problem
stringlengths 16
191
| explanation
stringlengths 6
29k
⌀ | type
stringlengths 3
136
⌀ |
---|---|---|
What is (are) familial acute myeloid leukemia with mutated CEBPA ? | Familial acute myeloid leukemia with mutated CEBPA is one form of a cancer of the blood-forming tissue (bone marrow) called acute myeloid leukemia. In normal bone marrow, early blood cells called hematopoietic stem cells develop into several types of blood cells: white blood cells (leukocytes) that protect the body from infection, red blood cells (erythrocytes) that carry oxygen, and platelets (thrombocytes) that are involved in blood clotting. In acute myeloid leukemia, the bone marrow makes large numbers of abnormal, immature white blood cells called myeloid blasts. Instead of developing into normal white blood cells, the myeloid blasts develop into cancerous leukemia cells. The large number of abnormal cells in the bone marrow interferes with the production of functional white blood cells, red blood cells, and platelets. People with familial acute myeloid leukemia with mutated CEBPA have a shortage of white blood cells (leukopenia), leading to increased susceptibility to infections. A low number of red blood cells (anemia) also occurs in this disorder, resulting in fatigue and weakness. Affected individuals also have a reduction in the amount of platelets (thrombocytopenia), which can result in easy bruising and abnormal bleeding. Other symptoms of familial acute myeloid leukemia with mutated CEBPA may include fever and weight loss. While acute myeloid leukemia is generally a disease of older adults, familial acute myeloid leukemia with mutated CEBPA often begins earlier in life, and it has been reported to occur as early as age 4. Between 50 and 65 percent of affected individuals survive their disease, compared with 25 to 40 percent of those with other forms of acute myeloid leukemia. However, people with familial acute myeloid leukemia with mutated CEBPA have a higher risk of having a new primary occurrence of this disorder after successful treatment of the initial occurrence. | familial acute myeloid leukemia with mutated CEBPA |
How many people are affected by familial acute myeloid leukemia with mutated CEBPA ? | Acute myeloid leukemia occurs in approximately 3.5 in 100,000 individuals per year. Familial acute myeloid leukemia with mutated CEBPA is a very rare form of acute myeloid leukemia; only a few affected families have been identified. | familial acute myeloid leukemia with mutated CEBPA |
What are the genetic changes related to familial acute myeloid leukemia with mutated CEBPA ? | As its name suggests, familial acute myeloid leukemia with mutated CEBPA is caused by mutations in the CEBPA gene that are passed down within families. These inherited mutations are present throughout a person's life in virtually every cell in the body. The CEBPA gene provides instructions for making a protein called CCAAT/enhancer-binding protein alpha. This protein is a transcription factor, which means that it attaches (binds) to specific regions of DNA and helps control the activity of certain genes. It is believed to act as a tumor suppressor, helping to prevent cells from growing and dividing too rapidly or in an uncontrolled way. CEBPA gene mutations that cause familial acute myeloid leukemia with mutated CEBPA result in a shorter version of CCAAT/enhancer-binding protein alpha. This shorter version is produced from one copy of the CEBPA gene in each cell, and it is believed to interfere with the tumor suppressor function of the normal protein produced from the second copy of the gene. Absence of the tumor suppressor function of CCAAT/enhancer-binding protein alpha is believed to disrupt the regulation of blood cell production in the bone marrow, leading to the uncontrolled production of abnormal cells that occurs in acute myeloid leukemia. In addition to the inherited mutation in one copy of the CEBPA gene in each cell, most individuals with familial acute myeloid leukemia with mutated CEBPA also acquire a mutation in the second copy of the CEBPA gene. The additional mutation, which is called a somatic mutation, is found only in the leukemia cells and is not inherited. The somatic CEBPA gene mutations identified in leukemia cells generally decrease the DNA-binding ability of CCAAT/enhancer-binding protein alpha. The effect of this second mutation on the development of acute myeloid leukemia is unclear. | familial acute myeloid leukemia with mutated CEBPA |
Is familial acute myeloid leukemia with mutated CEBPA inherited ? | Familial acute myeloid leukemia with mutated CEBPA is inherited in an autosomal dominant pattern. Autosomal dominant inheritance means that one copy of the altered CEBPA gene in each cell is sufficient to cause the disorder. Most affected individuals also acquire a second, somatic CEBPA gene mutation in their leukemia cells. | familial acute myeloid leukemia with mutated CEBPA |
What are the treatments for familial acute myeloid leukemia with mutated CEBPA ? | These resources address the diagnosis or management of familial acute myeloid leukemia with mutated CEBPA: - Fred Hutchison Cancer Research Center - Gene Review: Gene Review: CEBPA-Associated Familial Acute Myeloid Leukemia (AML) - Genetic Testing Registry: Acute myeloid leukemia - MedlinePlus Encyclopedia: Bone Marrow Biopsy - MedlinePlus Encyclopedia: Bone Marrow Transplant - National Cancer Institute: Acute Myeloid Leukemia Treatment - St. Jude Children's Research Hospital These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | familial acute myeloid leukemia with mutated CEBPA |
What is (are) gyrate atrophy of the choroid and retina ? | Gyrate atrophy of the choroid and retina, which is often shortened to gyrate atrophy, is an inherited disorder characterized by progressive vision loss. People with this disorder have an ongoing loss of cells (atrophy) in the retina, which is the specialized light-sensitive tissue that lines the back of the eye, and in a nearby tissue layer called the choroid. During childhood, they begin experiencing nearsightedness (myopia), difficulty seeing in low light (night blindness), and loss of side (peripheral) vision. Over time, their field of vision continues to narrow, resulting in tunnel vision. Many people with gyrate atrophy also develop clouding of the lens of the eyes (cataracts). These progressive vision changes lead to blindness by about the age of 50. Most people with gyrate atrophy have no symptoms other than vision loss, but some have additional features of the disorder. Occasionally, newborns with gyrate atrophy develop excess ammonia in the blood (hyperammonemia), which may lead to poor feeding, vomiting, seizures, or coma. Neonatal hyperammonemia associated with gyrate atrophy generally responds quickly to treatment and does not recur after the newborn period. Gyrate atrophy usually does not affect intelligence; however, abnormalities may be observed in brain imaging or other neurological testing. In some cases, mild to moderate intellectual disability is associated with gyrate atrophy. Gyrate atrophy may also cause disturbances in the nerves connecting the brain and spinal cord to muscles and sensory cells (peripheral nervous system). In some people with the disorder these abnormalities lead to numbness, tingling, or pain in the hands or feet, while in others they are detectable only by electrical testing of the nerve impulses. In some people with gyrate atrophy, a particular type of muscle fibers (type II fibers) break down over time. While this muscle abnormality usually causes no symptoms, it may result in mild weakness. | gyrate atrophy of the choroid and retina |
How many people are affected by gyrate atrophy of the choroid and retina ? | More than 150 individuals with gyrate atrophy have been identified; approximately one third are from Finland. | gyrate atrophy of the choroid and retina |
What are the genetic changes related to gyrate atrophy of the choroid and retina ? | Mutations in the OAT gene cause gyrate atrophy. The OAT gene provides instructions for making the enzyme ornithine aminotransferase. This enzyme is active in the energy-producing centers of cells (mitochondria), where it helps break down a molecule called ornithine. Ornithine is involved in the urea cycle, which processes excess nitrogen (in the form of ammonia) that is generated when protein is broken down by the body. In addition to its role in the urea cycle, ornithine participates in several reactions that help ensure the proper balance of protein building blocks (amino acids) in the body. This balance is important because a specific sequence of amino acids is required to build each of the many different proteins needed for the body's functions. The ornithine aminotransferase enzyme helps convert ornithine into another molecule called pyrroline-5-carboxylate (P5C). P5C can be converted into the amino acids glutamate and proline. OAT gene mutations that cause gyrate atrophy result in a reduced amount of functional ornithine aminotransferase enzyme. A shortage of this enzyme impedes the conversion of ornithine into P5C. As a result, excess ornithine accumulates in the blood (hyperornithinemia), and less P5C than normal is produced. It is not clear how these changes result in the specific signs and symptoms of gyrate atrophy. Researchers have suggested that a deficiency of P5C may interfere with the function of the retina. It has also been proposed that excess ornithine may suppress the production of a molecule called creatine. Creatine is needed for many tissues in the body to store and use energy properly. It is involved in providing energy for muscle contraction, and it is also important in nervous system functioning. | gyrate atrophy of the choroid and retina |
Is gyrate atrophy of the choroid and retina inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | gyrate atrophy of the choroid and retina |
What are the treatments for gyrate atrophy of the choroid and retina ? | These resources address the diagnosis or management of gyrate atrophy: - Baby's First Test - Genetic Testing Registry: Ornithine aminotransferase deficiency These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | gyrate atrophy of the choroid and retina |
What is (are) Melnick-Needles syndrome ? | Melnick-Needles syndrome is a disorder involving abnormalities in skeletal development and other health problems. It is a member of a group of related conditions called otopalatodigital spectrum disorders, which also includes otopalatodigital syndrome type 1, otopalatodigital syndrome type 2, and frontometaphyseal dysplasia. In general, these disorders involve hearing loss caused by malformations in the tiny bones in the ears (ossicles), problems in the development of the roof of the mouth (palate), and skeletal abnormalities involving the fingers and/or toes (digits). Melnick-Needles syndrome is usually the most severe of the otopalatodigital spectrum disorders. People with this condition are usually of short stature, have an abnormal curvature of the spine (scoliosis), partial dislocation (subluxation) of certain joints, and unusually long fingers and toes. They may have bowed limbs; underdeveloped, irregular ribs that can cause problems with breathing; and other abnormal or absent bones. Characteristic facial features may include bulging eyes with prominent brow ridges, excess hair growth on the forehead, round cheeks, a very small lower jaw and chin (micrognathia), and misaligned teeth. One side of the face may appear noticeably different from the other (facial asymmetry). Some individuals with this disorder have hearing loss. In addition to skeletal abnormalities, individuals with Melnick-Needles syndrome may have obstruction of the ducts between the kidneys and bladder (ureters) or heart defects. Males with Melnick-Needles syndrome generally have much more severe signs and symptoms than do females, and in almost all cases die before or soon after birth. | Melnick-Needles syndrome |
How many people are affected by Melnick-Needles syndrome ? | Melnick-Needles syndrome is a rare disorder; fewer than 100 cases have been reported worldwide. | Melnick-Needles syndrome |
What are the genetic changes related to Melnick-Needles syndrome ? | Mutations in the FLNA gene cause Melnick-Needles syndrome. The FLNA gene provides instructions for producing the protein filamin A, which helps build the network of protein filaments (cytoskeleton) that gives structure to cells and allows them to change shape and move. Filamin A binds to another protein called actin, and helps the actin to form the branching network of filaments that make up the cytoskeleton. Filamin A also links actin to many other proteins to perform various functions within the cell. A small number of mutations in the FLNA gene have been identified in people with Melnick-Needles syndrome. These mutations are described as "gain-of-function" because they appear to enhance the activity of the filamin A protein or give the protein a new, atypical function. Researchers believe that the mutations may change the way the filamin A protein helps regulate processes involved in skeletal development, but it is not known how changes in the protein relate to the specific signs and symptoms of Melnick-Needles syndrome. | Melnick-Needles syndrome |
Is Melnick-Needles syndrome inherited ? | This condition is inherited in an X-linked dominant pattern. The gene associated with this condition is located on the X chromosome, which is one of the two sex chromosomes. In females (who have two X chromosomes), a mutation in one of the two copies of the gene in each cell is sufficient to cause the disorder. In males (who have only one X chromosome), a mutation in the only copy of the gene in each cell causes the disorder. In most cases, males experience more severe symptoms of the disorder than females. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons. | Melnick-Needles syndrome |
What are the treatments for Melnick-Needles syndrome ? | These resources address the diagnosis or management of Melnick-Needles syndrome: - Gene Review: Gene Review: Otopalatodigital Spectrum Disorders - Genetic Testing Registry: Melnick-Needles syndrome These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Melnick-Needles syndrome |
What is (are) Perrault syndrome ? | Perrault syndrome is a rare condition that causes different patterns of signs and symptoms in affected males and females. A key feature of this condition is hearing loss, which occurs in both males and females. Affected females also have abnormalities of the ovaries. Neurological problems occur in some affected males and females. In Perrault syndrome, the problems with hearing are caused by changes in the inner ear, which is known as sensorineural hearing loss. The impairment usually affects both ears and can be present at birth or begin in early childhood. Unless hearing is completely impaired at birth, the hearing problems worsen over time. Females with Perrault syndrome have abnormal or missing ovaries (ovarian dysgenesis), although their external genitalia are normal. Severely affected girls do not begin menstruation by age 16 (primary amenorrhea), and most never have a menstrual period. Less severely affected women have an early loss of ovarian function (primary ovarian insufficiency); their menstrual periods begin in adolescence, but they become less frequent and eventually stop before age 40. Women with Perrault syndrome may have difficulty conceiving or be unable to have biological children (infertile). Neurological problems in individuals with Perrault syndrome can include intellectual disability, difficulty with balance and coordinating movements (ataxia), and loss of sensation and weakness in the limbs (peripheral neuropathy). However, not everyone with this condition has neurological problems. | Perrault syndrome |
How many people are affected by Perrault syndrome ? | Perrault syndrome is a rare disorder; fewer than 100 affected individuals have been described in the medical literature. It is likely that the condition is underdiagnosed, because males without an affected sister will likely be misdiagnosed as having isolated (nonsyndromic) hearing loss rather than Perrault syndrome. | Perrault syndrome |
What are the genetic changes related to Perrault syndrome ? | Perrault syndrome has several genetic causes. C10orf2, CLPP, HARS2, LARS2, or HSD17B4 gene mutations have been found in a small number of affected individuals. The proteins produced from several of these genes, including C10orf2, CLPP, HARS2, and LARS2, function in cell structures called mitochondria, which convert the energy from food into a form that cells can use. Although the effect of these gene mutations on mitochondrial function is unknown, researchers speculate that disruption of mitochondrial energy production could underlie the signs and symptoms of Perrault syndrome. The protein produced from the HSD17B4 gene is active in cell structures called peroxisomes, which contain a variety of enzymes that break down many different substances in cells. It is not known how mutations in this gene affect peroxisome function or lead to hearing loss in affected males and females and ovarian abnormalities in females with Perrault syndrome. It is likely that other genes that have not been identified are also involved in this condition. | Perrault syndrome |
Is Perrault syndrome inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they do not show signs and symptoms of the condition. | Perrault syndrome |
What are the treatments for Perrault syndrome ? | These resources address the diagnosis or management of Perrault syndrome: - Gene Review: Gene Review: Perrault Syndrome - Genetic Testing Registry: Gonadal dysgenesis with auditory dysfunction, autosomal recessive inheritance - Genetic Testing Registry: Perrault syndrome 2 - Genetic Testing Registry: Perrault syndrome 4 - Genetic Testing Registry: Perrault syndrome 5 These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Perrault syndrome |
What is (are) Kleefstra syndrome ? | Kleefstra syndrome is a disorder that involves many parts of the body. Characteristic features of Kleefstra syndrome include developmental delay and intellectual disability, severely limited or absent speech, and weak muscle tone (hypotonia). Affected individuals also have an unusually small head size (microcephaly) and a wide, short skull (brachycephaly). Distinctive facial features include eyebrows that grow together in the middle (synophrys), widely spaced eyes (hypertelorism), a sunken appearance of the middle of the face (midface hypoplasia), nostrils that open to the front rather than downward (anteverted nares), a protruding jaw (prognathism), rolled out (everted) lips, and a large tongue (macroglossia). Affected individuals may have a high birth weight and childhood obesity. People with Kleefstra syndrome may also have structural brain abnormalities, congenital heart defects, genitourinary abnormalities, seizures, and a tendency to develop severe respiratory infections. During childhood they may exhibit features of autism or related developmental disorders affecting communication and social interaction. In adolescence, they may develop a general loss of interest and enthusiasm (apathy) or unresponsiveness (catatonia). | Kleefstra syndrome |
How many people are affected by Kleefstra syndrome ? | The prevalence of Kleefstra syndrome is unknown. Only recently has testing become available to distinguish it from other disorders with similar features. | Kleefstra syndrome |
What are the genetic changes related to Kleefstra syndrome ? | Kleefstra syndrome is caused by the loss of the EHMT1 gene or by mutations that disable its function. The EHMT1 gene provides instructions for making an enzyme called euchromatic histone methyltransferase 1. Histone methyltransferases are enzymes that modify proteins called histones. Histones are structural proteins that attach (bind) to DNA and give chromosomes their shape. By adding a molecule called a methyl group to histones, histone methyltransferases can turn off (suppress) the activity of certain genes, which is essential for normal development and function. Most people with Kleefstra syndrome are missing a sequence of about 1 million DNA building blocks (base pairs) on one copy of chromosome 9 in each cell. The deletion occurs near the end of the long (q) arm of the chromosome at a location designated q34.3, a region containing the EHMT1 gene. Some affected individuals have shorter or longer deletions in the same region. The loss of the EHMT1 gene from one copy of chromosome 9 in each cell is believed to be responsible for the characteristic features of Kleefstra syndrome in people with the 9q34.3 deletion. However, the loss of other genes in the same region may lead to additional health problems in some affected individuals. About 25 percent of individuals with Kleefstra syndrome do not have a deletion of genetic material from chromosome 9; instead, these individuals have mutations in the EHMT1 gene. Some of these mutations change single protein building blocks (amino acids) in euchromatic histone methyltransferase 1. Others create a premature stop signal in the instructions for making the enzyme or alter the way the gene's instructions are pieced together to produce the enzyme. These changes generally result in an enzyme that is unstable and decays rapidly, or that is disabled and cannot function properly. Either a deletion or a mutation affecting the EHMT1 gene results in a lack of functional euchromatic histone methyltransferase 1 enzyme. A lack of this enzyme impairs proper control of the activity of certain genes in many of the body's organs and tissues, resulting in the abnormalities of development and function characteristic of Kleefstra syndrome. | Kleefstra syndrome |
Is Kleefstra syndrome inherited ? | The inheritance of Kleefstra syndrome is considered to be autosomal dominant because a deletion in one copy of chromosome 9 in each cell or a mutation in one copy of the EHMT1 gene is sufficient to cause the condition. Most cases of Kleefstra syndrome are not inherited, however. The genetic change occurs most often as a random event during the formation of reproductive cells (eggs or sperm) or in early fetal development. Affected people typically have no history of the disorder in their family, though they can pass the disorder on to their children. Only a few people with Kleefstra syndrome have been known to reproduce. Rarely, affected individuals inherit a chromosome 9 with a deleted segment from an unaffected parent. In these cases, the parent carries a chromosomal rearrangement called a balanced translocation, in which no genetic material is gained or lost. Balanced translocations usually do not cause any health problems; however, they can become unbalanced as they are passed to the next generation. Children who inherit an unbalanced translocation can have a chromosomal rearrangement with extra or missing genetic material. Individuals with Kleefstra syndrome who inherit an unbalanced translocation are missing genetic material from the long arm of chromosome 9. A few individuals with Kleefstra syndrome have inherited the chromosome 9q34.3 deletion from an unaffected parent who is mosaic for the deletion. Mosaic means that an individual has the deletion in some cells (including some sperm or egg cells), but not in others. | Kleefstra syndrome |
What are the treatments for Kleefstra syndrome ? | These resources address the diagnosis or management of Kleefstra syndrome: - Gene Review: Gene Review: Kleefstra Syndrome - Genetic Testing Registry: Chromosome 9q deletion syndrome These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Kleefstra syndrome |
What is (are) glutamate formiminotransferase deficiency ? | Glutamate formiminotransferase deficiency is an inherited disorder that affects physical and mental development. There are two forms of this condition, which are distinguished by the severity of symptoms. People with the mild form of glutamate formiminotransferase deficiency have minor delays in physical and mental development and may have mild intellectual disability. They also have unusually high levels of a molecule called formiminoglutamate (FIGLU) in their urine. Individuals affected by the severe form of this disorder have profound intellectual disability and delayed development of motor skills such as sitting, standing, and walking. In addition to FIGLU in their urine, they have elevated amounts of certain B vitamins (called folates) in their blood. The severe form of glutamate formiminotransferase deficiency is also characterized by megaloblastic anemia. Megaloblastic anemia occurs when a person has a low number of red blood cells (anemia), and the remaining red blood cells are larger than normal (megaloblastic). The symptoms of this blood disorder may include decreased appetite, lack of energy, headaches, pale skin, and tingling or numbness in the hands and feet. | glutamate formiminotransferase deficiency |
How many people are affected by glutamate formiminotransferase deficiency ? | Glutamate formiminotransferase deficiency is a rare disorder; approximately 20 affected individuals have been identified. Of these, about one-quarter have the severe form of the disorder. Everyone reported with the severe form has been of Japanese origin. The remaining individuals, who come from a variety of ethnic backgrounds, are affected by the mild form of the condition. | glutamate formiminotransferase deficiency |
What are the genetic changes related to glutamate formiminotransferase deficiency ? | Mutations in the FTCD gene cause glutamate formiminotransferase deficiency. The FTCD gene provides instructions for making the enzyme formiminotransferase cyclodeaminase. This enzyme is involved in the last two steps in the breakdown (metabolism) of the amino acid histidine, a building block of most proteins. It also plays a role in producing one of several forms of the vitamin folate, which has many important functions in the body. FTCD gene mutations that cause glutamate formiminotransferase deficiency reduce or eliminate the function of the enzyme. It is unclear how these changes are related to the specific health problems associated with the mild and severe forms of glutamate formiminotransferase deficiency, or why individuals are affected by one form or the other. | glutamate formiminotransferase deficiency |
Is glutamate formiminotransferase deficiency inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | glutamate formiminotransferase deficiency |
What are the treatments for glutamate formiminotransferase deficiency ? | These resources address the diagnosis or management of glutamate formiminotransferase deficiency: - Baby's First Test - Genetic Testing Registry: Glutamate formiminotransferase deficiency These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | glutamate formiminotransferase deficiency |
What is (are) arterial tortuosity syndrome ? | Arterial tortuosity syndrome is a disorder that affects connective tissue. Connective tissue provides strength and flexibility to structures throughout the body, including blood vessels, skin, joints, and the gastrointestinal tract. As its name suggests, arterial tortuosity syndrome is characterized by blood vessel abnormalities, particularly abnormal twists and turns (tortuosity) of the blood vessels that carry blood from the heart to the rest of the body (the arteries). Tortuosity arises from abnormal elongation of the arteries; since the end points of the arteries are fixed, the extra length twists and curves. Other blood vessel abnormalities that may occur in this disorder include constriction (stenosis) and abnormal bulging (aneurysm) of vessels, as well as small clusters of enlarged blood vessels just under the skin (telangiectasia). Complications resulting from the abnormal arteries can be life-threatening. Rupture of an aneurysm or sudden tearing (dissection) of the layers in an arterial wall can result in massive loss of blood from the circulatory system. Blockage of blood flow to vital organs such as the heart, lungs, or brain can lead to heart attacks, respiratory problems, and strokes. Stenosis of the arteries forces the heart to work harder to pump blood and may lead to heart failure. As a result of these complications, arterial tortuosity syndrome is often fatal in childhood, although some individuals with mild cases of the disorder live into adulthood. Features of arterial tortuosity syndrome outside the circulatory system are caused by abnormal connective tissue in other parts of the body. These features include joints that are either loose and very flexible (hypermobile) or that have deformities limiting movement (contractures), and unusually soft and stretchable skin. Some affected individuals have long, slender fingers and toes (arachnodactyly); curvature of the spine (scoliosis); or a chest that is either sunken (pectus excavatum) or protruding (pectus carinatum). They may have protrusion of organs through gaps in muscles (hernias), elongation of the intestines, or pouches called diverticula in the intestinal walls. People with arterial tortuosity syndrome often look older than their age and have distinctive facial features including a long, narrow face with droopy cheeks; eye openings that are narrowed (blepharophimosis) with outside corners that point downward (downslanting palpebral fissures); a beaked nose with soft cartilage; a high, arched roof of the mouth (palate); a small lower jaw (micrognathia); and large ears. The cornea, which is the clear front covering of the eye, may be cone-shaped and abnormally thin (keratoconus). | arterial tortuosity syndrome |
How many people are affected by arterial tortuosity syndrome ? | Arterial tortuosity syndrome is a rare disorder; its prevalence is unknown. About 100 cases have been reported in the medical literature. | arterial tortuosity syndrome |
What are the genetic changes related to arterial tortuosity syndrome ? | Arterial tortuosity syndrome is caused by mutations in the SLC2A10 gene. This gene provides instructions for making a protein called GLUT10. The level of GLUT10 appears to be involved in the regulation of a process called the transforming growth factor-beta (TGF-) signaling pathway. This pathway is involved in cell growth and division (proliferation) and the process by which cells mature to carry out special functions (differentiation). The TGF- signaling pathway is also involved in bone and blood vessel development and the formation of the extracellular matrix, an intricate lattice of proteins and other molecules that forms in the spaces between cells and defines the structure and properties of connective tissues. SLC2A10 gene mutations that cause arterial tortuosity syndrome reduce or eliminate GLUT10 function. By mechanisms that are not well understood, a lack (deficiency) of functional GLUT10 protein leads to overactivity (upregulation) of TGF- signaling. Excessive growth signaling results in elongation of the arteries, leading to tortuosity. Overactive TGF- signaling also interferes with normal formation of the connective tissues in other parts of the body, leading to the additional signs and symptoms of arterial tortuosity syndrome. | arterial tortuosity syndrome |
Is arterial tortuosity syndrome inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | arterial tortuosity syndrome |
What are the treatments for arterial tortuosity syndrome ? | These resources address the diagnosis or management of arterial tortuosity syndrome: - Gene Review: Gene Review: Arterial Tortuosity Syndrome - Genetic Testing Registry: Arterial tortuosity syndrome - Johns Hopkins McKusick-Nathans Institute of Genetic Medicine - National Heart, Lung, and Blood Institute: How is an Aneurysm Treated? These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | arterial tortuosity syndrome |
What is (are) hepatic lipase deficiency ? | Hepatic lipase deficiency is a disorder that affects the body's ability to break down fats (lipids). People with this disorder have increased amounts of certain fats, known as triglycerides and cholesterol, in the blood. These individuals also have increased amounts of molecules known as high-density lipoproteins (HDLs) and decreased amounts of molecules called low-density lipoproteins (LDL). These molecules transport triglycerides and cholesterol throughout the body. In people with hepatic lipase deficiency, the LDL molecules are often abnormally large. Normally, high levels of HDL (known as "good cholesterol") and low levels of LDL (known as "bad cholesterol") are protective against an accumulation of fatty deposits on the artery walls (atherosclerosis) and heart disease. However, some individuals with hepatic lipase deficiency, who have this imbalance of HDL and LDL, develop atherosclerosis and heart disease in mid-adulthood, while others do not. It is unknown whether people with hepatic lipase deficiency have a greater risk of developing atherosclerosis or heart disease than individuals in the general population. Similarly, it is unclear how increased blood triglycerides and cholesterol levels affect the risk of atherosclerosis and heart disease in people with hepatic lipase deficiency. | hepatic lipase deficiency |
How many people are affected by hepatic lipase deficiency ? | Hepatic lipase deficiency is likely a rare disorder; only a few affected families have been reported in the scientific literature. | hepatic lipase deficiency |
What are the genetic changes related to hepatic lipase deficiency ? | Hepatic lipase deficiency is caused by mutations in the LIPC gene. This gene provides instructions for making an enzyme called hepatic lipase. This enzyme is produced by liver cells and released into the bloodstream where it helps convert very low-density lipoproteins (VLDLs) and intermediate-density lipoproteins (IDLs) to LDLs. The enzyme also assists in transporting HDLs that carry cholesterol and triglycerides from the blood to the liver, where the HDLs deposit these fats so they can be redistributed to other tissues or removed from the body. LIPC gene mutations prevent the release of hepatic lipase from the liver or decrease the enzyme's activity in the bloodstream. As a result, VLDLs and IDLs are not efficiently converted into LDLs, and HDLs carrying cholesterol and triglycerides remain in the bloodstream. It is unclear what effect this change in lipid levels has on people with hepatic lipase deficiency. | hepatic lipase deficiency |
Is hepatic lipase deficiency inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | hepatic lipase deficiency |
What are the treatments for hepatic lipase deficiency ? | These resources address the diagnosis or management of hepatic lipase deficiency: - Genetic Testing Registry: Hepatic lipase deficiency - MedlinePlus Encyclopedia: Cholesterol Testing and Results - MedlinePlus Encyclopedia: Triglyceride Level These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | hepatic lipase deficiency |
What is (are) anencephaly ? | Anencephaly is a condition that prevents the normal development of the brain and the bones of the skull. This condition results when a structure called the neural tube fails to close during the first few weeks of embryonic development. The neural tube is a layer of cells that ultimately develops into the brain and spinal cord. Because anencephaly is caused by abnormalities of the neural tube, it is classified as a neural tube defect. Because the neural tube fails to close properly, the developing brain and spinal cord are exposed to the amniotic fluid that surrounds the fetus in the womb. This exposure causes the nervous system tissue to break down (degenerate). As a result, people with anencephaly are missing large parts of the brain called the cerebrum and cerebellum. These brain regions are necessary for thinking, hearing, vision, emotion, and coordinating movement. The bones of the skull are also missing or incompletely formed. Because these nervous system abnormalities are so severe, almost all babies with anencephaly die before birth or within a few hours or days after birth. | anencephaly |
How many people are affected by anencephaly ? | Anencephaly is one of the most common types of neural tube defect, affecting about 1 in 1,000 pregnancies. However, most of these pregnancies end in miscarriage, so the prevalence of this condition in newborns is much lower. An estimated 1 in 10,000 infants in the United States is born with anencephaly. | anencephaly |
What are the genetic changes related to anencephaly ? | Anencephaly is a complex condition that is likely caused by the interaction of multiple genetic and environmental factors. Some of these factors have been identified, but many remain unknown. Changes in dozens of genes in individuals with anencephaly and in their mothers may influence the risk of developing this type of neural tube defect. The best-studied of these genes is MTHFR, which provides instructions for making a protein that is involved in processing the vitamin folate (also called vitamin B9). A shortage (deficiency) of this vitamin is an established risk factor for neural tube defects. Changes in other genes related to folate processing and genes involved in the development of the neural tube have also been studied as potential risk factors for anencephaly. However, none of these genes appears to play a major role in causing the condition. Researchers have also examined environmental factors that could contribute to the risk of anencephaly. As mentioned above, folate deficiency appears to play a significant role. Studies have shown that women who take supplements containing folic acid (the synthetic form of folate) before they get pregnant and very early in their pregnancy are significantly less likely to have a baby with a neural tube defect, including anencephaly. Other possible maternal risk factors for anencephaly include diabetes mellitus, obesity, exposure to high heat (such as a fever or use of a hot tub or sauna) in early pregnancy, and the use of certain anti-seizure medications during pregnancy. However, it is unclear how these factors may influence the risk of anencephaly. | anencephaly |
Is anencephaly inherited ? | Most cases of anencephaly are sporadic, which means they occur in people with no history of the disorder in their family. A small percentage of cases have been reported to run in families; however, the condition does not have a clear pattern of inheritance. For parents who have had a child with anencephaly, the risk of having another affected child is increased compared with the risk in the general population. | anencephaly |
What are the treatments for anencephaly ? | These resources address the diagnosis or management of anencephaly: - Children's Hospital of Philadelphia - Genetic Testing Registry: Anencephalus - Genetic Testing Registry: Neural tube defect - Genetic Testing Registry: Neural tube defects, folate-sensitive These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | anencephaly |
What is (are) leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation ? | Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (commonly referred to as LBSL) is a progressive disorder that affects the brain and spinal cord. Leukoencephalopathy refers to abnormalities in the white matter of the brain, which is tissue containing nerve cell fibers (axons) that transmit nerve impulses. Most affected individuals begin to develop movement problems during childhood or adolescence. However, in some individuals, these problems do not develop until adulthood. People with LBSL have abnormal muscle stiffness (spasticity) and difficulty with coordinating movements (ataxia). In addition, affected individuals lose the ability to sense the position of their limbs or vibrations with their limbs. These movement and sensation problems affect the legs more than the arms, making walking difficult. Most affected individuals eventually require wheelchair assistance, sometimes as early as their teens, although the age varies. People with LBSL can have other signs and symptoms of the condition. Some affected individuals develop recurrent seizures (epilepsy), speech difficulties (dysarthria), learning problems, or mild deterioration of mental functioning. Some people with this disorder are particularly vulnerable to severe complications following minor head trauma, which may trigger a loss of consciousness, other reversible neurological problems, or fever. Distinct changes in the brains of people with LBSL can be seen using magnetic resonance imaging (MRI). These characteristic abnormalities typically involve particular parts of the white matter of the brain and specific regions (called tracts) within the brain stem and spinal cord, especially the pyramidal tract and the dorsal column. In addition, most affected individuals have a high level of a substance called lactate in the white matter of the brain, which is identified using another test called magnetic resonance spectroscopy (MRS). | leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation |
How many people are affected by leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation ? | LBSL is a rare condition. Its exact prevalence is not known. | leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation |
What are the genetic changes related to leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation ? | LBSL is caused by mutations in the DARS2 gene, which provides instructions for making an enzyme called mitochondrial aspartyl-tRNA synthetase. This enzyme is important in the production (synthesis) of proteins in cellular structures called mitochondria, the energy-producing centers in cells. While most protein synthesis occurs in the fluid surrounding the nucleus (cytoplasm), some proteins are synthesized in the mitochondria. During protein synthesis, in either the mitochondria or the cytoplasm, building blocks (amino acids) are connected together in a specific order, creating a chain of amino acids that forms the protein. Mitochondrial aspartyl-tRNA synthetase plays a role in adding the amino acid aspartic acid at the proper place in mitochondrial proteins. Mutations in the DARS2 gene result in decreased mitochondrial aspartyl-tRNA synthetase enzyme activity, which hinders the addition of aspartic acid to mitochondrial proteins. It is unclear how the gene mutations lead to the signs and symptoms of LBSL. Researchers do not understand why reduced activity of mitochondrial aspartyl-tRNA synthetase specifically affects certain parts of the brain and spinal cord. | leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation |
Is leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation inherited ? | LBSL is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. In this condition, each copy of the gene carries a different mutation (compound heterozygous mutations). An affected individual never has the same mutation in both copies of the gene (a homozygous mutation). The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation |
What are the treatments for leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation ? | These resources address the diagnosis or management of LBSL: - Gene Review: Gene Review: Leukoencephalopathy with Brain Stem and Spinal Cord Involvement and Lactate Elevation - Genetic Testing Registry: Leukoencephalopathy with Brainstem and Spinal Cord Involvement and Lactate Elevation These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation |
What is (are) autoimmune lymphoproliferative syndrome ? | Autoimmune lymphoproliferative syndrome (ALPS) is an inherited disorder in which the body cannot properly regulate the number of immune system cells (lymphocytes). ALPS is characterized by the production of an abnormally large number of lymphocytes (lymphoproliferation). Accumulation of excess lymphocytes results in enlargement of the lymph nodes (lymphadenopathy), the liver (hepatomegaly), and the spleen (splenomegaly). People with ALPS have an increased risk of developing cancer of the immune system cells (lymphoma) and may also be at increased risk of developing other cancers. Autoimmune disorders are also common in ALPS. Autoimmune disorders occur when the immune system malfunctions and attacks the body's own tissues and organs. Most of the autoimmune disorders associated with ALPS target and damage blood cells. For example, the immune system may attack red blood cells (autoimmune hemolytic anemia), white blood cells (autoimmune neutropenia), or platelets (autoimmune thrombocytopenia). Less commonly, autoimmune disorders that affect other organs and tissues occur in people with ALPS. These disorders can damage the kidneys (glomerulonephritis), liver (autoimmune hepatitis), eyes (uveitis), nerves (Guillain-Barre syndrome), or the connective tissues (systemic lupus erythematosus) that provide strength and flexibility to structures throughout the body. Skin problems, usually rashes or hives (urticaria), can occur in ALPS. Occasionally, affected individuals develop hardened skin with painful lumps or patches (panniculitis). Other rare signs and symptoms of ALPS include joint inflammation (arthritis), inflammation of blood vessels (vasculitis), mouth sores (oral ulcers), or an early loss of ovarian function (premature ovarian failure) may also occur in this disorder. Affected individuals can also develop neurological damage (organic brain syndrome) with symptoms that may include headaches, seizures, or a decline in intellectual functions (dementia). ALPS can have different patterns of signs and symptoms, which are sometimes considered separate forms of the disorder. In the most common form, lymphoproliferation generally becomes apparent during childhood. Enlargement of the lymph nodes and spleen frequently occur in affected individuals. Autoimmune disorders typically develop several years later, most frequently as a combination of hemolytic anemia and thrombocytopenia, also called Evans syndrome. People with this classic form of ALPS have a greatly increased risk of developing lymphoma compared with the general population. Other types of ALPS are very rare. In some affected individuals, severe lymphoproliferation begins around the time of birth, and autoimmune disorders and lymphoma develop at an early age. People with this pattern of signs and symptoms generally do not live beyond childhood. Another form of ALPS involves lymphoproliferation and the tendency to develop systemic lupus erythematosus. Individuals with this form of the disorder do not have an enlarged spleen. Some people have signs and symptoms that resemble those of ALPS, but the specific pattern of these signs and symptoms or the genetic cause may be different than in other forms. Researchers disagree whether individuals with these non-classic forms should be considered to have ALPS or a separate condition. | autoimmune lymphoproliferative syndrome |
How many people are affected by autoimmune lymphoproliferative syndrome ? | ALPS is a rare disorder; its prevalence is unknown. More than 200 affected individuals have been identified worldwide. | autoimmune lymphoproliferative syndrome |
What are the genetic changes related to autoimmune lymphoproliferative syndrome ? | Mutations in the FAS gene cause ALPS in approximately 75 percent of affected individuals. The FAS gene provides instructions for making a protein involved in cell signaling that results in the self-destruction of cells (apoptosis). When the immune system is turned on (activated) to fight an infection, large numbers of lymphocytes are produced. Normally, these lymphocytes undergo apoptosis when they are no longer required. FAS gene mutations result in an abnormal protein that interferes with apoptosis. Excess lymphocytes accumulate in the body's tissues and organs and often begin attacking them, leading to autoimmune disorders. Interference with apoptosis allows cells to multiply without control, leading to the lymphomas and other cancers that occur in people with this disorder. ALPS may also be caused by mutations in additional genes, some of which have not been identified. | autoimmune lymphoproliferative syndrome |
Is autoimmune lymphoproliferative syndrome inherited ? | In most people with ALPS, including the majority of those with FAS gene mutations, this condition is inherited in an autosomal dominant pattern, which means one copy of an altered gene in each cell is sufficient to cause the disorder. In these cases, an affected person usually inherits the mutation from one affected parent. Other cases with an autosomal dominant pattern result from new (de novo) gene mutations that occur early in embryonic development in people with no history of the disorder in their family. In a small number of cases, including some cases caused by FAS gene mutations, ALPS is inherited in an autosomal recessive pattern, which means both copies of a gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. ALPS can also arise from a mutation in lymphocytes that is not inherited but instead occurs during an individual's lifetime. This alteration is called a somatic mutation. | autoimmune lymphoproliferative syndrome |
What are the treatments for autoimmune lymphoproliferative syndrome ? | These resources address the diagnosis or management of ALPS: - Gene Review: Gene Review: Autoimmune Lymphoproliferative Syndrome - Genetic Testing Registry: Autoimmune lymphoproliferative syndrome - Genetic Testing Registry: Autoimmune lymphoproliferative syndrome type 1, autosomal recessive - Genetic Testing Registry: Autoimmune lymphoproliferative syndrome, type 1a - Genetic Testing Registry: Autoimmune lymphoproliferative syndrome, type 1b - Genetic Testing Registry: Autoimmune lymphoproliferative syndrome, type 2 - Genetic Testing Registry: RAS-associated autoimmune leukoproliferative disorder - National Institute of Allergy and Infectious Diseases (NIAID): ALPS Treatment These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | autoimmune lymphoproliferative syndrome |
What is (are) progressive external ophthalmoplegia ? | Progressive external ophthalmoplegia is a condition characterized by weakness of the eye muscles. The condition typically appears in adults between ages 18 and 40. The most common signs and symptoms of progressive external ophthalmoplegia are drooping eyelids (ptosis), which can affect one or both eyelids, and weakness or paralysis of the muscles that move the eye (ophthalmoplegia). Affected individuals may also have general weakness of the skeletal muscles (myopathy), particularly in the neck, arms, or legs. The weakness may be especially noticeable during exercise (exercise intolerance). Muscle weakness may also cause difficulty swallowing (dysphagia). When the muscle cells of affected individuals are stained and viewed under a microscope, these cells usually appear abnormal. These abnormal muscle cells contain an excess of structures called mitochondria and are known as ragged-red fibers. Additionally, a close study of muscle cells may reveal abnormalities in a type of DNA found in mitochondria called mitochondrial DNA (mtDNA). Affected individuals often have large deletions of genetic material from mtDNA in muscle tissue. Although muscle weakness is the primary symptom of progressive external ophthalmoplegia, this condition can be accompanied by other signs and symptoms. In these instances, the condition is referred to as progressive external ophthalmoplegia plus (PEO+). Additional signs and symptoms can include hearing loss caused by nerve damage in the inner ear (sensorineural hearing loss), weakness and loss of sensation in the limbs due to nerve damage (neuropathy), impaired muscle coordination (ataxia), a pattern of movement abnormalities known as parkinsonism, or depression. Progressive external ophthalmoplegia is part of a spectrum of disorders with overlapping signs and symptoms. Similar disorders include other conditions caused by POLG gene mutations, such as ataxia neuropathy spectrum, as well as other mtDNA deletion disorders, such as Kearns-Sayre syndrome. Like progressive external ophthalmoplegia, the other conditions in this spectrum can involve weakness of the eye muscles. However, these conditions have many additional features not shared by most people with progressive external ophthalmoplegia. | progressive external ophthalmoplegia |
How many people are affected by progressive external ophthalmoplegia ? | The prevalence of progressive external ophthalmoplegia is unknown. | progressive external ophthalmoplegia |
What are the genetic changes related to progressive external ophthalmoplegia ? | Progressive external ophthalmoplegia is a condition caused by defects in mitochondria, which are structures within cells that use oxygen to convert the energy from food into a form cells can use. This process is called oxidative phosphorylation. Although most DNA is packaged in chromosomes within the nucleus (nuclear DNA), mitochondria also have a small amount of their own DNA, called mitochondrial DNA or mtDNA. Progressive external ophthalmoplegia can result from mutations in several different genes. In some cases, mutations in the MT-TL1 gene, which is located in mtDNA, cause progressive external ophthalmoplegia. In other cases, mutations in nuclear DNA are responsible for the condition, particularly mutations in the POLG, SLC25A4, and C10orf2 genes. These genes are critical for mtDNA maintenance. Although the mechanism is unclear, mutations in any of these three genes lead to large deletions of mtDNA, ranging from 2,000 to 10,000 DNA building blocks (nucleotides). Researchers have not determined how deletions of mtDNA lead to the specific signs and symptoms of progressive external ophthalmoplegia, although the features of the condition are probably related to impaired oxidative phosphorylation. It has been suggested that eye muscles are commonly affected by mitochondrial defects because they are especially dependent on oxidative phosphorylation for energy. | progressive external ophthalmoplegia |
Is progressive external ophthalmoplegia inherited ? | Progressive external ophthalmoplegia can have different inheritance patterns depending on the gene involved. When this condition is caused by mutations in the MT-TL1 gene, it is inherited in a mitochondrial pattern, which is also known as maternal inheritance. This pattern of inheritance applies to genes contained in mtDNA. Because egg cells, but not sperm cells, contribute mitochondria to the developing embryo, children can only inherit disorders resulting from mtDNA mutations from their mother. These disorders can appear in every generation of a family and can affect both males and females, but fathers do not pass traits associated with changes in mtDNA to their children. When the nuclear genes POLG, SLC25A4, or C10orf2 are involved, progressive external ophthalmoplegia is usually inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. Certain mutations in the POLG gene can also cause a form of the condition that is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. Some mutations in the POLG gene that cause progressive external ophthalmoplegia occur during a person's lifetime and are not inherited. These genetic changes are called somatic mutations. | progressive external ophthalmoplegia |
What are the treatments for progressive external ophthalmoplegia ? | These resources address the diagnosis or management of progressive external ophthalmoplegia: - Gene Review: Gene Review: Mitochondrial DNA Deletion Syndromes - Gene Review: Gene Review: POLG-Related Disorders - Genetic Testing Registry: Autosomal dominant progressive external ophthalmoplegia with mitochondrial DNA deletions 1 - Genetic Testing Registry: Autosomal dominant progressive external ophthalmoplegia with mitochondrial DNA deletions 2 - Genetic Testing Registry: Autosomal dominant progressive external ophthalmoplegia with mitochondrial DNA deletions 3 - Genetic Testing Registry: Progressive external ophthalmoplegia - United Mitochondrial Disease Foundation: Diagnosis of Mitochondrial Disease These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | progressive external ophthalmoplegia |
What is (are) glycogen storage disease type IV ? | Glycogen storage disease type IV (GSD IV) is an inherited disorder caused by the buildup of a complex sugar called glycogen in the body's cells. The accumulated glycogen is structurally abnormal and impairs the function of certain organs and tissues, especially the liver and muscles. There are five types of GSD IV, which are distinguished by their severity, signs, and symptoms. The fatal perinatal neuromuscular type is the most severe form of GSD IV, with signs developing before birth. Excess fluid may build up around the fetus (polyhydramnios) and in the fetus' body. Affected fetuses have a condition called fetal akinesia deformation sequence, which causes a decrease in fetal movement and can lead to joint stiffness (arthrogryposis) after birth. Infants with the fatal perinatal neuromuscular type of GSD IV have very low muscle tone (severe hypotonia) and muscle wasting (atrophy). These infants usually do not survive past the newborn period due to weakened heart and breathing muscles. The congenital muscular type of GSD IV is usually not evident before birth but develops in early infancy. Affected infants have severe hypotonia, which affects the muscles needed for breathing. These babies often have dilated cardiomyopathy, which enlarges and weakens the heart (cardiac) muscle, preventing the heart from pumping blood efficiently. Infants with the congenital muscular type of GSD IV typically survive only a few months. The progressive hepatic type is the most common form of GSD IV. Within the first months of life, affected infants have difficulty gaining weight and growing at the expected rate (failure to thrive) and develop an enlarged liver (hepatomegaly). Children with this type develop a form of liver disease called cirrhosis that often is irreversible. High blood pressure in the vein that supplies blood to the liver (portal hypertension) and an abnormal buildup of fluid in the abdominal cavity (ascites) can also occur. By age 1 or 2, affected children develop hypotonia. Children with the progressive hepatic type of GSD IV often die of liver failure in early childhood. The non-progressive hepatic type of GSD IV has many of the same features as the progressive hepatic type, but the liver disease is not as severe. In the non-progressive hepatic type, hepatomegaly and liver disease are usually evident in early childhood, but affected individuals typically do not develop cirrhosis. People with this type of the disorder can also have hypotonia and muscle weakness (myopathy). Most individuals with this type survive into adulthood, although life expectancy varies depending on the severity of the signs and symptoms. The childhood neuromuscular type of GSD IV develops in late childhood and is characterized by myopathy and dilated cardiomyopathy. The severity of this type of GSD IV varies greatly; some people have only mild muscle weakness while others have severe cardiomyopathy and die in early adulthood. | glycogen storage disease type IV |
How many people are affected by glycogen storage disease type IV ? | GSD IV is estimated to occur in 1 in 600,000 to 800,000 individuals worldwide. Type IV accounts for roughly 3 percent of all cases of glycogen storage disease. | glycogen storage disease type IV |
What are the genetic changes related to glycogen storage disease type IV ? | Mutations in the GBE1 gene cause GSD IV. The GBE1 gene provides instructions for making the glycogen branching enzyme. This enzyme is involved in the production of glycogen, which is a major source of stored energy in the body. GBE1 gene mutations that cause GSD IV lead to a shortage (deficiency) of the glycogen branching enzyme. As a result, glycogen is not formed properly. Abnormal glycogen molecules called polyglucosan bodies accumulate in cells, leading to damage and cell death. Polyglucosan bodies accumulate in cells throughout the body, but liver cells and muscle cells are most severely affected in GSD IV. Glycogen accumulation in the liver leads to hepatomegaly and interferes with liver functioning. The inability of muscle cells to break down glycogen for energy leads to muscle weakness and wasting. Generally, the severity of the disorder is linked to the amount of functional glycogen branching enzyme that is produced. Individuals with the fatal perinatal neuromuscular type tend to produce less than 5 percent of usable enzyme, while those with the childhood neuromuscular type may have around 20 percent of enzyme function. The other types of GSD IV are usually associated with between 5 and 20 percent of working enzyme. These estimates, however, vary among the different types. | glycogen storage disease type IV |
Is glycogen storage disease type IV inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | glycogen storage disease type IV |
What are the treatments for glycogen storage disease type IV ? | These resources address the diagnosis or management of glycogen storage disease type IV: - Gene Review: Gene Review: Glycogen Storage Disease Type IV - Genetic Testing Registry: Glycogen storage disease, type IV - MedlinePlus Encyclopedia: Dilated Cardiomyopathy - MedlinePlus Encyclopedia: Failure to Thrive These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | glycogen storage disease type IV |
What is (are) cherubism ? | Cherubism is a disorder characterized by abnormal bone tissue in the lower part of the face. Beginning in early childhood, both the lower jaw (the mandible) and the upper jaw (the maxilla) become enlarged as bone is replaced with painless, cyst-like growths. These growths give the cheeks a swollen, rounded appearance and often interfere with normal tooth development. In some people the condition is so mild that it may not be noticeable, while other cases are severe enough to cause problems with vision, breathing, speech, and swallowing. Enlargement of the jaw usually continues throughout childhood and stabilizes during puberty. The abnormal growths are gradually replaced with normal bone in early adulthood. As a result, many affected adults have a normal facial appearance. Most people with cherubism have few, if any, signs and symptoms affecting other parts of the body. Rarely, however, this condition occurs as part of another genetic disorder. For example, cherubism can occur with Ramon syndrome, which also involves short stature, intellectual disability, and overgrowth of the gums (gingival fibrosis). Additionally, cherubism has been reported in rare cases of Noonan syndrome (a developmental disorder characterized by unusual facial characteristics, short stature, and heart defects) and fragile X syndrome (a condition primarily affecting males that causes learning disabilities and cognitive impairment). | cherubism |
How many people are affected by cherubism ? | The incidence of cherubism is unknown. At least 250 cases have been reported worldwide. | cherubism |
What are the genetic changes related to cherubism ? | Mutations in the SH3BP2 gene have been identified in about 80 percent of people with cherubism. In most of the remaining cases, the genetic cause of the condition is unknown. The SH3BP2 gene provides instructions for making a protein whose exact function is unclear. The protein plays a role in transmitting chemical signals within cells, particularly cells involved in the replacement of old bone tissue with new bone (bone remodeling) and certain immune system cells. Mutations in the SH3BP2 gene lead to the production of an overly active version of this protein. The effects of SH3BP2 mutations are still under study, but researchers believe that the abnormal protein disrupts critical signaling pathways in cells associated with the maintenance of bone tissue and in some immune system cells. The overactive protein likely causes inflammation in the jaw bones and triggers the production of osteoclasts, which are cells that break down bone tissue during bone remodeling. An excess of these bone-eating cells contributes to the destruction of bone in the upper and lower jaws. A combination of bone loss and inflammation likely underlies the cyst-like growths characteristic of cherubism. | cherubism |
Is cherubism inherited ? | This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. | cherubism |
What are the treatments for cherubism ? | These resources address the diagnosis or management of cherubism: - Gene Review: Gene Review: Cherubism - Genetic Testing Registry: Fibrous dysplasia of jaw These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | cherubism |
What is (are) Crouzonodermoskeletal syndrome ? | Crouzonodermoskeletal syndrome is a disorder characterized by the premature joining of certain bones of the skull (craniosynostosis) during development and a skin condition called acanthosis nigricans. The signs and symptoms of Crouzonodermoskeletal syndrome overlap with those of a similar condition called Crouzon syndrome. Common features include premature fusion of the skull bones, which affects the shape of the head and face; wide-set, bulging eyes due to shallow eye sockets; eyes that do not point in the same direction (strabismus); a small, beaked nose; and an underdeveloped upper jaw. People with Crouzon syndrome or Crouzonodermoskeletal syndrome usually have normal intelligence. Several features distinguish Crouzonodermoskeletal syndrome from Crouzon syndrome. People with Crouzonodermoskeletal syndrome have acanthosis nigricans, a skin condition characterized by thick, dark, velvety skin in body folds and creases, including the neck and underarms. In addition, subtle changes may be seen in the bones of the spine (vertebrae) on x-rays. Noncancerous growths called cementomas may develop in the jaw during young adulthood. | Crouzonodermoskeletal syndrome |
How many people are affected by Crouzonodermoskeletal syndrome ? | Crouzonodermoskeletal syndrome is rare; this condition is seen in about 1 person per million. | Crouzonodermoskeletal syndrome |
What are the genetic changes related to Crouzonodermoskeletal syndrome ? | Mutations in the FGFR3 gene cause Crouzonodermoskeletal syndrome. The FGFR3 gene provides instructions for making a protein that is involved in the development and maintenance of bone and brain tissue. It remains unclear how a mutation in the FGFR3 gene leads to the characteristic features of Crouzonodermoskeletal syndrome. This genetic change appears to disrupt the normal growth of skull bones and affect skin pigmentation. | Crouzonodermoskeletal syndrome |
Is Crouzonodermoskeletal syndrome inherited ? | This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In some cases, an affected person inherits the mutation from one affected parent. More commonly, this condition results from new mutations in the gene. These cases occur in people with no history of the disorder in their family. | Crouzonodermoskeletal syndrome |
What are the treatments for Crouzonodermoskeletal syndrome ? | These resources address the diagnosis or management of Crouzonodermoskeletal syndrome: - Gene Review: Gene Review: FGFR-Related Craniosynostosis Syndromes - Genetic Testing Registry: Crouzon syndrome with acanthosis nigricans - MedlinePlus Encyclopedia: Acanthosis Nigricans - MedlinePlus Encyclopedia: Craniosynostosis These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Crouzonodermoskeletal syndrome |
What is (are) McLeod neuroacanthocytosis syndrome ? | McLeod neuroacanthocytosis syndrome is primarily a neurological disorder that occurs almost exclusively in boys and men. This disorder affects movement in many parts of the body. People with McLeod neuroacanthocytosis syndrome also have abnormal star-shaped red blood cells (acanthocytosis). This condition is one of a group of disorders called neuroacanthocytoses that involve neurological problems and abnormal red blood cells. McLeod neuroacanthocytosis syndrome affects the brain and spinal cord (central nervous system). Affected individuals have involuntary movements, including jerking motions (chorea), particularly of the arms and legs, and muscle tensing (dystonia) in the face and throat, which can cause grimacing and vocal tics (such as grunting and clicking noises). Dystonia of the tongue can lead to swallowing difficulties. Seizures occur in approximately half of all people with McLeod neuroacanthocytosis syndrome. Individuals with this condition may develop difficulty processing, learning, and remembering information (cognitive impairment). They may also develop psychiatric disorders, such as depression, bipolar disorder, psychosis, or obsessive-compulsive disorder. People with McLeod neuroacanthocytosis syndrome also have problems with their muscles, including muscle weakness (myopathy) and muscle degeneration (atrophy). Sometimes, nerves that connect to muscles atrophy (neurogenic atrophy), leading to loss of muscle mass and impaired movement. Individuals with McLeod neuroacanthocytosis syndrome may also have reduced sensation and weakness in their arms and legs (peripheral neuropathy). Life-threatening heart problems such as irregular heartbeats (arrhythmia) and a weakened and enlarged heart (dilated cardiomyopathy) are common in individuals with this disorder. The signs and symptoms of McLeod neuroacanthocytosis syndrome usually begin in mid-adulthood. Behavioral changes, such as lack of self-restraint, the inability to take care of oneself, anxiety, depression, and changes in personality may be the first signs of this condition. While these behavioral changes are typically not progressive, the movement and muscle problems and intellectual impairments tend to worsen with age. | McLeod neuroacanthocytosis syndrome |
How many people are affected by McLeod neuroacanthocytosis syndrome ? | McLeod neuroacanthocytosis syndrome is rare; approximately 150 cases have been reported worldwide. | McLeod neuroacanthocytosis syndrome |
What are the genetic changes related to McLeod neuroacanthocytosis syndrome ? | Mutations in the XK gene cause McLeod neuroacanthocytosis syndrome. The XK gene provides instructions for producing the XK protein, which carries the blood antigen Kx. Blood antigens are found on the surface of red blood cells and determine blood type. The XK protein is found in various tissues, particularly the brain, muscle, and heart. The function of the XK protein is unclear; researchers believe that it might play a role in transporting substances into and out of cells. On red blood cells, the XK protein attaches to another blood group protein, the Kell protein. The function of this blood group complex is unknown. XK gene mutations typically lead to the production of an abnormally short, nonfunctional protein or cause no protein to be produced at all. A lack of XK protein leads to an absence of Kx antigens on red blood cells; the Kell antigen is also less prevalent. The absence of Kx antigen and reduction of Kell antigen is known as the "McLeod phenotype," and refers only to the red blood cells. It is not known how the lack of XK protein leads to the movement problems and other features of McLeod neuroacanthocytosis syndrome. | McLeod neuroacanthocytosis syndrome |
Is McLeod neuroacanthocytosis syndrome inherited ? | McLeod neuroacanthocytosis syndrome is inherited in an X-linked recessive pattern. The gene associated with this condition is located on the X chromosome, which is one of the two sex chromosomes. In males (who have only one X chromosome), one altered copy of the gene in each cell is sufficient to cause the condition. In females (who have two X chromosomes), a mutation must be present in both copies of the gene to cause the disorder. Males are affected by X-linked recessive disorders much more frequently than females. Rarely, females with a mutation in one copy of the XK gene can have the characteristic misshapen blood cells and movement problems associated with McLeod neuroacanthocytosis syndrome. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons. | McLeod neuroacanthocytosis syndrome |
What are the treatments for McLeod neuroacanthocytosis syndrome ? | These resources address the diagnosis or management of McLeod neuroacanthocytosis syndrome: - Gene Review: Gene Review: McLeod Neuroacanthocytosis Syndrome - Genetic Testing Registry: McLeod neuroacanthocytosis syndrome These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | McLeod neuroacanthocytosis syndrome |
What is (are) GRACILE syndrome ? | GRACILE syndrome is a severe disorder that begins before birth. GRACILE stands for the condition's characteristic features: growth retardation, aminoaciduria, cholestasis, iron overload, lactic acidosis, and early death. In GRACILE syndrome, growth before birth is slow (intrauterine growth retardation). Affected newborns are smaller than average and have an inability to grow and gain weight at the expected rate (failure to thrive). A characteristic of GRACILE syndrome is excess iron in the liver, which likely begins before birth. Iron levels may begin to improve after birth, although they typically remain elevated. Within the first day of life, infants with GRACILE syndrome have a buildup of a chemical called lactic acid in the body (lactic acidosis). They also have kidney problems that lead to an excess of molecules called amino acids in the urine (aminoaciduria). Babies with GRACILE syndrome have cholestasis, which is a reduced ability to produce and release a digestive fluid called bile. Cholestasis leads to irreversible liver disease (cirrhosis) in the first few months of life. Because of the severe health problems caused by GRACILE syndrome, infants with this condition do not survive for more than a few months, and about half die within a few days of birth. | GRACILE syndrome |
How many people are affected by GRACILE syndrome ? | GRACILE syndrome is found almost exclusively in Finland, where it is estimated to affect 1 in 47,000 infants. At least 32 affected infants have been described in the medical literature. | GRACILE syndrome |
What are the genetic changes related to GRACILE syndrome ? | GRACILE syndrome is caused by a mutation in the BCS1L gene. The protein produced from this gene is found in cell structures called mitochondria, which convert the energy from food into a form that cells can use. In mitochondria, the BCS1L protein plays a role in oxidative phosphorylation, which is a multistep process through which cells derive much of their energy. The BCS1L protein is critical for the formation of a group of proteins known as complex III, which is one of several protein complexes involved in oxidative phosphorylation. The genetic change involved in GRACILE syndrome alters the BCS1L protein, and the abnormal protein is broken down more quickly than the normal protein. What little protein remains is able to help form some complete complex III, although the amount is severely reduced, particularly in the liver and kidneys. As a result, complex III activity and oxidative phosphorylation are decreased in these organs in people with GRACILE syndrome. Without energy, these organs become damaged, leading to many of the features of GRACILE syndrome. It is not clear why a change in the BCS1L gene leads to iron accumulation in people with this condition. | GRACILE syndrome |
Is GRACILE syndrome inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | GRACILE syndrome |
What are the treatments for GRACILE syndrome ? | These resources address the diagnosis or management of GRACILE syndrome: - Genetic Testing Registry: GRACILE syndrome - MedlinePlus Encyclopedia: Aminoaciduria - MedlinePlus Encyclopedia: Cholestasis These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | GRACILE syndrome |
What is (are) pulmonary veno-occlusive disease ? | Pulmonary veno-occlusive disease (PVOD) is characterized by the blockage (occlusion) of the blood vessels that carry oxygen-rich (oxygenated) blood from the lungs to the heart (the pulmonary veins). The occlusion is caused by a buildup of abnormal fibrous tissue in the small veins in the lungs, which narrows the vessels and impairs blood flow. Because blood flow through the lungs is difficult, pressure rises in the vessels that carry blood that needs to be oxygenated to the lungs from the heart (the pulmonary arteries). Increased pressure in these vessels is known as pulmonary arterial hypertension. The problems with blood flow in PVOD also impair the delivery of oxygenated blood to the rest of the body, which leads to the signs and symptoms of the condition. Shortness of breath (dyspnea) and tiredness (fatigue) during exertion are the most common symptoms of this condition. Other common features include dizziness, a lack of energy (lethargy), difficulty breathing when lying down, and a cough that does not go away. As the condition worsens, affected individuals can develop a bluish tint to the skin (cyanosis), chest pains, fainting spells, and an accumulation of fluid in the lungs (pulmonary edema). Certain features commonly seen in people with PVOD can be identified using a test called a CT scan. One of these features, which is seen in the lungs of affected individuals, is an abnormality described as centrilobular ground-glass opacities. Affected individuals also have abnormal thickening of certain tissues in the lungs, which is described as septal lines. In addition, lymph nodes in the chest (mediastinal lymph nodes) are abnormally enlarged in people with PVOD. PVOD can begin at any age, and the blood flow problems worsen over time. Because of the increased blood pressure in the pulmonary arteries, the heart must work harder than normal to pump blood to the lungs, which can eventually lead to fatal heart failure. Most people with this severe disorder do not live more than 2 years after diagnosis. | pulmonary veno-occlusive disease |
How many people are affected by pulmonary veno-occlusive disease ? | The exact prevalence of PVOD is unknown. Many cases are likely misdiagnosed as idiopathic pulmonary arterial hypertension, which is increased blood pressure in the pulmonary arteries without a known cause. Research suggests that 5 to 25 percent of people diagnosed with idiopathic pulmonary arterial hypertension have PVOD. Based on these numbers, PVOD is thought to affect an estimated 1 to 2 per 10 million people. | pulmonary veno-occlusive disease |
What are the genetic changes related to pulmonary veno-occlusive disease ? | The primary genetic cause of PVOD is mutations in the EIF2AK4 gene. Mutations in other genes may cause a small percentage of cases. Other suspected causes of PVOD include viral infection and exposure to toxic chemicals, including certain chemotherapy drugs. The protein produced from the EIF2AK4 gene helps cells respond appropriately to changes that could damage the cell. For example, when the level of protein building blocks (amino acids) in a cell falls too low, the activity of the EIF2AK4 protein helps reduce the production of other proteins, which conserves amino acids. The EIF2AK4 gene mutations involved in PVOD likely eliminate functional EIF2AK4 protein; however, it is unknown how absence of this protein's function leads to the pulmonary vessel abnormalities that underlie PVOD. | pulmonary veno-occlusive disease |
Is pulmonary veno-occlusive disease inherited ? | When caused by mutations in the EIF2AK4 gene, PVOD is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. In contrast, when caused by mutations in another gene, the condition can have an autosomal dominant pattern of inheritance, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In these cases, one parent of an affected individual typically has increased blood pressure in the vessels of the lungs. | pulmonary veno-occlusive disease |
What are the treatments for pulmonary veno-occlusive disease ? | These resources address the diagnosis or management of pulmonary veno-occlusive disease: - Genetic Testing Registry: Pulmonary veno-occlusive disease These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | pulmonary veno-occlusive disease |
What is (are) paroxysmal extreme pain disorder ? | Paroxysmal extreme pain disorder is a condition characterized by skin redness and warmth (flushing) and attacks of severe pain in various parts of the body. The area of flushing typically corresponds to the site of the pain. The pain attacks experienced by people with paroxysmal extreme pain disorder usually last seconds to minutes, but in some cases can last hours. These attacks can start as early as infancy. Early in life, the pain is typically concentrated in the lower part of the body, especially around the rectum, and is usually triggered by a bowel movement. Some children may develop constipation, which is thought to be due to fear of triggering a pain attack. Pain attacks in these young children may also be accompanied by seizures, slow heartbeat, or short pauses in breathing (apnea). As a person with paroxysmal extreme pain disorder ages, the location of pain changes. Pain attacks switch from affecting the lower body to affecting the head and face, especially the eyes and jaw. Triggers of these pain attacks include changes in temperature (such as a cold wind) and emotional distress as well as eating spicy foods and drinking cold drinks. Paroxysmal extreme pain disorder is considered a form of peripheral neuropathy because it affects the peripheral nervous system, which connects the brain and spinal cord to muscles and to cells that detect sensations such as touch, smell, and pain. | paroxysmal extreme pain disorder |
How many people are affected by paroxysmal extreme pain disorder ? | Paroxysmal extreme pain disorder is a rare condition; approximately 80 affected individuals have been described in the scientific literature. | paroxysmal extreme pain disorder |
What are the genetic changes related to paroxysmal extreme pain disorder ? | Mutations in the SCN9A gene cause paroxysmal extreme pain disorder. The SCN9A gene provides instructions for making one part (the alpha subunit) of a sodium channel called NaV1.7. Sodium channels transport positively charged sodium atoms (sodium ions) into cells and play a key role in a cell's ability to generate and transmit electrical signals. NaV1.7 sodium channels are found in nerve cells called nociceptors that transmit pain signals to the spinal cord and brain. The SCN9A gene mutations that cause paroxysmal extreme pain disorder result in NaV1.7 sodium channels that do not close completely when it is turned off, allowing sodium ions to flow abnormally into nociceptors. This increase in sodium ions enhances transmission of pain signals, leading to the pain attacks experienced by people with paroxysmal extreme pain disorder. It is unknown why the pain attacks associated with this condition change location over time or what causes the other features of this condition such as seizures and changes in breathing. | paroxysmal extreme pain disorder |
Is paroxysmal extreme pain disorder inherited ? | This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. | paroxysmal extreme pain disorder |
What are the treatments for paroxysmal extreme pain disorder ? | These resources address the diagnosis or management of paroxysmal extreme pain disorder: - Genetic Testing Registry: Paroxysmal extreme pain disorder These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | paroxysmal extreme pain disorder |
What is (are) Denys-Drash syndrome ? | Denys-Drash syndrome is a condition that affects the kidneys and genitalia. Denys-Drash syndrome is characterized by kidney disease that begins within the first few months of life. Affected individuals have a condition called diffuse glomerulosclerosis, in which scar tissue forms throughout glomeruli, which are the tiny blood vessels in the kidneys that filter waste from blood. In people with Denys-Drash syndrome, this condition often leads to kidney failure in childhood. People with Denys-Drash syndrome have an estimated 90 percent chance of developing a rare form of kidney cancer known as Wilms tumor. Affected individuals may develop multiple tumors in one or both kidneys. Although males with Denys-Drash syndrome have the typical male chromosome pattern (46,XY), they have gonadal dysgenesis, in which external genitalia do not look clearly male or clearly female (ambiguous genitalia) or the genitalia appear completely female. The testes of affected males are undescended, which means they are abnormally located in the pelvis, abdomen, or groin. As a result, males with Denys-Drash are typically unable to have biological children (infertile). Affected females usually have normal genitalia and have only the kidney features of the condition. Because they do not have all the features of the condition, females are usually given the diagnosis of isolated nephrotic syndrome. | Denys-Drash syndrome |
How many people are affected by Denys-Drash syndrome ? | The prevalence of Denys-Drash syndrome is unknown; at least 150 affected individuals have been reported in the scientific literature. | Denys-Drash syndrome |
What are the genetic changes related to Denys-Drash syndrome ? | Mutations in the WT1 gene cause Denys-Drash syndrome. The WT1 gene provides instructions for making a protein that regulates the activity of other genes by attaching (binding) to specific regions of DNA. On the basis of this action, the WT1 protein is called a transcription factor. The WT1 protein plays a role in the development of the kidneys and kidneys and gonads (ovaries in females and testes in males) before birth. WT1 gene mutations that cause Denys-Drash syndrome lead to the production of an abnormal protein that cannot bind to DNA. As a result, the activity of certain genes is unregulated, which impairs the development of the kidneys and reproductive organs. Abnormal development of these organs leads to diffuse glomerulosclerosis and gonadal dysgenesis, which are characteristic of Denys-Drash syndrome. Abnormal gene activity caused by the loss of normal WT1 protein increases the risk of developing Wilms tumor in affected individuals. Denys-Drash syndrome has features similar to another condition called Frasier syndrome, which is also caused by mutations in the WT1 gene. Because these two conditions share a genetic cause and have overlapping features, some researchers have suggested that they are part of a spectrum and not two distinct conditions. | Denys-Drash syndrome |
Is Denys-Drash syndrome inherited ? | This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. | Denys-Drash syndrome |
What are the treatments for Denys-Drash syndrome ? | These resources address the diagnosis or management of Denys-Drash syndrome: - Gene Review: Gene Review: Wilms Tumor Overview - Genetic Testing Registry: Drash syndrome - MedlinePlus Encyclopedia: Nephrotic Syndrome These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Denys-Drash syndrome |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.