problem
stringlengths 16
191
| explanation
stringlengths 6
29k
⌀ | type
stringlengths 3
136
⌀ |
---|---|---|
What is (are) Fabry disease ? | Fabry disease is an inherited disorder that results from the buildup of a particular type of fat, called globotriaosylceramide, in the body's cells. Beginning in childhood, this buildup causes signs and symptoms that affect many parts of the body. Characteristic features of Fabry disease include episodes of pain, particularly in the hands and feet (acroparesthesias); clusters of small, dark red spots on the skin called angiokeratomas; a decreased ability to sweat (hypohidrosis); cloudiness of the front part of the eye (corneal opacity); problems with the gastrointestinal system; ringing in the ears (tinnitus); and hearing loss. Fabry disease also involves potentially life-threatening complications such as progressive kidney damage, heart attack, and stroke. Some affected individuals have milder forms of the disorder that appear later in life and affect only the heart or kidneys. | Fabry disease |
How many people are affected by Fabry disease ? | Fabry disease affects an estimated 1 in 40,000 to 60,000 males. This disorder also occurs in females, although the prevalence is unknown. Milder, late-onset forms of the disorder are probably more common than the classic, severe form. | Fabry disease |
What are the genetic changes related to Fabry disease ? | Fabry disease is caused by mutations in the GLA gene. This gene provides instructions for making an enzyme called alpha-galactosidase A. This enzyme is active in lysosomes, which are structures that serve as recycling centers within cells. Alpha-galactosidase A normally breaks down a fatty substance called globotriaosylceramide. Mutations in the GLA gene alter the structure and function of the enzyme, preventing it from breaking down this substance effectively. As a result, globotriaosylceramide builds up in cells throughout the body, particularly cells lining blood vessels in the skin and cells in the kidneys, heart, and nervous system. The progressive accumulation of this substance damages cells, leading to the varied signs and symptoms of Fabry disease. GLA gene mutations that result in an absence of alpha-galactosidase A activity lead to the classic, severe form of Fabry disease. Mutations that decrease but do not eliminate the enzyme's activity usually cause the milder, late-onset forms of Fabry disease that affect only the heart or kidneys. | Fabry disease |
Is Fabry disease inherited ? | This condition is inherited in an X-linked pattern. A condition is considered X-linked if the mutated gene that causes the disorder is located on the X chromosome, one of the two sex chromosomes in each cell. In males (who have only one X chromosome), one altered copy of the GLA gene in each cell is sufficient to cause the condition. Because females have two copies of the X chromosome, one altered copy of the gene in each cell usually leads to less severe symptoms in females than in males, or rarely may cause no symptoms at all. Unlike other X-linked disorders, Fabry disease causes significant medical problems in many females who have one altered copy of the GLA gene. These women may experience many of the classic features of the disorder, including nervous system abnormalities, kidney problems, chronic pain, and fatigue. They also have an increased risk of developing high blood pressure, heart disease, stroke, and kidney failure. The signs and symptoms of Fabry disease usually begin later in life and are milder in females than in their affected male relatives. A small percentage of females who carry a mutation in one copy of the GLA gene never develop signs and symptoms of Fabry disease. | Fabry disease |
What are the treatments for Fabry disease ? | These resources address the diagnosis or management of Fabry disease: - Baby's First Test - Gene Review: Gene Review: Fabry Disease - Genetic Testing Registry: Fabry disease These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Fabry disease |
What is (are) MEGDEL syndrome ? | MEGDEL syndrome is an inherited disorder that affects multiple body systems. It is named for several of its features: 3-methylglutaconic aciduria (MEG), deafness (D), encephalopathy (E), and Leigh-like disease (L). MEGDEL syndrome is characterized by abnormally high levels of an acid, called 3-methylglutaconic acid, in the urine (3-methylglutaconic aciduria). MEGDEL syndrome is one of a group of metabolic disorders that can be diagnosed by presence of this feature. People with MEGDEL syndrome also have high urine levels of another acid called 3-methylglutaric acid. In infancy, individuals with MEGDEL syndrome develop hearing loss caused by changes in the inner ear (sensorineural deafness); the hearing problems gradually worsen over time. Another feature of MEGDEL syndrome is brain dysfunction (encephalopathy). In infancy, encephalopathy leads to difficulty feeding, an inability to grow and gain weight at the expected rate (failure to thrive), and weak muscle tone (hypotonia). Infants with MEGDEL syndrome later develop involuntary muscle tensing (dystonia) and muscle stiffness (spasticity), which worsen over time. Because of these brain and muscle problems, affected babies have delayed development of mental and movement abilities (psychomotor delay), or they may lose skills they already developed. Individuals with MEGDEL syndrome have intellectual disability and never learn to speak. People with MEGDEL syndrome have changes in the brain that resemble those in another condition called Leigh syndrome. These changes, which can be seen with medical imaging, are referred to as Leigh-like disease. Other features that occur commonly in MEGDEL syndrome include low blood sugar (hypoglycemia) in affected newborns; liver problems (hepatopathy) in infancy, which can be serious but improve by early childhood; and episodes of abnormally high amounts of lactic acid in the blood (lactic acidosis). The life expectancy of individuals with MEGDEL syndrome is unknown. Because of the severe health problems caused by the disorder, some affected individuals do not survive past infancy. | MEGDEL syndrome |
How many people are affected by MEGDEL syndrome ? | MEGDEL syndrome is a rare disorder; its prevalence is unknown. At least 40 affected individuals have been mentioned in the medical literature. | MEGDEL syndrome |
What are the genetic changes related to MEGDEL syndrome ? | MEGDEL syndrome is caused by mutations in the SERAC1 gene. The function of the protein produced from this gene is not completely understood, although research suggests that it is involved in altering (remodeling) certain fats called phospholipids, particularly a phospholipid known as phosphatidylglycerol. Another phospholipid called cardiolipin is made from phosphatidylglycerol. Cardiolipin is a component of the membrane that surrounds cellular structures called mitochondria, which convert the energy from food into a form that cells can use, and is important for the proper functioning of these structures. SERAC1 gene mutations involved in MEGDEL syndrome lead to little or no SERAC1 protein function. As a result, phosphatidylglycerol remodeling is impaired, which likely alters the composition of cardiolipin. Researchers speculate that the abnormal cardiolipin affects mitochondrial function, reducing cellular energy production and leading to the neurological and hearing problems characteristic of MEGDEL syndrome. It is unclear how SERAC1 gene mutations lead to abnormal release of 3-methylglutaconic acid in the urine, although it is thought to be related to mitochondrial dysfunction. | MEGDEL syndrome |
Is MEGDEL syndrome inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | MEGDEL syndrome |
What are the treatments for MEGDEL syndrome ? | These resources address the diagnosis or management of MEGDEL syndrome: - Baby's First Test: 3-Methylglutaconic Aciduria - Gene Review: Gene Review: MEGDEL Syndrome - Genetic Testing Registry: 3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like syndrome These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | MEGDEL syndrome |
What is (are) DMD-associated dilated cardiomyopathy ? | DMD-associated dilated cardiomyopathy is a form of heart disease that is caused by mutations in the DMD gene. Dilated cardiomyopathy enlarges and weakens the heart (cardiac) muscle, preventing the heart from pumping blood efficiently. Signs and symptoms of this condition can include an irregular heartbeat (arrhythmia), shortness of breath, extreme tiredness (fatigue), and swelling of the legs and feet. In males with DMD-associated dilated cardiomyopathy, heart problems usually develop early in life and worsen quickly, leading to heart failure in adolescence or early adulthood. In affected females, the condition appears later in life and worsens more slowly. Dilated cardiomyopathy is a feature of two related conditions that are also caused by mutations in the DMD gene: Duchenne and Becker muscular dystrophy. In addition to heart disease, these conditions are characterized by progressive weakness and wasting of muscles used for movement (skeletal muscles). People with DMD-associated dilated cardiomyopathy typically do not have any skeletal muscle weakness or wasting, although they may have subtle changes in their skeletal muscle cells that are detectable through laboratory testing. Based on these skeletal muscle changes, DMD-associated dilated cardiomyopathy is sometimes classified as subclinical Becker muscular dystrophy. | DMD-associated dilated cardiomyopathy |
How many people are affected by DMD-associated dilated cardiomyopathy ? | DMD-associated dilated cardiomyopathy appears to be an uncommon condition, although its prevalence is unknown. | DMD-associated dilated cardiomyopathy |
What are the genetic changes related to DMD-associated dilated cardiomyopathy ? | DMD-associated dilated cardiomyopathy results from mutations in the DMD gene. This gene provides instructions for making a protein called dystrophin, which helps stabilize and protect muscle fibers and may play a role in chemical signaling within cells. The mutations responsible for DMD-associated dilated cardiomyopathy preferentially affect the activity of dystrophin in cardiac muscle cells. As a result of these mutations, affected individuals typically have little or no functional dystrophin in the heart. Without enough of this protein, cardiac muscle cells become damaged as the heart muscle repeatedly contracts and relaxes. The damaged muscle cells weaken and die over time, leading to the heart problems characteristic of DMD-associated dilated cardiomyopathy. The mutations that cause DMD-associated dilated cardiomyopathy often lead to reduced amounts of dystrophin in skeletal muscle cells. However, enough of this protein is present to prevent weakness and wasting of the skeletal muscles. Because DMD-associated dilated cardiomyopathy results from a shortage of dystrophin, it is classified as a dystrophinopathy. | DMD-associated dilated cardiomyopathy |
Is DMD-associated dilated cardiomyopathy inherited ? | DMD-associated dilated cardiomyopathy has an X-linked pattern of inheritance. The DMD gene is located on the X chromosome, which is one of the two sex chromosomes. In females (who have two X chromosomes), a mutation in one of the two copies of the gene in each cell usually leads to relatively mild heart disease that appears later in life. In males (who have only one X chromosome), a mutation in the only copy of the gene in each cell causes more severe signs and symptoms that occur earlier in life. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons. | DMD-associated dilated cardiomyopathy |
What are the treatments for DMD-associated dilated cardiomyopathy ? | These resources address the diagnosis or management of DMD-associated dilated cardiomyopathy: - Gene Review: Gene Review: Dilated Cardiomyopathy Overview - Gene Review: Gene Review: Dystrophinopathies - Genetic Testing Registry: Dilated cardiomyopathy 3B - Genetic Testing Registry: Duchenne muscular dystrophy - National Heart, Lung, and Blood Institute: How Is Cardiomyopathy Diagnosed? - National Heart, Lung, and Blood Institute: How Is Cardiomyopathy Treated? These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | DMD-associated dilated cardiomyopathy |
What is (are) pyruvate dehydrogenase deficiency ? | Pyruvate dehydrogenase deficiency is characterized by the buildup of a chemical called lactic acid in the body and a variety of neurological problems. Signs and symptoms of this condition usually first appear shortly after birth, and they can vary widely among affected individuals. The most common feature is a potentially life-threatening buildup of lactic acid (lactic acidosis), which can cause nausea, vomiting, severe breathing problems, and an abnormal heartbeat. People with pyruvate dehydrogenase deficiency usually have neurological problems as well. Most have delayed development of mental abilities and motor skills such as sitting and walking. Other neurological problems can include intellectual disability, seizures, weak muscle tone (hypotonia), poor coordination, and difficulty walking. Some affected individuals have abnormal brain structures, such as underdevelopment of the tissue connecting the left and right halves of the brain (corpus callosum), wasting away (atrophy) of the exterior part of the brain known as the cerebral cortex, or patches of damaged tissue (lesions) on some parts of the brain. Because of the severe health effects, many individuals with pyruvate dehydrogenase deficiency do not survive past childhood, although some may live into adolescence or adulthood. | pyruvate dehydrogenase deficiency |
How many people are affected by pyruvate dehydrogenase deficiency ? | Pyruvate dehydrogenase deficiency is believed to be a rare condition; however, its prevalence is unknown. | pyruvate dehydrogenase deficiency |
What are the genetic changes related to pyruvate dehydrogenase deficiency ? | The genes involved in pyruvate dehydrogenase deficiency each provide instructions for making a protein that is a component of a group of proteins called the pyruvate dehydrogenase complex. This complex plays an important role in the pathways that convert the energy from food into a form that cells can use. The pyruvate dehydrogenase complex converts a molecule called pyruvate, which is formed from the breakdown of carbohydrates, into another molecule called acetyl-CoA. This conversion is essential to begin the series of chemical reactions that produce energy for cells. The pyruvate dehydrogenase complex is made up of multiple copies of several enzymes called E1, E2, and E3, each of which performs part of the chemical reaction that converts pyruvate to acetyl-CoA. In addition, other proteins included in the complex ensure its proper function. One of these proteins, E3 binding protein, attaches E3 to the complex and provides the correct structure for the complex to perform its function. Other associated proteins control the activity of the complex: pyruvate dehydrogenase phosphatase turns on (activates) the complex, while pyruvate dehydrogenase kinase turns off (inhibits) the complex. The E1 enzyme, also called pyruvate dehydrogenase, is composed of four parts (subunits): two alpha subunits (called E1 alpha) and two beta subunits (called E1 beta). Mutations in the gene that provides instructions for making E1 alpha, the PDHA1 gene, are the most common cause of pyruvate dehydrogenase deficiency, accounting for approximately 80 percent of cases. These mutations lead to a shortage of E1 alpha protein or result in an abnormal protein that cannot function properly. A decrease in functional E1 alpha leads to reduced activity of the pyruvate dehydrogenase complex. Other components of the pyruvate dehydrogenase complex are also involved in pyruvate dehydrogenase deficiency. Mutations in the genes that provide instructions for E1 beta (the PDHB gene), the E2 enzyme (the DLAT gene), E3 binding protein (the PDHX gene), and pyruvate dehydrogenase phosphatase (the PDP1 gene) have been identified in people with this condition. Although it is unclear how mutations in each of these genes affect the complex, reduced functioning of one component of the complex appears to impair the activity of the whole complex. As with PDHA1 gene mutations, changes in these other genes lead to a reduction of pyruvate dehydrogenase complex activity. With decreased function of this complex, pyruvate builds up and is converted in another chemical reaction to lactic acid. The excess lactic acid causes lactic acidosis in affected individuals. In addition, the production of cellular energy is diminished. The brain, which requires especially large amounts of energy, is severely affected, resulting in the neurological problems associated with pyruvate dehydrogenase deficiency. | pyruvate dehydrogenase deficiency |
Is pyruvate dehydrogenase deficiency inherited ? | Pyruvate dehydrogenase deficiency can have different inheritance patterns. When the condition is caused by mutations in the PDHA1 gene, it is inherited in an X-linked recessive pattern. The PDHA1 gene is located on the X chromosome, which is one of the two sex chromosomes. In males (who have only one X chromosome), one altered copy of the gene in each cell is sufficient to cause the condition. In females (who have two X chromosomes), a mutation would usually have to occur in both copies of the gene to cause the disorder. However, in pyruvate dehydrogenase deficiency, one altered copy of the PDHA1 gene is sufficient to cause the disorder, because the X chromosome with the normal copy of the PDHA1 gene is turned off through a process called X-inactivation. Early in embryonic development in females, one of the two X chromosomes is permanently inactivated in somatic cells (cells other than egg and sperm cells). X-inactivation ensures that females, like males, have only one active copy of the X chromosome in each body cell. Usually X-inactivation occurs randomly, such that each X chromosome is active in about half of the body cells. Sometimes X-inactivation is not random, and one X chromosome is active in more than half of cells. When X-inactivation does not occur randomly, it is called skewed X-inactivation. Research shows that females with pyruvate dehydrogenase deficiency caused by mutation of the PDHA1 gene have skewed X-inactivation, which results in the inactivation of the X chromosome with the normal copy of the PDHA1 gene in most cells of the body. This skewed X-inactivation causes the chromosome with the mutated PDHA1 gene to be expressed in more than half of cells. When caused by mutations in the other associated genes, pyruvate dehydrogenase deficiency is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | pyruvate dehydrogenase deficiency |
What are the treatments for pyruvate dehydrogenase deficiency ? | These resources address the diagnosis or management of pyruvate dehydrogenase deficiency: - Genetic Testing Registry: Pyruvate dehydrogenase E1-beta deficiency - Genetic Testing Registry: Pyruvate dehydrogenase E2 deficiency - Genetic Testing Registry: Pyruvate dehydrogenase E3-binding protein deficiency - Genetic Testing Registry: Pyruvate dehydrogenase complex deficiency - Genetic Testing Registry: Pyruvate dehydrogenase phosphatase deficiency These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | pyruvate dehydrogenase deficiency |
What is (are) Fryns syndrome ? | Fryns syndrome is a condition that affects the development of many parts of the body. The features of this disorder vary widely among affected individuals and overlap with the signs and symptoms of several other disorders. These factors can make Fryns syndrome difficult to diagnose. Most people with Fryns syndrome have a defect in the muscle that separates the abdomen from the chest cavity (the diaphragm). The most common defect is a congenital diaphragmatic hernia, which is a hole in the diaphragm that develops before birth. This hole allows the stomach and intestines to move into the chest and crowd the heart and lungs. As a result, the lungs often do not develop properly (pulmonary hypoplasia), which can cause life-threatening breathing difficulties in affected infants. Other major signs of Fryns syndrome include abnormalities of the fingers and toes and distinctive facial features. The tips of the fingers and toes tend to be underdeveloped, resulting in a short and stubby appearance with small or absent nails. Most affected individuals have several unusual facial features, including widely spaced eyes (hypertelorism), a broad and flat nasal bridge, a thick nasal tip, a wide space between the nose and upper lip (a long philtrum), a large mouth (macrostomia), and a small chin (micrognathia). Many also have low-set and abnormally shaped ears. Several additional features have been reported in people with Fryns syndrome. These include small eyes (microphthalmia), clouding of the clear outer covering of the eye (the cornea), and an opening in the roof of the mouth (cleft palate) with or without a split in the lip (cleft lip). Fryns syndrome can also affect the development of the brain, cardiovascular system, gastrointestinal system, kidneys, and genitalia. Most people with Fryns syndrome die before birth or in early infancy from pulmonary hypoplasia caused by a congenital diaphragmatic hernia. However, a few affected individuals have lived into childhood. Many of these children have had severe developmental delay and intellectual disability. | Fryns syndrome |
How many people are affected by Fryns syndrome ? | The worldwide incidence of Fryns syndrome is unknown. More than 50 affected individuals have been reported in the medical literature. Studies suggest that Fryns syndrome occurs in 1.3 to 10 percent of all cases of congenital diaphragmatic hernia. | Fryns syndrome |
What are the genetic changes related to Fryns syndrome ? | The cause of Fryns syndrome is unknown. The disorder is thought to be genetic because it tends to run in families and has features similar to those of other genetic disorders. Duplications and deletions in several chromosome regions have been associated with congenital diaphragmatic hernia and some of the other features of Fryns syndrome. However, no specific genetic change has been found to cause all of the signs and symptoms of this disorder. | Fryns syndrome |
Is Fryns syndrome inherited ? | Fryns syndrome appears to be inherited in an autosomal recessive pattern, which means both copies of a gene in each cell have mutations. However, no associated gene has been identified. The parents of an individual with an autosomal recessive condition each carry one copy of the altered gene, but they typically do not show signs and symptoms of the condition. | Fryns syndrome |
What are the treatments for Fryns syndrome ? | These resources address the diagnosis or management of Fryns syndrome: - Children's Hospital of Philadelphia: Treatment of Congenital Diaphragmatic Hernia - Gene Review: Gene Review: Fryns Syndrome - Genetic Testing Registry: Fryns syndrome - Seattle Children's Hospital: Treatment of Congenital Diaphragmatic Hernia These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Fryns syndrome |
What is (are) Cockayne syndrome ? | Cockayne syndrome is a rare disorder characterized by short stature and an appearance of premature aging. Features of this disorder include a failure to gain weight and grow at the expected rate (failure to thrive), abnormally small head size (microcephaly), and impaired development of the nervous system. Affected individuals have an extreme sensitivity to sunlight (photosensitivity), and even a small amount of sun exposure can cause a sunburn. Other possible signs and symptoms include hearing loss, eye abnormalities, severe tooth decay, bone abnormalities, and changes in the brain that can be seen on brain scans. Cockayne syndrome can be divided into subtypes, which are distinguished by the severity and age of onset of symptoms. Classical, or type I, Cockayne syndrome is characterized by an onset of symptoms in early childhood (usually after age 1 year). Type II Cockayne syndrome has much more severe symptoms that are apparent at birth (congenital). Type II Cockayne syndrome is sometimes called cerebro-oculo-facio-skeletal (COFS) syndrome or Pena-Shokeir syndrome type II. Type III Cockayne syndrome has the mildest symptoms of the three types and appears later in childhood. | Cockayne syndrome |
How many people are affected by Cockayne syndrome ? | Cockayne syndrome occurs in about 2 per million newborns in the United States and Europe. | Cockayne syndrome |
What are the genetic changes related to Cockayne syndrome ? | Cockayne syndrome can result from mutations in either the ERCC6 gene (also known as the CSB gene) or the ERCC8 gene (also known as the CSA gene). These genes provide instructions for making proteins that are involved in repairing damaged DNA. DNA can be damaged by ultraviolet (UV) rays from the sun and by toxic chemicals, radiation, and unstable molecules called free radicals. Cells are usually able to fix DNA damage before it causes problems. However, in people with Cockayne syndrome, DNA damage is not repaired normally. As more abnormalities build up in DNA, cells malfunction and eventually die. The increased cell death likely contributes to the features of Cockayne syndrome, such as growth failure and premature aging. | Cockayne syndrome |
Is Cockayne syndrome inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | Cockayne syndrome |
What are the treatments for Cockayne syndrome ? | These resources address the diagnosis or management of Cockayne syndrome: - Gene Review: Gene Review: Cockayne Syndrome - Genetic Testing Registry: Cockayne syndrome - Genetic Testing Registry: Cockayne syndrome type A - Genetic Testing Registry: Cockayne syndrome type C - Genetic Testing Registry: Cockayne syndrome, type B - MedlinePlus Encyclopedia: Failure to Thrive These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Cockayne syndrome |
What is (are) early-onset primary dystonia ? | Early-onset primary dystonia is a condition characterized by progressive problems with movement, typically beginning in childhood. Dystonia is a movement disorder that involves involuntary tensing of the muscles (muscle contractions), twisting of specific body parts such as an arm or a leg, rhythmic shaking (tremors), and other uncontrolled movements. A primary dystonia is one that occurs without other neurological symptoms, such as seizures or a loss of intellectual function (dementia). Early-onset primary dystonia does not affect a person's intelligence. On average, the signs and symptoms of early-onset primary dystonia appear around age 12. Abnormal muscle spasms in an arm or a leg are usually the first sign. These unusual movements initially occur while a person is doing a specific action, such as writing or walking. In some affected people, dystonia later spreads to other parts of the body and may occur at rest. The abnormal movements persist throughout life, but they do not usually cause pain. The signs and symptoms of early-onset primary dystonia vary from person to person, even among affected members of the same family. The mildest cases affect only a single part of the body, causing isolated problems such as a writer's cramp in the hand. Severe cases involve abnormal movements affecting many regions of the body. | early-onset primary dystonia |
How many people are affected by early-onset primary dystonia ? | Early-onset primary dystonia is among the most common forms of childhood dystonia. This disorder occurs most frequently in people of Ashkenazi (central and eastern European) Jewish heritage, affecting 1 in 3,000 to 9,000 people in this population. The condition is less common among people with other backgrounds; it is estimated to affect 1 in 10,000 to 30,000 non-Jewish people worldwide. | early-onset primary dystonia |
What are the genetic changes related to early-onset primary dystonia ? | A particular mutation in the TOR1A gene (also known as DYT1) is responsible for most cases of early-onset primary dystonia. The TOR1A gene provides instructions for making a protein called torsinA. Although little is known about its function, this protein may help process and transport other proteins within cells. It appears to be critical for the normal development and function of nerve cells in the brain. A mutation in the TOR1A gene alters the structure of torsinA. The altered protein's effect on the function of nerve cells in the brain is unclear. People with early-onset primary dystonia do not have a loss of nerve cells or obvious changes in the structure of the brain that would explain the abnormal muscle contractions. Instead, the altered torsinA protein may have subtle effects on the connections between nerve cells and likely disrupts chemical signaling between nerve cells that control movement. Researchers are working to determine how a change in this protein leads to the characteristic features of this disorder. | early-onset primary dystonia |
Is early-onset primary dystonia inherited ? | Mutations in the TOR1A gene are inherited in an autosomal dominant pattern, which means one of the two copies of the gene is altered in each cell. Many people who have a mutation in this gene are not affected by the disorder and may never know they have the mutation. Only 30 to 40 percent of people who inherit a TOR1A mutation will ever develop signs and symptoms of early-onset primary dystonia. Everyone who has been diagnosed with early-onset primary dystonia has inherited a TOR1A mutation from one parent. The parent may or may not have signs and symptoms of the condition, and other family members may or may not be affected. | early-onset primary dystonia |
What are the treatments for early-onset primary dystonia ? | These resources address the diagnosis or management of early-onset primary dystonia: - Gene Review: Gene Review: DYT1 Early-Onset Primary Dystonia - Genetic Testing Registry: Dystonia 1 - MedlinePlus Encyclopedia: Movement - uncontrolled or slow These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | early-onset primary dystonia |
What is (are) Andersen-Tawil syndrome ? | Anderson-Tawil syndrome is a disorder that causes episodes of muscle weakness (periodic paralysis), changes in heart rhythm (arrhythmia), and developmental abnormalities. The most common changes affecting the heart are ventricular arrhythmia, which is a disruption in the rhythm of the heart's lower chambers, and long QT syndrome. Long QT syndrome is a heart condition that causes the heart (cardiac) muscle to take longer than usual to recharge between beats. If untreated, the irregular heartbeats can lead to discomfort, fainting (syncope), or cardiac arrest. Physical abnormalities associated with Andersen-Tawil syndrome typically affect the head, face, and limbs. These features often include a very small lower jaw (micrognathia), dental abnormalities, low-set ears, widely spaced eyes, and unusual curving of the fingers or toes (clinodactyly). Some affected people also have short stature and an abnormal curvature of the spine (scoliosis). Two types of Andersen-Tawil syndrome are distinguished by their genetic causes. Type 1, which accounts for about 60 percent of all cases of the disorder, is caused by mutations in the KCNJ2 gene. The remaining 40 percent of cases are designated as type 2; the cause of these cases is unknown. | Andersen-Tawil syndrome |
How many people are affected by Andersen-Tawil syndrome ? | Andersen-Tawil syndrome is a rare genetic disorder; its incidence is unknown. About 100 people with this condition have been reported worldwide. | Andersen-Tawil syndrome |
What are the genetic changes related to Andersen-Tawil syndrome ? | Mutations in the KCNJ2 gene cause Andersen-Tawil syndrome. The KCNJ2 gene provides instructions for making a protein that forms a channel across cell membranes. This channel transports positively charged atoms (ions) of potassium into muscle cells. The movement of potassium ions through these channels is critical for maintaining the normal functions of muscles used for movement (skeletal muscles) and cardiac muscle. Mutations in the KCNJ2 gene alter the usual structure and function of potassium channels or prevent the channels from being inserted correctly into the cell membrane. Many mutations prevent a molecule called PIP2 from binding to the channels and effectively regulating their activity. These changes disrupt the flow of potassium ions in skeletal and cardiac muscle, leading to the periodic paralysis and irregular heart rhythm characteristic of Andersen-Tawil syndrome. Researchers have not determined the role of the KCNJ2 gene in bone development, and it is not known how mutations in the gene lead to the developmental abnormalities often found in Andersen-Tawil syndrome. | Andersen-Tawil syndrome |
Is Andersen-Tawil syndrome inherited ? | This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In some cases, a person with Andersen-Tawil syndrome inherits the mutation from one affected parent. Other cases result from new mutations in the KCNJ2 gene. These cases occur in people with no history of the disorder in their family. | Andersen-Tawil syndrome |
What are the treatments for Andersen-Tawil syndrome ? | These resources address the diagnosis or management of Andersen-Tawil syndrome: - Gene Review: Gene Review: Andersen-Tawil Syndrome - Genetic Testing Registry: Andersen Tawil syndrome These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Andersen-Tawil syndrome |
What is (are) Gitelman syndrome ? | Gitelman syndrome is a kidney disorder that causes an imbalance of charged atoms (ions) in the body, including ions of potassium, magnesium, and calcium. The signs and symptoms of Gitelman syndrome usually appear in late childhood or adolescence. Common features of this condition include painful muscle spasms (tetany), muscle weakness or cramping, dizziness, and salt craving. Also common is a tingling or prickly sensation in the skin (paresthesias), most often affecting the face. Some individuals with Gitelman syndrome experience excessive tiredness (fatigue), low blood pressure, and a painful joint condition called chondrocalcinosis. Studies suggest that Gitelman syndrome may also increase the risk of a potentially dangerous abnormal heart rhythm called ventricular arrhythmia. The signs and symptoms of Gitelman syndrome vary widely, even among affected members of the same family. Most people with this condition have relatively mild symptoms, although affected individuals with severe muscle cramping, paralysis, and slow growth have been reported. | Gitelman syndrome |
How many people are affected by Gitelman syndrome ? | Gitelman syndrome affects an estimated 1 in 40,000 people worldwide. | Gitelman syndrome |
What are the genetic changes related to Gitelman syndrome ? | Gitelman syndrome is usually caused by mutations in the SLC12A3 gene. Less often, the condition results from mutations in the CLCNKB gene. The proteins produced from these genes are involved in the kidneys' reabsorption of salt (sodium chloride or NaCl) from urine back into the bloodstream. Mutations in either gene impair the kidneys' ability to reabsorb salt, leading to the loss of excess salt in the urine (salt wasting). Abnormalities of salt transport also affect the reabsorption of other ions, including ions of potassium, magnesium, and calcium. The resulting imbalance of ions in the body underlies the major features of Gitelman syndrome. | Gitelman syndrome |
Is Gitelman syndrome inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | Gitelman syndrome |
What are the treatments for Gitelman syndrome ? | These resources address the diagnosis or management of Gitelman syndrome: - Genetic Testing Registry: Familial hypokalemia-hypomagnesemia These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Gitelman syndrome |
What is (are) 16p11.2 deletion syndrome ? | 16p11.2 deletion syndrome is a disorder caused by a deletion of a small piece of chromosome 16. The deletion occurs near the middle of the chromosome at a location designated p11.2. People with 16p11.2 deletion syndrome usually have developmental delay and intellectual disability. Most also have at least some features of autism spectrum disorders. These disorders are characterized by impaired communication and socialization skills, as well as delayed development of speech and language. In 16p11.2 deletion syndrome, expressive language skills (vocabulary and the production of speech) are generally more severely affected than receptive language skills (the ability to understand speech). Some people with this disorder have recurrent seizures (epilepsy). Some affected individuals have minor physical abnormalities such as low-set ears or partially webbed toes (partial syndactyly). People with this disorder are also at increased risk of obesity compared with the general population. However, there is no particular pattern of physical abnormalities that characterizes 16p11.2 deletion syndrome. Signs and symptoms of the disorder vary even among affected members of the same family. Some people with the deletion have no identified physical, intellectual, or behavioral abnormalities. | 16p11.2 deletion syndrome |
How many people are affected by 16p11.2 deletion syndrome ? | Most people tested for the 16p11.2 deletion have come to medical attention as a result of developmental delay or autistic behaviors. Other individuals with the 16p11.2 deletion have no associated health or behavioral problems, and so the deletion may never be detected. For this reason, the prevalence of this deletion in the general population is difficult to determine but has been estimated at approximately 3 in 10,000. | 16p11.2 deletion syndrome |
What are the genetic changes related to 16p11.2 deletion syndrome ? | People with 16p11.2 deletion syndrome are missing a sequence of about 600,000 DNA building blocks (base pairs), also written as 600 kilobases (kb), at position p11.2 on chromosome 16. This deletion affects one of the two copies of chromosome 16 in each cell. The 600 kb region contains more than 25 genes, and in many cases little is known about their function. Researchers are working to determine how the missing genes contribute to the features of 16p11.2 deletion syndrome. | 16p11.2 deletion syndrome |
Is 16p11.2 deletion syndrome inherited ? | 16p11.2 deletion syndrome is considered to have an autosomal dominant inheritance pattern because a deletion in one copy of chromosome 16 in each cell is sufficient to cause the condition. However, most cases of 16p11.2 deletion syndrome are not inherited. The deletion occurs most often as a random event during the formation of reproductive cells (eggs and sperm) or in early fetal development. Affected people typically have no history of the disorder in their family, although they can pass the condition to their children. Several examples of inherited 16p11.2 deletion have been reported. In inherited cases, other family members may be affected as well. | 16p11.2 deletion syndrome |
What are the treatments for 16p11.2 deletion syndrome ? | These resources address the diagnosis or management of 16p11.2 deletion syndrome: - Gene Review: Gene Review: 16p11.2 Recurrent Microdeletion - Genetic Testing Registry: 16p11.2 deletion syndrome - Genetic Testing Registry: Autism, susceptibility to, 14a These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | 16p11.2 deletion syndrome |
What is (are) Sjgren syndrome ? | Sjgren syndrome is a disorder whose main features are dry eyes and a dry mouth. The condition typically develops gradually beginning in middle adulthood, but can occur at any age. Sjgren syndrome is classified as an autoimmune disorder, one of a large group of conditions that occur when the immune system attacks the body's own tissues and organs. In Sjgren syndrome, the immune system primarily attacks the glands that produce tears (the lacrimal glands) and saliva (the salivary glands), impairing the glands' ability to secrete these fluids. Dry eyes may lead to itching, burning, a feeling of sand in the eyes, blurry vision, or intolerance of bright or fluorescent lighting. A dry mouth can feel chalky or full of cotton, and affected individuals may have difficulty speaking, tasting food, or swallowing. Because saliva helps protect the teeth and the tissues of the oral cavity, people with Sjgren syndrome are at increased risk of tooth decay and infections in the mouth. In most people with Sjgren syndrome, dry eyes and dry mouth are the primary features of the disorder, and general health and life expectancy are largely unaffected. However, in some cases the immune system also attacks and damages other organs and tissues. This complication is known as extraglandular involvement. Affected individuals may develop inflammation in connective tissues, which provide strength and flexibility to structures throughout the body. Disorders involving connective tissue inflammation are sometimes called rheumatic conditions. In Sjgren syndrome, extraglandular involvement may result in painful inflammation of the joints and muscles; dry, itchy skin and skin rashes; chronic cough; a hoarse voice; kidney and liver problems; numbness or tingling in the hands and feet; and, in women, vaginal dryness. Prolonged and extreme tiredness (fatigue) severe enough to affect activities of daily living may also occur in this disorder. A small number of people with Sjgren syndrome develop lymphoma, a blood-related cancer that causes tumor formation in the lymph nodes. When Sjgren syndrome first occurs on its own, it is called primary Sjgren syndrome. Some individuals who are first diagnosed with another rheumatic disorder, such as rheumatoid arthritis or systemic lupus erythematosus, later develop the dry eyes and dry mouth characteristic of Sjgren syndrome. In such cases, the individual is said to have secondary Sjgren syndrome. Other autoimmune disorders can also develop after the onset of primary Sjgren syndrome. In all, about half of all individuals with Sjgren syndrome also have another autoimmune disorder. | Sjgren syndrome |
How many people are affected by Sjgren syndrome ? | Sjgren syndrome is a relatively common disorder; it occurs in 0.1 to 4 percent of the population. It is difficult to determine the exact prevalence because the characteristic features of this disorder, dry eyes and dry mouth, can also be caused by many other conditions. Women develop Sjgren syndrome about 10 times more often than men; the specific reason for this difference is unknown but likely involves the effects of sex hormones on immune system function. | Sjgren syndrome |
What are the genetic changes related to Sjgren syndrome ? | Sjgren syndrome is thought to result from a combination of genetic and environmental factors; however, no associations between specific genetic changes and the development of Sjgren syndrome have been confirmed. Researchers believe that variations in many genes affect the risk of developing Sjgren syndrome, but that development of the condition may be triggered by something in the environment. In particular, viral or bacterial infections, which activate the immune system, may have the potential to encourage the development of Sjgren syndrome in susceptible individuals. The genetic variations that increase susceptibility may reduce the body's ability to turn off the immune response when it is no longer needed. | Sjgren syndrome |
Is Sjgren syndrome inherited ? | A predisposition to develop autoimmune disorders can be passed through generations in families. Relatives of people with Sjgren syndrome are at an increased risk of developing autoimmune diseases, although they are not necessarily more likely to develop Sjgren syndrome in particular. The inheritance pattern of this predisposition is unknown. | Sjgren syndrome |
What are the treatments for Sjgren syndrome ? | These resources address the diagnosis or management of Sjgren syndrome: - Genetic Testing Registry: Sjgren's syndrome - MedlinePlus Encyclopedia: Schirmer's Test - National Institute of Dental and Craniofacial Research: Sjgren's Syndrome Clinic - Sjgren's Syndrome Foundation: Treatments These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Sjgren syndrome |
What is (are) Werner syndrome ? | Werner syndrome is characterized by the dramatic, rapid appearance of features associated with normal aging. Individuals with this disorder typically grow and develop normally until they reach puberty. Affected teenagers usually do not have a growth spurt, resulting in short stature. The characteristic aged appearance of individuals with Werner syndrome typically begins to develop when they are in their twenties and includes graying and loss of hair; a hoarse voice; and thin, hardened skin. They may also have a facial appearance described as "bird-like." Many people with Werner syndrome have thin arms and legs and a thick trunk due to abnormal fat deposition. As Werner syndrome progresses, affected individuals may develop disorders of aging early in life, such as cloudy lenses (cataracts) in both eyes, skin ulcers, type 2 diabetes, diminished fertility, severe hardening of the arteries (atherosclerosis), thinning of the bones (osteoporosis), and some types of cancer. It is not uncommon for affected individuals to develop multiple, rare cancers during their lifetime. People with Werner syndrome usually live into their late forties or early fifties. The most common causes of death are cancer and atherosclerosis. | Werner syndrome |
How many people are affected by Werner syndrome ? | Werner syndrome is estimated to affect 1 in 200,000 individuals in the United States. This syndrome occurs more often in Japan, affecting 1 in 20,000 to 1 in 40,000 people. | Werner syndrome |
What are the genetic changes related to Werner syndrome ? | Mutations in the WRN gene cause Werner syndrome. The WRN gene provides instructions for producing the Werner protein, which is thought to perform several tasks related to the maintenance and repair of DNA. This protein also assists in the process of copying (replicating) DNA in preparation for cell division. Mutations in the WRN gene often lead to the production of an abnormally short, nonfunctional Werner protein. Research suggests that this shortened protein is not transported to the cell's nucleus, where it normally interacts with DNA. Evidence also suggests that the altered protein is broken down more quickly in the cell than the normal Werner protein. Researchers do not fully understand how WRN mutations cause the signs and symptoms of Werner syndrome. Cells with an altered Werner protein may divide more slowly or stop dividing earlier than normal, causing growth problems. Also, the altered protein may allow DNA damage to accumulate, which could impair normal cell activities and cause the health problems associated with this condition. | Werner syndrome |
Is Werner syndrome inherited ? | Werner syndrome is inherited in an autosomal recessive pattern, which means both copies of the WRN gene in each cell have mutations. The parents of an individual with Werner syndrome each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | Werner syndrome |
What are the treatments for Werner syndrome ? | These resources address the diagnosis or management of Werner syndrome: - Gene Review: Gene Review: Werner Syndrome - Genetic Testing Registry: Werner syndrome These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Werner syndrome |
What is (are) multiple system atrophy ? | Multiple system atrophy is a progressive brain disorder that affects movement and balance and disrupts the function of the autonomic nervous system. The autonomic nervous system controls body functions that are mostly involuntary, such as regulation of blood pressure. Researchers have described two major types of multiple system atrophy, which are distinguished by their major signs and symptoms at the time of diagnosis. In one type, known as MSA-P, a group of movement abnormalities called parkinsonism are predominant. These abnormalities include unusually slow movement (bradykinesia), muscle rigidity, tremors, and an inability to hold the body upright and balanced (postural instability). The other type of multiple system atrophy, known as MSA-C, is characterized by cerebellar ataxia, which causes problems with coordination and balance. This form of the condition can also include speech difficulties (dysarthria) and problems controlling eye movement. Both forms of multiple system atrophy are associated with abnormalities of the autonomic nervous system. The most frequent autonomic symptoms associated with multiple system atrophy are a sudden drop in blood pressure upon standing (orthostatic hypotension), urinary difficulties, and erectile dysfunction in men. Multiple system atrophy usually occurs in older adults; on average, signs and symptoms appear around age 55. The signs and symptoms of the condition worsen with time, and affected individuals survive an average of 9 years after their diagnosis. | multiple system atrophy |
How many people are affected by multiple system atrophy ? | Multiple system atrophy has a prevalence of about 2 to 5 per 100,000 people. | multiple system atrophy |
What are the genetic changes related to multiple system atrophy ? | Multiple system atrophy is a complex condition that is likely caused by the interaction of multiple genetic and environmental factors. Some of these factors have been identified, but many remain unknown. Changes in several genes have been studied as possible risk factors for multiple system atrophy. The only confirmed genetic risk factors are variants in the SNCA gene. This gene provides instructions for making a protein called alpha-synuclein, which is abundant in normal brain cells but whose function is unknown. Studies suggest that several common variations in the SNCA gene are associated with an increased risk of multiple system atrophy in people of European descent. However, it is unclear how having one of these SNCA gene variants increases the risk of developing this condition. Researchers have also examined environmental factors that could contribute to the risk of multiple system atrophy. Initial studies suggested that exposure to solvents, certain types of plastic or metal, and other potential toxins might be associated with the condition. However, these associations have not been confirmed. Multiple system atrophy is characterized by clumps of abnormal alpha-synuclein protein that build up in cells in many parts of the brain and spinal cord. Over time, these clumps (which are known as inclusions) damage cells in parts of the nervous system that control movement, balance and coordination, and autonomic functioning. The progressive loss of cells in these regions underlies the major features of multiple system atrophy. | multiple system atrophy |
Is multiple system atrophy inherited ? | Most cases of multiple system atrophy are sporadic, which means they occur in people with no history of the disorder in their family. Rarely, the condition has been reported to run in families; however, it does not have a clear pattern of inheritance. | multiple system atrophy |
What are the treatments for multiple system atrophy ? | These resources address the diagnosis or management of multiple system atrophy: - Genetic Testing Registry: Shy-Drager syndrome - Vanderbilt Autonomic Dysfunction Center These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | multiple system atrophy |
What is (are) Paget disease of bone ? | Paget disease of bone is a disorder that causes bones to grow larger and weaker than normal. Affected bones may be misshapen and easily broken (fractured). The classic form of Paget disease of bone typically appears in middle age or later. It usually occurs in one or a few bones and does not spread from one bone to another. Any bones can be affected, although the disease most commonly affects bones in the spine, pelvis, skull, or legs. Many people with classic Paget disease of bone do not experience any symptoms associated with their bone abnormalities. The disease is often diagnosed unexpectedly by x-rays or laboratory tests done for other reasons. People who develop symptoms are most likely to experience pain. The affected bones may themselves be painful, or pain may be caused by arthritis in nearby joints. Arthritis results when the distortion of bones, particularly weight-bearing bones in the legs, causes extra wear and tear on the joints. Arthritis most frequently affects the knees and hips in people with this disease. Other complications of Paget disease of bone depend on which bones are affected. If the disease occurs in bones of the skull, it can cause an enlarged head, hearing loss, headaches, and dizziness. If the disease affects bones in the spine, it can lead to numbness and tingling (due to pinched nerves) and abnormal spinal curvature. In the leg bones, the disease can cause bowed legs and difficulty walking. A rare type of bone cancer called osteosarcoma has been associated with Paget disease of bone. This type of cancer probably occurs in less than 1 in 1,000 people with this disease. Early-onset Paget disease of bone is a less common form of the disease that appears in a person's teens or twenties. Its features are similar to those of the classic form of the disease, although it is more likely to affect the skull, spine, and ribs (the axial skeleton) and the small bones of the hands. The early-onset form of the disorder is also associated with hearing loss early in life. | Paget disease of bone |
How many people are affected by Paget disease of bone ? | Classic Paget disease of bone occurs in approximately 1 percent of people older than 40 in the United States. Scientists estimate that about 1 million people in this country have the disease. It is most common in people of western European heritage. Early-onset Paget disease of bone is much rarer. This form of the disorder has been reported in only a few families. | Paget disease of bone |
What are the genetic changes related to Paget disease of bone ? | A combination of genetic and environmental factors likely play a role in causing Paget disease of bone. Researchers have identified changes in several genes that increase the risk of the disorder. Other factors, including infections with certain viruses, may be involved in triggering the disease in people who are at risk. However, the influence of genetic and environmental factors on the development of Paget disease of bone remains unclear. Researchers have identified variations in three genes that are associated with Paget disease of bone: SQSTM1, TNFRSF11A, and TNFRSF11B. Mutations in the SQSTM1 gene are the most common genetic cause of classic Paget disease of bone, accounting for 10 to 50 percent of cases that run in families and 5 to 30 percent of cases in which there is no family history of the disease. Variations in the TNFRSF11B gene also appear to increase the risk of the classic form of the disorder, particularly in women. TNFRSF11A mutations cause the early-onset form of Paget disease of bone. The SQSTM1, TNFRSF11A, and TNFRSF11B genes are involved in bone remodeling, a normal process in which old bone is broken down and new bone is created to replace it. Bones are constantly being remodeled, and the process is carefully controlled to ensure that bones stay strong and healthy. Paget disease of bone disrupts the bone remodeling process. Affected bone is broken down abnormally and then replaced much faster than usual. When the new bone tissue grows, it is larger, weaker, and less organized than normal bone. It is unclear why these problems with bone remodeling affect some bones but not others in people with this disease. Researchers are looking for additional genes that may influence a person's chances of developing Paget disease of bone. Studies suggest that genetic variations in certain regions of chromosome 2, chromosome 5, and chromosome 10 appear to contribute to disease risk. However, the associated genes on these chromosomes have not been identified. | Paget disease of bone |
Is Paget disease of bone inherited ? | In 15 to 40 percent of all cases of classic Paget disease of bone, the disorder has an autosomal dominant pattern of inheritance. Autosomal dominant inheritance means that having one copy of an altered gene in each cell is sufficient to cause the disorder. In the remaining cases, the inheritance pattern of classic Paget disease of bone is unclear. Many affected people have no family history of the disease, although it sometimes clusters in families. Studies suggest that close relatives of people with classic Paget disease of bone are 7 to 10 times more likely to develop the disease than people without an affected relative. Early-onset Paget disease of bone is inherited in an autosomal dominant pattern. In people with this form of the disorder, having one altered copy of the TNFRSF11A gene in each cell is sufficient to cause the disease. | Paget disease of bone |
What are the treatments for Paget disease of bone ? | These resources address the diagnosis or management of Paget disease of bone: - Genetic Testing Registry: Osteitis deformans - Genetic Testing Registry: Paget disease of bone 4 - Genetic Testing Registry: Paget disease of bone, familial - MedlinePlus Encyclopedia: Paget's Disease of the Bone These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Paget disease of bone |
What is (are) dystrophic epidermolysis bullosa ? | Epidermolysis bullosa is a group of genetic conditions that cause the skin to be very fragile and to blister easily. Blisters and skin erosions form in response to minor injury or friction, such as rubbing or scratching. Dystrophic epidermolysis bullosa (DEB) is one of the major forms of epidermolysis bullosa. The signs and symptoms of this condition vary widely among affected individuals. In mild cases, blistering may primarily affect the hands, feet, knees, and elbows. Severe cases of this condition involve widespread blistering that can lead to vision loss, disfigurement, and other serious medical problems. Researchers classify dystrophic epidermolysis bullosa into three major types. Although the types differ in severity, their features overlap significantly and they are caused by mutations in the same gene. Autosomal recessive dystrophic epidermolysis bullosa, Hallopeau-Siemens type (RDEB-HS) is the most severe, classic form of the condition. Affected infants are typically born with widespread blistering and areas of missing skin, often caused by trauma during birth. Most often, blisters are present over the whole body and affect mucous membranes such as the moist lining of the mouth and digestive tract. As the blisters heal, they result in severe scarring. Scarring in the mouth and esophagus can make it difficult to chew and swallow food, leading to chronic malnutrition and slow growth. Additional complications of progressive scarring can include fusion of the fingers and toes, loss of fingernails and toenails, joint deformities (contractures) that restrict movement, and eye inflammation leading to vision loss. Additionally, young adults with the classic form of dystrophic epidermolysis bullosa have a very high risk of developing a form of skin cancer called squamous cell carcinoma, which tends to be unusually aggressive and is often life-threatening. A second type of autosomal recessive dystrophic epidermolysis bullosa is known as the non-Hallopeau-Siemens type (non-HS RDEB). This form of the condition is somewhat less severe than the classic type and includes a range of subtypes. Blistering is limited to the hands, feet, knees, and elbows in mild cases, but may be widespread in more severe cases. Affected people often have malformed fingernails and toenails. Non-HS RDEB involves scarring in the areas where blisters occur, but this form of the condition does not cause the severe scarring characteristic of the classic type. The third major type of dystrophic epidermolysis bullosa is known as the autosomal dominant type (DDEB). The signs and symptoms of this condition tend to be milder than those of the autosomal recessive forms, with blistering often limited to the hands, feet, knees, and elbows. The blisters heal with scarring, but it is less severe. Most affected people have malformed fingernails and toenails, and the nails may be lost over time. In the mildest cases, abnormal nails are the only sign of the condition. | dystrophic epidermolysis bullosa |
How many people are affected by dystrophic epidermolysis bullosa ? | Considered together, the incidence of all types of dystrophic epidermolysis bullosa is estimated to be 6.5 per million newborns in the United States. The severe autosomal recessive forms of this disorder affect fewer than 1 per million newborns. | dystrophic epidermolysis bullosa |
What are the genetic changes related to dystrophic epidermolysis bullosa ? | Mutations in the COL7A1 gene cause all three major forms of dystrophic epidermolysis bullosa. This gene provides instructions for making a protein that is used to assemble type VII collagen. Collagens are molecules that give structure and strength to connective tissues, such as skin, tendons, and ligaments, throughout the body. Type VII collagen plays an important role in strengthening and stabilizing the skin. It is the main component of structures called anchoring fibrils, which anchor the top layer of skin, called the epidermis, to an underlying layer called the dermis. COL7A1 mutations alter the structure or disrupt the production of type VII collagen, which impairs its ability to help connect the epidermis to the dermis. When type VII collagen is abnormal or missing, friction or other minor trauma can cause the two skin layers to separate. This separation leads to the formation of blisters, which can cause extensive scarring as they heal. Researchers are working to determine how abnormalities of type VII collagen also underlie the increased risk of skin cancer seen in the severe form of dystrophic epidermolysis bullosa. | dystrophic epidermolysis bullosa |
Is dystrophic epidermolysis bullosa inherited ? | The most severe types of dystrophic epidermolysis bullosa are inherited in an autosomal recessive pattern. Autosomal recessive inheritance means that both copies of the COL7A1 gene in each cell have mutations. Most often, the parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but do not show signs and symptoms of the condition. A milder form of dystrophic epidermolysis bullosa has an autosomal dominant pattern of inheritance. Autosomal dominant inheritance means that one copy of the altered gene in each cell is sufficient to cause the disorder. About 70 percent of all people with autosomal dominant dystrophic epidermolysis bullosa have inherited an altered COL7A1 gene from an affected parent. The remaining 30 percent of affected people have the condition as a result of a new mutation in the COL7A1 gene. These cases occur in people with no history of the disorder in their family. | dystrophic epidermolysis bullosa |
What are the treatments for dystrophic epidermolysis bullosa ? | These resources address the diagnosis or management of dystrophic epidermolysis bullosa: - Gene Review: Gene Review: Dystrophic Epidermolysis Bullosa - Genetic Testing Registry: Dystrophic epidermolysis bullosa - Genetic Testing Registry: Generalized dominant dystrophic epidermolysis bullosa - Genetic Testing Registry: Recessive dystrophic epidermolysis bullosa - MedlinePlus Encyclopedia: Epidermolysis bullosa - MedlinePlus Encyclopedia: Squamous Cell Skin Cancer These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | dystrophic epidermolysis bullosa |
What is (are) Mainzer-Saldino syndrome ? | Mainzer-Saldino syndrome is a disorder characterized by kidney disease, eye problems, and skeletal abnormalities. People with Mainzer-Saldino syndrome have chronic kidney disease that begins in childhood and gets worse over time. The rate at which the kidney disease worsens is variable, but the condition eventually leads to kidney failure in most affected individuals. Degeneration of the light-sensitive tissue at the back of the eye (the retina) almost always occurs in this disorder, but the age at which this feature develops varies. Some affected individuals are blind or have severe vision impairment beginning in infancy, with the pattern of vision loss resembling a condition called Leber congenital amaurosis. In other people with Mainzer-Saldino syndrome, the retinal degeneration begins in childhood, but some vision is retained into early adulthood. The vision loss in these affected individuals resembles a category of retinal disorders called rod-cone dystrophies. The most common rod-cone dystrophy is called retinitis pigmentosa, and the vision problems in Mainzer-Saldino syndrome are sometimes referred to as such. However, the abnormal deposits of pigment in the retina from which retinitis pigmentosa gets its name are often not found in Mainzer-Saldino syndrome. As a result, some researchers use terms such as "atypical retinitis pigmentosa without pigment" to describe the retinal degeneration that occurs in Mainzer-Saldino syndrome. The skeletal abnormality most characteristic of Mainzer-Saldino syndrome consists of cone-shaped ends of the bones (epiphyses) in the fingers (phalanges) that can be seen on x-ray images after the first year of life. Affected individuals may also have abnormalities of the thigh bones that occur in the epiphyses and adjacent areas where bone growth occurs (the metaphyses). Occasionally, other skeletal abnormalities occur, including short stature and premature fusion of certain skull bones (craniosynostosis) that affects the shape of the head and face. Affected individuals may also have a small rib cage, which sometimes causes breathing problems in infancy, but the breathing problems are usually mild. A small number of individuals with this disorder have additional problems affecting other organs. These can include liver disease resulting in a buildup of scar tissue in the liver (hepatic fibrosis); cerebellar ataxia, which is difficulty with coordination and balance arising from problems with a part of the brain called the cerebellum; and mild intellectual disability. | Mainzer-Saldino syndrome |
How many people are affected by Mainzer-Saldino syndrome ? | Mainzer-Saldino syndrome is a rare disorder; its prevalence is unknown. At least 20 cases have been reported. | Mainzer-Saldino syndrome |
What are the genetic changes related to Mainzer-Saldino syndrome ? | Mainzer-Saldino syndrome is usually caused by mutations in the IFT140 gene. This gene provides instructions for making a protein that is involved in the formation and maintenance of cilia, which are microscopic, finger-like projections that stick out from the surface of cells and participate in signaling pathways that transmit information within and between cells. Cilia are important for the structure and function of many types of cells, including cells in the kidneys, liver, and brain. Light-sensing cells (photoreceptors) in the retina also contain cilia, which are essential for normal vision. Cilia also play a role in the development of the bones, although the mechanism is not well understood. The movement of substances within cilia and similar structures called flagella is known as intraflagellar transport (IFT). This process is essential for the assembly and maintenance of these cell structures. During intraflagellar transport, cells use molecules called IFT particles to carry materials to and from the tips of cilia. IFT particles are made of proteins produced from related genes that belong to the IFT gene family. Each IFT particle is made up of two groups of IFT proteins: complex A, which includes at least six proteins, and complex B, which includes at least 15 proteins. The protein produced from the IFT140 gene forms part of IFT complex A (IFT-A). Mutations in the IFT140 gene that cause Mainzer-Saldino syndrome may change the shape of the IFT140 protein or affect its interactions with other IFT proteins, likely impairing the assembly of IFT-A and the development or maintenance of cilia. As a result, fewer cilia may be present or functional, affecting many organs and tissues in the body and resulting in the signs and symptoms of Mainzer-Saldino syndrome. Disorders such as Mainzer-Saldino syndrome that are caused by problems with cilia and involve bone abnormalities are called skeletal ciliopathies. While IFT140 gene mutations are believed to account for most cases of Mainzer-Saldino syndrome, mutations in additional genes that have not been identified may also cause this disorder. | Mainzer-Saldino syndrome |
Is Mainzer-Saldino syndrome inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | Mainzer-Saldino syndrome |
What are the treatments for Mainzer-Saldino syndrome ? | These resources address the diagnosis or management of Mainzer-Saldino syndrome: - MedlinePlus Encyclopedia: Electroretinography - National Institutes of Diabetes and Digestive and Kidney Diseases: Treatment Methods for Kidney Failure in Children These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Mainzer-Saldino syndrome |
What is (are) fibronectin glomerulopathy ? | Fibronectin glomerulopathy is a kidney disease that usually develops between early and mid-adulthood but can occur at any age. It eventually leads to irreversible kidney failure (end-stage renal disease). Individuals with fibronectin glomerulopathy usually have blood and excess protein in their urine (hematuria and proteinuria, respectively). They also have high blood pressure (hypertension). Some affected individuals develop renal tubular acidosis, which occurs when the kidneys are unable to remove enough acid from the body and the blood becomes too acidic. The kidneys of people with fibronectin glomerulopathy have large deposits of the protein fibronectin-1 in structures called glomeruli. These structures are clusters of tiny blood vessels in the kidneys that filter waste products from blood. The waste products are then released in urine. The fibronectin-1 deposits impair the glomeruli's filtration ability. Fifteen to 20 years following the appearance of signs and symptoms, individuals with fibronectin glomerulopathy often develop end-stage renal disease. Affected individuals may receive treatment in the form of a kidney transplant; in some cases, fibronectin glomerulopathy comes back (recurs) following transplantation. | fibronectin glomerulopathy |
How many people are affected by fibronectin glomerulopathy ? | Fibronectin glomerulopathy is likely a rare condition, although its prevalence is unknown. At least 45 cases have been described in the scientific literature. | fibronectin glomerulopathy |
What are the genetic changes related to fibronectin glomerulopathy ? | Fibronectin glomerulopathy can be caused by mutations in the FN1 gene. The FN1 gene provides instructions for making the fibronectin-1 protein. Fibronectin-1 is involved in the continual formation of the extracellular matrix, which is an intricate lattice of proteins and other molecules that forms in the spaces between cells. During extracellular matrix formation, fibronectin-1 helps individual cells expand (spread) and move (migrate) to cover more space, and it also influences cell shape and maturation (differentiation). FN1 gene mutations lead to production of an abnormal fibronectin-1 protein that gets deposited in the glomeruli of the kidneys, probably as the body attempts to filter it out as waste. Even though there is an abundance of fibronectin-1 in the glomeruli, the extracellular matrix that supports the blood vessels is weak because the altered fibronectin-1 cannot assist in the matrix's continual formation. Without a strong cellular support network, the glomeruli are less able to filter waste. As a result, products that normally are retained by the body, such as protein and blood, get released in the urine, and acids are not properly filtered from the blood. Over time, the kidneys' ability to filter waste decreases until the kidneys can no longer function, resulting in end-stage renal disease. It is estimated that mutations in the FN1 gene are responsible for 40 percent of cases of fibronectin glomerulopathy. The cause of the remaining cases of this condition is unknown. | fibronectin glomerulopathy |
Is fibronectin glomerulopathy inherited ? | When fibronectin glomerulopathy is caused by mutations in the FN1 gene, it is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In some of these cases, an affected person inherits the mutation from one affected parent. Other cases result from new mutations in the gene and occur in people with no history of the disorder in their family. Some people who have the altered FN1 gene never develop the condition, a situation known as reduced penetrance. | fibronectin glomerulopathy |
What are the treatments for fibronectin glomerulopathy ? | These resources address the diagnosis or management of fibronectin glomerulopathy: - Genetic Testing Registry: Glomerulopathy with fibronectin deposits 2 - MedlinePlus Encyclopedia: Protein Urine Test These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | fibronectin glomerulopathy |
What is (are) familial porencephaly ? | Familial porencephaly is part of a group of conditions called the COL4A1-related disorders. The conditions in this group have a range of signs and symptoms that involve fragile blood vessels. In familial porencephaly, fluid-filled cysts develop in the brain (porencephaly) during fetal development or soon after birth. These cysts typically occur in only one side of the brain and vary in size. The cysts are thought to be the result of bleeding within the brain (hemorrhagic stroke). People with this condition also have leukoencephalopathy, which is a change in a type of brain tissue called white matter that can be seen with magnetic resonance imaging (MRI). During infancy, people with familial porencephaly typically have paralysis affecting one side of the body (infantile hemiplegia). Affected individuals may also have recurrent seizures (epilepsy), migraine headaches, speech problems, intellectual disability, and uncontrolled muscle tensing (dystonia). Some people are severely affected, and others may have no symptoms related to the brain cysts. | familial porencephaly |
How many people are affected by familial porencephaly ? | Familial porencephaly is a rare condition, although the exact prevalence is unknown. At least eight affected families have been described in the scientific literature. | familial porencephaly |
What are the genetic changes related to familial porencephaly ? | Mutations in the COL4A1 gene cause familial porencephaly. The COL4A1 gene provides instructions for making one component of a protein called type IV collagen. Type IV collagen molecules attach to each other to form complex protein networks. These protein networks are the main components of basement membranes, which are thin sheet-like structures that separate and support cells in many tissues. Type IV collagen networks play an important role in the basement membranes in virtually all tissues throughout the body, particularly the basement membranes surrounding the body's blood vessels (vasculature). The COL4A1 gene mutations that cause familial porencephaly result in the production of a protein that disrupts the structure of type IV collagen. As a result, type IV collagen molecules cannot attach to each other to form the protein networks in basement membranes. Basement membranes without normal type IV collagen are unstable, leading to weakening of the tissues that they surround. In people with familial porencephaly, the vasculature in the brain weakens, which can lead to blood vessel breakage and hemorrhagic stroke. Bleeding within the brain is followed by the formation of fluid-filled cysts characteristic of this condition. It is thought that the pressure and stress on the head during birth contributes to vessel breakage in people with this condition; however in some individuals, bleeding in the brain can occur before birth. | familial porencephaly |
Is familial porencephaly inherited ? | This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. | familial porencephaly |
What are the treatments for familial porencephaly ? | These resources address the diagnosis or management of familial porencephaly: - Gene Review: Gene Review: COL4A1-Related Disorders - Genetic Testing Registry: Familial porencephaly These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | familial porencephaly |
What is (are) Stve-Wiedemann syndrome ? | Stve-Wiedemann syndrome is a severe condition characterized by bone abnormalities and dysfunction of the autonomic nervous system, which controls involuntary body processes such as the regulation of breathing rate and body temperature. The condition is apparent from birth, and its key features include abnormal curvature (bowing) of the long bones in the legs, difficulty feeding and swallowing, and episodes of dangerously high body temperature (hyperthermia). In addition to bowed legs, affected infants can have bowed arms, permanently bent fingers and toes (camptodactyly), and joint deformities (contractures) in the elbows and knees that restrict their movement. Other features include abnormalities of the pelvic bones (the ilia) and reduced bone mineral density (osteopenia). In infants with Stve-Wiedemann syndrome, dysfunction of the autonomic nervous system typically leads to difficulty feeding and swallowing, breathing problems, and episodes of hyperthermia. Affected infants may also sweat excessively, even when the body temperature is not elevated, or have a reduced ability to feel pain. Many babies with this condition do not survive past infancy because of the problems regulating breathing and body temperature; however, some people with Stve-Wiedemann syndrome live into adolescence or later. Problems with breathing and swallowing usually improve in affected children who survive infancy; however, they still have difficulty regulating body temperature. In addition, the leg bowing worsens, and children with Stve-Wiedemann syndrome may develop prominent joints, an abnormal curvature of the spine (scoliosis), and spontaneous bone fractures. Some affected individuals have a smooth tongue that lacks the bumps that house taste buds (fungiform papillae). Affected children may also lose certain reflexes, particularly the reflex to blink when something touches the eye (corneal reflex) and the knee-jerk reflex (patellar reflex). Another condition once known as Schwartz-Jampel syndrome type 2 is now considered to be part of Stve-Wiedemann syndrome. Researchers have recommended that the designation Schwartz-Jampel syndrome type 2 no longer be used. | Stve-Wiedemann syndrome |
How many people are affected by Stve-Wiedemann syndrome ? | Stve-Wiedemann syndrome is a rare condition that has been found worldwide. Its prevalence is unknown. | Stve-Wiedemann syndrome |
What are the genetic changes related to Stve-Wiedemann syndrome ? | Stve-Wiedemann syndrome is usually caused by mutations in the LIFR gene. This gene provides instructions for making a protein called leukemia inhibitory factor receptor (LIFR). Receptor proteins have specific sites into which certain other proteins, called ligands, fit like keys into locks. Together, ligands and their receptors trigger signals that affect cell development and function. The LIFR protein acts as a receptor for a ligand known as leukemia inhibitory factor (LIF). LIFR signaling can control several cellular processes, including growth and division (proliferation), maturation (differentiation), and survival. First found to be important in blocking (inhibiting) growth of blood cancer (leukemia) cells, this signaling is also involved in the formation of bone and the development of nerve cells. It appears to play an important role in normal development and functioning of the autonomic nervous system. Most LIFR gene mutations that cause Stve-Wiedemann syndrome prevent production of any LIFR protein. Other mutations lead to production of an altered protein that likely cannot function. Without functional LIFR, signaling is impaired. The lack of LIFR signaling disrupts normal bone formation, leading to osteopenia, bowed legs, and other skeletal problems common in Stve-Wiedemann syndrome. In addition, development of nerve cells, particularly those involved in the autonomic nervous system, is abnormal, leading to the problems with breathing, feeding, and regulating body temperature characteristic of this condition. A small number of people with Stve-Wiedemann syndrome do not have an identified mutation in the LIFR gene. Researchers suggest that other genes that have not been identified may be involved in this condition. | Stve-Wiedemann syndrome |
Is Stve-Wiedemann syndrome inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | Stve-Wiedemann syndrome |
What are the treatments for Stve-Wiedemann syndrome ? | These resources address the diagnosis or management of Stve-Wiedemann syndrome: - Genetic Testing Registry: Stuve-Wiedemann syndrome These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Stve-Wiedemann syndrome |
What is (are) biotinidase deficiency ? | Biotinidase deficiency is an inherited disorder in which the body is unable to recycle the vitamin biotin. If this condition is not recognized and treated, its signs and symptoms typically appear within the first few months of life, although it can also become apparent later in childhood. Profound biotinidase deficiency, the more severe form of the condition, can cause seizures, weak muscle tone (hypotonia), breathing problems, hearing and vision loss, problems with movement and balance (ataxia), skin rashes, hair loss (alopecia), and a fungal infection called candidiasis. Affected children also have delayed development. Lifelong treatment can prevent these complications from occurring or improve them if they have already developed. Partial biotinidase deficiency is a milder form of this condition. Without treatment, affected children may experience hypotonia, skin rashes, and hair loss, but these problems may appear only during illness, infection, or other times of stress. | biotinidase deficiency |
How many people are affected by biotinidase deficiency ? | Profound or partial biotinidase deficiency occurs in approximately 1 in 60,000 newborns | biotinidase deficiency |
What are the genetic changes related to biotinidase deficiency ? | Mutations in the BTD gene cause biotinidase deficiency. The BTD gene provides instructions for making an enzyme called biotinidase. This enzyme recycles biotin, a B vitamin found in foods such as liver, egg yolks, and milk. Biotinidase removes biotin that is bound to proteins in food, leaving the vitamin in its free (unbound) state. Free biotin is needed by enzymes called biotin-dependent carboxylases to break down fats, proteins, and carbohydrates. Because several of these enzymes are impaired in biotinidase deficiency, the condition is considered a form of multiple carboxylase deficiency. Mutations in the BTD gene reduce or eliminate the activity of biotinidase. Profound biotinidase deficiency results when the activity of biotinidase is reduced to less than 10 percent of normal. Partial biotinidase deficiency occurs when biotinidase activity is reduced to between 10 percent and 30 percent of normal. Without enough of this enzyme, biotin cannot be recycled. The resulting shortage of free biotin impairs the activity of biotin-dependent carboxylases, leading to a buildup of potentially toxic compounds in the body. If the condition is not treated promptly, this buildup damages various cells and tissues, causing the signs and symptoms described above. | biotinidase deficiency |
Is biotinidase deficiency inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the BTD gene in each cell have mutations. The parents of an individual with biotinidase deficiency each carry one copy of the mutated gene, but they typically do not have any health problems associated with the condition. | biotinidase deficiency |
What are the treatments for biotinidase deficiency ? | These resources address the diagnosis or management of biotinidase deficiency: - Baby's First Test - Gene Review: Gene Review: Biotinidase Deficiency - Genetic Testing Registry: Biotinidase deficiency - MedlinePlus Encyclopedia: Pantothenic Acid and Biotin These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | biotinidase deficiency |
Subsets and Splits