text
stringlengths
2
806k
meta
dict
1. Field of the Invention The present invention relates to a lamp structure for light steel frame, and more particularly to a lamp structure for light steel frame having installation convenience and applicability. 2. Description of the Related Art Presently, illumination lamps applied to light steel frames of ceilings are adopted with fluorescent lamps. The specific structure can refer to Taiwan patent publication number M307089 “Lighting device assembled to ceiling suspension” and number 446091 “Ceiling lamp for ceiling suspension”. Few lamps adopt sphere lamps shown in Taiwan patent publication number 456495 “Globular lampshade cell ceilings system”. As shown in FIG. 1, a conventional ceiling type light steel frame lamp is that ceiling lamp housing is respectively disposed to a light steel frame of a ceiling in separate positions of fixed grids. The conventional ceiling type lamp housing 40 has an area as well as a grid of the light steel frame 30 and is installed onto the light steel frame 30 via a hidden manner to allow the lamp housing 40 to form a flat appearance together with the light steel frame 30. However, based upon the standard specification of the light steel frame, the size of the lamp must be designed to form a ceiling unit having 60×60 cm in either fluorescent lamps or sphere lamps. Consequently, it is difficult to satisfy the demand of different illumination brightness to flexibly regulate the number of light emitting elements, and it is difficult to match interior design as well. Moreover, a general indoor illumination source mainly adopts a normal incidence type lamp. For example, a fluorescent lamp tube is installed to the ceiling. Light emitted by the fluorescent lamp tube is utilized to downwardly illuminate. Since modern technology is continuously developing, the technique of an illumination system is also rapidly evolving. The energy saving issue gradually becomes an important topic, and each government will prohibit incandescent lamp in the near future to cause a new illumination option, especially for LEDs. The LED having advantages of high efficiency, energy saving and dimming adjustable has been gradually applied to road lamps, vehicle lamps and outdoor illumination and scenario illumination in the illumination market.
{ "pile_set_name": "USPTO Backgrounds" }
A query statement can be compiled into a query plan consisting of query operators. A query operator can be executed in many different ways, for example full table scans, index scans, nested loop joins, hash joins, and others. A query optimizer is a component of a database management system that attempts to determine the most efficient way to execute a query. The query optimizer determines the most efficient way to execute a SQL statement after considering many factors related to the objects referenced and the conditions specified in the query. The determination is a useful step in the processing of any query statement and can greatly affect execution time. The query optimizer compares the available query plans for a target input query and estimates which plan will be the most efficient in practice. One type of query optimizer operates on a cost basis and assigns an estimated cost to each possible query plan, for example selecting the plan with the smallest cost. Costs can be used to estimate the runtime cost of evaluating the query in terms of factors such as the number of I/O operations required, processor load requirements, and other factors which can be set forth in a data structure. The set of available query plans that are examined is formed by examining the possible combinations of different database operators (algorithm implementations), such as index scan and sequential scan, and join algorithms including sort-merge join, hash join, nested loops, and others. A search space can become very large according to complexity of the query. Performance of a database system during processing of a query depends on the ability of a query optimizer to select an appropriate plan for executing the query under an expected set of conditions (for example, cardinality estimates, resource availability assumptions), and the ability of an executor to process the query using the selected plan under actual runtime conditions. Some approaches to managing database system performance focus on the query optimizer's ability to select an appropriate plan. Even techniques that consider the disparity between expected and actual runtime conditions focus on assisting the query optimizer to pick the best plan with regard to such disparity.
{ "pile_set_name": "USPTO Backgrounds" }
Field of the Described Embodiments The described embodiments relate generally to gaming systems, such as gaming systems deployed in a casino enterprise. More particularly, apparatus and method for moving value on and off of an electronic gaming machine are described. Description of the Related Art An electronic gaming machine (EGM) that is configured to provide a wager-based game can be likened to a combination of an automatic teller machine and a home gaming console. The automatic teller machine aspect relates to the cash handling capabilities of the EGM which allow it to securely receive, store and dispense cash or an indicia of credit redeemable for cash. The home gaming console aspect relates to the game generation capabilities of the EGM, which allow it to generate and display games that are entertaining to a user of the EGM. To provide cash handling capabilities, a common configuration for an EGM, such as a video slot machine or mechanical slot machine, is to include a bill validator and a ticket printer. The bill validator is configured to accept and validate cash currency and ticket vouchers where the ticket vouchers are bearer instruments redeemable for cash or game play on an EGM. Accepted cash or ticket vouchers can be converted to credits that are used to make wagers on the EGM. The accepted tickets are stored within a cash box secured within a locked EGM cabinet. When a player wishes to leave and has credits remaining on the EGM, the credits are converted to a cash value and are output as a ticket voucher via the printer where the cash value is typically printed on the ticket. The printed ticket voucher can be used to add credits to another EGM or the printed ticket voucher can be redeemed for its cash value. Significant labor costs result from using a bill validator and a ticket printer on an EGM. The labor costs involve periodically removing a cash box including received tickets and cash from the EGM and replacing it with an empty one, counting the cash and tickets removed from the EGM and refilling the ticket stacks on the EGM. Other cash handling configurations also involve similar labor costs. For instance, EGMs can include coin acceptors and coin dispensers. The use of these devices requires periodically removing coins or adding coins to the EGM. Then, the coins retrieved from each EGM are counted on an EGM by EGM basis. For security purposes, a technician and one or more security providers are typically involved in operations where cash is removed from an EGM. The security providers make sure the cash is retrieved and transported without theft. Further, since removing cash requires the EGM cabinet to be opened, the security providers observe the operation to make sure that tampering doesn't occur with the EGM hardware. An individual might wish to tamper with an EGM to get it to award jackpots, receive cash or dispense cash in an unintended manner. The removed cash is transported to a secure area where additional individuals are involved in counting and recording the various sums of cash and/or ticket vouchers removed from each EGM. The cash amounts removed from each EGM are reconciled with other information sources, such as from hard meters on the EGM or records from a server that generates and validates ticket vouchers. The reconciliation process is important for ensuring the earnings from the EGM are properly taxed. Gaming enterprises operating electronic gaming machines are always looking for ways of reducing labor costs. In view of the above, new methods of cash handling are desired that reduce the labor costs associated with operating EGMs.
{ "pile_set_name": "USPTO Backgrounds" }
1. Technical Field of the Invention The present invention generally relates to the telecommunications field and, in particular, to a wireless communications system and method capable of supporting an incremental redundancy error .handling scheme using available gross rate channels. 2. Description of Related Art Wireless communication systems convey a digital data block by transmitting a modulated signal from a transmitter to a receiver over a transmission channel. Transmission channels often contain noise that tends to corrupt the transmitted signal, resulting in transmission errors and the loss of part of the transmitted data block. For instance, this noise could be interference from other transmitters. Furthermore, fading (e.g. log-normal fading, Rayleigh fading) can corrupt the transmitted channel. Corruption of the transmitted digital data block is problematic for wireless communication systems. To minimize the impact of noise on the transmitted digital data block, various coding.techniques often referred to as Link Adaptation (LA) and Type I/II/III hybrid ARQ (Automatic Repeat-Request) schemes that make use of Forward Error Correction (FEC) and Incremental Redundancy (IR) have been proposed. Brief descriptions of a known wireless communications system 100 and how these known coding techniques are incorporated therein are discussed below with respect to FIGS. 1-3. Referring to FIG. 1, there is illustrated a block diagram of a traditional wireless communications system 100. The traditional wireless communications system 100 includes a transmitter 120 for coding and transmitting a modulated signal, and a receiver 140 for receiving and decoding the received modulated signal. The transmitter 120 and receiver 140 include components, described below, which are selected, arranged and configured to communicate with one another over a fixed rate channel 150. The transmitter 120 includes an information source 122, a coding circuit 124, a puncturing circuit 126 and a modulating circuit 128. The information source 122 generates a digital data block formed by a stream of bits. The coding circuit 124 codes the digital data block to form a coded data block, and a puncturing circuit 126 punctures the coded data block to produce a punctured data block. More specifically, the digital data block is coded according to a selected.code rate to provide error protection for symbols of the digital data block. And, the coded data block is punctured according to a selected deleting pattern to produce a corresponding punctured data block having erasures. The modulating circuit 128 uses the punctured data block to produce a modulated signal which is transmitted over the fixed rate channel 150. The receiver 140 includes a demodulating circuit 142, a depuncturing circuit 144 and a decoding circuit 146. The demodulating circuit 142 demodulates the received modulated signal and outputs a demodulated signal. The demodulated signal corresponds to the punctured data block after it has been corrupted by the communication channel. The depuncturing circuit 144 uses the deleting pattern of the puncturing circuit 126 to depuncture the demodulated signal and output a depunctured data block. The decoding circuit 146 uses the code of the coding circuit 124 to decode the depunctured data block and output an estimated data block. Referring to FIG. 2, there is a block digram illustrating in greater detail the coding, puncturing and modulating of a digital data block in the traditional wireless communications system 100 according to the FEC coding technique. In the LA coding technique, Modulation and Coding Schemes (MCS) are selected based on link quality measurements. For example, the GPRS (General Packet Radio Service) standard uses GMSK (Gaussian Minimum Shift Keying) modulation and allows the use of four different Coding Schemes (CS) i.e. CS-1 through CS-4 with coding rates xc2xd, ⅔, xc2xe, and 1 respectively. An example of Logical Link Control (LLC) frame segmentation in GPRS is depicted in FIG. 2. A frame 202 is segmented into digital data blocks 204 (one shown) having a header H1 and a Frame Check Sequence (FCS). The digital data block 204 is coded with a convolutional code rate xc2xd (for example) to form a coded data block 206 and then punctured (if needed) to form a punctured data block 208. It should be noted that a single puncturing pattern (e.g., puncturing pattern P1) is used for a given coding scheme because there is one-to-one relation between the data block 204 and the resulting punctured data block 208. Thereafter, the punctured data block 208 is modulated and transmitted to the receiver 140 over the fixed rate channel 150. Referring to FIG. 3, there is a block diagram illustrating in greater detail the coding, puncturing and modulating of a digital data block in the traditional wireless communications system 100 according to the Type II hybrid ARQ coding techniques. Basically, the ARQ coding techniques are link level techniques that can provide low bit error rates by effectively retransmitting modulated signals to the receiver 140. In other words, the ARQ coding technique uses at least one fixed rate channel 150a, 150b. . . 150n to support the retransmission of a modulated signal. The ARQ coding techniques can be divided into fixed redundancy and variable redundancy error control schemes. The Type I hybrid ARQ coding technique is essentially a fixed redundancy error control scheme. And, the Type II hybrid ARQ coding technique is based on a variable redundancy control scheme. The LA coding technique of FIG. 1 can be viewed as using a set of Type I hybrid ARQ coding techniques. In the Type II hybrid ARQ coding technique shown in FIG. 3, data redundancy or retransmission of modulated signals which are not necessarily the same signals is continued until the receiver 140 successfully decodes a digital data block 304. As shown:, the digital data block 304 (shown on left) is coded using a predetermined code (e.g., systematic convolutional code) to form a mother code word 306 (shown on left). The mother code word 306 (shown on left) is punctured using a predetermined puncturing pattern P1 to form a subblock 308a. The subblock 308a is then modulated and transmitted to the receiver 140 over a first fixed rate channel 150a. If the receiver 140 is able to successfully decode the digital data block 304 then an acknowledgment signal 360 is sent to the transmitter 120 and the next digital data block (not shown) is transmitted to the receiver 140. In the event the receiver 140 is not able to successfully decode the digital data block 304, then a retransmission request, signal 362 is sent to the transmitter 120. Upon receiving the retransmission request signal 362, the transmitter 120 operates again to code the digital data block 304 (shown in middle) using the predetermined code to form the mother code word 306 (shown in middle). The mother code word 306 (shown in middle) is punctured using another predetermined puncturing pattern P2 to form a subblock 308b. The subblock 308b which may not have the same bits as subblock 308a is modulated.and transmitted to the receiver 140 over a second fixed rate channel 150b. If the receiver 140 is now able to successfully decode the digital data block 304 also using information from previously received subblocks in joint decoding then an acknowledgment signal 360 is sent to the transmitter 120 and the next digital data block (not shown) is transmitted to the receiver 140. In the event the receiver 140 is still not able, to successfully decode the digital data block 304, then another retransmission request signal 362 is sent to the transmitter 120. Upon receiving the retransmission request signal 362, the transmitter 120 yet again operates to code the digital data block 304 (shown on right) using the predetermined code to form the mother code word 306 (shown on right). The mother code word 306 (shown on right) is punctured using another predetermined puncturing pattern Pn to form a subblock 308n. It should be understood that the number xe2x80x9cnxe2x80x9d of subblocks is arbitrary, i.e., that the subblock 308n does not necessarily come after subblock 308b. The subblock 308n is modulated and transmitted to the receiver 140 over another fixed rate channel 150n. If the receiver 140 is still not able to successfully decode the digital data block 304 then this process of coding, puncturing, modulating and transmitting the digital data block 304 is repeated until the receiver 140 successfully decodes the digital data block 304 and forwards the acknowledgment signal 360 to the transmitter 120. A description about the Type II hybrid ARQ coding technique can be found in: (1) S. Lin, D. J. Costello, xe2x80x9cAutomatic Repeat-Request Error Control Schemesxe2x80x9d; IEEE Commun. Mag., vol. 12, pp. 5-17, December 1984; and (2) J. Hagenauer, xe2x80x9cRate-Compatible Punctured Convolutional Codes (RCPC Codes) and their Applicationsxe2x80x9d, IEEE Trans. Comm., vol. 36, no. 4, April 1988. Both of these articles are hereby incorporated into the present application. The Type III Hybrid ARQ coding technique is a special form of the Type II Hybrid PRQ coding technique, where all the subblocks have certain properties. A description about the Type III hybrid ARQ coding technique can be found in S. Kallel, xe2x80x9cComplementary Punctured Convoluntional (CPC) Codes and Their Applicationxe2x80x9d, IEEE transactions on-communications, vol. 43, no. 6, June 1995. However, it should be understood that both Type II and Type III Hybrid ARQ coding techniques can be designed so that decoding of single sub-blocks themselves is possible. Both the Type II Hybrid ARQ and Type III Hybrid ARQ coding techniques are referred to as Incremental Redundancy (IR) hereinafter. Unfortunately, the traditional wireless communications system 100 that use fixed rate channels 150a, 150b . . . 150n have several disadvantages. For instance, some of the disadvantages are as follows: 1. No good solution using incremental redundancy over available gross rate channels exists. Since the subblocks 308a, 308b . . . 308n are of equal or fixed sizes, they are not suitable for transmission over available gross rate channels. One problematic solution is to have very small subblocks, and hence one would be able to fit different numbers of these subblocks oh the available gross rate channel. However, this causes much overhead, since each subblock normally contains a header. 2. No flexible way of designing and utilizing incremental redundancy code words exists. Current methods require one puncturing pattern for each subblock. If many different subblocks (e.g., of different lengths) are needed to cope with available gross rate channels, then as many puncturing patterns are needed. This causes high complexity. Additionally, the signaling of which puncturing pattern that has been used gives a large overhead. 3. No flexible way of signaling which puncturing pattern P1, P2 . . . Pn is used exists. Normally a number of predetermined puncturing schemes, i.e. bitmaps containing one""s and zero""s are applied, and which puncturing scheme is used is signaled to the receiver 120 in the subblock header. Accordingly, there is a need for a wireless communications system and method that addresses the aforementioned problems of the traditional wireless communications system by supporting incremental redundancy error handling schemes using available gross rate channels. This need and other needs are satisfied by the wireless communications system, transmitter, receiver and method of the present invention. The present invention is a wireless communications system, transmitter, receiver and method that addresses the deficiencies of the prior art by supporting incremental redundancy error handling schemes using available gross rate channels. More specifically, the transmitter includes a coding circuit for coding a digital data block and generating a mother code word, and a reordering circuit for reordering the mother code word and generating a reordered mother code word. The transmitter also includes a subsequence selection circuit for selecting at least one subsequence from the reordered mother code word, and a modulating circuit for modulating and forwarding at least one subsequence to the receiver. Each subsequence has desired number of bits, taken from the reordered mother code word, to fill the available bandwidth of at least one available gross bitrate channel. The transmitter continues to forward and modulate subsequences of the reordered mother code word until the receiver successfully decodes the digital data block.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to a method for the preservation of biological material and more particularly to a method for preserving viable biological material, typically cells, tissues or organs, at cryogenic temperatures for long periods of time, and in such a condition that a useful level of biological function is retained by said material and said biological function is capable of being re-established upon reintroduction into a host organism. Many consider that the modern science of preservation of viable biological material with extreme cold ("cryobiology") began in 1950 with the discovery that human and bovine sperm, if properly treated, could withstand freezing to -80 deg. Celsius (approximately 193 deg. Kelvin). At these low temperatures, chemical activity within the biological material virtually ceases. Thus, normal process of metabolism, aging and death do not proceed, allowing the material to remain unchanged in the frozen state. This discovery had an immediate impact on agriculture in that it allowed the widespread use of artificial insemination with the semen of prize bulls. The procedures developed for sperm quickly led to the preservation by freezing of components of human blood (e.g. erythrocytes). Modern procedures make increasing use of frozen human blood cells. During the 1960's, surgical procedures were developed for the successful transplantation of human kidneys and hearts. Transplants of human lungs, liver, and other organs have been developed in the intervening years, and new procedures are under investigation at many hospitals and universities. However, two major problems must be dealt with in organ transplantation; immunological rejection of the transplant by the recipient and the availability of a suitable donor organ. The problems are related in that an integral part of the problem of organ procurement is tissue typing to minimize the problems of immunological rejection by the host. Immunological considerations are implicit in the definition of what is or is not a "suitable" donor organ. Long-term storage of viable organs (i.e. for periods of months to years) will have a major impact on both problems. If long-term preservation of viable organs were technically feasible, organs could be procured when available and used when needed. Present technology requires that an organ transplant be done within about 4-48 hours from the time the organ is removed from the donor. This severe time pressure creates several problems. Clearly, many patients who could have life-prolonging transplants are not able to locate a donor until the disease has so debilitated the patient that a transplant would no longer help. Also, the severe time constraints require that the donor and the recipient not be too widely separated geographically as the organ cannot stand much time in transit. This also severely limits the number of possible donors. Finally, the physicians' good-faith efforts to procure a viable organ in time to help a patient places severe psychological burdens on the donor's family at a time already very stressful for them. Thus, if a technical means were available to preserve tissues and organs for long periods of time, suitable organs of a suitable type could be made available to the patient when needed. The creation of "tissue banks" or "organ banks" is recognized as a major problem in modern medicine, and is the area to which the present invention is directed. We note that the present invention is primarily directed at the cryopreservation of tissues and organs. Blood can be stored for up to about three years in the frozen state and frozen human embryos have also been successfully introduced into a host mother. However, these techniques work well enough to be medically useful chiefly because the preserved material consists of separated single cells (in the case of blood) or an aggregate of a very small number of cells (typically 4 in the case of a frozen embryo). Thus, perfusion of cryoprotectant material (as discussed below) is much more easily accomplished and the removal of cryoprotectants is also much easier. Even here, however, there is a high mortality rate for the frozen biological material. Blood banks much prefer to store chilled, unfrozen blood for use within about three weeks. Frozen embryos likewise have a high mortality rate and typically several must be fertilized and frozen to insure a viable embryo will be available upon thawing. Thus, the present invention can advance the art of storage of single cells, and aggregates of small numbers of cells, by reducing the high mortality rate of the individual cells stored by freezing. It has been firmly established that cells, tissues and organs can remain viable for months or years at cryogenic temperatures (i.e. temperatures below about 173 deg. Kelvin). "Low-temperature storage is no problem. Contrary to the usual impression, the challenge to cells during freezing is not their ability to endure the very low temperatures required for storage: it is the lethality of an intermediate zone of temperature (.about.-15 to -50 deg. Celsius) that a cell must traverse twice--once during cooling and once during warming." (quoted from Peter Mazur, "Fundamental Cryobiology and the Preservation of Organs by Freezing", P. 144 from Organ Preservation for Transplantation, ed. by A. M. Karow, Jr. and D. E. Pegg, 2nd Ed., 1981). Thus, long-term storage of cells, tissues and organs at cryogenic temperatures appears to be possible if the low temperatures can be obtained without incurring fatal damage to the biological material. The are apparently two primary causes of fatal damage to cells during cooling. When cells are cooled fairly rapidly, crystals of ice tend to form within the cells. Water has the unfortunate property that, upon freezing, its volume increases by about 10%. Thus, the formation of ice within a cell causes substantial expansion of the cell membrane (and, frequently, expansion of intracellular organelles as well). Rupture often occurs and the cell loses its viability. It has become common knowledge in cryobiology that the formation of intracellular ice is almost always fatal to the cell. The second primary cause of cell death on freezing is the loss of water from the interior of the cell by osmosis. If freezing is carried out slowly, ice will tend to form outside the cell rather than inside. With further cooling, water from the interior of the cell will pass by osmosis through the cell membrane to add to the growing extracellular ice crystals. In leaving the cell, large and often fatal concentrations of solutes remain behind in the interior of the cell. (Contraction by loss of water apparently does not affect the cell as much as expansion by freezing.) Thus, rapid cooling is usually fatal to the cell due to intracellular ice formation; slow cooling is usually fatal due to high concentrations of solute inside the cell. The above discussion has described the salient features of the freezing of cells. The problems are analogous for freezing of tissues and organs, but complicated by several factors. Tissues usually have different types of cells with different membrane permeabilities, water content, ability to withstand expansion or contraction, etc. Heat and fluids may not rapidly transfer from one part of the tissue to another. Cells on the surface of the tissue or organ may be subjected to particularly severe conditions. It appears with the present state of knowledge that the basic biophysics of cell freezing determines to a large extent the lethality mechanisms encountered in the freezing of tissues or organs. Tissues and organs present additional serious technical complications, caused by the different properties of the different cells present, as well as heat and mass transfer problems within the tissue. But the major causes of cell death are apparently largely the same in cells, tissues and organs. The present invention addresses the problems in the basic biophysics of cell preservation by freezing. As pointed out below, the present invention is such that the additional complications introduced in preserving tissues, organs or, perhaps whole organisms, are minimized by the present invention. The tremendous medical importance of tissue and organ preservation has generated tremendous research. Here we can only summarize a few salient features of the research most relevant to the background of the present invention. The fact that organ banks do not exist, and patients still die due to lack of donor organs, is strong evidence that the problem has not been solved and key components of the solution have yet to be discovered. The objective of preservation of biological material in a viable state is to cause biological and chemical activity to cease without causing irreversible damage of fatal extent to the material in the process. Cooling the material to cryogenic temperatures would work if lethal cellular damage could be avoided during cooling, warming and during the storage of the material at low temperature. As noted above, the direct approach of simply cooling the material is not successful in preserving the viability of the samples, most likely due to the formation of intracellular or extracellular ice. Thus, prior work in the area has focused on attempting to avoid the formation of ice, or more likely, delay the onset of ice formation to as low a temperature as possible. To this end, a variety of materials known generically as "cryoprotectants" have been used. The cryoprotectants are typically glycerol, dimethylsulfoxide, ethylene glycol, propylene glycol, trimethylamine acetate, or other high molecular weight solutes capable of strongly hydrogen-bonding to water. The function of the cryoprotectant is to bond to cellular water to suppress the freezing point of the resultant solution as much as possible. Thus, the freezing point of water in the cellular system is effectively depressed, and lower temperatures can be achieved without causing cellular damage. The use of cryoprotectants has several undesirable side effects. The higher the concentration of cryoprotectant, the more the freezing point is depressed. However, the higher the concentration of cryoprotectant, the more damage done to the cell by the cryoprotectant itself, and the harder it is to remove from multi-cellular materials such as tissues or organs. Thus, cryoprotectants are only effective in preserving single cells (such as sperm or blood) or biological material containing a very few cells (such as embryos). Even in these cases, concentrations of cryoprotectant that can be tolerated by the cells are not adequate to depress freezing as much as one would like. A large number of the cells preserved by freezing do not survive. (Unlike the case with tissues and organs, enough blood cells or embryos do survive to make freezing a medically useful procedure. But there is clear room for improvement.) Large multi-cellular materials like tissues or organs have not been preserved for more than a few hours even with cryoprotectants. Research into better cryoprotectants and better ways to perfuse it through tissue or organs, and remove it therefrom, is a subject of active investigation at many institutions around the world. A few investigators have examined the use of high pressures, usually in conjunction with cryoprotectant perfusion, in an attempt to achieve lower temperatures or lower the required concentration of cryoprotectants. H. O. McMahon (U.S. Pat. No. 2,662,520), P. E. Segall (U.S. Pat. No. 3,677 024), and G. M. Fahy and A. Hirsch (published in "Prospects for Organ Preservation by Vitrification", P. 399-404 of Organ Preservation: Basic and Applied Aspects, ed. D. E. Pegg, I. A. Jacobsen and N. A. Halasz, 1982) have considered the use of high pressure and cryoprotectants. The methods proposed by these investigators have not achieved wide use for reasons we believe are circumvented by the present invention. Fahy and Hirsch demonstrate a 5% reduction in the amount of cryoprotectant needed to achieve a vitrification (presumably without the formation of ice crystals) by the application of 1000 atmospheres (atm) pressure. They speculate, but do not demonstrate that a 15% reduction could be achieved with application of 2000 atm pressure. Unfortunately, the cryoprotectant levels remaining in their experiments seriously affect the viability of the organs studied. Also, their work does not deal with the formidable problems of perfusing the cryoprotectant into and out of the organ in whatever concentration may be needed (at least 85% to 95% of levels used without high pressure). They also realize that a 5% reduction may appear to be very little for the application of such high pressure, but attempt to rationalize this by arguments that even a small reduction in cryoprotectant concentration can be crucial in determining toxicity (it most probably is for specialized cases). The net effect of these studies is that only a small reduction in cryoprotectant is achieved. Unanswered in their studies, but the subject of the present invention, is the conditions under which high pressure can radically reduce the necessary concentration of cryoprotectant, even to zero. Segall's 1972 patent and McMahon's 1953 patent likewise attempt to use high pressures to avoid cellular damage on freezing. However, despite the fact that their concepts have been public knowledge for over 13 years and 32 years respectively, viable organ preservation is not a reality. In fact, their work receives virtually no mention by the more recent researchers in the field. We believe the reasons for this are clear. A key factor in the invention disclosed by Segall is the stated necessity to purge the pressure chamber with inert gas, such as helium, and maintain the material in the presence of helium during pressurization. (Apparently, the invention of Segall requires helium to achieve uniform and relatively rapid heat transfer.) The results of our studies indicate that this is quite fatal to the preservation of viable biological material: the gas apparently infusing the cells under pressure, causing the cells to explode (rather like popcorn) upon return to normal pressures. The invention disclosed herein, contrary to the teaching of the prior art, specifically requires the exclusion of as much gas as possible. The work by McMahon correctly points out that above about 2000 atm pressure, liquid water will not freeze to normal ice (so-called ice I) but, rather, will freeze to another phase of ice (ice III in modern terminology). It is also pointed out by McMahon that upon freezing to ice III, liquid water does not expand, as would be the case upon freezing to form ice I. Thus, one may hope that freezing under pressures sufficiently high to prevent the formation of ice I will not lead to significant cellular damage. The properties of water upon which this is based have been well known in the field for at least 50 years. However, the invention disclosed by McMahon requires that the biological material, once frozen under high pressure, be stored under equally high pressure for as long as may be required. This is apparently the major reason that McMahon's concepts have not found medical application, despite 32 years of public disclosure and 15 years in the public domain. The present invention, as disclosed herein, extends the concepts of McMahon in a way that permits the storage of the viable biological material at cryogenic temperatures (e.g. liquid nitrogen temperature) but at atmospheric pressure. Thus, the present invention requires only low temperature for the storage of organs, easily maintained by an organ bank. Unlike McMahon, the present invention requires high pressures only for organ bank "deposits" and "withdrawals", not a pressure vessel for every organ, maintained under high pressure for perhaps years. "Recent work by Fahy (U.S. Pat. No. 4,559,298) combines the use of moderate pressures (not higher than 2000 atm) with perfusion of the sample by relatively high concentrations of cryoprotectants. The resulting material is subject to "vitrification" to a glassy state rather than freezing. The present invention, in contrast to the invention of Fahy, uses pressures much in excess of 2000 atm and markedly lower concentrations of cryoprotectants (even zero)." Pressure propogates through matter at the speed of elastic deformation of the material (i.e. at the speed of sound in the material). Therefore, pressure changes are communicated to every part of the material very rapidly, and virtually instantaneously compared with changes in temperature. The present invention uses pressures to minimize cellular damage caused by freezing. Thus, the very difficult task of maintaining precise cooling rates throughout a large organ or tissue is avoided.
{ "pile_set_name": "USPTO Backgrounds" }
In order to make an electrical connection with a circuit board externally, a substrate connector is provided on the circuit board. The substrate connector has a configuration and structure that can connect a flat connecting member. The flat connecting member is an electrical connecting member having a flat shape such as a flexible printed circuit board (FPC), flexible flat cable, and the like, which may be simply called a flat cable. A connector is also provided on a terminal of such a flat connecting member. JP2010-009915A discloses a conventional connector for a flat connecting member. The conventional connector includes a terminal of the flat connecting member, a slider assembled to the terminal, and a cover which also is assembled to the terminal. In the conventional connector, the terminal is first mounted and fixed on a predetermined position of the slider, and thereafter, the cover is fitted onto the slider so that the mounted and fixed part is covered, thus completing the assembly. That is, the assembly is completed in two steps.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a power supply apparatus and an image forming apparatus in which the operation of a control circuit is started and stopped in accordance with an input AC voltage. 2. Description of the Related Art Power supply apparatuses that employ switching elements are widely prevalent due to having a high conversion efficiency. Japanese Patent Laid-Open No. 2007-006614 proposes a current resonance power supply in which the voltage between both ends of one switching element is detected, and another switching element is switched on when the detected voltage has risen to a predetermined voltage or higher, thus preventing a short circuit caused by resonance deviation when an electrical overload occurs. According to Japanese Patent Laid-Open No. 2007-006614, a voltage detection circuit detects the voltage at both ends of one switching element and outputs the detected voltage to a control circuit. Generally, only a low-level voltage can be applied to the input terminal of a control circuit, therefore the voltage detection circuit needs a voltage-dividing circuit for dividing a relatively high voltage such as a commercial voltage. Since this voltage-dividing circuit consumes power even when the power supply apparatus shifts to an energy-saving operation mode (a low load mode), power consumption tends to rise. Incidentally, a control IC controls the operation of the switching elements included in a power supply apparatus, and the control IC includes an enable terminal. The control IC starts operating when a voltage Vsns applied to the enable terminal rises to an operation start voltage Vstart or higher. However, there are cases where a decrease occurs in an input AC voltage Vin that is supplied from a commercial power supply to the power supply apparatus after the control IC has started operating. If the input AC voltage Vin falls to an operation stop voltage Vstop or lower, the current flowing to the primary side becomes excessive in an attempt to maintain the voltage on the secondary side. When the current on the primary side becomes excessive, elements become damaged and the conversion efficiency decreases. In view of this, the control IC is designed so as to stop operating when the input AC voltage Vin falls to the operation stop voltage Vstop or lower. FIG. 6A shows the relationship between the voltage Vsns at the enable terminal of the control IC and the input AC voltage Vin in an ideal state. In this example, the control IC starts operating when the input AC voltage Vin rises to 80 V or higher, and the control IC stops operating when the input AC voltage Vin falls to 60 V or lower. The control IC starts operating when the voltage Vsns at the enable terminal rises to the operation start voltage Vstart or higher, which is proportional to the input AC voltage Vin of 80 V, and the control IC stops operating when the voltage Vsns falls to the operation stop voltage Vstop or lower, which is proportional to the input AC voltage Vin of 60 V. In this way, the operation start voltage Vstart needs to correspond to 80 V, and the operation stop voltage Vstop needs to correspond to 60 V. However, the operation start voltage Vstart and the operation stop voltage Vstop vary under various circumstances. FIG. 6B shows the case where the operation start voltage Vstart has become too high. In this example, the operation start voltage Vstart has risen to a voltage that corresponds to the input AC voltage Vin of 100 V, and therefore the control IC cannot start even if the input AC voltage Vin has risen to 80 V or higher. FIG. 6C shows the case where the operation stop voltage Vstop has become too low. In this example, the operation stop voltage Vstop has decreased to a voltage that corresponds to the input AC voltage Vin of 45 V, and therefore the control IC fails to stop even if the input AC voltage Vin has fallen to 60 V or lower.
{ "pile_set_name": "USPTO Backgrounds" }
When designing a visual slide projector show, which may or may not include audio effects as well, it is the practice to use multiple slide projectors, and it is the practice to fade one image on another to produce pleasing aesthetic visual effects. It is also the practice to provide for portions of one slide to be projected on the screen simultaneously with portions of another slide. Three, or up to thirty or more, image portions from different slides may be projected either simultaneously or sequentially. In these cases, it is also the practice to fade the portions of the different images in sequence so as again to provide a pleasing effect on the screen. In order to avoid unsightly gaps or spaces, image portions from separate slides are projected simultaneously, with adjacent images overlapping. It is the practice to provide a "mask", masking out a portion of one of the images, so that a portion of the other image may be projected into the masked out portion. Similarly, the other slide will have image portions which are not masked out, so that only that portion is projected which will fit the masked out portion in the first image. Essentially what is done is to create a "hole" in one image, and to create a portion of the other image which will fit the "hole", and overlap at the adjoining edges. Where there are two portions of two different images overlapping on the same area of the screen at the same time the screen will be confused and may be excessively bright. This is undesirable and produces a sloppy result. If it is attempted to reduce the marginal overlap to a minimum, it is difficult to align all of the projectors in the array of projectors required for a multiple image show so that the masks of different slides register precisely. In order to overcome the problem, it has become common to use masks with blurred edges or what are known in the trade as "soft-edge masks". These masks have an image or shape in which the main portion of the mask area is either totally black, or totally transparent, and in which marginal areas represent a transition from black to transparent. The margins of the two masks overlap each other on the screen and reduce the illumination in the overlapped portion so as to equalize it with the illumination in the separate images. Such masks enable the producer of the slides to produce a multiple slide show in which the problem of registering the masked areas is less acute than when using hard edge masks. However, such soft edge masks in the past have been manufactured by a somewhat rough and ready haphazard method, which resulted in an undesirable loss of sharpness or resolution of the shape of the mask. The process for such manufacture involved simply placing in front of a hard edge mask a panel of light diffuser material, such as translucent milky white acrylic plastic, or a panel of opalescent glass. The sharpness of the mask image is then blurred or diffused around the edges, and when photographed, produces a mask shape which is less well defined, and has a border area which gradually changes from black to transparent. The use of a light diffuser panel results in a severe loss of resolution of the shape of the mask. When tested for resolution, it is found that these marginal portions have a resolution of less than 5 line pairs per millimeter. This is not a serious problem if the mask is a simple circle or oval. However, where the mask shape has angular corners, then the diffuser panel produces a severe distortion, such that the angular corners become rounded. This produces an unsightly result, when the two masks are projected on the screen in the manner described above. In addition, the use of a diffuser panel, in the manufacturing process caused some random scattering of light in the portion of the mask which was intended to be totally opaque. As a result soft edge masks produced by this method were lacking in contrast. Other soft-edge masks have been made by simply photographing a "target" or object, with the camera lens out of focus. This however also produces loss of resolution and is unsatisfactory. Another disadvantage of this type of soft edge mask is the fact that the transition from black to transparent, across the marginal area of such masks was not produced in a regular progressive fashion, since it was dependent simply on the scattering effect of the light diffuser panel. As a result, even if the two masks were registered more or less perfectly, the transitional area might exhibit some irregularities, with some patches being darker and others lighter. In practice, however, perfect matching or registering of the two masks is virtually impossible, and some variation in the illumination of the overlapped area on the screen is noticeable, when using this type of mask. Under ideal conditions, the transitional or marginal area of the mask, if examined from the totally black edge to the transparent edge, would exhibit a point more or less midway between the two edges which was capable of transmitting fifty percent of the light from that projector in which the mask was placed. In theory, this fifty percent point should be equidistant from the totally black edge, all the way around the shape of the mask. Assuming the two masks are perfectly registered, then this fifty percent point will coincide precisely on the screen, so that each of the two masks is transmitting fifty percent of the light from its projector at that point. The screen will thus receive fifty percent of the total projector illumination from the two projectors at that point. If this could be achieved, then the marginal area between the two images on the screen would be perfectly progressive from one image to the other and would be evenly illuminated. As noted above, however, since perfect registration is virtually impossible, there is almost always a certain degree of variation in the illumination of the overlapped area, which is difficult, if not impossible, to avoid, using current practice. It is clearly desirable to provide a soft image mask which overcomes these various problems. In particular, such a soft image mask should avoid the loss of definition or resolution of the shape of the mask which is inherent in the use of a light diffuser panel. Furthermore, would be desirable if the soft edge area of the mask could be produced in a precise and controlled manner, so that a controlled and predictable density would be produced from one edge to the other of the soft edge. Furthermore, it is desirable that the soft edge be produced in such a way that the fifty percent point is essentially stretched or widened so that in spite of misregistration of the two masks, the appearance on the screen will nonetheless be virtually indistinguishable from a perfectly registered pair of masks.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to an eddy current testing apparatus, an eddy current testing probe, and an eddy current testing method, which are suitable to inspect a defect on an inner wall surface of a groove-shaped portion (slot) having a large depth and the same cross-sectional shape in a depth direction. 2. Description of the Related Art There is an eddy current testing method as a method for detecting a surface defect of an object to be inspected. In the eddy current testing method, an alternating magnetic field that is generated by a coil current is applied to the conductive object to be inspected, and disturbance of an eddy current that is induced in the object at that time is detected by a change in coil impedance, thereby evaluating whether or not a defect is present in the object to be inspected. In recent years, eddy current testing is frequently used as a method for detecting a defect on or in an inner wall surface of a groove-shaped portion such as a blade fitting portion (also called dovetail) of a turbine disk or a slot of a rotating unit such as a generator. For example, Japanese Patent No. 4130539 discloses an example of an eddy current testing probe configured by embedding a coil in a member that conforms to a cross-sectional shape of a groove-shaped portion such as a dovetail, while the cross-sectional shape of the groove-shaped member does not change in its depth direction (length direction) or the groove-shaped member has the same cross-sectional shape in its depth direction. In addition, Japanese Patent No. 4464096 discloses an example of an eddy current testing probe configured by forming a coil-shaped wiring on a flexible printed board. The flexible printed board can be placed in contact with an inner wall surface of a groove-shaped member while conforming to a cross-sectional shape of the groove-shaped member.
{ "pile_set_name": "USPTO Backgrounds" }
Joint replacement is one of the most commonly performed orthopaedic operations. A total joint replacement has an average life span of about 15 years. The reason for implant failure may be due to one or more of several factors, but often is caused by wear particles from the bearing surface of the implant. Wear particles from implants have been linked to inflammation which lead to bone loss and, eventually, implant loosening, Sargeant et al, “Hip Implants: Paper V. Physiological Effects”, Materials & Design, 27 (2006) 287-307. The chemistry and particle size of such particles have been found to be of high importance to the inflammation response, Sargeant et al (2006) and Sargeant et al, “Hip Implants—Paper VI—Ion Concentrations”, Materials & Design 28 (2007) 155-171. Cobalt chromium (CoCr) based metals are commonly used as biomaterial for implants and have been shown to be relatively good, biocompatible materials for joint applications. Their mechanical properties are adequate for use as load-bearing joint implants. However, experiments have shown that CoCr particles released from implants due to wear and corrosion can restrain bone growth, Aspenberg et al, “Benign response to particles of diamond and SiC: bone chamber studies of new joint replacement coating materials in rabbits”, Biomaterials, 17 (1996) 807-812. Titanium alloys and stainless steels have also been used frequently in joint implants, Sargeant et al (2006). The main risks with metal alloy implants are release of metal ions due to corrosion and wear, and these metal ions can be carcinogenic. The wear particles may also lead to bone resorption, Sargeant et al (2007). Use of a liner of ultra high molecular weight polyethylene (UHMWPE) against a metal or ceramic head, having a relatively low measured coefficient of friction, has been proposed, but the UHMWPE liner often gets worn and produces a relatively large amount of wear particles that can cause aseptic loosening, Xiong et al, “Friction and wear properties of UHMWPE/Al2O3 ceramic under different lubricating conditions”, Wear, 250 (2001) 242-245. Alumina (Al2O3) and zirconia (ZrO2) ceramics have been used in joint replacements to provide high wear resistance and chemical inertness. However, ceramic materials have a poor tensile strength and alumina components in joint replacements have been shown to release wear particles due to low toughness. The particles released from alumina and zirconia are also inert and will not be resorbed by the body. However, there are other ceramic materials that have shown promising results. For example, silicon nitride (Si3N4) has a higher fracture toughness and is more resistant to microcrack propagation than alumina, Bal et al, “Fabrication and Testing of Silicon Nitride Bearings in Total Hip Arthroplasty: Winner of the 2007 ‘HAP’ PAUL Award”, The Journal of Arthroplasty, 24 (2009) 110-116. One solution to the problems related to bulk metal joint implants or ceramic joint implants is to coat a metal joint with a more wear resistant, low corrosion ceramic coating, for example, a titanium nitride coating. However, the problems of inert wear particles causing long term problems such as inflammation and aseptic loosening have not been resolved. Accordingly, a need exists for wear and corrosion resistant biomedical implants, especially for use as artificial joints, to overcome the problems of wear particle formation and assorted high inflammation.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to devices for towing water skiers, and particularly to devices for towing more than one water skier from one boat. Water skiing has long been a popular recreational activity. The enjoyment of water skiing is to be shared and oftentimes skiers ski in pairs. However, tandem skiing poses a problem of constant tangling of the multiple towlines used. Towlines are conventionally either directly attached to some portion of the rear part of the boat or indirectly by an auxiliary attachment line which is, in turn, attached at two places to the rear of the boat. With the lines attached in this manner, tandem skiers executing crossover maneuvers or exchanging lines cause the lines to wrap themselves around one another. Tangling may also occur when the towlines are stored, or when a skier falls into the water, or when the boat is maneuvering to pick up new skiers. Untangling of the towlines is a tedious task.
{ "pile_set_name": "USPTO Backgrounds" }
(1) Field of the Invention The present invention relates generally to a method for treating or preventing systemic inflammation. (2) Description of the Related Art The inflammatory response is an attempt by the body to restore and maintain homeostasis after invasion by an infectious agent, antigen challenge, or physical, chemical or traumatic damage. Localized inflammation is contained in a specific region and can exhibit varying symptoms, including redness, swelling, heat and pain. While the inflammatory response is generally considered a healthy response to injury, the immune system can present an undesirable physiological response if it is not appropriately regulated. In this situation, the body's normally protective immune system causes damage to its own tissue by treating healthy tissue as if it is infected or abnormal. Alternatively, if there is an injury, the inflammatory response may be out of proportion with the threat causing the injury. When this occurs, the inflammatory response can cause more damage to the body than the agent itself would have produced. The inflammatory response has been found in part to consist of an increased expression of both pro-inflammatory and anti-inflammatory cytokines. Cytokines are low molecular weight, biologically active proteins involved in the coordination of immunological and inflammatory responses and communication between specific immune cell populations. A number of cell types produce cytokines during inflammatory reactions, including neutrophils, monocytes, and lymphocytes. Multiple mechanisms exist by which cytokines generated at inflammatory sites influence the inflammatory response. If a pro-inflammatory response is not successfully countered by anti-inflammatory cytokines, however, uncontrolled systemic inflammation can occur. In contrast to localized inflammation, systemic inflammation is widespread throughout the body. This type of inflammation may include localized inflammation at specific sites, but may also be associated with general “flu-like” symptoms, including fever, chills, fatigue or loss of energy, headaches, loss of appetite, and muscle stiffness. Systemic inflammation can lead to protein degradation, catabolism and hypermetabolism. As a consequence, the structure and function of essential organs, such as muscle, heart, immune system and liver may be compromised and can contribute to multi-organ failure and mortality. Jeschke, et al., Insulin Attenuates the Systemic Inflammatory Response to Thermal Trauma, Mol. Med. 8(8):443-450 (2002). Although enormous progress has been achieved in understanding the mechanisms of systemic inflammation, the mortality rate due to this disorder remains unacceptably high. Often, whether the cytokine response is pro- or anti-inflammatory depends on the balance of individual microorganisms that colonize the intestinal lumen at any particular time. It is well known that the mucosal surface of the intestinal tract is colonized by an enormously large, complex, and dynamic collection of microorganisms. The composition of the intestinal microflora varies along the digestive tract as well as in different micro-habitats, such as the epithelial mucus layer, the deep mucus layer of the crypts, and the surface of mucosal epithelial cells. The specific colonization depends on external and internal factors, including luminally available molecules, mucus quality, and host-microbial and microbial-microbial interactions. Murch, S. H., Toll of Allergy Reduced by Probiotics, Lancet, 357:1057-1059 (2001). These microorganisms, which make up the gut microflora, are actively involved with the immune response. They interact with the epithelium in conditions of mutual beneficial relationships for both partners (symbiosis) or in conditions of benefit for one partner, without being detrimental to the other (commensalisms). Hooper, et al., How Host-Microbial Interactions Shape the Nutrient Environment of the Mammalian Intestine, Annu. Rev. Nutr. 22:283-307 (2002) In fact, considerable evidence is emerging which shows a strong interplay or “cross-talk” between the intestinal microflora and the diverse population of cells in the intestinal mucosa. Bourlioux, et al., The Intestine and its Microflora are Partners for the Protection of the Host: Report on the Dan one Symposium “The Intelligent Intestine” held in Paris, Jun. 14, 2002, Am. J. Clin. Nutr. 78:675 (2003); Hooper, L. V. & Gordon, J. I., Commensal Host-Bacterial Relationships in the Gut, Sci. 292:1115 (2001); Haller, et al., Non-Pathogenic Bacteria Elicit a Differential Cytokine Response by Intestinal Epithelial Celt/Leucocyte Co-Cultures, GUT 47:79 (2000); Walker, W. A., Role of Nutrients and Bacterial Colonization in the Development of Intestinal Host Defense, J. Pediatr. Gastroenterol. Nutr. 30:S2 (2000). Additionally, the gut microflora has been shown to elicit specific immune responses at both a local and systemic level in adults. Isolauri, E., et al., Probiotics: Effects on Immunity, Am. J. Clin. Nutr. 73:444S-50S (2001). The gut microflora in infants is known to be far less developed than that of an adult. While the microflora of the adult human consists of more than 1013 microorganisms and nearly 500 species, some being harmful and some being beneficial, the microflora of an infant contains only a fraction of those microorganisms, both in absolute number but also species diversity. Infants are born with a sterile gut, but acquire intestinal flora from the birth canal, their initial environment, and what they ingest. Because the gut microflora population is very unstable in early neonatal life, it is often difficult for the infant's gut to maintain the delicate balance between harmful and beneficial bacteria, thus reducing the ability of the immune system to function normally. It is especially difficult for formula-fed infants to maintain this balance due to the differences between the bacterial species in the gut of a formula-fed and breast-fed infant. The stool of breast-fed infants contains predominantly Bifidobacterium, with Streptococcus and Lactobacillus as less common contributors. In contrast, the microflora of formula-fed infants is more diverse, containing Bifidobacterium and Bacteroides as well as the more pathogenic species, Staphylococcus, Escherichia coli, and Clostridia. The varied species of Bifidobacterium in the stools of breast-fed and formula-fed infants differ as well. A variety of factors have been proposed as the cause for the different fecal flora of breast-fed and formula-fed infants, including the lower content and different composition of proteins in human milk, a lower phosphorus content in human milk, the large variety of oligosaccharides in human milk, and numerous humoral and cellular mediators of immunologic function in breast milk. Agostoni, et al., Probiotic Bacteria in Dietetic Products for Infants. A Commentary by the ESPGHAN Committee on Nutrition, J. Pediatr. Gastro. Nutr. 38:365-374 (April 2004). Because the microflora of formula-fed infants is so unstable and the gut microflora largely participate in stimulation of gut immunity, formula-fed infants are more likely to develop inflammatory illnesses. Many of the major illnesses that affect infants, including chronic lung disease, periventricular leukomalacia, neonatal meningitis, neonatal hepatitis, sepsis, and necrotizing enterocolitis are inflammatory in nature. Depending on the particular disease, the accompanying inflammation can occur in a specific organ, such as the lung, brain, liver or intestine, or the inflammation can truly be systemic in nature. For example, chronic lung disease causes the tissues inside the lungs to become inflamed while neonatal meningitis involves inflammation of the linings of the brain and spinal cord. Periventricular leukomalacia is caused by inflammatory damage to the periventricular area in the developing brain. Necrotizing enterocolitis causes inflammation in the intestine that may result in destruction of part or all of the intestine and neonatal hepatitis involves an inflammation of the liver that occurs in early infancy. Sepsis, also known as systemic inflammatory response syndrome, is a severe illness caused by an overwhelming infection of the bloodstream by toxin-producing bacteria. In this disease, pathogens in the bloodstream elicit an inflammatory response throughout the entire body. Premature and critically ill infants also represent a serious challenge in terms of developing gut immunity and preventing systemic inflammation. Preterm or critically ill infants are often placed immediately into sterile incubators, where they remain unexposed to the bacterial populations to which a healthy, term infant would normally be exposed. This may delay or impair the natural colonization process. These infants are also often treated with broad-spectrum antibiotics, which kill commensal bacteria that attempt to colonize the infant's intestinal tract. Additionally, these infants are often nourished by means of an infant formula, rather than mother's milk. Each of these factors may cause the infant's gut microflora to develop improperly, thus causing or precipitating life-threatening systemic inflammation. In recent years, the supplementation of probiotic bacteria into the diet of formula-fed infants has been suggested in order to encourage gut colonization with beneficial microorganisms. Probiotic bacteria are living microorganisms that exert beneficial effects on the health of the host. Fuller, R. Probiotics in Man and Animals, J. Appl. Bacteriol. 66: 365-78 (1989). While viable probiotic bacteria may be effective in normalizing the gut microflora, there have been very few published studies assessing their safety in premature and immunosuppressed infants. These special populations have an immature gut defense barrier that increases the risk for translocation of luminal bacteria, causing a potentially heightened risk for infections. In many cases, viable probiotics are not recommended for immunosuppressed patients, post cardiac surgery patients, patients with pancreatic dysfunction, or patients with blood in the stool. At least one death has been reported due to probiotic supplementation in an immunosuppressed individual. MacGregor G., et al. Yoghurt biotherapy: contraindicated in immunosuppressed patients? Postgrad Med J. 78: 366-367 (2002). Thus, for immunosuppressed patients or premature infants, it would be useful to provide a non-viable supplement that may treat or prevent systemic inflammation. A non-viable alternative to live probiotics may have additional benefits such as a longer shelf-life. Live probiotics are sensitive to heat, moisture, and light, and ideally should be refrigerated to maintain viability. Even with these precautions, the shelf-life of a typical probiotic is relatively short. A non-viable alternative to live probiotics would circumvent the necessity of refrigeration and would provide a product having a longer shelf-life. The product could then be distributed to regions of the world without readily available refrigeration. A non-viable alternative to probiotics would additionally provide less risk of interaction with other food components, such as fermentation and changes in the taste, texture, and freshness of the product. Accordingly, it would be beneficial to provide a method for reducing or preventing systemic inflammation in formula-fed infants comprising the administration of inactivated probiotics.
{ "pile_set_name": "USPTO Backgrounds" }
A wide variety of coatings have been used to coat the surfaces of packaging articles (e.g., food and beverage cans). For example, metal cans are sometimes coated using “coil coating” or “sheet coating” operations, i.e., a planar coil or sheet of a suitable substrate (e.g., steel or aluminum metal) is coated with a suitable composition and hardened (e.g., cured). The coated substrate then is formed into the can end or body. Alternatively, liquid coating compositions may be applied (e.g., by spraying, dipping, rolling, etc.) to the formed article and then hardened (e.g., cured). Packaging coatings should preferably be capable of high-speed application to the substrate and provide the necessary properties when hardened to perform in this demanding end use. For example, the coating should be safe for food contact, have excellent adhesion to the substrate, and resist degradation over long periods of time, even when exposed to harsh environments. Many current packaging coatings contain mobile or bound bisphenol A (“BPA”) or aromatic glycidyl ether compounds or PVC compounds. Although the balance of scientific evidence available to date indicates that the small trace amounts of these compounds that might be released from existing coatings does not pose any health risks to humans, these compounds are nevertheless perceived by some people as being potentially harmful to human health. From the foregoing, it will be appreciated that what is needed in the art is a packaging container (e.g., a food or beverage can) that is coated with a composition that does not contain extractible quantities of such compounds.
{ "pile_set_name": "USPTO Backgrounds" }
1. Technical Field The present invention relates to a radio communication terminal and a method of controlling internal radio communication, and in particular, it relates to a control method applicable to a clamshell cellular telephone. 2. Background Art Liquid crystal displays mounted in recent cellular telephones are provided with higher resolution to display still images such as characters and graphics and also still images and moving images picked up by digital cameras at higher definition. With this, the amount of data exchanged between digital cameras and liquid crystal displays is increasing, and it is proposed in Japanese Patent No. 3,086,456 that a high-speed transfer mode called low voltage differential signaling (LVDS) be used to connect displays and image photographing devices. Also, recent cellular telephones adopt a clamshell structure in which the cellular telephones can be folded to increase the size of the displays without losing portability and prevent unintended pushing of operation buttons when they are being carried. In the clamshell structure, a first casing housing a control panel that principally controls the external radio communication of a cellular telephone and a second casing housing a display are connected together with a hinge, and the first casing and the second casing can be closed and opened via the hinge. Also, in order to allow a weak GPS signal to be received even while transmitting from a moving platform, JP-T-2003-507954 for example discloses a method in which a branch unit is provided upstream from the antenna for branching part of the transmitted signal, an interference compensating signal is taken out by attenuating and phase-shifting the signal branched by the branch unit, and the interference compensation signal is superimposed on the GPS signal. However, as the display mounted on a cellular telephone comes to have higher resolution, to transmit high-bit-rate image data by wire, it is necessary to provide the flexible wiring board for transmitting the signal to the display with a multipin structure. Accordingly, when data transmission between the first casing and the second casing is performed by wire in a cellular telephone with the clamshell structure, it is necessary to pass the multipin flexible wiring board through the hinge, complicating the hinge structure and the mounting process. As a result, this presents an obstacle to more compact and thinner cellular telephones, increases cost, and decreases reliability. On the other hand, when an internal radio communication antenna is provided to both the first casing and the second casing in place of the flexible wiring board, in which data transmission between the first casing and the second casing is performed by internal radio communication, interference is generated between it and the external radio communication of the cellular telephone. This poses the problem of changing the environment of the internal radio communication depending on the status of the external radio communication, so that the reliability of data transmission is not decreased. Particularly, when a radio communication system in which output is limited to a low level, such as an ultra wide band (UWB) system, is adopted for the internal radio communication, the difference in power level between it and a radio wave outputted in the external radio communication of the cellular telephone is large, such as 90 dB. This also presents the problem that the influence of signals outside the specific frequency band of the internal radio communication cannot be ignored, there being deterioration of the radio communication environment due to the interference of the external radio communication of the cellular telephone which increases the bit error rate and packet error rate leading to an increase in the need for retransmissions. Also, even when a radio communication system in which only weak power is radiated is adopted, those radio waves interfere with the cellular telephone system because the latter requires high reception sensitivity, posing the problem that the reception sensitivity of the cellular telephone system is decreased. Also, the method disclosed in JP-T-2003-507954 requires a branch unit, an attenuator, a phase shifter, and a superimposer. This produces the problem of complicating the circuit structure and increasing the size, resulting in an increase in cost, size, and weight. Accordingly, it is an object of the present invention to provide a radio communication terminal and a method of controlling internal radio communication capable of preventing the deterioration in the quality of internal radio communication between the first casing and the second casing, by allowing for a change in the state of external radio communication.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a method for operating an electromechanically operable parking brake for motor vehicles with a driving engine furnished with a mechanical gear box, being substantially composed of an operating element, an electronic control unit, to which are sent wheel rotational speed values from wheel rotational speed sensors, at least one unit for generating a brake application force, and brake devices on at least one axle being lockable by the unit, with the electronic control unit actuating the unit after detection of a starting maneuver of the motor vehicle in the sense of a release operation of the parking brake. DE 103 24 446 B3 discloses a method for controlling a brake system equipped with an electric parking brake. In the prior art method, a first stretch of time is determined from the beginning of the coupling action until a point of time of response of the clutch, which corresponds to the so-called clutch bite-point. Subsequently, the release time of the electric parking brake is selected to be ahead of the point of time of response of the clutch by a second stretch of time. The prior art method represents an altogether time-responsive control of the parking brake, and its purpose is to allow a more accurate coordination of the deactivation of the electric parking brake with regard to the clutch-engaging operation and, hence, to the starting maneuver of the vehicle. It is, however, taken into consideration only to an insufficient degree that electric parking brakes typically require a relatively long stretch of time to perform a complete release operation. Therefore, it may occur in quick starting maneuvers that the point of time of response of the clutch is already reached and the electric parking brake is not completely released. In view of the above, an object of the invention is to disclose a method, which reduces the stretch of time for release of the parking brake in order to achieve greater comfort, while maximum safety is maintained in addition.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to an apparatus for mooring a ship. Mooring apparatuses shown in FIGS. 6 and 7 moor the ship which is to be used as a restaurant, a hotel or the like in a harbor or in the vicinity of a quay for a long period of time. The mooring apparatus shown in FIG. 6 comprises a plurality of dolphins 90, 91 and 92, chains 93, and buffer fenders 94. The dolphins 90 are disposed beside right and left broadsides S1 and S2 of a ship S. The dolphins 91 and 92 are respectively placed on certain positions apart from the stem and stern at predetermined distances. The chains 93 connect the stem and stern to the dolphins 91 and 92. The features 94 are provided on the faces of the dolphins 90 which are opposed to the broadsides S1 and S2. The mooring apparatus shown in FIG. 7 comprises a pair of dolphins 95, a pair of sliding members 96 and engagement members 97. The dolphins 95 are disposed beside a broadside S1 of a ship S. The sliding members 96 are fixed to the broadside S1. The engagement members 97 are fixed to the dolphins 95. The dolphins 95 are vertically and slidably engaged with the sliding members 96 by the engagement members 97. The mooring apparatus shown in FIG. 6 is large-sized and the cost of construction is increased due to a lot of dolphins 90, 91 and 92 and the chains 93 for mooring the ship S. Furthermore, a wide sea area is required to moor the ship. Thus, the mooring apparatus cannot be used in the narrow harbor. Whilst the mooring apparatus shown in FIG. 7 can moor the ship S against the rocking force in a vertical direction, cannot do it in forward and backward directions and in right and left broadside directions. Consequently, the mooring apparatus cannot be used for a large-sized ship or the sea area in which waves are high due to the load strongly applied on the apparatus by the rocking force of the ship S.
{ "pile_set_name": "USPTO Backgrounds" }
(a) Field of the Invention The present invention provides a cup sleeve formed with a reverse damping structure having one or more rings inwardly bent and annularly arranged on one or both of the edge and the inner periphery of the cup sleeve, so when the mentioned cup sleeve is sleeved with a cup-shaped or bottle-shaped or can-shaped container, the anti-slip damping for enhancing the anti-loose function is provided by the reverse damping structure, thus the cup sleeve is less likely to be released from the cup-shaped or bottle-shaped or can-shaped container, and with the reverse damping structure, the interval formed between the cup sleeve and the cup-shaped or bottle-shaped or can-shaped container is enlarged thereby increasing the thermal insulation effect. (b) Description of the Prior Art A conventional thermal insulation cup sleeve is usually formed in parallel or formed with a ring shape having larger caliber at the top and smaller caliber at the bottom, for being sleeved with a cup-shaped or bottle-shaped or can-shaped container; because the inner caliber of the cup sleeve has to be larger than the diameter of the cup-shaped or bottle-shaped or can-shaped container for being sleeved in, the cup sleep may be more likely to slip or fall after being sleeved with the cup-shaped or bottle-shaped or can-shaped container; if a cup sleeve made of a paper material is used to be directly in contact with the cup-shaped or bottle-shaped or can-shaped container, the provided thermal insulation effect is relatively reduced; if a cup sleeve made of a corrugated board having tubular hole layers is adopted, the thermal insulation effect is increased but still has a disadvantage of being likely to slip and fall.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to an inflatable stairway slide assembly for facilitating one's sliding down a conventional stairway having a plurality of steps and more particularly to an inflatable stairway slide coupled to an underlying inflatable base that supports the slide in spaced relation with the underlying stairway steps. 2. Description of Prior Art and Advantages Parents sometimes find it inconvenient to transport a child to an outdoor park to use a conventional outdoor slide. Inclement weather will also interfere with a child using a conventional outdoor slide. Sometimes, a parent must care for a younger child who must nap when an older child wants to play on a slide. A slide constructed according to the present invention has the advantage of being inflatable for indoor use on a stairway. Indoor slides have been provided heretofore such as that illustrated in U.S. Des. Pat. No. 0472,2928 issued to LeRoy J. Peterson on Mar. 25, 2003; Des. No, 328,326 issued to Frank C. Kuan on Jul. 28, 1992; and Des. No. 340,965 issued to Roger Lee on Nov. 2, 1993. Such slides are relatively small, but bulky and sometimes inconvenient to store. It is an advantage of the present invention to provide a new and novel inflatable slide assembly which will mount atop the steps on one side of a stairway leaving the other side of the stairway available for normal use. Various inflatable slides have been provided heretofore for emergency evacuation of passengers from airplanes, such as that illustrated in U.S. Pat. Nos. 3,463,287; 3,465,991; and 3,656,579. If used on a stairway, the prior art airplane slides may provide a bumpy and painful ride as the child downwardly negotiates successive treads of stairway steps. According to the present invention, an inflatable base is provided for underlying and supporting the inflatable slide in spaced relation with the stairway steps. The invention contemplates utilizing a plurality of longitudinally spaced apart transversely extending inflatable tubular sections disposed in the space defined by each stairway tread and its adjacent riser and inflated to a level to support the inflatable slide in spaced relation with the treads. The stairway slide constructed according to the present invention is fabricated from a pair of thin plastic sheets that are sealed together at selected intervals to provide longitudinal air passages. The invention includes an inflatable base which underlies the slide to protect a person from being bruised by contact with one or more of the underlying steps as the person slides down the stairway. Accordingly, it is an advantage of the present invention to provide an underlying inflatable support base which supports the slide in vertically spaced relation with the top sharp edges of the underlying stairway steps. It is another advantage of the present invention to provide a slide assembly of the type described including, at its discharge end, a separately inflatable deceleration section which includes an enlarged terminal bumper. The stairway slide assembly constructed according to the present invention contemplates an approach pad coupled to the inflatable slide and anchored to the stairway and also detachably mounting intermediate members for detachably coupling the slide to the stairway steps to preclude lateral movement thereof. The invention contemplates the underlying base including cylindrical, inflatable tubes which are received in the crotch of each successive step whereas another embodiment of the present invention contemplates triangular inflatable sections which extend to a level slightly above the steps, and another embodiment adds reduced diameter transversely extending, inflatable edge protector tubes disposed between the cylindrical tubes. The inflatable stairway slide and the underlying base are each formed with a pair of sheets that are sealed at portions to define air passages therebetween which can be inflated to provide longitudinally extending airway passages in the upper slide section and transversely extending airway passages to the underlying base, In one embodiment of the invention, the sheets of the upper slide and the underlying base are integrally coupled whereas in another embodiment, the underlying base is detachably coupled to the slide. In all cases, however, the slide assembly is easily inflated for quick assembly and easily deflated for quick and easy disassembly and storage. These and other advantages of the present invention will become more readily apparent as the descriptions hereof proceeds:
{ "pile_set_name": "USPTO Backgrounds" }
This invention concerns seat belt covers and pads. Four states, and all of Canada, now require that seat belts be worn while driving. It is probable that Hawaii will be the next state to require the wearing of seatbelts. Many motorists and passengers complain about the wearing of seatbelts for two reasons: (1) Seat belts are uncomfortable and (2) seat belts are not always very clean.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a revolving, pull-resistant or inextensible, flexible band, especially a belt or track for vehicles, that is made endless via connecting means, with the outer surface of the band body being provided with blocks, ribs, or similar projections, and with the connecting means being disposed between the ribs.
{ "pile_set_name": "USPTO Backgrounds" }
Tennis rackets in the prior art weigh from 12 ounces for a light racket to over 14 ounces for a heavy racket. The center of percussion or sweet spot ranges from 17 inches to 18.50 inches, from the end of the racket handle. This center does not coincide with the center of the strings, but is closer to the handle end. Thus, when a ball is struck at the center of the racket face, a shock is felt at the handle grip. Because the prior art rackets are more flexible than is desired, vibrations are set up in the frame which robs energy from the rebound of the ball and causes vibrations to be transmitted to the arm of the player, as well as cause inaccuracy in the rebound of the ball. The weight of the prior art rackets contributes heavily to the development of tennis elbow, as well as the fatigue of the player's arm and body. Further, rackets of the past have utilized wood, aluminum, steel, fiberglass, boron and graphite composites. The prior art, while utilizing these materials, have not utilized the structural configurations to take advantage of the stiffness to unit weight ratio, as well as the strength to unit weight ratio of these materials to obtain a reduction in weight, increase the center of percussion, reduce the deflection, reduce the vibration, and yet maintain the same swing weight. It is noted that in U.S. Pat. No. 1,539,019, by Nikonow, an attempt was made to reduce the weight of the racket, increase the distance of the center of percussion from the handle end, by increasing the distance of center of gravity or balance point further from the handle end. He states he attained a weight of 12 ounces, a center of balance of between 15 to 17 inches. The overall length of the racket was 26 inches and the striking power was equivalent to a 141/2 ounce racket. This racket was made of wood and the crossectional areas shown were not the best to achieve the results desired. Another difficulty with the prior art is that when balls are hit which are to the left or right of a line running from the tip of the racket to the handle down the center, henceforth called the longitudinal axis of the racket, the racket tends to turn in hand of the player causing a poorly hit ball with little power or accuracy. Another difficulty with the prior art rackets is that they are rated as light, medium and heavy, but very little is said about the swing weight of a racket. This swing weight is the important parameter in determining the striking power of a racket. For example, in a set of golf clubs, the swing weight of all the clubs are substantially the same, and sets may be obtained in combination of categories A, B, C, D and 1, 2, 3, 4, providing for 16 graduations of swing weight for a user to choose from. This swing weight is the moment of inertia about a point 2.25 inches above the end of the club handle (see U.S. Pat. No. 3,473,370 by E. J. Marciniak.). Further, the prior art does not provide for easily available means for measuring the moment of inertia of a racket. Further, the prior art does not provide for an analysis to determine the proper moment of inertia to be used, considering the weight of a tennis ball, the velocity of the on-coming ball with respect to the player. Another difficulty with the prior art rackets is that the force necessary to deflect the strings a given amount perpendicular to the face of the racket varies considerably from the center of the edges, in part because of the smaller length of the strings at the edges from those used at the center. This variation contributes further to inaccurate hits.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a structure of an input protecting device provided in a signal input portion of a semiconductor circuit device. 2. Description of the Prior Art FIG. 1 is a view showing a structure of a complementary MOS integrated circuit with a conventional input protecting circuit. Referring to FIG. 1, is shown an input portion of a system S2 which comprises, for example, a printer and the like operating in response to an output from a system S1 which comprises, for example, a micro computer and the like. The system S1 comprises in an output portion thereof an output buffer formed of an inverter having a P-channel MOS transistor T1 and an N-channel MOS transistor T2 connected in a complementary manner. An output signal from the system S1 is applied to an input terminal 1 of the system S2 through the output buffer. The system S2 comprises in the input portion a first clamping diode 3 connected between the input terminal 1 and a first power supply terminal 8 for clamping a voltage applied to the input terminal 1 to a predetermined voltage in case that the applied voltage is larger than a first predetermined voltage value, a second clamping diode 4 connected between the signal input terminal 1 and a second power supply terminal 9 for clampling the voltage applied to the signal input terminal 1 to a predetermined voltage in case that the applied voltage is smaller than a second predetermined voltage value, an input protective resistor 5 connected to a connecting point of the clamping diodes 3 and 4, and an inverter (input buffer) comprising a P-channel MOS transistor 6 and an N-channel MOS transistor 7 for outputting, after inversion, a signal received through the input protective resistor 5. An inverter output is applied to an internal circuit (not shown) through an internal output terminal 2, so that the internal circuit operates in response to a signal provided. The system S1 generates an internal supply potential V.sub.CC in response to a supply potential from an external power supply V.sub.A. The potential V.sub.CC is used as an operation supply potential for the system S1. The system S2 receives a supply potential from an external power supply V.sub.B on the power supply terminal 8 and then generates the internal supply potential V.sub.CC which is used as an operation supply potential. Assuming that the potential V.sub.CC applied to the first power supply terminal 8 is positive potential and a potential second power supply terminal 9 is a ground potential in the system S2, an operation is now described. The system S2 operates in response to an output signal of the system S1. In this case, let it be assumed that an operation supply potential is supplied to respective systems S1 and S2 via the respective external power supplies V.sub.A and V.sub.B. At this time, the input clamping diode 3 functions to clamp an input voltage to a level of "(supply potential V.sub.CC +V.sub.F)" when an overvoltage higher than the supply potential V.sub.CC is applied to the input terminal 1 of the system S2. The V.sub.F shows a forward voltage drop of the input clamping diode 3. On the other hand, the input clamping diode 4 functions to clamp an input voltage to a level of "(ground potential-V.sub.F)" when a voltage lower than a ground potential is applied to the input terminal 1. This prevents the overvoltage from being supplied to the inverter stage and the internal circuit. The above-mentioned description was made, assuming that forward voltage drops of both input clamping diodes 3 and 4 are equally V.sub.F. A conventional input protecting circuit in the system S2 performs the above-mentioned operation. Therefore, an input protecting function can be achieved when an operation supply potential is supplied to both systems S1 and S2. However, for example, if the system S1 is a personal computer and the system S2 is a printer serving as an external apparatus, it could happen that the power supply V.sub.A is supplied to the system S1 while the operation supply potential is not supplied from the external power supply V.sub.B to the system S2. In this case, that is, when the operation supply potential V.sub.CC is not applied to the power supply terminal 8 of the system S2, a case could happen in which a signal of "H" level is applied from the system S1 to the signal input terminal 1. In this case, a current continues to flow from the input terminal 1 to the power supply terminal 8 through the input clamping diode 3, since the power supply terminal 8 is at "L" level. Therefore, in this state, it becomes a large load for a power supply (i.e., a power supply for supplying the operation supply potential of the system S1) supplying a signal of "H" level to the input terminal 1. In addition, there were problems in which the potential of the power supply terminal 8 rises and the internal circuit of the system S2 erroneously operates due to the raised potential, when an input impedance of a power supply providing the operation supply potential to the power supply terminal 8 is high. Therefore, there were problems in which a semiconductor circuit device with an input protecting circuit structured by using the conventional input clamping diodes can not be used in an interface portion of a system. Furthermore, in order to avoid the above-mentioned malfunction, a method of structuring an I/O portion using bipolar transistors can be considered, but in this case, problems are caused in which a consumed power becomes large. A structure of an input protecting circuit with the above-mentioned input clamping diodes is shown, for example, in page 469 of RCA Solid State Q MOS Data Book.
{ "pile_set_name": "USPTO Backgrounds" }
Mobile phones, as a modern communication tool, have been widely used. As smart mobile phones become more powerful, their usage rate and time have been remarkably increased. A capacity of a mobile phone cell is an important parameter of mobile phone properties. Currently, most of the mobile phone cells can be reused by charging, but when a user goes out or stays in the wild, it is impossible to charge the mobile phone cell due to the lack of a charger. At this time, a traditional method for charging the cell cannot meet the user's requirements. In order to overcome this drawback, a solar mobile phone case has been presented currently. A solar charging cell is provided within the mobile phone case and electrically connected to a mobile phone charging circuit. When sunlight is irradiated on the solar charging cell, the solar energy will be converted into electric energy by means of photovoltaic conversion, so as to provide the mobile phone with the desired electric energy. During the implementation, the inventor finds that there at least exist the following problems in a traditional technology. During the actual application of the mobile phone case, because the solar charging cell is directly connected to the mobile phone charging circuit, such a phenomenon as overcharge or backflow will occur when the mobile phone cell is charged with the solar charging cell, and the mobile phone cell will be somewhat damaged. In addition, this mobile phone case can operate only when there is the sunlight or adequate sunlight, so the use thereof is limited.
{ "pile_set_name": "USPTO Backgrounds" }
A resonance type converter is known as a switching power supply device for various kinds of electronic instrument. The resonance type converter is configured by a primary coil of an insulating transformer being connected via a capacitor to a direct current voltage supply. A series resonant circuit is formed of a leakage inductor of the insulating transformer and the capacitor. The resonance type converter controls resonance current flowing through the series resonant circuit using first and second switching elements driven on and off in a complementary way, obtaining stepped-up or stepped-down direct current voltage from a secondary coil side of the insulating transformer. For example, soft switching technology for this kind of switching power supply device is proposed in PTL 1 and 2. The soft switching technology is such that loss in the switching elements is considerably reduced by the switching elements being turned off when the voltage applied to each of the switching elements is zero (0), or when the current flowing through the inductor is zero (0). This resonance type switching power supply device 1, in outline, is such that a primary coil P1 of an insulating transformer T is connected via a capacitor C to a direct current voltage supply B, and includes a series resonant circuit formed of a leakage inductor of the insulating transformer T and the capacitor C, as shown in, for example, FIG. 12. A first switching element Q1 connected in series to the primary coil P1 of the insulating transformer T is driven on by a drive control circuit A that carries out a separately-excited oscillation operation, and applies an input voltage Vin from the direct current voltage supply B to the series resonant circuit. The drive control circuit A is formed of, for example, a power supply IC. Also, a second switching element Q2 connected in parallel to the series resonant circuit is driven on by the drive control circuit A when the first switching element Q1 is in an off-state, thus forming a resonance current path of the series resonant circuit. The first and second switching elements Q1 and Q2 are formed of, for example, high breakdown voltage n-type MOSFETs. Power generated in secondary coils S1 and S2 of the insulating transformer T is rectified and smoothed via an output circuit formed of diodes D1 and D2 and an output capacitor Cout, and supplied as an output voltage Vout to an unshown load. A resonance type power conversion device main body is structured of these circuit portions. Further, the output voltage Vout, specifically the deviation between the output voltage Vout and an output voltage setting value, is detected by an output voltage detector circuit Vos, and fed back as an FB voltage to the drive control circuit A via a photocoupler PC. The FB voltage fed back to the drive control circuit A is used in pulse width modulation of output control signals that drive the first and second switching elements Q1 and Q2 on and off, whereby the output voltage Vout is stabilized. Direct current power supplied from the direct current voltage supply B is generally filtered via an input capacitor Cin, and subsequently fed as the input voltage Vin to the switching power supply device. Herein, the drive control circuit A is configured mainly of an output control circuit 2, a dead time circuit 3, and a drive signal generator circuit 4, as in a schematic configuration thereof shown in, for example, FIG. 13. Furthermore, the drive control circuit A includes a drive amplifier 5 as a drive circuit that drives the first switching element Q1 and a drive circuit 6 as a drive circuit that drives the second switching element Q2. In FIG. 13, 7 is a level shifter circuit for shifting the level of a drive signal generated by the drive signal generator circuit 4, and inputting the drive signal into the drive circuit 6. Also, 8 is an internal power supply circuit that generates voltage VDD necessary for operations of the output control circuit 2, the dead time circuit 3, and the drive signal generator circuit 4 from a drive voltage VCC applied to the drive control circuit A. The output control circuit 2, for example, generates a PWM signal having a pulse width in accordance with the FB voltage fed back from the output voltage detector circuit Vos as an output control signal CO. The on-state periods of the first and second switching elements Q1 and Q2 are prescribed by the output control signal CO, and the output voltage Vout accompanying switching operations of the switching elements Q1 and Q2 is controlled so as to be of the output voltage setting value. The output control circuit 2 may also be such as to generate a PFM signal having a frequency in accordance with the FB voltage as the output control signal CO, instead of the PWM signal. The dead time circuit 3 includes a charge/discharge capacitor 3c, charged by a constant current supply 3b via a charge switch 3a, and a discharge switch 3d that discharges a charge accumulated in the charge/discharge capacitor 3c, for example, as shown in FIG. 14. The charge switch 3a and discharge switch 3d are formed of, for example, a p-type MOSFET and an n-type MOSFET. The charge switch 3a and discharge switch 3d are controlled so as to be turned on and off in a complementary way by the output control signal CO output from the output control circuit 2. Furthermore, the dead time circuit 3 includes a comparator 3e that compares a charge/discharge voltage Vcd of the charge/discharge capacitor 3c with a preset threshold value voltage Vdt, and inverts when the charge/discharge voltage Vcd exceeds the threshold value voltage Vdt. Further, by a logical operation being carried out on the output of the comparator 3e and the output control signal CO in a NOR circuit 3f, a dead time signal DT of a constant pulse width Tdt is generated. The dead time signal DT is a timing adjustment signal for turning on the switching elements Q1 and Q2 when the voltage applied to the first and second switching elements Q1 and Q2 is zero (0). Meanwhile, the drive signal generator circuit 4 and level shifter circuit 7 are configured as shown in, for example, FIG. 15. That is, the drive signal generator circuit 4 is formed of a logic circuit that generates pulse width controlled drive signals DH and DL, which drive on the first and second switching elements Q1 and Q2 respectively, in accordance with the dead time signal DT and output control signal CO. Specifically, the drive signal generator circuit 4 is such that a logical operation is carried out on the output control signal CO and dead time signal DT in a NOR circuit 4a, whereby the low side drive signal DL for driving the first switching element Q1 is generated. Also, the drive signal generator circuit 4 is such that, at the same time, a logical operation is carried out on the dead time signal DT, inverted via an inverter circuit 4b, and the output control signal CO in an AND circuit 4c, whereby the high side drive signal DH for driving the second switching element Q2 is generated. Herein, the second switching element Q2 carries out a switching operation under a condition of a high voltage being applied to the primary coil P1 of the insulating transformer T. Also, the drive circuit 6 is configured so as to operate between a high voltage VB applied to the primary coil P1 and an operating reference voltage VS of the second switching element Q2, as shown in FIG. 13, in accordance with the operating voltage of the second switching element Q2. As opposed to this, the drive signal generator circuit 4 is configured so as to operate, for example, between the operating reference voltage VS and a ground potential. Therefore, the level shifter circuit 7 performs a role of shifting the level of the drive signal DH output by the drive signal generator circuit 4 to coincide with the operating reference voltage VS of the drive circuit 6. The level shifter circuit 7, in outline, includes level shifting first and second transistors 7c and 7d formed of n-type MOSFETs whose drains are connected via load resistors 7a and 7b to the high voltage VB. Also, the level shifter circuit 7 includes a first rising edge trigger circuit 7e, which outputs a pulse signal PS at the timing at which the drive signal DH rises, and a second rising edge trigger circuit 7g which, by the drive signal DH being inverted via an inverter circuit 7f, outputs a pulse signal PE at the timing at which the drive signal DH falls. The first and second rising edge trigger circuits 7e and 7g drive the transistors 7c and 7d respectively using the pulse signals PS and PE, which are the outputs of the first and second rising edge trigger circuits 7e and 7g. As a result of this, pulse signals PShigh and PEhigh, synchronized with the timings of the rise and fall respectively of the drive signal DH and level-shifted to a high potential, are obtained as drain voltages of the transistors 7c and 7d respectively, as shown in FIG. 16. By the output circuit 7h, which structures a flip-flop, being set and reset by the pulse signals PShigh and PEhigh, the drive signal DH is level-shifted and reproduced as the output of the output circuit 7h. In this way, the level-shifted drive signal DH is applied to the drive circuit 6, whereby the second switching element Q2 is driven on and off. 7i and 7j in FIG. 15 are recovery diodes connected in anti-parallel to the load resistors 7a and 7b. Herein, a simple description will be given of an operation of a resonance type converter, which is the switching power supply device with the heretofore described configuration. The resonance type converter is such that, by the first switching element Q1 being turned on when the second switching element Q2 is in an off-state, current flows through the series resonant circuit. When the first switching element Q1 is turned off in this state, an unshown parasitic capacitor of the first switching element Q1 is charged by current flowing through an inductor of the series resonant circuit. At the same time, an unshown parasitic capacitor of the second switching element Q2 is discharged by the current. Further, by the second switching element Q2 being turned on when the charge voltage of the parasitic capacitor of the first switching element Q1 reaches the input voltage Vin, zero voltage switching of the second switching element Q2 is realized. In accompaniment to the second switching element Q2 being turned on, electric power energy stored in the capacitor C now flows via the second switching element Q2. Consequently, the current flowing through the inductor of the series resonant circuit is inverted. When the second switching element Q2 is subsequently turned off, the parasitic capacitor of the second switching element Q2 is now charged by the current inverted as previously described. At the same time, the parasitic capacitor of the first switching element Q1 is discharged by the current. Further, by the first switching element Q1 being turned on when the charge voltage of the parasitic capacitor of the second switching element Q2 reaches zero (0) voltage, zero voltage switching of the first switching element Q1 is realized. By the first switching element Q1 being turned on, the current of the series resonant circuit is inverted, and flows via the first switching element Q1 again. The previously described dead time signal, with the timing at which one of these kinds of first and second switching elements Q1 and Q2 is turned off as a reference, is used for prescribing the timing at which the other of the switching elements Q1 and Q2 is turned on. cl CITATION LIST
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to a brake fluid pressure control apparatus for controlling the operation of antiskid control for preventing wheel locking having an added feature of a traction control capability for preventing wheel spin in the acceleration stage. 2. Technical Background Some brake pressure control apparatuses for antiskid control by preventing wheel locking are provided with flow valves having a casing and a spool. The casing is provided with a plurality of ports. The spool is disposed inside the casing in a biased condition with a spool spring, and switches the communication conditions of each port depending on the pressure difference generated at the end sections of the spool. However, in systems using such a flow valve, it has been thought conventionally that separate device units are required if an antiskid control capability and a traction control capability are to be provided for one fluid pressure control unit.
{ "pile_set_name": "USPTO Backgrounds" }
In a typical purchase transaction, a consumer may use a portable consumer device to buy goods or services from a merchant. The consumer's PAN or primary account number may be stored in a memory on the portable consumer device. The PAN may be read at a point of sale terminal operated by a merchant, and the PAN and other information may be transmitted to the issuer of the portable consumer device along with other transaction information such as the amount of the purchase, etc. Once received, the issuer may then decide whether or not the consumer is authorized or not authorized to conduct the purchase transaction. In conventional purchase transactions, the PAN is not encrypted when it passes from the portable consumer device, to the point of sale terminal, and to the issuer. The non-encryption of the PAN is not a major issue in view of current network security and fraud detection mechanisms. However, it would be desirable to add upfront security to existing payment systems. For example, if the PAN gets intercepted by an unauthorized person during the transmission of the PAN from the point of sale terminal to the issuer, the unauthorized person could use the PAN to make unauthorized purchases. Thus, new ways to provide for secure transmission of the PAN to the issuer or other entity are desirable. Embodiments of the invention address these and other problems individually and collectively.
{ "pile_set_name": "USPTO Backgrounds" }
“Ligation of hemorrhoids (also known as rubber ring ligation of hemorrhoids, suction ligation of hemorrhoids and the like)” is a common method for treating hemorrhoids, the curative effect is exact, the principle thereof is to ligate a specially-made rubber ring (such as a rubber ring, a latex ring, a silicone ring and the like) on the roots (or the substrates) of hemorrhoids, to block blood supply to the hemorrhoids via the elastic retractive force of the rubber ring to induce necrosis, atrophy and fall-off of the hemorrhoids, so as to fulfill a cure purpose. Traditional instruments used for carrying out the ligation surgery are extremely simple, time-consuming and laborious to operate and are prone to leading to complications. To change this situation, over the past decade, an automatic instrument, namely, an automatic hemorrhoids ligation device (also known as a repeating hemorrhoids ligation device, a repeating hemorrhoids suction ligation device and the like), has been proposed to make the ligation surgery be simple and easy. The advantages of using the instrument to perform the ligation surgery are as follows: the operation is simple, convenient, fast and accurate; a single person can finish the surgery, and only 5-10 minutes are taken; the probability of complications is lower; patients generally need no anesthesia, and the pain is mild; most patients do not need to be hospitalized, so that the treatment cost is low. The Chinese authorized utility model patents (ZL200820051521.X) discloses a repeating hemorrhoids suction ligation device, including a body, as well as a pipe body arranged at the front end of the body, a plurality of stretched rubber rings which are sleeved on the pipe body in sequence, a negative pressure suction joint arranged behind the pipe body and communicated with the inner cavity of the pipe body and a rubber ring popup device arranged on the body, wherein an emission head communicated with the inner cavity of the pipe body is sleeved on the front end of the pipe body, and the rubber rings are sleeved on the emission head; the rubber ring popup device includes at least one traction thread and a winding device arranged in the body, the front end of the traction thread is winded on the winding device; the tail end of the traction thread penetrates through the interior of the pipe body, is folded back from the orifice of the emission head and is connected with the rubber rings along the outer wall of the emission head through a traction mechanism. The above-mentioned hemorrhoids suction ligation device (also known as a hemorrhoids ligation device) and other types of hemorrhoids ligation devices at home and abroad have a common feature, that is, “rubber rings” are used as basic materials which are ligated on the roots of hemorrhoids; available raw materials for making the rubber rings include natural rubber, latex or silica gel, etc. The clinical efficacy of the rubber ring ligation of hemorrhoids is directly related to two technical indicators, namely, “internal aperture of the rubber ring” and “the elastic retractive force of the rubber ring”. The use of the rubber ring as the ligation material has some inherent disadvantages: (1) due to the inherent characteristics of the natural rubber (or latex or silica gel and the like), the internal aperture of the rubber ring cannot be infinitely small, and the rubber ring can be generally only made to 2.0-2.5 mm (at least not less than 1.5 mm), otherwise the rubber ring is easy to break when being stretched in a ligation process. This means that within the size range of the diameter of 2.0-2.5 mm (at least not less than 1.5 mm), the ligated hemorrhoids tissues are applied with no elastic retractive force, and finally, ulcer formed after tissue necrosis and fall-off ranges for about 2.0-2.5 mm (at least not less than 1.5 mm); (2) when the rubber rings are installed on the ligation device at a stretched state, the rubber rings are liable to fatigue gradually with time to increase the internal aperture; and (3) due to the influence of such factors as climate and environment and the like, the rubber rings are easy to age over time, so that the elastic retractive force becomes weaker. Due to the influence of the above factors, the following consequences will be generated possibly: (1) rubber ring slippage occurs within a short period after the surgery, resulting in treatment failure; (2) postoperative bleeding complications are generated (according to statistics, the postoperative bleeding rate of the rubber ring ligation of hemorrhoids is 2-5%); and (3) hemorrhoids block necrosis is incomplete, healing of the ulcer surface is delayed and the efficacy is influenced.
{ "pile_set_name": "USPTO Backgrounds" }
Many wireless computing devices, such as laptop computers, personal digital assistant devices, etc., may act as client devices in a wireless networking environment. Often these multiple clients all communicate via the network through shared radio frequency channels to a shared access point. However, when a large number of such client devices attempt to access the network, this sharing of network access points often leads to congestion and a wasting of bandwidth. Congestion often leads to collisions in the channel between data signals and hence to delay. To overcome these challenges, various control techniques have been implemented with respect to wireless networks to aid in scheduling to avoid collisions. For example, clients may engage in listen-before-transmit (“LBT”) mechanisms, such as the CSMA-CA channel access mechanism, vying for space in the shared channel before transmitting. LBT techniques are a type of distributed coordinated function. CSMA-CA is a particular Ethernet LAN access method. However, with all LBT schemes, if one client device is currently transmitting signals (i.e. data packets) in the channel, other senders are forced to back off and wait a random amount of time before attempting access again. Additionally, even if the client devices detect that the network is free, two such devices may access the channel at exactly the same time, causing a signal collision. When this type of collision is detected, both client devices are forced to back off and wait a random amount of time before attempting transmission again. While the client devices are waiting, channel bandwidth is wasted, packet transmission is delayed, and battery power on the client machine is wasted. Other mechanisms exist for aiding in scheduling and avoiding collision between data signals over a shared channel. Another example is a point-coordinated function (“PCF”), which repeatedly polls the client devices in order to avoid collisions of signals. However, while PCF techniques avoid the constant back and forth between the competing data signals, the constant polling on the primary channel wastes a large amount of bandwidth, thus making this technique highly inefficient. While current wireless channel access techniques do produce collision avoidance, they also waste bandwidth on the primary channel used to send data packets because these techniques use the channel both to transmit control and scheduling information and to send useful data. Distributed coordinated functions, such as CSMA-CA, are further inefficient for real-time data because of the forced waiting period. Real-time audio data may no longer be useful, or sufficient, after a forced delay, such as a 100-millisecond delay. Additionally, there is no guarantee of channel access by any of these techniques and there is no mechanism to assure that high priority data signals are transferred in a timely manner. However, if the access point knows the exact state of every client it is servicing (e.g. number of packets pending in the queue, the packets deadlines, and packet priorities), it can schedule each client independently on the channel. While researchers have attempted to build true work conserving fair queuing algorithms based upon this premise, these algorithms have not been truly work conserving because part of the bandwidth on the channel is used up in transmitting control information to the scheduler and in many cases the media-access control (MAC) protocol has to be changed. Therefore, even with such techniques bandwidth is wasted. Additionally, while largely avoiding signal collisions, these techniques cause inefficient use of power because they often use a high-powered channel to send control data in addition to useful data. A particular component of a wireless device that consumes a significant amount of power is the network interface card (NIC), which handles the wireless transmission and reception of network communication data. It has been estimated that on average, about 20% of the total power available to a wireless device is dissipated as a result of the connection of a NIC, or other wireless LAN interface component. This phenomenon is due to the fact that the NIC and wireless device must be in a constant “listening” state in order to receive and transmit data via the network. Since the amount of power a battery can provide is rather limited, minimizing the power consumption of a mobile device in order to extend its operation time is an important consideration in the design of battery operated wireless devices, and any communication systems involving such devices.
{ "pile_set_name": "USPTO Backgrounds" }
The fabrication of electrical circuits, such as printed circuit boards, interconnect devices and flat panel displays, typically includes an automated optical inspection operation. Automated optical inspection typically identifies a collection of candidate defects, including both actual defects and false defects. Following automated optical inspection, a panel containing electrical circuit patterns is supplied to a verification station whereat candidate defects are evaluated and then identified as being either a actual defect or a false defect. Where possible, actual defects are repaired. False defects include, for example, both random false defects and recurring false defects. Random false defects include, for example, dust and oxidation. Recurring false defects include, for example, geometric pattern anomalies that are repeated throughout a batch of patterns to be inspected. Although the recurring false defects deviate from an ideal pattern to be detected as a defect, they are not sufficiently deviant to be categorized as an actual defect requiring subsequent repair. Many candidate defects are quickly categorized during manual defect verification as false defects, for example geometric deviations in shape. Other candidate defects require additional time during manual verification in order to determine whether they are a random defect or a recurring defect. Some random defects, for example short circuits, require even more additional time to effect repair of the defect.
{ "pile_set_name": "USPTO Backgrounds" }
High Efficiency Video Coding (HEVC) is a new coding standard that has been developed in recent years. In the High Efficiency Video Coding (HEVC) system, the fixed-size macroblock of H.264/AVC is replaced by a flexible block, named coding unit (CU). Pixels in the CU share the same coding parameters to improve coding efficiency. A CU may begin with a largest CU (LCU), which is also referred as coded tree unit (CTU) in HEVC. In addition to the concept of coding unit, the concept of prediction unit (PU) is also introduced in HEVC. Once the splitting of CU hierarchical tree is done, each leaf CU is further split into one or more prediction units (PUs) according to prediction type and PU partition. Several coding tools for screen content coding have been developed. These tools related to the present invention are briefly reviewed as follow. Palette Mode Coding A new coding tool, named screen content coding (SCC) has been developed for HEVC as disclosed in JCTVC-S1005 (Joshi, et al., “HEVC Screen Content Coding Draft Text 2”, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 19th Meeting: Strasbourg, FR, 17-24 October 2014, Document: JCTVC-S1005). The palette-based coding is performed based on a coding unit (CU). In the palette mode coding process, derivation of the color palette and index map is described as follows. A color palette is derived first by three components of a pixel value for the 444 component. The color palette stores N major colors. In specific, the N major colors correspond to the most significant N pixels with peak values in the histogram are selected as major colors. The pixel values that are close to a major color will be quantized to the major color. When calculate the distance of current pixel value with the major colors, three components will be taken into consideration. In particular, the absolute differences between the three components with the major color will be added and the result is used to determine which major color for assigning a current pixel to. The pixel will compare with each major color to find the closest one and the pixel is assigned a major color having a shortest distance. Other pixels that do not belong to the major color set (also named color palette or palette) are designated as escape pixels. For each pixel, a color index is assigned to indicate which color in the palette it belongs to. For escape pixels, a special color index will used to indicate the escape. The information signaled for the palette coding is shown as follows: 1. palette signaling: the color index table (also called palette table) size is first transmitted followed by the palette elements (i.e., color values). The related syntax elements include: 1.1 palette_share_flag: specifies whether previous palette table is used for the current CU; 1.2 palette_predictor_run: specifies which of previous palette table is re-used in the current palette table; 1.3 palette_num_signaled_entries: specifies the number of palette entries that are not predicted from previous palette table; 1.4 palette_entry: specifies pixel values for each component for entries that are not predicted from previous palette table; 1.5 palette_escape_val_present_flag: specifies the presence of escape pixel in the current CU; 1.6 cu_qp_delta_palette_abs: specifies the absolute value of the difference CuQpDeltaVal between the luma quantization parameter of the current coding unit and its prediction; 1.7 cu_qp_delta_palette sign flag: specifies the sign of CuQpDeltaVal; 1.8 cu_chroma_qp_palette_offset_flag: when present and equal to 1, specifies that an entry in the cb_qp_offset_list[ ] is used to determine the value of CuQpOffsetCb and a corresponding entry in the cr_qp_offset_list[ ] is used to determine the value of CuQpOffsetCr. cu_chroma_qp_palette_offset_flag equal to 0 specifies that these lists are not used to determine the values of CuQpOffsetCb and CuQpOffsetCr. 1.9 cu_chroma_qp_palette_offset_idx: when present, specifies the index into the cb_qp_offset_list[ ] and cr_qp_offset_list[ ] that is used to determine the value of CuQpOffsetCb and CuQpOffsetCr. When present, the value of cu_chroma_qp_palette_offset_idx shall be in the range of 0 to chroma_qp_offset_list_len_minus1, inclusive. When not present, the value of cu_chroma_qp_palette_offset_idx is inferred to be equal to 0; and 1.10 palette_transpose_flag: indicating the scanning order for palette prediction 2. index map signaling: the pixels in the CU are represented by the indices by mapping each pixel value into an index according to the palette. The related syntax elements include: 2.1 palette_run_type_flag: specifies run type of the current pixel; 2.2 palette_index_idc: indicating the palette entry use of the pixel in case that palette_run_type_flag is copy_index_mode; 2.3 palette_run_msb_id_plus1: (palette_run_msb_id_plus1−1) specifies index of the most significant bit in the binary representation of paletteRun. The value of palette_run_msb_id_plus1 shall be in the range of 0 to Floor(Log2((MaxPaletteRun))+1, inclusive; 2.4 palette_run_refinement_bits: specifies the refinement bits in the binary representation of paletteRun; and 2.5 palette_escape_val: specifies the quantized escape coded sample value for a component. According to the existing HEVC practice, one palette table is signaled for each CU. Each entry of palette table can has three values with one value for each component. Table 1 shows an example of the palette table with three values for each entry corresponding to three color components. TABLE 1Color indexPixel value0Y0Cb0Cr01Y1Cb1Cr12Y2Cb2Cr23Y3Cb3Cr3. . .. . .. . .. . . The coding unit syntax related to palette coding is shown in Table 2. A test regarding whether palette mode is enabled (i.e., palette_mode_enabled_flag), whether ChromaArrayType is equal to 3 (i.e., 4:4:4 color format), whether the current prediction mode is Intra prediction mode (i.e., CuPredMode[x0][y0]==MODE_INTRA), and whether the IntraBC flag is not asserted (i.e., !intra_bc_flag[x0][y0]) is performed as indicated by Note (2-1) in Table 1. If the test in Note (2-1) is asserted, a palette mode flag (i.e., palette mode flag[x0][y0]) is included as indicated by Note (2-2). Whether the palette mode flag is set is tested as shown in Noe (2-3). If the palette mode flag is equal to 1, palette coding is applied to luma and chroma components using joint palette as indicated by Note (2-4). TABLE 2coding_unit( x0, y0, log2CbSize ) {Note...... if( palette_mode_enabled_flag && ChromaArrayType == 3(2-1)  && CuPredMode[ x0 ][ y0 ] == MODE_INTRA)  palette_mode_flag[ x0 ][ y0 ](2-2) if( palette_mode_flag[ x0 ][ y0 ] )(2-3)  palette_coding( x0, y0, nCbS )(2-4) else {...... In current SCM3.0 (Screen Content Coding Test Model version 3.0) draft and software, for video data in the 444 format, most of the above flags are shared by the three color components. Furthermore, a single color palette is signaled for all color components of a current coding unit and each entry of the color palette consists of one sample value from each of the three color components. In order to conserve bit rate, the color palette may be coded using predictive coding, where the predictor may correspond to a reconstructed palette associated with a previous coded coding unit. In various video coding applications, the video data may be in a non-444 color format, where the chroma color samples may be at reduced spatial resolution compared to the luma component. Therefore, the chroma sample may not exist for each luma sample. Therefore, it is desirable to develop palette coding techniques for non-444 video data.
{ "pile_set_name": "USPTO Backgrounds" }
A conventional processing system may include hardware resources, such as a central processing unit (CPU) and random access memory (RAM), as well as software resources, such as an operating system (OS) and one or more end-user programs or applications. An application is typically developed to run on a particular OS. When a typical conventional computer system is started, it loads the OS before loading the end-user programs or applications. The OS typically serves as an intermediary between software applications and the hardware in a processing system. In addition to RAM and one or more CPUs, a processing system may include a security coprocessor (SC) such as a trusted platform module (TPM). A TPM is a hardware component that resides within a processing system and provides various facilities and services for enhancing the security of the processing system. For example, a TPM may be implemented as an integrated circuit (IC) or semiconductor chip, and it may be used to protect data and to attest to the configuration of a platform. A TPM may be implemented in accordance with specifications such as the Trusted Computing Group (TCG) TPM Specification Version 1.2, dated Oct. 2, 2003 (hereinafter the “TPM specification”), which includes parts such as Design Principles, Structures of the TPM, and TPM Commands. The TPM specification is published by the TCG and is available from the Internet. The sub-components of a TPM may include an execution engine and secure non-volatile (NV) memory or storage. The secure NV memory is used to store sensitive information, such as encryption keys, and the execution engine protects the sensitive information according to the security policies dictated by the TPM's control logic. In general, a TCG-compliant TPM provides security services such as attesting to the identity and/or integrity of the platform, based on characteristics of the platform. The platform characteristics typically considered by a TPM include hardware components of the platform, such as the processor(s) and chipset, as well as the software residing in the platform, such as the firmware and OS. A TPM may also support auditing and logging of software processes, as well as verification of platform boot integrity, file integrity, and software licensing. It may therefore be said that a TPM provides a root of trust for a platform. Accordingly, when a processing system such as a server handles requests from other processing systems such as clients, the server may enforce security policies based on TPM-based attestation. For instance, the server may be configured to deny requests from any client system unless those requests are accompanied by valid, TPM-based platform attestation from that client system. When a conventional processing system uses a TPM, however, that processing system may be able to support only one software environment at a time. Virtualization products provide features for partitioning a processing system into multiple virtual machines (VMs). For instance, virtualization products may partition and manage a processing system's hardware resources in a way that allows multiple OSs to execute on the same machine concurrently. Specifically, each OS may run in a different VM. Each VM may therefore be considered a substantially independent software environment. An OS running in a VM may be referred to as a guest OS. The VMs may be managed by virtualization products such as a virtual machine monitor (VMM) or hypervisor. As recognized by the present invention, it would be advantageous if a VMM could allow each of the OSs to operate substantially as if that OS were in its own independent physical machine. U.S. patent application Ser. No. 10/876,994 (“the '994 application”), which is assigned to the same entity as the present application, discusses features to support use of TPMs by VMs. The present application discloses additional features and capabilities relating to TPMs and virtualization.
{ "pile_set_name": "USPTO Backgrounds" }
The use of mobile devices such as cellular telephones and other devices with cellular data connectivity is proliferating. Almost everyone has some sort of mobile, data-enabled device, and some people have multiple such devices. Users can access different networks using a single mobile device, and can access voice, text, and multimedia data from various network-accessible and Internet-accessible entities. Furthermore, mobile device complexity is increasing, with more and more advanced and power-efficient processors, display interfaces, and applications to provide user experiences like never before. Consequently, people are using their mobile devices more frequently, and have larger bandwidth requirements for data, email, voice, etc. This increased usage puts a tremendous strain on cellular networks that provide wireless communication services. In certain situations, cellular networks may become congested and may not be able to provide desired transfer speeds to requesting devices. For example, a user may attempt to play a video on their smartphone while in a network cell that is being highly utilized by many devices, and the network cell may have insufficient capacity to supply the data needs of all the demanding devices. In situations like these, video playback at the user device may be slow or interrupted, or may be presented at a relatively low resolution. This may lead to user dissatisfaction with the cellular network. In another situation, a data allowance provided by a cellular network provider for a user device may have been exceeded and as a result the data speeds provided for the device may be throttled or reduced. This may lead to the same user frustration, in that video playback is slow or interrupted for a reason that is not apparent to the user.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a multiple processor computer system, and more particularly to a method and apparatus for controlling data transfers into and out of an input/output processor that is shared by other processors or controllers of the computer system. Typically, a multiple processor computer system has at least one central processing unit (CPU) and one or more controllers, such as a direct memory access controller. Additionally, a multiple processor computer system has certain assets that are shared by the CPU(s) and controller(s). System buses, main memories, input/output channels and mass storage drives (MSD) are some examples of such shared assets. Shared assets are typically shared for two reasons: to provide access to shared data, and to reduce cost by time sharing an asset among the CPU(s) instead of providing each CPU with its own respective asset. A common problem with shared assets within a system, is how the use of a shared asset is allocated among the CPU(s) and controller(s) that need to access the shared asset. Unstructured allocation of a shared asset typically results in domination by one processor to the detriment of the other processors that need the shared asset. Structured allocation of a shared asset prevents domination of a shared process by one processor to the detriment of a competing processor or controller. Structured allocation schemes called arbitration methods are well known and widely used; however, each of the known arbitration methods has some type of limitation that reduces throughput of data to and from the shared asset. A very simple arbitration method is to assign each processor and each controller a unique priority level. When a shared asset is available, the shared asset is allocated to the processor or controller with the highest priority level that is awaiting that asset. The problem with this type of arbitration method is that in busy systems the lowest priority processor or controller is "starved out" because it never makes it to that "highest priority level awaiting" that is allocated to the shared asset. Another simple arbitration method is the timed loop arbitration method in which each processor or controller is automatically allocated a period of time to access the shared resource whether it needs it or not. This removes the worst "starve out" problems. This arbitration method, however, has a related problem of data latency. Data latency can be a difficult problem for mass storage drives, especially during write operations. The conversion of the data from parallel to serial format and the generation and addition of error correcting codes takes some processing time. The actual recording of the serial data and error correcting codes onto the mass storage media takes time also. For example, if a data block in sectors 1 through 10 is to be updated and the write head is currently located over sector 3, there will be a substantial delay until sector 1 again rotates around to begin a sequential write operation. In view of the latency problems of known arbitration methods, it is an object of the present invention to provide an arbitration method that does not starve any processor or controller out and yet has a very low data latency time for writes to a mass storage drive, as well as, other high priority operations. It is another object of the present invention to provide an arbitration method that may be dynamically adjusted to improve the data latency between a buffer memory and a mass storage drive.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to an optical movement information detector and electronic equipment having the same. As a general rule, when a light source and an observer move relative to each other, light is subjected to frequency changes by the Doppler effect. The laser Doppler velocimeter (hereinafter, referred to as LDV) uses this effect to measure the moving velocity of an object to be measured by applying laser light onto the object and measuring Doppler frequency shifts in the scattered light derived from the object. This LDV, which was released by Yeh and Cummins in 1964 (Appl. Phys. Lett. 4-10 (1964) 176), is widely known and is in practical use today. FIG. 12 shows an optical system diagram of a typical conventional LDV. In FIG. 12, 101 denotes a laser diode (hereinafter, referred to as LD) as a semiconductor laser, 102 denotes a photodiode as a light detecting device (hereinafter, referred to as PD), 103 denotes a diffraction grating, 104 denotes a collimator lens (hereinafter, referred to as CL), 105 denotes a mirror, 106 denotes a condenser lens, 107 denotes a first luminous flux, or beam of positive first order diffracted light by the diffraction grating 103, 108 denotes a second beam of negative first order diffracted light by the diffraction grating 103, and 113 denotes an object to be measured. In the optical system as constituted above, laser light emitted from the LD 101 is converted by the CL 104 into a parallel beam, and then is split into positive and negative first order diffracted lights at a diffraction angle of θ by the diffraction grating 103 to become the first beam 107 and the second beam 108. The first beam 107 and the second beam 108 are respectively reflected by the mirror 105 and are then made incident on the surface of the object 113 at an incident angle of θ to be overlapped each other again. The first beam 107 and the second beam 108 scattered by the object 113, which have been Doppler frequency-shifted, are slightly different from the LD 101 in oscillating frequency. As a result, the interferential waves of the first beam 107 and the second beam 108 scattered by the object 113 generate beat. This beat is termed beat signal. The moving velocity of the object 113 is obtained by heterodyne-detecting the beat frequency of the beat signal using the PD 102. Hereinafter, this typical conventional LDV will be described in further detail. Here, when the direction in which the object 113 moves to the right, as shown in FIG. 15 is set as the normal direction, the first beam 107 is Doppler frequency-shifted by −fd and the second beam 108 is Doppler frequency-shifted by +fd, so that the apparent frequency of the first beam 107 becomes (f0−fd) and the apparent frequency of the second beam 108 becomes (f0+fd). Note that f0 represents the oscillating frequency of the LD 101. In this case, since an electric field of the light emitted from the LD 101 is represented as E0·cos (2πf0t), the first beam 107 is indicated by Equation (1) below and the second beam 108 by Equation (2) below:IA=EA·cos {2π(f0−fd)t+φA}  (1)IB=EB·cos {2π(f0+fd)t+φB}  (2)where f0 denotes a frequency of outgoing beam from the LD 101, E0 denotes an amplitude of the outgoing beam from the LD 101, EA denotes an amplitude of the first beam 107, EB denotes an amplitude of the second beam 108, φA denotes a phase of the first beam 107 and φB denotes a phase of the second beam 108. Since the frequency of light is generally 100 THz (1014 Hz), it is impossible to measure the frequency information of Equation (1) and Equation (2) directly. Therefore, heterodyne detection is generally employed for direct measurement as mentioned above, and because f0>>fd is established, the interferential waves of Equation (1) and Equation (2) can be described by the following expression: 〈  I A + I B  2 〉 = E A 2 + E B 2 2 + E A · E B · cos ⁢ { 2 ⁢ π ⁡ ( 2 ⁢ f d ) ⁢ t - ( ϕ A - ϕ B ) } ( 3 ) Note that < > in the left side of Equation (3) represents time average. Consequently, the PD 102 allows the frequencies of these interferential waves to be measured. FIG. 13 shows a case in which the object 113 moves at a velocity of V, two beams are made incident on the object 113 at arbitrary angles of α and β respectively, and the observation point receives scattered light at an arbitrary angle of γ. Frequency shift quantity due to the Doppler effect, which is obtained using the Lorentz transformation based on relativism in a precise sense, may be approximately obtained as follows when the moving velocity V is sufficiently smaller than velocity of light c. Relative velocities VA1 and VB1 of light from a light source A and a light source B and a moving object are expressed by the following equations:VA1=c−V sin αVB1=c+V sin β  (4)Also, apparent frequencies fA1 and fB1 of lights as seen from the object 113 are expressed by the following equations: f A1 = V A1 λ = 1 λ · ( c - V ⁢ ⁢ sin ⁢ ⁢ α ) ⁢ ⁢ f B1 = V B1 λ = 1 λ · ( c + V ⁢ ⁢ sin ⁢ ⁢ β ) ( 5 ) Relative velocities VA2 and VB2 of scattered (reflected) lights relative to the object 113 are expressed by the following equations:VA2=c−V sin γVB2=c−V sin γ  (6)Consequently, frequencies fA2 and fB2 of the lights as seen from the observation point are expressed by the following equations: f A2 = c V A2 · f A1 = c λ · 1 - V c · sin ⁢ ⁢ α 1 - V c · sin ⁢ ⁢ γ ⁢ ⁢ f B2 = c V B2 · f B1 = c λ · 1 + V c · sin ⁢ ⁢ β 1 - V c · sin ⁢ ⁢ γ ( 7 ) The difference between the frequency in Equation (7) and the frequency f0 (=c/λ) of incident light is a Doppler frequency shift quantity fd. Here, the beat frequency of the two beams measured at the observation point 2fd is expressed by the following equation using c>>V: 2 ⁢ f d =  f B2 - f A1  = V λ · ( sin ⁢ ⁢ α + sin ⁢ ⁢ β ) ( 8 ) It can be seen that 2fd is independent of a position of the observation point (angle: γ). In FIG. 12, in which α=β=θ is valid, the following expression is established based on Equation (8) according to the typical optical system of the LDV of FIG. 12: 2 ⁢ f d = 2 ⁢ V λ · sin ⁢ ⁢ θ ( 9 ) Consequently, the moving velocity V of the object 113 is obtained by measuring frequency 2fd indicated in Equation (3) and performing calculation using Equation (9). Equation (9) may be geometrically interpreted as follows: FIG. 14 is an enlarged view of an area in which the two beams in FIG. 12 (the first beam 107 and the second beam 108) overlap each other again. The two beams intersect at incident angles of θ respectively, and the broken lines in FIG. 14 show parts of the equal wave fronts of the beams. An interval between the broken lines shows the wavelength λ of light. The vertical heavy lines show the bright parts of interference fringes, and given that the interval between the vertical heavy lines is Δ, this Δ is obtained from Equation (10) below: Δ = λ 2 ⁢ sin ⁢ ⁢ θ ( 10 ) As shown in FIG. 14, when an object (shown as ●) passes perpendicularly to the interference fringes at a velocity of V, the frequency f is expressed by the following equation: f = V Δ = 2 ⁢ V λ · sin ⁢ ⁢ θ = 2 ⁢ f d ( 11 ) This equation is equal to Equation (9). The mentioned typical LDV can thus obtain the moving velocity V; however, the LDV cannot detect the moving direction of the object to be measured. In contrast, in JP 03-235060 A, detecting a moving direction is made possible by rotating the diffraction grating 103 in FIG. 12 at a velocity of Vg. As a result, when light is reflected by the diffraction grating 103, each of beams is subjected to the Doppler frequency shift in proportion to Vg. Accordingly, the beat frequency 2fd to be measured in the PD 102 is indicated by the following equation: 2 ⁢ f d = 2 ⁢ V λ · ( V + V g ) · sin ⁢ ⁢ θ ( 12 ) Consequently, the moving direction is obtained since the magnitude of 2fd is determined according to the positive or negative sign of the moving velocity V relative to a given velocity of Vg. According to the abovementioned optical system, however, a rotating mechanism of the diffraction grating 103 is required with result that the device becomes larger in size and higher in cost. In addition, in the optical system, the rotational velocity of the diffraction grating 103, which needs to be precisely maintained, is difficult to maintain due to factors such as errors caused by eccentricity, vibration caused by rotation, etc. Thus, the optical system is difficult to employ for precise measurement. A velocimeter which solves the above problems is disclosed in JP 04-204104 A. The velocimeter uses a frequency shifter to change the frequency of an incident beam, which allows detection of the moving direction of an object to be measured. FIG. 15 shows a schematic diagram of an optical system of the velocimeter. According to the velocimeter, light emitted from a laser source 1 become a parallel beam by a CL 104, and then are split into two beams by a beam splitter (hereinafter, referred to as BS) 109. The beams are reflected by a mirror 105 and are then frequency-shifted by f1 and f2, respectively, by an acousto-optic modulator (hereinafter, referred to as AOM) 110. The light is again collected on the surface of an object to be measured 113 by a diffraction grating 103 so as for the beat frequency of scattered light from the object to be measured 113 to be detected using a PD 102. The frequency 2fd to be detected here is expressed by the following equation: 2 ⁢ f d = (  f 1 - f 2  ) + 2 ⁢ V λ · sin ⁢ ⁢ θ ( 13 ) Since the sign (plus or minus) of V changes according to the moving direction of the object 113, the moving direction of the object 113 is detected by the magnitude relationship of 2fd relative to a given frequency shift quantity |f1−f2|. Also in JP 08-15435 A, frequency is changed using an electro-optical device (hereinafter, referred to as EOM) 111 shown in FIG. 16 based on the principle similar to the principle employed in JP 04-204104 A. More specifically, light emitted from an LD 101, which is a laser source, becomes a parallel beam by a CL 104, and is then split into two beams, a first beam 107 and a second beam 108, by a diffraction grating 103. The first beam 107 and the second beam 108 enter corresponding EOMs 111. Here, bias is applied to the second beam 108 to shift its frequency by fR. The first beam 107 and the second beam 108 are reflected by a mirror 105, and then are collected on the surface of the object to be measured 113. The beat frequency of scattered light from the surface of the object 113 is detected using a PD 102. The frequency 2fd detected here is expressed by the following equation: 2 ⁢ f d = f R + 2 ⁢ V λ · sin ⁢ ⁢ θ ( 14 ) Consequently, similarly to Equation (13), the moving direction of the object 113 is detected by the magnitude relation of 2fd relative to a given frequency shift quantity fR since the sign of V changes according to the moving direction of the object. However, an optical system where the moving direction of the object 113 is detected using frequency shifters such as the AOM 110 and the EOM 111, is disadvantageous in that the device is made larger in size since the optical system becomes more complex and facilities for driving the frequency shifters such as a power source are required. For example, voltage necessary for frequency modulation by the AOM 110 is of about tens of volts and voltage necessary for frequency modulation by the EOM 111 is of about 100 volts with the result that a large-sized power source is required. Further, in order to detect a two-dimensional moving velocity (a velocity component in a direction parallel to an arrow and a velocity component in a direction vertical to the drawing sheet in FIG. 15 and FIG. 16) with use of the above-described optical system, two optical systems are necessary. More specifically, two optical systems have to be disposed in such a manner that the velocity component in one direction is detected by one optical system and the velocity component in a direction orthogonal to the one direction is detected by the other optical system. Further, since scattered light from each of beam spots formed for detecting the components in the two directions diffuses in a spherical form, the diffused light from one beam spot will act as noise to a light detecting device for detecting light from the other beam spot, which makes it necessary to provide a system for separating optical signals. This causes a problem that detecting the two-dimensional moving velocity would complicate the structure of the optical system.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates generally to nanodevices, and more specifically, to sequencing using an integrated nanowire/nanosheet nanogap and nanopore device. Nanopore sequencing is a method for determining the order in which nucleotides occur on a strand of deoxyribonucleic acid (DNA). A nanopore (also referred to a pore, nanochannel, hole, etc.) can be a small hole in the order of several nanometers in internal diameter. The theory behind nanopore sequencing is about what occurs when the nanopore is submerged in a conducting fluid and an electric potential (voltage) is applied across the nanopore. Under these conditions, a slight electric current due to conduction of ions through the nanopore can be measured, and the amount of current is very sensitive to the size and shape of the nanopore. If single bases or strands of DNA pass (or part of the DNA molecule passes) through the nanopore, this can create a change in the magnitude of the current through the nanopore. Other electrical or optical sensors can also be positioned around the nanopore so that DNA bases can be differentiated while the DNA passes through the nanopore. The DNA can be driven through the nanopore by using various methods, so that the DNA might eventually pass through the nanopore. The scale of the nanopore can have the effect that the DNA may be forced through the hole as a long string, one base at a time, like thread through the eye of a needle. Recently, there has been growing interest in applying nanopores as sensors for rapid analysis of biomolecules such as deoxyribonucleic acid (DNA), ribonucleic acid (RNA), protein, etc. Special emphasis has been given to applications of nanopores for DNA sequencing, as this technology holds the promise to reduce the cost of sequencing below $1000/human genome.
{ "pile_set_name": "USPTO Backgrounds" }
In recent years, demands for down-sizing and thickness reduction of semiconductor devices for communications have been increasing in the field of mobile communications with a focus on mobile phones. In mobile phones, with the improvement of functions, space for mounting semiconductor devices for communications has been narrowed. Thus, in place of a configuration in which packaged semiconductor devices are mounted on a substrate, the number of cases where a bare chip having protruded electrodes (hereafter referred to as “solder bumps”) is directly mounted on a substrate has been increased. Furthermore, reducing the size of a semiconductor device with semiconductor elements mounted thereon to be smaller than 0603 size (0.6 mm length×0.3 mm width×0.3 mm height), which is the size of a chip-type passive part, has been studied. In such a semiconductor device having a height of not more than 0.3 mm, heights of solder bumps often become not more than 100 μm, i.e. micro bumps in many cases, and as a result of using bare chips, the pitch between the bumps becomes nearly 200 μm and the bumps mutually come close. Furthermore, since a receiving land provided on a mounting board is 100 μm or less square, solder printing on the receiving land of the mounting board is difficult. Since the diameter of the micro bump is small, the quantity of solder decreases, and since the bump pitch between the micro bumps is narrowed, the area of the receiving land of the mounting board is reduced. For these reasons, when a bare chip having micro bumps is mounted on a board, soldering mounting is often used in which only flux is applied to the mounting board to mount the bare chip and reflow heating is performed. At the same time, if the heights of solder bumps vary, disadvantageously, defective soldering is likely to occur. Specifically, if there is a portion where the solder bumps do not contact the receiving land of the mounting board due to the variation of the heights of the solder bumps, even if reflow heating is performed, heat is not sufficiently transferred to the solder bumps separated from the receiving land of the mounting board. Therefore, solder may not be melted to cause poor characteristics, and the shape of the solder may be deformed to cause poor appearance. FIG. 12 is a sectional view showing the configuration of a conventional semiconductor device (bare chip). The semiconductor device shown in FIG. 12 is 4 mm square, and has the total thickness of 0.3 mm including the height of a solder bump. On the surface layer of a wafer of a substrate 51, 56 connecting pads 54 are formed in 0.25 mm pitch along the periphery of the chip. On the surface layer of the wafer of the substrate 51, a thin insulating protective film 55 is also formed so that the surfaces of the connecting pads 54 are exposed. An underlying electrode 56 is formed on each of the connecting pads 54, and a solder bump 52 composed of SnAg having a height of 90 μm is formed by plating on each underlying electrode 56. In ordinary plating processes, after forming underlying electrodes 56, a plating resist is applied, openings for the underlying electrodes are formed by exposure, and SnAg solder bumps 52 are formed by electrolytic plating. Then, after removing the plating resist film, reflow heating is performed to process the solder bumps 52 to be spherical. However, since solder bumps are formed by a plating process, the above-described semiconductor device has a problem of the variation in the height of bumps, and the variation in the height of the completed bumps tends to be large as the plating resist film is thicker. For example, when the target value of the height of the completed bumps is 30 μm, the tolerance becomes about 3 μm; when the target value of the height of the completed bumps is 50 μm, the tolerance becomes about 10 μm; and when the target value of the height of the completed bumps is 90 μm, the tolerance becomes about 15 μm; and the tolerance increases with an increase in the target value. When such semiconductor devices are mounted on the receiving land of the mounting board, the solder bumps support the semiconductor devices on the mounting board. Therefore, the distance between the substrate of the semiconductor device and the mounting board is determined at a portion of the solder bump having a large height, and the solder bumps having a small height are in a state where the solder bumps do not reach the receiving land of the mounting board and are isolated from the receiving land. Such a state is easily produced as the target value of the height of completed bumps is larger, and further the number of solder bumps increases. With solder bumps having a height of not more than 100 μm, the receiving land of the mounting board is too small to perform solder printing. Therefore, since heat is not transferred if reflow heating is performed in the state where the solder bumps are isolated from the receiving land, disadvantageously, solder is not melted to cause defective connection, and only a part of solder bumps are melted to make the bump shape abnormal. It is an object of the present invention to provide a semiconductor device and a method of manufacturing the same that can realize the stable yield of solder connection even if the height of solder bumps varies, with the configuration of the solder bumps capable of absorbing the variation of the height of the bumps during reflowing in mounting the semiconductor device on a mounting board.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates generally to communications systems and particularly to channel selection in a code division multiple access communication system. 2. Description of Related Art Because the radio frequency (RF) spectrum is limited, the government, more particularly, the Federal Communications Commission (FCC), governs the use of the radio frequency spectrum. This regulation includes deciding frequency band allocation among the various industries. Since the RF spectrum is limited, only a small portion of the spectrum can be assigned to each industry. Accordingly, the assigned spectrums must be used efficiently in order to allow as many frequency users as possible to have access to the spectrum. Because the number and size of frequency bands are limited, multiple access modulation techniques are continuously being developed and improved to improve efficiency and capacity and to maximize use of the allocated RF spectrum. Examples of such modulation techniques include time division multiple access (TDMA), frequency division multiple access (FDMA), and code division multiple access (CDMA). CDMA modulation employs a spread spectrum technique for the transmission of information. CDMA modulation techniques are becoming popular because they enable more users to communicate at a given time. A spread spectrum system uses a modulation technique that distributes the transmitted signal over a wide frequency band. This frequency band is typically substantially wider than the minimum bandwidth required to transmit the signal. The spread spectrum technique is accomplished by modulating each baseband data signal to be transmitted with a unique wideband spreading code. Using this technique a signal having a bandwidth of only a few kilohertz can be spread over a bandwidth of more than a megahertz. A form of frequency diversity is obtained by spreading the transmitted signal over a wide frequency range. Since only 200-300 kHz of a signal is typically affected by a frequency selective fade (interference), the remaining spectrum of the transmitted signal is unaffected. A receiver that receives the spread spectrum signal, therefore, will be affected less by the fade condition. In a CDMA telephone system, multiple signals are transmitted at the same frequency. A particular receiver then determines which signal is intended for that receiver by the unique spreading code in the signal. The signals at that frequency without the particular spreading code intended for that particular receiver appear as noise to the receiver and are ignored. New generation CDMA communication networks are being formed to facilitate the transmission of large amounts of data on an as needed basis. Accordingly, a fundamental channel set is defined for transmitting on going communications between the base station transceiver systems and the mobile stations. Additionally, supplemental channels are being defined to transmit large amounts of data to a mobile station for use as needed. Because CDMA systems typically include the transmission of the communications signals from a plurality of base station transceiver systems to a given mobile station, significant amounts of resources are consumed especially when a plurality of supplemental channels are being used by a plurality of base station transceiver systems to deliver large volumes of data to the mobile station. In particular, because the supplemental channels are formed to be able to carry large amounts of data, there is a need for efficiently reserving capacity for supplemental channel data transmission only from the base station transceiver systems that are transmitting the signals to the mobile station the most clearly. By reducing the number of base station transceiver systems that transmit data over a supplemental channel to a mobile station, resources in other base station transceiver systems are not wasted and may be used for other purposes. Accordingly, there is a need for efficiently and effectively selecting the base station transceiver systems that best transmit data over the supplemental channels. The present system and method of use comprises a system that solves the aforementioned problems by efficiently determining the optimal set of base station transceiver systems (BTSs) that are to transmit data over supplemental channels to a mobile station. More specifically, the invention includes having the mobile station transmit periodic signal strength measurement message to the BTSs to rank the pilot signal strengths being received from the plurality of base station transceiver systems. Whenever the number of fundamental channels that are active exceeds the maximum allowable number of active supplemental channels, the periodic pilot strength measurement message are transmitted by the mobile station. However, to improve resource usage, the periodic pilot strength measurement messages are not transmitted as often as required to insure that the active set of supplemental channels are the ones receiving the strongest signals. Rather, a combination of periodic pilot strength measurement messages and calculated reverse link signal strength over spectral noise density values are used to determine which BTSs should be used for the active set of supplemental channels. More specifically, if less than a specified amount of time has elapsed since the last pilot strength measurement message was received by a BTS from a mobile station, then the pilot strength measurement message is used to rank the supplemental channels and corresponding BTSs. If, however, more than a specified amount of time has elapsed, then a calculated reverse link signal to noise ratio (Eb/No) is used to rank the BTSs and corresponding and supplemental channels. Eb/No is the total measured Eb/No across all multipath and all receive antennas per sector. In one embodiment of the invention, the list of active supplemental channels is determined at the time in which a supplemental channel is first required. Accordingly, system resources are optimized in a manner that effectively defines the supplemental channels whose signals are most likely to be received clearly by the mobile station.
{ "pile_set_name": "USPTO Backgrounds" }
A normal door latch only extends about 1/2 inch from the front edge of the door. When consideration is given to the normal space between the door frame and the outer edge of the door, there may only be about 3/8 inch of the latch which may penetrate the opening in the striker plate. With this minimal engagement, a good strong kick in the center of the door may bow the door so that the latch is released; or a simple prying tool may be employed to release the door, and permit undesired entry. In order to avoid this problem, many people now use a supplemental deadbolt which is normally key-operated, and which extends into the door frame a full inch. This precludes opening of the door by the simpler expedients mentioned hereinabove. It is also noted in passing that some insurance companies will give reduced rates to home owners who equip their homes with deadbolts on the exterior doors, and certain other safety equipment. One prior proposed arrangement for a combination latch and deadbolt lock is disclosed in U.S. Pat. No. 4,255,953, granted Mar. 17, 1981. This prior patent includes two modes of operation. In one mode of operation the latch only extends for the usual 1/2 inch, and the door operates in all respects like a normal door. Then, through the special use of a key or other actuation arrangements, the conventional type of latch is extended by an additional half an inch so that it acts in the manner of a deadbolt. It is noted, however, that although the latch and deadbolt functions are accomplished by this single device, the deadlock can be actuated from the outside of a door in which it is installed only by inserting and turning a key. The simple action of inserting and turning a key, as important as it is in providing the greatly increased security of a deadbolt lock when compared to a conventional latch, is one which many people are unwilling to do regularly. Perhaps the best illustration of this fact is that the great majority of hotel and motel rooms can be locked from the outside only by closing the door. Deadbolt locks are generally provided, but they can be locked only from the inside. Thus, in spite of the small extra cost of installing deadbolt locks which can be locked from both sides of the door in order to provide much greater security, to the benefit of both management and guests of hotels and motels, this cost is evidently considered excessive in view of the evident low probability that the outside deadlocking arrangements would be used. Similarly, this reluctance to use a key to lock a door from the outside applies as well to people locking the door of their homes. Accordingly, a principal object of the present invention is to provide an improved combination latch and deadbolt in a single inexpensive unit which will fit and conventionally cut doors, and which can be locked from the outside by merely pulling the door closed, thus providing the convenience of a conventional latch as well as the security of a deadbolt.
{ "pile_set_name": "USPTO Backgrounds" }
A D/A converter for converting discrete digital data into continuous analog signals can be a converter of ladder resistance network type, segment type, integral type, etc. A converter of ladder resistance network type is configured by combining a ladder-shaped resistance network with a plurality of analog switches, and retrieves analog output from the end of the resistance network by controlling the analog switch using a digital input value. A converter of segment type is configured by 2n-1 constant current circuits, and obtains analog output by adding a current with the switch corresponding to the digital input value turned on. A converter of integral type integrates a constant current using a mirror integration circuit while counting a clock value specified by a digital input value using a counter, and the resultant integral value is obtained as analog output. Normally, in analog signal processing, the concept of the analog technology such as the reflection and a delay of a signal, the consistency of a transmission line, etc. is to be applied to circuit design, and the circuit design cannot be performed ad in digital data processing. Therefore, to perform the analog signal processing, a circuit applicable to the analog technology is to be designed, and to perform the digital data processing, a circuit applicable to the digital technology is to be designed. However, any type of the above-mentioned conventional D/A converter is configured by a digital portion and an analog portion in a random mixed manner in the entire process of inputting digital data and outputting an analog signal. Therefore, there has been the problem that it is very difficult to design a circuit appropriate for the analog signal processing and the digital data processing. The present invention has been achieved to solve the above problem. It is an object of the present invention to completely separate the digital portion and analog portion thereby facilitating the designing of circuits suitable for the portions.
{ "pile_set_name": "USPTO Backgrounds" }
On a typical front face a bank card is provided with characters in relief relative to its bearer and his bank and, on the reverse side, a magnetic track carrying information also relative to the bearer and the bank. The payment slips in question are called bills. In actual fact, the apparatus publishes several examples of the same document collected together in a bundle of sheets or tickets, which is also called bill, and the apparatus itself is often called a billing machine. Two of the sheets of the bill, one for the purchaser, the other for the vendor, are self-carboned, the third, which is more rigid, being intended for a processing center. The publishing taking place by printing sheets between, on the one hand, a bank card and a plate supporting the card having other characters in relief, defined further on, and, on the other hand, two printing rollers mounted on a carriage driven manually with a reciprocating movement. More exactly, the rollers are mounted on a pivoting stirrup and it is during the carriage return that the sheets are printed. A bank card on its reverse side bears: the name of its bearer, PA0 a number, comprising fifteen figures or so, representing the bank identity of the bearer, PA0 expiry date of the validity of the card. PA0 the name and address of the vendor, PA0 a bank identity number of the vendor, PA0 the date of the transaction, PA0 the amount of the transaction, on some publishing apparatus. The plate of the card support publishing apparatus has, on the side receiving the card, at least three groups of characters: The first two groups of characters of the plate represent constant data, such as those of a bank card, whereas the last groups of characters of the plate represent variable data concerning the transaction. The variable data characters are carried respectively by printing wheels, each having a series of ten figures from 0 to 9, the wheels projecting slightly from the plate and being mounted for rotation on the apparatus so as to be able, at the beginning of the day and at each transaction, to select their angular positions and thus the values of variable data such as the date and amount of the transaction. To be complete, it will be noted that the bill blanks each comprise pre-printed boxes for receiving respectively an operation number, an authorization number, a certificate number and the signature of the buyer. These publishing apparatus have the advantage of being relatively simple and robust. However, they have some drawbacks. The wheels for publishing the date and the amount of the transaction are sometimes difficult to index to the extent that the vendors very often write the amount of the transaction by hand, perhaps also to avoid any ambiguity due to the absence of a stop before the figures of the cents. Contrary to checks, with which they have something in common, the bills only comprise characters which can be read optically; i.e., typically they do not have CMC7 magnetically readable characters. The result is that the bank processing of the bills is not easy; it involves acquiring all the characters again. Since the transactions are made without any connection with the processing or authorization center, they carry no guarantee as to their validity, quite apart from the risks of fraud.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to a primary heat exchanger for use in a multi-poise condensing furnace. The term multi-poise furnace, as herein used, refers to a furnace that can be orientated so that conditioned return air leaving the furnace may be discharged in either an upward or a downward direction as well as horizontally both to the right and to the left without performing any major modification to the component parts of the unit. Some furnaces are available that allow the unit to be installed in different positions, however, for the most part, these units require extensive modifications to achieve the desired orientation. Many multi-poise furnaces are equipped with air conditioning units. As a result, condensate can be formed in the primary heat exchanger region due to cool conditioned air being passed over the heat exchanger during the warm months when air conditioning is called for. Similarly, oversizing of the furnace by an installer will result in short on-periods during heating cycles. This does not allow the heat exchanger surface to become sufficiently heated to entirely eliminate condensate that might be present in this area. Underfiring, wherein the gas rate provided to the furnace is lower than the acceptable design rate, can produce the same undesirable result. Slight misalignment of the furnace during installation may also allow condensate to collect in the heat exchanger region. Any condensate collecting in this region can adversely effect the furnace performance and can cause corrosion problems leading to early furnace failure. It should also be noted that multi-poised furnaces are oftentimes selected for use in applications where available furnace space is limited. The size of a multi-poise unit, to a large extent, is determined by the amount of space required by the primary heat exchanger. Any saving in this regard without sacrificing furnace performance is highly desirous.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to cartons such as those used as containers for food in which the food can be heated or cooked in an oven. Cartons which are used to store food or other items which must be heated before they are consumed are usually lined with a tough ovenable plastic liner which may be made from a polyester film or the like. This liner serves to make the paperboard waterproof so that it will not absorb fluids which are stored within the container. Because of the presence of this liner, however, considerable difficulty is experienced in attempting to tear the lid in order to open the tray. In one prior corner construction, the continuous score line which is formed in the upper face of the lid is spaced inwardly from the side edges of the lid so that it is located inwardly of the flange which supports the lid and the weakened score line which is formed on the lower face is located inwardly from the score line of the upper face in a spaced parallel relationship thereto. In addition, the weakened score line which is formed on the lower face and which extends inwardly from the corner terminates short of the weakened score line which is formed on the upper face. It has been found that this structure is difficult to open because of the difficulty experienced in rupturing the tough film of plastics material which is applied to the inner face of the lid. In another known structure, a pair of spaced parallel crease lines extend inwardly from the corner on both the upper face and the lower face to form a tab. This tab forms an awkward obstruction which makes it difficult to pore liquid contents out of the vent passage which is formed by depressing the tab. In addition, difficulty is again experienced in attempting to rupture the plastic liner which is applied to the lower face of the lid because the weakened score lines do not extend to the inner weakened score line which is formed on the lower face. It is an object of the present invention to provide a simple arrangement of weakened score lines on the lid of a tray which will facilitate the tearing of the lid in order to vent and to open the container.
{ "pile_set_name": "USPTO Backgrounds" }
The embodiments described herein relate to an ultrasound diagnostic apparatus for diagnosing blood vessel using ultrasound. In recent years, number of patients diagnosed with circulatory condition, such as cerebral infarction and cardiac infarction, are on the rise. To prevent from such disease, it is important to detect a symptom of arteriosclerosis in its early stage and to improve a lifestyle. To diagnose an arterial problem, Japanese unexamined publication 2002-238903A discloses an ultrasound diagnostic apparatus that measures the diameter of blood vessel using B (brightness)-mode image. Japanese unexamined publication 2002-238903A further discloses an ultrasound diagnostic apparatus for tracing the diameter of blood vessel and blood vessel wall in which an operator sets a mark for tracing in the B-mode image displayed in the monitor, and calculating a correlation of the brightness of pixel in a region of interest (ROI) that includes previously setup mark for tracing. Unfortunately, the correlation of the brightness of pixel as described in Japanese unexamined publication 2002-238903A may alter the diameter of blood vessel or blood vessel wall depending on the image data processing. Also the ultrasound diagnostic apparatus disclosed in Japanese unexamined publication 2002-238903A displays an ultrasound image of blood vessel to the long axis direction (toward blood flowing direction) in B-mode. However, it is preferred that, the inner diameter of blood vessel and thickness of blood vessel wall to the short axis direction (cross-section direction) is displayed as well. It is desirable that the problems described previously should be solved.
{ "pile_set_name": "USPTO Backgrounds" }
Several publications and patent documents are referenced in this application in order to more fully describe the state of the art to which this invention pertains. The disclosure of each of these publications and documents is incorporated by reference herein. Plants may be viewed as model systems for the large-scale production of exogenous proteins intended for therapeutic and industrial applications. Many plants are relatively easy and inexpensive to grow and are routinely produced in large quantities. Such large quantities, or crops, are harvested and processed by standard procedures utilized by the agronomic industry. The effective use of plants as bioreactors or protein factories depends on the ability to achieve high levels of expression of exogenous protein, which is stable throughout the life cycle of the transgenic plant and whose expression is maintained in subsequent generations. Silencing of an introduced transgene may occur in transformed plants and, thus, contributes to the commercial risk involved and hampers the general economic exploitation of plants as protein factories. A number of efficient strategies have been developed to avoid transgene silencing, including careful design of the transgene construct and thorough analysis of transformants at the molecular level. Recent research has focused on additional aspects related to the generation of transgenic plants intended for protein production and their influence on the stability of heterologous gene expression (De Wilde et al. 2000. Plant Mol Biol 43:347-59). Of note, clinical trials are proceeding on the first biopharmaceuticals derived from transgenic plants. One transgenic plant-derived biopharmaceutical, hirudin, has been commercially produced in Canada. Product purification may, however, present a potential obstacle in the process because it is expensive. Various methods have been developed to overcome this problem, including oleosin-fusion technology, which allows extraction with oil bodies. In some cases, delivery of a biopharmaceutical product by direct ingestion of the modified plant may potentially remove the need for product purification. Such biopharmaceuticals may be stored and distributed as, for example, seeds, tubers, fruits, or ground plant material. The stability of exogenous proteins expressed in plants provides an additional benefit of such systems. (Giddings et al. 2000. Nat Biotechnol 18:1151-5). The presence of silk protein producing abdominal glands is a unique feature of spiders. Spiders are also unique in the use of these silks throughout their life span and their nearly total dependence on silk for evolutionary success (14, 19). There were periods of fairly intense study of spider silk prior to World War II and in the late 1950s. Progress was relatively meager, however, particularly when compared to that related to silkworm silk. Beginning in the 1970s, interest in spider silk was revived with several papers describing physical, mechanical and chemical properties of spider silks. The composition of spider silks has been known to be predominantly protein since the 1907 studies of Fischer (5). In fact, except for the sticky spiral thread, no significant amount of any other compound but protein has been detected. Typical spider webs are constructed from several different silks, each of which is produced in a different gland. Due to their large size and ease of study, major ampullate glands have received the most attention. Thus, most of what is known about the synthesis of silk proteins is based on studies of major ampullate glands. Morphological and histochemical studies of the other glands, however, have confirmed the conclusions drawn from research performed using major ampullate glands. Synthesis of the silk protein(s) takes place in specialized columnar epithelial cells (2). There appear to be at least two different types of cells producing protein (14), which correlates with findings that revealed the presence of two proteins in the silk from these glands. Newly synthesized protein droplets within the cell are secreted into the lumen of the gland, which serves as a reservoir of soluble silk protein. The protein in the lumen of the gland is believed to be in a liquid crystal state (21), a structure which prevents fiber formation prior to passage through a narrow duct leading to a spinnernet. Maintenance of the liquid crystal state is likely due to physical properties related to protein structure and concentration, which serve to prevent aggregation into large protein arrays. It has been shown that silk in the lumen is not birefringent whereas silk becomes increasingly birefringent as it passes down through the duct (22). Thus, the ordered array of protein observed in the final fiber occurs during its passage through the duct. This appears to be due to the mechanical and frictional forces aligning the protein molecules and altering the secondary structure to the final fiber form. Iizuka (13) has proposed a similar mechanism for silkworm silk formation. The ability to draw silk fibers directly from the lumen of the major, minor and cylindrical glands (Hinman, M. personal comm.) implies that the physical force of drawing the solution is sufficient for fiber formation and provides experimental evidence for this mechanism. Once the fiber has reached the spinneret, a muscular valve at the exit of the spinneret is utilized to control the flow rate of the fiber and, to a small degree the fiber diameter. The silk exits the spider through the spinnerets, of which there are three pairs, anterior, median and posterior. One of the features attracting researchers to study spider silks is their unusual mechanical properties. Orb-web weaving spiders use the minimum amount of silk in their webs to catch prey. The web has to stop a rapidly flying insect nearly instantly in a manner that allows the prey to become entangled and trapped. To achieve this end, the web must absorb the energy of momentum of the moving insect without breaking. Moreover, the web must also possess mechanical properties that serve to retain the insect. Gosline et al. (8) have reviewed several aspects of this property and concluded that spider silk and the web are nearly optimally designed for each other. The present inventors have tested major and minor ampullate and egg case silks from both Nephila clavipes and Araneus gemmoides using standard mechanical testing methods (18). The silks were found to exceed the published data for tensile strength by a substantial margin. This was due to the use of the minimum diameter at ten points along the tested fiber for the calculation instead of the average diameter calculated from the density, length and weight. This minimum diameter is about 50% of the average diameter and since silks are likely to break at the narrowest point, these values may be more characteristic of the true properties of these silk fibers. Further examination of spider silk fibers (19) using scanning electron microscopy has confirmed the large variation in diameter of the fibers. As with any polymer, especially those comprised of protein, there are numerous factors including temperature, hydration state, and rate of extension that can affect tensile strength and elasticity. Despite these caveats, it is clear that dragline silk is a unique biomaterial. Dragline silk can absorb more energy prior to breaking than nearly any commonly used material. It is nearly as strong as several of the current synthetic fibers but can outperform them in many applications where total energy absorption is required. In 1990, the first spider silk protein from major ampullate silk was cloned in the form of a MaSp 1 cDNA from N. clavipes (23). The led to the appreciation that a second major ampullate silk protein existed which comprised a proline-containing peptide which was absent from the cDNA sequence coding for MaSp 1. This led to the cloning and sequencing of the cDNA for the second major ampullate silk protein, MaSp 2 (10). The sizes of the mRNA and genes for MaSp1 and MaSp2 have been determined by analysis of Northern blots, restriction digestion patterns, and Southern blots of genomic DNA. The mRNA sizes for MaSp 1 and 2 are approximately 12.5 and 10.5 kb, respectively. The genomic DNA studies all indicate the absence of large introns in the coding regions and the lack of any detectable introns in the main portion of the gene.
{ "pile_set_name": "USPTO Backgrounds" }
The increased use of electronic data and communication channels entails constantly growing demands on the protection of data against unwanted data access, but also simultaneously on the ability to access data with the greatest of ease, convenience and the least complexity possible. Particularly on account of the increasing reciprocal networking and the frequently large number of different users who are able to gain physical access to particular data, effective electronic or software-based control and protective mechanisms have become indispensable. The effective protection of data which can be accessed in diverse ways against unauthorised access plays a significant role. A large number of encryption mechanisms using symmetrical or asymmetrical data keys are known, of which the encryption programs such as PGP, which operate on the basis of asymmetrical key systems, are probably among the securest and most convenient to handle and are therefore used most widely. Both symmetrical and asymmetrical key systems are based on the use of at least one individual data key, which must be accessible only to the authorised user for the purpose of encrypting and decrypting his data. Access to this individual key needs to be protected from unauthorised users as effectively as possible. The protection of electronic data from unauthorised access plays a particularly significant role for person-related data such as address lists or customer data, for data in the financial sector and particularly for data in the health sector. In the health sector, where the most stringent demands are placed on data integrity, data protection provisions demand that any user of data be clearly identified and authenticated. Authentication refers to a user's authentication being awarded on the basis of his identification, wherein only authenticated users can obtain access to the data in question. In the health sector, the authentication function is also called “access control”. In addition to authentication, in security-critical data applications, e.g. in telemedicine or in home care systems, any communication over fundamentally nonsecure communication channels and any storage of security-critical data require encryption. When using encrypted data, it may be necessary for a plurality of different users to be able to access the data. This may be the case, by way of example, when customer data are being managed by the employees of a bank, in the case of personal data in personnel departments, in the case of joint use of data in development teams or in the case of data in the health sector which should be accessible to a plurality of treating physicians or to a particular group of medical specialist personnel. In this case, there is the problem that data which have been encrypted by a particular user using his individual data key cannot be decrypted by other users using other individual data keys. To make the encrypted data available nevertheless to particular user groups for the purpose of joint use, it is often customary to communicate the data key required for this purpose to all users. Distributing the key to the user group causes considerable problems for data integrity, since the key needs to be communicated to a large number of people who are involved, and since the fact that it is difficult to memorise data keys which are effective for security purposes means that it is not unusual for these data keys to be kept in an inappropriate manner, e.g. on notepaper in desk drawers. The central management of the keys also makes it necessary to keep key logs, “code logs”, whose ability to be spied out represents a further security problem factor.
{ "pile_set_name": "USPTO Backgrounds" }
It must be possible in all cellular systems to control at least the transmission power of the personal station for its transmission to arrive at the base station with a sufficient signal-to-noise ratio irrespective of the distance between personal station and base station. Power transmission will be explained in the following using the CDMA system (Code Division Multiple Access) as an example. FIG. 1 shows a CDMA forward traffic channel. This comprises the following code canals: a pilot channel, one synchronization channel, from one to seven paging channels and no more than 61 traffic channels. The maximum number is when there is only one paging channel besides the synchronization channel. Each code channel is orthogonally hashed and thus spread out by using the phase quadrature couple of the random noise sequence. At the base station several forward traffic CDMA channels may be used by way of frequency-divided multiplexing. The structure shown in FIG. 1 is presented in Proposed CDMA PCS Standard, Joint Technical Committee (JTC), Sep. 23, 1994. This proposal is also known by the name IS-95. Reference will be made in the following to a CDMA system according to this standard, although the invention is suitable for any kind of system. An unmodulated spread spectrum signal is sent continuously on the pilot channel and it is used for synchronization by the PS (Personal Stations). An encoded, interleaved, spread and modulated spread spectrum signal is sent on the synchronization channel. The personal station uses this signal for achieving a preliminary time synchronization. The channel bit rate is 1200 bps and the frame duration is 26,666 ms. No sub-channel relaying power control commands must be included in the synchronization channel. An encoded, interleaved, spread and modulated spread specturm signal is sent on the paging channel. The data rate is 9600 or 4800 bps and the frame duration is 20 ms. The base station uses the paging channel for transmit overhead information and personal station specific information. The number of these channels may vary in one CDMA forward traffic channel, however, the maximum number is 7 channels. The traffic channel is used for transmitting user and signaling information to the PS (Personal Station). The maximum number of simultaneous forward traffic channels supported by one CDMA traffic channel is 63 minus the number of call and synchronization channels operating on one and the same CDMA traffic channel. The frame structure itself is the same both on the forward traffic channel and on the reverse traffic channel. The information is transmitted as frames, the length of which is 20 ms. The base station and the personal station may send information at a varying data rate. Data transfer rates when using rate set 1 are 9600, 4800, 2400 and 1200 bps respectively while the corresponding frame bit numbers at different rates are 192, 96, 48 and 24 bits respectively. When using rate set 2, data transfer rates are 14400, 7200, 3600 and 1800 bps respectively while the corresponding frame bit numbers are 288, 144, 72 and 36 bits. The frame bits are formed by information bits, frame quality indicator bits and encoder tail bits. The essential thing is that in both directions the structure of the traffic frame is different at different transfer rates, so when identifying the frame structure the transfer rate will also be known. Such modulation symbols which are transferred at a lower data rate are also transmitted with a lower energy, but although the data rate varies from one frame to another, the symbol modulation rate is kept constant. When entering Es energy per symbol and Eb energy per information bit, the following Table 1 according to the standard will apply: two successive modulation symbols are removed at regular intervals and they are replaced with a power control bit. Thus, the time width of one power control bit is 104.166 ms. The procedure is generally known in the field and it is called symbol puncturing. The puncturing figure shows which symbols are removed from the frame and replaced with power control bits. The power control bit is transmitted with energy Eb. Having received the power control bit, the personal station will increase or decrease its transmission power in the direction indicated by the bit. The power control bit is considered genuine, if it was received in that 1.25 ms time slot, which is the second time slot counting from the time slot in which the personal station has transmitted. The change of power level is a small step, and the standard determines that one bit changes the power level by 1 dB. A great change of the power level will thus require transmission of several power control bits. As is done in FDD/TDMA systems, DTX (Discontinuous Trans-mission) is also used in CDMA systems. In a broader sense, DTX also includes an asymmetric case where information is transferred in one direction only, while acknowledgements are transferred in the opposite direction. An Internet connection is an example of such a situation. Power control commands are sent to the receiving party at a normal frequency even if the party is sending information only occasionally. It is possible to go over to the DTX state in different ways. Firstly, when the personal station discovers that the data transfer rate which it needs is dropping, it will first send to the base station information on the data rate to be used in the following radio frame and then from the next frame forward it will use the rate which it stated. Secondly, the personal station may change the transfer rate during the connection without further ado. The base station will learn the transfer rate from the frame structure, because, as was said above, when the frame structure is identified the used transfer rate will also be known, since the frame structure varies at different transfer rates. It is a problem in the presented CDMA system and also in other known CDMA systems that power control commands of one or several bits are always sent at the same standard frequency and energy. Power control is fast so that the transmission power will comply as closely as possible with changes in the radio path. In addition, power control commands are sent both in the forward direction and in the reverse direction at the same TABLE 1Data rateEnergy per modulation symbol9600Es = Eb/24800Es = Eb/42400Es = Eb/81200Es = Eb/1614400 Es = Eb/47200Es = Eb/83600Es = Eb/161800Es = Eb/32 Each forward traffic channel contains a power control sub-channel, which is used for transmitting such power control commands to the personal station during the communication, in response to which the personal station will change its transmission power. The power control channel is described in item 3.1.3.1.8 of the specification proposal. From its received personal station signal the base station calculates the signal power always with intervals of 1.25 ms, which time corresponds to 16 modulation symbols. Judging by the signal power the base station will command the personal station to increase or decrease the transmission power. Thus a big power control loop is formed, which comprises the personal station, the base station and the two-way radio channel in between. The base station may also control its own transmission power to correspond with the power measurement reports which it receives from the personal station. This is so because the personal station constantly keeps statistics on frame errors and sends the power measurement report regularly or when a certain threshold value is exceeded. The power control sub-channel is formed in such a way that power control bits are sent constantly among the normal traffic channel bits. The power control bits are repeated cyclically at intervals of 1.25 ms. Hereby the bit rate of the power control channel is 800 bps. Bit 0 means that the personal station must increase its transmission power, and correspondingly bit 1 means a command to lower the transmission power. The bits are located in the frame so that from the completed traffic frame, which is a convolution coded and interleaved frame formed from modulation symbols, frequency and the power control will thus not be affected by the transfer rate used, by asymmetry of the data transfer or by the fact that either party may be in the DTX state. The outcome is, that in the DTX state and when using a reduced data transfer rate, the power control will use a disproportionately large share of the radio link's capacity. It is thus an objective of the present invention to bring about a method of power control which adapts to the data transfer situation, releasing radio link capacity for other use in the DTX state and at a reduced data transfer rate. The objective is achieved with the method defined in the independent claims.
{ "pile_set_name": "USPTO Backgrounds" }
Incandescent lamps are commonly used for a wide variety of indicator lights. Although these incandescent lamps generally provide good optical performance, they have several significant drawbacks. Namely, incandescent lamps have low reliability and a short life cycle so that replacement is frequently required. These shortcomings can be particularly troublesome when the lamp is mounted in a difficult to access location. The cost of the labor to replace the lamp is often several orders of magnitude greater than the cost of the lamp itself. Due to the high demand for increased reliability, there have been recent efforts to utilize LEDs as replacements in existing incandescent lamps. The LED is an attractive alternative because of its high reliability and longer life expectancy. Moreover, the LED can also be easily retrofitted into incandescent bulb applications. This approach, however, suffers from poor optical performance when compared to conventional incandescent lamps. The single LED simply does not produce the same amount of light as a single incandescent bulb, and therefore, it is generally necessary to employ a number of LEDs in a cluster to produce the same amount of light. Moreover, the light emitted from most LEDs is highly directional resulting in a narrow effective viewing angle often requiring the viewer to be positioned directly in front of the lamp. Accordingly, there is a current need for a visual indicator lamp with the high reliability of an LED and the optical performance of an incandescent lamp.
{ "pile_set_name": "USPTO Backgrounds" }
1. Technical Field This disclosure relates to computing systems. More particularly, the disclosure relates to systems and methods for managing data retention in a data storage system. 2. Description of the Related Art Solid-state memory may utilize transistor devices to store charge representing data. Over time, such transistor devices can lose charge, causing data retention issues. Data retention in solid-state storage devices can depend of various environmental conditions, such as temperature.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to methods of feeding poultry during growth, or egg production, and in particular, it relates to methods for optimizing, meat production, egg production, growth or feed efficiency. For purposes of this application, the word poultry will be used to refer to domesticated birds which are raised and kept for the purpose of collecting their eggs, or raised for their meat and/or feathers. These domesticated birds are typically members of the superorder Galloanserae (fowl), especially in order Galliformes (which includes chickens, quails and turkeys) and the family Anatidae (in order Anseriformes), commonly known as “waterfowl” (e.g. domestic ducks and domestic geese). The word poultry also includes other birds which are killed for their meat, such as pigeons or doves or birds considered to be game, such as pheasants. Of particular interest are domesticated chickens, turkeys, geese and ducks which are invaluable in supplying meat or eggs to the population of most industrialized countries. In order to stay profitable, owners have had to optimize the amount of meat, eggs or growth produced. Profits are realized more readily when feed is utilized efficiently for growth and or meat production or egg production. Nonstructural carbohydrates have been used in attempts to increase growth, meat, and egg production. Such nonstructural carbohydrates include starches, soluble sugars and other reserved carbohydrates. Starches are of particular importance since starch in the form of grains such as corn, sorghum, oats, wheat and the like can be purchased at economical prices or grown by the producer. Starch includes both amylose and amylopectin molecules which in turn are broken down to glucose for availability to poultry. However, the dynamics of the avian gastrointestinal system are such that the availability of starch in grains to enzymatic digestion can affect both feed efficiency and egg production. Review of the prior art indicates no specific solution to optimizing the feed efficiency and egg production resulting from feeding various starch sources. Thus the dilemma results of how to increase meat, and egg production since increasing starch intake to improve digestibility can lead to reduced health, production and feed efficiency.
{ "pile_set_name": "USPTO Backgrounds" }
Motors and actuators are used in myriad applications. The system requirements for many of these applications are requiring ever-wider dynamic output torque ranges, while maintaining sufficient resolution. For example application is for missile guidance systems, where one or more multi-phase electric motors or actuators are used to control a thruster nozzle, which controls where the missile goes. More specifically, the motors supply output torques to hold the nozzle in place or to reposition the nozzle, in order to hold or change, respectively, the course of the missile. Over the duration of a missile flight, the motors or actuators may need to produce output torques that dynamically vary over a relatively wide range. The agility of a missile, which is defined as its ability to avoid obstacles and make last minute adjustments for target acquisition, is controlled by its dynamic, high torque capabilities. High resolution torque requirements are necessary for stability, fine pointing, and compensation for minor disturbances due to weather. Thus, the wider the torque range, the more agile the missile; however, the resolution needs to be maintained to control the stability. A motor produces output torque by having current driven through its windings. As is generally known, the torque produced by each motor winding at any given time is the product of the current supplied to the winding and the torque constant of the winding for the winding position at that time. The sum of each of the individual winding torques is the motor output torque. Because motor current is an analog parameter, many heritage motor drive control systems were analog-based systems. Even though digital electronics can be used to control analog parameters such as motor current, digital motor drive control systems, at least until recently, were not significantly utilized. One reason for this is because processors did not possess sufficiently fast processing speed capability to handle multiple motor winding current loops. Also, previously known digital motor drive control systems paid a relatively large power and/or weight penalty as compared to the analog-based systems that performed the same function. More recent digital motor drive control systems have the speed and processing capability to handle multiple current loops. These digital systems also have the processing capability to allow multiple signals (acceleration, speed, rate and position) to be derived from a single detector, thereby reducing the number of mechanical components. This latter factor helps to balance, or perhaps tip, the scales in the area of weight. It was previously noted that, at least for some applications, it is desirable to widen the torque range of a motor, while at least maintaining sufficient resolution. Two methods have been identified to achieve this goal. One of the identified methods is to use two motors scaled to operate over different torque ranges and with their performances meshed together, the other identified method is to reduce the ground floor noise. With regard to the two motor method, including additional motors in a system can adversely impact weight and cost, especially in airborne environments such as missiles and other projectiles. As to the method of reducing ground floor noise, significant progress has been made. In an analog motor drive control system, resolution is generally defined as the level of ground floor noise. Heritage analog motor drive control systems typically operate off of ±12 VDC or ±15 VDC secondary power sources. Thus, the normal operating range for these systems is in the range of about +10V to −10V. A typical system with a range of +10V to −10V and a ground floor noise of 5 ma has about 12-bits of resolution. The ground floor noise in some analog motor drive control systems has been pushed down to 1 ma, which is equivalent to 14-bit resolution, and some analog motor drive control systems have pushed the ground floor noise down to 0.3 ma, which equivalent to 16-bits of resolution. With regard to digital motor drive control systems, the simplest of these systems presently have 16-bits of resolution, although some systems have 32-bits of resolution, and others even have 64-bits of resolution. Of course, in these digital motor drive control systems the digital signals have to be converted to analog signals, and analog feedback signals have to be converted to digital signals. However, most digital-to-analog (D/A) converters and analog-to-digital (A/D) converters have resolutions limited to a range of 12-bits to 16-bits. Thus, resolutions greater that 16-bits may not be achievable even in digital motor drive control systems. Accordingly, it is desirable to provide a method and system for controlling a single multi-phase motor or multi-phase motor driven actuator that increases the control resolution allowing for a wider torque output range. Additionally, it is desirable to provide a method and system for controlling a motor or actuator that increases the control resolution while minimizing torque ripple. Furthermore, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description of the invention and the appended claims, taken in conjunction with the accompanying drawings and this background of the invention.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a compact radio equipment such as a cell phone or radio communication terminal, and a mounting method thereof. Conventionally, when electric circuits divided into two or more blocks and mounted on two or more printed circuit boards are mounted in the equipment, a first printed circuit board and a second printed circuit board are electrically connected using one of various kinds of connectors or pin contact systems. A frame is mounted between the first and second printed circuit boards not only to protect the electric circuits on the first printed circuit board, but also position and fix the second printed circuit board (see JP-A-2001-111232). The conventional frame mentioned above is molded of resin, or made from die cast alloy. The second printed circuit board is secured with screws or engaged with hooks. In case of a resin molded frame, a certain thickness is required in the manufacturing process. The increased thickness of the frame is the cause of preventing the achievement of a small, thin radio equipment design. The use of screws to secure the second printed circuit board requires an additional step of attaching the screws at manufacturing facilities, and this reduces workability. On the other hand, the use of hooks to secure the second printed circuit board causes another problem that the hooked portions are susceptible to damage. The die cast alloy is suitable for making the equipment small and thin, but manufacturing costs are high. It may also require an additional step of attaching screws like in the case of resin molding. Further, the use of a connector or pin contact system to electrically connect the electric circuits on the first printed circuit board and the electric circuits on the second printed circuit board is not enough to supply adequate ground potential. Therefore, a resin molded frame with aluminum deposited on it is used as a conduction material. In other words, metal springs or pins are mounted on the first and second printed circuit boards so that they will electrically contact the aluminum deposited frame. Thus, the supply of the ground potential is enhanced. However, since aluminum deposition is expensive, the cost of a resin molded frame with aluminum deposited on it becomes high. Further, since the resin molded frame with aluminum deposited on it is of a contact type, adequate conductivity cannot be obtained. In this case, since not only is the supply of the ground potential inadequate, but the thermal conductivity is also insufficient, heat may be built up in a local place.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to the audio signal processing, and in particular, to the audio signal processing in situations in which the available data rate is rather small. The hearing adapted encoding of audio signals for a data reduction for an efficient storage and transmission of these signals have gained acceptance in many fields. Encoding algorithms are known, in particular, as “MP3” or “MP4”. The coding used for this, in particular when achieving lowest bit rates, leads to the reduction of the audio quality which is often mainly caused by an encoder side limitation of the audio signal bandwidth to be transmitted. It is known from WO 98 57436 to subject the audio signal to a band limiting in such a situation on the encoder side and to encode only a lower band of the audio signal by means of a high quality audio encoder. The upper band, however, is only very coarsely characterized, i.e. by a set of parameters which reproduces the spectral envelope of the upper band. On the decoder side, the upper band is then synthesized. For this purpose, a harmonic transposition is proposed, wherein the lower band of the decoded audio signal is supplied to a filterbank. Filterbank channels of the lower band are connected to filterbank channels of the upper band, or are “patched”, and each patched bandpass signal is subjected to an envelope adjustment. The synthesis filterbank belonging to a special analysis filterbank here receives bandpass signals of the audio signal in the lower band and envelope-adjusted bandpass signals of the lower band which were harmonically patched in the upper band. The output signal of the synthesis filterbank is an audio signal extended with regard to its bandwidth, which was transmitted from the encoder side to the decoder side with a very low data rate. In particular, filterbank calculations and patching in the filterbank domain may become a high computational effort. Complexity-reduced methods for a bandwidth extension of band-limited audio signals instead use a copying function of low-frequency signal portions (LF) into the high frequency range (HF), in order to approximate information missing due to the band limitation. Such methods are described in M. Dietz, L. Liljeryd, K. Kjörling and O. Kunz, “Spectral Band Replication, a novel approach in audio coding,” in 112th AES Convention, Munich, May 2002; S. Meltzer, R. Böhm and F. Henn, “SBR enhanced audio codecs for digital broadcasting such as “Digital Radio Mondiale” (DRM),” 112th AES Convention, Munich, May 2002; T. Ziegler, A. Ehret, P. Ekstrand and M. Lutzky, “Enhancing mp3 with SBR: Features and Capabilities of the new mp3PRO Algorithm,” in 112th AES Convention, Munich, May 2002; International Standard ISO/IEC 14496-3:2001/FPDAM 1, “Bandwidth Extension,” ISO/IEC, 2002, or “Speech bandwidth extension method and apparatus”, Vasu Iyengar et al. U.S. Pat. No. 5,455,888. In these methods no harmonic transposition is performed, but successive bandpass signals of the lower band are introduced into successive filterbank channels of the upper band. By this, a coarse approximation of the upper band of the audio signal is achieved. This coarse approximation of the signal is then in a further step approximated to the original by a post processing using control information gained from the original signal. Here, e.g. scale factors serve for adapting the spectral envelope, an inverse filtering and the addition of a noise carpet for adapting tonality and a supplementation by sinusoidal signal portions, as it is also described in the MPEG-4 Standard. Apart from this, further methods exist such as the so-called “blind bandwidth extension”, described in E. Larsen, R. M. Aarts, and M. Danessis, “Efficient high-frequency bandwidth extension of music and speech”, In AES 112th Convention, Munich, Germany, May 2002 wherein no information on the original HF range is used. Further, also the method of the so-called “Artificial bandwidth extension”, exists which is described in K. Käyhkö, A Robust Wideband Enhancement for Narrowband Speech Signal; Research Report, Helsinki University of Technology, Laboratory of Acoustics and Audio signal Processing, 2001. In J. Makinen et al.: AMR-WB+: a new audio coding standard for 3rd generation mobile audio services Broadcasts, IEEE, ICASSP '05, a method for bandwidth extension is described, wherein the copying operation of the bandwidth extension with an up-copying of successive bandpass signals according to SBR technology is replaced by mirroring, for example, by upsampling. Further technologies for bandwidth extension are described in the following documents. R. M. Aarts, E. Larsen, and O. Ouweltjes, “A unified approach to low- and high frequency bandwidth extension”, AES 115th Convention, New York, USA, October 2003; E. Larsen and R. M. Aarts, “Audio Bandwidth Extension—Application to psychoacoustics, Signal Processing and Loudspeaker Design”, John Wiley & Sons, Ltd., 2004; E. Larsen, R. M. Aarts, and M. Danessis, “Efficient high-frequency bandwidth extension of music and speech”, AES 112th Convention, Munich, May 2002; J. Makhoul, “Spectral Analysis of Speech by Linear Prediction”, IEEE Transactions on Audio and Electroacoustics, AU-21(3), June 1973; U.S. patent application Ser. No. 08/951,029; U.S. Pat. No. 6,895,375. Known methods of harmonic bandwidth extension show a high complexity. On the other hand, methods of complexity-reduced bandwidth extension show quality losses. In particular with a low bitrate and in combination with a low bandwidth of the LF range, artifacts such as roughness and a timber perceived to be unpleasant may occur. A reason for this is the fact that the approximated HF portion is based on a copying operation which leaves harmonic relations of the tonal signal portions unnoticed with regard to each other. This applies both, to the harmonic relation between LF and HF, and also to the harmonic relation within the HF portion itself. With SBR, for example, at the boundary between LF range and the generated HF range, occasionally rough sound impressions occur, as tonal portions copied from the LF range into the HF range, as for example illustrated in FIG. 4a, may now in the overall signal encounter tonal portions of the LF range as to be spectrally densely adjacent. Thus, in FIG. 4a, an original signal with peaks at 401, 402, 403, and 404 is illustrated, while a test signal is illustrated with peaks at 405, 406, 407, and 408. By copying tonal portions from the LF range into the HF range, wherein in FIG. 4a the boundary was at 4250 Hz, the distance of the two left peaks in the test signal is less than the base frequency underlying the harmonic raster, which leads to a perception of roughness. As the width of tone-compensated frequency groups increases with an increase of the center frequency, as it is described in Zwicker, E. and H. Fastl (1999), Psychoacoustics: Facts and models. Berlin—Springerverlag, sinusoidal portions lying in the LF range in different frequency groups, by copying into the HF range, may come to lie in the same frequency group here, which also leads to a rough hearing impression as it may be seen in FIG. 4b. Here it is in particular shown that copying the LF range into the HF range leads to a denser tonal structure in the test signal as compared to the original. The original signal is distributed relatively uniformly across the spectrum in the higher frequency range, as it is in particular shown at 410. In contrast, in particular in this higher range, the test signal 411 is distributed relatively non-uniformly across the spectrum and thus clearly more tonal than the original signal 410.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a radio-frequency wave module used in appliances such as, e.g., mobile wireless terminals and image transmission devices which are operated at the microwave band or higher. In radio-frequency wave packages used for the appliances such as microwave-band-or-higher mobile wireless terminals and image transmission devices, small-sized implementation, hermetic-structure implementation, and radio-frequency wave implementation of the packages have become important factors from the viewpoints of their mountability and simplified implementation. In the conventional radio-frequency wave packages used for the appliances such as microwave-band-or-higher mobile wireless terminals and image transmission devices, a first example which uses a metallic housing and a multilayered dielectric substrate is as follows: Namely, as is indicated in a catalog of Dielectric Laboratories in March 2003, i.e., Microwave Application Lab.: “RF and Microwave Packaging Technology” (Non-Patent Document 1), the multilayered dielectric substrate, on which a distributed parameter element based on a transmission path is formed, is deployed on the surface of the grounding-use metallic housing. In the structure of this first example, a concave portion in a cavity structure for containing semiconductor-including mounted components therein, and grounding-use metallic electrodes are provided on the multilayered dielectric substrate deployed on the surface of the grounding-use metallic housing. Moreover, the distributed parameter element based on the transmission path is formed up to the end surface of the concave portion in the cavity structure, thereby transmitting a radio-frequency wave signal to the semiconductor-including mounted components. Similarly, a second example which uses the metallic housing and the multilayered dielectric substrate is as follows: Namely, as is indicated in the above-described Non-Patent Document 1, the multilayered dielectric substrate, on which the distributed parameter element based on the transmission path having the grounding-use metallic electrodes on the same surface is formed, is deployed on the surface of the grounding-use metallic housing. In the structure of this second example, the concave portion in the cavity structure for containing the semiconductor-including mounted components therein, and the grounding-use metallic electrodes are provided on the multilayered dielectric substrate deployed on the surface of the grounding-use metallic housing. Moreover, the distributed parameter element based on the transmission path having the grounding-use metallic electrodes on the same surface is formed up to the end surface of the concave portion in the cavity structure, thereby transmitting the radio-frequency wave signal to the semiconductor-including mounted components. Similarly, a third example which uses only the multilayered dielectric substrate is as follows: Namely, as is indicated in 31st European Microwave Conference in 2001.: “60 GHz-Band Flip-Chip MMIC Modules for IEEE 1394 Wireless Adapters” (Non-Patent Document 2), a dielectric substrate, on which the distributed parameter element based on the transmission path having the grounding-use metallic electrodes on the same surface is formed, is deployed on the surface of the multilayered dielectric substrate on which the grounding-use metallic electrodes are deployed. In the structure of this third example, the concave portion in the cavity structure for containing the semiconductor-including mounted components therein, and the grounding-use metallic electrodes are provided on the multilayered dielectric substrate deployed on the surface of the grounding-use metallic electrodes. Moreover, the distributed parameter element based on the transmission path having the grounding-use metallic electrodes on the same surface is formed up to the end surface of the concave portion in the cavity structure, thereby transmitting the radio-frequency wave signal to the semiconductor-including mounted components. In these structures, there exist the following two advantages: Namely, one advantage is that, on account of the dielectric substrates on which the transmission-path-based distributed parameter element is formed, the radio-frequency wave signal can be propagated up to the end surface of the cavity-structured concave portion for containing the semiconductor-including mounted components therein, or up to the end surface of the cavity-structured hollow space for containing the semiconductor-including mounted components therein. Also, another advantage is that, on account of simplicity of the structure of the transmission-path-based distributed parameter element, the small-sized implementation of the packages can be accomplished.
{ "pile_set_name": "USPTO Backgrounds" }
It is desirable to monitor retailer compliance with advertising programs. Advertising that is not displayed has no value to a company. However, non-compliance with an advertising program is difficult to detect in a timely manner. In the past, the primary way to collect information about whether retail outlets were complying with an advertising program was to rely on site surveys. These surveys were typically performed by manufacturer sales representatives, store delivery personnel, or independent survey companies. However, site surveys are generally expensive, incomplete, and untimely. The direct costs associated with site surveys are substantial. Independent survey companies charge significant fees for travel time, as well as for data collection/tabulation. Consequently, information is typically available for only a subset or sample of the thousands or tens-of-thousands of stores targeted for a particular advertising program. To save money, some companies request that delivery personnel and/or sales representatives compile compliance information while they are at a retail store for other purposes. The diversion of these personnel from doing their ordinary tasks (such as restocking or selling) can be substantial. Moreover, these personnel have little compliance training or Quality Assurance skills to ensure reporting consistency or accuracy. In addition, such visits are not of sufficient frequency to ascertain exactly when compliance with a particular advertising program began or ended. Furthermore, compliance survey reports (whether by professionals or company personnel) usually lag the survey date. This delay prevents a timely rectification for non-complying stores. In particular, if an advertising program is designed to run for two weeks, it is important to know within a day of when the program was supposed to start which retail sites are out of compliance so the sites can be made compliant in a timely manner. The size of the staff and expense required to visit all advertising sites within 48 hours is prohibitive. Therefore, surveys or visits to a subset of sites are the only practical way to monitor compliance. However, for the reasons stated above, surveys are only sufficient for general or strategic conclusions, and are incapable of improving tactical POP compliance in a timely manner. Visits to a subset of sites do not yield sufficient information for full-compliance advertising goals. Companies, such as petroleum companies and consumer packaged goods companies, spend millions of dollars to run a given POP program. Retail performance varies greatly. However, it is common for more than 50% of retail sites, presumed to be participating, to be out of compliance. The system described herein provides an efficient system for quickly identifying every non-complying site by using tags (e.g., wireless RFID tags) on each advertising sign or marketing material. The system also provides companies with information about when a POP program is running, what advertising is and is not being displayed, and when new signs will be produced and shipped to retail outlets. The system can monitor other merchandising conditions besides signage, such as the presence or absence of display racks or containers, the presence of promotional hardware, or the presence of certain items to be sold under certain conditions. The system can be expanded to report when the amount of product on a display is getting low. Where desired, it can report not only the presence of certain marketing materials, but also whether or not they have been displayed in the proper location within a store. The system can also report the cumulative number of days a store is out of compliance. It can also monitor and report the displayed price associated with particular signs or marketing materials. The system can also monitor and report exposure of particular shoppers to signs and marketing materials that are being monitored by the system. The system will therefore allow companies to monitor and remedy compliance problems during an advertising program, which will improve overall compliance and increase the effectiveness of the advertising program. It will also allow fee-based marketing programs that are conditional upon certain retail conditions being present at a particular time to be executed with more precision, reliability, and verifiability. Furthermore, it will allow the flow of specific shopper traffic within a store to be monitored and analyzed. In addition, the system will allow subsequent marketing programs, such as coupons or direct mail, to be tailored to or made conditional on shopper interests, shopping patterns, or prior exposure to marketing materials. Therefore, it is desirable to provide an advertising or marketing material compliance monitoring system that provides compliance monitoring in a timely and cost effective manner. It is also desirable to provide an advertising compliance monitoring system that makes determining compliance easy. It is desirable to provide a wireless compliance monitoring system that uses active tags that conserve battery power. It is also desirable to provide a wireless compliance monitoring system that uses active, passive and/or backscatter tags to determine the specific location (within a defined range) of selected marketing materials and/or version of selected marketing materials. It is desirable to provide a wireless compliance monitoring system that uses contact technology (such as EEPROM, optical, notch, and conductive or magnetic ink) to determine the specific location (within a defined range), featured price, low-product conditions on a display, and/or presence/version of selected marketing materials. It is also desirable to provide a wireless compliance monitoring system that includes a Backscatter Reader System that uses Backscatter Tags and Backscatter Reader Transponders. It is desirable to provide a compliance monitoring system that uses passive tags that are small and light, making it easier to secure to advertising signs. It is also desirable to transmit data from sign locations to a central collection point at individual retail sites using wireless technology for ease of installation at retail sites. It is desirable to provide a switch on the reader for switching a tag between different power conservation modes, such as OFF, sleep mode, or continuous monitoring mode. It is also desirable to transmit data from each retail site to a central storage/processing location to report individual and aggregate retailer execution of and consumer exposure to specific and aggregated marketing programs. Thus, a need exists for an advertising compliance monitoring system that provides versatility and flexibility by providing a tag, associated with a specific sign that communicates tag data to an external reader. The system described herein provides a way to quickly and positively identify each tag, determine the status of each sign (e.g., delivered, displayed), monitor compliance with a marketing program, monitor customer exposure to a marketing program, and analyze tag data relating to the display of and exposure to advertising signs, marketing materials, pricing information, marketing program merchandise, and supporting hardware.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to an apparatus for processing a service and method thereof. Although the present invention is suitable for a wide scope of applications, it is particularly suitable for processing services among a plurality of devices. 2. Discussion of the Related Art Smart televisions (TVs) are now becoming popular. A traditional remote controller is used to operate the smart TV. The integration of a user's mobile terminal with the functions provided by the smart TV has not been sufficiently addressed. Further, the mobile device and TV adhere to their own exclusive domain and do not smoothly work together.
{ "pile_set_name": "USPTO Backgrounds" }
Enterprise software systems are typically sophisticated, large-scale systems that support many, e.g., hundreds or thousands, of concurrent users. Examples of enterprise software systems include business intelligence and business analytics tools, financial planning systems, budget planning systems, order management systems, inventory management systems, sales force management systems, enterprise reporting tools, project and resource management systems, and other enterprise software systems. Many enterprise performance management and business planning applications require a large base of users to enter data that the software then accumulates into higher level areas of responsibility in the organization. Moreover, once data has been entered, it must be retrieved to be utilized. The system may perform mathematical calculations on the data, combining data submitted by one user with data submitted by other users. Using the results of these calculations, the system may generate reports for review by higher management. Often these complex systems make use of dimensional data sources that organize and manipulate a potentially tremendous volume of data using various data structures. Dimensional data sources may include a plurality of hierarchical dimensions having levels and members for storing dimensional data. Reporting and analysis end user products (typically referred to as Business Intelligence, or BI, tools) allow users to perform data exploration and analysis on a myriad of data sources, including dimensional data sources. Data from such dimensional data sources may be viewed and explored in forms such as grids and charts.
{ "pile_set_name": "USPTO Backgrounds" }
High data reliability, high speed of processing and data access, and reduced apparatus size are features that are demanded from electronic apparatuses. In recent years, there has been an effort to reduce a size of a printed circuit board inside electronic devices. As part of that effort to reduce the size, the printed circuit board may be manufactured to include multiple circuit layers of integrated circuits and surface components densely mounted or embedded. When a size is reduced, a plurality of vias for power supply across layers of the printed circuit board may be densely located in each layer. Typically, the plurality of vias may be coupled to a power supply pin of an electronic component to supply power to the electronic component, and the plurality of vias may be located around the power supply pin of the electronic component. If one via of the plurality of vias may be located closer to the power supply pin among the plurality of vias, an impedance of a path (e.g., wiring, etc.) between the power supply pin and the one via may be lower which causes a higher current stressed on the path that leads to overheat or damage to surrounding components on the printed circuit board. In order to prevent such overheat or damage, a layout of the printed circuit board was designed to include the plurality of vias for power supply having a substantially equal electrical distance from the power supply pin in a manner that impedances between the power supply pin and the plurality of vias become substantially the same. However, the plurality vias with the substantially equal impedance by using the same wiring, located at the same distance from the power supply pin on a same layer may cause an obstacle for optimization of mounting a number of components densely on a limited space of the printed circuit board. Another attempt to prevent such overheat or damage was to provide a layout of the printed circuit board with arrangements of power voltage supply regions on layers. FIG. 1A is a schematic diagram of a conventional printed circuit board 1 including a plurality of layers 10, 20, 30 and 40 and a plurality of vias 5 to 8. FIGS. 1B-1E are simplified layout diagrams of the plurality of layers 10, 20, 30 and 40 of the conventional printed circuit board 1. In particular, FIG. 1A is a side view of the printed circuit board 1 including the plurality of vias 5 to 8 coupled to a power voltage supply region 15 which provides a power supply voltage to a power supply pin 13 of an electronic component 11. The plurality of vias 5 to 8 are coupled to power voltage supply regions 32 and 41 on the layers 30 and 40, which maintain the same power voltage. Vias 9a and 9b are coupled to other voltage supply region 21 and 31 on the layers 20 and 30, which may function as a negative power supply (e.g., ground). The electronic component 11 also includes pins 12 and 14 on sides of the power supply pin 13, which transmit and receive other signals through wirings 16a and 16b. An area where the vias 5-8 are arranged is surrounded by wirings 16a and 16b. Because of the wirings 16a and 16b coupled to the pins 12 and 14, the vias 6-8 and the via 5 cannot be arranged at an equal distance from the power supply pin 13, which cannot avoid the concentration of current into the via 5. Thus, a different optimizing scheme for locating a plurality of vias to be coupled to a power supply pin may be desired.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to an improved method for managing volumes in a storage system. The amount of data that is handled by a firm of the present day is increasing, together with the increase of storage capacity of the storage system. While the capacity of the storage system increases, rather than the volumes in a storage system won't have a homogenous performance but each of them will have a variety of performance levels, respectively. The optimum strategy of layout design of volumes to be used to store data based on the importance is required. In addition, since the importance of data is not always at a certain level, moving data between volumes having different performance is often needed. Moving data between volumes is done in general by copying data from the source volume to the destination volume. In this case the data that exists in the destination volume is overwritten. The destination volume should be selected which must be an unused volume (the volume that stores only unnecessary data). Because of this, the storage management strategy with the assumption of moving data being anticipated requires for the system to have always an empty, blank volume to be served as a new destination of data. Always having a bunch of blank storage volumes to be served as the new destination volumes may be wasting the resource, and a high performance spare set of disk drives among other things not used for the routine work is not desirable in view of cost saving. In contrast to this, JP 2002-32197 A suggests a method for exchanging data between the source volume and the destination volume for the purpose of moving data between volumes. According to this method the data can be moved without overwriting existing data on the destination volume. In this prior embodiment, two extra volumes are provided for temporary data backup in addition to two principal volumes from and to which the data is exchanging, to copy data from two principal volumes exchanging data to the temporary backup volumes, then to copy the data backed up in the temporary volumes to their respective destination volumes. According to this method, moving data is available even when the destination volume is not empty, if only two temporary backup volumes are provided.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to an electro-optical light modulator suitable for use in light communication systems, light information processing systems, light wavelength multiplex signal transmitting apparatus, light wavelength separating switches and the like. In light communication systems and information processing systems utilizing light for the purpose of increasing transmission capacity, methods have been tried to increase the speed of modulation of the light and to use light fibers operating in a broader bandwidth for increased signal speed. However, there are practical limits to these methods which make it difficult to obtain a sufficiently large transmission capacity. As a method of further increasing the transmission capacity, light wavelength multiplex transmission systems have been developed. In the transmitting apparatus of these prior systems, light waves having different wavelengths are independently modulated and then synthesized. To effect such modulation, light waves emitted by a plurality of semiconductor lasers, oscillating at different wavelengths, are independently modulated and then synthesized; or a plurality of laser light waves having different wavelengths are modulated with different light modulators and then synthesized. According to the first of these two prior methods, since light sources of a number equal to the number of wavelengths to be synthesized are necessary, the transmitting apparatus of the light wavelength multiplex signal is extremely expensive. According to the latter method, it is necessary to use light modulators of a number equal to the number of wavelengths to be multiplexed. In order to synthesize modulated light waves having different wavelengths, it is necessary to use an optical system for this purpose which results in increasing the size of the apparatus. It is also known to use photo-lithographic techniques to form a plurality of light sources and light guides for modulating and synthesizing a plurality of light waves having different wavelengths. However, in this method, application and emission of light are difficult and transmission loss is so large that the method is not practical. Typically, a light wavelength multiplex transmission system requires a terminal device which independently modulates a plurality of light waves having different wavelengths and simultaneously transmits the modulated light waves; and, a receiving apparatus that includes a means for separating received light waves into different wavelength components and for coupling these components into different light paths. It is also necessary to provide a switch which electrically effects switching between different light paths, so as to couple, at a high speed, the light paths to a plurality of terminal devices. Among known methods for performing wavelength separating functions are an interference filter comprising a plurality of superimposed dielectric films, a prism-shaped light analyzer utilizing the property of variation of refractive index with wavelength, and a light analyzer utilizing a diffraction grid. In all of these devices, however, the light paths are fixed for all wavelengths so that it is necessary to use another device for effecting switching between light paths. In addition, it is also necessary to provide a device for switching light paths of different wavelengths. Increases in the number of such devices not only complicate the apparatus but also decrease the reliability thereof. In order to miniaturize and decrease the cost of the apparatus, it is advantageous to decrease the number of the devices to a minimum.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to a method and device for assembling a paper box by automatically folding an unfolded box paper along predetermined fold lines, and more specifically to a paper box assembling method and device applicable to making of a box body (lower box) and a lid box (upper box) for covering the box body, which can be transported and stored in its flat folded state and easily assembled fully in use with a simple operation. The applicant has disclosed, in Japanese Unexamined Patent Publication No. HEI 9-219960(A1), a pullout-type paper box made of cardboard and comprising a square box bottom part having four sides, outer wall parts respectively connected to the sides of the box bottom part through double fold lines, inner wall parts respectively connected to the outer sides of the outer wall parts through double fold lines, and box-bottom abutting parts respectively connected to the outer sides of the inner wall parts through fold lines. That is, the disclosed paper-made box has double side walls formed of the outer wall parts and inner wall parts. The aforenoted paper box made of cardboard having relative thick is formed in the flat state at a paper box factory and easily assembled in use. After assembled, the paper box can be returned to its flatly unfolded original state as occasion arises. On the other hand, an ordinary paper box having fold-line parts opposite to each other in parallel on both sides has been assembled and subjected to usage in the customary way. In most cases, the aforementioned pullout-type paper box has so far been assembled manually or marketed in its foldaway state. Thus, one worker can produce only 300 to 400 paper boxes of this type per day, and therefore, could not supply growing demand for paper boxes. Furthermore, the conventional method for assembling the paper box was practiced manually, but the conventional assembling work consumes much time. The present invention was made in the light of the aforenoted circumstances and has an object to provide a method and device for assembling a paper box capable of being produced on a large scale by automating the assembling of an ordinary paper box and pullout paper box and transported compact in its flatly folded state. To attain the object described above according to the present invention there is provided a method for assembling a paper box having both side wall members unfolded and connected to a box bottom panel through a pair of parallel fold lines, which comprises a first process of carrying the aforesaid paper box having the aforesaid both side wall members unfolded at a folding station at which long guide members each being longer than the longitudinal length of the aforesaid paper box into spaces between the aforesaid fold lines and the aforesaid guide members with a minute clearance each formed on fixed stands and having both outer end portions between which a distance substantially equal to a distance between the aforesaid both side wall members is defined, so as to coincide the aforesaid fold lines with the both outer end portions of the aforesaid guide members in position, a second process of folding inward the aforesaid both side wall member on the basis of the outer end portions of the aforesaid guide members in contact with the aforesaid fold lines by operating interfolding means disposed on both sides of the aforesaid fixed stands, and a third process of pulling out the aforesaid paper box having the both side wall members folded from the aforementioned folding station while gripping the front side in relation to the forwarding direction of the aforesaid paper box. The interfolding termed herein implies not only steadying of fold lines by folding, but also making of fold lines. The both side wall members mean portions on the outside of the parallel fold lines of the paper box. The formation of the paper box as described above enables the fold lines to be steadily folded and a large number of paper boxes to be manufactured in a short period of time. Besides, since the guide members are left secured in use, moving elements can be reduced in number, thus to decrease mechanical failure rate in operation. On the upstream side of the folding station, there may be disposed an adhesive applying station to previously apply adhesive to prescribed inner portions of the both side wall members of the aforesaid paper box. By applying adhesive before interfolding the paper box, the folded parts can be maintained firmly and easily. A paper box assembling device in a first embodiment according to the present invention for assembling a paper box having both side wall members unfolded and connected to a box bottom panel through parallel fold lines, comprises a folding station with fixed stands for placing the unfolded paper box thereon and a pair of guide members each being longer than the longitudinal length of the aforesaid paper box, which guide member is supported at the rear side in relation to the forwarding direction of the aforesaid paper box with a minute clearance formed on the fixed stands, which clearance has both outer end portions between which a distance substantially equal to a distance between the fold lines, and an interfolding mechanism including interfolding means disposed on both sides for folding inward the both side wall members of the aforesaid paper box placed on the aforesaid fixed stands, and a driving source for driving the interfolding means. With the structure described above, the unfolded paper box can be steadily folded along the fold lines with securing the guide members. The aforesaid interfolding mechanism may comprise a flexible sheet having basal portion fixed along the side end portions of the aforesaid fixed plates, an outer guide plate disposed on the intermediate part of the aforesaid flexible sheet and having the front end essentially abutting on the fold lines of the aforesaid paper box at the time of folding the paper box, the interfolding means secured on the front part of the aforesaid flexible sheet so as to cover the aforesaid side wall members at the time of folding, a lifting rod connected to the aforesaid interfolding means through a link member and disposed below the aforesaid fixed stands, and a drive means for driving the aforesaid lifting rod. By lifting the lifting rod, the link member, interfolding means and outer guide plate are rotated to fold inward the paper box along the fold lines. Since the flexible sheet is rotated simultaneously, the rotating axis is shifted in accordance with displacement of the fold lines of the paper box to be folded so as not to exert excessive force on the device. On the front side of the aforesaid interfolding means, there may be provided an elastic plate for pressing the front side of the interfolding means at the time of folding the paper box. According to the structure described above, the both side end portions of the paper box can be folded up into the inside of the fold line and firmly attached to each other. Moreover, in case of adhering, adhesion strength can be increased. By adjusting the thickness of the guide member, the aforesaid fold line may be a double fold line. Even when adopting the double fold lines, the paper box can be neatly folded. A paper box assembling device in a second embodiment according to the present invention for assembling a paper box having front, rear, left and right outer wall members connected to a square box bottom panel through pairs of first and second parallel fold lines, front, rear, left and right inner wall members connected to a square box bottom panel through pairs of third and fourth parallel fold lines, and side-panel connecting members connected to the respective side end portions of the adjoining outer wall members and provided on their intermediate portions with diagonal inward fold lines, which comprises a first folding station for allowing the aforesaid left and right inner wall members to be folded back inwardly along the aforesaid fourth fold line and adhered to the aforesaid left and right outer wall members through a first adhesive layer formed beforehand, a second folding station for allowing the aforesaid left and right outer wall members to be folded back inwardly along the aforesaid second fold line, folded up so as to overlap left and right peripheral edge portions of the aforesaid box bottom panel and allowing the aforesaid side-panel connecting members formed at the four corners thereof to be fold back inwardly along connecting fold lines extending from the aforesaid second fold line and adhered to the left and right peripheral edge portions of the aforesaid front and rear outer wall members corresponding to the aforesaid side-panel connecting members formed at the four corners through a second adhesive layer formed beforehand, a third folding station for allowing the aforesaid front and rear inner wall members to be folded inwardly along the aforesaid third fold line and adhered to the aforesaid front and rear outer wall members through the third adhesive layer formed beforehand, which first to third folding stations are each provided with fixed stands for allowing the aforesaid paper box to be placed thereon and a pair of interfolding mechanisms having interfolding means for folding the aforesaid outer or inner wall members inwardly, which interfolding means is disposed on both sides of the aforesaid fixed stands to fold inward the aforesaid outer wall members or inner wall members of the aforesaid paper box placed on the aforesaid fixed stands, while being in contact with the aforesaid outer wall members or inner wall members, and a driving source for driving the aforesaid interfolding means, which first and third folding stations each have a pair of guide members each being longer than the longitudinal length of the aforesaid paper box, which guide member is supported at the rear side in relation to the forwarding direction of the aforesaid paper box with a minute clearance formed on the fixed stands, which clearance has both outer end portions between which a distance substantially equal to a distance between the fold lines. The front, rear, left and right are termed herein for the convenience of description for accounting for the paper box assembling device according to the present invention, but the front-to-rear and left-to-right relationships may of course be reversed. With this mechanism, automation of assembling the paper box can be achieved by use of the multiple folding stations. The paper box assembling device of the invention may further comprise a first adhesive applying station for forming the aforesaid first and second adhesive layers, which is placed on the upstream side of the aforesaid first folding station, and a second adhesive applying station for forming the aforesaid third adhesive layer, which is placed on the upstream side of the aforesaid third folding station, so that the aforesaid first adhesive layer is formed on a part of the inside of each of the aforesaid left and right outer wall members, the aforesaid second adhesive layers are formed on the forward-facing end portion of the front piece of the side-panel connecting members disposed at the four corners and the backward-facing end portion of the rear piece of the side-panel connecting members, and the third adhesive layer is formed on the outer sides of the front and rear inner wall members or the inner sides of the front and rear inner wall members. The distance between the inner end portions of the left and right outer wall member is substantially equal to the distance between inner side end portions of the left and right side-panel connecting members. Thus, the first and second adhesive layers can be formed by allowing the paper box to pass a spray nozzle or coating roller for forming the adhesive layer. Since the first and second adhesive applying stations are on the respective upstream sides of the first and third folding stations, applying of the adhesive and folding of the portions applied with the adhesive can be carried out continuously so as to prevent the adhesive power of the adhesive applied to the paper box from being decreased on the way to the folding station. The first adhesive applying station, first folding station and second folding station may be located on a first transfer conveyor, and the aforesaid second adhesive applying station and third folding station may be located on a second transfer conveyor arranged orthogonal to the first transfer conveyor for turning the aforesaid paper box 90 degrees. With this mechanism, the direction in which the paper box is fed can be changed, so that the direction in which the paper box is folded by the third folding station can be made parallel to that in which the paper box is folded by the first and second folding stations. The processes from applying the adhesive to the paper box to adhere the paper box can be continuously carried out with respect of each of the front-to-rear and left-to-right directions.
{ "pile_set_name": "USPTO Backgrounds" }
Field of the Invention The present invention relates to materials that are useful for the containment of corrosive liquids, and more particularly to a carbon-permeated tantalum substrate and a method for its preparation. Description of Related Art Containment of corrosive liquids such as liquid metals and molten salts presents a challenge for material scientists. A variety of metallic and ceramic materials have been used conventionally for containment of corrosive materials like actinide metals. For example, U.S. Pat. No. 2,890,110 discloses crucible liners made of magnesium oxide or calcium oxide. U.S. Pat. No. 4,459,153 also uses magnesia crucibles. U.S. Pat. No. 3,328,017 discusses refractory crucibles composed of magnesium oxide, calcium fluoride, calcium oxide, or a mixture of CaO and CaF.sub.2. U.S. Pat. No. 2,894,832 uses a beryllium oxide crucible. U.S. Pat. No. 3,660,075 discloses graphite crucibles coated with niobium carbide or yttrium oxide. Crucible materials have also included pure tantalum and carburized tantalum having surface layers of tantalum carbide (TaC and Ta.sub.2 C). In particular, U.S. Pat. No. 3,804,939 teaches the use of a tantalum crucible. U.S. Pat. No. 2,908,563 discloses crucibles of graphite and tantalum. U.S. Pat. No. 3,715,204 discloses a crucible made of tantalum and a method for forming hydrides at the interface of the crucible and the product to dislodge the product material. Tantalum crucibles have several disadvantages though, particularly in containing liquid actinide metals undergoing processing. The molten metals wet the surfaces of the crucible, which leads to chemical and mechanical corrosion of the crucible. The corrosive liquid adheres to the crucible surfaces, attacks the grain boundaries of the crucible material, penetrates along the grain boundaries, and eventually detaches grains of crucible material that can dissolve in and contaminate the liquid. This corrosion causes the crucible to become brittle and eventually to break. The wetting of the crucible by the liquid metal also hinders the removal of the cooled product. Because of this wetting problem, tantalum containers are often carburized to form more resistant tantalum carbide surface layers. These surface coatings do not remain bonded to the substrate, however, but are stressed during cooling of the melt. A cooled, solidified material like plutonium, for example, has a thermal expansion coefficient quite different from the container material, which causes the layers of tantalum carbide to fracture and rip off during cooling and removal of the solid. The corrosion and delamination of the tantalum containers prevent their being used for long periods of time or reused over several thermal cycles. Continual replacement of tantalum containers is expensive and may be inefficient. Therefore, a container material is needed that is wettable by corrosive liquids, heat- and corrosion-resistant, and reusable over at least several processing cycles. The materials should have low solubility in the corrosive liquids, be readily fabricable into containers, and lack the weak, vulnerable coatings that fracture during use.
{ "pile_set_name": "USPTO Backgrounds" }
In order for two systems to enable two independent systems to communicate, each of the systems needs to include sufficient hardware and/or software to enable the two systems to interface.
{ "pile_set_name": "USPTO Backgrounds" }
It is desirable to degrade digital signals in many situations so as to restrict access. For instance, pay-TV broadcasts are degraded so those who haven't paid for the program cannot watch it because the picture is unclear, while those who have paid for the program see a clear picture because their recovery apparatus has been enabled. Most recently, as a result of the digital audio revolution, it is desirable to restrict MP3 (a standard bit-rate compressed audio file format) access. It is also desirable to produce inexpensive portable MP3 players, which in turn require that recovery of the original signal be simple. There are numerous existing methods of degrading digital content, a.k.a. scrambling. Some methods require a key to de-scramble the content, whereas others do not. Most scrambling or degrading methods are based upon either adding an interference signal to the digital content, or moving the bits around. Other methods use encryption, but this is very computationally intense.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to a material processing control system and method, in particular for controlling a viscous material processing system. In a viscous material processing system, feed is mixed and additives are injected in precise proportions to produce a customized product. The system requires exact and reliable dosing and feed operations to achieve uniform products with narrow tolerance properties. Accurately metering the material in a feed step can be critical to proper system operation. However, it is difficult to accurately process a viscous material. The material only slowly responds to change in feed rate. The material may be resistant to pouring or if it can be poured, pour rate can be extremely slow. The material may exhibit high levels of adhesion or tendency to stick to other materials may exhibit high levels of adhesion or tendency to stick to other materials and/or cohesion or a tendency to remain stuck to itself and therefore resistant to separation. The material may be shear thickening, exhibiting increasing viscosity as shear on the material is increased. These properties present problems to process control. Accurate quantities of the material are difficult to separate from a bulk of the material and are difficult to accurately process. Accordingly, three is a need to control processing of such material. Also, there is a need to accurately cut defined quantities of such material from a bulk quantity, regardless of the form of the bulk quantity and there is a need to accurately charge a viscous material to a processing system.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a sealing system for heavy lids for pits used in servicing aircraft at docking, loading and fueling terminals. 2. Description of the Prior Art At modern aircraft terminals servicing of aircraft on the ground is frequently performed using prefabricated pits which are installed at aircraft docking, fueling and loading areas beneath the surface of the tarmac across which aircraft travel during docking and departure maneuvers. The pits are typically formed of fiberglass, steel or aluminum and are constructed as enclosures with surrounding walls, and an access lid seated in an opening at the top of the walls. The pits are installed below the surfaces of loading and refueling aprons at aircraft terminals, remote parking locations and at maintenance bases. The purpose of the pits is to allow ground support functions to be carried out from subsurface enclosures. These ground support functions include the provision of fuel, the provision of electricity to the aircraft while it is in the docking area, the provision of air for cooling the aircraft interior, the provision of pressurized air for starting the aircraft engines, and for other aircraft support activities on-the ground. The use of subsurface pits eliminates the need for mobile trucks, carts and other vehicles which are otherwise present in the loading area and which interfere with the arrival and departure of aircraft in the vicinity of a loading gate. The use of subsurface pits also allows the provision of fuel, power, cooling and pressurized air, and other supplies from a central location. The necessary fluid supplies and electrical power can be generated or stored with a greater efficiency at a central location, as contrasted with mobile generating or supply vehicles. The pits located below the aircraft terminal area house valves, junction boxes, cooling air terminations and other terminal equipment that is temporarily connected to an aircraft that has been docked. Umbilical pipes and lines, otherwise housed within the pits, are withdrawn from the pits through hatches therein and are coupled to a docked aircraft to supply it with fuel, air for cooling the aircraft interior, pressurized air for starting the engines, and electrical power. The pits are constructed with either hinged or totally removable lids that can be moved between open positions allowing access to the pits and closed positions which are flush with the surfaces of the docking, loading or refueling areas across which aircraft travel and beneath which the pits are mounted. Because the pits are located below grade, there is a tendency for water, spilled fuel, dust and debris to fall into the pits through the interstitial cracks surrounding the pit lids within the frames in which the Pits are mounted. Since these vertical interstitial gaps represent a point below grade, rainwater and melting snow carries both liquid and solid debris into the gaps surrounding the pit lids. The liquid flows down into the pits carrying some of the debris with it. Also, whenever a pit lid is opened any debris remaining on the shoulder supporting the lid frame is likely to fall into the pit as well. The entry of dirt, debris and unwanted liquid into the pit enclosure can create problems. Such contaminants accelerate rusting and contribute to jamming of mechanical mechanisms, such as valves and latches. Also, dirt and debris tend to obscure the visibility of dials on pressure and volume gauges, and on dials indicating voltage levels. and other readings. To prevent unwanted contaminants from entering a subsurface pit through the interstitial gaps between the pit lid and the surrounding frame, various sealing systems have been employed. Such conventional sealing systems employ "wiper" seals in which a peripheral seal around a pit lid drags against the surrounding lid mounting frame wall as the lid is seated and unseated relative to the mounting frame. The effect of friction against the mounting frame wall rapidly degrades the integrity of the seal and significantly detracts from the effectiveness of the seal in a relatively short period of time. Thus, conventional pit lid sealing systems have proven unsatisfactory. Another problem with conventional pit lid sealing systems is that when the seals do degrade they are difficult to replace. Conventional seals are formed of an elastomeric material secured by an adhesive to the edge of the pit lids. When conventional seals become worn and start to leak, they must be pulled away from the lid and the old adhesive must be removed from the edge of the lid before a new replacement seal can be installed. The removal of the old adhesive is a time consuming process, so that worn and deteriorated seals are often not replaced as frequently as they should be.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a semiconductor memory device, and, more particularly, to a synchronous DRAM including a dedicated strobe signal used only for commands and addresses and an associated method. 2. Description of the Related Art To improve system performance, the integration and speed of semiconductor memory devices, in particular, DRAMs is continuously increasing. Notwithstanding these continuous advancements, a DRAM capable of processing more data at higher speed is necessary. Accordingly, a synchronous DRAM that operates synchronous with a system clock has been developed for high speed operation. The transmission speed of data has significantly increased with the appearance of the synchronous DRAM. In the conventional synchronous DRAM, the input and output of data are synchronous with a system clock. Commands and addresses are input responsive to a system clock. Accordingly, the commands and addresses must be transmitted from a memory controller to the synchronous DRAM within a predetermined cycle time of the system clock. Even though the commands and addresses arrive at the synchronous DRAM before the system clock, the commands and addresses are provided internally responsive to the arrival of the system clock. Therefore, the latency corresponding to the time difference between the arrival of the commands and addresses and the arrival of the system clock increases in the conventional synchronous DRAM. Also, when the cycle time of the system clock is reduced because of increased system clock frequency, it is difficult to transmit commands and addresses to all synchronous DRAMs in a memory module within a single clock cycle time in a memory module having multiple synchronous DRAMs. It is an object of the invention to overcome the disadvantages associated with conventional synchronous DRAMS. It is another object of the present invention to provide a synchronous DRAM that is capable of reducing a latency associated with a time difference between the arrival of commands and addresses and the arrival of a system clock and safely transmitting the commands and addresses to all the synchronous DRAMs of a memory module within a clock cycle time even when the frequency of the system clock increases. It is yet another object of the present invention to provide a method of inputting commands and addresses that is capable of reducing the latency corresponding to a time difference between the arrival of commands and addresses and the arrival of a system clock and safely transmitting the commands and addresses to all the synchronous DRAMs of a memory module within a clock cycle time even when the frequency of the system clock increases. A semiconductor memory device operating responsive to a system clock is provided. The device includes a strobe signal input buffer circuit for receiving a dedicated command and address strobe signal. A command input buffer circuit receives commands responsive to an output signal of the strobe signal input buffer circuit and latches the received commands. An address input buffer circuit receives addresses responsive to the output signal of the strobe signal input buffer circuit and latches the received addresses. The dedicated command and address strobe signal is different from the system clock. In one embodiment, the dedicated command and address strobe signal is activated only when the commands and the addresses are input to the semiconductor memory device. In another embodiment the dedicated command and address strobe signal is a free running clock that continuously toggles. A method of inputting commands and addresses responsive to a system clock is provided. The method includes receiving a dedicated command and address strobe signal, receiving commands responsive to the reference edge of the dedicated command and address strobe signal, and latching the received commands. The method further includes receiving addresses responsive to the reference edge of the dedicated command and address strobe signal and latching the received addresses, wherein the dedicated command and address strobe signal is different from the system clock. In one embodiment, the dedicated command and address strobe signal is activated only when the commands and the addresses are input to the semiconductor memory device. In another embodiment, the dedicated command and address strobe signal is a free running clock that continuously toggles.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to a machine-implemented method of and device for circle generation. More particularly, it pertains to a circle-generation employing a digital differential analyzer algorithm. In fields such as computer graphics, computer-controlled printing, and computer-aided design it is frequently necessary to generate circles and circular arcs by calculating coordinates representing a consecutive sequence of points on the circle or arc. One method for generating such circles and arcs that is described, for example, on pages 27 and 28 of Principles of Interactive Computer Graphics by Newman Sproull, published by McGraw-Hill, employs the general class of algorithms known as digital differential analyzers (hereinafter denoted DDA). The basic DDA circle-generation algorithm is derived from the differential equation of a circle centered at the origin of the coordinate system: ##EQU2## The discrete form of this equation is the difference equation (2): ##EQU3## in which x.sub.n and y.sub.n are the coordinates of the n-th point on the circle, x.sub.n+1 and y.sub.n+1 are the coordinates of the (n+1)-th point on the circle, and n is zero or a positive integer. Solutions to equation (2) have the following form: EQU x.sub.n+1 =x.sub.n +.epsilon.y.sub.n EQU y.sub.n+1 =y.sub.n -.epsilon.x.sub.n ( 3) If the circle or arc will be displayed on a raster device in which coordinates are expressed in integer pixel counts, and if the radius of curvature r of the circle or arc falls in the range: EQU 2.sup.(m-1) .ltoreq.r&lt;2.sup.m ( 4) then the value of .epsilon. should be 2.sup.-m to prevent the spacing between successive points from exceeding the distance between pixels. Making .epsilon. a negative power of 2 facilitates implementation of the algorithm in a computing device by allowing right shifts to be substituted for multiplications. The basic DDA circle-generation algorithm can be conveniently expressed by rewriting equation (3) as the matrix equation (5), in which the vector [x.sub.n y.sub.n ] represents the n-th point on the circle and the vector [x.sub.n+1 y.sub.n+1 ] represents the (n+1)-th point. The algorithm calculates [x.sub.n+1 y.sub.n+1 ] from [x.sub.n y.sub.n ] by performing matrix multiplication: ##EQU4## A problem with this algorithm is that the determinant of its matrix exceeds unity: ##EQU5## A consequence is that this algorithm plots not a true circle but a spiral in which successive points are disposed successively farther from the origin. If a complete circle is plotted, the starting point fails to coincide with the ending point. A prior-art solution to this problem given in the reference cited above is to compute y.sub.n+1 from x.sub.n+1 instead of x.sub.n. The preceding solution (3) is then modified as follows: EQU x.sub.n+1 =x.sub.n +.epsilon.y.sub.n EQU y.sub.n+1 =y.sub.n -.epsilon.x.sub.n+1 ( 6) A DDA circle-generation algorithm according to (6) can be expressed by the matrix equation (7): ##EQU6## The matrix in this equation has a determinant of unity: ##EQU7## Accordingly, successive points do not spiral outward, and if a complete circle is plotted, the starting and ending points coincide. However, the result is still not a true circle, because the algorithm shown in equation (7) is derived by altering the differential equation (1) to equation (8): ##EQU8## Equation (8) does not describe a circle. As pointed out in the reference cited above, the departure from circularity may be quite large for large values of .epsilon..
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates generally to peripheral devices, and more particularly to Universal Serial Bus (USB) devices. A Universal Serial Bus (USB) compatible peripheral device (e.g., printer, scanner, digital camera, etc.) is attached to a USB host device, such as a personal computer, either directly through a USB interface or through a USB hub. During operation, the host device sends the peripheral device data or command signals. The peripheral device then sends response signals to the host device. For example, a scanner begins to transmit picture data to the host device, a printer outputs a print job or sends an off-line or out-of-paper signal to the host device. The time that it takes for the host to receive the response signal is called xe2x80x9cturnaround timexe2x80x9d. For the full speed operational mode, the USB protocol provides a maximum of turnaround time of 6.5 USB clock cycles to respond to the host device. If the peripheral device does not respond within the maximum turnaround time period, the host device ignores the peripheral device. In conventional systems, a substantial component of transmission reception time is used to synchronize the signals from the clock domain of the data rate clock to the clock domain of the application (UTMI) and vice versa. Accordingly it is desirable to reduce the time needed for clock synchronization to maximize the time available for peripheral devices to perform their core function.
{ "pile_set_name": "USPTO Backgrounds" }
The removal and installation of manhole covers pose a problem for those who are charged with maintaining the infrastructure of utilities, such as the telephone system, the waterworks, the sewer system, and the like. A manhole cover may represent any one of a wide variety of heavy metallic and/or concrete structures which overlie an opening into an enclosed structure that is usually, but not necessarily, located underground. Manhole covers come in diverse sizes, shapes, and structures. They may be circular or rectangular in shape, and they may be hinged, as in connection with pull-box covers, or not hinged. The problem connected with their removal and installation stems from their typically great weight, which is often up to 300 lbs. At this weight, a manhole cover is too heavy for a person to handle without help. However, the use of two or more persons to move the cover poses an impractical solution. The two-person solution is inefficient because it requires two persons in many situations where one person would otherwise suffice. In addition, it is unsafe because two person operations are awkward and present a greater chance of muscle strain and other injuries. Thus, a tool is needed to help a single person manipulate the cover. Such tools have been devised and used in the utility industries. One such tool is a simple hook which allows for engagement with a manhole cover. However, the simple hook is unsatisfactory because it does not afford sufficient leverage. As a result, a person using a simple hook must bear the entire weight of the cover, and this burden risks injury to the person. Another prior art tool is illustrated in FIG. 1. As shown in FIG. 1, a handle selectively couples to a chain, which in turn couples to a hook. The handle and its coupling to the chain allow the person to use leverage in manipulating a manhole cover. Thus, a person need not bear the entire weight of the cover and a certain type of injury is reduced. However, the tool shown in FIG. 1 poses different and substantial risks to a person using it. For example, the tool's hook has a tendency to twist when it engages a manhole cover and become instantly disengaged therefrom when great forces are being exerted. Persons operating the tool may find themselves flung backward, often in the face of oncoming traffic. In addition, such persons must at the same time dodge an oncoming hook which is flung toward them when it becomes disengaged from the cover. The tool shown in FIG. 1 poses additional disadvantages. Persons charged with maintaining utility infrastructures often must deal with a wide variety of manhole cover configurations. While the FIG. 1 tool poses unnecessary risks to its operator in connection with any type of manhole cover, those risks increase when the tool is used in connection with types of manhole covers for which it was not designed to operate. It is impractical to carry many manhole cover tools, each one of which is specifically adapted for its own type of manhole cover configuration. Thus, such persons are urged to use the tool in dangerous situations because no better tools are available. Additionally, the FIG. 1 tool attaches its chain to its handle using a relatively small diameter eye bolt located on the side of the handle to keep the various pieces of the tool together. The proper use of the tool requires the chain to be hooked on an S-hook located on the front of the handle. Apparently this proper use is not obvious from viewing the tool. As a result, pulling operations are often performed using the eye bolt rather than the S-hook to transfer forces between the handle and the chain. Such operations cause damage to the tool.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a collapsible lens barrel, and in particular, to a collapsible lens barrel for use in a card type digital camera. 2. Description of the Related Art Digital cameras of a business card size called card type digital cameras preferably have no irregularities on their surfaces and are as thin as possible. However, a photographing lens and a photographing element require a specified optical path length. Consequently, a decrease in thickness is limited. Thus, in the card type digital camera described in Japanese Patent Application Publication No. 10-248029, a lens portion holding the photographing lens is adapted to extend from and collapse into a camera main body via a spring. Accordingly, before photographing, the lens portion is popped up from the camera main body to provide an optical path length for the photographing lens and element. However, with the method of popping up the lens portion to extend the photographing lens, it is impossible to precisely extend the photographing lens to a predetermined photographing position. Consequently, an image formed position may deviate from the correct one. This disadvantageously prevents sharp images from being obtained. In particular, in recent years, card type digital cameras of this kind have a large number of pixels. Thus, the deviation of the image formed position may markedly affect image quality.
{ "pile_set_name": "USPTO Backgrounds" }
During normal processes of vascular growth (e.g., the menstrual cycle, placentation, changes in adiposity, wound repair, inflammation), the creation of new blood vessels is regulated and eventually ceases. Significantly, the deregulation of vascular growth is a critical element of pathology. For example, tumor growth, diabetic retinopathies, arthritis, and psoriasis involve excessive proliferation of blood vessels that contributes directly to the pathological state. In contrast, impairment of vascular growth, characteristic of aged individuals, compromises the healing of wounds and the revascularization of tissues rendered ischemic by trauma or disease. Therefore, an understanding of the mechanisms that direct the assembly new blood vessels, and the processes that start and stop vascular growth, are central to the development of strategies to control vascularization in disease. During the growth of new blood vessels (angiogenesis) sprouts arise from endothelial cells that line the lumens of capillaries and postcapillary venules—the smallest branches of the vascular system. Angiogenesis is a complex, multi-step process. Although published studies of angiogenesis number in the many thousands, the cellular mechanisms that mediate and regulate angiogenic growth and morphogenesis are poorly understood. The details of angiogenic sprouting are difficult to observe in “real-time” in vivo because of the opacity of most tissues. Tissue sections are difficult to reconstruct in 3D and do not communicate the dynamic nature of vascular growth. Moreover, the region near the tips of angiogenic sprouts—a critical area of control of vascular invasion and morphogenesis—is rarely found in tissue sections. In order to overcome the limitations of conventional histology, a variety of “models” of angiogenesis in vivo and in vitro have been developed. Models of angiogenesis in vivo: To circumvent the opacity of living tissues, investigators have observed angiogenesis through “windows” in living animals that include the naturally transparent tails of amphibian larvae (Clark and Clark 1939), or specialized viewing chambers either implanted into rabbit ears (Clark and Clark 1939), mouse skin (Algire, Chalkley et al. 1945) and hamster cheek pouches (Greenblatt and Shubi 1968) or developed from rabbit corneal pockets (Gimbrone, Cotran et al. 1974) or chick chorioallantoic membranes (Ausprunk, Knighton et al. 1974). From these early, largely descriptive studies came validation of the central paradigm of tumor-induced vascular chemotaxis and the corresponding discovery of diffusible tumor-derived molecules that promote vascular growth. Newer assays of angiogenesis in vivo measure vascular ingrowth into polymeric sponges or plugs of gelled basement membrane proteins implanted subcutaneously into rodents (Passaniti, Taylor et al. 1992; Andrade, Macahado et al. 1997; Akhtar, Dickerson et al. 2002; Koike, Vernon et al. 2003). For all of their elegance, approaches in vivo are made difficult by: (1) intra-species variation in angiogenic response from animal to animal; (2) the lack of translation of results from one species to another, (3) high costs of animal purchase and maintenance; (4) public disapproval of the use of animals for research purposes; (5) complexities encountered in animal surgeries and in the visualization and evaluation of results.Two-dimensional (2D) models of angiogenesis in vitro: In an effort to understand the molecular mechanics of angiogenesis, endothelial cells isolated from large vessels were cultured in flat dishes until they formed confluent, pavement-like monolayers that simulated the endothelial linings of blood vessels (Jaffe, Nachman et al. 1973; Gimbrone 1976). Although useful as models of proliferative responses to endothelial injury in large blood vessels (Gimbrone, Cotran et al. 1974: Fishman, Ryan et al. 1975; Madri and Stenn 1982; Madri and Pratt 1986; Jozaki, Marucha et al. 1990; Rosen, Meromsky et al. 1990), monolayer cultures of endothelial cells on rigid substrata do not typically organize into capillary-like tubes in simulation of angiogenesis. In 1980, however, following successful long-term culture of capillary endothelial cells (Folkman, Haudenschild et al. 1979), it was reported that 20-40 day cultures of bovine or human capillary endothelial cells developed a 2D cellular network on top of the confluent cellular monolayer, a process termed “angiogenesis in vitro” (Folkman and Haudenschild 1980). The endothelial cells of the network appeared as “tubes” with “lumens” filled with a fibrillar/amorphous material that was interpreted to be an endogenously-synthesized network of “mandrels” on which the cells organized. Later studies reported similar 2D network formation by endothelial cells from large vessels (Maciag, Kadish et al. 1982; Madri 1982; Feder, Marasa et al. 1983) and by endothelial cells seeded on top of malleable, hydrated gels of basement membrane proteins (e.g. Matrigel® gel) (Kubota, Kleinman et al. 1988). Although 2D models of vascular development remain in use today (the Matrigel®-based assay (Kubota, Kleinman et al. 1988) is available commercially), such models lack the following 5 defining characteristics of true angiogenesis: 1. Invasion—Endothelial cells in 2D models form networks on top of extracellular matrix and show little propensity to burrow into the extracellular matrix (Vernon, Angello et al. 1992; Vernon, Lara et al. 1995). 2. Directionality—In 2D models, the networks of endothelial cells form in vitro more or less simultaneously throughout a field of pre-positioned cells, whereas angiogenesis in vivo involves the vectorial invasion of extracellular matrix by filamentous sprouts that arborize by multiple levels of branching. 3. Correct polarity—Although the 2D models make unicellular tubes that markedly resemble capillaries (Maciag, Kadish et al. 1982; Feder, Marasa et al. 1983; Sage and Vernon 1994) their polarity is “inside-out”, that is, they deposit basement membrane material on their luminal surfaces and have their thrombogenic surfaces facing outward to the surrounding culture media (Maciag, Kadish et al. 1982; Feder, Marasa et al. 1983)—opposite to the situation in vivo. 4. Lumen formation—Evidence that 2D models generate endothelial cell (EC) tubes with patent lumens is weak. Typically, the endothelial cell tubes have “luminal” spaces that are filled with extracellular matrix (either exogenous or synthesized by the cells) (Maciag, Kadish et al. 1982; Madri 1982; Feder, Marasa et al. 1983; Sage and Vernon 1994; Vernon, Lara et al. 1995). Where present, patent lumens usually appear as slit-like or narrow cylindrical spaces bounded by thick walls of endothelial cell cytoplasm—quite different from the inflated, thin-walled endothelial cell tubes that typify capillaries in vivo. 5. Cell specificity—The cellular networks in 2D models are generated by mechanical processes that may be accomplished by non-EC cell types (Vernon, Angello et al. 1992; Vernon, Lara et al. 1995). Indeed, mathematical modeling has shown that any adherent cell type capable of applying tensile forces to malleable, 2D extracellular matrix (either synthesized endogenously or supplied (e.g., Matrigel® gel)) can generate networks under optimal conditions (Manoussaki, Lubkin et al. 1996).Three-dimensional (3D) models of angiogenesis in vitro: The recognition that angiogenesis in vivo occurs within a 3D extracellular matrix has led to a variety of models in which sprouting is induced within 3D gels of extracellular matrix in vitro. In an early 3D model, endothelial cells dispersed within collagen gels (Montesano, Orci et al. 1983) formed networks of cords and tubes (Elsdale and Bard 1972). Although the endothelial cell tubes exhibited correct polarity, the characteristics of invasion and directionality were lacking (the endothelial cells were pre-embedded and evenly dispersed in the extracellular matrix). Nonetheless, this approach has proven useful in studies of lumen formation (Davis and Camarillo 1996) and of responses of endothelial cells to growth factors (Madri, Pratt et al. 1988; Merwin, Anderson et al. 1990; Kuzuya and Kinsella 1994; Marx, Perlmutter et al. 1994; Davis and Camarillo 1996). In an alternative approach, 1 mm sections (rings) of rat aorta embedded in a 3D plasma clot generated branching, anastomosing tubes (Nicosia, Tchao et al. 1982). Sprouts from the aortic rings exhibited angiogenesis-like invasion and directionality in addition to polarity. Explant models utilizing aortic rings from rats or microvascular segments from mice have been used to study the influence of tumors, growth factors, various extracellular matrix supports, and conditions of aging on angiogenesis (Nicosia, Tchao et al. 1983; Mori. Sadahira et al. 1988; Nicosia and Ottinetti 1990; Nicosia, Bonanno et al. 1992; Villaschi and Nicosia 1993; Nicosia, Bonanno et al. 1994; Nicosia, Nicosia et al. 1994; Nicosia and Tuszynski 1994; Hoying, Boswell et al. 1996; Arthur, Vernon et al. 1998). A variety of models exist that induce purified endothelial cells (as monolayers or aggregates) to sprout invasively into underlying or surrounding 3D extracellular matrix gels (Montesano and Orci 1985; Pepper, Montesano et al. 1991; Montesano, Pepper et al. 1993; Nehls and Drenckhahn 1995; Nehls and Herrmann 1996; Vernon and Sage 1999; Vernon and Gooden 2002). Each of these models has specific limitations that include difficulty in visualizing sprout formation, limited sprouting, a requirement for sectioning, or lack of effectiveness with certain types of endothelial cells. Wolverine and Gulec have disclosed a 3D angiogenesis system (US 2002/0150879 A1) that involves embedding a fragment of tumor tissue into a matrix. The outgrowth of microvessels can be characterized to assay the angiogenic potential of the tissue. However, this approach does not provide luminal per-fusion of the microvessels. Neumann (the inventor here) et al. 2003, has disclosed the possibility of creating perfused microvessels in vitro that can be included in an artificial tissue. Neumann et al. 2003 teaches using 127 micrometer nylon fishing line as mandrels held by shrink tubing for making microvessels. The vessels were made from rat aortic smooth muscle cells embedded in agar. These microvessels were of an exploratory nature and not suitable for creating a human vessel graft. Two-dimensional models of vascular growth in vitro do not establish the defining characteristics of angiogenesis listed previously, whereas existing 3D models reproduce some or most of the characteristics. Importantly, none of the 3D models currently available reconstruct a parent blood vessel that contains a pressurized, flowing, circulatory fluid. Consequently, none of the existing in vitro 3D models permit study of the contribution of luminal pressure and flow to vascular growth and morphogenesis.
{ "pile_set_name": "USPTO Backgrounds" }
Photographic processors come in a variety of shapes and sizes from large wholesale photographic processors to small micro-labs. As photographic processors become more and more technologically sophisticated, there is a continued need to make the photographic processor as user-friendly and as maintenance-free as possible. Due to the increased throughput of processors such as circular processors, which preferably process one roll of film at a time, it is necessary to remove the processed film from the processing chamber of the processor to permit the processing of another roll or strip of film. The removed processed film then gets dried and delivered to a scanner. However, the scanner speed may be slower than the processing speed of the processor, so that the scanning of the next roll of processed film as well as the film processing operation needs to be delayed to wait for the scanning operation.
{ "pile_set_name": "USPTO Backgrounds" }
Gaming machines such as slot machines currently provide bonus schemes wherein a player has one or more opportunities to select one or more symbols from a plurality of possible symbols. If the player selects one of the designated winning or symbols or a winning combination of symbols, the game awards the player a credit or bonus value. The outcome depends upon the particular symbol or symbols obtained by the player. If the player selects a terminating symbol, the game terminates. Other various bonus games have been associated with gaming machines. To increase player enjoyment and excitement, it is desirable to provide new bonus games for gaming devices.
{ "pile_set_name": "USPTO Backgrounds" }
Receivers are used in a wide range of applications to convert modulated signals into a form that is suitable for other use. For example, frequency modulated (FM) broadcast receivers are used to convert radio frequency (RF) FM modulated signals to audio signals that can be heard by an individual user through, for example, a speaker system or the like. Other receivers may be used to convert modulated signals to, for example, baseband digital signals that may be used as input to a digital processing system. Cellular phones, televisions, cable boxes, DVD players and recorders, VCRs, and the like, each use at least one type of receiver to accomplish their respective functions. Many receiver types may be implemented as purely analog circuits. However, receiver designs also may be implemented as hybrid systems that employ both analog and digital circuits. Conversion of analog signals to corresponding digital signals at various points in the reception/demodulation processes executed in such receivers takes place at sample clock rates chosen by the receiver designers. A single sample clock rate is used for a given analog-to-digital conversion in the receiver, although the sample clock rates for analog-to-digital conversions that take place in different portions of the receiver may differ. The sample clock rate selected by the designer is often the result of trade-offs between interference introduced by the analog-to-digital conversion at the sample clock rate and other receiver parameters, such as power consumption, etc. Such trade-offs typically result in a sample clock rate that is not truly optimal for the receiver design. Accordingly, an improvement in the analog-to-digital conversion process employed in such receivers is desirable.
{ "pile_set_name": "USPTO Backgrounds" }
Conventionally, a printing apparatus is known for forming an image with a decolorable image forming material, for example, toner. A decoloring apparatus is used to decolor an image. The decoloring apparatus prints a mark indicating the decolored times on a medium. The decoloring apparatus determines that a sheet reused for the certain times, for example, five times, is non-reusable later according to the mark. However, actually, the reusable times differs in different media. A thick sheet can be reused more than five times. However, the decoloring apparatus records the same marks on the media regardless of the type of the media, and discharges a paper determined to be non-reusable as the paper has been used more than the uniform reuse times to a reject tray that accumulates the non-reusable paper.
{ "pile_set_name": "USPTO Backgrounds" }
Methods for carrying out a sound test for detecting and/or analyzing material faults and/or mounting faults of components are already known. In order to evaluate deviations of a turbine blade with respect to the delivery state or design state, for example with respect to the tensioning of the blades, loosening of the attachment of the blades or the presence of fractures etc., for example the turbine blade is struck with a hammer when the turbine housing is open, and the resulting sound pattern is analyzed acoustically by trained and very experienced personnel without technical aids. This requires many years of experience in order to be able to differentiate “good” sound patterns from “bad” sound patterns. A problem when carrying out such a sound test is that when checking very inaccessibly arranged components said sound test involves a very large amount of expenditure since the components have to be made accessible for the implementation of the hammer blow. It is also problematic that the evaluation result has hitherto been of a subjective nature and therefore very susceptible to errors. Furthermore, for economic grounds it would be advantageous for such a sound test also to be able to be carried out by less experienced personnel. In addition, endoscopes of the type mentioned at the beginning are known. They have been successfully used for many years in the field of technology for inspecting optically components which are difficult to access, without having to carry out costly disassembly operations. In particular rigid endoscopes and flexible endoscopes are contemporary types of endoscopes, wherein the so-called video endoscopes form a subgroup of the flexible endoscopes. All the endoscopes have in common the fact that they form a handling unit which, in the case of a rigid endoscope, is connected to a rigid shaft, and in the case of a flexible endoscope is connected to a shaft which is of flexible design. An image transmission device and a light transmission device are integrated into the shaft in such a way that image signals and light signals can be transmitted from the free end of the shaft to the handling unit. The image transmission device can be formed by a lens arrangement and an eyepiece which is arranged on the handling unit. Alternatively, as in the case of the video endoscope for the generation of images and transmission of images it is also possible to use digital technology with which video images can be displayed on a monitor which is either provided separately or attached to the handling unit. The image transmission device is nowadays implemented by a light guide fiber bundles which are arranged in the shaft and by which light which is emitted by a light source usually integrated into the handling unit is guided to the free end of the shaft. Furthermore, the use of endoscopes is known with gripping tools and cutting tools in the medical field, for example for the removal of tissue samples or the like. Taking this known art as a starting point, a purpose of the embodiments of the present invention is to make available an improved method of the type mentioned at the beginning with which sound tests for detecting and/or analyzing material faults and/or mounting faults can be carried out without difficulty and cost-effectively even on components which are difficult to access. In addition, a purpose of the embodiments of the present invention is to make available technical means for carrying out such a method.
{ "pile_set_name": "USPTO Backgrounds" }
α-Amino acids have significant biochemical importance, and are frequently used as a raw material for drugs such as antibiotics, antineoplastic agents, and enzyme inhibitors. There are natural and non-naturally occurring α-amino acids, and many useful α-amino acids of both types have been found. In recent years, there have been a series of discoveries of non-naturally occurring, beneficial physiologically active amino acids such as L-dopa and L-azatyrosine, and there is a need for research into the practical asymmetrical synthesis of such optically-active α-amino acids. One option for the practical asymmetrical synthesis of optically-active α-amino acids is asymmetrical mono-substitution alkylation. In conventional practice, it has been common to use a ketimine-type Schiff base for asymmetrical mono-substitution alkylation (O'Donnell, M. J. et al., J. Am. Chem. Soc., 1989, vol. 111, p. 2353). Ketimine-type Schiff bases are complex to manufacture and thus generally are expensive. This has caused α-amino acids that are produced by asymmetrical mono-substitution alkylation to be expensive as well. The reason why ketimine-type Schiff bases are used shall be explained based on the characteristics of ketimine-type Schiff bases that contribute to the reaction. Schiff bases include ketimine-type Schiff bases and aldimine-type Schiff bases, for example. In general, it is strongly believed that aldimine-type Schiff bases result in a racemization of the product because there is almost no pKa difference between the secondary hydrogen and the tertiary hydrogen, whereas ketimine-type Schiff bases inhibit racemization of the product obtained because this difference is large (O'Donnell, M. J., Aldrichim. Acta., 2001, vol. 34, p. 3, and Maruoka, K. and Ooi, T., Chemical Reviews, 2003, vol. 103, p. 3013). Thus, in this technical field, based on the presumption that ketimine-type Schiff bases will be used in consideration of the overall production efficiency, even though production costs are somewhat higher, attention has been focused on optimizing the methods for asymmetrical synthesis of optically-active α-amino acids using ketimine-type Schiff bases. On the other hand, recently, there was a report of an example of asymmetrical synthesis using macromolecular aldimine (Park, H.-G. et al., J. Org. Chem., 2005, vol. 70, p. 1904). However, this report pertains to asymmetrical synthesis using a compound obtained by binding aldimine to a macromolecule, and is quite different from the Schiff bases of the technical field.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a pressure seal for a coaxial cable connection utilizing F-Type connectors. 2. Discussion of the Related Art Signal quality in systems employing coaxial cable is adversely affected when moisture from the environment enters the region bounded by coaxial cable end connectors. The vehicle transporting moisture from the environment into the cable is ambient air. Where this gas exchange is stopped, the transport of moisture into the cable is prevented. The ingress of moisture into the coaxial cable is primarily due to the pressure changes in small air pockets disposed within the cable during ambient temperature changes. Variations in ambient temperature cause ambient air and the moisture it carries to be drawn into the coaxial cable. Both the moisture and the eventual corrosion of conductors inside the cable, especially the shield conductors, degrade signal quality. Where outdoor coaxial cable connections are concerned, it has become customary to seal F-Type connectors to the cable and to seal the interconnections between male and female connector parts. The F-Type connector-to-coaxial cable, and F male-to-female connector interface have four places where moisture may enter the interconnection. The points of moisture entry are the interface between: (a) the trailing end of the male connector and the cable 60; (b) the connector shell and the connector body 61; (c) the swivel nut and the connector body 62; and (d) the swivel nut and the F-Type female connector on the device being connected 63. The foregoing principal sites of water vapor ingress are illustrated in FIG. 1. Strong industry focus on cable to connector seals has resulted in several designs gaining acceptance in the industry as means for sealing the first three moisture ingress locations mentioned above. However, no such industry focus on connector to connector pressure seals has occurred. And, to the extent that connector to connector pressure seal solutions have been developed, they are external seals. Moreover, no industry accepted design that effectively seals the last interface (i.e., the interface between the swivel nut on the male F-Type connector and the female F-Type connector on the device being connected) is available. In accordance with the prior art, the leading end of the internally threaded nut on the male F-Type connector, which is attached to the cable, is screwed on to the female F-Type connector which has a mating outside thread. The integrity of the interface between the male and female F-Type connectors controls the mechanical and electrical performance of the connection. The thread used on F-Type connectors is a course ⅜-32 thread, specified by the SCTE (Society of Cable Television Engineers) and the EIA (Electronics Industry Association). This metal threaded interface does not provide an effective pressure seal for blocking gas exchange between the environment and the interior of the cable connection. Known methods for preventing moisture ingress at connector to connector interfaces exist as shown in FIGS. 2a-e. All of these methods involve the use of external seals. In the case of the devices shown in FIGS. 2a-d, the illustrated device works only in particular applications. The device of FIG. 2e is somewhat more useful. None of the prior art devices of FIGS. 2a-d provide an adequate seal between the nut on a male F-Type connector and the threaded shaft of a female F-Type connector which has threads on the exterior of the shaft. With reference to FIG. 2a, a rubber boot 10 is employed in accordance with the prior art to form a seal between a cable 11 and a ridge 12 that sometime exists on the female F-Type connector 13 mounted on the device 14 being connected to. The rubber boot 10 may keep out some moisture but does not provide a seal that is tight. Further, the device relies on the presence of a sealing ridge 12 on the female connector which is usually absent. With reference to FIG. 2b, air shrink tubing 40 is also employed in the art to provide a seal between the cable 11 and the F-connector 13. Heat shrink tubing cannot be used because the PVC on the coaxial cable jacket will melt. The air shrink tubing 40 presents an inwardly-directed (radial) sealing force but requires a minimal length of the female F-Type connector shaft to be exposed in order to provide a water seal. In addition, the shaft must have a smooth surface. The tubing will not shrink into the threads of the female connector. Therefore this method has a limited application; being operable only for a female F-Type connector having a smooth, unthreaded outer surface on the shaft thereof. Another sealing technique, though not widely used, is to fill the male connector nut with a silicone grease prior to attachment of the nut to the shaft of the female F-Type connector which will fill the area between threads. This is not recommended due to the difficulty in applying the correct amount of grease as well as the problem of removal and hand cleaning. Yet another sealing technique, the axial compression port seal 20, is illustrated in FIGS. 2c and 2d. The axial compression port seal 20 consists of a tubular elastic member that slides over the shaft 21 of the female F-Type connector. When axial pressure from tightening the male nut 22 compresses the elastic device 20, the opposing end of the device exerts an equal force on a bulkhead 23 and thus seals both sides as it compresses. This device 20 and method works well if all sizes are exactly correct for the length of the shaft 21. In practice, with many products being used, this method becomes ineffective. In addition, the axial compression port seal 20 relies on the axial force it exerts on a bulkhead in order to provide a seal. In many devices, this bulkhead does not exist. When an axial compression port seal 20 is used over threads, it cannot exert the needed inward radial force to fill and occlude the thread and pressure seal from its own elasticity. The radial sealing ability of axial compression port seals 20 has been limited due to the need for the installer to slide it over the cylindrical shaft of the female F-Type connector with little effort. FIG. 2e shows the sealing design of U.S. Pat. No. 6,929,265 B2. Here, a compression ring 80 is advanced along an underlying elastic sealing member 90 when the abutting nut of a male connector is advanced along the threaded portion of a female connector 130. Seals made by this technique include the forward seal between the female connector and the elastic sealing member, the rear seal between the nut and the compression ring, and the seal between the elastic sealing member and the compression ring. In summary, for the designs of FIGS. 2a-d, due to the variety of female connector port lengths, finishes, thread lengths, and the lack of clean, machined bulkheads for axial compression that are currently available on devices being used, it has been almost impossible to achieve moisture ingress protection. Even when a machined bulkhead is available for an axial compression seal, the seal must be sized for the exact length of the female port and male nut so that the proper axial force can be achieved when the male connector is fully screwed in. These three components may be sized correctly to resist moisture ingress for one set of products; but, the non-standardization of device dimensions used in the field make it highly improbable that each of these four variables (male nut depth; female shaft length; machined flat bulkhead; and axial rubber seal length) will be sized correctly in any particular installation. The design of FIG. e is an improvement, but it remains an external design that has not been widely adopted by the industry.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The invention relates to a method and system for determining the status of vehicle parking, including the location of available vehicle parking. 2. Related Art Locating parking is a big problem in cities all around the world. As drivers search for a parking space, they waste gas, waste time and add to the traffic problems of big cities. The frustration of the search for a parking spot creates stress for those drivers that must frequent big cities for their jobs. Health problems have been linked to high levels of stress. Thus, what is desired and disclosed herein is an apparatus, system and method to optimize the search for a parking space and reduce the time searching and the amount of energy wasted.
{ "pile_set_name": "USPTO Backgrounds" }
Various wireless access technologies have been proposed or implemented to enable mobile stations to perform communications with other mobile stations or with wired terminals coupled to wired networks. Examples of wireless access technologies include GSM (Global System for Mobile communications) and UMTS (Universal Mobile Telecommunications System) technologies, defined by the Third Generation Partnership Project (3GPP); and CDMA 2000 (Code Division Multiple Access 2000) technologies, defined by 3GPP2. As part of the continuing evolution of wireless access technologies to improve spectral efficiency, to improve services, to lower costs, and so forth, new standards have been proposed. One such new standard is the Long Term Evolution (LTE) standard from 3GPP, which seeks to enhance the UMTS wireless network. The CDMA 2000 wireless access technology from 3GPP2 is also evolving. The evolution of CDMA 2000 is referred to as the Ultra Mobile Broadband (UMB) access technology, which supports significantly higher rates and reduced latencies. Another type of wireless access technology is the WiMax (Worldwide Interoperability for Microwave Access) technology. WiMax is based on the IEEE (Institute of Electrical and Electronics Engineers) 802.16 Standard. The WiMax wireless access technology is designed to provide wireless broadband access. The existing control channel design used for the various wireless access technologies discussed above are relatively inefficient. The control channel, which contains control information sent from a base station to mobile stations to enable the mobile stations to properly receive downlink data and to transmit uplink data, typically includes a relatively large amount of information. In some cases, such control channels with relatively large amounts of information are broadcast to multiple mobile stations in a cell or cell sector. The overhead associated with such broadcasts of control channels makes using such techniques inefficient, since substantial amounts of available power and bandwidth may be consumed by the broadcast of such control channels. Note that the power of the broadcast control channel has to be high enough to reach the mobile station with the weakest wireless connection in the cell or cell sector. The control channel design in IEEE 802.16e, as a particular example is inefficient in both power and bandwidth. Since the control channel is always broadcast to all users using full power with a frequency reuse factor of N=3, it consumes a significant portion of the available power and bandwidth. Another disadvantage of the current control channel design is that it allows for many different signalling options, which significantly increases the control channel overhead. Although the control channel design in UMB and LTE is more efficient, both can be further optimized in order to reduce power and bandwidth overhead.
{ "pile_set_name": "USPTO Backgrounds" }
In silicon wafer manufacturing processes, the surfaces of silicon wafers that have been cut from a silicon ingot drawn up by the CZ (Czokralski) method or the like are finished to a mirror surface state by a lapping treatment using a polishing liquid containing a polishing agent that has a fine particle size. Then, after passing through a cleaning process, the surfaces of the silicon wafers that have been subjected to such a surface finishing treatment are inspected visually by a worker, and only wafers in which no scratches or staining are observed are shipped as satisfactory wafers. In the case of visual inspection of the wafer surfaces by a human being, the methods and judgement criteria used have not been standardized, so that such procedures are inadequate in terms of enhancing the degree of customer satisfaction. The present invention was devised in light of such problems; a first object of the present invention is to provide a wafer surface inspection device and method which allow the reliable detection of scratches and staining that are cause for a judgement of “defective”. Furthermore, a second object of the present invention is to provide a defective wafer judgment device and method which allow the reliable detection of scratches and staining that are cause for a judgement of “defective” in accordance with characteristic quantities relating to these scratches and staining. Furthermore, a third object of the present invention is to provide a wafer surface information processing device which accumulates wafer surface information and provides this information for use in wafer treatment processes and other processes. It is convenient to be able to grasp the types of scratches and haze occurring on the surfaces of wafers in various processes such as wafer treatment processes, conveying processes and the like. This makes it possible to make accurate modifications in various, and is also useful in the planning of modifications and the like. Furthermore, if mutual understanding of intentions between the wafer supplier (wafer maker) and user is facilitated, the wafer supplier can supply wafers with a quality that accurately meets the requirements of the user, and the user can easily communicate his own requirements to the wafer supplier. The present invention was devised in light of the abovementioned problems; a fourth object of the present invention is to provide a system which is devised so that trends in the occurrence of scratches and haze in specified processes can easily be detected, and information concerning these trends can be freely exchanged between wafer suppliers and consumers.
{ "pile_set_name": "USPTO Backgrounds" }
The invention relates to a bioerodible contraceptive device, and, more particularly, to an intravaginally-dissolvable contraceptive suppository comprising a lyophilized foam and a contraceptive, a method of using such suppositories and a method for manufacturing them. Vaginal contraceptives are well-known in the art, including, for example, spermicidal creams and gels. These products can be used alone or in conjunction with removable contraceptive devices, such as intrauterine devices. Although many of these products are readily available without a prescription, there are several disadvantages associated with their use. The effectiveness of these products is generally limited to one or two hours. In addition, these creams or gels tend to melt very readily and, thus, are easily discharged from the vagina, thereby further limiting their effectiveness. Furthermore, the tendency to rapidly melt makes such products inconvenient and messy to use. In the area of foams, although the use of foams and freeze-dried foams to deliver various active ingredients is well-known, such foams generally do not possess the requisite characteristics that would render them suitable for use as a contraceptive suppository. For example, in U.S. Pat. No. 4,642,903, Davies discloses the use of freeze-dried foams for dispensing a variety of active ingredients. However, Davis' foams are designed to have very rapid dissolution rates (virtually instantaneous) which would render his foam highly ineffective for use as a contraceptive. Moreover, it is not possible to control the degree of aeration in Davis' foaming process; accordingly, using Davis' method it is not possible to control densities, dosage delivery rates and dissolution times of the foams which is critical to the manufacture of a contraceptive suppository. Similarly, in U.S. Pat. No. 4,292,972, Pawelchak et al. discloses a lyophilized foam sponge product containing sodium carboxymethylcellulose, pectin, gelatin and a pharmaceutical, that is intended primarily for use as a hemostatic agent. Unfortunately, Pawelchak's dispersions do not aerate readily; therefore, Pawelchak's freeze-dried foams possess poor structural integrity and dissolve too quickly. Accordingly, a need exists for a bioerodible vaginal contraceptive suppository that, provides for the sustained and/or controlled release of a contraceptive, gives effective protection against pregnancy for at least several hours, and which is not readily expelled. In addition, there is a need for a method of manufacturing such suppositories whereby the dissolution time and the drug delivery rate of the suppository can be substantially controlled and readily reproduced.
{ "pile_set_name": "USPTO Backgrounds" }
A conventional bearing for linear sliding motion of a type described above generally has a construction shown in FIG. 17. Specifically, it is formed of a track bed (or track member) (b) having rolling surfaces (b1) on which rolling members (a) such as balls roll in an axial direction; a slide bed (or slide member) (c) having load rolling surfaces (c1), which cooperate with the rolling surfaces (b1) to hold the rolling members (a) therebetween, and no-load rolling apertures (c2) corresponding to the load rolling surfaces (c1); and covers (d) for coupling and connecting the load rolling surfaces (c1) and the no-load rolling apertures (c2) to form endless paths for the rolling members (a). In this construction, the rolling member (a) rolls through load regions between the rolling surfaces b1 of the track member (b) and the load rolling surfaces (c1) of the slide member (c), whereby the slide bed (c) can linearly move along the track member (b) with a remarkably small frictional resistance. A table for linear sliding motion, which supports a machine tool or a work for guiding them, generally has a construction shown in FIGS. 18 and 19, in which a plurality of track members (b) (two in the Figure) used for the bearings for the linear sliding motion are disposed on a fixing portion (e), and a plurality of sliding members (c) (two in the Figure) for carrying a table (f) are assembled to each track bed with a space between one another. However, such bearings for the linear sliding motion have following disadvantages with respect to the motion of the slide members due to its construction. First, minute vibration called as "waving" is generated in the slide members. In the bearing for the linear sliding motion including the rolling members which circulate and perform an endless movement for the slide member, the rolling members are generally in preloaded conditions when they roll through a load region in order to increase rigidity of the slide member with respect to the track member and prevent rattling thereof. Therefore, when the rolling members are forcedly entered into the load region or released from the load region, the slide member minutely deviates in vertical or lateral directions, which causes the minute vibration, i.e., waving during the movement of the slide member. A second disadvantage relates to a linearity of a motion of the slide member. It is ideal for the slide bed to move linearly with respect to the fixing portion on which the track member is disposed. However, the motion thereof is inevitably affected by a mounting accuracy of the track member to the fixing portion and a machining accuracy of the rolling surfaces, and thus it is very difficult in practice to obtain a high linearity of the movement. If it is attempted to obtain the desired linearity of the movement by increasing the mounting accuracy of the track member and the machining accuracy of the rolling surfaces, disadvantages such as high costs and low productive efficiency will be caused. Therefore, in view of the above, the linearity of the movement can be improved only to a restricted extent. The disadvantages of the motion of the slide member described above form an important factor which cannot be overlooked in machine tools or the like which are guided by the bearings for the linear motion during machining operations, because the waving of the slide members or the insufficient linearity of the movement causes deviation of the tools of the machine tools, and thus directly affects the machining accuracy of the products. However, in the recent industrial application, demands for higher accuracies in various products, and thus demands for higher machining accuracies have been increased in the machines and apparatuses such as machine tools for machining these products. Accordingly, the bearings for the linear sliding motion for performing linear guiding in various machines and apparatuses have been required to prevent the waving during movement or travelling of the slide beds and to improve the linearity of the movement. On the other hand, with respect to the tables for the linear sliding motion, reduction of costs has been attempted by minimizing thicknesses of tables which are mounted on the slide members in the recent years. However, this adversely affects the rigidity, and specifically, this may cause deflection or the like in the tables which may reduce the machining accuracies of machine tools mounted thereon. In view of the above demands and problems, it is an object of the invention to provide a bearing for linear sliding motion, which can minimize the waving of the slide member and improve the linearity of the movement. Another object of the invention is to provide a table for linear sliding motion which allows machining with a high accuracy by a machine or apparatus such as a machine tool mounted thereon.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to a paddle used to improve forward propulsion of conventional kayaks, and specifically, the invention refers to a hydro-impelled paddle whose design allows the use of water patterns to generate forward propulsion during the full paddling process: from insertion in the water, pulling and extraction or retrieval out of the water. 2. Description of Related Art Including Information Disclosed Under 37 CFR 1.97 and 37 CFR 1.98. The kayak, invented by Eskimo hunters, is a long narrow water vessel that allows fast displacement in rough or calm seas, by means of a paddle that sinks alternatively on both sides of the kayak, and is pulled backwards to attain forward propulsion. The paddle as has been used for centuries is a board with variable length and extremes flattened, with a width of less than 4″ and a thickness less than 2″, and gradually rounded towards the center or shaft to about 1¼ for hands placement and comfortable handling. The flat extremes or blades have two functions: to cut the water when immersing and taking out the water, and to power the boat forward, once it is deep by offering resistance to the pulling action. The action of immersing and taking out the paddle will have no effect on impelling the boat forward. The entry and exit are two necessary steps to get the blade deep where force is done. The action of traditional paddles is exclusively based on water resistance against the flat cross section of the blade when pulled parallel to the longitudinal axis of the kayak, but opposite to the motion direction. In this way water is used as a support or resistance surface for propulsion. Nevertheless, around the blade there are eddies and turbulences exiting the side walls, resulting naturally in power loss. Europeans copied the kayak scheme, but not the traditional paddles, developing paddles made with an almost 6 feet shaft and two wide, flat, concave or spoon shaped blades on the extremes. They are made of wood, or a metal shaft and plastic blades or fiberglass reinforced plastic or carbon reinforced plastic, on either shaft and/or blades. Among improvements, some paddles are made with some asymmetry with respect to the shaft axis. The most important innovation is the so called “Lituanian paddle” described in U.S. Pat. No. 4,737,126 (Lindeberg, et al. 1988), consisting of wing shaped euro blades, so as to get higher water grip and power. The blade design has the leading edge rounded and the trailing edge sharpened, with a convex frontal or “reverse” face and a concave back or “power” face. The effect achieved by Lindeberg's paddle is so notable that it became the Olympic standard, and all modern competing paddles use this principle, with only small variations on the curved shape or tilting with respect to the shaft axis. The “Euro modified Paddle” or “Wing Paddle”, once immersed in the water, with the blade in an almost vertical position, travels horizontally and perpendicular to the boat displacement. The motion is horizontal after immersion, starting by the front of the boat and as close as possible to the hull, and emerging by the user's hip, two or three feet away from the boat. Looking from above it appears as an inverted V, with the tip in front of the boat and the open side by the waist, alternating sides in the paddling action. The effect of the wing blade traveling horizontally away from the boat, with an almost vertical shaft, is to propel the boat forwards. All the motion and effect of the Wing Paddle is unidirectional. The blade enters the water fast, and is displaced sideways and the exit is at the end of that trajectory. The mentioned Wing Paddles are not useful for those who paddle using the Greenland style with long thin narrow paddles and flat blades. Greenland paddles use the flat and sharp edge to cut the water and immerse deeply, close to the kayak hull. Once in the bottom the flat cross section serves to power the boat still close to the kayak, and when the pulling action is finished the paddle must exit from the bottom slicing the water with the sharp edge. Motion is decomposed in three stroke sections: Insertion to depth, pulling, and retrieval from bottom. Lindeberg's paddle could perform the first two motions, if user wanted to use it in that way, entry to depth using the curved leading side, pull at the bottom with certain torsion due to the asymmetry of the blade placed with its maximum cross-section pushing against the water, but paddle extraction would not be possible. The reason being that the sharp edge would become the leading edge and the convexity on one side and concavity on the other creates turbulence and forces a violent rotation of the paddle with the consequence of loss of speed and stability.
{ "pile_set_name": "USPTO Backgrounds" }
The present 1nvention relates to a thin film magnetic head used in a magnetic recording/playback apparatus and a manufacturing method thereof, and more particularly to a thin-film magnetic head capable of thickly stacking a magnetic layer with retaining a size of an outward appearance of the head in order to prevent a magnetic circuit from a magnetic saturation and a method of manufacturing the thin-film magnetic head. In general, a thin-film magnetic head has a magnetic layer, an insulating layer and a coil conductive layer which are formed step by step with a stack by means of a vacuum evaporation and etching, and is a smaller and thinner than a conventional bulk head. However, the thin-film magnetic head has the complicated processing steps, and it is impossible for the thin-film magnetic head to precisely keep outline sizes of completed products when the magnetic layer is thickly stacked in order to prevent the magnetic circuit from a magnetic saturation. The conventional thin-film magnetic head is shown in FIG. 1. In the figure, a material 10 of a thin-film magnetic head 10A comprises a non-magnetic insulating substrate 11, a lower magnetic substance layer 12 which is stacked on a side of the substrate 11, a gap layer 13 which is stacked on a predetermined and limited area of the magnetic layer 12, a first insulating layer 14a which is stacked on a predetermined and limited area of the gap layer 13, a first coil layer 15a which is formed in line shapes of a plurality of rows on the first insulating layer 14a, a second insulating layer 14b which is stacked on the first insulating layer 14a in the manner of covering the first coil layer 15a, a second coil layer 15b which is formed on the second insulating layer 14b corresponding to the first coil layer 15a, a third insulating layer 14c which is stacked on the second insulating layer 14b in the manner of covering the second coil layer 15b, an upper magnetic substance layer 16 which is stacked in the manner of covering an insulating substance layer 14 including the first through third insulating layers 14a, 14b and 14c and a coil conductive layer 15 including the first and second coil layers 15a and 15b, and a protective layer 17 which is stacked on an upper surface of the upper magnetic substance layer 16. As shown in FIG. 2, the material 10 stacked and configured as above, is cut in the outline shape of the thin-film magnetic head 10A so as to complete a product. The head 10A as the product has an outline in the manner of combining a small rectangular portion with a large rectangular portion, and a long side of the small rectangular portion is used as a tape contacting surface 10B. The material 10 of the conventional thin-film magnetic head 10A is manufactured by some steps shown in FIGS. 3A through 3F. In a first step shown in FIG. 3A, the lower magnetic substance layer 12 which is made of amorphous, is stacked on the non-magnetic insulating substrate 11 which is made of abrasion resisting materials such as glass and ceramics. Next, in a second step shown in FIG. 3B, the gap layer 13 which is made of materials of SiO.sub.2, Al.sub.2 O.sub.3 and the like and functions as a head gap of the magnetic head after completed, is stacked in the predetermined or limited area on the magnetic layer 12. Furthermore, the first insulating layer 14a which becomes one portion of the insulating substance layer 14 for insulating the coil conductive layer 15 which will be formed by a step mentioned later, is stacked on predetermined area of the gap layer 13. In a third step shown in FIG. 3C, the first coil layer 15a is formed in a predetermined pattern. In this example, the coil layer is arranged in six rows of a line-shape. Next, the second insulating layer 14b is stacked on the first insulating layer 14a in the manner of covering the first coil layer 15a. In a fourth step shown in FIG. 3D, the second coil layer 15b is formed in six lines on the second insulating layer 14b corresponding to the first coil layer 15a. Next, the third insulating layer 14c is stacked on the second insulating layer 14b in the manner of covering the second coil layer 15b, so that the insulating substance layer 14 including the first through third insulating layers 14a, 14b and 14c is formed in the manner of completely insulating the coil layer 15 of two stages and six lines. Furthermore, in a fifth step shown in FIG. 3E, the upper magnetic substance layer 16 of amorphous materials is stacked in a predetermined thickness in the manner of further covering an exposed portion of the gap layer 13, the insulating substance layer 14 which is formed in the predetermined area of the gap layer 13, and the coil layer 15 which is covered by the insulating substance layer 14. Finally, in a sixth step shown in FIG. 3F, the protective layer 17 of plastic or low-temperature melting-point glass materials, is stacked in the manner of covering the upper surface of the upper magnetic substance layer 16, thereby completing the material 10 of the thin-film magnetic head 10A. The material 10 formed by the above steps, is cut in a predetermined shape shown in FIG. 2, thereby completing the thin-film magnetic head 10A as the product. The material 10 of head 10A has three stages of the insulating layers and two stages of the coil layers which are formed between the insulating layers. In order to form each of the layers, there is used a thin-film formation technique such as sputtering and a vacuum evaporation and a thin-film treatment technique such as ion-milling or dry etching. It is necessary for the conventional thin-film magnetic head 10A to form the lower magnetic substance layer 12 and the upper magnetic substance layer 16 which constitute a magnetic loop each having several ten micrometers thick in order to prevent the magnetic loop from a magnetic saturation. However, in case where the magnetic layers 12 and 16 have the thickness of this, respectively, because the layers have patterning accuracy of plus and minus 5 to 10 micra when patterning is performed to both layers 12 and 16, an accuracy of the outline size of the head as a product is remarkably reduced. Accordingly, in the case where a track width of the thin-film magnetic head 10A is formed by patterning the lower and upper magnetic substance layers 12 and 16, the conventional magnetic head has the problem that it is difficult to obtain the high-accuracy of the track width.
{ "pile_set_name": "USPTO Backgrounds" }
A color laser printer having a plurality of photosensitive drums forming electrostatic images arranged in parallel in a prescribed direction is known as an image forming apparatus. The color laser printer includes a drum unit integrally holding a plurality of photosensitive drums. A plurality of developer cartridges are detachably mounted to the drum unit. Each developer cartridge includes a developer roller, and the developer roller feeds a toner to an electrostatic latent image formed on the corresponding photosensitive drum for developing the electrostatic latent image. The drum unit is detachably mountable to a main body casing of the color laser printer. When the drum unit is detached from the main body casing, the developer cartridge can be detachably mounted to the drum unit.
{ "pile_set_name": "USPTO Backgrounds" }
Field of the Invention The present invention relates to machine tools such as lathes capable of performing, e.g., a threading process. Description of Related Art When machining is performed with a machine tool (in particular, machining of a workpiece with low rigidity or machining using a tool with low rigidity), strong vibrations known as chatter vibrations are often generated during machining. Such chatter vibrations cause problems such as a so-called chatter mark on the cutting surface, chipping of the tool, etc. As a solution to such problems, a technique has been devised which suppresses the chatter vibrations by changing the main spindle rotation speed during a threading cycle, as disclosed in, e.g., Japanese Patent Application Publication No. 2004-209558 (JP 2004-209558 A). However, it is known from experiences that in the case of alternately performing cutting at a low rotation speed and cutting at a high rotation speed as in the above related art, cutting at the high rotation speed is less likely to cause chatter vibrations. Accordingly, if a specific tool pass that tends to cause chatter vibrations is known, it is desirable to perform cutting in this specific tool pass at the high rotation speed. In particular, in view of cutting surface accuracy, it is desirable to perform cutting in the last tool pass at the high rotation speed. However, in the case of changing the main spindle rotation speed in every plural passes, it is difficult to know whether the main spindle rotation speed of the first cutting at the start of machining should be the low rotation speed or the high rotation speed. Accordingly, cutting in the specific tool pass or the last tool pass may be performed at the low rotation speed, which may hinder effective suppression of chatter vibrations or degrade cutting surface accuracy. Prior to the present application, the applicant has devised a technique capable of suppressing an increase in cutting load. In the technique, the same run-out angle is used in all the passes when the main spindle rotation speed is changed on a pass basis during a threading cycle (Japanese Patent Application No. 2012-121107). The present invention has been developed in view of the technique.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to a semiconductor device such as a memory, and more particularly to a semiconductor device which can easily and reliably carry out a conduction test. 2. Description of the Prior Art A semiconductor memory is known as a typical example of semiconductor devices. Generally, a semiconductor memory includes power supply terminals Vcc and Vss, an input signal terminal, an output signal terminal and an internal logic circuit. FIG. 7 of the accompanying drawings illustrates a general example. In this drawing, reference numeral 10 denotes a chip of a semiconductor memory. A logic circuit 5 is formed on this chip. A high voltage power supply Vcc terminal 1 and a low voltage power supply Vss terminal 4 are also disposed on the chip. Reference numerals 2 and 3 denote an input signal terminal and an output signal terminal, respectively. In this instance, a memory constituting an internal circuit outputs predetermined data to the output signal terminal 3 in accordance with the input signal applied to the input signal terminal 2 at a power supply voltage applied between the terminals 1 and 4 from outside. Recently, test time has drastically increased in tests of semiconductor devices with the increase in memory capacity, and a test cost will become very high unless counter-measures are taken. To restrict the rise of the test cost, it is very important to discriminate as rapidly as possible rejected products. Furthermore, it is necessary to limit the increase of the test time by incorporating various specific test functions into the semiconductor devices so as to limit the rise of the test time. The test items can be broadly classified into a DC test for checking a power supply current and an AC test for checking an access time, and the like. However, these performance guarantee tests are carried out on the assumption that all the terminals of the semiconductor devices to be tested (hereinafter referred to as the "devices") are in advance confirmed to have been reliably connected to the test terminals of a testing apparatus. Unless the condition wherein all the terminals of the device are connected to the testing apparatus is guaranteed by this conduction test, performance of the device cannot be guaranteed even when the performance guarantee test is carried out. Conventionally, the following method has generally been employed in order to confirm that all the terminals of the device are reliably connected to the testing apparatus. A diffusion layer made of an impurity having an opposite conductivity type to that of a substrate is connected to each terminal, and a diode is connected electrically. Therefore, the connection between the testing apparatus and the terminals of the device can be confirmed by forwardly biasing this diode. This test is repeated for each terminal of the device. Speaking more definitely, various pins formed outside the device and connected to a pad portion of the device or in other words, its terminal portion, through leads, are brought into mechanical contact with a probe to be connected to these pins. Then, whether or not each pin is in complete contact with the probe is sequentially checked by use of a switching means disposed in the testing apparatus such as relay, and after all the pins are confirmed to be in perfect contact with the probe, the performance test of the device is commenced. The time required for conducting such a conduction test has not been so long in the past because the number of terminals is not so great. Since the number of terminals has drastically increased in semi-conductor devices with the increase in their capacity in recent years, however, the time necessary for the conduction test has become longer and longer and has resulted in the increase of the test cost. Therefore, it has become very important to shorten the test time. In other words, in the conduction test described above, the conduction test time increases in proportion to the number of terminals, and the test time will be ever-increasing unless measures are taken. Therefore, a testing method which can efficiently conduct this conduction test has become essentially necessary.
{ "pile_set_name": "USPTO Backgrounds" }
a. Field of the Invention The present invention pertains generally to an electrophysiological device and method for providing energy to biological tissue and, more particularly, to an ablation apparatus with greater contact sensitivity. b. Background Art Ablation devices, including radio frequency (“RF”) ablation devices, have heretofore been provided, but not using a pressure sensitive conductive composite (“PSCC”) based electrodes (including, for example, quantum tunneling composites (“QTC”) and other pressure-sensitive, conductive polymers). Many medical procedures, including for example, creating lesions with electrical energy, rely on good contact between the medical device and the tissue. In some catheter applications, the point of electrode-tissue contact is typically 150 cm away from the point of application of force. This gives rise to functional and theoretical challenges associated with conventional devices, and thus, the ability to accurately assess tissue contact is increasingly important, especially in connection with ablation treatment. There is a need for improved ablation devices that provide greater contact sensitivity for control of ablation treatments using electrical energy. There is a need for improved ablation devices that provide greater contact sensitivity for RF ablation treatments. There is also a need for improved ablation devices that better concentrate the RF energy to the region of tissue that is in contact with the electrode.
{ "pile_set_name": "USPTO Backgrounds" }
Retail outpost display structures are merchandising displays that are placed in various remote locations within a retail store that contain merchandise that is not typically sold in the area of the display. Maximizing the amount of greeting cards which can be stored and displayed in such areas is difficult given that the retail space typically allotted for such displays is oftentimes limited. Space requirements and aisle configurations often differ considerably not only from store to store but from department to department, making the design and manufacture of flexible outpost structures difficult and expensive.
{ "pile_set_name": "USPTO Backgrounds" }
Spread spectrum techniques have proven useful in a variety of communications applications, including cellular telephones, wireless local area networks, and military communications. One advantage of spread spectrum techniques is the ability to build a transmitter which is difficult for an unauthorized user to detect. Wireless spread spectrum systems use a relatively large amount of spectrum bandwidth to communicate their signals. The large bandwidth is consumed by spread spectrum encoding the transmission using a spreading code. The two most common types of spread spectrum encoding are frequency hopping where a pseudonoise spreading code is used to pseudorandomly change the transmission frequency on a periodic basis, and direct sequence where the pseudonoise spreading code is used to modulate the transmit signal at a high rate relative to the underlying message data. The spread code is a pseudorandom sequence of symbols that can be generated by a transmitter, and also generated by a receiver which knows the characteristics of the code. Each symbol of the pseudorandom sequence is generally referred to as a chip. The time duration of a chip can be referred to as a chip time, and hence the chip rate (or spreading code frequency) is the reciprocal of the chip time. The chip rate is usually at least an order of magnitude higher than the data rate of the underlying information to be transmitted. Correlation can be used to detect a spread spectrum transmission and to extract the data from a spread spectrum transmission. Correlation typically performs a chip by chip comparison between a received signal and a local code reference, summing these comparison results over many chip intervals, the overall length referred to as the “correlation interval.” For example, to extract data, a receiver typically performs a correlation of the spread spectrum signal with the spreading code over a correlation interval corresponding to one symbol of underlying information. If the so-called processing gain is high (many spreading code chips for each information symbol), this correlation interval may span an interval of many chips. For example, systems are known which use processing gain in excess of 1000, in which case each symbol spans 1000 chips. For detecting a spread spectrum transmission, even longer correlation intervals are often used which span many symbols and, thus, many thousands of chips. Long correlation intervals can cause problems when the spreading code rate received doesn't match that expected by the correlator. This difference, referred to as spreading code frequency offset, causes phase drift of the received signal relative to the local code reference. This drift can thus accumulate during the correlation interval. Hence, where the phase of the received signal and the local code reference may start out aligned at the beginning of the correlation interval, they may be misaligned (perhaps by several chip times) by the end of the correlation interval. This misalignment results in a loss in the correlator output, reducing the signal to noise ratio. Effects of this loss can include reduced probability of detection, increased symbol error rates during data extraction, and complete loss of synchronization. One approach to solving the problems caused by code frequency offset is to limit the length of the correlation interval. Limiting the length of the correlation can reduce the effects of code frequency offset because there is less time for the code phase to drift. The reduced length, however, also results in a reduction in signal to noise ratio. Hence, to accommodate large code frequency offset using a shorter correlation interval may result in inadequate signal to noise ratio. An alternative approach, applicable to signal detection, is to include complex clocking circuitry to provide multiple local code references which advance at slightly different frequencies. Hence, correlators using different rate local references can accommodate different code frequency offset. Unfortunately, the complexity of the multiple clocking can increase costs. Furthermore, it is difficult to accommodate these multiple slightly different clock rates in a synchronous logic design.
{ "pile_set_name": "USPTO Backgrounds" }
Mobile heating devices are known, such as for example heat radiators comprising one or more radiant elements, connected to each other and hydraulically communicating, each of which is defined by two metal plates connected in sealed manner with each other so as to define a central portion more or less extended with respect to the width of the plate. The central portions are normally connected hydraulically with each other by means of upper and lower collectors. A diathermic oil, heated by means of one or more electric resistances, is made to flow in the central portions and, through the collectors, from one radiant element to the other. In the field of mobile heating devices of this type, one of the problems generally faced is that of transmitting heat energy in the room so as to heat the room as rapidly as possible, or to heat large-size rooms, keeping the temperature of the peripheral zones, which can easily come into contact with a part of the body of a user, particularly children, at a lower level with respect to that of the central portions. The purpose is to keep said temperature at a level such as not to cause the user any burns. In known heating devices, this problem has been faced, for example, by making, directly in the peripheral zones of the plates, geometries defined by bends or fins which allow to dissipate the heat arriving from the central portion towards the room. Although efficient and appreciated, this known solution can be improved so as to obtain a temperature level in the peripheral zones of the plate even lower with respect to that obtainable at present, given the same heat energy emitted. DE-A1-1679446 discloses a mobile radiator in which, for aesthetic reasons, thin covering plates are mounted in front of the edge of each single module of the radiator. The covering plates are fixed to a lower and an upper mounting cross-bars, which run for the length of the radiator, and are mounted with screws and rivets at a distance from the respective module of the radiator. The covering plates are made with a material which does not affect the heat transmission, both by contact and by radiation, from the radiator to the environment. One purpose of the present invention is therefore to improve the techniques currently used, achieving a mobile device for heating rooms which allows to keep at a lower temperature than that which is obtainable at present at least the zones that can easily come into contact with the parts of the body of a user, while still allowing to produce the desired and efficient heating of the room. Another purpose of the present invention is to achieve a mobile device for heating rooms which has good accident-prevention characteristics and pleasant and personizable aesthetics. The Applicant has devised, tested and embodied the present invention to overcome the shortcomings of the state of the art and to obtain these and other purposes and advantages.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention generally relates to a semi-permeable membrane and, more particularly, to a biocompatible semi-permeable membrane. The present invention also relates to a method of manufacturing the semi-permeable membrane thereof. 2. Description of the Related Art The dialysis membrane is the most important component of the dialyzer, also known as the artificial kidney. Generally, a semi-permeable membrane is used as the dialysis membrane. In hemodialysis, the patient's blood is pumped through the blood compartment of the dialyzer, exposing it to the semi-permeable membrane. Through the process known as diffusion, small molecules such as urea move along the concentration gradient through the semi-permeable membrane, thereby removing the small molecules from the patient's blood. Also, through the processes known as ultra-filtration and adsorption, water and middle molecules may pass through the semi-permeable membrane driven by a pressure gradient, thereby eliminating the excessive water and middle molecules from the patient's blood. As a result, the semi-permeable membrane that is used in the dialyzer and the way the semi-permeable membrane is used contribute on hemodialysis. Conventional semi-permeable membranes can be divided into a conventional unmodified cellulosic membrane, a conventional semi-synthetic membrane and a conventional synthetic membrane. Due to abundant surface hydroxyl groups, when the conventional unmodified cellulosic membrane is used in hemodialysis, the continuous contact with the patient's blood may easily induce activation of several inflammation pathways, such complements activation, white blood cells activation, platelets activation and coagulation, resulting in chronic inflammation, complements depletion and dysfunction of the inflammatory cells. Finally, the patient may suffer from an elevated opportunity of contracting cardiovascular diseases and infection. The conventional semi-synthetic membrane is a modification of the conventional unmodified cellulosic membrane. Exposure of the surface hydroxyl groups is reduced by replacement or covering of the surface hydroxyl groups, thereby retarding white blood cells reduction due to the complements activation. However, the method for manufacturing the conventional semi-synthetic membrane is complicate, improving the cost for manufacturing the conventional semi-synthetic membrane thereof. The conventional synthetic membrane with a larger average pore size can also be used in hemodialysis. However, because of the larger pore size, blood cells can easily diffuse through the conventional synthetic membrane, thereby decreasing the blood cell level in the blood. Moreover, if any endotoxins remain in the dialysates, the endotoxins probably may diffuse into the patient's blood, resulting infection of the patient. In light of this, it is necessary to provide a biocompatible semi-permeable membrane.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention This invention relates to a battery pack that detects case disassembly. 2. Description of the Related Art User disassembly of the case or modification of a battery pack containing batteries and protection circuitry compromises safety and its prevention is necessary. To implement this, a tamper-prevention feature has been developed that attaches an external label to the surface of the case, and evidence of tampering remains if that label (seal) is broken (see Japanese Patent Application Disclosures 2003-68267, 2002-311836, and 2003-195767). Since the external labels cited in these patent disclosures leave evidence of tampering, they are useful in determining the root cause when a failure or customer-claim develops. Further, as a result of prior knowledge that the external label will leave evidence of tampering if broken, the label has the effect of suppressing the user's initiative to tamper and thereby is linked to tamper-prevention.
{ "pile_set_name": "USPTO Backgrounds" }
A client system may experience a system wide exception that results in a system crash. The system crash may cause the state of the client system at the time of the crash to be lost. The cause of the crash may not be identified due to nondeterministic causes of the system crash. In addition, a high priority operation running in the client system may be terminated as a result of the system crash. These events may lead to a loss of resources, including processor time, programmer time, and time needed to restore a critical process. The interruption of the high priority operation may further result in a failure to meet a deadline.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to the epitaxial growth of semiconductor materials in a manner which produces monocrystal material with improved characteristics, and to the structures based on such material. In particular, the invention relates to a method of fabricating semiconductor materials with the bandgap width exceeding 1.8 eV on a porous layer of a monocrystal semiconductor material. Semiconductor materials with bandgap width exceeding 1.8 eV have, long been considered as materials of choice for high temperature and high power devices, due to their high thermal conductivity and robust mechanical and chemical properties. They are also required in green, blue, violet and UV-bandwidth optoelectronics, because their bandgap values correspond to these areas of the spectrum. Of those materials, most commonly used today are Silicon Carbide, Gallium Nitride, Aluminum Nitride, and related materials, such as BN, AlGaN, etc. Devices based on these materials are currently on the industrial market and proved to be invaluable in many areas, starting from consumer electronics and up to avionics and space based power systems. However, the production of commercial devices based on abovementioned materials is still fighting with serious problems related to the quality of the original material. Despite the progress in bulk crystal growth techniques and the development of modern advanced technologies, the actual quality of wide bandgap epitaxial materials still restricts possible high-power and high-temperature device applications of these materials. Though it is possible today to grow wafers of these materials as large as 5 inches in diameter, the whole area of these wafers cannot be used for device structures because of a number of structural and point defects present in the wafer. That makes small device structure based on pieces cut from the wafer more expensive and prevents the fabrication of very-large-area devices needed for extremely high current densities required in to-day""s power devices. So, it is believed that the key element in the development of wide-bandgap semiconductor electronics is a proper substrate. The main limiting factors currently precluding the wider use of silicon carbide epitaxial layers is relatively high defect density in silicon carbide substrates, while for group III nitride materials the problem is in a substrate as such. In the case of SiC, defects from the substrate penetrate inside the bulk SiC crystals and epitaxial layers grown on the said substrate. These defects are limiting material characteristics and device performance. There is no material which could be used as a native substrate for epitaxial growth of group III nitride materials, and poor lattice match and difference in thermal expansion coefficients with foreign substrates being currently used for epitaxial growth of group III nitride layers make these layers quite strained, with average value of biaxial stress ranging up to 1 GPa. This stress affects both structural and electric properties of the layers and devices built on such layers cannot take full advantage of intrinsic properties of the materials. Some researches have attempted to solve the problem by growing epitaxial layers on various buffer layers, such as thin AlGaN layer on SiC wafer for the growth of GaN epitaxial layer, on which the device structure would be based. This attitude helps, yet defects such as so called nanopipes, inclusions, dislocations and stacking faults that are present in the original substrate wafer still propagate in epitaxial structure that is grown on that substrate and eventually lead to the device degradation at particular power and/or temperature levels. Therefore, it is an object of the present invention to provide monocrystal epitaxial layers of wide bandgap semiconductors with improved structural, electrical and optical characteristics and resulted structures with improved performance. The invention meets this object with a method of growing semiconductor materials on a porous monocrystal layer being made of material with the bandgap width exceeding 1.8 eV. This porous layer is produced during the first step of fabricating the material, through electrolytic treatment of the wafer at direct current under or without UV-illumination. In another aspect, the invention comprises a method of fabricating group III nitride material using the abovementioned two-steps fabricating process. In yet another aspect, the invention comprises a method of fabricating Silicon Carbide monocrystal layer using the abovementioned two-steps fabricating process. In yet another aspect, the invention comprises a semiconductor device comprising at least one layer of porous group III material, where this material has an average pore spacing of less than 1 micron.
{ "pile_set_name": "USPTO Backgrounds" }
The present invention relates to a semiconductor apparatus and substrate and in particular to a semiconductor apparatus including alignment marks and a substrate having the semiconductor apparatus formed thereon. A single product (semiconductor apparatus) obtained by simultaneously forming, for example, multiple integrated circuits over the main surface of a single semiconductor substrate (wafer) by certain technologies is cut into multiple products (semiconductor chips) on an integrated circuit basis, typically by the technology called dicing. Formed over the main surface of the wafer are so-called alignment marks. Examples of alignment marks include alignment marks for performing alignment during so-called laser trimming (LT) (alignment marks for LT) and alignment marks for overlaying a photomask on a desired position (alignment marks for overlay). Note that while alignment marks for LT and alignment marks for overlay have different applications, they are not limited to the applications described in the specification of this application. That is, alignment marks described as alignment marks for LT may be used as alignment marks for overlay, and vice versa. In Japanese Unexamined Patent Application Publication No. 2008-28243, for example, alignment marks are formed over lines (scribe lines) along which a wafer is to be cut during dicing. In Japanese Unexamined Patent Application Publication No. 2006-303073, for example, walls called guard rings are formed in order to control entry of moisture into integrated circuits and corrosion of the integrated circuits. The guard rings are intended to protect the integrated circuits from the sides (peripheries). On the other hand, a protective film (such as a passivation film, or a polyimide film) may be formed in order to protect the integrated circuits from above. Covering the top surfaces of the integrated circuits with a protective film allows the integrated circuits to be protected from moisture or sediment. A semiconductor apparatus including such protective film is disclosed in, for example, Japanese Unexamined Patent Application Publication No. 2003-282484. In Japanese Unexamined Patent Application Publication Nos. 2008-28243 and 2003-282484, alignment marks are formed in positions over scribe lines. Alternatively, alignment marks may be formed in a semiconductor chip, as disclosed in Japanese Unexamined Patent Application Publication No. 2010-129695. In a semiconductor apparatus of Japanese Unexamined Patent Application Publication No. 2003-282484, for example, a protective film is formed in an area where scribe lines are to be formed (scribe line area). Accordingly, the protective film is cut during dicing. A crack may be formed in the protective film from cut surfaces of these films by external stress. Such a crack in the protective film is known to break the guard ring and thus reduce the moisture resistance of the integrate circuit, as well as to reduce the reliability of the semiconductor chip. For the purpose of dispersing and reducing external stress that causes such a crack or break, Japanese Unexamined Patent Application Publication No. Hei 2(1990)-77131, for example, discloses a semiconductor apparatus having slits formed in guard rings. Japanese Unexamined Patent Application Publication No. 2011-29430, for example, discloses a semiconductor apparatus including guard rings that each include two wiring layers and a via coupling the wiring layers for the same purpose. Japanese Unexamined Patent Application Publication No. 7-201855, for example, discloses a semiconductor apparatus including guard rings that each include a pattern bent in a meandering manner for the same purpose.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The invention relates to a monitoring device for safeguarding a driven element, and an elevator comprising such a monitoring device. 2. Description of Related Art Elevator doors can become dangerous for a passenger if they are not monitored and there is the risk of the passenger being trapped. This risk is nowadays reduced or even wholly eliminated by means of light barriers, light gratings, active and passive infrared sensors, ultrasonic sensors or else by means of mechanical pressure switches. In many cases, light gratings are used which form a horizontal grating of light barriers. These light gratings consist of a respective transmitting and receiving strip. Both strips are approximately two meter longitudinal slender profiles containing many transmitting and receiving elements generally incorporated in a manner distributed uniformly over the length. What is common to all of the sensor principles, however, is that they are comparatively expensive.
{ "pile_set_name": "USPTO Backgrounds" }
1. Field of the Invention The present invention relates to a horizontal multijoint type robot having a greatly enlarged region within which the robot is able to operate. 2. Related Art The horizontal multijoint type robot also called as scalar type robot usually includes a first arm and a second arm pivotally movable in horizontal planes through a first and a second joint shaft, respectively, a working shaft equipped on the distal end of the second arm and rotatable and movable up and down, and a handling device or the like mounted on the working shaft for carrying out desired working such as assembling, transferring or the like (refer to, for example, Japanese Patent Application Laid Open No. 84,688/1993). A horizontal multijoint type robot of the prior art, however, includes a second arm which could not rotate more than 360 degrees owing to its structural limitation so that its operating area is of substantially a doughnut shape thus attended by the following problems. (1) There are areas within which the robot could not be operated unless only a single arm is operated so that moving paths between two points would become lengthy, taking much time. (2) As the region (working range) in which the robot is operated is narrower, there are many limitations in a limited space so that it would be very difficult to determine a layout for effectively arranging positions (in shortest distances) where the robot operates. (3) If a wider operating range is attempted, the size of a robot would have to be enlarged in proportion to the working area, causing a problem of space.
{ "pile_set_name": "USPTO Backgrounds" }
This invention relates to rapid cold-set binders. In a particular aspect, this invention relates to a foundry composition characterized by rapid setting at room temperature. Cores useful in making metal castings are customarily made by placing a foundry aggregate, usually silica sand which has been admixed with a suitable binder, against a shape or pattern and then hardening the binder, as by polymerization. The resulting core is a self-supporting structure which forms a part of a mold assembly. Various sands are used for making cores. The cores themselves are made by a variety of processes employing a wide variety of binders. Three of the many processes in commercial use today are the so-called cold box process, no-bake process and the rapid no-bake process. The cold box process is one in which sand is admixed with a suitable resinous binder composition; the mixture is blown into a core box, and is then gassed with a suitable vapor phase catalyst to cure the binder. By such process, which is described, for example, in U.S. Pat. No. 3,409,579, a core of sufficient hardness to be stripped from the core box is produced in a matter of seconds. The no-bake process is one in which a resinous core binder is admixed with a catalyst and sand and the mixture placed in a core box. The core cures at ambient temperatures but much more slowly than in the cold box process, over a period of hours or even days. After a suitable period of time, such as two hours, the core can generally be stripped from the core box, but requires further cure time. The rapid no-bake process is similar to the no-bake process, but the character of the resin and the amount and type of catalyst employed are such that a core is formed and may be stripped from the core box in a matter of a few minutes. The bench life, or time period during which a sand-resin mixture may be kept before the reaction proceeds to a detrimental extent prior to placing the mixture into the core box, generally decreases rapidly when the catalyst and resin are adjusted to provide very rapid set times. These processes have been very successful. However, those wherein isocyanates are used are unsatisfactory in that they become air pollutants in the work area and can cause severe problems in industrial hygiene. Accordingly, a need exists for a non-polluting foundry aggregate composition.
{ "pile_set_name": "USPTO Backgrounds" }