Datasets:
metadata
license: mit
dataset_info:
features:
- name: image
dtype: image
- name: text
dtype: string
splits:
- name: train_shard_000
num_bytes: 3084316377
num_examples: 5000
- name: train_shard_001
num_bytes: 3107698844
num_examples: 5000
- name: train_shard_002
num_bytes: 3105945625
num_examples: 5000
- name: train_shard_003
num_bytes: 3064000374
num_examples: 5000
- name: train_shard_004
num_bytes: 3086188608
num_examples: 5000
- name: train_shard_005
num_bytes: 3050610859
num_examples: 5000
- name: train_shard_006
num_bytes: 2913162440
num_examples: 5000
- name: train_shard_007
num_bytes: 2919830153
num_examples: 5000
- name: train_shard_008
num_bytes: 3038788195
num_examples: 5000
- name: train_shard_009
num_bytes: 3204065572
num_examples: 5000
- name: train_shard_010
num_bytes: 3068610931
num_examples: 5000
- name: train_shard_011
num_bytes: 2933208907
num_examples: 5000
- name: train_shard_012
num_bytes: 2891239225
num_examples: 5000
- name: train_shard_013
num_bytes: 3091212463
num_examples: 5000
- name: train_shard_014
num_bytes: 2921655324
num_examples: 5000
- name: train_shard_015
num_bytes: 2979943202
num_examples: 5000
- name: train_shard_016
num_bytes: 2868563209
num_examples: 5000
- name: train_shard_017
num_bytes: 3147002484
num_examples: 5000
- name: train_shard_018
num_bytes: 3104107514
num_examples: 5000
- name: train_shard_019
num_bytes: 2926535712
num_examples: 5000
- name: train_shard_020
num_bytes: 2990904342
num_examples: 5000
- name: train_shard_021
num_bytes: 3102893465
num_examples: 5000
- name: train_shard_022
num_bytes: 3059280331
num_examples: 5000
- name: train_shard_023
num_bytes: 3090584727
num_examples: 5000
- name: train_shard_024
num_bytes: 2926357592
num_examples: 5000
- name: train_shard_025
num_bytes: 2944175013
num_examples: 5000
- name: train_shard_026
num_bytes: 3007380998
num_examples: 5000
download_size: 81627327972
dataset_size: 81628262486
configs:
- config_name: default
data_files:
- split: train_shard_000
path: data/train_shard_000-*
- split: train_shard_001
path: data/train_shard_001-*
- split: train_shard_002
path: data/train_shard_002-*
- split: train_shard_003
path: data/train_shard_003-*
- split: train_shard_004
path: data/train_shard_004-*
- split: train_shard_005
path: data/train_shard_005-*
- split: train_shard_006
path: data/train_shard_006-*
- split: train_shard_007
path: data/train_shard_007-*
- split: train_shard_008
path: data/train_shard_008-*
- split: train_shard_009
path: data/train_shard_009-*
- split: train_shard_010
path: data/train_shard_010-*
- split: train_shard_011
path: data/train_shard_011-*
- split: train_shard_012
path: data/train_shard_012-*
- split: train_shard_013
path: data/train_shard_013-*
- split: train_shard_014
path: data/train_shard_014-*
- split: train_shard_015
path: data/train_shard_015-*
- split: train_shard_016
path: data/train_shard_016-*
- split: train_shard_017
path: data/train_shard_017-*
- split: train_shard_018
path: data/train_shard_018-*
- split: train_shard_019
path: data/train_shard_019-*
- split: train_shard_020
path: data/train_shard_020-*
- split: train_shard_021
path: data/train_shard_021-*
- split: train_shard_022
path: data/train_shard_022-*
- split: train_shard_023
path: data/train_shard_023-*
- split: train_shard_024
path: data/train_shard_024-*
- split: train_shard_025
path: data/train_shard_025-*
- split: train_shard_026
path: data/train_shard_026-*
pretty_name: tamily 1
language:
- ta
source_datasets:
- sasicodes/solvari-1
task_categories:
- image-to-text
tags:
- Vaṭṭeḻuttu
Tamily-1: Ancient Tamil OCR Synthetic Dataset
Description
- Repository: sasicodes/tamily-1
- Point of Contact: @sasicodes
Summary
Tamily-1 is an ancient Tamil OCR synthetic dataset generated from the first 200,000 rows of Solvari-1, a large Tamil text corpus. The dataset contains rendered images of Tamil text with various augmentations and styles, making it suitable for training OCR models.
Fields
image
: PNG image of rendered Tamil texttext
: Original Tamil text
Data Splits
The dataset is split into shards of 5,000 samples each, named as train_shard_XXX
.
Annotation process
Each text is rendered with:
- Random paper style (Palm Leaf, Pale Palm Leaf, Red Stone, White Stone, Paper)
- Random background style (No Lines, With Lines, Blurred, With Lines and Noise)
- Random augmentation (Rotation, Perspective, Stain, Ink Bleed)
License
MIT License
@misc{tamily-1,
author = {sasicodes},
title = {Tamily-1: Ancient Tamil OCR Synthetic Dataset},
year = {2025},
publisher = {Hugging Face},
journal = {Hugging Face Hub},
howpublished = {\url{https://huggingface.co/datasets/sasicodes/tamily-1}}
}