complexity
int64 1
139
| fun_name
stringlengths 1
80
| code
stringlengths 101
62.2k
| commit_id
stringlengths 40
40
| ast_errors
stringlengths 0
3.11k
| ast_levels
int64 6
36
| file_name
stringlengths 5
79
| n_ast_nodes
int64 17
19.2k
| commit_message
stringlengths 3
15.3k
| d_id
int64 12
121k
| n_ast_errors
int64 0
9
| n_whitespaces
int64 4
10.8k
| token_counts
int64 5
3.06k
| vocab_size
int64 4
1.11k
| id
int64 20
338k
| n_words
int64 4
4.82k
| repo
stringlengths 3
22
| n_identifiers
int64 2
176
| path
stringlengths 7
134
| language
stringclasses 1
value | nloc
int64 1
413
| documentation
dict | url
stringlengths 31
59
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | sorted_items | def sorted_items(self) -> List[Tuple[str, "PNGHeaderDict"]]:
items = sorted(self.process_folder(), key=itemgetter(0))
logger.trace(items) # type: ignore
return items
| c79175cbde5600bebd65785f3821fc74b3a80cbe | 11 | media.py | 69 | Alignments Tool updates
- Copy info back to alignments file from faces | 21,162 | 0 | 44 | 41 | 14 | 101,758 | 15 | faceswap | 12 | tools/alignments/media.py | Python | 11 | {
"docstring": " Return the items sorted by the saved file name.\n\n Returns\n --------\n list\n List of `dict` objects for each face found, sorted by the face's current filename\n ",
"language": "en",
"n_whitespaces": 66,
"n_words": 26,
"vocab_size": 22
} | https://github.com/deepfakes/faceswap.git |
|
4 | encrypt_file | def encrypt_file(self, file, key=0):
# precondition
assert isinstance(file, str) and isinstance(key, int)
try:
with open(file, "r") as fin:
with open("encrypt.out", "w+") as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(line, key))
except:
return False
return True
| f0af0c43340763724f139fa68aa1e5a9ffe458b4 | 17 | XOR_cipher.py | 125 | refactor: clean code
Signed-off-by: slowy07 <[email protected]> | 4,359 | 0 | 177 | 72 | 32 | 22,543 | 37 | Python | 13 | XORcipher/XOR_cipher.py | Python | 10 | {
"docstring": "\n input: filename (str) and a key (int)\n output: returns true if encrypt process was\n successful otherwise false\n if key not passed the method uses the key by the constructor.\n otherwise key = 1\n ",
"language": "en",
"n_whitespaces": 76,
"n_words": 33,
"vocab_size": 26
} | https://github.com/geekcomputers/Python.git |
|
11 | _get_next_prev | def _get_next_prev(generic_view, date, is_previous, period):
date_field = generic_view.get_date_field()
allow_empty = generic_view.get_allow_empty()
allow_future = generic_view.get_allow_future()
get_current = getattr(generic_view, "_get_current_%s" % period)
get_next = getattr(generic_view, "_get_next_%s" % period)
# Bounds of the current interval
start, end = get_current(date), get_next(date)
# If allow_empty is True, the naive result will be valid
if allow_empty:
if is_previous:
result = get_current(start - datetime.timedelta(days=1))
else:
result = end
if allow_future or result <= timezone_today():
return result
else:
return None
# Otherwise, we'll need to go to the database to look for an object
# whose date_field is at least (greater than/less than) the given
# naive result
else:
# Construct a lookup and an ordering depending on whether we're doing
# a previous date or a next date lookup.
if is_previous:
lookup = {"%s__lt" % date_field: generic_view._make_date_lookup_arg(start)}
ordering = "-%s" % date_field
else:
lookup = {"%s__gte" % date_field: generic_view._make_date_lookup_arg(end)}
ordering = date_field
# Filter out objects in the future if appropriate.
if not allow_future:
# Fortunately, to match the implementation of allow_future,
# we need __lte, which doesn't conflict with __lt above.
if generic_view.uses_datetime_field:
now = timezone.now()
else:
now = timezone_today()
lookup["%s__lte" % date_field] = now
qs = generic_view.get_queryset().filter(**lookup).order_by(ordering)
# Snag the first object from the queryset; if it doesn't exist that
# means there's no next/previous link available.
try:
result = getattr(qs[0], date_field)
except IndexError:
return None
# Convert datetimes to dates in the current time zone.
if generic_view.uses_datetime_field:
if settings.USE_TZ:
result = timezone.localtime(result)
result = result.date()
# Return the first day of the period.
return get_current(result)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 16 | dates.py | 429 | Refs #33476 -- Reformatted code with Black. | 51,762 | 0 | 658 | 247 | 144 | 206,861 | 251 | django | 35 | django/views/generic/dates.py | Python | 39 | {
"docstring": "\n Get the next or the previous valid date. The idea is to allow links on\n month/day views to never be 404s by never providing a date that'll be\n invalid for the given view.\n\n This is a bit complicated since it handles different intervals of time,\n hence the coupling to generic_view.\n\n However in essence the logic comes down to:\n\n * If allow_empty and allow_future are both true, this is easy: just\n return the naive result (just the next/previous day/week/month,\n regardless of object existence.)\n\n * If allow_empty is true, allow_future is false, and the naive result\n isn't in the future, then return it; otherwise return None.\n\n * If allow_empty is false and allow_future is true, return the next\n date *that contains a valid object*, even if it's in the future. If\n there are no next objects, return None.\n\n * If allow_empty is false and allow_future is false, return the next\n date that contains a valid object. If that date is in the future, or\n if there are no next objects, return None.\n ",
"language": "en",
"n_whitespaces": 283,
"n_words": 170,
"vocab_size": 88
} | https://github.com/django/django.git |
|
5 | request_url | def request_url(self, request, proxies):
proxy = select_proxy(request.url, proxies)
scheme = urlparse(request.url).scheme
is_proxied_http_request = proxy and scheme != "https"
using_socks_proxy = False
if proxy:
proxy_scheme = urlparse(proxy).scheme.lower()
using_socks_proxy = proxy_scheme.startswith("socks")
url = request.path_url
if is_proxied_http_request and not using_socks_proxy:
url = urldefragauth(request.url)
return url
| cd5a9683be69c86c8f3adcd13385a9bc5db198ec | 13 | adapters.py | 140 | Rename notpip to pip. Vendor in pip-22.2.1 and latest requirementslib and vistir. | 4,131 | 0 | 138 | 84 | 27 | 22,042 | 42 | pipenv | 16 | pipenv/patched/pip/_vendor/requests/adapters.py | Python | 12 | {
"docstring": "Obtain the url to use when making the final request.\n\n If the message is being sent through a HTTP proxy, the full URL has to\n be used. Otherwise, we should only use the path portion of the URL.\n\n This should not be called from user code, and is only exposed for use\n when subclassing the\n :class:`HTTPAdapter <requests.adapters.HTTPAdapter>`.\n\n :param request: The :class:`PreparedRequest <PreparedRequest>` being sent.\n :param proxies: A dictionary of schemes or schemes and hosts to proxy URLs.\n :rtype: str\n ",
"language": "en",
"n_whitespaces": 142,
"n_words": 79,
"vocab_size": 59
} | https://github.com/pypa/pipenv.git |
|
2 | cast_to_floatx | def cast_to_floatx(x):
if isinstance(x, (tf.Tensor, tf.Variable, tf.SparseTensor)):
return tf.cast(x, dtype=floatx())
return np.asarray(x, dtype=floatx())
@keras_export("keras.backend.get_uid") | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | @keras_export("keras.backend.get_uid") | 12 | backend.py | 92 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 80,227 | 1 | 29 | 52 | 12 | 269,607 | 14 | keras | 13 | keras/backend.py | Python | 4 | {
"docstring": "Cast a Numpy array to the default Keras float type.\n\n Args:\n x: Numpy array or TensorFlow tensor.\n\n Returns:\n The same array (Numpy array if `x` was a Numpy array, or TensorFlow tensor\n if `x` was a tensor), cast to its new type.\n\n Example:\n\n >>> tf.keras.backend.floatx()\n 'float32'\n >>> arr = np.array([1.0, 2.0], dtype='float64')\n >>> arr.dtype\n dtype('float64')\n >>> new_arr = cast_to_floatx(arr)\n >>> new_arr\n array([1., 2.], dtype=float32)\n >>> new_arr.dtype\n dtype('float32')\n\n ",
"language": "en",
"n_whitespaces": 131,
"n_words": 67,
"vocab_size": 46
} | https://github.com/keras-team/keras.git |
10 | query | def query(self, table, columns=None, where=None, where_data=None, order_by=None, group_by=None, integration_name=None, integration_type=None):
if table == 'predictors':
return self._select_predictors()
if table == 'datasources':
return self._select_datasources()
new_where = {}
if where_data is None:
for key, value in where_data.items():
if isinstance(value, dict) is False or len(value.keys()) != 1 or list(value.keys())[0] != '$eq':
# TODO value should be just string or number
raise Exception()
new_where[key] = value['$eq']
if len(new_where) == 0:
return []
where_data = [new_where]
if isinstance(where_data, dict):
where_data = [where_data]
result = self.handler.predict(table, where_data)
return result
| b9ee4a5930e20a09350a3e0774283ba658a42da7 | 16 | mindsdb_datanode.py | 269 | del code | 25,538 | 0 | 287 | 169 | 59 | 115,746 | 82 | mindsdb | 25 | mindsdb/api/mysql/mysql_proxy/datahub/datanodes/mindsdb_datanode.py | Python | 18 | {
"docstring": " NOTE WHERE statements can be just $eq joined with 'and'\n ",
"language": "en",
"n_whitespaces": 18,
"n_words": 10,
"vocab_size": 10
} | https://github.com/mindsdb/mindsdb.git |
|
2 | mock_json_schema | def mock_json_schema(request, monkeypatch, tmp_path):
# Do not patch integration tests
if "integration" in request.keywords:
return
# Mock the subclasses list to make it very small, containing only mock nodes
monkeypatch.setattr(
haystack.nodes._json_schema,
"find_subclasses_in_modules",
lambda *a, **k: [(conftest, MockDocumentStore), (conftest, MockReader), (conftest, MockRetriever)],
)
# Point the JSON schema path to tmp_path
monkeypatch.setattr(haystack.pipelines.config, "JSON_SCHEMAS_PATH", tmp_path)
# Generate mock schema in tmp_path
filename = f"haystack-pipeline-unstable.schema.json"
test_schema = _json_schema.get_json_schema(filename=filename, compatible_versions=["unstable"])
with open(tmp_path / filename, "w") as schema_file:
json.dump(test_schema, schema_file, indent=4)
#
# Integration
#
@pytest.mark.integration
@pytest.mark.elasticsearch | 11cf94a9652a577732941f27ad59eb7c8bc5063e | @pytest.mark.integration
@pytest.mark.elasticsearch | 11 | test_pipeline_yaml.py | 209 | Pipeline's YAML: syntax validation (#2226)
* Add BasePipeline.validate_config, BasePipeline.validate_yaml, and some new custom exception classes
* Make error composition work properly
* Clarify typing
* Help mypy a bit more
* Update Documentation & Code Style
* Enable autogenerated docs for Milvus1 and 2 separately
* Revert "Enable autogenerated docs for Milvus1 and 2 separately"
This reverts commit 282be4a78a6e95862a9b4c924fc3dea5ca71e28d.
* Update Documentation & Code Style
* Re-enable 'additionalProperties: False'
* Add pipeline.type to JSON Schema, was somehow forgotten
* Disable additionalProperties on the pipeline properties too
* Fix json-schemas for 1.1.0 and 1.2.0 (should not do it again in the future)
* Cal super in PipelineValidationError
* Improve _read_pipeline_config_from_yaml's error handling
* Fix generate_json_schema.py to include document stores
* Fix json schemas (retro-fix 1.1.0 again)
* Improve custom errors printing, add link to docs
* Add function in BaseComponent to list its subclasses in a module
* Make some document stores base classes abstract
* Add marker 'integration' in pytest flags
* Slighly improve validation of pipelines at load
* Adding tests for YAML loading and validation
* Make custom_query Optional for validation issues
* Fix bug in _read_pipeline_config_from_yaml
* Improve error handling in BasePipeline and Pipeline and add DAG check
* Move json schema generation into haystack/nodes/_json_schema.py (useful for tests)
* Simplify errors slightly
* Add some YAML validation tests
* Remove load_from_config from BasePipeline, it was never used anyway
* Improve tests
* Include json-schemas in package
* Fix conftest imports
* Make BasePipeline abstract
* Improve mocking by making the test independent from the YAML version
* Add exportable_to_yaml decorator to forget about set_config on mock nodes
* Fix mypy errors
* Comment out one monkeypatch
* Fix typing again
* Improve error message for validation
* Add required properties to pipelines
* Fix YAML version for REST API YAMLs to 1.2.0
* Fix load_from_yaml call in load_from_deepset_cloud
* fix HaystackError.__getattr__
* Add super().__init__()in most nodes and docstore, comment set_config
* Remove type from REST API pipelines
* Remove useless init from doc2answers
* Call super in Seq3SeqGenerator
* Typo in deepsetcloud.py
* Fix rest api indexing error mismatch and mock version of JSON schema in all tests
* Working on pipeline tests
* Improve errors printing slightly
* Add back test_pipeline.yaml
* _json_schema.py supports different versions with identical schemas
* Add type to 0.7 schema for backwards compatibility
* Fix small bug in _json_schema.py
* Try alternative to generate json schemas on the CI
* Update Documentation & Code Style
* Make linux CI match autoformat CI
* Fix super-init-not-called
* Accidentally committed file
* Update Documentation & Code Style
* fix test_summarizer_translation.py's import
* Mock YAML in a few suites, split and simplify test_pipeline_debug_and_validation.py::test_invalid_run_args
* Fix json schema for ray tests too
* Update Documentation & Code Style
* Reintroduce validation
* Usa unstable version in tests and rest api
* Make unstable support the latest versions
* Update Documentation & Code Style
* Remove needless fixture
* Make type in pipeline optional in the strings validation
* Fix schemas
* Fix string validation for pipeline type
* Improve validate_config_strings
* Remove type from test p[ipelines
* Update Documentation & Code Style
* Fix test_pipeline
* Removing more type from pipelines
* Temporary CI patc
* Fix issue with exportable_to_yaml never invoking the wrapped init
* rm stray file
* pipeline tests are green again
* Linux CI now needs .[all] to generate the schema
* Bugfixes, pipeline tests seems to be green
* Typo in version after merge
* Implement missing methods in Weaviate
* Trying to avoid FAISS tests from running in the Milvus1 test suite
* Fix some stray test paths and faiss index dumping
* Fix pytest markers list
* Temporarily disable cache to be able to see tests failures
* Fix pyproject.toml syntax
* Use only tmp_path
* Fix preprocessor signature after merge
* Fix faiss bug
* Fix Ray test
* Fix documentation issue by removing quotes from faiss type
* Update Documentation & Code Style
* use document properly in preprocessor tests
* Update Documentation & Code Style
* make preprocessor capable of handling documents
* import document
* Revert support for documents in preprocessor, do later
* Fix bug in _json_schema.py that was breaking validation
* re-enable cache
* Update Documentation & Code Style
* Simplify calling _json_schema.py from the CI
* Remove redundant ABC inheritance
* Ensure exportable_to_yaml works only on implementations
* Rename subclass to class_ in Meta
* Make run() and get_config() abstract in BasePipeline
* Revert unintended change in preprocessor
* Move outgoing_edges_input_node check inside try block
* Rename VALID_CODE_GEN_INPUT_REGEX into VALID_INPUT_REGEX
* Add check for a RecursionError on validate_config_strings
* Address usages of _pipeline_config in data silo and elasticsearch
* Rename _pipeline_config into _init_parameters
* Fix pytest marker and remove unused imports
* Remove most redundant ABCs
* Rename _init_parameters into _component_configuration
* Remove set_config and type from _component_configuration's dict
* Remove last instances of set_config and replace with super().__init__()
* Implement __init_subclass__ approach
* Simplify checks on the existence of _component_configuration
* Fix faiss issue
* Dynamic generation of node schemas & weed out old schemas
* Add debatable test
* Add docstring to debatable test
* Positive diff between schemas implemented
* Improve diff printing
* Rename REST API YAML files to trigger IDE validation
* Fix typing issues
* Fix more typing
* Typo in YAML filename
* Remove needless type:ignore
* Add tests
* Fix tests & validation feedback for accessory classes in custom nodes
* Refactor RAGeneratorType out
* Fix broken import in conftest
* Improve source error handling
* Remove unused import in test_eval.py breaking tests
* Fix changed error message in tests matches too
* Normalize generate_openapi_specs.py and generate_json_schema.py in the actions
* Fix path to generate_openapi_specs.py in autoformat.yml
* Update Documentation & Code Style
* Add test for FAISSDocumentStore-like situations (superclass with init params)
* Update Documentation & Code Style
* Fix indentation
* Remove commented set_config
* Store model_name_or_path in FARMReader to use in DistillationDataSilo
* Rename _component_configuration into _component_config
* Update Documentation & Code Style
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> | 74,961 | 1 | 148 | 116 | 68 | 256,915 | 82 | haystack | 30 | test/test_pipeline_yaml.py | Python | 13 | {
"docstring": "\n JSON schema with the unstable version and only mocked nodes.\n ",
"language": "en",
"n_whitespaces": 17,
"n_words": 10,
"vocab_size": 10
} | https://github.com/deepset-ai/haystack.git |
4 | _get_object_config | def _get_object_config(obj):
if isinstance(obj, str):
# Use the content of the string as the config for string.
return obj
elif isinstance(obj, types.FunctionType):
# Keep track of the function's module and name in a dict as the config.
return {
'module': obj.__module__,
'function_name': obj.__name__,
}
if not hasattr(obj, 'get_config'):
raise TypeError(f'Unable to recognize the config of {obj}.')
return obj.get_config()
| e70d21c144503f560d8659fec0e08267e686a431 | 11 | saving_lib.py | 110 | Keras saving: A prototype of config-based (idempotent) saving and loading. This shows an example of custom Model, Layer, Optimizer, and Loss, and adds test to confirm that the basic aforementioned elements work across this new saving and loading scheme.
PiperOrigin-RevId: 447193044 | 79,990 | 0 | 95 | 62 | 44 | 269,264 | 58 | keras | 11 | keras/saving/experimental/saving_lib.py | Python | 11 | {
"docstring": "Return the object's config depending on string, function, or others.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/keras-team/keras.git |
|
1 | _get | def _get(self, serialized_key):
cur = self.connection.cursor()
# should always be a single match, hence the [0]
return list(cur.execute(f))[0][0]
| 0fd3b436c38f38bcae6fed9e14dc4d2a12e90793 | 13 | storage_handler.py | 57 | fix tests and reformat | 25,171 | 0 | 38 | 33 | 18 | 114,374 | 18 | mindsdb | 8 | mindsdb/integrations/libs/storage_handler.py | Python | 3 | {
"docstring": "select value from store where key='{serialized_key}'",
"language": "en",
"n_whitespaces": 5,
"n_words": 6,
"vocab_size": 6
} | https://github.com/mindsdb/mindsdb.git |
|
6 | deal_duplicate_bb | def deal_duplicate_bb(thead_part):
# 1. find out <td></td> in <thead></thead>.
td_pattern = "<td rowspan=\"(\d)+\" colspan=\"(\d)+\">(.+?)</td>|" \
"<td colspan=\"(\d)+\" rowspan=\"(\d)+\">(.+?)</td>|" \
"<td rowspan=\"(\d)+\">(.+?)</td>|" \
"<td colspan=\"(\d)+\">(.+?)</td>|" \
"<td>(.*?)</td>"
td_iter = re.finditer(td_pattern, thead_part)
td_list = [t.group() for t in td_iter]
# 2. is multiply <b></b> in <td></td> or not?
new_td_list = []
for td_item in td_list:
if td_item.count('<b>') > 1 or td_item.count('</b>') > 1:
# multiply <b></b> in <td></td> case.
# 1. remove all <b></b>
td_item = td_item.replace('<b>', '').replace('</b>', '')
# 2. replace <tb> -> <tb><b>, </tb> -> </b></tb>.
td_item = td_item.replace('<td>', '<td><b>').replace('</td>',
'</b></td>')
new_td_list.append(td_item)
else:
new_td_list.append(td_item)
# 3. replace original thead part.
for td_item, new_td_item in zip(td_list, new_td_list):
thead_part = thead_part.replace(td_item, new_td_item)
return thead_part
| ddaa2c2552e19635cd6cdf38619f1f176c358f89 | 15 | table_master_match.py | 259 | add SLANet | 4,744 | 0 | 371 | 140 | 71 | 24,496 | 112 | PaddleOCR | 16 | ppstructure/table/table_master_match.py | Python | 20 | {
"docstring": "\n Deal duplicate <b> or </b> after replace.\n Keep one <b></b> in a <td></td> token.\n :param thead_part:\n :return:\n ",
"language": "en",
"n_whitespaces": 33,
"n_words": 17,
"vocab_size": 17
} | https://github.com/PaddlePaddle/PaddleOCR.git |
|
1 | test_readback_tfrecords | def test_readback_tfrecords(ray_start_regular_shared, tmp_path):
# The dataset we will write to a .tfrecords file.
ds = ray.data.from_items(
[
# Row one.
{
"int_item": 1,
"int_list": [2, 2, 3],
"float_item": 1.0,
"float_list": [2.0, 3.0, 4.0],
"bytes_item": b"abc",
"bytes_list": [b"abc", b"1234"],
},
# Row two.
{
"int_item": 2,
"int_list": [3, 3, 4],
"float_item": 2.0,
"float_list": [2.0, 2.0, 3.0],
"bytes_item": b"def",
"bytes_list": [b"def", b"1234"],
},
]
)
# Write the TFRecords.
ds.write_tfrecords(tmp_path)
# Read the TFRecords.
readback_ds = ray.data.read_tfrecords(tmp_path)
assert ds.take() == readback_ds.take()
| 9fab504fe776f96fecf85e12ea006264cbe92f4a | 13 | test_dataset_tfrecords.py | 226 | [Datasets] Add writer for TFRecords. (#29448)
This PR enables users to write TFRecords from datasets.
In particular, the master branch already includes an API for reading TFRecords from datasets. Users have requested the ability to write these datasets back to TFRecords. | 30,664 | 0 | 366 | 155 | 59 | 135,585 | 79 | ray | 11 | python/ray/data/tests/test_dataset_tfrecords.py | Python | 24 | {
"docstring": "\n Test reading back TFRecords written using datasets.\n The dataset we read back should be the same that we wrote.\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 19,
"vocab_size": 17
} | https://github.com/ray-project/ray.git |
|
1 | test_uninstall_from_sentry | def test_uninstall_from_sentry(self):
self.login_as(self.user)
with self.tasks():
config_id = "my_config_id"
responses.add(
responses.DELETE,
f"{VercelClient.base_url}{VercelClient.UNINSTALL % config_id}",
json={},
)
path = (
f"/api/0/organizations/{self.organization.slug}/integrations/{self.integration.id}/"
)
response = self.client.delete(path, format="json")
assert response.status_code == 204
assert (
len(
OrganizationIntegration.objects.filter(
integration=self.integration,
status=ObjectStatus.VISIBLE,
)
)
== 1
)
response = self.client.delete(
path=self.url,
data=PRIMARY_UNINSTALL_RESPONSE,
content_type="application/json",
)
assert response.status_code == 204
integration = Integration.objects.get(id=self.integration.id)
assert integration.metadata == {
"access_token": "my_access_token2",
"installation_id": "my_config_id2",
"installation_type": "team",
"webhook_id": "my_webhook_id2",
"configurations": {
"my_config_id2": {
"access_token": "my_access_token2",
"webhook_id": "my_webhook_id2",
"organization_id": self.second_org.id,
}
},
}
with self.tasks():
config_id = "my_config_id2"
responses.add(
responses.DELETE,
f"{VercelClient.base_url}{VercelClient.UNINSTALL % config_id}",
json={},
)
path = (
f"/api/0/organizations/{self.second_org.slug}/integrations/{self.integration.id}/"
)
response = self.client.delete(path, format="json")
assert response.status_code == 204
assert (
len(
OrganizationIntegration.objects.filter(
integration=self.integration,
status=ObjectStatus.VISIBLE,
)
)
== 0
)
response = self.client.delete(
path=self.url,
data=NONPRIMARY_UNINSTALL_RESPONSE,
content_type="application/json",
)
assert response.status_code == 204
assert not Integration.objects.filter(id=self.integration.id).exists()
| 8201e74ec3d81e89354905c946e62436f0247602 | 14 | test_uninstall.py | 596 | ref(integrations): Update Vercel endpoints (#36150)
This PR updates the endpoints we reach to in the Vercel integration. It seems to work just fine without changes as the payloads returned from vercel haven't updated, but we'll need to specify API Scopes so they don't receive 403s.
This also refactored the pagination code to loop 100 at a time, indefinitely
I had previously tried to consolidate the project webhooks in this PR, but I'll be doing that separately. | 18,884 | 0 | 949 | 316 | 58 | 92,186 | 128 | sentry | 40 | tests/sentry/integrations/vercel/test_uninstall.py | Python | 71 | {
"docstring": "\n Test flows of uninstalling from sentry first to make sure\n that uninstall webhook is valid even if the OrganizationIntegration\n was deleted prior.\n 1. Uninstall the primary configuration\n 2. Check that integration metadata still updated\n 3. Uninstall remaining configuration\n 4. Check that integration is removed\n ",
"language": "en",
"n_whitespaces": 109,
"n_words": 44,
"vocab_size": 36
} | https://github.com/getsentry/sentry.git |
|
4 | check_connection | def check_connection(self) -> StatusResponse:
response = StatusResponse(False)
try:
session = self.connect()
# TODO: change the healthcheck
session.execute('SELECT release_version FROM system.local').one()
response.success = True
except Exception as e:
log.error(f'Error connecting to Scylla {self.connection_args["keyspace"]}, {e}!')
response.error_message = e
if response.success is False and self.is_connected is True:
self.is_connected = False
return response
| f1fb699f88f8644d46afa9a2786a934510b05b79 | 14 | scylla_handler.py | 147 | Impl handler | 25,506 | 0 | 168 | 75 | 40 | 115,631 | 49 | mindsdb | 16 | mindsdb/integrations/handlers/scylla_handler/scylla_handler.py | Python | 16 | {
"docstring": "\n Check the connection of the Scylla database\n :return: success status and error message if error occurs\n ",
"language": "en",
"n_whitespaces": 38,
"n_words": 16,
"vocab_size": 14
} | https://github.com/mindsdb/mindsdb.git |
|
2 | downgrade | def downgrade():
conn = op.get_bind()
if conn.dialect.name == "mysql":
op.alter_column(
table_name=TABLE_NAME, column_name=COLUMN_NAME, type_=mysql.TIMESTAMP(), nullable=False
)
| 69f6f9e01b6df76c3c8fa266d460324163957887 | 12 | a66efa278eea_add_precision_to_execution_date_in_mysql.py | 75 | Autogenerate migration reference doc (#21601)
* document airflow version in each alembic migration module and use this to autogen the doc
* update each migration module to have the same description used in migration ref (so it can be used in autogen) | 8,614 | 0 | 49 | 45 | 15 | 45,487 | 15 | airflow | 15 | airflow/migrations/versions/a66efa278eea_add_precision_to_execution_date_in_mysql.py | Python | 6 | {
"docstring": "Unapply Add Precision to ``execution_date`` in ``RenderedTaskInstanceFields`` table",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | https://github.com/apache/airflow.git |
|
1 | setraw | def setraw(fd, when=termios.TCSAFLUSH):
mode = termios.tcgetattr(fd)
mode[tty.IFLAG] = mode[tty.IFLAG] & ~(termios.BRKINT | termios.ICRNL | termios.INPCK | termios.ISTRIP | termios.IXON)
# mode[tty.OFLAG] = mode[tty.OFLAG] & ~(termios.OPOST)
mode[tty.CFLAG] = mode[tty.CFLAG] & ~(termios.CSIZE | termios.PARENB)
mode[tty.CFLAG] = mode[tty.CFLAG] | termios.CS8
mode[tty.LFLAG] = mode[tty.LFLAG] & ~(termios.ECHO | termios.ICANON | termios.IEXTEN | termios.ISIG)
mode[tty.CC][termios.VMIN] = 1
mode[tty.CC][termios.VTIME] = 0
termios.tcsetattr(fd, when, mode)
| 5797d06aecb1ff620483f6c3ff4bd6d30356332f | 14 | pause.py | 250 | Use customized setraw to prevent output issues (#78060) | 78,971 | 0 | 87 | 165 | 33 | 267,602 | 57 | ansible | 27 | lib/ansible/plugins/action/pause.py | Python | 9 | {
"docstring": "Put terminal into a raw mode.\n\n Copied from ``tty`` from CPython 3.11.0, and modified to not remove OPOST from OFLAG\n\n OPOST is kept to prevent an issue with multi line prompts from being corrupted now that display\n is proxied via the queue from forks. The problem is a race condition, in that we proxy the display\n over the fork, but before it can be displayed, this plugin will have continued executing, potentially\n setting stdout and stdin to raw which remove output post processing that commonly converts NL to CRLF\n ",
"language": "en",
"n_whitespaces": 107,
"n_words": 89,
"vocab_size": 70
} | https://github.com/ansible/ansible.git |
|
1 | get_student_attendance | def get_student_attendance(student_group, date):
student_attendance = frappe.db.sql(
,
(student_group, date),
as_dict=1,
)
return student_attendance
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 9 | student_batch_wise_attendance.py | 45 | style: format code with black | 14,062 | 0 | 6 | 30 | 12 | 65,941 | 13 | erpnext | 8 | erpnext/education/report/student_batch_wise_attendance/student_batch_wise_attendance.py | Python | 9 | {
"docstring": "select count(*) as count, status from `tabStudent Attendance` where\n\t\t\t\tstudent_group= %s and date= %s and docstatus = 1 and\n\t\t\t\t(course_schedule is Null or course_schedule='') group by status",
"language": "en",
"n_whitespaces": 24,
"n_words": 27,
"vocab_size": 23
} | https://github.com/frappe/erpnext.git |
|
3 | test_legend_auto5 | def test_legend_auto5():
fig, axs = plt.subplots(ncols=2, figsize=(9.6, 4.8))
leg_bboxes = []
for ax, loc in zip(axs.flat, ("center", "best")):
# An Ellipse patch at the top, a U-shaped Polygon patch at the
# bottom and a ring-like Wedge patch: the correct placement of
# the legend should be in the center.
for _patch in [
mpatches.Ellipse(
xy=(0.5, 0.9), width=0.8, height=0.2, fc="C1"),
mpatches.Polygon(np.array([
[0, 1], [0, 0], [1, 0], [1, 1], [0.9, 1.0], [0.9, 0.1],
[0.1, 0.1], [0.1, 1.0], [0.1, 1.0]]), fc="C1"),
mpatches.Wedge((0.5, 0.5), 0.5, 0, 360, width=0.05, fc="C0")
]:
ax.add_patch(_patch)
ax.plot([0.1, 0.9], [0.9, 0.9], label="A segment") # sthg to label
leg = ax.legend(loc=loc)
fig.canvas.draw()
leg_bboxes.append(
leg.get_window_extent().transformed(ax.transAxes.inverted()))
assert_allclose(leg_bboxes[1].bounds, leg_bboxes[0].bounds)
@image_comparison(['legend_various_labels'], remove_text=True) | d8bb1a52316c38434e526412c27d9c4b01960084 | @image_comparison(['legend_various_labels'], remove_text=True) | 14 | test_legend.py | 390 | ENH: rely on non-rectangular patch paths rather than bboxes for legend auto-placing (fix #9580) (#9598)
* use path rather than bbox for non rectangular patches
* Add tests
* Add a short breadcrumb note in api_changes | 24,225 | 1 | 319 | 300 | 82 | 110,587 | 109 | matplotlib | 39 | lib/matplotlib/tests/test_legend.py | Python | 19 | {
"docstring": "\n Check that the automatic placement handle a rather complex\n case with non rectangular patch. Related to issue #9580.\n ",
"language": "en",
"n_whitespaces": 28,
"n_words": 18,
"vocab_size": 18
} | https://github.com/matplotlib/matplotlib.git |
1 | sort_accounts | def sort_accounts(accounts, is_root=False, key="name"):
def compare_accounts(a, b):
if re.split(r"\W+", a[key])[0].isdigit():
# if chart of accounts is numbered, then sort by number
return int(a[key] > b[key]) - int(a[key] < b[key])
elif is_root:
if a.report_type != b.report_type and a.report_type == "Balance Sheet":
return -1
if a.root_type != b.root_type and a.root_type == "Asset":
return -1
if a.root_type == "Liability" and b.root_type == "Equity":
return -1
if a.root_type == "Income" and b.root_type == "Expense":
return -1
else:
# sort by key (number) or name
return int(a[key] > b[key]) - int(a[key] < b[key])
return 1
accounts.sort(key=functools.cmp_to_key(compare_accounts))
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 15 | financial_statements.py | 297 | style: format code with black | 13,828 | 0 | 72 | 29 | 49 | 65,230 | 91 | erpnext | 16 | erpnext/accounts/report/financial_statements.py | Python | 3 | {
"docstring": "Sort root types as Asset, Liability, Equity, Income, Expense",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/frappe/erpnext.git |
|
1 | look_at | def look_at(eye, center, world_up):
batch_size = center.shape[0]
vector_degeneracy_cutoff = 1e-6
forward = center - eye
forward_norm = np.linalg.norm(forward, axis=1, keepdims=True)
forward = np.divide(forward, forward_norm)
to_side = np.cross(forward, world_up)
to_side_norm = np.linalg.norm(to_side, axis=1, keepdims=True)
to_side = np.divide(to_side, to_side_norm)
cam_up = np.cross(to_side, forward)
w_column = np.array(
batch_size * [[0., 0., 0., 1.]], dtype=np.float32) # [batch_size, 4]
w_column = np.reshape(w_column, [batch_size, 4, 1])
view_rotation = np.stack(
[to_side, cam_up, -forward,
np.zeros_like(to_side, dtype=np.float32)],
axis=1) # [batch_size, 4, 3] matrix
view_rotation = np.concatenate(
[view_rotation, w_column], axis=2) # [batch_size, 4, 4]
identity_batch = np.tile(np.expand_dims(np.eye(3), 0), [batch_size, 1, 1])
view_translation = np.concatenate([identity_batch, np.expand_dims(-eye, 2)], 2)
view_translation = np.concatenate(
[view_translation,
np.reshape(w_column, [batch_size, 1, 4])], 1)
camera_matrices = np.matmul(view_rotation, view_translation)
return camera_matrices
| 7375ee364e0df2a417f92593e09557f1b2a3575a | 13 | ganfit_camera.py | 410 | initialize ostec | 1,638 | 0 | 223 | 287 | 72 | 9,563 | 112 | insightface | 34 | reconstruction/ostec/utils/ganfit_camera.py | Python | 26 | {
"docstring": "Computes camera viewing matrices.\n Functionality mimes gluLookAt (third_party/GL/glu/include/GLU/glu.h).\n Args:\n eye: 2-D float32 tensor with shape [batch_size, 3] containing the XYZ world\n space position of the camera.\n center: 2-D float32 tensor with shape [batch_size, 3] containing a position\n along the center of the camera's gaze.\n world_up: 2-D float32 tensor with shape [batch_size, 3] specifying the\n world's up direction; the output camera will have no tilt with respect\n to this direction.\n Returns:\n A [batch_size, 4, 4] float tensor containing a right-handed camera\n extrinsics matrix that maps points from world space to points in eye space.\n ",
"language": "en",
"n_whitespaces": 148,
"n_words": 93,
"vocab_size": 60
} | https://github.com/deepinsight/insightface.git |
|
1 | on_train_batch_end | def on_train_batch_end(self, batch, logs=None):
# For backwards compatibility.
self.on_batch_end(batch, logs=logs)
| f3cafc77c269f7ecbf80bb4cf4b54e28c153f4e6 | 8 | callbacks.py | 36 | resolve line-too-long in root directory | 82,206 | 0 | 31 | 22 | 10 | 277,786 | 10 | keras | 5 | keras/callbacks.py | Python | 2 | {
"docstring": "Called at the end of a training batch in `fit` methods.\n\n Subclasses should override for any actions to run.\n\n Note that if the `steps_per_execution` argument to `compile` in\n `tf.keras.Model` is set to `N`, this method will only be called every\n `N` batches.\n\n Args:\n batch: Integer, index of batch within the current epoch.\n logs: Dict. Aggregated metric results up until this batch.\n ",
"language": "en",
"n_whitespaces": 125,
"n_words": 61,
"vocab_size": 53
} | https://github.com/keras-team/keras.git |
|
5 | pop_up | def pop_up(self, text='', move=True):
self.edit.setText(text)
self.edit.setSelection(0, len(text))
self.edit.setFocus(Qt.PopupFocusReason)
if move:
cursor_pos = QCursor.pos()
# move OK button below cursor
btn = self.button_box.buttons()[0]
self.adjustSize()
btn.adjustSize()
offset = btn.mapToGlobal(btn.pos()) - self.pos()
offset += QPoint(btn.size().width()/4, btn.size().height()/2)
cursor_pos.setX(max(0, cursor_pos.x() - offset.x()))
cursor_pos.setY(max(0, cursor_pos.y() - offset.y()))
parent_bottom_right = self.parentWidget().geometry()
max_x = parent_bottom_right.x() + parent_bottom_right.width() - self.sizeHint().width()
max_y = parent_bottom_right.y() + parent_bottom_right.height() - self.sizeHint().height()
max_global = self.parentWidget().mapToGlobal(QPoint(max_x, max_y))
if cursor_pos.x() > max_global.x():
cursor_pos.setX(max_global.x())
if cursor_pos.y() > max_global.y():
cursor_pos.setY(max_global.y())
self.move(cursor_pos)
return trimmed(self.edit.text()) if self.exec_() else None
| 0c377fc2588ad0f57b3060c26f2d4f891c68276f | 15 | labelDialog.py | 515 | move "OK" button below cursor when opening label dialog (#893)
The intent for this change is to allow faster labeling when there
are streaks of the same label occasionally, but not consistently
enough to enable "default label" mode. With this PR the user can
simply click again to confirm the previous selection, without
having to aim for the OK button, or move either hand to the
ENTER button.
The alignment and position change of the buttons is for two reasons:
- it covers less of the drawn shape, easing verification of the
label to be selected
- the alignment wasn't taken into account for offset calculation.
It works if the dialog is shown, but that causes the dialog to
briefly flicker in the old position. Presumably an `adjustSize`
or similar is needed on more widgets, but I was unable to
figure out which. | 43,352 | 0 | 327 | 310 | 61 | 181,545 | 79 | labelImg | 38 | libs/labelDialog.py | Python | 23 | {
"docstring": "\n Shows the dialog, setting the current text to `text`, and blocks the caller until the user has made a choice.\n If the user entered a label, that label is returned, otherwise (i.e. if the user cancelled the action)\n `None` is returned.\n ",
"language": "en",
"n_whitespaces": 70,
"n_words": 41,
"vocab_size": 31
} | https://github.com/heartexlabs/labelImg.git |
|
5 | create_pseudo_labeled_data | def create_pseudo_labeled_data(args, infer_input, infer_output, eval_result, id2label, next_data_dir):
dataset = datasets.concatenate_datasets([infer_input, infer_output], axis=1)
if args.do_filter_by_confidence:
dataset = dataset.filter(lambda example: example["probability"] > args.confidence_threshold)
if args.do_filter_by_val_performance:
assert eval_result >= 0.0 and eval_result <= 1.0
num_selected_rows = int(eval_result * len(dataset))
print(num_selected_rows)
dataset = dataset.sort("probability", reverse=True)
dataset = dataset.select(range(num_selected_rows))
dataset = dataset.remove_columns(["label", "probability"])
dataset = dataset.rename_column("prediction", "label")
dataset = dataset.map(lambda example: {"label": id2label[example["label"]]})
dataset = dataset.shuffle(seed=args.seed)
pseudo_labeled_data_file = os.path.join(next_data_dir, f"train_pseudo.{args.data_file_extension}")
if args.data_file_extension == "csv":
dataset.to_csv(pseudo_labeled_data_file, index=False)
else:
dataset.to_json(pseudo_labeled_data_file)
| 34ef029dc04bb94b4e280e02ef3e82dacf1b9dfc | 14 | selftraining.py | 332 | Add self training code for text classification (#16738)
* Add self-training code for text-classification
* Add self-training code for text-classification
* Add self-training code for text-classification
* Add self-training code for text-classification
* Add self-training code for text-classification
* Delete strata | 6,736 | 0 | 162 | 203 | 53 | 37,117 | 73 | transformers | 37 | examples/research_projects/self-training-text-classification/selftraining.py | Python | 19 | {
"docstring": "Create pseudeo labeled data for the next self-training iteration.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/huggingface/transformers.git |
|
17 | jacobi_symbol | def jacobi_symbol(m, n):
r
m, n = as_int(m), as_int(n)
if n < 0 or not n % 2:
raise ValueError("n should be an odd positive integer")
if m < 0 or m > n:
m %= n
if not m:
return int(n == 1)
if n == 1 or m == 1:
return 1
if igcd(m, n) != 1:
return 0
j = 1
while m != 0:
while m % 2 == 0 and m > 0:
m >>= 1
if n % 8 in [3, 5]:
j = -j
m, n = n, m
if m % 4 == n % 4 == 3:
j = -j
m %= n
return j
| d7614cda8f6b341df8515c65244a415b0bf2fc6f | 13 | residue_ntheory.py | 234 | jacobi_symbol: remove dead code paths
Fixes #23443
The first part of the code was never reached `m %= n`
The later `n != 1` condition never matched either since the gcd calculation prevented that from ever happening.
```python
if igcd(m, n) != 1:
return 0
```
https://en.wikipedia.org/wiki/Jacobi_symbol#Implementation_in_Lua | 48,735 | 0 | 254 | 177 | 52 | 197,883 | 114 | sympy | 8 | sympy/ntheory/residue_ntheory.py | Python | 85 | {
"docstring": "\n Returns the Jacobi symbol `(m / n)`.\n\n For any integer ``m`` and any positive odd integer ``n`` the Jacobi symbol\n is defined as the product of the Legendre symbols corresponding to the\n prime factors of ``n``:\n\n .. math ::\n \\genfrac(){}{}{m}{n} =\n \\genfrac(){}{}{m}{p^{1}}^{\\alpha_1}\n \\genfrac(){}{}{m}{p^{2}}^{\\alpha_2}\n ...\n \\genfrac(){}{}{m}{p^{k}}^{\\alpha_k}\n \\text{ where } n =\n p_1^{\\alpha_1}\n p_2^{\\alpha_2}\n ...\n p_k^{\\alpha_k}\n\n Like the Legendre symbol, if the Jacobi symbol `\\genfrac(){}{}{m}{n} = -1`\n then ``m`` is a quadratic nonresidue modulo ``n``.\n\n But, unlike the Legendre symbol, if the Jacobi symbol\n `\\genfrac(){}{}{m}{n} = 1` then ``m`` may or may not be a quadratic residue\n modulo ``n``.\n\n Parameters\n ==========\n\n m : integer\n n : odd positive integer\n\n Examples\n ========\n\n >>> from sympy.ntheory import jacobi_symbol, legendre_symbol\n >>> from sympy import S\n >>> jacobi_symbol(45, 77)\n -1\n >>> jacobi_symbol(60, 121)\n 1\n\n The relationship between the ``jacobi_symbol`` and ``legendre_symbol`` can\n be demonstrated as follows:\n\n >>> L = legendre_symbol\n >>> S(45).factors()\n {3: 2, 5: 1}\n >>> jacobi_symbol(7, 45) == L(7, 3)**2 * L(7, 5)**1\n True\n\n See Also\n ========\n\n is_quad_residue, legendre_symbol\n ",
"language": "en",
"n_whitespaces": 387,
"n_words": 165,
"vocab_size": 107
} | https://github.com/sympy/sympy.git |
|
1 | _topk | def _topk(self, scores):
k = self.max_per_img
shape_fm = paddle.shape(scores)
shape_fm.stop_gradient = True
cat, height, width = shape_fm[1], shape_fm[2], shape_fm[3]
# batch size is 1
scores_r = paddle.reshape(scores, [cat, -1])
topk_scores, topk_inds = paddle.topk(scores_r, k)
topk_ys = topk_inds // width
topk_xs = topk_inds % width
topk_score_r = paddle.reshape(topk_scores, [-1])
topk_score, topk_ind = paddle.topk(topk_score_r, k)
k_t = paddle.full(paddle.shape(topk_ind), k, dtype='int64')
topk_clses = paddle.cast(paddle.floor_divide(topk_ind, k_t), 'float32')
topk_inds = paddle.reshape(topk_inds, [-1])
topk_ys = paddle.reshape(topk_ys, [-1, 1])
topk_xs = paddle.reshape(topk_xs, [-1, 1])
topk_inds = paddle.gather(topk_inds, topk_ind)
topk_ys = paddle.gather(topk_ys, topk_ind)
topk_xs = paddle.gather(topk_xs, topk_ind)
return topk_score, topk_inds, topk_clses, topk_ys, topk_xs
| 5e02a81af77a9a4ecd1e394430c4396b48bc76fd | 10 | layers.py | 344 | remove one line redundant code (#6424) | 53,025 | 0 | 242 | 238 | 60 | 211,087 | 95 | PaddleDetection | 29 | ppdet/modeling/layers.py | Python | 21 | {
"docstring": "\n Select top k scores and decode to get xy coordinates.\n ",
"language": "en",
"n_whitespaces": 25,
"n_words": 10,
"vocab_size": 10
} | https://github.com/PaddlePaddle/PaddleDetection.git |
|
3 | latitude | def latitude(self) -> float | None:
if (
self.extra_state_attributes is not None
and ATTR_LATITUDE in self.extra_state_attributes
):
latitude: float = self.extra_state_attributes[ATTR_LATITUDE]
return latitude
return None
| bcae6d604e2967c7475f0caa4b1b5e4e76ab88bf | 10 | schema_discovery.py | 64 | Improve MQTT type hints part 8 (#81034)
* Improve typing device_tracker discovery
* Improve typing device_tracker yaml
* Add test source_type attribute
* Follow up comment
* Initialize at `__init__` not at class level.
* Use full name for return variable
* Correct import, remove assert
* Use AsyncSeeCallback | 89,084 | 0 | 97 | 40 | 21 | 289,958 | 25 | core | 5 | homeassistant/components/mqtt/device_tracker/schema_discovery.py | Python | 9 | {
"docstring": "Return latitude if provided in extra_state_attributes or None.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | https://github.com/home-assistant/core.git |
|
1 | test_false_values_displayed | def test_false_values_displayed(self):
response = self.get(4)
self.assertContains(response, "<dd>False</dd>", count=3, html=True)
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 8 | test_page_modeladmin.py | 50 | Reformat with black | 15,994 | 0 | 30 | 30 | 9 | 73,222 | 9 | wagtail | 7 | wagtail/contrib/modeladmin/tests/test_page_modeladmin.py | Python | 3 | {
"docstring": "\n Boolean fields with False values should display False, rather than the\n value of `get_empty_value_display()`. For this page, those should be\n `locked`, `expired` and `has_unpublished_changes`\n ",
"language": "en",
"n_whitespaces": 53,
"n_words": 24,
"vocab_size": 23
} | https://github.com/wagtail/wagtail.git |
|
2 | call | def call(self, inputs, **kwargs): # pylint:disable=unused-argument
# Compute the axes along which to reduce the mean / variance
input_shape = K.int_shape(inputs)
layer_size = input_shape[self.axis]
if self.partial in (0.0, 1.0):
mean_square = K.mean(K.square(inputs), axis=self.axis, keepdims=True)
else:
partial_size = int(layer_size * self.partial)
partial_x, _ = tf.split( # pylint:disable=redundant-keyword-arg,no-value-for-parameter
inputs,
[partial_size, layer_size - partial_size],
axis=self.axis)
mean_square = K.mean(K.square(partial_x), axis=self.axis, keepdims=True)
recip_square_root = tf.math.rsqrt(mean_square + self.epsilon)
output = self.scale * inputs * recip_square_root + self.offset
return output
| c1512fd41d86ef47a5d1ce618d6d755ef7cbacdf | 13 | normalization_tf.py | 230 | Update code to support Tensorflow versions up to 2.8 (#1213)
* Update maximum tf version in setup + requirements
* - bump max version of tf version in launcher
- standardise tf version check
* update keras get_custom_objects for tf>2.6
* bugfix: force black text in GUI file dialogs (linux)
* dssim loss - Move to stock tf.ssim function
* Update optimizer imports for compatibility
* fix logging for tf2.8
* Fix GUI graphing for TF2.8
* update tests
* bump requirements.txt versions
* Remove limit on nvidia-ml-py
* Graphing bugfixes
- Prevent live graph from displaying if data not yet available
* bugfix: Live graph. Collect loss labels correctly
* fix: live graph - swallow inconsistent loss errors
* Bugfix: Prevent live graph from clearing during training
* Fix graphing for AMD | 19,848 | 0 | 227 | 153 | 53 | 100,359 | 73 | faceswap | 27 | lib/model/normalization/normalization_tf.py | Python | 15 | {
"docstring": " Call Root Mean Square Layer Normalization\n\n Parameters\n ----------\n inputs: tensor\n Input tensor, or list/tuple of input tensors\n\n Returns\n -------\n tensor\n A tensor or list/tuple of tensors\n ",
"language": "en",
"n_whitespaces": 98,
"n_words": 26,
"vocab_size": 20
} | https://github.com/deepfakes/faceswap.git |
|
3 | test_to_python | def test_to_python(self):
table = self.block.to_python(self.db_data)
self.assertIsInstance(table, TypedTable)
self.assertEqual(len(table.columns), 2)
self.assertEqual(table.columns[0]["heading"], "Country")
self.assertEqual(table.columns[1]["heading"], "Description")
rows = list(table.rows)
self.assertEqual(len(rows), 2)
self.assertEqual(
[block.value for block in rows[0]],
["nl", "A small country with stroopwafels"],
)
self.assertEqual(
[block.value for block in rows[1]], ["fr", "A large country with baguettes"]
)
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 10 | tests.py | 221 | Reformat with black | 16,073 | 0 | 161 | 137 | 33 | 73,622 | 44 | wagtail | 14 | wagtail/contrib/typed_table_block/tests.py | Python | 15 | {
"docstring": "\n Test that we can turn JSONish data from the database into a TypedTable instance\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 14,
"vocab_size": 14
} | https://github.com/wagtail/wagtail.git |
|
2 | _format_maybe_minus_and_locale | def _format_maybe_minus_and_locale(self, fmt, arg):
return self.fix_minus(locale.format_string(fmt, (arg,), True)
if self._useLocale else fmt % arg)
| 88cb4c9d0aa1e790fc4689ca7e68725bf851bf63 | 11 | ticker.py | 55 | Properly capitalize "Unicode".
See e.g. https://en.wikipedia.org/wiki/Unicode,
https://docs.python.org/3/howto/unicode.html.
Also associated minor doc cleanups. | 22,797 | 0 | 57 | 37 | 14 | 107,535 | 14 | matplotlib | 8 | lib/matplotlib/ticker.py | Python | 3 | {
"docstring": "\n Format *arg* with *fmt*, applying Unicode minus and locale if desired.\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 11,
"vocab_size": 11
} | https://github.com/matplotlib/matplotlib.git |
|
1 | create_session | def create_session(self, loop):
session = ClientSession(loop=loop, json_serialize=json_dumps)
# Setting directly on `session` will raise deprecation warning
object.__setattr__(session, "_request", self.match_request)
return session
| da027fa3905d36b91beefd456cb546f891617eab | 9 | aiohttp.py | 56 | JSON serialize NamedTuple subclasses with aiohttp (#74971) | 115,615 | 0 | 56 | 34 | 20 | 317,039 | 21 | core | 10 | tests/test_util/aiohttp.py | Python | 4 | {
"docstring": "Create a ClientSession that is bound to this mocker.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/home-assistant/core.git |
|
3 | last | def last(self):
for obj in (self.reverse() if self.ordered else self.order_by("-pk"))[:1]:
return obj
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 11 | query.py | 57 | Refs #33476 -- Reformatted code with Black. | 51,217 | 0 | 37 | 34 | 11 | 205,791 | 12 | django | 6 | django/db/models/query.py | Python | 3 | {
"docstring": "Return the last object of a query or None if no match is found.",
"language": "en",
"n_whitespaces": 13,
"n_words": 14,
"vocab_size": 14
} | https://github.com/django/django.git |
|
1 | create_view | def create_view(self, request):
kwargs = {"model_admin": self}
view_class = self.create_view_class
return view_class.as_view(**kwargs)(request)
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 9 | options.py | 54 | Reformat with black | 15,968 | 0 | 40 | 31 | 11 | 73,170 | 12 | wagtail | 7 | wagtail/contrib/modeladmin/options.py | Python | 4 | {
"docstring": "\n Instantiates a class-based view to provide 'creation' functionality for\n the assigned model, or redirect to Wagtail's create view if the\n assigned model extends 'Page'. The view class used can be overridden by\n changing the 'create_view_class' attribute.\n ",
"language": "en",
"n_whitespaces": 72,
"n_words": 36,
"vocab_size": 30
} | https://github.com/wagtail/wagtail.git |
|
5 | _create_index | def _create_index(instance, table_name, index_name):
table = Table(table_name, Base.metadata)
_LOGGER.debug("Looking up index %s for table %s", index_name, table_name)
# Look up the index object by name from the table is the models
index_list = [idx for idx in table.indexes if idx.name == index_name]
if not index_list:
_LOGGER.debug("The index %s no longer exists", index_name)
return
index = index_list[0]
_LOGGER.debug("Creating %s index", index_name)
_LOGGER.warning(
"Adding index `%s` to database. Note: this can take several "
"minutes on large databases and slow computers. Please "
"be patient!",
index_name,
)
try:
with session_scope(session=instance.get_session()) as session:
connection = session.connection()
index.create(connection)
except (InternalError, ProgrammingError, OperationalError) as err:
raise_if_exception_missing_str(err, ["already exists", "duplicate"])
_LOGGER.warning(
"Index %s already exists on %s, continuing", index_name, table_name
)
_LOGGER.debug("Finished creating %s", index_name)
| 41ab12cb88741807a246bb296762d7c683a30b58 | 15 | migration.py | 258 | Don't use shared session during recorder migration (#65672) | 110,990 | 0 | 261 | 153 | 91 | 312,340 | 119 | core | 26 | homeassistant/components/recorder/migration.py | Python | 25 | {
"docstring": "Create an index for the specified table.\n\n The index name should match the name given for the index\n within the table definition described in the models\n ",
"language": "en",
"n_whitespaces": 35,
"n_words": 26,
"vocab_size": 18
} | https://github.com/home-assistant/core.git |
|
5 | squeeze | def squeeze(self, axis=None):
axis = range(self._AXIS_LEN) if axis is None else (self._get_axis_number(axis),)
return self.iloc[
tuple(
0 if i in axis and len(a) == 1 else slice(None)
for i, a in enumerate(self.axes)
)
]
# ----------------------------------------------------------------------
# Rename
| 244f747bb63f45c1c439193f0672c6162853b168 | 13 | generic.py | 108 | make series axis parameter docs consistent (#47109)
* make series docs consistent
add series unused param info to DF docs
* fix trailing whitespace
* fix docs build
* add unused
* add or update docs for all series methods
* small fix
* fix line length
* fix param order
* fix param order
* add
* add backticks to None and fix space
Co-authored-by: uncjackg <[email protected]> | 39,840 | 0 | 123 | 69 | 31 | 166,611 | 37 | pandas | 14 | pandas/core/generic.py | Python | 8 | {
"docstring": "\n Squeeze 1 dimensional axis objects into scalars.\n\n Series or DataFrames with a single element are squeezed to a scalar.\n DataFrames with a single column or a single row are squeezed to a\n Series. Otherwise the object is unchanged.\n\n This method is most useful when you don't know if your\n object is a Series or DataFrame, but you do know it has just a single\n column. In that case you can safely call `squeeze` to ensure you have a\n Series.\n\n Parameters\n ----------\n axis : {0 or 'index', 1 or 'columns', None}, default None\n A specific axis to squeeze. By default, all length-1 axes are\n squeezed. For `Series` this parameter is unused and defaults to `None`.\n\n Returns\n -------\n DataFrame, Series, or scalar\n The projection after squeezing `axis` or all the axes.\n\n See Also\n --------\n Series.iloc : Integer-location based indexing for selecting scalars.\n DataFrame.iloc : Integer-location based indexing for selecting Series.\n Series.to_frame : Inverse of DataFrame.squeeze for a\n single-column DataFrame.\n\n Examples\n --------\n >>> primes = pd.Series([2, 3, 5, 7])\n\n Slicing might produce a Series with a single value:\n\n >>> even_primes = primes[primes % 2 == 0]\n >>> even_primes\n 0 2\n dtype: int64\n\n >>> even_primes.squeeze()\n 2\n\n Squeezing objects with more than one value in every axis does nothing:\n\n >>> odd_primes = primes[primes % 2 == 1]\n >>> odd_primes\n 1 3\n 2 5\n 3 7\n dtype: int64\n\n >>> odd_primes.squeeze()\n 1 3\n 2 5\n 3 7\n dtype: int64\n\n Squeezing is even more effective when used with DataFrames.\n\n >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b'])\n >>> df\n a b\n 0 1 2\n 1 3 4\n\n Slicing a single column will produce a DataFrame with the columns\n having only one value:\n\n >>> df_a = df[['a']]\n >>> df_a\n a\n 0 1\n 1 3\n\n So the columns can be squeezed down, resulting in a Series:\n\n >>> df_a.squeeze('columns')\n 0 1\n 1 3\n Name: a, dtype: int64\n\n Slicing a single row from a single column will produce a single\n scalar DataFrame:\n\n >>> df_0a = df.loc[df.index < 1, ['a']]\n >>> df_0a\n a\n 0 1\n\n Squeezing the rows produces a single scalar Series:\n\n >>> df_0a.squeeze('rows')\n a 1\n Name: 0, dtype: int64\n\n Squeezing all axes will project directly into a scalar:\n\n >>> df_0a.squeeze()\n 1\n ",
"language": "en",
"n_whitespaces": 964,
"n_words": 361,
"vocab_size": 184
} | https://github.com/pandas-dev/pandas.git |
|
2 | filename | def filename(self):
if self.buildver:
buildver = '-' + self.buildver
else:
buildver = ''
pyver = '.'.join(self.pyver)
abi = '.'.join(self.abi)
arch = '.'.join(self.arch)
# replace - with _ as a local version separator
version = self.version.replace('-', '_')
return '%s-%s%s-%s-%s-%s.whl' % (self.name, version, buildver,
pyver, abi, arch)
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 10 | wheel.py | 146 | upd; format | 12,910 | 0 | 170 | 83 | 38 | 62,287 | 45 | transferlearning | 10 | .venv/lib/python3.8/site-packages/pip/_vendor/distlib/wheel.py | Python | 11 | {
"docstring": "\n Build and return a filename from the various components.\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 9,
"vocab_size": 9
} | https://github.com/jindongwang/transferlearning.git |
|
3 | async_internal_added_to_hass | async def async_internal_added_to_hass(self) -> None:
await super().async_internal_added_to_hass()
state = await self.async_get_last_state()
if state is not None and state.attributes.get(ATTR_SKIPPED_VERSION) is not None:
self.__skipped_version = state.attributes[ATTR_SKIPPED_VERSION]
| 073fb40b79cf8aa06790fdceb23b6857db888c99 | 10 | __init__.py | 88 | Add update entity platform (#68248)
Co-authored-by: Glenn Waters <[email protected]> | 93,040 | 0 | 63 | 52 | 18 | 293,995 | 24 | core | 9 | homeassistant/components/update/__init__.py | Python | 9 | {
"docstring": "Call when the update entity is added to hass.\n\n It is used to restore the skipped version, if any.\n ",
"language": "en",
"n_whitespaces": 33,
"n_words": 19,
"vocab_size": 16
} | https://github.com/home-assistant/core.git |
|
2 | generate_export_pipeline_code | def generate_export_pipeline_code(pipeline_tree, operators):
steps = _process_operator(pipeline_tree, operators)
# number of steps in a pipeline
num_step = len(steps)
if num_step > 1:
pipeline_text = "make_pipeline(\n{STEPS}\n)".format(
STEPS=_indent(",\n".join(steps), 4)
)
# only one operator (root = True)
else:
pipeline_text = "{STEPS}".format(STEPS=_indent(",\n".join(steps), 0))
return pipeline_text
| 388616b6247ca4ea8de4e2f340d6206aee523541 | 17 | export_utils.py | 128 | Revert "Deployed 7ccda9a with MkDocs version: 1.3.0"
This reverts commit bd9629c40e01241766197119b581a99409b07068. | 43,653 | 0 | 97 | 71 | 32 | 181,898 | 41 | tpot | 12 | tpot/export_utils.py | Python | 10 | {
"docstring": "Generate code specific to the construction of the sklearn Pipeline for export_pipeline.\n\n Parameters\n ----------\n pipeline_tree: list\n List of operators in the current optimized pipeline\n\n Returns\n -------\n Source code for the sklearn pipeline\n\n ",
"language": "en",
"n_whitespaces": 60,
"n_words": 32,
"vocab_size": 24
} | https://github.com/EpistasisLab/tpot.git |
|
13 | OutputString | def OutputString(self, attrs=None):
# Build up our result
#
result = []
append = result.append
# First, the key=value pair
append("%s=%s" % (self.key, self.coded_value))
# Now add any defined attributes
if attrs is None:
attrs = self._reserved
items = sorted(self.items())
for key, value in items:
if value == "":
continue
if key not in attrs:
continue
if key == "expires" and isinstance(value, int):
append("%s=%s" % (self._reserved[key], _getdate(value)))
elif key == "max-age" and isinstance(value, int):
append("%s=%d" % (self._reserved[key], value))
elif key == "comment" and isinstance(value, str):
append("%s=%s" % (self._reserved[key], _quote(value)))
elif key in self._flags:
if value:
append(str(self._reserved[key]))
else:
append("%s=%s" % (self._reserved[key], value))
# Return the result
return _semispacejoin(result)
__class_getitem__ = classmethod(types.GenericAlias)
#
# Pattern for finding cookie
#
# This used to be strict parsing based on the RFC2109 and RFC2068
# specifications. I have since discovered that MSIE 3.0x doesn't
# follow the character rules outlined in those specs. As a
# result, the parsing rules here are less strict.
#
_LegalKeyChars = r"\w\d!#%&'~_`><@,:/\$\*\+\-\.\^\|\)\(\?\}\{\="
_LegalValueChars = _LegalKeyChars + r'\[\]'
_CookiePattern = re.compile(r + _LegalKeyChars + r + _LegalValueChars + r, re.ASCII | re.VERBOSE) # re.ASCII may be removed if safe.
# At long last, here is the cookie class. Using this class is almost just like
# using a dictionary. See this module's docstring for example usage.
# | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 18 | cookies.py | 420 | add python 3.10.4 for windows | 54,962 | 0 | 510 | 203 | 132 | 217,838 | 218 | XX-Net | 29 | python3.10.4/Lib/http/cookies.py | Python | 24 | {
"docstring": "\n \\s* # Optional whitespace at start of cookie\n (?P<key> # Start of group 'key'\n []+? # Any word of at least one letter\n ) # End of group 'key'\n ( # Optional group: there may not be a value.\n \\s*=\\s* # Equal Sign\n (?P<val> # Start of group 'val'\n \"(?:[^\\\\\"]|\\\\.)*\" # Any doublequoted string\n | # or\n \\w{3},\\s[\\w\\d\\s-]{9,11}\\s[\\d:]{8}\\sGMT # Special case for \"expires\" attr\n | # or\n []* # Any word or empty string\n ) # End of group 'val'\n )? # End of optional value group\n \\s* # Any number of spaces.\n (\\s+|;|$) # Ending either at space, semicolon, or EOS.\n ",
"language": "en",
"n_whitespaces": 508,
"n_words": 102,
"vocab_size": 57
} | https://github.com/XX-net/XX-Net.git |
|
11 | validate_cycler | def validate_cycler(s):
if isinstance(s, str):
# TODO: We might want to rethink this...
# While I think I have it quite locked down, it is execution of
# arbitrary code without sanitation.
# Combine this with the possibility that rcparams might come from the
# internet (future plans), this could be downright dangerous.
# I locked it down by only having the 'cycler()' function available.
# UPDATE: Partly plugging a security hole.
# I really should have read this:
# https://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html
# We should replace this eval with a combo of PyParsing and
# ast.literal_eval()
try:
_DunderChecker().visit(ast.parse(s))
s = eval(s, {'cycler': cycler, '__builtins__': {}})
except BaseException as e:
raise ValueError(f"{s!r} is not a valid cycler construction: {e}"
) from e
# Should make sure what comes from the above eval()
# is a Cycler object.
if isinstance(s, Cycler):
cycler_inst = s
else:
raise ValueError(f"Object is not a string or Cycler instance: {s!r}")
unknowns = cycler_inst.keys - (set(_prop_validators) | set(_prop_aliases))
if unknowns:
raise ValueError("Unknown artist properties: %s" % unknowns)
# Not a full validation, but it'll at least normalize property names
# A fuller validation would require v0.10 of cycler.
checker = set()
for prop in cycler_inst.keys:
norm_prop = _prop_aliases.get(prop, prop)
if norm_prop != prop and norm_prop in cycler_inst.keys:
raise ValueError(f"Cannot specify both {norm_prop!r} and alias "
f"{prop!r} in the same prop_cycle")
if norm_prop in checker:
raise ValueError(f"Another property was already aliased to "
f"{norm_prop!r}. Collision normalizing {prop!r}.")
checker.update([norm_prop])
# This is just an extra-careful check, just in case there is some
# edge-case I haven't thought of.
assert len(checker) == len(cycler_inst.keys)
# Now, it should be safe to mutate this cycler
for prop in cycler_inst.keys:
norm_prop = _prop_aliases.get(prop, prop)
cycler_inst.change_key(prop, norm_prop)
for key, vals in cycler_inst.by_key().items():
_prop_validators[key](vals)
return cycler_inst
| 22a44db48c1b7659837092c5b01a59eb1d004fc6 | 15 | rcsetup.py | 423 | Use repr in error messages | 23,050 | 0 | 646 | 228 | 192 | 108,079 | 289 | matplotlib | 31 | lib/matplotlib/rcsetup.py | Python | 32 | {
"docstring": "Return a Cycler object from a string repr or the object itself.",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 10
} | https://github.com/matplotlib/matplotlib.git |
|
1 | addslashes | def addslashes(value):
return value.replace("\\", "\\\\").replace('"', '\\"').replace("'", "\\'")
@register.filter(is_safe=True)
@stringfilter | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | @register.filter(is_safe=True)
@stringfilter | 12 | defaultfilters.py | 81 | Refs #33476 -- Reformatted code with Black. | 51,427 | 1 | 13 | 29 | 9 | 206,236 | 9 | django | 7 | django/template/defaultfilters.py | Python | 2 | {
"docstring": "\n Add slashes before quotes. Useful for escaping strings in CSV, for\n example. Less useful for escaping JavaScript; use the ``escapejs``\n filter instead.\n ",
"language": "en",
"n_whitespaces": 35,
"n_words": 22,
"vocab_size": 19
} | https://github.com/django/django.git |
3 | get_data | def get_data(filters):
lead_details = []
lead_filters = get_lead_filters(filters)
for lead in frappe.get_all(
"Lead", fields=["name", "lead_name", "company_name"], filters=lead_filters
):
data = frappe.db.sql(
,
{"lead": lead.name, "limit": filters.get("no_of_interaction")},
)
for lead_info in data:
lead_data = [lead.name, lead.lead_name, lead.company_name] + list(lead_info)
lead_details.append(lead_data)
return lead_details
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 15 | prospects_engaged_but_not_converted.py | 164 | style: format code with black | 14,009 | 0 | 27 | 100 | 35 | 65,767 | 41 | erpnext | 20 | erpnext/crm/report/prospects_engaged_but_not_converted/prospects_engaged_but_not_converted.py | Python | 33 | {
"docstring": "\n\t\t\tselect\n\t\t\t\t`tabCommunication`.reference_doctype, `tabCommunication`.reference_name,\n\t\t\t\t`tabCommunication`.content, `tabCommunication`.communication_date\n\t\t\tfrom\n\t\t\t\t(\n\t\t\t\t\t(select name, party_name as lead from `tabOpportunity` where opportunity_from='Lead' and party_name = %(lead)s)\n\t\t\t\tunion\n\t\t\t\t\t(select name, party_name as lead from `tabQuotation` where quotation_to = 'Lead' and party_name = %(lead)s)\n\t\t\t\tunion\n\t\t\t\t\t(select name, lead from `tabIssue` where lead = %(lead)s and status!='Closed')\n\t\t\t\tunion\n\t\t\t\t\t(select %(lead)s, %(lead)s)\n\t\t\t\t)\n\t\t\t\tas ref_document, `tabCommunication`\n\t\t\twhere\n\t\t\t\t`tabCommunication`.reference_name = ref_document.name and\n\t\t\t\t`tabCommunication`.sent_or_received = 'Received'\n\t\t\torder by\n\t\t\t\tref_document.lead, `tabCommunication`.creation desc limit %(limit)s",
"language": "en",
"n_whitespaces": 52,
"n_words": 71,
"vocab_size": 40
} | https://github.com/frappe/erpnext.git |
|
1 | choose | def choose(self, choices):
from dask.array.routines import choose
return choose(self, choices)
| 2820bae493a49cb1d0a6e376985c5473b8f04fa8 | 7 | core.py | 36 | Don't include docs in ``Array`` methods, just refer to module docs (#9244)
Co-authored-by: James Bourbeau <[email protected]> | 36,737 | 0 | 31 | 23 | 9 | 156,727 | 10 | dask | 6 | dask/array/core.py | Python | 3 | {
"docstring": "Use an index array to construct a new array from a set of choices.\n\n Refer to :func:`dask.array.choose` for full documentation.\n\n See Also\n --------\n dask.array.choose : equivalent function\n ",
"language": "en",
"n_whitespaces": 62,
"n_words": 27,
"vocab_size": 24
} | https://github.com/dask/dask.git |
|
3 | newer | def newer(self, source, target):
if not os.path.exists(source):
raise DistlibException("file '%r' does not exist" %
os.path.abspath(source))
if not os.path.exists(target):
return True
return os.stat(source).st_mtime > os.stat(target).st_mtime
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 13 | util.py | 108 | upd; format | 12,901 | 0 | 108 | 66 | 20 | 62,218 | 24 | transferlearning | 11 | .venv/lib/python3.8/site-packages/pip/_vendor/distlib/util.py | Python | 7 | {
"docstring": "Tell if the target is newer than the source.\n\n Returns true if 'source' exists and is more recently modified than\n 'target', or if 'source' exists and 'target' doesn't.\n\n Returns false if both exist and 'target' is the same age or younger\n than 'source'. Raise PackagingFileError if 'source' does not exist.\n\n Note that this test is not very accurate: files created in the same\n second will have the same \"age\".\n ",
"language": "en",
"n_whitespaces": 118,
"n_words": 69,
"vocab_size": 45
} | https://github.com/jindongwang/transferlearning.git |
|
1 | filldedent | def filldedent(s, w=70, **kwargs):
return '\n' + fill(dedent(str(s)).strip('\n'), width=w, **kwargs)
| 2047f4855577845b1b99e0926b887d313725a6e7 | 14 | misc.py | 66 | Pass keyword arguments to filldedent() through to fill() | 48,569 | 0 | 16 | 38 | 10 | 197,470 | 10 | sympy | 9 | sympy/utilities/misc.py | Python | 2 | {
"docstring": "\n Strips leading and trailing empty lines from a copy of ``s``, then dedents,\n fills and returns it.\n\n Empty line stripping serves to deal with docstrings like this one that\n start with a newline after the initial triple quote, inserting an empty\n line at the beginning of the string.\n\n Additional keyword arguments will be passed to ``textwrap.fill()``.\n\n See Also\n ========\n strlines, rawlines\n\n ",
"language": "en",
"n_whitespaces": 92,
"n_words": 61,
"vocab_size": 52
} | https://github.com/sympy/sympy.git |
|
1 | test_regex | def test_regex(self) -> None:
# Some of the undocumented endpoints which are very similar to
# some of the documented endpoints.
assert find_openapi_endpoint("/users/me/presence") is None
assert find_openapi_endpoint("/users/me/subscriptions/23") is None
assert find_openapi_endpoint("/users/iago/subscriptions/23") is None
assert find_openapi_endpoint("/messages/matches_narrow") is None
# Making sure documented endpoints are matched correctly.
assert (
find_openapi_endpoint("/users/23/subscriptions/21")
== "/users/{user_id}/subscriptions/{stream_id}"
)
assert (
find_openapi_endpoint("/users/[email protected]/presence")
== "/users/{user_id_or_email}/presence"
)
assert find_openapi_endpoint("/users/[email protected]") == "/users/{email}"
assert find_openapi_endpoint("/messages/23") == "/messages/{message_id}"
assert find_openapi_endpoint("/realm/emoji/realm_emoji_1") == "/realm/emoji/{emoji_name}"
| b0ce4f1bce8031881addecb1e86073483517f392 | 10 | test_openapi.py | 152 | docs: Fix many spelling mistakes.
Signed-off-by: Anders Kaseorg <[email protected]> | 17,641 | 0 | 218 | 75 | 42 | 83,259 | 69 | zulip | 3 | zerver/tests/test_openapi.py | Python | 20 | {
"docstring": "\n Calls a few documented and undocumented endpoints and checks whether they\n find a match or not.\n ",
"language": "en",
"n_whitespaces": 39,
"n_words": 16,
"vocab_size": 14
} | https://github.com/zulip/zulip.git |
|
27 | compare_total | def compare_total(self, other, context=None):
other = _convert_other(other, raiseit=True)
# if one is negative and the other is positive, it's easy
if self._sign and not other._sign:
return _NegativeOne
if not self._sign and other._sign:
return _One
sign = self._sign
# let's handle both NaN types
self_nan = self._isnan()
other_nan = other._isnan()
if self_nan or other_nan:
if self_nan == other_nan:
# compare payloads as though they're integers
self_key = len(self._int), self._int
other_key = len(other._int), other._int
if self_key < other_key:
if sign:
return _One
else:
return _NegativeOne
if self_key > other_key:
if sign:
return _NegativeOne
else:
return _One
return _Zero
if sign:
if self_nan == 1:
return _NegativeOne
if other_nan == 1:
return _One
if self_nan == 2:
return _NegativeOne
if other_nan == 2:
return _One
else:
if self_nan == 1:
return _One
if other_nan == 1:
return _NegativeOne
if self_nan == 2:
return _One
if other_nan == 2:
return _NegativeOne
if self < other:
return _NegativeOne
if self > other:
return _One
if self._exp < other._exp:
if sign:
return _One
else:
return _NegativeOne
if self._exp > other._exp:
if sign:
return _NegativeOne
else:
return _One
return _Zero
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 14 | _pydecimal.py | 391 | add python 3.10.4 for windows | 55,829 | 0 | 999 | 242 | 61 | 219,816 | 183 | XX-Net | 19 | python3.10.4/Lib/_pydecimal.py | Python | 57 | {
"docstring": "Compares self to other using the abstract representations.\n\n This is not like the standard compare, which use their numerical\n value. Note that a total ordering is defined for all possible abstract\n representations.\n ",
"language": "en",
"n_whitespaces": 60,
"n_words": 32,
"vocab_size": 28
} | https://github.com/XX-net/XX-Net.git |
|
1 | _override_cmds | def _override_cmds(self) -> None:
self.options.version_cmd[0] = self.options.ctl
self.options.restart_cmd[0] = self.options.ctl
self.options.conftest_cmd[0] = self.options.ctl
self.options.get_modules_cmd[0] = self.options.ctl
self.options.get_includes_cmd[0] = self.options.ctl
self.options.get_defines_cmd[0] = self.options.ctl
| eed1afb8082518a5212a6d8016a4ccf44c5ad99e | 9 | configurator.py | 142 | certbot-apache: use httpd by default for CentOS/RHEL (#9402)
* certbot-apache: use httpd for newer RHEL derived distros
A change in RHEL 9 is causing apachectl to error out when used
with additional arguments, resulting in certbot errors. The CentOS
configurator now uses httpd instead for RHEL 9 (and later) derived
distros.
* Single CentOS class which uses the apache_bin option
* soothe mypy
* Always call super()._override_cmds() | 45,657 | 0 | 71 | 92 | 12 | 186,917 | 22 | certbot | 10 | certbot-apache/certbot_apache/_internal/configurator.py | Python | 10 | {
"docstring": "\n Set our various command binaries to whatever the user has overridden for apachectl\n ",
"language": "en",
"n_whitespaces": 28,
"n_words": 13,
"vocab_size": 13
} | https://github.com/certbot/certbot.git |
|
5 | _get_files | def _get_files(self, files):
# Older versions of fsspec doesn't support unstrip_protocol(). It
# was only added relatively recently:
# https://github.com/fsspec/filesystem_spec/pull/828 | b240370bf83c88589d293b76b4a2409294e06f90 | 6 | parquet_dispatcher.py | 18 | FEAT-#4733: Support fastparquet as engine for `read_parquet` (#4807)
Signed-off-by: Karthik Velayutham <[email protected]> | 35,881 | 0 | 48 | 81 | 18 | 154,259 | 20 | modin | 3 | modin/core/io/column_stores/parquet_dispatcher.py | Python | 9 | {
"docstring": "\n Retrieve list of formatted file names in dataset path.\n\n Parameters\n ----------\n files : list\n List of files from path.\n\n Returns\n -------\n fs_files : list\n List of files from path with fs-protocol prepended.\n ",
"language": "en",
"n_whitespaces": 111,
"n_words": 32,
"vocab_size": 22
} | https://github.com/modin-project/modin.git |
|
3 | get_wheel_cache_entry | def get_wheel_cache_entry(self, link, name):
# type: (Link, Optional[str]) -> Optional[CacheEntry]
if self._wheel_cache is None or self.preparer.require_hashes:
return None
return self._wheel_cache.get_cache_entry(
link=link,
package_name=name,
supported_tags=get_supported(),
)
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 10 | factory.py | 73 | upd; format | 12,412 | 0 | 103 | 47 | 22 | 61,110 | 24 | transferlearning | 11 | .venv/lib/python3.8/site-packages/pip/_internal/resolution/resolvelib/factory.py | Python | 8 | {
"docstring": "Look up the link in the wheel cache.\n\n If ``preparer.require_hashes`` is True, don't use the wheel cache,\n because cached wheels, always built locally, have different hashes\n than the files downloaded from the index server and thus throw false\n hash mismatches. Furthermore, cached wheels at present have\n nondeterministic contents due to file modification times.\n ",
"language": "en",
"n_whitespaces": 95,
"n_words": 53,
"vocab_size": 46
} | https://github.com/jindongwang/transferlearning.git |
|
2 | broadcast | async def broadcast(self, data):
for channel in self.channels.values():
await channel.send(data)
| 9f6bba40af1a407f190a89f5c0c8b4e3f528ba46 | 10 | channel.py | 45 | initial concept for replicate, basic leader and follower logic | 34,740 | 0 | 35 | 26 | 10 | 150,418 | 10 | freqtrade | 7 | freqtrade/rpc/replicate/channel.py | Python | 3 | {
"docstring": "\n Broadcast data on all Channels\n\n :param data: The data to send\n ",
"language": "en",
"n_whitespaces": 33,
"n_words": 11,
"vocab_size": 10
} | https://github.com/freqtrade/freqtrade.git |
|
4 | _set_concurrent_future_state | def _set_concurrent_future_state(concurrent, source):
assert source.done()
if source.cancelled():
concurrent.cancel()
if not concurrent.set_running_or_notify_cancel():
return
exception = source.exception()
if exception is not None:
concurrent.set_exception(_convert_future_exc(exception))
else:
result = source.result()
concurrent.set_result(result)
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 11 | futures.py | 124 | add python 3.10.4 for windows | 56,029 | 0 | 82 | 72 | 21 | 220,522 | 26 | XX-Net | 12 | python3.10.4/Lib/asyncio/futures.py | Python | 12 | {
"docstring": "Copy state from a future to a concurrent.futures.Future.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 7
} | https://github.com/XX-net/XX-Net.git |
|
10 | test_repeated_paginate_relations | def test_repeated_paginate_relations(self):
expected_event_ids = []
for idx in range(10):
channel = self._send_relation(
RelationTypes.ANNOTATION, "m.reaction", chr(ord("a") + idx)
)
self.assertEquals(200, channel.code, channel.json_body)
expected_event_ids.append(channel.json_body["event_id"])
prev_token = ""
found_event_ids: List[str] = []
for _ in range(20):
from_token = ""
if prev_token:
from_token = "&from=" + prev_token
channel = self.make_request(
"GET",
f"/_matrix/client/unstable/rooms/{self.room}/relations/{self.parent_id}?limit=1{from_token}",
access_token=self.user_token,
)
self.assertEquals(200, channel.code, channel.json_body)
found_event_ids.extend(e["event_id"] for e in channel.json_body["chunk"])
next_batch = channel.json_body.get("next_batch")
self.assertNotEquals(prev_token, next_batch)
prev_token = next_batch
if not prev_token:
break
# We paginated backwards, so reverse
found_event_ids.reverse()
self.assertEquals(found_event_ids, expected_event_ids)
# Reset and try again, but convert the tokens to the legacy format.
prev_token = ""
found_event_ids = []
for _ in range(20):
from_token = ""
if prev_token:
from_token = "&from=" + self._stream_token_to_relation_token(prev_token)
channel = self.make_request(
"GET",
f"/_matrix/client/unstable/rooms/{self.room}/relations/{self.parent_id}?limit=1{from_token}",
access_token=self.user_token,
)
self.assertEquals(200, channel.code, channel.json_body)
found_event_ids.extend(e["event_id"] for e in channel.json_body["chunk"])
next_batch = channel.json_body.get("next_batch")
self.assertNotEquals(prev_token, next_batch)
prev_token = next_batch
if not prev_token:
break
# We paginated backwards, so reverse
found_event_ids.reverse()
self.assertEquals(found_event_ids, expected_event_ids)
| df36945ff0e4a293a9dac0da07e2c94256835b32 | 16 | test_relations.py | 544 | Support pagination tokens from /sync and /messages in the relations API. (#11952) | 71,143 | 0 | 689 | 305 | 66 | 246,308 | 148 | synapse | 33 | tests/rest/client/test_relations.py | Python | 48 | {
"docstring": "Test that if we paginate using a limit and tokens then we get the\n expected events.\n ",
"language": "en",
"n_whitespaces": 30,
"n_words": 16,
"vocab_size": 15
} | https://github.com/matrix-org/synapse.git |
|
3 | _delete_composed_index | def _delete_composed_index(self, model, fields, *args):
first_field = model._meta.get_field(fields[0])
if first_field.get_internal_type() == "ForeignKey":
constraint_names = self._constraint_names(
model, [first_field.column], index=True
)
if not constraint_names:
self.execute(
self._create_index_sql(model, fields=[first_field], suffix="")
)
return super()._delete_composed_index(model, fields, *args)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 15 | schema.py | 145 | Refs #33476 -- Reformatted code with Black. | 50,995 | 0 | 156 | 92 | 26 | 205,011 | 31 | django | 17 | django/db/backends/mysql/schema.py | Python | 11 | {
"docstring": "\n MySQL can remove an implicit FK index on a field when that field is\n covered by another index like a unique_together. \"covered\" here means\n that the more complex index starts like the simpler one.\n https://bugs.mysql.com/bug.php?id=37910 / Django ticket #24757\n We check here before removing the [unique|index]_together if we have to\n recreate a FK index.\n ",
"language": "en",
"n_whitespaces": 104,
"n_words": 54,
"vocab_size": 43
} | https://github.com/django/django.git |
|
4 | climate_adc_t3000_missing_fan_mode_states_fixture | def climate_adc_t3000_missing_fan_mode_states_fixture(client, climate_adc_t3000_state):
data = copy.deepcopy(climate_adc_t3000_state)
data["name"] = f"{data['name']} missing fan mode states"
for value in data["values"]:
if (
value["commandClassName"] == "Thermostat Fan Mode"
and value["property"] == "mode"
):
del value["metadata"]["states"]
node = Node(client, data)
client.driver.controller.nodes[node.node_id] = node
return node
@pytest.fixture(name="climate_danfoss_lc_13") | 21aa07e3e58268d6ca1425cd05abcfd847b9872c | @pytest.fixture(name="climate_danfoss_lc_13") | 12 | conftest.py | 165 | Add Z-Wave thermostat fan entity (#65865)
* Add Z-Wave thermostat fan entity
* Fix failing test, increase number of entities to 27
* Add tests to improve coverage
* Take back unrelated changes to climate.py
* Clean up guard clauses, use info.primary_value, and make entity disabled by default
* Fix tests
* Add more tests for code coverage
* Remove unused const
* Remove speed parameter from overridden method since it was removed from entity
* Address PR comments | 92,724 | 1 | 108 | 80 | 35 | 293,667 | 41 | core | 16 | tests/components/zwave_js/conftest.py | Python | 12 | {
"docstring": "Mock a climate ADC-T3000 node with missing 'states' metadata on Thermostat Fan Mode.",
"language": "en",
"n_whitespaces": 12,
"n_words": 13,
"vocab_size": 13
} | https://github.com/home-assistant/core.git |
1 | get_basefile | def get_basefile(self, tex, fontsize, dpi=None):
src = self._get_tex_source(tex, fontsize) + str(dpi)
return os.path.join(
self.texcache, hashlib.md5(src.encode('utf-8')).hexdigest())
| 4ea309aac5b6b638967d19107db297b5c7bde551 | 14 | texmanager.py | 89 | Pick TeX cache name based on entire TeX source.
This allows invalidating the cache when the source generation algorithm
changes. | 23,006 | 0 | 47 | 56 | 15 | 107,997 | 15 | matplotlib | 16 | lib/matplotlib/texmanager.py | Python | 4 | {
"docstring": "\n Return a filename based on a hash of the string, fontsize, and dpi.\n ",
"language": "en",
"n_whitespaces": 28,
"n_words": 13,
"vocab_size": 12
} | https://github.com/matplotlib/matplotlib.git |
|
2 | get_dict_for_field | def get_dict_for_field(self, field_name):
try:
field = self.model._meta.get_field(field_name)
except FieldDoesNotExist:
field = None
return {
"label": self.get_field_label(field_name, field),
"value": self.get_field_display_value(field_name, field),
}
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 12 | views.py | 87 | Reformat with black | 16,009 | 0 | 100 | 53 | 18 | 73,300 | 21 | wagtail | 10 | wagtail/contrib/modeladmin/views.py | Python | 9 | {
"docstring": "\n Return a dictionary containing `label` and `value` values to display\n for a field.\n ",
"language": "en",
"n_whitespaces": 35,
"n_words": 13,
"vocab_size": 12
} | https://github.com/wagtail/wagtail.git |
|
6 | _upsample_2d | def _upsample_2d(self, hidden_states, weight=None, kernel=None, factor=2, gain=1):
assert isinstance(factor, int) and factor >= 1
# Setup filter kernel.
if kernel is None:
kernel = [1] * factor
# setup kernel
kernel = torch.tensor(kernel, dtype=torch.float32)
if kernel.ndim == 1:
kernel = torch.outer(kernel, kernel)
kernel /= torch.sum(kernel)
kernel = kernel * (gain * (factor**2))
if self.use_conv:
convH = weight.shape[2]
convW = weight.shape[3]
inC = weight.shape[1]
pad_value = (kernel.shape[0] - factor) - (convW - 1)
stride = (factor, factor)
# Determine data dimensions.
output_shape = (
(hidden_states.shape[2] - 1) * factor + convH,
(hidden_states.shape[3] - 1) * factor + convW,
)
output_padding = (
output_shape[0] - (hidden_states.shape[2] - 1) * stride[0] - convH,
output_shape[1] - (hidden_states.shape[3] - 1) * stride[1] - convW,
)
assert output_padding[0] >= 0 and output_padding[1] >= 0
num_groups = hidden_states.shape[1] // inC
# Transpose weights.
weight = torch.reshape(weight, (num_groups, -1, inC, convH, convW))
weight = torch.flip(weight, dims=[3, 4]).permute(0, 2, 1, 3, 4)
weight = torch.reshape(weight, (num_groups * inC, -1, convH, convW))
inverse_conv = F.conv_transpose2d(
hidden_states, weight, stride=stride, output_padding=output_padding, padding=0
)
output = upfirdn2d_native(
inverse_conv,
torch.tensor(kernel, device=inverse_conv.device),
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2 + 1),
)
else:
pad_value = kernel.shape[0] - factor
output = upfirdn2d_native(
hidden_states,
torch.tensor(kernel, device=hidden_states.device),
up=factor,
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2),
)
return output
| a73f8b725105b12a60a9b22918bda68f8b6d26c3 | 18 | resnet.py | 660 | Clean up resnet.py file (#780)
* clean up resnet.py
* make style and quality
* minor formatting | 120,955 | 0 | 759 | 430 | 109 | 337,070 | 220 | diffusers | 39 | src/diffusers/models/resnet.py | Python | 45 | {
"docstring": "Fused `upsample_2d()` followed by `Conv2d()`.\n\n Padding is performed only once at the beginning, not between the operations. The fused op is considerably more\n efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of\n arbitrary order.\n\n Args:\n hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.\n weight: Weight tensor of the shape `[filterH, filterW, inChannels,\n outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`.\n kernel: FIR filter of the shape `[firH, firW]` or `[firN]`\n (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.\n factor: Integer upsampling factor (default: 2).\n gain: Scaling factor for signal magnitude (default: 1.0).\n\n Returns:\n output: Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same\n datatype as `hidden_states`.\n ",
"language": "en",
"n_whitespaces": 289,
"n_words": 140,
"vocab_size": 103
} | https://github.com/huggingface/diffusers.git |
|
6 | _update_lines | def _update_lines(self, lines, new_line):
code_matches = [x for x in re.finditer(_invisible_codes, new_line)]
color_codes = [
code.string[code.span()[0] : code.span()[1]] for code in code_matches
]
# Add color codes from earlier in the unwrapped line, and then track any new ones we add.
new_line = "".join(self._active_codes) + new_line
for code in color_codes:
if code != _ansi_color_reset_code:
self._active_codes.append(code)
else: # A single reset code resets everything
self._active_codes = []
# Always ensure each line is color terminted if any colors are
# still active, otherwise colors will bleed into other cells on the console
if len(self._active_codes) > 0:
new_line = new_line + _ansi_color_reset_code
lines.append(new_line)
| adf24bfa9723b0621183bb27f0c889b813c06e8a | 12 | tabulate.py | 186 | [State Observability] Use a table format by default (#26159)
NOTE: tabulate is copied/pasted to the codebase for table formatting.
This PR changes the default layout to be the table format for both summary and list APIs. | 27,807 | 0 | 253 | 115 | 75 | 125,203 | 101 | ray | 18 | python/ray/_private/thirdparty/tabulate/tabulate.py | Python | 14 | {
"docstring": "Adds a new line to the list of lines the text is being wrapped into\n This function will also track any ANSI color codes in this string as well\n as add any colors from previous lines order to preserve the same formatting\n as a single unwrapped string.\n ",
"language": "en",
"n_whitespaces": 75,
"n_words": 47,
"vocab_size": 39
} | https://github.com/ray-project/ray.git |
|
1 | score | def score(self, X, y, **fit_params):
check_is_fitted(self)
return self.estimator_.score(self.transform(X), y, **fit_params)
| 6e5ef2e9b8c64e6788428610ae884b9bf3d298a2 | 9 | _rfe.py | 56 | MAINT solve long line reported by flake8 (#24065) | 76,391 | 0 | 31 | 36 | 9 | 260,641 | 10 | scikit-learn | 8 | sklearn/feature_selection/_rfe.py | Python | 3 | {
"docstring": "Reduce X to the selected features and return the score of the estimator.\n\n Parameters\n ----------\n X : array of shape [n_samples, n_features]\n The input samples.\n\n y : array of shape [n_samples]\n The target values.\n\n **fit_params : dict\n Parameters to pass to the `score` method of the underlying\n estimator.\n\n .. versionadded:: 1.0\n\n Returns\n -------\n score : float\n Score of the underlying base estimator computed with the selected\n features returned by `rfe.transform(X)` and `y`.\n ",
"language": "en",
"n_whitespaces": 212,
"n_words": 72,
"vocab_size": 46
} | https://github.com/scikit-learn/scikit-learn.git |
|
1 | allowlist_svg | def allowlist_svg(dirty_xml):
from lxml.html import clean
allow_tags = [
'xml',
'svg',
'circle',
'ellipse',
'line',
'path',
'polygon',
'polyline',
'rect'
]
cleaner = clean.Cleaner(
allow_tags=allow_tags,
style=True,
links=True,
add_nofollow=False,
page_structure=True,
safe_attrs_only=False,
remove_unknown_tags=False)
clean_xml = cleaner.clean_html(dirty_xml)
return clean_xml
| 53f6308186aa131946e196b0409f3d732ec9e007 | 9 | uploader.py | 126 | fix: DEV-2236: Stored XSS via SVG file (#2273)
* user uploaded content rendered as plain text or known image only
* allow list for svg in progress
* allow list for svg basic pass
* add error handling
* add to file processing re: code review
* rm uneeded code
* add env var to disable svg cleaning
* add test
* update env setting
* rm lxml string methods
* Update uploader.py
* Update base.py
Co-authored-by: Max Tkachenko <[email protected]> | 42,555 | 0 | 231 | 77 | 31 | 177,986 | 34 | label-studio | 16 | label_studio/data_import/uploader.py | Python | 23 | {
"docstring": "Filter out malicious/harmful content from SVG files\n by defining allowed tags\n ",
"language": "en",
"n_whitespaces": 17,
"n_words": 11,
"vocab_size": 11
} | https://github.com/heartexlabs/label-studio.git |
|
1 | test_save_periodic_pipeline | def test_save_periodic_pipeline():
tpot_obj = TPOTClassifier(
random_state=42,
population_size=1,
offspring_size=2,
generations=1,
verbosity=0,
config_dict='TPOT light'
)
tpot_obj.fit(training_features, training_target)
with closing(StringIO()) as our_file:
tpot_obj.log_file_ = our_file
tpot_obj.verbosity = 3
tpot_obj._last_pipeline_write = datetime.now()
sleep(0.11)
tpot_obj._output_best_pipeline_period_seconds = 0.1
tmpdir = mkdtemp() + '/'
tpot_obj.periodic_checkpoint_folder = tmpdir
# reset _pareto_front to rasie exception
tpot_obj._pareto_front = None
tpot_obj._save_periodic_pipeline(1)
our_file.seek(0)
assert_in('Failed saving periodic pipeline, exception', our_file.read())
#clean up
rmtree(tmpdir)
| 388616b6247ca4ea8de4e2f340d6206aee523541 | 12 | tpot_tests.py | 207 | Revert "Deployed 7ccda9a with MkDocs version: 1.3.0"
This reverts commit bd9629c40e01241766197119b581a99409b07068. | 43,518 | 0 | 215 | 126 | 52 | 181,731 | 60 | tpot | 30 | tests/tpot_tests.py | Python | 23 | {
"docstring": "Assert that the _save_periodic_pipeline does not export periodic pipeline if exception happened",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 12
} | https://github.com/EpistasisLab/tpot.git |
|
2 | tzname | def tzname(self):
if self._tzinfo is None:
return None
name = self._tzinfo.tzname(None)
_check_tzname(name)
return name
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 9 | datetime.py | 53 | add python 3.10.4 for windows | 56,547 | 0 | 60 | 31 | 12 | 222,361 | 14 | XX-Net | 5 | python3.10.4/Lib/datetime.py | Python | 6 | {
"docstring": "Return the timezone name.\n\n Note that the name is 100% informational -- there's no requirement that\n it mean anything in particular. For example, \"GMT\", \"UTC\", \"-500\",\n \"-5:00\", \"EDT\", \"US/Eastern\", \"America/New York\" are all valid replies.\n ",
"language": "en",
"n_whitespaces": 63,
"n_words": 35,
"vocab_size": 33
} | https://github.com/XX-net/XX-Net.git |
|
1 | gcn_loss | def gcn_loss(self, gcn_data):
gcn_pred, gt_labels = gcn_data
gt_labels = gt_labels.reshape([-1])
loss = F.cross_entropy(gcn_pred, gt_labels)
return loss
| 1f9400dd7374ce9cc47981372e324ff412e53ba3 | 10 | det_drrg_loss.py | 59 | add drrg | 4,861 | 0 | 51 | 36 | 12 | 25,192 | 16 | PaddleOCR | 9 | ppocr/losses/det_drrg_loss.py | Python | 5 | {
"docstring": "CrossEntropy Loss from gcn module.\n\n Args:\n gcn_data (tuple(Tensor, Tensor)): The first is the\n prediction with shape :math:`(N, 2)` and the\n second is the gt label with shape :math:`(m, n)`\n where :math:`m * n = N`.\n\n Returns:\n Tensor: CrossEntropy loss.\n ",
"language": "en",
"n_whitespaces": 127,
"n_words": 39,
"vocab_size": 33
} | https://github.com/PaddlePaddle/PaddleOCR.git |
|
1 | add_never_cache_headers | def add_never_cache_headers(response):
patch_response_headers(response, cache_timeout=-1)
patch_cache_control(
response, no_cache=True, no_store=True, must_revalidate=True, private=True
)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 9 | cache.py | 54 | Refs #33476 -- Reformatted code with Black. | 51,571 | 0 | 30 | 35 | 11 | 206,572 | 11 | django | 9 | django/utils/cache.py | Python | 5 | {
"docstring": "\n Add headers to a response to indicate that a page should never be cached.\n ",
"language": "en",
"n_whitespaces": 21,
"n_words": 14,
"vocab_size": 12
} | https://github.com/django/django.git |
|
1 | test_n_step_very_short_trajectory | def test_n_step_very_short_trajectory(self):
gamma = 1.0
obs = np.arange(0, 2)
actions = np.random.randint(-100, 300, size=(2,))
check_actions = actions.copy()
rewards = [10.0, 100.0]
next_obs = np.arange(1, 3)
batch = SampleBatch(
{
SampleBatch.OBS: obs,
SampleBatch.ACTIONS: actions,
SampleBatch.REWARDS: rewards,
SampleBatch.TERMINATEDS: [False, False],
SampleBatch.TRUNCATEDS: [False, False],
SampleBatch.NEXT_OBS: next_obs,
}
)
adjust_nstep(3, gamma, batch)
check(batch[SampleBatch.OBS], [0, 1])
check(batch[SampleBatch.ACTIONS], check_actions)
check(batch[SampleBatch.TERMINATEDS], [False, False])
check(batch[SampleBatch.TRUNCATEDS], [False, False])
check(batch[SampleBatch.REWARDS], [10.0 + gamma * 100.0, 100.0])
check(batch[SampleBatch.NEXT_OBS], [2, 2])
| 8e680c483ce326cefc62e44f68ab1a6948b1c3d2 | 11 | test_postprocessing.py | 307 | [RLlib] gymnasium support (new `Env.reset()/step()/seed()/render()` APIs). (#28369) | 31,248 | 0 | 293 | 224 | 57 | 137,797 | 69 | ray | 24 | rllib/evaluation/tests/test_postprocessing.py | Python | 24 | {
"docstring": "Tests, whether n-step also works for very small trajectories.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/ray-project/ray.git |
|
6 | _create_index_name | def _create_index_name(self, table_name, column_names, suffix=""):
_, table_name = split_identifier(table_name)
hash_suffix_part = "%s%s" % (
names_digest(table_name, *column_names, length=8),
suffix,
)
max_length = self.connection.ops.max_name_length() or 200
# If everything fits into max_length, use that name.
index_name = "%s_%s_%s" % (table_name, "_".join(column_names), hash_suffix_part)
if len(index_name) <= max_length:
return index_name
# Shorten a long suffix.
if len(hash_suffix_part) > max_length / 3:
hash_suffix_part = hash_suffix_part[: max_length // 3]
other_length = (max_length - len(hash_suffix_part)) // 2 - 1
index_name = "%s_%s_%s" % (
table_name[:other_length],
"_".join(column_names)[:other_length],
hash_suffix_part,
)
# Prepend D if needed to prevent the name from starting with an
# underscore or a number (not permitted on Oracle).
if index_name[0] == "_" or index_name[0].isdigit():
index_name = "D%s" % index_name[:-1]
return index_name
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 12 | schema.py | 276 | Refs #33476 -- Reformatted code with Black. | 50,980 | 0 | 323 | 163 | 84 | 204,926 | 116 | django | 19 | django/db/backends/base/schema.py | Python | 21 | {
"docstring": "\n Generate a unique name for an index/unique constraint.\n\n The name is divided into 3 parts: the table name, the column names,\n and a unique digest and suffix.\n ",
"language": "en",
"n_whitespaces": 56,
"n_words": 27,
"vocab_size": 22
} | https://github.com/django/django.git |
|
3 | approve | def approve(self, user=None, update=True, comment=""):
if self.status != self.STATUS_IN_PROGRESS:
raise PermissionDenied
self.status = self.STATUS_APPROVED
self.finished_at = timezone.now()
self.finished_by = user
self.comment = comment
self.save()
self.log_state_change_action(user, "approve")
if update:
self.workflow_state.update(user=user)
task_approved.send(
sender=self.specific.__class__, instance=self.specific, user=user
)
return self
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 10 | __init__.py | 168 | Reformat with black | 16,117 | 0 | 153 | 105 | 31 | 73,800 | 36 | wagtail | 22 | wagtail/core/models/__init__.py | Python | 15 | {
"docstring": "Approve the task state and update the workflow state",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 7
} | https://github.com/wagtail/wagtail.git |
|
1 | minimize | def minimize(self, loss, var_list, grad_loss=None, name=None, tape=None):
grads_and_vars = self._compute_gradients(
loss, var_list=var_list, grad_loss=grad_loss, tape=tape
)
return self.apply_gradients(grads_and_vars, name=name)
| 84afc5193d38057e2e2badf9c889ea87d80d8fbf | 9 | optimizer_v2.py | 76 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 81,417 | 0 | 57 | 53 | 17 | 275,527 | 18 | keras | 10 | keras/optimizers/optimizer_v2/optimizer_v2.py | Python | 5 | {
"docstring": "Minimize `loss` by updating `var_list`.\n\n This method simply computes gradient using `tf.GradientTape` and calls\n `apply_gradients()`. If you want to process the gradient before applying\n then call `tf.GradientTape` and `apply_gradients()` explicitly instead\n of using this function.\n\n Args:\n loss: `Tensor` or callable. If a callable, `loss` should take no arguments\n and return the value to minimize. If a `Tensor`, the `tape` argument\n must be passed.\n var_list: list or tuple of `Variable` objects to update to minimize\n `loss`, or a callable returning the list or tuple of `Variable` objects.\n Use callable when the variable list would otherwise be incomplete before\n `minimize` since the variables are created at the first time `loss` is\n called.\n grad_loss: (Optional). A `Tensor` holding the gradient computed for\n `loss`.\n name: (Optional) str. Name for the returned operation.\n tape: (Optional) `tf.GradientTape`. If `loss` is provided as a `Tensor`,\n the tape that computed the `loss` must be provided.\n\n Returns:\n An `Operation` that updates the variables in `var_list`. The `iterations`\n will be automatically increased by 1.\n\n Raises:\n ValueError: If some of the variables are not `Variable` objects.\n\n ",
"language": "en",
"n_whitespaces": 391,
"n_words": 175,
"vocab_size": 113
} | https://github.com/keras-team/keras.git |
|
1 | test_render_config | def test_render_config(tmpdir):
user_config_path = os.path.join(tmpdir, "config.yaml")
input_features = [
number_feature(),
number_feature(),
category_feature(encoder={"vocab_size": 3}),
category_feature(encoder={"vocab_size": 3}),
]
output_features = [category_feature(decoder={"vocab_size": 3})]
user_config = {
INPUT_FEATURES: input_features,
OUTPUT_FEATURES: output_features,
}
with open(user_config_path, "w") as f:
yaml.dump(user_config, f)
output_config_path = os.path.join(tmpdir, "rendered.yaml")
_run_ludwig("render_config", config=user_config_path, output=output_config_path)
rendered_config = load_yaml(output_config_path)
assert len(rendered_config[INPUT_FEATURES]) == len(user_config[INPUT_FEATURES])
assert len(rendered_config[OUTPUT_FEATURES]) == len(user_config[OUTPUT_FEATURES])
assert TRAINER in rendered_config
assert COMBINER in rendered_config
assert PREPROCESSING in rendered_config
| 5a25d1f2a914c849cf978573c5993411151bc447 | 13 | test_cli.py | 276 | Added tests for init_config and render_config CLI commands (#2551) | 1,363 | 0 | 162 | 170 | 46 | 8,165 | 65 | ludwig | 29 | tests/integration_tests/test_cli.py | Python | 23 | {
"docstring": "Test rendering a full config from a partial user config.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 9
} | https://github.com/ludwig-ai/ludwig.git |
|
8 | update_info | def update_info(self, info) -> None:
for key in self._info_fields:
value = getattr(self, key, None)
idx = info.setdefault(self.name, {})
existing_value = idx.get(key)
if key in idx and value is not None and existing_value != value:
# frequency/name just warn
if key in ["freq", "index_name"]:
ws = attribute_conflict_doc % (key, existing_value, value)
warnings.warn(
ws, AttributeConflictWarning, stacklevel=find_stack_level()
)
# reset
idx[key] = None
setattr(self, key, None)
else:
raise ValueError(
f"invalid info for [{self.name}] for [{key}], "
f"existing_value [{existing_value}] conflicts with "
f"new value [{value}]"
)
else:
if value is not None or existing_value is not None:
idx[key] = value
| 7d2f9b8d59908fbf57c6453bc41891efbfe981a6 | 18 | pytables.py | 240 | TYP: some return annotations in pytables.py (#47512) | 39,980 | 0 | 488 | 141 | 61 | 167,373 | 96 | pandas | 21 | pandas/io/pytables.py | Python | 26 | {
"docstring": "\n set/update the info for this indexable with the key/value\n if there is a conflict raise/warn as needed\n ",
"language": "en",
"n_whitespaces": 39,
"n_words": 17,
"vocab_size": 16
} | https://github.com/pandas-dev/pandas.git |
|
8 | split_dataset | def split_dataset(items, eval_split_max_size=None, eval_split_size=0.01):
speakers = [item["speaker_name"] for item in items]
is_multi_speaker = len(set(speakers)) > 1
if eval_split_size > 1:
eval_split_size = int(eval_split_size)
else:
if eval_split_max_size:
eval_split_size = min(eval_split_max_size, int(len(items) * eval_split_size))
else:
eval_split_size = int(len(items) * eval_split_size)
assert (
eval_split_size > 0
), " [!] You do not have enough samples for the evaluation set. You can work around this setting the 'eval_split_size' parameter to a minimum of {}".format(
1 / len(items)
)
np.random.seed(0)
np.random.shuffle(items)
if is_multi_speaker:
items_eval = []
speakers = [item["speaker_name"] for item in items]
speaker_counter = Counter(speakers)
while len(items_eval) < eval_split_size:
item_idx = np.random.randint(0, len(items))
speaker_to_be_removed = items[item_idx]["speaker_name"]
if speaker_counter[speaker_to_be_removed] > 1:
items_eval.append(items[item_idx])
speaker_counter[speaker_to_be_removed] -= 1
del items[item_idx]
return items_eval, items
return items[:eval_split_size], items[eval_split_size:]
| 1425a023fe4bc6bda8578295aeeeb02af78cc082 | 18 | __init__.py | 347 | Make style and lint | 77,180 | 0 | 324 | 219 | 82 | 262,317 | 118 | TTS | 23 | TTS/tts/datasets/__init__.py | Python | 30 | {
"docstring": "Split a dataset into train and eval. Consider speaker distribution in multi-speaker training.\n\n Args:\n <<<<<<< HEAD\n items (List[List]):\n A list of samples. Each sample is a list of `[audio_path, text, speaker_id]`.\n\n eval_split_max_size (int):\n Number maximum of samples to be used for evaluation in proportion split. Defaults to None (Disabled).\n\n eval_split_size (float):\n If between 0.0 and 1.0 represents the proportion of the dataset to include in the evaluation set.\n If > 1, represents the absolute number of evaluation samples. Defaults to 0.01 (1%).\n =======\n items (List[List]): A list of samples. Each sample is a list of `[text, audio_path, speaker_id]`.\n >>>>>>> Fix docstring\n ",
"language": "en",
"n_whitespaces": 224,
"n_words": 101,
"vocab_size": 65
} | https://github.com/coqui-ai/TTS.git |
|
7 | center | def center(G, e=None, usebounds=False, weight=None):
if usebounds is True and e is None and not G.is_directed():
return _extrema_bounding(G, compute="center", weight=weight)
if e is None:
e = eccentricity(G, weight=weight)
radius = min(e.values())
p = [v for v in e if e[v] == radius]
return p
| 28f78cfa9a386620ee1179582fda1db5ffc59f84 | 11 | distance_measures.py | 140 | Add weight distance metrics (#5305)
Adds the weight keyword argument to allow users to compute weighted distance metrics
e.g. diameter, eccentricity, periphery, etc. The kwarg works in the same fashion as the
weight param for shortest paths - i.e. if a string, look up with edge attr by key, if callable,
compute the weight via the function. Default is None, meaning return unweighted result
which is the current behavior.
Co-authored-by: Dan Schult <[email protected]>
Co-authored-by: Ross Barnowski <[email protected]> | 42,268 | 0 | 76 | 90 | 31 | 177,081 | 44 | networkx | 14 | networkx/algorithms/distance_measures.py | Python | 8 | {
"docstring": "Returns the center of the graph G.\n\n The center is the set of nodes with eccentricity equal to radius.\n\n Parameters\n ----------\n G : NetworkX graph\n A graph\n\n e : eccentricity dictionary, optional\n A precomputed dictionary of eccentricities.\n\n weight : string, function, or None\n If this is a string, then edge weights will be accessed via the\n edge attribute with this key (that is, the weight of the edge\n joining `u` to `v` will be ``G.edges[u, v][weight]``). If no\n such edge attribute exists, the weight of the edge is assumed to\n be one.\n\n If this is a function, the weight of an edge is the value\n returned by the function. The function must accept exactly three\n positional arguments: the two endpoints of an edge and the\n dictionary of edge attributes for that edge. The function must\n return a number.\n\n If this is None, every edge has weight/distance/cost 1.\n\n Weights stored as floating point values can lead to small round-off\n errors in distances. Use integer weights to avoid this.\n\n Weights should be positive, since they are distances.\n\n Returns\n -------\n c : list\n List of nodes in center\n\n Examples\n --------\n >>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])\n >>> list(nx.center(G))\n [1, 3, 4]\n\n See Also\n --------\n barycenter\n periphery\n ",
"language": "en",
"n_whitespaces": 384,
"n_words": 212,
"vocab_size": 129
} | https://github.com/networkx/networkx.git |
|
37 | infer_concrete_type_builder | def infer_concrete_type_builder(nn_module, share_types=True):
concrete_type_builder = torch._C.ConcreteModuleTypeBuilder(type(nn_module))
if isinstance(nn_module, (torch.nn.ModuleDict)):
concrete_type_builder.set_module_dict()
if isinstance(nn_module, (torch.nn.ModuleList, torch.nn.Sequential)):
concrete_type_builder.set_module_list()
class_annotations = getattr(nn_module, '__annotations__', {})
if isinstance(nn_module, (torch.ao.quantization.QuantWrapper)):
class_annotations = {}
# Get user-annotated ignored attributes.
user_annotated_ignored_attributes = getattr(nn_module, "__jit_ignored_attributes__", list())
concrete_type_builder.add_ignored_attributes(user_annotated_ignored_attributes)
ignored_properties = jit_ignored_properties(nn_module)
# try to infer the type from type annotation or from the object itself | 8e6d1738a41cb28c36db3dc5e10fd812417673de | 11 | _recursive.py | 198 | Per-overload torch.ops API (#67254)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67254
Fixes https://github.com/pytorch/pytorch/issues/65997
TODO: disallow `default` as an overload name for aten operators.
BC breaking:
`output = torch.ops._test.leaky_relu(self=torch.tensor(-1.0))` now fails with the error `TypeError: __call__() got multiple values for argument 'self'` since we call into `OpOverloadBundle`'s `__call__` method that has `self` bound to it as its first argument.
cc ezyang gchanan
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D33262228
Pulled By: anjali411
fbshipit-source-id: 600dbf511514ea9b41aea3e6b1bc1102dab08909 | 21,503 | 0 | 108 | 846 | 40 | 102,252 | 54 | pytorch | 25 | torch/jit/_recursive.py | Python | 120 | {
"docstring": "\n Build a ConcreteModuleTypeBuilder from an nn.Module. This\n ConcreteModuleType doesn't have a JIT type associated with it yet, it\n must be filled in by the caller.\n ",
"language": "en",
"n_whitespaces": 38,
"n_words": 25,
"vocab_size": 23
} | https://github.com/pytorch/pytorch.git |
|
6 | to_undirected | def to_undirected(self, as_view=False):
graph_class = self.to_undirected_class()
if as_view is True:
return nx.graphviews.generic_graph_view(self, graph_class)
# deepcopy when not a view
G = graph_class()
G.graph.update(deepcopy(self.graph))
G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
G.add_edges_from(
(u, v, key, deepcopy(datadict))
for u, nbrs in self._adj.items()
for v, keydict in nbrs.items()
for key, datadict in keydict.items()
)
return G
| 8f4c99debc9440728c5e85f8bffa5d26b232eb6f | 11 | multigraph.py | 198 | Multigraph docs update (#5389)
* Updated MultiDiGraph documentation to include more examples of actually
using parallel edges, and fixed references to things like G[u, v] where
G[u, v, k] is required for a MultiDigraph. Have not made parallel
changes in MultiGraph which should maybe also be made?
Docs tests pass on my end; no code outside of comments was changed.
-Peter Mawhorter
* Updated docs for MultiGraph to add more multigraph-specific examples and
fix a few places where untested examples were wrong.
-Peter Mawhorter
* [DOC] fix typo
* add the right amount of separators
Co-authored-by: Mridul Seth <[email protected]> | 41,880 | 0 | 178 | 127 | 42 | 176,415 | 53 | networkx | 25 | networkx/classes/multigraph.py | Python | 14 | {
"docstring": "Returns an undirected copy of the graph.\n\n Returns\n -------\n G : Graph/MultiGraph\n A deepcopy of the graph.\n\n See Also\n --------\n copy, add_edge, add_edges_from\n\n Notes\n -----\n This returns a \"deepcopy\" of the edge, node, and\n graph attributes which attempts to completely copy\n all of the data and references.\n\n This is in contrast to the similar `G = nx.MultiGraph(D)`\n which returns a shallow copy of the data.\n\n See the Python copy module for more information on shallow\n and deep copies, https://docs.python.org/3/library/copy.html.\n\n Warning: If you have subclassed MultiGraph to use dict-like\n objects in the data structure, those changes do not transfer\n to the MultiGraph created by this method.\n\n Examples\n --------\n >>> G = nx.MultiGraph([(0, 1), (0, 1), (1, 2)])\n >>> H = G.to_directed()\n >>> list(H.edges)\n [(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 2, 0), (2, 1, 0)]\n >>> G2 = H.to_undirected()\n >>> list(G2.edges)\n [(0, 1, 0), (0, 1, 1), (1, 2, 0)]\n ",
"language": "en",
"n_whitespaces": 362,
"n_words": 155,
"vocab_size": 94
} | https://github.com/networkx/networkx.git |
|
2 | rgb_to_hsv | def rgb_to_hsv(arr):
arr = np.asarray(arr)
# check length of the last dimension, should be _some_ sort of rgb
if arr.shape[-1] != 3:
raise ValueError("Last dimension of input array must be 3; "
"shape {} was found.".format(arr.shape))
in_shape = arr.shape
arr = np.array(
arr, copy=False,
dtype=np.promote_types(arr.dtype, np.float32), # Don't work on ints.
ndmin=2, # In case input was 1D.
)
out = np.zeros_like(arr)
arr_max = arr.max(-1)
ipos = arr_max > 0
delta = arr.ptp(-1)
s = np.zeros_like(delta)
s[ipos] = delta[ipos] / arr_max[ipos]
ipos = delta > 0
# red is max
idx = (arr[..., 0] == arr_max) & ipos
out[idx, 0] = (arr[idx, 1] - arr[idx, 2]) / delta[idx]
# green is max
idx = (arr[..., 1] == arr_max) & ipos
out[idx, 0] = 2. + (arr[idx, 2] - arr[idx, 0]) / delta[idx]
# blue is max
idx = (arr[..., 2] == arr_max) & ipos
out[idx, 0] = 4. + (arr[idx, 0] - arr[idx, 1]) / delta[idx]
out[..., 0] = (out[..., 0] / 6.0) % 1.0
out[..., 1] = s
out[..., 2] = arr_max
return out.reshape(in_shape)
| 9b6abd0b4933811e0a45c2535ab8fd107db65dd9 | 13 | colors.py | 452 | DOC: improve grammar and consistency | 24,007 | 0 | 310 | 308 | 95 | 110,265 | 175 | matplotlib | 24 | lib/matplotlib/colors.py | Python | 28 | {
"docstring": "\n Convert float RGB values (in the range [0, 1]), in a numpy array to HSV\n values.\n\n Parameters\n ----------\n arr : (..., 3) array-like\n All values must be in the range [0, 1]\n\n Returns\n -------\n (..., 3) ndarray\n Colors converted to HSV values in range [0, 1]\n ",
"language": "en",
"n_whitespaces": 86,
"n_words": 46,
"vocab_size": 32
} | https://github.com/matplotlib/matplotlib.git |
|
4 | __len__ | def __len__(self) -> int:
# do a DFS to count the number of leaf nodes
count = 0
stack = [self._data]
while stack:
node = stack.pop()
if isinstance(node, NestedDict):
node = node._data
if isinstance(node, Mapping):
stack.extend(node.values())
else:
count += 1
return count
| c8dbbf374661d89e620b472a8c62aa3ce3c6ce98 | 13 | nested_dict.py | 111 | [RLlib] Introduction of Nested dict for RLModule construction (#29027)
Signed-off-by: Kourosh Hakhamaneshi <[email protected]> | 28,718 | 0 | 173 | 66 | 33 | 128,493 | 42 | ray | 13 | rllib/utils/nested_dict.py | Python | 15 | {
"docstring": "Returns the number of leaf nodes in the `NestedDict` that\n are not of type Mappings.\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 15,
"vocab_size": 13
} | https://github.com/ray-project/ray.git |
|
2 | generate_mask | def generate_mask(self, h, w, p, shift):
# supporting sqaure.
attn_mask = torch.zeros(h, w, p, p, p, p, dtype=torch.bool, device=self.relative_position_params.device)
if self.type == 'W':
return attn_mask
s = p - shift
attn_mask[-1, :, :s, :, s:, :] = True
attn_mask[-1, :, s:, :, :s, :] = True
attn_mask[:, -1, :, :s, :, s:] = True
attn_mask[:, -1, :, s:, :, :s] = True
attn_mask = rearrange(attn_mask, 'w1 w2 p1 p2 p3 p4 -> 1 1 (w1 w2) (p1 p2) (p3 p4)')
return attn_mask
| 8deae077004f0332ca607fc3a5d568b1a4705bec | 11 | scunet_model_arch.py | 217 | Add ScuNET DeNoiser/Upscaler
Q&D Implementation of ScuNET, thanks to our handy model loader. :P
https://github.com/cszn/SCUNet | 35,189 | 0 | 170 | 146 | 48 | 152,620 | 82 | stable-diffusion-webui | 16 | modules/scunet_model_arch.py | Python | 11 | {
"docstring": " generating the mask of SW-MSA\n Args:\n shift: shift parameters in CyclicShift.\n Returns:\n attn_mask: should be (1 1 w p p),\n ",
"language": "en",
"n_whitespaces": 64,
"n_words": 20,
"vocab_size": 20
} | https://github.com/AUTOMATIC1111/stable-diffusion-webui.git |
|
2 | setup_tpu | def setup_tpu(tpu_driver_version='tpu_driver-0.2'):
global TPU_DRIVER_MODE
if not TPU_DRIVER_MODE:
colab_tpu_addr = os.environ['COLAB_TPU_ADDR'].split(':')[0]
url = f'http://{colab_tpu_addr}:8475/requestversion/{tpu_driver_version}'
requests.post(url)
TPU_DRIVER_MODE = 1
# The following is required to use TPU Driver as JAX's backend.
config.FLAGS.jax_xla_backend = "tpu_driver"
config.FLAGS.jax_backend_target = "grpc://" + os.environ['COLAB_TPU_ADDR']
| 0cc4066bb7bf758a5ba8c5def9c2c32a1c98fb89 | 13 | colab_tpu.py | 125 | Pin default jax.tools.colab_tpu.setup_tpu driver version.
Prior to this change, we were defaulting to the TPU nightly driver
version. We should instead pin to the version associated with the
default jaxlib version that Colab uses. | 27,112 | 0 | 55 | 64 | 32 | 122,164 | 37 | jax | 14 | jax/tools/colab_tpu.py | Python | 9 | {
"docstring": "Sets up Colab to run on TPU.\n\n Note: make sure the Colab Runtime is set to Accelerator: TPU.\n\n Args\n ----\n tpu_driver_version : (str) specify the version identifier for the tpu driver.\n Defaults to \"tpu_driver-0.2\", which can be used with jaxlib 0.3.20. Set to\n \"tpu_driver_nightly\" to use the nightly tpu driver build.\n ",
"language": "en",
"n_whitespaces": 62,
"n_words": 51,
"vocab_size": 41
} | https://github.com/google/jax.git |
|
3 | check_connection | def check_connection(self, logger, config) -> Tuple[bool, any]:
try:
req = requests.get(RkiCovidStream.url_base + "germany")
if req.status_code == 200:
return True, None
return False, req.reason
except Exception:
return False, "There is a problem in source check connection."
| d6d52c5d99dd7ebbd966da79c1d890699a947f39 | 12 | source.py | 90 | :tada: New Source: RKI (Robert Koch-Institut) Covid Public API (#11732)
* Added source for RKI-covid-germany, updated spec.json, implemented source with check and discover method added germany.json.
* implemented incremental method for germany history cases with date as parameters, updated streams, added cursor field for incremental streams.
* main file added.
* added Incidence source with date as parameter. Incremental stream. spec, source, schemas updated, added class GermanHistoryIncidence added.
* Added a full-refresh stream for germany/age-group .Added incremental streams for deaths/:days, recovered/:days, frozen-incidence/:days, hospitalization/:days. Updated source.py methods. Updated sepc.json properties key. Updated configured_catalogue.json with required streams. Updated config.json
* writting test unit test cases for incremental streams: german history cases and german history incidence.
* Incremental streams for germanhistorydeaths, germanhistoryfrozenIncidence, germanhistoryhospitalization, germanhistoryrecovered. Fixing other test cases.
* Added test stream for age group and germany.
* changes in Readme and source.py.
* IncrementalMixin added to class GermanyHistoryCases. AFter review IncrementalMixin will be implemented to all incremental classes.
* Implemented Incremental mixin or GermanHistory Cases connector.
* corrected changes.
* adding integration test
* comment acceptence test.
* On path with master
* updated the changes for PR request.
* changed file source-rki-covid/integration_tests/configured_catalog.json
* corrected flake and blackformatting. Build gradel.
* Worked on the suggestions.
* source_rki_covid/schemas/germany_age_groups.json
* uodated abnormal_state.json
* updated the schemas for german age groups and history hospitalization.
* correct dockerfile and update airbyte_cdk version
* run format
* update python version
* correct dockerfile build
* add source in seed
* update uuid for rki-covid source
* change docker
* add bash
* auto-bump connector version
* run seed file
* correct doc
* auto-bump connector version
Co-authored-by: Marcos Marx Millnitz <[email protected]>
Co-authored-by: Octavia Squidington III <[email protected]> | 770 | 0 | 115 | 55 | 32 | 5,421 | 35 | airbyte | 15 | airbyte-integrations/connectors/source-rki-covid/source_rki_covid/source.py | Python | 15 | {
"docstring": "\n Testing connection availability for the connector.\n\n :param config: the user-input config object conforming to the connector's spec.json\n :param logger: logger object\n :return Tuple[bool, any]: (True, None) if the input config can be used to connect to the API successfully, (False, error) otherwise.\n ",
"language": "en",
"n_whitespaces": 80,
"n_words": 42,
"vocab_size": 33
} | https://github.com/airbytehq/airbyte.git |
|
2 | get_heading | def get_heading(self, queryset, field):
heading_override = self.export_headings.get(field)
if heading_override:
return force_str(heading_override)
return force_str(
label_for_field(
field, model=self.model, model_admin=self.model_admin
).title()
)
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 13 | views.py | 82 | Reformat with black | 16,007 | 0 | 102 | 52 | 18 | 73,294 | 19 | wagtail | 12 | wagtail/contrib/modeladmin/views.py | Python | 9 | {
"docstring": "Get headings for exported spreadsheet column for the relevant field",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 9
} | https://github.com/wagtail/wagtail.git |
|
2 | _nannumel_sparse | def _nannumel_sparse(x, **kwargs):
n = _nannumel(x, **kwargs)
# If all dimensions are contracted, this will just be a number, otherwise we
# want to densify it.
return n.todense() if hasattr(n, "todense") else n
| 8b95f983c232c1bd628e9cba0695d3ef229d290b | 9 | backends.py | 57 | Sparse array reductions (#9342) | 36,793 | 0 | 48 | 33 | 31 | 156,874 | 33 | dask | 7 | dask/array/backends.py | Python | 3 | {
"docstring": "\n A reduction to count the number of elements in a sparse array, excluding nans.\n This will in general result in a dense matrix with an unpredictable fill value.\n So make it official and convert it to dense.\n\n https://github.com/dask/dask/issues/7169\n ",
"language": "en",
"n_whitespaces": 54,
"n_words": 38,
"vocab_size": 33
} | https://github.com/dask/dask.git |
|
1 | _new_step | def _new_step(self):
self.should_save = False
self.should_evaluate = False
self.should_log = False
| 44a290e94d1becd1f09fddc3d873f9e19c9d6919 | 7 | trainer_callback.py | 37 | [Trainer] Add init version of paddlenlp trainer and apply finetune for ernie-1.0 pretraining. (#1761)
* add some datasets for finetune.
* support fine tune for all tastks.
* add trainer prototype.
* init verison for paddlenlp trainer.
* refine trainer.
* update for some details.
* support multi-cards training evaluation.
* support load from ckpt.
* support for export inference model.
* first version of trainer.
* seq cls support clue.
* trainer support for token classification and question answersing tasks.
* fix as reviews.
Co-authored-by: Zeyu Chen <[email protected]> | 118,389 | 0 | 39 | 21 | 7 | 323,153 | 11 | PaddleNLP | 5 | paddlenlp/trainer/trainer_callback.py | Python | 4 | {
"docstring": "Internal method that resets the variable for a new step.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/PaddlePaddle/PaddleNLP.git |
|
7 | shuffle_group | def shuffle_group(df, cols, stage, k, npartitions, ignore_index, nfinal):
if isinstance(cols, str):
cols = [cols]
if cols and cols[0] == "_partitions":
ind = df[cols[0]]
else:
ind = hash_object_dispatch(df[cols] if cols else df, index=False)
if nfinal and nfinal != npartitions:
ind = ind % int(nfinal)
c = ind.values
typ = np.min_scalar_type(npartitions * 2)
c = np.mod(c, npartitions).astype(typ, copy=False)
np.floor_divide(c, k**stage, out=c)
np.mod(c, k, out=c)
return group_split_dispatch(df, c, k, ignore_index=ignore_index)
@contextlib.contextmanager | 510bbc380531cbf56a409f1ae68e6fd84a9599e6 | @contextlib.contextmanager | 14 | shuffle.py | 240 | Update `pre-commit` version (#8691) | 36,457 | 1 | 136 | 157 | 47 | 155,752 | 68 | dask | 27 | dask/dataframe/shuffle.py | Python | 15 | {
"docstring": "Splits dataframe into groups\n\n The group is determined by their final partition, and which stage we are in\n in the shuffle\n\n Parameters\n ----------\n df: DataFrame\n cols: str or list\n Column name(s) on which to split the dataframe. If ``cols`` is not\n \"_partitions\", hashing will be used to determine target partition\n stage: int\n We shuffle dataframes with many partitions we in a few stages to avoid\n a quadratic number of tasks. This number corresponds to which stage\n we're in, starting from zero up to some small integer\n k: int\n Desired number of splits from this dataframe\n npartition: int\n Total number of output partitions for the full dataframe\n nfinal: int\n Total number of output partitions after repartitioning\n\n Returns\n -------\n out: Dict[int, DataFrame]\n A dictionary mapping integers in {0..k} to dataframes such that the\n hash values of ``df[col]`` are well partitioned.\n ",
"language": "en",
"n_whitespaces": 251,
"n_words": 138,
"vocab_size": 100
} | https://github.com/dask/dask.git |
8 | unifi_dict | def unifi_dict(self) -> dict[str, Any]:
return {
"nvr": self.nvr.unifi_dict(),
"cameras": [c.unifi_dict() for c in self.cameras.values()],
"lights": [c.unifi_dict() for c in self.lights.values()],
"sensors": [c.unifi_dict() for c in self.sensors.values()],
"viewers": [c.unifi_dict() for c in self.viewers.values()],
"liveviews": [c.unifi_dict() for c in self.liveviews.values()],
"doorlocks": [c.unifi_dict() for c in self.doorlocks.values()],
"chimes": [c.unifi_dict() for c in self.chimes.values()],
}
@dataclass | 654c59c19414c52f95f56603c460f63edeb60959 | @dataclass | 12 | conftest.py | 272 | Add diagnostics for UniFi Protect (#72280) | 99,995 | 1 | 161 | 166 | 29 | 301,147 | 53 | core | 16 | tests/components/unifiprotect/conftest.py | Python | 12 | {
"docstring": "Return UniFi formatted dict representation of the NVR.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | https://github.com/home-assistant/core.git |
4 | get_attendance_list | def get_attendance_list(from_date, to_date, student_group, students_list):
attendance_list = frappe.db.sql(
,
(student_group, from_date, to_date),
as_dict=1,
)
att_map = {}
students_with_leave_application = get_students_with_leave_application(
from_date, to_date, students_list
)
for d in attendance_list:
att_map.setdefault(d.student, frappe._dict()).setdefault(d.date, "")
if students_with_leave_application.get(
d.date
) and d.student in students_with_leave_application.get(d.date):
att_map[d.student][d.date] = "Present"
else:
att_map[d.student][d.date] = d.status
att_map = mark_holidays(att_map, from_date, to_date, students_list)
return att_map
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 14 | student_monthly_attendance_sheet.py | 215 | style: format code with black | 14,067 | 0 | 34 | 143 | 39 | 65,948 | 54 | erpnext | 21 | erpnext/education/report/student_monthly_attendance_sheet/student_monthly_attendance_sheet.py | Python | 24 | {
"docstring": "select student, date, status\n\t\tfrom `tabStudent Attendance` where student_group = %s\n\t\tand docstatus = 1\n\t\tand date between %s and %s\n\t\torder by student, date",
"language": "en",
"n_whitespaces": 20,
"n_words": 25,
"vocab_size": 18
} | https://github.com/frappe/erpnext.git |
|
5 | update_static | def update_static():
config = Config()
logger = get_log('http')
static_path = Path(config['paths']['static'])
last_gui_version_lv = get_last_compatible_gui_version()
current_gui_version_lv = get_current_gui_version()
if last_gui_version_lv is False:
return False
if current_gui_version_lv is not None:
if current_gui_version_lv >= last_gui_version_lv:
return True
logger.info(f'New version of GUI available ({last_gui_version_lv.vstring}). Downloading...')
temp_dir = tempfile.mkdtemp(prefix='mindsdb_gui_files_')
success = download_gui(temp_dir, last_gui_version_lv.vstring)
if success is False:
shutil.rmtree(temp_dir)
return False
temp_dir_for_rm = tempfile.mkdtemp(prefix='mindsdb_gui_files_')
shutil.rmtree(temp_dir_for_rm)
shutil.copytree(str(static_path), temp_dir_for_rm)
shutil.rmtree(str(static_path))
shutil.copytree(temp_dir, str(static_path))
shutil.rmtree(temp_dir_for_rm)
logger.info(f'GUI version updated to {last_gui_version_lv.vstring}')
return True
| 9ce5a21dd6359fd7e8ebf78051ce9e97bd195ec9 | 11 | initialize.py | 286 | ML handler supbrocess (#3377)
* log -> logger
dividing components:
app initialize
parse args
set env.MINDSDB_CONFIG_PATH
config
requiers env.MINDSDB_CONFIG_PATH
sets
env.MINDSDB_DB_CON
Config() - makes initialization
log
uses config
initialize_log - makes initialization
database
uses env.MINDSDB_DB_CON
have init() method
file storage
uses config
* partial sync for model storage interfaces
* ml handler in subprocess interface
* fix delete model
* fix: model with error in success status
* fix: remove hf predictor
* fix pg handler
* MLHandlerPersistWrapper keeps wrapper process opened
* predictor with error keeps 'success' status
#3362
* lock for sending tasks to subprocess one by one
* check target of predictor before run learn in subproccess
* fix check target
* fix: json_ai override and problem definition generation
* fix None case
* folder for ml handler tests
* fix: add timeseries_settings key to learn_args
* fixes in lw_handler
* fix: del join_learn_process
* tests for LW handler
* finish unit test for LW
* changes in tests:
- set-project -> to base class
- return of ml handler is dataframe
- draft for project structure test
* merge from staging
* create_validation method to check learn params before send to subprocess
fixes of HF
fixed version of transformers in HF requirements
Co-authored-by: Patricio Cerda Mardini <[email protected]> | 25,952 | 0 | 171 | 160 | 47 | 117,309 | 72 | mindsdb | 24 | mindsdb/api/http/initialize.py | Python | 25 | {
"docstring": " Update Scout files basing on compatible-config.json content.\n Files will be downloaded and updated if new version of GUI > current.\n Current GUI version stored in static/version.txt.\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 26,
"vocab_size": 24
} | https://github.com/mindsdb/mindsdb.git |
|
1 | test_stream_admin_remove_others_from_public_stream | def test_stream_admin_remove_others_from_public_stream(self) -> None:
result = self.attempt_unsubscribe_of_principal(
query_count=15,
target_users=[self.example_user("cordelia")],
is_realm_admin=False,
is_stream_admin=True,
is_subbed=True,
invite_only=False,
target_users_subbed=True,
)
json = self.assert_json_success(result)
self.assert_length(json["removed"], 1)
self.assert_length(json["not_removed"], 0)
| 803982e87254e3b1ebcb16ed795e224afceea3a3 | 13 | test_subs.py | 125 | message_flags: Short-circuit if no messages changed.
Omit sending an event, and updating the database, if there are no
matching messages. | 17,733 | 0 | 141 | 80 | 21 | 83,840 | 22 | zulip | 15 | zerver/tests/test_subs.py | Python | 16 | {
"docstring": "\n You can remove others from public streams you're a stream administrator of.\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 12,
"vocab_size": 12
} | https://github.com/zulip/zulip.git |
|
2 | test_conversation_part_has_conversation_id | def test_conversation_part_has_conversation_id(requests_mock):
response_body = {
"type": "conversation",
"id": "151272900024304",
"created_at": 1647365706,
"updated_at": 1647366443,
"conversation_parts": {
"type": "conversation_part.list",
"conversation_parts": [
{"type": "conversation_part", "id": "13740311965"},
{"type": "conversation_part", "id": "13740312024"},
],
"total_count": 2,
},
}
url = "https://api.intercom.io/conversations/151272900024304"
requests_mock.get(url, json=response_body)
stream1 = ConversationParts(authenticator=NoAuth())
record_count = 0
for record in stream1.read_records(sync_mode=SyncMode.incremental, stream_slice={"id": "151272900024304"}):
assert record["conversation_id"] == "151272900024304"
record_count += 1
assert record_count == 2
| 787daa9961b6b103e8d520c544277fc77c191dfb | 14 | unit_test.py | 233 | 🎉 Source Intercom: Added conversation_id field to conversation_part records (#11206) | 666 | 0 | 217 | 126 | 46 | 4,470 | 60 | airbyte | 17 | airbyte-integrations/connectors/source-intercom/unit_tests/unit_test.py | Python | 23 | {
"docstring": "\n Test shows that conversation_part records include the `conversation_id` field.\n ",
"language": "en",
"n_whitespaces": 16,
"n_words": 9,
"vocab_size": 9
} | https://github.com/airbytehq/airbyte.git |
|
9 | flatten | def flatten(data, levels=None, preserve_nulls=False, _ids=None):
if _ids is None:
_ids = set()
if id(data) in _ids:
raise RecursionError("Reference cycle detected. Check input list.")
_ids.add(id(data))
ret = []
for element in data:
if not preserve_nulls and element in (None, "None", "null"):
# ignore null items
continue
elif is_iter(element):
if levels is None:
ret.extend(flatten(element, preserve_nulls=preserve_nulls, _ids=_ids))
elif levels >= 1:
# decrement as we go down the stack
ret.extend(
flatten(
element,
levels=(int(levels) - 1),
preserve_nulls=preserve_nulls,
_ids=_ids,
)
)
else:
ret.append(element)
else:
ret.append(element)
return ret
| ec41b56baee98ade5e6e21083645da1ec21c4b86 | 22 | data.py | 249 | detect reference cycles in flatten function | 54,379 | 0 | 409 | 154 | 64 | 216,076 | 82 | salt | 15 | salt/utils/data.py | Python | 27 | {
"docstring": "\n .. versionadded:: 3005\n\n Flatten a list.\n\n :param data: A list to flatten\n\n :param levels: The number of levels in sub-lists to descend\n\n :param preserve_nulls: Preserve nulls in a list, by default flatten removes\n them\n\n :param _ids: Parameter used internally within the function to detect\n reference cycles.\n\n :returns: A flat(ter) list of values\n\n .. code-block:: jinja\n\n {{ [3, [4, 2] ] | flatten }}\n # => [3, 4, 2]\n\n Flatten only the first level of a list:\n\n .. code-block:: jinja\n\n {{ [3, [4, [2]] ] | flatten(levels=1) }}\n # => [3, 4, [2]]\n\n Preserve nulls in a list, by default flatten removes them.\n\n .. code-block:: jinja\n\n {{ [3, None, [4, [2]] ] | flatten(levels=1, preserve_nulls=True) }}\n # => [3, None, 4, [2]]\n ",
"language": "en",
"n_whitespaces": 245,
"n_words": 121,
"vocab_size": 63
} | https://github.com/saltstack/salt.git |
|
9 | training_iteration | def training_iteration(self) -> ResultDict:
# Some shortcuts.
batch_size = self.config["train_batch_size"]
# Collects SampleBatches in parallel and synchronously
# from the Trainer's RolloutWorkers until we hit the
# configured `train_batch_size`.
sample_batches = []
num_env_steps = 0
num_agent_steps = 0
while (not self._by_agent_steps and num_env_steps < batch_size) or \
(self._by_agent_steps and num_agent_steps < batch_size):
new_sample_batches = synchronous_parallel_sample(self.workers)
sample_batches.extend(new_sample_batches)
num_env_steps += sum(len(s) for s in new_sample_batches)
num_agent_steps += sum(
len(s) if isinstance(s, SampleBatch) else s.agent_steps()
for s in new_sample_batches)
self._counters[NUM_ENV_STEPS_SAMPLED] += num_env_steps
self._counters[NUM_AGENT_STEPS_SAMPLED] += num_agent_steps
# Combine all batches at once
train_batch = SampleBatch.concat_samples(sample_batches)
# Use simple optimizer (only for multi-agent or tf-eager; all other
# cases should use the multi-GPU optimizer, even if only using 1 GPU).
# TODO: (sven) rename MultiGPUOptimizer into something more
# meaningful.
if self.config.get("simple_optimizer") is True:
train_results = train_one_step(self, train_batch)
else:
train_results = multi_gpu_train_one_step(self, train_batch)
return train_results
| 853d10871c55cb741cb15212ef4ab42f158f968c | 13 | trainer.py | 261 | [RLlib] Issue 18499: PGTrainer with training_iteration fn does not support multi-GPU. (#21376) | 28,878 | 0 | 399 | 158 | 97 | 129,027 | 140 | ray | 28 | rllib/agents/trainer.py | Python | 35 | {
"docstring": "Default single iteration logic of an algorithm.\n\n - Collect on-policy samples (SampleBatches) in parallel using the\n Trainer's RolloutWorkers (@ray.remote).\n - Concatenate collected SampleBatches into one train batch.\n - Note that we may have more than one policy in the multi-agent case:\n Call the different policies' `learn_on_batch` (simple optimizer) OR\n `load_batch_into_buffer` + `learn_on_loaded_batch` (multi-GPU\n optimizer) methods to calculate loss and update the model(s).\n - Return all collected metrics for the iteration.\n\n Returns:\n The results dict from executing the training iteration.\n ",
"language": "en",
"n_whitespaces": 168,
"n_words": 79,
"vocab_size": 66
} | https://github.com/ray-project/ray.git |
|
5 | get_model | def get_model(self, app_label, model_name=None, require_ready=True):
if require_ready:
self.check_models_ready()
else:
self.check_apps_ready()
if model_name is None:
app_label, model_name = app_label.split(".")
app_config = self.get_app_config(app_label)
if not require_ready and app_config.models is None:
app_config.import_models()
return app_config.get_model(model_name, require_ready=require_ready)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 11 | registry.py | 132 | Refs #33476 -- Reformatted code with Black. | 50,292 | 0 | 125 | 80 | 25 | 203,306 | 32 | django | 12 | django/apps/registry.py | Python | 11 | {
"docstring": "\n Return the model matching the given app_label and model_name.\n\n As a shortcut, app_label may be in the form <app_label>.<model_name>.\n\n model_name is case-insensitive.\n\n Raise LookupError if no application exists with this label, or no\n model exists with this name in the application. Raise ValueError if\n called with a single argument that doesn't contain exactly one dot.\n ",
"language": "en",
"n_whitespaces": 105,
"n_words": 55,
"vocab_size": 41
} | https://github.com/django/django.git |
|
20 | handle_groupme | def handle_groupme(request) -> bool:
req = json.loads(request.decode("utf-8"))
text = req.get("text").strip().lower()
group_id = req.get("group_id").strip()
if text[0] == "!":
cmd = text[1:]
full_cmd = cmd.split("/")
group = full_cmd[0].split("-")[0]
parents = {x.split("-")[0] for x in commands}
if group in parents:
if full_cmd[0] in commands:
selected = commands[full_cmd[0]]
if len(full_cmd) != len(selected.get("required", [])) + 1:
syntax = get_syntax(selected, full_cmd[0])
send_message(f"Required syntax: {syntax}", group_id)
return False
other_args = {}
for i, val in enumerate(full_cmd[1:]):
req_name = list(selected.get("required", {}).keys())[i]
required = selected.get("required", [])[req_name]
if isinstance(required, List) and required != [True, False]:
required = [str(x) for x in required]
if isinstance(val, str) and req_name in ["ticker"]:
val = val.upper()
elif isinstance(val, str) and req_name == "raw":
val = bool(val)
if (isinstance(required, List) and val not in required) or (
isinstance(required, Pattern) and not required.match(val)
):
syntax = get_syntax(selected, full_cmd[0])
send_message(
f"{syntax}\nInvalid argument for: {req_name}", group_id
)
get_arguments(selected, req_name, group_id)
return False
other_args[req_name] = val
func = selected["function"]
ShowView().groupme(func, group_id, cmd, **other_args)
return True
else:
show_cmds = []
for command in commands:
if group == command[: len(group)]:
show_cmds.append(command)
send_options("Valid commands: ", show_cmds, group_id)
return False
else:
send_options("Valid categories: ", parents, group_id)
return False
return False
| b8b3b49896b7553c8ad57e0f3fbb4464ecf24179 | 22 | run_groupme.py | 703 | Groupme Bot (#1418)
* Added groupme helpers
* Began handling of user input
* Expanded commands, improved bot
* Completed dictionary
* Eliminated redundancies
* Added more
* Added debuggers for server
* Fixed bugs
* Improved input handling and image sending
* Fixed dd-est
* Fixed dd commands
* Added dps fix
* Fixed feargreed
* Fixed econ commands
* Fixed gov commands
* Fixed ta
* Added docstrings
* Added docstrings
* black
Co-authored-by: didierlopes.eth <[email protected]> | 84,275 | 0 | 941 | 428 | 108 | 282,723 | 187 | OpenBBTerminal | 46 | bots/groupme/run_groupme.py | Python | 62 | {
"docstring": "Handles groupme bot inputs\n\n Parameters\n ----------\n request : Request\n The request object provided by FASTAPI\n\n Returns\n ----------\n success : bool\n Whether the response was sent successfully\n ",
"language": "en",
"n_whitespaces": 61,
"n_words": 26,
"vocab_size": 23
} | https://github.com/OpenBB-finance/OpenBBTerminal.git |
|
3 | _fill | def _fill(strings, linelen=75):
currpos = 0
lasti = 0
result = []
for i, s in enumerate(strings):
length = len(s)
if currpos + length < linelen:
currpos += length + 1
else:
result.append(b' '.join(strings[lasti:i]))
lasti = i
currpos = length
result.append(b' '.join(strings[lasti:]))
return b'\n'.join(result)
# PDF strings are supposed to be able to include any eight-bit data,
# except that unbalanced parens and backslashes must be escaped by a
# backslash. However, sf bug #2708559 shows that the carriage return
# character may get read as a newline; these characters correspond to
# \gamma and \Omega in TeX's math font encoding. Escaping them fixes
# the bug.
_string_escape_regex = re.compile(br'([\\()\r\n])')
| ec410abbb3a721e31f3aaa61e9e4f941467e35e1 | 16 | backend_pdf.py | 181 | Deprecate functions in backends | 23,073 | 0 | 189 | 97 | 80 | 108,136 | 110 | matplotlib | 16 | lib/matplotlib/backends/backend_pdf.py | Python | 14 | {
"docstring": "\n Make one string from sequence of strings, with whitespace in between.\n\n The whitespace is chosen to form lines of at most *linelen* characters,\n if possible.\n ",
"language": "en",
"n_whitespaces": 38,
"n_words": 25,
"vocab_size": 23
} | https://github.com/matplotlib/matplotlib.git |
|
1 | plextv_resources_fixture | def plextv_resources_fixture():
return load_fixture("plex/plextv_resources_one_server.xml")
@pytest.fixture(name="plextv_resources_two_servers", scope="session") | 10195dc700770cdfdeaff79c53cf5d1d763f20c6 | @pytest.fixture(name="plextv_resources_two_servers", scope="session") | 8 | conftest.py | 46 | Improve server selection for Plex config flows (#63408) | 107,537 | 1 | 11 | 10 | 6 | 308,799 | 6 | core | 6 | tests/components/plex/conftest.py | Python | 2 | {
"docstring": "Load single-server payload for plex.tv resources and return it.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/home-assistant/core.git |
2 | test_timeout_does_not_wait_for_completion_for_sync_flows | def test_timeout_does_not_wait_for_completion_for_sync_flows(self, tmp_path):
if sys.version_info[1] == 11:
pytest.xfail("The engine returns _after_ sleep finishes in Python 3.11")
canary_file = tmp_path / "canary"
| a7bd9cadd5038383449b0e75a87bb23a73b278d8 | 10 | test_flows.py | 52 | Add support for Python 3.11 (#7304)
Co-authored-by: Chris Guidry <[email protected]> | 11,913 | 0 | 53 | 96 | 21 | 59,586 | 21 | prefect | 8 | tests/test_flows.py | Python | 14 | {
"docstring": "\n Sync flows are cancelled when they change instructions. The flow will return\n immediately when the timeout is reached, but the thread it executes in will\n continue until the next instruction is reached. `time.sleep` will return then\n the thread will be interrupted.\n ",
"language": "en",
"n_whitespaces": 77,
"n_words": 41,
"vocab_size": 31
} | https://github.com/PrefectHQ/prefect.git |
|
2 | inertia | def inertia(self):
if self.is_rigidbody:
return RigidBody.inertia.fget(self)
return (self.central_inertia, self.masscenter)
| f0ccc88c86f77f1c3e13d590d4506e49c8cb2a12 | 10 | body.py | 49 | Add property docstrings | 49,282 | 0 | 41 | 30 | 8 | 199,560 | 9 | sympy | 7 | sympy/physics/mechanics/body.py | Python | 4 | {
"docstring": "The body's inertia about a point; stored as (Dyadic, Point).",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/sympy/sympy.git |
|
1 | test_event_ref | def test_event_ref(self):
# Reset the event cache
self.store._get_event_cache.clear()
with LoggingContext("test") as ctx:
# We keep hold of the event event though we never use it.
event = self.get_success(self.store.get_event(self.event_id)) # noqa: F841
# We should have fetched the event from the DB
self.assertEqual(ctx.get_resource_usage().evt_db_fetch_count, 1)
# Reset the event cache
self.store._get_event_cache.clear()
with LoggingContext("test") as ctx:
self.get_success(self.store.get_event(self.event_id))
# Since the event is still in memory we shouldn't have fetched it
# from the DB
self.assertEqual(ctx.get_resource_usage().evt_db_fetch_count, 0)
| fcf951d5dc7ca8c4cb18aa9c1f5ccb005df3610a | 13 | test_events_worker.py | 181 | Track in memory events using weakrefs (#10533) | 72,209 | 0 | 211 | 100 | 40 | 248,311 | 73 | synapse | 14 | tests/storage/databases/main/test_events_worker.py | Python | 9 | {
"docstring": "Test that we reuse events that are still in memory but have fallen\n out of the cache, rather than requesting them from the DB.\n ",
"language": "en",
"n_whitespaces": 38,
"n_words": 24,
"vocab_size": 22
} | https://github.com/matrix-org/synapse.git |
|
8 | _load_specials | def _load_specials(self, *args, **kwargs):
super(KeyedVectors, self)._load_specials(*args, **kwargs)
if hasattr(self, 'doctags'):
self._upconvert_old_d2vkv()
# fixup rename/consolidation into index_to_key of older index2word, index2entity
if not hasattr(self, 'index_to_key'):
self.index_to_key = self.__dict__.pop('index2word', self.__dict__.pop('index2entity', None))
# fixup rename into vectors of older syn0
if not hasattr(self, 'vectors'):
self.vectors = self.__dict__.pop('syn0', None)
self.vector_size = self.vectors.shape[1]
# ensure at least a 'None' in 'norms' to force recalc
if not hasattr(self, 'norms'):
self.norms = None
# ensure at least an empty 'expandos'
if not hasattr(self, 'expandos'):
self.expandos = {}
# fixup rename of vocab into map
if 'key_to_index' not in self.__dict__:
self._upconvert_old_vocab()
# ensure older instances have next_index
if not hasattr(self, 'next_index'):
self.next_index = len(self)
| 766b9e19585968d011649b53057fba3663eff551 | 13 | keyedvectors.py | 286 | Ensure next_index available when loading old stored KeyedVectors models (#3117)
* fix #3114: ensure next_index available
* rm trailing whitespace | 1,665 | 0 | 299 | 166 | 66 | 9,736 | 106 | gensim | 19 | gensim/models/keyedvectors.py | Python | 17 | {
"docstring": "Handle special requirements of `.load()` protocol, usually up-converting older versions.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/RaRe-Technologies/gensim.git |
|
1 | simple_test | def simple_test(self, feats, img_metas, rescale=False):
outs = self.forward(feats)
results_list = self.get_results(
*outs, img_metas=img_metas, rescale=rescale)
return results_list
| 9c5b3331ac8edbfa328922fbab45c382380da540 | 9 | base_dense_head.py | 63 | Simplify api of one-stage detector | 70,350 | 0 | 55 | 41 | 14 | 244,361 | 16 | mmdetection | 9 | mmdet/models/dense_heads/base_dense_head.py | Python | 5 | {
"docstring": "Test function without test-time augmentation.\n\n Args:\n feats (tuple[torch.Tensor]): Multi-level features from the\n upstream network, each is a 4D-tensor.\n img_metas (list[dict]): List of image information.\n rescale (bool, optional): Whether to rescale the results.\n Defaults to False.\n\n Returns:\n list[obj:`InstanceData`]: Detection results of each image\n after the post process.\n Each item usually contains following keys.\n\n - scores (Tensor): Classification scores, has a shape\n (num_instance,)\n - labels (Tensor): Labels of bboxes, has a shape\n (num_instances,).\n - bboxes (Tensor): Has a shape (num_instances, 4),\n the last dimension 4 arrange as (x1, y1, x2, y2).\n ",
"language": "en",
"n_whitespaces": 278,
"n_words": 89,
"vocab_size": 70
} | https://github.com/open-mmlab/mmdetection.git |
|
3 | test_http_server_aborts | def test_http_server_aborts(tctx, stream):
server = Placeholder(Server)
flow = Placeholder(HTTPFlow)
playbook = Playbook(http.HttpLayer(tctx, HTTPMode.regular))
| 372a632161dee642d81542069507826e34466ba1 | 11 | test_http.py | 58 | reintroduce `Flow.live`
We previously relied on the state of `Flow.reply` to check if a flow can be killed,
but this doesn't work anymore with `Flow.reply` being removed. Instead, we now
reintroduce the `Flow.live` attribute, which signals if we are on a live connection.
Killing still is not ideal (see comment in `Flow.killable`), but this paves the way. | 73,522 | 0 | 25 | 277 | 11 | 250,618 | 13 | mitmproxy | 14 | test/mitmproxy/proxy/layers/http/test_http.py | Python | 58 | {
"docstring": "Test handling of the case where a server aborts during response transmission.",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 12
} | https://github.com/mitmproxy/mitmproxy.git |
Subsets and Splits