ov-kit-doc / Gf.md
larkZ's picture
Upload 253 files
d8ab1df verified

Gf module — pxr-usd-api 105.1 documentation

pxr-usd-api

» Modules » Gf module

 

Gf module

Summary: The Gf (Graphics Foundations) library contains classes and functions for working with basic mathematical aspects of graphics.

Graphics Foundation This package defines classes for fundamental graphics types and operations. Classes:

BBox3d Arbitrarily oriented 3D bounding box

Camera

DualQuatd

DualQuatf

DualQuath

Frustum Basic view frustum

Interval Basic mathematical interval class

Line Line class

LineSeg Line segment class

Matrix2d

Matrix2f

Matrix3d

Matrix3f

Matrix4d

Matrix4f

MultiInterval

Plane

Quatd

Quaternion Quaternion class

Quatf

Quath

Range1d

Range1f

Range2d

Range2f

Range3d

Range3f

Ray

Rect2i

Rotation 3-space rotation

Size2 A 2D size class

Size3 A 3D size class

Transform

Vec2d

Vec2f

Vec2h

Vec2i

Vec3d

Vec3f

Vec3h

Vec3i

Vec4d

Vec4f

Vec4h

Vec4i

class pxr.Gf.BBox3d Arbitrarily oriented 3D bounding box Methods:

Combine classmethod Combine(b1, b2) -> BBox3d

ComputeAlignedBox() Returns the axis-aligned range (as a GfRange3d ) that results from applying the transformation matrix to the axis-aligned box and aligning the result.

ComputeAlignedRange() Returns the axis-aligned range (as a GfRange3d ) that results from applying the transformation matrix to the wxis-aligned box and aligning the result.

ComputeCentroid() Returns the centroid of the bounding box.

GetBox() Returns the range of the axis-aligned untransformed box.

GetInverseMatrix() Returns the inverse of the transformation matrix.

GetMatrix() Returns the transformation matrix.

GetRange() Returns the range of the axis-aligned untransformed box.

GetVolume() Returns the volume of the box (0 for an empty box).

HasZeroAreaPrimitives() Returns the current state of the zero-area primitives flag".

Set(box, matrix) Sets the axis-aligned box and transformation matrix.

SetHasZeroAreaPrimitives(hasThem) Sets the zero-area primitives flag to the given value.

SetMatrix(matrix) Sets the transformation matrix only.

SetRange(box) Sets the range of the axis-aligned box only.

Transform(matrix) Transforms the bounding box by the given matrix, which is assumed to be a global transformation to apply to the box.

Attributes:

box

hasZeroAreaPrimitives

matrix

static Combine() classmethod Combine(b1, b2) -> BBox3d Combines two bboxes, returning a new bbox that contains both. This uses the coordinate space of one of the two original boxes as the space of the result; it uses the one that produces whe smaller of the two resulting boxes.

Parameters

b1 (BBox3d) – b2 (BBox3d) –

ComputeAlignedBox() → Range3d Returns the axis-aligned range (as a GfRange3d ) that results from applying the transformation matrix to the axis-aligned box and aligning the result. This synonym for ComputeAlignedRange exists for compatibility purposes.

ComputeAlignedRange() → Range3d Returns the axis-aligned range (as a GfRange3d ) that results from applying the transformation matrix to the wxis-aligned box and aligning the result.

ComputeCentroid() → Vec3d Returns the centroid of the bounding box. The centroid is computed as the transformed centroid of the range.

GetBox() → Range3d Returns the range of the axis-aligned untransformed box. This synonym of GetRange exists for compatibility purposes.

GetInverseMatrix() → Matrix4d Returns the inverse of the transformation matrix. This will be the identity matrix if the transformation matrix is not invertible.

GetMatrix() → Matrix4d Returns the transformation matrix.

GetRange() → Range3d Returns the range of the axis-aligned untransformed box.

GetVolume() → float Returns the volume of the box (0 for an empty box).

HasZeroAreaPrimitives() → bool Returns the current state of the zero-area primitives flag”.

Set(box, matrix) → None Sets the axis-aligned box and transformation matrix.

Parameters

box (Range3d) – matrix (Matrix4d) –

SetHasZeroAreaPrimitives(hasThem) → None Sets the zero-area primitives flag to the given value.

Parameters hasThem (bool) –

SetMatrix(matrix) → None Sets the transformation matrix only. The axis-aligned box is not modified.

Parameters matrix (Matrix4d) –

SetRange(box) → None Sets the range of the axis-aligned box only. The transformation matrix is not modified.

Parameters box (Range3d) –

Transform(matrix) → None Transforms the bounding box by the given matrix, which is assumed to be a global transformation to apply to the box. Therefore, this just post-multiplies the box’s matrix by matrix .

Parameters matrix (Matrix4d) –

property box

property hasZeroAreaPrimitives

property matrix

class pxr.Gf.Camera Classes:

FOVDirection Direction used for Field of View or orthographic size.

Projection Projection type.

Methods:

GetFieldOfView(direction) Returns the horizontal or vertical field of view in degrees.

SetFromViewAndProjectionMatrix(viewMatrix, ...) Sets the camera from a view and projection matrix.

SetOrthographicFromAspectRatioAndSize(...) Sets the frustum to be orthographic such that it has the given aspectRatio and such that the orthographic width, respectively, orthographic height (in cm) is equal to orthographicSize (depending on direction).

SetPerspectiveFromAspectRatioAndFieldOfView(...) Sets the frustum to be projective with the given aspectRatio and horizontal, respectively, vertical field of view fieldOfView (similar to gluPerspective when direction = FOVVertical).

Attributes:

APERTURE_UNIT

DEFAULT_HORIZONTAL_APERTURE

DEFAULT_VERTICAL_APERTURE

FOCAL_LENGTH_UNIT

FOVHorizontal

FOVVertical

Orthographic

Perspective

aspectRatio float

clippingPlanes list[Vec4f]

clippingRange Range1f

fStop float

focalLength float

focusDistance float

frustum Frustum

horizontalAperture float

horizontalApertureOffset float

horizontalFieldOfView

projection Projection

transform Matrix4d

verticalAperture float

verticalApertureOffset float

verticalFieldOfView

class FOVDirection Direction used for Field of View or orthographic size. Methods:

GetValueFromName

Attributes:

allValues

static GetValueFromName()

allValues = (Gf.Camera.FOVHorizontal, Gf.Camera.FOVVertical)

class Projection Projection type. Methods:

GetValueFromName

Attributes:

allValues

static GetValueFromName()

allValues = (Gf.Camera.Perspective, Gf.Camera.Orthographic)

GetFieldOfView(direction) → float Returns the horizontal or vertical field of view in degrees.

Parameters direction (FOVDirection) –

SetFromViewAndProjectionMatrix(viewMatrix, projMatix, focalLength) → None Sets the camera from a view and projection matrix. Note that the projection matrix does only determine the ratio of aperture to focal length, so there is a choice which defaults to 50mm (or more accurately, 50 tenths of a world unit).

Parameters

viewMatrix (Matrix4d) – projMatix (Matrix4d) – focalLength (float) –

SetOrthographicFromAspectRatioAndSize(aspectRatio, orthographicSize, direction) → None Sets the frustum to be orthographic such that it has the given aspectRatio and such that the orthographic width, respectively, orthographic height (in cm) is equal to orthographicSize (depending on direction).

Parameters

aspectRatio (float) – orthographicSize (float) – direction (FOVDirection) –

SetPerspectiveFromAspectRatioAndFieldOfView(aspectRatio, fieldOfView, direction, horizontalAperture) → None Sets the frustum to be projective with the given aspectRatio and horizontal, respectively, vertical field of view fieldOfView (similar to gluPerspective when direction = FOVVertical). Do not pass values for horionztalAperture unless you care about DepthOfField.

Parameters

aspectRatio (float) – fieldOfView (float) – direction (FOVDirection) – horizontalAperture (float) –

APERTURE_UNIT = 0.1

DEFAULT_HORIZONTAL_APERTURE = 20.955

DEFAULT_VERTICAL_APERTURE = 15.290799999999999

FOCAL_LENGTH_UNIT = 0.1

FOVHorizontal = Gf.Camera.FOVHorizontal

FOVVertical = Gf.Camera.FOVVertical

Orthographic = Gf.Camera.Orthographic

Perspective = Gf.Camera.Perspective

property aspectRatio float Returns the projector aperture aspect ratio.

Type type

property clippingPlanes list[Vec4f] Returns additional clipping planes.

type : None Sets additional arbitrarily oriented clipping planes. A vector (a,b,c,d) encodes a clipping plane that clips off points (x,y,z) with a * x + b * y + c * z + d * 1<0 where (x,y,z) are the coordinates in the camera’s space.

Type type

property clippingRange Range1f Returns the clipping range in world units.

type : None Sets the clipping range in world units.

Type type

property fStop float Returns the lens aperture.

type : None Sets the lens aperture, unitless.

Type type

property focalLength float Returns the focal length in tenths of a world unit (e.g., mm if the world unit is assumed to be cm).

type : None These are the values actually stored in the class and they correspond to measurements of an actual physical camera (in mm). Together with the clipping range, they determine the camera frustum. Sets the focal length in tenths of a world unit (e.g., mm if the world unit is assumed to be cm).

Type type

property focusDistance float Returns the focus distance in world units.

type : None Sets the focus distance in world units.

Type type

property frustum Frustum Returns the computed, world-space camera frustum. The frustum will always be that of a Y-up, -Z-looking camera.

Type type

property horizontalAperture float Returns the width of the projector aperture in tenths of a world unit (e.g., mm if the world unit is assumed to be cm).

type : None Sets the width of the projector aperture in tenths of a world unit (e.g., mm if the world unit is assumed to be cm).

Type type

property horizontalApertureOffset float Returns the horizontal offset of the projector aperture in tenths of a world unit (e.g., mm if the world unit is assumed to be cm). In particular, an offset is necessary when writing out a stereo camera with finite convergence distance as two cameras.

type : None Sets the horizontal offset of the projector aperture in tenths of a world unit (e.g., mm if the world unit is assumed to be cm).

Type type

property horizontalFieldOfView

property projection Projection Returns the projection type.

type : None Sets the projection type.

Type type

property transform Matrix4d Returns the transform of the filmback in world space. This is exactly the transform specified via SetTransform() .

type : None Sets the transform of the filmback in world space to val .

Type type

property verticalAperture float Returns the height of the projector aperture in tenths of a world unit (e.g., mm if the world unit is assumed to be cm).

type : None Sets the height of the projector aperture in tenths of a world unit (e.g., mm if the world unit is assumed to be cm).

Type type

property verticalApertureOffset float Returns the vertical offset of the projector aperture in tenths of a world unit (e.g., mm if the world unit is assumed to be cm).

type : None Sets the vertical offset of the projector aperture in tenths of a world unit (e.g., mm if the world unit is assumed to be cm).

Type type

property verticalFieldOfView

class pxr.Gf.DualQuatd Methods:

GetConjugate() Returns the conjugate of this dual quaternion.

GetDual() Returns the dual part of the dual quaternion.

GetIdentity classmethod GetIdentity() -> DualQuatd

GetInverse() Returns the inverse of this dual quaternion.

GetLength() Returns geometric length of this dual quaternion.

GetNormalized(eps) Returns a normalized (unit-length) version of this dual quaternion.

GetReal() Returns the real part of the dual quaternion.

GetTranslation() Get the translation component of this dual quaternion.

GetZero classmethod GetZero() -> DualQuatd

Normalize(eps) Normalizes this dual quaternion in place.

SetDual(dual) Sets the dual part of the dual quaternion.

SetReal(real) Sets the real part of the dual quaternion.

SetTranslation(translation) Set the translation component of this dual quaternion.

Transform(vec) Transforms the row vector vec by the dual quaternion.

Attributes:

dual

real

GetConjugate() → DualQuatd Returns the conjugate of this dual quaternion.

GetDual() → Quatd Returns the dual part of the dual quaternion.

static GetIdentity() classmethod GetIdentity() -> DualQuatd Returns the identity dual quaternion, which has a real part of (1,0,0,0) and a dual part of (0,0,0,0).

GetInverse() → DualQuatd Returns the inverse of this dual quaternion.

GetLength() → tuple[float, float] Returns geometric length of this dual quaternion.

GetNormalized(eps) → DualQuatd Returns a normalized (unit-length) version of this dual quaternion. If the length of this dual quaternion is smaller than eps , this returns the identity dual quaternion.

Parameters eps (float) –

GetReal() → Quatd Returns the real part of the dual quaternion.

GetTranslation() → Vec3d Get the translation component of this dual quaternion.

static GetZero() classmethod GetZero() -> DualQuatd Returns the zero dual quaternion, which has a real part of (0,0,0,0) and a dual part of (0,0,0,0).

Normalize(eps) → tuple[float, float] Normalizes this dual quaternion in place. Normalizes this dual quaternion in place to unit length, returning the length before normalization. If the length of this dual quaternion is smaller than eps , this sets the dual quaternion to identity.

Parameters eps (float) –

SetDual(dual) → None Sets the dual part of the dual quaternion.

Parameters dual (Quatd) –

SetReal(real) → None Sets the real part of the dual quaternion.

Parameters real (Quatd) –

SetTranslation(translation) → None Set the translation component of this dual quaternion.

Parameters translation (Vec3d) –

Transform(vec) → Vec3d Transforms the row vector vec by the dual quaternion.

Parameters vec (Vec3d) –

property dual

property real

class pxr.Gf.DualQuatf Methods:

GetConjugate() Returns the conjugate of this dual quaternion.

GetDual() Returns the dual part of the dual quaternion.

GetIdentity classmethod GetIdentity() -> DualQuatf

GetInverse() Returns the inverse of this dual quaternion.

GetLength() Returns geometric length of this dual quaternion.

GetNormalized(eps) Returns a normalized (unit-length) version of this dual quaternion.

GetReal() Returns the real part of the dual quaternion.

GetTranslation() Get the translation component of this dual quaternion.

GetZero classmethod GetZero() -> DualQuatf

Normalize(eps) Normalizes this dual quaternion in place.

SetDual(dual) Sets the dual part of the dual quaternion.

SetReal(real) Sets the real part of the dual quaternion.

SetTranslation(translation) Set the translation component of this dual quaternion.

Transform(vec) Transforms the row vector vec by the dual quaternion.

Attributes:

dual

real

GetConjugate() → DualQuatf Returns the conjugate of this dual quaternion.

GetDual() → Quatf Returns the dual part of the dual quaternion.

static GetIdentity() classmethod GetIdentity() -> DualQuatf Returns the identity dual quaternion, which has a real part of (1,0,0,0) and a dual part of (0,0,0,0).

GetInverse() → DualQuatf Returns the inverse of this dual quaternion.

GetLength() → tuple[float, float] Returns geometric length of this dual quaternion.

GetNormalized(eps) → DualQuatf Returns a normalized (unit-length) version of this dual quaternion. If the length of this dual quaternion is smaller than eps , this returns the identity dual quaternion.

Parameters eps (float) –

GetReal() → Quatf Returns the real part of the dual quaternion.

GetTranslation() → Vec3f Get the translation component of this dual quaternion.

static GetZero() classmethod GetZero() -> DualQuatf Returns the zero dual quaternion, which has a real part of (0,0,0,0) and a dual part of (0,0,0,0).

Normalize(eps) → tuple[float, float] Normalizes this dual quaternion in place. Normalizes this dual quaternion in place to unit length, returning the length before normalization. If the length of this dual quaternion is smaller than eps , this sets the dual quaternion to identity.

Parameters eps (float) –

SetDual(dual) → None Sets the dual part of the dual quaternion.

Parameters dual (Quatf) –

SetReal(real) → None Sets the real part of the dual quaternion.

Parameters real (Quatf) –

SetTranslation(translation) → None Set the translation component of this dual quaternion.

Parameters translation (Vec3f) –

Transform(vec) → Vec3f Transforms the row vector vec by the dual quaternion.

Parameters vec (Vec3f) –

property dual

property real

class pxr.Gf.DualQuath Methods:

GetConjugate() Returns the conjugate of this dual quaternion.

GetDual() Returns the dual part of the dual quaternion.

GetIdentity classmethod GetIdentity() -> DualQuath

GetInverse() Returns the inverse of this dual quaternion.

GetLength() Returns geometric length of this dual quaternion.

GetNormalized(eps) Returns a normalized (unit-length) version of this dual quaternion.

GetReal() Returns the real part of the dual quaternion.

GetTranslation() Get the translation component of this dual quaternion.

GetZero classmethod GetZero() -> DualQuath

Normalize(eps) Normalizes this dual quaternion in place.

SetDual(dual) Sets the dual part of the dual quaternion.

SetReal(real) Sets the real part of the dual quaternion.

SetTranslation(translation) Set the translation component of this dual quaternion.

Transform(vec) Transforms the row vector vec by the dual quaternion.

Attributes:

dual

real

GetConjugate() → DualQuath Returns the conjugate of this dual quaternion.

GetDual() → Quath Returns the dual part of the dual quaternion.

static GetIdentity() classmethod GetIdentity() -> DualQuath Returns the identity dual quaternion, which has a real part of (1,0,0,0) and a dual part of (0,0,0,0).

GetInverse() → DualQuath Returns the inverse of this dual quaternion.

GetLength() → tuple[GfHalf, GfHalf] Returns geometric length of this dual quaternion.

GetNormalized(eps) → DualQuath Returns a normalized (unit-length) version of this dual quaternion. If the length of this dual quaternion is smaller than eps , this returns the identity dual quaternion.

Parameters eps (GfHalf) –

GetReal() → Quath Returns the real part of the dual quaternion.

GetTranslation() → Vec3h Get the translation component of this dual quaternion.

static GetZero() classmethod GetZero() -> DualQuath Returns the zero dual quaternion, which has a real part of (0,0,0,0) and a dual part of (0,0,0,0).

Normalize(eps) → tuple[GfHalf, GfHalf] Normalizes this dual quaternion in place. Normalizes this dual quaternion in place to unit length, returning the length before normalization. If the length of this dual quaternion is smaller than eps , this sets the dual quaternion to identity.

Parameters eps (GfHalf) –

SetDual(dual) → None Sets the dual part of the dual quaternion.

Parameters dual (Quath) –

SetReal(real) → None Sets the real part of the dual quaternion.

Parameters real (Quath) –

SetTranslation(translation) → None Set the translation component of this dual quaternion.

Parameters translation (Vec3h) –

Transform(vec) → Vec3h Transforms the row vector vec by the dual quaternion.

Parameters vec (Vec3h) –

property dual

property real

class pxr.Gf.Frustum Basic view frustum Classes:

ProjectionType This enum is used to determine the type of projection represented by a frustum.

Methods:

ComputeAspectRatio() Returns the aspect ratio of the frustum, defined as the width of the window divided by the height.

ComputeCorners() Returns the world-space corners of the frustum as a vector of 8 points, ordered as:

ComputeCornersAtDistance(d) Returns the world-space corners of the intersection of the frustum with a plane parallel to the near/far plane at distance d from the apex, ordered as:

ComputeLookAtPoint() Computes and returns the world-space look-at point from the eye point (position), view direction (rotation), and view distance.

ComputeNarrowedFrustum(windowPos, size) Returns a frustum that is a narrowed-down version of this frustum.

ComputePickRay(windowPos) Builds and returns a GfRay that can be used for picking at the given normalized (-1 to +1 in both dimensions) window position.

ComputeProjectionMatrix() Returns a GL-style projection matrix corresponding to the frustum's projection.

ComputeUpVector() Returns the normalized world-space up vector, which is computed by rotating the y axis by the frustum's rotation.

ComputeViewDirection() Returns the normalized world-space view direction vector, which is computed by rotating the -z axis by the frustum's rotation.

ComputeViewFrame(side, up, view) Computes the view frame defined by this frustum.

ComputeViewInverse() Returns a matrix that represents the inverse viewing transformation for this frustum.

ComputeViewMatrix() Returns a matrix that represents the viewing transformation for this frustum.

FitToSphere(center, radius, slack) Modifies the frustum to tightly enclose a sphere with the given center and radius, using the current view direction.

GetFOV Returns the horizontal fov of the frustum.

GetNearFar() Returns the near/far interval.

GetOrthographic(left, right, bottom, top, ...) Returns the current frustum in the format used by SetOrthographic() .

GetPerspective Returns the current perspective frustum values suitable for use by SetPerspective.

GetPosition() Returns the position of the frustum in world space.

GetProjectionType() Returns the projection type.

GetReferencePlaneDepth classmethod GetReferencePlaneDepth() -> float

GetRotation() Returns the orientation of the frustum in world space as a rotation to apply to the -z axis.

GetViewDistance() Returns the view distance.

GetWindow() Returns the window rectangle in the reference plane.

Intersects(bbox) Returns true if the given axis-aligned bbox is inside or intersecting the frustum.

IntersectsViewVolume classmethod IntersectsViewVolume(bbox, vpMat) -> bool

SetNearFar(nearFar) Sets the near/far interval.

SetOrthographic(left, right, bottom, top, ...) Sets up the frustum in a manner similar to glOrtho() .

SetPerspective(fieldOfViewHeight, ...) Sets up the frustum in a manner similar to gluPerspective() .

SetPosition(position) Sets the position of the frustum in world space.

SetPositionAndRotationFromMatrix(camToWorldXf) Sets the position and rotation of the frustum from a camera matrix (always from a y-Up camera).

SetProjectionType(projectionType) Sets the projection type.

SetRotation(rotation) Sets the orientation of the frustum in world space as a rotation to apply to the default frame: looking along the -z axis with the +y axis as"up".

SetViewDistance(viewDistance) Sets the view distance.

SetWindow(window) Sets the window rectangle in the reference plane that defines the left, right, top, and bottom planes of the frustum.

Transform(matrix) Transforms the frustum by the given matrix.

Attributes:

Orthographic

Perspective

nearFar

position

projectionType

rotation

viewDistance

window

class ProjectionType This enum is used to determine the type of projection represented by a frustum. Methods:

GetValueFromName

Attributes:

allValues

static GetValueFromName()

allValues = (Gf.Frustum.Orthographic, Gf.Frustum.Perspective)

ComputeAspectRatio() → float Returns the aspect ratio of the frustum, defined as the width of the window divided by the height. If the height is zero or negative, this returns 0.

ComputeCorners() → list[Vec3d] Returns the world-space corners of the frustum as a vector of 8 points, ordered as:

Left bottom near Right bottom near Left top near Right top near Left bottom far Right bottom far Left top far Right top far

ComputeCornersAtDistance(d) → list[Vec3d] Returns the world-space corners of the intersection of the frustum with a plane parallel to the near/far plane at distance d from the apex, ordered as:

Left bottom Right bottom Left top Right top In particular, it gives the partial result of ComputeCorners when given near or far distance.

Parameters d (float) –

ComputeLookAtPoint() → Vec3d Computes and returns the world-space look-at point from the eye point (position), view direction (rotation), and view distance.

ComputeNarrowedFrustum(windowPos, size) → Frustum Returns a frustum that is a narrowed-down version of this frustum. The new frustum has the same near and far planes, but the other planes are adjusted to be centered on windowPos with the new width and height obtained from the existing width and height by multiplying by size [0] and size [1], respectively. Finally, the new frustum is clipped against this frustum so that it is completely contained in the existing frustum. windowPos is given in normalized coords (-1 to +1 in both dimensions). size is given as a scalar (0 to 1 in both dimensions). If the windowPos or size given is outside these ranges, it may result in returning a collapsed frustum. This method is useful for computing a volume to use for interactive picking.

Parameters

windowPos (Vec2d) – size (Vec2d) –

ComputeNarrowedFrustum(worldPoint, size) -> Frustum Returns a frustum that is a narrowed-down version of this frustum. The new frustum has the same near and far planes, but the other planes are adjusted to be centered on worldPoint with the new width and height obtained from the existing width and height by multiplying by size [0] and size [1], respectively. Finally, the new frustum is clipped against this frustum so that it is completely contained in the existing frustum. worldPoint is given in world space coordinates. size is given as a scalar (0 to 1 in both dimensions). If the size given is outside this range, it may result in returning a collapsed frustum. If the worldPoint is at or behind the eye of the frustum, it will return a frustum equal to this frustum. This method is useful for computing a volume to use for interactive picking.

Parameters

worldPoint (Vec3d) – size (Vec2d) –

ComputePickRay(windowPos) → Ray Builds and returns a GfRay that can be used for picking at the given normalized (-1 to +1 in both dimensions) window position. Contrasted with ComputeRay() , that method returns a ray whose origin is the eyepoint, while this method returns a ray whose origin is on the near plane.

Parameters windowPos (Vec2d) –

ComputePickRay(worldSpacePos) -> Ray Builds and returns a GfRay that can be used for picking that connects the viewpoint to the given 3d point in worldspace.

Parameters worldSpacePos (Vec3d) –

ComputeProjectionMatrix() → Matrix4d Returns a GL-style projection matrix corresponding to the frustum’s projection.

ComputeUpVector() → Vec3d Returns the normalized world-space up vector, which is computed by rotating the y axis by the frustum’s rotation.

ComputeViewDirection() → Vec3d Returns the normalized world-space view direction vector, which is computed by rotating the -z axis by the frustum’s rotation.

ComputeViewFrame(side, up, view) → None Computes the view frame defined by this frustum. The frame consists of the view direction, up vector and side vector, as shown in this diagram. up ^ ^ | / | / view |/ +- - - - > side

Parameters

side (Vec3d) – up (Vec3d) – view (Vec3d) –

ComputeViewInverse() → Matrix4d Returns a matrix that represents the inverse viewing transformation for this frustum. That is, it returns the matrix that converts points from eye (frustum) space to world space.

ComputeViewMatrix() → Matrix4d Returns a matrix that represents the viewing transformation for this frustum. That is, it returns the matrix that converts points from world space to eye (frustum) space.

FitToSphere(center, radius, slack) → None Modifies the frustum to tightly enclose a sphere with the given center and radius, using the current view direction. The planes of the frustum are adjusted as necessary. The given amount of slack is added to the sphere’s radius is used around the sphere to avoid boundary problems.

Parameters

center (Vec3d) – radius (float) – slack (float) –

GetFOV() Returns the horizontal fov of the frustum. The fov of the frustum is not necessarily the same value as displayed in the viewer. The displayed fov is a function of the focal length or FOV avar. The frustum’s fov may be different due to things like lens breathing. If the frustum is not of type GfFrustum::Perspective, the returned FOV will be 0.0.

GetNearFar() → Range1d Returns the near/far interval.

GetOrthographic(left, right, bottom, top, nearPlane, farPlane) → bool Returns the current frustum in the format used by SetOrthographic() . If the current frustum is not an orthographic projection, this returns false and leaves the parameters untouched.

Parameters

left (float) – right (float) – bottom (float) – top (float) – nearPlane (float) – farPlane (float) –

GetPerspective() Returns the current perspective frustum values suitable for use by SetPerspective. If the current frustum is a perspective projection, the return value is a tuple of fieldOfView, aspectRatio, nearDistance, farDistance). If the current frustum is not perspective, the return value is None.

GetPosition() → Vec3d Returns the position of the frustum in world space.

GetProjectionType() → Frustum.ProjectionType Returns the projection type.

static GetReferencePlaneDepth() classmethod GetReferencePlaneDepth() -> float Returns the depth of the reference plane.

GetRotation() → Rotation Returns the orientation of the frustum in world space as a rotation to apply to the -z axis.

GetViewDistance() → float Returns the view distance.

GetWindow() → Range2d Returns the window rectangle in the reference plane.

Intersects(bbox) → bool Returns true if the given axis-aligned bbox is inside or intersecting the frustum. Otherwise, it returns false. Useful when doing picking or frustum culling.

Parameters bbox (BBox3d) –

Intersects(point) -> bool Returns true if the given point is inside or intersecting the frustum. Otherwise, it returns false.

Parameters point (Vec3d) –

Intersects(p0, p1) -> bool Returns true if the line segment formed by the given points is inside or intersecting the frustum. Otherwise, it returns false.

Parameters

p0 (Vec3d) – p1 (Vec3d) –

Intersects(p0, p1, p2) -> bool Returns true if the triangle formed by the given points is inside or intersecting the frustum. Otherwise, it returns false.

Parameters

p0 (Vec3d) – p1 (Vec3d) – p2 (Vec3d) –

static IntersectsViewVolume() classmethod IntersectsViewVolume(bbox, vpMat) -> bool Returns true if the bbox volume intersects the view volume given by the view-projection matrix, erring on the side of false positives for efficiency. This method is intended for cases where a GfFrustum is not available or when the view-projection matrix yields a view volume that is not expressable as a GfFrustum. Because it errs on the side of false positives, it is suitable for early-out tests such as draw or intersection culling.

Parameters

bbox (BBox3d) – vpMat (Matrix4d) –

SetNearFar(nearFar) → None Sets the near/far interval.

Parameters nearFar (Range1d) –

SetOrthographic(left, right, bottom, top, nearPlane, farPlane) → None Sets up the frustum in a manner similar to glOrtho() . Sets the projection to GfFrustum::Orthographic and sets the window and near/far specifications based on the given values.

Parameters

left (float) – right (float) – bottom (float) – top (float) – nearPlane (float) – farPlane (float) –

SetPerspective(fieldOfViewHeight, aspectRatio, nearDistance, farDistance) → None Sets up the frustum in a manner similar to gluPerspective() . It sets the projection type to GfFrustum::Perspective and sets the window specification so that the resulting symmetric frustum encloses an angle of fieldOfViewHeight degrees in the vertical direction, with aspectRatio used to figure the angle in the horizontal direction. The near and far distances are specified as well. The window coordinates are computed as: top = tan(fieldOfViewHeight / 2) bottom = -top right = top * aspectRatio left = -right near = nearDistance far = farDistance

Parameters

fieldOfViewHeight (float) – aspectRatio (float) – nearDistance (float) – farDistance (float) –

SetPerspective(fieldOfView, isFovVertical, aspectRatio, nearDistance, farDistance) -> None Sets up the frustum in a manner similar to gluPerspective(). It sets the projection type to GfFrustum::Perspective and sets the window specification so that: If isFovVertical is true, the resulting symmetric frustum encloses an angle of fieldOfView degrees in the vertical direction, with aspectRatio used to figure the angle in the horizontal direction. If isFovVertical is false, the resulting symmetric frustum encloses an angle of fieldOfView degrees in the horizontal direction, with aspectRatio used to figure the angle in the vertical direction. The near and far distances are specified as well. The window coordinates are computed as follows:

if isFovVertical: top = tan(fieldOfView / 2) right = top * aspectRatio if NOT isFovVertical: right = tan(fieldOfView / 2) top = right / aspectRation bottom = -top left = -right near = nearDistance far = farDistance

Parameters

fieldOfView (float) – isFovVertical (bool) – aspectRatio (float) – nearDistance (float) – farDistance (float) –

SetPosition(position) → None Sets the position of the frustum in world space.

Parameters position (Vec3d) –

SetPositionAndRotationFromMatrix(camToWorldXf) → None Sets the position and rotation of the frustum from a camera matrix (always from a y-Up camera). The resulting frustum’s transform will always represent a right-handed and orthonormal coordinate sytem (scale, shear, and projection are removed from the given camToWorldXf ).

Parameters camToWorldXf (Matrix4d) –

SetProjectionType(projectionType) → None Sets the projection type.

Parameters projectionType (Frustum.ProjectionType) –

SetRotation(rotation) → None Sets the orientation of the frustum in world space as a rotation to apply to the default frame: looking along the -z axis with the +y axis as”up”.

Parameters rotation (Rotation) –

SetViewDistance(viewDistance) → None Sets the view distance.

Parameters viewDistance (float) –

SetWindow(window) → None Sets the window rectangle in the reference plane that defines the left, right, top, and bottom planes of the frustum.

Parameters window (Range2d) –

Transform(matrix) → Frustum Transforms the frustum by the given matrix. The transformation matrix is applied as follows: the position and the direction vector are transformed with the given matrix. Then the length of the new direction vector is used to rescale the near and far plane and the view distance. Finally, the points that define the reference plane are transformed by the matrix. This method assures that the frustum will not be sheared or perspective-projected. Note that this definition means that the transformed frustum does not preserve scales very well. Do not use this function to transform a frustum that is to be used for precise operations such as intersection testing.

Parameters matrix (Matrix4d) –

Orthographic = Gf.Frustum.Orthographic

Perspective = Gf.Frustum.Perspective

property nearFar

property position

property projectionType

property rotation

property viewDistance

property window

class pxr.Gf.Interval Basic mathematical interval class Methods:

Contains Returns true if x is inside the interval.

GetFullInterval classmethod GetFullInterval() -> Interval

GetMax Get the maximum value.

GetMin Get the minimum value.

GetSize The width of the interval

In Returns true if x is inside the interval.

Intersects(i) Return true iff the given interval i intersects this interval.

IsEmpty True if the interval is empty.

IsFinite() Returns true if both the maximum and minimum value are finite.

IsMaxClosed() Maximum boundary condition.

IsMaxFinite() Returns true if the maximum value is finite.

IsMaxOpen() Maximum boundary condition.

IsMinClosed() Minimum boundary condition.

IsMinFinite() Returns true if the minimum value is finite.

IsMinOpen() Minimum boundary condition.

SetMax Set the maximum value.

SetMin Set the minimum value.

Attributes:

finite

isEmpty True if the interval is empty.

max The maximum value.

maxClosed

maxFinite

maxOpen

min The minimum value.

minClosed

minFinite

minOpen

size The width of the interval.

Contains() Returns true if x is inside the interval. Returns true if x is inside the interval.

static GetFullInterval() classmethod GetFullInterval() -> Interval Returns the full interval (-inf, inf).

GetMax() Get the maximum value.

GetMin() Get the minimum value.

GetSize() The width of the interval

In() Returns true if x is inside the interval.

Intersects(i) → bool Return true iff the given interval i intersects this interval.

Parameters i (Interval) –

IsEmpty() True if the interval is empty.

IsFinite() → bool Returns true if both the maximum and minimum value are finite.

IsMaxClosed() → bool Maximum boundary condition.

IsMaxFinite() → bool Returns true if the maximum value is finite.

IsMaxOpen() → bool Maximum boundary condition.

IsMinClosed() → bool Minimum boundary condition.

IsMinFinite() → bool Returns true if the minimum value is finite.

IsMinOpen() → bool Minimum boundary condition.

SetMax() Set the maximum value. Set the maximum value and boundary condition.

SetMin() Set the minimum value. Set the minimum value and boundary condition.

property finite

property isEmpty True if the interval is empty.

property max The maximum value.

property maxClosed

property maxFinite

property maxOpen

property min The minimum value.

property minClosed

property minFinite

property minOpen

property size The width of the interval.

class pxr.Gf.Line Line class Methods:

FindClosestPoint(point, t) Returns the point on the line that is closest to point .

GetDirection() Return the normalized direction of the line.

GetPoint(t) Return the point on the line at ```` ( p0 + t * dir).

Set(p0, dir)

param p0

Attributes:

direction

FindClosestPoint(point, t) → Vec3d Returns the point on the line that is closest to point . If t is not None , it will be set to the parametric distance along the line of the returned point.

Parameters

point (Vec3d) – t (float) –

GetDirection() → Vec3d Return the normalized direction of the line.

GetPoint(t) → Vec3d Return the point on the line at ```` ( p0 + t * dir). Remember dir has been normalized so t represents a unit distance.

Parameters t (float) –

Set(p0, dir) → float

Parameters

p0 (Vec3d) – dir (Vec3d) –

property direction

class pxr.Gf.LineSeg Line segment class Methods:

FindClosestPoint(point, t) Returns the point on the line that is closest to point .

GetDirection() Return the normalized direction of the line.

GetLength() Return the length of the line.

GetPoint(t) Return the point on the segment specified by the parameter t.

Attributes:

direction

length

FindClosestPoint(point, t) → Vec3d Returns the point on the line that is closest to point . If t is not None , it will be set to the parametric distance along the line of the closest point.

Parameters

point (Vec3d) – t (float) –

GetDirection() → Vec3d Return the normalized direction of the line.

GetLength() → float Return the length of the line.

GetPoint(t) → Vec3d Return the point on the segment specified by the parameter t. p = p0 + t * (p1 - p0)

Parameters t (float) –

property direction

property length

class pxr.Gf.Matrix2d Methods:

GetColumn(i) Gets a column of the matrix as a Vec2.

GetDeterminant() Returns the determinant of the matrix.

GetInverse(det, eps) Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular.

GetRow(i) Gets a row of the matrix as a Vec2.

GetTranspose() Returns the transpose of the matrix.

Set(m00, m01, m10, m11) Sets the matrix from 4 independent double values, specified in row-major order.

SetColumn(i, v) Sets a column of the matrix from a Vec2.

SetDiagonal(s) Sets the matrix to s times the identity matrix.

SetIdentity() Sets the matrix to the identity matrix.

SetRow(i, v) Sets a row of the matrix from a Vec2.

SetZero() Sets the matrix to zero.

Attributes:

dimension

GetColumn(i) → Vec2d Gets a column of the matrix as a Vec2.

Parameters i (int) –

GetDeterminant() → float Returns the determinant of the matrix.

GetInverse(det, eps) → Matrix2d Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular. (FLT_MAX is the largest value a float can have, as defined by the system.) The matrix is considered singular if the determinant is less than or equal to the optional parameter eps. If det is non-null, *det is set to the determinant.

Parameters

det (float) – eps (float) –

GetRow(i) → Vec2d Gets a row of the matrix as a Vec2.

Parameters i (int) –

GetTranspose() → Matrix2d Returns the transpose of the matrix.

Set(m00, m01, m10, m11) → Matrix2d Sets the matrix from 4 independent double values, specified in row-major order. For example, parameter m10 specifies the value in row 1 and column 0.

Parameters

m00 (float) – m01 (float) – m10 (float) – m11 (float) –

Set(m) -> Matrix2d Sets the matrix from a 2x2 array of double values, specified in row-major order.

Parameters m (float) –

SetColumn(i, v) → None Sets a column of the matrix from a Vec2.

Parameters

i (int) – v (Vec2d) –

SetDiagonal(s) → Matrix2d Sets the matrix to s times the identity matrix.

Parameters s (float) –

SetDiagonal(arg1) -> Matrix2d Sets the matrix to have diagonal ( v[0], v[1] ).

Parameters arg1 (Vec2d) –

SetIdentity() → Matrix2d Sets the matrix to the identity matrix.

SetRow(i, v) → None Sets a row of the matrix from a Vec2.

Parameters

i (int) – v (Vec2d) –

SetZero() → Matrix2d Sets the matrix to zero.

dimension = (2, 2)

class pxr.Gf.Matrix2f Methods:

GetColumn(i) Gets a column of the matrix as a Vec2.

GetDeterminant() Returns the determinant of the matrix.

GetInverse(det, eps) Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular.

GetRow(i) Gets a row of the matrix as a Vec2.

GetTranspose() Returns the transpose of the matrix.

Set(m00, m01, m10, m11) Sets the matrix from 4 independent float values, specified in row- major order.

SetColumn(i, v) Sets a column of the matrix from a Vec2.

SetDiagonal(s) Sets the matrix to s times the identity matrix.

SetIdentity() Sets the matrix to the identity matrix.

SetRow(i, v) Sets a row of the matrix from a Vec2.

SetZero() Sets the matrix to zero.

Attributes:

dimension

GetColumn(i) → Vec2f Gets a column of the matrix as a Vec2.

Parameters i (int) –

GetDeterminant() → float Returns the determinant of the matrix.

GetInverse(det, eps) → Matrix2f Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular. (FLT_MAX is the largest value a float can have, as defined by the system.) The matrix is considered singular if the determinant is less than or equal to the optional parameter eps. If det is non-null, *det is set to the determinant.

Parameters

det (float) – eps (float) –

GetRow(i) → Vec2f Gets a row of the matrix as a Vec2.

Parameters i (int) –

GetTranspose() → Matrix2f Returns the transpose of the matrix.

Set(m00, m01, m10, m11) → Matrix2f Sets the matrix from 4 independent float values, specified in row- major order. For example, parameter m10 specifies the value in row 1 and column 0.

Parameters

m00 (float) – m01 (float) – m10 (float) – m11 (float) –

Set(m) -> Matrix2f Sets the matrix from a 2x2 array of float values, specified in row-major order.

Parameters m (float) –

SetColumn(i, v) → None Sets a column of the matrix from a Vec2.

Parameters

i (int) – v (Vec2f) –

SetDiagonal(s) → Matrix2f Sets the matrix to s times the identity matrix.

Parameters s (float) –

SetDiagonal(arg1) -> Matrix2f Sets the matrix to have diagonal ( v[0], v[1] ).

Parameters arg1 (Vec2f) –

SetIdentity() → Matrix2f Sets the matrix to the identity matrix.

SetRow(i, v) → None Sets a row of the matrix from a Vec2.

Parameters

i (int) – v (Vec2f) –

SetZero() → Matrix2f Sets the matrix to zero.

dimension = (2, 2)

class pxr.Gf.Matrix3d Methods:

ExtractRotation() Returns the rotation corresponding to this matrix.

GetColumn(i) Gets a column of the matrix as a Vec3.

GetDeterminant() Returns the determinant of the matrix.

GetHandedness() Returns the sign of the determinant of the matrix, i.e.

GetInverse(det, eps) Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular.

GetOrthonormalized(issueWarning) Returns an orthonormalized copy of the matrix.

GetRow(i) Gets a row of the matrix as a Vec3.

GetTranspose() Returns the transpose of the matrix.

IsLeftHanded() Returns true if the vectors in matrix form a left-handed coordinate system.

IsRightHanded() Returns true if the vectors in the matrix form a right-handed coordinate system.

Orthonormalize(issueWarning) Makes the matrix orthonormal in place.

Set(m00, m01, m02, m10, m11, m12, m20, m21, m22) Sets the matrix from 9 independent double values, specified in row-major order.

SetColumn(i, v) Sets a column of the matrix from a Vec3.

SetDiagonal(s) Sets the matrix to s times the identity matrix.

SetIdentity() Sets the matrix to the identity matrix.

SetRotate(rot) Sets the matrix to specify a rotation equivalent to rot.

SetRow(i, v) Sets a row of the matrix from a Vec3.

SetScale(scaleFactors) Sets the matrix to specify a nonuniform scaling in x, y, and z by the factors in vector scaleFactors.

SetZero() Sets the matrix to zero.

Attributes:

dimension

ExtractRotation() → Rotation Returns the rotation corresponding to this matrix. This works well only if the matrix represents a rotation. For good results, consider calling Orthonormalize() before calling this method.

GetColumn(i) → Vec3d Gets a column of the matrix as a Vec3.

Parameters i (int) –

GetDeterminant() → float Returns the determinant of the matrix.

GetHandedness() → float Returns the sign of the determinant of the matrix, i.e. 1 for a right-handed matrix, -1 for a left-handed matrix, and 0 for a singular matrix.

GetInverse(det, eps) → Matrix3d Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular. (FLT_MAX is the largest value a float can have, as defined by the system.) The matrix is considered singular if the determinant is less than or equal to the optional parameter eps. If det is non-null, *det is set to the determinant.

Parameters

det (float) – eps (float) –

GetOrthonormalized(issueWarning) → Matrix3d Returns an orthonormalized copy of the matrix.

Parameters issueWarning (bool) –

GetRow(i) → Vec3d Gets a row of the matrix as a Vec3.

Parameters i (int) –

GetTranspose() → Matrix3d Returns the transpose of the matrix.

IsLeftHanded() → bool Returns true if the vectors in matrix form a left-handed coordinate system.

IsRightHanded() → bool Returns true if the vectors in the matrix form a right-handed coordinate system.

Orthonormalize(issueWarning) → bool Makes the matrix orthonormal in place. This is an iterative method that is much more stable than the previous cross/cross method. If the iterative method does not converge, a warning is issued. Returns true if the iteration converged, false otherwise. Leaves any translation part of the matrix unchanged. If issueWarning is true, this method will issue a warning if the iteration does not converge, otherwise it will be silent.

Parameters issueWarning (bool) –

Set(m00, m01, m02, m10, m11, m12, m20, m21, m22) → Matrix3d Sets the matrix from 9 independent double values, specified in row-major order. For example, parameter m10 specifies the value in row 1 and column 0.

Parameters

m00 (float) – m01 (float) – m02 (float) – m10 (float) – m11 (float) – m12 (float) – m20 (float) – m21 (float) – m22 (float) –

Set(m) -> Matrix3d Sets the matrix from a 3x3 array of double values, specified in row-major order.

Parameters m (float) –

SetColumn(i, v) → None Sets a column of the matrix from a Vec3.

Parameters

i (int) – v (Vec3d) –

SetDiagonal(s) → Matrix3d Sets the matrix to s times the identity matrix.

Parameters s (float) –

SetDiagonal(arg1) -> Matrix3d Sets the matrix to have diagonal ( v[0], v[1], v[2] ).

Parameters arg1 (Vec3d) –

SetIdentity() → Matrix3d Sets the matrix to the identity matrix.

SetRotate(rot) → Matrix3d Sets the matrix to specify a rotation equivalent to rot.

Parameters rot (Quatd) –

SetRotate(rot) -> Matrix3d Sets the matrix to specify a rotation equivalent to rot.

Parameters rot (Rotation) –

SetRow(i, v) → None Sets a row of the matrix from a Vec3.

Parameters

i (int) – v (Vec3d) –

SetScale(scaleFactors) → Matrix3d Sets the matrix to specify a nonuniform scaling in x, y, and z by the factors in vector scaleFactors.

Parameters scaleFactors (Vec3d) –

SetScale(scaleFactor) -> Matrix3d Sets matrix to specify a uniform scaling by scaleFactor.

Parameters scaleFactor (float) –

SetZero() → Matrix3d Sets the matrix to zero.

dimension = (3, 3)

class pxr.Gf.Matrix3f Methods:

ExtractRotation() Returns the rotation corresponding to this matrix.

GetColumn(i) Gets a column of the matrix as a Vec3.

GetDeterminant() Returns the determinant of the matrix.

GetHandedness() Returns the sign of the determinant of the matrix, i.e.

GetInverse(det, eps) Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular.

GetOrthonormalized(issueWarning) Returns an orthonormalized copy of the matrix.

GetRow(i) Gets a row of the matrix as a Vec3.

GetTranspose() Returns the transpose of the matrix.

IsLeftHanded() Returns true if the vectors in matrix form a left-handed coordinate system.

IsRightHanded() Returns true if the vectors in the matrix form a right-handed coordinate system.

Orthonormalize(issueWarning) Makes the matrix orthonormal in place.

Set(m00, m01, m02, m10, m11, m12, m20, m21, m22) Sets the matrix from 9 independent float values, specified in row- major order.

SetColumn(i, v) Sets a column of the matrix from a Vec3.

SetDiagonal(s) Sets the matrix to s times the identity matrix.

SetIdentity() Sets the matrix to the identity matrix.

SetRotate(rot) Sets the matrix to specify a rotation equivalent to rot.

SetRow(i, v) Sets a row of the matrix from a Vec3.

SetScale(scaleFactors) Sets the matrix to specify a nonuniform scaling in x, y, and z by the factors in vector scaleFactors.

SetZero() Sets the matrix to zero.

Attributes:

dimension

ExtractRotation() → Rotation Returns the rotation corresponding to this matrix. This works well only if the matrix represents a rotation. For good results, consider calling Orthonormalize() before calling this method.

GetColumn(i) → Vec3f Gets a column of the matrix as a Vec3.

Parameters i (int) –

GetDeterminant() → float Returns the determinant of the matrix.

GetHandedness() → float Returns the sign of the determinant of the matrix, i.e. 1 for a right-handed matrix, -1 for a left-handed matrix, and 0 for a singular matrix.

GetInverse(det, eps) → Matrix3f Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular. (FLT_MAX is the largest value a float can have, as defined by the system.) The matrix is considered singular if the determinant is less than or equal to the optional parameter eps. If det is non-null, *det is set to the determinant.

Parameters

det (float) – eps (float) –

GetOrthonormalized(issueWarning) → Matrix3f Returns an orthonormalized copy of the matrix.

Parameters issueWarning (bool) –

GetRow(i) → Vec3f Gets a row of the matrix as a Vec3.

Parameters i (int) –

GetTranspose() → Matrix3f Returns the transpose of the matrix.

IsLeftHanded() → bool Returns true if the vectors in matrix form a left-handed coordinate system.

IsRightHanded() → bool Returns true if the vectors in the matrix form a right-handed coordinate system.

Orthonormalize(issueWarning) → bool Makes the matrix orthonormal in place. This is an iterative method that is much more stable than the previous cross/cross method. If the iterative method does not converge, a warning is issued. Returns true if the iteration converged, false otherwise. Leaves any translation part of the matrix unchanged. If issueWarning is true, this method will issue a warning if the iteration does not converge, otherwise it will be silent.

Parameters issueWarning (bool) –

Set(m00, m01, m02, m10, m11, m12, m20, m21, m22) → Matrix3f Sets the matrix from 9 independent float values, specified in row- major order. For example, parameter m10 specifies the value in row 1 and column 0.

Parameters

m00 (float) – m01 (float) – m02 (float) – m10 (float) – m11 (float) – m12 (float) – m20 (float) – m21 (float) – m22 (float) –

Set(m) -> Matrix3f Sets the matrix from a 3x3 array of float values, specified in row-major order.

Parameters m (float) –

SetColumn(i, v) → None Sets a column of the matrix from a Vec3.

Parameters

i (int) – v (Vec3f) –

SetDiagonal(s) → Matrix3f Sets the matrix to s times the identity matrix.

Parameters s (float) –

SetDiagonal(arg1) -> Matrix3f Sets the matrix to have diagonal ( v[0], v[1], v[2] ).

Parameters arg1 (Vec3f) –

SetIdentity() → Matrix3f Sets the matrix to the identity matrix.

SetRotate(rot) → Matrix3f Sets the matrix to specify a rotation equivalent to rot.

Parameters rot (Quatf) –

SetRotate(rot) -> Matrix3f Sets the matrix to specify a rotation equivalent to rot.

Parameters rot (Rotation) –

SetRow(i, v) → None Sets a row of the matrix from a Vec3.

Parameters

i (int) – v (Vec3f) –

SetScale(scaleFactors) → Matrix3f Sets the matrix to specify a nonuniform scaling in x, y, and z by the factors in vector scaleFactors.

Parameters scaleFactors (Vec3f) –

SetScale(scaleFactor) -> Matrix3f Sets matrix to specify a uniform scaling by scaleFactor.

Parameters scaleFactor (float) –

SetZero() → Matrix3f Sets the matrix to zero.

dimension = (3, 3)

class pxr.Gf.Matrix4d Methods:

ExtractRotation() Returns the rotation corresponding to this matrix.

ExtractRotationMatrix() Returns the rotation corresponding to this matrix.

ExtractRotationQuat() Return the rotation corresponding to this matrix as a quaternion.

ExtractTranslation() Returns the translation part of the matrix, defined as the first three elements of the last row.

Factor(r, s, u, t, p, eps) Factors the matrix into 5 components:

GetColumn(i) Gets a column of the matrix as a Vec4.

GetDeterminant() Returns the determinant of the matrix.

GetDeterminant3() Returns the determinant of the upper 3x3 matrix.

GetHandedness() Returns the sign of the determinant of the upper 3x3 matrix, i.e.

GetInverse(det, eps) Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular.

GetOrthonormalized(issueWarning) Returns an orthonormalized copy of the matrix.

GetRow(i) Gets a row of the matrix as a Vec4.

GetRow3(i) Gets a row of the matrix as a Vec3.

GetTranspose() Returns the transpose of the matrix.

HasOrthogonalRows3() Returns true, if the row vectors of the upper 3x3 matrix form an orthogonal basis.

IsLeftHanded() Returns true if the vectors in the upper 3x3 matrix form a left-handed coordinate system.

IsRightHanded() Returns true if the vectors in the upper 3x3 matrix form a right- handed coordinate system.

Orthonormalize(issueWarning) Makes the matrix orthonormal in place.

RemoveScaleShear() Returns the matrix with any scaling or shearing removed, leaving only the rotation and translation.

Set(m00, m01, m02, m03, m10, m11, m12, m13, ...) Sets the matrix from 16 independent double values, specified in row-major order.

SetColumn(i, v) Sets a column of the matrix from a Vec4.

SetDiagonal(s) Sets the matrix to s times the identity matrix.

SetIdentity() Sets the matrix to the identity matrix.

SetLookAt(eyePoint, centerPoint, upDirection) Sets the matrix to specify a viewing matrix from parameters similar to those used by gluLookAt(3G) .

SetRotate(rot) Sets the matrix to specify a rotation equivalent to rot, and clears the translation.

SetRotateOnly(rot) Sets the matrix to specify a rotation equivalent to rot, without clearing the translation.

SetRow(i, v) Sets a row of the matrix from a Vec4.

SetRow3(i, v) Sets a row of the matrix from a Vec3.

SetScale(scaleFactors) Sets the matrix to specify a nonuniform scaling in x, y, and z by the factors in vector scaleFactors.

SetTransform(rotate, translate) Sets matrix to specify a rotation by rotate and a translation by translate.

SetTranslate(trans) Sets matrix to specify a translation by the vector trans, and clears the rotation.

SetTranslateOnly(t) Sets matrix to specify a translation by the vector trans, without clearing the rotation.

SetZero() Sets the matrix to zero.

Transform(vec) Transforms the row vector vec by the matrix, returning the result.

TransformAffine(vec) Transforms the row vector vec by the matrix, returning the result.

TransformDir(vec) Transforms row vector vec by the matrix, returning the result.

Attributes:

dimension

ExtractRotation() → Rotation Returns the rotation corresponding to this matrix. This works well only if the matrix represents a rotation. For good results, consider calling Orthonormalize() before calling this method.

ExtractRotationMatrix() → Matrix3d Returns the rotation corresponding to this matrix. This works well only if the matrix represents a rotation. For good results, consider calling Orthonormalize() before calling this method.

ExtractRotationQuat() → Quatd Return the rotation corresponding to this matrix as a quaternion. This works well only if the matrix represents a rotation. For good results, consider calling Orthonormalize() before calling this method.

ExtractTranslation() → Vec3d Returns the translation part of the matrix, defined as the first three elements of the last row.

Factor(r, s, u, t, p, eps) → bool Factors the matrix into 5 components:

M = r * s * -r * u * t where t is a translation. u and r are rotations, and -r is the transpose (inverse) of r. The u matrix may contain shear information. s is a scale. Any projection information could be returned in matrix p, but currently p is never modified. Returns false if the matrix is singular (as determined by eps). In that case, any zero scales in s are clamped to eps to allow computation of u.

Parameters

r (Matrix4d) – s (Vec3d) – u (Matrix4d) – t (Vec3d) – p (Matrix4d) – eps (float) –

GetColumn(i) → Vec4d Gets a column of the matrix as a Vec4.

Parameters i (int) –

GetDeterminant() → float Returns the determinant of the matrix.

GetDeterminant3() → float Returns the determinant of the upper 3x3 matrix. This method is useful when the matrix describes a linear transformation such as a rotation or scale because the other values in the 4x4 matrix are not important.

GetHandedness() → float Returns the sign of the determinant of the upper 3x3 matrix, i.e. 1 for a right-handed matrix, -1 for a left-handed matrix, and 0 for a singular matrix.

GetInverse(det, eps) → Matrix4d Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular. (FLT_MAX is the largest value a float can have, as defined by the system.) The matrix is considered singular if the determinant is less than or equal to the optional parameter eps. If det is non-null, *det is set to the determinant.

Parameters

det (float) – eps (float) –

GetOrthonormalized(issueWarning) → Matrix4d Returns an orthonormalized copy of the matrix.

Parameters issueWarning (bool) –

GetRow(i) → Vec4d Gets a row of the matrix as a Vec4.

Parameters i (int) –

GetRow3(i) → Vec3d Gets a row of the matrix as a Vec3.

Parameters i (int) –

GetTranspose() → Matrix4d Returns the transpose of the matrix.

HasOrthogonalRows3() → bool Returns true, if the row vectors of the upper 3x3 matrix form an orthogonal basis. Note they do not have to be unit length for this test to return true.

IsLeftHanded() → bool Returns true if the vectors in the upper 3x3 matrix form a left-handed coordinate system.

IsRightHanded() → bool Returns true if the vectors in the upper 3x3 matrix form a right- handed coordinate system.

Orthonormalize(issueWarning) → bool Makes the matrix orthonormal in place. This is an iterative method that is much more stable than the previous cross/cross method. If the iterative method does not converge, a warning is issued. Returns true if the iteration converged, false otherwise. Leaves any translation part of the matrix unchanged. If issueWarning is true, this method will issue a warning if the iteration does not converge, otherwise it will be silent.

Parameters issueWarning (bool) –

RemoveScaleShear() → Matrix4d Returns the matrix with any scaling or shearing removed, leaving only the rotation and translation. If the matrix cannot be decomposed, returns the original matrix.

Set(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) → Matrix4d Sets the matrix from 16 independent double values, specified in row-major order. For example, parameter m10 specifies the value in row 1 and column 0.

Parameters

m00 (float) – m01 (float) – m02 (float) – m03 (float) – m10 (float) – m11 (float) – m12 (float) – m13 (float) – m20 (float) – m21 (float) – m22 (float) – m23 (float) – m30 (float) – m31 (float) – m32 (float) – m33 (float) –

Set(m) -> Matrix4d Sets the matrix from a 4x4 array of double values, specified in row-major order.

Parameters m (float) –

SetColumn(i, v) → None Sets a column of the matrix from a Vec4.

Parameters

i (int) – v (Vec4d) –

SetDiagonal(s) → Matrix4d Sets the matrix to s times the identity matrix.

Parameters s (float) –

SetDiagonal(arg1) -> Matrix4d Sets the matrix to have diagonal ( v[0], v[1], v[2], v[3] ).

Parameters arg1 (Vec4d) –

SetIdentity() → Matrix4d Sets the matrix to the identity matrix.

SetLookAt(eyePoint, centerPoint, upDirection) → Matrix4d Sets the matrix to specify a viewing matrix from parameters similar to those used by gluLookAt(3G) . eyePoint represents the eye point in world space. centerPoint represents the world-space center of attention. upDirection is a vector indicating which way is up.

Parameters

eyePoint (Vec3d) – centerPoint (Vec3d) – upDirection (Vec3d) –

SetLookAt(eyePoint, orientation) -> Matrix4d Sets the matrix to specify a viewing matrix from a world-space eyePoint and a world-space rotation that rigidly rotates the orientation from its canonical frame, which is defined to be looking along the -z axis with the +y axis as the up direction.

Parameters

eyePoint (Vec3d) – orientation (Rotation) –

SetRotate(rot) → Matrix4d Sets the matrix to specify a rotation equivalent to rot, and clears the translation.

Parameters rot (Quatd) –

SetRotate(rot) -> Matrix4d Sets the matrix to specify a rotation equivalent to rot, and clears the translation.

Parameters rot (Rotation) –

SetRotate(mx) -> Matrix4d Sets the matrix to specify a rotation equivalent to mx, and clears the translation.

Parameters mx (Matrix3d) –

SetRotateOnly(rot) → Matrix4d Sets the matrix to specify a rotation equivalent to rot, without clearing the translation.

Parameters rot (Quatd) –

SetRotateOnly(rot) -> Matrix4d Sets the matrix to specify a rotation equivalent to rot, without clearing the translation.

Parameters rot (Rotation) –

SetRotateOnly(mx) -> Matrix4d Sets the matrix to specify a rotation equivalent to mx, without clearing the translation.

Parameters mx (Matrix3d) –

SetRow(i, v) → None Sets a row of the matrix from a Vec4.

Parameters

i (int) – v (Vec4d) –

SetRow3(i, v) → None Sets a row of the matrix from a Vec3. The fourth element of the row is ignored.

Parameters

i (int) – v (Vec3d) –

SetScale(scaleFactors) → Matrix4d Sets the matrix to specify a nonuniform scaling in x, y, and z by the factors in vector scaleFactors.

Parameters scaleFactors (Vec3d) –

SetScale(scaleFactor) -> Matrix4d Sets matrix to specify a uniform scaling by scaleFactor.

Parameters scaleFactor (float) –

SetTransform(rotate, translate) → Matrix4d Sets matrix to specify a rotation by rotate and a translation by translate.

Parameters

rotate (Rotation) – translate (Vec3d) –

SetTransform(rotmx, translate) -> Matrix4d Sets matrix to specify a rotation by rotmx and a translation by translate.

Parameters

rotmx (Matrix3d) – translate (Vec3d) –

SetTranslate(trans) → Matrix4d Sets matrix to specify a translation by the vector trans, and clears the rotation.

Parameters trans (Vec3d) –

SetTranslateOnly(t) → Matrix4d Sets matrix to specify a translation by the vector trans, without clearing the rotation.

Parameters t (Vec3d) –

SetZero() → Matrix4d Sets the matrix to zero.

Transform(vec) → Vec3d Transforms the row vector vec by the matrix, returning the result. This treats the vector as a 4-component vector whose fourth component is 1.

Parameters vec (Vec3d) –

Transform(vec) -> Vec3f Transforms the row vector vec by the matrix, returning the result. This treats the vector as a 4-component vector whose fourth component is 1. This is an overloaded method; it differs from the other version in that it returns a different value type.

Parameters vec (Vec3f) –

TransformAffine(vec) → Vec3d Transforms the row vector vec by the matrix, returning the result. This treats the vector as a 4-component vector whose fourth component is 1 and ignores the fourth column of the matrix (i.e. assumes it is (0, 0, 0, 1)).

Parameters vec (Vec3d) –

TransformAffine(vec) -> Vec3f Transforms the row vector vec by the matrix, returning the result. This treats the vector as a 4-component vector whose fourth component is 1 and ignores the fourth column of the matrix (i.e. assumes it is (0, 0, 0, 1)).

Parameters vec (Vec3f) –

TransformDir(vec) → Vec3d Transforms row vector vec by the matrix, returning the result. This treats the vector as a direction vector, so the translation information in the matrix is ignored. That is, it treats the vector as a 4-component vector whose fourth component is 0.

Parameters vec (Vec3d) –

TransformDir(vec) -> Vec3f Transforms row vector vec by the matrix, returning the result. This treats the vector as a direction vector, so the translation information in the matrix is ignored. That is, it treats the vector as a 4-component vector whose fourth component is 0. This is an overloaded method; it differs from the other version in that it returns a different value type.

Parameters vec (Vec3f) –

dimension = (4, 4)

class pxr.Gf.Matrix4f Methods:

ExtractRotation() Returns the rotation corresponding to this matrix.

ExtractRotationMatrix() Returns the rotation corresponding to this matrix.

ExtractRotationQuat() Return the rotation corresponding to this matrix as a quaternion.

ExtractTranslation() Returns the translation part of the matrix, defined as the first three elements of the last row.

Factor(r, s, u, t, p, eps) Factors the matrix into 5 components:

GetColumn(i) Gets a column of the matrix as a Vec4.

GetDeterminant() Returns the determinant of the matrix.

GetDeterminant3() Returns the determinant of the upper 3x3 matrix.

GetHandedness() Returns the sign of the determinant of the upper 3x3 matrix, i.e.

GetInverse(det, eps) Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular.

GetOrthonormalized(issueWarning) Returns an orthonormalized copy of the matrix.

GetRow(i) Gets a row of the matrix as a Vec4.

GetRow3(i) Gets a row of the matrix as a Vec3.

GetTranspose() Returns the transpose of the matrix.

HasOrthogonalRows3() Returns true, if the row vectors of the upper 3x3 matrix form an orthogonal basis.

IsLeftHanded() Returns true if the vectors in the upper 3x3 matrix form a left-handed coordinate system.

IsRightHanded() Returns true if the vectors in the upper 3x3 matrix form a right- handed coordinate system.

Orthonormalize(issueWarning) Makes the matrix orthonormal in place.

RemoveScaleShear() Returns the matrix with any scaling or shearing removed, leaving only the rotation and translation.

Set(m00, m01, m02, m03, m10, m11, m12, m13, ...) Sets the matrix from 16 independent float values, specified in row-major order.

SetColumn(i, v) Sets a column of the matrix from a Vec4.

SetDiagonal(s) Sets the matrix to s times the identity matrix.

SetIdentity() Sets the matrix to the identity matrix.

SetLookAt(eyePoint, centerPoint, upDirection) Sets the matrix to specify a viewing matrix from parameters similar to those used by gluLookAt(3G) .

SetRotate(rot) Sets the matrix to specify a rotation equivalent to rot, and clears the translation.

SetRotateOnly(rot) Sets the matrix to specify a rotation equivalent to rot, without clearing the translation.

SetRow(i, v) Sets a row of the matrix from a Vec4.

SetRow3(i, v) Sets a row of the matrix from a Vec3.

SetScale(scaleFactors) Sets the matrix to specify a nonuniform scaling in x, y, and z by the factors in vector scaleFactors.

SetTransform(rotate, translate) Sets matrix to specify a rotation by rotate and a translation by translate.

SetTranslate(trans) Sets matrix to specify a translation by the vector trans, and clears the rotation.

SetTranslateOnly(t) Sets matrix to specify a translation by the vector trans, without clearing the rotation.

SetZero() Sets the matrix to zero.

Transform(vec) Transforms the row vector vec by the matrix, returning the result.

TransformAffine(vec) Transforms the row vector vec by the matrix, returning the result.

TransformDir(vec) Transforms row vector vec by the matrix, returning the result.

Attributes:

dimension

ExtractRotation() → Rotation Returns the rotation corresponding to this matrix. This works well only if the matrix represents a rotation. For good results, consider calling Orthonormalize() before calling this method.

ExtractRotationMatrix() → Matrix3f Returns the rotation corresponding to this matrix. This works well only if the matrix represents a rotation. For good results, consider calling Orthonormalize() before calling this method.

ExtractRotationQuat() → Quatf Return the rotation corresponding to this matrix as a quaternion. This works well only if the matrix represents a rotation. For good results, consider calling Orthonormalize() before calling this method.

ExtractTranslation() → Vec3f Returns the translation part of the matrix, defined as the first three elements of the last row.

Factor(r, s, u, t, p, eps) → bool Factors the matrix into 5 components:

M = r * s * -r * u * t where t is a translation. u and r are rotations, and -r is the transpose (inverse) of r. The u matrix may contain shear information. s is a scale. Any projection information could be returned in matrix p, but currently p is never modified. Returns false if the matrix is singular (as determined by eps). In that case, any zero scales in s are clamped to eps to allow computation of u.

Parameters

r (Matrix4f) – s (Vec3f) – u (Matrix4f) – t (Vec3f) – p (Matrix4f) – eps (float) –

GetColumn(i) → Vec4f Gets a column of the matrix as a Vec4.

Parameters i (int) –

GetDeterminant() → float Returns the determinant of the matrix.

GetDeterminant3() → float Returns the determinant of the upper 3x3 matrix. This method is useful when the matrix describes a linear transformation such as a rotation or scale because the other values in the 4x4 matrix are not important.

GetHandedness() → float Returns the sign of the determinant of the upper 3x3 matrix, i.e. 1 for a right-handed matrix, -1 for a left-handed matrix, and 0 for a singular matrix.

GetInverse(det, eps) → Matrix4f Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular. (FLT_MAX is the largest value a float can have, as defined by the system.) The matrix is considered singular if the determinant is less than or equal to the optional parameter eps. If det is non-null, *det is set to the determinant.

Parameters

det (float) – eps (float) –

GetOrthonormalized(issueWarning) → Matrix4f Returns an orthonormalized copy of the matrix.

Parameters issueWarning (bool) –

GetRow(i) → Vec4f Gets a row of the matrix as a Vec4.

Parameters i (int) –

GetRow3(i) → Vec3f Gets a row of the matrix as a Vec3.

Parameters i (int) –

GetTranspose() → Matrix4f Returns the transpose of the matrix.

HasOrthogonalRows3() → bool Returns true, if the row vectors of the upper 3x3 matrix form an orthogonal basis. Note they do not have to be unit length for this test to return true.

IsLeftHanded() → bool Returns true if the vectors in the upper 3x3 matrix form a left-handed coordinate system.

IsRightHanded() → bool Returns true if the vectors in the upper 3x3 matrix form a right- handed coordinate system.

Orthonormalize(issueWarning) → bool Makes the matrix orthonormal in place. This is an iterative method that is much more stable than the previous cross/cross method. If the iterative method does not converge, a warning is issued. Returns true if the iteration converged, false otherwise. Leaves any translation part of the matrix unchanged. If issueWarning is true, this method will issue a warning if the iteration does not converge, otherwise it will be silent.

Parameters issueWarning (bool) –

RemoveScaleShear() → Matrix4f Returns the matrix with any scaling or shearing removed, leaving only the rotation and translation. If the matrix cannot be decomposed, returns the original matrix.

Set(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) → Matrix4f Sets the matrix from 16 independent float values, specified in row-major order. For example, parameter m10 specifies the value in row1 and column 0.

Parameters

m00 (float) – m01 (float) – m02 (float) – m03 (float) – m10 (float) – m11 (float) – m12 (float) – m13 (float) – m20 (float) – m21 (float) – m22 (float) – m23 (float) – m30 (float) – m31 (float) – m32 (float) – m33 (float) –

Set(m) -> Matrix4f Sets the matrix from a 4x4 array of float values, specified in row-major order.

Parameters m (float) –

SetColumn(i, v) → None Sets a column of the matrix from a Vec4.

Parameters

i (int) – v (Vec4f) –

SetDiagonal(s) → Matrix4f Sets the matrix to s times the identity matrix.

Parameters s (float) –

SetDiagonal(arg1) -> Matrix4f Sets the matrix to have diagonal ( v[0], v[1], v[2], v[3] ).

Parameters arg1 (Vec4f) –

SetIdentity() → Matrix4f Sets the matrix to the identity matrix.

SetLookAt(eyePoint, centerPoint, upDirection) → Matrix4f Sets the matrix to specify a viewing matrix from parameters similar to those used by gluLookAt(3G) . eyePoint represents the eye point in world space. centerPoint represents the world-space center of attention. upDirection is a vector indicating which way is up.

Parameters

eyePoint (Vec3f) – centerPoint (Vec3f) – upDirection (Vec3f) –

SetLookAt(eyePoint, orientation) -> Matrix4f Sets the matrix to specify a viewing matrix from a world-space eyePoint and a world-space rotation that rigidly rotates the orientation from its canonical frame, which is defined to be looking along the -z axis with the +y axis as the up direction.

Parameters

eyePoint (Vec3f) – orientation (Rotation) –

SetRotate(rot) → Matrix4f Sets the matrix to specify a rotation equivalent to rot, and clears the translation.

Parameters rot (Quatf) –

SetRotate(rot) -> Matrix4f Sets the matrix to specify a rotation equivalent to rot, and clears the translation.

Parameters rot (Rotation) –

SetRotate(mx) -> Matrix4f Sets the matrix to specify a rotation equivalent to mx, and clears the translation.

Parameters mx (Matrix3f) –

SetRotateOnly(rot) → Matrix4f Sets the matrix to specify a rotation equivalent to rot, without clearing the translation.

Parameters rot (Quatf) –

SetRotateOnly(rot) -> Matrix4f Sets the matrix to specify a rotation equivalent to rot, without clearing the translation.

Parameters rot (Rotation) –

SetRotateOnly(mx) -> Matrix4f Sets the matrix to specify a rotation equivalent to mx, without clearing the translation.

Parameters mx (Matrix3f) –

SetRow(i, v) → None Sets a row of the matrix from a Vec4.

Parameters

i (int) – v (Vec4f) –

SetRow3(i, v) → None Sets a row of the matrix from a Vec3. The fourth element of the row is ignored.

Parameters

i (int) – v (Vec3f) –

SetScale(scaleFactors) → Matrix4f Sets the matrix to specify a nonuniform scaling in x, y, and z by the factors in vector scaleFactors.

Parameters scaleFactors (Vec3f) –

SetScale(scaleFactor) -> Matrix4f Sets matrix to specify a uniform scaling by scaleFactor.

Parameters scaleFactor (float) –

SetTransform(rotate, translate) → Matrix4f Sets matrix to specify a rotation by rotate and a translation by translate.

Parameters

rotate (Rotation) – translate (Vec3f) –

SetTransform(rotmx, translate) -> Matrix4f Sets matrix to specify a rotation by rotmx and a translation by translate.

Parameters

rotmx (Matrix3f) – translate (Vec3f) –

SetTranslate(trans) → Matrix4f Sets matrix to specify a translation by the vector trans, and clears the rotation.

Parameters trans (Vec3f) –

SetTranslateOnly(t) → Matrix4f Sets matrix to specify a translation by the vector trans, without clearing the rotation.

Parameters t (Vec3f) –

SetZero() → Matrix4f Sets the matrix to zero.

Transform(vec) → Vec3d Transforms the row vector vec by the matrix, returning the result. This treats the vector as a 4-component vector whose fourth component is 1.

Parameters vec (Vec3d) –

Transform(vec) -> Vec3f Transforms the row vector vec by the matrix, returning the result. This treats the vector as a 4-component vector whose fourth component is 1. This is an overloaded method; it differs from the other version in that it returns a different value type.

Parameters vec (Vec3f) –

TransformAffine(vec) → Vec3d Transforms the row vector vec by the matrix, returning the result. This treats the vector as a 4-component vector whose fourth component is 1 and ignores the fourth column of the matrix (i.e. assumes it is (0, 0, 0, 1)).

Parameters vec (Vec3d) –

TransformAffine(vec) -> Vec3f Transforms the row vector vec by the matrix, returning the result. This treats the vector as a 4-component vector whose fourth component is 1 and ignores the fourth column of the matrix (i.e. assumes it is (0, 0, 0, 1)).

Parameters vec (Vec3f) –

TransformDir(vec) → Vec3d Transforms row vector vec by the matrix, returning the result. This treats the vector as a direction vector, so the translation information in the matrix is ignored. That is, it treats the vector as a 4-component vector whose fourth component is 0.

Parameters vec (Vec3d) –

TransformDir(vec) -> Vec3f Transforms row vector vec by the matrix, returning the result. This treats the vector as a direction vector, so the translation information in the matrix is ignored. That is, it treats the vector as a 4-component vector whose fourth component is 0. This is an overloaded method; it differs from the other version in that it returns a different value type.

Parameters vec (Vec3f) –

dimension = (4, 4)

class pxr.Gf.MultiInterval Methods:

Add(i) Add the given interval to the multi-interval.

ArithmeticAdd(i) Uses the given interval to extend the multi-interval in the interval arithmetic sense.

Clear() Clear the multi-interval.

Contains Returns true if x is inside the multi-interval.

GetBounds() Returns an interval bounding the entire multi-interval.

GetComplement() Return the complement of this set.

GetFullInterval classmethod GetFullInterval() -> MultiInterval

GetSize() Returns the number of intervals in the set.

Intersect(i)

param i

IsEmpty() Returns true if the multi-interval is empty.

Remove(i) Remove the given interval from this multi-interval.

Attributes:

bounds

isEmpty

size

Add(i) → None Add the given interval to the multi-interval.

Parameters i (Interval) –

Add(s) -> None Add the given multi-interval to the multi-interval. Sets this object to the union of the two sets.

Parameters s (MultiInterval) –

ArithmeticAdd(i) → None Uses the given interval to extend the multi-interval in the interval arithmetic sense.

Parameters i (Interval) –

Clear() → None Clear the multi-interval.

Contains() Returns true if x is inside the multi-interval. Returns true if x is inside the multi-interval. Returns true if x is inside the multi-interval.

GetBounds() → Interval Returns an interval bounding the entire multi-interval. Returns an empty interval if the multi-interval is empty.

GetComplement() → MultiInterval Return the complement of this set.

static GetFullInterval() classmethod GetFullInterval() -> MultiInterval Returns the full interval (-inf, inf).

GetSize() → int Returns the number of intervals in the set.

Intersect(i) → None

Parameters i (Interval) –

Intersect(s) -> None

Parameters s (MultiInterval) –

IsEmpty() → bool Returns true if the multi-interval is empty.

Remove(i) → None Remove the given interval from this multi-interval.

Parameters i (Interval) –

Remove(s) -> None Remove the given multi-interval from this multi-interval.

Parameters s (MultiInterval) –

property bounds

property isEmpty

property size

class pxr.Gf.Plane Methods:

GetDistance(p) Returns the distance of point from the plane.

GetDistanceFromOrigin() Returns the distance of the plane from the origin.

GetEquation() Give the coefficients of the equation of the plane.

GetNormal() Returns the unit-length normal vector of the plane.

IntersectsPositiveHalfSpace(box) Returns true if the given aligned bounding box is at least partially on the positive side (the one the normal points into) of the plane.

Project(p) Return the projection of p onto the plane.

Reorient(p) Flip the plane normal (if necessary) so that p is in the positive halfspace.

Set(normal, distanceToOrigin) Sets this to the plane perpendicular to normal and at distance units from the origin.

Transform(matrix) Transforms the plane by the given matrix.

Attributes:

distanceFromOrigin

normal

GetDistance(p) → float Returns the distance of point from the plane. This distance will be positive if the point is on the side of the plane containing the normal.

Parameters p (Vec3d) –

GetDistanceFromOrigin() → float Returns the distance of the plane from the origin.

GetEquation() → Vec4d Give the coefficients of the equation of the plane. Suitable to OpenGL calls to set the clipping plane.

GetNormal() → Vec3d Returns the unit-length normal vector of the plane.

IntersectsPositiveHalfSpace(box) → bool Returns true if the given aligned bounding box is at least partially on the positive side (the one the normal points into) of the plane.

Parameters box (Range3d) –

IntersectsPositiveHalfSpace(pt) -> bool Returns true if the given point is on the plane or within its positive half space.

Parameters pt (Vec3d) –

Project(p) → Vec3d Return the projection of p onto the plane.

Parameters p (Vec3d) –

Reorient(p) → None Flip the plane normal (if necessary) so that p is in the positive halfspace.

Parameters p (Vec3d) –

Set(normal, distanceToOrigin) → None Sets this to the plane perpendicular to normal and at distance units from the origin. The passed-in normal is normalized to unit length first.

Parameters

normal (Vec3d) – distanceToOrigin (float) –

Set(normal, point) -> None This constructor sets this to the plane perpendicular to normal and that passes through point . The passed-in normal is normalized to unit length first.

Parameters

normal (Vec3d) – point (Vec3d) –

Set(p0, p1, p2) -> None This constructor sets this to the plane that contains the three given points. The normal is constructed from the cross product of ( p1 - p0 ) ( p2 - p0 ). Results are undefined if the points are collinear.

Parameters

p0 (Vec3d) – p1 (Vec3d) – p2 (Vec3d) –

Set(eqn) -> None This method sets this to the plane given by the equation eqn [0]

  • x + eqn [1] * y + eqn [2] * z + eqn [3] = 0.

Parameters eqn (Vec4d) –

Transform(matrix) → Plane Transforms the plane by the given matrix.

Parameters matrix (Matrix4d) –

property distanceFromOrigin

property normal

class pxr.Gf.Quatd Methods:

GetConjugate() Return this quaternion's conjugate, which is the quaternion with the same real coefficient and negated imaginary coefficients.

GetIdentity classmethod GetIdentity() -> Quatd

GetImaginary() Return the imaginary coefficient.

GetInverse() Return this quaternion's inverse, or reciprocal.

GetLength() Return geometric length of this quaternion.

GetNormalized(eps) length of this quaternion is smaller than eps , return the identity quaternion.

GetReal() Return the real coefficient.

GetZero classmethod GetZero() -> Quatd

Normalize(eps) Normalizes this quaternion in place to unit length, returning the length before normalization.

SetImaginary(imaginary) Set the imaginary coefficients.

SetReal(real) Set the real coefficient.

Transform(point) Transform the GfVec3d point.

Attributes:

imaginary

real

GetConjugate() → Quatd Return this quaternion’s conjugate, which is the quaternion with the same real coefficient and negated imaginary coefficients.

static GetIdentity() classmethod GetIdentity() -> Quatd Return the identity quaternion, with real coefficient 1 and an imaginary coefficients all zero.

GetImaginary() → Vec3d Return the imaginary coefficient.

GetInverse() → Quatd Return this quaternion’s inverse, or reciprocal. This is the quaternion’s conjugate divided by it’s squared length.

GetLength() → float Return geometric length of this quaternion.

GetNormalized(eps) → Quatd length of this quaternion is smaller than eps , return the identity quaternion.

Parameters eps (float) –

GetReal() → float Return the real coefficient.

static GetZero() classmethod GetZero() -> Quatd Return the zero quaternion, with real coefficient 0 and an imaginary coefficients all zero.

Normalize(eps) → float Normalizes this quaternion in place to unit length, returning the length before normalization. If the length of this quaternion is smaller than eps , this sets the quaternion to identity.

Parameters eps (float) –

SetImaginary(imaginary) → None Set the imaginary coefficients.

Parameters imaginary (Vec3d) –

SetImaginary(i, j, k) -> None Set the imaginary coefficients.

Parameters

i (float) – j (float) – k (float) –

SetReal(real) → None Set the real coefficient.

Parameters real (float) –

Transform(point) → Vec3d Transform the GfVec3d point. If the quaternion is normalized, the transformation is a rotation. Given a GfQuatd q, q.Transform(point) is equivalent to: (q * GfQuatd(0, point) * q.GetInverse()).GetImaginary() but is more efficient.

Parameters point (Vec3d) –

property imaginary

property real

class pxr.Gf.Quaternion Quaternion class Methods:

GetIdentity classmethod GetIdentity() -> Quaternion

GetImaginary() Returns the imaginary part of the quaternion.

GetInverse() Returns the inverse of this quaternion.

GetLength() Returns geometric length of this quaternion.

GetNormalized(eps) Returns a normalized (unit-length) version of this quaternion.

GetReal() Returns the real part of the quaternion.

GetZero classmethod GetZero() -> Quaternion

Normalize(eps) Normalizes this quaternion in place to unit length, returning the length before normalization.

Attributes:

imaginary None

real None

static GetIdentity() classmethod GetIdentity() -> Quaternion Returns the identity quaternion, which has a real part of 1 and an imaginary part of (0,0,0).

GetImaginary() → Vec3d Returns the imaginary part of the quaternion.

GetInverse() → Quaternion Returns the inverse of this quaternion.

GetLength() → float Returns geometric length of this quaternion.

GetNormalized(eps) → Quaternion Returns a normalized (unit-length) version of this quaternion. direction as this. If the length of this quaternion is smaller than eps , this returns the identity quaternion.

Parameters eps (float) –

GetReal() → float Returns the real part of the quaternion.

static GetZero() classmethod GetZero() -> Quaternion Returns the zero quaternion, which has a real part of 0 and an imaginary part of (0,0,0).

Normalize(eps) → float Normalizes this quaternion in place to unit length, returning the length before normalization. If the length of this quaternion is smaller than eps , this sets the quaternion to identity.

Parameters eps (float) –

property imaginary None Sets the imaginary part of the quaternion.

Type type

property real None Sets the real part of the quaternion.

Type type

class pxr.Gf.Quatf Methods:

GetConjugate() Return this quaternion's conjugate, which is the quaternion with the same real coefficient and negated imaginary coefficients.

GetIdentity classmethod GetIdentity() -> Quatf

GetImaginary() Return the imaginary coefficient.

GetInverse() Return this quaternion's inverse, or reciprocal.

GetLength() Return geometric length of this quaternion.

GetNormalized(eps) length of this quaternion is smaller than eps , return the identity quaternion.

GetReal() Return the real coefficient.

GetZero classmethod GetZero() -> Quatf

Normalize(eps) Normalizes this quaternion in place to unit length, returning the length before normalization.

SetImaginary(imaginary) Set the imaginary coefficients.

SetReal(real) Set the real coefficient.

Transform(point) Transform the GfVec3f point.

Attributes:

imaginary

real

GetConjugate() → Quatf Return this quaternion’s conjugate, which is the quaternion with the same real coefficient and negated imaginary coefficients.

static GetIdentity() classmethod GetIdentity() -> Quatf Return the identity quaternion, with real coefficient 1 and an imaginary coefficients all zero.

GetImaginary() → Vec3f Return the imaginary coefficient.

GetInverse() → Quatf Return this quaternion’s inverse, or reciprocal. This is the quaternion’s conjugate divided by it’s squared length.

GetLength() → float Return geometric length of this quaternion.

GetNormalized(eps) → Quatf length of this quaternion is smaller than eps , return the identity quaternion.

Parameters eps (float) –

GetReal() → float Return the real coefficient.

static GetZero() classmethod GetZero() -> Quatf Return the zero quaternion, with real coefficient 0 and an imaginary coefficients all zero.

Normalize(eps) → float Normalizes this quaternion in place to unit length, returning the length before normalization. If the length of this quaternion is smaller than eps , this sets the quaternion to identity.

Parameters eps (float) –

SetImaginary(imaginary) → None Set the imaginary coefficients.

Parameters imaginary (Vec3f) –

SetImaginary(i, j, k) -> None Set the imaginary coefficients.

Parameters

i (float) – j (float) – k (float) –

SetReal(real) → None Set the real coefficient.

Parameters real (float) –

Transform(point) → Vec3f Transform the GfVec3f point. If the quaternion is normalized, the transformation is a rotation. Given a GfQuatf q, q.Transform(point) is equivalent to: (q * GfQuatf(0, point) * q.GetInverse()).GetImaginary() but is more efficient.

Parameters point (Vec3f) –

property imaginary

property real

class pxr.Gf.Quath Methods:

GetConjugate() Return this quaternion's conjugate, which is the quaternion with the same real coefficient and negated imaginary coefficients.

GetIdentity classmethod GetIdentity() -> Quath

GetImaginary() Return the imaginary coefficient.

GetInverse() Return this quaternion's inverse, or reciprocal.

GetLength() Return geometric length of this quaternion.

GetNormalized(eps) length of this quaternion is smaller than eps , return the identity quaternion.

GetReal() Return the real coefficient.

GetZero classmethod GetZero() -> Quath

Normalize(eps) Normalizes this quaternion in place to unit length, returning the length before normalization.

SetImaginary(imaginary) Set the imaginary coefficients.

SetReal(real) Set the real coefficient.

Transform(point) Transform the GfVec3h point.

Attributes:

imaginary

real

GetConjugate() → Quath Return this quaternion’s conjugate, which is the quaternion with the same real coefficient and negated imaginary coefficients.

static GetIdentity() classmethod GetIdentity() -> Quath Return the identity quaternion, with real coefficient 1 and an imaginary coefficients all zero.

GetImaginary() → Vec3h Return the imaginary coefficient.

GetInverse() → Quath Return this quaternion’s inverse, or reciprocal. This is the quaternion’s conjugate divided by it’s squared length.

GetLength() → GfHalf Return geometric length of this quaternion.

GetNormalized(eps) → Quath length of this quaternion is smaller than eps , return the identity quaternion.

Parameters eps (GfHalf) –

GetReal() → GfHalf Return the real coefficient.

static GetZero() classmethod GetZero() -> Quath Return the zero quaternion, with real coefficient 0 and an imaginary coefficients all zero.

Normalize(eps) → GfHalf Normalizes this quaternion in place to unit length, returning the length before normalization. If the length of this quaternion is smaller than eps , this sets the quaternion to identity.

Parameters eps (GfHalf) –

SetImaginary(imaginary) → None Set the imaginary coefficients.

Parameters imaginary (Vec3h) –

SetImaginary(i, j, k) -> None Set the imaginary coefficients.

Parameters

i (GfHalf) – j (GfHalf) – k (GfHalf) –

SetReal(real) → None Set the real coefficient.

Parameters real (GfHalf) –

Transform(point) → Vec3h Transform the GfVec3h point. If the quaternion is normalized, the transformation is a rotation. Given a GfQuath q, q.Transform(point) is equivalent to: (q * GfQuath(0, point) * q.GetInverse()).GetImaginary() but is more efficient.

Parameters point (Vec3h) –

property imaginary

property real

class pxr.Gf.Range1d Methods:

Contains(point) Returns true if the point is located inside the range.

GetDistanceSquared(p) Compute the squared distance from a point to the range.

GetIntersection classmethod GetIntersection(a, b) -> Range1d

GetMax() Returns the maximum value of the range.

GetMidpoint() Returns the midpoint of the range, that is, 0.5*(min+max).

GetMin() Returns the minimum value of the range.

GetSize() Returns the size of the range.

GetUnion classmethod GetUnion(a, b) -> Range1d

IntersectWith(b) Modifies this range to hold its intersection with b and returns the result.

IsEmpty() Returns whether the range is empty (max<min).

SetEmpty() Sets the range to an empty interval.

SetMax(max) Sets the maximum value of the range.

SetMin(min) Sets the minimum value of the range.

UnionWith(b) Extend this to include b .

Attributes:

dimension

max

min

Contains(point) → bool Returns true if the point is located inside the range. As with all operations of this type, the range is assumed to include its extrema.

Parameters point (float) –

Contains(range) -> bool Returns true if the range is located entirely inside the range. As with all operations of this type, the ranges are assumed to include their extrema.

Parameters range (Range1d) –

GetDistanceSquared(p) → float Compute the squared distance from a point to the range.

Parameters p (float) –

static GetIntersection() classmethod GetIntersection(a, b) -> Range1d Returns a GfRange1d that describes the intersection of a and b .

Parameters

a (Range1d) – b (Range1d) –

GetMax() → float Returns the maximum value of the range.

GetMidpoint() → float Returns the midpoint of the range, that is, 0.5*(min+max). Note: this returns zero in the case of default-constructed ranges, or ranges set via SetEmpty() .

GetMin() → float Returns the minimum value of the range.

GetSize() → float Returns the size of the range.

static GetUnion() classmethod GetUnion(a, b) -> Range1d Returns the smallest GfRange1d which contains both a and b .

Parameters

a (Range1d) – b (Range1d) –

IntersectWith(b) → Range1d Modifies this range to hold its intersection with b and returns the result.

Parameters b (Range1d) –

IsEmpty() → bool Returns whether the range is empty (max<min).

SetEmpty() → None Sets the range to an empty interval.

SetMax(max) → None Sets the maximum value of the range.

Parameters max (float) –

SetMin(min) → None Sets the minimum value of the range.

Parameters min (float) –

UnionWith(b) → Range1d Extend this to include b .

Parameters b (Range1d) –

UnionWith(b) -> Range1d Extend this to include b .

Parameters b (float) –

dimension = 1

property max

property min

class pxr.Gf.Range1f Methods:

Contains(point) Returns true if the point is located inside the range.

GetDistanceSquared(p) Compute the squared distance from a point to the range.

GetIntersection classmethod GetIntersection(a, b) -> Range1f

GetMax() Returns the maximum value of the range.

GetMidpoint() Returns the midpoint of the range, that is, 0.5*(min+max).

GetMin() Returns the minimum value of the range.

GetSize() Returns the size of the range.

GetUnion classmethod GetUnion(a, b) -> Range1f

IntersectWith(b) Modifies this range to hold its intersection with b and returns the result.

IsEmpty() Returns whether the range is empty (max<min).

SetEmpty() Sets the range to an empty interval.

SetMax(max) Sets the maximum value of the range.

SetMin(min) Sets the minimum value of the range.

UnionWith(b) Extend this to include b .

Attributes:

dimension

max

min

Contains(point) → bool Returns true if the point is located inside the range. As with all operations of this type, the range is assumed to include its extrema.

Parameters point (float) –

Contains(range) -> bool Returns true if the range is located entirely inside the range. As with all operations of this type, the ranges are assumed to include their extrema.

Parameters range (Range1f) –

GetDistanceSquared(p) → float Compute the squared distance from a point to the range.

Parameters p (float) –

static GetIntersection() classmethod GetIntersection(a, b) -> Range1f Returns a GfRange1f that describes the intersection of a and b .

Parameters

a (Range1f) – b (Range1f) –

GetMax() → float Returns the maximum value of the range.

GetMidpoint() → float Returns the midpoint of the range, that is, 0.5*(min+max). Note: this returns zero in the case of default-constructed ranges, or ranges set via SetEmpty() .

GetMin() → float Returns the minimum value of the range.

GetSize() → float Returns the size of the range.

static GetUnion() classmethod GetUnion(a, b) -> Range1f Returns the smallest GfRange1f which contains both a and b .

Parameters

a (Range1f) – b (Range1f) –

IntersectWith(b) → Range1f Modifies this range to hold its intersection with b and returns the result.

Parameters b (Range1f) –

IsEmpty() → bool Returns whether the range is empty (max<min).

SetEmpty() → None Sets the range to an empty interval.

SetMax(max) → None Sets the maximum value of the range.

Parameters max (float) –

SetMin(min) → None Sets the minimum value of the range.

Parameters min (float) –

UnionWith(b) → Range1f Extend this to include b .

Parameters b (Range1f) –

UnionWith(b) -> Range1f Extend this to include b .

Parameters b (float) –

dimension = 1

property max

property min

class pxr.Gf.Range2d Methods:

Contains(point) Returns true if the point is located inside the range.

GetCorner(i) Returns the ith corner of the range, in the following order: SW, SE, NW, NE.

GetDistanceSquared(p) Compute the squared distance from a point to the range.

GetIntersection classmethod GetIntersection(a, b) -> Range2d

GetMax() Returns the maximum value of the range.

GetMidpoint() Returns the midpoint of the range, that is, 0.5*(min+max).

GetMin() Returns the minimum value of the range.

GetQuadrant(i) Returns the ith quadrant of the range, in the following order: SW, SE, NW, NE.

GetSize() Returns the size of the range.

GetUnion classmethod GetUnion(a, b) -> Range2d

IntersectWith(b) Modifies this range to hold its intersection with b and returns the result.

IsEmpty() Returns whether the range is empty (max<min).

SetEmpty() Sets the range to an empty interval.

SetMax(max) Sets the maximum value of the range.

SetMin(min) Sets the minimum value of the range.

UnionWith(b) Extend this to include b .

Attributes:

dimension

max

min

unitSquare

Contains(point) → bool Returns true if the point is located inside the range. As with all operations of this type, the range is assumed to include its extrema.

Parameters point (Vec2d) –

Contains(range) -> bool Returns true if the range is located entirely inside the range. As with all operations of this type, the ranges are assumed to include their extrema.

Parameters range (Range2d) –

GetCorner(i) → Vec2d Returns the ith corner of the range, in the following order: SW, SE, NW, NE.

Parameters i (int) –

GetDistanceSquared(p) → float Compute the squared distance from a point to the range.

Parameters p (Vec2d) –

static GetIntersection() classmethod GetIntersection(a, b) -> Range2d Returns a GfRange2d that describes the intersection of a and b .

Parameters

a (Range2d) – b (Range2d) –

GetMax() → Vec2d Returns the maximum value of the range.

GetMidpoint() → Vec2d Returns the midpoint of the range, that is, 0.5*(min+max). Note: this returns zero in the case of default-constructed ranges, or ranges set via SetEmpty() .

GetMin() → Vec2d Returns the minimum value of the range.

GetQuadrant(i) → Range2d Returns the ith quadrant of the range, in the following order: SW, SE, NW, NE.

Parameters i (int) –

GetSize() → Vec2d Returns the size of the range.

static GetUnion() classmethod GetUnion(a, b) -> Range2d Returns the smallest GfRange2d which contains both a and b .

Parameters

a (Range2d) – b (Range2d) –

IntersectWith(b) → Range2d Modifies this range to hold its intersection with b and returns the result.

Parameters b (Range2d) –

IsEmpty() → bool Returns whether the range is empty (max<min).

SetEmpty() → None Sets the range to an empty interval.

SetMax(max) → None Sets the maximum value of the range.

Parameters max (Vec2d) –

SetMin(min) → None Sets the minimum value of the range.

Parameters min (Vec2d) –

UnionWith(b) → Range2d Extend this to include b .

Parameters b (Range2d) –

UnionWith(b) -> Range2d Extend this to include b .

Parameters b (Vec2d) –

dimension = 2

property max

property min

unitSquare = Gf.Range2d(Gf.Vec2d(0.0, 0.0), Gf.Vec2d(1.0, 1.0))

class pxr.Gf.Range2f Methods:

Contains(point) Returns true if the point is located inside the range.

GetCorner(i) Returns the ith corner of the range, in the following order: SW, SE, NW, NE.

GetDistanceSquared(p) Compute the squared distance from a point to the range.

GetIntersection classmethod GetIntersection(a, b) -> Range2f

GetMax() Returns the maximum value of the range.

GetMidpoint() Returns the midpoint of the range, that is, 0.5*(min+max).

GetMin() Returns the minimum value of the range.

GetQuadrant(i) Returns the ith quadrant of the range, in the following order: SW, SE, NW, NE.

GetSize() Returns the size of the range.

GetUnion classmethod GetUnion(a, b) -> Range2f

IntersectWith(b) Modifies this range to hold its intersection with b and returns the result.

IsEmpty() Returns whether the range is empty (max<min).

SetEmpty() Sets the range to an empty interval.

SetMax(max) Sets the maximum value of the range.

SetMin(min) Sets the minimum value of the range.

UnionWith(b) Extend this to include b .

Attributes:

dimension

max

min

unitSquare

Contains(point) → bool Returns true if the point is located inside the range. As with all operations of this type, the range is assumed to include its extrema.

Parameters point (Vec2f) –

Contains(range) -> bool Returns true if the range is located entirely inside the range. As with all operations of this type, the ranges are assumed to include their extrema.

Parameters range (Range2f) –

GetCorner(i) → Vec2f Returns the ith corner of the range, in the following order: SW, SE, NW, NE.

Parameters i (int) –

GetDistanceSquared(p) → float Compute the squared distance from a point to the range.

Parameters p (Vec2f) –

static GetIntersection() classmethod GetIntersection(a, b) -> Range2f Returns a GfRange2f that describes the intersection of a and b .

Parameters

a (Range2f) – b (Range2f) –

GetMax() → Vec2f Returns the maximum value of the range.

GetMidpoint() → Vec2f Returns the midpoint of the range, that is, 0.5*(min+max). Note: this returns zero in the case of default-constructed ranges, or ranges set via SetEmpty() .

GetMin() → Vec2f Returns the minimum value of the range.

GetQuadrant(i) → Range2f Returns the ith quadrant of the range, in the following order: SW, SE, NW, NE.

Parameters i (int) –

GetSize() → Vec2f Returns the size of the range.

static GetUnion() classmethod GetUnion(a, b) -> Range2f Returns the smallest GfRange2f which contains both a and b .

Parameters

a (Range2f) – b (Range2f) –

IntersectWith(b) → Range2f Modifies this range to hold its intersection with b and returns the result.

Parameters b (Range2f) –

IsEmpty() → bool Returns whether the range is empty (max<min).

SetEmpty() → None Sets the range to an empty interval.

SetMax(max) → None Sets the maximum value of the range.

Parameters max (Vec2f) –

SetMin(min) → None Sets the minimum value of the range.

Parameters min (Vec2f) –

UnionWith(b) → Range2f Extend this to include b .

Parameters b (Range2f) –

UnionWith(b) -> Range2f Extend this to include b .

Parameters b (Vec2f) –

dimension = 2

property max

property min

unitSquare = Gf.Range2f(Gf.Vec2f(0.0, 0.0), Gf.Vec2f(1.0, 1.0))

class pxr.Gf.Range3d Methods:

Contains(point) Returns true if the point is located inside the range.

GetCorner(i) Returns the ith corner of the range, in the following order: LDB, RDB, LUB, RUB, LDF, RDF, LUF, RUF.

GetDistanceSquared(p) Compute the squared distance from a point to the range.

GetIntersection classmethod GetIntersection(a, b) -> Range3d

GetMax() Returns the maximum value of the range.

GetMidpoint() Returns the midpoint of the range, that is, 0.5*(min+max).

GetMin() Returns the minimum value of the range.

GetOctant(i) Returns the ith octant of the range, in the following order: LDB, RDB, LUB, RUB, LDF, RDF, LUF, RUF.

GetSize() Returns the size of the range.

GetUnion classmethod GetUnion(a, b) -> Range3d

IntersectWith(b) Modifies this range to hold its intersection with b and returns the result.

IsEmpty() Returns whether the range is empty (max<min).

SetEmpty() Sets the range to an empty interval.

SetMax(max) Sets the maximum value of the range.

SetMin(min) Sets the minimum value of the range.

UnionWith(b) Extend this to include b .

Attributes:

dimension

max

min

unitCube

Contains(point) → bool Returns true if the point is located inside the range. As with all operations of this type, the range is assumed to include its extrema.

Parameters point (Vec3d) –

Contains(range) -> bool Returns true if the range is located entirely inside the range. As with all operations of this type, the ranges are assumed to include their extrema.

Parameters range (Range3d) –

GetCorner(i) → Vec3d Returns the ith corner of the range, in the following order: LDB, RDB, LUB, RUB, LDF, RDF, LUF, RUF. Where L/R is left/right, D/U is down/up, and B/F is back/front.

Parameters i (int) –

GetDistanceSquared(p) → float Compute the squared distance from a point to the range.

Parameters p (Vec3d) –

static GetIntersection() classmethod GetIntersection(a, b) -> Range3d Returns a GfRange3d that describes the intersection of a and b .

Parameters

a (Range3d) – b (Range3d) –

GetMax() → Vec3d Returns the maximum value of the range.

GetMidpoint() → Vec3d Returns the midpoint of the range, that is, 0.5*(min+max). Note: this returns zero in the case of default-constructed ranges, or ranges set via SetEmpty() .

GetMin() → Vec3d Returns the minimum value of the range.

GetOctant(i) → Range3d Returns the ith octant of the range, in the following order: LDB, RDB, LUB, RUB, LDF, RDF, LUF, RUF. Where L/R is left/right, D/U is down/up, and B/F is back/front.

Parameters i (int) –

GetSize() → Vec3d Returns the size of the range.

static GetUnion() classmethod GetUnion(a, b) -> Range3d Returns the smallest GfRange3d which contains both a and b .

Parameters

a (Range3d) – b (Range3d) –

IntersectWith(b) → Range3d Modifies this range to hold its intersection with b and returns the result.

Parameters b (Range3d) –

IsEmpty() → bool Returns whether the range is empty (max<min).

SetEmpty() → None Sets the range to an empty interval.

SetMax(max) → None Sets the maximum value of the range.

Parameters max (Vec3d) –

SetMin(min) → None Sets the minimum value of the range.

Parameters min (Vec3d) –

UnionWith(b) → Range3d Extend this to include b .

Parameters b (Range3d) –

UnionWith(b) -> Range3d Extend this to include b .

Parameters b (Vec3d) –

dimension = 3

property max

property min

unitCube = Gf.Range3d(Gf.Vec3d(0.0, 0.0, 0.0), Gf.Vec3d(1.0, 1.0, 1.0))

class pxr.Gf.Range3f Methods:

Contains(point) Returns true if the point is located inside the range.

GetCorner(i) Returns the ith corner of the range, in the following order: LDB, RDB, LUB, RUB, LDF, RDF, LUF, RUF.

GetDistanceSquared(p) Compute the squared distance from a point to the range.

GetIntersection classmethod GetIntersection(a, b) -> Range3f

GetMax() Returns the maximum value of the range.

GetMidpoint() Returns the midpoint of the range, that is, 0.5*(min+max).

GetMin() Returns the minimum value of the range.

GetOctant(i) Returns the ith octant of the range, in the following order: LDB, RDB, LUB, RUB, LDF, RDF, LUF, RUF.

GetSize() Returns the size of the range.

GetUnion classmethod GetUnion(a, b) -> Range3f

IntersectWith(b) Modifies this range to hold its intersection with b and returns the result.

IsEmpty() Returns whether the range is empty (max<min).

SetEmpty() Sets the range to an empty interval.

SetMax(max) Sets the maximum value of the range.

SetMin(min) Sets the minimum value of the range.

UnionWith(b) Extend this to include b .

Attributes:

dimension

max

min

unitCube

Contains(point) → bool Returns true if the point is located inside the range. As with all operations of this type, the range is assumed to include its extrema.

Parameters point (Vec3f) –

Contains(range) -> bool Returns true if the range is located entirely inside the range. As with all operations of this type, the ranges are assumed to include their extrema.

Parameters range (Range3f) –

GetCorner(i) → Vec3f Returns the ith corner of the range, in the following order: LDB, RDB, LUB, RUB, LDF, RDF, LUF, RUF. Where L/R is left/right, D/U is down/up, and B/F is back/front.

Parameters i (int) –

GetDistanceSquared(p) → float Compute the squared distance from a point to the range.

Parameters p (Vec3f) –

static GetIntersection() classmethod GetIntersection(a, b) -> Range3f Returns a GfRange3f that describes the intersection of a and b .

Parameters

a (Range3f) – b (Range3f) –

GetMax() → Vec3f Returns the maximum value of the range.

GetMidpoint() → Vec3f Returns the midpoint of the range, that is, 0.5*(min+max). Note: this returns zero in the case of default-constructed ranges, or ranges set via SetEmpty() .

GetMin() → Vec3f Returns the minimum value of the range.

GetOctant(i) → Range3f Returns the ith octant of the range, in the following order: LDB, RDB, LUB, RUB, LDF, RDF, LUF, RUF. Where L/R is left/right, D/U is down/up, and B/F is back/front.

Parameters i (int) –

GetSize() → Vec3f Returns the size of the range.

static GetUnion() classmethod GetUnion(a, b) -> Range3f Returns the smallest GfRange3f which contains both a and b .

Parameters

a (Range3f) – b (Range3f) –

IntersectWith(b) → Range3f Modifies this range to hold its intersection with b and returns the result.

Parameters b (Range3f) –

IsEmpty() → bool Returns whether the range is empty (max<min).

SetEmpty() → None Sets the range to an empty interval.

SetMax(max) → None Sets the maximum value of the range.

Parameters max (Vec3f) –

SetMin(min) → None Sets the minimum value of the range.

Parameters min (Vec3f) –

UnionWith(b) → Range3f Extend this to include b .

Parameters b (Range3f) –

UnionWith(b) -> Range3f Extend this to include b .

Parameters b (Vec3f) –

dimension = 3

property max

property min

unitCube = Gf.Range3f(Gf.Vec3f(0.0, 0.0, 0.0), Gf.Vec3f(1.0, 1.0, 1.0))

class pxr.Gf.Ray Methods:

FindClosestPoint(point, rayDistance) Returns the point on the ray that is closest to point .

GetPoint(distance) Returns the point that is distance units from the starting point along the direction vector, expressed in parametic distance.

Intersect(p0, p1, p2) float, barycentric = GfVec3d, frontFacing = bool>

SetEnds(startPoint, endPoint) Sets the ray by specifying a starting point and an ending point.

SetPointAndDirection(startPoint, direction) Sets the ray by specifying a starting point and a direction.

Transform(matrix) Transforms the ray by the given matrix.

Attributes:

direction Vec3d

startPoint Vec3d

FindClosestPoint(point, rayDistance) → Vec3d Returns the point on the ray that is closest to point . If rayDistance is not None , it will be set to the parametric distance along the ray of the closest point.

Parameters

point (Vec3d) – rayDistance (float) –

GetPoint(distance) → Vec3d Returns the point that is distance units from the starting point along the direction vector, expressed in parametic distance.

Parameters distance (float) –

Intersect(p0, p1, p2) → tuple<intersects = bool, dist = float, barycentric = GfVec3d, frontFacing = bool> Intersects the ray with the triangle formed by points p0, p1, and p2. The first item in the tuple is true if the ray intersects the triangle. dist is the the parametric distance to the intersection point, the barycentric coordinates of the intersection point, and the front-facing flag. The barycentric coordinates are defined with respect to the three vertices taken in order. The front-facing flag is True if the intersection hit the side of the triangle that is formed when the vertices are ordered counter-clockwise (right-hand rule). Barycentric coordinates are defined to sum to 1 and satisfy this relationsip:

intersectionPoint = (barycentricCoords[0] * p0 +barycentricCoords[1] * p1 + barycentricCoords[2] * p2);

Intersect( plane ) -> tuple<intersects = bool, dist = float, frontFacing = bool> Intersects the ray with the Gf.Plane. The first item in the returned tuple is true if the ray intersects the plane. dist is the parametric distance to the intersection point and frontfacing is true if the intersection is on the side of the plane toward which the plane’s normal points. ———————————————————————- Intersect( range3d ) -> tuple<intersects = bool, enterDist = float, exitDist = float> Intersects the plane with an axis-aligned box in a Gf.Range3d. intersects is true if the ray intersects it at all within bounds. If there is an intersection then enterDist and exitDist will be the parametric distances to the two intersection points. ———————————————————————- Intersect( bbox3d ) -> tuple<intersects = bool, enterDist = float, exitDist = float> Intersects the plane with an oriented box in a Gf.BBox3d. intersects is true if the ray intersects it at all within bounds. If there is an intersection then enterDist and exitDist will be the parametric distances to the two intersection points. ———————————————————————- Intersect( center, radius ) -> tuple<intersects = bool, enterDist = float, exitDist = float> Intersects the plane with an sphere. intersects is true if the ray intersects it at all within the sphere. If there is an intersection then enterDist and exitDist will be the parametric distances to the two intersection points. ———————————————————————- Intersect( origin, axis, radius ) -> tuple<intersects = bool, enterDist = float, exitDist = float> Intersects the plane with an infinite cylinder. intersects is true if the ray intersects it at all within the sphere. If there is an intersection then enterDist and exitDist will be the parametric distances to the two intersection points. ———————————————————————- Intersect( origin, axis, radius, height ) -> tuple<intersects = bool, enterDist = float, exitDist = float> Intersects the plane with an cylinder. intersects is true if the ray intersects it at all within the sphere. If there is an intersection then enterDist and exitDist will be the parametric distances to the two intersection points. ———————————————————————-

SetEnds(startPoint, endPoint) → None Sets the ray by specifying a starting point and an ending point.

Parameters

startPoint (Vec3d) – endPoint (Vec3d) –

SetPointAndDirection(startPoint, direction) → None Sets the ray by specifying a starting point and a direction.

Parameters

startPoint (Vec3d) – direction (Vec3d) –

Transform(matrix) → Ray Transforms the ray by the given matrix.

Parameters matrix (Matrix4d) –

property direction Vec3d Returns the direction vector of the segment. This is not guaranteed to be unit length.

Type type

property startPoint Vec3d Returns the starting point of the segment.

Type type

class pxr.Gf.Rect2i Methods:

Contains(p) Returns true if the specified point in the rectangle.

GetArea() Return the area of the rectangle.

GetCenter() Returns the center point of the rectangle.

GetHeight() Returns the height of the rectangle.

GetIntersection(that) Computes the intersection of two rectangles.

GetMax() Returns the max corner of the rectangle.

GetMaxX() Return the X value of the max corner.

GetMaxY() Return the Y value of the max corner.

GetMin() Returns the min corner of the rectangle.

GetMinX() Return the X value of min corner.

GetMinY() Return the Y value of the min corner.

GetNormalized() Returns a normalized rectangle, i.e.

GetSize() Returns the size of the rectangle as a vector (width,height).

GetUnion(that) Computes the union of two rectangles.

GetWidth() Returns the width of the rectangle.

IsEmpty() Returns true if the rectangle is empty.

IsNull() Returns true if the rectangle is a null rectangle.

IsValid() Return true if the rectangle is valid (equivalently, not empty).

SetMax(max) Sets the max corner of the rectangle.

SetMaxX(x) Set the X value of the max corner.

SetMaxY(y) Set the Y value of the max corner.

SetMin(min) Sets the min corner of the rectangle.

SetMinX(x) Set the X value of the min corner.

SetMinY(y) Set the Y value of the min corner.

Translate(displacement) Move the rectangle by displ .

Attributes:

max

maxX

maxY

min

minX

minY

Contains(p) → bool Returns true if the specified point in the rectangle.

Parameters p (Vec2i) –

GetArea() → int Return the area of the rectangle.

GetCenter() → Vec2i Returns the center point of the rectangle.

GetHeight() → int Returns the height of the rectangle. If the min and max y-coordinates are coincident, the height is one.

GetIntersection(that) → Rect2i Computes the intersection of two rectangles.

Parameters that (Rect2i) –

GetMax() → Vec2i Returns the max corner of the rectangle.

GetMaxX() → int Return the X value of the max corner.

GetMaxY() → int Return the Y value of the max corner.

GetMin() → Vec2i Returns the min corner of the rectangle.

GetMinX() → int Return the X value of min corner.

GetMinY() → int Return the Y value of the min corner.

GetNormalized() → Rect2i Returns a normalized rectangle, i.e. one that has a non-negative width and height. GetNormalized() swaps the min and max x-coordinates to ensure a non-negative width, and similarly for the y-coordinates.

GetSize() → Vec2i Returns the size of the rectangle as a vector (width,height).

GetUnion(that) → Rect2i Computes the union of two rectangles.

Parameters that (Rect2i) –

GetWidth() → int Returns the width of the rectangle. If the min and max x-coordinates are coincident, the width is one.

IsEmpty() → bool Returns true if the rectangle is empty. An empty rectangle has one or both of its min coordinates strictly greater than the corresponding max coordinate. An empty rectangle is not valid.

IsNull() → bool Returns true if the rectangle is a null rectangle. A null rectangle has both the width and the height set to 0, that is GetMaxX() == GetMinX() - 1

and

GetMaxY() == GetMinY() - 1

Remember that if GetMinX() and GetMaxX() return the same

value then the rectangle has width 1, and similarly for the height. A null rectangle is both empty, and not valid.

IsValid() → bool Return true if the rectangle is valid (equivalently, not empty).

SetMax(max) → None Sets the max corner of the rectangle.

Parameters max (Vec2i) –

SetMaxX(x) → None Set the X value of the max corner.

Parameters x (int) –

SetMaxY(y) → None Set the Y value of the max corner.

Parameters y (int) –

SetMin(min) → None Sets the min corner of the rectangle.

Parameters min (Vec2i) –

SetMinX(x) → None Set the X value of the min corner.

Parameters x (int) –

SetMinY(y) → None Set the Y value of the min corner.

Parameters y (int) –

Translate(displacement) → None Move the rectangle by displ .

Parameters displacement (Vec2i) –

property max

property maxX

property maxY

property min

property minX

property minY

class pxr.Gf.Rotation 3-space rotation Methods:

Decompose(axis0, axis1, axis2) Decompose rotation about 3 orthogonal axes.

DecomposeRotation classmethod DecomposeRotation(rot, TwAxis, FBAxis, LRAxis, handedness, thetaTw, thetaFB, thetaLR, thetaSw, useHint, swShift) -> None

DecomposeRotation3

GetAngle() Returns the rotation angle in degrees.

GetAxis() Returns the axis of rotation.

GetInverse() Returns the inverse of this rotation.

GetQuat() Returns the rotation expressed as a quaternion.

GetQuaternion() Returns the rotation expressed as a quaternion.

MatchClosestEulerRotation classmethod MatchClosestEulerRotation(targetTw, targetFB, targetLR, targetSw, thetaTw, thetaFB, thetaLR, thetaSw) -> None

RotateOntoProjected classmethod RotateOntoProjected(v1, v2, axis) -> Rotation

SetAxisAngle(axis, angle) Sets the rotation to be angle degrees about axis .

SetIdentity() Sets the rotation to an identity rotation.

SetQuat(quat) Sets the rotation from a quaternion.

SetQuaternion(quat) Sets the rotation from a quaternion.

SetRotateInto(rotateFrom, rotateTo) Sets the rotation to one that brings the rotateFrom vector to align with rotateTo .

TransformDir(vec) Transforms row vector vec by the rotation, returning the result.

Attributes:

angle

axis

Decompose(axis0, axis1, axis2) → Vec3d Decompose rotation about 3 orthogonal axes. If the axes are not orthogonal, warnings will be spewed.

Parameters

axis0 (Vec3d) – axis1 (Vec3d) – axis2 (Vec3d) –

static DecomposeRotation() classmethod DecomposeRotation(rot, TwAxis, FBAxis, LRAxis, handedness, thetaTw, thetaFB, thetaLR, thetaSw, useHint, swShift) -> None

Parameters

rot (Matrix4d) – TwAxis (Vec3d) – FBAxis (Vec3d) – LRAxis (Vec3d) – handedness (float) – thetaTw (float) – thetaFB (float) – thetaLR (float) – thetaSw (float) – useHint (bool) – swShift (float) –

static DecomposeRotation3()

GetAngle() → float Returns the rotation angle in degrees.

GetAxis() → Vec3d Returns the axis of rotation.

GetInverse() → Rotation Returns the inverse of this rotation.

GetQuat() → Quatd Returns the rotation expressed as a quaternion.

GetQuaternion() → Quaternion Returns the rotation expressed as a quaternion.

static MatchClosestEulerRotation() classmethod MatchClosestEulerRotation(targetTw, targetFB, targetLR, targetSw, thetaTw, thetaFB, thetaLR, thetaSw) -> None Replace the hint angles with the closest rotation of the given rotation to the hint. Each angle in the rotation will be within Pi of the corresponding hint angle and the sum of the differences with the hint will be minimized. If a given rotation value is null then that angle will be treated as 0.0 and ignored in the calculations. All angles are in radians. The rotation order is Tw/FB/LR/Sw.

Parameters

targetTw (float) – targetFB (float) – targetLR (float) – targetSw (float) – thetaTw (float) – thetaFB (float) – thetaLR (float) – thetaSw (float) –

static RotateOntoProjected() classmethod RotateOntoProjected(v1, v2, axis) -> Rotation

Parameters

v1 (Vec3d) – v2 (Vec3d) – axis (Vec3d) –

SetAxisAngle(axis, angle) → Rotation Sets the rotation to be angle degrees about axis .

Parameters

axis (Vec3d) – angle (float) –

SetIdentity() → Rotation Sets the rotation to an identity rotation. (This is chosen to be 0 degrees around the positive X axis.)

SetQuat(quat) → Rotation Sets the rotation from a quaternion. Note that this method accepts GfQuatf and GfQuath since they implicitly convert to GfQuatd.

Parameters quat (Quatd) –

SetQuaternion(quat) → Rotation Sets the rotation from a quaternion.

Parameters quat (Quaternion) –

SetRotateInto(rotateFrom, rotateTo) → Rotation Sets the rotation to one that brings the rotateFrom vector to align with rotateTo . The passed vectors need not be unit length.

Parameters

rotateFrom (Vec3d) – rotateTo (Vec3d) –

TransformDir(vec) → Vec3f Transforms row vector vec by the rotation, returning the result.

Parameters vec (Vec3f) –

TransformDir(vec) -> Vec3d This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters vec (Vec3d) –

property angle

property axis

class pxr.Gf.Size2 A 2D size class Methods:

Set(v) Set to the values in a given array.

Attributes:

dimension

Set(v) → Size2 Set to the values in a given array.

Parameters v (int) –

Set(v0, v1) -> Size2 Set to values passed directly.

Parameters

v0 (int) – v1 (int) –

dimension = 2

class pxr.Gf.Size3 A 3D size class Methods:

Set(v) Set to the values in v .

Attributes:

dimension

Set(v) → Size3 Set to the values in v .

Parameters v (int) –

Set(v0, v1, v2) -> Size3 Set to values passed directly.

Parameters

v0 (int) – v1 (int) – v2 (int) –

dimension = 3

class pxr.Gf.Transform Methods:

GetMatrix() Returns a GfMatrix4d that implements the cumulative transformation.

GetPivotOrientation() Returns the pivot orientation component.

GetPivotPosition() Returns the pivot position component.

GetRotation() Returns the rotation component.

GetScale() Returns the scale component.

GetTranslation() Returns the translation component.

Set Set method used by old 2x code.

SetIdentity() Sets the transformation to the identity transformation.

SetMatrix(m) Sets the transform components to implement the transformation represented by matrix m , ignoring any projection.

SetPivotOrientation(pivotOrient) Sets the pivot orientation component, leaving all others untouched.

SetPivotPosition(pivPos) Sets the pivot position component, leaving all others untouched.

SetRotation(rotation) Sets the rotation component, leaving all others untouched.

SetScale(scale) Sets the scale component, leaving all others untouched.

SetTranslation(translation) Sets the translation component, leaving all others untouched.

Attributes:

pivotOrientation

pivotPosition

rotation

scale

translation

GetMatrix() → Matrix4d Returns a GfMatrix4d that implements the cumulative transformation.

GetPivotOrientation() → Rotation Returns the pivot orientation component.

GetPivotPosition() → Vec3d Returns the pivot position component.

GetRotation() → Rotation Returns the rotation component.

GetScale() → Vec3d Returns the scale component.

GetTranslation() → Vec3d Returns the translation component.

Set() Set method used by old 2x code. (Deprecated)

SetIdentity() → Transform Sets the transformation to the identity transformation.

SetMatrix(m) → Transform Sets the transform components to implement the transformation represented by matrix m , ignoring any projection. This tries to leave the current center unchanged.

Parameters m (Matrix4d) –

SetPivotOrientation(pivotOrient) → None Sets the pivot orientation component, leaving all others untouched.

Parameters pivotOrient (Rotation) –

SetPivotPosition(pivPos) → None Sets the pivot position component, leaving all others untouched.

Parameters pivPos (Vec3d) –

SetRotation(rotation) → None Sets the rotation component, leaving all others untouched.

Parameters rotation (Rotation) –

SetScale(scale) → None Sets the scale component, leaving all others untouched.

Parameters scale (Vec3d) –

SetTranslation(translation) → None Sets the translation component, leaving all others untouched.

Parameters translation (Vec3d) –

property pivotOrientation

property pivotPosition

property rotation

property scale

property translation

class pxr.Gf.Vec2d Methods:

Axis classmethod Axis(i) -> Vec2d

GetComplement(b) Returns the orthogonal complement of this->GetProjection(b) .

GetDot

GetLength() Length.

GetNormalized(eps)

param eps

GetProjection(v) Returns the projection of this onto v .

Normalize(eps) Normalizes the vector in place to unit length, returning the length before normalization.

XAxis classmethod XAxis() -> Vec2d

YAxis classmethod YAxis() -> Vec2d

Attributes:

dimension

static Axis() classmethod Axis(i) -> Vec2d Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 2.

Parameters i (int) –

GetComplement(b) → Vec2d Returns the orthogonal complement of this->GetProjection(b) . That is: *this - this->GetProjection(b)

Parameters b (Vec2d) –

GetDot()

GetLength() → float Length.

GetNormalized(eps) → Vec2d

Parameters eps (float) –

GetProjection(v) → Vec2d Returns the projection of this onto v . That is: v * (*this * v)

Parameters v (Vec2d) –

Normalize(eps) → float Normalizes the vector in place to unit length, returning the length before normalization. If the length of the vector is smaller than eps , then the vector is set to vector/ eps . The original length of the vector is returned. See also GfNormalize() .

Parameters eps (float) –

static XAxis() classmethod XAxis() -> Vec2d Create a unit vector along the X-axis.

static YAxis() classmethod YAxis() -> Vec2d Create a unit vector along the Y-axis.

dimension = 2

class pxr.Gf.Vec2f Methods:

Axis classmethod Axis(i) -> Vec2f

GetComplement(b) Returns the orthogonal complement of this->GetProjection(b) .

GetDot

GetLength() Length.

GetNormalized(eps)

param eps

GetProjection(v) Returns the projection of this onto v .

Normalize(eps) Normalizes the vector in place to unit length, returning the length before normalization.

XAxis classmethod XAxis() -> Vec2f

YAxis classmethod YAxis() -> Vec2f

Attributes:

dimension

static Axis() classmethod Axis(i) -> Vec2f Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 2.

Parameters i (int) –

GetComplement(b) → Vec2f Returns the orthogonal complement of this->GetProjection(b) . That is: *this - this->GetProjection(b)

Parameters b (Vec2f) –

GetDot()

GetLength() → float Length.

GetNormalized(eps) → Vec2f

Parameters eps (float) –

GetProjection(v) → Vec2f Returns the projection of this onto v . That is: v * (*this * v)

Parameters v (Vec2f) –

Normalize(eps) → float Normalizes the vector in place to unit length, returning the length before normalization. If the length of the vector is smaller than eps , then the vector is set to vector/ eps . The original length of the vector is returned. See also GfNormalize() .

Parameters eps (float) –

static XAxis() classmethod XAxis() -> Vec2f Create a unit vector along the X-axis.

static YAxis() classmethod YAxis() -> Vec2f Create a unit vector along the Y-axis.

dimension = 2

class pxr.Gf.Vec2h Methods:

Axis classmethod Axis(i) -> Vec2h

GetComplement(b) Returns the orthogonal complement of this->GetProjection(b) .

GetDot

GetLength() Length.

GetNormalized(eps)

param eps

GetProjection(v) Returns the projection of this onto v .

Normalize(eps) Normalizes the vector in place to unit length, returning the length before normalization.

XAxis classmethod XAxis() -> Vec2h

YAxis classmethod YAxis() -> Vec2h

Attributes:

dimension

static Axis() classmethod Axis(i) -> Vec2h Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 2.

Parameters i (int) –

GetComplement(b) → Vec2h Returns the orthogonal complement of this->GetProjection(b) . That is: *this - this->GetProjection(b)

Parameters b (Vec2h) –

GetDot()

GetLength() → GfHalf Length.

GetNormalized(eps) → Vec2h

Parameters eps (GfHalf) –

GetProjection(v) → Vec2h Returns the projection of this onto v . That is: v * (*this * v)

Parameters v (Vec2h) –

Normalize(eps) → GfHalf Normalizes the vector in place to unit length, returning the length before normalization. If the length of the vector is smaller than eps , then the vector is set to vector/ eps . The original length of the vector is returned. See also GfNormalize() .

Parameters eps (GfHalf) –

static XAxis() classmethod XAxis() -> Vec2h Create a unit vector along the X-axis.

static YAxis() classmethod YAxis() -> Vec2h Create a unit vector along the Y-axis.

dimension = 2

class pxr.Gf.Vec2i Methods:

Axis classmethod Axis(i) -> Vec2i

GetDot

XAxis classmethod XAxis() -> Vec2i

YAxis classmethod YAxis() -> Vec2i

Attributes:

dimension

static Axis() classmethod Axis(i) -> Vec2i Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 2.

Parameters i (int) –

GetDot()

static XAxis() classmethod XAxis() -> Vec2i Create a unit vector along the X-axis.

static YAxis() classmethod YAxis() -> Vec2i Create a unit vector along the Y-axis.

dimension = 2

class pxr.Gf.Vec3d Methods:

Axis classmethod Axis(i) -> Vec3d

BuildOrthonormalFrame(v1, v2, eps) Sets v1 and v2 to unit vectors such that v1, v2 and *this are mutually orthogonal.

GetComplement(b) Returns the orthogonal complement of this->GetProjection(b) .

GetCross

GetDot

GetLength() Length.

GetNormalized(eps)

param eps

GetProjection(v) Returns the projection of this onto v .

Normalize(eps) Normalizes the vector in place to unit length, returning the length before normalization.

OrthogonalizeBasis classmethod OrthogonalizeBasis(tx, ty, tz, normalize, eps) -> bool

XAxis classmethod XAxis() -> Vec3d

YAxis classmethod YAxis() -> Vec3d

ZAxis classmethod ZAxis() -> Vec3d

Attributes:

dimension

static Axis() classmethod Axis(i) -> Vec3d Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 3.

Parameters i (int) –

BuildOrthonormalFrame(v1, v2, eps) → None Sets v1 and v2 to unit vectors such that v1, v2 and *this are mutually orthogonal. If the length L of *this is smaller than eps , then v1 and v2 will have magnitude L/eps. As a result, the function delivers a continuous result as *this shrinks in length.

Parameters

v1 (Vec3d) – v2 (Vec3d) – eps (float) –

GetComplement(b) → Vec3d Returns the orthogonal complement of this->GetProjection(b) . That is: *this - this->GetProjection(b)

Parameters b (Vec3d) –

GetCross()

GetDot()

GetLength() → float Length.

GetNormalized(eps) → Vec3d

Parameters eps (float) –

GetProjection(v) → Vec3d Returns the projection of this onto v . That is: v * (*this * v)

Parameters v (Vec3d) –

Normalize(eps) → float Normalizes the vector in place to unit length, returning the length before normalization. If the length of the vector is smaller than eps , then the vector is set to vector/ eps . The original length of the vector is returned. See also GfNormalize() .

Parameters eps (float) –

static OrthogonalizeBasis() classmethod OrthogonalizeBasis(tx, ty, tz, normalize, eps) -> bool Orthogonalize and optionally normalize a set of basis vectors. This uses an iterative method that is very stable even when the vectors are far from orthogonal (close to colinear). The number of iterations and thus the computation time does increase as the vectors become close to colinear, however. Returns a bool specifying whether the solution converged after a number of iterations. If it did not converge, the returned vectors will be as close as possible to orthogonal within the iteration limit. Colinear vectors will be unaltered, and the method will return false.

Parameters

tx (Vec3d) – ty (Vec3d) – tz (Vec3d) – normalize (bool) – eps (float) –

static XAxis() classmethod XAxis() -> Vec3d Create a unit vector along the X-axis.

static YAxis() classmethod YAxis() -> Vec3d Create a unit vector along the Y-axis.

static ZAxis() classmethod ZAxis() -> Vec3d Create a unit vector along the Z-axis.

dimension = 3

class pxr.Gf.Vec3f Methods:

Axis classmethod Axis(i) -> Vec3f

BuildOrthonormalFrame(v1, v2, eps) Sets v1 and v2 to unit vectors such that v1, v2 and *this are mutually orthogonal.

GetComplement(b) Returns the orthogonal complement of this->GetProjection(b) .

GetCross

GetDot

GetLength() Length.

GetNormalized(eps)

param eps

GetProjection(v) Returns the projection of this onto v .

Normalize(eps) Normalizes the vector in place to unit length, returning the length before normalization.

OrthogonalizeBasis classmethod OrthogonalizeBasis(tx, ty, tz, normalize, eps) -> bool

XAxis classmethod XAxis() -> Vec3f

YAxis classmethod YAxis() -> Vec3f

ZAxis classmethod ZAxis() -> Vec3f

Attributes:

dimension

static Axis() classmethod Axis(i) -> Vec3f Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 3.

Parameters i (int) –

BuildOrthonormalFrame(v1, v2, eps) → None Sets v1 and v2 to unit vectors such that v1, v2 and *this are mutually orthogonal. If the length L of *this is smaller than eps , then v1 and v2 will have magnitude L/eps. As a result, the function delivers a continuous result as *this shrinks in length.

Parameters

v1 (Vec3f) – v2 (Vec3f) – eps (float) –

GetComplement(b) → Vec3f Returns the orthogonal complement of this->GetProjection(b) . That is: *this - this->GetProjection(b)

Parameters b (Vec3f) –

GetCross()

GetDot()

GetLength() → float Length.

GetNormalized(eps) → Vec3f

Parameters eps (float) –

GetProjection(v) → Vec3f Returns the projection of this onto v . That is: v * (*this * v)

Parameters v (Vec3f) –

Normalize(eps) → float Normalizes the vector in place to unit length, returning the length before normalization. If the length of the vector is smaller than eps , then the vector is set to vector/ eps . The original length of the vector is returned. See also GfNormalize() .

Parameters eps (float) –

static OrthogonalizeBasis() classmethod OrthogonalizeBasis(tx, ty, tz, normalize, eps) -> bool Orthogonalize and optionally normalize a set of basis vectors. This uses an iterative method that is very stable even when the vectors are far from orthogonal (close to colinear). The number of iterations and thus the computation time does increase as the vectors become close to colinear, however. Returns a bool specifying whether the solution converged after a number of iterations. If it did not converge, the returned vectors will be as close as possible to orthogonal within the iteration limit. Colinear vectors will be unaltered, and the method will return false.

Parameters

tx (Vec3f) – ty (Vec3f) – tz (Vec3f) – normalize (bool) – eps (float) –

static XAxis() classmethod XAxis() -> Vec3f Create a unit vector along the X-axis.

static YAxis() classmethod YAxis() -> Vec3f Create a unit vector along the Y-axis.

static ZAxis() classmethod ZAxis() -> Vec3f Create a unit vector along the Z-axis.

dimension = 3

class pxr.Gf.Vec3h Methods:

Axis classmethod Axis(i) -> Vec3h

BuildOrthonormalFrame(v1, v2, eps) Sets v1 and v2 to unit vectors such that v1, v2 and *this are mutually orthogonal.

GetComplement(b) Returns the orthogonal complement of this->GetProjection(b) .

GetCross

GetDot

GetLength() Length.

GetNormalized(eps)

param eps

GetProjection(v) Returns the projection of this onto v .

Normalize(eps) Normalizes the vector in place to unit length, returning the length before normalization.

OrthogonalizeBasis classmethod OrthogonalizeBasis(tx, ty, tz, normalize, eps) -> bool

XAxis classmethod XAxis() -> Vec3h

YAxis classmethod YAxis() -> Vec3h

ZAxis classmethod ZAxis() -> Vec3h

Attributes:

dimension

static Axis() classmethod Axis(i) -> Vec3h Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 3.

Parameters i (int) –

BuildOrthonormalFrame(v1, v2, eps) → None Sets v1 and v2 to unit vectors such that v1, v2 and *this are mutually orthogonal. If the length L of *this is smaller than eps , then v1 and v2 will have magnitude L/eps. As a result, the function delivers a continuous result as *this shrinks in length.

Parameters

v1 (Vec3h) – v2 (Vec3h) – eps (GfHalf) –

GetComplement(b) → Vec3h Returns the orthogonal complement of this->GetProjection(b) . That is: *this - this->GetProjection(b)

Parameters b (Vec3h) –

GetCross()

GetDot()

GetLength() → GfHalf Length.

GetNormalized(eps) → Vec3h

Parameters eps (GfHalf) –

GetProjection(v) → Vec3h Returns the projection of this onto v . That is: v * (*this * v)

Parameters v (Vec3h) –

Normalize(eps) → GfHalf Normalizes the vector in place to unit length, returning the length before normalization. If the length of the vector is smaller than eps , then the vector is set to vector/ eps . The original length of the vector is returned. See also GfNormalize() .

Parameters eps (GfHalf) –

static OrthogonalizeBasis() classmethod OrthogonalizeBasis(tx, ty, tz, normalize, eps) -> bool Orthogonalize and optionally normalize a set of basis vectors. This uses an iterative method that is very stable even when the vectors are far from orthogonal (close to colinear). The number of iterations and thus the computation time does increase as the vectors become close to colinear, however. Returns a bool specifying whether the solution converged after a number of iterations. If it did not converge, the returned vectors will be as close as possible to orthogonal within the iteration limit. Colinear vectors will be unaltered, and the method will return false.

Parameters

tx (Vec3h) – ty (Vec3h) – tz (Vec3h) – normalize (bool) – eps (float) –

static XAxis() classmethod XAxis() -> Vec3h Create a unit vector along the X-axis.

static YAxis() classmethod YAxis() -> Vec3h Create a unit vector along the Y-axis.

static ZAxis() classmethod ZAxis() -> Vec3h Create a unit vector along the Z-axis.

dimension = 3

class pxr.Gf.Vec3i Methods:

Axis classmethod Axis(i) -> Vec3i

GetDot

XAxis classmethod XAxis() -> Vec3i

YAxis classmethod YAxis() -> Vec3i

ZAxis classmethod ZAxis() -> Vec3i

Attributes:

dimension

static Axis() classmethod Axis(i) -> Vec3i Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 3.

Parameters i (int) –

GetDot()

static XAxis() classmethod XAxis() -> Vec3i Create a unit vector along the X-axis.

static YAxis() classmethod YAxis() -> Vec3i Create a unit vector along the Y-axis.

static ZAxis() classmethod ZAxis() -> Vec3i Create a unit vector along the Z-axis.

dimension = 3

class pxr.Gf.Vec4d Methods:

Axis classmethod Axis(i) -> Vec4d

GetComplement(b) Returns the orthogonal complement of this->GetProjection(b) .

GetDot

GetLength() Length.

GetNormalized(eps)

param eps

GetProjection(v) Returns the projection of this onto v .

Normalize(eps) Normalizes the vector in place to unit length, returning the length before normalization.

WAxis classmethod WAxis() -> Vec4d

XAxis classmethod XAxis() -> Vec4d

YAxis classmethod YAxis() -> Vec4d

ZAxis classmethod ZAxis() -> Vec4d

Attributes:

dimension

static Axis() classmethod Axis(i) -> Vec4d Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 4.

Parameters i (int) –

GetComplement(b) → Vec4d Returns the orthogonal complement of this->GetProjection(b) . That is: *this - this->GetProjection(b)

Parameters b (Vec4d) –

GetDot()

GetLength() → float Length.

GetNormalized(eps) → Vec4d

Parameters eps (float) –

GetProjection(v) → Vec4d Returns the projection of this onto v . That is: v * (*this * v)

Parameters v (Vec4d) –

Normalize(eps) → float Normalizes the vector in place to unit length, returning the length before normalization. If the length of the vector is smaller than eps , then the vector is set to vector/ eps . The original length of the vector is returned. See also GfNormalize() .

Parameters eps (float) –

static WAxis() classmethod WAxis() -> Vec4d Create a unit vector along the W-axis.

static XAxis() classmethod XAxis() -> Vec4d Create a unit vector along the X-axis.

static YAxis() classmethod YAxis() -> Vec4d Create a unit vector along the Y-axis.

static ZAxis() classmethod ZAxis() -> Vec4d Create a unit vector along the Z-axis.

dimension = 4

class pxr.Gf.Vec4f Methods:

Axis classmethod Axis(i) -> Vec4f

GetComplement(b) Returns the orthogonal complement of this->GetProjection(b) .

GetDot

GetLength() Length.

GetNormalized(eps)

param eps

GetProjection(v) Returns the projection of this onto v .

Normalize(eps) Normalizes the vector in place to unit length, returning the length before normalization.

WAxis classmethod WAxis() -> Vec4f

XAxis classmethod XAxis() -> Vec4f

YAxis classmethod YAxis() -> Vec4f

ZAxis classmethod ZAxis() -> Vec4f

Attributes:

dimension

static Axis() classmethod Axis(i) -> Vec4f Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 4.

Parameters i (int) –

GetComplement(b) → Vec4f Returns the orthogonal complement of this->GetProjection(b) . That is: *this - this->GetProjection(b)

Parameters b (Vec4f) –

GetDot()

GetLength() → float Length.

GetNormalized(eps) → Vec4f

Parameters eps (float) –

GetProjection(v) → Vec4f Returns the projection of this onto v . That is: v * (*this * v)

Parameters v (Vec4f) –

Normalize(eps) → float Normalizes the vector in place to unit length, returning the length before normalization. If the length of the vector is smaller than eps , then the vector is set to vector/ eps . The original length of the vector is returned. See also GfNormalize() .

Parameters eps (float) –

static WAxis() classmethod WAxis() -> Vec4f Create a unit vector along the W-axis.

static XAxis() classmethod XAxis() -> Vec4f Create a unit vector along the X-axis.

static YAxis() classmethod YAxis() -> Vec4f Create a unit vector along the Y-axis.

static ZAxis() classmethod ZAxis() -> Vec4f Create a unit vector along the Z-axis.

dimension = 4

class pxr.Gf.Vec4h Methods:

Axis classmethod Axis(i) -> Vec4h

GetComplement(b) Returns the orthogonal complement of this->GetProjection(b) .

GetDot

GetLength() Length.

GetNormalized(eps)

param eps

GetProjection(v) Returns the projection of this onto v .

Normalize(eps) Normalizes the vector in place to unit length, returning the length before normalization.

WAxis classmethod WAxis() -> Vec4h

XAxis classmethod XAxis() -> Vec4h

YAxis classmethod YAxis() -> Vec4h

ZAxis classmethod ZAxis() -> Vec4h

Attributes:

dimension

static Axis() classmethod Axis(i) -> Vec4h Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 4.

Parameters i (int) –

GetComplement(b) → Vec4h Returns the orthogonal complement of this->GetProjection(b) . That is: *this - this->GetProjection(b)

Parameters b (Vec4h) –

GetDot()

GetLength() → GfHalf Length.

GetNormalized(eps) → Vec4h

Parameters eps (GfHalf) –

GetProjection(v) → Vec4h Returns the projection of this onto v . That is: v * (*this * v)

Parameters v (Vec4h) –

Normalize(eps) → GfHalf Normalizes the vector in place to unit length, returning the length before normalization. If the length of the vector is smaller than eps , then the vector is set to vector/ eps . The original length of the vector is returned. See also GfNormalize() .

Parameters eps (GfHalf) –

static WAxis() classmethod WAxis() -> Vec4h Create a unit vector along the W-axis.

static XAxis() classmethod XAxis() -> Vec4h Create a unit vector along the X-axis.

static YAxis() classmethod YAxis() -> Vec4h Create a unit vector along the Y-axis.

static ZAxis() classmethod ZAxis() -> Vec4h Create a unit vector along the Z-axis.

dimension = 4

class pxr.Gf.Vec4i Methods:

Axis classmethod Axis(i) -> Vec4i

GetDot

WAxis classmethod WAxis() -> Vec4i

XAxis classmethod XAxis() -> Vec4i

YAxis classmethod YAxis() -> Vec4i

ZAxis classmethod ZAxis() -> Vec4i

Attributes:

dimension

static Axis() classmethod Axis(i) -> Vec4i Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 4.

Parameters i (int) –

GetDot()

static WAxis() classmethod WAxis() -> Vec4i Create a unit vector along the W-axis.

static XAxis() classmethod XAxis() -> Vec4i Create a unit vector along the X-axis.

static YAxis() classmethod YAxis() -> Vec4i Create a unit vector along the Y-axis.

static ZAxis() classmethod ZAxis() -> Vec4i Create a unit vector along the Z-axis.

dimension = 4

© Copyright 2019-2023, NVIDIA. Last updated on Nov 14, 2023.