Upload Scripts/RedditScoring.py with huggingface_hub
Browse files- Scripts/RedditScoring.py +265 -0
Scripts/RedditScoring.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import multiprocessing
|
3 |
+
import pathlib
|
4 |
+
|
5 |
+
import numpy
|
6 |
+
import orjson
|
7 |
+
import pandas
|
8 |
+
import seaborn
|
9 |
+
import tqdm
|
10 |
+
import typer
|
11 |
+
from loguru import logger
|
12 |
+
from matplotlib import pyplot as plt
|
13 |
+
|
14 |
+
app = typer.Typer()
|
15 |
+
|
16 |
+
GB = 2**30
|
17 |
+
|
18 |
+
def read_lines_jsonl(file_name, chunk_size=GB // 2):
|
19 |
+
with open(file_name, "rb") as file_handle:
|
20 |
+
buffer = b""
|
21 |
+
while True:
|
22 |
+
chunk = file_handle.read(chunk_size)
|
23 |
+
|
24 |
+
if not chunk:
|
25 |
+
break
|
26 |
+
lines = (buffer + chunk).split(b"\n")
|
27 |
+
|
28 |
+
for line in lines[:-1]:
|
29 |
+
yield line.strip()
|
30 |
+
|
31 |
+
buffer = lines[-1]
|
32 |
+
|
33 |
+
def compute_subreddit_score(
|
34 |
+
subs: pathlib.Path, comments: pathlib.Path, stats_out: pathlib.Path
|
35 |
+
):
|
36 |
+
submission_data = {"authors": set(), "submissions": 0, "media": 0}
|
37 |
+
logger.debug(f"Gather Subs: {subs}")
|
38 |
+
for line in read_lines_jsonl(subs):
|
39 |
+
sub_data = orjson.loads(line)
|
40 |
+
if sub_data["author"]:
|
41 |
+
submission_data["authors"].add(sub_data["author"]["name"])
|
42 |
+
submission_data["submissions"] += 1
|
43 |
+
if not sub_data["text"]:
|
44 |
+
submission_data["media"] += 1
|
45 |
+
logger.debug(f"Done Gather Subs for: {subs}")
|
46 |
+
submission_data["authors"] = len(submission_data["authors"])
|
47 |
+
comment_data = {
|
48 |
+
"authors": set(),
|
49 |
+
"comments": 0,
|
50 |
+
}
|
51 |
+
logger.debug(f"Gather Comments: {comments}")
|
52 |
+
for line in read_lines_jsonl(comments):
|
53 |
+
sub_data = orjson.loads(line)
|
54 |
+
if sub_data["author"]:
|
55 |
+
comment_data["authors"].add(sub_data["author"]["name"])
|
56 |
+
comment_data["comments"] += 1
|
57 |
+
comment_data["authors"] = len(comment_data["authors"])
|
58 |
+
|
59 |
+
# Asked ChatGPT for formula advice...
|
60 |
+
engagement = comment_data["comments"] / submission_data["submissions"]
|
61 |
+
richness = (submission_data["media"] / submission_data["submissions"]) ** 2
|
62 |
+
diversity = (
|
63 |
+
comment_data["authors"] + submission_data["authors"]
|
64 |
+
) / submission_data["submissions"]
|
65 |
+
|
66 |
+
wrapped = orjson.dumps(
|
67 |
+
{
|
68 |
+
"submission": submission_data,
|
69 |
+
"comment": comment_data,
|
70 |
+
"qscore": {
|
71 |
+
"engagement": engagement,
|
72 |
+
"richness": richness,
|
73 |
+
"diversity": diversity,
|
74 |
+
"compound": engagement * richness * diversity,
|
75 |
+
},
|
76 |
+
}
|
77 |
+
)
|
78 |
+
stats_out.write_bytes(wrapped)
|
79 |
+
logger.debug(f"{stats_out.name}: {wrapped}")
|
80 |
+
|
81 |
+
def err_cb(err):
|
82 |
+
logger.exception(err)
|
83 |
+
|
84 |
+
@app.command()
|
85 |
+
def compute_scores(output_path:pathlib.Path):
|
86 |
+
# pathlib.Path("subreddits_M700")
|
87 |
+
with multiprocessing.Pool(processes=32) as pool:
|
88 |
+
fns = []
|
89 |
+
for sub in [
|
90 |
+
i
|
91 |
+
for i in output_path.iterdir()
|
92 |
+
if i.stem.endswith("_Submission")
|
93 |
+
]:
|
94 |
+
root_sub = sub.with_stem(sub.stem[: -len("_Submission")])
|
95 |
+
comments = root_sub.with_stem(root_sub.stem + "_Comments")
|
96 |
+
if sub.exists() and comments.exists():
|
97 |
+
stats = root_sub.with_stem(root_sub.stem + "_Scores")
|
98 |
+
fns.append(
|
99 |
+
pool.apply_async(
|
100 |
+
compute_subreddit_score,
|
101 |
+
args=(
|
102 |
+
sub,
|
103 |
+
comments,
|
104 |
+
stats,
|
105 |
+
),
|
106 |
+
error_callback=err_cb,
|
107 |
+
)
|
108 |
+
)
|
109 |
+
else:
|
110 |
+
logger.warning(f"Mismatched: {sub} {comments}")
|
111 |
+
sub.unlink() if sub.exists() else None
|
112 |
+
comments.unlink() if comments.exists() else None
|
113 |
+
[i.wait() for i in fns]
|
114 |
+
|
115 |
+
@app.command()
|
116 |
+
def makefilter(merged_stats: pathlib.Path, output_file: pathlib.Path, mode="text"):
|
117 |
+
reddits = []
|
118 |
+
with open(merged_stats, "rb") as f:
|
119 |
+
for stats in tqdm.tqdm(f):
|
120 |
+
stats_data = orjson.loads(stats)
|
121 |
+
if "qscore" not in stats_data:
|
122 |
+
logger.warning(f"{stats} did not have any qscores.")
|
123 |
+
continue
|
124 |
+
qscores: dict = stats_data["qscore"]
|
125 |
+
if mode == "text":
|
126 |
+
# Baseline author filters
|
127 |
+
if (
|
128 |
+
stats_data["submission"]["authors"] < 70
|
129 |
+
or stats_data["comment"]["authors"] < 20
|
130 |
+
or stats_data["submission"]["submissions"] < 450
|
131 |
+
or stats_data["comment"]["comments"] < 585
|
132 |
+
):
|
133 |
+
continue
|
134 |
+
# QScores
|
135 |
+
if qscores["engagement"] < 1.05:
|
136 |
+
# Low amount of engagement
|
137 |
+
continue
|
138 |
+
elif qscores["engagement"] > 50:
|
139 |
+
# Excessive engagement.
|
140 |
+
continue
|
141 |
+
elif qscores["compound"] < 0.05:
|
142 |
+
# Close to 0 compound is probably not worth
|
143 |
+
continue
|
144 |
+
elif qscores["richness"] < 0.01 or qscores["richness"] > 0.95:
|
145 |
+
# low richness means it's probably mostly text.
|
146 |
+
#
|
147 |
+
# High richness means almost or mostly images.
|
148 |
+
continue
|
149 |
+
elif qscores["diversity"] < 0.05 or qscores["diversity"] > 5:
|
150 |
+
# Too little diversity: Too many submission authors, not enough comment authors
|
151 |
+
# > 2: Too many comment authors, not enough submission authors.
|
152 |
+
continue
|
153 |
+
reddits.append(stats_data)
|
154 |
+
elif mode == "media":
|
155 |
+
# For media, we don't care too much about a lot of stats for text and
|
156 |
+
# more interested about raw media stuff.
|
157 |
+
|
158 |
+
# Biased richness score for images
|
159 |
+
image_bias_richness = math.sqrt(math.sqrt(qscores["richness"]))
|
160 |
+
|
161 |
+
if (
|
162 |
+
stats_data["submission"]["authors"] < 70
|
163 |
+
or stats_data["comment"]["authors"] < 20
|
164 |
+
or stats_data["submission"]["submissions"] < 450
|
165 |
+
or stats_data["comment"]["comments"] < 585
|
166 |
+
):
|
167 |
+
continue
|
168 |
+
|
169 |
+
if qscores["engagement"] < 0.5:
|
170 |
+
# Low amount of engagement
|
171 |
+
continue
|
172 |
+
elif qscores["engagement"] > 50:
|
173 |
+
# Excessive engagement.
|
174 |
+
continue
|
175 |
+
elif qscores["compound"] < 0.05:
|
176 |
+
# Close to 0 compound is probably not worth
|
177 |
+
continue
|
178 |
+
elif image_bias_richness < 0.15 or image_bias_richness > 0.95:
|
179 |
+
# low richness means it's probably mostly text.
|
180 |
+
#
|
181 |
+
# High richness means almost or mostly images.
|
182 |
+
continue
|
183 |
+
reddits.append(stats_data)
|
184 |
+
output_file.write_bytes(
|
185 |
+
b"\n".join([orjson.dumps(reddit) for reddit in reddits])
|
186 |
+
)
|
187 |
+
|
188 |
+
|
189 |
+
@app.command()
|
190 |
+
def merge_stats(folder: pathlib.Path, output_file: pathlib.Path):
|
191 |
+
with open(output_file, "wb") as fp:
|
192 |
+
scores = [i for i in folder.iterdir() if i.stem.endswith("_Scores")]
|
193 |
+
for stats in tqdm.tqdm(scores):
|
194 |
+
stats_data = orjson.loads(stats.read_bytes())
|
195 |
+
if "qscore" not in stats_data:
|
196 |
+
logger.warning(f"{stats} did not have any qscores.")
|
197 |
+
continue
|
198 |
+
fp.write(
|
199 |
+
orjson.dumps(
|
200 |
+
{"file": stats.name, **stats_data},
|
201 |
+
option=orjson.OPT_APPEND_NEWLINE,
|
202 |
+
)
|
203 |
+
)
|
204 |
+
|
205 |
+
@app.command()
|
206 |
+
def plot(file: pathlib.Path):
|
207 |
+
total_stats = {}
|
208 |
+
with open(file, "rb") as f:
|
209 |
+
for stats in tqdm.tqdm(f):
|
210 |
+
stats = orjson.loads(stats)
|
211 |
+
if "qscore" in stats:
|
212 |
+
for key, value in stats["qscore"].items():
|
213 |
+
vv_stats = total_stats.setdefault(key, [])
|
214 |
+
vv_stats.append(value)
|
215 |
+
total_stats[key] = vv_stats
|
216 |
+
for key, value in stats["submission"].items():
|
217 |
+
key = f"submissions_{key}"
|
218 |
+
vv_stats = total_stats.setdefault(key, [])
|
219 |
+
vv_stats.append(value)
|
220 |
+
total_stats[key] = vv_stats
|
221 |
+
for key, value in stats["submission"].items():
|
222 |
+
key = f"submissions_{key}"
|
223 |
+
vv_stats = total_stats.setdefault(key, [])
|
224 |
+
vv_stats.append(value)
|
225 |
+
total_stats[key] = vv_stats
|
226 |
+
for key, value in stats["comment"].items():
|
227 |
+
key = f"comments_{key}"
|
228 |
+
vv_stats = total_stats.setdefault(key, [])
|
229 |
+
vv_stats.append(value)
|
230 |
+
total_stats[key] = vv_stats
|
231 |
+
|
232 |
+
for key in total_stats.keys():
|
233 |
+
if key == "richness":
|
234 |
+
total_stats[key] = [i for i in total_stats[key] if i > 0 and i < 10]
|
235 |
+
elif key.startswith(("submission", "comment")):
|
236 |
+
total_stats[key] = [i for i in total_stats[key] if i > 0 and i < 100_000]
|
237 |
+
else:
|
238 |
+
total_stats[key] = [i for i in total_stats[key] if i > 0 and i < 100]
|
239 |
+
df = pandas.DataFrame.from_dict(
|
240 |
+
{k: v for k, v in total_stats.items() if k == key}
|
241 |
+
)
|
242 |
+
if key == "richness":
|
243 |
+
fg = seaborn.displot(df, x=key, bins=500, log_scale=(False, False))
|
244 |
+
elif key.startswith(("submission", "comment")):
|
245 |
+
fg = seaborn.displot(df, x=key, bins=50, log_scale=(False, False))
|
246 |
+
else:
|
247 |
+
fg = seaborn.displot(df, x=key, bins=500, log_scale=(False, False))
|
248 |
+
nuarr = numpy.array(total_stats[key])
|
249 |
+
percentiles = [
|
250 |
+
numpy.percentile(nuarr, 95),
|
251 |
+
numpy.percentile(nuarr, 90),
|
252 |
+
numpy.percentile(nuarr, 50),
|
253 |
+
numpy.percentile(nuarr, 10),
|
254 |
+
numpy.percentile(nuarr, 5),
|
255 |
+
]
|
256 |
+
plt.axvline(x=percentiles[0], color="cyan")
|
257 |
+
plt.axvline(x=percentiles[1], color="blue")
|
258 |
+
print(percentiles, "pct for", key)
|
259 |
+
print("Save fig")
|
260 |
+
|
261 |
+
fg.savefig(f"test-{key}.png", dpi=120)
|
262 |
+
|
263 |
+
|
264 |
+
if __name__ == "__main__":
|
265 |
+
app()
|