",
".",
"encode",
"(",
"\"utf-8\"",
")",
")",
"f",
".",
"close",
"(",
")",
"except",
":",
"raise",
"MetadataGeneratorException",
"(",
"'Failed to create an XML file. Filename: %s'",
"%",
"(",
"filename",
")",
")"
]
| Create an ETD MS XML file. | [
"Create",
"an",
"ETD",
"MS",
"XML",
"file",
"."
]
| f92413302897dab948aac18ee9e482ace0187bd4 | https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untldoc.py#L826-L835 | train |
rhayes777/PyAutoFit | autofit/tools/fit.py | DataFit.signal_to_noise_map | def signal_to_noise_map(self):
"""The signal-to-noise_map of the data and noise-map which are fitted."""
signal_to_noise_map = np.divide(self.data, self.noise_map)
signal_to_noise_map[signal_to_noise_map < 0] = 0
return signal_to_noise_map | python | def signal_to_noise_map(self):
"""The signal-to-noise_map of the data and noise-map which are fitted."""
signal_to_noise_map = np.divide(self.data, self.noise_map)
signal_to_noise_map[signal_to_noise_map < 0] = 0
return signal_to_noise_map | [
"def",
"signal_to_noise_map",
"(",
"self",
")",
":",
"signal_to_noise_map",
"=",
"np",
".",
"divide",
"(",
"self",
".",
"data",
",",
"self",
".",
"noise_map",
")",
"signal_to_noise_map",
"[",
"signal_to_noise_map",
"<",
"0",
"]",
"=",
"0",
"return",
"signal_to_noise_map"
]
| The signal-to-noise_map of the data and noise-map which are fitted. | [
"The",
"signal",
"-",
"to",
"-",
"noise_map",
"of",
"the",
"data",
"and",
"noise",
"-",
"map",
"which",
"are",
"fitted",
"."
]
| a9e6144abb08edfc6a6906c4030d7119bf8d3e14 | https://github.com/rhayes777/PyAutoFit/blob/a9e6144abb08edfc6a6906c4030d7119bf8d3e14/autofit/tools/fit.py#L59-L63 | train |
althonos/moclo | moclo/moclo/core/parts.py | AbstractPart.structure | def structure(cls):
# type: () -> Text
"""Get the part structure, as a DNA regex pattern.
The structure of most parts can be obtained automatically from the
part signature and the restriction enzyme used in the Golden Gate
assembly.
Warning:
If overloading this method, the returned pattern must include 3
capture groups to capture the following features:
1. The upstream (5') overhang sequence
2. The vector placeholder sequence
3. The downstream (3') overhang sequence
"""
if cls.signature is NotImplemented:
raise NotImplementedError("no signature defined")
up = cls.cutter.elucidate()
down = str(Seq(up).reverse_complement())
ovhg = cls.cutter.ovhgseq
upsig, downsig = cls.signature
if cls.cutter.is_5overhang():
upsite = "^{}_".format(ovhg)
downsite = "_{}^".format(Seq(ovhg).reverse_complement())
else:
upsite = "_{}^".format(ovhg)
downsite = "^{}_".format(Seq(ovhg).reverse_complement())
if issubclass(cls, AbstractModule):
return "".join(
[
up.replace(upsite, "({})(".format(upsig)),
"N*",
down.replace(downsite, ")({})".format(downsig)),
]
)
elif issubclass(cls, AbstractVector):
return "".join(
[
down.replace(downsite, "({})(".format(downsig)),
"N*",
up.replace(upsite, ")({})".format(upsig)),
]
)
else:
raise RuntimeError("Part must be either a module or a vector!") | python | def structure(cls):
# type: () -> Text
"""Get the part structure, as a DNA regex pattern.
The structure of most parts can be obtained automatically from the
part signature and the restriction enzyme used in the Golden Gate
assembly.
Warning:
If overloading this method, the returned pattern must include 3
capture groups to capture the following features:
1. The upstream (5') overhang sequence
2. The vector placeholder sequence
3. The downstream (3') overhang sequence
"""
if cls.signature is NotImplemented:
raise NotImplementedError("no signature defined")
up = cls.cutter.elucidate()
down = str(Seq(up).reverse_complement())
ovhg = cls.cutter.ovhgseq
upsig, downsig = cls.signature
if cls.cutter.is_5overhang():
upsite = "^{}_".format(ovhg)
downsite = "_{}^".format(Seq(ovhg).reverse_complement())
else:
upsite = "_{}^".format(ovhg)
downsite = "^{}_".format(Seq(ovhg).reverse_complement())
if issubclass(cls, AbstractModule):
return "".join(
[
up.replace(upsite, "({})(".format(upsig)),
"N*",
down.replace(downsite, ")({})".format(downsig)),
]
)
elif issubclass(cls, AbstractVector):
return "".join(
[
down.replace(downsite, "({})(".format(downsig)),
"N*",
up.replace(upsite, ")({})".format(upsig)),
]
)
else:
raise RuntimeError("Part must be either a module or a vector!") | [
"def",
"structure",
"(",
"cls",
")",
":",
"# type: () -> Text",
"if",
"cls",
".",
"signature",
"is",
"NotImplemented",
":",
"raise",
"NotImplementedError",
"(",
"\"no signature defined\"",
")",
"up",
"=",
"cls",
".",
"cutter",
".",
"elucidate",
"(",
")",
"down",
"=",
"str",
"(",
"Seq",
"(",
"up",
")",
".",
"reverse_complement",
"(",
")",
")",
"ovhg",
"=",
"cls",
".",
"cutter",
".",
"ovhgseq",
"upsig",
",",
"downsig",
"=",
"cls",
".",
"signature",
"if",
"cls",
".",
"cutter",
".",
"is_5overhang",
"(",
")",
":",
"upsite",
"=",
"\"^{}_\"",
".",
"format",
"(",
"ovhg",
")",
"downsite",
"=",
"\"_{}^\"",
".",
"format",
"(",
"Seq",
"(",
"ovhg",
")",
".",
"reverse_complement",
"(",
")",
")",
"else",
":",
"upsite",
"=",
"\"_{}^\"",
".",
"format",
"(",
"ovhg",
")",
"downsite",
"=",
"\"^{}_\"",
".",
"format",
"(",
"Seq",
"(",
"ovhg",
")",
".",
"reverse_complement",
"(",
")",
")",
"if",
"issubclass",
"(",
"cls",
",",
"AbstractModule",
")",
":",
"return",
"\"\"",
".",
"join",
"(",
"[",
"up",
".",
"replace",
"(",
"upsite",
",",
"\"({})(\"",
".",
"format",
"(",
"upsig",
")",
")",
",",
"\"N*\"",
",",
"down",
".",
"replace",
"(",
"downsite",
",",
"\")({})\"",
".",
"format",
"(",
"downsig",
")",
")",
",",
"]",
")",
"elif",
"issubclass",
"(",
"cls",
",",
"AbstractVector",
")",
":",
"return",
"\"\"",
".",
"join",
"(",
"[",
"down",
".",
"replace",
"(",
"downsite",
",",
"\"({})(\"",
".",
"format",
"(",
"downsig",
")",
")",
",",
"\"N*\"",
",",
"up",
".",
"replace",
"(",
"upsite",
",",
"\")({})\"",
".",
"format",
"(",
"upsig",
")",
")",
",",
"]",
")",
"else",
":",
"raise",
"RuntimeError",
"(",
"\"Part must be either a module or a vector!\"",
")"
]
| Get the part structure, as a DNA regex pattern.
The structure of most parts can be obtained automatically from the
part signature and the restriction enzyme used in the Golden Gate
assembly.
Warning:
If overloading this method, the returned pattern must include 3
capture groups to capture the following features:
1. The upstream (5') overhang sequence
2. The vector placeholder sequence
3. The downstream (3') overhang sequence | [
"Get",
"the",
"part",
"structure",
"as",
"a",
"DNA",
"regex",
"pattern",
"."
]
| 28a03748df8a2fa43f0c0c8098ca64d11559434e | https://github.com/althonos/moclo/blob/28a03748df8a2fa43f0c0c8098ca64d11559434e/moclo/moclo/core/parts.py#L49-L99 | train |
althonos/moclo | moclo/moclo/core/parts.py | AbstractPart.characterize | def characterize(cls, record):
"""Load the record in a concrete subclass of this type.
"""
classes = list(cls.__subclasses__())
if not isabstract(cls):
classes.append(cls)
for subclass in classes:
entity = subclass(record)
if entity.is_valid():
return entity
raise RuntimeError("could not find the type for '{}'".format(record.id)) | python | def characterize(cls, record):
"""Load the record in a concrete subclass of this type.
"""
classes = list(cls.__subclasses__())
if not isabstract(cls):
classes.append(cls)
for subclass in classes:
entity = subclass(record)
if entity.is_valid():
return entity
raise RuntimeError("could not find the type for '{}'".format(record.id)) | [
"def",
"characterize",
"(",
"cls",
",",
"record",
")",
":",
"classes",
"=",
"list",
"(",
"cls",
".",
"__subclasses__",
"(",
")",
")",
"if",
"not",
"isabstract",
"(",
"cls",
")",
":",
"classes",
".",
"append",
"(",
"cls",
")",
"for",
"subclass",
"in",
"classes",
":",
"entity",
"=",
"subclass",
"(",
"record",
")",
"if",
"entity",
".",
"is_valid",
"(",
")",
":",
"return",
"entity",
"raise",
"RuntimeError",
"(",
"\"could not find the type for '{}'\"",
".",
"format",
"(",
"record",
".",
"id",
")",
")"
]
| Load the record in a concrete subclass of this type. | [
"Load",
"the",
"record",
"in",
"a",
"concrete",
"subclass",
"of",
"this",
"type",
"."
]
| 28a03748df8a2fa43f0c0c8098ca64d11559434e | https://github.com/althonos/moclo/blob/28a03748df8a2fa43f0c0c8098ca64d11559434e/moclo/moclo/core/parts.py#L102-L112 | train |
NikolayDachev/jadm | lib/paramiko-1.14.1/paramiko/transport.py | Transport.global_request | def global_request(self, kind, data=None, wait=True):
"""
Make a global request to the remote host. These are normally
extensions to the SSH2 protocol.
:param str kind: name of the request.
:param tuple data:
an optional tuple containing additional data to attach to the
request.
:param bool wait:
``True`` if this method should not return until a response is
received; ``False`` otherwise.
:return:
a `.Message` containing possible additional data if the request was
successful (or an empty `.Message` if ``wait`` was ``False``);
``None`` if the request was denied.
"""
if wait:
self.completion_event = threading.Event()
m = Message()
m.add_byte(cMSG_GLOBAL_REQUEST)
m.add_string(kind)
m.add_boolean(wait)
if data is not None:
m.add(*data)
self._log(DEBUG, 'Sending global request "%s"' % kind)
self._send_user_message(m)
if not wait:
return None
while True:
self.completion_event.wait(0.1)
if not self.active:
return None
if self.completion_event.isSet():
break
return self.global_response | python | def global_request(self, kind, data=None, wait=True):
"""
Make a global request to the remote host. These are normally
extensions to the SSH2 protocol.
:param str kind: name of the request.
:param tuple data:
an optional tuple containing additional data to attach to the
request.
:param bool wait:
``True`` if this method should not return until a response is
received; ``False`` otherwise.
:return:
a `.Message` containing possible additional data if the request was
successful (or an empty `.Message` if ``wait`` was ``False``);
``None`` if the request was denied.
"""
if wait:
self.completion_event = threading.Event()
m = Message()
m.add_byte(cMSG_GLOBAL_REQUEST)
m.add_string(kind)
m.add_boolean(wait)
if data is not None:
m.add(*data)
self._log(DEBUG, 'Sending global request "%s"' % kind)
self._send_user_message(m)
if not wait:
return None
while True:
self.completion_event.wait(0.1)
if not self.active:
return None
if self.completion_event.isSet():
break
return self.global_response | [
"def",
"global_request",
"(",
"self",
",",
"kind",
",",
"data",
"=",
"None",
",",
"wait",
"=",
"True",
")",
":",
"if",
"wait",
":",
"self",
".",
"completion_event",
"=",
"threading",
".",
"Event",
"(",
")",
"m",
"=",
"Message",
"(",
")",
"m",
".",
"add_byte",
"(",
"cMSG_GLOBAL_REQUEST",
")",
"m",
".",
"add_string",
"(",
"kind",
")",
"m",
".",
"add_boolean",
"(",
"wait",
")",
"if",
"data",
"is",
"not",
"None",
":",
"m",
".",
"add",
"(",
"*",
"data",
")",
"self",
".",
"_log",
"(",
"DEBUG",
",",
"'Sending global request \"%s\"'",
"%",
"kind",
")",
"self",
".",
"_send_user_message",
"(",
"m",
")",
"if",
"not",
"wait",
":",
"return",
"None",
"while",
"True",
":",
"self",
".",
"completion_event",
".",
"wait",
"(",
"0.1",
")",
"if",
"not",
"self",
".",
"active",
":",
"return",
"None",
"if",
"self",
".",
"completion_event",
".",
"isSet",
"(",
")",
":",
"break",
"return",
"self",
".",
"global_response"
]
| Make a global request to the remote host. These are normally
extensions to the SSH2 protocol.
:param str kind: name of the request.
:param tuple data:
an optional tuple containing additional data to attach to the
request.
:param bool wait:
``True`` if this method should not return until a response is
received; ``False`` otherwise.
:return:
a `.Message` containing possible additional data if the request was
successful (or an empty `.Message` if ``wait`` was ``False``);
``None`` if the request was denied. | [
"Make",
"a",
"global",
"request",
"to",
"the",
"remote",
"host",
".",
"These",
"are",
"normally",
"extensions",
"to",
"the",
"SSH2",
"protocol",
"."
]
| 12bb550445edfcd87506f7cba7a6a35d413c5511 | https://github.com/NikolayDachev/jadm/blob/12bb550445edfcd87506f7cba7a6a35d413c5511/lib/paramiko-1.14.1/paramiko/transport.py#L777-L812 | train |
NikolayDachev/jadm | lib/paramiko-1.14.1/paramiko/transport.py | Transport._activate_inbound | def _activate_inbound(self):
"""switch on newly negotiated encryption parameters for inbound traffic"""
block_size = self._cipher_info[self.remote_cipher]['block-size']
if self.server_mode:
IV_in = self._compute_key('A', block_size)
key_in = self._compute_key('C', self._cipher_info[self.remote_cipher]['key-size'])
else:
IV_in = self._compute_key('B', block_size)
key_in = self._compute_key('D', self._cipher_info[self.remote_cipher]['key-size'])
engine = self._get_cipher(self.remote_cipher, key_in, IV_in)
mac_size = self._mac_info[self.remote_mac]['size']
mac_engine = self._mac_info[self.remote_mac]['class']
# initial mac keys are done in the hash's natural size (not the potentially truncated
# transmission size)
if self.server_mode:
mac_key = self._compute_key('E', mac_engine().digest_size)
else:
mac_key = self._compute_key('F', mac_engine().digest_size)
self.packetizer.set_inbound_cipher(engine, block_size, mac_engine, mac_size, mac_key)
compress_in = self._compression_info[self.remote_compression][1]
if (compress_in is not None) and ((self.remote_compression != '[email protected]') or self.authenticated):
self._log(DEBUG, 'Switching on inbound compression ...')
self.packetizer.set_inbound_compressor(compress_in()) | python | def _activate_inbound(self):
"""switch on newly negotiated encryption parameters for inbound traffic"""
block_size = self._cipher_info[self.remote_cipher]['block-size']
if self.server_mode:
IV_in = self._compute_key('A', block_size)
key_in = self._compute_key('C', self._cipher_info[self.remote_cipher]['key-size'])
else:
IV_in = self._compute_key('B', block_size)
key_in = self._compute_key('D', self._cipher_info[self.remote_cipher]['key-size'])
engine = self._get_cipher(self.remote_cipher, key_in, IV_in)
mac_size = self._mac_info[self.remote_mac]['size']
mac_engine = self._mac_info[self.remote_mac]['class']
# initial mac keys are done in the hash's natural size (not the potentially truncated
# transmission size)
if self.server_mode:
mac_key = self._compute_key('E', mac_engine().digest_size)
else:
mac_key = self._compute_key('F', mac_engine().digest_size)
self.packetizer.set_inbound_cipher(engine, block_size, mac_engine, mac_size, mac_key)
compress_in = self._compression_info[self.remote_compression][1]
if (compress_in is not None) and ((self.remote_compression != '[email protected]') or self.authenticated):
self._log(DEBUG, 'Switching on inbound compression ...')
self.packetizer.set_inbound_compressor(compress_in()) | [
"def",
"_activate_inbound",
"(",
"self",
")",
":",
"block_size",
"=",
"self",
".",
"_cipher_info",
"[",
"self",
".",
"remote_cipher",
"]",
"[",
"'block-size'",
"]",
"if",
"self",
".",
"server_mode",
":",
"IV_in",
"=",
"self",
".",
"_compute_key",
"(",
"'A'",
",",
"block_size",
")",
"key_in",
"=",
"self",
".",
"_compute_key",
"(",
"'C'",
",",
"self",
".",
"_cipher_info",
"[",
"self",
".",
"remote_cipher",
"]",
"[",
"'key-size'",
"]",
")",
"else",
":",
"IV_in",
"=",
"self",
".",
"_compute_key",
"(",
"'B'",
",",
"block_size",
")",
"key_in",
"=",
"self",
".",
"_compute_key",
"(",
"'D'",
",",
"self",
".",
"_cipher_info",
"[",
"self",
".",
"remote_cipher",
"]",
"[",
"'key-size'",
"]",
")",
"engine",
"=",
"self",
".",
"_get_cipher",
"(",
"self",
".",
"remote_cipher",
",",
"key_in",
",",
"IV_in",
")",
"mac_size",
"=",
"self",
".",
"_mac_info",
"[",
"self",
".",
"remote_mac",
"]",
"[",
"'size'",
"]",
"mac_engine",
"=",
"self",
".",
"_mac_info",
"[",
"self",
".",
"remote_mac",
"]",
"[",
"'class'",
"]",
"# initial mac keys are done in the hash's natural size (not the potentially truncated",
"# transmission size)",
"if",
"self",
".",
"server_mode",
":",
"mac_key",
"=",
"self",
".",
"_compute_key",
"(",
"'E'",
",",
"mac_engine",
"(",
")",
".",
"digest_size",
")",
"else",
":",
"mac_key",
"=",
"self",
".",
"_compute_key",
"(",
"'F'",
",",
"mac_engine",
"(",
")",
".",
"digest_size",
")",
"self",
".",
"packetizer",
".",
"set_inbound_cipher",
"(",
"engine",
",",
"block_size",
",",
"mac_engine",
",",
"mac_size",
",",
"mac_key",
")",
"compress_in",
"=",
"self",
".",
"_compression_info",
"[",
"self",
".",
"remote_compression",
"]",
"[",
"1",
"]",
"if",
"(",
"compress_in",
"is",
"not",
"None",
")",
"and",
"(",
"(",
"self",
".",
"remote_compression",
"!=",
"'[email protected]'",
")",
"or",
"self",
".",
"authenticated",
")",
":",
"self",
".",
"_log",
"(",
"DEBUG",
",",
"'Switching on inbound compression ...'",
")",
"self",
".",
"packetizer",
".",
"set_inbound_compressor",
"(",
"compress_in",
"(",
")",
")"
]
| switch on newly negotiated encryption parameters for inbound traffic | [
"switch",
"on",
"newly",
"negotiated",
"encryption",
"parameters",
"for",
"inbound",
"traffic"
]
| 12bb550445edfcd87506f7cba7a6a35d413c5511 | https://github.com/NikolayDachev/jadm/blob/12bb550445edfcd87506f7cba7a6a35d413c5511/lib/paramiko-1.14.1/paramiko/transport.py#L1702-L1724 | train |
redhat-openstack/python-tripleo-helper | tripleohelper/server.py | Server.enable_user | def enable_user(self, user):
"""Enable the root account on the remote host.
Since the host may have been deployed using a Cloud image, it may not
be possible to use the 'root' account. This method ensure the root
account is enable, if this is not the case, it will try to get the name
of admin user and use it to re-enable the root account.
"""
if user in self.ssh_pool._ssh_clients:
return
if user == 'root':
_root_ssh_client = ssh.SshClient(
hostname=self.hostname,
user='root',
key_filename=self._key_filename,
via_ip=self.via_ip)
# connect as a root user
_root_ssh_client.start()
result, _ = _root_ssh_client.run('uname -a')
image_user = None
# check if root is not allowed
if 'Please login as the user "cloud-user"' in result:
image_user = 'cloud-user'
_root_ssh_client.stop()
elif 'Please login as the user "fedora" rather than the user "root"' in result:
image_user = 'fedora'
_root_ssh_client.stop()
elif 'Please login as the user "centos" rather than the user "root"' in result:
image_user = 'centos'
_root_ssh_client.stop()
if image_user:
self.enable_user(image_user)
LOG.info('enabling the root user')
_cmd = "sudo sed -i 's,.*ssh-rsa,ssh-rsa,' /root/.ssh/authorized_keys"
self.ssh_pool.run(image_user, _cmd)
_root_ssh_client.start()
self.ssh_pool.add_ssh_client('root', _root_ssh_client)
return
# add the cloud user to the ssh pool
self.ssh_pool.build_ssh_client(
hostname=self.hostname,
user=user,
key_filename=self._key_filename,
via_ip=self.via_ip) | python | def enable_user(self, user):
"""Enable the root account on the remote host.
Since the host may have been deployed using a Cloud image, it may not
be possible to use the 'root' account. This method ensure the root
account is enable, if this is not the case, it will try to get the name
of admin user and use it to re-enable the root account.
"""
if user in self.ssh_pool._ssh_clients:
return
if user == 'root':
_root_ssh_client = ssh.SshClient(
hostname=self.hostname,
user='root',
key_filename=self._key_filename,
via_ip=self.via_ip)
# connect as a root user
_root_ssh_client.start()
result, _ = _root_ssh_client.run('uname -a')
image_user = None
# check if root is not allowed
if 'Please login as the user "cloud-user"' in result:
image_user = 'cloud-user'
_root_ssh_client.stop()
elif 'Please login as the user "fedora" rather than the user "root"' in result:
image_user = 'fedora'
_root_ssh_client.stop()
elif 'Please login as the user "centos" rather than the user "root"' in result:
image_user = 'centos'
_root_ssh_client.stop()
if image_user:
self.enable_user(image_user)
LOG.info('enabling the root user')
_cmd = "sudo sed -i 's,.*ssh-rsa,ssh-rsa,' /root/.ssh/authorized_keys"
self.ssh_pool.run(image_user, _cmd)
_root_ssh_client.start()
self.ssh_pool.add_ssh_client('root', _root_ssh_client)
return
# add the cloud user to the ssh pool
self.ssh_pool.build_ssh_client(
hostname=self.hostname,
user=user,
key_filename=self._key_filename,
via_ip=self.via_ip) | [
"def",
"enable_user",
"(",
"self",
",",
"user",
")",
":",
"if",
"user",
"in",
"self",
".",
"ssh_pool",
".",
"_ssh_clients",
":",
"return",
"if",
"user",
"==",
"'root'",
":",
"_root_ssh_client",
"=",
"ssh",
".",
"SshClient",
"(",
"hostname",
"=",
"self",
".",
"hostname",
",",
"user",
"=",
"'root'",
",",
"key_filename",
"=",
"self",
".",
"_key_filename",
",",
"via_ip",
"=",
"self",
".",
"via_ip",
")",
"# connect as a root user",
"_root_ssh_client",
".",
"start",
"(",
")",
"result",
",",
"_",
"=",
"_root_ssh_client",
".",
"run",
"(",
"'uname -a'",
")",
"image_user",
"=",
"None",
"# check if root is not allowed",
"if",
"'Please login as the user \"cloud-user\"'",
"in",
"result",
":",
"image_user",
"=",
"'cloud-user'",
"_root_ssh_client",
".",
"stop",
"(",
")",
"elif",
"'Please login as the user \"fedora\" rather than the user \"root\"'",
"in",
"result",
":",
"image_user",
"=",
"'fedora'",
"_root_ssh_client",
".",
"stop",
"(",
")",
"elif",
"'Please login as the user \"centos\" rather than the user \"root\"'",
"in",
"result",
":",
"image_user",
"=",
"'centos'",
"_root_ssh_client",
".",
"stop",
"(",
")",
"if",
"image_user",
":",
"self",
".",
"enable_user",
"(",
"image_user",
")",
"LOG",
".",
"info",
"(",
"'enabling the root user'",
")",
"_cmd",
"=",
"\"sudo sed -i 's,.*ssh-rsa,ssh-rsa,' /root/.ssh/authorized_keys\"",
"self",
".",
"ssh_pool",
".",
"run",
"(",
"image_user",
",",
"_cmd",
")",
"_root_ssh_client",
".",
"start",
"(",
")",
"self",
".",
"ssh_pool",
".",
"add_ssh_client",
"(",
"'root'",
",",
"_root_ssh_client",
")",
"return",
"# add the cloud user to the ssh pool",
"self",
".",
"ssh_pool",
".",
"build_ssh_client",
"(",
"hostname",
"=",
"self",
".",
"hostname",
",",
"user",
"=",
"user",
",",
"key_filename",
"=",
"self",
".",
"_key_filename",
",",
"via_ip",
"=",
"self",
".",
"via_ip",
")"
]
| Enable the root account on the remote host.
Since the host may have been deployed using a Cloud image, it may not
be possible to use the 'root' account. This method ensure the root
account is enable, if this is not the case, it will try to get the name
of admin user and use it to re-enable the root account. | [
"Enable",
"the",
"root",
"account",
"on",
"the",
"remote",
"host",
"."
]
| bfa165538335edb1088170c7a92f097167225c81 | https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/server.py#L54-L103 | train |
redhat-openstack/python-tripleo-helper | tripleohelper/server.py | Server.send_file | def send_file(self, local_path, remote_path, user='root', unix_mode=None):
"""Upload a local file on the remote host.
"""
self.enable_user(user)
return self.ssh_pool.send_file(user, local_path, remote_path, unix_mode=unix_mode) | python | def send_file(self, local_path, remote_path, user='root', unix_mode=None):
"""Upload a local file on the remote host.
"""
self.enable_user(user)
return self.ssh_pool.send_file(user, local_path, remote_path, unix_mode=unix_mode) | [
"def",
"send_file",
"(",
"self",
",",
"local_path",
",",
"remote_path",
",",
"user",
"=",
"'root'",
",",
"unix_mode",
"=",
"None",
")",
":",
"self",
".",
"enable_user",
"(",
"user",
")",
"return",
"self",
".",
"ssh_pool",
".",
"send_file",
"(",
"user",
",",
"local_path",
",",
"remote_path",
",",
"unix_mode",
"=",
"unix_mode",
")"
]
| Upload a local file on the remote host. | [
"Upload",
"a",
"local",
"file",
"on",
"the",
"remote",
"host",
"."
]
| bfa165538335edb1088170c7a92f097167225c81 | https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/server.py#L105-L109 | train |
redhat-openstack/python-tripleo-helper | tripleohelper/server.py | Server.send_dir | def send_dir(self, local_path, remote_path, user='root'):
"""Upload a directory on the remote host.
"""
self.enable_user(user)
return self.ssh_pool.send_dir(user, local_path, remote_path) | python | def send_dir(self, local_path, remote_path, user='root'):
"""Upload a directory on the remote host.
"""
self.enable_user(user)
return self.ssh_pool.send_dir(user, local_path, remote_path) | [
"def",
"send_dir",
"(",
"self",
",",
"local_path",
",",
"remote_path",
",",
"user",
"=",
"'root'",
")",
":",
"self",
".",
"enable_user",
"(",
"user",
")",
"return",
"self",
".",
"ssh_pool",
".",
"send_dir",
"(",
"user",
",",
"local_path",
",",
"remote_path",
")"
]
| Upload a directory on the remote host. | [
"Upload",
"a",
"directory",
"on",
"the",
"remote",
"host",
"."
]
| bfa165538335edb1088170c7a92f097167225c81 | https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/server.py#L111-L115 | train |
redhat-openstack/python-tripleo-helper | tripleohelper/server.py | Server.create_file | def create_file(self, path, content, mode='w', user='root'):
"""Create a file on the remote host.
"""
self.enable_user(user)
return self.ssh_pool.create_file(user, path, content, mode) | python | def create_file(self, path, content, mode='w', user='root'):
"""Create a file on the remote host.
"""
self.enable_user(user)
return self.ssh_pool.create_file(user, path, content, mode) | [
"def",
"create_file",
"(",
"self",
",",
"path",
",",
"content",
",",
"mode",
"=",
"'w'",
",",
"user",
"=",
"'root'",
")",
":",
"self",
".",
"enable_user",
"(",
"user",
")",
"return",
"self",
".",
"ssh_pool",
".",
"create_file",
"(",
"user",
",",
"path",
",",
"content",
",",
"mode",
")"
]
| Create a file on the remote host. | [
"Create",
"a",
"file",
"on",
"the",
"remote",
"host",
"."
]
| bfa165538335edb1088170c7a92f097167225c81 | https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/server.py#L121-L125 | train |
redhat-openstack/python-tripleo-helper | tripleohelper/server.py | Server.yum_install | def yum_install(self, packages, ignore_error=False):
"""Install some packages on the remote host.
:param packages: ist of packages to install.
"""
return self.run('yum install -y --quiet ' + ' '.join(packages), ignore_error=ignore_error, retry=5) | python | def yum_install(self, packages, ignore_error=False):
"""Install some packages on the remote host.
:param packages: ist of packages to install.
"""
return self.run('yum install -y --quiet ' + ' '.join(packages), ignore_error=ignore_error, retry=5) | [
"def",
"yum_install",
"(",
"self",
",",
"packages",
",",
"ignore_error",
"=",
"False",
")",
":",
"return",
"self",
".",
"run",
"(",
"'yum install -y --quiet '",
"+",
"' '",
".",
"join",
"(",
"packages",
")",
",",
"ignore_error",
"=",
"ignore_error",
",",
"retry",
"=",
"5",
")"
]
| Install some packages on the remote host.
:param packages: ist of packages to install. | [
"Install",
"some",
"packages",
"on",
"the",
"remote",
"host",
"."
]
| bfa165538335edb1088170c7a92f097167225c81 | https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/server.py#L141-L146 | train |
redhat-openstack/python-tripleo-helper | tripleohelper/server.py | Server.rhsm_register | def rhsm_register(self, rhsm):
"""Register the host on the RHSM.
:param rhsm: a dict of parameters (login, password, pool_id)
"""
# Get rhsm credentials
login = rhsm.get('login')
password = rhsm.get('password', os.environ.get('RHN_PW'))
pool_id = rhsm.get('pool_id')
# Ensure the RHEL beta channel are disabled
self.run('rm /etc/pki/product/69.pem', ignore_error=True)
custom_log = 'subscription-manager register --username %s --password *******' % login
self.run(
'subscription-manager register --username %s --password "%s"' % (
login, password),
success_status=(0, 64),
custom_log=custom_log,
retry=3)
if pool_id:
self.run('subscription-manager attach --pool %s' % pool_id)
else:
self.run('subscription-manager attach --auto')
self.rhsm_active = True | python | def rhsm_register(self, rhsm):
"""Register the host on the RHSM.
:param rhsm: a dict of parameters (login, password, pool_id)
"""
# Get rhsm credentials
login = rhsm.get('login')
password = rhsm.get('password', os.environ.get('RHN_PW'))
pool_id = rhsm.get('pool_id')
# Ensure the RHEL beta channel are disabled
self.run('rm /etc/pki/product/69.pem', ignore_error=True)
custom_log = 'subscription-manager register --username %s --password *******' % login
self.run(
'subscription-manager register --username %s --password "%s"' % (
login, password),
success_status=(0, 64),
custom_log=custom_log,
retry=3)
if pool_id:
self.run('subscription-manager attach --pool %s' % pool_id)
else:
self.run('subscription-manager attach --auto')
self.rhsm_active = True | [
"def",
"rhsm_register",
"(",
"self",
",",
"rhsm",
")",
":",
"# Get rhsm credentials",
"login",
"=",
"rhsm",
".",
"get",
"(",
"'login'",
")",
"password",
"=",
"rhsm",
".",
"get",
"(",
"'password'",
",",
"os",
".",
"environ",
".",
"get",
"(",
"'RHN_PW'",
")",
")",
"pool_id",
"=",
"rhsm",
".",
"get",
"(",
"'pool_id'",
")",
"# Ensure the RHEL beta channel are disabled",
"self",
".",
"run",
"(",
"'rm /etc/pki/product/69.pem'",
",",
"ignore_error",
"=",
"True",
")",
"custom_log",
"=",
"'subscription-manager register --username %s --password *******'",
"%",
"login",
"self",
".",
"run",
"(",
"'subscription-manager register --username %s --password \"%s\"'",
"%",
"(",
"login",
",",
"password",
")",
",",
"success_status",
"=",
"(",
"0",
",",
"64",
")",
",",
"custom_log",
"=",
"custom_log",
",",
"retry",
"=",
"3",
")",
"if",
"pool_id",
":",
"self",
".",
"run",
"(",
"'subscription-manager attach --pool %s'",
"%",
"pool_id",
")",
"else",
":",
"self",
".",
"run",
"(",
"'subscription-manager attach --auto'",
")",
"self",
".",
"rhsm_active",
"=",
"True"
]
| Register the host on the RHSM.
:param rhsm: a dict of parameters (login, password, pool_id) | [
"Register",
"the",
"host",
"on",
"the",
"RHSM",
"."
]
| bfa165538335edb1088170c7a92f097167225c81 | https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/server.py#L155-L177 | train |
redhat-openstack/python-tripleo-helper | tripleohelper/server.py | Server.enable_repositories | def enable_repositories(self, repositories):
"""Enable a list of RHSM repositories.
:param repositories: a dict in this format:
[{'type': 'rhsm_channel', 'name': 'rhel-7-server-rpms'}]
"""
for r in repositories:
if r['type'] != 'rhsm_channel':
continue
if r['name'] not in self.rhsm_channels:
self.rhsm_channels.append(r['name'])
if self.rhsm_active:
subscription_cmd = "subscription-manager repos '--disable=*' --enable=" + ' --enable='.join(
self.rhsm_channels)
self.run(subscription_cmd)
repo_files = [r for r in repositories if r['type'] == 'yum_repo']
for repo_file in repo_files:
self.create_file(repo_file['dest'], repo_file['content'])
packages = [r['name'] for r in repositories if r['type'] == 'package']
if packages:
self.yum_install(packages) | python | def enable_repositories(self, repositories):
"""Enable a list of RHSM repositories.
:param repositories: a dict in this format:
[{'type': 'rhsm_channel', 'name': 'rhel-7-server-rpms'}]
"""
for r in repositories:
if r['type'] != 'rhsm_channel':
continue
if r['name'] not in self.rhsm_channels:
self.rhsm_channels.append(r['name'])
if self.rhsm_active:
subscription_cmd = "subscription-manager repos '--disable=*' --enable=" + ' --enable='.join(
self.rhsm_channels)
self.run(subscription_cmd)
repo_files = [r for r in repositories if r['type'] == 'yum_repo']
for repo_file in repo_files:
self.create_file(repo_file['dest'], repo_file['content'])
packages = [r['name'] for r in repositories if r['type'] == 'package']
if packages:
self.yum_install(packages) | [
"def",
"enable_repositories",
"(",
"self",
",",
"repositories",
")",
":",
"for",
"r",
"in",
"repositories",
":",
"if",
"r",
"[",
"'type'",
"]",
"!=",
"'rhsm_channel'",
":",
"continue",
"if",
"r",
"[",
"'name'",
"]",
"not",
"in",
"self",
".",
"rhsm_channels",
":",
"self",
".",
"rhsm_channels",
".",
"append",
"(",
"r",
"[",
"'name'",
"]",
")",
"if",
"self",
".",
"rhsm_active",
":",
"subscription_cmd",
"=",
"\"subscription-manager repos '--disable=*' --enable=\"",
"+",
"' --enable='",
".",
"join",
"(",
"self",
".",
"rhsm_channels",
")",
"self",
".",
"run",
"(",
"subscription_cmd",
")",
"repo_files",
"=",
"[",
"r",
"for",
"r",
"in",
"repositories",
"if",
"r",
"[",
"'type'",
"]",
"==",
"'yum_repo'",
"]",
"for",
"repo_file",
"in",
"repo_files",
":",
"self",
".",
"create_file",
"(",
"repo_file",
"[",
"'dest'",
"]",
",",
"repo_file",
"[",
"'content'",
"]",
")",
"packages",
"=",
"[",
"r",
"[",
"'name'",
"]",
"for",
"r",
"in",
"repositories",
"if",
"r",
"[",
"'type'",
"]",
"==",
"'package'",
"]",
"if",
"packages",
":",
"self",
".",
"yum_install",
"(",
"packages",
")"
]
| Enable a list of RHSM repositories.
:param repositories: a dict in this format:
[{'type': 'rhsm_channel', 'name': 'rhel-7-server-rpms'}] | [
"Enable",
"a",
"list",
"of",
"RHSM",
"repositories",
"."
]
| bfa165538335edb1088170c7a92f097167225c81 | https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/server.py#L179-L202 | train |
redhat-openstack/python-tripleo-helper | tripleohelper/server.py | Server.create_stack_user | def create_stack_user(self):
"""Create the stack user on the machine.
"""
self.run('adduser -m stack', success_status=(0, 9))
self.create_file('/etc/sudoers.d/stack', 'stack ALL=(root) NOPASSWD:ALL\n')
self.run('mkdir -p /home/stack/.ssh')
self.run('cp /root/.ssh/authorized_keys /home/stack/.ssh/authorized_keys')
self.run('chown -R stack:stack /home/stack/.ssh')
self.run('chmod 700 /home/stack/.ssh')
self.run('chmod 600 /home/stack/.ssh/authorized_keys')
self.ssh_pool.build_ssh_client(self.hostname, 'stack',
self._key_filename,
self.via_ip) | python | def create_stack_user(self):
"""Create the stack user on the machine.
"""
self.run('adduser -m stack', success_status=(0, 9))
self.create_file('/etc/sudoers.d/stack', 'stack ALL=(root) NOPASSWD:ALL\n')
self.run('mkdir -p /home/stack/.ssh')
self.run('cp /root/.ssh/authorized_keys /home/stack/.ssh/authorized_keys')
self.run('chown -R stack:stack /home/stack/.ssh')
self.run('chmod 700 /home/stack/.ssh')
self.run('chmod 600 /home/stack/.ssh/authorized_keys')
self.ssh_pool.build_ssh_client(self.hostname, 'stack',
self._key_filename,
self.via_ip) | [
"def",
"create_stack_user",
"(",
"self",
")",
":",
"self",
".",
"run",
"(",
"'adduser -m stack'",
",",
"success_status",
"=",
"(",
"0",
",",
"9",
")",
")",
"self",
".",
"create_file",
"(",
"'/etc/sudoers.d/stack'",
",",
"'stack ALL=(root) NOPASSWD:ALL\\n'",
")",
"self",
".",
"run",
"(",
"'mkdir -p /home/stack/.ssh'",
")",
"self",
".",
"run",
"(",
"'cp /root/.ssh/authorized_keys /home/stack/.ssh/authorized_keys'",
")",
"self",
".",
"run",
"(",
"'chown -R stack:stack /home/stack/.ssh'",
")",
"self",
".",
"run",
"(",
"'chmod 700 /home/stack/.ssh'",
")",
"self",
".",
"run",
"(",
"'chmod 600 /home/stack/.ssh/authorized_keys'",
")",
"self",
".",
"ssh_pool",
".",
"build_ssh_client",
"(",
"self",
".",
"hostname",
",",
"'stack'",
",",
"self",
".",
"_key_filename",
",",
"self",
".",
"via_ip",
")"
]
| Create the stack user on the machine. | [
"Create",
"the",
"stack",
"user",
"on",
"the",
"machine",
"."
]
| bfa165538335edb1088170c7a92f097167225c81 | https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/server.py#L204-L216 | train |
redhat-openstack/python-tripleo-helper | tripleohelper/server.py | Server.fetch_image | def fetch_image(self, path, dest, user='root'):
"""Store in the user home directory an image from a remote location.
"""
self.run('test -f %s || curl -L -s -o %s %s' % (dest, dest, path),
user=user, ignore_error=True) | python | def fetch_image(self, path, dest, user='root'):
"""Store in the user home directory an image from a remote location.
"""
self.run('test -f %s || curl -L -s -o %s %s' % (dest, dest, path),
user=user, ignore_error=True) | [
"def",
"fetch_image",
"(",
"self",
",",
"path",
",",
"dest",
",",
"user",
"=",
"'root'",
")",
":",
"self",
".",
"run",
"(",
"'test -f %s || curl -L -s -o %s %s'",
"%",
"(",
"dest",
",",
"dest",
",",
"path",
")",
",",
"user",
"=",
"user",
",",
"ignore_error",
"=",
"True",
")"
]
| Store in the user home directory an image from a remote location. | [
"Store",
"in",
"the",
"user",
"home",
"directory",
"an",
"image",
"from",
"a",
"remote",
"location",
"."
]
| bfa165538335edb1088170c7a92f097167225c81 | https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/server.py#L218-L222 | train |
redhat-openstack/python-tripleo-helper | tripleohelper/server.py | Server.clean_system | def clean_system(self):
"""Clean up unnecessary packages from the system.
"""
self.run('systemctl disable NetworkManager', success_status=(0, 1))
self.run('systemctl stop NetworkManager', success_status=(0, 5))
self.run('pkill -9 dhclient', success_status=(0, 1))
self.yum_remove(['cloud-init', 'NetworkManager'])
self.run('systemctl enable network')
self.run('systemctl restart network') | python | def clean_system(self):
"""Clean up unnecessary packages from the system.
"""
self.run('systemctl disable NetworkManager', success_status=(0, 1))
self.run('systemctl stop NetworkManager', success_status=(0, 5))
self.run('pkill -9 dhclient', success_status=(0, 1))
self.yum_remove(['cloud-init', 'NetworkManager'])
self.run('systemctl enable network')
self.run('systemctl restart network') | [
"def",
"clean_system",
"(",
"self",
")",
":",
"self",
".",
"run",
"(",
"'systemctl disable NetworkManager'",
",",
"success_status",
"=",
"(",
"0",
",",
"1",
")",
")",
"self",
".",
"run",
"(",
"'systemctl stop NetworkManager'",
",",
"success_status",
"=",
"(",
"0",
",",
"5",
")",
")",
"self",
".",
"run",
"(",
"'pkill -9 dhclient'",
",",
"success_status",
"=",
"(",
"0",
",",
"1",
")",
")",
"self",
".",
"yum_remove",
"(",
"[",
"'cloud-init'",
",",
"'NetworkManager'",
"]",
")",
"self",
".",
"run",
"(",
"'systemctl enable network'",
")",
"self",
".",
"run",
"(",
"'systemctl restart network'",
")"
]
| Clean up unnecessary packages from the system. | [
"Clean",
"up",
"unnecessary",
"packages",
"from",
"the",
"system",
"."
]
| bfa165538335edb1088170c7a92f097167225c81 | https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/server.py#L232-L240 | train |
redhat-openstack/python-tripleo-helper | tripleohelper/server.py | Server.yum_update | def yum_update(self, allow_reboot=False):
"""Do a yum update on the system.
:param allow_reboot: If True and if a new kernel has been installed,
the system will be rebooted
"""
self.run('yum clean all')
self.run('test -f /usr/bin/subscription-manager && subscription-manager repos --list-enabled',
ignore_error=True)
self.run('yum repolist')
self.run('yum update -y --quiet', retry=3)
# reboot if a new initrd has been generated since the boot
if allow_reboot:
self.run('grubby --set-default $(ls /boot/vmlinuz-*.x86_64|tail -1)')
default_kernel = self.run('grubby --default-kernel')[0].rstrip()
cur_kernel = self.run('uname -r')[0].rstrip()
if cur_kernel not in default_kernel:
self.run('reboot', ignore_error=True)
self.ssh_pool.stop_all() | python | def yum_update(self, allow_reboot=False):
"""Do a yum update on the system.
:param allow_reboot: If True and if a new kernel has been installed,
the system will be rebooted
"""
self.run('yum clean all')
self.run('test -f /usr/bin/subscription-manager && subscription-manager repos --list-enabled',
ignore_error=True)
self.run('yum repolist')
self.run('yum update -y --quiet', retry=3)
# reboot if a new initrd has been generated since the boot
if allow_reboot:
self.run('grubby --set-default $(ls /boot/vmlinuz-*.x86_64|tail -1)')
default_kernel = self.run('grubby --default-kernel')[0].rstrip()
cur_kernel = self.run('uname -r')[0].rstrip()
if cur_kernel not in default_kernel:
self.run('reboot', ignore_error=True)
self.ssh_pool.stop_all() | [
"def",
"yum_update",
"(",
"self",
",",
"allow_reboot",
"=",
"False",
")",
":",
"self",
".",
"run",
"(",
"'yum clean all'",
")",
"self",
".",
"run",
"(",
"'test -f /usr/bin/subscription-manager && subscription-manager repos --list-enabled'",
",",
"ignore_error",
"=",
"True",
")",
"self",
".",
"run",
"(",
"'yum repolist'",
")",
"self",
".",
"run",
"(",
"'yum update -y --quiet'",
",",
"retry",
"=",
"3",
")",
"# reboot if a new initrd has been generated since the boot",
"if",
"allow_reboot",
":",
"self",
".",
"run",
"(",
"'grubby --set-default $(ls /boot/vmlinuz-*.x86_64|tail -1)'",
")",
"default_kernel",
"=",
"self",
".",
"run",
"(",
"'grubby --default-kernel'",
")",
"[",
"0",
"]",
".",
"rstrip",
"(",
")",
"cur_kernel",
"=",
"self",
".",
"run",
"(",
"'uname -r'",
")",
"[",
"0",
"]",
".",
"rstrip",
"(",
")",
"if",
"cur_kernel",
"not",
"in",
"default_kernel",
":",
"self",
".",
"run",
"(",
"'reboot'",
",",
"ignore_error",
"=",
"True",
")",
"self",
".",
"ssh_pool",
".",
"stop_all",
"(",
")"
]
| Do a yum update on the system.
:param allow_reboot: If True and if a new kernel has been installed,
the system will be rebooted | [
"Do",
"a",
"yum",
"update",
"on",
"the",
"system",
"."
]
| bfa165538335edb1088170c7a92f097167225c81 | https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/server.py#L242-L260 | train |
JawboneHealth/jhhalchemy | jhhalchemy/model/time_order.py | get_by_range | def get_by_range(model_cls, *args, **kwargs):
"""
Get ordered list of models for the specified time range.
The timestamp on the earliest model will likely occur before start_timestamp. This is to ensure that we return
the models for the entire range.
:param model_cls: the class of the model to return
:param args: arguments specific to the model class
:param kwargs: start_timestamp and end_timestamp (see below) as well as keyword args specific to the model class
:keyword start_timestamp: the most recent models set before this and all after, defaults to 0
:keyword end_timestamp: only models set before (and including) this timestamp, defaults to now
:return: model generator
"""
start_timestamp = kwargs.get('start_timestamp')
end_timestamp = kwargs.get('end_timestamp')
if (start_timestamp is not None) and (end_timestamp is not None) and (start_timestamp > end_timestamp):
raise InvalidTimestampRange
models = model_cls.read_time_range(*args, end_timestamp=end_timestamp).order_by(model_cls.time_order)
#
# start time -> Loop through until you find one set before or on start
#
if start_timestamp is not None:
index = 0
for index, model in enumerate(models, start=1):
if model.timestamp <= start_timestamp:
break
models = models[:index]
return models | python | def get_by_range(model_cls, *args, **kwargs):
"""
Get ordered list of models for the specified time range.
The timestamp on the earliest model will likely occur before start_timestamp. This is to ensure that we return
the models for the entire range.
:param model_cls: the class of the model to return
:param args: arguments specific to the model class
:param kwargs: start_timestamp and end_timestamp (see below) as well as keyword args specific to the model class
:keyword start_timestamp: the most recent models set before this and all after, defaults to 0
:keyword end_timestamp: only models set before (and including) this timestamp, defaults to now
:return: model generator
"""
start_timestamp = kwargs.get('start_timestamp')
end_timestamp = kwargs.get('end_timestamp')
if (start_timestamp is not None) and (end_timestamp is not None) and (start_timestamp > end_timestamp):
raise InvalidTimestampRange
models = model_cls.read_time_range(*args, end_timestamp=end_timestamp).order_by(model_cls.time_order)
#
# start time -> Loop through until you find one set before or on start
#
if start_timestamp is not None:
index = 0
for index, model in enumerate(models, start=1):
if model.timestamp <= start_timestamp:
break
models = models[:index]
return models | [
"def",
"get_by_range",
"(",
"model_cls",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"start_timestamp",
"=",
"kwargs",
".",
"get",
"(",
"'start_timestamp'",
")",
"end_timestamp",
"=",
"kwargs",
".",
"get",
"(",
"'end_timestamp'",
")",
"if",
"(",
"start_timestamp",
"is",
"not",
"None",
")",
"and",
"(",
"end_timestamp",
"is",
"not",
"None",
")",
"and",
"(",
"start_timestamp",
">",
"end_timestamp",
")",
":",
"raise",
"InvalidTimestampRange",
"models",
"=",
"model_cls",
".",
"read_time_range",
"(",
"*",
"args",
",",
"end_timestamp",
"=",
"end_timestamp",
")",
".",
"order_by",
"(",
"model_cls",
".",
"time_order",
")",
"#",
"# start time -> Loop through until you find one set before or on start",
"#",
"if",
"start_timestamp",
"is",
"not",
"None",
":",
"index",
"=",
"0",
"for",
"index",
",",
"model",
"in",
"enumerate",
"(",
"models",
",",
"start",
"=",
"1",
")",
":",
"if",
"model",
".",
"timestamp",
"<=",
"start_timestamp",
":",
"break",
"models",
"=",
"models",
"[",
":",
"index",
"]",
"return",
"models"
]
| Get ordered list of models for the specified time range.
The timestamp on the earliest model will likely occur before start_timestamp. This is to ensure that we return
the models for the entire range.
:param model_cls: the class of the model to return
:param args: arguments specific to the model class
:param kwargs: start_timestamp and end_timestamp (see below) as well as keyword args specific to the model class
:keyword start_timestamp: the most recent models set before this and all after, defaults to 0
:keyword end_timestamp: only models set before (and including) this timestamp, defaults to now
:return: model generator | [
"Get",
"ordered",
"list",
"of",
"models",
"for",
"the",
"specified",
"time",
"range",
".",
"The",
"timestamp",
"on",
"the",
"earliest",
"model",
"will",
"likely",
"occur",
"before",
"start_timestamp",
".",
"This",
"is",
"to",
"ensure",
"that",
"we",
"return",
"the",
"models",
"for",
"the",
"entire",
"range",
"."
]
| ca0011d644e404561a142c9d7f0a8a569f1f4f27 | https://github.com/JawboneHealth/jhhalchemy/blob/ca0011d644e404561a142c9d7f0a8a569f1f4f27/jhhalchemy/model/time_order.py#L69-L99 | train |
JawboneHealth/jhhalchemy | jhhalchemy/model/time_order.py | TimeOrderMixin.read_time_range | def read_time_range(cls, *args, **kwargs):
"""
Get all timezones set within a given time. Uses time_dsc_index
SELECT *
FROM <table>
WHERE time_order <= -<start_timestamp>
AND time_order >= -<end_timestamp>
:param args: SQLAlchemy filter criteria, (e.g., uid == uid, type == 1)
:param kwargs: start_timestamp and end_timestamp are the only kwargs, they specify the range (inclusive)
:return: model generator
"""
criteria = list(args)
start = kwargs.get('start_timestamp')
end = kwargs.get('end_timestamp')
if start is not None:
criteria.append(cls.time_order <= -start)
if end is not None:
criteria.append(cls.time_order >= -end)
return cls.read(*criteria) | python | def read_time_range(cls, *args, **kwargs):
"""
Get all timezones set within a given time. Uses time_dsc_index
SELECT *
FROM <table>
WHERE time_order <= -<start_timestamp>
AND time_order >= -<end_timestamp>
:param args: SQLAlchemy filter criteria, (e.g., uid == uid, type == 1)
:param kwargs: start_timestamp and end_timestamp are the only kwargs, they specify the range (inclusive)
:return: model generator
"""
criteria = list(args)
start = kwargs.get('start_timestamp')
end = kwargs.get('end_timestamp')
if start is not None:
criteria.append(cls.time_order <= -start)
if end is not None:
criteria.append(cls.time_order >= -end)
return cls.read(*criteria) | [
"def",
"read_time_range",
"(",
"cls",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"criteria",
"=",
"list",
"(",
"args",
")",
"start",
"=",
"kwargs",
".",
"get",
"(",
"'start_timestamp'",
")",
"end",
"=",
"kwargs",
".",
"get",
"(",
"'end_timestamp'",
")",
"if",
"start",
"is",
"not",
"None",
":",
"criteria",
".",
"append",
"(",
"cls",
".",
"time_order",
"<=",
"-",
"start",
")",
"if",
"end",
"is",
"not",
"None",
":",
"criteria",
".",
"append",
"(",
"cls",
".",
"time_order",
">=",
"-",
"end",
")",
"return",
"cls",
".",
"read",
"(",
"*",
"criteria",
")"
]
| Get all timezones set within a given time. Uses time_dsc_index
SELECT *
FROM <table>
WHERE time_order <= -<start_timestamp>
AND time_order >= -<end_timestamp>
:param args: SQLAlchemy filter criteria, (e.g., uid == uid, type == 1)
:param kwargs: start_timestamp and end_timestamp are the only kwargs, they specify the range (inclusive)
:return: model generator | [
"Get",
"all",
"timezones",
"set",
"within",
"a",
"given",
"time",
".",
"Uses",
"time_dsc_index"
]
| ca0011d644e404561a142c9d7f0a8a569f1f4f27 | https://github.com/JawboneHealth/jhhalchemy/blob/ca0011d644e404561a142c9d7f0a8a569f1f4f27/jhhalchemy/model/time_order.py#L34-L54 | train |
geophysics-ubonn/crtomo_tools | lib/crtomo/parManager.py | ParMan.add_data | def add_data(self, data, metadata=None):
"""Add data to the parameter set
Parameters
----------
data: numpy.ndarray
one or more parameter sets. It must either be 1D or 2D, with the
first dimension the number of parameter sets (K), and the second
the number of elements (N): K x N
metadata: object, optional
the provided object will be stored in in the metadata dict and can
be received with the ID that is returned. If multiple (K) datasets
are added at ones, provide a list of objects with len K.
Returns
-------
int, ID
ID which can be used to access the parameter set
Examples
--------
>>> # suppose that grid is a fully initialized grid oject with 100
# elements
parman = ParMan(grid)
#
one_data_set = np.ones(100)
cid = parman.add_data(one_data_set)
print(parman.parsets[cid])
two_data_sets = np.ones((2, 100))
cids = parman.add_data(two_data_sets)
print(cids)
[0, ]
[1, 2]
"""
subdata = np.atleast_2d(data)
# we try to accommodate transposed input
if subdata.shape[1] != self.grid.nr_of_elements:
if subdata.shape[0] == self.grid.nr_of_elements:
subdata = subdata.T
else:
raise Exception(
'Number of values does not match the number of ' +
'elements in the grid'
)
# now make sure that metadata can be zipped with the subdata
K = subdata.shape[0]
if metadata is not None:
if K > 1:
if(not isinstance(metadata, (list, tuple)) or
len(metadata) != K):
raise Exception('metadata does not fit the provided data')
else:
# K == 1
metadata = [metadata, ]
if metadata is None:
metadata = [None for i in range(0, K)]
return_ids = []
for dataset, meta in zip(subdata, metadata):
cid = self._get_next_index()
self.parsets[cid] = dataset
self.metadata[cid] = meta
return_ids.append(cid)
if len(return_ids) == 1:
return return_ids[0]
else:
return return_ids | python | def add_data(self, data, metadata=None):
"""Add data to the parameter set
Parameters
----------
data: numpy.ndarray
one or more parameter sets. It must either be 1D or 2D, with the
first dimension the number of parameter sets (K), and the second
the number of elements (N): K x N
metadata: object, optional
the provided object will be stored in in the metadata dict and can
be received with the ID that is returned. If multiple (K) datasets
are added at ones, provide a list of objects with len K.
Returns
-------
int, ID
ID which can be used to access the parameter set
Examples
--------
>>> # suppose that grid is a fully initialized grid oject with 100
# elements
parman = ParMan(grid)
#
one_data_set = np.ones(100)
cid = parman.add_data(one_data_set)
print(parman.parsets[cid])
two_data_sets = np.ones((2, 100))
cids = parman.add_data(two_data_sets)
print(cids)
[0, ]
[1, 2]
"""
subdata = np.atleast_2d(data)
# we try to accommodate transposed input
if subdata.shape[1] != self.grid.nr_of_elements:
if subdata.shape[0] == self.grid.nr_of_elements:
subdata = subdata.T
else:
raise Exception(
'Number of values does not match the number of ' +
'elements in the grid'
)
# now make sure that metadata can be zipped with the subdata
K = subdata.shape[0]
if metadata is not None:
if K > 1:
if(not isinstance(metadata, (list, tuple)) or
len(metadata) != K):
raise Exception('metadata does not fit the provided data')
else:
# K == 1
metadata = [metadata, ]
if metadata is None:
metadata = [None for i in range(0, K)]
return_ids = []
for dataset, meta in zip(subdata, metadata):
cid = self._get_next_index()
self.parsets[cid] = dataset
self.metadata[cid] = meta
return_ids.append(cid)
if len(return_ids) == 1:
return return_ids[0]
else:
return return_ids | [
"def",
"add_data",
"(",
"self",
",",
"data",
",",
"metadata",
"=",
"None",
")",
":",
"subdata",
"=",
"np",
".",
"atleast_2d",
"(",
"data",
")",
"# we try to accommodate transposed input",
"if",
"subdata",
".",
"shape",
"[",
"1",
"]",
"!=",
"self",
".",
"grid",
".",
"nr_of_elements",
":",
"if",
"subdata",
".",
"shape",
"[",
"0",
"]",
"==",
"self",
".",
"grid",
".",
"nr_of_elements",
":",
"subdata",
"=",
"subdata",
".",
"T",
"else",
":",
"raise",
"Exception",
"(",
"'Number of values does not match the number of '",
"+",
"'elements in the grid'",
")",
"# now make sure that metadata can be zipped with the subdata",
"K",
"=",
"subdata",
".",
"shape",
"[",
"0",
"]",
"if",
"metadata",
"is",
"not",
"None",
":",
"if",
"K",
">",
"1",
":",
"if",
"(",
"not",
"isinstance",
"(",
"metadata",
",",
"(",
"list",
",",
"tuple",
")",
")",
"or",
"len",
"(",
"metadata",
")",
"!=",
"K",
")",
":",
"raise",
"Exception",
"(",
"'metadata does not fit the provided data'",
")",
"else",
":",
"# K == 1",
"metadata",
"=",
"[",
"metadata",
",",
"]",
"if",
"metadata",
"is",
"None",
":",
"metadata",
"=",
"[",
"None",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"K",
")",
"]",
"return_ids",
"=",
"[",
"]",
"for",
"dataset",
",",
"meta",
"in",
"zip",
"(",
"subdata",
",",
"metadata",
")",
":",
"cid",
"=",
"self",
".",
"_get_next_index",
"(",
")",
"self",
".",
"parsets",
"[",
"cid",
"]",
"=",
"dataset",
"self",
".",
"metadata",
"[",
"cid",
"]",
"=",
"meta",
"return_ids",
".",
"append",
"(",
"cid",
")",
"if",
"len",
"(",
"return_ids",
")",
"==",
"1",
":",
"return",
"return_ids",
"[",
"0",
"]",
"else",
":",
"return",
"return_ids"
]
| Add data to the parameter set
Parameters
----------
data: numpy.ndarray
one or more parameter sets. It must either be 1D or 2D, with the
first dimension the number of parameter sets (K), and the second
the number of elements (N): K x N
metadata: object, optional
the provided object will be stored in in the metadata dict and can
be received with the ID that is returned. If multiple (K) datasets
are added at ones, provide a list of objects with len K.
Returns
-------
int, ID
ID which can be used to access the parameter set
Examples
--------
>>> # suppose that grid is a fully initialized grid oject with 100
# elements
parman = ParMan(grid)
#
one_data_set = np.ones(100)
cid = parman.add_data(one_data_set)
print(parman.parsets[cid])
two_data_sets = np.ones((2, 100))
cids = parman.add_data(two_data_sets)
print(cids)
[0, ]
[1, 2] | [
"Add",
"data",
"to",
"the",
"parameter",
"set"
]
| 27c3e21a557f8df1c12455b96c4c2e00e08a5b4a | https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/lib/crtomo/parManager.py#L40-L112 | train |
geophysics-ubonn/crtomo_tools | lib/crtomo/parManager.py | ParMan.load_model_from_file | def load_model_from_file(self, filename):
"""Load one parameter set from a file which contains one value per line
No row is skipped.
Parameters
----------
filename : string, file path
Filename to loaded data from
Returns
-------
pid : int
ID of parameter set
"""
assert os.path.isfile(filename)
data = np.loadtxt(filename).squeeze()
assert len(data.shape) == 1
pid = self.add_data(data)
return pid | python | def load_model_from_file(self, filename):
"""Load one parameter set from a file which contains one value per line
No row is skipped.
Parameters
----------
filename : string, file path
Filename to loaded data from
Returns
-------
pid : int
ID of parameter set
"""
assert os.path.isfile(filename)
data = np.loadtxt(filename).squeeze()
assert len(data.shape) == 1
pid = self.add_data(data)
return pid | [
"def",
"load_model_from_file",
"(",
"self",
",",
"filename",
")",
":",
"assert",
"os",
".",
"path",
".",
"isfile",
"(",
"filename",
")",
"data",
"=",
"np",
".",
"loadtxt",
"(",
"filename",
")",
".",
"squeeze",
"(",
")",
"assert",
"len",
"(",
"data",
".",
"shape",
")",
"==",
"1",
"pid",
"=",
"self",
".",
"add_data",
"(",
"data",
")",
"return",
"pid"
]
| Load one parameter set from a file which contains one value per line
No row is skipped.
Parameters
----------
filename : string, file path
Filename to loaded data from
Returns
-------
pid : int
ID of parameter set | [
"Load",
"one",
"parameter",
"set",
"from",
"a",
"file",
"which",
"contains",
"one",
"value",
"per",
"line"
]
| 27c3e21a557f8df1c12455b96c4c2e00e08a5b4a | https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/lib/crtomo/parManager.py#L171-L190 | train |
geophysics-ubonn/crtomo_tools | lib/crtomo/parManager.py | ParMan.load_from_sens_file | def load_from_sens_file(self, filename):
"""Load real and imaginary parts from a sens.dat file generated by
CRMod
Parameters
----------
filename: string
filename of sensitivity file
Returns
-------
nid_re: int
ID of real part of sensitivities
nid_im: int
ID of imaginary part of sensitivities
"""
sens_data = np.loadtxt(filename, skiprows=1)
nid_re = self.add_data(sens_data[:, 2])
nid_im = self.add_data(sens_data[:, 3])
return nid_re, nid_im | python | def load_from_sens_file(self, filename):
"""Load real and imaginary parts from a sens.dat file generated by
CRMod
Parameters
----------
filename: string
filename of sensitivity file
Returns
-------
nid_re: int
ID of real part of sensitivities
nid_im: int
ID of imaginary part of sensitivities
"""
sens_data = np.loadtxt(filename, skiprows=1)
nid_re = self.add_data(sens_data[:, 2])
nid_im = self.add_data(sens_data[:, 3])
return nid_re, nid_im | [
"def",
"load_from_sens_file",
"(",
"self",
",",
"filename",
")",
":",
"sens_data",
"=",
"np",
".",
"loadtxt",
"(",
"filename",
",",
"skiprows",
"=",
"1",
")",
"nid_re",
"=",
"self",
".",
"add_data",
"(",
"sens_data",
"[",
":",
",",
"2",
"]",
")",
"nid_im",
"=",
"self",
".",
"add_data",
"(",
"sens_data",
"[",
":",
",",
"3",
"]",
")",
"return",
"nid_re",
",",
"nid_im"
]
| Load real and imaginary parts from a sens.dat file generated by
CRMod
Parameters
----------
filename: string
filename of sensitivity file
Returns
-------
nid_re: int
ID of real part of sensitivities
nid_im: int
ID of imaginary part of sensitivities | [
"Load",
"real",
"and",
"imaginary",
"parts",
"from",
"a",
"sens",
".",
"dat",
"file",
"generated",
"by",
"CRMod"
]
| 27c3e21a557f8df1c12455b96c4c2e00e08a5b4a | https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/lib/crtomo/parManager.py#L192-L211 | train |
geophysics-ubonn/crtomo_tools | lib/crtomo/parManager.py | ParMan.save_to_rho_file | def save_to_rho_file(self, filename, cid_mag, cid_pha=None):
"""Save one or two parameter sets in the rho.dat forward model format
Parameters
----------
filename: string (file path)
output filename
cid_mag: int
ID of magnitude parameter set
cid_pha: int, optional
ID of phase parameter set. If not set, will be set to zeros.
"""
mag_data = self.parsets[cid_mag]
if cid_pha is None:
pha_data = np.zeros(mag_data.shape)
else:
pha_data = self.parsets[cid_pha]
with open(filename, 'wb') as fid:
fid.write(
bytes(
'{0}\n'.format(self.grid.nr_of_elements),
'utf-8',
)
)
np.savetxt(
fid,
np.vstack((
mag_data,
pha_data,
)).T,
fmt='%f %f'
) | python | def save_to_rho_file(self, filename, cid_mag, cid_pha=None):
"""Save one or two parameter sets in the rho.dat forward model format
Parameters
----------
filename: string (file path)
output filename
cid_mag: int
ID of magnitude parameter set
cid_pha: int, optional
ID of phase parameter set. If not set, will be set to zeros.
"""
mag_data = self.parsets[cid_mag]
if cid_pha is None:
pha_data = np.zeros(mag_data.shape)
else:
pha_data = self.parsets[cid_pha]
with open(filename, 'wb') as fid:
fid.write(
bytes(
'{0}\n'.format(self.grid.nr_of_elements),
'utf-8',
)
)
np.savetxt(
fid,
np.vstack((
mag_data,
pha_data,
)).T,
fmt='%f %f'
) | [
"def",
"save_to_rho_file",
"(",
"self",
",",
"filename",
",",
"cid_mag",
",",
"cid_pha",
"=",
"None",
")",
":",
"mag_data",
"=",
"self",
".",
"parsets",
"[",
"cid_mag",
"]",
"if",
"cid_pha",
"is",
"None",
":",
"pha_data",
"=",
"np",
".",
"zeros",
"(",
"mag_data",
".",
"shape",
")",
"else",
":",
"pha_data",
"=",
"self",
".",
"parsets",
"[",
"cid_pha",
"]",
"with",
"open",
"(",
"filename",
",",
"'wb'",
")",
"as",
"fid",
":",
"fid",
".",
"write",
"(",
"bytes",
"(",
"'{0}\\n'",
".",
"format",
"(",
"self",
".",
"grid",
".",
"nr_of_elements",
")",
",",
"'utf-8'",
",",
")",
")",
"np",
".",
"savetxt",
"(",
"fid",
",",
"np",
".",
"vstack",
"(",
"(",
"mag_data",
",",
"pha_data",
",",
")",
")",
".",
"T",
",",
"fmt",
"=",
"'%f %f'",
")"
]
| Save one or two parameter sets in the rho.dat forward model format
Parameters
----------
filename: string (file path)
output filename
cid_mag: int
ID of magnitude parameter set
cid_pha: int, optional
ID of phase parameter set. If not set, will be set to zeros. | [
"Save",
"one",
"or",
"two",
"parameter",
"sets",
"in",
"the",
"rho",
".",
"dat",
"forward",
"model",
"format"
]
| 27c3e21a557f8df1c12455b96c4c2e00e08a5b4a | https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/lib/crtomo/parManager.py#L213-L246 | train |
geophysics-ubonn/crtomo_tools | lib/crtomo/parManager.py | ParMan._clean_pid | def _clean_pid(self, pid):
"""if pid is a number, don't do anything. If pid is a list with one
entry, strip the list and return the number. If pid contains more than
one entries, do nothing.
"""
if isinstance(pid, (list, tuple)):
if len(pid) == 1:
return pid[0]
else:
return pid
return pid | python | def _clean_pid(self, pid):
"""if pid is a number, don't do anything. If pid is a list with one
entry, strip the list and return the number. If pid contains more than
one entries, do nothing.
"""
if isinstance(pid, (list, tuple)):
if len(pid) == 1:
return pid[0]
else:
return pid
return pid | [
"def",
"_clean_pid",
"(",
"self",
",",
"pid",
")",
":",
"if",
"isinstance",
"(",
"pid",
",",
"(",
"list",
",",
"tuple",
")",
")",
":",
"if",
"len",
"(",
"pid",
")",
"==",
"1",
":",
"return",
"pid",
"[",
"0",
"]",
"else",
":",
"return",
"pid",
"return",
"pid"
]
| if pid is a number, don't do anything. If pid is a list with one
entry, strip the list and return the number. If pid contains more than
one entries, do nothing. | [
"if",
"pid",
"is",
"a",
"number",
"don",
"t",
"do",
"anything",
".",
"If",
"pid",
"is",
"a",
"list",
"with",
"one",
"entry",
"strip",
"the",
"list",
"and",
"return",
"the",
"number",
".",
"If",
"pid",
"contains",
"more",
"than",
"one",
"entries",
"do",
"nothing",
"."
]
| 27c3e21a557f8df1c12455b96c4c2e00e08a5b4a | https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/lib/crtomo/parManager.py#L261-L271 | train |
geophysics-ubonn/crtomo_tools | lib/crtomo/parManager.py | ParMan.modify_area | def modify_area(self, pid, xmin, xmax, zmin, zmax, value):
"""Modify the given dataset in the rectangular area given by the
parameters and assign all parameters inside this area the given value.
Partially contained elements are treated as INSIDE the area, i.e., they
are assigned new values.
Parameters
----------
pid: int
id of the parameter set to modify
xmin: float
smallest x value of the area to modify
xmax: float
largest x value of the area to modify
zmin: float
smallest z value of the area to modify
zmin: float
largest z value of the area to modify
value: float
this value is assigned to all parameters of the area
Examples
--------
>>> import crtomo.tdManager as CRtdm
tdman = CRtdm.tdMan(
elem_file='GRID/elem.dat',
elec_file='GRID/elec.dat',
)
pid = tdman.parman.add_empty_dataset(value=1)
tdman.parman.modify_area(
pid,
xmin=0,
xmax=2,
zmin=-2,
zmin=-0.5,
value=2,
)
fig, ax = tdman.plot.plot_elements_to_ax(pid)
fig.savefig('out.png')
"""
area_polygon = shapgeo.Polygon(
((xmin, zmax), (xmax, zmax), (xmax, zmin), (xmin, zmin))
)
self.modify_polygon(pid, area_polygon, value) | python | def modify_area(self, pid, xmin, xmax, zmin, zmax, value):
"""Modify the given dataset in the rectangular area given by the
parameters and assign all parameters inside this area the given value.
Partially contained elements are treated as INSIDE the area, i.e., they
are assigned new values.
Parameters
----------
pid: int
id of the parameter set to modify
xmin: float
smallest x value of the area to modify
xmax: float
largest x value of the area to modify
zmin: float
smallest z value of the area to modify
zmin: float
largest z value of the area to modify
value: float
this value is assigned to all parameters of the area
Examples
--------
>>> import crtomo.tdManager as CRtdm
tdman = CRtdm.tdMan(
elem_file='GRID/elem.dat',
elec_file='GRID/elec.dat',
)
pid = tdman.parman.add_empty_dataset(value=1)
tdman.parman.modify_area(
pid,
xmin=0,
xmax=2,
zmin=-2,
zmin=-0.5,
value=2,
)
fig, ax = tdman.plot.plot_elements_to_ax(pid)
fig.savefig('out.png')
"""
area_polygon = shapgeo.Polygon(
((xmin, zmax), (xmax, zmax), (xmax, zmin), (xmin, zmin))
)
self.modify_polygon(pid, area_polygon, value) | [
"def",
"modify_area",
"(",
"self",
",",
"pid",
",",
"xmin",
",",
"xmax",
",",
"zmin",
",",
"zmax",
",",
"value",
")",
":",
"area_polygon",
"=",
"shapgeo",
".",
"Polygon",
"(",
"(",
"(",
"xmin",
",",
"zmax",
")",
",",
"(",
"xmax",
",",
"zmax",
")",
",",
"(",
"xmax",
",",
"zmin",
")",
",",
"(",
"xmin",
",",
"zmin",
")",
")",
")",
"self",
".",
"modify_polygon",
"(",
"pid",
",",
"area_polygon",
",",
"value",
")"
]
| Modify the given dataset in the rectangular area given by the
parameters and assign all parameters inside this area the given value.
Partially contained elements are treated as INSIDE the area, i.e., they
are assigned new values.
Parameters
----------
pid: int
id of the parameter set to modify
xmin: float
smallest x value of the area to modify
xmax: float
largest x value of the area to modify
zmin: float
smallest z value of the area to modify
zmin: float
largest z value of the area to modify
value: float
this value is assigned to all parameters of the area
Examples
--------
>>> import crtomo.tdManager as CRtdm
tdman = CRtdm.tdMan(
elem_file='GRID/elem.dat',
elec_file='GRID/elec.dat',
)
pid = tdman.parman.add_empty_dataset(value=1)
tdman.parman.modify_area(
pid,
xmin=0,
xmax=2,
zmin=-2,
zmin=-0.5,
value=2,
)
fig, ax = tdman.plot.plot_elements_to_ax(pid)
fig.savefig('out.png') | [
"Modify",
"the",
"given",
"dataset",
"in",
"the",
"rectangular",
"area",
"given",
"by",
"the",
"parameters",
"and",
"assign",
"all",
"parameters",
"inside",
"this",
"area",
"the",
"given",
"value",
"."
]
| 27c3e21a557f8df1c12455b96c4c2e00e08a5b4a | https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/lib/crtomo/parManager.py#L273-L319 | train |
geophysics-ubonn/crtomo_tools | lib/crtomo/parManager.py | ParMan.extract_points | def extract_points(self, pid, points):
"""Extract values at certain points in the grid from a given parameter
set. Cells are selected by interpolating the centroids of the cells
towards the line using a "nearest" scheme.
Note that data is only returned for the points provided. If you want to
extract multiple data points along a line, defined by start and end
point, use the **extract_along_line** function.
Parameters
----------
pid: int
The parameter id to extract values from
points: Nx2 numpy.ndarray
(x, y) pairs
Returns
-------
values: numpy.ndarray (n x 1)
data values for extracted data points
"""
xy = self.grid.get_element_centroids()
data = self.parsets[pid]
iobj = spi.NearestNDInterpolator(xy, data)
values = iobj(points)
return values | python | def extract_points(self, pid, points):
"""Extract values at certain points in the grid from a given parameter
set. Cells are selected by interpolating the centroids of the cells
towards the line using a "nearest" scheme.
Note that data is only returned for the points provided. If you want to
extract multiple data points along a line, defined by start and end
point, use the **extract_along_line** function.
Parameters
----------
pid: int
The parameter id to extract values from
points: Nx2 numpy.ndarray
(x, y) pairs
Returns
-------
values: numpy.ndarray (n x 1)
data values for extracted data points
"""
xy = self.grid.get_element_centroids()
data = self.parsets[pid]
iobj = spi.NearestNDInterpolator(xy, data)
values = iobj(points)
return values | [
"def",
"extract_points",
"(",
"self",
",",
"pid",
",",
"points",
")",
":",
"xy",
"=",
"self",
".",
"grid",
".",
"get_element_centroids",
"(",
")",
"data",
"=",
"self",
".",
"parsets",
"[",
"pid",
"]",
"iobj",
"=",
"spi",
".",
"NearestNDInterpolator",
"(",
"xy",
",",
"data",
")",
"values",
"=",
"iobj",
"(",
"points",
")",
"return",
"values"
]
| Extract values at certain points in the grid from a given parameter
set. Cells are selected by interpolating the centroids of the cells
towards the line using a "nearest" scheme.
Note that data is only returned for the points provided. If you want to
extract multiple data points along a line, defined by start and end
point, use the **extract_along_line** function.
Parameters
----------
pid: int
The parameter id to extract values from
points: Nx2 numpy.ndarray
(x, y) pairs
Returns
-------
values: numpy.ndarray (n x 1)
data values for extracted data points | [
"Extract",
"values",
"at",
"certain",
"points",
"in",
"the",
"grid",
"from",
"a",
"given",
"parameter",
"set",
".",
"Cells",
"are",
"selected",
"by",
"interpolating",
"the",
"centroids",
"of",
"the",
"cells",
"towards",
"the",
"line",
"using",
"a",
"nearest",
"scheme",
"."
]
| 27c3e21a557f8df1c12455b96c4c2e00e08a5b4a | https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/lib/crtomo/parManager.py#L373-L399 | train |
geophysics-ubonn/crtomo_tools | lib/crtomo/parManager.py | ParMan.extract_along_line | def extract_along_line(self, pid, xy0, xy1, N=10):
"""Extract parameter values along a given line.
Parameters
----------
pid: int
The parameter id to extract values from
xy0: tuple
A tupe with (x,y) start point coordinates
xy1: tuple
A tupe with (x,y) end point coordinates
N: integer, optional
The number of values to extract along the line (including start and
end point)
Returns
-------
values: numpy.ndarray (n x 1)
data values for extracted data points
"""
assert N >= 2
xy0 = np.array(xy0).squeeze()
xy1 = np.array(xy1).squeeze()
assert xy0.size == 2
assert xy1.size == 2
# compute points
points = [(x, y) for x, y in zip(
np.linspace(xy0[0], xy1[0], N), np.linspace(xy0[1], xy1[1], N)
)]
result = self.extract_points(pid, points)
results_xyv = np.hstack((
points,
result[:, np.newaxis]
))
return results_xyv | python | def extract_along_line(self, pid, xy0, xy1, N=10):
"""Extract parameter values along a given line.
Parameters
----------
pid: int
The parameter id to extract values from
xy0: tuple
A tupe with (x,y) start point coordinates
xy1: tuple
A tupe with (x,y) end point coordinates
N: integer, optional
The number of values to extract along the line (including start and
end point)
Returns
-------
values: numpy.ndarray (n x 1)
data values for extracted data points
"""
assert N >= 2
xy0 = np.array(xy0).squeeze()
xy1 = np.array(xy1).squeeze()
assert xy0.size == 2
assert xy1.size == 2
# compute points
points = [(x, y) for x, y in zip(
np.linspace(xy0[0], xy1[0], N), np.linspace(xy0[1], xy1[1], N)
)]
result = self.extract_points(pid, points)
results_xyv = np.hstack((
points,
result[:, np.newaxis]
))
return results_xyv | [
"def",
"extract_along_line",
"(",
"self",
",",
"pid",
",",
"xy0",
",",
"xy1",
",",
"N",
"=",
"10",
")",
":",
"assert",
"N",
">=",
"2",
"xy0",
"=",
"np",
".",
"array",
"(",
"xy0",
")",
".",
"squeeze",
"(",
")",
"xy1",
"=",
"np",
".",
"array",
"(",
"xy1",
")",
".",
"squeeze",
"(",
")",
"assert",
"xy0",
".",
"size",
"==",
"2",
"assert",
"xy1",
".",
"size",
"==",
"2",
"# compute points",
"points",
"=",
"[",
"(",
"x",
",",
"y",
")",
"for",
"x",
",",
"y",
"in",
"zip",
"(",
"np",
".",
"linspace",
"(",
"xy0",
"[",
"0",
"]",
",",
"xy1",
"[",
"0",
"]",
",",
"N",
")",
",",
"np",
".",
"linspace",
"(",
"xy0",
"[",
"1",
"]",
",",
"xy1",
"[",
"1",
"]",
",",
"N",
")",
")",
"]",
"result",
"=",
"self",
".",
"extract_points",
"(",
"pid",
",",
"points",
")",
"results_xyv",
"=",
"np",
".",
"hstack",
"(",
"(",
"points",
",",
"result",
"[",
":",
",",
"np",
".",
"newaxis",
"]",
")",
")",
"return",
"results_xyv"
]
| Extract parameter values along a given line.
Parameters
----------
pid: int
The parameter id to extract values from
xy0: tuple
A tupe with (x,y) start point coordinates
xy1: tuple
A tupe with (x,y) end point coordinates
N: integer, optional
The number of values to extract along the line (including start and
end point)
Returns
-------
values: numpy.ndarray (n x 1)
data values for extracted data points | [
"Extract",
"parameter",
"values",
"along",
"a",
"given",
"line",
"."
]
| 27c3e21a557f8df1c12455b96c4c2e00e08a5b4a | https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/lib/crtomo/parManager.py#L401-L437 | train |
geophysics-ubonn/crtomo_tools | lib/crtomo/parManager.py | ParMan.extract_polygon_area | def extract_polygon_area(self, pid, polygon_points):
"""Extract all data points whose element centroid lies within the given
polygon.
Parameters
----------
Returns
-------
"""
polygon = shapgeo.Polygon(polygon_points)
xy = self.grid.get_element_centroids()
in_poly = []
for nr, point in enumerate(xy):
if shapgeo.Point(point).within(polygon):
in_poly.append(nr)
values = self.parsets[pid][in_poly]
return np.array(in_poly), values | python | def extract_polygon_area(self, pid, polygon_points):
"""Extract all data points whose element centroid lies within the given
polygon.
Parameters
----------
Returns
-------
"""
polygon = shapgeo.Polygon(polygon_points)
xy = self.grid.get_element_centroids()
in_poly = []
for nr, point in enumerate(xy):
if shapgeo.Point(point).within(polygon):
in_poly.append(nr)
values = self.parsets[pid][in_poly]
return np.array(in_poly), values | [
"def",
"extract_polygon_area",
"(",
"self",
",",
"pid",
",",
"polygon_points",
")",
":",
"polygon",
"=",
"shapgeo",
".",
"Polygon",
"(",
"polygon_points",
")",
"xy",
"=",
"self",
".",
"grid",
".",
"get_element_centroids",
"(",
")",
"in_poly",
"=",
"[",
"]",
"for",
"nr",
",",
"point",
"in",
"enumerate",
"(",
"xy",
")",
":",
"if",
"shapgeo",
".",
"Point",
"(",
"point",
")",
".",
"within",
"(",
"polygon",
")",
":",
"in_poly",
".",
"append",
"(",
"nr",
")",
"values",
"=",
"self",
".",
"parsets",
"[",
"pid",
"]",
"[",
"in_poly",
"]",
"return",
"np",
".",
"array",
"(",
"in_poly",
")",
",",
"values"
]
| Extract all data points whose element centroid lies within the given
polygon.
Parameters
----------
Returns
------- | [
"Extract",
"all",
"data",
"points",
"whose",
"element",
"centroid",
"lies",
"within",
"the",
"given",
"polygon",
"."
]
| 27c3e21a557f8df1c12455b96c4c2e00e08a5b4a | https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/lib/crtomo/parManager.py#L439-L457 | train |
geophysics-ubonn/crtomo_tools | src/grid_homogenize.py | rotate_point | def rotate_point(xorigin, yorigin, x, y, angle):
"""Rotate the given point by angle
"""
rotx = (x - xorigin) * np.cos(angle) - (y - yorigin) * np.sin(angle)
roty = (x - yorigin) * np.sin(angle) + (y - yorigin) * np.cos(angle)
return rotx, roty | python | def rotate_point(xorigin, yorigin, x, y, angle):
"""Rotate the given point by angle
"""
rotx = (x - xorigin) * np.cos(angle) - (y - yorigin) * np.sin(angle)
roty = (x - yorigin) * np.sin(angle) + (y - yorigin) * np.cos(angle)
return rotx, roty | [
"def",
"rotate_point",
"(",
"xorigin",
",",
"yorigin",
",",
"x",
",",
"y",
",",
"angle",
")",
":",
"rotx",
"=",
"(",
"x",
"-",
"xorigin",
")",
"*",
"np",
".",
"cos",
"(",
"angle",
")",
"-",
"(",
"y",
"-",
"yorigin",
")",
"*",
"np",
".",
"sin",
"(",
"angle",
")",
"roty",
"=",
"(",
"x",
"-",
"yorigin",
")",
"*",
"np",
".",
"sin",
"(",
"angle",
")",
"+",
"(",
"y",
"-",
"yorigin",
")",
"*",
"np",
".",
"cos",
"(",
"angle",
")",
"return",
"rotx",
",",
"roty"
]
| Rotate the given point by angle | [
"Rotate",
"the",
"given",
"point",
"by",
"angle"
]
| 27c3e21a557f8df1c12455b96c4c2e00e08a5b4a | https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/src/grid_homogenize.py#L96-L101 | train |
geophysics-ubonn/crtomo_tools | src/cr_get_modelling_errors.py | get_R_mod | def get_R_mod(options, rho0):
"""Compute synthetic measurements over a homogeneous half-space
"""
tomodir = tdManager.tdMan(
elem_file=options.elem_file,
elec_file=options.elec_file,
config_file=options.config_file,
)
# set model
tomodir.add_homogeneous_model(magnitude=rho0)
# only interested in magnitudes
Z = tomodir.measurements()[:, 0]
return Z | python | def get_R_mod(options, rho0):
"""Compute synthetic measurements over a homogeneous half-space
"""
tomodir = tdManager.tdMan(
elem_file=options.elem_file,
elec_file=options.elec_file,
config_file=options.config_file,
)
# set model
tomodir.add_homogeneous_model(magnitude=rho0)
# only interested in magnitudes
Z = tomodir.measurements()[:, 0]
return Z | [
"def",
"get_R_mod",
"(",
"options",
",",
"rho0",
")",
":",
"tomodir",
"=",
"tdManager",
".",
"tdMan",
"(",
"elem_file",
"=",
"options",
".",
"elem_file",
",",
"elec_file",
"=",
"options",
".",
"elec_file",
",",
"config_file",
"=",
"options",
".",
"config_file",
",",
")",
"# set model",
"tomodir",
".",
"add_homogeneous_model",
"(",
"magnitude",
"=",
"rho0",
")",
"# only interested in magnitudes",
"Z",
"=",
"tomodir",
".",
"measurements",
"(",
")",
"[",
":",
",",
"0",
"]",
"return",
"Z"
]
| Compute synthetic measurements over a homogeneous half-space | [
"Compute",
"synthetic",
"measurements",
"over",
"a",
"homogeneous",
"half",
"-",
"space"
]
| 27c3e21a557f8df1c12455b96c4c2e00e08a5b4a | https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/src/cr_get_modelling_errors.py#L110-L125 | train |
rhayes777/PyAutoFit | autofit/tools/path_util.py | make_and_return_path_from_path_and_folder_names | def make_and_return_path_from_path_and_folder_names(path, folder_names):
""" For a given path, create a directory structure composed of a set of folders and return the path to the \
inner-most folder.
For example, if path='/path/to/folders', and folder_names=['folder1', 'folder2'], the directory created will be
'/path/to/folders/folder1/folder2/' and the returned path will be '/path/to/folders/folder1/folder2/'.
If the folders already exist, routine continues as normal.
Parameters
----------
path : str
The path where the directories are created.
folder_names : [str]
The names of the folders which are created in the path directory.
Returns
-------
path
A string specifying the path to the inner-most folder created.
Examples
--------
path = '/path/to/folders'
path = make_and_return_path(path=path, folder_names=['folder1', 'folder2'].
"""
for folder_name in folder_names:
path += folder_name + '/'
try:
os.makedirs(path)
except FileExistsError:
pass
return path | python | def make_and_return_path_from_path_and_folder_names(path, folder_names):
""" For a given path, create a directory structure composed of a set of folders and return the path to the \
inner-most folder.
For example, if path='/path/to/folders', and folder_names=['folder1', 'folder2'], the directory created will be
'/path/to/folders/folder1/folder2/' and the returned path will be '/path/to/folders/folder1/folder2/'.
If the folders already exist, routine continues as normal.
Parameters
----------
path : str
The path where the directories are created.
folder_names : [str]
The names of the folders which are created in the path directory.
Returns
-------
path
A string specifying the path to the inner-most folder created.
Examples
--------
path = '/path/to/folders'
path = make_and_return_path(path=path, folder_names=['folder1', 'folder2'].
"""
for folder_name in folder_names:
path += folder_name + '/'
try:
os.makedirs(path)
except FileExistsError:
pass
return path | [
"def",
"make_and_return_path_from_path_and_folder_names",
"(",
"path",
",",
"folder_names",
")",
":",
"for",
"folder_name",
"in",
"folder_names",
":",
"path",
"+=",
"folder_name",
"+",
"'/'",
"try",
":",
"os",
".",
"makedirs",
"(",
"path",
")",
"except",
"FileExistsError",
":",
"pass",
"return",
"path"
]
| For a given path, create a directory structure composed of a set of folders and return the path to the \
inner-most folder.
For example, if path='/path/to/folders', and folder_names=['folder1', 'folder2'], the directory created will be
'/path/to/folders/folder1/folder2/' and the returned path will be '/path/to/folders/folder1/folder2/'.
If the folders already exist, routine continues as normal.
Parameters
----------
path : str
The path where the directories are created.
folder_names : [str]
The names of the folders which are created in the path directory.
Returns
-------
path
A string specifying the path to the inner-most folder created.
Examples
--------
path = '/path/to/folders'
path = make_and_return_path(path=path, folder_names=['folder1', 'folder2']. | [
"For",
"a",
"given",
"path",
"create",
"a",
"directory",
"structure",
"composed",
"of",
"a",
"set",
"of",
"folders",
"and",
"return",
"the",
"path",
"to",
"the",
"\\",
"inner",
"-",
"most",
"folder",
"."
]
| a9e6144abb08edfc6a6906c4030d7119bf8d3e14 | https://github.com/rhayes777/PyAutoFit/blob/a9e6144abb08edfc6a6906c4030d7119bf8d3e14/autofit/tools/path_util.py#L42-L77 | train |
redhat-openstack/python-tripleo-helper | tripleohelper/ovb_bmc.py | OvbBmc.register_host | def register_host(self, bm_instance):
"""Register an existing nova VM.
A new interface will be attached to the BMC host with a new IP. An openstackbmc
service will be binded to this IP.
Once the VM has been registered, it is possible to use IPMI on this IP
to start or stop the virtual machine.
"""
bmc_ip = '10.130.%d.100' % (self._bmc_range_start + self._nic_cpt)
bmc_net = '10.130.%d.0' % (self._bmc_range_start + self._nic_cpt)
bmc_gw = '10.130.%d.1' % (self._bmc_range_start + self._nic_cpt)
device = 'eth%d' % (2 + self._nic_cpt)
body_create_subnet = {
'subnets': [{
'name': 'bmc_' + device,
'cidr': bmc_net + '/24',
'ip_version': 4,
'network_id': self._bmc_net['id']}]}
subnet_id = self.neutron.create_subnet(body=body_create_subnet)['subnets'][0]['id']
self.attach_subnet_to_router(subnet_id)
self.os_instance.interface_attach(None, self._bmc_net['id'], bmc_ip)
content = """
DEVICE="{device}"
BOOTPROTO=static
IPADDR={bmc_ip}
NETMASK=255.255.255.0
ONBOOT=yes
"""
self.create_file(
'/etc/sysconfig/network-scripts/ifcfg-%s' % device,
content=content.format(device=device, bmc_ip=bmc_ip, bmc_gw=bmc_gw))
content = """
192.0.2.0/24 via {bmc_gw}
"""
self.create_file(
'/etc/sysconfig/network-scripts/route-%s' % device,
content=content.format(bmc_gw=bmc_gw))
self.run('ifup %s' % device)
# Ensure the outgoing traffic go through the correct NIC to avoid spoofing
# protection
# TODO(Gonéri): This should be persistant.
self.run('ip rule add from %s table %d' % (bmc_ip, self._nic_cpt + 2))
self.run('ip route add default via %s dev %s table %d' % (bmc_gw, device, self._nic_cpt + 2))
content = """
[Unit]
Description=openstack-bmc {bm_instance} Service
[Service]
ExecStart=/usr/local/bin/openstackbmc --os-user {os_username} --os-password {os_password} --os-project-id {os_project_id} --os-auth-url {os_auth_url} --instance {bm_instance} --address {bmc_ip}
User=root
StandardOutput=kmsg+console
StandardError=inherit
Restart=always
[Install]
WantedBy=multi-user.target
"""
unit = 'openstack-bmc-%d.service' % self._nic_cpt
self.create_file(
'/usr/lib/systemd/system/%s' % unit,
content.format(
os_username=self.os_username,
os_password=protect_password(self.os_password),
os_project_id=self.os_project_id,
os_auth_url=self.os_auth_url,
bm_instance=bm_instance,
bmc_ip=bmc_ip))
self.run('systemctl enable %s' % unit)
self.run('systemctl start %s' % unit)
self._nic_cpt += 1
return bmc_ip | python | def register_host(self, bm_instance):
"""Register an existing nova VM.
A new interface will be attached to the BMC host with a new IP. An openstackbmc
service will be binded to this IP.
Once the VM has been registered, it is possible to use IPMI on this IP
to start or stop the virtual machine.
"""
bmc_ip = '10.130.%d.100' % (self._bmc_range_start + self._nic_cpt)
bmc_net = '10.130.%d.0' % (self._bmc_range_start + self._nic_cpt)
bmc_gw = '10.130.%d.1' % (self._bmc_range_start + self._nic_cpt)
device = 'eth%d' % (2 + self._nic_cpt)
body_create_subnet = {
'subnets': [{
'name': 'bmc_' + device,
'cidr': bmc_net + '/24',
'ip_version': 4,
'network_id': self._bmc_net['id']}]}
subnet_id = self.neutron.create_subnet(body=body_create_subnet)['subnets'][0]['id']
self.attach_subnet_to_router(subnet_id)
self.os_instance.interface_attach(None, self._bmc_net['id'], bmc_ip)
content = """
DEVICE="{device}"
BOOTPROTO=static
IPADDR={bmc_ip}
NETMASK=255.255.255.0
ONBOOT=yes
"""
self.create_file(
'/etc/sysconfig/network-scripts/ifcfg-%s' % device,
content=content.format(device=device, bmc_ip=bmc_ip, bmc_gw=bmc_gw))
content = """
192.0.2.0/24 via {bmc_gw}
"""
self.create_file(
'/etc/sysconfig/network-scripts/route-%s' % device,
content=content.format(bmc_gw=bmc_gw))
self.run('ifup %s' % device)
# Ensure the outgoing traffic go through the correct NIC to avoid spoofing
# protection
# TODO(Gonéri): This should be persistant.
self.run('ip rule add from %s table %d' % (bmc_ip, self._nic_cpt + 2))
self.run('ip route add default via %s dev %s table %d' % (bmc_gw, device, self._nic_cpt + 2))
content = """
[Unit]
Description=openstack-bmc {bm_instance} Service
[Service]
ExecStart=/usr/local/bin/openstackbmc --os-user {os_username} --os-password {os_password} --os-project-id {os_project_id} --os-auth-url {os_auth_url} --instance {bm_instance} --address {bmc_ip}
User=root
StandardOutput=kmsg+console
StandardError=inherit
Restart=always
[Install]
WantedBy=multi-user.target
"""
unit = 'openstack-bmc-%d.service' % self._nic_cpt
self.create_file(
'/usr/lib/systemd/system/%s' % unit,
content.format(
os_username=self.os_username,
os_password=protect_password(self.os_password),
os_project_id=self.os_project_id,
os_auth_url=self.os_auth_url,
bm_instance=bm_instance,
bmc_ip=bmc_ip))
self.run('systemctl enable %s' % unit)
self.run('systemctl start %s' % unit)
self._nic_cpt += 1
return bmc_ip | [
"def",
"register_host",
"(",
"self",
",",
"bm_instance",
")",
":",
"bmc_ip",
"=",
"'10.130.%d.100'",
"%",
"(",
"self",
".",
"_bmc_range_start",
"+",
"self",
".",
"_nic_cpt",
")",
"bmc_net",
"=",
"'10.130.%d.0'",
"%",
"(",
"self",
".",
"_bmc_range_start",
"+",
"self",
".",
"_nic_cpt",
")",
"bmc_gw",
"=",
"'10.130.%d.1'",
"%",
"(",
"self",
".",
"_bmc_range_start",
"+",
"self",
".",
"_nic_cpt",
")",
"device",
"=",
"'eth%d'",
"%",
"(",
"2",
"+",
"self",
".",
"_nic_cpt",
")",
"body_create_subnet",
"=",
"{",
"'subnets'",
":",
"[",
"{",
"'name'",
":",
"'bmc_'",
"+",
"device",
",",
"'cidr'",
":",
"bmc_net",
"+",
"'/24'",
",",
"'ip_version'",
":",
"4",
",",
"'network_id'",
":",
"self",
".",
"_bmc_net",
"[",
"'id'",
"]",
"}",
"]",
"}",
"subnet_id",
"=",
"self",
".",
"neutron",
".",
"create_subnet",
"(",
"body",
"=",
"body_create_subnet",
")",
"[",
"'subnets'",
"]",
"[",
"0",
"]",
"[",
"'id'",
"]",
"self",
".",
"attach_subnet_to_router",
"(",
"subnet_id",
")",
"self",
".",
"os_instance",
".",
"interface_attach",
"(",
"None",
",",
"self",
".",
"_bmc_net",
"[",
"'id'",
"]",
",",
"bmc_ip",
")",
"content",
"=",
"\"\"\"\nDEVICE=\"{device}\"\nBOOTPROTO=static\nIPADDR={bmc_ip}\nNETMASK=255.255.255.0\nONBOOT=yes\n\"\"\"",
"self",
".",
"create_file",
"(",
"'/etc/sysconfig/network-scripts/ifcfg-%s'",
"%",
"device",
",",
"content",
"=",
"content",
".",
"format",
"(",
"device",
"=",
"device",
",",
"bmc_ip",
"=",
"bmc_ip",
",",
"bmc_gw",
"=",
"bmc_gw",
")",
")",
"content",
"=",
"\"\"\"\n192.0.2.0/24 via {bmc_gw}\n\"\"\"",
"self",
".",
"create_file",
"(",
"'/etc/sysconfig/network-scripts/route-%s'",
"%",
"device",
",",
"content",
"=",
"content",
".",
"format",
"(",
"bmc_gw",
"=",
"bmc_gw",
")",
")",
"self",
".",
"run",
"(",
"'ifup %s'",
"%",
"device",
")",
"# Ensure the outgoing traffic go through the correct NIC to avoid spoofing",
"# protection",
"# TODO(Gonéri): This should be persistant.",
"self",
".",
"run",
"(",
"'ip rule add from %s table %d'",
"%",
"(",
"bmc_ip",
",",
"self",
".",
"_nic_cpt",
"+",
"2",
")",
")",
"self",
".",
"run",
"(",
"'ip route add default via %s dev %s table %d'",
"%",
"(",
"bmc_gw",
",",
"device",
",",
"self",
".",
"_nic_cpt",
"+",
"2",
")",
")",
"content",
"=",
"\"\"\"\n[Unit]\nDescription=openstack-bmc {bm_instance} Service\n[Service]\nExecStart=/usr/local/bin/openstackbmc --os-user {os_username} --os-password {os_password} --os-project-id {os_project_id} --os-auth-url {os_auth_url} --instance {bm_instance} --address {bmc_ip}\nUser=root\nStandardOutput=kmsg+console\nStandardError=inherit\nRestart=always\n[Install]\nWantedBy=multi-user.target\n\"\"\"",
"unit",
"=",
"'openstack-bmc-%d.service'",
"%",
"self",
".",
"_nic_cpt",
"self",
".",
"create_file",
"(",
"'/usr/lib/systemd/system/%s'",
"%",
"unit",
",",
"content",
".",
"format",
"(",
"os_username",
"=",
"self",
".",
"os_username",
",",
"os_password",
"=",
"protect_password",
"(",
"self",
".",
"os_password",
")",
",",
"os_project_id",
"=",
"self",
".",
"os_project_id",
",",
"os_auth_url",
"=",
"self",
".",
"os_auth_url",
",",
"bm_instance",
"=",
"bm_instance",
",",
"bmc_ip",
"=",
"bmc_ip",
")",
")",
"self",
".",
"run",
"(",
"'systemctl enable %s'",
"%",
"unit",
")",
"self",
".",
"run",
"(",
"'systemctl start %s'",
"%",
"unit",
")",
"self",
".",
"_nic_cpt",
"+=",
"1",
"return",
"bmc_ip"
]
| Register an existing nova VM.
A new interface will be attached to the BMC host with a new IP. An openstackbmc
service will be binded to this IP.
Once the VM has been registered, it is possible to use IPMI on this IP
to start or stop the virtual machine. | [
"Register",
"an",
"existing",
"nova",
"VM",
"."
]
| bfa165538335edb1088170c7a92f097167225c81 | https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/ovb_bmc.py#L116-L189 | train |
gofed/gofedlib | gofedlib/go/snapshot.py | Snapshot.Godeps | def Godeps(self):
"""Return the snapshot in Godeps.json form
"""
dict = []
for package in sorted(self._packages.keys()):
dict.append({
"ImportPath": str(package),
"Rev": str(self._packages[package])
})
return dict | python | def Godeps(self):
"""Return the snapshot in Godeps.json form
"""
dict = []
for package in sorted(self._packages.keys()):
dict.append({
"ImportPath": str(package),
"Rev": str(self._packages[package])
})
return dict | [
"def",
"Godeps",
"(",
"self",
")",
":",
"dict",
"=",
"[",
"]",
"for",
"package",
"in",
"sorted",
"(",
"self",
".",
"_packages",
".",
"keys",
"(",
")",
")",
":",
"dict",
".",
"append",
"(",
"{",
"\"ImportPath\"",
":",
"str",
"(",
"package",
")",
",",
"\"Rev\"",
":",
"str",
"(",
"self",
".",
"_packages",
"[",
"package",
"]",
")",
"}",
")",
"return",
"dict"
]
| Return the snapshot in Godeps.json form | [
"Return",
"the",
"snapshot",
"in",
"Godeps",
".",
"json",
"form"
]
| 0674c248fe3d8706f98f912996b65af469f96b10 | https://github.com/gofed/gofedlib/blob/0674c248fe3d8706f98f912996b65af469f96b10/gofedlib/go/snapshot.py#L47-L57 | train |
gofed/gofedlib | gofedlib/go/snapshot.py | Snapshot.GLOGFILE | def GLOGFILE(self):
"""Return the snapshot in GLOGFILE form
"""
lines = []
for package in sorted(self._packages.keys()):
lines.append("%s %s" % (str(package), str(self._packages[package])))
return "\n".join(lines) | python | def GLOGFILE(self):
"""Return the snapshot in GLOGFILE form
"""
lines = []
for package in sorted(self._packages.keys()):
lines.append("%s %s" % (str(package), str(self._packages[package])))
return "\n".join(lines) | [
"def",
"GLOGFILE",
"(",
"self",
")",
":",
"lines",
"=",
"[",
"]",
"for",
"package",
"in",
"sorted",
"(",
"self",
".",
"_packages",
".",
"keys",
"(",
")",
")",
":",
"lines",
".",
"append",
"(",
"\"%s %s\"",
"%",
"(",
"str",
"(",
"package",
")",
",",
"str",
"(",
"self",
".",
"_packages",
"[",
"package",
"]",
")",
")",
")",
"return",
"\"\\n\"",
".",
"join",
"(",
"lines",
")"
]
| Return the snapshot in GLOGFILE form | [
"Return",
"the",
"snapshot",
"in",
"GLOGFILE",
"form"
]
| 0674c248fe3d8706f98f912996b65af469f96b10 | https://github.com/gofed/gofedlib/blob/0674c248fe3d8706f98f912996b65af469f96b10/gofedlib/go/snapshot.py#L59-L66 | train |
gofed/gofedlib | gofedlib/go/snapshot.py | Snapshot.Glide | def Glide(self):
"""Return the snapshot in glide.lock form
"""
dict = {
"hash": "???",
"updated": str(datetime.datetime.now(tz=pytz.utc).isoformat()),
"imports": [],
}
decomposer = ImportPathsDecomposerBuilder().buildLocalDecomposer()
decomposer.decompose(self._packages.keys())
classes = decomposer.classes()
for ipp in classes:
dep = {
"name": ipp,
"version": str(self._packages[classes[ipp][0]])
}
if len(classes[ipp]) > 1 or classes[ipp][0] != ipp:
dep["subpackages"] = map(lambda l: l[len(ipp)+1:], classes[ipp])
dict["imports"].append(dep)
return yaml.dump(dict, default_flow_style=False) | python | def Glide(self):
"""Return the snapshot in glide.lock form
"""
dict = {
"hash": "???",
"updated": str(datetime.datetime.now(tz=pytz.utc).isoformat()),
"imports": [],
}
decomposer = ImportPathsDecomposerBuilder().buildLocalDecomposer()
decomposer.decompose(self._packages.keys())
classes = decomposer.classes()
for ipp in classes:
dep = {
"name": ipp,
"version": str(self._packages[classes[ipp][0]])
}
if len(classes[ipp]) > 1 or classes[ipp][0] != ipp:
dep["subpackages"] = map(lambda l: l[len(ipp)+1:], classes[ipp])
dict["imports"].append(dep)
return yaml.dump(dict, default_flow_style=False) | [
"def",
"Glide",
"(",
"self",
")",
":",
"dict",
"=",
"{",
"\"hash\"",
":",
"\"???\"",
",",
"\"updated\"",
":",
"str",
"(",
"datetime",
".",
"datetime",
".",
"now",
"(",
"tz",
"=",
"pytz",
".",
"utc",
")",
".",
"isoformat",
"(",
")",
")",
",",
"\"imports\"",
":",
"[",
"]",
",",
"}",
"decomposer",
"=",
"ImportPathsDecomposerBuilder",
"(",
")",
".",
"buildLocalDecomposer",
"(",
")",
"decomposer",
".",
"decompose",
"(",
"self",
".",
"_packages",
".",
"keys",
"(",
")",
")",
"classes",
"=",
"decomposer",
".",
"classes",
"(",
")",
"for",
"ipp",
"in",
"classes",
":",
"dep",
"=",
"{",
"\"name\"",
":",
"ipp",
",",
"\"version\"",
":",
"str",
"(",
"self",
".",
"_packages",
"[",
"classes",
"[",
"ipp",
"]",
"[",
"0",
"]",
"]",
")",
"}",
"if",
"len",
"(",
"classes",
"[",
"ipp",
"]",
")",
">",
"1",
"or",
"classes",
"[",
"ipp",
"]",
"[",
"0",
"]",
"!=",
"ipp",
":",
"dep",
"[",
"\"subpackages\"",
"]",
"=",
"map",
"(",
"lambda",
"l",
":",
"l",
"[",
"len",
"(",
"ipp",
")",
"+",
"1",
":",
"]",
",",
"classes",
"[",
"ipp",
"]",
")",
"dict",
"[",
"\"imports\"",
"]",
".",
"append",
"(",
"dep",
")",
"return",
"yaml",
".",
"dump",
"(",
"dict",
",",
"default_flow_style",
"=",
"False",
")"
]
| Return the snapshot in glide.lock form | [
"Return",
"the",
"snapshot",
"in",
"glide",
".",
"lock",
"form"
]
| 0674c248fe3d8706f98f912996b65af469f96b10 | https://github.com/gofed/gofedlib/blob/0674c248fe3d8706f98f912996b65af469f96b10/gofedlib/go/snapshot.py#L68-L91 | train |
thiagopbueno/tf-rddlsim | tfrddlsim/viz/navigation_visualizer.py | NavigationVisualizer.render | def render(self,
trajectories: Tuple[NonFluents, Fluents, Fluents, Fluents, np.array],
batch: Optional[int] = None) -> None:
'''Render the simulated state-action `trajectories` for Navigation domain.
Args:
stats: Performance statistics.
trajectories: NonFluents, states, actions, interms and rewards.
batch: Number of batches to render.
'''
non_fluents, initial_state, states, actions, interms, rewards = trajectories
non_fluents = dict(non_fluents)
states = dict((name, fluent[0]) for name, fluent in states)
actions = dict((name, fluent[0]) for name, fluent in actions)
rewards = rewards[0]
idx = self._compiler.rddl.domain.state_fluent_ordering.index('location/1')
start = initial_state[idx][0]
g = non_fluents['GOAL/1']
path = states['location/1']
deltas = actions['move/1']
centers = non_fluents['DECELERATION_ZONE_CENTER/2']
decays = non_fluents['DECELERATION_ZONE_DECAY/1']
zones = [(x, y, d) for (x, y), d in zip(centers, decays)]
self._ax1 = plt.gca()
self._render_state_space()
self._render_start_and_goal_positions(start, g)
self._render_deceleration_zones(zones)
self._render_state_action_trajectory(start, path, deltas)
plt.title('Navigation', fontweight='bold')
plt.legend(loc='lower right')
plt.show() | python | def render(self,
trajectories: Tuple[NonFluents, Fluents, Fluents, Fluents, np.array],
batch: Optional[int] = None) -> None:
'''Render the simulated state-action `trajectories` for Navigation domain.
Args:
stats: Performance statistics.
trajectories: NonFluents, states, actions, interms and rewards.
batch: Number of batches to render.
'''
non_fluents, initial_state, states, actions, interms, rewards = trajectories
non_fluents = dict(non_fluents)
states = dict((name, fluent[0]) for name, fluent in states)
actions = dict((name, fluent[0]) for name, fluent in actions)
rewards = rewards[0]
idx = self._compiler.rddl.domain.state_fluent_ordering.index('location/1')
start = initial_state[idx][0]
g = non_fluents['GOAL/1']
path = states['location/1']
deltas = actions['move/1']
centers = non_fluents['DECELERATION_ZONE_CENTER/2']
decays = non_fluents['DECELERATION_ZONE_DECAY/1']
zones = [(x, y, d) for (x, y), d in zip(centers, decays)]
self._ax1 = plt.gca()
self._render_state_space()
self._render_start_and_goal_positions(start, g)
self._render_deceleration_zones(zones)
self._render_state_action_trajectory(start, path, deltas)
plt.title('Navigation', fontweight='bold')
plt.legend(loc='lower right')
plt.show() | [
"def",
"render",
"(",
"self",
",",
"trajectories",
":",
"Tuple",
"[",
"NonFluents",
",",
"Fluents",
",",
"Fluents",
",",
"Fluents",
",",
"np",
".",
"array",
"]",
",",
"batch",
":",
"Optional",
"[",
"int",
"]",
"=",
"None",
")",
"->",
"None",
":",
"non_fluents",
",",
"initial_state",
",",
"states",
",",
"actions",
",",
"interms",
",",
"rewards",
"=",
"trajectories",
"non_fluents",
"=",
"dict",
"(",
"non_fluents",
")",
"states",
"=",
"dict",
"(",
"(",
"name",
",",
"fluent",
"[",
"0",
"]",
")",
"for",
"name",
",",
"fluent",
"in",
"states",
")",
"actions",
"=",
"dict",
"(",
"(",
"name",
",",
"fluent",
"[",
"0",
"]",
")",
"for",
"name",
",",
"fluent",
"in",
"actions",
")",
"rewards",
"=",
"rewards",
"[",
"0",
"]",
"idx",
"=",
"self",
".",
"_compiler",
".",
"rddl",
".",
"domain",
".",
"state_fluent_ordering",
".",
"index",
"(",
"'location/1'",
")",
"start",
"=",
"initial_state",
"[",
"idx",
"]",
"[",
"0",
"]",
"g",
"=",
"non_fluents",
"[",
"'GOAL/1'",
"]",
"path",
"=",
"states",
"[",
"'location/1'",
"]",
"deltas",
"=",
"actions",
"[",
"'move/1'",
"]",
"centers",
"=",
"non_fluents",
"[",
"'DECELERATION_ZONE_CENTER/2'",
"]",
"decays",
"=",
"non_fluents",
"[",
"'DECELERATION_ZONE_DECAY/1'",
"]",
"zones",
"=",
"[",
"(",
"x",
",",
"y",
",",
"d",
")",
"for",
"(",
"x",
",",
"y",
")",
",",
"d",
"in",
"zip",
"(",
"centers",
",",
"decays",
")",
"]",
"self",
".",
"_ax1",
"=",
"plt",
".",
"gca",
"(",
")",
"self",
".",
"_render_state_space",
"(",
")",
"self",
".",
"_render_start_and_goal_positions",
"(",
"start",
",",
"g",
")",
"self",
".",
"_render_deceleration_zones",
"(",
"zones",
")",
"self",
".",
"_render_state_action_trajectory",
"(",
"start",
",",
"path",
",",
"deltas",
")",
"plt",
".",
"title",
"(",
"'Navigation'",
",",
"fontweight",
"=",
"'bold'",
")",
"plt",
".",
"legend",
"(",
"loc",
"=",
"'lower right'",
")",
"plt",
".",
"show",
"(",
")"
]
| Render the simulated state-action `trajectories` for Navigation domain.
Args:
stats: Performance statistics.
trajectories: NonFluents, states, actions, interms and rewards.
batch: Number of batches to render. | [
"Render",
"the",
"simulated",
"state",
"-",
"action",
"trajectories",
"for",
"Navigation",
"domain",
"."
]
| d7102a0ad37d179dbb23141640254ea383d3b43f | https://github.com/thiagopbueno/tf-rddlsim/blob/d7102a0ad37d179dbb23141640254ea383d3b43f/tfrddlsim/viz/navigation_visualizer.py#L44-L82 | train |
rhayes777/PyAutoFit | autofit/optimize/non_linear.py | persistent_timer | def persistent_timer(func):
"""
Times the execution of a function. If the process is stopped and restarted then timing is continued using saved
files.
Parameters
----------
func
Some function to be timed
Returns
-------
timed_function
The same function with a timer attached.
"""
@functools.wraps(func)
def timed_function(optimizer_instance, *args, **kwargs):
start_time_path = "{}/.start_time".format(optimizer_instance.phase_output_path)
try:
with open(start_time_path) as f:
start = float(f.read())
except FileNotFoundError:
start = time.time()
with open(start_time_path, "w+") as f:
f.write(str(start))
result = func(optimizer_instance, *args, **kwargs)
execution_time = str(dt.timedelta(seconds=time.time() - start))
logger.info("{} took {} to run".format(
optimizer_instance.phase_name,
execution_time
))
with open("{}/execution_time".format(optimizer_instance.phase_output_path), "w+") as f:
f.write(execution_time)
return result
return timed_function | python | def persistent_timer(func):
"""
Times the execution of a function. If the process is stopped and restarted then timing is continued using saved
files.
Parameters
----------
func
Some function to be timed
Returns
-------
timed_function
The same function with a timer attached.
"""
@functools.wraps(func)
def timed_function(optimizer_instance, *args, **kwargs):
start_time_path = "{}/.start_time".format(optimizer_instance.phase_output_path)
try:
with open(start_time_path) as f:
start = float(f.read())
except FileNotFoundError:
start = time.time()
with open(start_time_path, "w+") as f:
f.write(str(start))
result = func(optimizer_instance, *args, **kwargs)
execution_time = str(dt.timedelta(seconds=time.time() - start))
logger.info("{} took {} to run".format(
optimizer_instance.phase_name,
execution_time
))
with open("{}/execution_time".format(optimizer_instance.phase_output_path), "w+") as f:
f.write(execution_time)
return result
return timed_function | [
"def",
"persistent_timer",
"(",
"func",
")",
":",
"@",
"functools",
".",
"wraps",
"(",
"func",
")",
"def",
"timed_function",
"(",
"optimizer_instance",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"start_time_path",
"=",
"\"{}/.start_time\"",
".",
"format",
"(",
"optimizer_instance",
".",
"phase_output_path",
")",
"try",
":",
"with",
"open",
"(",
"start_time_path",
")",
"as",
"f",
":",
"start",
"=",
"float",
"(",
"f",
".",
"read",
"(",
")",
")",
"except",
"FileNotFoundError",
":",
"start",
"=",
"time",
".",
"time",
"(",
")",
"with",
"open",
"(",
"start_time_path",
",",
"\"w+\"",
")",
"as",
"f",
":",
"f",
".",
"write",
"(",
"str",
"(",
"start",
")",
")",
"result",
"=",
"func",
"(",
"optimizer_instance",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"execution_time",
"=",
"str",
"(",
"dt",
".",
"timedelta",
"(",
"seconds",
"=",
"time",
".",
"time",
"(",
")",
"-",
"start",
")",
")",
"logger",
".",
"info",
"(",
"\"{} took {} to run\"",
".",
"format",
"(",
"optimizer_instance",
".",
"phase_name",
",",
"execution_time",
")",
")",
"with",
"open",
"(",
"\"{}/execution_time\"",
".",
"format",
"(",
"optimizer_instance",
".",
"phase_output_path",
")",
",",
"\"w+\"",
")",
"as",
"f",
":",
"f",
".",
"write",
"(",
"execution_time",
")",
"return",
"result",
"return",
"timed_function"
]
| Times the execution of a function. If the process is stopped and restarted then timing is continued using saved
files.
Parameters
----------
func
Some function to be timed
Returns
-------
timed_function
The same function with a timer attached. | [
"Times",
"the",
"execution",
"of",
"a",
"function",
".",
"If",
"the",
"process",
"is",
"stopped",
"and",
"restarted",
"then",
"timing",
"is",
"continued",
"using",
"saved",
"files",
"."
]
| a9e6144abb08edfc6a6906c4030d7119bf8d3e14 | https://github.com/rhayes777/PyAutoFit/blob/a9e6144abb08edfc6a6906c4030d7119bf8d3e14/autofit/optimize/non_linear.py#L110-L149 | train |
rhayes777/PyAutoFit | autofit/optimize/non_linear.py | NonLinearOptimizer.backup_path | def backup_path(self) -> str:
"""
The path to the backed up optimizer folder.
"""
return "{}/{}/{}{}/optimizer_backup".format(conf.instance.output_path, self.phase_path, self.phase_name,
self.phase_tag) | python | def backup_path(self) -> str:
"""
The path to the backed up optimizer folder.
"""
return "{}/{}/{}{}/optimizer_backup".format(conf.instance.output_path, self.phase_path, self.phase_name,
self.phase_tag) | [
"def",
"backup_path",
"(",
"self",
")",
"->",
"str",
":",
"return",
"\"{}/{}/{}{}/optimizer_backup\"",
".",
"format",
"(",
"conf",
".",
"instance",
".",
"output_path",
",",
"self",
".",
"phase_path",
",",
"self",
".",
"phase_name",
",",
"self",
".",
"phase_tag",
")"
]
| The path to the backed up optimizer folder. | [
"The",
"path",
"to",
"the",
"backed",
"up",
"optimizer",
"folder",
"."
]
| a9e6144abb08edfc6a6906c4030d7119bf8d3e14 | https://github.com/rhayes777/PyAutoFit/blob/a9e6144abb08edfc6a6906c4030d7119bf8d3e14/autofit/optimize/non_linear.py#L213-L218 | train |
rhayes777/PyAutoFit | autofit/optimize/non_linear.py | NonLinearOptimizer.backup | def backup(self):
"""
Copy files from the sym-linked optimizer folder to the backup folder in the workspace.
"""
try:
shutil.rmtree(self.backup_path)
except FileNotFoundError:
pass
try:
shutil.copytree(self.opt_path, self.backup_path)
except shutil.Error as e:
logger.exception(e) | python | def backup(self):
"""
Copy files from the sym-linked optimizer folder to the backup folder in the workspace.
"""
try:
shutil.rmtree(self.backup_path)
except FileNotFoundError:
pass
try:
shutil.copytree(self.opt_path, self.backup_path)
except shutil.Error as e:
logger.exception(e) | [
"def",
"backup",
"(",
"self",
")",
":",
"try",
":",
"shutil",
".",
"rmtree",
"(",
"self",
".",
"backup_path",
")",
"except",
"FileNotFoundError",
":",
"pass",
"try",
":",
"shutil",
".",
"copytree",
"(",
"self",
".",
"opt_path",
",",
"self",
".",
"backup_path",
")",
"except",
"shutil",
".",
"Error",
"as",
"e",
":",
"logger",
".",
"exception",
"(",
"e",
")"
]
| Copy files from the sym-linked optimizer folder to the backup folder in the workspace. | [
"Copy",
"files",
"from",
"the",
"sym",
"-",
"linked",
"optimizer",
"folder",
"to",
"the",
"backup",
"folder",
"in",
"the",
"workspace",
"."
]
| a9e6144abb08edfc6a6906c4030d7119bf8d3e14 | https://github.com/rhayes777/PyAutoFit/blob/a9e6144abb08edfc6a6906c4030d7119bf8d3e14/autofit/optimize/non_linear.py#L256-L267 | train |
rhayes777/PyAutoFit | autofit/optimize/non_linear.py | NonLinearOptimizer.restore | def restore(self):
"""
Copy files from the backup folder to the sym-linked optimizer folder.
"""
if os.path.exists(self.backup_path):
for file in glob.glob(self.backup_path + "/*"):
shutil.copy(file, self.path) | python | def restore(self):
"""
Copy files from the backup folder to the sym-linked optimizer folder.
"""
if os.path.exists(self.backup_path):
for file in glob.glob(self.backup_path + "/*"):
shutil.copy(file, self.path) | [
"def",
"restore",
"(",
"self",
")",
":",
"if",
"os",
".",
"path",
".",
"exists",
"(",
"self",
".",
"backup_path",
")",
":",
"for",
"file",
"in",
"glob",
".",
"glob",
"(",
"self",
".",
"backup_path",
"+",
"\"/*\"",
")",
":",
"shutil",
".",
"copy",
"(",
"file",
",",
"self",
".",
"path",
")"
]
| Copy files from the backup folder to the sym-linked optimizer folder. | [
"Copy",
"files",
"from",
"the",
"backup",
"folder",
"to",
"the",
"sym",
"-",
"linked",
"optimizer",
"folder",
"."
]
| a9e6144abb08edfc6a6906c4030d7119bf8d3e14 | https://github.com/rhayes777/PyAutoFit/blob/a9e6144abb08edfc6a6906c4030d7119bf8d3e14/autofit/optimize/non_linear.py#L269-L275 | train |
rhayes777/PyAutoFit | autofit/optimize/non_linear.py | NonLinearOptimizer.config | def config(self, attribute_name, attribute_type=str):
"""
Get a config field from this optimizer's section in non_linear.ini by a key and value type.
Parameters
----------
attribute_name: str
The analysis_path of the field
attribute_type: type
The type of the value
Returns
-------
attribute
An attribute for the key with the specified type.
"""
return self.named_config.get(self.__class__.__name__, attribute_name, attribute_type) | python | def config(self, attribute_name, attribute_type=str):
"""
Get a config field from this optimizer's section in non_linear.ini by a key and value type.
Parameters
----------
attribute_name: str
The analysis_path of the field
attribute_type: type
The type of the value
Returns
-------
attribute
An attribute for the key with the specified type.
"""
return self.named_config.get(self.__class__.__name__, attribute_name, attribute_type) | [
"def",
"config",
"(",
"self",
",",
"attribute_name",
",",
"attribute_type",
"=",
"str",
")",
":",
"return",
"self",
".",
"named_config",
".",
"get",
"(",
"self",
".",
"__class__",
".",
"__name__",
",",
"attribute_name",
",",
"attribute_type",
")"
]
| Get a config field from this optimizer's section in non_linear.ini by a key and value type.
Parameters
----------
attribute_name: str
The analysis_path of the field
attribute_type: type
The type of the value
Returns
-------
attribute
An attribute for the key with the specified type. | [
"Get",
"a",
"config",
"field",
"from",
"this",
"optimizer",
"s",
"section",
"in",
"non_linear",
".",
"ini",
"by",
"a",
"key",
"and",
"value",
"type",
"."
]
| a9e6144abb08edfc6a6906c4030d7119bf8d3e14 | https://github.com/rhayes777/PyAutoFit/blob/a9e6144abb08edfc6a6906c4030d7119bf8d3e14/autofit/optimize/non_linear.py#L277-L293 | train |
rhayes777/PyAutoFit | autofit/optimize/non_linear.py | MultiNest.weighted_sample_instance_from_weighted_samples | def weighted_sample_instance_from_weighted_samples(self, index):
"""Setup a model instance of a weighted sample, including its weight and likelihood.
Parameters
-----------
index : int
The index of the weighted sample to return.
"""
model, weight, likelihood = self.weighted_sample_model_from_weighted_samples(index)
self._weighted_sample_model = model
return self.variable.instance_from_physical_vector(model), weight, likelihood | python | def weighted_sample_instance_from_weighted_samples(self, index):
"""Setup a model instance of a weighted sample, including its weight and likelihood.
Parameters
-----------
index : int
The index of the weighted sample to return.
"""
model, weight, likelihood = self.weighted_sample_model_from_weighted_samples(index)
self._weighted_sample_model = model
return self.variable.instance_from_physical_vector(model), weight, likelihood | [
"def",
"weighted_sample_instance_from_weighted_samples",
"(",
"self",
",",
"index",
")",
":",
"model",
",",
"weight",
",",
"likelihood",
"=",
"self",
".",
"weighted_sample_model_from_weighted_samples",
"(",
"index",
")",
"self",
".",
"_weighted_sample_model",
"=",
"model",
"return",
"self",
".",
"variable",
".",
"instance_from_physical_vector",
"(",
"model",
")",
",",
"weight",
",",
"likelihood"
]
| Setup a model instance of a weighted sample, including its weight and likelihood.
Parameters
-----------
index : int
The index of the weighted sample to return. | [
"Setup",
"a",
"model",
"instance",
"of",
"a",
"weighted",
"sample",
"including",
"its",
"weight",
"and",
"likelihood",
"."
]
| a9e6144abb08edfc6a6906c4030d7119bf8d3e14 | https://github.com/rhayes777/PyAutoFit/blob/a9e6144abb08edfc6a6906c4030d7119bf8d3e14/autofit/optimize/non_linear.py#L724-L736 | train |
rhayes777/PyAutoFit | autofit/optimize/non_linear.py | MultiNest.weighted_sample_model_from_weighted_samples | def weighted_sample_model_from_weighted_samples(self, index):
"""From a weighted sample return the model, weight and likelihood hood.
NOTE: GetDist reads the log likelihood from the weighted_sample.txt file (column 2), which are defined as \
-2.0*likelihood. This routine converts these back to likelihood.
Parameters
-----------
index : int
The index of the weighted sample to return.
"""
return list(self.pdf.samples[index]), self.pdf.weights[index], -0.5 * self.pdf.loglikes[index] | python | def weighted_sample_model_from_weighted_samples(self, index):
"""From a weighted sample return the model, weight and likelihood hood.
NOTE: GetDist reads the log likelihood from the weighted_sample.txt file (column 2), which are defined as \
-2.0*likelihood. This routine converts these back to likelihood.
Parameters
-----------
index : int
The index of the weighted sample to return.
"""
return list(self.pdf.samples[index]), self.pdf.weights[index], -0.5 * self.pdf.loglikes[index] | [
"def",
"weighted_sample_model_from_weighted_samples",
"(",
"self",
",",
"index",
")",
":",
"return",
"list",
"(",
"self",
".",
"pdf",
".",
"samples",
"[",
"index",
"]",
")",
",",
"self",
".",
"pdf",
".",
"weights",
"[",
"index",
"]",
",",
"-",
"0.5",
"*",
"self",
".",
"pdf",
".",
"loglikes",
"[",
"index",
"]"
]
| From a weighted sample return the model, weight and likelihood hood.
NOTE: GetDist reads the log likelihood from the weighted_sample.txt file (column 2), which are defined as \
-2.0*likelihood. This routine converts these back to likelihood.
Parameters
-----------
index : int
The index of the weighted sample to return. | [
"From",
"a",
"weighted",
"sample",
"return",
"the",
"model",
"weight",
"and",
"likelihood",
"hood",
"."
]
| a9e6144abb08edfc6a6906c4030d7119bf8d3e14 | https://github.com/rhayes777/PyAutoFit/blob/a9e6144abb08edfc6a6906c4030d7119bf8d3e14/autofit/optimize/non_linear.py#L738-L749 | train |
Riminder/python-riminder-api | riminder/hmacutils.py | compare_digest | def compare_digest(a, b):
"""Compare 2 hash digest."""
py_version = sys.version_info[0]
if py_version >= 3:
return _compare_digest_py3(a, b)
return _compare_digest_py2(a, b) | python | def compare_digest(a, b):
"""Compare 2 hash digest."""
py_version = sys.version_info[0]
if py_version >= 3:
return _compare_digest_py3(a, b)
return _compare_digest_py2(a, b) | [
"def",
"compare_digest",
"(",
"a",
",",
"b",
")",
":",
"py_version",
"=",
"sys",
".",
"version_info",
"[",
"0",
"]",
"if",
"py_version",
">=",
"3",
":",
"return",
"_compare_digest_py3",
"(",
"a",
",",
"b",
")",
"return",
"_compare_digest_py2",
"(",
"a",
",",
"b",
")"
]
| Compare 2 hash digest. | [
"Compare",
"2",
"hash",
"digest",
"."
]
| 01279f0ece08cf3d1dd45f76de6d9edf7fafec90 | https://github.com/Riminder/python-riminder-api/blob/01279f0ece08cf3d1dd45f76de6d9edf7fafec90/riminder/hmacutils.py#L15-L20 | train |
thiagopbueno/tf-rddlsim | tfrddlsim/viz/generic_visualizer.py | GenericVisualizer._render_trajectories | def _render_trajectories(self,
trajectories: Tuple[NonFluents, Fluents, Fluents, Fluents, np.array]) -> None:
'''Prints the first batch of simulated `trajectories`.
Args:
trajectories: NonFluents, states, actions, interms and rewards.
'''
if self._verbose:
non_fluents, initial_state, states, actions, interms, rewards = trajectories
shape = states[0][1].shape
batch_size, horizon, = shape[0], shape[1]
states = [(s[0], s[1][0]) for s in states]
interms = [(f[0], f[1][0]) for f in interms]
actions = [(a[0], a[1][0]) for a in actions]
rewards = np.reshape(rewards, [batch_size, horizon])[0]
self._render_batch(non_fluents, states, actions, interms, rewards) | python | def _render_trajectories(self,
trajectories: Tuple[NonFluents, Fluents, Fluents, Fluents, np.array]) -> None:
'''Prints the first batch of simulated `trajectories`.
Args:
trajectories: NonFluents, states, actions, interms and rewards.
'''
if self._verbose:
non_fluents, initial_state, states, actions, interms, rewards = trajectories
shape = states[0][1].shape
batch_size, horizon, = shape[0], shape[1]
states = [(s[0], s[1][0]) for s in states]
interms = [(f[0], f[1][0]) for f in interms]
actions = [(a[0], a[1][0]) for a in actions]
rewards = np.reshape(rewards, [batch_size, horizon])[0]
self._render_batch(non_fluents, states, actions, interms, rewards) | [
"def",
"_render_trajectories",
"(",
"self",
",",
"trajectories",
":",
"Tuple",
"[",
"NonFluents",
",",
"Fluents",
",",
"Fluents",
",",
"Fluents",
",",
"np",
".",
"array",
"]",
")",
"->",
"None",
":",
"if",
"self",
".",
"_verbose",
":",
"non_fluents",
",",
"initial_state",
",",
"states",
",",
"actions",
",",
"interms",
",",
"rewards",
"=",
"trajectories",
"shape",
"=",
"states",
"[",
"0",
"]",
"[",
"1",
"]",
".",
"shape",
"batch_size",
",",
"horizon",
",",
"=",
"shape",
"[",
"0",
"]",
",",
"shape",
"[",
"1",
"]",
"states",
"=",
"[",
"(",
"s",
"[",
"0",
"]",
",",
"s",
"[",
"1",
"]",
"[",
"0",
"]",
")",
"for",
"s",
"in",
"states",
"]",
"interms",
"=",
"[",
"(",
"f",
"[",
"0",
"]",
",",
"f",
"[",
"1",
"]",
"[",
"0",
"]",
")",
"for",
"f",
"in",
"interms",
"]",
"actions",
"=",
"[",
"(",
"a",
"[",
"0",
"]",
",",
"a",
"[",
"1",
"]",
"[",
"0",
"]",
")",
"for",
"a",
"in",
"actions",
"]",
"rewards",
"=",
"np",
".",
"reshape",
"(",
"rewards",
",",
"[",
"batch_size",
",",
"horizon",
"]",
")",
"[",
"0",
"]",
"self",
".",
"_render_batch",
"(",
"non_fluents",
",",
"states",
",",
"actions",
",",
"interms",
",",
"rewards",
")"
]
| Prints the first batch of simulated `trajectories`.
Args:
trajectories: NonFluents, states, actions, interms and rewards. | [
"Prints",
"the",
"first",
"batch",
"of",
"simulated",
"trajectories",
"."
]
| d7102a0ad37d179dbb23141640254ea383d3b43f | https://github.com/thiagopbueno/tf-rddlsim/blob/d7102a0ad37d179dbb23141640254ea383d3b43f/tfrddlsim/viz/generic_visualizer.py#L50-L65 | train |
thiagopbueno/tf-rddlsim | tfrddlsim/viz/generic_visualizer.py | GenericVisualizer._render_batch | def _render_batch(self,
non_fluents: NonFluents,
states: Fluents, actions: Fluents, interms: Fluents,
rewards: np.array,
horizon: Optional[int] = None) -> None:
'''Prints `non_fluents`, `states`, `actions`, `interms` and `rewards`
for given `horizon`.
Args:
states (Sequence[Tuple[str, np.array]]): A state trajectory.
actions (Sequence[Tuple[str, np.array]]): An action trajectory.
interms (Sequence[Tuple[str, np.array]]): An interm state trajectory.
rewards (np.array): Sequence of rewards (1-dimensional array).
horizon (Optional[int]): Number of timesteps.
'''
if horizon is None:
horizon = len(states[0][1])
self._render_round_init(horizon, non_fluents)
for t in range(horizon):
s = [(s[0], s[1][t]) for s in states]
f = [(f[0], f[1][t]) for f in interms]
a = [(a[0], a[1][t]) for a in actions]
r = rewards[t]
self._render_timestep(t, s, a, f, r)
self._render_round_end(rewards) | python | def _render_batch(self,
non_fluents: NonFluents,
states: Fluents, actions: Fluents, interms: Fluents,
rewards: np.array,
horizon: Optional[int] = None) -> None:
'''Prints `non_fluents`, `states`, `actions`, `interms` and `rewards`
for given `horizon`.
Args:
states (Sequence[Tuple[str, np.array]]): A state trajectory.
actions (Sequence[Tuple[str, np.array]]): An action trajectory.
interms (Sequence[Tuple[str, np.array]]): An interm state trajectory.
rewards (np.array): Sequence of rewards (1-dimensional array).
horizon (Optional[int]): Number of timesteps.
'''
if horizon is None:
horizon = len(states[0][1])
self._render_round_init(horizon, non_fluents)
for t in range(horizon):
s = [(s[0], s[1][t]) for s in states]
f = [(f[0], f[1][t]) for f in interms]
a = [(a[0], a[1][t]) for a in actions]
r = rewards[t]
self._render_timestep(t, s, a, f, r)
self._render_round_end(rewards) | [
"def",
"_render_batch",
"(",
"self",
",",
"non_fluents",
":",
"NonFluents",
",",
"states",
":",
"Fluents",
",",
"actions",
":",
"Fluents",
",",
"interms",
":",
"Fluents",
",",
"rewards",
":",
"np",
".",
"array",
",",
"horizon",
":",
"Optional",
"[",
"int",
"]",
"=",
"None",
")",
"->",
"None",
":",
"if",
"horizon",
"is",
"None",
":",
"horizon",
"=",
"len",
"(",
"states",
"[",
"0",
"]",
"[",
"1",
"]",
")",
"self",
".",
"_render_round_init",
"(",
"horizon",
",",
"non_fluents",
")",
"for",
"t",
"in",
"range",
"(",
"horizon",
")",
":",
"s",
"=",
"[",
"(",
"s",
"[",
"0",
"]",
",",
"s",
"[",
"1",
"]",
"[",
"t",
"]",
")",
"for",
"s",
"in",
"states",
"]",
"f",
"=",
"[",
"(",
"f",
"[",
"0",
"]",
",",
"f",
"[",
"1",
"]",
"[",
"t",
"]",
")",
"for",
"f",
"in",
"interms",
"]",
"a",
"=",
"[",
"(",
"a",
"[",
"0",
"]",
",",
"a",
"[",
"1",
"]",
"[",
"t",
"]",
")",
"for",
"a",
"in",
"actions",
"]",
"r",
"=",
"rewards",
"[",
"t",
"]",
"self",
".",
"_render_timestep",
"(",
"t",
",",
"s",
",",
"a",
",",
"f",
",",
"r",
")",
"self",
".",
"_render_round_end",
"(",
"rewards",
")"
]
| Prints `non_fluents`, `states`, `actions`, `interms` and `rewards`
for given `horizon`.
Args:
states (Sequence[Tuple[str, np.array]]): A state trajectory.
actions (Sequence[Tuple[str, np.array]]): An action trajectory.
interms (Sequence[Tuple[str, np.array]]): An interm state trajectory.
rewards (np.array): Sequence of rewards (1-dimensional array).
horizon (Optional[int]): Number of timesteps. | [
"Prints",
"non_fluents",
"states",
"actions",
"interms",
"and",
"rewards",
"for",
"given",
"horizon",
"."
]
| d7102a0ad37d179dbb23141640254ea383d3b43f | https://github.com/thiagopbueno/tf-rddlsim/blob/d7102a0ad37d179dbb23141640254ea383d3b43f/tfrddlsim/viz/generic_visualizer.py#L67-L91 | train |
thiagopbueno/tf-rddlsim | tfrddlsim/viz/generic_visualizer.py | GenericVisualizer._render_timestep | def _render_timestep(self,
t: int,
s: Fluents, a: Fluents, f: Fluents,
r: np.float32) -> None:
'''Prints fluents and rewards for the given timestep `t`.
Args:
t (int): timestep
s (Sequence[Tuple[str], np.array]: State fluents.
a (Sequence[Tuple[str], np.array]: Action fluents.
f (Sequence[Tuple[str], np.array]: Interm state fluents.
r (np.float32): Reward.
'''
print("============================")
print("TIME = {}".format(t))
print("============================")
fluent_variables = self._compiler.rddl.action_fluent_variables
self._render_fluent_timestep('action', a, fluent_variables)
fluent_variables = self._compiler.rddl.interm_fluent_variables
self._render_fluent_timestep('interms', f, fluent_variables)
fluent_variables = self._compiler.rddl.state_fluent_variables
self._render_fluent_timestep('states', s, fluent_variables)
self._render_reward(r) | python | def _render_timestep(self,
t: int,
s: Fluents, a: Fluents, f: Fluents,
r: np.float32) -> None:
'''Prints fluents and rewards for the given timestep `t`.
Args:
t (int): timestep
s (Sequence[Tuple[str], np.array]: State fluents.
a (Sequence[Tuple[str], np.array]: Action fluents.
f (Sequence[Tuple[str], np.array]: Interm state fluents.
r (np.float32): Reward.
'''
print("============================")
print("TIME = {}".format(t))
print("============================")
fluent_variables = self._compiler.rddl.action_fluent_variables
self._render_fluent_timestep('action', a, fluent_variables)
fluent_variables = self._compiler.rddl.interm_fluent_variables
self._render_fluent_timestep('interms', f, fluent_variables)
fluent_variables = self._compiler.rddl.state_fluent_variables
self._render_fluent_timestep('states', s, fluent_variables)
self._render_reward(r) | [
"def",
"_render_timestep",
"(",
"self",
",",
"t",
":",
"int",
",",
"s",
":",
"Fluents",
",",
"a",
":",
"Fluents",
",",
"f",
":",
"Fluents",
",",
"r",
":",
"np",
".",
"float32",
")",
"->",
"None",
":",
"print",
"(",
"\"============================\"",
")",
"print",
"(",
"\"TIME = {}\"",
".",
"format",
"(",
"t",
")",
")",
"print",
"(",
"\"============================\"",
")",
"fluent_variables",
"=",
"self",
".",
"_compiler",
".",
"rddl",
".",
"action_fluent_variables",
"self",
".",
"_render_fluent_timestep",
"(",
"'action'",
",",
"a",
",",
"fluent_variables",
")",
"fluent_variables",
"=",
"self",
".",
"_compiler",
".",
"rddl",
".",
"interm_fluent_variables",
"self",
".",
"_render_fluent_timestep",
"(",
"'interms'",
",",
"f",
",",
"fluent_variables",
")",
"fluent_variables",
"=",
"self",
".",
"_compiler",
".",
"rddl",
".",
"state_fluent_variables",
"self",
".",
"_render_fluent_timestep",
"(",
"'states'",
",",
"s",
",",
"fluent_variables",
")",
"self",
".",
"_render_reward",
"(",
"r",
")"
]
| Prints fluents and rewards for the given timestep `t`.
Args:
t (int): timestep
s (Sequence[Tuple[str], np.array]: State fluents.
a (Sequence[Tuple[str], np.array]: Action fluents.
f (Sequence[Tuple[str], np.array]: Interm state fluents.
r (np.float32): Reward. | [
"Prints",
"fluents",
"and",
"rewards",
"for",
"the",
"given",
"timestep",
"t",
"."
]
| d7102a0ad37d179dbb23141640254ea383d3b43f | https://github.com/thiagopbueno/tf-rddlsim/blob/d7102a0ad37d179dbb23141640254ea383d3b43f/tfrddlsim/viz/generic_visualizer.py#L93-L115 | train |
thiagopbueno/tf-rddlsim | tfrddlsim/viz/generic_visualizer.py | GenericVisualizer._render_fluent_timestep | def _render_fluent_timestep(self,
fluent_type: str,
fluents: Sequence[Tuple[str, np.array]],
fluent_variables: Sequence[Tuple[str, List[str]]]) -> None:
'''Prints `fluents` of given `fluent_type` as list of instantiated variables
with corresponding values.
Args:
fluent_type (str): Fluent type.
fluents (Sequence[Tuple[str, np.array]]): List of pairs (fluent_name, fluent_values).
fluent_variables (Sequence[Tuple[str, List[str]]]): List of pairs (fluent_name, args).
'''
for fluent_pair, variable_list in zip(fluents, fluent_variables):
name, fluent = fluent_pair
_, variables = variable_list
print(name)
fluent = fluent.flatten()
for variable, value in zip(variables, fluent):
print('- {}: {} = {}'.format(fluent_type, variable, value))
print() | python | def _render_fluent_timestep(self,
fluent_type: str,
fluents: Sequence[Tuple[str, np.array]],
fluent_variables: Sequence[Tuple[str, List[str]]]) -> None:
'''Prints `fluents` of given `fluent_type` as list of instantiated variables
with corresponding values.
Args:
fluent_type (str): Fluent type.
fluents (Sequence[Tuple[str, np.array]]): List of pairs (fluent_name, fluent_values).
fluent_variables (Sequence[Tuple[str, List[str]]]): List of pairs (fluent_name, args).
'''
for fluent_pair, variable_list in zip(fluents, fluent_variables):
name, fluent = fluent_pair
_, variables = variable_list
print(name)
fluent = fluent.flatten()
for variable, value in zip(variables, fluent):
print('- {}: {} = {}'.format(fluent_type, variable, value))
print() | [
"def",
"_render_fluent_timestep",
"(",
"self",
",",
"fluent_type",
":",
"str",
",",
"fluents",
":",
"Sequence",
"[",
"Tuple",
"[",
"str",
",",
"np",
".",
"array",
"]",
"]",
",",
"fluent_variables",
":",
"Sequence",
"[",
"Tuple",
"[",
"str",
",",
"List",
"[",
"str",
"]",
"]",
"]",
")",
"->",
"None",
":",
"for",
"fluent_pair",
",",
"variable_list",
"in",
"zip",
"(",
"fluents",
",",
"fluent_variables",
")",
":",
"name",
",",
"fluent",
"=",
"fluent_pair",
"_",
",",
"variables",
"=",
"variable_list",
"print",
"(",
"name",
")",
"fluent",
"=",
"fluent",
".",
"flatten",
"(",
")",
"for",
"variable",
",",
"value",
"in",
"zip",
"(",
"variables",
",",
"fluent",
")",
":",
"print",
"(",
"'- {}: {} = {}'",
".",
"format",
"(",
"fluent_type",
",",
"variable",
",",
"value",
")",
")",
"print",
"(",
")"
]
| Prints `fluents` of given `fluent_type` as list of instantiated variables
with corresponding values.
Args:
fluent_type (str): Fluent type.
fluents (Sequence[Tuple[str, np.array]]): List of pairs (fluent_name, fluent_values).
fluent_variables (Sequence[Tuple[str, List[str]]]): List of pairs (fluent_name, args). | [
"Prints",
"fluents",
"of",
"given",
"fluent_type",
"as",
"list",
"of",
"instantiated",
"variables",
"with",
"corresponding",
"values",
"."
]
| d7102a0ad37d179dbb23141640254ea383d3b43f | https://github.com/thiagopbueno/tf-rddlsim/blob/d7102a0ad37d179dbb23141640254ea383d3b43f/tfrddlsim/viz/generic_visualizer.py#L117-L136 | train |
thiagopbueno/tf-rddlsim | tfrddlsim/viz/generic_visualizer.py | GenericVisualizer._render_reward | def _render_reward(self, r: np.float32) -> None:
'''Prints reward `r`.'''
print("reward = {:.4f}".format(float(r)))
print() | python | def _render_reward(self, r: np.float32) -> None:
'''Prints reward `r`.'''
print("reward = {:.4f}".format(float(r)))
print() | [
"def",
"_render_reward",
"(",
"self",
",",
"r",
":",
"np",
".",
"float32",
")",
"->",
"None",
":",
"print",
"(",
"\"reward = {:.4f}\"",
".",
"format",
"(",
"float",
"(",
"r",
")",
")",
")",
"print",
"(",
")"
]
| Prints reward `r`. | [
"Prints",
"reward",
"r",
"."
]
| d7102a0ad37d179dbb23141640254ea383d3b43f | https://github.com/thiagopbueno/tf-rddlsim/blob/d7102a0ad37d179dbb23141640254ea383d3b43f/tfrddlsim/viz/generic_visualizer.py#L138-L141 | train |
thiagopbueno/tf-rddlsim | tfrddlsim/viz/generic_visualizer.py | GenericVisualizer._render_round_init | def _render_round_init(self, horizon: int, non_fluents: NonFluents) -> None:
'''Prints round init information about `horizon` and `non_fluents`.'''
print('*********************************************************')
print('>>> ROUND INIT, horizon = {}'.format(horizon))
print('*********************************************************')
fluent_variables = self._compiler.rddl.non_fluent_variables
self._render_fluent_timestep('non-fluents', non_fluents, fluent_variables) | python | def _render_round_init(self, horizon: int, non_fluents: NonFluents) -> None:
'''Prints round init information about `horizon` and `non_fluents`.'''
print('*********************************************************')
print('>>> ROUND INIT, horizon = {}'.format(horizon))
print('*********************************************************')
fluent_variables = self._compiler.rddl.non_fluent_variables
self._render_fluent_timestep('non-fluents', non_fluents, fluent_variables) | [
"def",
"_render_round_init",
"(",
"self",
",",
"horizon",
":",
"int",
",",
"non_fluents",
":",
"NonFluents",
")",
"->",
"None",
":",
"print",
"(",
"'*********************************************************'",
")",
"print",
"(",
"'>>> ROUND INIT, horizon = {}'",
".",
"format",
"(",
"horizon",
")",
")",
"print",
"(",
"'*********************************************************'",
")",
"fluent_variables",
"=",
"self",
".",
"_compiler",
".",
"rddl",
".",
"non_fluent_variables",
"self",
".",
"_render_fluent_timestep",
"(",
"'non-fluents'",
",",
"non_fluents",
",",
"fluent_variables",
")"
]
| Prints round init information about `horizon` and `non_fluents`. | [
"Prints",
"round",
"init",
"information",
"about",
"horizon",
"and",
"non_fluents",
"."
]
| d7102a0ad37d179dbb23141640254ea383d3b43f | https://github.com/thiagopbueno/tf-rddlsim/blob/d7102a0ad37d179dbb23141640254ea383d3b43f/tfrddlsim/viz/generic_visualizer.py#L143-L149 | train |
thiagopbueno/tf-rddlsim | tfrddlsim/viz/generic_visualizer.py | GenericVisualizer._render_round_end | def _render_round_end(self, rewards: np.array) -> None:
'''Prints round end information about `rewards`.'''
print("*********************************************************")
print(">>> ROUND END")
print("*********************************************************")
total_reward = np.sum(rewards)
print("==> Objective value = {}".format(total_reward))
print("==> rewards = {}".format(list(rewards)))
print() | python | def _render_round_end(self, rewards: np.array) -> None:
'''Prints round end information about `rewards`.'''
print("*********************************************************")
print(">>> ROUND END")
print("*********************************************************")
total_reward = np.sum(rewards)
print("==> Objective value = {}".format(total_reward))
print("==> rewards = {}".format(list(rewards)))
print() | [
"def",
"_render_round_end",
"(",
"self",
",",
"rewards",
":",
"np",
".",
"array",
")",
"->",
"None",
":",
"print",
"(",
"\"*********************************************************\"",
")",
"print",
"(",
"\">>> ROUND END\"",
")",
"print",
"(",
"\"*********************************************************\"",
")",
"total_reward",
"=",
"np",
".",
"sum",
"(",
"rewards",
")",
"print",
"(",
"\"==> Objective value = {}\"",
".",
"format",
"(",
"total_reward",
")",
")",
"print",
"(",
"\"==> rewards = {}\"",
".",
"format",
"(",
"list",
"(",
"rewards",
")",
")",
")",
"print",
"(",
")"
]
| Prints round end information about `rewards`. | [
"Prints",
"round",
"end",
"information",
"about",
"rewards",
"."
]
| d7102a0ad37d179dbb23141640254ea383d3b43f | https://github.com/thiagopbueno/tf-rddlsim/blob/d7102a0ad37d179dbb23141640254ea383d3b43f/tfrddlsim/viz/generic_visualizer.py#L151-L159 | train |
edx/edx-celeryutils | celery_utils/persist_on_failure.py | _truncate_to_field | def _truncate_to_field(model, field_name, value):
"""
Shorten data to fit in the specified model field.
If the data were too big for the field, it would cause a failure to
insert, so we shorten it, truncating in the middle (because
valuable information often shows up at the end.
"""
field = model._meta.get_field(field_name) # pylint: disable=protected-access
if len(value) > field.max_length:
midpoint = field.max_length // 2
len_after_midpoint = field.max_length - midpoint
first = value[:midpoint]
sep = '...'
last = value[len(value) - len_after_midpoint + len(sep):]
value = sep.join([first, last])
return value | python | def _truncate_to_field(model, field_name, value):
"""
Shorten data to fit in the specified model field.
If the data were too big for the field, it would cause a failure to
insert, so we shorten it, truncating in the middle (because
valuable information often shows up at the end.
"""
field = model._meta.get_field(field_name) # pylint: disable=protected-access
if len(value) > field.max_length:
midpoint = field.max_length // 2
len_after_midpoint = field.max_length - midpoint
first = value[:midpoint]
sep = '...'
last = value[len(value) - len_after_midpoint + len(sep):]
value = sep.join([first, last])
return value | [
"def",
"_truncate_to_field",
"(",
"model",
",",
"field_name",
",",
"value",
")",
":",
"field",
"=",
"model",
".",
"_meta",
".",
"get_field",
"(",
"field_name",
")",
"# pylint: disable=protected-access",
"if",
"len",
"(",
"value",
")",
">",
"field",
".",
"max_length",
":",
"midpoint",
"=",
"field",
".",
"max_length",
"//",
"2",
"len_after_midpoint",
"=",
"field",
".",
"max_length",
"-",
"midpoint",
"first",
"=",
"value",
"[",
":",
"midpoint",
"]",
"sep",
"=",
"'...'",
"last",
"=",
"value",
"[",
"len",
"(",
"value",
")",
"-",
"len_after_midpoint",
"+",
"len",
"(",
"sep",
")",
":",
"]",
"value",
"=",
"sep",
".",
"join",
"(",
"[",
"first",
",",
"last",
"]",
")",
"return",
"value"
]
| Shorten data to fit in the specified model field.
If the data were too big for the field, it would cause a failure to
insert, so we shorten it, truncating in the middle (because
valuable information often shows up at the end. | [
"Shorten",
"data",
"to",
"fit",
"in",
"the",
"specified",
"model",
"field",
"."
]
| d8745f5f0929ad154fad779a19fbefe7f51e9498 | https://github.com/edx/edx-celeryutils/blob/d8745f5f0929ad154fad779a19fbefe7f51e9498/celery_utils/persist_on_failure.py#L45-L61 | train |
edx/edx-celeryutils | celery_utils/persist_on_failure.py | PersistOnFailureTask.on_failure | def on_failure(self, exc, task_id, args, kwargs, einfo):
"""
If the task fails, persist a record of the task.
"""
if not FailedTask.objects.filter(task_id=task_id, datetime_resolved=None).exists():
FailedTask.objects.create(
task_name=_truncate_to_field(FailedTask, 'task_name', self.name),
task_id=task_id, # Fixed length UUID: No need to truncate
args=args,
kwargs=kwargs,
exc=_truncate_to_field(FailedTask, 'exc', repr(exc)),
)
super(PersistOnFailureTask, self).on_failure(exc, task_id, args, kwargs, einfo) | python | def on_failure(self, exc, task_id, args, kwargs, einfo):
"""
If the task fails, persist a record of the task.
"""
if not FailedTask.objects.filter(task_id=task_id, datetime_resolved=None).exists():
FailedTask.objects.create(
task_name=_truncate_to_field(FailedTask, 'task_name', self.name),
task_id=task_id, # Fixed length UUID: No need to truncate
args=args,
kwargs=kwargs,
exc=_truncate_to_field(FailedTask, 'exc', repr(exc)),
)
super(PersistOnFailureTask, self).on_failure(exc, task_id, args, kwargs, einfo) | [
"def",
"on_failure",
"(",
"self",
",",
"exc",
",",
"task_id",
",",
"args",
",",
"kwargs",
",",
"einfo",
")",
":",
"if",
"not",
"FailedTask",
".",
"objects",
".",
"filter",
"(",
"task_id",
"=",
"task_id",
",",
"datetime_resolved",
"=",
"None",
")",
".",
"exists",
"(",
")",
":",
"FailedTask",
".",
"objects",
".",
"create",
"(",
"task_name",
"=",
"_truncate_to_field",
"(",
"FailedTask",
",",
"'task_name'",
",",
"self",
".",
"name",
")",
",",
"task_id",
"=",
"task_id",
",",
"# Fixed length UUID: No need to truncate",
"args",
"=",
"args",
",",
"kwargs",
"=",
"kwargs",
",",
"exc",
"=",
"_truncate_to_field",
"(",
"FailedTask",
",",
"'exc'",
",",
"repr",
"(",
"exc",
")",
")",
",",
")",
"super",
"(",
"PersistOnFailureTask",
",",
"self",
")",
".",
"on_failure",
"(",
"exc",
",",
"task_id",
",",
"args",
",",
"kwargs",
",",
"einfo",
")"
]
| If the task fails, persist a record of the task. | [
"If",
"the",
"task",
"fails",
"persist",
"a",
"record",
"of",
"the",
"task",
"."
]
| d8745f5f0929ad154fad779a19fbefe7f51e9498 | https://github.com/edx/edx-celeryutils/blob/d8745f5f0929ad154fad779a19fbefe7f51e9498/celery_utils/persist_on_failure.py#L22-L34 | train |
thiagopbueno/tf-rddlsim | tfrddlsim/viz/abstract_visualizer.py | Visualizer.render | def render(self,
trajectories: Tuple[NonFluents, Fluents, Fluents, Fluents, np.array],
batch: Optional[int] = None) -> None:
'''Renders the simulated `trajectories` for the given `batch`.
Args:
trajectories: NonFluents, states, actions, interms and rewards.
batch: Number of batches to render.
'''
raise NotImplementedError | python | def render(self,
trajectories: Tuple[NonFluents, Fluents, Fluents, Fluents, np.array],
batch: Optional[int] = None) -> None:
'''Renders the simulated `trajectories` for the given `batch`.
Args:
trajectories: NonFluents, states, actions, interms and rewards.
batch: Number of batches to render.
'''
raise NotImplementedError | [
"def",
"render",
"(",
"self",
",",
"trajectories",
":",
"Tuple",
"[",
"NonFluents",
",",
"Fluents",
",",
"Fluents",
",",
"Fluents",
",",
"np",
".",
"array",
"]",
",",
"batch",
":",
"Optional",
"[",
"int",
"]",
"=",
"None",
")",
"->",
"None",
":",
"raise",
"NotImplementedError"
]
| Renders the simulated `trajectories` for the given `batch`.
Args:
trajectories: NonFluents, states, actions, interms and rewards.
batch: Number of batches to render. | [
"Renders",
"the",
"simulated",
"trajectories",
"for",
"the",
"given",
"batch",
"."
]
| d7102a0ad37d179dbb23141640254ea383d3b43f | https://github.com/thiagopbueno/tf-rddlsim/blob/d7102a0ad37d179dbb23141640254ea383d3b43f/tfrddlsim/viz/abstract_visualizer.py#L41-L50 | train |
grundprinzip/pyxplorer | pyxplorer/types.py | Column.distribution | def distribution(self, limit=1024):
"""
Build the distribution of distinct values
"""
res = self._qexec("%s, count(*) as __cnt" % self.name(), group="%s" % self.name(),
order="__cnt DESC LIMIT %d" % limit)
dist = []
cnt = self._table.size()
for i, r in enumerate(res):
dist.append(list(r) + [i, r[1] / float(cnt)])
self._distribution = pd.DataFrame(dist, columns=["value", "cnt", "r", "fraction"])
self._distribution.index = self._distribution.r
return self._distribution | python | def distribution(self, limit=1024):
"""
Build the distribution of distinct values
"""
res = self._qexec("%s, count(*) as __cnt" % self.name(), group="%s" % self.name(),
order="__cnt DESC LIMIT %d" % limit)
dist = []
cnt = self._table.size()
for i, r in enumerate(res):
dist.append(list(r) + [i, r[1] / float(cnt)])
self._distribution = pd.DataFrame(dist, columns=["value", "cnt", "r", "fraction"])
self._distribution.index = self._distribution.r
return self._distribution | [
"def",
"distribution",
"(",
"self",
",",
"limit",
"=",
"1024",
")",
":",
"res",
"=",
"self",
".",
"_qexec",
"(",
"\"%s, count(*) as __cnt\"",
"%",
"self",
".",
"name",
"(",
")",
",",
"group",
"=",
"\"%s\"",
"%",
"self",
".",
"name",
"(",
")",
",",
"order",
"=",
"\"__cnt DESC LIMIT %d\"",
"%",
"limit",
")",
"dist",
"=",
"[",
"]",
"cnt",
"=",
"self",
".",
"_table",
".",
"size",
"(",
")",
"for",
"i",
",",
"r",
"in",
"enumerate",
"(",
"res",
")",
":",
"dist",
".",
"append",
"(",
"list",
"(",
"r",
")",
"+",
"[",
"i",
",",
"r",
"[",
"1",
"]",
"/",
"float",
"(",
"cnt",
")",
"]",
")",
"self",
".",
"_distribution",
"=",
"pd",
".",
"DataFrame",
"(",
"dist",
",",
"columns",
"=",
"[",
"\"value\"",
",",
"\"cnt\"",
",",
"\"r\"",
",",
"\"fraction\"",
"]",
")",
"self",
".",
"_distribution",
".",
"index",
"=",
"self",
".",
"_distribution",
".",
"r",
"return",
"self",
".",
"_distribution"
]
| Build the distribution of distinct values | [
"Build",
"the",
"distribution",
"of",
"distinct",
"values"
]
| 34c1d166cfef4a94aeb6d5fcb3cbb726d48146e2 | https://github.com/grundprinzip/pyxplorer/blob/34c1d166cfef4a94aeb6d5fcb3cbb726d48146e2/pyxplorer/types.py#L91-L105 | train |
gofed/gofedlib | gofedlib/distribution/distributionnameparser.py | DistributionNameParser.parse | def parse(self, name):
"""Parse distribution string
:param name: distribution string, e.g. "Fedora 23"
:type name: string
"""
name = name.strip()
groups = self._parseFedora(name)
if groups:
self._signature = DistributionNameSignature("Fedora", groups.group(1))
return self
raise ValueError("Distribution name '%s' not recognized" % name) | python | def parse(self, name):
"""Parse distribution string
:param name: distribution string, e.g. "Fedora 23"
:type name: string
"""
name = name.strip()
groups = self._parseFedora(name)
if groups:
self._signature = DistributionNameSignature("Fedora", groups.group(1))
return self
raise ValueError("Distribution name '%s' not recognized" % name) | [
"def",
"parse",
"(",
"self",
",",
"name",
")",
":",
"name",
"=",
"name",
".",
"strip",
"(",
")",
"groups",
"=",
"self",
".",
"_parseFedora",
"(",
"name",
")",
"if",
"groups",
":",
"self",
".",
"_signature",
"=",
"DistributionNameSignature",
"(",
"\"Fedora\"",
",",
"groups",
".",
"group",
"(",
"1",
")",
")",
"return",
"self",
"raise",
"ValueError",
"(",
"\"Distribution name '%s' not recognized\"",
"%",
"name",
")"
]
| Parse distribution string
:param name: distribution string, e.g. "Fedora 23"
:type name: string | [
"Parse",
"distribution",
"string"
]
| 0674c248fe3d8706f98f912996b65af469f96b10 | https://github.com/gofed/gofedlib/blob/0674c248fe3d8706f98f912996b65af469f96b10/gofedlib/distribution/distributionnameparser.py#L52-L64 | train |
zalando-stups/lizzy-client | lizzy_client/token.py | get_token | def get_token(url: str, scopes: str, credentials_dir: str) -> dict:
"""
Get access token info.
"""
tokens.configure(url=url, dir=credentials_dir)
tokens.manage('lizzy', [scopes])
tokens.start()
return tokens.get('lizzy') | python | def get_token(url: str, scopes: str, credentials_dir: str) -> dict:
"""
Get access token info.
"""
tokens.configure(url=url, dir=credentials_dir)
tokens.manage('lizzy', [scopes])
tokens.start()
return tokens.get('lizzy') | [
"def",
"get_token",
"(",
"url",
":",
"str",
",",
"scopes",
":",
"str",
",",
"credentials_dir",
":",
"str",
")",
"->",
"dict",
":",
"tokens",
".",
"configure",
"(",
"url",
"=",
"url",
",",
"dir",
"=",
"credentials_dir",
")",
"tokens",
".",
"manage",
"(",
"'lizzy'",
",",
"[",
"scopes",
"]",
")",
"tokens",
".",
"start",
"(",
")",
"return",
"tokens",
".",
"get",
"(",
"'lizzy'",
")"
]
| Get access token info. | [
"Get",
"access",
"token",
"info",
"."
]
| 0af9733ca5a25ebd0a9dc1453f2a7592efcee56a | https://github.com/zalando-stups/lizzy-client/blob/0af9733ca5a25ebd0a9dc1453f2a7592efcee56a/lizzy_client/token.py#L4-L13 | train |
peterbe/gg | gg/builtins/config.py | config | def config(config, fork_name="", origin_name=""):
"""Setting various configuration options"""
state = read(config.configfile)
any_set = False
if fork_name:
update(config.configfile, {"FORK_NAME": fork_name})
success_out("fork-name set to: {}".format(fork_name))
any_set = True
if origin_name:
update(config.configfile, {"ORIGIN_NAME": origin_name})
success_out("origin-name set to: {}".format(origin_name))
any_set = True
if not any_set:
info_out("Fork-name: {}".format(state["FORK_NAME"])) | python | def config(config, fork_name="", origin_name=""):
"""Setting various configuration options"""
state = read(config.configfile)
any_set = False
if fork_name:
update(config.configfile, {"FORK_NAME": fork_name})
success_out("fork-name set to: {}".format(fork_name))
any_set = True
if origin_name:
update(config.configfile, {"ORIGIN_NAME": origin_name})
success_out("origin-name set to: {}".format(origin_name))
any_set = True
if not any_set:
info_out("Fork-name: {}".format(state["FORK_NAME"])) | [
"def",
"config",
"(",
"config",
",",
"fork_name",
"=",
"\"\"",
",",
"origin_name",
"=",
"\"\"",
")",
":",
"state",
"=",
"read",
"(",
"config",
".",
"configfile",
")",
"any_set",
"=",
"False",
"if",
"fork_name",
":",
"update",
"(",
"config",
".",
"configfile",
",",
"{",
"\"FORK_NAME\"",
":",
"fork_name",
"}",
")",
"success_out",
"(",
"\"fork-name set to: {}\"",
".",
"format",
"(",
"fork_name",
")",
")",
"any_set",
"=",
"True",
"if",
"origin_name",
":",
"update",
"(",
"config",
".",
"configfile",
",",
"{",
"\"ORIGIN_NAME\"",
":",
"origin_name",
"}",
")",
"success_out",
"(",
"\"origin-name set to: {}\"",
".",
"format",
"(",
"origin_name",
")",
")",
"any_set",
"=",
"True",
"if",
"not",
"any_set",
":",
"info_out",
"(",
"\"Fork-name: {}\"",
".",
"format",
"(",
"state",
"[",
"\"FORK_NAME\"",
"]",
")",
")"
]
| Setting various configuration options | [
"Setting",
"various",
"configuration",
"options"
]
| 2aace5bdb4a9b1cb65bea717784edf54c63b7bad | https://github.com/peterbe/gg/blob/2aace5bdb4a9b1cb65bea717784edf54c63b7bad/gg/builtins/config.py#L22-L35 | train |
geophysics-ubonn/crtomo_tools | lib/crtomo/eitManager.py | eitMan.set_area_to_sip_signature | def set_area_to_sip_signature(self, xmin, xmax, zmin, zmax, spectrum):
"""Parameterize the eit instance by supplying one
SIP spectrum and the area to apply to.
Parameters
----------
xmin : float
Minimum x coordinate of the area
xmax : float
Maximum x coordinate of the area
zmin : float
Minimum z coordinate of the area
zmax : float
Maximum z coordinate of the area
spectrum : sip_response
SIP spectrum to use for parameterization
"""
assert isinstance(spectrum, (sip_response, sip_response2))
assert np.all(self.frequencies == spectrum.frequencies)
for frequency, rmag, rpha in zip(
self.frequencies, spectrum.rmag, spectrum.rpha):
td = self.tds[frequency]
pidm, pidp = td.a['forward_model']
td.parman.modify_area(pidm, xmin, xmax, zmin, zmax, rmag)
td.parman.modify_area(pidp, xmin, xmax, zmin, zmax, rpha) | python | def set_area_to_sip_signature(self, xmin, xmax, zmin, zmax, spectrum):
"""Parameterize the eit instance by supplying one
SIP spectrum and the area to apply to.
Parameters
----------
xmin : float
Minimum x coordinate of the area
xmax : float
Maximum x coordinate of the area
zmin : float
Minimum z coordinate of the area
zmax : float
Maximum z coordinate of the area
spectrum : sip_response
SIP spectrum to use for parameterization
"""
assert isinstance(spectrum, (sip_response, sip_response2))
assert np.all(self.frequencies == spectrum.frequencies)
for frequency, rmag, rpha in zip(
self.frequencies, spectrum.rmag, spectrum.rpha):
td = self.tds[frequency]
pidm, pidp = td.a['forward_model']
td.parman.modify_area(pidm, xmin, xmax, zmin, zmax, rmag)
td.parman.modify_area(pidp, xmin, xmax, zmin, zmax, rpha) | [
"def",
"set_area_to_sip_signature",
"(",
"self",
",",
"xmin",
",",
"xmax",
",",
"zmin",
",",
"zmax",
",",
"spectrum",
")",
":",
"assert",
"isinstance",
"(",
"spectrum",
",",
"(",
"sip_response",
",",
"sip_response2",
")",
")",
"assert",
"np",
".",
"all",
"(",
"self",
".",
"frequencies",
"==",
"spectrum",
".",
"frequencies",
")",
"for",
"frequency",
",",
"rmag",
",",
"rpha",
"in",
"zip",
"(",
"self",
".",
"frequencies",
",",
"spectrum",
".",
"rmag",
",",
"spectrum",
".",
"rpha",
")",
":",
"td",
"=",
"self",
".",
"tds",
"[",
"frequency",
"]",
"pidm",
",",
"pidp",
"=",
"td",
".",
"a",
"[",
"'forward_model'",
"]",
"td",
".",
"parman",
".",
"modify_area",
"(",
"pidm",
",",
"xmin",
",",
"xmax",
",",
"zmin",
",",
"zmax",
",",
"rmag",
")",
"td",
".",
"parman",
".",
"modify_area",
"(",
"pidp",
",",
"xmin",
",",
"xmax",
",",
"zmin",
",",
"zmax",
",",
"rpha",
")"
]
| Parameterize the eit instance by supplying one
SIP spectrum and the area to apply to.
Parameters
----------
xmin : float
Minimum x coordinate of the area
xmax : float
Maximum x coordinate of the area
zmin : float
Minimum z coordinate of the area
zmax : float
Maximum z coordinate of the area
spectrum : sip_response
SIP spectrum to use for parameterization | [
"Parameterize",
"the",
"eit",
"instance",
"by",
"supplying",
"one",
"SIP",
"spectrum",
"and",
"the",
"area",
"to",
"apply",
"to",
"."
]
| 27c3e21a557f8df1c12455b96c4c2e00e08a5b4a | https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/lib/crtomo/eitManager.py#L163-L188 | train |
geophysics-ubonn/crtomo_tools | lib/crtomo/eitManager.py | eitMan.add_homogeneous_model | def add_homogeneous_model(self, magnitude, phase=0, frequency=None):
"""Add homogeneous models to one or all tomodirs. Register those as
forward models
Parameters
----------
magnitude : float
Value of homogeneous magnitude model
phase : float, optional
Value of homogeneous phase model. Default 0
frequency : float, optional
Frequency of of the tomodir to use. If None, then apply to all
tomodirs. Default is None.
"""
if frequency is None:
frequencies = self.frequencies
else:
assert isinstance(frequency, Number)
frequencies = [frequency, ]
for freq in frequencies:
pidm, pidp = self.tds[freq].add_homogeneous_model(magnitude, phase)
self.a['forward_rmag'][freq] = pidm
self.a['forward_rpha'][freq] = pidp | python | def add_homogeneous_model(self, magnitude, phase=0, frequency=None):
"""Add homogeneous models to one or all tomodirs. Register those as
forward models
Parameters
----------
magnitude : float
Value of homogeneous magnitude model
phase : float, optional
Value of homogeneous phase model. Default 0
frequency : float, optional
Frequency of of the tomodir to use. If None, then apply to all
tomodirs. Default is None.
"""
if frequency is None:
frequencies = self.frequencies
else:
assert isinstance(frequency, Number)
frequencies = [frequency, ]
for freq in frequencies:
pidm, pidp = self.tds[freq].add_homogeneous_model(magnitude, phase)
self.a['forward_rmag'][freq] = pidm
self.a['forward_rpha'][freq] = pidp | [
"def",
"add_homogeneous_model",
"(",
"self",
",",
"magnitude",
",",
"phase",
"=",
"0",
",",
"frequency",
"=",
"None",
")",
":",
"if",
"frequency",
"is",
"None",
":",
"frequencies",
"=",
"self",
".",
"frequencies",
"else",
":",
"assert",
"isinstance",
"(",
"frequency",
",",
"Number",
")",
"frequencies",
"=",
"[",
"frequency",
",",
"]",
"for",
"freq",
"in",
"frequencies",
":",
"pidm",
",",
"pidp",
"=",
"self",
".",
"tds",
"[",
"freq",
"]",
".",
"add_homogeneous_model",
"(",
"magnitude",
",",
"phase",
")",
"self",
".",
"a",
"[",
"'forward_rmag'",
"]",
"[",
"freq",
"]",
"=",
"pidm",
"self",
".",
"a",
"[",
"'forward_rpha'",
"]",
"[",
"freq",
"]",
"=",
"pidp"
]
| Add homogeneous models to one or all tomodirs. Register those as
forward models
Parameters
----------
magnitude : float
Value of homogeneous magnitude model
phase : float, optional
Value of homogeneous phase model. Default 0
frequency : float, optional
Frequency of of the tomodir to use. If None, then apply to all
tomodirs. Default is None. | [
"Add",
"homogeneous",
"models",
"to",
"one",
"or",
"all",
"tomodirs",
".",
"Register",
"those",
"as",
"forward",
"models"
]
| 27c3e21a557f8df1c12455b96c4c2e00e08a5b4a | https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/lib/crtomo/eitManager.py#L195-L218 | train |
geophysics-ubonn/crtomo_tools | lib/crtomo/eitManager.py | eitMan.apply_crtomo_cfg | def apply_crtomo_cfg(self):
"""Set the global crtomo_cfg for all frequencies
"""
for key in sorted(self.tds.keys()):
self.tds[key].crtomo_cfg = self.crtomo_cfg.copy() | python | def apply_crtomo_cfg(self):
"""Set the global crtomo_cfg for all frequencies
"""
for key in sorted(self.tds.keys()):
self.tds[key].crtomo_cfg = self.crtomo_cfg.copy() | [
"def",
"apply_crtomo_cfg",
"(",
"self",
")",
":",
"for",
"key",
"in",
"sorted",
"(",
"self",
".",
"tds",
".",
"keys",
"(",
")",
")",
":",
"self",
".",
"tds",
"[",
"key",
"]",
".",
"crtomo_cfg",
"=",
"self",
".",
"crtomo_cfg",
".",
"copy",
"(",
")"
]
| Set the global crtomo_cfg for all frequencies | [
"Set",
"the",
"global",
"crtomo_cfg",
"for",
"all",
"frequencies"
]
| 27c3e21a557f8df1c12455b96c4c2e00e08a5b4a | https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/lib/crtomo/eitManager.py#L273-L277 | train |
geophysics-ubonn/crtomo_tools | lib/crtomo/eitManager.py | eitMan.apply_noise_models | def apply_noise_models(self):
"""Set the global noise_model for all frequencies
"""
for key in sorted(self.tds.keys()):
self.tds[key].noise_model = self.noise_model | python | def apply_noise_models(self):
"""Set the global noise_model for all frequencies
"""
for key in sorted(self.tds.keys()):
self.tds[key].noise_model = self.noise_model | [
"def",
"apply_noise_models",
"(",
"self",
")",
":",
"for",
"key",
"in",
"sorted",
"(",
"self",
".",
"tds",
".",
"keys",
"(",
")",
")",
":",
"self",
".",
"tds",
"[",
"key",
"]",
".",
"noise_model",
"=",
"self",
".",
"noise_model"
]
| Set the global noise_model for all frequencies | [
"Set",
"the",
"global",
"noise_model",
"for",
"all",
"frequencies"
]
| 27c3e21a557f8df1c12455b96c4c2e00e08a5b4a | https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/lib/crtomo/eitManager.py#L279-L283 | train |
geophysics-ubonn/crtomo_tools | lib/crtomo/eitManager.py | eitMan.load_inversion_results | def load_inversion_results(self, sipdir):
"""Given an sEIT inversion directory, load inversion results and store
the corresponding parameter ids in self.assignments
Note that all previous data stored in this instance of the eitManager
will be overwritten, if required!
"""
# load frequencies and initialize tomodir objects for all frequencies
frequency_file = sipdir + os.sep + 'frequencies.dat'
frequencies = np.loadtxt(frequency_file)
self._init_frequencies(frequencies)
# cycle through all tomodirs on disc and load the data
for nr, (frequency_key, item) in enumerate(sorted(self.tds.items())):
for label in ('rmag', 'rpha', 'cre', 'cim'):
if label not in self.assigments:
self.a[label] = {}
tdir = sipdir + os.sep + 'invmod' + os.sep + '{:02}_{:.6f}'.format(
nr, frequency_key) + os.sep
rmag_file = sorted(glob(tdir + 'inv/*.mag'))[-1]
rmag_data = np.loadtxt(rmag_file, skiprows=1)[:, 2]
pid_rmag = item.parman.add_data(rmag_data)
self.a['rmag'][frequency_key] = pid_rmag
rpha_file = sorted(glob(tdir + 'inv/*.pha'))[-1]
rpha_data = np.loadtxt(rpha_file, skiprows=1)[:, 2]
pid_rpha = item.parman.add_data(rpha_data)
self.a['rpha'][frequency_key] = pid_rpha
sigma_file = sorted(glob(tdir + 'inv/*.sig'))[-1]
sigma_data = np.loadtxt(sigma_file, skiprows=1)
pid_cre = item.parman.add_data(sigma_data[:, 0])
pid_cim = item.parman.add_data(sigma_data[:, 1])
self.a['cre'][frequency_key] = pid_cre
self.a['cim'][frequency_key] = pid_cim | python | def load_inversion_results(self, sipdir):
"""Given an sEIT inversion directory, load inversion results and store
the corresponding parameter ids in self.assignments
Note that all previous data stored in this instance of the eitManager
will be overwritten, if required!
"""
# load frequencies and initialize tomodir objects for all frequencies
frequency_file = sipdir + os.sep + 'frequencies.dat'
frequencies = np.loadtxt(frequency_file)
self._init_frequencies(frequencies)
# cycle through all tomodirs on disc and load the data
for nr, (frequency_key, item) in enumerate(sorted(self.tds.items())):
for label in ('rmag', 'rpha', 'cre', 'cim'):
if label not in self.assigments:
self.a[label] = {}
tdir = sipdir + os.sep + 'invmod' + os.sep + '{:02}_{:.6f}'.format(
nr, frequency_key) + os.sep
rmag_file = sorted(glob(tdir + 'inv/*.mag'))[-1]
rmag_data = np.loadtxt(rmag_file, skiprows=1)[:, 2]
pid_rmag = item.parman.add_data(rmag_data)
self.a['rmag'][frequency_key] = pid_rmag
rpha_file = sorted(glob(tdir + 'inv/*.pha'))[-1]
rpha_data = np.loadtxt(rpha_file, skiprows=1)[:, 2]
pid_rpha = item.parman.add_data(rpha_data)
self.a['rpha'][frequency_key] = pid_rpha
sigma_file = sorted(glob(tdir + 'inv/*.sig'))[-1]
sigma_data = np.loadtxt(sigma_file, skiprows=1)
pid_cre = item.parman.add_data(sigma_data[:, 0])
pid_cim = item.parman.add_data(sigma_data[:, 1])
self.a['cre'][frequency_key] = pid_cre
self.a['cim'][frequency_key] = pid_cim | [
"def",
"load_inversion_results",
"(",
"self",
",",
"sipdir",
")",
":",
"# load frequencies and initialize tomodir objects for all frequencies",
"frequency_file",
"=",
"sipdir",
"+",
"os",
".",
"sep",
"+",
"'frequencies.dat'",
"frequencies",
"=",
"np",
".",
"loadtxt",
"(",
"frequency_file",
")",
"self",
".",
"_init_frequencies",
"(",
"frequencies",
")",
"# cycle through all tomodirs on disc and load the data",
"for",
"nr",
",",
"(",
"frequency_key",
",",
"item",
")",
"in",
"enumerate",
"(",
"sorted",
"(",
"self",
".",
"tds",
".",
"items",
"(",
")",
")",
")",
":",
"for",
"label",
"in",
"(",
"'rmag'",
",",
"'rpha'",
",",
"'cre'",
",",
"'cim'",
")",
":",
"if",
"label",
"not",
"in",
"self",
".",
"assigments",
":",
"self",
".",
"a",
"[",
"label",
"]",
"=",
"{",
"}",
"tdir",
"=",
"sipdir",
"+",
"os",
".",
"sep",
"+",
"'invmod'",
"+",
"os",
".",
"sep",
"+",
"'{:02}_{:.6f}'",
".",
"format",
"(",
"nr",
",",
"frequency_key",
")",
"+",
"os",
".",
"sep",
"rmag_file",
"=",
"sorted",
"(",
"glob",
"(",
"tdir",
"+",
"'inv/*.mag'",
")",
")",
"[",
"-",
"1",
"]",
"rmag_data",
"=",
"np",
".",
"loadtxt",
"(",
"rmag_file",
",",
"skiprows",
"=",
"1",
")",
"[",
":",
",",
"2",
"]",
"pid_rmag",
"=",
"item",
".",
"parman",
".",
"add_data",
"(",
"rmag_data",
")",
"self",
".",
"a",
"[",
"'rmag'",
"]",
"[",
"frequency_key",
"]",
"=",
"pid_rmag",
"rpha_file",
"=",
"sorted",
"(",
"glob",
"(",
"tdir",
"+",
"'inv/*.pha'",
")",
")",
"[",
"-",
"1",
"]",
"rpha_data",
"=",
"np",
".",
"loadtxt",
"(",
"rpha_file",
",",
"skiprows",
"=",
"1",
")",
"[",
":",
",",
"2",
"]",
"pid_rpha",
"=",
"item",
".",
"parman",
".",
"add_data",
"(",
"rpha_data",
")",
"self",
".",
"a",
"[",
"'rpha'",
"]",
"[",
"frequency_key",
"]",
"=",
"pid_rpha",
"sigma_file",
"=",
"sorted",
"(",
"glob",
"(",
"tdir",
"+",
"'inv/*.sig'",
")",
")",
"[",
"-",
"1",
"]",
"sigma_data",
"=",
"np",
".",
"loadtxt",
"(",
"sigma_file",
",",
"skiprows",
"=",
"1",
")",
"pid_cre",
"=",
"item",
".",
"parman",
".",
"add_data",
"(",
"sigma_data",
"[",
":",
",",
"0",
"]",
")",
"pid_cim",
"=",
"item",
".",
"parman",
".",
"add_data",
"(",
"sigma_data",
"[",
":",
",",
"1",
"]",
")",
"self",
".",
"a",
"[",
"'cre'",
"]",
"[",
"frequency_key",
"]",
"=",
"pid_cre",
"self",
".",
"a",
"[",
"'cim'",
"]",
"[",
"frequency_key",
"]",
"=",
"pid_cim"
]
| Given an sEIT inversion directory, load inversion results and store
the corresponding parameter ids in self.assignments
Note that all previous data stored in this instance of the eitManager
will be overwritten, if required! | [
"Given",
"an",
"sEIT",
"inversion",
"directory",
"load",
"inversion",
"results",
"and",
"store",
"the",
"corresponding",
"parameter",
"ids",
"in",
"self",
".",
"assignments"
]
| 27c3e21a557f8df1c12455b96c4c2e00e08a5b4a | https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/lib/crtomo/eitManager.py#L305-L341 | train |
geophysics-ubonn/crtomo_tools | lib/crtomo/eitManager.py | eitMan.plot_forward_models | def plot_forward_models(self, maglim=None, phalim=None, **kwargs):
"""Create plots of the forward models
Returns
-------
mag_fig: dict
Dictionary containing the figure and axes objects of the magnitude
plots
"""
return_dict = {}
N = len(self.frequencies)
nrx = min(N, 4)
nrz = int(np.ceil(N / nrx))
for index, key, limits in zip(
(0, 1), ('rmag', 'rpha'), (maglim, phalim)):
if limits is None:
cbmin = None
cbmax = None
else:
cbmin = limits[0]
cbmax = limits[1]
fig, axes = plt.subplots(
nrz, nrx,
figsize=(16 / 2.54, nrz * 3 / 2.54),
sharex=True, sharey=True,
)
for ax in axes.flat:
ax.set_visible(False)
for ax, frequency in zip(axes.flat, self.frequencies):
ax.set_visible(True)
td = self.tds[frequency]
pids = td.a['forward_model']
td.plot.plot_elements_to_ax(
pids[index],
ax=ax,
plot_colorbar=True,
cbposition='horizontal',
cbmin=cbmin,
cbmax=cbmax,
**kwargs
)
for ax in axes[0:-1, :].flat:
ax.set_xlabel('')
for ax in axes[:, 1:].flat:
ax.set_ylabel('')
fig.tight_layout()
return_dict[key] = {
'fig': fig,
'axes': axes,
}
return return_dict | python | def plot_forward_models(self, maglim=None, phalim=None, **kwargs):
"""Create plots of the forward models
Returns
-------
mag_fig: dict
Dictionary containing the figure and axes objects of the magnitude
plots
"""
return_dict = {}
N = len(self.frequencies)
nrx = min(N, 4)
nrz = int(np.ceil(N / nrx))
for index, key, limits in zip(
(0, 1), ('rmag', 'rpha'), (maglim, phalim)):
if limits is None:
cbmin = None
cbmax = None
else:
cbmin = limits[0]
cbmax = limits[1]
fig, axes = plt.subplots(
nrz, nrx,
figsize=(16 / 2.54, nrz * 3 / 2.54),
sharex=True, sharey=True,
)
for ax in axes.flat:
ax.set_visible(False)
for ax, frequency in zip(axes.flat, self.frequencies):
ax.set_visible(True)
td = self.tds[frequency]
pids = td.a['forward_model']
td.plot.plot_elements_to_ax(
pids[index],
ax=ax,
plot_colorbar=True,
cbposition='horizontal',
cbmin=cbmin,
cbmax=cbmax,
**kwargs
)
for ax in axes[0:-1, :].flat:
ax.set_xlabel('')
for ax in axes[:, 1:].flat:
ax.set_ylabel('')
fig.tight_layout()
return_dict[key] = {
'fig': fig,
'axes': axes,
}
return return_dict | [
"def",
"plot_forward_models",
"(",
"self",
",",
"maglim",
"=",
"None",
",",
"phalim",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"return_dict",
"=",
"{",
"}",
"N",
"=",
"len",
"(",
"self",
".",
"frequencies",
")",
"nrx",
"=",
"min",
"(",
"N",
",",
"4",
")",
"nrz",
"=",
"int",
"(",
"np",
".",
"ceil",
"(",
"N",
"/",
"nrx",
")",
")",
"for",
"index",
",",
"key",
",",
"limits",
"in",
"zip",
"(",
"(",
"0",
",",
"1",
")",
",",
"(",
"'rmag'",
",",
"'rpha'",
")",
",",
"(",
"maglim",
",",
"phalim",
")",
")",
":",
"if",
"limits",
"is",
"None",
":",
"cbmin",
"=",
"None",
"cbmax",
"=",
"None",
"else",
":",
"cbmin",
"=",
"limits",
"[",
"0",
"]",
"cbmax",
"=",
"limits",
"[",
"1",
"]",
"fig",
",",
"axes",
"=",
"plt",
".",
"subplots",
"(",
"nrz",
",",
"nrx",
",",
"figsize",
"=",
"(",
"16",
"/",
"2.54",
",",
"nrz",
"*",
"3",
"/",
"2.54",
")",
",",
"sharex",
"=",
"True",
",",
"sharey",
"=",
"True",
",",
")",
"for",
"ax",
"in",
"axes",
".",
"flat",
":",
"ax",
".",
"set_visible",
"(",
"False",
")",
"for",
"ax",
",",
"frequency",
"in",
"zip",
"(",
"axes",
".",
"flat",
",",
"self",
".",
"frequencies",
")",
":",
"ax",
".",
"set_visible",
"(",
"True",
")",
"td",
"=",
"self",
".",
"tds",
"[",
"frequency",
"]",
"pids",
"=",
"td",
".",
"a",
"[",
"'forward_model'",
"]",
"td",
".",
"plot",
".",
"plot_elements_to_ax",
"(",
"pids",
"[",
"index",
"]",
",",
"ax",
"=",
"ax",
",",
"plot_colorbar",
"=",
"True",
",",
"cbposition",
"=",
"'horizontal'",
",",
"cbmin",
"=",
"cbmin",
",",
"cbmax",
"=",
"cbmax",
",",
"*",
"*",
"kwargs",
")",
"for",
"ax",
"in",
"axes",
"[",
"0",
":",
"-",
"1",
",",
":",
"]",
".",
"flat",
":",
"ax",
".",
"set_xlabel",
"(",
"''",
")",
"for",
"ax",
"in",
"axes",
"[",
":",
",",
"1",
":",
"]",
".",
"flat",
":",
"ax",
".",
"set_ylabel",
"(",
"''",
")",
"fig",
".",
"tight_layout",
"(",
")",
"return_dict",
"[",
"key",
"]",
"=",
"{",
"'fig'",
":",
"fig",
",",
"'axes'",
":",
"axes",
",",
"}",
"return",
"return_dict"
]
| Create plots of the forward models
Returns
-------
mag_fig: dict
Dictionary containing the figure and axes objects of the magnitude
plots | [
"Create",
"plots",
"of",
"the",
"forward",
"models"
]
| 27c3e21a557f8df1c12455b96c4c2e00e08a5b4a | https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/lib/crtomo/eitManager.py#L402-L460 | train |
geophysics-ubonn/crtomo_tools | lib/crtomo/eitManager.py | eitMan.add_to_configs | def add_to_configs(self, configs):
"""Add configurations to all tomodirs
Parameters
----------
configs : :class:`numpy.ndarray`
Nx4 numpy array with abmn configurations
"""
for f, td in self.tds.items():
td.configs.add_to_configs(configs) | python | def add_to_configs(self, configs):
"""Add configurations to all tomodirs
Parameters
----------
configs : :class:`numpy.ndarray`
Nx4 numpy array with abmn configurations
"""
for f, td in self.tds.items():
td.configs.add_to_configs(configs) | [
"def",
"add_to_configs",
"(",
"self",
",",
"configs",
")",
":",
"for",
"f",
",",
"td",
"in",
"self",
".",
"tds",
".",
"items",
"(",
")",
":",
"td",
".",
"configs",
".",
"add_to_configs",
"(",
"configs",
")"
]
| Add configurations to all tomodirs
Parameters
----------
configs : :class:`numpy.ndarray`
Nx4 numpy array with abmn configurations | [
"Add",
"configurations",
"to",
"all",
"tomodirs"
]
| 27c3e21a557f8df1c12455b96c4c2e00e08a5b4a | https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/lib/crtomo/eitManager.py#L462-L472 | train |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.