complexity
int64 1
139
| fun_name
stringlengths 1
80
| code
stringlengths 101
62.2k
| commit_id
stringlengths 40
40
| ast_errors
stringlengths 0
3.11k
| ast_levels
int64 6
36
| file_name
stringlengths 5
79
| n_ast_nodes
int64 17
19.2k
| commit_message
stringlengths 3
15.3k
| d_id
int64 12
121k
| n_ast_errors
int64 0
9
| n_whitespaces
int64 4
10.8k
| token_counts
int64 5
3.06k
| vocab_size
int64 4
1.11k
| id
int64 20
338k
| n_words
int64 4
4.82k
| repo
stringlengths 3
22
| n_identifiers
int64 2
176
| path
stringlengths 7
134
| language
stringclasses 1
value | nloc
int64 1
413
| documentation
dict | url
stringlengths 31
59
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | get_word_index | def get_word_index(path="reuters_word_index.json"):
origin_folder = (
"https://storage.googleapis.com/tensorflow/tf-keras-datasets/"
)
path = get_file(
path,
origin=origin_folder + "reuters_word_index.json",
file_hash="4d44cc38712099c9e383dc6e5f11a921",
)
with open(path) as f:
return json.load(f)
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 11 | reuters.py | 83 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 80,402 | 0 | 75 | 45 | 20 | 270,139 | 22 | keras | 10 | keras/datasets/reuters.py | Python | 11 | {
"docstring": "Retrieves a dict mapping words to their index in the Reuters dataset.\n\n Args:\n path: where to cache the data (relative to `~/.keras/dataset`).\n\n Returns:\n The word index dictionary. Keys are word strings, values are their index.\n ",
"language": "en",
"n_whitespaces": 58,
"n_words": 35,
"vocab_size": 28
} | https://github.com/keras-team/keras.git |
|
3 | test_flow_run_respects_extra_loggers | async def test_flow_run_respects_extra_loggers(orion_client, logger_test_deployment):
flow_run = await orion_client.create_flow_run_from_deployment(
logger_test_deployment
)
await SubprocessFlowRunner(
env={"PREFECT_LOGGING_EXTRA_LOGGERS": "foo"}
).submit_flow_run(flow_run, MagicMock(spec=anyio.abc.TaskStatus))
state = (await orion_client.read_flow_run(flow_run.id)).state
settings = await orion_client.resolve_datadoc(state.result())
api_logs = await orion_client.read_logs()
api_log_messages = [log.message for log in api_logs]
prefect_logger = logging.getLogger("prefect")
# Configures 'foo' to match 'prefect'
assert settings["foo"]["handlers"] == [
handler.name for handler in prefect_logger.handlers
]
assert settings["foo"]["level"] == prefect_logger.level
assert "Hello from foo" in api_log_messages
# Does not configure 'bar'
assert settings["bar"]["handlers"] == []
assert settings["bar"]["level"] == logging.NOTSET
assert "Hello from bar" not in api_log_messages
@pytest.mark.parametrize("name", ["default", None, ""]) | b110baccdbfde300f410b069c873e8b2a2c98e00 | @pytest.mark.parametrize("name", ["default", None, ""]) | 14 | test_logging.py | 311 | Add test | 10,716 | 1 | 165 | 163 | 62 | 53,099 | 88 | prefect | 35 | tests/test_logging.py | Python | 20 | {
"docstring": "\n Runs a flow in a subprocess to check that PREFECT_LOGGING_EXTRA_LOGGERS works as\n intended. This avoids side-effects of modifying the loggers in this test run without\n confusing mocking.\n ",
"language": "en",
"n_whitespaces": 40,
"n_words": 27,
"vocab_size": 25
} | https://github.com/PrefectHQ/prefect.git |
5 | save | def save(self):
s = self._read_from_storage() # type: _Settings
for k, v in self.__dict__.items():
if k[0] == '_':
continue
if hasattr(s, k):
setattr(s, k, v)
log.debug("_ConfigSQL updating storage")
self._session.merge(s)
try:
self._session.commit()
except OperationalError as e:
log.error('Database error: %s', e)
self._session.rollback()
self.load()
| 4ea80e9810a14ca3617f08a4ae5cfa6b50482e9a | 11 | config_sql.py | 170 | Code cosmetics | 40,839 | 0 | 182 | 99 | 38 | 173,342 | 40 | calibre-web | 20 | cps/config_sql.py | Python | 15 | {
"docstring": "Apply all configuration values to the underlying storage.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | https://github.com/janeczku/calibre-web.git |
|
3 | try_all_gpus | def try_all_gpus():
num_gpus = len(tf.config.experimental.list_physical_devices('GPU'))
devices = [tf.device(f'/GPU:{i}') for i in range(num_gpus)]
return devices if devices else [tf.device('/CPU:0')]
| b64b41d8c1ac23c43f7a4e3f9f6339d6f0012ab2 | 12 | tensorflow.py | 91 | [PaddlePaddle] Merge master into Paddle branch (#1186)
* change 15.2 title in chinese version (#1109)
change title ’15.2. 情感分析:使用递归神经网络‘ to ’15.2. 情感分析:使用循环神经网络‘
* 修改部分语义表述 (#1105)
* Update r0.17.5 (#1120)
* Bump versions in installation
* 94行typo: (“bert.mall”)->(“bert.small”) (#1129)
* line 313: "bert.mall" -> "bert.small" (#1130)
* fix: update language as native reader (#1114)
* Fix the translation of "stride" (#1115)
* Update index.md (#1118)
修改部分语义表述
* Update self-attention-and-positional-encoding.md (#1133)
依照本书的翻译习惯,将pooling翻译成汇聚
* maybe a comment false (#1149)
* maybe a little false
* maybe a little false
* A minor bug in the rcnn section (Chinese edition) (#1148)
* Update bert.md (#1137)
一个笔误
# 假设batch_size=2,num_pred_positions=3
# 那么batch_idx应该是np.repeat( [0,1], 3 ) = [0,0,0,1,1,1]
* Update calculus.md (#1135)
* fix typo in git documentation (#1106)
* fix: Update the Chinese translation in lr-scheduler.md (#1136)
* Update lr-scheduler.md
* Update chapter_optimization/lr-scheduler.md
Co-authored-by: goldmermaid <[email protected]>
Co-authored-by: goldmermaid <[email protected]>
* fix translation for kaggle-house-price.md (#1107)
* fix translation for kaggle-house-price.md
* fix translation for kaggle-house-price.md
Signed-off-by: sunhaizhou <[email protected]>
* Update weight-decay.md (#1150)
* Update weight-decay.md
关于“k多选d”这一部分,中文读者使用排列组合的方式可能更容易理解
关于“给定k个变量,阶数的个数为...”这句话是有歧义的,不是很像中国话,应该是说“阶数为d的项的个数为...”。
并增加了一句对“因此即使是阶数上的微小变化,比如从$2$到$3$,也会显著增加我们模型的复杂性。”的解释
解释为何会增加复杂性以及为何需要细粒度工具。
* Update chapter_multilayer-perceptrons/weight-decay.md
yep
Co-authored-by: goldmermaid <[email protected]>
* Update chapter_multilayer-perceptrons/weight-decay.md
yep
Co-authored-by: goldmermaid <[email protected]>
Co-authored-by: goldmermaid <[email protected]>
* Fix a spelling error (#1161)
* Update gru.md (#1152)
The key distinction between vanilla RNNs and GRUs is that the latter support gating of the hidden state.
翻译错误
* Unify the function naming (#1113)
Unify naming of the function 'init_xavier()'.
* Update mlp-concise.md (#1166)
* Update mlp-concise.md
语句不通顺
* Update environment.md
语序异常
* Update config.ini
* fix the imprecise description (#1168)
Co-authored-by: yuande <yuande>
* fix typo in chapter_natural-language-processing-pretraining/glove.md (#1175)
* Fix some typos. (#1163)
* Update batch-norm.md (#1170)
fixing typos u->x in article
* Update linear-regression.md (#1090)
We invoke Stuart Russell and Peter Norvig who, in their classic AI text book Artificial Intelligence: A Modern Approach :cite:Russell.Norvig.2016, pointed out that
原译文把who也直接翻译出来了。
* Update mlp.md (#1117)
* Update mlp.md
修改部分语义表述
* Update chapter_multilayer-perceptrons/mlp.md
Co-authored-by: goldmermaid <[email protected]>
* Update chapter_multilayer-perceptrons/mlp.md
Co-authored-by: Aston Zhang <[email protected]>
Co-authored-by: goldmermaid <[email protected]>
* Correct a translation error. (#1091)
* Correct a translation error.
* Update chapter_computer-vision/image-augmentation.md
Co-authored-by: Aston Zhang <[email protected]>
* Update aws.md (#1121)
* Update aws.md
* Update chapter_appendix-tools-for-deep-learning/aws.md
Co-authored-by: Aston Zhang <[email protected]>
* Update image-augmentation.md (#1093)
* Update anchor.md (#1088)
fix a minor issue in code
* Update anchor.md
* Update image-augmentation.md
* fix typo and improve translation in chapter_linear-networks\softmax-regression.md (#1087)
* Avoid `torch.meshgrid` user warning (#1174)
Avoids the following user warning:
```python
~/anaconda3/envs/torch/lib/python3.10/site-packages/torch/functional.py:568: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2228.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
```
* bump to 2.0.0-beta1
* Update sequence.md
* bump beta1 on readme
* Add latex code block background to config
* BLD: Bump python support version 3.9 (#1183)
* BLD: Bump python support version 3.9
* Remove clear and manually downgrade protobuf 4.21.4 to 3.19.4
* BLD: Bump torch and tensorflow
* Update Jenkinsfile
* Update chapter_installation/index.md
* Update chapter_installation/index.md
Co-authored-by: Aston Zhang <[email protected]>
* Update config.ini
* Update INFO.md
* Update INFO.md
* Drop mint to show code in pdf, use Inconsolata font, apply code cell color (#1187)
* resolve the conflicts
* revise from publisher (#1089)
* revise from publisher
* d2l api
* post_latex
* revise from publisher
* revise ch11
* Delete d2l-Copy1.bib
* clear cache
* rm d2lbook clear
* debug anchor
* keep original d2l doc
Co-authored-by: Ubuntu <[email protected]>
Co-authored-by: Aston Zhang <[email protected]>
Co-authored-by: Aston Zhang <[email protected]>
* 重复语句 (#1188)
Co-authored-by: Aston Zhang <[email protected]>
* Improve expression for chapter_preliminaries/pandas.md (#1184)
* Update pandas.md
* Improve expression
* Improve expression
* Update chapter_preliminaries/pandas.md
Co-authored-by: Aston Zhang <[email protected]>
* Improce expression for chapter_preliminaries/linear-algebra.md (#1185)
* Improce expression
* Improve code comments
* Update chapter_preliminaries/linear-algebra.md
* Update chapter_preliminaries/linear-algebra.md
* Update chapter_preliminaries/linear-algebra.md
* Update chapter_preliminaries/linear-algebra.md
Co-authored-by: Aston Zhang <[email protected]>
* Fix multibox_detection bugs
* Update d2l to 0.17.5 version
* restore older version
* Upgrade pandas
* change to python3.8
* Test warning log
* relocate warning log
* test logs filtering
* Update gru.md
* Add DeprecationWarning filter
* Test warning log
* Update attention mechanisms & computational performance
* Update multilayer perceptron& linear & convolution networks & computer vision
* Update recurrent&optimition&nlp pretraining & nlp applications
* ignore warnings
* Update index.md
* Update linear networks
* Update multilayer perceptrons&deep learning computation
* Update preliminaries
* Check and Add warning filter
* Update kaggle-cifar10.md
* Update object-detection-dataset.md
* Update ssd.md fcn.md
* Update hybridize.md
* Update hybridize.md
Signed-off-by: sunhaizhou <[email protected]>
Co-authored-by: zhou201505013 <[email protected]>
Co-authored-by: Xinwei Liu <[email protected]>
Co-authored-by: Anirudh Dagar <[email protected]>
Co-authored-by: Aston Zhang <[email protected]>
Co-authored-by: hugo_han <[email protected]>
Co-authored-by: gyro永不抽风 <[email protected]>
Co-authored-by: CanChengZheng <[email protected]>
Co-authored-by: linlin <[email protected]>
Co-authored-by: iuk <[email protected]>
Co-authored-by: yoos <[email protected]>
Co-authored-by: Mr. Justice Lawrence John Wargrave <[email protected]>
Co-authored-by: Chiyuan Fu <[email protected]>
Co-authored-by: Sunhuashan <[email protected]>
Co-authored-by: Haiker Sun <[email protected]>
Co-authored-by: Ming Liu <[email protected]>
Co-authored-by: goldmermaid <[email protected]>
Co-authored-by: silenceZheng66 <[email protected]>
Co-authored-by: Wenchao Yan <[email protected]>
Co-authored-by: Kiki2049 <[email protected]>
Co-authored-by: Krahets <[email protected]>
Co-authored-by: friedmainfunction <[email protected]>
Co-authored-by: Jameson <[email protected]>
Co-authored-by: P. Yao <[email protected]>
Co-authored-by: Yulv-git <[email protected]>
Co-authored-by: Liu,Xiao <[email protected]>
Co-authored-by: YIN, Gang <[email protected]>
Co-authored-by: Joe-HZ <[email protected]>
Co-authored-by: lybloveyou <[email protected]>
Co-authored-by: VigourJiang <[email protected]>
Co-authored-by: zxhd863943427 <[email protected]>
Co-authored-by: LYF <[email protected]>
Co-authored-by: Aston Zhang <[email protected]>
Co-authored-by: xiaotinghe <[email protected]>
Co-authored-by: Ubuntu <[email protected]>
Co-authored-by: Holly-Max <[email protected]>
Co-authored-by: HinGwenWoong <[email protected]>
Co-authored-by: Shuai Zhang <[email protected]> | 37,441 | 0 | 30 | 51 | 15 | 158,288 | 18 | d2l-zh | 11 | d2l/tensorflow.py | Python | 4 | {
"docstring": "Return all available GPUs, or [cpu(),] if no GPU exists.\n\n Defined in :numref:`sec_use_gpu`",
"language": "en",
"n_whitespaces": 15,
"n_words": 13,
"vocab_size": 13
} | https://github.com/d2l-ai/d2l-zh.git |
|
1 | gen_fake_dataset | def gen_fake_dataset():
# For fake dataset, since the dataset is randomized, we create it once on the
# driver, and then send the same dataset to all the training workers.
# Use 10% of nodes for validation and 10% for testing.
fake_dataset = FakeDataset(transform=RandomNodeSplit(num_val=0.1, num_test=0.1))
| 732175e2458ec671c80484bcd35150dcdc7e600b | 12 | distributed_sage_example.py | 41 | [AIR] Add distributed `torch_geometric` example (#23580)
Add example for distributed pytorch geometric (graph learning) with Ray AIR
This only showcases distributed training, but with data small enough that it can be loaded in by each training worker individually. Distributed data ingest is out of scope for this PR.
Co-authored-by: matthewdeng <[email protected]> | 34,236 | 0 | 60 | 30 | 36 | 148,314 | 45 | ray | 7 | python/ray/ml/examples/pytorch_geometric/distributed_sage_example.py | Python | 4 | {
"docstring": "Returns a function to be called on each worker that returns a Fake Dataset.",
"language": "en",
"n_whitespaces": 13,
"n_words": 14,
"vocab_size": 13
} | https://github.com/ray-project/ray.git |
|
9 | read_dict | def read_dict(self, dictionary, source='<dict>'):
elements_added = set()
for section, keys in dictionary.items():
section = str(section)
try:
self.add_section(section)
except (DuplicateSectionError, ValueError):
if self._strict and section in elements_added:
raise
elements_added.add(section)
for key, value in keys.items():
key = self.optionxform(str(key))
if value is not None:
value = str(value)
if self._strict and (section, key) in elements_added:
raise DuplicateOptionError(section, key, source)
elements_added.add((section, key))
self.set(section, key, value)
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 14 | configparser.py | 222 | add python 3.10.4 for windows | 56,469 | 0 | 298 | 141 | 42 | 221,674 | 60 | XX-Net | 19 | python3.10.4/Lib/configparser.py | Python | 18 | {
"docstring": "Read configuration from a dictionary.\n\n Keys are section names, values are dictionaries with keys and values\n that should be present in the section. If the used dictionary type\n preserves order, sections and their keys will be added in order.\n\n All types held in the dictionary are converted to strings during\n reading, including section names, option names and keys.\n\n Optional second argument is the `source' specifying the name of the\n dictionary being read.\n ",
"language": "en",
"n_whitespaces": 128,
"n_words": 72,
"vocab_size": 54
} | https://github.com/XX-net/XX-Net.git |
|
1 | get_deployment_statuses | def get_deployment_statuses() -> Dict[str, DeploymentStatusInfo]:
return internal_get_global_client().get_deployment_statuses()
| 1100c982223757f697a410a0d0c3d8bf3ff9c805 | 9 | api.py | 35 | [serve] Implement Serve Application object (#22917)
The concept of a Serve Application, a data structure containing all information needed to deploy Serve on a Ray cluster, has surfaced during recent design discussions. This change introduces a formal Application data structure and refactors existing code to use it. | 33,628 | 0 | 13 | 20 | 7 | 146,198 | 7 | ray | 5 | python/ray/serve/api.py | Python | 18 | {
"docstring": "Returns a dictionary of deployment statuses.\n\n A deployment's status is one of {UPDATING, UNHEALTHY, and HEALTHY}.\n\n Example:\n\n >>> statuses = get_deployment_statuses()\n >>> status_info = statuses[\"deployment_name\"]\n >>> status = status_info.status\n >>> message = status_info.message\n\n Returns:\n Dict[str, DeploymentStatus]: This dictionary maps the running\n deployment's name to a DeploymentStatus object containing its\n status and a message explaining the status.\n ",
"language": "en",
"n_whitespaces": 121,
"n_words": 56,
"vocab_size": 40
} | https://github.com/ray-project/ray.git |
|
1 | test_remove_config_entry_from_device_fails | async def test_remove_config_entry_from_device_fails(hass, hass_ws_client):
assert await async_setup_component(hass, "config", {})
ws_client = await hass_ws_client(hass)
device_registry = mock_device_registry(hass)
| c496748125b811ef5437ad666d21c09025e0967f | 9 | test_device_registry.py | 56 | Add WS API for removing a config entry from a device (#66188)
* Add WS API for removing a config entry from a device
* Address review comments
* Address review comments
* Remove entity cleanup from ConfigEntries
* Update + add tests
* Improve comments in test
* Add negative test
* Refactor according to review comments
* Add back async_remove_config_entry_device
* Remove unnecessary error handling
* Simplify error handling | 91,454 | 0 | 28 | 617 | 14 | 292,362 | 16 | core | 7 | tests/components/config/test_device_registry.py | Python | 132 | {
"docstring": "Test removing config entry from device failing cases.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | https://github.com/home-assistant/core.git |
|
6 | geometric_edges | def geometric_edges(G, radius, p=2):
nodes_pos = G.nodes(data="pos")
try:
import scipy as sp
import scipy.spatial # call as sp.spatial
except ImportError:
# no scipy KDTree so compute by for-loop
radius_p = radius**p
edges = [
(u, v)
for (u, pu), (v, pv) in combinations(nodes_pos, 2)
if sum(abs(a - b) ** p for a, b in zip(pu, pv)) <= radius_p
]
return edges
# scipy KDTree is available
nodes, coords = list(zip(*nodes_pos))
kdtree = sp.spatial.cKDTree(coords) # Cannot provide generator.
edge_indexes = kdtree.query_pairs(radius, p)
edges = [(nodes[u], nodes[v]) for u, v in sorted(edge_indexes)]
return edges
@py_random_state(5) | ad99a5862264355d5eaaa309136475bfb9a66c12 | @py_random_state(5) | 18 | geometric.py | 247 | Add default value p=2 for minkowski distance metric. (#5700) | 42,122 | 1 | 206 | 153 | 69 | 176,826 | 93 | networkx | 31 | networkx/generators/geometric.py | Python | 18 | {
"docstring": "Returns edge list of node pairs within `radius` of each other.\n\n Parameters\n ----------\n G : networkx graph\n The graph from which to generate the edge list. The nodes in `G` should\n have an attribute ``pos`` corresponding to the node position, which is\n used to compute the distance to other nodes.\n radius : scalar\n The distance threshold. Edges are included in the edge list if the\n distance between the two nodes is less than `radius`.\n p : scalar, default=2\n The `Minkowski distance metric\n <https://en.wikipedia.org/wiki/Minkowski_distance>`_ used to compute\n distances. The default value is 2, i.e. Euclidean distance.\n\n Returns\n -------\n edges : list\n List of edges whose distances are less than `radius`\n\n Notes\n -----\n Radius uses Minkowski distance metric `p`.\n If scipy is available, `scipy.spatial.cKDTree` is used to speed computation.\n\n Examples\n --------\n Create a graph with nodes that have a \"pos\" attribute representing 2D\n coordinates.\n\n >>> G = nx.Graph()\n >>> G.add_nodes_from([\n ... (0, {\"pos\": (0, 0)}),\n ... (1, {\"pos\": (3, 0)}),\n ... (2, {\"pos\": (8, 0)}),\n ... ])\n >>> nx.geometric_edges(G, radius=1)\n []\n >>> nx.geometric_edges(G, radius=4)\n [(0, 1)]\n >>> nx.geometric_edges(G, radius=6)\n [(0, 1), (1, 2)]\n >>> nx.geometric_edges(G, radius=9)\n [(0, 1), (0, 2), (1, 2)]\n ",
"language": "en",
"n_whitespaces": 358,
"n_words": 190,
"vocab_size": 115
} | https://github.com/networkx/networkx.git |
4 | fields | def fields(class_or_instance):
# Might it be worth caching this, per class?
try:
fields = getattr(class_or_instance, _FIELDS)
except AttributeError:
raise TypeError('must be called with a dataclass type or instance')
# Exclude pseudo-fields. Note that fields is sorted by insertion
# order, so the order of the tuple is as the fields were defined.
return tuple(f for f in fields.values() if f._field_type is _FIELD)
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 11 | dataclasses.py | 76 | add python 3.10.4 for windows | 56,538 | 0 | 98 | 43 | 53 | 222,330 | 62 | XX-Net | 11 | python3.10.4/Lib/dataclasses.py | Python | 6 | {
"docstring": "Return a tuple describing the fields of this dataclass.\n\n Accepts a dataclass or an instance of one. Tuple elements are of\n type Field.\n ",
"language": "en",
"n_whitespaces": 32,
"n_words": 23,
"vocab_size": 20
} | https://github.com/XX-net/XX-Net.git |
|
2 | _invert_monoms | def _invert_monoms(p1):
terms = list(p1.items())
terms.sort()
deg = p1.degree()
R = p1.ring
p = R.zero
cv = p1.listcoeffs()
mv = p1.listmonoms()
for mvi, cvi in zip(mv, cv):
p[(deg - mvi[0],)] = cvi
return p
| 7d773eb18daaef3c54f34d1ac6cbc5b83a5bb16c | 12 | ring_series.py | 131 | Cleanup loops and ranges | 48,908 | 0 | 71 | 80 | 26 | 198,397 | 34 | sympy | 19 | sympy/polys/ring_series.py | Python | 11 | {
"docstring": "\n Compute ``x**n * p1(1/x)`` for a univariate polynomial ``p1`` in ``x``.\n\n Examples\n ========\n\n >>> from sympy.polys.domains import ZZ\n >>> from sympy.polys.rings import ring\n >>> from sympy.polys.ring_series import _invert_monoms\n >>> R, x = ring('x', ZZ)\n >>> p = x**2 + 2*x + 3\n >>> _invert_monoms(p)\n 3*x**2 + 2*x + 1\n\n See Also\n ========\n\n sympy.polys.densebasic.dup_reverse\n ",
"language": "en",
"n_whitespaces": 96,
"n_words": 53,
"vocab_size": 38
} | https://github.com/sympy/sympy.git |
|
4 | to_python | def to_python(self, value):
value = super().to_python(value)
if value in self.empty_values:
return None
if self.localize:
value = formats.sanitize_separators(value)
# Strip trailing decimal and zeros.
try:
value = int(self.re_decimal.sub("", str(value)))
except (ValueError, TypeError):
raise ValidationError(self.error_messages["invalid"], code="invalid")
return value
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 14 | fields.py | 139 | Refs #33476 -- Reformatted code with Black. | 51,297 | 0 | 136 | 83 | 28 | 205,955 | 36 | django | 17 | django/forms/fields.py | Python | 11 | {
"docstring": "\n Validate that int() can be called on the input. Return the result\n of int() or None for empty values.\n ",
"language": "en",
"n_whitespaces": 41,
"n_words": 19,
"vocab_size": 17
} | https://github.com/django/django.git |
|
3 | _zoom_data_limits | def _zoom_data_limits(self, scale_u, scale_v, scale_w):
scale = np.array([scale_u, scale_v, scale_w])
# Only perform frame conversion if unequal scale factors
if not np.allclose(scale, scale_u):
# Convert the scale factors from the view frame to the data frame
R = np.array([self._view_u, self._view_v, self._view_w])
S = scale * np.eye(3)
scale = np.linalg.norm(R.T @ S, axis=1)
# Set the constrained scale factors to the factor closest to 1
if self._aspect in ('equal', 'equalxy', 'equalxz', 'equalyz'):
ax_idxs = self._equal_aspect_axis_indices(self._aspect)
min_ax_idxs = np.argmin(np.abs(scale[ax_idxs] - 1))
scale[ax_idxs] = scale[ax_idxs][min_ax_idxs]
self._scale_axis_limits(scale[0], scale[1], scale[2])
| 4896ec1a2cfb8c454e385632d8df213c915ced52 | 16 | axes3d.py | 246 | Add pan and zoom toolbar handling to 3D Axes (Replaces PR#22614) (#23449)
* ENH: Add pan and zoom toolbar handling to 3D Axes
1) This moves the pan logic that was already in the mouse move handler
into the "drag_pan" method to make it available from the toolbar.
2) This expands upon the panning logic to enable a zoom-to-box feature.
The zoom-to-box is done relative to the Axes, so it shrinks/expands
the box as a fraction of each delta, from lower-left Axes to lower-left
zoom-box. Thus, it tries to handle non-centered zooms, which adds more
cases to handle versus the current right-click zoom only scaling from
the center of the projection.
* Rewrite zooming with bounding box
* Rewrite 3d panning to work with a roll angle
* Whats new for zoom and pan buttons
* Make pan button configurable
* Do not jump when zooming and mouse goes over other subplot
* Rework zooming for 3d plots
* Handle x/y lock when zooming and panning
* Update tests
* Docstrings
* Dont assume a scale_z
* Limit zoom box
* Test zoom pan key modifiers
* Save some calculation by saving view axes
* Deprecation warnings for Axes3D.eye, .vvec
* Remove Axes3D._prepare_view_from_bbox for now
* Comments and docstrings
* Switch from uvn to uvw
* Save aspect to axes
* Constrain zooming with mouse when one of the equal aspect ratios is set
* Cleanup
* Cleanup
* Consolidate finding equal aspect axis indices
* linting
* More intuitive scaling
* Box zoom keeps existing aspect ratios
* Linting
* Code review comments
* Revert parameters for view_transformation
* Fix new 3d pan/zoom view going on view stack twice
* Better clipping
* Test 3d toolbar navigation
* Privatize helper functions
* Deprecations
* Code review changes
* Deprecation note
* Undeprecate proj3d.view_transformation
* Undeprecate proj3d.view_transformation
* Update doc/api/next_api_changes/deprecations/23449-SS.rst
Co-authored-by: Greg Lucas <[email protected]>
Co-authored-by: Scott Shambaugh <[email protected]>
Co-authored-by: Oscar Gustafsson <[email protected]> | 23,730 | 0 | 231 | 159 | 59 | 109,746 | 85 | matplotlib | 26 | lib/mpl_toolkits/mplot3d/axes3d.py | Python | 11 | {
"docstring": "\n Zoom in or out of a 3D plot.\n Will scale the data limits by the scale factors. These will be\n transformed to the x, y, z data axes based on the current view angles.\n A scale factor > 1 zooms out and a scale factor < 1 zooms in.\n\n For an axes that has had its aspect ratio set to 'equal', 'equalxy',\n 'equalyz', or 'equalxz', the relevant axes are constrained to zoom\n equally.\n\n Parameters\n ----------\n scale_u : float\n Scale factor for the u view axis (view screen horizontal).\n scale_v : float\n Scale factor for the v view axis (view screen vertical).\n scale_w : float\n Scale factor for the w view axis (view screen depth).\n ",
"language": "en",
"n_whitespaces": 239,
"n_words": 114,
"vocab_size": 73
} | https://github.com/matplotlib/matplotlib.git |
|
2 | start | def start(self):
self.worker = _get_worker(
args=self.args,
target=run,
kwargs={
'args': self.args,
'name': self.name,
'container_name': self.container_name,
'net_mode': self.net_mode,
'runtime_ctrl_address': self.runtime_ctrl_address,
'envs': self._envs,
'is_started': self.is_started,
'is_shutdown': self.is_shutdown,
'is_ready': self.is_ready,
},
)
self.worker.start()
if not self.args.noblock_on_start:
self.wait_start_success()
return self
| 933415bfa1f9eb89f935037014dfed816eb9815d | 12 | container.py | 172 | feat: star routing (#3900)
* feat(proto): adjust proto for star routing (#3844)
* feat(proto): adjust proto for star routing
* feat(proto): generate proto files
* feat(grpc): refactor grpclet interface (#3846)
* feat: refactor connection pool for star routing (#3872)
* feat(k8s): add more labels to k8s deployments
* feat(network): refactor connection pool
* feat(network): refactor k8s pool
* feat: star routing graph gateway (#3877)
* feat: star routing - refactor grpc data runtime (#3887)
* feat(runtimes): refactor grpc dataruntime
* fix(tests): adapt worker runtime tests
* fix(import): fix import
* feat(proto): enable sending multiple lists (#3891)
* feat: star routing gateway (#3893)
* feat: star routing gateway all protocols (#3897)
* test: add streaming and prefetch tests (#3901)
* feat(head): new head runtime for star routing (#3899)
* feat(head): new head runtime
* feat(head): new head runtime
* style: fix overload and cli autocomplete
* feat(network): improve proto comments
Co-authored-by: Jina Dev Bot <[email protected]>
* feat(worker): merge docs in worker runtime (#3905)
* feat(worker): merge docs in worker runtime
* feat(tests): assert after clean up
* feat(tests): star routing runtime integration tests (#3908)
* fix(tests): fix integration tests
* test: test runtimes fast slow request (#3910)
* feat(zmq): purge zmq, zed, routing_table (#3915)
* feat(zmq): purge zmq, zed, routing_table
* style: fix overload and cli autocomplete
* feat(zmq): adapt comment in dependency list
* style: fix overload and cli autocomplete
* fix(tests): fix type tests
Co-authored-by: Jina Dev Bot <[email protected]>
* test: add test gateway to worker connection (#3921)
* feat(pea): adapt peas for star routing (#3918)
* feat(pea): adapt peas for star routing
* style: fix overload and cli autocomplete
* feat(pea): add tests
* feat(tests): add failing head pea test
Co-authored-by: Jina Dev Bot <[email protected]>
* feat(tests): integration tests for peas (#3923)
* feat(tests): integration tests for peas
* feat(pea): remove _inner_pea function
* feat: star routing container pea (#3922)
* test: rescue tests (#3942)
* fix: fix streaming tests (#3945)
* refactor: move docker run to run (#3948)
* feat: star routing pods (#3940)
* feat(pod): adapt pods for star routing
* feat(pods): adapt basepod to star routing
* feat(pod): merge pod and compound pod
* feat(tests): fix tests
* style: fix overload and cli autocomplete
* feat(test): add container pea int test
* feat(ci): remove more unnecessary tests
* fix(tests): remove jinad runtime
* feat(ci): remove latency tracking
* fix(ci): fix ci def
* fix(runtime): enable runtime to be exited
* fix(tests): wrap runtime test in process
* fix(runtimes): remove unused runtimes
* feat(runtimes): improve cancel wait
* fix(ci): build test pip again in ci
* fix(tests): fix a test
* fix(test): run async in its own process
* feat(pod): include shard in activate msg
* fix(pea): dont join
* feat(pod): more debug out
* feat(grpc): manage channels properly
* feat(pods): remove exitfifo
* feat(network): add simple send retry mechanism
* fix(network): await pool close
* fix(test): always close grpc server in worker
* fix(tests): remove container pea from tests
* fix(tests): reorder tests
* fix(ci): split tests
* fix(ci): allow alias setting
* fix(test): skip a test
* feat(pods): address comments
Co-authored-by: Jina Dev Bot <[email protected]>
* test: unblock skipped test (#3957)
* feat: jinad pea (#3949)
* feat: jinad pea
* feat: jinad pea
* test: remote peas
* test: toplogy tests with jinad
* ci: parallel jobs
* feat(tests): add pod integration tests (#3958)
* feat(tests): add pod integration tests
* fix(tests): make tests less flaky
* fix(test): fix test
* test(pea): remote pea topologies (#3961)
* test(pea): remote pea simple topology
* test: remote pea topologies
* refactor: refactor streamer result handling (#3960)
* feat(k8s): adapt K8s Pod for StarRouting (#3964)
* test: optimize k8s test
* test: increase timeout and use different namespace
* test: optimize k8s test
* test: build and load image when needed
* test: refactor k8s test
* test: fix image name error
* test: fix k8s image load
* test: fix typoe port expose
* test: update tests in connection pool and handling
* test: remove unused fixture
* test: parameterize docker images
* test: parameterize docker images
* test: parameterize docker images
* feat(k8s): adapt k8s pod for star routing
* fix(k8s): dont overwrite add/remove function in pool
* fix(k8s): some fixes
* fix(k8s): some more fixes
* fix(k8s): linting
* fix(tests): fix tests
* fix(tests): fix k8s unit tests
* feat(k8s): complete k8s integration test
* feat(k8s): finish k8s tests
* feat(k8s): fix test
* fix(tests): fix test with no name
* feat(k8s): unify create/replace interface
* feat(k8s): extract k8s port constants
* fix(tests): fix tests
* fix(tests): wait for runtime being ready in tests
* feat(k8s): address comments
Co-authored-by: bwanglzu <[email protected]>
* feat(flow): adapt Flow for StarRouting (#3986)
* feat(flow): add routes
* feat(flow): adapt flow to star routing
* style: fix overload and cli autocomplete
* feat(flow): handle empty topologies
* feat(k8s): allow k8s pool disabling
* style: fix overload and cli autocomplete
* fix(test): fix test with mock
* fix(tests): fix more tests
* feat(flow): clean up tests
* style: fix overload and cli autocomplete
* fix(tests): fix more tests
* feat: add plot function (#3994)
* fix(tests): avoid hanging tests
* feat(flow): add type hinting
* fix(test): fix duplicate exec name in test
* fix(tests): fix more tests
* fix(tests): enable jinad test again
* fix(tests): random port fixture
* fix(style): replace quotes
Co-authored-by: Jina Dev Bot <[email protected]>
Co-authored-by: Joan Fontanals <[email protected]>
* feat(ci): bring back ci (#3997)
* feat(ci): enable ci again
* style: fix overload and cli autocomplete
* feat(ci): add latency tracking
* feat(ci): bring back some tests
* fix(tests): remove invalid port test
* feat(ci): disable daemon and distributed tests
* fix(tests): fix entrypoint in hub test
* fix(tests): wait for gateway to be ready
* fix(test): fix more tests
* feat(flow): do rolling update and scale sequentially
* fix(tests): fix more tests
* style: fix overload and cli autocomplete
* feat: star routing hanging pods (#4011)
* fix: try to handle hanging pods better
* test: hanging pods test work
* fix: fix topology graph problem
* test: add unit test to graph
* fix(tests): fix k8s tests
* fix(test): fix k8s test
* fix(test): fix k8s pool test
* fix(test): fix k8s test
* fix(test): fix k8s connection pool setting
* fix(tests): make runtime test more reliable
* fix(test): fix routes test
* fix(tests): make rolling update test less flaky
* feat(network): gurantee unique ports
* feat(network): do round robin for shards
* fix(ci): increase pytest timeout to 10 min
Co-authored-by: Jina Dev Bot <[email protected]>
Co-authored-by: Joan Fontanals <[email protected]>
* fix(ci): fix ci file
* feat(daemon): jinad pod for star routing
* Revert "feat(daemon): jinad pod for star routing"
This reverts commit ed9b37ac862af2e2e8d52df1ee51c0c331d76f92.
* feat(daemon): remote jinad pod support (#4042)
* feat(daemon): add pod tests for star routing
* feat(daemon): add remote pod test
* test(daemon): add remote pod arguments test
* test(daemon): add async scale test
* test(daemon): add rolling update test
* test(daemon): fix host
* feat(proto): remove message proto (#4051)
* feat(proto): remove message proto
* fix(tests): fix tests
* fix(tests): fix some more tests
* fix(tests): fix more tests
* fix(tests): fix more tests
* fix(tests): fix more tests
* fix(tests): fix more tests
* feat(proto): put docs back in data
* fix(proto): clean up
* feat(proto): clean up
* fix(tests): skip latency tracking
* fix(test): fix hub test
* fix(tests): fix k8s test
* fix(test): some test clean up
* fix(style): clean up style issues
* feat(proto): adjust for rebase
* fix(tests): bring back latency tracking
* fix(tests): fix merge accident
* feat(proto): skip request serialization (#4074)
* feat: add reduce to star routing (#4070)
* feat: add reduce on shards to head runtime
* test: add reduce integration tests with fixed order
* feat: add reduce on needs
* chore: get_docs_matrix_from_request becomes public
* style: fix overload and cli autocomplete
* docs: remove undeterministic results warning
* fix: fix uses_after
* test: assert correct num docs after reducing in test_external_pod
* test: correct asserts after reduce in test_rolling_update
* fix: no reduce if uses_after_address is set
* fix: get_docs_from_request only if needed
* fix: fix tests after merge
* refactor: move reduce from data_request_handler to head
* style: fix overload and cli autocomplete
* chore: apply suggestions
* fix: fix asserts
* chore: minor test fix
* chore: apply suggestions
* test: remove flow tests with external executor (pea)
* fix: fix test_expected_messages_routing
* fix: fix test_func_joiner
* test: adapt k8s test
Co-authored-by: Jina Dev Bot <[email protected]>
* fix(k8s): fix static pool config
* fix: use custom protoc doc generator image (#4088)
* fix: use custom protoc doc generator image
* fix(docs): minor doc improvement
* fix(docs): use custom image
* fix(docs): copy docarray
* fix: doc building local only
* fix: timeout doc building
* fix: use updated args when building ContainerPea
* test: add container PeaFactory test
* fix: force pea close on windows (#4098)
* fix: dont reduce if uses exist (#4099)
* fix: dont use reduce if uses exist
* fix: adjust reduce tests
* fix: adjust more reduce tests
* fix: fix more tests
* fix: adjust more tests
* fix: ignore non jina resources (#4101)
* feat(executor): enable async executors (#4102)
* feat(daemon): daemon flow on star routing (#4096)
* test(daemon): add remote flow test
* feat(daemon): call scale in daemon
* feat(daemon): remove tail args and identity
* test(daemon): rename scalable executor
* test(daemon): add a small delay in async test
* feat(daemon): scale partial flow only
* feat(daemon): call scale directly in partial flow store
* test(daemon): use asyncio sleep
* feat(daemon): enable flow level distributed tests
* test(daemon): fix jinad env workspace config
* test(daemon): fix pod test use new port rolling update
* feat(daemon): enable distribuetd tests
* test(daemon): remove duplicate tests and zed runtime test
* test(daemon): fix stores unit test
* feat(daemon): enable part of distributed tests
* feat(daemon): enable part of distributed tests
* test: correct test paths
* test(daemon): add client test for remote flows
* test(daemon): send a request with jina client
* test(daemon): assert async generator
* test(daemon): small interval between tests
* test(daemon): add flow test for container runtime
* test(daemon): add flow test for container runtime
* test(daemon): fix executor name
* test(daemon): fix executor name
* test(daemon): use async client fetch result
* test(daemon): finish container flow test
* test(daemon): enable distributed in ci
* test(daemon): enable distributed in ci
* test(daemon): decare flows and pods
* test(daemon): debug ci if else
* test(daemon): debug ci if else
* test(daemon): decare flows and pods
* test(daemon): correct test paths
* test(daemon): add small delay for async tests
* fix: star routing fixes (#4100)
* docs: update docs
* fix: fix Request.__repr__
* docs: update flow remarks
* docs: fix typo
* test: add non_empty_fields test
* chore: remove non_empty_fields test
* feat: polling per endpoint (#4111)
* feat(polling): polling per endpoint configurable
* fix: adjust tests
* feat(polling): extend documentation
* style: fix overload and cli autocomplete
* fix: clean up
* fix: adjust more tests
* fix: remove repeat from flaky test
* fix: k8s test
* feat(polling): address pr feedback
* feat: improve docs
Co-authored-by: Jina Dev Bot <[email protected]>
* feat(grpc): support connect grpc server via ssl tunnel (#4092)
* feat(grpc): support ssl grpc connect if port is 443
* fix(grpc): use https option instead of detect port automatically
* chore: fix typo
* fix: update jina/peapods/networking.py
Co-authored-by: Joan Fontanals <[email protected]>
* fix: update jina/peapods/networking.py
Co-authored-by: Joan Fontanals <[email protected]>
* fix: update jina/peapods/networking.py
Co-authored-by: Joan Fontanals <[email protected]>
* test(networking): add test for peapods networking
* fix: address comments
Co-authored-by: Joan Fontanals <[email protected]>
* feat(polling): unify polling args (#4113)
* fix: several issues for jinad pods (#4119)
* fix: activate for jinad pods
* fix: dont expose worker pod in partial daemon
* fix: workspace setting
* fix: containerized flows
* fix: hub test
* feat(daemon): remote peas on star routing (#4112)
* test(daemon): fix request in peas
* test(daemon): fix request in peas
* test(daemon): fix sync async client test
* test(daemon): enable remote peas test
* test(daemon): replace send message to send request
* test(daemon): declare pea tests in ci
* test(daemon): use pea args fixture
* test(daemon): head pea use default host
* test(daemon): fix peas topologies
* test(daemon): fix pseudo naming
* test(daemon): use default host as host
* test(daemon): fix executor path
* test(daemon): add remote worker back
* test(daemon): skip local remote remote topology
* fix: jinad pea test setup
* fix: jinad pea tests
* fix: remove invalid assertion
Co-authored-by: jacobowitz <[email protected]>
* feat: enable daemon tests again (#4132)
* feat: enable daemon tests again
* fix: remove bogy empty script file
* fix: more jinad test fixes
* style: fix overload and cli autocomplete
* fix: scale and ru in jinad
* fix: fix more jinad tests
Co-authored-by: Jina Dev Bot <[email protected]>
* fix: fix flow test
* fix: improve pea tests reliability (#4136)
Co-authored-by: Joan Fontanals <[email protected]>
Co-authored-by: Jina Dev Bot <[email protected]>
Co-authored-by: Deepankar Mahapatro <[email protected]>
Co-authored-by: bwanglzu <[email protected]>
Co-authored-by: AlaeddineAbdessalem <[email protected]>
Co-authored-by: Zhaofeng Miao <[email protected]> | 1,734 | 0 | 267 | 104 | 35 | 9,859 | 35 | jina | 18 | jina/peapods/peas/container.py | Python | 20 | {
"docstring": "Start the ContainerPea.\n This method calls :meth:`start` in :class:`threading.Thread` or :class:`multiprocesssing.Process`.\n .. #noqa: DAR201\n ",
"language": "en",
"n_whitespaces": 35,
"n_words": 14,
"vocab_size": 14
} | https://github.com/jina-ai/jina.git |
|
1 | info | def info(self, pretty=False, best=False):
# type: (bool, bool) -> InfoDict
return dict(
id=self.id(),
version=self.version(pretty, best),
version_parts=dict(
major=self.major_version(best),
minor=self.minor_version(best),
build_number=self.build_number(best),
),
like=self.like(),
codename=self.codename(),
)
| f3166e673fe8d40277b804d35d77dcdb760fc3b3 | 13 | distro.py | 130 | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | 3,224 | 0 | 162 | 86 | 23 | 20,079 | 23 | pipenv | 15 | pipenv/patched/notpip/_vendor/distro.py | Python | 12 | {
"docstring": "\n Return certain machine-readable information about the OS\n distribution.\n\n For details, see :func:`distro.info`.\n ",
"language": "en",
"n_whitespaces": 41,
"n_words": 12,
"vocab_size": 12
} | https://github.com/pypa/pipenv.git |
|
1 | data | def data(self) -> 'DataRequest._DataContent':
return DataRequest._DataContent(self.proto_with_data.data)
| c3849c6fee4a65a77a82b2cfda9670d727ff0f53 | 9 | data.py | 35 | feat: allow to access parameters of data request wo loading data (#4991) | 2,384 | 0 | 20 | 19 | 6 | 12,698 | 6 | jina | 5 | jina/types/request/data.py | Python | 6 | {
"docstring": "Get the data contained in this data request\n\n :return: the data content as an instance of _DataContent wrapping docs\n ",
"language": "en",
"n_whitespaces": 33,
"n_words": 19,
"vocab_size": 16
} | https://github.com/jina-ai/jina.git |
|
1 | test_modify_event | def test_modify_event(self) -> None:
# first patch the event checker so that it will modify the event | 2ffaf30803f93273a4d8a65c9e6c3110c8433488 | 6 | test_third_party_rules.py | 17 | Add type hints to `tests/rest/client` (#12108)
* Add type hints to `tests/rest/client`
* newsfile
* fix imports
* add `test_account.py`
* Remove one type hint in `test_report_event.py`
* change `on_create_room` to `async`
* update new functions in `test_third_party_rules.py`
* Add `test_filter.py`
* add `test_rooms.py`
* change to `assertEquals` to `assertEqual`
* lint | 71,596 | 0 | 31 | 139 | 15 | 247,330 | 17 | synapse | 2 | tests/rest/client/test_third_party_rules.py | Python | 20 | {
"docstring": "The module can return a modified version of the event",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/matrix-org/synapse.git |
|
1 | Dagum | def Dagum(name, p, a, b):
r
return rv(name, DagumDistribution, (p, a, b))
#-------------------------------------------------------------------------------
# Erlang distribution ----------------------------------------------------------
| 9ad8ab9fe58051cf11626ba6654852fcfec60147 | 8 | crv_types.py | 40 | Documentation cleanup 5 | 48,100 | 0 | 20 | 28 | 16 | 196,682 | 17 | sympy | 7 | sympy/stats/crv_types.py | Python | 57 | {
"docstring": "\n Create a continuous random variable with a Dagum distribution.\n\n Explanation\n ===========\n\n The density of the Dagum distribution is given by\n\n .. math::\n f(x) := \\frac{a p}{x} \\left( \\frac{\\left(\\tfrac{x}{b}\\right)^{a p}}\n {\\left(\\left(\\tfrac{x}{b}\\right)^a + 1 \\right)^{p+1}} \\right)\n\n with :math:`x > 0`.\n\n Parameters\n ==========\n\n p : Real number\n `p > 0`, a shape.\n a : Real number\n `a > 0`, a shape.\n b : Real number\n `b > 0`, a scale.\n\n Returns\n =======\n\n RandomSymbol\n\n Examples\n ========\n\n >>> from sympy.stats import Dagum, density, cdf\n >>> from sympy import Symbol\n\n >>> p = Symbol(\"p\", positive=True)\n >>> a = Symbol(\"a\", positive=True)\n >>> b = Symbol(\"b\", positive=True)\n >>> z = Symbol(\"z\")\n\n >>> X = Dagum(\"x\", p, a, b)\n\n >>> density(X)(z)\n a*p*(z/b)**(a*p)*((z/b)**a + 1)**(-p - 1)/z\n\n >>> cdf(X)(z)\n Piecewise(((1 + (z/b)**(-a))**(-p), z >= 0), (0, True))\n\n\n References\n ==========\n\n .. [1] https://en.wikipedia.org/wiki/Dagum_distribution\n\n ",
"language": "en",
"n_whitespaces": 269,
"n_words": 132,
"vocab_size": 89
} | https://github.com/sympy/sympy.git |
|
1 | diffusion_defaults | def diffusion_defaults():
return dict(
learn_sigma=False,
diffusion_steps=1000,
noise_schedule="linear",
timestep_respacing="",
use_kl=False,
predict_xstart=False,
rescale_timesteps=False,
rescale_learned_sigmas=False,
)
| f4d6e64cdc132ae868699a0ba442f4ab1d304a14 | 9 | script_util.py | 63 | add disco_diffusion_cnclip_vitb16 module | 9,936 | 0 | 78 | 41 | 13 | 49,840 | 13 | PaddleHub | 10 | modules/image/text_to_image/disco_diffusion_cnclip_vitb16/reverse_diffusion/model/script_util.py | Python | 11 | {
"docstring": "\n Defaults for image and classifier training.\n ",
"language": "en",
"n_whitespaces": 13,
"n_words": 6,
"vocab_size": 6
} | https://github.com/PaddlePaddle/PaddleHub.git |
|
6 | resize | def resize(self, n):
aform = self.array_form
l = len(aform)
if n > l:
aform += list(range(l, n))
return Permutation._af_new(aform)
elif n < l:
cyclic_form = self.full_cyclic_form
new_cyclic_form = []
for cycle in cyclic_form:
cycle_min = min(cycle)
cycle_max = max(cycle)
if cycle_min <= n-1:
if cycle_max > n-1:
raise ValueError(
"The permutation cannot be resized to {} "
"because the cycle {} may break."
.format(n, tuple(cycle)))
new_cyclic_form.append(cycle)
return Permutation(new_cyclic_form)
return self
# XXX Deprecated flag
print_cyclic = None
| 498015021131af4dbb07eb110e5badaba8250c7b | 20 | permutations.py | 197 | Updated import locations | 47,668 | 0 | 378 | 116 | 58 | 196,168 | 77 | sympy | 24 | sympy/combinatorics/permutations.py | Python | 21 | {
"docstring": "Resize the permutation to the new size ``n``.\n\n Parameters\n ==========\n\n n : int\n The new size of the permutation.\n\n Raises\n ======\n\n ValueError\n If the permutation cannot be resized to the given size.\n This may only happen when resized to a smaller size than\n the original.\n\n Examples\n ========\n\n >>> from sympy.combinatorics import Permutation\n\n Increasing the size of a permutation:\n\n >>> p = Permutation(0, 1, 2)\n >>> p = p.resize(5)\n >>> p\n (4)(0 1 2)\n\n Decreasing the size of the permutation:\n\n >>> p = p.resize(4)\n >>> p\n (3)(0 1 2)\n\n If resizing to the specific size breaks the cycles:\n\n >>> p.resize(2)\n Traceback (most recent call last):\n ...\n ValueError: The permutation cannot be resized to 2 because the\n cycle (0, 1, 2) may break.\n ",
"language": "en",
"n_whitespaces": 340,
"n_words": 121,
"vocab_size": 70
} | https://github.com/sympy/sympy.git |
|
3 | _remove_old_push_actions_that_have_rotated | async def _remove_old_push_actions_that_have_rotated(self) -> None:
# We want to clear out anything that is older than a day that *has* already
# been rotated.
rotated_upto_stream_ordering = await self.db_pool.simple_select_one_onecol(
table="event_push_summary_stream_ordering",
keyvalues={},
retcol="stream_ordering",
)
max_stream_ordering_to_delete = min(
rotated_upto_stream_ordering, self.stream_ordering_day_ago
)
| 46bd7f4ed9020bbed459c03a11c26d7f7c3093b0 | 11 | event_push_actions.py | 72 | Clarifications for event push action processing. (#13485)
* Clarifies comments.
* Fixes an erroneous comment (about return type) added in #13455
(ec24813220f9d54108924dc04aecd24555277b99).
* Clarifies the name of a variable.
* Simplifies logic of pulling out the latest join for the requesting user. | 72,870 | 0 | 131 | 64 | 34 | 249,367 | 38 | synapse | 11 | synapse/storage/databases/main/event_push_actions.py | Python | 18 | {
"docstring": "Clear out old push actions that have been summarised.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/matrix-org/synapse.git |
|
1 | _asarray | def _asarray(arr):
_check_arraylike("_asarray", arr)
dtype, weak_type = dtypes._lattice_result_type(arr)
return lax_internal._convert_element_type(arr, dtype, weak_type)
| ddf23dead3a4214e6ef8a515d0a51648360ab797 | 8 | util.py | 55 | lax_numpy.py: factor out some common utilities
Re-lands part of #9724
PiperOrigin-RevId: 433838553 | 26,678 | 0 | 16 | 33 | 11 | 119,743 | 12 | jax | 9 | jax/_src/numpy/util.py | Python | 4 | {
"docstring": "\n Pared-down utility to convert object to a DeviceArray.\n Note this will not correctly handle lists or tuples.\n ",
"language": "en",
"n_whitespaces": 21,
"n_words": 17,
"vocab_size": 16
} | https://github.com/google/jax.git |
|
2 | _get_driver | def _get_driver(self) -> str:
drivers = [device.get("driverVersion", "No Driver Found")
for device in self._device_details]
self._log("debug", f"GPU Drivers: {drivers}")
return drivers
| bdbbad4d310fb606b6f412aa81e9f57ccd994e97 | 10 | amd.py | 69 | Refactor lib.gpu_stats (#1218)
* inital gpu_stats refactor
* Add dummy CPU Backend
* Update Sphinx documentation | 20,028 | 0 | 66 | 37 | 19 | 100,564 | 20 | faceswap | 8 | lib/gpu_stats/amd.py | Python | 12 | {
"docstring": " Obtain the AMD driver version currently in use.\n\n Returns\n -------\n str\n The current AMD GPU driver versions\n ",
"language": "en",
"n_whitespaces": 57,
"n_words": 17,
"vocab_size": 15
} | https://github.com/deepfakes/faceswap.git |
|
1 | test_payment_refund_or_void_refund_called | def test_payment_refund_or_void_refund_called(refund_mock, payment):
# given
payment.transactions.count() == 0
payment.charge_status = ChargeStatus.FULLY_CHARGED
payment.save(update_fields=["charge_status"])
# when
gateway.payment_refund_or_void(payment, get_plugins_manager(), None)
# then
assert refund_mock.called_once()
@patch("saleor.payment.gateway.refund") | 0881beec1ac02dfa97525c5173687defb356d85c | @patch("saleor.payment.gateway.refund") | 10 | test_gateway.py | 101 | Fix payment flow (#9504)
* Do not capture payment again when it should be refunded or voided
* Do not create order when then is ongoing refund | 5,044 | 1 | 48 | 52 | 20 | 26,685 | 22 | saleor | 15 | saleor/payment/tests/test_gateway.py | Python | 6 | {
"docstring": "Ensure that the refund method is called when payment can be refunded\n and there is no refund transaction.",
"language": "en",
"n_whitespaces": 20,
"n_words": 18,
"vocab_size": 16
} | https://github.com/saleor/saleor.git |
16 | telescopic | def telescopic(L, R, limits):
(i, a, b) = limits
if L.is_Add or R.is_Add:
return None
# We want to solve(L.subs(i, i + m) + R, m)
# First we try a simple match since this does things that
# solve doesn't do, e.g. solve(f(k+m)-f(k), m) fails
k = Wild("k")
sol = (-R).match(L.subs(i, i + k))
s = None
if sol and k in sol:
s = sol[k]
if not (s.is_Integer and L.subs(i, i + s) == -R):
# sometimes match fail(f(x+2).match(-f(x+k))->{k: -2 - 2x}))
s = None
# But there are things that match doesn't do that solve
# can do, e.g. determine that 1/(x + m) = 1/(1 - x) when m = 1
if s is None:
m = Dummy('m')
try:
from sympy.solvers.solvers import solve
sol = solve(L.subs(i, i + m) + R, m) or []
except NotImplementedError:
return None
sol = [si for si in sol if si.is_Integer and
(L.subs(i, i + si) + R).expand().is_zero]
if len(sol) != 1:
return None
s = sol[0]
if s < 0:
return telescopic_direct(R, L, abs(s), (i, a, b))
elif s > 0:
return telescopic_direct(L, R, s, (i, a, b))
| f757f3daae6e11ea0cfb7dadc133274d8d74315f | 19 | summations.py | 374 | Reordered imports 2 | 48,161 | 0 | 391 | 242 | 104 | 196,771 | 189 | sympy | 27 | sympy/concrete/summations.py | Python | 27 | {
"docstring": "\n Tries to perform the summation using the telescopic property.\n\n Return None if not possible.\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 14,
"vocab_size": 13
} | https://github.com/sympy/sympy.git |
|
1 | insights_lookback_period | def insights_lookback_period(self):
return pendulum.duration(days=self._insights_lookback_window)
| 76032e66dd2b75c611440bdccfc3d55863fb3e39 | 9 | base_insight_streams.py | 30 | Source Facebook Marketing: Add lookback window to insights streams (#12402) | 773 | 0 | 18 | 17 | 4 | 5,494 | 4 | airbyte | 6 | airbyte-integrations/connectors/source-facebook-marketing/source_facebook_marketing/streams/base_insight_streams.py | Python | 2 | {
"docstring": "\n Facebook freezes insight data 28 days after it was generated, which means that all data\n from the past 28 days may have changed since we last emitted it, so we retrieve it again.\n But in some cases users my have define their own lookback window, thats\n why the value for `insights_lookback_window` is set throught config.\n ",
"language": "en",
"n_whitespaces": 91,
"n_words": 55,
"vocab_size": 48
} | https://github.com/airbytehq/airbyte.git |
|
5 | check_permissions_for_custom_prices | def check_permissions_for_custom_prices(app, lines):
if any(["price" in line for line in lines]) and (
not app or not app.has_perm(CheckoutPermissions.HANDLE_CHECKOUTS)
):
raise PermissionDenied(permissions=[CheckoutPermissions.HANDLE_CHECKOUTS])
| 620569b3a2466e8dda80df20a11b99ec0bec8c7c | 12 | utils.py | 79 | Custom prices (#9393)
* Add price_override to CheckoutLine model
* Allow to define custom price in checkout mutations
* Apply code review suggestions
* Use custom price when generating checkout payload
* Use price override when calculating prices for checkout
* Update populatedb - create checkout with custom prices
* Fix schema.graphql file
* Make quantity optional in `CheckoutLinesUpdate` mutation (#9430)
* Make quantity optional in CheckoutLinesUpdate mutation
* Refactor add_variants_to_checkout checkout utils
* Update changelog
* Update quantity field description in CheckoutLineUpdateInput | 5,029 | 0 | 44 | 48 | 18 | 26,585 | 21 | saleor | 10 | saleor/graphql/checkout/mutations/utils.py | Python | 5 | {
"docstring": "Raise PermissionDenied when custom price is changed by user or app without perm.\n\n Checkout line custom price can be changed only by app with\n handle checkout permission.\n ",
"language": "en",
"n_whitespaces": 36,
"n_words": 27,
"vocab_size": 22
} | https://github.com/saleor/saleor.git |
|
4 | _perform_invalid_key_test | def _perform_invalid_key_test(self, key, expected_warning, key_func=None):
# mimic custom ``make_key`` method being defined since the default will
# never show the below warnings | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 6 | tests.py | 24 | Refs #33476 -- Reformatted code with Black. | 50,040 | 0 | 43 | 191 | 20 | 202,050 | 22 | django | 5 | tests/cache/tests.py | Python | 24 | {
"docstring": "\n All the builtin backends should warn (except memcached that should\n error) on keys that would be refused by memcached. This encourages\n portable caching code without making it too difficult to use production\n backends with more liberal key rules. Refs #6447.\n ",
"language": "en",
"n_whitespaces": 76,
"n_words": 40,
"vocab_size": 37
} | https://github.com/django/django.git |
|
1 | set_negative_aliases | def set_negative_aliases(self, negative_alias):
self._check_alias_dict(negative_alias, "negative alias")
self.negative_alias = negative_alias
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 8 | fancy_getopt.py | 37 | add python 3.10.4 for windows | 56,809 | 0 | 30 | 21 | 9 | 222,921 | 9 | XX-Net | 4 | python3.10.4/Lib/distutils/fancy_getopt.py | Python | 3 | {
"docstring": "Set the negative aliases for this option parser.\n 'negative_alias' should be a dictionary mapping option names to\n option names, both the key and value must already be defined\n in the option table.",
"language": "en",
"n_whitespaces": 52,
"n_words": 32,
"vocab_size": 26
} | https://github.com/XX-net/XX-Net.git |
|
9 | aug_test_bboxes | def aug_test_bboxes(self, feats, img_metas, rescale=False):
# check with_nms argument
gb_sig = signature(self.get_results)
gb_args = [p.name for p in gb_sig.parameters.values()]
gbs_sig = signature(self._get_results_single)
gbs_args = [p.name for p in gbs_sig.parameters.values()]
assert ('with_nms' in gb_args) and ('with_nms' in gbs_args), \
f'{self.__class__.__name__}' \
' does not support test-time augmentation'
aug_bboxes = []
aug_scores = []
aug_labels = []
for x, img_meta in zip(feats, img_metas):
# only one image in the batch
outs = self.forward(x)
bbox_outputs = self.get_results(
*outs,
img_metas=img_meta,
cfg=self.test_cfg,
rescale=False,
with_nms=False)[0]
aug_bboxes.append(bbox_outputs.bboxes)
aug_scores.append(bbox_outputs.scores)
if len(bbox_outputs) >= 3:
aug_labels.append(bbox_outputs.labels)
# after merging, bboxes will be rescaled to the original image size
merged_bboxes, merged_scores = self.merge_aug_bboxes(
aug_bboxes, aug_scores, img_metas)
merged_labels = torch.cat(aug_labels, dim=0) if aug_labels else None
if merged_bboxes.numel() == 0:
det_bboxes = torch.cat([merged_bboxes, merged_scores[:, None]], -1)
return [
(det_bboxes, merged_labels),
]
det_bboxes, keep_idxs = batched_nms(merged_bboxes, merged_scores,
merged_labels, self.test_cfg.nms)
det_bboxes = det_bboxes[:self.test_cfg.max_per_img]
det_labels = merged_labels[keep_idxs][:self.test_cfg.max_per_img]
if rescale:
_det_bboxes = det_bboxes
else:
_det_bboxes = det_bboxes.clone()
_det_bboxes[:, :4] *= det_bboxes.new_tensor(
img_metas[0][0]['scale_factor'])
results = InstanceData()
results.bboxes = _det_bboxes[:, :4]
results.scores = _det_bboxes[:, 4]
results.labels = det_labels
return [results]
| 9a3bf7660e6ced54672741095f96df07919f9ba7 | 14 | dense_test_mixins.py | 567 | [Refactor] Refactor dense head outputs to InstanceResults. | 70,341 | 0 | 674 | 361 | 122 | 244,349 | 171 | mmdetection | 54 | mmdet/models/dense_heads/dense_test_mixins.py | Python | 46 | {
"docstring": "Test det bboxes with test time augmentation, can be applied in\n DenseHead except for ``RPNHead`` and its variants, e.g., ``GARPNHead``,\n etc.\n\n Args:\n feats (list[Tensor]): the outer list indicates test-time\n augmentations and inner Tensor should have a shape NxCxHxW,\n which contains features for all images in the batch.\n img_metas (list[list[dict]]): the outer list indicates test-time\n augs (multiscale, flip, etc.) and the inner list indicates\n images in a batch. each dict has image information.\n rescale (bool, optional): Whether to rescale the results.\n Defaults to False.\n\n Returns:\n list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.\n The first item is ``bboxes`` with shape (n, 5),\n where 5 represent (tl_x, tl_y, br_x, br_y, score).\n The shape of the second tensor in the tuple is ``labels``\n with shape (n,). The length of list should always be 1.\n ",
"language": "en",
"n_whitespaces": 345,
"n_words": 131,
"vocab_size": 92
} | https://github.com/open-mmlab/mmdetection.git |
|
7 | remove_if_stale | def remove_if_stale(self):
try:
pid = self.read_pid()
except ValueError:
print('Broken pidfile found - Removing it.', file=sys.stderr)
self.remove()
return True
if not pid:
self.remove()
return True
try:
os.kill(pid, 0)
except os.error as exc:
if exc.errno == errno.ESRCH or exc.errno == errno.EPERM:
print('Stale pidfile exists - Removing it.', file=sys.stderr)
self.remove()
return True
except SystemError:
print('Stale pidfile exists - Removing it.', file=sys.stderr)
self.remove()
return True
return False
| 13d545b2155ebe9ee0ffad9e9d9ffc09a39185df | 14 | platforms.py | 202 | Fix grammar typos on the whole project | 52,237 | 0 | 285 | 119 | 35 | 208,205 | 63 | celery | 18 | celery/platforms.py | Python | 22 | {
"docstring": "Remove the lock if the process isn't running.\n\n I.e. process does not respond to signal.\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 15,
"vocab_size": 13
} | https://github.com/celery/celery.git |
|
1 | _tie_weights | def _tie_weights(self):
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
self.bias = self.decoder.bias
@add_start_docstrings(
,
XLM_ROBERTA_XL_START_DOCSTRING,
) | e09473a817c5e5871e11cc81004355ef30250502 | @add_start_docstrings(
"""
XLM-RoBERTa-xlarge Model transformer with a sequence classification/regression head on top (a linear layer on top
of the pooled output) e.g. for GLUE tasks.
""",
XLM_ROBERTA_XL_START_DOCSTRING,
) | 8 | modeling_xlm_roberta_xl.py | 38 | Add support for XLM-R XL and XXL models by modeling_xlm_roberta_xl.py (#13727)
* add xlm roberta xl
* add convert xlm xl fairseq checkpoint to pytorch
* fix init and documents for xlm-roberta-xl
* fix indention
* add test for XLM-R xl,xxl
* fix model hub name
* fix some stuff
* up
* correct init
* fix more
* fix as suggestions
* add torch_device
* fix default values of doc strings
* fix leftovers
* merge to master
* up
* correct hub names
* fix docs
* fix model
* up
* finalize
* last fix
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <[email protected]>
* add copied from
* make style
Co-authored-by: Patrick von Platen <[email protected]>
Co-authored-by: Sylvain Gugger <[email protected]> | 6,311 | 1 | 44 | 14 | 27 | 34,690 | 27 | transformers | 6 | src/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py | Python | 2 | {
"docstring": "\n XLM-RoBERTa-xlarge Model transformer with a sequence classification/regression head on top (a linear layer on top\n of the pooled output) e.g. for GLUE tasks.\n ",
"language": "en",
"n_whitespaces": 33,
"n_words": 23,
"vocab_size": 21
} | https://github.com/huggingface/transformers.git |
5 | uri_to_iri | def uri_to_iri(uri):
if uri is None:
return uri
uri = force_bytes(uri)
# Fast selective unquote: First, split on '%' and then starting with the
# second block, decode the first 2 bytes if they represent a hex code to
# decode. The rest of the block is the part after '%AB', not containing
# any '%'. Add that to the output without further processing.
bits = uri.split(b"%")
if len(bits) == 1:
iri = uri
else:
parts = [bits[0]]
append = parts.append
hextobyte = _hextobyte
for item in bits[1:]:
hex = item[:2]
if hex in hextobyte:
append(hextobyte[item[:2]])
append(item[2:])
else:
append(b"%")
append(item)
iri = b"".join(parts)
return repercent_broken_unicode(iri).decode()
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 17 | encoding.py | 212 | Refs #33476 -- Reformatted code with Black. | 51,602 | 0 | 280 | 126 | 77 | 206,644 | 105 | django | 16 | django/utils/encoding.py | Python | 21 | {
"docstring": "\n Convert a Uniform Resource Identifier(URI) into an Internationalized\n Resource Identifier(IRI).\n\n This is the algorithm from section 3.2 of RFC 3987, excluding step 4.\n\n Take an URI in ASCII bytes (e.g. '/I%20%E2%99%A5%20Django/') and return\n a string containing the encoded result (e.g. '/I%20♥%20Django/').\n ",
"language": "en",
"n_whitespaces": 60,
"n_words": 41,
"vocab_size": 36
} | https://github.com/django/django.git |
|
1 | test_ohe_drop_first_handle_unknown_ignore_warns | def test_ohe_drop_first_handle_unknown_ignore_warns(handle_unknown):
X = [["a", 0], ["b", 2], ["b", 1]]
ohe = OneHotEncoder(drop="first", sparse=False, handle_unknown=handle_unknown)
X_trans = ohe.fit_transform(X)
X_expected = np.array(
[
[0, 0, 0],
[1, 0, 1],
[1, 1, 0],
]
)
assert_allclose(X_trans, X_expected)
# Both categories are unknown
X_test = [["c", 3]]
X_expected = np.array([[0, 0, 0]])
warn_msg = (
r"Found unknown categories in columns \[0, 1\] during "
"transform. These unknown categories will be encoded as all "
"zeros"
)
with pytest.warns(UserWarning, match=warn_msg):
X_trans = ohe.transform(X_test)
assert_allclose(X_trans, X_expected)
# inverse_transform maps to None
X_inv = ohe.inverse_transform(X_expected)
assert_array_equal(X_inv, np.array([["a", 0]], dtype=object))
@pytest.mark.parametrize("handle_unknown", ["ignore", "infrequent_if_exist"]) | 7f0006c8aad1a09621ad19c3db19c3ff0555a183 | @pytest.mark.parametrize("handle_unknown", ["ignore", "infrequent_if_exist"]) | 12 | test_encoders.py | 307 | ENH Adds infrequent categories to OneHotEncoder (#16018)
* ENH Completely adds infrequent categories
* STY Linting
* STY Linting
* DOC Improves wording
* DOC Lint
* BUG Fixes
* CLN Address comments
* CLN Address comments
* DOC Uses math to description float min_frequency
* DOC Adds comment regarding drop
* BUG Fixes method name
* DOC Clearer docstring
* TST Adds more tests
* FIX Fixes mege
* CLN More pythonic
* CLN Address comments
* STY Flake8
* CLN Address comments
* DOC Fix
* MRG
* WIP
* ENH Address comments
* STY Fix
* ENH Use functiion call instead of property
* ENH Adds counts feature
* CLN Rename variables
* DOC More details
* CLN Remove unneeded line
* CLN Less lines is less complicated
* CLN Less diffs
* CLN Improves readiabilty
* BUG Fix
* CLN Address comments
* TST Fix
* CLN Address comments
* CLN Address comments
* CLN Move docstring to userguide
* DOC Better wrapping
* TST Adds test to handle_unknown='error'
* ENH Spelling error in docstring
* BUG Fixes counter with nan values
* BUG Removes unneeded test
* BUG Fixes issue
* ENH Sync with main
* DOC Correct settings
* DOC Adds docstring
* DOC Immprove user guide
* DOC Move to 1.0
* DOC Update docs
* TST Remove test
* DOC Update docstring
* STY Linting
* DOC Address comments
* ENH Neater code
* DOC Update explaination for auto
* Update sklearn/preprocessing/_encoders.py
Co-authored-by: Roman Yurchak <[email protected]>
* TST Uses docstring instead of comments
* TST Remove call to fit
* TST Spelling error
* ENH Adds support for drop + infrequent categories
* ENH Adds infrequent_if_exist option
* DOC Address comments for user guide
* DOC Address comments for whats_new
* DOC Update docstring based on comments
* CLN Update test with suggestions
* ENH Adds computed property infrequent_categories_
* DOC Adds where the infrequent column is located
* TST Adds more test for infrequent_categories_
* DOC Adds docstring for _compute_drop_idx
* CLN Moves _convert_to_infrequent_idx into its own method
* TST Increases test coverage
* TST Adds failing test
* CLN Careful consideration of dropped and inverse_transform
* STY Linting
* DOC Adds docstrinb about dropping infrequent
* DOC Uses only
* DOC Numpydoc
* TST Includes test for get_feature_names_out
* DOC Move whats new
* DOC Address docstring comments
* DOC Docstring changes
* TST Better comments
* TST Adds check for handle_unknown='ignore' for infrequent
* CLN Make _infrequent_indices private
* CLN Change min_frequency default to None
* DOC Adds comments
* ENH adds support for max_categories=1
* ENH Describe lexicon ordering for ties
* DOC Better docstring
* STY Fix
* CLN Error when explicity dropping an infrequent category
* STY Grammar
Co-authored-by: Joel Nothman <[email protected]>
Co-authored-by: Roman Yurchak <[email protected]>
Co-authored-by: Guillaume Lemaitre <[email protected]> | 75,665 | 1 | 221 | 178 | 71 | 259,232 | 96 | scikit-learn | 27 | sklearn/preprocessing/tests/test_encoders.py | Python | 24 | {
"docstring": "Check drop='first' and handle_unknown='ignore'/'infrequent_if_exist'\n during transform.",
"language": "en",
"n_whitespaces": 8,
"n_words": 6,
"vocab_size": 6
} | https://github.com/scikit-learn/scikit-learn.git |
3 | _add_x_axis_labels | def _add_x_axis_labels(self):
val_range = np.arange(
0.5, len(self.bar_names), 1
) # 0.5 shifted so that labels are centered, not on ticks
labels = VGroup()
for i, (value, bar_name) in enumerate(zip(val_range, self.bar_names)):
# to accommodate negative bars, the label may need to be
# below or above the x_axis depending on the value of the bar
if self.values[i] < 0:
direction = UP
else:
direction = DOWN
bar_name_label = self.x_axis.label_constructor(bar_name)
bar_name_label.font_size = self.x_axis.font_size
bar_name_label.next_to(
self.x_axis.number_to_point(value),
direction=direction,
buff=self.x_axis.line_to_number_buff,
)
labels.add(bar_name_label)
self.x_axis.labels = labels
self.x_axis.add(labels)
| 149479f9132daf2266c27caa7a3e11ce06be501d | 12 | probability.py | 211 | Refactored :class:`~.BarChart` and made it inherit from :class:`~.Axes`. (#2387)
* rebase
* fixed None bar_names
* fixed scale issues
* fixed to accept negative bar values
* fixed some bugs
* Added docs for parameters (DRAFT)
* clean up parameters
* more clean up
* clean up __init__
* replace add_x_labels with built-in functionality
* adjust default font_size for labels
* Update docs descriptions
* Add bar_width and adjust get_bar_labels
* Add bar_width and adjust get_bar_labels
* Add docs to class and methods
* remove unecessary imports
* remove getters
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Attempt to fix duplicated parameters section
* adjust BarChart example to include title
* switch order around
* change_bar_values
* back to get_bar_values
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* add docs for _update_default_config and fix method
* remove print(dicts)
* allow negative_numbers to work with bar chart
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* allow negative numbers to work with change_bar_values
* add test_probability.py
* add control data
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* change example
* update examples again
* rewrite test
* rewrite other test
* remove comma after list in example
* improve wording in docs
* add parameter/docs for label_constructor
* change create_label_tex and update methods
* update docs
* use decimal number
* switch default to Tex
* update instances of create_label_tex in coordinate_systems.py
* hardcode for add_labels
* add TODO
* use label_constructor
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix indentation in docs
* Fix minor doc typo
Co-authored-by: Led Me Explain <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> | 46,048 | 0 | 316 | 135 | 64 | 189,413 | 81 | manim | 27 | manim/mobject/probability.py | Python | 20 | {
"docstring": "Essentially ``:meth:~.NumberLine.add_labels``, but differs in that\n the direction of the label with respect to the x_axis changes to UP or DOWN\n depending on the value.\n\n UP for negative values and DOWN for positive values.\n ",
"language": "en",
"n_whitespaces": 62,
"n_words": 34,
"vocab_size": 27
} | https://github.com/ManimCommunity/manim.git |
|
2 | async_cancel_refresh_callback | def async_cancel_refresh_callback(self) -> None:
if self._refresh_callback is not None:
self._refresh_callback()
self._refresh_callback = None
| 274584f2a47b7db9943168316122196a540080e5 | 9 | entity.py | 45 | Add strict typing for litterrobot (#75540) | 116,446 | 0 | 49 | 26 | 11 | 317,880 | 13 | core | 3 | homeassistant/components/litterrobot/entity.py | Python | 5 | {
"docstring": "Clear the refresh callback if it has not already fired.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/home-assistant/core.git |
|
8 | all_displays | def all_displays():
# lazy import to avoid circular imports from sklearn.base
from ._testing import ignore_warnings
all_classes = []
root = str(Path(__file__).parent.parent) # sklearn package
# Ignore deprecation warnings triggered at import time and from walking
# packages
with ignore_warnings(category=FutureWarning):
for _, module_name, _ in pkgutil.walk_packages(path=[root], prefix="sklearn."):
module_parts = module_name.split(".")
if (
any(part in _MODULE_TO_IGNORE for part in module_parts)
or "._" in module_name
):
continue
module = import_module(module_name)
classes = inspect.getmembers(module, inspect.isclass)
classes = [
(name, display_class)
for name, display_class in classes
if not name.startswith("_") and name.endswith("Display")
]
all_classes.extend(classes)
return sorted(set(all_classes), key=itemgetter(0))
| b22f7fa552c03aa7f6b9b4d661470d0173f8db5d | 17 | discovery.py | 258 | MNT numpydoc validation for Displays (#21469)
Co-authored-by: Olivier Grisel <[email protected]>
Co-authored-by: Jérémie du Boisberranger <[email protected]> | 76,673 | 0 | 304 | 153 | 69 | 261,168 | 91 | scikit-learn | 37 | sklearn/utils/discovery.py | Python | 21 | {
"docstring": "Get a list of all displays from `sklearn`.\n\n Returns\n -------\n displays : list of tuples\n List of (name, class), where ``name`` is the display class name as\n string and ``class`` is the actual type of the class.\n ",
"language": "en",
"n_whitespaces": 63,
"n_words": 37,
"vocab_size": 29
} | https://github.com/scikit-learn/scikit-learn.git |
|
4 | on_mode_entered | def on_mode_entered(self, mode):
if (config.val.tabs.mode_on_change == 'restore' and
mode in modeman.INPUT_MODES):
tab = self.widget.currentWidget()
if tab is not None:
assert isinstance(tab, browsertab.AbstractTab), tab
tab.data.input_mode = mode
| a20bb67a878b2e68abf8268c1b0a27f018d01352 | 12 | tabbedbrowser.py | 96 | mypy: Upgrade to PyQt5-stubs 5.15.6.0
For some unknown reason, those new stubs cause a *lot* of things now to be
checked by mypy which formerly probably got skipped due to Any being implied
somewhere.
The stubs themselves mainly improved, with a couple of regressions too.
In total, there were some 337 (!) new mypy errors. This commit fixes almost all
of them, and the next commit improves a fix to get things down to 0 errors
again.
Overview of the changes:
==== qutebrowser/app.py
- Drop type ignore due to improved stubs.
==== qutebrowser/browser/browsertab.py
- Specify the type of _widget members more closely than just QWidget.
This is debatable: I suppose the abstract stuff shouldn't need to know
anything about the concrete backends at all. But it seems like we cut some
corners when initially implementing things, and put some code in browsertab.py
just because the APIs of both backends happened to be compatible. Perhaps
something to reconsider once we drop QtWebKit and hopefully implement a dummy
backend.
- Add an additional assertion in AbstractAction.run_string. This is already
covered by the isinstance(member, self.action_base) above it, but that's too
dynamic for mypy to understand.
- Fix the return type of AbstractScroller.pos_px, which is a QPoint (with x
and y components), not a single int.
- Fix the return type of AbstractScroller.pos_perc, which is a Tuple (with x
and y components), not a single int.
- Fix the argument types of AbstractScroller.to_perc, as it's possible to pass
fractional percentages too.
- Specify the type for AbstractHistoryPrivate._history. See above (_widget) re
this being debatable.
- Fix the return type of AbstractTabPrivate.event_target(), which can be None
(see #3888).
- Fix the return type of AbstractTabPrivate.run_js_sync, which is Any (the JS
return value), not None.
- Fix the argument type for AbstractTabPrivate.toggle_inspector: position can
be None to use the last used position.
- Declare the type of sub-objects of AbstractTab.
- Fix the return value of AbstractTab.icon(), which is the QIcon, not None.
==== qutebrowser/browser/commands.py
- Make sure the active window is a MainWindow (with a .win_id attribute).
==== qutebrowser/browser/downloadview.py
- Add _model() which makes sure that self.model() is a DownloadModel, not None
or any other model. This is needed because other methods access a variety of
custom attributes on it, e.g. last_index().
==== qutebrowser/browser/greasemonkey.py
- Add an ignore for AbstractDownload.requested_url which we patch onto the
downloads. Probably would be nicer to add it as a proper attribute which always
gets set by the DownloadManager.
==== qutebrowser/browser/hints.py
- Remove type ignores for QUrl.toString().
- Add a new type ignore for combining different URL flags (which works, but is
not exactly type safe... still probably a regression in the stubs).
- Make sure the things we get back from self._get_keyparser are what we actually
expect. Probably should introduce a TypedDict (and/or overloads for
_get_keyparser with typing.Literal) to teach mypy about the exact return value.
See #7098.
This is needed because we access Hint/NormalKeyParser-specific attributes such
as .set_inhibited_timout() or .update_bindings().
==== qutebrowser/browser/inspector.py
- Similar changes than in browsertab.py to make some types where we share API
(e.g. .setPage()) more concrete. Didn't work out unfortunately, see next
commit.
==== qutebrowser/browser/network/pac.py
- Remove now unneeded type ignore for signal.
==== qutebrowser/browser/qtnetworkdownloads.py
- Make sure that downloads is a qtnetworkdownloads.DownloadItem (rather than an
AbstractDownload), so that we can call ._uses_nam() on it.
==== qutebrowser/browser/qutescheme.py
- Remove now unneeded type ignore for QUrl flags.
==== qutebrowser/browser/urlmarks.py
- Specify the type of UrlMarkManager._lineparser, as those only get initialized
in _init_lineparser of subclasses, so mypy doesn't know it's supposed to exist.
==== qutebrowser/browser/webelem.py
- New casts to turn single KeyboardModifier (enum) entries into
KeyboardModifiers (flags). Might not be needed anymore with Qt 6.
- With that, casting the final value is now unneeded.
==== qutebrowser/browser/webengine/notification.py
- Remove now unneeded type ignore for signal.
- Make sure the self.sender() we get in HerbeNotificationAdapter._on_finished()
is a QProcess, not just any QObject.
==== qutebrowser/browser/webengine/webenginedownloads.py
- Remove now unneeded type ignores for signals.
==== qutebrowser/browser/webengine/webengineelem.py
- Specify the type of WebEngineElement._tab.
- Remove now unneeded type ignore for mixed flags.
==== qutebrowser/browser/webengine/webengineinspector.py
- See changes to inspector.py and next commit.
- Remove now unneeded type ignore for signal.
==== qutebrowser/browser/webengine/webenginequtescheme.py
- Remove now unneeded type ignore for mixed flags.
==== qutebrowser/browser/webengine/webenginesettings.py
- Ignore access of .setter attribute which we patch onto QWebEngineProfile.
Would be nice to have a subclass or wrapper-class instead.
==== qutebrowser/browser/webengine/webenginetab.py
- Specified the type of _widget members more closely than just QWidget.
See browsertab.py changes for details.
- Remove some now-unneeded type ignores for creating FindFlags.
- Specify more concrete types for WebEngineTab members where we actually need to
access WebEngine-specific attributes.
- Make sure the page we get is our custom WebEnginePage subclass, not just any
QWebEnginePage. This is needed because we access custom attributes on it.
==== qutebrowser/browser/webengine/webview.py
- Make sure the page we get is our custom WebEnginePage subclass, not just any
QWebEnginePage. This is needed because we access custom attributes on it.
==== qutebrowser/browser/webkit/network/networkreply.py
- Remove now unneeded type ignores for signals.
==== qutebrowser/browser/webkit/webkitinspector.py
- See changes to inspector.py and next commit.
==== qutebrowser/browser/webkit/webkittab.py
- Specify the type of _widget members more closely than just QWidget.
See browsertab.py changes for details.
- Add a type ignore for WebKitAction because our workaround needs to
treat them as ints (which is allowed by PyQt, even if not type-safe).
- Add new ignores for findText calls: The text is a QString and can be None; the
flags are valid despite mypy thinking they aren't (stubs regression?).
- Specify the type for WebKitHistoryPrivate._history, because we access
WebKit-specific attributes. See above (_widget) re this being debatable.
- Make mypy aware that .currentFrame() and .frameAt() can return None (stubs
regression?).
- Make sure the .page() and .page().networkAccessManager() are our subclasses
rather than the more generic QtWebKit objects, as we use custom attributes.
- Add new type ignores for signals (stubs regression!)
==== qutebrowser/browser/webkit/webpage.py
- Make sure the .networkAccessManager() is our subclass rather than the more
generic QtWebKit object, as we use custom attributes.
- Replace a cast by a type ignore. The cast didn't work anymore.
==== qutebrowser/browser/webkit/webview.py
- Make sure the .page() is our subclass rather than the more generic QtWebKit
object, as we use custom attributes.
==== qutebrowser/commands/userscripts.py
- Remove now unneeded type ignore for signal.
==== qutebrowser/completion/completer.py
- Add a new _completion() getter (which ensures it actually gets the completion
view) rather than accessing the .parent() directly (which could be any QObject).
==== qutebrowser/completion/completiondelegate.py
- Make sure self.parent() is a CompletionView (no helper method as there is only
one instance).
- Remove a now-unneeded type ignore for adding QSizes.
==== qutebrowser/completion/completionwidget.py
- Add a ._model() getter which ensures that we get a CompletionModel (with
custom attributes) rather than Qt's .model() which can be any QAbstractItemModel
(or None).
- Removed a now-unneeded type ignore for OR-ing flags.
==== qutebrowser/completion/models/completionmodel.py
- Remove now unneeded type ignores for signals.
- Ignore a complaint about .set_pattern() not being defined. Completion
categories don't share any common parent class, so it would be good to introduce
a typing.Protocol for this. See #7098.
==== qutebrowser/components/misccommands.py
- Removed a now-unneeded type ignore for OR-ing flags.
==== qutebrowser/components/readlinecommands.py
- Make sure QApplication.instance() is a QApplication (and not just a
QCoreApplication). This includes the former "not None" check.
==== qutebrowser/components/scrollcommands.py
- Add basic annotation for "funcs" dict. Could have a callable protocol to
specify it needs a count kwarg, see #7098.
==== qutebrowser/config/stylesheet.py
- Correctly specify that stylesheet apply to QWidgets, not any QObject.
- Ignore an attr-defined for obj.STYLESHEET. Perhaps could somehow teach mypy
about this with overloads and protocols (stylesheet for set_register being None
=> STYLESHEET needs to be defined, otherwise anything goes), but perhaps not
worth the troble. See #7098.
==== qutebrowser/keyinput/keyutils.py
- Remove some now-unneeded type ignores and add a cast for using a single enum
value as flags. Might need to look at this again with Qt 6 support.
==== qutebrowser/keyinput/modeman.py
- Add a FIXME for using a TypedDict, see comments for hints.py above.
==== qutebrowser/mainwindow/mainwindow.py
- Remove now-unneeded type ignores for calling with OR-ed flags.
- Improve where we cast from WindowType to WindowFlags, no int needed
- Use new .tab_bar() getter, see below.
==== qutebrowser/mainwindow/prompt.py
- Remove now-unneeded type ignores for calling with OR-ed flags.
==== qutebrowser/mainwindow/statusbar/bar.py
- Adjust type ignores around @pyqtProperty. The fact one is still needed seems
like a stub regression.
==== qutebrowser/mainwindow/statusbar/command.py
- Fix type for setText() override (from QLineEdit): text can be None
(QString in C++).
==== qutebrowser/mainwindow/statusbar/url.py
- Adjust type ignores around @pyqtProperty. The fact one is still needed seems
like a stub regression.
==== qutebrowser/mainwindow/tabbedbrowser.py
- Specify that TabDeque manages browser tabs, not any QWidgets. It accesses
AbstractTab-specific attributes.
- Make sure that the .tabBar() we get is a tabwidget.TabBar, as we access
.maybe_hide.
- Fix the annotations for stored marks: Scroll positions are a QPoint, not int.
- Add _current_tab() and _tab_by_idx() wrappers for .currentWidget() and
.widget(), which ensures that the return values are valid AbstractTabs (or None
for _tab_by_idx). This is needed because we access AbstractTab-specific
attributes.
- For some places, where the tab can be None, continue using .currentTab() but
add asserts.
- Remove some now-unneeded [unreachable] ignores, as mypy knows about the None
possibility now.
==== qutebrowser/mainwindow/tabwidget.py
- Add new tab_bar() and _tab_by_idx() helpers which check that the .tabBar() and
.widget() are of type TabBar and AbstractTab, respectively.
- Add additional assertions where we expect ._tab_by_idx() to never be None.
- Remove dead code in get_tab_fields for handling a None y scroll position. I
was unable to find any place in the code where this could be set to None.
- Remove some now-unneeded type ignores and casts, as mypy now knows that
_type_by_idx() could be None.
- Work around a strange instance where mypy complains about not being able to
find the type of TabBar.drag_in_progress from TabWidget._toggle_visibility,
despite it clearly being shown as a bool *inside* that class without any
annotation.
- Add a ._tab_widget() getter in TabBar which ensures that the .parent() is in
fact a TabWidget.
==== qutebrowser/misc/crashsignal.py
- Remove now unneeded type ignores for signals.
==== qutebrowser/misc/editor.py
- Remove now unneeded type ignores for signals.
==== qutebrowser/misc/ipc.py
- Remove now unneeded type ignores for signals.
- Add new type ignores for .error() which is both a signal and a getter
(stub regression?). Won't be relevant for Qt 6 anymore, as the signal was
renamed to errorOccurred in 5.15.
==== qutebrowser/misc/objects.py
- Make sure mypy knows that objects.app is our custom Application (with custom
attributes) rather than any QApplication.
==== qutebrowser/utils/objreg.py
- Ignore attr-defined for .win_id attributes. Maybe could add a typing.Protocol,
but ideally, the whole objreg stuff should die one day anyways.
==== tests/unit/completion/test_completer.py
- Make CompletionWidgetStub inherit from CompletionView so that it passes the
new isinstance() asserts in completer.py (see above). | 117,362 | 0 | 107 | 60 | 21 | 320,800 | 26 | qutebrowser | 17 | qutebrowser/mainwindow/tabbedbrowser.py | Python | 7 | {
"docstring": "Save input mode when tabs.mode_on_change = restore.",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | https://github.com/qutebrowser/qutebrowser.git |
|
5 | user_state_dir | def user_state_dir(appname=None, appauthor=None, version=None, roaming=False):
r
if system in ["win32", "darwin"]:
path = user_data_dir(appname, appauthor, None, roaming)
else:
path = os.getenv('XDG_STATE_HOME', os.path.expanduser("~/.local/state"))
if appname:
path = os.path.join(path, appname)
if appname and version:
path = os.path.join(path, version)
return path
| 47b5c8af57f0f927d50fe94f3474b09a54292553 | 14 | appdirs.py | 150 | Standardize cache directory | 7,368 | 0 | 91 | 95 | 28 | 40,266 | 38 | seaborn | 12 | seaborn/external/appdirs.py | Python | 40 | {
"docstring": "Return full path to the user-specific state dir for this application.\n\n \"appname\" is the name of application.\n If None, just the system directory is returned.\n \"appauthor\" (only used on Windows) is the name of the\n appauthor or distributing body for this application. Typically\n it is the owning company name. This falls back to appname. You may\n pass False to disable it.\n \"version\" is an optional version path element to append to the\n path. You might want to use this if you want multiple versions\n of your app to be able to run independently. If used, this\n would typically be \"<major>.<minor>\".\n Only applied when appname is present.\n \"roaming\" (boolean, default False) can be set True to use the Windows\n roaming appdata directory. That means that for users on a Windows\n network setup for roaming profiles, this user data will be\n sync'd on login. See\n <http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx>\n for a discussion of issues.\n\n Typical user state directories are:\n Mac OS X: same as user_data_dir\n Unix: ~/.local/state/<AppName> # or in $XDG_STATE_HOME, if defined\n Win *: same as user_data_dir\n\n For Unix, we follow this Debian proposal <https://wiki.debian.org/XDGBaseDirectorySpecification#state>\n to extend the XDG spec and support $XDG_STATE_HOME.\n\n That means, by default \"~/.local/state/<AppName>\".\n ",
"language": "en",
"n_whitespaces": 413,
"n_words": 194,
"vocab_size": 135
} | https://github.com/mwaskom/seaborn.git |
|
2 | test_01_drop_predictor | def test_01_drop_predictor(self):
if self.test_model_1 not in self.handler.get_tables().data_frame.values:
# TODO: seems redundant because of test_02
query = f
self.handler.native_query(query)
response = self.handler.native_query(f"DROP PREDICTOR {self.test_model_1}")
self.assertTrue(response.type == RESPONSE_TYPE.OK)
| 871793d4fbd99f454c0c1ff14db6ce3c385e656c | 11 | test_lightwood_handler.py | 120 | add more TS tests | 25,578 | 0 | 79 | 58 | 25 | 115,838 | 26 | mindsdb | 16 | mindsdb/integrations/handlers/lightwood_handler/tests/test_lightwood_handler.py | Python | 10 | {
"docstring": "\n CREATE PREDICTOR {self.test_model_1}\n FROM {PG_HANDLER_NAME} (SELECT * FROM {self.data_table_1} limit 50)\n PREDICT rental_price\n ",
"language": "en",
"n_whitespaces": 70,
"n_words": 13,
"vocab_size": 12
} | https://github.com/mindsdb/mindsdb.git |
|
1 | truncated_cube_graph | def truncated_cube_graph(create_using=None):
description = [
"adjacencylist",
"Truncated Cube Graph",
24,
[
[2, 3, 5],
[12, 15],
[4, 5],
[7, 9],
[6],
[17, 19],
[8, 9],
[11, 13],
[10],
[18, 21],
[12, 13],
[15],
[14],
[22, 23],
[16],
[20, 24],
[18, 19],
[21],
[20],
[24],
[22],
[23],
[24],
[],
],
]
G = make_small_undirected_graph(description, create_using)
return G
| dec723f072eb997a497a159dbe8674cd39999ee9 | 9 | small.py | 197 | Docstrings for the small.py module (#5240)
* added description for the first 5 small graphs
* modified descriptions based on comment and added description for two more functions
* added doctrings to all the functions
* Minor touchups.
Co-authored-by: Ross Barnowski <[email protected]> | 41,741 | 0 | 370 | 152 | 46 | 176,171 | 56 | networkx | 5 | networkx/generators/small.py | Python | 34 | {
"docstring": "\n Returns the skeleton of the truncated cube.\n\n The truncated cube is an Archimedean solid with 14 regular\n faces (6 octagonal and 8 triangular), 36 edges and 24 nodes [1]_.\n The truncated cube is created by truncating (cutting off) the tips\n of the cube one third of the way into each edge [2]_.\n\n Parameters\n ----------\n create_using : NetworkX graph constructor, optional (default=nx.Graph)\n Graph type to create. If graph instance, then cleared before populated.\n\n Returns\n -------\n G : networkx Graph\n Skeleton of the truncated cube\n\n References\n ----------\n .. [1] https://en.wikipedia.org/wiki/Truncated_cube\n .. [2] https://www.coolmath.com/reference/polyhedra-truncated-cube\n\n ",
"language": "en",
"n_whitespaces": 153,
"n_words": 91,
"vocab_size": 68
} | https://github.com/networkx/networkx.git |
|
8 | on_no_available_trials | def on_no_available_trials(self, all_trials):
# This is approximately saying we are not making progress.
if len(all_trials) == self._last_trial_num:
if self._no_running_trials_since == -1:
self._no_running_trials_since = time.monotonic()
elif (
time.monotonic() - self._no_running_trials_since
> _get_insufficient_resources_warning_threshold()
):
if not _is_ray_cluster(): # autoscaler not enabled
# If any of the pending trial cannot be fulfilled,
# that's a good enough hint of trial resources not enough.
for trial in all_trials:
if (
trial.status is Trial.PENDING
and not _can_fulfill_no_autoscaler(trial)
):
# TODO(xwjiang):
# Raise an Error once #18608 is resolved.
logger.warning(_get_insufficient_resources_error_msg(trial))
break
else:
# TODO(xwjiang): #17799.
# Output a more helpful msg for autoscaler.
logger.warning(_get_insufficient_resources_warning_msg())
self._no_running_trials_since = time.monotonic()
else:
self._no_running_trials_since = -1
self._last_trial_num = len(all_trials)
| eb69c1ca286a2eec594f02ddaf546657a8127afd | 20 | insufficient_resources_manager.py | 217 | [air] Add annotation for Tune module. (#27060)
Co-authored-by: Kai Fricke <[email protected]> | 28,086 | 0 | 602 | 125 | 72 | 126,210 | 108 | ray | 19 | python/ray/tune/execution/insufficient_resources_manager.py | Python | 22 | {
"docstring": "Tracks information across the life of Tune loop and makes guesses\n about if Tune loop is stuck due to infeasible resources.\n If so, outputs certain warning messages.\n The logic should be conservative, non-intrusive and informative.\n For example, rate limiting is applied so that the message is not\n spammy.\n ",
"language": "en",
"n_whitespaces": 90,
"n_words": 48,
"vocab_size": 42
} | https://github.com/ray-project/ray.git |
|
1 | test_door_lock_no_value | async def test_door_lock_no_value(hass, client, lock_schlage_be469_state, integration):
node_state = replace_value_of_zwave_value(
lock_schlage_be469_state,
[
ZwaveValueMatcher(
property_=CURRENT_MODE_PROPERTY,
command_class=CommandClass.DOOR_LOCK,
)
],
None,
)
node = Node(client, node_state)
client.driver.controller.emit("node added", {"node": node})
await hass.async_block_till_done()
state = hass.states.get(SCHLAGE_BE469_LOCK_ENTITY)
assert state
assert state.state == STATE_UNKNOWN
| d4c28e04e4793c328d1a1d096c2085ebbe7c5e7c | 13 | test_lock.py | 134 | Reduce missed coverage in zwave_js (#79571)
* Reduce missed coverage in zwave_js.climate and cover
* Add switch platform coverage
* Add select platform
* Add lock platform
* Remove one line of coverage from number platform
* update docstring | 88,425 | 0 | 144 | 85 | 31 | 289,282 | 37 | core | 24 | tests/components/zwave_js/test_lock.py | Python | 17 | {
"docstring": "Test a lock entity with door lock command class that has no value for mode.",
"language": "en",
"n_whitespaces": 14,
"n_words": 15,
"vocab_size": 14
} | https://github.com/home-assistant/core.git |
|
2 | make_model | def make_model():
r
inputs = []
intermediates = []
for _ in range(_NUM_LEARNERS):
inp = keras.layers.Input(shape=(1,), dtype=tf.int32)
layer = keras.layers.Embedding(1, 4)(inp)
layer = keras.layers.Dense(1)(layer)
inputs.append(inp)
intermediates.append(layer)
layer = keras.layers.Concatenate(axis=-1)(intermediates)
layer = keras.layers.Dense(1)(layer)
return keras.models.Model(inputs, layer)
COEFFICIENT_PARAMS = (
("Adadelta", adadelta.Adadelta, None),
("Adagrad", adagrad.Adagrad, None),
("Adam", adam.Adam, None),
("Adam_amdgrad", adam.Adam, dict(amsgrad=True)),
("Adamax", adamax.Adamax, None),
("Ftrl", ftrl.Ftrl, None),
(
"Ftrl_l2_shrinkage",
ftrl.Ftrl,
dict(l2_shrinkage_regularization_strength=0.1),
),
("SGD", gradient_descent.SGD, None),
("SGD_momentum", gradient_descent.SGD, dict(momentum=0.5)),
("Nadam", nadam.Nadam, None),
("RMSprop", rmsprop.RMSprop, None),
("RMSprop_centered", rmsprop.RMSprop, dict(centered=True)),
("RMSprop_momentum", rmsprop.RMSprop, dict(momentum=0.5)),
(
"RMSprop_momentum_centered",
rmsprop.RMSprop,
dict(momentum=0.5, centered=True),
),
)
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 12 | optimizer_v2_test.py | 454 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 81,429 | 0 | 229 | 123 | 57 | 275,572 | 86 | keras | 44 | keras/optimizers/optimizer_v2/optimizer_v2_test.py | Python | 41 | {
"docstring": "Constructs a simple ensemble of weak learners model.\n\n --------- --------- --------- ---------\n | Input | | Input | ... | Input | | Input |\n --------- --------- --------- ---------\n | | | |\n V V V V\n --------- --------- --------- ---------\n | Embed | | Embed | ... | Embed | | Embed |\n --------- --------- --------- ---------\n | | | |\n V V V V\n --------- --------- --------- ---------\n | Dense | | Dense | ... | Dense | | Dense |\n --------- --------- --------- ---------\n \\ | | /\n \\ | | /\n ---------------------------------------------\n |\n ---------\n | Dense |\n ---------\n\n This topology is chosen because it exercises both dense and sparse update\n paths.\n\n Returns:\n A model for testing optimizer coefficient reuse.\n ",
"language": "en",
"n_whitespaces": 731,
"n_words": 123,
"vocab_size": 39
} | https://github.com/keras-team/keras.git |
|
2 | add_department_leaves | def add_department_leaves(events, start, end, employee, company):
department = frappe.db.get_value("Employee", employee, "department")
if not department:
return
# department leaves
department_employees = frappe.db.sql_list(
,
(department, company),
)
filter_conditions = ' and employee in ("%s")' % '", "'.join(department_employees)
add_leaves(events, start, end, filter_conditions=filter_conditions)
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 10 | leave_application.py | 113 | style: format code with black | 14,117 | 0 | 28 | 71 | 33 | 66,160 | 39 | erpnext | 15 | erpnext/hr/doctype/leave_application/leave_application.py | Python | 11 | {
"docstring": "select name from tabEmployee where department=%s\n\t\tand company=%s",
"language": "en",
"n_whitespaces": 6,
"n_words": 8,
"vocab_size": 8
} | https://github.com/frappe/erpnext.git |
|
1 | test_dataset_stats_read_parquet | def test_dataset_stats_read_parquet(ray_start_regular_shared, tmp_path):
ds = ray.data.range(1000, parallelism=10)
ds.write_parquet(str(tmp_path))
ds = ray.data.read_parquet(str(tmp_path)).map(lambda x: x)
stats = canonicalize(ds.stats())
print(stats)
assert stats ==
| e9068c45faf2928cd8e38f6d38c5260cb06130d2 | 12 | test_stats.py | 113 | [data] Instrument most remaining dataset functions and add docs (#21412)
This PR finishes most of the stats todos for dataset. The main thing punted for future work is instrumentation of split(), which is particularly tricky since only certain blocks are transformed.
Co-authored-by: Clark Zinzow <[email protected]> | 28,886 | 0 | 38 | 69 | 16 | 129,063 | 20 | ray | 16 | python/ray/data/tests/test_stats.py | Python | 20 | {
"docstring": "Stage Z read: N/N blocks executed in T\n* Remote wall time: T min, T max, T mean, T total\n* Remote cpu time: T min, T max, T mean, T total\n* Output num rows: N min, N max, N mean, N total\n* Output size bytes: N min, N max, N mean, N total\n* Tasks per node: N min, N max, N mean; N nodes used\n\nStage N map: N/N blocks executed in T\n* Remote wall time: T min, T max, T mean, T total\n* Remote cpu time: T min, T max, T mean, T total\n* Output num rows: N min, N max, N mean, N total\n* Output size bytes: N min, N max, N mean, N total\n* Tasks per node: N min, N max, N mean; N nodes used\n",
"language": "en",
"n_whitespaces": 126,
"n_words": 138,
"vocab_size": 30
} | https://github.com/ray-project/ray.git |
|
7 | emitCurrentToken | def emitCurrentToken(self):
token = self.currentToken
# Add token to the queue to be yielded
if (token["type"] in tagTokenTypes):
token["name"] = token["name"].translate(asciiUpper2Lower)
if token["type"] == tokenTypes["StartTag"]:
raw = token["data"]
data = attributeMap(raw)
if len(raw) > len(data):
# we had some duplicated attribute, fix so first wins
data.update(raw[::-1])
token["data"] = data
if token["type"] == tokenTypes["EndTag"]:
if token["data"]:
self.tokenQueue.append({"type": tokenTypes["ParseError"],
"data": "attributes-in-end-tag"})
if token["selfClosing"]:
self.tokenQueue.append({"type": tokenTypes["ParseError"],
"data": "self-closing-flag-on-end-tag"})
self.tokenQueue.append(token)
self.state = self.dataState
# Below are the various tokenizer states worked out. | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 17 | _tokenizer.py | 293 | upd; format | 12,978 | 0 | 408 | 162 | 56 | 62,468 | 78 | transferlearning | 17 | .venv/lib/python3.8/site-packages/pip/_vendor/html5lib/_tokenizer.py | Python | 19 | {
"docstring": "This method is a generic handler for emitting the tags. It also sets\n the state to \"data\" because that's what's needed after a token has been\n emitted.\n ",
"language": "en",
"n_whitespaces": 48,
"n_words": 27,
"vocab_size": 25
} | https://github.com/jindongwang/transferlearning.git |
|
12 | remove | def remove(name=None, pkgs=None, **kwargs):
targets = salt.utils.args.split_input(pkgs) if pkgs else [name]
if not targets:
return {}
if pkgs:
log.debug("Removing these fileset(s)/rpm package(s) %s: %s", name, targets)
errors = []
# Get a list of the currently installed pkgs.
old = list_pkgs()
# Remove the fileset or rpm package(s)
for target in targets:
try:
named, versionpkg, rpmpkg = _check_pkg(target)
except CommandExecutionError as exc:
if exc.info:
errors.append(exc.info["errors"])
continue
if rpmpkg:
# assume use dnf or yum
cmdflags = " -y remove "
if pathlib.Path("/opt/freeware/bin/dnf").is_file():
cmdexe = "/opt/freeware/bin/dnf"
elif pathlib.Path("/opt/freeware/bin/yum").is_file():
cmdexe = "/opt/freeware/bin/yum"
elif pathlib.Path("/usr/bin/yum").is_file():
cmdexe = "/usr/bin/yum"
else:
cmdexe = "/usr/bin/rpm"
cmdflags = " -e "
cmd = [cmdexe, cmdflags, named]
out = __salt__["cmd.run_all"](cmd, python_shell=False)
else:
cmd = ["/usr/sbin/installp", "-u", named]
out = __salt__["cmd.run_all"](cmd, python_shell=False)
# Get a list of the packages after the uninstall
__context__.pop("pkg.list_pkgs", None)
new = list_pkgs()
ret = salt.utils.data.compare_dicts(old, new)
if errors:
raise CommandExecutionError(
"Problems encountered removing filesets(s)/package(s)",
info={"changes": ret, "errors": errors},
)
return ret
| fbcc707e76f11770712e6828155258ac61e00ff8 | 16 | aixpkg.py | 443 | work in progress while resolve issue of python3_32 usage by dnf and yum | 53,792 | 0 | 513 | 256 | 106 | 215,074 | 157 | salt | 38 | salt/modules/aixpkg.py | Python | 40 | {
"docstring": "\n Remove specified fileset(s)/rpm package(s).\n\n name\n The name of the fileset or rpm package to be deleted.\n\n .. versionadded:: 3005\n\n preference to install rpm packages are to use in the following order:\n /opt/freeware/bin/dnf\n /opt/freeware/bin/yum\n /usr/bin/yum\n /usr/bin/rpm\n\n Multiple Package Options:\n\n pkgs\n A list of filesets and/or rpm packages to delete.\n Must be passed as a python list. The ``name`` parameter will be\n ignored if this option is passed.\n\n\n Returns a list containing the removed packages.\n\n CLI Example:\n\n .. code-block:: bash\n\n salt '*' pkg.remove <fileset/rpm package name>\n salt '*' pkg.remove tcsh\n salt '*' pkg.remove xlC.rte\n salt '*' pkg.remove Firefox.base.adt\n salt '*' pkg.remove pkgs='[\"foo\", \"bar\"]'\n ",
"language": "en",
"n_whitespaces": 243,
"n_words": 101,
"vocab_size": 72
} | https://github.com/saltstack/salt.git |
|
16 | _async_update_existing_host_entry | def _async_update_existing_host_entry(self) -> config_entries.ConfigEntry | None:
for entry in self._async_current_entries(include_ignore=False):
mac = entry.data.get(CONF_MAC)
mac_match = mac and self._mac and mac == self._mac
upnp_udn_match = self._upnp_udn and self._upnp_udn == entry.unique_id
if (
entry.data[CONF_HOST] != self._host
and not mac_match
and not upnp_udn_match
):
continue
entry_kw_args: dict = {}
if (self._udn and self._upnp_udn and self._upnp_udn != self._udn) or (
self.unique_id and entry.unique_id is None
):
entry_kw_args["unique_id"] = self.unique_id
if self._mac and not entry.data.get(CONF_MAC):
entry_kw_args["data"] = {**entry.data, CONF_MAC: self._mac}
if entry_kw_args:
self.hass.config_entries.async_update_entry(entry, **entry_kw_args)
self.hass.async_create_task(
self.hass.config_entries.async_reload(entry.entry_id)
)
return entry
return None
| 2d4ccddd99bcc4bd314f813214be693788b1c0bf | 15 | config_flow.py | 312 | Fix SSDP unique id in SamsungTV config flow (#67811)
Co-authored-by: epenet <[email protected]>
Co-authored-by: J. Nick Koston <[email protected]> | 92,385 | 0 | 401 | 197 | 49 | 293,322 | 86 | core | 26 | homeassistant/components/samsungtv/config_flow.py | Python | 29 | {
"docstring": "Check existing entries and update them.\n\n Returns the existing entry if it was updated.\n ",
"language": "en",
"n_whitespaces": 28,
"n_words": 14,
"vocab_size": 13
} | https://github.com/home-assistant/core.git |
|
1 | _load_environment_vars | def _load_environment_vars(self):
# type: () -> None
self._config[kinds.ENV_VAR].update(
self._normalized_keys(":env:", self.get_environ_vars())
)
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 11 | configuration.py | 53 | upd; format | 12,235 | 0 | 50 | 30 | 11 | 60,669 | 11 | transferlearning | 8 | .venv/lib/python3.8/site-packages/pip/_internal/configuration.py | Python | 4 | {
"docstring": "Loads configuration from environment variables\n ",
"language": "en",
"n_whitespaces": 12,
"n_words": 5,
"vocab_size": 5
} | https://github.com/jindongwang/transferlearning.git |
|
1 | open | def open(self, host=None, port=None, timeout=None):
self.host = None # For compatibility with parent class
self.port = None
self.sock = None
self.file = None
self.process = subprocess.Popen(self.command,
bufsize=DEFAULT_BUFFER_SIZE,
stdin=subprocess.PIPE, stdout=subprocess.PIPE,
shell=True, close_fds=True)
self.writefile = self.process.stdin
self.readfile = self.process.stdout
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 10 | imaplib.py | 139 | add python 3.10.4 for windows | 55,008 | 0 | 133 | 92 | 28 | 217,910 | 37 | XX-Net | 20 | python3.10.4/Lib/imaplib.py | Python | 11 | {
"docstring": "Setup a stream connection.\n This connection will be used by the routines:\n read, readline, send, shutdown.\n ",
"language": "en",
"n_whitespaces": 41,
"n_words": 16,
"vocab_size": 16
} | https://github.com/XX-net/XX-Net.git |
|
13 | collapse_addresses | def collapse_addresses(addresses):
addrs = []
ips = []
nets = []
# split IP addresses and networks
for ip in addresses:
if isinstance(ip, _BaseAddress):
if ips and ips[-1]._version != ip._version:
raise TypeError("%s and %s are not of the same version" % (
ip, ips[-1]))
ips.append(ip)
elif ip._prefixlen == ip._max_prefixlen:
if ips and ips[-1]._version != ip._version:
raise TypeError("%s and %s are not of the same version" % (
ip, ips[-1]))
try:
ips.append(ip.ip)
except AttributeError:
ips.append(ip.network_address)
else:
if nets and nets[-1]._version != ip._version:
raise TypeError("%s and %s are not of the same version" % (
ip, nets[-1]))
nets.append(ip)
# sort and dedup
ips = sorted(set(ips))
# find consecutive address ranges in the sorted sequence and summarize them
if ips:
for first, last in _find_address_range(ips):
addrs.extend(summarize_address_range(first, last))
return _collapse_addresses_internal(addrs + nets)
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 18 | ipaddress.py | 333 | add python 3.10.4 for windows | 55,342 | 0 | 448 | 205 | 71 | 218,488 | 128 | XX-Net | 23 | python3.10.4/Lib/ipaddress.py | Python | 28 | {
"docstring": "Collapse a list of IP objects.\n\n Example:\n collapse_addresses([IPv4Network('192.0.2.0/25'),\n IPv4Network('192.0.2.128/25')]) ->\n [IPv4Network('192.0.2.0/24')]\n\n Args:\n addresses: An iterator of IPv4Network or IPv6Network objects.\n\n Returns:\n An iterator of the collapsed IPv(4|6)Network objects.\n\n Raises:\n TypeError: If passed a list of mixed version objects.\n\n ",
"language": "en",
"n_whitespaces": 134,
"n_words": 38,
"vocab_size": 28
} | https://github.com/XX-net/XX-Net.git |
|
1 | test_creating_algo_config_from_legacy_dict | def test_creating_algo_config_from_legacy_dict(self):
config_dict = {
"evaluation_config": {
"lr": 0.1,
},
"lr": 0.2,
# Old-style multi-agent dict.
"multiagent": {
"policies": {"pol1", "pol2"},
"policies_to_train": ["pol1"],
"policy_mapping_fn": lambda aid, episode, worker, **kwargs: "pol1",
},
}
config = AlgorithmConfig.from_dict(config_dict)
self.assertFalse(config.in_evaluation)
self.assertTrue(config.lr == 0.2)
self.assertTrue(config.policies == {"pol1", "pol2"})
self.assertTrue(config.policy_mapping_fn(1, 2, 3) == "pol1")
eval_config = config.get_evaluation_config_object()
self.assertTrue(eval_config.in_evaluation)
self.assertTrue(eval_config.lr == 0.1)
| 5af66e66cc6aa3859e2e15637c66f6decbec13b9 | 13 | test_algorithm_config.py | 238 | [RLlib] AlgorithmConfigs: Broad rollout; Example scripts. (#29700) | 30,578 | 0 | 258 | 146 | 45 | 135,275 | 55 | ray | 18 | rllib/algorithms/tests/test_algorithm_config.py | Python | 20 | {
"docstring": "Tests, whether translation from dict to AlgorithmConfig works as expected.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/ray-project/ray.git |
|
9 | cov | def cov(self, ddof=1, split_every=None, split_out=1, std=False):
if self.sort is None and split_out > 1:
warnings.warn(SORT_SPLIT_OUT_WARNING, FutureWarning)
levels = _determine_levels(self.by)
is_mask = any(is_series_like(s) for s in self.by)
if self._slice:
if is_mask:
self.obj = self.obj[self._slice]
else:
sliced_plus = list(self._slice) + list(self.by)
self.obj = self.obj[sliced_plus]
result = aca(
[self.obj, self.by]
if not isinstance(self.by, list)
else [self.obj] + self.by,
chunk=_cov_chunk,
aggregate=_cov_agg,
combine=_cov_combine,
token=self._token_prefix + "cov",
aggregate_kwargs={"ddof": ddof, "levels": levels, "std": std},
combine_kwargs={"levels": levels},
split_every=split_every,
split_out=split_out,
split_out_setup=split_out_on_index,
sort=self.sort,
)
if isinstance(self.obj, Series):
result = result[result.columns[0]]
if self._slice:
result = result[self._slice]
return result
| 72832d4bd685a25000ee646966a1aa5d0d8a1793 | 15 | groupby.py | 368 | Groupby sort upstream compatibility (#9486) | 36,829 | 0 | 400 | 244 | 68 | 157,016 | 87 | dask | 39 | dask/dataframe/groupby.py | Python | 31 | {
"docstring": "Groupby covariance is accomplished by\n\n 1. Computing intermediate values for sum, count, and the product of\n all columns: a b c -> a*a, a*b, b*b, b*c, c*c.\n\n 2. The values are then aggregated and the final covariance value is calculated:\n cov(X, Y) = X*Y - Xbar * Ybar\n\n When `std` is True calculate Correlation\n ",
"language": "en",
"n_whitespaces": 102,
"n_words": 54,
"vocab_size": 48
} | https://github.com/dask/dask.git |
|
4 | copyin_matrix | def copyin_matrix(self, key, value):
rlo, rhi, clo, chi = self.key2bounds(key)
shape = value.shape
dr, dc = rhi - rlo, chi - clo
if shape != (dr, dc):
raise ShapeError(filldedent("The Matrix `value` doesn't have the "
"same dimensions "
"as the in sub-Matrix given by `key`."))
for i in range(value.rows):
for j in range(value.cols):
self[i + rlo, j + clo] = value[i, j]
| 59d22b6bb7287613d598611027f640d068ca5748 | 13 | repmatrix.py | 150 | Moved imports to higher level | 47,899 | 0 | 219 | 96 | 47 | 196,399 | 62 | sympy | 19 | sympy/matrices/repmatrix.py | Python | 11 | {
"docstring": "Copy in values from a matrix into the given bounds.\n\n Parameters\n ==========\n\n key : slice\n The section of this matrix to replace.\n value : Matrix\n The matrix to copy values from.\n\n Examples\n ========\n\n >>> from sympy import Matrix, eye\n >>> M = Matrix([[0, 1], [2, 3], [4, 5]])\n >>> I = eye(3)\n >>> I[:3, :2] = M\n >>> I\n Matrix([\n [0, 1, 0],\n [2, 3, 0],\n [4, 5, 1]])\n >>> I[0, 1] = M\n >>> I\n Matrix([\n [0, 0, 1],\n [2, 2, 3],\n [4, 4, 5]])\n\n See Also\n ========\n\n copyin_list\n ",
"language": "en",
"n_whitespaces": 287,
"n_words": 90,
"vocab_size": 59
} | https://github.com/sympy/sympy.git |
|
8 | step | def step(self) -> ResultDict:
step_attempt_results = None
with self._step_context() as step_ctx:
while not step_ctx.should_stop(step_attempt_results):
# Try to train one step.
try:
step_attempt_results = self.step_attempt()
# @ray.remote RolloutWorker failure.
except RayError as e:
# Try to recover w/o the failed worker.
if self.config["ignore_worker_failures"]:
logger.exception("Error in train call, attempting to recover")
self.try_recover_from_step_attempt()
# Error out.
else:
logger.warning(
"Worker crashed during call to `step_attempt()`. "
"To try to continue training without the failed "
"worker, set `ignore_worker_failures=True`."
)
raise e
# Any other exception.
except Exception as e:
# Allow logs messages to propagate.
time.sleep(0.5)
raise e
result = step_attempt_results
if hasattr(self, "workers") and isinstance(self.workers, WorkerSet):
# Sync filters on workers.
self._sync_filters_if_needed(self.workers)
# Collect worker metrics.
if self.config["_disable_execution_plan_api"]:
result = self._compile_step_results(
step_ctx=step_ctx,
step_attempt_results=step_attempt_results,
)
return result
| 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | 19 | trainer.py | 254 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 30,128 | 0 | 726 | 142 | 90 | 133,868 | 123 | ray | 25 | rllib/agents/trainer.py | Python | 43 | {
"docstring": "Implements the main `Trainer.train()` logic.\n\n Takes n attempts to perform a single training step. Thereby\n catches RayErrors resulting from worker failures. After n attempts,\n fails gracefully.\n\n Override this method in your Trainer sub-classes if you would like to\n handle worker failures yourself. Otherwise, override\n `self.step_attempt()` to keep the n attempts (catch worker failures).\n\n Returns:\n The results dict with stats/infos on sampling, training,\n and - if required - evaluation.\n ",
"language": "en",
"n_whitespaces": 146,
"n_words": 68,
"vocab_size": 58
} | https://github.com/ray-project/ray.git |
|
19 | deltaintegrate | def deltaintegrate(f, x):
if not f.has(DiracDelta):
return None
# g(x) = DiracDelta(h(x))
if f.func == DiracDelta:
h = f.expand(diracdelta=True, wrt=x)
if h == f: # can't simplify the expression
#FIXME: the second term tells whether is DeltaDirac or Derivative
#For integrating derivatives of DiracDelta we need the chain rule
if f.is_simple(x):
if (len(f.args) <= 1 or f.args[1] == 0):
return Heaviside(f.args[0])
else:
return (DiracDelta(f.args[0], f.args[1] - 1) /
f.args[0].as_poly().LC())
else: # let's try to integrate the simplified expression
fh = integrate(h, x)
return fh
elif f.is_Mul or f.is_Pow: # g(x) = a*b*c*f(DiracDelta(h(x)))*d*e
g = f.expand()
if f != g: # the expansion worked
fh = integrate(g, x)
if fh is not None and not isinstance(fh, Integral):
return fh
else:
# no expansion performed, try to extract a simple DiracDelta term
deltaterm, rest_mult = change_mul(f, x)
if not deltaterm:
if rest_mult:
fh = integrate(rest_mult, x)
return fh
else:
from sympy.solvers import solve
deltaterm = deltaterm.expand(diracdelta=True, wrt=x)
if deltaterm.is_Mul: # Take out any extracted factors
deltaterm, rest_mult_2 = change_mul(deltaterm, x)
rest_mult = rest_mult*rest_mult_2
point = solve(deltaterm.args[0], x)[0]
# Return the largest hyperreal term left after
# repeated integration by parts. For example,
#
# integrate(y*DiracDelta(x, 1),x) == y*DiracDelta(x,0), not 0
#
# This is so Integral(y*DiracDelta(x).diff(x),x).doit()
# will return y*DiracDelta(x) instead of 0 or DiracDelta(x),
# both of which are correct everywhere the value is defined
# but give wrong answers for nested integration.
n = (0 if len(deltaterm.args)==1 else deltaterm.args[1])
m = 0
while n >= 0:
r = S.NegativeOne**n*rest_mult.diff(x, n).subs(x, point)
if r.is_zero:
n -= 1
m += 1
else:
if m == 0:
return r*Heaviside(x - point)
else:
return r*DiracDelta(x,m-1)
# In some very weak sense, x=0 is still a singularity,
# but we hope will not be of any practical consequence.
return S.Zero
return None
| f757f3daae6e11ea0cfb7dadc133274d8d74315f | 26 | deltafunctions.py | 585 | Reordered imports 2 | 48,168 | 0 | 1,179 | 364 | 173 | 196,780 | 297 | sympy | 40 | sympy/integrals/deltafunctions.py | Python | 48 | {
"docstring": "\n deltaintegrate(f, x)\n\n Explanation\n ===========\n\n The idea for integration is the following:\n\n - If we are dealing with a DiracDelta expression, i.e. DiracDelta(g(x)),\n we try to simplify it.\n\n If we could simplify it, then we integrate the resulting expression.\n We already know we can integrate a simplified expression, because only\n simple DiracDelta expressions are involved.\n\n If we couldn't simplify it, there are two cases:\n\n 1) The expression is a simple expression: we return the integral,\n taking care if we are dealing with a Derivative or with a proper\n DiracDelta.\n\n 2) The expression is not simple (i.e. DiracDelta(cos(x))): we can do\n nothing at all.\n\n - If the node is a multiplication node having a DiracDelta term:\n\n First we expand it.\n\n If the expansion did work, then we try to integrate the expansion.\n\n If not, we try to extract a simple DiracDelta term, then we have two\n cases:\n\n 1) We have a simple DiracDelta term, so we return the integral.\n\n 2) We didn't have a simple term, but we do have an expression with\n simplified DiracDelta terms, so we integrate this expression.\n\n Examples\n ========\n\n >>> from sympy.abc import x, y, z\n >>> from sympy.integrals.deltafunctions import deltaintegrate\n >>> from sympy import sin, cos, DiracDelta\n >>> deltaintegrate(x*sin(x)*cos(x)*DiracDelta(x - 1), x)\n sin(1)*cos(1)*Heaviside(x - 1)\n >>> deltaintegrate(y**2*DiracDelta(x - z)*DiracDelta(y - z), y)\n z**2*DiracDelta(x - z)*Heaviside(y - z)\n\n See Also\n ========\n\n sympy.functions.special.delta_functions.DiracDelta\n sympy.integrals.integrals.Integral\n ",
"language": "en",
"n_whitespaces": 411,
"n_words": 225,
"vocab_size": 115
} | https://github.com/sympy/sympy.git |
|
1 | to_batches | def to_batches(self, *args, **kwargs):
return self.table.to_batches(*args, **kwargs)
| e35be138148333078284b942ccc9ed7b1d826f97 | 8 | table.py | 41 | Update docs to new frontend/UI (#3690)
* WIP: update docs to new UI
* make style
* Rm unused
* inject_arrow_table_documentation __annotations__
* hasattr(arrow_table_method, "__annotations__")
* Update task_template.rst
* Codeblock PT-TF-SPLIT
* Convert loading scripts
* Convert docs to mdx
* Fix mdx
* Add <Tip>
* Convert mdx tables
* Fix codeblock
* Rm unneded hashlinks
* Update index.mdx
* Redo dev change
* Rm circle ci `build_doc` & `deploy_doc`
* Rm unneeded files
* Update docs reamde
* Standardize to `Example::`
* mdx logging levels doc
* Table properties inject_arrow_table_documentation
* ``` to ```py mdx
* Add Tips mdx
* important,None -> <Tip warning={true}>
* More misc
* Center imgs
* Update instllation page
* `setup.py` docs section
* Rm imgs since they are in hf.co
* Update docs/source/access.mdx
Co-authored-by: Steven Liu <[email protected]>
* Update index mdx
* Update docs/source/access.mdx
Co-authored-by: Steven Liu <[email protected]>
* just `Dataset` obj
* Addedversion just italics
* Update ReadInstruction doc example syntax
* Change docstring for `prepare_for_task`
* Chore
* Remove `code` syntax from headings
* Rm `code` syntax from headings
* Hashlink backward compatability
* S3FileSystem doc
* S3FileSystem doc updates
* index.mdx updates
* Add darkmode gifs
* Index logo img css classes
* Index mdx dataset logo img size
* Docs for DownloadMode class
* Doc DownloadMode table
* format docstrings
* style
* Add doc builder scripts (#3790)
* add doc builder scripts
* fix docker image
* Docs new UI actions no self hosted (#3793)
* No self hosted
* replace doc injection by actual docstrings
* Docstring formatted
Co-authored-by: Quentin Lhoest <[email protected]>
Co-authored-by: Mishig Davaadorj <[email protected]>
Co-authored-by: Lysandre Debut <[email protected]>
Co-authored-by: Mishig Davaadorj <[email protected]>
* Rm notebooks from docs actions since they dont exi
* Update tsting branch
* More docstring
* Chore
* bump up node version
* bump up node
* ``` -> ```py for audio_process.mdx
* Update .github/workflows/build_documentation.yml
Co-authored-by: Quentin Lhoest <[email protected]>
* Uodate dev doc build
* remove run on PR
* fix action
* Fix gh doc workflow
* forgot this change when merging master
* Update build doc
Co-authored-by: Steven Liu <[email protected]>
Co-authored-by: Quentin Lhoest <[email protected]>
Co-authored-by: Quentin Lhoest <[email protected]>
Co-authored-by: Lysandre Debut <[email protected]> | 21,831 | 0 | 21 | 25 | 7 | 104,394 | 7 | datasets | 5 | src/datasets/table.py | Python | 2 | {
"docstring": "\n Convert Table to list of (contiguous) RecordBatch objects.\n\n Args:\n max_chunksize (:obj:`int`, defaults to `None`):\n Maximum size for RecordBatch chunks. Individual chunks may be\n smaller depending on the chunk layout of individual columns.\n\n Returns:\n :obj:`List[pyarrow.RecordBatch]`:\n ",
"language": "en",
"n_whitespaces": 115,
"n_words": 34,
"vocab_size": 31
} | https://github.com/huggingface/datasets.git |
|
5 | check_for_updates | def check_for_updates() -> None:
# The commit has was commented out because the terminal was crashing due to git import for multiple users
# ({str(git.Repo('.').head.commit)[:7]})
try:
r = requests.get(
"https://api.github.com/repos/openbb-finance/openbbterminal/releases/latest",
timeout=1,
)
except Exception:
r = None
if r is not None and r.status_code == 200:
release = r.json()["html_url"].split("/")[-1].replace("v", "")
if obbff.VERSION == release:
console.print("[green]You are using the latest version[/green]")
else:
console.print("[red]You are not using the latest version[/red]")
console.print(
"[yellow]Check for updates at https://openbb.co/products/terminal#get-started[/yellow]"
)
else:
console.print(
"[yellow]Unable to check for updates... "
+ "Check your internet connection and try again...[/yellow]"
)
console.print("")
| 7b374b76629a963cef9a22b41bc8acbef70e876a | 16 | terminal_helper.py | 202 | Add check for updates at terminal startup (#1839)
* Add check for updates at terminal startup
* Fix ycrv missing from documentation
* Add new line after update check message
Co-authored-by: didierlopes.eth <[email protected]>
Co-authored-by: James Maslek <[email protected]> | 84,784 | 0 | 276 | 109 | 70 | 284,534 | 93 | OpenBBTerminal | 15 | openbb_terminal/terminal_helper.py | Python | 27 | {
"docstring": "Check if the latest version is running.\n\n Checks github for the latest release version and compares it to obbff.VERSION.\n ",
"language": "en",
"n_whitespaces": 25,
"n_words": 19,
"vocab_size": 16
} | https://github.com/OpenBB-finance/OpenBBTerminal.git |
|
1 | load_array | def load_array(data_arrays, batch_size, is_train=True):
dataset = gluon.data.ArrayDataset(*data_arrays)
return gluon.data.DataLoader(dataset, batch_size, shuffle=is_train)
| b64b41d8c1ac23c43f7a4e3f9f6339d6f0012ab2 | 9 | mxnet.py | 59 | [PaddlePaddle] Merge master into Paddle branch (#1186)
* change 15.2 title in chinese version (#1109)
change title ’15.2. 情感分析:使用递归神经网络‘ to ’15.2. 情感分析:使用循环神经网络‘
* 修改部分语义表述 (#1105)
* Update r0.17.5 (#1120)
* Bump versions in installation
* 94行typo: (“bert.mall”)->(“bert.small”) (#1129)
* line 313: "bert.mall" -> "bert.small" (#1130)
* fix: update language as native reader (#1114)
* Fix the translation of "stride" (#1115)
* Update index.md (#1118)
修改部分语义表述
* Update self-attention-and-positional-encoding.md (#1133)
依照本书的翻译习惯,将pooling翻译成汇聚
* maybe a comment false (#1149)
* maybe a little false
* maybe a little false
* A minor bug in the rcnn section (Chinese edition) (#1148)
* Update bert.md (#1137)
一个笔误
# 假设batch_size=2,num_pred_positions=3
# 那么batch_idx应该是np.repeat( [0,1], 3 ) = [0,0,0,1,1,1]
* Update calculus.md (#1135)
* fix typo in git documentation (#1106)
* fix: Update the Chinese translation in lr-scheduler.md (#1136)
* Update lr-scheduler.md
* Update chapter_optimization/lr-scheduler.md
Co-authored-by: goldmermaid <[email protected]>
Co-authored-by: goldmermaid <[email protected]>
* fix translation for kaggle-house-price.md (#1107)
* fix translation for kaggle-house-price.md
* fix translation for kaggle-house-price.md
Signed-off-by: sunhaizhou <[email protected]>
* Update weight-decay.md (#1150)
* Update weight-decay.md
关于“k多选d”这一部分,中文读者使用排列组合的方式可能更容易理解
关于“给定k个变量,阶数的个数为...”这句话是有歧义的,不是很像中国话,应该是说“阶数为d的项的个数为...”。
并增加了一句对“因此即使是阶数上的微小变化,比如从$2$到$3$,也会显著增加我们模型的复杂性。”的解释
解释为何会增加复杂性以及为何需要细粒度工具。
* Update chapter_multilayer-perceptrons/weight-decay.md
yep
Co-authored-by: goldmermaid <[email protected]>
* Update chapter_multilayer-perceptrons/weight-decay.md
yep
Co-authored-by: goldmermaid <[email protected]>
Co-authored-by: goldmermaid <[email protected]>
* Fix a spelling error (#1161)
* Update gru.md (#1152)
The key distinction between vanilla RNNs and GRUs is that the latter support gating of the hidden state.
翻译错误
* Unify the function naming (#1113)
Unify naming of the function 'init_xavier()'.
* Update mlp-concise.md (#1166)
* Update mlp-concise.md
语句不通顺
* Update environment.md
语序异常
* Update config.ini
* fix the imprecise description (#1168)
Co-authored-by: yuande <yuande>
* fix typo in chapter_natural-language-processing-pretraining/glove.md (#1175)
* Fix some typos. (#1163)
* Update batch-norm.md (#1170)
fixing typos u->x in article
* Update linear-regression.md (#1090)
We invoke Stuart Russell and Peter Norvig who, in their classic AI text book Artificial Intelligence: A Modern Approach :cite:Russell.Norvig.2016, pointed out that
原译文把who也直接翻译出来了。
* Update mlp.md (#1117)
* Update mlp.md
修改部分语义表述
* Update chapter_multilayer-perceptrons/mlp.md
Co-authored-by: goldmermaid <[email protected]>
* Update chapter_multilayer-perceptrons/mlp.md
Co-authored-by: Aston Zhang <[email protected]>
Co-authored-by: goldmermaid <[email protected]>
* Correct a translation error. (#1091)
* Correct a translation error.
* Update chapter_computer-vision/image-augmentation.md
Co-authored-by: Aston Zhang <[email protected]>
* Update aws.md (#1121)
* Update aws.md
* Update chapter_appendix-tools-for-deep-learning/aws.md
Co-authored-by: Aston Zhang <[email protected]>
* Update image-augmentation.md (#1093)
* Update anchor.md (#1088)
fix a minor issue in code
* Update anchor.md
* Update image-augmentation.md
* fix typo and improve translation in chapter_linear-networks\softmax-regression.md (#1087)
* Avoid `torch.meshgrid` user warning (#1174)
Avoids the following user warning:
```python
~/anaconda3/envs/torch/lib/python3.10/site-packages/torch/functional.py:568: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:2228.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
```
* bump to 2.0.0-beta1
* Update sequence.md
* bump beta1 on readme
* Add latex code block background to config
* BLD: Bump python support version 3.9 (#1183)
* BLD: Bump python support version 3.9
* Remove clear and manually downgrade protobuf 4.21.4 to 3.19.4
* BLD: Bump torch and tensorflow
* Update Jenkinsfile
* Update chapter_installation/index.md
* Update chapter_installation/index.md
Co-authored-by: Aston Zhang <[email protected]>
* Update config.ini
* Update INFO.md
* Update INFO.md
* Drop mint to show code in pdf, use Inconsolata font, apply code cell color (#1187)
* resolve the conflicts
* revise from publisher (#1089)
* revise from publisher
* d2l api
* post_latex
* revise from publisher
* revise ch11
* Delete d2l-Copy1.bib
* clear cache
* rm d2lbook clear
* debug anchor
* keep original d2l doc
Co-authored-by: Ubuntu <[email protected]>
Co-authored-by: Aston Zhang <[email protected]>
Co-authored-by: Aston Zhang <[email protected]>
* 重复语句 (#1188)
Co-authored-by: Aston Zhang <[email protected]>
* Improve expression for chapter_preliminaries/pandas.md (#1184)
* Update pandas.md
* Improve expression
* Improve expression
* Update chapter_preliminaries/pandas.md
Co-authored-by: Aston Zhang <[email protected]>
* Improce expression for chapter_preliminaries/linear-algebra.md (#1185)
* Improce expression
* Improve code comments
* Update chapter_preliminaries/linear-algebra.md
* Update chapter_preliminaries/linear-algebra.md
* Update chapter_preliminaries/linear-algebra.md
* Update chapter_preliminaries/linear-algebra.md
Co-authored-by: Aston Zhang <[email protected]>
* Fix multibox_detection bugs
* Update d2l to 0.17.5 version
* restore older version
* Upgrade pandas
* change to python3.8
* Test warning log
* relocate warning log
* test logs filtering
* Update gru.md
* Add DeprecationWarning filter
* Test warning log
* Update attention mechanisms & computational performance
* Update multilayer perceptron& linear & convolution networks & computer vision
* Update recurrent&optimition&nlp pretraining & nlp applications
* ignore warnings
* Update index.md
* Update linear networks
* Update multilayer perceptrons&deep learning computation
* Update preliminaries
* Check and Add warning filter
* Update kaggle-cifar10.md
* Update object-detection-dataset.md
* Update ssd.md fcn.md
* Update hybridize.md
* Update hybridize.md
Signed-off-by: sunhaizhou <[email protected]>
Co-authored-by: zhou201505013 <[email protected]>
Co-authored-by: Xinwei Liu <[email protected]>
Co-authored-by: Anirudh Dagar <[email protected]>
Co-authored-by: Aston Zhang <[email protected]>
Co-authored-by: hugo_han <[email protected]>
Co-authored-by: gyro永不抽风 <[email protected]>
Co-authored-by: CanChengZheng <[email protected]>
Co-authored-by: linlin <[email protected]>
Co-authored-by: iuk <[email protected]>
Co-authored-by: yoos <[email protected]>
Co-authored-by: Mr. Justice Lawrence John Wargrave <[email protected]>
Co-authored-by: Chiyuan Fu <[email protected]>
Co-authored-by: Sunhuashan <[email protected]>
Co-authored-by: Haiker Sun <[email protected]>
Co-authored-by: Ming Liu <[email protected]>
Co-authored-by: goldmermaid <[email protected]>
Co-authored-by: silenceZheng66 <[email protected]>
Co-authored-by: Wenchao Yan <[email protected]>
Co-authored-by: Kiki2049 <[email protected]>
Co-authored-by: Krahets <[email protected]>
Co-authored-by: friedmainfunction <[email protected]>
Co-authored-by: Jameson <[email protected]>
Co-authored-by: P. Yao <[email protected]>
Co-authored-by: Yulv-git <[email protected]>
Co-authored-by: Liu,Xiao <[email protected]>
Co-authored-by: YIN, Gang <[email protected]>
Co-authored-by: Joe-HZ <[email protected]>
Co-authored-by: lybloveyou <[email protected]>
Co-authored-by: VigourJiang <[email protected]>
Co-authored-by: zxhd863943427 <[email protected]>
Co-authored-by: LYF <[email protected]>
Co-authored-by: Aston Zhang <[email protected]>
Co-authored-by: xiaotinghe <[email protected]>
Co-authored-by: Ubuntu <[email protected]>
Co-authored-by: Holly-Max <[email protected]>
Co-authored-by: HinGwenWoong <[email protected]>
Co-authored-by: Shuai Zhang <[email protected]> | 37,377 | 0 | 20 | 38 | 10 | 158,208 | 11 | d2l-zh | 10 | d2l/mxnet.py | Python | 3 | {
"docstring": "Construct a Gluon data iterator.\n\n Defined in :numref:`sec_linear_concise`",
"language": "en",
"n_whitespaces": 10,
"n_words": 8,
"vocab_size": 8
} | https://github.com/d2l-ai/d2l-zh.git |
|
16 | a85decode | def a85decode(b, *, foldspaces=False, adobe=False, ignorechars=b' \t\n\r\v'):
b = _bytes_from_decode_data(b)
if adobe:
if not b.endswith(_A85END):
raise ValueError(
"Ascii85 encoded byte sequences must end "
"with {!r}".format(_A85END)
)
if b.startswith(_A85START):
b = b[2:-2] # Strip off start/end markers
else:
b = b[:-2]
#
# We have to go through this stepwise, so as to ignore spaces and handle
# special short sequences
#
packI = struct.Struct('!I').pack
decoded = []
decoded_append = decoded.append
curr = []
curr_append = curr.append
curr_clear = curr.clear
for x in b + b'u' * 4:
if b'!'[0] <= x <= b'u'[0]:
curr_append(x)
if len(curr) == 5:
acc = 0
for x in curr:
acc = 85 * acc + (x - 33)
try:
decoded_append(packI(acc))
except struct.error:
raise ValueError('Ascii85 overflow') from None
curr_clear()
elif x == b'z'[0]:
if curr:
raise ValueError('z inside Ascii85 5-tuple')
decoded_append(b'\0\0\0\0')
elif foldspaces and x == b'y'[0]:
if curr:
raise ValueError('y inside Ascii85 5-tuple')
decoded_append(b'\x20\x20\x20\x20')
elif x in ignorechars:
# Skip whitespace
continue
else:
raise ValueError('Non-Ascii85 digit found: %c' % x)
result = b''.join(decoded)
padding = 4 - len(curr)
if padding:
# Throw away the extra padding
result = result[:-padding]
return result
# The following code is originally taken (with permission) from Mercurial
_b85alphabet = (b"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
b"abcdefghijklmnopqrstuvwxyz!#$%&()*+-;<=>?@^_`{|}~")
_b85chars = None
_b85chars2 = None
_b85dec = None
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 17 | base64.py | 513 | add python 3.10.4 for windows | 56,193 | 0 | 686 | 281 | 138 | 221,085 | 212 | XX-Net | 34 | python3.10.4/Lib/base64.py | Python | 47 | {
"docstring": "Decode the Ascii85 encoded bytes-like object or ASCII string b.\n\n foldspaces is a flag that specifies whether the 'y' short sequence should be\n accepted as shorthand for 4 consecutive spaces (ASCII 0x20). This feature is\n not supported by the \"standard\" Adobe encoding.\n\n adobe controls whether the input sequence is in Adobe Ascii85 format (i.e.\n is framed with <~ and ~>).\n\n ignorechars should be a byte string containing characters to ignore from the\n input. This should only contain whitespace characters, and by default\n contains all whitespace characters in ASCII.\n\n The result is returned as a bytes object.\n ",
"language": "en",
"n_whitespaces": 126,
"n_words": 96,
"vocab_size": 71
} | https://github.com/XX-net/XX-Net.git |
|
2 | _load_formatters | def _load_formatters(module_name):
mod = __import__(module_name, None, None, ['__all__'])
for formatter_name in mod.__all__:
cls = getattr(mod, formatter_name)
_formatter_cache[cls.name] = cls
| f3166e673fe8d40277b804d35d77dcdb760fc3b3 | 10 | __init__.py | 68 | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | 3,315 | 0 | 42 | 43 | 15 | 20,293 | 19 | pipenv | 10 | pipenv/patched/notpip/_vendor/pygments/formatters/__init__.py | Python | 5 | {
"docstring": "Load a formatter (and all others in the module too).",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/pypa/pipenv.git |
|
1 | test_resolved_in_release_performance_issue | def test_resolved_in_release_performance_issue(self, mock_func):
event = self.create_performance_issue()
notification = ResolvedInReleaseActivityNotification(
Activity(
project=self.project,
group=event.group,
user=self.user,
type=ActivityType.SET_RESOLVED_IN_RELEASE,
data={"version": "meow"},
)
)
with self.feature("organizations:performance-issues"), self.tasks():
notification.send()
attachment, text = get_attachment()
release_name = notification.activity.data["version"]
assert text == f"Issue marked as resolved in {release_name} by {self.name}"
assert attachment["title"] == "N+1 Query"
assert (
attachment["text"]
== "db - SELECT `books_author`.`id`, `books_author`.`name` FROM `books_author` WHERE `books_author`.`id` = %s LIMIT 21"
)
assert (
attachment["footer"]
== f"{self.project.slug} | production | <http://testserver/settings/account/notifications/workflow/?referrer=resolved_in_release_activity-slack-user|Notification Settings>"
)
| 495d45c6547e398a5d4d3c1fa8cb97e69b1751f8 | 14 | test_resolved_in_release.py | 230 | ref(slack): Update workflow alerts for perf issues (#40463)
Slack workflow alerts for performance issues are showing a text value of
"no value". This PR adds feature parity with error issues for workflow
alerts so that they are shown with the proper data. | 18,284 | 0 | 317 | 122 | 58 | 87,329 | 74 | sentry | 25 | tests/sentry/integrations/slack/notifications/test_resolved_in_release.py | Python | 25 | {
"docstring": "\n Test that a Slack message is sent with the expected payload when a performance issue is resolved in a release\n ",
"language": "en",
"n_whitespaces": 35,
"n_words": 20,
"vocab_size": 17
} | https://github.com/getsentry/sentry.git |
|
4 | make_png | def make_png(cls, tex, fontsize, dpi):
basefile = cls.get_basefile(tex, fontsize, dpi)
pngfile = '%s.png' % basefile
# see get_rgba for a discussion of the background
if not os.path.exists(pngfile):
dvifile = cls.make_dvi(tex, fontsize)
cmd = ["dvipng", "-bg", "Transparent", "-D", str(dpi),
"-T", "tight", "-o", pngfile, dvifile]
# When testing, disable FreeType rendering for reproducibility; but
# dvipng 1.16 has a bug (fixed in f3ff241) that breaks --freetype0
# mode, so for it we keep FreeType enabled; the image will be
# slightly off.
if (getattr(mpl, "_called_from_pytest", False) and
mpl._get_executable_info("dvipng").raw_version != "1.16"):
cmd.insert(1, "--freetype0")
cls._run_checked_subprocess(cmd, tex)
return pngfile
| 13147992b317c29c6e832ca7f6d05bf48aeb0718 | 14 | texmanager.py | 198 | Move towards making texmanager stateless.
Previously, TexManager needed to call get_font_config at a specific
place in the middle of processing to update some internal attributes
before proceeding with TeX source generation. Instead, move towards
making TexManager stateless (except for caching), i.e. the user facing
API should be thought of as a bunch of independently callable functions
`make_tex()`, `make_dvi()`, etc. (they will probably stay as methods on
a "empty" TexManager object for a long time for backcompat, in fact). | 23,022 | 0 | 276 | 117 | 78 | 108,023 | 94 | matplotlib | 21 | lib/matplotlib/texmanager.py | Python | 12 | {
"docstring": "\n Generate a png file containing latex's rendering of tex string.\n\n Return the file name.\n ",
"language": "en",
"n_whitespaces": 36,
"n_words": 14,
"vocab_size": 13
} | https://github.com/matplotlib/matplotlib.git |
|
3 | _wait_threads | def _wait_threads(self):
# Note that you need two loops, since you can't say which
# thread will get each sentinel
for t in self._threads:
self._to_fetch.put(None) # sentinel
for t in self._threads:
t.join()
self._threads = []
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 10 | locators.py | 68 | upd; format | 12,843 | 0 | 102 | 39 | 27 | 62,036 | 35 | transferlearning | 7 | .venv/lib/python3.8/site-packages/pip/_vendor/distlib/locators.py | Python | 6 | {
"docstring": "\n Tell all the threads to terminate (by sending a sentinel value) and\n wait for them to do so.\n ",
"language": "en",
"n_whitespaces": 40,
"n_words": 18,
"vocab_size": 17
} | https://github.com/jindongwang/transferlearning.git |
|
2 | table_id | def table_id(connection, table_name, schema_name=None):
schema_idm = schema_id(connection=connection,schema_name=schema_name)
q = f
cur = connection.cursor()
cur.execute(q)
try:
table_id = cur.fetchall()[0][0]
except:
raise exc.NoSuchTableError(table_name)
return table_id
| 3d8422b16d8ad72005ffed2f7869eefe0b330c35 | 12 | monet_get_id.py | 117 | utils used for getting schema_id and table_id | 25,664 | 0 | 70 | 67 | 19 | 116,090 | 23 | mindsdb | 13 | mindsdb/integrations/handlers/monetdb_handler/utils/monet_get_id.py | Python | 15 | {
"docstring": "Fetch the id for schema.table_name, defaulting to current schema if\n schema is None\n \n SELECT id\n FROM sys.tables\n WHERE name = '{table_name}'\n AND schema_id = {schema_idm}\n ",
"language": "en",
"n_whitespaces": 70,
"n_words": 25,
"vocab_size": 22
} | https://github.com/mindsdb/mindsdb.git |
|
1 | is_flow_ready | def is_flow_ready(self, **kwargs) -> bool:
return run_async(self.client._is_flow_ready, **kwargs)
dry_run = deprecate_by(is_flow_ready)
| 273fda5a86da0d6bf48f423fa50700e828b40be6 | 9 | mixin.py | 48 | refactor: merge dryrun into ping (#5151)
* refactor: merge dryrun into ping
* style: fix overload and cli autocomplete
* refactor: merge dryrun into ping
* refactor: merge dryrun into ping
* refactor: merge dryrun into ping
* refactor: merge dryrun into ping
Co-authored-by: Jina Dev Bot <[email protected]> | 2,490 | 0 | 28 | 23 | 10 | 12,995 | 11 | jina | 9 | jina/clients/mixin.py | Python | 7 | {
"docstring": "Check if the Flow is ready to receive requests\n\n :param kwargs: potential kwargs received passed from the public interface\n :return: boolean indicating the health/readiness of the Flow\n ",
"language": "en",
"n_whitespaces": 48,
"n_words": 27,
"vocab_size": 23
} | https://github.com/jina-ai/jina.git |
|
1 | is_decompressed_wo_data | def is_decompressed_wo_data(self) -> bool:
return type(self._pb_body) is jina_pb2.DataRequestProtoWoData
| c3849c6fee4a65a77a82b2cfda9670d727ff0f53 | 9 | data.py | 33 | feat: allow to access parameters of data request wo loading data (#4991) | 2,382 | 0 | 22 | 19 | 8 | 12,696 | 8 | jina | 7 | jina/types/request/data.py | Python | 7 | {
"docstring": "\n Checks if the underlying proto object was already deserialized into a :class:`jina.proto.jina_pb2.DataRequestProtoWoData`. It means that the proto is loaded without the data ( docs ).\n\n :return: True if the proto was deserialized before into a DataRequest without docs\n ",
"language": "en",
"n_whitespaces": 60,
"n_words": 38,
"vocab_size": 26
} | https://github.com/jina-ai/jina.git |
|
3 | _update_trackables | def _update_trackables(self):
for trackable_obj in self._self_tracked_trackables:
if isinstance(
trackable_obj, tf.__internal__.tracking.TrackableDataStructure
):
self._track_variables(trackable_obj)
| 00524152437b957ca4e850a5db014e223d3c6826 | 12 | base_layer.py | 54 | isort, black and flake8 checked | 83,115 | 0 | 78 | 33 | 12 | 279,734 | 12 | keras | 10 | keras/engine/base_layer.py | Python | 6 | {
"docstring": "Track variables added to lists/dicts after creation",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | https://github.com/keras-team/keras.git |
|
3 | get_unpositioned_tip | def get_unpositioned_tip(self, tip_shape=None, tip_length=None):
from manim.mobject.geometry.tips import ArrowTriangleFilledTip
if tip_shape is None:
tip_shape = ArrowTriangleFilledTip
if tip_length is None:
tip_length = self.get_default_tip_length()
color = self.get_color()
style = {"fill_color": color, "stroke_color": color}
style.update(self.tip_style)
tip = tip_shape(length=tip_length, **style)
return tip
| e040bcacd38378386749db18aeba575b93f4ebca | 10 | arc.py | 134 | Improved structure of the :mod:`.mobject` module (#2476)
* group graphing and update its references
* group text and update its references
* group opengl and update its references
* group three_d and update its references
* group geometry and update (most) references
* move some chaning.py + updater files into animation
* refactor arc.py
* refactor line.py
* refactor polygram.py
* refactor tips.py
* black + isort
* import new files in __init__.py
* refactor places where geometry was used
* black + isort again
* remove unused imports
* update reference.rst
* add descriptions to files
* fix circular imports
* forgot ArrowTip
* fix tests
* fix doctests
* satisfy mypy?
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix ALL merge conflicts
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* one VMobject import slipped through
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* re-add imports to `manim/opengl/__init__.py`
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix reference manual
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* ignore unknown directive type
* fix arrow tip imports in docstrings
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Benjamin Hackl <[email protected]> | 46,162 | 0 | 123 | 83 | 27 | 189,675 | 38 | manim | 17 | manim/mobject/geometry/arc.py | Python | 11 | {
"docstring": "\n Returns a tip that has been stylistically configured,\n but has not yet been given a position in space.\n ",
"language": "en",
"n_whitespaces": 40,
"n_words": 18,
"vocab_size": 15
} | https://github.com/ManimCommunity/manim.git |
|
29 | fit | def fit(self, X, y, sample_weight=None):
solver = _check_solver(self.solver, self.penalty, self.dual)
if not isinstance(self.C, numbers.Number) or self.C < 0:
raise ValueError("Penalty term must be positive; got (C=%r)" % self.C)
if self.penalty == "elasticnet":
if (
not isinstance(self.l1_ratio, numbers.Number)
or self.l1_ratio < 0
or self.l1_ratio > 1
):
raise ValueError(
"l1_ratio must be between 0 and 1; got (l1_ratio=%r)"
% self.l1_ratio
)
elif self.l1_ratio is not None:
warnings.warn(
"l1_ratio parameter is only used when penalty is "
"'elasticnet'. Got "
"(penalty={})".format(self.penalty)
)
if self.penalty == "none":
if self.C != 1.0: # default values
warnings.warn(
"Setting penalty='none' will ignore the C and l1_ratio parameters"
)
# Note that check for l1_ratio is done right above
C_ = np.inf
penalty = "l2"
else:
C_ = self.C
penalty = self.penalty
if not isinstance(self.max_iter, numbers.Number) or self.max_iter < 0:
raise ValueError(
"Maximum number of iteration must be positive; got (max_iter=%r)"
% self.max_iter
)
if not isinstance(self.tol, numbers.Number) or self.tol < 0:
raise ValueError(
"Tolerance for stopping criteria must be positive; got (tol=%r)"
% self.tol
)
if solver == "lbfgs":
_dtype = np.float64
else:
_dtype = [np.float64, np.float32]
X, y = self._validate_data(
X,
y,
accept_sparse="csr",
dtype=_dtype,
order="C",
accept_large_sparse=solver not in ["liblinear", "sag", "saga"],
)
check_classification_targets(y)
self.classes_ = np.unique(y)
multi_class = _check_multi_class(self.multi_class, solver, len(self.classes_))
if solver == "liblinear":
if effective_n_jobs(self.n_jobs) != 1:
warnings.warn(
"'n_jobs' > 1 does not have any effect when"
" 'solver' is set to 'liblinear'. Got 'n_jobs'"
" = {}.".format(effective_n_jobs(self.n_jobs))
)
self.coef_, self.intercept_, n_iter_ = _fit_liblinear(
X,
y,
self.C,
self.fit_intercept,
self.intercept_scaling,
self.class_weight,
self.penalty,
self.dual,
self.verbose,
self.max_iter,
self.tol,
self.random_state,
sample_weight=sample_weight,
)
self.n_iter_ = np.array([n_iter_])
return self
if solver in ["sag", "saga"]:
max_squared_sum = row_norms(X, squared=True).max()
else:
max_squared_sum = None
n_classes = len(self.classes_)
classes_ = self.classes_
if n_classes < 2:
raise ValueError(
"This solver needs samples of at least 2 classes"
" in the data, but the data contains only one"
" class: %r"
% classes_[0]
)
if len(self.classes_) == 2:
n_classes = 1
classes_ = classes_[1:]
if self.warm_start:
warm_start_coef = getattr(self, "coef_", None)
else:
warm_start_coef = None
if warm_start_coef is not None and self.fit_intercept:
warm_start_coef = np.append(
warm_start_coef, self.intercept_[:, np.newaxis], axis=1
)
# Hack so that we iterate only once for the multinomial case.
if multi_class == "multinomial":
classes_ = [None]
warm_start_coef = [warm_start_coef]
if warm_start_coef is None:
warm_start_coef = [None] * n_classes
path_func = delayed(_logistic_regression_path)
# The SAG solver releases the GIL so it's more efficient to use
# threads for this solver.
if solver in ["sag", "saga"]:
prefer = "threads"
else:
prefer = "processes"
fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, prefer=prefer)(
path_func(
X,
y,
pos_class=class_,
Cs=[C_],
l1_ratio=self.l1_ratio,
fit_intercept=self.fit_intercept,
tol=self.tol,
verbose=self.verbose,
solver=solver,
multi_class=multi_class,
max_iter=self.max_iter,
class_weight=self.class_weight,
check_input=False,
random_state=self.random_state,
coef=warm_start_coef_,
penalty=penalty,
max_squared_sum=max_squared_sum,
sample_weight=sample_weight,
)
for class_, warm_start_coef_ in zip(classes_, warm_start_coef)
)
fold_coefs_, _, n_iter_ = zip(*fold_coefs_)
self.n_iter_ = np.asarray(n_iter_, dtype=np.int32)[:, 0]
n_features = X.shape[1]
if multi_class == "multinomial":
self.coef_ = fold_coefs_[0][0]
else:
self.coef_ = np.asarray(fold_coefs_)
self.coef_ = self.coef_.reshape(
n_classes, n_features + int(self.fit_intercept)
)
if self.fit_intercept:
self.intercept_ = self.coef_[:, -1]
self.coef_ = self.coef_[:, :-1]
else:
self.intercept_ = np.zeros(n_classes)
return self
| 5f75acdd12d77b973471961ad716367c6199d01c | 16 | _logistic.py | 1,352 | MNT Bump joblib version dependency to 1.0.0 (#22365) | 75,396 | 0 | 2,295 | 858 | 258 | 258,737 | 490 | scikit-learn | 81 | sklearn/linear_model/_logistic.py | Python | 152 | {
"docstring": "\n Fit the model according to the given training data.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training vector, where `n_samples` is the number of samples and\n `n_features` is the number of features.\n\n y : array-like of shape (n_samples,)\n Target vector relative to X.\n\n sample_weight : array-like of shape (n_samples,) default=None\n Array of weights that are assigned to individual samples.\n If not provided, then each sample is given unit weight.\n\n .. versionadded:: 0.17\n *sample_weight* support to LogisticRegression.\n\n Returns\n -------\n self\n Fitted estimator.\n\n Notes\n -----\n The SAGA solver supports both float64 and float32 bit arrays.\n ",
"language": "en",
"n_whitespaces": 280,
"n_words": 97,
"vocab_size": 75
} | https://github.com/scikit-learn/scikit-learn.git |
|
1 | ds | def ds(self):
return DeepsetCloudDocumentStore(api_endpoint=DC_API_ENDPOINT, api_key=DC_API_KEY, index=DC_TEST_INDEX)
# Integration tests
| 255072d8d548a19a1678ddc46b41d41cf5d09bc4 | 8 | test_deepsetcloud.py | 35 | refactor: move dC tests to their own module and job (#3529)
* move dC tests to their own module and job
* restore global var
* revert | 75,193 | 0 | 26 | 21 | 9 | 258,161 | 9 | haystack | 9 | test/document_stores/test_deepsetcloud.py | Python | 2 | {
"docstring": "\n We make this fixture depend on `dc_api_mock` so that passing the document store will\n activate the mocking and we spare one function parameter.\n ",
"language": "en",
"n_whitespaces": 45,
"n_words": 23,
"vocab_size": 22
} | https://github.com/deepset-ai/haystack.git |
|
6 | _postprocess | def _postprocess(self, inputs):
results = []
for examples, texts, temp_results in zip(inputs['batch_examples'],
inputs['batch_texts'],
inputs['batch_results']):
for i in range(len(examples)):
result = {}
det_pred, char_preds, length = temp_results[i]
pred_result = self._parse_decode(texts[i], char_preds, det_pred,
length)
result['source'] = texts[i]
result['target'] = ''.join(pred_result)
results.append(result)
results = self._auto_joiner(results, self.input_mapping, is_dict=True)
for result in results:
errors_result = []
for i, (source_token, target_token
) in enumerate(zip(result['source'], result['target'])):
if source_token != target_token:
errors_result.append({
'position': i,
'correction': {
source_token: target_token
}
})
result['errors'] = errors_result
return results
| 1e2ee01dade0d4076ba98aa613c3eb150c615abb | 17 | text_correction.py | 297 | Update Taskflow word_segmentation and ner tasks (#1666)
* Add AutoSplitter & AutoJoiner
* codestyle fix
* unify auto joiner
* add comments
* add sentence split mode
* update params
* add paddle version check
* add wordtag for word_segmentation
* add wordtag for word_segmentation
* add ner-lac and word_segmentation-jieba
* add return entities only for ner
* fix ci
* fix ci
* fix ci
* fix ci
* fix ci
* Update README.md
* Update README.md
* Update README.md
* Update README.md
* Update README.md
* Update README.md
* Update README.md
* Update README.md
* Update README.md
* Update README.md
* Update README.md
* Update README.md
* fix bugs of dataloader
* remove guard
* use fast mode for rnn example
* Update README.md
* Update README.md | 118,205 | 0 | 565 | 186 | 54 | 322,613 | 77 | PaddleNLP | 26 | paddlenlp/taskflow/text_correction.py | Python | 27 | {
"docstring": "\n The model output is the logits and probs, this function will convert the model output to raw text.\n ",
"language": "en",
"n_whitespaces": 33,
"n_words": 18,
"vocab_size": 15
} | https://github.com/PaddlePaddle/PaddleNLP.git |
|
16 | label_tag | def label_tag(self, contents=None, attrs=None, label_suffix=None, tag=None):
contents = contents or self.label
if label_suffix is None:
label_suffix = (
self.field.label_suffix
if self.field.label_suffix is not None
else self.form.label_suffix
)
# Only add the suffix if the label does not end in punctuation.
# Translators: If found as last label character, these punctuation
# characters will prevent the default label_suffix to be appended to the label
if label_suffix and contents and contents[-1] not in _(":?.!"):
contents = format_html("{}{}", contents, label_suffix)
widget = self.field.widget
id_ = widget.attrs.get("id") or self.auto_id
if id_:
id_for_label = widget.id_for_label(id_)
if id_for_label:
attrs = {**(attrs or {}), "for": id_for_label}
if self.field.required and hasattr(self.form, "required_css_class"):
attrs = attrs or {}
if "class" in attrs:
attrs["class"] += " " + self.form.required_css_class
else:
attrs["class"] = self.form.required_css_class
context = {
"field": self,
"label": contents,
"attrs": attrs,
"use_tag": bool(id_),
"tag": tag or "label",
}
return self.form.render(self.form.template_name_label, context)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 15 | boundfield.py | 380 | Refs #33476 -- Reformatted code with Black. | 51,286 | 0 | 497 | 230 | 94 | 205,927 | 142 | django | 23 | django/forms/boundfield.py | Python | 30 | {
"docstring": "\n Wrap the given contents in a <label>, if the field has an ID attribute.\n contents should be mark_safe'd to avoid HTML escaping. If contents\n aren't given, use the field's HTML-escaped label.\n\n If attrs are given, use them as HTML attributes on the <label> tag.\n\n label_suffix overrides the form's label_suffix.\n ",
"language": "en",
"n_whitespaces": 92,
"n_words": 49,
"vocab_size": 39
} | https://github.com/django/django.git |
|
3 | __call__ | def __call__(self, bbox_pred, gt_bboxes):
if self.box_format == 'xywh':
gt_bboxes = bbox_xyxy_to_cxcywh(gt_bboxes)
elif self.box_format == 'xyxy':
bbox_pred = bbox_cxcywh_to_xyxy(bbox_pred)
bbox_cost = torch.cdist(bbox_pred, gt_bboxes, p=1)
return bbox_cost * self.weight
@MATCH_COST.register_module() | cac356380d505bf15587f07c0529218cc36b9652 | @MATCH_COST.register_module() | 11 | match_cost.py | 103 | [Feature] Add Maskformer to mmdet (#7212)
* first commit
* add README
* move model description from config to readme
add description for binary_input
add description for dice loss
add a independent panoptic gt processing function
add a independent panoptic gt processing function
remove compatibility of pretrain in maskformer
* update comments in maskformer_head
* update docs format | 70,199 | 1 | 84 | 56 | 23 | 244,027 | 28 | mmdetection | 14 | mmdet/core/bbox/match_costs/match_cost.py | Python | 7 | {
"docstring": "\n Args:\n bbox_pred (Tensor): Predicted boxes with normalized coordinates\n (cx, cy, w, h), which are all in range [0, 1]. Shape\n (num_query, 4).\n gt_bboxes (Tensor): Ground truth boxes with normalized\n coordinates (x1, y1, x2, y2). Shape (num_gt, 4).\n\n Returns:\n torch.Tensor: bbox_cost value with weight\n ",
"language": "en",
"n_whitespaces": 143,
"n_words": 43,
"vocab_size": 35
} | https://github.com/open-mmlab/mmdetection.git |
2 | _get_queryset | def _get_queryset(klass):
# If it is a model class or anything else with ._default_manager
if hasattr(klass, "_default_manager"):
return klass._default_manager.all()
return klass
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 10 | shortcuts.py | 44 | Refs #33476 -- Reformatted code with Black. | 51,389 | 0 | 40 | 24 | 20 | 206,164 | 21 | django | 5 | django/shortcuts.py | Python | 4 | {
"docstring": "\n Return a QuerySet or a Manager.\n Duck typing in action: any class with a `get()` method (for\n get_object_or_404) or a `filter()` method (for get_list_or_404) might do\n the job.\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 28,
"vocab_size": 22
} | https://github.com/django/django.git |
|
3 | _get_classifier_artifacts | def _get_classifier_artifacts(fitted_estimator, prefix, X, y_true, sample_weight):
import sklearn
if not _is_plotting_supported():
return []
| 847eb6b22d03f0cffef945996cf835272870435a | 8 | utils.py | 41 | Improve confusion matrix plot (#5273)
* update
Signed-off-by: Weichen Xu <[email protected]>
* fix
Signed-off-by: Weichen Xu <[email protected]>
* update
Signed-off-by: Weichen Xu <[email protected]> | 2,909 | 0 | 29 | 187 | 13 | 19,198 | 13 | mlflow | 8 | mlflow/sklearn/utils.py | Python | 48 | {
"docstring": "\n Draw and record various common artifacts for classifier\n\n For all classifiers, we always log:\n (1) confusion matrix:\n https://scikit-learn.org/stable/modules/generated/sklearn.metrics.plot_confusion_matrix.html\n\n For only binary classifiers, we will log:\n (2) precision recall curve:\n https://scikit-learn.org/stable/modules/generated/sklearn.metrics.plot_precision_recall_curve.html\n (3) roc curve:\n https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html\n\n Steps:\n 1. Extract X and y_true from fit_args and fit_kwargs, and split into train & test datasets.\n 2. If the sample_weight argument exists in fit_func (accuracy_score by default\n has sample_weight), extract it from fit_args or fit_kwargs as\n (y_true, y_pred, sample_weight, multioutput), otherwise as (y_true, y_pred, multioutput)\n 3. return a list of artifacts path to be logged\n\n :param fitted_estimator: The already fitted regressor\n :param fit_args: Positional arguments given to fit_func.\n :param fit_kwargs: Keyword arguments given to fit_func.\n :return: List of artifacts to be logged\n ",
"language": "en",
"n_whitespaces": 178,
"n_words": 117,
"vocab_size": 91
} | https://github.com/mlflow/mlflow.git |
|
1 | mock_device_tracker_update_config | def mock_device_tracker_update_config():
with patch("homeassistant.components.device_tracker.legacy.update_config"):
yield
| 31a787558fd312331b55e5c2c4b33341fc3601fc | 10 | test_init.py | 29 | Ensure recorder test fixture is setup before hass fixture (#80528)
* Ensure recorder test fixture is setup before hass fixture
* Adjust more tests | 88,492 | 0 | 18 | 12 | 5 | 289,350 | 5 | core | 2 | tests/components/demo/test_init.py | Python | 3 | {
"docstring": "Prevent device tracker from creating known devices file.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | https://github.com/home-assistant/core.git |
|
2 | coplanar | def coplanar(self, other):
aq = self.axis()
ar = other.axis()
return (aq == ar or aq == -ar)
| e8c5f4fe692e863bf0a48573a1d0c7b92487c5c1 | 9 | quaternion.py | 56 | hamilton | 47,953 | 0 | 45 | 33 | 13 | 196,513 | 17 | sympy | 6 | sympy/algebras/quaternion.py | Python | 4 | {
"docstring": "\n Returns if the two quaternions are coplanar or not.\n\n Parameters\n ==========\n\n other : a quaternion\n\n Examples\n ========\n\n >>> from sympy.algebras.quaternion import Quaternion\n >>> q = Quaternion(1, 4, 4, 4)\n >>> q1 = Quaternion(2, 8, 8, 8)\n >>> q.coplanar(q1)\n True\n\n >>> q1 = Quaternion(2, 8, 13, 12)\n >>> q.coplanar(q1)\n False\n\n ",
"language": "en",
"n_whitespaces": 155,
"n_words": 49,
"vocab_size": 36
} | https://github.com/sympy/sympy.git |
|
2 | _TLS_Ext_CertTypeDispatcher | def _TLS_Ext_CertTypeDispatcher(m, *args, **kargs):
tmp_len = struct.unpack("!H", m[2:4])[0]
if tmp_len == 1:
cls = TLS_Ext_ServerCertType
else:
cls = TLS_Ext_ClientCertType
return cls(m, *args, **kargs)
| 2001f35c7a9762d2d58f5ec402d93d10bbfd8e10 | 11 | extensions.py | 87 | Fix spellcheck | 52,772 | 0 | 52 | 54 | 18 | 209,767 | 23 | scapy | 10 | scapy/layers/tls/extensions.py | Python | 7 | {
"docstring": "\n We need to select the correct one on dissection. We use the length for\n that, as 1 for client version would imply an empty list.\n ",
"language": "en",
"n_whitespaces": 35,
"n_words": 25,
"vocab_size": 22
} | https://github.com/secdev/scapy.git |
|
2 | _set_gradient_checkpointing | def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (Data2VecAudioEncoder, Data2VecAudioFeatureEncoder)):
module.gradient_checkpointing = value
DATA2VEC_AUDIO_START_DOCSTRING = r
DATA2VEC_AUDIO_INPUTS_DOCSTRING = r
@add_start_docstrings(
"The bare Data2VecAudio Model transformer outputting raw hidden-states without any specific head on top.",
DATA2VEC_AUDIO_START_DOCSTRING,
) | df5a4094a6e3f98f2cb2058cdb688fcc3f453220 | @add_start_docstrings(
"The bare Data2VecAudio Model transformer outputting raw hidden-states without any specific head on top.",
DATA2VEC_AUDIO_START_DOCSTRING,
) | 9 | modeling_data2vec_audio.py | 69 | Add Data2Vec (#15507)
* Add data2vec model cloned from roberta
* Add checkpoint conversion script
* Fix copies
* Update docs
* Add checkpoint conversion script
* Remove fairseq data2vec_text script and fix format
* Add comment on where to get data2vec_text.py
* Remove mock implementation cheat.py and fix style
* Fix copies
* Remove TF and Flax classes from init
* Add back copy from fairseq data2vec_text.py and fix style
* Update model name in docs/source/index.mdx to be CamelCase
* Revert model name in table to lower-case to get check_table test to pass
* Update src/transformers/models/data2vec/__init__.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/convert_data2vec_original_pytorch_checkpoint_to_pytorch.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update docs/source/model_doc/data2vec.mdx
Co-authored-by: Sylvain Gugger <[email protected]>
* Update docs/source/model_doc/data2vec.mdx
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/auto/configuration_auto.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update tests/test_modeling_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update documentation
* Copy-paste Data2VecConfig from BertConfig
* Update config checkpoint to point to edugp/data2vec-nlp-base. Fix style and repo-consistency
* Update config special tokens to match RoBERTa
* Split multiple assertions and add individual error messages
* Rename Data2VecModel to Data2VecForTextModel
* Add Data2Vec to _toctree.yml
* Rename Data2VecEmbeddings to Data2VecForTextEmbeddings
* Add initial Data2VecForAudio model (unfinished). Only matching fairseq's implementation up to the feature encoder (before positional encoding).
* finish audio model
* finish audio file
* Update names and fix style, quality and repo consistency
* Remove Data2VecAudioForPretraining. Add tests for Data2VecAudio, mimicking the Wav2Vec2 test suite. Fix bias initilization in positional conv layers. Move back configurations for audio and text to separate files.
* add inputs to logits to data2vec'
* correct autio models
* correct config auto
* correct tok auto
* Update utils/tests_fetcher.py
* delete unnecessary files
* delete unnecessary files
* further renaming
* make all tests pass
* finish
* remove useless test file
* Update tests/test_modeling_common.py
* Update utils/check_repo.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec_text.py
Co-authored-by: Patrick von Platen <[email protected]>
* Fix copies
* Update docs
* Remove fairseq data2vec_text script and fix format
* Add comment on where to get data2vec_text.py
* Remove mock implementation cheat.py and fix style
* Fix copies
* Remove TF and Flax classes from init
* Add back copy from fairseq data2vec_text.py and fix style
* Update model name in docs/source/index.mdx to be CamelCase
* Revert model name in table to lower-case to get check_table test to pass
* Update documentation
* Update src/transformers/models/data2vec/__init__.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/convert_data2vec_original_pytorch_checkpoint_to_pytorch.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/auto/configuration_auto.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update tests/test_modeling_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/configuration_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Copy-paste Data2VecConfig from BertConfig
* Update config checkpoint to point to edugp/data2vec-nlp-base. Fix style and repo-consistency
* Update config special tokens to match RoBERTa
* Split multiple assertions and add individual error messages
* Rename Data2VecModel to Data2VecForTextModel
* Add Data2Vec to _toctree.yml
* Rename Data2VecEmbeddings to Data2VecForTextEmbeddings
* Add initial Data2VecForAudio model (unfinished). Only matching fairseq's implementation up to the feature encoder (before positional encoding).
* finish audio model
* finish audio file
* add inputs to logits to data2vec'
* Update names and fix style, quality and repo consistency
* Remove Data2VecAudioForPretraining. Add tests for Data2VecAudio, mimicking the Wav2Vec2 test suite. Fix bias initilization in positional conv layers. Move back configurations for audio and text to separate files.
* correct autio models
* correct config auto
* correct tok auto
* delete unnecessary files
* delete unnecessary files
* Update utils/tests_fetcher.py
* further renaming
* make all tests pass
* finish
* remove useless test file
* Update tests/test_modeling_common.py
* Update utils/check_repo.py
Co-authored-by: Patrick von Platen <[email protected]>
* Update src/transformers/models/data2vec/modeling_data2vec_text.py
Co-authored-by: Patrick von Platen <[email protected]>
* Move data2vec tests to new structure
* Fix test imports for text tests
* Remove fairseq files
* Change paper link to arxiv
* Modify Data2Vec documentation to reflect that the encoder is not shared across the audio and text models in the current implementation.
* Update text model checkpoint to be facebook/data2vec-text-base
* Add 'Copy from' statements and update paper links and docs
* fix copy from statements
* improve copied from
* correct more copied from statements
* finish copied from stuff
* make style
* add model to README
* add to master
Co-authored-by: Eduardo Gonzalez Ponferrada <[email protected]>
Co-authored-by: Patrick von Platen <[email protected]>
Co-authored-by: Sylvain Gugger <[email protected]> | 6,521 | 1 | 53 | 28 | 31 | 35,671 | 34 | transformers | 11 | src/transformers/models/data2vec/modeling_data2vec_audio.py | Python | 3 | {
"docstring": "\n Data2VecAudio was proposed in [data2vec: A General Framework for Self-supervised Learning in Speech, Vision and\n Language](https://arxiv.org/pdf/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu and\n Michael Auli.\n\n This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the\n library implements for all its model (such as downloading or saving etc.).\n\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`Data2VecAudioConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n\n Args:\n input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):\n Float values of input raw speech waveform. Values can be obtained by loading a *.flac* or *.wav* audio file\n into an array of type *List[float]* or a *numpy.ndarray*, *e.g.* via the soundfile library (*pip install\n soundfile*). To prepare the array into *input_values*, the [`Wav2Vec2Processor`] should be used for padding\n and conversion into a tensor of type *torch.FloatTensor*. See [`Wav2Vec2Processor.__call__`] for details.\n attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):\n Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,\n 1]`:\n\n - 1 for tokens that are **not masked**,\n - 0 for tokens that are **masked**.\n\n [What are attention masks?](../glossary#attention-mask)\n\n <Tip warning={true}>\n\n `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask ==\n True`. For all models whose processor has `config.return_attention_mask == False`, such as\n [data2vec-audio-base](https://huggingface.co/facebook/data2vec-audio-base-960h), `attention_mask` should\n **not** be passed to avoid degraded performance when doing batched inference. For such models\n `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these\n models also yield slightly different results depending on whether `input_values` is padded or not.\n\n </Tip>\n\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned\n tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n",
"language": "en",
"n_whitespaces": 705,
"n_words": 369,
"vocab_size": 222
} | https://github.com/huggingface/transformers.git |
1 | print_help | def print_help(self):
help_text = f
console.print(text=help_text, menu="Econometrics")
| f2ca215132de40804667feb4deaa0c6b8bfc3d25 | 12 | econometrics_controller.py | 60 | Econometrics Menu (#1403)
* Add Statistics Menu
* Add Granger Causality test
* Apply Black formatting
* Add Cointegration Tests
* Adjust plotting for Cointegration test
* Add Significant parameter to Cointegration tests
* Move regression functions to seperate .py files
* Progress on Panel Data
* A lot of progress for Panel Data
* Make functions robust and improve documentation
* Re-enable Breusch-Godfrey
* Add modify functionality
* Improve modify functionality
* Add Breusch-Pagan heteroscedasticity test
* Capitalize a word
* Include documentatin for the Statistics Menu
* Update _index.md
* Update _index.md
* Update _index.md
* Fix export statements and add Example datasets
* Update example with Longley's dataset
* Update documentation with a legit source
* Compare the results from each regression models based on the wage_panel dataset
* Updated with all relevant types of regression tables
* Update with all relevant regression types for Panel data
* Update _index.md
* Add change column type, improve OLS, add time and entity effects for FE
* Update documentation and fix a small bug
* Add in Statistics menu, replacing Custom menu
* Remove custom menu
* Add in documentation
* Add in gst files
* Cointegration can be used on any amount of columns
* Add Tests
* Make tests time invariant
* Update Poetry and Requirements
* Change name of Statistics menu to Econometrics menu
* Rename scripts
* Add type in Documentation
* Change names from Statistics to Econometrics
* Add graph
* Update tests with rounding and naming
* Make minor adjustments to fix the tests
* Updating tests : allow extra args for capture
* Apply recorder formatting
* Adding some minor formatting
* Fix error with MyPy
* Attempt to fix MyPy annoyance
* super small style things
* Fix small bugs and add plot command to dwat
* Small description mistake
* Update documentation with missing argument
* Update styling
* Add error handling and add improve show functionality
* Fix merge issue
* Allow import from custom_imports
Co-authored-by: Jeroen Bouma <[email protected]>
Co-authored-by: jmaslek <[email protected]>
Co-authored-by: Chavithra PARANA <[email protected]> | 84,276 | 0 | 28 | 22 | 7 | 282,726 | 7 | OpenBBTerminal | 9 | gamestonk_terminal/econometrics/econometrics_controller.py | Python | 35 | {
"docstring": "Print help[cmds]\n load load in custom data sets\n export export a dataset\n remove remove a dataset\n options show available column-dataset options[/cmds]\n\n[param]Loaded files:[/param] {\", \".join(self.files) or None}[cmds]\n\nExploration\n show show a portion of a loaded dataset\n plot plot data from a dataset\n type change types of the columns or display their types\n desc show descriptive statistics of a dataset\n index set (multi) index based on columns\n clean clean a dataset by filling or dropping NaNs\n modify combine columns of datasets and delete or rename columns\n\nTimeseries\n ols fit a (multi) linear regression model\n norm perform normality tests on a column of a dataset\n root perform unitroot tests (ADF & KPSS) on a column of a dataset\n\nPanel Data\n panel Estimate model based on various regression techniques\n compare Compare results of all estimated models\n\nTests\n dwat perform Durbin-Watson autocorrelation test on the residuals of the regression\n bgod perform Breusch-Godfrey autocorrelation tests with lags on the residuals of the regression\n bpag perform Breusch-Pagan heteroscedasticity test on the residuals of the regression\n granger perform Granger causality tests on two columns\n coint perform co-integration test on a multitude of columns[/cmds]\n ",
"language": "en",
"n_whitespaces": 467,
"n_words": 186,
"vocab_size": 103
} | https://github.com/OpenBB-finance/OpenBBTerminal.git |
|
7 | print_dict | def print_dict(d, logger, delimiter=0):
for k, v in sorted(d.items()):
if isinstance(v, dict):
logger.info("{}{} : ".format(delimiter * " ", str(k)))
print_dict(v, logger, delimiter + 4)
elif isinstance(v, list) and len(v) >= 1 and isinstance(v[0], dict):
logger.info("{}{} : ".format(delimiter * " ", str(k)))
for value in v:
print_dict(value, logger, delimiter + 4)
else:
logger.info("{}{} : {}".format(delimiter * " ", k, v))
@functools.lru_cache() | 11f6ff38dcc61348aa4aae8ad2fbbe42b0eab34d | @functools.lru_cache() | 16 | utils.py | 234 | add supplementary | 4,507 | 1 | 156 | 139 | 37 | 23,061 | 60 | PaddleOCR | 18 | test_tipc/supplementary/utils.py | Python | 11 | {
"docstring": "\n Recursively visualize a dict and\n indenting acrrording by the relationship of keys.\n ",
"language": "en",
"n_whitespaces": 22,
"n_words": 12,
"vocab_size": 12
} | https://github.com/PaddlePaddle/PaddleOCR.git |
6 | is_tradesignal | def is_tradesignal(self, action):
# trade signal
return not ((action == Actions.Neutral.value and self._position == Positions.Neutral)
or (action == Actions.Short.value and self._position == Positions.Short)
or (action == Actions.Long.value and self._position == Positions.Long))
| 8eeaab27467fa2e0bdc7314bdb888998bbb20af8 | 14 | RLPrediction_env.py | 102 | add reward function | 34,793 | 0 | 90 | 65 | 20 | 150,565 | 31 | freqtrade | 10 | freqtrade/freqai/prediction_models/RL/RLPrediction_env.py | Python | 4 | {
"docstring": "\n not trade signal is :\n Action: Neutral, position: Neutral -> Nothing\n Action: Long, position: Long -> Hold Long\n Action: Short, position: Short -> Hold Short\n ",
"language": "en",
"n_whitespaces": 61,
"n_words": 25,
"vocab_size": 16
} | https://github.com/freqtrade/freqtrade.git |
|
3 | testPlacementGroupDistributedTraining | def testPlacementGroupDistributedTraining(self, reuse_actors=False):
head_bundle = {"CPU": 1, "GPU": 0, "custom": 0}
child_bundle = {"CPU": 1}
placement_group_factory = PlacementGroupFactory(
[head_bundle, child_bundle, child_bundle, child_bundle]
)
| 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | 9 | test_trial_runner_pg.py | 77 | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 29,793 | 0 | 69 | 213 | 19 | 132,695 | 23 | ray | 7 | python/ray/tune/tests/test_trial_runner_pg.py | Python | 31 | {
"docstring": "Run distributed training using placement groups.\n\n Each trial requests 4 CPUs and starts 4 remote training workers.\n ",
"language": "en",
"n_whitespaces": 31,
"n_words": 17,
"vocab_size": 15
} | https://github.com/ray-project/ray.git |
|
11 | start | def start(self) -> 'Deployment':
if self.is_sandbox and not self._sandbox_deployed:
self.update_sandbox_args()
if self.pod_args['uses_before'] is not None:
_args = self.pod_args['uses_before']
if getattr(self.args, 'noblock_on_start', False):
_args.noblock_on_start = True
self.uses_before_pod = PodFactory.build_pod(_args)
self.enter_context(self.uses_before_pod)
if self.pod_args['uses_after'] is not None:
_args = self.pod_args['uses_after']
if getattr(self.args, 'noblock_on_start', False):
_args.noblock_on_start = True
self.uses_after_pod = PodFactory.build_pod(_args)
self.enter_context(self.uses_after_pod)
if self.pod_args['head'] is not None:
_args = self.pod_args['head']
if getattr(self.args, 'noblock_on_start', False):
_args.noblock_on_start = True
self.head_pod = PodFactory.build_pod(_args)
self.enter_context(self.head_pod)
for shard_id in self.pod_args['pods']:
self.shards[shard_id] = self._ReplicaSet(
self.args,
self.pod_args['pods'][shard_id],
self.head_pod,
)
self.enter_context(self.shards[shard_id])
if not getattr(self.args, 'noblock_on_start', False):
self.activate()
return self
| 7c4c39a9d82c58ef2493c21a288c755901a9594e | 13 | __init__.py | 417 | fix: do not deploy sandbox on init (#4844) | 2,287 | 0 | 420 | 256 | 43 | 12,429 | 87 | jina | 20 | jina/orchestrate/deployments/__init__.py | Python | 40 | {
"docstring": "\n Start to run all :class:`Pod` in this BaseDeployment.\n\n :return: started deployment\n\n .. note::\n If one of the :class:`Pod` fails to start, make sure that all of them\n are properly closed.\n ",
"language": "en",
"n_whitespaces": 81,
"n_words": 30,
"vocab_size": 26
} | https://github.com/jina-ai/jina.git |
|
1 | test_roots | def test_roots(self):
with DAG("test_dag", start_date=DEFAULT_DATE) as dag:
op1 = EmptyOperator(task_id="t1")
op2 = EmptyOperator(task_id="t2")
op3 = EmptyOperator(task_id="t3")
op4 = EmptyOperator(task_id="t4")
op5 = EmptyOperator(task_id="t5")
[op1, op2] >> op3 >> [op4, op5]
assert set(dag.roots) == {op1, op2}
| 49e336ae0302b386a2f47269a6d13988382d975f | 12 | test_dag.py | 148 | Replace usage of `DummyOperator` with `EmptyOperator` (#22974)
* Replace usage of `DummyOperator` with `EmptyOperator` | 9,164 | 0 | 125 | 86 | 28 | 47,576 | 34 | airflow | 15 | tests/models/test_dag.py | Python | 9 | {
"docstring": "Verify if dag.roots returns the root tasks of a DAG.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/apache/airflow.git |
|
9 | _post_validate_environment | def _post_validate_environment(self, attr, value, templar):
env = {}
if value is not None:
| 884244f1b2da3c3f367e064ef4ac0123fcb12675 | 7 | task.py | 35 | Python 3.9 min for controller (#77566) | 79,001 | 0 | 34 | 137 | 13 | 267,689 | 13 | ansible | 6 | lib/ansible/playbook/task.py | Python | 22 | {
"docstring": "\n Override post validation of vars on the play, as we don't want to\n template these too early.\n ",
"language": "en",
"n_whitespaces": 39,
"n_words": 17,
"vocab_size": 17
} | https://github.com/ansible/ansible.git |
|
3 | get_edge_data | def get_edge_data(self, u, v, key=None, default=None):
try:
if key is None:
return self._adj[u][v]
else:
return self._adj[u][v][key]
except KeyError:
return default
| 8f4c99debc9440728c5e85f8bffa5d26b232eb6f | 14 | multigraph.py | 83 | Multigraph docs update (#5389)
* Updated MultiDiGraph documentation to include more examples of actually
using parallel edges, and fixed references to things like G[u, v] where
G[u, v, k] is required for a MultiDigraph. Have not made parallel
changes in MultiGraph which should maybe also be made?
Docs tests pass on my end; no code outside of comments was changed.
-Peter Mawhorter
* Updated docs for MultiGraph to add more multigraph-specific examples and
fix a few places where untested examples were wrong.
-Peter Mawhorter
* [DOC] fix typo
* add the right amount of separators
Co-authored-by: Mridul Seth <[email protected]> | 41,879 | 0 | 104 | 55 | 18 | 176,414 | 20 | networkx | 8 | networkx/classes/multigraph.py | Python | 8 | {
"docstring": "Returns the attribute dictionary associated with edge (u, v,\n key).\n\n If a key is not provided, returns a dictionary mapping edge keys\n to attribute dictionaries for each edge between u and v.\n\n This is identical to `G[u][v][key]` except the default is returned\n instead of an exception is the edge doesn't exist.\n\n Parameters\n ----------\n u, v : nodes\n\n default : any Python object (default=None)\n Value to return if the specific edge (u, v, key) is not\n found, OR if there are no edges between u and v and no key\n is specified.\n\n key : hashable identifier, optional (default=None)\n Return data only for the edge with specified key, as an\n attribute dictionary (rather than a dictionary mapping keys\n to attribute dictionaries).\n\n Returns\n -------\n edge_dict : dictionary\n The edge attribute dictionary, OR a dictionary mapping edge\n keys to attribute dictionaries for each of those edges if no\n specific key is provided (even if there's only one edge\n between u and v).\n\n Examples\n --------\n >>> G = nx.MultiGraph() # or MultiDiGraph\n >>> key = G.add_edge(0, 1, key=\"a\", weight=7)\n >>> G[0][1][\"a\"] # key='a'\n {'weight': 7}\n >>> G.edges[0, 1, \"a\"] # key='a'\n {'weight': 7}\n\n Warning: we protect the graph data structure by making\n `G.edges` and `G[1][2]` read-only dict-like structures.\n However, you can assign values to attributes in e.g.\n `G.edges[1, 2, 'a']` or `G[1][2]['a']` using an additional\n bracket as shown next. You need to specify all edge info\n to assign to the edge data associated with an edge.\n\n >>> G[0][1][\"a\"][\"weight\"] = 10\n >>> G.edges[0, 1, \"a\"][\"weight\"] = 10\n >>> G[0][1][\"a\"][\"weight\"]\n 10\n >>> G.edges[1, 0, \"a\"][\"weight\"]\n 10\n\n >>> G = nx.MultiGraph() # or MultiDiGraph\n >>> nx.add_path(G, [0, 1, 2, 3])\n >>> G.edges[0, 1, 0][\"weight\"] = 5\n >>> G.get_edge_data(0, 1)\n {0: {'weight': 5}}\n >>> e = (0, 1)\n >>> G.get_edge_data(*e) # tuple form\n {0: {'weight': 5}}\n >>> G.get_edge_data(3, 0) # edge not in graph, returns None\n >>> G.get_edge_data(3, 0, default=0) # edge not in graph, return default\n 0\n >>> G.get_edge_data(1, 0, 0) # specific key gives back\n {'weight': 5}\n ",
"language": "en",
"n_whitespaces": 778,
"n_words": 330,
"vocab_size": 166
} | https://github.com/networkx/networkx.git |
|
2 | test_nested_condition_not_filters | def test_nested_condition_not_filters(self, ds, documents):
ds.write_documents(documents)
filters = {
"$not": {
"$or": {
"$and": {"numbers": {"$lt": 5.0}, "month": {"$ne": "01"}},
"$not": {"year": {"$lte": "2021", "$gte": "2020"}},
}
}
}
result = ds.get_all_documents(filters=filters)
assert len(result) == 3
docs_meta = result[0].meta["numbers"]
assert [2, 4] == docs_meta
# Test same logical operator twice on same level
filters = {
"$or": [
{"$and": {"name": {"$in": ["name_0", "name_1"]}, "year": {"$gte": "2020"}}},
{"$and": {"name": {"$in": ["name_0", "name_1"]}, "year": {"$lt": "2021"}}},
]
}
result = ds.get_all_documents(filters=filters)
docs_meta = [doc.meta["name"] for doc in result]
assert len(result) == 4
assert "name_0" in docs_meta
assert "name_2" not in docs_meta
| 2bb81331b75aec68de0d45c4cb116170d265f1fe | 17 | test_base.py | 366 | feat: add SQLDocumentStore tests (#3517)
* port SQL tests
* cleanup document_store_tests.py from sql tests
* leftover
* Update .github/workflows/tests.yml
Co-authored-by: Sara Zan <[email protected]>
* review comments
* Update test/document_stores/test_base.py
Co-authored-by: bogdankostic <[email protected]>
Co-authored-by: Sara Zan <[email protected]>
Co-authored-by: bogdankostic <[email protected]> | 75,190 | 0 | 352 | 202 | 61 | 258,126 | 98 | haystack | 12 | test/document_stores/test_base.py | Python | 25 | {
"docstring": "\n Test nested logical operations within \"$not\", important as we apply De Morgan's laws in WeaviateDocumentstore\n ",
"language": "en",
"n_whitespaces": 30,
"n_words": 15,
"vocab_size": 15
} | https://github.com/deepset-ai/haystack.git |
|
2 | _project_modified | def _project_modified(self):
return any(var.get() for var in self._modified_vars.values())
| dab823a3eb7a5257cb1e0818ee10ed234d3de97f | 11 | project.py | 43 | Typing - lib.gui.display_command | 21,303 | 0 | 22 | 25 | 8 | 101,924 | 8 | faceswap | 7 | lib/gui/project.py | Python | 2 | {
"docstring": "bool: ``True`` if the project has been modified otherwise ``False``. ",
"language": "en",
"n_whitespaces": 10,
"n_words": 10,
"vocab_size": 10
} | https://github.com/deepfakes/faceswap.git |
|
1 | test_get_pdu_event_from_cache_is_pristine | def test_get_pdu_event_from_cache_is_pristine(self):
# Get the PDU in the cache
remote_pdu = self._get_pdu_once()
# Modify the the event reference.
# This change should not make it back to the `_get_pdu_cache`.
remote_pdu.internal_metadata.outlier = True
# Get the event again. This time it should read it from cache.
remote_pdu2 = self.get_success(
self.hs.get_federation_client().get_pdu(
["yet.another.server"],
remote_pdu.event_id,
RoomVersions.V9,
)
)
# Sanity check that we are working against the same event
self.assertEqual(remote_pdu.event_id, remote_pdu2.event_id)
# Make sure the event does not include modification from earlier
self.assertIsNotNone(remote_pdu2)
self.assertEqual(remote_pdu2.internal_metadata.outlier, False)
| 0f971ca68e808dd16f53f5594a6b33b7bddcc9a9 | 13 | test_federation_client.py | 135 | Update `get_pdu` to return the original, pristine `EventBase` (#13320)
Update `get_pdu` to return the untouched, pristine `EventBase` as it was originally seen over federation (no metadata added). Previously, we returned the same `event` reference that we stored in the cache which downstream code modified in place and added metadata like setting it as an `outlier` and essentially poisoned our cache. Now we always return a copy of the `event` so the original can stay pristine in our cache and re-used for the next cache call.
Split out from https://github.com/matrix-org/synapse/pull/13205
As discussed at:
- https://github.com/matrix-org/synapse/pull/13205#discussion_r918365746
- https://github.com/matrix-org/synapse/pull/13205#discussion_r918366125
Related to https://github.com/matrix-org/synapse/issues/12584. This PR doesn't fix that issue because it hits [`get_event` which exists from the local database before it tries to `get_pdu`](https://github.com/matrix-org/synapse/blob/7864f33e286dec22368dc0b11c06eebb1462a51e/synapse/federation/federation_client.py#L581-L594). | 72,509 | 0 | 246 | 80 | 56 | 248,918 | 81 | synapse | 16 | tests/federation/test_federation_client.py | Python | 13 | {
"docstring": "Test that modifications made to events returned by `get_pdu()`\n do not propagate back to to the internal cache (events returned should\n be a copy).\n ",
"language": "en",
"n_whitespaces": 45,
"n_words": 24,
"vocab_size": 21
} | https://github.com/matrix-org/synapse.git |
|
5 | _store_rejected_events_txn | def _store_rejected_events_txn(self, txn, events_and_contexts):
# Remove the rejected events from the list now that we've added them
# to the events table and the events_json table.
to_remove = set()
for event, context in events_and_contexts:
if context.rejected:
# Insert the event_id into the rejections table
# (events.rejection_reason has already been done)
self._store_rejections_txn(txn, event.event_id, context.rejected)
to_remove.add(event)
return [ec for ec in events_and_contexts if ec[0] not in to_remove]
| 2aa37a4250675f6d9feb57ec0dce65b2a6a3cde6 | 12 | events.py | 100 | Add `state_key` and `rejection_reason` to `events` (#11792)
... and start populating them for new events | 70,993 | 0 | 178 | 63 | 51 | 246,084 | 65 | synapse | 13 | synapse/storage/databases/main/events.py | Python | 7 | {
"docstring": "Add rows to the 'rejections' table for received events which were\n rejected\n\n Args:\n txn (twisted.enterprise.adbapi.Connection): db connection\n events_and_contexts (list[(EventBase, EventContext)]): events\n we are persisting\n\n Returns:\n list[(EventBase, EventContext)] new list, without the rejected\n events.\n ",
"language": "en",
"n_whitespaces": 124,
"n_words": 33,
"vocab_size": 30
} | https://github.com/matrix-org/synapse.git |
|
5 | read_template | def read_template(self):
log.info("reading manifest template '%s'", self.template)
template = TextFile(self.template, strip_comments=1, skip_blanks=1,
join_lines=1, lstrip_ws=1, rstrip_ws=1,
collapse_join=1)
try:
while True:
line = template.readline()
if line is None: # end of file
break
try:
self.filelist.process_template_line(line)
# the call above can raise a DistutilsTemplateError for
# malformed lines, or a ValueError from the lower-level
# convert_path function
except (DistutilsTemplateError, ValueError) as msg:
self.warn("%s, line %d: %s" % (template.filename,
template.current_line,
msg))
finally:
template.close()
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 17 | sdist.py | 180 | add python 3.10.4 for windows | 56,758 | 0 | 453 | 110 | 59 | 222,820 | 69 | XX-Net | 23 | python3.10.4/Lib/distutils/command/sdist.py | Python | 18 | {
"docstring": "Read and parse manifest template file named by self.template.\n\n (usually \"MANIFEST.in\") The parsing and processing is done by\n 'self.filelist', which updates itself accordingly.\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 23,
"vocab_size": 21
} | https://github.com/XX-net/XX-Net.git |
|
3 | _clone | def _clone(self) -> HasProps:
attrs = self.properties_with_values(include_defaults=False, include_undefined=True)
return self.__class__(**{key: val for key, val in attrs.items() if val is not Undefined})
KindRef = Any # TODO
| b23a3b77447ede916b31756fca997cbb1b806de7 | 12 | has_props.py | 84 | Discover unstable defaults in `HasProps.__init__()` (#11959)
* Discover unstable defaults in HasProps.__init__()
* Make HasProps.__getattr__() fail properly
* More sensible implementation of HasProps._clone()
* Make InstanceDefault a generic class
* Fix recursive model definition in tests
* Fix default override in test_document
* Add unit tests | 53,205 | 0 | 46 | 49 | 23 | 212,208 | 26 | bokeh | 14 | bokeh/core/has_props.py | Python | 8 | {
"docstring": " Duplicate a HasProps object.\n\n Values that are containers are shallow-copied.\n\n ",
"language": "en",
"n_whitespaces": 25,
"n_words": 10,
"vocab_size": 9
} | https://github.com/bokeh/bokeh.git |
|
1 | timetz | def timetz(self) -> npt.NDArray[np.object_]:
return ints_to_pydatetime(self.asi8, self.tz, box="time")
| 521259299f7829da667ba39302ec77acedde9e5e | 9 | datetimes.py | 49 | DOC: Improve doc summaries in series.rst (#45237) | 39,395 | 0 | 22 | 30 | 8 | 163,187 | 8 | pandas | 10 | pandas/core/arrays/datetimes.py | Python | 8 | {
"docstring": "\n Returns numpy array of :class:`datetime.time` objects with timezone\n information.\n\n The time part of the Timestamps.\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 15,
"vocab_size": 14
} | https://github.com/pandas-dev/pandas.git |
|
3 | add_project | def add_project(self, project):
from sentry.models import Project
try:
with atomic_transaction(using=router.db_for_write(ReleaseProject)):
created = ReleaseProject.objects.get_or_create(project=project, release=self)[1]
if not project.flags.has_releases:
project.flags.has_releases = True
project.update(flags=F("flags").bitor(Project.flags.has_releases))
except IntegrityError:
created = False
return created
| 5ceb67a008be09eac939346e9882d2ec244b7e45 | 19 | release.py | 150 | fix(releases): Fix bug where project.has_releases would be false when there are releases associated with the project (#34205)
We increment `new_groups` in `ReleaseProject` in buffers. If `ReleaseProject` doesn't already exist,
then buffers will also create the row. The problem here is that we usually rely on
`Release.add_project` to create a `ReleaseProject` row, which also makes sure we set the
`has_releases` flag on the project.
To fix this, we add a receive on `buffer_incr_complete` and set the flag there if it is not already
set. Also put some defensive code in `add_project`, although I don't think it will make a large
difference.
This should make it so that going forward we'll properly set this flag. Will follow up with a
backfill to correct the data. | 19,630 | 0 | 153 | 91 | 24 | 99,254 | 28 | sentry | 21 | src/sentry/models/release.py | Python | 11 | {
"docstring": "\n Add a project to this release.\n\n Returns True if the project was added and did not already exist.\n ",
"language": "en",
"n_whitespaces": 40,
"n_words": 18,
"vocab_size": 17
} | https://github.com/getsentry/sentry.git |
|
3 | build | def build(self, var_list):
super().build(var_list)
if getattr(self, "_built", False):
return
self._built = True
self._momentums = []
self._velocities = []
self._u_product = tf.Variable(1.0, dtype=var_list[0].dtype)
# Keep a counter on how many times of _u_product has been computed to
# avoid duplicated computations.
self._u_product_counter = 1
for var in var_list:
self._momentums.append(
self.add_variable_from_reference(
model_variable=var, variable_name="m"
)
)
self._velocities.append(
self.add_variable_from_reference(
model_variable=var, variable_name="v"
)
)
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 13 | nadam.py | 182 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 81,352 | 0 | 289 | 113 | 48 | 275,258 | 59 | keras | 18 | keras/optimizers/optimizer_experimental/nadam.py | Python | 20 | {
"docstring": "Initialize optimizer variables.\n\n Nadam optimizer has 2 types of variables: momentums and velocities.\n\n Args:\n var_list: list of model variables to build Nadam variables on.\n ",
"language": "en",
"n_whitespaces": 54,
"n_words": 24,
"vocab_size": 20
} | https://github.com/keras-team/keras.git |
|
1 | test_conflicting_autogenerated_basenames | def test_conflicting_autogenerated_basenames(self):
self.router.register(r'notes', NoteViewSet)
with pytest.raises(ImproperlyConfigured):
self.router.register(r'notes_kwduplicate', KWargedNoteViewSet)
with pytest.raises(ImproperlyConfigured):
self.router.register(r'notes_duplicate', NoteViewSet)
| 48a21aa0eb3a95d32456c2a927eff9552a04231e | 10 | test_routers.py | 94 | raise ImproperlyConfigured exception if `basename` is not unique (#8438)
* raise ImproperlyConfigured if basename already exists
* rename already_registered function; return True/False
* additional basename tests
* additional basename tests
* Update rest_framework/routers.py
Co-authored-by: David Graves <[email protected]>
Co-authored-by: Asif Saif Uddin <[email protected]> | 9,585 | 0 | 62 | 55 | 9 | 48,734 | 12 | django-rest-framework | 9 | tests/test_routers.py | Python | 6 | {
"docstring": "\n Ensure 2 routers with the same model, and no basename specified\n throws an ImproperlyConfigured exception\n ",
"language": "en",
"n_whitespaces": 37,
"n_words": 15,
"vocab_size": 15
} | https://github.com/encode/django-rest-framework.git |
|
8 | meshgrid | def meshgrid(*xi, copy=True, sparse=False, indexing='xy'):
ndim = len(xi)
if indexing not in ['xy', 'ij']:
raise ValueError(
"Valid values for `indexing` are 'xy' and 'ij'.")
s0 = (1,) * ndim
output = [np.asanyarray(x).reshape(s0[:i] + (-1,) + s0[i + 1:])
for i, x in enumerate(xi)]
if indexing == 'xy' and ndim > 1:
# switch first and second axis
output[0].shape = (1, -1) + s0[2:]
output[1].shape = (-1, 1) + s0[2:]
if not sparse:
# Return the full N-D matrix (not only the 1-D vector)
output = np.broadcast_arrays(*output, subok=True)
if copy:
output = [x.copy() for x in output]
return output
| 85a2a7776e8cc01ce3efdc92e262a7764f5fc061 | 13 | function_base.py | 275 | DOC: Fix typo in meshgrid example
coordinate was misspelled in a comment in the example code
[ci skip] | 38,447 | 0 | 198 | 172 | 67 | 159,925 | 98 | numpy | 19 | numpy/lib/function_base.py | Python | 16 | {
"docstring": "\n Return coordinate matrices from coordinate vectors.\n\n Make N-D coordinate arrays for vectorized evaluations of\n N-D scalar/vector fields over N-D grids, given\n one-dimensional coordinate arrays x1, x2,..., xn.\n\n .. versionchanged:: 1.9\n 1-D and 0-D cases are allowed.\n\n Parameters\n ----------\n x1, x2,..., xn : array_like\n 1-D arrays representing the coordinates of a grid.\n indexing : {'xy', 'ij'}, optional\n Cartesian ('xy', default) or matrix ('ij') indexing of output.\n See Notes for more details.\n\n .. versionadded:: 1.7.0\n sparse : bool, optional\n If True the shape of the returned coordinate array for dimension *i*\n is reduced from ``(N1, ..., Ni, ... Nn)`` to\n ``(1, ..., 1, Ni, 1, ..., 1)``. These sparse coordinate grids are\n intended to be use with :ref:`basics.broadcasting`. When all\n coordinates are used in an expression, broadcasting still leads to a\n fully-dimensonal result array.\n\n Default is False.\n\n .. versionadded:: 1.7.0\n copy : bool, optional\n If False, a view into the original arrays are returned in order to\n conserve memory. Default is True. Please note that\n ``sparse=False, copy=False`` will likely return non-contiguous\n arrays. Furthermore, more than one element of a broadcast array\n may refer to a single memory location. If you need to write to the\n arrays, make copies first.\n\n .. versionadded:: 1.7.0\n\n Returns\n -------\n X1, X2,..., XN : ndarray\n For vectors `x1`, `x2`,..., 'xn' with lengths ``Ni=len(xi)`` ,\n return ``(N1, N2, N3,...Nn)`` shaped arrays if indexing='ij'\n or ``(N2, N1, N3,...Nn)`` shaped arrays if indexing='xy'\n with the elements of `xi` repeated to fill the matrix along\n the first dimension for `x1`, the second for `x2` and so on.\n\n Notes\n -----\n This function supports both indexing conventions through the indexing\n keyword argument. Giving the string 'ij' returns a meshgrid with\n matrix indexing, while 'xy' returns a meshgrid with Cartesian indexing.\n In the 2-D case with inputs of length M and N, the outputs are of shape\n (N, M) for 'xy' indexing and (M, N) for 'ij' indexing. In the 3-D case\n with inputs of length M, N and P, outputs are of shape (N, M, P) for\n 'xy' indexing and (M, N, P) for 'ij' indexing. The difference is\n illustrated by the following code snippet::\n\n xv, yv = np.meshgrid(x, y, indexing='ij')\n for i in range(nx):\n for j in range(ny):\n # treat xv[i,j], yv[i,j]\n\n xv, yv = np.meshgrid(x, y, indexing='xy')\n for i in range(nx):\n for j in range(ny):\n # treat xv[j,i], yv[j,i]\n\n In the 1-D and 0-D case, the indexing and sparse keywords have no effect.\n\n See Also\n --------\n mgrid : Construct a multi-dimensional \"meshgrid\" using indexing notation.\n ogrid : Construct an open multi-dimensional \"meshgrid\" using indexing\n notation.\n\n Examples\n --------\n >>> nx, ny = (3, 2)\n >>> x = np.linspace(0, 1, nx)\n >>> y = np.linspace(0, 1, ny)\n >>> xv, yv = np.meshgrid(x, y)\n >>> xv\n array([[0. , 0.5, 1. ],\n [0. , 0.5, 1. ]])\n >>> yv\n array([[0., 0., 0.],\n [1., 1., 1.]])\n >>> xv, yv = np.meshgrid(x, y, sparse=True) # make sparse output arrays\n >>> xv\n array([[0. , 0.5, 1. ]])\n >>> yv\n array([[0.],\n [1.]])\n\n `meshgrid` is very useful to evaluate functions on a grid. If the\n function depends on all coordinates, you can use the parameter\n ``sparse=True`` to save memory and computation time.\n\n >>> x = np.linspace(-5, 5, 101)\n >>> y = np.linspace(-5, 5, 101)\n >>> # full coordinate arrays\n >>> xx, yy = np.meshgrid(x, y)\n >>> zz = np.sqrt(xx**2 + yy**2)\n >>> xx.shape, yy.shape, zz.shape\n ((101, 101), (101, 101), (101, 101))\n >>> # sparse coordinate arrays\n >>> xs, ys = np.meshgrid(x, y, sparse=True)\n >>> zs = np.sqrt(xs**2 + ys**2)\n >>> xs.shape, ys.shape, zs.shape\n ((1, 101), (101, 1), (101, 101))\n >>> np.array_equal(zz, zs)\n True\n\n >>> import matplotlib.pyplot as plt\n >>> h = plt.contourf(x, y, zs)\n >>> plt.axis('scaled')\n >>> plt.colorbar()\n >>> plt.show()\n ",
"language": "en",
"n_whitespaces": 1123,
"n_words": 609,
"vocab_size": 321
} | https://github.com/numpy/numpy.git |
Subsets and Splits