KaraKaraWitch's picture
Upload Scripts/RedditScoring.py with huggingface_hub
9eec092 verified
import math
import multiprocessing
import pathlib
import numpy
import orjson
import pandas
import seaborn
import tqdm
import typer
from loguru import logger
from matplotlib import pyplot as plt
app = typer.Typer()
GB = 2**30
def read_lines_jsonl(file_name, chunk_size=GB // 2):
with open(file_name, "rb") as file_handle:
buffer = b""
while True:
chunk = file_handle.read(chunk_size)
if not chunk:
break
lines = (buffer + chunk).split(b"\n")
for line in lines[:-1]:
yield line.strip()
buffer = lines[-1]
def compute_subreddit_score(
subs: pathlib.Path, comments: pathlib.Path, stats_out: pathlib.Path
):
submission_data = {"authors": set(), "submissions": 0, "media": 0}
logger.debug(f"Gather Subs: {subs}")
for line in read_lines_jsonl(subs):
sub_data = orjson.loads(line)
if sub_data["author"]:
submission_data["authors"].add(sub_data["author"]["name"])
submission_data["submissions"] += 1
if not sub_data["text"]:
submission_data["media"] += 1
logger.debug(f"Done Gather Subs for: {subs}")
submission_data["authors"] = len(submission_data["authors"])
comment_data = {
"authors": set(),
"comments": 0,
}
logger.debug(f"Gather Comments: {comments}")
for line in read_lines_jsonl(comments):
sub_data = orjson.loads(line)
if sub_data["author"]:
comment_data["authors"].add(sub_data["author"]["name"])
comment_data["comments"] += 1
comment_data["authors"] = len(comment_data["authors"])
# Asked ChatGPT for formula advice...
engagement = comment_data["comments"] / submission_data["submissions"]
richness = (submission_data["media"] / submission_data["submissions"]) ** 2
diversity = (
comment_data["authors"] + submission_data["authors"]
) / submission_data["submissions"]
wrapped = orjson.dumps(
{
"submission": submission_data,
"comment": comment_data,
"qscore": {
"engagement": engagement,
"richness": richness,
"diversity": diversity,
"compound": engagement * richness * diversity,
},
}
)
stats_out.write_bytes(wrapped)
logger.debug(f"{stats_out.name}: {wrapped}")
def err_cb(err):
logger.exception(err)
@app.command()
def compute_scores(output_path:pathlib.Path):
# pathlib.Path("subreddits_M700")
with multiprocessing.Pool(processes=32) as pool:
fns = []
for sub in [
i
for i in output_path.iterdir()
if i.stem.endswith("_Submission")
]:
root_sub = sub.with_stem(sub.stem[: -len("_Submission")])
comments = root_sub.with_stem(root_sub.stem + "_Comments")
if sub.exists() and comments.exists():
stats = root_sub.with_stem(root_sub.stem + "_Scores")
fns.append(
pool.apply_async(
compute_subreddit_score,
args=(
sub,
comments,
stats,
),
error_callback=err_cb,
)
)
else:
logger.warning(f"Mismatched: {sub} {comments}")
sub.unlink() if sub.exists() else None
comments.unlink() if comments.exists() else None
[i.wait() for i in fns]
@app.command()
def makefilter(merged_stats: pathlib.Path, output_file: pathlib.Path, mode="text"):
reddits = []
with open(merged_stats, "rb") as f:
for stats in tqdm.tqdm(f):
stats_data = orjson.loads(stats)
if "qscore" not in stats_data:
logger.warning(f"{stats} did not have any qscores.")
continue
qscores: dict = stats_data["qscore"]
if mode == "text":
# Baseline author filters
if (
stats_data["submission"]["authors"] < 70
or stats_data["comment"]["authors"] < 20
or stats_data["submission"]["submissions"] < 450
or stats_data["comment"]["comments"] < 585
):
continue
# QScores
if qscores["engagement"] < 1.05:
# Low amount of engagement
continue
elif qscores["engagement"] > 50:
# Excessive engagement.
continue
elif qscores["compound"] < 0.05:
# Close to 0 compound is probably not worth
continue
elif qscores["richness"] < 0.01 or qscores["richness"] > 0.95:
# low richness means it's probably mostly text.
#
# High richness means almost or mostly images.
continue
elif qscores["diversity"] < 0.05 or qscores["diversity"] > 5:
# Too little diversity: Too many submission authors, not enough comment authors
# > 2: Too many comment authors, not enough submission authors.
continue
reddits.append(stats_data)
elif mode == "media":
# For media, we don't care too much about a lot of stats for text and
# more interested about raw media stuff.
# Biased richness score for images
image_bias_richness = math.sqrt(math.sqrt(qscores["richness"]))
if (
stats_data["submission"]["authors"] < 70
or stats_data["comment"]["authors"] < 20
or stats_data["submission"]["submissions"] < 450
or stats_data["comment"]["comments"] < 585
):
continue
if qscores["engagement"] < 0.5:
# Low amount of engagement
continue
elif qscores["engagement"] > 50:
# Excessive engagement.
continue
elif qscores["compound"] < 0.05:
# Close to 0 compound is probably not worth
continue
elif image_bias_richness < 0.15 or image_bias_richness > 0.95:
# low richness means it's probably mostly text.
#
# High richness means almost or mostly images.
continue
reddits.append(stats_data)
output_file.write_bytes(
b"\n".join([orjson.dumps(reddit) for reddit in reddits])
)
@app.command()
def merge_stats(folder: pathlib.Path, output_file: pathlib.Path):
with open(output_file, "wb") as fp:
scores = [i for i in folder.iterdir() if i.stem.endswith("_Scores")]
for stats in tqdm.tqdm(scores):
stats_data = orjson.loads(stats.read_bytes())
if "qscore" not in stats_data:
logger.warning(f"{stats} did not have any qscores.")
continue
fp.write(
orjson.dumps(
{"file": stats.name, **stats_data},
option=orjson.OPT_APPEND_NEWLINE,
)
)
@app.command()
def plot(file: pathlib.Path):
total_stats = {}
with open(file, "rb") as f:
for stats in tqdm.tqdm(f):
stats = orjson.loads(stats)
if "qscore" in stats:
for key, value in stats["qscore"].items():
vv_stats = total_stats.setdefault(key, [])
vv_stats.append(value)
total_stats[key] = vv_stats
for key, value in stats["submission"].items():
key = f"submissions_{key}"
vv_stats = total_stats.setdefault(key, [])
vv_stats.append(value)
total_stats[key] = vv_stats
for key, value in stats["submission"].items():
key = f"submissions_{key}"
vv_stats = total_stats.setdefault(key, [])
vv_stats.append(value)
total_stats[key] = vv_stats
for key, value in stats["comment"].items():
key = f"comments_{key}"
vv_stats = total_stats.setdefault(key, [])
vv_stats.append(value)
total_stats[key] = vv_stats
for key in total_stats.keys():
if key == "richness":
total_stats[key] = [i for i in total_stats[key] if i > 0 and i < 10]
elif key.startswith(("submission", "comment")):
total_stats[key] = [i for i in total_stats[key] if i > 0 and i < 100_000]
else:
total_stats[key] = [i for i in total_stats[key] if i > 0 and i < 100]
df = pandas.DataFrame.from_dict(
{k: v for k, v in total_stats.items() if k == key}
)
if key == "richness":
fg = seaborn.displot(df, x=key, bins=500, log_scale=(False, False))
elif key.startswith(("submission", "comment")):
fg = seaborn.displot(df, x=key, bins=50, log_scale=(False, False))
else:
fg = seaborn.displot(df, x=key, bins=500, log_scale=(False, False))
nuarr = numpy.array(total_stats[key])
percentiles = [
numpy.percentile(nuarr, 95),
numpy.percentile(nuarr, 90),
numpy.percentile(nuarr, 50),
numpy.percentile(nuarr, 10),
numpy.percentile(nuarr, 5),
]
plt.axvline(x=percentiles[0], color="cyan")
plt.axvline(x=percentiles[1], color="blue")
print(percentiles, "pct for", key)
print("Save fig")
fg.savefig(f"test-{key}.png", dpi=120)
if __name__ == "__main__":
app()