text
stringlengths
2
806k
meta
dict
The invention relates to electrical machines which convert electrical energy into mechanical energy, or vice versa, such as electric motors and electric generators. Winding assemblies often include a number of windings which are selectively electrically coupled via manual soldering to one another and/or to a power source associated with the electrical machine. Manual soldering typically increases the time it takes to manufacture a winding assembly, reduces the reliability of the winding assembly, and increases the costs associated with the winding assembly. Winding assemblies also often include electrical conduits which are utilized to form connections between representative structures that need to be electrically coupled. Size and/or performance requirements of the winding assembly may necessitate placement of at least one electrical conduit in an air gap between a rotor and a stator of the electrical machine, resulting in reduced efficiency. The invention provides winding assemblies which substantially alleviate one or more of the above-described and other problems with existing winding assemblies. Each winding assembly of the invention may include a connector scheme having at least one electrical conduit or winding connector that is electrically coupled via a wave solder connection to at least two windings which are not axially adjacent. In one embodiment, the at least one winding connector includes a common connector that electrically couples a common portion of each phase of a poly-phase winding assembly to the corresponding common portion(s) of the other phase(s) of the poly-phase winding assembly. In another embodiment, the at least one winding connector includes at least one phase connector that electrically couples two windings from the same phase. The connector scheme may additionally or alternatively include at least one electrical conduit or power connector that is electrically coupled via a wave solder connection to a single winding, and adapted to be electrically coupled to a power source, preferably via an electrical conduit or power bus. In most embodiments, the winding assembly includes an inner region and an outer region situated radially outward of the inner region. The outer region is the portion of the winding assembly which may be wave soldered during a wave soldering process. Each winding connector and/or power connector is generally situated with respect to the windings such that the portion(s) of the respective connector designed to be wave soldered to the corresponding winding(s) are wave soldered during the wave soldering process, and the remaining portion(s) of the connector are not wave soldered during the wave soldering process. Use of at least some of the aspects of the above-described connector scheme results in a winding assembly that is more efficient to manufacture, less costly, and more reliable than existing winding assemblies. The winding assemblies of the invention provide a number of constructions which allow for minimally sized air gaps even when size and/or performance requirements of the winding assembly would otherwise necessitate placement of at least one electrical conduit in an air gap between a rotor and a stator of the electrical machine. The winding assemblies of the invention include electrical conduits situated adjacent to the air gap instead of in the air gap. In one embodiment, at least one recess is provided near the periphery of a winding assembly to accommodate at least one electrical conduit of the winding assembly. Each recess may extend around any portion of the circumference of the winding assembly (e.g., the entire circumference). Preferably, each recess is sized to accommodate the height and width of the at least one electrical conduit while minimizing the amount of winding elements removed from the winding assembly, such that the at least one electrical conduit does not extend into the air gap of the electrical machine or beyond an outer edge of the winding assembly. In another embodiment, at least one recess is provided inboard of the periphery of a winding assembly to accommodate at least one electrical conduit of the winding assembly. Each recess may extend around any portion of the circumference of the winding assembly (e.g., the entire circumference). Preferably, each recess is sized to accommodate the height and width of the at least one electrical conduit while minimizing the amount of winding elements removed from the winding assembly, such that the at least one electrical conduit does not extend into the air gap of the electrical machine. In another embodiment, magnetically permeable element(s) of the winding assembly extend beyond the edges of the windings adjacent to the air gap towards the corresponding magnetically-coupled elements (e.g., permanent magnets) to decrease the size of the air gap. The magnetically permeable elements preferable extend to accommodate at least the height of any electrical conduit extending beyond the edges of the windings adjacent to the air gap. As is apparent from the above, it is an advantage of the invention to provide new and useful winding assemblies for electrical machines. Other features and advantages of the invention will become apparent by consideration of the detailed description and accompanying drawings.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates generally to techniques for the hyperthermia treatment of living tissue, and more particularly to devices for periodically sweeping a limited skin area of the body with a broad beam of heated high-velocity air pulses in a manner which acts to significantly raise the temperature of an internal region underlying the skin area without excessively heating surface tissue. The interior of the human body has a normal temperature level which is usually said to be 98.6.degree. F. But actually, in the course of each 24-hour period, the body temperature rises above and falls below this nominal value within a 1.8.degree. F. range. Body temperature is determined by the relationship existing between the amount of heat internally generated, which depends on basal metabolism, and the amount of heat escaping from the body. Additional heat is produced as a result of muscular activity, this being dissipated by an increase in radiation, conduction or evaporation from the skin surface and by more rapid and deep breathing. Thus the skin is the interface between the internally heated body and the atmosphere, and is in heat exchange relationship therewith. If the heat produced by a body surpasses heat losses therefrom, this gives rise to fever; but if heat losses exceed heat production, then the body temperature falls below the nominal value, resulting in shivering and hypothermia. Medical practitioners since ancient times have known that the application of heat to the body is useful in the relief of muscle soreness and various aches and pains, as well as in the treatment of certain abnormalities. Thus the application of heat for the treatment of arthritis and other abnormal conditions is commonplace. Hot water bottles and electrical heating pads are in widespread use, not merely to provide warmth, but also to afford a degree of relief or therapy for various conditions. Heat is also used medically in the resolution of infected areas. While the present invention is generally applicable to all abnormal conditions which can be benefited by the application of heat to the surface of the body, it will now be considered in the context of malignant tumor treatment. It is recognized that by heating tumors to a higher temperature than the surrounding tissue, the tumor may be caused to shrink and disappear. As noted in The New York Times of Apr. 14, 1981 (section C2) in an article on modern approaches to cancer treatment, the effectiveness of heat therapy is based on the fact that cancers have poor circulation and a reduced ability to dissipate heat. "Thus a temperature of more than 113 degrees Fahrenheit could destroy cancer cells while sparing normal tissue." Patients with tumors in their arms and legs have been treated by a perfusion therethrough of hot blood, and tumors in bladders have been treated by flushing the organ with hot fluid. It has also been known to immerse patients in hot wax, and in some cases, medical practitioners have gone so far as to elevate the body temperature of patients by infecting them with malaria. These known hyperthermia techniques, as well as those based on the use of microwave, high-frequency radiation and thermoelectric techniques are described in some detail in the patents to Sterzer, U.S. Pat. No. 4,190,053; Gordon, U.S. Pat. No. 4,106,488; Whalley, U.S. Pat. No. 4,121,592; Doss, U.S. Pat. No. 4,016,886; Bender, U.S. Pat. No. 4,186,294, and Ulrich, U.S Pat. No. 3,618,590. Difficulty has heretofore been experienced in applying heat to a patient which is electrically or otherwise generated. When transferring heat through living tissue to a site underlying the skin, if the heat applied to the skin surface is within a tolerable temperature range, then not enough heat energy is transferred to the site to afford beneficial effects. When, however, the skin temperature of the applied heat is such as to bring out an adequate heat transfer to the internal site, when the skin temperature is usually above an acceptable level, and this may result in extreme discomfort to the patient and even to the burning of surface tissue. The same problem is encountered when using high-frequency radio heating; for, as pointed out in the above-identified Whalley patent, in many cases such treatment results in damage to the skin. In my above-identified co-pending application Ser. No. 097,787, now U.S. Pat. No. 4,307,286 apparatus is disclosed whereby cold, pre-cooked packaged meals may be rapidly heated to a service temperature level without causing destructive re-cooking of the meals. To this end, applied to the package is a stream of heated air in a pulsatory thermal wave pattern whose pulses are at a temperature well above the service temperature level and whose intervals between pulses are at a lower temperature. As a result of this thermal wave pattern, heat is transferred from the surface of the food body to the interior thereof during the lower temperature intervals, thereby preventing the surface temperature from rising above the service temperature level, despite the fact that it is subjected to high temperature pulses. In my above-identified copending application Ser. No. 274,504, now U.S. Pat. No. 4,398,535 this pulsatory thermal wave pattern is exploited to carry out heat therapy on patients without injury to surface tissue. In this patent application, use is made of a flexible foam pad applicator having an array of openings therein from which the hot air pulses are simultaneously projected against the skin area where a relatively large skin area is subjected to such hot air pulses. This may result in discomfort to the patient being treated. While the present invention will be described mainly in connection with therapy produced by hyperthermia, the same principles are applicable to hypothermia treatment, in which therapeutic effects are produced by cooling an internal body site.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to a network comprising a plurality of network nodes. Such networks may be installed, for example, in private cars, in industrial automation (for example, sensor systems) and domestic automation (for example, lighting, alarm systems, heating system, air-conditioning system, etc.). In such a network for private cars can be used, for example, the TTP protocol (TTP=Time-Triggered Protocol) known from the journal “Elektronik”, No. 14, 1999, pp. 36 to 43 (Dr. Stefan Blenda, Georg Kroiss: “TTP: “Drive by Wire” in greifbarer Nähe”). This protocol makes a reliable data transmission possible and may therefore also be used in networks concerning safety devices (for example brakes). Said article mentions a bus system as a network structure.
{ "pile_set_name": "USPTO Backgrounds" }
A protective device is described in German Patent Application No. 1 97 46 410.6, in which, in the case of electrostatic discharge (ESD), a vertically arranged transistor diode is switched through by a lateral punch-through effect. In the protective device described there, however, the snap-back voltage, i.e. the minimum voltage which has to be present between collector and emitter after breakdown so that the diode remains switched through, is limited to a value which is predetermined by the thickness of the layer of the semiconductor system's surface area, on which the protective device is mounted.
{ "pile_set_name": "USPTO Backgrounds" }
Corporations are increasingly relying on the use of cellular technology by their employees. In many instances, an enterprise may assign a cellular telephone to an employee and maintain a subscription of the cellular telephone. The enterprise subscription may be tailored to authorized employee usage, e.g., allow or disallow calls at certain times of the day, restrictions of supplementary services or long distance calls, etc. Because of the popularity of cellular services, many employees typically have a personal cellular telephone. Thus, an enterprise employee that has been assigned a corporate cellular telephone may carry multiple cellular telephones which is often considered a nuisance. Often, an employee may prefer the personal handset rather than an employee assigned mobile terminal. However, corporate mobile accounts are typically purchased through a single carrier and thus no contemporary mechanism provides for porting or otherwise using the employee's personal account on the corporate assigned mobile terminal or vice versa. Even if the corporate account and an employee's personal account are managed by a common carrier, no mechanism exists for managing two accounts on a common terminal. Thus, the employee is required to carry the corporate assigned mobile terminal for work-related services and the user's personal mobile terminal for personal communications.
{ "pile_set_name": "USPTO Backgrounds" }
Although some of the methods of joining aluminum bodies of automobiles is spot welding, riveting, etc., there is several problems such that it requires complicate piping structures on a robot (for example, supply and ground of electricity, supply and drain of water, and supply and drain of oil), and causes an undesirable working environment with large noises and electrical sparks, etc. To solve such a problem, there is proposed a spot welding apparatus for example, in German Patent Application Laid-Open DE 197 31 638, International Publications WO 98/04381, WO 01/28732, and WO 01/036144, which carries out a friction stir welding of two over-wrapped work pieces by pressing a high-speed rotating tool against one outer surface of the work pieces. FIG. 7 is a view showing a configuration of a spot welding gun 1, which is a conventional friction stir welding apparatus, utilizing the technologies of the above disclosures. This spot welding gun 1 comprises a rotating tool 3 having a pin 2 at a tip end thereof, and presses the rotating tool 3 against one of work pieces (not shown) while rotating the rotating tool 3 at high speed, and then softens and stirs a joining part of the work pieces with the pin 2 with the frictional heat by rotation, and thus joins the work pieces together. The spot welding gun 1 also comprises a rotational movement drive source 4 for rotating the rotating tool 3 generally oriented downward about an axis-of-rotation L thereof at a high-speed, and a linear movement drive source 5 for linearly moving the rotating tool 3 along the axis-of-rotation L. The rotating tool 3 is fixed to the lower end of a rotational shaft 7 being rotated about the axis-of-rotation L by the rotational movement drive source 4. This rotating tool 3 is limited its linear movement along the axis-of-rotation L, and is held by a header 10 so as to be rotatable about the axis-of-rotation L. Moreover, a pressurizing shaft 6 is provided so as to surround the rotational shaft 7 and the header 10 is fixed to the lower end of this pressurizing shaft 6. An outer peripheral of the pressurizing shaft 6 is formed to be an outer threaded portion onto which a nut member 11 is threadedly engaged. These are implemented by for example, a ball-screw mechanism. As the nut member 11 is rotated by the linear movement drive source 5, the pressurizing shaft 6 moves upward or downward along the axis-of-rotation L. Since the rotating tool 3 is rotatably supported through the header 10 at the lower end of the pressurizing shaft 6, the rotation of the rotational shaft 7 by the rotational movement drive source 4 causes a high-speed rotation of the rotating tool 3 as well as the linear movement. The above mechanism is attached to the main frame 14. To the main frame 14, a gun arm 12 is fixed extending downward from to the main frame 14. The lower portion of the gun arm 12 is bent and a receiving portion 13 which opposes the rotating tool 3 is provided at a tip end of the lower portion. With this configuration, by moving the rotating tool 3 downward while rotating it at a time of welding, work pieces are pinched between the receiving portion 13 and the rotating tool 3 to be applied a pressure force and therefore spot welding is carried out. However, the pressurizing shaft 6 which surrounds the rotational shaft 7 is supported by the main frame 14 through the nut member 11. When the header 10 is pulled up to the uppermost position, since an immediate upper part of the header 10 is supported by the main frame 14, the shaft is stably supported. However, when the pressurizing shaft 6 is lowered, it will be difficult to stably support the rotating tool 3 with high-speed rotation since a distance between the supporting position of the pressurizing shaft 6 and the headers 10 becomes large. Meanwhile, at the time of welding, the work pieces will be pressurized while the distance of the supporting position and the rotating tool 3 becomes large. However, since a pressure force is only transmitted through the hollow pressurizing shaft 6, it is difficult to stably transmit the pressure force with the thin pressurizing shaft. Therefore, in order to ensure stably lowering of the rotating shaft at high rotational speed and positively applying a pressure, it is only necessary to choose a larger diameter for the pressurizing shaft 6. However, using of the larger diameter for the pressurizing shaft 6 will result in a larger ball screw mechanism, pulley, etc., and thus a new problem will arise that the size of the whole apparatus becomes larger.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention pertains to a modular oxygen supply system generally and also to a modular oxygen supply system used onboard airplanes to supply the crew and the passengers with oxygen. An oxygen supply system of modular design for industrial applications has become known from U.S. Pat. No. 5,605,179 entitled xe2x80x9cIntegrated Gas Panel.xe2x80x9d A plurality of modules of such a system are connected in a compact arrangement via gas lines. Oxygen generators, which are used to supply the crew and the passengers with oxygen, have been used onboard airplanes for some time. Also known are oxygen generators that concentrate the oxygen from the ambient air, especially the tapped air of the engine, by means of pressure change adsorption, so that product gas enriched with oxygen is subsequently fed into the breathing air. The prior-art oxygen generators are dimensioned corresponding to the size of the crew and the possible passenger capacity of the particular aircraft model and are permanently installed there. The object of the present invention is to provide a modular oxygen supply system, which can be flexibly adapted to the particular needs of an aircraft. According to the invention, a modular oxygen supply system is provided comprising at least one module skeleton with a baseplate with frames arranged in parallel to one another. The system includes supply lines for ambient air with air connections for taking off the air, first gas lines for oxygen with first gas connections for taking up the oxygen and second gas lines for outgoing air with second gas connections for taking up outgoing air. Rack guides with data lines are provided. At least one individual module can be pushed into the module skeleton. Each individual module has at least one molecular sieve container fastened on a baseplate with the gas connections and with an electric contact. Each individual module has a gas treatment unit for the ambient air fed in. A pressure reducer and a multiple-way valve as well as an oxygen reservoir are arranged downstream of the molecular sieve container or containers connected in parallel. Each individual module is pushed into the module skeleton and is connected via the gas connections to a supply line for the ambient air, to a first gas line for oxygen and to a second gas line for the outgoing air. The electric contact of the individual module is connected to the data line of the module skeleton. A plurality of the individual modules may be arranged in a module skeleton in parallel to one another and at right angles to the supply lines and the first gas lines and the second gas lines of the module skeleton. The gas connections of each of the individual modules and the air connections and the first and second gas connections of the module skeleton may be designed as cooperating plug-in connections. Both the air connection and the gas connections of the module skeleton and the gas connections of each individual module may have a self-sealing design, so that the connections open only when the individual module is pushed into the module skeleton and is connected to same. The electric connection of the electric contact of each individual module to the data line of the module skeleton is designed as an electric plug-in connection. The plug-in connections between the gas-carrying lines of each of the individual modules to those of the module skeleton may also be used for the electric contacting between the electric contact and the data line. One essential advantage of the modular oxygen supply system according to the present invention is the possibility of flexible adaptation of the oxygen supply due to the use of individual modules in a special module skeleton. Thus, the oxygen supply system is adapted to the needs of the aircraft within the framework of the maximum plug-in place capacity, which is predetermined by the module skeleton, by plugging more or fewer individual modules into the module skeleton. When every individual module is plugged into the module skeleton, the necessary connections to the pneumatic and electric lines are established by outlets. Both the electrical and the pneumatic connections are preferably established simultaneously with the plugging-in operation by using combined electric-pneumatic plug-in connections. The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which a preferred embodiment of the invention is illustrated.
{ "pile_set_name": "USPTO Backgrounds" }
Microphone array systems are known and they enable spatial selectivity in the acquisition of acoustic signals, based on using principles of sound propagation and using signal processing techniques. Table-top microphones are commonly used to acquire sounds such as speech from a group of users (speakers) seated around a table and having a conversation. The quality of the acquired sound with the microphone is adversely affected by sound propagation losses from the users to the microphone. One way to reduce the losses in sound propagation is to use a microphone array system. The microphone array system includes, broadly, a plurality of microphone transducers that are arranged in a selected spatial arrangement relative to each other. The system also includes a microphone array interface for converting the microphone output signals into a different form suitable for processing by the computer. The system also includes a computing device such as a computer that receives and processes the microphone transducer output signals and a computer program that includes computer readable instructions, which when executed processes the microphone output signals. The computer, the computer readable instructions when executed, and the microphone array interface form structural and functional modules for the microphone array system. Beamforming is a data processing technique used for processing the microphone transducers' output signals by the computer to favour sound reception from selected locations in a reception space around the microphone array. Beamforming techniques may be broadly classified as either data-independent (fixed) or data-dependent (adaptive) techniques. Apart from sound acquisition enhancement from selected sound source locations in a reception space, a further advantage of microphone array systems is the ability to locate and track prominent sound sources in the reception space. Two common techniques of sound source location are known as the time difference of arrival (TDOA) method and the steered response power (SRP) method, and they can be used either alone or in combination. Applicant believes that the development of prior microphone array systems for speech acquisition has mostly focused on applications for acquiring sound from a single user. Consequently microphone arrays in the form of linear or planar array geometries have been employed. In scenarios having multiple sound sources, such as when a group of speakers are engaged in conversation, e.g. around a table, the sound source location or active speaker position in relation to the microphone array changes. In addition more than one speaker may speak at a given time, producing a significant amount of simultaneous speech from different speakers. In such an environment, the effective acquisition of sound requires beamforming to multiple locations in the reception space around the microphone array. This requires fast processing techniques to enable the sound source location and the beamforming techniques to reduce the risks of sound acquisition losses from any one of the potential sound sources. Also, linear microphone array geometries that are known include limitations associated with the symmetry of their directivity patterns obtained from the microphone array. The problem of beam pattern symmetry is alleviated using microphone arrays having planar geometries. However its maximum directivity lies in its plane which limits its directivity in relation to sound source locations falling outside the plane. Such locations would for example be speakers seated around a table having their mouths elevated relative to the array plane. Clearly therefore it would be advantageous if a contrivance or a method could be devised to at least ameliorate some of the shortcomings of prior microphone array systems as described above.
{ "pile_set_name": "USPTO Backgrounds" }
A wristband in a strip shape having an adhesive applied to a rear surface of its main body which is in a belt shape, and a mount temporarily attached to the main body is conventionally known. When it is in use, both ends of the main body are adhered with each other after peeling off a part of the mount and exposing the adhesive layer so as to wrap it around a wrist or the like in a ring shape. Then, the adhesive layer on the rear surface of one end is adhered to the front surface of the other end. Further, in at least one end portion, a notch portion is formed for preventing re-use or unauthorized use. However, it is cumbersome for a user to wind a wristband that is in an elongate strip shape around a wrist or an ankle, as these are different in size depending on the user, on an appropriate position and in an appropriate size (or diameter). Particularly, it is difficult to ensure a proper form of the adhered wristband when the user winds the wristband by himself/herself alone and its workability is lowered. In addition, there is a problem that, when both ends are adhered to each other, both ends are easily shifted from each other because the wristband itself is elongated. Further, there is also a problem that the above mentioned trouble, of being not able to ensure a proper form because it is cumbersome for the user to wind a wristband in an elongate strip shape around a wrist or an ankle, is likely to occur when both ends of a wristband in a label are adhered to each other. This is because the notch portion is not located at an adhesion portion (an overlapping portion) that is formed on both ends for preventing unauthorized use, and it is difficult to sufficiently fulfill the function of fracture (the function of unauthorized use), if both ends are not accurately, surely and carefully adhered to each other along a predetermined length when both ends of the wristband in a label are adhered. In addition, in a continuous body or strip successively formed of a plurality of wristbands in one piece, each wristband in one piece is separated from other end portion thereof for use. In the wristband configured to be (temporarily) attached with a mount on the rear surface of a band base material, it is needed to peel off a part of the mount from the rear surface of the band base material so as to expose the adhesive layer after the wristband is separated in one piece. There is a problem that it takes time up to the preparation of the wristband in one piece, during which the wristband is actually formed in a ring shape by exposing the adhesive layer from a state of the continuous body of wristbands.
{ "pile_set_name": "USPTO Backgrounds" }
Slag is a by-product of metal production processes conducted in metallurgical furnaces. Although the composition and quantity of slag produced is highly dependent on the specific process, slag typically comprises a mixture of metal oxides with silicon dioxide, and is produced in amounts ranging from roughly 10 percent to several times the amount of metal produced by the process. During metal production, slag is present in the metallurgical furnace in molten form. The temperature of the slag depends on the process, but can be on the order of about 1500-1600 degrees Celsius. Molten slag is periodically tapped from the furnace and is typically allowed to air cool and solidify, with the heat being lost to the environment. Solidified slag can be processed into a number of commercial products, such as concrete blends or fibrous insulation material, but large quantities of slag continue to be discarded as waste. There has been recent interest in the use of granulated slag as a proppant in oil and gas production, or as roofing granules. However, the costs involved in transporting, grinding and/or re-melting solidified slag for the production of such materials can make these uses economically unattractive. In addition, the processes used to convert slag to products such as proppants or roofing granules are not entirely satisfactory, and can result in materials which do not meet one or more product requirements. For example, proppants are required to have specific properties of strength, size, shape and composition. It is difficult to produce slag granules having all the required properties of proppants while preserving the economic benefit of using slag, rather than other starting materials. There remains a need for simple, economically feasible processes for converting slag to commercially viable granular products, and for granular products such as proppants and roofing granules produced by such processes.
{ "pile_set_name": "USPTO Backgrounds" }
1. Technical Field of the Invention This invention generally relates to wireless communications and more particularly to a modular wireless multimedia device operable to support enhanced call functions. 2. Description of Related Art Wireless communications offer users the ability to be “wired” from almost anywhere in the world. Cellular telephones, satellite telephones, wireless local area networks, personal digital assistants (PDAs) with radio frequency (RF) interfaces, laptop computers with RF interfaces and other such devices enable these wireless communications. Such wireless communications have been extended to personal wireless networks, such as these defined by the Bluetooth specification. Not only have cellular telephones become very popular, but Wireless Local Area Networking (WLAN) devices have also proliferated. One standard for wireless networking, which has been widely accepted, is the Specification of the Bluetooth System, v. 1.0 (“Bluetooth Specification”). The Bluetooth Specification enables the creation of small personal area networks (PAN's) where the typical operating range of a device is 10 meters or less, or sometimes up to 100 meters under ideal conditions. In a Bluetooth system, Bluetooth devices sharing a common channel sequence form a piconet. Two or more piconets co-located in the same area, with or without inter-piconet communications, is known as a scatternet. The Bluetooth Specification supports voice communications between Bluetooth enabled devices. When a pair of Bluetooth devices supports voice communication, the voice communications must be wirelessly supported in a continuous fashion so that carried voice signals are of an acceptable quality. One popular use of personal wireless networks couples a wireless headset(s) with cellular telephone(s), personal computer(s), and laptop(s), etc. The Bluetooth Specification provides specific guidelines for providing such wireless headset functionality. Bluetooth provides a headset profile that defines protocols and procedures for implementing a wireless headset to a device private network. Once configured, the headset functions as the device's audio input and output. As further defined by the Bluetooth Specification, the headset must be able to send AT (Attention) commands and receive resulting codes, such that the headset can initiate and terminate calls. The Bluetooth Specification also defines certain headset profile restrictions. These restrictions include an assumption that the ultimate headset is assumed to be the only use case active between the two devices. The transmission of audio is based on continuously variable slope delta (CVSD) modulation. The result is monophonic audio of a quality without perceived audio degradation. Only one audio connection at a time is supported between the headset and audio gateway. The audio gateway controls the synchronous connection orientated (SCO) link establishment and release. The headset directly connects and disconnects the internal audio stream upon SCO link establishment and release. Once the link is established, valid speech exists on the SCO link in both directions. The headset profile offers only basic inoperability such that the handling of multiple calls or enhanced call functions at the audio gateway is not supported. Another limitation relates to the manner which Bluetooth devices service only single channel audio communications. In most cases, the Bluetooth device is simply a replacement for a wired headset. Such a use of the Bluetooth device, while providing benefits in mobility of the user, provides little additional benefit over wired devices. Because other wireless solutions provide many of the benefits that current Bluetooth devices provide in servicing voice communications, the needs for the complexities of the Bluetooth Specification are questioned. Thus, there is a need for improved operations by WLAN devices servicing audio or multimedia communications that provide additional user functionality and improved service quality.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to optical communication equipment and, more specifically, to optical receivers. 2. Description of the Related Art In heterodyne detection, a relatively weak communication signal is mixed with a relatively strong local oscillator (LO) signal having a frequency that is sufficiently close to the frequency of the communication signal to result in coherent phase interference. Due to said interference, the communication and LO signals mix to produce an intermediate-frequency (IF) signal. The IF signal carries the same information as the communication signal, but has a frequency that is equal to the frequency difference between the communication and LO signals. The power of the IF signal is proportional to the product of the amplitudes of the communication and LO signals. Therefore, when the amplitude of the local oscillator signal exceeds the amplitude of the communication signal, heterodyne detection provides signal amplification with respect to direct detection of the communication signal. FIG. 1 shows a block diagram of a representative prior-art optical heterodyne receiver 100 having an optical-to-electrical (O/E) signal converter 130 coupled to a signal decoder 140. An optical communication signal 102 applied to O/E converter 130 and a continuous-wave LO signal 106 generated by a local oscillator (e.g., a laser) 104 are mixed in an optical coupler 108 to produce two mixed signals 110a and 110b preferably having a relative phase shift of 180 degrees. Each of mixed signals 110a-b includes an IF component as well as additional components at the frequencies corresponding to the wavelengths of signals 102 and 106. Each of mixed signals 110a-b is detected by a corresponding photo-detector (e.g., a photodiode) 112, which, due to its bandwidth limitations, also serves as a low-pass filter. As a result, the additional components are filtered out by photo-detectors 112a-b, and electrical signals 114a-b generated by the photo-detectors represent the IF components of mixed signals 110a-b, respectively. Each of signals 114a-b is coupled, via an amplifier 116 and a variable attenuator 118, to a corresponding input of a differential amplifier 120. Amplifiers 116 and variable attenuators 118 serve to balance signals 114a-b such that these signals have equal amplitudes at the inputs of differential amplifier 120. Signal 122 generated by differential amplifier 120 is then processed in signal decoder 140 to recover the data carried by communication signal 102. Signal decoder 140 is adapted to (i) sample signal 122 one time per signaling interval, (ii) based on the signal sample, determine the value of a corresponding communication data bit, and (iii) output the determined value into a bit stream 162. A more detailed description of receiver 100 is provided in U.S. Pat. No. 4,718,121 , the teachings of which are incorporated herein by reference. When used in a wavelength-division multiplexing (WDM) communication system, receiver 100 locks onto a selected WDM channel by appropriately tuning the output wavelength of local oscillator 104. Local oscillator 104 is typically a distributed-feedback (DFB) laser controlled by temperature and/or injection current. Currently, DFB lasers are capable of reproducing a selected wavelength with an accuracy of only about 0.01 to 0.1 nm. Due to wavelength errors inherent to DFB lasers, the LO frequency deviates from the value prescribed for the selected WDM channel and some additional fine wavelength tuning of the DFB laser is usually required to better reproduce the selected wavelength and reduce the number of decoding errors in signal decoder 140 induced by the initial wavelength error. The dashed line in FIG. 1 indicates a feedback line that enables this fine wavelength tuning. Disadvantageously, the fine wavelength tuning significantly increases the channel-switching time in a WDM receiver.
{ "pile_set_name": "USPTO Backgrounds" }
Unless otherwise indicated herein, the description in this section is not prior art to the claims in this application and is not admitted to be prior art by inclusion in this section. Recently, in association with performance improvement and image quality improvement of a video camera and a smart phone, still image data extractable from moving image data has been created. A technique based on such situation that extracts desired still images from moving image data to ensure creating an album and the like has also been proposed. For example, a technique that grasps a change in a capture situation of moving image data from a variation characteristic of a feature value included in a frame image of the moving image data and selects and displays this frame image indicating the change has been proposed. Meanwhile, there has been also proposed a technique that determines a count of frame image data to create a still image based on an amount of motion detected from each frame image to create a high-resolution still image based on data of a plurality of frame images constituting a moving image. This technique ensures reducing a processing load in addition to creating the still image from the moving image with an appropriate image quality.
{ "pile_set_name": "USPTO Backgrounds" }
Discrete signals or functions, such as image histograms or discrete digital information signals, for example, are comprised of a series of discrete components or values. Each discrete component of a discrete signal represents a specific segment of data or data value associated with the discrete signal. Therefore, each discrete component contained in the discrete signal is used to convey different information or data represented within the discrete signal. In particular, peaks or informational peaks contained within discrete signals are generally used to convey different information or types of information. For instance, the informational peaks may be used to classify a particular discrete signal as conveying a particular type of information or data. Alternately, the informational peaks themselves may convey a particular type of information or data. In operation, however, discrete signals may become distorted due to noise interference or other interference (e.g., electrical, magnetic, spectral, etc.), which results in the distortion of the discrete signal. Such interference can result in a series of interference induced spikes, also referred to as "false peaks", being introduced into the discrete signal which are attributable to the interference. As such, the interference induced spikes or "false peaks" may convey false information or data as a result of the interference. In such applications, such as image processing for example, the interference induced spikes or "false peaks" introduced in a representative discrete signal (e.g., image histogram) may result in the erroneous classification or processing of an image. Therefore, the interference induced spikes may convey false information regarding the type of data contained within the discrete signal. It is therefore desirable to provide a technique for determining the valid informational peaks contained within a discrete signal from any interference induced spikes that may be introduced into, or contained in, the discrete signal.
{ "pile_set_name": "USPTO Backgrounds" }
Currently automatic toothpaste squeezing devices are commercially available, which take advantage of vacuum, extrusion principle, to have the toothpaste squeezed out automatically after triggering the knob, however, functional property of existing devices is quite low, and compared with squeezing the toothpaste drum with hand, existing device did not save much time. For a long time people have developed teeth brushing habit, and highly value teeth hygiene, till now, tooth care accessories remain indispensable necessities in daily life, tooth care can be so important; out of growing social demands, routine teeth brushing every day cannot meet due tooth care requirements, different tooth care shall be oriented to teeth in different conditions, which demands designing Automatic toothpaste dispensing device for due tooth care.
{ "pile_set_name": "USPTO Backgrounds" }
Drawer assemblies are often designed to be knocked down for the purposes of ease of transportation or flexibility of configuration. The knocked down parts of drawers of this type must be easily assembled by the general public without the requirement of specialized tools or skills. Known knock-down drawer assemblies generally consist of a bottom panel, a front panel, a back panel and a pair of side panels affixed to and extending parallel between the front and rear panels as well as engaged with the bottom panel along its longitudinal length. With new construction materials and methods, drawers are no longer solely made from wood or wood products; other materials such as formed sheet metals or plastic moldings are increasingly being used. It is now common to have a drawer assembled with parts made from a variety of materials. Particularly, it is becoming increasingly known for drawer side panels to be made from sheet metal and assembled with front, back and bottom panels that may be made from the same metal material or other materials, such as wood, for example. For such drawer assemblies, it is therefore necessary to provide suitable fittings for securely affixing such side panels to both the drawer front and back panels. An existing corner fitting for fixing drawer sides to a drawer rear panel was disclosed in Malaysian patent application no. PI 20021816. The existing corner fitting comprises an L-shaped bracket for engaging the corner fitting with a drawer side via an angle bracket and a rear panel fitting for securing the corner fitting to a drawer rear panel. The angle bracket is attached onto the drawer side by way of spot welding, screws, bolts, nuts or any other suitable means. The L-shaped bracket is provided with an integral guide bracket on the inner face of the major flange. A triangular bracket having an L-shaped guide is disposed at the lower corner of the vertical marginal edge joining the major and minor flanges. The integral guide bracket together with the L-shaped guide of the triangular bracket form a first recess for slidably receiving a side flange of the rear panel fitting. A resilient extension, for locking the side flange inserted into the first recess, is provided on the inner face of the major flange. The extension projects away from the inner face in a direction parallel with the drawer rear panel. A second recess is formed on the outer face of the L-shaped bracket for slidably mounting the L-shaped bracket onto the vertical flange of the angled bracket. From the above description, this prior corner fitting comprises three separate components, namely, the side panel mounting bracket (angle bracket), the L-shaped bracket and the rear panel mounting bracket (rear panel fitting), for engaging a drawer side to the drawer rear panel. This is obviously undesirable as such a corner fitting is costly to manufacture and time-consuming to assemble. Thus, it would be desirable to have a corner fitting consisting of a single component for engaging a drawer side to the drawer rear panel. Such a single component corner fitting is disclosed in U.S. Pat. No. 4,279,455. For use with the corner fitting of this U.S. patent, the drawer front panel is provided with a pair of vertical grooves of female dove-tail configuration on its inner face, each groove located adjacent and disposed parallel with a respective vertical marginal edge. Each side panel has one marginal edge of male dove-tail construction adapted to be received in the respective vertical groove of the front panel. Further, each side panel is provided with a groove disposed on its inner face, located adjacent and parallel to the opposite vertical marginal edge. The rear panel is provided with a pair of vertical grooves on its inner face, each groove located adjacent and parallel with a respective vertical marginal edge. The drawer side panels are secured to the rear panel by way of retainers (corner fittings). The retainers are essentially an L-shaped bracket comprising a pair of first members (outer members) connected along a marginal edge and extending from one another at a substantially right angle, and a pair of second members (inner members) connected along a marginal edge and extending from one another at a substantially right angle. The first and second members are spaced apart and connected by an elongate web at their marginal edges so as to form panel receiving channels therebetween. Tabs are provided on the second members. These tabs are disposed to extend toward the first members and are adapted to be received in the grooves adjacent and parallel to the vertical marginal edges of the side and rear panels. An obvious disadvantage of the prior corner fitting (retainer) of the above U.S. patent is that it is confined for use with drawer assemblies having wood or pressboard panels, only. As afore-mentioned, it is both common and desirable to have drawer assemblies comprising panels made from a variety of materials such as metal, plastic moldings or wood. Therefore, when using the prior fitting of this U.S. patent, the user's flexibility in terms of materials and/or design of the drawer assembly, is restricted. This invention thus aims to alleviate some or all of the problems of the prior art, and to provide a single component corner fitting that accords the user flexibility in terms of materials and/or design as well as ease in assembly of drawer sides to a drawer rear panel, without the use of special tools or skill
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a reloadable film canister and particularly to a canister for holding unexposed microfilm used to store blocks of data from camera systems connected to a host computer. Representative prior art for microfilm canisters are disclosed in U.S. Pat. Nos. 4,153,361, 4,987,300, 5,153,625, 5,247,323 and 5,389,992. Typically, the stored microfilm is 105 mm wide and is wound around a core or reel that is inserted into the canister and freely rotates therein. The canister is typically constructed in two segments and has an exit slot for the film. Plush or foam material strips provide a light barrier as the film is pulled out of the canister for use by the camera system or other host machine. U.S. Pat. No. 4,153,361 discloses a light-tight web cassette for microfilm or the like having supply and take up cartridges mounted thereon. A web detector includes a rotatable, detectable disc external of the cassette. An electrical pulse is generated each time a detectable mark on the rotating disc passes between a light source and photocell, as the two cartridges in the cassette are rotated. U.S. Pat. No. 4,987,300 describes a system utilizing an optical-mechanical mechanism for a web-roll mounted within a cartridge. A movable flag is rotatably mounted to an underside of the cartridge and is pivoted as the web-roll rotates to interrupt a continuous beam of light of an optical sensing means passing under the cartridge. A light source and photodetecting pair forming the optical sensing means are spaced such that one element of the pair is positioned exterior to the cartridge. A spring-biased member couples the flag with a flange on the web-roll for pivoting of the flag, and a flange lip follower engages spaced notches on the flange lip such that reverse rotation of the web-roll is prevented. U.S. Pat. Nos. 5,153,625, 5,247,323 and 5,389,992 describe a system in which a field modulating disc is typically located within the light-tight film enclosure. Rotation of this field modulated disc is sensed by an external sensor which generates electrical pulses during the rotation of the reel. These pulses provide information which is accumulated, stored and displayed so that the amount of film removed and, more importantly, the amount of film remaining is known without opening of the canister for visual inspection. Knowledge of the depletion of the film is required to prevent having to splice two rolls of film together when a first roll is expended before all the data are recorded onto the film. It is also desirous to know the film usage to allow a margin for threading of the film into developer equipment, so that data is not lost due to exposure of the film to light. Heretofore, the above described prior art microfilm canisters offered for sale have not been reloadable by the user. As a result, a significant amount of waste occurs because of the disposal of the canisters after a single use. Moreover, the ultimate user has not been able to use microfilm from a number of film manufacturers, but is instead obligated to discard the canister when each roll of film is depleted and substitute a filled canister purchased from the manufacturer that supplied the system.
{ "pile_set_name": "USPTO Backgrounds" }
Field of the Invention The present invention generally relates to a circuit board and a manufacturing method thereof. More particularly, the present invention relates to a rigid-flex circuit board and a manufacturing method thereof. Description of Related Art Circuit boards include rigid printed circuit boards (short for rigid PCBs), a flexible printed circuit boards (short for FPC boards) and rigid and flexible circuit board (short for rigid-flex circuit board), which are categorized by rigid or flexible characteristics of the dielectric layers thereof. In general, rigid-flex circuit boards are printed circuit boards composed of FPC boards and rigid PCBs, such that the rigid-flex circuit boards can have both the flexibility of the FPC boards and the structural strength of the rigid PCBs. Under the circumstances that inner space of electronic products is rapidly reduced, rigid-flex circuit boards provide maximum flexibility in component connection and assembling space, so rigid-flex circuit boards are often adopted in electronic products as carriers for components. In manufacturing process, a FPC board having circuit thereon is firstly adopted as a core layer of a rigid-flex circuit board. Then, a cavity is formed on a rigid PCB by routing process. Next, two rigid PCBs are laminated onto two opposite surfaces of the FPC board, such that the cavity of the rigid PCB exposes an exposed region of the FPC board to form the rigid-flex circuit board. However, the routing process has rather low production efficiency and high production cost. Moreover, the process of forming the cavity by routing process would produce scraps, which may cause damages to the FPC board when the rigid PCBs are laminated onto the FPC board. In addition, during the process of laminating the rigid PCBs onto the FPC board, a prepreg of the rigid PCB is easily deformed by compression, such that a part of the prepreg overflows into the cavity and covers the exposed region of the FPC board. As such, the flexibility of the FPC board is significantly reduced since the exposed region is covered by the prepreg. Furthermore, during the process of lamination, the prepreg covering the exposed region is hard to remove and easily causes the problem of gel overflow. Moreover, the process of laminating the rigid PCBs onto the FPC board easily causes misalignment, which effects yield rates of sequential manufacturing process.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to power-and-free conveyor systems of the type shown in U.S. Pat. No. 3,759,189, issued Sep. 18, 1973. The invention is particularly applicable to work carriers having front and rear trolleys constructed so as to permit close-packing or accumulation, and which pass through transfer points. Among the problems with power-and-free systems is the danger of a carrier's inadvertently backing up. This can be overcome by the use of anti-backup means mounted on the carrier frame, such as disclosed in U.S. Pat. No.'s 3,159,189 and 3,354,834. However, those systems have slippage and, because they have cams which ride along the tracks, substantial wear of the anti-backup device occurs.
{ "pile_set_name": "USPTO Backgrounds" }
At present, intelligent cards or Smart-Cards or microchip cards are known and are in use that are capable of performing a very large number of functions, both for identification as well as for payments and collections, or for a plurality of other services. The most advanced smart cards contain a microprocessor or chip to control and identify the user name and its code in order to allow various functions. Identification data and a respective password are stored in the smart card in order to allow the verification of whether the user is a genuine user, otherwise the smart card cannot be used. New smart cards are conceived in new technology marketing, namely the insertion into the smart card also of a biometric feature(s) of the user, e.g. thumb reader.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The invention relates to a disk drive including a read channel circuit and a disk controller circuit. More particularly, the invention relates to a disk drive which demodulates a read signal representing data in a data sector and a servo sector in a first order and provides data-sector data and servo sector data to a disk controller in a second order. 2. Description of the Prior Art and Related Information Magnetic hard disk drives conventionally arrange data as blocks, also known as sectors, within concentric tracks on the surface of rotating storage mediums. Such disk drives are described in U.S. Pat. No. 5,606,466 to Fisher et al. Disk drive storage capacity is governed by the areal density expressed in bits/in2 which can be achieved on a disk media surface. The two components of areal density are track pitch (the distance between adjacent tracks) and linear bit density (the distance between bits along a track). Improvements in linear bit density are to a great extent dependent on signal processing in a read channel circuit which demodulates signals read from the track to produce digital symbols. In order to continue improving linear bit density and maintain competitive product offerings, read channel demodulating circuits currently and will continue to provide more complex signal processing, which will in turn require longer periods of latency to convert media signals to digital symbols which can be provided to a disk controller or formatter for assembly into discrete data blocks and error correction. The latency problem is further complicated by the embedded servo system employed in most disk drives to control read/write head positioning by interspersing servo sectors with data regions on each track of a disk surface. Such as system is described in Application Ser. No., 08/815,352 filed Mar. 11, 1997 now U.S. Pat. No. 6,411,452 (the Sync Mark Patent), assigned to the assignee of this invention. The Sync Mark Patent is hereby incorporated by reference in its entirety. With an embedded servo system, servo sectors must be processed by the channel circuit in real time regardless of signal processing which is related to data sectors. The above-mentioned embedded servo system format requires that servo sectors and data sectors are alternately presented to a read channel circuit for demodulating. The servo sectors must be demodulated and presented with minimal latency to a servo controller which may be included in a disk controller circuit to enable the servo system to maintain control of the position of read/write heads. The disk controller comprises a timer for sampling the servo sectors synchronous with the servo sample rate as described in the Sync Mark Patent. After demodulating the servo and data sectors, the read channel transmits them on a bus connected between the channel circuit and the disk controller, the combination defining a disk drive signal path. The disk controller is responsible for providing timing signals which alert the channel circuit to presence of servo or data sectors which are currently passing or about to pass under the read/write head by asserting one of a plurality of signals comprising a SERVO GATE, a READ GATE and a WRITE GATE for defining periods or intervals for reading servo sectors, or reading or writing data sectors, on the rotating medium. Generally, asserting a signal as defined herein means driving a signal to its logically xe2x80x9ctruexe2x80x9d state regardless of polarity. A further convention used herein is to identify signals having negative polarity assertions with a trailing xe2x80x9cxe2x88x92xe2x80x9d sign as for example SYNC DETxe2x88x92. As linear bit densities have increased, the problem of so-called pulse crowding has become more prevalent. Pulse crowding problems and their drawbacks are described in U.S. Pat. No. 5,606,466. As further described therein, more powerful synchronously sampled data detection channels have been employed to place coded information bits, which can be placed more closely together, within the data sectors. One class of read channels comprises partial response, maximum likelihood (PRML) channels also described in U.S. Pat. No. 5,341,249 to Abbott et al, and the Sync Mark Patent. PRML channels, and other read channels which work with coded bits, demodulate the coded bits when receiving the data bits from the data sectors. This process is also known as demodulating the data sectors and is so called herein. As discussed in U.S. Pat. No. 5,606,466, the demodulating of the data sectors causes a demodulating delay, or latency, of at least several bytes for typical bit coding algorithms of today. Conversely, the servo sectors are typically not coded to such a degree, and therefore an inequality in demodulating time by the read channel exists between the servo sectors, which are and must be demodulated in relative real time without such a latency, and the data sectors, which have heretofore been demodulated and transmitted to the disk controller in order of receipt from the rotating medium. Further, as bit coding techniques become more complicated, so that linear bit densities may increase, the latency for demodulating the data sectors may increase to hundreds of bits or even multiple sectors. However, the servo sectors must nevertheless be demodulated and transmitted to the disk controller in real time so that the servo system may keep the transducer head in the servo system on track. Some systems add pad fields or speed tolerance buffers to separate sectors on the drive so that the digital latency delay may be compensated for on the rotating medium as described with respect to FIG. 1 in U.S. Pat. No. 5,606,466. U.S. Pat. No. 5,606,466 describes another technique for dealing with the latency period which comprises clocking real-time and digital signal processes by a clock synchronized to the data sector as the data sector passes under the transducer head, clocking the digital signal processes for the data sector by an asynchronous clock, and clocking the servo sector in real time. However, neither of these solutions allow for larger latencies during which the servo sector must be demodulated and transmitted to the disk controller in real time while a previously received data sector or segment thereof is still being demodulated. Adding pad fields between sectors is undesirable because such a technique lowers the capacity of the hard disk system. The latter technique is undesirable because it delays both the demodulating of data sectors, and the demodulating of the servo sectors so that the order of transmission of the servo and data sectors may be maintained after the latency. It is not desirable to delay demodulating the servo sectors because the servo sectors provide the information needed for the disk controller to keep the system on track. Accordingly, what is needed is a system and method for allowing a longer latency period for demodulating and transmitting of the data sectors, while allowing demodulating and transmitting of the servo sectors in relative real-time. Such a system would ideally be implemented without having to define a separate or significantly wider set of data lines in the disk controller bus between the channel circuit and the disk controller. U.S. Pat. No. 5,829,011 discloses a method for transmitting register values and user data on the same lines. However, the system disclosed therein does not provide a method for allowing a longer latency period for demodulating and transmitting of data sectors, while allowing demodulating and transmitting of the servo sectors in relative real-time. This invention can be regarded as a disk drive having a disk comprising a track. The track has a data sector and a servo sector arranged in a first order. A read head provides a read signal representing data stored in the data sector and data stored in the servo sector in the first order. The disk drive further comprises a channel circuit and a disk controller circuit. The channel circuit comprises means for demodulating the read signal to generate data-sector data and servo sector data and means for providing the data-sector data signal and the demodulated servo sector signal to the disk controller circuit in a second order wherein the second order is different from the first order. Beneficially, the invention provides structure for accommodating long latency demodulating algorithms which must be employed simultaneously with real-time demodulating of servo sectors. Preferably, the means for demodulating the read signal to generate a data-sector data signal and a demodulated servo sector signal comprises a sampled data detection circuit. In one embodiment the sampled data detection circuit comprises a viterbi detector. Preferably the means for providing the data-sector data signal and demodulated servo sector signal to the disk controller circuit in a second order comprises a buffer. In one preferred embodiment the buffer is a FIFO buffer.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to a built-in self-test unit (BIST) for embedded memory. Application specific integrated circuits (ASICs) are widely used in various electronic components and often include complete memory systems. Generally, there are two methods for testing embedded memory within an integrated circuit. One method uses external test equipment connected to external pins of the chip and tests the embedded memory by generating various test patterns. If the data read from the memory system does not match the data written, the memory system is deemed defective. The use of the external test equipment requires that each embedded memory module be connected to one or more externally accessible pins, thereby increasing routing overhead and pin count. A second method is to incorporate a built-in self-test unit (BIST) within the integrated circuit in order to test the embedded memory. The BIST is activated when the integrated circuit receives power, or when triggered from an external signal, and tests the embedded memory by applying a test pattern and comparing the applied test pattern to data read from the embedded memory. Based on the comparison, the BIST sets an externally available pin to indicate whether or not an error was detected. This approach reduces the number of external connections needed for such testing and allows multiple memory modules to be tested simultaneously, thereby reducing test time.
{ "pile_set_name": "USPTO Backgrounds" }
Retrievable sensors are sensors which can be replaced while process fluids are present in the area in which the pressure is to be measured. Such pressure sensors are attached in the pipe wall by way of a flange or bore, for example. It is known to use valve mechanisms for blocking the flow to enable the replacement of the pressure sensor. In practice, the use of valves has proven to be difficult as they are left in an open position and subject to fouling by the process fluid. It is therefore a great risk that the valve is not operable when it is finally needed for the replacement of a pressure sensor, after some 10-15 years, for example. Moreover, when valves are used it is difficult to avoid discharge of process fluid into the environment. It is therefore a need for a pressure sensor having a reliable structure making it possible to replace pressure sensors in overpressure environments in a simple manner without rendering the pressure sensors inoperable and without having to open up the pipe wall or suspend the production/process. At the same time, the pressure sensor has to meet strict safety requirements. For underwater installations ROVs (Remotely Operated Vehicles) are used for operating, maintenance and repair and replacement of equipment and sensors on the installation. ROVs are large and may be demanding to manoeuvre in deep ocean depths. This requires positioning of components, equipment and sensors so that an ROV in a simple way may access and perform the operations necessary. For use in underwater installations it is therefore preferable that the pressure sensor may be designed and arranged for easy replacement by an ROV. It may also be envisaged other installations and large processing plants both offshore and onshore where it will be advantageous with a retrievable sensor designed for easy access in connection with maintenance and replacement of the sensor.
{ "pile_set_name": "USPTO Backgrounds" }
Disclosed herein are a game control method, a server device, a game system, and a computer-readable recording medium. Social games provided using social networking services (hereafter abbreviated as “SNS”) are attracting close attention in recent years, against a backdrop of significant progress in the information and communication fields such as fast wireless communication, sophisticated communication terminals, and proliferation of clouds. A social game has a feature that users communicating via an SNS can enjoy the game or users can communicate with each other through the game. As a social game utilizing this property of SNS, for example, JP2012-53640 A proposes a system in which players who participate in a game fight a battle or the like unfolding in the game. In JP2012-53640 A, an individual battle in which a plurality of players fight one on one and a team battle in which a plurality of players are split into two teams to fight each other are disclosed as battle types in the social game. In the team battle, how to keep the players from losing their motivation for the game, that is, how to motivate the players to participate in the team battle, is very important. Like a soccer league competition, a typical example is that leagues are formed according to the performance of each team (e.g. the win-loss record of each team) and, depending on wins and losses throughout a season (e.g. one week), a promotion and relegation competition between the leagues is performed for league reorganization and the like (hereafter this is simply referred to as “league competition”).
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a novel type of information carrier, on which information is stored in the form of diffraction structures. The information carrier according to the invention can be read by being drawn manually through a reading device. 2. Description of Related Art Plastic cards as information carriers are ubiquitous nowadays. As a consequence of increasing data processing by machine, a person typically has a series of plastic cards with which he can authenticate himself Examples which may be mentioned are company identity cards, medical insurance cards, credit, Eurocheque and debit cards. Particularly widespread is the ID-1 format, which is characterized in the ISO/IEC 7810 Standard (“credit card format”). It has a convenient size and can be accommodated in purses. There are many card readers which are based on this format. Machine-readable information can be stored on plastic cards in various ways. For instance, optically in the form of optically readable letters (OCR=Optical Character Recognition), bar or matrix codes, magnetically in a magnetic strip or electronically in a chip. However, the aforementioned storage methods only permit the storage of a few bytes (OCR) to kilobytes (chip). The greatest storage capacity in plastic cards is achieved nowadays by optical memory cards. In WO8808120 (A1) and EP0231351 (A1), optical memory cards are described in which data is exposed photographically into a silver halide film which is applied to the plastic cards. The data can be written and read with a laser. In WO 8808120(A1), a device is described with which the film can be written and read. The data is present digitally in the form of data points. The data points exhibit a different reflectance as compared with the surroundings and in this way can be read with the aid of a laser beam and a photodetector. The disadvantage with the card and the card reader described is that the card must be positioned exactly with respect to read beam and detector in order to be able to read the data. In order to read out the individual data points one after another, the card must also be moved in relation to read beam and detector in such a way that the read beam strikes the data points accurately. This requires a complex card reader having a high positioning accuracy. Moreover, the data density on the card is restricted to the dimension of the positioning accuracy during reading. If the data points are present more densely than the positioning accuracy of the read beam, the individual data points can no longer be detected. When bar code or magnetic strip cards are used, it is possible to draw the card through a card guide in order to read it. The data are read as the card is drawn through manually. Mechanical positioning of the read head in relation to the card is not necessary. Such a draw-through system for magnetic strip cards is described, for example, in U.S. Pat. No. 5,128,524 (A1). The implementation of a manual card draw-through system for reading data which are stored on plastic cards is possible in the case of magnetic strips and bar codes, since the data density (quantity of bytes per unit area) is so low that the positioning of the storage medium in relation to the read head is tolerant with respect to the changes which occur during the manual card guidance. In the optical memory cards described above, the data structures are smaller. Manual positioning of the card in relation to the read head is therefore generally no longer possible. However, it would be desirable to be able to read optical memory cards having a higher storage capacity than is usual in the case of magnetic strip or bar code cards with the aid of a card draw-through system that can be operated manually. Advantages of manual card guidance are, firstly, higher convenience for the user, since he does not have to let go of the card, and increased speed of the entire reading process associated with this and, secondly, lower production costs of the device, since it is possible to dispense with expensive mechanical positioning, and also greater ruggedness of the device.
{ "pile_set_name": "USPTO Backgrounds" }
The preservation of food by dehydration is well known in the art. The early dehydration of food was typically carried out by placing the food product in an open container exposed to the air and to the sun. In more recent times, mechanical food dehydrators have been developed for use in the home. These food dehydrators typically include a plurality of shelves contained within a cabinet after which the food to be dried is placed. The dehydrator typically uses a motor driven fan to draw air through openings and circulate the air throughout the dehydrator. A heater is typically provided for heating the air before it is circulated by the fan, such as disclosed in U.S. Pat. No. 5,458,050 (Su). A significant number of current food dehydrators locate the heater element and blower fan in the base. The heated air moves vertically through a series of perforated trays. The air is warmest and driest at the first tray, and becomes progressively cooler and more humid as it reaches the later trays. Therefore, the food on the trays closest to the hot air source get very dry, while that furthest from the source dries more slowly. Directing the heated air vertically through a series of trays results in uneven drying. Locating the heating element and blower motor in the base also creates cleaning problems. These bases are typically not dishwasher safe. Additionally, the base can become contaminated with drippings that fall through the perforations in the trays. If meat products are dried, the grease drippings may create a fire hazard. Many food dehydrators require the heated air to travel through various ducts before reaching the food. The ducts typically have multiple bends that result in velocity loss and heat dissipation before the heated air reaches the food. Consequently, more powerful heating elements and blower fans are typically used to compensate for the convoluted air flow paths through the dehydrator. Finally, most current dehydrators are large and bulky creating difficulties with use and storage in the home.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Disclosure The present disclosure relates to a mobile terminal, and particularly, to a mobile terminal having a display and a touch sensor. 2. Background of the Disclosure In general, a terminal may be classified into a mobile (portable) terminal and a stationary terminal according to a moveable state. The mobile terminal may be also classified into a handheld terminal and a vehicle mount terminal according to a user's carriage method. As functions of the terminal become more diversified, the terminal can support more complicated functions such as capturing images or video, reproducing music or video files, playing games, receiving broadcast signals, and the like. By comprehensively and collectively implementing such functions, the mobile terminal may be embodied in the form of a multimedia player or a device. Various attempts have been made to implement complicated functions in such a multimedia device by means of hardware or software. As one example, a user interface for allowing a user to easily and conveniently search for or select a function is being provided. As the mobile terminal is regarded as a personal belonging to express a user's personality, various designs are required. The designs include structural changes and improvements for allowing a user to more conveniently use the mobile terminal. As one of such structural changes and improvements, a structure, where a side touch as well as a front touch is implemented and the mobile terminal is easily fabricated, may be considered.
{ "pile_set_name": "USPTO Backgrounds" }
European Patent 309,477 relates to ecteinascidins 729, 743, 745, 759A, 759B and 770. The ecteinascidin compounds are disclosed to have antibacterial and other useful properties. Ecteinascidin 743 is now undergoing clinical trials as an antitumour agent. Ecteinascidin 743 has a complex tris(tetrahydroisoquinolinephenol) structure of the following formula (I): It is currently prepared by isolation from extracts of the marine tunicate Ecteinascidin turbinata. The yield is low, and alternative preparative processes have been sought. A synthetic process for producing ecteinascidin compounds is described in U.S. Pat. No. 5,721,362, see also WO 9812198 which is incorporated herein by reference in full. The claimed method is long and complicated, there being 38 Examples each describing one or more steps in the synthetic sequence to arrive at ecteinascidin 743. In the known synthetic process, a 1,4 bridge is formed using a 1-labile, 10-hydroxy, 18-protected hydroxy, di-6,8-en-5-one fused ring compound. As shown in Example 33, a compound (13) is converted to compound (14): According to the known synthetic process, a spiroquinoline is then formed in the 1,4 bridge by the steps of Examples 34 to 36, and the 18-MOM protecting group is removed to give ecteinascidin 770 which can then be converted to ecteinascidin 743. Claim 25 of U.S. Pat. No. 5,721,362 is directed at an intermediate phenol compound of a given formula (11), which we refer to also as Intermediate 11 or Int-11. It has the following bis(tetrahydroisoquinolinephenol) structure (II): where MOM is a methoxymethyl substituent and TBDPS is a tert-butyldiphenylsilyl substituent. From Intermediate 11 it is possible to synthesise another interesting antitumour agent, phthalascidin, see Proc. Natl. Acad. Sci. USA, 96, 3496-3501, 1999. Phthalascidin is a bis(tetrahydroisoquinolinephenol) derivative of formula (III): In ecteinascidins 743 and 770, the 1,4 bridge has the structure of formula (IV): Other known ecteinascidins include compounds with a different bridged cyclic ring system, such as occurs in ecteinascidin 722 and 736, where the bridge has the structure of formula (V): ecteinascidins 583 and 597, where the bridge has the structure of formula (VI): and ecteinascidin 594 and 596, where the bridge has the structure of formula (VII): The complete structure for these and related compounds is given in J. Am. Chem. Soc. (1996) 118, 9017-9023. This article is incorporated by reference. Other literature on the ecteinasdin compounds includes: Corey, E. J., J. Am. Chem. Soc., 1996, 118 pp. 9202-9203; Rinehart, et al., Journal of Natural Products, 1990, “Bioactive Compounds from Aquatic and Terrestrial Sources”, vol. 53, pp. 771-792; Rinehart et al., Pure and Appl. Chem., 1990, “Biologically active natural products”, vol 62, pp. 1277-1280; Rinehart, et al., J. Org. Chem., 1990, “Ecteinascidins 729, 743, 745, 759A, 759B, and 770: potent Antitumour Agents from the Caribbean Tunicate Ecteinascidia turninata”, vol. 55, pp. 4512-4515; Wright et al., J. Org. Chem., 1990, “Antitumour Tetrahydroisoquinoline Alkaloids from the Colonial ascidian Ecteinascidia turbinata”, vol. 55, pp. 4508-4512; Sakai et al., Proc. Natl. Acad. Sci. USA 1992, “Additional anitumor ecteinascidins from a Caribbean tunicate: Crystal structures and activities in vivo”, vol. 89, 11456-11460; Science 1994, “Chemical Prospectors Scour the Seas for Promising Drugs”, vol. 266, pp. 1324; Koenig, K. E., “Asymmetric Synthesis”, ed. Morrison, Academic Press, Inc., Orlando, Fla., vol. 5, 1985, p. 71; Barton, et al., J. Chem Soc. Perkin Trans., 1, 1982, “Synthesis and Properties of a Series of Sterically Hindered Guanidine bases”, pp. 2085; Fukuyama et al., J. Am. Chem. Soc., 1982, “Stereocontrolled Total Synthesis of (+)-Saframycin B”, vol. 104, pp. 4957; Fukuyama et al., J. Am. Chem. Soc., 1990, “Total Synthesis of (+)-Saframycin A”, vol. 112, p. 3712; Saito, et al., J. Org. Chem., 1989, “Synthesis of Saframycins. Preparation of a Key tricyclic Lactam Intermediate to Saframycin A”, vol. 54, 5391; Still, et al., J. Org. Chem., 1978, “Rapid Chromatographic Technique for Preparative Separations with Moderate Resolution”, vol. 43, p. 2923; Kofron, W. G.; Baclawski, L. M., J. Org. Chem., 1976, vol. 41, 1879; Guan et al., J. Biomolec. Struc. & Dynam., vol. 10, pp. 793-817 (1993); Shamma et al., “Carbon-13 NMR Shift Assignments of Amines and Alkaloids”, p. 206 (1979); Lown et al., Biochemistry, 21, 419-428 (1982); Zmijewski et al., Chem. Biol. Interactions, 52, 361-375 (1985); Ito, CRC Crit. Rev. Anal. Chem., 17, 65-143 (1986); Rinehart et al., “Topics in Pharmaceutical Sciences 1989”, pp. 613-626, D. D. Breimer, D. J. A. Cromwelin, K. K. Midha, Eds., Amsterdam Medical Press B. V., Noordwijk, The Netherlands (1989); Rinehart et al., “Biological Mass Spectrometry”, 233-258 eds. Burlingame et al., Elsevier Amsterdam (1990); Guan et al., Jour. Biomolec. Struct. & Dynam., vol. 10 pp. 793-817 (1993); Nakagawa et al., J. Am. Chem. Soc, 111: 2721-2722 (1989); Lichter et al., “Food and Drugs from the Sea Proceedings” (1972), Marine Technology Society, Washington, D.C. 1973, 117-127; Sakai et al., J. Am. Chem. Soc., 1996, 118, 9017; Garcia-Rocha et al., Brit. J. Cancer, 1996, 73: 875-883; and Pommier et al., Biochemistry, 1996, 35: 13303-13309. Further compounds are known which lack a bridged cyclic ring system. They include the bis(tetrahydroisoquinolinequinone) antitumor-antimicrobial antibiotics safracins and saframycins, and the marine natural products renieramicins and xestomycin isolated from cultured microbes or sponges. They all have a common dimeric tetrahydroisoquinoline carbon framework. These compounds can be classified into four types, types I to IV, with respect to the oxidation pattern of the aromatic rings. Type I, dimeric isoquinolinequinones, is a system of formula (VIII) most commonly occurring in this class of compounds, see the following table I. TABLE IStructure of Type I Saframycin Antibiotics. SubstituentsCompoundR14aR14bR21R25aR25bR25csaframycin AHHCNOOCH3saframycin BHHHOOCH3saframycin CHOCH3HOOCH3saframycin GHOHCNOOCH3saframycin HHHCNOHCH2COCH3CH3saframycin SHHOHOOCH3saframycin Y3HHCNNH2HCH3saframycin Yd1HHCNNH2HC2H5saframycin Ad1HHCNOOC2H5saframycin Yd2HHCNNH2HHsaframycin Y2bHQbCNNH2HCH3saframycin Y2b-dHQbCNNH2HC2H5saframycin AH2HHCNHaOHaCH3saframycin AH2AcHHCNHOAcCH3saframycin AH1HHCNOHaHaCH3saframycin AH1AcHHCNOAcHCH3saframycin AR3HHHHOHCH3aassignments are interchangeable.bwhere the group Q is of formula (IX): Type I aromatic rings are seen in saframycins A, B and C; G and H; and S isolated from Streptomyces lavendulae as minor components. A cyano derivative of saframycin A, called cyanoquinonamine, is known from Japanese Kokai JP-A2 59/225189 and 60/084,288. Saframycins Y3, Yd1, Ad1, and Yd2 were produced by S. lavendulae by directed biosynthesis, with appropriate supplementation of the culture medium. Saframycins Y2b and Y2b-d dimers formed by linking the nitrogen on the C-25 of one unit to the C-14 of the other, have also been produced in supplemented culture media of S. lavendulae. Saframycins AR1 (=AH2,), a microbial reduction product of saframycin A at C-25 produced by Rhodococcus amidophilus, is also prepared by nonstereoselective chemical reduction of saframycin A by sodium borohydride as a 1:1 mixture of epimers followed by chromatographic separation [the other isomer AH1 is less polar]. The further reduction product saframycin AR3, 21-decyano-25-dihydro-saframycin A, (=25-dihydrosaframycin B) was produced by the same microbial conversion. Another type of microbial conversion of saframycin A using a Nocardia species produced saframycin B and further reduction by a Mycobacterium species produced saframycin AH1Ac. The 25-O-acetates of saframycin AH2 and AH1 have also been prepared chemically for biological studies. Type I compounds of formula (X) have also been isolated from marines sponges, see Table II. TABLE IIStructures of Type I Compounds from Marine Sponges. SubstituentsR14aR14bR21Rrenieramycin AOHHH—C(CH3)═CH—CH3renieramycin BOC2H5HH—C(CH3)═CH—CH3renieramycin COHOO—C(CH3)═CH—CH3renieramycin DOC2H5OO—C(CH3)═CH—CH3renieramycin EHHOH—C(CH3)═CH—CH3renieramycin FOCH3HOH—C(CH3)═CH—CH3xestomycinOCH3HH—CH3 Renieramycins A-D were isolated from the antimicrobial extract of a sponge, a Reniera species collected in Mexico, along with the biogenetically related monomeric isoquinolines renierone and related compounds. The structure of renieramycin A was initially assigned with inverted stereochemistry at C-3, C-11, and C-13. However, careful examination of the 1H NMR data for new, related compounds renieramycins E and F, isolated from the same sponge collected in Palau, revealed that the ring junction of renieramycins was identical to that of saframycins. This result led to the conclusion that the formerly assigned stereochemistry of renieramycins A to D must be the same as that of saframycins. Xestomycin was found in a sponge, a Xestospongia species collected from Sri Lancan waters. Type II compounds of formula (XI) with a reduced hydroquinone ring include saframycins D and F, isolated from S. lavendulae, and saframycins Mx-1 and Mx-2, isolated from Myxococcus xanthus. See table III. TABLE IIIType II Compounds SubstituentsCompoundR14aR14bR21R25aR25bR25csaframycin DOOHOOCH3saframycin FOOCNOOCH3saframycin Mx-1HOCH3OHHCH3NH2saframycin Mx-2HOCH3HHCH3NH2 The type III skeleton is found in the antibiotics safracins A and B, isolated from cultured Pseudomonas fluorescens. These antibiotics of formula (XII) consist of a tetrahydroisoquinoline-quinone subunit and a tetrahydroisoquninolinephenol subunit. where R21 is —H in safracin A and is —OH in safracin B. Saframycin R, the only compound classified as the Type IV skeleton, was also isolated from S. lavendulae. This compound of formula (XIII), consisting of a hydroquinone ring with a glycolic ester sidechain on one of the phenolic oxygens, is conceivably a pro-drug of saframycin A because of its moderate toxicity. All these known compounds have a fused system of five rings (A) to (E) as shown in the following structure of formula (XIV): The rings A and E are phenolic in the ecteinascidins and some other compounds, while in other compounds, notably the saframycins, the rings A and E are quinolic. In the known compounds, the rings B and D are tetrahydro, while ring C is perhydro.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to ballasts for powering high pressure gas discharge lamps. It finds application in conjunction with a single ballast for starting/powering a single high pressure gas discharge lamp or a plurality of high pressure gas discharge lamps connected in series and will be described with particular reference thereto. In addition, the present invention will find application where any standard ballast finds application, particularly to gas discharge lamps. 2. Discussion of the Art A high pressure discharge lamp, such as a metal halide, mercury, or high pressure sodium lamp, is typically powered by an electromagnetic ballast incorporating an iron core. The ballast receives voltage from a power source and outputs a ballast voltage for driving the lamp. The ballast, which uses an iron core and wire to achieve the necessary ballasting functions or current limiting functions represents a major component of ballast cost, as well as bulk. The foregoing type of ballast typically powers only a single high pressure lamp. There is usually a correlation with lamp performance and the fill pressure of the arc tube. Higher arc tube fill pressures lead to improved lamp lumen depreciation (light output with time) but there is a corresponding increase in the voltage needed to start these lamps. One method that has been suggested to be used to accommodate a higher than normal fill pressure is to use a diode internal to the lamp in series with the starting electrode ballasting resistor. The diode serves to charge the capacitor on lead circuitsxe2x80x94effectively increasing the open circuit voltage available to start the lamp. This method has been described for use as a retrofit for mercury ballasts which power Metal Halide lamps, as described, for example, in U.S. application Ser. No. 09/290,008, entitled Enhanced Lumen Maintenance of Metal Halide Lamps By Increased Cold Gas Fill, filed Apr. 9, 1999, and U.S. application Ser. No. 09/460,177, entitled Active Diode Protection Apparatus In Metal Halide Lamps, filed Dec. 10, 1999, both of which are assigned to the assignee of this application. The present invention provides a new and improved apparatus and method which overcomes the problems of existing ballasts. A ballast for a discharge lamp is powered by an input power source and supplies an output load comprising at least one discharge lamp. A power capacitor, during operation, is electrically connected to both the power source and the at least one lamp. A switching circuit is electrically connected to the capacitor and the at least one lamp. A current created by the power source flows through the switching circuit, and by-passes the at least one lamp until a voltage on the capacitor is sufficient to start the lamp. Under normal operation current flows through the switching circuit at least until the charge on the capacitor is sufficient to start the at least one discharge lamp. In certain situations, the voltage may reach a maximum voltage which is not sufficient to start the lamp. By the foregoing design more voltage is delivered to start the lamps than that delivered in previous designs, and requires less material, is cheaper to manufacture, and has a lower operating cost than previous designs.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field The present disclosure relates to a composite structure of graphene and a polymer, and more particularly, to a composite structure of a three-dimensional polymer structure and a graphene layer disposed on a surface of the three-dimensional polymer structure, and methods of manufacturing the complexes. 2. Description of the Related Art Carbonaceous materials exist in various forms such as graphite, buckyball, carbon nanotube (also known as “CNT”), and graphene. A buckyball, which has a ball structure and is formed of sixty carbon atoms, is a carbon allotrope also called fullerene. A molecular structure of a buckyball includes fifteen pentagons and twenty hexagons. The pentagons are each surrounded by the hexagons. Carbon nanotube has a tubular structure and includes carbon atoms bonded to one another in hexagonal honeycomb patterns, and has a dimension as small as single digit nanometer in case of a single wall nanotube. Grephene, which is another allotrope of carbon, has a structure of one-atom-thick planar sheets of sp2-bonded carbon atoms that are densely packed in a honeycomb crystal lattice. The crystalline or “flake” form of graphite consists of many graphene sheets stacked together. The carbon-carbon bond length in graphene is about 0.142 nm. Graphene is the basic structural element of some carbon allotropes including graphite, charcoal, carbon nanotubes and fullerenes. Due to its unique structure of two dimension, graphene differs from most conventional three-dimensional materials: it has high electron mobility at room temperature, high opacity for an atomic monolayer, excellent thermal characteristics, chemical stability, a large surface area, and reportedly the greatest mechanical strength (breaking strength and tensile modulus). Recently, extensive and vigorous research to apply graphene to various fields such as nanoelectronics, optoelectronics, and chemical sensors is under progress. Graphene may be synthesized by using chemical vapor deposition (CVD) using a transition metal such as nickel or copper as a catalyst. In addition, graphene may be obtained by tearing off graphite sheet by sheet. Graphene is usually used in sheet form but may also be prepared in tubular form (which is also referred to as “carbon nanotube.”).
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a voltage-controlled oscillator, and more particularly, to a capacitive-degeneration double cross-coupled voltage-controlled oscillator capable of increasing a MAOF (maximum attainable oscillation frequency) and decreasing an input capacitance. 2. Description of the Related Art Recently, as demands for millimeter-wave band frequency resources increase, associated wire/wireless communication devices have been actively developed. Particularly, due to an increase in processing speeds of silicon devices, conventional expensive millimeter-wave compound semiconductor monolithic microwave integrated circuit (MMIC) devices are gradually replaced with inexpensive silicon millimeter-wave MMIC devices. However, only the development of the silicon millimeter-wave MMIC is reported, but performance of the silicon is lower than that of the compound semiconductor MMIC in terms of noise and gain characteristics. In addition, unlike the compound semiconductor, since the silicon substrate has large loss, the silicon substrate causes serious problems such signal leakage and interference in millimeter-wave band. Therefore, various circuit design technique for solving the problems of the silicon semiconductor in millimeter-wave band have been researched. A low noise/low power consumption voltage-controlled oscillator is one of the important components of millimeter-wave band wire/wireless communication system. A voltage-controlled oscillator widely used for a silicon integrated circuit includes an LC resonator and negative resistance cells that are constructed as a simple cross-coupled pair. A negative resistance generated by the cross-coupled pair compensates for a loss of the LC resonator, so that oscillation can be generated and sustained. However, since the simple cross-coupled pair has a small MAOF and a large input capacitance, the simple cross-coupled pair cannot be easily applied to the millimeter-wave voltage-controlled oscillator. The MAOF is defined as a frequency at which a negative resistance becomes zero when the negative resistance is increased from a negative region to a positive region. That is, the MAOF is a maximum frequency among frequencies at which the negative resistance occurs. As a result, the voltage-controlled oscillator having an oscillation frequency higher than the MAOF cannot be designed. In addition, as the input capacitance of the cross-coupled pair is increased, a capacitance, coupling with LC resonator and determining a resonance frequency, is also increased. Therefore, the oscillation frequency is lowered. Furthermore, since modeling accuracy of active and passive devices including inductor, varactor, and transistor becomes lowered in millimeter-wave band, a voltage-controlled oscillator designed and manufactured by using the simple cross-coupled pair may neither obtain a desired oscillation frequency nor oscillate. In order to increase the MAOF and decrease the input capacitance of the simple cross-coupled pair, a capacitive-degeneration cross-coupled pair has been developed. In the capacitive-degeneration cross-coupled pair structure, emitters of cross-coupled pair transistors are connected to each other through a capacitance, or the emitters of the cross-coupled pair transistors are connected to ground through a capacitance. As a result, it is possible to increase the MAOF and decrease the input capacitance of the cross-coupled pair. Although the capacitive-degeneration cross-coupled pair voltage-controlled oscillator uses the cross-coupled pair structure, the MAOF or input capacitance cannot be satisfactorily improved in comparison with the simple cross-coupled pair. FIGS. 1A and 1B are circuit diagrams illustrating a conventional simple cross-coupled voltage-controlled oscillator 100. Referring to FIG. 1A, the conventional voltage-controlled oscillator 100 includes a resonating unit 110 and an oscillating unit 120. The resonating unit 110 includes a supply voltage Vcc, first and second inductors Lr1 and Lr2 commonly connected to the supply voltage Vcc, and a varactor capacitance Cr and a parasitic resistance Rr which are connected in parallel to the first and second inductors Lr1 and Lr2. The oscillating unit 120 includes first and second transistors Q1 and Q2 which are connected to respective ends of the parasitic resistance Rr and of which collectors and bases are cross-coupled to each other and a current source Is connected to emitters of the first and second transistors Q1 and Q2. FIG. 1B is a circuit diagram illustrating a small-signal equivalent circuit of the simple cross-coupled oscillating unit 120 of FIG. 1A. In FIG. 1B, β ⁡ ( ω ) = - j ⁡ ( ω T ω ) denotes a high-frequency small-signal current gain, and gm, re, rb, and ib denote a transconductance, an emitter resistance, an intrinsic base resistance, and a base current of a transistor, respectively. Input admittances Yin, that is, an input resistance Rin and an input capacitance Cin of the circuit of FIG. 1B can be represented by Equations 1 and 2, respectively. R i ⁢ ⁢ n = 2 ⁢ ( r b + r e ) 2 + 2 ⁢ ( ω T ω ) 2 ⁢ ( 1 g m + r e ) 2 ( r b + r e ) - ( ω T ω ) 2 ⁢ ( 1 g m + r e ) [ Equation ⁢ ⁢ 1 ] C i ⁢ ⁢ n = ( ω T ω 2 ) ⁢ ( 1 g m + r b + 2 ⁢ r e ) 2 ⁢ ( r b + r e ) 2 + 2 ⁢ ( ω T ω ) 2 ⁢ ( 1 g m + r e ) 2 [ Equation ⁢ ⁢ 2 ] Here, ω T = 2 ⁢ π ⁢ ⁢ f T = g m C π + C μ ,and fT, gm, rb, and re denote a maximum transition frequency, a transconductance, an intrinsic base resistance, and an emitter resistance of a transistor, respectively. Since the MAOF ftrans is a frequency at which a negative resistance becomes zero when an input negative resistance is increased from a negative region to a positive region, the MAOF ftrans represented by Equation 3 can be calculated from Equation 1. f T ⁢ r e + 1 g m r b + r e [ Equation ⁢ ⁢ 3 ] Since the simple cross-coupled oscillating unit 120 has a simple structure and easily generates a differential signal, the simple cross-coupled oscillating unit 120 is widely used for an integrated circuit. However, as seen in Equation 3, the simple cross-coupled oscillating unit 120 has a problem in that the MAOF ftrans is limited due to the intrinsic base resistance rb of the transistor. In addition, due to a base-emitter capacitance, a base-collector capacitance, and a base-substrate capacitance of each transistor, the voltage-controlled oscillator of FIG. 1 has such problems as a large input capacitance and a lower oscillation frequency. In order to solve the above-mentioned problems, a new-type capacitive-degeneration cross-coupled voltage-controlled oscillator capable of increasing the MAOF ftrans and decreasing the input capacitance by using a degeneration capacitance has been proposed. FIG. 2A is a circuit diagram illustrating a conventional capacitive-degeneration cross-coupled voltage-controlled oscillator. Referring to FIG. 2A, the capacitive-degeneration cross-coupled voltage-controlled oscillator 200 includes a resonating unit 210 and an oscillating unit 220. The resonating unit 210 includes a supply voltage Vcc, first and second inductors Lr1 and Lr2 commonly connected to the supply voltage Vcc, and a varactor capacitance Cr and respective ends of the parasitic resistance Rr and of which are connected in parallel to the first and second inductors Lr1 and Lr2. The oscillating unit 220 includes first and second transistors Q1 and Q2 which are connected to respective ends of the parasitic resistance Rr and of which collectors and bases are cross-coupled to each other, a degeneration capacitance Cd connected between emitters of the first and second transistors Q1 and Q2, and a current source Is connected to emitters of the first and second transistors Q1 and Q2. Unlike the simple cross-coupled voltage-controlled oscillator 100 of FIG. 1A, in the capacitive-degeneration cross-coupled voltage-controlled oscillator 200 of FIG. 2A, the degeneration capacitance Cd is connected between the emitters of the first and second transistors Q1 and Q2, so that a negative resistance of the oscillating unit 220 can be increased. Accordingly, in the capacitive-degeneration cross-coupled voltage-controlled oscillator, since the negative resistance of the oscillating unit 220 can be increased, the increased negative resistance compensates for a loss of the resonating unit 210, so that oscillation can be generated and sustained. In addition, due to the newly added component, that is, the degeneration capacitance Cd, in the oscillating unit 220, the first transistor Q1, the degeneration capacitance Cd, and the second transistor Q2 constitutes a positive feedback loop. Therefore, the input capacitance Cin of the oscillating unit 220 can be intuitively represented by Equation 4. 1 1 C be 2 ⁢ + 1 2 ⁢ C d ⁢ ⁢ or ⁢ ⁢ 1 1 C be 1 ⁢ + 1 2 ⁢ C d [ Equation ⁢ ⁢ 4 ] Here, Cbe1 denotes a base-emitter capacitance of the first transistor Q1, and Cbe2 denotes a base-emitter capacitance of the second transistor Q2. That is, the input capacitance Cin of the oscillating unit 220 of FIG. 2 is inverse proportion to 1/(2Cd) due to the degeneration capacitance Cd. More specifically, input admittances Yin, that is, an input resistance Rin and an input capacitance Cin can be exactly represented by Equations 5 and 6, respectively. R i ⁢ ⁢ n = 2 ⁡ [ ( r b + r e ) - ( ω T ω ) ⁢ 1 2 ⁢ ω ⁢ ⁢ C d ] 2 + 2 ⁡ [ ( ω T ω ) ⁢ ( 1 g m + r ) + 1 2 ⁢ ω ⁢ ⁢ C d ] 2 ( r b + r e ) - ( ω T ω ) 2 ⁢ ( 1 g m + r e + 1 ω T ⁢ C d ) [ Equation ⁢ ⁢ 5 ] C i ⁢ ⁢ n = ( ω T ω 2 ) ⁡ [ ( r b + 2 ⁢ r e + 1 g m ) + 1 2 ⁢ ω T ⁢ C d - ( ω T ω ) ⁢ 1 2 ⁢ ω ⁢ ⁢ C d ] 2 ⁡ [ ( r b + r e ) - ( ω T ω ) ⁢ 1 2 ⁢ ω ⁢ ⁢ C d ] 2 + 2 ⁡ [ 1 2 ⁢ ω ⁢ ⁢ C d + ( ω T ω ) ⁢ ( 1 g m + r e ) ] 2 [ Equation ⁢ ⁢ 6 ] The MAOF ftrans of the capacitive-degeneration cross-coupled oscillating unit 220 represented by Equation 7 can be calculated from Equation 5. As seen in Equation 7, the MAOF ftrans is in proportion to a square root of 1/(Cd). f trans = f T ⁢ r e + 1 g m + 1 ω T ⁢ C d ( r b + r e ) [ Equation ⁢ ⁢ 7 ] Here, ω T = 2 ⁢ π ⁢ ⁢ f T = g m C π + C μ ,and fT, gm, rb, and re denote a maximum transition frequency, a transconductance, an intrinsic base resistance, and an emitter resistance of a transistor. However, the capacitive-degeneration voltage-controlled oscillator 200 has a problem in that the negative resistance disappears when the degeneration capacitance Cd is too small or 0. In addition, since the capacitive-degeneration voltage-controlled oscillator 200 can adjust the MAOF ftrans or the input capacitance Cin by using only the degeneration capacitance Cd, a satisfactory performance cannot be obtained in comparison with a simple cross-coupled pair voltage-controlled oscillator.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to an optical waveguide which enables light to be used for positioning both a light-emitting device and a light-receiving device, and to an optical wiring member including the optical waveguide. Furthermore, the invention relates to a method of mounting optical devices on an optical wiring member. 2. Description of Related Art In electronic devices, such as communication devices, information processing devices, household electrical appliances, and the like, optical signals are sometimes used to transmit information within an electronic device or between an electronic device and an outside device. In comparison with the electrical signal, the optical signal is advantageous in terms of transmitting a large capacity of information (fast communication rate), having no influence of electromagnetic noise, and the like. To transmit optical signals, an electronic device is equipped with an optical wiring member. The optical wiring member includes a substrate and an optical waveguide comprising an optical waveguide core disposed on the substrate and an optical waveguide clad which entirely covers the optical waveguide core (hereafter, also simply referred to as “optical waveguide”). When an optical wiring member is mounted on an electronic device, a light-emitting device (LD; laser diode) and a light-receiving device (PD; photodiode) are mounted on the surface of the substrate on which the optical waveguide is not disposed. On the optical waveguide core, a mirror is formed at a location that faces the light-emitting device and at a location that faces the light-receiving device, thereby optical signals emitted from the light-emitting device reach the light-receiving device via the optical waveguide (see, e.g., JP-A 2007-17559). As described above, on a substrate, there is a location at which a light-emitting device is mounted and there is a location at which a light-receiving device is mounted, and before mounting the light-emitting device and the light-receiving device (collectively referred to as “optical devices”), those mounting locations must be properly positioned. Conventionally, there is a position-aligning method which has the advantage of the property that an optical waveguide core allows light to efficiently pass through. In this method, when light, such as illuminating light, is emitted on one end of the optical waveguide core, i.e., a location at which an optical device is mounted, the light exits from the other end of the optical waveguide core, i.e., a location at which the other optical device is mounted, and therefore, optical devices are positioned using the light as a target. However, in this conventional method, once an optical device is mounted to one end of the optical waveguide core described, e.g., in JP-A 2007-17559, illuminating light can no longer be introduced into the optical waveguide core from that location; therefore, it is impossible for the light to exit from the other end and serve as a target for positioning the other optical device. This means that light can be used only for positioning either a light-emitting device or a light-receiving device.
{ "pile_set_name": "USPTO Backgrounds" }
In the manufacture of seamless and welded tubing, it is a conventional practice to initially form the tubing to a larger diameter and with a greater wall thickness than is generally desired. Among the finishing operations to which this tubing is subjected frequently is reduction in size in a stretch reducing mill. The stretch reducing mill typically consists of a series of consecutive mill stands of progressively decreasing diameter, arranged with individual drives, such that each stand is operated at a higher speed than the previous stand. The arrangement is such that, not only is the diameter of the tubing progressively reduced from stand to stand, but the tubing is also placed under controlled tension between stands, resulting in a controlled elongation of the tubing over and above that which would normally result from the fact of the tube being reduced in diameter. By properly relating the reduction in diameter to the elongation, the finished tubing may be controlled both as to its outside diameter and as to its wall thickness. Since a standard size of incoming tubular stock is customarily processed into finished tubing of various sizes and wall thicknesses, it is generally necessary to set up the stretch reducing mill so as to accommodate relatively frequent reorganization. Typically, this is accomplished by removably mounting the individual mill stands in a base or foundation structure. When it is desired to change over the mill from one size of finished tubing to another, the existing combination of mill stands is removed and replaced by another combination, which is appropriate to the intended new production. Pursuant to the present invention, improvements are provided in the construction of a stretch reducing mill, which greatly facilitate the changeover of the mill from one mill stand combination to another. Thus, providing improved flexibility in production scheduling, while at the same time providing for down time of the mill to be kept at a practical minimum. According to one of the more specific aspects of the invention, a multi-stand stretch reducing mill is provided in which a series of adjacent mill stands are secured at the top to a massive, retaining beam, which extends the full length of the mill, over the tops of the individual mill stands. The retaining beam is connected or arranged to be connected to each of the mill stands and thus can serve as a means for simultaneously lifting all of the mill stands out of the foundation and conveying them to the preparation floor. This retaining beam, because of its inherent massive weight, serves, when the mills are in working position, to assist in holding the mill stands in place on the mill foundation. In addition, the retaining beam serves as a medium to which vertically downward clamping force may be applied to the individual mill stands, through a relatively limited number of high power clamping devices. By serving in a dual capacity of a hold-down means and also a lifting and carrying means, the massive retaining beam enables the changeover of the mill to be accomplished quickly and with great efficiency. In accordance with another aspect of the invention, an improved arrangement is provided for longitudinally clamping into the mill foundation a series of individual mill stands. The improved arrangement comprises a series of hydraulic cylinders, arranged in a configuration to correspond to the alignment of spacing bosses provided on each of the mill stands. In conjunction with the several hydraulic cylinders, there is provided a heavy-duty mechanical locking mechanism, which is activated after the mill stands have been hydraulically clamped. In normal operations, the mechanical locking system functions only in a standby capacity. However, should there be a failure or reduction in the hydraulic clamping pressure during operation of the mill, the standby mechanical locking system will prevent any significant displacement of the mill stands, which might otherwise result in serious damage to the mill. In accordance with a further specific aspect of the invention, an improved and simplified arrangement is provided for effecting the coupling and decoupling of the individual mill stands to their respective drive motors when changing over the mill. The improved arrangement is in the form of a common clutch beam, which extends along the full length of the mill and is carried by a series of crank levers. The series of levers is actuated simultaneously, by actuation of a longitudinally extending tension bar, so that the clutch beam is caused to move transversely with respect to the mill axis to effect declutching. Since a mill of typical construction utilizes alternate high and low drive inputs, the clutch beam assembly of the invention is arranged to extend along the mill between the levels of the upper and lower drives and is provided with alternately upwardly and downwardly extending clutching yokes for engagement with the alternate high and low mill drives. The prior art considered to be of interest includes the William R. Scheib U.S. Pat. No. 3,328,973, assigned to Aetna-Standard Engineering Co., a subsidiary of White Consolidated Industries, Inc. General features of the mill arrangement are also shown in the Gillet U.S. Pat. No. 3,355,923, the Chang U.S. Pat. No. 3,221,529, and the Kocks U.S. Pat. No. 2,214,279. For a better understanding of the above and other features and advantages of the invention, reference should be made to the following detailed description of a preferred embodiment, and to the accompanying drawings.
{ "pile_set_name": "USPTO Backgrounds" }
Often, the collection of physiological data can be influenced by environmental conditions such as temperature. For example, muscle blood flow may change with varying temperature. See Binzoni, Tiziano et al., Haemodynamic Responses to Temperature Changes of Human Skeletal Muscle Studied by Laser-Doppler Flowmetry. Physiol. Meas. 33 (2012), pp. 1181-1197. Clinicians may fail to realize, particularly in emergency situations, that the physiological data they are recording and/or seeing is being impacted and/or invalidated by the presence of environmental factors.
{ "pile_set_name": "USPTO Backgrounds" }
Since the advent of the space age, which began after the World War II era, the use of liquid fuel rocket engines has become commonplace. These engines use cryogenic fuels, such as liquid oxygen and liquid hydrogen. Because of the very low temperatures of these fuels in the liquid state, insulated fuel tanks were needed. The application of spray-on foam insulation has proved to be the cheapest and best way to put the required insulation on the tanks. Sometimes, however, this foam insulation does not adhere well to the metal fuel tanks. Therefore, these debonded areas must be detected and repaired so that they will not cause problems connected with the firing and use of the high altitude rockets. At the present time, NASA has a requirement for a test system to evaluate the bonding of the insulation on the external tank for the Space Shuttle. The required testing system should: (1) be able to detect debonded areas consistent with the current quality control criteria for the external tank, (2) be non-destructive in nature, (3) include or be compatible with a method of verifying debonded areas, (4) be of a nature which could easily be used on a space vehicle, (5) have an output signal which could easily be interpreted by a technician, (6) have an output signal that could be permanently recorded, and (7) be able to test a substantial number of points in a large area in a short time. One patent which issued to the National Aeronautics and Space Administration some years ago was U.S. Pat. No. 3,521,982 to Clotfelter et al. This device uses a variable frequency oscillator and an electro-mechanical transducer to transmit mechanical vibrations into low density insulation attached to a high density panel and receive back reflections from the low density material. The frequency of the oscillator was varied until it coincided with one of the resonant frequencies of the low density material. These resonant frequency reflections were displayed on a screen, and the amplitude of the resulting waveform provided an indication of whether the insulation was properly bonded. This system was certainly a step in the right direction, but the system did not work well enough to provide completely satisfactory operational results. Another prior art patent is U.S. Pat. No. 3,106,838 to Crooks, which discloses a system for testing a welded joint between two pieces of metal. The Crooks device continuously impacts one of the metal pieces with an electric hammer at a frequency of two to eight times per second. A probe having an attached crystal is used to detect vibrations in the other piece of metal and change these vibrations to an electric current. This current is fed directly to an oscilloscope and displayed either as (1) a smooth and gradually decaying waveform (which indicates a good weld), or (2) a pulsating and decaying waveform (which indicates a poor weld). In the former case, the workpiece vibrates at one frequency indicating it is one piece the size of the complete welded object. In the latter case, the two pieces tend to vibrate at different frequencies, the two signals having varying phase relationships so that they will tend to interfere with each other, amplifying in some instances and dampening the vibrations in others. U.S. Pat. No. 3,653,373 to Batterman discloses an apparatus for acoustically determining periodontal health. Batterman teaches the impacting of a tooth with an impacting device and positioning a microphone on the opposite side of the tooth in order to pick up vibrations from the tooth in the form of sound waves. Specifically, it is sound waves having the resonant frequency of the tooth which are picked up. This resonant frequency then gives an indication of whether or not the tooth is solidly rooted in its socket. U.S. Pat. No. 3,967,498 to Pezzillo discloses a tire defect detector. The Pezzillo device has a roller with an attached handle. Inside the roller is a sound generating device comprising a hammer which hits an anvil. In operation, the Pezzillo device is placed inside a tire casing and sound is generated. The echo or return resonant signal is picked up by a microphone, and the audio signal is changed into an electrical signal. The electrical signal is compared to a predetermined scale in order to provide an indication as to whether or not the tire casing is sound. All the inventions disclosed in the above-mentioned prior art patents have at least some utility as non-destructive test devices. However, none of the prior art patents disclose a device which could accomplish the purpose which is required of the instant invention. These prior art devices all appear to use a resonant or "signature" frequency to determine the condition of the workpiece. Conversely, as will be disclosed below, the present invention does not use a resonant frequency, but instead uses only frequency data which is sensed while the impact to the workpiece is actually taking place. Moreover, the present invention does not use a microphone to sense resonant sound waves as does Batterman and Pezzillo. Therefore, the object of this invention is to provide a non-destructive insulation bond test system which would operate on one side of the workpiece only to locate debonded areas and also check the quality of bonds in bonded or partially bonded areas. A further object is that the part of the system which tests the workpiece be portable. A still further object is that the system provide speed and a simple decision making process.
{ "pile_set_name": "USPTO Backgrounds" }
Home networks can include various types of devices communicating over various types of network interfaces and protocols. For example, home appliances may communicate over a low-rate wireless personal area network based on the IEEE 802.15.4-2003 standard, while computing devices may communicate over an IEEE 802.3 (Ethernet) standard and/or IEEE 802.11 (wireless local area network) standard, and other devices, such as a television, can also receive data via a video interface. Efficient operation of these various devices can be improved by merging the data regarding operation of these devices with other devices and information that may be accessible from the home network.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to alkaline storage batteries. It relates, for example, to nickel metal-hydride batteries using a hydrogen absorbing alloy. 2. Description of Related Art In recent years, alkaline storage batteries have attracted wide attention as power sources of portable equipment, cellular phones or the like and those of electric cars, hybrid electric vehicles or the like. Accordingly, higher performance of the alkaline storage batteries has been requested. In particular, nickel metal-hydride batteries rapidly have become widespread as a secondary battery with a high energy density and an excellent reliability. The nickel metal-hydride batteries include a positive electrode using an active material mainly containing nickel hydroxide and a negative electrode using a hydrogen absorbing alloy as the main material. In the nickel metal-hydride batteries mentioned above, cobalt is added to the positive electrode in order to raise the electric conductivity of the active material. For an active material for the negative electrode, the hydrogen absorbing alloy containing cobalt generally is used. The positive electrode and the negative electrode are insulated by a separator made of nonwoven fabric. However, the nickel metal-hydride batteries described above have had a problem that self-discharge characteristics deteriorate after charge-discharge cycles are repeated. The inventors carried out an examination and newly found that metal ions eluted from the positive electrode and the negative electrode are deposited on the separator and form a conductive path, causing the deterioration of the self-discharge characteristics. Furthermore, this phenomenon was examined more in detail to find that (1) when the separator retains a sufficient amount of electrolyte, the metal ion such as cobalt that has been eluted into the electrolyte is deposited on the positive electrode, whereas (2) when the electrolyte retained in the separator decreases, the metal ion that has been eluted into the electrolyte is more likely to be deposited on the separator. Accordingly, the reason why the self-discharge characteristics deteriorate after many charge-discharge cycles is considered to be because the decrease in the electrolyte retained in the separator leads to a formation of the conductive path on the separator. With the foregoing in mind, it is an object of the present invention to provide an alkaline storage battery that has excellent self-discharge characteristics even after a number of charge-discharge cycles. In order to achieve the object mentioned above, a first alkaline storage battery of the present invention includes a case, and a positive electrode, a negative electrode, a separator and an electrolyte that are provided in the case. An amount of the electrolyte retained in the separator is equal to or more than 15 mg/cm2 (that is, equal to or more than 15 mg per cm2 of the separator) at least in a period P (that is, in a period after assembling the battery, from the time the separator is impregnated with the electrolyte to the time the battery is activated). In the above-described first alkaline storage battery, since a large amount of the electrolyte is retained in the separator, the electrolyte is not exhausted in the separator even when the charge-discharge cycles are repeated. Thus, according to the above-described first alkaline storage battery, the deposition of a conductive material on a surface of the separator can be prevented, making it possible to obtain the alkaline storage battery that has excellent self-discharge characteristics even after a number of charge-discharge cycles. Also, a second alkaline storage battery of the present invention includes a case, and a positive electrode, a negative electrode, a separator and an electrolyte that are provided in the case. A total area X (cm2) of the separator and an amount Y (mg) of the electrolyte satisfy a relationship of Y/X greater than 20 at least in a period, after assembling the battery, from the time the separator is impregnated with the electrolyte to that the battery is activated. In the above-described second alkaline storage battery, since there is a large amount of the electrolyte, the electrolyte is not exhausted in the separator even when the charge-discharge cycles are repeated. Thus, according to the above-described second alkaline storage battery, it is possible to obtain an alkaline storage battery that has excellent self-discharge characteristics even after a number of charge-discharge cycles. In the first and second alkaline storage batteries described above, the separator is formed of sulfonated polypropylene, and sulfur atoms and carbon atoms in the separator may satisfy a relationship of (the number of the sulfur atoms)/(the number of the carbon atoms)=A, where 2.0xc3x9710xe2x88x923xe2x89xa6Axe2x89xa65.5xc3x9710xe2x88x923. With the above structure, since an electrolyte retention of the separator becomes particularly high, it is possible to obtain an alkaline storage battery that has even better self-discharge characteristics after charge-discharge cycles. In the first and second alkaline storage batteries described above, the electrolyte may be poured into the case in a vacuum atmosphere. This pouring method is referred to as a vacuum pouring method in this specification. With the above structure, since a larger amount of the electrolyte is retained in the separator in a uniform manner, it is possible to obtain an alkaline storage battery that has even better self-discharge characteristics. The vacuum pouring method includes (1) a method of pouring the electrolyte into the battery in which air has been removed from the space between fibers of the separator by evacuating a battery case in advance, and (2) a method of pouring the electrolyte into the battery case, then removing air present between fibers of the separator by creating a vacuum in an atmosphere in which the battery case is placed, so that the separator is impregnated sufficiently with the electrolyte upon exposure to the atmosphere. In the first and second alkaline storage batteries described above, the separator may have a specific surface area ranging from 0.6 m2/g to 0.9 m2/g. In the first and second alkaline storage batteries described above, the separator may have a median pore diameter on a volume basis of not larger than 30 xcexcm when pores are measured in a range of 0.1 xcexcm to 360 xcexcm with a mercury porosimeter. Also, in the first and second alkaline storage batteries described above, the separator may have a weight per unit area ranging from 60 g/m2 to 85 g/m2. With the above structure, since a path between the positive electrode and the negative electrode that is formed of the fibers of the separator becomes longer, it is possible to prevent a conductive deposit from forming a conductive path continuing from the positive electrode to the negative electrode. Furthermore, a third alkaline storage battery of the present invention includes a case, and a positive electrode, a negative electrode, a separator and an electrolyte that are provided in the case. A chemical compound containing manganese is deposited on a surface of the separator. In the third alkaline storage battery described above, when cobalt is deposited on the surface of the separator, the cobalt forms a chemical compound with manganese so as to form a deposit with a low electric conductivity. Thus, it is possible to obtain an alkaline storage battery that has excellent self-discharge characteristics even after charge-discharge cycles. In the third alkaline storage battery described above, the negative electrode may contain a hydrogen absorbing alloy as a main component, and the hydrogen absorbing alloy may contain misch metal and manganese in a composition ratio of 1:B, where 0.2xe2x89xa6Bxe2x89xa60.5. With the above structure, since the deposition of a highly conductive material such as cobalt oxyhydroxide on the surface of the separator can be prevented, it is possible to obtain an alkaline storage battery that has excellent self-discharge characteristics after a number of charge-discharge cycles. In the third alkaline storage battery described above, the electrolyte may contain a manganese ion. With the above structure, since the deposition of a highly conductive material such as cobalt oxyhydroxide on the surface of the separator can be prevented, it is possible to obtain an alkaline storage battery that has excellent self-discharge characteristics after a number of charge-discharge cycles.
{ "pile_set_name": "USPTO Backgrounds" }
In any communication system including several users sharing the transmission medium, i.e., the available communication resources, special attention must be given to the co-existence of the different signals being present within the communication system. The users of the communication system generally share the same pool of communication resources. When allocating the communication resources (for example, different channels) to the multiple users, it is realized that the signal of one user may affect (interfere with) the signal of another user. A communications system designer thus has to design a user traffic multiplexing scheme bearing this in mind, and thus design the multiplexing scheme so as to handle this undesired interference. In communication systems in which a geographical division is used, e.g., a cellular system, there are mainly two kinds of multi-user interference present. Firstly, the interference from users within the same geographical area, called a cell; the so called intra-cell interference, and secondly the interference from users in adjacent (neighboring) cells; the so called inter-cell interference. When the cell size is small, more than one adjacent cell can interfere with any given cell. In the literature, base station or evolved Node B NB is also a term used for a cell. eNodeB is also commonly referred to as base station (BS), base transceiver station, controller, access point (AP), access network (AN), and so forth, while a user equipment (UE) may also be commonly referred to as mobile station (MS), access terminal (AT), subscribers, subscriber stations, terminals, mobile stations, and so on. One of the challenges for OFDM cellular networks such as LTE and/or WiMax includes mitigating inter-cell interference.
{ "pile_set_name": "USPTO Backgrounds" }
A known display device for vehicle of this type is described in Patent Document 1, by way of example. The display device for vehicle includes, for example, an image display device formed of a liquid crystal panel, an EL panel, or any other flat display panel and control means including a microcomputer for displaying vehicle information as an image in the image display device. The image display device is provided for displaying, under control of the control means, a main meter image consisting of an analog speed meter image (vehicle information) and an analog tachometer image (vehicle information) at both ends on the left and right of its display screen, and displaying an auxiliary meter image consisting of an analog fuel meter image and an analog water-temperature meter image and an information display screen (vehicle information) consisting of geographic information, intervehicular distance information, and shift range information other than the meter image between the analog speed image and the analog tachometer image. In the display device for vehicle for displaying the information display image other than the meter image between the main meter images in this manner, vehicle information with great urgency and high priority may be displayed in the information display image, for example imaging information from a night-vision camera, and alarm information including a remaining fuel amount and an intervehicular distance.
{ "pile_set_name": "USPTO Backgrounds" }
One approach to efficiently store data is to prevent the redundant copying of data that are the same as something previously stored (e.g., data that is to be stored on a backup drive that has stayed the same between backups). This efficient storage is achieved by dividing the data streams from data sources into segments and storing the segments or a reference to a similar segment and a delta on a storage device. During subsequent storage operations, the data streams are again segmented and the data stream segments are looked up in an index to determine whether a similar data segment was already stored previously. If a similar segment is found, the data segment is not stored again, instead a reference to the similar segment and a difference between the stored segment and the data stream segment are stored; Otherwise, the new data segment and a new index identifier are stored. However, in order to calculate the difference between the similar stored segment and the new segment requires reading back the similar stored segment. This can cause performance issues with regard to the storage device and traffic to and from the storage device. It would be beneficial if performance could be maintained or improved without sacrificing storage efficiency. Similarly, when sending similar segments over a network to a remote machine, computing the delta between the new segment and a similar segment stored remotely can require sending the full segment over the network which is expensive in terms of network bandwidth. It would be beneficial if performance could be maintained or improved without sacrificing transmission efficiency.
{ "pile_set_name": "USPTO Backgrounds" }
In standard methods of obtaining metallic lead from concentrates, the standard procedure has been to treat the lead sulfide concentrates in a blast furnace. However, the pyrometallurgical procedure possesses many disadvantages and drawbacks. Primary among these disadvantages is that the process will result in some major pollution problems such as the generation of sulfur oxide gas along with substantial fuming. The fuming carries with it possible carcinogenic compounds which will contain lead, cadmium, etc. Therefore, it is necessary to provide improved and safer methods for obtaining metals such as lead in metallic or elemental form by methods which will not contribute to pollution of the air or will be safer to operate. The aforementioned lead smelting techniques will consist of roast sintering the lead sulfide concentrate whereby a major portion of the sulfur will be removed followed by melting in a blast furnace to obtain the metallic lead. In an effort to alleviate the pollution problem, it is necessary to develop new processes for obtaining lead which will be competitive as an alternative to the conventional smelting practices. Prior work in the hydrometallurgical field resulted in developing a non-aqueous processing route whereby lead sulfide concentrates are chlorinated at temperatures above 300.degree. C. to produce lead chloride and volatilized sulfur. However, chlorination at these elevated temperatures will promote formation of volatile chlorides of contaminating elements such as iron, magnesium, aluminum, silicon, and zinc, as well as elemental sulfur which may be present in the lead sulfide concentrate. Other hydrometallurgical processes which have been developed include the use of ferric sulfate as a leach agent. In this method, the lead sulfide is sulfated to form lead sulfate. This step is then followed by carbonation of the lead sulfate to form lead carbonate and thereafter the lead carbonate is subjected to dissolution in hydrofluosilicic acid for electrolysis to metallic lead. Yet another hydrometallurgical method which is developed for the recovery of lead is based on the use of an acidic ferric chloride medium. This method involves a leaching step whereby the lead sulfide is converted to lead chloride and thereafter subjected to steps of solubilizing, crystallization and electrolysis. The prior art which discloses other processes for converting a lead sulfide to elemental or metallic lead is also exemplified by U.S. Pat. No. 1,491,653. This reference describes the use of chlorides of sulfur and in particular sulfur monochloride to selectively chlorinate lead sulfide in a complex lead-zinc sulfide ore at temperatures ranging from 50.degree. to about 150.degree. C. However, in this method of operation, the solids are reacted in a solution of sulfur monochloride to form a slurry. A disadvantage which is present when utilizing such a system is that certain metal sulfides are solubilized due to the dissolution of sulfur into the slurry, this dissolution being due to the wide range of compositions of sulfur chlorides. Such an action can lead to the dissolution of some metal sulfides thereby rendering the process more complex in nature. In addition to this type of operation, another metal recovery system utilizes a dry chlorination of complex sulfides in a two-stage process. The first stage consists in a countercurrent chlorination of the ore in a tube mill with chlorine gas, the temperatures of this process usually being in a range of from about 100.degree. to about 150.degree. C. to insure chlorination of from about 40% to about 70% of the metals. The important step in this stage is the chlorination of iron which serves as a source of chlorine in the second step. The second step of this two-stage process consists in a chloridizing roast wherein the final chlorination is accomplished to convert all metals present in the ore to chlorides. Much of this reaction is done by the release of chlorine by the oxidation of the initially formed ferric chloride to ferric oxide and chlorine. Following this, the metal chlorides are then leached in water and brines in order to solubilize the metals. However, the chloridizing roast to produce ferric chloride will also produce sulfur and sulfur chlorides as well as oxides, the roast temperatures which are necessary to accomplish this being above 138.degree. C. and probably above 150.degree. C. One example of the two step process is found in U.S. Pat. No. 4,011,146. In this reference a dry chlorination of a sulfide ore is conducted in which the products which are formed during the aforesaid drying chlorination step are contacted with an inert sweep gas such as nitrogen to convert any sulfur chlorides which are formed to metal chlorides and elemental sulfur. The patent teaches that the lead sulfide present in the ore is converted by an exothermic reaction to lead chloride and, therefore, some cooling must be effected or in the alternative inert materials must be added. As will hereinafter be set forth in greater detail, it has now been discovered that a lead sulfide source may be subjected to halogenation in the presence of an oxygen-containing gas which is substantially inert to the environment to provide a fluidized bed for the halogenation reaction. By utilizing this fluidized bed, it will be possible to effect a more thorough halogenation of the lead sulfide source with a concomitant increase in the yield of the desired lead. This invention relates to an improvement in a hydrometallurgical process for the recovery of metallic lead. More specifically, the invention is concerned with an improved process for the halogenation and particularly chlorination of a lead sulfide concentrate wherein the halogenation is effected in a fluidized bed reactor in either a batch or continuous type of operation. It is therefore an object of this invention to provide an improved process for the halogenation of lead-containing sources. A further object of this invention is to provide an improvement in the chlorination of a lead sulfide concentrate whereby a more efficient mixing of gas-solids which is a requirement of the reaction is effected. In one aspect an embodiment of this invention resides in a process for the halogenation of a lead sulfide which comprises halogenating said lead sulfide at an elevated temperature with a halogen gas in a dry atmosphere, the improvement which comprises halogenating said lead sulfide in a fluidized bed with said halogen gas, said fluidized bed being effected by the introduction of a gas consisting essentially of a mixture of said halogen gas and an oxygen-containing gas at a rate of from about 4 centimeters per second to about 12 centimeters per second to said lead sulfide within said fluidized bed, wherein the oxygen in said oxygen-containing gas is substantially inert to said halogenation within said fluidized bed. A specific embodiment of this invention resides in the process for the halogenation of a lead sulfide in which said lead sulfide is chlorinated at a temperature in the range of from about 90.degree. to about 120.degree. C. with chlorine gas in a dry atmosphere, said halogenation being effected in a fluidized bed operation which is afforded by the introduction of a gas consisting essentially of a mixture of said chlorine gas and air at a rate of from about 4 centimeters per second to about 12 centimeters per second, said chlorine gas being present in said mixture in a ratio of from about 0.01:1 to about 0.2:1 parts by volume of chlorine gas per part of said air.
{ "pile_set_name": "USPTO Backgrounds" }
Nano-fabrication includes the fabrication of very small structures that have features on the order of 100 nanometers or smaller. One application in which nano-fabrication has had a sizeable impact is in the processing of integrated circuits. The semiconductor processing industry continues to strive for larger production yields while increasing the circuits per unit area formed on a substrate, therefore nano-fabrication becomes increasingly important. Nano-fabrication provides greater process control while allowing continued reduction of the minimum feature dimensions of the structures formed. Other areas of development in which nano-fabrication has been employed include biotechnology, optical technology, mechanical systems, and the like. An exemplary nano-fabrication technique in use today is commonly referred to as imprint lithography. Exemplary imprint lithography processes are described in detail in numerous publications, such as U.S. Patent Publication No. 2004/0065976; U.S. Patent Application Publication No. 2004/0065252; and U.S. Pat. No. 6,936,194, entitled “Functional Patterning Material for Imprint Lithography Processes,” all of which are hereby incorporated by reference. An imprint lithography technique disclosed in each of the aforementioned U.S. patent publications and patent, includes formation of a relief pattern in a polymerizable layer and transferring a pattern corresponding to the relief pattern into an underlying substrate. The substrate may be substantially transparent to light. The substrate may be coupled to a motion stage to obtain a desired positioning to facilitate the patterning process. The patterning process uses a template spaced-apart from the substrate and a formable liquid applied between the template and the substrate. The formable liquid is solidified to form a rigid layer that has a pattern conforming to a shape of the surface of the template that contacts the formable liquid. After solidification, the template is separated from the rigid layer such that the template and the substrate are spaced-apart. The substrate and the solidified layer are then subjected to additional processes to transfer a relief image into the substrate that corresponds to the pattern in the solidified layer. During imprint lithography precise alignment of the substrate relative to the template is desired to minimize production defects. Typically this alignment may involve complicated or expensive interferometric devices which are difficult and expensive to calibrate and maintain. Furthermore, it has proven difficult to obtain adequate imagery of substrates during imprint lithography.
{ "pile_set_name": "USPTO Backgrounds" }
Retailers, wholesalers, and other product distributors typically maintain an inventory of various items that may be ordered, purchased, leased, borrowed, rented, viewed, and so forth, by clients or customers. For example, an e-commerce website may maintain inventory in a fulfillment center. When a customer orders an item, the item is picked from inventory, routed to a packing station, packed, and shipped to the customer. Likewise, physical stores maintain inventory in customer accessible areas (e.g., shopping area), and customers can pick items from inventory and take them to a cashier for purchase, rental, and so forth. Many of those physical stores also maintain inventory in a storage area, fulfillment center, or other facility that can be used to replenish inventory located in the shopping area or to satisfy orders for items that are placed through other channels (e.g., e-commerce). Other examples of entities that maintain facilities holding inventory include libraries, museums, rental centers, and so forth. In each instance, for an item to be moved from one location to another, it is picked from its current location and transitioned to a new location. It is often desirable to monitor the entry of users into the facility, movement of inventory, users, and other objects within the facility, and so forth. While implementations are described herein by way of example, those skilled in the art will recognize that the implementations are not limited to the examples or figures described. It should be understood that the figures and detailed description thereto are not intended to limit implementations to the particular form disclosed but, on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope as defined by the appended claims. The headings used herein are for organizational purposes only and are not meant to be used to limit the scope of the description or the claims. As used throughout this application, the word “may” is used in a permissive sense (i.e., meaning having the potential to), rather than the mandatory sense (i.e., meaning must). Similarly, the words “include”, “including”, and “includes” mean “including, but not limited to”.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention discloses a portable, collapsible and adjustable rifle support stand which supports a rifle at each end--under the barrel and under the stock. The support stand is made of two vertical supports for a rifle. The rear or stock support is a hinged tripod and the front or barrel support is a hinged bipod. The rifle support stand is designed to steady a telescope-equipped rifle for more accurate shooting. 2. Description of the Related Art When shooting a rifle, many hunters and target shooters use one hand and forearm to support the rifle barrel and the other arm and shoulder to support the rifle stock. However, there is always some wobble of the rifle and therefore reduction of target accuracy with this method. At 200 to 300 yards distance from a target, even the slightest movement of the human body, and hence the rifle, can cause a large reduction in target accuracy. In order to overcome the shortcomings of this hand holding method, many hunters and target shooters use a barrel support when shooting rather than using their hand and forearm to support the rifle barrel. However, the fact that the other arm and shoulder are used to support the rifle stock still causes some wobble and hence a reduction in target accuracy. In the field, a hunter may position his rifle on a convenient tree branch, rock or the like to shoot more accurately, but the rear support of the rifle, i.e., the arm and shoulder, can and does decrease target accuracy. Numerous inventions have been developed to overcome the disadvantages of the hand holding shooting method and/or the barrel support methods. For example, U.S. Pat. No. 3,947,988 (Besaw) discloses a portable rifle rest useful for zeroing in rifles on or off a rifle range. The rifle rest includes an elongated, upper rifle support block provided with a V-shape rifle support notch therein lined with cushioning material and two elongated lower foot blocks each pivotally mounted to the upper block to move between positions at right angles thereto when the rifle rest is in use and positions aligned therewith when the rifle rest is to be transported like a suitcase. However, the rifle rest has limited adjustability and collapsibility. U.S. Pat. No. 4,802,612 (Anderson) discloses a sporting apparatus support device for the handicapped having a front support plate and a back support plate which are adjustably attached to each other with belts so as to securely sandwich the wearer. An across-the-shoulder strap extending from the front support plate to the back support plate is also provided and an outwardly and upwardly extending bar from the front support plate is provided for attaching a gun rest. However, this device is not collapsible or adjustable. U.S. Pat. No. 4,854,066 (Canterbury, Sr.) discloses and adjustable rifle rest. The adjustable rifle rest includes a cylindrical standard implantable into the ground, a rotatable yoke mounted on the upper end of the standard, a sleeve snugly but rotatably and slidingly engaging the shoulder, a member having a horizontal portion with one end fixed to the sleeve and the other end terminating in an upwardly extending vertical portion, a fixed yoke mounted on the upper end of the vertical portion of the member, a structure affixed to the lower end of the standard to aid in implanting the standard and an assembly operable to vary the length of the standard. However, this rifle rest is not collapsible and must be implanted in the ground. U.S. Pat. No. 4,893,427 (Davidson) discloses a firearm support which can be quickly and easily set up. The firearm support securely supports a firearm, such as a rifle, while permitting the firearm to have freedom of movement in several planes. The support also can be stored adjacent to the firearm without tangling the shoulder strap associated with the firearm. However, this firearm support has limited adjustability. Finally, design Pat. No. D346,003 (Anderson) discloses a portable rifle rest and design Pat. No. D359,337 (Banfill) discloses a collapsible rifle rest. However, each of these rifle rests has limited adjustability. It is, therefore, an object to the present application to provide a portable, collapsible and adjustable rifle support stand which is both simple to use and relatively inexpensive to produce.
{ "pile_set_name": "USPTO Backgrounds" }
Orthodontic brackets are used by orthodontists in preventing and treating facial and dental irregularities, such as malocclusions. Patients seeking treatment from orthodontists are concerned with the presence of crooked teeth, or more particularly dental crowding, flaring, irregularity in tooth alignment, unpleasing tooth appearance, “gummy” smile, and difficulty in chewing, among other issues. Orthodontic treatment can correct the issues listed above as well as treat other cosmetic and oral irregularities and issues. Issues requiring orthodontic treatment may be the result of discrepancies between the supporting bony structures that house the upper and lower dental arches. Orthodontic treatment can address these discrepancies in order to provide a pleasing smile and a proper chewing function while achieving a long-term stability. Trained and experienced orthodontists seek to reach these goals for the dental patient using various techniques and related equipment and products. One such product used extensively by orthodontists to correct tooth and jaw irregularities and issues is an orthodontic bracket. Orthodontic brackets are secured to patients' teeth and are used by orthodontists to straighten, move or shift the patient's teeth. Orthodontic brackets are designed to achieve at least two basic objectives: to provide for attachment to a tooth, and to hold an orthodontic archwire. The orthodontic bracket works like an intermediate by connecting an orthodontic archwire to a tooth. The attachment of the bracket to a tooth transmits a force to a tooth when a resilient orthodontic archwire is bent or twisted, and then brought to engage with the bracket. The archwire coupled to orthodontic brackets mounted on a patient's teeth provides for a mechanical force system that functions to sequentially deliver forces to a patient's teeth, thus directing teeth to the proper positions by the work of the orthodontist. Conventional orthodontic bracket designs permit the engagement of an archwire into an archwire slot by ligation using elastomeric or wire ligatures wrapped around the tie wings of the bracket. Ligatures or some form of fastening means are essential to secure an archwire in the bracket slot to prevent the archwire from being dislodged. Several problems exist in the use of wire ligation for both the orthodontist and the patient. The application of the ligating wire requires considerable skill on the part of the orthodontist and long chair time for the patient. Moreover, the archwire must be removed from the orthodontic bracket from time to time for bending or replacement during the course of treatment, calling for repetitive ligating operations and increased patient/orthodontist time. Traditional wire ligation has other disadvantages as well. Ligation with wire creates undesirable nooks and crevices freely exposed to the harsh oral environment that become traps for food particles, and calculus buildup. Also, because tooth movement occurs along the archwire, binding of the archwire with wire ligatures is undesirable because the binding can introduce unwanted resistant forces during orthodontic treatment. The orthodontist must account for these unwanted resistant forces imparted by the ligating wire. Without careful treatment, the intended corrective tooth movement by the orthodontic mechanical forces may be jeopardized. Elastomeric ligatures also have disadvantages. Elastomeric ligatures have a tendency to discolor and can rapidly lose their elasticity. Accordingly, the efficiency of elastomeric ligatures in securing the archwire to the orthodontic bracket diminishes over time. Elastomeric ligatures can become ineffective or fail, requiring frequent replacement. One way to address the disadvantages in traditional ligating methods and products is to incorporate a rapid archwire retention and release mechanism so that the need for ligating wires, elastomeric ligatures, and the like may be reduced, if not completely eliminated. Self-ligating bracket systems attempt to address the disadvantages of traditional ligating methods and products wherein the bracket is capable of retaining the archwire without the need for separate ligating wires or elastomeric ligatures. A self-ligating bracket can be positioned in an open position to allow for insertion or release of the archwire into the archwire slot and a closed position to retain the archwire in the archwire slot. Problems exist in known self-ligating brackets. Due to complexities of manufacturing and assembly processes associated with orthodontic brackets, a self-ligating bracket with a sliding ligating member is challenging to produce in a cost-effective and efficient manner. Many existing self-ligating designs suffer from high scrap rates. The difficulties associated with manufacturing and assembling known self-ligating brackets may also result in difficulty in use during orthodontic treatment. In designs in which the self-ligating bracket includes a sliding ligating member, the movable ligating member must be retained in a position such that the ligating member covers the archwire slot. Existing self-ligating designs often fail after only a few cycles of moving the ligating member from an open to a closed position. Further, the force required to open and close known ligating members can vary greatly with different issues. In cases where the force required to move the ligating member is too low, the ligating member may not be sufficiently retained in the closed position and thus cannot reliably retain the archwire. In cases where the force required to move the ligating member to the closed position is too high, an orthodontist may not be able to close the ligating member or the effort to close the ligating member translated into discomfort for the patient during treatment. Therefore, there exists a need for an improved self-ligating bracket that addresses one or more of the disadvantages and problems discussed above. In one embodiment, the present disclosure describes a self-ligating bracket that includes a reliable way of retaining an archwire without the need for separate wire or elastomeric ligatures. The present disclosure also describes a self-ligating bracket that is more easily manufactured and reduces the scrap rate from that of existing designs. Still further, the present disclosure includes a repeatable, durable design for retaining or biasing the ligating member in the open or closed position. Still another advantage is the ease of use in the clinical environment. This is especially evident in the case of lingual orthodontic brackets. Although the majority of orthodontic brackets are placed on the outer surface of teeth (labial surface), that is the area facing the labial tissue of the patient or the area generally visible to others, some patients opt for a cosmetic approach towards treatment. Lingual brackets allow for orthodontic treatment, not visibly apparent to others, where the bracket is bonded on a lingual surface of the tooth. Lingual brackets are particularly difficult to manipulate by an orthodontist due to limited access within the patient's mouth. The present disclosure describes an easy to use self-ligating bracket that permits easy manipulation of the ligating member by an orthodontist.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to carbon dioxide concentration sensors that determine the concentration of carbon dioxide in a given environment while carrying out calibration based on the carbon dioxide concentration in the reference atmosphere. Outputs from carbon dioxide sensors employing solid electrolytes or infrared rays vary with time. Therefore, such sensors correct their sensitivity by using calibration data prepared by statistically processing the chronologically measured and stored carbon dioxide concentrations in the reference air, as described in Japanese Provisional Patent Publication No. 249073 of 1993. This type of sensors permit correction of changes in the carbon dioxide sensing means with age if the concentration of carbon dioxide in the environment has lowered to the level of carbon dioxide in the reference air. In modern offices and other similar extremely airtight buildings, however, accurate calibration is practically difficult to achieve because it takes a very long time for the carbon dioxide concentration to reach the minimum value. A carbon dioxide sensor of this invention comprises a carbon dioxide sensing unit, an arithmetic unit that predicts the minimum value of carbon dioxide concentration that is regulated by the diffusion of the atmosphere by checking if the signal from a carbon dioxide sensing unit indicates that the carbon dioxide concentration has entered the declining phase, and a calibrating unit that updates the sensitivity correction factor based on the predicted lowest carbon dioxide concentration. When the carbon dioxide in the environment is decreasing, its concentration is regulated by diffusion equation etc. and changes substantially univocally. Thus, the sensor according to this invention can predict with accuracy the minimum value of carbon dioxide concentration. Therefore, calibration can be made without waiting until the carbon dioxide concentration actually drops to the minimum value. The object of this invention is to provide carbon dioxide concentration sensors that permit correcting sensitivity, zero point, and other calibration factors without waiting until the carbon dioxide concentration in the environment reaches the minimum value.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to umbrella devices and more particularly pertains to a new umbrella device for holding an automatically deploying an umbrella. 2. Description of the Prior Art The use of umbrella devices is known in the prior art. U.S. Pat. No. 6,015,077 describes a covering for an umbrella which allows the umbrella to be attached to a piece of clothing. Another type of umbrella device is U.S. Pat. No. 5,887,771 which describes a garment which is positionable on a person's back and which is adapted for holding an umbrella as well as other devices such as a fan. Yet another similar device is found in U.S. Pat. No. 4,188,965 which includes a belt having a means thereon for selectively mounting an umbrella to the belt wearer's back. The particularly designed umbrella of this device can be selectively collapsed along its length to place it against the back or in a position extending upwardly from the wearer of the belt. While these devices fulfill their respective, particular objectives and requirements, the need remains for an umbrella which can automatically deployed for use as needed and which remains stored within a housing when not in use. Additionally, the device should include straps so that the housing may be selectively worn on a the back of the umbrella user so that the user may selectively deploy the umbrella so that it unfurls over the head of the user.
{ "pile_set_name": "USPTO Backgrounds" }
Electromigration fuses are devices that are often used in integrated circuits. The fuses conduct electricity between a cathode and an anode in the shorted state and are programmed to an open state by passing a sufficiently large current through the fusible link region of the fuse. A particular problem associated with electromigration fuses (electromigration fuses) is that it requires high energy (i.e., high current and voltage) to program. For example, conventional electromigration fuse programming voltages are about 3 volts while most logic circuit applications run at about 1 volt. The integration of the current high voltage electromigration fuse requires separate power supply as well as large driving devices to provide high current. Therefore, there exists a need for electromigration fuses and methods of making electromigration fuses that can be programmed using lower energy.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention Embodiments of the present invention relate generally to actuators and, more specifically, to a precision molded flexure assembly for a rotational actuator. 2. Description of the Related Art Actuators are devices configured to cause motion or movement of a component of an apparatus. To allow constrained relative motion between two or more parts, actuators typically include an application-specific bearing. For applications in which closely-controlled actuator movement is desired, bearings may have a high-precision configuration that includes precisely machined parts. For example, high-tolerance ball bearings or bushings are commonly used when precise actuator motion is desired. However, when such an application also requires very long life and small range of motion, the use of bearings can be problematic. Specifically, high-tolerance ball bearings or bushings are generally suited for limited-life applications rather than long-life applications. This is particularly true when the range of motion of the actuator is limited to a very small rotation or translation; small movements are known to grind a ball into the same location on a bearing race and erode material. This highly localized wear quickly decreases the tight dimensional tolerances of the bearing, rendering it unusable for long-life and/or very-high-cycle applications. As the foregoing illustrates, there is a need in the art for a precision bearing having very long life when actuated over a small range of motion.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates generally to sound attenuation devices and systems, and more particularly to inflatable sound attenuation devices and systems that are portable and flexible. In today's society, there are often areas where it is desirable to provide sound attenuation but it is difficult to achieve. Examples include apartments, condominiums, townhouses, single family dwellings with little separation therebetween and other structures that are close together or include rooms that may benefit from sound attenuation. Occupants of these types of structures may wish to have music practice rooms or areas, home theaters, children's play areas, protection from street noise, etc., but are unable to due the lack of practical and affordable sound attenuation systems. Furthermore, sound attenuation is sometimes desired for brief periods of time, or at short notice, in situations where it is not practical or affordable to erect permanent sound barriers. These situations might include trade shows where a company might benefit from a sound-proof booth or room for privacy concerns. Other situations might include road construction projects, where a temporary sound wall between a neighborhood and the construction area is desirable, or even in the case of a military operation, where an inflatable aircraft hanger with sound attenuation properties may be deployed during the mission and then removed (or replaced with a permanent structure) when the initial mission is complete. Accordingly, it is desirable to provide systems and methods for constructing inflatable, hence flexible and portable, soundproofed structures for a wide variety of personal, commercial and military uses.
{ "pile_set_name": "USPTO Backgrounds" }
Pearce et al. U.S. Pat. No. 5,101,688 discloses a transmission system for an agricultural tractor. In a system of the type disclosed in the patent it has been conventional to employ a fixed pressure-versus-time relationship in controlling the clutches during shifting. During shuttle shifting operations, that is, shifts between forward and reverse gears, this results in significant variations in acceleration depending on the weight of the tractor in which the transmission is installed, and the load the tractor is pulling or pushing. For automatic clutch engagement when starting from rest, a compromise pressure versus time relationship must be used to prevent excessive clutch slippage under high load conditions, yet provide a reasonably smooth start-up with no load.
{ "pile_set_name": "USPTO Backgrounds" }
One or more aspects of embodiments of the present disclosure are related to pressure sensors (e.g., devices for quantifying and/or detecting changes in pressure). Pressure sensors that are able to work under a range of conditions, including extreme conditions of pressure, temperature, corrosivity, etc., are desired. However, most currently available pressure sensors are limited to operating at temperatures below about 300° C.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a temperature control method in image forming apparatuses, such as copying machines, and laser printers. 2. Description of the Related Art Heretofore, in the image forming apparatuses, temperature rise suppression control has been implemented not to give rise to image defects due to temperature elevation, in other words, to form good images on a recording medium even if the interior temperature rises during an image forming operation. For example, as discussed in Japanese Patent Application Laid-Open No. 6-194921, a control system is installed to control the apparatus to temporarily stop the image forming operation when the internal temperature reaches a predetermined temperature level, and a cooling operation takes place to reduce the temperature in the apparatus, and after the temperature is cooled to some extent, the image forming operation is resumed. However, when the image forming operation is stopped temporarily for the purpose of cooling, a drop in throughput accrues. In this respect, Japanese Patent Application Laid-Open No. 2005-156758 proposes an image forming apparatus configured such that when a temperature reaches a level at which the image forming operation is to be changed, cooling is performed in such a manner that the image forming time will be as short as possible on the basis of a number of images yet to be printed and a temperature change rate based on the apparatus's interior temperature detected at that time. In this conventional technology, however, in the control method that changes the operation to another stage after a fixed temperature for a change of operation is reached, no consideration has been given to controlling the image forming operation until the temperature rises to a level for a change of operation. In other words, if the image forming operation can be controlled before the interior temperature rises to the level for a change of operation, it is possible to shorten the image forming time more than when controlling the image forming operation after the interior temperature has reached the level for operation change. There is also a room for improvement in control of the image forming operation at a stage before the temperature rises to a level for a change of operation.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a power breaker system which selectively breaks only a fault circuit formed by a load shortcircuit etc. in a power system. 2. Description of the Prior Art Heretofore, it has been known to use the system shown in FIG. 1 wherein the reference (M) designates a main breaker for wiring which is connected to a power source at one terminal; (F.sub.1), (F.sub.2) . . . (F.sub.n) respectively designate feeder circuit breakers for wiring which are respectively connected between the other terminal and each of the loads. In the conventional power breaker system shown in FIG. 1, when a short-circuit fault is caused in one load circuit having a feeder circuit breaker (F.sub.1), it is necessary to actuate only the feeder circuit breaker (F.sub.1) before actuating the main breaker (M) in order to continue the feeding to the non-fault load circuit while breaking only the fault load circuit. Thus, the main breaker (M) has a structure for breaking by a large breaking current larger than the breaking current for the feeder circuit breakers (F.sub.1), (F.sub.2) . . . (F.sub.n) or by said large current and a predetermined delay time. A bimetal thermal actuating type or an electromagnetic type trip mechanism has been used as the conventional trip mechanism of the main breaker for the short-circuit current. However, in any conventional system, it has been considered to be impossible to break selectively the circuit in all fault current ranges. That is, the operating characteristics of the main breaker (M) and the feeder circuit breaker (F.sub.1) under a short-circuit fault in a load (not shown) connected to the feeder circuit breaker (F.sub.1) are shown in FIG. 2. In the large fault current range, the main breaker (M) is simultaneously actuated together with the feeder circuit breaker (F.sub.1) whereby the selective breakable range is limited to only a small fault current range. It has been known to use a power breaker system shown in FIG. 3 which has a trip timing characteristic of the main breaker (M) to cause a delay actuation whereby the selective breaking has been attained for certain fault current range. However, the selective breakable range has been small as a current of about 10 KA to 20 KA. Thus, the industrial value of such system is not high enough in practical use. It has been considered to provide a system shown in FIG. 4 for selectively breaking in a large current range. However, the total breaking time t of the main breaker (M) is prolonged to be over the allowable limit I.sup.2 t (I: breaking current) as the durability of the main breaker (M). In order to keep the allowable limit I.sup.2 t, the breaking capacity (that is t) of the main breaker (M) should be decreased to reduce the industrial value in the practical use.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to ball retrieval, in particular golf balls. Golfers frequently hit their golf balls in unintended directions, resulting in their landing in lakes, in deep brush or briars, mud or sand. The golfer may only be able to access the ball from a relatively long distance, for example eight to ten feet, and then his angle of access may be rather oblique with respect to the surface on which the ball rests. On occasion a golfer may run over a ball with his golf cart, or step on it, and nearly bury it in the turf. A variety of devices have been invented to retrieve golf balls. However, none are capable of retrieving a ball under all of the conditions described above. What is needed, therefore, is a ball retrieval device that will retrieve a ball lying in water, mud, sand, partially buried in dirt, brush or briars, and from a relatively long distance, and from variety of angles of access. A device for retrieving balls, such as golf balls, is disclosed. The device comprises an elongate shaft attached to a hollow cylindrical head of a resilient material, such as PVC. The head has an open end, the diameter of which allows it to accept the ball and hold it. The head has at least one notch in the cylindrical wall extending from the edge of the forward end towards the rear of the head, and a pin affixed diametrically through walls of the head forward of the terminus of the notch. In a preferred embodiment, there are two notches in the forward end of the head diametrically opposed from one another and the pin is offset uniformly from each of the notches. With this device, a golfball lying on the ground, partially buried in the ground, underwater, obscured in brush, leaves, or tall grass, can be retrieved from nearly any angle.
{ "pile_set_name": "USPTO Backgrounds" }
FIG. 9 is a block diagram showing one example of a configuration of the existing mobile communication system, and the mobile communication system shown in FIG. 9 comprises, as the subscriber side equipment, for example, subscriber data communication terminals (each of which will be referred to hereinafter as a PC) such as personal computers (PCs) 101a and 101b, a mobile communication terminal 102a connected to the PC 101a and designed to make communications with a station side through the use of a radio interface, and an SU (Subscriber Unit) 102b connected to the PC 101b and designed to make communications through an outside antenna 102c with a station side through the use of a radio interface. Incidentally, although not shown in FIG. 9, a plurality of mobile communication terminals 102a exist therein. Moreover, the mobile communication terminal 102a is called an MS (Mobile Station) in the cellular system. Still moreover, in the case of the WLL system, means corresponding to the mobile communication terminal 102a is called an FWT (Fixed Wireless Terminal). In the following description, for convenience only, these will collectively be referred to simply as “MS 102a”. On the other hand, as the station side equipment, there are base stations (BTSs: base station transmission subsystems) 103, a base station control unit (BSC) 104, a packet data distribution serving node (PDSN) 105 functioning as a packet processing unit connected to the internet 107, and an ordinary subscriber exchange (LE), mobile subscriber exchange and others functioning as a general speech processing unit 106 connected to a telephone network 108. In this configuration, each of the BTSs 103 makes communications through a radio interface with the MS 102a (or the SU 102b), and the BSC 104 controls a plurality of BTSs 103 to carry out the call processing for making the interface on the transmission/reception of IP (Internet Protocol) packet data (which will hereinafter be referred to simply as a “packet”) or voice data between the BTS 103 and the PDSN 105 or the speech processing unit (LE/MSC) 106. In the following description, the BTS 103 and the BSC 104 will sometimes be referred to simply as a “BS 134”. Moreover, the PDSN 105 carries out the interface in packet transmission/reception between the BSC 104 and the internet 107 and further terminates the point-to-point protocol (PPP) with respect to the PC 101a (or 101b). In this connection, for the user authentication in establishing a PPP link (which is equally referred to as PPP connection) with respect to the MS 102a, this PDSN 105 further carries out the interface with an authentication server 171 in an internet service provider (which will be referred to as an ISP) 170. With the above-mentioned configuration, in the mobile communication system shown in FIG. 9, in addition to the existing voice communication called a circuit switching type in which communication paths are switched in an exchange and an inter-exchange network, there is realized an internet communication to be made through a packet transmission system (corresponding to the above-mentioned PDSN 105), which is called a packet switching type. That is, voice data is transmitted between the PC 101a (101b)—the telephone network 108 by way of a path passing through the BTS 103, the BSC 104 and the LE/MSC 106, and packets are transmitted between the PC 101a (101b)—the internet 107 by way of a path passing through the BTS 103, the BSC 104 and the PDSN 105 as indicated by thick solid lines in FIG. 9. Meanwhile, a feature of the packet data communication (which will hereinafter be referred to simply as “packet communication”) is burst-like data occurrence (requiring no real-time property), and a clear line is drawn between a case in which communication takes place (when data is transmitted from a station side to an individual mobile terminal or, conversely, when data is transmitted from a mobile terminal to a station side) and a case in which no communication takes place (when data is not transmitted from a station side to an individual mobile terminal or, conversely, when data is not transmitted from a mobile terminal to a station side). For this reason, although the connection is made between the MS 102a and the BS 134, there occurs a time in which packet (user data) transfer does not take place. In addition, differing originally from a common 2W (way) telephone system, the mobile communication system described above is realized in a manner such that a plurality of MSs 102a share an air interface between the BS 134 and the MSs 102a and it is not designed such that the ruled MSs 102a can always establish the connection simultaneously (the concentration is made between the BS 134 and the MSs 102a). That is, limitation is imposed on the radio channel resource (which is a resource to be used for the radio communications in a radio zone between MS and BTS, for example, including predetermined radio frequency, diffusion code, time slot, memory, power of BTS, and others) (which will be referred to hereinafter as a “radio resource”). Accordingly, in the case of the packet communications in a mobile communication system, in light of the behavior occurring when a user accesses the packet communication service (burst-like data occurrence forming a feature of the packet communication) and the desire on the effective utilization of the network side resource, the time in which the data transfer does not take place is allocated for the connection to the other users (MSs 102a), thereby achieving the effective utilization of the radio resource. For realizing this, in the case of the packet communication in the mobile communication system, the standard defines an ACTIVE state and a DORMANT state as in-network call states peculiar to the packet communication. In this case, for example, as illustratively shown in FIG. 10, the ACTIVE state signifies that “in a state where secured are all the communication resources between the MS 102a and the BS 134 needed for carrying out the packet communication service, in addition to the establishment of a connection A (radio channel), a logical connection B (PPP link) is established between the PC 101a connected to the MS 102a and the PDSN 105 and the transmission/reception is made between the PC 101a (101b) and the internet 107 on these connections A and B”. On the other hand, the DORMANT state represents that “of the aforesaid connection A and the connection B, the connection A (radio channel) is placed into a released state while the connection B (PPP link) is in a maintained state”. That is, in the DORMANT state, the connection A is apparently made from the MS 102a to the PC 101a and from the BS 134 to the PDSN 105. Therefore, when gaining the access from the PC 101a to the internet 107 through the use of the packet communication service, a user is not aware of the difference between the ACTIVE/DORMANT states forming the in-network call states. In this connection, one example of state transition of the ACTIVE/DORMANT states are mentioned hereinbelow. (1) A user (subscriber) starts the access from the PC 101a (or 101b) to the internet 107. (2) A user reads various home pages (WWW: World Wide Web) on the PC 101a (or 101b) [frequency occurrence of packets (traffic data): ACTIVE state]. (3) A user is carefully reading a given home page on the PC 101a (or 101b) (absence of traffic data). (4) When the traffic data disappears due to the aforesaid (3), a timer starts in the MS 102a (or the SU 102b) or in the BS 134. (5) Communication is made between the BS 134 and the MS 102a (or the SU 102b) at the time runout, thereby making the transition to the DORMANT state. (6) A user is carefully reading a home page on the PC 101a (101b). (7) In a case in which a user operates the PC 101a (or 101b) for reading a different home page, or when traffic data addressed to the PC 101a (101b) is sent from the internet 107 side to a user, a connection (connection A in FIG. 10) is established between the BS 134 and the MS 102a to set a state (ACTIVE state) in which the traffic data is transmittable/receivable. Incidentally, the definitions of the ACTIVE state and the DORMANT state can depend upon the standard, and the distinction can also be made as a state in which the packet communication can be started through the use of the resource needed for the PPP link and secured by the radio resource securement. Moreover, a user who is in the aforesaid ACTIVE state is referred to as an ACTIVE user, while a user who is in the DORMANT state is referred to as a DORMANT user. That is, the ACTIVE user denotes a user who actually accesses the packet communication service (user for which the radio resource is secured), while the DORMANT user depicts a user who once makes the packet communication as the ACTIVE user and then releases only the radio resource between the MS 102a (or 102b) and the BS 134 (the resource needed for a high-order PP link is maintained) at the elapse of a predetermined period of time after the packet transmission comes to an end. In addition, in the mobile communication system, the upper limit of the number of simultaneous connections, i.e., the upper limit of the physical resources, is determined by the numbers of ACTIVE users and DORMANT users and is managed by the BSC 104. Therefore, whether a new packet communication call is established or not depends upon the number of ACTIVE users. Concretely, when the number of ACTIVE users reaches the upper limit, since the communication resource for a new ACTIVE user does not exist, the present BSC 104 rejects a new call (new connection request) even if there exists a free DORMANT resource. For example, as shown in FIG. 11, assuming that each of the upper limits of numbers of ACTIVE users and DORMANT users is “30” (that is, users up to “60” can be accommodated), when a new connection request occurs in a state where the ACTIVE users reach the upper limit (“30”), the BSC 104 rejects this request though the DORMANT users do not reach the upper limit (“2” at present). This is because a user is first required to become the ACTIVE user (a radio channel is allocated thereto) for becoming the DORMANT user and only the DORMANT user who has once been placed into the ACTIVE state can make the transition to the ACTIVE state through the re-securement of the radio resource. For this reason, for example, as shown in FIG. 12, in a case in which the upper limit of number of ACTIVE users is “1” and the number of DORMANT users is equal to or more than 2, a terminal (PC) Y cannot start the packet communication except for making a connection request accidentally after the time T2 at the soonest, that is, after a terminal (PC) X already coming into the ACTIVE state through the authentication with the authentication service 171 of the ISP 170, which has been made in response to a dial-up connection request, shifts to the DORMANT state stemming from the fact that a state of no packet transmission/reception continues for a period of time T2 subsequently. Accordingly, the maximum accommodation capacity of the packet communication initially estimated decreases and the occurrence of claims on the poor connections from the subscribers is expectable. The present invention has been developed in consideration of these problems, and it is therefore an object of the invention to suppress the decrease in subscriber accommodation capacity of the packet communication in a manner such that, even if the number of ACTIVE users reaches the upper limit, when a free MS shiftable to the DORMANT state (allowable MS within the limitation on resource such as PPP connection resource) exists, new call connection processing is conducted through the use of a PPP connection resource already secured by the acquisition of at least a radio resource, or the like, for accommodating a new user as a DORMANT user which is in an immediately packet-communicable state.
{ "pile_set_name": "USPTO Backgrounds" }
Most of the components of power system generation, transmission or distribution facilities, such as transmission lines, step-up and step-down transformers, power breakers and generators are monitored and controlled. The control and monitoring is usually performed by electromechanical or electronic equipment that are able to measure electrical quantities, perform calculations based on pre-defined algorithms and thresholds and actuate the system when necessary. Due to the high voltage, current and power flowing through the high-power components, current transformers, potential transformers and breakers are employed as an interface between the high-power components and the low-power control and monitoring devices such as a medium to high voltage monitoring circuit. This medium to high voltage monitoring circuit and its associated circuitry are tested by technicians. For example, a technician might test the operation of a medium to high voltage monitoring circuit or its associated circuitry by inserting a disconnect plug into an interface test device and performing various tests. Unfortunately, it is inevitable that mistakes happen during such testing which results in damage to the equipment or harm to the technician. During such testing, the technician might also adjust the medium to high voltage monitoring circuit by changing the parameters of the medium to high voltage monitoring circuit based upon the testing or based upon other factors. Unfortunately, such testing and adjustments take substantial amounts of the technician's time which is expensive. Furthermore, it is typical to perform periodic maintenance on the circuitry of the medium to high voltage monitoring circuits. In order to perform maintenance on medium to high voltage monitoring circuits, the associated power circuits must be powered down to allow the technician to perform the maintenance since the interface or other components in the medium to high voltage monitoring circuit might otherwise be damaged. These interruptions in operation of the medium to high voltage monitoring circuit and in the power circuit increase the cost of operation. For example, there are costs associated with switching to another power circuit and there are costs associated with the lost usage of the equipment powered by the power circuit. Accordingly, there is a strong need in the art to improve medium to high voltage monitoring circuits and their associated circuitries to reduce or eliminate the aforementioned drawbacks. Several different types of test interfaces are known in the power industry. One group of test interface types are interfaces which work with single or multi pole disconnect plugs that are not assigned to one individual test interface, yet may be associated by a certain test interface configuration. Another group of test interface types provides an opening mechanism in every pole of the test interface with the opening mechanism clearly assigned or attached to the test interface. The invention provides multiple improvements over the inventions described in U.S. Pat. Nos. 8,031,487 and 8,461,856 co-owned by Applicant, both of which are incorporated in their entirety by this reference.
{ "pile_set_name": "USPTO Backgrounds" }
Various forms of splice housings have been proposed. Many either are not re-usable or do not provide strain relief. Among those that do provide strain relief, expense is generally great, as is inconvenience of use.
{ "pile_set_name": "USPTO Backgrounds" }
Conventional turbochargers are driven by waste exhaust heat and gases, which are forced through an exhaust turbine housing onto a turbine wheel. The turbine wheel is connected by a common turbo-shaft to a compressor wheel. As the exhaust gases hit the turbine wheel, both wheels simultaneously rotate. Rotation of the compressor wheel draws air in through a compressor housing, which forces compressed air into the engine cylinder to achieve improved engine performance and fuel efficiency. Turbochargers for variable speed/load applications are typically sized for maximum efficiency at torque peak speed in order to develop sufficient boost to reach peak torque. However, at lower speeds, the turbocharger produces inadequate boost for proper engine transient response. To overcome these problems and provide a system that increases efficiency, a super-turbocharger can be used, which combines the features of a supercharger and a turbocharger. Super-turbochargers merge the benefits of a supercharger, which is primarily good for high torque at low speed, and a turbocharger, which is usually only good for high horsepower at high speeds. A super-turbocharger combines a turbocharger with a transmission that can put engine torque onto the turbo shaft for supercharging and elimination of turbo lag. Once the exhaust energy begins to provide more work than it takes to drive the compressor, the super-turbocharger recovers the excess energy by applying the additional power to the piston engine, usually through the crankshaft. As a result, the super-turbocharger provides both the benefits of low speed with high torque and the added value of high speed with high horsepower all from one system.
{ "pile_set_name": "USPTO Backgrounds" }
Optical modulators are needed for external modulation of light in the medium and long haul telecommunication markets. Dense Wavelength Division Multiplexing (DWDM) allows for more than 40 times multiplication of the system's signal carrying capacity. Reduction of cost per DWDM channel provides a competitive edge for telecommunication equipment manufacturers. Each channel requires a modulator and suitable electrical RF driver. Modulators have been developed that require switching signals of only 2-3V, enabling the use of low cost electrical drivers as a source of input modulation signals. These sources are also characterized by low power dissipation. Lithium niobate (LiNbO3) and semiconductor versions of low switching voltage modulators are available. Lithium niobate devices use the electro-optic effect to generate phase modulation inside a Mach-Zehnder Interferometer (MZI), while semiconductor devices either use either phase modulation inside of an MZI, or amplitude modulation directly via the Electroabsorption (EA) effect. The properties of the Multiple Quantum Well (MQW) structures within the semiconductor devices have an inherent wavelength dependence that is much larger than that observed with lithium niobate. The tight process control needed to make the semiconductor devices suitable for DWDM applications is difficult to achieve, thereby making them either unavailable or unsuitable for many applications of medium distance and long haul DWDM. Low switching voltage lithium niobate devices are inherently broadband vs. wavelength, though, tend to have higher cost when compared to semiconductor modulators, due to the smaller number of devices per wafer. U.S. Pat. No. 5,303,079 discloses a device in which external modulation is accomplished in a dual waveguide device wherein substantially identical input optical beams are supplied to the waveguides and wherein each waveguide through its electrode is subject to individual, mutually exclusive control. Modulation signals are applied to each waveguide via its separate electrode. Control signals are applied to each waveguide for adjusting the modulation chirp parameter to a desired fixed, non-zero value. Modulated lightwave signals emerging from the waveguides are combined to form a single output signal suitable for transmission over an optical fiber. However, the '079 device, initially intended for producing controlled chirp, was made in Z-cut LiNbO3, and was found to have efficiency adequate for use with low cost electrical drivers. In addition, its properties are inherently wavelength independent, therefore, it is more suitable for use in DWDM applications. However, the '079 device requires buffer and charge bleed-off layers, which increase the cost of manufacture. A traveling wave optical modulator on X-cut lithium niobate is disclosed in U.S. Pat. No. 5,138,480. The impedance of a traveling wave optical modulator may be increased to a desired input impedance without adversely affecting the drive voltage or velocity matching of the modulator. This is accomplished in the '480 device by reducing the width of the ground electrodes to not more than 3 times the width of the hot electrode. Optical communication methods and apparatus are disclosed in U.S. Pat. No. 5,101,450 for transmitting two or more optical signals with different optical carrier frequencies on a single optical fiber with high spectral efficiency. Each optical carrier is modulated with multiple modulated subcarriers. An optical phase modulator provides cancellation of second order intermodulation products in each optical signal, thereby permitting the optical carrier frequencies to be spaced by 2f.sub.max1 where f.sub.max is the maximum modulation frequency. In another embodiment, a single sideband optical phase modulator provides cancellation of second order intermodulation products and one signal sideband, thereby permitting the optical carrier frequencies to be spaced by f.sub.max. The prior art includes devices that use an Electro-Absorption (EA) or Mach-Zehnder Interferometer (MZI) optical modulator, fabricated on a semi-conducting substrate like InP. The drive voltages of these semi-conductor devices are compatible with lower cost electrical drivers, which have output voltages of approximately 2 volts. However, the EA devices suffer from chirp induced in the optical wavelength during the transition from the ON to OFF state. The properties of both EA and MZI semiconductor devices are also inherently wavelength dependent, and therefore both are difficult to manufacture for applications, such as Dense Wavelength Division Multiplexing (DWDM), where the wavelength of operation must be tightly controlled.
{ "pile_set_name": "USPTO Backgrounds" }
.beta.-isophorone has great economic significance since it is an important synthetic structural element for the production of carotinoids, vitamins and pharmaceutical products. In particular, .beta.-isophorone is required as a precursor for ketoisophorone (2,6,6-trimethylcyclohex-2-ene-1,4-dione) and trimethylhydroquinone and therewith for the production of vitamin E. In addition, it is pivotably used in syntheses for odorous substances and natural compounds such as astaxanthine and abscisic acid and derivatives. The production of isophorone is carried out by means of acetone trimerization under condensation of the C.sub.3 structural elements. The primarily formed isomer is .alpha.-isophorone since it has, in contrast to the .beta. isomer, a double bond conjugated to the keto function. For this reason the thermodynamic equilibrium is on the side of the .alpha.-isophorone; the .beta. concentration is only approximately 1-2% and the adjustment of equilibrium takes place very slowly. Although there are basically two different methods of preparation for arriving at ketoisophorone, namely, the direct oxidation of .alpha.-isophorone (.alpha.-IP).fwdarw.ketoisophorone (KIP) and the indirect route via the isomerization .alpha.-isophorone.fwdarw..beta.-isophorone (.beta.-IP) in a primary step and subsequent oxidation of the .beta.-isophorone.fwdarw.ketoisophorone, the latter process is clearly advantageous. Scheme 1 presents these considerations for ketoisophorone synthesis in a clear manner. ##STR1## Numerous methods for the isomerization of .alpha.-IP have been described in the course of time which, however, have significant disadvantages. Viewpoints such as consumption of chemicals, poor space/time yields and problems in the workup have prevented, up to the present, a practical processing reaction on a large scale. A number of publications are concerned with the isomerization in the liquid phase. The more pertinent state of the art is represented by the following publications: D1=A. Heymes et al., Recherches 1971, 18, 104 PA0 D2=FR-A-1,446,246 PA0 D3=DE-OS-24 57 157 PA0 D4=U.S. Pat. No. 4,005,145 PA0 D5=EP-A-0,312,735 PA0 D6=JP 87-33019 corresp. to HEI-1-175954 of Jul. 12, 1989. D1 discloses the isomerization of .alpha.-IP to .beta.-IP with stoichiometric amounts of MeMgX (Me=methyl, X=halogen-) Grignard compound. 73% .beta.-IP is obtained with evolution of methane in the presence of catalytic amounts of FeCl.sub.3. D2 relates to the isomerization of .alpha.-IP to .beta.-IP in the presence of catalytic amounts of p-toluene sulfonic acid and generally aromatic sulfonic acids, especially aniline sulfonic acid. The amount of the catalyst used is 0.1-0.2 % relative to the .alpha.-IP used. However, a low degree of conversion and a high accumulation of byproducts prevent an industrial application of the method of D2. According to D3, the preparation of .beta.-IP takes place by means of boiling .alpha.-IP for several hours in triethanol amine, fractionation, washing the distillate with tartaric acid and sodium chloride solution. The consumption of chemicals is also considerable here. In D4, acids with a pK=2-5 and a higher boiling point than .beta.-IP (boiling point .beta.-IP=186.degree. C./760 mm Hg) are used as catalyst. The following are named: Aliphatic and aromatic amino acids, adipic acid, p-methylbenzoic acid, 4-nitro-m-methylbenzoic acid, 4-hydroxybenzoic acid, 3,4,5-trimethoxybenzoic acid, vanillic acid, 4-trifluoromethylbenzoic acid, 3-hydroxy-4-nitrobenzoic acid and cyclohexane carboxylic acid and derivatives. The amount of catalyst used is 0.1-20 molar percent. The yield of .beta.-IP (relative to .alpha.-IP used) is 74.5%. At a rate of decrease of 11 ml/h .beta.-IP and a simultaneous amount added of approximately 0.5 kg .alpha.-IP, the space-time yield and the production of .beta.-IP is Y=0.218 kg .beta.-IP/kg.sub.cat /h and is thus too low to find industrial application. These values correspond to a space-time yield of Y.sub.s-t =0.015 l.sub..beta.-IP /h/l.sub.solution. A similar principle is followed in D5. Acetyl acetonates of transitional metals are used as .pi. bond displacement catalysts. Even Al (acac) displays catalytic activity. The use of the catalyst takes place in 0.01-10% by weight related to the starting weight of .alpha.-IP. Metallic catalysts of groups IVb (Ti/Zr/Hf), Vb (V/Nb/Ta), VIb (Cr, Mo, W), VIIb (Mn/Tc/Re), the entire group VIII and aluminum are patented. The primarily obtained distillate has a .beta.-IP content of 94%, a further Vigreux distillation enriches the .beta.-IP content to 99%. This result corresponds, relative to amount of catalyst used and the time, to a yield of Y--9.4 liters .beta.-IP per kilogram catalyst per hour. This corresponds, relative to the educt solution used, to a yield of Y.sub.s-t =0.0376 l.sub..beta.-IP /h/l.sub.solution. According to D6, the isomerization takes place in the liquid phase at temperatures around 200.degree. C. Silica gels with or without the addition of alkyl-substituted imidazolines of the following formula are used as catalyst. ##STR2## Typical experimental conditions: 300 g .alpha.-IP and 25.7 g SiO.sub.2 are distilled 52 h in the presence of refined steel; 230 g .beta.-IP (=76.6% yield) result with 99.9% purity. This result corresponds, relative to amount of catalyst used and the time, to a yield of Y=0.174 liters .beta.-IP per liter catalyst per hour. Moreover, the procedure described is unfavorable and the absolute production of .beta.-IP low. The performance of isomerization and one-step distillation of the .beta.-IP in one step is especially disadvantageous. It can be demonstrated that the re-isomerization of .beta.-IP to .alpha.-IP occurs to a considerable extent on account of the high reaction temperature in the distillation apparatus.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field The subject matter disclosed herein relates to electronic devices, and more particularly to methods and apparatuses for use in devices enabled to receive control channel information. 2. Information Wireless communication systems are fast becoming one of the most prevalent technologies in the digital information arena. Satellite and cellular telephone services and other like wireless communication networks may already span the entire globe. Additionally, new wireless systems (e.g., networks) of various types and sizes are added each day to provide connectivity among a plethora of devices, both fixed and portable. Many of these wireless systems are coupled together through other communication systems and resources to promote even more communication and sharing of information. Indeed, it is not uncommon for some devices to be enabled to communicate with more than one wireless communication system and this trend appears to be growing. Another popular and increasingly important wireless technology includes navigation systems and in particular satellite positioning systems (SPS) such as, for example, the global positioning system (GPS) and other like Global Navigation Satellite Systems (GNSS) including regional satellite systems. SPS radios, for example, may receive wireless SPS signals that are transmitted by a plurality of orbiting satellites of a GNSS. The SPS signals may, for example, be processed to determine a global time, an approximate or accurate geographical location, altitude, and/or speed associated with a device having the SPS radio. Certain types of devices may be enabled to receive and process wireless signals continuously or for extended periods of time. For example, a receiver device that is coupled to a non-exhaustive power supply may operate for extended periods. To the contrary, some types of devices may operate based on limited battery power. To conserve power such devices may be enabled to operate in different modes. Some of these operational modes may significantly reduce the electrical power consumed by the device. For example, certain portable devices may cycle between awake and sleep modes, wherein during a sleep mode certain portions of the device may be turned off.
{ "pile_set_name": "USPTO Backgrounds" }
Financial instruments play an important role in the modern society. A large number of financial instruments are issued and circulated everyday to serve as proof of ownership or to facilitate monetary transactions. Each financial instrument is typically either a physical or virtual document having some monetary value and/or recording a monetary transaction. The most common examples of financial instruments include cash instruments such as banknotes, stock certificates, bonds, checks, promissory notes, and certificates of deposit. More complex examples of financial instruments include derivative instruments such as options, futures, swaps and forwards which reference one or more underlying assets (e.g., asset classes of debt, equity, or foreign exchange). For purposes of the present invention, financial instruments may be or include any type of documents, instruments, or objects (real or logical) that can be transferred from one party to another or play a role in business or financial transactions. One example may include payment media such as credit cards, debit cards, smart cards, stored value cards, gift cards, and the like. Another example may include bills of lading, letters of credit, and repurchase agreements. Financial instruments in accordance with the present invention may also include lottery tickets, raffle tickets, gaming chips, admission tickets, or other papers or objects that represent or provide (conditional or unconditional) monetary value or other types of entitlements to holders or accepters of such papers or objects. Furthermore, a financial instrument in accordance with the present invention may be or include a virtual instance, such as a unit of transaction data associated with one or more physical or virtual instruments. Some financial instruments, such as those held within accounts, are continuously tracked and accounted for once they are issued or created. For example, physical copies of registered stock certificates typically are not passed from one stockholder to another. Instead, brokerage firms often keep physical custody of registered stock certificates and track ownership and transfers of the stocks in connection with investment accounts. A current record of true stock owners is also maintained by the stock-issuing corporation in a stockholder's register, usually based on periodic reports from the brokerage firms. Other securities, such as bonds and treasury bills, may be tracked with individual accounts in a similar fashion. On the other hand, many financial instruments are circulated among various entities independent of accounts and/or without being tracked or traced, much like bearer papers. For example, banknotes can be passed from one private party to another in cash transactions. A negotiable instrument, such as a check, a bank draft, a money order, or a promissory note, can be transferred with a holder's signature. Such transactions can take place in secret and between anonymous parties, without detection by authorities. There is often a legal duty to report monetary transactions, for example for taxation or accounting purposes or to prevent funding of criminal activities. Failure to report certain financial activities (e.g., large amount of cash transactions or significant income) may lead to civil and/or criminal penalties. However, without any mechanism to detect private transactions involving untraceable financial instruments, the authorities have to rely on voluntary self-reporting, periodic auditing or other imperfect mechanisms to enforce statutory or regulatory reporting duties for cash-based transactions and “cash businesses.” Self-reporting relies on the knowledge and volition of private parties involved in monetary transactions. For a monetary transaction to be adequately reported, at least one party involved therein must both know that there is a duty to report and be willing to fulfill that duty. Ignorance of the law or substantial financial incentives can prevent persons or entities from reporting their transactions. Sporadic auditing by the authorities can only catch a small fraction of violations such as tax evasion and money laundering. While holding securities and recording transactions within an account-framework helps mitigate against failures to report or to comply with regulations, accounts do not completely prevent such fraud. Moreover, holding securities and performing transactions within an account-based framework necessarily forces a “middle-man” relationship resulting in fees having to be paid by the account-holder, restriction of the ability of the account-holder to operate completely freely, and in time-delays in executing transactions on behalf of the account holder. An example of the costs and shortcomings of such a middle-man relationship is the trading of financial instruments within the context of a stock market. Today's stock markets require costly, complex centralized services to connect buyers and sellers, and to provide pricing for and clearing of trades. Securities traded must be held in accounts, which adds costs and delays to trading. For example, Securities and Exchange Commission (SEC) regulations require that the brokerage maintain proof that orders, once entered by a customer, have been executed at the best price and as quickly as possible. Brokerages must therefore construct, support, and maintain costly infrastructure to receive, monitor, timestamp, record, and maintain records for all trades. Yet, even with all of this infrastructure and expenditure, the intent of speed and fairness on behalf of the customer is only partially met, for there is no regulation or fairness for what can be the most time-consuming portion of the process, namely the notification and provision of trading instructions by the customer to the brokerage concerning the trade. In view of the foregoing, it may be understood that there are significant problems and shortcomings associated with current technologies for tracking financial instruments and related transactions. The problems and shortcomings may exist with respect to both account-based and non-account-based financial instruments and transactions.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to trowel devices and more particularly pertains to a new leveling trowel for ensuring a level surface when utilizing a trowel. 2. Description of the Prior Art The use of trowel devices is known in the prior art. More specifically, trowel devices heretofore devised and utilized are known to consist basically of familiar, expected and obvious structural configurations, notwithstanding the myriad of designs encompassed by the crowded prior art which have been developed for the fulfillment of countless objectives and requirements. Known prior art includes U.S. Des. Pat. No. 150,715; U.S. Pat. Nos. 1,490,220; 1,617,125; 5,154,536; 5,388,338; 4,703,564; and 5,046,387. While these devices fulfill their respective, particular objectives and requirements, the aforementioned patents do not disclose a new leveling trowel. The inventive device includes a plate having a top surface, a bottom surface and a peripheral edge. The plate is rigid and has a generally rectangular shape. A handle member is securely attached to the plate. The handle member has an outer surface, an inner surface and a pair of side surfaces. The handle member has a chamber therein. The outer surface has first window therein extending to and exposing the chamber. A spirit level is positioned in the chamber and orientated for determining a horizontal orientation of the plate. In these respects, the leveling trowel according to the present invention substantially departs from the conventional concepts and designs of the prior art, and in so doing provides an apparatus primarily developed for the purpose of ensuring a level surface when utilizing a trowel. In view of the foregoing disadvantages inherent in the known types of trowel devices now present in the prior art, the present invention provides a new leveling trowel construction wherein the same can be utilized for ensuring a level surface when utilizing a trowel. The general purpose of the present invention, which will be described subsequently in greater detail, is to provide a new leveling trowel apparatus and method which has many of the advantages of the trowel devices mentioned heretofore and many novel features that result in a new leveling trowel which is not anticipated, rendered obvious, suggested, or even implied by any of the prior art trowel devices, either alone or in any combination thereof. To attain this, the present invention generally comprises a plate having a top surface, a bottom surface and a peripheral edge. The plate is rigid and has a generally rectangular shape. A handle member is securely attached to the plate. The handle member has an outer surface, an inner surface and a pair of side surfaces. The handle member has a chamber therein. The outer surface has first window therein extending to and exposing the chamber. A spirit level is positioned in the chamber and orientated for determining a horizontal orientation of the plate. There has thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are additional features of the invention that will be described hereinafter and which will form the subject matter of the claims appended hereto. In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting. As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention. Further, the purpose of the foregoing abstract is to enable the U.S. Patent and Trademark Office and the public generally, and especially the scientists, engineers and practitioners in the art who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection the nature and essence of the technical disclosure of the application. The abstract is neither intended to define the invention of the application, which is measured by the claims, nor is it intended to be limiting as to the scope of the invention in any way. It is therefore an object of the present invention to provide a new leveling trowel apparatus and method which has many of the advantages of the trowel devices mentioned heretofore and many novel features that result in a new leveling trowel which is not anticipated, rendered obvious, suggested, or even implied by any of the prior art trowel devices, either alone or in any combination thereof. It is another object of the present invention to provide a new leveling trowel which may be easily and efficiently manufactured and marketed. It is a further object of the present invention to provide a new leveling trowel which is of a durable and reliable construction. An even further object of the present invention is to provide a new leveling trowel which is susceptible of a low cost of manufacture with regard to both materials and labor, and which accordingly is then susceptible of low prices of sale to the consuming public, thereby making such leveling trowel economically available to the buying public. Still yet another object of the present invention is to provide a new leveling trowel which provides in the apparatuses and methods of the prior art some of the advantages thereof, while simultaneously overcoming some of the disadvantages normally associated therewith. Still another object of the present invention is to provide a new leveling trowel for ensuring a level surface when utilizing a trowel. Yet another object of the present invention is to provide a new leveling trowel which includes a plate having a top surface, a bottom surface and a peripheral edge. The plate is rigid and has a generally rectangular shape. A handle member is securely attached to the plate. The handle member has an outer surface, an inner surface and a pair of side surfaces. The handle member has a chamber therein. The outer surface has first window therein extending to and exposing the chamber. A spirit level is positioned in the chamber and orientated for determining a horizontal orientation of the plate. Still yet another object of the present invention is to provide a new leveling trowel that allows a user to ensure a horizontal and level surface while using a trowel without additional devices. These together with other objects of the invention, along with the various features of novelty which characterize the invention, are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and the specific objects attained by its uses, reference should be made to the accompanying drawings and descriptive matter in which there are illustrated preferred embodiments of the invention.
{ "pile_set_name": "USPTO Backgrounds" }
The rescuing of people stranded in a body of water, particularly turbulent waters encountered in the oceans of the world, is not a simple task. In many environments, such as at off-shore drilling rigs, motorized boats are held by davits to be deployed in the event of an emergency, such as an explosion at the site, which might cause many people to be stranded in the water. Upon such a disaster, it is usually not difficult for the rescue craft to arrive at the location of the stranded person or persons, but rather the problem is boarding the person into the craft. Such a procedure is compounded not only if the person is unconscious or injured, but also if turbulent water is prevalent. Present known devices of rescuing a person from the sea are not satisfactory for all encountered circumstances. One of the simplest known devices is a rope-like ladder which is attached to the boat at its hatch or portal and merely thrown in the water so that the person to be rescued might climb into the boat. While such may be satisfactory in calm seas, in turbulent situations it is not only difficult to climb the undulating ladder, but also it is highly likely that the person could be injured, as by striking his head on the gunnel or ledge below the hatch. Moreover, the ladder is totally useless if the person to be rescued is injured or unconscious. In such situations, the rescue boat must be manned with several people, some of whom must traverse down the ladder to assist the person to and up the ladder, while others in the craft assist to pull the person on board, while all the time trying to avoid contact with the undulating gunnel. Another prior art device which has been utilized is a net-like structure which is thrown toward the person to be rescued. If conscious, he may then either hold onto or lay on the net while being pulled into the craft. Such a device suffers from the same problems as does the aforementioned ladder and is simply not a convenient and safe manner in which to rescue the panicked person. A variety of the net-like structure just described involves a slat-like runner which is thrown into the water. In the operation of this device, the person is positioned on the structure and essentially rolled up into the craft. However, it is almost mandatory that a person from the craft be in the water to utilize this system of rescue, and in addition, at least two people in the craft must be employed to pull the person into the craft. Thus, the need exists for a system which will allow the conscious person to easily enter the rescue craft on his own power, and a system which accommodates the facile assistance of an unconscious or injured person into the craft.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention generally relates to the field of polymers. More specifically, the invention relates to wellbore treatment compositions using hydrophilically modified polymers. 2. Background of the Invention Associative thickening or gelation of water soluble polymers has many potential applications in such diverse fields as surface coatings, personal care products, drug delivery systems, and other areas requiring rheology modification or colloid stabilization. In particular, such materials have been used in oil extraction such as in oil-field well treatment, enhanced oil recovery, etc. One problem with current wellbore treatment fluids are the high concentrations of polymer required to achieve the necessary viscosity for oilfield applications. Water soluble polymers modified with hydrophobic side chains, have been investigated with much higher viscosity than similar concentrations of unmodified polymers. This viscosity increase occurs due to association of the hydrophobic side chains, creating a network structure. Hydrophobic polymer modification is commonly achieved by adding alkyl side chains onto a water soluble base polymer. The hydrophobic side chains may also be fluorinated so as to increase hydrophobicity. The polymer modification is progressed via reaction with, for example, a halide, an acyl halide, an anhydride, an epoxide, an amine, or an isocyanate of the required hydrophobic ligand. The size and number of hydrophobic side chains that may be grafted is limited by the solubility of the modified polymer. Hydrophobic polymer modification results in lower solubility, which manifests itself in increase dissolution time or insolubility. The degree of hydrophobic modification is generally limited so as to ensure solubility. The viscosity of aqueous dispersions of polymers modified with hydrophobic side chains reaches a maximum after complete dissolution of the polymer. The viscosity of these solutions decreases as the temperature of the solution is increased. Natrosol Plus, Grade 430, supplied by Hercules is an example of a commercially available water soluble polymer modified with hydrophobic side chains. Hydrophobic modification can be applied to numerous water soluble polymers, including polyvinyl alcohol (PVA), polyacrylic acid (PAA), polymethacrylic acid (PMA), polyacrylamide (PAM), polyethylene oxide (PEO), polypropylene oxide (PPO), carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), guar gum, hydroxypropyl guar gum (HPG), carboxymethylhydroxypropyl guar (CMHPG), dextran, locust bean gum (LBG), welan gum, xanthan gum, scleroglucan, succinoglycan, polypeptides and the like. Nonionic polymers, or predominantly nonionic polymers, generally have greater compatibility with other species in aqueous solution and have broader applicability. When combined with suitable surfactants, water soluble polymers modified with hydrophobic side chains can provide solutions with much higher viscosity than similar concentrations of polymers modified with hydrophobic side chains alone. The lower concentration of modified polymer generally results in improved solubility, but solubility still limits the degree of hydrophobic modification of the polymer that can be applied. Many anionic surfactants will interact with polymers modified with hydrophobic side chains, in aqueous solution. As an example, sodium dodecyl sulfate (SDS) is a common surfactant that demonstrates interaction in solution with water soluble polymers modified with hydrophobic side chains. A large range of cationic surfactants also associate in solution with polymers modified with hydrophobic side chains. Synthetic water soluble copolymers that incorporate hydrophobic alkyl moieties, in conjunction with nonionic surfactants have been described. For example, copolymers of acrylamide and dodecylacrylate, along with one or more nonionic surfactants and a mono-valent inorganic salt have been reported. The performance of these essentially ionic synthetic polymers (the nature of which is not essentially changed after incorporation of hydrophobic alkyl moieties) is strongly influenced by water salinity. When no salt is added, the viscosity generation is poor. The ionic character of the polymer backbone can also increase incompatibility with other water soluble species, such as divalent, trivalent or polyvalent ions. This can result in a reduced efficacy, or ultimately precipitation from solution, of the associative copolymer. The degree of hydrophobic modification of water soluble polymers can be increased, while retaining solubility, by also adding a hydrophilic modification to the same polymer. Hydrophobic-hydrophilic polymer modification has been achieved by grafting ionic side chains onto a water soluble base polymer, along with hydrophobic side chains. The grafting of sulfoalkyl groups along with alkyl groups has been described. The sulfoalkyl group may be added by reaction of a water soluble polymer containing pendant hydroxyl groups with, for example, 3-chloro-2-hydroxy-propane sulfonate, sodium 3-bromopropane sulfonate or sodium vinylsulfonate and the like. For synthetic polymers, the hydrophobic-hydrophilic polymer can be formed by the copolymerization of suitable monomers, at least one of which provides ionic character for the resulting polymer and at least one of which provides hydrophobic character for the resulting polymer. An example of such a co-polymerization is the reaction of an acrylamide with an alkyl methacrylate, forming a poly(co-acrylamide-alkylmethacrylate). Although ionic polymers, or ionically modified polymers, can increase solubility in water, such ionic character can also increase incompatibility with other water soluble species, such as divalent, trivalent or polyvalent ions. This can result in a reduced efficacy, or ultimately precipitation from solution, of the modified associative polymer. Viscoelastic surfactants are another class of associative materials that have been taught. The viscoelastic surfactant molecules, when present at a sufficiently high concentration, aggregate into micelles, which may take the form of rods or worm-like micelles, resulting in an associative structure that provides an increase in viscosity. Many surfactants may be used to form viscoelastic solutions, for example, N-erucyl-N,N-bis(2-hydroxyethyl)-N-methyl ammonium chloride is a commercially available viscoelastic surfactant. The ionic strength of the solution of viscoelastic surfactants is selected so as to improve viscosity generation. For low salinity water, this generally requires the addition of one or more mono-valent halides or salts of organic anions, with the cation being selected from sodium, potassium or ammonium or the like. Even with an adjusted ionic strength, a high concentration surfactant solution is still required in order to provide a significant increase in viscosity. A surfactant concentration in excess of 5% by weight is not uncommon, and even at this concentration the viscosity of systems at elevated temperature is somewhat limiting. The high surfactant concentration also makes viscoelastic surfactant systems commercially unattractive for many applications. The ionic character of the viscoelastic surfactant can also increase incompatibility with other water soluble species, such as divalent, trivalent or polyvalent ions. This can result in a reduced efficacy of the viscoelastic surfactant system. The use of a viscoelastic surfactant has been combined with a water soluble polymer modified with hydrophobic side chains. The pendant hydrophobic chains interact with the surfactant micelles creating a viscoelastic gel structure. This association occurs below the typical concentration used for pure visco-elastic surfactant systems, thus providing the potential for more commercially viable applications of visco-elastic surfactants. The solubility of the alkyl modified water soluble polymer limits the size and number of hydrophobic chains that may be incorporated into the polymer. Due to the ionic nature of the surfactant incorporated into the system, incompatibility with other water soluble species, such as divalent, trivalent or polyvalent ions can occur. This can result in a reduced efficacy of the system. Gelation or associative thickening can also be achieved with water soluble polymers containing hydrophilic groups. The use of visco-elastic surfactants combined with a water soluble polymer that, after dissolution and heating to the lower critical solution temperature (LCST) of the polymer, provides a substantial increase in viscosity. For example, a solution of a block-copolymer of PEO and PPO linked by urethane, urea and allophanate bonding units and the visco-elastic surfactant N-erucyl-N,N-bis(2-hydroxyethyl)-N-methyl ammonium chloride that is heated to a temperature greater than the LCST of the polymer, provides higher viscosity than similar concentrations of the same polymer heated to the same temperature when no surfactant is present. Due to the cationic nature of the surfactant incorporated into the system, incompatibility with other water soluble species, such as divalent, trivalent or polyvalent ions can occur. This can result in a reduced efficacy of the system. The use of a charged polymer along with a surfactant of an opposing charge can also be used to create association in solution. As an example, when a negatively charged ionic polymer, such as CMC, CMHPG, PAA, PMA or the like is mixed in solution with a positively charged surfactant, such as a tetraalkylammonium halide or the like, at suitable concentrations of the components, association is observed via an increase in viscosity compared to similar concentrations of ionic polymer without the addition of surfactant. Similarly, as a further example, when a positively charged ionic polymer, such as poly(2-(dimethylamino)ethyl methacrylate or N-[3-(dimethylamino)propyl]methacrylamide, or a cellulosic water soluble polymer modified by the addition of a quaternary ammonium group or the like, is mixed in solution with a negatively charged surfactant, such as an sodium dodecyl sulfate, or the like, at suitable concentrations of the components, association is observed via an increase in viscosity compared to similar concentrations of ionic polymer without the addition of surfactant. Although these charged polymer-ionic surfactant systems can provide associative thickening, such ionic character increases the incompatibility of these systems with other water soluble species, such as divalent, trivalent or polyvalent ions. This can result in a greatly reduced efficacy of such systems, and ultimately polymer precipitation from solution. In addition, present wellbore treatments fluids often require the use of separate “breaking” compounds to reduce viscosity after the wellbore treatment fluid's function has been completed such as in a fracture fluid. A disadvantage of existing wellbore treatment fluids, is the incomplete breaking of the viscous wellbore treatment fluid as the addition of breaking compounds are not able to completely break the chemical crosslinks in the wellbore treatment fluids. Thus, the “broken” wellbore treatment fluid still has a relatively high viscosity even after breaking. Consequently, there is a need for wellbore treatment compositions with improved efficacy (i.e. lower polymer concentration, more effective breaking, elimination of precipitation, etc.).
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a cooling apparatus for circulating a cooled brine used for a freezing show case, a refrigerating show case, a freezer, a refrigerator and the like. Conventionally, a freon refrigerant has been used as a refrigerant employed in a compression type refrigerating machine, however, by reconsidering an ozone layer breakage and an earth warming-up, it has been considered in a cooling apparatus to employ ammonia as a refrigerant. A flooded type cooling apparatus or a liquid circulating type cooling apparatus are described, for example, in Japanese Patent Unexamined Publication No. 10-170124 as a cooling apparatus employed in an ammonia freezer. Further, in order to reduce an amount of the refrigerant sealed within a refrigerating cycle, it has been known to be proper to use a plate type heat exchanger represented by a herringbone plate, a corrugate plate and the like in an evaporator. Since a large amount of refrigerant is required in the flooded type and liquid circulating type cooling apparatuses in accordance with the prior art, they do not address the problems of the ozone layer breakage and global warming, and it is necessary to sufficiently consider an efficiency, a risk and the like in the case of employing ammonia. Further, in the case of using the plate type heat exchanger, it is necessary to consider a risk that an internal freezing is generated when a flow rate of the brine is reduced and a heat transmitting pipe forming the heat exchanger is clogged so as to be deformed or broken. An object of the present invention is to provide a brine cooling apparatus which can solve the problems mentioned above, prevent a brine from freezing within a heat exchanger, improve reliability and secure a stable operation. Further, another object of the present invention is to provide a brine cooling apparatus which addresses an environmental problem by reducing an amount of used refrigerant, reducing a fear of breaking the ozone layer and preventing global warming. Still further, another object of the present invention is to provide a brine cooling apparatus which can secure an improvement in performance with a reduced amount of a refrigerant, provide an improved efficiency even when employing a natural type refrigerant, and increase safety with respect to combustibility and a poison of the natural type refrigerant. Here, the present invention is constituted such as to solve at least one of the problems mentioned above. In order to achieve the objects mentioned above, in accordance with the present invention, there is provided a brine cooling apparatus including a screw compressor, a condenser, a main expansion valve, an evaporator, a pipe for connecting the screw compressor, the condenser, the main expansion valve and the evaporator, a refrigerant evaporated by the evaporator, and brine flowing through the evaporator. The brine is cooled by evaporating the refrigerant by the evaporator. The refrigerant is an ammonia refrigerant, the evaporator is a plate type heat exchanger constructed by stacking a plurality of plates, and capacity control means is provided in such a manner as to control a capacity of the screw compressor in accordance with the flow rate of the brine. Since ammonia is employed as the refrigerant, there is no risk of breaking the ozone layer and warming the earth, and an amount of the used refrigerant can be reduced to serve as an evaporator. The plate type heat exchanger is structured by stacking a plurality of plates. Then, since the capacity of the screw compressor which can obtain a high output is controlled in accordance with the flow rate of the brine, freezing within the heat exchanger caused by reducing the amount of the sealed refrigerant can be prevented and reliability can be improved. Further, in accordance with the present invention, there is provided a brine cooling apparatus including a screw compressor, a condenser, a main expansion valve, an evaporator, a pipe for connecting the screw compressor, the condenser the main expansion valve and the evaporator, a refrigerant evaporated by the evaporator, and brine flowing through the evaporator, the brine being cooled by evaporating the refrigerant by the evaporator. The refrigerant is an ammonia refrigerant, the evaporator is a plate type heat exchanger constructed by stacking a plurality of plates, flow rate detecting means for detecting a flow rate of the brine is provided, and capacity control means is provided in such a manner as to reduce an operating capacity of the screw compressor in the case that the reduction of the flow rate of the brine is detected by the flow amount detecting means. A cooling load is reduced together with a reduction of the flow rate of the brine; however, since the operating capacity of the screw compressor is reduced in the case that the reduction of the flow amount of the brine is detected, a temperature of the brine is not excessively lowered to a freezing temperature. Accordingly, it is possible to prevent freezing within the heat exchanger and improve reliability. Still further, in accordance with the present invention, there is provided a brine cooling apparatus including a screw compressor, a condenser, a main expansion valve, an evaporator, a pipe for connecting the screw compressor, the condenser, the main expansion valve and the evaporator, a refrigerant evaporated by the evaporator, and brine flowing through the evaporator, the brine being cooled by evaporating the refrigerant by the evaporator. The refrigerant is an ammonia refrigerant, the evaporator is a plate type heat exchanger constructed by stacking a plurality of plates, and suction pressure detecting means for detecting a suction pressure of the compressor and capacity control means are provided in such a manner as to reduce an operating capacity of the screw compressor in the case that it is judged by the suction pressure detecting means that the suction pressure of the compressor is lowered. When the flow rate of the brine is reduced, the cooling load is reduced and the suction pressure of the compressor is lowered. Then, in the case that it is judged by the suction pressure detecting means that the suction pressure of the compressor is lowered, the operating capacity of the screw compressor is reduced, so that it is possible to prevent the brine within the heat exchanger from freezing during a normal continuous operation. Furthermore, in accordance with the present invention, there is provided a brine cooling apparatus including a screw compressor, a condenser, a main expansion valve, an evaporator, a pipe for connecting the screw compressor, the condenser, the main expansion valve and the evaporator, an ammonia refrigerant evaporated by the evaporator, and brine flowing through the evaporator, the brine being cooled by evaporating the refrigerant by the evaporator. The evaporator is a plate type heat exchanger constructed by stacking a plurality of plates, and capacity control means for controlling a capacity of the screw compressor, suction pressure detecting means for detecting a suction pressure of the compressor, and capacity control means for reducing an operating capacity of the screw compressor in the case that the suction pressure of the compressor is continued lower than or equal to a predetermined value for a fixed time are provided. Accordingly, since the operating capacity of the screw compressor is reduced in the case that the suction pressure of the compressor is continued lower than or equal to a predetermined value for a fixed time, it is possible to securely prevent the brine within the heat exchanger from freezing during a normal continuous operation, so that the plate type heat exchanger can be used for the exchanger in order to reduce the amount of the ammonia sealed within the refrigerating cycle, and the structure can be made preferable for preventing the ozone layer breakage and the global warming. Further, in accordance with the present invention, in the brine cooling apparatus mentioned above, it is desirable to set the predetermined value of the suction pressure to a saturated pressure corresponding to a temperature 5 to 10xc2x0 C. higher than the brine freezing temperature. Still further, in accordance with the present invention, in the brine cooling apparatus mentioned above, it is preferable to reduce the operating capacity of the screw compressor from a 100% operating capacity to a 50% operating capacity in view of an operating efficiency and the like in the case of again returning to a cooling operation from the operation for preventing the freezing. Furthermore, according to the present invention, in the brine cooling apparatus mentioned above, it is advantageous to employ a pressure switch as the suction pressure detecting means in view of cost reduction and reliability.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to bottle orienting apparatus, and more particularly relates to apparatus for accepting bottles, each of which has a first end and a second end, in random, first end leading and first end trailing dispositions, and selectively reorienting the bottles so that they lie in substantially uniform, first end leading dispositions. Pharmaceutical, food and cosmetic manufacturers among others utilize literally millions of bottles each year. As can be appreciated, these bottles must be processed on high speed treating and filling equipment, and they must be fed into such equipment in substantially uniform dispositions. For example, if bottles entering a filling machine were fed into such a machine in random dispositions, the filling nozzles would be aligned with the openings of some of the bottles, but would be misaligned with the openings of other ones of the bottles. Normally, after the bottles have been formed, they are simply placed into boxes or bins in completely random disposition. Various types of apparatus are available for accepting a mass of such randomly oriented bottles and discharging them one by one in substantially endwise dispositions so that they constitute a stream of advancing bottles. However, such apparatus discharges some of the bottles with one end leading and discharges others of the bottles in the stream with the other end leading. Therefore, before such a stream of advancing bottles reaches the bottle treating and filling equipment, certain ones of the bottles must be reoriented so that all of the bottles lie in a substantially uniform disposition. Various devices have been proposed to accomplish such selective reorientation. In describing apparatus of this type, it is useful to describe the elements of the apparatus with reference to the direction of motion of the bottles being processed. Thus, the term "downstream" should be understood as meaning "in the direction of motion of the bottles being processed", and the term "upstream" should be understood as meaning the reverse direction. As can be appreciated, the cost of processing each bottle through any such apparatus will be inversely proportional to the speed of operation of the apparatus. As the speed of operation of the apparatus is increased, the cost of operating the apparatus for a given period of time is spread among a larger number of bottles, so that the cost of processing each bottle is reduced. Therefore, the development of bottle-orienting apparatus has been directed towards increasing the speed of operation of the apparatus. U.S. Pat. No. 2,776,034, issued Jan. 1, 1957 to R. C. Jordt illustrates one type of device for selectively reorienting ampules having well defined, elongated neck portions. The ampules are fed through a chute by gravity, in random neck-leading and neck-trailing dispositions, towards a bend in the chute. At the bend, a hole is provided in one of the walls of the chute. If any ampules arrives in neck leading orientation at the bend in the chute, its neck will enter into the hole so that the motion of its neck end will be arrested. Its opposite end will continue to move along the chute and will therefore bypass the neck end. Thus, each such ampules is reoriented to a neck trailing disposition. By contrast, any ampules which arrives at the bend in the chute in neck trailing disposition will be unaffected by the hole, as the end of each ampules opposite from the neck is too wide to enter into the hole. Therefore, downstream of the bend in the chute, all of the ampules will be in substantially uniform, neck trailing orientation. However, the speed of operation of any such device will be limited by the speed at which the ampules will advance under the influence of gravity. U.S. Pat. No. 4,095,688, issued June 20, 1978 to Christina S. Ionescu and assigned to the assignee of the present invention, teaches a different apparatus for accomplishing such a selective reorientation. This apparatus includes a pair of opposed, spaced rotating rollers which are so configured that they will not engage the relatively narrow neck ends of bottles being processed but will engage the relatively wide ends of such bottles which are opposite from the necks. The bottles are fed to the rollers in a direction transverse to the gap between the rollers. If a bottle is initially in neck-leading disposition, it will continue to move in the direction transverse to the gap until its neck end encounters a cam surface which tends to tilt the bottle so that its relatively wide, initially-trailing end lies between the rollers, whereupon that end will be engaged by the rollers and pulled through the gap. Thus, each such bottle will be discharged through the gap in neck-trailing disposition. By contrast, each bottle which is initially in neck-trailing disposition will retain such disposition as it passes through the rollers. Its relatively wide leading end will arrive at the rollers first and will be immediately engaged and pulled through the gap. Thus, the apparatus discharges the bottles in substantially uniform, neck-trailing dispositions. U.S. Pat. No. 3,868,012, issued Feb. 25, 1975 to Louis H. Kinsley teaches an apparatus for orienting bottles having an open end and a closed end into uniform, closed end leading dispositions. In this apparatus, a stream of bottles in random open end leading and closed end leading dispositions is advanced down a chute. A pin is pivotally mounted to the chute so that it can be rotated between two different positions. In the first position the pin extends upstream along the chute from its pivot, while in the second position the pin extends downstream along the chute. While the pin is pointing upstream, a bottle is advanced until it enounters the pin. If the bottle has its open end leading, the pin will enter into the open end of the bottle and the bottle will thus become engaged with the pin. If on the other hand the bottle has its closed end leading, the pin cannot enter into the bottle and the bottle will not become engaged with the pin. After a bottle is advanced to the pin, the pin is pivoted to its second position wherein it points downstream. Thus, any bottle which was initially in an open end leading disposition will be pivoted along with the pin to a closed end leading disposition. Any bottle which was originally in a closed end leading disposition will not be rotated along with the pin and will therefore remain in a closed end leading disposition, so that the apparatus discharges a stream of bottles in substantially uniform, closed end leading dispositions. As can be appreciated, the intermittent motion of the pin will limit the speed of operation of such apparatus. Further, because the pin must enter into at least some of the bottles being processed, the pin can contaminate or scratch the interiors of the bottles. British Pat. No. 1,403,182, published Aug. 20, 1975, discloses other apparatus for selectively reorienting bottles. In this apparatus, a pair of rotationally mobile discs are coaxially mounted and define a space between them. The bottles are advanced into the space between the discs, become frictionally engaged with the discs and are transported downstream by the discs in random, open ending leading and open end trailing dispositions. A hook is pivotally mounted so that a bottle engaging portion of the hook extends into the space between the discs. The bottle engaging portion of the hook is biased in the upstream direction, and includes a pin which points upstream. If a bottle is transported by the discs in closed end leading disposition, the bottle engaging portion of the hook will simply be forced out of the way by the advancing bottle, and the disposition of that bottle will be substantially unaffected by the hook. By contrast, if a bottle is advanced by the discs in open end leading disposition, the pin of the hook will enter into the open end of the bottle and will retard the motion of the open end. Therefore, as the discs continue to rotate, the other portions of the bottle will bypass the open end so that the bottle is inverted to an open end trailing, closed end leading disposition. Although such bottle orienting apparatus is capable of reliable operation at high speeds (on the order of hundreds of bottles per minute), it does present certain difficulties. For one, the speed of operation of the apparatus is limited by the speed at which the hook can move out of the way when a bottle arrives in closed end leading disposition and then return to its position between the discs to catch the next bottle. The speed with which the hook will move depends in part upon its polar moment of inertia about its pivotal mounting and in part upon the strength of bias applied to it. Of course, the polar moment of inertia about the pivot cannot be reduced indefinitely without weakening the hook. The strength of the bias on the hook cannot be increased indefinitely without making it impossible for the hook to swing out of the way in the event it encounters a closed end leading bottle. Futher, such apparatus tends to rather suddenly engage each open-end leading bottle with the hook and thereby subjects each such bottle to impact forces. Such impact forces are especially severe during extremely high speed operation of the apparatus.
{ "pile_set_name": "USPTO Backgrounds" }
In live entertainment, singers, or vocalists, are one of the most prevalent type of performers. This is especially true for live music events, which can range from large venue concerts to weekly services at local houses of worship. Typically, when there is only a single vocalist, he or she will utilize a microphone to sing into and at least one speaker to function as a monitor. The monitor allows the vocalist to hear himself or herself while on-stage. This type of set-up is generally acceptable for a single vocalist. Problems arise when there are multiple vocalists singing in close proximity to each other. If, for example, there are six vocalists on stage, there might be six microphones, each with a connecting cable. It is often difficult, if not impossible on a small stage, to provide each vocalist with their own monitor speaker. Some acts attempt to share monitors between 2 or 3 vocalists, which has not been an effective solution. It is very difficult to sing in tune and with correct timing during a live show. The difficulty is magnified when there are multiple vocalists in close proximity who are each trying to hear only themselves over the other vocalists. The only viable solution is to provide each vocalist with a set of headphones that is sending them the vocal feed from their amplifier channel. With the headphones in use, along with the microphones, each vocalist is responsible for at least two cables that are on the stage. When the two cables each are multiplied by the number of vocalists, the stage can quickly become cluttered and un-sightly. Also, having a large number of cables on stage presents a danger of someone tripping over the cables. Obviously, a better solution is required. If it were possible to present each vocalist with a single-cable that provided microphone amplification and headphone monitoring, the benefits would be significant. Stage clutter would be reduced, safety improved and each vocalist would have their own personal monitoring system. A search of the prior art did not disclose any literature or patents that read directly on the claims of the instant invention. However, the following U.S. patents are considered related. PAT. NO.INVENTORISSUED7,488,187Wolf16 Feb. 20096,902,427Kuo 7 Jun. 20056,530,085Periman 4 Mar. 2003 The U.S. Pat. No. 7,488,187 discloses a dual channel XLR cable converter that includes a first and a second RCA cable. The two cables terminate at first and second RCA cable connectors at one end and a XLR cable connector at the opposing end. A first signal pin terminal of the XLR cable connector is in electrical communication with the first signal wire of the first RCA cable. A second signal pin terminal of the XLR connector is in electrical communication with the second signal wire of the second RCA cable. A common ground pin terminal of the XLR cable connector is in electrical communication with the first grounding wire of the first RCA cable and a second grounding wire of the second RCA cable. Therefore, the XLR cable converter can be used for conveying single channel RCA cable signals over dual channel XLR cable. The U.S. Pat. No. 6,902,427 discloses a terminal assembly for a personal computer that integrates an S-video and a composite video terminal into a single socket on an electronic device. The socket includes inlets for separately carrying S-video and composite video signals. The socket can be connected to provide an S-video signal to another device using a standard S-video cable. The U.S. Pat. No. 6,530,085 discloses a system and method that reduces the complexity of interconnecting various consumer electronics devices. One consumer electronics device forms a central hub to which all other consumer electronics devices are connected by a set of connectors. The connectors are identical and interchangeable in that a cable designed to connect a consumer electronics device to an Internet terminal may be plugged into any of the connectors and operate properly. For background purposes and as indicative of the art to which the invention relates, reference may be made to the following remaining patents found in the search. PAT. NO.INVENTORISSUED7,446,258Sosna et al 4 Nov. 20087,416,440Homyk et al26 Aug. 20087,241,179Chennakeshu10 Jul. 20076,809,256Garland26 Oct. 20046,583,360Yudashkin24 Jun. 2003
{ "pile_set_name": "USPTO Backgrounds" }
It is estimated that more than 13 million Americans are afflicted with clinically significant coronary artery disease (CAD) (American Heart Association 2004) and the care of these patients costs greater than $133 billion annually. Of those afflicted, 10% are less than 54 years old. Although a minority of the patient base, this group provides a valuable source for the investigation of the genetics underlying cardiac disease risk, because family history is known to be a robust predictor of cardiovascular disease, even after adjustment for known risk factors, which may be shared within families (Shea et al. 1984). Furthermore, these diseases inflict a high economic impact on this group of patients with early onset CAD. The identification of novel markers correlated with CAD is important in order to understand the pathophysiological mechanisms of this disease state and develop effective prevention and treatment regimens. Cardiovascular disease is the leading killer in America today. Over 50 million Americans have heart and cardiovascular related problems. By the time that cardiovascular heart problems are usually detected, the disease is usually quite advanced, having progressed for decades, and often too advanced to allow successful prevention of major permanent disability. Circulatory disease is caused by the normal flow of blood through the body being restricted or blocked as a result of arterial plaque. This may cause damage to the heart, brain, kidneys or other organs and tissues. Plaque build-up is a slow and progressive progress that is dependent on our environmental and genetic environment. Cardiovascular disease refers to all disease, which involves the heart and/or blood vessels, arteries, and occasionally veins. These problems are most commonly due to consequences of arterial disease, atherosclerosis, atheroma, but also can be related to infection, valvular and clotting problems. In humans, β1-adrenergic receptors (β1-ARs) are polymorphic at amino acid residue 389 (Arg/Gly). Mialet-Perez et al. (2003) Nat. Med. 9:1260-1262, catecholamines stimulate cardiac contractility through reported that the human Arg389 variant predisposes to heart failure by instigating hyperactive signaling programs leading to depressed receptor coupling and ventricular dysfunction, and influences the therapeutic response β-receptor blockade. The present invention overcomes previous shortcomings in the art by providing methods and compositions for correlating genetic markers in a subject with various aspects of cardiovascular disease and its treatment.
{ "pile_set_name": "USPTO Backgrounds" }
Various needle-less injection devices with different configurations for injecting a—typically drug-containing—fluid through or into the human skin are known in the art. The conventional devices have in common that the fluid is ejected through a very small outlet of an ampoule through application of high pressure, whereby the fluid attains a very high exit velocity which is required for penetrating the skin or entering the skin and hence for a needle-less subcutaneous or intradermal injection. Such injection devices include an ampoule with an ampoule body forming a chamber for receiving the fluid to be injected. An axially movable, sealingly guided ampoule piston is disposed inside the chamber. The distal end of the ampoule also has an outlet for the fluid to be injected. When used as indicated, the region of the ampoule surrounding the outlet defines the skin contact surface for the needle-less injection through or into the human skin. DE 10 2004 007 257 A1 describes a needle-less injection device of the aforedescribed type wherein, in addition, an exterior shape of the distal surface of the ampoule forming the skin contact surface has a convex and essentially edge-free contour. Injection devices employing needles have been used since many decades as an alternative to needle-less injection devices. Such injection devices have the following commonalities which are noteworthy for the intended use of the invention: (i) an ampoule with an ampoule body forming a chamber is provided, (ii) a movably and sealingly guided ampoule piston is disposed in the ampoule body, and (iii) the outlet is arranged at the distal end of the ampoule, from where the fluid to be injected enters a needle and—depending on the penetration depth of the needle and the employed therapy, e.g., with intradermal, subcutaneous or intramuscular injection—is released in the patient's body. Special embodiments of injection devices with needles are syringes with a so-called Luer connection which represents a standardized connection for injection syringes (or injection cannulae). In addition, a bayonet coupling for attaching the needle can also be provided (so-called Luer-lock syringe). Presently, the two aforedescribed injection systems are used side-by-side; the attending physician/the medical facility providing treatment is therefore required to have both injection devices on hand, if a selection needs to be made between the two injection systems. When ampoules are prefilled at the manufacturer with a liquid drug, a decision must already be made, if these are to be configured for needle-less injection systems or for injection systems using needles. This significantly increases material and manufacturing costs as well as inventory costs and the logistic complexity for providing both injection systems on-site. DE 103 40 613 A1 describes a device for injecting a fluid, which can be used as a one-way syringe or—by removing certain components of the device at defined rated breakpoints—as an ampoule for a needle-less injector. However, the rated breakpoints are at risk of accidentally breaking during the needle injection. Moreover, the rated breakpoints also not sufficiently smooth to satisfy all the requirements for the needle-less injection. U.S. Pat. No. 5,769,138 describes an adapter with Spike-attachment for a needle-less injector. The adapter and the injector each include coupling elements for securing the adapter on the injector. Additional sealing elements are provided on the adapter to prevent air from entering the chamber of the injector. U.S. Pat. No. 5,919,159 also describes an adapter with Spike-attachment for a needle-less injector. Accordingly, there is still a great need for technical solutions which eliminate or at least alleviate the aforementioned disadvantages.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates generally to non-lethal, non-eye-damaging security devices based on intense light and, more particularly to non-lethal, non-damaging security devices to provide low-cost, extremely effective warning, visual impairment, and disorientation through illumination by bright, visible light beams. In recent years, the employment of non-lethal weapons has proven effective in dealing with adversaries in a variety of law enforcement, corrections, and physical security scenarios. In these areas, the goal of security personnel in most confrontations is to employ the lowest level of force necessary to control the situation. The possible levels of response fall on a force continuum ranging from a simple verbal warning through various degrees of physical interaction to the use of lethal weapons such as firearms. Within the levels of physical interaction, as the severity of response increases, the possibility of permanent injury or unintentional death also increases as does the possibility of legal or political repercussions. Also, as the level of force applied increases, adversaries will often escalate their response thereby increasing the risk of injury to the security personnel. Any means to minimize the level of interaction is therefore of great value to security personnel and their adversaries alike. Ultra-bright light sources such as lasers offer an effective means to control escalation of confrontations between security personnel and adversaries. These light sources provide five levels of physical interaction with adversaries at the "soft" end of the force continuum: (1) language-independent, unequivocal warning; (2) psychological impact such as distraction and fear; (3) temporarily impaired vision; (4) physiological response to the light such as disorientation and nausea; and (5) reduced ability to perform hostile acts such as throwing objects, attacking, or aiming firearms. In addition, the adversaries response to the illumination can provide security personnel with threat assessment in terms of intent and resolve. Examples of such devices are described in U.S. Pat. No. 5,685,636 and U.S. patent application Ser. No. 08/967,426, now U.S. Pat. No. 6,007,218 both of which are incorporated herein by reference. Within the various application areas, there are many scenarios where a non-lethal response with ultra-bright lights can be beneficial. These include perimeter protection for government and industrial facilities, apprehension of unarmed but violent subjects, protection from suspected snipers, protection from assailants, and crowd/mob control. Prison guards need non-lethal options in a variety of situations including cell extractions, breaking up fights, an controlling disturbances. Another important class of scenarios are those which limit the use of potentially lethal weapons because innocent people are present. These include hostage situations, protection of political figures in crowds, airport security, and crowd control. A similar situation occurs when use of firearms or explosives in the battlefield may cause unacceptable collateral damage to equipment or facilities, such as aircraft or electronic equipment. In time-critical scenarios, such as raids on hostile facilities or criminal hideouts, where even a few seconds of distraction and visual impairment can be vital to the success of the mission, visual countermeasures can enhance the capabilities of law enforcement personnel. Bright light sources are capable of a range of effects on human vision which depend primarily on the wavelength (measured in nanometers), beam intensity at the eye (measured in watts/square centimeter), and whether the light source is pulsed or continuous-wave. There are three types of non-damaging effects on vision: (1) glare, (2) flashblinding, and (3) physiological disorientation. The glare effect is a reduced visibility condition due to a bright source of light in a person's field of view. It is a temporary effect that disappears as soon as the light source is extinguished, turned off, or directed away from the subject. The light source used must emit light in the visible portion of the wavelength spectrum and must be continuous or flashing to maintain the reduced-visibility glare effect. The degree of visual impairment due to glare depends on the brightness of the light source relative to ambient lighting conditions. The flashblinding effect is a reduced visibility condition that continues after a bright source of light is switched off. It appears as a spot or afterimage in one's vision that interferes with the ability to see in any direction. The nature of this impairment makes it difficult for a person to discern objects, especially small, low-contrast objects or objects at a distance. The duration of the visual impairment can range from a few seconds to several minutes. The visual impairment depends upon the brightness of the initial light exposure and the ambient lighting conditions and the person's visual objectives. The major difference between the flashblind effect and the glare effect is that visual impairment caused by flashblind remains for a short time after the light source is extinguished, whereas visual impairment due to the glare effect does not. Some degree of flashblinding can also remain after a glare exposure, especially with laser. Physiological disorientation occurs in response to a flashing light source. It is caused by the attempt of the eye to respond to rapid changes in light level or color. For on-and-off flashing, the pupil of the eye is continually constricting and relaxing in response to the contrasting light intensity reaching the eye. In addition, differing colors as well as differing light intensities cause the same effect. Past concepts for the eye-safe laser security device, such as described in U.S. Pat. No. 5,685,636 and U.S. patent application Ser. No. 08/967,426 now U.S. Pat. No. 6,007,218 employ a single laser as the light source. The laser can operate at any narrow wavelength band between 400 and 700 nanometers (the entire visible light spectrum from blue to red) and provide either continuous or repetitively pulsed (on-off flashing) light. Although effective, these type of past non-lethal security devices could benefit from improvements in the areas of safety in use, overall effective, susceptibility to countermeasures, and cost. It is therefore an object of this invention to provide a non-lethal, visual security device that is capable of low cost manufacture. It is another object of this invention to provide a non-lethal, visual security device that is extremely effective as a visual countermeasure under a wide range of conditions. It is still another object of this invention to provide a non-lethal, visual security device that is relatively unsusceptible to countermeasures.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a friction stir welding method that is applicable to panel welding used, for example, in aluminum alloy railway cars and buildings. A two-face structure (panel) for railway cars using hollow members is disclosed in Japanese Patent Laid-Open No. 246863/1990, and another using laminated panels, such as honeycomb panels, is disclosed in Japanese Patent Laid-Open No. 106661/1994. The process of friction stir welding is performed by rotating a round rod inserted in a joint region to heat and plasticize the joint region thus forming a weld. This type of welding is generally applied to a butt joint and a lap joint, and is described in WO 93/10935 (which is the same as EP 0615480B1 and the Japanese Announcement laid-open publication No. Hei 7-505090 and in the publication Welding & Metal Fabrication, January 1995, pp. 13-16.
{ "pile_set_name": "USPTO Backgrounds" }
The expression "near-infra-red spectroscopy" is used to designate methods of measurements based upon the interaction between matter and electromagnetic radiation in the wavelength range from 700 to 2500 nm. The reason for using this expression is that it refers to the part of the infra-red wavelength range lying closest to the visual range of the spectrum (400 to 700 nm). In the literature, the expression "near-near-infra-red range" is used for electromagnetic radiation with wavelengths from 700 to 1200 nm. Near-infra-red spectroscopy is used for determining components of various materials, e.g. in meat products. Meat consists substantially of water, protein and fat. Each type of chemical bond such as O--H, C--H, C.dbd.O, C--N, N--H, absorbs light at wavelengths characteristic for the molecule part concerned. The cause of the absorption is that two different atoms being bonded to each other function in the manner of an electric dipole taking energy from the electric and magnetic fields in the radiation, making the group of atoms concerned vibrate. Thus, a C.dbd.O bond in a triglyceride will absorb light at a wavelength, that is different from that absorbed by a C.dbd.O bond in a protein molecule. By measuring how much the light is attenuated by passing through a sample of meat at one of these characteristic wavelengths it is possible to determine the percentage of a component of the meat. Measurements in the near-infra-red range may be carried out in two ways, either by passing light through the sample (near-infra-red transmission, NIT) or based on the reflection from the surface of the sample (near-infra-red reflection, NIR). In samples with a high water content, such as meat, NIT cannot be used when making measurements above 1300 nm, because the absorption by the water molecules is far too strong at longer wavelengths. With measurements based upon the reflection there is the disadvantage that they have to be carried out either on a free surface, which is not well-defined, or through a glass window. In the latter case, it cannot be avoided that fat on the comminuted meat adheres to the inside of the glass window, possibly causing erroneous measurement. Further, due to the small measuring volume, measurements based on reflection will not be as representative as NIT measurements. Various analysis apparatus for examining materials by means of NIT spectroscopy are known. One of these apparatuses comprises a number of cups, in which a homogenized sample is placed. Then, the absorption of the sample is measured at a number of different wavelengths, and the content of components is computed on the basis of the absorption values having been found. The apparatus is extremely complicated to use. Thus, it is necessary to take a sample that is representative of the material to be examined, then the sample has to be homogenized, and finally the homogenized material has to be placed in the cups of the apparatus using great care. After this, the analysis may be carried out.
{ "pile_set_name": "USPTO Backgrounds" }
In recent years, a demand for wireless networks has been increasing with the development of mobile communication technologies. Particularly, active research efforts for integrating a local wireless network based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard and a mobile communication network such as a Code Division Multiple Access (CDMA) network and a Universal Mobile Telecommunications System (UMTS) network are being made. The mobile communication network advantageously supports wide coverage and mobility, but enables only low speed transmission with a maximum of two megabits per second (Mbps). Compared to the mobile communication network (e.g., the CDMA/UMTS), the IEEE 802.11 local wireless network has a narrower service coverage, but enables only high-speed data transmission from eleven Mbps to a maximum of 54 Mbps. So, the two communication networks are efficiently integrated and provide wide coverage and high-speed data transmission for a seamless service to users. However, when an IEEE 802.11 based wireless Mobile Station (MS) does handover, most of handover delays occur in a channel scanning step of searching a target Access Point (AP). In the conventional channel scanning method, there are a passive scan scheme and an active scan scheme. The passive scan scheme is a scheme in which a wireless MS accesses all possible channels and waits for a beacon signal that is periodically transmitted through a corresponding channel from an AP. The active scan scheme is a scheme in which, after accessing each channel and transmitting a probe request frame, the wireless MS receives a probe response frame from an AP. In the passive scan scheme, because the wireless MS accesses each channel and waits until a beacon signal is received from an AP, a separate control signal is not necessary, so an overhead is not generated. However, there is a disadvantage such that, when the wireless MS may not be synchronized when the beacon signal is transmitted from the AP, a considerable channel scanning delay is induced. When the wireless MS cannot acquire previous information on an adjacent AP, the wireless MS should wait for a maximum of 100 milliseconds (ms) so as to receive a beacon signal from the AP for each channel. Because the wireless MS has to scan all channels supported in the IEEE 802.11 standard, when assuming that a local wireless network supports n channels, a delay time of ‘n×beacon period’ is needed. This considerable delay time may lead to a considerable degradation of Quality of Service (QoS) caused by delay time and packet loss, in an MS receiving a real-time data service. In contrast, the active scan scheme is a technique in which, unlike the passive scan scheme, after accessing each channel, a wireless MS sends probe request messages and, during a constant wait time, receives probe response messages from all APs that are in operation in a corresponding channel. Because the wait time for the probe response message of the wireless MS is substantially shorter than the beacon period, the active scan scheme has an advantage that the delay time is significantly reduced. However, because the wireless MS directly broadcasts a probe request message for AP search, this induces an additional overhead. Also, there is a disadvantage in that channel traffic load increases if a plurality of wireless MSs send probe request messages. Accordingly, there is a need for a method and apparatus for reducing a delay time resulting from channel scanning in a wireless communication system.
{ "pile_set_name": "USPTO Backgrounds" }
The lenses of cameras used in intersection and roadway monitoring systems must be cleaned periodically in order to prevent dirt and other debris from settling on the lenses and obscuring or distorting the images. In many instances these cameras are mounted at heights and locations intended to maximize the coverage of the cameras, but are not easily accessible in a safe manner, particularly not in winter conditions. Cameras have, for example, been mounted on gantries over road lanes, poles or posts at the side of the road, and on the rooftops or sides of buildings. Conventionally, cleaning is done manually at considerable expense and, in the instance of over-the-road gantries, often requires one or more lanes of traffic to be shut down. If the cameras in the system cannot be cleaned in a timely fashion, considerable revenue can be lost and the ability to enforce traffic laws may be compromised. Further, where cameras are used to recognize the numbers on the license plates of passing vehicles, the optical character recognition (OCR) software will reject more and more images as unreadable as the camera images degrade, requiring more and more manual review.
{ "pile_set_name": "USPTO Backgrounds" }
Rotating equipment used in the industry often require mechanical sealing in the region where a shaft driven by a motor enters a housing. Equipment such as pumps, blowers, mixers, and compressors can often contain fluid within the housing. It is desirable to seal the shaft entry to prevent any fluid in the housing from entering the atmosphere or affecting shaft bearings. A typical mechanical seal will utilize a sealing face that is rotating against another sealing face. The sealing faces are held together by mechanical means, such as springs, hydraulic pressure, or a combination thereof. An inherent part of a mechanical seal is the paradoxical notion that it must leak in order to work. Almost all mechanical seals utilized for rotating equipment utilize the process fluid as lubrication for the seal faces. As such, some process fluid flows through the mechanical seal and exit the housing. While this is typically a small amount of fluid, the problem is significant when pumping caustic, corrosive, or otherwise dangerous fluids. In addition to process fluid being used to lubricate the seal faces, mechanical seals are often very sensitive to process upsets or deflections of the shaft. System conditions such as pump or compressor cavitation can cause the shaft to deflect along its rotational axis. This can in turn cause the seal surfaces to separate and allow significant leakage. In instances where hard but brittle materials such as Silicon Carbide are utilized for seal faces, impact of the seal faces against one another during upset conditions can cause cracking or shattering of the seal faces. Upset conditions can also cause radial deflections of the shaft, leading to sealing surface misalignment, uneven loading, and potential failure of the seal. Often, double mechanical seal arrangements are utilized for critical equipment. Costly, bulky, and heavy bearing frame assemblies are often utilized to help minimize shaft deflections that mechanical seals are sensitive to. When a mechanical seal fails, the fluid within the housing can leak to the atmosphere or into the bearing frame assembly. This can cause significant injury to personnel, violate environmental regulations, violate occupational safety regulations, and damage surrounding equipment. A need exists for a cost efficient mechanical sealing system for preventing the leakage of a fluid to the atmosphere. A further need exists for a mechanical sealing system wherein upon a failure, leakage can be directed through a drain to a safe containment area, activate a shut-down of the equipment, or an alarm. The present embodiments meet these needs. The present embodiments are detailed below with reference to the listed FIGURE.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates generally to a radar system and, more particularly, to a warning radar that may be used to detect obstacles in the path of a vehicle. Although the present invention will be described herein primarily with regard to a vehicle obstruction warning radar, it should be understood that the present invention may also be also be used in other applications. For instance, the present invention may be used in other similar or conventional applications of radars. A driver may check his rearview mirror and sideview mirrors when backing up a vehicle. A driver may also pivot his head around to look behind the vehicle. Despite checking each of the mirrors and/or turning around, there typically is a blind spot in the driver""s field of view. Compounding the problem with the blind spot, some drivers may not see properly behind the vehicle simply because they are distracted or do not exercise proper care. As a result, a driver may not see obstacles behind the vehicle when backing up. For many of the same or similar reasons, a driver may not be able to see obstacles located to the side or front of a vehicle. In light of the difficulties with seeing obstacles when driving a car, there is a need for a radar system that detects and warns of such obstacles. There is also a need for a radar system that can accurately detect the presence of an obstacle using one or more transmitted signals of the same frequency as opposed to multiple transmitted signals having different frequencies. Furthermore, a need exists for being able to determine the presence of an obstacle without modulating the transmitted signals. The present invention solves one or more of the aforementioned needs. The system includes at least one transmitting antenna and at least one receiving antenna. In one exemplary embodiment which includes multiple transmitting and/or receiving antennas, the receiving antennas may be arranged in at least one linear array to provide spatially distributed data to facilitate the determination of the angle and range estimates of the obstacle(s). It should be recognized that the receiving antennas may be arranged in a non-linear configuration, but a non-linear configuration may increase the difficulty of determining the angle and range estimates of the obstacles. The transmitting antenna receives an input signal and transmits an electromagnetic wave. The electromagnetic wave reflects off an obstacle back to the receiving antenna. The receiving antenna captures the reflected electromagnetic wave and produces an output signal. The output signal is then combined with the input signal in a quadrature mixer. The resulting in-phase (I) and quadrature (Q) signals may be further processed and then transmitted to a processing system. The processing system uses a suitable algorithm (e.g., a near field back projection algorithm, a far field angle of arrival algorithm, or any other type of tomographic algorithm) to estimate the type and/or location of obstacle that reflected the electromagnetic wave. In an exemplary embodiment, the algorithm is adapted to discriminate between different sizes and/or locations of obstacles in order to determine if there is a hazard. Based on this information, the processing system may then communicate with a visual or audible display or warning system in order to alert the driver about the obstacle if it has been determined to be a hazard. In addition to the novel features and advantages mentioned above, other objects and advantages of the present invention will be readily apparent from the following descriptions of the drawings and exemplary embodiments.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to an image-receiver (e.g., a camera control system capable of controlling a camera angle) of a system comprising an image-transmitter for transmitting camera images captured by a plurality of cameras whose angles can be controlled, and the image-receiver for displaying the thus-transmitted camera images. Recent advances made in network technology has brought out a system which transmits over a network an image captured by a camera and plays back the image at the receiving end (hereinafter often called an “image-receiving end”). Of such systems, many systems enable the image-receiving end which receives and plays back an image to control a turn table on which is mounted a camera connected to the transmitting end (hereinafter often called an “image-transmitting end”). Japanese Patent Unexamined Publication 7-123390/(1995) describes a camera control system which enables an image-receiving end to control a camera connected to an image-transmitting end. The image-receiving end is equipped with a monitor screen having a plurality of windows for indicating a plurality of camera images (also called “camera image windows”), a camera selection button, and a camera control panel. By pressing the camera selection button while viewing images on the camera image windows, an operator selects a camera which he desires to control. The operator then presses a control button provided in the camera control panel, to thereby transmit a control command to the image-transmitting end and enable control of operation of the camera connected to the image-transmitting end. The operation of the camera control system will now be described briefly by reference to FIG. 27. The camera control system comprises cameras 2701 for capturing images; image transmitters 2710 for transmitting the images captured by the cameras 2701; an image receiver 2720; a display 2704 for displaying images; and an input device 2705 for entering a command which enables the image receiver 2720 to control the camera 2701 connected to the selected image transmitter 2710. Each of the image transmitters 2710 comprises an image data import section 2711 for importing an image captured by the corresponding camera 2701; an image data transmission section 2712 for transmitting image data to the image receiver 2720; a control command receiving section 2713 for receiving a camera control command transmitted from the image receiver 2720; and a control command transmission section 2714 for transmitting the camera control command to the camera 2701. The video receiver 2720 comprises an image data receiving section 2721 for receiving a plurality of images transmitted from the image transmitters 2710; an, image data playback section 2722 for displaying the plurality of image data sets on the display 2704; a command load section 2723 for loading a camera control command entered by way of the input device 2705; and a control command transmission section 2724 for transmitting, to the image transmitters 2710, the camera control command loaded by way of the command load section 2723. Next will be described the flow of operation from when each of the cameras 2701 captures an image until the display 2704 displays the thus-captured images. The image captured by the camera 2701 is imported into the image data import section 2711, and the image data import section 2711 delivers to the image data transmission section 2712 data pertaining to the thus-imported image. The image data transmission section 2712 transmits the image data to the image data receiving section 2721 of the image receiver 2720. The image data receiving section 2721 receives a plurality of image data sets from the plurality of image data transmission sections 2712 and delivers the thus-received image data sets the image data playback section 2722. The image data playback section 2722 displays a plurality of images on the display 2704. There will be now described the flow of operation through which the image receiver 2720 controls the cameras 2701 connected to the plurality of image transmitters 2710. FIG. 28 shows an example camera control panel for controlling the cameras 2701 and example images captured thereby to be displayed on the display 2705. A display screen 2800 comprises image display areas 2801, 2802 and 2803 for displaying images captured by the plurality of cameras 2701; a camera control panel display area 2801; and a control camera selection display area 2830. The camera control panel display area 2810 comprises an UP button 2811, a DOWN button 2812, a LEFT button 2813, and a RIGHT button 2814 for panning the camera 2701 vertically or hoizontally; an IN button 2817 and an OUT button 2818 for causing the camera 2701 to zoom in and out; and a focusing button 2819 and defocusing button 2820. The control camera selection button 2830 comprises camera selection buttons 2831, 2832 and 2833. By way of the input device 2705 shown in FIG. 27, the operator selects a camera he desires to control, by means of pressing any one of the camera selection buttons 2831, 2832, and 2833 and pressing any of the buttons 2811 through 2820. The command load section 2723 loads a control command assigned to the camera selected by means of the camera selection button and delivers the thus-loaded control command to the control command transmission section 2724. The control command transmission section 2724 transmits the control command to the control command receiving section 2713 of the image transmitter 2710 corresponding to the camera selection button selected from the camera selection buttons 2831, 2832, and 2833. Upon receipt of the control command, the control command receiving section 2713 delivers the thus-received control command to the corresponding control command transmission section 2714. The control command transmission section 2714 delivers the control command to the corresponding camera 2701, whereupon the camera 2701 performs the operation instructed by way of the input device 2705. The camera control system of background art encounters the following drawbacks: 1) In a case where the camera control system is equipped with a plurality of cameras, the operator must designate a camera to be controlled. Even after designation of a camera, there may be a chance of another camera being able to capture a desired image with rotation less than that which would be required by the designated camera. Selection of a camera capable of capturing a desired scene most quickly is left to the operator's judgment. However, in many cases, optimal judgement is not rendered by the operator. 2) Even in a case where the operator designates and controls a camera, an impediment may block the camera from capturing a desired image. 3) Even in a case where the operator designates and controls a camera, another camera may be able to more quickly attain focus on a desired location through rotation than can the designated camera. The operator is uncertain of which camera that can shoot a desired location in the least amount of time. 4) Even in a case where the operator designates and controls a camera, to thereby train the camera on a desired location, the user is uncertain as to whether or not the location is viewable from the direction from which the operator desires to shoot. 5) Even in a case where the operator designates and controls a camera, another camera may be able to more quickly zoom in a desired range through rotation than can the designated camera. The operator is uncertain of which camera can zoom into a desired range in the least amount of time. 6) In a case where the operator designates and controls a camera, even if an image captured by a camera under control is subjected to rotation, the operator encounters difficulty in ascertaining the image which is currently being controlled, since all the images captured by the cameras are in motion. 7) When desiring to view details of a certain location and its surroundings simultaneously, the operator must control two or more cameras independently through use of control commands, thus consuming time.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a zoom lens of a small size and widely variable magnification. 2. Discussion of the Background Zoom lenses having a field angle ranging from 62.degree. to 19.degree. are disclosed in Japanese Laid-Open patent Publications Nos. 56-133713, 57-164709, 59-160121, 60-14212, 61-62012, and 61-69016, for example. The disclosed zoom lenses are not compact since the ratio (L/f.sub.T) of the overall length L of the lens system (from the front lens surface to the image plane at the wide angle end) to the focal length f.sub.T at the telephoto end is greater than 1. The most general way of focusing a zoom lens is to move the first lens group of the zoom lens. This method is advantageous in that the amount of movement of the first lens group remains unchanged at all focal length settings. However, if a zoom lens has a wide angle setting and the first lens group has positive refracting power, then the vignetting becomes greater unless the diameter of the front lens element is increased. If the diameter of the front lens element is increased, then the zoom lens becomes heavier, larger, and more costly. One solutionn to the above problems is to move, in unison, a first lens group having positive refracting power and a second lens group having negative refracting power. Since the combined power of the first and second lens groups is large in the wide angle end, the amount of movement of the first and second lens groups is small, and the front lens element can be reduced in diameter. However, close ranges in a zooming range are limited in view of the amount of movement in unison of the first and lens groups, the diameter of the front lens element, and the performance thereof.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates generally to the fabrication of integrated circuits and, more particularly, relates to the fabrication of integrated circuits by a patterning process which uses self-assembling polymers. The semiconductor industry has a need to manufacture integrated circuits (ICs) with higher and higher densities of devices on a smaller chip area to achieve greater functionality and to reduce manufacturing costs. This desire for large-scale integration has led to a continued shrinking of the circuit dimensions and features of the devices. The ability to reduce the sizes of structures such as gates in field effect transistors (FETs), is driven by lithographic technology which is, in turn, dependent upon the wavelength of light used to expose the photoresist. In current commercial fabrication processes, optical devices expose the photoresist using light having a wavelength of 193 nm (nanometers). Research and development laboratories are experimenting with the EUV (13 nm) wavelength to reduce the size of structures. Further, advanced lithographic technologies are being developed that utilize immersion techniques to improve resolution. A challenge facing lithographic technology is fabricating features having a critical dimension (CD) below 50 nm. All steps of the photolithographic techniques currently employed must be improved to achieve the further reduction in feature size. In a conventional lithography technique, light is exposed through a binary mask to a photoresist layer on a layer of material. The photoresist layer may be either a positive or a negative photoresist and can be a silicon-containing, dry-developed resist. In the case of a positive photoresist, the light causes a photochemical reaction in the photoresist. The photoresist is removable with a developer solution at the portions of the photoresist that are exposed through the mask. The photoresist is developed to clear away these portions, whereby a photoresist feature remains on the layer of material. An integrated circuit feature, such as a gate, via, or interconnect, is then etched into the layer of material, and the remaining photoresist is removed. The line-width of the integrated circuit feature is limited using the conventional lithography process. For example, aberrations, focus, and proximity effects in the use of light limit the ability to fabricate features having reduced linewidth. Using a 248 nm wavelength light source, the minimum printed feature linewidth is between 300 and 150 nm, using conventional techniques. The most advanced lithography tools can now resolve to 100 nm feature size which can be improved to 70 to 80 nm with immersion lithography. With IC design expected to require sub-50 nm interconnects, it is apparent that conventional lithography cannot meet this design requirement. Accordingly there is a need for reducing the IC interconnect opening diameter to below the resolutions of the conventional lithographic tools, to improve circuit layout density.
{ "pile_set_name": "USPTO Backgrounds" }
2.1. Magnetic Separations in Biological Systems: General Considerations The use of magnetic separations in biological systems as an alternative to gravitational or centrifugal separations has been reviewed [B. L. Hirschbein et al., Chemtech, March 1982:172-179 (1982); M. Pourfarzaneh, The Ligand Quarterly 5(1):41-47 (1982); and P. J. Halling and P. Dunnill, Enzyme Microb. Technol. 2:2-10 (1980)]. Several advantages of using magnetically separable particles as supports for biological molecules such as enzymes, antibodies and other bioaffinity adsorbents are generally recognized. For instance, when magnetic particles are used as solid phase supports in immobilized enzyme systems [see, e.g., P. J. Robinson et al., Biotech. Bioeng., XV:603-606 (1973)], the enzyme may be selectively recovered from media, including media containing suspended solids, allowing recycling in enzyme reactors. When used as solid supports in immunoassays or other competitive binding assays, magnetic particles permit homogeneous reaction conditions (which promote optimal binding kinetics and minimally alter analyte-adsorbent equilibrium) and facilitate separation of bound from unbound analyte, compared to centrifugation. Centrifugal separations are time-consuming, require expensive and energy-consuming equipment and pose radiological, biological and physical hazards. Magnetic separations, on the other hand, are relatively rapid and easy, requiring simple equipment. Finally, the use of non porous adsorbent-coupled magnetic particles in affinity chromatography systems allows better mass transfer and results in less fouling than in conventional affinity chromatography systems. Although the general concept of magnetizing molecules by coupling them to magnetic particles has been discussed and the potential advantages of using such particles for biological purposes recognized, the practical development of magnetic separations has been hindered by several critical properties of magnetic particles developed thus far. Large magnetic particles (mean diameter in solution greater than 10 microns(.mu.)) can respond to weak magnetic fields and magnetic field gradients; however, they tend to settle rapidly, limiting their usefulness for reactions requiring homogeneous conditions. Large particles also have a more limited surface area per weight than smaller particles, so that less material can be coupled to them. Examples of large particles are those of Robinson et al. [supra] which are 50-125.mu. in diameter, those of Mosbach and Anderson [Nature, 270:259-261 (1977)] which are 60-140.mu. in diameter and those of Guesdon et al. [J. Allergy Clin. Immunol. 61(1):23-27 (1978)] which are 50-160.mu. in diameter. Composite particles made by Hersh and Yaverbaum [U.S. Pat. No. 3,933,997] comprise ferromagnetic iron oxide (Fe.sub.3 O.sub.4) carrier particles. The iron oxide carrier particles were reported to have diameters between 1.5 and 10.mu.. However, based on the reported settling rate of 5 minutes and coupling capacity of only 12 mg of protein per gram of composite particles [L. S. Hersh and S. Yaverbaum, Clin. Chim. Acta, 63:69-72 (1975)], the actual size of the composite particles in solution is expected to be substantially greater than 10.mu.. The Hersh and Yaverbaum ferromagnetic carrier particles of U.S. Pat. No. 3,933,997 are silanized with silanes capable of reacting with anti-digoxin antibodies to chemically couple the antibodies to the carrier particles. Various silane couplings are discussed in U.S. Pat. No. 3,652,761, which is hereby incorporated by reference. That the diameters of the composite particles are probably greater than 10.mu. may be explained, at least in part, by the method of silanization employed in the Hersch and Yaverbaum patent. Procedures for silanization known in the art generally differ from each other in the media chosen for the polymerization of silane and its deposition on reactive surfaces. Organic solvents such as toluene [H. W. Weetall, in: Methods in Enzymology, K. Mosbach (ed.), 44:134-148, 140 (1976)], methanol [U.S. Pat. No. 3,933,997] and chloroform [U.S. Pat. No. 3,652,761] have been used. Silane depositions from aqueous alcohol and aqueous solutions with acid [H. W. Weetall, in: Methods in Enzymology, supra, p. 139 (1976)] have also been used. Each of these silanization procedures employs air and/or oven drying in a dehydration step. When applied to silanization of magnetic carrier particles such dehydration methods allow the silanized surfaces of the carrier particles to contact each other, potentially resulting in interparticle bonding, including, e.g., cross linking between particles by siloxane formation, van der Waals interactions or physical adhesion between adjacent particles. This interparticle bonding yields covalently or physically bonded aggregates of silanized carrier particles of considerably larger diameter than individual carrier particles. Such aggregates have low surface area per unit weight and hence, a low capacity for coupling with molecules such as antibodies, antigens or enzymes. Such aggregates also have gravitational settling times which are too short for many applications. Small magnetic particles with a mean diameter in solution less than about 0.03.mu. can be kept in solution by thermal agitation and therefore do not spontaneously settle. However, the magnetic field and magnetic field gradient required to remove such particles from solution are so large as to require heavy and bulky magnets for their generation, which are inconvenient to use in bench top work. Magnets capable of generating magnetic fields in excess of 5000 Oersteds are typically required to separate magnetic particles of less than 0.03.mu. in diameter. An approximate quantitative relationship between the net force (F) acting on a particle and the magnetic field is given by the equation below (Hirschbein et al., supra): EQU F=(X.sub.v -X.sub.v .degree.)VH(dH/dx), where X.sub.v and X.sub.v .degree. are the volume susceptibilities of the particle and the medium, respectively, V is the volume of the particle, H is the applied magnetic field and dH/ox is the magnetic field gradient. This expression is only an approximation because it ignores particle shape and particle interactions. Nevertheless, it does indicate that the force on a magnetic particle is directly proportional to the volume of the particle. Magnetic particles of less than 0.03.mu. are used in so-called ferrofluids, which are described, for example, in U.S. Pat. No. 3,531,413. Ferrofluids have numerous applications, but are impractical for applications requiring separation of the magnetic particles from surrounding media because of the large magnetic fields and magnetic field gradients required to effect the separations. Ferromagnetic materials in general become permanently magnetized in reponse to magnetic fields. Materials termed "superparamagnetic" experience a force in a magnetic field gradient, but do not become permanently magnetized. Crystals of magnetic iron oxides may be either ferromagnetic or superparamagnetic, depending on the size of the crystals. Superparamagnetic oxides of iron generally result when the crystal is less than about 300 .ANG.(0.03.mu.) in diameter; larger crystals generally have a ferromagnetic character. Following initial exposure to a magnetic field, ferromagnetic particles tend to aggregate because of magnetic attraction between the permanently magnetized particles, as has been noted by Robinson et al. [supra] and by Hersh and Yaverbaum [supra]. Dispersible magnetic iron oxide particles reportedly having 300 A diameters and surface amine groups were prepared by base precipitation of ferrous chloride and ferric chloride (Fe.sup.2+ /Fe.sup.3+ =1) in the presence of polyethylene imine, according to Rembaum in U.S. Pat. No. 4,267,234. Reportedly, these particles were exposed to a magnetic field three times during preparation and were described as redispersible. The magnetic particles were mixed with a glutaraldehyde suspension polymerization system to form magnetic polyglutaraldehyde microspheres with reported diameters of 0.1.mu.. Polyglutaraldehyde microspheres have conjugated aldehyde groups on the surface which can form bonds to amino containing molecules such as proteins. However, in general, only compounds which are capable of reacting with aldehyde groups can be directly linked to the surface of polyglutaraldehyde microspheres. Moreover, magnetic polyglutaraldehyde microspheres are not sufficiently stable for certain applications.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to hypodermic needles and more specifically to a hypodermic needle which retracts into the syringe after use, thereby preventing reuse and the spread of diseases normally associated therewith. 2. Description of the Prior Art It is well known that diseases can be spready by re-using a needle and that a person can come in contact with a disease by being accidently scratched by the needle. Hypodermic needles and syringes on the market today have fixed needles attached to a cylinder. After the needle has been used, it should be disabled and destroyed to prevent transmission of diseases. But, even thrown away needles can expose one to disease as the needle and syringe can quite often be re-used by an unsuspecting person. The contaminated needle can also accidently cut or prick a person, exposing that individual to a transmittable disease. Efforts have been made to educate people not to re-use needles, but the spread of disease through needles is still widespread and hospital personnel have been accidently cut by contaminated needles even though they are extremely careful and well aware of the dangers. Some medical facilities have equipment to break the needle from the syringe or cylinder rendering the syringe harmless, but, these devices are not available to the general public. Some syringes have a protective cap covering the needle which can be placed over the needle after use, allowing the needle to be broken from the syringe, but here again an accidental scratch from the needle could be devastating.
{ "pile_set_name": "USPTO Backgrounds" }
An important need exists to dry grain quickly and effectively after harvest to retain maximum quality, to attain a moisture content sufficiently low to minimize infestation by insects and microorganisms (e.g., bacteria, fungi, etc.), to prevent germination and to maximize consumer acceptability of appearance and other organoleptic properties. Grains are hydroscopic and will lose or gain moisture until equilibrium is reached with the surrounding air. Grains will dry until they reach their equilibrium moisture content (EMC). The EMC is dependent on the relative humidity and the temperature of the air. The relationship between EMC, relative humidity and temperature for many grains has been modeled by researchers: the results have been summarized in Brooker et al. (1974), Drying Cereal Grains, Westport: The Avi Publishing Company, Inc., 265 pp. For instance, EMC's for certain grains are shown in the chart immediately below. Relative Humidity (%)30405060708090100GrainEquilibrium Moisture Content (% wb*) at 25° C.Barley8.59.710.812.113.515.819.526.3Shelled Maize8.39.811.212.914.015.619.623.8Paddy7.99.410.812.213.414.816.7—Milled Rice9.010.311.512.612.815.418.123.6Sorghum8.69.811.012.011815.818.821.9Wheat8.69.710.911.913.615.719.725.6*wet basisSource: Brooker et al. (1974) There are two basic mechanisms involved in the drying process: the migration of moisture from the interior of an individual grain to the surface and the evaporation of moisture from the surface to the surrounding air. The rate of drying is determined by the moisture content and the temperature of the grain and the temperature, the relative humidity and the velocity of the air in contact with the grain. In general, higher airflow rates, higher air temperatures and lower relative humidities increase drying speed. The rate of moisture movement from high moisture grain to low relative humidity air is rapid. However, the moisture movement from wet grain to moist air may be very small or nonexistent. Also, higher airflow rates generally result in higher drying rates. Traditionally, grain crops were harvested during a dry period or season and simple drying methods such as sun drying were used. However, maturity of the crop does not always coincide with a suitably dry period. Furthermore, the introduction of high-yielding varieties, irrigation, and improved farming practices has led to the need for alternative drying practices to cope with the increased production, and grain harvested during the wet season as a result of multi-cropping. Among other techniques, in-line dryers have been used for drying the grain. However, these use high amounts of fuel and the dryers act like an oven and tend to cook out all of the moisture and over dry and crack the grain. As a result, it has become common for grain to be stored in bins and dried by mechanically moving air over and through the grain. This method is referred to as the “in-bin natural air drying” technique. The in-bin natural air drying technique has several advantages. It can increase the quality of the harvested grain by reducing crop exposure to weather and reduce harvesting losses, including head shattering and cracked kernels. It also reduces the dependency on weather conditions for harvest and allows more time for post-harvest field work. However, current in-bin natural air drying systems have several disadvantages. Grains can only be stored without significant deterioration for a period of time depending on the storage conditions, such as temperature and relative humidity. Thus, the EMC must be attainable within that period of time and thereafter maintainable. Drying fans are costly to operate: they should operate when the relative humidity level is low and temperature levels are generally warm. For instance, it is useless to run fans if it is raining. Also, hot spots, i.e., grain degradation, in the grain are difficult to prevent. Sensors for determining the condition of the grain placed throughout the bin help prevent hot spots. Also, it is preferable for the drying system to be centrally controlled, with remote access.
{ "pile_set_name": "USPTO Backgrounds" }
Unlike other tissues which can survive extended periods of hypoxia, brain tissue is particularly sensitive to deprivation of oxygen or energy. Permanent damage to neurons can occur during brief periods of hypoxia, anoxia or ischemia. Neurotoxic injury is known to be caused or accelerated by certain excitatory amino acids (RAA) found naturally in the central nervous system (CNS). Glutamate (Glu) is an endogenous amino acid which has been characterized as a fast excitatory transmitter in the mammalian brain. Glutamate is also known as a powerful neurotoxin capable of killing CNS neurons under certain pathological conditions which accompany stroke and cardiac arrest. Normal glutamate concentrations are maintained within brain tissue by energy-consuming transport systems. Under low energy conditions which occur during conditions of hypoglycemia, hypoxia or ischemia, cells can release glutamate. Under such low energy conditions the cell is not able to take glutamate back into the cell. Initial glutamate release stimulates further release of glutamate which results in an extracellular glutamate accumulation and a cascade of neurotoxic injury. It has been shown that the sensitivity of central neurons to hypoxia and ischemia can be reduced by either blockage of synaptic transmission or by the specific antagonism of postsynaptic glutamate receptors [see S. M. Rothman and J. W. Olney, "Glutamate and the Pathophysiology of Hypoxia-Ischemic Brain Damage," Annals of Neurology, 19 No. 2 (1986)]. Glutamate is characterized as a broad spectrum agonist having activity at three neuronal excitatory amino acid receptor sites. These receptor sites are named after the amino acids which selectively excite them, namely: Kainate (KA), N-methyl-D-aspartate (NMDA or NMA) and quisqualate (QUIS). Neurons which have EAA receptors on their dendritic or somal surfaces undergo acute excitotoxic degeneration when these receptors are excessively activated by glutamate. Thus, agents which selectively block or antagonize the action of glutamate at the EAA synaptic receptors of central neurons can prevent neurotoxic injury associated with hypoxia, anoxia, or ischemia caused by stroke, cardiac arrest or perinatal asphyxia. It is known that compounds of various structures, such as aminophosphonovalerate derivatives and piperidine dicarboxylate derivatives, may act as competitive antagonists at the NMDA receptor. Certain piperidineethanol derivatives, such as ifenprodil and 1-(4-chlorophenyl)-2-[1-(4-fluorophenyl)-piperidinyl]ethanol, which are known anti-ischemic agents, have been found to be non-competitive NMDA receptor antagonists [C. Carter et al, J. Pharm Exp. Ther, 247 (3), 1222-1232 (1988)]. There are many classes of compounds known for treatment of psychotic disorders. For example, current therapeutic treatments for psychoses use compounds classifiable as phenothiazine-thioxanthenes, as phenylbutylpiperidines and also as certain alkaloids. An example of a phenylbutylpiperidine compound of current use in psychotic treatment therapy is haloperidol [A. F. Gilman et al, The Pharmacological Basis of Therapeutics, 7th Edn., p. 404, MacMillan (1985)]. Certain nitrogen-containing cyclohetero cycloalkylaminoaryl compounds are known for pharmaceutical purposes. For example, U.S. Pat. No. 4,204,003 to Szmuszkovicz describes N-(2-aminocyclopentyl)-N-alkanoylanilides as antidepressant agents. Certain aminocycloaliphatic benzamides have been described for various uses. For example, U.S. Pat. No. 4,463,013 to Collins et al describes aminocyclohexyl-benzamides for use as diuretic agents. The compound (.+-.)-trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl)-benzen eacetamide has been evaluated for its selectivity as an amino acid antagonist [C. G. Parsons et al, Neuropharm., 25(2), 217-220 (1986)]. This same compound has been evaluated for its neuroprotective activity against kainate-induced toxicity [W. Lason et al, Brain Res., 482, 333-339 (1989)]. U.S. Pat. No. 4,801,604 to Vonvoightlander et al describes certain cis-N-(2-aminocycloaliphatic)benzamides as anticonvulsants including, specifically, the compound cis-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyllbenzamide. Certain of these trans benzeneacetamide derivatives, such as trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetam ide, have been described as highly selective ligands for kappa opioid receptors. The cis isomers of 3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide were identified to be potent and selective sigma ligands [B. R. de Costa et al, J. Med. Chem., 32(8), 1996-2002 (1989)]. Further structure activity studies with these compounds resulted in the identification of (+)- and (-)-cis-N-[3,4-dichlorophenylethyl]-N-methyl-2-(1-pyrrolidinyl)-cyclohexyl amines as extremely potent and selective ligands for the sigma receptor. These [Contreras, P. C.; Ragan,.D. M.; Bremer, M. E.; Lanthorn, T. H.; Gray, N. M.; Iyengar, S.; Jacobson, A. E. ; Rice, K. C. ; de Costa, B. R.: Evaluation of U50488H analogs for antiischemic activity in the gerbil. Brain Res. 1991, 546, 79-82] and related (ethylenediamines) compounds [Long, J. B.; Tortella, F. C.; Rice, K. C.; de Costa B. R.: Selective sigma ligands protect against dynorphin A-induced spinal cord injury in rats. Soc. Neurosci. Abs., 16, 1122 (1990) abs 461.4] were found to be effective as-protective agentsfor the damaging effects of ischemia and stroke in two different models of ischemia. See, for example, Long, J. B.; Tortella, F. C.; Rice, K. C.; de Costa B. R.: Selective sigma ligands protect against dynorphin A-induced spinal cord injury in rats. Soc. Neurosci. Abs., 16, 1122 (1990) abs 461.4; Contreras, P. C.; Ragan, D. M.; Bremer, M. E.; Lanthorn, T. H.; Gray, N. M.; Iyengar, S.; Jacobson, A. E.; Rice, K. C.; de Costa, B. R.: Evaluation of U50488H analogs for antiischemic activity in the gerbil. Brain Res. 1991, 546, 79-82. Since these initial findings, neuroprotective activity has been identified among certain other high affinity sigma ligands. It is likely that the protective effects of these and related compounds is mediated through their interaction with the sigma receptor. Scopes et al., J. Med. Chem., 35, 490-501 (1992) describe certain 2-[(alkylamino)methyl]-piperidines. In particular, 1-[(3,4-dichlorophenyl)acetyl]-2[(alkylamino)methyl]piperidines are described as having activities as kappa opioid receptor agonists.
{ "pile_set_name": "USPTO Backgrounds" }
This is the first application filed for the present invention. The present application relates to an optical interferometer, and in particular to a bulk optical interferometer based on a Mach-Zehnder interferometer (MZI) for use as a wavelength channel interleaver/de-interleaver. Optical interleavers are becoming a popular tool in dense wavelength division multiplexed (DWDM) communications networks as an interface between components designed for signals with a first wavelength channel spacing and components designed for signals with a second wavelength channel spacing. In the past 200 GHz channel spacing was the norm, but as the demand for increased bandwidth grew, 100 GHz channel spacing became the standard. In the next generation of communications networks 50 GHz channels spacing and even 25 GHz channel spacing will become common place. However, conventional de-multiplexing filters, e.g. dichroic filters, do not have the capability to separate channels that are so closely spaced without complex and expensive modifications, and without resulting in significant channel crosstalk. Accordingly, optical interleavers are used to separate the closely spaced channels into two sets of channels, which are twice as far apart. This process can continue until the channels are far enough apart for conventional multiplexing to be effective. Interleavers have taken several different forms including: Birefringent Crystal Interleavers (BCI) such as the one disclosed in U.S. Pat. No. 6,301,046 issued Oct. 9, 2001 in the name of Kuochou Tai et al; Integrated Lattice Filter Interleavers such as the one disclosed in U.S. Pat. No. 5,596,661 issued Jan. 21, 1997 in the name of Charles Henry; and Michelson Gires-Tournois Interleavers (MGTI) such as the ones disclosed in U.S. Pat. No. 6,304,689 issued Oct. 16, 2001 in the name of Benjamin Dingel et al., U.S. Pat. No. 6,252,716 issued Jun. 26, 2001 in the name of Reza Paiam, and U.S. Pat. No. 6,169,828 issued Jan. 2, 2001 in the name of Simon Cao. A polarization based interleaver using a split-mirror ring resonator is disclosed in U.S. Pat. No. 6,243,200 issued Jun. 5, 2001 in the name of Gan Zhou et al. An object of the present invention is to overcome the shortcomings of the prior art and provide a simple bulk optical interleaver with very few parts that is easily manufactured at low cost and provides reliable and stable performance. Accordingly, the present invention relates to an optical interferometer device comprising: a first input port for launching an input optical beam; a first beam-splitter for separating the input optical beam into first and second sub-beams traveling along first and second paths, respectively; a first ring resonator positioned in the first path including at least two substantially fully reflective surfaces and a first partially reflective surface, the first partially reflective surface for passing a portion of the first sub-beam into the first ring resonator, while reflecting the remainder of the first sub-beam away therefrom, whereby light exiting the first ring resonator is combined with the remainder of the first sub-beam forming a first recombined sub-beam; a second ring resonator positioned in the second path including at least two substantially fully reflective surfaces and a second partially reflective surface, the second partially reflective surface for passing a portion of the second sub-beam into the second ring resonator, while reflecting the remainder of the second sub-beam away therefrom, whereby light exiting the second ring resonator is combined with the remainder of the second sub-beam forming a second recombined sub-beam; a second beam splitter for receiving the first and second recombined sub-beams resulting in the interference thereof and the production of a first output beam and a second output beam; a first output port for outputting the first output beam; and a second output port for outputting the second output beam. Another aspect of the present invention relates to a Mach-Zehnder interferometer comprising: a beam splitter for separating an input beam of light into a first sub-beam and a second sub-beam, and for directing the first and second sub-beams along first and second arms, respectively, of the interferometer; a first ring resonator in the first arm of the interferometer having a first resonator delay for effecting the phase response of the first sub-beam; a second ring resonator in the second arm of the interferometer having a second resonator delay for effecting the phase response of the second sub-beam; a beam combiner/splitter for interfering the first and second sub-beams resulting in first and second output beams.
{ "pile_set_name": "USPTO Backgrounds" }
The conventional third input means of a computer mouse generally provides page-up and page-down functions. The third input means generally comprises a grating wheel, a light source, and a photo-receiver arranged on a circuit board placed outside the grating wheel. The signal received by the photo-receiver will be influenced by the rotating grating wheel and then trigger an internal circuit controlling the mouse's page-up and page-down functions. However, in the above arrangement, the accuracy of the signal for page-down or page-up functions is sensitive to the relative positions of the grating wheel, light source and receiver. The third input means of the mouse will malfunction if those optical elements are not carefully set up. Moreover, those optical elements are soldered to the circuit board, thus causing manufacturing problems and higher costs. The present invention provides a reliable multifunction input module having a clamping stage, a clamping groove on the clamping stage to clamp a light source and photo-receiver, and a rack for pivotally arranging an optical chopper. By the inventive module, the chopper, light source, and photo-detector can be easily and firmly assembled to the circuit board with the help of the clamping stage and the clamping hooks formed on the clamping stage.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to novel hydroquinonylphenyl butyric acid amide derivatives and pharmaceutically acceptable salts thereof and pharmaceutical compositions having a cerebral insufficiency improving activity containing the same as an active ingredient. These compounds can be widely utilized because they are effective for ameliorating and curing various symptoms based on cerebral organic disorders and pathergasia. The term "cerebral organic disorders" used herein means various symptoms derived from cerebral ischemic diseases such as cerebral infarct sequela, cerebral hemorrhage sequela, and cerebral arteriosclerosis sequela and various organic disorders derived from senile dementia, dementia presenilis, amnesia, cephalic traumatic sequela, and cerebral operation sequela. Furthermore, the term pathergasia used herein means psychogender organic diseases derived from mania, melancholia, neurosis, Parkinson's disease, schizophrenia, schizophrenia-like disorders, and chorea (Huntington's chorea) as well as medicines and alcoholic beverages. 2. Description of the Related Art Cerebral cells retain their own intracellular environments which are completely different from the surrounding environments, i.e., extracellular fluids, and while this difference is maintained, the cerebral cells are alive. Accordingly, energy must be always generated and supplied to cerebral cells, and most of the energy required by cerebral nerve cells is supplied by oxygen and glucose. These energy sources are not substantially stored in the brain, however, and therefore, are always supplied from the blood. If certain cerebral disturbances or disorders occur, and if the supply of oxygen and glucose to the brain is stopped, generally a gradual or stepwise degression in energy metabolism occurs, and as a result, the functions of the cells are lost with the elapse of time and the cells are soon organically disrupted, and, thus the normal functions of the cerebral cells cannot be effected. Therefore, a mechanism for adjusting cerebral bloodstreams in the cerebral blood vessels, per se, has been fully developed to ensure a stable supply of these energy sources to the cerebral tissues and to maintain the outer environments of the cerebral nerve cells. Various cerebral circulating improvers, cerebral vasodilators, and cerebral excitometabolites have been heretofore used for the medical treatment of cerebral blood vessel disorders, but although these medicines are effective for ameliorating subjective symptoms, no substantial amelioration of neural symptoms and mental symptoms thereby has been observed. In this connection, Japanese Unexamined Patent Publication (Kokai) No. 61-44840 discloses various derivatives of benzoquinonyl alkanoic acids, which are described as effective as an antiasthmatic agent, an antiallergic agent or a cerebral circulating improver.
{ "pile_set_name": "USPTO Backgrounds" }
In the prior art weighted Filtered Back-Projection (WFBP) is currently typically used for reconstructing computed tomography image data (CT image data). The overwhelming majority of manufacturers of computed tomographs (CT) use this algorithm in various versions. These established algorithms are reliable and produce an acceptable image quality with low computing effort. A disadvantage is that the (weighted) filtered back-projection algorithms cannot be mathematically precisely resolved for multiline systems, resulting in “cone” artifacts, especially in the case of large approach angles, because of approximations used in the algorithms. It also proves to be disadvantageous that all beams are incorporated into the reconstructed image with the same weight; in other words, although individual x-ray beams have a significantly poorer signal-to-noise ratio when scanning an object under examination because of unequal attenuation of the x-rays in the object under examination, this is not taken into account in the reconstruction. In addition, filtered back-projections are inflexible as regards the geometric simulation of the scanning process. Thus the actual spatial expansion of the x-ray focus and of the detector elements plus the gantry rotation of the CT used to obtain the CT projection data result in blurred CT projection data. The known filtered back-projection algorithms do not enable this blurring to be corrected. Overall, filtered back-projections are now no longer adequate for certain applications as regards the spatial resolution achievable with them, the image noise and thus in the end the image quality. Statistical reconstruction methods are known as an alternative to the weighted, filtered back-projection methods. These iterative methods are able to reduce “cone” artifacts and/or take account of information from previously reconstructed CT image data. In addition, in these methods the variable statistical quality of the individual measurement beams can be taken account of using variable weighting; in other words, they take account of the actual distribution of the noise in the CT projection data. These statistical, iterative methods enable CT image data to be created with a higher contrast, a higher spatial resolution, a smaller number of artifacts and a better signal-to-noise ratio compared to the filtered back-projection method. However, a crucial disadvantage is the considerably higher computing effort (approximately a factor of 100) for these methods compared to filtered back-projection.
{ "pile_set_name": "USPTO Backgrounds" }
The goal of vegetable breeding is to combine various desirable traits in a single variety/hybrid. Such desirable traits may include any trait deemed beneficial by a grower and/or consumer, including greater yield, resistance to insects or disease, tolerance to environmental stress, and nutritional value. Breeding techniques take advantage of a plant's method of pollination. There are two general methods of pollination: a plant self-pollinates if pollen from one flower is transferred to the same or another flower of the same plant or plant variety. A plant cross-pollinates if pollen comes to it from a flower of a different plant variety. Plants that have been self-pollinated and selected for type over many generations become homozygous at almost all gene loci and produce a uniform population of true breeding progeny, a homozygous plant. A cross between two such homozygous plants of different genotypes produces a uniform population of hybrid plants that are heterozygous for many gene loci. Conversely, a cross of two plants each heterozygous at a number of loci produces a population of hybrid plants that differ genetically and are not uniform. The resulting non-uniformity makes performance unpredictable. The development of uniform varieties requires the development of homozygous inbred plants, the crossing of these inbred plants, and the evaluation of the crosses. Pedigree breeding and recurrent selection are examples of breeding methods that have been used to develop inbred plants from breeding populations. Those breeding methods combine the genetic backgrounds from two or more plants or various other broad-based sources into breeding pools from which new lines and hybrids derived therefrom are developed by selfing and selection of desired phenotypes. The new lines and hybrids are evaluated to determine which of those have commercial potential.
{ "pile_set_name": "USPTO Backgrounds" }
With the development of communication technology, high speed communication becomes more and more popular in modern communication. Long Term Evolution (LTE) is a technology for realizing high-speed packet-based communication that may achieve high data rates both in a downlink and in an uplink. Specifically, high speed communication is shown in the following aspects: Wider band: LTE allows for a system bandwidth from 1.4 MHz to 20 MHz, while LTE-Advanced allows for a system bandwidth up to 100 MHz by carrier aggregation (CA). Multiple antennas: In both LTE and LTE-A, Multiple-Input Multiple-Output (MIMO) is extensively applied to exploit high degrees of freedom in spatial domain, up to 8 layers in the downlink and 4 layers in the uplink. Modulation technique: The modulation technique or the transmission method used is known as OFDM, which makes frequency resources more efficient. In an OFDM system, high speed data communication may be occurred between multiple nodes. Usually, a node transmitting data may be called as a source node, and a node receiving data may be called as a destination node. An OFDM system in which data are transmitted from the source node to the destination node may comprise one or more base band units (BBUs) and one or more radio remote units (RRUs). In downlink data communication, a BBU may be considered as a source node, which usually performs base band signal processing and transmits base band signals to RRUs, and a RRU may be considered as a destination node, which usually converts the received data from base band to radio frequency and transmit the radio frequency data over one or more antennas to user terminals. In uplink data communication, a RRU may be considered as a source node and a BBU may be considered as a destination node. Thus, such BBU plus RRU architecture supports the connection between one baseband unit and one or more distributed RRUs. In a conventional BBU plus RRU architecture, time domain In-phase/Quadrature (I/Q) data are exchanged between a BBU and one or more RRUs, where all baseband processing are centralized in the BBU. It is same for both downlink and uplink. One of challenges for the conventional BBU plus RRU architecture is high and sometimes very high requirement on I/Q transmission rate and bandwidth demand on backhaul. In addition, latency introduced by backhaul could impact on air-interface performance. More specifically, the challenges mainly include the following aspects (here, 15 bits per I or Q signal and 30.72e6 bps sample rate is assumed): Wider band support typically requires higher transmission rate. For instance, in LTE with 20 MHz bandwidth, the rate of 0.92 Gbps (30.72e6*15*2) is required. When it comes to LTE-A with max 5 carries of up to 100 MHz, the rate is five times increased as 4.6 Gbps. More receive antennas significantly increase the transmission rate on backhaul. For instance, in case of MIMO application with 8 element antennas, up to 7.36 Gbps (8*0.92 Gbps) on backhaul is required. With 100 MHz LTE-A system, the rate is significantly increased to 23 Gbps. Latency becomes more serious when a backhaul network is getting complicated. For instance, when a BBU is connected with tens or hundreds of RRUs, point-to-point connections between the BBU and the RRUs are not cost efficient any more and a router-like device is deployed to make backhaul network economic. However, latency via router is sensitive and sometimes uncontrollable to incoming traffic from each RRU. Latency is typically getting large when traffic is in congestion status. Furthermore, different latency could result in synchronization problem on air-interface transmission/reception. In view of the foregoing problems, there is a need to provide an improved solution for transmitting and receiving data between a source node and a destination node.
{ "pile_set_name": "USPTO Backgrounds" }
Formoterol, (+/−)N-[2-hydroxy-5-[1-hydroxy-2 [[2-(p-methoxyphenyl)-2-propyl]amino]ethyl]phenyl]-formamide, is a highly potent long lasting bronchodilator when inhaled. Formoterol has two chiral centers in the molecule, each of which can exist in two possible configurations. Thus, formoterol has four stereoisomers: (R,R), (S,S), (R,S) and (S,R). The racemic mixture that is commercially available for administration is a dihydrate of the fumarate salt. The order of potency of the isomers is (R,R)>>(R,S)=(S,R)>(S,S), and the (R,R)-isomer is 1000-fold more potent than the (S,S)-isomer. Administration of the pure (R,R)-isomer also offers an improved therapeutic ratio. U.S. Pat. No. 6,268,533 and PCT application WO 00/21487 disclose that the L-(+)-tartrate salt of R,R-formoterol is unexpectedly superior to other salts of R,R-formoterol, being easy to handle, pharmaceutically innocuous and non-hygroscopic. Also, U.S. Pat. No. 6,268,533 and U.S. Pat. No. 6,472,563, which are hereby incorporated by reference herein in their entireties, disclose that the L-tartrate salt of R,R-formoterol exists in three polymorphic forms, polymorph (A), (B), and (C). Formoterol drug substances are known to be stable at ambient conditions for up to two years. However, when R,R-formoterol L-tartrate salt is mixed with lactose, degradation is known to occur (Maillards reaction) because of interactions between the amino groups within the R,R-formoterol L-tartrate salt molecule and the lactose moiety. Dry powder inhalation devices usually need to be packed in a substantially impermeable package to prevent atmospheric moisture ingress. The use of such impermeable packages may cause accumulation of certain trace substances within the sealed local environment to a level sufficient for them to interact with the pharmaceutical composition contained in the dry powder inhalation device. Such interaction, for example, may result in an adduct between the pharmaceutical composition and the trace substance, resulting in the formation of degradation products. For instance, a dry powder inhaler generally includes a number of plastic components molded from an acetal homopolymer, and the plastic components may contain trace formaldehyde formed as a breakdown product during the molding of acetal resins. It is believed that the trace formaldehyde released from the plastic components is capable of forming an adduct with various pharmaceutical compositions when packaged within a substantially impermeable container. Accordingly, what is needed is a stable pharmaceutical product comprising R,R-formoterol L-tartrate salt, and in particular crystalline R,R-formoterol L-tartrate salt, in a dry powder inhalation device, wherein the degradation of R,R-formoterol L-tartrate salt is reduced or eliminated. The citation of any reference herein should not be construed as an admission that such reference is available as “Prior Art” to the instant application.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to optical fiber cable, and in particular to constructions of such cables that are gas blocking. In view of their potential for use in a submarine environment cable constructions have been proposed that are held out to be water blocking so that should such a cable be cut when submerged the penetration of water shall be limited. One example of a patent specification directed to water-blocked optical fiber cable is given by United Kingdom Patent Specification No. 2099179A. Although there are some similarities between the factors necessary to achieve satisfactory gas blocking, there are also major differences which are attributable in part to the much lower viscosity of gases, to the smaller values of hydrostatic pressure typically to be resisted, and to the fact that in achieving a gas-blocking design due attention must be paid to the prevention of ballooning of the cable sheath. It is in consideration of this last mentioned factor that the present invention is particularly concerned with cable constructions employing relatively high tensile modulus sheath materials.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention related generally to integrated circuits, and more particularly to fuse-controlled programmable circuits used to replace primary circuit elements with redundant circuit elements in integrated circuits such as memory integrated circuits. Technological advances have permitted semiconductor integrated circuits to comprise significantly more circuit elements in a given silicon area. Reducing and eliminating defects in the circuit elements has, however, become increasingly more difficult with the increased number of circuit elements. To achieve higher population capacities, circuit designers strive to reduce the size of the individual circuit elements to maximize available die real estate. The reduced size makes these circuit elements increasingly susceptible to defects caused by material impurities during fabrication. Nevertheless, the defects are identifiable upon completion of the integrated circuit fabrication by testing procedures, either at the semiconductor chip level or after complete packaging. Scrapping or discarding defective integrated circuits when defects are identified is economically undesirable, particularly if only a small number of circuit elements are actually defective. Relying on zero defects in the fabrication of integrated circuits is an unrealistic option. Therefore, redundant circuit elements are provided on integrated circuits to reduce the number of scrapped integrated circuits. If a primary circuit element is determined to be defective, a redundant circuit element is substituted for the defective primary circuit element. Substantial reductions in scrap are achieved by using redundant circuit elements without substantially increasing the cost of the integrated circuit. One type of integrated circuit device which uses redundant circuit elements is integrated memory circuits, such as dynamic random access memories (DRAMs), static random access memories (SRAMs), video random access memories (VRAMs), and erasable programmable read only memories (EPROMs). Typical integrated memory circuits comprise millions of equivalent memory cells arranged in arrays of addressable rows and columns. The rows and columns of memory cells are the primary circuit elements of the integrated memory circuit. By providing redundant circuit elements, either as rows or columns, defective primary rows, columns, or individual bits can be replaced. Because the individual primary circuit elements (rows or columns) of an integrated memory circuit are separately addressable, replacing a defective circuit element typically entails blowing fuses or anti-fuses in fuse-controlled programmable circuits to xe2x80x9cprogramxe2x80x9d a redundant circuit element to respond to the address of the defective primary circuit element. This process is very effective for permanently replacing defective primary circuit elements. In the case of DRAMs, for example, a particular memory cell is selected by first providing a unique row address of the row in which the particular memory cell is located and subsequently providing unique column address of the column in which the particular memory cell is located. Redundancy circuitry must recognize the address of the effective primary circuit element and reroute all signals to the redundant circuit element when the address to the defective primary circuit element is presented by the user. Therefore, a number of fuses or anti-fuses are associated with each redundant circuit element. The possible combinations of blown and unblown fuses corresponding to each redundant circuit element represent unique addresses of all primary circuit elements for which a corresponding redundant circuit element may be substituted. During testing of the DRAM, or other integrated circuit, at the factory, any defective primary circuit elements are identified. A suitable redundant circuit element is selected, and the corresponding fuses or anti-fuses are blown in a predetermined order to represent the address of the defective primary circuit element to be replaced. When using the DRAM, each address provided to the DRAM must be compared to the corresponding fuses or anti-fuses to determine if a redundant match is present. Whenever the redundant match is detected, the primary circuit element is suppressed and the redundant circuit element is activated to perform the required function. As mentioned above, fuses or anti-fuses can be used in the fuse-controlled programmable circuits. In a DRAM, an anti-fuse is typically a nitrite capacitor which is essentially a normal memory array cell used as a blowable capacitor. Thus, no extra process steps are required in the fabrication of a DRAM to produce an anti-fuse. Unlike the fuse which is open after being blown, the anti-fuse is typically a one-time blowable or programmable element which remains shorted when the circuit is powered down and re-powered up. One problem with an anti-fuse controlled programmable circuit is that once the fuse has been blown (or shorted), current is drawn through the anti-fuse. As more programmable anti-fuse circuits are disposed in an integrated circuit, and programmed by blowing the anti-fuses, the cumulative current drawn through the anti-fuses can be significant and can possibly affect the operation of the integrated circuit. Conventional anti-fuse controlled programmable circuits use long-L p-channel transistors to pull up anti-fuses. The long-L p-channel transistor effectively decreases the amount of current drawn through a blown (shorted) anti-fuse to ground. Nevertheless, the resulting standby and operating current due to a resistor short between the power rail and ground when anti-fuses have been programmed is still somewhat significant. Moreover, the long-L p-channel transistor of existing anti-fuse structures occupies significant real estate in the integrated circuit. Thus, although the length of the pull-up xe2x80x9clong-Lxe2x80x9d p-channel transistor can be increased to decrease the current drawn between the power rail and ground, the increased length results in even more area being occupied by the long-L p-channel transistors of the anti-fuse controlled programmable circuits. Therefore, there is a need in the art for an anti-fuse controlled programmable circuit which substantially eliminates or significantly reduces the resulting standby current from blown or programmed anti-fuses. Moreover, there is a need for an improved anti-fuse controlled programmable circuit which occupies less area in the integrated circuit. The present invention provides a programmable circuit coupled to a first power supply and a second power supply for providing a programmed signal in an integrated circuit. The programmable circuit includes a first node. The state of the programmed signal is based on the state of the first node. A first anti-fuse has a programmed state and an unprogrammed state and decouples the first node to the first power supply when in the programmed state and couples the first node from the first power supply when in the unprogrammed state. A second anti-fuse has a programmed state and an unprogrammed state and couples the first node to the second power supply when in the programmed state and decouples the first node from the second power supply when in the unprogrammed state. In one embodiment of the programmable circuit according to the present invention, the first anti-fuse and the second anti-fuse each include a first terminal and a second terminal. The first terminals of the first and second anti-fuses are coupled to the first node. A first programming bus carries a sufficient voltage to short the first anti-fuse. A first switch is coupled to the second terminal of the first anti-fuse and couples the second terminal of the first anti-fuse to the first power supply during normal operation of the integrated circuit and couples the second terminal of the first anti-fuse to the first programming bus during a first programming operation of the integrated circuit for programming the first anti-fuse. A second programming bus carries a sufficient voltage to short the second anti-fuse. A second switch is coupled to the second terminal of the second anti-fuse and couples the second terminal of the second anti-fuse to the second power supply during normal operation of the integrated circuit and couples the second terminal of the second anti-fuse to the second programming bus during a second programing operation of the integrated circuit for programming the second anti-fuse. In one embodiment of the present invention the second power supply comprises a ground node and the programmable circuit includes a switch coupled between the ground node and the first node. The switch is responsive to at least one programming control signal received by the programmable circuit. The switch is closed to couple the first node to the ground node during a programming operation of the integrated circuit and open during normal operations of the integrated circuit. The switch preferably is implemented in a transistor. In one embodiment of the present invention the second power supply comprises a ground node and the programmable circuit includes a switch coupled between the ground node and the first node. The switch is responsive to an enable signal received by the programming circuit. The switch is closed to couple the first node to the ground node based on the enable signal being in a first state. The switch is open based on the enable signal being in a second state. The switch preferably is implemented in a transistor. In one application of the present invention the integrated circuit includes primary circuit elements, such as memory cells of a memory integrated circuit. The integrated circuit also includes at least one redundant circuit element. A selected one of the primary circuit elements is replaceable by the at least one redundant circuit element based on the state of the programmed signal. The programmable circuit according to the present invention includes two anti-fuses, with only one of the two anti-fuses being programmed, instead of a single anti-fuse to produce two states on the programmed signal. In the programmable circuit of the present invention, no resistive short exists between the power supply and ground after the programming the programmable circuit, because only one of the two anti-fuses is programmed which leaves the unprogrammed anti-fuse open. This substantially decreases or substantially eliminates current drawn through a blown or shorted anti-fuse to ground. This also eliminates the need for long-L p-channel transistors to pull up the anti-fuses, which provides a substantial area saving in the integrated circuit employing numerous programmable circuits according to the present invention.
{ "pile_set_name": "USPTO Backgrounds" }
A POS (Point Of Sales) terminal well-known as a commodity sales data processing apparatus is generally of a stationary type and is formed by mounting input/output devices, such as a keyboard, a display, a printer and the like, on a main body carrying a control unit. In recent years, a portable information terminal carrying a touch panel, namely a tablet-type information terminal, has been popularized. If a POS terminal is formed with such an information terminal, for example, the sales data of a commodity purchased by a customer can be registered while service for customers is offered at the sales floor. This is very convenient for both customer and shop clerk. However, it is not preferable to execute, except a registration function within functions of the POS terminal, an inspection function, a settlement function and a journal retrieval function with such a portable information terminal which can be used at any location on the sales floor in view of an information security because confidential information of a store is required at the time such functions are executed.
{ "pile_set_name": "USPTO Backgrounds" }
Practically every product that results from the efforts of generic design or specialized design, such as architectural, electrical and mechanical design, involves the rendering of design drawings. In the last twenty years, nearly all of such drawings have been rendered using a computer aided design (CAD) system with a CAD software program. Typical CAD systems take the form of high-speed workstations or desktop computers that use CAD design software and input devices. These CAD systems generate output in the form of a printed design drawing or an electronic file format that can provide input to a computer aided manufacturing system (CAM). Since the advent of computerized drawings, numerous computer aided design (CAD) programs have been developed. The translation of data files created by a first computer aided design (CAD) program into one or more data files readable by a second CAD program proves to be a difficult task. However, because of the relatively large number of diverse and competing CAD programs that are available, it is frequently the case that such translations need to be made. A number of underlying reasons exist for performing such translations, including execution of engineering projects that require the services of a main contractor using a first CAD program and a subcontractor using a second CAD program. A presently existing technique for translating drawings involves the use of an IGES or STEP file. IGES and STEP are ANSI and ISO standards for exchange of data between CAD systems. Numerous CAD systems are provided with the capability to import and export the IGES and/or STEP file formats for CAD geometry interchange. The IGES and STEP file formats result in a generally fair translation accuracy where the files are not relatively complex. However, for typically involved applications, the IGES or STEP file format does not provide a complete solution for translating files. In the currently existing approaches for performing file translation, at the end of the translation process, one would merely determine whether or not a feature was successfully created. None of the approaches determine whether or not each of the created features is geometrically accurate. Furthermore, attempts to rectify any discrepancies are conducted at the end of the entire translation process, thus adding complexity and delay to the translation process wherein discrepancies of a feature adversely affect creation of other interdependent features. Accordingly, there exists a present need for a system and method that enables efficient and more effective translation of CAD files between at least two unique CAD file types, such as from a first CAD file type into a second CAD file type.
{ "pile_set_name": "USPTO Backgrounds" }
The computers and methods disclosed herein relate to hypervisor-controlled virtualization and, more particularly, to computers and methods that employ a mechanism for eliminating a race condition between a hypervisor-performed emulation process requiring a translation operation using one or more different types of translation tables (e.g., page tables and, if applicable, segment tables), and a concurrent translation table entry invalidation. Virtualization refers to a state where multiple operating systems, including hypervisor and one or more guest operating systems, are concurrently executed by one or more processor(s) on the same computer, referred to herein as a host machine. A hypervisor is a host operating system that supports such virtualization. Specifically, the hypervisor controls execution of the guest operating system(s) by the processor(s) of the host machine in order to ensure that the guest operating system(s) can function without disruption. With such virtualization, there are many scenarios in which the hypervisor must emulate instructions for a given guest operating system. Such instructions can include, for example, instructions that require access to data stored in memory (referred to herein as storage access instructions). To emulate a storage access instruction, the hypervisor typically manually translates (in software) a virtual address associated with the instruction into a physical address. To do this, the hypervisor performs a page table walk (also referred to herein as a page table search), during which one or more page tables are searched using a virtual address associated with the storage access instruction as a search key in order to acquire an actual physical address. Those skilled in the art will recognize that, depending upon the type of memory management being used, the virtual address may be specified in the storage access instruction or, alternatively, an effective address may be specified. If an effective address is specified, the hypervisor must first manually translate (in software) the effective address into the virtual address by performing a segment table walk (also referred to herein as a segment table search), during which one or more segment tables are searched using the effective address associated with the storage access instruction as a search key in order to acquire the virtual address. In any case, once the virtual address is acquired, it can be translated into the actual physical address, as discussed above. For purposes of this disclosure, it should be understood that page tables and segment tables are different types of “translation tables”. Once the actual physical address is acquired, the hypervisor can access the physical address and complete the instruction, thereby completing the emulation process. However, from the time this emulation process begins until the time that it is completed (i.e., until the physical address is accessed and the instruction is completed), there is a possibility that a required translation table entry (e.g., a required page table entry or, if applicable, a required segment table entry) used for the translation could be invalidated by any one of the multiple operating systems such that the physical address acquired and used to complete the instruction is no longer accurate. The condition of having to complete an emulation process before an invalidation of a required translation table entry is referred to herein as a race condition and, because the inability to complete the emulation process before translation table entry invalidation occurs can disrupt guest operating system operations, there is a need in the art for a mechanism that eliminates such race conditions.
{ "pile_set_name": "USPTO Backgrounds" }
A programmable logic device is a semiconductor integrated circuit that allows a circuit to be reconfigured (or first configured) after it has been manufactured. A Field Programmable Gate Array (FPGA) is a representative example of a programmable logic device. The programmable logic device has multiple wirings and to rewrite the circuit, the wirings may be selectively connected or disconnected electrically to each other. Several methods exist to control or alter the various possible connections. One method of controlling the wiring connections utilizes transistors and memory. The memory is programmable electrically and the transistors are switched on or off based on programmed information stored in the memory. In general, SRAM is used as memory in these devices. Another method of controlling the wiring connections is to install an anti-fuse with two terminals between multiple wirings. An “anti-fuse” as used here is a device component that generally does not conduct electricity until some short-circuiting voltage level is exceeded, after which the component becomes conductive even at voltage levels below the short-circuiting voltage. An anti-fuse component may include an insulating film, such as amorphous silicon, inserted between two terminals. There is a high resistance between the terminals initially. Therefore, the terminals are, effectively, electrically disconnected. However, when a specified voltage is applied between the terminals, or a specified current flows between the terminals, the insulating film is broken (altered) and the terminals are short-circuited. Thus, the multiple wirings connected to the terminals electrically connect to each other. Since the change in the resistance in the anti-fuse is irreversible, the wiring once connected may not be returned to the disconnected state. Therefore, even in such unusual or harsh environments as under the strong influence of cosmic rays, or under high temperature, the circuit information fixed by anti-fuse will not be lost as might be the case when connections are based on information stored in an electronic memory, such as an SRAM. However, with a programmable logic device utilizing an anti-fuse, once the circuit information is fixed, it cannot be changed later. Thus, the utility of the programmable logic device is reduced. On the other hand, a programmable logic device utilizing transistors and memory allows users to rewrite the circuit by rewriting the memory multiple times. However, if information stored in the memory is lost due to an external cause, the programmable logic device may malfunction. Therefore, it is not appropriate to be used in an unusual or harsh environment.
{ "pile_set_name": "USPTO Backgrounds" }
Data warehouses typically contain two major types of data elements available for analysis: dimensions and measures. Each dimension is tied to a categorical attribute such as product, market, time, channel, scenario, customer, etc. Given a dimension, every item in a data set can be categorized according to its dimension. A dimension may be described as a categorical attribute or a categorical field. A measure represents a data field that is associated with particular dimension categories (i.e., dimension values) and that can be used for calculations such as summation and averaging. A measure may be described as a continuous target. For an example, the average amount of money customers spent in a given store can be calculated based on the amount of customer spending and the store dimension. Data analysts today have to deal with increasingly large volumes of data. Attempting to find insights in large amounts of data (e.g., terabytes, petabytes, etc.), with many possible combinations between categorical attributes, is a difficult task. A common business scenario is identifying the relationship and influence of dimensions generated by categorical fields or categorical attributes on a continuous target. The goal for the data analyst is to determine which of the dimensions are relevant to the measure and among those that are relevant, discerning the magnitude of their impact. Ultimately, the goal is to produce a series of aggregated tabular reports that illustrate measure-dimension relationships. The following is an example 2-dimensional table: X2X112. . .S1(1, 1)(1, 2). . .(1, S)2(2, 1)(2, 2). . .(2, S)... .........R(R, 1)(R, 2). . .(R, S) In the example 2-dimensional table, suppose dimension X1 has R categories (1, . . . , R) and dimension X2 has S categories (1, . . . , S). For a 2-dimensional table, the cells in the first column and the cells in the first row may be described as “dimension cells” for dimension X1 and dimension X2, respectively. A category may be described as a value or label of a dimension cell. On the other hand, the elements from these two dimensions (i.e., the remaining cells in the table) may be described as “table cells” and would contain statistics about the continuous target with two dimensions. That is, dimension cells may be said to correspond to categories of the matching categorical attribute, while table cells may be said to correspond to combinations of categories from categorical attributes matching different dimensions. It is from relationships between dimensions and measures that analysts derive insights into their businesses. The challenge is trying to navigate through what may possibly be thousands of reports, each representing a possible measure-dimension combination. Exploring data to detect important dimensions is difficult and tedious. Even with existing tools, data analysts need to be skilled in statistical analysis and data mining. The volume of data exacerbates the problem even for the experts. Organizations have invested heavily in data acquisition and storage technologies, and the organizations understand the value of data and believe in the business analytic proposition. However, there is a shortage of individuals capable of defining, executing, and extracting valuable information from a statistical analysis.
{ "pile_set_name": "USPTO Backgrounds" }
Full-text searching of data is becoming increasingly popular and significant in the computing world. For many years, the information-retrieval community has had to deal with the storage of documents and with the retrieval of documents based on one or more keywords. Since the burgeoning of the Internet and the feasibility of storing documents on-line, retrieval of documents based on keywords has become a complex problem. A search result may contain massive information. Typically, a filter may be utilized to filter the search result to obtain narrower information based on a set of rules. Typically, an application client that initiates a full-text search has to maintain the filter. That is, when the application client submits a full-text search query, the application client has to create and maintain a filter throughout the search session. Otherwise, the same filter has to be recreated in every search session. In addition, a filter is typically represented by a filter object referenced by a filter object handle, which an application programmer has to maintain and there is no human friendly reference.
{ "pile_set_name": "USPTO Backgrounds" }