repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
partition
stringclasses
1 value
thiagopbueno/tf-rddlsim
tfrddlsim/simulation/policy_simulator.py
PolicySimulationCell._tensors
def _tensors(cls, fluents: Sequence[FluentPair]) -> Iterable[tf.Tensor]: '''Yields the `fluents`' tensors.''' for _, fluent in fluents: tensor = cls._output_size(fluent.tensor) yield tensor
python
def _tensors(cls, fluents: Sequence[FluentPair]) -> Iterable[tf.Tensor]: '''Yields the `fluents`' tensors.''' for _, fluent in fluents: tensor = cls._output_size(fluent.tensor) yield tensor
[ "def", "_tensors", "(", "cls", ",", "fluents", ":", "Sequence", "[", "FluentPair", "]", ")", "->", "Iterable", "[", "tf", ".", "Tensor", "]", ":", "for", "_", ",", "fluent", "in", "fluents", ":", "tensor", "=", "cls", ".", "_output_size", "(", "fluent", ".", "tensor", ")", "yield", "tensor" ]
Yields the `fluents`' tensors.
[ "Yields", "the", "fluents", "tensors", "." ]
d7102a0ad37d179dbb23141640254ea383d3b43f
https://github.com/thiagopbueno/tf-rddlsim/blob/d7102a0ad37d179dbb23141640254ea383d3b43f/tfrddlsim/simulation/policy_simulator.py#L157-L161
train
thiagopbueno/tf-rddlsim
tfrddlsim/simulation/policy_simulator.py
PolicySimulationCell._dtype
def _dtype(cls, tensor: tf.Tensor) -> tf.Tensor: '''Converts `tensor` to tf.float32 datatype if needed.''' if tensor.dtype != tf.float32: tensor = tf.cast(tensor, tf.float32) return tensor
python
def _dtype(cls, tensor: tf.Tensor) -> tf.Tensor: '''Converts `tensor` to tf.float32 datatype if needed.''' if tensor.dtype != tf.float32: tensor = tf.cast(tensor, tf.float32) return tensor
[ "def", "_dtype", "(", "cls", ",", "tensor", ":", "tf", ".", "Tensor", ")", "->", "tf", ".", "Tensor", ":", "if", "tensor", ".", "dtype", "!=", "tf", ".", "float32", ":", "tensor", "=", "tf", ".", "cast", "(", "tensor", ",", "tf", ".", "float32", ")", "return", "tensor" ]
Converts `tensor` to tf.float32 datatype if needed.
[ "Converts", "tensor", "to", "tf", ".", "float32", "datatype", "if", "needed", "." ]
d7102a0ad37d179dbb23141640254ea383d3b43f
https://github.com/thiagopbueno/tf-rddlsim/blob/d7102a0ad37d179dbb23141640254ea383d3b43f/tfrddlsim/simulation/policy_simulator.py#L164-L168
train
thiagopbueno/tf-rddlsim
tfrddlsim/simulation/policy_simulator.py
PolicySimulationCell._output
def _output(cls, fluents: Sequence[FluentPair]) -> Sequence[tf.Tensor]: '''Returns output tensors for `fluents`.''' return tuple(cls._dtype(t) for t in cls._tensors(fluents))
python
def _output(cls, fluents: Sequence[FluentPair]) -> Sequence[tf.Tensor]: '''Returns output tensors for `fluents`.''' return tuple(cls._dtype(t) for t in cls._tensors(fluents))
[ "def", "_output", "(", "cls", ",", "fluents", ":", "Sequence", "[", "FluentPair", "]", ")", "->", "Sequence", "[", "tf", ".", "Tensor", "]", ":", "return", "tuple", "(", "cls", ".", "_dtype", "(", "t", ")", "for", "t", "in", "cls", ".", "_tensors", "(", "fluents", ")", ")" ]
Returns output tensors for `fluents`.
[ "Returns", "output", "tensors", "for", "fluents", "." ]
d7102a0ad37d179dbb23141640254ea383d3b43f
https://github.com/thiagopbueno/tf-rddlsim/blob/d7102a0ad37d179dbb23141640254ea383d3b43f/tfrddlsim/simulation/policy_simulator.py#L171-L173
train
thiagopbueno/tf-rddlsim
tfrddlsim/simulation/policy_simulator.py
PolicySimulator.output_size
def output_size(self) -> Tuple[Sequence[Shape], Sequence[Shape], Sequence[Shape], int]: '''Returns the simulation output size.''' return self._cell.output_size
python
def output_size(self) -> Tuple[Sequence[Shape], Sequence[Shape], Sequence[Shape], int]: '''Returns the simulation output size.''' return self._cell.output_size
[ "def", "output_size", "(", "self", ")", "->", "Tuple", "[", "Sequence", "[", "Shape", "]", ",", "Sequence", "[", "Shape", "]", ",", "Sequence", "[", "Shape", "]", ",", "int", "]", ":", "return", "self", ".", "_cell", ".", "output_size" ]
Returns the simulation output size.
[ "Returns", "the", "simulation", "output", "size", "." ]
d7102a0ad37d179dbb23141640254ea383d3b43f
https://github.com/thiagopbueno/tf-rddlsim/blob/d7102a0ad37d179dbb23141640254ea383d3b43f/tfrddlsim/simulation/policy_simulator.py#L214-L216
train
thiagopbueno/tf-rddlsim
tfrddlsim/simulation/policy_simulator.py
PolicySimulator.timesteps
def timesteps(self, horizon: int) -> tf.Tensor: '''Returns the input tensor for the given `horizon`.''' start, limit, delta = horizon - 1, -1, -1 timesteps_range = tf.range(start, limit, delta, dtype=tf.float32) timesteps_range = tf.expand_dims(timesteps_range, -1) batch_timesteps = tf.stack([timesteps_range] * self.batch_size) return batch_timesteps
python
def timesteps(self, horizon: int) -> tf.Tensor: '''Returns the input tensor for the given `horizon`.''' start, limit, delta = horizon - 1, -1, -1 timesteps_range = tf.range(start, limit, delta, dtype=tf.float32) timesteps_range = tf.expand_dims(timesteps_range, -1) batch_timesteps = tf.stack([timesteps_range] * self.batch_size) return batch_timesteps
[ "def", "timesteps", "(", "self", ",", "horizon", ":", "int", ")", "->", "tf", ".", "Tensor", ":", "start", ",", "limit", ",", "delta", "=", "horizon", "-", "1", ",", "-", "1", ",", "-", "1", "timesteps_range", "=", "tf", ".", "range", "(", "start", ",", "limit", ",", "delta", ",", "dtype", "=", "tf", ".", "float32", ")", "timesteps_range", "=", "tf", ".", "expand_dims", "(", "timesteps_range", ",", "-", "1", ")", "batch_timesteps", "=", "tf", ".", "stack", "(", "[", "timesteps_range", "]", "*", "self", ".", "batch_size", ")", "return", "batch_timesteps" ]
Returns the input tensor for the given `horizon`.
[ "Returns", "the", "input", "tensor", "for", "the", "given", "horizon", "." ]
d7102a0ad37d179dbb23141640254ea383d3b43f
https://github.com/thiagopbueno/tf-rddlsim/blob/d7102a0ad37d179dbb23141640254ea383d3b43f/tfrddlsim/simulation/policy_simulator.py#L218-L224
train
thiagopbueno/tf-rddlsim
tfrddlsim/simulation/policy_simulator.py
PolicySimulator.trajectory
def trajectory(self, horizon: int, initial_state: Optional[StateTensor] = None) -> TrajectoryOutput: '''Returns the ops for the trajectory generation with given `horizon` and `initial_state`. The simulation returns states, actions and interms as a sequence of tensors (i.e., all representations are factored). The reward is a batch sized tensor. The trajectoty output is a tuple: (initial_state, states, actions, interms, rewards). If initial state is None, use default compiler's initial state. Note: All tensors have shape: (batch_size, horizon, fluent_shape). Except initial state that has shape: (batch_size, fluent_shape). Args: horizon (int): The number of simulation timesteps. initial_state (Optional[Sequence[tf.Tensor]]): The initial state tensors. Returns: Tuple[StateTensor, StatesTensor, ActionsTensor, IntermsTensor, tf.Tensor]: Trajectory output tuple. ''' if initial_state is None: initial_state = self._cell.initial_state() with self.graph.as_default(): self.inputs = self.timesteps(horizon) outputs, _ = tf.nn.dynamic_rnn( self._cell, self.inputs, initial_state=initial_state, dtype=tf.float32, scope="trajectory") states, actions, interms, rewards = outputs # fluent types state_dtype = map(rddl2tf.utils.range_type_to_dtype, self._cell._compiler.rddl.state_range_type) states = self._output(states, state_dtype) interm_dtype = map(rddl2tf.utils.range_type_to_dtype, self._cell._compiler.rddl.interm_range_type) interms = self._output(interms, interm_dtype) action_dtype = map(rddl2tf.utils.range_type_to_dtype, self._cell._compiler.rddl.action_range_type) actions = self._output(actions, action_dtype) outputs = (initial_state, states, actions, interms, rewards) return outputs
python
def trajectory(self, horizon: int, initial_state: Optional[StateTensor] = None) -> TrajectoryOutput: '''Returns the ops for the trajectory generation with given `horizon` and `initial_state`. The simulation returns states, actions and interms as a sequence of tensors (i.e., all representations are factored). The reward is a batch sized tensor. The trajectoty output is a tuple: (initial_state, states, actions, interms, rewards). If initial state is None, use default compiler's initial state. Note: All tensors have shape: (batch_size, horizon, fluent_shape). Except initial state that has shape: (batch_size, fluent_shape). Args: horizon (int): The number of simulation timesteps. initial_state (Optional[Sequence[tf.Tensor]]): The initial state tensors. Returns: Tuple[StateTensor, StatesTensor, ActionsTensor, IntermsTensor, tf.Tensor]: Trajectory output tuple. ''' if initial_state is None: initial_state = self._cell.initial_state() with self.graph.as_default(): self.inputs = self.timesteps(horizon) outputs, _ = tf.nn.dynamic_rnn( self._cell, self.inputs, initial_state=initial_state, dtype=tf.float32, scope="trajectory") states, actions, interms, rewards = outputs # fluent types state_dtype = map(rddl2tf.utils.range_type_to_dtype, self._cell._compiler.rddl.state_range_type) states = self._output(states, state_dtype) interm_dtype = map(rddl2tf.utils.range_type_to_dtype, self._cell._compiler.rddl.interm_range_type) interms = self._output(interms, interm_dtype) action_dtype = map(rddl2tf.utils.range_type_to_dtype, self._cell._compiler.rddl.action_range_type) actions = self._output(actions, action_dtype) outputs = (initial_state, states, actions, interms, rewards) return outputs
[ "def", "trajectory", "(", "self", ",", "horizon", ":", "int", ",", "initial_state", ":", "Optional", "[", "StateTensor", "]", "=", "None", ")", "->", "TrajectoryOutput", ":", "if", "initial_state", "is", "None", ":", "initial_state", "=", "self", ".", "_cell", ".", "initial_state", "(", ")", "with", "self", ".", "graph", ".", "as_default", "(", ")", ":", "self", ".", "inputs", "=", "self", ".", "timesteps", "(", "horizon", ")", "outputs", ",", "_", "=", "tf", ".", "nn", ".", "dynamic_rnn", "(", "self", ".", "_cell", ",", "self", ".", "inputs", ",", "initial_state", "=", "initial_state", ",", "dtype", "=", "tf", ".", "float32", ",", "scope", "=", "\"trajectory\"", ")", "states", ",", "actions", ",", "interms", ",", "rewards", "=", "outputs", "# fluent types", "state_dtype", "=", "map", "(", "rddl2tf", ".", "utils", ".", "range_type_to_dtype", ",", "self", ".", "_cell", ".", "_compiler", ".", "rddl", ".", "state_range_type", ")", "states", "=", "self", ".", "_output", "(", "states", ",", "state_dtype", ")", "interm_dtype", "=", "map", "(", "rddl2tf", ".", "utils", ".", "range_type_to_dtype", ",", "self", ".", "_cell", ".", "_compiler", ".", "rddl", ".", "interm_range_type", ")", "interms", "=", "self", ".", "_output", "(", "interms", ",", "interm_dtype", ")", "action_dtype", "=", "map", "(", "rddl2tf", ".", "utils", ".", "range_type_to_dtype", ",", "self", ".", "_cell", ".", "_compiler", ".", "rddl", ".", "action_range_type", ")", "actions", "=", "self", ".", "_output", "(", "actions", ",", "action_dtype", ")", "outputs", "=", "(", "initial_state", ",", "states", ",", "actions", ",", "interms", ",", "rewards", ")", "return", "outputs" ]
Returns the ops for the trajectory generation with given `horizon` and `initial_state`. The simulation returns states, actions and interms as a sequence of tensors (i.e., all representations are factored). The reward is a batch sized tensor. The trajectoty output is a tuple: (initial_state, states, actions, interms, rewards). If initial state is None, use default compiler's initial state. Note: All tensors have shape: (batch_size, horizon, fluent_shape). Except initial state that has shape: (batch_size, fluent_shape). Args: horizon (int): The number of simulation timesteps. initial_state (Optional[Sequence[tf.Tensor]]): The initial state tensors. Returns: Tuple[StateTensor, StatesTensor, ActionsTensor, IntermsTensor, tf.Tensor]: Trajectory output tuple.
[ "Returns", "the", "ops", "for", "the", "trajectory", "generation", "with", "given", "horizon", "and", "initial_state", "." ]
d7102a0ad37d179dbb23141640254ea383d3b43f
https://github.com/thiagopbueno/tf-rddlsim/blob/d7102a0ad37d179dbb23141640254ea383d3b43f/tfrddlsim/simulation/policy_simulator.py#L226-L272
train
thiagopbueno/tf-rddlsim
tfrddlsim/simulation/policy_simulator.py
PolicySimulator.run
def run(self, horizon: int, initial_state: Optional[StateTensor] = None) -> SimulationOutput: '''Builds the MDP graph and simulates in batch the trajectories with given `horizon`. Returns the non-fluents, states, actions, interms and rewards. Fluents and non-fluents are returned in factored form. Note: All output arrays have shape: (batch_size, horizon, fluent_shape). Except initial state that has shape: (batch_size, fluent_shape). Args: horizon (int): The number of timesteps in the simulation. initial_state (Optional[Sequence[tf.Tensor]]): The initial state tensors. Returns: Tuple[NonFluentsArray, StatesArray, ActionsArray, IntermsArray, np.array]: Simulation ouput tuple. ''' trajectory = self.trajectory(horizon, initial_state) with tf.Session(graph=self.graph) as sess: sess.run(tf.global_variables_initializer()) non_fluents = sess.run(self._non_fluents) initial_state, states, actions, interms, rewards = sess.run(trajectory) # non-fluents non_fluent_ordering = self._cell._compiler.rddl.domain.non_fluent_ordering non_fluents = tuple(zip(non_fluent_ordering, non_fluents)) # states state_fluent_ordering = self._cell._compiler.rddl.domain.state_fluent_ordering states = tuple(zip(state_fluent_ordering, states)) # interms interm_fluent_ordering = self._cell._compiler.rddl.domain.interm_fluent_ordering interms = tuple(zip(interm_fluent_ordering, interms)) # actions action_fluent_ordering = self._cell._compiler.rddl.domain.action_fluent_ordering actions = tuple(zip(action_fluent_ordering, actions)) # rewards rewards = np.squeeze(rewards) outputs = (non_fluents, initial_state, states, actions, interms, rewards) return outputs
python
def run(self, horizon: int, initial_state: Optional[StateTensor] = None) -> SimulationOutput: '''Builds the MDP graph and simulates in batch the trajectories with given `horizon`. Returns the non-fluents, states, actions, interms and rewards. Fluents and non-fluents are returned in factored form. Note: All output arrays have shape: (batch_size, horizon, fluent_shape). Except initial state that has shape: (batch_size, fluent_shape). Args: horizon (int): The number of timesteps in the simulation. initial_state (Optional[Sequence[tf.Tensor]]): The initial state tensors. Returns: Tuple[NonFluentsArray, StatesArray, ActionsArray, IntermsArray, np.array]: Simulation ouput tuple. ''' trajectory = self.trajectory(horizon, initial_state) with tf.Session(graph=self.graph) as sess: sess.run(tf.global_variables_initializer()) non_fluents = sess.run(self._non_fluents) initial_state, states, actions, interms, rewards = sess.run(trajectory) # non-fluents non_fluent_ordering = self._cell._compiler.rddl.domain.non_fluent_ordering non_fluents = tuple(zip(non_fluent_ordering, non_fluents)) # states state_fluent_ordering = self._cell._compiler.rddl.domain.state_fluent_ordering states = tuple(zip(state_fluent_ordering, states)) # interms interm_fluent_ordering = self._cell._compiler.rddl.domain.interm_fluent_ordering interms = tuple(zip(interm_fluent_ordering, interms)) # actions action_fluent_ordering = self._cell._compiler.rddl.domain.action_fluent_ordering actions = tuple(zip(action_fluent_ordering, actions)) # rewards rewards = np.squeeze(rewards) outputs = (non_fluents, initial_state, states, actions, interms, rewards) return outputs
[ "def", "run", "(", "self", ",", "horizon", ":", "int", ",", "initial_state", ":", "Optional", "[", "StateTensor", "]", "=", "None", ")", "->", "SimulationOutput", ":", "trajectory", "=", "self", ".", "trajectory", "(", "horizon", ",", "initial_state", ")", "with", "tf", ".", "Session", "(", "graph", "=", "self", ".", "graph", ")", "as", "sess", ":", "sess", ".", "run", "(", "tf", ".", "global_variables_initializer", "(", ")", ")", "non_fluents", "=", "sess", ".", "run", "(", "self", ".", "_non_fluents", ")", "initial_state", ",", "states", ",", "actions", ",", "interms", ",", "rewards", "=", "sess", ".", "run", "(", "trajectory", ")", "# non-fluents", "non_fluent_ordering", "=", "self", ".", "_cell", ".", "_compiler", ".", "rddl", ".", "domain", ".", "non_fluent_ordering", "non_fluents", "=", "tuple", "(", "zip", "(", "non_fluent_ordering", ",", "non_fluents", ")", ")", "# states", "state_fluent_ordering", "=", "self", ".", "_cell", ".", "_compiler", ".", "rddl", ".", "domain", ".", "state_fluent_ordering", "states", "=", "tuple", "(", "zip", "(", "state_fluent_ordering", ",", "states", ")", ")", "# interms", "interm_fluent_ordering", "=", "self", ".", "_cell", ".", "_compiler", ".", "rddl", ".", "domain", ".", "interm_fluent_ordering", "interms", "=", "tuple", "(", "zip", "(", "interm_fluent_ordering", ",", "interms", ")", ")", "# actions", "action_fluent_ordering", "=", "self", ".", "_cell", ".", "_compiler", ".", "rddl", ".", "domain", ".", "action_fluent_ordering", "actions", "=", "tuple", "(", "zip", "(", "action_fluent_ordering", ",", "actions", ")", ")", "# rewards", "rewards", "=", "np", ".", "squeeze", "(", "rewards", ")", "outputs", "=", "(", "non_fluents", ",", "initial_state", ",", "states", ",", "actions", ",", "interms", ",", "rewards", ")", "return", "outputs" ]
Builds the MDP graph and simulates in batch the trajectories with given `horizon`. Returns the non-fluents, states, actions, interms and rewards. Fluents and non-fluents are returned in factored form. Note: All output arrays have shape: (batch_size, horizon, fluent_shape). Except initial state that has shape: (batch_size, fluent_shape). Args: horizon (int): The number of timesteps in the simulation. initial_state (Optional[Sequence[tf.Tensor]]): The initial state tensors. Returns: Tuple[NonFluentsArray, StatesArray, ActionsArray, IntermsArray, np.array]: Simulation ouput tuple.
[ "Builds", "the", "MDP", "graph", "and", "simulates", "in", "batch", "the", "trajectories", "with", "given", "horizon", ".", "Returns", "the", "non", "-", "fluents", "states", "actions", "interms", "and", "rewards", ".", "Fluents", "and", "non", "-", "fluents", "are", "returned", "in", "factored", "form", "." ]
d7102a0ad37d179dbb23141640254ea383d3b43f
https://github.com/thiagopbueno/tf-rddlsim/blob/d7102a0ad37d179dbb23141640254ea383d3b43f/tfrddlsim/simulation/policy_simulator.py#L274-L320
train
thiagopbueno/tf-rddlsim
tfrddlsim/simulation/policy_simulator.py
PolicySimulator._output
def _output(cls, tensors: Sequence[tf.Tensor], dtypes: Sequence[tf.DType]) -> Sequence[tf.Tensor]: '''Converts `tensors` to the corresponding `dtypes`.''' outputs = [] for tensor, dtype in zip(tensors, dtypes): tensor = tensor[0] if tensor.dtype != dtype: tensor = tf.cast(tensor, dtype) outputs.append(tensor) return tuple(outputs)
python
def _output(cls, tensors: Sequence[tf.Tensor], dtypes: Sequence[tf.DType]) -> Sequence[tf.Tensor]: '''Converts `tensors` to the corresponding `dtypes`.''' outputs = [] for tensor, dtype in zip(tensors, dtypes): tensor = tensor[0] if tensor.dtype != dtype: tensor = tf.cast(tensor, dtype) outputs.append(tensor) return tuple(outputs)
[ "def", "_output", "(", "cls", ",", "tensors", ":", "Sequence", "[", "tf", ".", "Tensor", "]", ",", "dtypes", ":", "Sequence", "[", "tf", ".", "DType", "]", ")", "->", "Sequence", "[", "tf", ".", "Tensor", "]", ":", "outputs", "=", "[", "]", "for", "tensor", ",", "dtype", "in", "zip", "(", "tensors", ",", "dtypes", ")", ":", "tensor", "=", "tensor", "[", "0", "]", "if", "tensor", ".", "dtype", "!=", "dtype", ":", "tensor", "=", "tf", ".", "cast", "(", "tensor", ",", "dtype", ")", "outputs", ".", "append", "(", "tensor", ")", "return", "tuple", "(", "outputs", ")" ]
Converts `tensors` to the corresponding `dtypes`.
[ "Converts", "tensors", "to", "the", "corresponding", "dtypes", "." ]
d7102a0ad37d179dbb23141640254ea383d3b43f
https://github.com/thiagopbueno/tf-rddlsim/blob/d7102a0ad37d179dbb23141640254ea383d3b43f/tfrddlsim/simulation/policy_simulator.py#L323-L333
train
pgxcentre/geneparse
geneparse/readers/impute2.py
Impute2Reader._get_biallelic_variant
def _get_biallelic_variant(self, variant, info, _check_alleles=True): """Creates a bi-allelic variant.""" info = info.iloc[0, :] assert not info.multiallelic # Seeking and parsing the file self._impute2_file.seek(info.seek) genotypes = self._parse_impute2_line(self._impute2_file.readline()) variant_alleles = variant._encode_alleles([ genotypes.reference, genotypes.coded, ]) if (_check_alleles and variant_alleles != variant.alleles): # Variant with requested alleles is unavailable. logging.variant_not_found(variant) return [] return [genotypes]
python
def _get_biallelic_variant(self, variant, info, _check_alleles=True): """Creates a bi-allelic variant.""" info = info.iloc[0, :] assert not info.multiallelic # Seeking and parsing the file self._impute2_file.seek(info.seek) genotypes = self._parse_impute2_line(self._impute2_file.readline()) variant_alleles = variant._encode_alleles([ genotypes.reference, genotypes.coded, ]) if (_check_alleles and variant_alleles != variant.alleles): # Variant with requested alleles is unavailable. logging.variant_not_found(variant) return [] return [genotypes]
[ "def", "_get_biallelic_variant", "(", "self", ",", "variant", ",", "info", ",", "_check_alleles", "=", "True", ")", ":", "info", "=", "info", ".", "iloc", "[", "0", ",", ":", "]", "assert", "not", "info", ".", "multiallelic", "# Seeking and parsing the file", "self", ".", "_impute2_file", ".", "seek", "(", "info", ".", "seek", ")", "genotypes", "=", "self", ".", "_parse_impute2_line", "(", "self", ".", "_impute2_file", ".", "readline", "(", ")", ")", "variant_alleles", "=", "variant", ".", "_encode_alleles", "(", "[", "genotypes", ".", "reference", ",", "genotypes", ".", "coded", ",", "]", ")", "if", "(", "_check_alleles", "and", "variant_alleles", "!=", "variant", ".", "alleles", ")", ":", "# Variant with requested alleles is unavailable.", "logging", ".", "variant_not_found", "(", "variant", ")", "return", "[", "]", "return", "[", "genotypes", "]" ]
Creates a bi-allelic variant.
[ "Creates", "a", "bi", "-", "allelic", "variant", "." ]
f698f9708af4c7962d384a70a5a14006b1cb7108
https://github.com/pgxcentre/geneparse/blob/f698f9708af4c7962d384a70a5a14006b1cb7108/geneparse/readers/impute2.py#L222-L239
train
pgxcentre/geneparse
geneparse/readers/impute2.py
Impute2Reader._fix_genotypes_object
def _fix_genotypes_object(self, genotypes, variant_info): """Fixes a genotypes object (variant name, multi-allelic value.""" # Checking the name (if there were duplications) if self.has_index and variant_info.name != genotypes.variant.name: if not variant_info.name.startswith(genotypes.variant.name): raise ValueError("Index file not synced with IMPUTE2 file") genotypes.variant.name = variant_info.name # Trying to set multi-allelic information if self.has_index and self._index_has_location: # Location was in the index, so we can automatically set the # multi-allelic state of the genotypes genotypes.multiallelic = variant_info.multiallelic else: # Location was not in the index, so we check one marker before and # after the one we found logging.warning("Multiallelic variants are not detected on " "unindexed files.")
python
def _fix_genotypes_object(self, genotypes, variant_info): """Fixes a genotypes object (variant name, multi-allelic value.""" # Checking the name (if there were duplications) if self.has_index and variant_info.name != genotypes.variant.name: if not variant_info.name.startswith(genotypes.variant.name): raise ValueError("Index file not synced with IMPUTE2 file") genotypes.variant.name = variant_info.name # Trying to set multi-allelic information if self.has_index and self._index_has_location: # Location was in the index, so we can automatically set the # multi-allelic state of the genotypes genotypes.multiallelic = variant_info.multiallelic else: # Location was not in the index, so we check one marker before and # after the one we found logging.warning("Multiallelic variants are not detected on " "unindexed files.")
[ "def", "_fix_genotypes_object", "(", "self", ",", "genotypes", ",", "variant_info", ")", ":", "# Checking the name (if there were duplications)", "if", "self", ".", "has_index", "and", "variant_info", ".", "name", "!=", "genotypes", ".", "variant", ".", "name", ":", "if", "not", "variant_info", ".", "name", ".", "startswith", "(", "genotypes", ".", "variant", ".", "name", ")", ":", "raise", "ValueError", "(", "\"Index file not synced with IMPUTE2 file\"", ")", "genotypes", ".", "variant", ".", "name", "=", "variant_info", ".", "name", "# Trying to set multi-allelic information", "if", "self", ".", "has_index", "and", "self", ".", "_index_has_location", ":", "# Location was in the index, so we can automatically set the", "# multi-allelic state of the genotypes", "genotypes", ".", "multiallelic", "=", "variant_info", ".", "multiallelic", "else", ":", "# Location was not in the index, so we check one marker before and", "# after the one we found", "logging", ".", "warning", "(", "\"Multiallelic variants are not detected on \"", "\"unindexed files.\"", ")" ]
Fixes a genotypes object (variant name, multi-allelic value.
[ "Fixes", "a", "genotypes", "object", "(", "variant", "name", "multi", "-", "allelic", "value", "." ]
f698f9708af4c7962d384a70a5a14006b1cb7108
https://github.com/pgxcentre/geneparse/blob/f698f9708af4c7962d384a70a5a14006b1cb7108/geneparse/readers/impute2.py#L394-L412
train
pgxcentre/geneparse
geneparse/readers/plink.py
PlinkReader._normalize_missing
def _normalize_missing(g): """Normalize a plink genotype vector.""" g = g.astype(float) g[g == -1.0] = np.nan return g
python
def _normalize_missing(g): """Normalize a plink genotype vector.""" g = g.astype(float) g[g == -1.0] = np.nan return g
[ "def", "_normalize_missing", "(", "g", ")", ":", "g", "=", "g", ".", "astype", "(", "float", ")", "g", "[", "g", "==", "-", "1.0", "]", "=", "np", ".", "nan", "return", "g" ]
Normalize a plink genotype vector.
[ "Normalize", "a", "plink", "genotype", "vector", "." ]
f698f9708af4c7962d384a70a5a14006b1cb7108
https://github.com/pgxcentre/geneparse/blob/f698f9708af4c7962d384a70a5a14006b1cb7108/geneparse/readers/plink.py#L276-L280
train
255BITS/hyperchamber
examples/shared/cifar_utils.py
maybe_download_and_extract
def maybe_download_and_extract(): """Download and extract the tarball from Alex's website.""" dest_directory = "/tmp/cifar" if not os.path.exists(dest_directory): os.makedirs(dest_directory) filename = DATA_URL.split('/')[-1] filepath = os.path.join(dest_directory, filename) if not os.path.exists(filepath): def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %s %.1f%%' % (filename, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress) print() statinfo = os.stat(filepath) print('Successfully downloaded', filename, statinfo.st_size, 'bytes.') tarfile.open(filepath, 'r:gz').extractall(dest_directory)
python
def maybe_download_and_extract(): """Download and extract the tarball from Alex's website.""" dest_directory = "/tmp/cifar" if not os.path.exists(dest_directory): os.makedirs(dest_directory) filename = DATA_URL.split('/')[-1] filepath = os.path.join(dest_directory, filename) if not os.path.exists(filepath): def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %s %.1f%%' % (filename, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress) print() statinfo = os.stat(filepath) print('Successfully downloaded', filename, statinfo.st_size, 'bytes.') tarfile.open(filepath, 'r:gz').extractall(dest_directory)
[ "def", "maybe_download_and_extract", "(", ")", ":", "dest_directory", "=", "\"/tmp/cifar\"", "if", "not", "os", ".", "path", ".", "exists", "(", "dest_directory", ")", ":", "os", ".", "makedirs", "(", "dest_directory", ")", "filename", "=", "DATA_URL", ".", "split", "(", "'/'", ")", "[", "-", "1", "]", "filepath", "=", "os", ".", "path", ".", "join", "(", "dest_directory", ",", "filename", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "filepath", ")", ":", "def", "_progress", "(", "count", ",", "block_size", ",", "total_size", ")", ":", "sys", ".", "stdout", ".", "write", "(", "'\\r>> Downloading %s %.1f%%'", "%", "(", "filename", ",", "float", "(", "count", "*", "block_size", ")", "/", "float", "(", "total_size", ")", "*", "100.0", ")", ")", "sys", ".", "stdout", ".", "flush", "(", ")", "filepath", ",", "_", "=", "urllib", ".", "request", ".", "urlretrieve", "(", "DATA_URL", ",", "filepath", ",", "_progress", ")", "print", "(", ")", "statinfo", "=", "os", ".", "stat", "(", "filepath", ")", "print", "(", "'Successfully downloaded'", ",", "filename", ",", "statinfo", ".", "st_size", ",", "'bytes.'", ")", "tarfile", ".", "open", "(", "filepath", ",", "'r:gz'", ")", ".", "extractall", "(", "dest_directory", ")" ]
Download and extract the tarball from Alex's website.
[ "Download", "and", "extract", "the", "tarball", "from", "Alex", "s", "website", "." ]
4d5774bde9ea6ce1113f77a069ffc605148482b8
https://github.com/255BITS/hyperchamber/blob/4d5774bde9ea6ce1113f77a069ffc605148482b8/examples/shared/cifar_utils.py#L73-L89
train
255BITS/hyperchamber
examples/shared/cifar_utils.py
plot
def plot(config, image, file): """ Plot a single CIFAR image.""" image = np.squeeze(image) print(file, image.shape) imsave(file, image)
python
def plot(config, image, file): """ Plot a single CIFAR image.""" image = np.squeeze(image) print(file, image.shape) imsave(file, image)
[ "def", "plot", "(", "config", ",", "image", ",", "file", ")", ":", "image", "=", "np", ".", "squeeze", "(", "image", ")", "print", "(", "file", ",", "image", ".", "shape", ")", "imsave", "(", "file", ",", "image", ")" ]
Plot a single CIFAR image.
[ "Plot", "a", "single", "CIFAR", "image", "." ]
4d5774bde9ea6ce1113f77a069ffc605148482b8
https://github.com/255BITS/hyperchamber/blob/4d5774bde9ea6ce1113f77a069ffc605148482b8/examples/shared/cifar_utils.py#L91-L95
train
kblin/bioinf-helperlibs
helperlibs/bio/seqio.py
_get_seqtype_from_ext
def _get_seqtype_from_ext(handle): '''Predict the filetype from a handle's name''' if isinstance(handle, basestring): name = handle elif hasattr(handle, 'filename'): name = handle.filename elif hasattr(handle, 'name'): name = handle.name else: raise ValueError("Unknown datatype for handle!") modifier = '' dummy, ext = path.splitext(name.lower()) if ext == ".gz": modifier = 'gz-' dummy, ext = path.splitext(dummy) if not ext: ext = "." + dummy if ext in (".gbk", ".gb", ".genbank", ".gbff"): return modifier + "genbank" elif ext in (".embl", ".emb"): return modifier + "embl" elif ext in (".fa", ".fasta", ".fna", ".faa", ".fas"): return modifier + "fasta" else: raise ValueError("Unknown file format '%s'." % ext)
python
def _get_seqtype_from_ext(handle): '''Predict the filetype from a handle's name''' if isinstance(handle, basestring): name = handle elif hasattr(handle, 'filename'): name = handle.filename elif hasattr(handle, 'name'): name = handle.name else: raise ValueError("Unknown datatype for handle!") modifier = '' dummy, ext = path.splitext(name.lower()) if ext == ".gz": modifier = 'gz-' dummy, ext = path.splitext(dummy) if not ext: ext = "." + dummy if ext in (".gbk", ".gb", ".genbank", ".gbff"): return modifier + "genbank" elif ext in (".embl", ".emb"): return modifier + "embl" elif ext in (".fa", ".fasta", ".fna", ".faa", ".fas"): return modifier + "fasta" else: raise ValueError("Unknown file format '%s'." % ext)
[ "def", "_get_seqtype_from_ext", "(", "handle", ")", ":", "if", "isinstance", "(", "handle", ",", "basestring", ")", ":", "name", "=", "handle", "elif", "hasattr", "(", "handle", ",", "'filename'", ")", ":", "name", "=", "handle", ".", "filename", "elif", "hasattr", "(", "handle", ",", "'name'", ")", ":", "name", "=", "handle", ".", "name", "else", ":", "raise", "ValueError", "(", "\"Unknown datatype for handle!\"", ")", "modifier", "=", "''", "dummy", ",", "ext", "=", "path", ".", "splitext", "(", "name", ".", "lower", "(", ")", ")", "if", "ext", "==", "\".gz\"", ":", "modifier", "=", "'gz-'", "dummy", ",", "ext", "=", "path", ".", "splitext", "(", "dummy", ")", "if", "not", "ext", ":", "ext", "=", "\".\"", "+", "dummy", "if", "ext", "in", "(", "\".gbk\"", ",", "\".gb\"", ",", "\".genbank\"", ",", "\".gbff\"", ")", ":", "return", "modifier", "+", "\"genbank\"", "elif", "ext", "in", "(", "\".embl\"", ",", "\".emb\"", ")", ":", "return", "modifier", "+", "\"embl\"", "elif", "ext", "in", "(", "\".fa\"", ",", "\".fasta\"", ",", "\".fna\"", ",", "\".faa\"", ",", "\".fas\"", ")", ":", "return", "modifier", "+", "\"fasta\"", "else", ":", "raise", "ValueError", "(", "\"Unknown file format '%s'.\"", "%", "ext", ")" ]
Predict the filetype from a handle's name
[ "Predict", "the", "filetype", "from", "a", "handle", "s", "name" ]
3a732d62b4b3cc42675631db886ba534672cb134
https://github.com/kblin/bioinf-helperlibs/blob/3a732d62b4b3cc42675631db886ba534672cb134/helperlibs/bio/seqio.py#L28-L55
train
kblin/bioinf-helperlibs
helperlibs/bio/seqio.py
_guess_seqtype_from_file
def _guess_seqtype_from_file(handle): "Guess the sequence type from the file's contents" if isinstance(handle, basestring): handle = StringIO(handle) for line in handle: if not line.strip(): continue if line.lstrip().split()[0] in ('LOCUS', 'FEATURES', 'source', 'CDS', 'gene'): return 'genbank' if len(line) > 2 and line[:3] in ('ID ', 'FT '): return 'embl' if line.startswith('>'): return 'fasta' handle.seek(0) import string from Bio.Data import IUPACData as iupac all_input_letters = set(handle.read().lower()) all_valid = set(string.digits) all_valid.update(set(iupac.protein_letters.lower())) all_valid.update(set(iupac.unambiguous_dna_letters.lower())) all_valid.update(set('- \n')) if all_valid.issuperset(all_input_letters): return 'fasta' raise ValueError("Failed to guess format for input")
python
def _guess_seqtype_from_file(handle): "Guess the sequence type from the file's contents" if isinstance(handle, basestring): handle = StringIO(handle) for line in handle: if not line.strip(): continue if line.lstrip().split()[0] in ('LOCUS', 'FEATURES', 'source', 'CDS', 'gene'): return 'genbank' if len(line) > 2 and line[:3] in ('ID ', 'FT '): return 'embl' if line.startswith('>'): return 'fasta' handle.seek(0) import string from Bio.Data import IUPACData as iupac all_input_letters = set(handle.read().lower()) all_valid = set(string.digits) all_valid.update(set(iupac.protein_letters.lower())) all_valid.update(set(iupac.unambiguous_dna_letters.lower())) all_valid.update(set('- \n')) if all_valid.issuperset(all_input_letters): return 'fasta' raise ValueError("Failed to guess format for input")
[ "def", "_guess_seqtype_from_file", "(", "handle", ")", ":", "if", "isinstance", "(", "handle", ",", "basestring", ")", ":", "handle", "=", "StringIO", "(", "handle", ")", "for", "line", "in", "handle", ":", "if", "not", "line", ".", "strip", "(", ")", ":", "continue", "if", "line", ".", "lstrip", "(", ")", ".", "split", "(", ")", "[", "0", "]", "in", "(", "'LOCUS'", ",", "'FEATURES'", ",", "'source'", ",", "'CDS'", ",", "'gene'", ")", ":", "return", "'genbank'", "if", "len", "(", "line", ")", ">", "2", "and", "line", "[", ":", "3", "]", "in", "(", "'ID '", ",", "'FT '", ")", ":", "return", "'embl'", "if", "line", ".", "startswith", "(", "'>'", ")", ":", "return", "'fasta'", "handle", ".", "seek", "(", "0", ")", "import", "string", "from", "Bio", ".", "Data", "import", "IUPACData", "as", "iupac", "all_input_letters", "=", "set", "(", "handle", ".", "read", "(", ")", ".", "lower", "(", ")", ")", "all_valid", "=", "set", "(", "string", ".", "digits", ")", "all_valid", ".", "update", "(", "set", "(", "iupac", ".", "protein_letters", ".", "lower", "(", ")", ")", ")", "all_valid", ".", "update", "(", "set", "(", "iupac", ".", "unambiguous_dna_letters", ".", "lower", "(", ")", ")", ")", "all_valid", ".", "update", "(", "set", "(", "'- \\n'", ")", ")", "if", "all_valid", ".", "issuperset", "(", "all_input_letters", ")", ":", "return", "'fasta'", "raise", "ValueError", "(", "\"Failed to guess format for input\"", ")" ]
Guess the sequence type from the file's contents
[ "Guess", "the", "sequence", "type", "from", "the", "file", "s", "contents" ]
3a732d62b4b3cc42675631db886ba534672cb134
https://github.com/kblin/bioinf-helperlibs/blob/3a732d62b4b3cc42675631db886ba534672cb134/helperlibs/bio/seqio.py#L58-L84
train
kblin/bioinf-helperlibs
helperlibs/bio/seqio.py
_unzip_handle
def _unzip_handle(handle): """Transparently unzip the file handle""" if isinstance(handle, basestring): handle = _gzip_open_filename(handle) else: handle = _gzip_open_handle(handle) return handle
python
def _unzip_handle(handle): """Transparently unzip the file handle""" if isinstance(handle, basestring): handle = _gzip_open_filename(handle) else: handle = _gzip_open_handle(handle) return handle
[ "def", "_unzip_handle", "(", "handle", ")", ":", "if", "isinstance", "(", "handle", ",", "basestring", ")", ":", "handle", "=", "_gzip_open_filename", "(", "handle", ")", "else", ":", "handle", "=", "_gzip_open_handle", "(", "handle", ")", "return", "handle" ]
Transparently unzip the file handle
[ "Transparently", "unzip", "the", "file", "handle" ]
3a732d62b4b3cc42675631db886ba534672cb134
https://github.com/kblin/bioinf-helperlibs/blob/3a732d62b4b3cc42675631db886ba534672cb134/helperlibs/bio/seqio.py#L87-L93
train
kblin/bioinf-helperlibs
helperlibs/bio/seqio.py
sanity_check_insdcio
def sanity_check_insdcio(handle, id_marker, fake_id_line): """Sanity check for insdcio style files""" found_id = False found_end_marker = False for line in handle: line = line.strip() if not line: continue if line.startswith(id_marker): found_id = True break if line.startswith('//'): found_end_marker = True break handle.seek(0) # We found an ID, file looks good. if found_id: return handle # If there's no ID and no end marker, just give up. if not found_end_marker: return handle # If we found an end marker but no ID, fake one. new_handle = StringIO() new_handle.write("%s\n" % fake_id_line) new_handle.write(handle.read()) new_handle.seek(0) return new_handle
python
def sanity_check_insdcio(handle, id_marker, fake_id_line): """Sanity check for insdcio style files""" found_id = False found_end_marker = False for line in handle: line = line.strip() if not line: continue if line.startswith(id_marker): found_id = True break if line.startswith('//'): found_end_marker = True break handle.seek(0) # We found an ID, file looks good. if found_id: return handle # If there's no ID and no end marker, just give up. if not found_end_marker: return handle # If we found an end marker but no ID, fake one. new_handle = StringIO() new_handle.write("%s\n" % fake_id_line) new_handle.write(handle.read()) new_handle.seek(0) return new_handle
[ "def", "sanity_check_insdcio", "(", "handle", ",", "id_marker", ",", "fake_id_line", ")", ":", "found_id", "=", "False", "found_end_marker", "=", "False", "for", "line", "in", "handle", ":", "line", "=", "line", ".", "strip", "(", ")", "if", "not", "line", ":", "continue", "if", "line", ".", "startswith", "(", "id_marker", ")", ":", "found_id", "=", "True", "break", "if", "line", ".", "startswith", "(", "'//'", ")", ":", "found_end_marker", "=", "True", "break", "handle", ".", "seek", "(", "0", ")", "# We found an ID, file looks good.", "if", "found_id", ":", "return", "handle", "# If there's no ID and no end marker, just give up.", "if", "not", "found_end_marker", ":", "return", "handle", "# If we found an end marker but no ID, fake one.", "new_handle", "=", "StringIO", "(", ")", "new_handle", ".", "write", "(", "\"%s\\n\"", "%", "fake_id_line", ")", "new_handle", ".", "write", "(", "handle", ".", "read", "(", ")", ")", "new_handle", ".", "seek", "(", "0", ")", "return", "new_handle" ]
Sanity check for insdcio style files
[ "Sanity", "check", "for", "insdcio", "style", "files" ]
3a732d62b4b3cc42675631db886ba534672cb134
https://github.com/kblin/bioinf-helperlibs/blob/3a732d62b4b3cc42675631db886ba534672cb134/helperlibs/bio/seqio.py#L117-L146
train
kblin/bioinf-helperlibs
helperlibs/bio/seqio.py
sanity_check_fasta
def sanity_check_fasta(handle): """Sanity check FASTA files.""" header_found = False for line in handle: if line.startswith('>'): header_found = True break handle.seek(0) if header_found: return handle fake_header_line = ">DUMMY" new_handle = StringIO() new_handle.write("%s\n" % fake_header_line) new_handle.write(handle.read()) new_handle.seek(0) return new_handle
python
def sanity_check_fasta(handle): """Sanity check FASTA files.""" header_found = False for line in handle: if line.startswith('>'): header_found = True break handle.seek(0) if header_found: return handle fake_header_line = ">DUMMY" new_handle = StringIO() new_handle.write("%s\n" % fake_header_line) new_handle.write(handle.read()) new_handle.seek(0) return new_handle
[ "def", "sanity_check_fasta", "(", "handle", ")", ":", "header_found", "=", "False", "for", "line", "in", "handle", ":", "if", "line", ".", "startswith", "(", "'>'", ")", ":", "header_found", "=", "True", "break", "handle", ".", "seek", "(", "0", ")", "if", "header_found", ":", "return", "handle", "fake_header_line", "=", "\">DUMMY\"", "new_handle", "=", "StringIO", "(", ")", "new_handle", ".", "write", "(", "\"%s\\n\"", "%", "fake_header_line", ")", "new_handle", ".", "write", "(", "handle", ".", "read", "(", ")", ")", "new_handle", ".", "seek", "(", "0", ")", "return", "new_handle" ]
Sanity check FASTA files.
[ "Sanity", "check", "FASTA", "files", "." ]
3a732d62b4b3cc42675631db886ba534672cb134
https://github.com/kblin/bioinf-helperlibs/blob/3a732d62b4b3cc42675631db886ba534672cb134/helperlibs/bio/seqio.py#L163-L181
train
kblin/bioinf-helperlibs
helperlibs/bio/seqio.py
parse
def parse(handle, seqtype=None, robust=False): '''Wrap SeqIO.parse''' if seqtype is None: seqtype = _get_seqtype_from_ext(handle) if seqtype.startswith('gz-'): handle = _unzip_handle(handle) seqtype = seqtype[3:] # False positive from pylint, both handles are fileobj-like # pylint: disable=redefined-variable-type if robust: if seqtype == "embl": handle = sanity_check_embl(handle) elif seqtype == "genbank": handle = sanity_check_genbank(handle) elif seqtype == "fasta": handle = sanity_check_fasta(handle) # pylint: enable=redefined-variable-type return SeqIO.parse(handle, seqtype)
python
def parse(handle, seqtype=None, robust=False): '''Wrap SeqIO.parse''' if seqtype is None: seqtype = _get_seqtype_from_ext(handle) if seqtype.startswith('gz-'): handle = _unzip_handle(handle) seqtype = seqtype[3:] # False positive from pylint, both handles are fileobj-like # pylint: disable=redefined-variable-type if robust: if seqtype == "embl": handle = sanity_check_embl(handle) elif seqtype == "genbank": handle = sanity_check_genbank(handle) elif seqtype == "fasta": handle = sanity_check_fasta(handle) # pylint: enable=redefined-variable-type return SeqIO.parse(handle, seqtype)
[ "def", "parse", "(", "handle", ",", "seqtype", "=", "None", ",", "robust", "=", "False", ")", ":", "if", "seqtype", "is", "None", ":", "seqtype", "=", "_get_seqtype_from_ext", "(", "handle", ")", "if", "seqtype", ".", "startswith", "(", "'gz-'", ")", ":", "handle", "=", "_unzip_handle", "(", "handle", ")", "seqtype", "=", "seqtype", "[", "3", ":", "]", "# False positive from pylint, both handles are fileobj-like", "# pylint: disable=redefined-variable-type", "if", "robust", ":", "if", "seqtype", "==", "\"embl\"", ":", "handle", "=", "sanity_check_embl", "(", "handle", ")", "elif", "seqtype", "==", "\"genbank\"", ":", "handle", "=", "sanity_check_genbank", "(", "handle", ")", "elif", "seqtype", "==", "\"fasta\"", ":", "handle", "=", "sanity_check_fasta", "(", "handle", ")", "# pylint: enable=redefined-variable-type", "return", "SeqIO", ".", "parse", "(", "handle", ",", "seqtype", ")" ]
Wrap SeqIO.parse
[ "Wrap", "SeqIO", ".", "parse" ]
3a732d62b4b3cc42675631db886ba534672cb134
https://github.com/kblin/bioinf-helperlibs/blob/3a732d62b4b3cc42675631db886ba534672cb134/helperlibs/bio/seqio.py#L184-L204
train
Nic30/hwtGraph
hwtGraph/elk/containers/constants.py
PortConstraints.isOrderFixed
def isOrderFixed(self): """ Returns whether the order of ports is fixed. @return true if the order of ports is fixed """ return (self == PortConstraints.FIXED_ORDER or self == PortConstraints.FIXED_RATIO or self == PortConstraints.FIXED_POS)
python
def isOrderFixed(self): """ Returns whether the order of ports is fixed. @return true if the order of ports is fixed """ return (self == PortConstraints.FIXED_ORDER or self == PortConstraints.FIXED_RATIO or self == PortConstraints.FIXED_POS)
[ "def", "isOrderFixed", "(", "self", ")", ":", "return", "(", "self", "==", "PortConstraints", ".", "FIXED_ORDER", "or", "self", "==", "PortConstraints", ".", "FIXED_RATIO", "or", "self", "==", "PortConstraints", ".", "FIXED_POS", ")" ]
Returns whether the order of ports is fixed. @return true if the order of ports is fixed
[ "Returns", "whether", "the", "order", "of", "ports", "is", "fixed", "." ]
6b7d4fdd759f263a0fdd2736f02f123e44e4354f
https://github.com/Nic30/hwtGraph/blob/6b7d4fdd759f263a0fdd2736f02f123e44e4354f/hwtGraph/elk/containers/constants.py#L98-L106
train
testedminds/sand
sand/graph.py
_dicts_to_columns
def _dicts_to_columns(dicts): """ Given a List of Dictionaries with uniform keys, returns a single Dictionary with keys holding a List of values matching the key in the original List. [{'name': 'Field Museum', 'location': 'Chicago'}, {'name': 'Epcot', 'location': 'Orlando'}] => {'name': ['Field Museum', 'Epcot'], 'location': ['Chicago', 'Orlando']} """ keys = dicts[0].keys() result = dict((k, []) for k in keys) for d in dicts: for k, v in d.items(): result[k] += [v] return result
python
def _dicts_to_columns(dicts): """ Given a List of Dictionaries with uniform keys, returns a single Dictionary with keys holding a List of values matching the key in the original List. [{'name': 'Field Museum', 'location': 'Chicago'}, {'name': 'Epcot', 'location': 'Orlando'}] => {'name': ['Field Museum', 'Epcot'], 'location': ['Chicago', 'Orlando']} """ keys = dicts[0].keys() result = dict((k, []) for k in keys) for d in dicts: for k, v in d.items(): result[k] += [v] return result
[ "def", "_dicts_to_columns", "(", "dicts", ")", ":", "keys", "=", "dicts", "[", "0", "]", ".", "keys", "(", ")", "result", "=", "dict", "(", "(", "k", ",", "[", "]", ")", "for", "k", "in", "keys", ")", "for", "d", "in", "dicts", ":", "for", "k", ",", "v", "in", "d", ".", "items", "(", ")", ":", "result", "[", "k", "]", "+=", "[", "v", "]", "return", "result" ]
Given a List of Dictionaries with uniform keys, returns a single Dictionary with keys holding a List of values matching the key in the original List. [{'name': 'Field Museum', 'location': 'Chicago'}, {'name': 'Epcot', 'location': 'Orlando'}] => {'name': ['Field Museum', 'Epcot'], 'location': ['Chicago', 'Orlando']}
[ "Given", "a", "List", "of", "Dictionaries", "with", "uniform", "keys", "returns", "a", "single", "Dictionary", "with", "keys", "holding", "a", "List", "of", "values", "matching", "the", "key", "in", "the", "original", "List", "." ]
234f0eedb0742920cdf26da9bc84bf3f863a2f02
https://github.com/testedminds/sand/blob/234f0eedb0742920cdf26da9bc84bf3f863a2f02/sand/graph.py#L25-L43
train
testedminds/sand
sand/graph.py
from_vertices_and_edges
def from_vertices_and_edges(vertices, edges, vertex_name_key='name', vertex_id_key='id', edge_foreign_keys=('source', 'target'), directed=True): """ This representation assumes that vertices and edges are encoded in two lists, each list containing a Python dict for each vertex and each edge, respectively. A distinguished element of the vertex dicts contain a vertex ID which is used in the edge dicts to refer to source and target vertices. All the remaining elements of the dicts are considered vertex and edge attributes. @param vertices: a list of dicts for the vertices. @param edges: a list of dicts for the edges. @param vertex_name_key: the name of the distinguished key in the dicts in the vertex data source that contains the vertex names. Will also be used as vertex label. @param vertex_id_key: the name of the distinguished key in the dicts in the vertex data source that contains a unique identifier for the vertex. @param edge_foreign_keys: the name of the attributes in the dicts in C{edges} that contain the source and target vertex names. @return: IGraph instance with integers for vertex ids, edge sources, and edge targets. """ vertex_data = _dicts_to_columns(vertices) edge_data = _dicts_to_columns(edges) n = len(vertices) vertex_index = dict(zip(vertex_data[vertex_id_key], range(n))) # Iterate over `edges` to create `edge_list`, where every list item is a pair of integers. edge_list = list(map(lambda source, target: (vertex_index[source], vertex_index[target]), edge_data[edge_foreign_keys[0]], edge_data[edge_foreign_keys[1]])) g = IGraph(n=n, edges=edge_list, directed=directed, vertex_attrs=vertex_data, edge_attrs=edge_data) g.vs['name'] = g.vs[vertex_name_key] g.vs['indegree'] = g.degree(mode="in") g.vs['outdegree'] = g.degree(mode="out") g.vs['label'] = g.vs[vertex_name_key] if 'group' not in g.vs.attributes(): g.vs['group'] = labels_to_groups(g.vs['label']) return g
python
def from_vertices_and_edges(vertices, edges, vertex_name_key='name', vertex_id_key='id', edge_foreign_keys=('source', 'target'), directed=True): """ This representation assumes that vertices and edges are encoded in two lists, each list containing a Python dict for each vertex and each edge, respectively. A distinguished element of the vertex dicts contain a vertex ID which is used in the edge dicts to refer to source and target vertices. All the remaining elements of the dicts are considered vertex and edge attributes. @param vertices: a list of dicts for the vertices. @param edges: a list of dicts for the edges. @param vertex_name_key: the name of the distinguished key in the dicts in the vertex data source that contains the vertex names. Will also be used as vertex label. @param vertex_id_key: the name of the distinguished key in the dicts in the vertex data source that contains a unique identifier for the vertex. @param edge_foreign_keys: the name of the attributes in the dicts in C{edges} that contain the source and target vertex names. @return: IGraph instance with integers for vertex ids, edge sources, and edge targets. """ vertex_data = _dicts_to_columns(vertices) edge_data = _dicts_to_columns(edges) n = len(vertices) vertex_index = dict(zip(vertex_data[vertex_id_key], range(n))) # Iterate over `edges` to create `edge_list`, where every list item is a pair of integers. edge_list = list(map(lambda source, target: (vertex_index[source], vertex_index[target]), edge_data[edge_foreign_keys[0]], edge_data[edge_foreign_keys[1]])) g = IGraph(n=n, edges=edge_list, directed=directed, vertex_attrs=vertex_data, edge_attrs=edge_data) g.vs['name'] = g.vs[vertex_name_key] g.vs['indegree'] = g.degree(mode="in") g.vs['outdegree'] = g.degree(mode="out") g.vs['label'] = g.vs[vertex_name_key] if 'group' not in g.vs.attributes(): g.vs['group'] = labels_to_groups(g.vs['label']) return g
[ "def", "from_vertices_and_edges", "(", "vertices", ",", "edges", ",", "vertex_name_key", "=", "'name'", ",", "vertex_id_key", "=", "'id'", ",", "edge_foreign_keys", "=", "(", "'source'", ",", "'target'", ")", ",", "directed", "=", "True", ")", ":", "vertex_data", "=", "_dicts_to_columns", "(", "vertices", ")", "edge_data", "=", "_dicts_to_columns", "(", "edges", ")", "n", "=", "len", "(", "vertices", ")", "vertex_index", "=", "dict", "(", "zip", "(", "vertex_data", "[", "vertex_id_key", "]", ",", "range", "(", "n", ")", ")", ")", "# Iterate over `edges` to create `edge_list`, where every list item is a pair of integers.", "edge_list", "=", "list", "(", "map", "(", "lambda", "source", ",", "target", ":", "(", "vertex_index", "[", "source", "]", ",", "vertex_index", "[", "target", "]", ")", ",", "edge_data", "[", "edge_foreign_keys", "[", "0", "]", "]", ",", "edge_data", "[", "edge_foreign_keys", "[", "1", "]", "]", ")", ")", "g", "=", "IGraph", "(", "n", "=", "n", ",", "edges", "=", "edge_list", ",", "directed", "=", "directed", ",", "vertex_attrs", "=", "vertex_data", ",", "edge_attrs", "=", "edge_data", ")", "g", ".", "vs", "[", "'name'", "]", "=", "g", ".", "vs", "[", "vertex_name_key", "]", "g", ".", "vs", "[", "'indegree'", "]", "=", "g", ".", "degree", "(", "mode", "=", "\"in\"", ")", "g", ".", "vs", "[", "'outdegree'", "]", "=", "g", ".", "degree", "(", "mode", "=", "\"out\"", ")", "g", ".", "vs", "[", "'label'", "]", "=", "g", ".", "vs", "[", "vertex_name_key", "]", "if", "'group'", "not", "in", "g", ".", "vs", ".", "attributes", "(", ")", ":", "g", ".", "vs", "[", "'group'", "]", "=", "labels_to_groups", "(", "g", ".", "vs", "[", "'label'", "]", ")", "return", "g" ]
This representation assumes that vertices and edges are encoded in two lists, each list containing a Python dict for each vertex and each edge, respectively. A distinguished element of the vertex dicts contain a vertex ID which is used in the edge dicts to refer to source and target vertices. All the remaining elements of the dicts are considered vertex and edge attributes. @param vertices: a list of dicts for the vertices. @param edges: a list of dicts for the edges. @param vertex_name_key: the name of the distinguished key in the dicts in the vertex data source that contains the vertex names. Will also be used as vertex label. @param vertex_id_key: the name of the distinguished key in the dicts in the vertex data source that contains a unique identifier for the vertex. @param edge_foreign_keys: the name of the attributes in the dicts in C{edges} that contain the source and target vertex names. @return: IGraph instance with integers for vertex ids, edge sources, and edge targets.
[ "This", "representation", "assumes", "that", "vertices", "and", "edges", "are", "encoded", "in", "two", "lists", "each", "list", "containing", "a", "Python", "dict", "for", "each", "vertex", "and", "each", "edge", "respectively", ".", "A", "distinguished", "element", "of", "the", "vertex", "dicts", "contain", "a", "vertex", "ID", "which", "is", "used", "in", "the", "edge", "dicts", "to", "refer", "to", "source", "and", "target", "vertices", ".", "All", "the", "remaining", "elements", "of", "the", "dicts", "are", "considered", "vertex", "and", "edge", "attributes", "." ]
234f0eedb0742920cdf26da9bc84bf3f863a2f02
https://github.com/testedminds/sand/blob/234f0eedb0742920cdf26da9bc84bf3f863a2f02/sand/graph.py#L46-L84
train
testedminds/sand
sand/graph.py
from_edges
def from_edges(edges, source_key='source', target_key='target', weight_key='weight', directed=True): """ Given a List of Dictionaries with source, target, and weight attributes, return a weighted, directed graph. """ raw = list(map(lambda x: [x[source_key], x[target_key], int(x[weight_key])], edges)) g = IGraph.TupleList(raw, weights=True, directed=directed) g.vs['indegree'] = g.degree(mode="in") g.vs['outdegree'] = g.degree(mode="out") g.vs['label'] = g.vs['name'] if 'group' not in g.vs.attributes(): g.vs['group'] = labels_to_groups(g.vs['label']) return g
python
def from_edges(edges, source_key='source', target_key='target', weight_key='weight', directed=True): """ Given a List of Dictionaries with source, target, and weight attributes, return a weighted, directed graph. """ raw = list(map(lambda x: [x[source_key], x[target_key], int(x[weight_key])], edges)) g = IGraph.TupleList(raw, weights=True, directed=directed) g.vs['indegree'] = g.degree(mode="in") g.vs['outdegree'] = g.degree(mode="out") g.vs['label'] = g.vs['name'] if 'group' not in g.vs.attributes(): g.vs['group'] = labels_to_groups(g.vs['label']) return g
[ "def", "from_edges", "(", "edges", ",", "source_key", "=", "'source'", ",", "target_key", "=", "'target'", ",", "weight_key", "=", "'weight'", ",", "directed", "=", "True", ")", ":", "raw", "=", "list", "(", "map", "(", "lambda", "x", ":", "[", "x", "[", "source_key", "]", ",", "x", "[", "target_key", "]", ",", "int", "(", "x", "[", "weight_key", "]", ")", "]", ",", "edges", ")", ")", "g", "=", "IGraph", ".", "TupleList", "(", "raw", ",", "weights", "=", "True", ",", "directed", "=", "directed", ")", "g", ".", "vs", "[", "'indegree'", "]", "=", "g", ".", "degree", "(", "mode", "=", "\"in\"", ")", "g", ".", "vs", "[", "'outdegree'", "]", "=", "g", ".", "degree", "(", "mode", "=", "\"out\"", ")", "g", ".", "vs", "[", "'label'", "]", "=", "g", ".", "vs", "[", "'name'", "]", "if", "'group'", "not", "in", "g", ".", "vs", ".", "attributes", "(", ")", ":", "g", ".", "vs", "[", "'group'", "]", "=", "labels_to_groups", "(", "g", ".", "vs", "[", "'label'", "]", ")", "return", "g" ]
Given a List of Dictionaries with source, target, and weight attributes, return a weighted, directed graph.
[ "Given", "a", "List", "of", "Dictionaries", "with", "source", "target", "and", "weight", "attributes", "return", "a", "weighted", "directed", "graph", "." ]
234f0eedb0742920cdf26da9bc84bf3f863a2f02
https://github.com/testedminds/sand/blob/234f0eedb0742920cdf26da9bc84bf3f863a2f02/sand/graph.py#L87-L98
train
pgxcentre/geneparse
geneparse/utils.py
flip_alleles
def flip_alleles(genotypes): """Flip the alleles of an Genotypes instance.""" warnings.warn("deprecated: use 'Genotypes.flip_coded'", DeprecationWarning) genotypes.reference, genotypes.coded = (genotypes.coded, genotypes.reference) genotypes.genotypes = 2 - genotypes.genotypes return genotypes
python
def flip_alleles(genotypes): """Flip the alleles of an Genotypes instance.""" warnings.warn("deprecated: use 'Genotypes.flip_coded'", DeprecationWarning) genotypes.reference, genotypes.coded = (genotypes.coded, genotypes.reference) genotypes.genotypes = 2 - genotypes.genotypes return genotypes
[ "def", "flip_alleles", "(", "genotypes", ")", ":", "warnings", ".", "warn", "(", "\"deprecated: use 'Genotypes.flip_coded'\"", ",", "DeprecationWarning", ")", "genotypes", ".", "reference", ",", "genotypes", ".", "coded", "=", "(", "genotypes", ".", "coded", ",", "genotypes", ".", "reference", ")", "genotypes", ".", "genotypes", "=", "2", "-", "genotypes", ".", "genotypes", "return", "genotypes" ]
Flip the alleles of an Genotypes instance.
[ "Flip", "the", "alleles", "of", "an", "Genotypes", "instance", "." ]
f698f9708af4c7962d384a70a5a14006b1cb7108
https://github.com/pgxcentre/geneparse/blob/f698f9708af4c7962d384a70a5a14006b1cb7108/geneparse/utils.py#L45-L51
train
pgxcentre/geneparse
geneparse/utils.py
code_minor
def code_minor(genotypes): """Encode the genotypes with respect to the minor allele. This confirms that "reference" is the major allele and that "coded" is the minor allele. In other words, this function can be used to make sure that the genotype value is the number of minor alleles for an individual. """ warnings.warn("deprecated: use 'Genotypes.code_minor'", DeprecationWarning) _, minor_coded = maf(genotypes) if not minor_coded: return flip_alleles(genotypes) return genotypes
python
def code_minor(genotypes): """Encode the genotypes with respect to the minor allele. This confirms that "reference" is the major allele and that "coded" is the minor allele. In other words, this function can be used to make sure that the genotype value is the number of minor alleles for an individual. """ warnings.warn("deprecated: use 'Genotypes.code_minor'", DeprecationWarning) _, minor_coded = maf(genotypes) if not minor_coded: return flip_alleles(genotypes) return genotypes
[ "def", "code_minor", "(", "genotypes", ")", ":", "warnings", ".", "warn", "(", "\"deprecated: use 'Genotypes.code_minor'\"", ",", "DeprecationWarning", ")", "_", ",", "minor_coded", "=", "maf", "(", "genotypes", ")", "if", "not", "minor_coded", ":", "return", "flip_alleles", "(", "genotypes", ")", "return", "genotypes" ]
Encode the genotypes with respect to the minor allele. This confirms that "reference" is the major allele and that "coded" is the minor allele. In other words, this function can be used to make sure that the genotype value is the number of minor alleles for an individual.
[ "Encode", "the", "genotypes", "with", "respect", "to", "the", "minor", "allele", "." ]
f698f9708af4c7962d384a70a5a14006b1cb7108
https://github.com/pgxcentre/geneparse/blob/f698f9708af4c7962d384a70a5a14006b1cb7108/geneparse/utils.py#L54-L69
train
pgxcentre/geneparse
geneparse/utils.py
maf
def maf(genotypes): """Computes the MAF and returns a boolean indicating if the minor allele is currently the coded allele. """ warnings.warn("deprecated: use 'Genotypes.maf'", DeprecationWarning) g = genotypes.genotypes maf = np.nansum(g) / (2 * np.sum(~np.isnan(g))) if maf > 0.5: maf = 1 - maf return maf, False return maf, True
python
def maf(genotypes): """Computes the MAF and returns a boolean indicating if the minor allele is currently the coded allele. """ warnings.warn("deprecated: use 'Genotypes.maf'", DeprecationWarning) g = genotypes.genotypes maf = np.nansum(g) / (2 * np.sum(~np.isnan(g))) if maf > 0.5: maf = 1 - maf return maf, False return maf, True
[ "def", "maf", "(", "genotypes", ")", ":", "warnings", ".", "warn", "(", "\"deprecated: use 'Genotypes.maf'\"", ",", "DeprecationWarning", ")", "g", "=", "genotypes", ".", "genotypes", "maf", "=", "np", ".", "nansum", "(", "g", ")", "/", "(", "2", "*", "np", ".", "sum", "(", "~", "np", ".", "isnan", "(", "g", ")", ")", ")", "if", "maf", ">", "0.5", ":", "maf", "=", "1", "-", "maf", "return", "maf", ",", "False", "return", "maf", ",", "True" ]
Computes the MAF and returns a boolean indicating if the minor allele is currently the coded allele.
[ "Computes", "the", "MAF", "and", "returns", "a", "boolean", "indicating", "if", "the", "minor", "allele", "is", "currently", "the", "coded", "allele", "." ]
f698f9708af4c7962d384a70a5a14006b1cb7108
https://github.com/pgxcentre/geneparse/blob/f698f9708af4c7962d384a70a5a14006b1cb7108/geneparse/utils.py#L72-L84
train
pgxcentre/geneparse
geneparse/utils.py
genotype_to_df
def genotype_to_df(g, samples, as_string=False): """Convert a genotype object to a pandas dataframe. By default, the encoded values are stored, but the as_string argument can be used to represent it as characters (alleles) instead. """ name = g.variant.name if g.variant.name else "genotypes" df = pd.DataFrame(g.genotypes, index=samples, columns=[name]) if as_string: df["alleles"] = None hard_calls = df[name].round() df.loc[hard_calls == 0, "alleles"] = "{0}/{0}".format(g.reference) df.loc[hard_calls == 1, "alleles"] = "{0}/{1}".format(g.reference, g.coded) df.loc[hard_calls == 2, "alleles"] = "{0}/{0}".format(g.coded) df = df[["alleles"]] df.columns = [name] return df
python
def genotype_to_df(g, samples, as_string=False): """Convert a genotype object to a pandas dataframe. By default, the encoded values are stored, but the as_string argument can be used to represent it as characters (alleles) instead. """ name = g.variant.name if g.variant.name else "genotypes" df = pd.DataFrame(g.genotypes, index=samples, columns=[name]) if as_string: df["alleles"] = None hard_calls = df[name].round() df.loc[hard_calls == 0, "alleles"] = "{0}/{0}".format(g.reference) df.loc[hard_calls == 1, "alleles"] = "{0}/{1}".format(g.reference, g.coded) df.loc[hard_calls == 2, "alleles"] = "{0}/{0}".format(g.coded) df = df[["alleles"]] df.columns = [name] return df
[ "def", "genotype_to_df", "(", "g", ",", "samples", ",", "as_string", "=", "False", ")", ":", "name", "=", "g", ".", "variant", ".", "name", "if", "g", ".", "variant", ".", "name", "else", "\"genotypes\"", "df", "=", "pd", ".", "DataFrame", "(", "g", ".", "genotypes", ",", "index", "=", "samples", ",", "columns", "=", "[", "name", "]", ")", "if", "as_string", ":", "df", "[", "\"alleles\"", "]", "=", "None", "hard_calls", "=", "df", "[", "name", "]", ".", "round", "(", ")", "df", ".", "loc", "[", "hard_calls", "==", "0", ",", "\"alleles\"", "]", "=", "\"{0}/{0}\"", ".", "format", "(", "g", ".", "reference", ")", "df", ".", "loc", "[", "hard_calls", "==", "1", ",", "\"alleles\"", "]", "=", "\"{0}/{1}\"", ".", "format", "(", "g", ".", "reference", ",", "g", ".", "coded", ")", "df", ".", "loc", "[", "hard_calls", "==", "2", ",", "\"alleles\"", "]", "=", "\"{0}/{0}\"", ".", "format", "(", "g", ".", "coded", ")", "df", "=", "df", "[", "[", "\"alleles\"", "]", "]", "df", ".", "columns", "=", "[", "name", "]", "return", "df" ]
Convert a genotype object to a pandas dataframe. By default, the encoded values are stored, but the as_string argument can be used to represent it as characters (alleles) instead.
[ "Convert", "a", "genotype", "object", "to", "a", "pandas", "dataframe", "." ]
f698f9708af4c7962d384a70a5a14006b1cb7108
https://github.com/pgxcentre/geneparse/blob/f698f9708af4c7962d384a70a5a14006b1cb7108/geneparse/utils.py#L133-L155
train
pgxcentre/geneparse
geneparse/utils.py
compute_ld
def compute_ld(cur_geno, other_genotypes, r2=False): """Compute LD between a marker and a list of markers. Args: cur_geno (Genotypes): The genotypes of the marker. other_genotypes (list): A list of genotypes. Returns: numpy.array: An array containing the r or r**2 values between cur_geno and other_genotypes. Note: The genotypes will automatically be normalized using (x - mean) / std. """ # Normalizing the current genotypes norm_cur = normalize_genotypes(cur_geno) # Normalizing and creating the matrix for the other genotypes norm_others = np.stack( tuple(normalize_genotypes(g) for g in other_genotypes), axis=1, ) # Making sure the size is the same assert norm_cur.shape[0] == norm_others.shape[0] # Getting the number of "samples" per marker (taking into account NaN) n = ( ~np.isnan(norm_cur.reshape(norm_cur.shape[0], 1)) * ~np.isnan(norm_others) ).sum(axis=0) # Computing r (replacing NaN by 0) r = pd.Series( np.dot( np.nan_to_num(norm_cur), np.nan_to_num(norm_others) / n ), index=[g.variant.name for g in other_genotypes], name="r2" if r2 else "r", ) # Checking no "invalid" values (i.e. < -1 or > 1) r.loc[r > 1] = 1 r.loc[r < -1] = -1 if r2: return r ** 2 else: return r
python
def compute_ld(cur_geno, other_genotypes, r2=False): """Compute LD between a marker and a list of markers. Args: cur_geno (Genotypes): The genotypes of the marker. other_genotypes (list): A list of genotypes. Returns: numpy.array: An array containing the r or r**2 values between cur_geno and other_genotypes. Note: The genotypes will automatically be normalized using (x - mean) / std. """ # Normalizing the current genotypes norm_cur = normalize_genotypes(cur_geno) # Normalizing and creating the matrix for the other genotypes norm_others = np.stack( tuple(normalize_genotypes(g) for g in other_genotypes), axis=1, ) # Making sure the size is the same assert norm_cur.shape[0] == norm_others.shape[0] # Getting the number of "samples" per marker (taking into account NaN) n = ( ~np.isnan(norm_cur.reshape(norm_cur.shape[0], 1)) * ~np.isnan(norm_others) ).sum(axis=0) # Computing r (replacing NaN by 0) r = pd.Series( np.dot( np.nan_to_num(norm_cur), np.nan_to_num(norm_others) / n ), index=[g.variant.name for g in other_genotypes], name="r2" if r2 else "r", ) # Checking no "invalid" values (i.e. < -1 or > 1) r.loc[r > 1] = 1 r.loc[r < -1] = -1 if r2: return r ** 2 else: return r
[ "def", "compute_ld", "(", "cur_geno", ",", "other_genotypes", ",", "r2", "=", "False", ")", ":", "# Normalizing the current genotypes", "norm_cur", "=", "normalize_genotypes", "(", "cur_geno", ")", "# Normalizing and creating the matrix for the other genotypes", "norm_others", "=", "np", ".", "stack", "(", "tuple", "(", "normalize_genotypes", "(", "g", ")", "for", "g", "in", "other_genotypes", ")", ",", "axis", "=", "1", ",", ")", "# Making sure the size is the same", "assert", "norm_cur", ".", "shape", "[", "0", "]", "==", "norm_others", ".", "shape", "[", "0", "]", "# Getting the number of \"samples\" per marker (taking into account NaN)", "n", "=", "(", "~", "np", ".", "isnan", "(", "norm_cur", ".", "reshape", "(", "norm_cur", ".", "shape", "[", "0", "]", ",", "1", ")", ")", "*", "~", "np", ".", "isnan", "(", "norm_others", ")", ")", ".", "sum", "(", "axis", "=", "0", ")", "# Computing r (replacing NaN by 0)", "r", "=", "pd", ".", "Series", "(", "np", ".", "dot", "(", "np", ".", "nan_to_num", "(", "norm_cur", ")", ",", "np", ".", "nan_to_num", "(", "norm_others", ")", "/", "n", ")", ",", "index", "=", "[", "g", ".", "variant", ".", "name", "for", "g", "in", "other_genotypes", "]", ",", "name", "=", "\"r2\"", "if", "r2", "else", "\"r\"", ",", ")", "# Checking no \"invalid\" values (i.e. < -1 or > 1)", "r", ".", "loc", "[", "r", ">", "1", "]", "=", "1", "r", ".", "loc", "[", "r", "<", "-", "1", "]", "=", "-", "1", "if", "r2", ":", "return", "r", "**", "2", "else", ":", "return", "r" ]
Compute LD between a marker and a list of markers. Args: cur_geno (Genotypes): The genotypes of the marker. other_genotypes (list): A list of genotypes. Returns: numpy.array: An array containing the r or r**2 values between cur_geno and other_genotypes. Note: The genotypes will automatically be normalized using (x - mean) / std.
[ "Compute", "LD", "between", "a", "marker", "and", "a", "list", "of", "markers", "." ]
f698f9708af4c7962d384a70a5a14006b1cb7108
https://github.com/pgxcentre/geneparse/blob/f698f9708af4c7962d384a70a5a14006b1cb7108/geneparse/utils.py#L158-L207
train
pgxcentre/geneparse
geneparse/utils.py
normalize_genotypes
def normalize_genotypes(genotypes): """Normalize the genotypes. Args: genotypes (Genotypes): The genotypes to normalize. Returns: numpy.array: The normalized genotypes. """ genotypes = genotypes.genotypes return (genotypes - np.nanmean(genotypes)) / np.nanstd(genotypes)
python
def normalize_genotypes(genotypes): """Normalize the genotypes. Args: genotypes (Genotypes): The genotypes to normalize. Returns: numpy.array: The normalized genotypes. """ genotypes = genotypes.genotypes return (genotypes - np.nanmean(genotypes)) / np.nanstd(genotypes)
[ "def", "normalize_genotypes", "(", "genotypes", ")", ":", "genotypes", "=", "genotypes", ".", "genotypes", "return", "(", "genotypes", "-", "np", ".", "nanmean", "(", "genotypes", ")", ")", "/", "np", ".", "nanstd", "(", "genotypes", ")" ]
Normalize the genotypes. Args: genotypes (Genotypes): The genotypes to normalize. Returns: numpy.array: The normalized genotypes.
[ "Normalize", "the", "genotypes", "." ]
f698f9708af4c7962d384a70a5a14006b1cb7108
https://github.com/pgxcentre/geneparse/blob/f698f9708af4c7962d384a70a5a14006b1cb7108/geneparse/utils.py#L210-L221
train
geophysics-ubonn/crtomo_tools
lib/crtomo/interface.py
crmod_interface._get_tdm
def _get_tdm(self, m): """For a given model, return a tdMan instance Parameters ---------- m : ndarray Model parameters (linear, ohm m) """ m = np.atleast_2d(m) assert len(m.shape) == 2 tdm = crtomo.tdMan(grid=self.grid, tempdir=self.tempdir) tdm.configs.add_to_configs(self.configs) pid_mag = tdm.parman.add_data(m[0, :]) tdm.register_magnitude_model(pid_mag) if m.shape[0] == 2: pid_pha = tdm.parman.add_data(m[1, :]) else: pid_pha = tdm.parman.add_data(np.zeros(m.shape[1])) tdm.register_phase_model(pid_pha) return tdm
python
def _get_tdm(self, m): """For a given model, return a tdMan instance Parameters ---------- m : ndarray Model parameters (linear, ohm m) """ m = np.atleast_2d(m) assert len(m.shape) == 2 tdm = crtomo.tdMan(grid=self.grid, tempdir=self.tempdir) tdm.configs.add_to_configs(self.configs) pid_mag = tdm.parman.add_data(m[0, :]) tdm.register_magnitude_model(pid_mag) if m.shape[0] == 2: pid_pha = tdm.parman.add_data(m[1, :]) else: pid_pha = tdm.parman.add_data(np.zeros(m.shape[1])) tdm.register_phase_model(pid_pha) return tdm
[ "def", "_get_tdm", "(", "self", ",", "m", ")", ":", "m", "=", "np", ".", "atleast_2d", "(", "m", ")", "assert", "len", "(", "m", ".", "shape", ")", "==", "2", "tdm", "=", "crtomo", ".", "tdMan", "(", "grid", "=", "self", ".", "grid", ",", "tempdir", "=", "self", ".", "tempdir", ")", "tdm", ".", "configs", ".", "add_to_configs", "(", "self", ".", "configs", ")", "pid_mag", "=", "tdm", ".", "parman", ".", "add_data", "(", "m", "[", "0", ",", ":", "]", ")", "tdm", ".", "register_magnitude_model", "(", "pid_mag", ")", "if", "m", ".", "shape", "[", "0", "]", "==", "2", ":", "pid_pha", "=", "tdm", ".", "parman", ".", "add_data", "(", "m", "[", "1", ",", ":", "]", ")", "else", ":", "pid_pha", "=", "tdm", ".", "parman", ".", "add_data", "(", "np", ".", "zeros", "(", "m", ".", "shape", "[", "1", "]", ")", ")", "tdm", ".", "register_phase_model", "(", "pid_pha", ")", "return", "tdm" ]
For a given model, return a tdMan instance Parameters ---------- m : ndarray Model parameters (linear, ohm m)
[ "For", "a", "given", "model", "return", "a", "tdMan", "instance" ]
27c3e21a557f8df1c12455b96c4c2e00e08a5b4a
https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/lib/crtomo/interface.py#L43-L63
train
geophysics-ubonn/crtomo_tools
lib/crtomo/interface.py
crmod_interface.J
def J(self, log_sigma): """Return the sensitivity matrix Parameters ---------- log_sigma : numpy.ndarray log_e conductivities """ m = 1.0 / np.exp(log_sigma) tdm = self._get_tdm(m) tdm.model( sensitivities=True, # output_directory=stage_dir + 'modeling', ) measurements = tdm.measurements() # build up the sensitivity matrix sens_list = [] for config_nr, cids in sorted( tdm.assignments['sensitivities'].items()): sens_list.append(tdm.parman.parsets[cids[0]]) sensitivities_lin = np.array(sens_list) # now convert to the log-sensitivities relevant for CRTomo and the # resolution matrix sensitivities_log = sensitivities_lin # multiply measurements on first dimension measurements_rep = np.repeat( measurements[:, 0, np.newaxis], sensitivities_lin.shape[1], axis=1) # sensitivities_log = sensitivities_log * mfit # multiply resistivities on second dimension m_rep = np.repeat( m[np.newaxis, :], sensitivities_lin.shape[0], axis=0 ) # eq. 3.41 in Kemna, 2000: notice that m_rep here is in rho, not sigma factor = - 1 / (m_rep * measurements_rep) sensitivities_log = factor * sensitivities_lin # import IPython # IPython.embed() return sensitivities_log
python
def J(self, log_sigma): """Return the sensitivity matrix Parameters ---------- log_sigma : numpy.ndarray log_e conductivities """ m = 1.0 / np.exp(log_sigma) tdm = self._get_tdm(m) tdm.model( sensitivities=True, # output_directory=stage_dir + 'modeling', ) measurements = tdm.measurements() # build up the sensitivity matrix sens_list = [] for config_nr, cids in sorted( tdm.assignments['sensitivities'].items()): sens_list.append(tdm.parman.parsets[cids[0]]) sensitivities_lin = np.array(sens_list) # now convert to the log-sensitivities relevant for CRTomo and the # resolution matrix sensitivities_log = sensitivities_lin # multiply measurements on first dimension measurements_rep = np.repeat( measurements[:, 0, np.newaxis], sensitivities_lin.shape[1], axis=1) # sensitivities_log = sensitivities_log * mfit # multiply resistivities on second dimension m_rep = np.repeat( m[np.newaxis, :], sensitivities_lin.shape[0], axis=0 ) # eq. 3.41 in Kemna, 2000: notice that m_rep here is in rho, not sigma factor = - 1 / (m_rep * measurements_rep) sensitivities_log = factor * sensitivities_lin # import IPython # IPython.embed() return sensitivities_log
[ "def", "J", "(", "self", ",", "log_sigma", ")", ":", "m", "=", "1.0", "/", "np", ".", "exp", "(", "log_sigma", ")", "tdm", "=", "self", ".", "_get_tdm", "(", "m", ")", "tdm", ".", "model", "(", "sensitivities", "=", "True", ",", "# output_directory=stage_dir + 'modeling',", ")", "measurements", "=", "tdm", ".", "measurements", "(", ")", "# build up the sensitivity matrix", "sens_list", "=", "[", "]", "for", "config_nr", ",", "cids", "in", "sorted", "(", "tdm", ".", "assignments", "[", "'sensitivities'", "]", ".", "items", "(", ")", ")", ":", "sens_list", ".", "append", "(", "tdm", ".", "parman", ".", "parsets", "[", "cids", "[", "0", "]", "]", ")", "sensitivities_lin", "=", "np", ".", "array", "(", "sens_list", ")", "# now convert to the log-sensitivities relevant for CRTomo and the", "# resolution matrix", "sensitivities_log", "=", "sensitivities_lin", "# multiply measurements on first dimension", "measurements_rep", "=", "np", ".", "repeat", "(", "measurements", "[", ":", ",", "0", ",", "np", ".", "newaxis", "]", ",", "sensitivities_lin", ".", "shape", "[", "1", "]", ",", "axis", "=", "1", ")", "# sensitivities_log = sensitivities_log * mfit", "# multiply resistivities on second dimension", "m_rep", "=", "np", ".", "repeat", "(", "m", "[", "np", ".", "newaxis", ",", ":", "]", ",", "sensitivities_lin", ".", "shape", "[", "0", "]", ",", "axis", "=", "0", ")", "# eq. 3.41 in Kemna, 2000: notice that m_rep here is in rho, not sigma", "factor", "=", "-", "1", "/", "(", "m_rep", "*", "measurements_rep", ")", "sensitivities_log", "=", "factor", "*", "sensitivities_lin", "# import IPython", "# IPython.embed()", "return", "sensitivities_log" ]
Return the sensitivity matrix Parameters ---------- log_sigma : numpy.ndarray log_e conductivities
[ "Return", "the", "sensitivity", "matrix" ]
27c3e21a557f8df1c12455b96c4c2e00e08a5b4a
https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/lib/crtomo/interface.py#L88-L136
train
redhat-openstack/python-tripleo-helper
tripleohelper/baremetal.py
BaremetalFactory.set_ironic_uuid
def set_ironic_uuid(self, uuid_list): """Map a list of Ironic UUID to BM nodes. """ # TODO(Gonéri): ensure we adjust the correct node i = iter(self.nodes) for uuid in uuid_list: node = next(i) node.uuid = uuid
python
def set_ironic_uuid(self, uuid_list): """Map a list of Ironic UUID to BM nodes. """ # TODO(Gonéri): ensure we adjust the correct node i = iter(self.nodes) for uuid in uuid_list: node = next(i) node.uuid = uuid
[ "def", "set_ironic_uuid", "(", "self", ",", "uuid_list", ")", ":", "# TODO(Gonéri): ensure we adjust the correct node", "i", "=", "iter", "(", "self", ".", "nodes", ")", "for", "uuid", "in", "uuid_list", ":", "node", "=", "next", "(", "i", ")", "node", ".", "uuid", "=", "uuid" ]
Map a list of Ironic UUID to BM nodes.
[ "Map", "a", "list", "of", "Ironic", "UUID", "to", "BM", "nodes", "." ]
bfa165538335edb1088170c7a92f097167225c81
https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/baremetal.py#L89-L96
train
althonos/moclo
moclo/moclo/registry/_utils.py
find_resistance
def find_resistance(record): """Infer the antibiotics resistance of the given record. Arguments: record (`~Bio.SeqRecord.SeqRecord`): an annotated sequence. Raises: RuntimeError: when there's not exactly one resistance cassette. """ for feature in record.features: labels = set(feature.qualifiers.get("label", [])) cassettes = labels.intersection(_ANTIBIOTICS) if len(cassettes) > 1: raise RuntimeError("multiple resistance cassettes detected") elif len(cassettes) == 1: return _ANTIBIOTICS.get(cassettes.pop()) raise RuntimeError("could not find the resistance of '{}'".format(record.id))
python
def find_resistance(record): """Infer the antibiotics resistance of the given record. Arguments: record (`~Bio.SeqRecord.SeqRecord`): an annotated sequence. Raises: RuntimeError: when there's not exactly one resistance cassette. """ for feature in record.features: labels = set(feature.qualifiers.get("label", [])) cassettes = labels.intersection(_ANTIBIOTICS) if len(cassettes) > 1: raise RuntimeError("multiple resistance cassettes detected") elif len(cassettes) == 1: return _ANTIBIOTICS.get(cassettes.pop()) raise RuntimeError("could not find the resistance of '{}'".format(record.id))
[ "def", "find_resistance", "(", "record", ")", ":", "for", "feature", "in", "record", ".", "features", ":", "labels", "=", "set", "(", "feature", ".", "qualifiers", ".", "get", "(", "\"label\"", ",", "[", "]", ")", ")", "cassettes", "=", "labels", ".", "intersection", "(", "_ANTIBIOTICS", ")", "if", "len", "(", "cassettes", ")", ">", "1", ":", "raise", "RuntimeError", "(", "\"multiple resistance cassettes detected\"", ")", "elif", "len", "(", "cassettes", ")", "==", "1", ":", "return", "_ANTIBIOTICS", ".", "get", "(", "cassettes", ".", "pop", "(", ")", ")", "raise", "RuntimeError", "(", "\"could not find the resistance of '{}'\"", ".", "format", "(", "record", ".", "id", ")", ")" ]
Infer the antibiotics resistance of the given record. Arguments: record (`~Bio.SeqRecord.SeqRecord`): an annotated sequence. Raises: RuntimeError: when there's not exactly one resistance cassette.
[ "Infer", "the", "antibiotics", "resistance", "of", "the", "given", "record", "." ]
28a03748df8a2fa43f0c0c8098ca64d11559434e
https://github.com/althonos/moclo/blob/28a03748df8a2fa43f0c0c8098ca64d11559434e/moclo/moclo/registry/_utils.py#L16-L33
train
rsms/tc
setup.py
shell_cmd
def shell_cmd(args, cwd=None): '''Returns stdout as string or None on failure ''' if cwd is None: cwd = os.path.abspath('.') if not isinstance(args, (list, tuple)): args = [args] ps = Popen(args, shell=True, cwd=cwd, stdout=PIPE, stderr=PIPE, close_fds=True) stdout, stderr = ps.communicate() if ps.returncode != 0: if stderr: stderr = stderr.strip() raise IOError('Shell command %s failed (exit status %r): %s' %\ (args, ps.returncode, stderr)) return stdout.strip()
python
def shell_cmd(args, cwd=None): '''Returns stdout as string or None on failure ''' if cwd is None: cwd = os.path.abspath('.') if not isinstance(args, (list, tuple)): args = [args] ps = Popen(args, shell=True, cwd=cwd, stdout=PIPE, stderr=PIPE, close_fds=True) stdout, stderr = ps.communicate() if ps.returncode != 0: if stderr: stderr = stderr.strip() raise IOError('Shell command %s failed (exit status %r): %s' %\ (args, ps.returncode, stderr)) return stdout.strip()
[ "def", "shell_cmd", "(", "args", ",", "cwd", "=", "None", ")", ":", "if", "cwd", "is", "None", ":", "cwd", "=", "os", ".", "path", ".", "abspath", "(", "'.'", ")", "if", "not", "isinstance", "(", "args", ",", "(", "list", ",", "tuple", ")", ")", ":", "args", "=", "[", "args", "]", "ps", "=", "Popen", "(", "args", ",", "shell", "=", "True", ",", "cwd", "=", "cwd", ",", "stdout", "=", "PIPE", ",", "stderr", "=", "PIPE", ",", "close_fds", "=", "True", ")", "stdout", ",", "stderr", "=", "ps", ".", "communicate", "(", ")", "if", "ps", ".", "returncode", "!=", "0", ":", "if", "stderr", ":", "stderr", "=", "stderr", ".", "strip", "(", ")", "raise", "IOError", "(", "'Shell command %s failed (exit status %r): %s'", "%", "(", "args", ",", "ps", ".", "returncode", ",", "stderr", ")", ")", "return", "stdout", ".", "strip", "(", ")" ]
Returns stdout as string or None on failure
[ "Returns", "stdout", "as", "string", "or", "None", "on", "failure" ]
db5da0def734246818f4a6e4531be63b7cbaa236
https://github.com/rsms/tc/blob/db5da0def734246818f4a6e4531be63b7cbaa236/setup.py#L36-L51
train
althonos/moclo
moclo/moclo/record.py
CircularRecord.reverse_complement
def reverse_complement( self, id=False, name=False, description=False, features=True, annotations=False, letter_annotations=True, dbxrefs=False, ): """Return a new ``CircularRecord`` with reverse complement sequence. """ return type(self)( super(CircularRecord, self).reverse_complement( id=id, name=name, description=description, features=features, annotations=annotations, letter_annotations=letter_annotations, dbxrefs=dbxrefs, ) )
python
def reverse_complement( self, id=False, name=False, description=False, features=True, annotations=False, letter_annotations=True, dbxrefs=False, ): """Return a new ``CircularRecord`` with reverse complement sequence. """ return type(self)( super(CircularRecord, self).reverse_complement( id=id, name=name, description=description, features=features, annotations=annotations, letter_annotations=letter_annotations, dbxrefs=dbxrefs, ) )
[ "def", "reverse_complement", "(", "self", ",", "id", "=", "False", ",", "name", "=", "False", ",", "description", "=", "False", ",", "features", "=", "True", ",", "annotations", "=", "False", ",", "letter_annotations", "=", "True", ",", "dbxrefs", "=", "False", ",", ")", ":", "return", "type", "(", "self", ")", "(", "super", "(", "CircularRecord", ",", "self", ")", ".", "reverse_complement", "(", "id", "=", "id", ",", "name", "=", "name", ",", "description", "=", "description", ",", "features", "=", "features", ",", "annotations", "=", "annotations", ",", "letter_annotations", "=", "letter_annotations", ",", "dbxrefs", "=", "dbxrefs", ",", ")", ")" ]
Return a new ``CircularRecord`` with reverse complement sequence.
[ "Return", "a", "new", "CircularRecord", "with", "reverse", "complement", "sequence", "." ]
28a03748df8a2fa43f0c0c8098ca64d11559434e
https://github.com/althonos/moclo/blob/28a03748df8a2fa43f0c0c8098ca64d11559434e/moclo/moclo/record.py#L141-L163
train
redhat-openstack/python-tripleo-helper
tripleohelper/ssh.py
SshClient.load_private_key
def load_private_key(self, priv_key): """Register the SSH private key.""" with open(priv_key) as fd: self._private_key = paramiko.RSAKey.from_private_key(fd)
python
def load_private_key(self, priv_key): """Register the SSH private key.""" with open(priv_key) as fd: self._private_key = paramiko.RSAKey.from_private_key(fd)
[ "def", "load_private_key", "(", "self", ",", "priv_key", ")", ":", "with", "open", "(", "priv_key", ")", "as", "fd", ":", "self", ".", "_private_key", "=", "paramiko", ".", "RSAKey", ".", "from_private_key", "(", "fd", ")" ]
Register the SSH private key.
[ "Register", "the", "SSH", "private", "key", "." ]
bfa165538335edb1088170c7a92f097167225c81
https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/ssh.py#L68-L71
train
redhat-openstack/python-tripleo-helper
tripleohelper/ssh.py
SshClient.start
def start(self): """Start the ssh client and connect to the host. It will wait until the ssh service is available during 90 seconds. If it doesn't succed to connect then the function will raise an SSHException. """ if self.via_ip: connect_to = self.via_ip self.description = '[%s@%s via %s]' % (self._user, self._hostname, self.via_ip) else: connect_to = self._hostname self.description = '[%s@%s]' % (self._user, self._hostname) exception = None for i in range(60): try: self._client.connect( connect_to, username=self._user, allow_agent=True, key_filename=self._key_filename) # NOTE(Gonéri): TypeError is in the list because of # https://github.com/paramiko/paramiko/issues/615 self._transport = self._get_transport() except (OSError, TypeError, ssh_exception.SSHException, ssh_exception.NoValidConnectionsError) as e: exception = e LOG.info('%s waiting for %s: %s' % (self.description, connect_to, str(exception))) time.sleep(1) else: LOG.debug('%s connected' % self.description) self._started = True return _error = ("unable to connect to ssh service on '%s': %s" % (self._hostname, str(exception))) LOG.error(_error) raise exception
python
def start(self): """Start the ssh client and connect to the host. It will wait until the ssh service is available during 90 seconds. If it doesn't succed to connect then the function will raise an SSHException. """ if self.via_ip: connect_to = self.via_ip self.description = '[%s@%s via %s]' % (self._user, self._hostname, self.via_ip) else: connect_to = self._hostname self.description = '[%s@%s]' % (self._user, self._hostname) exception = None for i in range(60): try: self._client.connect( connect_to, username=self._user, allow_agent=True, key_filename=self._key_filename) # NOTE(Gonéri): TypeError is in the list because of # https://github.com/paramiko/paramiko/issues/615 self._transport = self._get_transport() except (OSError, TypeError, ssh_exception.SSHException, ssh_exception.NoValidConnectionsError) as e: exception = e LOG.info('%s waiting for %s: %s' % (self.description, connect_to, str(exception))) time.sleep(1) else: LOG.debug('%s connected' % self.description) self._started = True return _error = ("unable to connect to ssh service on '%s': %s" % (self._hostname, str(exception))) LOG.error(_error) raise exception
[ "def", "start", "(", "self", ")", ":", "if", "self", ".", "via_ip", ":", "connect_to", "=", "self", ".", "via_ip", "self", ".", "description", "=", "'[%s@%s via %s]'", "%", "(", "self", ".", "_user", ",", "self", ".", "_hostname", ",", "self", ".", "via_ip", ")", "else", ":", "connect_to", "=", "self", ".", "_hostname", "self", ".", "description", "=", "'[%s@%s]'", "%", "(", "self", ".", "_user", ",", "self", ".", "_hostname", ")", "exception", "=", "None", "for", "i", "in", "range", "(", "60", ")", ":", "try", ":", "self", ".", "_client", ".", "connect", "(", "connect_to", ",", "username", "=", "self", ".", "_user", ",", "allow_agent", "=", "True", ",", "key_filename", "=", "self", ".", "_key_filename", ")", "# NOTE(Gonéri): TypeError is in the list because of", "# https://github.com/paramiko/paramiko/issues/615", "self", ".", "_transport", "=", "self", ".", "_get_transport", "(", ")", "except", "(", "OSError", ",", "TypeError", ",", "ssh_exception", ".", "SSHException", ",", "ssh_exception", ".", "NoValidConnectionsError", ")", "as", "e", ":", "exception", "=", "e", "LOG", ".", "info", "(", "'%s waiting for %s: %s'", "%", "(", "self", ".", "description", ",", "connect_to", ",", "str", "(", "exception", ")", ")", ")", "time", ".", "sleep", "(", "1", ")", "else", ":", "LOG", ".", "debug", "(", "'%s connected'", "%", "self", ".", "description", ")", "self", ".", "_started", "=", "True", "return", "_error", "=", "(", "\"unable to connect to ssh service on '%s': %s\"", "%", "(", "self", ".", "_hostname", ",", "str", "(", "exception", ")", ")", ")", "LOG", ".", "error", "(", "_error", ")", "raise", "exception" ]
Start the ssh client and connect to the host. It will wait until the ssh service is available during 90 seconds. If it doesn't succed to connect then the function will raise an SSHException.
[ "Start", "the", "ssh", "client", "and", "connect", "to", "the", "host", "." ]
bfa165538335edb1088170c7a92f097167225c81
https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/ssh.py#L98-L142
train
redhat-openstack/python-tripleo-helper
tripleohelper/ssh.py
SshClient._get_channel
def _get_channel(self): """Returns a channel according to if there is a redirection to do or not. """ channel = self._transport.open_session() channel.set_combine_stderr(True) channel.get_pty() return channel
python
def _get_channel(self): """Returns a channel according to if there is a redirection to do or not. """ channel = self._transport.open_session() channel.set_combine_stderr(True) channel.get_pty() return channel
[ "def", "_get_channel", "(", "self", ")", ":", "channel", "=", "self", ".", "_transport", ".", "open_session", "(", ")", "channel", ".", "set_combine_stderr", "(", "True", ")", "channel", ".", "get_pty", "(", ")", "return", "channel" ]
Returns a channel according to if there is a redirection to do or not.
[ "Returns", "a", "channel", "according", "to", "if", "there", "is", "a", "redirection", "to", "do", "or", "not", "." ]
bfa165538335edb1088170c7a92f097167225c81
https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/ssh.py#L237-L244
train
NJDFan/ctypes-bitfield
bitfield/__init__.py
print_fields
def print_fields(bf, *args, **kwargs): """ Print all the fields of a Bitfield object to stdout. This is primarly a diagnostic aid during debugging. """ vals = {k: hex(v) for k, v in bf.items()} print(bf.base, vals, *args, **kwargs)
python
def print_fields(bf, *args, **kwargs): """ Print all the fields of a Bitfield object to stdout. This is primarly a diagnostic aid during debugging. """ vals = {k: hex(v) for k, v in bf.items()} print(bf.base, vals, *args, **kwargs)
[ "def", "print_fields", "(", "bf", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "vals", "=", "{", "k", ":", "hex", "(", "v", ")", "for", "k", ",", "v", "in", "bf", ".", "items", "(", ")", "}", "print", "(", "bf", ".", "base", ",", "vals", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
Print all the fields of a Bitfield object to stdout. This is primarly a diagnostic aid during debugging.
[ "Print", "all", "the", "fields", "of", "a", "Bitfield", "object", "to", "stdout", ".", "This", "is", "primarly", "a", "diagnostic", "aid", "during", "debugging", "." ]
ae76b1dcfef7ecc90bd1900735b94ddee41a6376
https://github.com/NJDFan/ctypes-bitfield/blob/ae76b1dcfef7ecc90bd1900735b94ddee41a6376/bitfield/__init__.py#L201-L208
train
NJDFan/ctypes-bitfield
bitfield/__init__.py
Bitfield.clone
def clone(self): """Return a new bitfield with the same value. The returned value is a copy, and so is no longer linked to the original bitfield. This is important when the original is located at anything other than normal memory, with accesses to it either slow or having side effects. Creating a clone, and working against that clone, means that only one read will occur. """ temp = self.__class__() temp.base = self.base return temp
python
def clone(self): """Return a new bitfield with the same value. The returned value is a copy, and so is no longer linked to the original bitfield. This is important when the original is located at anything other than normal memory, with accesses to it either slow or having side effects. Creating a clone, and working against that clone, means that only one read will occur. """ temp = self.__class__() temp.base = self.base return temp
[ "def", "clone", "(", "self", ")", ":", "temp", "=", "self", ".", "__class__", "(", ")", "temp", ".", "base", "=", "self", ".", "base", "return", "temp" ]
Return a new bitfield with the same value. The returned value is a copy, and so is no longer linked to the original bitfield. This is important when the original is located at anything other than normal memory, with accesses to it either slow or having side effects. Creating a clone, and working against that clone, means that only one read will occur.
[ "Return", "a", "new", "bitfield", "with", "the", "same", "value", ".", "The", "returned", "value", "is", "a", "copy", "and", "so", "is", "no", "longer", "linked", "to", "the", "original", "bitfield", ".", "This", "is", "important", "when", "the", "original", "is", "located", "at", "anything", "other", "than", "normal", "memory", "with", "accesses", "to", "it", "either", "slow", "or", "having", "side", "effects", ".", "Creating", "a", "clone", "and", "working", "against", "that", "clone", "means", "that", "only", "one", "read", "will", "occur", "." ]
ae76b1dcfef7ecc90bd1900735b94ddee41a6376
https://github.com/NJDFan/ctypes-bitfield/blob/ae76b1dcfef7ecc90bd1900735b94ddee41a6376/bitfield/__init__.py#L44-L56
train
gebn/wood
wood/comparison.py
Comparison.new
def new(self, base: pathlib.PurePath = pathlib.PurePath(), include_intermediates: bool = True) -> Iterator[str]: """ Find the list of new paths in this comparison. :param base: The base directory to prepend to the right entity's name. :param include_intermediates: Whether to include new non-empty directories in the returned iterable. If you only care about files, or are using flat key-based storage system like S3 where directories are a made-up concept, this can be set to false. :return: An iterator of the new paths. """ if self.is_new: yield str(base / self.right.name)
python
def new(self, base: pathlib.PurePath = pathlib.PurePath(), include_intermediates: bool = True) -> Iterator[str]: """ Find the list of new paths in this comparison. :param base: The base directory to prepend to the right entity's name. :param include_intermediates: Whether to include new non-empty directories in the returned iterable. If you only care about files, or are using flat key-based storage system like S3 where directories are a made-up concept, this can be set to false. :return: An iterator of the new paths. """ if self.is_new: yield str(base / self.right.name)
[ "def", "new", "(", "self", ",", "base", ":", "pathlib", ".", "PurePath", "=", "pathlib", ".", "PurePath", "(", ")", ",", "include_intermediates", ":", "bool", "=", "True", ")", "->", "Iterator", "[", "str", "]", ":", "if", "self", ".", "is_new", ":", "yield", "str", "(", "base", "/", "self", ".", "right", ".", "name", ")" ]
Find the list of new paths in this comparison. :param base: The base directory to prepend to the right entity's name. :param include_intermediates: Whether to include new non-empty directories in the returned iterable. If you only care about files, or are using flat key-based storage system like S3 where directories are a made-up concept, this can be set to false. :return: An iterator of the new paths.
[ "Find", "the", "list", "of", "new", "paths", "in", "this", "comparison", "." ]
efc71879890dbd2f2d7a0b1a65ed22a0843139dd
https://github.com/gebn/wood/blob/efc71879890dbd2f2d7a0b1a65ed22a0843139dd/wood/comparison.py#L61-L76
train
gebn/wood
wood/comparison.py
Comparison.modified
def modified(self, base: pathlib.PurePath = pathlib.PurePath()) \ -> Iterator[str]: """ Find the paths of modified files. There is no option to include intermediate directories, as all files and directories exist in both the left and right trees. :param base: The base directory to recursively append to the right entity. :return: An iterable of paths of modified files. """ # N.B. this method will only ever return files, as directories cannot # be "modified" if self.is_modified: yield str(base / self.right.name)
python
def modified(self, base: pathlib.PurePath = pathlib.PurePath()) \ -> Iterator[str]: """ Find the paths of modified files. There is no option to include intermediate directories, as all files and directories exist in both the left and right trees. :param base: The base directory to recursively append to the right entity. :return: An iterable of paths of modified files. """ # N.B. this method will only ever return files, as directories cannot # be "modified" if self.is_modified: yield str(base / self.right.name)
[ "def", "modified", "(", "self", ",", "base", ":", "pathlib", ".", "PurePath", "=", "pathlib", ".", "PurePath", "(", ")", ")", "->", "Iterator", "[", "str", "]", ":", "# N.B. this method will only ever return files, as directories cannot", "# be \"modified\"", "if", "self", ".", "is_modified", ":", "yield", "str", "(", "base", "/", "self", ".", "right", ".", "name", ")" ]
Find the paths of modified files. There is no option to include intermediate directories, as all files and directories exist in both the left and right trees. :param base: The base directory to recursively append to the right entity. :return: An iterable of paths of modified files.
[ "Find", "the", "paths", "of", "modified", "files", ".", "There", "is", "no", "option", "to", "include", "intermediate", "directories", "as", "all", "files", "and", "directories", "exist", "in", "both", "the", "left", "and", "right", "trees", "." ]
efc71879890dbd2f2d7a0b1a65ed22a0843139dd
https://github.com/gebn/wood/blob/efc71879890dbd2f2d7a0b1a65ed22a0843139dd/wood/comparison.py#L91-L105
train
gebn/wood
wood/comparison.py
Comparison.deleted
def deleted(self, base: pathlib.PurePath = pathlib.PurePath(), include_children: bool = True, include_directories: bool = True) -> Iterator[str]: """ Find the paths of entities deleted between the left and right entities in this comparison. :param base: The base directory to recursively append to entities. :param include_children: Whether to recursively include children of deleted directories. These are themselves deleted by definition, however it may be useful to the caller to list them explicitly. :param include_directories: Whether to include directories in the returned iterable. :return: An iterable of deleted paths. """ if self.is_deleted: yield str(base / self.left.name)
python
def deleted(self, base: pathlib.PurePath = pathlib.PurePath(), include_children: bool = True, include_directories: bool = True) -> Iterator[str]: """ Find the paths of entities deleted between the left and right entities in this comparison. :param base: The base directory to recursively append to entities. :param include_children: Whether to recursively include children of deleted directories. These are themselves deleted by definition, however it may be useful to the caller to list them explicitly. :param include_directories: Whether to include directories in the returned iterable. :return: An iterable of deleted paths. """ if self.is_deleted: yield str(base / self.left.name)
[ "def", "deleted", "(", "self", ",", "base", ":", "pathlib", ".", "PurePath", "=", "pathlib", ".", "PurePath", "(", ")", ",", "include_children", ":", "bool", "=", "True", ",", "include_directories", ":", "bool", "=", "True", ")", "->", "Iterator", "[", "str", "]", ":", "if", "self", ".", "is_deleted", ":", "yield", "str", "(", "base", "/", "self", ".", "left", ".", "name", ")" ]
Find the paths of entities deleted between the left and right entities in this comparison. :param base: The base directory to recursively append to entities. :param include_children: Whether to recursively include children of deleted directories. These are themselves deleted by definition, however it may be useful to the caller to list them explicitly. :param include_directories: Whether to include directories in the returned iterable. :return: An iterable of deleted paths.
[ "Find", "the", "paths", "of", "entities", "deleted", "between", "the", "left", "and", "right", "entities", "in", "this", "comparison", "." ]
efc71879890dbd2f2d7a0b1a65ed22a0843139dd
https://github.com/gebn/wood/blob/efc71879890dbd2f2d7a0b1a65ed22a0843139dd/wood/comparison.py#L116-L133
train
gebn/wood
wood/comparison.py
Comparison.compare
def compare(left: Optional[L], right: Optional[R]) -> 'Comparison[L, R]': """ Calculate the comparison of two entities. | left | right | Return Type | |===========|===========|=========================| | file | file | FileComparison | | file | directory | FileDirectoryComparison | | file | None | FileComparison | | directory | file | DirectoryFileComparison | | directory | directory | DirectoryComparison | | directory | None | DirectoryComparison | | None | file | FileComparison | | None | directory | DirectoryComparison | | None | None | TypeError | :param left: The left side or "before" entity. :param right: The right side or "after" entity. :return: See table above. """ if isinstance(left, File) and isinstance(right, Directory): return FileDirectoryComparison(left, right) if isinstance(left, Directory) and isinstance(right, File): return DirectoryFileComparison(left, right) if isinstance(left, File) or isinstance(right, File): return FileComparison(left, right) if isinstance(left, Directory) or isinstance(right, Directory): return DirectoryComparison(left, right) raise TypeError(f'Cannot compare entities: {left}, {right}')
python
def compare(left: Optional[L], right: Optional[R]) -> 'Comparison[L, R]': """ Calculate the comparison of two entities. | left | right | Return Type | |===========|===========|=========================| | file | file | FileComparison | | file | directory | FileDirectoryComparison | | file | None | FileComparison | | directory | file | DirectoryFileComparison | | directory | directory | DirectoryComparison | | directory | None | DirectoryComparison | | None | file | FileComparison | | None | directory | DirectoryComparison | | None | None | TypeError | :param left: The left side or "before" entity. :param right: The right side or "after" entity. :return: See table above. """ if isinstance(left, File) and isinstance(right, Directory): return FileDirectoryComparison(left, right) if isinstance(left, Directory) and isinstance(right, File): return DirectoryFileComparison(left, right) if isinstance(left, File) or isinstance(right, File): return FileComparison(left, right) if isinstance(left, Directory) or isinstance(right, Directory): return DirectoryComparison(left, right) raise TypeError(f'Cannot compare entities: {left}, {right}')
[ "def", "compare", "(", "left", ":", "Optional", "[", "L", "]", ",", "right", ":", "Optional", "[", "R", "]", ")", "->", "'Comparison[L, R]'", ":", "if", "isinstance", "(", "left", ",", "File", ")", "and", "isinstance", "(", "right", ",", "Directory", ")", ":", "return", "FileDirectoryComparison", "(", "left", ",", "right", ")", "if", "isinstance", "(", "left", ",", "Directory", ")", "and", "isinstance", "(", "right", ",", "File", ")", ":", "return", "DirectoryFileComparison", "(", "left", ",", "right", ")", "if", "isinstance", "(", "left", ",", "File", ")", "or", "isinstance", "(", "right", ",", "File", ")", ":", "return", "FileComparison", "(", "left", ",", "right", ")", "if", "isinstance", "(", "left", ",", "Directory", ")", "or", "isinstance", "(", "right", ",", "Directory", ")", ":", "return", "DirectoryComparison", "(", "left", ",", "right", ")", "raise", "TypeError", "(", "f'Cannot compare entities: {left}, {right}'", ")" ]
Calculate the comparison of two entities. | left | right | Return Type | |===========|===========|=========================| | file | file | FileComparison | | file | directory | FileDirectoryComparison | | file | None | FileComparison | | directory | file | DirectoryFileComparison | | directory | directory | DirectoryComparison | | directory | None | DirectoryComparison | | None | file | FileComparison | | None | directory | DirectoryComparison | | None | None | TypeError | :param left: The left side or "before" entity. :param right: The right side or "after" entity. :return: See table above.
[ "Calculate", "the", "comparison", "of", "two", "entities", "." ]
efc71879890dbd2f2d7a0b1a65ed22a0843139dd
https://github.com/gebn/wood/blob/efc71879890dbd2f2d7a0b1a65ed22a0843139dd/wood/comparison.py#L157-L189
train
gebn/wood
wood/comparison.py
Comparison.print_hierarchy
def print_hierarchy(self, level: int = 0, file: IO[str] = sys.stdout) \ -> None: """ Print this comparison and its children with indentation to represent nesting. :param level: The level of indentation to use. This is mostly for internal use, but you can use it to inset the root comparison. :param file: The stream to print to. Defaults to stdout. """ print(' ' * self._INDENT_SIZE * level + str(self), file=file)
python
def print_hierarchy(self, level: int = 0, file: IO[str] = sys.stdout) \ -> None: """ Print this comparison and its children with indentation to represent nesting. :param level: The level of indentation to use. This is mostly for internal use, but you can use it to inset the root comparison. :param file: The stream to print to. Defaults to stdout. """ print(' ' * self._INDENT_SIZE * level + str(self), file=file)
[ "def", "print_hierarchy", "(", "self", ",", "level", ":", "int", "=", "0", ",", "file", ":", "IO", "[", "str", "]", "=", "sys", ".", "stdout", ")", "->", "None", ":", "print", "(", "' '", "*", "self", ".", "_INDENT_SIZE", "*", "level", "+", "str", "(", "self", ")", ",", "file", "=", "file", ")" ]
Print this comparison and its children with indentation to represent nesting. :param level: The level of indentation to use. This is mostly for internal use, but you can use it to inset the root comparison. :param file: The stream to print to. Defaults to stdout.
[ "Print", "this", "comparison", "and", "its", "children", "with", "indentation", "to", "represent", "nesting", "." ]
efc71879890dbd2f2d7a0b1a65ed22a0843139dd
https://github.com/gebn/wood/blob/efc71879890dbd2f2d7a0b1a65ed22a0843139dd/wood/comparison.py#L191-L202
train
gebn/wood
wood/comparison.py
FileComparison.is_modified
def is_modified(self) -> bool: """ Find whether the files on the left and right are different. Note, modified implies the contents of the file have changed, which is predicated on the file existing on both the left and right. Therefore this will be false if the file on the left has been deleted, or the file on the right is new. :return: Whether the file has been modified. """ if self.is_new or self.is_deleted: return False return self.left.md5 != self.right.md5
python
def is_modified(self) -> bool: """ Find whether the files on the left and right are different. Note, modified implies the contents of the file have changed, which is predicated on the file existing on both the left and right. Therefore this will be false if the file on the left has been deleted, or the file on the right is new. :return: Whether the file has been modified. """ if self.is_new or self.is_deleted: return False return self.left.md5 != self.right.md5
[ "def", "is_modified", "(", "self", ")", "->", "bool", ":", "if", "self", ".", "is_new", "or", "self", ".", "is_deleted", ":", "return", "False", "return", "self", ".", "left", ".", "md5", "!=", "self", ".", "right", ".", "md5" ]
Find whether the files on the left and right are different. Note, modified implies the contents of the file have changed, which is predicated on the file existing on both the left and right. Therefore this will be false if the file on the left has been deleted, or the file on the right is new. :return: Whether the file has been modified.
[ "Find", "whether", "the", "files", "on", "the", "left", "and", "right", "are", "different", ".", "Note", "modified", "implies", "the", "contents", "of", "the", "file", "have", "changed", "which", "is", "predicated", "on", "the", "file", "existing", "on", "both", "the", "left", "and", "right", ".", "Therefore", "this", "will", "be", "false", "if", "the", "file", "on", "the", "left", "has", "been", "deleted", "or", "the", "file", "on", "the", "right", "is", "new", "." ]
efc71879890dbd2f2d7a0b1a65ed22a0843139dd
https://github.com/gebn/wood/blob/efc71879890dbd2f2d7a0b1a65ed22a0843139dd/wood/comparison.py#L224-L236
train
pgxcentre/geneparse
geneparse/index/impute2.py
generate_index
def generate_index(fn, cols=None, names=None, sep=" "): """Build a index for the given file. Args: fn (str): the name of the file. cols (list): a list containing column to keep (as int). names (list): the name corresponding to the column to keep (as str). sep (str): the field separator. Returns: pandas.DataFrame: the index. """ # Some assertions assert cols is not None, "'cols' was not set" assert names is not None, "'names' was not set" assert len(cols) == len(names) # Getting the open function bgzip, open_func = get_open_func(fn, return_fmt=True) # Reading the required columns data = pd.read_csv(fn, sep=sep, engine="c", usecols=cols, names=names, compression="gzip" if bgzip else None) # Getting the seek information f = open_func(fn, "rb") data["seek"] = np.fromiter(_seek_generator(f), dtype=np.uint)[:-1] f.close() # Saving the index to file write_index(get_index_fn(fn), data) return data
python
def generate_index(fn, cols=None, names=None, sep=" "): """Build a index for the given file. Args: fn (str): the name of the file. cols (list): a list containing column to keep (as int). names (list): the name corresponding to the column to keep (as str). sep (str): the field separator. Returns: pandas.DataFrame: the index. """ # Some assertions assert cols is not None, "'cols' was not set" assert names is not None, "'names' was not set" assert len(cols) == len(names) # Getting the open function bgzip, open_func = get_open_func(fn, return_fmt=True) # Reading the required columns data = pd.read_csv(fn, sep=sep, engine="c", usecols=cols, names=names, compression="gzip" if bgzip else None) # Getting the seek information f = open_func(fn, "rb") data["seek"] = np.fromiter(_seek_generator(f), dtype=np.uint)[:-1] f.close() # Saving the index to file write_index(get_index_fn(fn), data) return data
[ "def", "generate_index", "(", "fn", ",", "cols", "=", "None", ",", "names", "=", "None", ",", "sep", "=", "\" \"", ")", ":", "# Some assertions", "assert", "cols", "is", "not", "None", ",", "\"'cols' was not set\"", "assert", "names", "is", "not", "None", ",", "\"'names' was not set\"", "assert", "len", "(", "cols", ")", "==", "len", "(", "names", ")", "# Getting the open function", "bgzip", ",", "open_func", "=", "get_open_func", "(", "fn", ",", "return_fmt", "=", "True", ")", "# Reading the required columns", "data", "=", "pd", ".", "read_csv", "(", "fn", ",", "sep", "=", "sep", ",", "engine", "=", "\"c\"", ",", "usecols", "=", "cols", ",", "names", "=", "names", ",", "compression", "=", "\"gzip\"", "if", "bgzip", "else", "None", ")", "# Getting the seek information", "f", "=", "open_func", "(", "fn", ",", "\"rb\"", ")", "data", "[", "\"seek\"", "]", "=", "np", ".", "fromiter", "(", "_seek_generator", "(", "f", ")", ",", "dtype", "=", "np", ".", "uint", ")", "[", ":", "-", "1", "]", "f", ".", "close", "(", ")", "# Saving the index to file", "write_index", "(", "get_index_fn", "(", "fn", ")", ",", "data", ")", "return", "data" ]
Build a index for the given file. Args: fn (str): the name of the file. cols (list): a list containing column to keep (as int). names (list): the name corresponding to the column to keep (as str). sep (str): the field separator. Returns: pandas.DataFrame: the index.
[ "Build", "a", "index", "for", "the", "given", "file", "." ]
f698f9708af4c7962d384a70a5a14006b1cb7108
https://github.com/pgxcentre/geneparse/blob/f698f9708af4c7962d384a70a5a14006b1cb7108/geneparse/index/impute2.py#L59-L92
train
pgxcentre/geneparse
geneparse/index/impute2.py
get_open_func
def get_open_func(fn, return_fmt=False): """Get the opening function. Args: fn (str): the name of the file. return_fmt (bool): if the file format needs to be returned. Returns: tuple: either a tuple containing two elements: a boolean telling if the format is bgzip, and the opening function. """ # The file might be compressed using bgzip bgzip = None with open(fn, "rb") as i_file: bgzip = i_file.read(3) == b"\x1f\x8b\x08" if bgzip and not HAS_BIOPYTHON: raise ValueError("needs BioPython to index a bgzip file") open_func = open if bgzip: open_func = BgzfReader # Trying to read try: with open_func(fn, "r") as i_file: if bgzip: if not i_file.seekable(): raise ValueError pass except ValueError: raise ValueError("{}: use bgzip for compression...".format(fn)) if return_fmt: return bgzip, open_func return open_func
python
def get_open_func(fn, return_fmt=False): """Get the opening function. Args: fn (str): the name of the file. return_fmt (bool): if the file format needs to be returned. Returns: tuple: either a tuple containing two elements: a boolean telling if the format is bgzip, and the opening function. """ # The file might be compressed using bgzip bgzip = None with open(fn, "rb") as i_file: bgzip = i_file.read(3) == b"\x1f\x8b\x08" if bgzip and not HAS_BIOPYTHON: raise ValueError("needs BioPython to index a bgzip file") open_func = open if bgzip: open_func = BgzfReader # Trying to read try: with open_func(fn, "r") as i_file: if bgzip: if not i_file.seekable(): raise ValueError pass except ValueError: raise ValueError("{}: use bgzip for compression...".format(fn)) if return_fmt: return bgzip, open_func return open_func
[ "def", "get_open_func", "(", "fn", ",", "return_fmt", "=", "False", ")", ":", "# The file might be compressed using bgzip", "bgzip", "=", "None", "with", "open", "(", "fn", ",", "\"rb\"", ")", "as", "i_file", ":", "bgzip", "=", "i_file", ".", "read", "(", "3", ")", "==", "b\"\\x1f\\x8b\\x08\"", "if", "bgzip", "and", "not", "HAS_BIOPYTHON", ":", "raise", "ValueError", "(", "\"needs BioPython to index a bgzip file\"", ")", "open_func", "=", "open", "if", "bgzip", ":", "open_func", "=", "BgzfReader", "# Trying to read", "try", ":", "with", "open_func", "(", "fn", ",", "\"r\"", ")", "as", "i_file", ":", "if", "bgzip", ":", "if", "not", "i_file", ".", "seekable", "(", ")", ":", "raise", "ValueError", "pass", "except", "ValueError", ":", "raise", "ValueError", "(", "\"{}: use bgzip for compression...\"", ".", "format", "(", "fn", ")", ")", "if", "return_fmt", ":", "return", "bgzip", ",", "open_func", "return", "open_func" ]
Get the opening function. Args: fn (str): the name of the file. return_fmt (bool): if the file format needs to be returned. Returns: tuple: either a tuple containing two elements: a boolean telling if the format is bgzip, and the opening function.
[ "Get", "the", "opening", "function", "." ]
f698f9708af4c7962d384a70a5a14006b1cb7108
https://github.com/pgxcentre/geneparse/blob/f698f9708af4c7962d384a70a5a14006b1cb7108/geneparse/index/impute2.py#L95-L133
train
pgxcentre/geneparse
geneparse/index/impute2.py
get_index
def get_index(fn, cols, names, sep): """Restores the index for a given file. Args: fn (str): the name of the file. cols (list): a list containing column to keep (as int). names (list): the name corresponding to the column to keep (as str). sep (str): the field separator. Returns: pandas.DataFrame: the index. If the index doesn't exist for the file, it is first created. """ if not has_index(fn): # The index doesn't exists, generate it return generate_index(fn, cols, names, sep) # Retrieving the index file_index = read_index(get_index_fn(fn)) # Checking the names are there if len(set(names) - (set(file_index.columns) - {'seek'})) != 0: raise ValueError("{}: missing index columns: reindex".format(fn)) if "seek" not in file_index.columns: raise ValueError("{}: invalid index: reindex".format(fn)) return file_index
python
def get_index(fn, cols, names, sep): """Restores the index for a given file. Args: fn (str): the name of the file. cols (list): a list containing column to keep (as int). names (list): the name corresponding to the column to keep (as str). sep (str): the field separator. Returns: pandas.DataFrame: the index. If the index doesn't exist for the file, it is first created. """ if not has_index(fn): # The index doesn't exists, generate it return generate_index(fn, cols, names, sep) # Retrieving the index file_index = read_index(get_index_fn(fn)) # Checking the names are there if len(set(names) - (set(file_index.columns) - {'seek'})) != 0: raise ValueError("{}: missing index columns: reindex".format(fn)) if "seek" not in file_index.columns: raise ValueError("{}: invalid index: reindex".format(fn)) return file_index
[ "def", "get_index", "(", "fn", ",", "cols", ",", "names", ",", "sep", ")", ":", "if", "not", "has_index", "(", "fn", ")", ":", "# The index doesn't exists, generate it", "return", "generate_index", "(", "fn", ",", "cols", ",", "names", ",", "sep", ")", "# Retrieving the index", "file_index", "=", "read_index", "(", "get_index_fn", "(", "fn", ")", ")", "# Checking the names are there", "if", "len", "(", "set", "(", "names", ")", "-", "(", "set", "(", "file_index", ".", "columns", ")", "-", "{", "'seek'", "}", ")", ")", "!=", "0", ":", "raise", "ValueError", "(", "\"{}: missing index columns: reindex\"", ".", "format", "(", "fn", ")", ")", "if", "\"seek\"", "not", "in", "file_index", ".", "columns", ":", "raise", "ValueError", "(", "\"{}: invalid index: reindex\"", ".", "format", "(", "fn", ")", ")", "return", "file_index" ]
Restores the index for a given file. Args: fn (str): the name of the file. cols (list): a list containing column to keep (as int). names (list): the name corresponding to the column to keep (as str). sep (str): the field separator. Returns: pandas.DataFrame: the index. If the index doesn't exist for the file, it is first created.
[ "Restores", "the", "index", "for", "a", "given", "file", "." ]
f698f9708af4c7962d384a70a5a14006b1cb7108
https://github.com/pgxcentre/geneparse/blob/f698f9708af4c7962d384a70a5a14006b1cb7108/geneparse/index/impute2.py#L136-L165
train
pgxcentre/geneparse
geneparse/index/impute2.py
write_index
def write_index(fn, index): """Writes the index to file. Args: fn (str): the name of the file that will contain the index. index (pandas.DataFrame): the index. """ with open(fn, "wb") as o_file: o_file.write(_CHECK_STRING) o_file.write(zlib.compress(bytes( index.to_csv(None, index=False, encoding="utf-8"), encoding="utf-8", )))
python
def write_index(fn, index): """Writes the index to file. Args: fn (str): the name of the file that will contain the index. index (pandas.DataFrame): the index. """ with open(fn, "wb") as o_file: o_file.write(_CHECK_STRING) o_file.write(zlib.compress(bytes( index.to_csv(None, index=False, encoding="utf-8"), encoding="utf-8", )))
[ "def", "write_index", "(", "fn", ",", "index", ")", ":", "with", "open", "(", "fn", ",", "\"wb\"", ")", "as", "o_file", ":", "o_file", ".", "write", "(", "_CHECK_STRING", ")", "o_file", ".", "write", "(", "zlib", ".", "compress", "(", "bytes", "(", "index", ".", "to_csv", "(", "None", ",", "index", "=", "False", ",", "encoding", "=", "\"utf-8\"", ")", ",", "encoding", "=", "\"utf-8\"", ",", ")", ")", ")" ]
Writes the index to file. Args: fn (str): the name of the file that will contain the index. index (pandas.DataFrame): the index.
[ "Writes", "the", "index", "to", "file", "." ]
f698f9708af4c7962d384a70a5a14006b1cb7108
https://github.com/pgxcentre/geneparse/blob/f698f9708af4c7962d384a70a5a14006b1cb7108/geneparse/index/impute2.py#L168-L181
train
pgxcentre/geneparse
geneparse/index/impute2.py
read_index
def read_index(fn): """Reads index from file. Args: fn (str): the name of the file containing the index. Returns: pandas.DataFrame: the index of the file. Before reading the index, we check the first couple of bytes to see if it is a valid index file. """ index = None with open(fn, "rb") as i_file: if i_file.read(len(_CHECK_STRING)) != _CHECK_STRING: raise ValueError("{}: not a valid index file".format(fn)) index = pd.read_csv(io.StringIO( zlib.decompress(i_file.read()).decode(encoding="utf-8"), )) return index
python
def read_index(fn): """Reads index from file. Args: fn (str): the name of the file containing the index. Returns: pandas.DataFrame: the index of the file. Before reading the index, we check the first couple of bytes to see if it is a valid index file. """ index = None with open(fn, "rb") as i_file: if i_file.read(len(_CHECK_STRING)) != _CHECK_STRING: raise ValueError("{}: not a valid index file".format(fn)) index = pd.read_csv(io.StringIO( zlib.decompress(i_file.read()).decode(encoding="utf-8"), )) return index
[ "def", "read_index", "(", "fn", ")", ":", "index", "=", "None", "with", "open", "(", "fn", ",", "\"rb\"", ")", "as", "i_file", ":", "if", "i_file", ".", "read", "(", "len", "(", "_CHECK_STRING", ")", ")", "!=", "_CHECK_STRING", ":", "raise", "ValueError", "(", "\"{}: not a valid index file\"", ".", "format", "(", "fn", ")", ")", "index", "=", "pd", ".", "read_csv", "(", "io", ".", "StringIO", "(", "zlib", ".", "decompress", "(", "i_file", ".", "read", "(", ")", ")", ".", "decode", "(", "encoding", "=", "\"utf-8\"", ")", ",", ")", ")", "return", "index" ]
Reads index from file. Args: fn (str): the name of the file containing the index. Returns: pandas.DataFrame: the index of the file. Before reading the index, we check the first couple of bytes to see if it is a valid index file.
[ "Reads", "index", "from", "file", "." ]
f698f9708af4c7962d384a70a5a14006b1cb7108
https://github.com/pgxcentre/geneparse/blob/f698f9708af4c7962d384a70a5a14006b1cb7108/geneparse/index/impute2.py#L184-L206
train
rhayes777/PyAutoFit
autofit/tools/pipeline.py
make_path
def make_path(phase) -> str: """ Create the path to the folder at which the metadata and optimizer pickle should be saved """ return "{}/{}{}{}".format(conf.instance.output_path, phase.phase_path, phase.phase_name, phase.phase_tag)
python
def make_path(phase) -> str: """ Create the path to the folder at which the metadata and optimizer pickle should be saved """ return "{}/{}{}{}".format(conf.instance.output_path, phase.phase_path, phase.phase_name, phase.phase_tag)
[ "def", "make_path", "(", "phase", ")", "->", "str", ":", "return", "\"{}/{}{}{}\"", ".", "format", "(", "conf", ".", "instance", ".", "output_path", ",", "phase", ".", "phase_path", ",", "phase", ".", "phase_name", ",", "phase", ".", "phase_tag", ")" ]
Create the path to the folder at which the metadata and optimizer pickle should be saved
[ "Create", "the", "path", "to", "the", "folder", "at", "which", "the", "metadata", "and", "optimizer", "pickle", "should", "be", "saved" ]
a9e6144abb08edfc6a6906c4030d7119bf8d3e14
https://github.com/rhayes777/PyAutoFit/blob/a9e6144abb08edfc6a6906c4030d7119bf8d3e14/autofit/tools/pipeline.py#L177-L181
train
rhayes777/PyAutoFit
autofit/tools/pipeline.py
save_optimizer_for_phase
def save_optimizer_for_phase(phase): """ Save the optimizer associated with the phase as a pickle """ with open(make_optimizer_pickle_path(phase), "w+b") as f: f.write(pickle.dumps(phase.optimizer))
python
def save_optimizer_for_phase(phase): """ Save the optimizer associated with the phase as a pickle """ with open(make_optimizer_pickle_path(phase), "w+b") as f: f.write(pickle.dumps(phase.optimizer))
[ "def", "save_optimizer_for_phase", "(", "phase", ")", ":", "with", "open", "(", "make_optimizer_pickle_path", "(", "phase", ")", ",", "\"w+b\"", ")", "as", "f", ":", "f", ".", "write", "(", "pickle", ".", "dumps", "(", "phase", ".", "optimizer", ")", ")" ]
Save the optimizer associated with the phase as a pickle
[ "Save", "the", "optimizer", "associated", "with", "the", "phase", "as", "a", "pickle" ]
a9e6144abb08edfc6a6906c4030d7119bf8d3e14
https://github.com/rhayes777/PyAutoFit/blob/a9e6144abb08edfc6a6906c4030d7119bf8d3e14/autofit/tools/pipeline.py#L184-L189
train
rhayes777/PyAutoFit
autofit/tools/pipeline.py
assert_optimizer_pickle_matches_for_phase
def assert_optimizer_pickle_matches_for_phase(phase): """ Assert that the previously saved optimizer is equal to the phase's optimizer if a saved optimizer is found. Parameters ---------- phase The phase Raises ------- exc.PipelineException """ path = make_optimizer_pickle_path(phase) if os.path.exists(path): with open(path, "r+b") as f: loaded_optimizer = pickle.loads(f.read()) if phase.optimizer != loaded_optimizer: raise exc.PipelineException( f"Can't restart phase at path {path} because settings don't match. " f"Did you change the optimizer settings or model?")
python
def assert_optimizer_pickle_matches_for_phase(phase): """ Assert that the previously saved optimizer is equal to the phase's optimizer if a saved optimizer is found. Parameters ---------- phase The phase Raises ------- exc.PipelineException """ path = make_optimizer_pickle_path(phase) if os.path.exists(path): with open(path, "r+b") as f: loaded_optimizer = pickle.loads(f.read()) if phase.optimizer != loaded_optimizer: raise exc.PipelineException( f"Can't restart phase at path {path} because settings don't match. " f"Did you change the optimizer settings or model?")
[ "def", "assert_optimizer_pickle_matches_for_phase", "(", "phase", ")", ":", "path", "=", "make_optimizer_pickle_path", "(", "phase", ")", "if", "os", ".", "path", ".", "exists", "(", "path", ")", ":", "with", "open", "(", "path", ",", "\"r+b\"", ")", "as", "f", ":", "loaded_optimizer", "=", "pickle", ".", "loads", "(", "f", ".", "read", "(", ")", ")", "if", "phase", ".", "optimizer", "!=", "loaded_optimizer", ":", "raise", "exc", ".", "PipelineException", "(", "f\"Can't restart phase at path {path} because settings don't match. \"", "f\"Did you change the optimizer settings or model?\"", ")" ]
Assert that the previously saved optimizer is equal to the phase's optimizer if a saved optimizer is found. Parameters ---------- phase The phase Raises ------- exc.PipelineException
[ "Assert", "that", "the", "previously", "saved", "optimizer", "is", "equal", "to", "the", "phase", "s", "optimizer", "if", "a", "saved", "optimizer", "is", "found", "." ]
a9e6144abb08edfc6a6906c4030d7119bf8d3e14
https://github.com/rhayes777/PyAutoFit/blob/a9e6144abb08edfc6a6906c4030d7119bf8d3e14/autofit/tools/pipeline.py#L192-L212
train
rhayes777/PyAutoFit
autofit/tools/pipeline.py
ResultsCollection.add
def add(self, phase_name, result): """ Add the result of a phase. Parameters ---------- phase_name: str The name of the phase result The result of that phase """ if phase_name in self.__result_dict: raise exc.PipelineException( "Results from a phase called {} already exist in the pipeline".format(phase_name)) self.__result_list.append(result) self.__result_dict[phase_name] = result
python
def add(self, phase_name, result): """ Add the result of a phase. Parameters ---------- phase_name: str The name of the phase result The result of that phase """ if phase_name in self.__result_dict: raise exc.PipelineException( "Results from a phase called {} already exist in the pipeline".format(phase_name)) self.__result_list.append(result) self.__result_dict[phase_name] = result
[ "def", "add", "(", "self", ",", "phase_name", ",", "result", ")", ":", "if", "phase_name", "in", "self", ".", "__result_dict", ":", "raise", "exc", ".", "PipelineException", "(", "\"Results from a phase called {} already exist in the pipeline\"", ".", "format", "(", "phase_name", ")", ")", "self", ".", "__result_list", ".", "append", "(", "result", ")", "self", ".", "__result_dict", "[", "phase_name", "]", "=", "result" ]
Add the result of a phase. Parameters ---------- phase_name: str The name of the phase result The result of that phase
[ "Add", "the", "result", "of", "a", "phase", "." ]
a9e6144abb08edfc6a6906c4030d7119bf8d3e14
https://github.com/rhayes777/PyAutoFit/blob/a9e6144abb08edfc6a6906c4030d7119bf8d3e14/autofit/tools/pipeline.py#L38-L53
train
rhayes777/PyAutoFit
autofit/tools/pipeline.py
ResultsCollection.from_phase
def from_phase(self, phase_name): """ Returns the result of a previous phase by its name Parameters ---------- phase_name: str The name of a previous phase Returns ------- result: Result The result of that phase Raises ------ exc.PipelineException If no phase with the expected result is found """ try: return self.__result_dict[phase_name] except KeyError: raise exc.PipelineException("No previous phase named {} found in results ({})".format(phase_name, ", ".join( self.__result_dict.keys())))
python
def from_phase(self, phase_name): """ Returns the result of a previous phase by its name Parameters ---------- phase_name: str The name of a previous phase Returns ------- result: Result The result of that phase Raises ------ exc.PipelineException If no phase with the expected result is found """ try: return self.__result_dict[phase_name] except KeyError: raise exc.PipelineException("No previous phase named {} found in results ({})".format(phase_name, ", ".join( self.__result_dict.keys())))
[ "def", "from_phase", "(", "self", ",", "phase_name", ")", ":", "try", ":", "return", "self", ".", "__result_dict", "[", "phase_name", "]", "except", "KeyError", ":", "raise", "exc", ".", "PipelineException", "(", "\"No previous phase named {} found in results ({})\"", ".", "format", "(", "phase_name", ",", "\", \"", ".", "join", "(", "self", ".", "__result_dict", ".", "keys", "(", ")", ")", ")", ")" ]
Returns the result of a previous phase by its name Parameters ---------- phase_name: str The name of a previous phase Returns ------- result: Result The result of that phase Raises ------ exc.PipelineException If no phase with the expected result is found
[ "Returns", "the", "result", "of", "a", "previous", "phase", "by", "its", "name" ]
a9e6144abb08edfc6a6906c4030d7119bf8d3e14
https://github.com/rhayes777/PyAutoFit/blob/a9e6144abb08edfc6a6906c4030d7119bf8d3e14/autofit/tools/pipeline.py#L74-L97
train
rhayes777/PyAutoFit
autofit/tools/pipeline.py
Pipeline.save_metadata
def save_metadata(self, phase, data_name): """ Save metadata associated with the phase, such as the name of the pipeline, the name of the phase and the name of the data being fit """ with open("{}/.metadata".format(make_path(phase)), "w+") as f: f.write("pipeline={}\nphase={}\ndata={}".format(self.pipeline_name, phase.phase_name, data_name))
python
def save_metadata(self, phase, data_name): """ Save metadata associated with the phase, such as the name of the pipeline, the name of the phase and the name of the data being fit """ with open("{}/.metadata".format(make_path(phase)), "w+") as f: f.write("pipeline={}\nphase={}\ndata={}".format(self.pipeline_name, phase.phase_name, data_name))
[ "def", "save_metadata", "(", "self", ",", "phase", ",", "data_name", ")", ":", "with", "open", "(", "\"{}/.metadata\"", ".", "format", "(", "make_path", "(", "phase", ")", ")", ",", "\"w+\"", ")", "as", "f", ":", "f", ".", "write", "(", "\"pipeline={}\\nphase={}\\ndata={}\"", ".", "format", "(", "self", ".", "pipeline_name", ",", "phase", ".", "phase_name", ",", "data_name", ")", ")" ]
Save metadata associated with the phase, such as the name of the pipeline, the name of the phase and the name of the data being fit
[ "Save", "metadata", "associated", "with", "the", "phase", "such", "as", "the", "name", "of", "the", "pipeline", "the", "name", "of", "the", "phase", "and", "the", "name", "of", "the", "data", "being", "fit" ]
a9e6144abb08edfc6a6906c4030d7119bf8d3e14
https://github.com/rhayes777/PyAutoFit/blob/a9e6144abb08edfc6a6906c4030d7119bf8d3e14/autofit/tools/pipeline.py#L134-L141
train
rhayes777/PyAutoFit
autofit/tools/pipeline.py
Pipeline.run_function
def run_function(self, func, data_name=None, assert_optimizer_pickle_matches=True): """ Run the function for each phase in the pipeline. Parameters ---------- assert_optimizer_pickle_matches data_name func A function that takes a phase and prior results, returning results for that phase Returns ------- results: ResultsCollection A collection of results """ results = ResultsCollection() for i, phase in enumerate(self.phases): logger.info("Running Phase {} (Number {})".format(phase.optimizer.phase_name, i)) if assert_optimizer_pickle_matches: assert_optimizer_pickle_matches_for_phase(phase) save_optimizer_for_phase(phase) self.save_metadata(phase, data_name) results.add(phase.phase_name, func(phase, results)) return results
python
def run_function(self, func, data_name=None, assert_optimizer_pickle_matches=True): """ Run the function for each phase in the pipeline. Parameters ---------- assert_optimizer_pickle_matches data_name func A function that takes a phase and prior results, returning results for that phase Returns ------- results: ResultsCollection A collection of results """ results = ResultsCollection() for i, phase in enumerate(self.phases): logger.info("Running Phase {} (Number {})".format(phase.optimizer.phase_name, i)) if assert_optimizer_pickle_matches: assert_optimizer_pickle_matches_for_phase(phase) save_optimizer_for_phase(phase) self.save_metadata(phase, data_name) results.add(phase.phase_name, func(phase, results)) return results
[ "def", "run_function", "(", "self", ",", "func", ",", "data_name", "=", "None", ",", "assert_optimizer_pickle_matches", "=", "True", ")", ":", "results", "=", "ResultsCollection", "(", ")", "for", "i", ",", "phase", "in", "enumerate", "(", "self", ".", "phases", ")", ":", "logger", ".", "info", "(", "\"Running Phase {} (Number {})\"", ".", "format", "(", "phase", ".", "optimizer", ".", "phase_name", ",", "i", ")", ")", "if", "assert_optimizer_pickle_matches", ":", "assert_optimizer_pickle_matches_for_phase", "(", "phase", ")", "save_optimizer_for_phase", "(", "phase", ")", "self", ".", "save_metadata", "(", "phase", ",", "data_name", ")", "results", ".", "add", "(", "phase", ".", "phase_name", ",", "func", "(", "phase", ",", "results", ")", ")", "return", "results" ]
Run the function for each phase in the pipeline. Parameters ---------- assert_optimizer_pickle_matches data_name func A function that takes a phase and prior results, returning results for that phase Returns ------- results: ResultsCollection A collection of results
[ "Run", "the", "function", "for", "each", "phase", "in", "the", "pipeline", "." ]
a9e6144abb08edfc6a6906c4030d7119bf8d3e14
https://github.com/rhayes777/PyAutoFit/blob/a9e6144abb08edfc6a6906c4030d7119bf8d3e14/autofit/tools/pipeline.py#L143-L167
train
Riminder/python-riminder-api
riminder/bytesutils.py
strtobytes
def strtobytes(input, encoding): """Take a str and transform it into a byte array.""" py_version = sys.version_info[0] if py_version >= 3: return _strtobytes_py3(input, encoding) return _strtobytes_py2(input, encoding)
python
def strtobytes(input, encoding): """Take a str and transform it into a byte array.""" py_version = sys.version_info[0] if py_version >= 3: return _strtobytes_py3(input, encoding) return _strtobytes_py2(input, encoding)
[ "def", "strtobytes", "(", "input", ",", "encoding", ")", ":", "py_version", "=", "sys", ".", "version_info", "[", "0", "]", "if", "py_version", ">=", "3", ":", "return", "_strtobytes_py3", "(", "input", ",", "encoding", ")", "return", "_strtobytes_py2", "(", "input", ",", "encoding", ")" ]
Take a str and transform it into a byte array.
[ "Take", "a", "str", "and", "transform", "it", "into", "a", "byte", "array", "." ]
01279f0ece08cf3d1dd45f76de6d9edf7fafec90
https://github.com/Riminder/python-riminder-api/blob/01279f0ece08cf3d1dd45f76de6d9edf7fafec90/riminder/bytesutils.py#L14-L19
train
pgxcentre/geneparse
geneparse/index/__main__.py
index_impute2
def index_impute2(fn): """Indexes an IMPUTE2 file. Args: fn (str): The name of the IMPUTE2 file. """ logger.info("Indexing {} (IMPUTE2)".format(fn)) impute2_index(fn, cols=[0, 1, 2], names=["chrom", "name", "pos"], sep=" ") logger.info("Index generated")
python
def index_impute2(fn): """Indexes an IMPUTE2 file. Args: fn (str): The name of the IMPUTE2 file. """ logger.info("Indexing {} (IMPUTE2)".format(fn)) impute2_index(fn, cols=[0, 1, 2], names=["chrom", "name", "pos"], sep=" ") logger.info("Index generated")
[ "def", "index_impute2", "(", "fn", ")", ":", "logger", ".", "info", "(", "\"Indexing {} (IMPUTE2)\"", ".", "format", "(", "fn", ")", ")", "impute2_index", "(", "fn", ",", "cols", "=", "[", "0", ",", "1", ",", "2", "]", ",", "names", "=", "[", "\"chrom\"", ",", "\"name\"", ",", "\"pos\"", "]", ",", "sep", "=", "\" \"", ")", "logger", ".", "info", "(", "\"Index generated\"", ")" ]
Indexes an IMPUTE2 file. Args: fn (str): The name of the IMPUTE2 file.
[ "Indexes", "an", "IMPUTE2", "file", "." ]
f698f9708af4c7962d384a70a5a14006b1cb7108
https://github.com/pgxcentre/geneparse/blob/f698f9708af4c7962d384a70a5a14006b1cb7108/geneparse/index/__main__.py#L60-L69
train
pgxcentre/geneparse
geneparse/index/__main__.py
index_bgen
def index_bgen(fn, legacy=False): """Indexes a BGEN file. Args: fn (str): The name of the BGEN file. """ logger.info("Indexing {} (BGEN) using 'bgenix'{}".format( fn, " (legacy mode)" if legacy else "", )) command = ["bgenix", "-g", fn, "-index"] if legacy: command.append("-with-rowid") try: logger.info("Executing '{}'".format(" ".join(command))) subprocess.Popen(command).communicate() except FileNotFoundError: logger.error("Cannot find 'bgenix', impossible to index {}".format(fn)) sys.exit(1) logger.info("Index generated")
python
def index_bgen(fn, legacy=False): """Indexes a BGEN file. Args: fn (str): The name of the BGEN file. """ logger.info("Indexing {} (BGEN) using 'bgenix'{}".format( fn, " (legacy mode)" if legacy else "", )) command = ["bgenix", "-g", fn, "-index"] if legacy: command.append("-with-rowid") try: logger.info("Executing '{}'".format(" ".join(command))) subprocess.Popen(command).communicate() except FileNotFoundError: logger.error("Cannot find 'bgenix', impossible to index {}".format(fn)) sys.exit(1) logger.info("Index generated")
[ "def", "index_bgen", "(", "fn", ",", "legacy", "=", "False", ")", ":", "logger", ".", "info", "(", "\"Indexing {} (BGEN) using 'bgenix'{}\"", ".", "format", "(", "fn", ",", "\" (legacy mode)\"", "if", "legacy", "else", "\"\"", ",", ")", ")", "command", "=", "[", "\"bgenix\"", ",", "\"-g\"", ",", "fn", ",", "\"-index\"", "]", "if", "legacy", ":", "command", ".", "append", "(", "\"-with-rowid\"", ")", "try", ":", "logger", ".", "info", "(", "\"Executing '{}'\"", ".", "format", "(", "\" \"", ".", "join", "(", "command", ")", ")", ")", "subprocess", ".", "Popen", "(", "command", ")", ".", "communicate", "(", ")", "except", "FileNotFoundError", ":", "logger", ".", "error", "(", "\"Cannot find 'bgenix', impossible to index {}\"", ".", "format", "(", "fn", ")", ")", "sys", ".", "exit", "(", "1", ")", "logger", ".", "info", "(", "\"Index generated\"", ")" ]
Indexes a BGEN file. Args: fn (str): The name of the BGEN file.
[ "Indexes", "a", "BGEN", "file", "." ]
f698f9708af4c7962d384a70a5a14006b1cb7108
https://github.com/pgxcentre/geneparse/blob/f698f9708af4c7962d384a70a5a14006b1cb7108/geneparse/index/__main__.py#L72-L91
train
unt-libraries/pyuntl
pyuntl/untl_structure.py
create_untl_xml_subelement
def create_untl_xml_subelement(parent, element, prefix=''): """Create a UNTL XML subelement.""" subelement = SubElement(parent, prefix + element.tag) if element.content is not None: subelement.text = element.content if element.qualifier is not None: subelement.attrib["qualifier"] = element.qualifier if element.children > 0: for child in element.children: SubElement(subelement, prefix + child.tag).text = child.content else: subelement.text = element.content return subelement
python
def create_untl_xml_subelement(parent, element, prefix=''): """Create a UNTL XML subelement.""" subelement = SubElement(parent, prefix + element.tag) if element.content is not None: subelement.text = element.content if element.qualifier is not None: subelement.attrib["qualifier"] = element.qualifier if element.children > 0: for child in element.children: SubElement(subelement, prefix + child.tag).text = child.content else: subelement.text = element.content return subelement
[ "def", "create_untl_xml_subelement", "(", "parent", ",", "element", ",", "prefix", "=", "''", ")", ":", "subelement", "=", "SubElement", "(", "parent", ",", "prefix", "+", "element", ".", "tag", ")", "if", "element", ".", "content", "is", "not", "None", ":", "subelement", ".", "text", "=", "element", ".", "content", "if", "element", ".", "qualifier", "is", "not", "None", ":", "subelement", ".", "attrib", "[", "\"qualifier\"", "]", "=", "element", ".", "qualifier", "if", "element", ".", "children", ">", "0", ":", "for", "child", "in", "element", ".", "children", ":", "SubElement", "(", "subelement", ",", "prefix", "+", "child", ".", "tag", ")", ".", "text", "=", "child", ".", "content", "else", ":", "subelement", ".", "text", "=", "element", ".", "content", "return", "subelement" ]
Create a UNTL XML subelement.
[ "Create", "a", "UNTL", "XML", "subelement", "." ]
f92413302897dab948aac18ee9e482ace0187bd4
https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untl_structure.py#L22-L35
train
unt-libraries/pyuntl
pyuntl/untl_structure.py
add_missing_children
def add_missing_children(required_children, element_children): """Determine if there are elements not in the children that need to be included as blank elements in the form. """ element_tags = [element.tag for element in element_children] # Loop through the elements that should be in the form. for contained_element in required_children: # If the element doesn't exist in the form, # add the element to the children. if contained_element not in element_tags: try: added_child = PYUNTL_DISPATCH[contained_element](content='') except: added_child = PYUNTL_DISPATCH[contained_element]() element_children.append(added_child) return element_children
python
def add_missing_children(required_children, element_children): """Determine if there are elements not in the children that need to be included as blank elements in the form. """ element_tags = [element.tag for element in element_children] # Loop through the elements that should be in the form. for contained_element in required_children: # If the element doesn't exist in the form, # add the element to the children. if contained_element not in element_tags: try: added_child = PYUNTL_DISPATCH[contained_element](content='') except: added_child = PYUNTL_DISPATCH[contained_element]() element_children.append(added_child) return element_children
[ "def", "add_missing_children", "(", "required_children", ",", "element_children", ")", ":", "element_tags", "=", "[", "element", ".", "tag", "for", "element", "in", "element_children", "]", "# Loop through the elements that should be in the form.", "for", "contained_element", "in", "required_children", ":", "# If the element doesn't exist in the form,", "# add the element to the children.", "if", "contained_element", "not", "in", "element_tags", ":", "try", ":", "added_child", "=", "PYUNTL_DISPATCH", "[", "contained_element", "]", "(", "content", "=", "''", ")", "except", ":", "added_child", "=", "PYUNTL_DISPATCH", "[", "contained_element", "]", "(", ")", "element_children", ".", "append", "(", "added_child", ")", "return", "element_children" ]
Determine if there are elements not in the children that need to be included as blank elements in the form.
[ "Determine", "if", "there", "are", "elements", "not", "in", "the", "children", "that", "need", "to", "be", "included", "as", "blank", "elements", "in", "the", "form", "." ]
f92413302897dab948aac18ee9e482ace0187bd4
https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untl_structure.py#L38-L53
train
unt-libraries/pyuntl
pyuntl/untl_structure.py
UNTLElement.set_qualifier
def set_qualifier(self, value): """Set the qualifier for the element. Verifies the element is allowed to have a qualifier, and throws an exception if not. """ if self.allows_qualifier: self.qualifier = value.strip() else: raise UNTLStructureException( 'Element "%s" does not allow a qualifier' % (self.tag,) )
python
def set_qualifier(self, value): """Set the qualifier for the element. Verifies the element is allowed to have a qualifier, and throws an exception if not. """ if self.allows_qualifier: self.qualifier = value.strip() else: raise UNTLStructureException( 'Element "%s" does not allow a qualifier' % (self.tag,) )
[ "def", "set_qualifier", "(", "self", ",", "value", ")", ":", "if", "self", ".", "allows_qualifier", ":", "self", ".", "qualifier", "=", "value", ".", "strip", "(", ")", "else", ":", "raise", "UNTLStructureException", "(", "'Element \"%s\" does not allow a qualifier'", "%", "(", "self", ".", "tag", ",", ")", ")" ]
Set the qualifier for the element. Verifies the element is allowed to have a qualifier, and throws an exception if not.
[ "Set", "the", "qualifier", "for", "the", "element", "." ]
f92413302897dab948aac18ee9e482ace0187bd4
https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untl_structure.py#L85-L96
train
unt-libraries/pyuntl
pyuntl/untl_structure.py
UNTLElement.add_form
def add_form(self, **kwargs): """Add the form attribute to the UNTL Python object.""" vocabularies = kwargs.get('vocabularies', None) qualifier = kwargs.get('qualifier', None) content = kwargs.get('content', None) parent_tag = kwargs.get('parent_tag', None) superuser = kwargs.get('superuser', False) # Element has both the qualifier and content. if qualifier is not None and content is not None: # Create the form attribute. self.form = UNTL_FORM_DISPATCH[self.tag]( vocabularies=vocabularies, qualifier_value=qualifier, input_value=content, untl_object=self, superuser=superuser, ) # Element just has a qualifier. elif qualifier is not None: # Create the form attribute. self.form = UNTL_FORM_DISPATCH[self.tag]( vocabularies=vocabularies, qualifier_value=qualifier, untl_object=self, superuser=superuser, ) # Element just has content. elif content is not None: # If the element is a child element, # create the form attribute. if parent_tag is None: self.form = UNTL_FORM_DISPATCH[self.tag]( vocabularies=vocabularies, input_value=content, untl_object=self, superuser=superuser, ) else: # Create the form attribute. self.form = UNTL_FORM_DISPATCH[self.tag]( vocabularies=vocabularies, input_value=content, untl_object=self, parent_tag=parent_tag, superuser=superuser, ) # Element has children and no qualifiers or content # or is blank (not originally in the UNTL record). else: # Element is a child element. if parent_tag is None: # Create the form attribute. self.form = UNTL_FORM_DISPATCH[self.tag]( vocabularies=vocabularies, untl_object=self, superuser=superuser, ) else: # Create the form attribute. self.form = UNTL_FORM_DISPATCH[self.tag]( vocabularies=vocabularies, untl_object=self, parent_tag=parent_tag, superuser=superuser, )
python
def add_form(self, **kwargs): """Add the form attribute to the UNTL Python object.""" vocabularies = kwargs.get('vocabularies', None) qualifier = kwargs.get('qualifier', None) content = kwargs.get('content', None) parent_tag = kwargs.get('parent_tag', None) superuser = kwargs.get('superuser', False) # Element has both the qualifier and content. if qualifier is not None and content is not None: # Create the form attribute. self.form = UNTL_FORM_DISPATCH[self.tag]( vocabularies=vocabularies, qualifier_value=qualifier, input_value=content, untl_object=self, superuser=superuser, ) # Element just has a qualifier. elif qualifier is not None: # Create the form attribute. self.form = UNTL_FORM_DISPATCH[self.tag]( vocabularies=vocabularies, qualifier_value=qualifier, untl_object=self, superuser=superuser, ) # Element just has content. elif content is not None: # If the element is a child element, # create the form attribute. if parent_tag is None: self.form = UNTL_FORM_DISPATCH[self.tag]( vocabularies=vocabularies, input_value=content, untl_object=self, superuser=superuser, ) else: # Create the form attribute. self.form = UNTL_FORM_DISPATCH[self.tag]( vocabularies=vocabularies, input_value=content, untl_object=self, parent_tag=parent_tag, superuser=superuser, ) # Element has children and no qualifiers or content # or is blank (not originally in the UNTL record). else: # Element is a child element. if parent_tag is None: # Create the form attribute. self.form = UNTL_FORM_DISPATCH[self.tag]( vocabularies=vocabularies, untl_object=self, superuser=superuser, ) else: # Create the form attribute. self.form = UNTL_FORM_DISPATCH[self.tag]( vocabularies=vocabularies, untl_object=self, parent_tag=parent_tag, superuser=superuser, )
[ "def", "add_form", "(", "self", ",", "*", "*", "kwargs", ")", ":", "vocabularies", "=", "kwargs", ".", "get", "(", "'vocabularies'", ",", "None", ")", "qualifier", "=", "kwargs", ".", "get", "(", "'qualifier'", ",", "None", ")", "content", "=", "kwargs", ".", "get", "(", "'content'", ",", "None", ")", "parent_tag", "=", "kwargs", ".", "get", "(", "'parent_tag'", ",", "None", ")", "superuser", "=", "kwargs", ".", "get", "(", "'superuser'", ",", "False", ")", "# Element has both the qualifier and content.", "if", "qualifier", "is", "not", "None", "and", "content", "is", "not", "None", ":", "# Create the form attribute.", "self", ".", "form", "=", "UNTL_FORM_DISPATCH", "[", "self", ".", "tag", "]", "(", "vocabularies", "=", "vocabularies", ",", "qualifier_value", "=", "qualifier", ",", "input_value", "=", "content", ",", "untl_object", "=", "self", ",", "superuser", "=", "superuser", ",", ")", "# Element just has a qualifier.", "elif", "qualifier", "is", "not", "None", ":", "# Create the form attribute.", "self", ".", "form", "=", "UNTL_FORM_DISPATCH", "[", "self", ".", "tag", "]", "(", "vocabularies", "=", "vocabularies", ",", "qualifier_value", "=", "qualifier", ",", "untl_object", "=", "self", ",", "superuser", "=", "superuser", ",", ")", "# Element just has content.", "elif", "content", "is", "not", "None", ":", "# If the element is a child element,", "# create the form attribute.", "if", "parent_tag", "is", "None", ":", "self", ".", "form", "=", "UNTL_FORM_DISPATCH", "[", "self", ".", "tag", "]", "(", "vocabularies", "=", "vocabularies", ",", "input_value", "=", "content", ",", "untl_object", "=", "self", ",", "superuser", "=", "superuser", ",", ")", "else", ":", "# Create the form attribute.", "self", ".", "form", "=", "UNTL_FORM_DISPATCH", "[", "self", ".", "tag", "]", "(", "vocabularies", "=", "vocabularies", ",", "input_value", "=", "content", ",", "untl_object", "=", "self", ",", "parent_tag", "=", "parent_tag", ",", "superuser", "=", "superuser", ",", ")", "# Element has children and no qualifiers or content", "# or is blank (not originally in the UNTL record).", "else", ":", "# Element is a child element.", "if", "parent_tag", "is", "None", ":", "# Create the form attribute.", "self", ".", "form", "=", "UNTL_FORM_DISPATCH", "[", "self", ".", "tag", "]", "(", "vocabularies", "=", "vocabularies", ",", "untl_object", "=", "self", ",", "superuser", "=", "superuser", ",", ")", "else", ":", "# Create the form attribute.", "self", ".", "form", "=", "UNTL_FORM_DISPATCH", "[", "self", ".", "tag", "]", "(", "vocabularies", "=", "vocabularies", ",", "untl_object", "=", "self", ",", "parent_tag", "=", "parent_tag", ",", "superuser", "=", "superuser", ",", ")" ]
Add the form attribute to the UNTL Python object.
[ "Add", "the", "form", "attribute", "to", "the", "UNTL", "Python", "object", "." ]
f92413302897dab948aac18ee9e482ace0187bd4
https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untl_structure.py#L127-L191
train
unt-libraries/pyuntl
pyuntl/untl_structure.py
UNTLElement.record_content_length
def record_content_length(self): """Calculate length of record, excluding metadata.""" untldict = py2dict(self) untldict.pop('meta', None) return len(str(untldict))
python
def record_content_length(self): """Calculate length of record, excluding metadata.""" untldict = py2dict(self) untldict.pop('meta', None) return len(str(untldict))
[ "def", "record_content_length", "(", "self", ")", ":", "untldict", "=", "py2dict", "(", "self", ")", "untldict", ".", "pop", "(", "'meta'", ",", "None", ")", "return", "len", "(", "str", "(", "untldict", ")", ")" ]
Calculate length of record, excluding metadata.
[ "Calculate", "length", "of", "record", "excluding", "metadata", "." ]
f92413302897dab948aac18ee9e482ace0187bd4
https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untl_structure.py#L204-L208
train
unt-libraries/pyuntl
pyuntl/untl_structure.py
FormGenerator.create_form_data
def create_form_data(self, **kwargs): """Create groupings of form elements.""" # Get the specified keyword arguments. children = kwargs.get('children', []) sort_order = kwargs.get('sort_order', None) solr_response = kwargs.get('solr_response', None) superuser = kwargs.get('superuser', False) # Get the vocabularies to pull the qualifiers from. vocabularies = self.get_vocabularies() # Loop through all UNTL elements in the Python object. for element in children: # Add children that are missing from the form. element.children = add_missing_children( element.contained_children, element.children, ) # Add the form attribute to the element. element.add_form( vocabularies=vocabularies, qualifier=element.qualifier, content=element.content, superuser=superuser, ) # Element can contain children. if element.form.has_children: # If the parent has a qualifier, # create a representative form element for the parent. if getattr(element.form, 'qualifier_name', False): add_parent = PARENT_FORM[element.form.qualifier_name]( content=element.qualifier, ) # Add the parent to the list of child elements. element.children.append(add_parent) # Sort the elements by the index of child sort. element.children.sort( key=lambda obj: element.form.child_sort.index(obj.tag) ) # Loop through the element's children (if it has any). for child in element.children: # Add the form attribute to the element. child.add_form( vocabularies=vocabularies, qualifier=child.qualifier, content=child.content, parent_tag=element.tag, superuser=superuser, ) element_group_dict = {} # Group related objects together. for element in children: # Make meta-hidden its own group. if element.form.name == 'meta' and element.qualifier == 'hidden': element_group_dict['hidden'] = [element] # Element is not meta-hidden. else: # Make sure the dictionary key exists. if element.form.name not in element_group_dict: element_group_dict[element.form.name] = [] element_group_dict[element.form.name].append(element) # If the hidden meta element doesn't exist, add it to its own group. if 'hidden' not in element_group_dict: hidden_element = PYUNTL_DISPATCH['meta']( qualifier='hidden', content='False') hidden_element.add_form( vocabularies=vocabularies, qualifier=hidden_element.qualifier, content=hidden_element.content, superuser=superuser, ) element_group_dict['hidden'] = [hidden_element] # Create a list of group object elements. element_list = self.create_form_groupings( vocabularies, solr_response, element_group_dict, sort_order, ) # Return the list of UNTL elements with form data added. return element_list
python
def create_form_data(self, **kwargs): """Create groupings of form elements.""" # Get the specified keyword arguments. children = kwargs.get('children', []) sort_order = kwargs.get('sort_order', None) solr_response = kwargs.get('solr_response', None) superuser = kwargs.get('superuser', False) # Get the vocabularies to pull the qualifiers from. vocabularies = self.get_vocabularies() # Loop through all UNTL elements in the Python object. for element in children: # Add children that are missing from the form. element.children = add_missing_children( element.contained_children, element.children, ) # Add the form attribute to the element. element.add_form( vocabularies=vocabularies, qualifier=element.qualifier, content=element.content, superuser=superuser, ) # Element can contain children. if element.form.has_children: # If the parent has a qualifier, # create a representative form element for the parent. if getattr(element.form, 'qualifier_name', False): add_parent = PARENT_FORM[element.form.qualifier_name]( content=element.qualifier, ) # Add the parent to the list of child elements. element.children.append(add_parent) # Sort the elements by the index of child sort. element.children.sort( key=lambda obj: element.form.child_sort.index(obj.tag) ) # Loop through the element's children (if it has any). for child in element.children: # Add the form attribute to the element. child.add_form( vocabularies=vocabularies, qualifier=child.qualifier, content=child.content, parent_tag=element.tag, superuser=superuser, ) element_group_dict = {} # Group related objects together. for element in children: # Make meta-hidden its own group. if element.form.name == 'meta' and element.qualifier == 'hidden': element_group_dict['hidden'] = [element] # Element is not meta-hidden. else: # Make sure the dictionary key exists. if element.form.name not in element_group_dict: element_group_dict[element.form.name] = [] element_group_dict[element.form.name].append(element) # If the hidden meta element doesn't exist, add it to its own group. if 'hidden' not in element_group_dict: hidden_element = PYUNTL_DISPATCH['meta']( qualifier='hidden', content='False') hidden_element.add_form( vocabularies=vocabularies, qualifier=hidden_element.qualifier, content=hidden_element.content, superuser=superuser, ) element_group_dict['hidden'] = [hidden_element] # Create a list of group object elements. element_list = self.create_form_groupings( vocabularies, solr_response, element_group_dict, sort_order, ) # Return the list of UNTL elements with form data added. return element_list
[ "def", "create_form_data", "(", "self", ",", "*", "*", "kwargs", ")", ":", "# Get the specified keyword arguments.", "children", "=", "kwargs", ".", "get", "(", "'children'", ",", "[", "]", ")", "sort_order", "=", "kwargs", ".", "get", "(", "'sort_order'", ",", "None", ")", "solr_response", "=", "kwargs", ".", "get", "(", "'solr_response'", ",", "None", ")", "superuser", "=", "kwargs", ".", "get", "(", "'superuser'", ",", "False", ")", "# Get the vocabularies to pull the qualifiers from.", "vocabularies", "=", "self", ".", "get_vocabularies", "(", ")", "# Loop through all UNTL elements in the Python object.", "for", "element", "in", "children", ":", "# Add children that are missing from the form.", "element", ".", "children", "=", "add_missing_children", "(", "element", ".", "contained_children", ",", "element", ".", "children", ",", ")", "# Add the form attribute to the element.", "element", ".", "add_form", "(", "vocabularies", "=", "vocabularies", ",", "qualifier", "=", "element", ".", "qualifier", ",", "content", "=", "element", ".", "content", ",", "superuser", "=", "superuser", ",", ")", "# Element can contain children.", "if", "element", ".", "form", ".", "has_children", ":", "# If the parent has a qualifier,", "# create a representative form element for the parent.", "if", "getattr", "(", "element", ".", "form", ",", "'qualifier_name'", ",", "False", ")", ":", "add_parent", "=", "PARENT_FORM", "[", "element", ".", "form", ".", "qualifier_name", "]", "(", "content", "=", "element", ".", "qualifier", ",", ")", "# Add the parent to the list of child elements.", "element", ".", "children", ".", "append", "(", "add_parent", ")", "# Sort the elements by the index of child sort.", "element", ".", "children", ".", "sort", "(", "key", "=", "lambda", "obj", ":", "element", ".", "form", ".", "child_sort", ".", "index", "(", "obj", ".", "tag", ")", ")", "# Loop through the element's children (if it has any).", "for", "child", "in", "element", ".", "children", ":", "# Add the form attribute to the element.", "child", ".", "add_form", "(", "vocabularies", "=", "vocabularies", ",", "qualifier", "=", "child", ".", "qualifier", ",", "content", "=", "child", ".", "content", ",", "parent_tag", "=", "element", ".", "tag", ",", "superuser", "=", "superuser", ",", ")", "element_group_dict", "=", "{", "}", "# Group related objects together.", "for", "element", "in", "children", ":", "# Make meta-hidden its own group.", "if", "element", ".", "form", ".", "name", "==", "'meta'", "and", "element", ".", "qualifier", "==", "'hidden'", ":", "element_group_dict", "[", "'hidden'", "]", "=", "[", "element", "]", "# Element is not meta-hidden.", "else", ":", "# Make sure the dictionary key exists.", "if", "element", ".", "form", ".", "name", "not", "in", "element_group_dict", ":", "element_group_dict", "[", "element", ".", "form", ".", "name", "]", "=", "[", "]", "element_group_dict", "[", "element", ".", "form", ".", "name", "]", ".", "append", "(", "element", ")", "# If the hidden meta element doesn't exist, add it to its own group.", "if", "'hidden'", "not", "in", "element_group_dict", ":", "hidden_element", "=", "PYUNTL_DISPATCH", "[", "'meta'", "]", "(", "qualifier", "=", "'hidden'", ",", "content", "=", "'False'", ")", "hidden_element", ".", "add_form", "(", "vocabularies", "=", "vocabularies", ",", "qualifier", "=", "hidden_element", ".", "qualifier", ",", "content", "=", "hidden_element", ".", "content", ",", "superuser", "=", "superuser", ",", ")", "element_group_dict", "[", "'hidden'", "]", "=", "[", "hidden_element", "]", "# Create a list of group object elements.", "element_list", "=", "self", ".", "create_form_groupings", "(", "vocabularies", ",", "solr_response", ",", "element_group_dict", ",", "sort_order", ",", ")", "# Return the list of UNTL elements with form data added.", "return", "element_list" ]
Create groupings of form elements.
[ "Create", "groupings", "of", "form", "elements", "." ]
f92413302897dab948aac18ee9e482ace0187bd4
https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untl_structure.py#L216-L295
train
unt-libraries/pyuntl
pyuntl/untl_structure.py
FormGenerator.create_form_groupings
def create_form_groupings(self, vocabularies, solr_response, element_group_dict, sort_order): """Create a group object from groupings of element objects.""" element_list = [] # Loop through the group dictionary. for group_name, group_list in element_group_dict.items(): # Create the element group. element_group = UNTL_GROUP_DISPATCH[group_name]( vocabularies=vocabularies, solr_response=solr_response, group_name=group_name, group_list=group_list, ) # Loop through the adjustable forms of the group if they exist. if element_group.adjustable_form is not None: for adj_name, form_dict in element_group.adjustable_form.items(): # If an item has an adjustable form, # append it to the adjustable list. if form_dict['value_py'] is not None: self.adjustable_items.append(adj_name) # Append the group to the element group list. element_list.append(element_group) # Sort the elements by the index of sort_order pre-ordered list. element_list.sort(key=lambda obj: sort_order.index(obj.group_name)) return element_list
python
def create_form_groupings(self, vocabularies, solr_response, element_group_dict, sort_order): """Create a group object from groupings of element objects.""" element_list = [] # Loop through the group dictionary. for group_name, group_list in element_group_dict.items(): # Create the element group. element_group = UNTL_GROUP_DISPATCH[group_name]( vocabularies=vocabularies, solr_response=solr_response, group_name=group_name, group_list=group_list, ) # Loop through the adjustable forms of the group if they exist. if element_group.adjustable_form is not None: for adj_name, form_dict in element_group.adjustable_form.items(): # If an item has an adjustable form, # append it to the adjustable list. if form_dict['value_py'] is not None: self.adjustable_items.append(adj_name) # Append the group to the element group list. element_list.append(element_group) # Sort the elements by the index of sort_order pre-ordered list. element_list.sort(key=lambda obj: sort_order.index(obj.group_name)) return element_list
[ "def", "create_form_groupings", "(", "self", ",", "vocabularies", ",", "solr_response", ",", "element_group_dict", ",", "sort_order", ")", ":", "element_list", "=", "[", "]", "# Loop through the group dictionary.", "for", "group_name", ",", "group_list", "in", "element_group_dict", ".", "items", "(", ")", ":", "# Create the element group.", "element_group", "=", "UNTL_GROUP_DISPATCH", "[", "group_name", "]", "(", "vocabularies", "=", "vocabularies", ",", "solr_response", "=", "solr_response", ",", "group_name", "=", "group_name", ",", "group_list", "=", "group_list", ",", ")", "# Loop through the adjustable forms of the group if they exist.", "if", "element_group", ".", "adjustable_form", "is", "not", "None", ":", "for", "adj_name", ",", "form_dict", "in", "element_group", ".", "adjustable_form", ".", "items", "(", ")", ":", "# If an item has an adjustable form,", "# append it to the adjustable list.", "if", "form_dict", "[", "'value_py'", "]", "is", "not", "None", ":", "self", ".", "adjustable_items", ".", "append", "(", "adj_name", ")", "# Append the group to the element group list.", "element_list", ".", "append", "(", "element_group", ")", "# Sort the elements by the index of sort_order pre-ordered list.", "element_list", ".", "sort", "(", "key", "=", "lambda", "obj", ":", "sort_order", ".", "index", "(", "obj", ".", "group_name", ")", ")", "return", "element_list" ]
Create a group object from groupings of element objects.
[ "Create", "a", "group", "object", "from", "groupings", "of", "element", "objects", "." ]
f92413302897dab948aac18ee9e482ace0187bd4
https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untl_structure.py#L297-L324
train
unt-libraries/pyuntl
pyuntl/untl_structure.py
FormGenerator.get_vocabularies
def get_vocabularies(self): """Get the vocabularies to pull the qualifiers from.""" # Timeout in seconds. timeout = 15 socket.setdefaulttimeout(timeout) # Create the ordered vocabulary URL. vocab_url = VOCABULARIES_URL.replace('all', 'all-verbose') # Request the vocabularies dictionary. try: vocab_dict = eval(urllib2.urlopen(vocab_url).read()) except: raise UNTLStructureException('Could not retrieve the vocabularies') return vocab_dict
python
def get_vocabularies(self): """Get the vocabularies to pull the qualifiers from.""" # Timeout in seconds. timeout = 15 socket.setdefaulttimeout(timeout) # Create the ordered vocabulary URL. vocab_url = VOCABULARIES_URL.replace('all', 'all-verbose') # Request the vocabularies dictionary. try: vocab_dict = eval(urllib2.urlopen(vocab_url).read()) except: raise UNTLStructureException('Could not retrieve the vocabularies') return vocab_dict
[ "def", "get_vocabularies", "(", "self", ")", ":", "# Timeout in seconds.", "timeout", "=", "15", "socket", ".", "setdefaulttimeout", "(", "timeout", ")", "# Create the ordered vocabulary URL.", "vocab_url", "=", "VOCABULARIES_URL", ".", "replace", "(", "'all'", ",", "'all-verbose'", ")", "# Request the vocabularies dictionary.", "try", ":", "vocab_dict", "=", "eval", "(", "urllib2", ".", "urlopen", "(", "vocab_url", ")", ".", "read", "(", ")", ")", "except", ":", "raise", "UNTLStructureException", "(", "'Could not retrieve the vocabularies'", ")", "return", "vocab_dict" ]
Get the vocabularies to pull the qualifiers from.
[ "Get", "the", "vocabularies", "to", "pull", "the", "qualifiers", "from", "." ]
f92413302897dab948aac18ee9e482ace0187bd4
https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untl_structure.py#L326-L338
train
unt-libraries/pyuntl
pyuntl/untl_structure.py
Metadata.create_xml_string
def create_xml_string(self): """Create a UNTL document in a string from a UNTL metadata root object. untl_xml_string = metadata_root_object.create_xml_string() """ root = self.create_xml() xml = '<?xml version="1.0" encoding="UTF-8"?>\n' + tostring( root, pretty_print=True ) return xml
python
def create_xml_string(self): """Create a UNTL document in a string from a UNTL metadata root object. untl_xml_string = metadata_root_object.create_xml_string() """ root = self.create_xml() xml = '<?xml version="1.0" encoding="UTF-8"?>\n' + tostring( root, pretty_print=True ) return xml
[ "def", "create_xml_string", "(", "self", ")", ":", "root", "=", "self", ".", "create_xml", "(", ")", "xml", "=", "'<?xml version=\"1.0\" encoding=\"UTF-8\"?>\\n'", "+", "tostring", "(", "root", ",", "pretty_print", "=", "True", ")", "return", "xml" ]
Create a UNTL document in a string from a UNTL metadata root object. untl_xml_string = metadata_root_object.create_xml_string()
[ "Create", "a", "UNTL", "document", "in", "a", "string", "from", "a", "UNTL", "metadata", "root", "object", "." ]
f92413302897dab948aac18ee9e482ace0187bd4
https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untl_structure.py#L358-L369
train
unt-libraries/pyuntl
pyuntl/untl_structure.py
Metadata.create_xml
def create_xml(self, useNamespace=False): """Create an ElementTree representation of the object.""" UNTL_NAMESPACE = 'http://digital2.library.unt.edu/untl/' UNTL = '{%s}' % UNTL_NAMESPACE NSMAP = {'untl': UNTL_NAMESPACE} if useNamespace: root = Element(UNTL + self.tag, nsmap=NSMAP) else: root = Element(self.tag) # Sort the elements by the index of # UNTL_XML_ORDER pre-ordered list. self.sort_untl(UNTL_XML_ORDER) # Create an XML structure from field list. for element in self.children: if useNamespace: create_untl_xml_subelement(root, element, UNTL) else: create_untl_xml_subelement(root, element) return root
python
def create_xml(self, useNamespace=False): """Create an ElementTree representation of the object.""" UNTL_NAMESPACE = 'http://digital2.library.unt.edu/untl/' UNTL = '{%s}' % UNTL_NAMESPACE NSMAP = {'untl': UNTL_NAMESPACE} if useNamespace: root = Element(UNTL + self.tag, nsmap=NSMAP) else: root = Element(self.tag) # Sort the elements by the index of # UNTL_XML_ORDER pre-ordered list. self.sort_untl(UNTL_XML_ORDER) # Create an XML structure from field list. for element in self.children: if useNamespace: create_untl_xml_subelement(root, element, UNTL) else: create_untl_xml_subelement(root, element) return root
[ "def", "create_xml", "(", "self", ",", "useNamespace", "=", "False", ")", ":", "UNTL_NAMESPACE", "=", "'http://digital2.library.unt.edu/untl/'", "UNTL", "=", "'{%s}'", "%", "UNTL_NAMESPACE", "NSMAP", "=", "{", "'untl'", ":", "UNTL_NAMESPACE", "}", "if", "useNamespace", ":", "root", "=", "Element", "(", "UNTL", "+", "self", ".", "tag", ",", "nsmap", "=", "NSMAP", ")", "else", ":", "root", "=", "Element", "(", "self", ".", "tag", ")", "# Sort the elements by the index of", "# UNTL_XML_ORDER pre-ordered list.", "self", ".", "sort_untl", "(", "UNTL_XML_ORDER", ")", "# Create an XML structure from field list.", "for", "element", "in", "self", ".", "children", ":", "if", "useNamespace", ":", "create_untl_xml_subelement", "(", "root", ",", "element", ",", "UNTL", ")", "else", ":", "create_untl_xml_subelement", "(", "root", ",", "element", ")", "return", "root" ]
Create an ElementTree representation of the object.
[ "Create", "an", "ElementTree", "representation", "of", "the", "object", "." ]
f92413302897dab948aac18ee9e482ace0187bd4
https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untl_structure.py#L371-L392
train
unt-libraries/pyuntl
pyuntl/untl_structure.py
Metadata.create_element_dict
def create_element_dict(self): """Convert a UNTL Python object into a UNTL Python dictionary.""" untl_dict = {} # Loop through all UNTL elements in the Python object. for element in self.children: # If an entry for the element list hasn't been made in the # dictionary, start an empty element list. if element.tag not in untl_dict: untl_dict[element.tag] = [] # Create a dictionary to put the element into. # Add any qualifier. element_dict = {} if element.qualifier is not None: element_dict['qualifier'] = element.qualifier # Add any children that have content. if len(element.contained_children) > 0: child_dict = {} for child in element.children: if child.content is not None: child_dict[child.tag] = child.content # Set the element's content as the dictionary # of children elements. element_dict['content'] = child_dict # The element has content, but no children. elif element.content is not None: element_dict['content'] = element.content # Append the dictionary element to the element list. untl_dict[element.tag].append(element_dict) return untl_dict
python
def create_element_dict(self): """Convert a UNTL Python object into a UNTL Python dictionary.""" untl_dict = {} # Loop through all UNTL elements in the Python object. for element in self.children: # If an entry for the element list hasn't been made in the # dictionary, start an empty element list. if element.tag not in untl_dict: untl_dict[element.tag] = [] # Create a dictionary to put the element into. # Add any qualifier. element_dict = {} if element.qualifier is not None: element_dict['qualifier'] = element.qualifier # Add any children that have content. if len(element.contained_children) > 0: child_dict = {} for child in element.children: if child.content is not None: child_dict[child.tag] = child.content # Set the element's content as the dictionary # of children elements. element_dict['content'] = child_dict # The element has content, but no children. elif element.content is not None: element_dict['content'] = element.content # Append the dictionary element to the element list. untl_dict[element.tag].append(element_dict) return untl_dict
[ "def", "create_element_dict", "(", "self", ")", ":", "untl_dict", "=", "{", "}", "# Loop through all UNTL elements in the Python object.", "for", "element", "in", "self", ".", "children", ":", "# If an entry for the element list hasn't been made in the", "# dictionary, start an empty element list.", "if", "element", ".", "tag", "not", "in", "untl_dict", ":", "untl_dict", "[", "element", ".", "tag", "]", "=", "[", "]", "# Create a dictionary to put the element into.", "# Add any qualifier.", "element_dict", "=", "{", "}", "if", "element", ".", "qualifier", "is", "not", "None", ":", "element_dict", "[", "'qualifier'", "]", "=", "element", ".", "qualifier", "# Add any children that have content.", "if", "len", "(", "element", ".", "contained_children", ")", ">", "0", ":", "child_dict", "=", "{", "}", "for", "child", "in", "element", ".", "children", ":", "if", "child", ".", "content", "is", "not", "None", ":", "child_dict", "[", "child", ".", "tag", "]", "=", "child", ".", "content", "# Set the element's content as the dictionary", "# of children elements.", "element_dict", "[", "'content'", "]", "=", "child_dict", "# The element has content, but no children.", "elif", "element", ".", "content", "is", "not", "None", ":", "element_dict", "[", "'content'", "]", "=", "element", ".", "content", "# Append the dictionary element to the element list.", "untl_dict", "[", "element", ".", "tag", "]", ".", "append", "(", "element_dict", ")", "return", "untl_dict" ]
Convert a UNTL Python object into a UNTL Python dictionary.
[ "Convert", "a", "UNTL", "Python", "object", "into", "a", "UNTL", "Python", "dictionary", "." ]
f92413302897dab948aac18ee9e482ace0187bd4
https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untl_structure.py#L394-L423
train
unt-libraries/pyuntl
pyuntl/untl_structure.py
Metadata.create_xml_file
def create_xml_file(self, untl_filename): """Create a UNTL file. Writes file to supplied file path. """ try: f = open(untl_filename, 'w') f.write(self.create_xml_string().encode('utf-8')) f.close() except: raise UNTLStructureException( 'Failed to create UNTL XML file. File: %s' % (untl_filename) )
python
def create_xml_file(self, untl_filename): """Create a UNTL file. Writes file to supplied file path. """ try: f = open(untl_filename, 'w') f.write(self.create_xml_string().encode('utf-8')) f.close() except: raise UNTLStructureException( 'Failed to create UNTL XML file. File: %s' % (untl_filename) )
[ "def", "create_xml_file", "(", "self", ",", "untl_filename", ")", ":", "try", ":", "f", "=", "open", "(", "untl_filename", ",", "'w'", ")", "f", ".", "write", "(", "self", ".", "create_xml_string", "(", ")", ".", "encode", "(", "'utf-8'", ")", ")", "f", ".", "close", "(", ")", "except", ":", "raise", "UNTLStructureException", "(", "'Failed to create UNTL XML file. File: %s'", "%", "(", "untl_filename", ")", ")" ]
Create a UNTL file. Writes file to supplied file path.
[ "Create", "a", "UNTL", "file", "." ]
f92413302897dab948aac18ee9e482ace0187bd4
https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untl_structure.py#L425-L437
train
unt-libraries/pyuntl
pyuntl/untl_structure.py
Metadata.sort_untl
def sort_untl(self, sort_structure): """Sort the UNTL Python object by the index of a sort structure pre-ordered list. """ self.children.sort(key=lambda obj: sort_structure.index(obj.tag))
python
def sort_untl(self, sort_structure): """Sort the UNTL Python object by the index of a sort structure pre-ordered list. """ self.children.sort(key=lambda obj: sort_structure.index(obj.tag))
[ "def", "sort_untl", "(", "self", ",", "sort_structure", ")", ":", "self", ".", "children", ".", "sort", "(", "key", "=", "lambda", "obj", ":", "sort_structure", ".", "index", "(", "obj", ".", "tag", ")", ")" ]
Sort the UNTL Python object by the index of a sort structure pre-ordered list.
[ "Sort", "the", "UNTL", "Python", "object", "by", "the", "index", "of", "a", "sort", "structure", "pre", "-", "ordered", "list", "." ]
f92413302897dab948aac18ee9e482ace0187bd4
https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untl_structure.py#L439-L443
train
unt-libraries/pyuntl
pyuntl/untl_structure.py
Metadata.generate_form_data
def generate_form_data(self, **kwargs): """Create a form dictionary with the key being the element name and the value being a list of form element objects. """ # Add elements that are missing from the form. self.children = add_missing_children( self.contained_children, self.children ) # Add children to the keyword arguments. kwargs['children'] = self.children # Create the form object. return FormGenerator(**kwargs)
python
def generate_form_data(self, **kwargs): """Create a form dictionary with the key being the element name and the value being a list of form element objects. """ # Add elements that are missing from the form. self.children = add_missing_children( self.contained_children, self.children ) # Add children to the keyword arguments. kwargs['children'] = self.children # Create the form object. return FormGenerator(**kwargs)
[ "def", "generate_form_data", "(", "self", ",", "*", "*", "kwargs", ")", ":", "# Add elements that are missing from the form.", "self", ".", "children", "=", "add_missing_children", "(", "self", ".", "contained_children", ",", "self", ".", "children", ")", "# Add children to the keyword arguments.", "kwargs", "[", "'children'", "]", "=", "self", ".", "children", "# Create the form object.", "return", "FormGenerator", "(", "*", "*", "kwargs", ")" ]
Create a form dictionary with the key being the element name and the value being a list of form element objects.
[ "Create", "a", "form", "dictionary", "with", "the", "key", "being", "the", "element", "name", "and", "the", "value", "being", "a", "list", "of", "form", "element", "objects", "." ]
f92413302897dab948aac18ee9e482ace0187bd4
https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/untl_structure.py#L449-L461
train
unt-libraries/pyuntl
pyuntl/etd_ms_structure.py
contributor_director
def contributor_director(**kwargs): """Define the expanded qualifier name.""" if kwargs.get('qualifier') in ETD_MS_CONTRIBUTOR_EXPANSION: # Return the element object. return ETD_MSContributor( role=ETD_MS_CONTRIBUTOR_EXPANSION[kwargs.get('qualifier')], **kwargs ) else: return None
python
def contributor_director(**kwargs): """Define the expanded qualifier name.""" if kwargs.get('qualifier') in ETD_MS_CONTRIBUTOR_EXPANSION: # Return the element object. return ETD_MSContributor( role=ETD_MS_CONTRIBUTOR_EXPANSION[kwargs.get('qualifier')], **kwargs ) else: return None
[ "def", "contributor_director", "(", "*", "*", "kwargs", ")", ":", "if", "kwargs", ".", "get", "(", "'qualifier'", ")", "in", "ETD_MS_CONTRIBUTOR_EXPANSION", ":", "# Return the element object.", "return", "ETD_MSContributor", "(", "role", "=", "ETD_MS_CONTRIBUTOR_EXPANSION", "[", "kwargs", ".", "get", "(", "'qualifier'", ")", "]", ",", "*", "*", "kwargs", ")", "else", ":", "return", "None" ]
Define the expanded qualifier name.
[ "Define", "the", "expanded", "qualifier", "name", "." ]
f92413302897dab948aac18ee9e482ace0187bd4
https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/etd_ms_structure.py#L211-L220
train
unt-libraries/pyuntl
pyuntl/etd_ms_structure.py
date_director
def date_director(**kwargs): """Direct which class should be used based on the date qualifier or if the date should be converted at all. """ # If the date is a creation date, return the element object. if kwargs.get('qualifier') == 'creation': return ETD_MSDate(content=kwargs.get('content').strip()) elif kwargs.get('qualifier') != 'digitized': # Return the element object. return ETD_MSDate(content=kwargs.get('content').strip()) else: return None
python
def date_director(**kwargs): """Direct which class should be used based on the date qualifier or if the date should be converted at all. """ # If the date is a creation date, return the element object. if kwargs.get('qualifier') == 'creation': return ETD_MSDate(content=kwargs.get('content').strip()) elif kwargs.get('qualifier') != 'digitized': # Return the element object. return ETD_MSDate(content=kwargs.get('content').strip()) else: return None
[ "def", "date_director", "(", "*", "*", "kwargs", ")", ":", "# If the date is a creation date, return the element object.", "if", "kwargs", ".", "get", "(", "'qualifier'", ")", "==", "'creation'", ":", "return", "ETD_MSDate", "(", "content", "=", "kwargs", ".", "get", "(", "'content'", ")", ".", "strip", "(", ")", ")", "elif", "kwargs", ".", "get", "(", "'qualifier'", ")", "!=", "'digitized'", ":", "# Return the element object.", "return", "ETD_MSDate", "(", "content", "=", "kwargs", ".", "get", "(", "'content'", ")", ".", "strip", "(", ")", ")", "else", ":", "return", "None" ]
Direct which class should be used based on the date qualifier or if the date should be converted at all.
[ "Direct", "which", "class", "should", "be", "used", "based", "on", "the", "date", "qualifier", "or", "if", "the", "date", "should", "be", "converted", "at", "all", "." ]
f92413302897dab948aac18ee9e482ace0187bd4
https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/etd_ms_structure.py#L234-L245
train
unt-libraries/pyuntl
pyuntl/etd_ms_structure.py
subject_director
def subject_director(**kwargs): """Direct how to handle a subject element.""" if kwargs.get('qualifier') not in ['KWD', '']: return ETD_MSSubject(scheme=kwargs.get('qualifier'), **kwargs) else: return ETD_MSSubject(content=kwargs.get('content'))
python
def subject_director(**kwargs): """Direct how to handle a subject element.""" if kwargs.get('qualifier') not in ['KWD', '']: return ETD_MSSubject(scheme=kwargs.get('qualifier'), **kwargs) else: return ETD_MSSubject(content=kwargs.get('content'))
[ "def", "subject_director", "(", "*", "*", "kwargs", ")", ":", "if", "kwargs", ".", "get", "(", "'qualifier'", ")", "not", "in", "[", "'KWD'", ",", "''", "]", ":", "return", "ETD_MSSubject", "(", "scheme", "=", "kwargs", ".", "get", "(", "'qualifier'", ")", ",", "*", "*", "kwargs", ")", "else", ":", "return", "ETD_MSSubject", "(", "content", "=", "kwargs", ".", "get", "(", "'content'", ")", ")" ]
Direct how to handle a subject element.
[ "Direct", "how", "to", "handle", "a", "subject", "element", "." ]
f92413302897dab948aac18ee9e482ace0187bd4
https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/etd_ms_structure.py#L262-L267
train
unt-libraries/pyuntl
pyuntl/etd_ms_structure.py
ETD_MSElement.get_child_content
def get_child_content(self, children, element_name): """Get the requested element content from a list of children.""" # Loop through the children and get the specified element. for child in children: # If the child is the requested element, return its content. if child.tag == element_name: return child.content return ''
python
def get_child_content(self, children, element_name): """Get the requested element content from a list of children.""" # Loop through the children and get the specified element. for child in children: # If the child is the requested element, return its content. if child.tag == element_name: return child.content return ''
[ "def", "get_child_content", "(", "self", ",", "children", ",", "element_name", ")", ":", "# Loop through the children and get the specified element.", "for", "child", "in", "children", ":", "# If the child is the requested element, return its content.", "if", "child", ".", "tag", "==", "element_name", ":", "return", "child", ".", "content", "return", "''" ]
Get the requested element content from a list of children.
[ "Get", "the", "requested", "element", "content", "from", "a", "list", "of", "children", "." ]
f92413302897dab948aac18ee9e482ace0187bd4
https://github.com/unt-libraries/pyuntl/blob/f92413302897dab948aac18ee9e482ace0187bd4/pyuntl/etd_ms_structure.py#L69-L76
train
geophysics-ubonn/crtomo_tools
src/td_residuals.py
shiftedColorMap
def shiftedColorMap(cmap, start=0, midpoint=0.5, stop=1.0, name='shiftedcmap'): ''' Function to offset the "center" of a colormap. Useful for data with a negative min and positive max and you want the middle of the colormap's dynamic range to be at zero Parameters ---------- cmap: The matplotlib colormap to be altered start: Offset from lowest point in the colormap's range. Defaults to 0.0 (no lower ofset). Should be between 0.0 and `midpoint`. midpoint: The new center of the colormap. Defaults to 0.5 (no shift). Should be between 0.0 and 1.0. In general, this should be 1 - vmax/(vmax + abs(vmin)) For example if your data range from -15.0 to +5.0 and you want the center of the colormap at 0.0, `midpoint` should be set to 1 - 5/(5 + 15)) or 0.75 stop: Offset from highets point in the colormap's range. Defaults to 1.0 (no upper ofset). Should be between `midpoint` and 1.0. ''' cdict = { 'red': [], 'green': [], 'blue': [], 'alpha': [] } # regular index to compute the colors reg_index = np.linspace(start, stop, 257) # shifted index to match the data shift_index = np.hstack([ np.linspace(0.0, midpoint, 128, endpoint=False), np.linspace(midpoint, 1.0, 129, endpoint=True) ]) for ri, si in zip(reg_index, shift_index): r, g, b, a = cmap(ri) cdict['red'].append((si, r, r)) cdict['green'].append((si, g, g)) cdict['blue'].append((si, b, b)) cdict['alpha'].append((si, a, a)) newcmap = mpl.colors.LinearSegmentedColormap(name, cdict) plt.register_cmap(cmap=newcmap) return newcmap
python
def shiftedColorMap(cmap, start=0, midpoint=0.5, stop=1.0, name='shiftedcmap'): ''' Function to offset the "center" of a colormap. Useful for data with a negative min and positive max and you want the middle of the colormap's dynamic range to be at zero Parameters ---------- cmap: The matplotlib colormap to be altered start: Offset from lowest point in the colormap's range. Defaults to 0.0 (no lower ofset). Should be between 0.0 and `midpoint`. midpoint: The new center of the colormap. Defaults to 0.5 (no shift). Should be between 0.0 and 1.0. In general, this should be 1 - vmax/(vmax + abs(vmin)) For example if your data range from -15.0 to +5.0 and you want the center of the colormap at 0.0, `midpoint` should be set to 1 - 5/(5 + 15)) or 0.75 stop: Offset from highets point in the colormap's range. Defaults to 1.0 (no upper ofset). Should be between `midpoint` and 1.0. ''' cdict = { 'red': [], 'green': [], 'blue': [], 'alpha': [] } # regular index to compute the colors reg_index = np.linspace(start, stop, 257) # shifted index to match the data shift_index = np.hstack([ np.linspace(0.0, midpoint, 128, endpoint=False), np.linspace(midpoint, 1.0, 129, endpoint=True) ]) for ri, si in zip(reg_index, shift_index): r, g, b, a = cmap(ri) cdict['red'].append((si, r, r)) cdict['green'].append((si, g, g)) cdict['blue'].append((si, b, b)) cdict['alpha'].append((si, a, a)) newcmap = mpl.colors.LinearSegmentedColormap(name, cdict) plt.register_cmap(cmap=newcmap) return newcmap
[ "def", "shiftedColorMap", "(", "cmap", ",", "start", "=", "0", ",", "midpoint", "=", "0.5", ",", "stop", "=", "1.0", ",", "name", "=", "'shiftedcmap'", ")", ":", "cdict", "=", "{", "'red'", ":", "[", "]", ",", "'green'", ":", "[", "]", ",", "'blue'", ":", "[", "]", ",", "'alpha'", ":", "[", "]", "}", "# regular index to compute the colors", "reg_index", "=", "np", ".", "linspace", "(", "start", ",", "stop", ",", "257", ")", "# shifted index to match the data", "shift_index", "=", "np", ".", "hstack", "(", "[", "np", ".", "linspace", "(", "0.0", ",", "midpoint", ",", "128", ",", "endpoint", "=", "False", ")", ",", "np", ".", "linspace", "(", "midpoint", ",", "1.0", ",", "129", ",", "endpoint", "=", "True", ")", "]", ")", "for", "ri", ",", "si", "in", "zip", "(", "reg_index", ",", "shift_index", ")", ":", "r", ",", "g", ",", "b", ",", "a", "=", "cmap", "(", "ri", ")", "cdict", "[", "'red'", "]", ".", "append", "(", "(", "si", ",", "r", ",", "r", ")", ")", "cdict", "[", "'green'", "]", ".", "append", "(", "(", "si", ",", "g", ",", "g", ")", ")", "cdict", "[", "'blue'", "]", ".", "append", "(", "(", "si", ",", "b", ",", "b", ")", ")", "cdict", "[", "'alpha'", "]", ".", "append", "(", "(", "si", ",", "a", ",", "a", ")", ")", "newcmap", "=", "mpl", ".", "colors", ".", "LinearSegmentedColormap", "(", "name", ",", "cdict", ")", "plt", ".", "register_cmap", "(", "cmap", "=", "newcmap", ")", "return", "newcmap" ]
Function to offset the "center" of a colormap. Useful for data with a negative min and positive max and you want the middle of the colormap's dynamic range to be at zero Parameters ---------- cmap: The matplotlib colormap to be altered start: Offset from lowest point in the colormap's range. Defaults to 0.0 (no lower ofset). Should be between 0.0 and `midpoint`. midpoint: The new center of the colormap. Defaults to 0.5 (no shift). Should be between 0.0 and 1.0. In general, this should be 1 - vmax/(vmax + abs(vmin)) For example if your data range from -15.0 to +5.0 and you want the center of the colormap at 0.0, `midpoint` should be set to 1 - 5/(5 + 15)) or 0.75 stop: Offset from highets point in the colormap's range. Defaults to 1.0 (no upper ofset). Should be between `midpoint` and 1.0.
[ "Function", "to", "offset", "the", "center", "of", "a", "colormap", ".", "Useful", "for", "data", "with", "a", "negative", "min", "and", "positive", "max", "and", "you", "want", "the", "middle", "of", "the", "colormap", "s", "dynamic", "range", "to", "be", "at", "zero" ]
27c3e21a557f8df1c12455b96c4c2e00e08a5b4a
https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/src/td_residuals.py#L10-L60
train
geophysics-ubonn/crtomo_tools
src/td_residuals.py
read_lastmodfile
def read_lastmodfile(directory): """ Return the number of the final inversion result. """ filename = '{0}/exe/inv.lastmod'.format(directory) # filename HAS to exist. Otherwise the inversion was not finished if(not os.path.isfile(filename)): return None linestring = open(filename, 'r').readline().strip() linestring = linestring.replace("\n", '') linestring = linestring.replace(".mag", '') linestring = linestring.replace("../inv/rho", '') return linestring
python
def read_lastmodfile(directory): """ Return the number of the final inversion result. """ filename = '{0}/exe/inv.lastmod'.format(directory) # filename HAS to exist. Otherwise the inversion was not finished if(not os.path.isfile(filename)): return None linestring = open(filename, 'r').readline().strip() linestring = linestring.replace("\n", '') linestring = linestring.replace(".mag", '') linestring = linestring.replace("../inv/rho", '') return linestring
[ "def", "read_lastmodfile", "(", "directory", ")", ":", "filename", "=", "'{0}/exe/inv.lastmod'", ".", "format", "(", "directory", ")", "# filename HAS to exist. Otherwise the inversion was not finished", "if", "(", "not", "os", ".", "path", ".", "isfile", "(", "filename", ")", ")", ":", "return", "None", "linestring", "=", "open", "(", "filename", ",", "'r'", ")", ".", "readline", "(", ")", ".", "strip", "(", ")", "linestring", "=", "linestring", ".", "replace", "(", "\"\\n\"", ",", "''", ")", "linestring", "=", "linestring", ".", "replace", "(", "\".mag\"", ",", "''", ")", "linestring", "=", "linestring", ".", "replace", "(", "\"../inv/rho\"", ",", "''", ")", "return", "linestring" ]
Return the number of the final inversion result.
[ "Return", "the", "number", "of", "the", "final", "inversion", "result", "." ]
27c3e21a557f8df1c12455b96c4c2e00e08a5b4a
https://github.com/geophysics-ubonn/crtomo_tools/blob/27c3e21a557f8df1c12455b96c4c2e00e08a5b4a/src/td_residuals.py#L63-L76
train
Riminder/python-riminder-api
riminder/webhook.py
Webhook.setHandler
def setHandler(self, event_name, callback): """Set an handler for given event.""" if event_name not in self.handlers: raise ValueError('{} is not a valid event'.format(event_name)) if callable(event_name): raise TypeError('{} is not callable'.format(callback)) self.handlers[event_name] = callback
python
def setHandler(self, event_name, callback): """Set an handler for given event.""" if event_name not in self.handlers: raise ValueError('{} is not a valid event'.format(event_name)) if callable(event_name): raise TypeError('{} is not callable'.format(callback)) self.handlers[event_name] = callback
[ "def", "setHandler", "(", "self", ",", "event_name", ",", "callback", ")", ":", "if", "event_name", "not", "in", "self", ".", "handlers", ":", "raise", "ValueError", "(", "'{} is not a valid event'", ".", "format", "(", "event_name", ")", ")", "if", "callable", "(", "event_name", ")", ":", "raise", "TypeError", "(", "'{} is not callable'", ".", "format", "(", "callback", ")", ")", "self", ".", "handlers", "[", "event_name", "]", "=", "callback" ]
Set an handler for given event.
[ "Set", "an", "handler", "for", "given", "event", "." ]
01279f0ece08cf3d1dd45f76de6d9edf7fafec90
https://github.com/Riminder/python-riminder-api/blob/01279f0ece08cf3d1dd45f76de6d9edf7fafec90/riminder/webhook.py#L59-L65
train
Riminder/python-riminder-api
riminder/webhook.py
Webhook.isHandlerPresent
def isHandlerPresent(self, event_name): """Check if an event has an handler.""" if event_name not in self.handlers: raise ValueError('{} is not a valid event'.format(event_name)) return self.handlers[event_name] is not None
python
def isHandlerPresent(self, event_name): """Check if an event has an handler.""" if event_name not in self.handlers: raise ValueError('{} is not a valid event'.format(event_name)) return self.handlers[event_name] is not None
[ "def", "isHandlerPresent", "(", "self", ",", "event_name", ")", ":", "if", "event_name", "not", "in", "self", ".", "handlers", ":", "raise", "ValueError", "(", "'{} is not a valid event'", ".", "format", "(", "event_name", ")", ")", "return", "self", ".", "handlers", "[", "event_name", "]", "is", "not", "None" ]
Check if an event has an handler.
[ "Check", "if", "an", "event", "has", "an", "handler", "." ]
01279f0ece08cf3d1dd45f76de6d9edf7fafec90
https://github.com/Riminder/python-riminder-api/blob/01279f0ece08cf3d1dd45f76de6d9edf7fafec90/riminder/webhook.py#L67-L71
train
Riminder/python-riminder-api
riminder/webhook.py
Webhook.removeHandler
def removeHandler(self, event_name): """Remove handler for given event.""" if event_name not in self.handlers: raise ValueError('{} is not a valid event'.format(event_name)) self.handlers[event_name] = None
python
def removeHandler(self, event_name): """Remove handler for given event.""" if event_name not in self.handlers: raise ValueError('{} is not a valid event'.format(event_name)) self.handlers[event_name] = None
[ "def", "removeHandler", "(", "self", ",", "event_name", ")", ":", "if", "event_name", "not", "in", "self", ".", "handlers", ":", "raise", "ValueError", "(", "'{} is not a valid event'", ".", "format", "(", "event_name", ")", ")", "self", ".", "handlers", "[", "event_name", "]", "=", "None" ]
Remove handler for given event.
[ "Remove", "handler", "for", "given", "event", "." ]
01279f0ece08cf3d1dd45f76de6d9edf7fafec90
https://github.com/Riminder/python-riminder-api/blob/01279f0ece08cf3d1dd45f76de6d9edf7fafec90/riminder/webhook.py#L73-L77
train
Riminder/python-riminder-api
riminder/webhook.py
Webhook._get_fct_number_of_arg
def _get_fct_number_of_arg(self, fct): """Get the number of argument of a fuction.""" py_version = sys.version_info[0] if py_version >= 3: return len(inspect.signature(fct).parameters) return len(inspect.getargspec(fct)[0])
python
def _get_fct_number_of_arg(self, fct): """Get the number of argument of a fuction.""" py_version = sys.version_info[0] if py_version >= 3: return len(inspect.signature(fct).parameters) return len(inspect.getargspec(fct)[0])
[ "def", "_get_fct_number_of_arg", "(", "self", ",", "fct", ")", ":", "py_version", "=", "sys", ".", "version_info", "[", "0", "]", "if", "py_version", ">=", "3", ":", "return", "len", "(", "inspect", ".", "signature", "(", "fct", ")", ".", "parameters", ")", "return", "len", "(", "inspect", ".", "getargspec", "(", "fct", ")", "[", "0", "]", ")" ]
Get the number of argument of a fuction.
[ "Get", "the", "number", "of", "argument", "of", "a", "fuction", "." ]
01279f0ece08cf3d1dd45f76de6d9edf7fafec90
https://github.com/Riminder/python-riminder-api/blob/01279f0ece08cf3d1dd45f76de6d9edf7fafec90/riminder/webhook.py#L95-L100
train
eventifyio/eventify
eventify/service.py
event_tracker
def event_tracker(func): """ Event tracking handler """ @wraps(func) async def wrapper(*args, **kwargs): """ Wraps function to provide redis tracking """ event = Event(args[0]) session = kwargs['session'] service_name = session.name await track_event(event, EventState.started, service_name) await func(*args, **kwargs) await track_event(event, EventState.completed, service_name) return wrapper
python
def event_tracker(func): """ Event tracking handler """ @wraps(func) async def wrapper(*args, **kwargs): """ Wraps function to provide redis tracking """ event = Event(args[0]) session = kwargs['session'] service_name = session.name await track_event(event, EventState.started, service_name) await func(*args, **kwargs) await track_event(event, EventState.completed, service_name) return wrapper
[ "def", "event_tracker", "(", "func", ")", ":", "@", "wraps", "(", "func", ")", "async", "def", "wrapper", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "\"\"\"\n Wraps function to provide redis\n tracking\n \"\"\"", "event", "=", "Event", "(", "args", "[", "0", "]", ")", "session", "=", "kwargs", "[", "'session'", "]", "service_name", "=", "session", ".", "name", "await", "track_event", "(", "event", ",", "EventState", ".", "started", ",", "service_name", ")", "await", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "await", "track_event", "(", "event", ",", "EventState", ".", "completed", ",", "service_name", ")", "return", "wrapper" ]
Event tracking handler
[ "Event", "tracking", "handler" ]
0e519964a56bd07a879b266f21f177749c63aaed
https://github.com/eventifyio/eventify/blob/0e519964a56bd07a879b266f21f177749c63aaed/eventify/service.py#L19-L35
train
KnightConan/sspdatatables
src/sspdatatables/utils/decorator.py
ensure_ajax
def ensure_ajax(valid_request_methods, error_response_context=None): """ Intends to ensure the received the request is ajax request and it is included in the valid request methods :param valid_request_methods: list: list of valid request methods, such as 'GET', 'POST' :param error_response_context: None/dict: context dictionary to render, if error occurs :return: function """ def real_decorator(view_func): def wrap_func(request, *args, **kwargs): if not isinstance(request, HttpRequest): # make sure the request is a django httprequest return generate_error_json_response("Invalid request!", error_response_context) elif not request.is_ajax(): # ensure the request is an ajax request return generate_error_json_response("Invalid request type!", error_response_context) elif request.method not in valid_request_methods: # check if the request method is in allowed request methods return generate_error_json_response("Invalid request method!", error_response_context) else: return view_func(request, *args, **kwargs) wrap_func.__doc__ = view_func.__doc__ wrap_func.__name__ = view_func.__name__ return wrap_func return real_decorator
python
def ensure_ajax(valid_request_methods, error_response_context=None): """ Intends to ensure the received the request is ajax request and it is included in the valid request methods :param valid_request_methods: list: list of valid request methods, such as 'GET', 'POST' :param error_response_context: None/dict: context dictionary to render, if error occurs :return: function """ def real_decorator(view_func): def wrap_func(request, *args, **kwargs): if not isinstance(request, HttpRequest): # make sure the request is a django httprequest return generate_error_json_response("Invalid request!", error_response_context) elif not request.is_ajax(): # ensure the request is an ajax request return generate_error_json_response("Invalid request type!", error_response_context) elif request.method not in valid_request_methods: # check if the request method is in allowed request methods return generate_error_json_response("Invalid request method!", error_response_context) else: return view_func(request, *args, **kwargs) wrap_func.__doc__ = view_func.__doc__ wrap_func.__name__ = view_func.__name__ return wrap_func return real_decorator
[ "def", "ensure_ajax", "(", "valid_request_methods", ",", "error_response_context", "=", "None", ")", ":", "def", "real_decorator", "(", "view_func", ")", ":", "def", "wrap_func", "(", "request", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "not", "isinstance", "(", "request", ",", "HttpRequest", ")", ":", "# make sure the request is a django httprequest", "return", "generate_error_json_response", "(", "\"Invalid request!\"", ",", "error_response_context", ")", "elif", "not", "request", ".", "is_ajax", "(", ")", ":", "# ensure the request is an ajax request", "return", "generate_error_json_response", "(", "\"Invalid request type!\"", ",", "error_response_context", ")", "elif", "request", ".", "method", "not", "in", "valid_request_methods", ":", "# check if the request method is in allowed request methods", "return", "generate_error_json_response", "(", "\"Invalid request method!\"", ",", "error_response_context", ")", "else", ":", "return", "view_func", "(", "request", ",", "*", "args", ",", "*", "*", "kwargs", ")", "wrap_func", ".", "__doc__", "=", "view_func", ".", "__doc__", "wrap_func", ".", "__name__", "=", "view_func", ".", "__name__", "return", "wrap_func", "return", "real_decorator" ]
Intends to ensure the received the request is ajax request and it is included in the valid request methods :param valid_request_methods: list: list of valid request methods, such as 'GET', 'POST' :param error_response_context: None/dict: context dictionary to render, if error occurs :return: function
[ "Intends", "to", "ensure", "the", "received", "the", "request", "is", "ajax", "request", "and", "it", "is", "included", "in", "the", "valid", "request", "methods" ]
1179a11358734e5e472e5eee703e8d34fa49e9bf
https://github.com/KnightConan/sspdatatables/blob/1179a11358734e5e472e5eee703e8d34fa49e9bf/src/sspdatatables/utils/decorator.py#L8-L38
train
KnightConan/sspdatatables
src/sspdatatables/utils/decorator.py
generate_error_json_response
def generate_error_json_response(error_dict, error_response_context=None): """ Intends to build an error json response. If the error_response_context is None, then we generate this response using data tables format :param error_dict: str/dict: contains the error message(s) :param error_response_context: None/dict: context dictionary to render, if error occurs :return: JsonResponse """ response = error_dict if isinstance(error_dict, str): response = {"error": response} if error_response_context is None: error_response_context = { 'draw': 0, 'recordsTotal': 0, 'recordsFiltered': 0, 'data': [] } response.update(error_response_context) return JsonResponse(response)
python
def generate_error_json_response(error_dict, error_response_context=None): """ Intends to build an error json response. If the error_response_context is None, then we generate this response using data tables format :param error_dict: str/dict: contains the error message(s) :param error_response_context: None/dict: context dictionary to render, if error occurs :return: JsonResponse """ response = error_dict if isinstance(error_dict, str): response = {"error": response} if error_response_context is None: error_response_context = { 'draw': 0, 'recordsTotal': 0, 'recordsFiltered': 0, 'data': [] } response.update(error_response_context) return JsonResponse(response)
[ "def", "generate_error_json_response", "(", "error_dict", ",", "error_response_context", "=", "None", ")", ":", "response", "=", "error_dict", "if", "isinstance", "(", "error_dict", ",", "str", ")", ":", "response", "=", "{", "\"error\"", ":", "response", "}", "if", "error_response_context", "is", "None", ":", "error_response_context", "=", "{", "'draw'", ":", "0", ",", "'recordsTotal'", ":", "0", ",", "'recordsFiltered'", ":", "0", ",", "'data'", ":", "[", "]", "}", "response", ".", "update", "(", "error_response_context", ")", "return", "JsonResponse", "(", "response", ")" ]
Intends to build an error json response. If the error_response_context is None, then we generate this response using data tables format :param error_dict: str/dict: contains the error message(s) :param error_response_context: None/dict: context dictionary to render, if error occurs :return: JsonResponse
[ "Intends", "to", "build", "an", "error", "json", "response", ".", "If", "the", "error_response_context", "is", "None", "then", "we", "generate", "this", "response", "using", "data", "tables", "format" ]
1179a11358734e5e472e5eee703e8d34fa49e9bf
https://github.com/KnightConan/sspdatatables/blob/1179a11358734e5e472e5eee703e8d34fa49e9bf/src/sspdatatables/utils/decorator.py#L41-L59
train
gofed/gofedlib
gofedlib/go/symbolsextractor/extractor.py
GoSymbolsExtractor._mergeGoSymbols
def _mergeGoSymbols(self, jsons = []): """ Exported symbols for a given package does not have any prefix. So I can drop all import paths that are file specific and merge all symbols. Assuming all files in the given package has mutual exclusive symbols. """ # <siXy> imports are per file, exports are per package # on the highest level we have: pkgname, types, funcs, vars, imports. symbols = {} symbols["types"] = [] symbols["funcs"] = [] symbols["vars"] = [] for file_json in jsons: symbols["types"] += file_json["types"] symbols["funcs"] += file_json["funcs"] symbols["vars"] += file_json["vars"] return symbols
python
def _mergeGoSymbols(self, jsons = []): """ Exported symbols for a given package does not have any prefix. So I can drop all import paths that are file specific and merge all symbols. Assuming all files in the given package has mutual exclusive symbols. """ # <siXy> imports are per file, exports are per package # on the highest level we have: pkgname, types, funcs, vars, imports. symbols = {} symbols["types"] = [] symbols["funcs"] = [] symbols["vars"] = [] for file_json in jsons: symbols["types"] += file_json["types"] symbols["funcs"] += file_json["funcs"] symbols["vars"] += file_json["vars"] return symbols
[ "def", "_mergeGoSymbols", "(", "self", ",", "jsons", "=", "[", "]", ")", ":", "# <siXy> imports are per file, exports are per package", "# on the highest level we have: pkgname, types, funcs, vars, imports.", "symbols", "=", "{", "}", "symbols", "[", "\"types\"", "]", "=", "[", "]", "symbols", "[", "\"funcs\"", "]", "=", "[", "]", "symbols", "[", "\"vars\"", "]", "=", "[", "]", "for", "file_json", "in", "jsons", ":", "symbols", "[", "\"types\"", "]", "+=", "file_json", "[", "\"types\"", "]", "symbols", "[", "\"funcs\"", "]", "+=", "file_json", "[", "\"funcs\"", "]", "symbols", "[", "\"vars\"", "]", "+=", "file_json", "[", "\"vars\"", "]", "return", "symbols" ]
Exported symbols for a given package does not have any prefix. So I can drop all import paths that are file specific and merge all symbols. Assuming all files in the given package has mutual exclusive symbols.
[ "Exported", "symbols", "for", "a", "given", "package", "does", "not", "have", "any", "prefix", ".", "So", "I", "can", "drop", "all", "import", "paths", "that", "are", "file", "specific", "and", "merge", "all", "symbols", ".", "Assuming", "all", "files", "in", "the", "given", "package", "has", "mutual", "exclusive", "symbols", "." ]
0674c248fe3d8706f98f912996b65af469f96b10
https://github.com/gofed/gofedlib/blob/0674c248fe3d8706f98f912996b65af469f96b10/gofedlib/go/symbolsextractor/extractor.py#L203-L222
train
NikolayDachev/jadm
lib/paramiko-1.14.1/paramiko/_winapi.py
MemoryMap.read
def read(self, n): """ Read n bytes from mapped view. """ out = ctypes.create_string_buffer(n) ctypes.windll.kernel32.RtlMoveMemory(out, self.view + self.pos, n) self.pos += n return out.raw
python
def read(self, n): """ Read n bytes from mapped view. """ out = ctypes.create_string_buffer(n) ctypes.windll.kernel32.RtlMoveMemory(out, self.view + self.pos, n) self.pos += n return out.raw
[ "def", "read", "(", "self", ",", "n", ")", ":", "out", "=", "ctypes", ".", "create_string_buffer", "(", "n", ")", "ctypes", ".", "windll", ".", "kernel32", ".", "RtlMoveMemory", "(", "out", ",", "self", ".", "view", "+", "self", ".", "pos", ",", "n", ")", "self", ".", "pos", "+=", "n", "return", "out", ".", "raw" ]
Read n bytes from mapped view.
[ "Read", "n", "bytes", "from", "mapped", "view", "." ]
12bb550445edfcd87506f7cba7a6a35d413c5511
https://github.com/NikolayDachev/jadm/blob/12bb550445edfcd87506f7cba7a6a35d413c5511/lib/paramiko-1.14.1/paramiko/_winapi.py#L145-L152
train
thiagopbueno/tf-rddlsim
tfrddlsim/simulation/transition_simulator.py
ActionSimulationCell._output
def _output(cls, fluents: Sequence[FluentPair]) -> Sequence[tf.Tensor]: '''Converts `fluents` to tensors with datatype tf.float32.''' output = [] for _, fluent in fluents: tensor = fluent.tensor if tensor.dtype != tf.float32: tensor = tf.cast(tensor, tf.float32) output.append(tensor) return tuple(output)
python
def _output(cls, fluents: Sequence[FluentPair]) -> Sequence[tf.Tensor]: '''Converts `fluents` to tensors with datatype tf.float32.''' output = [] for _, fluent in fluents: tensor = fluent.tensor if tensor.dtype != tf.float32: tensor = tf.cast(tensor, tf.float32) output.append(tensor) return tuple(output)
[ "def", "_output", "(", "cls", ",", "fluents", ":", "Sequence", "[", "FluentPair", "]", ")", "->", "Sequence", "[", "tf", ".", "Tensor", "]", ":", "output", "=", "[", "]", "for", "_", ",", "fluent", "in", "fluents", ":", "tensor", "=", "fluent", ".", "tensor", "if", "tensor", ".", "dtype", "!=", "tf", ".", "float32", ":", "tensor", "=", "tf", ".", "cast", "(", "tensor", ",", "tf", ".", "float32", ")", "output", ".", "append", "(", "tensor", ")", "return", "tuple", "(", "output", ")" ]
Converts `fluents` to tensors with datatype tf.float32.
[ "Converts", "fluents", "to", "tensors", "with", "datatype", "tf", ".", "float32", "." ]
d7102a0ad37d179dbb23141640254ea383d3b43f
https://github.com/thiagopbueno/tf-rddlsim/blob/d7102a0ad37d179dbb23141640254ea383d3b43f/tfrddlsim/simulation/transition_simulator.py#L124-L132
train
255BITS/hyperchamber
hyperchamber/selector.py
Selector.set
def set(self, key, value): """Sets a hyperparameter. Can be used to set an array of hyperparameters.""" self.store[key]=value return self.store
python
def set(self, key, value): """Sets a hyperparameter. Can be used to set an array of hyperparameters.""" self.store[key]=value return self.store
[ "def", "set", "(", "self", ",", "key", ",", "value", ")", ":", "self", ".", "store", "[", "key", "]", "=", "value", "return", "self", ".", "store" ]
Sets a hyperparameter. Can be used to set an array of hyperparameters.
[ "Sets", "a", "hyperparameter", ".", "Can", "be", "used", "to", "set", "an", "array", "of", "hyperparameters", "." ]
4d5774bde9ea6ce1113f77a069ffc605148482b8
https://github.com/255BITS/hyperchamber/blob/4d5774bde9ea6ce1113f77a069ffc605148482b8/hyperchamber/selector.py#L29-L32
train
255BITS/hyperchamber
hyperchamber/selector.py
Selector.config_at
def config_at(self, i): """Gets the ith config""" selections = {} for key in self.store: value = self.store[key] if isinstance(value, list): selected = i % len(value) i = i // len(value) selections[key]= value[selected] else: selections[key]= value return Config(selections)
python
def config_at(self, i): """Gets the ith config""" selections = {} for key in self.store: value = self.store[key] if isinstance(value, list): selected = i % len(value) i = i // len(value) selections[key]= value[selected] else: selections[key]= value return Config(selections)
[ "def", "config_at", "(", "self", ",", "i", ")", ":", "selections", "=", "{", "}", "for", "key", "in", "self", ".", "store", ":", "value", "=", "self", ".", "store", "[", "key", "]", "if", "isinstance", "(", "value", ",", "list", ")", ":", "selected", "=", "i", "%", "len", "(", "value", ")", "i", "=", "i", "//", "len", "(", "value", ")", "selections", "[", "key", "]", "=", "value", "[", "selected", "]", "else", ":", "selections", "[", "key", "]", "=", "value", "return", "Config", "(", "selections", ")" ]
Gets the ith config
[ "Gets", "the", "ith", "config" ]
4d5774bde9ea6ce1113f77a069ffc605148482b8
https://github.com/255BITS/hyperchamber/blob/4d5774bde9ea6ce1113f77a069ffc605148482b8/hyperchamber/selector.py#L77-L89
train
255BITS/hyperchamber
hyperchamber/selector.py
Selector.top
def top(self, sort_by): """Get the best results according to your custom sort method.""" sort = sorted(self.results, key=sort_by) return sort
python
def top(self, sort_by): """Get the best results according to your custom sort method.""" sort = sorted(self.results, key=sort_by) return sort
[ "def", "top", "(", "self", ",", "sort_by", ")", ":", "sort", "=", "sorted", "(", "self", ".", "results", ",", "key", "=", "sort_by", ")", "return", "sort" ]
Get the best results according to your custom sort method.
[ "Get", "the", "best", "results", "according", "to", "your", "custom", "sort", "method", "." ]
4d5774bde9ea6ce1113f77a069ffc605148482b8
https://github.com/255BITS/hyperchamber/blob/4d5774bde9ea6ce1113f77a069ffc605148482b8/hyperchamber/selector.py#L101-L104
train
255BITS/hyperchamber
hyperchamber/selector.py
Selector.load_or_create_config
def load_or_create_config(self, filename, config=None): """Loads a config from disk. Defaults to a random config if none is specified""" os.makedirs(os.path.dirname(os.path.expanduser(filename)), exist_ok=True) if os.path.exists(filename): return self.load(filename) if(config == None): config = self.random_config() self.save(filename, config) return config
python
def load_or_create_config(self, filename, config=None): """Loads a config from disk. Defaults to a random config if none is specified""" os.makedirs(os.path.dirname(os.path.expanduser(filename)), exist_ok=True) if os.path.exists(filename): return self.load(filename) if(config == None): config = self.random_config() self.save(filename, config) return config
[ "def", "load_or_create_config", "(", "self", ",", "filename", ",", "config", "=", "None", ")", ":", "os", ".", "makedirs", "(", "os", ".", "path", ".", "dirname", "(", "os", ".", "path", ".", "expanduser", "(", "filename", ")", ")", ",", "exist_ok", "=", "True", ")", "if", "os", ".", "path", ".", "exists", "(", "filename", ")", ":", "return", "self", ".", "load", "(", "filename", ")", "if", "(", "config", "==", "None", ")", ":", "config", "=", "self", ".", "random_config", "(", ")", "self", ".", "save", "(", "filename", ",", "config", ")", "return", "config" ]
Loads a config from disk. Defaults to a random config if none is specified
[ "Loads", "a", "config", "from", "disk", ".", "Defaults", "to", "a", "random", "config", "if", "none", "is", "specified" ]
4d5774bde9ea6ce1113f77a069ffc605148482b8
https://github.com/255BITS/hyperchamber/blob/4d5774bde9ea6ce1113f77a069ffc605148482b8/hyperchamber/selector.py#L115-L125
train
redhat-openstack/python-tripleo-helper
tripleohelper/undercloud.py
Undercloud.configure
def configure(self, repositories): """Prepare the system to be ready for an undercloud installation. """ self.enable_repositories(repositories) self.create_stack_user() self.install_base_packages() self.clean_system() self.yum_update(allow_reboot=True) self.install_osp() self.set_selinux('permissive') self.fix_hostname()
python
def configure(self, repositories): """Prepare the system to be ready for an undercloud installation. """ self.enable_repositories(repositories) self.create_stack_user() self.install_base_packages() self.clean_system() self.yum_update(allow_reboot=True) self.install_osp() self.set_selinux('permissive') self.fix_hostname()
[ "def", "configure", "(", "self", ",", "repositories", ")", ":", "self", ".", "enable_repositories", "(", "repositories", ")", "self", ".", "create_stack_user", "(", ")", "self", ".", "install_base_packages", "(", ")", "self", ".", "clean_system", "(", ")", "self", ".", "yum_update", "(", "allow_reboot", "=", "True", ")", "self", ".", "install_osp", "(", ")", "self", ".", "set_selinux", "(", "'permissive'", ")", "self", ".", "fix_hostname", "(", ")" ]
Prepare the system to be ready for an undercloud installation.
[ "Prepare", "the", "system", "to", "be", "ready", "for", "an", "undercloud", "installation", "." ]
bfa165538335edb1088170c7a92f097167225c81
https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/undercloud.py#L32-L42
train
redhat-openstack/python-tripleo-helper
tripleohelper/undercloud.py
Undercloud.openstack_undercloud_install
def openstack_undercloud_install(self): """Deploy an undercloud on the host. """ instack_undercloud_ver, _ = self.run('repoquery --whatprovides /usr/share/instack-undercloud/puppet-stack-config/puppet-stack-config.pp') if instack_undercloud_ver.rstrip('\n') == 'instack-undercloud-0:2.2.0-1.el7ost.noarch': LOG.warn('Workaround for BZ1298189') self.run("sed -i \"s/.*Keystone_domain\['heat_domain'\].*/Service\['keystone'\] -> Class\['::keystone::roles::admin'\] -> Class\['::heat::keystone::domain'\]/\" /usr/share/instack-undercloud/puppet-stack-config/puppet-stack-config.pp") self.run('OS_PASSWORD=bob openstack undercloud install', user='stack') # NOTE(Gonéri): we also need this after the overcloud deployment if self.run('rpm -qa openstack-ironic-api')[0].rstrip('\n') == 'openstack-ironic-api-4.2.2-3.el7ost.noarch': LOG.warn('Workaround for BZ1297796') self.run('systemctl start openstack-ironic-api.service') self.add_environment_file(user='stack', filename='stackrc') self.run('heat stack-list', user='stack')
python
def openstack_undercloud_install(self): """Deploy an undercloud on the host. """ instack_undercloud_ver, _ = self.run('repoquery --whatprovides /usr/share/instack-undercloud/puppet-stack-config/puppet-stack-config.pp') if instack_undercloud_ver.rstrip('\n') == 'instack-undercloud-0:2.2.0-1.el7ost.noarch': LOG.warn('Workaround for BZ1298189') self.run("sed -i \"s/.*Keystone_domain\['heat_domain'\].*/Service\['keystone'\] -> Class\['::keystone::roles::admin'\] -> Class\['::heat::keystone::domain'\]/\" /usr/share/instack-undercloud/puppet-stack-config/puppet-stack-config.pp") self.run('OS_PASSWORD=bob openstack undercloud install', user='stack') # NOTE(Gonéri): we also need this after the overcloud deployment if self.run('rpm -qa openstack-ironic-api')[0].rstrip('\n') == 'openstack-ironic-api-4.2.2-3.el7ost.noarch': LOG.warn('Workaround for BZ1297796') self.run('systemctl start openstack-ironic-api.service') self.add_environment_file(user='stack', filename='stackrc') self.run('heat stack-list', user='stack')
[ "def", "openstack_undercloud_install", "(", "self", ")", ":", "instack_undercloud_ver", ",", "_", "=", "self", ".", "run", "(", "'repoquery --whatprovides /usr/share/instack-undercloud/puppet-stack-config/puppet-stack-config.pp'", ")", "if", "instack_undercloud_ver", ".", "rstrip", "(", "'\\n'", ")", "==", "'instack-undercloud-0:2.2.0-1.el7ost.noarch'", ":", "LOG", ".", "warn", "(", "'Workaround for BZ1298189'", ")", "self", ".", "run", "(", "\"sed -i \\\"s/.*Keystone_domain\\['heat_domain'\\].*/Service\\['keystone'\\] -> Class\\['::keystone::roles::admin'\\] -> Class\\['::heat::keystone::domain'\\]/\\\" /usr/share/instack-undercloud/puppet-stack-config/puppet-stack-config.pp\"", ")", "self", ".", "run", "(", "'OS_PASSWORD=bob openstack undercloud install'", ",", "user", "=", "'stack'", ")", "# NOTE(Gonéri): we also need this after the overcloud deployment", "if", "self", ".", "run", "(", "'rpm -qa openstack-ironic-api'", ")", "[", "0", "]", ".", "rstrip", "(", "'\\n'", ")", "==", "'openstack-ironic-api-4.2.2-3.el7ost.noarch'", ":", "LOG", ".", "warn", "(", "'Workaround for BZ1297796'", ")", "self", ".", "run", "(", "'systemctl start openstack-ironic-api.service'", ")", "self", ".", "add_environment_file", "(", "user", "=", "'stack'", ",", "filename", "=", "'stackrc'", ")", "self", ".", "run", "(", "'heat stack-list'", ",", "user", "=", "'stack'", ")" ]
Deploy an undercloud on the host.
[ "Deploy", "an", "undercloud", "on", "the", "host", "." ]
bfa165538335edb1088170c7a92f097167225c81
https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/undercloud.py#L56-L70
train
redhat-openstack/python-tripleo-helper
tripleohelper/undercloud.py
Undercloud.create_flavor
def create_flavor(self, name): """Create a new baremetal flavor. :param name: the name of the flavor """ self.add_environment_file(user='stack', filename='stackrc') self.run('openstack flavor create --id auto --ram 4096 --disk 40 --vcpus 1 baremetal', user='stack', success_status=(0, 1)) self.run('openstack flavor set --property "cpu_arch"="x86_64" --property "capabilities:boot_option"="local" baremetal', user='stack') self.run('openstack flavor set --property "capabilities:profile"="baremetal" baremetal', user='stack')
python
def create_flavor(self, name): """Create a new baremetal flavor. :param name: the name of the flavor """ self.add_environment_file(user='stack', filename='stackrc') self.run('openstack flavor create --id auto --ram 4096 --disk 40 --vcpus 1 baremetal', user='stack', success_status=(0, 1)) self.run('openstack flavor set --property "cpu_arch"="x86_64" --property "capabilities:boot_option"="local" baremetal', user='stack') self.run('openstack flavor set --property "capabilities:profile"="baremetal" baremetal', user='stack')
[ "def", "create_flavor", "(", "self", ",", "name", ")", ":", "self", ".", "add_environment_file", "(", "user", "=", "'stack'", ",", "filename", "=", "'stackrc'", ")", "self", ".", "run", "(", "'openstack flavor create --id auto --ram 4096 --disk 40 --vcpus 1 baremetal'", ",", "user", "=", "'stack'", ",", "success_status", "=", "(", "0", ",", "1", ")", ")", "self", ".", "run", "(", "'openstack flavor set --property \"cpu_arch\"=\"x86_64\" --property \"capabilities:boot_option\"=\"local\" baremetal'", ",", "user", "=", "'stack'", ")", "self", ".", "run", "(", "'openstack flavor set --property \"capabilities:profile\"=\"baremetal\" baremetal'", ",", "user", "=", "'stack'", ")" ]
Create a new baremetal flavor. :param name: the name of the flavor
[ "Create", "a", "new", "baremetal", "flavor", "." ]
bfa165538335edb1088170c7a92f097167225c81
https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/undercloud.py#L188-L196
train
redhat-openstack/python-tripleo-helper
tripleohelper/undercloud.py
Undercloud.list_nodes
def list_nodes(self): """List the Ironic nodes UUID.""" self.add_environment_file(user='stack', filename='stackrc') ret, _ = self.run("ironic node-list --fields uuid|awk '/-.*-/ {print $2}'", user='stack') # NOTE(Gonéri): the good new is, the order of the nodes is preserved and follow the one from # the instackenv.json, BUT it may be interesting to add a check. return ret.split()
python
def list_nodes(self): """List the Ironic nodes UUID.""" self.add_environment_file(user='stack', filename='stackrc') ret, _ = self.run("ironic node-list --fields uuid|awk '/-.*-/ {print $2}'", user='stack') # NOTE(Gonéri): the good new is, the order of the nodes is preserved and follow the one from # the instackenv.json, BUT it may be interesting to add a check. return ret.split()
[ "def", "list_nodes", "(", "self", ")", ":", "self", ".", "add_environment_file", "(", "user", "=", "'stack'", ",", "filename", "=", "'stackrc'", ")", "ret", ",", "_", "=", "self", ".", "run", "(", "\"ironic node-list --fields uuid|awk '/-.*-/ {print $2}'\"", ",", "user", "=", "'stack'", ")", "# NOTE(Gonéri): the good new is, the order of the nodes is preserved and follow the one from", "# the instackenv.json, BUT it may be interesting to add a check.", "return", "ret", ".", "split", "(", ")" ]
List the Ironic nodes UUID.
[ "List", "the", "Ironic", "nodes", "UUID", "." ]
bfa165538335edb1088170c7a92f097167225c81
https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/undercloud.py#L198-L204
train
redhat-openstack/python-tripleo-helper
tripleohelper/undercloud.py
Undercloud.set_flavor
def set_flavor(self, node, flavor): """Set a flavor to a given ironic node. :param uuid: the ironic node UUID :param flavor: the flavor name """ command = ( 'ironic node-update {uuid} add ' 'properties/capabilities=profile:{flavor},boot_option:local').format( uuid=node.uuid, flavor=flavor) node.flavor = flavor self.add_environment_file(user='stack', filename='stackrc') self.run(command, user='stack')
python
def set_flavor(self, node, flavor): """Set a flavor to a given ironic node. :param uuid: the ironic node UUID :param flavor: the flavor name """ command = ( 'ironic node-update {uuid} add ' 'properties/capabilities=profile:{flavor},boot_option:local').format( uuid=node.uuid, flavor=flavor) node.flavor = flavor self.add_environment_file(user='stack', filename='stackrc') self.run(command, user='stack')
[ "def", "set_flavor", "(", "self", ",", "node", ",", "flavor", ")", ":", "command", "=", "(", "'ironic node-update {uuid} add '", "'properties/capabilities=profile:{flavor},boot_option:local'", ")", ".", "format", "(", "uuid", "=", "node", ".", "uuid", ",", "flavor", "=", "flavor", ")", "node", ".", "flavor", "=", "flavor", "self", ".", "add_environment_file", "(", "user", "=", "'stack'", ",", "filename", "=", "'stackrc'", ")", "self", ".", "run", "(", "command", ",", "user", "=", "'stack'", ")" ]
Set a flavor to a given ironic node. :param uuid: the ironic node UUID :param flavor: the flavor name
[ "Set", "a", "flavor", "to", "a", "given", "ironic", "node", "." ]
bfa165538335edb1088170c7a92f097167225c81
https://github.com/redhat-openstack/python-tripleo-helper/blob/bfa165538335edb1088170c7a92f097167225c81/tripleohelper/undercloud.py#L206-L219
train