File size: 3,452 Bytes
8b0bd85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
license: cc-by-sa-3.0
task_categories:
- text-generation
- text-classification
language:
- no
pretty_name: WIKI Paragraphs Norwegian
configs:
- config_name: default
  data_files:
    - split: train
      path: train.jsonl
    - split: validation
      path: validation.jsonl
    - split: test
      path: test.jsonl
    - split: validation1000
      path: validation1000.jsonl
    - split: test1000
      path: test1000.jsonl
    - split: validation100
      path: validation100.jsonl
    - split: test100
      path: test100.jsonl
    - split: pretrain
      path: pretrain.jsonl
    - split: reserve
      path: reserve.jsonl
version: 1.0.0
citation: >
  This dataset contains content from Wikipedia under CC BY-SA 3.0 license.
dataset_info:
  features:
    - name: text
      dtype: string
    - name: url
      dtype: string
    - name: paragraph_number
      dtype: int64
    - name: corrupt
      dtype: string
    - name: corrupt_level
      dtype: int64

  splits:
  - name: train
    num_examples: 1000000
  - name: validation
    num_examples: 10000
  - name: test
    num_examples: 10000
  - name: validation1000
    num_examples: 1000
  - name: test1000
    num_examples: 1000
  - name: validation100
    num_examples: 100
  - name: test100
    num_examples: 100
  - name: pretrain
    num_examples: 10000
  - name: reserve
    num_examples: 100000
---
# WIKI Paragraphs Norwegian

A multi-split dataset for machine learning research and evaluation, containing text samples in JSON Lines format.

## Features
- **Multiple splits** for different use cases
- **Random shuffle** with Fisher-Yates algorithm
- **Structured format** with text and metadata
- **Size-varied validation/test sets** (100 to 10k samples)

## Splits Overview
| Split Name          | Samples | Typical Usage          |
|---------------------|--------:|------------------------|
| `train`             | 1,000,000 | Primary training data  |
| `validation`        |   10,000 | Standard validation    |
| `test`              |   10,000 | Final evaluation       |
| `validation1000`    |    1,000 | Quick validation       |
| `test1000`          |    1,000 | Rapid testing          |
| `validation100`     |      100 | Debugging/development  |
| `test100`           |      100 | Small-scale checks     |
| `pretrain`          |   10,000 | Pre-training phase     |
| `reverse`           |  100,000 | Special tasks          |

**Total Samples:** 1,132,200

## License
**Creative Commons Attribution-ShareAlike 3.0**  
[![CC BY-SA 3.0](https://licensebuttons.net/l/by-sa/3.0/88x31.png)](https://creativecommons.org/licenses/by-sa/3.0/)

This dataset inherits Wikipedia's licensing terms:
- **Attribution Required**  
- **ShareAlike Mandatory**  
- **Commercial Use Allowed**

## Usage
```python
from datasets import load_dataset

# Load main training split
dataset = load_dataset("your-username/dataset-name", split="train")

# Access smaller validation split
val_100 = load_dataset("your-username/dataset-name", "validation100")
```

## Data Structure

Each line contains JSON:

```json
Copy
{
  "text": "Full text content...",
  "metadata": {
    "source": "Wikipedia", 
    "timestamp": "2023-01-01",
    "url": "https://..."
  }
}
```

## Notes

All splits accessible via:
load_dataset(repo_id, split_name)
Non-standard splits (e.g., reverse) require explicit config:
split="reverse"
When using, include attribution:
"Contains content from Wikipedia under CC BY-SA 3.0"