Gf module — pxr-usd-api 105.1 documentation
pxr-usd-api
» Modules » Gf module
Gf module
Summary: The Gf (Graphics Foundations) library contains classes and functions for working with basic mathematical aspects of graphics.
Graphics Foundation This package defines classes for fundamental graphics types and operations. Classes:
BBox3d Arbitrarily oriented 3D bounding box
Camera
DualQuatd
DualQuatf
DualQuath
Frustum Basic view frustum
Interval Basic mathematical interval class
Line Line class
LineSeg Line segment class
Matrix2d
Matrix2f
Matrix3d
Matrix3f
Matrix4d
Matrix4f
MultiInterval
Plane
Quatd
Quaternion Quaternion class
Quatf
Quath
Range1d
Range1f
Range2d
Range2f
Range3d
Range3f
Ray
Rect2i
Rotation 3-space rotation
Size2 A 2D size class
Size3 A 3D size class
Transform
Vec2d
Vec2f
Vec2h
Vec2i
Vec3d
Vec3f
Vec3h
Vec3i
Vec4d
Vec4f
Vec4h
Vec4i
class pxr.Gf.BBox3d Arbitrarily oriented 3D bounding box Methods:
Combine classmethod Combine(b1, b2) -> BBox3d
ComputeAlignedBox() Returns the axis-aligned range (as a GfRange3d ) that results from applying the transformation matrix to the axis-aligned box and aligning the result.
ComputeAlignedRange() Returns the axis-aligned range (as a GfRange3d ) that results from applying the transformation matrix to the wxis-aligned box and aligning the result.
ComputeCentroid() Returns the centroid of the bounding box.
GetBox() Returns the range of the axis-aligned untransformed box.
GetInverseMatrix() Returns the inverse of the transformation matrix.
GetMatrix() Returns the transformation matrix.
GetRange() Returns the range of the axis-aligned untransformed box.
GetVolume() Returns the volume of the box (0 for an empty box).
HasZeroAreaPrimitives() Returns the current state of the zero-area primitives flag".
Set(box, matrix) Sets the axis-aligned box and transformation matrix.
SetHasZeroAreaPrimitives(hasThem) Sets the zero-area primitives flag to the given value.
SetMatrix(matrix) Sets the transformation matrix only.
SetRange(box) Sets the range of the axis-aligned box only.
Transform(matrix) Transforms the bounding box by the given matrix, which is assumed to be a global transformation to apply to the box.
Attributes:
box
hasZeroAreaPrimitives
matrix
static Combine() classmethod Combine(b1, b2) -> BBox3d Combines two bboxes, returning a new bbox that contains both. This uses the coordinate space of one of the two original boxes as the space of the result; it uses the one that produces whe smaller of the two resulting boxes.
Parameters
b1 (BBox3d) – b2 (BBox3d) –
ComputeAlignedBox() → Range3d Returns the axis-aligned range (as a GfRange3d ) that results from applying the transformation matrix to the axis-aligned box and aligning the result. This synonym for ComputeAlignedRange exists for compatibility purposes.
ComputeAlignedRange() → Range3d Returns the axis-aligned range (as a GfRange3d ) that results from applying the transformation matrix to the wxis-aligned box and aligning the result.
ComputeCentroid() → Vec3d Returns the centroid of the bounding box. The centroid is computed as the transformed centroid of the range.
GetBox() → Range3d Returns the range of the axis-aligned untransformed box. This synonym of GetRange exists for compatibility purposes.
GetInverseMatrix() → Matrix4d Returns the inverse of the transformation matrix. This will be the identity matrix if the transformation matrix is not invertible.
GetMatrix() → Matrix4d Returns the transformation matrix.
GetRange() → Range3d Returns the range of the axis-aligned untransformed box.
GetVolume() → float Returns the volume of the box (0 for an empty box).
HasZeroAreaPrimitives() → bool Returns the current state of the zero-area primitives flag”.
Set(box, matrix) → None Sets the axis-aligned box and transformation matrix.
Parameters
box (Range3d) – matrix (Matrix4d) –
SetHasZeroAreaPrimitives(hasThem) → None Sets the zero-area primitives flag to the given value.
Parameters hasThem (bool) –
SetMatrix(matrix) → None Sets the transformation matrix only. The axis-aligned box is not modified.
Parameters matrix (Matrix4d) –
SetRange(box) → None Sets the range of the axis-aligned box only. The transformation matrix is not modified.
Parameters box (Range3d) –
Transform(matrix) → None Transforms the bounding box by the given matrix, which is assumed to be a global transformation to apply to the box. Therefore, this just post-multiplies the box’s matrix by matrix .
Parameters matrix (Matrix4d) –
property box
property hasZeroAreaPrimitives
property matrix
class pxr.Gf.Camera Classes:
FOVDirection Direction used for Field of View or orthographic size.
Projection Projection type.
Methods:
GetFieldOfView(direction) Returns the horizontal or vertical field of view in degrees.
SetFromViewAndProjectionMatrix(viewMatrix, ...) Sets the camera from a view and projection matrix.
SetOrthographicFromAspectRatioAndSize(...) Sets the frustum to be orthographic such that it has the given aspectRatio and such that the orthographic width, respectively, orthographic height (in cm) is equal to orthographicSize (depending on direction).
SetPerspectiveFromAspectRatioAndFieldOfView(...) Sets the frustum to be projective with the given aspectRatio and horizontal, respectively, vertical field of view fieldOfView (similar to gluPerspective when direction = FOVVertical).
Attributes:
APERTURE_UNIT
DEFAULT_HORIZONTAL_APERTURE
DEFAULT_VERTICAL_APERTURE
FOCAL_LENGTH_UNIT
FOVHorizontal
FOVVertical
Orthographic
Perspective
aspectRatio float
clippingPlanes list[Vec4f]
clippingRange Range1f
fStop float
focalLength float
focusDistance float
frustum Frustum
horizontalAperture float
horizontalApertureOffset float
horizontalFieldOfView
projection Projection
transform Matrix4d
verticalAperture float
verticalApertureOffset float
verticalFieldOfView
class FOVDirection Direction used for Field of View or orthographic size. Methods:
GetValueFromName
Attributes:
allValues
static GetValueFromName()
allValues = (Gf.Camera.FOVHorizontal, Gf.Camera.FOVVertical)
class Projection Projection type. Methods:
GetValueFromName
Attributes:
allValues
static GetValueFromName()
allValues = (Gf.Camera.Perspective, Gf.Camera.Orthographic)
GetFieldOfView(direction) → float Returns the horizontal or vertical field of view in degrees.
Parameters direction (FOVDirection) –
SetFromViewAndProjectionMatrix(viewMatrix, projMatix, focalLength) → None Sets the camera from a view and projection matrix. Note that the projection matrix does only determine the ratio of aperture to focal length, so there is a choice which defaults to 50mm (or more accurately, 50 tenths of a world unit).
Parameters
viewMatrix (Matrix4d) – projMatix (Matrix4d) – focalLength (float) –
SetOrthographicFromAspectRatioAndSize(aspectRatio, orthographicSize, direction) → None Sets the frustum to be orthographic such that it has the given aspectRatio and such that the orthographic width, respectively, orthographic height (in cm) is equal to orthographicSize (depending on direction).
Parameters
aspectRatio (float) – orthographicSize (float) – direction (FOVDirection) –
SetPerspectiveFromAspectRatioAndFieldOfView(aspectRatio, fieldOfView, direction, horizontalAperture) → None Sets the frustum to be projective with the given aspectRatio and horizontal, respectively, vertical field of view fieldOfView (similar to gluPerspective when direction = FOVVertical). Do not pass values for horionztalAperture unless you care about DepthOfField.
Parameters
aspectRatio (float) – fieldOfView (float) – direction (FOVDirection) – horizontalAperture (float) –
APERTURE_UNIT = 0.1
DEFAULT_HORIZONTAL_APERTURE = 20.955
DEFAULT_VERTICAL_APERTURE = 15.290799999999999
FOCAL_LENGTH_UNIT = 0.1
FOVHorizontal = Gf.Camera.FOVHorizontal
FOVVertical = Gf.Camera.FOVVertical
Orthographic = Gf.Camera.Orthographic
Perspective = Gf.Camera.Perspective
property aspectRatio float Returns the projector aperture aspect ratio.
Type type
property clippingPlanes list[Vec4f] Returns additional clipping planes.
type : None Sets additional arbitrarily oriented clipping planes. A vector (a,b,c,d) encodes a clipping plane that clips off points (x,y,z) with a * x + b * y + c * z + d * 1<0 where (x,y,z) are the coordinates in the camera’s space.
Type type
property clippingRange Range1f Returns the clipping range in world units.
type : None Sets the clipping range in world units.
Type type
property fStop float Returns the lens aperture.
type : None Sets the lens aperture, unitless.
Type type
property focalLength float Returns the focal length in tenths of a world unit (e.g., mm if the world unit is assumed to be cm).
type : None These are the values actually stored in the class and they correspond to measurements of an actual physical camera (in mm). Together with the clipping range, they determine the camera frustum. Sets the focal length in tenths of a world unit (e.g., mm if the world unit is assumed to be cm).
Type type
property focusDistance float Returns the focus distance in world units.
type : None Sets the focus distance in world units.
Type type
property frustum Frustum Returns the computed, world-space camera frustum. The frustum will always be that of a Y-up, -Z-looking camera.
Type type
property horizontalAperture float Returns the width of the projector aperture in tenths of a world unit (e.g., mm if the world unit is assumed to be cm).
type : None Sets the width of the projector aperture in tenths of a world unit (e.g., mm if the world unit is assumed to be cm).
Type type
property horizontalApertureOffset float Returns the horizontal offset of the projector aperture in tenths of a world unit (e.g., mm if the world unit is assumed to be cm). In particular, an offset is necessary when writing out a stereo camera with finite convergence distance as two cameras.
type : None Sets the horizontal offset of the projector aperture in tenths of a world unit (e.g., mm if the world unit is assumed to be cm).
Type type
property horizontalFieldOfView
property projection Projection Returns the projection type.
type : None Sets the projection type.
Type type
property transform Matrix4d Returns the transform of the filmback in world space. This is exactly the transform specified via SetTransform() .
type : None Sets the transform of the filmback in world space to val .
Type type
property verticalAperture float Returns the height of the projector aperture in tenths of a world unit (e.g., mm if the world unit is assumed to be cm).
type : None Sets the height of the projector aperture in tenths of a world unit (e.g., mm if the world unit is assumed to be cm).
Type type
property verticalApertureOffset float Returns the vertical offset of the projector aperture in tenths of a world unit (e.g., mm if the world unit is assumed to be cm).
type : None Sets the vertical offset of the projector aperture in tenths of a world unit (e.g., mm if the world unit is assumed to be cm).
Type type
property verticalFieldOfView
class pxr.Gf.DualQuatd Methods:
GetConjugate() Returns the conjugate of this dual quaternion.
GetDual() Returns the dual part of the dual quaternion.
GetIdentity classmethod GetIdentity() -> DualQuatd
GetInverse() Returns the inverse of this dual quaternion.
GetLength() Returns geometric length of this dual quaternion.
GetNormalized(eps) Returns a normalized (unit-length) version of this dual quaternion.
GetReal() Returns the real part of the dual quaternion.
GetTranslation() Get the translation component of this dual quaternion.
GetZero classmethod GetZero() -> DualQuatd
Normalize(eps) Normalizes this dual quaternion in place.
SetDual(dual) Sets the dual part of the dual quaternion.
SetReal(real) Sets the real part of the dual quaternion.
SetTranslation(translation) Set the translation component of this dual quaternion.
Transform(vec) Transforms the row vector vec by the dual quaternion.
Attributes:
dual
real
GetConjugate() → DualQuatd Returns the conjugate of this dual quaternion.
GetDual() → Quatd Returns the dual part of the dual quaternion.
static GetIdentity() classmethod GetIdentity() -> DualQuatd Returns the identity dual quaternion, which has a real part of (1,0,0,0) and a dual part of (0,0,0,0).
GetInverse() → DualQuatd Returns the inverse of this dual quaternion.
GetLength() → tuple[float, float] Returns geometric length of this dual quaternion.
GetNormalized(eps) → DualQuatd Returns a normalized (unit-length) version of this dual quaternion. If the length of this dual quaternion is smaller than eps , this returns the identity dual quaternion.
Parameters eps (float) –
GetReal() → Quatd Returns the real part of the dual quaternion.
GetTranslation() → Vec3d Get the translation component of this dual quaternion.
static GetZero() classmethod GetZero() -> DualQuatd Returns the zero dual quaternion, which has a real part of (0,0,0,0) and a dual part of (0,0,0,0).
Normalize(eps) → tuple[float, float] Normalizes this dual quaternion in place. Normalizes this dual quaternion in place to unit length, returning the length before normalization. If the length of this dual quaternion is smaller than eps , this sets the dual quaternion to identity.
Parameters eps (float) –
SetDual(dual) → None Sets the dual part of the dual quaternion.
Parameters dual (Quatd) –
SetReal(real) → None Sets the real part of the dual quaternion.
Parameters real (Quatd) –
SetTranslation(translation) → None Set the translation component of this dual quaternion.
Parameters translation (Vec3d) –
Transform(vec) → Vec3d Transforms the row vector vec by the dual quaternion.
Parameters vec (Vec3d) –
property dual
property real
class pxr.Gf.DualQuatf Methods:
GetConjugate() Returns the conjugate of this dual quaternion.
GetDual() Returns the dual part of the dual quaternion.
GetIdentity classmethod GetIdentity() -> DualQuatf
GetInverse() Returns the inverse of this dual quaternion.
GetLength() Returns geometric length of this dual quaternion.
GetNormalized(eps) Returns a normalized (unit-length) version of this dual quaternion.
GetReal() Returns the real part of the dual quaternion.
GetTranslation() Get the translation component of this dual quaternion.
GetZero classmethod GetZero() -> DualQuatf
Normalize(eps) Normalizes this dual quaternion in place.
SetDual(dual) Sets the dual part of the dual quaternion.
SetReal(real) Sets the real part of the dual quaternion.
SetTranslation(translation) Set the translation component of this dual quaternion.
Transform(vec) Transforms the row vector vec by the dual quaternion.
Attributes:
dual
real
GetConjugate() → DualQuatf Returns the conjugate of this dual quaternion.
GetDual() → Quatf Returns the dual part of the dual quaternion.
static GetIdentity() classmethod GetIdentity() -> DualQuatf Returns the identity dual quaternion, which has a real part of (1,0,0,0) and a dual part of (0,0,0,0).
GetInverse() → DualQuatf Returns the inverse of this dual quaternion.
GetLength() → tuple[float, float] Returns geometric length of this dual quaternion.
GetNormalized(eps) → DualQuatf Returns a normalized (unit-length) version of this dual quaternion. If the length of this dual quaternion is smaller than eps , this returns the identity dual quaternion.
Parameters eps (float) –
GetReal() → Quatf Returns the real part of the dual quaternion.
GetTranslation() → Vec3f Get the translation component of this dual quaternion.
static GetZero() classmethod GetZero() -> DualQuatf Returns the zero dual quaternion, which has a real part of (0,0,0,0) and a dual part of (0,0,0,0).
Normalize(eps) → tuple[float, float] Normalizes this dual quaternion in place. Normalizes this dual quaternion in place to unit length, returning the length before normalization. If the length of this dual quaternion is smaller than eps , this sets the dual quaternion to identity.
Parameters eps (float) –
SetDual(dual) → None Sets the dual part of the dual quaternion.
Parameters dual (Quatf) –
SetReal(real) → None Sets the real part of the dual quaternion.
Parameters real (Quatf) –
SetTranslation(translation) → None Set the translation component of this dual quaternion.
Parameters translation (Vec3f) –
Transform(vec) → Vec3f Transforms the row vector vec by the dual quaternion.
Parameters vec (Vec3f) –
property dual
property real
class pxr.Gf.DualQuath Methods:
GetConjugate() Returns the conjugate of this dual quaternion.
GetDual() Returns the dual part of the dual quaternion.
GetIdentity classmethod GetIdentity() -> DualQuath
GetInverse() Returns the inverse of this dual quaternion.
GetLength() Returns geometric length of this dual quaternion.
GetNormalized(eps) Returns a normalized (unit-length) version of this dual quaternion.
GetReal() Returns the real part of the dual quaternion.
GetTranslation() Get the translation component of this dual quaternion.
GetZero classmethod GetZero() -> DualQuath
Normalize(eps) Normalizes this dual quaternion in place.
SetDual(dual) Sets the dual part of the dual quaternion.
SetReal(real) Sets the real part of the dual quaternion.
SetTranslation(translation) Set the translation component of this dual quaternion.
Transform(vec) Transforms the row vector vec by the dual quaternion.
Attributes:
dual
real
GetConjugate() → DualQuath Returns the conjugate of this dual quaternion.
GetDual() → Quath Returns the dual part of the dual quaternion.
static GetIdentity() classmethod GetIdentity() -> DualQuath Returns the identity dual quaternion, which has a real part of (1,0,0,0) and a dual part of (0,0,0,0).
GetInverse() → DualQuath Returns the inverse of this dual quaternion.
GetLength() → tuple[GfHalf, GfHalf] Returns geometric length of this dual quaternion.
GetNormalized(eps) → DualQuath Returns a normalized (unit-length) version of this dual quaternion. If the length of this dual quaternion is smaller than eps , this returns the identity dual quaternion.
Parameters eps (GfHalf) –
GetReal() → Quath Returns the real part of the dual quaternion.
GetTranslation() → Vec3h Get the translation component of this dual quaternion.
static GetZero() classmethod GetZero() -> DualQuath Returns the zero dual quaternion, which has a real part of (0,0,0,0) and a dual part of (0,0,0,0).
Normalize(eps) → tuple[GfHalf, GfHalf] Normalizes this dual quaternion in place. Normalizes this dual quaternion in place to unit length, returning the length before normalization. If the length of this dual quaternion is smaller than eps , this sets the dual quaternion to identity.
Parameters eps (GfHalf) –
SetDual(dual) → None Sets the dual part of the dual quaternion.
Parameters dual (Quath) –
SetReal(real) → None Sets the real part of the dual quaternion.
Parameters real (Quath) –
SetTranslation(translation) → None Set the translation component of this dual quaternion.
Parameters translation (Vec3h) –
Transform(vec) → Vec3h Transforms the row vector vec by the dual quaternion.
Parameters vec (Vec3h) –
property dual
property real
class pxr.Gf.Frustum Basic view frustum Classes:
ProjectionType This enum is used to determine the type of projection represented by a frustum.
Methods:
ComputeAspectRatio() Returns the aspect ratio of the frustum, defined as the width of the window divided by the height.
ComputeCorners() Returns the world-space corners of the frustum as a vector of 8 points, ordered as:
ComputeCornersAtDistance(d) Returns the world-space corners of the intersection of the frustum with a plane parallel to the near/far plane at distance d from the apex, ordered as:
ComputeLookAtPoint() Computes and returns the world-space look-at point from the eye point (position), view direction (rotation), and view distance.
ComputeNarrowedFrustum(windowPos, size) Returns a frustum that is a narrowed-down version of this frustum.
ComputePickRay(windowPos) Builds and returns a GfRay that can be used for picking at the given normalized (-1 to +1 in both dimensions) window position.
ComputeProjectionMatrix() Returns a GL-style projection matrix corresponding to the frustum's projection.
ComputeUpVector() Returns the normalized world-space up vector, which is computed by rotating the y axis by the frustum's rotation.
ComputeViewDirection() Returns the normalized world-space view direction vector, which is computed by rotating the -z axis by the frustum's rotation.
ComputeViewFrame(side, up, view) Computes the view frame defined by this frustum.
ComputeViewInverse() Returns a matrix that represents the inverse viewing transformation for this frustum.
ComputeViewMatrix() Returns a matrix that represents the viewing transformation for this frustum.
FitToSphere(center, radius, slack) Modifies the frustum to tightly enclose a sphere with the given center and radius, using the current view direction.
GetFOV Returns the horizontal fov of the frustum.
GetNearFar() Returns the near/far interval.
GetOrthographic(left, right, bottom, top, ...) Returns the current frustum in the format used by SetOrthographic() .
GetPerspective Returns the current perspective frustum values suitable for use by SetPerspective.
GetPosition() Returns the position of the frustum in world space.
GetProjectionType() Returns the projection type.
GetReferencePlaneDepth classmethod GetReferencePlaneDepth() -> float
GetRotation() Returns the orientation of the frustum in world space as a rotation to apply to the -z axis.
GetViewDistance() Returns the view distance.
GetWindow() Returns the window rectangle in the reference plane.
Intersects(bbox) Returns true if the given axis-aligned bbox is inside or intersecting the frustum.
IntersectsViewVolume classmethod IntersectsViewVolume(bbox, vpMat) -> bool
SetNearFar(nearFar) Sets the near/far interval.
SetOrthographic(left, right, bottom, top, ...) Sets up the frustum in a manner similar to glOrtho() .
SetPerspective(fieldOfViewHeight, ...) Sets up the frustum in a manner similar to gluPerspective() .
SetPosition(position) Sets the position of the frustum in world space.
SetPositionAndRotationFromMatrix(camToWorldXf) Sets the position and rotation of the frustum from a camera matrix (always from a y-Up camera).
SetProjectionType(projectionType) Sets the projection type.
SetRotation(rotation) Sets the orientation of the frustum in world space as a rotation to apply to the default frame: looking along the -z axis with the +y axis as"up".
SetViewDistance(viewDistance) Sets the view distance.
SetWindow(window) Sets the window rectangle in the reference plane that defines the left, right, top, and bottom planes of the frustum.
Transform(matrix) Transforms the frustum by the given matrix.
Attributes:
Orthographic
Perspective
nearFar
position
projectionType
rotation
viewDistance
window
class ProjectionType This enum is used to determine the type of projection represented by a frustum. Methods:
GetValueFromName
Attributes:
allValues
static GetValueFromName()
allValues = (Gf.Frustum.Orthographic, Gf.Frustum.Perspective)
ComputeAspectRatio() → float Returns the aspect ratio of the frustum, defined as the width of the window divided by the height. If the height is zero or negative, this returns 0.
ComputeCorners() → list[Vec3d] Returns the world-space corners of the frustum as a vector of 8 points, ordered as:
Left bottom near Right bottom near Left top near Right top near Left bottom far Right bottom far Left top far Right top far
ComputeCornersAtDistance(d) → list[Vec3d] Returns the world-space corners of the intersection of the frustum with a plane parallel to the near/far plane at distance d from the apex, ordered as:
Left bottom Right bottom Left top Right top In particular, it gives the partial result of ComputeCorners when given near or far distance.
Parameters d (float) –
ComputeLookAtPoint() → Vec3d Computes and returns the world-space look-at point from the eye point (position), view direction (rotation), and view distance.
ComputeNarrowedFrustum(windowPos, size) → Frustum Returns a frustum that is a narrowed-down version of this frustum. The new frustum has the same near and far planes, but the other planes are adjusted to be centered on windowPos with the new width and height obtained from the existing width and height by multiplying by size [0] and size [1], respectively. Finally, the new frustum is clipped against this frustum so that it is completely contained in the existing frustum. windowPos is given in normalized coords (-1 to +1 in both dimensions). size is given as a scalar (0 to 1 in both dimensions). If the windowPos or size given is outside these ranges, it may result in returning a collapsed frustum. This method is useful for computing a volume to use for interactive picking.
Parameters
windowPos (Vec2d) – size (Vec2d) –
ComputeNarrowedFrustum(worldPoint, size) -> Frustum Returns a frustum that is a narrowed-down version of this frustum. The new frustum has the same near and far planes, but the other planes are adjusted to be centered on worldPoint with the new width and height obtained from the existing width and height by multiplying by size [0] and size [1], respectively. Finally, the new frustum is clipped against this frustum so that it is completely contained in the existing frustum. worldPoint is given in world space coordinates. size is given as a scalar (0 to 1 in both dimensions). If the size given is outside this range, it may result in returning a collapsed frustum. If the worldPoint is at or behind the eye of the frustum, it will return a frustum equal to this frustum. This method is useful for computing a volume to use for interactive picking.
Parameters
worldPoint (Vec3d) – size (Vec2d) –
ComputePickRay(windowPos) → Ray Builds and returns a GfRay that can be used for picking at the given normalized (-1 to +1 in both dimensions) window position. Contrasted with ComputeRay() , that method returns a ray whose origin is the eyepoint, while this method returns a ray whose origin is on the near plane.
Parameters windowPos (Vec2d) –
ComputePickRay(worldSpacePos) -> Ray Builds and returns a GfRay that can be used for picking that connects the viewpoint to the given 3d point in worldspace.
Parameters worldSpacePos (Vec3d) –
ComputeProjectionMatrix() → Matrix4d Returns a GL-style projection matrix corresponding to the frustum’s projection.
ComputeUpVector() → Vec3d Returns the normalized world-space up vector, which is computed by rotating the y axis by the frustum’s rotation.
ComputeViewDirection() → Vec3d Returns the normalized world-space view direction vector, which is computed by rotating the -z axis by the frustum’s rotation.
ComputeViewFrame(side, up, view) → None Computes the view frame defined by this frustum. The frame consists of the view direction, up vector and side vector, as shown in this diagram. up ^ ^ | / | / view |/ +- - - - > side
Parameters
side (Vec3d) – up (Vec3d) – view (Vec3d) –
ComputeViewInverse() → Matrix4d Returns a matrix that represents the inverse viewing transformation for this frustum. That is, it returns the matrix that converts points from eye (frustum) space to world space.
ComputeViewMatrix() → Matrix4d Returns a matrix that represents the viewing transformation for this frustum. That is, it returns the matrix that converts points from world space to eye (frustum) space.
FitToSphere(center, radius, slack) → None Modifies the frustum to tightly enclose a sphere with the given center and radius, using the current view direction. The planes of the frustum are adjusted as necessary. The given amount of slack is added to the sphere’s radius is used around the sphere to avoid boundary problems.
Parameters
center (Vec3d) – radius (float) – slack (float) –
GetFOV() Returns the horizontal fov of the frustum. The fov of the frustum is not necessarily the same value as displayed in the viewer. The displayed fov is a function of the focal length or FOV avar. The frustum’s fov may be different due to things like lens breathing. If the frustum is not of type GfFrustum::Perspective, the returned FOV will be 0.0.
GetNearFar() → Range1d Returns the near/far interval.
GetOrthographic(left, right, bottom, top, nearPlane, farPlane) → bool Returns the current frustum in the format used by SetOrthographic() . If the current frustum is not an orthographic projection, this returns false and leaves the parameters untouched.
Parameters
left (float) – right (float) – bottom (float) – top (float) – nearPlane (float) – farPlane (float) –
GetPerspective() Returns the current perspective frustum values suitable for use by SetPerspective. If the current frustum is a perspective projection, the return value is a tuple of fieldOfView, aspectRatio, nearDistance, farDistance). If the current frustum is not perspective, the return value is None.
GetPosition() → Vec3d Returns the position of the frustum in world space.
GetProjectionType() → Frustum.ProjectionType Returns the projection type.
static GetReferencePlaneDepth() classmethod GetReferencePlaneDepth() -> float Returns the depth of the reference plane.
GetRotation() → Rotation Returns the orientation of the frustum in world space as a rotation to apply to the -z axis.
GetViewDistance() → float Returns the view distance.
GetWindow() → Range2d Returns the window rectangle in the reference plane.
Intersects(bbox) → bool Returns true if the given axis-aligned bbox is inside or intersecting the frustum. Otherwise, it returns false. Useful when doing picking or frustum culling.
Parameters bbox (BBox3d) –
Intersects(point) -> bool Returns true if the given point is inside or intersecting the frustum. Otherwise, it returns false.
Parameters point (Vec3d) –
Intersects(p0, p1) -> bool Returns true if the line segment formed by the given points is inside or intersecting the frustum. Otherwise, it returns false.
Parameters
p0 (Vec3d) – p1 (Vec3d) –
Intersects(p0, p1, p2) -> bool Returns true if the triangle formed by the given points is inside or intersecting the frustum. Otherwise, it returns false.
Parameters
p0 (Vec3d) – p1 (Vec3d) – p2 (Vec3d) –
static IntersectsViewVolume() classmethod IntersectsViewVolume(bbox, vpMat) -> bool Returns true if the bbox volume intersects the view volume given by the view-projection matrix, erring on the side of false positives for efficiency. This method is intended for cases where a GfFrustum is not available or when the view-projection matrix yields a view volume that is not expressable as a GfFrustum. Because it errs on the side of false positives, it is suitable for early-out tests such as draw or intersection culling.
Parameters
bbox (BBox3d) – vpMat (Matrix4d) –
SetNearFar(nearFar) → None Sets the near/far interval.
Parameters nearFar (Range1d) –
SetOrthographic(left, right, bottom, top, nearPlane, farPlane) → None Sets up the frustum in a manner similar to glOrtho() . Sets the projection to GfFrustum::Orthographic and sets the window and near/far specifications based on the given values.
Parameters
left (float) – right (float) – bottom (float) – top (float) – nearPlane (float) – farPlane (float) –
SetPerspective(fieldOfViewHeight, aspectRatio, nearDistance, farDistance) → None Sets up the frustum in a manner similar to gluPerspective() . It sets the projection type to GfFrustum::Perspective and sets the window specification so that the resulting symmetric frustum encloses an angle of fieldOfViewHeight degrees in the vertical direction, with aspectRatio used to figure the angle in the horizontal direction. The near and far distances are specified as well. The window coordinates are computed as: top = tan(fieldOfViewHeight / 2) bottom = -top right = top * aspectRatio left = -right near = nearDistance far = farDistance
Parameters
fieldOfViewHeight (float) – aspectRatio (float) – nearDistance (float) – farDistance (float) –
SetPerspective(fieldOfView, isFovVertical, aspectRatio, nearDistance, farDistance) -> None Sets up the frustum in a manner similar to gluPerspective(). It sets the projection type to GfFrustum::Perspective and sets the window specification so that: If isFovVertical is true, the resulting symmetric frustum encloses an angle of fieldOfView degrees in the vertical direction, with aspectRatio used to figure the angle in the horizontal direction. If isFovVertical is false, the resulting symmetric frustum encloses an angle of fieldOfView degrees in the horizontal direction, with aspectRatio used to figure the angle in the vertical direction. The near and far distances are specified as well. The window coordinates are computed as follows:
if isFovVertical: top = tan(fieldOfView / 2) right = top * aspectRatio if NOT isFovVertical: right = tan(fieldOfView / 2) top = right / aspectRation bottom = -top left = -right near = nearDistance far = farDistance
Parameters
fieldOfView (float) – isFovVertical (bool) – aspectRatio (float) – nearDistance (float) – farDistance (float) –
SetPosition(position) → None Sets the position of the frustum in world space.
Parameters position (Vec3d) –
SetPositionAndRotationFromMatrix(camToWorldXf) → None Sets the position and rotation of the frustum from a camera matrix (always from a y-Up camera). The resulting frustum’s transform will always represent a right-handed and orthonormal coordinate sytem (scale, shear, and projection are removed from the given camToWorldXf ).
Parameters camToWorldXf (Matrix4d) –
SetProjectionType(projectionType) → None Sets the projection type.
Parameters projectionType (Frustum.ProjectionType) –
SetRotation(rotation) → None Sets the orientation of the frustum in world space as a rotation to apply to the default frame: looking along the -z axis with the +y axis as”up”.
Parameters rotation (Rotation) –
SetViewDistance(viewDistance) → None Sets the view distance.
Parameters viewDistance (float) –
SetWindow(window) → None Sets the window rectangle in the reference plane that defines the left, right, top, and bottom planes of the frustum.
Parameters window (Range2d) –
Transform(matrix) → Frustum Transforms the frustum by the given matrix. The transformation matrix is applied as follows: the position and the direction vector are transformed with the given matrix. Then the length of the new direction vector is used to rescale the near and far plane and the view distance. Finally, the points that define the reference plane are transformed by the matrix. This method assures that the frustum will not be sheared or perspective-projected. Note that this definition means that the transformed frustum does not preserve scales very well. Do not use this function to transform a frustum that is to be used for precise operations such as intersection testing.
Parameters matrix (Matrix4d) –
Orthographic = Gf.Frustum.Orthographic
Perspective = Gf.Frustum.Perspective
property nearFar
property position
property projectionType
property rotation
property viewDistance
property window
class pxr.Gf.Interval Basic mathematical interval class Methods:
Contains Returns true if x is inside the interval.
GetFullInterval classmethod GetFullInterval() -> Interval
GetMax Get the maximum value.
GetMin Get the minimum value.
GetSize The width of the interval
In Returns true if x is inside the interval.
Intersects(i) Return true iff the given interval i intersects this interval.
IsEmpty True if the interval is empty.
IsFinite() Returns true if both the maximum and minimum value are finite.
IsMaxClosed() Maximum boundary condition.
IsMaxFinite() Returns true if the maximum value is finite.
IsMaxOpen() Maximum boundary condition.
IsMinClosed() Minimum boundary condition.
IsMinFinite() Returns true if the minimum value is finite.
IsMinOpen() Minimum boundary condition.
SetMax Set the maximum value.
SetMin Set the minimum value.
Attributes:
finite
isEmpty True if the interval is empty.
max The maximum value.
maxClosed
maxFinite
maxOpen
min The minimum value.
minClosed
minFinite
minOpen
size The width of the interval.
Contains() Returns true if x is inside the interval. Returns true if x is inside the interval.
static GetFullInterval() classmethod GetFullInterval() -> Interval Returns the full interval (-inf, inf).
GetMax() Get the maximum value.
GetMin() Get the minimum value.
GetSize() The width of the interval
In() Returns true if x is inside the interval.
Intersects(i) → bool Return true iff the given interval i intersects this interval.
Parameters i (Interval) –
IsEmpty() True if the interval is empty.
IsFinite() → bool Returns true if both the maximum and minimum value are finite.
IsMaxClosed() → bool Maximum boundary condition.
IsMaxFinite() → bool Returns true if the maximum value is finite.
IsMaxOpen() → bool Maximum boundary condition.
IsMinClosed() → bool Minimum boundary condition.
IsMinFinite() → bool Returns true if the minimum value is finite.
IsMinOpen() → bool Minimum boundary condition.
SetMax() Set the maximum value. Set the maximum value and boundary condition.
SetMin() Set the minimum value. Set the minimum value and boundary condition.
property finite
property isEmpty True if the interval is empty.
property max The maximum value.
property maxClosed
property maxFinite
property maxOpen
property min The minimum value.
property minClosed
property minFinite
property minOpen
property size The width of the interval.
class pxr.Gf.Line Line class Methods:
FindClosestPoint(point, t) Returns the point on the line that is closest to point .
GetDirection() Return the normalized direction of the line.
GetPoint(t) Return the point on the line at ```` ( p0 + t * dir).
Set(p0, dir)
param p0
Attributes:
direction
FindClosestPoint(point, t) → Vec3d Returns the point on the line that is closest to point . If t is not None , it will be set to the parametric distance along the line of the returned point.
Parameters
point (Vec3d) – t (float) –
GetDirection() → Vec3d Return the normalized direction of the line.
GetPoint(t) → Vec3d Return the point on the line at ```` ( p0 + t * dir). Remember dir has been normalized so t represents a unit distance.
Parameters t (float) –
Set(p0, dir) → float
Parameters
p0 (Vec3d) – dir (Vec3d) –
property direction
class pxr.Gf.LineSeg Line segment class Methods:
FindClosestPoint(point, t) Returns the point on the line that is closest to point .
GetDirection() Return the normalized direction of the line.
GetLength() Return the length of the line.
GetPoint(t) Return the point on the segment specified by the parameter t.
Attributes:
direction
length
FindClosestPoint(point, t) → Vec3d Returns the point on the line that is closest to point . If t is not None , it will be set to the parametric distance along the line of the closest point.
Parameters
point (Vec3d) – t (float) –
GetDirection() → Vec3d Return the normalized direction of the line.
GetLength() → float Return the length of the line.
GetPoint(t) → Vec3d Return the point on the segment specified by the parameter t. p = p0 + t * (p1 - p0)
Parameters t (float) –
property direction
property length
class pxr.Gf.Matrix2d Methods:
GetColumn(i) Gets a column of the matrix as a Vec2.
GetDeterminant() Returns the determinant of the matrix.
GetInverse(det, eps) Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular.
GetRow(i) Gets a row of the matrix as a Vec2.
GetTranspose() Returns the transpose of the matrix.
Set(m00, m01, m10, m11) Sets the matrix from 4 independent double values, specified in row-major order.
SetColumn(i, v) Sets a column of the matrix from a Vec2.
SetDiagonal(s) Sets the matrix to s times the identity matrix.
SetIdentity() Sets the matrix to the identity matrix.
SetRow(i, v) Sets a row of the matrix from a Vec2.
SetZero() Sets the matrix to zero.
Attributes:
dimension
GetColumn(i) → Vec2d Gets a column of the matrix as a Vec2.
Parameters i (int) –
GetDeterminant() → float Returns the determinant of the matrix.
GetInverse(det, eps) → Matrix2d Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular. (FLT_MAX is the largest value a float can have, as defined by the system.) The matrix is considered singular if the determinant is less than or equal to the optional parameter eps. If det is non-null, *det is set to the determinant.
Parameters
det (float) – eps (float) –
GetRow(i) → Vec2d Gets a row of the matrix as a Vec2.
Parameters i (int) –
GetTranspose() → Matrix2d Returns the transpose of the matrix.
Set(m00, m01, m10, m11) → Matrix2d Sets the matrix from 4 independent double values, specified in row-major order. For example, parameter m10 specifies the value in row 1 and column 0.
Parameters
m00 (float) – m01 (float) – m10 (float) – m11 (float) –
Set(m) -> Matrix2d Sets the matrix from a 2x2 array of double values, specified in row-major order.
Parameters m (float) –
SetColumn(i, v) → None Sets a column of the matrix from a Vec2.
Parameters
i (int) – v (Vec2d) –
SetDiagonal(s) → Matrix2d Sets the matrix to s times the identity matrix.
Parameters s (float) –
SetDiagonal(arg1) -> Matrix2d Sets the matrix to have diagonal ( v[0], v[1] ).
Parameters arg1 (Vec2d) –
SetIdentity() → Matrix2d Sets the matrix to the identity matrix.
SetRow(i, v) → None Sets a row of the matrix from a Vec2.
Parameters
i (int) – v (Vec2d) –
SetZero() → Matrix2d Sets the matrix to zero.
dimension = (2, 2)
class pxr.Gf.Matrix2f Methods:
GetColumn(i) Gets a column of the matrix as a Vec2.
GetDeterminant() Returns the determinant of the matrix.
GetInverse(det, eps) Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular.
GetRow(i) Gets a row of the matrix as a Vec2.
GetTranspose() Returns the transpose of the matrix.
Set(m00, m01, m10, m11) Sets the matrix from 4 independent float values, specified in row- major order.
SetColumn(i, v) Sets a column of the matrix from a Vec2.
SetDiagonal(s) Sets the matrix to s times the identity matrix.
SetIdentity() Sets the matrix to the identity matrix.
SetRow(i, v) Sets a row of the matrix from a Vec2.
SetZero() Sets the matrix to zero.
Attributes:
dimension
GetColumn(i) → Vec2f Gets a column of the matrix as a Vec2.
Parameters i (int) –
GetDeterminant() → float Returns the determinant of the matrix.
GetInverse(det, eps) → Matrix2f Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular. (FLT_MAX is the largest value a float can have, as defined by the system.) The matrix is considered singular if the determinant is less than or equal to the optional parameter eps. If det is non-null, *det is set to the determinant.
Parameters
det (float) – eps (float) –
GetRow(i) → Vec2f Gets a row of the matrix as a Vec2.
Parameters i (int) –
GetTranspose() → Matrix2f Returns the transpose of the matrix.
Set(m00, m01, m10, m11) → Matrix2f Sets the matrix from 4 independent float values, specified in row- major order. For example, parameter m10 specifies the value in row 1 and column 0.
Parameters
m00 (float) – m01 (float) – m10 (float) – m11 (float) –
Set(m) -> Matrix2f Sets the matrix from a 2x2 array of float values, specified in row-major order.
Parameters m (float) –
SetColumn(i, v) → None Sets a column of the matrix from a Vec2.
Parameters
i (int) – v (Vec2f) –
SetDiagonal(s) → Matrix2f Sets the matrix to s times the identity matrix.
Parameters s (float) –
SetDiagonal(arg1) -> Matrix2f Sets the matrix to have diagonal ( v[0], v[1] ).
Parameters arg1 (Vec2f) –
SetIdentity() → Matrix2f Sets the matrix to the identity matrix.
SetRow(i, v) → None Sets a row of the matrix from a Vec2.
Parameters
i (int) – v (Vec2f) –
SetZero() → Matrix2f Sets the matrix to zero.
dimension = (2, 2)
class pxr.Gf.Matrix3d Methods:
ExtractRotation() Returns the rotation corresponding to this matrix.
GetColumn(i) Gets a column of the matrix as a Vec3.
GetDeterminant() Returns the determinant of the matrix.
GetHandedness() Returns the sign of the determinant of the matrix, i.e.
GetInverse(det, eps) Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular.
GetOrthonormalized(issueWarning) Returns an orthonormalized copy of the matrix.
GetRow(i) Gets a row of the matrix as a Vec3.
GetTranspose() Returns the transpose of the matrix.
IsLeftHanded() Returns true if the vectors in matrix form a left-handed coordinate system.
IsRightHanded() Returns true if the vectors in the matrix form a right-handed coordinate system.
Orthonormalize(issueWarning) Makes the matrix orthonormal in place.
Set(m00, m01, m02, m10, m11, m12, m20, m21, m22) Sets the matrix from 9 independent double values, specified in row-major order.
SetColumn(i, v) Sets a column of the matrix from a Vec3.
SetDiagonal(s) Sets the matrix to s times the identity matrix.
SetIdentity() Sets the matrix to the identity matrix.
SetRotate(rot) Sets the matrix to specify a rotation equivalent to rot.
SetRow(i, v) Sets a row of the matrix from a Vec3.
SetScale(scaleFactors) Sets the matrix to specify a nonuniform scaling in x, y, and z by the factors in vector scaleFactors.
SetZero() Sets the matrix to zero.
Attributes:
dimension
ExtractRotation() → Rotation Returns the rotation corresponding to this matrix. This works well only if the matrix represents a rotation. For good results, consider calling Orthonormalize() before calling this method.
GetColumn(i) → Vec3d Gets a column of the matrix as a Vec3.
Parameters i (int) –
GetDeterminant() → float Returns the determinant of the matrix.
GetHandedness() → float Returns the sign of the determinant of the matrix, i.e. 1 for a right-handed matrix, -1 for a left-handed matrix, and 0 for a singular matrix.
GetInverse(det, eps) → Matrix3d Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular. (FLT_MAX is the largest value a float can have, as defined by the system.) The matrix is considered singular if the determinant is less than or equal to the optional parameter eps. If det is non-null, *det is set to the determinant.
Parameters
det (float) – eps (float) –
GetOrthonormalized(issueWarning) → Matrix3d Returns an orthonormalized copy of the matrix.
Parameters issueWarning (bool) –
GetRow(i) → Vec3d Gets a row of the matrix as a Vec3.
Parameters i (int) –
GetTranspose() → Matrix3d Returns the transpose of the matrix.
IsLeftHanded() → bool Returns true if the vectors in matrix form a left-handed coordinate system.
IsRightHanded() → bool Returns true if the vectors in the matrix form a right-handed coordinate system.
Orthonormalize(issueWarning) → bool Makes the matrix orthonormal in place. This is an iterative method that is much more stable than the previous cross/cross method. If the iterative method does not converge, a warning is issued. Returns true if the iteration converged, false otherwise. Leaves any translation part of the matrix unchanged. If issueWarning is true, this method will issue a warning if the iteration does not converge, otherwise it will be silent.
Parameters issueWarning (bool) –
Set(m00, m01, m02, m10, m11, m12, m20, m21, m22) → Matrix3d Sets the matrix from 9 independent double values, specified in row-major order. For example, parameter m10 specifies the value in row 1 and column 0.
Parameters
m00 (float) – m01 (float) – m02 (float) – m10 (float) – m11 (float) – m12 (float) – m20 (float) – m21 (float) – m22 (float) –
Set(m) -> Matrix3d Sets the matrix from a 3x3 array of double values, specified in row-major order.
Parameters m (float) –
SetColumn(i, v) → None Sets a column of the matrix from a Vec3.
Parameters
i (int) – v (Vec3d) –
SetDiagonal(s) → Matrix3d Sets the matrix to s times the identity matrix.
Parameters s (float) –
SetDiagonal(arg1) -> Matrix3d Sets the matrix to have diagonal ( v[0], v[1], v[2] ).
Parameters arg1 (Vec3d) –
SetIdentity() → Matrix3d Sets the matrix to the identity matrix.
SetRotate(rot) → Matrix3d Sets the matrix to specify a rotation equivalent to rot.
Parameters rot (Quatd) –
SetRotate(rot) -> Matrix3d Sets the matrix to specify a rotation equivalent to rot.
Parameters rot (Rotation) –
SetRow(i, v) → None Sets a row of the matrix from a Vec3.
Parameters
i (int) – v (Vec3d) –
SetScale(scaleFactors) → Matrix3d Sets the matrix to specify a nonuniform scaling in x, y, and z by the factors in vector scaleFactors.
Parameters scaleFactors (Vec3d) –
SetScale(scaleFactor) -> Matrix3d Sets matrix to specify a uniform scaling by scaleFactor.
Parameters scaleFactor (float) –
SetZero() → Matrix3d Sets the matrix to zero.
dimension = (3, 3)
class pxr.Gf.Matrix3f Methods:
ExtractRotation() Returns the rotation corresponding to this matrix.
GetColumn(i) Gets a column of the matrix as a Vec3.
GetDeterminant() Returns the determinant of the matrix.
GetHandedness() Returns the sign of the determinant of the matrix, i.e.
GetInverse(det, eps) Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular.
GetOrthonormalized(issueWarning) Returns an orthonormalized copy of the matrix.
GetRow(i) Gets a row of the matrix as a Vec3.
GetTranspose() Returns the transpose of the matrix.
IsLeftHanded() Returns true if the vectors in matrix form a left-handed coordinate system.
IsRightHanded() Returns true if the vectors in the matrix form a right-handed coordinate system.
Orthonormalize(issueWarning) Makes the matrix orthonormal in place.
Set(m00, m01, m02, m10, m11, m12, m20, m21, m22) Sets the matrix from 9 independent float values, specified in row- major order.
SetColumn(i, v) Sets a column of the matrix from a Vec3.
SetDiagonal(s) Sets the matrix to s times the identity matrix.
SetIdentity() Sets the matrix to the identity matrix.
SetRotate(rot) Sets the matrix to specify a rotation equivalent to rot.
SetRow(i, v) Sets a row of the matrix from a Vec3.
SetScale(scaleFactors) Sets the matrix to specify a nonuniform scaling in x, y, and z by the factors in vector scaleFactors.
SetZero() Sets the matrix to zero.
Attributes:
dimension
ExtractRotation() → Rotation Returns the rotation corresponding to this matrix. This works well only if the matrix represents a rotation. For good results, consider calling Orthonormalize() before calling this method.
GetColumn(i) → Vec3f Gets a column of the matrix as a Vec3.
Parameters i (int) –
GetDeterminant() → float Returns the determinant of the matrix.
GetHandedness() → float Returns the sign of the determinant of the matrix, i.e. 1 for a right-handed matrix, -1 for a left-handed matrix, and 0 for a singular matrix.
GetInverse(det, eps) → Matrix3f Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular. (FLT_MAX is the largest value a float can have, as defined by the system.) The matrix is considered singular if the determinant is less than or equal to the optional parameter eps. If det is non-null, *det is set to the determinant.
Parameters
det (float) – eps (float) –
GetOrthonormalized(issueWarning) → Matrix3f Returns an orthonormalized copy of the matrix.
Parameters issueWarning (bool) –
GetRow(i) → Vec3f Gets a row of the matrix as a Vec3.
Parameters i (int) –
GetTranspose() → Matrix3f Returns the transpose of the matrix.
IsLeftHanded() → bool Returns true if the vectors in matrix form a left-handed coordinate system.
IsRightHanded() → bool Returns true if the vectors in the matrix form a right-handed coordinate system.
Orthonormalize(issueWarning) → bool Makes the matrix orthonormal in place. This is an iterative method that is much more stable than the previous cross/cross method. If the iterative method does not converge, a warning is issued. Returns true if the iteration converged, false otherwise. Leaves any translation part of the matrix unchanged. If issueWarning is true, this method will issue a warning if the iteration does not converge, otherwise it will be silent.
Parameters issueWarning (bool) –
Set(m00, m01, m02, m10, m11, m12, m20, m21, m22) → Matrix3f Sets the matrix from 9 independent float values, specified in row- major order. For example, parameter m10 specifies the value in row 1 and column 0.
Parameters
m00 (float) – m01 (float) – m02 (float) – m10 (float) – m11 (float) – m12 (float) – m20 (float) – m21 (float) – m22 (float) –
Set(m) -> Matrix3f Sets the matrix from a 3x3 array of float values, specified in row-major order.
Parameters m (float) –
SetColumn(i, v) → None Sets a column of the matrix from a Vec3.
Parameters
i (int) – v (Vec3f) –
SetDiagonal(s) → Matrix3f Sets the matrix to s times the identity matrix.
Parameters s (float) –
SetDiagonal(arg1) -> Matrix3f Sets the matrix to have diagonal ( v[0], v[1], v[2] ).
Parameters arg1 (Vec3f) –
SetIdentity() → Matrix3f Sets the matrix to the identity matrix.
SetRotate(rot) → Matrix3f Sets the matrix to specify a rotation equivalent to rot.
Parameters rot (Quatf) –
SetRotate(rot) -> Matrix3f Sets the matrix to specify a rotation equivalent to rot.
Parameters rot (Rotation) –
SetRow(i, v) → None Sets a row of the matrix from a Vec3.
Parameters
i (int) – v (Vec3f) –
SetScale(scaleFactors) → Matrix3f Sets the matrix to specify a nonuniform scaling in x, y, and z by the factors in vector scaleFactors.
Parameters scaleFactors (Vec3f) –
SetScale(scaleFactor) -> Matrix3f Sets matrix to specify a uniform scaling by scaleFactor.
Parameters scaleFactor (float) –
SetZero() → Matrix3f Sets the matrix to zero.
dimension = (3, 3)
class pxr.Gf.Matrix4d Methods:
ExtractRotation() Returns the rotation corresponding to this matrix.
ExtractRotationMatrix() Returns the rotation corresponding to this matrix.
ExtractRotationQuat() Return the rotation corresponding to this matrix as a quaternion.
ExtractTranslation() Returns the translation part of the matrix, defined as the first three elements of the last row.
Factor(r, s, u, t, p, eps) Factors the matrix into 5 components:
GetColumn(i) Gets a column of the matrix as a Vec4.
GetDeterminant() Returns the determinant of the matrix.
GetDeterminant3() Returns the determinant of the upper 3x3 matrix.
GetHandedness() Returns the sign of the determinant of the upper 3x3 matrix, i.e.
GetInverse(det, eps) Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular.
GetOrthonormalized(issueWarning) Returns an orthonormalized copy of the matrix.
GetRow(i) Gets a row of the matrix as a Vec4.
GetRow3(i) Gets a row of the matrix as a Vec3.
GetTranspose() Returns the transpose of the matrix.
HasOrthogonalRows3() Returns true, if the row vectors of the upper 3x3 matrix form an orthogonal basis.
IsLeftHanded() Returns true if the vectors in the upper 3x3 matrix form a left-handed coordinate system.
IsRightHanded() Returns true if the vectors in the upper 3x3 matrix form a right- handed coordinate system.
Orthonormalize(issueWarning) Makes the matrix orthonormal in place.
RemoveScaleShear() Returns the matrix with any scaling or shearing removed, leaving only the rotation and translation.
Set(m00, m01, m02, m03, m10, m11, m12, m13, ...) Sets the matrix from 16 independent double values, specified in row-major order.
SetColumn(i, v) Sets a column of the matrix from a Vec4.
SetDiagonal(s) Sets the matrix to s times the identity matrix.
SetIdentity() Sets the matrix to the identity matrix.
SetLookAt(eyePoint, centerPoint, upDirection) Sets the matrix to specify a viewing matrix from parameters similar to those used by gluLookAt(3G) .
SetRotate(rot) Sets the matrix to specify a rotation equivalent to rot, and clears the translation.
SetRotateOnly(rot) Sets the matrix to specify a rotation equivalent to rot, without clearing the translation.
SetRow(i, v) Sets a row of the matrix from a Vec4.
SetRow3(i, v) Sets a row of the matrix from a Vec3.
SetScale(scaleFactors) Sets the matrix to specify a nonuniform scaling in x, y, and z by the factors in vector scaleFactors.
SetTransform(rotate, translate) Sets matrix to specify a rotation by rotate and a translation by translate.
SetTranslate(trans) Sets matrix to specify a translation by the vector trans, and clears the rotation.
SetTranslateOnly(t) Sets matrix to specify a translation by the vector trans, without clearing the rotation.
SetZero() Sets the matrix to zero.
Transform(vec) Transforms the row vector vec by the matrix, returning the result.
TransformAffine(vec) Transforms the row vector vec by the matrix, returning the result.
TransformDir(vec) Transforms row vector vec by the matrix, returning the result.
Attributes:
dimension
ExtractRotation() → Rotation Returns the rotation corresponding to this matrix. This works well only if the matrix represents a rotation. For good results, consider calling Orthonormalize() before calling this method.
ExtractRotationMatrix() → Matrix3d Returns the rotation corresponding to this matrix. This works well only if the matrix represents a rotation. For good results, consider calling Orthonormalize() before calling this method.
ExtractRotationQuat() → Quatd Return the rotation corresponding to this matrix as a quaternion. This works well only if the matrix represents a rotation. For good results, consider calling Orthonormalize() before calling this method.
ExtractTranslation() → Vec3d Returns the translation part of the matrix, defined as the first three elements of the last row.
Factor(r, s, u, t, p, eps) → bool Factors the matrix into 5 components:
M = r * s * -r * u * t where t is a translation. u and r are rotations, and -r is the transpose (inverse) of r. The u matrix may contain shear information. s is a scale. Any projection information could be returned in matrix p, but currently p is never modified. Returns false if the matrix is singular (as determined by eps). In that case, any zero scales in s are clamped to eps to allow computation of u.
Parameters
r (Matrix4d) – s (Vec3d) – u (Matrix4d) – t (Vec3d) – p (Matrix4d) – eps (float) –
GetColumn(i) → Vec4d Gets a column of the matrix as a Vec4.
Parameters i (int) –
GetDeterminant() → float Returns the determinant of the matrix.
GetDeterminant3() → float Returns the determinant of the upper 3x3 matrix. This method is useful when the matrix describes a linear transformation such as a rotation or scale because the other values in the 4x4 matrix are not important.
GetHandedness() → float Returns the sign of the determinant of the upper 3x3 matrix, i.e. 1 for a right-handed matrix, -1 for a left-handed matrix, and 0 for a singular matrix.
GetInverse(det, eps) → Matrix4d Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular. (FLT_MAX is the largest value a float can have, as defined by the system.) The matrix is considered singular if the determinant is less than or equal to the optional parameter eps. If det is non-null, *det is set to the determinant.
Parameters
det (float) – eps (float) –
GetOrthonormalized(issueWarning) → Matrix4d Returns an orthonormalized copy of the matrix.
Parameters issueWarning (bool) –
GetRow(i) → Vec4d Gets a row of the matrix as a Vec4.
Parameters i (int) –
GetRow3(i) → Vec3d Gets a row of the matrix as a Vec3.
Parameters i (int) –
GetTranspose() → Matrix4d Returns the transpose of the matrix.
HasOrthogonalRows3() → bool Returns true, if the row vectors of the upper 3x3 matrix form an orthogonal basis. Note they do not have to be unit length for this test to return true.
IsLeftHanded() → bool Returns true if the vectors in the upper 3x3 matrix form a left-handed coordinate system.
IsRightHanded() → bool Returns true if the vectors in the upper 3x3 matrix form a right- handed coordinate system.
Orthonormalize(issueWarning) → bool Makes the matrix orthonormal in place. This is an iterative method that is much more stable than the previous cross/cross method. If the iterative method does not converge, a warning is issued. Returns true if the iteration converged, false otherwise. Leaves any translation part of the matrix unchanged. If issueWarning is true, this method will issue a warning if the iteration does not converge, otherwise it will be silent.
Parameters issueWarning (bool) –
RemoveScaleShear() → Matrix4d Returns the matrix with any scaling or shearing removed, leaving only the rotation and translation. If the matrix cannot be decomposed, returns the original matrix.
Set(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) → Matrix4d Sets the matrix from 16 independent double values, specified in row-major order. For example, parameter m10 specifies the value in row 1 and column 0.
Parameters
m00 (float) – m01 (float) – m02 (float) – m03 (float) – m10 (float) – m11 (float) – m12 (float) – m13 (float) – m20 (float) – m21 (float) – m22 (float) – m23 (float) – m30 (float) – m31 (float) – m32 (float) – m33 (float) –
Set(m) -> Matrix4d Sets the matrix from a 4x4 array of double values, specified in row-major order.
Parameters m (float) –
SetColumn(i, v) → None Sets a column of the matrix from a Vec4.
Parameters
i (int) – v (Vec4d) –
SetDiagonal(s) → Matrix4d Sets the matrix to s times the identity matrix.
Parameters s (float) –
SetDiagonal(arg1) -> Matrix4d Sets the matrix to have diagonal ( v[0], v[1], v[2], v[3] ).
Parameters arg1 (Vec4d) –
SetIdentity() → Matrix4d Sets the matrix to the identity matrix.
SetLookAt(eyePoint, centerPoint, upDirection) → Matrix4d Sets the matrix to specify a viewing matrix from parameters similar to those used by gluLookAt(3G) . eyePoint represents the eye point in world space. centerPoint represents the world-space center of attention. upDirection is a vector indicating which way is up.
Parameters
eyePoint (Vec3d) – centerPoint (Vec3d) – upDirection (Vec3d) –
SetLookAt(eyePoint, orientation) -> Matrix4d Sets the matrix to specify a viewing matrix from a world-space eyePoint and a world-space rotation that rigidly rotates the orientation from its canonical frame, which is defined to be looking along the -z axis with the +y axis as the up direction.
Parameters
eyePoint (Vec3d) – orientation (Rotation) –
SetRotate(rot) → Matrix4d Sets the matrix to specify a rotation equivalent to rot, and clears the translation.
Parameters rot (Quatd) –
SetRotate(rot) -> Matrix4d Sets the matrix to specify a rotation equivalent to rot, and clears the translation.
Parameters rot (Rotation) –
SetRotate(mx) -> Matrix4d Sets the matrix to specify a rotation equivalent to mx, and clears the translation.
Parameters mx (Matrix3d) –
SetRotateOnly(rot) → Matrix4d Sets the matrix to specify a rotation equivalent to rot, without clearing the translation.
Parameters rot (Quatd) –
SetRotateOnly(rot) -> Matrix4d Sets the matrix to specify a rotation equivalent to rot, without clearing the translation.
Parameters rot (Rotation) –
SetRotateOnly(mx) -> Matrix4d Sets the matrix to specify a rotation equivalent to mx, without clearing the translation.
Parameters mx (Matrix3d) –
SetRow(i, v) → None Sets a row of the matrix from a Vec4.
Parameters
i (int) – v (Vec4d) –
SetRow3(i, v) → None Sets a row of the matrix from a Vec3. The fourth element of the row is ignored.
Parameters
i (int) – v (Vec3d) –
SetScale(scaleFactors) → Matrix4d Sets the matrix to specify a nonuniform scaling in x, y, and z by the factors in vector scaleFactors.
Parameters scaleFactors (Vec3d) –
SetScale(scaleFactor) -> Matrix4d Sets matrix to specify a uniform scaling by scaleFactor.
Parameters scaleFactor (float) –
SetTransform(rotate, translate) → Matrix4d Sets matrix to specify a rotation by rotate and a translation by translate.
Parameters
rotate (Rotation) – translate (Vec3d) –
SetTransform(rotmx, translate) -> Matrix4d Sets matrix to specify a rotation by rotmx and a translation by translate.
Parameters
rotmx (Matrix3d) – translate (Vec3d) –
SetTranslate(trans) → Matrix4d Sets matrix to specify a translation by the vector trans, and clears the rotation.
Parameters trans (Vec3d) –
SetTranslateOnly(t) → Matrix4d Sets matrix to specify a translation by the vector trans, without clearing the rotation.
Parameters t (Vec3d) –
SetZero() → Matrix4d Sets the matrix to zero.
Transform(vec) → Vec3d Transforms the row vector vec by the matrix, returning the result. This treats the vector as a 4-component vector whose fourth component is 1.
Parameters vec (Vec3d) –
Transform(vec) -> Vec3f Transforms the row vector vec by the matrix, returning the result. This treats the vector as a 4-component vector whose fourth component is 1. This is an overloaded method; it differs from the other version in that it returns a different value type.
Parameters vec (Vec3f) –
TransformAffine(vec) → Vec3d Transforms the row vector vec by the matrix, returning the result. This treats the vector as a 4-component vector whose fourth component is 1 and ignores the fourth column of the matrix (i.e. assumes it is (0, 0, 0, 1)).
Parameters vec (Vec3d) –
TransformAffine(vec) -> Vec3f Transforms the row vector vec by the matrix, returning the result. This treats the vector as a 4-component vector whose fourth component is 1 and ignores the fourth column of the matrix (i.e. assumes it is (0, 0, 0, 1)).
Parameters vec (Vec3f) –
TransformDir(vec) → Vec3d Transforms row vector vec by the matrix, returning the result. This treats the vector as a direction vector, so the translation information in the matrix is ignored. That is, it treats the vector as a 4-component vector whose fourth component is 0.
Parameters vec (Vec3d) –
TransformDir(vec) -> Vec3f Transforms row vector vec by the matrix, returning the result. This treats the vector as a direction vector, so the translation information in the matrix is ignored. That is, it treats the vector as a 4-component vector whose fourth component is 0. This is an overloaded method; it differs from the other version in that it returns a different value type.
Parameters vec (Vec3f) –
dimension = (4, 4)
class pxr.Gf.Matrix4f Methods:
ExtractRotation() Returns the rotation corresponding to this matrix.
ExtractRotationMatrix() Returns the rotation corresponding to this matrix.
ExtractRotationQuat() Return the rotation corresponding to this matrix as a quaternion.
ExtractTranslation() Returns the translation part of the matrix, defined as the first three elements of the last row.
Factor(r, s, u, t, p, eps) Factors the matrix into 5 components:
GetColumn(i) Gets a column of the matrix as a Vec4.
GetDeterminant() Returns the determinant of the matrix.
GetDeterminant3() Returns the determinant of the upper 3x3 matrix.
GetHandedness() Returns the sign of the determinant of the upper 3x3 matrix, i.e.
GetInverse(det, eps) Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular.
GetOrthonormalized(issueWarning) Returns an orthonormalized copy of the matrix.
GetRow(i) Gets a row of the matrix as a Vec4.
GetRow3(i) Gets a row of the matrix as a Vec3.
GetTranspose() Returns the transpose of the matrix.
HasOrthogonalRows3() Returns true, if the row vectors of the upper 3x3 matrix form an orthogonal basis.
IsLeftHanded() Returns true if the vectors in the upper 3x3 matrix form a left-handed coordinate system.
IsRightHanded() Returns true if the vectors in the upper 3x3 matrix form a right- handed coordinate system.
Orthonormalize(issueWarning) Makes the matrix orthonormal in place.
RemoveScaleShear() Returns the matrix with any scaling or shearing removed, leaving only the rotation and translation.
Set(m00, m01, m02, m03, m10, m11, m12, m13, ...) Sets the matrix from 16 independent float values, specified in row-major order.
SetColumn(i, v) Sets a column of the matrix from a Vec4.
SetDiagonal(s) Sets the matrix to s times the identity matrix.
SetIdentity() Sets the matrix to the identity matrix.
SetLookAt(eyePoint, centerPoint, upDirection) Sets the matrix to specify a viewing matrix from parameters similar to those used by gluLookAt(3G) .
SetRotate(rot) Sets the matrix to specify a rotation equivalent to rot, and clears the translation.
SetRotateOnly(rot) Sets the matrix to specify a rotation equivalent to rot, without clearing the translation.
SetRow(i, v) Sets a row of the matrix from a Vec4.
SetRow3(i, v) Sets a row of the matrix from a Vec3.
SetScale(scaleFactors) Sets the matrix to specify a nonuniform scaling in x, y, and z by the factors in vector scaleFactors.
SetTransform(rotate, translate) Sets matrix to specify a rotation by rotate and a translation by translate.
SetTranslate(trans) Sets matrix to specify a translation by the vector trans, and clears the rotation.
SetTranslateOnly(t) Sets matrix to specify a translation by the vector trans, without clearing the rotation.
SetZero() Sets the matrix to zero.
Transform(vec) Transforms the row vector vec by the matrix, returning the result.
TransformAffine(vec) Transforms the row vector vec by the matrix, returning the result.
TransformDir(vec) Transforms row vector vec by the matrix, returning the result.
Attributes:
dimension
ExtractRotation() → Rotation Returns the rotation corresponding to this matrix. This works well only if the matrix represents a rotation. For good results, consider calling Orthonormalize() before calling this method.
ExtractRotationMatrix() → Matrix3f Returns the rotation corresponding to this matrix. This works well only if the matrix represents a rotation. For good results, consider calling Orthonormalize() before calling this method.
ExtractRotationQuat() → Quatf Return the rotation corresponding to this matrix as a quaternion. This works well only if the matrix represents a rotation. For good results, consider calling Orthonormalize() before calling this method.
ExtractTranslation() → Vec3f Returns the translation part of the matrix, defined as the first three elements of the last row.
Factor(r, s, u, t, p, eps) → bool Factors the matrix into 5 components:
M = r * s * -r * u * t where t is a translation. u and r are rotations, and -r is the transpose (inverse) of r. The u matrix may contain shear information. s is a scale. Any projection information could be returned in matrix p, but currently p is never modified. Returns false if the matrix is singular (as determined by eps). In that case, any zero scales in s are clamped to eps to allow computation of u.
Parameters
r (Matrix4f) – s (Vec3f) – u (Matrix4f) – t (Vec3f) – p (Matrix4f) – eps (float) –
GetColumn(i) → Vec4f Gets a column of the matrix as a Vec4.
Parameters i (int) –
GetDeterminant() → float Returns the determinant of the matrix.
GetDeterminant3() → float Returns the determinant of the upper 3x3 matrix. This method is useful when the matrix describes a linear transformation such as a rotation or scale because the other values in the 4x4 matrix are not important.
GetHandedness() → float Returns the sign of the determinant of the upper 3x3 matrix, i.e. 1 for a right-handed matrix, -1 for a left-handed matrix, and 0 for a singular matrix.
GetInverse(det, eps) → Matrix4f Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the matrix is singular. (FLT_MAX is the largest value a float can have, as defined by the system.) The matrix is considered singular if the determinant is less than or equal to the optional parameter eps. If det is non-null, *det is set to the determinant.
Parameters
det (float) – eps (float) –
GetOrthonormalized(issueWarning) → Matrix4f Returns an orthonormalized copy of the matrix.
Parameters issueWarning (bool) –
GetRow(i) → Vec4f Gets a row of the matrix as a Vec4.
Parameters i (int) –
GetRow3(i) → Vec3f Gets a row of the matrix as a Vec3.
Parameters i (int) –
GetTranspose() → Matrix4f Returns the transpose of the matrix.
HasOrthogonalRows3() → bool Returns true, if the row vectors of the upper 3x3 matrix form an orthogonal basis. Note they do not have to be unit length for this test to return true.
IsLeftHanded() → bool Returns true if the vectors in the upper 3x3 matrix form a left-handed coordinate system.
IsRightHanded() → bool Returns true if the vectors in the upper 3x3 matrix form a right- handed coordinate system.
Orthonormalize(issueWarning) → bool Makes the matrix orthonormal in place. This is an iterative method that is much more stable than the previous cross/cross method. If the iterative method does not converge, a warning is issued. Returns true if the iteration converged, false otherwise. Leaves any translation part of the matrix unchanged. If issueWarning is true, this method will issue a warning if the iteration does not converge, otherwise it will be silent.
Parameters issueWarning (bool) –
RemoveScaleShear() → Matrix4f Returns the matrix with any scaling or shearing removed, leaving only the rotation and translation. If the matrix cannot be decomposed, returns the original matrix.
Set(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) → Matrix4f Sets the matrix from 16 independent float values, specified in row-major order. For example, parameter m10 specifies the value in row1 and column 0.
Parameters
m00 (float) – m01 (float) – m02 (float) – m03 (float) – m10 (float) – m11 (float) – m12 (float) – m13 (float) – m20 (float) – m21 (float) – m22 (float) – m23 (float) – m30 (float) – m31 (float) – m32 (float) – m33 (float) –
Set(m) -> Matrix4f Sets the matrix from a 4x4 array of float values, specified in row-major order.
Parameters m (float) –
SetColumn(i, v) → None Sets a column of the matrix from a Vec4.
Parameters
i (int) – v (Vec4f) –
SetDiagonal(s) → Matrix4f Sets the matrix to s times the identity matrix.
Parameters s (float) –
SetDiagonal(arg1) -> Matrix4f Sets the matrix to have diagonal ( v[0], v[1], v[2], v[3] ).
Parameters arg1 (Vec4f) –
SetIdentity() → Matrix4f Sets the matrix to the identity matrix.
SetLookAt(eyePoint, centerPoint, upDirection) → Matrix4f Sets the matrix to specify a viewing matrix from parameters similar to those used by gluLookAt(3G) . eyePoint represents the eye point in world space. centerPoint represents the world-space center of attention. upDirection is a vector indicating which way is up.
Parameters
eyePoint (Vec3f) – centerPoint (Vec3f) – upDirection (Vec3f) –
SetLookAt(eyePoint, orientation) -> Matrix4f Sets the matrix to specify a viewing matrix from a world-space eyePoint and a world-space rotation that rigidly rotates the orientation from its canonical frame, which is defined to be looking along the -z axis with the +y axis as the up direction.
Parameters
eyePoint (Vec3f) – orientation (Rotation) –
SetRotate(rot) → Matrix4f Sets the matrix to specify a rotation equivalent to rot, and clears the translation.
Parameters rot (Quatf) –
SetRotate(rot) -> Matrix4f Sets the matrix to specify a rotation equivalent to rot, and clears the translation.
Parameters rot (Rotation) –
SetRotate(mx) -> Matrix4f Sets the matrix to specify a rotation equivalent to mx, and clears the translation.
Parameters mx (Matrix3f) –
SetRotateOnly(rot) → Matrix4f Sets the matrix to specify a rotation equivalent to rot, without clearing the translation.
Parameters rot (Quatf) –
SetRotateOnly(rot) -> Matrix4f Sets the matrix to specify a rotation equivalent to rot, without clearing the translation.
Parameters rot (Rotation) –
SetRotateOnly(mx) -> Matrix4f Sets the matrix to specify a rotation equivalent to mx, without clearing the translation.
Parameters mx (Matrix3f) –
SetRow(i, v) → None Sets a row of the matrix from a Vec4.
Parameters
i (int) – v (Vec4f) –
SetRow3(i, v) → None Sets a row of the matrix from a Vec3. The fourth element of the row is ignored.
Parameters
i (int) – v (Vec3f) –
SetScale(scaleFactors) → Matrix4f Sets the matrix to specify a nonuniform scaling in x, y, and z by the factors in vector scaleFactors.
Parameters scaleFactors (Vec3f) –
SetScale(scaleFactor) -> Matrix4f Sets matrix to specify a uniform scaling by scaleFactor.
Parameters scaleFactor (float) –
SetTransform(rotate, translate) → Matrix4f Sets matrix to specify a rotation by rotate and a translation by translate.
Parameters
rotate (Rotation) – translate (Vec3f) –
SetTransform(rotmx, translate) -> Matrix4f Sets matrix to specify a rotation by rotmx and a translation by translate.
Parameters
rotmx (Matrix3f) – translate (Vec3f) –
SetTranslate(trans) → Matrix4f Sets matrix to specify a translation by the vector trans, and clears the rotation.
Parameters trans (Vec3f) –
SetTranslateOnly(t) → Matrix4f Sets matrix to specify a translation by the vector trans, without clearing the rotation.
Parameters t (Vec3f) –
SetZero() → Matrix4f Sets the matrix to zero.
Transform(vec) → Vec3d Transforms the row vector vec by the matrix, returning the result. This treats the vector as a 4-component vector whose fourth component is 1.
Parameters vec (Vec3d) –
Transform(vec) -> Vec3f Transforms the row vector vec by the matrix, returning the result. This treats the vector as a 4-component vector whose fourth component is 1. This is an overloaded method; it differs from the other version in that it returns a different value type.
Parameters vec (Vec3f) –
TransformAffine(vec) → Vec3d Transforms the row vector vec by the matrix, returning the result. This treats the vector as a 4-component vector whose fourth component is 1 and ignores the fourth column of the matrix (i.e. assumes it is (0, 0, 0, 1)).
Parameters vec (Vec3d) –
TransformAffine(vec) -> Vec3f Transforms the row vector vec by the matrix, returning the result. This treats the vector as a 4-component vector whose fourth component is 1 and ignores the fourth column of the matrix (i.e. assumes it is (0, 0, 0, 1)).
Parameters vec (Vec3f) –
TransformDir(vec) → Vec3d Transforms row vector vec by the matrix, returning the result. This treats the vector as a direction vector, so the translation information in the matrix is ignored. That is, it treats the vector as a 4-component vector whose fourth component is 0.
Parameters vec (Vec3d) –
TransformDir(vec) -> Vec3f Transforms row vector vec by the matrix, returning the result. This treats the vector as a direction vector, so the translation information in the matrix is ignored. That is, it treats the vector as a 4-component vector whose fourth component is 0. This is an overloaded method; it differs from the other version in that it returns a different value type.
Parameters vec (Vec3f) –
dimension = (4, 4)
class pxr.Gf.MultiInterval Methods:
Add(i) Add the given interval to the multi-interval.
ArithmeticAdd(i) Uses the given interval to extend the multi-interval in the interval arithmetic sense.
Clear() Clear the multi-interval.
Contains Returns true if x is inside the multi-interval.
GetBounds() Returns an interval bounding the entire multi-interval.
GetComplement() Return the complement of this set.
GetFullInterval classmethod GetFullInterval() -> MultiInterval
GetSize() Returns the number of intervals in the set.
Intersect(i)
param i
IsEmpty() Returns true if the multi-interval is empty.
Remove(i) Remove the given interval from this multi-interval.
Attributes:
bounds
isEmpty
size
Add(i) → None Add the given interval to the multi-interval.
Parameters i (Interval) –
Add(s) -> None Add the given multi-interval to the multi-interval. Sets this object to the union of the two sets.
Parameters s (MultiInterval) –
ArithmeticAdd(i) → None Uses the given interval to extend the multi-interval in the interval arithmetic sense.
Parameters i (Interval) –
Clear() → None Clear the multi-interval.
Contains() Returns true if x is inside the multi-interval. Returns true if x is inside the multi-interval. Returns true if x is inside the multi-interval.
GetBounds() → Interval Returns an interval bounding the entire multi-interval. Returns an empty interval if the multi-interval is empty.
GetComplement() → MultiInterval Return the complement of this set.
static GetFullInterval() classmethod GetFullInterval() -> MultiInterval Returns the full interval (-inf, inf).
GetSize() → int Returns the number of intervals in the set.
Intersect(i) → None
Parameters i (Interval) –
Intersect(s) -> None
Parameters s (MultiInterval) –
IsEmpty() → bool Returns true if the multi-interval is empty.
Remove(i) → None Remove the given interval from this multi-interval.
Parameters i (Interval) –
Remove(s) -> None Remove the given multi-interval from this multi-interval.
Parameters s (MultiInterval) –
property bounds
property isEmpty
property size
class pxr.Gf.Plane Methods:
GetDistance(p) Returns the distance of point from the plane.
GetDistanceFromOrigin() Returns the distance of the plane from the origin.
GetEquation() Give the coefficients of the equation of the plane.
GetNormal() Returns the unit-length normal vector of the plane.
IntersectsPositiveHalfSpace(box) Returns true if the given aligned bounding box is at least partially on the positive side (the one the normal points into) of the plane.
Project(p) Return the projection of p onto the plane.
Reorient(p) Flip the plane normal (if necessary) so that p is in the positive halfspace.
Set(normal, distanceToOrigin) Sets this to the plane perpendicular to normal and at distance units from the origin.
Transform(matrix) Transforms the plane by the given matrix.
Attributes:
distanceFromOrigin
normal
GetDistance(p) → float Returns the distance of point from the plane. This distance will be positive if the point is on the side of the plane containing the normal.
Parameters p (Vec3d) –
GetDistanceFromOrigin() → float Returns the distance of the plane from the origin.
GetEquation() → Vec4d Give the coefficients of the equation of the plane. Suitable to OpenGL calls to set the clipping plane.
GetNormal() → Vec3d Returns the unit-length normal vector of the plane.
IntersectsPositiveHalfSpace(box) → bool Returns true if the given aligned bounding box is at least partially on the positive side (the one the normal points into) of the plane.
Parameters box (Range3d) –
IntersectsPositiveHalfSpace(pt) -> bool Returns true if the given point is on the plane or within its positive half space.
Parameters pt (Vec3d) –
Project(p) → Vec3d Return the projection of p onto the plane.
Parameters p (Vec3d) –
Reorient(p) → None Flip the plane normal (if necessary) so that p is in the positive halfspace.
Parameters p (Vec3d) –
Set(normal, distanceToOrigin) → None Sets this to the plane perpendicular to normal and at distance units from the origin. The passed-in normal is normalized to unit length first.
Parameters
normal (Vec3d) – distanceToOrigin (float) –
Set(normal, point) -> None This constructor sets this to the plane perpendicular to normal and that passes through point . The passed-in normal is normalized to unit length first.
Parameters
normal (Vec3d) – point (Vec3d) –
Set(p0, p1, p2) -> None This constructor sets this to the plane that contains the three given points. The normal is constructed from the cross product of ( p1 - p0 ) ( p2 - p0 ). Results are undefined if the points are collinear.
Parameters
p0 (Vec3d) – p1 (Vec3d) – p2 (Vec3d) –
Set(eqn) -> None This method sets this to the plane given by the equation eqn [0]
- x + eqn [1] * y + eqn [2] * z + eqn [3] = 0.
Parameters eqn (Vec4d) –
Transform(matrix) → Plane Transforms the plane by the given matrix.
Parameters matrix (Matrix4d) –
property distanceFromOrigin
property normal
class pxr.Gf.Quatd Methods:
GetConjugate() Return this quaternion's conjugate, which is the quaternion with the same real coefficient and negated imaginary coefficients.
GetIdentity classmethod GetIdentity() -> Quatd
GetImaginary() Return the imaginary coefficient.
GetInverse() Return this quaternion's inverse, or reciprocal.
GetLength() Return geometric length of this quaternion.
GetNormalized(eps) length of this quaternion is smaller than eps , return the identity quaternion.
GetReal() Return the real coefficient.
GetZero classmethod GetZero() -> Quatd
Normalize(eps) Normalizes this quaternion in place to unit length, returning the length before normalization.
SetImaginary(imaginary) Set the imaginary coefficients.
SetReal(real) Set the real coefficient.
Transform(point) Transform the GfVec3d point.
Attributes:
imaginary
real
GetConjugate() → Quatd Return this quaternion’s conjugate, which is the quaternion with the same real coefficient and negated imaginary coefficients.
static GetIdentity() classmethod GetIdentity() -> Quatd Return the identity quaternion, with real coefficient 1 and an imaginary coefficients all zero.
GetImaginary() → Vec3d Return the imaginary coefficient.
GetInverse() → Quatd Return this quaternion’s inverse, or reciprocal. This is the quaternion’s conjugate divided by it’s squared length.
GetLength() → float Return geometric length of this quaternion.
GetNormalized(eps) → Quatd length of this quaternion is smaller than eps , return the identity quaternion.
Parameters eps (float) –
GetReal() → float Return the real coefficient.
static GetZero() classmethod GetZero() -> Quatd Return the zero quaternion, with real coefficient 0 and an imaginary coefficients all zero.
Normalize(eps) → float Normalizes this quaternion in place to unit length, returning the length before normalization. If the length of this quaternion is smaller than eps , this sets the quaternion to identity.
Parameters eps (float) –
SetImaginary(imaginary) → None Set the imaginary coefficients.
Parameters imaginary (Vec3d) –
SetImaginary(i, j, k) -> None Set the imaginary coefficients.
Parameters
i (float) – j (float) – k (float) –
SetReal(real) → None Set the real coefficient.
Parameters real (float) –
Transform(point) → Vec3d Transform the GfVec3d point. If the quaternion is normalized, the transformation is a rotation. Given a GfQuatd q, q.Transform(point) is equivalent to: (q * GfQuatd(0, point) * q.GetInverse()).GetImaginary() but is more efficient.
Parameters point (Vec3d) –
property imaginary
property real
class pxr.Gf.Quaternion Quaternion class Methods:
GetIdentity classmethod GetIdentity() -> Quaternion
GetImaginary() Returns the imaginary part of the quaternion.
GetInverse() Returns the inverse of this quaternion.
GetLength() Returns geometric length of this quaternion.
GetNormalized(eps) Returns a normalized (unit-length) version of this quaternion.
GetReal() Returns the real part of the quaternion.
GetZero classmethod GetZero() -> Quaternion
Normalize(eps) Normalizes this quaternion in place to unit length, returning the length before normalization.
Attributes:
imaginary None
real None
static GetIdentity() classmethod GetIdentity() -> Quaternion Returns the identity quaternion, which has a real part of 1 and an imaginary part of (0,0,0).
GetImaginary() → Vec3d Returns the imaginary part of the quaternion.
GetInverse() → Quaternion Returns the inverse of this quaternion.
GetLength() → float Returns geometric length of this quaternion.
GetNormalized(eps) → Quaternion Returns a normalized (unit-length) version of this quaternion. direction as this. If the length of this quaternion is smaller than eps , this returns the identity quaternion.
Parameters eps (float) –
GetReal() → float Returns the real part of the quaternion.
static GetZero() classmethod GetZero() -> Quaternion Returns the zero quaternion, which has a real part of 0 and an imaginary part of (0,0,0).
Normalize(eps) → float Normalizes this quaternion in place to unit length, returning the length before normalization. If the length of this quaternion is smaller than eps , this sets the quaternion to identity.
Parameters eps (float) –
property imaginary None Sets the imaginary part of the quaternion.
Type type
property real None Sets the real part of the quaternion.
Type type
class pxr.Gf.Quatf Methods:
GetConjugate() Return this quaternion's conjugate, which is the quaternion with the same real coefficient and negated imaginary coefficients.
GetIdentity classmethod GetIdentity() -> Quatf
GetImaginary() Return the imaginary coefficient.
GetInverse() Return this quaternion's inverse, or reciprocal.
GetLength() Return geometric length of this quaternion.
GetNormalized(eps) length of this quaternion is smaller than eps , return the identity quaternion.
GetReal() Return the real coefficient.
GetZero classmethod GetZero() -> Quatf
Normalize(eps) Normalizes this quaternion in place to unit length, returning the length before normalization.
SetImaginary(imaginary) Set the imaginary coefficients.
SetReal(real) Set the real coefficient.
Transform(point) Transform the GfVec3f point.
Attributes:
imaginary
real
GetConjugate() → Quatf Return this quaternion’s conjugate, which is the quaternion with the same real coefficient and negated imaginary coefficients.
static GetIdentity() classmethod GetIdentity() -> Quatf Return the identity quaternion, with real coefficient 1 and an imaginary coefficients all zero.
GetImaginary() → Vec3f Return the imaginary coefficient.
GetInverse() → Quatf Return this quaternion’s inverse, or reciprocal. This is the quaternion’s conjugate divided by it’s squared length.
GetLength() → float Return geometric length of this quaternion.
GetNormalized(eps) → Quatf length of this quaternion is smaller than eps , return the identity quaternion.
Parameters eps (float) –
GetReal() → float Return the real coefficient.
static GetZero() classmethod GetZero() -> Quatf Return the zero quaternion, with real coefficient 0 and an imaginary coefficients all zero.
Normalize(eps) → float Normalizes this quaternion in place to unit length, returning the length before normalization. If the length of this quaternion is smaller than eps , this sets the quaternion to identity.
Parameters eps (float) –
SetImaginary(imaginary) → None Set the imaginary coefficients.
Parameters imaginary (Vec3f) –
SetImaginary(i, j, k) -> None Set the imaginary coefficients.
Parameters
i (float) – j (float) – k (float) –
SetReal(real) → None Set the real coefficient.
Parameters real (float) –
Transform(point) → Vec3f Transform the GfVec3f point. If the quaternion is normalized, the transformation is a rotation. Given a GfQuatf q, q.Transform(point) is equivalent to: (q * GfQuatf(0, point) * q.GetInverse()).GetImaginary() but is more efficient.
Parameters point (Vec3f) –
property imaginary
property real
class pxr.Gf.Quath Methods:
GetConjugate() Return this quaternion's conjugate, which is the quaternion with the same real coefficient and negated imaginary coefficients.
GetIdentity classmethod GetIdentity() -> Quath
GetImaginary() Return the imaginary coefficient.
GetInverse() Return this quaternion's inverse, or reciprocal.
GetLength() Return geometric length of this quaternion.
GetNormalized(eps) length of this quaternion is smaller than eps , return the identity quaternion.
GetReal() Return the real coefficient.
GetZero classmethod GetZero() -> Quath
Normalize(eps) Normalizes this quaternion in place to unit length, returning the length before normalization.
SetImaginary(imaginary) Set the imaginary coefficients.
SetReal(real) Set the real coefficient.
Transform(point) Transform the GfVec3h point.
Attributes:
imaginary
real
GetConjugate() → Quath Return this quaternion’s conjugate, which is the quaternion with the same real coefficient and negated imaginary coefficients.
static GetIdentity() classmethod GetIdentity() -> Quath Return the identity quaternion, with real coefficient 1 and an imaginary coefficients all zero.
GetImaginary() → Vec3h Return the imaginary coefficient.
GetInverse() → Quath Return this quaternion’s inverse, or reciprocal. This is the quaternion’s conjugate divided by it’s squared length.
GetLength() → GfHalf Return geometric length of this quaternion.
GetNormalized(eps) → Quath length of this quaternion is smaller than eps , return the identity quaternion.
Parameters eps (GfHalf) –
GetReal() → GfHalf Return the real coefficient.
static GetZero() classmethod GetZero() -> Quath Return the zero quaternion, with real coefficient 0 and an imaginary coefficients all zero.
Normalize(eps) → GfHalf Normalizes this quaternion in place to unit length, returning the length before normalization. If the length of this quaternion is smaller than eps , this sets the quaternion to identity.
Parameters eps (GfHalf) –
SetImaginary(imaginary) → None Set the imaginary coefficients.
Parameters imaginary (Vec3h) –
SetImaginary(i, j, k) -> None Set the imaginary coefficients.
Parameters
i (GfHalf) – j (GfHalf) – k (GfHalf) –
SetReal(real) → None Set the real coefficient.
Parameters real (GfHalf) –
Transform(point) → Vec3h Transform the GfVec3h point. If the quaternion is normalized, the transformation is a rotation. Given a GfQuath q, q.Transform(point) is equivalent to: (q * GfQuath(0, point) * q.GetInverse()).GetImaginary() but is more efficient.
Parameters point (Vec3h) –
property imaginary
property real
class pxr.Gf.Range1d Methods:
Contains(point) Returns true if the point is located inside the range.
GetDistanceSquared(p) Compute the squared distance from a point to the range.
GetIntersection classmethod GetIntersection(a, b) -> Range1d
GetMax() Returns the maximum value of the range.
GetMidpoint() Returns the midpoint of the range, that is, 0.5*(min+max).
GetMin() Returns the minimum value of the range.
GetSize() Returns the size of the range.
GetUnion classmethod GetUnion(a, b) -> Range1d
IntersectWith(b) Modifies this range to hold its intersection with b and returns the result.
IsEmpty() Returns whether the range is empty (max<min).
SetEmpty() Sets the range to an empty interval.
SetMax(max) Sets the maximum value of the range.
SetMin(min) Sets the minimum value of the range.
UnionWith(b) Extend this to include b .
Attributes:
dimension
max
min
Contains(point) → bool Returns true if the point is located inside the range. As with all operations of this type, the range is assumed to include its extrema.
Parameters point (float) –
Contains(range) -> bool Returns true if the range is located entirely inside the range. As with all operations of this type, the ranges are assumed to include their extrema.
Parameters range (Range1d) –
GetDistanceSquared(p) → float Compute the squared distance from a point to the range.
Parameters p (float) –
static GetIntersection() classmethod GetIntersection(a, b) -> Range1d Returns a GfRange1d that describes the intersection of a and b .
Parameters
a (Range1d) – b (Range1d) –
GetMax() → float Returns the maximum value of the range.
GetMidpoint() → float Returns the midpoint of the range, that is, 0.5*(min+max). Note: this returns zero in the case of default-constructed ranges, or ranges set via SetEmpty() .
GetMin() → float Returns the minimum value of the range.
GetSize() → float Returns the size of the range.
static GetUnion() classmethod GetUnion(a, b) -> Range1d Returns the smallest GfRange1d which contains both a and b .
Parameters
a (Range1d) – b (Range1d) –
IntersectWith(b) → Range1d Modifies this range to hold its intersection with b and returns the result.
Parameters b (Range1d) –
IsEmpty() → bool Returns whether the range is empty (max<min).
SetEmpty() → None Sets the range to an empty interval.
SetMax(max) → None Sets the maximum value of the range.
Parameters max (float) –
SetMin(min) → None Sets the minimum value of the range.
Parameters min (float) –
UnionWith(b) → Range1d Extend this to include b .
Parameters b (Range1d) –
UnionWith(b) -> Range1d Extend this to include b .
Parameters b (float) –
dimension = 1
property max
property min
class pxr.Gf.Range1f Methods:
Contains(point) Returns true if the point is located inside the range.
GetDistanceSquared(p) Compute the squared distance from a point to the range.
GetIntersection classmethod GetIntersection(a, b) -> Range1f
GetMax() Returns the maximum value of the range.
GetMidpoint() Returns the midpoint of the range, that is, 0.5*(min+max).
GetMin() Returns the minimum value of the range.
GetSize() Returns the size of the range.
GetUnion classmethod GetUnion(a, b) -> Range1f
IntersectWith(b) Modifies this range to hold its intersection with b and returns the result.
IsEmpty() Returns whether the range is empty (max<min).
SetEmpty() Sets the range to an empty interval.
SetMax(max) Sets the maximum value of the range.
SetMin(min) Sets the minimum value of the range.
UnionWith(b) Extend this to include b .
Attributes:
dimension
max
min
Contains(point) → bool Returns true if the point is located inside the range. As with all operations of this type, the range is assumed to include its extrema.
Parameters point (float) –
Contains(range) -> bool Returns true if the range is located entirely inside the range. As with all operations of this type, the ranges are assumed to include their extrema.
Parameters range (Range1f) –
GetDistanceSquared(p) → float Compute the squared distance from a point to the range.
Parameters p (float) –
static GetIntersection() classmethod GetIntersection(a, b) -> Range1f Returns a GfRange1f that describes the intersection of a and b .
Parameters
a (Range1f) – b (Range1f) –
GetMax() → float Returns the maximum value of the range.
GetMidpoint() → float Returns the midpoint of the range, that is, 0.5*(min+max). Note: this returns zero in the case of default-constructed ranges, or ranges set via SetEmpty() .
GetMin() → float Returns the minimum value of the range.
GetSize() → float Returns the size of the range.
static GetUnion() classmethod GetUnion(a, b) -> Range1f Returns the smallest GfRange1f which contains both a and b .
Parameters
a (Range1f) – b (Range1f) –
IntersectWith(b) → Range1f Modifies this range to hold its intersection with b and returns the result.
Parameters b (Range1f) –
IsEmpty() → bool Returns whether the range is empty (max<min).
SetEmpty() → None Sets the range to an empty interval.
SetMax(max) → None Sets the maximum value of the range.
Parameters max (float) –
SetMin(min) → None Sets the minimum value of the range.
Parameters min (float) –
UnionWith(b) → Range1f Extend this to include b .
Parameters b (Range1f) –
UnionWith(b) -> Range1f Extend this to include b .
Parameters b (float) –
dimension = 1
property max
property min
class pxr.Gf.Range2d Methods:
Contains(point) Returns true if the point is located inside the range.
GetCorner(i) Returns the ith corner of the range, in the following order: SW, SE, NW, NE.
GetDistanceSquared(p) Compute the squared distance from a point to the range.
GetIntersection classmethod GetIntersection(a, b) -> Range2d
GetMax() Returns the maximum value of the range.
GetMidpoint() Returns the midpoint of the range, that is, 0.5*(min+max).
GetMin() Returns the minimum value of the range.
GetQuadrant(i) Returns the ith quadrant of the range, in the following order: SW, SE, NW, NE.
GetSize() Returns the size of the range.
GetUnion classmethod GetUnion(a, b) -> Range2d
IntersectWith(b) Modifies this range to hold its intersection with b and returns the result.
IsEmpty() Returns whether the range is empty (max<min).
SetEmpty() Sets the range to an empty interval.
SetMax(max) Sets the maximum value of the range.
SetMin(min) Sets the minimum value of the range.
UnionWith(b) Extend this to include b .
Attributes:
dimension
max
min
unitSquare
Contains(point) → bool Returns true if the point is located inside the range. As with all operations of this type, the range is assumed to include its extrema.
Parameters point (Vec2d) –
Contains(range) -> bool Returns true if the range is located entirely inside the range. As with all operations of this type, the ranges are assumed to include their extrema.
Parameters range (Range2d) –
GetCorner(i) → Vec2d Returns the ith corner of the range, in the following order: SW, SE, NW, NE.
Parameters i (int) –
GetDistanceSquared(p) → float Compute the squared distance from a point to the range.
Parameters p (Vec2d) –
static GetIntersection() classmethod GetIntersection(a, b) -> Range2d Returns a GfRange2d that describes the intersection of a and b .
Parameters
a (Range2d) – b (Range2d) –
GetMax() → Vec2d Returns the maximum value of the range.
GetMidpoint() → Vec2d Returns the midpoint of the range, that is, 0.5*(min+max). Note: this returns zero in the case of default-constructed ranges, or ranges set via SetEmpty() .
GetMin() → Vec2d Returns the minimum value of the range.
GetQuadrant(i) → Range2d Returns the ith quadrant of the range, in the following order: SW, SE, NW, NE.
Parameters i (int) –
GetSize() → Vec2d Returns the size of the range.
static GetUnion() classmethod GetUnion(a, b) -> Range2d Returns the smallest GfRange2d which contains both a and b .
Parameters
a (Range2d) – b (Range2d) –
IntersectWith(b) → Range2d Modifies this range to hold its intersection with b and returns the result.
Parameters b (Range2d) –
IsEmpty() → bool Returns whether the range is empty (max<min).
SetEmpty() → None Sets the range to an empty interval.
SetMax(max) → None Sets the maximum value of the range.
Parameters max (Vec2d) –
SetMin(min) → None Sets the minimum value of the range.
Parameters min (Vec2d) –
UnionWith(b) → Range2d Extend this to include b .
Parameters b (Range2d) –
UnionWith(b) -> Range2d Extend this to include b .
Parameters b (Vec2d) –
dimension = 2
property max
property min
unitSquare = Gf.Range2d(Gf.Vec2d(0.0, 0.0), Gf.Vec2d(1.0, 1.0))
class pxr.Gf.Range2f Methods:
Contains(point) Returns true if the point is located inside the range.
GetCorner(i) Returns the ith corner of the range, in the following order: SW, SE, NW, NE.
GetDistanceSquared(p) Compute the squared distance from a point to the range.
GetIntersection classmethod GetIntersection(a, b) -> Range2f
GetMax() Returns the maximum value of the range.
GetMidpoint() Returns the midpoint of the range, that is, 0.5*(min+max).
GetMin() Returns the minimum value of the range.
GetQuadrant(i) Returns the ith quadrant of the range, in the following order: SW, SE, NW, NE.
GetSize() Returns the size of the range.
GetUnion classmethod GetUnion(a, b) -> Range2f
IntersectWith(b) Modifies this range to hold its intersection with b and returns the result.
IsEmpty() Returns whether the range is empty (max<min).
SetEmpty() Sets the range to an empty interval.
SetMax(max) Sets the maximum value of the range.
SetMin(min) Sets the minimum value of the range.
UnionWith(b) Extend this to include b .
Attributes:
dimension
max
min
unitSquare
Contains(point) → bool Returns true if the point is located inside the range. As with all operations of this type, the range is assumed to include its extrema.
Parameters point (Vec2f) –
Contains(range) -> bool Returns true if the range is located entirely inside the range. As with all operations of this type, the ranges are assumed to include their extrema.
Parameters range (Range2f) –
GetCorner(i) → Vec2f Returns the ith corner of the range, in the following order: SW, SE, NW, NE.
Parameters i (int) –
GetDistanceSquared(p) → float Compute the squared distance from a point to the range.
Parameters p (Vec2f) –
static GetIntersection() classmethod GetIntersection(a, b) -> Range2f Returns a GfRange2f that describes the intersection of a and b .
Parameters
a (Range2f) – b (Range2f) –
GetMax() → Vec2f Returns the maximum value of the range.
GetMidpoint() → Vec2f Returns the midpoint of the range, that is, 0.5*(min+max). Note: this returns zero in the case of default-constructed ranges, or ranges set via SetEmpty() .
GetMin() → Vec2f Returns the minimum value of the range.
GetQuadrant(i) → Range2f Returns the ith quadrant of the range, in the following order: SW, SE, NW, NE.
Parameters i (int) –
GetSize() → Vec2f Returns the size of the range.
static GetUnion() classmethod GetUnion(a, b) -> Range2f Returns the smallest GfRange2f which contains both a and b .
Parameters
a (Range2f) – b (Range2f) –
IntersectWith(b) → Range2f Modifies this range to hold its intersection with b and returns the result.
Parameters b (Range2f) –
IsEmpty() → bool Returns whether the range is empty (max<min).
SetEmpty() → None Sets the range to an empty interval.
SetMax(max) → None Sets the maximum value of the range.
Parameters max (Vec2f) –
SetMin(min) → None Sets the minimum value of the range.
Parameters min (Vec2f) –
UnionWith(b) → Range2f Extend this to include b .
Parameters b (Range2f) –
UnionWith(b) -> Range2f Extend this to include b .
Parameters b (Vec2f) –
dimension = 2
property max
property min
unitSquare = Gf.Range2f(Gf.Vec2f(0.0, 0.0), Gf.Vec2f(1.0, 1.0))
class pxr.Gf.Range3d Methods:
Contains(point) Returns true if the point is located inside the range.
GetCorner(i) Returns the ith corner of the range, in the following order: LDB, RDB, LUB, RUB, LDF, RDF, LUF, RUF.
GetDistanceSquared(p) Compute the squared distance from a point to the range.
GetIntersection classmethod GetIntersection(a, b) -> Range3d
GetMax() Returns the maximum value of the range.
GetMidpoint() Returns the midpoint of the range, that is, 0.5*(min+max).
GetMin() Returns the minimum value of the range.
GetOctant(i) Returns the ith octant of the range, in the following order: LDB, RDB, LUB, RUB, LDF, RDF, LUF, RUF.
GetSize() Returns the size of the range.
GetUnion classmethod GetUnion(a, b) -> Range3d
IntersectWith(b) Modifies this range to hold its intersection with b and returns the result.
IsEmpty() Returns whether the range is empty (max<min).
SetEmpty() Sets the range to an empty interval.
SetMax(max) Sets the maximum value of the range.
SetMin(min) Sets the minimum value of the range.
UnionWith(b) Extend this to include b .
Attributes:
dimension
max
min
unitCube
Contains(point) → bool Returns true if the point is located inside the range. As with all operations of this type, the range is assumed to include its extrema.
Parameters point (Vec3d) –
Contains(range) -> bool Returns true if the range is located entirely inside the range. As with all operations of this type, the ranges are assumed to include their extrema.
Parameters range (Range3d) –
GetCorner(i) → Vec3d Returns the ith corner of the range, in the following order: LDB, RDB, LUB, RUB, LDF, RDF, LUF, RUF. Where L/R is left/right, D/U is down/up, and B/F is back/front.
Parameters i (int) –
GetDistanceSquared(p) → float Compute the squared distance from a point to the range.
Parameters p (Vec3d) –
static GetIntersection() classmethod GetIntersection(a, b) -> Range3d Returns a GfRange3d that describes the intersection of a and b .
Parameters
a (Range3d) – b (Range3d) –
GetMax() → Vec3d Returns the maximum value of the range.
GetMidpoint() → Vec3d Returns the midpoint of the range, that is, 0.5*(min+max). Note: this returns zero in the case of default-constructed ranges, or ranges set via SetEmpty() .
GetMin() → Vec3d Returns the minimum value of the range.
GetOctant(i) → Range3d Returns the ith octant of the range, in the following order: LDB, RDB, LUB, RUB, LDF, RDF, LUF, RUF. Where L/R is left/right, D/U is down/up, and B/F is back/front.
Parameters i (int) –
GetSize() → Vec3d Returns the size of the range.
static GetUnion() classmethod GetUnion(a, b) -> Range3d Returns the smallest GfRange3d which contains both a and b .
Parameters
a (Range3d) – b (Range3d) –
IntersectWith(b) → Range3d Modifies this range to hold its intersection with b and returns the result.
Parameters b (Range3d) –
IsEmpty() → bool Returns whether the range is empty (max<min).
SetEmpty() → None Sets the range to an empty interval.
SetMax(max) → None Sets the maximum value of the range.
Parameters max (Vec3d) –
SetMin(min) → None Sets the minimum value of the range.
Parameters min (Vec3d) –
UnionWith(b) → Range3d Extend this to include b .
Parameters b (Range3d) –
UnionWith(b) -> Range3d Extend this to include b .
Parameters b (Vec3d) –
dimension = 3
property max
property min
unitCube = Gf.Range3d(Gf.Vec3d(0.0, 0.0, 0.0), Gf.Vec3d(1.0, 1.0, 1.0))
class pxr.Gf.Range3f Methods:
Contains(point) Returns true if the point is located inside the range.
GetCorner(i) Returns the ith corner of the range, in the following order: LDB, RDB, LUB, RUB, LDF, RDF, LUF, RUF.
GetDistanceSquared(p) Compute the squared distance from a point to the range.
GetIntersection classmethod GetIntersection(a, b) -> Range3f
GetMax() Returns the maximum value of the range.
GetMidpoint() Returns the midpoint of the range, that is, 0.5*(min+max).
GetMin() Returns the minimum value of the range.
GetOctant(i) Returns the ith octant of the range, in the following order: LDB, RDB, LUB, RUB, LDF, RDF, LUF, RUF.
GetSize() Returns the size of the range.
GetUnion classmethod GetUnion(a, b) -> Range3f
IntersectWith(b) Modifies this range to hold its intersection with b and returns the result.
IsEmpty() Returns whether the range is empty (max<min).
SetEmpty() Sets the range to an empty interval.
SetMax(max) Sets the maximum value of the range.
SetMin(min) Sets the minimum value of the range.
UnionWith(b) Extend this to include b .
Attributes:
dimension
max
min
unitCube
Contains(point) → bool Returns true if the point is located inside the range. As with all operations of this type, the range is assumed to include its extrema.
Parameters point (Vec3f) –
Contains(range) -> bool Returns true if the range is located entirely inside the range. As with all operations of this type, the ranges are assumed to include their extrema.
Parameters range (Range3f) –
GetCorner(i) → Vec3f Returns the ith corner of the range, in the following order: LDB, RDB, LUB, RUB, LDF, RDF, LUF, RUF. Where L/R is left/right, D/U is down/up, and B/F is back/front.
Parameters i (int) –
GetDistanceSquared(p) → float Compute the squared distance from a point to the range.
Parameters p (Vec3f) –
static GetIntersection() classmethod GetIntersection(a, b) -> Range3f Returns a GfRange3f that describes the intersection of a and b .
Parameters
a (Range3f) – b (Range3f) –
GetMax() → Vec3f Returns the maximum value of the range.
GetMidpoint() → Vec3f Returns the midpoint of the range, that is, 0.5*(min+max). Note: this returns zero in the case of default-constructed ranges, or ranges set via SetEmpty() .
GetMin() → Vec3f Returns the minimum value of the range.
GetOctant(i) → Range3f Returns the ith octant of the range, in the following order: LDB, RDB, LUB, RUB, LDF, RDF, LUF, RUF. Where L/R is left/right, D/U is down/up, and B/F is back/front.
Parameters i (int) –
GetSize() → Vec3f Returns the size of the range.
static GetUnion() classmethod GetUnion(a, b) -> Range3f Returns the smallest GfRange3f which contains both a and b .
Parameters
a (Range3f) – b (Range3f) –
IntersectWith(b) → Range3f Modifies this range to hold its intersection with b and returns the result.
Parameters b (Range3f) –
IsEmpty() → bool Returns whether the range is empty (max<min).
SetEmpty() → None Sets the range to an empty interval.
SetMax(max) → None Sets the maximum value of the range.
Parameters max (Vec3f) –
SetMin(min) → None Sets the minimum value of the range.
Parameters min (Vec3f) –
UnionWith(b) → Range3f Extend this to include b .
Parameters b (Range3f) –
UnionWith(b) -> Range3f Extend this to include b .
Parameters b (Vec3f) –
dimension = 3
property max
property min
unitCube = Gf.Range3f(Gf.Vec3f(0.0, 0.0, 0.0), Gf.Vec3f(1.0, 1.0, 1.0))
class pxr.Gf.Ray Methods:
FindClosestPoint(point, rayDistance) Returns the point on the ray that is closest to point .
GetPoint(distance) Returns the point that is distance units from the starting point along the direction vector, expressed in parametic distance.
Intersect(p0, p1, p2) float, barycentric = GfVec3d, frontFacing = bool>
SetEnds(startPoint, endPoint) Sets the ray by specifying a starting point and an ending point.
SetPointAndDirection(startPoint, direction) Sets the ray by specifying a starting point and a direction.
Transform(matrix) Transforms the ray by the given matrix.
Attributes:
direction Vec3d
startPoint Vec3d
FindClosestPoint(point, rayDistance) → Vec3d Returns the point on the ray that is closest to point . If rayDistance is not None , it will be set to the parametric distance along the ray of the closest point.
Parameters
point (Vec3d) – rayDistance (float) –
GetPoint(distance) → Vec3d Returns the point that is distance units from the starting point along the direction vector, expressed in parametic distance.
Parameters distance (float) –
Intersect(p0, p1, p2) → tuple<intersects = bool, dist = float, barycentric = GfVec3d, frontFacing = bool> Intersects the ray with the triangle formed by points p0, p1, and p2. The first item in the tuple is true if the ray intersects the triangle. dist is the the parametric distance to the intersection point, the barycentric coordinates of the intersection point, and the front-facing flag. The barycentric coordinates are defined with respect to the three vertices taken in order. The front-facing flag is True if the intersection hit the side of the triangle that is formed when the vertices are ordered counter-clockwise (right-hand rule). Barycentric coordinates are defined to sum to 1 and satisfy this relationsip:
intersectionPoint = (barycentricCoords[0] * p0 +barycentricCoords[1] * p1 + barycentricCoords[2] * p2);
Intersect( plane ) -> tuple<intersects = bool, dist = float, frontFacing = bool> Intersects the ray with the Gf.Plane. The first item in the returned tuple is true if the ray intersects the plane. dist is the parametric distance to the intersection point and frontfacing is true if the intersection is on the side of the plane toward which the plane’s normal points. ———————————————————————- Intersect( range3d ) -> tuple<intersects = bool, enterDist = float, exitDist = float> Intersects the plane with an axis-aligned box in a Gf.Range3d. intersects is true if the ray intersects it at all within bounds. If there is an intersection then enterDist and exitDist will be the parametric distances to the two intersection points. ———————————————————————- Intersect( bbox3d ) -> tuple<intersects = bool, enterDist = float, exitDist = float> Intersects the plane with an oriented box in a Gf.BBox3d. intersects is true if the ray intersects it at all within bounds. If there is an intersection then enterDist and exitDist will be the parametric distances to the two intersection points. ———————————————————————- Intersect( center, radius ) -> tuple<intersects = bool, enterDist = float, exitDist = float> Intersects the plane with an sphere. intersects is true if the ray intersects it at all within the sphere. If there is an intersection then enterDist and exitDist will be the parametric distances to the two intersection points. ———————————————————————- Intersect( origin, axis, radius ) -> tuple<intersects = bool, enterDist = float, exitDist = float> Intersects the plane with an infinite cylinder. intersects is true if the ray intersects it at all within the sphere. If there is an intersection then enterDist and exitDist will be the parametric distances to the two intersection points. ———————————————————————- Intersect( origin, axis, radius, height ) -> tuple<intersects = bool, enterDist = float, exitDist = float> Intersects the plane with an cylinder. intersects is true if the ray intersects it at all within the sphere. If there is an intersection then enterDist and exitDist will be the parametric distances to the two intersection points. ———————————————————————-
SetEnds(startPoint, endPoint) → None Sets the ray by specifying a starting point and an ending point.
Parameters
startPoint (Vec3d) – endPoint (Vec3d) –
SetPointAndDirection(startPoint, direction) → None Sets the ray by specifying a starting point and a direction.
Parameters
startPoint (Vec3d) – direction (Vec3d) –
Transform(matrix) → Ray Transforms the ray by the given matrix.
Parameters matrix (Matrix4d) –
property direction Vec3d Returns the direction vector of the segment. This is not guaranteed to be unit length.
Type type
property startPoint Vec3d Returns the starting point of the segment.
Type type
class pxr.Gf.Rect2i Methods:
Contains(p) Returns true if the specified point in the rectangle.
GetArea() Return the area of the rectangle.
GetCenter() Returns the center point of the rectangle.
GetHeight() Returns the height of the rectangle.
GetIntersection(that) Computes the intersection of two rectangles.
GetMax() Returns the max corner of the rectangle.
GetMaxX() Return the X value of the max corner.
GetMaxY() Return the Y value of the max corner.
GetMin() Returns the min corner of the rectangle.
GetMinX() Return the X value of min corner.
GetMinY() Return the Y value of the min corner.
GetNormalized() Returns a normalized rectangle, i.e.
GetSize() Returns the size of the rectangle as a vector (width,height).
GetUnion(that) Computes the union of two rectangles.
GetWidth() Returns the width of the rectangle.
IsEmpty() Returns true if the rectangle is empty.
IsNull() Returns true if the rectangle is a null rectangle.
IsValid() Return true if the rectangle is valid (equivalently, not empty).
SetMax(max) Sets the max corner of the rectangle.
SetMaxX(x) Set the X value of the max corner.
SetMaxY(y) Set the Y value of the max corner.
SetMin(min) Sets the min corner of the rectangle.
SetMinX(x) Set the X value of the min corner.
SetMinY(y) Set the Y value of the min corner.
Translate(displacement) Move the rectangle by displ .
Attributes:
max
maxX
maxY
min
minX
minY
Contains(p) → bool Returns true if the specified point in the rectangle.
Parameters p (Vec2i) –
GetArea() → int Return the area of the rectangle.
GetCenter() → Vec2i Returns the center point of the rectangle.
GetHeight() → int Returns the height of the rectangle. If the min and max y-coordinates are coincident, the height is one.
GetIntersection(that) → Rect2i Computes the intersection of two rectangles.
Parameters that (Rect2i) –
GetMax() → Vec2i Returns the max corner of the rectangle.
GetMaxX() → int Return the X value of the max corner.
GetMaxY() → int Return the Y value of the max corner.
GetMin() → Vec2i Returns the min corner of the rectangle.
GetMinX() → int Return the X value of min corner.
GetMinY() → int Return the Y value of the min corner.
GetNormalized() → Rect2i Returns a normalized rectangle, i.e. one that has a non-negative width and height. GetNormalized() swaps the min and max x-coordinates to ensure a non-negative width, and similarly for the y-coordinates.
GetSize() → Vec2i Returns the size of the rectangle as a vector (width,height).
GetUnion(that) → Rect2i Computes the union of two rectangles.
Parameters that (Rect2i) –
GetWidth() → int Returns the width of the rectangle. If the min and max x-coordinates are coincident, the width is one.
IsEmpty() → bool Returns true if the rectangle is empty. An empty rectangle has one or both of its min coordinates strictly greater than the corresponding max coordinate. An empty rectangle is not valid.
IsNull() → bool Returns true if the rectangle is a null rectangle. A null rectangle has both the width and the height set to 0, that is GetMaxX() == GetMinX() - 1
and
GetMaxY() == GetMinY() - 1
Remember that if GetMinX()
and GetMaxX()
return the same
value then the rectangle has width 1, and similarly for the height. A null rectangle is both empty, and not valid.
IsValid() → bool Return true if the rectangle is valid (equivalently, not empty).
SetMax(max) → None Sets the max corner of the rectangle.
Parameters max (Vec2i) –
SetMaxX(x) → None Set the X value of the max corner.
Parameters x (int) –
SetMaxY(y) → None Set the Y value of the max corner.
Parameters y (int) –
SetMin(min) → None Sets the min corner of the rectangle.
Parameters min (Vec2i) –
SetMinX(x) → None Set the X value of the min corner.
Parameters x (int) –
SetMinY(y) → None Set the Y value of the min corner.
Parameters y (int) –
Translate(displacement) → None Move the rectangle by displ .
Parameters displacement (Vec2i) –
property max
property maxX
property maxY
property min
property minX
property minY
class pxr.Gf.Rotation 3-space rotation Methods:
Decompose(axis0, axis1, axis2) Decompose rotation about 3 orthogonal axes.
DecomposeRotation classmethod DecomposeRotation(rot, TwAxis, FBAxis, LRAxis, handedness, thetaTw, thetaFB, thetaLR, thetaSw, useHint, swShift) -> None
DecomposeRotation3
GetAngle() Returns the rotation angle in degrees.
GetAxis() Returns the axis of rotation.
GetInverse() Returns the inverse of this rotation.
GetQuat() Returns the rotation expressed as a quaternion.
GetQuaternion() Returns the rotation expressed as a quaternion.
MatchClosestEulerRotation classmethod MatchClosestEulerRotation(targetTw, targetFB, targetLR, targetSw, thetaTw, thetaFB, thetaLR, thetaSw) -> None
RotateOntoProjected classmethod RotateOntoProjected(v1, v2, axis) -> Rotation
SetAxisAngle(axis, angle) Sets the rotation to be angle degrees about axis .
SetIdentity() Sets the rotation to an identity rotation.
SetQuat(quat) Sets the rotation from a quaternion.
SetQuaternion(quat) Sets the rotation from a quaternion.
SetRotateInto(rotateFrom, rotateTo) Sets the rotation to one that brings the rotateFrom vector to align with rotateTo .
TransformDir(vec) Transforms row vector vec by the rotation, returning the result.
Attributes:
angle
axis
Decompose(axis0, axis1, axis2) → Vec3d Decompose rotation about 3 orthogonal axes. If the axes are not orthogonal, warnings will be spewed.
Parameters
axis0 (Vec3d) – axis1 (Vec3d) – axis2 (Vec3d) –
static DecomposeRotation() classmethod DecomposeRotation(rot, TwAxis, FBAxis, LRAxis, handedness, thetaTw, thetaFB, thetaLR, thetaSw, useHint, swShift) -> None
Parameters
rot (Matrix4d) – TwAxis (Vec3d) – FBAxis (Vec3d) – LRAxis (Vec3d) – handedness (float) – thetaTw (float) – thetaFB (float) – thetaLR (float) – thetaSw (float) – useHint (bool) – swShift (float) –
static DecomposeRotation3()
GetAngle() → float Returns the rotation angle in degrees.
GetAxis() → Vec3d Returns the axis of rotation.
GetInverse() → Rotation Returns the inverse of this rotation.
GetQuat() → Quatd Returns the rotation expressed as a quaternion.
GetQuaternion() → Quaternion Returns the rotation expressed as a quaternion.
static MatchClosestEulerRotation() classmethod MatchClosestEulerRotation(targetTw, targetFB, targetLR, targetSw, thetaTw, thetaFB, thetaLR, thetaSw) -> None Replace the hint angles with the closest rotation of the given rotation to the hint. Each angle in the rotation will be within Pi of the corresponding hint angle and the sum of the differences with the hint will be minimized. If a given rotation value is null then that angle will be treated as 0.0 and ignored in the calculations. All angles are in radians. The rotation order is Tw/FB/LR/Sw.
Parameters
targetTw (float) – targetFB (float) – targetLR (float) – targetSw (float) – thetaTw (float) – thetaFB (float) – thetaLR (float) – thetaSw (float) –
static RotateOntoProjected() classmethod RotateOntoProjected(v1, v2, axis) -> Rotation
Parameters
v1 (Vec3d) – v2 (Vec3d) – axis (Vec3d) –
SetAxisAngle(axis, angle) → Rotation Sets the rotation to be angle degrees about axis .
Parameters
axis (Vec3d) – angle (float) –
SetIdentity() → Rotation Sets the rotation to an identity rotation. (This is chosen to be 0 degrees around the positive X axis.)
SetQuat(quat) → Rotation Sets the rotation from a quaternion. Note that this method accepts GfQuatf and GfQuath since they implicitly convert to GfQuatd.
Parameters quat (Quatd) –
SetQuaternion(quat) → Rotation Sets the rotation from a quaternion.
Parameters quat (Quaternion) –
SetRotateInto(rotateFrom, rotateTo) → Rotation Sets the rotation to one that brings the rotateFrom vector to align with rotateTo . The passed vectors need not be unit length.
Parameters
rotateFrom (Vec3d) – rotateTo (Vec3d) –
TransformDir(vec) → Vec3f Transforms row vector vec by the rotation, returning the result.
Parameters vec (Vec3f) –
TransformDir(vec) -> Vec3d This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
Parameters vec (Vec3d) –
property angle
property axis
class pxr.Gf.Size2 A 2D size class Methods:
Set(v) Set to the values in a given array.
Attributes:
dimension
Set(v) → Size2 Set to the values in a given array.
Parameters v (int) –
Set(v0, v1) -> Size2 Set to values passed directly.
Parameters
v0 (int) – v1 (int) –
dimension = 2
class pxr.Gf.Size3 A 3D size class Methods:
Set(v) Set to the values in v .
Attributes:
dimension
Set(v) → Size3 Set to the values in v .
Parameters v (int) –
Set(v0, v1, v2) -> Size3 Set to values passed directly.
Parameters
v0 (int) – v1 (int) – v2 (int) –
dimension = 3
class pxr.Gf.Transform Methods:
GetMatrix() Returns a GfMatrix4d that implements the cumulative transformation.
GetPivotOrientation() Returns the pivot orientation component.
GetPivotPosition() Returns the pivot position component.
GetRotation() Returns the rotation component.
GetScale() Returns the scale component.
GetTranslation() Returns the translation component.
Set Set method used by old 2x code.
SetIdentity() Sets the transformation to the identity transformation.
SetMatrix(m) Sets the transform components to implement the transformation represented by matrix m , ignoring any projection.
SetPivotOrientation(pivotOrient) Sets the pivot orientation component, leaving all others untouched.
SetPivotPosition(pivPos) Sets the pivot position component, leaving all others untouched.
SetRotation(rotation) Sets the rotation component, leaving all others untouched.
SetScale(scale) Sets the scale component, leaving all others untouched.
SetTranslation(translation) Sets the translation component, leaving all others untouched.
Attributes:
pivotOrientation
pivotPosition
rotation
scale
translation
GetMatrix() → Matrix4d Returns a GfMatrix4d that implements the cumulative transformation.
GetPivotOrientation() → Rotation Returns the pivot orientation component.
GetPivotPosition() → Vec3d Returns the pivot position component.
GetRotation() → Rotation Returns the rotation component.
GetScale() → Vec3d Returns the scale component.
GetTranslation() → Vec3d Returns the translation component.
Set() Set method used by old 2x code. (Deprecated)
SetIdentity() → Transform Sets the transformation to the identity transformation.
SetMatrix(m) → Transform Sets the transform components to implement the transformation represented by matrix m , ignoring any projection. This tries to leave the current center unchanged.
Parameters m (Matrix4d) –
SetPivotOrientation(pivotOrient) → None Sets the pivot orientation component, leaving all others untouched.
Parameters pivotOrient (Rotation) –
SetPivotPosition(pivPos) → None Sets the pivot position component, leaving all others untouched.
Parameters pivPos (Vec3d) –
SetRotation(rotation) → None Sets the rotation component, leaving all others untouched.
Parameters rotation (Rotation) –
SetScale(scale) → None Sets the scale component, leaving all others untouched.
Parameters scale (Vec3d) –
SetTranslation(translation) → None Sets the translation component, leaving all others untouched.
Parameters translation (Vec3d) –
property pivotOrientation
property pivotPosition
property rotation
property scale
property translation
class pxr.Gf.Vec2d Methods:
Axis classmethod Axis(i) -> Vec2d
GetComplement(b) Returns the orthogonal complement of this->GetProjection(b) .
GetDot
GetLength() Length.
GetNormalized(eps)
param eps
GetProjection(v) Returns the projection of this onto v .
Normalize(eps) Normalizes the vector in place to unit length, returning the length before normalization.
XAxis classmethod XAxis() -> Vec2d
YAxis classmethod YAxis() -> Vec2d
Attributes:
dimension
static Axis() classmethod Axis(i) -> Vec2d Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 2.
Parameters i (int) –
GetComplement(b) → Vec2d Returns the orthogonal complement of this->GetProjection(b) . That is: *this - this->GetProjection(b)
Parameters b (Vec2d) –
GetDot()
GetLength() → float Length.
GetNormalized(eps) → Vec2d
Parameters eps (float) –
GetProjection(v) → Vec2d Returns the projection of this onto v . That is: v * (*this * v)
Parameters v (Vec2d) –
Normalize(eps) → float Normalizes the vector in place to unit length, returning the length before normalization. If the length of the vector is smaller than eps , then the vector is set to vector/ eps . The original length of the vector is returned. See also GfNormalize() .
Parameters eps (float) –
static XAxis() classmethod XAxis() -> Vec2d Create a unit vector along the X-axis.
static YAxis() classmethod YAxis() -> Vec2d Create a unit vector along the Y-axis.
dimension = 2
class pxr.Gf.Vec2f Methods:
Axis classmethod Axis(i) -> Vec2f
GetComplement(b) Returns the orthogonal complement of this->GetProjection(b) .
GetDot
GetLength() Length.
GetNormalized(eps)
param eps
GetProjection(v) Returns the projection of this onto v .
Normalize(eps) Normalizes the vector in place to unit length, returning the length before normalization.
XAxis classmethod XAxis() -> Vec2f
YAxis classmethod YAxis() -> Vec2f
Attributes:
dimension
static Axis() classmethod Axis(i) -> Vec2f Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 2.
Parameters i (int) –
GetComplement(b) → Vec2f Returns the orthogonal complement of this->GetProjection(b) . That is: *this - this->GetProjection(b)
Parameters b (Vec2f) –
GetDot()
GetLength() → float Length.
GetNormalized(eps) → Vec2f
Parameters eps (float) –
GetProjection(v) → Vec2f Returns the projection of this onto v . That is: v * (*this * v)
Parameters v (Vec2f) –
Normalize(eps) → float Normalizes the vector in place to unit length, returning the length before normalization. If the length of the vector is smaller than eps , then the vector is set to vector/ eps . The original length of the vector is returned. See also GfNormalize() .
Parameters eps (float) –
static XAxis() classmethod XAxis() -> Vec2f Create a unit vector along the X-axis.
static YAxis() classmethod YAxis() -> Vec2f Create a unit vector along the Y-axis.
dimension = 2
class pxr.Gf.Vec2h Methods:
Axis classmethod Axis(i) -> Vec2h
GetComplement(b) Returns the orthogonal complement of this->GetProjection(b) .
GetDot
GetLength() Length.
GetNormalized(eps)
param eps
GetProjection(v) Returns the projection of this onto v .
Normalize(eps) Normalizes the vector in place to unit length, returning the length before normalization.
XAxis classmethod XAxis() -> Vec2h
YAxis classmethod YAxis() -> Vec2h
Attributes:
dimension
static Axis() classmethod Axis(i) -> Vec2h Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 2.
Parameters i (int) –
GetComplement(b) → Vec2h Returns the orthogonal complement of this->GetProjection(b) . That is: *this - this->GetProjection(b)
Parameters b (Vec2h) –
GetDot()
GetLength() → GfHalf Length.
GetNormalized(eps) → Vec2h
Parameters eps (GfHalf) –
GetProjection(v) → Vec2h Returns the projection of this onto v . That is: v * (*this * v)
Parameters v (Vec2h) –
Normalize(eps) → GfHalf Normalizes the vector in place to unit length, returning the length before normalization. If the length of the vector is smaller than eps , then the vector is set to vector/ eps . The original length of the vector is returned. See also GfNormalize() .
Parameters eps (GfHalf) –
static XAxis() classmethod XAxis() -> Vec2h Create a unit vector along the X-axis.
static YAxis() classmethod YAxis() -> Vec2h Create a unit vector along the Y-axis.
dimension = 2
class pxr.Gf.Vec2i Methods:
Axis classmethod Axis(i) -> Vec2i
GetDot
XAxis classmethod XAxis() -> Vec2i
YAxis classmethod YAxis() -> Vec2i
Attributes:
dimension
static Axis() classmethod Axis(i) -> Vec2i Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 2.
Parameters i (int) –
GetDot()
static XAxis() classmethod XAxis() -> Vec2i Create a unit vector along the X-axis.
static YAxis() classmethod YAxis() -> Vec2i Create a unit vector along the Y-axis.
dimension = 2
class pxr.Gf.Vec3d Methods:
Axis classmethod Axis(i) -> Vec3d
BuildOrthonormalFrame(v1, v2, eps) Sets v1 and v2 to unit vectors such that v1, v2 and *this are mutually orthogonal.
GetComplement(b) Returns the orthogonal complement of this->GetProjection(b) .
GetCross
GetDot
GetLength() Length.
GetNormalized(eps)
param eps
GetProjection(v) Returns the projection of this onto v .
Normalize(eps) Normalizes the vector in place to unit length, returning the length before normalization.
OrthogonalizeBasis classmethod OrthogonalizeBasis(tx, ty, tz, normalize, eps) -> bool
XAxis classmethod XAxis() -> Vec3d
YAxis classmethod YAxis() -> Vec3d
ZAxis classmethod ZAxis() -> Vec3d
Attributes:
dimension
static Axis() classmethod Axis(i) -> Vec3d Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 3.
Parameters i (int) –
BuildOrthonormalFrame(v1, v2, eps) → None Sets v1 and v2 to unit vectors such that v1, v2 and *this are mutually orthogonal. If the length L of *this is smaller than eps , then v1 and v2 will have magnitude L/eps. As a result, the function delivers a continuous result as *this shrinks in length.
Parameters
v1 (Vec3d) – v2 (Vec3d) – eps (float) –
GetComplement(b) → Vec3d Returns the orthogonal complement of this->GetProjection(b) . That is: *this - this->GetProjection(b)
Parameters b (Vec3d) –
GetCross()
GetDot()
GetLength() → float Length.
GetNormalized(eps) → Vec3d
Parameters eps (float) –
GetProjection(v) → Vec3d Returns the projection of this onto v . That is: v * (*this * v)
Parameters v (Vec3d) –
Normalize(eps) → float Normalizes the vector in place to unit length, returning the length before normalization. If the length of the vector is smaller than eps , then the vector is set to vector/ eps . The original length of the vector is returned. See also GfNormalize() .
Parameters eps (float) –
static OrthogonalizeBasis() classmethod OrthogonalizeBasis(tx, ty, tz, normalize, eps) -> bool Orthogonalize and optionally normalize a set of basis vectors. This uses an iterative method that is very stable even when the vectors are far from orthogonal (close to colinear). The number of iterations and thus the computation time does increase as the vectors become close to colinear, however. Returns a bool specifying whether the solution converged after a number of iterations. If it did not converge, the returned vectors will be as close as possible to orthogonal within the iteration limit. Colinear vectors will be unaltered, and the method will return false.
Parameters
tx (Vec3d) – ty (Vec3d) – tz (Vec3d) – normalize (bool) – eps (float) –
static XAxis() classmethod XAxis() -> Vec3d Create a unit vector along the X-axis.
static YAxis() classmethod YAxis() -> Vec3d Create a unit vector along the Y-axis.
static ZAxis() classmethod ZAxis() -> Vec3d Create a unit vector along the Z-axis.
dimension = 3
class pxr.Gf.Vec3f Methods:
Axis classmethod Axis(i) -> Vec3f
BuildOrthonormalFrame(v1, v2, eps) Sets v1 and v2 to unit vectors such that v1, v2 and *this are mutually orthogonal.
GetComplement(b) Returns the orthogonal complement of this->GetProjection(b) .
GetCross
GetDot
GetLength() Length.
GetNormalized(eps)
param eps
GetProjection(v) Returns the projection of this onto v .
Normalize(eps) Normalizes the vector in place to unit length, returning the length before normalization.
OrthogonalizeBasis classmethod OrthogonalizeBasis(tx, ty, tz, normalize, eps) -> bool
XAxis classmethod XAxis() -> Vec3f
YAxis classmethod YAxis() -> Vec3f
ZAxis classmethod ZAxis() -> Vec3f
Attributes:
dimension
static Axis() classmethod Axis(i) -> Vec3f Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 3.
Parameters i (int) –
BuildOrthonormalFrame(v1, v2, eps) → None Sets v1 and v2 to unit vectors such that v1, v2 and *this are mutually orthogonal. If the length L of *this is smaller than eps , then v1 and v2 will have magnitude L/eps. As a result, the function delivers a continuous result as *this shrinks in length.
Parameters
v1 (Vec3f) – v2 (Vec3f) – eps (float) –
GetComplement(b) → Vec3f Returns the orthogonal complement of this->GetProjection(b) . That is: *this - this->GetProjection(b)
Parameters b (Vec3f) –
GetCross()
GetDot()
GetLength() → float Length.
GetNormalized(eps) → Vec3f
Parameters eps (float) –
GetProjection(v) → Vec3f Returns the projection of this onto v . That is: v * (*this * v)
Parameters v (Vec3f) –
Normalize(eps) → float Normalizes the vector in place to unit length, returning the length before normalization. If the length of the vector is smaller than eps , then the vector is set to vector/ eps . The original length of the vector is returned. See also GfNormalize() .
Parameters eps (float) –
static OrthogonalizeBasis() classmethod OrthogonalizeBasis(tx, ty, tz, normalize, eps) -> bool Orthogonalize and optionally normalize a set of basis vectors. This uses an iterative method that is very stable even when the vectors are far from orthogonal (close to colinear). The number of iterations and thus the computation time does increase as the vectors become close to colinear, however. Returns a bool specifying whether the solution converged after a number of iterations. If it did not converge, the returned vectors will be as close as possible to orthogonal within the iteration limit. Colinear vectors will be unaltered, and the method will return false.
Parameters
tx (Vec3f) – ty (Vec3f) – tz (Vec3f) – normalize (bool) – eps (float) –
static XAxis() classmethod XAxis() -> Vec3f Create a unit vector along the X-axis.
static YAxis() classmethod YAxis() -> Vec3f Create a unit vector along the Y-axis.
static ZAxis() classmethod ZAxis() -> Vec3f Create a unit vector along the Z-axis.
dimension = 3
class pxr.Gf.Vec3h Methods:
Axis classmethod Axis(i) -> Vec3h
BuildOrthonormalFrame(v1, v2, eps) Sets v1 and v2 to unit vectors such that v1, v2 and *this are mutually orthogonal.
GetComplement(b) Returns the orthogonal complement of this->GetProjection(b) .
GetCross
GetDot
GetLength() Length.
GetNormalized(eps)
param eps
GetProjection(v) Returns the projection of this onto v .
Normalize(eps) Normalizes the vector in place to unit length, returning the length before normalization.
OrthogonalizeBasis classmethod OrthogonalizeBasis(tx, ty, tz, normalize, eps) -> bool
XAxis classmethod XAxis() -> Vec3h
YAxis classmethod YAxis() -> Vec3h
ZAxis classmethod ZAxis() -> Vec3h
Attributes:
dimension
static Axis() classmethod Axis(i) -> Vec3h Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 3.
Parameters i (int) –
BuildOrthonormalFrame(v1, v2, eps) → None Sets v1 and v2 to unit vectors such that v1, v2 and *this are mutually orthogonal. If the length L of *this is smaller than eps , then v1 and v2 will have magnitude L/eps. As a result, the function delivers a continuous result as *this shrinks in length.
Parameters
v1 (Vec3h) – v2 (Vec3h) – eps (GfHalf) –
GetComplement(b) → Vec3h Returns the orthogonal complement of this->GetProjection(b) . That is: *this - this->GetProjection(b)
Parameters b (Vec3h) –
GetCross()
GetDot()
GetLength() → GfHalf Length.
GetNormalized(eps) → Vec3h
Parameters eps (GfHalf) –
GetProjection(v) → Vec3h Returns the projection of this onto v . That is: v * (*this * v)
Parameters v (Vec3h) –
Normalize(eps) → GfHalf Normalizes the vector in place to unit length, returning the length before normalization. If the length of the vector is smaller than eps , then the vector is set to vector/ eps . The original length of the vector is returned. See also GfNormalize() .
Parameters eps (GfHalf) –
static OrthogonalizeBasis() classmethod OrthogonalizeBasis(tx, ty, tz, normalize, eps) -> bool Orthogonalize and optionally normalize a set of basis vectors. This uses an iterative method that is very stable even when the vectors are far from orthogonal (close to colinear). The number of iterations and thus the computation time does increase as the vectors become close to colinear, however. Returns a bool specifying whether the solution converged after a number of iterations. If it did not converge, the returned vectors will be as close as possible to orthogonal within the iteration limit. Colinear vectors will be unaltered, and the method will return false.
Parameters
tx (Vec3h) – ty (Vec3h) – tz (Vec3h) – normalize (bool) – eps (float) –
static XAxis() classmethod XAxis() -> Vec3h Create a unit vector along the X-axis.
static YAxis() classmethod YAxis() -> Vec3h Create a unit vector along the Y-axis.
static ZAxis() classmethod ZAxis() -> Vec3h Create a unit vector along the Z-axis.
dimension = 3
class pxr.Gf.Vec3i Methods:
Axis classmethod Axis(i) -> Vec3i
GetDot
XAxis classmethod XAxis() -> Vec3i
YAxis classmethod YAxis() -> Vec3i
ZAxis classmethod ZAxis() -> Vec3i
Attributes:
dimension
static Axis() classmethod Axis(i) -> Vec3i Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 3.
Parameters i (int) –
GetDot()
static XAxis() classmethod XAxis() -> Vec3i Create a unit vector along the X-axis.
static YAxis() classmethod YAxis() -> Vec3i Create a unit vector along the Y-axis.
static ZAxis() classmethod ZAxis() -> Vec3i Create a unit vector along the Z-axis.
dimension = 3
class pxr.Gf.Vec4d Methods:
Axis classmethod Axis(i) -> Vec4d
GetComplement(b) Returns the orthogonal complement of this->GetProjection(b) .
GetDot
GetLength() Length.
GetNormalized(eps)
param eps
GetProjection(v) Returns the projection of this onto v .
Normalize(eps) Normalizes the vector in place to unit length, returning the length before normalization.
WAxis classmethod WAxis() -> Vec4d
XAxis classmethod XAxis() -> Vec4d
YAxis classmethod YAxis() -> Vec4d
ZAxis classmethod ZAxis() -> Vec4d
Attributes:
dimension
static Axis() classmethod Axis(i) -> Vec4d Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 4.
Parameters i (int) –
GetComplement(b) → Vec4d Returns the orthogonal complement of this->GetProjection(b) . That is: *this - this->GetProjection(b)
Parameters b (Vec4d) –
GetDot()
GetLength() → float Length.
GetNormalized(eps) → Vec4d
Parameters eps (float) –
GetProjection(v) → Vec4d Returns the projection of this onto v . That is: v * (*this * v)
Parameters v (Vec4d) –
Normalize(eps) → float Normalizes the vector in place to unit length, returning the length before normalization. If the length of the vector is smaller than eps , then the vector is set to vector/ eps . The original length of the vector is returned. See also GfNormalize() .
Parameters eps (float) –
static WAxis() classmethod WAxis() -> Vec4d Create a unit vector along the W-axis.
static XAxis() classmethod XAxis() -> Vec4d Create a unit vector along the X-axis.
static YAxis() classmethod YAxis() -> Vec4d Create a unit vector along the Y-axis.
static ZAxis() classmethod ZAxis() -> Vec4d Create a unit vector along the Z-axis.
dimension = 4
class pxr.Gf.Vec4f Methods:
Axis classmethod Axis(i) -> Vec4f
GetComplement(b) Returns the orthogonal complement of this->GetProjection(b) .
GetDot
GetLength() Length.
GetNormalized(eps)
param eps
GetProjection(v) Returns the projection of this onto v .
Normalize(eps) Normalizes the vector in place to unit length, returning the length before normalization.
WAxis classmethod WAxis() -> Vec4f
XAxis classmethod XAxis() -> Vec4f
YAxis classmethod YAxis() -> Vec4f
ZAxis classmethod ZAxis() -> Vec4f
Attributes:
dimension
static Axis() classmethod Axis(i) -> Vec4f Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 4.
Parameters i (int) –
GetComplement(b) → Vec4f Returns the orthogonal complement of this->GetProjection(b) . That is: *this - this->GetProjection(b)
Parameters b (Vec4f) –
GetDot()
GetLength() → float Length.
GetNormalized(eps) → Vec4f
Parameters eps (float) –
GetProjection(v) → Vec4f Returns the projection of this onto v . That is: v * (*this * v)
Parameters v (Vec4f) –
Normalize(eps) → float Normalizes the vector in place to unit length, returning the length before normalization. If the length of the vector is smaller than eps , then the vector is set to vector/ eps . The original length of the vector is returned. See also GfNormalize() .
Parameters eps (float) –
static WAxis() classmethod WAxis() -> Vec4f Create a unit vector along the W-axis.
static XAxis() classmethod XAxis() -> Vec4f Create a unit vector along the X-axis.
static YAxis() classmethod YAxis() -> Vec4f Create a unit vector along the Y-axis.
static ZAxis() classmethod ZAxis() -> Vec4f Create a unit vector along the Z-axis.
dimension = 4
class pxr.Gf.Vec4h Methods:
Axis classmethod Axis(i) -> Vec4h
GetComplement(b) Returns the orthogonal complement of this->GetProjection(b) .
GetDot
GetLength() Length.
GetNormalized(eps)
param eps
GetProjection(v) Returns the projection of this onto v .
Normalize(eps) Normalizes the vector in place to unit length, returning the length before normalization.
WAxis classmethod WAxis() -> Vec4h
XAxis classmethod XAxis() -> Vec4h
YAxis classmethod YAxis() -> Vec4h
ZAxis classmethod ZAxis() -> Vec4h
Attributes:
dimension
static Axis() classmethod Axis(i) -> Vec4h Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 4.
Parameters i (int) –
GetComplement(b) → Vec4h Returns the orthogonal complement of this->GetProjection(b) . That is: *this - this->GetProjection(b)
Parameters b (Vec4h) –
GetDot()
GetLength() → GfHalf Length.
GetNormalized(eps) → Vec4h
Parameters eps (GfHalf) –
GetProjection(v) → Vec4h Returns the projection of this onto v . That is: v * (*this * v)
Parameters v (Vec4h) –
Normalize(eps) → GfHalf Normalizes the vector in place to unit length, returning the length before normalization. If the length of the vector is smaller than eps , then the vector is set to vector/ eps . The original length of the vector is returned. See also GfNormalize() .
Parameters eps (GfHalf) –
static WAxis() classmethod WAxis() -> Vec4h Create a unit vector along the W-axis.
static XAxis() classmethod XAxis() -> Vec4h Create a unit vector along the X-axis.
static YAxis() classmethod YAxis() -> Vec4h Create a unit vector along the Y-axis.
static ZAxis() classmethod ZAxis() -> Vec4h Create a unit vector along the Z-axis.
dimension = 4
class pxr.Gf.Vec4i Methods:
Axis classmethod Axis(i) -> Vec4i
GetDot
WAxis classmethod WAxis() -> Vec4i
XAxis classmethod XAxis() -> Vec4i
YAxis classmethod YAxis() -> Vec4i
ZAxis classmethod ZAxis() -> Vec4i
Attributes:
dimension
static Axis() classmethod Axis(i) -> Vec4i Create a unit vector along the i-th axis, zero-based. Return the zero vector if i is greater than or equal to 4.
Parameters i (int) –
GetDot()
static WAxis() classmethod WAxis() -> Vec4i Create a unit vector along the W-axis.
static XAxis() classmethod XAxis() -> Vec4i Create a unit vector along the X-axis.
static YAxis() classmethod YAxis() -> Vec4i Create a unit vector along the Y-axis.
static ZAxis() classmethod ZAxis() -> Vec4i Create a unit vector along the Z-axis.
dimension = 4
© Copyright 2019-2023, NVIDIA. Last updated on Nov 14, 2023.