text
stringlengths 2
806k
| meta
dict |
---|---|
1. Field of the Invention
The present invention relates to a data-storage apparatus and a data-storage method, which manage and store various data items such as AV data, in the form of files, under the control of a host apparatus, and to a recording/reproducing system which has a host apparatus and a data-storage apparatus. More particularly, the invention relates to a data-storage apparatus and a data-storage method, which has a recording medium such as disc on which the data-transfer rate changes in accordance with the data-access position, and a recording/reproducing system.
2. Description of the Related Art
The FAT file system is a file system for use in external storage apparatuses provided in host apparatuses such as personal computers (PCs). Among the external storage apparatuses are hard disc drives (HDDs) and recording media each having a nonvolatile solid-state memory (e.g., Memory Stick (trademark) manufactured by Sony, Smart Media (trademark) manufactured by Toshiba, Compactflash (trademark) manufactured by San Disk, and multimedia cards).
The FAT file system uses two data items. The first data item is a file allocation table (FAT) that shows where on a recording medium individual files are recorded. The second data item is a directory item that shows where in the directory the files and their attributes exist.
Generally, the recording medium has two areas, one dedicated to the FAT and the other dedicated to the route directory. The PC receives the information necessary to access any file, from a recording/reproducing apparatus through a PC interface (e.g., small computer-system interface (SCSI), integrated drive electronics (IDE), IEEE1394, universal serial bus (USB), or the like). The PC then controls the recording/reproducing on the basis of the information it has received.
When a file is written in, for example, an HDD, it is recorded in an empty cluster. Upon completion of the file writing, information representing which cluster will be used next is written in the FAT. To erase the file, the data written is preserved, and the FAT item corresponding to the cluster used is rendered an empty cluster. To read the file, the start cluster address of the file is obtained from the directory item. The FAT item that corresponds to the start cluster address is read. From the FAT item thus read, it is determined which cluster contains the data file to be read. The data file is then read from the recording medium.
To transfer data between the host apparatus and the HDD, a disc cache apparatus may temporarily store the information to be written in the hard disc or the information read from the hard disc. The speed of accessing the hard disc can then be apparently increased. As in the technique described in Patent Document 1 (Jpn. Pat. Appln. Laid-Open Publication No. 11-45210), a nonvolatile semiconductor memory, such as a flashEEPROM (electrically erasable and programmable read only memory), may be used as cache. In this case, the content of the cache does not have to be written back into the hard disc before the power switch is turned off. This would be very convenient. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to test structures for semiconductor fabrication, and more particularly to probe-able voltage contrast test structures for electrical testing and voltage contrast inspection, and a method for detecting defects using the same.
Mask area (space on the reticle) is a precious resource used during technology development and manufacturing of integrated circuits. Mask sets may cost 1 million dollars or more. During process development a wide range of test structures for characterizing the yield and functionality of different circuit components must incorporated on each mask set. In addition, design IP must also be included to test out the building blocks for ICs that will be manufacturing for sale. During manufacturing, primarily chips that will be sold consume the entire mask area. Generally there is not enough room on a mask set to accommodate all the test structures and other designs that could provide value Two classes of test structures often included on mask sets are probe-able test structures (e.g., combs and serpentine patterns) which are used to test for shorts and opens using electrical probes, and voltage contrast test structures which are used in line with a scanning electron microscope (SEM). The voltage contrast test structures provide feedback on defectivity at a level shortly after defect formation. The exact location of each defect is also isolated using this technique. Probe-able test structures are important because they enable a very large area to be tested quickly. Voltage contrast inspection is time consuming and so many wafers go without inspection. A greater number of wafers can be probed. Also using electrical probes, the exact resistance can be measured.
Probe-able test structures and voltage contrast test structures are different in structure. Probe-able test structures require large probe pads, which are connect to two or more electrical nodes in the structure. FIGS. 1A and 1B are diagrams illustrating conventional probe-able comb and serpentine structures, respectively. As shown in FIG. 1A, a conventional probe-able comb test structure 100 is provided. The conventional probe-able comb test structure 100 includes a plurality of probe pads 101 and 102 respectively connected to comb-like structures 103 and 104. In FIG. 1B, a conventional probe-able serpentine test structure 110 is provided. The conventional probe-able serpentine test structure 110, includes a plurality of probe pads 111 and 112 and a single meandering metal or wire 113 connected therebetween.
On the other hand, a voltage contrast test structure requires smaller electrical nodes for efficient defect isolation. FIG. 2 illustrates a conventional voltage contrast test structure 200. The conventional voltage contrast test structure 200 includes a grounded comb 201 including a plurality of grounded tines 202, and a plurality of floating tines 203 where each floating tine 203 is in between each grounded tine 202. These floating tines 203 are independent to allow defect isolation. To test for a short, end portions of the floating tines 203 are scanned in a scan area 204 and if there is a bridge from any one of the floating tines 203 to any of the grounded tines 202, the respective floating tine 203 becomes grounded.
The masking area has a limited amount of space. The probe-able test structures and the voltage contrast test structure typically are allocated in separate areas since they are designed differently. Therefore, a large amount of space within the masking area is used to accommodate these test structures. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to an inked ribbon (which will be referred to as "ribbon" hereinbelow) operation device in a serial printer and more particularly, to a ribbon operation device in a printer for performing ribbon feed and lifting.
In known serial printers, a ribbon is fixedly secured at the opposite ends thereof to a pair of ribbon shafts rotatably supported on a carriage, and as printing operation proceeds, the ribbon is paid out from one of the ribbon shafts so as to pass across the front of printing means, such as a printing hammer or printing wire, is wound about the other ribbon shaft and is then lowered from the position in the front of the printing means so that the printed area of a printing medium may be visible when the printing operation is interrupted. However, the ribbon winding-up, transfer, lifting and lowering operations have to be performed by separate means, respectively, and thus, known inked ribbon operation devices require a complicated mechanism and are expensive. | {
"pile_set_name": "USPTO Backgrounds"
} |
Users of electronic devices increasingly desire to communicate privately and securely with one another. Unfortunately, existing approaches to securing communications can be difficult and/or cumbersome to use. As one example, some approaches to data security make use of digital certificates or keys, or pre-shared passwords, which can be tedious to manage. Further, existing approaches are often susceptible to interception (e.g., eavesdropping and man-in-the middle attacks), forensic analysis, and impersonation. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a finder optical system of a single-lens reflex camera, and more specifically, to a finder optical system that is suitable for a medium-format camera to which a film back is attached.
In general, a single-lens reflex (SLR) camera for a 35 mm film employs a pentaprism finder that has a pentaprism as an erecting optical system. A finder window, which is the last optical surface of the finder optical system, is positioned to be coincident with a back surface of a camera body in the finder of the SLR camera for a 35 mm film.
On the other hand, the pentaprism finder may not be suitable for a medium-format SLR camera that uses a Brownie film whose width is 61.5 mm. When a medium-format SLR camera employs an exchangeable film back, the film back is jutted over the back surface of the camera body. If such a camera is provided with the pentaprism finder, an eye relief becomes too large to observe an object through the finder.
U.S. Pat. No 4,171,888 discloses a finder optical system that consists of a relay optical system employing a trapezoidal prism, and a magnifying optical system. The relay optical system forms a second image by erecting an inverted first image formed on a focusing screen (a first image plane) through a taking lens of a camera. The second image is observed through the magnifying optical system under magnification.
In general, a ratio of a viewing area of a finder to an image area on a film, which is referred to as a finder viewing ratio, and a finder magnification, which represents a size of an observed image, are important factors to design the finder optical system. It is preferable that the finder viewing ratio and the finder magnification are large as possible. However, it is difficult to increase the finder viewing ratio and the finder magnification in balance for the finder employing a trapezoidal prism. That is, when sizes of incident and exit surfaces of the trapezoidal prism are designed to be large in order to increase the finder viewing ratio, the total optical path length in the prism becomes too large to keep the appropriate finder magnification.
It is therefore an object of the present invention to provide an improved finder optical system that is capable of increasing the finder viewing ratio and the finder magnification in balance, assuming that the finder optical system includes a relay optical system that forms a second image by erecting an inverted first image formed on the first image plane and a magnifying optical system through which the second image is observed under magnification.
For the above object, according to the invention, there is provided a finder optical system that is provided with a relay optical system that forms a second image by erecting an inverted first image formed on a first image plane through a taking lens of a camera, and a magnifying optical system through which the second image is observed under magnification. The relay optical system includes a condenser lens, a reflecting prism and a relay lens arranged in the order from the first image plane toward an eyepoint. The following conditions (1) and (2) are satisfied;
(1) 0.25 less than |mr| less than 0.35
(2) 0.75 less than f2/f3 less than 0.85
where mr is magnification of the relay optical system, f2 is a focal length of the relay lens, and f3 is a focal length of the magnifying optical system.
The relay lens may include at least one positive lens and at least one negative lens that are arranged in the order from the second image plane toward the taking lens, and wherein the following condition (3) is satisfied;
(3) 1.3 less than |f2/f2n| less than 2.5.
The symbol f2n is a focal length of the negative lens that is the closest to the second image plane in the relay lens. When the closest negative lens consists of a plurality of negative lens elements, the symbol f2n represents a resultant focal length of the plurality of negative lens elements.
The magnifying optical system may include at least one positive lens and at least one negative lens that are arranged in the order from the second image plans toward an eyepoint, and wherein the following condition (4) is satisfied;
(4) 0.7 less than |f3/f3n| less than 1.5.
The symbol f3n is a focal length of the negative lens that is the closest to the second image plane in the magnifying optical system. When the closest negative lens consists of a plurality of negative lens elements, the symbol f3n represents a resultant focal length of the plurality of negative lens elements.
Further, the reflecting prism may be a trapezoidal prism. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The invention relates to novel nitroprussides of short-acting ganglionic agents, particularly to the novel compound bis-(trimethaphan)-nitroprusside and its (+)-isomer of formula ##STR1## and solvates, especially hydrates or alcoholates thereof, as well as a process for the manufacture thereof from an alkali nitroprusside and a soluble trimethaphan salt, especially sodium nitroprusside and trimethaphan camsylate, in solution, especially in water.
The invention also relates to mixtures of an alkali metal nitroprusside, such as sodium nitroprusside, and a soluble salt of a short acting ganglionic blocking agent, such as a soluble trimethaphan salt, particularly of (+)-trimethaphan. Trimethaphan camsylate or halogenide, such as the chloride or bromide, are also suitable.
The invention further relates to concentrated solutions (stock solutions) containing said novel nitroprussides and mixtures.
Furthermore, the invention relates to pharmaceutical compositions which contain said novel nitroprussides and mixtures in solid form, in form of concentrated solutions or in form of diluted solutions suitable for infusion purposes.
Preferred mixtures described are those containing the nitroprusside and the salt of a short acting ganglionic blocking agent, especially of trimethaphan or its (+)-isomer, in the weight ratio of 1:<10, especially in a ratio representing the nitroprusside salt of the ganglionic blocking agent, e.g., bis-(trimethaphan)-nitroprusside. Also described are solutions, especially concentrated (stock) solutions of said nitroprussides and mixtures in physiologically acceptable alcohols, especially in aqueous ethanol.
Also described are said nitroprussides, especially bis-(trimethaphan)-nitroprusside, as well as its solvates, and said mixtures, especially those of an alkali nitroprusside and a soluble trimethaphan salt, preferably in the weight ratio of less than 1:10, especially of about 1:4, when being dissolved in a physiologically acceptable alcohol, especially in aqueous ethanol, especially at least 40% or preferably about 60% ethanol.
As was noted above, the invention relates to the use of the inventive composition in a weight ratio of less than 1:10, and preferably about 1:4. The invention thus includes the range of 1:4-<10. Within this range, narrower ranges of 1:9, 1:8, 1:7, 1:6, and 1:5 may be listed by way of example. It is clear, of course, that although integers are listed, intermediate ranges are also possible within the range set forth above.
Preferably, these nitroprussides and mixtures are stored in the solid form and dissolved in said alcohol immediately before use. In such a case the alcohol may, in addition, contain other physiologically acceptable alcohols, such as polyols, like glycerol, inositol, pentaerythritol, mannitol or isosorbitol as well as nitrates, like mono-, di-, tri- or tetranitrates, thereof, especially nitroglycerin, preferably in an amount not exceeding the amount of nitroprusside to be dissolved, as well as nucleosides, such as inosine and adenosine, short acting positive inotropic agents, such as dopamine or dobutamine, a physiologically acceptable thiosulfate, such as sodium thiosulfate, or nicotinic acid and/or its biological precursors, like beta-pyridylcarbinol.
The invention further relates to preparation of infusion solutions from the concentrated solutions or mixtures, the preparation of an especially well soluble micronized mixture of (I) and thiosulphate or of the mixture of the salts and thiosulphate, and the use of the concentrate for the preparation of infusion solutions.
The compound (I), its solvates, the mixture of the salts, and the pharmaceutical compositions containing (I) or the mixture of the salts, are suitable for therapeutic use, particularly in the lowering of blood pressure, in the achievement of peripheral vasodilation, in the elmination of arterial spasms and/or in the reduction of myocardial oxygen consumption and of the work load of the heart after heart attack.
2. Description of the Prior Art
Sodium nitroprusside is a known infusion preparation for the rapid and controlled lowering of the blood pressure in the case of operations or hypertensive crises and for reducing the work load of the heart, e.g., in the case of heart attack. However, it has disadvantages which restrict the use of this valuable and extraordinarily well controllable medicament. Thus, it decomposes in the body very rapidly with the formation of up to 5 moles of cyanide per molecule. Since cyanide is an acutely toxic agent which blocks the respiratory chain and paralyses the respiratory center, SNP must be used in order to avoid an accumulation of toxic cyanide concentrations in the blood serum only with the strictest maintenance of prescribed highest dosages and even then only for a short time.
In common with other vasodilators SNP has the disadvantage that the desired rapid and powerful lowering of blood pressure leads very frequently to an activation of the so-called counter-regulation, whereby, in turn, the amount of circulating hormones which increase blood pressure (adrenalin, noradrenalin and angiotensin II) and of renin is greatly increased. This causes, especially in young patients, a strong tendency to increased blood pressure which can be compensated only by successive increase of the dosage of SNP to be infused (tachyphylaxis). If in such cases the administration of SNP is not discontinued, a dangerous increase of the cyanide level in the blood serum can arise very rapidly, even on short-term use of SNP, because of the over-dosage which then occurs. If in this case the tolerance limit of about 0.8 ug of CN/100 ml of blood plasma is exceeded, severe cyanide poisoning and even death can arise (see Anesthesiology 47, 441-448 (1977); Bull. Med. Legale Toxicol. 21, 215-224 (1978); Amer. J. Obstet. Gynecol. 139, 708-711 (1981).
A further disadvantage of SNP is the appearance of the so-called "rebound" hypertension owing to persistent counter-regulation after termination of the SNP infusion. (New England J. Med. 302, 1029-1030 (1980); Anesthesiology 44, 345-348 (1976)). Since this "rebound" hypertension occasionally causes blood pressure levels which lie far above the initial blood pressure, secondary bleedings can occur in newly operated patients and dangerous blood perfusion disorders in the brain owing to oedema formation can occur in predisposed patients.
Since, on the other hand, SNP is at present the most active agent for the controlled lowering of blood pressure, e.g., during operations, attempts have been made to eliminate the mentioned disadvantages.
MacRae has recently proposed (Anaesthesia 36, 312-315 (1981)) to infuse a very dilute solution containing SNP together with the ganglionic blocking agent trimethaphan camsylate (TMC), in the weight ratio 1:10. He reported that thereby the amount of SNP required for the same lowering of the blood pressure was considerably lower.
TMC and its blood pressure-lowering activity are known and TMC is therefore employed therapeutically (in spite of its lower activity) similarly to SNP, i.e., as an infusion preparation for the controlled short-term lowering of blood pressure. However, TMC displays, in turn, a series of side effects which restrict its use.
Thus, in addition to such side effects as tachycardia, mydriasis, cycloplegia, urine retention, xerostomia and constipation, which occur by blockade of the parasympathetic ganglia, nausea or vomiting can arise in sensitive patients and, especially in children and aged patients, allergies can arise owing to histamine liberation.
Moreover, trimethaphan camsylate must not be used alone in the case of operations in the region of the gastrointestinal tract.
The dosage of SNP required for the controlled lowering of blood pressure is on average about 3 ug/kg body weight per minute, that of the TMC about 30 ug/kg or more per minute. Corresponding to this ratio of the pharmacological activities the concentrations of the infusion solutions usually used are thus 0.01 and 0.1%, respectively. According to Table 2 of MacRae (loc. cit.) a ratio of the dose rates of 1:14 and of the total dosage of 1:10 correspond to the relative strengths of the two agents.
According to MacRae, the clinical activities of the single components in dilute infusion solution containing SNP and TMC in the weight ratio of 1:10 appear to be additive or even become potentiated, while the corresponding side-effects (because of their qualitative difference) are relatively diminished. Thus, seeing that ad hoc preparation of the dilute infusion solution containing such a mixture in the clinic is complicated and, because of the errors which are possible in practice, even dangerous, it appeared advantageous to develop appropriate combination products as well as concentrates thereof which are relatively stable and could easily be diluted to infusion strength.
An additional obstacle to the development of a combination product of nitroprusside and trimethapan was the fact that the two single drugs are not compatible in water and purely aqueous solvents in concentrated form [see for example the solubilities given in Example 10]. When preparing an aqueous solution of the mixture either drug had firstly to be diluted to infusion strength, and these solutions could then be mixed shortly before the infusion. Because of the limited storage stability of dilute solutions of TMC and SNP and because of the known extreme light sensitivity of SNP solutions, such a highly diluted combination produce is, in any event, not suitable as a commercial product.
The observation that the hitherto unknown nitroprussides of short-acting ganglionic agents, such as sulfonium and ammonium bases, for example, pentolinium and tetraethylammonium and, especially, trimethaphan, can be isolated in pure form and in high yield and can be processed to a storable pharmaceutical composition was therefore suprising.
It was also unknown and unobvious that these salts can form solvates and concentrated aqueous alcoholic solutions, especially in view of their limited solubility in water.
It was also not obvious that mixtures of an alkali nitroprusside, such as sodium nitroprusside, and a water-soluble salt of such a short-acting ganglionic blocking agent as trimethaphan camsylate or a halogenide, e.g., the chloride or bromide, could be dissolved in aqueous ethanol and that such solutions, in addition, may contain other physiologically acceptable alcohols, such as polyols, like glycerol, inosotol, pentaereythol, mannitol, or isosorbitol as well as nitrates, like mono-, di-, tri- or tetranitrates thereof, especially nitroglycerin, preferably in an amount not exceeding the amount of nitroprusside to be dissolved, as well as nucleosides, such as inosine and adenosine, short-acting positive inotropic agents, such as dopamine or dobutamine, a physiologically acceptable thiosulfate, such as sodium thiosulfate or nicotinic acid and/or its biological precursors, like beta-pyridylcarbinol. | {
"pile_set_name": "USPTO Backgrounds"
} |
The design of latches for doors has taken a variety of forms, the most common being the horizontal spring bolt which is depressed by the striker plate and then pops into an opening in the striker plate when the door is fully closed. This type of spring latch has a number of disadvantages in that it is difficult to adjust except by repositioning the stop or the striker plate on the jamb, giving rise to the problem of a door which rattles. Unless some positive latching control is used, the spring bolts can be easily wedged or deflected by a wire, plastic card, or other metal devices to permit the door to be opened even though the mechanism controlling the latch is locked. This has given rise to the use of "dead bolt" type latches particularly for outside doors to provide a positive locking action.
Various types of rotary latches have heretofore been proposed, particularly for use with automobile doors where alignment problems and other safety considerations impose special requirements. However, such rotary latch arrangements have generally been too complicated or expensive, or difficult to install to be useful with common household doors. A rotary door latch mechanism, for example, as is described in U.S. Pat. No. 1,711,213 requires the door to close against a stop. It does not provide a flush, smooth external appearance either with the door open or closed, since the keeper requires a striking lip which must project toward the door and requires an exposed opening in the jamb adjacent the door. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a new and distinct cultivar of Brachyscome plant, botanically known as Brachyscome×hybrida and hereinafter referred to by the name ‘Bonbrapi’.
The new Brachyscome plant is a product of a controlled breeding program conducted by the Inventor in Yellow Rock, New South Wales, Australia. The objective of the breeding program is to create new mounding Brachyscome plants with unique and attractive ray floret color.
The new Brachyscome plant originated from a cross-pollination in Yellow Rock, New South Wales, Australia, of a proprietary selection of Brachyscome formosa identified as code number 00-126.2, not patented, as the female, or seed, parent with a proprietary selection of Brachyscome×hybrida identified as code number 00-52, not patented, as the male, or pollen, parent in September, 2004. The new Brachyscome plant was discovered and selected by the Inventor as a single flowering plant from within the progeny of the stated cross-pollination in a controlled environment in Yellow Rock, New South Wales, Australia in July, 2005.
Asexual reproduction of the new Brachyscome plant by vegetative cuttings in a controlled environment in Yellow Rock, New South Wales, Australia since August, 2005, has shown that the unique features of this new Brachyscome plant are stable and reproduced true to type in successive generations. | {
"pile_set_name": "USPTO Backgrounds"
} |
The following discussion of the background of the invention is merely provided to aid the reader in understanding the invention and is not admitted to describe or constitute prior art to the present invention.
The term “cardiorenal syndrome” refers to a physiologic relationship between the heart and kidney that manifests as a tight coordination between renal and cardiac functions in subjects suffering from heart failure. While the syndrome is poorly understood, a feedback loop amongst neurohormonal systems (and, in particular, the natriuretic peptides), inflammatory responses, and structurally and functionally impaired organs has been implicated, creating a cycle of worsening cardiac and renal functions. A recent discussion of cardiorenal syndrome may be found in Francis, “Acute decompensated heart failure: The cardiorenal syndrome,” Clev. Clinic J. Med. 73(S2): S8-S13, 2006.
In heart failure patients, the onset of renal dysfunction has proved a strong risk factor for mortality. In fact, an increased risk is signaled even at serum creatinine levels >1.3 mg/dL and estimated creatinine clearance values ≦60 to 70 mL/min, values that can fall within “normal” values for each of these parameters. Although renal dysfunction predicts all-cause mortality, it is most predictive of death from progressive heart failure, which suggests that it is a manifestation of and/or exacerbating factor for left ventricular dysfunction. And worsening renal function may be even more important than baseline renal function for predicting adverse outcomes. In one multicenter study, a serum creatinine increase of ≧0.3 mg/dL had a sensitivity of 65% and specificity of 81% for predicting in-hospital mortality. Gottlieb et al., “The prognostic importance of different definitions of worsening renal function in congestive heart failure,” J. Card. Fail. 8: 136-141, 2002. Other studies have reported that deteriorating renal function is associated with a longer length of stay, an increased risk of death within 6 months after discharge, and a 33% increased risk for hospital readmission.
In addition, numerous studies have demonstrated that a variety of heart failure therapies may actually worsen renal function, triggering a deterioration in the cardiorenal axis. For example, certain diuretics have been associated with worsening renal function, especially in the presence of ACE inhibitors, and high diuretic doses have been associated with increased mortality rates. This is often thought to result from “diuretic resistance,” e.g., a failure to excrete at least 90 mmol of sodium within 72 hours of a 160 mg oral furosemide dose given twice daily, which necessitates increasing diuretic dosage. Whatever the cause, the resulting volume overload is poorly tolerated and a frequent cause of hospital admission in patients with heart failure.
In patients exhibiting worsening renal function, volume overload, and diuretic refractoriness, the management of cardiorenal disease can be extremely difficult. Positive inotropic agents (including dobutamine, phosphodiesterase inhibitors, and levosimendan) may facilitate a diuresis with preservation or improvement in renal function. Although dopamine also is used because of its presumed ability to improve renal blood flow, this effect is severely limited in advanced heart failure. Intravenous vasodilators can improve hemodynamics, but often will not improve renal function.
In recent years, natriuretic peptide measurement has dramatically changed the diagnosis and management of cardiac diseases, including heart failure and the acute coronary syndromes. In particular, B-type natriuretic peptide (BNP, human precursor Swiss-Prot P16860), and various related polypeptides arising from the common precursor proBNP, have been used to diagnose heart failure, determine its severity, and estimate prognosis. In addition, BNP and its related polypeptides have been demonstrated to provide diagnostic and prognostic information in unstable angina, non-ST-elevation myocardial infarction, and ST-elevation myocardial infarction.
In contrast, current diagnostic tests for renal dysfunction, such as serum creatinine or cystatin C measurements, can be misleading to the clinician. While it is preferred that aggressive treatment begin at the earliest indication of renal dysfunction, these tests may only become abnormal days after the original insult. A large proportion of the renal mass may be damaged before any biochemical evidence of renal dysfunction is appreciated, as the rise of serum creatinine may not be evident before 50% of the glomerular filtration rate is lost. No surprisingly perhaps, it has been reported that about two thirds of the patients admitted for acute heart failure have inadequate glomerular filtration rates or creatinine clearance, despite relatively normal serum creatinine levels. Recently, NGAL (also known as neutrophil gelatinase-associated lipocalin, human precursor Swiss-Prot P80188) has been proposed as a new early marker for acute renal injury, with reports of increased levels of NGAL from acute renal injury detectable in both urine and blood within two hours of the insult. See, e.g., WO04088276; WO05121788; WO06066587. The use of NGAL as a risk marker in the context of heart failure, renal dysfunction, or cardiorenal syndrome has not been described. | {
"pile_set_name": "USPTO Backgrounds"
} |
U.S. Pat. No. 3,875,642 discloses a seaming apparatus utilizing three sets of rollers that is particularly suited for forming continuous seam structure along the side edges of panels having vertical side wall portions arranged parallel to one another and side connecting flanges that extend laterally out from the upper edge of vertical side wall portions.
U.S. Pat. No. 4,470,186 discloses a reversible seaming apparatus including a supporting frame on which there are rotatably mounted two sets of opposed seaming rollers, the sets being spaced from one another along the apparatus to successively engage and thereby seam the side edge portions of two adjacent panels together. One roller of each set is movable toward and away from the other roller of each set between a closely spaced seaming position and a laterally separated release position. A drive motor and drive train between the motor and rollers provide a direct positive drive for each roller when the rollers are in the seaming position. When the rollers are in their spread release position, the seamer may be lifted off any point along the adjacent edges which are being seamed. The ability to remove the seamer from any point along the edges is highly advantageous. However, this seamer disengages the rollers' drive gears when it is moved to its release position. Accordingly, the drive gears have to be reengaged when it is desired to return the seamer to its operating position. The gears may have difficulty reengaging if their teeth meet head on (i.e. end to end). | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention generally relates to a mechanical device for releasably coupling truss structures and is specifically directed to an apparatus adapted to simultaneously join, with complete and uniform rigidity, the aligned ends of chord members of trusses, particularly trusses of the types commonly used to erect temporary entertainment stage environments.
Truss structures are staple equipment of entertainment industry productions. Music concerts, theatrical shows and other types of outdoors spectator events typically require stage platforms upon which the performances take place, elevated light fixtures and sound speakers to hover about the stage and inclined areas for the audiences to sit and view the performances. Normally, multiple truss sections are assembled to form structures for supporting the stage and retractable bleachers and for suspending speakers and lights. Obviously, the types of trusses used are selected for their ability to support loads that they are likely to experience. It is, therefore, imperative that any connectors used to join these trusses together be able to withstand any static and dynamic loads that they may be subjected to and that the connectors not be likely failure points along the assembled truss structures. Furthermore, where the stage environment may require quick reconfiguration, such as may be necessary during intermission of a multi-act concert, it is equally vital that the truss connectors lend themselves to rapid assembly and disassembly of trusses sections.
There are several varieties of truss connectors of the prior art adapted to facilitate relatively quick releasable coupling of the terminal ends of truss sections. Some such truss connectors feature forked configurations that allow chord members of adjacent truss sections to be joined at their aligned ends. For example, U.S. Pat. No. 6,675,546 to Coles discloses a connector comprising a male member and a forked female member, both having distal ends which are to be inserted into the ends of adjacent truss chord members and then secured to those chord members with cotter pins that are inserted into aligned holes residing in the connector members and truss chord members, and wherein the connector's male member is to be inserted into the forked female member and secured thereto with a clevis pin, thereby hingedly fastening the adjacent truss chord members together. However, while the connector disclosed in the Coles patent may be an effective truss coupling means, it, like many other truss connectors of the prior art, may have a particular vulnerability. Specifically, pins used to fasten components are subjected to shear when loads acting upon the connector-joined trusses pull the trusses away from each other.
U.S. Pat. No. 5,711,131 to Thomas discloses a truss also having connectors of forked configurations. More specifically, the Thomas connector features forked limbs with co-axial holes—allowing the limbs to be bolted to those of another connector—and a spigot to be inserted into a tubular truss member. Rather than using pins or bolts to secure the connector to the truss, the spigot is welded to the truss member that it is disposed within. However, because the forked connectors disclosed in Thomas are irremovable from the truss members that they are welded to, these trusses can be incompatible for coupling with other trusses that do not employ the same connector parts.
U.S. Pat. No. 6,634,823 to Sciortino discloses another style of truss connector comprising left and right shell pieces that are fitted over opposite sides of abutting truss member ends and then are screwed and bolted to those truss members. However, similar to the Coles connector, the configuration of the Sciortino apparatus renders its securing bolts and screws susceptible to failure due to shearing forces that may be induced by dynamic loads on the connected truss sections. Moreover, virtually all tube-to-tube truss connecting devices of the prior art of which the present inventor is aware, whatever their unique configurations, require their users to manually secure each joining of truss members one joint at a time. For example, when two truss sections are to be coupled at the ends of their four respective chord members, one normally must undertake piecemeal installation of four separate connector devices in order to secure each of the four chord member couplings. Obviously, when a great number of truss sections must be assembled, installing the necessary number of truss connectors can be a tedious, time consuming proposition. Furthermore, in circumstances where there is minimal time to perform such assembly work (ex: between concert acts), this realization could induce operations personnel, in their hast, to make mistakes relative to properly securing each truss member coupling and, consequently, cause the overall truss assembly to be structurally unsound.
Therefore, it can be appreciated that there exists a need for a truss connector apparatus that is adapted to: (a) facilitate more rigid and secure assembling of trusses and (b) allow the multiple aligned ends of chord members of separate truss sections to be coupled simultaneously for the purpose of reducing the work time associated with properly connecting trusses. The truss connector of the present invention substantially fulfills this existing need. | {
"pile_set_name": "USPTO Backgrounds"
} |
Solar energy has received recent interest as an alternative to fossil fuels. Nonetheless, the design of collectors converting such energy to a useful form has created a controversey not yet resolved.
One type of solar collector covers an area, such as the roof of a building, with appropriate transducers. The rays striking these transducers undergo conversion into heated fluids or electricity as appropriate.
However, the elements effecting the conversion of solar energy can efficiently utilize vastly greater amounts of light than that ever received directly from the sun. Moreover, these elements represent relatively expensive items in the system. Consequently, their use for only that radiation naturally incident upon their surfaces appreciably increases the cost and lowers the desirability and utilization of such collectors.
Thus, to improve the economics of the collectors, many designers have increased the concentration of radiation striking the transducing elements. Generally, they employ a focussing device which the rays strike prior to impinging upon the transducers. These inexpensive focusers amass the radiation striking their large surfaces and concentrate them to the appreciably smaller surface areas of the transducers. Thus, a relatively minor additional expense allows the transducers to produce a several-fold greater amount of useful energy.
However, the use of focussing elements requires a precise spatial orientation between the sun, the transducers and the element themselves. Relatively minor displacements from the required alignment produce precipitous declines in the system's efficiency. Moreover, as the earth rotates on its axis, the alignment between the various components will necessarily undergo these misalignments. In addition, the focussing elements that concentrate the solar rays with greatest efficiency suffer the greatest defocussing.
To allow use of focusers throughout the day, various manufacturers have incorporated tracking devices into their systems. These have generally taken the form of electric motors coupled to sensing devices. The motors move the focussing elements and transducers to a position where the sensing devices detect a maximum of solar energy in the region of the latter.
These systems, however, suffer drawbacks seriously limiting their desirability. The inclusion of a sensor, motor, and intermediate couplings significantly increases the cost of the system. Moreover, it requires a source of electricity plus the expenditure for its use.
Moreover, a heavily overcast day may cause the sensor-motor combination to gyrate uncontrollably while seeking the sun's rays. High winds may exceed the corrective capacity of the motor and simply blow the collector away from the requisite orientation.
More recent devices have compromised between the moving-focussing and the stationary-cell systems. These newer devices use stationary focussing elements. Their overall configuration, however, achieves some focussing throughout the day. Consequently, the devices produce better results than the stationary nonfocussing systems consisting of solar-cell arrays. Yet, their efficiencies never approach those of the sun-tracking collectors. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to electrical systems and, more particularly, to electrical systems for reducing power consumption by electrical appliances. A major objective of the present invention is to reduce the power consumption of an appliance by withholding power over time periods selected to minimize interference with the usefulness of the appliance.
Despite an increasing awareness of the importance of energy conservation, the demand for electrical power has been increasing; this increase is due, in large part, to the increasing prevalence of computers and power-hungry peripherals such as laser printers. In many cases, the appliances collectively draw more power than the building in which they are housed was designed to manage. Options such as rewiring a building and moving into another building are expensive. Thus, both economic and conservation considerations place a premium on limiting power consumption.
Many appliances are now designed to minimize power consumption. In part, this is accomplished by including intelligent power management capabilities. For example, many devices turn off or enter a very-low-power sleep mode after a certain lapse of time without use. However, many legacy appliances and even some recently available appliances do not employ effective power management.
Moreover, many devices that do incorporate power management do not do so optimally. For example, many devices power down after a predetermined period of non-use. In many cases, appliances that shut down during business hours or when a potential user is in the vicinity incur a cost, whether in lost revenues or in productivity, e.g., in the case of a copy machine that forces users to wait while it warms up.
Appliances with less-than-optimal power management call for add-on devices that reduce power consumption by turning off power to the appliance during periods of nonuse. A typical external power-management device is designed to be plugged into a wall outlet and includes its own outlet into which the appliance is plugged. A switch internal to the power-management device determines whether or not the appliance is coupled electrically to the wall outlet.
Such external power management faces challenges beyond those faced by internal power management. Appliances are designed to detect certain inputs and to initiate certain actions; thus, the appliances are "informed" when the inputs and actions occur. However, such appliances do not, in general, make such information available to external devices. Also, in general, such information is not easily accessed or duplicated by external devices. Thus, it can be difficult to design an external power-management device that determines shutdown based on usage and internal activity as effectively as an appliance designed from the outset to address power management.
Some external power-management devices incorporate occupancy detectors to address the lack of direct usage data. An appliance is more likely to be being used or to be about to be used if there is a person in its vicinity. Occupancy is relatively useful for determining when to power on an appliance. For example, security lights often use occupancy sensing (motion detection); lights are turned on when motion is sensed. Typically, security lights are turned off after a predetermined elapsed time during which no motion is detected. Occupancy sensing can be coupled with other forms of sensing; for example, security lights often monitor ambient light and preclude activating the lights when the ambient light is ample.
Occupancy is not as useful when it comes to determining a shutdown time for appliances that can be remotely activated (e.g., a networked printer) and for appliances that undergo self-initiated procedures (e.g., a vending machine compression cycle) that should not be interrupted. While information about remote activation and internal cycling is available to the appliance, it is not, in general, available to an external power-management device. What is needed is an external power-management device that provides a better tradeoff between power conservation and convenience. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to digital data communications. More particularly, the present invention relates to wireless networks for vehicles.
Conventional signal distribution systems within automobiles use some kind of cable harness including electrical wires, optical fibers, and the like. For example, to realize media distribution systems in automobiles requires the installation of several meters (if not kilometers) of cable. This installation not only adds significant cost and weight to the automobile, but also restricts the placement of certain components, thereby reducing design options. Furthermore, conventional automotive media systems are limited to static media sources, such as tapes, CDs, DVDs, and the like. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the manufacture of many commercial products, a liquid composition is applied as a coating to a receptor substrate. In many applications, and especially in photographic films and papers, the requirements for areal uniformity of coated thickness are highly demanding. Limitations on thickness variation of 1% or even less can be required. Density variations will form in the coating and when a uniform exposure is given to different density levels, streaks and non-uniform images are obtained.
Known coating apparatus typically includes a backing roller around which a web to be coated is wrapped and conveyed at a predetermined conveyance speed. A liquid composition is continuously delivered to and reshaped by an applicator, generally known as a hopper, from a jet flow at the applicator inlet into a broad ribbon of substantially uniform thickness at the applicator outlet from which it is dispensed onto the moving web. Typically, such an applicator is positioned either immediately adjacent to the moving web at a distance of typically less than 1 mm, a transverse, dynamic bead of composition being formed therebetween (bead coating), or above the web at a distance of typically several cm, the composition being allowed to fall as a curtain under gravity into continuous contact with the moving web (curtain coating). A liquid composition may be a single layer or a composite layer consisting of a plurality of coating compositions.
In all coating systems, there is an upper speed limit for coating at which the boundary layer of air carried on the surface of the web is no longer squeezed out by the advancing composition at the coating point but rather becomes entrained under the composition, disrupting the uniform application thereof to the web and resulting in unacceptable coating uniformity.
It is well known that electrostatic charging of a coating apparatus by electrifying the surface of the coating roller can be useful in increasing the upper limit of coating speed. See, for example, U.S. Pat. Nos. 3,335,026 issued Aug. 8, 1967; 4,837,045 issued Jun. 6, 1989; and U.S. Pat. No. 4,864,460 issued Sep. 5, 1989. However, the web can have random charge patterns created prior to the location of the ionizers, due to the unwinding and conveyance process as well as corona discharge treatment of the web. As charge nonuniformities on the web when entering upon the charged coating roller are not neutralized, or smoothed, by the charged roller but simply added to the electrostatic field imparted by the roller, the areal charge nonuniformity can result in a corresponding coating nonuniformity.
Methods and apparatus have been proposed to enhance coatability by removal of charge nonuniformities from both surfaces of a web by neutralizing charges on the web ahead of the coating roller. See U.S. Pat. Nos. 3,470,417 issued Sep. 30, 1969; U.S. Pat. No. 3,531,314 issued Sep. 29, 1970; U.S. Pat. No. 3,730,753 issued May 1, 1973; and 5,432,454 issued July 11, 1995. Such proposals avoid the problem of web charge nonuniformities created by processes such as corona discharge treatment but do not deal with the problem of providing an electrostatic assist to enhance web coatability and increase coating speed.
It is also well known that electrostatic charging of a web can be useful in increasing the upper limit of coating speed. For example, a dielectric web carrying a bound polar charge between opposite surfaces thereof can exhibit increased "wettability" and a consequent increase in acceptable coating speed when conveyed around a grounded coating roller. Means for applying such a charge to a web ahead of the coating point are disclosed, for example, in European Patent No EP 390774 issued Jul. 15, 1992; U.S. Pat. No. 4,835,004 issued May 30, 1989, U.S. Pat. No. 5,122,386 issued Jun. 16, 1992, U.S. Pat. No. 5,295,039 issued Mar. 15, 1994; and European Patent Application No. 0 530 752 A1 published Mar. 3, 1993.
Serious problems can arise in using electrostatic assist for coating in processes wherein the web is charged ahead of the coating point. For example, it can be difficult to apply the charge uniformly over the web. Ionizers must be rigorously maintained, and charging webs at high speeds can require prohibitively large and expensive installations. Apparatus and methods have been proposed for correcting the charge nonuniformity that can occur during the charge application process. See, for example, U.S. Pat. No. 4,835,004 and European Patent No. 0 530 752 A1 which propose to control charge uniformity by imposing strict environmental controls around the web. Such controls can be expensive to install and operate and also may be only marginally effective as heat and humidity are used to aid in the electrostatic assist by smoothing the charges and not removing them. This environmental control should not be required. Environmental control, such as heating the web, relies on changes in physical and electrical properties as the web. These changes can limit the choice of webs and/or sorting on these webs.
Further, even when charge has been applied uniformly, the uniformity can be compromised by any of various well known contacts or exposures between the charge application point and the coating point. It has been observed that a significant loss in charge from a charged web surface can occur upon contact with conveyance rollers that typically are conductive and electrically grounded. These rollers may have a surface pattern such as a series of circumferential grooves to provide traction. The charge loss experienced by a charged web surface when conveyed over these rollers occurs in a manner corresponding to the surface pattern. Areal variations in charge on the web when it reaches the coating point typically result in variations in layer thickness and consequent density nonuniformity also corresponding to the surface pattern. None of the prior art discusses this charge loss issue between the charge application point and the coating point.
Further, charge remaining on the web after coating can be a shock hazard to operators and can be a marking or fogging hazard to light-sensitized product later in coating and in finishing.
Thus there is a need for a method for coating a liquid composition to a moving web at high speed whereby the web is rendered substantially discharged ahead of the coating point, and whereby the coating bead or curtain is subjected to a highly uniform electrostatic field widthwise of the web at the point of coating. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present application is directed to a solar tracking photovoltaic array and, more particularly, to an alignment device and methods for assembling and aligning individual components of a solar array.
Solar tracking photovoltaic arrays are used for various applications. The arrays are designed for a specific output capacity that may vary from being relatively small, such as a few kilowatts, to relatively large in excess of hundreds of kilowatts. The arrays may be installed at various locations that have exposure to the sun for adequate periods of time to produce the required power capacity.
The arrays generally include a frame with one or more solar cell modules in the form of panels. The frame may be adjustable to position the solar cell modules towards the sun. The frame may adjust the position of the solar cell modules throughout the day and throughout the year to ensure they remain directed to the sun to maximize the power capacity.
The arrays are often large assemblies that may be difficult or even impossible to transport once they are assembled. Because of this, it may be advantageous to assemble the arrays in the field at an installation site. Assembly of the solar arrays in the field may provide for the arrays to be packaged and transported as kits to facilitate transport and assembly. Further, the assembly at the installation site may provide for less-skilled workers to perform the assembly process, and the assembly may be done quickly. | {
"pile_set_name": "USPTO Backgrounds"
} |
Wireless networks enable large numbers of users to take advantage of mobile telephony and data services. To this end, inter-network roaming has become a fairly standard feature that enables mobile users to receive wireless service on their wireless terminals as guests in networks that are not their “home” network across large geographic regions. To support inter-network roaming, the Customized Applications for Mobile network Enhanced Logic set of protocol standards (“CAMEL”) has been developed over the years to enable network operators to offer services such as no-prefix dialing in foreign countries and seamless multimedia messaging. CAMEL was originally defined by the European Telecommunications Standards Institute and more recently by the 3GPP group to operate with GSM, UMTS, and 3GPP-based wireless networks. See, e.g., 3GPP Technical Specification, 3rd Generation Partnership Project; Technical Specification group Core Network and Terminals; Customised Applications for Mobile network Enhanced Logic (CAMEL) Phase 4; Stage 2 (Release 9), 3GPP TS 23.078 V9.2.0 (2010-09), which is incorporated by reference herein. A well-known CAMEL-compliant protocol is the CAMEL Application Part (“CAP”) signaling protocol. CAP is used for signaling and communication among CAMEL-enabled entities within a wireless network.
A complete list of available and contemplated CAMEL-enabled supplementary services is beyond the scope of the present disclosure, but examples include: barring calls or approving a call to continue, monitoring a call for call connect and disconnect, providing announcements or voice prompts to voice users, controlling call duration, enabling debits/charges to be applied against a pre-paid wireless calling plan, and providing the user with account balance announcements, tracking whether the subscriber is reachable (i.e., in-network) or roaming outside the network, controlling mobile-originated and mobile-terminated text messaging through both circuit-switched and packet-switched network entities, and enabling the same access number for voice mail across different networks, etc.
CAMEL-enabled entities within a wireless network include one or more service control function entities and the gateway mobile location center, as explained in more detail in regard to FIGS. 1 and 2 below.
In the context of mobile detection, surveillance, and tracking operations, CAMEL-enabled services in the prior art are not well suited for such applications. A mobile detection scenario is illustrated and described in reference to FIGS. 1 and 2 below, accompanied by a discussion of the disadvantages that it presents. FIG. 1 depicts a schematic diagram of a portion of wireless telecommunications network 100 that is available in the prior art. Wireless network 100 comprises: mobile switching center (“MSC”) 101, base station controller (“BSC”) 103, base station 105, serving mobile location center (“SMLC”) 107, gateway mobile location center (“GMLC”) 109, home location register (“HLR”) 111, service control function (“SCF”) entity 113, general packet radio service (“GPRS”) support node 115, and wireless telecommunications terminal 150. Wireless network 100 and its constituent elements are well known in the art.
Wireless network 100 as illustrated in FIG. 1 is a wireless network that is configured to operate according to the Global System for Mobile Communications (“GSM”) standards. The depicted terminology herein, including CAMEL-related terminology, is often GSM-specific for ease of understanding, and more general terms are used in some instances. In some configurations, wireless network 100 could be a Universal Mobile Telecommunications System (“UMTS”) network, or based on the 3rd generation Partnership Project (“3GPP”) family of standards, or a Code Division Multiple Access (“CDMA”) or CDMA-based network. It will be clear to those skilled in the art what the appropriate terms are for non-GSM networks and non-CAMEL protocols.
Mobile switching center (“MSC”) 101 is a wireless network element that, among other functions, provides mobility management and circuit switched call support along with connectivity to the Public Switched Telephone Network (“PSTN”). Mobile switching center 101 is CAMEL-enabled, meaning that it (non-exclusively) communicates CAMEL-compliant signaling to and from other elements of wireless network 100 as described in more detail below. In some CAMEL-enabled networks, a CAMEL-enabled mobile switching center 101 also collects information that is needed for pre-paid call accounting and charging. CAMEL-enabled mobile switching centers are well known in the art. For simplicity, distinctions between a serving mobile switching center and other mobile switching centers will be kept to a minimum herein as such distinctions are well known in the art.
Base station controller (“BSC”) 103 is responsible for signaling between a wireless terminal and the main switching elements of the network such as mobile switching center 101 and GPRS support node 115. Typically, base station controller 103 controls a plurality of base stations 105, but only one base station 105 is illustrated here for simplicity. Base station controller 103 is well known in the art.
Base station 105 is responsible for the wireless radio frequency (“RF”) communication link to the wireless terminals in the area. Base station 105 serves a cell of wireless network 100 and has a unique cell identification within the network. A group of cells define a “location area.” As illustrated in FIG. 1, base station 105 is the serving base station to wireless terminal 150, i.e., provides the necessary service that enables voice and/or data services to wireless terminal 150. Base station 105 is well known in the art.
Serving mobile location center (“SMLC”) 107 collects information from the wireless terminals that are in service with base station controller 103, e.g., wireless terminal 150, and estimates their respective locations with a certain level of precision or resolution, e.g., estimating a location with a radius of 300 meters. Serving mobile location center 107 is well known in the art.
Gateway mobile location center (“GMLC”) 109 is an element of the wireless network that typically interfaces with external location services systems that provide higher level applications. Within wireless network 100, gateway mobile location center 109 transmits location requests to mobile switching center 101 and/or GPRS support node 115 and receives location estimates that were generated by serving mobile location center 107 and transmitted therefrom “upstream” to gateway mobile location center 109. Gateway mobile location center 109 is well known in the art.
Home location register (“HLR”) 111 is a centralized element of wireless network 100 that stores subscriber profiles associated with wireless terminals that are authorized to use wireless network 100, whether they are network subscribers or roamers or pre-paid users, etc. Each subscriber profile comprises information that is specific to the particular wireless terminal it is associated with, such as GPRS settings to allow packet services, settings to enable services requested by the subscriber, and location information (that was received from other entities) about the wireless telecommunications terminal, etc. Home location register 111 is well known in the art.
Service control function (“SCF”) entity 113 is an element of network 100 that is associated with providing supplemental services, such as CAMEL-based roaming or pre-paid calling. A service control point is an example of a service control function entity. The service control function entity implements the supplemental services desired by the operator, e.g., pre-paid accounting. In GSM networks, there is a CAMEL GSM entity known as the “gsmSCF” that performs the service control function, as is well known in the art. Service control function entity 113 and gateway mobile location center 109 are depicted here as two distinct elements of network 100 to emphasize their distinct functions and roles within the network.
General packet radio service (“GPRS”) support node (“GPRS support node”) 115 is analogous in some functions to mobile switching center 101, but differs from mobile switching center 101 in that it supports packet data services to the wireless terminals in contrast to the circuit switched service provided by mobile switching center 101. GPRS support node 115 is CAMEL-enabled, meaning that it (non-exclusively) communicates CAMEL-compliant signaling to and from other elements of wireless network 100 as described in more detail below. In some CAMEL-enabled networks, a CAMEL-enabled GPRS support node 115 also collects information that is needed for pre-paid call accounting and charging. GPRS support node 115 is well known in the art.
Wireless terminal 150 is illustratively a GSM cellular telephone. It will be clear to those skilled in the art that wireless terminal 150 can be another type of wireless terminal that is compatible with the serving wireless network, e.g., 3GPP, UMTS, TDMA, CDMA, etc. Wireless terminal 150 can be a cell phone, a smartphone, a data tablet, or a combination thereof. Wireless terminal 150 is well known in the art. When considering detection, surveillance, and tracking of wireless terminal 150, FIG. 2 is instructive.
FIG. 2 depicts an illustrative portion of a location-related signal flow among several legacy elements of wireless network 100, including wireless terminal 150, base station controller 103, serving mobile location center 107, mobile switching center 101, GPRS support node 115, service control function entity 113, gateway mobile location center 109, and home location register 111—as available in the prior art. FIG. 2 also depicts: per-subscriber operator input 200, signals 201 through 214, and status bubble 215. The illustrative signal flow occurs when a subscriber's identity is flagged for purposes of detecting, tracking, and surveilling the location of the subscriber's wireless terminal. It will be clear to those skilled in the art that this representation is a simplification of actual network signaling traffic, which is intended to improve understanding of the process and is not intended as an exhaustive tutorial.
Bubble 200 represents one or more operations by a network operator to input per-subscriber data into home location register 111. When a subscribing wireless terminal is “of interest” for purposes of surveillance/tracking/detection, the network operator updates the subscriber profile of the given wireless terminal to indicate that it is “of interest” as is well known in the art. Illustratively, the identity of interest is wireless terminal 150. Notably, bubble 200 represents a per-subscriber operation, based on whether the subscribing identity is “of interest” or not. When a subscribing identity is “of interest,” the updated subscriber profile indicates that a service control function in the network, e.g., service control function entity 113, is to be notified of the occurrence of one or more mobile-telecommunications events at wireless terminal 150, such as a call origination.
Signal 201 is from home location register 111 to mobile switching center 101 and GPRS support node 115. When wireless terminal 150 receives service from a given mobile switching center and/or GPRS support node, the wireless terminal is said to be “attached” to the respective serving mobile switching center and/or serving GPRS support node. The serving mobile switching center/GPRS support node, upon receiving signal 201, creates a local entry indicating that service control function entity 113 is to be notified when the serving mobile switching center/GPRS support node becomes aware of mobile-telecommunications events occurring at wireless terminal 150.
Signals 202 and 203 are from wireless terminal 150 via network infrastructure element(s) to mobile switching center 101 and/or GPRS support node 115, respectively. These signals notify mobile switching center/GPRS support node of mobile-telecommunications events experienced by the wireless terminal, such as a call origination, a location area update, a call ending, a packet data session origination, etc. Mobile switching center/GPRS support node consults its local data entry indicating that service control function entity 113 is to be notified.
Signal 204 is a CAMEL-compliant signal from mobile switching center/GPRS support node to service control function entity 113 that notifies service control function entity 113 of the mobile-telecommunications event at wireless terminal 150. Illustratively, signal 204 is a CAP signal.
Signal 205 is from service control function entity 113 to gateway mobile location center 109. Signal 205 requests the location of wireless telecommunications terminal 150 from gateway mobile location center 109. Illustratively, signal 205 is also a CAMEL-compliant CAP signal.
Signal 206 is from gateway mobile location center 109 to home location register 111. Signal 206 requests from home location register 111 the identity of the serving mobile switching center/GPRS support node for wireless terminal 150. This information is centrally kept by home location register 111 in wireless network 100.
Signal 207 is from home location register 111 to gateway mobile location center 109, responding with the identity of the serving mobile switching center/GPRS support node.
Signal 208 is from gateway mobile location center 109 to the serving mobile switching center/GPRS support node, e.g., mobile switching center 101 and/or GPRS support node 115, requesting a location for wireless terminal 150.
Signals 209, 210, 211, and 212 collectively represent the location-related signaling among wireless telecommunications terminal 150 and base station controller 103 and serving mobile location center 107 that ultimately provides to the requesting mobile switching center/GPRS support node an estimated location for wireless terminal (in signal 212). Depending on the implementation of the system, the location estimate could be provided by wireless terminal 150, serving mobile location center 107, or base station controller 103 as is well known in the art. As before, this is a simplified representation.
Signal 213 is from serving mobile switching center 101 and/or GPRS support node 115 to gateway mobile location center 109, reporting the estimated location for wireless terminal 150.
Signal 214 is from gateway mobile location center 109 to service control function entity 113, reporting the estimated location for wireless terminal 150.
Bubble 215 indicates that, at the conclusion of the illustrative signal flow, the location estimate for wireless terminal 150 is now available at service control function entity 113. The estimated location can now be used for surveillance or tracking purposes, for example.
As noted earlier, several disadvantages accrue to the prior-art mobile detection method according to the illustrative message flow of FIG. 2. For example: The “of interest” identities are entered and updated in home location register 111 by the network operator. The fact that the network operator is involved in the surveillance process raises security concerns from the perspective of law enforcement authorities, and further raises privacy concerns from the perspective of those being tracked. Every time a location request is invoked, a substantial amount of signaling traffic is required. The home location register is not typically equipped to handle a large number of and/or frequent location detections, thus creating a bottleneck in the wireless network.A more streamlined approach to mobile detection and surveillance is therefore desirable. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an in-cell touch panel type liquid crystal display, and more specifically to a liquid crystal display capable of accurately sensing whether or not a liquid crystal display panel is touch.
2. Discussion of the Related Art
A liquid crystal display (LCD) displays an image by controlling light transmitted through a liquid crystal layer using an electric field generated in response to a video signal and applied to the liquid crystal layer. Because the liquid crystal display is a thin, small-sized flat panel display device with low power consumption, the liquid crystal display has been used in personal computers such as notebook PCs, office automation equipment, audio/video equipment, and the like. In particular, because an active matrix type liquid crystal display includes a switching element in each liquid crystal cell that is actively controlled, the active matrix type liquid crystal display is advantageous in displaying a moving picture. A thin film transistor (TFT) has been mainly used as the switching element of the active matrix type liquid crystal display.
In general, an active matrix type liquid crystal display converts digital video data into an analog data voltage based on a gamma reference voltage. As shown in FIG. 1, the analog data voltage is then applied to a data line DL while a scan pulse is applied to a gate line GL. The scan pulse activates a thin film transistor TFT connected thereto, thereby charging a liquid crystal cell Clc with the data voltage on the data line DL. The thin film transistor TFT includes a gate electrode connected to the gate line GL, a source connected to the data line DL, and a drain electrode commonly connected to a pixel electrode of the liquid crystal cell Clc and one electrode of a storage capacitor Cst. A common voltage Vcom is applied to a common electrode of the liquid crystal cell Clc. When the scan pulse is applied to the gate line GL, the thin film transistor TFT is turned on, and a channel is formed between the source and drain electrodes of the thin film transistor TFT. Hence, a voltage on the data line DL is supplied to the pixel electrode of the liquid crystal cell Clc. Additionally, when the thin film transistor TFT is turned on, the storage capacitor Cst is charged with the data voltage applied through the data line DL, thereby keeping the voltage level of the liquid crystal cell Clc constant. The orientation of liquid crystal molecules in the liquid crystal cell Clc changes due to an electric field generated between the pixel electrode and the common electrode, thereby changing the incident light. Because the liquid crystal display is generally a light receiving element (i.e., liquid crystals do not generate light), the liquid crystal display adjusts luminance of the screen using light produced by a backlight unit formed in the rear of a liquid crystal display panel.
Recently, a touch screen panel attached to the liquid crystal display has been proposed. The touch screen panel generally attached on the liquid crystal display is a user interface that detects changes in electrical characteristics at a touch position where an opaque object, such as a finger or a pen, contacts the touch screen panel. When a user's finger or a touch pen contacts the screen of the touch screen panel of the liquid crystal display, a display device detects the information of the touch position and uses the information for various applications.
However, the touch screen panel of the liquid crystal display generally increases the manufacturing cost of the liquid crystal display, may reduce the manufacturing yield due to the added process of attaching the touch screen panel to the liquid crystal display, may reduce brightness of the liquid crystal display, increases the thickness of the liquid crystal display, and the like.
To solve the above-described problems, rather than attaching a touch screen panel, an in-cell touch panel type liquid crystal display has been proposed. An in-cell touch panel type liquid crystal display includes a touch sensor circuit including a sensor thin film transistor (TFT) formed inside the liquid crystal cell Clc of the liquid crystal display. As shown in FIG. 2, the touch sensor circuit includes a sensor TFT that changes a light current “i” depending on changes in the amount of external light coming into the panel, a sensor capacitor Cst2 that stores a charge generated by the light current “i,” and a switching TFT that switches on and off an output of the charge stored in the sensor capacitor Cst2. A bias voltage Vbias is supplied to a gate electrode of the sensor TFT and is set at a voltage level equal to or smaller than a threshold voltage of the gate electrode of the sensor TFT.
In the touch sensor circuit shown in FIG. 2, the light current (i) of a sensor TFT in a touch area is larger than the light current of a sensor TFT in a non-touch area when the outside environment is darker than the backlight (e.g., indoors). On the other hand, the light current (i) of a sensor TFT in a touch area is smaller than the light current of a sensor TFT in a non-touch area when the outside environment is brighter than the backlight (e.g., outdoors). In either circumstance, a light sensing signal produced in the touch area is different than a light sensing signal in the non-touch area. Accordingly, the liquid crystal display detects the touch position information based on the light sensing signals of the touch sensor circuit.
Because the related art in-cell touch panel type liquid crystal display detects the touch position based on only a relative difference between the light currents flowing in the sensor TFTs, detection of whether or not the liquid crystal display panel is actually touched cannot be determined accurately. For example, FIG. 3A shows that if the user's fingers approach the liquid crystal display without touching the liquid crystal display in a strong illuminance environment (e.g., outdoor environment), the related art in-cell touch panel type liquid crystal display may not be able distinguish from an actual touch condition shown in FIG. 3B. This reduces the sensing accuracy, thereby causing a maloperation of the liquid crystal display. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of Invention
The invention relates to a light emitting module and, in particular, to a light emitting module having LEDs serving as light sources.
2. Related Art
A light emitting diode (LED) is a light emitting element made of semiconductor materials. When an extremely low voltage is applied across two electrode terminals of the LED, the redundant energy may be excited in the form of light according to the combination of electrons and holes.
Different from the typical incandescent light bulb, the LED pertains to the cold light emitting element and has the advantages of low power consumption, long lifetime, needlessness of the warm-up time and quick response speed. In addition, the LED has small size, can withstand vibration, is adapted to the mass production, and is adapted to the formation of the extremely small or array-type module according to the requirement of the application. Accordingly, the LED may be widely applied to indicators, advertising space and display devices of information, communication and consumer electronic products, and thus becomes the indispensable element in the daily life. Recently, the LED is further applied to a light source of the backlight module of a liquid crystal display (LCD) so as to gradually replace the conventional cold cathode fluorescent lamp (CCFL) to serve as the light source.
FIG. 1 is a schematic illustration showing a conventional side-edge backlight module 1. Referring to FIG. 1, the side-edge backlight module 1 includes a frame body 11, a plurality of LEDs 12, a circuit board 13, a light shield 14, a light guide plate 15 and a reflective sheet 16. The frame body 11 is a hollow rectangular frame body. The LEDs 12 are disposed on the circuit board 13, the circuit board 13 is vertically disposed in the light shield 14, and the light shield 14 is screwed to a lateral side of the frame body 11.
Referring to FIG. 2, the LED 12 has a chip 121, a lead frame 122 and a plastic housing 123. The chip 121 is disposed on the lead frame 122, and the plastic housing 123 covers one portion of the lead frame 122 with a lead L being exposed. The lead L of the LED 12 is adhered to the circuit board 13 by a conductive adhesive. The light outputted from the chip 121 is reflected to the plastic housing 123 by an inner wall of the plastic housing and a reflective layer on a surface of the lead frame 122.
The LEDs 12 are arranged in a row and disposed toward a light input surface 151 of the light guide plate 15. When the light rays outputted from the LEDs 12 enter the light guide plate 15 through the light input surface 151, the light rays are totally reflected inside the light guide plate 15 so as to achieve light mixing. When the light rays pass through printed dots on a bottom surface of the light guide plate 15, the light rays are scattered and the total reflection of the light rays is terminated. Thus, a portion of the light is refracted out of a light output surface 152 of the light guide plate 15, and then a plane light source can be formed.
However, when the side-edge backlight module 1 is being assembled, it is very difficult to align the LEDs 12 with the light input surface 151 of the light guide plate 15 because the sizes of the LEDs 12 are quite small and the height h of the light input surface 151 of the light guide plate 15 is also quite small. If the misalignment occurs, the light rays outputted from the LED 12 may not enter the light guide plate 15 so that the light emitting efficiency of the side-edge backlight module 1 is deteriorated. Furthermore, the light guide plate 15 is usually made of expensive resin, and the light guide plate 15 is formed by way of injection molding, so the cost of the side-edge backlight module 1 is also increased.
Furthermore, the light is mostly emitted from the bottom surface of the chip 121, and the reflective layer for reflecting the light is coated on the surface of the lead frame 122. Thus, most of the light can be emitted in a direction toward the top surface of the LED 12. However, the light availability is unavoidably decreased when the light is emitted out through the reflective layer so that the light emitting efficiency of the LED is decreased.
Therefore, it is an important subject to provide a light emitting module for solving the above-mentioned problems. | {
"pile_set_name": "USPTO Backgrounds"
} |
Devices for intravaginally capturing and storing bodily fluid are commercially available and known in the literature. Intravaginal tampons for feminine hygiene are the most common example of such devices. Commercially available tampons are generally compressed cylindrical masses of absorbent fibers that may be contained by an absorbent or nonabsorbent cover layer.
The tampon is inserted into the human vagina and retained there for a time for the purpose of capturing and storing intravaginal bodily fluids, most commonly menstrual fluid. As intravaginal bodily fluid contacts the tampon, it should be absorbed and retained by the absorbent material of the tampon. After a time, the tampon and its retained fluid is removed and disposed, and if necessary, another tampon is inserted.
A drawback often encountered with commercially available tampons is the tendency toward premature failure, which may be defined as bodily fluid leakage from the vagina while the tampon is in place and before the tampon is completely saturated with the bodily fluid. The patent art typically describes a problem believed to occur that an unexpanded, compressed tampon is unable to immediately absorb fluid. Therefore, it presumes that premature leakage may occur when bodily fluid contacts a portion of the compressed tampon, and the fluid is not readily absorbed.
One way to prevent premature leakage from occurring is to provide designed pathways for fluid moving along the outer tampon surface. While this increase to the pathways may improve the fluid absorption, adding grooves during the manufacturing process can raise process issues. The prior art is replete with examples of attempts to incorporate grooves into tampons. Often new steps are added to an already complicated manufacturing process or the process is not fully described.
Friese et al., EP 0422660 B2, discloses an apparatus for producing a tampon with longitudinal grooves. The apparatus for making the tampon includes two groups of dies arranged in a plane perpendicular to the press axis. The first group of dies form press segments and the second group of dies form sliding plates. Each of the dies has press cutters projecting from the faces. The blank is pressed into a preform having a core with high compression and longitudinal ribs separated by grooves. The dies do not include a surface for forming shoulders.
Schoelling, US 2002-0151859 A1, discloses an apparatus for producing tampons having spirally shaped, pressed longitudinal grooves. The apparatus has press jaws of substantially equal dimensions which are arranged in a star formation with respect to the press axis. The jaws can be moved synchronously between open and closed positions. Each press jaw has a stepped pressing surface including a pressing blade and a pressing shoulder. The area of the pressing shoulder is great than the area of the pressing blade. The pressing blade and pressing shoulder can extend over a circumferential angle α of between 80 to 150° in the closed or pressing position. The press jaws are slightly retracted to give clearance when the preform is ejected from the press.
Van Ingelgem et al., EP 1547555 B1 purports to disclose an apparatus for manufacturing tampons with at least three press jaws, each press jaw having a penetrating segment for penetrating the absorbent material and pressing shoulder. The median of the penetrating segment diverges from the radius of that penetrating segment when in the press. The median of the penetrating segment is the straight line drawn in a cross section of the penetrating segment, through its tip and the midpoint of its base. One press jaw may comprise either a penetrating segment or a pressing shoulder, or a combination of one penetrating segment and pressing shoulders arranged at either or both sides of the penetrating segment. If the penetrating segment and pressing shoulders are fixed to separate press jaws, it is preferably that they press simultaneously. The press jaws, in particular, the penetrating segments can have a straight, sinusoidal, spiral or helical shape in the longitudinal direction to form essentially straight, sinusoidal, spiral, or helical grooves in the axial direction of the tampon. The resultant tampon has at least three ribs, in transverse cross-section, has a median at least partially diverging from the radius where the median of the rib is the line drawn through the midpoint of a series of arc lines, bound by the edges of the rib, wherein the arcs have a common center which is the midpoint of the X-X cross-section of the tampon.
Schmidt, EP 1459720 B1, purports to disclose increasing the surface area of a tampon by utilizing grooves that are formed in a wave shape. While multiple examples are shown, including wavy grooves with angled points, this publication does not disclose specifics on how to manufacture the tampons. In particular, the publication does not include specifics about compression, the press jaws or how the preform or tampon is ejected from the press.
Ruhlmann, WO 2009/129910 A1, purports to disclose a tampon having at least one first surface groove and at least one second surface groove that crosses the first surface groove along their path between a proximal end and a distal end of the tampon. However, the disclosure fails to teach how the crossing grooves are formed, especially in a commercially-feasible manufacturing process and/or with a cover.
Fung, US 2011-0092940 A1, discloses an intravaginal tampon formed of compressed material and has an outer surface with at least two segmented grooves are formed therein, and each segmented groove is separated from and spaced at a distance from an adjacent segmented groove. Each segmented groove has at least one substantially longitudinal segment and at least one accumulator segment. The arrangement of the segments provides a pooling region to impede bodily fluid flow along the outer surface of the tampon.
While the above examples describe tampons with grooves or the process for making such tampon, these tampons do not have visually distinct zones with different bodily fluid handling characteristics. In addition, the processes do not show how to make such a unique intravaginal tampon. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to devices for the insertion of catheter guidewires into blood vessels. A guidewire is inserted so that a catheter, which is coaxially engaged along the guidewire, can be slidably inserted into the blood vessel. The guidewire is then withdrawn, and the catheter is ready for further positioning and use. It is imperative that guidewires be inserted without contamination of the sterile field to avoid unnecessary infection of the patient.
Guidewires are generally comprised of a coiled spring guide with a distal tip and one or more wires running longitudinally within the spring. Such guidewire constructions are disclosed in U.S. Pat. Nos. 4,003,369 and 4,676,249. Catheters are generally hollow, flexible tubes used to convey liquids or other instruments to a desired location in the body.
Existing systems for guidewire insertion suffer from continued problems arising from the lack of ease in manipulation and the exposure during insertion to a non-sterile environment. Normally, a guidewire is removed completely from its package prior to use, is wound in the physicians hand and inserted through a needle extending into the patient's artery, or through a cannula into some other body cavity. Three or more hands are required to hold the needle stationary while the "J" guidewire is pulled through a straightener, then pushed through the port in the needle. The inadvertant extension of the guidewire prior to insertion and the awkwardness of manipulation during insertion leads to contamination of the sterile field and the patient's blood stream. It is also desirable that the physician or operator be able to tactilely sense the progress of the guidewire tip during insertion to insure better control. | {
"pile_set_name": "USPTO Backgrounds"
} |
Automation of the work and leisure environment has been a concept that has been long pursued. Despite the continued pursuit, widespread automated control has been limited.
In non-residential buildings, whether it is for or non-profit, academic, governmental, social, etc., owners and tenants face challenges similar to those in the residential market. Non-residential energy consumers can employ highly sophisticated systems for controlling their heating, ventilation, and air conditioning (“HVAC”), as well as for access control and information technology. Otherwise, these consumers are also generally limited to the use of programmable thermostats and motion controlled lighting.
These unmanaged, distributed control systems provide little to no visibility into energy consumption patterns. The lack of visibility makes it difficult to modify or tailor consumption patterns to reduce the energy consumed or the cost of the energy being consumed. Furthermore, participation in utility based conservation programs, such as demand-response programs, is typically limited to those residential and non-residential facilities that can operate with periodic interruptions of their air conditioning systems.
Improved automation solutions are required that overcome the various limitations associated with prior art solutions to enable high quality, cost effective, and scalable automation solutions for buildings. | {
"pile_set_name": "USPTO Backgrounds"
} |
A suitable self-healing tire puncture sealant must withstand wintertime temperatures to which tires are subjected when standing idle. Such a sealant must also withstand the high temperatures to which tires are heated under summertime driving conditions. These temperatures typically range from -20.degree. F to 270.degree. F. A suitable tire sealant must be capable of sealing punctures when the puncturing object is retained in the tread and also when the puncturing object is removed. Thus, a tire sealant must be capable of adhering to the puncturing object as it works against a flexing tire during travel and must be capable of adhering to itself to seal the puncture after removal of the puncturing object. In addition, the sealant must remain effective for an extended period of time. These conditions require a combination of flexibility, tackiness and strength that are among the most demanding required of any sealant composition. Finally, a suitable tire sealant must be susceptible to economical formulation and application.
Because butyl rubber exhibits low air permeability and high resistance to aging, the prior art has attempted to utilize butyl rubber as a basic compound of sealants. Exemplary of such prior art are U.S. Pat. Nos. 2,756,801; 2,765,018, and 2,782,829. The sealant compositions described in such prior art, however, are inadequate at the temperature extremes to which automatic tires are subjected considering the requirements that such sealant compositions must be resistant to creep and must be self healing. | {
"pile_set_name": "USPTO Backgrounds"
} |
Everolimus (40-O-(2-hydroxy)ethyl-rapamycin) (FIG. 1) is a synthetic derivative of sirolimus (rapamycin) that was originally isolated from Streptomyces hydroscopicus. Everolimus belongs to the class of mTOR (i.e., mammalian target of rapamycin) inhibitors and is primarily used as an immunosuppressant to prevent rejection of organ transplants and for treatment of several types of cancer including gastric cancer, renal cancer, and lymphomas.
Known methods for the synthesis of everolimus are based on alkylation of the C40-hydroxyl group of rapamycin with protected 2-hydroxyethyl fluoroalkylsulfonate 1 and subsequent removal of the protecting group from the resulting compound 2 in order to obtain everolimus (FIG. 2). The most commonly used alkylation reagent in this reaction scheme is 2-((t-butyl-dimethylsilyl)oxy)ethyl trifluoromethanesulfonate (1a in FIG. 3). Compound 1a is usually obtained by means of a rather complex two-step synthesis scheme starting from ethylene glycol (FIG. 3) Due to its high instability it has to be used immediately after preparation.
The pharmacological activity of everolimus as well as a method for its manufacture was initially described in WO 94/09010 A1. Here, synthesis is accomplished by reacting rapamicyn with 4 equivalents of 2-((t-butyldimethylsilyl)oxy)ethyl trifluoromethanesulfonate in toluene at 60° C. using 2,6-lutidine as a base in order to obtain 40-O-[2-(t-butyldimethylsilyl) oxy]ethyl-rapamycin. The product is purified by chromatography and deprotected using 1N HCl in methanol. The resulting crude everolimus is then again purified by chromatography. However, the overall yield of final product, as described in WO 2012/103959 A1, is only at about 17%.
The use of a t-butyldiphenylsilyl protective group was suggested by Moenius and coworkers (Moenius, T. et al. (2000) J. Labelled Cpd. Radiopharm. 43, 113-120 (2000)) with regard to the synthesis of tritiated everolimus. The process employs 2-(t-butyldiphenylsilyl)oxyethyl triflate in a mixture of toluene-dimethoxyethane at 50° C. using N,N-diisopropylethylamine as a base. However, the overall yield of everolimus obtained after subsequent deprotection was also very low.
WO 2012/066502 A1 discloses the synthesis of everolimus by reacting rapamycin with an excess of 4-8 equivalents of 2-(t-butyldimethylsilyl)oxyethyl triflate, using dichloromethane, ethyl acetate or toluene as a solvent and 2,6-lutidine as a base, followed by deprotection of the obtained t-butyldimethylsilyl-everolimus derivative. An overall yield of final product of about 45% was obtained by performing the reaction in dichloromethane and using 8 equivalents of alkylator.
The method disclosed in WO 2012/103959 A1 relates to the alkylation of rapamycin with the more stable 2-(t-hexyldimethylsilyl)oxyethyl triflate. The reaction is carried out at 70° C. with 4 equivalents of 2-(t-hexyldimethylsilyl)oxyethyl triflate in a mixture of toluene-dimethoxyethane and using N,N-diisopropylethylamine as a base. Further deprotection of the silyl group with 1N HCl in methanol results in the formation of everolimus in slightly improved overall yield (about 52%) as compared to previous methods.
However, the method of WO 2012/103959 A1 is hampered by the complicated preparation of the starting 2-(t-hexyldimethylsilyl)oxyethyl triflate. It requires purification of the product of the first reaction step, 2-((2,3-dimethylbut-2-yl)dimethylsilyloxy) ethanol, by fractional vacuum distillation, performing the second reaction step at low temperatures (−30° C.), and the requirement of an additional purification of the crude 2-(t-hexyldimethylsilyl)oxyethyl triflate. Furthermore, the method has to be performed at high temperature (70° C., cf. above), which greatly increases the probability of undesirable side reactions and of impurities being present in the crude product. Hence, chromatography purification of protected everolimus derivative is required as additional step before the purified product can be subjected to the deprotection step.
WO 2014/203185 A1 discloses the use of sterically hindered amines as bases in the synthesis of everolimus comprising reacting rapamicyn with a compound 1 (cf. FIG. 2) and removal of the protection group to obtain everolimus. The use of amines, such as N,N-diisopropylpentane-3-amine, diisopropylnonane-5-amine and N,N-diisobutyl-2,4-dimethyl-pentan-3-amine, as a base during the alkylation of rapamycin increases the stability of the alkylator 1, which results in an improved yield of everolimus. An overall yield of crude everolimus of about 67% was obtained when performing the reaction in toluene at 40° C. and using 2.5 equivalents of 2-(t-butyldiphenylsilyl)oxyethyl triflate and N,N-diisopropylpentane-3-amine as bases. However, the starting material 2-((t-butyldiphenylsilyl)oxy)ethanol that is to be employed for the preparation of the triflate compound as well as any of the above mentioned sterically hindered amines are not commercially available and difficult to prepare, which is a major drawback of this process.
Hence, there is still an ongoing need for improved methods for the synthesis of everolimus that overcome the limitations of the established synthesis routes.
In particular, there is a need for a less laborious and cost-efficient method for the preparation of 2-(tri-substituted silyl)oxyethyl triflate, thus also improving the overall yield of the synthesis of everolimus, starting from rapamycin, while minimizing the formation of undesired by-products.
Accordingly, it is an object of the present invention to provide an improved method for the synthesis of everolimus. | {
"pile_set_name": "USPTO Backgrounds"
} |
It is known to form timepieces with increased frequency in order to improve resolution. However, these timepieces may be very shock sensitive or high energy consumers, which prevents them from becoming common.
It is therefore clear that it is easier to manufacture a calibre by mounting a low frequency oscillator, typically 4 Hz, to display the time and another high frequency oscillator, typically 10 or 50 Hz, which is independent from the first, to display a measured time with improved resolution. However, after several seconds, it is observed that the seconds display of the two oscillators is no longer the same, which may make the quality of the timepiece appear dubious. | {
"pile_set_name": "USPTO Backgrounds"
} |
Hand grips on golf clubs and other objects have a circumference which is grasped in a user's hand. Typically, the circumferential surface is at least in part rounded or curved, and may also include flat areas.
Gripping the grip tightly enough should prevent movement of the grip longitudinally along a long axis and/or circumferentially around the axis. The grip surface should be comfortable for the person holding the grip. Further, it would be beneficial for the grip surface to enable removal of moisture, oil, perspiration, etc. from the person's hand when holding the grip, and have a surface which allows the grip to be held with the least amount of hand pressure.
There are various designs of hand grips, of which golf grips are an example, which are designed to accomplish at least some of these functions. Some grips have a smooth surface, which is difficult to hold when force is applied to the grip or to the object including the grip, including force applied either around the axis of the grip, that is torsional force, or force applied longitudinally along the axis. A smooth grip must be held more tightly than a roughened grip, thus compromising the performance of a golf club or like products. The surface of the grip may be roughened, for example due to the inherent roughness of a particular material used or due to some treatment of the grip surface. As another example, ribs or grooves may be formed at spaced intervals on the grip and may be oriented either circumferentially, longitudinally, obliquely or spirally on the grip; and parallel, oblique to each other or intersecting; or in combinations of all of these. There may be molded or otherwise formed protrusions as shown in U.S. Pat. No. 6,800,234 and U.S. Application Publication No. 2003/0088946A1.
Arranging elements on the grip to resist slippage in the longitudinal direction may provide good feel and drag circumferentially, but not longitudinally. Arranging the elements circumferentially may provide good feel and drag longitudinally, but not circumferentially.
An objective of the designer of a grip surface is to have the grip create a “drag” on the gripping hand, so that when the grip is securely gripped, and torsion is thereafter applied to the grip by use of the object to which the grip is attached, as occurs when a golf club is swung and a golf ball is hit for example, the drag resists the torsion and also prevents the grip from slipping from the hand along the axis direction. With light gripping hand pressure (which is made possible by the invention), a golfer will yield the best performance of the golf club and improve his game. People also like a “velvety” feel on the grip, which provides a comfortable feel, not too slick and not too coarse or rough, which restricts how a grip surface is to be formed for achieving desirable drag.
The majority of golf grips currently being sold are buffed grips. This means that they have a surface that has been sanded. This buffed grip provides a velvety feel to the user. However, particularly when a rubber material grip is sanded, the sealed surface skin of the rubber of the grip is removed and the pores of the rubber are exposed to air, sweat, and oil from the hands. The grip actually absorbs elements from the environment and from the hand, eventually making the originally velvety feel grip later feel hard or slick, and the velvety feel is lost. In most cases, by the time a golf club is purchased from a retailer and a golfer has begun playing with it, the grip has lost most of its velvety feel before it first goes into play. If a purchaser wants a velvety feel of the grip at least when he purchases the clubs, the loss of the velvety feel of the grip of one club can negatively impact the sale of the golf club and even of a set of golf clubs. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to truck caps, such as those found on conventional pickup trucks, and more particularly to a detachable kit which enables one person to easily and efficiently remove such a truck cap from over a truck bed and reinstall same.
2. Description of the Prior Art
So called "truck caps" are an often purchased accessory for a conventional pickup truck. When installed they convert the bed of a pickup truck into a reasonably weather secure compartment.
However, due to their large and unwieldy size, mounting and dismounting a truck cap from the bed of a truck can prove to be a time consuming and difficult operation, particularly if attempted by one person.
U.S. Pat. No. 3,897,100 to Gardner relates to a pickup truck cap which is mounted to the sidewalls of the cargo body by a system of rails in order that it may slide back and forth on the cargo body, antifriction means in the form of rollers being disposed within the sliding rails.
U.S. Pat. No. 3,773,380 to Stockdill relates to a pickup truck cargo cover having channel-shaped rails which slidingly engage a pair T-shaped tracks which are secured to the side walls of the truck body.
U.S. Pat. No. 3,883,020 to Dehn relates to a framework adapted to be loaded and unloaded from the bed of a pickup truck, the framework having rollers on its leading edge which contact the truck bed, intermediate legs provided with wheels aft of the leading edge and rigid legs provided at the trailing edge of the framework. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a valve prosthesis for implantation in body channels, more particularly but not only to, cardiac valve prosthesis to be implanted by a transcutaneous catheterization technique.
The valve prosthesis can be also applied to other body channels provided with native valves, such as veins or in organs (liver, intestine, urethra . . . ).
The present invention also relates to a method for implanting a valve prosthesis, such as the valve according to the present invention.
Implantable valves, which will be indifferently designated hereafter as “IV”, “valve prosthesis” or “prosthetic valve”, permits the reparation of a valvular defect by a less invasive technique in place of the usual surgical valve implantation which, in the case of valvular heart diseases, requires thoracotomy and extracorporeal circulation. A particular use for the IV concerns patients who cannot be operated on because of an associated disease or because of very old age or also patients who could be operated on but only at a very high risk.
Although the IV of the present invention and the process for implanting said IV can be used in various heart valve diseases, the following description will first concern the aortic orifice in aortic stenosis, more particularly in its degenerative form in elderly patients.
Aortic stenosis is a disease of the aortic valve in the left ventricle of the heart. The aortic valvular orifice is normally capable of opening during systole up to 4 to 6 cm2, therefore allowing free ejection of the ventricular blood volume into the aorta. This aortic valvular orifice can become tightly stenosed, and therefore the blood cannot anymore be freely ejected from the left ventricle. In fact, only a reduced amount of blood can be ejected by the left ventricle which has to markedly increase the intra-cavitary pressure to force the stenosed aortic orifice. In such aortic diseases, the patients can have syncope, chest pain, and mainly difficulty in breathing. The evolution of such a disease is disastrous when symptoms of cardiac failure appear, since 50% of the patients die in the year following the first symptoms of the disease.
The only commonly available treatment is the replacement of the stenosed aortic valve by a prosthetic valve via surgery: this treatment moreover providing excellent results. If surgery is impossible to perform, i.e., if the patient is deemed inoperable or operable only at a too high surgical risk, an alternative possibility is to dilate the valve with a balloon catheter to enlarge the aortic orifice. Unfortunately, a good result is obtained only in about half of the cases and there is a high restenosis rate, i.e., about 80% after one year.
Aortic stenosis is a very common disease in people above seventy years old and occurs more and more frequently as the subject gets older. As evidenced, the present tendency of the general evolution of the population is becoming older and older. Also, it can be evaluated, as a crude estimation, that about 30 to 50% of the subjects who are older than 80 years and have a tight aortic stenosis, either cannot be operated on for aortic valve replacement with a reasonable surgical risk or even cannot be considered at all for surgery.
It can be estimated that, about 30 to 40 persons out of a million per year, could benefit from an implantable aortic valve positioned by a catheterization technique. Until now, the implantation of a valve prosthesis for the treatment of aortic stenosis is considered unrealistic to perform since it is deemed difficult to superpose another valve such an implantable valve on the distorted stenosed native valve without excising the latter.
From 1985, the technique of aortic valvuloplasty with a balloon catheter has been introduced for the treatment of subjects in whom surgery cannot be performed at all or which could be performed only with a prohibitive surgical risk. Despite the considerable deformation of the stenosed aortic valve, commonly with marked calcification, it is often possible to enlarge significantly the aortic orifice by balloon inflation, a procedure which is considered as low risk.
However, this technique has been abandoned by most physicians because of the very high restenosis rate which occurs in about 80% of the patients within 10 to 12 months. Indeed, immediately after deflation of the balloon, a strong recoil phenomenon often produces a loss of half or even two thirds of the opening area obtained by the inflated balloon. For instance, inflation of a 20 mm diameter balloon in a stenosed aortic orifice of 0.5 cm2 area gives, when forcefully and fully inflated, an opening area equal to the cross sectional area of the maximally inflated balloon, i.e., about 3 cm2. However, measurements performed a few minutes after deflation and removal of the balloon have only an area around 1 cm2 to 1.2 cm2. This is due to the considerable recoil of the fibrous tissue of the diseased valve. The drawback in this procedure has also been clearly shown on fresh post mortem specimens.
However, it is important to note that whereas the natural normal aortic valve is able to open with an orifice of about 5 to 6 cm2 and to accommodate a blood flow of more that 15 l/min. during heavy exercise for instance, an opening area of about 1.5 to 2 cm2 can accept a 6 to 8 l/min blood flow without a significant pressure gradient. Such a flow corresponds to the cardiac output of the elderly subject with limited physical activity.
Therefore, an IV would not have to produce a large opening of the aortic orifice since an opening about 2 cm2 would be sufficient in most subjects, in particular in elderly subjects, whose cardiac output probably does not reach more than 6 to 8 l/min. during normal physical activity. For instance, the surgically implanted mechanical valves have an opening area which is far from the natural valve opening that ranges from 2 to 2.5 cm2, mainly because of the room taken by the large circular structure supporting the valvular part of the device.
The prior art describes examples of cardiac valves prosthesis that are aimed at being implanted without surgical intervention by way of catheterization. For instance, U.S. Pat. No. 5,411,552 describes a collapsible valve able to be introduced in the body in a compressed presentation and expanded in the right position by balloon inflation.
Such valves, with a semi-lunar leaflet design, tend to imitate the natural valve. However, this type of design is inherently fragile, and such structures are not strong enough to be used in the case of aortic stenosis because of the strong recoil that will distort this weak structure and because they would not be able to resist the balloon inflation performed to position the implantable valve. Furthermore, this valvular structure is attached to a metallic frame of thin wires that will not be able to be tightly secured against the valve annulus. The metallic frame of this implantable valve is made of thin wires like in stents, which are implanted in vessels after balloon dilatation. Such a light stent structure is too weak to allow the implantable valve to be forcefully embedded into the aortic annulus. Moreover, there is a high risk of massive regurgitation (during the diastolic phase) through the spaces between the frame wires which is another prohibitive risk that would make this implantable valve impossible to use in clinical practice.
Furthermore, an important point in view of the development of the IV is that it is possible to maximally inflate a balloon placed inside the compressed implantable valve to expand it and insert it in the stenosed aortic valve up to about 20 to 23 mm in diameter. At the time of maximum balloon inflation, the balloon is absolutely stiff and cylindrical without any waist. At that moment, the implantable valve is squeezed and crushed between the strong aortic annulus and the rigid balloon with the risk of causing irreversible damage to the valvular structure of the implantable valve. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an optical recording medium, and more particularly, to an optical recording medium of a single plate type comprising a recording layer composed of a dye, having a high reflectivity, capable of recording a large volume of information to a process for producing the medium.
2. Description of the Related Art
Writable optical recording mediums of a single plate type playable by a commercially available compact disc (hereinafter called "CD") which comprises a recording layer composed of a dye, a metal reflective layer overlying the recording layer for enhancing reflectivity and a protective layer overlying the reflective layer are proposed, for example, in Optical Data Storage 1989 Technical Digest Series Vol. 1, 45 (1989), and EP-353393.
In these optical recording mediums, a protective layer is provided on a reflective layer in order to protect a recording layer and the reflective layer. As the protective layer, a hard resin, so-called "hard coat", is usually used to prevent the damage to the recording layer and the reflective layer.
Further, additional functions of the protective layer are the prevention of peeling of the recording layer and the reflective layer, inhibition of oxidative deterioration of the recording layer and the reflective layer, and thereby serving to improve the durability. Therefore, the adhesion between the protective layer and the reflective layer is required to be strong.
However, in the case of a medium using a dye in a recording layer, the recording layer is usually formed by spin-coating. An optical disc substrate has a groove, and when a recording layer is formed by spin-coating, the recording layer is formed on the whole surface of the substrate ranging from the further inside of the groove at the inner peripheral portion of the substrate to the outermost edge of the substrate.
Taking into consideration the adhesion between the protective layer and the reflective layer, it is demanded to remove the recording layer at the inner peripheral and outer peripheral portions of the substrate and form a protective layer extending over the peripheries of the recording layer and the reflective layer as proposed by Japanese Patent Application Laid-Open Nos. Hei 2-183442 and 2-236833.
In order to form the protective layer extending over both the recording layer and the reflective layer as shown, for example, in FIG. 4, it is necessary to provide a portion where the substrate is exposed at each of the inside of the innermost periphery and the outside of the outermost periphery (outermost edge) of the recording layer.
For the purpose of forming such a structure, heretofore, the recording layer formed at each of the outer and the inner peripheral portions has been removed. For example, the recording layer at the outer peripheral portion of the substrate can be easily removed by dropping a solvent to the peripheral portion while rotating the substrate.
On the contrary, the recording layer at the inner peripheral portion can not be removed by the same method as that used for removing the recording layer at the outer peripheral portion, but is removed only by, for example, wiping the recording layer away with a solvent or burning the recording layer with laser as disclosed in Japanese Patent Application Laid-Open No. Hei 2-183442.
However, according to the present inventors' investigation, those methods are complicated and of less productivity, and the recording layer can not be completely removed. And we have found that the adhesion of the protective layer is not sufficient, and therefore when the medium is allowed to stand under high temperature and high humidity conditions for a long period of time, the peeling strength at the inner peripheral portion is poor so that peeling occurs at the inner peripheral portion.
Alternatively, a recording layer at the inner peripheral portion can be removed as shown in Japanese Patent Application Laid-Open No. Hei 2-236833. That is, a reflective layer is formed on a recording layer in such a way that the recording layer protrudes from the inner and the outer edges of the reflective layer and the recording layer protruding the inner and outer edges of the reflective layer is washed away with a solvent.
We have found that, according to this method, when the reflective layer is washed with a solvent, it is damaged and thereby, the reflective layer is peeled off and noise of the resulting medium increases, because the reflective layer is a very thin metal film.
This method is also includes a complicated solvent washing step and further, the productivity is poor.
The present inventors have variously researched so as to develop a method for producing easily and at a high productivity an optical recording medium of a single plate type such that the adhesion of a protective layer to a reflective layer is excellent and no peeling occurs at the inner peripheral portion and the outer peripheral portion when subjected to a tape peeling test after the medium is stood under high temperature and high humidity conditions for a long period of time.
The present inventors have noticed an important fact that the remaining stress at the protective layer etc. is different depending on the positions of the layer, that is, the inner peripheral portion and the outer peripheral portion, and the remaining stress at the inner peripheral portion is much samller than that at the outer peripheral portion. The present inventors have found that the above-mentioned disadvantages can be solved by (1) forming a reflective layer extending over the recording layer and further forming a protective layer extending over the reflective layer at the outer peripheral portion of the substrate and (2) forming a protective layer extending over both the recording layer and the reflective layer at the inner peripheral portion, that is, it is not necessary that the reflective layer extends over the recording layer at the inner peripheral portion as shown in FIG. 3. | {
"pile_set_name": "USPTO Backgrounds"
} |
A number of methods exist for introducing exogenous genetic material to cells, which methods have been used for a wide variety of applications including, for example, research uses to study gene function, and ex vivo or in vivo genetic modification for therapeutic purposes. Ex vivo genetic modification involves the removal of specific cells from an animal, including humans, introduction of the exogenous genetic material, and then re-introduction of the genetically modified cells into the animal. By contrast, in vivo genetic modification involves the introduction of genetic material directly to the animal, including humans, using an appropriate delivery vehicle, where it is taken up by the target cells.
Generally, the various methods used to introduce nucleic acids into cells have as a goal the efficient uptake and expression of foreign genes. In particular, the delivery of exogenous nucleic acids in humans and/or various commercially important animals will ultimately permit the prevention, amelioration and cure of many important diseases and the development of animals with commercially important characteristics. The exogenous genetic material, either DNA or RNA, may provide a functional gene which, when expressed, produces a protein lacking in the cell or produced in insufficient amounts, or may provide an antisense DNA or RNA or ribozyme to interfere with a cellular function in, e.g., a virus-infected cell or a cancer cell, thereby providing an effective therapeutic for a disease state.
Engineered viruses are commonly used to deliver genes to cells. Viral vectors are generally efficient in gene delivery but have certain drawbacks, for example stimulation of an immune response when delivered in vivo. As a result, therefore, a number of non-viral nucleic acid delivery systems have been and continue to be developed. Thus, for example, cationic lipids are commonly used for mediating nucleic acid delivery to cells. See, for example, U.S. Pat. No. 5,264,618, which describes techniques for using lipid carriers, including the preparation of liposomes and pharmaceutical compositions and the use of such compositions in clinical situations. Other non-viral gene delivery systems likewise involve positively-charged carrier molecules, for example, peptides such as poly-L-lysine, polyhistidine, polyarginine, or synthetic polymers such as polyethylimine and polyvinylpyrrolidone.
Nucleic acids are generally large polyanionic molecules which, therefore, bind cationic lipids and other positively-charged carriers through charge interactions. It is believed that the positively charged carriers (or polycations), form tight complexes with the nucleic acid, thereby condensing it and protecting it from nuclease degradation. In addition, polycationic carriers may act to mediate transfection by improving association with negatively-charged cellular membranes by giving the complexes a positive charge, and/or enhancing transport from the cytoplasm to the nucleus where DNA may be transcribed.
For cationic lipid-mediated delivery, the cationic lipids typically are mixed with a non-cationic lipid, usually a neutral lipid, and allowed to form stable liposomes, which liposomes are then mixed with the nucleic acid to be delivered. The liposomes may be large unilamellar vesicles (LUVs), multilamellar vesicles (MLVs) or small unilamellar vesicles (SUVs). The liposomes are mixed with nucleic acid in solution, at concentrations and ratios optimized for the target cells to be transfected, to form cationic lipid-nucleic acid transfection complexes. Alterations in the lipid formulation allow preferential delivery of nucleic acids to particular tissues in vivo. See PCT patent application numbers WO 96/40962 and WO 96/40963.
With respect to any of the polycationic nucleic acid carriers, transfection efficiency is highly dependent on the characteristics of the polycation/nucleic acid complex. The nature of the complex that yields optimal transfection efficiency depends upon the mode of delivery, e.g. ex vivo or in vivo; for in vivo delivery, the route of administration, e.g., intravenous, intramuscular, intraperitoneal, inhalation, etc.; the target cell type, etc. Depending on the use, therefore, different carriers will be preferred. In addition to the choice of polycationic carrier, transfection efficiency will depend on certain physical characteristics of the complexes as well, such as charge and size. These characteristics depend largely on the method by which the complexes are prepared. Particularly for human therapeutic purposes, therefore, it is desirable to have a method of forming the nucleic acid/polycationic carrier complexes in a highly controllable manner. Further, it is desirable to have a process for preparing the complexes which is highly reproducible and scaleable.
The present invention provides these and related advantages as well. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention generally relates to a connector, and particularly relates to an optical-electric connector which can selectively mate with an electric plug or an optical fiber plug.
2. Description of Prior Arts
U.S. Pat. No. 6,238,249 discloses an optical-electric connector comprising: an optical-electric converter, which receives and transmits an optical signal from/to the optical plug when the optical plug is connected to the optical-electric connector; a first terminal extending from the converter and adapted to be fixed onto a surface of a printed board for receiving and transmitting an electric signal; a second terminal adapted to be fixed onto the surface of the printed board for receiving and transmitting an electric signal from/to the electric plug when the electric plug is connected to the optical-electric connector; a retainer holding the converter and the first and second terminals; and a plurality of ribs projecting from a peripheral portion of the retainer.
The second terminal of the optical-electric connector disclosed in the above-mentioned patent commonly has an elastic contacting arm for contact with the electric plug. Since the elastic contacting arm is subjected to an elastic deformation each time when the plug is inserted or withdrawn, a repeated insertion or withdrawal of the plug will result in a fatigue of the terminal, and causes a poor contact between the terminal and the plug.
Hence, it is desirable to have an optical-electric connector with an improved resilient contact to overcome the above-mentioned disadvantages of the prior art. | {
"pile_set_name": "USPTO Backgrounds"
} |
Products offered for sale by online merchants may have a variety of attributes. For example, a certain style of shoe may be offered in multiple sizes and widths. Thus, each combination of size and width for the shoe style may correspond to a distinct inventory item for a merchant. Some products, such as, for example, handbags, may be offered in only a single size and may correspond to a single inventory item. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
Printing of wall surfaces and ceiling panels is well known. Obtaining a variety of effects involving several colors as well as a plethora of geometric shapes or decorative patterns is not new. The idea of embossing to obtain the geometrical shapes or decorative patterns followed by a complex process of using differently colored ink plates to provide coating of the valley areas of the embossed product or painstakingly decorating the valley areas of the embossed product has not achieved any significant commercial success. Furthermore, these processes provide non-precise coating of the valleys or, in the case of decorating, provide a process that is difficult to control and, with materials such as woven or non-woven fabrics, is almost impossible to perform.
2. Prior Art
Valley printing, as stated in "Plastics Machinery & Equipment," November 1973, is the application of inks to the tips of an embossing roll to produce three-dimensional fabrics with a wide range of colorful visual effects. The equipment used involves an embossing section, a metering system and a heat source to make the fabric receptive to the embossing. Ink is metered to the embossing roll where it is deposited on the tips of the roll. As the roll comes in contact with the fabric, the ink is delivered to the valleys on the embossed fabric. The ability to meter ink is the heart of the valley printer. If there is too much ink, the valley becomes "flooded"; if there is too little, the pattern appears "washed out". If the valley printer involves three or more colors, the metering problems are multiplied.
U.S. Pat. Nos. 3,399,101, 3,850,095, and 4,135,024 are representative of the complicated methods and equipment used to accomplish valley printing. U.S. Pat. No. 3,399,101 utilizes a unique construction of plastic sheeting wherein the embossing on a concealed surface is printed or decorated but remains visible through the sheet. U.S. Pat. No. 3,850,095 employs a deeply engraved embossing roll and hot melt inks to emboss a fiber carpet while color decorating in the valley areas and sealing the embossed areas in place. U.S. Pat. No. 4,135,024 provides a method of simultaneously strengthening and decorating a low-integrity dry-formed non-woven fibrous web to impart a valley print decorative effect.
Sublimation transfer printing, as described starting on page 240 of "An Introduction to Textile Printing", Clarke, 4th Edition, 1974, is a process pioneered in 1969, often described as "dry dyeing". The process involves the use of dyes, usually disperse dyes which will sublime at temperatures below those which will damage the fabric with which the dyes are in contact. The fabric is one for which the disperse dyes have an affinity. Specifically, all that is required is a supply of suitably printed sublimation transfer paper, a supply of fabric and a heat transfer press. The paper, with its printed surface in contact with the fabric, is placed between the surfaces of the heat transfer press. The press head, at about 400.degree. F. for polyester fabric, is lowered and held for a sufficient time to transfer the dye to the surface of the fabric. | {
"pile_set_name": "USPTO Backgrounds"
} |
Compound A is represented by the following structure
[2R,3S,4R,5R)-5-(6-(cyclopentylamino)-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl)] methyl nitrate,
Compound A is a selective adenosine A1 receptor agonist and is of particular use in the treatment of elevated intra-ocular pressure as described in PCT/US2010/033112 (published as WO2010/127210).
Compound A can be prepared using the procedures described in U.S. Pat. No. 7,423,144, US 20090062314, and WO2010/127210 all of which are herein incorporated by reference in their entirety.
Many pharmaceutical solids can exist in different physical forms. Polymorphism can be characterized as the ability of a drug substance to exist in two or more crystalline phases that have different arrangements and/or conformations of the molecules in the crystal lattice.
Polymorphs of a pharmaceutical solid can have different physical and solid state chemical properties. The most stable polymorphic form of a drug substance is often used because it has the lowest potential for conversion from one polymorphic form to another.
A particular crystalline form of a compound can have physical properties that differ from those of other polymorphic forms and such properties can influence the physico-chemical and pharmaceutical processing of the compound, particularly when the compound is prepared or used on a commercial scale. Such differences may alter the mechanical handling properties of the compound, such as dispersion in a blend of solid formulation excipients or within a suspension formulation. Polymorphs are also known in some cases to have different chemical stability profiles and different solubility of the solid material. As a result of these potential polymorph-specific physiochemical differences, the discovery of new polymorphic forms provides a new opportunity to improve the manufacturing or characteristics of a pharmaceutical end product.
Further, new polymorphic forms of a drug substance can display different melting point, hygroscopicity, stability, solubility and/or dissolution rate, crystallinity, crystal properties, and formulation handling characteristics, which are among the numerous properties that need to be considered in preparing medicament that can be effectively administered, they can materially impact the quality of a pharmaceutical product. Furthermore, regulatory agencies require a definitive knowledge, characterization and control of the polymorphic form of the active component in pharmaceutical dosage forms if it is in the solid state.
Compound A is under development by the Applicants for reducing intraocular pressure. The Applicants have found a number of polymorphs of Compound A that are useful for controlling certain desirable formulation properties. In particular two anhydrous forms have been identified, isolated and characterized. | {
"pile_set_name": "USPTO Backgrounds"
} |
In a wireless mobile communications system, a power amplifier is a key component that determines a lifetime of a battery in a mobile terminal, e.g., a conventional CDMA mobile handset. Thus, the power amplifier is required to be of a high efficiency characteristic in order to increase the lifetime of the battery. Since the power added efficiency of the conventional power amplifier is highest when an output power thereof is at its highest level, it lowers as the output power backs off at the highest level, e.g., 30 dBm. However, the conventional power amplifier usually operates at a relatively low output power ranging from, e.g., −15 to 15 dBm. Therefore, there have been proposed various schemes capable of improving the power added efficiency of the power amplifier at such low output power range, by way of increasing a quiescent current when an output power is high and decreasing the quiescent current when the output power is low.
Such methods include a technique for controlling VCC (DC supply) or VB (base bias voltage) of a bias circuit, and a dual bias control technique for controlling both VCC and VB. All of these techniques adopt a DC-to-DC converter, which requires a DSP (digital signal processor), or an RF (radio frequency) coupler together with an envelope detector for the control thereof, specifically the RF coupler together with the envelope detector being adopted in case the control is implemented in an RF range.
The technique for controlling VCC mentioned above is directed to reduce DC power consumption when the power amplifier is in the low output power mode. To be specific, VCC is reduced in the low output power mode but increased in the high output power mode by using the DC-to-DC converter to thereby improve the efficiency of the power amplifier.
The technique for controlling VB mentioned above accomplishes the power added efficiency improvement by way of adopting the DC-to-DC converter to control VB. To be more specific, in the low output power mode, the DC-to-DC converter reduces the bias current and thus, decreases the DC power consumption, while, in the high output power mode, the DC-to-DC converter increases the bias current.
The dual bias control technique increases the power added efficiency of the power amplifier by simultaneously controlling both VCC and VB in a manner described above.
All of the above-mentioned conventional techniques adopt the DC-to-DC converter to control the DC power consumption depending on the output power mode of the power amplifier. These conventional techniques, however, have a drawback in that it is very difficult to install such components as the RF coupler/envelope detector and the DC-to-DC converter within a highly miniaturized module of power amplifier having a size of, e.g., 6×6 mm2. Thus, it may be desired to develop a method for increasing the power added efficiency of the power amplifier when the output power is low as well as maintaining a high linearity of the power amplifier when the output power is high without an additional component such as the DC-to-DC converter. | {
"pile_set_name": "USPTO Backgrounds"
} |
The concept of resolved motion for controlling an articulated arm is known and has been practiced for some time.
U.S. Pat. No. 5,062,755 issued Nov. 5, 1991 to Lawrence et al discloses a preferred system of resolved motion control wherein the velocity in any given direction (regardless of the position of the end point, i.e., radius of the end point) is dependent on the amount of displacement of the manual controller in that direction so that the movement of the manual controller in the direction of intended movement of the end point results in movement of the end point in that direction. The disclosure of this patent is incorporated herein by reference.
It will be apparent that controlling the movement of the end point in this manner is extremely helpful and facilitates accurate movement of the end point under the control of the operator. It will also be apparent that at the very extremities of arm movement, i.e. near a singularity, it may be impossible for the end point to move along a desired path at the desired speed, however for practical purposes throughout substantially the whole workspace of the arm, i.e. positions of the end point within a predefined workspace (that normally will include substantially the whole workspace), controls may be implemented so that movement of the controller (joystick) in a given direction results in movement of the end point in that given direction at a velocity corresponding to the amount of displacement of the controller or joystick.
It will be apparent that to ensure movement of the end point in the direction of movement of the joystick requires that the same displacement of the joystick or hand controller in any one of the x, y or z directions generates the same speed of the end point in the corresponding x, y or z direction. Thus the maximum speed of the end point is then set by the maximum speed achievable in the work space by the slowest component of movement of the end point in the work space in which the control is to so operate. Reducing the size of the work space in which the above relationship applies so that the end point does not approach singularities or other areas where velocity is severely restricted (e.g. when the endpoint approaches the z axis the velocity of the end point in the y direction approaches zero) results in the maximum cartesian velocity in slowest direction being increased.
In some cases it may be also desirable to operate in one or more directions at a speed such that it would be impossible to maintain the direction and speed relationship between joystick or hand controller movement and end point movement. For example, it may be desirable to swing the arm at a relatively fast rate without movement of the joystick precisely corresponding to the direction (and speed) of movement of end point, i.e. permitting maximum speed of the end point to be based on the physical capability of the arm and its actuators for the particular location and desired direction of movement where movements of the end point need not be precisely controlled, but prior to the present invention no such means has been available. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field
The present invention relates to food products. More particularly, the present invention relates to food products containing fish oils characterized by enhanced flavor stability.
2. Background Art
A great deal of attention has recently been focused on the various health benefits apparently associated with consumption of fish oil. Health benefits appear to be related to the presence of high levels of the n-3 family of polyunsaturated fatty acids. Oils containing such materials, such as fish oils, are referred to as "omega-3" oils and desirably contain high levels of n-3 fatty acids, especially eicosapentaenoic acid ("EPA") and docosahexaenoic acid ("DHA"). Such fatty acids are called "omega-3" since the first double bond occurs in the third carbon bond counting from the end or omega position of the fatty acid.
Notwithstanding the present interest in the health benefits of fish oil consumption, nonhydrogenated fish oil generally to date has not been widely used per se or as an ingredient in processed food products for use by humans due to notorious and severe problems in odor and flavor. However, gelatin capsules containing fish oil are available. Additionally, salmon oil has been added to canned salmon. Also, certain canned meat products have been marketed in Japan which have had refined fish oil added as a fortifier.
Hydrogenated fish oils are much more stable due to the decrease in the degree of polyunsaturation and are widely used in Europe for margarine. Hydrogenated fish oils have also been used in Scandinavian countries in other consumer products, e.g., cakes. Hydrogenation is also effective in reducing odor and flavor that develops in deodorized oil. However, hydrogenation by decreasing polyunsaturation including the n-3 fatty acid component correspondingly decreases the health value of fish oil. Accordingly, it would be desirable to realize a nonhydrogenated fish oil or food products containing such nonhydrogenated fish oils, but nonetheless of increased stability.
The principal approach taken in the art to utilize nonhydrogenated fish oil has been to employ fish oils of enhanced stability. Two broad approaches have been taken in the art to realize nonhydrogenated fish oils of enhanced stability. The first approach involves giving attention to the processing of the oil to achieve a cleaner, finished oil product. Particular attention has been given to the deodorization step in order to realize cleaner finished fish oil products.
In the second approach, the art has attempted to find adjuvants which can be added to finished fish oil to provide desired additional stability. For example, while the phenomenon of fishy flavor dvelopment is not completely understood, it is known, however, that oxidative rancidity is a contributing factor. Addition of known antioxidants, singly as well as commercial mixtures, some allegedly synergistic, does result in some increase in stability. However, the unstability of nonhydrogenated fish oils is so great, that even addition of such materials at maximum legally permitted levels provide only modest increases in stability.
Given the severe difficulties in realizing a suitable fish oil ingredient, it is understandable that comparatively little developmental effort has been made to formulating processed food products containing fish oil.
The prior art also includes U.S. Pat. No. 4,357,362 (issued Nov. 2, 1982 to David Barker). This patent discloses a pet food composition including fish flesh of reduced fishy odor by subjecting the composition in a sealed container, to sterilizing heat in the presence of a reducing agent. However, several disadvantages exist with this approach. First, the primary advantage is a fish odor reduction which is not necessarily directly related to the problems of fish oil flavor degradation. Second, the reduction in aroma is most likely due to the heat treatment in a sealed container. It is undesirable for many foods to be subjected to such severe heat treatment. Third, fish flesh or fish proteinaceous material, an essential ingredient of these pet foods, is known to have a material effect on oil stability. However, many food products, e.g., mayonnaise cannot contain fish flesh, yet could beneficially include fish oil were oil stability nonetheless obtained. Also, the product is less susceptible to oxidative rancidity since it is sealed. Finally, a wide variety of organic and inorganic reducing agents are taught as useful although reducing sugars are preferred.
Given the state of the art with regard to fish oil stabilization, there is a continuing need for the development of new and improved fish oil compositions and processed food products containing fish oil of improved stability.
Accordingly, it is an object of the present invention to provide nonhydrogenated fish oil and food products containing nonhydrogenated fish oils which nonetheless exhibit improved stability against degradation in both flavor and odor.
It is another object of the present invention to provide food products of enhanced stability which do not require heat sterilization.
Another object of the present invention is to provide food products containing fish oil which do not require fish meat.
Still another object of the present invention is to provide food products containing fish oil of enhanced stability against flavor degradation.
It has been most surprisingly discovered that the above objectives can be realized, that long-standing problems associated with employment of fish oils in processed foods have been addressed and food products containing fish oils can be prepared by incorporation of modest amounts of fructose. Surprisingly, fructose alone among sugars and other materials appears to be unexpectedly superior in providing the desired stabilization benefits. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to electrical sockets, and particularly to an electrical socket having terminals with resilient mating beams.
2. Description of the Prior Art
With the trend toward miniaturization in computer technology, land grid array (LGA) electrical sockets are becoming smaller and smaller. The LGA socket mainly comprises an insulative housing and a multiplicity of terminals. Due to the small size of the terminals, mating beams thereof are easily damaged because of large stress produced therein when the terminals are engaged with electrodes of a complementary electronic package such as a central processing unit (CPU). Several solutions have been developed to overcome this problem. One solution is disclosed in U.S. Pat. Nos. 6,315,576 and 6,290,507. The structure of the terminals is modified so as to obtain optimal electrical and mechanical performance of the mating beams of the terminals. Another solution is disclosed in U.S. Pat. Nos. 6,186,797 and 6,132,220. The arrangement of the terminals with respect to a base of an insulative housing of the socket is modified. In an electrical socket as disclosed in U.S. Pat. No. 6,186,797, a base plate of the socket defines an array of terminal holes arranged in a lattice-like array for receiving corresponding terminals therein. Respective rows of the terminal holes are oriented at a same angle, preferably 45 degrees, with respect to sides of the base plate. In this way, not only is miniaturization of the pitch of adjacent terminals enhanced, but also the performance of the terminals is improved. However, the terminals cannot be fitted into the lattice-shaped terminal holes of the base plate simultaneously, due to the limitations of existing manufacturing technology for the terminals. Thus assembly of the terminals is unduly complicated. Furthermore, in forming the terminal holes oriented at 45 degrees, core pins of the base plate mold also need to be oriented at 45 degrees. This complicates formation of the base plate mold.
Therefore, it would be very beneficial to provide an electrical socket having terminals which reliably electrically connect with electrodes of an electronic package, and which allows easy assembly of the terminals into terminal holes of the electrical socket. | {
"pile_set_name": "USPTO Backgrounds"
} |
Recent developments in magnetic resonance tomography (MRT) and [nuclear] magnetic resonance (NMR) spectroscopy using polarized noble gases have many applications in medicine, physics, and in the physical sciences. Noble gas nuclei may be polarized by optical pumping using alkali metal atoms, as described by Happer et al in Phys. Rev. A, 29, 3092 (1984).
The concept of optical pumping encompasses the method developed by Kastler, in which the occupation numbers of specific energy states are significantly increased with respect to the equilibrium state by irradiation of light into matter. By use of optical pumping, the relative occupation numbers of energy levels in atoms, ions, molecules, and solids may be changed, and ordered states may be produced. The occupation density of the optically pumped state differs markedly from the thermal occupation probability of the state according to the Boltzmann distribution. By optical pumping of Zeeman levels it is possible, for example, to achieve a parallel configuration of the magnetic moments of the electrons or atomic nuclei.
In practice, the alkali metal atom rubidium is typically used in the presence of the noble gases helium and nitrogen. In this manner it is known to achieve a nuclear spin polarization of approximately 20% for 129Xe, for example. Such a nuclear spin polarization is approximately 100,000 times larger than the equilibrium polarization in clinical magnetic resonance tomography at 1 T and 300 K. The associated drastic increase in the signal-to-noise ratio is the reason that new application options are in demand in medicine, science, and technology.
The term “polarization” is understood to mean the degree of alignment (ordering) of the spins of atomic nuclei, electrons, or photons. For example, 100% polarization means that all nuclei or electrons are identically oriented. A magnetic moment is associated with the polarization of nuclei or electrons.
Hyperpolarization refers to a polarization level of nuclear or electron spins that is greater than the degree of thermal polarization of the spins in a given magnetic field at room temperature.
Hyperpolarized noble gases are used as contrasting agents or for NMR spectroscopy. For example, hyperpolarized 129Xe is inhaled by or injected into a person. The polarized xenon accumulates in the brain 10 to 15 seconds later. The distribution of the noble gas in the brain is determined by use of magnetic resonance tomography, and the results are used for further analyses.
The selection of the noble gas depends on the particular application. 129Xe has a large chemical shift. When xenon is adsorbed onto a surface, for example, the resonance frequency of the xenon is significantly altered. In addition, xenon is soluble in lipophilic liquids. Xenon is used when such characteristics are desired.
The noble gas helium has very low solubility in liquids. Therefore, the isotope 3He is routinely used when cavities are involved. The human lung represents an example of such a cavity.
Some noble gases have valuable properties other than those stated above. For example, the isotopes 83Kr, 21Ne, and 131Xe have a quadrupole moment that is of interest, for example, for experiments in basic research or surface physics. However, these noble gases are very costly, which makes them unsuitable for applications that use large quantities.
It is known from Driehuys et al (Appl. Phys. Lett. (1996), 69, 1668) to polarize noble gases in a polarizer in the following manner.
Starting with a gas supply, a gas stream composed of a mixture of 129Xe, 4He, and N2 in an Rb container is enriched with Rb vapor and passed through a pump cell. Circularly polarized light, i.e., light in which the angular momentum or the photon spin is aligned in the same direction, is provided by a laser. In the pump cell the Rb atoms as a pumpable species are optically pumped longitudinally with respect to a magnetic field by means of the laser beam (λ˜795 nm, Rb D1 line), thereby polarizing the electron spins of the Rb atoms. The angular momentum of the photons is transferred to free electrons of alkali metal atoms. The spins of the electrons of the alkali metal atoms thus have a large deviation from thermal equilibrium. The alkali metal atoms are consequently polarized. Collision of an alkali metal atom with a noble gas atom causes the polarization of the electron spin to be transferred from the alkali metal atom to the noble gas atom, resulting in a nuclear spin-polarized noble gas. The polarization of the electron spin of the alkali metal atoms produced by the optical pumping of alkali atoms is thus transferred from alkali electrons to the nuclear spin of the noble gases by spin exchange, as first demonstrated by Bouchiat on the Rb/3He system.
From WO 1999/008766 it is known to use, in addition to a first optically pumpable alkali metal, an auxiliary alkali metal as a second polarizable species. The optically pumped alkali metal species transfers the electron spin polarization to the auxiliary alkali metal, thereby more effectively and rapidly transferring the alkali polarization to the noble gas nuclei, for example 3He.
Alkali metal atoms are used because they have a large optical dipole moment that interacts with the light. The alkali metal atom also has one free electron, thus preventing disadvantageous interactions from occurring between two or more electrons per atom.
Cesium, which is superior to rubidium for achieving the above-referenced effects, might be considered as a well-suited alkali metal atom. However, lasers matched to the optical wavelength of Cs and having sufficient power necessary for polarization of xenon by cesium are not prevalent on the market, compared to the corresponding lasers for Rb.
In order to utilize as many photons as possible in the use of broadband high-power semiconductor lasers, pressures of several atmospheres are used in the optical pumping of noble gases. Thus, the optical pumping of alkali metal atoms differs, depending on the type of the noble gas to be polarized.
For polarization of 129Xe, a gas mixture under a pressure of approximately 7 to 10 bar is continuously or semicontinuously passed through a cylindrical glass cell. The gas mixture is composed of 94% 4He, 5% nitrogen, and 1% xenon. The flow rate of the gas mixture is typically 1 cm per second.
Hyperpolarized nuclear and electron spins relax more or less rapidly as a function of their environment. A distinction is made between the longitudinal T1 relaxation time (T1 time for short), referred to as spin lattice relaxation of adjacent spins, and the transverse T2 relaxation time, referred to as spin-spin relaxation.
In the case of polarization of 3He, the pressure required in the polarizer is produced by the 3He itself since the electron spin relaxation rate of Rb—3He collisions is small. This is not is the case for spin exchange pumping of Rb—129Xe, for which reason the pressure is produced by an additional buffer gas such as 4He. Various requirements are imposed on the polarizer as the result of the differing relaxation and spin exchange rates.
Thus, for 3He the nuclear spin polarization build-up times are in the range of hours. However, since the rubidium spin decomposition rate for rubidium-3He collisions is also relatively small, in this case high 3He pressures (>5 bar) may be used.
For 129Xe, on the other hand, the nuclear spin polarization build-up times are between 20 and 40 seconds on account of the larger effective spin exchange cross-sectional area. Due to the very large rubidium electron spin relaxation rate for rubidium-xenon collisions, during the optical spin exchange pumping the xenon partial pressure can only slightly exceed 100 mbar in order to maintain a sufficiently high rubidium polarization. For this reason, in such polarizers 4He is used as a buffer gas for line broadening.
The polarizer may be designed as a flow polarizer for polarizing 129Xe, for example, or may be provided with a sealed sample cell for 3He, for example.
In a flow polarizer, the gas mixture initially flows through a vessel, referred to hereinafter as a “supply vessel,” in which a certain quantity of Rb is present. The supply vessel containing the rubidium together with the connected glass cell is heated to approximately 100 to 170 degrees Celsius. At these temperatures the rubidium is vaporized. The concentration of the vaporized rubidium atoms in the gaseous phase is determined by the temperature in the supply vessel. The gas stream transports the vaporized rubidium atoms from the supply vessel into a cylindrical sample cell, for example. A laser that provides a high-power, circularly polarized light and having a power rating of approximately 50-100 watts continuously irradiates the sample cell in an axial direction, i.e., in the direction of flow, and optically pumps the rubidium atoms in a highly polarized state. The wavelength of the laser must be matched to the optical absorption line of the rubidium atoms (D1 line).
In other words, in order to optimally transfer the polarization of light to an alkali metal atom, the frequency of the light must match the resonance frequency of the optical transition.
The sample cell is located in a static magnetic field Bo of approximately 10 gauss, which is generated by coils, in particular by a Helmholtz coil pair. The direction of the magnetic field extends parallel to the cylindrical axis of the sample cell, i.e., parallel to the beam direction of the laser. The magnetic field is used to guide the polarized atoms. The rubidium atoms that are optically highly polarized by the laser light collide in the glass cell with the xenon atoms, among other species, and transfer their polarization to the xenon atoms.
At the outlet of the sample cell, the rubidium deposits on the wall due to its high melting point compared to the melting points of the other gases. The polarized xenon or the residual gas mixture is conveyed from the sample cell into a freezer unit, which is composed of a glass flask immersed at one end in liquid nitrogen. The glass flask is also situated in a magnetic field having an intensity of >1000 gauss. The highly polarized xenon gas deposits as ice on the inner glass wall of the freezer unit.
The flow rate in the entire system may be controlled via a needle valve and measured with a measuring instrument.
If the increase in the flow rate is excessive, there is not enough time to transfer the polarization from the rubidium atoms to the xenon atoms, resulting in low polarization. If the flow rate is too low, too much time elapses until the desired quantity of highly polarized xenon is frozen. The polarization of the xenon atoms therefore decreases as the result of relaxation in the Xe ice. The relaxation of the xenon atoms is greatly retarded by freezing, as well as by a strong magnetic field to which the freezer unit is exposed. Therefore, after the polarization the noble gas xenon must be frozen as rapidly as possible with minimization of loss. Although the relaxation cannot be completely prevented by freezing, at 77 K there is a period of approximately 1 to 2 hours before the xenon polarization has decreased so greatly that the initially highly polarized gas can no longer be used.
A certain amount of energy is required to polarize a single free alkali metal atom. The required energy corresponds to the resonance frequency for elevating the free electron of the alkali metal atom from a ground state to an excited state. In order to optimally transfer the energy from a laser to the alkali metal atom, the frequency of the light from the laser must be matched to the resonance frequency of the alkali metal atom. Some lasers emit light within a specific frequency spectrum. Thus, a distribution of frequencies, not a single frequency, is involved. The available spectrum of a laser is characterized by the line width. For cost-effective polarization of alkali metal atoms, broadband semiconductor lasers are provided whose frequency and line width are matched to the resonance frequency, i.e., the optical line width, of the alkali metal atom.
To enable better transfer of the energy from a laser to alkali metal atoms, collision partners are provided for the alkali metal atoms during the polarization. 4He atoms in particular are used as collision partners. The optical line width of an alkali metal atom is broadened as a result of the interaction, i.e., the collisions, with the helium atoms. The broader this atomic spectrum, the greater the spectral width, and therefore the lower the cost, of the lasers that can be used.
The number of collisions between an alkali metal atom and a collision partner such as 4He increases with increasing pressure. For 4He, for example, the broadening of the optical line width of the alkali metal atom is proportional to the pressure of the helium gas. In addition, 4He has the valuable characteristic that it has a minimal destructive influence on the polarization of the alkali metal atoms. For the polarization of 129Xe, therefore, a gas mixture is routinely used that is composed of 94% 4He and has a pressure of approximately 10 bar.
The laser known from the prior art, having a power of 100 watts for the hyperpolarization of Rb electrons, is a glass fiber-coupled diode laser having a typical spectral width of 2 to 4 nanometers. At a gas pressure of 10 bar, the line width of the optical transition of rubidium atoms is broadened to approximately 0.3 nanometers. Thus, in the present rubidium-xenon polarization, in which high-power diode lasers are used for optical pumping which typically have a line width of 2 nanometers, only a fraction of the laser light is utilized.
The partial pressure of 4He in the gas mixture is less than or equal to 10 bar. This is very high compared to the other partial pressures (xenon and nitrogen). As a result, polarized alkali metal or noble gas atoms rarely reach the inner wall of the glass cell, where they lose their polarization due to interaction with the paramagnetic centers, for example. Thus, with increasing partial pressure of the 4He, the lower the probability that polarized atoms disadvantageously collide with the inner wall of the cell.
A polarized alkali metal atom such as rubidium, for example, is able to generate fluorescent radiation. When such radiation is intercepted by another polarized alkali metal atom, this capture results in depolarization of the alkali metal atom. The nitrogen used in the gas mixture for the polarization of noble gases is used to hinder the fluorescent light and thus the capture of radiation. The element nitrogen in the gas mixture, the same as for xenon, has a low partial pressure. This partial pressure is typically approximately 0.1 bar.
For heavy noble gas atoms such as xenon atoms, collision with the alkali metal atoms causes intense relaxation of the polarization of the alkali metal atoms. To keep the polarization of the alkali metal atoms as high as possible during optical pumping, the partial pressure of the xenon gas in the gas mixture must be correspondingly low. Even for a xenon partial pressure of 0.1 bar in the gas mixture, a laser power of approximately 100 watts is required to achieve approximately 70% polarization of the alkali metal atoms in the entire sample volume.
According to the prior art, a gas volume of appropriate composition is injected into a cylindrical sample cell. The light from the laser that produces the polarization is absorbed in the sample cell. The pump beam irradiates the sample cell in the direction of flow of the mixture, which includes the optically pumpable species and the atomic nuclei to be hyperpolarized, parallel to the magnetic field.
In contrast, it is known from US 2002/0107439 A1 to irradiate the sample cell with laser light in counterflow to the flowing mixture.
In biological systems, short longitudinal T1 times of the noble gas nuclei in the blood, as well as the low solubility in aqueous solutions, severely limit the use of hyperpolarized noble gases. For example, for medical applications it has not been possible thus far to transport 129Xe with sufficient polarization density into the brain, since the T1 times in the blood are short (˜10 s), and the transport technology for this purpose is very complex or has not been developed at all. The same applies for the other noble gases under discussion.
DE 102 38 637 A1 describes a method for producing nuclear spin-polarized liquids. A polarized Li atomic beam is generated by optical pumping or by use of a Stern-Gerlach apparatus, and is directed onto the liquid.
However, it is disadvantageous that the maximum achievable density of lithium atoms in the atomic beam is only 1013 cm−3. In addition, the method functions only at low pressures <10−3 mbar. This greatly limits the total number of polarized Li atoms or ions that are produced (<1015).
For use of hyperpolarized 6Li and also 7Li in the life sciences and material sciences, the production and storage of large quantities of approximately 1019 hyperpolarized Li+ ions or Li atoms is desirable. | {
"pile_set_name": "USPTO Backgrounds"
} |
The starting materials for producing bone cement, namely a pulverulent polymer and a liquid monomer, must be mixed directly before the introduction of the bone cement into the bone. This mixing procedure must therefore be carried out in the operating theatre under sterile conditions.
Different devices have been disclosed for this purpose, a common feature of these being that a mixing cylinder, in which the pulverulent polymer and the liquid monomer are mixed, serves immediately thereafter as a discharging cylinder or cartridge from which the ready-mixed bone cement is pressed out and brought to the application site.
A vacuum is normally generated in the mixing cylinder, either during the mixing procedure or directly thereafter, in order to reduce, at least to a substantial extent, the formation of pores in the bone cement.
In a known device of the generic type mentioned in the introduction (DE 43 02 230 A1), incorporated herein by reference, the starting materials, namely powder and liquid, must be introduced into the mixing cylinder prior to the mixing procedure, and only then is the mixing cylinder closed. By activating the mixing plunger by means of the actuation rod, the materials in the mixing cylinder are thoroughly mixed, during which the discharging plunger is held securely at the cylinder end. When the mixing procedure has been completed, the discharging plunger is released and is pressed as a press plunger into the mixing cylinder. The mixed bone cement is discharged at the opposite cylinder end. In the case where liquid and in particular powder are poured in freely, there is the risk of this material getting into the surrounding environment and leading to contamination, which is undesirable especially under operating conditions. Of particular concern in this respect is the possibility that the powder may lead to dust developing while it is being poured in, and that the liquid monomer may emit vapours. For this reason, it is necessary to pour the starting materials into the mixing cylinder as far away as possible from the operation site. | {
"pile_set_name": "USPTO Backgrounds"
} |
Alarm systems are often used to warn users of potentially dangerous conditions. For example, an alarm system for a residential structure (e.g., a house, apartment, or condominium) can include an alarm system that warns the structure's occupants of hazards such as smoke, fire, and security breaches (e.g., intrusions or burglaries). An alarm system can provide auditory and/or visual warnings, for instance by emitting a warning sound (e.g., using a siren, horn, bell, or speaker), and/or displaying a visual warning (e.g., using a flashing strobe light). To increase the likelihood that a user will be adequately warned in the event of a hazardous situation, alarm systems can be tested periodically to verify that they are functioning as intended. | {
"pile_set_name": "USPTO Backgrounds"
} |
In the technological field of connecting electrical plug connectors, plug-in connector systems are known in principle from practice. DE 10 2006 054 647 A1 discloses, for example, an electrical plug connector coupling in which a plug connector coupling comprises two plug housings that can be coupled to one another. The two plug housings are interlocked by means of a latch connection. For this purpose, latching lugs are formed on the first plug housing and corresponding latching tongues are formed on the second plug housing. To unplug the first plug housing from the second plug housing, the latching tongue must be pivoted out of the second plug housing in a direction perpendicular to the unplugging direction of the first plug housing. The unplugging process is therefore laborious.
Another plug-in connector system is known from DE 10 2010017 262 A1. Here, the connector plug attached to the main housing is locked by means of a locking device that can be attached from above to the main housing and the connector plug. A disadvantage of this system is the large overall height produced by the attachable locking device. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an operating method and an apparatus thereof. In particular, this invention provides an operating method for a large dimension plasma enhanced atomic layer deposition cavity and an apparatus thereof.
2. Description of the Related Art
Currently, the SiO2 layer in the gate port for thin-film-transistors (TFTs) is formed by the plasma enhanced CVD method or the thermal CVD method. While plate displays have become larger, the manufacturing temperature and the number of transistors used have both decreased, and the SiO2 layer in the gate port has become thinner. However, the required driving voltage for the SiO2 layer has risen and some problems have consequently come to the fore, such as high leakage current and lower element reliability. A high dielectric material atomic layer thin film made by the plasma enhanced atomic layer deposition (PEALD) uses a nano-thickness layer to cover a large dimension substrate. The plasma enhanced atomic layer deposition controls the high dielectric material nano-thin-film deposition with low manufacturing temperature, low pollution and precise atomic thickness. Due to the development of high efficiency materials and low voltage element structures, organic light emitting diodes (OLEDs) focus on the electrode interface. The buffer layer is made of material with several atomic layers of thickness. The thin-film is deposited by the atomic layer deposition method.
The plasma enhanced atomic layer deposition adopts a continuous bi-chemical reaction. The deposition of a chemical precursor will be self-limiting. Next, the ligand excision and the surface activation are processed by utilizing an ionic group and/or an atomic group produced from the plasma. At the first semi-reaction, the gaseous chemical precursor reacts with the surface functional group. The reaction is processed continuously until all of the surface functional group has been reacted and replaced. This is the self-limiting characteristic of the atomic layer deposition. The free radical of the ionic group and the atomic group coming from the plasma forms vaporizable particles and excises the surface ligand to reserve the desired deposition surface layer. When the free radicals of the atomic group make the surface activate, the ionic effect make the deposition thin film tighten and crystallize. So, the plasma enhanced atomic layer deposition has a faster reaction speed and a faster vaporized product excision than the atomic layer deposition (ALD) at a lower temperature.
Because the first semi-reaction is self-limiting, an atomic layer deposition formed at every cycle is expected if the ionic group and the atomic group do not suffer from deposition reaction product etching. In the micro electronic manufacturing process, the plasma enhanced atomic layer deposition is extensively applied to deposit high dielectric gate oxidation layer material, inert refractory metal, diffusion barrier, and seed and metal nitrides of adhesion layers.
The principle of the atomic layer deposition is to expose the substrate's surface that deposits a thin film to a plurality of precursors replacing each other in cycle and purging gas. The deposition speed of the thin film is determined by the replacement period. In a unit time, the greater the replacement speed, the greater the deposition speed. In order to increase the switching speed of the plurality of precursors in a large dimension plasma enhanced atomic layer deposition apparatus, the gas distributing pipes for the plurality of precursors and purge gas are installed in the large dimension cavity. Furthermore, the high speed valve of each gas distributing pipe is installed near the cavity. Therefore, the plasma enhanced atomic layer deposition apparatus can switch the precursors in high speed to speed up the thin film deposition speed. Because the plasma needs to be operated in a specified pressure to absorb the RF power effectively and transfer the gas into plasma, it is necessary to control the pressure in the large dimension plasma enhanced atomic layer deposition cavity. The quantity of the precursors needs to be reduced and the gas-flow of the exhaust pipe increases in a short time to draw out the gas that does not completely react quickly. The throttle valve of the prior art that is used to control the pressure cannot increase or decrease the gas-flow of the exhaust pipe in a timely manner.
U.S. Pat. No. 6,428,859, “Sequential method for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD)”, belongs to Angstron Systems. Their method uses a showerhead partition to separate the plasma cavity and the manufacturing cavity. The precursor gas that needs to be ionized is introduced into the plasma cavity, is ionized by the plasma, is drawn out by a vacuum pump via the showerhead, and then spreads to the substrate's surface in the manufacturing cavity. The precursor gas that does not need to be ionized is introduced into the manufacturing cavity directly and reacts with the substrate's surface. Because the precursor gas needs to spread out over the plasma cavity and fill the manufacturing cavity so that a reaction occurs on the substrate's surface, the time required for spreading gas into the cavity becomes longer when the substrate's dimensions and the volume of the cavity increases.
T.W. patent 563,176, “A gas transmitting apparatus for atomic layer deposition” belongs to Applied Material. Their apparatus uses a manufacturing cavity of small volume to make the precursor gas quickly spread to the manufacturing cavity full.
T.W. patent 578,212, “Atomic layer deposition reactor” belongs to ASM. It adopts a thermal cracking and plasma enhanced method for the atomic layer deposition apparatus. According to the plasma source, the plasma enhanced is classified into a capacitor couple plasma source and a inductor couple plasma source. Each plasma source is classified into a far side plasma source and a near side plasma source depending upon whether the substrate is dipped into the plasma or not. However, every cavity has only one inlet extending from one side of the cavity to another side of the cavity. When the volume of the cavity increases, the time needed for spreading gas into the cavity full becomes longer and lowers the switching rate for the gas.
In the throttle valve of the prior art used for controlling the pressure, the pressure in the cavity can be measured by a capacitor pressure gauge when the pressure is controlled. Next, the measured pressure is transmitted to a pressure controller via a direct current signal. The pressure controller compares the pre-determined pressure with the measured pressure obtained from the capacitor pressure gauge to adjust the position of the throttle valve. Thereby, the pressure in the cavity is the same as the pre-determined pressure. The throttle valve has two kinds of operating methods. The first is the same as the operation of the gate valve. The valve intersects with the cross-section of the pipe to control the gas-flow of the pipe. This valve can be used for an exhaust pipe with a large bore and it is hermetically sealed. When the valve is fully closed, it is the same as the gate valve and does not suffer from the problem of gas-exhaust. The position of the valve is controlled by a servomotor or a step motor.
The other operation requires that a valve that has the shape of butterfly wings be rotated to adjust the position of the valve. It is called a butterfly valve. The butterfly valve comprises a rotatable valve and a servomotor or a step motor used for adjusting the position of the valve. The servomotor automatically adjusts the position of the valve to change the conductance of the throttle valve via an inputting voltage signal. Therefore, the efficiency of the exhaust gas for the total system is controlled and the purpose of automatically controlling the pressure is achieved. Furthermore, in order to reduce the consumption of the chemical precursor, Sundew Technologies Company introduced nitrogen or inert gas into the exhaust pipe when the chemical precursor is inputted to reduce the exhaust-gas quantity of the exhaust pipe. Therefore, the pressure of chemical precursor in the manufacturing cavity increases quickly and the deposition rate of the chemical precursor also increases. The gas introduced into the exhaust pipe is called a ballast gas. When the manufacturing cavity is purified, a purifying gas (such as nitrogen or inert gas) is introduced and the ballast gas is exhausted. The gas-flow in the exhaust pipe increases and the gas in the cavity is quickly exhausted in order to purify the cavity.
The merit of the above design is the structure is simple. Only the size of the pipe for the ballast gas needs to be increased and a pneumatic valve must be added. Thereby, the gas-flow in the exhaust pipe is reduced, the deposition rate of the chemical precursor is increased and the gas-flow in the exhaust pipe is recovered quickly. However, there are some drawbacks. First, additional inert or nitrogen gas is consumed in every deposition manufacturing process. Second, the pressure in the cavity cannot be controlled effectively. For using the plasma, if the pressure cannot be controlled effectively, the power rate of the RF cannot be inputted effectively and the plasma cannot be ignited. Third, the nitrogen atom may be merged into the thin film in the thin film deposition process and the characteristics of the atomic layer thin film will be affected. Therefore, this method is not suitable for being used in the plasma enhanced atomic layer deposition apparatus. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates generally to tank bioleaching of a base metal.
In tank bioleaching of a sulphide concentrate which contains a metal such as copper, nickel, cobalt or zinc, the particular compounds are rendered soluable and are therefore recoverable from solution by making use of an appropriate technique. Some metal compounds, however, which are associated with the concentrate, are not rendered soluble during the bioleaching process. Typically these are compounds of metals such as silver, gold, platinum and palladium which are found in a non-soluble particulate fraction of a bioleaching residue, either complexed among mineral precipitates or in unoxidized original mineral concentrate fractions.
Under the bioleaching conditions these compounds are either completely insoluble (e.g. gold) or are transiently soluble (e.g. silver). While silver is momentarily dissolved under bioleaching conditions (i.e. is transiently soluble), it is rapidly removed from solution by chemical precipitation reactions which typically result in argentojarosite, AgFe3(SO4)2(OH)6. Equilibrium soluble silver concentrations in typical high temperature bioleaching solutions, for sulphide mineral concentrations that contain small quantities of silver, are usually less than 3 mg/t.
FIG. 1 indicates that silver in a transient soluble phase 12, before being removed from solution by precipitation 52, interacts particularly with archaea cells 50 used in a high temperature bioleaching process. Such interaction involves the rapid transfer of silver across the cell membrane where the silver most likely interacts, with high affinity, with compounds contained in the cell cytoplasm and eventually results in the formation of silver nodules inside the cell. FIG. 2 shows that this phenomenon is clearly observable by transmission electron microscopy. Cellular constituent compounds with a high affinity for silver may be sulphur-containing amino acids or the imidizole group of histidine, amongst others. The result of such cross-membrane transfer and internal cell accumulation of silver is that the microbial activity and growth are severely affected, to the extent that these factors may render a bioleaching process inoperable.
Transiently-soluble silver is particularly damaging to bioleaching archaea (used for high temperature bioleaching at 60° C- 80°C), while bacteria used in low temperature bioleaching at 30°C- 45°C are relatively unaffected. The difference in sensitivity to silver in this context is mainly ascribed to the known differences in bacteria and archaea cell membrane structures, chemistry and configuration.
In some instances, due to the specific solution chemistry, operating conditions, or microbial population utilized, or a combination of these factors, the silver does not unduly accumulate in the microbial cells and an active bioleaching process of a silver-containing sulphide mineral concentration can be achieved. The result of such a process, however, is that the silver reports to the residue, mainly as argentojarosite. Recovery of the silver from this residue is expensive and requires a significant amount of processing, either by smelting or by hydrometallurgical processing.
Base metals, such as copper, are generally not inhibitory to archaea cells, but some form of inhibition is encountered at concentrations above 10 g/l. The operation of bioleaching tanks where the copper concentration is about 30 g/l. causes a reduction in microbial activity. It is thus desirable to place a ceiling on the metal-concentrate processing rate in order to avoid soluble copper concentrations levels which exhibit severe inhibitory effects. A benefit would be that the ceiling would prevent solution copper concentrations from reaching inhibition levels and thus allow for increased throughput and processing rates of copper concentrates. | {
"pile_set_name": "USPTO Backgrounds"
} |
A plastic needle bearing which is non-magnetic is desirable. A plastic needle bearing is also so lightweight that noise made during rotation could be reduced.
US2010027933 discloses a needle bearing having bearing ring made of a austenitic steel with a total carbon and nitrogen content of from 0.8 to 1.2% by weight, and needles made from a ceramic. | {
"pile_set_name": "USPTO Backgrounds"
} |
This relates generally to optical coatings, and, more particularly, to antireflection coatings for transparent structures in electronic devices.
Electronic devices such as cellular telephones, computers, watches, and other devices contain transparent members such as display cover layers and camera windows. Transparent members such as these may be prone to undesired light reflections. Light reflections in display cover layers can obscure images that are being presented on a display. Light reflections in camera windows can create undesired image artifacts.
Light reflections such as these arise because there is an index-of-refraction difference between the material from which a transparent member is formed and surrounding air. To help reduce reflections, transparent members may be provided with antireflection coatings formed from a stack of alternating high-index-of-refraction and low-index-of-refraction dielectric layers. These antireflection coatings may be prone to damage if scratched. | {
"pile_set_name": "USPTO Backgrounds"
} |
According to statistics published by the National Institutes of Health, over ten million Americans ha any one of several types of urinary incontinence. More fifty-percent are women and all age groups are affected.
The complete urinary incontinence of the neurogenic bladder is the worse type for there is no satisfactory surgical procedure to control the urine leakage. An implantable mechanical sphincter-like mechanism with hydraulic control has been developed in recent years. These operations long and difficult and complications sometimes do occur. The whole procedure is very expensive and can be done by a select few urologic surgeons. None of the urinary diversion operations are satisfactory. There are over fifteen the cause of the neurogenic bladder; e.g., spina bifida, mechanical trauma to the spinal cord, viral and bacterial disease of cord, Diabetic neuropathy, tumors, Multiple Sclerosis, Parkinsons Disease, pelvic tumors after resection or radiation general deteriorization with advancing age.
The most common type of female incontinence called "Stress Incontinence". Three-fourths of all female patients have this type of incontinence. The main cause is of weakness of stretched or sagging structural tissue in the the pelvis, the bladder, vagina, and/or muscles of the pelvic floor. The angle at the bladder-uretheral junction should be 90.degree.. In prolapsed bladder this angle is lost, then the bladder urinary control mechanism functions poorly. The bladder is capable of holding the urine in if no stress is applied intra-abdominally. Coughing, sneezing, carrying a heavy object will increase the intra-abdominal pressure which in turn transmits the pressure to the urinary bladder. The sphincters cannot hold this extra pressure and some urine is lost. Operations that correct the anatomical defects are generally successful. Recurrence is a problem after a few years and repeat procedures are done. The problems in the female are complex. In the male patients, external catheter mechanisms are an effective means of urinary collection, in the female, no feasible collection receptacle has been devised.
The following prior art is known to Applicant:
The following patents disclose various catamenial devices and are believed to be of only general interest concerning the teachings of the present invention:
U.S. Pat. Nos. 679,478 to Lang, 1,241,652 to Norquist, 1,996,242 to Hagedorn, 3,157,180 to Bakunin, 3,298,369 to Pirie.
U.S. Pat. No. 2,649,086 to Sluijter discloses a ring-like apparatus designed to be inserted within the vagina and including a thickened portion intended to be pressed against the urethra. The present invention differs from the teachings of Sluijter as including a U-shaped appliance having an inflatable bulb associated therewith.
U.S. Pat. No. 2,638,093 to Kulick, Applicant herein, discloses a device designed to be inserted into the vagina and including an inflatable bulb designed to project, when inflated, through an opening therein and to press against the urethra. While this invention has been effective in curing urinary incontinence, the one slight drawback of this invention rests in the ability of the device to be moved away from the front of the vagina adjacent the urethra as the balloon 25 thereof is inflated, due to the ability of the vagina to stretch, thus reducing the pressure which may be exerted against the urethra. The present invention eliminates this problem by providing a U-shaped prosthesis having one leg of the "U" inserted within the vagina and having an inflatable balloon attached thereto, and with the other leg of the "U" resting against the mons pubis to prevent movements of the first-mentioned leg away from adjacency to the urethra during inflation of the balloon. Thus, a measured amount of air injected into the balloon will exert a rather constant pressure.
U.S. Pat. No. 3,419,008 to Plishner is cited as an example of a surgically implanted valve clamp designed to be mounted in surrounding relation to the urethra and to be controlled by external control. Since the present invention does not require surgical intervention and includes many features nowhere taught or suggested by Plishner, Plishner is believed to be of only general background interest.
U.S. Pat. No. 3,334,184 to Habib discloses a pubo-vaginal incontinence device including two legs, with one leg adapted to be inserted within the vagina and including a curved portion designed to press against the urethra. The other leg is designed to engage the area of the symphysis pubis. The present invention differs from the teachings of Habib as including a U-shaped prosthesis wherein the leg which is inserted within the vagina is specifically sized and configured to snugly fit therein and includes the further provision of an inflatable balloon. Such structure is nowhere taught or suggested by Habib.
U.S. Pat. No. 3,705,575 to Edwards discloses an incontinence device for female use including one leg designed to be inserted within the vagina to exert pressure against the urethra and another leg designed to engage the mons pubis. Edwards further contemplates the application of intermittent electrical current impulses via the device. Again, the present invention differs from the teachings of Edwards as including one leg specifically sized and configured to snugly fit within the vagina and having an inflatable balloon incorporated therewith. These aspects are nowhere taught or suggested by Edwards.
U.S. Pat. No. 3,709,215 to Richmond discloses an adjustable device designed with one leg insertable into the vagina and another leg bearing against the mons pubis. The Richmond device is specifically designed such that the leg inserted within the vagina is extremely thin, allowing retraction of the vagina for surgical purposes. This is completely opposite to the teachings of the present invention, wherein the leg which is inserted into the vagina is sized and configured to snugly fit within the vagina and includes an inflatable balloon. As such, the present invention is believed distinct from the teachings of Richmond.
U.S. Pat. No. 4,290,420 to Manetta discloses a stress incontinence diagnostic and treatment device including a V-shaped configuration having one leg insertable into the bottom portion of the vagina and the other leg extending forward over the mons pubis and held there by a belt 20. This is different from the teachings of the present invention, wherein one leg is inserted into the vagina and is sized and configured to be snugly received therein and includes an inflatable balloon. Additionally, the present invention is specifically designed to not require any belt to hold it in place. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to an apparatus to mount a portable or mobile device such as a personal digital assistant (PDA), a portable telephone, etc., in a vehicle, and more particularly to an apparatus to mount a portable or mobile device having a global positioning system (GPS) in the vehicle.
2. Description of the Related Art
Generally, in the position measurement operation using a GPS, a location in space is obtained by receiving radio waves indicating latitude, longitude, altitude, etc., from at least three satellites through a GPS receiver and then calculating each of the distances from the satellites by trigonometry. This position measurement technology using the GPS is now applied to various fields including furnishing of simple position information, precise measurement of large public works, cartography, automatic navigation of ships, aircrafts and vehicles, etc. Particularly, in recent years, as a mobile device such as a PDA or a portable telephone containing the GPS receiver is placed on the market, anybody can have an access to GPS information.
However, the GPS information is more frequently used inside of the vehicle rather than in general real life due to a characteristic of geometrical information. Accordingly, to receive and transmit the radio waves from the satellites inside of the vehicle, the GPS receiver of the mobile device has to be disposed toward the satellites as well as in the vicinity of a glass window of the vehicle. However, up to now, an apparatus to mount the GPS receiver or the mobile device containing the GPS receiver in the vehicle to conform the above conditions has not been developed. | {
"pile_set_name": "USPTO Backgrounds"
} |
Transcriptional regulation in cells is a complex biological process. One basic principle is regulation by posttranslational modification of histone proteins, namely histone proteins H2A/B, H3 and H4 forming the octameric histone core complex. These complex N-terminal modifications at lysine residues by acetylation or methylation and at serine residues by phosphorylation constitute part of the so called “histone code” (Strahl & Ellis, Nature 403, 41-45, 2000). In a simple model, acetylation of positively charged lysine residues decreases affinity to negatively charged DNA, which now becomes accessible for the entry of transcription factors.
Histone acetylation and deacetylation is catalysed by histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs are associated with transcriptional repressor complexes, switching chromatin to a transcriptionally inactive, silent structure (Marks et al. Nature Cancer Rev 1, 194-202, 2001). The opposite holds true for HATs which are associated with transcriptional activator complexes. Three different classes of HDACs have been described so far, namely class I (HDAC 1-3, 8) with Mr=42-55 kDa primarily located in the nucleus and sensitive towards inhibition by Trichostatin A (TSA), class II (HDAC 4-7, 9, 10) with Mr=120-130 kDa and TSA sensitivity and class III (Sir2 homologues) which are quite distinct by their NAD+ dependency and TSA insensitivity.
Cancer chemotherapy was established based on the concept that cancer cells with uncontrolled proliferation and a high proportion of cells in mitosis are killed preferentially. Standard cancer chemotherapeutic drugs finally kill cancer cells upon induction of programmed cell death (“apoptosis”) by targeting basic cellular processes and molecules, namely RNA/DNA (alkylating and carbamylating agents, platin analogs and topoisomerase inhibitors), metabolism (drugs of this class are named anti-metabolites) as well as the mitotic spindle apparatus (stabilizing and destabilizing tubulin inhibitors). Inhibitors of histone deacetylases (HDIs) constitute a new class of anti cancer drugs with differentiation and apoptosis inducing activity. By targeting histone deacetylases, HDIs effect histone (protein) acetylation and chromatin structure, inducing a complex transcriptional reprogramming, exemplified by reactivation of tumor suppressor genes and repression of oncogenes. Beside effecting acetylation of N-terminal lysine residues in core histone proteins, non-histone targets important for cancer cell biology like heat-shock-protein 90 (Hsp90) or the p53 tumor suppressor protein exist. The medical use of HDIs might not be restricted to cancer therapy, since efficacy in models for inflammatory diseases, rheumatoid arthritis and neurodegeneration was shown.
Benzoyl or acetyl substituted pyrrolyl propenamides are described in the public literature as HDAC-inhibitors, whereas the connectivity of the acyl-group is at position 2 or 3 of the pyrrole scaffold. (Mai et. al., Journal Med. Chem. 2004, Vol. 47, No. 5, 1098-1109; or Ragno et al., Journal Med. Chem. 2004, Vol. 47, No. 5, 1351-1359). Further pyrrolyl substituted hydroxamic acid derivatives are described in U.S. Pat. No. 4,960,787 as lipoxygenase inhibitors or in U.S. Pat. No. 6,432,999 as cyclooxygenase inhibitors or in EP570594 as inhibitors of cell growth.
Addressing the remaining need in the art for novel, well-tolerated and more efficacious inhibitors of HDACs, the international applications WO 2005/087724, WO 2007/039403 and WO 2007/039404 describe N-hydroxy-acrylamide derivatives of N-sulphonylpyrroles as HDAC inhibitors.
WO 2005/087724, WO 2007/039403 and WO 2007/039404 also disclose a process for the preparation of said N-hydroxy-acrylamide derivatives.
This preparation process comprises in the last step the synthesis of N-hydroxy-acrylamide derivatives starting from the corresponding acrylic acids. During said synthesis, the corresponding acrylic acid derivative is coupled with O-(tetrahydro-2H-pyran-2-yl)hydroxylamine by the reaction with an amide linking reagent (EDCxHCl and HOBtxH2O). After removal of the protecting group by stirring with an acid ion exchange resin, the respective N-hydroxy-acrylamide derivative is obtained:
The use of O-(tetrahydro-2H-pyran-2-yl)hydroxylamine and EDCxHCl is, however, a disadvantage not only under cost aspects but also because these reagents are not available in large quantities. Furthermore, O-(tetrahydro-2H-pyran-2-yl)hydroxylamine is explosive and it is necessary to remove the byproducts an additional purification step, e.g. column chromatography.
An object of the invention therefore is to provide a commercially attractive, less expensive but at least equally effective process for preparing N-hydroxy-acrylamide derivatives of N-sulphonylpyrrole compounds, which derivatives have HDAC inhibitory activity, which allows obtaining the reaction product in fewer steps and with high yield and purity. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The instant invention relates to dock fenders and more particularly to dock fenders with a shock absorber-type connection to a piling.
2. Description of Related Art
It has long been recognized that it is desirable to cushion the impact between a boat and dock piling, which impacts occur as a normal result of docking or mooring the boat against the dock piling. Examples of attempts to provide such cushioning are given in the following U.S. Pat. Nos.:
3,145,685, issued to Kulick, Sr., on Aug. 25, 1964
3,950,953, issued to Matthews, on Apr. 20, 1976
4,411,556, issued to LeBlanc et al., on Oct. 25, 1983
4,804,296, issued to Smath, on Feb. 14, 1989 | {
"pile_set_name": "USPTO Backgrounds"
} |
A number of employers expend extensive time and resources in an effort to find, evaluate and hire job seekers. Conversely, job seekers expend extensive time looking for, filing applications with and interviewing with potential employers. Many times these potential employers do not offer the job which fits the job seeker's qualifications or character. The standard method for obtaining employment includes sending cover letters, filling out resumes and interviewing. Employers are forced to look through numerous resumes and cover letters before they find a pool of job seekers to interview. These old style techniques involve committing employer and job seeker time and expense and still do not result in placing the right job seeker with a potential employer. Often times it is hard to ascertain a candidate's softskills match from an interview. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to centralized monitor and control systems for remotely monitoring the conditions of the alarming terminal ends from the receiving end, or selectively controlling a plurality of controlled devices at the alarming terminal end from the receiving end or performing both of these functions, and more particularly the invention relates to an improvement in such system whereby the number of link lines for connecting the receiving end with the alarming terminal end is reduced.
In known monitor and control systems such as fire alarm systems, it has been the usual practice to connect the receiver of the system to the alarm transmitters at the alarming terminal end as well as many other disaster preventing devices by means of a large number of link lines which provide one-to-one paired connection between the receiver and the individual devices. As a result, where the processing of data from a large number of monitoring points or the selective control of a large number of control points in a complex, large building or the like is effected centrally at a remotely located centralized system, a very large number of link lines are required to connect the receiver to the large number of monitoring points and control points, thus unavoidably resulting in a great increase in the wiring cost. | {
"pile_set_name": "USPTO Backgrounds"
} |
Observation of biological specimens using scanning electron microscopes is widespread. In order to observe a specimen containing moisture such as a biological specimen, it must be pretreated, i.e., it is fixed, dehydrated, and dried. However, the pretreatment brings about changes in the state of the specimen. For example, it contracts or deforms. Therefore, it is impossible to observe the raw specimen.
U.S. Pat. No. 4,720,633 discloses a technique for observing specimens after pretreating them as little as possible. In this technique, a specimen is observed while maintaining the specimen chamber at a low vacuum.
In this kind of scanning electron microscope, the specimen chamber and the body of the microscope are differentially pumped. A specimen is observed while keeping the inside of the specimen chamber at a relatively low pressure, for example, a fraction of a Torr.
At such a low pressure, the moisture of the specimen is immediately frozen, and the specimen gradually dries. In this way, changes in the state of the specimen such as contraction and deformation cannot be completely prevented. Hence, it has been heretofore impossible to observe raw specimens containing moisture. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of Invention
The present invention is directed to a device for comminution of solids. More particularly, the present invention relates to a conically-shaped impact mill.
2. Description of the Prior Art
Devices for providing comminution of particulate solids are well known in the art. Amongst the many different milling devices known in the art grinding mills, ball mills, rod mills, impact mills and jet mills are most often employed. Of these, only jet mills do not rely on the interaction between the particulate solid and another surface to effectuate particle disintegration.
Jet mills effectuate comminution by utilization of a working fluid which is accelerated to high speed using fluid pressure and accelerated venturi nozzles. The particles collide with a target, such as a deflecting surface, or with other moving particles in the chamber, resulting in size reduction. Operating speeds of jet milled particles are generally in the 150 and 300 meters per second range. Jet mills, although effective, cannot control the extent of comminution. This oftentimes results in the production of an excess percentage of undersized particles.
Impact mills, on the other hand, rely on centrifugal force, wherein particle comminution is effected by impact between the circularly accelerated particles, which are constrained to a peripheral space, and a stationary outer circumferential wall. Again, although control of particle size distribution is improved and can be manipulated compared to jet mills, the particle size range of the comminuted product of an impact mill is fixed by the dimensions of the device and other operating parameters.
A major advance in impact mill design is provided by a design of the type disclosed in German Patent Publication 2353907. That impact mill includes a base portion which carries a rotor, mounted in a bearing housing having an upwardly aligned cylindrical wall portion coaxial with the rotational axis, and a mill casing which surrounds the rotor, defining a conical grinding path. The mill of this design includes a downwardly aligned cylindrical collar which may be displaced axially in the cylindrical wall portion and may be adjusted axially to set the grinding gap between the rotor and the grinding path.
An example of such a design is set forth in European Patent 0 787 528. The invention of that patent resides in the capability of dismantling the mill casing from the base portion in a simple manner.
Although impact mills having conical shapes, permitting a downwardly aligned cylindrical collar to be displaced axially so that the grinding gap may be adjusted, represents a major advance in the art, still those designs can be improved by further design improvements that have not heretofore been addressed.
Impact mills, when utilized in the comminution of elastic particles, such as rubber, are usually operated at cryogenic temperatures, utilizing cryogenic fluids, in order to make feasible effective comminution of the otherwise elastic particles. Commonly, cryogenic fluids, such as liquid nitrogen, are utilized to make brittle such elastic solid particles. In view of the fact that the cryogenic temperatures attained by the frozen particles are much lower than the ambient surrounding temperature of the mill, this temperature gradient results in a rapid temperature rise of the particles. As a result, it is apparent that maximum comminution in an impact mill, or any other mill, should begin immediately after particles freezing. However, impact mills, including the conically shaped design discussed supra, initially require the particles to move outwardly toward the periphery before comminution begins. During that period the temperature of the particles is increased, reducing comminution effectiveness.
Another problem associated with comminution mills in general and conical mills of the type described above in particular is the inability to alter the physical configuration of the impact mill to adjust for specific particle size requirements of the various materials.
Three expedients are generally utilized to change the particle size of an elastic solid whose initial size is fixed.
The first expedient employed in changing particle size is changing the feedstock temperature by contact with a cryogenic fluid, e.g. liquid nitrogen, to freeze the elastic solid particles to a crystalline state. The coldest temperature achievable by the particles is limited to the temperature of the cryogenic fluid. A means of controlling particle temperature is to adjust the quantity of cryogenic fluid delivered to the elastic solid particles.
A second expedient of changing product particle size is to alter the peripheral velocity of the rotor. This is usually difficult or impractical given the physical limits of the impact mill design.
A third expedient of altering particle size is to change the grinding gap between the impact elements. Generally, this step requires a revised rotor configuration.
An associated problem, related to alteration of rotor configuration in order to effect changes in desired product particle size, is ease of replacement of worn or damaged portions of the impact mill. As in the case of replacement of parts of any mechanical device, problems are magnified in proportion to the size and complexity of the part being replaced.
Yet another problem associated with impact mills resides in power transmission to effectuate rotation of the rotor. Present designs employ multiple belt or gear power transmission means which are oftentimes accompanied by unacceptable noise levels. A corollary of this problem is that if power transmission speeds are reduced to abate excessive noise, rotor speed is reduced so that comminution results are unacceptable. It is thus apparent that a method of improved power transmission, unaccompanied by unacceptable loud noise, is essential to improved operation of impact mills. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to umbrella anchor and more particularly pertains to new tie-downs for a table umbrella for preventing damage to a table umbrella.
2. Description of the Prior Art
The use of umbrella anchor is known in the prior art. More specifically, umbrella anchor heretofore devised and utilized are known to consist basically of familiar, expected and obvious structural configurations, notwithstanding the myriad of designs encompassed by the crowded prior art which have been developed for the fulfillment of countless objectives and requirements.
Known prior art includes U.S. Pat. Nos. 3,279,663; 4,155,537; 4,188,061; 5,025,819; 3,971,589; and U.S. Pat. No. Des. 287,099.
While these devices fulfill their respective, particular objectives and requirements, the aforementioned patents do not disclose new tie-downs for a table umbrella. The inventive device includes a plurality of rigid elongate members which are essentially made of stiff wire with each having a first hook-like end and a second hook-like end both of which are adapted to attach to a table and an umbrella; and also includes a plurality of coupling members each of which is essentially a flat, rigid strip-like piece having a plurality of holes spaced therealong for coupling a respective pair of elongate members one of which is attached to the table and the other of which is attached to the umbrella.
In these respects, the tie-downs for a table umbrella according to the present invention substantially departs from the conventional concepts and designs of the prior art, and in so doing provides an apparatus primarily developed for the purpose of preventing damage to a table umbrella.
In view of the foregoing disadvantages inherent in the known types of umbrella anchor now present in the prior art, the present invention provides a new tie-downs for a table umbrella construction wherein the same can be utilized for preventing damage to a table umbrella.
The general purpose of the present invention, which will be described subsequently in greater detail, is to provide a new tie-downs for a table umbrella which has many of the advantages of the umbrella anchor mentioned heretofore and many novel features that result in new tie-downs for a table umbrella which is not anticipated, rendered obvious, suggested, or even implied by any of the prior art umbrella anchor, either alone or in any combination thereof.
To attain this, the present invention generally comprises a plurality of rigid elongate members which are essentially made of stiff wire with each having a first hook-like end and a second hook-like end both of which are adapted to attach to a table and an umbrella; and also includes a plurality of coupling members each of which is essentially a flat, rigid strip-like piece having a plurality of holes spaced therealong for coupling a respective pair of elongate members one of which is attached to the table and the other of which is attached to the umbrella.
There has thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are additional features of the invention that will be described hereinafter and which will form the subject matter of the claims appended hereto.
In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
Further, the purpose of the foregoing abstract is to enable the U.S. Patent and Trademark Office and the public generally, and especially the scientists, engineers and practitioners in the art who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection the nature and essence of the technical disclosure of the application. The abstract is neither intended to define the invention of the application, which is measured by the claims, nor is it intended to be limiting as to the scope of the invention in any way.
It is therefore an object of the present invention to provide new tie-downs for a table umbrella which has many of the advantages of the umbrella anchor mentioned heretofore and many novel features that result in new tie-downs for a table umbrella which is not anticipated, rendered obvious, suggested, or even implied by any of the prior art umbrella anchor, either alone or in any combination thereof.
It is another object of the present invention to provide new tie-downs for a table umbrella which may be easily and efficiently manufactured and marketed.
It is a further object of the present invention to provide new tie-downs for a table umbrella which is of a durable and reliable construction.
An even further object of the present invention is to provide a new tie-downs for a table umbrella which is susceptible of a low cost of manufacture with regard to both materials and labor, and which accordingly is then susceptible of low prices of sale to the consuming public, thereby making such tie-downs for a table umbrella economically available to the buying public.
Still yet another object of the present invention is to provide a new tie-downs for a table umbrella which provides in the apparatuses and methods of the prior art some of the advantages thereof, while simultaneously overcoming some of the disadvantages normally associated therewith.
Still another object of the present invention is to provide new tie-downs for a table umbrella for preventing damage to a table umbrella.
Yet another object of the present invention is to provide new tie-downs for a table umbrella which includes a plurality of rigid elongate members which are essentially made of stiff wire with each having a first hook-like end and a second hook-like end both of which are adapted to attach to a table and an umbrella; and also includes a plurality of coupling members each of which is essentially a flat, rigid strip-like piece having a plurality of holes spaced therealong for coupling a respective pair of elongate members one of which is attached to the table and the other of which is attached to the umbrella.
Still yet another object of the present invention is to provide new tie-downs for a table umbrella that securely anchors the umbrella to the table especially during high winds.
Even still another object of the present invention is to provide new tie-downs for a table umbrella that keeps the umbrella from making a racket during high winds.
These together with other objects of the invention, along with the various features of novelty which characterize the invention, are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and the specific objects attained by its uses, reference should be made to the accompanying drawings and descriptive matter in which there are illustrated preferred embodiments of the invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
For portable devices, low-speed and high-speed signals are handled typically by different cables and connectors. For example, audio ports are for audio signals, USB ports are for USB 2.0 signals and HDMI ports are for high-speed video signals. However, it is desired to put both low-speed and high-speed signals together in one single cable so as to help in further downsizing the portable devices. | {
"pile_set_name": "USPTO Backgrounds"
} |
Users of communication systems often do not wished to be interrupted by a calling party under certain circumstances. For example, a user may not wish to be interrupted while engaged in certain tasks or projects. In another example, a user may not wish to be interrupted when they are in the presence of other users, such as a supervisor.
Such interruptions negatively impact the productivity of users. For instance, if the user is interrupted while working on a project, it may take a great deal of effort for the user to re-establish their work on the project.
Previous systems attempted to increase worker productivity by defining the availability of a target user and presenting this availability to the originating user. The availability was then used to determine whether the target user could be interrupted by the originating user. For instance, if the target user were engaged in an important meeting, the availability of the target user was typically set to a low value. Conversely, when the target user was located at their office, their availability was typically set to a higher value. Consequently, the target user would not be interrupted by the originating user when the target user was deemed to be unavailable and the productivity of the target user was correspondingly enhanced.
Unfortunately, previous approaches still operated ineffectively under many circumstances. For instance, previous systems projected the same availability of the target user to an originating user, regardless of the circumstances at the originating user. For example, the same availability of the target user would be projected to the originating user regardless of the topic of the intended call or the quality of the communication environment. Consequently, originating users with whom the target wished to communicate often were blocked while unwanted interruptions by originating users with whom the target did not wish to communicate frequently still occurred. These problems increased user frustration with the system, degraded the experience of the target user, and ultimately reduced worker productivity.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions and/or relative positioning of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present invention. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments of the present invention. It will further be appreciated that certain actions and/or steps may be described or depicted in a particular order of occurrence while those skilled in the art will understand that such specificity with respect to sequence is not actually required. It will also be understood that the terms and expressions used herein have the ordinary meaning as is accorded to such terms and expressions with respect to their corresponding respective areas of inquiry and study except where specific meanings have otherwise been set forth herein. | {
"pile_set_name": "USPTO Backgrounds"
} |
The orthesis device according to the invention is specifically designed for the conservative treatment of patellofemoral instability of the knee.
Patellar instability is in fact characterized by a gradual loss of patellofemoral articular alignment, with gradual lateral displacement of the patellar position with respect to the position of the femoral trochlea, which can be classified, depending on the severity of the condition, as follows:
(i) external patellar hyperpressure (the patellar tangential axis is dislocated outward with respect to the axis of the femoral trochlea);
(ii) patellar subluxation (partial loss of articular relationships); and
(iii) full luxation (with complete loss of articular relationships and consequent absolute functional disability).
The cause of the disorder can be found in static alterations, such as a decrease in patellar dysplasia and condylar displasia convexity and/or in the concavity of the femoral trochlea, and in dynamic ones, such as alterations to trophic conditions and to the insertion (lever arm) of the muscles that have a medializing action. The altered patellofemoral alignment is accompanied by an imbalance in the distribution of articular loads, with early wear of the cartilage (covering of the joint surfaces) and becomes clinically manifest with symptoms such as pain, effusions and articulation failures (patellar pseudoseizures). The condition reaches its peak in patellar luxations, where complete loss of articular relationships causes the functional locking of the articulation.
Indications for treatment, defined in relation to an extensive review of the literature, entail:
(1) surgical treatment, electively recommended for recurrent luxations and for minor instabilities which show symptoms despite conservative treatment; and
(2) conservative treatment, including physical therapy, elective strengthening of muscles having a medializing action and stretching of the posterior muscles of the thigh and of the lateral capsular and tendon structures, associated with the use of ortheses.
Conservative treatment can therefore include the use of patellar stabilization ortheses, all of which have the common purpose of restoring normal articular alignment by acting with various methods:
1) patellar centering hole;
2) stabilization system with crossing bands centered on the patella;
3) stabilization system using bands which produce a medializing pressure using traction belts or a presser support.
The drawbacks shown by the ortheses produced so far can be summarized as follows:
1) insufficient medializing action, which fails to produce sufficient alignment of the patellofemoral articulation through flexing and extension;
2) low compliance and limitation of the articulation;
3) pressure due to tangential action which induces an excessive articular load and sustains the associated synovial-capsular inflammation;
4) excessive compressive forces induced on the soft tissues of the posterior region of the knee (muscle and tendon insertions and vascular-nerve structures running in the popliteal area).
The above shortcomings become clinically manifest as:
1) failed reduction of "patellar snapping" occurring on flexing and extension of the knee and produced by contact of the patellar surface with the external "side" surface of the trochlea;
2) difficulty in maintaining an adequate ratio between alignment of the orthesis and the possibility to obtain functional range of motion of the joint for everyday and sports activity of the femur;
3) increase in anterior knee pain, particularly evident in the case of activities which entail marked flexing of the knee;
4) compressive action, which can cause the latency and aggravation of vascular or muscle and tendon disorders in the posterior region of the knee and of the popliteal canal. | {
"pile_set_name": "USPTO Backgrounds"
} |
Carbon nanotubes (CNTs) were first synthesized and reported by Prof. S. Iijima of NEC Corporation, Japan in Nature 354, 56-58, 1991, and the polymer nanocomposites using carbon nanotube as filler were first reported by Prof. P. Ajayan et al. in Science, 265, 1212-1214, 1994. One graphene layer folds along the axis produces single walled carbon nanotubes (SWCNT) whereas many graphene layers wrapped onto themselves makes multi walled carbon nanotube (MWCNT). Carbon nanotubes (CNTs) are a novel crystalline form of carbon and the scientific community across the world soon realized experimentally and theoretically the CNT's unique atomic structure and properties, such as, high flexibility, low mass density, high aspect ratio, high strength-to-weight ratio, and extraordinary electrical, thermal, mechanical properties. J. P. Lu, in Physical Review Letters, 79, 1297-1300, 1997 and E. W. Wong et al in Science, 277, 1971-1975, 1997 has reported that the axial elastic modules and tensile strength of SWCNTs are theoretically and experimentally predicted to be as high as 1-2 TPa and 200 GPa respectively. Although the physical and chemical properties of SWCNT's are much superior to MWCNTs, however MWCNTs are widely used for application purpose due to their relatively low production cost and availability in large quantity.
E. T. Thostensona et al in Composites Science and Technology, 61, 1899-1912, 2001. has reported that the large surface area, high modules and strength of CNTs make them a good candidate for reinforcing host matrixes like polymer, ceramic or metal. Recent experimentations have shown remarkable enhancements in mechanical strength of composite with an addition of small amounts of CNTs, however, there are several challenges that are still need to be overcome in order to achieve the full potentials of CNT based composites as reported by R. Andrews et al, in Current Opinion in Solid State and Materials Science, 8, 31-37, 2004. The three critical issues of the CNT based composites are the uniform dispersion of CNTs in the host matrix material, the second is the proper interaction between the CNT and the host matrix and the third is the alignment of CNTs within the matrix. To achieve the distribution of CNTs in the matrix, the modification of the surface of CNTs is required either by covalent or noncovalent functionalization. For the proper interactions between the CNT and the host matrix the judicious choice of functional group on the CNT surface is critical.
S. Banerjee et al in Advance Materials, 17, 17-29, 2005 has reported that the chemical functionalization of CNTs allows the surface modification of carbon nanotube by introducing different functional groups for the better dispersion in organic solvent. Generally, CNTs are chemically modified either by covalently attach the functional group to the CNT surface or by wrapping polar/nonpolar molecules on the surface of the CNT by noncovalent interactions. Covalent functionalization of CNTs is very effective to enhance the proper dispersion of CNTs in the matrix, however, the covalent bonding inevitably disrupt the long range π conjugation along the CNT axis, leading to the defects on the CNT side walls. Covalent functionalization seriously affects the electrical properties as well as mechanical properties of CNT. Consequently by keeping the CNTs structure intact, the use of noncovalent interactions such as π-π interactions, van der Waals interactions and static charge interaction have been attempted to wrap the different molecules and polymers on CNTs surface for the proper distribution in the host matrix. However, it is realized that not only the distribution, the interaction of the attached moieties over CNTs with the host matrix is utmost important for achieving higher mechanical strengths. Therefore, the choice of functional group in both covalent and noncovalent derivatives' of MWCNTs is critical to achieve high reinforcement effect.
Jifen Wang et al in Journal of material Science technology, 2011, 27 (3), 233-238 disclosed the preparation of oleylamine derivative or oleylamine grafted of MWCNTs by process that involves: treating MWCNTs with nitric and sulphuric acids followed by a treatment with SOCl2 (containing dimethylformamide (DMF)) to covert the —COOH groups to —COCl and treating the resulting sample with oleylamine to obtain oleylamine derivative of MWCNTs. The oleylamine groups in the functionalized multi walled carbon nanotube (MWCNT) prepared by this process are mostly non-covalently coated on MWCNTs. Further, the acids used in this process are concentrated acids that damage the structure of MWCNTs. The oleylamine coating on MWCNTs prepared by this process would easily come out during sonication in organic solvents and thus the applications of these MWCNTs are restricted.
There are several covalent derivatives of MWCNTs schemes available in the literature, which produced functionalized nanotubes that can be distributed in the polymer/resin matrixes. However, the enhancement of mechanical strength of the composite is not always showed desired results due to the improper reinforcement.
Thus there is a need for a process by which the functionalized MWCNTs can be synthesized in which the functional group is covalently attached to MWCNTs surface. | {
"pile_set_name": "USPTO Backgrounds"
} |
Oftentimes it is necessary for an individual to transport cargo in a motor vehicle that weighs more than the individual can easily handle. For example, it can be difficult for an individual to lift many of the mobility solutions for last mile commuting, assisted living or tethered assistance.
This document relates to a new and improved apparatus and method for loading and deploying cargo from a motor vehicle. More specifically, the apparatus and method utilize the power liftgate and an actuator, such as a winch or other device on the power liftgate, to load and deploy heavy cargo that is difficult to handle. | {
"pile_set_name": "USPTO Backgrounds"
} |
Computers and computing systems have impacted nearly every aspect of modern living. For instance, computers are generally involved in work, recreation, healthcare, transportation, entertainment, household management, etc.
Normally, a computing system operates using a particular configuration. At a high level, a configuration includes all of the files, directories, dependencies, and/or libraries needed for the computing system to operate in a desired manner. To clarify, the configuration determines how the computing system will function and perform its various operations. As used herein, the terms “system configuration,” “computer configuration,” “server configuration,” and simply “configuration” are interchangeable.
From time to time, the system configuration will be changed. A configuration change may occur, for example, when one or more of the configuration's files, directories, dependencies, and/or libraries are altered such that the configuration has a new “state.” To properly categorize and characterize the distinct states of a configuration, versioning techniques are often used. Versioning relates to the process of 1) assigning version identifiers (i.e. identifiers used to differentiate one version from another), 2) maintaining both configuration history and configuration change history, and 3) performing the processes needed so that a computer system can reliably revert from a later version back to an earlier version (if needed) each time a configuration change is introduced. In particular, configuration versioning allows a computer system to remain backwards compatible with previous versions while, at the same time, allowing dramatically new features and configuration options to be introduced to the computer system.
When a configuration change occurs, the corresponding computer system may perform processes for preserving the computer system's existing configuration version. For instance, the system may require each new configuration change to be transactional. In some instances, version identifiers may also be updated to indicate which version the computer system is configured with.
In addition to modifying a computer's configuration, a computer's functionality can also be enhanced by networking with other computing systems via one or more network connections. By way of example, these network connections allow one computing system to remotely access services and/or other content located at one or more other computing systems. In some instances, these services may be operating in a cloud environment such that these services operate remotely from a computer system that is attempting to utilize that service. As used herein, services that operate in a cloud environment are collectively referred to as “cloud-based services.”
In some instances, a remote service (e.g., a cloud-based service) can be used to facilitate the various configuration changes (e.g., updates, deletions, or additions) to a computing system's configuration. Currently, however, there exists a substantial need in the field to improve the interrelationship between a remote service and a computing system, particularly with regard to configuration changes. As a result, there exists a substantial need in the field to improve how a remote service is used when managing a computing system's configuration.
The subject matter claimed herein is not limited to embodiments that solve any disadvantages or that operate only in environments such as those described above. Rather, this background is provided to illustrate only one exemplary technology area where some embodiments described herein may be practiced. | {
"pile_set_name": "USPTO Backgrounds"
} |
Solid paper-mill waste residues amounting to thousands of tons per annum are usually disposed of in landfill sites creating a worldwide environmental problem. In addition, the use of recycled paper and its waste by-products increases the environmental implications of the paper manufacturing process. Removing the ink, clay, coatings and contaminants from waste paper in order to recover reusable cellulose fibers to produce recycled paper creates deinking sludge which in turn creates disposal problems. In addition, other non-cellulose by products obtained in the process of producing paper such as coatings, adhesives, dyes and fillers like calcium carbonate and clay wind up in the sludge creating an environmental problem and reducing the yield of cellulose production from paper mill waste.
In Europe only, eleven million tons of waste are produced yearly by the paper and wood industry (pulp and paper sludge), of which 70% originates from the production of deinked recycled paper. Wastes are very diverse in composition and consist of different types of sludge. In general, the paper sludge contains very high levels of dry solids because it is rich in fibers and therefore dewaters quite easily. All paper and wood waste (pulp, paper sludge, paper white and waste water) is a mixture of cellulose fibers (40-60% of dry solids), printing inks and mineral components (40-60% dry solids: kaolin, talc and calcium carbonate). The sludge from process water clarification is generated in the fiber recovery process from white waters and in the physical wastewater treatment process. It consists of mostly fines and fillers (both around 50%) depending on the recovered paper being processed [1,2]. A more extensive review on waste water characteristics is given by Pokhrel and Viraraghavan [3].
Thus, paper sludge disposal is a growing concern in the paper industry which is engaged in intensive research to develop alternative uses for waste paper sludge.
Due to legislation and increased taxes, landfills are eliminated as final destinations for wastes, and incineration with energy recovery is becoming the main waste recovery method. Other options such as pyrolysis, gasification, land spreading, composting and reuse as building material are being applied, although research and economic assessment is still needed for optimization of the processes [1]. Due to the large volumes of waste generated, the high moisture content of the waste and the changing waste composition as a result of process conditions, recovery methods are usually expensive and their environmental impact is still uncertain. For this reason, it is necessary to find alternatives and different applications of wastes, while taking into account the environmental and economic factors of these waste treatments. The second obstacle is the high amounts of acid required for the process.
Cellulose Whiskers also termed Nano Crystalline Cellulose (NCC) are fibers produced from cellulose under controlled conditions that lead to the formation of high-purity single crystals. They constitute a generic class of materials having mechanical strengths equivalent to the binding forces of adjacent atoms. The resultant highly ordered structure produces not only unusually high strengths but also significant changes in electrical, optical, magnetic, ferromagnetic, dielectric, conductive, and even superconductive properties.
The tensile strength properties of NCC are far above those of the current high volume content reinforcements and allow the processing of the highest attainable composite strengths. A review of the literature on NCC, their properties, and their possible use as a reinforcing phase in nanocomposite applications is given by Azizi et al [4].
One of the main obstacles in utilizing NCC in industrial applications is their relatively high price which is attributed mainly to the high energy that is needed to convert relatively large cellulose fibers and lignocellulose tissues to nano-scale fibers. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a device for introducing gas into a liquid which is contained in a tank or similar container. The invention relates more particularly to such a device which is especially suitable for the oxygen treatment of water containing sewage sludge or similar waste products, which would be normally reacted with oxygen as part of the purification thereof. The gas to be introduced, for this application, may be oxygen or an oxygen containing gaseous substance. It is, however, not intended to limit the invention to sewage treatment applications nor to oxygen or oxygen containing gaseous substances.
An especially advantageous feature of the instant invention permits recirculation of gaseous substances which pass out of the liquid, back into the gas supply to the device introducing the gaseous substance into the liquid.
There are a number of methods and devices at present in use for operations such as waste water sludge purification, wherein the material to be treated is aerated. Those methods which utilize a closed tank normally teach aeration by means of a hollow shafted stirrer through which the gas can flow into the liquid, or by means of surface mounted impellers. Such devices and methods are known, for example, from the German disclosures AS 2,032,480 and OS 2,146,403.
In any operation, the tank closure must meet certain requirements in order to ensure the non-objectionable operation of the aerating device. Some of these are:
The closure must at least provide a substantially gas-tight seal to prevent the loss of gases from the tank. The closure must be easily removable to permit cleaning of the tank. Corrosion resistance of the cover material is another important feature, in terms of maintenance of the device. Finally, the closure must be able to withstand the pressure of the expanding volume of the gas which forms above the liquid, as a result of the gases being introduced into the liquid and percolating up and out of the liquid level. This last feature not only ensures the gas-tight integrity of the device, but also enables oxygen recycling, by a gas withdrawal device disposed above the liquid for re-introducing the oxygen, thereby permitting more efficient use of oxygen which has passed unreacted through the liquid. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present disclosure relates generally to methods and systems having temperature transducers or sensors for the measurement of temperatures where high precision is required or in extreme temperature environments such as oil wells. More specifically, some aspects disclosed herein are directed to methods and systems for correcting errors in temperature measurements. The methods and systems provide compensation for errors in temperature measurements due to variations in the measuring instruments that are caused by elevated temperatures.
Resistance Temperature Detectors (RTD) are temperature transducers that utilize, for example, platinum wire resistance elements to measure temperature. One example of such a temperature transducer is shown schematically in FIG. 1. RTDs having thin film resistance elements are also known in the art. As the element becomes hot, the value of the electrical resistance increases. In this, it is possible to correlate the resistance of the element with temperature. Since the element is made from a pure material whose resistance at various temperatures is known, temperature measurements are possible based on a predictable change in resistance of the element as temperature changes.
Typically, the element has a length of wire, such as platinum wire, that is wound around a core of ceramic or glass. Note again FIG. 1. A sheath or pipe of glass, for example, encapsulates the fragile element to form a probe type temperature gauge. Such probes are used for temperature sensing and measurement with an external indicator, controller or transmitter, or enclosed inside other devices where they measure temperature as a part of the device's function, such as a temperature controller or precision thermostat.
The lead wires used to connect the RTD to an external display can contribute to measurement error, especially when long lead lengths are involved because of voltage drop across the long lead wires. In particular, such errors are evident in remote temperature measurement locations. It is possible to minimize or limit such errors by the use of 3-wire and 4-wire designs.
Temperature gauges having RTDs that are used for precision measurements of temperature are connected to an instrument to read the resistance of the sensing RTD Rt. Note FIG. 2A. The instrument also measures the amount of current to be injected to the RTD Rt. In this, a reference resistance Rr is located in the instrument to provide reference resistance measurements for purposes of determining the temperature(s) T at which the sensing RTD Rt is located. People normally assume that the temperature of the instrument (more precisely, the temperature of the reference resistance Rr) does not vary, or the variation is very small, in the temperature range of the operation of the instrument.
To measure the resistance of a RTD, the instrument injects current into the RTD. Then, the voltage across the RTD is measured. It is known that current injection into a resistance causes heat dissipation, and the temperature of the RTD may change. A typical resistance of a RTD is 100 ohm. The temperature measurement instrument normally injects 1 mA to the RTD. Such an instrument can also change the injection current, say to 1.4 mA. If the resistance of a RTD measured with a higher current is higher than the resistance that is measured with a normal, i.e., lower, current, it is assumed that the current injection is heating the RTD element. Thus by changing the amount of current it is possible to provide quality control of the temperature measurements.
It is also known that there may be thermo-electric effects (also known as Peltier effects) present in the temperature measurements. The RTD is possibly made of platinum, and the lead wires may be of copper. Any junction of different metallic materials may cause thermoelectricity. The thermoelectricity causes errors in the RTD resistance determination. The temperature measurement instrument is usually capable of changing the polarity of the measurement, i.e., to apply a negative current. By combining two measurements in positive and negative currents, the instrument compensates for the thermo-electric effects.
Temperature gauges utilizing quartz crystal are also known in the art. The natural frequency of a quartz oscillator is a function of temperature. By counting the cycles of oscillation, the temperature of the quartz may be determined. To count the frequency, there should be a time reference. The time reference may be made with another quartz that is insensitive to temperature; however, there is still some temperature dependency. The error may not be negligible if high precision is required, or if the environmental temperature of the reference quartz is high.
In addition to the foregoing, the specifications that typical temperature measurement instruments of the type described herein currently have are accuracy of 0.01 degrees Celsius and resolution of 0.001 degrees Celsius. In certain circumstances, the actual temperature measurement errors as described hereinafter may exceed the instruments' specifications.
In view of the foregoing, applicant recognized a need for improved methods and systems for temperature measurements requiring precision. Specifically, there is need for improved techniques for measuring temperature that compensate for errors that are caused due to temperature effects on the measuring devices. In this, one object of the present disclosure is to provide an improved mechanism for precise measurements of temperature. Another object of the present disclosure is to enable temperature compensated temperature measurements for high precision and/or for extreme temperature applications, such as oil wells. The present disclosure also shows how to compensate for heat dissipation by switching current. | {
"pile_set_name": "USPTO Backgrounds"
} |
An open web service capable of executing scripts in which an execution environment is provided by a third party is a typical requirement. However, the execution environment provided may allow unsafe operations, such as, accessing the file system. The input provided to the web service may not arrive from a trusted source. The input provided may even be actively hostile causing damaged systems and compromised data resources.
A known approach to solving the potential problem of unsafe script operation uses chroot, an operation on UNIX®1 systems to change the apparent disk root directory for the current running process and associated child processes and run a command. However, for other environments such as Windows®2 the chroot option is not applicable. 1Registered trademark of The Open Group.2Windows is a registered trademark of Microsoft Corporation in the United States and other countries.
Another typical approach to secure script execution uses a parser for the target language to catch dangerous operations using a technique referred to as a black list. However, as with any black list, obtaining certainty that all dangerous attacks are eliminated is difficult to achieve and harder to maintain. Creation and maintenance of a specialized parser for filtering is typically very difficult. A black list approach is also vulnerable when an underlying target is upgraded, because new commands and options may be added but are not restricted.
The blacklist approach requires prior knowledge of elements to be restricted. Environments with frequent changes require continued timely updates to a parser to catch dangerous operations. Only those operations deemed to be dangerous can be trapped and prevented. Unknown operations may be problematic, but the status of the operation is not known until after the operation has executed. The timing of awareness may be too late to protect the system. For example, in many computer virus incidents when a damaging operation is known to exist poor application of a trap for the damaging operation typically leads to system problems. Unknown malicious operations or malicious use of known operations typically cause problems for a system in which the operation is performed. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention generally relates to devices and methods to treat an eye of a patient, and more specifically to intraocular implants that provide extended release of a therapeutic agent to an eye in which the implant is placed.
Steroids, such as the corticosteroid, fluocinolone acetonide (1,4-pregnadien-6α,9α-difluoro-11β,16α,17,21-tetrol-3,20-dione 16,17-acetonide), are usually given topically, systemically, or periocularly, as an injection, to treat uveitis. All three methods of delivery have drawbacks, e.g., topical corticosteroids do not treat diseases in the back on the eye, systemic corticosteroids are often associated with many unwanted side effects, and periocular injections may sometimes cause globe perforation, periocular fibrosis and ptosis.
An alternative that may circumvent the drawbacks of the above-mentioned delivery methods is to use sustained-released drug delivery systems. In 2000, Jaffe et al. reported using compressed pure fluocinolone acetonide pellets coated with silicone and polyvinyl alcohol as a fluocinolone sustained delivery device (Jaffe, G. J. et al., Journal of Ophthalmology and Vision Surgery, Vol 41, No. 11, October 2000). They obtained release rates of 1.9±0.25 4/day (6 months) and 2.2±0.6 μg/day (45 days) for the 2-mg device and 15-mg device, respectively. The duration of release for the 2-mg and 15-mg device was estimated to be 2.7 and 18.6 years, respectively. U.S. Pat. Nos. 6,217,895 and 6,548,078 disclose sustained release implants for delivering a corticosteroid, such as fluocinolone acetonide, to an eye. However, fluocinolone acetonide intravitreal implants made by Control Delivery Systems (the assignee of U.S. Pat. Nos. 6,217,895 and 6,548,078) were only partially successful and led to the development of cataracts and increased intraocular pressure.
In addition, intravitreal injection of triamcinolone acetonide (KENALOG®) for treatments of non-infectious uveitis, and macular edema due to various retinal diseases has appeared to be safe and effective.
Additional biocompatible implants for placement in the eye have been disclosed in a number of patents, such as U.S. Pat. Nos. 4,521,210; 4,853,224; 4,997,652; 5,164,188; 5,443,505; 5,501,856; 5,766,242; 5,824,072; 5,869,079; 6,074,661; 6,331,313; 6,369,116; 6,699,493, and 6,726,918.
Other intravitreal therapeutic approaches are described in U.S. application Ser. No. 10/966,764, filed Oct. 14, 2004; Ser. No. 11/039,192, filed Jan. 19, 2005; and 60/587,092, filed Jul. 12, 2004.
It would be advantageous to provide eye implantable drug delivery systems, such as intraocular implants, and methods of using such systems, that are capable of releasing a therapeutic agent at a sustained or controlled rate for extended periods of time and in amounts with few or no negative side effects. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a recording medium on which moving picture data have been recorded together with script files including additional information related with the moving picture data.
The present invention further relates to a method of linking script files with moving picture data and relates to method and apparatus of reproducing the moving picture data along with script files thereof.
2. Description of the Related Art
An optical disk such as DVD (Digital Versatile Disk) being able to store digital data is widely used in these days. A DVD can store not only audio data but also moving picture data of long time. A DVD has two recording partitions, one for storing digital data stream such as moving picture data, and the other for storing navigation data which are used to control reproduction of the stored digital data stream.
Thus, when a DVD having digital data stream thereon is placed into a conventional DVD player, the player reads out the reproduction-controlling data written in the navigation data partition first and stores them in a memory equipped therein. Afterwards, the DVD player can select or search for an arbitrary section of moving picture data using the reproduction-controlling data in the memory and playback it.
A DVD may include additional information about moving picture data recorded thereon. Namely, a DVD may include scene descriptive texts and introduction of characters, etc. besides video and audio data. Such additional information may be informed to a viewer who wants more information about moving pictures being presented.
However, how to link such additional information with moving picture data and how to reproduce it along with moving picture data are not yet decided. | {
"pile_set_name": "USPTO Backgrounds"
} |
The following relates generally to wireless communication, and more specifically to beam refinement reference signal enhancement for higher mobility support.
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power). Examples of such multiple-access systems include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, and orthogonal frequency division multiple access (OFDMA) systems, (e.g., a Long Term Evolution (LTE) system, or a New Radio (NR) system). A wireless multiple-access communications system may include a number of base stations or access network nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE).
Wireless communication systems may operate in millimeter wave (mmW) frequency ranges, e.g., 28 GHz, 40 GHz, 60 GHz, etc. Wireless communications at these frequencies may be associated with increased signal attenuation (e.g., path loss), which may be influenced by various factors, such as temperature, barometric pressure, diffraction, etc. As a result, signal processing techniques, such as beamforming, may be used to coherently combine energy and overcome the path losses at these frequencies. Due to the increased amount of path loss in mmW communication systems, transmissions from the base station and/or the UE may be beamformed.
Wireless communications between two wireless nodes, e.g., between a base station and a UE, may use beams or beamformed signals for transmission and/or reception. A beam used for such wireless communications may be referred to as an active beam, a best beam, or a serving beam. The active beam may initially be picked from a reference beam and then refined over time. For example, due to changing communication conditions, movement of a UE, etc., an active beam may be refined according to a periodic schedule and/or as needed. Thus, a UE active beam or a base station active beam may be refined. Conventional refinement techniques may include transmission of beam refinement reference signals (BRRSs) where the candidate beams are typically adjacent to the active beams. Such techniques, however, assumes that there is sufficient overlap between the candidate beams and the active beams. While this may support low mobility UEs, UEs associated with a higher mobility state may not be able to detect the candidate beam signaling and therefore drop communications with the base station. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a machine for making bag-like two-compartment packages, particularly tea bags from a strand of a pliant material having a tag secured thereto by a thread, which are formed by folding operations and closed by staples, the material strand being a folded flexible tube filled with separate serving amounts of a substance, the material strand being continuously fed into the machine, and the machine being of the type having conveying means, a plurality of working assemblies including movable parts for cutting the material strand into individual sections, cutting the tag thread, folding the bag, the working assemblies including folding elements for forming the bottom and top of the bag, at least two elevating arms for bringing portions of the bag into an upright position, means for receiving the tags in one of the elevating arms, and means for cutting the bag strand and the thread tag.
West German Pat. Nos. 21 20 270 and 24 05 761, which corresponds to U.S. Pat. No. 3,969,873 (the disclosure of which is incorporated herein by reference) disclose machines of this kind which have proved extraordinarily satisfactory in practice. However, in these machines, the actuation of the individual assemblies which, according to the first-mentioned patent, are stationary, and according to the second mentioned patent, are carried on a conveyor sequentially passing through the zones of individual function, is extremely expensive. In addition, the control elements are provided in close proximity to the respective working station, so that the product to be packed cannot be prevented from occasionally falling on the elements. This frequently causes disturbances and interruptions in operation, since the mostly small, interconnected parts of the drives are very sensitive to dust. Further, only the actuating members of a single working station can be controlled in this way. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to delta-sigma modulator based fractional-N phase locked loop frequency synthesizers and deals more particularly with a digital delta-sigma modulator for controlling a multi-modulus frequency divider in the feedback path of the phase locked loop.
Digital frequency synthesizers have long been used in communication systems, particularly RF communication systems, to generate RF signals carried over RF channels. In frequency synthesis, it is desirable to achieve the selected frequency output in as little time as possible with any spurious output frequencies minimized. It is known to create a frequency synthesizer by placing a frequency divider function between the voltage-controlled oscillator (VCO) output and the phase frequency detector (PFD) in a phase-locked loop (PLL), wherein the VCO output frequency is an integer-N multiple of the input reference frequency to the PFD. The spurious outputs in question are usually associated with phase detectors and occur at the phase detector operating frequency, which is generally the same as the channel spacing. Incorporating a fractional-N division function in the PLL provides a number of advantages and helps overcome problems of spurious frequency outputs by allowing the phase detector to operate at a much higher frequency for the same channel spacing.
A number of methods are known that are based upon the concept of integer-N frequency synthesis to realize the fractional-N division function and include pulse swallowing, phase interpolation, Wheatly random jittering and delta-sigma modulation to control the multi-modulus, including dual-modulus, frequency dividers to provide the division function. Of the known methods, a delta-sigma modulator realization of a fractional-N frequency synthesizer is desirable and preferable to achieve low phase noise, fast settling time, fine channel resolution and wide tuning bandwidth. The delta-sigma modulator fractional-N frequency synthesizer is based on the concept of division ratio averaging, wherein an integer frequency divider rather than a fractional frequency divider is used. The division ratio is dynamically switched between two or more values, effectively providing a non-integer number division function. One of the most important advantages of using the delta-sigma modulator to control a multi-modulus divider is the ability to shape phase noise introduced by the delta-sigma modulator controlled fractional-N division function. A problem generally associated with such a delta-sigma modulator fractional-N frequency synthesizers is the appearance or presence of fractional spurious levels at a fractional offset frequency. The fractional spurious levels may also appear at the fractional offset frequency harmonics. The fractional spurious levels in delta-sigma modulator based fractional-N frequency synthesizers may originate from several sources including the operation of the delta-sigma modulator itself, coupling between the multi-modulus prescaler or charge pump driving the loop filter and the outside world through power supply feeds or substrates, and the nonlinearity of the charge pump. The fractional spurious frequencies may also originate from the spacing error or timing error of the multi-modulus prescaler.
It would be desirable therefore to provide a delta-sigma modulator in a fractional-N frequency synthesizer that achieves low phase noise, fast settling time, fine channel resolution and wide tuning bandwidth.
It is an object therefore of the present invention to provide a digital delta-sigma modulator in a phase locked loop fractional-N frequency synthesizer that provides an increased multi-modulus input control range.
It is another object of the present invention to provide a digital delta-sigma modulator in a phase locked loop fractional-N frequency synthesizer wherein the desired fraction multi-modulus control input signal is generated in the interval between xe2x88x921 and +1.
It is a further object of the present invention to provide a digital delta-sigma modulator in a phase locked loop fractional-N frequency synthesizer wherein the desired frequency is achieved by adding a fractional frequency to an integer frequency less than the desired frequency or subtracting a fractional frequency from an integer frequency greater than the desired frequency.
It is a still further object of the present invention to provide a digital delta-sigma modulator having a direct input for a modulation data signal in a two""s complement format.
It is a yet further object of the present invention to provide a digital delta-sigma modulator wherein the modulation data signal is processed in the modulator for use as a direct modulation fractional-N frequency synthesizer.
One advantage of the delta-sigma modulator embodying the present invention, as further described hereinbelow, is a modulation data signal, a dithering signal or a sum of different signals can be directly connected to the input of the modulator.
A further advantage of the delta-sigma modulator of the present invention is a desired or a selected channel frequency can be achieved by adding or subtracting a fractional component part to or from an integer component part of the desired frequency wherein the fractional component part can be set at any value between xe2x88x921 and +1.
Another advantage of the delta-sigma modulator of the present invention is the modulation data signal or dithering signal can be directly connected to the input in a two""s complement format.
A still further advantage of the delta-sigma modulator of the present invention is the dithering signal can be a sinewave in two""s complement format.
A yet further advantage of the delta-sigma modulator of the present invention is the input signal in two""s complement format can be the sum of all or any combination of the modulation data signal or dithering signal including the fractional component part.
In accordance with a first aspect of the invention, a digital delta-sigma modulator for controlling a multi-modulus divider in a fractional-N frequency synthesizer includes a plurality of delta-sigma modulator stages cascaded in a feed-forward circuit topology and the number of stages define an Nth order delta-sigma modulator. The modulator has a direct connection input means for receiving a N-bit input control word defining a desired frequency for selection. The desired frequency is broken down to have an integer component part and a fractional component part. The modulator also has sign-bit input means for receiving a direction signal indicating the desired frequency selected by adding the fractional component part to the integer part or by subtracting the fractional component part from the integer part. Logic means coupled to the delta-sigma modulator stages are provided for detecting and determining the amount and direction of a frequency from the desired frequency to produce a weighted M-bit output multi-modulus divider control word.
Preferably, the feed forward cascaded circuit topology comprises a cascaded sequence of delayed accumulators.
Preferably, the feed forward cascaded circuit topology comprises a pipelined accumulator topology wherein the input control word is pipe shifted and the output control word is align shifted.
Preferably, the logic means further comprises timing compensation registers in the carry overflow signal output of the accumulator and differentiation circuit means for performing a differential calculation on the carry overflow signal output.
Preferably, the differentiation circuit means comprise a cascaded sequence of differentiators.
Preferably, the N-bit input control word is in a two""s complement format.
Preferably, the N-bit input control word is dithered to produce an average zero dither N-bit input control word.
Preferably, the N-bit control word is dithered as a sine wave signal in a two""s complement format.
In accordance with another aspect of the invention, a delta-sigma modulator for controlling a multi-modulus divider in a fractional-N frequency synthesizer includes a plurality of cascaded feed forward accumulators wherein the number of accumulators is the order of the delta-sigma modulator. Although described as a third order delta-sigma modulator, the design considerations and implementation apply to higher orders as well. The first accumulator includes a first input for receiving an N-bit modulation data signal representative of a desired channel frequency selection and a second input for receiving a SIGN-bit control word representative of the direction for adding or subtracting a frequency offset to a fixed frequency to generate the frequency corresponding to the desired selected channel frequency. The first accumulator includes a feed forward output coupled to the input of a first next following accumulator, a first carry signal C1 output indicative of an overflow or underflow condition, and a SIGN bit signal output indicative of the direction of the overflow. The first carry signal C1 and the SIGN bit signal are logically combined in logic means and a first logic output control word is generated. The first next following accumulator includes a feed forward output coupled to the input of a second next following accumulator, and a second carry signal C2 output indicative of an overflow or underflow condition. The second next following accumulator includes a feed forward output coupled to a feedback input, and a third carry signal C3 output indicative of an overflow or underflow condition. The carry output signals C2 and C3 from the first next following and second next following accumulators, respectively are summed such that the carry output signals add to a net summation equal to zero so as to not affect the fractional control word input. The resultant carry output signal C2 and C3 summation is added to the first logic output control word to provide a multi-modulus division function control word.
Preferably, the N-bit modulation data signal is in a two""s complement format.
In a further aspect of the invention, each of the feed forward outputs are coupled through a respective delay register, and the first carry signal C1 and the SIGN bit signal output are coupled through a first and second plurality of delay registers, respectively. The second carry signal C2 is coupled through a third plurality of delay registers and the third carry signal C3 is coupled through a fourth plurality of delay registers. | {
"pile_set_name": "USPTO Backgrounds"
} |
In conventional rail vehicles, the layout of temperature control (temperature regulation) was often altered in accordance with the shape and disposition of the various items of equipment such as the main converters carried in each rail vehicle as a whole.
Thus it would be desirable to be able to achieve temperature regulation of the various items of equipment or the equipment provided in the housing irrespective of the position in which the plurality of items of equipment are installed in the rail vehicle.
A rail vehicle according to an embodiment of the present invention comprises: equipment, an air conditioner and a duct. A plurality of items of equipment are provided within a compartment. The air-conditioner conditions the air that is flowing within the items of equipment or within a housing in which the equipment is accommodated. The duct feeds air between the air-conditioner and the equipment and comprises a portion that extends along the forward/rearward direction of the vehicle in a position adjacent to the wall of the compartment, within this compartment. | {
"pile_set_name": "USPTO Backgrounds"
} |
Field of the Invention
The present invention relates to an image recording apparatus for recording an image on a sheet transported through a transport path.
Description of the Related Art
An image recording apparatus is known, wherein a transport path is formed at the inside of an apparatus casing, and an image is recorded on a sheet which is guided to and transported through the transport path. Such an image recording apparatus has, in some cases, a paper feed cassette for supporting a plurality of sheets. Further, an image recording apparatus is known, which has a manual feed tray for guiding a sheet to a transport path distinctly from a paper feed cassette. | {
"pile_set_name": "USPTO Backgrounds"
} |
Generally, a lightning arrester is installed at an uppermost part of a building to form a discharge path between a thundercloud and the ground to safely flow charges accumulated in the thundercloud to the ground.
When a normal thundercloud approaches the ground, an electric potential difference between the thundercloud and the ground is about one hundred million volts.
In this state, the air in the atmospheric layer functions as a good insulating body to prevent insulation breakdown between the ground and the thundercloud, i.e., lightning. However, the probability of lightning between the thundercloud and the ground is still in existence.
A lightning arrester using an electric field phenomenon (tip effect), in which an electric field is concentrated to a tip part, is referred to as a Franklin rod type.
A theory of a lightning rod using the tip effect is disclosed in Japanese Patent Laid-open Publication No. S62-216197 (Sep. 22, 1987).
The lightning rod using the tip effect uses a natural phenomenon only. Since the lightning rod is operated only when breakdown of an insulation voltage of the air occurs, it is difficult to effectively prevent lightning in the case that the thundercloud has a lightning hazard just before breakdown of an insulation voltage. For this reason, in this field, various types of lightning arresters have been developed to more effectively and safely discharge charges in the thundercloud to the ground to reduce the number of lightning strikes to an object to be protected.
For example, French Patent Laid-open Publication No. 0096655 (May 26, 1983) discloses a lightning arrester including a main electrode (an electrode grounded to the ground to concentrate ground charges using team effect) and an auxiliary electrode for collecting charges distributed in the air around the main electrode to perform a preliminary discharge with the main electrode, thereby causing discharge between the main electrode and the auxiliary electrode. Ion charges (a former trimmer) through the above discharge are discharged in the air to readily form a discharge path between a thundercloud and the main electrode, thereby absorbing charges in the thundercloud.
In addition, an active lightning arrester disclosed in Japanese Patent Laid-open Publication No. S62-216197 includes a collecting electrode for collecting charges in the air generated when a thundercloud approaches and inducing discharge between an auxiliary electrode and a main electrode, and a determination part for charging the charges of the collecting electrode into a condenser to use them as a power source, and determining variation of an amount of the charges generated from the collecting electrode. When the variation is larger than a predetermined variation rate, a conventional high voltage generating circuit switched by supplying the charges charged in the condenser into a reactor is operated to cause discharge between the main electrode and the auxiliary electrode.
However, since the lightning arrester disclosed in the French Patent, among the above conventional lightning arresters, is installed at the uppermost part of a building, a ground electric field induced by a thundercloud is insignificant at the uppermost part of the building. Therefore, when the charges collected by the charges contained in the air are filled to induce discharge, it is difficult to start the discharge due to insufficient charge, and thus, decrease discharge probability.
In addition, since the lightning arrester disclosed in the above Japanese Patent uses a plurality of electronic components, it is likely to decrease reliability. Further, since the lightning arrester is installed at the uppermost part of a building, i.e., where an operator hardly approaches, when any component of the lightning arrester needs to be replaced due to a malfunction, it is difficult for the operator to perform maintenance on the lightning arrester.
Meanwhile, in order to solve the problem, Korean Patent Registration No. 440616, issued to the same applicant as the present invention, CHUNG Young-Ki, discloses a lightning arrester.
As shown in FIG. 1, the lightning arrester disclosed in Korean Patent Registration No. 440616 includes a fixing bar 10 fixed through a fixing member 15 to the uppermost part of a structure to be protected, a main electrode part 18 connected to an upper end of the fixing bar 10, an upper polymer insulator 12 through which the fixing bar 10 passes and coupled with a lower surface of the main electrode 18 in a contact manner, an auxiliary electrode 13 through which an elongated post part 12a of the upper polymer insulator 12 passes and disposed under the main electrode part 18 in a non-contact manner to charge space charges, a lower polymer insulator 19 through which the elongated post part 12a of the upper polymer insulator 12 passes, installed under the lower surface of the auxiliary electrode part 13, and spaced apart from the fixing member 15 to obtain an insulating distance therefrom, an anti-separation disc member 10a having a through-hole through which the fixing bar 10 passes to prevent separation of the lower polymer insulator 19 from the elongated post part 12a of the upper polymer insulator 12, and a nut member 10b having an inner threaded part to be threadedly engaged with one end of the fixing bar 10 to securely fix the anti-separation member 10a.
The main electrode part 18 functions to directly attract lightning when the lightning occurs due to approach of a thundercloud. For this purpose, the main electrode part 18 includes a disc plate having a center hole through which one end of the fixing bar 10 passes, and a plurality of nibs 18a radially extending from a periphery of the disc plate at predetermined intervals.
The nibs 18a are bent upward when seen after the lightning arrester is installed.
The upper polymer insulator 12 has an elongated hollow post part 12a through which the fixing bar 12 passes, and upper and lower extension flanges 12b and 12c extending from one end of the elongated post part 12a, i.e., an upper periphery of the elongated post part 12a and spaced apart from each other to obtain an insulating distance between the main electrode part 18 and the auxiliary electrode part 13.
The auxiliary electrode part 13 includes: a first electrode member 13a having a through-hole through which the elongated post part 12a passes, and a plurality of projection pins 13e extending upward from a periphery thereof at predetermined intervals, disposed under the lower extension flange 12c of the upper polymer insulator 12, and not in contact with the main electrode part 18, thereby absorbing a larger amount of charges in the air depending on approach of a thundercloud; a pair of second auxiliary electrode members 13b having an upper surface in contact with a lower surface of the first auxiliary electrode member 13a, and a through-hole through which the elongated post part 12a passes; a third auxiliary electrode member 13c having a hollow post shape through which the elongated post part 12a of the upper polymer insulator 12 passes such that the elongated post part 12a projects downward from the third auxiliary electrode member 13c by a predetermined distance, an upper end of which is in contact with a lower surface of the second auxiliary electrode members 13b, and an inner periphery of which is spaced apart from an outer periphery of the elongated post part 12a passed therethrough; and a filler material 13d formed of titanium dioxide filled in the third auxiliary electrode member 13c through the medium of O-rings inserted into both ends thereof to increase a filling amount and prevent leakage of the filler material 13d.
The lower polymer insulator 19 includes a short post part 19a having a through-hole through which the elongated post part 12a of the upper polymer insulator 12 passes, and upper and lower extension flanges 19b and 19c extending from one end of the short post part 19a, i.e., an upper periphery of the short post part 19a and spaced apart from each other to obtain an insulating distance between the auxiliary electrode part 13 and the fixing member 15.
When a thundercloud approaches the conventional lightning arrester installed at the uppermost part of a building to be protected, the fixing bar 10 and the main electrode part 18 in contact with the upper end of the fixing bar 10 are charged with ground charges, the auxiliary electrode part 13 not in contact with the fixing bar 10 and the main electrode part 18 by the upper polymer insulator 12 is charged with space charges by the filler material 13d formed of titanium dioxide filled between the third auxiliary electrode member 13c and the elongated post part 12a of the upper polymer insulator 12, thereby attracting lightning generated from the thundercloud far from the lightning arrester.
As a result, it is possible to attract lightning and stably discharge the lightning to the ground even at a low voltage due to a far distance of the thundercloud.
However, in the conventional lightning arrester, when the fixing bar 10 and the main electrode part 18, in which ground charges are charged, are spaced a certain distance apart from the auxiliary electrode part 13, in which space charges formed by approach of a thundercloud are charged, discharge performance of the lightning arrester may be decreased, thereby lowering lightning prevention ability.
In addition, Korean Patent Registration No. 433011, issued to the same applicant as the present invention, CHUNG Young-Ki, discloses a lightning arrester.
As shown in FIG. 2, the lightning arrester of Korean Patent Registration No. 433011 includes a fixing bar 20 fixed through a fixing member 29 to the uppermost part of a building to be protected, a cap member 21 fastened to one end of the fixing bar 20, a polymer insulator 22 mounted on an upper end of the fixing bar 20, formed of an electrostatic induction sphere, and through which an upper end of the fixing bar 20 passes to increase an insulating distance between the cap member 21 and an auxiliary discharge member 24 to be described, the auxiliary discharge member 24 having at least one thin plate passing through a lower center of the polymer insulator 22, a preliminary discharge cap member 25 formed of a conductive material and having a through-hole through which the lower end of the polymer insulator 22 passes such that an upper surface of the cap member 25 is in contact with a lower surface of the auxiliary discharge member 24, and a preliminary discharge member 26 fixed to the fixing bar 20 through the medium of a plurality of insulating ring members 27 disposed under the preliminary discharge cap member 25, formed of a circular disc shape, and having a downward projection, a through-hole through which the fixing bar 20 passes, and a fixing hole formed at a periphery of the projection and in communication with the through-hole to fix the preliminary discharge member to a periphery of the fixing bar 20 using a screw.
In addition, a protection member 23 is attached to an upper surface of the auxiliary discharge member 24 to prevent damage of the preliminary discharge member 26 from an external power. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates generally to the field of semiconductor devices and specifically to three dimensional vertical NAND strings and other three dimensional devices and methods of making thereof.
Three dimensional vertical NAND strings are disclosed in an article by T. Endoh, et. al., titled “Novel Ultra High Density Memory With A Stacked-Surrounding Gate Transistor (S-SGT) Structured Cell”, IEDM Proc. (2001) 33-36. However, this NAND string provides only one bit per cell. Furthermore, the active regions of the NAND string is formed by a relatively difficult and time consuming process involving repeated formation of sidewall spacers and etching of a portion of the substrate, which results in a roughly conical active region shape. | {
"pile_set_name": "USPTO Backgrounds"
} |
2.1. Sarcoidosis
Sarcoidosis is a chronic inflammatory disorder with unknown etiology, characterized by non-caseating granulomas in affected organs, in particular, the lungs, lymph nodes, skin and eyes. The disorder is typically accompanied by nonspecific depression of cell-mediated as well as humoral immune responsiveness, and by polyclonal hypergamma-globulinemia (Siltzbach, L. E., Amer. Rev. Resp. Dis. 97:1-8 (1968); Roberts, C. R. et al., Ann. Intern. Med. 94:73 (1981)). At least 90% of the patients with this multisystem disease have pulmonary manifestations characterized by chronic inflammation, granuloma formation and some cases of pulmonary fibrosis. These processes affect the alveoli, airways and blood vessels resulting in an impairment of normal gas exchange. The inflammatory process precedes the other symptoms of sarcoidosis.
CD4.sup.+ T helper (Th) cells are believed to play a central role in the pathogenesis of sarcoidosis. Such activated cells accumulate in the alveolar space, spontaneously release IL2 and proliferate at high rates in vitro and express HLA-DR, a marker of T cell activation (Hunninghake, G. et al., N. Engl. J. Med. 305:429 (1981)). The T cells in the lung which spontaneously release IL2 are primarily of the CD4.sup.+ HLA-DR.sup.+ class (Saltini, C. et al., J. Clin. Invest. 77:1962-1970 (1986)). The release of cytokines results in modulation of granuloma formation and polyclonal activation of B cells to secrete immunoglobulin (Hunninghake et al., supra). A subset of Th cells identified by a mAb designated 5/9, which detects activated T cells, was shown to predominate in the lungs of sarcoidosis patients and was responsible for the release of lymphokines and the polyclonal B cell activation (Rossi, G. A. et al., Am. Rev. Respir. Dis. 133:1086-1090 (1986)). In sarcoidosis patients with high-intensity alveolitis, T lymphocytes from lung (but not those from peripheral blood) spontaneously release IL2 in vitro and replicate at a high rate (Pinkston, P. et al., N. Engl. J. Med. 308:793 (1983)). | {
"pile_set_name": "USPTO Backgrounds"
} |
A. Field of the Invention
The present invention relates to the field of wheelchairs, more specifically, a harness for securing an occupant's torso to the seat back portion of a wheelchair.
Traditionally, a wheelchair is a wheeled seat, which does not prevent an occupant from falling out of said, wheel chair when in use. This is a problem where the occupant is mentally or physically handicapped, and may otherwise fall from the wheelchair.
What is needed is a harness system that secures the torso portion of an occupant to the seat back portion Of the wheelchair in an effort to prevent unintended falling from the wheelchair.
B. Discussion of the Prior Art
As will be discussed immediately below, no prior art shoulders and torso to the seat back of a wheelchair; wherein the safety harness includes a horizontal belt that encircles both the torso and the seat back of the wheelchair; wherein a pair of shoulder straps extend vertically from a rear of the horizontal belt and extend up and over the seatback of the wheelchair and over shoulders of the occupant where a front end of each shoulder straps is secured to a portion comprising a front cover thereby securing the torso of the occupant to the wheelchair; wherein the front cover secures the front ends of the shoulder strap as well as front ends the horizontal belt; wherein the front cover includes a front member a rear member that each include a nylon hook or loop strip so as to secure the front member to the rear member; wherein the front member is affixed to a shoulder strap and a corresponding side of the horizontal belt, whereas the rear member is affixed to an opposing shoulder strap and a corresponding side of the horizontal belt.
The Greene Patent (U.S. Pat. No. 5,664,844) discloses a harness system for securing a child or mentally or physically impaired adult to a wheelchair, or similar seating device, which includes a Velcro fastener. However, the harness system does not encircle the torse and seat back of a wheelchair and from which shoulder straps extend to encircle each shoulder, respectively, and in order to restrain a torso of an occupant to the seat back and to the wheelchair.
The Featon et al. Patent (U.S. Pat. No. 4,966,392) discloses a wheelchair with a harness for restraining an occupant. However, the harness is directed to securing a wheelchair and it's occupant to a floor surface of a vehicle.
The Rupert et al. Patent (U.S. Pat. No. 4,226,474) discloses a safety vest that is worn by a person for holding a person in a seat. However, the safety vest uses rings to attach straps with clips that extend from a surface or a seat to secure the vest to the respective object, as opposed to a safety harness that encircles a seat back of a wheelchair and a torso of an end user.
The Berdahl Patent (U.S. Pat. No. 7,073,866) discloses a fully adjustable universal safety harness for restraining small children to secure said small children in various chairs. However, the safety harness features an adjustable strap that encircles a seat to secure the harness thereto, as opposed to a single harness system that loops around both the torso and seat back, and from which shoulder straps extend to wrap over shoulders of and secure an occupant thereto.
The Williams Patent (U.S. Pat. No. 5,522,404) discloses an adjustable safety and assistance harness that is mountable to a chair or a wheelchair. However, the adjustable safety harness does not fully encircle the seat back and the torso of an occupant, but rather engages handlebars of the wheelchair.
The Jordan Patent (U.S. Pat. No. 4,050,737) discloses a support harness for a child that is used for maintaining a sitting position in a chair. However, the support harness extends underneath the occupant by traversing through the legs.
The Collins Patent (U.S. Pat. No. 5,042,878) discloses an invalid chair or wheelchair restraint. However, the restraint traverses under and in between the legs of the occupant, and does not include shoulder straps that secure the upper torso to the seat back.
The Bolcerek Patent (U.S. Pat. No. 4,927,211) discloses a safety harness with a chest pad, back pad, and shoulder pads. However, the safety harness does not rely upon a horizontal loop to encircle both the torso and seat back of a wheel chair, and from which shoulder straps extend there from.
The Leach Patent (U.S. Pat. No. 5,397,171) discloses an apparatus worn by a patent seated in a wheelchair. However, the apparatus traverses under and behind the seat back to engage the lower frame of the wheelchair.
The Kelley et al. Patent (U.S. Pat. No. Des. 608,950) illustrates a design for a child safety harness for a wheelchair. However, the child safety harness is used to secure a child onto the lap of an adult occupant who is also seated in a wheelchair. Furthermore, the child safety harness relies upon cross-crossing straps to the back of the child, and is not capable of securing the upper torso of an adult occupant to the wheelchair.
While the above-described devices fulfill their respective and particular objects and requirements, they do not describe a safety harness for a wheelchair that secures the shoulders and torso to the seat back of a wheelchair; wherein the safety harness includes a horizontal belt that encircles both the torso and the seat back of the wheelchair; wherein a pair of shoulder straps extend vertically from a rear of the horizontal belt and extend up and over the seatback of the wheelchair and over shoulders of the occupant where a front end of each shoulder straps is secured to a portion comprising a front cover thereby securing the torso of the occupant to the wheelchair; wherein the front cover secures the front ends of the shoulder strap as well as front ends the horizontal belt; wherein the front cover includes a front member a rear member that each include a nylon hook or loop strip so as to secure the front member to the rear member; wherein the front member is affixed to a shoulder strap and a corresponding side of the horizontal belt, whereas the rear member is affixed to an opposing shoulder strap and a corresponding side of the horizontal belt. In this regard, the shoulder and waist restraining harness for use with a wheelchair departs from the conventional concepts and designs of the prior art. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention is directed to polyaxial bone screws for use in bone surgery, particularly spinal surgery and particularly to such screws with compression or pressure inserts and expansion lock split retainers to snap over, capture and retain the bone screw shank head in the receiver member assembly and later fix the bone screw shank with respect to the receiver assembly.
Bone screws are utilized in many types of spinal surgery in order to secure various implants to vertebrae along the spinal column for the purpose of stabilizing and/or adjusting spinal alignment. Although both closed-ended and open-ended bone screws are known, open-ended screws are particularly well suited for connections to rods and connector arms, because such rods or arms do not need to be passed through a closed bore, but rather can be laid or urged into an open channel within a receiver or head of such a screw. Generally, the screws must be inserted into the bone as an integral unit along with the head, or as a preassembled unit in the form of a shank and pivotal receiver, such as a polyaxial bone screw assembly.
Typical open-ended bone screws include a threaded shank with a pair of parallel projecting branches or arms which form a yoke with a U-shaped slot or channel to receive a rod. Hooks and other types of connectors, as are used in spinal fixation techniques, may also include similar open ends for receiving rods or portions of other fixation and stabilization structure.
A common approach for providing vertebral column support is to implant bone screws into certain bones which then in turn support a longitudinal structure such as a rod, or are supported by such a rod. Bone screws of this type may have a fixed head or receiver relative to a shank thereof, or may be of a polyaxial screw nature. In the fixed bone screws, the rod receiver head cannot be moved relative to the shank and the rod must be favorably positioned in order for it to be placed within the receiver head. This is sometimes very difficult or impossible to do. Therefore, polyaxial bone screws are commonly preferred. Open-ended polyaxial bone screws typically allow for a loose or floppy rotation of the head or receiver about the shank until a desired rotational position of the receiver is achieved by fixing such position relative to the shank during a final stage of a medical procedure when a rod or other longitudinal connecting member is inserted into the receiver, followed by a locking screw or other closure. This floppy feature can be, in some cases, undesirable and make the procedure more difficult. Also, it is often desirable to insert the bone screw shank separate from the receiver or head due to its bulk which can get in the way of what the surgeon needs to do. Such screws that allow for this capability are sometimes referred to as modular polyaxial screws.
With specific reference to modular snap-on or pop-on polyaxial pedicle screw systems having shank receiver assemblies, the prior art has shown and taught the concept of the receiver and certain retainer parts forming an assembly wherein a contractile locking engagement between the parts is created to fix the shank head with respect to the receiver and retainer. The receiver and shank head retainer assemblies in the prior art have included a slotted contractile retainer ring and/or a lower pressure slotted insert with an expansion and contraction collet-type of structure having contractile locking engagement for the shank head due to direct contact between the retainer and/or the collet structure with the receiver resulting in contraction of the slotted retainer ring and/or the collet-type structure of the insert against the shank head. The receiver and slotted insert have generally included tapered locking engagement surfaces.
The prior art for modular polyaxial screw assemblies has also shown and taught that the contact surfaces on the outside of the slotted collet and/or retainer and the inside of the receiver, in addition to being tapered, can be conical, radiused, spherical, curvate, multi-curvate, rounded, as well as other configurations to create a contractile type of locking engagement for the shank head with respect to the receiver.
In addition, the prior art for modular polyaxial screw assemblies has shown and taught that the shank head can both enter and escape from a collet-like structure on the insert or from the retainer when the insert or retainer is in the up position and within an expansion recess or chamber of the receiver. This is the case unless the slotted insert and/or the slotted retainer are blocked or constrained from being able to be pushed or manipulated back up into the receiver bore or cavity, or unless the screw assemblies are otherwise uniquely configured to prevent this from happening. | {
"pile_set_name": "USPTO Backgrounds"
} |
In recent years endovascular implantable devices have been developed for treatment of aortic aneurysms. These devices are delivered to the treatment site through the vascular system of the patient rather than by open surgery. The devices include a tubular or cylindrical framework or scaffolding of one or more stents to which is secured a tubular shape of graft material such as woven Dacron, polyester polytetrafluoroethylene or the like. The devices are initially reduced to a small diameter, placed into the leading or proximal end of a catheter delivery system whereafter the delivery system is inserted into the vascular system of the patient such as through a femoral incision. The leading end of the delivery system is manoeuvred to the treatment site over a previously positioned guide wire. Through manipulation of a control system that extends to the proximal end of the catheter from the distal end of the system outside the patient, the implantable device is deployed by holding the device at its location and withdrawing a surrounding sheath. The implantable device or stent graft can then self expand or be expanded through the use of a balloon which is introduced with a stent graft introduction device. The stent graft becomes anchored into position in healthy wall tissue of the aorta, by barbs for example. The delivery system is then removed leaving the inflatable device in position to reverse an aneurysm in the aorta in a manner that channels all blood flow through the stent graft so that no blood flow enters the aneurysm. As a result, not only does the aneurysm no longer continue to grow and possibly rupture but the aneurysm actually begins to shrink and commonly disappears entirely.
For treatment of thoracic aortic aneurysms in particular it is necessary to introduce the implantable device high up in the aorta and in a region of the aorta which is curved and where there can be strong blood flow.
In the thoracic aorta there are major branch vessels, the brachiocephalic, the left carotid and the left subclavian. For treatment of an aneurysm in the region of the thoracic arch provision must be made for blood supply to continue to these arteries. For this purpose fenestrations are provided into the wall of a stent graft in that region. Access is generally obtained to these fenestrations, to deploy side arms into the stent graft, via the left or right brachial arteries or less commonly via the left or right carotid arteries. Once into the thoracic arch via such an artery the fenestration in the stent graft must be catheterised. To simplify this, it is desirable to have some working space in the outer side of the thoracic arch which is the region that the branch vessels enter the arch.
It is the object of this invention to provide an arrangement of stent graft to overcome the above problem or to at least provide the practitioner with a useful alternative.
Throughout this specification the term distal with respect to a portion of the aorta, a deployment device or a prosthesis such as a stent graft is intended to mean the end of the aorta, deployment device or prosthesis such as a stent graft further away in the direction of blood flow from the heart and the term proximal is intended to mean the portion of the aorta, deployment device or end of the prosthesis nearer to the heart. For other lumens within the human or animal body the terms caudal and cranial respectively should be understood.
Throughout this discussion the term “stent graft” is intended to mean a device which has a tubular body of biocompatible graft material and at least one stent fastened to the tubular body to define a lumen through the stent graft. The stent graft may be bifurcated and have fenestrations, side arms or the like. Other arrangements of stent grafts are also within the scope of the invention. | {
"pile_set_name": "USPTO Backgrounds"
} |
A variety of processes are used on production lines. Examples, include compression loading, such as fusion bonding processes, which may be performed on a plurality of point sites of, or discrete locations on, a workpiece/web material in a nip type process. See, for example, U.S. Pat. Nos. 4,854,984 and 4,919,738. A fusion bonding process, for example, may involve passing a workpiece, such as a thermoplastic dual-layer web material, through a nip defined by two rolls, wherein one roll is provided with a plurality of protuberances. By compressing the workpiece/web material at point sites between the rolls via the protuberances, friction bonds may be effected at those sites. That is, the material at each point site is caused to flow or melt. If the workpiece/web material comprises two or more layers, those layers may be caused to bond to one another at each site. In a production-type process, however, the precise load and gap that the workpiece/web material experiences typically cannot be accurately measured for several reasons, including but not limited to accuracy limits on pressure gauges, the inclusion of equipment inertial loads, vibrations of the equipment and the effect of those vibrations on the gap at the nip point, etc.
It would be desirable to have a press that can simulate processes at speeds that are in-line with current and actual production process speeds. It also would be desirable to have a press that can accurately measure what a workpiece or web material experiences during various production processes. | {
"pile_set_name": "USPTO Backgrounds"
} |
High quality saddles for horses are expensive and their proper care is needed to maintain the saddle in condition in order to prevent its condition, quality and value from being diminished. An important part of maintaining the condition of a saddle is to ensure that it is properly stored. Typically, the proper storage of a saddle means that it is stored or placed on a saddle holder that is commonly located in the stable. Commonly, the saddle holder includes a fixed projection that extends substantially horizontally from a wall or the like. The saddle is then placed upon this projection when it is not in use. This allows the saddle to maintain its proper shape which would not be maintained if it were allowed to merely rest on the floor or the like. The usual fixed saddle holder that is located in a stable or barn or the like is fine. However, saddles are commonly used and required to be stored at locations where such fixed saddle holders are not available. An example of such a use and need for storage is in connection with horse shows.
There is a definite need to properly store a saddle while traveling and away from a stable. There are a few removable saddle holders. Examples of such saddle holders are set forth in U.S. Pat. Nos. 2,740,532; 2,952,366; 3,233,745; 3,780,971; 3,780,971 and U.S. Pat. No. 4,356,922. Unfortunately, such removable saddle holders do not meet the needs involved in travelling with a saddle. In this connection, it is possible that a saddle holder may need to be used on a vehicle and also in a hotel room or the like. However, existing saddle holders do not have the flexibility to satisfy such requirements. For instance, they may not be readily adaptable to fit or be attached to a vehicle as well as in a hotel room. In addition, the configuration or shape of vehicles may vary considerably and this problem is not addressed with prior art saddle holders.
This saddle holder invention overcomes these problems associated with such prior art saddle holders and provides a portable saddle holder that has a plurality of attachment provisions that permit it to be attached to various portions of vehicles as well as in a hotel room such as on a door or the like. The portable saddle support is also adjustable to accommodate various vehicle configurations. The saddle holder is also easily collapsible to allow it to be readily transported. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
This invention relates to the testing of underground formations or reservoirs. More particularly, this invention relates to a method and apparatus for isolating a downhole reservoir, and testing the reservoir formation and fluid.
2. Background
While drilling a well for commercial development of hydrocarbon reserves, several subterranean reservoirs and formations are encountered. In order to discover information about the formations, such as whether the reservoirs contain hydrocarbons, logging devices have been incorporated into drill strings to evaluate several characteristics of these reservoirs. Measurement-while-drilling systems (hereinafter MWD) have been developed that contain resistivity, nuclear and other logging devices which can constantly monitor formation and reservoir characteristics during drilling of wellbores. The MWD systems can generate data that includes information about the presence of hydrocarbon presence, saturation levels, and formation porosity. Telemetry systems have been developed for use with the MWD systems to transmit the data to the surface. A common telemetry method is the mud-pulsed system, an example of which is found in U.S. Pat. No. 4,733,233. MWD systems provide real time analysis of the subterranean reservoirs.
Commercial development of -hydrocarbon fields requires significant amounts of capital. Before field development begins, operators desire to have as much data as possible in order to evaluate the reservoir for commercial viability. Despite the advances in data acquisition during drilling, using the MWD systems, it is often necessary to conduct further testing of the hydrocarbon reservoirs in order to obtain additional data. Therefore, after the well has been drilled, the hydrocarbon zones are often tested by other test equipment.
One type of post-drilling test involves producing fluid from the reservoir, collecting samples, shutting-in the well and allowing the pressure to build-up to a static level. This sequence may be repeated several times for different reservoirs within a given borehole. This type of test is known as a xe2x80x9cPressure Build-up Testxe2x80x9d. One of the important aspects of the data collected during such a test is the pressure build-up information gathered after drawing the pressure down. From this data, information can be derived as to permeability, and size of the reservoir. Further, actual samples of the reservoir fluid are obtained, and tested to gather Pressure-Volume-Temperature data relevant to the reservoir""s hydrocarbon distribution.
In order to perform these important tests, it is currently necessary to retrieve the drill string from the well borehole. Thereafter, a different tool, designed for the testing, is run into the well borehole. A wireline is often used to lower a test tool into the well borehole. The test tool sometimes utilizes packers for isolating the reservoir. Numerous communication devices have been designed which provide for manipulation of the test tool, or alternatively, provide for data transmission from the test tool. Some of those designs include signaling from the surface of the Earth with pressure pulses, through the fluid in the well borehole, to or from a downhole microprocessor located within, or associated with the test tool. Alternatively, a wire line can be lowered from the surface, into a landing receptacle located within a test tool, establishing electrical signal communication between the surface and the test assembly. Regardless of the type of test tool and type of communication system used, the amount of time and money required for retrieving the drill string and running a second test tool into the borehole is significant. Further, if the borehole is highly deviated, a wire line tool is difficult to use to perform the testing.
There is also another type of problem, related to downhole pressure conditions, which can occur during drilling. The density of the drilling fluid is calculated to achieve maximum drilling efficiency while maintaining safety, and the density is dependent upon the desired relationship between the weight of the drilling mud column and the downhole pressures which will be encountered. As different formations are penetrated during drilling, the downhole pressures can change significantly. Currently available devices do not accurately sense the formation pressure as the drill bit penetrates the formation. The actual formation pressure could be lower than expected, allowing the lowering of mud density, or the formation pressure could be higher than expected, possibly even resulting in a pressure kick Consequently, since this information is not easily available to the operator, the drilling mud may be maintained at too high or too. low a density for maximum efficiency and maximum safety.
Therefore, there is a need for a method and apparatus that will allow for the pressure testing and fluid sampling of potential hydrocarbon reservoirs as soon as the borehole has been drilled into the reservoir, without removal of the drill string. Further, there is a need for a method and apparatus that will allow for adjusting drilling fluid density in response to changes in downhole pressures to achieve maximum drilling efficiency. Finally, there is a need for a method and apparatus that will allow for blow out prevention downhole, to promote drilling safety.
A formation testing method and a test apparatus are disclosed. The test apparatus is mounted on a work string for use in a well borehole filled with fluid. It can be a work string designed for drilling, re-entry work, or workover applications. As required for many of these applications, the work string may be one capable of going into highly deviated holes, horizontally, or even uphill. Therefore, in order to be fully useful to accomplish the purposes of the present invention, the work string must be one that is capable of being forced into the hole, rather than being dropped like a wireline. The work string can contain a Measurement While Drilling (MWD) system and a drill bit, or other operative elements. The formation test apparatus may include at least one expandable packer or other extendable structure that can expand or extend to contact the wall of the well borehole; device for moving fluid such as a pump, for taking in formation -fluid; a non-rotating sleeve; an extendable stabilizer blade; a coring device, and at least one sensor for measuring a characteristic of the fluid or the formation. The test apparatus will also contain a controller, for controlling the various valves or pumps which are used to control fluid flow. The sensors and other instrumentation and control equipment must be carried by the tool. The tool must have a communication system capable of communicating with the surface, and data can be telemetered to the surface or stored in a downhole memory for later retrieval.
The method involves drilling or re-entering a borehole and selecting an appropriate underground reservoir. The pressure, or some other characteristic of the fluid in the well borehole at the reservoir, the rock, or both, can then be measured. The extendable element, such as a packer or test probe, is set against the wall of the borehole to isolate a portion of the borehole or at least a portion of the borehole wall. In the non-rotatable sleeve embodiment, the drill string can continue rotating and advancing while the sleeve is held stationary during performance of the test.
If two packers are used, this will create an upper annulus, a lower annulus, and an intermediate annulus within the well borehole. The intermediate annulus corresponds to the isolated portion of the borehole, and it is positioned at the reservoir to be tested. Next, the pressure, or other property, within the intermediate annulus is measured. The well borehole fluid, primarily-drilling-mud, may then be withdrawn from the intermediate annulus with the pump. The level at which pressure within the intermediate annulus stabilizes may then be measured; it will correspond to the formation pressure. Pressure can also be applied to fracture the formation, or to perform a pressure test of the formation. Additional extendable elements may also be provided, to isolate two or more permeable zones. This allows the pumping of fluid from one or more zones to one or more other zones.
Alternatively, a piston or other test probe can be extended from the test apparatus to contact the borehole wall in a sealing relationship, or some other expandable element can be extended to create a zone from which essentially pristine formation fluid can be withdrawn. Further, the extendable probe can be used to position a sensor directly against the borehole wall, for analysis of the formation, such as by spectroscopy. Extension of the probe could also be accomplished by extending a locating arm or stabilizer rib from one side of the test tool, to force the opposite side of the test tool to contact the borehole wall, thereby exposing a sample port to the formation fluid. Regardless of the apparatus used, the goal is to establish a zone of pristine formation fluid from which a fluid or core sample can be taken, or in which characteristics of the fluid can be measured. This can be accomplished by various embodiments. The example first mentioned above is to use inflatable packers to isolate a portion of the entire borehole, subsequently withdrawing drilling fluid from the isolated portion until it fills with formation fluid. The other examples given accomplish the goal by expanding an element against a spot on the borehole wall, thereby directly contacting the formation and excluding drilling fluid.
The apparatus should be constructed so as to be protected during performance of the primary operations for which the work string is intended, such as drilling, re-entry, or workover. If an extendable probe is used, it can retract within the tool, or it can be protected by adjacent stabilizers, or both. A packer or other extendable elastomeric element can retract within a recess in the tool, or it can be protected by a sleeve or some other type of cover.
In addition to the pressure sensor mentioned above, the formation test apparatus can contain a resistivity sensor for measuring the resistivity of the well borehole fluid and the formation fluid, or other types of sensors. The resistivity of the drilling fluid is usually noticeably different from the resistivity of the formation fluid. If two packers are used, the resistivity of fluid being pumped from the intermediate annulus can be monitored to determine when all of the drilling fluid has been withdrawn from the intermediate annulus. As flow is induced from the isolated formation into the intermediate annulus, the resistivity of the fluid being pumped from the intermediate annulus is monitored. Once the resistivity of the exiting fluid differs sufficiently from the resistivity of the well borehole fluid, it is assumed that formation fluid has filled the intermediate annulus, and the flow is terminated. This can also be used to verify a proper seal of the packers, since leaking of drilling fluid past the packers would tend to maintain the resistivity at the level of the drilling fluid. Other types of sensors which can be incorporated are flow rate measuring devices, viscosity sensors, density measuring devices,- dielectric property measuring devices, and optical spectroscopes.
After shutting in the formation, the pressure in the intermediate annulus can be monitored. Pumping can also be resumed, to withdraw formation fluid from the intermediate annulus at a measured rate. Pumping of formation fluid and measurement of pressure can be sequenced -as desired to provide data which can be used to calculate various properties of the formation, such as permeability and size. If direct contact with the borehole wall is used, rather than isolating a section of the borehole, similar tests can be performed by incorporating test chambers within the test apparatus. The test chambers can be maintained at atmospheric pressure while the work string is being drilled or lowered into the borehole. Then, when the extendable element has been placed in contact with the formation, exposing a test port to the formation fluid, a test chamber can be selectively placed in fluid communication with the test port. Since the formation fluid will be at much higher pressure than atmospheric, the formation fluid will flow into the test chamber. In this way, several test chambers can be used to perform different pressure tests or take fluid samples.
In some embodiments which use expandable packers, the formation test apparatus has contained therein a drilling fluid return flow passageway for allowing return flow of the drilling fluid from the lower annulus to the upper annulus. Also included is at least one pump, which can be a Venturi pump or any other suitable type of pump, for preventing overpressurization in an intermediate annulus. Overpressurization can be undesirable because of the possible loss of the packer seal, or because it can hamper operation of extendable elements which may be operated by differential pressure between the inner bore of the work string and the annulus, or by a fluid pump. To prevent overpressurization, the drilling fluid is pumped down the longitudinal. inner bore of the work string, past the lower end of the work string (which is generally the bit), and up the annulus. Then the fluid is channeled through return flow passageway and the Venturi pump, creating a low pressure zone at the Venturi, so that the fluid within the intermediate annulus is held at a lower pressure than the fluid in the return flow passageway.
The device may also include a circulation valve, for opening and closing the inner bore of the work string. A shunt valve can be located in the work string and operatively associated with the circulation valve, for allowing flow from the inner bore of the work string to the annulus around the work string, when the circulation valve is closed. These valves can be used in operating the test apparatus as a down hole blow-out preventor.
In most embodiments, one or more gripper elements may be incorporated on the work string or non-rotating sleeve. The grippers are extendable and are used to engage the borehole well. Once the borehole wall is engaged, the grippers anchor the work string or non-rotating sleeve such that the work string or non-rotating sleeve remains substantially motionless during a test. The advantage of anchoring the tool is increased useful life of soft components such as pad members and packers.
In the case where an influx of reservoir fluids invade the borehole, which is sometimes referred to as a xe2x80x9ckickxe2x80x9d, the method includes the steps of setting the expandable packers, and then positioning the circulating valve in the closed position. The packers are set at a position that is above the influx zone so that the influx zone is isolated. Next, the shunt valve is placed in the open position. Additives can then be added to the drilling fluid, thereby increasing the density of the mud. The heavier mud is circulated down the work string, through the shunt valve, to fill the annulus. Once the circulation of the denser drilling fluid is completed, the packers can be unseated and the circulation valve can be opened. Drilling may then resume.
An advantage of the present invention includes use of the pressure and resistivity sensors with the MWD system, to allow for real time data transmission of those measurements. Another advantage is that the present invention allows obtaining static pressures, pressure build-ups, and pressure draw-downs with the work string, such as a drill string, in place. Computation of permeability and other reservoir parameters based on the pressure measurements can be accomplished without pulling the drill string.
The packers can be set multiple times, so that testing of several zones is possible. By making-measurement of the down hole conditions possible -in real time, optimum drilling fluid conditions can be determined which will aid in hole cleaning, drilling safety, and drilling speed. When an influx of reservoir fluid and gas enter the well borehole, the high pressure is contained within the lower part of the well borehole, significantly reducing risk of being exposed to these pressures at surface. Also, by shutting-in the well borehole immediately above the critical zone, the volume of the influx into the well borehole is significantly reduced.
The novel features of this invention, as well as the invention itself, will be best understood from the attached drawings, taken along with the following description in which similar reference characters refer to similar parts, and in which: | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a resin-based liquid crystal cell substrate which has a polarizing function, is excellent in heat resistance, moisture resistance, gas barrier properties, durability, etc., can be extremely thin and lightweight, and is suitable for user in fabricating liquid crystal displays.
Conventional liquid crystal cells having a polarizing function employ a cell substrate having bonded thereto a polarizing plate. It has been proposed to use in this cell substrate a resin substrate capable of being extremely thin and lightweight in place of glass substrates, which are heavy and fragile, so as to cope with the trend toward display size increase. However, the proposed resin substrate has had problems that it cannot be sufficiently reduced in weight and thickness because the conventional polarizing plate has a five-layer structure formed by bonding a transparent protective film to each side of a polarizer through an adhesive layer and hence has a total thickness of generally 100 xcexcm or larger, and that the resin substrate is difficult to use at a temperature of 100xc2x0 C. or higher because the polarizing plate has insufficient heat resistance.
Accordingly, an object of the present invention is to provide a liquid crystal cell substrate which has a polarizing function, can be extremely thin and lightweight, and is excellent in heat resistance, impact resistance, and quality stability.
The present invention provides a liquid crystal cell substrate comprising a resin substrate and, closely adhered thereon, a gas barrier layer, a crosslinked resin layer, and a polarizing layer, wherein the polarizing layer comprises a coating layer.
According to the present invention, a liquid crystal cell substrate having a polarizing function and high durability can be efficiently produced because an exceedingly thin polarizing layer having excellent heat resistance can be deposited on a resin substrate by coating and because a gas barrier layer and a crosslinked resin layer also can be easily formed. It is excellent in moisture resistance, gas resistance, and impact resistance, can be extremely thin and lightweight, and has excellent heat resistance. With this liquid crystal cell substrate, a liquid crystal cell excellent in the long-term stability of display quality can be fabricated. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to ladies adornments and, more particularly, to a decorative element associated with a brassiere. | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to 3D integrated circuits, and more particularly to structures and methods for suppressing latch-up and noise coupling.
A typical CMOS circuit includes N- and P-type regions arranged to form planar or multi-gate MOS transistors. Regions of opposite conductivity types which are adjacent each other typically form parasitic pn junctions and bipolar transistor structures. While usually reverse-biased, conditions can occur in which these structures become forward biased. When this occurs, a positive feedback loop ensues which provides a low resistance current path from the positive supply voltage to ground, thereby interfering with proper functioning of the circuit and, in serious cases, destroying the chip through heat damage.
FIG. 1 is a schematic diagram showing a typical CMOS arrangement including a PMOS transistor 110 adjacent to an NMOS transistor 112. Such proximity is common in CMOS devices. The PMOS transistor 110 includes two heavily doped P+ diffusion regions 116 and 118 separated laterally by a channel region 120. A gate stack 122 overlies the channel region 120. The two P+ diffusion regions 116 and 118 are formed inside an N-well 124, which is itself an N-doped region formed inside a lightly doped P− substrate 114. Also formed within the N-well 124 is a heavily doped N+ diffusion 125, also called a well tie or a contact pad, for connecting the N-Well 124 to VDD.
The NMOS transistor 112 includes two heavily doped N+ type diffusion regions 126 and 128 separated laterally by a channel region 130. A gate stack 132 overlies the channel region 130. The two N+ diffusion regions 126 and 128 are formed directly in the P− substrate 114. Also formed in the substrate in close proximity to one of the N+ diffusion regions 126 and 128, is a heavily doped P+ diffusion region 135, also called a substrate tie or a contact pad, for connecting the P− substrate 114 to ground.
Other CMOS arrangements are common as well, including those that also include a lightly doped P-well in which the NMOS transistor 112 is formed. The arrangement of FIG. 1 will be illustrative of the latch-up problem, but it will be understood that many other arrangements also suffer from the same problem.
Superimposed on the CMOS diagram of FIG. 1 is a circuit schematic illustrating the bipolar transistors that are formed by the various PN junctions formed by the CMOS arrangement. In particular, a PNP transistor Q1 is formed by one of the P+ diffusions 116 or 118 acting as the emitter E1, the N-well 124 acting as the base B1, and the P− substrate 114 acting as the collector C1. At the same time, the N-well 124 acts as the collector C2 of an NPN transistor Q2, with the P− substrate 114 acting as the base B2, and one of the N+ regions 126 or 128 acting as the emitter E2. The base B1 of the PNP transistor Q1 is connected to the collector C2 of the NPN transistor Q2, and the base of NPN transistor Q2 is connected to the collector C1 of PNP transistor Q1. The base B1 of transistor Q1 is connected to N+ diffusion 125 through the resistance Rw of the N-well 124, and the base B2 of transistor Q2 is connected to P+ diffusion 135 through the substrate resistance Rs.
FIG. 2 is schematic circuit diagram of FIG. 1 rearranged to show it vertically. It can be seen that as long as the two bipolar transistors Q1 and Q2 are not forward biased, current will not flow through the circuit. A number of conditions can trigger latch-up however, including noise, which sometimes can induce sufficient current at the base of one of the transistors for long enough to forward bias the other transistor, thereby starting a feedback loop. Several techniques have been devised for reducing or eliminating latch-up susceptibility, some of which are discussed in Wolf, Silicon Processing for the VLSI Era, Vol. II, Process Integration, pp. 400-419 (1990), incorporated herein by reference.
One common technique for reducing or eliminating latch-up susceptibility is to connect the backside of the substrate to ground. Referring to FIG. 1, if the substrate tie 135 is also connected to ground, it can be seen that this technique provides a low resistance current path in parallel with the substrate resistance Rs, effectively short circuiting it. The base B2 of NPN transistor Q2 therefore is effectively connected to its emitter E2 and the transistor cannot conduct.
FIG. 3 (consisting of FIGS. 3A and 3B) illustrates how the short circuiting of Rs is often accomplished in a typical lead frame package. FIG. 3A is a cross-sectional view of the package showing a die 310, and FIG. 3B is an enlarged topside view of a corner 322 of the structure of FIG. 3A. As shown in FIG. 3A, the die 310 is attached on its back side using an electrically conductive die attach adhesive 312, to a metal lead frame pad 314. The lead frame also includes a number of metal leads 316 that extend out through the epoxy molded packaging material 318 for external electrical connection. Some of the leads 316, for example lead 316A, are connected to the lead frame pad 314 to ground externally of the package, and thereby connect the back side of the die 310 to ground. Others of the leads 316 are connected to various I/O and power pads (324 in FIG. 3B) on the top side of the chip. In addition, FIG. 3B also illustrates that some of the bonding pads 324, for example 324A, are connected (“down-bonded”) directly to the lead frame pad 314 using corresponding bonding wires 320A. These bonding pads 324A are formed on and connect to heavily doped P+ contact pads such as 135 (FIG. 1). Since as previously mentioned the backside of the die is also connected to the lead frame pad 314 through conductive die attach material 312, it can be seen that a very low resistance conductive path is formed electrically connecting the P+ contact pads 135 to the backside of the substrate die 310, thereby short circuiting the substrate resistance Rs (FIG. 1). With Rs short circuited, it becomes much less likely that transient current flow through PNP transistor Q1 can increase the base-collector voltage on NPN transistor Q2 sufficiently to turn it on. As a result, latch-up conditions are less likely.
Recently, as integrated circuit densities have increased, manufacturers have begun developing packaging structures in which two or more dies are stacked on top of each other. Signal and power supply lines from the top surface of one chip are passed through the body of the chip to the one below using through-silicon vias (TSVs). A TSV is a conductive post that extends all the way through the chip, from the topside surface to the backside surface, where it can connect through metal bump contacts to conductors on the topside surface of the below-adjacent chip. The conductor in the TSV is typically copper or another metal such as TiW, and it is typically isolated from the substrate along its entire length by a dielectric or other barrier material. On the topside, ordinary metal interconnects connect the top ends of the TSV conductors to circuit components. The backside surface of the chip is coated with an insulator, such as an oxide, and holes are opened to expose the bottom ends of the TSV conductors. One or more layers of metal interconnects (called RDL (redistribution layer) conductors) are formed on the backside to electrically route signals and power from the bottom ends of the TSV conductors to the positions required for mating with the appropriate bump contacts on the below-adjacent chip. The bottom chip in the stack is connected to external circuitry usually by TSVs connected on the backside to a ball grid array (BGA). The overall stack of chips is sometimes referred to herein as a three-dimensional integrated circuit (3DIC).
3DIC technology poses a number of problems for known techniques for suppressing latch-up. First, because of the difficulties in fabricating very deep TSVs, chip substrates used in 3DICs typically are considerably thinned, from the backside, to a thickness of only around 50 microns. Referring to FIG. 1, it can be seen that a much thinner substrate considerably narrows the current path through the substrate to the P+ substrate contact pads 135, thereby significantly increasing the substrate resistance Rs. Moreover, down-bonding is no longer available to short circuit this current path, since the substrate backside is not connected by die attach adhesive to a below-adjacent lead frame pad. Thus Rs is not short circuited, and the potential for latch-up conditions is significantly higher. Second, in 3DIC's, it is common for TSVs to be used to carry power and signals through a particular chip, from the below-adjacent chip to the above-adjacent chip and vice-versa, without ever having to connect to the chip or chips stacked between them. This is common where, for example, some chips are designed to operate at 1 volt while the chips above and below are operating at 3.3 volts. In this case the TSV might carry a 3.3 volt signal through a 1 volt chip, which can easily induce sufficient currents by capacitive coupling to trigger latch-up in the more sensitive 1 volt chip.
Accordingly, an opportunity arises to create robust solutions to the problem of latch-up susceptibility in 3D integrated circuits. Better chip yields, and denser, and more powerful circuits, components and systems may result. | {
"pile_set_name": "USPTO Backgrounds"
} |
Electron transport in low dimensional structures is both of fundamental scientific interest and increasingly relevant to future advances in electronics. One-dimensional (1D) transport has been investigated with inherent 1D organic chains such as tetrathiafulvene-tetracyanoquinodimethane (TTF-TCNQ), carbon nanotubes, electron channels fabricated by dry etching or squeezed by a split gate in a field-effect transistor (FET), free-standing semiconductor nanowires (NWs) grown by laser ablation or vapor-liquid-solid (VLS) chemical reactions, and metal quantum point contacts formed by connecting two metal electrodes in a scanning tunneling microscope.
Semiconductor NWs along with carbon nanotubes and graphene have been identified as important directions for future electronics as the limits to traditional scaling of Si integrated circuits become more imminent. While nanowire (NW) research is still at an early stage, most efforts are concentrated on NW fabrication and are limited one-by-one assembly. VLS growth has both a variation of NW sizes, as a result of the varying sizes of the metal seeds used to initiate the growth, and a random placement as a result of the random variation in seed positions. For most VLS NWs, the growth is perpendicular to the substrate which makes contacting and organizing the NWs into circuits quite complex. There is increasing interest in integrating InAs or related III-V nanowire materials as the conduction channel in future generations of electronics as a consequence of the high mobility of these materials as compared with silicon. Current integrated circuits (ICs) have upwards of several billion transistors with transverse dimensions today as small as 15 nm, and spaced by about 15- to about 20-nm, so integration of III-V materials using any sort of post growth processing, involving one-by-one assembly of billions of nanowires, is problematic—i.e., the NWs should be grown in place for further processing into devices and circuits. The lattice mismatch between Si and InAs precludes a simple epitaxial solution without a very thick buffer layer, which is not feasible within the current IC scaling paradigm. It is clear that lithographically defined positioning and control of the NW size would be a preferable approach.
Previous work has shown the growth of GaAs NWs horizontally on a GaAs surface. This required a lattice-matched material system such as AlGaAs and was not applicable to technologically important systems such as InAs on Si. The process also required a sacrificial layer such as AlGaAs that could be oxidized after growth to isolate the NW from the substrate, introducing additional strain as a result of the oxidation.
Many groups have reported the growth of InAs NWs vertically from a Si(111) surface. However, this has many of the same issues as the VLS growth in terms of integrating large numbers of 3-terminal transistor devices in a well defined circuit. The Si(111) surface is not suitable for electronic integration which is uniquely available on the Si(001) surface as a result of the properties of the SiO2/Si(001) interface.
In homo- and hetero-epitaxy on a (001)-oriented Si substrate, NWs grow in <111> directions that are 35.3°-off from the substrate surface. This causes two major problems in their application to Si and III-V microelectronics; one is the random growth along four available <111> directions on (001) and the other is the fabrication of three-terminal contacts (source, gate, drain) to the NWs. There are eight equivalent <111> directions in silicon, four directed upward from a <100> surface, and four downward.
Meanwhile, tunnel field effect transistors (TFET) are emerging as potential replacements for CMOS transistors with low power consumption (lower dark current than possible with CMOS thermionic emission processes) with high on-currents. The most recent comparison of a 16-nm low-power Si FinFET CMOS (gate length 34 nm) with reported TFETs in both experiment and simulation are available from a recent review article. Although several TFETs with different materials and fabrication technologies have been reported, most of them are incompatible with future Si nanoelectronics as a result of degraded material qualities, complicated processing, and/or a substrate orientation incompatible with Si(001).
In principle, complementary TFET devices are feasible with an identical material by controlling either electrons or holes to tunnel at the reverse biased p-n junction or p-i-n structure with gate bias polarity. Because of the different effective masses and mobilities depending on carrier type, however, comparable performances for both p- and n-TFET from the same material that can outperform Si CMOS has yet to be achieved. 2-dimensional materials such as graphene and transition-metal dichalcogenides such as MoS2 need further study for industrial applications.
InxGa1-xAs and GexSn1-x nanowires have been proposed for n- and p-TFET respectively with the best performances demonstrated to date. They satisfy small direct bandgap and carrier effective mass for high tunneling probability and low resistance channel to increase on-state current, which are the primary conditions of complementary (C-) TFET to compete with Si CMOS. However, in previous studies they were grown separately on InP and Ge substrates, respectively, and cannot be accommodated into a single substrate and as a result cannot be integrated into Si CMOS microelectronics which exclusively uses Si(001) substrates. The reported TFETs had a conventional FET structure and were fabricated with standard FET processes.
Thus, a process and devices that overcome the problems described above would be a welcome addition to the art. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Field of the Invention
The present invention relates to a technology for performing a sheet folding operation by conveying a recording medium through a plurality of conveying paths.
2. Description of the Related Art
Japanese Utility Model Application Laid-open No. S62-68973 and Japanese Patent Application Laid-open No. H04-64577 disclose a sheet folding device that performs a folding operation such as an operation of folding a recording medium (hereinafter, “sheet”) in a Z fold. In such a sheet folding device, when a sheet is conveyed in a first conveying path toward a pair of folding rollers, the leading end of the sheet is brought into contact with a first stopper in the first conveying path, so that a portion of the sheet is bent by the first stopper. The bending portion is then conveyed between the folding rollers whereby a first folding operation is performed on the sheet to fold the sheet. The folded sheet is then conveyed toward a second stopper in a second conveying path, and the same process as in the first conveying path is performed in the second conveying path, so that a second folding operation is performed on the sheet to fold the sheet again. Each of the first conveying path and the second conveying path is formed by guide plates arranged on opposite sides of the sheet in a thickness direction.
However, in the sheet folding device described above, a space between the guide plates in the first conveying path is the same as that in the second conveying path, and the size of the space is not particularly specified for each of the first conveying path and the second conveying path. When the above folding operation is performed on a sheet, the sheet passing through each of the conveying paths has a different thickness, and every time the folding operation is performed on the sheet, the thickness of the sheet is increased. Specifically, the sheet passing through the first conveying path has the thickness of the original sheet because the folding operation has not been performed on the sheet yet. The sheet passing through the second conveying path has the thickness of double the original sheet because the sheet has been folded. Thus, because the thickness of the sheet is increased after the folding operation, a problem can occur if the space between the guide plates is the same in the first conveying path and the second conveying path. If the space between the guide plates is larger than the thickness of the sheet, it is difficult to convey the sheet in a stable manner or to fold the sheet at an appropriate position. On the other hand, if the space between the guide plates is smaller than the thickness of the sheet, friction between the sheet and the guide plates is increased, and therefore the sheet can be easily jammed between the guide plates.
Japanese Patent Application Laid-open No. 2002-332159 discloses a sheet folding device in which a sheet can be folded at an appropriate position in a desired manner, and can be conveyed in a conveying path without causing a jam, by setting a space between guide plates arranged downstream of folding rollers larger than that between guide plates arranged upstream of the folding rollers.
However, some sheet folding devices include a plurality of conveying paths and a plurality of pairs of folding rollers, and perform different folding operations (single fold, Z fold, outside triple fold, inside triple fold, simple quadruple fold, and gate fold) based on sheet folding modes by using different combinations of the conveying paths. In some sheet folding modes (folding operations), the thickness of a sheet conveyed through a conveying path arranged upstream of the folding rollers is the same as that in a conveying path arranged downstream of the folding rollers. In other sheet folding modes, however, the thickness of a sheet is changed (increased) when the sheet is conveyed from the conveying path arranged upstream of the folding rollers to the conveying path arranged downstream of the folding rollers. Therefore, even if the space between the guide plates arranged downstream of the folding rollers is larger than that between the guide plates arranged upstream of the folding rollers as disclosed in Japanese Patent Application Laid-open No. 2002-332159, it is difficult to convey a sheet in a smooth manner. | {
"pile_set_name": "USPTO Backgrounds"
} |
The sessile nature of plant life generates a constant exposure to environmental factors that exert positive and negative effects on its growth and development. One of the major impediments facing modem agriculture is adverse environmental conditions. One important factor which causes significant crop loss is heat stress. Temperature stress greatly reduces grain yield in many cereal crops such as maize, wheat, and barley. Yield decreases due to heat stress range from 7 to 35% in the cereals of world-wide importance.
A number of studies have identified likely physiological consequences of heat stress. Early work by Hunter et al. (1977) using growth chamber conditions showed that temperature decreased the duration of grain filling in maize. Similar results in which the duration of grain filling was adversely altered by increased temperatures were identified by Tollenaar and Bruulsema (1988). Badu-Apraku et al. (1983) measured a marked reduction in the yield of maize plants grown under the day/night temperature regime of 35/15° C. compared to growth in a 25/15° C. temperature regime. Reduced yields due to increased temperatures is also supported by historical as well as climatological studies (Thompson 1986; Thompson 1975; Chang 1981; Conroy et al., 1994). That the physiological processes of the developing seed are adversely affected by heat stress is evident from studies using an in vitro kernel culture system (Jones et al., 1981; Jones et al., 1984; Cheikh et al., 1995). Maize kernels cultured at the above-optimum temperature of 35° C. exhibited a dramatic reduction in weight.
Work with wheat identified the loss of soluble starch synthase (SSS) activity as a hallmark of the wheat endosperm's response to heat stress (Hawker et al., 1993; Denyer et al., 1994; Jenner 1994). Additional studies with SSS of wheat endosperm show that it is heat labile (Rijven 1986; Keeling et al., 1993; Jenner et al., 1995).
ADP glucose pyrophosphorylase (AGP) is another important starch biosynthesis enzyme in plants. AGP catalyzes the conversion of ATP and α-glucose-1-phosphate to ADP-glucose and pyrophosphate. ADP-glucose is used as a glycosyl donor in starch biosynthesis by plants and in glycogen biosynthesis by bacteria. The importance of ADP-glucose pyrophosphorylase as a key enzyme in the regulation of starch biosynthesis was noted in the study of starch deficient mutants of maize (Zea mays) endosperm (Tsai et al., 1966; Dickinson et al., 1969). Biochemical and genetic evidence has identified AGP as a key enzyme in starch biosynthesis in higher plants and glycogen biosynthesis in E. coli (Preiss et al., 1994; Preiss et al., 1996). AGP catalyzes what is viewed as the initial step in the starch biosynthetic pathway with the product of the reaction being the activated glucosyl donor, ADP glucose. This is utilized by starch synthase for extension of the polysaccharide polymer (reviewed in Hannah 1996).
Initial studies with potato AGP showed that expression in E. coli yielded an enzyme with allosteric and kinetic properties very similar to the native tuber enzyme (Iglesias et al., 1993; Ballicora et al., 1995). Greene et al. (1996a, 1996b) showed the usefulness of the bacterial expression system in their structure-function studies with the potato AGP. Multiple mutations important in mapping allosteric and substrate binding sites have been identified (Okita et al., 1996).
AGP enzymes have been isolated from both bacteria and plants. Bacterial AGP consists of a homotetramer, whereas plant AGP from photosynthetic and non-photosynthetic tissues is a heterotetramer composed of two different subunits. The plant enzyme is encoded by two different genes, with one subunit being larger than the other. This feature has been noted in a number of plants. The AGP subunits in spinach leaf have molecular weights of 54 kDa and 51 kDa, as estimated by SDS-PAGE. Both subunits are immunoreactive with antibody raised against purified AGP from spinach leaves (Copeland et al., 1981; Morell et al., 1988). Immunological analysis using antiserum prepared against the small and large subunits of spinach leaf showed that potato tuber AGP is also encoded by two genes (Okita et al., 1990, supra). The cDNA clones of the two subunits of potato tuber (50 and 51 kDa) have also been isolated and sequenced (Muller-Rober et al., 1990; Nakata et al., 1991). The large subunit of potato tuber AGP is heat stable (Nakata et al., 1991, supra).
As Hannah and Nelson (1975, 1976) postulated, both Shrunken-2 (Sh2) (Bhave et al., 1990) and Brittle-2 (Bt2) (Bae et al., 1990) are structural genes of maize endosperm ADP-glucose pyrophosphorylase. Sh2 and Bt2 encode the large subunit and small subunit Of the enzyme, respectively. Based on cDNA sequencing, Sh2 and Bt2 proteins have predicted molecular weight of 57,179 Da (Shaw et al., 1992) and 52,224 Da, respectively. The endosperm is the site of most starch deposition during kernel development in maize. Sh2 and Bt2 maize endosperm mutants have greatly reduced starch levels corresponding to deficient levels of AGP activity. Mutations of either gene have been shown to reduce AGP activity by about 95% (Tsai and Nelson, 1966, supra; Dickinson and Preiss, 1969, supra). Furthermore, it has been observed that enzymatic activities increase with the dosage of functional wild type (wt) Sh2 and Bt2 alleles, whereas mutant enzymes have altered kinetic properties. AGP is the rate limiting step in starch biosynthesis in plants. Stark et al. (1992) placed a mutant form of E. coli AGP in potato tuber and obtained a 35% increase in starch content.
The cloning and characterization of the genes encoding the AGP enzyme subunits have been reported for various plants. These include Sh2 cDNA (Bhave et al., 1990, supra), Sh2 genomic DNA (Shaw et al., 1992, supra), and Bt2 cDNA (Bae et al., 1990, supra) from maize; small subunit cDNA (Anderson et al., 1989) and genomic DNA (Anderson et al., 1991) from rice; and small and large subunit cDNAs from spinach leaf (Morell et al., 1988, supra) and potato tuber (Muller-Rober et al., 1990, supra; Nakata et al., 1991, supra). In addition, cDNA clones have been isolated from wheat endosperm and leaf tissue (Olive et al., 1989) and Arabidopsis thaliana leaf (Lin et al., 1988). AGP sequences from barley have also been described in Ainsworth et al. (1995).
AGP has been found to function as an allosteric enzyme in all tissues and organisms investigated to date. The allosteric properties of AGP were first shown to be important in E. coli. A glycogen-overproducing E. coli mutant was isolated and the mutation mapped to the structural gene for AGP, designated as glyC. The mutant E. coli, known as glyC-16, was shown to be more sensitive to the activator, fructose 1,6 bisphosphate, and less sensitive to the inhibitor, cAMP (Preiss 1984). Although plant AGP's are also allosteric, they respond to different effector molecules than bacterial AGP's. In plants, 3-phosphoglyceric acid (3-PGA) functions as an activator while phosphate (PO4) serves as an inhibitor (Dickinson and Preiss, 1969, supra).
Using an in vivo mutagenesis system created by the Ac-mediated excision of a Ds transposable element fortuitously located close to a known activator binding site, Giroux et al. (1996) were able to generate site-specific mutants in a functionally important region of maize endosperm AGP. One mutant, Rev6, contained a tyrosine-serine insert in the large subunit of AGP and conditioned a 11-18% increase in seed weight. Published international patent applications WO 99/58698 and WO 98/22601 and issued U.S. Pat. No. 6,069,300 disclose mutations in the large subunit of maize AGP enzyme that, when expressed, confer increased heat stability to the enzyme in comparison to that observed for wild type AGP enzyme. In addition, published international application WO 01/64928 teaches that various characteristics, such as seed number, plant biomass, Harvest Index etc., can be increased in plants transformed with a polynucleotide encoding a large subunit of maize AGP containing the Rev6 mutation.
Ou-Lee and Setter (1985) examined the effects of temperature on the apical or tip regions of maize ears. With elevated temperatures, AGP activity was lower in apical kernels when compared to basal kernels during the time of intense starch deposition. In contrast, in kernels developed at normal temperatures, AGP activity was similar in apical and basal kernels during this period. However, starch synthase activity during this period was not differentially affected in apical and basal kernels. Further, heat-treated apical kernels exhibited an increase in starch synthase activity over control. This was not observed with AGP activity. Singletary et al. (1993, 1994) using an in vitro culture system quantified the effect of various temperatures during the grain fill period. Seed weight decreased steadily as temperature increased from 22-36° C. A role for AGP in yield loss is also supported by work from Duke and Doehlert (1996). These researchers showed that transcript levels decreased to a varying degree, but only one enzyme, AGP, showed a marked decrease in activity with the lower transcript levels. They postulated that AGP may have a faster turnover rate than the other enzymes, and hence is more sensitive to changes in transcript levels. More recent work by Wilhelm et al. (1999) also makes a strong argument for AGP's role in yield loss during heat stress. The Wilhelm et al. authors studied seven inbreds over three replications, and through Q10 analysis, showed that AGP was the only enzyme that exhibited lower activity than the control.
Work by Keeling et al. (1993, supra) quantified SSS activity in maize and wheat using Q10 analysis, and showed that SSS is an important control point in the flux of carbon into starch. In vitro biochemical studies with AGP and SSS clearly show that both enzymes of maize are heat labile. Maize endosperm AGP loses 96% of its activity when heated at 57° C. for five minutes (Hannah et al., 1980). This is in contrast to potato AGP which is fully stable at 70° C. (Sowokinos et al., 1982; Okita et al., 1990). Although the small subunits of AGP are highly conserved among a variety of plant species (Hannah et al., 2001), the N-termini of potato tuber and maize endosperm small subunits exhibit sequence differences. Heat inactivation studies with SSS showed that it is also labile at higher temperatures, and kinetic studies determined that the Km value for amylopectin rose exponentially when temperature increased from 25-45° C. (Jenner et al., 1995, supra). | {
"pile_set_name": "USPTO Backgrounds"
} |
The invention relates to a magnetic tape recorder wherein a cassette for the storage of data signals can be placed into operative association with a magnetic head which is capable of data recording and/or playback operation. The magnetic tape contained in the cassette can be moved past the magnetic head with use of a capstan drive energized by a tape drive motor.
Magnetic tape recorders are generally known wherein data are recorded on a magnetic tape contained in a cassette and are read therefrom. A cassette containing a capstan idler and a pivotably disposed dust cover in addition to the reels for the magnetic tape is employed when recording digital data. The cassette is usually pushed into an insertion channel of the magnetic tape recorder in a transverse direction toward the magnetic head. The dust cover is thereby automatically opened. A tape capstan driven by a tape drive motor, and the magnetic head are disposed at the back side of the insertion channel. The tape capstan presses the magnetic tape against the capstan idler in order to drive said tape. The magnetic head contacts the magnetic tape at the working area released by the dust cover in order to record or read the data. Such magnetic tape recorders exhibit a relatively large width that is essentially determined by the length of the cassette. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to composite ceramics having high strength at high temperatures and their production process.
So far, composite or engineering ceramics containing silicon nitride as the matrices and spherical particles, plate-form particles, whiskers or fibers of SiC as dispersion phases have been studied. Proceedings of the 23rd Automotive Technology Coordination Meeting, pp. 199-208 refers to engineering ceramics in which the matrices are formed of reaction sintered silicon nitride and the dispersion phases are made up of SiC fibers. Proceedings of the 1st International Symposium on the Science of Engineering Ceramics, pp. 371-376 describes engineering ceramics in which the matrices are formed of sintered silicon nitride and the dispersion phases are made up of plate-shaped particles of SiC. JP-A-62-12760 discloses engineering ceramics in which the matrices are formed of a Y.sub.2 O.sub.3 -Al.sub.2 O.sub.3 type of silicon nitride and the dispersion phases are made up of SiC fibers and which are compacted by hot-pressing. JP-A-01-243133 sets forth engineering ceramics in which the matrices are formed of rare earth oxide and silicon nitride and the dispersion phases are made up of plate-form particles of SiC.
JP-P-56-51153, on the other hand, refers to a heat-resistant sintered compact comprising o' and SiAlON phases. The term "o' phase" refers to a solid solution in which the solute Al.sub.2 O.sub.3 fits into the solvent Si.sub.2 N.sub.2 O phase. In addition, Journal of American Ceramic Society, Vol. 74, No. 4, pp. 1095-1097 (1990) shows a heat-resistant sintered body made up of an SiO.sub.2 glass phase and Si.sub.3 N.sub.4.
When the matrix of a conventional composite ceramic material is a reaction sintered type of Si.sub.3 N.sub.4, however, some difficulty is involved in packing it completely, so that it is inferior in terms of strength and acid resistance and so cannot be used at a temperature of higher than 1400.degree. C. When the matrix of a composite ceramic material is Si.sub.3 N.sub.4 containing a sintering aid such as rare earth oxides or Al.sub.2 O.sub.3, it cannot again be used at a temperature of higher than 1400.degree. C., because the grain boundary containing these sintering aids is softened, or the eutectic point of the sintering aids and SiO.sub.2 contained in the Si.sub.3 N.sub.4 material is low, so that a liquid phase can be formed, resulting in a drop of its heat resistance.
Even a heat-resistant sintered body made up of the o' and SiAlON phases that are not composite ceramic materials, when containing an Al component, undergoes a drop of its strength at 1400.degree. C. or higher due to the softening of the grain boundary phase, etc. In another heat-resistant sintered body constructed from the SiO.sub.2 glass phase and Si.sub.3 N.sub.4, the SiO.sub.2 glass phase is unstable at high temperatures. Further, these sintered parts that are not composite ceramics can hardly be used as structural material, because they have no microstructure comprising a columnar crystal characteristic of the sintered silicon nitride part and a grain boundary phase and so have low toughness.
Thus, an object of this invention is to provide composite or engineering ceramics that are stable and have a high strength in the temperature range of room temperature to as high as 1600.degree. C. and possess a toughness high-enough to be usable as structural materials and a process for producing them. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention relates to semi-pneumatic tires.
It is known to provide small vehicles such as lawn tractors with relatively small non-driven ground engaging tires. Pressurized tires have been utilized as the tires of lawn vehicles since they easily absorb impact forces and other loads from the ground and therefore have the advantage of offering a good quality ride. However, when these pneumatic tires are used as the relatively small tires of lawn vehicles they can be prone to flats due in part to the small volume of air in the tires and the thin walls of the tire. These pneumatic tires can also be relatively costly to manufacture.
It is also known to provide small vehicles with non-driven tires which are semi-pneumatic since they are relatively inexpensive to manufacture. Semi-pneumatic tires are typically manufactured by extruding a linear section of tire, and then bending the length into the shape of a circle and bonding or otherwise coupling the ends together to form the tire. Before the material of the tire has completely set up or hardened, the tire is placed in a mold, and air is forced through a hole into the interior of the tire. The air forces the walls of the tire to expand outwardly and fill the cavity of the mold, thereby giving the tire its final shape. The hole remains in the tire, allowing air to enter and exit the interior of the tire as the tire flexes during operation over ground contours and operating loads. Semi-pneumatic tires do not have pressurized inner chambers, and therefore rely on the strength of the materials of the tire walls to support a vehicle. Flats, or the loss of air from the tire's interior, are generally not considered a problem with semi-pneumatic tires, since the tire is designed to flex or spring back to its original shape if it happens to become compressed or flattened under a heavy load. Typical semi-pneumatic tires provide generally uniform wall thicknesses. Semi-pneumatic tires with relatively thin walls tend to buckle easily under operating loads, which causes the tire rim to bottom out and cause poor ride quality. Semi-pneumatic tires having relatively thick walls tend to be relatively stiff and retain their shape until a relatively high load is encountered, at which time the walls of the tire tend to buckle abruptly as opposed to gradually. This stiffness and abrupt buckling of thick walled semi-pneumatic tires also tends to create relatively poor ride quality.
It is known to provide agricultural implements such as row crop planters with a wheel or tire which rolls across the ground directly above the newly planted seed to properly compact the soil. Many such tires are semi-pneumatic, and are designed to flex upon contact with the ground. As the tire rolls across the ground, the portion of the tire in contact with the ground flexes or buckles. As the tire continues to roll and rotate, the resiliency of the tire causes the flexed portion to return to its original shape once it is no longer in contact with the ground. As the tire flexes back to its original shape, any soil stuck to the tire will tend to fall off, and therefore the flexing action makes these tires self cleaning. When these tires are compressed due to ground contact, the radially outer wall presses against the radially inner wall. Upstanding nubs are often provided on the interior surface of the inner wall of the tire for helping insure that the interior walls of the tire do not stick together when compressed due to ground contact, and therefore the tire will flex back to its original shape to enhance self cleaning. Furthermore, many such nubs also insure that the compressed outer wall will not flex past center. Flexing past center might prevent the outer wall from flexing back to its original shape. The nubs help keep the outer wall in a flexed shape that will cause the outer wall to flex back to its original shape for self cleaning. These compaction tires are designed to buckle and flex relatively easily and abruptly, and are therefore not designed or well suited for use as tires of a small vehicle such as a riding lawn mower.
Therefore, it would be advantageous to provide a relatively small tire which does not exhibit the problems associated with flats, and which offers a good quality ride when used on vehicles such as small lawn tractors or mowers. It would be advantageous to provide a semi-pneumatic tire that flexes gradually and progressively, and which does not buckle or flex quickly or abruptly. | {
"pile_set_name": "USPTO Backgrounds"
} |
The present invention relates to a method and a device for manufacturing a hologram recording medium and particularly relates to arts for manufacturing a hologram recording medium that is arranged to reproduce different original images when observed from different positions.
Holograms have come to be widely used in applications for preventing counterfeiting of cash vouchers and credit cards. Normally, a region onto which a hologram is to be recorded is set up in a portion of a medium to be subject to counterfeiting prevention, and a hologram of a three-dimensional image, etc., is recorded inside this region.
With many holograms that are currently utilized commercially, an original image is recorded onto a medium in the form of interference fringes by an optical method. That is, a method is employed in which an object that forms an original image is prepared and light from the object and a reference light are guided by a lens or other optical system to a recording surface, coated with a photosensitizing agent, to form interference fringes on the recording surface. Although this optical method requires an optical system of considerably high precision to obtain a clear image, it is the most direct method for obtaining a hologram and is the most widely practiced method in industry.
Meanwhile, methods for preparing a hologram by forming interference fringes on a recording surface by computation using a computer have come to be known recently, and a hologram prepared by such a method is generally referred to as a “computer generated hologram (CGH)” or simply as a “computer hologram.” A computer hologram is obtained by simulating an optical interference fringe generating process on a computer, and an entire process of generating an interference fringe pattern is carried out in the form of computation on the computer. Upon obtaining image data of an interference fringe pattern by such a computation, physical interference fringes are formed on an actual medium based on the image data. As a specific example, a method, with which image data of an interference fringe pattern prepared by a computer are provided to an electron beam printer and physical interference fringes are formed by scanning an electron beam across a medium, has been put to practical use.
With a hologram recording medium, an original image can be recorded three-dimensionally and the original image can be observed from different angles by changing the viewpoint position. Thus, a major characteristic of a hologram recording medium is that a three-dimensional image can be recorded on a flat surface. Also, recently, hologram recording media, with a further characteristic that a completely different original image is reproduced when observed from a different angle, are being utilized commercially. For example, Japanese Patent Laid-open Publication No. 2001-109362A discloses a method that employs a computer generating hologram method to manufacture a hologram recording medium with which different original images can be reproduced by changing the viewpoint position.
As mentioned above, methods for manufacturing a hologram recording medium, with which different original images can be reproduced when observed from different positions, are already as known as conventional arts. However, because the basic principle of the conventional methods is to set up a plurality of regions on a hologram recording surface and record a different original image on each individual region, there is the problem that the reproduced images are lowered in resolution.
For example, the abovementioned Patent Document discloses a method in which a hologram recording surface is partitioned into a plurality of strip-like regions, each strip-like region is associated with one original image among a plurality of mutually different original images, and on a single strip-like region, only the one original image that is associated with the strip-like region is recorded. Specifically, in a case where three original images are to be recorded, a recording method is employed in which a first original image is recorded on a 1st, 4th, 7th, 10th strip-like regions, etc., a second original image is recorded on a 2nd, 5th, 8th, 11th strip-like regions, etc., and a third original image is recorded on a 3rd, 6th, 9th, 12th strip-like regions, etc. In this case, each of the three original images is recorded in the form of interference fringes and by differing the direction of the reference light according to each original image in this process, a specific original image is made to be reproduced upon observation from a specific position.
However with the above example, because, for example, the first original image is recorded only on the 1st, 4th, 7th, 10th strip-like regions, etc., and information on the first original image are left out from the 2nd, 3rd, 5th, 6th, 8th, 9th, 11th, 12th strip-like regions, etc., the resolution of the reproduced image is reduced to ⅓ that of the original. Thus, as long as the principle of recording a different original image on each individual region is employed, the problem of lowering the resolution of the reproduced image occurs. | {
"pile_set_name": "USPTO Backgrounds"
} |
This invention is directed toward method and apparatus improvements for temperature-conditioning workpieces such as elongated thermoplastic parts which are to be subsequently further shaped into molecularly oriented hollow articles such as containers.
In U.S. Pat. No. 3,754,851, a system is disclosed for blowing articles from molded preforms which are brought to orientation temperature in an intermediate conditioning step. In this approach heat is removed from the preform during conditioning and such has become known in the art as a "cool-down" process. It is likewise known to add heat to preforms to bring them up to orientation temperature prior to finish forming as is typically disclosed in U.S. Pat. No. 3,715,109 and other related prior art, and such has become known in the art as a "reheat" process. In high speed, high capacity forming lines utilizing either of these approaches, it is clearly desirable to optimize the temperature-conditioning part of such techniques in order to keep fabricating costs related to this step at an absolute minimum. Thus, it is desirable to process a large number of parts at the same time, to minimize handling and reorienting movement of the distortable parts during conditioning, to provide flexibility of conditioning to accommodate different input temperatures and to expose each part as uniformly and completely as possible to the heat sink to minimize exposure time and complexity of apparatus.
Though the above-mentioned prior art has generally been successful in implementing cool-down and reheat processing, it is deficient in one or more aspects of the temperature-conditioning phase, especially when such conditioning is considered in the environment of a high speed, continuous, large capacity forming line.
Also, with respect to cool-down processes such as disclosed in U.S. Pat. No. 3,754,851, it has been noted that thickness variations in the wall of the thermoplastic preform traceable back to a non-homogeneous melt wherein portions during extrusion are more fluid than others, are carried over into the final molding step and appear as similar variations in the finished article. Such variations adversely affect performance especially when the article is a container such as a bottle intended for holding pressure. This differential thickness occurring in the circumferential direction is most pronounced when the preform is shaped by blowing from an extruded parison (though it occurs to a lesser extent in injection molding), and should be accommodated, especially if blown preforms are to represent a viable path to oriented containers for pressurized applications. | {
"pile_set_name": "USPTO Backgrounds"
} |
1. Technical Field of the Invention
This invention relates generally to electrostatic discharge (ESD) protection and more particularly to ESD protection within a radio frequency integrated circuits.
2. Description of Related Art
As is known, integrated circuits (IC) provide a high degree of functionality in a very small area. Such functionality may include data storage, data processing, radio reception, radio transmission, et cetera. As is also known, integrated circuits include tens-of-thousands to tens-of-millions of transistors (i.e., gates) to implement the desired function or functions. Needless to say, the size of the transistors is very small. For example, a CMOS transistor has a gate oxide thickness of 100 angstroms or less.
As is further known, due to their extremely small size, the gate oxide of CMOS transistors are susceptible to breakdown from static electricity, which is commonly referred to as electrostatic discharge (ESD). If a transistor of an integrated circuit is damaged from ESD while handling of the circuit, the integrated circuit is unusable.
To reduce the risk of damage due to ESD, integrated circuits include ESD protection circuitry. Such ESD protection circuitry includes using silicon-controlled rectifiers (SCR) to clamp ESD voltages and steer related currents away from sensitive transistors, use ESD implanted transistors, which have a higher breakdown voltage, in input/output circuits, use elongated drain structures and larger drain-to-gate spacing, which increase breakdown voltage, and/or other ESD type protection circuitry. While there are numerous ESD protection circuits, none are optimized (i.e., provides desired ESD protection), limit the amount of circuit elements and/or limit the amount of die area, for radio frequency integrated circuits (RFIC).
Therefore, a need exists for a radio frequency integrated circuit ESD protection circuit. | {
"pile_set_name": "USPTO Backgrounds"
} |
Manganese Superoxide Dismutase (MnSOD) is a component of the cellular antioxidant defense mechanism that is necessary for mitochondrial function, cellular energy production and cell viability. Native MnSOD is a mitochondrial protein that is imported from the cytoplasm and localized to the mitochondrial matrix, where it scavenges superoxide free radicals or anions and converts these reactive oxygen species into the benign oxidant, hydrogen peroxide (H2O2), and oxygen. MnSOD is expressed in all cell types and provides an essential function. MnSOD importance was clearly illustrated in mice neonatal offspring containing a homozygous disruption (knockout) of MnSOD gene. These mice develop multisystem, mitochondrial energy-loss pathologies that include cardiomyopathy, neurological and liver dysfunction and exhibit perinatal lethality.
The multisystem energy-loss phenotype in the MnSOD knockout mouse may be due to an adverse accumulation of superoxide free radicals within the mitochondria upon the onset of an aerobic environment, causing loss of the ATP-synthesizing capacity of mitochondria and either initiating premature cell death by necrosis or initiating the mitochondrial membrane permeability transition, causing release of mitochondrial pro-apoptotic proteins from the mitochondria due to depolarization of the mitochondrial membrane. The homozygous MnSOD knock-out serves as a proof-of-principle for complete loss of MnSOD function. Adverse accumulation of superoxide will result in spontaneous dismutation of superoxide into hydrogen peroxide, which is normally a benign oxidant unless in the presence of a transition metal and initiation of Fenton-type chemistry to generate reactive oxygen species similar to hydroxyl free radicals.
Research has shown that the MnSOD gene can express a splice isoform (isoMnSOD) during stress conditions that expresses a pro-oxidant form instead of the normal antioxidant activity of the normal MnSOD (Anziano, et al., Pediatrics Research, 47; 2000). IsoMnSOD is also described in WO 99/43697. MnSOD alternative splicing is inducible and depends on the deregulation of the normal MnSOD splicing pathway. Alternative splicing of the MnSOD RNA removes coding Exon 3, and fuses in-frame flanking Exons 2 and 4. The isoMnSOD protein is internally deleted for key alpha helical domain that serves in the parent MnSOD as a portal for the selective entry of superoxide anions into the MnSOD metal pocket. IsoMnSOD does not exhibit antioxidant, dismutase activity as the parent MnSOD, but exhibits in vitro a gain-of-function peroxidative activity that generates reactive oxygen free radicals from hydrogen peroxide (H2O2). In vivo, isoMnSOD initiates lipid peroxidation within the mitochondrial membrane and it causes modification of target proteins by oxidative stress markers such as the reactive lipid byproduct, 4-hydroxynonenal (HNE).
In addition, stress from internal factors (e.g. diseases) a cell's and organism's viability can be impaired by outside influences such as, for example, drugs. Although the pharmacological properties of drugs or potential drugs are well understood, companies still spend billions of dollars a year on candidates that fail during preclinical and clinical trials due to unforeseen drug toxicity. Current methods for predicting whether a drug will be toxic in an individual have not been particularly effective because there are few useful markers of drug-induced toxicity that would indicate whether a drug is worthwhile pursuing.
Additionally, there are numerous drugs that are used today whose effectiveness is diminished because of toxicity that is caused by toxicity of the drugs, thereby limiting the useful dosage. Some of the toxicity that is caused by the drugs can be related to mitochondrial damage and, therefore, if the toxic event can be prevented it should enhance the effectiveness of the compounds.
In view of the above evidence, there is a need to identify modulators of isoMnSOD activity so that one can control the effects of isoMnSOD expression. There is also a need to identify compounds that can be used to reduce or prevent drug-induced toxicity. There are further needs for assays and methods that can be used to predict if a composition will cause drug-induced toxicity in an individual or a cell. The present invention helps to fulfill these needs as well as others. | {
"pile_set_name": "USPTO Backgrounds"
} |
Gruber (U.S. Pat. No. 4,912,092) described prophylactic administration of AICA riboside compounds, including analogs and prodrugs thereof, to prevent tissue damage associated with undesired decreased blood flow. The AICA riboside compounds are administered in amounts between 0.1 and 500 mg/kg/day. AICA riboside's prodrugs, including those set forth in the commonly assigned U.S. Pat. No. 5,082,829, entitled “AICA Riboside Prodrugs,” U.S. application Ser. No. 07/408,107, filed Sep. 15, 1989, entitled “Methods and Compounds for AICA Riboside Delivery and for Lowering Blood Glucose,” and U.S. application Ser. No. 07/466,979, filed Jan. 18, 1990, entitled “Method and Compounds for AICA Riboside Delivery and for Lowering Blood Glucose,” all of which are incorporated herein in their entireties by this reference, may also be administered. Certain prodrugs of AICA riboside are defined therein, and generally are compounds which, when introduced into the body, will metabolize into AICA riboside or an active metabolite, for example, AICA riboside monophosphate. Other prodrugs include mono-, di- and tri-5′ phosphates of AICA riboside.
Adenosine, 9-β-D-ribofuranosyladenine (the nucleoside of the purine adenine), belongs to the class of biochemicals termed purine nucleosides and is a key biochemical cell regulatory molecule, as described by Fox and Kelly in the Annual Reviews of Biochemistry, Vol. 47, p. 635, 1978. It interacts with a wide variety of cell types and is responsible for a myriad of biological effects. For instance, adenosine is a potent vasodilator, an inhibitor of immune cell function, and can at certain levels enhance activation of mast cells, is an inhibitor of granulocyte oxygen-free radial production, is anti-arrhythmic, and is an inhibitory neurotransmitter. Considering its broad spectrum of biological activity, considerable effort has been aimed at establishing practical therapeutic uses for adenosine and its analogs.
Since adenosine is thought to act at the level of the cell plasma membrane by binding to receptors anchored in the membrane, past work has included attempts to increase extracellular levels of adenosine by administration of it into the blood stream. Unfortunately, adenosine is toxic at concentrations that have to be administered to a patient to maintain an efficacious extracellular therapeutic level, and the administration of adenosine alone is therefore of limited therapeutic use. Further, adenosine receptors are subject to negative feedback control following exposure to adenosine, including down-regulation of the receptors.
Other ways of achieving the effect of a high local extracellular level of adenosine exist and have also been studied. They include: (a) interference with the uptake of adenosine with reagents that specifically block adenosine transport, as described by Paterson et al., in the Annals of the New York Academy of Sciences, Vol. 255, p. 402 (1975); (b) prevention of the degradation of adenosine, as described by Carson and Seegmiller in The Journal of Clinical Investigation Vol. 57, p. 274 (1976); and (c) the use of analogs of adenosine constructed to bind to adenosine cell plasma membrane receptors.
There are a large repertoire of chemicals that can inhibit the cellular uptake of adenosine. Some do so specifically and are essentially competitive inhibitors of adenosine uptake, and others inhibit nonspecifically. P-Nitrobenzylthionosine appears to be a competitive inhibitor, while dipyridamole and a variety of other chemicals, including colchicine, phenethylalcohol and papaverine inhibit uptake nonspecifically.
Extracellular levels of adenosine can be increased by the use of chemicals that inhibit enzymatic degradation of adenosine. Previous work has focused on identifying inhibitors of adenosine deaminase, which participates in the conversion of adenosine to inosine. Adenosine deaminase activity is inhibited by coformycin, 2′-deoxycoformycin, and erythro 9-(2-hydroxy-3-nonyl) adenine hydrochloride.
A number of adenosine receptor agonists and antagonists have been generated having structural modifications in the purine ring, alterations in substituent groups attached to the purine ring, and modifications or alterations in the site of attachment of the carbohydrate moiety. Halogenated adenosine derivatives appear to have been the most promising as agonist or antagonist and, as described by Wolff et al. in the Journal of Biological Chemistry, Vol. 252, p. 681, 1977, exert biological effects in experimental systems similar to those caused by adenosine.
Although all three techniques discussed above may have advantages over the use of adenosine alone, they have several disadvantages, the major disadvantages being that they rely on chemicals that have adverse therapeutic side effects, primarily due to the fact that they must be administered in doses that are toxic, and that they affect nonselectively most cell types. As described in Purine Metalolism in Man, (eds. De Bruyn, Simmonds and Muller), Plenum Press, New York, 1984, most cells in the body carry receptors for adenosine. Consequently, the use of techniques that increase adenosine levels generally throughout the body can cause unwanted, dramatic changes in normal cellular physiology.
With respect to post ischemic myocardial tissue and adenosine, it is stated in Swain, J. L., J. J. Hines, R. L. Sabina, and E. W. Holmes, Circulation Research 51:102-105 (1982), and in Holmes et al., U.S. Pat. No. 4,575,498 (issued Mar. 11, 1986), that adenosine concentration and blood flow are not altered in ischemic canine hearts exposed to the purine nucleoside 5-amino-4-imidazolecarboxamide riboside (AICA riboside). They also state that depletion of purine nucleotide pools, especially adenosine triphosphate (ATP), has been postulated to play a role in such dysfunction following, e.g., an ischemic event, and claim to have demonstrated an enhanced nucleotide synthesis and concomitant repletion of ATP pools by treating post-ischemic myocardium with the purine analog AICA riboside, stating that repletion of ATP pools should, in theory, enable the amelioration of tissue damage.
Several other groups of investigators, however, have published studies in which they were unable to demonstrate an enhanced repletion of ATP pools in ischemic tissue by the method of Swain et al., supra. Mentzer, R. M., Ely, S. W., Lasley, R. D., Lee, B. K. and Berne, R. M., Fed. Proc. 43:903 (1984); Mitsos, S. E., S. R. Jolly and B. R. Lucchesi, Pharmacology 31:121-131 (1985); Hoffmeister, H. M., Nienaber, C., Mauser, M. and Schaper, W. E., Basic Research in Cardiology 80:445-458 (1985); Mauser, M., H. M. Hoffmeister, C. Nienaber, and W. E. Schaper, Circul. Res. 56:220-230 (1985). In fact, Hoffmeister et al. demonstrate that ATP repletion by another mechanism does not improve cardiac dysfunction. Even Holmes and Swain have documented that AICA riboside does not effectively reach ATP because of an inhibition of the conversion of inosine monophosphate (IMP) to adenosine monophosphate (AMP). Sabina, R. L., Kernstine, K. H., Boyd, R. L., Holmes, E. W. and Swain, J. L., J. Biol. Chem. 257:10178 (1982); Amidon, T. M., Brazzamano, S., Swain, J. L., Circ. Suppl. 72:357 (1985); Swain, J. L., Hines, J. J., Sabina, R. L., Harburg, O. L. and Holmes, E. W., J. Clin. Invest. 74:1422-1427 (1984). Amidon et al., supra, state that “These results indicate that adenylosuccinate synthetase and/or lyase activities are limiting in isolated hearts and suggest that interventions designed to bypass IMP in AN (Adenine Nucleotide) synthesis might be more advantageous for increasing AN pool size.” Swain et al., supra., (J. Biol. Chem.), also demonstrated that AICA riboside does not consistently alter ATP levels in non-ischemic myocardium.
While Mitsos et al., supra claimed that their study demonstrated that AICA riboside infused intracoronary in high doses protected globally ischemic hearts from the mechanical dysfunction associated with an ischemic insult, Hoffmeister et al., Basic Res. Cardiol. 80:445-458 (1985), showed that on producing a reversible ischemia in dogs by coronary artery occlusion, AICA riboside application did not improve postischemic function and, in fact, worsened it. Swain et al., supra (J. Clin. Invest.) confirms the detrimental effects of high doses of AICA riboside on muscle contractility. Thus, the proposal that the administration of AICA riboside would be of benefit to patients after an ischemic event for repletion of ATP pools does not appear to be valid.
It will be appreciated from the foregoing discussion that a technique that would increase extracellular levels of adenosine or adenosine analogs at specific times during a pathologic event, that would increase these compounds without complex side effects, and which would permit increased adenosine levels to be selectively targeted to cells that would benefit most from them would be of considerable therapeutic use. By way of example, such a technique would be especially useful in the prevention of, or response during, an ischemic event, such as heart attack or stroke, or other event involving an undesired, restricted or decreased blood flow, such as atherosclerosis, for adenosine is a vasodilator and prevents the production of superoxide radicals by granulocytes. Such a technique would also be useful in the prophylactic or affirmative treatment of pathologic states involving increased cellular excitation, such as (1) seizures or epilepsy, (2) arrhythmias, and (3) inflammation due to, for example, arthritis, autoimmune disease, Adult Respiratory Distress Syndrome (ARDS), and granulocyte activation by complement from blood contact with artificial membranes as occurs during dialysis or with heart-lung machines. It would further be useful in the treatment of patients who might have chronic low adenosine such as those suffering from autism, cerebral palsy, insomnia and other neuropsychiatric symptoms, including schizophrenia. The compounds useful in the invention, which include AICA riboside, may be used to accomplish these ends.
Another area of medical importance is the treatment of allergic diseases, which can be accomplished by either preventing mast cells from activating, or by interfering with the mediators of allergic responses which are secreted by mast cells. Mast cell activation can be down-regulated by immunotherapy (allergy shots) or by mast cell stabilizers such as cromalyn sodium, corticosteroids and aminophylline. There are also therapeutic agents which interfere with the products of mast cells such as anti-histamines and adrenergic agents. The mechanism of action of mast cell stabilization is not clearly understood. In the case of aminophylline, it is possible that it acts as an adenosine receptor antagonist. However, agents such as cromalyn sodium and the corticosteroids are not as well understood.
It will be appreciated, therefore, that effective allergy treatment with compounds which will not show any of the side effects of the above-noted compounds, such as drowsiness in the case of the anti-histamines, agitation in the case of adrenergic agents, and Cushing disease symptoms in the case of the corticosteroids, would be of great significance and utility. In contrast to compounds useful in the invention, such as AICA riboside and ribavirin, none of the three known mast cell stabilizers are known or believed to be metabolized in the cell to purine nucleoside triphosphates or purine nucleoside monophosphates.
Gruber (U.S. Pat. No. 5,817,640) described particular therapeutic concentrations of AICA riboside for the prevention of tissue damage associated with decreased blood flow in humans, and the determination of dosages which achieve efficacy while avoiding undesirable side effects. In one aspect, the AICA riboside or a prodrug thereof is administered to a person in an amount, which maintains a blood plasma concentration of AICA riboside for a sufficient time so that the risk of tissue damage is reduced in that person, of from about 1 ug/ml to about 20 ug/ml. In another aspect, the AICA riboside is administered to a person at a dosage of from about 0.01 mg/kg/min to about 2.0 mg/kg/min to reduce the risk of tissue damage. Another aspect features the prevention of tissue damage by administering a total dosage of AICA riboside of from 10 mg/kg to 200 mg/kg.
AICA riboside enters cells and is phosphorylated to AICA riboside monophosphate (“ZMP”), a naturally occurring intermediate in purine biosynthesis. AICA riboside increases extracellular adenosine levels under conditions of net ATP breakdown and, therefore, in light of the cardioprotective and neuroprotective properties of adenosine it may have potential therapeutic uses. However, AICA riboside has a relatively low potency and short half life. Also, we have found that AICA riboside does not cross the blood-brain barrier well and is inefficiently absorbed from the gastrointestinal tract. These characteristics of limited potency, limited oral bioavailability and limited brain penetration decrease its potential for use as a therapeutic agent.
AICA riboside treatment has been reported to have beneficial effects in a number of experimental models of myocardial ischemia. In a dog model, in which pacing induced a profound progressive decline in wall thickening and endocardial blood flow and an increase in ST segment deviation of the intramyocardial EKG, AICA riboside markedly attenuated these changes to maintain contractile function>Young and Mullane, Am. J. Physio., in press (1991)!. In another dog model, in which ischemia was induced by coronary artery occlusion, AICA riboside was reported to be beneficial by significantly decreasing ischemia-induced arrhythmias and improving blood flow to the ischemic region of the myocardium (Gruber et al, Circulation 80 (5): 1400-1410 (1990)). An effect of AICA riboside to increase regional blood flow and maintain contractile function was also reported in a dog model of coronary embolization in which ischemia was induced by administration of microspheres directly into the coronary circulation (Takashima et al, Heart and Vessels 5 (Supplement 4): 41 (1990)). A potential consequence of this reported redistribution in blood flow by AICA riboside was said to be a reduction of infarct size (McAllister et al, Clinical Research 35: 303A (1987)). Treatment with AICA riboside has been reported to have favorable consequences in other experimental models of myocardial ischemia. For instance, Mitsos et al (Pharmacology 31: 121-131 (1985)) reported that AICA riboside improved the recovery of post-ischemic function in the isolated blood-perfused cat heart and Bullough et al. (Jap. J. Pharmacol 52: 85 p (1990)) reported improved recovery in an isolated buffer-perfused guinea pig heart. Thus, AICA riboside has been reported to alleviate ischemia-induced injury to the heart in various experimental models.
AICA riboside has also been reported to protect brain tissue from damage in two different experimental models of cerebral ischemia. In a gerbil model of global ischemia, AICA riboside was reported to prevent the degeneration of hippocampal CA-1 cells, which in control animals were virtually completely destroyed (Phillis and Clough-Helfman, Heart and Vessels 5 (Supplement 4): 36 (1990)). In a rat model of focal ischemia, AICA riboside treatment was reported to provide a significant reduction in infarct size. The protective effects of AICA riboside have also been reported in other models of ischemia, including rat skin flap survival (Qadir et al, Fed Proc. A626 (1988); Salerno et al in Proceedings of 35th Annual Meeting of the Plastic Surgery Research Council, pp. 117-120 (1990)) and gastro-intestinal ischemia-reperfusion injury (Kaminski & Proctor, Circulation Res. 66 (6): 1713-1729 (1990)).
A number of studies suggest that the beneficial effects of AICA riboside can be ascribed, at least in part, to an increase in local levels of adenosine, which has similar cardioprotective (Olafsson et al, Circulation 76: 1135-1145 (1987)) and neuroprotective properties (Dragunow & Faull, Trends in Pharmacol. Sci. 7: 194 (1988); Marangos, Medical Hypothesis 32: 45 (1990)). Evidence for AICA riboside-induced enhancement of adenosine levels is both direct i.e. a consequence of measurement of adenosine itself in both animal and cell culture models (Gruber et al, Circulation 80 (5): 1400-1410 (1990); Barankiewicz et al, Arch. Biochem. Biophys., 283: 377-385, (1990)) and indirect i.e. implicated by reversal of the anti-ischemic properties of AICA riboside by removal of exogenous adenosine using adenosine deaminase (Young & Mullane, Am. J. Physio., in press (1991)). In hearts subjected to ischemia and reperfusion, cellular damage has been, in part, attributed to plugging of the microvessels by neutrophils. Adenosine has been reported to inhibit neutrophil adhesion to coronary endothelial cells and hence neutrophil accumulation (Cronstein et al., J. Clin. Invest. 78: 760-770 (1986)). Consequently, another feature of the adenosine-mediated protective effects of AICA riboside in the heart can be through prevention of neutrophil-dependent tissue injury in some models of ischemia and reperfusion. This is supported by evidence for decreased accumulation of neutrophils in the ischemic region of the heart by AICA riboside (Gruber et al, Circulation 80: 1400-1410 (1990)).
A recognition of the cardioprotective and neuroprotective properties of adenosine have led to attempts to explore the therapeutic use of exogenously administered adenosine itself. However the short half life of adenosine in blood (<10 secs) necessitates the use of high doses and continuous infusions to maintain levels appropriate for most treatments. Adenosine itself causes hypotension, i.e. reduces blood pressure; it is also a negative chronotropic and dromotropic agent, i.e. reduces heart rate and electrical conduction in the heart, respectively. Adenosine would therefore exert marked systemic hemodynamic effects at concentrations that would be required to elicit cardioprotective or neuroprotective properties. These systemic cardiovascular actions are frequently contraindicated in most clinical conditions where adenosine could be useful. In contrast, as a result of its local effects on adenosine levels, AICA riboside administration does not produce such side-effects, even at doses considerably higher than the expected therapeutic levels (Gruber et al; Circulation 80: 1400-1410, (1990); Young & Mullane, Am. J. Physio., in press, (1991)).
Adenosine receptor agonists have also been studied and effects similar to adenosine have been reported in a number of experimental models. (Daly, J. Med. Chem. 25 (3): 197 (1982). Again, because most cell types have adenosine receptors, exogenously administered adenosine agonists exhibit profound actions on a variety of tissues and organs, outside of the target organ, thereby limiting their therapeutic potential.
Other ways of potentially achieving the effect of a high local extracellular level of adenosine have been studied. They include: a) interference with the uptake of adenosine with reagents that specifically block adenosine transport, as described by Paterson et al., in the Annals of the New York Academy of Sciences, Vol. 255, p. 402 (1975); b) prevention of the degradation of adenosine, as described by Carson and Seegmiller in The Journal of Clinical Investigation, Vol. 57, p. 274 (1976); and c) the use of analogs of adenosine constructed to bind to adenosine cell plasma membrane receptors.
There are a repertoire of chemicals that reportedly can inhibit the cellular uptake of adenosine. Some have been reported to do so specifically, and are believed to be essentially competitive inhibitors of adenosine uptake, and others are believed to inhibit nonspecifically. p-nitrobenzylthioinosine appears to be a competitive inhibitor, while dipyridamole and a variety of other chemicals, including colchicine, phenethylalcohol and papaverine appear to inhibit uptake nonspecifically.
U.S. Pat. No. 4,115,641 to Fischer et al. is directed to certain ribofuranosyl derivatives which are said to have cardiac and circulatory-dynamic properties. In particular, Fischer et al. are directed to certain compounds which are said to have intrinsic adenosine-like modes of action as determined by measuring decreased heart rate and blood pressure.
In contrast, AICA riboside and AICA riboside-like compounds lead to enhanced adenosine levels at the specific time and location of a pathological event and thus permit increased adenosine levels to be selectively targeted without the detrimental side effects.
The present invention is directed to AICA riboside analogs which exhibit and, in many cases, improve upon, the positive biological effects of AICA riboside. The novel compounds typically exhibit one or more of the following improvements over AICA riboside: 1) functional benefits at lower doses; 2) more potent adenosine regulating actions; 3) increased half-lives or; 4) increased oral bioavailability and/or brain penetration.
Post-surgical complications are a significant source of morbidity and mortality, and healthcare expenditure.
For cardiac surgery, approximately one million patients undergo such every year, and approximately one in six develops a serious major organ complication relating to the heart, brain, kidney, GI tract and lung (Mangano, et al., 1997, J. Intensive Care Med. 12:148-160). Yet despite numerous advances in monitoring and technique, no drug has been shown to reduce or prevent these complications. The preoccupation has been with bleeding, and drugs are now used to prevent such. However, drugs which inhibit bleeding generally cause thrombosis, and therefore may induce ischemia and irreversible organ injury (Cosgrove, et al., 1992, Ann. Thorac. Surg. 54:1031-36).
For noncardiac surgery, approximately 250 million patients undergo such every year, and approximately four percent develop a serious major organ complication relating to the heart (Mangano, et al., 1990, Anesthesiology 2:153-84; Mangano, et al., 1990 NEJM 323:1781-88). Only one drug has been shown to mitigate injury-atenolol (Mangano, et al., 1996, NEJM 335:1713-20). As well, concerns for bleeding predominate, and drugs preventing thrombosis (anti-platelet, anti-clotting) are virtually contraindicated (Eagle, et al., 1999, JACC 34:1262-1347; Pearson, et al., 1994, Circulation 90:3125-33; Baumgartner, et al., 1994, Johns Hopkins Manual of Surgical Care, Mosby Yearbook, St. Louis).
However, for both cardiac and noncardiac surgery, marked excitotoxic and inflammatory responses occur for days after surgery, if not months after surgery (Silicano and Mangano, 1990, Mechanisms and Therapies. In: Estafanous, ed. Opioids in Anesthesia Butterworth Publishers, pp. 164-178). Such markedly exaggerated responses are associated with platelet and clotting factor activation, which may precipitate thrombosis.
Although recognized as a possibility, such agents are relatively—and in some cases (fibrinolytics), absolutely—contra-indicated because of fear of excessive hemorrhage at the surgical site, as well as at other sites (Eagle, et al., 1999, JACC 34:1262-1347; Pearson, et al., 1994, Circulation 90:3125-3133; Baumgartner, et al., 1994, Johns Hopkins Manual of Surgical Care, Mosby Yearbook, St. Louis). Further, some believe—especially after cardiac surgery—that platelet and clotting factor function are depressed after surgery, so that thrombosis is not an issue (Kestin, et al., 1993, Blood 82:107-117; Khuri, et al., 1992, J. Thorac. Cardiovasc. Surg. 104:94-107). Thus, no effort has been made to investigate the use of anti-clotting agents immediately following surgery.
Finally, Applicants have shown that perioperative events manifest over six to eight months or longer (Mangano, et al. 1992, JAMA 268:233-39); thus, continuation of use of such anti-clotting agents throughout the in-hospital, and then post-discharge course, is rational.
Surgery patients—now numbering 40 million per year in the U.S. alone—are aging nearly twice as rapidly as the overall population. (See, Mangano, et al., 1997, J. Intensive Care Med. 12:148-160).
The current standards of care are unsatisfactory to address this critical problem, and novel approaches are desperately needed to prevent post-surgical complications in our aging population.
The electronic monitoring of the fetal heart rate is an important part of the labor and delivery process for women. In some cases, a deceleration in fetal heart rate, including persistent late decelerations with loss of beat-to-beat variability, nonreassuring variable decelerations associated with loss of beat-to-beat variability, prolonged severe bradycardia, sinusoidal pattern, confirmed loss of beat-to-beat variability not associated with fetal quiescence, medications or severe prematurity, can require emergency intrauterine fetal resuscitation and immediate delivery. (Sweha, et al., 1999. American Family Physician 59 (9):2487-2507; Kripke 1999, American Family Physician 59 (9):2416). There is a need for methods to prevent or reduce adverse effects from these events for the health of the fetus. | {
"pile_set_name": "USPTO Backgrounds"
} |
This disclosure relates generally to equipment utilized and operations performed in conjunction with a subterranean well and, in an example described below, more particularly provides for installation of tubular strings with lines secured thereto in wells.
It would be advantageous to be able to quickly, reliably and economically attach lines to a tubular string as it is being lowered into a well. This would enable the tubular string and the lines to be conveniently installed together, without significantly impeding the installation of either of these. Such an attachment system should also preferably protect the lines during installation. | {
"pile_set_name": "USPTO Backgrounds"
} |
As a cigarette substitute, atomizing electronic cigarettes have occupied a large percentage of the market for smoking substitute products. The improvement of atomizing electronic cigarette technology is a prerequisite for widespread application and acceptance of electronic cigarettes.
At present, the existing atomizing electronic cigarettes still have many problems and shortcomings, for example, poor atomization, large liquid drops in the final atomized smoke, nonuniform smoke caused by different sizes of liquid drops, too much moisture in the smoke, poor mouthfeel, etc. In some conditions, the smoke is at a high temperature because of insufficient cool-down and will cause discomfort.
The above problems cause significant differences between real cigarettes and electronic cigarettes for smokers, which is not conducive for smokers to select electronic cigarettes in place of real ones. | {
"pile_set_name": "USPTO Backgrounds"
} |
A fuel cell, unlike a conventional battery, is an electricity-generating battery and thus does not need to be replaced or recharged. It oxidizes a fuel such as hydrogen or methanol to generate a chemical energy and then converts the chemical energy into an electrical energy. Since a fuel cell is a electricity-generating device of high efficiency facilitating an energy conversion rate of about 60%, it can remarkably reduce the fuel consumption. Furthermore, it is one of the eco-friendly energy sources without generating pollutants. A fuel cell having such advantages can be applied to various fields, especially to a power supply for a transport such as a vehicle and so on.
A fuel cell may be classified into various types based on the kind of an electrolyte and the operation temperature. Among the various types of a fuel cell, a polymer electrolyte membrane fuel cell (PEMFC) is receiving special attention as a future power supply.
A polymer electrolyte membrane fuel cell comprises an anode, a cathode, and a polymer electrolyte membrane therebetween. Hydrogen or gas including hydrogen is generally used as a fuel to be supplied to the anode. Oxygen or gas including oxygen is generally used as an oxidant to be supplied to the cathode. The fuel is oxidized at the anode to create a proton and an electron. The proton is delivered to the cathode through the electrolyte membrane and the electron is delivered to an external circuit. The proton coming through the electrolyte membrane, an electrode from the external circuit, and oxygen are combined at the cathode to create water.
From the viewpoint of the generating efficiency of a fuel cell or the system efficiency, it is required for the electrolyte membrane to have a good cation conductivity under the conditions of high temperature of 100° C. to 300° C. and low humidity of 50% or less.
However, a sufficient amount of moisture needs to be supplied for the conventional electrolyte membrane formed of a polymer having a sulfonic acid group to perform the proton conducting function well. The conventional electrolyte membrane cannot perform the cation conducting function in a satisfactory manner under the condition where moisture is easily evaporated, i.e., high temperature of 100° C. or higher or low humidity of 50% or less.
To solve the aforementioned problem, hetero ring compounds such as imidazole, pyrazole, and benzimidazole are suggested as a cation conductor which can supersede the water. (Journal of The Electrochemical Society, 2007, 154(4), pp. 290-294).
However, the hetero ring compounds, due to their low molecular weight, are volatile materials which cannot be tightly fixed to an electrolyte membrane, and there has not been suggested any method so far to tightly fix the volatile compounds to an electrolyte membrane. | {
"pile_set_name": "USPTO Backgrounds"
} |
Various types of creepers are known in the prior art. However, what has been needed is a creeper for underneath an automobile dashboard including a platform, a pair of wheels having a right wheel and a left wheel, and a vertical support. What has also been needed is for the pair of wheels to be disposed on a bottom surface of the platform proximal the front surface, with each of the right wheel and the left wheel disposed proximal a right surface and a left surface, respectively. Lastly, what has been needed is for the vertical support to be continuously disposed on the bottom surface of the platform from proximal the right surface to proximal the left surface. The platform has a width that substantially conforms to a length of a footwell in a front seat of an automobile. The creeper for underneath an automobile dashboard thus allows a user to secure the vertical support and a section of the platform within a footwell of an automobile so that the user can easily and comfortably perform work under the dashboard of the automobile while lying on the platform. | {
"pile_set_name": "USPTO Backgrounds"
} |
Communication systems including high-speed transceivers are used to communicate data between devices. The data rate requirements of such communication systems continue to increase as technology advances. As a signal is transmitted, an encoding scheme for symbols in the signal may be employed. An example of an encoding scheme is a 2-level PAM (PAM-2) scheme, which is also referred to as a non-return-to-zero (NRZ) scheme. For the NRZ scheme, the signal may include two possible discrete pulse amplitudes. A transmit symbol may have one of two different values (e.g., with normalized amplitude levels of +1 and −1), which may be represented using a single bit. As data rates increase to meet demand for higher data throughput, multi-bit symbols based on various encoding schemes (e.g., PAM-N, where N is an integer greater than two) may be used. For the PAM-4 scheme, the signal may include four possible discrete pulse amplitudes, and a transmit symbol may have one of four different values (e.g., with normalized amplitude levels of −3, −1, +1, and +3), which may be represented using two bits. While using multi-bit symbols based on encoding schemes such as PAM-4 may increase data rates and bandwidth efficiency, testing and measuring PAM-N signals including multi-bit symbols may be challenging and expensive.
Accordingly, it would be desirable and useful to provide an improved way of characterizing devices that transmit multi-bit symbols based on encoding schemes such as PAM-4. | {
"pile_set_name": "USPTO Backgrounds"
} |
Subsets and Splits