|
--- |
|
language: |
|
- th |
|
license: cc0-1.0 |
|
size_categories: |
|
- 10K<n<100K |
|
task_categories: |
|
- text-generation |
|
- text2text-generation |
|
pretty_name: i |
|
dataset_info: |
|
features: |
|
- name: inputs |
|
dtype: string |
|
- name: targets |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 10132750 |
|
num_examples: 16194 |
|
- name: validation |
|
num_bytes: 1118295 |
|
num_examples: 1777 |
|
- name: test |
|
num_bytes: 1240521 |
|
num_examples: 1965 |
|
download_size: 3093175 |
|
dataset_size: 12491566 |
|
tags: |
|
- instruct-fellow |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: validation |
|
path: data/validation-* |
|
- split: test |
|
path: data/test-* |
|
--- |
|
|
|
wisesight_sentiment_prompt is the instruct fellow dataset for sentiment Thai text by prompt. It can use fine-tuning model. |
|
|
|
- inputs: Prompt |
|
- targets: Text targets that AI should answer. |
|
|
|
**Template** |
|
``` |
|
Inputs: จำแนกประโยคต่อไปนี้เป็นคำถามหรือข้อความเชิงบวก/เป็นกลาง/เชิงลบ:\n{text} |
|
|
|
targets: ประโยคที่กำหนดสามารถจำแนกข้อความได้เป็นข้อความ{category} |
|
``` |
|
|
|
category |
|
- คำถาม: question |
|
- เชิงบวก: positive |
|
- เป็นกลาง: neutral |
|
- เชิงลบ: negative |
|
|
|
Notebook that used create this dataset: [https://github.com/PyThaiNLP/support-aya-datasets/blob/main/sentiment-analysis/wisesight_sentiment.ipynb](https://github.com/PyThaiNLP/support-aya-datasets/blob/main/sentiment-analysis/wisesight_sentiment.ipynb) |
|
|
|
|
|
Wisesight Sentiment Corpus: Social media messages in Thai language with sentiment category (positive, neutral, negative, question) |
|
* Released to public domain under Creative Commons Zero v1.0 Universal license. |
|
* Size: 26,737 messages |
|
* Language: Central Thai |
|
* Style: Informal and conversational. With some news headlines and advertisement. |
|
* Time period: Around 2016 to early 2019. With small amount from other period. |
|
* Domains: Mixed. Majority are consumer products and services (restaurants, cosmetics, drinks, car, hotels), with some current affairs. |
|
|
|
See more: [wisesight_sentiment](https://huggingface.co/datasets/wisesight_sentiment). |
|
|
|
PyThaiNLP |