problem
stringlengths 16
191
| explanation
stringlengths 6
29k
⌀ | type
stringlengths 3
136
⌀ |
---|---|---|
What is (are) Shprintzen-Goldberg syndrome ? | Shprintzen-Goldberg syndrome is a disorder that affects many parts of the body. Affected individuals have a combination of distinctive facial features and skeletal and neurological abnormalities. A common feature in people with Shprintzen-Goldberg syndrome is craniosynostosis, which is the premature fusion of certain skull bones. This early fusion prevents the skull from growing normally. Affected individuals can also have distinctive facial features, including a long, narrow head; widely spaced eyes (hypertelorism); protruding eyes (exophthalmos); outside corners of the eyes that point downward (downslanting palpebral fissures); a high, narrow palate; a small lower jaw (micrognathia); and low-set ears that are rotated backward. People with Shprintzen-Goldberg syndrome are often said to have a marfanoid habitus, because their bodies resemble those of people with a genetic condition called Marfan syndrome. For example, they may have long, slender fingers (arachnodactyly), unusually long limbs, a sunken chest (pectus excavatum) or protruding chest (pectus carinatum), and an abnormal side-to-side curvature of the spine (scoliosis). People with Shprintzen-Goldberg syndrome can have other skeletal abnormalities, such as one or more fingers that are permanently bent (camptodactyly) and an unusually large range of joint movement (hypermobility). People with Shprintzen-Goldberg syndrome often have delayed development and mild to moderate intellectual disability. Other common features of Shprintzen-Goldberg syndrome include heart or brain abnormalities, weak muscle tone (hypotonia) in infancy, and a soft out-pouching around the belly-button (umbilical hernia) or lower abdomen (inguinal hernia). Shprintzen-Goldberg syndrome has signs and symptoms similar to those of Marfan syndrome and another genetic condition called Loeys-Dietz syndrome. However, intellectual disability is more likely to occur in Shprintzen-Goldberg syndrome than in the other two conditions. In addition, heart abnormalities are more common and usually more severe in Marfan syndrome and Loeys-Dietz syndrome. | Shprintzen-Goldberg syndrome |
How many people are affected by Shprintzen-Goldberg syndrome ? | Shprintzen-Goldberg syndrome is a rare condition, although its prevalence is unknown. It is difficult to identify the number of affected individuals, because some cases diagnosed as Shprintzen-Goldberg syndrome may instead be Marfan syndrome or Loeys-Dietz syndrome, which have overlapping signs and symptoms. | Shprintzen-Goldberg syndrome |
What are the genetic changes related to Shprintzen-Goldberg syndrome ? | Shprintzen-Goldberg syndrome is often caused by mutations in the SKI gene. This gene provides instructions for making a protein that regulates the transforming growth factor beta (TGF-) signaling pathway. The TGF- pathway regulates many processes, including cell growth and division (proliferation), the process by which cells mature to carry out special functions (differentiation), cell movement (motility), and the self-destruction of cells (apoptosis). By attaching to certain proteins in the pathway, the SKI protein blocks TGF- signaling. The SKI protein is found in many cell types throughout the body and appears to play a role in the development of many tissues, including the skull, other bones, skin, and brain. SKI gene mutations involved in Shprintzen-Goldberg syndrome alter the SKI protein. The altered protein is no longer able to attach to proteins in the TGF- pathway and block signaling. As a result, the pathway is abnormally active. Excess TGF- signaling changes the regulation of gene activity and likely disrupts development of many body systems, including the bones and brain, resulting in the wide range of signs and symptoms of Shprintzen-Goldberg syndrome. Not all cases of Shprintzen-Goldberg syndrome are caused by mutations in the SKI gene. Other genes may be involved in this condition, and in some cases, the genetic cause is unknown. | Shprintzen-Goldberg syndrome |
Is Shprintzen-Goldberg syndrome inherited ? | Shprintzen-Goldberg syndrome is described as autosomal dominant, which means one copy of the altered gene in each cell is sufficient to cause the disorder. The condition almost always results from new (de novo) gene mutations and occurs in people with no history of the disorder in their family. Very rarely, people with Shprintzen-Goldberg syndrome have inherited the altered gene from an unaffected parent who has a gene mutation only in their sperm or egg cells. When a mutation is present only in reproductive cells, it is known as germline mosaicism. | Shprintzen-Goldberg syndrome |
What are the treatments for Shprintzen-Goldberg syndrome ? | These resources address the diagnosis or management of Shprintzen-Goldberg syndrome: - Gene Review: Gene Review: Shprintzen-Goldberg Syndrome - Genetic Testing Registry: Shprintzen-Goldberg syndrome - Johns Hopkins Medicine: Diagnosis of Craniosynostosis - MedlinePlus Encyclopedia: Craniosynostosis These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Shprintzen-Goldberg syndrome |
What is (are) arrhythmogenic right ventricular cardiomyopathy ? | Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a form of heart disease that usually appears in adulthood. ARVC is a disorder of the myocardium, which is the muscular wall of the heart. This condition causes part of the myocardium to break down over time, increasing the risk of an abnormal heartbeat (arrhythmia) and sudden death. ARVC may not cause any symptoms in its early stages. However, affected individuals may still be at risk of sudden death, especially during strenuous exercise. When symptoms occur, they most commonly include a sensation of fluttering or pounding in the chest (palpitations), light-headedness, and fainting (syncope). Over time, ARVC can also cause shortness of breath and abnormal swelling in the legs or abdomen. If the myocardium becomes severely damaged in the later stages of the disease, it can lead to heart failure. | arrhythmogenic right ventricular cardiomyopathy |
How many people are affected by arrhythmogenic right ventricular cardiomyopathy ? | ARVC occurs in an estimated 1 in 1,000 to 1 in 1,250 people. This disorder may be underdiagnosed because it can be difficult to detect in people with mild or no symptoms. | arrhythmogenic right ventricular cardiomyopathy |
What are the genetic changes related to arrhythmogenic right ventricular cardiomyopathy ? | ARVC can result from mutations in at least eight genes. Many of these genes are involved in the function of desmosomes, which are structures that attach heart muscle cells to one another. Desmosomes provide strength to the myocardium and play a role in signaling between neighboring cells. Mutations in the genes responsible for ARVC often impair the normal function of desmosomes. Without normal desmosomes, cells of the myocardium detach from one another and die, particularly when the heart muscle is placed under stress (such as during vigorous exercise). These changes primarily affect the myocardium surrounding the right ventricle, one of the two lower chambers of the heart. The damaged myocardium is gradually replaced by fat and scar tissue. As this abnormal tissue builds up, the walls of the right ventricle become stretched out, preventing the heart from pumping blood effectively. These changes also disrupt the electrical signals that control the heartbeat, which can lead to arrhythmia. Gene mutations have been found in 30 to 40 percent of people with ARVC. Mutations in a gene called PKP2 are most common. In people without an identified mutation, the cause of the disorder is unknown. Researchers are looking for additional genetic factors, particularly those involved in the function of desmosomes, that may play a role in causing ARVC. | arrhythmogenic right ventricular cardiomyopathy |
Is arrhythmogenic right ventricular cardiomyopathy inherited ? | Up to half of all cases of ARVC appear to run in families. Most familial cases of the disease have an autosomal dominant pattern of inheritance, which means one copy of an altered gene in each cell is sufficient to cause the disorder. Rarely, ARVC has an autosomal recessive pattern of inheritance, which means both copies of a gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | arrhythmogenic right ventricular cardiomyopathy |
What are the treatments for arrhythmogenic right ventricular cardiomyopathy ? | These resources address the diagnosis or management of ARVC: - Brigham and Women's Hospital - Cleveland Clinic: How Are Arrhythmias Treated? - Gene Review: Gene Review: Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy - Genetic Testing Registry: Arrhythmogenic right ventricular cardiomyopathy - Genetic Testing Registry: Arrhythmogenic right ventricular cardiomyopathy, type 1 - Genetic Testing Registry: Arrhythmogenic right ventricular cardiomyopathy, type 10 - Genetic Testing Registry: Arrhythmogenic right ventricular cardiomyopathy, type 11 - Genetic Testing Registry: Arrhythmogenic right ventricular cardiomyopathy, type 12 - Genetic Testing Registry: Arrhythmogenic right ventricular cardiomyopathy, type 2 - Genetic Testing Registry: Arrhythmogenic right ventricular cardiomyopathy, type 3 - Genetic Testing Registry: Arrhythmogenic right ventricular cardiomyopathy, type 4 - Genetic Testing Registry: Arrhythmogenic right ventricular cardiomyopathy, type 5 - Genetic Testing Registry: Arrhythmogenic right ventricular cardiomyopathy, type 6 - Genetic Testing Registry: Arrhythmogenic right ventricular cardiomyopathy, type 7 - Genetic Testing Registry: Arrhythmogenic right ventricular cardiomyopathy, type 8 - Genetic Testing Registry: Arrhythmogenic right ventricular cardiomyopathy, type 9 - Genetic Testing Registry: Arrhythmogenic right ventricular dysplasia, familial, 11, with mild palmoplantar keratoderma and woolly hair - St. Luke's-Roosevelt Hospital Center These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | arrhythmogenic right ventricular cardiomyopathy |
What is (are) malignant hyperthermia ? | Malignant hyperthermia is a severe reaction to particular drugs that are often used during surgery and other invasive procedures. Specifically, this reaction occurs in response to some anesthetic gases, which are used to block the sensation of pain, and with a muscle relaxant that is used to temporarily paralyze a person during a surgical procedure. If given these drugs, people at risk for malignant hyperthermia may experience muscle rigidity, breakdown of muscle fibers (rhabdomyolysis), a high fever, increased acid levels in the blood and other tissues (acidosis), and a rapid heart rate. Without prompt treatment, the complications of malignant hyperthermia can be life-threatening. People at increased risk for this disorder are said to have malignant hyperthermia susceptibility. Affected individuals may never know they have the condition unless they undergo testing or have a severe reaction to anesthesia during a surgical procedure. While this condition often occurs in people without other serious medical problems, certain inherited muscle diseases (including central core disease and multiminicore disease) are associated with malignant hyperthermia susceptibility. | malignant hyperthermia |
How many people are affected by malignant hyperthermia ? | Malignant hyperthermia occurs in 1 in 5,000 to 50,000 instances in which people are given anesthetic gases. Susceptibility to malignant hyperthermia is probably more frequent, because many people with an increased risk of this condition are never exposed to drugs that trigger a reaction. | malignant hyperthermia |
What are the genetic changes related to malignant hyperthermia ? | Variations of the CACNA1S and RYR1 genes increase the risk of developing malignant hyperthermia. Researchers have described at least six forms of malignant hyperthermia susceptibility, which are caused by mutations in different genes. Mutations in the RYR1 gene are responsible for a form of the condition known as MHS1. These mutations account for most cases of malignant hyperthermia susceptibility. Another form of the condition, MHS5, results from mutations in the CACNA1S gene. These mutations are less common, causing less than 1 percent of all cases of malignant hyperthermia susceptibility. The RYR1 and CACNA1S genes provide instructions for making proteins that play essential roles in muscles used for movement (skeletal muscles). For the body to move normally, these muscles must tense (contract) and relax in a coordinated way. Muscle contractions are triggered by the flow of certain charged atoms (ions) into muscle cells. The proteins produced from the RYR1 and CACNA1S genes are involved in the movement of calcium ions within muscle cells. In response to certain signals, the CACNA1S protein helps activate the RYR1 channel, which releases stored calcium ions within muscle cells. The resulting increase in calcium ion concentration inside muscle cells stimulates muscle fibers to contract. Mutations in the RYR1 or CACNA1S gene cause the RYR1 channel to open more easily and close more slowly in response to certain drugs. As a result, large amounts of calcium ions are released from storage within muscle cells. An overabundance of available calcium ions causes skeletal muscles to contract abnormally, which leads to muscle rigidity in people with malignant hyperthermia. An increase in calcium ion concentration within muscle cells also activates processes that generate heat (leading to increased body temperature) and produce excess acid (leading to acidosis). The genetic causes of several other types of malignant hyperthermia (MHS2, MHS4, and MHS6) are still under study. A form of the condition known as MHS3 has been linked to the CACNA2D1 gene. This gene provides instructions for making a protein that plays an essential role in activating the RYR1 channel to release calcium ions into muscle cells. Although this gene is thought to be related to malignant hyperthermia in a few families, no causative mutations have been identified. | malignant hyperthermia |
Is malignant hyperthermia inherited ? | Malignant hyperthermia susceptibility is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to increase the risk of a severe reaction to certain drugs used during surgery. In most cases, an affected person inherits the altered gene from a parent who is also at risk for the condition. | malignant hyperthermia |
What are the treatments for malignant hyperthermia ? | These resources address the diagnosis or management of malignant hyperthermia: - Gene Review: Gene Review: Malignant Hyperthermia Susceptibility - Genetic Testing Registry: Malignant hyperthermia susceptibility type 1 - Genetic Testing Registry: Malignant hyperthermia susceptibility type 2 - Genetic Testing Registry: Malignant hyperthermia susceptibility type 3 - Genetic Testing Registry: Malignant hyperthermia susceptibility type 4 - Genetic Testing Registry: Malignant hyperthermia susceptibility type 5 - Genetic Testing Registry: Malignant hyperthermia susceptibility type 6 - MedlinePlus Encyclopedia: Malignant Hyperthermia These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | malignant hyperthermia |
What is (are) cryptogenic cirrhosis ? | Cryptogenic cirrhosis is a condition that impairs liver function. People with this condition develop irreversible liver disease caused by scarring of the liver (cirrhosis), typically in mid- to late adulthood. The liver is a part of the digestive system that helps break down food, store energy, and remove waste products, including toxins. Minor damage to the liver can be repaired by the body. However, severe or long-term damage can lead to the replacement of normal liver tissue with scar tissue. In the early stages of cryptogenic cirrhosis, people often have no symptoms because the liver has enough normal tissue to function. Signs and symptoms become apparent as more of the liver is replaced by scar tissue. Affected individuals can experience fatigue, weakness, loss of appetite, weight loss, nausea, swelling (edema), enlarged blood vessels, and yellowing of the skin and whites of the eyes (jaundice). People with cryptogenic cirrhosis may develop high blood pressure in the vein that supplies blood to the liver (portal hypertension). Cryptogenic cirrhosis can lead to type 2 diabetes, although the mechanism is unclear. Some people with cryptogenic cirrhosis develop cancer of the liver (hepatocellular cancer). | cryptogenic cirrhosis |
How many people are affected by cryptogenic cirrhosis ? | Cirrhosis affects more than 600,000 people in the United States; cryptogenic cirrhosis likely accounts for 5 to 30 percent of these cases. | cryptogenic cirrhosis |
What are the genetic changes related to cryptogenic cirrhosis ? | Unlike most cases of cirrhosis, cryptogenic cirrhosis is not caused by the hepatitis C or B virus or chronic alcohol use. A diagnosis of cryptogenic cirrhosis is typically given when all other causes of cirrhosis have been ruled out. When a disorder occurs without an apparent underlying reason, it is described as cryptogenic. Research has shown that many cases of cryptogenic cirrhosis likely result from a condition called non-alcoholic fatty liver disease (NAFLD). In NAFLD, fat accumulates in the liver, impairing its function. If the fat buildup leads to inflammation and damage to liver tissue, NAFLD progresses to a condition called non-alcoholic steatohepatitis (NASH). Long term inflammation in people with NASH can cause the formation of scar tissue and a decrease in fat buildup. As a result, individuals progress from NASH to cirrhosis. Cryptogenic cirrhosis may also develop from autoimmune hepatitis, which is a condition that occurs when the body's immune system malfunctions and attacks the liver, causing inflammation and liver damage. In very rare cases, cryptogenic cirrhosis has been associated with mutations in genes that provide instructions for making certain keratin proteins. Keratins are a group of tough, fibrous proteins that form the structural framework of certain cells, particularly cells that make up the skin, hair, nails, and similar tissues. People with these keratin gene mutations are more likely to have fibrous deposits in their livers than individuals without the mutations. These deposits impair liver function, leading to cirrhosis. Mutations in these genes have also been found in people with other liver disorders. In many cases, the cause of cryptogenic cirrhosis is unknown. Many people with predisposing conditions do not develop cirrhosis. Researchers are working to discover the causes of cryptogenic cirrhosis as well as to find out why some people seem to be protected from developing cirrhosis and others seem to be susceptible. | cryptogenic cirrhosis |
Is cryptogenic cirrhosis inherited ? | Most cases of cryptogenic cirrhosis are not inherited. However, people with a family history of liver disease or autoimmune disease are at an increased risk of developing these diseases themselves, and possibly cirrhosis. In individuals with an associated keratin gene mutation, the risk of developing cryptogenic cirrhosis appears to have an autosomal dominant pattern of inheritance. Autosomal dominant inheritance means that one copy of an altered gene in each cell is sufficient to increase the risk of developing cryptogenic cirrhosis. In these families, people inherit an increased risk of cryptogenic cirrhosis, not the disease itself. | cryptogenic cirrhosis |
What are the treatments for cryptogenic cirrhosis ? | These resources address the diagnosis or management of cryptogenic cirrhosis: - Children's Hospital of Pittsburgh: Cirrhosis - Cleveland Clinic: Cirrhosis of the Liver - Genetic Testing Registry: Cirrhosis, cryptogenic - Genetic Testing Registry: Familial cirrhosis - MedlinePlus Encyclopedia: Cirrhosis These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | cryptogenic cirrhosis |
What is (are) Glanzmann thrombasthenia ? | Glanzmann thrombasthenia is a bleeding disorder that is characterized by prolonged or spontaneous bleeding starting from birth. People with Glanzmann thrombasthenia tend to bruise easily, have frequent nosebleeds (epistaxis), and may bleed from the gums. They may also develop red or purple spots on the skin caused by bleeding underneath the skin (petechiae) or swelling caused by bleeding within tissues (hematoma). Glanzmann thrombasthenia can also cause prolonged bleeding following injury, trauma, or surgery (including dental work). Women with this condition can have prolonged and sometimes abnormally heavy menstrual bleeding. Affected women also have an increased risk of excessive blood loss during pregnancy and childbirth. About a quarter of individuals with Glanzmann thrombasthenia have bleeding in the gastrointestinal tract, which often occurs later in life. Rarely, affected individuals have bleeding inside the skull (intracranial hemorrhage) or joints (hemarthrosis). The severity and frequency of the bleeding episodes in Glanzmann thrombasthenia can vary greatly among affected individuals, even in the same family. Spontaneous bleeding tends to become less frequent with age. | Glanzmann thrombasthenia |
How many people are affected by Glanzmann thrombasthenia ? | Glanzmann thrombasthenia is estimated to affect 1 in one million individuals worldwide, but may be more common in certain groups, including those of Romani ethnicity, particularly people within the French Manouche community. | Glanzmann thrombasthenia |
What are the genetic changes related to Glanzmann thrombasthenia ? | Mutations in the ITGA2B or ITGB3 gene cause Glanzmann thrombasthenia. These genes provide instructions for making the two parts (subunits) of a receptor protein called integrin alphaIIb/beta3 (IIb3). This protein is abundant on the surface of platelets. Platelets are small cell fragments that circulate in blood and are an essential component of blood clots. During clot formation, integrin IIb3 helps platelets bind together. Blood clots protect the body after injury by sealing off damaged blood vessels and preventing further blood loss. ITGA2B or ITGB3 gene mutations result in a shortage (deficiency) of functional integrin IIb3. As a result, platelets cannot clump together to form a blood clot, leading to prolonged bleeding. Three types of Glanzmann thrombasthenia have been classified according to the amount of integrin IIb3 that is available. People with type I (the most common type) have less than 5 percent of normal integrin IIb3 levels, people with type II have between 5 and 20 percent of normal integrin IIb3 levels, and people with the variant type have adequate integrin IIb3 levels but produce only nonfunctional integrin. Some people with Glanzmann thrombasthenia do not have an identified mutation in either the ITGA2B or ITGB3 gene; the cause of the disorder in these individuals is unknown. | Glanzmann thrombasthenia |
Is Glanzmann thrombasthenia inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | Glanzmann thrombasthenia |
What are the treatments for Glanzmann thrombasthenia ? | These resources address the diagnosis or management of Glanzmann thrombasthenia: - CLIMB Glanzmann Thrombasthenia Info Sheet - Canadian Hemophilia Society: Glanzmann Thrombasthenia Information Booklet - Genetic Testing Registry: Glanzmann's thrombasthenia - MedlinePlus Encyclopedia: Glanzmann's Disease These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Glanzmann thrombasthenia |
What is (are) galactosialidosis ? | Galactosialidosis is a condition that affects many areas of the body. The three forms of galactosialidosis are distinguished by the age at which symptoms develop and the pattern of features. The early infantile form of galactosialidosis is associated with extensive swelling caused by fluid accumulation before birth (hydrops fetalis), a soft out-pouching in the lower abdomen (an inguinal hernia), and an enlarged liver and spleen (hepatosplenomegaly). Additional features of this form include abnormal bone development (dysostosis multiplex) and distinctive facial features that are often described as "coarse." Some infants have an enlarged heart (cardiomegaly); an eye abnormality called a cherry-red spot, which can be identified with an eye examination; and kidney disease that can progress to kidney failure. Infants with this form usually are diagnosed between birth and 3 months; they typically live into late infancy. The late infantile form of galactosialidosis shares some features with the early infantile form, although the signs and symptoms are somewhat less severe and begin later in infancy. This form is characterized by short stature, dysostosis multiplex, heart valve problems, hepatosplenomegaly, and "coarse" facial features. Other symptoms seen in some individuals with this type include intellectual disability, hearing loss, and a cherry-red spot. Children with this condition typically develop symptoms within the first year of life. The life expectancy of individuals with this type varies depending on the severity of symptoms. The juvenile/adult form of galactosialidosis has signs and symptoms that are somewhat different than those of the other two types. This form is distinguished by difficulty coordinating movements (ataxia), muscle twitches (myoclonus), seizures, and progressive intellectual disability. People with this form typically also have dark red spots on the skin (angiokeratomas), abnormalities in the bones of the spine, "coarse" facial features, a cherry-red spot, vision loss, and hearing loss. The age at which symptoms begin to develop varies widely among affected individuals, but the average age is 16. This form is typically associated with a normal life expectancy. | galactosialidosis |
How many people are affected by galactosialidosis ? | The prevalence of galactosialidosis is unknown; more than 100 cases have been reported. Approximately 60 percent of people with galactosialidosis have the juvenile/adult form. Most people with this type of the condition are of Japanese descent. | galactosialidosis |
What are the genetic changes related to galactosialidosis ? | Mutations in the CTSA gene cause all forms of galactosialidosis. The CTSA gene provides instructions for making a protein called cathepsin A, which is active in cellular compartments called lysosomes. These compartments contain enzymes that digest and recycle materials when they are no longer needed. Cathepsin A works together with two enzymes, neuraminidase 1 and beta-galactosidase, to form a protein complex. This complex breaks down sugar molecules (oligosaccharides) attached to certain proteins (glycoproteins) or fats (glycolipids). Cathepsin A is also found on the cell surface, where it forms a complex with neuraminidase 1 and a protein called elastin binding protein. Elastin binding protein plays a role in the formation of elastic fibers, a component of the connective tissues that form the body's supportive framework. CTSA mutations interfere with the normal function of cathepsin A. Most mutations disrupt the protein structure of cathepsin A, impairing its ability to form complexes with neuraminidase 1, beta-galactosidase, and elastin binding protein. As a result, these other enzymes are not functional, or they break down prematurely. Galactosialidosis belongs to a large family of lysosomal storage disorders, each caused by the deficiency of a specific lysosomal enzyme or protein. In galactosialidosis, impaired functioning of cathepsin A and other enzymes causes certain substances to accumulate in the lysosomes. | galactosialidosis |
Is galactosialidosis inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | galactosialidosis |
What are the treatments for galactosialidosis ? | These resources address the diagnosis or management of galactosialidosis: - Genetic Testing Registry: Combined deficiency of sialidase AND beta galactosidase - MedlinePlus Encyclopedia: Hepatosplenomegaly (image) - MedlinePlus Encyclopedia: Hydrops fetalis These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | galactosialidosis |
What is (are) glycogen storage disease type VII ? | Glycogen storage disease type VII (GSDVII) is an inherited disorder caused by an inability to break down a complex sugar called glycogen in muscle cells. A lack of glycogen breakdown interferes with the function of muscle cells. There are four types of GSDVII. They are differentiated by their signs and symptoms and the age at which symptoms first appear. The classical form of GSDVII is the most common form. Its features usually appear in childhood. This form is characterized by muscle pain and cramps, often following moderate exercise; strenuous exercise can lead to nausea and vomiting. During exercise, muscle tissue can be abnormally broken down, releasing a protein called myoglobin. This protein is processed by the kidneys and released in the urine (myoglobinuria). If untreated, myoglobinuria can damage the kidneys and lead to kidney failure. Some people with the classical form of GSDVII develop high levels of a waste product called uric acid in the blood (hyperuricemia) because the damaged kidneys are unable to remove uric acid effectively. Affected individuals may also have elevated levels of a molecule called bilirubin in the blood that can cause yellowing of the skin and whites of the eyes (jaundice). Individuals with classical GSDVII often have elevated levels of an enzyme called creatine kinase in their blood. This finding is a common indicator of muscle disease. Infants with the severe infantile form of GSDVII have low muscle tone (hypotonia) at birth, which leads to muscle weakness (myopathy) that worsens over time. Affected infants have a weakened and enlarged heart (cardiomyopathy) and difficulty breathing normally. Individuals with this form of GSDVII usually do not survive past their first year of life. In the late-onset form of GSDVII, myopathy is typically the only feature. The muscle weakness appears in adulthood, although some individuals have difficulty with sustained exercise starting in childhood. The weakness generally affects the muscles closest to the center of the body (proximal muscles). The hemolytic form of GSDVII is characterized by hemolytic anemia, in which red blood cells are broken down (undergo hemolysis) prematurely, causing a shortage of red blood cells (anemia). People with the hemolytic form of GSDVII do not experience any signs or symptoms of muscle pain or weakness related to the disorder. | glycogen storage disease type VII |
How many people are affected by glycogen storage disease type VII ? | GSDVII is thought to be a rare condition; more than 100 cases have been described in the scientific literature. | glycogen storage disease type VII |
What are the genetic changes related to glycogen storage disease type VII ? | Mutations in the PFKM gene cause GSDVII. This gene provides instructions for making one piece (the PFKM subunit) of an enzyme called phosphofructokinase, which plays a role in the breakdown of glycogen. The phosphofructokinase enzyme is made up of four subunits and is found in a variety of tissues. Different combinations of subunits are found in different tissues. In muscles used for movement (skeletal muscles), the phosphofructokinase enzyme is composed solely of PFKM subunits. In skeletal muscle, the cells' main source of energy is stored as glycogen. Glycogen can be broken down rapidly into the simple sugar glucose when energy is needed, for instance to maintain normal blood sugar levels between meals or for energy during exercise. Phosphofructokinase is involved in the sequence of events that breaks down glycogen to provide energy to muscle cells. PFKM gene mutations result in the production of PFKM subunits that have little or no function. As a result, no functional phosphofructokinase is formed in skeletal muscles, and glycogen cannot be completely broken down. Partially broken down glycogen then builds up in muscle cells. Muscles that do not have access to glycogen as an energy source become weakened and cramped following moderate strain, such as exercise, and in some cases, begin to break down. In other tissues, other subunits that make up the phosphofructokinase enzyme likely compensate for the lack of PFKM subunits, and the enzyme is able to retain some function. This compensation may help explain why other tissues are not affected by PFKM gene mutations. It is unclear why some individuals with GSDVII are affected with more severe forms of the disorder than others. | glycogen storage disease type VII |
Is glycogen storage disease type VII inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | glycogen storage disease type VII |
What are the treatments for glycogen storage disease type VII ? | These resources address the diagnosis or management of glycogen storage disease type VII: - Genetic Testing Registry: Glycogen storage disease, type VII - The Swedish Information Centre for Rare Diseases These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | glycogen storage disease type VII |
What is (are) tyrosine hydroxylase deficiency ? | Tyrosine hydroxylase (TH) deficiency is a disorder that primarily affects movement, with symptoms that may range from mild to severe. The mild form of this disorder is called TH-deficient dopa-responsive dystonia (DRD). Symptoms usually appear during childhood. Affected individuals may exhibit unusual limb positioning and a lack of coordination when walking or running. In some cases, people with TH-deficient DRD have additional movement problems such as shaking when holding a position (postural tremor) or involuntary upward-rolling movements of the eyes. The movement difficulties may slowly increase with age but almost always get better with medical treatment. The severe forms of TH deficiency are called infantile parkinsonism and progressive infantile encephalopathy. These forms of the disorder appear soon after birth and are more difficult to treat effectively. Babies with infantile parkinsonism have delayed development of motor skills such as sitting unsupported or reaching for a toy. They may have stiff muscles, especially in the arms and legs; unusual body positioning; droopy eyelids (ptosis); and involuntary upward-rolling eye movements. The autonomic nervous system, which controls involuntary body functions, may also be affected. Resulting signs and symptoms can include constipation, backflow of stomach acids into the esophagus (gastroesophageal reflux), and difficulty regulating blood sugar, body temperature, and blood pressure. People with the infantile parkinsonism form of the disorder may have intellectual disability, speech problems, attention deficit disorder, and psychiatric conditions such as depression, anxiety, or obsessive-compulsive behaviors. Progressive infantile encephalopathy is an uncommon severe form of TH deficiency. It is characterized by brain dysfunction and structural abnormalities leading to profound physical and intellectual disability. | tyrosine hydroxylase deficiency |
How many people are affected by tyrosine hydroxylase deficiency ? | The prevalence of TH deficiency is unknown. | tyrosine hydroxylase deficiency |
What are the genetic changes related to tyrosine hydroxylase deficiency ? | Mutations in the TH gene cause TH deficiency. The TH gene provides instructions for making the enzyme tyrosine hydroxylase, which is important for normal functioning of the nervous system. Tyrosine hydroxylase takes part in the pathway that produces a group of chemical messengers (hormones) called catecholamines. Tyrosine hydroxylase helps convert the protein building block (amino acid) tyrosine to a catecholamine called dopamine. Dopamine transmits signals to help the brain control physical movement and emotional behavior. Other catecholamines called norepinephrine and epinephrine are produced from dopamine. Norepinephrine and epinephrine are involved in the autonomic nervous system. Mutations in the TH gene result in reduced activity of the tyrosine hydroxylase enzyme. As a result, the body produces less dopamine, norepinephrine and epinephrine. These catecholamines are necessary for normal nervous system function, and changes in their levels contribute to the abnormal movements, autonomic dysfunction, and other neurological problems seen in people with TH deficiency. | tyrosine hydroxylase deficiency |
Is tyrosine hydroxylase deficiency inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | tyrosine hydroxylase deficiency |
What are the treatments for tyrosine hydroxylase deficiency ? | These resources address the diagnosis or management of TH deficiency: - Gene Review: Gene Review: Tyrosine Hydroxylase Deficiency - Genetic Testing Registry: Segawa syndrome, autosomal recessive These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | tyrosine hydroxylase deficiency |
What is (are) familial lipoprotein lipase deficiency ? | Familial lipoprotein lipase deficiency is an inherited condition that disrupts the normal breakdown of fats in the body, resulting in an increase of certain kinds of fats. People with familial lipoprotein lipase deficiency typically develop signs and symptoms before age 10, with one-quarter showing symptoms by age 1. The first symptom of this condition is usually abdominal pain, which can vary from mild to severe. The abdominal pain is often due to inflammation of the pancreas (pancreatitis). These episodes of pancreatitis begin as sudden (acute) attacks. If left untreated, pancreatitis can develop into a chronic condition that can damage the pancreas and, in rare cases, be life-threatening. Affected individuals may also have an enlarged liver and spleen (hepatosplenomegaly). The higher the levels of fat in the body, the larger the liver and spleen become. As fat levels rise, certain white blood cells called macrophages take in excess fat in an attempt to rid fat from the bloodstream. After taking in fat, the macrophages travel to the liver and spleen, where the fatty cells accumulate. Approximately half of individuals with familial lipoprotein lipase deficiency develop small yellow deposits of fat under the skin called eruptive xanthomas. These fat deposits most commonly appear on the trunk, buttocks, knees, and arms. Eruptive xanthomas are small (about 1 millimeter in diameter), but individual xanthomas can cluster together to form larger patches. They are generally not painful unless exposed to repeated friction or abrasion. Eruptive xanthomas begin to appear when fat intake increases and levels rise; the deposits disappear when fat intake slows and levels decrease. The blood of people with familial lipoprotein lipase deficiency can have a milky appearance due to its high fat content. When fat levels get very high in people with this condition, fats can accumulate in blood vessels in the tissue that lines the back of the eye (the retina). The fat buildup gives this tissue a pale pink appearance when examined (lipemia retinalis). This fat accumulation does not affect vision and will disappear once fats from the diet are reduced and levels in the body decrease. In people with familial lipoprotein lipase deficiency, increased fat levels can also cause neurological features, such as depression, memory loss, and mild intellectual decline (dementia). These problems are remedied when dietary fat levels normalize. | familial lipoprotein lipase deficiency |
How many people are affected by familial lipoprotein lipase deficiency ? | This condition affects about 1 per million people worldwide. It is much more common in certain areas of the province of Quebec, Canada. | familial lipoprotein lipase deficiency |
What are the genetic changes related to familial lipoprotein lipase deficiency ? | Mutations in the LPL gene cause familial lipoprotein lipase deficiency. The LPL gene provides instructions for producing an enzyme called lipoprotein lipase, which is found primarily on the surface of cells that line tiny blood vessels (capillaries) within muscles and fatty (adipose) tissue. This enzyme helps break down fats called triglycerides, which are carried by molecules called lipoproteins. Mutations that cause familial lipoprotein lipase deficiency lead to a reduction or elimination of lipoprotein lipase activity, which prevents the enzyme from effectively breaking down triglycerides. As a result, triglycerides attached to lipoproteins build up in the blood and tissues, leading to the signs and symptoms of familial lipoprotein lipase deficiency. | familial lipoprotein lipase deficiency |
Is familial lipoprotein lipase deficiency inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. Researchers speculate that if family members of affected individuals have a mutation in one copy of the LPL gene in each cell, they may have a mild increase in fat levels in the blood, which could increase their risk of health problems such as heart disease or diabetes. However, studies have not clearly demonstrated whether these individuals are more prone to develop these health problems than individuals in the general population. | familial lipoprotein lipase deficiency |
What are the treatments for familial lipoprotein lipase deficiency ? | These resources address the diagnosis or management of familial lipoprotein lipase deficiency: - Gene Review: Gene Review: Familial Lipoprotein Lipase Deficiency - Genetic Testing Registry: Hyperlipoproteinemia, type I - MedlinePlus Encyclopedia: Chylomicronemia Syndrome - MedlinePlus Encyclopedia: Familial Lipoprotein Lipase Deficiency These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | familial lipoprotein lipase deficiency |
What is (are) Unverricht-Lundborg disease ? | Unverricht-Lundborg disease is a rare inherited form of epilepsy. Affected individuals usually begin showing signs and symptoms of the disorder between the ages of 6 and 15. Unverricht-Lundborg disease is classified as a type of progressive myoclonus epilepsy. People with this disorder experience episodes of involuntary muscle jerking or twitching (myoclonus) that increase in frequency and severity over time. Episodes of myoclonus may be brought on by physical exertion, stress, light, or other stimuli. Within 5 to 10 years, the myoclonic episodes may become severe enough to interfere with walking and other everyday activities. Affected individuals also usually have seizures involving loss of consciousness, muscle rigidity, and convulsions (tonic-clonic or grand mal seizures). Like the myoclonic episodes, these may increase in frequency over several years but may be controlled with treatment. After several years of progression, the frequency of seizures may stabilize or decrease. Eventually people with Unverricht-Lundborg disease may develop problems with balance and coordination (ataxia), involuntary rhythmic shaking that worsens during movement (intentional tremor), difficulty speaking (dysarthria), depression, and a slow, mild decline in intellectual functioning. People with Unverricht-Lundborg disease typically live into adulthood. Depending on the severity of the condition and a person's response to treatment, life expectancy may be normal. | Unverricht-Lundborg disease |
How many people are affected by Unverricht-Lundborg disease ? | Progressive myoclonus epilepsy is a rare condition. Unverricht-Lundborg disease is believed to be the most common cause of this type of epilepsy, but its worldwide prevalence is unknown. Unverricht-Lundborg disease occurs most frequently in Finland, where approximately 4 in 100,000 people are affected. | Unverricht-Lundborg disease |
What are the genetic changes related to Unverricht-Lundborg disease ? | Mutations in the CSTB gene cause Unverricht-Lundborg disease. The CSTB gene provides instructions for making a protein called cystatin B. This protein reduces the activity of enzymes called cathepsins. Cathepsins help break down certain proteins in the lysosomes (compartments in the cell that digest and recycle materials). While the specific function of cystatin B is unclear, it may help protect the cells' proteins from cathepsins that leak out of the lysosomes. In almost all affected individuals, Unverricht-Lundborg disease is caused by an increase in size of the CSTB gene. One region of the CSTB gene has a particular repeating sequence of 12 DNA building blocks (nucleotides). This sequence is normally repeated two or three times within the gene and is called a dodecamer repeat. Most people with this disorder have more than 30 repeats of the dodecamer sequence in both copies of the CSTB gene. A small number of people with Unverricht-Lundborg disease carry other mutations. The increased number of dodecamer repeats in the CSTB gene seems to interfere with the production of the cystatin B protein. Levels of cystatin B in affected individuals are only 5 to 10 percent of normal, and cathepsin levels are significantly increased. These changes are believed to cause the signs and symptoms of Unverricht-Lundborg disease, but it is unclear how a reduction in the amount of cystatin B leads to the features of this disorder. | Unverricht-Lundborg disease |
Is Unverricht-Lundborg disease inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | Unverricht-Lundborg disease |
What are the treatments for Unverricht-Lundborg disease ? | These resources address the diagnosis or management of Unverricht-Lundborg disease: - Gene Review: Gene Review: Unverricht-Lundborg Disease - Genetic Testing Registry: Unverricht-Lundborg syndrome These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Unverricht-Lundborg disease |
What is (are) abdominal wall defect ? | An abdominal wall defect is an opening in the abdomen through which various abdominal organs can protrude. This opening varies in size and can usually be diagnosed early in fetal development, typically between the tenth and fourteenth weeks of pregnancy. There are two main types of abdominal wall defects: omphalocele and gastroschisis. Omphalocele is an opening in the center of the abdominal wall where the umbilical cord meets the abdomen. Organs (typically the intestines, stomach, and liver) protrude through the opening into the umbilical cord and are covered by the same protective membrane that covers the umbilical cord. Gastroschisis is a defect in the abdominal wall, usually to the right of the umbilical cord, through which the large and small intestines protrude (although other organs may sometimes bulge out). There is no membrane covering the exposed organs in gastroschisis. Fetuses with omphalocele may grow slowly before birth (intrauterine growth retardation) and they may be born prematurely. Individuals with omphalocele frequently have multiple birth defects, such as a congenital heart defect. Additionally, underdevelopment of the lungs is often associated with omphalocele because the abdominal organs normally provide a framework for chest wall growth. When those organs are misplaced, the chest wall does not form properly, providing a smaller than normal space for the lungs to develop. As a result, many infants with omphalocele have respiratory insufficiency and may need to be supported with a machine to help them breathe (mechanical ventilation). Rarely, affected individuals who have breathing problems in infancy experience recurrent lung infections or asthma later in life. Affected infants often have gastrointestinal problems including a backflow of stomach acids into the esophagus (gastroesophageal reflux) and feeding difficulty; these problems can persist even after treatment of omphalocele. Large omphaloceles or those associated with multiple additional health problems are more often associated with fetal death than cases in which omphalocele occurs alone (isolated). Omphalocele is a feature of many genetic syndromes. Nearly half of individuals with omphalocele have a condition caused by an extra copy of one of the chromosomes in each of their cells (trisomy). Up to one-third of people born with omphalocele have a genetic condition called Beckwith-Wiedemann syndrome. Affected individuals may have additional signs and symptoms associated with these genetic conditions. Individuals who have gastroschisis rarely have other birth defects and seldom have chromosome abnormalities or a genetic condition. Most affected individuals experience intrauterine growth retardation and are small at birth; many affected infants are born prematurely. With gastroschisis, the protruding organs are not covered by a protective membrane and are susceptible to damage due to direct contact with amniotic fluid in the womb. Components of the amniotic fluid may trigger immune responses and inflammatory reactions against the intestines that can damage the tissue. Constriction around exposed organs at the abdominal wall opening late in fetal development may also contribute to organ injury. Intestinal damage causes impairment of the muscle contractions that move food through the digestive tract (peristalsis) in most children with gastroschisis. In these individuals, peristalsis usually improves in a few months and intestinal muscle contractions normalize. Rarely, children with gastroschisis have a narrowing or absence of a portion of intestine (intestinal atresia) or twisting of the intestine. After birth, these intestinal malformations can lead to problems with digestive function, further loss of intestinal tissue, and a condition called short bowel syndrome that occurs when areas of the small intestine are missing, causing dehydration and poor absorption of nutrients. Depending on the severity of the condition, intravenous feedings (parenteral nutrition) may be required. The health of an individual with gastroschisis depends largely on how damaged his or her intestine was before birth. When the abdominal wall defect is repaired and normal intestinal function is recovered, the vast majority of affected individuals have no health problems related to the repaired defect later in life. | abdominal wall defect |
How many people are affected by abdominal wall defect ? | Abdominal wall defects are uncommon. Omphalocele affects an estimated 2 to 2.5 in 10,000 newborns. Approximately 2 to 6 in 10,000 newborns are affected by gastroschisis, although researchers have observed that this malformation is becoming more common. Abdominal wall defects are more common among pregnancies that do not survive to term (miscarriages and stillbirths). | abdominal wall defect |
What are the genetic changes related to abdominal wall defect ? | No genetic mutations are known to cause an abdominal wall defect. Multiple genetic and environmental factors likely influence the development of this disorder. Omphalocele and gastroschisis are caused by different errors in fetal development. Omphalocele occurs during an error in digestive tract development. During the formation of the abdominal cavity in the sixth to tenth weeks of fetal development, the intestines normally protrude into the umbilical cord but recede back into the abdomen as development continues. Omphalocele occurs when the intestines do not recede back into the abdomen, but remain in the umbilical cord. Other abdominal organs can also protrude through this opening, resulting in the varied organ involvement that occurs in omphalocele. The error that leads to gastroschisis formation is unknown. It is thought to be either a disruption in the blood flow to the digestive tract or a lack of development or injury to gastrointestinal tissue early in fetal development. For reasons that are unknown, women under the age of 20 are at the greatest risk of having a baby with gastroschisis. Other risk factors in pregnancy may include taking medications that constrict the blood vessels (called vasoconstrictive drugs) or smoking, although these risk factors have not been confirmed. | abdominal wall defect |
Is abdominal wall defect inherited ? | Most cases of abdominal wall defect are sporadic, which means they occur in people with no history of the disorder in their family. Multiple genetic and environmental factors likely play a part in determining the risk of developing this disorder. When an abdominal wall defect, most often omphalocele, is a feature of a genetic condition, it is inherited in the pattern of that condition. | abdominal wall defect |
What are the treatments for abdominal wall defect ? | These resources address the diagnosis or management of abdominal wall defect: - Cincinnati Children's Hospital: Gastroschisis - Cincinnati Children's Hospital: Omphalocele - Cleveland Clinic: Omphalocele - Genetic Testing Registry: Congenital omphalocele - Great Ormond Street Hospital for Children (UK): Gastroschisis - MedlinePlus Encyclopedia: Gastroschisis Repair - MedlinePlus Encyclopedia: Gastroschisis Repair--Series (images) - MedlinePlus Encyclopedia: Omphalocele Repair - MedlinePlus Encyclopedia: Omphalocele Repair--Series (images) - Seattle Children's Hospital: Gastroschisis Treatment Options - Seattle Children's Hospital: Omphalocele Treatment Options - The Children's Hospital of Philadelphia: Diagnosis and Treatment of Gastroschisis - The Children's Hospital of Philadelphia: Overview and Treatment of Omphalocele - University of California, San Francisco Fetal Treatment Center: Gastroschisis - University of California, San Francisco Fetal Treatment Center: Omphalocele These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | abdominal wall defect |
What is (are) sialuria ? | Sialuria is a rare disorder that has variable effects on development. Affected infants are often born with a yellow tint to the skin and the whites of the eyes (neonatal jaundice), an enlarged liver and spleen (hepatosplenomegaly), and unusually small red blood cells (microcytic anemia). They may develop a somewhat flat face and distinctive-looking facial features that are described as "coarse." Temporarily delayed development and weak muscle tone (hypotonia) have also been reported. Young children with sialuria tend to have frequent upper respiratory infections and episodes of dehydration and stomach upset (gastroenteritis). Older children may have seizures and learning difficulties. In some affected children, intellectual development is nearly normal. The features of sialuria vary widely among affected people. Many of the problems associated with this disorder appear to improve with age, although little is known about the long-term effects of the disease. It is likely that some adults with sialuria never come to medical attention because they have very mild signs and symptoms or no health problems related to the condition. | sialuria |
How many people are affected by sialuria ? | Fewer than 10 people worldwide have been diagnosed with sialuria. There are probably more people with the disorder who have not been diagnosed, as sialuria can be difficult to detect because of its variable features. | sialuria |
What are the genetic changes related to sialuria ? | Mutations in the GNE gene cause sialuria. The GNE gene provides instructions for making an enzyme found in cells and tissues throughout the body. This enzyme is involved in a chemical pathway that produces sialic acid, which is a simple sugar that attaches to the ends of more complex molecules on the surface of cells. By modifying these molecules, sialic acid influences a wide variety of cellular functions including cell movement (migration), attachment of cells to one another (adhesion), signaling between cells, and inflammation. The enzyme produced from the GNE gene is carefully controlled to ensure that cells produce an appropriate amount of sialic acid. A feedback system shuts off the enzyme when no more sialic acid is needed. The mutations responsible for sialuria disrupt this feedback mechanism, resulting in an overproduction of sialic acid. This simple sugar builds up within cells and is excreted in urine. Researchers are working to determine how an accumulation of sialic acid in the body interferes with normal development in people with sialuria. | sialuria |
Is sialuria inherited ? | This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. Most reported cases have occurred in people with no known history of the disorder in their family and may result from new mutations in the gene. | sialuria |
What are the treatments for sialuria ? | These resources address the diagnosis or management of sialuria: - Gene Review: Gene Review: Sialuria - Genetic Testing Registry: Sialuria - MedlinePlus Encyclopedia: Hepatosplenomegaly (image) - MedlinePlus Encyclopedia: Newborn Jaundice These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | sialuria |
What is (are) genitopatellar syndrome ? | Genitopatellar syndrome is a rare condition characterized by genital abnormalities, missing or underdeveloped kneecaps (patellae), intellectual disability, and abnormalities affecting other parts of the body. The genital abnormalities in affected males typically include undescended testes (cryptorchidism) and underdevelopment of the scrotum. Affected females can have an enlarged clitoris (clitoromegaly) and small labia. Missing or underdeveloped patellae is the most common skeletal abnormality associated with genitopatellar syndrome. Affected individuals may have additional skeletal problems, including joint deformities (contractures) involving the hips and knees or an inward- and upward-turning foot called a clubfoot. Bone abnormalities of the spine, ribs, collarbone (clavicle), and pelvis have also been reported. Genitopatellar syndrome is also associated with delayed development and intellectual disability, which are often severe. Affected individuals may have an usually small head (microcephaly) and structural brain abnormalities, including underdeveloped or absent tissue connecting the left and right halves of the brain (agenesis of the corpus callosum). People with genitopatellar syndrome may have distinctive facial features such as prominent cheeks and eyes, a nose with a rounded tip or a broad bridge, an unusually small chin (micrognathia) or a chin that protrudes (prognathism), and a narrowing of the head at the temples. Many affected infants have weak muscle tone (hypotonia) that leads to breathing and feeding difficulties. The condition can also be associated with abnormalities of the heart, kidneys, and teeth. | genitopatellar syndrome |
How many people are affected by genitopatellar syndrome ? | Genitopatellar syndrome is estimated to occur in fewer than 1 per million people. At least 18 cases have been reported in the medical literature. | genitopatellar syndrome |
What are the genetic changes related to genitopatellar syndrome ? | Genitopatellar syndrome is caused by mutations in the KAT6B gene. This gene provides instructions for making a type of enzyme called a histone acetyltransferase. These enzymes modify histones, which are structural proteins that attach (bind) to DNA and give chromosomes their shape. By adding a small molecule called an acetyl group to histones, histone acetyltransferases control the activity of certain genes. Little is known about the function of the histone acetyltransferase produced from the KAT6B gene. It appears to regulate genes that are important for early development, including development of the skeleton and nervous system. The mutations that cause genitopatellar syndrome occur near the end of the KAT6B gene and lead to the production of a shortened histone acetyltransferase enzyme. Researchers suspect that the shortened enzyme may function differently than the full-length version, altering the regulation of various genes during early development. However, it is unclear how these changes lead to the specific features of genitopatellar syndrome. | genitopatellar syndrome |
Is genitopatellar syndrome inherited ? | This condition has an autosomal dominant inheritance pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. All reported cases have resulted from new mutations in the gene and have occurred in people with no history of the disorder in their family. | genitopatellar syndrome |
What are the treatments for genitopatellar syndrome ? | These resources address the diagnosis or management of genitopatellar syndrome: - Gene Review: Gene Review: KAT6B-Related Disorders - Genetic Testing Registry: Genitopatellar syndrome These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | genitopatellar syndrome |
What is (are) amelogenesis imperfecta ? | Amelogenesis imperfecta is a disorder of tooth development. This condition causes teeth to be unusually small, discolored, pitted or grooved, and prone to rapid wear and breakage. Other dental abnormalities are also possible. These defects, which vary among affected individuals, can affect both primary (baby) teeth and permanent (adult) teeth. Researchers have described at least 14 forms of amelogenesis imperfecta. These types are distinguished by their specific dental abnormalities and by their pattern of inheritance. Additionally, amelogenesis imperfecta can occur alone without any other signs and symptoms or it can occur as part of a syndrome that affects multiple parts of the body. | amelogenesis imperfecta |
How many people are affected by amelogenesis imperfecta ? | The exact incidence of amelogenesis imperfecta is uncertain. Estimates vary widely, from 1 in 700 people in northern Sweden to 1 in 14,000 people in the United States. | amelogenesis imperfecta |
What are the genetic changes related to amelogenesis imperfecta ? | Mutations in the AMELX, ENAM, MMP20, and FAM83H genes can cause amelogenesis imperfecta. The AMELX, ENAM, and MMP20 genes provide instructions for making proteins that are essential for normal tooth development. Most of these proteins are involved in the formation of enamel, which is the hard, calcium-rich material that forms the protective outer layer of each tooth. Although the function of the protein produced from the FAM83H gene is unknown, it is also believed to be involved in the formation of enamel. Mutations in any of these genes result in altered protein structure or prevent the production of any protein. As a result, tooth enamel is abnormally thin or soft and may have a yellow or brown color. Teeth with defective enamel are weak and easily damaged. Mutations in the genes described above account for only about half of all cases of the condition, with FAM83H gene mutations causing the majority of these cases. In the remaining cases, the genetic cause has not been identified. Researchers are working to find mutations in other genes that are involved in this disorder. | amelogenesis imperfecta |
Is amelogenesis imperfecta inherited ? | Amelogenesis imperfecta can have different inheritance patterns depending on the gene that is altered. Many cases are caused by mutations in the FAM83H gene and are inherited in an autosomal dominant pattern. This type of inheritance means one copy of the altered gene in each cell is sufficient to cause the disorder. Some cases caused by mutations in the ENAM gene also have an autosomal dominant inheritance pattern. Amelogenesis imperfecta can also be inherited in an autosomal recessive pattern; this form of the disorder can result from mutations in the ENAM or MMP20 gene. Autosomal recessive inheritance means two copies of the gene in each cell are altered. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. About 5 percent of amelogenesis imperfecta cases are caused by mutations in the AMELX gene and are inherited in an X-linked pattern. A condition is considered X-linked if the mutated gene that causes the disorder is located on the X chromosome, one of the two sex chromosomes. In most cases, males with X-linked amelogenesis imperfecta experience more severe dental abnormalities than females with this form of this condition. Other cases of amelogenesis imperfecta result from new gene mutations and occur in people with no history of the disorder in their family. | amelogenesis imperfecta |
What are the treatments for amelogenesis imperfecta ? | These resources address the diagnosis or management of amelogenesis imperfecta: - Genetic Testing Registry: Amelogenesis imperfecta - hypoplastic autosomal dominant - local - Genetic Testing Registry: Amelogenesis imperfecta, hypocalcification type - Genetic Testing Registry: Amelogenesis imperfecta, type 1E - Genetic Testing Registry: Amelogenesis imperfecta, type IC - MedlinePlus Encyclopedia: Amelogenesis imperfecta - MedlinePlus Encyclopedia: Tooth - Abnormal Colors These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | amelogenesis imperfecta |
What is (are) progressive supranuclear palsy ? | Progressive supranuclear palsy is a brain disorder that affects movement, vision, speech, and thinking ability (cognition). The signs and symptoms of this disorder usually become apparent in mid- to late adulthood, most often in a person's 60s. Most people with progressive supranuclear palsy survive 5 to 9 years after the disease first appears, although a few affected individuals have lived for more than a decade. Loss of balance and frequent falls are the most common early signs of progressive supranuclear palsy. Affected individuals have problems with walking, including poor coordination and an unsteady, lurching gait. Other movement abnormalities develop as the disease progresses, including unusually slow movements (bradykinesia), clumsiness, and stiffness of the trunk muscles. These problems worsen with time, and most affected people ultimately require wheelchair assistance. Progressive supranuclear palsy is also characterized by abnormal eye movements, which typically develop several years after the other movement problems first appear. Restricted up-and-down eye movement (vertical gaze palsy) is a hallmark of this disease. Other eye movement problems include difficulty opening and closing the eyelids, infrequent blinking, and pulling back (retraction) of the eyelids. These abnormalities can lead to blurred vision, an increased sensitivity to light (photophobia), and a staring gaze. Additional features of progressive supranuclear palsy include slow and slurred speech (dysarthria) and trouble swallowing (dysphagia). Most affected individuals also experience changes in personality and behavior, such as a general loss of interest and enthusiasm (apathy). They develop problems with cognition, including difficulties with attention, planning, and problem solving. As the cognitive and behavioral problems worsen, affected individuals increasingly require help with personal care and other activities of daily living. | progressive supranuclear palsy |
How many people are affected by progressive supranuclear palsy ? | The exact prevalence of progressive supranuclear palsy is unknown. It may affect about 6 in 100,000 people worldwide. | progressive supranuclear palsy |
What are the genetic changes related to progressive supranuclear palsy ? | In most cases, the genetic cause of progressive supranuclear palsy is unknown. Rarely, the disease results from mutations in the MAPT gene. Certain normal variations (polymorphisms) in the MAPT gene have also been associated with an increased risk of developing progressive supranuclear palsy. The MAPT gene provides instructions for making a protein called tau. This protein is found throughout the nervous system, including in nerve cells (neurons) in the brain. It is involved in assembling and stabilizing microtubules, which are rigid, hollow fibers that make up the cell's structural framework (the cytoskeleton). Microtubules help cells maintain their shape, assist in the process of cell division, and are essential for the transport of materials within cells. The signs and symptoms of progressive supranuclear palsy appear to be related to abnormalities in the tau protein. In people with MAPT gene mutations, genetic changes disrupt the protein's normal structure and function. However, abnormal tau is also found in affected individuals without MAPT gene mutations. The defective tau protein assembles into abnormal clumps within neurons and other brain cells, although it is unclear what effect these clumps have on cell function and survival. Progressive supranuclear palsy is characterized by the gradual death of brain cells, particularly in structures deep within the brain that are essential for coordinating movement. This loss of brain cells underlies the movement abnormalities and other features of progressive supranuclear palsy. This condition is one of several related diseases known as tauopathies, which are characterized by an abnormal buildup of tau in the brain. Researchers suspect that other genetic and environmental factors also contribute to progressive supranuclear palsy. For example, the disease has been linked to genetic changes on chromosome 1 and chromosome 11. However, the specific genes involved have not been identified. | progressive supranuclear palsy |
Is progressive supranuclear palsy inherited ? | Most cases of progressive supranuclear palsy are sporadic, which means they occur in people with no history of the disorder in their family. However, some people with this disorder have had family members with related conditions, such as parkinsonism and a loss of intellectual functions (dementia). When progressive supranuclear palsy runs in families, it can have an autosomal dominant pattern of inheritance. Autosomal dominant inheritance means one copy of an altered gene in each cell is sufficient to cause the disorder. | progressive supranuclear palsy |
What are the treatments for progressive supranuclear palsy ? | These resources address the diagnosis or management of progressive supranuclear palsy: - Gene Review: Gene Review: MAPT-Related Disorders - Genetic Testing Registry: Progressive supranuclear ophthalmoplegia - NHS Choices (UK): Diagnosis of Progressive Supranuclear Palsy - NHS Choices (UK): Treatment of Progressive Supranuclear Palsy - Partners in Parkinson's: Movement Disorder Specialist Finder - University of California, San Francisco (UCSF) Memory and Aging Center These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | progressive supranuclear palsy |
What is (are) ichthyosis with confetti ? | Ichthyosis with confetti is a disorder of the skin. Individuals with this condition are born with red, scaly skin all over the body, which can be itchy in some people. In childhood or adolescence, hundreds to thousands of small patches of normal skin appear, usually on the torso. The numerous pale spots surrounded by red skin look like confetti, giving the condition its name. The patches of normal skin increase in number and size over time. In addition to red, scaly skin, people with ichthyosis with confetti typically have abnormally thick skin on the palms of the hands and soles of the feet (palmoplantar keratoderma). Many affected individuals have excess hair (hirsutism) on some parts of the body, particularly on the arms and legs. Because of their skin abnormalities, people with ichthyosis with confetti are at increased risk of developing skin infections. | ichthyosis with confetti |
How many people are affected by ichthyosis with confetti ? | Ichthyosis with confetti is a rare disorder. Fewer than 20 affected individuals have been described in the medical literature. | ichthyosis with confetti |
What are the genetic changes related to ichthyosis with confetti ? | Mutations in the KRT10 gene cause ichthyosis with confetti. This gene provides instructions for making a protein called keratin 10, which is found in cells called keratinocytes in the outer layer of the skin (the epidermis). In the fluid-filled space inside these cells (the cytoplasm), this tough, fibrous protein attaches to another keratin protein (produced from a different gene) to form fibers called intermediate filaments. These filaments assemble into strong networks that provide strength and resiliency to the skin. KRT10 gene mutations associated with ichthyosis with confetti alter the keratin 10 protein. The altered protein is abnormally transported to the nucleus of cells, where it cannot form networks of intermediate filaments. Loss of these networks disrupts the epidermis, contributing to the red, scaly skin. However, in some abnormal cells, the mutated gene corrects itself through a complex process by which genetic material is exchanged between chromosomes. As a result, normal keratin 10 protein is produced and remains in the cytoplasm. The cell becomes normal and, as it continues to grow and divide, forms small patches of normal skin that give ichthyosis with confetti its name. | ichthyosis with confetti |
Is ichthyosis with confetti inherited ? | Ichthyosis with confetti is considered to have an autosomal dominant pattern of inheritance, which means one copy of the altered gene in each cell is sufficient to cause the disorder. Usually, the condition is caused by a new mutation that occurs very early in embryonic development (called a de novo mutation). In these cases, the affected individuals have no history of the disorder in their family. In some cases, an affected person inherits the mutation from one affected parent. | ichthyosis with confetti |
What are the treatments for ichthyosis with confetti ? | These resources address the diagnosis or management of ichthyosis with confetti: - Foundation for Ichthyosis and Related Skin Types (FIRST): Skin Care Tips - Foundation for Ichthyosis and Related Skin Types (FIRST): Treating Ichthyosis These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | ichthyosis with confetti |
What is (are) Emery-Dreifuss muscular dystrophy ? | Emery-Dreifuss muscular dystrophy is a condition that chiefly affects muscles used for movement (skeletal muscles) and heart (cardiac) muscle. Among the earliest features of this disorder are joint deformities called contractures, which restrict the movement of certain joints. Contractures become noticeable in early childhood and most often involve the elbows, ankles, and neck. Most affected individuals also experience slowly progressive muscle weakness and wasting, beginning in muscles of the upper arms and lower legs and progressing to muscles in the shoulders and hips. Almost all people with Emery-Dreifuss muscular dystrophy have heart problems by adulthood. In many cases, these heart problems stem from abnormalities of the electrical signals that control the heartbeat (cardiac conduction defects) and abnormal heart rhythms (arrhythmias). If untreated, these abnormalities can lead to an unusually slow heartbeat (bradycardia), fainting (syncope), and an increased risk of stroke and sudden death. The types of Emery-Dreifuss muscular dystrophy are distinguished by their pattern of inheritance: X-linked, autosomal dominant, and autosomal recessive. Although the three types have similar signs and symptoms, researchers believe that the features of autosomal dominant Emery-Dreifuss muscular dystrophy are more variable than the other types. A small percentage of people with the autosomal dominant form experience heart problems without any weakness or wasting of skeletal muscles. | Emery-Dreifuss muscular dystrophy |
How many people are affected by Emery-Dreifuss muscular dystrophy ? | X-linked Emery-Dreifuss muscular dystrophy is the most common form of this condition, affecting an estimated 1 in 100,000 people. The autosomal recessive type of this disorder appears to be very rare; only a few cases have been reported worldwide. The incidence of the autosomal dominant form is unknown. | Emery-Dreifuss muscular dystrophy |
What are the genetic changes related to Emery-Dreifuss muscular dystrophy ? | Mutations in the EMD and LMNA genes cause Emery-Dreifuss muscular dystrophy. The EMD and LMNA genes provide instructions for making proteins that are components of the nuclear envelope, which surrounds the nucleus in cells. The nuclear envelope regulates the movement of molecules into and out of the nucleus, and researchers believe it may play a role in regulating the activity of certain genes. Most cases of Emery-Dreifuss muscular dystrophy are caused by mutations in the EMD gene. This gene provides instructions for making a protein called emerin, which appears to be essential for the normal function of skeletal and cardiac muscle. Most EMD gene mutations prevent the production of any functional emerin. It remains unclear how a lack of this protein results in the signs and symptoms of Emery-Dreifuss muscular dystrophy. Less commonly, Emery-Dreifuss muscular dystrophy results from mutations in the LMNA gene. This gene provides instructions for making two very similar proteins, lamin A and lamin C. Most of the LMNA mutations that cause this condition result in the production of an altered version of these proteins. Researchers are investigating how the altered versions of lamins A and C lead to muscle wasting and heart problems in people with Emery-Dreifuss muscular dystrophy. | Emery-Dreifuss muscular dystrophy |
Is Emery-Dreifuss muscular dystrophy inherited ? | Emery-Dreifuss muscular dystrophy can have several different patterns of inheritance. When this condition is caused by mutations in the EMD gene, it is inherited in an X-linked recessive pattern. A condition is considered X-linked if the mutated gene that causes the disorder is located on the X chromosome, one of the two sex chromosomes. In males (who have only one X chromosome), one altered copy of the gene in each cell is sufficient to cause the condition. Males are affected by X-linked recessive disorders much more frequently than females. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons. In females (who have two X chromosomes), a mutation typically must be present in both copies of the EMD gene to cause X-linked Emery-Dreifuss muscular dystrophy. Females who carry one altered copy of the EMD gene usually do not experience the muscle weakness and wasting that are characteristic of this condition. In some cases, however, they may experience heart problems associated with this disorder. Other cases of Emery-Dreifuss muscular dystrophy result from mutations in the LMNA gene and are considered to have an autosomal dominant pattern of inheritance. Autosomal dominant inheritance means one copy of the altered gene in each cell is sufficient to cause the disorder. About 75 percent of autosomal dominant Emery-Dreifuss muscular dystrophy cases are caused by new mutations in the LMNA gene and occur in people with no history of the disorder in their family. In the remaining cases, people with this form of the condition inherit the altered LMNA gene from an affected parent. Rarely, LMNA gene mutations can cause a form of Emery-Dreifuss muscular dystrophy that is inherited in an autosomal recessive pattern. Autosomal recessive inheritance means two copies of the gene in each cell are altered. Most often, the parents of an individual with an autosomal recessive disorder are carriers of one copy of the altered gene but do not show signs and symptoms of the disorder. | Emery-Dreifuss muscular dystrophy |
What are the treatments for Emery-Dreifuss muscular dystrophy ? | These resources address the diagnosis or management of Emery-Dreifuss muscular dystrophy: - Gene Review: Gene Review: Emery-Dreifuss Muscular Dystrophy - Genetic Testing Registry: Emery-Dreifuss muscular dystrophy - Genetic Testing Registry: Emery-Dreifuss muscular dystrophy 1, X-linked - MedlinePlus Encyclopedia: Arrhythmias - MedlinePlus Encyclopedia: Contracture deformity - MedlinePlus Encyclopedia: Muscular dystrophy These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | Emery-Dreifuss muscular dystrophy |
What is (are) preeclampsia ? | Preeclampsia is a complication of pregnancy in which affected women develop high blood pressure (hypertension) and can also have abnormally high levels of protein in their urine. This condition usually occurs in the last few months of pregnancy and often requires the early delivery of the infant. Many women with mild preeclampsia do not feel ill, and the problem is first detected through blood pressure and urine testing in their doctor's office. Other early features of the disorder are swelling (edema) of the face or hands and a weight gain of more than 2 pounds within a few days. More severely affected women may experience headaches, dizziness, irritability, shortness of breath, a decrease in urination, upper abdominal pain, nausea, or vomiting. Vision changes may develop, including flashing lights or spots, increased sensitivity to light (photophobia), blurry vision, or temporary blindness. In most cases, preeclampsia is mild and goes away within a few weeks after the baby is born. In severe cases, however, preeclampsia can impact the mother's organs such as the heart, liver, and kidneys and can lead to life-threatening complications. Extreme hypertension in the mother can cause bleeding in the brain (hemorrhagic stroke). The effects of high blood pressure on the brain (hypertensive encephalopathy) may also result in seizures. If seizures occur, the condition is considered to have progressed to eclampsia, which can result in coma. Without treatment to help prevent seizures, about 1 in 200 women with preeclampsia develop eclampsia. Between 10 and 20 percent of women with severe preeclampsia develop another potentially life-threatening complication called HELLP syndrome. HELLP stands for hemolysis (premature red blood cell breakdown), elevated liver enzyme levels, and low platelets (cell fragments involved in blood clotting), which are the key features of this condition. Severe preeclampsia can also affect the fetus, with impairment of blood and oxygen flow leading to growth problems or stillbirth. Infants delivered early due to preeclampsia may have complications associated with prematurity, such as breathing problems caused by underdeveloped lungs. Women who have had preeclampsia have approximately twice the lifetime risk of heart disease and stroke than do women in the general population. Researchers suggest this may be due to common factors that increase the risk of preeclampsia, heart disease, and stroke. | preeclampsia |
How many people are affected by preeclampsia ? | Preeclampsia is a common condition in all populations, occurring in 2 to 8 percent of pregnancies. It occurs more frequently in women of African or Hispanic descent than it does in women of European descent. | preeclampsia |
What are the genetic changes related to preeclampsia ? | The specific causes of preeclampsia are not well understood. In pregnancy, blood volume normally increases to support the fetus, and the mother's body must adjust to handle this extra fluid. In some women the body does not react normally to the fluid changes of pregnancy, leading to the problems with high blood pressure and urine production in the kidneys that occur in preeclampsia. The reasons for these abnormal reactions to the changes of pregnancy vary in different women and may differ depending on the stage of the pregnancy at which the condition develops. Studies suggest that preeclampsia is related to a problem with the placenta, the link between the mother's blood supply and the fetus. If there is an insufficient connection between the placenta and the arteries of the uterus, the placenta does not get enough blood. It responds by releasing a variety of substances, including molecules that affect the lining of blood vessels (the vascular endothelium). By mechanisms that are unclear, the reaction of the vascular endothelium appears to increase factors that cause the blood vessels to narrow (constrict), and decrease factors that would cause them to widen (dilate). As a result, the blood vessels constrict abnormally, causing hypertension. These blood vessel abnormalities also affect the kidneys, causing some proteins that are normally absorbed into the blood to be released in the urine instead. Researchers are studying whether variations in genes involved in fluid balance, the functioning of the vascular endothelium, or placental development affect the risk of developing preeclampsia. Many other factors likely also contribute to the risk of developing this complex disorder. These risk factors include a first pregnancy; a pregnancy with twins or higher multiples; obesity; being older than 35 or younger than 20; a history of diabetes, hypertension, or kidney disease; and preeclampsia in a previous pregnancy. Socioeconomic status and ethnicity have also been associated with preeclampsia risk. The incidence of preeclampsia in the United States has increased by 30 percent in recent years, which has been attributed in part to an increase in older mothers and multiple births resulting from the use of assisted reproductive technologies. | preeclampsia |
Is preeclampsia inherited ? | Most cases of preeclampsia do not seem to be inherited. The tendency to develop preeclampsia does seem to run in some families; however, the inheritance pattern is unknown. | preeclampsia |
What are the treatments for preeclampsia ? | These resources address the diagnosis or management of preeclampsia: - Eunice Kennedy Shriver National Institute of Child Health and Human Development: How Do Health Care Providers Diagnose Preeclampsia, Eclampsia, and HELLP syndrome? - Eunice Kennedy Shriver National Institute of Child Health and Human Development: What Are the Treatments for Preeclampsia, Eclampsia, and HELLP Syndrome? - Genetic Testing Registry: Preeclampsia/eclampsia 1 - Genetic Testing Registry: Preeclampsia/eclampsia 2 - Genetic Testing Registry: Preeclampsia/eclampsia 3 - Genetic Testing Registry: Preeclampsia/eclampsia 4 - Genetic Testing Registry: Preeclampsia/eclampsia 5 - MedlinePlus Encyclopedia: Preeclampsia Self-care These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | preeclampsia |
What is (are) phosphoglycerate mutase deficiency ? | Phosphoglycerate mutase deficiency is a disorder that primarily affects muscles used for movement (skeletal muscles). Beginning in childhood or adolescence, affected individuals experience muscle aches or cramping following strenuous physical activity. Some people with this condition also have recurrent episodes of myoglobinuria. Myoglobinuria occurs when muscle tissue breaks down abnormally and releases a protein called myoglobin, which is processed by the kidneys and released in the urine. If untreated, myoglobinuria can lead to kidney failure. In some cases of phosphoglycerate mutase deficiency, microscopic tube-shaped structures called tubular aggregates are seen in muscle fibers. It is unclear how tubular aggregates are associated with the signs and symptoms of the disorder. | phosphoglycerate mutase deficiency |
How many people are affected by phosphoglycerate mutase deficiency ? | Phosphoglycerate mutase deficiency is a rare condition; about 15 affected people have been reported in the medical literature. Most affected individuals have been African American. | phosphoglycerate mutase deficiency |
What are the genetic changes related to phosphoglycerate mutase deficiency ? | Phosphoglycerate mutase deficiency is caused by mutations in the PGAM2 gene. This gene provides instructions for making an enzyme called phosphoglycerate mutase, which is involved in a critical energy-producing process in cells known as glycolysis. During glycolysis, the simple sugar glucose is broken down to produce energy. The version of phosphoglycerate mutase produced from the PGAM2 gene is found primarily in skeletal muscle cells. Mutations in the PGAM2 gene greatly reduce the activity of phosphoglycerate mutase, which disrupts energy production in these cells. This defect underlies the muscle cramping and myoglobinuria that occur after strenuous exercise in affected individuals. | phosphoglycerate mutase deficiency |
Is phosphoglycerate mutase deficiency inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the PGAM2 gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. However, people who carry one altered copy of the PGAM2 gene may have some features of phosphoglycerate mutase deficiency, including episodes of exercise-induced muscle cramping and myoglobinuria. | phosphoglycerate mutase deficiency |
What are the treatments for phosphoglycerate mutase deficiency ? | These resources address the diagnosis or management of phosphoglycerate mutase deficiency: - Genetic Testing Registry: Glycogen storage disease type X These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | phosphoglycerate mutase deficiency |
What is (are) hypomyelination and congenital cataract ? | Hypomyelination and congenital cataract is an inherited condition that affects the nervous system and the eyes. This disease is one of a group of genetic disorders called leukoencephalopathies. Leukoencephalopathies involve abnormalities of the brain's white matter. White matter consists of nerve fibers covered by a fatty substance called myelin. Myelin insulates nerve fibers and promotes the rapid transmission of nerve impulses. Hypomyelination and congenital cataract is caused by a reduced ability to form myelin (hypomyelination). Additionally, people with this disorder are typically born with a clouding of the lens (cataract) in both eyes. People with this condition usually have normal development throughout the first year of life. Development slows around the age of 1. Most affected children learn to walk between the ages of 1 and 2, although they usually need some type of support. Over time they experience muscle weakness and wasting (atrophy) in their legs, and many affected people eventually require wheelchair assistance. Weakness in the muscles of the trunk and a progressive abnormal curvature of the spine (scoliosis) further impair walking in some individuals. Most people with hypomyelination and congenital cataract have reduced sensation in their arms and legs (peripheral neuropathy). In addition, affected individuals typically have speech difficulties (dysarthria) and mild to moderate intellectual disability. | hypomyelination and congenital cataract |
How many people are affected by hypomyelination and congenital cataract ? | The prevalence of hypomyelination and congenital cataract is unknown. | hypomyelination and congenital cataract |
What are the genetic changes related to hypomyelination and congenital cataract ? | Mutations in the FAM126A gene cause hypomyelination and congenital cataract. The FAM126A gene provides instructions for making a protein called hyccin, the function of which is not completely understood. Based on the features of hypomyelination and congenital cataract, researchers presume that hyccin is involved in the formation of myelin throughout the nervous system. Hyccin is also active in the lens of the eye, the heart, and the kidneys. It is unclear how mutations in the FAM126A gene cause cataracts. Most FAM126A gene mutations that cause hypomyelination and congenital cataract prevent the production of hyccin. People who cannot produce any hyccin have problems forming myelin, leading to the signs and symptoms of this condition. People who have mutations that allow some protein production tend to have milder symptoms than those who produce no protein. These individuals typically retain the ability to walk longer, although they still need support, and they usually do not have peripheral neuropathy. | hypomyelination and congenital cataract |
Is hypomyelination and congenital cataract inherited ? | This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. | hypomyelination and congenital cataract |
What are the treatments for hypomyelination and congenital cataract ? | These resources address the diagnosis or management of hypomyelination and congenital cataract: - Gene Review: Gene Review: Hypomyelination and Congenital Cataract - Genetic Testing Registry: Hypomyelination and Congenital Cataract - MedlinePlus Encyclopedia: Congenital Cataract - MedlinePlus Encyclopedia: Muscle Atrophy These resources from MedlinePlus offer information about the diagnosis and management of various health conditions: - Diagnostic Tests - Drug Therapy - Surgery and Rehabilitation - Genetic Counseling - Palliative Care | hypomyelination and congenital cataract |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.