metadata
license: cc-by-sa-3.0
task_categories:
- text-generation
- text-classification
language:
- 'no'
pretty_name: WIKI Paragraphs Norwegian
configs:
- config_name: default
data_files:
- split: train
path: train.jsonl
- split: validation
path: validation.jsonl
- split: test
path: test.jsonl
- split: validation1000
path: validation1000.jsonl
- split: test1000
path: test1000.jsonl
- split: validation100
path: validation100.jsonl
- split: test100
path: test100.jsonl
- split: pretrain
path: pretrain.jsonl
- split: reserve
path: reserve.jsonl
version: 1.0.0
citation: |
This dataset contains content from Wikipedia under CC BY-SA 3.0 license.
dataset_info:
features:
- name: text
dtype: string
- name: url
dtype: string
- name: paragraph_number
dtype: int64
- name: corrupt
dtype: string
- name: corrupt_level
dtype: int64
splits:
- name: train
num_examples: 1000000
- name: validation
num_examples: 10000
- name: test
num_examples: 10000
- name: validation1000
num_examples: 1000
- name: test1000
num_examples: 1000
- name: validation100
num_examples: 100
- name: test100
num_examples: 100
- name: pretrain
num_examples: 10000
- name: reserve
num_examples: 100000
WIKI Paragraphs Norwegian
A multi-split dataset for machine learning research and evaluation, containing text samples in JSON Lines format.
Features
- Multiple splits for different use cases
- Random shuffle with Fisher-Yates algorithm
- Structured format with text and metadata
- Size-varied validation/test sets (100 to 10k samples)
Splits Overview
Split Name | Samples | Typical Usage |
---|---|---|
train |
1,000,000 | Primary training data |
validation |
10,000 | Standard validation |
test |
10,000 | Final evaluation |
validation1000 |
1,000 | Quick validation |
test1000 |
1,000 | Rapid testing |
validation100 |
100 | Debugging/development |
test100 |
100 | Small-scale checks |
pretrain |
10,000 | Pre-training phase |
reverse |
100,000 | Special tasks |
Total Samples: 1,132,200
License
Creative Commons Attribution-ShareAlike 3.0
This dataset inherits Wikipedia's licensing terms:
- Attribution Required
- ShareAlike Mandatory
- Commercial Use Allowed
Usage
from datasets import load_dataset
# Load main training split
dataset = load_dataset("your-username/dataset-name", split="train")
# Access smaller validation split
val_100 = load_dataset("your-username/dataset-name", "validation100")
Data Structure
Each line contains JSON:
Copy
{
"text": "Full text content...",
"metadata": {
"source": "Wikipedia",
"timestamp": "2023-01-01",
"url": "https://..."
}
}
Notes
All splits accessible via: load_dataset(repo_id, split_name) Non-standard splits (e.g., reverse) require explicit config: split="reverse" When using, include attribution: "Contains content from Wikipedia under CC BY-SA 3.0"