text
stringlengths 0
5.54k
|
|---|
sent,
|
padding="max_length",
|
max_length=tokenizer.model_max_length,
|
truncation=True,
|
return_tensors="pt",
|
)
|
text_input_ids = text_inputs.input_ids
|
prompt_embeds = text_encoder(text_input_ids.to(device), attention_mask=None)[0]
|
embeddings.append(prompt_embeds)
|
return torch.concatenate(embeddings, dim=0).mean(dim=0).unsqueeze(0)
|
source_embeds = embed_prompts(source_prompts, pipeline.tokenizer, pipeline.text_encoder)
|
target_embeds = embed_prompts(target_prompts, pipeline.tokenizer, pipeline.text_encoder) Finally, pass the embeddings to the generate_mask() and invert() functions, and pipeline to generate the image: Copied from diffusers import DDIMInverseScheduler, DDIMScheduler
|
from diffusers.utils import load_image, make_image_grid
|
from PIL import Image
|
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
|
pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config)
|
img_url = "https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png"
|
raw_image = load_image(img_url).resize((768, 768))
|
mask_image = pipeline.generate_mask(
|
image=raw_image,
|
- source_prompt=source_prompt,
|
- target_prompt=target_prompt,
|
+ source_prompt_embeds=source_embeds,
|
+ target_prompt_embeds=target_embeds,
|
)
|
inv_latents = pipeline.invert(
|
- prompt=source_prompt,
|
+ prompt_embeds=source_embeds,
|
image=raw_image,
|
).latents
|
output_image = pipeline(
|
mask_image=mask_image,
|
image_latents=inv_latents,
|
- prompt=target_prompt,
|
- negative_prompt=source_prompt,
|
+ prompt_embeds=target_embeds,
|
+ negative_prompt_embeds=source_embeds,
|
).images[0]
|
mask_image = Image.fromarray((mask_image.squeeze()*255).astype("uint8"), "L")
|
make_image_grid([raw_image, mask_image, output_image], rows=1, cols=3) Generate a caption for inversion While you can use the source_prompt as a caption to help generate the partially inverted latents, you can also use the BLIP model to automatically generate a caption. Load the BLIP model and processor from the π€ Transformers library: Copied import torch
|
from transformers import BlipForConditionalGeneration, BlipProcessor
|
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16, low_cpu_mem_usage=True) Create a utility function to generate a caption from the input image: Copied @torch.no_grad()
|
def generate_caption(images, caption_generator, caption_processor):
|
text = "a photograph of"
|
inputs = caption_processor(images, text, return_tensors="pt").to(device="cuda", dtype=caption_generator.dtype)
|
caption_generator.to("cuda")
|
outputs = caption_generator.generate(**inputs, max_new_tokens=128)
|
# offload caption generator
|
caption_generator.to("cpu")
|
caption = caption_processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
return caption Load an input image and generate a caption for it using the generate_caption function: Copied from diffusers.utils import load_image
|
img_url = "https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png"
|
raw_image = load_image(img_url).resize((768, 768))
|
caption = generate_caption(raw_image, model, processor) generated caption: "a photograph of a bowl of fruit on a table" Now you can drop the caption into the invert() function to generate the partially inverted latents!
|
Configuration Schedulers from SchedulerMixin and models from ModelMixin inherit from ConfigMixin which stores all the parameters that are passed to their respective __init__ methods in a JSON-configuration file. To use private or gated models, log-in with huggingface-cli login. ConfigMixin class diffusers.ConfigMixin < source > ( ) Base class for all configuration classes. All configuration parameters are stored under self.config. Also
|
provides the from_config() and save_config() methods for loading, downloading, and
|
saving classes that inherit from ConfigMixin. Class attributes: config_name (str) β A filename under which the config should stored when calling
|
save_config() (should be overridden by parent class). ignore_for_config (List[str]) β A list of attributes that should not be saved in the config (should be
|
overridden by subclass). has_compatibles (bool) β Whether the class has compatible classes (should be overridden by subclass). _deprecated_kwargs (List[str]) β Keyword arguments that are deprecated. Note that the init function
|
should only have a kwargs argument if at least one argument is deprecated (should be overridden by
|
subclass). load_config < source > ( pretrained_model_name_or_path: Union return_unused_kwargs = False return_commit_hash = False **kwargs ) β dict Parameters pretrained_model_name_or_path (str or os.PathLike, optional) β
|
Can be either:
|
A string, the model id (for example google/ddpm-celebahq-256) of a pretrained model hosted on
|
the Hub.
|
A path to a directory (for example ./my_model_directory) containing model weights saved with
|
save_config().
|
cache_dir (Union[str, os.PathLike], optional) β
|
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
is not used. force_download (bool, optional, defaults to False) β
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
cached versions if they exist. resume_download (bool, optional, defaults to False) β
|
Whether or not to resume downloading the model weights and configuration files. If set to False, any
|
incompletely downloaded files are deleted. proxies (Dict[str, str], optional) β
|
A dictionary of proxy servers to use by protocol or endpoint, for example, {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. output_loading_info(bool, optional, defaults to False) β
|
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. local_files_only (bool, optional, defaults to False) β
|
Whether to only load local model weights and configuration files or not. If set to True, the model
|
wonβt be downloaded from the Hub. token (str or bool, optional) β
|
The token to use as HTTP bearer authorization for remote files. If True, the token generated from
|
diffusers-cli login (stored in ~/.huggingface) is used. revision (str, optional, defaults to "main") β
|
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
allowed by Git. subfolder (str, optional, defaults to "") β
|
The subfolder location of a model file within a larger model repository on the Hub or locally. return_unused_kwargs (bool, optional, defaults to `False) β
|
Whether unused keyword arguments of the config are returned. return_commit_hash (bool, optional, defaults to False) -- Whether the commit_hash` of the loaded configuration are returned. Returns
|
dict
|
A dictionary of all the parameters stored in a JSON configuration file.
|
Load a model or scheduler configuration. from_config < source > ( config: Union = None return_unused_kwargs = False **kwargs ) β ModelMixin or SchedulerMixin Parameters config (Dict[str, Any]) β
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.