problem
stringlengths 16
191
| explanation
stringlengths 6
29k
⌀ | type
stringlengths 3
136
⌀ |
---|---|---|
What is (are) central core disease ? | Central core disease is a disorder that affects muscles used for movement (skeletal muscles). This condition causes muscle weakness that ranges from almost unnoticeable to very severe. Most people with central core disease experience persistent, mild muscle weakness that does not worsen with time. This weakness affects the muscles near the center of the body (proximal muscles), particularly muscles in the upper legs and hips. Muscle weakness causes affected infants to appear "floppy" and can delay the development of motor skills such as sitting, standing, and walking. In severe cases, affected infants experience profoundly weak muscle tone (hypotonia) and serious or life-threatening breathing problems. Central core disease is also associated with skeletal abnormalities such as abnormal curvature of the spine (scoliosis), hip dislocation, and joint deformities called contractures that restrict the movement of certain joints. Many people with central core disease also have an increased risk of developing a severe reaction to certain drugs used during surgery and other invasive procedures. This reaction is called malignant hyperthermia. Malignant hyperthermia occurs in response to some anesthetic gases, which are used to block the sensation of pain, and with a particular type of muscle relaxant. If given these drugs, people at risk for malignant hyperthermia may experience muscle rigidity, breakdown of muscle fibers (rhabdomyolysis), a high fever, increased acid levels in the blood and other tissues (acidosis), and a rapid heart rate. The complications of malignant hyperthermia can be life-threatening unless they are treated promptly. Central core disease gets its name from disorganized areas called cores, which are found in the center of muscle fibers in many affected individuals. These abnormal regions can only be seen under a microscope. Although the presence of cores can help doctors diagnose central core disease, it is unclear how they are related to muscle weakness and the other features of this condition. | central core disease |
How many people are affected by central core disease ? | Central core disease is probably an uncommon condition, although its incidence is unknown. | central core disease |
What are the genetic changes related to central core disease ? | Mutations in the RYR1 gene cause central core disease. The RYR1 gene provides instructions for making a protein called ryanodine receptor 1. This protein plays an essential role in skeletal muscles. For the body to move normally, these muscles must tense (contract) and relax in a coordinated way. Muscle contractions are triggered by the flow of charged atoms (ions) into muscle cells. The ryanodine receptor 1 protein forms a channel that releases calcium ions stored within muscle cells. The resulting increase in calcium ion concentration inside muscle cells stimulates muscle fibers to contract, allowing the body to move. Mutations in the RYR1 gene change the structure of ryanodine receptor 1, allowing calcium ions to "leak" through the abnormal channel or impairing the channel's ability to release stored calcium ions at the correct time. This disruption in calcium ion transport prevents muscles from contracting normally, leading to the muscle weakness characteristic of central core disease. | central core disease |
Is central core disease inherited ? | Central core disease is most often inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In some cases, an affected person inherits the mutation from one affected parent. Other cases may result from new mutations in the gene. These cases occur in people with no history of the disorder in their family. Less commonly, central core disease is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. Most often, the parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but typically do not show signs and symptoms of the condition. People who carry one mutated copy of the RYR1 gene, however, may be at increased risk for malignant hyperthermia. | central core disease |
What are the treatments for central core disease ? | These resources address the diagnosis or management of central core disease: - Gene Review: Gene Review: Central Core Disease - Genetic Testing Registry: Central core disease - MedlinePlus Encyclopedia: Hypotonia - MedlinePlus Encyclopedia: Malignant Hyperthermia These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | central core disease |
What is (are) alkaptonuria ? | Alkaptonuria is an inherited condition that causes urine to turn black when exposed to air. Ochronosis, a buildup of dark pigment in connective tissues such as cartilage and skin, is also characteristic of the disorder. This blue-black pigmentation usually appears after age 30. People with alkaptonuria typically develop arthritis, particularly in the spine and large joints, beginning in early adulthood. Other features of this condition can include heart problems, kidney stones, and prostate stones. | alkaptonuria |
How many people are affected by alkaptonuria ? | This condition is rare, affecting 1 in 250,000 to 1 million people worldwide. Alkaptonuria is more common in certain areas of Slovakia (where it has an incidence of about 1 in 19,000 people) and in the Dominican Republic. | alkaptonuria |
What are the genetic changes related to alkaptonuria ? | Mutations in the HGD gene cause alkaptonuria. The HGD gene provides instructions for making an enzyme called homogentisate oxidase. This enzyme helps break down the amino acids phenylalanine and tyrosine, which are important building blocks of proteins. Mutations in the HGD gene impair the enzyme's role in this process. As a result, a substance called homogentisic acid, which is produced as phenylalanine and tyrosine are broken down, accumulates in the body. Excess homogentisic acid and related compounds are deposited in connective tissues, which causes cartilage and skin to darken. Over time, a buildup of this substance in the joints leads to arthritis. Homogentisic acid is also excreted in urine, making the urine turn dark when exposed to air. | alkaptonuria |
Is alkaptonuria inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | alkaptonuria |
What are the treatments for alkaptonuria ? | These resources address the diagnosis or management of alkaptonuria: - Gene Review: Gene Review: Alkaptonuria - Genetic Testing Registry: Alkaptonuria - MedlinePlus Encyclopedia: Alkaptonuria These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | alkaptonuria |
What is (are) CHMP2B-related frontotemporal dementia ? | CHMP2B-related frontotemporal dementia is a progressive brain disorder that affects personality, behavior, and language. The symptoms of this disorder usually become noticeable in a person's fifties or sixties, and affected people survive about 3 to 21 years after the appearance of symptoms. Changes in personality and behavior are the most common early signs of CHMP2B-related frontotemporal dementia. These changes include inappropriate emotional responses, restlessness, loss of initiative, and neglect of personal hygiene. Affected individuals may overeat sweet foods or place non-food items into their mouths (hyperorality). Additionally, it may become difficult for affected individuals to interact with others in a socially appropriate manner. They increasingly require help with personal care and other activities of daily living. Many people with CHMP2B-related frontotemporal dementia develop progressive problems with speech and language (aphasia). They may have trouble speaking, although they can often understand others' speech and written text. Affected individuals may also have difficulty using numbers (dyscalculia). In the later stages of the disease, many completely lose the ability to communicate. Several years after signs and symptoms first appear, some people with CHMP2B-related frontotemporal dementia develop problems with movement. These movement abnormalities include rigidity, tremors, uncontrolled muscle tensing (dystonia), and involuntary muscle spasms (myoclonus). As the disease progresses, most affected individuals become unable to walk. | CHMP2B-related frontotemporal dementia |
How many people are affected by CHMP2B-related frontotemporal dementia ? | CHMP2B-related frontotemporal dementia has been reported in one large family in Denmark and a few unrelated individuals from other countries. This disease appears to be a rare form of frontotemporal dementia. | CHMP2B-related frontotemporal dementia |
What are the genetic changes related to CHMP2B-related frontotemporal dementia ? | CHMP2B-related frontotemporal dementia results from mutations in the CHMP2B gene. This gene provides instructions for making a protein called charged multivesicular body protein 2B. This protein is active in the brain, where it plays an essential role in transporting proteins that need to be broken down (degraded). Mutations in the CHMP2B gene lead to the production of an abnormal version of charged multivesicular body protein 2B. Most of the mutations that cause CHMP2B-related frontotemporal dementia result in the production of an abnormal protein that is missing a critical segment at one end. This segment keeps the protein turned off (inactive) when it is not needed. Without this segment, the protein is constantly turned on (active), which disrupts the transport and degradation of other proteins. These abnormalities ultimately lead to the death of nerve cells (neurons) in the brain. A gradual loss of neurons throughout the brain is characteristic of CHMP2B-related frontotemporal dementia. Many of the features of this disease result from neuronal death in regions near the front of the brain called the frontal and temporal lobes. The frontal lobes are involved in reasoning, planning, judgment, and problem-solving, while the temporal lobes help process hearing, speech, memory, and emotion. It is unclear why the signs and symptoms of this disease are related primarily to the frontal and temporal lobes. | CHMP2B-related frontotemporal dementia |
Is CHMP2B-related frontotemporal dementia inherited ? | This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. | CHMP2B-related frontotemporal dementia |
What are the treatments for CHMP2B-related frontotemporal dementia ? | These resources address the diagnosis or management of CHMP2B-related frontotemporal dementia: - Family Caregiver Alliance - Gene Review: Gene Review: Frontotemporal Dementia, Chromosome 3-Linked - Genetic Testing Registry: Frontotemporal Dementia, Chromosome 3-Linked These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | CHMP2B-related frontotemporal dementia |
What is (are) Mowat-Wilson syndrome ? | Mowat-Wilson syndrome is a genetic condition that affects many parts of the body. Major signs of this disorder frequently include distinctive facial features, intellectual disability, delayed development, an intestinal disorder called Hirschsprung disease, and other birth defects. Children with Mowat-Wilson syndrome have a square-shaped face with deep-set, widely spaced eyes. They also have a broad nasal bridge with a rounded nasal tip; a prominent and pointed chin; large, flaring eyebrows; and uplifted earlobes with a dimple in the middle. These facial features become more distinctive with age, and adults with Mowat-Wilson syndrome have an elongated face with heavy eyebrows and a pronounced chin and jaw. Affected people tend to have a smiling, open-mouthed expression, and they typically have friendly and happy personalities. Mowat-Wilson syndrome is often associated with an unusually small head (microcephaly), structural brain abnormalities, and intellectual disability ranging from moderate to severe. Speech is absent or severely impaired, and affected people may learn to speak only a few words. Many people with this condition can understand others' speech, however, and some use sign language to communicate. If speech develops, it is delayed until mid-childhood or later. Children with Mowat-Wilson syndrome also have delayed development of motor skills such as sitting, standing, and walking. More than half of people with Mowat-Wilson syndrome are born with an intestinal disorder called Hirschsprung disease that causes severe constipation, intestinal blockage, and enlargement of the colon. Chronic constipation also occurs frequently in people with Mowat-Wilson syndrome who have not been diagnosed with Hirschsprung disease. Other features of Mowat-Wilson syndrome include short stature, seizures, heart defects, and abnormalities of the urinary tract and genitalia. Less commonly, this condition also affects the eyes, teeth, hands, and skin coloring (pigmentation). Although many different medical issues have been associated with Mowat-Wilson syndrome, not every individual with this condition has all of these features. | Mowat-Wilson syndrome |
How many people are affected by Mowat-Wilson syndrome ? | The prevalence of Mowat-Wilson syndrome is unknown. More than 200 people with this condition have been reported in the medical literature. | Mowat-Wilson syndrome |
What are the genetic changes related to Mowat-Wilson syndrome ? | Mutations in the ZEB2 gene cause Mowat-Wilson syndrome. The ZEB2 gene provides instructions for making a protein that plays a critical role in the formation of many organs and tissues before birth. This protein is a transcription factor, which means that it attaches (binds) to specific regions of DNA and helps control the activity of particular genes. Researchers believe that the ZEB2 protein is involved in the development of tissues that give rise to the nervous system, digestive tract, facial features, heart, and other organs. Mowat-Wilson syndrome almost always results from a loss of one working copy of the ZEB2 gene in each cell. In some cases, the entire gene is deleted. In other cases, mutations within the gene lead to the production of an abnormally short, nonfunctional version of the ZEB2 protein. A shortage of this protein disrupts the normal development of many organs and tissues, which causes the varied signs and symptoms of Mowat-Wilson syndrome. | Mowat-Wilson syndrome |
Is Mowat-Wilson syndrome inherited ? | This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. | Mowat-Wilson syndrome |
What are the treatments for Mowat-Wilson syndrome ? | These resources address the diagnosis or management of Mowat-Wilson syndrome: - Gene Review: Gene Review: Mowat-Wilson Syndrome - Genetic Testing Registry: Mowat-Wilson syndrome - MedlinePlus Encyclopedia: Hirschsprung's Disease These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Mowat-Wilson syndrome |
What is (are) molybdenum cofactor deficiency ? | Molybdenum cofactor deficiency is a rare condition characterized by brain dysfunction (encephalopathy) that worsens over time. Babies with this condition appear normal at birth, but within a week they have difficulty feeding and develop seizures that do not improve with treatment (intractable seizures). Brain abnormalities, including deterioration (atrophy) of brain tissue, lead to severe developmental delay; affected individuals usually do not learn to sit unassisted or to speak. A small percentage of affected individuals have an exaggerated startle reaction (hyperekplexia) to unexpected stimuli such as loud noises. Other features of molybdenum cofactor deficiency can include a small head size (microcephaly) and facial features that are described as "coarse." Tests reveal that affected individuals have high levels of chemicals called sulfite, S-sulfocysteine, xanthine, and hypoxanthine in the urine and low levels of a chemical called uric acid in the blood. Because of the serious health problems caused by molybdenum cofactor deficiency, affected individuals usually do not survive past early childhood. | molybdenum cofactor deficiency |
How many people are affected by molybdenum cofactor deficiency ? | Molybdenum cofactor deficiency is a rare condition that is estimated to occur in 1 in 100,000 to 200,000 newborns worldwide. More than 100 cases have been reported in the medical literature, although it is thought that the condition is underdiagnosed, so the number of affected individuals may be higher. | molybdenum cofactor deficiency |
What are the genetic changes related to molybdenum cofactor deficiency ? | Molybdenum cofactor deficiency is caused by mutations in the MOCS1, MOCS2, or GPHN gene. There are three forms of the disorder, named types A, B, and C (or complementation groups A, B, and C). The forms have the same signs and symptoms but are distinguished by their genetic cause: MOCS1 gene mutations cause type A, MOCS2 gene mutations cause type B, and GPHN gene mutations cause type C. The proteins produced from each of these genes are involved in the formation (biosynthesis) of a molecule called molybdenum cofactor. Molybdenum cofactor, which contains the element molybdenum, is essential to the function of several enzymes. These enzymes help break down (metabolize) different substances in the body, some of which are toxic if not metabolized. Mutations in the MOCS1, MOCS2, or GPHN gene reduce or eliminate the function of the associated protein, which impairs molybdenum cofactor biosynthesis. Without the cofactor, the metabolic enzymes that rely on it cannot function. The resulting loss of enzyme activity leads to buildup of certain chemicals, including sulfite, S-sulfocysteine, xanthine, and hypoxanthine (which can be identified in urine), and low levels of uric acid in the blood. Sulfite, which is normally broken down by one of the molybdenum cofactor-dependent enzymes, is toxic, especially to the brain. Researchers suggest that damage caused by the abnormally high levels of sulfite (and possibly other chemicals) leads to encephalopathy, seizures, and the other features of molybdenum cofactor deficiency. | molybdenum cofactor deficiency |
Is molybdenum cofactor deficiency inherited ? | Molybdenum cofactor deficiency has an autosomal recessive pattern of inheritance, which means both copies of the gene in each cell have mutations. An affected individual usually inherits one altered copy of the gene from each parent. Parents of an individual with an autosomal recessive condition typically do not show signs and symptoms of the condition. At least one individual with molybdenum cofactor deficiency inherited two mutated copies of the MOCS1 gene through a mechanism called uniparental isodisomy. In this case, an error occurred during the formation of egg or sperm cells, and the child received two copies of the mutated gene from one parent instead of one copy from each parent. | molybdenum cofactor deficiency |
What are the treatments for molybdenum cofactor deficiency ? | These resources address the diagnosis or management of molybdenum cofactor deficiency: - Genetic Testing Registry: Combined molybdoflavoprotein enzyme deficiency - Genetic Testing Registry: Molybdenum cofactor deficiency, complementation group A - Genetic Testing Registry: Molybdenum cofactor deficiency, complementation group B - Genetic Testing Registry: Molybdenum cofactor deficiency, complementation group C These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | molybdenum cofactor deficiency |
What is (are) retinoblastoma ? | Retinoblastoma is a rare type of eye cancer that usually develops in early childhood, typically before the age of 5. This form of cancer develops in the retina, which is the specialized light-sensitive tissue at the back of the eye that detects light and color. In most children with retinoblastoma, the disease affects only one eye. However, one out of three children with retinoblastoma develops cancer in both eyes. The most common first sign of retinoblastoma is a visible whiteness in the pupil called "cat's eye reflex" or leukocoria. This unusual whiteness is particularly noticeable in photographs taken with a flash. Other signs and symptoms of retinoblastoma include crossed eyes or eyes that do not point in the same direction (strabismus); persistent eye pain, redness, or irritation; and blindness or poor vision in the affected eye(s). Retinoblastoma is often curable when it is diagnosed early. However, if it is not treated promptly, this cancer can spread beyond the eye to other parts of the body. This advanced form of retinoblastoma can be life-threatening. When retinoblastoma is associated with a gene mutation that occurs in all of the body's cells, it is known as germinal retinoblastoma. People with this form of retinoblastoma also have an increased risk of developing several other cancers outside the eye. Specifically, they are more likely to develop a cancer of the pineal gland in the brain (pinealoma), a type of bone cancer known as osteosarcoma, cancers of soft tissues such as muscle, and an aggressive form of skin cancer called melanoma. | retinoblastoma |
How many people are affected by retinoblastoma ? | Retinoblastoma is diagnosed in 250 to 350 children per year in the United States. It accounts for about 4 percent of all cancers in children younger than 15 years. | retinoblastoma |
What are the genetic changes related to retinoblastoma ? | Mutations in the RB1 gene are responsible for most cases of retinoblastoma. RB1 is a tumor suppressor gene, which means that it normally regulates cell growth and keeps cells from dividing too rapidly or in an uncontrolled way. Most mutations in the RB1 gene prevent it from making any functional protein, so it is unable to regulate cell division effectively. As a result, certain cells in the retina can divide uncontrollably to form a cancerous tumor. Some studies suggest that additional genetic changes can influence the development of retinoblastoma; these changes may help explain variations in the development and growth of tumors in different people. A small percentage of retinoblastomas are caused by deletions in the region of chromosome 13 that contains the RB1 gene. Because these chromosomal changes involve several genes in addition to RB1, affected children usually also have intellectual disability, slow growth, and distinctive facial features (such as prominent eyebrows, a short nose with a broad nasal bridge, and ear abnormalities). | retinoblastoma |
Is retinoblastoma inherited ? | Researchers estimate that 40 percent of all retinoblastomas are germinal, which means that RB1 mutations occur in all of the body's cells, including reproductive cells (sperm or eggs). People with germinal retinoblastoma may have a family history of the disease, and they are at risk of passing on the mutated RB1 gene to the next generation. The other 60 percent of retinoblastomas are non-germinal, which means that RB1 mutations occur only in the eye and cannot be passed to the next generation. In germinal retinoblastoma, mutations in the RB1 gene appear to be inherited in an autosomal dominant pattern. Autosomal dominant inheritance suggests that one copy of the altered gene in each cell is sufficient to increase cancer risk. A person with germinal retinoblastoma may inherit an altered copy of the gene from one parent, or the altered gene may be the result of a new mutation that occurs in an egg or sperm cell or just after fertilization. For retinoblastoma to develop, a mutation involving the other copy of the RB1 gene must occur in retinal cells during the person's lifetime. This second mutation usually occurs in childhood, typically leading to the development of retinoblastoma in both eyes. In the non-germinal form of retinoblastoma, typically only one eye is affected and there is no family history of the disease. Affected individuals are born with two normal copies of the RB1 gene. Then, usually in early childhood, both copies of the RB1 gene in retinal cells acquire mutations or are lost. People with non-germinal retinoblastoma are not at risk of passing these RB1 mutations to their children. However, without genetic testing it can be difficult to tell whether a person with retinoblastoma in one eye has the germinal or the non-germinal form of the disease. | retinoblastoma |
What are the treatments for retinoblastoma ? | These resources address the diagnosis or management of retinoblastoma: - Gene Review: Gene Review: Retinoblastoma - Genetic Testing Registry: Retinoblastoma - Genomics Education Programme (UK) - MedlinePlus Encyclopedia: Retinoblastoma - National Cancer Institute: Genetic Testing for Hereditary Cancer Syndromes These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | retinoblastoma |
What is (are) Alexander disease ? | Alexander disease is a rare disorder of the nervous system. It is one of a group of disorders, called leukodystrophies, that involve the destruction of myelin. Myelin is the fatty covering that insulates nerve fibers and promotes the rapid transmission of nerve impulses. If myelin is not properly maintained, the transmission of nerve impulses could be disrupted. As myelin deteriorates in leukodystrophies such as Alexander disease, nervous system functions are impaired. Most cases of Alexander disease begin before age 2 and are described as the infantile form. Signs and symptoms of the infantile form typically include an enlarged brain and head size (megalencephaly), seizures, stiffness in the arms and/or legs (spasticity), intellectual disability, and developmental delay. Less frequently, onset occurs later in childhood (the juvenile form) or in adulthood. Common problems in juvenile and adult forms of Alexander disease include speech abnormalities, swallowing difficulties, seizures, and poor coordination (ataxia). Rarely, a neonatal form of Alexander disease occurs within the first month of life and is associated with severe intellectual disability and developmental delay, a buildup of fluid in the brain (hydrocephalus), and seizures. Alexander disease is also characterized by abnormal protein deposits known as Rosenthal fibers. These deposits are found in specialized cells called astroglial cells, which support and nourish other cells in the brain and spinal cord (central nervous system). | Alexander disease |
How many people are affected by Alexander disease ? | The prevalence of Alexander disease is unknown. About 500 cases have been reported since the disorder was first described in 1949. | Alexander disease |
What are the genetic changes related to Alexander disease ? | Mutations in the GFAP gene cause Alexander disease. The GFAP gene provides instructions for making a protein called glial fibrillary acidic protein. Several molecules of this protein bind together to form intermediate filaments, which provide support and strength to cells. Mutations in the GFAP gene lead to the production of a structurally altered glial fibrillary acidic protein. The altered protein is thought to impair the formation of normal intermediate filaments. As a result, the abnormal glial fibrillary acidic protein likely accumulates in astroglial cells, leading to the formation of Rosenthal fibers, which impair cell function. It is not well understood how impaired astroglial cells contribute to the abnormal formation or maintenance of myelin, leading to the signs and symptoms of Alexander disease. | Alexander disease |
Is Alexander disease inherited ? | This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. Most cases result from new mutations in the gene. These cases occur in people with no history of the disorder in their family. Rarely, an affected person inherits the mutation from one affected parent. | Alexander disease |
What are the treatments for Alexander disease ? | These resources address the diagnosis or management of Alexander disease: - Gene Review: Gene Review: Alexander Disease - Genetic Testing Registry: Alexander's disease - MedlinePlus Encyclopedia: Myelin These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Alexander disease |
What is (are) 9q22.3 microdeletion ? | 9q22.3 microdeletion is a chromosomal change in which a small piece of chromosome 9 is deleted in each cell. The deletion occurs on the long (q) arm of the chromosome in a region designated q22.3. This chromosomal change is associated with delayed development, intellectual disability, certain physical abnormalities, and the characteristic features of a genetic condition called Gorlin syndrome. Many individuals with a 9q22.3 microdeletion have delayed development, particularly affecting the development of motor skills such as sitting, standing, and walking. In some people, the delays are temporary and improve in childhood. More severely affected individuals have permanent developmental disabilities along with intellectual impairment and learning problems. Rarely, seizures have been reported in people with a 9q22.3 microdeletion. About 20 percent of people with a 9q22.3 microdeletion experience overgrowth (macrosomia), which results in increased height and weight compared to unaffected peers. The macrosomia often begins before birth and continues into childhood. Other physical changes that can be associated with a 9q22.3 microdeletion include the premature fusion of certain bones in the skull (metopic craniosynostosis) and a buildup of fluid in the brain (hydrocephalus). Affected individuals can also have distinctive facial features such as a prominent forehead with vertical skin creases, upward- or downward-slanting eyes, a short nose, and a long space between the nose and upper lip (philtrum). 9q22.3 microdeletions also cause the characteristic features of Gorlin syndrome (also known as nevoid basal cell carcinoma syndrome). This genetic condition affects many areas of the body and increases the risk of developing various cancerous and noncancerous tumors. In people with Gorlin syndrome, the type of cancer diagnosed most often is basal cell carcinoma, which is the most common form of skin cancer. Most people with this condition also develop noncancerous (benign) tumors of the jaw, called keratocystic odontogenic tumors, which can cause facial swelling and tooth displacement. Other types of tumors that occur more often in people with Gorlin syndrome include a form of childhood brain cancer called a medulloblastoma and a type of benign tumor called a fibroma that occurs in the heart or in a woman's ovaries. Other features of Gorlin syndrome include small depressions (pits) in the skin of the palms of the hands and soles of the feet; an unusually large head size (macrocephaly) with a prominent forehead; and skeletal abnormalities involving the spine, ribs, or skull. | 9q22.3 microdeletion |
How many people are affected by 9q22.3 microdeletion ? | 9q22.3 microdeletion appears to be a rare chromosomal change. About three dozen affected individuals have been reported in the medical literature. | 9q22.3 microdeletion |
What are the genetic changes related to 9q22.3 microdeletion ? | People with a 9q22.3 microdeletion are missing a sequence of at least 352,000 DNA building blocks (base pairs), also written as 352 kilobases (kb), in the q22.3 region of chromosome 9. This 352-kb segment is known as the minimum critical region because it is the smallest deletion that has been found to cause the signs and symptoms described above. 9q22.3 microdeletions can also be much larger; the largest reported deletion includes 20.5 million base pairs (20.5 Mb). 9q22.3 microdeletion affects one of the two copies of chromosome 9 in each cell. People with a 9q22.3 microdeletion are missing from two to more than 270 genes on chromosome 9. All known 9q22.3 microdeletions include the PTCH1 gene. The protein produced from this gene, patched-1, acts as a tumor suppressor, which means it keeps cells from growing and dividing (proliferating) too rapidly or in an uncontrolled way. Researchers believe that many of the features associated with 9q22.3 microdeletions, particularly the signs and symptoms of Gorlin syndrome, result from a loss of the PTCH1 gene. When this gene is missing, patched-1 is not available to suppress cell proliferation. As a result, cells divide uncontrollably to form the tumors that are characteristic of Gorlin syndrome. Other signs and symptoms related to 9q22.3 microdeletions probably result from the loss of additional genes in the q22.3 region. Researchers are working to determine which missing genes contribute to the other features associated with the deletion. | 9q22.3 microdeletion |
Is 9q22.3 microdeletion inherited ? | 9q22.3 microdeletions are inherited in an autosomal dominant pattern, which means that missing genetic material from one of the two copies of chromosome 9 in each cell is sufficient to cause delayed development, intellectual disability, and the features of Gorlin syndrome. A 9q22.3 microdeletion most often occurs in people whose parents do not carry the chromosomal change. In these cases, the deletion occurs as a random (de novo) event during the formation of reproductive cells (eggs or sperm) in a parent or in early embryonic development. De novo chromosomal changes occur in people with no history of the disorder in their family. Less commonly, individuals with a 9q22.3 microdeletion inherit the chromosomal change from an unaffected parent. In these cases, the parent carries a chromosomal rearrangement called a balanced translocation, in which a segment of chromosome 9 has traded places with a segment of another chromosome. No genetic material is gained or lost in a balanced translocation, so these chromosomal changes usually do not cause any health problems. However, translocations can become unbalanced as they are passed to the next generation. People who inherit a 9q22.3 microdeletion receive an unbalanced translocation that deletes genetic material from one copy of the q22.3 region of chromosome 9 in each cell. Having one missing copy of the PTCH1 gene in each cell is enough to cause the features of Gorlin syndrome that are present early in life, including macrocephaly and skeletal abnormalities. For basal cell carcinomas and other tumors to develop, a mutation in the other copy of the PTCH1 gene must also occur in certain cells during the person's lifetime. Most people who are born with one missing copy of the PTCH1 gene eventually acquire a mutation in the other copy of the gene in some cells and consequently develop various types of tumors. | 9q22.3 microdeletion |
What are the treatments for 9q22.3 microdeletion ? | These resources address the diagnosis or management of 9q22.3 microdeletion: - Gene Review: Gene Review: 9q22.3 Microdeletion - Gene Review: Gene Review: Nevoid Basal Cell Carcinoma Syndrome - Genetic Testing Registry: Gorlin syndrome - MedlinePlus Encyclopedia: Basal Cell Nevus Syndrome These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | 9q22.3 microdeletion |
What is (are) Darier disease ? | Darier disease is a skin condition characterized by wart-like blemishes on the body. The blemishes are usually yellowish in color, hard to the touch, mildly greasy, and can emit a strong odor. The most common sites for blemishes are the scalp, forehead, upper arms, chest, back, knees, elbows, and behind the ear. The mucous membranes can also be affected, with blemishes on the roof of the mouth (palate), tongue, inside of the cheek, gums, and throat. Other features of Darier disease include nail abnormalities, such as red and white streaks in the nails with an irregular texture, and small pits in the palms of the hands and soles of the feet. The wart-like blemishes characteristic of Darier disease usually appear in late childhood to early adulthood. The severity of the disease varies over time; affected people experience flare-ups alternating with periods when they have fewer blemishes. The appearance of the blemishes is influenced by environmental factors. Most people with Darier disease will develop more blemishes during the summertime when they are exposed to heat and humidity. UV light; minor injury or friction, such as rubbing or scratching; and ingestion of certain medications can also cause an increase in blemishes. On occasion, people with Darier disease may have neurological disorders such as mild intellectual disability, epilepsy, and depression. Learning and behavior difficulties have also been reported in people with Darier disease. Researchers do not know if these conditions, which are common in the general population, are associated with the genetic changes that cause Darier disease, or if they are coincidental. Some researchers believe that behavioral problems might be linked to the social stigma experienced by people with numerous skin blemishes. A form of Darier disease known as the linear or segmental form is characterized by blemishes on localized areas of the skin. The blemishes are not as widespread as they are in typical Darier disease. Some people with the linear form of this condition have the nail abnormalities that are seen in people with classic Darier disease, but these abnormalities occur only on one side of the body. | Darier disease |
How many people are affected by Darier disease ? | The worldwide prevalence of Darier disease is unknown. The prevalence of Darier disease is estimated to be 1 in 30,000 people in Scotland, 1 in 36,000 people in northern England, and 1 in 100,000 people in Denmark. | Darier disease |
What are the genetic changes related to Darier disease ? | Mutations in the ATP2A2 gene cause Darier disease. The ATP2A2 gene provides instructions for producing an enzyme abbreviated as SERCA2. This enzyme acts as a pump that helps control the level of positively charged calcium atoms (calcium ions) inside cells, particularly in the endoplasmic reticulum and the sarcoplasmic reticulum. The endoplasmic reticulum is a structure inside the cell that is involved in protein processing and transport. The sarcoplasmic reticulum is a structure in muscle cells that assists with muscle contraction and relaxation by releasing and storing calcium ions. Calcium ions act as signals for a large number of activities that are important for the normal development and function of cells. SERCA2 allows calcium ions to pass into and out of the cell in response to cell signals. Mutations in the ATP2A2 gene result in insufficient amounts of functional SERCA2 enzyme. A lack of SERCA2 enzyme reduces calcium levels in the endoplasmic reticulum, causing it to become dysfunctional. SERCA2 is expressed throughout the body; it is not clear why changes in this enzyme affect only the skin. Some researchers note that skin cells are the only cell types expressing SERCA2 that do not have a "back-up" enzyme for calcium transport. This dependence on the SERCA2 enzyme may make skin cells particularly vulnerable to changes in this enzyme. The linear form of Darier disease is caused by ATP2A2 gene mutations that are acquired during a person's lifetime and are present only in certain cells. These changes are called somatic mutations and are not inherited. There have been no known cases of people with the linear form of Darier disease passing it on to their children. | Darier disease |
Is Darier disease inherited ? | This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In some cases, an affected person inherits the mutation from one affected parent. Other cases may result from new mutations in the gene. These cases occur in people with no history of the disorder in their family. The linear form of Darier disease is generally not inherited but arises from mutations in the body's cells that occur after conception. These alterations are called somatic mutations. | Darier disease |
What are the treatments for Darier disease ? | These resources address the diagnosis or management of Darier disease: - Genetic Testing Registry: Keratosis follicularis These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Darier disease |
What is (are) Proteus syndrome ? | Proteus syndrome is a rare condition characterized by overgrowth of the bones, skin, and other tissues. Organs and tissues affected by the disease grow out of proportion to the rest of the body. The overgrowth is usually asymmetric, which means it affects the right and left sides of the body differently. Newborns with Proteus syndrome have few or no signs of the condition. Overgrowth becomes apparent between the ages of 6 and 18 months and gets more severe with age. In people with Proteus syndrome, the pattern of overgrowth varies greatly but can affect almost any part of the body. Bones in the limbs, skull, and spine are often affected. The condition can also cause a variety of skin growths, particularly a thick, raised, and deeply grooved lesion known as a cerebriform connective tissue nevus. This type of skin growth usually occurs on the soles of the feet and is hardly ever seen in conditions other than Proteus syndrome. Blood vessels (vascular tissue) and fat (adipose tissue) can also grow abnormally in Proteus syndrome. Some people with Proteus syndrome have neurological abnormalities, including intellectual disability, seizures, and vision loss. Affected individuals may also have distinctive facial features such as a long face, outside corners of the eyes that point downward (down-slanting palpebral fissures), a low nasal bridge with wide nostrils, and an open-mouth expression. For reasons that are unclear, affected people with neurological symptoms are more likely to have distinctive facial features than those without neurological symptoms. It is unclear how these signs and symptoms are related to abnormal growth. Other potential complications of Proteus syndrome include an increased risk of developing various types of noncancerous (benign) tumors and a type of blood clot called a deep venous thrombosis (DVT). DVTs occur most often in the deep veins of the legs or arms. If these clots travel through the bloodstream, they can lodge in the lungs and cause a life-threatening complication called a pulmonary embolism. Pulmonary embolism is a common cause of death in people with Proteus syndrome. | Proteus syndrome |
How many people are affected by Proteus syndrome ? | Proteus syndrome is a rare condition with an incidence of less than 1 in 1 million people worldwide. Only a few hundred affected individuals have been reported in the medical literature. Researchers believe that Proteus syndrome may be overdiagnosed, as some individuals with other conditions featuring asymmetric overgrowth have been mistakenly diagnosed with Proteus syndrome. To make an accurate diagnosis, most doctors and researchers now follow a set of strict guidelines that define the signs and symptoms of Proteus syndrome. | Proteus syndrome |
What are the genetic changes related to Proteus syndrome ? | Proteus syndrome results from a mutation in the AKT1 gene. This genetic change is not inherited from a parent; it arises randomly in one cell during the early stages of development before birth. As cells continue to grow and divide, some cells will have the mutation and other cells will not. This mixture of cells with and without a genetic mutation is known as mosaicism. The AKT1 gene helps regulate cell growth and division (proliferation) and cell death. A mutation in this gene disrupts a cell's ability to regulate its own growth, allowing it to grow and divide abnormally. Increased cell proliferation in various tissues and organs leads to the abnormal growth characteristic of Proteus syndrome. Studies suggest that an AKT1 gene mutation is more common in groups of cells that experience overgrowth than in the parts of the body that grow normally. In some published case reports, mutations in a gene called PTEN have been associated with Proteus syndrome. However, many researchers now believe that individuals with PTEN gene mutations and asymmetric overgrowth do not meet the strict guidelines for a diagnosis of Proteus syndrome. Instead, these individuals actually have condition that is considered part of a larger group of disorders called PTEN hamartoma tumor syndrome. One name that has been proposed for the condition is segmental overgrowth, lipomatosis, arteriovenous malformations, and epidermal nevus (SOLAMEN) syndrome; another is type 2 segmental Cowden syndrome. However, some scientific articles still refer to PTEN-related Proteus syndrome. | Proteus syndrome |
Is Proteus syndrome inherited ? | Because Proteus syndrome is caused by AKT1 gene mutations that occur during early development, the disorder is not inherited and does not run in families. | Proteus syndrome |
What are the treatments for Proteus syndrome ? | These resources address the diagnosis or management of Proteus syndrome: - Gene Review: Gene Review: Proteus Syndrome - Genetic Testing Registry: Proteus syndrome - Proteus Syndrome Foundation: Diagnostic Criteria and FAQs These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Proteus syndrome |
What is (are) thrombotic thrombocytopenic purpura ? | Thrombotic thrombocytopenic purpura is a rare disorder that causes blood clots (thrombi) to form in small blood vessels throughout the body. These clots can cause serious medical problems if they block vessels and restrict blood flow to organs such as the brain, kidneys, and heart. Resulting complications can include neurological problems (such as personality changes, headaches, confusion, and slurred speech), fever, abnormal kidney function, abdominal pain, and heart problems. Blood clots normally form to prevent excess blood loss at the site of an injury. In people with thrombotic thrombocytopenic purpura, clots develop in blood vessels even in the absence of injury. Blood clots are formed from clumps of cell fragments called platelets, which circulate in the blood and assist with clotting. Because a large number of platelets are used to make clots in people with thrombotic thrombocytopenic purpura, fewer platelets are available in the bloodstream. A reduced level of circulating platelets is known as thrombocytopenia. Thrombocytopenia can lead to small areas of bleeding just under the surface of the skin, resulting in purplish spots called purpura. This disorder also causes red blood cells to break down (undergo hemolysis) prematurely. As blood squeezes past clots within blood vessels, red blood cells can break apart. A condition called hemolytic anemia occurs when red blood cells are destroyed faster than the body can replace them. This type of anemia leads to paleness, yellowing of the eyes and skin (jaundice), fatigue, shortness of breath, and a rapid heart rate. There are two major forms of thrombotic thrombocytopenic purpura, an acquired (noninherited) form and a familial form. The acquired form usually appears in late childhood or adulthood. Affected individuals may have a single episode of signs and symptoms, or they may recur over time. The familial form of this disorder is much rarer and typically appears in infancy or early childhood. In people with the familial form, signs and symptoms often recur on a regular basis. | thrombotic thrombocytopenic purpura |
How many people are affected by thrombotic thrombocytopenic purpura ? | The precise incidence of thrombotic thrombocytopenic purpura is unknown. Researchers estimate that, depending on geographic location, the condition affects 1.7 to 11 per million people each year in the United States. For unknown reasons, the disorder occurs more frequently in women than in men. The acquired form of thrombotic thrombocytopenic purpura is much more common than the familial form. | thrombotic thrombocytopenic purpura |
What are the genetic changes related to thrombotic thrombocytopenic purpura ? | Mutations in the ADAMTS13 gene cause the familial form of thrombotic thrombocytopenic purpura. The ADAMTS13 gene provides instructions for making an enzyme that is involved in the normal process of blood clotting. Mutations in this gene lead to a severe reduction in the activity of this enzyme. The acquired form of thrombotic thrombocytopenic purpura also results from a reduction in ADAMTS13 enzyme activity; however, people with the acquired form do not have mutations in the ADAMTS13 gene. Instead, their immune systems often produce specific proteins called autoantibodies that block the activity of the enzyme. A lack of ADAMTS13 enzyme activity disrupts the usual balance between bleeding and clotting. Normally, blood clots form at the site of an injury to seal off damaged blood vessels and prevent excess blood loss. In people with thrombotic thrombocytopenic purpura, clots form throughout the body as platelets bind together abnormally and stick to the walls of blood vessels. These clots can block small blood vessels, causing organ damage and the other features of thrombotic thrombocytopenic purpura. Researchers believe that other genetic or environmental factors may contribute to the signs and symptoms of thrombotic thrombocytopenic purpura. In people with reduced ADAMTS13 enzyme activity, factors such as pregnancy, surgery, and infection may trigger abnormal blood clotting and its associated complications. | thrombotic thrombocytopenic purpura |
Is thrombotic thrombocytopenic purpura inherited ? | The familial form of thrombotic thrombocytopenic purpura is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. The acquired form of thrombotic thrombocytopenic purpura is not inherited. | thrombotic thrombocytopenic purpura |
What are the treatments for thrombotic thrombocytopenic purpura ? | These resources address the diagnosis or management of thrombotic thrombocytopenic purpura: - Genetic Testing Registry: Upshaw-Schulman syndrome - MedlinePlus Encyclopedia: Blood Clots - MedlinePlus Encyclopedia: Hemolytic anemia - MedlinePlus Encyclopedia: Purpura - MedlinePlus Encyclopedia: Thrombocytopenia - MedlinePlus Encyclopedia: Thrombotic thrombocytopenic purpura These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | thrombotic thrombocytopenic purpura |
What is (are) D-bifunctional protein deficiency ? | D-bifunctional protein deficiency is a disorder that causes deterioration of nervous system functions (neurodegeneration) beginning in infancy. Newborns with D-bifunctional protein deficiency have weak muscle tone (hypotonia) and seizures. Most babies with this condition never acquire any developmental skills. Some may reach very early developmental milestones such as the ability to follow movement with their eyes or control their head movement, but they experience a gradual loss of these skills (developmental regression) within a few months. As the condition gets worse, affected children develop exaggerated reflexes (hyperreflexia), increased muscle tone (hypertonia), more severe and recurrent seizures (epilepsy), and loss of vision and hearing. Most children with D-bifunctional protein deficiency do not survive past the age of 2. A small number of individuals with this disorder are somewhat less severely affected. They may acquire additional basic skills, such as voluntary hand movements or unsupported sitting, before experiencing developmental regression, and they may survive longer into childhood than more severely affected individuals. Individuals with D-bifunctional protein deficiency may have unusual facial features, including a high forehead, widely spaced eyes (hypertelorism), a lengthened area between the nose and mouth (philtrum), and a high arch of the hard palate at the roof of the mouth. Affected infants may also have an unusually large space between the bones of the skull (fontanel). An enlarged liver (hepatomegaly) occurs in about half of affected individuals. Because these features are similar to those of another disorder called Zellweger syndrome (part of a group of disorders called the Zellweger spectrum), D-bifunctional protein deficiency is sometimes called pseudo-Zellweger syndrome. | D-bifunctional protein deficiency |
How many people are affected by D-bifunctional protein deficiency ? | D-bifunctional protein deficiency is estimated to affect 1 in 100,000 newborns. | D-bifunctional protein deficiency |
What are the genetic changes related to D-bifunctional protein deficiency ? | D-bifunctional protein deficiency is caused by mutations in the HSD17B4 gene. The protein produced from this gene (D-bifunctional protein) is an enzyme, which means that it helps specific biochemical reactions to take place. The D-bifunctional protein is found in sac-like cell structures (organelles) called peroxisomes, which contain a variety of enzymes that break down many different substances. The D-bifunctional protein is involved in the breakdown of certain molecules called fatty acids. The protein has two separate regions (domains) with enzyme activity, called the hydratase and dehydrogenase domains. These domains help carry out the second and third steps, respectively, of a process called the peroxisomal fatty acid beta-oxidation pathway. This process shortens the fatty acid molecules by two carbon atoms at a time until the fatty acids are converted to a molecule called acetyl-CoA, which is transported out of the peroxisomes for reuse by the cell. HSD17B4 gene mutations that cause D-bifunctional protein deficiency can affect one or both of the protein's functions; however, this distinction does not seem to affect the severity or features of the disorder. Impairment of one or both of the protein's enzymatic activities prevents the D-bifunctional protein from breaking down fatty acids efficiently. As a result, these fatty acids accumulate in the body. It is unclear how fatty acid accumulation leads to the specific neurological and non-neurological features of D-bifunctional protein deficiency. However, the accumulation may result in abnormal development of the brain and the breakdown of myelin, which is the covering that protects nerves and promotes the efficient transmission of nerve impulses. Destruction of myelin leads to a loss of myelin-containing tissue (white matter) in the brain and spinal cord; loss of white matter is described as leukodystrophy. Abnormal brain development and leukodystrophy likely underlie the neurological abnormalities that occur in D-bifunctional protein deficiency. | D-bifunctional protein deficiency |
Is D-bifunctional protein deficiency inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | D-bifunctional protein deficiency |
What are the treatments for D-bifunctional protein deficiency ? | These resources address the diagnosis or management of D-bifunctional protein deficiency: - Gene Review: Gene Review: Leukodystrophy Overview - Genetic Testing Registry: Bifunctional peroxisomal enzyme deficiency These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | D-bifunctional protein deficiency |
What is (are) collagen VI-related myopathy ? | Collagen VI-related myopathy is a group of disorders that affect skeletal muscles (which are the muscles used for movement) and connective tissue (which provides strength and flexibility to the skin, joints, and other structures throughout the body). Most affected individuals have muscle weakness and joint deformities called contractures that restrict movement of the affected joints and worsen over time. Researchers have described several forms of collagen VI-related myopathy, which range in severity: Bethlem myopathy is the mildest, an intermediate form is moderate in severity, and Ullrich congenital muscular dystrophy is the most severe. People with Bethlem myopathy usually have loose joints (joint laxity) and weak muscle tone (hypotonia) in infancy, but they develop contractures during childhood, typically in their fingers, wrists, elbows, and ankles. Muscle weakness can begin at any age but often appears in childhood to early adulthood. The muscle weakness is slowly progressive, with about two-thirds of affected individuals over age 50 needing walking assistance. Older individuals may develop weakness in respiratory muscles, which can cause breathing problems. Some people with this mild form of collagen VI-related myopathy have skin abnormalities, including small bumps called follicular hyperkeratosis on the arms and legs; soft, velvety skin on the palms of the hands and soles of the feet; and abnormal wound healing that creates shallow scars. The intermediate form of collagen VI-related myopathy is characterized by muscle weakness that begins in infancy. Affected children are able to walk, although walking becomes increasingly difficult starting in early adulthood. They develop contractures in the ankles, elbows, knees, and spine in childhood. In some affected people, the respiratory muscles are weakened, requiring people to use a machine to help them breathe (mechanical ventilation), particularly during sleep. People with Ullrich congenital muscular dystrophy have severe muscle weakness beginning soon after birth. Some affected individuals are never able to walk and others can walk only with support. Those who can walk often lose the ability, usually in adolescence. Individuals with Ullrich congenital muscular dystrophy develop contractures in their neck, hips, and knees, which further impair movement. There may be joint laxity in the fingers, wrists, toes, ankles, and other joints. Some affected individuals need continuous mechanical ventilation to help them breathe. As in Bethlem myopathy, some people with Ullrich congenital muscular dystrophy have follicular hyperkeratosis; soft, velvety skin on the palms and soles; and abnormal wound healing. Individuals with collagen VI-related myopathy often have signs and symptoms of multiple forms of this condition, so it can be difficult to assign a specific diagnosis. The overlap in disease features, in addition to their common cause, is why these once separate conditions are now considered part of the same disease spectrum. | collagen VI-related myopathy |
How many people are affected by collagen VI-related myopathy ? | Collagen VI-related myopathy is rare. Bethlem myopathy is estimated to occur in 0.77 per 100,000 individuals, and Ullrich congenital muscular dystrophy is estimated to occur in 0.13 per 100,000 individuals. Only a few cases of the intermediate form have been described in the scientific literature. | collagen VI-related myopathy |
What are the genetic changes related to collagen VI-related myopathy ? | Mutations in the COL6A1, COL6A2, and COL6A3 genes can cause the various forms of collagen VI-related myopathy. These genes each provide instructions for making one component of a protein called type VI collagen. Type VI collagen makes up part of the extracellular matrix that surrounds muscle cells and connective tissue. This matrix is an intricate lattice that forms in the space between cells and provides structural support. The extracellular matrix is necessary for cell stability and growth. Research suggests that type VI collagen helps secure and organize the extracellular matrix by linking the matrix to the cells it surrounds. Mutations in the COL6A1, COL6A2, and COL6A3 genes result in a decrease or lack of type VI collagen or the production of abnormal type VI collagen. While it is difficult to predict which type of mutation will lead to which form of collagen VI-related myopathy, in general, lower amounts of type VI collagen lead to more severe signs and symptoms that begin earlier in life. Changes in type VI collagen structure or production lead to an unstable extracellular matrix that is no longer attached to cells. As a result, the stability of the surrounding muscle cells and connective tissue progressively declines, which leads to the muscle weakness, contractures, and other signs and symptoms of collagen VI-related myopathy. | collagen VI-related myopathy |
Is collagen VI-related myopathy inherited ? | Collagen VI-related myopathy can be inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. Bethlem myopathy is typically inherited in an autosomal dominant manner, as are some cases of the intermediate form and a few rare instances of Ullrich congenital muscular dystrophy. Most cases result from new mutations in the gene and occur in people with no history of the disorder in their family. In other cases, an affected person inherits the mutation from one affected parent. Collagen VI-related myopathy can be inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. Ullrich congenital muscular dystrophy is typically inherited in an autosomal recessive manner, as are some cases of the intermediate form and a few rare instances of Bethlem myopathy. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | collagen VI-related myopathy |
What are the treatments for collagen VI-related myopathy ? | These resources address the diagnosis or management of collagen VI-related myopathy: - Gene Review: Gene Review: Collagen Type VI-Related Disorders - Genetic Testing Registry: Bethlem myopathy - Genetic Testing Registry: Collagen Type VI-Related Autosomal Dominant Limb-girdle Muscular Dystrophy - Genetic Testing Registry: Collagen VI-related myopathy - Genetic Testing Registry: Ullrich congenital muscular dystrophy - Muscular Dystrophy UK: Could Cyclosporine A be used to treat Bethlem myopathy and Ullrich congenital muscular dystrophy? These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | collagen VI-related myopathy |
What is (are) combined malonic and methylmalonic aciduria ? | Combined malonic and methylmalonic aciduria (CMAMMA) is a condition characterized by high levels of certain chemicals, known as malonic acid and methylmalonic acid, in the body. A distinguishing feature of this condition is higher levels of methylmalonic acid than malonic acid in the urine, although both are elevated. The signs and symptoms of CMAMMA can begin in childhood. In some children, the buildup of acids causes the blood to become too acidic (ketoacidosis), which can damage the body's tissues and organs. Other signs and symptoms may include involuntary muscle tensing (dystonia), weak muscle tone (hypotonia), developmental delay, an inability to grow and gain weight at the expected rate (failure to thrive), low blood sugar (hypoglycemia), and coma. Some affected children have an unusually small head size (microcephaly). Other people with CMAMMA do not develop signs and symptoms until adulthood. These individuals usually have neurological problems, such as seizures, loss of memory, a decline in thinking ability, or psychiatric diseases. | combined malonic and methylmalonic aciduria |
How many people are affected by combined malonic and methylmalonic aciduria ? | CMAMMA appears to be a rare disease. Approximately a dozen cases have been reported in the scientific literature. | combined malonic and methylmalonic aciduria |
What are the genetic changes related to combined malonic and methylmalonic aciduria ? | Mutations in the ACSF3 gene cause CMAMMA. This gene provides instructions for making an enzyme that plays a role in the formation (synthesis) of fatty acids. Fatty acids are building blocks used to make fats (lipids). The ACSF3 enzyme performs a chemical reaction that converts malonic acid to malonyl-CoA, which is the first step of fatty acid synthesis in cellular structures called mitochondria. Based on this activity, the enzyme is classified as a malonyl-CoA synthetase. The ACSF3 enzyme also converts methylmalonic acid to methylmalonyl-CoA, making it a methylmalonyl-CoA synthetase as well. The effects of ACSF3 gene mutations are unknown. Researchers suspect that the mutations lead to altered enzymes that have little or no function. Because the enzyme cannot convert malonic and methylmalonic acids, they build up in the body. Damage to organs and tissues caused by accumulation of these acids may be responsible for the signs and symptoms of CMAMMA, although the mechanisms are unclear. | combined malonic and methylmalonic aciduria |
Is combined malonic and methylmalonic aciduria inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | combined malonic and methylmalonic aciduria |
What are the treatments for combined malonic and methylmalonic aciduria ? | These resources address the diagnosis or management of CMAMMA: - Genetic Testing Registry: Combined malonic and methylmalonic aciduria - Organic Acidemia Association: What are Organic Acidemias? These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | combined malonic and methylmalonic aciduria |
What is (are) retroperitoneal fibrosis ? | Retroperitoneal fibrosis is a disorder in which inflammation and extensive scar tissue (fibrosis) occur in the back of the abdominal cavity, behind (retro-) the membrane that surrounds the organs of the digestive system (the peritoneum). This area is known as the retroperitoneal space. Retroperitoneal fibrosis can occur at any age but appears most frequently between the ages of 40 and 60. The inflamed tissue characteristic of retroperitoneal fibrosis typically causes gradually increasing pain in the lower abdomen, back, or side. Other symptoms arise from blockage of blood flow to and from various parts of the lower body, due to the development of scar tissue around blood vessels. The fibrosis usually develops first around the aorta, which is the large blood vessel that distributes blood from the heart to the rest of the body. Additional blood vessels including the inferior vena cava, which returns blood from the lower part of the body to the heart, may also be involved. Obstruction of blood flow to and from the legs can result in pain, changes in color, and swelling in these limbs. Impairment of blood flow in the intestines may lead to death (necrosis) of intestinal tissue, severe pain, and excessive bleeding (hemorrhage). In men, reduced blood flow back toward the heart (venous flow) may cause swelling of the scrotum. Because the kidneys are located in the retroperitoneal space, retroperitoneal fibrosis may result in blockage of the ureters, which are tubes that carry urine from each kidney to the bladder. Such blockages can lead to decreased or absent urine flow and kidney failure. When the kidneys fail, toxic substances build up in the blood and tissues, leading to nausea, vomiting, weight loss, itching, a low number of red blood cells (anemia), and changes in brain function. | retroperitoneal fibrosis |
How many people are affected by retroperitoneal fibrosis ? | Retroperitoneal fibrosis occurs in 1 in 200,000 to 500,000 people per year. The disorder occurs approximately twice as often in men as it does in women, but the reason for this difference is unclear. | retroperitoneal fibrosis |
What are the genetic changes related to retroperitoneal fibrosis ? | No genes associated with retroperitoneal fibrosis have been identified. Retroperitoneal fibrosis occasionally occurs with autoimmune disorders, which result when the immune system malfunctions and attacks the body's own organs and tissues. Researchers suggest that the immune system may be involved in the development of retroperitoneal fibrosis. They propose that the immune system may be reacting abnormally to blood vessels damaged by fatty buildup (atherosclerosis) or to certain drugs, infections, or trauma. In many cases, the reason for the abnormal immune system reaction is unknown. Such cases are described as idiopathic. | retroperitoneal fibrosis |
Is retroperitoneal fibrosis inherited ? | Most cases of retroperitoneal fibrosis are sporadic, which means that they occur in people with no apparent history of the disorder in their family. In rare cases, the condition has been reported to occur in a few members of the same family, but the inheritance pattern is unknown. | retroperitoneal fibrosis |
What are the treatments for retroperitoneal fibrosis ? | These resources address the diagnosis or management of retroperitoneal fibrosis: - Johns Hopkins Medicine These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | retroperitoneal fibrosis |
What is (are) holocarboxylase synthetase deficiency ? | Holocarboxylase synthetase deficiency is an inherited disorder in which the body is unable to use the vitamin biotin effectively. This disorder is classified as a multiple carboxylase deficiency, a group of disorders characterized by impaired activity of certain enzymes that depend on biotin. The signs and symptoms of holocarboxylase synthetase deficiency typically appear within the first few months of life, but the age of onset varies. Affected infants often have difficulty feeding, breathing problems, a skin rash, hair loss (alopecia), and a lack of energy (lethargy). Immediate treatment and lifelong management with biotin supplements may prevent many of these complications. If left untreated, the disorder can lead to delayed development, seizures, and coma. These medical problems may be life-threatening in some cases. | holocarboxylase synthetase deficiency |
How many people are affected by holocarboxylase synthetase deficiency ? | The exact incidence of this condition is unknown, but it is estimated to affect 1 in 87,000 people. | holocarboxylase synthetase deficiency |
What are the genetic changes related to holocarboxylase synthetase deficiency ? | Mutations in the HLCS gene cause holocarboxylase synthetase deficiency. The HLCS gene provides instructions for making an enzyme called holocarboxylase synthetase. This enzyme is important for the effective use of biotin, a B vitamin found in foods such as liver, egg yolks, and milk. Holocarboxylase synthetase attaches biotin to certain enzymes that are essential for the normal production and breakdown of proteins, fats, and carbohydrates in the body. Mutations in the HLCS gene reduce the enzyme's ability to attach biotin to these enzymes, preventing them from processing nutrients properly and disrupting many cellular functions. These defects lead to the serious medical problems associated with holocarboxylase synthetase deficiency. | holocarboxylase synthetase deficiency |
Is holocarboxylase synthetase deficiency inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | holocarboxylase synthetase deficiency |
What are the treatments for holocarboxylase synthetase deficiency ? | These resources address the diagnosis or management of holocarboxylase synthetase deficiency: - Baby's First Test - Genetic Testing Registry: Holocarboxylase synthetase deficiency - MedlinePlus Encyclopedia: Pantothenic Acid and Biotin These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | holocarboxylase synthetase deficiency |
What is (are) X-linked agammaglobulinemia ? | X-linked agammaglobulinemia (XLA) is a condition that affects the immune system and occurs almost exclusively in males. People with XLA have very few B cells, which are specialized white blood cells that help protect the body against infection. B cells can mature into the cells that produce special proteins called antibodies or immunoglobulins. Antibodies attach to specific foreign particles and germs, marking them for destruction. Individuals with XLA are more susceptible to infections because their body makes very few antibodies. Children with XLA are usually healthy for the first 1 or 2 months of life because they are protected by antibodies acquired before birth from their mother. After this time, the maternal antibodies are cleared from the body, and the affected child begins to develop recurrent infections. In children with XLA, infections generally take longer to get better and then they come back again, even with antibiotic medications. The most common bacterial infections that occur in people with XLA are lung infections (pneumonia and bronchitis), ear infections (otitis), pink eye (conjunctivitis), and sinus infections (sinusitis). Infections that cause chronic diarrhea are also common. Recurrent infections can lead to organ damage. People with XLA can develop severe, life-threatening bacterial infections; however, affected individuals are not particularly vulnerable to infections caused by viruses. With treatment to replace antibodies, infections can usually be prevented, improving the quality of life for people with XLA. | X-linked agammaglobulinemia |
How many people are affected by X-linked agammaglobulinemia ? | XLA occurs in approximately 1 in 200,000 newborns. | X-linked agammaglobulinemia |
What are the genetic changes related to X-linked agammaglobulinemia ? | Mutations in the BTK gene cause XLA. This gene provides instructions for making the BTK protein, which is important for the development of B cells and normal functioning of the immune system. Most mutations in the BTK gene prevent the production of any BTK protein. The absence of functional BTK protein blocks B cell development and leads to a lack of antibodies. Without antibodies, the immune system cannot properly respond to foreign invaders and prevent infection. | X-linked agammaglobulinemia |
Is X-linked agammaglobulinemia inherited ? | This condition is inherited in an X-linked recessive pattern. The gene associated with this condition is located on the X chromosome, which is one of the two sex chromosomes. In males (who have only one X chromosome), one altered copy of the gene in each cell is sufficient to cause the condition. In females (who have two X chromosomes), a mutation would have to occur in both copies of the gene to cause the disorder. Because it is unlikely that females will have two altered copies of this gene, males are affected by X-linked recessive disorders much more frequently than females. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons. About half of affected individuals do not have a family history of XLA. In most of these cases, the affected person's mother is a carrier of one altered BTK gene. Carriers do not have the immune system abnormalities associated with XLA, but they can pass the altered gene to their children. In other cases, the mother is not a carrier and the affected individual has a new mutation in the BTK gene. | X-linked agammaglobulinemia |
What are the treatments for X-linked agammaglobulinemia ? | These resources address the diagnosis or management of X-linked agammaglobulinemia: - Gene Review: Gene Review: X-Linked Agammaglobulinemia - Genetic Testing Registry: X-linked agammaglobulinemia - MedlinePlus Encyclopedia: Agammaglobulinemia These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | X-linked agammaglobulinemia |
What is (are) DICER1 syndrome ? | DICER1 syndrome is an inherited disorder that increases the risk of a variety of cancerous and noncancerous (benign) tumors, most commonly certain types of tumors that occur in the lungs, kidneys, ovaries, and thyroid (a butterfly-shaped gland in the lower neck). Affected individuals can develop one or more types of tumors, and members of the same family can have different types. However, the risk of tumor formation in individuals with DICER1 syndrome is only moderately increased compared with tumor risk in the general population; most individuals with genetic changes associated with this condition never develop tumors. People with DICER1 syndrome who develop tumors most commonly develop pleuropulmonary blastoma, which is characterized by tumors that grow in lung tissue or in the outer covering of the lungs (the pleura). These tumors occur in infants and young children and are rare in adults. Pleuropulmonary blastoma is classified as one of three types on the basis of tumor characteristics: in type I, the growths are composed of air-filled pockets called cysts; in type II, the growths contain both cysts and solid tumors (or nodules); and in type III, the growth is a solid tumor that can fill a large portion of the chest. Pleuropulmonary blastoma is considered cancerous, and types II and III can spread (metastasize), often to the brain, liver, or bones. Individuals with pleuropulmonary blastoma may also develop an abnormal accumulation of air in the chest cavity that can lead to the collapse of a lung (pneumothorax). Cystic nephroma, which involves multiple benign fluid-filled cysts in the kidneys, can also occur; in people with DICER1 syndrome, the cysts develop early in childhood. DICER1 syndrome is also associated with tumors in the ovaries known as Sertoli-Leydig cell tumors, which typically develop in affected women in their teens or twenties. Some Sertoli-Leydig cell tumors release the male sex hormone testosterone; in these cases, affected women may develop facial hair, a deep voice, and other male characteristics. Some affected women have irregular menstrual cycles. Sertoli-Leydig cell tumors usually do not metastasize. People with DICER1 syndrome are also at risk of multinodular goiter, which is enlargement of the thyroid gland caused by the growth of multiple fluid-filled or solid tumors (both referred to as nodules). The nodules are generally slow-growing and benign. Despite the growths, the thyroid's function is often normal. Rarely, individuals with DICER1 syndrome develop thyroid cancer (thyroid carcinoma). | DICER1 syndrome |
How many people are affected by DICER1 syndrome ? | DICER1 syndrome is a rare condition; its prevalence is unknown. | DICER1 syndrome |
What are the genetic changes related to DICER1 syndrome ? | DICER1 syndrome is caused by mutations in the DICER1 gene. This gene provides instructions for making a protein that is involved in the production of molecules called microRNA (miRNA). MicroRNA is a type of RNA, a chemical cousin of DNA, that attaches to a protein's blueprint (a molecule called messenger RNA) and blocks the production of proteins from it. Through this role in regulating the activity (expression) of genes, the Dicer protein is involved in many processes, including cell growth and division (proliferation) and the maturation of cells to take on specialized functions (differentiation). Most of the gene mutations involved in DICER1 syndrome lead to an abnormally short Dicer protein that is unable to aid in the production of miRNA. Without appropriate regulation by miRNA, genes are likely expressed abnormally, which could cause cells to grow and divide uncontrollably and lead to tumor formation. | DICER1 syndrome |
Is DICER1 syndrome inherited ? | DICER1 syndrome is inherited in an autosomal dominant pattern, which means one copy of the altered gene is sufficient to cause the disorder. It is important to note that people inherit an increased risk of tumors; many people who have mutations in the DICER1 gene do not develop abnormal growths. | DICER1 syndrome |
What are the treatments for DICER1 syndrome ? | These resources address the diagnosis or management of DICER1 syndrome: - Cancer.Net from the American Society of Clinical Oncology: Pleuropulmonary Blastoma--Childhood Treatment - Gene Review: Gene Review: DICER1-Related Disorders - Genetic Testing Registry: Pleuropulmonary blastoma These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | DICER1 syndrome |
What is (are) RAPADILINO syndrome ? | RAPADILINO syndrome is a rare condition that involves many parts of the body. Bone development is especially affected, causing many of the characteristic features of the condition. Most affected individuals have underdevelopment or absence of the bones in the forearms and the thumbs, which are known as radial ray malformations. The kneecaps (patellae) can also be underdeveloped or absent. Other features include an opening in the roof of the mouth (cleft palate) or a high arched palate; a long, slender nose; and dislocated joints. Many infants with RAPADILINO syndrome have difficulty feeding and experience diarrhea and vomiting. The combination of impaired bone development and feeding problems leads to slow growth and short stature in affected individuals. Some individuals with RAPADILINO syndrome have harmless light brown patches of skin that resemble a skin finding known as caf-au-lait spots. In addition, people with RAPADILINO syndrome have a slightly increased risk of developing a type of bone cancer known as osteosarcoma or a blood-related cancer called lymphoma. In individuals with RAPADILINO syndrome, osteosarcoma most often develops during childhood or adolescence, and lymphoma typically develops in young adulthood. The condition name is an acronym for the characteristic features of the disorder: RA for radial ray malformations, PA for patella and palate abnormalities, DI for diarrhea and dislocated joints, LI for limb abnormalities and little size, and NO for slender nose and normal intelligence. The varied signs and symptoms of RAPADILINO syndrome overlap with features of other disorders, namely Baller-Gerold syndrome and Rothmund-Thomson syndrome. These syndromes are also characterized by radial ray defects, skeletal abnormalities, and slow growth. All of these conditions can be caused by mutations in the same gene. Based on these similarities, researchers are investigating whether Baller-Gerold syndrome, Rothmund-Thomson syndrome, and RAPADILINO syndrome are separate disorders or part of a single syndrome with overlapping signs and symptoms. | RAPADILINO syndrome |
How many people are affected by RAPADILINO syndrome ? | RAPADILINO syndrome is a rare condition, although its worldwide prevalence is unknown. The condition was first identified in Finland, where it affects an estimated 1 in 75,000 individuals, although it has since been found in other regions. | RAPADILINO syndrome |
What are the genetic changes related to RAPADILINO syndrome ? | Mutations in the RECQL4 gene cause RAPADILINO syndrome. This gene provides instructions for making one member of a protein family called RecQ helicases. Helicases are enzymes that bind to DNA and temporarily unwind the two spiral strands (double helix) of the DNA molecule. This unwinding is necessary for copying (replicating) DNA in preparation for cell division and for repairing damaged DNA. The RECQL4 protein helps stabilize genetic information in the body's cells and plays a role in replicating and repairing DNA. The most common RECQL4 gene mutation involved in RAPADILINO syndrome causes the RECQL4 protein to be pieced together incorrectly. This genetic change results in the production of a protein that is missing a region called exon 7 and is unable to act as a helicase. The loss of helicase function may prevent normal DNA replication and repair, causing widespread damage to a person's genetic information over time. These changes may result in the accumulation of DNA errors and cell death, although it is unclear exactly how RECQL4 gene mutations lead to the specific features of RAPADILINO syndrome. | RAPADILINO syndrome |
Is RAPADILINO syndrome inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | RAPADILINO syndrome |
What are the treatments for RAPADILINO syndrome ? | These resources address the diagnosis or management of RAPADILINO syndrome: - Genetic Testing Registry: Rapadilino syndrome These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | RAPADILINO syndrome |
What is (are) PRICKLE1-related progressive myoclonus epilepsy with ataxia ? | PRICKLE1-related progressive myoclonus epilepsy with ataxia is a rare inherited condition characterized by recurrent seizures (epilepsy) and problems with movement. The signs and symptoms of this disorder usually begin between the ages of 5 and 10. Problems with balance and coordination (ataxia) are usually the first symptoms of PRICKLE1-related progressive myoclonus epilepsy with ataxia. Affected children often have trouble walking. Their gait is unbalanced and wide-based, and they may fall frequently. Later, children with this condition develop episodes of involuntary muscle jerking or twitching (myoclonus), which cause additional problems with movement. Myoclonus can also affect muscles in the face, leading to difficulty swallowing and slurred speech (dysarthria). Beginning later in childhood, some affected individuals develop tonic-clonic or grand mal seizures. These seizures involve a loss of consciousness, muscle rigidity, and convulsions. They often occur at night (nocturnally) while the person is sleeping. PRICKLE1-related progressive myoclonus epilepsy with ataxia does not seem to affect intellectual ability. Although a few affected individuals have died in childhood, many have lived into adulthood. | PRICKLE1-related progressive myoclonus epilepsy with ataxia |
How many people are affected by PRICKLE1-related progressive myoclonus epilepsy with ataxia ? | The prevalence of PRICKLE1-related progressive myoclonus epilepsy with ataxia is unknown. The condition has been reported in three large families from Jordan and northern Israel and in at least two unrelated individuals. | PRICKLE1-related progressive myoclonus epilepsy with ataxia |
What are the genetic changes related to PRICKLE1-related progressive myoclonus epilepsy with ataxia ? | PRICKLE1-related progressive myoclonus epilepsy with ataxia is caused by mutations in the PRICKLE1 gene. This gene provides instructions for making a protein called prickle homolog 1, whose function is unknown. Studies suggest that it interacts with other proteins that are critical for brain development and function. Mutations in the PRICKLE1 gene alter the structure of prickle homolog 1 and disrupt its ability to interact with other proteins. However, it is unclear how these changes lead to movement problems, seizures, and the other features of PRICKLE1-related progressive myoclonus epilepsy with ataxia. | PRICKLE1-related progressive myoclonus epilepsy with ataxia |
Is PRICKLE1-related progressive myoclonus epilepsy with ataxia inherited ? | Some cases of PRICKLE1-related progressive myoclonus epilepsy with ataxia are inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. Other cases of PRICKLE1-related progressive myoclonus epilepsy with ataxia are considered autosomal dominant because one copy of the altered gene in each cell is sufficient to cause the disorder. These cases result from new mutations in the gene and occur in people with no history of the disorder in their family. | PRICKLE1-related progressive myoclonus epilepsy with ataxia |
What are the treatments for PRICKLE1-related progressive myoclonus epilepsy with ataxia ? | These resources address the diagnosis or management of PRICKLE1-related progressive myoclonus epilepsy with ataxia: - Gene Review: Gene Review: PRICKLE1-Related Progressive Myoclonus Epilepsy with Ataxia - Genetic Testing Registry: Progressive myoclonus epilepsy with ataxia These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | PRICKLE1-related progressive myoclonus epilepsy with ataxia |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.