File size: 10,133 Bytes
9eec092
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import math
import multiprocessing
import pathlib

import numpy
import orjson
import pandas
import seaborn
import tqdm
import typer
from loguru import logger
from matplotlib import pyplot as plt

app = typer.Typer()

GB = 2**30

def read_lines_jsonl(file_name, chunk_size=GB // 2):
    with open(file_name, "rb") as file_handle:
        buffer = b""
        while True:
            chunk = file_handle.read(chunk_size)

            if not chunk:
                break
            lines = (buffer + chunk).split(b"\n")

            for line in lines[:-1]:
                yield line.strip()

            buffer = lines[-1]

def compute_subreddit_score(
    subs: pathlib.Path, comments: pathlib.Path, stats_out: pathlib.Path
):
    submission_data = {"authors": set(), "submissions": 0, "media": 0}
    logger.debug(f"Gather Subs: {subs}")
    for line in read_lines_jsonl(subs):
        sub_data = orjson.loads(line)
        if sub_data["author"]:
            submission_data["authors"].add(sub_data["author"]["name"])
        submission_data["submissions"] += 1
        if not sub_data["text"]:
            submission_data["media"] += 1
    logger.debug(f"Done Gather Subs for: {subs}")
    submission_data["authors"] = len(submission_data["authors"])
    comment_data = {
        "authors": set(),
        "comments": 0,
    }
    logger.debug(f"Gather Comments: {comments}")
    for line in read_lines_jsonl(comments):
        sub_data = orjson.loads(line)
        if sub_data["author"]:
            comment_data["authors"].add(sub_data["author"]["name"])
        comment_data["comments"] += 1
    comment_data["authors"] = len(comment_data["authors"])

    # Asked ChatGPT for formula advice...
    engagement = comment_data["comments"] / submission_data["submissions"]
    richness = (submission_data["media"] / submission_data["submissions"]) ** 2
    diversity = (
        comment_data["authors"] + submission_data["authors"]
    ) / submission_data["submissions"]

    wrapped = orjson.dumps(
        {
            "submission": submission_data,
            "comment": comment_data,
            "qscore": {
                "engagement": engagement,
                "richness": richness,
                "diversity": diversity,
                "compound": engagement * richness * diversity,
            },
        }
    )
    stats_out.write_bytes(wrapped)
    logger.debug(f"{stats_out.name}: {wrapped}")

def err_cb(err):
    logger.exception(err)

@app.command()
def compute_scores(output_path:pathlib.Path):
    # pathlib.Path("subreddits_M700")
    with multiprocessing.Pool(processes=32) as pool:
        fns = []
        for sub in [
            i
            for i in output_path.iterdir()
            if i.stem.endswith("_Submission")
        ]:
            root_sub = sub.with_stem(sub.stem[: -len("_Submission")])
            comments = root_sub.with_stem(root_sub.stem + "_Comments")
            if sub.exists() and comments.exists():
                stats = root_sub.with_stem(root_sub.stem + "_Scores")
                fns.append(
                    pool.apply_async(
                        compute_subreddit_score,
                        args=(
                            sub,
                            comments,
                            stats,
                        ),
                        error_callback=err_cb,
                    )
                )
            else:
                logger.warning(f"Mismatched: {sub} {comments}")
                sub.unlink() if sub.exists() else None
                comments.unlink() if comments.exists() else None
        [i.wait() for i in fns]

@app.command()
def makefilter(merged_stats: pathlib.Path, output_file: pathlib.Path, mode="text"):
    reddits = []
    with open(merged_stats, "rb") as f:
        for stats in tqdm.tqdm(f):
            stats_data = orjson.loads(stats)
            if "qscore" not in stats_data:
                logger.warning(f"{stats} did not have any qscores.")
                continue
            qscores: dict = stats_data["qscore"]
            if mode == "text":
                # Baseline author filters
                if (
                    stats_data["submission"]["authors"] < 70
                    or stats_data["comment"]["authors"] < 20
                    or stats_data["submission"]["submissions"] < 450
                    or stats_data["comment"]["comments"] < 585
                ):
                    continue
                # QScores
                if qscores["engagement"] < 1.05:
                    # Low amount of engagement
                    continue
                elif qscores["engagement"] > 50:
                    # Excessive engagement.
                    continue
                elif qscores["compound"] < 0.05:
                    # Close to 0 compound is probably not worth
                    continue
                elif qscores["richness"] < 0.01 or qscores["richness"] > 0.95:
                    # low richness means it's probably mostly text.
                    #
                    # High richness means almost or mostly images.
                    continue
                elif qscores["diversity"] < 0.05 or qscores["diversity"] > 5:
                    # Too little diversity: Too many submission authors, not enough comment authors
                    # > 2: Too many comment authors, not enough submission authors.
                    continue
                reddits.append(stats_data)
            elif mode == "media":
                # For media, we don't care too much about a lot of stats for text and
                # more interested about raw media stuff.

                # Biased richness score for images
                image_bias_richness = math.sqrt(math.sqrt(qscores["richness"]))

                if (
                    stats_data["submission"]["authors"] < 70
                    or stats_data["comment"]["authors"] < 20
                    or stats_data["submission"]["submissions"] < 450
                    or stats_data["comment"]["comments"] < 585
                ):
                    continue
                
                if qscores["engagement"] < 0.5:
                    # Low amount of engagement
                    continue
                elif qscores["engagement"] > 50:
                    # Excessive engagement.
                    continue
                elif qscores["compound"] < 0.05:
                    # Close to 0 compound is probably not worth
                    continue
                elif image_bias_richness < 0.15 or image_bias_richness > 0.95:
                    # low richness means it's probably mostly text.
                    #
                    # High richness means almost or mostly images.
                    continue
                reddits.append(stats_data)
        output_file.write_bytes(
            b"\n".join([orjson.dumps(reddit) for reddit in reddits])
        )


@app.command()
def merge_stats(folder: pathlib.Path, output_file: pathlib.Path):
    with open(output_file, "wb") as fp:
        scores = [i for i in folder.iterdir() if i.stem.endswith("_Scores")]
        for stats in tqdm.tqdm(scores):
            stats_data = orjson.loads(stats.read_bytes())
            if "qscore" not in stats_data:
                logger.warning(f"{stats} did not have any qscores.")
                continue
            fp.write(
                orjson.dumps(
                    {"file": stats.name, **stats_data},
                    option=orjson.OPT_APPEND_NEWLINE,
                )
            )

@app.command()
def plot(file: pathlib.Path):
    total_stats = {}
    with open(file, "rb") as f:
        for stats in tqdm.tqdm(f):
            stats = orjson.loads(stats)
            if "qscore" in stats:
                for key, value in stats["qscore"].items():
                    vv_stats = total_stats.setdefault(key, [])
                    vv_stats.append(value)
                    total_stats[key] = vv_stats
                for key, value in stats["submission"].items():
                    key = f"submissions_{key}"
                    vv_stats = total_stats.setdefault(key, [])
                    vv_stats.append(value)
                    total_stats[key] = vv_stats
                for key, value in stats["submission"].items():
                    key = f"submissions_{key}"
                    vv_stats = total_stats.setdefault(key, [])
                    vv_stats.append(value)
                    total_stats[key] = vv_stats
                for key, value in stats["comment"].items():
                    key = f"comments_{key}"
                    vv_stats = total_stats.setdefault(key, [])
                    vv_stats.append(value)
                    total_stats[key] = vv_stats

    for key in total_stats.keys():
        if key == "richness":
            total_stats[key] = [i for i in total_stats[key] if i > 0 and i < 10]
        elif key.startswith(("submission", "comment")):
            total_stats[key] = [i for i in total_stats[key] if i > 0 and i < 100_000]
        else:
            total_stats[key] = [i for i in total_stats[key] if i > 0 and i < 100]
        df = pandas.DataFrame.from_dict(
            {k: v for k, v in total_stats.items() if k == key}
        )
        if key == "richness":
            fg = seaborn.displot(df, x=key, bins=500, log_scale=(False, False))
        elif key.startswith(("submission", "comment")):
            fg = seaborn.displot(df, x=key, bins=50, log_scale=(False, False))
        else:
            fg = seaborn.displot(df, x=key, bins=500, log_scale=(False, False))
        nuarr = numpy.array(total_stats[key])
        percentiles = [
            numpy.percentile(nuarr, 95),
            numpy.percentile(nuarr, 90),
            numpy.percentile(nuarr, 50),
            numpy.percentile(nuarr, 10),
            numpy.percentile(nuarr, 5),
        ]
        plt.axvline(x=percentiles[0], color="cyan")
        plt.axvline(x=percentiles[1], color="blue")
        print(percentiles, "pct for", key)
        print("Save fig")

        fg.savefig(f"test-{key}.png", dpi=120)


if __name__ == "__main__":
    app()