Datasets:
File size: 2,309 Bytes
c9273fe d8e576d 069ff7d d8e576d 069ff7d 0cb8870 069ff7d 0cb8870 069ff7d 0cb8870 069ff7d e1e3afa 069ff7d c9273fe d8e576d acb3204 d8e576d 97159cf d8e576d 340539b 97159cf 340539b 1897168 d8e576d 6603a58 1897168 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
language:
- th
license: cc0-1.0
size_categories:
- 10K<n<100K
task_categories:
- text-generation
- text2text-generation
pretty_name: i
dataset_info:
features:
- name: inputs
dtype: string
- name: targets
dtype: string
splits:
- name: train
num_bytes: 10132750
num_examples: 16194
- name: validation
num_bytes: 1118295
num_examples: 1777
- name: test
num_bytes: 1240521
num_examples: 1965
download_size: 3093175
dataset_size: 12491566
tags:
- instruct-fellow
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
wisesight_sentiment_prompt is the instruct fellow dataset for sentiment Thai text by prompt. It can use fine-tuning model.
- inputs: Prompt
- targets: Text targets that AI should answer.
**Template**
```
Inputs: จำแนกประโยคต่อไปนี้เป็นคำถามหรือข้อความเชิงบวก/เป็นกลาง/เชิงลบ:\n{text}
targets: ประโยคที่กำหนดสามารถจำแนกข้อความได้เป็นข้อความ{category}
```
category
- คำถาม: question
- เชิงบวก: positive
- เป็นกลาง: neutral
- เชิงลบ: negative
Notebook that used create this dataset: [https://github.com/PyThaiNLP/support-aya-datasets/blob/main/sentiment-analysis/wisesight_sentiment.ipynb](https://github.com/PyThaiNLP/support-aya-datasets/blob/main/sentiment-analysis/wisesight_sentiment.ipynb)
Wisesight Sentiment Corpus: Social media messages in Thai language with sentiment category (positive, neutral, negative, question)
* Released to public domain under Creative Commons Zero v1.0 Universal license.
* Size: 26,737 messages
* Language: Central Thai
* Style: Informal and conversational. With some news headlines and advertisement.
* Time period: Around 2016 to early 2019. With small amount from other period.
* Domains: Mixed. Majority are consumer products and services (restaurants, cosmetics, drinks, car, hotels), with some current affairs.
See more: [wisesight_sentiment](https://huggingface.co/datasets/wisesight_sentiment).
PyThaiNLP |