text
stringlengths 0
5.54k
|
|---|
This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods the
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
__call__
|
<
|
source
|
>
|
(
|
prompt: typing.Union[str, typing.List[str]]
|
height: typing.Optional[int] = None
|
width: typing.Optional[int] = None
|
num_inference_steps: typing.Optional[int] = 50
|
guidance_scale: typing.Optional[float] = 1.0
|
eta: typing.Optional[float] = 0.0
|
generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None
|
latents: typing.Optional[torch.FloatTensor] = None
|
output_type: typing.Optional[str] = 'pil'
|
return_dict: bool = True
|
**kwargs
|
)
|
β
|
ImagePipelineOutput or tuple
|
Parameters
|
prompt (str or List[str]) β
|
The prompt or prompts to guide the image generation.
|
height (int, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) β
|
The height in pixels of the generated image.
|
width (int, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) β
|
The width in pixels of the generated image.
|
num_inference_steps (int, optional, defaults to 50) β
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
expense of slower inference.
|
guidance_scale (float, optional, defaults to 1.0) β
|
Guidance scale as defined in Classifier-Free Diffusion Guidance.
|
guidance_scale is defined as w of equation 2. of Imagen
|
Paper. Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt at
|
the, usually at the expense of lower image quality.
|
generator (torch.Generator, optional) β
|
One or a list of torch generator(s)
|
to make generation deterministic.
|
latents (torch.FloatTensor, optional) β
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
tensor will ge generated by sampling using the supplied random generator.
|
output_type (str, optional, defaults to "pil") β
|
The output format of the generate image. Choose between
|
PIL: PIL.Image.Image or np.array.
|
return_dict (bool, optional) β
|
Whether or not to return a ImagePipelineOutput instead of a plain tuple.
|
Returns
|
ImagePipelineOutput or tuple
|
~pipelines.utils.ImagePipelineOutput if return_dict is
|
True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
|
LDMSuperResolutionPipeline
|
class diffusers.LDMSuperResolutionPipeline
|
<
|
source
|
>
|
(
|
vqvae: VQModel
|
unet: UNet2DModel
|
scheduler: typing.Union[diffusers.schedulers.scheduling_ddim.DDIMScheduler, diffusers.schedulers.scheduling_pndm.PNDMScheduler, diffusers.schedulers.scheduling_lms_discrete.LMSDiscreteScheduler, diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler, diffusers.schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteScheduler, diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler]
|
)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.