ov-kit-doc / Gf.md
larkZ's picture
Upload 253 files
d8ab1df verified
Gf module — pxr-usd-api 105.1 documentation
pxr-usd-api
»
Modules »
Gf module
 
# Gf module
Summary: The Gf (Graphics Foundations) library contains classes and functions for working with basic mathematical aspects of graphics.
Graphics Foundation
This package defines classes for fundamental graphics types and operations.
Classes:
BBox3d
Arbitrarily oriented 3D bounding box
Camera
DualQuatd
DualQuatf
DualQuath
Frustum
Basic view frustum
Interval
Basic mathematical interval class
Line
Line class
LineSeg
Line segment class
Matrix2d
Matrix2f
Matrix3d
Matrix3f
Matrix4d
Matrix4f
MultiInterval
Plane
Quatd
Quaternion
Quaternion class
Quatf
Quath
Range1d
Range1f
Range2d
Range2f
Range3d
Range3f
Ray
Rect2i
Rotation
3-space rotation
Size2
A 2D size class
Size3
A 3D size class
Transform
Vec2d
Vec2f
Vec2h
Vec2i
Vec3d
Vec3f
Vec3h
Vec3i
Vec4d
Vec4f
Vec4h
Vec4i
class pxr.Gf.BBox3d
Arbitrarily oriented 3D bounding box
Methods:
Combine
classmethod Combine(b1, b2) -> BBox3d
ComputeAlignedBox()
Returns the axis-aligned range (as a GfRange3d ) that results from applying the transformation matrix to the axis-aligned box and aligning the result.
ComputeAlignedRange()
Returns the axis-aligned range (as a GfRange3d ) that results from applying the transformation matrix to the wxis-aligned box and aligning the result.
ComputeCentroid()
Returns the centroid of the bounding box.
GetBox()
Returns the range of the axis-aligned untransformed box.
GetInverseMatrix()
Returns the inverse of the transformation matrix.
GetMatrix()
Returns the transformation matrix.
GetRange()
Returns the range of the axis-aligned untransformed box.
GetVolume()
Returns the volume of the box (0 for an empty box).
HasZeroAreaPrimitives()
Returns the current state of the zero-area primitives flag".
Set(box, matrix)
Sets the axis-aligned box and transformation matrix.
SetHasZeroAreaPrimitives(hasThem)
Sets the zero-area primitives flag to the given value.
SetMatrix(matrix)
Sets the transformation matrix only.
SetRange(box)
Sets the range of the axis-aligned box only.
Transform(matrix)
Transforms the bounding box by the given matrix, which is assumed to be a global transformation to apply to the box.
Attributes:
box
hasZeroAreaPrimitives
matrix
static Combine()
classmethod Combine(b1, b2) -> BBox3d
Combines two bboxes, returning a new bbox that contains both.
This uses the coordinate space of one of the two original boxes as the
space of the result; it uses the one that produces whe smaller of the
two resulting boxes.
Parameters
b1 (BBox3d) –
b2 (BBox3d) –
ComputeAlignedBox() → Range3d
Returns the axis-aligned range (as a GfRange3d ) that results from
applying the transformation matrix to the axis-aligned box and
aligning the result.
This synonym for ComputeAlignedRange exists for compatibility
purposes.
ComputeAlignedRange() → Range3d
Returns the axis-aligned range (as a GfRange3d ) that results from
applying the transformation matrix to the wxis-aligned box and
aligning the result.
ComputeCentroid() → Vec3d
Returns the centroid of the bounding box.
The centroid is computed as the transformed centroid of the range.
GetBox() → Range3d
Returns the range of the axis-aligned untransformed box.
This synonym of GetRange exists for compatibility purposes.
GetInverseMatrix() → Matrix4d
Returns the inverse of the transformation matrix.
This will be the identity matrix if the transformation matrix is not
invertible.
GetMatrix() → Matrix4d
Returns the transformation matrix.
GetRange() → Range3d
Returns the range of the axis-aligned untransformed box.
GetVolume() → float
Returns the volume of the box (0 for an empty box).
HasZeroAreaPrimitives() → bool
Returns the current state of the zero-area primitives flag”.
Set(box, matrix) → None
Sets the axis-aligned box and transformation matrix.
Parameters
box (Range3d) –
matrix (Matrix4d) –
SetHasZeroAreaPrimitives(hasThem) → None
Sets the zero-area primitives flag to the given value.
Parameters
hasThem (bool) –
SetMatrix(matrix) → None
Sets the transformation matrix only.
The axis-aligned box is not modified.
Parameters
matrix (Matrix4d) –
SetRange(box) → None
Sets the range of the axis-aligned box only.
The transformation matrix is not modified.
Parameters
box (Range3d) –
Transform(matrix) → None
Transforms the bounding box by the given matrix, which is assumed to
be a global transformation to apply to the box.
Therefore, this just post-multiplies the box’s matrix by matrix .
Parameters
matrix (Matrix4d) –
property box
property hasZeroAreaPrimitives
property matrix
class pxr.Gf.Camera
Classes:
FOVDirection
Direction used for Field of View or orthographic size.
Projection
Projection type.
Methods:
GetFieldOfView(direction)
Returns the horizontal or vertical field of view in degrees.
SetFromViewAndProjectionMatrix(viewMatrix, ...)
Sets the camera from a view and projection matrix.
SetOrthographicFromAspectRatioAndSize(...)
Sets the frustum to be orthographic such that it has the given aspectRatio and such that the orthographic width, respectively, orthographic height (in cm) is equal to orthographicSize (depending on direction).
SetPerspectiveFromAspectRatioAndFieldOfView(...)
Sets the frustum to be projective with the given aspectRatio and horizontal, respectively, vertical field of view fieldOfView (similar to gluPerspective when direction = FOVVertical).
Attributes:
APERTURE_UNIT
DEFAULT_HORIZONTAL_APERTURE
DEFAULT_VERTICAL_APERTURE
FOCAL_LENGTH_UNIT
FOVHorizontal
FOVVertical
Orthographic
Perspective
aspectRatio
float
clippingPlanes
list[Vec4f]
clippingRange
Range1f
fStop
float
focalLength
float
focusDistance
float
frustum
Frustum
horizontalAperture
float
horizontalApertureOffset
float
horizontalFieldOfView
projection
Projection
transform
Matrix4d
verticalAperture
float
verticalApertureOffset
float
verticalFieldOfView
class FOVDirection
Direction used for Field of View or orthographic size.
Methods:
GetValueFromName
Attributes:
allValues
static GetValueFromName()
allValues = (Gf.Camera.FOVHorizontal, Gf.Camera.FOVVertical)
class Projection
Projection type.
Methods:
GetValueFromName
Attributes:
allValues
static GetValueFromName()
allValues = (Gf.Camera.Perspective, Gf.Camera.Orthographic)
GetFieldOfView(direction) → float
Returns the horizontal or vertical field of view in degrees.
Parameters
direction (FOVDirection) –
SetFromViewAndProjectionMatrix(viewMatrix, projMatix, focalLength) → None
Sets the camera from a view and projection matrix.
Note that the projection matrix does only determine the ratio of
aperture to focal length, so there is a choice which defaults to 50mm
(or more accurately, 50 tenths of a world unit).
Parameters
viewMatrix (Matrix4d) –
projMatix (Matrix4d) –
focalLength (float) –
SetOrthographicFromAspectRatioAndSize(aspectRatio, orthographicSize, direction) → None
Sets the frustum to be orthographic such that it has the given
aspectRatio and such that the orthographic width, respectively,
orthographic height (in cm) is equal to orthographicSize
(depending on direction).
Parameters
aspectRatio (float) –
orthographicSize (float) –
direction (FOVDirection) –
SetPerspectiveFromAspectRatioAndFieldOfView(aspectRatio, fieldOfView, direction, horizontalAperture) → None
Sets the frustum to be projective with the given aspectRatio and
horizontal, respectively, vertical field of view fieldOfView
(similar to gluPerspective when direction = FOVVertical).
Do not pass values for horionztalAperture unless you care about
DepthOfField.
Parameters
aspectRatio (float) –
fieldOfView (float) –
direction (FOVDirection) –
horizontalAperture (float) –
APERTURE_UNIT = 0.1
DEFAULT_HORIZONTAL_APERTURE = 20.955
DEFAULT_VERTICAL_APERTURE = 15.290799999999999
FOCAL_LENGTH_UNIT = 0.1
FOVHorizontal = Gf.Camera.FOVHorizontal
FOVVertical = Gf.Camera.FOVVertical
Orthographic = Gf.Camera.Orthographic
Perspective = Gf.Camera.Perspective
property aspectRatio
float
Returns the projector aperture aspect ratio.
Type
type
property clippingPlanes
list[Vec4f]
Returns additional clipping planes.
type : None
Sets additional arbitrarily oriented clipping planes.
A vector (a,b,c,d) encodes a clipping plane that clips off points
(x,y,z) with a * x + b * y + c * z + d * 1<0
where (x,y,z) are the coordinates in the camera’s space.
Type
type
property clippingRange
Range1f
Returns the clipping range in world units.
type : None
Sets the clipping range in world units.
Type
type
property fStop
float
Returns the lens aperture.
type : None
Sets the lens aperture, unitless.
Type
type
property focalLength
float
Returns the focal length in tenths of a world unit (e.g., mm if the
world unit is assumed to be cm).
type : None
These are the values actually stored in the class and they correspond
to measurements of an actual physical camera (in mm).
Together with the clipping range, they determine the camera frustum.
Sets the focal length in tenths of a world unit (e.g., mm if the world
unit is assumed to be cm).
Type
type
property focusDistance
float
Returns the focus distance in world units.
type : None
Sets the focus distance in world units.
Type
type
property frustum
Frustum
Returns the computed, world-space camera frustum.
The frustum will always be that of a Y-up, -Z-looking camera.
Type
type
property horizontalAperture
float
Returns the width of the projector aperture in tenths of a world unit
(e.g., mm if the world unit is assumed to be cm).
type : None
Sets the width of the projector aperture in tenths of a world unit
(e.g., mm if the world unit is assumed to be cm).
Type
type
property horizontalApertureOffset
float
Returns the horizontal offset of the projector aperture in tenths of a
world unit (e.g., mm if the world unit is assumed to be cm).
In particular, an offset is necessary when writing out a stereo camera
with finite convergence distance as two cameras.
type : None
Sets the horizontal offset of the projector aperture in tenths of a
world unit (e.g., mm if the world unit is assumed to be cm).
Type
type
property horizontalFieldOfView
property projection
Projection
Returns the projection type.
type : None
Sets the projection type.
Type
type
property transform
Matrix4d
Returns the transform of the filmback in world space.
This is exactly the transform specified via SetTransform() .
type : None
Sets the transform of the filmback in world space to val .
Type
type
property verticalAperture
float
Returns the height of the projector aperture in tenths of a world unit
(e.g., mm if the world unit is assumed to be cm).
type : None
Sets the height of the projector aperture in tenths of a world unit
(e.g., mm if the world unit is assumed to be cm).
Type
type
property verticalApertureOffset
float
Returns the vertical offset of the projector aperture in tenths of a
world unit (e.g., mm if the world unit is assumed to be cm).
type : None
Sets the vertical offset of the projector aperture in tenths of a
world unit (e.g., mm if the world unit is assumed to be cm).
Type
type
property verticalFieldOfView
class pxr.Gf.DualQuatd
Methods:
GetConjugate()
Returns the conjugate of this dual quaternion.
GetDual()
Returns the dual part of the dual quaternion.
GetIdentity
classmethod GetIdentity() -> DualQuatd
GetInverse()
Returns the inverse of this dual quaternion.
GetLength()
Returns geometric length of this dual quaternion.
GetNormalized(eps)
Returns a normalized (unit-length) version of this dual quaternion.
GetReal()
Returns the real part of the dual quaternion.
GetTranslation()
Get the translation component of this dual quaternion.
GetZero
classmethod GetZero() -> DualQuatd
Normalize(eps)
Normalizes this dual quaternion in place.
SetDual(dual)
Sets the dual part of the dual quaternion.
SetReal(real)
Sets the real part of the dual quaternion.
SetTranslation(translation)
Set the translation component of this dual quaternion.
Transform(vec)
Transforms the row vector vec by the dual quaternion.
Attributes:
dual
real
GetConjugate() → DualQuatd
Returns the conjugate of this dual quaternion.
GetDual() → Quatd
Returns the dual part of the dual quaternion.
static GetIdentity()
classmethod GetIdentity() -> DualQuatd
Returns the identity dual quaternion, which has a real part of
(1,0,0,0) and a dual part of (0,0,0,0).
GetInverse() → DualQuatd
Returns the inverse of this dual quaternion.
GetLength() → tuple[float, float]
Returns geometric length of this dual quaternion.
GetNormalized(eps) → DualQuatd
Returns a normalized (unit-length) version of this dual quaternion.
If the length of this dual quaternion is smaller than eps , this
returns the identity dual quaternion.
Parameters
eps (float) –
GetReal() → Quatd
Returns the real part of the dual quaternion.
GetTranslation() → Vec3d
Get the translation component of this dual quaternion.
static GetZero()
classmethod GetZero() -> DualQuatd
Returns the zero dual quaternion, which has a real part of (0,0,0,0)
and a dual part of (0,0,0,0).
Normalize(eps) → tuple[float, float]
Normalizes this dual quaternion in place.
Normalizes this dual quaternion in place to unit length, returning the
length before normalization. If the length of this dual quaternion is
smaller than eps , this sets the dual quaternion to identity.
Parameters
eps (float) –
SetDual(dual) → None
Sets the dual part of the dual quaternion.
Parameters
dual (Quatd) –
SetReal(real) → None
Sets the real part of the dual quaternion.
Parameters
real (Quatd) –
SetTranslation(translation) → None
Set the translation component of this dual quaternion.
Parameters
translation (Vec3d) –
Transform(vec) → Vec3d
Transforms the row vector vec by the dual quaternion.
Parameters
vec (Vec3d) –
property dual
property real
class pxr.Gf.DualQuatf
Methods:
GetConjugate()
Returns the conjugate of this dual quaternion.
GetDual()
Returns the dual part of the dual quaternion.
GetIdentity
classmethod GetIdentity() -> DualQuatf
GetInverse()
Returns the inverse of this dual quaternion.
GetLength()
Returns geometric length of this dual quaternion.
GetNormalized(eps)
Returns a normalized (unit-length) version of this dual quaternion.
GetReal()
Returns the real part of the dual quaternion.
GetTranslation()
Get the translation component of this dual quaternion.
GetZero
classmethod GetZero() -> DualQuatf
Normalize(eps)
Normalizes this dual quaternion in place.
SetDual(dual)
Sets the dual part of the dual quaternion.
SetReal(real)
Sets the real part of the dual quaternion.
SetTranslation(translation)
Set the translation component of this dual quaternion.
Transform(vec)
Transforms the row vector vec by the dual quaternion.
Attributes:
dual
real
GetConjugate() → DualQuatf
Returns the conjugate of this dual quaternion.
GetDual() → Quatf
Returns the dual part of the dual quaternion.
static GetIdentity()
classmethod GetIdentity() -> DualQuatf
Returns the identity dual quaternion, which has a real part of
(1,0,0,0) and a dual part of (0,0,0,0).
GetInverse() → DualQuatf
Returns the inverse of this dual quaternion.
GetLength() → tuple[float, float]
Returns geometric length of this dual quaternion.
GetNormalized(eps) → DualQuatf
Returns a normalized (unit-length) version of this dual quaternion.
If the length of this dual quaternion is smaller than eps , this
returns the identity dual quaternion.
Parameters
eps (float) –
GetReal() → Quatf
Returns the real part of the dual quaternion.
GetTranslation() → Vec3f
Get the translation component of this dual quaternion.
static GetZero()
classmethod GetZero() -> DualQuatf
Returns the zero dual quaternion, which has a real part of (0,0,0,0)
and a dual part of (0,0,0,0).
Normalize(eps) → tuple[float, float]
Normalizes this dual quaternion in place.
Normalizes this dual quaternion in place to unit length, returning the
length before normalization. If the length of this dual quaternion is
smaller than eps , this sets the dual quaternion to identity.
Parameters
eps (float) –
SetDual(dual) → None
Sets the dual part of the dual quaternion.
Parameters
dual (Quatf) –
SetReal(real) → None
Sets the real part of the dual quaternion.
Parameters
real (Quatf) –
SetTranslation(translation) → None
Set the translation component of this dual quaternion.
Parameters
translation (Vec3f) –
Transform(vec) → Vec3f
Transforms the row vector vec by the dual quaternion.
Parameters
vec (Vec3f) –
property dual
property real
class pxr.Gf.DualQuath
Methods:
GetConjugate()
Returns the conjugate of this dual quaternion.
GetDual()
Returns the dual part of the dual quaternion.
GetIdentity
classmethod GetIdentity() -> DualQuath
GetInverse()
Returns the inverse of this dual quaternion.
GetLength()
Returns geometric length of this dual quaternion.
GetNormalized(eps)
Returns a normalized (unit-length) version of this dual quaternion.
GetReal()
Returns the real part of the dual quaternion.
GetTranslation()
Get the translation component of this dual quaternion.
GetZero
classmethod GetZero() -> DualQuath
Normalize(eps)
Normalizes this dual quaternion in place.
SetDual(dual)
Sets the dual part of the dual quaternion.
SetReal(real)
Sets the real part of the dual quaternion.
SetTranslation(translation)
Set the translation component of this dual quaternion.
Transform(vec)
Transforms the row vector vec by the dual quaternion.
Attributes:
dual
real
GetConjugate() → DualQuath
Returns the conjugate of this dual quaternion.
GetDual() → Quath
Returns the dual part of the dual quaternion.
static GetIdentity()
classmethod GetIdentity() -> DualQuath
Returns the identity dual quaternion, which has a real part of
(1,0,0,0) and a dual part of (0,0,0,0).
GetInverse() → DualQuath
Returns the inverse of this dual quaternion.
GetLength() → tuple[GfHalf, GfHalf]
Returns geometric length of this dual quaternion.
GetNormalized(eps) → DualQuath
Returns a normalized (unit-length) version of this dual quaternion.
If the length of this dual quaternion is smaller than eps , this
returns the identity dual quaternion.
Parameters
eps (GfHalf) –
GetReal() → Quath
Returns the real part of the dual quaternion.
GetTranslation() → Vec3h
Get the translation component of this dual quaternion.
static GetZero()
classmethod GetZero() -> DualQuath
Returns the zero dual quaternion, which has a real part of (0,0,0,0)
and a dual part of (0,0,0,0).
Normalize(eps) → tuple[GfHalf, GfHalf]
Normalizes this dual quaternion in place.
Normalizes this dual quaternion in place to unit length, returning the
length before normalization. If the length of this dual quaternion is
smaller than eps , this sets the dual quaternion to identity.
Parameters
eps (GfHalf) –
SetDual(dual) → None
Sets the dual part of the dual quaternion.
Parameters
dual (Quath) –
SetReal(real) → None
Sets the real part of the dual quaternion.
Parameters
real (Quath) –
SetTranslation(translation) → None
Set the translation component of this dual quaternion.
Parameters
translation (Vec3h) –
Transform(vec) → Vec3h
Transforms the row vector vec by the dual quaternion.
Parameters
vec (Vec3h) –
property dual
property real
class pxr.Gf.Frustum
Basic view frustum
Classes:
ProjectionType
This enum is used to determine the type of projection represented by a frustum.
Methods:
ComputeAspectRatio()
Returns the aspect ratio of the frustum, defined as the width of the window divided by the height.
ComputeCorners()
Returns the world-space corners of the frustum as a vector of 8 points, ordered as:
ComputeCornersAtDistance(d)
Returns the world-space corners of the intersection of the frustum with a plane parallel to the near/far plane at distance d from the apex, ordered as:
ComputeLookAtPoint()
Computes and returns the world-space look-at point from the eye point (position), view direction (rotation), and view distance.
ComputeNarrowedFrustum(windowPos, size)
Returns a frustum that is a narrowed-down version of this frustum.
ComputePickRay(windowPos)
Builds and returns a GfRay that can be used for picking at the given normalized (-1 to +1 in both dimensions) window position.
ComputeProjectionMatrix()
Returns a GL-style projection matrix corresponding to the frustum's projection.
ComputeUpVector()
Returns the normalized world-space up vector, which is computed by rotating the y axis by the frustum's rotation.
ComputeViewDirection()
Returns the normalized world-space view direction vector, which is computed by rotating the -z axis by the frustum's rotation.
ComputeViewFrame(side, up, view)
Computes the view frame defined by this frustum.
ComputeViewInverse()
Returns a matrix that represents the inverse viewing transformation for this frustum.
ComputeViewMatrix()
Returns a matrix that represents the viewing transformation for this frustum.
FitToSphere(center, radius, slack)
Modifies the frustum to tightly enclose a sphere with the given center and radius, using the current view direction.
GetFOV
Returns the horizontal fov of the frustum.
GetNearFar()
Returns the near/far interval.
GetOrthographic(left, right, bottom, top, ...)
Returns the current frustum in the format used by SetOrthographic() .
GetPerspective
Returns the current perspective frustum values suitable for use by SetPerspective.
GetPosition()
Returns the position of the frustum in world space.
GetProjectionType()
Returns the projection type.
GetReferencePlaneDepth
classmethod GetReferencePlaneDepth() -> float
GetRotation()
Returns the orientation of the frustum in world space as a rotation to apply to the -z axis.
GetViewDistance()
Returns the view distance.
GetWindow()
Returns the window rectangle in the reference plane.
Intersects(bbox)
Returns true if the given axis-aligned bbox is inside or intersecting the frustum.
IntersectsViewVolume
classmethod IntersectsViewVolume(bbox, vpMat) -> bool
SetNearFar(nearFar)
Sets the near/far interval.
SetOrthographic(left, right, bottom, top, ...)
Sets up the frustum in a manner similar to glOrtho() .
SetPerspective(fieldOfViewHeight, ...)
Sets up the frustum in a manner similar to gluPerspective() .
SetPosition(position)
Sets the position of the frustum in world space.
SetPositionAndRotationFromMatrix(camToWorldXf)
Sets the position and rotation of the frustum from a camera matrix (always from a y-Up camera).
SetProjectionType(projectionType)
Sets the projection type.
SetRotation(rotation)
Sets the orientation of the frustum in world space as a rotation to apply to the default frame: looking along the -z axis with the +y axis as"up".
SetViewDistance(viewDistance)
Sets the view distance.
SetWindow(window)
Sets the window rectangle in the reference plane that defines the left, right, top, and bottom planes of the frustum.
Transform(matrix)
Transforms the frustum by the given matrix.
Attributes:
Orthographic
Perspective
nearFar
position
projectionType
rotation
viewDistance
window
class ProjectionType
This enum is used to determine the type of projection represented by a
frustum.
Methods:
GetValueFromName
Attributes:
allValues
static GetValueFromName()
allValues = (Gf.Frustum.Orthographic, Gf.Frustum.Perspective)
ComputeAspectRatio() → float
Returns the aspect ratio of the frustum, defined as the width of the
window divided by the height.
If the height is zero or negative, this returns 0.
ComputeCorners() → list[Vec3d]
Returns the world-space corners of the frustum as a vector of 8
points, ordered as:
Left bottom near
Right bottom near
Left top near
Right top near
Left bottom far
Right bottom far
Left top far
Right top far
ComputeCornersAtDistance(d) → list[Vec3d]
Returns the world-space corners of the intersection of the frustum
with a plane parallel to the near/far plane at distance d from the
apex, ordered as:
Left bottom
Right bottom
Left top
Right top In particular, it gives the partial result of
ComputeCorners when given near or far distance.
Parameters
d (float) –
ComputeLookAtPoint() → Vec3d
Computes and returns the world-space look-at point from the eye point
(position), view direction (rotation), and view distance.
ComputeNarrowedFrustum(windowPos, size) → Frustum
Returns a frustum that is a narrowed-down version of this frustum.
The new frustum has the same near and far planes, but the other planes
are adjusted to be centered on windowPos with the new width and
height obtained from the existing width and height by multiplying by
size [0] and size [1], respectively. Finally, the new frustum
is clipped against this frustum so that it is completely contained in
the existing frustum.
windowPos is given in normalized coords (-1 to +1 in both
dimensions). size is given as a scalar (0 to 1 in both
dimensions).
If the windowPos or size given is outside these ranges, it may
result in returning a collapsed frustum.
This method is useful for computing a volume to use for interactive
picking.
Parameters
windowPos (Vec2d) –
size (Vec2d) –
ComputeNarrowedFrustum(worldPoint, size) -> Frustum
Returns a frustum that is a narrowed-down version of this frustum.
The new frustum has the same near and far planes, but the other planes
are adjusted to be centered on worldPoint with the new width and
height obtained from the existing width and height by multiplying by
size [0] and size [1], respectively. Finally, the new frustum
is clipped against this frustum so that it is completely contained in
the existing frustum.
worldPoint is given in world space coordinates. size is given
as a scalar (0 to 1 in both dimensions).
If the size given is outside this range, it may result in
returning a collapsed frustum.
If the worldPoint is at or behind the eye of the frustum, it will
return a frustum equal to this frustum.
This method is useful for computing a volume to use for interactive
picking.
Parameters
worldPoint (Vec3d) –
size (Vec2d) –
ComputePickRay(windowPos) → Ray
Builds and returns a GfRay that can be used for picking at the
given normalized (-1 to +1 in both dimensions) window position.
Contrasted with ComputeRay() , that method returns a ray whose origin
is the eyepoint, while this method returns a ray whose origin is on
the near plane.
Parameters
windowPos (Vec2d) –
ComputePickRay(worldSpacePos) -> Ray
Builds and returns a GfRay that can be used for picking that
connects the viewpoint to the given 3d point in worldspace.
Parameters
worldSpacePos (Vec3d) –
ComputeProjectionMatrix() → Matrix4d
Returns a GL-style projection matrix corresponding to the frustum’s
projection.
ComputeUpVector() → Vec3d
Returns the normalized world-space up vector, which is computed by
rotating the y axis by the frustum’s rotation.
ComputeViewDirection() → Vec3d
Returns the normalized world-space view direction vector, which is
computed by rotating the -z axis by the frustum’s rotation.
ComputeViewFrame(side, up, view) → None
Computes the view frame defined by this frustum.
The frame consists of the view direction, up vector and side vector,
as shown in this diagram.
up
^ ^
| /
| / view
|/
+- - - - > side
Parameters
side (Vec3d) –
up (Vec3d) –
view (Vec3d) –
ComputeViewInverse() → Matrix4d
Returns a matrix that represents the inverse viewing transformation
for this frustum.
That is, it returns the matrix that converts points from eye (frustum)
space to world space.
ComputeViewMatrix() → Matrix4d
Returns a matrix that represents the viewing transformation for this
frustum.
That is, it returns the matrix that converts points from world space
to eye (frustum) space.
FitToSphere(center, radius, slack) → None
Modifies the frustum to tightly enclose a sphere with the given center
and radius, using the current view direction.
The planes of the frustum are adjusted as necessary. The given amount
of slack is added to the sphere’s radius is used around the sphere to
avoid boundary problems.
Parameters
center (Vec3d) –
radius (float) –
slack (float) –
GetFOV()
Returns the horizontal fov of the frustum. The fov of the
frustum is not necessarily the same value as displayed in
the viewer. The displayed fov is a function of the focal
length or FOV avar. The frustum’s fov may be different due
to things like lens breathing.
If the frustum is not of type GfFrustum::Perspective, the
returned FOV will be 0.0.
GetNearFar() → Range1d
Returns the near/far interval.
GetOrthographic(left, right, bottom, top, nearPlane, farPlane) → bool
Returns the current frustum in the format used by
SetOrthographic() .
If the current frustum is not an orthographic projection, this returns
false and leaves the parameters untouched.
Parameters
left (float) –
right (float) –
bottom (float) –
top (float) –
nearPlane (float) –
farPlane (float) –
GetPerspective()
Returns the current perspective frustum values suitable
for use by SetPerspective. If the current frustum is a
perspective projection, the return value is a tuple of
fieldOfView, aspectRatio, nearDistance, farDistance).
If the current frustum is not perspective, the return
value is None.
GetPosition() → Vec3d
Returns the position of the frustum in world space.
GetProjectionType() → Frustum.ProjectionType
Returns the projection type.
static GetReferencePlaneDepth()
classmethod GetReferencePlaneDepth() -> float
Returns the depth of the reference plane.
GetRotation() → Rotation
Returns the orientation of the frustum in world space as a rotation to
apply to the -z axis.
GetViewDistance() → float
Returns the view distance.
GetWindow() → Range2d
Returns the window rectangle in the reference plane.
Intersects(bbox) → bool
Returns true if the given axis-aligned bbox is inside or intersecting
the frustum.
Otherwise, it returns false. Useful when doing picking or frustum
culling.
Parameters
bbox (BBox3d) –
Intersects(point) -> bool
Returns true if the given point is inside or intersecting the frustum.
Otherwise, it returns false.
Parameters
point (Vec3d) –
Intersects(p0, p1) -> bool
Returns true if the line segment formed by the given points is
inside or intersecting the frustum.
Otherwise, it returns false.
Parameters
p0 (Vec3d) –
p1 (Vec3d) –
Intersects(p0, p1, p2) -> bool
Returns true if the triangle formed by the given points is inside
or intersecting the frustum.
Otherwise, it returns false.
Parameters
p0 (Vec3d) –
p1 (Vec3d) –
p2 (Vec3d) –
static IntersectsViewVolume()
classmethod IntersectsViewVolume(bbox, vpMat) -> bool
Returns true if the bbox volume intersects the view volume given
by the view-projection matrix, erring on the side of false positives
for efficiency.
This method is intended for cases where a GfFrustum is not available
or when the view-projection matrix yields a view volume that is not
expressable as a GfFrustum.
Because it errs on the side of false positives, it is suitable for
early-out tests such as draw or intersection culling.
Parameters
bbox (BBox3d) –
vpMat (Matrix4d) –
SetNearFar(nearFar) → None
Sets the near/far interval.
Parameters
nearFar (Range1d) –
SetOrthographic(left, right, bottom, top, nearPlane, farPlane) → None
Sets up the frustum in a manner similar to glOrtho() .
Sets the projection to GfFrustum::Orthographic and sets the window
and near/far specifications based on the given values.
Parameters
left (float) –
right (float) –
bottom (float) –
top (float) –
nearPlane (float) –
farPlane (float) –
SetPerspective(fieldOfViewHeight, aspectRatio, nearDistance, farDistance) → None
Sets up the frustum in a manner similar to gluPerspective() .
It sets the projection type to GfFrustum::Perspective and sets the
window specification so that the resulting symmetric frustum encloses
an angle of fieldOfViewHeight degrees in the vertical direction,
with aspectRatio used to figure the angle in the horizontal
direction. The near and far distances are specified as well. The
window coordinates are computed as:
top = tan(fieldOfViewHeight / 2)
bottom = -top
right = top \* aspectRatio
left = -right
near = nearDistance
far = farDistance
Parameters
fieldOfViewHeight (float) –
aspectRatio (float) –
nearDistance (float) –
farDistance (float) –
SetPerspective(fieldOfView, isFovVertical, aspectRatio, nearDistance, farDistance) -> None
Sets up the frustum in a manner similar to gluPerspective().
It sets the projection type to GfFrustum::Perspective and sets the
window specification so that:
If isFovVertical is true, the resulting symmetric frustum encloses
an angle of fieldOfView degrees in the vertical direction, with
aspectRatio used to figure the angle in the horizontal direction.
If isFovVertical is false, the resulting symmetric frustum encloses
an angle of fieldOfView degrees in the horizontal direction, with
aspectRatio used to figure the angle in the vertical direction.
The near and far distances are specified as well. The window
coordinates are computed as follows:
if isFovVertical:
top = tan(fieldOfView / 2)
right = top * aspectRatio
if NOT isFovVertical:
right = tan(fieldOfView / 2)
top = right / aspectRation
bottom = -top
left = -right
near = nearDistance
far = farDistance
Parameters
fieldOfView (float) –
isFovVertical (bool) –
aspectRatio (float) –
nearDistance (float) –
farDistance (float) –
SetPosition(position) → None
Sets the position of the frustum in world space.
Parameters
position (Vec3d) –
SetPositionAndRotationFromMatrix(camToWorldXf) → None
Sets the position and rotation of the frustum from a camera matrix
(always from a y-Up camera).
The resulting frustum’s transform will always represent a right-handed
and orthonormal coordinate sytem (scale, shear, and projection are
removed from the given camToWorldXf ).
Parameters
camToWorldXf (Matrix4d) –
SetProjectionType(projectionType) → None
Sets the projection type.
Parameters
projectionType (Frustum.ProjectionType) –
SetRotation(rotation) → None
Sets the orientation of the frustum in world space as a rotation to
apply to the default frame: looking along the -z axis with the +y axis
as”up”.
Parameters
rotation (Rotation) –
SetViewDistance(viewDistance) → None
Sets the view distance.
Parameters
viewDistance (float) –
SetWindow(window) → None
Sets the window rectangle in the reference plane that defines the
left, right, top, and bottom planes of the frustum.
Parameters
window (Range2d) –
Transform(matrix) → Frustum
Transforms the frustum by the given matrix.
The transformation matrix is applied as follows: the position and the
direction vector are transformed with the given matrix. Then the
length of the new direction vector is used to rescale the near and far
plane and the view distance. Finally, the points that define the
reference plane are transformed by the matrix. This method assures
that the frustum will not be sheared or perspective-projected.
Note that this definition means that the transformed frustum does not
preserve scales very well. Do not use this function to transform a
frustum that is to be used for precise operations such as intersection
testing.
Parameters
matrix (Matrix4d) –
Orthographic = Gf.Frustum.Orthographic
Perspective = Gf.Frustum.Perspective
property nearFar
property position
property projectionType
property rotation
property viewDistance
property window
class pxr.Gf.Interval
Basic mathematical interval class
Methods:
Contains
Returns true if x is inside the interval.
GetFullInterval
classmethod GetFullInterval() -> Interval
GetMax
Get the maximum value.
GetMin
Get the minimum value.
GetSize
The width of the interval
In
Returns true if x is inside the interval.
Intersects(i)
Return true iff the given interval i intersects this interval.
IsEmpty
True if the interval is empty.
IsFinite()
Returns true if both the maximum and minimum value are finite.
IsMaxClosed()
Maximum boundary condition.
IsMaxFinite()
Returns true if the maximum value is finite.
IsMaxOpen()
Maximum boundary condition.
IsMinClosed()
Minimum boundary condition.
IsMinFinite()
Returns true if the minimum value is finite.
IsMinOpen()
Minimum boundary condition.
SetMax
Set the maximum value.
SetMin
Set the minimum value.
Attributes:
finite
isEmpty
True if the interval is empty.
max
The maximum value.
maxClosed
maxFinite
maxOpen
min
The minimum value.
minClosed
minFinite
minOpen
size
The width of the interval.
Contains()
Returns true if x is inside the interval.
Returns true if x is inside the interval.
static GetFullInterval()
classmethod GetFullInterval() -> Interval
Returns the full interval (-inf, inf).
GetMax()
Get the maximum value.
GetMin()
Get the minimum value.
GetSize()
The width of the interval
In()
Returns true if x is inside the interval.
Intersects(i) → bool
Return true iff the given interval i intersects this interval.
Parameters
i (Interval) –
IsEmpty()
True if the interval is empty.
IsFinite() → bool
Returns true if both the maximum and minimum value are finite.
IsMaxClosed() → bool
Maximum boundary condition.
IsMaxFinite() → bool
Returns true if the maximum value is finite.
IsMaxOpen() → bool
Maximum boundary condition.
IsMinClosed() → bool
Minimum boundary condition.
IsMinFinite() → bool
Returns true if the minimum value is finite.
IsMinOpen() → bool
Minimum boundary condition.
SetMax()
Set the maximum value.
Set the maximum value and boundary condition.
SetMin()
Set the minimum value.
Set the minimum value and boundary condition.
property finite
property isEmpty
True if the interval is empty.
property max
The maximum value.
property maxClosed
property maxFinite
property maxOpen
property min
The minimum value.
property minClosed
property minFinite
property minOpen
property size
The width of the interval.
class pxr.Gf.Line
Line class
Methods:
FindClosestPoint(point, t)
Returns the point on the line that is closest to point .
GetDirection()
Return the normalized direction of the line.
GetPoint(t)
Return the point on the line at ```` ( p0 + t * dir).
Set(p0, dir)
param p0
Attributes:
direction
FindClosestPoint(point, t) → Vec3d
Returns the point on the line that is closest to point .
If t is not None , it will be set to the parametric distance
along the line of the returned point.
Parameters
point (Vec3d) –
t (float) –
GetDirection() → Vec3d
Return the normalized direction of the line.
GetPoint(t) → Vec3d
Return the point on the line at ```` ( p0 + t * dir).
Remember dir has been normalized so t represents a unit distance.
Parameters
t (float) –
Set(p0, dir) → float
Parameters
p0 (Vec3d) –
dir (Vec3d) –
property direction
class pxr.Gf.LineSeg
Line segment class
Methods:
FindClosestPoint(point, t)
Returns the point on the line that is closest to point .
GetDirection()
Return the normalized direction of the line.
GetLength()
Return the length of the line.
GetPoint(t)
Return the point on the segment specified by the parameter t.
Attributes:
direction
length
FindClosestPoint(point, t) → Vec3d
Returns the point on the line that is closest to point .
If t is not None , it will be set to the parametric distance
along the line of the closest point.
Parameters
point (Vec3d) –
t (float) –
GetDirection() → Vec3d
Return the normalized direction of the line.
GetLength() → float
Return the length of the line.
GetPoint(t) → Vec3d
Return the point on the segment specified by the parameter t.
p = p0 + t * (p1 - p0)
Parameters
t (float) –
property direction
property length
class pxr.Gf.Matrix2d
Methods:
GetColumn(i)
Gets a column of the matrix as a Vec2.
GetDeterminant()
Returns the determinant of the matrix.
GetInverse(det, eps)
Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular.
GetRow(i)
Gets a row of the matrix as a Vec2.
GetTranspose()
Returns the transpose of the matrix.
Set(m00, m01, m10, m11)
Sets the matrix from 4 independent double values, specified in row-major order.
SetColumn(i, v)
Sets a column of the matrix from a Vec2.
SetDiagonal(s)
Sets the matrix to s times the identity matrix.
SetIdentity()
Sets the matrix to the identity matrix.
SetRow(i, v)
Sets a row of the matrix from a Vec2.
SetZero()
Sets the matrix to zero.
Attributes:
dimension
GetColumn(i) → Vec2d
Gets a column of the matrix as a Vec2.
Parameters
i (int) –
GetDeterminant() → float
Returns the determinant of the matrix.
GetInverse(det, eps) → Matrix2d
Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the
matrix is singular.
(FLT_MAX is the largest value a float can have, as defined by the
system.) The matrix is considered singular if the determinant is less
than or equal to the optional parameter eps. If det is non-null,
\*det is set to the determinant.
Parameters
det (float) –
eps (float) –
GetRow(i) → Vec2d
Gets a row of the matrix as a Vec2.
Parameters
i (int) –
GetTranspose() → Matrix2d
Returns the transpose of the matrix.
Set(m00, m01, m10, m11) → Matrix2d
Sets the matrix from 4 independent double values, specified in
row-major order.
For example, parameter m10 specifies the value in row 1 and column
0.
Parameters
m00 (float) –
m01 (float) –
m10 (float) –
m11 (float) –
Set(m) -> Matrix2d
Sets the matrix from a 2x2 array of double values, specified in
row-major order.
Parameters
m (float) –
SetColumn(i, v) → None
Sets a column of the matrix from a Vec2.
Parameters
i (int) –
v (Vec2d) –
SetDiagonal(s) → Matrix2d
Sets the matrix to s times the identity matrix.
Parameters
s (float) –
SetDiagonal(arg1) -> Matrix2d
Sets the matrix to have diagonal ( v[0], v[1] ).
Parameters
arg1 (Vec2d) –
SetIdentity() → Matrix2d
Sets the matrix to the identity matrix.
SetRow(i, v) → None
Sets a row of the matrix from a Vec2.
Parameters
i (int) –
v (Vec2d) –
SetZero() → Matrix2d
Sets the matrix to zero.
dimension = (2, 2)
class pxr.Gf.Matrix2f
Methods:
GetColumn(i)
Gets a column of the matrix as a Vec2.
GetDeterminant()
Returns the determinant of the matrix.
GetInverse(det, eps)
Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular.
GetRow(i)
Gets a row of the matrix as a Vec2.
GetTranspose()
Returns the transpose of the matrix.
Set(m00, m01, m10, m11)
Sets the matrix from 4 independent float values, specified in row- major order.
SetColumn(i, v)
Sets a column of the matrix from a Vec2.
SetDiagonal(s)
Sets the matrix to s times the identity matrix.
SetIdentity()
Sets the matrix to the identity matrix.
SetRow(i, v)
Sets a row of the matrix from a Vec2.
SetZero()
Sets the matrix to zero.
Attributes:
dimension
GetColumn(i) → Vec2f
Gets a column of the matrix as a Vec2.
Parameters
i (int) –
GetDeterminant() → float
Returns the determinant of the matrix.
GetInverse(det, eps) → Matrix2f
Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the
matrix is singular.
(FLT_MAX is the largest value a float can have, as defined by the
system.) The matrix is considered singular if the determinant is less
than or equal to the optional parameter eps. If det is non-null,
\*det is set to the determinant.
Parameters
det (float) –
eps (float) –
GetRow(i) → Vec2f
Gets a row of the matrix as a Vec2.
Parameters
i (int) –
GetTranspose() → Matrix2f
Returns the transpose of the matrix.
Set(m00, m01, m10, m11) → Matrix2f
Sets the matrix from 4 independent float values, specified in row-
major order.
For example, parameter m10 specifies the value in row 1 and column
0.
Parameters
m00 (float) –
m01 (float) –
m10 (float) –
m11 (float) –
Set(m) -> Matrix2f
Sets the matrix from a 2x2 array of float values, specified in
row-major order.
Parameters
m (float) –
SetColumn(i, v) → None
Sets a column of the matrix from a Vec2.
Parameters
i (int) –
v (Vec2f) –
SetDiagonal(s) → Matrix2f
Sets the matrix to s times the identity matrix.
Parameters
s (float) –
SetDiagonal(arg1) -> Matrix2f
Sets the matrix to have diagonal ( v[0], v[1] ).
Parameters
arg1 (Vec2f) –
SetIdentity() → Matrix2f
Sets the matrix to the identity matrix.
SetRow(i, v) → None
Sets a row of the matrix from a Vec2.
Parameters
i (int) –
v (Vec2f) –
SetZero() → Matrix2f
Sets the matrix to zero.
dimension = (2, 2)
class pxr.Gf.Matrix3d
Methods:
ExtractRotation()
Returns the rotation corresponding to this matrix.
GetColumn(i)
Gets a column of the matrix as a Vec3.
GetDeterminant()
Returns the determinant of the matrix.
GetHandedness()
Returns the sign of the determinant of the matrix, i.e.
GetInverse(det, eps)
Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular.
GetOrthonormalized(issueWarning)
Returns an orthonormalized copy of the matrix.
GetRow(i)
Gets a row of the matrix as a Vec3.
GetTranspose()
Returns the transpose of the matrix.
IsLeftHanded()
Returns true if the vectors in matrix form a left-handed coordinate system.
IsRightHanded()
Returns true if the vectors in the matrix form a right-handed coordinate system.
Orthonormalize(issueWarning)
Makes the matrix orthonormal in place.
Set(m00, m01, m02, m10, m11, m12, m20, m21, m22)
Sets the matrix from 9 independent double values, specified in row-major order.
SetColumn(i, v)
Sets a column of the matrix from a Vec3.
SetDiagonal(s)
Sets the matrix to s times the identity matrix.
SetIdentity()
Sets the matrix to the identity matrix.
SetRotate(rot)
Sets the matrix to specify a rotation equivalent to rot.
SetRow(i, v)
Sets a row of the matrix from a Vec3.
SetScale(scaleFactors)
Sets the matrix to specify a nonuniform scaling in x, y, and z by the factors in vector scaleFactors.
SetZero()
Sets the matrix to zero.
Attributes:
dimension
ExtractRotation() → Rotation
Returns the rotation corresponding to this matrix.
This works well only if the matrix represents a rotation.
For good results, consider calling Orthonormalize() before calling
this method.
GetColumn(i) → Vec3d
Gets a column of the matrix as a Vec3.
Parameters
i (int) –
GetDeterminant() → float
Returns the determinant of the matrix.
GetHandedness() → float
Returns the sign of the determinant of the matrix, i.e.
1 for a right-handed matrix, -1 for a left-handed matrix, and 0 for a
singular matrix.
GetInverse(det, eps) → Matrix3d
Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the
matrix is singular.
(FLT_MAX is the largest value a float can have, as defined by the
system.) The matrix is considered singular if the determinant is less
than or equal to the optional parameter eps. If det is non-null,
\*det is set to the determinant.
Parameters
det (float) –
eps (float) –
GetOrthonormalized(issueWarning) → Matrix3d
Returns an orthonormalized copy of the matrix.
Parameters
issueWarning (bool) –
GetRow(i) → Vec3d
Gets a row of the matrix as a Vec3.
Parameters
i (int) –
GetTranspose() → Matrix3d
Returns the transpose of the matrix.
IsLeftHanded() → bool
Returns true if the vectors in matrix form a left-handed coordinate
system.
IsRightHanded() → bool
Returns true if the vectors in the matrix form a right-handed
coordinate system.
Orthonormalize(issueWarning) → bool
Makes the matrix orthonormal in place.
This is an iterative method that is much more stable than the previous
cross/cross method. If the iterative method does not converge, a
warning is issued.
Returns true if the iteration converged, false otherwise. Leaves any
translation part of the matrix unchanged. If issueWarning is true,
this method will issue a warning if the iteration does not converge,
otherwise it will be silent.
Parameters
issueWarning (bool) –
Set(m00, m01, m02, m10, m11, m12, m20, m21, m22) → Matrix3d
Sets the matrix from 9 independent double values, specified in
row-major order.
For example, parameter m10 specifies the value in row 1 and column
0.
Parameters
m00 (float) –
m01 (float) –
m02 (float) –
m10 (float) –
m11 (float) –
m12 (float) –
m20 (float) –
m21 (float) –
m22 (float) –
Set(m) -> Matrix3d
Sets the matrix from a 3x3 array of double values, specified in
row-major order.
Parameters
m (float) –
SetColumn(i, v) → None
Sets a column of the matrix from a Vec3.
Parameters
i (int) –
v (Vec3d) –
SetDiagonal(s) → Matrix3d
Sets the matrix to s times the identity matrix.
Parameters
s (float) –
SetDiagonal(arg1) -> Matrix3d
Sets the matrix to have diagonal ( v[0], v[1], v[2] ).
Parameters
arg1 (Vec3d) –
SetIdentity() → Matrix3d
Sets the matrix to the identity matrix.
SetRotate(rot) → Matrix3d
Sets the matrix to specify a rotation equivalent to rot.
Parameters
rot (Quatd) –
SetRotate(rot) -> Matrix3d
Sets the matrix to specify a rotation equivalent to rot.
Parameters
rot (Rotation) –
SetRow(i, v) → None
Sets a row of the matrix from a Vec3.
Parameters
i (int) –
v (Vec3d) –
SetScale(scaleFactors) → Matrix3d
Sets the matrix to specify a nonuniform scaling in x, y, and z by the
factors in vector scaleFactors.
Parameters
scaleFactors (Vec3d) –
SetScale(scaleFactor) -> Matrix3d
Sets matrix to specify a uniform scaling by scaleFactor.
Parameters
scaleFactor (float) –
SetZero() → Matrix3d
Sets the matrix to zero.
dimension = (3, 3)
class pxr.Gf.Matrix3f
Methods:
ExtractRotation()
Returns the rotation corresponding to this matrix.
GetColumn(i)
Gets a column of the matrix as a Vec3.
GetDeterminant()
Returns the determinant of the matrix.
GetHandedness()
Returns the sign of the determinant of the matrix, i.e.
GetInverse(det, eps)
Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular.
GetOrthonormalized(issueWarning)
Returns an orthonormalized copy of the matrix.
GetRow(i)
Gets a row of the matrix as a Vec3.
GetTranspose()
Returns the transpose of the matrix.
IsLeftHanded()
Returns true if the vectors in matrix form a left-handed coordinate system.
IsRightHanded()
Returns true if the vectors in the matrix form a right-handed coordinate system.
Orthonormalize(issueWarning)
Makes the matrix orthonormal in place.
Set(m00, m01, m02, m10, m11, m12, m20, m21, m22)
Sets the matrix from 9 independent float values, specified in row- major order.
SetColumn(i, v)
Sets a column of the matrix from a Vec3.
SetDiagonal(s)
Sets the matrix to s times the identity matrix.
SetIdentity()
Sets the matrix to the identity matrix.
SetRotate(rot)
Sets the matrix to specify a rotation equivalent to rot.
SetRow(i, v)
Sets a row of the matrix from a Vec3.
SetScale(scaleFactors)
Sets the matrix to specify a nonuniform scaling in x, y, and z by the factors in vector scaleFactors.
SetZero()
Sets the matrix to zero.
Attributes:
dimension
ExtractRotation() → Rotation
Returns the rotation corresponding to this matrix.
This works well only if the matrix represents a rotation.
For good results, consider calling Orthonormalize() before calling
this method.
GetColumn(i) → Vec3f
Gets a column of the matrix as a Vec3.
Parameters
i (int) –
GetDeterminant() → float
Returns the determinant of the matrix.
GetHandedness() → float
Returns the sign of the determinant of the matrix, i.e.
1 for a right-handed matrix, -1 for a left-handed matrix, and 0 for a
singular matrix.
GetInverse(det, eps) → Matrix3f
Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the
matrix is singular.
(FLT_MAX is the largest value a float can have, as defined by the
system.) The matrix is considered singular if the determinant is less
than or equal to the optional parameter eps. If det is non-null,
\*det is set to the determinant.
Parameters
det (float) –
eps (float) –
GetOrthonormalized(issueWarning) → Matrix3f
Returns an orthonormalized copy of the matrix.
Parameters
issueWarning (bool) –
GetRow(i) → Vec3f
Gets a row of the matrix as a Vec3.
Parameters
i (int) –
GetTranspose() → Matrix3f
Returns the transpose of the matrix.
IsLeftHanded() → bool
Returns true if the vectors in matrix form a left-handed coordinate
system.
IsRightHanded() → bool
Returns true if the vectors in the matrix form a right-handed
coordinate system.
Orthonormalize(issueWarning) → bool
Makes the matrix orthonormal in place.
This is an iterative method that is much more stable than the previous
cross/cross method. If the iterative method does not converge, a
warning is issued.
Returns true if the iteration converged, false otherwise. Leaves any
translation part of the matrix unchanged. If issueWarning is true,
this method will issue a warning if the iteration does not converge,
otherwise it will be silent.
Parameters
issueWarning (bool) –
Set(m00, m01, m02, m10, m11, m12, m20, m21, m22) → Matrix3f
Sets the matrix from 9 independent float values, specified in row-
major order.
For example, parameter m10 specifies the value in row 1 and column
0.
Parameters
m00 (float) –
m01 (float) –
m02 (float) –
m10 (float) –
m11 (float) –
m12 (float) –
m20 (float) –
m21 (float) –
m22 (float) –
Set(m) -> Matrix3f
Sets the matrix from a 3x3 array of float values, specified in
row-major order.
Parameters
m (float) –
SetColumn(i, v) → None
Sets a column of the matrix from a Vec3.
Parameters
i (int) –
v (Vec3f) –
SetDiagonal(s) → Matrix3f
Sets the matrix to s times the identity matrix.
Parameters
s (float) –
SetDiagonal(arg1) -> Matrix3f
Sets the matrix to have diagonal ( v[0], v[1], v[2] ).
Parameters
arg1 (Vec3f) –
SetIdentity() → Matrix3f
Sets the matrix to the identity matrix.
SetRotate(rot) → Matrix3f
Sets the matrix to specify a rotation equivalent to rot.
Parameters
rot (Quatf) –
SetRotate(rot) -> Matrix3f
Sets the matrix to specify a rotation equivalent to rot.
Parameters
rot (Rotation) –
SetRow(i, v) → None
Sets a row of the matrix from a Vec3.
Parameters
i (int) –
v (Vec3f) –
SetScale(scaleFactors) → Matrix3f
Sets the matrix to specify a nonuniform scaling in x, y, and z by the
factors in vector scaleFactors.
Parameters
scaleFactors (Vec3f) –
SetScale(scaleFactor) -> Matrix3f
Sets matrix to specify a uniform scaling by scaleFactor.
Parameters
scaleFactor (float) –
SetZero() → Matrix3f
Sets the matrix to zero.
dimension = (3, 3)
class pxr.Gf.Matrix4d
Methods:
ExtractRotation()
Returns the rotation corresponding to this matrix.
ExtractRotationMatrix()
Returns the rotation corresponding to this matrix.
ExtractRotationQuat()
Return the rotation corresponding to this matrix as a quaternion.
ExtractTranslation()
Returns the translation part of the matrix, defined as the first three elements of the last row.
Factor(r, s, u, t, p, eps)
Factors the matrix into 5 components:
GetColumn(i)
Gets a column of the matrix as a Vec4.
GetDeterminant()
Returns the determinant of the matrix.
GetDeterminant3()
Returns the determinant of the upper 3x3 matrix.
GetHandedness()
Returns the sign of the determinant of the upper 3x3 matrix, i.e.
GetInverse(det, eps)
Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular.
GetOrthonormalized(issueWarning)
Returns an orthonormalized copy of the matrix.
GetRow(i)
Gets a row of the matrix as a Vec4.
GetRow3(i)
Gets a row of the matrix as a Vec3.
GetTranspose()
Returns the transpose of the matrix.
HasOrthogonalRows3()
Returns true, if the row vectors of the upper 3x3 matrix form an orthogonal basis.
IsLeftHanded()
Returns true if the vectors in the upper 3x3 matrix form a left-handed coordinate system.
IsRightHanded()
Returns true if the vectors in the upper 3x3 matrix form a right- handed coordinate system.
Orthonormalize(issueWarning)
Makes the matrix orthonormal in place.
RemoveScaleShear()
Returns the matrix with any scaling or shearing removed, leaving only the rotation and translation.
Set(m00, m01, m02, m03, m10, m11, m12, m13, ...)
Sets the matrix from 16 independent double values, specified in row-major order.
SetColumn(i, v)
Sets a column of the matrix from a Vec4.
SetDiagonal(s)
Sets the matrix to s times the identity matrix.
SetIdentity()
Sets the matrix to the identity matrix.
SetLookAt(eyePoint, centerPoint, upDirection)
Sets the matrix to specify a viewing matrix from parameters similar to those used by gluLookAt(3G) .
SetRotate(rot)
Sets the matrix to specify a rotation equivalent to rot, and clears the translation.
SetRotateOnly(rot)
Sets the matrix to specify a rotation equivalent to rot, without clearing the translation.
SetRow(i, v)
Sets a row of the matrix from a Vec4.
SetRow3(i, v)
Sets a row of the matrix from a Vec3.
SetScale(scaleFactors)
Sets the matrix to specify a nonuniform scaling in x, y, and z by the factors in vector scaleFactors.
SetTransform(rotate, translate)
Sets matrix to specify a rotation by rotate and a translation by translate.
SetTranslate(trans)
Sets matrix to specify a translation by the vector trans, and clears the rotation.
SetTranslateOnly(t)
Sets matrix to specify a translation by the vector trans, without clearing the rotation.
SetZero()
Sets the matrix to zero.
Transform(vec)
Transforms the row vector vec by the matrix, returning the result.
TransformAffine(vec)
Transforms the row vector vec by the matrix, returning the result.
TransformDir(vec)
Transforms row vector vec by the matrix, returning the result.
Attributes:
dimension
ExtractRotation() → Rotation
Returns the rotation corresponding to this matrix.
This works well only if the matrix represents a rotation.
For good results, consider calling Orthonormalize() before calling
this method.
ExtractRotationMatrix() → Matrix3d
Returns the rotation corresponding to this matrix.
This works well only if the matrix represents a rotation.
For good results, consider calling Orthonormalize() before calling
this method.
ExtractRotationQuat() → Quatd
Return the rotation corresponding to this matrix as a quaternion.
This works well only if the matrix represents a rotation.
For good results, consider calling Orthonormalize() before calling
this method.
ExtractTranslation() → Vec3d
Returns the translation part of the matrix, defined as the first three
elements of the last row.
Factor(r, s, u, t, p, eps) → bool
Factors the matrix into 5 components:
*M* = r \* s \* -r \* u \* t where
t is a translation.
u and r are rotations, and -r is the transpose (inverse) of
r. The u matrix may contain shear information.
s is a scale. Any projection information could be returned in
matrix p, but currently p is never modified.
Returns false if the matrix is singular (as determined by eps).
In that case, any zero scales in s are clamped to eps to allow
computation of u.
Parameters
r (Matrix4d) –
s (Vec3d) –
u (Matrix4d) –
t (Vec3d) –
p (Matrix4d) –
eps (float) –
GetColumn(i) → Vec4d
Gets a column of the matrix as a Vec4.
Parameters
i (int) –
GetDeterminant() → float
Returns the determinant of the matrix.
GetDeterminant3() → float
Returns the determinant of the upper 3x3 matrix.
This method is useful when the matrix describes a linear
transformation such as a rotation or scale because the other values in
the 4x4 matrix are not important.
GetHandedness() → float
Returns the sign of the determinant of the upper 3x3 matrix, i.e.
1 for a right-handed matrix, -1 for a left-handed matrix, and 0 for a
singular matrix.
GetInverse(det, eps) → Matrix4d
Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the
matrix is singular.
(FLT_MAX is the largest value a float can have, as defined by the
system.) The matrix is considered singular if the determinant is less
than or equal to the optional parameter eps. If det is non-null,
\*det is set to the determinant.
Parameters
det (float) –
eps (float) –
GetOrthonormalized(issueWarning) → Matrix4d
Returns an orthonormalized copy of the matrix.
Parameters
issueWarning (bool) –
GetRow(i) → Vec4d
Gets a row of the matrix as a Vec4.
Parameters
i (int) –
GetRow3(i) → Vec3d
Gets a row of the matrix as a Vec3.
Parameters
i (int) –
GetTranspose() → Matrix4d
Returns the transpose of the matrix.
HasOrthogonalRows3() → bool
Returns true, if the row vectors of the upper 3x3 matrix form an
orthogonal basis.
Note they do not have to be unit length for this test to return true.
IsLeftHanded() → bool
Returns true if the vectors in the upper 3x3 matrix form a left-handed
coordinate system.
IsRightHanded() → bool
Returns true if the vectors in the upper 3x3 matrix form a right-
handed coordinate system.
Orthonormalize(issueWarning) → bool
Makes the matrix orthonormal in place.
This is an iterative method that is much more stable than the previous
cross/cross method. If the iterative method does not converge, a
warning is issued.
Returns true if the iteration converged, false otherwise. Leaves any
translation part of the matrix unchanged. If issueWarning is true,
this method will issue a warning if the iteration does not converge,
otherwise it will be silent.
Parameters
issueWarning (bool) –
RemoveScaleShear() → Matrix4d
Returns the matrix with any scaling or shearing removed, leaving only
the rotation and translation.
If the matrix cannot be decomposed, returns the original matrix.
Set(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) → Matrix4d
Sets the matrix from 16 independent double values, specified in
row-major order.
For example, parameter m10 specifies the value in row 1 and column
0.
Parameters
m00 (float) –
m01 (float) –
m02 (float) –
m03 (float) –
m10 (float) –
m11 (float) –
m12 (float) –
m13 (float) –
m20 (float) –
m21 (float) –
m22 (float) –
m23 (float) –
m30 (float) –
m31 (float) –
m32 (float) –
m33 (float) –
Set(m) -> Matrix4d
Sets the matrix from a 4x4 array of double values, specified in
row-major order.
Parameters
m (float) –
SetColumn(i, v) → None
Sets a column of the matrix from a Vec4.
Parameters
i (int) –
v (Vec4d) –
SetDiagonal(s) → Matrix4d
Sets the matrix to s times the identity matrix.
Parameters
s (float) –
SetDiagonal(arg1) -> Matrix4d
Sets the matrix to have diagonal ( v[0], v[1], v[2], v[3] ).
Parameters
arg1 (Vec4d) –
SetIdentity() → Matrix4d
Sets the matrix to the identity matrix.
SetLookAt(eyePoint, centerPoint, upDirection) → Matrix4d
Sets the matrix to specify a viewing matrix from parameters similar to
those used by gluLookAt(3G) .
eyePoint represents the eye point in world space. centerPoint
represents the world-space center of attention. upDirection is a
vector indicating which way is up.
Parameters
eyePoint (Vec3d) –
centerPoint (Vec3d) –
upDirection (Vec3d) –
SetLookAt(eyePoint, orientation) -> Matrix4d
Sets the matrix to specify a viewing matrix from a world-space
eyePoint and a world-space rotation that rigidly rotates the
orientation from its canonical frame, which is defined to be looking
along the -z axis with the +y axis as the up direction.
Parameters
eyePoint (Vec3d) –
orientation (Rotation) –
SetRotate(rot) → Matrix4d
Sets the matrix to specify a rotation equivalent to rot, and clears
the translation.
Parameters
rot (Quatd) –
SetRotate(rot) -> Matrix4d
Sets the matrix to specify a rotation equivalent to rot, and clears
the translation.
Parameters
rot (Rotation) –
SetRotate(mx) -> Matrix4d
Sets the matrix to specify a rotation equivalent to mx, and clears
the translation.
Parameters
mx (Matrix3d) –
SetRotateOnly(rot) → Matrix4d
Sets the matrix to specify a rotation equivalent to rot, without
clearing the translation.
Parameters
rot (Quatd) –
SetRotateOnly(rot) -> Matrix4d
Sets the matrix to specify a rotation equivalent to rot, without
clearing the translation.
Parameters
rot (Rotation) –
SetRotateOnly(mx) -> Matrix4d
Sets the matrix to specify a rotation equivalent to mx, without
clearing the translation.
Parameters
mx (Matrix3d) –
SetRow(i, v) → None
Sets a row of the matrix from a Vec4.
Parameters
i (int) –
v (Vec4d) –
SetRow3(i, v) → None
Sets a row of the matrix from a Vec3.
The fourth element of the row is ignored.
Parameters
i (int) –
v (Vec3d) –
SetScale(scaleFactors) → Matrix4d
Sets the matrix to specify a nonuniform scaling in x, y, and z by the
factors in vector scaleFactors.
Parameters
scaleFactors (Vec3d) –
SetScale(scaleFactor) -> Matrix4d
Sets matrix to specify a uniform scaling by scaleFactor.
Parameters
scaleFactor (float) –
SetTransform(rotate, translate) → Matrix4d
Sets matrix to specify a rotation by rotate and a translation by
translate.
Parameters
rotate (Rotation) –
translate (Vec3d) –
SetTransform(rotmx, translate) -> Matrix4d
Sets matrix to specify a rotation by rotmx and a translation by
translate.
Parameters
rotmx (Matrix3d) –
translate (Vec3d) –
SetTranslate(trans) → Matrix4d
Sets matrix to specify a translation by the vector trans, and clears
the rotation.
Parameters
trans (Vec3d) –
SetTranslateOnly(t) → Matrix4d
Sets matrix to specify a translation by the vector trans, without
clearing the rotation.
Parameters
t (Vec3d) –
SetZero() → Matrix4d
Sets the matrix to zero.
Transform(vec) → Vec3d
Transforms the row vector vec by the matrix, returning the result.
This treats the vector as a 4-component vector whose fourth component
is 1.
Parameters
vec (Vec3d) –
Transform(vec) -> Vec3f
Transforms the row vector vec by the matrix, returning the result.
This treats the vector as a 4-component vector whose fourth component
is 1. This is an overloaded method; it differs from the other version
in that it returns a different value type.
Parameters
vec (Vec3f) –
TransformAffine(vec) → Vec3d
Transforms the row vector vec by the matrix, returning the result.
This treats the vector as a 4-component vector whose fourth component
is 1 and ignores the fourth column of the matrix (i.e. assumes it is
(0, 0, 0, 1)).
Parameters
vec (Vec3d) –
TransformAffine(vec) -> Vec3f
Transforms the row vector vec by the matrix, returning the result.
This treats the vector as a 4-component vector whose fourth component
is 1 and ignores the fourth column of the matrix (i.e. assumes it is
(0, 0, 0, 1)).
Parameters
vec (Vec3f) –
TransformDir(vec) → Vec3d
Transforms row vector vec by the matrix, returning the result.
This treats the vector as a direction vector, so the translation
information in the matrix is ignored. That is, it treats the vector as
a 4-component vector whose fourth component is 0.
Parameters
vec (Vec3d) –
TransformDir(vec) -> Vec3f
Transforms row vector vec by the matrix, returning the result.
This treats the vector as a direction vector, so the translation
information in the matrix is ignored. That is, it treats the vector as
a 4-component vector whose fourth component is 0. This is an
overloaded method; it differs from the other version in that it
returns a different value type.
Parameters
vec (Vec3f) –
dimension = (4, 4)
class pxr.Gf.Matrix4f
Methods:
ExtractRotation()
Returns the rotation corresponding to this matrix.
ExtractRotationMatrix()
Returns the rotation corresponding to this matrix.
ExtractRotationQuat()
Return the rotation corresponding to this matrix as a quaternion.
ExtractTranslation()
Returns the translation part of the matrix, defined as the first three elements of the last row.
Factor(r, s, u, t, p, eps)
Factors the matrix into 5 components:
GetColumn(i)
Gets a column of the matrix as a Vec4.
GetDeterminant()
Returns the determinant of the matrix.
GetDeterminant3()
Returns the determinant of the upper 3x3 matrix.
GetHandedness()
Returns the sign of the determinant of the upper 3x3 matrix, i.e.
GetInverse(det, eps)
Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular.
GetOrthonormalized(issueWarning)
Returns an orthonormalized copy of the matrix.
GetRow(i)
Gets a row of the matrix as a Vec4.
GetRow3(i)
Gets a row of the matrix as a Vec3.
GetTranspose()
Returns the transpose of the matrix.
HasOrthogonalRows3()
Returns true, if the row vectors of the upper 3x3 matrix form an orthogonal basis.
IsLeftHanded()
Returns true if the vectors in the upper 3x3 matrix form a left-handed coordinate system.
IsRightHanded()
Returns true if the vectors in the upper 3x3 matrix form a right- handed coordinate system.
Orthonormalize(issueWarning)
Makes the matrix orthonormal in place.
RemoveScaleShear()
Returns the matrix with any scaling or shearing removed, leaving only the rotation and translation.
Set(m00, m01, m02, m03, m10, m11, m12, m13, ...)
Sets the matrix from 16 independent float values, specified in row-major order.
SetColumn(i, v)
Sets a column of the matrix from a Vec4.
SetDiagonal(s)
Sets the matrix to s times the identity matrix.
SetIdentity()
Sets the matrix to the identity matrix.
SetLookAt(eyePoint, centerPoint, upDirection)
Sets the matrix to specify a viewing matrix from parameters similar to those used by gluLookAt(3G) .
SetRotate(rot)
Sets the matrix to specify a rotation equivalent to rot, and clears the translation.
SetRotateOnly(rot)
Sets the matrix to specify a rotation equivalent to rot, without clearing the translation.
SetRow(i, v)
Sets a row of the matrix from a Vec4.
SetRow3(i, v)
Sets a row of the matrix from a Vec3.
SetScale(scaleFactors)
Sets the matrix to specify a nonuniform scaling in x, y, and z by the factors in vector scaleFactors.
SetTransform(rotate, translate)
Sets matrix to specify a rotation by rotate and a translation by translate.
SetTranslate(trans)
Sets matrix to specify a translation by the vector trans, and clears the rotation.
SetTranslateOnly(t)
Sets matrix to specify a translation by the vector trans, without clearing the rotation.
SetZero()
Sets the matrix to zero.
Transform(vec)
Transforms the row vector vec by the matrix, returning the result.
TransformAffine(vec)
Transforms the row vector vec by the matrix, returning the result.
TransformDir(vec)
Transforms row vector vec by the matrix, returning the result.
Attributes:
dimension
ExtractRotation() → Rotation
Returns the rotation corresponding to this matrix.
This works well only if the matrix represents a rotation.
For good results, consider calling Orthonormalize() before calling
this method.
ExtractRotationMatrix() → Matrix3f
Returns the rotation corresponding to this matrix.
This works well only if the matrix represents a rotation.
For good results, consider calling Orthonormalize() before calling
this method.
ExtractRotationQuat() → Quatf
Return the rotation corresponding to this matrix as a quaternion.
This works well only if the matrix represents a rotation.
For good results, consider calling Orthonormalize() before calling
this method.
ExtractTranslation() → Vec3f
Returns the translation part of the matrix, defined as the first three
elements of the last row.
Factor(r, s, u, t, p, eps) → bool
Factors the matrix into 5 components:
*M* = r \* s \* -r \* u \* t where
t is a translation.
u and r are rotations, and -r is the transpose (inverse) of
r. The u matrix may contain shear information.
s is a scale. Any projection information could be returned in
matrix p, but currently p is never modified.
Returns false if the matrix is singular (as determined by eps).
In that case, any zero scales in s are clamped to eps to allow
computation of u.
Parameters
r (Matrix4f) –
s (Vec3f) –
u (Matrix4f) –
t (Vec3f) –
p (Matrix4f) –
eps (float) –
GetColumn(i) → Vec4f
Gets a column of the matrix as a Vec4.
Parameters
i (int) –
GetDeterminant() → float
Returns the determinant of the matrix.
GetDeterminant3() → float
Returns the determinant of the upper 3x3 matrix.
This method is useful when the matrix describes a linear
transformation such as a rotation or scale because the other values in
the 4x4 matrix are not important.
GetHandedness() → float
Returns the sign of the determinant of the upper 3x3 matrix, i.e.
1 for a right-handed matrix, -1 for a left-handed matrix, and 0 for a
singular matrix.
GetInverse(det, eps) → Matrix4f
Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the
matrix is singular.
(FLT_MAX is the largest value a float can have, as defined by the
system.) The matrix is considered singular if the determinant is less
than or equal to the optional parameter eps. If det is non-null,
\*det is set to the determinant.
Parameters
det (float) –
eps (float) –
GetOrthonormalized(issueWarning) → Matrix4f
Returns an orthonormalized copy of the matrix.
Parameters
issueWarning (bool) –
GetRow(i) → Vec4f
Gets a row of the matrix as a Vec4.
Parameters
i (int) –
GetRow3(i) → Vec3f
Gets a row of the matrix as a Vec3.
Parameters
i (int) –
GetTranspose() → Matrix4f
Returns the transpose of the matrix.
HasOrthogonalRows3() → bool
Returns true, if the row vectors of the upper 3x3 matrix form an
orthogonal basis.
Note they do not have to be unit length for this test to return true.
IsLeftHanded() → bool
Returns true if the vectors in the upper 3x3 matrix form a left-handed
coordinate system.
IsRightHanded() → bool
Returns true if the vectors in the upper 3x3 matrix form a right-
handed coordinate system.
Orthonormalize(issueWarning) → bool
Makes the matrix orthonormal in place.
This is an iterative method that is much more stable than the previous
cross/cross method. If the iterative method does not converge, a
warning is issued.
Returns true if the iteration converged, false otherwise. Leaves any
translation part of the matrix unchanged. If issueWarning is true,
this method will issue a warning if the iteration does not converge,
otherwise it will be silent.
Parameters
issueWarning (bool) –
RemoveScaleShear() → Matrix4f
Returns the matrix with any scaling or shearing removed, leaving only
the rotation and translation.
If the matrix cannot be decomposed, returns the original matrix.
Set(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) → Matrix4f
Sets the matrix from 16 independent float values, specified in
row-major order.
For example, parameter m10 specifies the value in row1 and column 0.
Parameters
m00 (float) –
m01 (float) –
m02 (float) –
m03 (float) –
m10 (float) –
m11 (float) –
m12 (float) –
m13 (float) –
m20 (float) –
m21 (float) –
m22 (float) –
m23 (float) –
m30 (float) –
m31 (float) –
m32 (float) –
m33 (float) –
Set(m) -> Matrix4f
Sets the matrix from a 4x4 array of float values, specified in
row-major order.
Parameters
m (float) –
SetColumn(i, v) → None
Sets a column of the matrix from a Vec4.
Parameters
i (int) –
v (Vec4f) –
SetDiagonal(s) → Matrix4f
Sets the matrix to s times the identity matrix.
Parameters
s (float) –
SetDiagonal(arg1) -> Matrix4f
Sets the matrix to have diagonal ( v[0], v[1], v[2], v[3] ).
Parameters
arg1 (Vec4f) –
SetIdentity() → Matrix4f
Sets the matrix to the identity matrix.
SetLookAt(eyePoint, centerPoint, upDirection) → Matrix4f
Sets the matrix to specify a viewing matrix from parameters similar to
those used by gluLookAt(3G) .
eyePoint represents the eye point in world space. centerPoint
represents the world-space center of attention. upDirection is a
vector indicating which way is up.
Parameters
eyePoint (Vec3f) –
centerPoint (Vec3f) –
upDirection (Vec3f) –
SetLookAt(eyePoint, orientation) -> Matrix4f
Sets the matrix to specify a viewing matrix from a world-space
eyePoint and a world-space rotation that rigidly rotates the
orientation from its canonical frame, which is defined to be looking
along the -z axis with the +y axis as the up direction.
Parameters
eyePoint (Vec3f) –
orientation (Rotation) –
SetRotate(rot) → Matrix4f
Sets the matrix to specify a rotation equivalent to rot, and clears
the translation.
Parameters
rot (Quatf) –
SetRotate(rot) -> Matrix4f
Sets the matrix to specify a rotation equivalent to rot, and clears
the translation.
Parameters
rot (Rotation) –
SetRotate(mx) -> Matrix4f
Sets the matrix to specify a rotation equivalent to mx, and clears
the translation.
Parameters
mx (Matrix3f) –
SetRotateOnly(rot) → Matrix4f
Sets the matrix to specify a rotation equivalent to rot, without
clearing the translation.
Parameters
rot (Quatf) –
SetRotateOnly(rot) -> Matrix4f
Sets the matrix to specify a rotation equivalent to rot, without
clearing the translation.
Parameters
rot (Rotation) –
SetRotateOnly(mx) -> Matrix4f
Sets the matrix to specify a rotation equivalent to mx, without
clearing the translation.
Parameters
mx (Matrix3f) –
SetRow(i, v) → None
Sets a row of the matrix from a Vec4.
Parameters
i (int) –
v (Vec4f) –
SetRow3(i, v) → None
Sets a row of the matrix from a Vec3.
The fourth element of the row is ignored.
Parameters
i (int) –
v (Vec3f) –
SetScale(scaleFactors) → Matrix4f
Sets the matrix to specify a nonuniform scaling in x, y, and z by the
factors in vector scaleFactors.
Parameters
scaleFactors (Vec3f) –
SetScale(scaleFactor) -> Matrix4f
Sets matrix to specify a uniform scaling by scaleFactor.
Parameters
scaleFactor (float) –
SetTransform(rotate, translate) → Matrix4f
Sets matrix to specify a rotation by rotate and a translation by
translate.
Parameters
rotate (Rotation) –
translate (Vec3f) –
SetTransform(rotmx, translate) -> Matrix4f
Sets matrix to specify a rotation by rotmx and a translation by
translate.
Parameters
rotmx (Matrix3f) –
translate (Vec3f) –
SetTranslate(trans) → Matrix4f
Sets matrix to specify a translation by the vector trans, and clears
the rotation.
Parameters
trans (Vec3f) –
SetTranslateOnly(t) → Matrix4f
Sets matrix to specify a translation by the vector trans, without
clearing the rotation.
Parameters
t (Vec3f) –
SetZero() → Matrix4f
Sets the matrix to zero.
Transform(vec) → Vec3d
Transforms the row vector vec by the matrix, returning the result.
This treats the vector as a 4-component vector whose fourth component
is 1.
Parameters
vec (Vec3d) –
Transform(vec) -> Vec3f
Transforms the row vector vec by the matrix, returning the result.
This treats the vector as a 4-component vector whose fourth component
is 1. This is an overloaded method; it differs from the other version
in that it returns a different value type.
Parameters
vec (Vec3f) –
TransformAffine(vec) → Vec3d
Transforms the row vector vec by the matrix, returning the result.
This treats the vector as a 4-component vector whose fourth component
is 1 and ignores the fourth column of the matrix (i.e. assumes it is
(0, 0, 0, 1)).
Parameters
vec (Vec3d) –
TransformAffine(vec) -> Vec3f
Transforms the row vector vec by the matrix, returning the result.
This treats the vector as a 4-component vector whose fourth component
is 1 and ignores the fourth column of the matrix (i.e. assumes it is
(0, 0, 0, 1)).
Parameters
vec (Vec3f) –
TransformDir(vec) → Vec3d
Transforms row vector vec by the matrix, returning the result.
This treats the vector as a direction vector, so the translation
information in the matrix is ignored. That is, it treats the vector as
a 4-component vector whose fourth component is 0.
Parameters
vec (Vec3d) –
TransformDir(vec) -> Vec3f
Transforms row vector vec by the matrix, returning the result.
This treats the vector as a direction vector, so the translation
information in the matrix is ignored. That is, it treats the vector as
a 4-component vector whose fourth component is 0. This is an
overloaded method; it differs from the other version in that it
returns a different value type.
Parameters
vec (Vec3f) –
dimension = (4, 4)
class pxr.Gf.MultiInterval
Methods:
Add(i)
Add the given interval to the multi-interval.
ArithmeticAdd(i)
Uses the given interval to extend the multi-interval in the interval arithmetic sense.
Clear()
Clear the multi-interval.
Contains
Returns true if x is inside the multi-interval.
GetBounds()
Returns an interval bounding the entire multi-interval.
GetComplement()
Return the complement of this set.
GetFullInterval
classmethod GetFullInterval() -> MultiInterval
GetSize()
Returns the number of intervals in the set.
Intersect(i)
param i
IsEmpty()
Returns true if the multi-interval is empty.
Remove(i)
Remove the given interval from this multi-interval.
Attributes:
bounds
isEmpty
size
Add(i) → None
Add the given interval to the multi-interval.
Parameters
i (Interval) –
Add(s) -> None
Add the given multi-interval to the multi-interval.
Sets this object to the union of the two sets.
Parameters
s (MultiInterval) –
ArithmeticAdd(i) → None
Uses the given interval to extend the multi-interval in the interval
arithmetic sense.
Parameters
i (Interval) –
Clear() → None
Clear the multi-interval.
Contains()
Returns true if x is inside the multi-interval.
Returns true if x is inside the multi-interval.
Returns true if x is inside the multi-interval.
GetBounds() → Interval
Returns an interval bounding the entire multi-interval.
Returns an empty interval if the multi-interval is empty.
GetComplement() → MultiInterval
Return the complement of this set.
static GetFullInterval()
classmethod GetFullInterval() -> MultiInterval
Returns the full interval (-inf, inf).
GetSize() → int
Returns the number of intervals in the set.
Intersect(i) → None
Parameters
i (Interval) –
Intersect(s) -> None
Parameters
s (MultiInterval) –
IsEmpty() → bool
Returns true if the multi-interval is empty.
Remove(i) → None
Remove the given interval from this multi-interval.
Parameters
i (Interval) –
Remove(s) -> None
Remove the given multi-interval from this multi-interval.
Parameters
s (MultiInterval) –
property bounds
property isEmpty
property size
class pxr.Gf.Plane
Methods:
GetDistance(p)
Returns the distance of point from the plane.
GetDistanceFromOrigin()
Returns the distance of the plane from the origin.
GetEquation()
Give the coefficients of the equation of the plane.
GetNormal()
Returns the unit-length normal vector of the plane.
IntersectsPositiveHalfSpace(box)
Returns true if the given aligned bounding box is at least partially on the positive side (the one the normal points into) of the plane.
Project(p)
Return the projection of p onto the plane.
Reorient(p)
Flip the plane normal (if necessary) so that p is in the positive halfspace.
Set(normal, distanceToOrigin)
Sets this to the plane perpendicular to normal and at distance units from the origin.
Transform(matrix)
Transforms the plane by the given matrix.
Attributes:
distanceFromOrigin
normal
GetDistance(p) → float
Returns the distance of point from the plane.
This distance will be positive if the point is on the side of the
plane containing the normal.
Parameters
p (Vec3d) –
GetDistanceFromOrigin() → float
Returns the distance of the plane from the origin.
GetEquation() → Vec4d
Give the coefficients of the equation of the plane.
Suitable to OpenGL calls to set the clipping plane.
GetNormal() → Vec3d
Returns the unit-length normal vector of the plane.
IntersectsPositiveHalfSpace(box) → bool
Returns true if the given aligned bounding box is at least
partially on the positive side (the one the normal points into) of the
plane.
Parameters
box (Range3d) –
IntersectsPositiveHalfSpace(pt) -> bool
Returns true if the given point is on the plane or within its positive
half space.
Parameters
pt (Vec3d) –
Project(p) → Vec3d
Return the projection of p onto the plane.
Parameters
p (Vec3d) –
Reorient(p) → None
Flip the plane normal (if necessary) so that p is in the positive
halfspace.
Parameters
p (Vec3d) –
Set(normal, distanceToOrigin) → None
Sets this to the plane perpendicular to normal and at distance
units from the origin.
The passed-in normal is normalized to unit length first.
Parameters
normal (Vec3d) –
distanceToOrigin (float) –
Set(normal, point) -> None
This constructor sets this to the plane perpendicular to normal
and that passes through point .
The passed-in normal is normalized to unit length first.
Parameters
normal (Vec3d) –
point (Vec3d) –
Set(p0, p1, p2) -> None
This constructor sets this to the plane that contains the three given
points.
The normal is constructed from the cross product of ( p1 - p0
) ( p2 - p0 ). Results are undefined if the points are
collinear.
Parameters
p0 (Vec3d) –
p1 (Vec3d) –
p2 (Vec3d) –
Set(eqn) -> None
This method sets this to the plane given by the equation eqn [0]
* x + eqn [1] * y + eqn [2] * z + eqn [3] = 0.
Parameters
eqn (Vec4d) –
Transform(matrix) → Plane
Transforms the plane by the given matrix.
Parameters
matrix (Matrix4d) –
property distanceFromOrigin
property normal
class pxr.Gf.Quatd
Methods:
GetConjugate()
Return this quaternion's conjugate, which is the quaternion with the same real coefficient and negated imaginary coefficients.
GetIdentity
classmethod GetIdentity() -> Quatd
GetImaginary()
Return the imaginary coefficient.
GetInverse()
Return this quaternion's inverse, or reciprocal.
GetLength()
Return geometric length of this quaternion.
GetNormalized(eps)
length of this quaternion is smaller than eps , return the identity quaternion.
GetReal()
Return the real coefficient.
GetZero
classmethod GetZero() -> Quatd
Normalize(eps)
Normalizes this quaternion in place to unit length, returning the length before normalization.
SetImaginary(imaginary)
Set the imaginary coefficients.
SetReal(real)
Set the real coefficient.
Transform(point)
Transform the GfVec3d point.
Attributes:
imaginary
real
GetConjugate() → Quatd
Return this quaternion’s conjugate, which is the quaternion with the
same real coefficient and negated imaginary coefficients.
static GetIdentity()
classmethod GetIdentity() -> Quatd
Return the identity quaternion, with real coefficient 1 and an
imaginary coefficients all zero.
GetImaginary() → Vec3d
Return the imaginary coefficient.
GetInverse() → Quatd
Return this quaternion’s inverse, or reciprocal.
This is the quaternion’s conjugate divided by it’s squared length.
GetLength() → float
Return geometric length of this quaternion.
GetNormalized(eps) → Quatd
length of this quaternion is smaller than eps , return the
identity quaternion.
Parameters
eps (float) –
GetReal() → float
Return the real coefficient.
static GetZero()
classmethod GetZero() -> Quatd
Return the zero quaternion, with real coefficient 0 and an imaginary
coefficients all zero.
Normalize(eps) → float
Normalizes this quaternion in place to unit length, returning the
length before normalization.
If the length of this quaternion is smaller than eps , this sets
the quaternion to identity.
Parameters
eps (float) –
SetImaginary(imaginary) → None
Set the imaginary coefficients.
Parameters
imaginary (Vec3d) –
SetImaginary(i, j, k) -> None
Set the imaginary coefficients.
Parameters
i (float) –
j (float) –
k (float) –
SetReal(real) → None
Set the real coefficient.
Parameters
real (float) –
Transform(point) → Vec3d
Transform the GfVec3d point.
If the quaternion is normalized, the transformation is a rotation.
Given a GfQuatd q, q.Transform(point) is equivalent to: (q *
GfQuatd(0, point) * q.GetInverse()).GetImaginary()
but is more efficient.
Parameters
point (Vec3d) –
property imaginary
property real
class pxr.Gf.Quaternion
Quaternion class
Methods:
GetIdentity
classmethod GetIdentity() -> Quaternion
GetImaginary()
Returns the imaginary part of the quaternion.
GetInverse()
Returns the inverse of this quaternion.
GetLength()
Returns geometric length of this quaternion.
GetNormalized(eps)
Returns a normalized (unit-length) version of this quaternion.
GetReal()
Returns the real part of the quaternion.
GetZero
classmethod GetZero() -> Quaternion
Normalize(eps)
Normalizes this quaternion in place to unit length, returning the length before normalization.
Attributes:
imaginary
None
real
None
static GetIdentity()
classmethod GetIdentity() -> Quaternion
Returns the identity quaternion, which has a real part of 1 and an
imaginary part of (0,0,0).
GetImaginary() → Vec3d
Returns the imaginary part of the quaternion.
GetInverse() → Quaternion
Returns the inverse of this quaternion.
GetLength() → float
Returns geometric length of this quaternion.
GetNormalized(eps) → Quaternion
Returns a normalized (unit-length) version of this quaternion.
direction as this. If the length of this quaternion is smaller than
eps , this returns the identity quaternion.
Parameters
eps (float) –
GetReal() → float
Returns the real part of the quaternion.
static GetZero()
classmethod GetZero() -> Quaternion
Returns the zero quaternion, which has a real part of 0 and an
imaginary part of (0,0,0).
Normalize(eps) → float
Normalizes this quaternion in place to unit length, returning the
length before normalization.
If the length of this quaternion is smaller than eps , this sets
the quaternion to identity.
Parameters
eps (float) –
property imaginary
None
Sets the imaginary part of the quaternion.
Type
type
property real
None
Sets the real part of the quaternion.
Type
type
class pxr.Gf.Quatf
Methods:
GetConjugate()
Return this quaternion's conjugate, which is the quaternion with the same real coefficient and negated imaginary coefficients.
GetIdentity
classmethod GetIdentity() -> Quatf
GetImaginary()
Return the imaginary coefficient.
GetInverse()
Return this quaternion's inverse, or reciprocal.
GetLength()
Return geometric length of this quaternion.
GetNormalized(eps)
length of this quaternion is smaller than eps , return the identity quaternion.
GetReal()
Return the real coefficient.
GetZero
classmethod GetZero() -> Quatf
Normalize(eps)
Normalizes this quaternion in place to unit length, returning the length before normalization.
SetImaginary(imaginary)
Set the imaginary coefficients.
SetReal(real)
Set the real coefficient.
Transform(point)
Transform the GfVec3f point.
Attributes:
imaginary
real
GetConjugate() → Quatf
Return this quaternion’s conjugate, which is the quaternion with the
same real coefficient and negated imaginary coefficients.
static GetIdentity()
classmethod GetIdentity() -> Quatf
Return the identity quaternion, with real coefficient 1 and an
imaginary coefficients all zero.
GetImaginary() → Vec3f
Return the imaginary coefficient.
GetInverse() → Quatf
Return this quaternion’s inverse, or reciprocal.
This is the quaternion’s conjugate divided by it’s squared length.
GetLength() → float
Return geometric length of this quaternion.
GetNormalized(eps) → Quatf
length of this quaternion is smaller than eps , return the
identity quaternion.
Parameters
eps (float) –
GetReal() → float
Return the real coefficient.
static GetZero()
classmethod GetZero() -> Quatf
Return the zero quaternion, with real coefficient 0 and an imaginary
coefficients all zero.
Normalize(eps) → float
Normalizes this quaternion in place to unit length, returning the
length before normalization.
If the length of this quaternion is smaller than eps , this sets
the quaternion to identity.
Parameters
eps (float) –
SetImaginary(imaginary) → None
Set the imaginary coefficients.
Parameters
imaginary (Vec3f) –
SetImaginary(i, j, k) -> None
Set the imaginary coefficients.
Parameters
i (float) –
j (float) –
k (float) –
SetReal(real) → None
Set the real coefficient.
Parameters
real (float) –
Transform(point) → Vec3f
Transform the GfVec3f point.
If the quaternion is normalized, the transformation is a rotation.
Given a GfQuatf q, q.Transform(point) is equivalent to: (q *
GfQuatf(0, point) * q.GetInverse()).GetImaginary()
but is more efficient.
Parameters
point (Vec3f) –
property imaginary
property real
class pxr.Gf.Quath
Methods:
GetConjugate()
Return this quaternion's conjugate, which is the quaternion with the same real coefficient and negated imaginary coefficients.
GetIdentity
classmethod GetIdentity() -> Quath
GetImaginary()
Return the imaginary coefficient.
GetInverse()
Return this quaternion's inverse, or reciprocal.
GetLength()
Return geometric length of this quaternion.
GetNormalized(eps)
length of this quaternion is smaller than eps , return the identity quaternion.
GetReal()
Return the real coefficient.
GetZero
classmethod GetZero() -> Quath
Normalize(eps)
Normalizes this quaternion in place to unit length, returning the length before normalization.
SetImaginary(imaginary)
Set the imaginary coefficients.
SetReal(real)
Set the real coefficient.
Transform(point)
Transform the GfVec3h point.
Attributes:
imaginary
real
GetConjugate() → Quath
Return this quaternion’s conjugate, which is the quaternion with the
same real coefficient and negated imaginary coefficients.
static GetIdentity()
classmethod GetIdentity() -> Quath
Return the identity quaternion, with real coefficient 1 and an
imaginary coefficients all zero.
GetImaginary() → Vec3h
Return the imaginary coefficient.
GetInverse() → Quath
Return this quaternion’s inverse, or reciprocal.
This is the quaternion’s conjugate divided by it’s squared length.
GetLength() → GfHalf
Return geometric length of this quaternion.
GetNormalized(eps) → Quath
length of this quaternion is smaller than eps , return the
identity quaternion.
Parameters
eps (GfHalf) –
GetReal() → GfHalf
Return the real coefficient.
static GetZero()
classmethod GetZero() -> Quath
Return the zero quaternion, with real coefficient 0 and an imaginary
coefficients all zero.
Normalize(eps) → GfHalf
Normalizes this quaternion in place to unit length, returning the
length before normalization.
If the length of this quaternion is smaller than eps , this sets
the quaternion to identity.
Parameters
eps (GfHalf) –
SetImaginary(imaginary) → None
Set the imaginary coefficients.
Parameters
imaginary (Vec3h) –
SetImaginary(i, j, k) -> None
Set the imaginary coefficients.
Parameters
i (GfHalf) –
j (GfHalf) –
k (GfHalf) –
SetReal(real) → None
Set the real coefficient.
Parameters
real (GfHalf) –
Transform(point) → Vec3h
Transform the GfVec3h point.
If the quaternion is normalized, the transformation is a rotation.
Given a GfQuath q, q.Transform(point) is equivalent to: (q *
GfQuath(0, point) * q.GetInverse()).GetImaginary()
but is more efficient.
Parameters
point (Vec3h) –
property imaginary
property real
class pxr.Gf.Range1d
Methods:
Contains(point)
Returns true if the point is located inside the range.
GetDistanceSquared(p)
Compute the squared distance from a point to the range.
GetIntersection
classmethod GetIntersection(a, b) -> Range1d
GetMax()
Returns the maximum value of the range.
GetMidpoint()
Returns the midpoint of the range, that is, 0.5*(min+max).
GetMin()
Returns the minimum value of the range.
GetSize()
Returns the size of the range.
GetUnion
classmethod GetUnion(a, b) -> Range1d
IntersectWith(b)
Modifies this range to hold its intersection with b and returns the result.
IsEmpty()
Returns whether the range is empty (max<min).
SetEmpty()
Sets the range to an empty interval.
SetMax(max)
Sets the maximum value of the range.
SetMin(min)
Sets the minimum value of the range.
UnionWith(b)
Extend this to include b .
Attributes:
dimension
max
min
Contains(point) → bool
Returns true if the point is located inside the range.
As with all operations of this type, the range is assumed to include
its extrema.
Parameters
point (float) –
Contains(range) -> bool
Returns true if the range is located entirely inside the range.
As with all operations of this type, the ranges are assumed to include
their extrema.
Parameters
range (Range1d) –
GetDistanceSquared(p) → float
Compute the squared distance from a point to the range.
Parameters
p (float) –
static GetIntersection()
classmethod GetIntersection(a, b) -> Range1d
Returns a GfRange1d that describes the intersection of a and
b .
Parameters
a (Range1d) –
b (Range1d) –
GetMax() → float
Returns the maximum value of the range.
GetMidpoint() → float
Returns the midpoint of the range, that is, 0.5*(min+max).
Note: this returns zero in the case of default-constructed ranges, or
ranges set via SetEmpty() .
GetMin() → float
Returns the minimum value of the range.
GetSize() → float
Returns the size of the range.
static GetUnion()
classmethod GetUnion(a, b) -> Range1d
Returns the smallest GfRange1d which contains both a and b
.
Parameters
a (Range1d) –
b (Range1d) –
IntersectWith(b) → Range1d
Modifies this range to hold its intersection with b and returns
the result.
Parameters
b (Range1d) –
IsEmpty() → bool
Returns whether the range is empty (max<min).
SetEmpty() → None
Sets the range to an empty interval.
SetMax(max) → None
Sets the maximum value of the range.
Parameters
max (float) –
SetMin(min) → None
Sets the minimum value of the range.
Parameters
min (float) –
UnionWith(b) → Range1d
Extend this to include b .
Parameters
b (Range1d) –
UnionWith(b) -> Range1d
Extend this to include b .
Parameters
b (float) –
dimension = 1
property max
property min
class pxr.Gf.Range1f
Methods:
Contains(point)
Returns true if the point is located inside the range.
GetDistanceSquared(p)
Compute the squared distance from a point to the range.
GetIntersection
classmethod GetIntersection(a, b) -> Range1f
GetMax()
Returns the maximum value of the range.
GetMidpoint()
Returns the midpoint of the range, that is, 0.5*(min+max).
GetMin()
Returns the minimum value of the range.
GetSize()
Returns the size of the range.
GetUnion
classmethod GetUnion(a, b) -> Range1f
IntersectWith(b)
Modifies this range to hold its intersection with b and returns the result.
IsEmpty()
Returns whether the range is empty (max<min).
SetEmpty()
Sets the range to an empty interval.
SetMax(max)
Sets the maximum value of the range.
SetMin(min)
Sets the minimum value of the range.
UnionWith(b)
Extend this to include b .
Attributes:
dimension
max
min
Contains(point) → bool
Returns true if the point is located inside the range.
As with all operations of this type, the range is assumed to include
its extrema.
Parameters
point (float) –
Contains(range) -> bool
Returns true if the range is located entirely inside the range.
As with all operations of this type, the ranges are assumed to include
their extrema.
Parameters
range (Range1f) –
GetDistanceSquared(p) → float
Compute the squared distance from a point to the range.
Parameters
p (float) –
static GetIntersection()
classmethod GetIntersection(a, b) -> Range1f
Returns a GfRange1f that describes the intersection of a and
b .
Parameters
a (Range1f) –
b (Range1f) –
GetMax() → float
Returns the maximum value of the range.
GetMidpoint() → float
Returns the midpoint of the range, that is, 0.5*(min+max).
Note: this returns zero in the case of default-constructed ranges, or
ranges set via SetEmpty() .
GetMin() → float
Returns the minimum value of the range.
GetSize() → float
Returns the size of the range.
static GetUnion()
classmethod GetUnion(a, b) -> Range1f
Returns the smallest GfRange1f which contains both a and b
.
Parameters
a (Range1f) –
b (Range1f) –
IntersectWith(b) → Range1f
Modifies this range to hold its intersection with b and returns
the result.
Parameters
b (Range1f) –
IsEmpty() → bool
Returns whether the range is empty (max<min).
SetEmpty() → None
Sets the range to an empty interval.
SetMax(max) → None
Sets the maximum value of the range.
Parameters
max (float) –
SetMin(min) → None
Sets the minimum value of the range.
Parameters
min (float) –
UnionWith(b) → Range1f
Extend this to include b .
Parameters
b (Range1f) –
UnionWith(b) -> Range1f
Extend this to include b .
Parameters
b (float) –
dimension = 1
property max
property min
class pxr.Gf.Range2d
Methods:
Contains(point)
Returns true if the point is located inside the range.
GetCorner(i)
Returns the ith corner of the range, in the following order: SW, SE, NW, NE.
GetDistanceSquared(p)
Compute the squared distance from a point to the range.
GetIntersection
classmethod GetIntersection(a, b) -> Range2d
GetMax()
Returns the maximum value of the range.
GetMidpoint()
Returns the midpoint of the range, that is, 0.5*(min+max).
GetMin()
Returns the minimum value of the range.
GetQuadrant(i)
Returns the ith quadrant of the range, in the following order: SW, SE, NW, NE.
GetSize()
Returns the size of the range.
GetUnion
classmethod GetUnion(a, b) -> Range2d
IntersectWith(b)
Modifies this range to hold its intersection with b and returns the result.
IsEmpty()
Returns whether the range is empty (max<min).
SetEmpty()
Sets the range to an empty interval.
SetMax(max)
Sets the maximum value of the range.
SetMin(min)
Sets the minimum value of the range.
UnionWith(b)
Extend this to include b .
Attributes:
dimension
max
min
unitSquare
Contains(point) → bool
Returns true if the point is located inside the range.
As with all operations of this type, the range is assumed to include
its extrema.
Parameters
point (Vec2d) –
Contains(range) -> bool
Returns true if the range is located entirely inside the range.
As with all operations of this type, the ranges are assumed to include
their extrema.
Parameters
range (Range2d) –
GetCorner(i) → Vec2d
Returns the ith corner of the range, in the following order: SW, SE,
NW, NE.
Parameters
i (int) –
GetDistanceSquared(p) → float
Compute the squared distance from a point to the range.
Parameters
p (Vec2d) –
static GetIntersection()
classmethod GetIntersection(a, b) -> Range2d
Returns a GfRange2d that describes the intersection of a and
b .
Parameters
a (Range2d) –
b (Range2d) –
GetMax() → Vec2d
Returns the maximum value of the range.
GetMidpoint() → Vec2d
Returns the midpoint of the range, that is, 0.5*(min+max).
Note: this returns zero in the case of default-constructed ranges, or
ranges set via SetEmpty() .
GetMin() → Vec2d
Returns the minimum value of the range.
GetQuadrant(i) → Range2d
Returns the ith quadrant of the range, in the following order: SW, SE,
NW, NE.
Parameters
i (int) –
GetSize() → Vec2d
Returns the size of the range.
static GetUnion()
classmethod GetUnion(a, b) -> Range2d
Returns the smallest GfRange2d which contains both a and b
.
Parameters
a (Range2d) –
b (Range2d) –
IntersectWith(b) → Range2d
Modifies this range to hold its intersection with b and returns
the result.
Parameters
b (Range2d) –
IsEmpty() → bool
Returns whether the range is empty (max<min).
SetEmpty() → None
Sets the range to an empty interval.
SetMax(max) → None
Sets the maximum value of the range.
Parameters
max (Vec2d) –
SetMin(min) → None
Sets the minimum value of the range.
Parameters
min (Vec2d) –
UnionWith(b) → Range2d
Extend this to include b .
Parameters
b (Range2d) –
UnionWith(b) -> Range2d
Extend this to include b .
Parameters
b (Vec2d) –
dimension = 2
property max
property min
unitSquare = Gf.Range2d(Gf.Vec2d(0.0, 0.0), Gf.Vec2d(1.0, 1.0))
class pxr.Gf.Range2f
Methods:
Contains(point)
Returns true if the point is located inside the range.
GetCorner(i)
Returns the ith corner of the range, in the following order: SW, SE, NW, NE.
GetDistanceSquared(p)
Compute the squared distance from a point to the range.
GetIntersection
classmethod GetIntersection(a, b) -> Range2f
GetMax()
Returns the maximum value of the range.
GetMidpoint()
Returns the midpoint of the range, that is, 0.5*(min+max).
GetMin()
Returns the minimum value of the range.
GetQuadrant(i)
Returns the ith quadrant of the range, in the following order: SW, SE, NW, NE.
GetSize()
Returns the size of the range.
GetUnion
classmethod GetUnion(a, b) -> Range2f
IntersectWith(b)
Modifies this range to hold its intersection with b and returns the result.
IsEmpty()
Returns whether the range is empty (max<min).
SetEmpty()
Sets the range to an empty interval.
SetMax(max)
Sets the maximum value of the range.
SetMin(min)
Sets the minimum value of the range.
UnionWith(b)
Extend this to include b .
Attributes:
dimension
max
min
unitSquare
Contains(point) → bool
Returns true if the point is located inside the range.
As with all operations of this type, the range is assumed to include
its extrema.
Parameters
point (Vec2f) –
Contains(range) -> bool
Returns true if the range is located entirely inside the range.
As with all operations of this type, the ranges are assumed to include
their extrema.
Parameters
range (Range2f) –
GetCorner(i) → Vec2f
Returns the ith corner of the range, in the following order: SW, SE,
NW, NE.
Parameters
i (int) –
GetDistanceSquared(p) → float
Compute the squared distance from a point to the range.
Parameters
p (Vec2f) –
static GetIntersection()
classmethod GetIntersection(a, b) -> Range2f
Returns a GfRange2f that describes the intersection of a and
b .
Parameters
a (Range2f) –
b (Range2f) –
GetMax() → Vec2f
Returns the maximum value of the range.
GetMidpoint() → Vec2f
Returns the midpoint of the range, that is, 0.5*(min+max).
Note: this returns zero in the case of default-constructed ranges, or
ranges set via SetEmpty() .
GetMin() → Vec2f
Returns the minimum value of the range.
GetQuadrant(i) → Range2f
Returns the ith quadrant of the range, in the following order: SW, SE,
NW, NE.
Parameters
i (int) –
GetSize() → Vec2f
Returns the size of the range.
static GetUnion()
classmethod GetUnion(a, b) -> Range2f
Returns the smallest GfRange2f which contains both a and b
.
Parameters
a (Range2f) –
b (Range2f) –
IntersectWith(b) → Range2f
Modifies this range to hold its intersection with b and returns
the result.
Parameters
b (Range2f) –
IsEmpty() → bool
Returns whether the range is empty (max<min).
SetEmpty() → None
Sets the range to an empty interval.
SetMax(max) → None
Sets the maximum value of the range.
Parameters
max (Vec2f) –
SetMin(min) → None
Sets the minimum value of the range.
Parameters
min (Vec2f) –
UnionWith(b) → Range2f
Extend this to include b .
Parameters
b (Range2f) –
UnionWith(b) -> Range2f
Extend this to include b .
Parameters
b (Vec2f) –
dimension = 2
property max
property min
unitSquare = Gf.Range2f(Gf.Vec2f(0.0, 0.0), Gf.Vec2f(1.0, 1.0))
class pxr.Gf.Range3d
Methods:
Contains(point)
Returns true if the point is located inside the range.
GetCorner(i)
Returns the ith corner of the range, in the following order: LDB, RDB, LUB, RUB, LDF, RDF, LUF, RUF.
GetDistanceSquared(p)
Compute the squared distance from a point to the range.
GetIntersection
classmethod GetIntersection(a, b) -> Range3d
GetMax()
Returns the maximum value of the range.
GetMidpoint()
Returns the midpoint of the range, that is, 0.5*(min+max).
GetMin()
Returns the minimum value of the range.
GetOctant(i)
Returns the ith octant of the range, in the following order: LDB, RDB, LUB, RUB, LDF, RDF, LUF, RUF.
GetSize()
Returns the size of the range.
GetUnion
classmethod GetUnion(a, b) -> Range3d
IntersectWith(b)
Modifies this range to hold its intersection with b and returns the result.
IsEmpty()
Returns whether the range is empty (max<min).
SetEmpty()
Sets the range to an empty interval.
SetMax(max)
Sets the maximum value of the range.
SetMin(min)
Sets the minimum value of the range.
UnionWith(b)
Extend this to include b .
Attributes:
dimension
max
min
unitCube
Contains(point) → bool
Returns true if the point is located inside the range.
As with all operations of this type, the range is assumed to include
its extrema.
Parameters
point (Vec3d) –
Contains(range) -> bool
Returns true if the range is located entirely inside the range.
As with all operations of this type, the ranges are assumed to include
their extrema.
Parameters
range (Range3d) –
GetCorner(i) → Vec3d
Returns the ith corner of the range, in the following order: LDB, RDB,
LUB, RUB, LDF, RDF, LUF, RUF.
Where L/R is left/right, D/U is down/up, and B/F is back/front.
Parameters
i (int) –
GetDistanceSquared(p) → float
Compute the squared distance from a point to the range.
Parameters
p (Vec3d) –
static GetIntersection()
classmethod GetIntersection(a, b) -> Range3d
Returns a GfRange3d that describes the intersection of a and
b .
Parameters
a (Range3d) –
b (Range3d) –
GetMax() → Vec3d
Returns the maximum value of the range.
GetMidpoint() → Vec3d
Returns the midpoint of the range, that is, 0.5*(min+max).
Note: this returns zero in the case of default-constructed ranges, or
ranges set via SetEmpty() .
GetMin() → Vec3d
Returns the minimum value of the range.
GetOctant(i) → Range3d
Returns the ith octant of the range, in the following order: LDB, RDB,
LUB, RUB, LDF, RDF, LUF, RUF.
Where L/R is left/right, D/U is down/up, and B/F is back/front.
Parameters
i (int) –
GetSize() → Vec3d
Returns the size of the range.
static GetUnion()
classmethod GetUnion(a, b) -> Range3d
Returns the smallest GfRange3d which contains both a and b
.
Parameters
a (Range3d) –
b (Range3d) –
IntersectWith(b) → Range3d
Modifies this range to hold its intersection with b and returns
the result.
Parameters
b (Range3d) –
IsEmpty() → bool
Returns whether the range is empty (max<min).
SetEmpty() → None
Sets the range to an empty interval.
SetMax(max) → None
Sets the maximum value of the range.
Parameters
max (Vec3d) –
SetMin(min) → None
Sets the minimum value of the range.
Parameters
min (Vec3d) –
UnionWith(b) → Range3d
Extend this to include b .
Parameters
b (Range3d) –
UnionWith(b) -> Range3d
Extend this to include b .
Parameters
b (Vec3d) –
dimension = 3
property max
property min
unitCube = Gf.Range3d(Gf.Vec3d(0.0, 0.0, 0.0), Gf.Vec3d(1.0, 1.0, 1.0))
class pxr.Gf.Range3f
Methods:
Contains(point)
Returns true if the point is located inside the range.
GetCorner(i)
Returns the ith corner of the range, in the following order: LDB, RDB, LUB, RUB, LDF, RDF, LUF, RUF.
GetDistanceSquared(p)
Compute the squared distance from a point to the range.
GetIntersection
classmethod GetIntersection(a, b) -> Range3f
GetMax()
Returns the maximum value of the range.
GetMidpoint()
Returns the midpoint of the range, that is, 0.5*(min+max).
GetMin()
Returns the minimum value of the range.
GetOctant(i)
Returns the ith octant of the range, in the following order: LDB, RDB, LUB, RUB, LDF, RDF, LUF, RUF.
GetSize()
Returns the size of the range.
GetUnion
classmethod GetUnion(a, b) -> Range3f
IntersectWith(b)
Modifies this range to hold its intersection with b and returns the result.
IsEmpty()
Returns whether the range is empty (max<min).
SetEmpty()
Sets the range to an empty interval.
SetMax(max)
Sets the maximum value of the range.
SetMin(min)
Sets the minimum value of the range.
UnionWith(b)
Extend this to include b .
Attributes:
dimension
max
min
unitCube
Contains(point) → bool
Returns true if the point is located inside the range.
As with all operations of this type, the range is assumed to include
its extrema.
Parameters
point (Vec3f) –
Contains(range) -> bool
Returns true if the range is located entirely inside the range.
As with all operations of this type, the ranges are assumed to include
their extrema.
Parameters
range (Range3f) –
GetCorner(i) → Vec3f
Returns the ith corner of the range, in the following order: LDB, RDB,
LUB, RUB, LDF, RDF, LUF, RUF.
Where L/R is left/right, D/U is down/up, and B/F is back/front.
Parameters
i (int) –
GetDistanceSquared(p) → float
Compute the squared distance from a point to the range.
Parameters
p (Vec3f) –
static GetIntersection()
classmethod GetIntersection(a, b) -> Range3f
Returns a GfRange3f that describes the intersection of a and
b .
Parameters
a (Range3f) –
b (Range3f) –
GetMax() → Vec3f
Returns the maximum value of the range.
GetMidpoint() → Vec3f
Returns the midpoint of the range, that is, 0.5*(min+max).
Note: this returns zero in the case of default-constructed ranges, or
ranges set via SetEmpty() .
GetMin() → Vec3f
Returns the minimum value of the range.
GetOctant(i) → Range3f
Returns the ith octant of the range, in the following order: LDB, RDB,
LUB, RUB, LDF, RDF, LUF, RUF.
Where L/R is left/right, D/U is down/up, and B/F is back/front.
Parameters
i (int) –
GetSize() → Vec3f
Returns the size of the range.
static GetUnion()
classmethod GetUnion(a, b) -> Range3f
Returns the smallest GfRange3f which contains both a and b
.
Parameters
a (Range3f) –
b (Range3f) –
IntersectWith(b) → Range3f
Modifies this range to hold its intersection with b and returns
the result.
Parameters
b (Range3f) –
IsEmpty() → bool
Returns whether the range is empty (max<min).
SetEmpty() → None
Sets the range to an empty interval.
SetMax(max) → None
Sets the maximum value of the range.
Parameters
max (Vec3f) –
SetMin(min) → None
Sets the minimum value of the range.
Parameters
min (Vec3f) –
UnionWith(b) → Range3f
Extend this to include b .
Parameters
b (Range3f) –
UnionWith(b) -> Range3f
Extend this to include b .
Parameters
b (Vec3f) –
dimension = 3
property max
property min
unitCube = Gf.Range3f(Gf.Vec3f(0.0, 0.0, 0.0), Gf.Vec3f(1.0, 1.0, 1.0))
class pxr.Gf.Ray
Methods:
FindClosestPoint(point, rayDistance)
Returns the point on the ray that is closest to point .
GetPoint(distance)
Returns the point that is distance units from the starting point along the direction vector, expressed in parametic distance.
Intersect(p0, p1, p2)
float, barycentric = GfVec3d, frontFacing = bool>
SetEnds(startPoint, endPoint)
Sets the ray by specifying a starting point and an ending point.
SetPointAndDirection(startPoint, direction)
Sets the ray by specifying a starting point and a direction.
Transform(matrix)
Transforms the ray by the given matrix.
Attributes:
direction
Vec3d
startPoint
Vec3d
FindClosestPoint(point, rayDistance) → Vec3d
Returns the point on the ray that is closest to point .
If rayDistance is not None , it will be set to the parametric
distance along the ray of the closest point.
Parameters
point (Vec3d) –
rayDistance (float) –
GetPoint(distance) → Vec3d
Returns the point that is distance units from the starting point
along the direction vector, expressed in parametic distance.
Parameters
distance (float) –
Intersect(p0, p1, p2) → tuple<intersects = bool, dist =
float, barycentric = GfVec3d, frontFacing = bool>
Intersects the ray with the triangle formed by points p0,
p1, and p2. The first item in the tuple is true if the ray
intersects the triangle. dist is the the parametric
distance to the intersection point, the barycentric
coordinates of the intersection point, and the front-facing
flag. The barycentric coordinates are defined with respect
to the three vertices taken in order. The front-facing
flag is True if the intersection hit the side of the
triangle that is formed when the vertices are ordered
counter-clockwise (right-hand rule).
Barycentric coordinates are defined to sum to 1 and satisfy
this relationsip:
intersectionPoint = (barycentricCoords[0] * p0 +barycentricCoords[1] * p1 +
barycentricCoords[2] * p2);
Intersect( plane ) -> tuple<intersects = bool, dist = float,
frontFacing = bool>
Intersects the ray with the Gf.Plane. The first item in
the returned tuple is true if the ray intersects the plane.
dist is the parametric distance to the intersection point
and frontfacing is true if the intersection is on the side
of the plane toward which the plane’s normal points.
———————————————————————-
Intersect( range3d ) -> tuple<intersects = bool, enterDist
= float, exitDist = float>
Intersects the plane with an axis-aligned box in a
Gf.Range3d. intersects is true if the ray intersects it at
all within bounds. If there is an intersection then enterDist
and exitDist will be the parametric distances to the two
intersection points.
———————————————————————-
Intersect( bbox3d ) -> tuple<intersects = bool, enterDist
= float, exitDist = float>
Intersects the plane with an oriented box in a Gf.BBox3d.
intersects is true if the ray intersects it at all within
bounds. If there is an intersection then enterDist and
exitDist will be the parametric distances to the two
intersection points.
———————————————————————-
Intersect( center, radius ) -> tuple<intersects = bool,
enterDist = float, exitDist = float>
Intersects the plane with an sphere. intersects is true if
the ray intersects it at all within the sphere. If there is
an intersection then enterDist and exitDist will be the
parametric distances to the two intersection points.
———————————————————————-
Intersect( origin, axis, radius ) -> tuple<intersects = bool,
enterDist = float, exitDist = float>
Intersects the plane with an infinite cylinder. intersects
is true if the ray intersects it at all within the
sphere. If there is an intersection then enterDist and
exitDist will be the parametric distances to the two
intersection points.
———————————————————————-
Intersect( origin, axis, radius, height ) ->
tuple<intersects = bool, enterDist = float, exitDist = float>
Intersects the plane with an cylinder. intersects
is true if the ray intersects it at all within the
sphere. If there is an intersection then enterDist and
exitDist will be the parametric distances to the two
intersection points.
———————————————————————-
SetEnds(startPoint, endPoint) → None
Sets the ray by specifying a starting point and an ending point.
Parameters
startPoint (Vec3d) –
endPoint (Vec3d) –
SetPointAndDirection(startPoint, direction) → None
Sets the ray by specifying a starting point and a direction.
Parameters
startPoint (Vec3d) –
direction (Vec3d) –
Transform(matrix) → Ray
Transforms the ray by the given matrix.
Parameters
matrix (Matrix4d) –
property direction
Vec3d
Returns the direction vector of the segment.
This is not guaranteed to be unit length.
Type
type
property startPoint
Vec3d
Returns the starting point of the segment.
Type
type
class pxr.Gf.Rect2i
Methods:
Contains(p)
Returns true if the specified point in the rectangle.
GetArea()
Return the area of the rectangle.
GetCenter()
Returns the center point of the rectangle.
GetHeight()
Returns the height of the rectangle.
GetIntersection(that)
Computes the intersection of two rectangles.
GetMax()
Returns the max corner of the rectangle.
GetMaxX()
Return the X value of the max corner.
GetMaxY()
Return the Y value of the max corner.
GetMin()
Returns the min corner of the rectangle.
GetMinX()
Return the X value of min corner.
GetMinY()
Return the Y value of the min corner.
GetNormalized()
Returns a normalized rectangle, i.e.
GetSize()
Returns the size of the rectangle as a vector (width,height).
GetUnion(that)
Computes the union of two rectangles.
GetWidth()
Returns the width of the rectangle.
IsEmpty()
Returns true if the rectangle is empty.
IsNull()
Returns true if the rectangle is a null rectangle.
IsValid()
Return true if the rectangle is valid (equivalently, not empty).
SetMax(max)
Sets the max corner of the rectangle.
SetMaxX(x)
Set the X value of the max corner.
SetMaxY(y)
Set the Y value of the max corner.
SetMin(min)
Sets the min corner of the rectangle.
SetMinX(x)
Set the X value of the min corner.
SetMinY(y)
Set the Y value of the min corner.
Translate(displacement)
Move the rectangle by displ .
Attributes:
max
maxX
maxY
min
minX
minY
Contains(p) → bool
Returns true if the specified point in the rectangle.
Parameters
p (Vec2i) –
GetArea() → int
Return the area of the rectangle.
GetCenter() → Vec2i
Returns the center point of the rectangle.
GetHeight() → int
Returns the height of the rectangle.
If the min and max y-coordinates are coincident, the height is one.
GetIntersection(that) → Rect2i
Computes the intersection of two rectangles.
Parameters
that (Rect2i) –
GetMax() → Vec2i
Returns the max corner of the rectangle.
GetMaxX() → int
Return the X value of the max corner.
GetMaxY() → int
Return the Y value of the max corner.
GetMin() → Vec2i
Returns the min corner of the rectangle.
GetMinX() → int
Return the X value of min corner.
GetMinY() → int
Return the Y value of the min corner.
GetNormalized() → Rect2i
Returns a normalized rectangle, i.e.
one that has a non-negative width and height.
GetNormalized() swaps the min and max x-coordinates to ensure a
non-negative width, and similarly for the y-coordinates.
GetSize() → Vec2i
Returns the size of the rectangle as a vector (width,height).
GetUnion(that) → Rect2i
Computes the union of two rectangles.
Parameters
that (Rect2i) –
GetWidth() → int
Returns the width of the rectangle.
If the min and max x-coordinates are coincident, the width is one.
IsEmpty() → bool
Returns true if the rectangle is empty.
An empty rectangle has one or both of its min coordinates strictly
greater than the corresponding max coordinate.
An empty rectangle is not valid.
IsNull() → bool
Returns true if the rectangle is a null rectangle.
A null rectangle has both the width and the height set to 0, that is
GetMaxX() == GetMinX() - 1
and
GetMaxY() == GetMinY() - 1
Remember that if ``GetMinX()`` and ``GetMaxX()`` return the same
value then the rectangle has width 1, and similarly for the height.
A null rectangle is both empty, and not valid.
IsValid() → bool
Return true if the rectangle is valid (equivalently, not empty).
SetMax(max) → None
Sets the max corner of the rectangle.
Parameters
max (Vec2i) –
SetMaxX(x) → None
Set the X value of the max corner.
Parameters
x (int) –
SetMaxY(y) → None
Set the Y value of the max corner.
Parameters
y (int) –
SetMin(min) → None
Sets the min corner of the rectangle.
Parameters
min (Vec2i) –
SetMinX(x) → None
Set the X value of the min corner.
Parameters
x (int) –
SetMinY(y) → None
Set the Y value of the min corner.
Parameters
y (int) –
Translate(displacement) → None
Move the rectangle by displ .
Parameters
displacement (Vec2i) –
property max
property maxX
property maxY
property min
property minX
property minY
class pxr.Gf.Rotation
3-space rotation
Methods:
Decompose(axis0, axis1, axis2)
Decompose rotation about 3 orthogonal axes.
DecomposeRotation
classmethod DecomposeRotation(rot, TwAxis, FBAxis, LRAxis, handedness, thetaTw, thetaFB, thetaLR, thetaSw, useHint, swShift) -> None
DecomposeRotation3
GetAngle()
Returns the rotation angle in degrees.
GetAxis()
Returns the axis of rotation.
GetInverse()
Returns the inverse of this rotation.
GetQuat()
Returns the rotation expressed as a quaternion.
GetQuaternion()
Returns the rotation expressed as a quaternion.
MatchClosestEulerRotation
classmethod MatchClosestEulerRotation(targetTw, targetFB, targetLR, targetSw, thetaTw, thetaFB, thetaLR, thetaSw) -> None
RotateOntoProjected
classmethod RotateOntoProjected(v1, v2, axis) -> Rotation
SetAxisAngle(axis, angle)
Sets the rotation to be angle degrees about axis .
SetIdentity()
Sets the rotation to an identity rotation.
SetQuat(quat)
Sets the rotation from a quaternion.
SetQuaternion(quat)
Sets the rotation from a quaternion.
SetRotateInto(rotateFrom, rotateTo)
Sets the rotation to one that brings the rotateFrom vector to align with rotateTo .
TransformDir(vec)
Transforms row vector vec by the rotation, returning the result.
Attributes:
angle
axis
Decompose(axis0, axis1, axis2) → Vec3d
Decompose rotation about 3 orthogonal axes.
If the axes are not orthogonal, warnings will be spewed.
Parameters
axis0 (Vec3d) –
axis1 (Vec3d) –
axis2 (Vec3d) –
static DecomposeRotation()
classmethod DecomposeRotation(rot, TwAxis, FBAxis, LRAxis, handedness, thetaTw, thetaFB, thetaLR, thetaSw, useHint, swShift) -> None
Parameters
rot (Matrix4d) –
TwAxis (Vec3d) –
FBAxis (Vec3d) –
LRAxis (Vec3d) –
handedness (float) –
thetaTw (float) –
thetaFB (float) –
thetaLR (float) –
thetaSw (float) –
useHint (bool) –
swShift (float) –
static DecomposeRotation3()
GetAngle() → float
Returns the rotation angle in degrees.
GetAxis() → Vec3d
Returns the axis of rotation.
GetInverse() → Rotation
Returns the inverse of this rotation.
GetQuat() → Quatd
Returns the rotation expressed as a quaternion.
GetQuaternion() → Quaternion
Returns the rotation expressed as a quaternion.
static MatchClosestEulerRotation()
classmethod MatchClosestEulerRotation(targetTw, targetFB, targetLR, targetSw, thetaTw, thetaFB, thetaLR, thetaSw) -> None
Replace the hint angles with the closest rotation of the given
rotation to the hint.
Each angle in the rotation will be within Pi of the corresponding hint
angle and the sum of the differences with the hint will be minimized.
If a given rotation value is null then that angle will be treated as
0.0 and ignored in the calculations.
All angles are in radians. The rotation order is Tw/FB/LR/Sw.
Parameters
targetTw (float) –
targetFB (float) –
targetLR (float) –
targetSw (float) –
thetaTw (float) –
thetaFB (float) –
thetaLR (float) –
thetaSw (float) –
static RotateOntoProjected()
classmethod RotateOntoProjected(v1, v2, axis) -> Rotation
Parameters
v1 (Vec3d) –
v2 (Vec3d) –
axis (Vec3d) –
SetAxisAngle(axis, angle) → Rotation
Sets the rotation to be angle degrees about axis .
Parameters
axis (Vec3d) –
angle (float) –
SetIdentity() → Rotation
Sets the rotation to an identity rotation.
(This is chosen to be 0 degrees around the positive X axis.)
SetQuat(quat) → Rotation
Sets the rotation from a quaternion.
Note that this method accepts GfQuatf and GfQuath since they
implicitly convert to GfQuatd.
Parameters
quat (Quatd) –
SetQuaternion(quat) → Rotation
Sets the rotation from a quaternion.
Parameters
quat (Quaternion) –
SetRotateInto(rotateFrom, rotateTo) → Rotation
Sets the rotation to one that brings the rotateFrom vector to
align with rotateTo .
The passed vectors need not be unit length.
Parameters
rotateFrom (Vec3d) –
rotateTo (Vec3d) –
TransformDir(vec) → Vec3f
Transforms row vector vec by the rotation, returning the result.
Parameters
vec (Vec3f) –
TransformDir(vec) -> Vec3d
This is an overloaded member function, provided for convenience. It
differs from the above function only in what argument(s) it accepts.
Parameters
vec (Vec3d) –
property angle
property axis
class pxr.Gf.Size2
A 2D size class
Methods:
Set(v)
Set to the values in a given array.
Attributes:
dimension
Set(v) → Size2
Set to the values in a given array.
Parameters
v (int) –
Set(v0, v1) -> Size2
Set to values passed directly.
Parameters
v0 (int) –
v1 (int) –
dimension = 2
class pxr.Gf.Size3
A 3D size class
Methods:
Set(v)
Set to the values in v .
Attributes:
dimension
Set(v) → Size3
Set to the values in v .
Parameters
v (int) –
Set(v0, v1, v2) -> Size3
Set to values passed directly.
Parameters
v0 (int) –
v1 (int) –
v2 (int) –
dimension = 3
class pxr.Gf.Transform
Methods:
GetMatrix()
Returns a GfMatrix4d that implements the cumulative transformation.
GetPivotOrientation()
Returns the pivot orientation component.
GetPivotPosition()
Returns the pivot position component.
GetRotation()
Returns the rotation component.
GetScale()
Returns the scale component.
GetTranslation()
Returns the translation component.
Set
Set method used by old 2x code.
SetIdentity()
Sets the transformation to the identity transformation.
SetMatrix(m)
Sets the transform components to implement the transformation represented by matrix m , ignoring any projection.
SetPivotOrientation(pivotOrient)
Sets the pivot orientation component, leaving all others untouched.
SetPivotPosition(pivPos)
Sets the pivot position component, leaving all others untouched.
SetRotation(rotation)
Sets the rotation component, leaving all others untouched.
SetScale(scale)
Sets the scale component, leaving all others untouched.
SetTranslation(translation)
Sets the translation component, leaving all others untouched.
Attributes:
pivotOrientation
pivotPosition
rotation
scale
translation
GetMatrix() → Matrix4d
Returns a GfMatrix4d that implements the cumulative
transformation.
GetPivotOrientation() → Rotation
Returns the pivot orientation component.
GetPivotPosition() → Vec3d
Returns the pivot position component.
GetRotation() → Rotation
Returns the rotation component.
GetScale() → Vec3d
Returns the scale component.
GetTranslation() → Vec3d
Returns the translation component.
Set()
Set method used by old 2x code. (Deprecated)
SetIdentity() → Transform
Sets the transformation to the identity transformation.
SetMatrix(m) → Transform
Sets the transform components to implement the transformation
represented by matrix m , ignoring any projection.
This tries to leave the current center unchanged.
Parameters
m (Matrix4d) –
SetPivotOrientation(pivotOrient) → None
Sets the pivot orientation component, leaving all others untouched.
Parameters
pivotOrient (Rotation) –
SetPivotPosition(pivPos) → None
Sets the pivot position component, leaving all others untouched.
Parameters
pivPos (Vec3d) –
SetRotation(rotation) → None
Sets the rotation component, leaving all others untouched.
Parameters
rotation (Rotation) –
SetScale(scale) → None
Sets the scale component, leaving all others untouched.
Parameters
scale (Vec3d) –
SetTranslation(translation) → None
Sets the translation component, leaving all others untouched.
Parameters
translation (Vec3d) –
property pivotOrientation
property pivotPosition
property rotation
property scale
property translation
class pxr.Gf.Vec2d
Methods:
Axis
classmethod Axis(i) -> Vec2d
GetComplement(b)
Returns the orthogonal complement of this->GetProjection(b) .
GetDot
GetLength()
Length.
GetNormalized(eps)
param eps
GetProjection(v)
Returns the projection of this onto v .
Normalize(eps)
Normalizes the vector in place to unit length, returning the length before normalization.
XAxis
classmethod XAxis() -> Vec2d
YAxis
classmethod YAxis() -> Vec2d
Attributes:
dimension
static Axis()
classmethod Axis(i) -> Vec2d
Create a unit vector along the i-th axis, zero-based.
Return the zero vector if i is greater than or equal to 2.
Parameters
i (int) –
GetComplement(b) → Vec2d
Returns the orthogonal complement of this->GetProjection(b) .
That is:
\*this - this->GetProjection(b)
Parameters
b (Vec2d) –
GetDot()
GetLength() → float
Length.
GetNormalized(eps) → Vec2d
Parameters
eps (float) –
GetProjection(v) → Vec2d
Returns the projection of this onto v .
That is:
v \* (\*this \* v)
Parameters
v (Vec2d) –
Normalize(eps) → float
Normalizes the vector in place to unit length, returning the length
before normalization.
If the length of the vector is smaller than eps , then the vector
is set to vector/ eps . The original length of the vector is
returned. See also GfNormalize() .
Parameters
eps (float) –
static XAxis()
classmethod XAxis() -> Vec2d
Create a unit vector along the X-axis.
static YAxis()
classmethod YAxis() -> Vec2d
Create a unit vector along the Y-axis.
dimension = 2
class pxr.Gf.Vec2f
Methods:
Axis
classmethod Axis(i) -> Vec2f
GetComplement(b)
Returns the orthogonal complement of this->GetProjection(b) .
GetDot
GetLength()
Length.
GetNormalized(eps)
param eps
GetProjection(v)
Returns the projection of this onto v .
Normalize(eps)
Normalizes the vector in place to unit length, returning the length before normalization.
XAxis
classmethod XAxis() -> Vec2f
YAxis
classmethod YAxis() -> Vec2f
Attributes:
dimension
static Axis()
classmethod Axis(i) -> Vec2f
Create a unit vector along the i-th axis, zero-based.
Return the zero vector if i is greater than or equal to 2.
Parameters
i (int) –
GetComplement(b) → Vec2f
Returns the orthogonal complement of this->GetProjection(b) .
That is:
\*this - this->GetProjection(b)
Parameters
b (Vec2f) –
GetDot()
GetLength() → float
Length.
GetNormalized(eps) → Vec2f
Parameters
eps (float) –
GetProjection(v) → Vec2f
Returns the projection of this onto v .
That is:
v \* (\*this \* v)
Parameters
v (Vec2f) –
Normalize(eps) → float
Normalizes the vector in place to unit length, returning the length
before normalization.
If the length of the vector is smaller than eps , then the vector
is set to vector/ eps . The original length of the vector is
returned. See also GfNormalize() .
Parameters
eps (float) –
static XAxis()
classmethod XAxis() -> Vec2f
Create a unit vector along the X-axis.
static YAxis()
classmethod YAxis() -> Vec2f
Create a unit vector along the Y-axis.
dimension = 2
class pxr.Gf.Vec2h
Methods:
Axis
classmethod Axis(i) -> Vec2h
GetComplement(b)
Returns the orthogonal complement of this->GetProjection(b) .
GetDot
GetLength()
Length.
GetNormalized(eps)
param eps
GetProjection(v)
Returns the projection of this onto v .
Normalize(eps)
Normalizes the vector in place to unit length, returning the length before normalization.
XAxis
classmethod XAxis() -> Vec2h
YAxis
classmethod YAxis() -> Vec2h
Attributes:
dimension
static Axis()
classmethod Axis(i) -> Vec2h
Create a unit vector along the i-th axis, zero-based.
Return the zero vector if i is greater than or equal to 2.
Parameters
i (int) –
GetComplement(b) → Vec2h
Returns the orthogonal complement of this->GetProjection(b) .
That is:
\*this - this->GetProjection(b)
Parameters
b (Vec2h) –
GetDot()
GetLength() → GfHalf
Length.
GetNormalized(eps) → Vec2h
Parameters
eps (GfHalf) –
GetProjection(v) → Vec2h
Returns the projection of this onto v .
That is:
v \* (\*this \* v)
Parameters
v (Vec2h) –
Normalize(eps) → GfHalf
Normalizes the vector in place to unit length, returning the length
before normalization.
If the length of the vector is smaller than eps , then the vector
is set to vector/ eps . The original length of the vector is
returned. See also GfNormalize() .
Parameters
eps (GfHalf) –
static XAxis()
classmethod XAxis() -> Vec2h
Create a unit vector along the X-axis.
static YAxis()
classmethod YAxis() -> Vec2h
Create a unit vector along the Y-axis.
dimension = 2
class pxr.Gf.Vec2i
Methods:
Axis
classmethod Axis(i) -> Vec2i
GetDot
XAxis
classmethod XAxis() -> Vec2i
YAxis
classmethod YAxis() -> Vec2i
Attributes:
dimension
static Axis()
classmethod Axis(i) -> Vec2i
Create a unit vector along the i-th axis, zero-based.
Return the zero vector if i is greater than or equal to 2.
Parameters
i (int) –
GetDot()
static XAxis()
classmethod XAxis() -> Vec2i
Create a unit vector along the X-axis.
static YAxis()
classmethod YAxis() -> Vec2i
Create a unit vector along the Y-axis.
dimension = 2
class pxr.Gf.Vec3d
Methods:
Axis
classmethod Axis(i) -> Vec3d
BuildOrthonormalFrame(v1, v2, eps)
Sets v1 and v2 to unit vectors such that v1, v2 and *this are mutually orthogonal.
GetComplement(b)
Returns the orthogonal complement of this->GetProjection(b) .
GetCross
GetDot
GetLength()
Length.
GetNormalized(eps)
param eps
GetProjection(v)
Returns the projection of this onto v .
Normalize(eps)
Normalizes the vector in place to unit length, returning the length before normalization.
OrthogonalizeBasis
classmethod OrthogonalizeBasis(tx, ty, tz, normalize, eps) -> bool
XAxis
classmethod XAxis() -> Vec3d
YAxis
classmethod YAxis() -> Vec3d
ZAxis
classmethod ZAxis() -> Vec3d
Attributes:
dimension
static Axis()
classmethod Axis(i) -> Vec3d
Create a unit vector along the i-th axis, zero-based.
Return the zero vector if i is greater than or equal to 3.
Parameters
i (int) –
BuildOrthonormalFrame(v1, v2, eps) → None
Sets v1 and v2 to unit vectors such that v1, v2 and *this
are mutually orthogonal.
If the length L of *this is smaller than eps , then v1 and v2
will have magnitude L/eps. As a result, the function delivers a
continuous result as *this shrinks in length.
Parameters
v1 (Vec3d) –
v2 (Vec3d) –
eps (float) –
GetComplement(b) → Vec3d
Returns the orthogonal complement of this->GetProjection(b) .
That is:
\*this - this->GetProjection(b)
Parameters
b (Vec3d) –
GetCross()
GetDot()
GetLength() → float
Length.
GetNormalized(eps) → Vec3d
Parameters
eps (float) –
GetProjection(v) → Vec3d
Returns the projection of this onto v .
That is:
v \* (\*this \* v)
Parameters
v (Vec3d) –
Normalize(eps) → float
Normalizes the vector in place to unit length, returning the length
before normalization.
If the length of the vector is smaller than eps , then the vector
is set to vector/ eps . The original length of the vector is
returned. See also GfNormalize() .
Parameters
eps (float) –
static OrthogonalizeBasis()
classmethod OrthogonalizeBasis(tx, ty, tz, normalize, eps) -> bool
Orthogonalize and optionally normalize a set of basis vectors.
This uses an iterative method that is very stable even when the
vectors are far from orthogonal (close to colinear). The number of
iterations and thus the computation time does increase as the vectors
become close to colinear, however. Returns a bool specifying whether
the solution converged after a number of iterations. If it did not
converge, the returned vectors will be as close as possible to
orthogonal within the iteration limit. Colinear vectors will be
unaltered, and the method will return false.
Parameters
tx (Vec3d) –
ty (Vec3d) –
tz (Vec3d) –
normalize (bool) –
eps (float) –
static XAxis()
classmethod XAxis() -> Vec3d
Create a unit vector along the X-axis.
static YAxis()
classmethod YAxis() -> Vec3d
Create a unit vector along the Y-axis.
static ZAxis()
classmethod ZAxis() -> Vec3d
Create a unit vector along the Z-axis.
dimension = 3
class pxr.Gf.Vec3f
Methods:
Axis
classmethod Axis(i) -> Vec3f
BuildOrthonormalFrame(v1, v2, eps)
Sets v1 and v2 to unit vectors such that v1, v2 and *this are mutually orthogonal.
GetComplement(b)
Returns the orthogonal complement of this->GetProjection(b) .
GetCross
GetDot
GetLength()
Length.
GetNormalized(eps)
param eps
GetProjection(v)
Returns the projection of this onto v .
Normalize(eps)
Normalizes the vector in place to unit length, returning the length before normalization.
OrthogonalizeBasis
classmethod OrthogonalizeBasis(tx, ty, tz, normalize, eps) -> bool
XAxis
classmethod XAxis() -> Vec3f
YAxis
classmethod YAxis() -> Vec3f
ZAxis
classmethod ZAxis() -> Vec3f
Attributes:
dimension
static Axis()
classmethod Axis(i) -> Vec3f
Create a unit vector along the i-th axis, zero-based.
Return the zero vector if i is greater than or equal to 3.
Parameters
i (int) –
BuildOrthonormalFrame(v1, v2, eps) → None
Sets v1 and v2 to unit vectors such that v1, v2 and *this
are mutually orthogonal.
If the length L of *this is smaller than eps , then v1 and v2
will have magnitude L/eps. As a result, the function delivers a
continuous result as *this shrinks in length.
Parameters
v1 (Vec3f) –
v2 (Vec3f) –
eps (float) –
GetComplement(b) → Vec3f
Returns the orthogonal complement of this->GetProjection(b) .
That is:
\*this - this->GetProjection(b)
Parameters
b (Vec3f) –
GetCross()
GetDot()
GetLength() → float
Length.
GetNormalized(eps) → Vec3f
Parameters
eps (float) –
GetProjection(v) → Vec3f
Returns the projection of this onto v .
That is:
v \* (\*this \* v)
Parameters
v (Vec3f) –
Normalize(eps) → float
Normalizes the vector in place to unit length, returning the length
before normalization.
If the length of the vector is smaller than eps , then the vector
is set to vector/ eps . The original length of the vector is
returned. See also GfNormalize() .
Parameters
eps (float) –
static OrthogonalizeBasis()
classmethod OrthogonalizeBasis(tx, ty, tz, normalize, eps) -> bool
Orthogonalize and optionally normalize a set of basis vectors.
This uses an iterative method that is very stable even when the
vectors are far from orthogonal (close to colinear). The number of
iterations and thus the computation time does increase as the vectors
become close to colinear, however. Returns a bool specifying whether
the solution converged after a number of iterations. If it did not
converge, the returned vectors will be as close as possible to
orthogonal within the iteration limit. Colinear vectors will be
unaltered, and the method will return false.
Parameters
tx (Vec3f) –
ty (Vec3f) –
tz (Vec3f) –
normalize (bool) –
eps (float) –
static XAxis()
classmethod XAxis() -> Vec3f
Create a unit vector along the X-axis.
static YAxis()
classmethod YAxis() -> Vec3f
Create a unit vector along the Y-axis.
static ZAxis()
classmethod ZAxis() -> Vec3f
Create a unit vector along the Z-axis.
dimension = 3
class pxr.Gf.Vec3h
Methods:
Axis
classmethod Axis(i) -> Vec3h
BuildOrthonormalFrame(v1, v2, eps)
Sets v1 and v2 to unit vectors such that v1, v2 and *this are mutually orthogonal.
GetComplement(b)
Returns the orthogonal complement of this->GetProjection(b) .
GetCross
GetDot
GetLength()
Length.
GetNormalized(eps)
param eps
GetProjection(v)
Returns the projection of this onto v .
Normalize(eps)
Normalizes the vector in place to unit length, returning the length before normalization.
OrthogonalizeBasis
classmethod OrthogonalizeBasis(tx, ty, tz, normalize, eps) -> bool
XAxis
classmethod XAxis() -> Vec3h
YAxis
classmethod YAxis() -> Vec3h
ZAxis
classmethod ZAxis() -> Vec3h
Attributes:
dimension
static Axis()
classmethod Axis(i) -> Vec3h
Create a unit vector along the i-th axis, zero-based.
Return the zero vector if i is greater than or equal to 3.
Parameters
i (int) –
BuildOrthonormalFrame(v1, v2, eps) → None
Sets v1 and v2 to unit vectors such that v1, v2 and *this
are mutually orthogonal.
If the length L of *this is smaller than eps , then v1 and v2
will have magnitude L/eps. As a result, the function delivers a
continuous result as *this shrinks in length.
Parameters
v1 (Vec3h) –
v2 (Vec3h) –
eps (GfHalf) –
GetComplement(b) → Vec3h
Returns the orthogonal complement of this->GetProjection(b) .
That is:
\*this - this->GetProjection(b)
Parameters
b (Vec3h) –
GetCross()
GetDot()
GetLength() → GfHalf
Length.
GetNormalized(eps) → Vec3h
Parameters
eps (GfHalf) –
GetProjection(v) → Vec3h
Returns the projection of this onto v .
That is:
v \* (\*this \* v)
Parameters
v (Vec3h) –
Normalize(eps) → GfHalf
Normalizes the vector in place to unit length, returning the length
before normalization.
If the length of the vector is smaller than eps , then the vector
is set to vector/ eps . The original length of the vector is
returned. See also GfNormalize() .
Parameters
eps (GfHalf) –
static OrthogonalizeBasis()
classmethod OrthogonalizeBasis(tx, ty, tz, normalize, eps) -> bool
Orthogonalize and optionally normalize a set of basis vectors.
This uses an iterative method that is very stable even when the
vectors are far from orthogonal (close to colinear). The number of
iterations and thus the computation time does increase as the vectors
become close to colinear, however. Returns a bool specifying whether
the solution converged after a number of iterations. If it did not
converge, the returned vectors will be as close as possible to
orthogonal within the iteration limit. Colinear vectors will be
unaltered, and the method will return false.
Parameters
tx (Vec3h) –
ty (Vec3h) –
tz (Vec3h) –
normalize (bool) –
eps (float) –
static XAxis()
classmethod XAxis() -> Vec3h
Create a unit vector along the X-axis.
static YAxis()
classmethod YAxis() -> Vec3h
Create a unit vector along the Y-axis.
static ZAxis()
classmethod ZAxis() -> Vec3h
Create a unit vector along the Z-axis.
dimension = 3
class pxr.Gf.Vec3i
Methods:
Axis
classmethod Axis(i) -> Vec3i
GetDot
XAxis
classmethod XAxis() -> Vec3i
YAxis
classmethod YAxis() -> Vec3i
ZAxis
classmethod ZAxis() -> Vec3i
Attributes:
dimension
static Axis()
classmethod Axis(i) -> Vec3i
Create a unit vector along the i-th axis, zero-based.
Return the zero vector if i is greater than or equal to 3.
Parameters
i (int) –
GetDot()
static XAxis()
classmethod XAxis() -> Vec3i
Create a unit vector along the X-axis.
static YAxis()
classmethod YAxis() -> Vec3i
Create a unit vector along the Y-axis.
static ZAxis()
classmethod ZAxis() -> Vec3i
Create a unit vector along the Z-axis.
dimension = 3
class pxr.Gf.Vec4d
Methods:
Axis
classmethod Axis(i) -> Vec4d
GetComplement(b)
Returns the orthogonal complement of this->GetProjection(b) .
GetDot
GetLength()
Length.
GetNormalized(eps)
param eps
GetProjection(v)
Returns the projection of this onto v .
Normalize(eps)
Normalizes the vector in place to unit length, returning the length before normalization.
WAxis
classmethod WAxis() -> Vec4d
XAxis
classmethod XAxis() -> Vec4d
YAxis
classmethod YAxis() -> Vec4d
ZAxis
classmethod ZAxis() -> Vec4d
Attributes:
dimension
static Axis()
classmethod Axis(i) -> Vec4d
Create a unit vector along the i-th axis, zero-based.
Return the zero vector if i is greater than or equal to 4.
Parameters
i (int) –
GetComplement(b) → Vec4d
Returns the orthogonal complement of this->GetProjection(b) .
That is:
\*this - this->GetProjection(b)
Parameters
b (Vec4d) –
GetDot()
GetLength() → float
Length.
GetNormalized(eps) → Vec4d
Parameters
eps (float) –
GetProjection(v) → Vec4d
Returns the projection of this onto v .
That is:
v \* (\*this \* v)
Parameters
v (Vec4d) –
Normalize(eps) → float
Normalizes the vector in place to unit length, returning the length
before normalization.
If the length of the vector is smaller than eps , then the vector
is set to vector/ eps . The original length of the vector is
returned. See also GfNormalize() .
Parameters
eps (float) –
static WAxis()
classmethod WAxis() -> Vec4d
Create a unit vector along the W-axis.
static XAxis()
classmethod XAxis() -> Vec4d
Create a unit vector along the X-axis.
static YAxis()
classmethod YAxis() -> Vec4d
Create a unit vector along the Y-axis.
static ZAxis()
classmethod ZAxis() -> Vec4d
Create a unit vector along the Z-axis.
dimension = 4
class pxr.Gf.Vec4f
Methods:
Axis
classmethod Axis(i) -> Vec4f
GetComplement(b)
Returns the orthogonal complement of this->GetProjection(b) .
GetDot
GetLength()
Length.
GetNormalized(eps)
param eps
GetProjection(v)
Returns the projection of this onto v .
Normalize(eps)
Normalizes the vector in place to unit length, returning the length before normalization.
WAxis
classmethod WAxis() -> Vec4f
XAxis
classmethod XAxis() -> Vec4f
YAxis
classmethod YAxis() -> Vec4f
ZAxis
classmethod ZAxis() -> Vec4f
Attributes:
dimension
static Axis()
classmethod Axis(i) -> Vec4f
Create a unit vector along the i-th axis, zero-based.
Return the zero vector if i is greater than or equal to 4.
Parameters
i (int) –
GetComplement(b) → Vec4f
Returns the orthogonal complement of this->GetProjection(b) .
That is:
\*this - this->GetProjection(b)
Parameters
b (Vec4f) –
GetDot()
GetLength() → float
Length.
GetNormalized(eps) → Vec4f
Parameters
eps (float) –
GetProjection(v) → Vec4f
Returns the projection of this onto v .
That is:
v \* (\*this \* v)
Parameters
v (Vec4f) –
Normalize(eps) → float
Normalizes the vector in place to unit length, returning the length
before normalization.
If the length of the vector is smaller than eps , then the vector
is set to vector/ eps . The original length of the vector is
returned. See also GfNormalize() .
Parameters
eps (float) –
static WAxis()
classmethod WAxis() -> Vec4f
Create a unit vector along the W-axis.
static XAxis()
classmethod XAxis() -> Vec4f
Create a unit vector along the X-axis.
static YAxis()
classmethod YAxis() -> Vec4f
Create a unit vector along the Y-axis.
static ZAxis()
classmethod ZAxis() -> Vec4f
Create a unit vector along the Z-axis.
dimension = 4
class pxr.Gf.Vec4h
Methods:
Axis
classmethod Axis(i) -> Vec4h
GetComplement(b)
Returns the orthogonal complement of this->GetProjection(b) .
GetDot
GetLength()
Length.
GetNormalized(eps)
param eps
GetProjection(v)
Returns the projection of this onto v .
Normalize(eps)
Normalizes the vector in place to unit length, returning the length before normalization.
WAxis
classmethod WAxis() -> Vec4h
XAxis
classmethod XAxis() -> Vec4h
YAxis
classmethod YAxis() -> Vec4h
ZAxis
classmethod ZAxis() -> Vec4h
Attributes:
dimension
static Axis()
classmethod Axis(i) -> Vec4h
Create a unit vector along the i-th axis, zero-based.
Return the zero vector if i is greater than or equal to 4.
Parameters
i (int) –
GetComplement(b) → Vec4h
Returns the orthogonal complement of this->GetProjection(b) .
That is:
\*this - this->GetProjection(b)
Parameters
b (Vec4h) –
GetDot()
GetLength() → GfHalf
Length.
GetNormalized(eps) → Vec4h
Parameters
eps (GfHalf) –
GetProjection(v) → Vec4h
Returns the projection of this onto v .
That is:
v \* (\*this \* v)
Parameters
v (Vec4h) –
Normalize(eps) → GfHalf
Normalizes the vector in place to unit length, returning the length
before normalization.
If the length of the vector is smaller than eps , then the vector
is set to vector/ eps . The original length of the vector is
returned. See also GfNormalize() .
Parameters
eps (GfHalf) –
static WAxis()
classmethod WAxis() -> Vec4h
Create a unit vector along the W-axis.
static XAxis()
classmethod XAxis() -> Vec4h
Create a unit vector along the X-axis.
static YAxis()
classmethod YAxis() -> Vec4h
Create a unit vector along the Y-axis.
static ZAxis()
classmethod ZAxis() -> Vec4h
Create a unit vector along the Z-axis.
dimension = 4
class pxr.Gf.Vec4i
Methods:
Axis
classmethod Axis(i) -> Vec4i
GetDot
WAxis
classmethod WAxis() -> Vec4i
XAxis
classmethod XAxis() -> Vec4i
YAxis
classmethod YAxis() -> Vec4i
ZAxis
classmethod ZAxis() -> Vec4i
Attributes:
dimension
static Axis()
classmethod Axis(i) -> Vec4i
Create a unit vector along the i-th axis, zero-based.
Return the zero vector if i is greater than or equal to 4.
Parameters
i (int) –
GetDot()
static WAxis()
classmethod WAxis() -> Vec4i
Create a unit vector along the W-axis.
static XAxis()
classmethod XAxis() -> Vec4i
Create a unit vector along the X-axis.
static YAxis()
classmethod YAxis() -> Vec4i
Create a unit vector along the Y-axis.
static ZAxis()
classmethod ZAxis() -> Vec4i
Create a unit vector along the Z-axis.
dimension = 4
© Copyright 2019-2023, NVIDIA.
Last updated on Nov 14, 2023.